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Abstract

Currently descriptor systems, i.e., the systems whose dynamics obey differential-
algebraic equations (DAEs), play important roles in various disciplines of science
and technology. In general, such systems are generated by finite element or finite
difference methods. If the grid resolution becomes very fine, because many details
must be resolved, the systems become very large. Moreover they are sparse, i.e.,
most of the elements in the matrices of the system are zero, which are not stored. A
high dimensional system will always be complex, requiring a great deal of memory,
thereby hindering computational performance significantly in simulation. Some-
times the systems are too large to store due to memory restrictions. Therefore,
we seek to reduce the complexity of the model by applying model order reduction
(MOR), i.e., we seek an approximation of the original model that well-approximates
the behavior of the original model, yet is much faster to evaluate. We investigate
efficient model reduction of sparse large-scale descriptor systems. We focus on
the balancing based method balanced truncation (BT). A balanced truncation based
method for such systems is introduced by Stykel (see, e.g., her PhD thesis, pub-
lished in 2002). The author discusses a general framework of the BT method for a
descriptor system. In general, the method is based on explicit computation of the
spectral projectors onto the left and right deflating subspaces of the matrix pencil
corresponding to the finite and infinite eigenvalues. Although these projectors are
available for particular systems, computation is expensive. In this thesis, we focus
on how to avoid computing such kind of projectors explicitly. Besides balanced
truncation, the idea of avoidance of the projectors is extended to interpolation of
transfer function, via iterative rational Krylov algorithms (IRKA) and projection onto
dominant eigenspace, of the Gramian (PDEG) based model reduction methods. First,
we discuss the model reduction problem for index 2 first order unstable descriptor
systems arising from spatially discretized linearized Navier-Stokes equations. We
apply our algorithms to the linearization of the von Kármán vortex shedding at a
moderate Reynolds number. We demonstrate that the resulting reduced model can
be used to accurately simulate the unstable linearized model and to design a sta-
bilizing controller. Future work will include the realization of the resulting control
law for the full nonlinear model. Second, we investigate model reduction of a finite
element model of a spindle head configuration in a machine tool. The special fea-
ture of this spindle head is that it is partially driven by a set of piezo actuators. Due
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to this piezo actuation, the resulting model is a second order differential-algebraic
system of index 1. We develop algorithms for both second-order-to-first-order and
second-order-to-second-order reduction methods. We prove the real world capa-
bility of our methods in application to a very large-scale sparse FEM model of an
adaptive spindle support employing piezo actuators. Finally, we focus on the model
reduction of DAE systems with mechanical applications. In the constraint mechan-
ics or multibody dynamics, the linearized equation of motion with holonomic con-
straints leads to second order index 3 descriptor systems. We develop efficient
techniques to obtain second-order-to-first-order and second-order-to-second-order
reduced models of such index 3 descriptor systems. The efficiency of the tech-
niques is tested by applying them to several test examples. For implementing the
BT and PDEG methods, we need to compute approximate low rank Gramian fac-
tors of the system by solving two continuous-time Lyapunov equations. Recently
one of the most powerful methods to compute these Gramian factors for large-
scale sparse dynamical systems is the low-rank Cholesky factor alternating direction
implicit (LRCF-ADI) iteration. We also present updated versions of the LRCF-ADI
method to solve the Lyapunov equations arising from descriptor systems. Moreover,
several approaches for computing ADI shift parameters are discussed and proposed
for an improvement of an existing method.



Zusammenfassung

Heutzutage spielen Deskriptorsysteme, also solche Systeme deren Dynamik differ-
entiell algebraischen Gleichungen gehorchen, eine wichtige Rolle in verschieden-
sten Disziplinen in Wissenschaft und Technik. Im Allgemeinen werden solche Sys-
teme durch finite-Elemente- oder finite-Differenzen-Verfahren erzeugt. Wenn die
Gitterauflösung sehr fein wird, da viele Details aufgelöst werden müssen, dann
werden die Systeme sehr groß. Darüberhinaus sind sie dünn besetzt, d.h. die
meisten Einträge der Systemmatrizen sind Nullen, die nicht gespeichert werden.
Hochdimensionale Systeme benötigen viel Speicher, wodurch die Ausführungsef-
fizienz von Simulationen merkbar beeinträchtigt wird. Manchmal sind die Systeme
sogar zu groß für die begrenzten verfügbaren Speicherkapazitäten. Daher sind wir
bestrebt die Komplexität der Modelle durch eine Modellordnungsreduktion (MOR)
zu verringern, d.h. wir suchen nach einer Approximation des Originalsystems,
die das Verhalten des Originalsystems möglichst genau wiedergibt, dabei aber viel
schneller auszuwerten ist. Wir untersuchen effiziente Modellreduktion von großen
dünnbesetzten Deskriptorsystemen. Dabei konzentrieren wir uns auf die Methode
des balancierten Abschneidens (BT für balanced truncation). Ein Verfahren für
das balancierte Abschneiden von solchen Systemen wurde von Stykel (vgl. ihre
Dissertation aus dem Jahr 2002) vorgestellt. Die Autorin diskutiert darin eine
allgemein gültige Verfahrensweise für das balancierte Abschneiden von Deskrip-
torsystemen. Im allgemeinen basiert das Verfahren auf der expliziten Berechnung
von Spektralprojektoren zu den linken und rechten Eigenräumen zu den endlichen
und unendlichen Eigenwerten. Obwohl diese Projektoren für ausgewählte Systeme
bekannt sind, ist ihre Berechnung teuer. In dieser Arbeit konzentrieren wir uns da-
rauf, die explizite Berechnung der Projektoren zu vermeiden. Diese Idee (Vermei-
dung der Projektoren) wird außerdem übertragen auf die Interpolation der Über-
tragungsfunktion durch den iterativen rationalen Krylov Algorithmus (IRKA) und
die Projektion auf dominante Eigenräume der Systemgramschen (PDEG für projec-
tion onto dominant eigenspaces of the Gramian) zur Modellreduktion. Zunächst
betrachten wir das Modellreduktionsproblem für instabile Index-2 Deskriptorsys-
teme erster Ordnung, wie sie bei ortsdiskretisierten linearisierten Navier-Stokes-
Gleichungen entstehen. Wir wenden unseren Algorithmus auf die von Kármán’sche
Wirbelstraße mit moderaten Reynoldszahlen an. Dabei zeigen wir, dass das re-
duzierte System verwendet werden kann, um das instabile Originalsystem genau
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zu simulieren und auch eine stabilisierende Regelung zu entwerfen. Zukünftige
Arbeiten umfassen die Realisierung des Regelgesetzes für das vollständige nichtlin-
eare Modell. Als zweites untersuchen wir Modellreduktion eines finite-Elemente-
Modells einer Werkzeugspindel in einer Werkzeugmaschine. Das auszeichnende
Merkmal dieser ist, dass sie teilweise von Piezoaktuatoren bewegt wird. Bedingt
durch diese Piezoaktoren ist das resultierende Modell ein differentiell-algebraisches
System vom Index 1. Wir entwickeln Algorithmen sowohl für Methoden der Reduk-
tion erster als auch zweiter Ordnung. Wir demonstrieren die Verwendbarkeit un-
serer Methoden in Anwendung auf ein sehr großskaliges dünn-besetztes FEM Mod-
ell einer Werkzeughalterung, welche Piezoaktoren verwendet. Schließlich konzen-
trieren wir uns auf die Modellreduktion von DAE-Systemen aus mechanischen An-
wendungen. In der beschränkten Mechanik oder Mehrkörperdynamik führen die
linearisierten Bewegungsgesetze mit holonomen Beschränkungen auf Index 3
Deskriptorsysteme. Wir entwickeln effiziente Techniken um zweiter-Ordnung-zu-
zweiter-Ordnung wie auch zweiter-Ordnung-zu-erster-Ordnung reduzierte Modelle
für derartige Index 3 Systeme zu erhalten. Die Effizienz der Techniken wird durch
Anwendung auf diverse Beispielsysteme getestet. Zur Implementierung der BT und
PDEG Methoden müssen wir approximativ Gramsche-Matrizen im Niedrigrangfor-
mat berechnen. Dies geschieht durch das Lösen zweier zeitkontinuierlicher Lya-
punovgleichungen. Eines der mächtigsten Verfahren zur Berechnung dieser
Gramschen-Matrizen für große, dünn besetzte dynamische Systeme ist die
Niedrigrang-Choleskyfaktor-ADI (LRCF-ADI) Iteration. Wir zeigen auch eine über-
arbeitete Version der LRCF-ADI Methode zum Lösen von Lyapunovgleichungen die
aus Deskriptorsystemen entstehen. Darüberhinaus werden verschiedene Zugänge
zur Berechnung der ADI Parameter diskutiert und eine Verbesserung einer existieren-
den Methode vorgeschlagen.
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Chapter 1

Introduction

1.1 Motivation

Before implementing new ideas or decisions in different disciplines of science, en-
gineering, and technology, an experiment is required. The classical approach of
this experiment would require a laboratory with a lot of new equipment, which is
an expensive method to demonstrate a concept. The modern approach, rather less
expensive and often easier to apply than experiments, to explore scientific ideas to
convince others of their validity is through computer simulation. In simulation, one
needs to convert a physical model into a mathematical model. Often also in real-
life applications the mathematical models are represented by linear time-invariant
(LTI) continuous-time systems. In many cases, these systems are subject to addi-
tional algebraic constraints, leading to differential-algebraic equations (DAEs) or
descriptor systems. These descriptor systems are in either first or second order
form. The mathematical models are generated in many different ways. In many
applications, the systems are obtained by finite element (FEM) or finite difference
(FDM) discretization. In order to model a system accurately, a sufficient number of
grid points must be generated because many geometrical details must be resolved.
Sometimes physical systems consist of several bodies and each body is composed of
a large number of disparate devices. Therefore, the mathematical models become
more detailed and different coupling effects must be included. In either case, the
resulting systems are typically very large and sparse. Moreover, often they might be
well-structured.

A large1 -scale system leads to additional memory requirements and enormous com-
putational efforts. They also prevent frequent simulations which is often required in
many applications. Sometimes, the generated systems are too large to store due to
the restriction of computer memory. To circumvent these complexities reducing the

1the notation of large is constantly changing with the increasing capability of the computational
hardware.

1
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size of the systems is unavoidable. The method to reduce a higher dimensional to
a lower one is called model order reduction (MOR). See e.g., [5, 23, 18, 95, 106, 7]
for motivations, applications, restrictions, and techniques of MOR.

The fundamental aim of MOR is to replace the high dimensional dynamical systems
by substantially lower dimensional systems, while the responses of the original and
reduced systems should be approximated to the largest possible extent. In some
cases, some important features such as stability, passivity, definiteness, symmetry
and so forth of the original system must be preserved in the reduced systems.

The techniques to reduce the state space dimension for a LTI continuous-time ODE
system are well established. See e.g., [5, 23, 7, 63] for an overview. In a broad
sense, there are two techniques, namely, Gramian based methods and moment
matching based methods. The Gramian based methods include optimal Hankel
norm approximation [59], singular perturbation approximation [52, 83, 27], domi-
nant subspaces projection [80, 94], frequency weighted balanced truncation [50, 134],
dominant pole algorithm and balanced truncation (BT) [89, 117, 103]. On the other
hand, moment matching can be implemented efficiently via rational Krylov meth-
ods discussed in [49, 51, 54, 129, 56, 6]. The concept of projection for rational
interpolation of the transfer function was first proposed in [124]. In [62] Grimme
showed how to obtain the required projection using the rational Krylov method of
Ruhe [98]. Later on, the authors in [64, 6] generalize Grimme’s idea to generate a
reduced model which is an optimal H2 approximation to the original system in the
sense that it minimizes the H2 norm. There the implementing algorithm is called
IRKA, i.e., iterative rational Krylov algorithm.

Among all the aforementioned methods, currently balanced truncation (BT) and
the interpolatory method via IRKA are the most commonly used techniques for
large-scale dynamical systems. In this thesis we also focus on these two prominent
methods.

The system theoretic method balanced truncation has an a priori error bound. That
means for a given system, the method can generate a best approximate system with
respect to a given tolerance. Besides this, balanced truncation preserves the stabil-
ity of the original systems, i.e., if the given system is stable, the method ensures
a stable reduced system. Although these two important properties make balanced
truncation superior to the other methods, the main disadvantage of this method is
to solve two continuous-time algebraic Lyapunov equations for the original model
which requires enormous computational resources. On the other hand, the recently
developed, interpolatory method via IRKA is attractive to the model reduction com-
munity since it is computationally efficient. It requires only matrix-vector products
or linear solves. Unfortunately, this prominent method has neither an a priori error
bound nor guaranteed stability preservation.

The idea of both BT and IRKA has been extended to large-scale descriptor systems.
Another model reduction method for DAE systems was introduced in [2, 3], which
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is called index-aware model order reduction (IMOR). However, this thesis is not
concerned with the IMOR method. The balanced truncation based model reduction
technique for DAE systems was first introduced by Stykel in [111]. See, for example
[112, 113, 87] for details. The author discusses the general framework of the BT
method for a descriptor system. In principle, the proposed method is based on split-
ting the descriptor system into proper and improper subsystems corresponding to
the deflating subspaces of the associated matrix pencil with respect to the finite and
infinite eigenvalues, and then reducing only the order of the proper subsystem. To
implement the method one requires explicit computation of the spectral projectors
onto the deflating subspaces. Although the projectors are available for particular
structured systems, they are expensive to compute.

Recently, the BT methods for the large-scale structured (first order) descriptor sys-
tems of index 1 and 2 have been developed respectively, in [53] and [70], that
avoid the computation of spectral projectors. Instead, they implicitly perform an
index reduction by elimination of the algebraic part of the system and conversion
into the equivalent form of ODE systems. However, the conversion technique from
DAEs to equivalent ODEs, and implementation criterion for index 1 and index 2
systems are separate. The authors in [53] show that for the structured index 1
systems, from the algebraic element of the system, one can find the value of the
algebraic variables, and by inserting it into the differential equation and into the
output equation, one can get rid of the algebraic element and find an equivalent
ODE system. The BT method is then applied to the ODE system. At the end they
show that an explicit implementation of the ODE system is not required, but all
computations can be performed based on the orginal DAE matrices.

In [70], the author shows that for the structured index 2 DAEs, an index reduction
can be performed by projection to the inherent or hidden manifold on which the so-
lution evolves. It is possible to explicitly construct the projector onto the differential
element of the system from the given problem data. Finally, by exploiting the prop-
erties of the projector, the paper shows that explicit formulation of the projected
ODE system is not necessary.

The BT technique discussed in [70] is only applicable for stable systems. In ap-
plications such as in the flow control problem, we may obtain structured index 2
unstable descriptor systems. Zhou et. al. [135] discuss an efficient BT technique
for an unstable standard system. One of the major contributions of this thesis is the
development of a BT algorithms of a class of structured index 2 unstable descriptor
systems by combining the results in [70, 135]. For such systems, we also show
that a Riccati-based boundary feedback stabilization matrix for the original model
(one of the challenging tasks in the flow control problems, see e.g., [12]) can be
computed efficiently from the ROM.

Recently, the idea of interpolatory MOR via IRKA was extended to descriptor sys-
tems in [68]. There, the theory of the techniques is based on spectral projectors.
For a particularly structured (index 1 and index 2) DAE system, the authors show
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that in the implementation, explicit computation of the projectors is not required.

In many applications in real life, particularly in structural mechanics, multibody
dynamics, multiphysics, electric circuits and so forth, the governing mathemati-
cal models are in second order form. In many cases the systems are in descriptor
form. For the MOR of second order systems, in general, one first converts the
systems into first order form. The reduction methods are then applied to the con-
verted system. In this case the structure of the original system is dissolved. And
hence one can not go back to the second order form if it is required for the sim-
ulation using any software designed for second order systems. Moreover, struc-
ture preserving reduced models allow meaningful physical interpretation and pro-
vide more accurate approximation, which we will see later. Model reduction of
second order systems, including second-order-to-first-order and second-order-to-
second-order, has received lot of attention during the recent decades. See, e.g.
[76, 11, 104, 105, 16, 96, 29, 66, 20] and references therein for motivations and
techniques. All of these articles are devoted to second order standard systems. In
this thesis we show the efficient model reduction of structured second order DAEs,
which arise in different applications. We discuss both second-order-to-first-order
and second-order-to-second order reducing techniques. In the case of second-order-
to-first-order reduction, we develop algorithms for the BT and interpolatory meth-
ods following the concepts in [70, 68]. For second-order-to-second-order reduction
besides balanced truncation, we also investigate the dominant subspaces projection
method, which is computationally efficient. Note that this technique originated in
[80, 94] for a standard state space system. In this thesis we call this PDEG (projec-
tion onto dominant eigenspace of the Gramian) method.

For implementing BT and PDEG based model reduction, the most expensive task is
the computation of two Gramian factors by solving two continuous-time algebraic
Lyapunov equations. During the recent decades several efficient approaches have
been proposed in the literature [46, 93, 81, 108, 22], exploiting the fact that of-
ten all coefficient matrices are sparse and the number of inputs and outputs are
very small compared to the number of DoFs. The alternating direction implicit
(ADI) based method low-rank Cholesky factor (LRCF-)ADI iteration [81, 22] is the
most attractive for a large-scale sparse dynamical system. The recent update of this
prominent method is available in [19, 20]. This thesis also discusses an updated
version of the LRCF-ADI iteration to solve the Lyapunov equations of the structured
DAE systems.

A set of ADI shift parameters plays a crucial role in the fast convergence of the
LRCF-ADI iteration. Several approaches are proposed in the literature for select-
ing a set of shift parameters. See for example [21] for an overview of different
shift selection approaches. The Penzl’s heuristic [93] is one of the most applied ap-
proaches for large-scale dynamical systems. For the descriptor systems considered
here, computing some large magnitude Ritz values (approximated eigenvalues) is
in particular a challenging task. We discuss the issues involved to resolve such prob-
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lems. Recently another promising shift selection strategy was proposed in [21], in
which the LRCF-ADI algorithm automatically updates the shift parameters to en-
sure fast convergence. There the method is called adaptive approach. We propose
a modification of the adaptive shift parameter selection approach.

Note: In this thesis we discuss the model reduction methods of structured descrip-
tor systems. To perform the methods, we transform the descriptor systems into the
equivalent form of ODE systems by exploiting the knowledge of the structure of the
systems. Therefor, the theories of ODE systems can be applied here. In this case,
the important contribution is that we never form the ODE systems explicitly.

1.2 Thesis outline

Chapter 2 is a review of the literature. This chapter contains notations, fundamen-
tal concepts, and results from linear algebra, system theory, model reduction and
related issues. The concepts of this chapter are used throughout the thesis.

In Chapter 3, we discuss model reduction techniques for unstable index 2 descriptor
systems arising from flow control problems. In particular, we consider linearized
Navier-Stokes equations. Their spatial discretization by finite elements leads to
index-2 DAEs. This causes some technical difficulties for the application of model
reduction based on balanced truncation. This chapter shows how to overcome
these challenges. To compute the controllability and observability Gramian fac-
tors, we need to solve two projected algebraic Lyapunov equations of the Bernoulli
stabilized system. We present an algorithm to solve such Lyapunov equations effi-
ciently. To ensure fast convergence of the algorithm we also discuss shift parameter
computation approaches. As an illustrative example, we apply our algorithms to
the linearization of the von Kármán vortex shedding at a moderate Reynolds num-
ber. It is demonstrated that the resulting reduced model can be used to accurately
simulate the unstable linearized model and to design a stabilizing controller. The
balancing based results are compared with that of IRKA.

Chapter 4 focuses on model reduction of a class of second order index 1 systems
arising from constraint mechanics, multiphysics, mechatronics, or electrics fields.
Particularly, we consider a finite element model of a spindle head configuration
in a machine tool. The special feature of this spindle head is that it is partially
driven by a set of piezo actuators. Due to this piezo actuation the resulting model
is a second order differential algebraic system of index 1. In the first part of this
chapter, we show that a suitable first order companion form of the second order
system reduces the computational demands in the implementation. Then we focus
on second-order-to-first-order reduction methods. In this case we discuss both the
BT and IRKA techniques elaborately. Next we discuss the second-order-to-second-
order reduction methods using the BT and PDEG methods. We also discuss efficient
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techniques, including an adaptive shift selection approach, to solve a Lyapunov
equation obtained from second order index 1 DAEs. The proposed methods are
applied to a structural FEM model of a micro-mechanical piezo-actuators based
adaptive spindle support (ASS). Numerical results illustrate the capability of the
techniques.

Chapter 5 is about the MOR of second order index 3 descriptor systems. In partic-
ular, we consider the models arising from constraint mechanics or multibody dy-
namics. In the beginning of the chapter we review the index reduction techniques
to convert the DAEs to equivalent ODEs. As in Chapter 4, this chapter also first
contributes second order to first order reduction. In this case both BT and IRKA
are discussed elaborately. Then we include the BT and PDEG methods for structure
preserving model reduction techniques of second order index 3 DAEs. This chap-
ter also discusses the LRCF-ADI iteration for solving projected algebraic Lyapunov
equations arising from second order index 3 descriptor systems. Computation of
ADI shift parameters, the crucial objects of the LRCF-ADI method, is also discussed
here for both heuristic and adaptive approaches. The proposed strategies are ap-
plied to several test examples and numerical results are discussed to demonstrate
the performance.

We summarize our work in Chapter 6, including some important remarks regarding
future directions of research.



Chapter 2

Preliminaries

The purpose of this chapter is to establish notation and introduce important con-
cepts or results from the literature. First we discuss some important properties of
the linear time-invariant (LTI) continuous-time systems as they are involved in this
thesis. Then we briefly introduce the ideas of model reduction and the techniques of
model reduction used throughout the thesis. In the implementation of some model
reduction methods, the low-rank factors of the system Gramians are the important
ingredients. One of the powerful methods for computing the Gramian factors is
the LRCF-ADI iteration. The LRCF-ADI method and related issues are discussed to
compute the low-rank Gramian factors by solving the Lyapunov equations. We dis-
cuss the background theory only for the non-descriptor generalized systems. This is
relevant since the model reduction approach for our descriptor systems is applied
to the converted ODE systems. This issue is also discussed at the end of the chap-
ter. The profound discussion of a topic or proofs of the theorems, lemmas, etc. are
omitted in this chapter since details are available in the referenced literature.

2.1 Theory of systems

This section gives the fundamental properties of the systems and their realizations
from the system theory and linear algebra points of view. The generalized state
space form of the systems is considered first. The results of the second order and
descriptor systems are discussed subsequently.

2.1.1 State space form of dynamical systems

We describe generalized LTI continuous-time systems as

E ẋ(t) = Ax(t) + Bu(t); x(t0) = x0, t ≥ t0
y(t) = Cx(t) +Dau(t)

(2.1)

7
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where x(t) ∈ Rn are the states, u(t) ∈ Rm are the inputs and, y(t) ∈ Rp are
the measurement outputs. The matrices E , A, B, C and Da are of appropriate
dimensions. If m = p = 1, the system is referred to as a single-input single-output
(SISO) system, otherwise it is called a multi-input multi-output (MIMO) system. In
the MIMO case, we assume that the number of inputs and outputs are much less
than the number of states, i.e., m, p � n. The dynamical system (2.1) is called
asymptotically stable if all the finite eigenvalues of the matrix pencil [60]

Pc(λ) = λE − A, (2.2)

with λ ∈ C lie in the left complex plane (C−). If any eigenvalue of the pencil Pc(λ)

lies in C+ (right complex plane), then the system is called unstable. If E = I, the
identity matrix, the system is called a standard state space system. For an invertible
E , one can convert the generalized state space system (2.1) into standard state
space form.

Let the matrix E be invertible and As = E−1A, Bs = E−1B. Then the solution of the
system (2.1) is

x(t) = eAs(t−t0)x0 +

∫ t

t0

eAs(t−τ)Bsu(τ)dτ, (2.3a)

y(t) = CeAs(t−t0)x0 +

∫ t

t0

CeAs(t−τ)Bsu(τ)dτ +Dau(t). (2.3b)

Given the initial value x0 and the input u(t), the behavior of the dynamical system
(2.1) can be characterized by y(t) in (2.3), which is called system response. In the
time domain analysis of the LTI system, the two most commonly used responses are
the step-response and the impulse-response. In a relaxed system (i.e., x(0) = 0), the
unit step response and the unit impulse response are the respective outputs of the
systems when the unit step function and the unit impulse are used. Another im-
portant measurement to study the characteristic of the LTI system is the frequency
response. In order to determine the frequency response, applying the Laplace trans-
formation, 1 the system in (2.1) turns out to be

sEX(s)− x0 = AX(s) + BU(s), (2.4a)

Y (s) = CX(s) +DaU(s), (2.4b)

where X(s), U(s) and Y (s) are, respectively, the Laplace transformations of x(t),
u(t) and y(t). Considering x0 = 0 and inserting X(s) from (2.4a) into (2.4b) we
obtain

Y (s) = G(s)U(s), (2.5)

1The Laplace transformation of a function f(t), defined for all real numbers t ≥ 0, is the function
F (s), defined by F (s) = L[f(t)] =

∫∞
0

f(t)e−st dt. The parameter s is the complex number: s =

a+ ib, with real number a, b.
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where

G(s) = C(sE − A)−1B +Da, (2.6)

known as the transfer function (in the SISO case) of the system (2.1). In the case of
MIMO systems, G(s) is the p×m transfer matrix and can be written as

G(s) =


G11(s) G12(s) · · · G1m(s)

G21(s) G22(s) · · · G2m(s)
...

... · · ·
...

Gp1(s) Gp2(s) · · · Gpm(s)

 , (2.7)

where Gil = C(i, :)(sE−A)B(:, l)+Da(i, l) with i = 1, 2, · · · , p and l = 1, 2, · · · ,m. In
fact, the transfer function is the input-output relation of the dynamical system in the
complex domain. The behavior of the dynamical systems can be fully characterized
by its transfer function.

Definition 2.1. The transfer function G(s) as defined in (2.5) is called proper if
lims→∞ G(s) < ∞ and strictly proper if lims→∞ G(s) = 0. Otherwise G(s) is called
improper.

The frequency response of the dynamical system (2.1) which is defined by

G(jω) = C(jωE − A)−1B +Da, (2.8)

where ω ∈ R is the frequency, is the value of the transfer function on the imaginary
axis.

2.1.2 Controllability and observability of the systems

Controllability and observability are basic concepts in control theory; they are use-
ful tools for solving many problems in system theory. The applications of these
concepts can be found in [78, 41, 61, 133, 82, 109]. The ideas of controllability
and observability of the system also play crucial roles in the MOR methods. The
Gramian based MOR methods are in general based on the principle of the system
controllability Gramian and observability Gramian.

Definition 2.2. The system in (2.1) is said to be controllable in t0 ≤ t ≤ tf , if there
exists an admissible input u(t) such that the system can be driven from initial state
x(t0) to any final state x(tf ).

To explain the idea of controllability, at the time t0 = 0, let x0 = 0. Then the
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relation in (2.3a) yields [109]

x(tf ) =

∫ tf

0
eAs(tf−τ)Bsu(τ)dτ,

=

∫ tf

0

{
I +As(tf − τ) +

As2

2!
(tf − τ)2 + · · ·

}
Bsu(τ)dτ,

=Bs
∫ tf

0
u(τ)dτ +AsBs

∫ tf

0
(tf − τ)u(τ)dτ+

A2
sBs

∫ tf

0

(tf − τ)2

2!
u(τ)dτ + · · · . (2.9)

We see in (2.9) that x(tf ) is the linear combination of Bs,AsBs, · · · ,An−1
s Bs. There-

fore, it can be said that a final state x(tf ) is controllable iff the controllability matrix[
Bs AsBs · · · An−1

s Bs
]

has full rank. The system (2.1) is said to be controllable if every state of the system
is controllable, i.e. the controllability matrix is full [78].

Definition 2.3. The system in (2.1) is said to be observable in t0 ≤ t ≤ tf , if for
a given input u(t) the initial state x(t0) can be uniquely determined from the given
output y(t).

Observability is the dual concept of the controllability. Analogous to the controlla-
bility, one can observe that the system (2.1) is observable if the observability matrix

C
CAs

...
CAn−1

s


is nonsingular.

For a controllable, observable, and stable LTI system (2.1) the controllability Gramian
and observability Gramian are defined respectively by

P =

∫ ∞
0

eAstBsBTs eA
T
s tdt (2.10)

and

Q̃ =

∫ ∞
0

eA
T
s tCTCeAstdt, (2.11)

where As and Bs are defined above. It can be shown that the controllability
Gramian (P) as defined in (2.10) is the solution of the continuous-time algebraic
Lyapunov equation [55]

APET + EPAT = −BBT , (2.12)
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which is denoted as the controllability Lyapunov equation. Analogously, the observ-
ability Gramian defined in (2.11) is the solution of the continuous-time algebraic
observability Lyapunov equation

ATQE + ETQA = −CTC, (2.13)

where Q̃ = E−TQE−1. If the system (2.1) is asymptotically stable, both of the
Lyapunov equations have unique solutions. The following Lemma is important to
relatate the stability, controllability, and observability of a system.

Lemma 2.1 ([42]). For a stable system (2.1), the solutions of the Lyapunov equa-
tions (2.12) and (2.13) are unique and symmetric positive definite iff the system is
controllable and observable, respectively.

The controllability and observability Gramians also have an interpretation from a
physical point of view [59]. Consider the following two relations

Jc = min
u

∫ 0

−∞
u∗(t)u(t)dt, x(0) = x0, t ≤ 0, (2.14a)

Jo =

∫ −∞
0

y∗(t)y(t)dt, u(t) = 0, x(0) = x0, t ≥ 0, (2.14b)

where Jc defines the required minimum energy to drive the system from zero state
to the state x0 and Jo is the obtained energy observed at the output under the zero
input and the initial condition x0. The functionals Jc and Jo can be determined
from

Jc = x∗0P−1x0 (2.15)

and

Jo = x∗0Qx0. (2.16)

The relation in (2.15) states that any state x0 = x(t) that lies in an eigenspace
of P−1 corresponding to large eigenvalues requires more input energy to control.
Since the eigenvectors of P−1 corresponding to large eigenvalues are equal to the
eigenvectors of P with small eigenvalues, it can be said that the state x0 = x(t) is
difficult to control if it lies in an eigenspace of P corresponding to a small eigen-
value. Likewise, from (2.16) it can be said that the state that lies along one of the
eigenvectors ofQ with small eigenvalues is difficult to observe. We can assume that
the states that are difficult to control and observe are less important. The balanc-
ing based MOR methods are based on identifying and truncating the less important
states from the systems. We will revisit these issues later in this chapter.
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2.1.3 System Hankel singular values

The system Hankel singular values, or more simply, Hankel singular values (HSVs),
play a crucial role in the balancing based model reduction that we will see later. In
general, the HSVs of the system are the singular values of the Hankel operator (see
e.g., [5]). In [59], Glover shows that the system’s HSVs are the positive square roots
of the eigenvalues of the product of the controllability and observability Gramians,
i.e.,

σhi =
√
λi(PQ) =

√
λi(QP), i = 1, 2, · · · , n, (2.17)

where λi denotes the eigenvalues. Since the controllability Gramian and the ob-
servability Gramian are symmetric positive definite, they have always Cholesky de-
composition:

P = RcRTc and Q = LcLTc . (2.18)

It can be shown that (see, e.g., [117, 77])

σhi =
√
λi(PQ)

=
√
λi(RcRTc LcLTc )

=
√
λi((RTc Lc)T (RTc Lc))

=σi(RTc Lc), for i = 1, 2, · · · , n,

where σi denotes a singular value of RTc Lc. This means, the HSVs of the systems
are the singular values of the product of the two Gramian factors. To compute the
system’s HSVs in practice, we therefore use the Gramian factors of the systems.

2.1.4 Realizations

The transfer function of an LTI system is invariant under state space transformations
or coordinate transformations [17]. For instance, if we replace x(t) in (2.1) with

x̃(t) = T x(t), (2.19)

where the nonsingular matrix T is a coordinate transformation [17], we obtain a
transformed system in which

(E ,A,B, C,Da)⇔ (T ET −1, T AT −1, T B, CT −1,Da). (2.20)

The invariance of the transfer function under coordinate transformations of the
system can be shown by

G̃(s) =(CT −1)(sT ET −1 − T AT −1)−1(T B) +Da
=C(sE − A)−1B +Da = G(s).
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Here we see that (E ,A,B, C,Da) and (T ET −1, T AT −1, T B, CT −1,Da) are essen-
tially two different realizations of the same transfer function G(s). Since the in-
put/output relations of a system is not changing under coordinate transformations,
a system may have infinitely many realizations. Among them there exist realiza-
tions where the dimension (r) of the system is minimum or the system consists of
minimum number of degree of freedoms (DoF). This number r is called the McMil-
lan degree of the system.

Definition 2.4. A realization (Er,Ar,Br, Cr,Da) of the transfer function G(s) in (2.5)
of McMillan degree r is called a minimal realization.

A state space realization of a transfer function G(s) is minimal iff the system is
controllable and observable. Note that although the McMillan degree is unique,
the coordinate transformations leads to many minimum realizations of the same
system. Fundamentally, the concept of MOR is to find a realization of a given
system where the dimension of the system is as small as possible. We will study this
in the coming section.

2.1.5 Second order systems

We consider second order LTI continuous-time systems

Mξ̈(t) +Dξ̇(t) +Kξ(t) = Hu(t),

y(t) = L1ξ(t) + L2ξ̇(t) +Dau(t),
(2.21)

where M,D,K ∈ Rnξ×nξ , input matrix H ∈ Rnξ×p and output matrices L1,L2 ∈
Rm×nξ . Such systems usually appear in mechanics [8] or structural and multibody
dynamics [48, 40], where the velocity is taken into account in the modeling, and
thus the acceleration becomes part of the system. In mechanics, usually, the matri-
cesM, D, and K are known as mass, damping and stiffness matrices, respectively,
and the vector ξ(t) is known as mechanical displacement. Such systems also appear
in electrical engineering when RLC circuits are designed for nodal analysis [131].
There the matricesM, D, and K are called the conductance, capacitance and sus-
ceptance matrices, respectively, and the vector ξ(t) is denoted as electric charge.
However, the second order form of the system (2.21) can be converted into the
first order form (2.1). In the literature [116] several transformations are shown to
convert the second order system into the first order from which can all be proved
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to be equivalent. The most common transformation using z(t) :=

[
ξ(t)

ξ̇(t)

]
is

[
F 0

0 M

]
︸ ︷︷ ︸

E

[
ξ̇(t)

ξ̈(t)

]
︸ ︷︷ ︸
ż(t)

=

[
0 F
−K −D

]
︸ ︷︷ ︸

A

[
ξ(t)

ξ̇(t)

]
︸ ︷︷ ︸
z(t)

+

[
0

H

]
︸︷︷︸
B

u(t),

y(t) =
[
L1 L2

]
︸ ︷︷ ︸

C

[
ξ(t)

ξ̇(t)

]
+Dau(t),

(2.22)

where F is any nonsingular matrix with appropriate size. For simplicity, one can
consider F = I. If the matricesM, D and K are all symmetric, perhaps one of the
suitable first order representations of the system (2.21) can be[

0 F
M D

]
︸ ︷︷ ︸

E

[
ξ̈(t)

ξ̇(t)

]
︸ ︷︷ ︸
ż(t)

=

[
F 0

0 −K

]
︸ ︷︷ ︸

A

[
ξ̇(t)

ξ(t)

]
︸ ︷︷ ︸
z(t)

+

[
0

H

]
︸︷︷︸
B

u(t),

y(t) =
[
L2 L1

]
︸ ︷︷ ︸

C

[
ξ̇(t)

ξ(t)

]
+Dau(t).

(2.23)

In this formulation the system matrices E and A become symmetric if F =M. We
can exploit this property in practical implementations. For both representations in
(2.22) and (2.23) of the second order system (2.21), one can show that

C(sE −A)−1B = (L1 + L2s)(Ms2 +Ds+K)−1H, (2.24)

where s ∈ C. Therefore, the transfer function for the second order model (2.21)
can directly be defined from (2.8) as

Gs(s) = (L1 + L2s)(Ms2 +Ds+K)−1H+Da. (2.25)

The Gramians for the second order systems can be defined from an energy in-
terpretation perspective as mentioned above for the first order systems. Let us
consider that P is the controllability Gramian of the system (2.22). By defining
J(u) =

∫ 0
−∞ u

∗(t)u(t)dt, it can be shown that

z∗0P
−1z0 (2.26)

is the solution of the problem

min
u

J(u)

s. t. Eż(t) = Az(t) +Bu(t), z(0) = z0,
(2.27)
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with z0 =

[
ξ0

ξ̇0

]
. Equation (2.26) in fact represents the required minimal energy to

reach to the state z0 from t = −∞ at time t = 0. Now consider the two optimization
problems

min
ξ0

min
u

J(u)

s. t. Mξ̈(t) +Dξ̇(t) +Kξ(t) = Hu(t), ξ(0) = ξ0,
(2.28)

and
min
ξ̇0

min
u

J(u)

s. t. Mξ̈(t) +Dξ̇(t) +Kξ(t) = Hu(t), ξ̇(0) = ξ̇0.
(2.29)

Due to the structure, the controllability Gramian P of the system (2.22) can be
compatibly partitioned as

P =

[
Pp Po
P To Pv

]
.

The authors in [88] (see also [38]), show the optimal solution to the problem
(2.28) is ξ0P

−1
p ξ0, which is the minimal energy required to reach the given position

ξ0 over all past inputs and initial values. And the problem (2.29) is ξ̇0P
−1
v ξ̇0, which

is the minimal energy required to reach the given velocity ξ̇0 over all past inputs
and initial values. Therefore, Pp and Pv are called the second order controllability
position Gramian and the velocity Gramian, respectively. Similarly, partitioning the
observability Gramian Q of the the systems (2.22) as

Q =

[
Qp Qo
QTo Qv

]
,

we can denote Qp and Qv as the second order observability velocity and position
Gramians, respectively.

2.2 Model reduction

The aim of model reduction is to replace the system (2.1) by a substantially lower
dimensional system

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂au(t),
(2.30)

where Ê , Â ∈ Rr×r, B̂ ∈ Rr×m, Ĉ ∈ Rm×p, D̂a := Da. Here the goal is to en-
sure that the approximation error ‖y − ŷ‖, (‖.‖ denotes a suitable norm) must be
sufficiently small. Analogous to (2.5), applying the Laplace transformations to the
system (2.30) we get

Ŷ (s) = Ĝ(s)U(s), (2.31)
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where

Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂a (2.32)

is the transfer function for the reduced model. We know that

‖Y − Ŷ ‖L2 = ‖GU − ĜU‖L2 ≤ ‖G− Ĝ‖H∞‖U‖L2 , (2.33)

where ‖.‖H2 and ‖.‖H∞ are respectively, the H2 norm and H∞ norm of a complex
matrix-valued function.

Definition 2.5. For a stable (SISO) system (2.1) the H2 norm is defined by

‖G‖H2 =

√(
1

2π

∫ ∞
−∞
|G(jω)|2dω

)
. (2.34)

Lemma 2.2. If P and Q are the solutions of the controllability and observability
Lyapunov equations defined in (2.12) and (2.13), then the H2 norm can be computed
from

‖G‖H2 =
√
BTQB =

√
CPCT . (2.35)

Definition 2.6. The H∞ norm of the stable system (2.1) is defined by

‖G‖H∞ = sup
ω∈R

σmax(G(jω)), (2.36)

where σmax denotes the maximum singular value of G(jω).

From (2.33) it is clear that, in the frequency domain, for the same input, the differ-
ence between two output responses can be bounded by ‖G− Ĝ‖H∞ . By minimizing
‖G− Ĝ‖H∞ we can guarantee that ‖Y − Ŷ ‖H2 is minimized. Hence in model reduc-
tion, the approximation error between original and reduced model can be shown by
computing theH∞ norm of the difference of two transfer functions, i.e., ‖G−Ĝ‖H∞
in a certain range of the frequency domain. In most cases, the MOR methods for a
dynamical system are performed by projecting the system onto a lower dimensional
subspace.

Definition 2.7. A matrix Π ∈ Rn×n which satisfies Π2 = Π is called projector or
projection matrix. If S1 = Range (Π), then Π is the projector onto S1. Let V =

[v1, · · · , vr], and S1 = Range (V ), then Π = V (V TV )V T is the projector onto S1.

Lemma 2.3. Suppose Π is a projector. The following are then true for Π:

1. The matrix I −Π is also a projector, called complementary projector.

2. The projector Π is orthogonal if Π = ΠT , otherwise it is an oblique projector.

3. Let S2 be another r dimensional subspace and S2 = Range (W ), where
W = [w1, · · · , wr], then Π = V (W TV )−1W T is called an oblique projector.
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Recalling the system (2.1), let us assume that the state vector x(t) is contained
in a lower dimensional subspace S1. Thus, we can project x(t) onto S1 along S2

by applying an orthogonal or an oblique projector. To achieve this goal, construct
V = [v1, · · · , vr] and W = [w1, · · · , wr] such that

V = Range (S1) and W = Range (S2) . (2.37)

Now approximating x(t) by VW Tx(t) in (2.1) and defining x̂(t) = W Tx(t) we
obtain

EV ˙̂x(t) ≈ AV x̂(t) + Bu(t), (2.38a)

y(t) ≈ CV x̂(t) +Dau(t). (2.38b)

Since there exists an error e = EV ˙̂x(t) − AV x(t) − Bu(t) in the state equation we
write ” ≈ “ instead of ” = ”. This error is called residual. By construction, each
column of W is perpendicular to e, i.e., W T e = 0. Thus, (2.38) becomes

W TEV ˙̂x(t) = W TAV x̂(t) +W TBu(t),

ŷ(t) = CV x̂(t) +Dau(t),
(2.39)

which is exactly the reduced model as in (2.30) with

Ê = W TEV Â = W TAV, B̂ = W TB and Ĉ = CV. (2.40)

At a glance, in the projection based model reduction methods to compute the re-
duced models (2.30), one needs to compute the reduced coefficient matrices (2.40)
by applying thin rectangular matrices V and W which are called the right and left
transformation matrices, respectively. In this method the basic task is to construct
the transformations by using the bases vectors of the subspaces S1 and S2. How-
ever, the choice of the basis for S1 and S2 is not unique. Therefore, different types
of model reduction methods are available in the literature based on the different
choices of the basis for these subspaces. In the following, we discuss some promi-
nent MOR methods which compute the transformation matrices V and W in differ-
ent ways.

2.2.1 Balanced truncation

A good motivation of balanced truncation can be found in [5]. The fundamental
idea of balanced truncation is to truncate the less-important states from the systems.
A less-important state is a state that is difficult to control and observe. Those states
essentially correspond to the smallest HSVs. In reality, the states which are difficult
to control may not be difficult to observe and vice versa. This implicates if we
eliminate the states that are hard to be controlled directly from the original system,
then we may also eliminate some states that are easy to observe. However, in an
application, the easily observable states are essential to be preserved. The same
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contradiction might appear for those states that are difficult to be observed but
easily controlled. This problem can be resolved by transforming the system into a
balanced form. In a balanced, system the degree of controllability and the degree
of observability of each state are the same. A balanced system can also be defined
as follows.

Definition 2.8. A stable and minimal LTI system is called balanced if the controllabil-
ity Gramian and the observability Gramian of the system are equal and diagonal. The
diagonal elements are the system’s HSVs.

Now if we eliminate those states of the balanced system that are hard to be con-
trolled, we have eliminated the hard to observe states at the same time. The systems
can be balanced via a balancing transformation.

Definition 2.9. A state space transformation T as defined in (2.19) is called balancing
transformation if it causes

T PT ∗ = T −∗QT −1 =

[
Σ1

Σ2

]
, (2.41)

where P andQ are the controllability and observability Gramians, Σ1 = diag (σ1, · · · , σr),
Σ2 = diag (σr+1, · · · , σn), and {σi}ni=1 are the system’s HSVs.

Under the balancing transformations, according to the Gramians in (2.41), the state
space realization is transformed into

(E , A, B, C, Da) 7→ (TET−1, TAT−1, TB, CT−1, Da)

=

([
E11 E12

E21 E22

]
,

[
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
,Da

)
.

Now picking up the block matrices E11,A11,B1, C1 one can form the ROM (2.30),
where (Ê , Â, B̂, Ĉ) = (E11,A11,B1, C1).

From the above discussion we can conclude that in the balancing based model
reduction one must first compute the balancing transformation (T ) to convert the
system into a balanced form. Then the truncation is performed on the balanced
system. For a large-scale system, balancing the whole system before truncation is
infeasible. Hence, for such systems, usually the balancing and truncation are carried
out simultaneously, by using the so-called balancing and truncating transformations.

The author of [5] review, several approaches to compute the balancing and truncat-
ing transformations, among which we will focus on the square-root method (SRM),
originally defined in [117]. To perform this method, compute the Gramian factors
Rc and Lc as defined in (2.18). Then the balancing transformation can be formed
using the SVD

RTc ELc = UΣVT =
[
U1 U2

] [Σ1

Σ2

][
VT1
VT2

]
,
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Algorithm 1: LR-SRM.
Input : E , A, B, C, Da.
Output: Ê , Â, B̂, Ĉ, D̂a := Da.

1 Compute R and L as defined in (2.18) by solving (2.10) and (2.11).

2 Compute SVD RTEL = UΣVT =
[
U1 U2

] [Σ1

Σ2

][
VT1
VT2

]
.

3 Construct V := LV1Σ
− 1

2
1 , W := RU1Σ

− 1
2

1 .
4 Form Ê = W TEV, Â = W TAV, B̂ = W TB and Ĉ = CV.

and defining

V := LcV1Σ
− 1

2
1 , W := RcU1Σ

− 1
2

1 , (2.42)

where U1 and V1 are composed of the leading k columns of U and V, respectively,
Σ1 is the first k×k block of the matrix Σ = diag (σ1 , σ2 , . . . , σk , . . . , σn). Finally, by
applying the balancing transformations (2.42) to the system (2.1), one can derive
the ROM (2.30).

The Gramian factors Rc and Lc are obtained by using the Cholesky decomposi-
tions of the Gramians P and Q. The Gramians can be computed by solving the
corresponding Lyapunov equations. There exist direct solvers [14, 69] as well as
iterative solvers [126, 72, 25] to compute P and Q by solving the Lyapunov equa-
tions (2.12-2.13). All these methods are applicable for a small dense system. If the
number of inputs and outputs are much smaller than the dimension of the system,
then the Gramians P and Q can usually be approximated by low-rank factors, i.e,

P ≈ RRT and Q ≈ LLT . (2.43)

Here R and L are thin rectangular matrices. Therefore, instead of computing the
full Gramian factors, one can compute low-rank factors of the Gramians. Dur-
ing the last few decades, several iterative methods were proposed, e.g., LRCF-ADI
(low-rank Cholesky factor - alternating direction implicit) iterations [81, 22], cyclic
low-rank Smith methods [93, 67], projection methods [99, 46, 72, 73, 108], and
sign function methods [26, 28, 15]. Although most of the methods are shown to
be applicable for large scale dynamical systems, the LRCF-ADI iteration is more at-
tractive in the context of Gramian based model reduction for large sparse systems
with few inputs and outputs. A motivation of this prominent method can be found
in [30]. The next section contributes the LRCF-ADI iteration and related issues for
solving the large sparse continuous-time algebraic Lyapunov equations.

Using the low-rank Gramian factors R and L, the square root method is summa-
rized in Algorithm 1.

The reduced systems obtained by balanced truncation satisfy [5, 59] the global
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error bound

‖G− Ĝ‖H∞ ≤ 2
n∑

i=k+1

σi, (2.44)

where Ĝ is the transfer function of the reduced model. The relation (2.44) is an a
priori error bound. Thus, for a given error bound (tolerance) one can use it to fix
the required dimension of the reduced system.

2.2.2 Interpolatory projections

Interpolatory projection methods seek a ROM (2.30) by constructing the matrices
V and W in such way that the reduced transfer function (2.32) interpolates the
original transfer function (2.6) at a predefined set of interpolation points. That is
find Ĝ(s) such that

G(αi) = Ĝ(αi),

C(αiE − A)−1B = Ĉ(αiÊ − Â)−1B̂, for i = 1, · · · , r,
(2.45)

where αi ∈ C are the interpolation points. Often, in addition to the above condi-
tions, we are interested in matching more quantities, that is

G(j)(αi) = Ĝ
(j)

(αi),

C[(αiE − A)−1E ]j(αiE − A)−1B = Ĉ[(αiÊ − Â)−1Ê ]j(αiÊ − Â)−1B̂,
(2.46)

for j = 0, 1, · · · , q, where C[−(αiE−A)−1E ]j(αiE−A)−1B is called the j-th moment
of G(s) at αi, and represents the j-th derivative of G(s) evaluated at σi. Note that
for j = 0, these conditions reduce to (2.45). In this thesis, we restrict ourselves
to simple Hermite interpolation, where j = 0 and j = 1. In the following, we dis-
cuss how projection can ensure a reduced interpolating approximation by carefully
selecting the matrices V and W .

The concept of projection for interpolatory model reduction was initially introduced
in [124], later, Grimme in [62] modified the approach by utilizing the rational
Krylov method [98]. Since Krylov based methods can achieve moment matching
without explicitly computing moments (explicit computation of moments is known
to be ill-conditioned [51]), they are extremely useful for model reduction of large
scale systems.

The following result suggests a choice of V and W that ensure Hermite interpola-
tion with the use of a rational Krylov subspace.

Lemma 2.4 ([64]). Consider two sets of distinct interpolation points, {αi}ri=1 ⊂ C
and {βi}ri=1 ⊂ C, which are closed under conjugation (i.e., the points are either real
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or appear in conjugate pairs). Suppose V and W satisfy

Range (V ) = span
{

(α1E − A)−1B, · · · , (αrE − A)−1B
}
, (2.47a)

Range (W ) = span
{

(β1ET −AT )−1CT , · · · , (βrET −AT )−1CT
}
. (2.47b)

Then V and W can be chosen real and Ĝ(s) = Ĉ(sÊ − Â)−1Ĉ, where Ê , Â, B̂ and Ĉ
define the ROM (2.30). The ROM satisfies the interpolation conditions

G(αi) = Ĝ(αi), G(βi) = Ĝ(βi), and

G′(αi) = Ĝ′(αi) when αi = βi,

for i = 1, · · · , r.

The subspace in (2.47a), that is, the span of the column vectors (αiE − A)−1B for
i = 1, · · · , r, can be considered as the union of shifted rational Krylov subspaces.
For a given shift frequency α ∈ C, the rational Krylov subspaceKq((αE−A)−1, (αE−
A)−1B) is defined as

Kq((αE − A)−1, (αE − A)−1B) := span
{

(αE − A)−1B, · · · , (αE − A)−qB
}
.

If q = 1 for each αi, i = 1, · · · , r, then the union of such shifted rational Krylov
subspaces is equivalent to the subspace in (2.47a). Analogously, the subspace in
(2.47b) can also be defined as the union of shifted rational Krylov subspaces given
above. To summarize, rational Krylov based model reduction requires a suitable
choice of interpolation points, the construction of V and W as in Lemma 2.4, and
the use of Petrov-Galerkin conditions.

The quality of the reduced model is highly dependent on the choice of interpolation
points and therefore various techniques [124] have been developed for the selection
of interpolation points. Recently in [64], the issue of selecting a good choice of
interpolation points is linked to the problem of H2-optimal model reduction.

Definition 2.10. A ROM (2.30) is called H2 optimal if it satisfies

‖G‖H2 = min
dim (Ĝ)=r

‖G− Ĝ‖H2 . (2.48)

IRKA is proposed in [64]. upon convergence, it identifies a choice of interpola-
tion points that guarantees the H2-optimality conditions for the reduced system.
Starting from an initial set of interpolation points, the IRKA iteration updates the
interpolation points until they converge to a fixed value. Until now we have consid-
ered that (2.1) is a SISO system. A complete procedure of IRKA for a SISO system
is given in [64, Algorithm 4.1].

For model reduction of MIMO dynamical systems, rational tangential interpolation
has been developed by Gallivan et. al. [57]. The problem of rational tangential
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Algorithm 2: IRKA for MIMO systems.
Input : E ,A,B, C,Da.
Output: Ê , Â, B̂, Ĉ, D̂a := Da.

1 Make an initial selection of the interpolation points {αi}ri=1 and the
tangential directions {bi}ri=1 and {ci}ri=1.

2 V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1E − A)−1CT c1, · · · , (αrE − A)−1Ccr

]
.

3 while (not converged) do
4 Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .
5 Compute Âzi = λ̂iÊzi and y∗i Â = λ̂iy

∗
i Ê .

6 αi ← −λi, b∗i ← −y∗i B̂ and ci ← Ĉzi, for i = 1, · · · , r.
7 V =

[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1ET −AT )−1CT c1, · · · , (αrET −AT )−1Ccr

]
.

8 i = i+ 1

9 end while
10 Ê = W TEV, Â = W TAV, B̂ = W TB and Ĉ = CV.

interpolation is to construct V and W such that the reduced transfer function Ĝ(s)

tangentially interpolates the original transfer function G(s) at a predefined set of
interpolation points and some fixed tangent directions. That is

G(αi)bi = Ĝ(αi)bi, cTi G(αi) = cTi Ĝ(αi), and

cTi G(αi)bi = cTi Ĝ(αi)bi, for i = 1, · · · , r,

where bi ∈ Cm and ci ∈ Cp are the right and left tangential directions, respectively,
and correspond to the interpolation points αi. With these quantities, the rational
tangential interpolation can be achieved. The IRKA based interpolatory projection
methods for MIMO systems have been discussed in [64, 36], where the algorithm
updates interpolation points as well as tangential directions until the reduced sys-
tem satisfies the necessary condition for H2-optimality. We have summarized a
complete procedure for a MIMO system in Algorithm 2.

2.2.3 Model reduction of a second order system

In the previous section we have introduced second order ODE systems. A classical
approach to find a reduced order model (ROM) of second order systems is first to
rewrite the systems into first-order form, then apply model order reduction tech-
niques to find reduced state space systems [110, 37, 29, 20]. Now the question
arises: can we return to the second order form from the reduced systems? In gen-
eral, the answer is negative since the structure of the original model is destroyed in
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the reduced order form. Sometimes, the preservation of second order structure in
the reduced systems is essential to perform the simulation, optimization and con-
troller design if the software tools are specially designed for second order systems.
Moreover, structure preserving reduced models allow meaningful physical interpre-
tation and provide more accurate approximation which we will see later. Recently,
structure preserving model reduction of second order systems received much atten-
tion. See e.g., [76, 11, 104, 105, 16, 96, 29, 66, 20] and the references therein.
The structure preserving model reduction of second order systems using balanced
truncation was first discussed by Meyer and Srinivasan in [88] based on the second
order Gramians defined above. Next in [96] four types of balancing criteria are
shown to obtain four types of reduced models of second order systems based on
the second order Gramians. Following [96], the authors in [20] show an efficient
technique for model reduction of symmetric second order systems. The technique
uses the low-rank factors of the second order Gramians to construct the balancing
and truncation transformations.

The controllability Gramian P ∈ R2nξ×2nξ and the observability Gramian Q ∈
R2nξ×2nξ for the system (2.21) are the solutions of the Lyapunov equations

APET + EPAT = −BBT and ATQE + ETQA = −CTC, (2.49)

where E, A, B, C are defined either as in (2.22) or (2.23). We consider R as a
low-rank controllability Gramian factor such that Wc ≈ RRT . The structure of the
first order system allows us to split R as

R =
[
RTv RTp

]T
. (2.50)

Therefore, the controllability Gramian can be written [29] as

P =

[
Pv Po
P To Pp

]
≈ RRT =

[
Rv
Rp

] [
RTv RTp

]
=

[
RvR

T
v RvR

T
p

RpR
T
v RpR

T
p

]
.

Hence we have

Pv ≈ RvRTv and Pp ≈ RpRTp .

Similarly, considering Q ≈ LLT we have

Qv ≈ LvLTv and Qp ≈ LpLTp ,

where L =
[
LTv LTp

]T
. Apparently, Rv and Rp are obtained from the first nξ

rows and the lower nξ rows of R, respectively. Analogously, Lv and Lp can be
obtained from the first nξ rows and the lower nξ rows of the low-rank observability
Gramian factor L. Once we have Rα and Lβ (α ∈ {v, p}, β ∈ {v, p}), the balancing
transformation can be formed [96, 20] using the SVD

RTαMLβ = UαβΣαβV
T
αβ =

[
Uαβ,1 Uαβ,2

] [Σαβ,1

Σαβ,2

][
V T
αβ,1

V T
αβ,2

]
, (2.51)
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and defining

Ws := LβUαβ,1Σ
− 1

2
αβ,1, Vs := RαVαβ,1Σ

− 1
2

αβ,1, (2.52)

where Uαβ,1 and Vαβ,1 are composed of the leading k columns of Uαβ and Vαβ,
respectively, Σαβ,1 is the first k × k block of the matrix Σαβ. Applying Ws, Vs ∈
Rnξ×k with k � nξ in (2.21), we obtain the reduced models

M̂ ¨̂
ξ(t) + D̂ ˙̂

ξ(t) + K̂ξ̂(t) = Ĥu(t),

ŷ(t) = L̂x(t) + D̂su(t),
(2.53)

where
M̂ = W T

s MVs, D̂ = W T
s DVs, K̂ = W T

s KVs,
Ĥ = W T

s H, L̂ = LVs, D̂s := Ds.
(2.54)

When α = β = v, the balancing technique by the above procedure is called velocity-
velocity (VV) balancing. Likewise position-position (PP) balancing is obtained if
α = β = p, velocity-position (VP) balancing is obtained if α = v, β = p, and
position-velocity (PV) balancing is obtained if α = p, β = v.

2.3 The LRCF-ADI iteration and related issues

In the previous section, we have already seen that to implement the balancing
based MOR for the large sparse dynamical systems with few inputs and outputs
(see Algorithm 1), the key tools are the low-rank controllability Gramian factor R
and the observability Gramian factor L. During the recent decades, several meth-
ods have been developed [93, 81, 108, 22] that allow to exploit the fact that often
all coefficient matrices are sparse and the number of inputs and outputs is very
small compared to the number of DoFs. The LRCF-ADI iteration [81, 22] is one
of such efficient methods. This prominent method is derived from the ADI (alter-
nating direction implicit) iteration introduced in [84]. Details on the derivation of
the LRCF-ADI iteration can be found in, e.g., [79]. This iterative approach is also
extended by Stykel in [112] to compute the low-rank Gramian factors by solving
the generalized projected Lyapunov equations for descriptor systems. We will focus
on these issues in the later chapters because it is one of the main interests of this
thesis.

Much research has been done in the development of the LRCF-ADI iteration over
the last two decades. The most recent developments were performed by Benner
et. al. in [19, 20]. Usually, the computed low-rank Gramian factors via the LRCF-
ADI method are complex due to the effect of complex ADI shift parameters. In
[19], the authors show an efficient technique to compute real low-rank Gramian
factors by cleverly handling the complex shift parameters. On the other hand, a
computationally cheap approach, a low-rank residual based stopping criterion of
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Algorithm 3: G-LRCF-ADI iteration.

Input : E , A, B, {µi}Ji=1.
Output: R = Zi, such such that P ≈ RRH .

1 Z0 = [].
2 for i = 1 : imax do
3 if i = 1 then
4 Vi = (A+ µ1E)−1B.
5 else

6 Vi =
[
Vi−1 − (µi + µi−1) (A+ µiE)−1 EVi−1

]
.

7 end if

8 Update Zi =
[
Zi−1

√
−2 Re (µi)Vi

]
.

9 end for

the LRCF-ADI iteration is introduced in [20]. For convenience, we briefly review
both the ideas for the generalized systems as in (2.1) and combine them in a single
algorithm.

Recall the generalized (G-)LRCF-ADI iteration in [102, Algorithm 5.1] which is pre-
sented again in Algorithm 3. This algorithm successively generates the columns
of the low-rank controllability Gramian factor R by solving the Lyapunov equation
(2.12). For the low-rank factor of the observability Gramian, one can follow the
same algorithm to solve the observability Lyapunov equation (2.13). In that case,
the inputs E , A and B are replaced by ET , AT and CT . In this thesis all the details
are given for the low-rank controllability Gramian factor. The low-rank observabil-
ity Gramian factor can be handled in the same manner.

A set of optimal ADI shift parameters or simply shift parameters {µi}Ji=1 ⊂ C− are
necessary for fast convergence of the algorithm. We will discuss the shift parameter
selection criterion later in this section. In this algorithm we also see that if the
maximum number of iterations imax is greater than the number of shifts J , then the
shift parameters are used in a cyclic way.

Although in Algorithm 3 all of the input matrices E , A and B are real, due to the
complex shift parameters in each iteration step, the updated Zi store complex data,
which increases the overall complexity and memory requirements of the method.
Moreover, in the balancing based methods using these complex Gramian factors
yields complex reduced systems by performing some complex arithmetic opera-
tions. This problem is resolved in [19]. In this regard, the important assumption is
that the selected ADI shift parameters should be proper.

Definition 2.11. The ADI shift parameters {µi}Ji=1 ⊂ C− are called proper if µi and
µi+1 are complex conjugates of each other when one of them is complex.

In [19] it is shown that at the (i + 1)-st iteration of the G-LRCF-ADI iteration, Vi+1
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can be computed by

Vi+1 = V i + 2δ Im (Vi), (2.55)

where δ = Re (µi)
Im (µi)

. This identity states that in Algorithm 3, corresponding to µi+1 =

µi, Vi+1 can be computed explicitly from Vi, which releases us from solving a shifted
linear system with A+ µiE . This idea also results in the following theorem.

Theorem 2.1. Let us assume a set of proper ADI shift parameters. For a pair of
complex conjugate shifts {µi, µi+1 := µi}, the two subsequent block iterates Vi and
Vi+1 of Algorithm 3 satisfy

[Vi, Vi+1] =
[√
−2 Re (µi)(Re (Vi) + δ Im (Vi)),

√
−2 Re (µi)

√
δ2 + 1 Im (Vi)

]
.

(2.56)

This theorem reveals that for a pair of complex conjugate shifts at any iteration step
in the G-LRCF-ADI iteration, Zi can be updated by

Zi+1 = [Zi−1,
√
−2 Re (µi)(Re (Vi) + δ Im (Vi)),

√
−2 Re (µi)

√
δ2 + 1 Im (Vi)].

(2.57)

A version of the GLRCF-ADI algorithm is summarized in Algorithm 4, which com-
putes low-rank real Gramian factors.

Additionally, Algorithm 3 can be stopped whenever the norm of the ADI-residual

F(Zi) = AiZiTET + EZiZiTAT + BBT (2.58)

becomes very small. But computing ‖F(Zi)‖ in Frobenius-norm or 2-norm in each
iteration step is an expensive task, since in each iteration the resulting residual
(2.58) is an n × n matrix. Recently, in [20] the authors show that in the i-th
iteration, the ADI-residual in (2.58) can be represented as

F(Zi) = WiW
H
i ,

with

Wi =

 i∏
j=1

(A− µjE)(A+ µjE)−1

B. (2.59)

And the Vi iterate in the GLRCF-ADI can be expressed as [20]

Vi = (A+ µiE)−1Wi−1. (2.60)

From (2.59) again we obtain

Wi = (A− µiE)(A+ µiE)−1

i−1∏
j=1

(A− µjE)(A+ µjE)−1

B
= (A− µiE)(A+ µiE)−1Wi−1

=
[
I − (µi + µi)E(A+ µiE)−1

]
Wi−1

= Wi−1 − 2 Re (µi)EVi (using 2.60). (2.61)
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Algorithm 4: G-LRCF-ADI iteration (for a real low-rank Gramian factor).

Input : E , A, B, {µi}Ji=1.
Output: R = Zi, such that P ≈ RRT .

1 Z0 = [].
2 for i = 1 : imax do
3 if i = 1 then
4 Vi = (A+ µ1E)−1B.
5 else

6 Vi =
[
Vi−1 − (µi + µi−1) (A+ µiE)−1 EVi−1

]
.

7 end if
8 if Im (µi) = 0 then

9 Zi =
[
Zi−1

√
−2µiVi

]
.

10 else
11 γ = 2

√
−Re (µi), δ = Re (µi)

Im (µi)
,

12 Zi+1 =
[
Zi−1

√
2γ(Re (Vi) + δ Im (Vi))

√
2γ
√

(δ2 + 1). Im (Vi)
]
,

13 Vi+1 = V + δ Im (Vi).
14 i = i+ 1

15 end if
16 end for

In the case of real setting when we consider µi+1 := µi, one must compute

Wi+1 = Wi − 2 Re (µi)EVi+1

= Wi−1 − 2 Re (µi)EVi − 2 Re (µi)EVi+1

= Wi−1 − 2 Re (µi)E
(
Vi + Vi + 2δ Im (Vi)

)
(using (2.55))

= Wi−1 − 4 Re (µi)E (Re (Vi) + δ Im (Vi)) , (2.62)

where δ is defined in (2.55). The rank of Wi is at most m, i.e., the number of
columns of B. Therefore, the computation of the Frobenius-norm or 2-norm of
‖WiW

T
i ‖ = ‖W T

i Wi‖ in each iteration is extremely cheap. Applying these strate-
gies (computation of real Gramian factors and low-rank residual based stopping
techniques), the updated GLRCF-ADI is rewritten in Algorithm 5.

ADI shift parameter selection

The convergence speed of the LRCF-ADI algorithms presented above heavily de-
pends on a set of ADI shift parameters. The ADI shift parameters were originally
introduced by Wachspress in [126] to solve Lyapunov equations using the ADI
methods. The author shows that a set of optimal ADI shift parameters {µi}Ji=1 for
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Algorithm 5: G-LRCF-ADI iteration (updated).

Input : E , A, B, {µi}Ji=1.
Output: R = Zi, such that P ≈ RRT .

1 W0 = B, Z0 = [ ], i = 1.
2 while ‖W T

i−1Wi−1‖ ≥ tol or i ≤ imax do
3 Compute Vi = (A+ µiE)−1Wi−1.
4 if Im (µi) = 0 then

5 Zi =
[
Zi−1

√
−2µiVi

]
.

6 Wi = Wi−1 − 2µiEVi.
7 else
8 γ = −2 Re (µi), δ = Re (µi)

Im (µi)
,

9 Zi+1 =
[
Zi−1

√
2γ(Re (Vi) + δ Im (Vi))

√
2γ
√

(δ2 + 1) Im (Vi)
]
,

10 Wi+1 = Wi−1 + 2γE (Re (Vi) + δ Im (Vi)).
11 i = i+ 1

12 end if
13 i = i+ 1

14 end while

the system (2.1) can be computed by solving the so called ADI min-max problem
[125, 127]

min
µ1,··· ,µj⊂C−

max
1≤l≤n

∣∣∣∣∣∣
J∏
i=1

µi − λl
µi + λl

∣∣∣∣∣∣
 , λl ∈ Λ(A, E), (2.63)

where Λ(A, E) denotes the spectrum of the matrix pencil (2.2). For a large-scale
system, determining the entire spectrum of (A, E) is almost impossible. Therefore,
in the literature several techniques are proposed, see, e.g., [93, 79, 24, 102] to solve
the min-max problem (2.63) using a much smaller part of the spectrum. Currently,
one such commonly used technique is Penzl’s heuristic approach introduced in [93],
where k+ Ritz values (see, e.g., [60]) and k− (k+, k− � n) reciprocal Ritz values
with respect to E−1A and A−1E , respectively, are employed. A complete procedure
of the heuristic approach can be found in [93, Algorithm 5.1]. Although computing
the Ritz values is computationally expensive, this approach is applicable to a large-
scale standard or generalized (where E is invertible) state space systems. However,
for large-scale descriptor systems, computing the Ritz values with respect to E−1A is
a challenging task since E is then not invertible. This thesis will discuss the solution
of this problem for a large-scale descriptor system in the next chapters.

Another promising ADI shift selection criterion that we focus on is the adaptive ap-
proach introduced in [21]. This approach is reported to be superior to the heuristic
approach, especially for the descriptor systems discussed regarding the computa-
tional issues. In this approach, the ADI shift parameters are generated and updated
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automatically by the LRCF-ADI algorithm itself. There, the computed k shifts are
the eigenvalues of the projected matrix pencil

λUTEU − UTAU, λ ∈ C, (2.64)

where U ∈ Rn×k (k � n). For a set of initial shifts, U in (2.64) is the span of
W0. Then, whenever all shifts in the current set have been used, the matrix pencil
is projected by using U as the span of the current Vi and the eigenvalues are used
as the next set of shifts. In this procedure, specially, for a SISO system or a system
with few inputs and outputs, sometimes the projected pencil may become unstable.
In this situation, it is suggested in [21] to use the previous set of shift parameters
for the next cycle of the iterations. Sometimes, in this procedure, the convergence
rate of the LRCF-ADI iteration is not as good as desired. To resolve this problem, we
propose slightly different initialization and also updating criterion for the adaptive
ADI shift parameters approach. We will discuss this issue in Chapter 3 (Section 3.4),
Chapter 4 (Section 4.4) and Chapter 5 (Section 5.4)

2.4 Model reduction of descriptor systems

In the above we have discussed the background theory only for the non-descriptor
generalized systems. This is important since our approach for model reduction of
descriptor systems is based on the transformation of descriptor systems into equiv-
alent ODE systems. As mentioned before this ODE formulation is not required
explicitly in our computations. This idea was introduced in [53, 70, 68] for first
order structured differential-algebraic systems. In the following, we briefly discuss
the structure of the descriptor systems and review the reduction techniques from
the literature.

2.4.1 Descriptor systems

A descriptor system is a special form of a generalized state space system. Systems
(2.1) with singular matrix E , i.e., det (E) = 0, are often called descriptor systems.
In some literature, they are also known as singular systems or differential-algebraic
equations (DAEs) (see [112, 58, 75]). A descriptor system is solvable if the corre-
sponding matrix pencil, defined in (2.2), is regular, i.e., det(Pc) 6= 0. In the case of
regular pencils, there exist invariable matrices SL and SR, so that E and A have the
following Weierstrass canonical representations [75]:

E = SL

[
Inf 0

0 N

]
SR and A = SL

[
A1 0

0 In∞

]
SR, (2.65)

where N is nilpotent with nil-potency ν, i.e., Nν−1 6= 0 but Nν = 0. Usually the
nilpotency ν indicates the index of the descriptor system. In the literature this is
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known as algebraic index. However, there are other types of indices for descriptor
systems, such as the differentiation index [9], the tractability index [86], and so
on. The most commonly used concept is differentiation index, which is defined
by the number of derivatives that take place in a DAE system to convert it into an
equivalent ODE system.

Definition 2.12. The differentiation index of a DAE system is the minimum number
of times that all or part of the system must be differentiated with respect to t in order
to find explicit ODE systems.

Note that for an LTI system, the algebraic index and the differential index coincide.

This thesis is concerned with special structured descriptor systems considering their
applications in different fields. The descriptor systems that we focus on have the
following form[

E11 0

0 0

][
ẋ1(t)

ẋ2(t)

]
=

[
A11 A12

A21 A22

][
x1(t)

x2(t)

]
+

[
B1

B2

]
u(t), (2.66a)

y(t) =
[
C1 C2

] [x1(t)

x2(t)

]
+Dau(t), (2.66b)

where x(t) ∈ Rn (n = n1 + n2, with x1(t) ∈ Rn1 and x2(t) ∈ Rn2) as gen-
eralized states, where E11 and A11 have full rank. The descriptor system (2.66) is
called

• index 1 if det(A22) 6= 0,

• index 2 if A22 = 0 and det(A21A12) 6= 0, and

• index 3 if A22 = 0 and det(A21A12) = 0.

Using the Weierstrass canonical representation defined in (2.65), the transfer func-
tion (G(s)) of a descriptor systems can be written as [112]

G(s) = Gsp(s) + Gp(s), (2.67)

where Gsp(s) and Gp(s) respectively denote the strictly proper and polynomial parts
of G(s).

Definition 2.13. The transfer function G(s) is called proper if lims→∞ G(s) < ∞.
Otherwise, it is called improper. If lims→∞ G(s) = 0, then G(s) is called strictly proper.

2.4.2 MOR of structured descriptor systems

The idea of model reduction for large-scale descriptor systems was first introduced
by Stykel in [111, 112]. The author discusses a general framework for the BT
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method applied to descriptor systems. In general, the method is based on explicit
computation of the spectral projectors onto the left and right deflating subspaces
of the matrix pencil corresponding to the finite and infinite eigenvalues. Although
these projectors are available for particular systems, their computation is expensive.
In this thesis we focus on a method to avoid computing such kind of projectors
explicitly. An efficient balancing based model reduction method for structured first
order index 1 DAEs is discussed in [53]. The authors show that due to the non
singularity of block matrix A22, the index 1 system (2.66) can be converted into an
ODE systems. Although the original system is sparse, the converted ODE system
is typically dense, which in general causes undesired computational complexity.
Therefore, in the practical implementation, the explicit computation of ODE system
is avoided. We generalize this strategy for balancing based model reduction of
second order index 1 systems. We will discuss this in Chapter 4.

Heinkenschloss et. al. in [70] discuss an efficient balancing based method for
structured first order index 2 DAEs. The main task is to convert the DAE into an
equivalent projected ODE by applying an appropriate projector. The projector can
be constructed by exploiting the knowledge of the structure of the system. Note that
this projector is also a spectral projector as in [112], since the projected system pre-
serves all the finite eigenvalues of the original systems. We will discuss these issues
in Chapter 5. Due to some properties of the projector in [70], it is shown that to
implement the BT based model reduction of such a system, explicit computation of
the projector is not required. This avoidance of projectors is followed by [68] while
implementing the interpolatory technique via IRKA, for model reduction of such
structured first order index 2 DAEs. We exploit the idea of [70] for model reduction
of first order index 2 unstable DAEs with small numbers of unstable poles. This
approach is discussed in Chapter 3. To show the model reduction of second order
index 3 descriptor systems presented in Chapter 5, we also depend on the strate-
gies in [70] and [68] for the balancing and interpolatory methods, respectively. We
leave this section to discuss more details in the relevant chapters.
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Chapter 3

First Order Index 2 Unstable
Descriptor Systems

In this chapter we study model reduction of a class of structured index 2 descriptor
systems of the form[

E1 0

0 0

]
︸ ︷︷ ︸

Ě

[
v̇(t)

ṗ(t)

]
=

[
A1 A2

AT2 0

]
︸ ︷︷ ︸

Ǎ

[
v(t)

p(t)

]
+

[
B1

0

]
︸ ︷︷ ︸
B̌

u(t), (3.1a)

y(t) =
[
C1 0

]
︸ ︷︷ ︸

Č

[
v(t)

p(t)

]
, (3.1b)

where v(t) ∈ Rn1 , p(t) ∈ Rn2 (n1 > n2) are the states, u ∈ Rm are the inputs,
and y ∈ Rp are the outputs and in which Ě, Ǎ, B̌ and Č are all sparse matri-
ces with appropriate dimensions. We assume that some of the eigenvalues of the
matrix pencil, λĚ − Ǎ lie in C+, which makes the system (3.1) unstable. Such
models arise, for instance, from a spatial discretization of Navier-Stokes equations
with moderate Reynolds number (Re ≥ 300) using the finite element method (see,
Section 3.1 for details). In this chapter we mainly focus on balancing based model
reduction techniques for the system in (3.1). To obtain IRKA based reduced models,
we can directly follow the approaches as discussed in [68, Section 6], since IRKA
does not rely on the stability of the system. In principle, one can apply the balanced
truncation technique to this model by stabilizing the system first using a proper
stabilizing feedback matrix (SFM) and then following the approach in [70]. Fol-
lowing the ideas in [135], we apply the balancing and truncating transformations
computed with respect to the stabilized system to the original unstable system. To
compute the controllability and observability Gramian factors we need to solve two
projected algebraic Lyapunov equations of the stabilized system. Again following
[135] we employ Bernoulli stabilization to derive the SFM. The main advantage of
the Bernoulli stabilization is that it only changes the anti-stable eigenvalues of the

33
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system. Thus the required Bernoulli equation can be restricted to these and is of
the same dimension as the corresponding eigenspaces (see, Section 3.2).

This chapter also presents an updated version of the LRCF-ADI algorithm to solve
the projected Lyapunov equations for the Bernoulli stabilized system. In order to
ensure fast convergence of LRCF-ADI, we also discuss and resolve the difficulties in
computing shift parameters for the models of flow control considered here. More-
over, here, we show that a Riccati-based boundary feedback stabilization matrix
[12] for the original model can be computed using a reduced order model. The
proposed method is applied to data for a spatially FEM semi-discretized linearized
Navier-Stokes model. Numerical results are discussed for both the BT model reduc-
tion, as well as, the reduced order model based stabilization. We also compare the
balancing based results with those of the interpolatory based method. The results
of this chapter have been published in [32].

3.1 Motivating example

The linearization principle as presented in [109], basically states that a general
nonlinear model can be stabilized by a linear quadratic regulator (LQR) for a lin-
earization of itself in the vicinity of the linearization point. The basic idea is that
if the regulator is working properly, the vicinity where the linearization is a proper
approximation of the nonlinear system is never left. This principle has been ex-
ploited by the authors in [12] for a Navier-Stokes model for the von Kármán vortex
street. The linearized Navier-Stokes equations that arose there and that we consider
in this chapter are

∂

∂t
~v − 1

Re
∆~v + (~w.∇)~v + (~v.∇)~w +∇p = 0,

∇.~v = 0,
(3.2)

where ~v, ~w denote velocity vectors, p the pressure and Re is the Reynolds num-
ber. The vector ~w represents the stationary solution of the incompressible nonlinear
Navier-Stokes equations and ~v is the deviation of the original state from the station-
ary solution. The boundary and initial conditions, as well as the derivation of this
model, are given in [12]. There the authors apply a mixed finite element method
based on the well known Taylor-Hood finite elements [71] to discretize equation
(3.2). The coarsest discretization of the domain for the von Kármán vortex street
example from [12] is shown in Figure 3.1. This yields the differential-algebraic
equations (3.1a), where v(t) denotes the nodal vector of discretized velocity devi-
ations and p(t) the discretized pressure. Additionally, the vertical velocities in the
observation nodes depicted in Figure 3.1 in the domain are modeled by the out-
put equation (3.1b). The system (3.1) remains stable, i.e., the finite spectrum of
the matrix pencil λĚ − Ǎ is located in the negative half plane C−, as long as the
Reynolds number Re is small. However, already for moderate Reynolds numbers
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Γin Γfeed1 Γfeed2 Γwall Γout Pobs,i

Figure 3.1: Initial discretization of the von Kármán vortex street with coordinates,
boundary parts and observation points (source [12]).

(e.g., in the configuration of Figure 3.1 Re ≥ 300) a few finite eigenvalues move to
the positive half plane, C+ [4].

3.2 BT for unstable systems

In Chapter 2 we have not introduced the idea of balanced truncation for an unstable
generalized state space system. Therefore, in this section we concentrate on BT for
unstable systems

E ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(3.3)

via Bernoulli stabilization. All the matrices and vectors are defined in (2.1). The
helpful feature of our investigated example is that still the number of anti-stable
eigenvalues is very small. This is exactly the property we exploit for fast computa-
tion of the ROMs and ROM based feedback matrices. In Chapter 2 we have recalled
classical (Lyapunov based) balancing for stable systems. The main ingredients there
are the two Gramians (e.g., [5])

P =

∫ ∞
0

eE
−1AtE−1BBTE−T eA

T E−T t dt,

Q =

∫ ∞
0

e(E−1A)T tE−TCTCE−1eE
−1At dt,

which obviously do not exist if the system’s unstable poles are controllable, which
is in fact the desired case in our motivating example. In [135], the authors use the
frequency domain representations of these integrals

P =
1

2π

∫ ∞
−∞

(ıωE − A)−1BBT (−ıωET −AT )−1
dω

Q =
1

2π
ET {

∫ ∞
−∞

(ıωET −AT )−1CTC(−ıωE − A)−1
dω}E

to extend the definition of the Gramians to systems with no poles on the imaginary
axis.



36 Chapter 3. First Order Index 2 Unstable Descriptor Syatems

Following the theory in [135], the generalized controllability and observability
Gramians Ps, Qs for such systems can be computed by solving the algebraic Lya-
punov equations

(A− BKfmc )PsET + EPs(A− BKfmc )T = −BBT ,
(A−Kfmo C)TQsE + ETQs(A−Kfmo C) = −CTC,

(3.4)

where Kfmc = BTXcE and Kfmo = EXoCT are called Bernoulli stabilizing feedback
matrices, due to the fact that the matrices Xc and Xo are the respective stabilizing
solutions of the generalized algebraic Bernoulli equations

ETXcA+ATXcE = ETXcBBTXcE ,
AXoET + EXoAT = EXoCTCXoET .

(3.5)

Now, since the Bernoulli stabilization only mirrors the anti-stable eigenvalues across
the imaginary axis, it is sufficient to solve these Bernoulli equations only on the
invariant subspaces corresponding to those eigenvalues. That is, for orthogonal
matrices Tc, To ∈ Rn×l spanning the left and right eigenspaces corresponding to
the anti-stable eigenvalues, respectively, we define the Petrov-Galerkin projected
system (Ě , Ǎ, B̌, Č) by

Ě := T To ETc, Ǎ := T To ATc, B̌ := T To B, Č := CTc,

where Ě , Ǎ ∈ Rl×l, B̌ ∈ Rl×m, and Č ∈ Rp×l. The size of these projected matrices
is very small, since we have considered a few anti-stable eigenvalues. Therefore,
we solve very small sized projected Bernoulli equations

ĚT X̌cǍ+ ǍT X̌cĚ = ĚT X̌cB̌B̌T X̌cĚ ,
ǍX̌oĚT + ĚX̌oǍT = ĚX̌oČT ČX̌oET ,

(3.6)

and constructKfmc = BTTcX̌cT Tc E andKfmo = ET To X̌oToCT . The projected Bernoulli
equations in (3.6) can be solved by the Matrix Sign Function method presented in
[13].

The low-rank factors of Ps and Qs can also be computed by solving (3.4) using
Algorithm 5, but avoiding to form the closed loop matrices stays crucial. We discuss
this issue in more detail in Section 3.4. Now using these Gramian factors from
the balancing and truncating transformations and applying them to the original
unstable system we can compute an unstable ROM that satisfies the error bound as
in (2.44), but with the H∞-norm replaced by the L∞-norm. Therefore, this error
bound can not be translated to a global time domain error bound, as in the classic
setting, due to the lack of a Parseval-identity-like result. In fact in the numerical
experiments we observed that the error may very well grow over time.
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3.3 BT for index 2 unstable descriptor systems

To apply the balancing based model reduction to the system (3.1), first we convert
the system into an equivalent ODE system in order to make it fit into the framework
for BT based model order reduction as discussed in the previous section. Recalling
the strategy as in [70, Section 3], let us consider a projector of the form

Π2 = In1 −A2(AT2 E
−1
1 A2)−1AT2 E

−1
1 , (3.7)

which satisfies Null (Π2) = Range (A2), Range (Π2) = Null
(
AT2 E

−1
1

)
and Π2E1 =

E1ΠT
2 . These properties imply

AT2 Y = 0 if and only if ΠT
2 Y = Y, (3.8)

i.e., the image of ΠT
2 is exactly the subspace where the algebraic condition of the

DAEs is satisfied. Now applying the projector to (3.1) and exploiting the property
(3.8) we obtain the following projected system

Π2E1ΠT
2 v̇(t) = Π2A1ΠT

2 v(t) + Π2B1u(t), (3.9a)

y(t) = C1ΠT
2 v(t). (3.9b)

The system dynamics of (3.9) are projected onto the m1 := n1 − n2 dimensional
subspace Range

(
ΠT

2

)
[70]. This subspace is, however, still represented in the co-

ordinates of the n1 dimensional space. The m1 dimensional representation can be
made explicit by employing the thin singular value decomposition (SVD)

Π2 =
[
U1 U2

] [S1 0

0 0

][
V T

1

V T
2

]
= U1Σ1V

T
1 = Θ2,lΘ

T
2,r, (3.10)

where Θ2,l = U1 and Θ2,r = V1 and in which U1, V1 ∈ Rn1×nm consist of the
corresponding leading m1 columns of U , V ∈ Rn1×n1 . Moreover, Θ2,l,Θ2,r satisfy

ΘT
2,lΘ2,r = Im1 . (3.11)

This representation is always possible since Π2 is a projector and therefore, S1 =

Im1 . Inserting the decomposition of Π2 as in (3.10) into (3.9) and considering
ṽ(t) = ΘT

2,lv(t), we get

ΘT
2,rE1Θ2,r

˙̃v(t) = ΘT
2,rA1Θ2,rṽ(t) + ΘT

2,rB1u(t),

y(t) = C1Θ2,rṽ(t).
(3.12)

System (3.12) practically is system (3.3) with the redundant equations removed by
the Θ2,r projection. We observe that the dynamical systems (3.1), (3.9) and (3.12)
are equivalent in the sense that their finite spectrum is the same [48, Theorem
2.7.3] and the input-output relations are the same, i.e., they realize the same trans-
fer function. In the following we will discuss how to avoid forming (3.12) explicitly
to perform the model reduction.
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Suppose that we want to apply balanced truncation to the system (3.12). To this
end, we need to solve the Lyapunov equations

ΘT
2,rAcΘ2,rP̃ΘT

2,rE
T
1 Θ2,r + ΘT

2,rE1Θ2,rP̃ΘT
2,rA

T
c Θ2,r = −ΘT

2,rB1B
T
1 Θ2,r,

ΘT
2,rA

T
o Θ2,rQ̃ΘT

2,rE1Θ2,r + ΘT
2,rE

T
1 Θ2,rQ̃ΘT

2,rAoΘ2,r = −ΘT
2,rC

T
1 C1Θ2,r,

(3.13)

where Ac = A1 − B1K
fm
c , Ao = A1 − Kfm

o C1 and P̃ ∈ Rm1×m1 , Q̃ ∈ Rm1×m1

are the corresponding projected controllability and observability Gramians. Again,
Kfm
c and Kfm

o are the Bernoulli stabilizing feedback matrices and can be computed
as described in Section 3.2. The solutions P̃ , Q̃ of (3.13) are unique since we are
assured that the respective dynamical system is asymptotically stable and symmetric
positive (semi-)definite since the right hand side is semi-definite.

Now multiplying (3.13) by Θ2,l from the left and ΘT
2,l from the right and exploiting

that Θ2,r = ΠT
2 Θ2,r (e.g., due to (3.10), (3.11)) we obtain

Π2AcΠ
T
2 PΠ2E

T
1 ΠT

2 + Π2E1ΠT
2 PΠ2A

T
c ΠT

2 = −Π2B1B
T
1 ΠT

2 ,

Π2A
T
o ΠT

2 QΠ2E1ΠT
2 + Π2E

T
1 ΠT

2 QΠ2AoΠ
T
2 = −Π2C

T
1 C1ΠT

2 ,
(3.14)

where P = Θ2,rP̃ΘT
2,r and Q = Θ2,rQ̃ΘT

2,r. These are the respective controllability
and observability Lyapunov equations for the realization (3.9) and the solutions
P, Q ∈ Rn1×n1 are the corresponding controllability and observability Gramians.
The system (3.14) is singular due to the fact that Π2 is a projection. Uniqueness
of solutions is reestablished by the condition that the solutions satisfy P = ΠT

2 PΠ2

and Q = ΠT
2 QΠ2.

It is also an easy exercise to go back to (3.13) from (3.14). Let us consider P ≈
RRT , Q ≈ LLT and P̃ ≈ R̃R̃T , Q̃ ≈ L̃L̃T . Then R, L, R̃ and L̃ are called approxi-
mate low-rank Cholesky factors. They fulfill the relation

R = Θ2,rR̃ and L = Θ2,rL̃.

For large-scale problems, however, computing Θ2,r is usually impossible due to
memory limitations. Therefore, R and L are computed by solving (3.14). The
balancing truncating transformations for (3.12) are

W̃ = R̃UkΣ
− 1

2
k , Ṽ = L̃VkΣ

− 1
2

k ,

where Uk, Vk,∈ Rnm×k consist of the corresponding leading k columns of U, V ∈
Rnm×nm , and Σk ∈ Rk×k is the upper left k × k block of Σ in the SVD

R̃TΘT
r E1ΘrL̃ = UΣV T .

Observing further that RTΠ2E1ΠT
2 L = R̃TΘT

2,rE1Θ2,rL̃ = UΣV T , the projection
matrices for the system (3.9) can be formed as

W = RUkΣ
− 1

2
k and V = LVkΣ

− 1
2

k . (3.15)
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Algorithm 6: LR-SRM for unstable index 2 DAEs.
Input : E1, A1, B1, C1 from (3.1).
Output: Ê, Â, B̂, Ĉ in (3.17).

1 Compute R and L by solving the projected Lyapunov equations (3.14).
2 Construct W and V as in (3.16)
3 Form I = Ê = W TE1V, Â = W TA1V, B̂ = W TB1 and Ĉ = C1V.

As in [70] we find that

W = RUkΣ
− 1

2
k = Θ2,rR̃UkΣ

− 1
2

k = Θ2,rW̃ = Θ2,rΘ
T
2,lΘ2,rW̃ = ΠT

2 W,

V = LVkΣ
− 1

2
k = Θ2,rL̃VkΣ

− 1
2

k = Θ2,rṼ = Θ2,rΘ
T
2,lΘ2,rṼ = ΠT

2 V.
(3.16)

Now we apply the transformations W and V in (3.9) to find the reduced order
model as

Ê ˙̂v(t) = Âv̂(t) + B̂u(t)

ŷ(t) = Ĉv̂(t),
(3.17)

where

Ê = W TΠ2E1ΠT
2 V, Â = W TΠ2A1ΠT

2 V, B̂ = W TΠ2B1 and Ĉ = C1ΠT
2 V.

Due to (3.16) we can avoid the explicit usage of Π2 and find

I = Ê = W TE1V, Â = W TA1V, B̂ = W TB1 and Ĉ = C1V.

Eventually, we see that the reduced order model (3.17) is obtained without forming
the projected system (3.9). In the next section we will show how to compute R and
L using a tailored version of the LRCF-ADI iteration without using Π2 explicitly. The
above procedure to compute the ROM for the unstable index 2 DAEs is summarized
in Algorithm 6.

3.4 Solution of the projected Lyapunov equations

In order to apply the aforementioned balancing based MOR we need to solve the
projected Lyapunov equations (3.14). We have seen above that the ΠT

2 invariant so-
lution factors enable us to compute the corresponding truncating transformations.
The approach here is different from the spectral projection based work by Stykel in
that we are applying the E1-orthogonal projection to the hidden manifold, where
Stykel uses the orthogonal projection (in the euclidean sense) onto the eigenspaces
corresponding to the finite poles of the system. In fact both methods project to the
same subspace considering orthogonality in different inner products. Here we are
concerned with two main issues. First, we discuss the reformulation of the basic
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low-rank ADI Algorithm for the projected Lyapunov equation that ensures the in-
variance of the solution factor and the computation of the correct corresponding
residual factors. We are lifting the ideas of [70] to the reformulation of the LR-ADI
in Algorithm 5. For the spectral projection methods, the analogue procedure has
been discussed in [34]. In the second part we address the important issue of ADI
shift parameter computation. There the main issue in the DAE setting is to avoid the
subspaces corresponding to infinite eigenvalues in order to correctly compute the
large magnitude Ritz values involved in many parameter choices. The crucial point
in both parts is to provide methods that use the projection ΠT

2 at most implicitly
and never form the projected system (3.9).

3.4.1 GS-LRCF-ADI for index 2 unstable systems

Here, we are concerned with the efficient solution of the Lyapunov equations in
(3.14) to compute the low-rank Gramian factors using LRCF-ADI as discussed in
Chapter 2. First, we consider the projected controllability equation elaborately. The
observability equation can be handled analogously. For convenience we rewrite the
Lyapunov equations (3.14) as

ÃP̃ ẼT + ẼP̃ ÃT = −B̃B̃T ,

ÃT Q̃Ẽ + ẼT Q̃Ã = −C̃T C̃,
(3.18)

with Ẽ = Π2E1ΠT
2 , Ã = Π2AcΠ

T
2 , B̃ = Π2B1 and C̃ = C1ΠT

2 .

In the i-th iteration step of the ADI the residual of the controllability Lyapunov
equation (3.18) can be written as

F̃(P̃i) = ÃP̃iẼ
T + ẼP̃iÃ

T + B̃B̃T = W̃iW̃
T
i ,

where

W̃i =
i∏

k=1

(Ã− µiẼ)(Ã+ µiẼ)−1B̃.

To compute the low-rank controllability Gramian factor R̃ we follow Algorithm 5.
In the i−th iteration step, Vi is computed from

(Ã+ µiẼ)Vi = W̃i−1, (3.19)

which enables us to update the residual factor according to

W̃i = (Ã− µ∗Ẽ)Vi = W̃i−1 − 2 Re (µi)ẼVi. (3.20)

In complete analogy to [70, Lemma 5.2], we observe that instead of solving (3.19),
one can compute Vi by solving[

Ac + µiE1 A2

AT2 0

][
Vi
?

]
=

[
W̃i−1

0

]
, (3.21)
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where the special case i = 1, here especially the computation of the initial residual
factor W̃0 is discussed in detail below.

Inserting Ac = A1 −B1K
fm
c in (3.21),[

A1 + µiE1 −B1K
fm
c A2

AT2 0

][
Vi
?

]
=

[
W̃i−1

0

]
,

implies 
[
A1 + µiE1 A2

AT2 0

]
︸ ︷︷ ︸

A

−

[
B1

0

]
︸ ︷︷ ︸
B

[
Kfm
c 0

]
︸ ︷︷ ︸

K


[
Vi
?

]
=

[
W̃i−1

0

]
. (3.22)

In this equation the inversion of (A − BK) should in practice be computed using
the Sherman-Morrison-Woodbury formula (see, e.g. [60]):

(A−BK)−1 = A−1 +A−1B(I −KA−1B)−1KA−1, (3.23)

to avoid explicit formulation of the (usually dense) matrix A−BK. In accordance
with [70, Lemma 5.2], again the computed Vi in (3.21) satisfies Vi = ΠT

2 Vi. There-
fore, the correct projected residual factor in (3.20) can be obtained by

W̃i = W̃i−1 − 2 Re (µi)E1Vi, (3.24)

since we have Π2E1 = E1ΠT
2 .

In order to really compute the correct residual, the initial residual must be com-
puted as W̃0 = Π2B1 to ensure W̃0 = Π2W̃0. This can be performed cheaply using
the following lemma.

Lemma 3.1. The matrix Ξ satisfies Ξ = ΠT
2 Ξ and E1Ξ = Π2B1 ⇔[

E1 A2

AT2 0

][
Ξ

Λ

]
=

[
B1

0

]
. (3.25)

Proof. If Ξ = ΠT
2 Ξ, then E1Ξ = Π2B1 implies Π2(E1Ξ−B1) = 0. Since Null (Π2) =

Range (A2), there exists Λ such that E1Ξ−B1 = −A2Λ, or E1Ξ +A2Λ = B1. Again
applying the properties in (3.8), we have AT2 Ξ = 0. These two relations give (3.25).
Conversely, we assume (3.25) holds. From the first block row of (3.25) we get

Ξ = E−1
1 B1 − E−1

1 A2Λ,

and thus from the second row it follows that

0 = AT2 Ξ = AT2 E
−1
1 B1 −AT2 E−1

1 A2Λ,
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such that
Λ = (AT2 E

−1
1 A2)−1AT2 E

−1
1 B1.

Inserting this in the first block row we get as desired

E1Ξ = B1 − (AT2 E
−1
1 A2)−1AT2 E

−1
1 B1 = Π2B1.

This especially ensures Ξ = ΠT
2 Ξ, since

E1Ξ = Π2B1 = Π2B1 = Π2E1Ξ = E1ΠT
2 Ξ,

and thus using W̃0 = E1Ξ, we get the desired invariance W̃0 = Π2W̃0.

The above findings on the residual factor can be summarized as the following
lemma.

Lemma 3.2. The residual factor in every step of Algorithm 7 fulfills the relation

W̃i = Π2W̃i.

The whole procedure of computing the low-rank factor of the controllability Gramian
R̃ is summarized in Algorithm 7. Analogous to the derivation in [70], our algorithm
computes the correct solution factor. In contrast to the version presented there, we
guarantee to compute a real solution factor even if the shifts occur in complex con-
jugate pairs and we have the low-rank residual factors in hand to evaluate stopping
criteria cheaply. Still one issue remains open that has not been tackled in the orig-
inal paper [70]. The shifts that guarantee fast convergence of the algorithm are
closely related to the spectrum of the original pencil. The question how these can
be computed is answered in the next section.

3.4.2 ADI shift parameter selection

The appropriate shift parameter selection is one of the crucial tasks for fast con-
vergence of the GS-LRCF-ADI iteration. Recently, most of the papers followed the
heuristic procedure introduced by Penzl [93] to compute sub-optimal ADI shift pa-
rameters µi, i = 1, 2, . . . , J , for a large-scale problem. Very recently, new shift
computation ideas considering adaptive and automatic computation of shifts dur-
ing the iteration [21, 130] have come up. We present the basic ideas to adapt both
the classic and the new methods to our framework in the following two paragraphs.

Heuristic shift selection. The main ingredient of the heuristic method is the com-
putation of a number of large and small magnitude Ritz values. In the case of DAE
systems, the computation of Ritz values of large magnitude is causing difficulties
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Algorithm 7: GS-LRCF-ADI for unstable index 2 DAEs.

Input : E1, A1, A2, B1, Kfm
c , {µi}Ji=1.

Output: R̃ = Zi, such that P̃ ≈ R̃R̃T .
1 Set Z0 = [ ].
2 Solve the linear system (3.25) for Ξ and compute W̃0 = E1Ξ

3 i = 1

4 while ‖W̃ T
i−1W̃i−1‖ ≥ tol or i ≤ imax do

5 Solve the linear system (3.22) for Vi.
6 if Im (µi) = 0 then

7 Zi =
[
Zi−1

√
−2µiVi

]
,

8 W̃i = W̃i−1 − 2µiE1Vi
9 else

10 γ = −2 Re (µi), δ = Re (µi)
Im (µi)

,

11 Zi+1 =
[
Zi−1

√
2γ(Re (Vi) + δ Im (Vi))

√
2γ
√

(δ2 + 1) Im (Vi)
]
,

12 W̃i = W̃i−1 + 2γE1(Vi + 2δ Im (Vi)).
13 i = i+ 1

14 end if
15 i = i+ 1

16 end while

due to the existence of infinite eigenvalues. We need to make sure that the infinite
eigenvalues are avoided. This can be achieved by the following fact that is a direct
consequence of [39, Theorem 3.1].

Corollary 3.1. The matrix pencil

Pδ(λ) = λ

[
E1 δA2

δAT2 0

]
−

[
A1 A2

AT2 0

]
(3.26)

transforms all infinite eigenvalues of the pencil λĚ − Ǎ to 1
δ while at the same time

preserving its finite eigenvalues.

Thus from the pencil Pδ we can compute the desired Ritz values of large magnitude
via an Arnoldi iteration [100]. The parameter δ can easily be determined after
the small Ritz values βi have been computed with respect to the original pencil. In
order to ensure that 1

δ is avoided by the Arnoldi process for the large magnitude Ritz
values, and thus only finite eigenvalues of the original pencil are approximated, one
could, e.g., set δ = 1

min
i

Re (βi)
. For the unstable case the corollary obviously has to

be applied with A1 replaced by Ac.

Adaptive shift selection. A second shift computation strategy we use in the nu-
merical experiments follows the lines of the adaptive shift strategy proposed in [21].
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There, the shifts are initialized by the eigenvalues of the pencil projected to the span
of W0. Then, whenever all shifts in the current set have been used, the pencil is pro-
jected, e.g., to the span of the current Vi and the eigenvalues are used as the next
set of shifts. Here, we use the same initialization. For the update step, however,
we extend the subspace to all the Vi generated with the current set of shifts and
then choose the next shifts following Penzl’s heuristic with the Ritz values replaced
by the projected eigenvalues computed with respect to this larger subspace. Note
that in lack of the conditions for Bendixon’s theorem, we cannot guarantee that the
projected eigenvalues will be contained in C−. Should any of them end up in the
wrong half-plane, we neglect them. Note further that the problem with the infinite
eigenvalues does not exist in this case. Since we have ΠT

2 Z = Z, for any orthogonal
basis U of a set of columns of Z, we also have ΠT

2 U = U . As an immediate result
of this fact, the projected pencil (UTA1U − λUTE1U) automatically resides on the
hidden manifold and can thus only has finite eigenvalues.

3.5 Riccati-based feedback stabilization from ROM

Stabilization of the non-stationary incompressible Navier-Stokes equations around
a stationary solution using a Riccati-based feedback has received considerable at-
tention regarding theory as well as numerical methods during the recent years. In
the Riccati-based boundary feedback stabilization technique [12], the most chal-
lenging task is to solve the corresponding algebraic Riccati equation (ARE) for the
full dimensional model. The key problem in the LQR approach for the model under
investigation is to compute the boundary feedback stabilization matrix Kf (see e.g.,
[12]), such that the stabilized system has the following form:

E1v̇(t) = (A1 −B1Kf )v(t) +A2p(t) +B1u(t),

AT2 v(t) = 0.
(3.27)

The consequence of the feedback stabilization matrix Kf for Navier-Stokes equa-
tions with Re 300 is shown in Figure 3.2 from [12]. In this figure the vertical com-
ponent of the velocity is shown by red, as maximal value downwards, and white,
as maximal value upwards. In the top picture of this figure no feedback stabiliza-
tion is imposed. The occurring vortexes are shown by the red and white areas that
move away from the obstacle in an alternating order. The middle picture shows
the consequence of the initial feedback. And the third picture shows that when the
optimized feedback matrix Kf is inserted the vertical components vanish very soon.
The authors in [12] presented an algorithm (see [12, Algorithm 2]) to compute Kf

which is based on the standard linear-quadratic regulator approach [109, 42] for
a projected semidiscretized state-space system. The most challenging part in this
algorithm is to solve the usually very large, generalized, projected algebraic Ric-
cati equation (GARE) based on the full order semidiscretized model. We employ
the reduced-order model (3.17) to compute an approximation to the optimal LQR
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Figure 3.2: Flow field for Re=300 (source [12]).

feedback matrix of the full system. The main advantage of this approach is that we
only need to solve two projected algebraic Lyapunov equations in order to derive
the reduced-order model instead of one Lyapunov equation per Newton step in the
solver for the GARE, which are usually many more [34].

Based on the reduced model (3.17) the GARE

ÂT X̂ + X̂Â− X̂B̂B̂T X̂ = −ĈT Ĉ (3.28)

is now much smaller in dimension. It can thus easily be solved for X̂ using classical
solvers as, e.g., the MATLAB care command. The stabilizing feedback matrix for
the reduced model (3.17) then is

K̂f = B̂T X̂.

The ROM-based approximation to the SFM for the full order model can now be
retrieved as

Kf = B̂T X̂W TE1 = K̂fW
TE1 (3.29)

where W is the left balancing and truncating transformation (see Section 3.3) used
to compute the reduced-order model.
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Name of model n1 n2

Mod-1 3 142 453
Mod-2 8 268 1 123
Mod-3 19 770 2 615
Mod-4 44 744 5 783
Mod-5 98 054 12 566

Table 3.1: The number of differential and algebraic variables of different discretiza-
tion levels of the model.

model heuristic shift adaptive shift
iterations time (sec) iterations time (sec)
R̃ L̃ R̃+ L̃+ µ R̃ L̃ R̃+ L̃

Mod-1 240 210 67 116 88 25
Mod-2 170 133 165 106 77 87
Mod-3 257 182 625 114 99 305
Mod-4 307 196 1 922 146 111 1 063
Mod-5 368 238 5 839 147 120 2 551

Table 3.2: The performances of the heuristic and adaptive shifts in the GS-LRCF-ADI
iteration.

3.6 Numerical results

3.6.1 Test examples and hardware

To assess the performance of the techniques, this section discusses some numerical
tests. The method is applied to a set of linearized semi-discretized Navier-Stokes
equations as described in Section 3.1. All the computations were carried out using
MATLAB® 7.11.0 (R2010b) on a board with 2 Intel® Xeon® X5650 CPUs with a
2.67-GHz clock speed.

The authors of [12] generate different sized models using Reynolds number Re =

500. Table 3.1 shows the different sizes of the model and distinguishes the dimen-
sions n1 of the velocity vector (differential variable) and n2 of the pressure vector
(algebraic variable). In all the sets, B1 ∈ Rn1×2 and C1 ∈ R7×n1 . For Reynolds
numbers of 400 and more the described linearized model is unstable. Thus, es-
pecially the Reynolds number 500 case discussed here is unstable. The Bernoulli
stabilizing feedback matrices Kfm

c and Kfm
o for all models are computed applying

the procedure from [4] and [12, Section 2]. It uses 2 calls of the MATLAB eigs im-
plementation of the Arnoldi method to compute the rightmost eigenvalues together
with their left and right eigenvectors.
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Models tolerance system dimension
full reduced

Mod-1 3 595 145
Mod-2 9 391 147
Mod-3 10−5 22 385 163
Mod-4 50 527 178
Mod-5 110 620 184

Table 3.3: Dimensions of original and reduced systems of the different sizes models
for a fixed balanced truncation tolerance.

Name of model tolerance dimension of ROM
10−4 161
10−3 138

Mod-5 10−2 115
10−1 93

Table 3.4: Balanced truncation tolerances and dimensions of reduced models.

3.6.2 GS-LRCF-ADI and balancing based MOR

We apply the GS-LRCF-ADI iteration (Algorithm 7) to all aforementioned models to
compute the low-rank factors R̃ and L̃ considering the tolerance 10−6. We inves-
tigate the performances of both the heuristic and adaptive shifts to implement this
algorithm. The results are shown in Table 3.2. For all models we chose 30 optimal
heuristic shifts out of 10 large and 80 small magnitude Ritz-values. In the case of
the adaptive shifts, in each cycle, 10 proper shift parameters are selected following
the procedure discussed above. For computing the initial shifts, first we project the
pencil (A1 − λE1), onto the column space of a n1 × 100 random matrix. For all
the models the performance of the adaptive shifts is much better than the heuristic
shifts. The performances of the heuristic and adaptive shifts are also depicted in
Figure 3.3 for the largest dimensional system Mod-5. This figure shows the conver-
gence of the norms of the low-rank controllability and observability Gramian factors
with respect to iterations (Figures 3.3a, 3.3b) and time (Figures 3.3c, 3.3d). In both
cases the convergence for the adaptive shifts is much faster than for the heuristic
shifts. Note that we use the Frobenius norm to compute the residual norm.

We apply Algorithm 6 for all data sets and compute their reduced order models. The
dimensions of the original and reduced models are shown in Table 3.3. If nothing
else is stated, the truncation tolerance is set to 10−5. The dimension of the ROM
can however be decreased by increasing the tolerance if desired or required. This
is shown in Table 3.4. Since the numerical results are all comparable we exemplary
present only selected plots.
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Figure 3.3: Comparisons of the heuristic and adaptive shifts in computing the low-
rank Gramian factors using the GS-LRCF-ADI iteration.

Model reduction of the unstable system: Here we review the numerical experi-
ments for the unstable case. We present both frequency and time domain error anal-
yses. The frequency domain error analysis is shown in Figure 3.4. In Figure 3.4a we
see the frequency responses of the full and 184 dimensional reduced-order models
for Mod-5 with a nice match in the eyeball norm. The absolute and relative devia-
tions between full and reduced-order models are shown in Figures 3.4b and 3.4c.
Here, we can see that the absolute error is bounded by the prescribed truncation
tolerance of 10−5. For higher frequencies the relative error is slightly increasing
since the frequency response is decreasing more rapidly than the absolute error
can. Figure 3.5 depicts time domain simulation of full and reduced-order models
for Mod-5. This figure shows the step responses from Input 1 to Output 1 together
with their absolute deviations. To compute the step response we use an implicit
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Figure 3.4: Comparison of the full and reduced models in frequency domain.

Euler method with fixed time step size 10−2. Initially, the imposed control is kept
inactive, therefore the responses for both (full and reduced) models are constant
within the range 0 to 15s. Switching the control to constant unit actuation on In-
put 1, the responses are oscillating with increasing amplitude in the higher time
domain caused by the instability of the model. Here we also see the issue with the
balanced truncation error bound for unstable systems since the absolute error is
increasing gradually with increasing time.

Numerical Experiments for the stabilized system: In Section 3.5 we mentioned
that the stabilizing feedback matrix for the full model can be computed from the
reduced order model. To this end, we solve the corresponding algebraic Riccati
equation for the reduced order model (3.17) arising from the linear quadratic reg-
ulator approach using the MATLAB care command and compute the optimal stabi-
lizing feedback matrix K̂f [32]. The ROM based approximation to the stabilizing
feedback matrix for the full order model (3.1) is then computed by (3.29). Fig-
ure 3.6 shows the step response (from 1st input to 1st output) of closed loop full
and reduced order models and their absolute error. For the generation of the step
response, the same procedure has been followed as for the unstable case above.
Note that for a stabilizing feedback, the step response system has to be viewed
as that of an asymptotically stable system with a constant source term. Thus the
outputs stabilize at constant nonzero values.
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Figure 3.5: Step responses of 1st input to 1st output of full and reduced-order
models and respective absolute deviations.
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Figure 3.6: Step responses of 1st input to 1st output of stabilized full and reduced-
order models and respective absolute deviations.
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model CPU time (sec) relative error H∞ norm
BT IRKA BT IRKA

Mod-1 23.90 41.57 1.71× 10−1 1.88× 10−1

Mod-2 75.35 150.79 1.51× 10−1 4.20× 10−1

Mod-3 280.10 411.35 1.04× 10−1 2.30× 10−1

Mod-4 996.92 1 221.22 3.38× 10−1 4.09× 10−1

Mod-5 2 311.28 3 083.79 3.03× 10−1 8.45× 10−1

Table 3.5: Comparisons of balanced truncation and IRKA for different sized models
and their 50 dimensional reduced models.

3.6.3 Comparison of BT with interpolatory technique

Table 3.5 describes the comparison of the BT and interpolatory based model reduc-
tion methods. Here we compute 50 dimensional reduced models for all the model
examples mentioned above, applying both balanced truncation and the interpola-
tory method via IRKA. For the interpolatory based approach we exactly follow [68,
Algorithm 4.1]. As we can see in this table, for all model examples the balancing
based method performs better than IRKA considering both relative error and com-
putational time. To find the relative error, we divide the norm of the error system
the corresponding norm of the full order system. If we consider a ROM that is
larger than 50, then IRKA becomes even more expensive in contrast to balanced
truncation. This is due to the fact, that in the BT the only expensive part is com-
puting the low-rank Gramian factors. Once they are computed we can construct a
reduced model of any dimension. Note that, for computing the low-rank Gramian
factors, Algorithm 7 is stopped by the tolerance 10−5. The quality of the IRKA
based reduced model also depends on the number of cycles (i.e., how many times
the interpolation points are updated). Although taking more cycles ensures a better
reduced model, it gets more expensive. Here to construct the ROMs, for all model
examples we restricted to 10 cycles. Figure 3.7 shows the error comparisons of the
sigma plots (as in Figure 3.4a) between full system (Mod-5) and 50 dimensional re-
duced systems. From this figure, one can notice that in the higher frequency range,
the interpolatory method performs better than balanced truncation.
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Figure 3.7: Errors between the full and 50 dimensional reduced systems computed
by BT and IRKA using the system Mod-5.



Chapter 4

Second Order Index 1 Descriptor
Systems

In this chapter we consider second order index 1 descriptor systems of the form[
M11 0

0 0

]
︸ ︷︷ ︸

M̌

[
ξ̈(t)

ϕ̈(t)

]
+

[
D11 0

0 0

]
︸ ︷︷ ︸

Ď

[
ξ̇(t)

ϕ̇(t)

]
+

[
K11 K12

KT
12 K22

]
︸ ︷︷ ︸

Ǩ

[
ξ(t)

ϕ(t)

]
=

[
H1

H2

]
︸ ︷︷ ︸
Ȟ

u(t), (4.1a)

[
HT

1 HT
2

]
︸ ︷︷ ︸

ȞT

[
ξ(t)

ϕ(t)

]
= y(t), (4.1b)

where ξ(t) ∈ Rnξ , ϕ(t) ∈ Rnϕ are the states, nξ > nϕ, u(t) ∈ Rm are control
inputs and the measurement outputs are y(t) ∈ Rp, and the matrices M̌, Ď, Ǩ

are sparse. We assume the block matrix K22 to be nonsingular. We call (4.1) an
index 1 system due to the analogy to first order index 1 (see, e.g., section 4.2)
linear time-invariant (LTI) systems [121]. Such dynamical systems usually arise in
different branches of engineering such as mechanics [48], where an extra constraint
is imposed in order to control the dynamic behavior of the systems, or mechatronics
where mechanical and electrical components are coupled with each other. In the
specific case of the model example we use in the numerical experiments, the index 1
character results from the multiphysics application with very different timescales
(see, e.g., Section 4.1). This allows to treat one variable by a stationary analysis,
while the other is covered fully dynamic.

Since the block matrix K22 is invertible, from the second line of (4.1a) we obtain

ϕ(t) = −K−1
22 K

T
12ξ(t) +K−1

22 H2u(t).

Insert this identity into the first line of (4.1a) and (4.1b). The index 1 system (4.1)

53
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is then transformed into an equivalent ODE system

Mξ̈(t) +Dξ̇(t) +Kξ(t) = Hu(t),

y(t) = HTx(t) +Dau(t),
(4.2)

where

M = M11,

D = D11, K = K11 −K12K
−1
22 K

T
12,

H = H1 −K12K
−1
22 H2, Da = HT

2 K
−1
22 H2.

(4.3)

In principle, we can apply the model reduction techniques to the system (4.2) fol-
lowing the approaches discussed in Chapter 2. In this case the matrix K is usually
dense and causes infeasible computational complexity. Moreover, for a large-scale
system with a large K22 block (e.g., the system that we consider for the numerical
experiments), due to memory restriction forming (4.2) is simply impossible. This
chapter discusses how to perform the model reduction for the DAEs (4.1) without
forming the ODEs (4.2) explicitly. Here we show both second order index 1 to first
order and second-order-to-second-order reduction techniques. In our earlier work
(see, e.g., [120]) we have developed a balancing based algorithm to obtain a first
order reduced system from the second order index 1 DAE system. In contrast to
that work here we present a more efficient algorithm by exploiting the symmetry
properties of the system and using all recent updates in the low-rank version of the
ADI method. In addition, we develop the interpolatory model reduction method via
IRKA for such systems and compare the results with the balancing based method.
One of the major contributions of this chapter is the structure preserving model
reduction for the second order index 1 descriptor system (4). In this case, first
we also discuss the balancing based method. Besides this, we show that a second
order reduced model can be obtain efficiently via projecting the systems onto the
dominant eigenspace of the second order systems Gramians. Here this technique is
called PDEG method. This method was originated in [80, 79, 94] for the model
reduction of a standard state space system. The PDEG method is computationally
cheaper than the balanced truncation. Moreover, in general, this method preserves
some important properties such as stability, symmetry etc., of the original system.
For the BT and PDEG based reduction methods, the main expensive part is to com-
pute the low-rank Gramian factors by solving the Lyapunov equations. This chapter
discusses the efficient techniques to solve Lyapunov equations for the model (4.1)
using the LRCF-ADI method. To ensure fast convergence of the LRCF-ADI iteration,
we show the automatic shift generation technique inside the algorithm. The pro-
posed techniques are applied to a piezo-actuated structural FEM model of a certain
building block of a parallel kinematic machine tool. Numerical results illustrate the
efficiency of the methods.
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Figure 4.1: Piezo-actuator based mechanical system

4.1 Motivating example

Piezo-actuator based adaptive spindle support (ASS) is an important component
[45, 90] of the mechanical system shown in Figure 4.2. The ASS is designed as
an independent sub-component of the test machine. First the purpose of the ASS
was to gain additional positioning freedom during machining operations (see, [45]
for details). Now the concept is enhanced and specialized for non-circular drilling
and microstructuring of surfaces. Based on the engineering design with a differ-
ential setup of the piezo stack actuators, the suitability for a special application is
mainly defined by the applied control concept. Before implementation into the real
machine, system simulation is needed to design and test the control concept.

Applying the finite element method (FEM) to the ASS as shown in Figure 4.3, a
mathematical model is formed which has the following form:

M̌ ¨̌z(t) + Ď ˙̌z(t) + Ǩž(t) = Ȟu(t),

y(t) = ȞT ž(t),
(4.4)

where ž(t) consists of the mechanical displacements ξ(t) and the electric poten-
tials ϕ(t). Separating the mechanical and electrical parts and defining ž(t) =[
ξ(t)T ϕ(t)T

]T
, (4.4) results in (4.1). The block matrices M11, D11 and K11 are

the mechanical mass, damping and stiffness matrices. The matrix K is composed of
the mechanical (K11), electrical (K22) and coupling (K12) terms. Selected general
force quantities (mechanical forces and electrical charges) are chosen as the input
quantities u, and the corresponding general displacements (mechanical displace-
ments and electrical potential) are the output quantities y. The total mass matrix
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mounted on the test bench (right).

The ball
connections are

modeled by springs.

Figure 4.3: Detail of the finite element mesh of the adaptive spindle support.
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contains zeros at the locations of the electrical potential. More precisely, the elec-
trical potential of the system (degrees of freedom (DoF) for the electrical part) is
not associated with an inertia. The equation of motion of the system in (4.1) can
be found in [91]. This equation results from a finite element discretization of the
balance equations. For piezo-mechanical systems, these are the mechanical balance
of momentum (with inertia term) and the electro-static balance. From this, the
electrical potential without inertia term is obtained. Thus, for the whole system
(mechanical and electrical DoFs) the mass matrix has rank deficiency.

The simulation with the full finite element model is not suitable due to the large
number of degrees of freedom. Therefore our first aim is to obtain a consider-
ably reduced state space model in order to facilitate fast simulation using MATLAB-
Simulink ® . Second, we want to obtain a reduced second order model that will
reflect the physical structure of the original model to perform the simulation work
using special software, e.g., in flexible multibody simulation (if it is necessary).

4.2 Second-order-to-first-order reduction techniques

Although there exists a variety of transformations of (4.1) into first order form the
formulation 0 M11 0

M11 D11 0

0 0 0


 ξ̈(t)ξ̇(t)

ϕ̇(t)

=

M11 0 0

0 −K11 −K12

0 −KT
12 −K22


 ξ̇(t)ξ(t)

ϕ(t)

+

 0

H1

H2

u(t),

y(t)=
[
0 HT

1 HT
2

] ξ̇(t)ξ(t)

ϕ(t)

 ,
(4.5)

is ideally suited, since this representation has only symmetric matrices and the
output matrix is the transpose of the input matrix. These are exactly the properties
we exploit for efficient computations in the context of model reduction. The system
(4.5) is now in first order index 1 form (as defined in Chapter 2), which can be
again written as

[
E1 0

0 0

]
︸ ︷︷ ︸

Ě

[
ż(t)

ϕ̇(t)

]
=

[
A1 A2

AT2 A4

]
︸ ︷︷ ︸

Ǎ

[
z(t)

ϕ(t)

][
B1

B2

]
︸ ︷︷ ︸
B̌

u(t),

y(t) =
[
BT

1 BT
2

]
︸ ︷︷ ︸

Č

[
z(t)

ϕ(t)

]
,

(4.6)
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where

E1 :=

[
0 M11

M11 D11

]
, A1 :=

[
M11 0

0 −K11

]
, A2 :=

[
0

−K12

]
,

A4 = −K22, B1 :=

[
0

H1

]
, B2 := H2, z(t) :=

[
ξ̇(t)

ξ(t))

]
.

(4.7)

The authors in [53] show a balancing based model reduction method for first order
structured index 1 descriptor systems. Following the approaches in [53], since the
sub-matrix A4 is nonsingular, we can put the system (4.6) into a compact form

Eż(t) = Az(t) +Bu(t), y(t) = BT z(t) +Dau(t), (4.8)

with
E = E1, A = A1 −A2A

−1
4 AT2 , B = B1 −A2A

−1
4 B2,

where E, A ∈ R2nξ×2nξ , B ∈ R2nξ×m. The algebraic part of the system (4.6) has
been removed in (4.8). Hence, one can apply the standard model reduction tech-
niques (e.g., balanced truncation and interpolatory methods) to the system (4.8).
Again note that the matrix A is typically dense which increases the computational
cost and memory requirements in the implementation. Therefore, we are forbidden
to convert the system (4.6) into (4.8) explicitly. In the following we discuss efficient
BT and interpolatory methods for the model reduction of the system (4.6) avoiding
the explicit formulation of the system (4.8).

4.2.1 Balancing based method

In Chapter 2 we already have discussed that to perform the balancing based model
reduction (e.g., using Algorithm 1) one has to compute the controllability and
observability Gramian factors by solving the controllability and observability Lya-
punov equations as in (2.12) and (2.13). We know that solving the Lyapunov
equations is the most expensive task in balanced truncation. If we consider the
system (4.8) due to the symmetric form (i.e., E = ET and A = AT ) and the input-
output matrices are the transpose of each other, the controllability and observability
Lyapunov equations coincide. That means the systems controllability and the ob-
servability Gramians are identical and hence, we need to solve only one Lyapunov
equation

APE + EPA = −BBT , (4.9)

where P ∈ R2nξ×2nξ denotes either controllability or observability Gramian of the
system. By applying the LRCF-ADI iteration discussed in Chapter 2 we can compute
the low-rank approximate (controllability or observability) Gramian factor Z, which
satisfies

ZZT ≈ P. (4.10)
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Algorithm 8: LR-SRM for second order index 1 systems.
Input : M11, D11, K11, K12, K22, H1, H2.
Output: Ê, Â, B̂, D̂a := Da.

1 Form E1, A1, A2, A4, B1, B2 as in (4.7) and Da = −BT
2 A
−1
4 B2.

2 Compute Z by solving the Lyapunov equation (4.9).
3 Construct V by performing (4.11) - (4.12).
4 Form the reduced matrices Ê, Â and B̂ as in (4.14)

Section 4.4 will detail how to compute the low-rank Gramian factor by solving the
Lyapunov equation (4.9) efficiently. It can be shown that if the two Gramians are
equal, then the left and right balancing and truncating transformations i.e, V and
W as defined in Algorithm 1, are the same. Once we have the Gramian factor Z,
the balancing and truncating transformation can be formed by computing the SVD

ZE1Z
T =

[
U1 U2

][Σ1

Σ2

][
UT1
UT2

]
, (4.11)

and defining

V = W := ZU1Σ
− 1

2
1 . (4.12)

The reduced system
Ê ˙̂z(t) = Âẑ(t) + B̂u(t),

ŷ(t) = B̂T ẑ(t) + D̂au(t),
(4.13)

is obtained by constructing the reduced matrices as

Ê = V TEV,

Â1 = V TA1V, Â2 = V TA2, B̂1 = V TB1,

Â = Â1 − ÂT2 A−1
4 Â2, B̂ = B̂1 − Â2A

−1
4 B2, D̂a := Da.

(4.14)

The whole procedure to obtain the reduced ODE system (4.13), for a given second
order index 1 system (4.1) is shown in Algorithm 8. However, we represent (4.13)
in the reduced index 1 DAE setting as[

Ê 0

0 0

][
˙̂z(t)

ϕ̇(t)

]
=

[
Â1 Â2

ÂT2 A4

][
ẑ(t)

ϕ(t)

][
B̂1

B2

]
u(t),

y(t) =
[
B̂T

1 BT
2

] [ ˙̂z(t)

ϕ̇(t)

]
.

(4.15)

Note the reduced system (4.15) is not very useful if the block matrix A4 is large.
Because in that case the reduced model is still large.
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4.2.2 Interpolatory method

Here we discuss the model reduction technique for the second order index 1 de-
scriptor system (4.1) by applying the interpolatory method via IRKA. Such work
has not been done yet to refer here. We can start with the same procedure as it is
discussed for the balanced truncation. That means first convert the second order
DAEs (4.1) into the first order form (4.6), and then to the generalized state space
form (4.8). When the ODE in (4.8) has been formed, we can immediately follow
Algorithm 2 to construct the ROM for the second order index 1 system. Again
note that explicit formulation of (4.8) is prohibitive due to the reasons mentioned
above. In the system (4.8), since E = ET , A = AT and B = BT , the left transfor-
mation (W ) and the right transformation (V ) in IRKA are equal. Thus, one needs
to construct only one transformation, e.g., V of the form

V =
[
(α1E −A)−1Bb1, · · · , (αrE −A)−1Bbr

]
. (4.16)

Now using the transformation V we construct the ROM as in (4.13), where the
reduced matrices are formed following (4.14). This completes the method. Now
the question how to construct V in (4.16) efficiently is answered in the following.

In (4.16) each column of V can be computed by solving a shifted linear system like

(αE −A)χ = Bb, (4.17)

which implies

(αE1 −A1 +A2A
−1
4 AT2 )χ = (B1 −A2A

−1
4 B2)b.

Undoing the Schur complement [132], this linear system leads to[
αE1 −A1 −A2

−AT2 −A4

][
χ

Γ

]
=

[
B1b

B2b

]
. (4.18)

Inserting E1, A1, A2, A4, B1 and B2 from (4.7), the linear system (4.18) becomes−M11 αM11 0

αM11 αD11 +K11 K12

0 KT
12 K22


χ1

χ2

Γ

 =

 0

H1b

H2b

 , (4.19)

for
[
χT1 χT2

]T
. Although the matrix in (4.19) has larger dimension (2nξ + nϕ), it

is sparse and can efficiently be solved by suitable direct (e.g., [43, 47]) or iterative
(e.g., [123, 101]) solvers. Further, splitting the linear system (4.19) as

−M11χ1 + αM11χ2 = 0, (4.20a)

αM11χ1 + (αD11 +K11)χ2 +K12Γ = H1b, (4.20b)

KT
12χ2 +K22Γ = H2b, (4.20c)
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Algorithm 9: IRKA for second order index 1 systems.
Input : M11, D11, K11, K12, K22, H1, H2.
Output: Ê, Â, B̂, D̂a := HT

2 K
−1
4 H2.

1 Form E1, A1, A2, A4, B1, B2 as in (4.7).
2 Make an initial selection of the interpolation points {αi}ri=1 and tangential

directions {bi}ri=1.
3 while (not converged) do
4 for i = 1, 2, · · · , r do

5

[
α2
iM11 + αiD11 +K11 K12

KT
12 K22

][
χ2

Γ

]
=

[
H1bi
H2bi

]
, vi =

[
αiχ2

χ2

]
,

V =
[
v1, v2, · · · , vr

]
.

6 end for
7 Ê = V TE1V , Â = V TA1V − (V TA2)A−1

4 (AT2 V ),
B̂ = V TB1V − (V TA2)A−1

4 B2.
8 Compute Âzi = λ̂iÊzi, where zi is eigenvector associated with λ̂i.
9 αi ← −λ̂i, bi ← −B̂T zi.

10 end while
11 Form the reduced matrices Ê, Â and B̂ as in (4.14).

from (4.20a) and (4.20c) we obtain respectively,

χ1 = αχ2 (4.21)

and Γ = K−1
22 H2bi −K22K

T
12χ2. Now inserting χ1 and Γ into (4.20b) yields

α2M11χ2 + (αD11 +K11)χ2 −K12K
−1
22 K

T
12χ2 = H1b−K12K

−1
22 H2b,

which is again equivalent to the solution of the linear system[
α2M11 + αD11 +K11 K12

KT
12 K22

][
χ2

Γ

]
=

[
H1b

H2b

]
, (4.22)

for χ2. Applying this splitting idea to the system (4.19), instead of solving an
2nξ + nϕ dimensional linear system we can solve only an nξ + nϕ dimensional
linear system, which ensures faster computation. We summarize the above idea in
Algorithm 9 for computing the ROM (4.13) for the second order index 1 descriptor
system (4.1).

4.3 Second-order-to-second-order MOR techniques

A balancing based second-order-to-second-order structure preserving MOR of the
second order systems is discussed in Chapter 2 from the literature [88, 96, 20].
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Unfortunately, all of those references contribute only for the second order ODE sys-
tems. We first introduced the second-order-to-second-order balancing criterion for
the large-scale second order index 1 system (4.1) in [31]. This section discusses an
efficient balancing based method for MOR of such structural second order index 1
DAEs. Here, we also propose that we can compute the ROM for such large-scale
second order index 1 model via projecting the system onto the dominant eigenspace
of the second order system Gramian, which is called the PDEG method. The results
of this section are found in [33].

4.3.1 Balancing based method

Since the block matrix K22 is nonsingular, the second order index 1 system (4.1)
can be transformed into the standard second order system (4.2). Again note that
this transformation is not possible explicitly since there the matrix K is dense. Now
converting (4.2) into the first order form in (4.8), we solve only the Lyapunov
equation (4.9) for P . Let us recall the Gramians of the standard second order
systems as defined in Chapter 2. Due to the structure of the system, the Gramian P
can be partitioned as

P =

[
Pv P0

P T0 Pp

]
, (4.23)

where Pv denotes either the controllability or the observability velocity Gramian
and Pp denotes either the controllability or the observability position Gramian. The
low-rank controllability or observability Gramian factor Z, defined in (4.10) then

can be partitioned as Z =
[
ZTv ZTp

]T
, such that

P ≈ ZZT =

[
Zv
Zp

] [
ZTv ZTp

]
=

[
ZvZ

T
v ZvZ

T
p

ZpZ
T
v ZpZ

T
p

]
, (4.24)

where Zv is called the low-rank factor of the velocity Gramian and Zp is called
the low-rank factor of the position Gramian. Comparing (4.24) with (4.23), the
relations

Pv ≈ ZvZTv and Pp ≈ ZpZTp , (4.25)

can be obtained. Once the low-rank Gramian factor Z is computed by solving the
Lyapunov equation (4.9), then Zv and Zp can be obtained by taking upper nξ and
lower nξ rows of Z. Now using these low-rank Gramian factors and following
(2.51-2.52), we can compute four types of balancing and truncating transforma-
tions which is summarized in Table 4.1. By applying each pair (Ws, Vs) of the
balancing and truncating transformations from this table we construct the ROM as

M̂
¨̂
ξ(t) + D̂

˙̂
ξ(t) + K̂ξ̂(t) = Ĥu(t),

ŷ(t) = ĤT ξ̂(t) + D̂au(t),
(4.26)
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type SVD left proj. Ws right proj. Vs

velocity-velocity (VV) ZTv M11Zv = UvvΣvvU
T
vv ZvUvv,1Σ

− 1
2

vv,1 ZvUvv,1Σ
− 1

2
vv,1

position-position (PP) ZTpM11Zp = UppΣppU
T
pp ZpUpp,1Σ

− 1
2

pp,1 ZpUpp,1Σ
− 1

2
pp,1

velocity-position (VP) ZTv M11Zp = UvpΣvpV
T
vp ZpUvp,1Σ

− 1
2

vp,1 ZvVvp,1Σ
− 1

2
vp,1

position-velocity (PV) ZTpM11Zv = UpvΣpvV
T
pv ZvUpv,1Σ

− 1
2

pv,1 ZpVpv,1Σ
− 1

2
pv,1

Table 4.1: Balancing transformations for the second order index 1 descriptor sys-
tems.

Algorithm 10: SOLR-SRM for second order index 1 system.
Input : M11, D11, K11,K12,K22 H1, H2.
Output: M̂ , D̂, K̂, Ĥ, D̂a := Da.

1 Solve the Lyapunov equation (4.9) to compute Z =
[
ZTv ZTp

]T
.

2 Compute one of the four types of transformations following Table 4.1.
3 Construct M̂ , D̂, K̂ and Ĥ following (4.27).

where the reduced coefficient matrices are formed as

M̂ = W T
s M11Vs, D̂ = W T

s D11Vs, K̂11 = W T
s K11Vs,

K̂12 = W T
s K12, K̂21 = KT

12Vs, B̂1 = W T
s B1,

K̂ = K̂11 − K̂12K
−1
22 K̂21, Ĥ = B̂1 − K̂12K

−1
22 B2, D̂a = Da.

(4.27)

When we use the pair (Zv, Zv) to construct the balancing and truncating trans-
formation, the balancing criterion is called velocity-velocity (VV) balancing. Analo-
gously, the balancing criteria are called position-position (PP), velocity-position (VP)
and position-velocity (PV) balancing if we use the low-rank Gramian factor pairs
(Zp, Zp), (Zv, Zp) and (Zp, Zv), respectively. Algorithm 10 summarizes the above
procedure to construct the structure preserving ROMs from the second order in-
dex 1 system (4.1). From Table 4.1 we can note that in the case of the velocity-
velocity and position-position balancing techniques the computed left and right bal-
ancing and truncating transformations are equal i.e., Ws = Vs. Therefore, in those
cases the ROMs may preserve the stability and symmetry since the reduced matrices
preserve the definiteness of the original matrices [128, Theorem 4]. It can also be
shown that the velocity-position and position-velocity balancing based ROMs are
adjoint to each other (see, e.g., [20] and the references therein). Therefore, they
essentially show the same frequency responses (see the numerical results).

The ROM (4.26) is an ODE system. However, we can retain the reduced second
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order index 1 form as[
M̂ 0

0 0

][
¨̂
ξ(t)

ϕ̈(t)

]
+

[
D̂ 0

0 0

][
˙̂
ξ(t)

ϕ̇(t)

]
+

[
K̂11 K̂12

K̂21 K22

][
ξ̂(t)

ϕ(t)

]
=

[
Ĥ1

H2

]
u(t),

[
ĤT

1 HT
2

] [ ξ̂(t)
ϕ(t)

]
= ŷ(t).

(4.28)

4.3.2 Dominant eigenspace projection of the Gramian

Model reduction via projecting the system onto the dominant eigenspace of the sys-
tem Gramian is introduced in [80, 79, 94]. However, there the proposed algorithm
is for standard state space systems. Here we extend the idea for the structured
second order index 1 systems. In the above discussion we already have defined the
velocity Gramian Pv and the position Gramian Pp for the underlying system. Since
Pv is symmetric positive definite (spd), it has a symmetric decomposition i.e.,

Pv = RvR
T
v . (4.29)

The SVD of Rv is

Rv = UvΣvV
T
v , (4.30)

where the diagonal matrix Σv consists of the decreasingly ordered singular values
σvi , i = 1, 2, . . . , nξ, of Rv. Using this SVD we obviously have

Pv = (UvΣvV
T
v )(VvΣvU

T
v ) = UvΣ

2
vU

T
v . (4.31)

This is also an eigenvalue decomposition where Σ2
v is a diagonal matrix whose

entries are the decreasingly ordered eigenvalues of Pv and Uv is the orthogonal
matrix consisting of the eigenvectors corresponding to the eigenvalues. We observe
that Uv is the left singular vector matrix of Rv. Hence Uv is obtained by the SVD of
Rv. Now identifying the k largest eigenvalues of Pv, construct

Uk =
[
u1, u2, . . . , uk

]
, (4.32)

where ui, i = 1, 2, . . . , k are the eigenvectors corresponding to the eigenvalues σ2
i .

Then we construct the k dimensional reduced order model as in (4.26), by forming
the reduced dimensional matrices as in (4.27), where Ws = Vs = Uk. Again,
if we consider Zv as a low-rank Gramian factor of the velocity Gramian such that
Pv ≈ ZvZTv , then we can compute Uk in (4.32) identifying the k largest left singular
vectors of the SVD of Zv.

The above procedure that constructs a k dimensional ROM (4.26) via projecting the
system onto the dominant eigenspaces of the velocity Gramian Pv is summarized in
Algorithm 11. This algorithm can also be used to obtain a k dimensional ROM via
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Algorithm 11: PDEG for second order index 1 system.
Input : M11, D11, K11,K12,K22 H1, H2.
Output: M̂ , D̂, K̂, Ĥ, D̂a := Da.

1 Compute Zv by solving Lyapunov equation.
2 Construct Uk as in (4.32) using the thin SVD of Zv.
3 Form reduced dimensional matrices M̂ , D̂, K̂, Ĥ following (4.27), where
Ws = Vs = Uk.

projecting the system onto the eigenspace of the position Gramian Pp. In that case,
in Step 2, instead of Zv we use the low-rank position Gramian factor Zp, where
Pp ≈ ZpZ

T
p to construct the transformation matrix Uk. Note that the pre-assigned

order k of the reduced order model should satisfy the inequality

k ≤ dim(Zv), or k ≤ dim(Zp).

The transformation Uk is called contra-gredient transformation [77], since using this
transformation we can show that

UTk PvUk = UTk UvΣ
2
vU

T
v Uk

= UTk

[
Uk Un1−k

] [Σ2
k 0

0 Σ2
n1−k

][
UTk
UTn1−k

]
Uk

=
[
Ik 0

] [Σ2
k 0

0 Σ2
n1−k

][
Ik
0

]
= Σ2

k,

i.e., the Gramian of the reduced model is diagonal. This means that Uk is a kind
of balancing transformation [65]. It can easily be shown that M̂ , D̂ and K̂ are all
symmetric and they preserve their original definiteness as well. According to [128,
Theorem 4] it can be guaranteed that the reduced model preserves the stability of
the original model.

4.4 Efficient solution of the Lyapunov equation

In the previous sections we have seen that to carry out the BT and PDEG methods
the main tool is the low-rank Gramian factor Z, which can be obtained by the solu-
tion of the Lyapunov equation (4.9). This section concentrates on how to compute
this low-rank Gramian factor efficiently using the LRCF-ADI iteration introduced
in Chapter 2. As we have mentioned that in contrast to our previous work e.g.,
[121, 122, 31], here the LRCF-ADI method is updated by computing the real low-
rank Gramian factor. Moreover, we use low-rank residual factor based stopping
techniques which makes their evaluation much cheaper (see, e.g., Chapter 2 for
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details). In addition, we show how to partition a large linear system into a small
system to accelerate the solution. To ensure the fast convergence of the LRCF-ADI
method we propose a novel technique for selecting the shift parameters adaptively.
The details of this section are also available in [33].

4.4.1 Generalized sparse (GS)-LRCF-ADI iteration

To compute the low-rank Gramian factor by solving the Lyapunov equation (4.9)
efficiently, we can apply Algorithm 5. There we have to replace the input matrices
E , A and B, respectively, by E, A, and B. The initial guess of the residual is

W0 = B =

[
0

H1 −K12K
−1
22 H2

]
,

which can be partitioned as

W
(1)
0 = 0 and W

(2)
0 = H1 −K12K

−1
22 H2. (4.33)

At the i−th step of the LRCF-ADI iteration (see, e.g., Algorithm 5), we need to
compute Vi = (A+ µiE)−1Wi−1 by solving the linear system

(A+ µiE)Vi = Wi−1. (4.34)

Inserting E and A from (4.2) we obtain([
M11 0

0 −(K11 −K12K
−1
22 K

T
12)

]
+ µi

[
0 M11

M11 D11

])[
V

(1)
i

V
(2)
i

]
=

[
W

(1)
i−1

W
(2)
i−1

]
, (4.35)

i.e., [
M11 µiM11

µiM11 (µiD11 −K11) +K12K
−1
22 K

T
12

][
V

(1)
i

V
(2)
i

]
=

[
W

(1)
i−1

W
(2)
i−1

]
. (4.36)

It can easily be shown that by reversing the Schur complement instead of solving
the linear system (4.36) we can solve the linear system M11 µiM11 0

µiM11 µi(D11 −K11) −K12

0 −KT
12 −K22


V

(1)
i

V
(2)
i

Γ

 =

W
(1)
i−1

W
(2)
i−1

0

 , (4.37)

for
[
V

(1)
i

T
V

(2)
i

T
]T

. Although the dimension of the matrices in (4.37) is higher
than that of (4.36), it is sparse and therefore, it can be solved by using a sparse
direct solver e.g., [43, Ch. 5], or any suitable iterative solver [101]. To ensure fast
solution, we can partition the linear system (4.37) as follows. A simple algebraic
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manipulation on (4.37) shows that instead of solving the large liner system (4.37),
we can compute V (2)

i from[
µ2
iM11 − µiD11 +K11 K12

KT
12 K22

][
V

(2)
i

Γ

]
=

[
µiW

(1)
i−1 −W

(2)
i−1

0

]
, (4.38)

and then V (1)
i from V

(1)
i = M−1

11 W
(1)
i−1 − µiV

(2)
i . That means, as above, the splitting

idea reduces the dimension of the linear system from 2nξ+nϕ to nξ+nϕ. HereW (1)
i−1

and W (2)
i−1 are already computed from the previous step (from the ADI residual) by

following (2.61) as

Wi = Wi−1 − 2 Re (µi)EVi,

which implies [
W

(1)
i

W
(2)
i

]
=

[
W

(1)
i−1

W
(2)
i−1

]
− 2 Re (µi)

[
0 M11

M11 D11

][
V

(1)
i

V
(2)
i

]

=

[
W

(1)
i−1 − 2 Re (µi)M11V

(2)
i

W
(2)
i−1 − 2 Re (µi)(M11V

(1)
i +D11V

(2)
i )

]
.

From this we get

W
(1)
i = W

(1)
i−1 − 2 Re (µi)M11V

(2)
i ,

W
(2)
i = W

(2)
i−1 − 2 Re (µi)(M11V

(1)
i +D11V

(2)
i ).

(4.39)

In case the two consecutive shift parameters are complex conjugates of each other,
i.e., {µi, µi+1 := µi}, recalling (2.62) here we have

Wi+1 = Wi−1 − 4 Re (µi)E (Re (Vi) + δ Im (Vi)) ,

where δ = Re (µi)
Im (µi)

and which gives[
W

(1)
i+1

W
(2)
i+1

]
=

[
W

(1)
i−1

W
(2)
i−1

]
− 4 Re (µi)

[
0 M11

M11 D11

][
χ1

χ2

]

=

[
W

(1)
i−1 − 4 Re (µi)M11χ2

W
(2)
i−1 −M11χ1 +D11χ2

]
,

where χ1 =
(

Re (V
(1)
i ) + δ Im (V

(1)
i )

)
, χ2 =

(
Re (V

(2)
i ) + δ Im (V

(2)
i )

)
. This results

in
W

(1)
i+1 = W

(1)
i−1 − 4 Re (µi)M11χ2,

W
(2)
i+1 = W

(2)
i−1 − 4 Re (µi)(M11χ1 +D11χ2).

(4.40)

The procedure to compute the low-rank Gramian factor for the second order index 1
descriptor system (4.1) is outlined in Algorithm 12.
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Algorithm 12: SOGS-LRCF-ADI for the second order index 1 systems.

Input : M11, D11, K11, K12, K22, H1, H2, {µi}Ji=1.
Output: Z = Zi, such that P ≈ ZZT .

1 Set Z0 = [ ], i = 1.

2 W
(1)
0 = 0 and W (2)

0 = H1 −K12K
−1
22 H2.

3 while ‖W (1)
i−1

T
W

(1)
i−1 +W

(2)
i−1

T
W

(2)
i−1‖ ≥ tol and i ≤ imax do

4 Solve

[
µ2
iM11 − µiD11 +K11 K12

KT
12 K22

][
V

(2)
i

Γ

]
=

[
µiW

(1)
i−1 −W

(2)
i−1

0

]
for V (2)

i .

5 Compute V (1)
i = M−1

11 W
(1)
i−1 − µiV

(2)
i , Vi =

[
V

(1)
i

T
V

(2)
i

T
]T

.

6 if Im (µi) = 0 then

7 Zi =
[
Zi−1

√
2µi Re (Vi)

]
,

8 W
(1)
i = W

(1)
i−1 − 2µiM11V

(2)
i ,

W
(2)
i = W

(2)
i−1 − 2µi(M11V

(1)
i +D11V

(2)
i ).

9 else
10 γ = −2 Re (µi), δ = Re (µi)

Im (µi)
,

11 Zi+1 =
[
Zi−1

√
2γ (Re (Vi) + δ Im (Vi))

√
2γ
√

(δ2 + 1). Im (Vi)
]
,

12 W
(1)
i+1 = W

(1)
i−1 + 2γM11χ2, W

(2)
i+1 = W

(2)
i−1 + 2γ(M11χ1 +D1χ2),

13 where χ1 = Re (V
(1)
i ) + δ Im (V

(1)
i ), χ2 = Re (V

(2)
i ) + δ Im (V

(2)
i ).

14 i = i+ 1

15 end if
16 i = i+ 1

17 end while

4.4.2 ADI shift parameter selection

For the fast convergence of Algorithm 12, proper ADI shift selection is necessary. In
Chapter 2 we have mentioned that among different kinds of ADI shift parameters
proposed in the literature, Penzl’s heuristic shifts [93] are more commonly used for
large-scale dynamical systems. For this model heuristic shift selection is discussed
in [120, Algorithm 4.4], [31]. Besides Penzl’s shifts we also investigate in our
numerical experiments the adaptive shift [21] selection approach. In [21], the
shifts are initialized by the eigenvalues of the pencil λE−A projected to the span of
B, where E and A are defined in (4.2). Then whenever all the shifts in the set have
been used, the pencil is projected to the span of the current Vi and the eigenvalues
are used as the next set of shifts. Here we use the same initialization. For the update
step however, we extend the subspace to all the Vi generated with the current
set of shifts. Let us assume that U be the basis of the extended subspace. Now
from the eigenvalues of λUTEU − UTAU , select some desired number of optimal
shifts by solving the ADI min-max (see Chapter 2) problem like in the heuristic
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no. of iterations normalized residual norm
heuristic shifts adaptive shifts

100 9.88× 10−1 1.85× 10−2

200 9.99× 10−1 8.85× 10−3

300 9.78× 10−1 5.04× 10−3

400 9.69× 10−1 3.99× 10−3

Table 4.2: Comparison of the normalized residual norms using heuristic and adap-
tive shifts at different iteration steps in Algorithm 12.

procedure. This approach is repeated while the algorithm has not converged to
the given tolerance. Note that our system is dissipative, i.e., all the eigenvalues of
λ(E+ET )− (A+AT ) lie in the left complex plane. Therefore, Bendixon’s theorem
[85] ensures that all the eigenvalues of the projected pencil λUTEU − UTAU are
stable.

4.5 Numerical results

In this section we illustrate numerical results to asses the accuracy and efficiency of
our proposed techniques. The techniques are applied to a set of data for the finite
element discretization of an adaptive spindle support (ASS) [74]. The dimension
of the original model is n = 290 137, which consists of nξ = 282 699 differential
equations and nϕ = 7 438 algebraic equations. The number of the collocated inputs
and outputs is 9.

All results have been obtained using MATLAB 7.11.0 (R2012a) on a board with 4
Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed, 8 Cores each and 1TB of
total RAM.

To implement the BT and PDEG based reduced order models, first we compute the
low-rank Gramian factor Z, by applying Algorithm 12. Both heuristic and adap-
tive shifts are compared to carry out this algorithm. In the case of the heuristic
approach, we select 40 optimal shift parameters out of 60 large and 50 small mag-
nitude approximate eigenvalues (see, e.g., [31] for details on the computation of
heuristic ADI shift parameters for the ASS model). The algorithm is stopped by the
maximum number of iteration steps imax = 400. Next, we apply the adaptive shift
computation approach to implement this algorithm. In this case, the algorithm is
also stopped by imax = 400. The convergence is compared in Table 4.2 in different
iteration steps for both types of shift parameters. As we can see in this table the
performances of the adaptive shifts is better than that of the heuristic shifts. Before
using the computed low-rank Gramian factor for the model reduction algorithm,
we compress the columns of Z applying the technique proposed in [92].
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MOR tolerance ROM dimension
10−4 146
10−3 140
10−2 132
10−1 123
100 98

Table 4.3: ROMs obtained by using different truncation tolerances.

4.5.1 Second-order-to-first-order reduction

Balancing based methods: Algorithm 8 generated an order 152 reduced order
model for the tolerance 10−5. However, the dimension of the reduced order model
can be reduced further by increasing the error tolerance, which is shown in Ta-
ble 4.3. Figure 4.7 depicts, that all the ROMs obtained by different truncation
tolerances match nicely with the original model keeping the relative error below
the error bounds. We can also compute even lower dimensional ROMs if they are
required for the controller design. In Figure 4.5 we see that although the approx-
imation quality of the 5 dimensional ROM gets worse, order 50 - 10 dimensional
models are satisfactory if an error of no more than 5% is desired. Even an order 10
model model still captures the important features of the original system.

Comparison with IRKA: To compare the balancing based method with IRKA we
also compute different dimensional ROMs with Algorithm 9. Figure 4.6 shows the
accuracy of the 60 and 10 dimensional BT and IRKA based reduced models. Here
IRKA based reduced models show higher relative error. Note that Algorithm 9 is
stopped after 50 cycles. That means we have updated the interpolation points and
tangential directions 50 times. This number is still large. Perhaps, the quality of the
ROMs can be improved further by considering even more cycles. In that case the
computation would be more expensive.

4.5.2 Second-order-to-second-order reduction

Balancing based methods. For computing second-order-to-second-order ROMs
using balanced truncation we first partition the computed Z as Zv and Zp by taking
upper and lower nξ rows of Z and then applying Algorithm 10. This algorithm
computes different dimensional reduced systems for the truncation tolerance 10−5

by using different types of balancing labels as shown in Table 4.1. The comparisons
of the full and different dimensional reduced systems are shown in Figure 4.7.
Figure 4.7a shows the frequency responses of full and reduced systems with good
match. The absolute error and the relative error of the frequency responses of full
and reduced systems are exhibited in Figure 4.7b and Figure 4.7c, respectively, with
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Figure 4.4: Comparison of different dimensional reduced systems obtained by dif-
ferent tolerances.

very good accuracy. As we can see in Figure 4.7c, the relative errors for all reduced
systems are far below to the truncation tolerance (10−5). We further compute the
40, 30, 20 and 10 dimensional reduced order models using the same algorithm via
balancing the system on the velocity-velocity and position-position levels. In this
case, the frequency responses of the reduced systems also resemble the graph in
Figure 4.7a. Figure 4.8 depicts the relative errors between the full and different
dimensional reduced order models. Here we observe that the lower the dimension
of the reduced models the higher the relative error. But in both the balancing levels,
even the very low dimensional models, e.g., a model of dimension 10, preserve the
important feature of the original model. Figure 4.9 discusses the SISO relation of
full and different dimensional reduced order models computed by position-position
balancing. Since in the SISO case we know that the transfer function matrix is
just a scalar rational function, here we have computed the absolute values of the
transfer function in different frequencies. The relative error between the original
and reduced order models of the respective SISO relation are also shown in the
same figure. Table 4.4 shows the possible execution time gains that can be ex-
pected from the reduced order modeling. Here the computation at one sampling
frequency (out of 200 used in the figures) is used as a representative for one eval-
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Figure 4.5: Comparison of different dimensional reduced systems with the original
system.

uation of the model. This roughly corresponds to the most expensive step in a
time step for a simple integrator applied in the transient simulation of the system.
Therefore similar speedups can be expected in those simulations.

PDEG based methods. Algorithm 11 is applied again on the ASS model to ob-
tain the reduced systems via projecting the system onto the dominant eigenspace
of the Gramian. To execute this algorithm, the computed velocity Gramian factor
(Zv) and and the position Gramian factor (Zp) are the same as computed for imple-
menting the balancing based method. By predefining the dimension of the ROM,
we compute 40, 30, 20 and 10 dimensional models by projecting the system onto
the dominant eigenspaces of both velocity and position Gramians. In both cases,
the frequency responses of the original and reduced systems are the same as in
Figure 4.9. Figure 4.10 shows the relative error between the original and the dif-
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Figure 4.6: Relative error for different dimensional ROMs computed by Algo-
rithms 8 and 9.

system dimension execution time (sec) speedup
290 137 90.00 1

50 0.0014 64 285
40 0.0012 75 000
30 0.0009 100 000
20 0.0007 128 571
10 0.0003 300 000

Table 4.4: Average execution time and speedup against full order model for com-
puting the maximum Hankel singular value at a given sampling frequency.

ferent dimensional reduced models when we project the system onto the dominant
eigenspace of the velocity Gramian (VG) (Figure 4.10a) and position Gramian (PG)
(Figure 4.10b). We observe that the constructed reduced systems of the ASS model
by PDEG methods are asymptotically stable which is shown in Figure 4.11. This
figure shows that all the eigenvalues of the reduced systems which are obtained
via projecting the system onto the dominant eigenspace of the position Gramian
lie in the left complex half plane. From this figure one can also see that the suc-
cessively decreasing dimensional reduced system contains the eigenvalues closer to
the imaginary axis.
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Figure 4.7: Comparison of different dimensional reduced systems obtained by dif-
ferent balancing levels using truncation tolerance 10−5.
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Figure 4.8: Relative error between full and different dimensional reduced models
via balanced truncation.
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and the respective relative errors of full and different dimensional reduced systems.
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Figure 4.10: Relative error between full and different dimensional reduced models
via projecting onto the dominant eigen space of the Gramians.

−3,500 −3,000 −2,500 −2,000 −1,500 −1,000 −500 0
−1

−0.5

0

0.5

1
·105

Real axis

Im
ag

in
ar

y
ax

is

PG 40 PG 30 PG 20 PG 10

Figure 4.11: Eigenvalues of the ROM via projecting onto the dominant eigenspace
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Chapter 5

Second Order Index 3 Descriptor
Systems

This chapter presents model reduction methods for a class of structured second
order index 3 descriptor systems of the form[

M1 0

0 0

]
︸ ︷︷ ︸

M̌

[
ξ̈(t)

ϕ̈(t)

]
+

[
D1 0

0 0

]
︸ ︷︷ ︸

Ď

[
ξ̇(t)

ϕ̇(t)

]
+

[
K1 GT1
G1 0

]
︸ ︷︷ ︸

Ǩ

[
ξ(t)

ϕ(t)

]
=

[
H1

0

]
︸ ︷︷ ︸
Ȟ

u(t),

[
L1 0

]
︸ ︷︷ ︸

Ľ

[
ξ(t)

ϕ(t)

]
= y(t),

(5.1)

where ξ(t) ∈ Rnξ , ϕ(t) ∈ Rnϕ are the states, nξ > nϕ, u(t) ∈ Rm are the in-
puts, y(t) ∈ Rp are the outputs, and M̌, Ď, Ǩ, Ȟ, Ľ are all sparse matrices with
appropriate dimensions. Such structured systems arise in many applications, e.g.,
in constraint multibody system dynamics [107, 48] (see next section for details) or
mechanical systems with holonomic constraints [128, 87]. The system (5.1) is called
an index 3 system due to the analogy to first order index 3 (see, e.g., section 5.1)
linear time-invariant (LTI) systems. Following Chapter 3, we also eliminate the al-
gebraic elements by projecting the system onto the subspace where the solutions of
the descriptor system exist. We show the projected and original systems are equiva-
lent in the sense that they have the same finite spectrum. Then both second-order-
to-first-order and second-order-to-second-order reduction techniques are shown for
the projected systems. In the case of second-order-to-first-order reduction, we dis-
cuss both balanced truncation and an interpolatory technique via IRKA. To imple-
ment the methods, the second order projected system is converted into a first order
form. The first order projected systems are very similar to the projected system
considered in [70, 68]. Following their strategies (see also, e.g., Chapter 3) we
show a technique to avoid the computation of the projector for implementing the

77
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BT and interpolatory methods. On the other hand, for the second-order-to-second-
order reduction method, besides the balanced truncation we also discuss the PDEG
method, introduced in the previous chapter. In this case we also discuss the issues
in avoiding the projector. The BT and PDEG methods rely on controllability and ob-
servability Gramian factors. To compute the Gramian factors we need to solve two
projected continuous-time algebraic Lyapunov equation. Following Chapter 3, here
we show an efficient technique to solve the projected Lyapunov equations handling
the projector implicitly. Moreover, we discuss the difficulties of the ADI shift param-
eter computations using both heuristic and adaptive approaches and suggest how
to overcome these. The proposed techniques are applied to several test examples.
Numerical results are discussed to show the efficiency of the techniques.

5.1 Motivating examples

In classical mechanics or multibody dynamics, see, e.g., [8, 48, 44], the governing
mathematical model can often be described by a simple equation of motion

M1(ξ)ξ̈ = fa(ξ, ξ̇, u(t)), (5.2)

where M1(ξ) ∈ Rnξ×nξ is the positive definite mass matrix, fa ∈ Rnξ the vector of
the force function, u(t) ∈ Rm is the input vector, and ξ, ξ̇ and ξ̈ denote, respectively,
the time dependent vector of the position, velocity and acceleration.

In the simple case the mechanical models can be described by the unconstrained
equation of motion (5.5). However, the more general case is the equation of motion
under constraints. Constraints are the conditions restricting possible geometrical
positions of the mechanical system or limiting its motion. Sometimes constraints
are required in a system to guide the motion along a prescribed curve or surface.
The equation of motion with constraints has the following form [48, 128]

M1(ξ)ξ̈(t) = fa(ξ, ξ̇, u(t))− fc(ξ, ϕ), (5.3)

g(ξ) = 0, (5.4)

where g(ξ) is a vector valued function describing nϕ constraints, fc represents the
generalized constraint forces acting on the system. This additional force term fc
is imposed for the constraint to be satisfied. It can be shown that these constraint
forces are orthogonal to the constraints which define the manifold of the system.
This means fc(ξ, ϕ) = G1(ξ)Tϕ, where G1(ξ) := d

dξg(ξ) and ϕ is the vector of the
Lagrange multipliers. Thus the system in (5.3) can be written as

M1(ξ)ξ̈(t) = fa(ξ, ξ̇, u(t))−G1(ξ)Tϕ, (5.5)

g(ξ) = 0. (5.6)

Now linearizing (5.5) around the equilibrium point (see, e.g., [48, Chap 1] for a
linearizion technique) we obtain the linearized constraint equation of motion of the
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form
M1ξ̈(t) +D1ξ̇(t) +K1ξ(t) +GT1 ϕ(t) = H1u(t),

G1ξ(t) = 0,
(5.7)

where the nξ × nξ dimensional coefficient matrices M1, D1 and K1 are called the
mechanical mass, damper and stiffness matrices, respectively, and H1 ∈ Rnξ×nϕ is
the input matrix. The corresponding outputs can be measured by

y(t) = L1ξ(t), (5.8)

where L1 ∈ Rnξ×nξ is the output matrix. In matrix vector form the linearized
equation of motion (5.7) together with the output equation (5.8) gives (5.1). We
call the system (5.1) second order index 3 DAEs since one of the suitable first order
conversionsInξ 0 0

0 M1 0

0 0 0


 ξ̇(t)ξ̈(t)

ϕ̇(t)

 =

 0 Inξ 0

−K1 −D1 −GT1
G1 0 0


ξ(t)ξ̇(t)

ϕ(t)

+

 0

H1

0

u(t),

y(t) =
[
L1 0 0

]ξ(t)ξ̇(t)

ϕ(t)

 ,
(5.9)

is in the index 3 descriptor form [75, 48, 35].

5.2 Index reduction

This section will show how to convert an index 3 descriptor system of the form
(5.1) into an equivalent form of a ODE system via projection of the system onto the
hidden manifold on which the solution evolves. First we focus on the construction
of the projector by exploiting the structure of the system. Second, we prove that
the finite spectra of the original and projected systems coincide.

5.2.1 Reformulation of the dynamical systems

Let us rewrite the second order index 3 system (5.1) as

M1ξ̈(t) = −D1ξ̇(t)−K1ξ(t)−GT1 ϕ(t) +H1u(t), (5.10a)

G1ξ(t) = 0, (5.10b)

y(t) = L1ξ(t). (5.10c)

From (5.10b) we obtain G1ξ̈(t) = 0. Inserting this identity after multiplying both
sides of (5.10a) by G1M

−1
1 , we find

0 = −G1M
−1
1 D1ξ̇(t)−G1M

−1
1 K1ξ(t)−G1M

−1
1 GT1 ϕ(t) +G1M

−1
1 H1u(t), (5.11)
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which implies

ϕ(t) = −(G1M
−1
1 GT1 )−1G1M

−1
1 D1ξ̇(t)− (G1M

−1
1 GT1 )−1G1M

−1
1 K1ξ(t)+

(G1M
−1
1 GT1 )−1G1M

−1
1 H1u(t). (5.12)

Inserting ϕ(t) into (5.10a) we obtain

M1ξ̈(t) = −ΠD1ξ̇(t)−ΠK1ξ(t) + ΠH1u(t), (5.13)

where

Π := Inξ −G
T
1 (G1M

−1
1 GT1 )−1G1M

−1
1 , (5.14)

in which Inξ is an identity matrix of size nξ. In fact, Π is a projector since

Π2 = (Inξ −G
T
1 (G1M

−1
1 GT1 )−1G1M

−1
1 )(Inξ −G

T
1 (G1M

−1
1 GT1 )−1G1M

−1
1 )

= Inξ − 2GT1 (G1M
−1
1 GT1 )−1G1M

−1
1 +GT1 (G1M

−1
1 GT1 )−1G1M

−1
1

= Inξ −G
T
1 (G1M

−1
1 GT1 )−1G1M

−1
1 = Π.

The projector Π satisfies the following properties.

Proposition 5.1. Let Π be the projector defined above. The following conditions hold.

1. ΠM1 = M1ΠT .

2. Null (Π) = Range
(
GT1

)
.

3. Range (Π) = Null
(
G1M

−1
1

)
.

Proof. 1. We have

ΠM1 = M1 −GT1 (G1M
−1
1 GT1 )−1G1

= M1(Inξ −M
−1
1 GT1 (G1M

−1
1 GT1 )−1G1) = M1ΠT .

2. Suppose that the vector a belongs to the nullspace of Π, i.e., Πa = 0. By
the definition of Π, (Inξ − GT1 (G1M

−1
1 GT1 )−1G1M

−1
1 )a = 0, which implies a =

GT1 (G1M
−1
1 GT1 )−1G1M

−1
1 a. So a = GT1 b, where (G1M

−1
1 GT1 )−1G1M

−1
1 a = b,

which implies that a is in the range of GT1 . Therefore,

Null (Π) ⊆ Range
(
GT1

)
. (5.15)

Conversely, suppose that a is in the range of GT1 . Therefore, there exists a non-zero
vector b, such that GT1 b = a. Multiplying both sides by G1M

−1
1 , G1M

−1
1 GT1 b =

G1M
−1
1 a, which implies b = (G1M

−1
1 GT1 )−1G1M

−1
1 a. Again multiplying both sides

by GT1 , GT1 b = GT1 (G1M
−1
1 GT1 )−1G1M

−1
1 a. So a = GT1 (G1M

−1
1 GT1 )−1G1M

−1
1 a,

which implies Πa = 0. Therefore a is also in the nullspace of Π, and hence

Range
(
GT1

)
⊆ Null (Π) . (5.16)
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Equation (5.15) and (5.16) prove Null (Π) = Range
(
GT1
)
.

3. Again, we assume a is in the range of Π, i.e., Πa = a, which implies (Inξ −
GT1 (G1M

−1
1 GT1 )−1G1M

−1
1 )a = a, or GT1 (G1M

−1
1 GT1 )−1GT1 M

−1
1 a = 0. Let Φb = 0,

where Φ = GT1 (G1M
−1
1 GT1 )−1 and b = GT1 M

−1
1 a. Multiplying both sides by ΦT , we

obtain ΦTΦb = 0. Since ΦTΦ is invertible we see b = 0, or G1M
−1
1 a = 0. This

proves that a is in the nullspace of G1M
−1
1 . Therefore,

Range (Π) ⊆ Null
(
G1M

−1
1

)
. (5.17)

Conversely, again suppose that a ∈ Null
(
G1M

−1
1

)
, i.e., G1M

−1
1 a = 0. Multiply-

ing both sides by ΦTΦ, we get ΦTΦG1M
−1
1 a = 0. Again multiplying both sides

by bT , bTΦTΦb = 0, which implies (Φb)T (Φb) = 0, hence Φb = 0. Therefore,
GT1 (G1M

−1
1 GT1 )−1G1M

−1
1 a = 0 i.e., a = 0, and therefore, Πa = a, such that

Null
(
G1M

−1
1

)
⊆ Range (Π) . (5.18)

Therefore, equation (5.17) and (5.18) yield Range (Π) = Null
(
G1M

−1
1

)
.

Theorem 5.1. The vector a is in the nullspace of G1, i.e., G1a = 0 iff ΠTa = a, where
Π is defined in (5.14).

Proof. Suppose the vector a is in the nullspace ofG1, i.e.,G1a = 0. Multiplying both
sides by −M−1

1 GT1 (G1M
−1
1 GT1 )−1, we obtain −M−1

1 GT1 (G1M
−1
1 GT1 )−1G1a = 0,

which is equivalent to (Inξ −M
−1
1 GT1 (G1M

−1
1 GT1 )−1G1)a = a, i.e., ΠTa = a. Con-

versely, suppose that ΠTa = a, which implies (Inξ −M
−1
1 GT1 (G1M

−1
1 GT1 )−1G1)a =

a. We see M−1
1 GT1 (G1M

−1
1 GT1 )−1G1a = 0. Multiplying both sides by G1 we obtain

G1a = 0.

Following Theorem 5.1, equation (5.10b) implies

ΠT ξ(t) = ξ(t). (5.19)

Inserting this identity into (5.13) and multiplying the resulting equation by Π, we
obtain

ΠM1ΠT ξ̈(t) = −ΠK1ΠT ξ(t)−ΠD1ΠT ξ̇(t) + ΠH1u(t). (5.20)

Moreover, applying (5.19) into the output equation (5.10c), we find the system in
(5.10) is equivalent to

ΠM1ΠT ξ̈(t) = −ΠD1ΠT ξ̇(t)−ΠK1ΠT ξ(t) + ΠH1u(t), (5.21a)

y(t) = L1ΠT ξ(t). (5.21b)
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The system dynamics of (5.21) are projected onto the nm := nξ − nϕ dimensional
subspace Range

(
ΠT
)
. This subspace is, however, still represented in the coordi-

nates of the nξ dimensional space. The nm dimensional representation can be made
explicit by employing the thin singular value decomposition (SVD)

Π = UΣV T =
[
U1 U2

] [Σ1 0

0 0

][
V T

1

V T
2

]
= U1Σ1V

T
1 = ΘlΘ

T
r , (5.22)

where Θl = U1Σ
1
2
1 , Θr = V1Σ

1
2
1 , and U1, V1 ∈ Rnξ×nm consist of the corresponding

leading nm columns of U , V ∈ Rnξ×nξ . Moreover, Θl,Θr satisfy

ΘT
l Θr = Inm . (5.23)

Inserting the decomposition of Π from (5.22) into (5.21) and considering ξ̃(t) =

Θl
T ξ(t) the resulting dynamical system leads to

ΘT
rM1Θr

¨̃
ξ(t) = −ΘT

r D1Θr
˙̃
ξ(t)−ΘT

r K1Θr ξ̃(t) + ΘT
r H1u(t), (5.24a)

y(t) = L1Θr ξ̃(t). (5.24b)

System (5.24) is now a standard second order system like (2.21). This system prac-
tically is system (5.21) with the redundant equation removed by the Θr projection.
The dynamical systems (5.10), (5.21) and (5.24) are equivalent in a sense that
they are different realizations of the same transfer function. Moreover, their finite
spectrum is the same, which we prove in the following section.

5.2.2 Equivalent finite spectra

The quadratic matrix polynomial [100, 115, 116, 10] associated with the index 3
DAEs system (5.1) is

Q(λ) = λ2

[
M1 0

0 0

]
︸ ︷︷ ︸

M

+λ

[
D1 0

0 0

]
︸ ︷︷ ︸

D

+

[
K1 GT1
G1 0

]
︸ ︷︷ ︸

K

, (5.25)

where λ ∈ C. Although Q(λ) is regular, due to the singularity of M , it contains
some infinite eigenvalues as well. If the degree of det (Q(λ)) is r < 2ñ, where
ñ = nξ +nϕ, then Q(λ) has r finite and 2ñ− r infinite eigenvalues [116]. Again the
quadratic matrix polynomials corresponding to the systems (5.21) and (5.24) are
respectively,

Q̃(λ) = λ2ΠM1ΠT + λΠD1ΠT + ΠK1ΠT (5.26)

and

Q̄(λ) = λ2ΘT
rM1Θr + λΘT

r D1Θr + ΘT
r K1Θr. (5.27)
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We know ΘT
rM1Θr ∈ Rnξ×nξ is non singular and Q̄ is regular. Hence, all of the

eigenvalues of the polynomial Q̄(λ) are finite [116]. The degree of det
(
Q̄(λ)

)
is

2(nξ − nϕ). Hence the number of finite eigenvalues of Q̄(λ) is exactly 2(nξ − nϕ),
to which we can add 2ñ − 2(nξ − nϕ) = 2nξ + 2nϕ − 2nξ + 2nϕ = 4nϕ infinite
eigenvalues. Applying the appropriate projectors onto the index 3 DAE system, we
can preserve all the finite eigenvalues of the system (5.24). The following theorem
demonstrates that all the finite eigenvalues of the original and projected systems
are the same.

Theorem 5.2. Let us consider the matrix polynomials Q(λ) and Q̄(λ), defined re-
spectively, in (5.25) and (5.26). An eigenvalue λ1 is a finite eigenvalue of Q(λ) with

corresponding eigenvector
[
vT1 vT2

]T
if and only if λ1 is an eigenvalue of Q̄(λ) with

corresponding eigenvector ṽ1 where ṽ1 = ΘT
l v1 and Θl is defined in (5.23).

Proof. Suppose, λ1 is a finite eigenvalue of Q(λ) corresponding to the eigenvector[
vT1 vT2

]T
. Then the quadratic eigenvalue problem of the matrix polynomial (5.25)

is (
λ2

1

[
M1 0

0 0

]
+ λ

[
D1 0

0 0

]
+

[
K1 GT1
G1 0

])[
v1

v2

]
=

[
0

0

]
. (5.28)

The last line of (5.28) gives G1v1 = 0, i.e., v1 is in the nullspace of G1. Now
applying Theorem 5.1, we obtain ΠT v1 = v1. Plug ΠT v1 = v1 into the first equation
of (5.28) and then project the resulting equation from the left by Π. Since ΠGT1 = 0,
by Proposition 5.1, this leads to

(λ2
1ΠM1ΠT + λ1ΠD1ΠT + ΠK1ΠT )v1 = 0, (5.29)

which is the eigenvalue problem for the matrix polynomial Q̃(λ). Applying the
decompositions of Π as defined above to (5.22) and using ṽ1 = ΘT

l v1 we obtain

Θl(λ
2
1ΘT

rM1Θr + λ1ΘT
r D1Θr + ΘT

r K1Θr)ṽ1 = 0.

Multiplying by Θr from the left and using (5.23) yields

(λ2
1ΘT

rM1Θr + λ1ΘT
r D1Θr + ΘT

r K1Θr)ṽ1 = 0, (5.30)

which is the eigenvalue problem of the matrix polynomial (5.26), where λ1 is an
eigenvalue of the polynomial. Conversely, we want to demonstrate that if ṽ1 is
an eigenvector of Q̄(λ) to the corresponding eigenvalue λ1, i.e., equation (5.30)

holds, then
[
vT1 vT2

]T
is an eigenvector of Q(λ) with the same eigenvalue. Again

plugging ṽ1 = ΘT
l v1 in (5.30) and multiplying the resulting equation by Θl from

the left we obtain

(λ2
1ΠM1ΠT + λ1ΠD1ΠT + ΠK1ΠT )v1 = 0, (5.31)
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Since the projector Π satisfies ΠT v1 = v1, (5.31) gives

Π(λ2
1M1v1 + λ1D1v1 +K1v1) = 0,

which means that λ2
1M1v1 + λ1D1v1 +K1v1 is in the nullspace of Π. We know that

Null (Π) = Range
(
GT1
)

(see Proposition 5.1 (2.)). Therefore, there exists a vector
v2 such that

λ1M1v2 +K1v1 +D1v2 = −GT1 v2,

which implies

λ1M1v2 +K1v1 +D1v2 +GT1 v2 = 0. (5.32)

Again if ΠT v1 = v1, using Theorem 5.1 we have

G1v1 = 0 (5.33)

Equations (5.32) and (5.33) yield (5.28).

Example: In order to show the equivalent finite spectra of the second order in-
dex 3 system (5.1) numerically, we consider the damped spring-mass system (DSMS)
form [87]. See, e.g., Section 5.5 for details. Here we consider nξ = g = 10. As a
result, the dimension of the second order index 3 model is 11. Using the MATLAB
polyeig command we compute the eigenvalues of Q(λ), Q̃(λ) and Q̄(λ), respec-
tively. As we can see in Table 5.1, by applying appropriate projectors to the index 3
system we can preserve all the finite eigenvalues.

Q(λ) Q̃(λ) Q̄(λ)

∞ 0
∞ 0

-0.1220 ± 0.2876i -0.1220 ± 0.2876i -0.1220 ± 0.2876i
-0.1171 ± 0.2827i -0.1171 ± 0.2827i -0.1171 ± 0.2827i
-0.1000 ± 0.2646i -0.1000 ± 0.2646i -0.1000 ± 0.2646i
-0.0958 ± 0.2597i -0.0958 ± 0.2597i -0.0958 ± 0.2597i
-0.0270 ± 0.1445i -0.0270 ± 0.1445i -0.0270 ± 0.1445i
-0.0367 ± 0.1674i -0.0367 ± 0.1674i -0.0367 ± 0.1674i
-0.0423 ± 0.1789i -0.0423 ± 0.1789i -0.0423 ± 0.1789i
-0.0679 ± 0.2229i -0.0679 ± 0.2229i -0.0679 ± 0.2229i
-0.0663 ± 0.2206i -0.0663 ± 0.2206i -0.0663 ± 0.2206i

∞
∞

Table 5.1: Eigenvalues for the matrix polynomials Q(λ), Q̃(λ) and Q̄(λ), defined in
(5.25-5.27).
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5.3 Model reduction

5.3.1 Second-order-to-first-order reduction

Let us consider the second order index 3 system (5.1). In the preceding section, it
is shown that this system can be converted into the equivalent form of the projected
second order system (5.21). The first order transformed form of this second order
projected system can be written as

Π̃E1Π̃T ẋ1(t) = Π̃A1Π̃Tx1(t) + Π̃Bsu(t),

y(t) = CsΠ̃
Tx1(t),

(5.34)

where

Π̃ =

[
Inξ

Π

]
, E1 =

[
Inξ 0

0 M1

]
, A1 =

[
0 Inξ
−K1 −D1

]
,

Bs =

[
0

H1

]
, Cs =

[
L1 0

]
and x1(t) =

[
ξ(t)

ξ̇(t)

]
.

(5.35)

In system (5.34) all the coefficient matrices are singular since Π̃ has rank deficiency
(due to the singularity of Π). This means the system contains redundant elements.
To remove the redundant elements let us decompose Π̃ as

Π̃ = Θ̄lΘ̄
T
r , with Θ̄T

l Θ̄r = Ik, (5.36)

where Θ̄l, Θ̄r ∈ R2nξ×k and k = rank
(

Π̃
)

. Now applying the decomposition of Π̃

from (5.36) to (5.34) and defining x̃1(t) := Θ̄T
l x1(t), we obtain

Θ̄T
r E1Θ̄r

˙̃x1(t) = Θ̄T
r A1Θ̄rx̃1(t) + Θ̄T

r Bsu(t),

y(t) = CsΘ̄rx̃1(t).
(5.37)

This system can be compared with the generalized state space system (2.1), and
hence one can directly apply a naive approach of balanced truncation or IRKA based
model reduction methods. Unfortunately, considering computational costs, forming
(5.37) is prohibitive for a large scale system, since the actual computation of Θ̄l

and Θ̄r by decomposing Π̃ is expensive. Moreover, the coefficient matrices in the
system (5.37) are typically dense. Therefore, following the approaches as discussed
in [70, 68] for first order index 2 systems, we apply balanced truncation and IRKA
to the system (5.34) and compute the substantially reduced dimensional model

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx(t).
(5.38)

In the following we will show how to achieve this goal efficiently.
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Balancing based technique:

Let us assume we want to apply the balanced truncation method to the system
(5.36). Thus, we need to solve the Lyapunov equations

Θ̄T
r A1Θ̄rP̄ Θ̄T

r E
T
1 Θ̄r + Θ̄T

r E1Θ̄rP̄ Θ̄T
r A

T
1 Θ̄r = −Θ̄T

r BsB
T
s Θ̄r, (5.39a)

Θ̄T
r A

T
1 Θ̄rQ̄Θ̄T

r E1Θ̄r + Θ̄T
r E

T
1 Θ̄rQ̄Θ̄T

r A1Θ̄r = −Θ̄T
r C

T
s CsΘ̄r, (5.39b)

where P̄ , Q̄ ∈ Rk×k are, respectively, the controllability and observability Gramians
of the system (5.37). The solutions P̄ , Q̄ of the Lyapunov equations are unique,
since (according to Theorem 5.2) the corresponding system is asymptotically stable
and symmetric positive (semi-)definite since the right hand side is semidefinite.
Now multiplying both equations in (5.39) by Θ̄l from the left and Θ̄T

l from the
right and exploiting the property in (5.36), we obtain

Π̃A1Π̃T P̃ Π̃ET1 Π̃T + Π̃E1Π̃T P̃ Π̃AT1 Π̃T = −Π̃BsB
T
s Π̃T , (5.40a)

Π̃AT1 Π̃T Q̃Π̃E1Π̃T + Π̃ET1 Π̃T Q̃Π̃A1Π̃T = −Π̃CTs CsΠ̃
T , (5.40b)

where

P̃ = Θ̄rP̄ Θ̄T
r , Q̃ = Θ̄rQ̄Θ̄T

r . (5.41)

The Lyapunov equations in (5.40) are nothing but the Lyapunov equations of the
projected system (5.34), where P̃ , Q̃ ∈ R2nξ×2nξ are the systems controllability and
observability Gramians. Under the condition (5.41) it can be shown that P̃ and Q̃
satisfy

P̃ = Π̃P̃ Π̃T and Q̃ = Π̃Q̃Π̃T , (5.42)

which ensures that the solutions are unique, although the equations in (5.40) are
singular due to the singular projectors. The solution techniques of the projected
Lyapunov equations (5.40) for computing the low-rank Gramian factors will be
discussed in Section 5.4. Let R̃ and L̃ be the low-rank factors of the controllability
and observability Gramians of the system (5.34) such that

P̃ ≈ R̃R̃T , Q̃ ≈ L̃L̃T , (5.43)

and R̄ and L̄ be the low-rank factors of the controllability and observability Grami-
ans of the system (5.37) such that

P̄ ≈ R̄R̄T , Q̄ ≈ L̄L̄T .

Then the controllability Gramian factors and the observability Gramian factors of
the systems, (5.34) and (5.37), are related by

R̃ = Θ̄rR̄ and L̃ = Θ̄rL̄. (5.44)
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This relation can easily be obtained, since

R̃R̃T ≈ P̃ = Θ̄rP̄ Θ̄T
r ≈ Θ̄rR̄R̄

T Θ̄T
r and

L̃L̃T ≈ Q̃ = Θ̄rQ̄Θ̄T
r ≈ Θ̄rL̄L̄

T Θ̄T
r .

Let us consider the singular value decomposition of L̄T Θ̄T
r E1Θ̄rR̄, i.e.,

L̄T Θ̄T
r E1Θ̄rR̄ = UΣV T .

Now construct the left and right balancing and truncating transformations W̄ and
V̄ as

W̄ = L̄U1Σ
− 1

2
1 , V̄ = R̄V1Σ

− 1
2

1 ,

where U1, V1 consist of the corresponding leading l (l � k) columns of U, V , and
Σ1 is the first leading l × l block of Σ. Again considering the singular value decom-
position (using the Gramian factors of the system (5.34))

L̃TE1R̃ = R̄T Q̄Tr E1Q̄rL̄ = UΣV T , (5.45)

we can construct the left and right balancing and truncating transformations as

W̃ = L̃U1Σ
− 1

2
1 , Ṽ = R̃V1Σ

− 1
2

1 . (5.46)

We observe that

W̃ = L̃U1Σ
− 1

2
1 = Θ̄rL̄U1Σ

− 1
2

1 = Θ̄rW̄ = Θ̄rΘ̄
T
l Θ̄rW̃ = Π̃T W̃ ,

Ṽ = R̃U1Σ
− 1

2
1 = Θ̄rR̄U1Σ

− 1
2

1 = Θ̄rV̄ = Θ̄rΘ̄
T
l Θ̄rṼ = Π̃T Ṽ .

(5.47)

Applying the balancing and truncating transformations W̄ and V̄ to the system
(5.37), we can construct the reduced order model (5.38) where the coefficient
matrices are formed by

Ê = W̄ T ĒV̄ , Â = W̄ T ĀV̄ , B̂ = W̄ T B̄, and Ĉ = C̄V̄ .

Close observation reveals that applying the property (5.47) the above reduced ma-
trices can be computed efficiently by

Ê = W̄ T ĒV̄ = W̄ T Θ̄T
r E1Θ̄rV̄ = W̃ TΠE1ΠT Ṽ = W̃ TE1Ṽ ,

Â = W̄ T ĀV̄ = W̄ T Θ̄T
r A1Θ̄rV̄ = W̃ TΠA1ΠT Ṽ = W̃ TA1Ṽ,

B̂ = W̄ T B̄ = W̄ T Θ̄T
r Bs = W̃ TΠBs = W̃ TBs,

Ĉ = C̄V̄ = CsΘ̄rV̄ = CsΠ
T Ṽ = CsṼ .

(5.48)

Therefore, from the above discussion it is clear that to obtain the reduced model
(5.38) we need not form the system (5.34) or the system (5.37). We must just form
the balancing and truncating transformations W̃ , Ṽ as given in (5.46) and then
construct the reduced matrices as

Ê = W̃ TE1Ṽ , Â = W̃ TA1Ṽ , B̂ = W̃ TBs and Ĉ = CsṼ . (5.49)

The procedure to compute the reduced first order system (5.38) from the second
order index 3 DAEs (5.10) is summarized in Algorithm 13.
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Algorithm 13: LR-SRM for second order index 3 systems.
Input : M1, D1, K1, G1, H1, L1.
Output: Ê, Â, B̂, Ĉ.

1 Set up the matrices E1, A1, Bs, Cs as in (5.34).
2 Compute the low-rank Gramian factors R̃, L̃ by solving the projected

Lyapunov equations (5.40).
3 Construct the balancing and truncating transformations W̃ and Ṽ by

performing (5.45)-(5.46).
4 Form the reduced matrices using (5.49).

Interpolatory method via IRKA:

We concentrate on the interpolatory method via IRKA for model reduction of the
system (5.1). The method that we follow here was introduced in [68] for first or-
der index 2 DAEs. However, based on [68], the authors in [1] also discuss IRKA
for such second order index 3 systems. In contrast to [1] our implementation pro-
cedure is different and more efficient, since inside the algorithm we show that the
arising linear systems can be solved more efficiently by splitting, as we show in the
following. To follow the procedure in [68], first convert the system (5.1) into the
first order form (5.34). Note that the system (5.37) is an equivalent form of the
system (5.34). Following the discussion in [68, Section 6.1] to construct a reduced
system of the projected system (5.34) based on the interpolatory method, we need
to construct the right and and left transformations defined in (2.47) as

Ṽ =
[
(α1Ẽ − Ã)IB̃b1, · · · , (αrẼ − Ã)IB̃br

]
, and (5.50a)

W̃ =
[
(α1Ẽ

T − ÃT )IC̃T c1, · · · , (αrẼT − ÃT )IC̃T cr

]
, (5.50b)

where Ẽ := Π̃E1Π̃T , Ã := Π̃A1Π̃T , B̃ := Π̃Bs, C̃ := CsΠ̃
T , and (αiẼ − Ã)I =

(αiẼ
T − ÃT )I := Θ̄r(Θ̄

T
r E1Θ̄r − αiΘ̄T

r A1Θ̄r)
−1Θ̄T

r , for i = 1, · · · , r. Recalling [68,
Theorem 6.2], if we can construct Ṽ and W̃ as in (5.50), then the reduced model in
(5.38) can be formed by computing the reduced matrices as in (5.49). Therefore, to
construct the reduced model (5.38) we can avoid the projectors. However, in each
term of Ṽ and W̃ the projectors are implicitly hidden. The solution of this problem
has been shown in [68] based on [70, Theorem 5.2]. In our case each column of Ṽ
contains a vector such as

v = (αẼ − Ã)IB̃b.
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Following [68, Lemma 6.3], it can be shown (see also, e.g., Theorem 5.3) that the

vector v =
[
vT1 vT2

]T
solvesαInξ −Inξ 0

K1 αM1 +D1 GT1
G1 0 0


v1

v2

Γ

 =

 0

H1b

0

 . (5.51)

Again, simple algebraic manipulations to the linear system (5.51) leads us to solve[
α2M1 + αD1 +K1 GT1

G1 0

][
v1

Γ

]
=

[
H1b

0

]
, (5.52)

for v1 and then compute v2 = αv1. Analogously, a vector

w =
[
wT1 wT2

]T
= (αẼT − ÃT )IC̃T c,

in each term in W̃ can be computed by solving the linear systemαInξ KT
1 −GT1

Inξ αMT
1 +DT

1 0

0 G1 0


w1

w2

Γ

 =

LT1 c0

0

 ,
which is again equivalent to solving the linear system[

−α2MT
1 − αDT

1 +KT
1 −GT1

G1 0

][
w2

Γ

]
=

[
LT1 c

0

]
(5.53)

for w2 and w1 = −(αMT
1 + DT

1 )W2. A complete procedure to compute the re-
duced model (5.38) from the second order index 3 system (5.1) is presented in
Algorithm 14.

5.3.2 Second-order-to-second-order reduction

Like the second order index 1 system in Chapter 4, in this section we contribute
the BT and PDEG methods to obtain second order reduced systems from the sec-
ond order index 3 descriptor systems. In both methods we must first convert the
second order index 3 descriptor system (5.10) into the second order projected sys-
tem (5.21). Then applying the model reduction techniques to the system (5.21) we
obtain a reduced model

M̂1
¨̂
ξ(t) + D̂1

˙̂
ξ(t) + K̂1ξ̂(t) = Ĥ1u(t),

ŷ(t) = L̂1ξ̂(t).
(5.54)

In the following we will show how to apply the aforementioned methods to the
projected system (5.49) avoiding the projector (Π).
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Algorithm 14: IRKA for second order index 3 systems.
Input : M1, D1, K1, G1, H1, L1.
Output: Ê, Â, B̂, Ĉ.

1 Setup the matrices E1, A1, Bs, Cs as in (5.34).
2 Select initial interpolation points {σi}ri=1 and tangent directions {bi}ri=1 and
{ci}ri=1.

3 while (not converged) do
4 for i = 1, 2, · · · , r do

5

[
α2
iM1 + αiD1 +K1 GT1

G1 0

][
v

(1)
i

Γ

]
=

[
H1bi

0

]
,

6

[
−α2

iM
T
1 − αiDT

1 +KT
1 GT1

G1 0

][
w

(2)
i

Γ

]
=

[
LT1 ci

0

]
,

7 Form vi =

[
v

(1)
i

αiv
(1)
i

]
, wi =

[
−(αiM

T
1 +DT

1 )w
(2)
i

w
(2)
i

]
.

8 Construct Ṽ =
[
v1, v1, · · · , vr

]
, W̃ =

[
w1,w1, · · · ,wr

]
.

9 end for
10 Ê = W̃ TE1Ṽ , Â = W̃ TA1Ṽ , B̂ = W̃ TBs and Ĉ = CsṼ

11 Compute Âzi = λiÊzi and y∗Â = λiy
∗Ê.

12 αi ← −λi, b∗i ← y∗B̂ and ci ← Ĉzi.
13 end while
14 Form Ê, Â, B̂, and Ĉ with (5.49).

The BT method:

Chapter 2 discussed the second-order-to-second-order balancing criterion for sec-
ond order systems, referring to the literature (e.g., [104, 114, 11, 97]). An overview
of such techniques, all for standard second order systems, is found in [97]. For a
second order index 1 system (4.1), of a slightly different form than (5.1), a second-
order-to-second-order balancing technique is shown in Chapter 4. The fundamental
procedure is the same as in Chapter 4. We can convert the index 3 system (5.10)
to the ODE system (5.24). Thus, the balancing idea from [97] can be employed.
As already mentioned, forming (5.24) is infeasible for a large-scale system. There-
fore, instead of (5.24) we want to apply the BT technique to the equivalent system
(5.21). For this purpose, recalling the discussion in Chapter 2, we need to solve
the projected Lyapunov equations (5.40). We already know that the controllability
and observability Gramians P̃ and Q̃ are the unique positive semi-definite solutions
of the projected Lyapunov equations (5.40). Employ the block subdivision of the
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controllability and observability Gramians as in, e.g. [29]

P̃ =

[
P̃pp P̃pv
P̃ Tpv P̃vv

]
, Q̃ =

[
Q̃pp Q̃pv
Q̃Tpv Q̃vv

]
,

where P̃pp, Q̃pp ∈ Rnξ×nξ and P̃vv, Q̃vv ∈ Rnξ×nξ are called position, velocity con-
trollability and observability Gramians, respectively. Using the LRCF-ADI iterations
we can compute the low-rank controllability Gramian factor R̃ and observability
Gramian factor L̃ defined in (5.43) by solving the Lyapunov equations (5.40). Due
to the block structure of the P̃ and Q̃, the low-rank Gramian factors can be parti-
tioned as (see [29]

R̃ =

[
R̃p
R̃v

]
, L̃ =

[
L̃p
L̃v

]
,

where R̃p, L̃p and R̃v, L̃v denote the low-rank position, velocity controllability and
observability Gramian factors, respectively. Let us consider the Gramian factors R̃p
and L̃p to compute the thin SVD

L̃TpM1R̃p =
[
Upp,1 Upp,1

] [Σpp,1 0

0 Σpp,2

] [
V T
pp,1 V T

pp,2

]
, (5.55)

and construct the balancing and truncating transformations

Ws = L̃pUpp,1Σ
− 1

2
pp,1, Vs = R̃pUpp,1Σ

− 1
2

pp,1. (5.56)

Now applying Ws and Vs to the system (5.21) we can construct the reduced model
(5.54). Like the second-order-to-first-order balancing based reduction method (see
the discussion above), we can also prove the constructed balancing and truncating
transformations are ΠT invariant, i.e., ΠTVs = Vs and ΠTWs = Ws. Therefore, the
coefficient matrices in (5.54) can be constructed as

M̂1 = W T
s M1Vs, D̂1 = W T

s D1Vs,

K̂1 = W T
s M1Vs, Ĥ1 = W T

s H1, L̂1 = L1Vs,
(5.57)

which prevent from constructing the projected system (5.21). The process of ob-
taining a reduced model by using a pair of low-rank controllability and observabil-
ity position Gramian factors, i.e., (R̃p, L̃p) is summarized in Algorithm 15. The
constructed reduced model via (R̃p, L̃p) is called position-position (PP) balancing.
Likewise, the reduced models are called velocity-velocity (VV), velocity-position
(VP), and position-velocity (PV) balancing if we use the pairs (Rv, Lv), (Rv, Lp)
and (Rp, Lv), respectively,.

The PDEG method:

Here we want to construct the ROMs via projecting the system onto the dominant
eigenspaces of the Gramians. The PDEG technique is introduced in Chapter 4 to
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Algorithm 15: SOLR-SRM for second order index 3 system.
Input : M1, D1, K1, H1, L1.
Output: M̂1, D̂1, K̂1, Ĥ1, L̂1.

1 Solve the Lyapunov equations (5.40a) to compute R̃p and L̃p.
2 Compute the balancing and truncating transformations as in (5.56).
3 Construct M̂1, D̂1, K̂1, Ĥ1, L̂1 following (5.57).

obtain second-order-to-second-order reduced models for second order index 1 sys-
tems, we follow the same procedure for the second order index 3 systems. We
first convert the second order index 3 system (5.1) into the equivalent form of the
second order projected system (5.21). In the above we already defined the Grami-
ans for the second order projected system. Let us first consider the controllability
position Gramian P̃pp. Since P̃pp is symmetric positive (semi-)definite, it has the
singular value decomposition,

P̃pp = ŨppΣ̃ppṼ
T
pp. (5.58)

If rank
(
P̃pp

)
= k, where k � nξ, then the first k columns of Ũpp are the eigen-

vectors of P̃pp. Now suppose R̃p is the low-rank factor (as defined above) of the
controllability position Gramian P̃pp such that P̃pp ≈ R̃pR̃Tp . Compute the thin SVD

R̃p = UkΣkV
T
k , (5.59)

where it can be proved that Uk consists of the first k columns of Ũpp. Now forming

Vs =
[
u1, u2, · · · , ur

]
, (5.60)

where ui, i = 1, · · · , r, are the first r columns of Uk and applying Vs to the sys-
tem (5.21), we can construct the r dimensional reduced model (5.54), where the
reduced coefficient matrices can be formed as

M̂1 = V T
s ΠM1ΠTVs, D̂1 = V T

s ΠD1ΠTVs, K̂1 = V T
s ΠK1ΠTVs,

Ĥ1 = V T
s ΠH1, L̂1 = L1ΠTVs.

(5.61)

Applying Theorem 5.1 we have ΠTVs = Vs, which implies V T
s Π = V T

s . Therefore,
the reduced matrices in (5.54) can be constructed as

M̂1 = V T
s M1Vs, D̂1 = V T

s D1Vs, K̂1 = V T
s K1Vs, Ĥ1 = V T

s H1, L̂1 = L1Vs. (5.62)

The above procedure to compute the ROM via projecting the system onto the dom-
inant eigenspace of the controllability position Gramian is summarized in Algo-
rithm 16. A reduced model is obtained via projecting the system onto the dominant
eigenspace of the controllability position Gramian, called PDEG-CP. Similarly, the
reduced models are called PDEG-CV, PDEG-OP and PDEG-OV if the reduced mod-
els are obtained via projecting the system onto the eigenspaces of the controllability
position, observability position and observability velocity Gramians, respectively.
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Algorithm 16: PDEG for second order index 3 system.
Input : M1, D1, K1, H1, L1.
Output: M̂1, D̂1, K̂1, Ĥ1, L̂1.

1 Solve the Lyapunov equations (5.40a) to compute R̃p.
2 Compute Vs by performing (5.59-5.60).
3 Construct M̂1, D̂1, K̂1, Ĥ1, L̂1 following (5.62).

5.4 Solution of the projected Lyapunov equations

In the previous sections we noted that to implement the balancing and PDEG based
model reduction methods for the second order index 3 descriptor system (5.1) we
need to solve the projected Lyapunov equations (5.40) for computing the low-rank
Gramian factors R̃ and L̃. This section discusses how to apply the LRCF-ADI method
introduced in Chapter 2 to solve such projected Lyapunov equations efficiently. For
convenience rewrite the projected Lyapunov equations (5.40) as

ÃP̃ ẼT + ẼP̃ ÃT = −B̃B̃T , (5.63a)

ÃT Q̃Ẽ + ẼT Q̃Ã = −C̃T C̃, (5.63b)

where Ẽ = Π̃E1Π̃T , Ã = Π̃A1Π̃T , B̃ = Π̃Bs and C̃ = CsΠ̃
T . These Lyapunov equa-

tions look like the projected Lyapunov equations in (3.14) for the first order index 2
DAEs. An efficient solution of such projected Lyapunov equations is discussed in
[70, Section 5] using the LRCF-ADI method for computing low-rank Gramian fac-
tors. This idea is updated in Chapter 3 including the concepts of computing the real
low-rank Gramian factors and low-rank residual factor based stopping criterion.
Here we are generalizing the ideas of Chapter 3 to solve the projected Lyapunov
equation (5.63). In this section we mainly focus on two important issues. First we
modify the GS-LRCF-ADI iteration in Chapter 3 for solving the projected Lyapunov
equations (5.63). Second, we address the ADI shift parameter computation. We
resolve some technical problems arising in the computation of both heuristic and
adaptive shift parameters for the underlying system.

5.4.1 GS-LRCF-ADI iteration

Let us first concentrate on the solution of the controllability Lyapunov equation
(5.63a) and recall Algorithm 7.

Initial residual factor: A close observation reveals that in this case the initial
residual factor W̃0 can be partitioned as

W̃0 = B̃ = Π̃Bs =

[
Inξ

Π

][
0

H1

]
=

[
0

ΠH1

]
=

[
W̃

(1)
0

W̃
(2)
0

]
, (5.64)
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which gives W̃ (1)
0 = 0 and W̃

(2)
0 = ΠH1. We can compute W̃ (2)

0 = ΠH1 efficiently
using the following observation.

Lemma 5.1. The matrix Ξ satisfies Ξ = ΠTΞ and M1Ξ = ΠH1, where Π is defined
in (5.14) if and only if [

M1 GT1
G1 0

][
Ξ

Λ

]
=

[
H1

0

]
. (5.65)

Proof. For a proof, follow Lemma 3.1.

Efficient solution of the linear systems: To solve the Lyapunov equation (5.63)
using Algorithm 5, at the i-th iteration step we need to solve the linear system

(Ã+ µiẼ)Vi = W̃i−1, (5.66)

where W̃i−1 is the ADI residual factor computed from the (i − 1)-st iteration. Now

partitioning W̃i−1 as W̃i−1 =

[
W̃

(1)
i−1

W̃
(2)
i−1

]
, equation (5.66) can be written as

[
µiInξ Inξ
−ΠK1ΠT −ΠD1ΠT + µiΠM1ΠT

][
V

(1)
i

V
(2)
i

]
=

[
W̃

(1)
i−1

W̃
(2)
i−1

]
. (5.67)

Theorem 5.3. Assume that χ1 and χ2 are in the nullspace ofG1. The matrix
[
χT1 χT2

]T
satisfies the linear system[

µInξ Inξ
ΠK1ΠT ΠD1ΠT + µΠM1ΠT

][
χ1

χ2

]
=

[
F1

ΠF2

]
, (5.68)

iff the matrix
[
χT1 χT2 ΓT

]T
satisfiesµInξ Inξ 0

K1 D1 + µM1 GT1
G1 0 0


χ1

χ2

Γ

 =

F1

F2

0

 . (5.69)

Proof. Suppose that

[
χT1
χT2

]
satisfies the linear system (5.68). From the second line

of (5.68), we obtain

ΠK1ΠTχ1 + (ΠD1ΠT + µΠM1ΠT )χ2 = ΠF2. (5.70)

Since ΠTχ1 = χ1, ΠTχ2 = χ2, this equation yields

Π(K1χ1 +D1χ2 + µM1χ2 − F2) = 0, (5.71)
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i.e.,K1χ1+D1χ2+µM1χ2−F2 is in the nullspace of Π. Since Null (Π) = Range
(
GT1
)
,

there exists a Γ, such that

K1χ1 +D1χ2 + µM1χ2 − F2 = −GT1 Γ,

which implies

K1χ1 +D1χ2 + µM1χ2 +GT1 Γ = F2. (5.72)

Again if χ1 is in the nullspace of G1, i.e., ΠTχ1 = χ1, Theorem 5.1 gives

G1χ1 = 0. (5.73)

The first equation of (5.68) together with (5.72) and (5.73) produces the linear

system (5.69). Conversely, suppose that
[
χT1 χT2 ΓT

]T
is the solution of (5.69).

Then the second line of (5.69) gives (5.72). Using Theorem 5.1, the third line of
(5.69) implies ΠTχ1 = χ1. It can be shown that ΠTχ2 = χ2, since G1ξ1 = 0 implies
G1ξ2 = 0. Inserting these identities into (5.72), we obtain

K1ΠTχ1 +D1ΠTχ2 + µM1ΠTχ2 +GT1 Γ = F2. (5.74)

Multiply (5.74) from the left by Π. Since ΠG1 = 0, the resulting equation leads
to (5.70). Together with the first line of (5.69), the result is the linear system
(5.68).

According to Theorem 5.3, instead of solving the linear system (5.67) we can solve
the linear systemµInξ Inξ 0

−K1 −D1 + µM1 −GT1
G1 0 0


V

(1)
i

V
(2)
i

Γ

 =

W̃
(1)
i−1

W̃
(2)
i−1

0

 , (5.75)

for
[
V

(1)
i

T
V

(2)
i

T
]T

. The matrix (vector)

[
W̃

(1)
i−1

W̃
(2)
i−1

]
is updated in each iteration which

is computed from the ADI residual factor of the previous step. For our problem,
in each iteration, the ADI residual factor can be computed by (see, Step 6 in Algo-
rithm 5)

W̃i = W̃i−1 − 2 Re (µi)ẼVi,

which can be partitioned as[
W̃

(1)
i

W̃
(2)
i

]
=

[
W̃

(1)
i−1

W̃
(2)
i−1

]
− 2 Re (µi)

[
Inξ 0

0 ΠM1ΠT

][
V

(1)
i

V
(2)
i

]
.

=

[
W̃

(1)
i−1 − 2 Re (µi)V

(1)
i

W̃
(2)
i−1 − 2 Re (µi)ΠM1ΠTV

(2)
i

]
.
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Exploiting the properties of Π, i.e., ΠM1 = M1ΠT and ΠTV
(2)
i = V

(2)
i , the above

equation results in

W̃
(1)
i = W̃

(1)
i−1 − 2 Re (µi)V

(1)
i ,

W̃
(2)
i = W̃

(2)
i−1 − 2 Re (µi)M1V

(2)
i .

(5.76)

We already mentioned earlier that the initial residual factors should be W̃ (1)
0 = 0

and W̃
(2)
0 = ΠH1, where W̃ (2)

0 can be computed cheaply by using Lemma 5.1. If
the two consecutive shift parameters are complex conjugates of each other, i.e.,
{µi, µi+1 := µi}, then recalling (2.62) we see

W̃i+1 = W̃i−1 − 4 Re (µi)Ẽ (Re (Vi) + δ Im (Vi)) ,

where δ = Re (µi)
Im (µi)

, which gives[
W̃

(1)
i+1

W̃
(2)
i+1

]
=

[
W̃

(1)
i−1

W̃
(2)
i−1

]
− 4 Re (µi)

[
Inξ 0

0 ΠM1ΠT

][
Re (V

(1)
i ) + δ Im (V

(1)
i )

Re (V
(2)
i ) + δ Im (V

(2)
i )

]

=

[
W̃

(1)
i−1 − 4 Re (µi)(Re (V

(1)
i ) + δ Im (V

(1)
i ))

W̃
(2)
i−1 − 4 Re (µi)ΠM1ΠT (Re (V

(2)
i ) + δ Im (V

(2)
i ))

]
.

Again following the properties of Π (i.e., Proposition 5.1 and Theorem 5.1), the
above relation results in

W̃
(1)
i+1 = W̃

(1)
i−1 − 4 Re (µi)(Re (V

(1)
i ) + δ Im (V

(1)
i )),

W̃
(2)
i+1 = W̃

(2)
i−1 − 4 Re (µi)M1(Re (V

(2)
i ) + δ Im (V

(2)
i )).

(5.77)

Now let us see how to split the linear system (5.75) to accelerate the solution. From
the first line of (5.75), we obtain

V
(2)
i = W̃

(1)
i−1 − µiV

(1)
i . (5.78)

Inputting this into the second line of (5.75), we obtain

(K1 + µiD1 + µ2
iM1)V

(1)
i +GT1 Γ = (µiM1 −D1)W̃

(1)
i−1 − W̃

(2)
i−1. (5.79)

Together with (5.79) and the third line of (5.75), we obtain[
K1 + µiD1 + µ2

iM1 GT1
G1 0

][
V

(1)
i

Γ

]
=

[
(µiM1 −D1)W̃

(1)
i−1 − W̃

(2)
i−1

0

]
. (5.80)

Applying the above splitting approach to the linear system (5.75), the solution be-
comes much faster. The procedure to compute the low-rank controllability Gramian
factor by solving the controllability Lyapunov equation (5.63a) is stated in Algo-
rithm 17.
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Algorithm 17: SOGS-LRCF-ADI for the second order index 3 systems.

Input : M1, D1, K1, G1, H1, {µi}Ji=1.
Output: R̃ = Zi, such that P̃ ≈ R̃R̃T .

1 Set Z0 = [ ], i = 1 and W̃ (1)
0 = 0.

2 Solve (5.65) for Ξ and compute W̃ (2)
0 = M1Ξ.

3 while ‖W̃ (1)T
0 W̃

(1)
0 + W̃

(2)T
0 W̃

(2)
0 ‖ ≥ tol and i ≤ imax do

4 Solve

[
K1 + µiD1 + µ2

iM1 G2

G1 0

][
V

(1)
i

Γ

]
=

[
(µiM1 −D1)W̃

(1)
i−1 − W̃

(2)
i−1

0

]
.

5 Compute V (2)
i = W̃

(1)
i−1 − µiV

(1)
i and Vi =

[
V

(1)
i

T
V

(2)
i

T
]T

.

6 if Im (µi) = 0 then

7 Zi =
[
Zi−1

√
−2µi Re (Vi)

]
,

8 W̃
(1)
i = W̃

(1)
i−1 − 2µiV

(1)
i , W̃

(2)
i = W̃

(2)
i−1 − 2µiM1V

(2)
i .

9 else
10 γ = −2 Re (µi), δ = Re (µi)

Im (µi)
,

11 Zi+1 =
[
Zi−1

√
2γ(Re (Vi) + δ Im (Vi))

√
2γ
√

(δ2 + 1) Im (Vi)
]
,

12 V
(1)
i+1 = Re (V

(1)
i ) + δ Im (V

(1)
i ), V

(2)
i+1 = Re (V

(2)
i ) + δ Im (V

(2)
i ),

13 W̃
(1)
i+1 = W̃

(1)
i−1 + 2γV

(1)
i+1, W̃

(2)
i+1 = W̃

(2)
i−1 + 2γM1V

(2)
i+1.

14 i = i+ 1

15 end if
16 i = i+ 1

17 end while

Solution of observability Lyapunov equation: Algorithm 17, can solve the pro-
jected observability Lyapunov equation (5.63) considering a few changes. First, in
the input matrices replace H1 by L1. The initial residual factors are W̃ (1)

0 = ΠLT ,
W̃

(2)
0 = 0. Replacing H1 by LT1 , we solve the linear system (5.65) for Ξ to compute

W
(1)
0 = M1Ξ. In Step 4, we solve the linear system[

µiD
T
1 − µ2

iM
T
1 −KT

1 GT1
G1 0

][
V

(2)
i

Γ

]
=

[
W̃

(1)
i−1 − µiW̃

(2)
i−1

0

]

for V (2)
i . In Step 5, compute V (1)

i = W̃
(2)
i−1−(µiM

T
1 −DT

1 )V
(2)
i for Vi =

[
V

(1)
i

T
V

(2)
i

T
]T

.

Applying these changes in the algorithm, compute L̃ = Zi such that Q̃ ≈ L̃L̃T .

5.4.2 ADI shift parameter selection

Algorithm 17 depends on certain shift parameters that are crucial for fast conver-
gence of the method. We investigate two types of ADI shift parameters. Penzl’s
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heuristic approach introduced in [93] is one of the most commonly used approaches
to compute the ADI shift parameters for a large-scale system. Recently another ap-
proach is introduced in [21] to compute the ADI shifts adaptively. Both approaches
were introduced in Chapter 2. We proposed an update on the adaptive shift selec-
tion approach in Chapters 3 which is considered here as well. This section focuses
on some technical problems arising in both approaches for the system considered
in this chapter.

Heuristic shifts: In this approach, we often need a set of approximate finite eigen-
values which consist of some large magnitude and small magnitude Ritz values of
the matrix pencil corresponding to the underlying system (see, e.g., Penzl’s heuristic
in [93]). For the second order index 3 descriptor system (5.10) the corresponding
matrix pencil is

λ

Inξ 0 0

0 M1 0

0 0 0


︸ ︷︷ ︸

Ě

−

 0 Inξ 0

−K1 −D1 −GT1
G1 0 0


︸ ︷︷ ︸

Ǎ3

. (5.81)

Due to the singularity of Ě, the matrix pencil features some infinite eigenvalues
that prevent the direct usage of Arnoldi’s method for the approximation of large
magnitude eigenvalues. To overcome this problem, we can employ the strategy
introduced in [39], looking at the modified eigenvalue problem of the first order
structured index 2 DAEs system such as (3.1). Following the strategy, we modify
the matrix pencil (5.81) as

λ

Inξ 0 0

0 M1 0

0 0 0


︸ ︷︷ ︸

Ě

−

 0 Inξ 0

−K1 −D1 −GT1
0 G1 0


︸ ︷︷ ︸

Ǎ2

. (5.82)

The matrix pencil (5.82) has the same structure as the matrix pencil correspond-
ing to the system (3.1). Moreover, according to [48, Theorem 2.7.3]1, the matrix
pencils in (5.82) and (5.81) share the same non-zero finite spectrum. Now the
modified matrix pencil

λ

Inξ 0 0

0 M1 −αGT1
0 αG1 0


︸ ︷︷ ︸

Ěα

−

 0 Inξ 0

−K1 −D1 −GT1
0 G1 0


︸ ︷︷ ︸

Ǎ2

(5.83)

moves all infinite eigenvalues to 1
α (α ∈ R) (see e.g., Chapter 3), without altering

the finite eigenvalues. The parameter α can be chosen such that 1
α is close to the

1The theorem originates in [107] but we prefer the textbook reference.
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smallest magnitude eigenvalues after those have been determined with respect to
the original matrices. Note, the matrix Ǎ2 in (5.83) will always be singular, such
that the small eigenvalue approximations cannot be computed since the inversion
of Ǎ2 would be required. Therefore, small magnitude Ritz values should be always
computed from the matrix pencil (5.81).

Adaptive shifts: A second shift computation strategy, which is rather simple and
more efficient, is already discussed in Chapters 3 and 4. Here the computed shift
parameters are associated to the projected system (5.34) in which the correspond-
ing matrix pencil is

λΠ̃E1Π̃T − Π̃A1Π̃T . (5.84)

From the deliberation of Section 5.2 we already know the matrix pencil (5.84)
incorporates all of the finite eigenvalues of the index 3 system (5.10). For the
initialization of the shifts, we can proceed with the same procedure given in [21] as
long as the system has sufficiently many inputs and outputs. If the input or output
matrix consists of only a few columns, particularly, for SISO systems, sometimes
we may not achieve any stable eigenvalue from the projected pencil of (5.84). To
overcome this problem, we propose a different initialization technique. Instead of
using W̃0 to project the pencil (5.84), we want to use a random thin rectangular
matrix B̌ ∈ R2nξ×k, where k � nξ. For the updated shifts, we follow the same
procedure as discussed in Chapter 4.

5.5 Numerical results

5.5.1 Test examples and hardware

To assess the accuracy and efficiency of the proposed model reduction methods,
we illustrate numerical results for two model examples. The first example is a
holonomically constrained damped spring-mass system (DSMS) [87] as shown in
Figure 5.1. The i-th mass of weight mi is connected to the (i − 1)-st mass by a
spring and a damper with constants ki and δi, respectively. Moreover, the first mass
is connected to the last one by a rigid bar and influenced by the control u(t). M1 is a
diagonal mass matrix, K1 ∈ Rnξ×nξ andD2 both are nξ×nξ dimensional tridiagonal
stiffness and damping matrices, respectively. G1 = [1, 0, · · · , 0,−1] ∈ R1×nξ is the
constraint matrix, H1 = e1 and L1 = [e1, e2, enξ−1]T , where ei denotes the i−th
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Constrained damped mass-spring system

T. Stykel

Technische Universität Berlin

Consider the holonomically constrained damped mass-spring system [1] shown in Fig. 1.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u1

Figure 1: A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring and a damper
with constants ki and di, respectively, and also to the ground by a spring and a damper with
constants κi and δi, respectively. Additionally, the first mass is connected to the last one
by a rigid bar and it is controlled. The vibration of this system is described by a descriptor
system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT

λ(t) + B2u(t),
0 = G p(t),

y(t) = C1p(t),

(1)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vector, λ(t) ∈ R
2 is the

Lagrange multiplier, M = diag(m1, . . . , mg) is the mass matrix,

D =




δ1 + d1 −d1 0

−d1 d1 + δ2 + d2

. . .
. . .

. . .
. . .

−ds−2 ds−1 + δs−1 + dk−1 −ds−1

0 −ds−1 ds−1 + δs




the damping matrix,

K =




κ1 + k1 −k1 0

−k1 k1 + κ2 + k2

. . .
. . .

. . .
. . .

−ks−2 ks−1 + κs−1 + kk−1 −ks−1

0 −ks−1 ks−1 + κs




the stiffness matrix, G = [ 1, 0, . . . , 0, −1 ] ∈ R
1,g is the constraint matrix, B2 = e1 and

C1 = [ e1, e2, eg−1 ]T . Here ei denotes the ith column of the identity matrix Ig.

1

Figure 5.1: A spring-mass-damper system with holonomic constraint (source [87]).

Figure 5.2: Triple chain oscillation (source [118]).

column of the identity matrix Inξ . In our experiments we take M1 = 100 Inξ and
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For our numerical test we consider nξ = 10 000 masses. Therefore, we obtain a
10 001 dimensional second order index 3 system. The model has 1 input and 3
outputs. Note that in Figure 5.1, g = nξ.

The second example is a triple chain oscillator model (TCOM) as shown in Fig-
ure 5.2. This example originates in [119] with the setup described in [102] which
results in ODEs. To transform it into an index 3 DAEs, the following holonomic
constraints are considered. The constraint matrix G1 ∈ Rnϕ×nξ is chosen as a ran-
dom sparse matrix. In this particular test example, there are 2 000 masses and 5 000
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models sizes tolerance no. of iterations
heuristic shifts adaptive shifts
R̃ L̃ R̃ L̃

DSMS 10001 10−8 80 92 26 31
TCOM 11001 10−8 270 282 153 240

Table 5.2: The performances of the heuristic and adaptive shifts in the GS-LRCF-ADI
method with respect to iteration number.

CPU time (sec)
model size heuristic shift adaptive shift

R̃ L̃ µ R̃ L̃

DSMS 2.27 3.84 119 1.16 1.56
TCOM 2.41 3.55 35 2.19 3.45

Table 5.3: The performances of the heuristic and adaptive shifts in the GS-LRCF-ADI
method with respect to computational time.

constraints. Therefore, G1 becomes a 5 000 × 6 001 matrix. Here we consider the
2 000-th off-diagonal and 4 000-th diagonal elements of G1 are all 1 and -1, respec-
tively. The dimension of the second order index 3 system is 11 001. The input and
output matrices H1 ∈ Rnξ×1, L1 ∈ R1×nξ are chosen randomly.

All the results were obtained using MATLAB 7.11.0 (R2012a) on a board with 2
Intel® Xeon® X5650 CPUs with a 2.67 GHz clock speed, 6 Cores each and 48 GB of
total RAM.

5.5.2 GS-LRCF-ADI iteration

In order to perform the BT and PDEG based techniques, we must compute the low-
rank control and observability Gramian factors R̃ and L̃. These Gramian factors
are computed by applying Algorithm 17. To execute this algorithm we use both
heuristic and adaptive ADI shift parameters. The comparison of the heuristic and
adaptive shifts for both model examples is shown in Tables 5.2. In Table 5.3 the
comparison is shown in terms of computational time. From both tables, we can
conclude that in both cases (number of iterations taken to converge within the
given tolerance and execution time), the adaptive shifts perform better than the
heuristic shifts. Note that for the model DSMS, we selected 15 optimal heuristic
shifts out of 30 large and 25 small magnitude Ritz-values. On the other hand, for
the model TCOM, from 50 large and 180 small magnitude Ritz-values, 100 heuristic
shifts were selected. For the adaptive shifts, in each cycle, we were restricted to
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Figure 5.3: Comparison of full and first order reduced model of the DSMS example.

10 proper shift parameters for the DSMS model. In case of the TCOM model, the
number of adaptive shifts was 70.

5.5.3 Second-order-to-first-order reduction

First we apply Algorithm 13 to the DSMS example, which generates a 11 dimen-
sional standard state space model, using the truncation tolerance 10−5. Figure 5.3a
shows the sigma plot, i.e., the maximum singular values of the transfer function
matrix of the full and reduced models on a wide frequency domain, i.e., 10−4Hz
to 104Hz. The corresponding absolute error between the full and reduced dimen-
sional models is shown in Figure 5.3b. We observe that the error is below the MOR
tolerance already for a very low dimensional model. When the same algorithm
is applied to the system TCOM model, we obtain a 73 dimensional reduced sys-
tem for the truncation tolerance 10−5. However, the dimension of the ROM can
be reduced further by using higher truncation tolerances. For instance, 10−4 and
10−3 truncation tolerances generate respectively, 65 and 55 dimensional reduced
systems. The comparison of the full and different dimensional reduced systems are
shown in Figure 5.4. This figure depicts that the frequency responses of the full
and different dimensional reduced systems are matching nicely and both errors in-
dicate good accuracy. We also show the time domain simulation of the full and 55

dimensional reduced models and their respective errors in Figure 5.5. From the
absolute (Figure 5.5b) and the relative deviation (Figure 5.5c) we can conclude
that the proposed methods can produce a good reduced system. To compare the
balancing based method with IRKA, we compute 60, 50, 40, 30, and 20 dimensional
reduced models using both Algorithms 13 and 14. The absolute and relative devia-
tions between the full and 60 dimensional reduced models are shown in Figure 5.6.
On the other hand, Table 5.4 lists the absolute and relative H∞ norm of the error
systems for 50, 40, 30, and 20 dimensional ROMs. From the figure and table, one
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Figure 5.4: Comparison of different dimensional first order reduced and original
models in the frequency domain for the TCOM example.

can observe that the balancing based methods generate more accurate ROMs.

5.5.4 Second-order-to-second-order-reduction

We consider an 11001 dimensional second order index 3 model for the TCOM exam-
ple. To compute the Gramian factors, we follow the same strategy discussed above.
Applying Algorithm 15, we compute a 44 dimensional reduced order model via bal-
ancing the system on the position-position level. The same algorithm generates 41,
44, and 38 dimensional reduced systems via balancing the system onto velocity-
velocity, position-velocity, and velocity-position levels. In all cases, the truncation
tolerance is set to 10−3. The frequency responses of the full and the reduced models
and their absolute and relative errors are shown in Figure 5.7. Although the accu-
racy is not satisfactory for the approximated models on the position-position and
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Figure 5.5: Comparison of full 55 dimensional ROMs for the TCOM example in the
time domain.

the velocity-position levels, for the other balancing levels the accuracy is fine. Note
that, although this feature appears for this particular model example, we can see
in Figure 5.8, for the other test examples all of the balancing levels give reduced
systems with good accuracy.

We also apply the PDEG method to the TCOM model. In this case, we construct
45 dimensional reduced models by projection of the systems onto the dominant
eigenspaces of the different Gramians. Figure 5.9 shows very good accuracy of
all the ROMs computed by the PDEG method. Moreover, the constructed ROMs
by this method, ensures the stability of the original model, which is reflected in
Figure 5.10.
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H∞ norm
dimension of ROM absolute relative

BT IRKA BT IRKA
50 2.88× 10−4 8.00× 10−2 3.77× 10−9 1.25× 10−6

40 9.00× 10−3 1.33× 100 1.70× 10−7 2.42× 10−5

30 6.19× 10−1 6.29× 102 1.24× 10−5 1.00× 10−2

20 1.17× 101 9.59× 102 2.35× 10−4 1.50× 10−2

Table 5.4: Comparisons of balancing and IRKA based methods for different dimen-
sional ROMs with TCOM example.
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Figure 5.6: Comparison of balanced truncation and IRKA with a 60 dimensional
reduced model of the TCOM example.
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Figure 5.7: Comparison of full and reduced models via balancing on different levels
for the TCOM model.
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Ĝ

(j
ω

)
G

(j
ω

)
|

(b) Relative error.

Figure 5.9: PDEG based 45 dimensional ROMs for the TCOM example.
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Chapter 6

Conclusion

6.1 Summary

It is clear that descriptor systems, i.e., systems whose dynamics obey algebraic con-
straints, play a vital role in a wide range of real-life applications. In most cases, the
systems are well natured, i.e., structured and sparse. If the model is very large, per-
forming simulation is computationally prohibitively expensive, or is simply impos-
sible due to limited memory. Therefore, reducing the size of the system is unavoid-
able for fast simulation. The pioneer of model reduction for large-scale descriptor
systems is Stykel [111, 112]. However, Stykel discusses a general framework of the
BT method for descriptor systems. In principle, one applies the spectral projectors
to split the descriptor systems into finite and infinite sub-systems. Then the model
reduction is applied to the finite sub-system. Recently, another approach of model
reduction has been proposed, see, e.g., [2, 3] for the DAEs. Note we have not con-
sidered this method in our work. In this method one must split the system into
one differential and several algebraic parts by using the projectors. The number of
algebraic parts essentially depends on the number of indices. The important notion
is that the ROM preserves the indices of the original model. That means the ROM
is in descriptor form with the same index of the original system. In either of the
above procedures, one can not avoid explicit computation of the projectors.

This thesis is mainly devoted to model reduction of large-scale sparse descriptor
systems avoiding (explicit) computation of the projectors. Such an idea has already
been investigated in [53] and [70] for, respectively, (first order) index 1 and index 2
stable DAEs to implement the BT based MOR. The same idea (i.e., the avoidance of
projectors) is generalized in [68] for interpolatory model reduction via IRKA of first
order structure index 1 and 2 DAEs. In this thesis, we have generalized the idea
in [70] for unstable index 2 DAE systems. The major part of this thesis has been
dedicated to the MOR of structured second order DAEs arising in different applica-
tions. In particular, we considered index 1 and index 3 descriptor systems. In this

109
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case, both second-order-to-first order and second-order-to-second-order reduction
methods have been discussed. We mainly emphasized on balancing based tech-
niques. The balancing based method has been compared with that of IRKA when
second-order-to-first-order reduction was carried out. In case of the second-order-
to-second order reduction methods besides BT, we discussed the PDEG method as
well. In the following discussion, we call attention to some noteworthy contribu-
tions of this thesis.

In Chapter 3 we discussed a balancing based model reduction technique for unsta-
ble index 2 descriptor systems arising from flow control problems. Particularly, we
considered FEM semi-discretized linearized Navier-Stokes models [12] with a mod-
erate Reynolds number which lead to index 2 DAEs. We showed, by using the idea
in [70], that explicit computation of projectors can be avoided for implementing
balanced truncation. In the implementation of the BT, the severe complexity arises
in solving the two continuous time algebraic Lyapunov equations using the LRCF-
ADI iteration for the Bernoulli stabilized system. Bernoulli stabilization essentially
makes the system dense and hence causes expensive computation. To avoid this
problem we used the Sherman-Morrison-Woodbury formula in solving the linear
system inside the LRCF-ADI method. This formula allows to solve the linear systems
by exploiting the sparsity of the original model. We also discussed the ADI shift pa-
rameter generation (both the heuristic and adaptive) techniques for the underlying
system to ensure fast convergence of the LRCF-ADI iteration. Moreover, we showed
how to compute an approximate Riccati based boundary feedback stabilization ma-
trix for the full order model from the ROM. The efficiency of our proposed method
is discussed using numerical results obtained by applying our algorithms to the
linearization of the von Kármán vortex shedding at a moderate Reynolds number.
We also demonstrated how the resulting reduced model can be used to accurately
simulate the unstable linearized model and to design a stabilizing controller. The
balancing based results were also compared with those of IRKA.

Chapter 4 was dedicated to the model reduction of second order index 1 systems
arising from multi-physics, mechatronics, constraint mechanics, and so forth. In
particular, we investigated MOR of a finite element model of a spindle head con-
figuration in a machine tool. The special feature of this spindle head is that it is
partially driven by a set of piezo actuators. Due to this piezo actuation, the result-
ing model is a second order differential-algebraic system of index 1. We focused on
a special first order transformation of the second order form, and found a symmetric
system where input and output matrices are transposes of each other. This formula-
tion is important since it helps to reduce computations. We then presented second-
order-to-first-order reduction techniques using the BT and IRKA methods. Next, we
showed structure preserving MOR techniques using the BT and PDEG methods for
the model considered in the chapter. It is understood that to perform the BT and
PDEG methods, we require to solve the continuous-time algebraic equations for
computing the low-rank Gramian factors. Due to the fact that the special first order
transformation leads to a symmetric realization, only one Lyapunov equation was to
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be solved. The Lyapunov equation that arose was based on the ODE formulation of
the DAE system. In this setting, the system matrix was in a Schur complement form,
which is typically dense. To avoid this problem, we solved the linear system in each
iteration in the LRCF-ADI method by undoing Schur complement [53]. Moreover,
for faster computation we converted the large linear system into a smaller one by
exploiting the knowledge of the structure of the system. To ensure fast convergence
of the LRCF-ADI iteration, we proposed a different technique on an adaptive shift
selection approach. Finally we have applied our methods in the real-world, in one
large FEM model of a micro-mechanical piezo-actuators based adaptive spindle sup-
port (ASS) with almost 300 000 degrees of freedom. Numerical results have been
discussed to show the efficiency, accuracy and capability of our proposed methods.

We have discussed model reduction of second order index 3 systems arising in the
constrained mechanics or multibody dynamics in Chapter 5. We showed how to
convert the second order index 3 DAE system into an equivalent second order pro-
jected ODE system. Second-order-to-first-order conversion gave a structured first
order index 3 systems as in [87]. Neither balancing nor interpolatory methods of
such structured index 3 systems were discussed in [70] or [68]. This gap was
closed in this chapter. Then structure preserving MOR techniques were shown us-
ing the BT and PDEG methods. In the implementation (for both second-order-to-
first-order and second-order-to-second-order reductions), we showed the explicit
computation of the projected ODE form of the DAE is not required. To compute
the low-rank Gramian factors, we discussed the solution of the projected Lyapunov
equation without explicit use of spectral or hidden manifold projectors. In this case,
we also discussed how to solve the linear systems efficiently inside the LRCF-ADI by
splitting them, exploiting the block structure of the second order DAEs. Further, we
discussed an efficient ADI shift parameter computation using heuristic and adap-
tive approaches for these particularly structured descriptor systems. The efficiency
and accuracy of our proposed methods were tested by applying them to several
examples with a large number of degrees of freedom.

6.2 Future work

Although there are several questions and challenges that remain open and should
be discussed in future research, this work has revealed some new aspects within
the area of model order reduction of large-scale linear dynamical systems.

This thesis has concentrated on the model reduction methods for particularly struc-
tured DAEs by avoiding (or implicitly handling) the spectral or hidden manifold
projectors. This has been possible only by exploiting the knowledge of the structure
of the system. The idea that avoidance of spectral or hidden manifold projectors
in the model reduction of other classes of descriptor systems may be a fruitful and
exciting direction for future research.
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Secondly, the idea of balanced truncation for structured index 2 descriptor systems
presented in Chapter 3 can be extended to index 1 or index 3 DAEs. We applied
the (balancing and truncating transformations) projectors directly to the unstable
system. In this case, one cannot guarantee that the error system is stable. Hence,
H∞ error analysis was infeasible, reflected from the numerical results. Only by
partitioning the stable and unstable elements of the system, then applying the MOR
method to the stable part, one can obtain a ROM where the unstable dynamics are
included. Then the error system guarantees the stability. The open question is
whether one can implicitly handle the projectors to partition the system.

In the case of second-order-to-first-order reduction, besides the balanced truncation
method, we discussed the interpolatory projection via IRKA. The IRKA based reduc-
tion techniques can be extended to the structure preserving model reduction to
compare with the balanced truncation or PDEG methods. The PDEG method is eas-
ier and computationally a bit less expensive than balanced truncation. In second-
order-to-second-order reduction, balanced truncation usually cannot preserve the
stability of the original system. Numerically, we showed the PDEG method can pre-
serve the stability of the original systems. In the future this can be investigated from
a theoretical perspective. It is also an open question whether this method is applica-
ble for other structured dynamical systems. The method can be useful particularly
for the dynamical system having no output equations, because then the projector
can be generated from only the low-rank factor of the controllability Gramian.

We presented LRCF-ADI algorithms capable of solving the Lyapunov equations of
large-scale sparse systems. In the algorithm solving linear systems at each iteration
is expensive. We used direct sparse solvers to solve the linear system. Future re-
search would be conducted to determine if an existing iterative solver can better
solve the linear systems. In this case we can exploit the shift-invariance property
by modifying the linear system. Further, we encourage exploration to find more
efficient means to compute the ADI shift parameters using the adaptive approach.
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