
            

PAPER • OPEN ACCESS

Fluctuation theorem between non-equilibrium
states in an RC circuit
To cite this article: L Granger et al 2015 New J. Phys. 17 065005

 

View the article online for updates and enhancements.

You may also like
Measurement of the Temperature
Fluctuation in a Resistor Generating 1/f
Fluctuation
Sumihisa Hashiguchi

-

International Workshop on Itinerant-
Electron Magnetism

-

Degradation Analysis of SOFC
Performance (2) - Severe Operation with
an Instantaneous Load Fluctuation
Koichi Asano, Akifumi Ido, Hiroshi Morita
et al.

-

This content was downloaded from IP address 141.48.67.87 on 20/12/2024 at 12:50

https://doi.org/10.1088/1367-2630/17/6/065005
https://iopscience.iop.org/article/10.1143/JJAP.22.L284
https://iopscience.iop.org/article/10.1143/JJAP.22.L284
https://iopscience.iop.org/article/10.1143/JJAP.22.L284
https://iopscience.iop.org/article/10.1088/1742-6596/868/1/011001
https://iopscience.iop.org/article/10.1088/1742-6596/868/1/011001
https://iopscience.iop.org/article/10.1149/09101.0771ecst
https://iopscience.iop.org/article/10.1149/09101.0771ecst
https://iopscience.iop.org/article/10.1149/09101.0771ecst


New J. Phys. 17 (2015) 065005 doi:10.1088/1367-2630/17/6/065005

PAPER

Fluctuation theorem between non-equilibrium states in anRC circuit

LGranger1,2,5, JMehlis2,3,4, É Roldán2,5, S Ciliberto4 andHKantz2

1 Departamento de Física Atómica,Molecular yNuclear, UniversidadComplutense deMadrid, E-28040Madrid, Spain
2 Max-Planck Institut für Physik komplexer Systeme,Nöthnitzer Str. 38, D-01187Dresden,Germany
3 Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, D-06120Halle, Germany
4 Université de Lyon, Laboratoire de Physique, ÉcoleNormale Supérieure de Lyon, CNRSUMR5672, 46 allée d’Italie, F-69364 LyonCedex

07, France
5 Grupo Interdisciplinar de SistemasComplejos (GISC),Madrid, Spain

E-mail: leogranger@ucm.es

Keywords:fluctuation theorems, stochastic thermodynamics, entropy production

Abstract
Fluctuation theorems impose constraints on the probability of observing negative entropy production
in small systems driven out of equilibrium. The range of validity offluctuation theorems has been
extensively tested for transitions between equilibrium and non-equilibrium stationary states, but not
between general non-equilibrium states. Here we report an experimental verification of the detailed
fluctuation theorem for the total amount of entropy produced in the isothermal transition between
two non-equilibrium states. The experimental setup is a parallelRC circuit driven by an alternating
current.We investigate the statistics of the heat released, of the variation of the entropy of the system,
and of the entropy produced for processes of different durations.We show that the fluctuation
theorem is satisfiedwith high accuracy for current drivings at different frequencies and different
amplitudes.

1. Introduction

As already noted by Szilard in 1925 [1], entropy reduction can occur in a single realization of a thermodynamic
process at themesoscopic scale and the second law of thermodynamics is recoveredwhen averaging overmany
realizations of such a process. At scales where thermal fluctuations are relevant, entropy-reducing trajectories
can be observed [2, 3]. Thefluctuations of the entropy production are governed by the so-called fluctuation
theorems, which relate the probability to observe a trajectory destroying a certain amount of entropy to the
probability to observe a trajectory producing the same amount of entropy [4–14]. In particular, they ensure that
on average, the entropy production is positive. Thefluctuation theorems are the building blocks of the emerging
theory of stochastic thermodynamics, which describes the equilibrium and non-equilibrium thermodynamics
of small systems, at the ensemble level as well as at the trajectory level [10, 15–21]. In parallel to the theoretical
development of stochastic thermodynamics, thefluctuation theorems and the thermodynamics of small systems
has been intensively investigated experimentally in last decade [2, 3, 22–30].

Thefluctuation theorem for the total entropy production relates the probability P S( )totΔ to observe a
trajectory producing an amount StotΔ of entropy in a given thermodynamic process to the probability
P S˜( )totΔ− to observe a trajectory destroying the very same amount of entropy in the time reversed or backward
process, where the driving of the system is reversed in time [8, 11, 13, 14]:
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Equation (1) has awide range of validity: it is valid for systems in contact with one ormany heat baths, for
transitions between stationary or non-stationary states or for systems in non-equilibrium stationary states. This
fluctuation theoremhas been experimentally tested for the transition between equilibrium states [3, 33], where
it reduces toCrooks’ relation [7], for non-equilibrium steady-states [25, 27], and in the transition between non-
equilibrium steady-states [23], where it can be refined to give theHatano–Sasa relation [9].More recently, the
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fluctuation theorem (1)was observed in amore general experiment involving a periodically driven system in
contact with two heat baths at different temperatures [31]. All the aforementioned experiments have this in
common, that at the end of the backward process, the system is in the samemacroscopic state as at the beginning
of the forward process6.

In this paper, we report an experimental verification of the fluctuation theorem (1) in a situationwhere this
is not case: in our experiment, thefinal state of the backward process is in general different from the state the
systemwas prepared in at the beginning of the forward process. In such a transition, the fluctuation theorem (1)
presents a subtlety, as realized by Spinney and Ford [14]. In fact, in general, the distribution P̃ appearing in the
denominator in the left-hand side of equation (1) is not the probability distribution of the entropy produced in
the backward process. In general, P̃ is the distribution of a quantity whichwewill call conjugated entropy
production in the following.However, in situations were the final state of the backward process is the same as the
initial state of the forward process, conjugated entropy production and entropy produced in the backward
process are equal. Hence, in those cases, P̃ is the probability distribution of the entropy produced in the
backward process.

Our experimental system is a parallelRC circuit driven by an alternating current.We verify the fluctuation
theorem (1) for processes of arbitrary durations for different driving frequencies and intensities, wherewe go far
beyond the slow driving considered in [30, 31]. Furthermore, we show the difference between conjugated
entropy production and entropy produced in the backward process.

The paper is organized as follows.We begin by sketching the derivation of the fluctuation theorem (1) in
section 2. In the derivation, we insist on the difference between the conjugated entropy production and entropy
produced in the backward process.We continue by describing the experimental setup and protocol in section 3.
In particular, we showhowwe sample forward and backward trajectoriesmaking the transition between two
non-equilibrium states. Finally, we present our experimental results in section 4.We study the statistics of the
heat dissipated to the environment, of the entropy produced and of the conjugated entropy production for
different driving times. Furthermore, we show that the fluctuation theorem (1) is satisfied for different driving
speeds and amplitudes.We close the paper with a short discussion of our results in section 5.

2.Detailedfluctuation theorem for the transition between twonon-equilibrium states

Wenow sketch the derivation of equation (1) for the transition between twonon-equilibrium states. Consider a
small system in contact with a heat bath at temperatureT, that can be driven by varying a control parameter λ.
Initially, the value of the control parameter is set to t( )0 0λ λ= and the system is prepared in a non-equilibrium
macroscopic state q t q( , ) ( )0 0ρ ρ= . In other words, at time t0, the probability that themesoscopic state of the
system is q is given by the non-equilibriumdistribution q t( , )0ρ . Due to the presence of thermalfluctuations,
themesoscopic state of the system cannot be controlled, but only the probability distribution ofmesoscopic
states. From time t0 to t1, the control parameter is changed from t( )0 0λ λ= to t( )1 1λ λ= according to a
prescribed protocol t( )λ . Thefinalmacroscopic state of the system is q t q( , ) ( )1 1ρ ρ= . In the backward process,
the initial state of the system is the final state of the forward process, q( )1ρ , and the control parameter takes the
same values as in the forward case but runs thembackwards in time.Hence, we assume that the time reverse
process starts just after the forward process ends, at time t t1= . The control parameter is then varied according
to t t t t( ) ( )1 1λ λ+ = − , as sketched infigure 1. The backward process ends at time t t2 1 τ= + where

t t1 0τ = − is the duration of both the forward and time reverse process. Thefinalmacroscopic state of the
system is q t q( , ) ( )2 2ρ ρ= which is in general different from q( )0ρ .

Figure 1. Forward (left panel) and time reverse (right panel) protocols.

6
In fact, in the setup of [31], themacroscopic state is time periodic and the succession of forward and backward processes correspond to one

period. The experiments described in [3, 23, 25, 33] involve transitions between (equilibriumor non-equilibrium) stationary states.
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The amount of entropy produced by a trajectory q t t tm { : }t 0 1= ⩽ ⩽ in the forward process is given by
[13, 34–36]:
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where m[ ]F is the probability to observe the trajectory m in the forward process and m[ ¯ ]B is the probability to
observe the time reverse trajectory m̄ of m in the backward process. The time reverse trajectory m̄ contains the
same states as m, but runs backwards in time: t t t tm m¯ ( ) ( )1 1+ = − 7. The definition of entropy production in
(2) is consistent with the usual thermodynamic definition [34–36]:
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where Q m[ ] is the amount of heat dissipated to the environment along the trajectory m and
S k q k qm[ ] log ( ) log ( )B 1 1 B 0 0Δ ρ ρ= − + is the variation of the trajectory dependent entropy of the system

along the trajectory m [10]. In fact, it can be shown that [10, 13, 26, 37]:
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where qm[ ]F 0∣ is the probability to observe the trajectory m given the initial state q0, and qm[ ¯ ]B 1∣ is the
probability to observe the time reverse trajectory m̄ in the backward process given the initial state q1 of the time
reverse trajectory. Equations (4) and (3) together imply (2).

Equation (2) can be rewritten as follows:
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For the time reverse process, let us define:
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With this definition, integrating (5) over all the trajectories that produce the same amount of entropy StotΔ , we
recover (1) with [13, 14]:
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( )P S S Sm m m˜( ) [ ¯ ] ˜ [ ¯ ] d ¯ . (8)tot B tot tot∫Δ δ Δ Δ= −
However, S m˜ [ ¯ ]totΔ defined in equation (6) is not the amount of entropy produced by the trajectory in the time

reverse process. The latter is equal to
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where Q m[ ¯ ]B is the amount of heat dissipated to the environment in the time reverse process along the
trajectory m̄ and S m[ ¯ ]BΔ is the variation of the entropy of the system. The heat released to the environment is
odd under time reversal:
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However, this is not the case for the variation of the entropy of the system:
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Therefore, S S Sm m m[ ¯ ] [ ] ˜ [ ¯ ]tot
B

tot totΔ Δ Δ≠ − = , and the quantity defined in (6) and entering thefluctuation
theorem is not the amount of entropy produced by the trajectory m̄ in the backward process.

7
We assume here that the systemdoes not have degrees of freedom that are odd under time reversal such as velocities. The variables odd

under time reversal should have their sign changed in m̄.
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The expression of the entropy S m[ ¯ ]tot
BΔ produced in the backward process in terms of probability of paths is:
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In fact, while q qm m[ ¯ ] ( ) [ ¯ ]B 1 1 1 Bρ∣ =  is the probability to observe the trajectory m̄ in the backward process,
the probability to observe the trajectory m in the time-reversal of the backward process is q qm[ ] ( )F 0 2 0ρ∣ . In
general, it is different from the probability to observe the trajectory m in the forward process:

q q q qm m m[ ] ( ) [ ] [ ] ( )F 0 2 0 F F 0 0 0ρ ρ∣ ≠ = ∣   because in general the finalmacroscopic state of the backward
process is not equal to the initialmacroscopic state of the forward process, q q( ) ( )2 0 0 0ρ ρ≠ .

We call S m˜ [ ¯ ]totΔ the conjugated entropy production. Using its definition (6) and the expression for the heat
dissipated in the backward process (10), we obtain that:
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Equations (13) and (14) allow one to do a physical interpretation of the conjugated entropy production. The
conjugated entropy production is equal to the variation of the entropy of the environment in the backward
processminus the variation of the entropy of the system in the forward process.

The conjugated entropy production is equal to the entropy produced in the backward process,
S Sm m˜ [ ¯ ] [ ¯ ]tot tot

BΔ Δ= , if and only if q q( ) ( )0 0 2 0ρ ρ= , i.e. if thefinalmacroscopic state of the backward process is
also the initial state of the forward process. This is the case in the transition between equilibrium states and in
non-equilibrium stationary states. However, in the transition between two arbitrary non-equilibrium, non-
stationary states, it has no reason to be fulfilled.

The difference between S m˜ [ ¯ ]totΔ and S m[ ¯ ]tot
BΔ is:
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When averaging overmany trajectories of the backward process, this difference is positive:
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The right-hand side of (16) is the relative entropy orKullback–Leibler divergence between the distributions 2ρ and

0ρ . This quantity is non-negative and it is zero if and only the two distributions 2ρ and 0ρ are
indistinguishable [38].

3. Experimental setup

3.1. The system
The experimental setup is sketched infigure 2. A resistor of resistance R 1 MΩ= is connected in parallel with a
condenser of capacity C = 1 nF. The input current I(t) is oscillating at a frequency of fd, I t I t( ) sin( )max ω=
with f2 dω π= . The time constant of the circuit is RC 1cτ = ≈ ms.

Figure 2. Sketch of the experimental setup. A resistor of R 1 MΩ= is connected in parallel with a capacitor of C 1 nF= . The voltage
source Vtδ in series with the resistor represents Johnson–Nyquist noise.
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The voltage across the resistor fluctuates due to Johnson–Nyquist noise, which ismodeled infigure 2 by
putting a voltage source in series with the resistor. At any time, this source produces a random voltage Vtδ
satisfying [39, 40]:

V 0, (17)tδ =

V V k TR t t2 ( ). (18)t t Bδ δ δ= − ′′

Wedenote qt the charge that hasflown through the resistor at time t and i q td dt t= is the current that flows

through it.Moreover, let q I s s* ( )dt

t∫=
−∞

the total charge that hasflown through the circuit at time t. The

charge of the capacitor is thus q qt t
* − and the voltage across the circuit is equal to:

U
q q

C
. (19)t

t t
*

=
−

Ohm’s law for the resistor implies that:

U Ri V . (20)t t tδ= +

Hence, the charge qt obeys the following Langevin equation:

( )R
q

t C
q q V

d

d

1
. (21)t

t t t* δ= − − +

This equation is identical to the equation ofmotion of an overdamped Brownian particle whose position is qt, its
friction coefficient isR and is trappedwith a harmonic trap of stiffness C1 centered at qt

*. Our control

parameter is qt
*. It oscillates sinusoidally at frequency fd and its amplitude is related to the amplitude of the input

current through q Imax
* max ω= . Infigure 3, we plot three examples of realizations of the stochastic trajectory qt,

togetherwith the ensemble average.

3.2. Protocol
After a transient that we do not analyze here, the system relaxes toward a time periodic stationary state. In other
words, the probability distribution q t( , )ρ of the charge q at time t is time periodic of period f1 d, the period of
the driving signal.We use this periodicity of q t( , )ρ to construct an ensemble of non-equilibrium trajectories.

Here is howwe construct the ensembles of forward and backward trajectories of duration τ from a long
quasistationary trajectory q{ }t .We chose the origin of time such that q q tcos( )t

*
max
* ω= , where f2 dω π= . Let

dτ τ⩾ be an integermultiple of the driving period f1 d. The nth member of the forward ensemble is the portion
of q{ }t where n t n(2 1) (2 1)d dτ τ τ+ − ⩽ ⩽ + , n being an integer. The correspondingmember of the
backward ensemble is the portion of q{ }t where n t n(2 1) (2 1)d dτ τ τ+ ⩽ ⩽ + + .

On figure 4, we sketch how the first twomembers of the forward and backward ensembles are obtained for
f1d dτ = . The blue portions correspond tomembers of the forward ensemble and the green portions to

Figure 3.Three examples of stochastic trajectories during one period of the driving signal (red, green and blue strongly fluctuating
lines). The black solid line represents the ensemble average qt〈 〉 and the black dashed lines represent the ensemble average plus and

minus one standard deviation q q( )t t t
2σ = − 〈 〉 . In this example, the driving frequency is f 75 Hzd = and the amplitude of the

driving is q 2.3 fCmax
* = . The average and standard deviation are estimated from38 164 trajectories.
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members of the backward ensemble. The smoothly oscillating curve represents the driving signal qt
* and the

strongly fluctuating curve is qt.
Due to the periodicity of the driving protocol, all themembers of the forward ensemble are subjected to the

same driving signal.Moreover, since q t( , )ρ is time periodic of period dτ , all the initialmesoscopic states of the
forward trajectories are drawn from the same initial distribution q( )0ρ and hence all the forward trajectories are
drawn from the same path distribution F . The same reasoning applies the backward trajectories: their initial
mesoscopic state is drawn from the same distribution q( )1ρ and they are all submitted to the same driving.

Hence they are all drawn from the same path distribution B . Finally, the origin of timewas chosen such that qt
*

is symmetric around n dτ , q qn t n t
* *

d d
=τ τ− + . Hence themembers of the backward ensemble are subjected to a

driving that is the time reversal of the driving under which themembers of the forward ensemble are submitted.

3.3.Measurement of stochastic entropy production
The amount of entropy produced along a stochastic trajectory m is calculated using (3):

S Q T Sm m m[ ] [ ] [ ]totΔ Δ= + . Following Sekimoto [17], the heat released to the environment in the time
interval t t t[ , d ]+ is given by

( )Q R
q

t
V q

C
q q qd

d

d
d

1
d , (22)t

t
t t t t t

⎛
⎝⎜

⎞
⎠⎟δ= + ◦ = − − ◦⋆

where ◦ denotes Stratonovich product and the second equality is consequence of (21). Note that the amount of

heat released per unit time is the sumof two contributions, Q Q Q˙ ˙ ˙
t t t

Joule thermal= + . Thefirst contribution is due

to the Joule heating inside the resistor: Q Ri˙
t t
Joule 2= , and the second to the power injected by thermal

fluctuations: Q V i˙
t t t
thermal δ= . The heat dissipated between times t0 and t1 along a stochastic trajectory m equals

to

Q Q
q q

C
qm[ ] d d , (23)

t

t

t
t

t
t t

t

*

0

1

0

1∫ ∫= = −
−

◦

which ismeasured from the stochastic trajectories.
The trajectory dependent entropy is given by S q t k q t( , ) log ( , )t tB ρ= − , where q t( , )tρ is the probability

distribution of the charge qt at time t. The distribution q t( , )tρ is estimated from the ensemble of trajectories.
The system’s entropy change along a trajectory m that starts at q0 at time t0 and ends at q1 at time t1 is obtained as

( ) ( ) ( ) ( )S S q t S q t k q t k q tm[ ] , , log , log , . (24)1 1 0 0 B 1 1 B 0 0Δ ρ ρ= − = − +

4. Experimental results

Figures 5 and 6 summarize the thermodynamics of the process as a function of the process duration τ for a
driving frequency of f 75 Hzd = , and hence a driving period of f1 13.3 msd ≈ , and a driving amplitude of

q 2.3 fCmax
* = .We consider durations up to one period of the driving signal and hencewe set f1d dτ = . The

signal qtwas sampled at 20 kHz and the ensemble consists of 38 164 trajectories.

Figure 4.Construction of the ensemble of non-equilibrium trajectories for a process duration of 8.4 msτ = from a long stationary
trajectory driven at f 75 Hzd = . Since f1 13.3 msdτ < = , we set f1d dτ = . The smoothly oscillating thick curve represents the

control parameter qt
*. The stronglyfluctuating thin curve represents qt. The blue portions correspond tomembers of the forward

ensemble and the green portions tomembers of the backward ensemble. The forward trajectories start at time n(2 1) dτ τ+ − and
end at time n(2 1) dτ+ , and the backward trajectories start at time n(2 1) dτ+ and end at time n(2 1) dτ τ+ − , where n is an integer
(here, we plot n = 0 and n = 1). Due to the periodicity of the driving protocol, eachmember of the forward ensemble is subject to the
same driving signal and due to the symmetry of the driving signal, the protocol in each backward process is the time reverse of the
protocol in the forward process.
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Figure 5(a) shows the ensemble averages of the amount of entropy produced in the forward process, StotΔ〈 〉
(solid line), the amount of entropy produced in the backward process Stot

BΔ〈 〉 (dotted line) and of the conjugated
entropy production S̃totΔ〈 〉 (dashed line) as a function of the process duration τ. These three quantities increase

Figure 5. (a) Average entropy production as a function of the process duration τ. The solid line represents the entropy production in
the forward process, the dotted line the entropy production in the backward process and the dashed line the conjugated entropy
production S m˜ [ ¯ ]totΔ . (b) Average variation of the entropyΔS [m] of the system in the forward (solid line) and in the time reverse
process (dotted line). They are both equal to zero for all τ. The dashed line represents the average of S m˜[ ¯ ]Δ over the time reverse
process.

Figure 6.Distributions of the heat (top), system entropy variation (middle) and entropy production (bottom) for the three different
durations 3.3τ ≈ , 6.5 and 10 ms corresponding respectively to one quarter, one half and three quarters of the driving period dτ . Each
column corresponds to one value of τ. Upper row (panels (a), (b), and (c)): distributions of the heat dissipated in the forward (solid
lines) and time reverse process (dashed lines).Middle row (panels (d), (e), and (f)): distributions of the variation of the entropy of the
system in the forward process (solid lines), in the time reverse process (dotted lines) and of S m˜[ ¯ ]Δ given by (14) in the time reverse
process (dashed lines). Lower row (panels (g), (h), and (i)): Distribution P S( )totΔ of the entropy produced in the forward process
(solid lines), distribution P S( )B totΔ of the entropy produced in the backward process (dotted lines), and distribution P S˜( )totΔ of the
conjugated entropy production (dashed lines).
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with τ, in amanner that is roughly linear with a periodicmodulation.We check the inequality (16),
S St̃ot tot

BΔ Δ〈 〉 ⩾ 〈 〉.Moreover, the average amount of entropy produced in the forward process is approximately

equal to the average conjugated entropy production, S S̃tot totΔ Δ〈 〉 ≈ 〈 〉.
We also investigate the average value of the system’s entropy change (figure 5(b)) in the forward process,

SΔ〈 〉 (solid line), in the time reverse SBΔ〈 〉 (dotted line) and the quantity S̃Δ〈 〉 (dashed line) as a function of the
process duration τ. The system’s entropy change vanishes on average both in forward and backward processes.
Hence, the average entropy production is equal to the average dissipated heat in both cases, S Q TtotΔ〈 〉 = 〈 〉
and S Q Ttot

B
BΔ〈 〉 = 〈 〉 .

In this situation (15) and (16) imply

S S S k q
q

q
q˜ ˜ ( )log

( )

( )
d 0. (25)tot tot

B
B 2

2

0
∫Δ Δ Δ ρ

ρ
ρ

− = = ⩾

Onfigure 5(b)we can see that S̃Δ〈 〉 is non-negative for all τ, in accordancewith (25). The quantity S̃Δ〈 〉 is zero
for 0τ = , 2 6.5 msdτ τ= ≈ and dτ τ= , implying that for these durations, 2 0ρ ρ≡ . In fact, for 0τ = , we have
t t t0 1 2= = and there is no process and hence 0 1 2ρ ρ ρ≡ ≡ . For 2dτ τ= , we have t t2 0 dτ− = , and hence

q q t q t q( ) ( , ) ( , ) ( )2 0 d 0 0ρ ρ τ ρ ρ= + = = because q t( , )ρ is time periodic with period dτ . The same reasoning
applies for dτ τ= . In that case, we have t t 22 0 dτ− = , and hence q q t q t q( ) ( , 2 ) ( , ) ( )2 0 d 0 0ρ ρ τ ρ ρ= + = = .

The quantity S̃Δ〈 〉 is also zero for 2 6.5 msdτ τ= ≈ which is one half of the driving period. Finally, S̃Δ〈 〉 is
maximum for 3.3 msτ ≈ and 10 msτ ≈ which correspond to one fourth and three fourth of the driving
period.

On figure 6, we show the distributions of the thermodynamic quantities heat, entropy variation and entropy
production in the forward and backward process for the three durations 3.3τ ≈ , 6.5 and 10 ms, corresponding
to one quarter, one half and three quarters of the period of the driving signal.

Thefirst row offigure 6 (panels (a), (b), and (c)) shows the distributions of the heat released to the
environment in the forward (solid lines) and in the time reverse process (dashed lines). These are identical for

6.5 msτ ≈ otherwise they are different.

Figure 7.Ratio P S P S( ) ˜( )tot totΔ Δ− on a logarithmic scale as a function of StotΔ for different driving frequencies, amplitudes and
durations τ. The black line corresponds to the theoretical prediction S kexp( )tot BΔ . Panel (a): driving frequency f 75 Hzd = , period

f1 13.3 msd = , amplitude q 1.4 fCmax
* = . Panel (b): driving frequency f 75 Hzd = , period f1 13.3 msd = , amplitude

q 2.3 fCmax
* = . Panel (c): driving frequency f 1 kHzd = , period f RC1 1 msd = ≈ , amplitude q 0.86 fCmax

* = . Panel (d): driving

frequency f 1 kHzd = , period f RC1 1 msd = ≈ , amplitude q 1.3 fCmax
* = . For panels (c) and (d), we considered durations up to

13 driving periods, hence 13 msdτ = .
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In themiddle row (panels (d), (e) and (f)), we show the distributions of the system’s entropy change in the
forward process (solid lines) in the backward process (dotted lines) and of the quantity S̃Δ (dashed lines). The
distributions of the system’s entropy change in forward and backward processes are identical. They are
symmetric with respect to 0 and non-Gaussian for all values of τ. Similar results were also found in [27, 32]. The
distribution of S m˜[ ¯ ]Δ differs from the two others except for 6.5 msτ ≈ .

The lower row (panels (g), (h) and (i)) offigure 6 shows the distribution P S( )totΔ of the entropy produced
in the forward process (solid lines), the distribution P S( )B totΔ of the entropy produced in the backward process
(dotted lines) and the distribution P S˜( )totΔ of the conjugated entropy production (dashed lines). The three
distributions areGaussian, as in [27]. The distributions of the entropy produced in the forward process and of
the conjugated entropy production are equal, P S P S( ) ˜( )tot totΔ Δ= . The distribution P S( )B totΔ of the entropy
produced in the backward process is equal to the two others for 6.5 msτ = , otherwise it has a different shape. In
accordancewith equation (16) andwith figure 5(a), itsmean is smaller than themean of the two others.
Moreover, its variance is also smaller. Note that a necessary condition for the fluctuation theorem (1) to hold
when the distributions P S( )totΔ and P S˜( )totΔ areGaussian is that they are equal [24, 41].

Figure 7 shows that the theorem (1) is verifiedwith high accuracy in our experiment. This figure shows the
ratio P S P S( ) ˜( )tot totΔ Δ− between the distribution P S( )totΔ of the entropy produced in the forward process and
of the distribution P S˜( )totΔ− of (minus) the conjugated entropy production S m˜ [ ¯ ]totΔ− for the backward
process for different driving frequencies and amplitudes and for the durations. Panels (a) and (b) correspond to
a driving frequency of f 75 Hzd = and hence a driving period of f1 13.3 msd = . The signal qtwas sampled at
20 kHz. The driving amplitudes are q 1.4 fCmax

* = for panel (a) and q 2.3 fCmax
* = for panel (b). The ensembles

consist of 38 424 (panel (a)) and 38 164 (panel (b)) trajectories. Panels (c) and (d) correspond to a driving
frequency of f 1 kHzd = and hence the driving period is f RC1 1 msd = ≈ , which is the time constant of the
circuit. Here, we considered process durations up to 13 periods, and hence f13 13 msd dτ = = . The signal qt
was sampled at 100 kHz and the ensembles consist of 198 144 trajectories. The driving amplitudes are
q 0.86 fCmax

* = for panel (c) and q 1.3 fCmax
* = for panel (d). The black solid line corresponds to the theory,

S kexp ( )tot BΔ . Thefluctuation theorem (1) is fulfilledwith high accuracy (along up to four decades) for all the
durations considered.

5. Conclusion

To summarize, in this workwe have studied experimentally the thermodynamics of the transition between two
non-equilibrium states in a parallelRC circuit, in the light of the fluctuation theorem for the entropy production
(1). In such a situation, thefluctuation theorem (1) presents a subtlety: for the backward process it involves the
distribution of the conjugated entropy production (6) rather than the distribution of the entropy production.

We have characterized the statistics of the heat dissipation, entropy variation and entropy production in the
forward and backward processes. In particular, for the backward process, we have studied the difference between
entropy production and conjugated entropy production. Furthermore, we have verified that the detailed
fluctuation theorem is fulfilledwith high accuracy for different driving frequencies and amplitudes and for
different process durations, which confirms the universality of the result.
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