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ABSTRACT

When constructing infrastructures like buildings or bridges, we need to consider the
in�uence of external forces such as wind perturbations, moving pedestrians, or even
earthquakes. These forces can cause vibrations or damage within the structure. With
advancements in engineering making structures lighter and more re�ned, they have be-
come more susceptible to large de�ections and fatigue when external forces, especially
those close to the structure's natural eigenfrequencies, come into play. To prevent these
e�ects, we include external dampers in the system structure. In this thesis, we aim to
�nd the best way to position and adjust these dampers so they can absorb the most
critical forces.
We use models to describe the respective constructions and to compute the system

responses, such as changes in the system behavior with applied external damping. How-
ever, when constructions are described in detail, the respective models are of high dimen-
sion. Therefore, evaluating the system's behavior or optimizing dampers within them
becomes numerically very demanding. Hence, we derive and apply di�erent reduction
methods, depending on the problem settings, generating reduced surrogate models that
are evaluated instead of the full-order model.

In this work, we consider two problem classes: The �rst one considers inhomogeneous
systems with a given external damper, which require suitable reduction methods. The
second challenge is to optimize the external dampers and the respective parameters
within a vibrational system, where we also need to derive reduction techniques tailored
to parameter-dependent systems.
When considering vibrational systems with a given external damper, inhomogeneous

initial conditions appear that further de�ne the respective displacements and velocities.
Furthermore, linear and quadratic output equations are of interest, while the state equa-
tion can have a �rst- or second-order structure. Moreover, the state equation can include
physical constraints, which lead to di�erential�algebraic equations. Most of these sys-
tem structures are non-standard forms that have not been discussed in the literature,
yet they are relevant. Hence, in this work, we derive algorithms and respective error
bounds that determine surrogate models for large-scale systems in a non-standard form.
To approach the problem of reducing systems with inhomogeneous initial conditions
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while considering linear and quadratic output equations, we use the superposition prin-
ciple, which allows us to decompose the system behavior into independent components.
The �rst component corresponds to the transfer between the input and output having
zero initial conditions. In contrast, the others correspond to the system behavior result-
ing from the initial conditions. Based on this superposition of the system, we propose
model reduction schemes that preserve the structure in the surrogate models. To this
aim, we introduce tailored Gramians for the di�erent system structures that incorporate
the controllability and observability properties of each system component. We propose
two resulting methodologies. The �rst one consists of reducing each of the components
independently using a suitable balanced truncation procedure, which allows �exibility
in the order of the reduced-order models. The sum of these reduced systems provides
an approximation of the original system. The second proposed methodology consists in
extracting the dominant subspaces from the sum of Gramians to construct one surrogate
model. Additionally, we discuss error bounds for the overall output approximation and
illustrate the proposed methods using benchmark problems.

In addition, this thesis investigates the problem of optimizing dampers in vibrational
systems. The aim is to determine the positions and viscosities of external dampers in
such a way that the in�uence of the input on the output is minimized. We use the energy
response as an optimization criterion, whose calculation involves solving Lyapunov equa-
tions. Hence, the optimization of external dampers can be computationally demanding.
Therefore, we derive reduction techniques suitable for parameter-dependent systems that
determine surrogate models of signi�cantly smaller dimensions. We describe reduced ba-
sis methods that approximate the solution space of the Lyapunov equations, coinciding
with the controllability space of the system, for all possible external dampers. To improve
these methods, we also decouple the solution spaces of the problem to obtain a space
that corresponds to the system without external dampers and serves as a starting point
for the reduction of the optimization problem. Furthermore, we derive spaces that cor-
respond to the di�erent damper positions and that are used to extend the reduced basis
if necessary. This decomposition additionally provides an error estimator that evaluates
the approximation to the controllability space. Moreover, we derive an adaptive scheme
that generates the reduced solution space by adding the subspaces of interest during
the optimization process, resulting in the corresponding reduced optimization problem.
Our new technique leads to a reduced optimization problem with a signi�cantly smaller
dimension, which is fast solvable, especially compared to the original system, which we
illustrate with numerical examples.
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ZUSAMMENFASSUNG

Beim Bau von Infrastruktur wie Gebäuden oder Brücken müssen wir den Ein�uss äuÿerer
Kräfte durch Fuÿgänger, Windereignisse oder sogar Erdbeben berücksichtigen. Diese
Kräfte können Vibrationen oder Schäden innerhalb der Struktur verursachen. Durch
die Fortschritte in der Technik sind die Bauwerke leichter geworden, aber sie sind auch
anfälliger für starke Auslenkungen und Ermüdung der Strukturen, wenn äuÿere Kräfte
wirken, insbesondere, wenn diese nahe an den natürlichen Eigenfrequenzen des Bauwerks
liegen. Um diese E�ekte zu verhindern, werden externe Dämpfer in die Systemstruktur
eingebaut. In dieser Arbeit wollen wir die Positionen und die Stärke dieser Dämpfer
optimieren, damit sie die kritischsten Kräfte abdämpfen können.
Wir verwenden Modelle, um die jeweiligen Konstruktionen zu beschreiben und das

Systemverhalten und die Änderungen des Systemverhaltens bei angewandter externer
Dämpfung zu berechnen. Wenn die Konstruktionen jedoch detailliert beschrieben wer-
den, haben die entsprechenden Modelle sehr groÿe Dimensionen. Daher wird die Auswer-
tung des Systemverhaltens oder die Optimierung von Dämpfern in diesen Modellen nu-
merisch sehr anspruchsvoll. Aus diesem Grund leiten wir verschiedene Reduktionsmeth-
oden her und wenden sie je nach Problemstellung an, um reduzierte Ersatzmodelle zu
erzeugen, die anstelle des ursprünglichen Modells ausgewertet werden.

Wir betrachten in dieser Arbeit zwei Problemklassen: Die erste betrachtet inhomo-
gene Systeme mit gegebenen externen Dämpfern. Da diese Systeme groÿe Dimensio-
nen haben, leiten wir entsprechende Reduktionsverfahren her. Die zweite Problematik
besteht darin, die externen Dämpfer und die entsprechenden Parameter innerhalb eines
schwingenden Systems zu optimieren. Auch hier müssen wir Reduktionsverfahren an-
wenden, die auf parameterabhängige Systeme mit einer bestimmten Struktur zugeschnit-
ten sind.
Bei der Betrachtung von schwingenden Systemen mit gegebenen externen Dämpfern

spielen auch inhomogene Anfangsbedingungen eine Rolle, da sie die Verschiebungen und
Geschwindigkeiten beein�ussen. Auÿerdem sind lineare und quadratische Ausgangsgle-
ichungen von Interesse, während die Zustandsgleichung eine Di�erentialgleichung erster
oder zweiter Ordnung sein kann. Darüber hinaus kann die Zustandsgleichung physikalis-
che Bedingungen enthalten, die zu di�erential-algebraischen Gleichungen führen. All
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diese Systemstrukturen führen zu mehreren Systemtypen, die nicht in Standardform
sind und in der Literatur kaum berücksichtigt wurden, aber von groÿer Bedeutung sind.
Daher leiten wir in dieser Arbeit Algorithmen her, welche für groÿe Systeme in Nicht-
Standardform reduzierte Modelle bestimmen, die das Systemverhalten approximieren.
Um mit inhomogenen Anfangsbedingungen umzugehen und gleichzeitig lineare und
quadratische Ausgangsgleichungen zu berücksichtigen, verwenden wir das Superposi-
tionsprinzip. Dies ermöglicht es uns, das Systemverhalten in unabhängige Komponen-
ten zu zerlegen. Das erste System entspricht der Übertragung zwischen dem Eingang
und dem Ausgang bei homogenen Ausgangsbedingungen. Die restlichen Komponen-
ten entsprechen dem Systemverhalten unter Berücksichtigung der Anfangsbedingungen.
Auf der Grundlage dieser Überlagerung von Systemen ist es unser Ziel, Modellreduk-
tionsverfahren herzuleiten, welche die relevanten Strukturen erhalten. Dafür führen
wir maÿgeschneiderte Matrizen, sogenannte Gramschen, für jede Systemkomponente ein
und berechnen diese numerisch, indem wir die Lyapunov Gleichungen lösen. Daraus
resultieren zwei Methoden. Die erste besteht darin, jede der Komponenten unabhängig
voneinander durch ein geeignetes balanciertes Trunkierungsverfahren zu reduzieren, was
Flexibilität bei den Dimensionen der reduzierten Modelle ermöglicht. Die Summe dieser
reduzierten Systeme liefert eine Annäherung an das ursprüngliche System. Die zweite
vorgeschlagene Methode besteht darin, die dominanten Unterräume aus der Summe
der Gramschen zu extrahieren, um die Projektionsmatrizen zu erstellen, die zu einem
Ersatzmodell führen. Darüber hinaus werden Fehlerschranken für die Approximation
der Ausgänge diskutiert. Schlieÿlich werden die vorgeschlagenen Methoden anhand von
Benchmark-Problemen illustriert.

Des Weiteren wird in dieser Arbeit das Problem der Optimierung von Dämpfern in
schwingungsfähigen Systemen untersucht. Ziel ist es, die Positionen und Viskositäten
von externen Dämpfern so zu bestimmen, dass der Ein�uss des Eingangs auf den Aus-
gang minimiert wird. Als Optimierungskriterium verwenden wir die Energieantwort. Um
die optimalen externen Dämpfer zu �nden, müssen viele dieser Gleichungen gelöst wer-
den. Daher kann der Minimierungsprozess sehr rechenaufwendig sein. Aus diesem Grund
leiten wir Reduktionsverfahren her, um dieses Problem zu lösen. Um den Prozess der
Suche nach den optimalen Dämpfern zu beschleunigen, schlagen wir reduzierte-Basen-
Methoden vor. Unsere Algorithmen erzeugen eine Basis, die den Lösungsraum der Lya-
punov Gleichungen, der mit dem Steuerbarkeitsraum des Systems übereinstimmt, für alle
möglichen Positionen der Dämpfer approximiert. Wir entkoppeln die Lösungsräume des
Problems, um einen Raum zu erhalten, der dem System ohne externe Dämpfer entspricht
und als Ausgangspunkt für die Reduktion des Optimierungsproblems dient. Darüber
hinaus leiten wir Räume her, die den verschiedenen Dämpferpositionen entsprechen
und bei Bedarf zur Erweiterung der reduzierten Basis verwendet werden. Diese Zer-
legung liefert zusätzlich einen Fehlerschätzer, der die Approximation des Steuerbarkeit-
sraums bewertet. Darüber hinaus leiten wir ein adaptives Schema her, das den re-
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duzierten Lösungsraum durch Hinzufügen der relevanten Unterräume während des Op-
timierungsprozesses erzeugt, was zu dem entsprechenden reduzierten Optimierungsprob-
lem führt. Unsere neuen Methoden führen zu reduzierten Optimierungsproblemen mit
einer deutlich geringeren Dimension, das schneller zu lösen ist als das ursprüngliche
Problem, was wir anhand numerischer Beispiele veranschaulichen.
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1.1 Motivation

When constructing large civil engineering infrastructure such as buildings or bridges,
external vibrational forces like wind perturbations or earthquakes need to be taken into
account. These disturbances can cause vibrations, de�ection, or even damage in the
construction, which can be prevented by adding external dampers. Due to the continuous
improvement in engineering construction, which provides for lighter and �ner structures,
corresponding infrastructures have become more susceptible to large de�ections and
fatigue when external forces, with dominant frequencies close to the eigenfrequencies of
the construction, are applied. We eliminate this e�ect by designing dampers to remove
critical forces from the physical system. In this thesis, we investigate the problem of
optimizing external dampers in vibrational systems. The objective is to determine the
viscosities and positions of external dampers in such a way that the in�uence of the
input on the output is minimized using the energy response as an optimization criterion.
To model these infrastructures, we consider vibrational systems of the form

Mẍ(t) +D(c, g)ẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

whereM, D(c, g), K ∈ Rn×n are the mass matrix, the damping matrix, and the sti�ness
matrix, respectively, for parameters (c, g) ∈ D, where D is a parameter set. The vectors

1



1 Introduction

u(t) ∈ Rm and x(t) ∈ Rn represent the input and state of the system, respectively, and
x0, ẋ0 ∈ Rn are the position and velocity initial conditions. Naturally, the matrices
M, D(c, g), and K are symmetric and positive semide�nite. Because of their structure,
these systems are asymptotically stable, i.e., all eigenvalues λ(c, g) of the polynomial
eigenvalue problem (λ(c, g)2M+λ(c, g)D(c, g)+K)x(c, g) = 0 have a negative real part.
Moreover, the mass matrix M can be singular. In this case, we consider di�erential�
algebraic equations (DAEs) as state equations.
The damping matrix D(c, g) consists of two parts, a parameter-independent internal

damping Dint and a parameter-dependent external damping Dext(c, g), i.e.,

D(c, g) = Dint +Dext(c, g). (1.1)

There are several di�erent models for internal damping. In this work, we use a small
multiple of the critical damping de�ned as

Dint := 2αM
1
2

(
M− 1

2KM− 1
2

) 1
2
M

1
2 , (1.2)

where α ≪ 1 and M is assumed to be nonsingular, see [34, 36]. However, the theory
presented in this work is more general and can be applied to all modal dampers, which
include, e.g., Rayleigh damping de�ned in [81, 155].
The external damping Dext(c, g) depends on two types of parameters. The �rst ones

are the damping positions c =
[
c1, . . . , cℓ

]T ∈ Dc ⊂ {1, . . . , n}ℓ, which are stored in
the matrix F(c) ∈ Rn×ℓ. The structure of the matrix F(c) depends on the damper
type so that, e.g., grounded dampers are described by unit vectors ec1 , . . . , ecℓ , which
are concatenated to build the matrix F(c). The second parameters are the damping
gains g =

[
g1, . . . , gℓ

]T ∈ Dg ⊂ Rℓ
+, which represent the viscosities of the dampers. We

assume that the viscosities gj are �xed over time and lie in given intervals [g−j , g
+
j ], for

all j = 1, . . . , ℓ. We encode these conditions by setting g ∈ Dg, where the parameter
set Dg contains all given conditions. The di�erent external dampers are described in
more detail for di�erent numerical examples later in this work. The resulting external
damper is then given as

Dext(c, g) := F(c)G(g)F(c)T, G(g) := diag (g1, . . . , gℓ) .

We assume that the number of external dampers ℓ is signi�cantly smaller than the
dimension n, i.e., ℓ ≪ n.
Since it is infeasible to measure and evaluate the behavior of all states individually, if

n is large, we need to de�ne an output function. In this work, two di�erent output types
are investigated. The �rst one is a linear output equation, which results in a system

Mẍ(t) +D(c, g)ẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

yL(t) = C1x(t) +C2ẋ(t)
(1.3)
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u

x0

ẋ0

M, D(c, g), K

[
x
ẋ

]
C1,C2

yL

Figure 1.1: Structure of a second-order system with a linear output.

with matrices C1, C2 ∈ Rp×n so that we observe the displacements by evaluating C1x(t)
and velocities by evaluating C2ẋ(t). In practice, we are often only interested in the
displacement properties, i.e., we set C2 = 0. The system (1.3) is depicted in Figure 1.1.

The second output type considered in this work is a quadratic output equation that
is described by

Mẍ(t) +D(c, g)ẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

yQ(t) =
[
x(t)T ẋ(t)T

]
M

[
x(t)
ẋ(t)

]
,

(1.4)

where M ∈ R2n×2n. These systems can be interpreted as a special class of Wiener
models. These output equations arise when investigating the variance or deviation of
the state and velocity variable from a certain reference point, which can be represented
as a quadratic function of the state. Also, when considering the potential and kinetic
energy of the system as an output, which is given by

Epot :=
1

2
x(t)TKx(t), Ekin :=

1

2
ẋ(t)TMẋ(t),

we consider quadratic output equations. Moreover, when considering, e.g., the 2-norm of
the output or some weighted norms, we measure quadratic output equations. Examples
can be found in [12, 40, 69, 70, 99, 100].
In Figure 1.2, the structure of system (1.4) is depicted, where two inputs and outputs

are added to the system to indicate the quadratic output equation.
We want to clarify that images in Figure 1.1 and Figure 1.2 deviate from the typical

used diagrams in the control engineering literature. Nevertheless, they are used in this
dissertation as they serve as a convenient tool for vividly illustrating the approaches
introduced in this work.

To simplify computations, the second-order systems in (1.3) and (1.4) can also be
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[
x
ẋ

]
[
x
ẋ

]

u
x0

ẋ0

M, D(c, g), K

u
x0

ẋ0

M, D(c, g), K

M
yQ

Figure 1.2: Structure of a second-order system with a quadratic output.

z

u

z0
E, A(c, g) C

yL

Figure 1.3: Structure of a �rst-order system with a linear output.

written in �rst-order form, i.e.,

Eż(t) = A(c, g)z(t) +Bu(t), z(0) = z0,

yL(t) = Cz(t)
(1.5)

and

Eż(t) = A(c, g)z(t) +Bu(t), z(0) = z0,

yL(t) = z(t)TMz(t),
(1.6)

respectively, with �rst-order matrices

E :=

[
In 0
0 M

]
, A(c, g) :=

[
0 In

−K −D(c, g)

]
, B :=

[
0
B

]
, z0 =

[
x0

ẋ0

]
,

C :=
[
C1 C2

]
, M :=

[
M11 M12

MT
12 M22

]
.

(1.7)

The inputs u(t) ∈ Rm and the outputs yL(t) ∈ Rp, yQ(t) ∈ R are equal to those in (1.3)
and (1.4), and the state in �rst-order representation is z(t) ∈ RN with N = 2n. The
structures of the two �rst-order systems (1.5) and (1.6) are depicted in Figure 1.3 and
Figure 1.4, respectively. In the following, we consider the systems in �rst-order and
second-order representations since both can be advantageous depending on the applica-
tion.
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z

u

z0
E, A(c, g)

z

u

z0
E, A(c, g)

M

yQ

Figure 1.4: Structure of a �rst-order system with a quadratic output.

Exhibiting complex dynamic behavior may result in high-�delity models, i.e., the
dimension of the state vector n orN is large. Hence, engineering design processes become
computationally very demanding. As a remedy, we seek to employ model reduction
techniques that allow us to construct a low-dimensional model that closely resembles
the dynamic behaviors of the high-�delity model. Our goal is to construct reduced-
order surrogate models while preserving the original structure. We consider, in this
work, parameter-independent systems as well as parameter-dependent ones.
First, we consider systems whose external dampers are already de�ned and are, there-

fore, parameter-independent. This situation appears, e.g., when we want to investigate
the system behavior for a given external damper. Because of the high dimension of
the original system, we aim to derive a reduced model that approximates the e�ect of
the input and the initial condition on the output. There are several methods to reduce
dynamical systems in the literature. However, we consider inhomogeneous systems with
linear and quadratic output equations. Since most of these systems are not considered
in the literature so far, in this work, we derive reduction methods tailored for these
non-standard system structures. Therefore, we derive system matrices that are called
Gramians and encode the controllability and observability behavior. These Gramians
are used to identify signi�cant controllability and observability subspaces, which de-
�ne the reduced surrogate models. Moreover, we derive respective error bounds for the
presented methods, which are used to evaluate the quality of the system approximations.
Second, we consider the problem of �nding optimal external dampers, for which we

have to investigate parameter-dependent systems. These parameter-dependent systems
need to be evaluated at every step of the optimization process. Our goal is to design
the damping values based on the optimization of an objective function J(c, g). For a
given vibrational system, we determine the best damping D(c, g) that ensures optimal
attenuation of the output yL or yQ. The L∞-norm of yL or yQ is bounded by the system
response and de�ned as

JL(c, g) := tr
(
CP(c, g)CT

)
when we consider a system (1.3) with a linear output equation, and

JQ(c, g) := tr(MP(c, g)MP(c, g))
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when considering the system (1.4) with a quadratic output equation. The matrix P(c, g)
is the controllability Gramian that spans the controllability space of both systems (1.3)
and (1.4). We aim to optimize the damping values in such a way that the system
response is minimized. This criterion was also used in [25, 60, 140]. The Gramian
P(c, g) is computed by solving the continuous-time Lyapunov equation

A(c, g)P(c, g)ET + EP(c, g)A(c, g)T = −BBT. (1.8)

To �nd the damping gains (c, g) ∈ D that minimize the energy response J(c, g), we have
to solve a Lyapunov equation (1.8) in every step of the optimization method. Since the
Lyapunov equation solves are computationally very demanding if the matrices are of
large dimensions, the minimization process would lead to high computational cost and,
hence, be ine�cient or unfeasible in a large-scale setup. To accelerate the optimization
process, we propose new reduction methods. We derive o�ine-online methods to gener-
ate bases spanning an approximation to the solution space of the Lyapunov equations for
all possible positions and viscosities of the dampers. Furthermore, we derive an adaptive
scheme that generates the reduced solution space by adding the subspaces of interest.
Then, we de�ne the corresponding reduced optimization problem that is solvable in a
reasonable amount of time. Also, we decouple the solution spaces of the problem to
obtain a space that corresponds to the system without external dampers and serves as
a starting point for the reduction of the optimization problem. In addition, we derive
spaces corresponding to the di�erent damper positions, which are used to expand the
reduced basis if needed. To evaluate the quality of the basis, we introduce di�erent error
estimators. Our new techniques produce reduced optimization problems of signi�cantly
smaller dimensions, which are faster to solve than the original problem.

1.2 Literature overview

Vibrational systems and their contained dampers have been studied in the last decades,
for example, in [14, 49, 55, 71, 73, 76, 85, 96, 153], where external dampers are considered
in systems that already contain internal damping of small magnitude. In this work, we
consider model reduction schemes for parameter-independent and parameter-dependent
vibrational systems.
There is a vast amount of literature that considers parameter-independent systems.

For ordinary di�erential equation (ODE) systems with a linear output equation and
homogenous initial conditions, there exist several methods to construct reduced-order
models, e.g., singular value-based approaches such as balanced truncation [26, 93, 138]
and Hankel norm approximations [56]. Also, the authors in [20] extend the BT method
for systems with a quadratic output equation. Moreover, moment matching methods
[5, 60, 84] and Krylov subspace methods, e.g., the iterative rational Krylov algorithm
(IRKA) [26, 51, 60, 61] are used frequently. An overview of these methods is given, e.g.,
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in [5, 22, 23, 26]. Moreover, the authors in [13, 15, 66, 121] provide methods to reduce
systems with inhomogeneous initial conditions.
All methods mentioned above treat systems with a nonsingular matrix E. Therefore,

they are not directly applicable to systems with a DAE as a state equation. This issue
is addressed in, e.g., [33, 61, 91, 130]. Existing methods that deal with the DAE case
include interpolatory projection methods [1�3, 61] and balancing-based methods [28, 67,
91, 130, 131]. In this work, we mostly focus on a balancing-based method. DAE systems
require the corresponding projection matrices that describe the de�ating subspaces. Such
projection matrices are di�cult to form explicitly. However, the structure of the DAE
systems is often known and can be used to de�ne and implicitly apply the projection
matrices in practice. For details, we refer to [28, 31, 67, 116, 133]. Also, the classic
BT method is not directly applicable to the case of quadratic output equations since
the observability space is not of the same form as in the linear output case. Hence,
the observability Gramian, de�ned in [91], can not be used in this setup. In [20], the
authors derived Gramians corresponding to ODE systems (meaning E = I in (1.5))
with quadratic output equations. However, the methodology proposed in [20] cannot
be directly applied to DAEs due to the singularity of the matrix E. Therefore, there
is a necessity to modify BT to incorporate the di�erential-algebraic structure, which is
investigated in this dissertation.
For second-order systems, there exist di�erent tailored model order reduction meth-

ods. BT and balancing-based approaches for second-order systems were introduced in
[44, 92, 112]. Also, Krylov methods tailored for second-order systems were derived in
[17, 134] and generalized to rational interpolation in [9, 10, 53, 149]. Overviews of these
methods can be found, e.g., in [43, 117]. However, none of these methods considers
inhomogeneous systems.

To deal with parameter-dependent systems, in this work, we apply the reduced basis
method (RBM) and modi�cations of it. We reduce the Lyapunov equation in (1.8) to
derive a surrogate equation that is solvable in a reasonable time. The RBM was �rst in-
troduced to reduce parameter-dependent partial di�erential equations, see [68, 109, 150�
152]. Later, it was used for Riccati equations [119], and, �nally, the RBM was applied
to Lyapunov equations by Son and Stykel in [126]. In [108], the authors use the RBM
to reduce parametric di�erential�algebraic systems.
We aim to apply the RBM to optimize the e�ect of the input on the system out-
put. Therefore, we want to choose external dampers that stabilize the system and
shift eigenfrequencies so that possible external loads do not lead to resonances. The
problem of �nding optimal external dampers was widely investigated in the literature,
see [55, 71, 74, 95, 135, 153]. In this work, we use the RBM to accelerate the optimiza-
tion process. In the literature, other approaches were applied to the problem of damping
optimization. Depending on the application, di�erent criteria are chosen to quantify the
stability of systems and the response to external disturbances. When systems (1.3) with
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B ≡ 0 are considered, then the spectral abscissa or the total average energy are used
as described in [36, 52, 97, 144, 147]. In [35, 142, 148], the authors present di�erent
reduction techniques to optimize the related problem of minimizing the total average
energy for the system (1.3) with no input.
In the case B ̸= 0, as considered in this work, external disturbances are taken into

account, which potentially plays an important role in real-life scenarios. In these cases,
the average displacement amplitude can be evaluated, which minimizes the square of
the norm of the displacement x(t) averaged over a certain time period, see [82, 145].
Another criterion used in this work is the average energy amplitude corresponding to
the minimization of the system response, JL(c, g) or JQ(c, g), of the system describing
the input-to-output behavior in the frequency domain. This optimization criterion was
also used in [25, 140].
Moreover, the authors in [25] utilize the dominant pole algorithm to build a reduced

minimization problem that is quickly solvable. In [140], an e�cient optimization ap-
proach using structure-preserving parametric model reduction based on the iterative
rational Krylov algorithm (sym2IRKA) is used to derive an e�cient optimization algo-
rithm. In [16], a sampling-free approach is presented that reduces the system (1.3) for all
admissible parameters. Alternatively, in [37, 141], the authors optimize the H∞-norm
of the systems constraining the L2-norm of the output yL of the corresponding system,
which can be interpreted as the worst-case ampli�cation of the output energy caused
by an input signal. Most of the established methods consider the optimization of the
damping viscosities.
The optimization of the discrete damper positions is still a challenging problem, espe-

cially for large systems, which has been studied in [34, 50, 50, 62, 62, 75, 136, 139, 143].
In particular, in [34, 139], the authors describe the optimization using a discrete-to-
continuous approach, which is modi�ed and used in this work.

1.3 Goal of this thesis

In this work, we consider the problem of model reduction and optimization of external
dampers for large-scale vibrational systems. Therefore, the two main goals of this work
are the following.

System theory and model reduction methods for systems in non-standard form

The model order reduction of parameter-independent systems is needed to evaluate the
behavior of (damped) systems, where we consider BT as well as the IRKA method. We
investigate �rst-order ODE systems, �rst-order DAE systems, and second-order ODE
systems with inhomogeneous initial conditions. Also, we consider systems with linear
and quadratic output equations. In this work, we derive BT methods for systems in these
non-standard forms that appear when considering vibrational systems. In particular,

8



1.4 Overview of the author's contributions

the novelties of this work include the introduction of BT methods for inhomogeneous
ODE systems with quadratic output equations, inhomogeneous DAE systems with linear
and quadratic output equations, and inhomogeneous second-order ODE systems with
linear and quadratic output equations. Therefore, we derive respective suitable system
representations, tailored Gramians for the di�erent system types, the corresponding
energy interpretations, and error bounds that describe the quality of the approximations
based on the respective Gramians. We demonstrate the e�ectiveness of the derived
algorithms by applying them to some numerical examples.

RBM and damping optimization for vibrational systems We also solve the prob-
lem of reducing parameter-dependent systems that arise when optimizing positions and
viscosities of external dampers in vibrational systems. Therefore, we apply RBM ap-
proaches that generate a basis that spans an approximation of the controllability space
of the system, which de�nes a reduced surrogate model. First, we use the o�ine-online
RBM introduced in [126] and extend this method to second-order systems. Moreover,
we derive a decoupling of the controllability space of the respective systems. This de-
coupling can accelerate our RBM for �rst-order and second-order systems. Afterwards,
we tailor the derived RBM schemes to be more suitable for the damping optimization
process in vibrational systems. In addition, we derive an adaptive scheme in which
we enrich the basis within the optimization process. Therefore, prior knowledge of the
assumed parameters is not necessary. Additionally, we derive several error estimates
suitable for the di�erent methods.

For both topics, similar system theoretical considerations need to be done beforehand.
Hence, �rst, we investigate the three types of dynamical systems (�rst-order ODE sys-
tems, �rst-order DAE systems, and second-order ODE systems) and their controllability,
observability, and the corresponding system energies to have a theoretical foundation for
the rest of the thesis.

1.4 Overview of the author's contributions

The theory and results presented in this thesis have been partially published in [105�
107]. The theoretical results from [105, 106] are part of Chapter 3, and the resulting
reduction methods are introduced in Chapter 4. The main contributions from [107] are
described in Chapter 5 and Chapter 6. All of the chapters presented in this thesis are
extended versions of these papers.
In [105], the author derives a BT method that reduces DAE systems with quadratic

output equations. New proper and improper Gramians are derived with suitable en-
ergy interpretations that result in a BT method. Also, error bounds are determined to
quantify the quality of the system approximation. This work is a natural extension of

9



1 Introduction

the theory in [20], where ODE systems with quadratic output equations are considered.
In this thesis, [105] is extended to DAE systems with quadratic output equations and
inhomogeneous initial conditions.
Moreover, in [106], the authors investigate inhomogeneous second-order systems with

nonzero initial conditions. They derive tailored Gramians, energy functionals, and error
bounds, which result in a BT method that reduces second-order systems. In this thesis,
we also derive a BT scheme that reduces inhomogeneous second-order systems with a
quadratic output equation, which is an extension of the published work in [106].
In [107], the authors derive a reduction scheme to optimize the viscosities of some ex-

ternal dampers in vibrational systems. Therefore, they reduce the respective parametric
homogeneous second-order systems using the RBM. Together with an error estimator,
this method exceeded the acceleration rates from [140], where the authors use an IRKA-
based reduction scheme. This method was the fastest so far in the literature. The
RBM-based method from [107] is extended in this dissertation. Hence, we also consider
second-order systems with quadratic output equations.
Finally, in collaboration with Matea Ugrica, Ninoslav Truhar, and Peter Benner, the

author derived a decoupling in the controllability space of parametric homogeneous
second-order systems that is used to derive approximations of the controllability spaces
of the respective systems. These controllability space approximations are used to derive
reduced parametric systems in which the external dampers' viscosities and positions are
optimized. Also, these theories are extended to systems with quadratic output equations
in this work.

1.5 Outline

This work is organized as follows. In Chapter 2, we review existing theories and methods,
including system theoretical concepts, resulting model reduction schemes, and solution
strategies for Lyapunov equations as part of the reduction methods.
Afterwards, in Chapter 3, we derive di�erent system theoretical concepts for dynamical

systems in a non-standard form. They include transfer functions, system equivalences,
corresponding Gramians, and the respective energy interpretations. These concepts are
used throughout the remaining work.
In Chapter 4, we study model reduction schemes for di�erent parameter-independent

system types, in particular, BT and IRKA methods, where the main focus lies on the BT
method. We extend existing model reduction schemes to systems in non-standard form
and derive respective error estimators. Using some numerical examples, we demonstrate
the e�ciency of these methods. These methods are applied in the context of damping
optimization when we have a trial external damper for which we aim to analyze the
respective system behavior.
In Chapter 5, we revisit and extend the RBM to the di�erent system structures.

10



1.5 Outline

Moreover, we derive a decoupling of the controllability space, which is used to accelerate
the basis-building process. For the two resulting RBM methods, we also derive suitable
error estimators.
Afterwards, in Chapter 6, the RBM methods are used to reduce the problem of �nding

optimal external dampers concerning the system response. Moreover, we derive an adap-
tive scheme that enriches the respective basis within the optimization process. Hence, we
can ensure that no unnecessary information is contained in the reduced basis. Moreover,
we extend this approach by a controllability space decomposition that accelerates the
methods. Moreover, this decoupling leads to an RBM optimization process that does
not require a given parameter set. Again, we derive suitable error estimators and apply
the resulting optimization methods to some numerical examples.
Finally, in Chapter 7, we conclude the work and give an outlook on future work

perspectives.
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CHAPTER 2

MATHEMATICAL BACKGROUND

Contents

2.1 System theoretical concepts . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 First-order ODE systems . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 First-order DAE systems . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Second-order ODE systems . . . . . . . . . . . . . . . . . . . . . 23

2.2 Model order reduction methods . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Balanced truncation . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Iterative rational Krylov algorithm . . . . . . . . . . . . . . . . . 36

2.3 Lyapunov equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Alternating direction implicit method . . . . . . . . . . . . . . . . 44

2.3.2 Sign function method . . . . . . . . . . . . . . . . . . . . . . . . . 47

In this chapter, we give an overview of various mathematical theories and methods that
form the mathematical background of this thesis. First, we describe system properties
and theoretical concepts in Section 2.1.1 for di�erent system structures. Afterwards, we
present model reduction methods for these classes of systems in Section 2.2. One of the
reduction methods, balanced truncation, uses solutions of Lyapunov equations to identify
the dominant controllability and observability subspaces. Therefore, in Section 2.3, we
describe existing numerical methods to solve Lyapunov equations, especially for those
with large dimensions.

In the remaining course of this thesis, the theoretical concepts and methods from this
chapter are extended to systems with inhomogeneous initial conditions and to systems
with quadratic output equations. These extended concepts are needed to solve the
problem of optimizing external dampers in mechanical systems presented in Chapter 1.
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2 Mathematical background

2.1 System theoretical concepts

In this section, we consider several classes of systems with linear output equations and
provide an overview of the respective basic system theoretical concepts. These will
be used in the remainder of this work to identify signi�cant states and the resulting
dominant controllability and observability spaces corresponding to these systems. The
concepts introduced in this section were originally derived in the �eld of control theory,
see [4, 88, 127, 159], where the aim is to provide a mathematical implementation of
real-life dynamical systems through analysis of input-output behavior.
We analyze the systems presented in Chapter 1 that arise from mechanical systems

considered in the context of damping optimization. We study parameter-independent
systems, which means we consider the second-order system (1.3) for a �xed external
damper D(c, g) ≡ D. Also, the resulting �rst-order system (1.5) is assumed to be
parameter independent such that A(c, g) ≡ A. Moreover, we allow the matrix E to
be singular in systems with �rst-order structure (1.5). This situation occurs when the
mass matrix M of the second-order system (1.3) is singular. In this case, we consider
systems with di�erential-algebraic equations (DAEs) as state equations. However, we
only consider the DAE case in its �rst-order representation, as considering second-order
descriptor systems is beyond the scope of this work. For system theoretical concepts for
second-order DAE systems, we refer to the work [86] that was further used and extended
in [1, 30, 32, 77] for particular index classes.
The di�erent system structures are analyzed separately below. In Section 2.1.1, we

consider system theoretical aspects of �rst-order systems with an ODE as a state equa-
tion. In Section 2.1.2, we investigate �rst-order systems with a DAE as a state equation,
and, �nally, in Section 2.1.3, we study second-order systems.

2.1.1 First-order ODE systems

In this subsection, we repeat selected, well-known system theoretical concepts for �rst-
order systems, that are dynamical systems of the form

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yL(t) = Cz(t),
(2.1)

where E, A ∈ RN×N , B ∈ RN×m and C ∈ Rp×N . The matrix E is assumed to be
nonsingular so that the state equation in (2.1) is an ODE. The input, the state and the
output are u(t) ∈ Rm, z(t) ∈ RN , and yL(t) ∈ Rp, respectively, with u ∈ L2([0,∞),Rm).
The theory repeated in this section is based on [4, 88, 127, 159]. The solution of the
�rst-order state equation in (2.1) is equal to

z(t) =

∫ t

0

eE
−1A(t−τ)E−1Bu(τ)dτ + eE

−1Atz0. (2.2)
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2.1 System theoretical concepts

From the state trajectory, stability properties can be derived, i.e., convergence to an
equilibrium state when no external force is acting. Equation (2.2) also describes the
controllability behavior of the system that indicates which states are reachable. Both
properties are signi�cant for the analysis of the system. Moreover, the observability of
(2.1) is of interest in this work, which describes whether states are uniquely identi�able
based on the output observations. Hence, we de�ne these properties formally in the
following.

De�nition 2.1:
The system (2.1) is called

1. asymptotically stable if all the solutions z(t) = eE
−1Atz0 of the linear ODE

Eż(t) = Az(t)

satisfy limt→∞ z(t) = 0 for all initial states z(0) = z0;

2. controllable if for all initial conditions z(0) = z0 ∈ RN and all z1 ∈ RN there exists
a time t1 > 0 and a control function u ∈ L2([0,∞),Rm) in the set of all admissible
inputs so that the state trajectory in (2.2) yields

z(t1) = z1;

3. observable if for two solution trajectories z(·) and z̃(·) from (2.2) resulting from
the same input u ∈ L2([0,∞),Rm) it holds that

Cz(t) = Cz̃(t) for all t ≥ 0

implies that z(t) = z̃(t) for all t ≥ 0. ♢

We call a system to be in minimal realization if it is controllable and observable. Since
it is di�cult to check these properties by de�nition, we will repeat some equivalent
properties that will help us to characterize the dynamical system (2.1).

Theorem 2.2:
Consider the system (2.1). The following equivalences hold.

1. The system is asymptotically stable if and only if all eigenvalues of the matrix
pencil λE−A lie in the negative complex half-plane, that means if

Λ(E, A) ⊂ C− := {λ ∈ C | Re(λ) < 0}.

2. The system is controllable if and only if

rank
([
E−1B E−1AE−1B . . . (E−1A)N−1E−1B

])
= N.
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2 Mathematical background

3. The system is observable if and only if

rank




C

CE−1A
...

C(E−1A)N−1


 = N.

♢

After introducing the basic system properties, we derive some tools used to describe the
overall controllability and observability behavior. For this purpose, we study the system
dynamics in the frequency domain, which means we apply the Laplace transform to the
system (2.1) with zero initial conditions, which leads to the state equation

Z(s) = (sE−A)−1BU(s),

where Z and U denote the Laplace transforms of z and u, respectively. Inserting Z(s)
into the output equation in the frequency domain with YL being the Laplace transform
of yL results in

YL(s) = C(sE−A)−1BU(s). (2.3)

Based on this frequency domain representation of the output, we can de�ne the systems
transfer function that encodes the input-to-output behavior.

De�nition 2.3:
Consider the system (2.1). Then the corresponding transfer function is de�ned as

GL(s) := C(sE−A)−1B. (2.4)
♢

We use the following de�nition to describe the system behavior of (2.1) concerning its
transfer function.

De�nition 2.4:
Consider the system (2.1). The corresponding transfer function GL(s) as de�ned in (2.4)
is called

a) strictly proper if limω→∞ ∥GL(iω)∥2 = 0,

b) proper if limω→∞ ∥GL(iω)∥2 < ∞,

c) improper if limω→∞ ∥GL(iω)∥2 = ∞. ♢
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In the following, we introduce some matrices, the so-called Gramians, which provide
information about the controllability and observability spaces of the system, including
all reachable and observable states. To give an intuition of how these Gramians are
de�ned, we �rst introduce the input-to-state mapping and the state-to-output mapping

c(t) := eE
−1AtE−1B and oL(t) := CeE

−1AtE−1.

We add the subscript L to the state-to-output mapping oL(s) to emphasize that we
consider a linear output equation since later in this work, we also investigate systems
with quadratic output equations. Since the mappings c and oL encode the reachable
and observable states of the system, the integration over the entire time domain provides
the Gramians that span the respective spaces.

De�nition 2.5:
Consider the asymptotically stable system (2.1). The respective controllability and ob-
servability Gramian are de�ned as

P :=

∫ ∞

0

eE
−1AtE−1BBTE−TeA

TE−Ttdt,

QL :=

∫ ∞

0

eA
TE−TtCTCeE

−1Atdt.

(2.5)
♢

As stated, e.g. in [4], these Gramians are computed by solving the Lyapunov equations

APET + EPAT = −BBT, ATQ̃LE+ ETQ̃LA = −CTC, (2.6)

where E−TQLE
−1 = Q̃L. The Gramians introduced in (2.5) are used in the next section

to identify dominant subspaces and derive respective reduced surrogate models that
approximate the input-to-output behavior of the original system (2.1) described by the
transfer functions introduced in (2.4). We recall the de�nition of Hardy spaces, the
corresponding scalar products, and norms that we utilize to quantify the output errors
between the original system and the reduced approximation by evaluating the respective
transfer functions. The �rst Hardy space, we consider, is the Hp×m

2 -space that is de�ned
as

H
p×m
2 :=

{
G : C+ → Cp×m : G is analytic in C+ and

∫ ∞

−∞
∥G(iω)∥2Fdω < ∞

}
. (2.7)

Its scalar product is

⟨H,G⟩H2 :=
1

2π

∫ ∞

−∞
tr
(
H(iω)HG(iω)

)
dω
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and the resulting norm is

∥G∥H2 := ⟨G,G⟩
1
2

H2
=

(
1

2π

∫ ∞

−∞
∥G(iω)∥2Fdω

) 1
2

.

This norm provides an upper bound on the L∞-norm of the output, which character-
izes the system's response to an input, as shown in the following proposition from [4,
Proposition 5.2].

Proposition 2.6:
Consider the system (2.1) with the corresponding transfer function GL(s) ∈ H

p×m
2 . Then

it holds
∥y∥L∞ ≤ ∥GL∥H2∥u∥L2 . ♢

We see that the H2-norm of the transfer function serves as a criterion to estimate the
maximal output. This output bound was used in the context of damping optimization
in [25, 107, 140]. We choose this particular bound if we want to limit or minimize the
maximum de�ections, and therefore consider the L∞-norm of the output.

2.1.2 First-order DAE systems

In this subsection, we consider di�erential-algebraic systems that are of the structure

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yL(t) = Cz(t),
(2.8)

with matrices as in (2.1) and a singular matrix E. Hence, the state equation contains
di�erential equations as well as algebraic ones. These systems arise when modeling
industrial processes, e.g., electrical circuits, thermal and di�usion processes, multibody
systems, and certain discretized partial di�erential equations [39, 41]. Throughout this
work, the pencil λE −A is assumed to be regular, i.e., the polynomial det(λE −A) is
not identically zero.
To deal with di�erential-algebraic systems, we �rst repeat the Weierstrass canoni-

cal form (WCF). According to [79], there exist matrices W and T that transform the
di�erential equation of the system (2.8) into WCF, that is

E = W

[
INf

0
0 N

]
T, A = W

[
J 0
0 IN∞

]
T, B = W

[
B̃1

B̃2

]
, C =

[
C̃1 C̃2

]
T

(2.9)

where Nf and N∞ are the numbers of the �nite and in�nite eigenvalues of the matrix
pencil (A,E). The matrix J ∈ Rnf×nf represents a Jordan block associated with the
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2.1 System theoretical concepts

�nite eigenvalues, and N ∈ RN∞×N∞ is nilpotent of nilpotency index ν. Typically, the
index ν is referred to as the index of the system (2.8) that is also called the Kronecker
index. In practice, for large-scale systems, we do not calculate this transformed form of
the system explicitly. Based on this form we derive certain theoretical concepts.
Moreover, we de�ne the matrices

Pr = T−1

[
INf

0
0 0

]
T and Pl = W

[
INf

0
0 0

]
W−1 (2.10)

that are the spectral projectors onto the right and left de�ating subspaces of the pencil
λE−A, corresponding to the �nite eigenvalues, that describe these subspaces. However,
such projection matrices are challenging to form explicitly. Alternatively, approaches,
as introduced in [89], can be used to derive the de�ating subspaces, which is numerically
unfeasible when large-scale systems are considered as the respective computations in-
clude several matrix decompositions, also of dense matrices. Even if one manages, they
can destroy the sparsity of the original matrices and, therefore, increase the computa-
tional burden. However, the structure of the DAE systems is often known and can be
used to de�ne, and implicitly apply the projection matrices in theory without the need
of explicitly forming or multiplying by these projection matrices. For details, we refer
to [31, 67, 116, 133].

By multiplying the system (2.8) from the left byW−1 and replacing z(t) =: T−1
[
z1(t)
z2(t)

]
,

we obtain the following system in WCF

ż1(t) = Jz1(t) + B̃1u(t), z1(0) = z1,0,

Nż2(t) = z2(t) + B̃2u(t), z2(0) = z2,0.
(2.11)

The system (2.11) provides the decoupled di�erential and algebraic states z1(t) and z2(t)
that are

z1(t) =

∫ t

0

eJ(t−τ)B̃1u(τ)dτ + eJtz1,0, z2(t) =
ν−1∑
k=0

−NkB̃2u
(k)(t), (2.12)

where u(k)(t) describes the k-th derivative of the function u ∈ Cν−1([0,∞),Rm) evalu-
ated in the time variable t where we assume that the input is su�ciently di�erentiable.
Furthermore, we de�ne

FJ(t) := T−1

[
eJt 0
0 0

]
W−1 and FN(k) := T−1

[
0 0
0 −Nk

]
W−1 (2.13)

and transform z1(t) and z2(t) into the original state space of system (2.8) to obtain the
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di�erential and algebraic states

zp(t) = T−1

[
z1(t)
0

]
=

∫ t

0

FJ(t− τ)Bu(τ)dτ +FJ(t)Ezp,0,

zi(t) = T−1

[
0

z2(t)

]
=

ν−1∑
k=0

FN(k)Bu(k)(t)

(2.14)

with z(t) = zp(t) + zi(t) and zp,0 = Prz0. We see that for the improper state z2(t), the
initial conditions need to satisfy

z2(0) =
ν−1∑
k=0

−NkB̃2u
(k)(0)

to ensure solvability, that is, an initial state z0 = z(0) needs to satisfy

(IN −Pr)z0 =
ν−1∑
k=0

FN(k)Bu(k)(0). (2.15)

If the system ful�lls this condition, it is called consistent. Note that the Weierstraÿ-
canoncial form will only serve as a tool for analysis, but will not be computed in practice
as its numerical determination is known to be di�cult.
According to controllability and observability for ODE systems, introduced in Sec-

tion 2.1.1, we introduce here the concepts of C-stability, C-controllability, and C-observability
that were de�ned in [129, 130].

De�nition 2.7:
The system (2.8) is called

1. C-stable if it has a regular matrix pencil (A,E) and all the �nite eigenvalues of
λE−A lie in the open-left half-plane C− := {λ ∈ C | Re(λ) < 0}.

2. C-controllable (completely controllable) if

rank
([
E B

])
= N and rank

([
λE−A B

])
= N for all �nite λ ∈ C.

3. C-observable (completely observable) if

rank

([
E

C

])
= N and rank

([
λE−A

C

])
= N for all �nite λ ∈ C.

♢
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We can also derive the transfer function for the DAE system (2.8), given that the matrix
pencil (A,E) is regular. Since the input-to-output behavior is invariant under transfor-
mation, we use the system in WCF from (2.11) to de�ne GL(s) = GL,p(s) + GL,i(s) with

GL,p(s) := C̃1(sINf
− J)−1B̃1, GL,i(s) := C̃2(sN− IN∞)−1B̃2 (2.16)

where GL,p is the strictly proper component of the transfer function and GL,i(s) is called
the polynomial component. Summing over both transfer function components yields the
following de�nition.

De�nition 2.8:
Consider the system (2.8) with a regular matrix pencil (A,E). Its transfer function is
de�ned as

GL(s) := C(sE−A)−1B. ♢

To describe the properties of the system related to this transfer function, we can apply
the system theoretical concepts introduced in De�nition 2.4 and Proposition 2.6. For
more details, we refer to [79, 91, 130].
As for the ODE case, we can derive controllability and observability Gramians corre-

sponding to the proper and improper part of the system as introduced in [91] based on
the input-to-state mappings in the time domain

cp(t) = FJ(t)B and ci(k) = FN(k)B.

The corresponding proper and improper controllability Gramians result when integrating
over the entire time domain and summing over all indices k = 0, . . . , ν − 1, which leads
to the following Gramian de�nition.

De�nition 2.9:
Consider the C-stable system (2.8). The corresponding proper and improper controlla-
bility Gramians are de�ned as

Pp :=

∫ ∞

0

FJ(t)BBTFJ(t)
Tdt, Pi :=

ν−1∑
k=0

FN(k)BBTFN(k)
T. (2.17)

♢

The ranges of the matrices Pp and Pi provide the controllability spaces associated with
the states zp(t) and zi(t), respectively. Furthermore, inserting the de�nitions of FJ(t)
and FN(k) into (2.5) yields

Pp := T−1

[
P1 0
0 0

]
T−T, Pi := T−1

[
0 0
0 P2

]
T−T (2.18)

where P1 :=
∫∞
0

eJtB̃1B̃
T
1 e

JTtdt and P2 :=
∑ν−1

k=0 N
kB̃2B̃

T
2 (N

k)T are the controllability
Gramians corresponding to the states in (2.12) with matrices from (2.9). Using the
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controllability Gramians, we can characterize the hard-to-reach or unreachable states
that play an important role in the reduction of the system. To compute the Gramians
we use that Pp and Pi de�ned in (2.5) are the unique solutions of the following projected
continuous-time and discrete-time projected Lyapunov equations

EPpA
T +APpE

T = −PlBBTPT
l , Pp = PrPpP

T
r ,

APiA
T − EPiE

T = (I−Pl)BBT(I−Pl)
T, 0 = PrPiP

T
r .

(2.19)

To describe the observability behavior of the DAE system (2.8), we derive the corre-
sponding state-to-output mappings

op(t) = CFJ(t) and o i(k) = CFN(k)

that are used to derive the respective observability Gramians by integration over the
entire time domain and summation over all indices.
De�nition 2.10:
Consider the C-stable system (2.8). The corresponding proper and improper observability
Gramians are de�ned as

QL,p :=

∫ ∞

0

FJ(t)
TCTCFJ(t)dτ, QL,i :=

ν−1∑
k=0

FN(k)
TCTCFN(k). (2.20)

♢

We insert the de�nitions of FJ and FN from (2.13) to derive

QL,p := W−T

[
QL,1 0
0 0

]
W−1, QL,i := W−T

[
0 0
0 QL,2

]
W−1, (2.21)

where QL,2 =
∫∞
0

eJ
TtC̃T

1 C̃1e
Jtdt and QL,2 =

∑ν−1
k=0(N

k)TC̃T
2 C̃2N

k, with matrices from
(2.9), are the observability Gramians corresponding to the states z1(t) and z2(t) de�ned
in (2.12). This equation describes the connection between the Gramians of the subsys-
tems in the Weierstraÿ-canonical form corresponding to the states z1(t) and z2(t) and
the Gramians corresponding to the original state spaces.
To compute the Gramians QL,p and QL,i we utilize that they are the unique solutions

of the following continuous-time and discrete-time projected Lyapunov equations

ETQL,pA+ATQL,pE = −PT
r C

TCPr, QL,p = PT
LQL,pPL,

ATQiA− ETQL,iE = (I−Pr)
TCTC(I−Pr), 0 = PT

LQL,iPL.
(2.22)

As in the ODE case, the Gramians encode the reachability and observability behavior
as stated in the following theorem from [129].
Theorem 2.11:
Consider a C-stable DAE system of the form (2.8). Then the following equivalences
hold.

a) The system is C-controllable, if and only if Pp +Pi is positive de�nite.

b) The system is C-observable, if and only if QL,p +QL,i is positive de�nite. ♢
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2.1 System theoretical concepts

2.1.3 Second-order ODE systems

Finally, we consider the second-order system

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

yL(t) = C1x(t) +C2ẋ(t)
(2.23)

with a mass matrix M ∈ Rn×n, a damping matrix D ∈ Rn×n, a sti�ness matrix K ∈
Rn×n, an input matrix B ∈ Rn×m, and output matrices C1, C2 ∈ Rp×n. We assume
that the matrices M, D, and K are symmetric and positive semi de�nite, so that the
state equation in (2.23) is an ODE. The input, the state, and the output are given as
u(t) ∈ Rm, x(t) ∈ Rn, and yL(t) ∈ Rp, respectively.
One possible way to handle second-order systems is to transform them into �rst-order

systems of the form (2.1) with �rst-order matrices

E :=

[
I 0
0 M

]
, A :=

[
0 I

−K −D

]
, B :=

[
0
B

]
, and C :=

[
C1 C2

]
. (2.24)

Then, the respective �rst-order system has the same input-to-output behavior as the
second-order system and hence can be analyzed instead. The disadvantage of the �rst-
order representation is that the second-order structure, which characterizes the physical
properties, is not retained. Therefore, in this subsection, we repeat the system theoretical
results for second-order systems introduced in [43, 44, 112]. According to controllability
and observability for �rst-order ODE systems, introduced in Section 2.1.1, we de�ne
the concepts of asymptotic stability, controllability, and observability as introduced in
[112]. Those are equivalent to the asymptotic stability, controllability, and observability
of their �rst-order representation with matrices (2.24).

De�nition 2.12:
The system (2.23) is called

1. asymptotically stable if all zeros of the matrix polynomial λ2M + λD + K lie in
the open-left half-plane C− := {λ ∈ C | Re(λ) < 0}.

2. controllable if

rank
([
λ2M+ λD+K B

])
= n for all λ ∈ C.

3. observable if

rank
([
λ2MT + λDT +KT CT

1 + λCT
2

])
= n for all λ ∈ C. ♢
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2 Mathematical background

To investigate the input-to-output behavior of the system and the respective control-
lability and observability properties, we apply the Laplace transform to the homogenous
system (2.23), i.e., we set x(0) = 0, ẋ(0) = 0, which yields

YL(s) = C1X(s) +C2Ẋ(s) = (C1 + sC2)Λ(s)BU(s)

where Λ(s) := (s2M + sD + K)−1. The corresponding transfer function that encodes
the input-to-output mapping is extracted and de�ned in the following.

De�nition 2.13:
Consider the second-order system (2.1.3). Its transfer function is de�ned as

GL(s) := (C1 + sC2)Λ(s)B (2.25)

where Λ(s) := (s2M+ sD+K)−1. ♢

To describe the system properties that result from that transfer function, we can apply
the system theoretical concepts introduced in De�nition 2.4 and Proposition 2.6.
We can derive systems Gramians tailored for systems of second-order structures de-

scribing the controllability and observability properties. First, to describe the control-
lability behavior, we introduce the input-to-state mappings in the frequency domain
corresponding to the displacement (position) and to the velocity, which are

Cpos(s) = Λ(s)B and Cvel(s) = sΛ(s)B.

As described in [43, 112], we can derive the respective second-order controllability Grami-
ans as introduced in the following.

De�nition 2.14:
Consider the asymptotically stable system (2.23) and de�ne Λ(s) := (s2M+sD+K)−1.
Then the respective position and velocity controllability Gramians are de�ned as

Ppos =
1

2π

∫ ∞

−∞
Λ(iω)BBHΛ(iω)Hdω, Pvel =

1

2π

∫ ∞

−∞
ω2Λ(iω)BBHΛ(iω)Hdω.

(2.26)
♢

Since we consider second-order Gramians, the methods from Section 2.1 can not be
applied to compute them. However, one can show that Ppos and Pvel are the upper-left
and the lower-right block, respectively, of the �rst-order controllability Gramian P as
de�ned in (2.5) with matrices as introduced in (2.24), see [44].
To derive the second-order observability Gramians, we extract the state-to-output

mappings from GL as de�ned in (2.25)

Opos(s) = C1Λ(s)(sM+D)−C2Λ(s)K, Ovel(s) = (C1 + sC2)Λ(s).

These mappings are now used to de�ne the respective second-order Gramians by inte-
grating over the entire frequency domain, which leads to the following de�nition.
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2.2 Model order reduction methods

De�nition 2.15:
Consider the asymptotically stable system (2.23) and de�ne Λ(s) := (s2M+sD+K)−1.
Then the respective position and velocity observability Gramians are de�ned as

QL,pos =
1

2π

∫ ∞

−∞
((iωM+D)HΛ(iω)HCT

1 −KΛ(iω)HCT
2 )

· (C1Λ(iω)(iωM+D)−C2Λ(iω)K)dω,

QL,vel =
1

2π

∫ ∞

−∞
Λ(iω)H(C1 + iωC2)

H(C1 + iωC2)Λ(iω)dω.

(2.27)
♢

These Gramians are the upper-left and the lower-right block of the �rst-order observ-
ability Gramian QL from (2.5) with matrices as de�ned in (2.24), see again [44].

2.2 Model order reduction methods

Engineering applications such as modeling electrical circuits, structural dynamics, vi-
bration analysis, thermal and di�usion processes, or multibody systems lead to di�erent
types of dynamical systems. Models that exhibit complex dynamic behavior or are de-
rived from the discretization of PDEs are often high-�delity models, i.e., the dimension of
the state vector is large, lead to computationally expensive engineering design processes.
As a remedy, we seek to employ model reduction techniques that allow us to construct a
low-dimensional model that closely resembles the dynamic behaviors of the high-�delity
model. We present some well-established model order reduction techniques for homo-
geneous systems as considered in Section 2.1. There are several classes of methods for
reducing the order of a model.
For �rst-order ODE systems (2.1), examples include singular value-based approaches

such as balanced truncation [26, 93, 138] and Hankel norm approximations [56]. In
addition, there are Krylov subspace-based methods, such as the iterative rational Krylov
algorithm (IRKA) [26, 51, 60, 61] and moment matching, as well as data-driven methods
such as the Loewner framework [57, 90]. A comprehensive overview of these methods
can be found, i.e., in [5, 22, 23, 26].
The methods presented above treat systems in which E is nonsingular and is therefore

not directly applicable to the DAE case introduced in (2.8). Several challenges arise
due to the algebraic equations. Since the matrix E is singular, the transfer function
GL(s) := C(sE−A)−1B, de�ning the input-to-output mapping in the frequency domain,
can have a non-zero polynomial part. A model reduction scheme for DAEs must preserve
the polynomial part of its transfer function when constructing a reduced-order model as
addressed in, e.g., [61, 91, 130]. There exist several methods that deal with DAE systems,
i.e., interpolatory projection methods [2, 3, 61] and balancing-based methods [67, 91, 130,
131]. Also, data-driven approaches have been recently extended to di�erential-algebraic
systems, see, e. g., [6, 58, 94].
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2 Mathematical background

We also consider methods tailored for systems (2.23) of second-order structure. In the
literature exist several methods enabling model order reduction preserving the second-
order structure [43, 53]. These techniques range from balanced truncation as well as
balancing related model order reduction [44, 112, 128] to moment matching approxima-
tions based on the Krylov subspace method [17, 118]. The work [115] provides a compre-
hensive comparison between common second-order model reduction methods applied to
a large-scale mechanical �shtail model. Additionally, [18] proposed interpolation-based
methods for systems possessing very general dynamical structures. More recently, the
authors in [19] propose a new philosophy to �nd the dominant reachability and observ-
ability subspaces, enabling very accurate reduced-order models preserving the structure.
Moreover, an extension of the Loewner framework was proposed in [21] for the class
of Rayleigh damped systems and in [122] for general structured systems. Second-order
systems were also considered in a vast amount of literature by now, where some Krylov
space-based methods are derived in [9, 10, 43, 53, 117] and balancing reduction methods
are introduced in [43, 44, 92, 112].
In this work, we focus on Balanced Truncation (BT) and Iterative Rational Krylov

Iteration (IRKA). Both methods construct projection matrices for the reduction so that
the multiplication of the system matrices by these projection matrices then yields a
ROM. BT generates an H∞-optimal surrogate system and has the advantage of guaran-
teed asymptotic stability of the ROM, the existence of an error bound, and respective
numerical techniques for the Lyapunov equations involved [29, 48, 120, 126]. IRKA, on
the other hand, generates an H2-optimal reduced surrogate system. In the following,
we introduce the balanced truncation method in Section 2.2.1 and the iterative rational
Krylov iteration method in Section 2.2.2 to generate the reduced surrogate systems.

2.2.1 Balanced truncation

In this subsection, we repeat the balanced truncation (BT) method. First, we explain
the original method for a �rst-order system with an ODE as a state equation from
[20, 26, 93, 138]. Afterwards, we brie�y show BT for �rst-order systems with DAE state
equations as introduced in [91, 130], and for second-order systems as shown in [112].

2.2.1.1 Balanced truncation for �rst-order ODE systems

We consider systems of the form (2.1) with z(0) = 0 and aim to generate a surrogate
model

Erżr(t) = Arzr(t) +Bru(t), zr(0) = 0,

yL,r(t) = Crzr(t)
(2.28)

where Er, Ar ∈ RR×R, Br ∈ RR×m, and Cr ∈ Rp×R. The reduced state and output are
denoted by zr(t) ∈ RR and yL,r(t) ∈ Rp, respectively.
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2.2 Model order reduction methods

To derive such a reduced system, we use projecting matrices Vr and Tr ∈ RN×R so
that

Er = VT
r ETr, Ar = VT

r ATr, Br = VT
r B, Cr = CTr. (2.29)

We aim to �nd such projecting matrices de�ning a surrogate model that satisfy the
Petrov-Galerkin orthogonality conditions, where Tr approximates the space of reachable
states, i.e., for every z(t) generated by system (2.1) there exists a

zr(t) ∈ RR with z(t) ≈ Trzr(t). (2.30)

This approximation de�nes the residual R(zr(t)) := ETrżr(t)−ATrzr(t)−Bru(t). The
Petrov-Galerkin condition then imposes that Vr is chosen so that

VT
r R(zr(t)) = VT

r (ETrżr(t)−ATrzr(t)−Bru(t)) = 0. (2.31)

We want to build the projecting matrices Vr and Tr ∈ RN×R in such a way, that their
dimension R is signi�cantly smaller than the original dimension N , i.e. R ≪ N , and
so that the input-to-output behavior is well-approximated, that means that ∥yL − yL,r∥
is small in a suitable norm. The main idea of BT is to truncate states of the systems
that are simultaneously hard to reach and to observe to obtain surrogate models (2.28)
of signi�cantly smaller dimensions.
We derive energy functionals that indicate the controllability and observability prop-

erties of the states in (2.2). First, we de�ne the input energy corresponding to an input
u ∈ L2((−∞, 0],Rm) that is

Eu :=

∫ 0

−∞
∥u(t)∥22dt = ∥u∥2L2((−∞,0],Rm).

We evaluate the minimal amount of energy needed to reach a state z(0) = z0 starting
from z(−∞) = 0 which is equal to

Eu(z0) = inf
ũ∈L2((−∞,0],Rm)
z(−∞)=0, z(0)=z0

∫ 0

−∞
∥ũ(t)∥22dt.

The following lemma from [4, Lemma 4.29] describes how the Eu(z0) is computed.

Lemma 2.16:
Consider the asymptotically stable system (2.1) with zero initial conditions. The minimal
energy needed to reach a state z0 ∈ RN is equal to

Eu(z0) = zT0P
−1z0 (2.32)

with u(t) = BTE−Te−ATE−T tP−1z0 and P as de�ned in (2.5). ♢
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2 Mathematical background

From (2.32), it follows that states z0 corresponding to small eigenvalues of P are harder
to reach since more energy Eu(z0) is needed to attain them.
Moreover, we evaluate the output energy of the system (2.1) corresponding to an

output function yL ∈ L2 ([0,∞),Rp) that is de�ned as

EyL
:=

∫ ∞

0

∥yL(t)∥22dt = ∥yL∥2L2([0,∞),Rp).

We denote the energy generated by system (2.1) with an initial state z(0) = z0 and no
input, i.e., u ≡ 0, by

EyL
(z0) = ∥yL∥2L2([0,∞),Rp).

Again, the lemma from [4, Lemma 4.29] is used to compute the energy EyL
(z0).

Lemma 2.17:
Consider the asymptotically stable system (2.1) with zero input u ≡ 0. The energy
generated by the system with an initial state z(0) = z0 is equal to

EyL
(z0) = zT0E

TQLEz0 (2.33)

where the output is yL(·) = CeE
−1A(·)z0 and QL as de�ned in (2.5). ♢

It follows that states corresponding to small singular values of the observability Gramian
QL lead to small amounts of energies that can be observed and are, therefore, neglectable.
These states are truncated in the following. However, the controllability Gramian P and
the observability Gramian QL are, in general, not equal, and hence, the states that are
hard to reach are not necessarily hard to observe and vice versa. Therefore, we balanced
the system so that the Gramians coincide.

De�nition 2.18:
Consider the asymptotically stable dynamical system (2.1) with the controllability Gramian
P and observability Gramian QL as de�ned in (2.5). Then the dynamical system is called
balanced if the corresponding Gramians are equal, i.e., it holds

P = QL = Σ,

where Σ = diag (σ1, . . . , σN) is a diagonal matrix with σ1 ≥ · · · ≥ σN . ♢

We can balance the system by applying simple transformations that generate an equiv-
alent system, i.e., it has the same input-to-output behavior as the systems in (2.1). The
transformed Gramians then coincide and are even diagonal matrices. For that, assume
that R and S are Cholesky factors (or if available low-rank factors) of the Gramians of
our original system in (2.1), i.e. P = RRT and QL = SST. We compute the following
singular value decomposition (SVD)

STER = UΣVT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
VT

1

VT
2

]
.
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The matrix Σ = diag (σ1, . . . , σN) contains the so-called Hankel singular values in de-
creasing order, i.e. σ1 ≥ · · · ≥ σN . The transformation matrices

Vb = SUΣ− 1
2 , Tb = RVΣ− 1

2 (2.34)

satisfy VT
bETb = IN and generate the transformed system

żb(t) = VT
bATbzb(t) +VT

bBu(t),

yL(t) = CTbzb(t)

with new Gramians
Pb = QL,b = Σ.

The remaining step is to truncate states corresponding to small singular values of Σ.
For that, we build projecting matrices

Vr = SU1Σ
− 1

2
1 , Tr = RV1Σ

− 1
2

1 (2.35)

that project the system onto the state spaces spanned by U1 and V1 corresponding to
the largest singular values stored in Σ1. Multiplying the original system in (2.1) by
Vr and Tr results in the reduced system in (2.28) with the reduced matrices de�ned in
(2.29) and Er = VT

r ETr = IR. This method results in Algorithm 1.
There exists an error bound, described, e.g., in [4], that quanti�es the error in the

output of the reduced system, i.e., the error between yL and yL,r that is

∥yL − yL,r∥L2 ≤ ∥GL − GL,r∥H∞∥u∥L2 ≤

(
2

N∑
k=R+1

σk

)
∥u∥L2 (2.36)

where GL and GL,r are the transfer functions of the original and the reduced system (2.1)
and (2.28), respectively.

2.2.1.2 Balanced truncation for �rst-order DAE systems

We consider systems of the form (2.8) and aim to generate a surrogate model

Erżr(t) = Arzr(t) +Bru(t), zr(0) = zr,0,

yL,r(t) = Crzr(t),
(2.37)

where Er, Ar ∈ RR×R, Br ∈ RR×m, and Cr ∈ Rp×R. Also the reduced state and
output are zr(t) ∈ RR and yL(t) ∈ Rp, respectively, and the initial state is zr,0 ∈
RR satisfying the consistency conditions (2.15) . We generate the reduced matrices as
described in (2.29) using projecting matrices Vr and Tr ∈ RN×R. To generate these
projecting matrices, we follow the method introduced in [91, 130] and investigate the
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Algorithm 1 BT method for the �rst-order ODE system (2.1).

Require: The original system (2.1) and the reduced order R.
Ensure: The reduced system (2.28).
1: Compute factors of the Gramians P ≈ RRT and QL ≈ SST from De�nition (2.5).
2: Perform the SVD of STER, and decompose as

STER = UΣVT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
VT

1

VT
2

]
.

with Σ1 ∈ RR×R.
3: Construct the projection matrices

Vr = SU1Σ
− 1

2
1 , Tr = RV1Σ

− 1
2

1 .

4: Determine the reduced matrices (2.29) of the reduced system (2.28).

proper components of the system and the improper ones separately. The goal is to reduce
the di�erential parts of the system as they correspond to an ODE inWCF (2.9). Since the
algebraic components encode algebraic constraints, reducing those could generate results
that are physically di�cult to interpret. Hence, we aim to �nd a minimal realization
corresponding to the improper components.
To reduce the di�erential parts of the system, we consider the energy functional of

the proper component of the DAE system in WCF (2.11). Since a di�erential state can
be written as z∗p = T−1

[
z∗1
0

]
, where z∗1 is a proper state from (2.11), the energy needed

to reach a di�erential state z∗p is

Eu = (z∗1)
TP−1

1 z∗1 =
[
(z∗1)

T 0
]
TTT−T

[
P−1

1 0
0 0

]
T−1T

[
z∗1
0

]
where we make use of (2.32) with P1 as introduced in (2.18). Hence, we obtain

Eu = (z∗p)
TPI

pz
∗
p with PI

p := T−T

[
P−1

1 0
0 0

]
T−1. (2.38)

It follows that proper states z∗p corresponding to eigenvalues ofPp with small magnitudes,
as indicated in (2.17), require large amounts of energy to be reached and are therefore
truncated in the following analysis. Conversely, states corresponding to large eigenvalues
are easier to attain and thus de�ne the dominant proper controllability subspace.
To evaluate the observability behavior of system (2.8), we determine the energy gen-

erated by the system with a di�erential initial state z∗p and no input, i.e., u ≡ 0. For
that, we consider the WCF of the system, as presented in (2.11) and investigate the
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energy corresponding to the proper state z∗1 as shown in (2.33), which yields

EyL
= (z∗1)

TQL,1z
∗
1 = (z∗p)

TTT

[
I 0
0 NT

]
WTW−T

[
Q1 0
0 0

]
W−1W

[
I 0
0 N

]
Tz∗p

with QL,1 as de�ned in (2.21) and the proper state as z∗p = T−1
[
z∗1
0

]
. From (2.21), it

follows, that

EyL
= (z∗p)

TETQL,pEz
∗
p (2.39)

for QL,p as de�ned in (2.20). Hence, proper states corresponding to small eigenvalues of
QL,p generate small amounts of output energy and are hard to observe, while states cor-
responding to large eigenvalues are easy to observe and span the dominant observability
subspaces.
In general, the states corresponding to small eigenvalues of the proper controllability

Gramian Pp do not coincide with those corresponding to small eigenvalues of the proper
observability Gramian QL,p. Therefore, we need to balance the system as in the previous
paragraph, i.e., generate an equivalent system for which the controllability Gramians
and the observability Gramians coincide.

De�nition 2.19:
Consider the C-stable system in (2.8), the corresponding proper and improper controlla-
bility GramiansPp andPi as de�ned in (2.18), and the proper and improper observability
Gramians QL,p and QL,i from (2.21). We call the system balanced if the Gramians ful�ll

Pp = QL,p =

[
Σ 0
0 0

]
, Pi = QL,i =

[
0 0
0 Θ

]
where Σ = diag

(
σ1, . . . , σnf

)
, and Θ = diag (θ1, . . . , θn∞). ♢

We follow the methodology presented in [91] to derive a balanced and truncated system.
Since all Gramians are symmetric and positive semi-de�nite, there exist factorizations

Pp = RpR
T
p , QL,p = ST

pSp, Pi = RiR
T
i , QL,i = ST

i Si.

We compute the singular value decompositions

SpERp = UpΣVT
p =

[
Up,1 Up,2

] [Σ1

Σ2

] [
VT

p,1

VT
p,2

]
,

SiARi = UiΘVT
i =

[
Ui,1 Ui,2

] [Θ1

0

] [
VT

i,1

VT
i,2

]
,

where Σ = diag(σ1, . . . , σn), σ1 ≥ · · · ≥ σn includes the proper Hankel singular values of
the system. The proper states that are simultaneously di�cult to reach and to observe
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correspond to the smallest Hankel singular values Σ2. We truncate the corresponding
states that lie in the spaces spanned byUp,2 andVp,2 by building the projection matrices

Vr =
[
ST
pUp,1Σ

− 1
2

1 ST
i Ui,1Θ

− 1
2

1

]
, Tr =

[
RpVp,1Σ

− 1
2

1 RiVi,1Θ
− 1

2
1

]
. (2.40)

Note that additionally improper states that correspond to zero singular values in Θ, i.e.,
the states that lie in the spaces spanned by Ui,2 and Vi,2, are truncated. Multiplying
the matrices of the system in (2.8) with singular E by Vr and Tr leads to a reduced
system (2.37) with

Er = VT
r ETr =

[
I 0

0 Ê2

]
, Ar = VT

r ATr =

[
Â1 0
0 I

]
, (2.41)

Br = VT
r B =

[
B̂1

B̂2

]
, Cr = CTr =

[
Ĉ1 Ĉ2

]
(2.42)

and with Â1 ∈ RRf×Rf and Ê2 ∈ RN∞×R∞ being nilpotent. Consequently, the reduced
system is inherently decoupled into a proper and improper reduced state. The output
error is bounded as

∥yL − yL,r∥L2 ≤ ∥GL − GL,r∥H∞∥u∥L2 ≤

2

Nf∑
k=Rf+1

σk

 ∥u∥L2 , (2.43)

where GL is the transfer function corresponding to the original system (2.8) and GL,r is
the transfer function corresponding to the reduced system (2.37).

Remark 2.20:
The BT method presented above decouples the proper and the improper states where
the proper states are reduced while for the improper states, only a minimal realization
is found. ♢

2.2.1.3 Balanced truncation for second-order systems

In this subsection, we describe BT for homogeneous systems of second-order structure
(2.23), i.e., x(0) = 0, ẋr(0) = 0, where we aim to �nd a second-order surrogate model of
the form

Mrẍr(t) +Drẋr(t) +Krxr(t) = Bru(t), xr(0) = 0, ẋr(0) = 0,

yL,r(t) = C1,rxr(t) +C2,rẋr(t)
(2.44)

with reduced matrices Mr, Dr, Kr ∈ Rr×r, Br ∈ Rr×m, C1,r, C2,r ∈ Rp×r, xr ∈ Rr, and
yL,r(t)

T ∈ Rp, r ≪ n. The reduced system (2.44) shall satisfy that ∥yL − yL,r∥ is small
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Algorithm 2 BT method for the �rst-order DAE system (2.8).

Require: The original system (2.8) and the reduced order R = Rf +R∞.
Ensure: The reduced system (2.37).
1: Compute factors of the Gramians Pp ≈ RpR

T
p , Pi ≈ RiR

T
i and QL,p ≈ ST

pSp,
QL,i ≈ ST

i Si from De�nition (2.17) and (2.20).
2: Perform the two SVDs and decompose them as

SpERp =
[
Up,1 Up,2

] [Σ1

Σ2

] [
VT

p,1

VT
p,2

]
, SiARi =

[
Ui,1 Ui,2

] [Θ1

0

] [
VT

i,1

VT
i,2

]
.

with Σ1 ∈ RRf×Rf .
3: Construct the projection matrices

Vr =
[
ST
pUp,1Σ

− 1
2

1 ST
i Ui,1Θ

− 1
2

1

]
, Tr =

[
RpVp,1Σ

− 1
2

1 RiVi,1Θ
− 1

2
1

]
.

4: Determine the reduced matrices (2.41) of the reduced system (2.37).

in an appropriate norm. To derive such a system, we build the respectively reduced
matrices using two projection matrices Tr, Wr ∈ Rn×r that ful�ll the Petrov-Galerkin
conditions from (2.30), (2.31) so that

Mr = WT
r MTr, Dr = WT

r DTr, Kr = WT
r KTr,

Br = WT
r B, C1,r = C1Tr, C2,r = C2Tr.

(2.45)

We want to emphasize that the reduction using the matrices Tr and Wr preserves the
second-order structure of the system.

To identify the states that have the least in�uence on the system dynamics and that are
truncated within this method, we derive the input energies of the second-order system
(2.23). For that, we apply the theory derived in [43, 44, 112] where we consider the �rst-
order controllability Gramian Pso corresponding to the �rst-order matrices in (2.24) as
introduced in (2.5) which has the upper-left block P11 = Ppos and the lower-right block
P22 = Pvel. We apply the Schur complement to obtain

P−1
so =

[
P11 P12

PT
12 P22

]−1

=

[
P−1

11 +P−1
11 P12S

−1PT
12P

−1
11 −P−1

11 P12S
−1

−S−1PT
12P

−1
11 S−1

]
=:

[
R11 R12

RT
12 R22

]
,

where S := P22−PT
12P

−1
11 P12. As shown in [44], this �rst-order representation is used to

derive the energy needed to reach a second-order state x(0) = x0 with a varying velocity
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at time zero ẋ(0) = ẋ0, that is

Eu(x0) = inf
u∈L2((−∞,0],Rm),
x(0)=x0,x(−∞)=0,

ẋ(−∞)=0

∫ 0

−∞
∥u(t)∥22dt =

[
xT
0 ẋT

0

] [R11 R12

RT
12 R22

] [
x0

ẋ0

]

= xT
0R11x0 + 2ẋT

0R
T
12x0 + ẋT

0R22ẋ0.

Since we choose ẋ0 to be variable, we can minimize with respect to this vector which
yields

∇ẋ0Eu(x0) = 2RT
12x0 + 2R22ẋ0,

and hence the minimal input energy is attained for ẋ0 = −R−1
22 R

T
12x0. This yields the

energy

Eu(x0) = xT
0R11x0 − xT

0R12R
−1
22 R

T
12x0 = xT

0 (R11 −R12R
−1
22 R

T
12)x0.

Inserting now the matrices R11, R12, R22 yields

Eu(x0) = xT
0P

−1
11 x0 (2.46)

where P11 = Ppos is the position controllability Gramian as de�ned in (2.26). The
equation (2.46) describes that states corresponding to small singular values of Ppos are
hard to reach while states corresponding to large singular values need only little amounts
of energies to be reached so that the eigenvalues of Ppos describe which states to truncate
in reduction methods.
To investigate the state derivative ẋ(t) in more detail, the authors in [44] determine

the energy needed to reach a velocity ẋ0 at time zero for a variable displacement at time
zero x0, which is

Eu(x0) = inf
u∈L((−∞,0],Rm),
ẋ(0)=ẋ0,ẋ(−∞)=0,

x(−∞)=0

∫ 0

−∞
∥u(t)∥22dt =

[
xT
0 ẋT

0

] [R11 R12

RT
12 R22

] [
x0

ẋ0

]

= xT
0R11x0 + 2xT

0R12ẋ0 + ẋT
0R22ẋ0.

We minimize this energy with respect to the vector x0, which yields

∇x0Eu(x0) = 2R11x0 + 2R12ẋ0

and hence the minimal input energy is attained for x0 = −R−1
22 R12ẋ0. This results in

the input energy

Eu(ẋ0) = ẋT
0R22ẋ0 − ẋT

0R
T
12R

−1
11 R12ẋ0 = ẋT

0 (R22 −RT
12R

−1
11 R12)ẋ0 = ẋT

0P
−1
22 ẋ0, (2.47)
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2.2 Model order reduction methods

where P22 = Pvel is the velocity controllability Gramian as de�ned in (2.26), and hence,
states corresponding to small eigenvalues of Pvel are hard to reach.
To investigate the output energy for second-order systems (2.23), the authors in [44]

consider the respective �rst-order observability Gramian QL as de�ned in (2.5) corre-
sponding to the �rst-order matrices (2.24). This Gramian QL includes the position
observability Gramian on its upper-left block Q11 = QL,pos and the velocity observabil-
ity Gramian on its lower-right block Q22 = QL,vel. Again, the �rst-order system analysis
from (2.33) is used to obtain the energy that is generated by a �rst-order state z0 = [ x0

ẋ0
]

that is

EyL
(z0) =

[
xT
0 ẋT

0

] [Q11 Q12

QT
12 Q22

] [
x0

ẋ0

]
= xT

0Q11x0 + 2ẋT
0Q

T
12x0 + ẋT

0Q22ẋ0.

The energy functional EyL
evaluates the output energy generated by the system if we

are at a state z0 without any input u. Since we are interested in the energy generated
by an initial state x0, we �rst set ẋ0 = 0 to evaluate the energy generated by x0 that is

EyL
(x0) = xT

0Q11x0. (2.48)

To evaluate the energy generated by an initial velocity ẋ0, the authors in [44] set x0 = 0
which yields

EyL
(ẋ0) = ẋT

0Q22ẋ0. (2.49)

The equations (2.48) and (2.49) show that states corresponding to small singular values
of Q11 and Q22 generate small amounts of observable energies while states corresponding
to large singular values de�ne the dominant observability subspaces.
Since states corresponding to small singular values of Ppos, Pvel and QL,pos, QL,vel are

hard to reach and hard to observe, respectively, we aim to truncate theses states to
generate a reduced surrogate model. For this purpose, various Gramian combinations
can be used, see [112]. As for �rst-order systems, the controllability and observability
Gramians need to coincide.

De�nition 2.21:
Consider the asymptotically stable second-order system (2.23) and the corresponding
position and velocity controllability Gramians Ppos, Pvel as de�ned in (2.26) and the ob-
servability Gramians QL,pos, QL,vel as introduced in (2.27). The system is called balanced
if it holds

P = QL = Σ

where Σ = diag (σ1, . . . , σn) is a diagonal matrix, P denotes either Ppos or Pvel, and QL

denotes QL,pos or QL,vel. ♢
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Assume that the Gramians can be factorized as P = RRT and QL = SST where R
and S are either Cholesky factors or low-rank factors of P and QL, respectively, and P
represents either the position controllability Gramian Ppos or the velocity controllability
Gramian Pvel whileQL represents either the position observability GramianQL,pos or the
velocity observability Gramian QL,vel. Considering the position Gramians, we compute
the singular value decomposition of

STR = UΣVT =
[
U1 U2

] [Σ1

Σ2

] [
V1

V2

]
which is used to de�ne the balancing transformation matrices

Wb := SUΣ− 1
2 , Tb := RVΣ− 1

2 . (2.50)

For the velocity Gramians, we proceed analogously, but we use the singular value de-
composition of STMR.
BT balances the system and truncates the states corresponding to the smallest singular

values stored in Σ. Therefore, states that are simultaneously hardest to reach and
hardest to observe are removed from the system dynamics. To do so, we de�ne the
balancing and truncating bases

Wr := SU1Σ
− 1

2
1 , Tr := RV1Σ

− 1
2

1 . (2.51)

We multiply the system matrices by the two bases WT
r and Tr to generate the reduced

matrices as shown in (2.45) and to de�ne the reduced system (2.44). Up to now, there
exists no a priori error bound for second-order BT methods.

2.2.2 Iterative rational Krylov algorithm

In this paragraph, we introduce the iterative rational Krylov algorithm (IRKA) as de-
scribed in [60] to reduce systems of the form (2.1) and extended to DAE systems in [61].
The authors in [140] derive an IRKA method for second-order systems.

2.2.2.1 IRKA for �rst-order ODE systems

Within the IRKA method, we aim to derive a reduced surrogate model (2.28) approxi-
mating the original dynamical system (2.1). To explain the IRKA method, we consider
the transfer function GL as introduced in (2.4) that encodes the input-to-output behavior
of the original system (2.1). We consider the transfer function of the reduced system
that is GL,r. From Proposition 2.6, it follows that

∥y − yr∥L∞ ≤ ∥GL − GL,r∥H2∥u∥L2
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2.2 Model order reduction methods

Algorithm 3 BT method for the second-order ODE system (2.23).

Require: The system (2.23) and the reduced order r.
Ensure: The reduced system (2.44).
1: Compute factors of the Gramians P ≈ RRT and Q ≈ SST from (2.26), (2.27).
2: Perform the SVD of STR or STMR, and decompose as

STR or STMR =
[
U1 U2

] [Σ1

Σ2

] [
VT

1

VT
2

]
,

with Σ1 ∈ Rr×r.
3: Construct the projection matrices

Wr = SU1Σ
− 1

2
1 and Tr = RV1Σ

− 1
2

1 .

4: Construct reduced matrices (2.45).

if both transfer functions live in H
p×m
2 . That bound provides that reduced outputs yr(t)

are uniformly close to y(t) over all inputs u ∈ L2([0,∞),Rm) if the transfer functions
are close in the H2-norm. Hence, we aim at constructing a reduced order model that
minimizes the H2 approximation error as follows

∥GL − GL,r∥H2 = min
dim ĜL=R

ĜL is stable

∥GL − ĜL∥H2 , (2.52)

where dim ĜL denotes the McMillan degree that is the number of the poles of ĜL. For
a given degree N rational function GL, we seek a degree R rational function GL,r that
approximates GL w.r.t. the H2-norm. This optimization problem is non-convex. There-
fore, the search for a global optimum is infeasible, so we aim to �nd local minimizers. To
solve this problem, we inspect the optimality conditions that are tangential interpolatory
conditions. In the multi-input multi-output (MIMO) case, we require that GL(s) and
GL,r(s) coincide for the interpolation points s along determined directions, the tangential
directions. We call GL,r(s) a right tangential interpolant to GL(s) at σ along the right
tangential direction b ∈ Cm if

GL(σ)b = GL,r(σ)b (2.53)

and accordingly a left tangential interpolant to GL(s) at σ along the left tangential di-
rection c ∈ Cp if

cTGL(σ) = cTGL,r(σ). (2.54)
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Also GL,r(s) is called a bitangential Hermite interpolant to GL(s) at σ along the right
tangential direction b ∈ Cm and the left tangential direction c ∈ Cp if

cTG′(σ)b = cTG′
L,r(σ)b (2.55)

where (·)′ denotes the derivative with respect to s. For a set of given interpolation points
σ1, . . . , σr, and left and right tangential directions c1, . . . , cr and b1, . . . ,br, we aim to
�nd a reduced model that matches these interpolation conditions.
For that, we aim to �nd projecting matrices Vr ∈ Rn×r and Tr ∈ Rn×r de�ning a

surrogate model (2.28) with reduced matrices (2.29) and a transfer function GL,r that
satisfy the Petrov-Galerkin orthogonality conditions (2.30) and (2.31). As described in,
e.g., [59, 60, 154], the following theorem gives a criterion for generating the reduction
bases.

Theorem 2.22:
Consider the system in (2.1) with the transfer function GL and a reduced order model
(2.28) with the respective transfer function GL,r generated by the left and right basis
Vr, Tr as described in (2.29). Assume that σ1, . . . , σR and µ1, . . . µr are right and left
interpolation points and b1, . . . ,bR and c1, . . . , cR are given right and left tangential
directions. Then the following statements hold:

a) if (σkE−A)−1Bbk ∈ range (Tr) then GL(σk)bk = GL,r(σk)bk,

b) if (µkE−A)−TCTck ∈ range (Vr) then ckGL(µk) = ckGL,r(σk),

c) if a) and b) are satis�ed at σk = µk then ckG
′
L(σk)bk = ckG

′
L,r(σk)bk

for k = 1, . . . , R. ♢

Using Theorem 2.22, we de�ne the bases Vr and Tr that satisfy the tangential interpo-
lation conditions as

Tr =
[
(σ1E−A)−1Bb1 . . . (σRE−A)−1BbR

]
,

Vr =
[
(σ1E−A)−HCHc1 . . . (σRE−A)−HCHcR

] (2.56)

for some interpolation points σ1, . . . , σR and right and left tangential directions b1, . . . ,br

and c1, . . . , cr, respectively. The reduced system and the respective transfer function
generated by these bases satisfy the interpolation conditions without computing the
interpolated values, which is a signi�cant advantage.
After presenting the interpolation of the transfer functions, we use these results to

approach the problem of �nding a H2 optimal replacement model. To do so, we consider
the pole-residue representation of the reduced transfer function GL,r(s), which is

GL,r(s) = Cr(sEr −Ar)
−1Cr =

R∑
k=1

ĉkb̂
T
k

s− λk

, (2.57)
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2.2 Model order reduction methods

where λ1, . . . , λR are assumed to be distinct poles of GL,r(s), the vectors ĉ1, . . . , ĉR and
b̂1, . . . , b̂R are the respective left and right residue directions, and ĉ1b̂

T
1 , . . . , ĉRb̂

T
R the re-

spective matrix residues of GL,r(s) at s = λ1, . . . , λR. We determine the poles and residue
directions by computing the generalized eigenvalue decomposition of λEr − Ar. Since
the dimension R is assumed to be small, the computation of the eigenvalue decomposi-
tion is feasible. To derive the optimal interpolation points and directions corresponding
to the pole-residue representation of GL,r described in (2.57), we consider the following
theorem.

Theorem 2.23:
Let GL,r in pole-residue form (2.57) be a minimizer of the optimization problem (2.52)
with respect to a transfer function GL and assume that GL,r has only simple poles
λ1, . . . , λR. Then GL,r interpolates GL and G′

L,r interpolates G′
L at −λ1, . . . ,−λR along

the right and left tangential directions b̂1, . . . , b̂R and ĉ1, . . . , ĉR, i.e.,

GL,r(−λk)b̂k =GL(−λk)b̂k, ĉTkGL,r(−λk) = ĉTkGL(−λk),

ĉTkG
′
L,r(−λk)b̂k = ĉTkG

′
L(−λk)b̂k

(2.58)

holds for k = 1, . . . , R. ♢

It follows that if the transfer function GL,r is a local minimizer of (2.52), the interpolation
conditions in (2.58) are satis�ed. Hence, to build the bases in (2.56), we use the poles
and residue direction of the reduced transfer function GL,r as interpolation points and
tangential directions. Assume that s := {s1, . . . , sR} is the set of the currently considered
expansion point and λ(s) = {λ1, . . . , λR} the resulting poles of E−1

r Ar. Then we can
de�ne the function g(s) = s + λ(s). Aside from reordering, if g(s) = 0, then the
optimization problem (2.52) is solved by the current basis, which means that GL,r(s)
corresponds to a H2-optimal reduced system (2.28). Hence, we apply Newton's method
to the function g to determine iteratively the optimal expansion points s = λ(s). This
results in the following iteration

sk+1 = sk − (I−∇sλ(s))
−1(sk − λ(sk))

where ∇sλ(s) is the Jacobian of λ(s). Since often the entries of ∇sλ(s) are small, we
set ∇sλ(s) = 0 and obtain

sk+1 = λ(sk).

This iteration de�nes the IRKA method, described in Algorithm 4.

2.2.2.2 IRKA for �rst-order DAE systems

For systems of DAE structure as de�ned in (2.8), we aim to derive a reduced system
(2.37) that approximates the input-to-output behavior described by the H2-norm of
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Algorithm 4 IRKA method for the �rst-order ODE system (2.1).

Require: The original system (2.1), maximum number of iterations Nmax, tolerance tol,
reduced dimension R.

Ensure: A reduced system (2.28) that satis�es (2.52)
1: Choose initial expansion points s1, . . . , sR, left tangential direction c1, . . . , cR and

right tangential directions b1, . . . ,bR.
2: while Iteration number ≤ Nmax and s1, . . . , sR did not converge do
3: Choose Vr and Tr so that

Tr =
[
(s1E−A)−1Bb1, . . . , (sRE−A)−1BbR

]
Vr =

[
(s1E−A)−HCHc1, . . . , (sRE−A)−HCHcR

]
.

4: Build reduced matrices as in (2.29) using Tr and Vr.
5: Compute the pole-residue expansion (2.57) of GL,r corresponding to the by Vr

and Tr reduced system (2.28).
6: Set sj = −λj, bj = b̂j and cj = ĉj, j = 1, . . . , R.
7: end while

the transfer function error. The interpolation conditions described in Theorem 2.22
for ODE system also hold for DAE systems. However, applying the IRKA method as
described in Algorithm 4 to generate a reduced system (2.37) might lead to unbounded
error measures. This is because the transfer function GL(s) corresponding to the original
system (2.8) consist of a strictly proper component GL,p(s) and a polynomial one GL,i(s)
as described in (2.16). Hence, the reduced transfer function also requires to have a
strictly proper component GL,r,p(s) and a polynomial one GL,r,i(s), with GL,i(s) = GL,r,i(s),
so that

GL(s)− GL,r(s) = GL,p(s)− GL,r,p(s) + GL,i(s)− GL,r,i(s) = GL,p(s)− GL,r,p(s).

Otherwise, the error in the transfer functions is not bounded. However, utilizing the
bases Vr and Tr determined with Algorithm 4 for the matrices of the DAE system (2.8)
is likely to lead to an ODE system (2.37) if R is smaller that the rank of E so that the
reduced transfer function has no polynomial component or a constant one if we add a
feed-through term D. Therefore, we need to maintain the polynomial component GL,i(s)
of the original transfer function GL(s). The authors in [61, 156] discuss a procedure to
generate a reduced surrogate model that preserves the polynomial system components
as described in the following theorem.

Theorem 2.24:
Consider the transfer function GL(s) = GL,p(s) + GL,i(s) corresponding to the DAE sys-
tem (2.8) where GL,p(s) is the strictly proper component and GL,i(s) the polynomial
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one, respectively. Let Pr and Pl be the spectral projectors de�ned in (2.10), and let
the columns of T∞ and V∞ span the right and left de�ating subspaces of (A,E) cor-
responding to the eigenvalues λ at in�nity, i.e., T∞ and V∞ span the same spaces as
(I − Pr) and (I − Pl). Assume that for right and left interpolation points σ1, . . . , σR

and µ1, . . . , µR the matrices σkE−A, µkE−A are invertable for k = 1, . . . , R and that
b1, . . . ,bR and c1, . . . , cR are the right and left nonzero tangent directions. Construct

TNf
=
[
(σ1E−A)−1PlBb1, . . . , (σRE−A)−1PlBbR

]
, (2.59)

VNf
=
[
(µ1E−A)−HPT

r C
Tc1, . . . , (µRE−A)−HPT

r C
TcR

]
, (2.60)

and de�ne

Tr =
[
TNf

T∞
]
, Vr =

[
VNf

V∞
]
. (2.61)

Assume that GL,r(s) = GL,r,p(s) + GL,r,i(s) is the transfer function corresponding to the
reduced system (2.37) with matrices (2.24) generated by the bases Vr and Tr, where
GL,r,p(s) is the respective strictly proper component and GL,r,i(s) is the polynomial one.
Then it holds GL,i(s) = GL,r,i(s) and a) and b) from Theorem 2.22 are ful�lled. If also
σk = µk holds for k = 1, . . . , R, then also c) from Theorem 2.22 is ful�lled. ♢

Using this theorem, we de�ne an IRKA method tailored for the �rst-order DAE system.
For that, we apply Algorithm 4 to derive TNf

and VNf
by replacing B by PlB and C

by CPr. Using these bases we derive the bases Tr and Vr as de�ned in (2.61).

2.2.2.3 IRKA for second-order ODE systems

In this paragraph, we brie�y present the iterative rational Krylov method (IRKA) suit-
able for the case of second-order systems (2.23), as introduced in [156], where we aim to
�nd a reduced system (2.44) with a transfer function

GL,r(s) := (C1,r + sC2,r)(s
2Mr + sDr +Kr)

−1Br. (2.62)

Within the IRKA approach, we determine a reduced system that maintains the second-
order structure while following an approach similar to the one for �rst-order systems.
The author in [156] derives projecting matrices Wr and Tr to construct the reduced
matrices (2.45) and the respective reduced system (2.44). However, the choice of the
projecting bases also depends on additional conditions applied to the reduced systems.
For mechanical systems (2.23), the aim is to �nd bases that preserve the symmetry and
the positive de�niteness of the mass matrix, the damping matrix, and the sti�ness matrix
to obtain an asymptotically stable reduced system. Hence, we set Vr = Tr = Wr. Also,
the reduced system is supposed to be of second-order structure. Hence, the methods
presented in [140, 156], the authors generate a reduced transfer function of the structure
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Algorithm 5 IRKA method for the �rst-order DAE system (2.8).

Require: The original system (2.8), maximum number of iterations Nmax, tolerance tol,
reduced dimension R.

Ensure: A reduced system (2.37) that satis�es (2.52)
1: Choose initial expansion points s1, . . . , sR, left tangential direction c1, . . . , cR and

right tangential directions b1, . . . ,bR.
2: while s did not converge do
3: Choose Tr =

[
TNf

T∞
]
and Vr =

[
VNf

V∞
]
, where

TNf
=
[
(σ1E−A)−1PlBb1, . . . , (σRE−A)−1PlBbR

]
VNf

=
[
(µ1E−A)−HPrC

Hc1, . . . , (µRE−A)−HPrC
HcR

]
and T∞, V∞ are chosen so that they span the right and left de�ating subspaces of
(A,E) corresponding to λ = ∞.

4: Build reduced matrices as in (2.29) using Vr and Tr.
5: Compute the pole-residue expansion (2.57) of GL,r,p corresponding to the by VNf

and TNf
reduced system (2.37).

6: Set sj = −λj, bj = b̂j and cj = ĉj, j = 1, . . . , R.
7: end while
8: Build reduced matrices as in (2.29) using Tr and Vr.

shown in (2.62) that represents a second-order system (2.44). For that, they use a
one-sided projection approach that generates a basis Vr with

Vr =
[
(s21M+ s1D+K)−1Bb1 . . . (s2rM+ srD+K)−1Bbr

]
, (2.63)

for interpolation points s1, . . . , sr and tangential directions b1, . . . ,br. The interpolation
points and tangential directions are updated in each step of the method. After a basis
Vr is built, the reduced matrices, which correspond to a reduced second-order system
with a transfer function of order 2r, are built. Since this order is twice the dimension we
aim for, we apply an internal reduction step. By applying a second IRKA or BT method
to the system de�ned by the matrices in (2.45), we obtain a reduced-order system of
dimension r with a transfer function GL,r. We determine the respective poles and residues
to obtain the interpolation points and tangential directions, which are used in the next
step to derive the basis Vr and the respective reduced system. This procedure results
in Algorithm 6 from [140].
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Algorithm 6 IRKA method for the second-order ODE system (2.23).

Require: The original system (2.23), maximum number of iterations Nmax, tolerance
tol, reduced dimension r.

Ensure: A reduced system (2.44) that satis�es (2.58).
1: Choose initial expansion points s1, . . . , sr and right tangential directions b1, . . . ,br.
2: while Iteration number ≤ Nmax and s1, . . . , sr did not converge do
3: Set

Vr =
[
(s21M+ s1D+K)−1Bb1 . . . (s2rM+ srD+K)−1Bbr

]
.

4: Determine reduced matrices as in (2.45).
5: Compute the pole-residue expansion (2.57) of GL,r corresponding to the reduced

system (2.44).
6: Determine new interpolation points and tangential directions

s1, . . . , sr = −λ1, . . . ,−λr, b1, . . . ,br = b̂1, . . . , b̂r.

7: end while
8: Determine reduced matrices as in (2.45).

2.3 Lyapunov equations

As shown in Section 2.2.1, we need to solve certain Lyapunov equations to compute the
Gramians of the respective system. Hence, this section we aim to solve the Lyapunov
equations from (2.6) and the projected Lyapunov equations from (2.19), where we fo-
cus on the controllability case while the observability Lyapunov equations are solved
similarly. There are multiple methods to solve this kind of equation. If the matrix di-
mensions are su�ciently small, we use Hammarling's method [65] or the Bartels-Steward
algorithm [11]. However, these methods are unfeasible if the matrix dimensions are large.
In this case, the alternating-direction implicit (ADI) method [80, 83, 87, 101], the sign
function method [27] and Krylov subspace methods [72, 123, 125] are the state of the
art. Those methods require that the system representation is sparse. An overview and
comparison of those methods is given in [29, 47, 124].

Since we consider in this section Lyapunov equations, including system matrices (2.24)
corresponding to a mechanical system of the structure (2.1.3), we can exploit the struc-
ture of these matrices in the following. Therefore, we consider a decomposition of the
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matrix E−1A that is

E−1A = Ã− ŨGṼT, with

Ã :=

[
0 I

−M−1K −M−1Dint

]
, Ũ :=

[
0

M−1F

]
, Ṽ :=

[
0
F

]
, (2.64)

with D = Dint + FGFT, into a sparse matrix Ã and into a low-rank matrix ŨGṼT.
In this work, the methods of choice are the alternating direction implicit (ADI)

method, introduced in Section 2.3.1, and the sign function method shown in Section 2.3.2,
which are both iterative methods that derive the solution of Lyapunov equations that
can make use of the decomposition (2.64) to decrease their computational costs.

2.3.1 Alternating direction implicit method

In this subsection, the alternating direction implicit method (ADI) from [80, 102] is pre-
sented. This method is applied in this manuscript to solve ordinary Lyapunov equations
as de�ned in (2.6) and projected Lyapunov equations (2.19) that arise when considering
DAE systems. The author in [80] has also derived an ADI method for second-order sys-
tems, which we omit in this work as it converges too slowly in the considered problem
setting.

2.3.1.1 ADI method for classic Lyapunov equations

We aim to compute the solution P of the Lyapunov equation (2.6) of large dimension.
To do so, we utilize that this Lyapunov equation is equivalent to the Stein equation

P = T(p)S(p)PS(p)HT(p)H − 2
√

Re(p)S(p)BBTS(p)H. (2.65)

for S(p) := (A + pE)−1 and T(p) := (A − pE). We choose several shift parameters
p1, . . . , pℓ ∈ C− so that the spectral radius

ρ (T(pk)S(pk)) < 1

is as small as possible for all k = 1, . . . , ℓ, and obtain the resulting ADI iteration

P0 := 0,

Pk := T(pk)S(pk)Pk−1S(pk)
HT(pk)

H − 2Re(pk)S(pk)BBTS(pk)
H.

(2.66)

Since the right-hand side of the Lyapunov equation consists of the low-rank factor B
with a dimension m ≪ N , the solution P can be well-approximated by P ≈ ZZT with
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the tall and skinny matrix Z ∈ CN×NZ , NZ ≪ N . Hence, by introducing Pk = ZkZ
T
k ,

the iteration (2.66) is equal to

Zk :=
[
Zk−1 −

√
2Re(pk)Vk

]
, Z0 := [ ],

Vk := Vk−1 − (pk + pk−1)S(pk)EVk−1 = S(pk)Wk−1,

Wk := Wk−1 − 2Re(pk)EVk, W0 := B,

where Z0 is an empty matrix. Using the decomposition from (2.64) we compute the
inverse of (A + pkE) e�ciently by applying the Sherman-Morrison-Woodbury formula
as

S(pk) = (A+ pkE)
−1

=
(
Ã+ pkI− ŨGṼT

)−1

E−1

=
(
(Ã+ pkI)

−1

+ (Ã+ pkI)
−1Ũ

(
G−1 − ṼT(Ã+ pkI)

−1Ũ
)−1

ṼT(Ã+ pkI)
−1
)
E−1

with matrices de�ned in (2.64). Since Ã+ pkI and E are easy to invert and Ũ, Ṽ are of
small dimension, this structure accelerates the computation of S(pk).
One can show that the norm of the residual after the k-th step Rk = APkE

T +
EPkA

T + BBT is given by ∥Rk∥ = ∥WH
k Wk∥, and hence, the residual is used as a

stopping criterion that does not require additional computational costs.
If we require a real-valued approximation of P, the shifts have to occur in pairs of

complex conjugate shifts, i.e., if pk ∈ C− \R then pk+1 = pk. In that case one can show,
that the (k + 1)-st iterates Vk+1 and Wk+1 are equal to

Vk+1 := Vk + 2
Re(pk)

Im(pk)
Im(Vk),

Wk+1 := Wk−1 − 4Re(pk)E

(
Re(Vk) +

Re(pk)

Im(pk)
Im(Vk)

)
.

The remaining task is to determine the shift parameters p1, . . . , pℓ where we use the
self-generating shifts presented in [24]. The main idea of these shifts is that we generate
the Ritz values from certain spaces. For that, we assume that we have an orthonormal
basis U ∈ Rn×nU so that the shifts are

{p1, . . . , pℓ} = Λ(UTAU) ∩ C−.

The initial shifts are generated using a �rst basis U that spans the columns of the low-
rank factors of the right-hand side B. For the next iteration steps �assume we are in
the k-th step of the iteration� we use a basis U that ful�lls

span(U) = span(Vk) or span(U) = span(Re(Vk), Im(Vk)).
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If the dimension of Vk is not large enough to generate a required number of shift pa-
rameters, the columns of the previous iterates Vk−1, Vk−2, . . . can be used. This ADI
procedure, including the displacement parameters, is implemented in [114] and is used
in this work for the various numerical examples.

2.3.1.2 ADI method for projected Lyapunov equations

This subsection aims to present numerical techniques to solve the projected Lyapunov
equations (2.19) and (2.22) to approximate the Gramians of system (2.1) with the sin-
gular matrix E. We utilize the ADI method to solve the projected continuous-time
Lyapunov equations and the generalized Smith method to solve the discrete-time Lya-
punov equations.
Here, we follow the ideas of [133] to derive an equation equivalent to the projected

continuous-time Lyapunov equation (2.19). First, we extend the Stein equation from
(2.65) to the projected Lyapunov equation as shown in the following lemma.

Lemma 2.25 ([133]):
Let the matrix pencil sE − A with E, A ∈ RN×N be regular. Let further the matrix
A be nonsingular and B ∈ RN×m. Assume that the left and right spectral projectors
onto the �nite spectrum of sE−A from (2.10) are denoted by Pl, Pr ∈ RN×N . If p ∈ C
is not an eigenvalue of the pencil sA − E, then the projected discrete-time Lyapunov
equation

Pp = S(p)R(p)PpR(p)HS(p)H−2Re(p)S(p)PlBBTPT
l S(p)

H, Pp = PrPpP
T
r (2.67)

with S(p) := (E+pA)−1 and R(p) := (E−pA) is equivalent to the projected continuous-
time Lyapunov equation (2.19), i. e., their solution sets coincide. ♢

The projected Stein equation (2.67) motivates the ADI iteration similar to (2.66) that
is

P0 := 0,

Pk := S(pk)R(pk)Pk−1R(pk)
HS(pk)

H − 2Re(pk)S(pk)PlBBTPT
l S(pk)

H.
(2.68)

As shown in [133], given a sequence of shift parameters (pk)k≥0 in C− with pk+ℓ = pk for
some ℓ ≥ 1 and all k = 0, 1, 2, . . ., the iteration (2.68) converges to the solution Pp of
the projected Lyapunov equation (2.19).
To work with the ADI iteration more e�ciently, we aim to compute low-rank factors of

Pp, i.e., we aim to determine a tall and skinny matrix Z ∈ CN×NZ , NZ ≪ N , such that
Pp ≈ ZZH. We can represent the iteration (2.68) by the low-rank factors of Pk = ZkZ

H
k

with

Zk =
[
κ(pk)S(pk)PlB S(pk)R(pk)Zk−1

]
=
[
κ(pk)S(pk)PlB κ(pk−1)S(pk)R(pk)S(pk−1)PlB

. . . κ(p1)S(pk)R(pk) · . . . · S(p2)R(p2)S(p1)PlB
]
,
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2.3 Lyapunov equations

where κ(pk) =
√

−Re(pk) and Z0 is chosen to be an empty matrix in RN×0. We note
that the following properties hold for all j, k = 0, 1, . . .:

S(pk)AS(pj) = S(pj)AS(pk), R(pk)A
−1R(pj) = R(pj)A

−1R(pk),

S(pk)R(pj) = A−1R(pj)S(pk)A.
(2.69)

We further de�ne

B0 := κ(pk)S(pk)PlB and Fj :=
κ(pj)

κ(pj−1)
S(pj)R(pj+1), j = 1, . . . , k.

Using (2.69), we obtain

Zk =
[
B0 Fk−1B0 . . . F1 · . . . ·Fk−1B0

]
.

It remains to solve the discrete-time Lvapunov equation (2.19). Under the assumption
that A is nonsingular, (2.19) is equivalent to the transformed discrete-time Lyapunov
equation

Pi −A−1EPiE
TA−T = A−1(IN −Pl)BBT(IN −Pl)

TA−T, 0 = PrPiP
T
r .

This equation is solved using the Smith method [133]. SinceA−1(I−Pl) = (IN−Pr)A
−1

and the matrix (IN −Pr)A
−1E = A−1E(IN −Pr) is nilpotent with the nilpotency index

ν, the iteration stops after ν steps. The Smith method then leads to the unique solution

Pi =
ν−1∑
k=0

(A−1E)k(IN −Pr)A
−1BBTA−T(IN −Pr)

T((A−1E)T)k.

Instead of computing the full matrix Pi we can also generate the low-rank factors Pi =
YYT as

Y =
[
(I−Pr)A

−1B A−1E(I−Pr)A
−1B . . . (A−1E)ν−1(I −Pr)A

−1B
]
.

2.3.2 Sign function method

As a second Lyapunov equation-solving method, we consider the sign function method
introduced in [27] and extended for system structures that appear in this work by [46].

2.3.2.1 Sign function method for classic Lyapunov equations

To describe the sign function method, we �rst de�ne the sign function for an arbitrary,
quadratic matrix A.
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De�nition 2.26:
For a matrix A ∈ Rn×n with Λ(A) ∩ iR = ∅ and a Jordan decomposition A = ZJZ−1

with J = diag (J−, J+), J− ∈ Cn−×n− , Λ(J−) ⊂ C− and J+ ∈ Cn+×n+ , Λ(J+) ⊂ C+,
the sign function of A is de�ned as

sign(A) := Z

[
−In− 0
0 In+

]
Z−1.

The sign function of a matrix is unique and independent of the eigenvalue order of the
Jordan decomposition. ♢

The sign function is computed by applying Newton's method:

A0 := A, Ak+1 =
1

2
ckAk +

1

2ck
A−1

k → sign(A) (2.70)

where ck denotes acceleration factor which is chosen to be ck =
√
∥A−1

k ∥F∥Ak∥−1
F within

this work. The convergence of this method is shown in [113].
Within the sign function method, the authors in [46] utilize the structure introduced in

(2.64) to solve the Lyapunov equations more e�ciently. Additionally, we notice that the
solution P can be approximated by the low-rank factor Z ∈ RN×NZ with P ≈ ZZT due
to the structure of the right-hand side of the corresponding Lyapunov equation (2.19).
Hence, this subsection aims to determine the low-rank factor Z that approximately
solves the Lyapunov equation (2.19). We exploit the fact that this Lyapunov equation
is equivalent to[

I 0
−P I

] [
AT 0
0 −A

] [
I 0
P I

]
=

[
AT 0

BBT −A

]
=: W and that sign(W) =

[
−I 0
2P I

]
.

We observe that the sign function of W provides the solution P ≈ ZZT of the Lyapunov
equation (2.19) with E = I in its lower left block. We apply Newton's method described
in equation (2.70) to compute sign(W). We set A0 := A and B0 := B to obtain the
following iterations:

Ak+1 =
1

2

(
ckAk +

1

ck
A−1

k

)
, Bk+1 =

1√
2

[
√
ckBk,

1
√
ck
A−1

k Bk

]
, (2.71)

where Bk converges to 1√
2
Z.

In order to improve the e�ciency while computing the inverse A−1 we make use of the
decomposition presented in equation (2.64) and apply the Sherman-Morrison-Woodbury
formula as described in [46] to obtain

Ak+1 =
1

2
ckAk +

1

2ck
A−1

k = Ãk+1 − Ũk+1Gk+1Ṽ
T
k+1,
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with

Ãk+1 =
1

2

(
ckÃk +

1

ck
Ã

−1

k

)
, Ũk+1 =

[
Ũk, Ã

−1

k Ũk

]
, Ṽk+1 =

[
Ṽk, Ã

−T

k Ṽk

]
,

Gk+1 =
1

2
diag

(
ckGk, −

1

ck
(G−1

k − ṼT
k Ã

−1

k Ũk)
−1

)
.

We stop this method if ∥Ak + I∥2 ≤ tol since Ak converges to −I, or if a maximum
number of iterations itermax is exceeded. The disadvantage of this method is the high
growth rate of the dimension of the low-rank factor Zk. Therefore, even with internal
truncation techniques, the method must converge after a few steps, stop, or become slow
when calculating the next steps.

2.3.2.2 Sign function method for projected Lyapunov equations

As described in [132], the sign function method can be extended for projected Lyapunov
equations of the form (2.19). If the matrix pencil (A,E) is C-stable, i.e., all respective
�nite eigenvalues have a negative real part, then the WCF presented in (2.11) contains
a nilpotent matrix N and a matrix J that also only has eigenvalues with a negative
real part, according to [54, 132] . We make use of this decomposition to derive a sign
function extension for projected Lyapunov equations with an arbitrary nilpotency index
ν corresponding to N. For that, we need to remove the N matrix from the iteration
by multiplying the matrix E from the left or right by the projecting matrices Pl or Pr

from (2.10), respectively, and apply Newton's method from (2.71). To avoid that Ak

converges to a singular matrix we add an additional summand (I − Pl)A(I − Pr) that
does not a�ect the method. This leads to the generalized iteration as introduced by
[132]:

A0 := A, P0 = PlBBTPT
l ,

Ak :=
1

2ck

(
Ak−1 + c2kPlEA

−1
k−1E

TPr + (2ck − 1)(I−Pl)A(I−Pr))
)
= W

[
J−
k 0
0 I

]
T,

Pk =
1

2ck

(
Pk−1 + c2kEA

−1
k Pk−1A

−T
k ET

)
.

It holds that Pk = PrPkP
T
r and that limk→∞A−T

k PkA
−1
k = 2Pp with Pp = PlPpPl.

Also it holds that limk→∞Ak = −EPr+A(I−Pr), which results in the stopping criterion

∥Ak + EPr −A(I−Pr)∥ ≤ tol.

When we aim to �nd low-rank factors Zp ∈ RN×NZ with Pp ≈ ZpZ
T
p , the iteration of

Pk can be replaced by

Bk :=
1√
2ck

[
Bk−1 ckEA

−1
k Bk−1

]
, B0 := PlB

with limk→∞A−1
k Bk =

√
2Zp.

49





CHAPTER 3

INHOMOGENEOUS SYSTEMS AND THEIR SYSTEM
THEORETICAL ASPECTS

Contents

3.1 Inhomogeneous �rst-order ODE systems . . . . . . . . . . . . . . . . . . 53
3.1.1 Inhomogeneous �rst-order ODE systems with a linear output . . . 54

3.1.1.1 Multi-system approach for inhomogeneous �rst-order ODE
systems with a linear output . . . . . . . . . . . . . . . . 54

3.1.1.2 Extended-input approach for inhomogeneous �rst-order
ODE systems with a linear output . . . . . . . . . . . . 59

3.1.2 Inhomogeneous �rst-order ODE systems with a quadratic output 63
3.1.2.1 Multi-system approach for inhomogeneous �rst-order ODE

systems with a quadratic output . . . . . . . . . . . . . 64
3.1.2.2 Extended-input approach for inhomogeneous �rst-order

ODE systems with a quadratic output . . . . . . . . . . 71
3.2 Inhomogeneous �rst-order DAE systems . . . . . . . . . . . . . . . . . . 74

3.2.1 Inhomogeneous �rst-order DAE systems with a linear output . . . 75
3.2.1.1 Multi-system approach for inhomogeneous �rst-order DAE

systems with a linear output . . . . . . . . . . . . . . . . 77
3.2.1.2 Extended-input approach for inhomogeneous �rst-order

DAE systems with a linear output . . . . . . . . . . . . 85
3.2.2 Inhomogeneous �rst-order DAE systems with a quadratic output . 89

3.2.2.1 Multi-system approach for inhomogeneous �rst-order DAE
systems with a quadratic output . . . . . . . . . . . . . 91

3.2.2.2 Extended-input approach for inhomogeneous �rst-order
DAE systems with a quadratic output . . . . . . . . . . 91

3.3 Inhomogeneous second-order ODE systems . . . . . . . . . . . . . . . . . 105
3.3.1 Inhomogeneous second-order ODE systems with a linear output . 106

3.3.1.1 Multi-system approach for inhomogeneous second-order
ODE systems with a linear output . . . . . . . . . . . . 107

51



3 Inhomogeneous systems and their system theoretical aspects
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The analysis of the dynamical systems presented in Chapter 1 can provide an under-
standing of their behavior and is therefore used to identify the most signi�cant system
components. In Section 2.1, the properties of homogeneous systems with linear output
equations investigated in established literature were repeated. In this work, however, we
deal with inhomogeneous systems that are evaluated using linear and quadratic output
equations. Therefore, in this chapter, we extend the concepts of Section 2.1.
For �rst-order systems with an ODE as a state equation and inhomogeneous initial

conditions, some methods have already been developed in [13, 15, 66, 121]. In [13], the
authors propose to shift the state by the initial condition z0, i.e., the new state is given
as z̃(t) := z(t)−z0. In this way, the initial condition is included in the input and output
equations and thus is taken into account in the reduction process. In [66], the input
Bu(t) is extended by the initial condition space Z0, i.e., z0 = Z0ζ0. More precisely, a
new input matrix B̃ := [B Z0] and a new input [u(t)T ζT0 ]

T are de�ned such that the
initial condition is taken into account using reduction techniques. In [15], the author's
strategy is to decompose the system into one with no initial conditions and one with
initial conditions but no input. The sum of the two corresponding outputs is equal to
the original output. This superposition is used to reduce these two systems separately.
Extensions of that methodology for the class of bilinear systems are proposed in [42] and
[110], based on di�erent splittings. A recent approach [121] introduces a new balanced
truncation method based on the shift transformation of the state. This transformation
depends on designing parameters that allow some �exibility and the generalization of
the methods proposed in [66] and [15]. In addition, these parameters can be optimized,
leading to accurate reduced-order models.
In this chapter, the superposition ideas from [15] and the extended-input approach

from [66] are extended to the system classes that are relevant to this work. The in-
troduction of the controllability and observability spaces and the respective Gramians
are novelties of this manuscript, which are used in the remaining chapters to reduce the
systems of the respective structures. Many of these systems have never been analyzed
in the literature, so the theory in this chapter is a valuable addition to existing theories.
Especially for systems with a quadratic output equation and those with inhomoge-

neous initial conditions, new de�nitions are derived, which are relevant for the rest of
this thesis. Hence, the main contributions of this chapter are the de�nition of transfer
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functions describing the input-to-output behavior and the respective tailored controlla-
bility and observability Gramians for systems in non-standard form, which also take into
account the e�ects of initial conditions on the system dynamics. In particular, �rst-order
ODE systems with quadratic output equations, �rst-order DAE systems with linear and
quadratic initial equations, and second-order systems with linear and quadratic initial
equations have not been studied until now in the literature. Therefore, these Gramian
derivatives are a signi�cant contribution to the analysis of dynamical systems. The en-
ergy expressions derived in this chapter also provide the basis for the reduction methods
applied later in this manuscript. The concepts presented in this chapter are partially
published in [106].
This chapter is structured as follows. In Section 3.1, we repeat and extend the theory

to �rst-order systems with an ODE as state equation. Afterwards, in Section 3.2, we
introduce di�erent methods for �rst-order systems with DAEs as state equations, and
�nally, in Section 3.3, we analyze systems with a second-order structure.

3.1 Inhomogeneous �rst-order ODE systems

In this section, we consider �rst-order systems with a state equation

Eż(t) = Az(t) +Bu(t), z(0) = z0 (3.1)

with E, A ∈ RN×N , and B ∈ RN×m. The matrix E is assumed to be nonsingular, so
we consider an ODE as state equation. The vectors z(t) ∈ RN and u(t) ∈ Rm denote
the state and the input, respectively. These systems arise when modeling mechanical
systems, as described in the introduction, but also in circuit simulation, heat transfer
simulations, �uid simulations, and several biological and chemical �elds of application.
Examples are shown, e.g., in [38, 45, 158]. The solution trajectory of the dynamical
system (3.1) is given as

z(t) =

∫ t

0

eE
−1A(t−τ)E−1Bu(τ)dτ + eE

−1Atz0. (3.2)

We observe that the state z(t) = zB(t) + zZ0
(t) consists of two components, one corre-

sponding to the input and one that results from the initial condition, that are

zB(t) :=

∫ t

0

eE
−1A(t−τ)E−1Bu(τ)dτ and zZ0

(t) := eE
−1Atz0, (3.3)

respectively.
We assume that there exists a matrix Z0 ∈ RN×NZ0 , NZ0

∈ N+, so that all admissible
initial conditions satisfy

z(0) = z0 = Z0ζ0 (3.4)
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GL

u

z0

yL

Figure 3.1: Structure of a �rst-order ODE system with a linear output.

for a vector ζ0 ∈ RNZ0 , i.e., all possible initial states z0 lie in the space spanned by the
matrix Z0. This assumption allows us to analyze all the initial conditions collectively.
In this section, we consider systems with a linear output equation and those with a

quadratic one separately. First, in Section 3.1.1, systems with linear output equations are
considered, where we mainly repeat the concepts presented in [15] and [66]. Afterwards,
in Section 3.1.2, this theory is extended to systems with a quadratic output equation.

3.1.1 Inhomogeneous �rst-order ODE systems with a linear

output

We consider the �rst-order system with a linear output equation of the form

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yL(t) = Cz(t),
(3.5)

including a state equation (3.1), an output matrix C ∈ Rq×N , and an output yL(t) ∈ Rq.
The corresponding system structure is depicted in Figure 3.1, where we see that the
system, denoted by GL, receives an input u and an initial state z0 to generate an output
yL.
We review two concepts that treat the inhomogeneous initial conditions in this sub-

section. The �rst one is explained in Section 3.1.1.1 and was introduced in [15], where
the system (3.5) is decomposed into two subsystems, one including the input-to-output
behavior and one including the initial condition-to-output behavior. These two systems
are then analyzed separately. The second approach, discussed in Section 3.1.1.2, derives
a surrogate model that incorporates the initial conditions into the input that is analyzed
instead of the original system, see [66].

3.1.1.1 Multi-system approach for inhomogeneous �rst-order ODE systems

with a linear output

We describe the multi-system approach, introduced in [15], where the authors utilize
the superposition principle to derive two subsystems that describe the input- and initial
condition-to-output behavior. This approach has the advantage that the subsystems can
be analyzed and reduced separately. When applying reduction techniques, the reduced
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dimensions can, therefore, be chosen more �exibly so that the user can ensure that all
the required information is preserved during the reduction, i.e., the reduced systems
are accurate enough but also choose dimensions that are as small as possible. In the
following, we repeat the steps of this approach, which will be extended to di�erent system
structures throughout this work.

Transfer function To derive an input-to-output mapping that describes the system
dynamics, we investigate the system in its frequency-domain representation. Therefore,
we consider the state components zB(t) and zZ0

(t) from (3.3) and apply the Laplace
transform, which yields

ZB(s) := (sE−A)−1B and ZZ0
(s) := (sE−A)−1EZ0. (3.6)

Applying the Laplace transform to the output yL(t) from (3.5) and inserting ZB(s) and
ZZ0

(s) from (3.6) results in the output YL(s) = YL,B(s) + YL,Z0
(s), where YL is the

Laplace transform of the linear output yL and

YL,B(s) := C(sE−A)−1BU(s) and YL,Z0
(s) := C(sE−A)−1Z0ζ0

are the two output components in the frequency domain that correspond to the input
and the initial state, respectively. From these two outputs, we can extract the respective
input- and initial condition-to-output mappings, leading to the following de�nition.

De�nition 3.1:
Consider the asymptotically stable system (3.5) with an initial condition as de�ned in
(3.4). Then the transfer functions corresponding to this system are de�ned as

GL,B(s) := C(sE−A)−1B and GL,Z0
(s) := C(sE−A)−1EZ0. (3.7)

♢

The �rst transfer function GL,B(s) has the homogeneous system representation

EżB(t) = AzB(t) +Bu(t), zB(0) = 0,

yL,B(t) = CzB(t),
(3.8)

which coincides with the system considered in (2.1). The second transfer function
GL,Z0

(s) corresponds the system

EżZ0
(t) = AzZ0

(t), zZ0
(0) = Z0ζ0,

yL,Z0
(t) = CzZ0

(t).
(3.9)

As depicted in Figure 3.2, the sum of the two outputs coincides with the output of the
original system. In the following, we make use of this superposition and study the two
systems (3.8) and (3.9) separately. Therefore, we derive the respective controllability
and observability Gramians that encode the controllability and observability behavior.
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GL,Z0

z0 yZ0

GL,B
u yB

+ yL

Figure 3.2: Structure of two separated �rst-order ODE systems with a linear output.

Controllability Gramian To describe the controllability behavior of the system (3.8),
we consider its state equation with the respective input-to-state mapping that is given
as

cB(t) := eE
−1AtE−1B. (3.10)

This mapping encodes all reachable states and can, therefore, be used to de�ne a matrix
PB :=

∫∞
0

cB(t)cB(t)
Tdt that spans the overall controllability space by integrating over

the whole time domain.

De�nition 3.2:
Consider the asymptotically stable system (3.8). The controllability Gramian is de�ned
as

PB :=

∫ ∞

0

eE
−1AtE−1BBTE−Te(E

−1A)Ttdt. (3.11)
♢

The controllability Gramian PB spans the controllability space of system (3.8), i.e., every
reachable state of this system lies in the space, spanned by PB. Consequently, if PB

has full rank, then the system is controllable. As shown in (2.6), the Gramian PB is
computed by solving the Lyapunov equation

EPBA
T +APBE

T = −BBT. (3.12)

Analogously, we extract the initial condition-to-state mapping from the system in
(3.9) that is

cZ0
(t) := eE

−1AtZ0. (3.13)

This mapping encodes all reachable states resulting from initial conditions, lying in a
space spanned by Z0. Hence, evaluating this mapping over the entire time domain leads
to a matrix PZ0

:=
∫∞
0

cZ0
(t)cZ0

(t)Tdt that spans the respective reachability space.
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De�nition 3.3:
Consider the asymptotically stable system in (3.9). The corresponding controllability
Gramian is de�ned as

PZ0
:=

∫ ∞

0

eE
−1AtZ0Z

T
0 e

(E−1A)Ttdt. (3.14)
♢

Again, we compute the Gramians PZ0
by solving the Lyapunov equation

EPZ0
AT +APZ0

ET = −EZ0Z
T
0E

T. (3.15)

Observability Gramian To describe the observability behavior of the two subsystems
(3.8) and (3.9), we �rst note that their observability behavior coincides. The correspond-
ing state-to-output mapping is de�ned as

oL(t) := CeE
−1AtE−1. (3.16)

This mapping describes the observability behavior of the respective systems and is there-
fore used to de�ne a matrix QL :=

∫∞
0

oL(t)
ToL(t)dt that spans the observability space.

De�nition 3.4:
Consider the asymptotically stable systems (3.8) and (3.9). Then, the corresponding
observability Gramian is de�ned as

QL :=

∫ ∞

0

E−Te(E
−1A)TtCTCeE

−1AtE−1dt. (3.17)
♢

As shown in (2.6), one can compute the observability Gramian QL by solving a Lyapunov
equation

ETQLA+ATQLE = −CTC. (3.18)

The Gramians introduced above describe the controllability and observability of the
two subsystems (3.8) and (3.9). They are, therefore, used to identify states with sig-
ni�cant in�uence on the system dynamics, which comprise the dominant controllability
and observability subspaces. Therefore, we evaluate the system energies corresponding
to the input- and initial condition-to-state mappings and the state-to-output mapping.
We consider the controllability and observability energies separately.

Controllability Energies First, we analyze the controllability energies of the two sub-
systems (3.8) and (3.9). For that, we investigate the input-to-state mappings cB and
cZ0

that are de�ned in (3.10) and (3.13), respectively. They describe the overall system

57



3 Inhomogeneous systems and their system theoretical aspects

behavior so that evaluating their energy norms leads to an energy measure that can be
used to identify the most dominant controllability subspaces.
We de�ne the energy norm of a function c ∈ L2([0,∞),RN×m) as

E(c) := ∥c∥2L2([0,∞),RN×m) =

∫ ∞

0

tr
(
c(t)c(t)T

)
dt. (3.19)

Accordingly, the energy norm encoding the controllability energy of subsystem (3.8) is
given as

E(cB) = ∥cB∥2L2([0,∞),RN×m) =

∫ ∞

0

tr
(
cB(t)cB(t)

T
)
dt = tr(PB) . (3.20)

On the other hand, the energy norm corresponding to system (3.9) is described by

E(cZ0
) = ∥cZ0

∥2
L2([0,∞),RN×NZ0 )

=

∫ ∞

0

tr
(
cZ0

(t)cZ0
(t)T

)
dt = tr(PZ0

) . (3.21)

For a symmetric matrix P it holds that tr(P) = σ1 + · · · + σN for the eigenvalues
σ1 ≥ · · · ≥ σN ≥ 0 of P. Since the two Gramians PB and PZ0

are by de�nition
symmetric, it follows from (3.20) and (3.21) that the largest eigenvalues of PB and PZ0

have the most e�ect on the system dynamics. Therefore, the states corresponding to the
largest eigenvalues of PB and PZ0

span the most dominant controllability subspaces.

Observability energies In this paragraph, we aim to analyze the observability energies
of the two subsystems (3.8) and (3.9) to identify the most observable states that span the
dominant observability spaces. To provide an energy measure describing the observabil-
ity properties of the two subsystems, we evaluate the energy norm of the state-to-output
mapping oL de�ned in (3.16) according to (3.19), which is

E(oL) = ∥oL∥2L2([0,∞),Rp×N ) =

∫ ∞

0

tr
(
oL(t)

ToL(t)
)
dt = tr(QL) . (3.22)

Since the mapping oL encodes the observability of all states z(t), the evaluation of its
energy norm describes the observability properties of the respective systems. Since the
trace of the Gramian is equal to the sum of its eigenvalues, the states corresponding to
the largest eigenvalues of QL span the most dominant observability subspace. Moreover,
the eigenvalues of the Gramian QL that are small have the least in�uence on the sys-
tem. Hence, the corresponding states are neglectable for the system dynamics and are
truncated in the model reduction procedures.
In this paragraph, we derived two subsystems that encode the input- and initial

condition-to-output behavior represented by their transfer functions. Moreover, we
derived respective controllability and observability Gramians and the resulting energy
norms, which are summarized Table 3.1.
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System (3.8) System (3.9)

Transfer function GL,B(s) GL,Z0
(s)

Controllability Gramian PB PZ0

Observability Gramian QL QL

Controllability energies E(cB) = tr(PB) E(cZ0
) = tr(PZ0

)

Observability energies E(oL) = tr(QL) E(oL) = tr(QL)

Table 3.1: Properties of system (3.5) corresponding to its multi-system representation.

3.1.1.2 Extended-input approach for inhomogeneous �rst-order ODE systems

with a linear output

In this section, we consider a di�erent approach to include the initial conditions in the
analysis of the system dynamics. We describe the method presented in [66], where the
authors add the initial conditions space to the input matrix. As a result, the respective
initial conditions space is taken into account when describing the controllability space.

Transfer functions First, we consider the state of the system in the frequency domain.
Therefore, we apply the Laplace transform to the state z(t) from (3.2), which yields

Z(s) = (sE−A)−1 (BU(s) + EZ0ζ0) = (sE−A)−1WŨ(s), (3.23)

for an extended input matrix and an output de�ned as

W :=
[
B EZ0

]
and Ũ(s) :=

[
U(s)
ζ0

]
, (3.24)

respectively. Using the state expression from (3.23), we derive the input- and initial
condition-to-output mapping of the original system (3.5). To do so, we apply the Laplace
transform to the linear output equation in (3.5) and insert the state Z(s) from (3.23),
which results in the output

YL(s) = C(sE−A)−1WŨ(s). (3.25)

We observe that the output YL(s) is of the same structure as the output in (2.3) that
describes a homogeneous system. Hence, the same theoretical considerations apply,
while the matrix W spans both the input space and the initial condition space. From
the output YL(s) in (3.25), we derive the input-to-output mapping as de�ned in the
following.
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3 Inhomogeneous systems and their system theoretical aspects

GL,W
ũ yL

Figure 3.3: Structure of a �rst-order ODE system with an extended input and a linear
output.

De�nition 3.5:
Consider an asymptotically stable system (3.5) with initial conditions as de�ned in (3.4).
Also consider the input matrixW from (3.24). Then, the transfer function corresponding
to that system is de�ned as

GL,W(s) := C(sE−A)−1W. (3.26)
♢

The transfer function de�ned in (3.26) satis�es YL(s) = GL(s)Ũ(s) and, hence, encodes
the system dynamics of the original system (3.5). Since the transfer function GL has
multiple system representations, the authors in [66] derive the homogeneous system
representation

Eż(t) = Az(t) +Wũ(t), z(0) = 0,

yL(t) = Cz(t),
(3.27)

where ũ ∈ L2([0,∞),Rm) is assumed to be a suitable output. The structure of the
surrogate system (3.27) is depicted in Figure 3.3, where we see that only one input
enters the system as it includes the initial conditions.
Instead of investigating the inhomogeneous system (3.5), in the following, we analyze

the homogeneous surrogate model (3.27) and apply the system theoretical concepts from
Section 2.1.1 for homogeneous systems. Note that the surrogate system is only used to
derive controllability spaces and corresponding Gramians that incorporate the in�uence
of initial conditions on the system. However, to derive a surrogate model of a smaller
dimension, later in this work, we apply reduction techniques to the original system (3.5)
utilizing the controllability spaces derived in this section.

Controllability Gramian To investigate the controllability properties of the surrogate
system (3.27), in this paragraph, we aim to derive the controllability Gramian which
spans the respective controllability space, i.e., the space in which all reachable states lie.
For that, we extract an input-to-state mapping of system (3.27) that is

cW(t) := eE
−1AtE−1W. (3.28)

Since this mapping encodes all reachable states, it is used to derive a matrix PW :=∫∞
0

cW(t)cW(t)
Tdt that spans the respective controllability space.
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3.1 Inhomogeneous �rst-order ODE systems

De�nition 3.6:
Consider the asymptotically stable system (3.27) with W as de�ned in (3.24). Then the
corresponding controllability Gramian is de�ned as

PW :=

∫ ∞

0

eE
−1AtE−1WWTE−Te(E

−1A)Ttdt. (3.29)
♢

The Gramian PW spans the controllability space of system (3.27), i.e., all controllable
states lie in the space spanned by PW. Hence, if the controllability Gramian has full
rank, the respective system (3.27) is controllable. As explained in Section 2.1.1, the
controllability Gramian can be computed by solving a Lyapunov equation of the form
(2.6) that is

APWE
T + EPWA

T = −WWT.

To solve the Lyapunov equation, we use the methods presented in Section 2.3.
Finally, we describe the connection between the Gramian PW, and the Gramians PB

and PZ0
that result from the extended-input approach and the multi-system approach,

respectively.

Theorem 3.7:
Consider the asymptotically stable system (3.27) with the corresponding controllabil-
ity Gramian PW from (3.11). Also, consider the asymptotically stable systems (3.8)
and (3.9) with the controllability Gramians PB and PZ0

de�ned in (3.11) and (3.14),
respectively. Then the following relation holds

PW = PB +PZ0
. ♢

Proof. We insert the de�nition of W into the de�nition of PW to obtain

PW =

∫ ∞

0

eE
−1AtE−1

[
B EZ0

] [ BT

ZT
0E

T

]
E−Te(E

−1A)Ttdt

=

∫ ∞

0

eE
−1At

(
E−1BBTE−T + Z0Z

T
0

)
e(E

−1A)Ttdt

= PB +PZ0
.

Observability Gramian We aim to describe the observability behavior of the surro-
gate system (3.27). However, we observe that the state-to-output mapping of system
(3.27) coincides with the mapping of the two subsystems (3.8) and (3.9). Hence, the
same observability Gramian de�ned in (3.17) encodes the observability behavior of the
surrogate system (3.27) as stated in the following de�nition.
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3 Inhomogeneous systems and their system theoretical aspects

De�nition 3.8:
Consider the asymptotically stable system (3.27). The corresponding observability
Gramian is de�ned as

QL =

∫ ∞

0

E−Te(E
−1A)TtCTCeE

−1AtE−1dt. ♢

As described in (3.18), the observability Gramian is computed by solving a Lyapunov
equation.

Controllability energies In this paragraph, we derive the controllability energies cor-
responding to the surrogate system (3.27) including the input-to-state and the initial
condition-to-state behavior of the original system (3.5). To do so, we derive an energy
measure that describes the controllability behavior of the system (3.27). As energy mea-
sure, we use the energy norm introduced in (3.19). We evaluate the energy norm of the
input-to-state mapping cW from (3.28), which yields

E(cW) = ∥cW∥2L2([0,∞),RN×(m+NZ0
))
=

∫ ∞

0

tr
(
cW(t)cW(t)

T
)
dt = tr(PW) . (3.30)

The trace of the Gramian PW coincides with the sum of its eigenvalues. Hence, large
eigenvalues have a high in�uence on the system's energy, while small eigenvalues are
neglectable. Therefore, the states corresponding to the highest eigenvalues span the
most dominant subspaces.

Observability energies As described above, the observability behavior of system (3.27)
is equal to the ones of the subsystems (3.8) and (3.9). Hence, we describe the observabil-
ity energies using the observability Gramian QL. The energy norm of the state-to-output
mapping oL from (3.16) is equal to

E(oL) = tr(QL) ,

as shown in (3.22). From this energy measure, we follow that states corresponding
to large eigenvalues of the observability Gramian QL span the dominant observability
subspaces. On the other hand, states corresponding to small eigenvalues are neglectable
when describing the system dynamics.
In the extended-input approach, we derive a model incorporating the initial condition

space into the input expression. That way, we can derive suitable Gramians and energies
that encode the system properties that are summarized in Table 3.2.
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GQ

z0
u

z0
u

yQ

Figure 3.4: Structure of a �rst-order ODE system with a quadratic output.

System (3.27)

Transfer function GL,W

Controllability Gramian PW

Observability Gramian QL

Controllability energies E(cW) = tr(PW)

Observability energies E(oL) = tr(QL)

Table 3.2: Properties of system (3.5) corresponding to its extended-input representation.

3.1.2 Inhomogeneous �rst-order ODE systems with a quadratic

output

In this subsection, we study �rst-order systems of the form

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yQ(t) = z(t)TMz(t),
(3.31)

with a state equation as de�ned in (3.1), and a quadratic output equation with a sym-
metric output matrix M ∈ RN×N and an output yQ(t) ∈ R. The resulting system (3.31)
is depicted in Figure 3.4, where we insert two inputs u and an initial condition z0 into
the system, denoted GQ, to indicate the quadratic output equation. The system (3.31)
occurs, particularly in the study of the variance, or deviation, of the state variable from
a given reference point, which can be represented as a quadratic function of the state.
Quadratic output equations also arise when, e.g., evaluating system energies as output
variables.
The authors in [20] derived concepts to evaluate quadratic output equations. However,

they only consider systems with homogeneous initial conditions. Hence, in this section,
we extend the approaches of [66] and [15] to systems with quadratic output equations
(3.31) using the ideas from [20]. Therefore, in Section 3.1.2.1, we apply the superposi-
tion principles to derive four subsystems that describe the overall system behavior and
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3 Inhomogeneous systems and their system theoretical aspects

are analyzed separately. Afterwards, in Section 3.1.2.2, we apply an extended-input
approach that results in a homogeneous system with an input matrix that includes the
input and the initial condition space. This system is then analyzed instead of the original
system (3.31).

3.1.2.1 Multi-system approach for inhomogeneous �rst-order ODE systems

with a quadratic output

In this section, we apply the multi-system approach to analyze the system (3.31) while
taking into account the inhomogeneous initial conditions. We apply the superposition
principles to derive subsystems with outputs that sum up to the original output ex-
pression yQ(t). By considering the subsystems individually, we gain more �exibility
in analyzing the in�uences of the initial conditions z0 and inputs u(t) to reduce the
respective subsystems later in this work.
We consider the state z(t) = zB(t) + zZ0

(t) from (3.2) that consist of two components
de�ned in (3.3). Using these components, the output equation of system (3.5) can be
written as

yQ(t) = z(t)TMz(t)

= zB(t)
TMzB(t) + zZ0

(t)TMzB(t) + zB(t)
TMzZ0

(t) + zZ0
(s)TMzZ0

(t)

=: yQ,BB(t) + yQ,Z0B
(t) + yQ,BZ0

(t) + yQ,Z0Z0
(t),

(3.32)

where we identify four output components, as the sketch in Figure 3.5 shows. We note
that the terms yQ,Z0B

(t) and yQ,BZ0
(t) coincide because of the symmetry of M. However,

to describe the output behavior, we need to analyze both components separately, as they
describe di�erent observability spaces.

Transfer function To study the behavior of the system (3.31) concerning the initial
conditions and the input, we consider the four output components de�ned in (3.32)
separately.
Inserting zB(t) from (3.3) into the �rst output component yQ,BB(t) from (3.32) yields

yQ,BB(t) =

∫ t

0

∫ t

0

u(τ1)
TBTE−TeA

TE−T(t−τ1)MeE
−1A(t−τ2)E−1Bu(τ2)dτ1dτ2.

From this output expression, we can extract the kernel

gQ,BB(t1, t2) := BTE−TeA
TE−Tt1MeE

−1At2E−1B.

Since the kernel gQ,BB(t1, t2) encodes the input-to-output mapping, it is used to describe
the respective system behavior. Therefore, we analyze the respective system dynamics
in the frequency domain using the 2-dimensional Laplace transform.
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GQ,BB

GQ,BZ0

GQ,Z0B

GQ,Z0Z0

u

u

u

z0

z0

u

z0

z0

yQ

yBB

yBZ0

yZ0B

yZ0Z0

+

Figure 3.5: Structure of four separated �rst-order ODE systems with a quadratic output.

De�nition 3.9:
Let f(t1, t2) : [0,∞)2 → Rn be a function that is exponentially bounded, i.e., there exist
numbers M and α so that

∥f(t1, t2)∥2 ≤ Meαt1 and ∥f(t1, t2)∥2 ≤ Meαt2 , for all t1, t2 ≥ 0.

Then the 2-dimensional Laplace transform is de�ned as

F (s1, s2) := L{f}(s1, s2) :=
∫ ∞

0

∫ ∞

0

e−s2t2−s1t1f(t1, t2)dt1dt2. ♢

Applying the 2-dimensional Laplace transform to gQ,BB(t1, t2) leads to the input-to-
output mapping

GQ,BB(s1, s2) := BT(s1E−A)−TM(s2E−A)−1B

in the frequency domain, which is the transfer function corresponding to yQ,BB(t).
Using the same procedure, we derive the transfer functions for the remaining output

components in (3.32), which yields the following de�nition.

De�nition 3.10:
Consider the asymptotically stable dynamical system (3.31) with an initial condition
as de�ned in (3.4). Then the four transfer functions corresponding to that system are
de�ned as

GQ,BB(s1, s2) :=BT(s1E−A)−TM(s2E−A)−1B,

GQ,Z0B
(s1, s2) :=ZT

0E
T(s1E−A)−TM(s2E−A)−1B,

GQ,BZ0
(s1, s2) :=BT(s1E−A)−TM(s2E−A)−1EZ0,

GQ,Z0Z0
(s1, s2) :=ZT

0E
T(s1E−A)−TM(s2E−A)−1EZ0.

(3.33)
♢
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The �rst transfer function GQ,BB(s1, s2) corresponding to the �rst output component
yQ,BB(t) has the following homogeneous system realization

EżB(t) = AzB(t) +Bu(t), zB(0) = 0,

yQ,BB(t) = zB(t)
TMzB(t).

(3.34)

This system has the same structure analyzed in [20]. Therefore, we can treat it the
same way. The two transfer functions GQ,Z0B

(s1, s2) and GQ,BZ0
(s1, s2) each include an

input-to-state mapping and an initial condition-to-state mapping. Consequently, two
state equations are needed to de�ne the respective system realizations, which are

EżB(t) = AzB(t) +Bu(t), zB(0) = 0,

EżZ0
(t) = AzZ0

(t), zZ0
(0) = Z0ζ0,

yQ,Z0B
(t) = zZ0

(t)TMzB(t),

(3.35)

and

EżB(t) = AzB(t) +Bu(t), zB(0) = 0,

EżZ0
(t) = AzZ0

(t), zZ0
(0) = Z0ζ0,

yQ,BZ0
(t) = zB(t)

TMzZ0
(t).

(3.36)

We observe that both systems lead to the same output yQ,Z0B
(t) = yQ,BZ0

(t) as the
matrix M is assumed to be symmetric. However, for consideration later in this work, we
distinguish between them. The remaining transfer function GQ,Z0Z0

(s1, s2) that generates
the output component yQ,Z0Z0

(t) corresponds to the system realization

EżZ0
(t) = AzZ0

(t), zZ0
(0) = Z0ζ0,

yQ,Z0Z0
= zZ0

(t)TMzZ0
(t).

(3.37)

We observe that no input is acting on the system as the system behavior only depends
on the initial condition z0.
In the following, we investigate the four subsystems separately instead of analyzing

the inhomogeneous system (3.31) to describe the overall system behavior. These con-
siderations are used later in Section 4.1.1 to reduce all the subsystems separately within
a model reduction scheme.

Controllability Gramians In this paragraph, we aim to derive controllability Gramians
encoding the controllability properties to the four subsystems (3.34), (3.35), (3.36),
and (3.37). We observe that only two di�erent state equations appear within the four
subsystems that also coincide with the state equations of the systems (3.10) and (3.13).
Also their input- and initial condition-to-output mappings corresponding to the input
Bu(t) and the initial condition Z0ζ0 that are

cB(t) := eE
−1AtE−1B and cZ0

(t) := eE
−1AtZ0,
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respectively, coincide with those from (3.10) and (3.13). Hence, evaluating these map-
pings over the time domain leads to the respective controllability Gramians as de�ned
in (3.11) and (3.14).

De�nition 3.11:
Consider the asymptotically stable systems (3.34), (3.35), (3.36), and (3.37). The re-
spective controllability Gramians are de�ned as

PB :=

∫ ∞

0

eE
−1AtE−1BBTE−Te(E

−1A)Ttdt, PZ0
:=

∫ ∞

0

eE
−1AtZ0Z

T
0 e

(E−1A)Ttdt. ♢

These Gramians are determined by solving Lyapunov equations (3.15) and (3.18).

Observability Gramian We aim to determine tailored Gramians encoding observabil-
ity subspaces for ODE systems with quadratic output equations (3.31) that describe
their observability properties. However, extensions of the Gramian de�nitions for sys-
tems with linear output equations to systems with quadratic output equations are not
straightforward. Hence, in this paragraph, we propose new Gramians that describe the
observability based on the output decomposition (3.32). Therefore, we investigate the
four output components separately. Since the output is a superposition of the four com-
ponents, the Gramians that describe the output components sum up to a Gramian that
describes the overall observability of the system.
For a better understanding, we can rewrite yQ(t) by de�ning the state dependent

function C(z(t)) := z(t)TM. Applying this representation to the decomposed output
yields

yQ(t) = C(zB(t))zB(t) + C(zB(t))zZ0
(t) + C(zZ0

(t))zB(t) + C(zZ0
(t))zZ0

(t).

We observe that the observability of the state zB(t) in the output yQ,Z0B
(t) = C(zZ0

(t))zB(t)
also depends on the reachability of zZ0

(t). On the other hand, the observability of the
state zZ0

(t) corresponding to yQ,BZ0
(t) = C(zB(t))zZ0

(t) depends on the reachability of
zB(t). Hence, the outputs yQ,Z0B

(t) = yQ,BZ0
(t) encode two di�erent observability prop-

erties. Analogously, the outputs yQ,B(t) = C(zB(t))zB(t) and yQ,Z0
(t) = C(zZ0

(t))zZ0
(t)

encode the observability of the state zB(t) depending on the reachability of the same,
and the observability of the state zZ0

(t) depending on the reachability of the same state
zZ0

(t), respectively.
In this paragraph, we de�ne observability Gramians encoding the observability behav-

ior of state the zB(t) corresponding to C(zB(t)) and C(zZ0
(t)) and observability Gramians

describing the observability of the state zZ0
(t) corresponding to C(zB(t)) and C(zZ0

(t)).
Because of the dependencies on the reachability of zB(t) and zZ0

(t) encoded by C(zB(t))
and C(zZ0

(t)), we expect that the observability Gramians will depend on the controlla-
bility Gramians PB and PZ0

.
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The �rst subsystem (3.34) encodes the input-to-output behavior from which we ex-
tract the input-to-state mapping cB(t) = eE

−1AtE−1B de�ned in (3.10). The remaining
mapping encodes the state-to-output mapping that is

oQ,B(t1, t2) = BTE−TeA
TE−Tt1MeE

−1At2E−1. (3.38)

The output of the third subsystem (3.36) includes the input-to-state mapping cZ0
(t) =

eE
−1AtZ0 from (3.13) so that the remaining state-to-output mapping is equal to oQ,B as

de�ned in (3.38). Using the mapping oQ,B, we can construct a matrix QQ,B that spans
the respective observability space by integrating over the time domain, which yields

QQ,B :=

∫ ∞

0

∫ ∞

0

oQ,B(t1, t2)
ToQ,B(t1, t2)dt1dt2

=

∫ ∞

0

∫ ∞

0

E−TeA
TE−Tt2MeE

−1At1E−1BBTE−TeA
TE−Tt1MeE

−1At2E−1dt1dt2

=

∫ ∞

0

E−TeA
TE−Tt2MPBMeE

−1At2E−1dt2

according to the de�nition of PB in (3.11). This consideration is summarized in the
following de�nition.

De�nition 3.12:
We consider the asymptotically stable systems (3.34) and (3.36) and the controllability
Gramian PB as de�ned in (3.11). Then the observability Gramian corresponding to
those systems is de�ned as

QQ,B :=

∫ ∞

0

E−TeA
TE−TtMPBMeE

−1AtE−1dt. (3.39)
♢

We compute the observability Gramian QQ,B by solving the Lyapunov equation

ETQQ,BA+ATQQ,BE = −MPBM.

Since we investigate the controllability and observability behavior of the right state
in the di�erent output components in (3.32), the behavior of the system (3.34) is de-
scribed by the two Gramians PB and QQ,B. Moreover, the behavior of the system (3.36)
is described by the two Gramians PZ0

and QQ,B. Note that we can also investigate the
controllability and observability behavior of the left states of the quadratic output ex-
pressions, which would lead to similar results, where the Gramians from the two outputs
yQ,Z0B

and yQ,BZ0
are swapped.

Analogously, we investigate the observability of the subsystem (3.35). We extract the
input-to-state mapping cB(t) from (3.10) and the remaining state-to-output mapping
that is de�ned as

oQ,Z0
(t1, t2) = ZT

0E
−TeA

TE−Tt1MeE
−1At2E−1. (3.40)
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3.1 Inhomogeneous �rst-order ODE systems

The subsystem (3.37) also results in the state-to-output mapping oQ,Z0
as de�ned in

(3.40) after the respective input-to-state mapping cZ0
(t) from (3.13) is identi�ed. The

mapping oQ,Z0
is used to derive a matrix that spans the observability space as

oQ,Z0
(t1, t2) =

∫ ∞

0

∫ ∞

0

oQ,Z0
(t1, t2)oQ,Z0

(t1, t2)dt1dt2

=

∫ ∞

0

∫ ∞

0

E−TeA
TE−TtMeE

−1At1Z0Z
T
0 e

ATE−Tt1MeE
−1AtE−1dt1dt2

=

∫ ∞

0

E−TeA
TE−Tt2MPZ0

MeE
−1At2E−1dt2

by inserting the de�nition of PZ0
from (3.14).

De�nition 3.13:
We consider the asymptotically stable systems (3.35) and (3.37) and the controllability
Gramian PZ0

as de�ned in (3.14). Then the corresponding observability Gramian is
de�ned as

QQ,Z0
:=

∫ ∞

0

E−TeA
TE−TtMPZ0

MeE
−1AtE−1dt. (3.41)

♢

The observability Gramian QQ,Z0
is the unique solution of the Lyapunov equation

ETQQ,Z0
A+ATQQ,Z0

E = −MPZ0
M.

Controllability Energy In this paragraph, we analyze the controllability energies of
the four subsystems (3.34), (3.35), (3.36), and (3.37) to describe their controllability
properties and identify the dominant controllability subspaces accordingly. Since the
controllability behavior of the di�erent state equations within the four subsystems co-
incides with those of the two subsystems (3.8) and (3.9), we obtain equal energy ex-
pressions. Therefore, we analyze the energy norm of the di�erent input- and initial
condition-to-state mappings cB(t) and cZ0

(t) from (3.10) and (3.13), respectively, which
leads to the energy norms

E(cB) = tr(PB) and E(cZ0
) = tr(PZ0

)

as described in (3.20) and (3.21). Since the traces of Gramians PB and PZ0
are equal

to the sum of their eigenvalues, the states corresponding to the large eigenvalues of the
controllability Gramians PB and PZ0

span the most dominant controllability subspaces
since the Gramians are by de�nition symmetric.
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3 Inhomogeneous systems and their system theoretical aspects

Observability energy Analogous to the controllability energies, we want to analyze
the observability energies to identify the states that encode the dominant observability
subspaces. To this end, we consider the state-to-output mappings from (3.38) and (3.40)
describing the observability behavior of the di�erent subsystems with a quadratic output
equation. We apply the respective energy norm which yields the energy expressions

E(oQ,B) = ∥oQ,B∥2L2([0,∞)2,Rm×N ) =

∫ ∞

0

∫ ∞

0

tr
(
oQ,B(t1, t2)

HoQ,B(t1, t2)
)
dt1dt2

= tr(QQ,B)

(3.42)

and

E(oQ,Z0
) = ∥oQ,Z0

∥2
L2([0,∞)2,RNZ0

×N)
=

∫ ∞

0

∫ ∞

0

tr
(
oQ,Z0

(t1, t2)
HoQ,Z0

(t1, t2)
)
dt1dt2

= tr(QQ,Z0
) .

(3.43)

Again, we note that the traces of the observability Gramians QQ,B and QQ,Z0
, which are

the summands of their eigenvalues, indicate which states are signi�cant for the system
dynamics. Since the largest eigenvalues of the observability Gramians have the most in-
�uence on the output energies, the corresponding states span the dominant observability
subspaces.

In this section, we have derived four transfer functions with corresponding system
representations, that describe the overall system behavior. Corresponding to these sub-
systems, we have derived suitable Gramians and energy expressions that incorporate the
controllability and observability properties of the original system. Table 3.3 depicts the
derived subsystems with the corresponding transfer functions, the respective Gramians,
and the resulting energies.
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System (3.34) System (3.35) System (3.36) System (3.37)

Transfer

function

GQ,BB(s1, s2) GQ,BZ0
(s1, s2) GQ,Z0B

(s1, s2) GQ,Z0Z0
(s1, s2)

Controllability

Gramian

PB PZ0
PB PZ0

Observability

Gramian

QQ,B QQ,B QQ,Z0
QQ,Z0

Controllability

energies

E(cB) = tr(PB) E(cZ0
)
= tr(PZ0

)
E(cB)

= tr(PB)
E(cZ0

)
= tr(PZ0

)

Observability

energies

E(oQ,B)
= tr(QQ,B)

E(oQ,B)
= tr(QQ,B)

E(oQ,Z0
)

= tr(QQ,Z0
)

E(oQ,Z0
)

= tr(QQ,Z0
)

Table 3.3: Properties of system (3.31) corresponding to its multi-system representation.

3.1.2.2 Extended-input approach for inhomogeneous �rst-order ODE systems

with a quadratic output

As an alternative to the multi-system approach presented before, we apply the extended-
input method from [66] and modify it so that it is suitable for systems with a quadratic
output. Therefore, we derive the transfer function of the original system (3.31) and a
respective homogeneous system representation that is analyzed instead of the original
system.

Transfer function Our objective is to describe the relationship between inputs, initial
conditions, and the output behavior of the system (3.31). To achieve this, we combine
the transfer functions from (3.33), as each encodes a part of the overall input� and initial
condition�to�output behavior, which yields

GQ,WW(s1, s2) := GQ,BB(s1, s2) + GQ,BZ0
(s1, s2) + GQ,Z0B

(s1, s2) + GQ,Z0Z0
(s1, s2)

= WT(s1E−A)−HM(s2E−A)−1W

for the input matrix W de�ned in (3.24).

De�nition 3.14:
Consider the system (3.31) with initial conditions as de�ned in (3.4). The transfer
function corresponding to this system is de�ned as

GQ,WW(s1, s2) := WT(s1E−A)−HM(s2E−A)−1W. (3.44)
♢
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GQ,WW

ũ

ũ

yQ

Figure 3.6: Structure of a �rst-order ODE system with an extended input and a
quadratic output.

Since the transfer function GQ,WW has multiple system realizations, we use a homogeneous
one, that is

Eż(t) = Az(t) +Wũ(t), z(0) = 0,

yQ(t) = z(t)TMz(t),
(3.45)

where ũ ∈ L2([0,∞),RnW) is a suitable input function. In the following, we consider
the homogeneous system (3.45) instead of the inhomogeneous original one (3.31). The
homogeneous system is depicted in Figure 3.6, where no initial conditions are added to
the homogeneous system as they are embedded in the input ũ. Note, however, that we
only use the surrogate system to describe the controllability and observability behavior.
Later in this work, when we apply model reduction techniques, the resulting spaces are
used to reduce the original system (3.31) and �nd an inhomogeneous reduced model.

Controllability Gramian To investigate the input-to-output behavior of the homoge-
neous system (3.45), we aim to derive the corresponding controllability Gramian span-
ning the controllability space. We observe that the input-to-output mapping of this
system is equal to the input-to-output mapping of the ODE system with a linear output
equation from (3.27). Hence, the controllability Gramian of the system (3.45) is equal
to the one de�ned in (3.29), which leads to the following de�nition.

De�nition 3.15:
Consider the asymptotically stable system (3.45) with W as de�ned in (3.24). Then the
corresponding controllability Gramian is de�ned as

PW =

∫ ∞

0

eE
−1AtE−1WWTE−1e(E

−1A)Ttdt. ♢

Observability Gramians In this paragraph, we aim to derive an observability Gramian
that encodes the observability properties of the homogenous system (3.27), which can
be used to identify dominant observability spaces. Therefore, we consider the output
equation

yQ(t) =

∫ t

0

∫ t

0

ũ(τ1)
TWTE−1e(E

−1A)Tτ1MeE
−1Aτ2E−1Wũ(τ2)dτ1dτ2
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of system (3.45) and identify the input-to-state mapping cW(s) from (3.28). The remain-
ing mapping within the output yQ(t) is the state-to-output mapping, which is de�ned
as

oQ,W(t1, t2) := WTE−TeA
TE−Tt1MeE

−1At2E−1. (3.46)

From this mapping, we derive the matrix

QQ,W :=

∫ ∞

0

∫ ∞

0

oQ,W(t1, t2)
ToQ,W(t1, t2)dt1dt2

=

∫ ∞

0

∫ ∞

0

E−TeA
TE−Tt2MeE

−1At1E−1WWTE−1e(E
−1A)Tt1MeE

−1At2E−1dt1dt2

=

∫ ∞

0

E−TeA
TE−Tt2MPWMeE

−1At2E−1dt2,

that spans the corresponding observability space using the de�nition of PW from (3.29).

De�nition 3.16:
Consider the asymptotically stable system (3.45) and the controllability Gramian PW

de�ned in (3.29). Then, the corresponding observability Gramian is de�ned as

QQ,W :=

∫ ∞

0

E−TeA
TE−TtMPWMeE

−1AtE−1dt. (3.47)
♢

We observe that the observability GramianQQ,W also contains the controllability Gramian
PW, as the observability behavior of the right state in the output expression in (3.45)
depends also on the controllability state of the left state encoded by PW. To compute
the observability Gramian, we solve the Lyapunov equation

ETQQ,WA+ATQQ,WE = −MPWM

as described in [20, Lemma 2.1].

Controllability energies To identify the dominant controllability subspaces of the ho-
mogeneous system (3.45), we aim to derive the controllability energies of this system.
We note that the input-to-state mapping, and hence the corresponding controllability
Gramian coincide with those corresponding to the system (3.27) with a linear output
equation. Therefore, as derived in (3.30), we apply the energy norm to state-output
mapping cW de�ned in (3.28), which yields

E(cW) = tr(PW) .

This energy expression indicates that the states corresponding to the highest eigenvalues
of the controllability Gramian PW span the most dominant controllability subspaces.
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Observability Energies In this paragraph, we derive some observability energies to
identify the dominant observability subspaces of the homogeneous system (3.45). We
derive an energy expression based on the state-to-output mapping oQ,W de�ned in (3.46).
We evaluate the energy norm from (3.19) of this mapping, that is

E(oQ,W) = ∥oQ,W∥2L2([0,∞)2,Rm+NZ0
×N)

=

∫ ∞

0

∫ ∞

0

tr
(
oQ,W(t1, t2)

HoQ,W(t1, t2)
)
dt1dt2

= tr(QQ) .
(3.48)

This energy norm shows, which states are the most signi�cant ones describing the system
dynamics. Since the trace of the observability Gramian QQ,W is equal to the sum of its
eigenvalues, it follows that the states corresponding to the largest eigenvalues of QQ,W

encode the dominant observability subspaces.
To summarize the extended-input approach that derives a homogeneous system (3.45)

to describe the system dynamics, Table 3.4 depicts the considered transfer function, the
resulting Gramians, and the respective energies.

System (3.45)

Transfer function GQ,WW(s1, s2)

Controllability Gramian PW

Observability Gramian QQ,W

Controllability energies E(cW) = tr(PW)

Observability energies E(oQ,W) = tr(QQ,W)

Table 3.4: Properties of system (3.31) corresponding to its extended-input representa-
tion.

3.2 Inhomogeneous �rst-order DAE systems

In this section, we generalize the theory presented above to dynamical systems with a
di�erential-algebraic equation as a state equation that has the form

Eż(t) = Az(t) +Bu(t), z(0) = z0 (3.49)

with E, A ∈ RN×N , and B ∈ RN×m, where we assume that E is a singular matrix.
Moreover, we assume in this work that the matrix pencil (A,E) is regular, i.e., λE−A

is not a zero polynomial, and that the consistency conditions in (2.15) are satis�ed.
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DAE systems arise when, for example, electrical circuits, heat and di�usion processes, or
multibody systems are modeled using methods such as �nite elements or �nite volumes.
These systems involve physical constraints, which lead to algebraic equations. Therefore,
tailored analysis tools need to be developed, see [79, 91, 130].
We assume that the matrix Z0 ∈ RN×NZ spans a space containing all admissible initial

states, i.e., for all initial states z0 there exists a vector ζ0 ∈ RNZ such that

z0 = Z0ζ0. (3.50)

The matrix Z0 is composed of a proper part Zp,0 and an improper part Zi,0, so that
Z0 = Zp,0 + Zi,0 and

Zp,0 = PrZ0 and Zi,0 = (IN −Pr)Z0 (3.51)

holds for a projection matrix Pr as de�ned in (2.10). The matrices Zp,0 and Zi,0 are
used in the following to study the system properties while considering all admissible
initial conditions. According to that initial condition matrix decomposition in (3.51),
the initial state is composed of

z0 = zp,0 + zi,0 with zp,0 = Prz0, zi,0 = (IN −Pr)z0 (3.52)

Note that the initial condition for the algebraic state component zi(t) is already included
in the state trajectory due to the consistency condition (2.15). Hence, Zi,0 can be chosen
as

Zi,0 =
[
FN(0)B · · · FN(ν − 1)B

]
with zi,0 = Zi,0

 u(0)(0)
...

u(ν−1)(0)

 . (3.53)

In the following, we analyze the behavior of DAE systems with a state equation (3.49).
Therefore, we generalize existing methods for systems with linear output equations to
include the initial conditions when analyzing the system behavior. Moreover, we inves-
tigate DAE systems with quadratic output equations, which have not been studied in
the literature. For both classes of systems, we consider a multi-system approach and an
extended-input approach, modifying the methods presented in the previous section.
First, in Section 3.2.1, we derive the system properties of DAE systems with linear out-

put equations, and then study systems with quadratic output equations in Section 3.2.2.

3.2.1 Inhomogeneous �rst-order DAE systems with a linear

output

We consider DAE systems with a linear output equation of the form

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yL(t) = Cz(t),
(3.54)
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GL

u

z0

yL

Figure 3.7: Structure of a �rst-order DAE system with a linear output.

GL,i
u yi

GL,p

u

zp,0
yp

+ yL

Figure 3.8: Structure of a �rst-order DAE system with a linear output - di�erential and
algebraic components decoupled.

where the state equation is as de�ned in (3.49), and the output equation includes the
output matrix C ∈ Rp×N and an output yL(t) ∈ Rp. The input- and initial condition-
to-output structure of this system is depicted in Figure 3.7, where we have not yet
separated the di�erential and algebraic components so that it is of the same form as for
the ODE system with a linear output equation depicted in Figure 3.1. Decomposing the
system into its di�erential and algebraic components as de�ned in (2.14) leads to the
two outputs

yL,p(t) := Czp(t), yL,i(t) := Czi(t) with yL(t) = yL,p(t) + yL,i(t),

as depict in Figure 3.8. We add an input u and an initial condition z0 to the di�erential
system, that are needed to derive the respective proper output yp. To generate the
improper output yi only the input u is needed since the initial conditions satisfy the
consistency conditions (2.15).

In the following, we analyze the input- and initial condition-to-output behavior of
the di�erential and the algebraic system separately. Therefore, we generate the corre-
sponding Gramians that describe the respective controllability and observability spaces.
These Gramians are then used to derive the system energies, which de�ne the dominant
controllability and observability subspaces. We again utilize two di�erent approaches to
treat the inhomogeneous initial conditions, namely the multi-system approach shown in
Section 3.2.1.1 and the extended-input approach presented in Section 3.2.1.2.
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3.2.1.1 Multi-system approach for inhomogeneous �rst-order DAE systems

with a linear output

In this paragraph, we derive a multi-system representation of the system (3.54) to treat
the inhomogeneous initial conditions. Therefore, we modify the method introduced in
Section 3.1.1.1 to incorporate the di�erential and algebraic components of the DAE
system. We again derive some subsystems that are analyzed separately and derive the
respective Gramians and system energies.

Transfer function To evaluate the behavior of the system (3.54), we consider the state
components de�ned in (2.14) where we decompose the di�erential state additionally into

zp,B(t) =

∫ t

0

FJ(t− τ)Bu(τ)dτ and zp,Z0
(t) = FJ(t)EZp,0ζ0. (3.55)

We apply the Laplace transform to each of the components zp,B(t), zp,Z0
(t), and zi(t),

which yields

Zp,B(s) := Pr(sE−A)−1BU(s), Zp,Z0
(s) := Pr(sE−A)−1EZp,0ζ0,

Zi(s) := (I−Pr)(sE−A)−1BU(s).
(3.56)

To describe not only the input- and initial condition-to-state behavior but also the
respective output, we apply the Laplace transform to the output equation in (3.54) and
insert the three state components from (3.56), to obtain the three outputs

YL,p,B(s) := CPr(sE−A)−1BU(s), YL,p,Z0
(s) : CPr(sE−A)−1EZp,0ζ0,

YL,i(s) := C(I−Pr)(sE−A)−1BU(s).

From these output representations, we can extract the respective transfer functions of
the system (3.54), that encode the proper and improper input- and initial condition-to-
output mappings.

De�nition 3.17:
Consider the system (3.54) with a regular matrix pencil sE−A and the projection matrix
Pr de�ned in (2.10). Assume that the consistency conditions in (2.15) are satis�ed. Then
the respective transfer functions are de�ned as

GL,p,B(s) := CPr(sE−A)−1B, GL,p,Z0
(s) := CPr(sE−A)−1EZp,0,

GL,i(s) := C(I−Pr)(sE−A)−1B
(3.57)

♢
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GL,i
u yL,i

GL,p,B
u yL,p,B

GL,p,Z0

z0 yL,p,Z0

+ yL

Figure 3.9: Structure of three separated �rst-order DAE systems with a linear output.

The �rst transfer function, GL,p,B, results from the di�erential system with the homo-
geneous di�erential initial condition, i.e., Przp,B(0) = zp,0 = 0 as described in (3.52),
which yields the system realization

Eżp,B(t) = Azp,B(t) +PlBu(t), Przp,B(0) = 0,

yL,p,B(t) = Czp,B(t).
(3.58)

The second transfer function, GL,p,Z0
, corresponds to the system representation

Eżp,Z0
(t) = Azp,Z0

(t), Przp,Z0
(0) = Zp,0ζ0,

yL,p,Z0
(t) = Czp,Z0

(t),
(3.59)

where no input is added to the system and a di�erential initial condition Prz(0) =
zp,0 = Zp,0ζ0 is applied. This system describes the di�erential initial condition-to-output
mapping. The third transfer function, GL,i, has the system representation

Eżi(t) = Azi(t) + (I−Pl)Bu(t), (I−Pr)zi(0) = zi,0,

yL,i(t) = Czi(t)
(3.60)

where we assume that the initial condition (I − Pr)z(0) = zi,0 = Zi,0ζ0 from (3.52)
satis�es the consistency conditions.
The decomposition of the system (3.54) into the three subsystems (3.58), (3.59), and

(3.60) describing the dynamics of the overall system is depicted in Figure 3.9.
In the following, we investigate the controllability and observability properties of the

three subsystems separately. For that, we derive the respective Gramians spanning their
controllability and observability spaces.

Controllability Gramian To describe the controllability behavior of the three sub-
systems, we derive respective input- and initial condition-to-state mappings. The �rst
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subsystem (3.58) has the input-to-state mapping

cp,B(t) := FJ(t)B, (3.61)

where FJ(t) is as de�ned in (2.13). Since this mapping encodes all reachable states of
the subsystem (3.58), it is used to de�ne a matrix Pp,B :=

∫∞
0

cp,B(t)cp,B(t)
Tdt that

spans the corresponding controllability space.

De�nition 3.18:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E) and FJ as
de�ned in (2.13). Then the corresponding proper controllability Gramian is de�ned as

Pp,B :=

∫ ∞

0

FJ(t)BBTFJ(t)
Tdt. (3.62)

♢

Furthermore, inserting the de�nition of FJ(t) into (3.62) yields the following lemma.

Lemma 3.19:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E). Assume that
T, W are matrices that transform system (3.58) into Weierstraÿ canonical form as
described in (2.9). Then the Gramian Pp,B from (3.62) is of the form

Pp,B := T−1

[
P1,B 0
0 0

]
T−T, P1,B =

∫ ∞

0

eJtB1B
T
1 e

JTtdt (3.63)

with B = W
[
B1
B2

]
. ♢

This lemma vividly shows that the proper controllability Gramian is connected to the
Gramian of the di�erential states in the WCF from (2.9). Since the di�erential state
results from an ODE state equation, the theory from Section 3.1 applies to this state
component. Using the controllability Gramian, we can characterize the states that
are di�cult to reach or even unreachable, which play a signi�cant role when applying
reduction methods to the system. It remains to compute the Gramian. For that, we
use that the controllability Gramian Pp,B de�ned in (3.63) is the unique solution of the
continuous-time projected Lyapunov equation

EPp,BA
T +APp,BE

T = −PlBBTPT
l , Pp = PrPp,BP

T
r (3.64)

as described in (2.19).
To describe the controllability behavior of the subsystem (3.59), we derive the respec-

tive input-to-state mapping

cp,Z0
(t) := FJ(t)EZ0, (3.65)

where FJ(t) is as de�ned in (2.13). This mapping is used to describe the controllability
space of the subsystem (3.59). For that, we de�ne a matrixPp,Z0

:=
∫∞
0

cp,Z0
(t)cp,Z0

(t)Tdt
that encodes the respective controllability space by integrating over the entire times do-
main.
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3 Inhomogeneous systems and their system theoretical aspects

De�nition 3.20:
Consider the C-stable system (3.59) with a regular matrix pencil (A,E) and FJ(t) as
de�ned in (2.13). Then the respective proper controllability Gramian is de�ned as

Pp,Z0
:=

∫ ∞

0

FJ(t)EZ0Z
T
0E

TFJ(t)
Tdt. (3.66)

♢

To describe the connection between the Gramian Pp,Z0
and the respective WCF, we

insert the de�nition of FJ(t) into (3.66) to derive the following lemma.

Lemma 3.21:
Consider the C-stable system (3.59) with a regular matrix pencil (A,E). Assume that
T, W are matrices that transform system (3.59) into Weierstraÿ canonical form. Then
the Gramian Pp,Z0

from (3.66) is of the form

Pp,Z0
= T−1

[
P1,Z0

0
0 0

]
T−T, P1,Z0

=

∫ ∞

0

eJtZ1Z
T
1 e

JTtdt (3.67)

with Z0 = W
[
Z1
Z2

]
. ♢

To compute the Gramian we use that the controllability Gramian Pp,Z0
as de�ned in

(3.67) is the unique solution of the continuous-time projected Lyapunov equation

EPp,Z0
AT +APp,Z0

ET = −PlEZ0Z
T
0E

TPT
l , Pp,Z0

= PrPp,Z0
PT

r . (3.68)

Finally, we describe the controllability of the remaining subsystem (3.60), that corre-
sponds to the improper system dynamics of the original system (3.54). Therefore, we
consider the corresponding input-to-state mapping

ci(k) := FN(k)B, (3.69)

with FN(k) as de�ned in (2.13). This mapping is used to derive a matrix Pi :=∑ν−1
k=0 ci(k)ci(k)

T that spans the controllability space including all reachable algebraic
states by summing over all discrete matrices de�ned by ci(k).

De�nition 3.22:
Consider the system (3.60) with a regular matrix pencil (A,E) and FN(k) as de�ned in
(2.13). The corresponding improper controllability Gramian is de�ned as

Pi :=
ν−1∑
k=0

FN(k)BBTFN(k)
T. (3.70)

♢

The matrix Pi spans the controllability space of the subsystem (3.60). Since the Gramian
Pi spans the improper controllability space, it is connected to the algebraic components
of the WCF from (2.9). The relation is described in the following lemma.
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3.2 Inhomogeneous �rst-order DAE systems

Lemma 3.23:
Consider the system (3.60) with a regular matrix pencil (A,E). Assume that T, W
are matrices that transform system (3.54) into Weierstraÿ canonical form. Then the
Gramian Pi from (3.70) is of the form

Pi := T−1

[
0 0
0 P2,B

]
T−T, P2,B =

ν−1∑
k=0

NkB2B
T
2 (N

k)T (3.71)

with B = W
[
B1
B2

]
. ♢

To compute the controllability Gramian Pi de�ned in (3.67), we use that Pi is the
unique solution of the discrete-time projected Lyapunov equation

APiA
T − EPiE

T = (I−Pl)BBT(I−Pl)
T, 0 = PrPiP

T
r . (3.72)

The three controllability Gramians derived in this paragraph are used in the following
to identify states that are dominant in the dynamics of the system and states that are
neglectable.

Observability Gramians To describe the observability behavior of the three subsys-
tems (3.58), (3.59), and (3.60), we derive their state-to-output mappings and utilize
them to de�ne the corresponding observability Gramians which encode the observability
properties of the respective system. We observe that the state-to-output mappings co-
incide for the two systems (3.58) and (3.59) that describe the di�erential components of
the system dynamics. Hence, we derive a proper state-to-output mapping corresponding
to these two systems, which is

oL,p(t) := CFJ(t) (3.73)

where FJ(t) is as de�ned in (2.13). Using oL,p(t), we derive a matrix QL,p :=∫∞
0

oL,p(t)
ToL,p(t)dt that spans the proper observability space.

De�nition 3.24:
Consider the two proper C-stable systems (3.58) and (3.59) with a regular matrix pencil
(A,E) and FJ as de�ned in (2.13). Then the corresponding proper observability Gramian
is de�ned as

QL,p :=

∫ ∞

0

FJ(t)
TCTCFJ(t)dt. (3.74)

♢

We insert the Weierstraÿ-canonical form from (2.9) to derive the following lemma.
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3 Inhomogeneous systems and their system theoretical aspects

Lemma 3.25:
Consider the proper C-stable systems (3.58) and (3.59) with a regular matrix pencil
(A,E). The observability Gramian QL,p as de�ned in (3.74) satis�es

QL,p := W−T

[
QL,1 0
0 0

]
W−1, QL,1 =

∫ ∞

0

eJ
TtC̃T

1 C̃1e
Jtdt (3.75)

with C̃1 and J corresponding to the WCF of the respective systems de�ned in (2.9). ♢

This lemma vividly describes the connection between the observability Gramians of the
di�erential component of the state zp and the respective di�erential state z1 of the
transformed system in WCF. To compute the observability Gramian QL,p de�ned in
(3.74), we solve the continuous-time projected Lyapunov equation

ETQL,pA+ATQL,pE = −PT
r C

TCPr, QL,p = PT
l QL,pPl. (3.76)

Now we evaluate the observability behavior of the subsystem (3.60), which encodes
the improper components of the original system (3.54). For that, we extract the state-
to-output mapping, that is

oL,i(k) := CFN(k), (3.77)

where FN(k) is as de�ned in (2.13). We derive a matrix QL,i :=
∑ν−1

k=0 oL,i(k)
ToL,i(k) that

spans the improper observability space by summing over all discrete matrices de�ned by
oL,i(k).

De�nition 3.26:
Consider the improper system (3.60) with a regular matrix pencil (A,E). Then the
corresponding improper observability Gramian is de�ned as

QL,i :=
ν−1∑
k=0

FN(k)
TCTCFN(k). (3.78)

♢

Again, we insert the Weierstraÿ-canonical form from (2.9) to derive the following lemma.

Lemma 3.27:
Consider the improper system (3.60) with a regular matrix pencil (A,E). The observ-
ability Gramian QL,i as de�ned in (3.78) satis�es

QL,i := W−T

[
0 0
0 QL,2

]
T−1, QL,2 =

ν−1∑
k=0

(Nk)TCT
2C2N

k, (3.79)

with C̃2 and N corresponding to the WCF of the respective systems de�ned in (2.9). ♢
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3.2 Inhomogeneous �rst-order DAE systems

The improper observability Gramian QL,i, de�ned in (3.78), is computed by solving a
projected Lyapunov equation as it is the unique solution of the discrete-time projected
Lyapunov equation

ATQiA− ETQL,iE = (I−Pr)
TCTC(I−Pr), 0 = PT

l QL,iPl. (3.80)

As for the controllability Gramians, we can characterize states that are hard to observe
or unobservable using the observability Gramians. Such states correspond to the small or
zero eigenvalues of the corresponding Gramians, as described in the following paragraphs.

Controllability energies We now use the Gramians, de�ned above, to describe the
controllability behavior and the respective energies in more detail. To provide an energy
measure based on the proper input- and initial condition-to-state mappings cp,B and
cp,Z0

as de�ned in (3.61) and (3.65), respectively, we evaluate their energy norms as
de�ned in (3.19) to obtain the following energy expressions

E(cp,B) = ∥cp,B∥2L2([0,∞),RN×m) =

∫ ∞

0

tr
(
cp,B(t)cp,B(t)

T
)
dt = tr(Pp,B) , (3.81)

and

E(cp,Z0
) = ∥cp,Z0

∥2
L2([0,∞),RN×NZ0 )

=

∫ ∞

0

tr
(
cp,Z0

(t)cp,Z0
(t)T

)
dt = tr(Pp,Z0

) (3.82)

for the Gramians Pp,B and Pp,Z0
de�ned in (3.62) and (3.66).

To apply such an energy measure to the improper component of the system encoded by
the controllability mapping ci, we de�ne a discrete energy norm. For that, we consider
a sequence (c(k))k, c : N → RN×m and assume that c ∈ ℓ2(N,RN×m), i.e., that

∞∑
k=0

∥c(k)∥F < ∞.

Then the ℓ2-norm of c is de�ned as

E(c) := ∥c∥2ℓ2(N,RN×m) :=
∞∑
k=0

tr
(
c(k)c(k)T

)
. (3.83)

Applying the ℓ2-norm from (3.83) to the input-to-state mapping ci from (3.69) yields

E(ci) = ∥ci∥2ℓ2(N,RN×m) =
∞∑
k=0

tr
(
ci(k)ci(k)

T
)
=

ν−1∑
k=0

tr
(
ci(k)ci(k)

T
)
= tr(Pi) (3.84)

where Pi is as de�ned in (3.70).
Since the trace of a Gramian is equal to the sum of its eigenvalues, it follows from

(3.81), (3.82), and (3.84) that the most dominant proper controllability subspaces are
those corresponding to the largest eigenvalues of the two proper Gramians Pp,B and
Pp,Z0

. However, the dynamics of the improper system must be captured precisely, and
only the states corresponding to zero eigenvalues are negligible.
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Observability energies In this paragraph, we aim to analyze the observability behavior
of the three subsystems (3.61), (3.65), and (3.69) to identify their dominant observability
subspaces. To derive an energy measure, we evaluate the state-to-output mappings oL,p

and oL,i as de�ned in (3.73) and (3.77), respectively. These mappings describe the
observability behavior of the proper and improper components of the subsystems (3.58),
(3.59), and (3.60). Hence, they are used to identify signi�cant subspaces of the state
space. For that, we evaluate the energy norms de�ned in (3.19) and (3.83) of these
mappings, which yields

E(oL,p) = ∥oL,p∥2L2([0,∞),Rp×N ) =

∫ ∞

0

tr
(
oL,p(t)

ToL,p(t)
)
dt = tr(QL,p) (3.85)

and

E(oL,i) = ∥oL,i∥2ℓ2(N,Rp×N ) =
ν−1∑
k=0

tr
(
oL,i(k)

ToL,i(k)
)
= tr(QL,i) . (3.86)

We observe again that the output energies described by the traces of the proper and
improper observability Gramians QL,p and QL,i are equal to the sum of their eigenvalues,
which allows the conclusion that states corresponding to the largest eigenvalues de�ne
the most dominant observability subspaces. As the improper system (3.59) needs to
maintain the complete system dynamics, only states corresponding to zero eigenvalues of
the respective Gramian QL,i can be removed, as they do not change the system behavior.
To summarize the multi-system approach presented in this section, Table 3.5 describes

the three derived transfer functions, the respective Gramians, and the resulting energies.
They are used in the following chapters to reduce systems of this structure.

System (3.58) System (3.59) System (3.60)

Transfer function GL,p,B(s) GL,p,Z0
(s) GL,i(s)

Controllability

Gramian

Pp,B Pp,Z0
Pi

Observability

Gramian

QL,p QL,p QL,i

Controllability

energies

E(cp,B) = tr(Pp,B) E(cp,Z0
) = tr(Pp,Z0

) E(ci) = tr(Pi)

Observability en-

ergies

E(oL,p) = tr(QL,p) E(oL,p) = tr(QL,p) E(oL,i) = tr(QL,i)

Table 3.5: Properties of system (3.54) corresponding to its multi-system representation.
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3.2 Inhomogeneous �rst-order DAE systems

3.2.1.2 Extended-input approach for inhomogeneous �rst-order DAE systems

with a linear output

In this paragraph, we derive an extended-input approach that introduces a model with a
homogeneous di�erential initial condition that is evaluated instead of the inhomogeneous
original system (3.54). This process will be advantageous if we need one system that
captures the overall system behavior rather than three subsystems.

Transfer function To derive proper and improper transfer functions, which also in-
clude the initial condition space, we �rst apply the Laplace transform to the di�erential
state zp(t) from (2.14) to obtain

Zp(s) = Pr(sE−A)−1(BU(s) + EZp,0ζ0) = Pr(sE−A)−1WpŨ(s) (3.87)

for the input matrix and the input in the frequency domain

Wp =
[
B EZp,0

]
and Ũ(s) =

[
U(s)
ζ0

]
, (3.88)

respectively. Applying the Laplace transform to the output equation in (3.54) and insert-
ing the state Zp(s) from (3.87) leads to the proper outputYL,p,Wp

(s) := CPr (sE−A)−1
WpŨ

from which we extract the respective transfer function

GL,p,Wp
(s) := CPr (sE−A)−1

Wp

that encodes the input- and initial condition-to-output behavior of the proper compo-
nents of the system (3.54).
To derive a transfer function that encodes the improper input-to-output mapping, we

apply the Laplace transform to the algebraic state zi(t) from (2.14), which yields

Zi,Wp
(s) := (I−Pr) (sE−A)−1

BU(s)

= (I−Pr) (sE−A)−1 (I−Pl)
[
B 0

] [U(s)
ζ0

]
= (I−Pr) (sE−A)−1 (I−Pl)

[
B E(I−Pr)Zp,0

]
Ũ(s)

= (I−Pr) (sE−A)−1 [
B (I−Pl)EZp,0

]
Ũ(s)

= (I−Pr) (sE−A)−1
WpŨ(s)

(3.89)

where we make use of the properties (I − Pr)Zp,0 = 0 and (I − Pr)(sE − A)−1 =
(sE−A)−1(I−Pl).
Now, we apply the Laplace transform to the output equation in (3.54) and insert

Zi,Wp
(s), which leads to the output YL,i,Wp

(s) := C(I − Pr) (sE−A)−1
WpŨ. This im-

proper output encodes the input-to-output mapping described by the following improper

85



3 Inhomogeneous systems and their system theoretical aspects

GL,i,Wp

ũ yi

GL,p,Wp

ũ yp

+ yL

Figure 3.10: Structure of a �rst-order DAE system with an extended input and a linear
output - di�erential and algebraic components decoupled.

transfer function

GL,i,Wp
(s) := C(I−Pr) (sE−A)−1

Wp.

The proper and improper transfer functions sum up to the following transfer function
describing the overall system behavior.

De�nition 3.28:
Consider the system (3.54) with a regular matrix pencil (A,E). Also, consider the matrix
Wp from (3.88) and assume that the consistency conditions from (2.15) are satis�ed.
Then the transfer function corresponding to this system is de�ned as

GL,Wp
(s) :=C (sE−A)−1

Wp. (3.90)
♢

Since the transfer function GL,Wp
results from multiple system realizations, we consider

the following one with a homogeneous di�erential initial condition

Eż(t) = Az(t) +Wpũ(t), Prz(0) = 0,

yL(t) = Cz(t),
(3.91)

with ũ ∈ L2([0,∞),Rm×NZ0 ) suitably chosen. The sketch in Figure 3.10 depicts this
surrogate system. We note that no initial conditions are needed to evaluate the system
dynamics since the di�erential part of the system has homogeneous initial conditions
and the algebraic components satisfy the consistency conditions (2.15).

Controllability Gramian We aim to describe the controllability properties of system
(3.91), which also encodes the controllability behavior of the original system (3.54).
Therefore, we evaluate the di�erential and the algebraic states separately.
As described in (2.14), the state z(t) of system (3.91) decomposes into

z(t) = zp(t) + zi(t) =

∫ t

0

FJ(t− τ)Wpũ(τ)dτ +
ν−1∑
k=0

FN(k)Wpũ
(k)(t).
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We extract the proper and improper input-to-state mappings that are

cp,Wp
(t) := FJ(t)Wp and ci,Wp

(k) := FN(k)Wp, (3.92)

where FJ(t) and FN(k) are as de�ned in (2.13). These mappings are used to de�ne
matrices Pp,Wp

:=
∫∞
0

cp,Wp
(t)cp,Wp

(t)Tdt and Pi,Wp
:=
∑ν−1

k=0 ci,Wp
(k)ci,Wp

(k)T that span
the proper and improper controllability space, respectively.

De�nition 3.29:
Consider the C-stable system (3.91) with a regular matrix pencil (A,E) and FJ(t) and
FN(k) as de�ned in (2.13). Then the corresponding proper and improper controllability
Gramians are de�ned as

Pp,Wp
:=

∫ ∞

0

FJ(t)WpW
T
pFJ(t)

Tdt, Pi,Wp
:=

ν−1∑
k=0

FN(k)WpW
T
pFN(k)

T. (3.93)
♢

Since the Gramians Pp,Wp
and Pi,Wp

span the controllability spaces, all reachable states
zp(t) and zi(t) lie in the spaces spanned by these matrices. Furthermore, inserting the
de�nitions of FJ(t) and FN(k) into (3.93) yields the following Lemma.

Lemma 3.30:
Consider the C-stable system (3.91) with a regular matrix pencil (A,E). Assume that
T, W are matrices that transform system (3.91) into WCF as introduced in (2.9). Then
the controllability Gramians Pp and Pi de�ned in (3.93) are of the following form

Pp,Wp
= T−1

[
P1 0
0 0

]
T−T, Pi,Wp

= T−1

[
0 0
0 P2

]
T−T (3.94)

where

P1 =

∫ ∞

0

eJtŴ1Ŵ
T
1 e

JTtdt and P2 =
ν−1∑
k=0

NkŴ2Ŵ
T
2 (N

k)T (3.95)

with Wp = W
[
Ŵ1

Ŵ2

]
and J, N as de�ned in (2.9). ♢

Note that the Gramians P1 and P2 are the proper and improper controllability Gramians
corresponding to the states z1(t) and z2(t) as de�ned in (2.12), respectively. Using the
controllability Gramians, we can characterize the states that are di�cult to reach or
even unreachable, which play a signi�cant role when reducing the system.
To compute the Gramians Pp,Wp

and Pi,Wp
de�ned in (3.94), we utilize that they

are the unique solutions of the following continuous-time and discrete-time projected
Lyapunov equations

EPp,Wp
AT +APp,Wp

ET = −PlWpW
T
pP

T
l , Pp = PrPpP

T
r ,

APi,Wp
AT − EPi,Wp

ET = (I−Pl)WpW
T
p (I−Pl)

T, 0 = PrPiP
T
r .

(3.96)
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Observability Gramians When considering systems with a linear output equation as in
system (3.91), the initial conditions do not a�ect the observability behavior. Hence, the
surrogate system (3.91) has equal observability properties as the homogeneous system
in (2.8). Therefore, the same observability Gramians introduced in (2.20) encode the
observability behavior of system (3.91), leading to the following de�nition.

De�nition 3.31:
Consider the C-stable system (3.91) with a regular matrix pencil (A,E). Then the
corresponding proper and improper observability Gramians are de�ned as

QL,p :=

∫ ∞

0

FJ(t)
TCTCFJ(t)dτ, QL,i :=

ν−1∑
k=0

FN(k)
TCTCFN(k), (3.97)

where FJ(t) and FN(k) are as de�ned in (2.13). ♢

We compute these Gramians by solving the projected Lyapunov equations (2.22).

Controllability energies In this paragraph, we use the controllability Gramians from
(3.93) to describe the controllability behavior of the system (3.91) and corresponding
energies in more detail. To derive an energy measure based on the proper and improper
input-to-state mappings de�ned in (3.92), we evaluate their energy norms de�ned in
(3.19) and (3.83) and obtain the expressions

E(cp,Wp
) = ∥cp,Wp

∥2
L2([0,∞),RN×(m+NZ0

))
=

∫ ∞

0

tr
(
cp,Wp

(t)cp,Wp
(t)T

)
dt = tr

(
Pp,Wp

)
,

(3.98)

and

E(ci,Wp
) = ∥ci,Wp

∥2
ℓ2(N,RN×(m+NZ0

))
=

ν−1∑
k=0

tr
(
ci,Wp

(k)ci,Wp
(k)T

)
= tr

(
Pi,Wp

)
. (3.99)

Since the trace of the Gramian Pp,Wp
is equal to the sum of its eigenvalues, it follows

from the energy norm in (3.98) that small eigenvalues contribute only small amounts of
energy to the system dynamics and correspond to the least signi�cant states. The same
properties can be observed for the improper Gramian Pi,Wp

. However, the improper sys-
tem components encode algebraic system constraints. Neglecting states corresponding
to nonzero eigenvalues could lead to physically meaningless dynamics so that only the
states corresponding to zero eigenvalues are negligible.
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Observability energies To describe the observability behavior of system (3.91), we
evaluate the respective observability energies in this paragraph. Therefore, we evaluate
the energy norms of the state-to-output mappings oL,p and oL,i, as de�ned in (3.73).
Since they coincide with the mappings introduced in (3.73) and (3.77), they provide the
same energy norms as in (3.85) and (3.86), that are

E(oL,p) = tr(QL,p) , E(oL,i) = tr(QL,i) .

The states corresponding to large eigenvalues of QL,p encode the dominant observability
subspaces. Among the improper states zi(t), only those corresponding to zero eigenvalues
of the improper Gramian QL,i can be neglected since they do not a�ect the system
dynamics.
The extended-input approach from this paragraph derives a system realization that is

used to de�ne suitable Gramians encoding the controllability and observability spaces.
These Gramians and the resulting energy norms are summarized in Table 3.6.

System (3.91) � di�erential

component

System (3.91) � algebraic

component

Transfer function GL,p,Wp
(s) GL,i,Wp

(s)

Controllability Gramian Pp,Wp
Pi,Wp

Observability Gramian QL,p QL,i

Controllability energies E(cp,Wp
) = tr

(
Pp,Wp

)
E(ci,Wp

) = tr
(
Pi,Wp

)
Observability energies E(oL,p) = tr(QL,p) E(oL,i) = tr(QL,i)

Table 3.6: Properties of system (3.54) corresponding to its extended-input representa-
tion.

3.2.2 Inhomogeneous �rst-order DAE systems with a quadratic

output

As a second class of DAE systems, we investigate systems with a quadratic output that
are of the form

Eż(t) = Az(t) +Bu(t), z(0) = z0,

yQ(t) = z(t)TMz(t),
(3.100)

with a state equation as de�ned in (3.49), and an output equation including the sym-
metric output matrix M ∈ RN×N and the output yQ(t) ∈ R. We assume that the
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GQ

u
z0

u
z0

yQ

Figure 3.11: Structure of a �rst-order DAE system with a quadratic output.

matrix pencil (A,E) is regular and that the consistency conditions in (2.15) are satis-
�ed. Figure 3.11 provides a sketch of the system structure where the inputs u and initial
conditions z0 appear twice to indicate the quadratic output equation.
We decompose the output matrix M according to the WCF introduced in (2.9) into

M = TT

[
M̃11 M̃12

M̃T
12 M̃22

]
T. (3.101)

This decomposition is used in the following for theoretical considerations. As described
for DAE systems with linear output equations in Section 3.2.1, we consider the di�er-
ential and algebraic components of the system separately. Therefore, we decompose the
output equation in (3.100) as

yQ(t) = zp(t)
TMzp(t) + zp(t)

TMzi(t) + zi(t)
TMzp(t) + zi(t)

TMzi(t)

= z1(t)
TM̃11z1(t) + z1(t)

TM̃12z2(t) + z2(t)
TM̃T

12z1(t) + z2(t)
TM̃22z2(t)

=: ypp(t) + ypi(t) + yip(t) + yii(t)

(3.102)

using the state components from (2.14) and (2.12). We observe that the output consists
of four components. We note that the two output components ypi(t) and yip(t) coincide.
However, they are analyzed separately in this work as they span di�erent observability
spaces. Moreover, both components depend on a di�erential state and an algebraic one.
Hence, there is no obvious categorization of the outputs into proper and improper ones.
In the following, we consider the subsystems corresponding to the di�erent output

components de�ned in (3.102) and investigate them individually. Figure 3.12 depicts
the subsystem structure, where we again only add an input u to derive the algebraic
components of the quadratic output since we assume the system satis�es the consistency
conditions. Hence, the initial conditions are included implicitly.
To consider the di�erential initial conditions while analyzing the system with a quadratic

output, we aim to apply the multi-system and extended-input approach introduced
above. Therefore, in Section 3.2.2.1, we describe the multi-system approach for inho-
mogeneous DAE systems with a quadratic output. Afterwards, in Section 3.2.2.2, we
apply the extended-input approach for this class of systems. For this purpose, we de-
rive suitable transfer functions, the corresponding Gramians, and the resulting energy
interpretations.
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yii
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u
z0

u
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+ yQ

Figure 3.12: Structure of a �rst-order DAE system with a quadratic output - proper and
improper components decoupled.

3.2.2.1 Multi-system approach for inhomogeneous �rst-order DAE systems

with a quadratic output

We aim to modify the multi-system approach presented in [15] so that it applies to DAE
systems (3.100) with a quadratic output equation. Within this approach, we derive
subsystems for the di�erent input- and initial condition-to-output mappings. Inserting
the three state components zp,B(t), zp,Z0

(t), and zi(t) from (3.55) and (2.14), respectively,
into the quadratic output equation from (3.102) yields

yQ(t) = zp,B(t)
TMzp,B(t) + zp,Z0

(t)TMzp,B(t) + zp,B(t)
TMzp,Z0

(t)

+ zp,Z0
(t)TMzp,Z0

(t) + zp,B(t)
TMzi(t) + zp,Z0

(t)TMzi(t)

+ zi(t)
TMzp,B(t) + zi(t)

TMzp,Z0
(t) + zi(t)

TMzi(t).

(3.103)

We note that the decomposition of the output consists of nine components. Examining
each respective subsystem individually would lead to extensive computations. Therefore,
for the sake of simplicity, we consider only the extended-input approach presented below.

3.2.2.2 Extended-input approach for inhomogeneous �rst-order DAE systems

with a quadratic output

We apply, in this paragraph, the extended-input approach, to consider the di�erential
initial conditions while analyzing the respective system. For that, we derive a system
representation with homogeneous di�erential initial conditions.
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3 Inhomogeneous systems and their system theoretical aspects

Transfer function Our objective is to describe the input- and initial condition-to-
output behavior of the system (3.100). Therefore, we consider the di�erent output
components in (3.103), where, e.g., the �rst output component is

ypp,BB(t) =

∫ t

0

∫ t

0

u(τ1)
TBTFJ(t− τ1)

TMFJ(t− τ2)Bu(τ2)dτ1dτ2.

We extract the kernel

gQ,pp,BB(t1, t2) := BTFJ(t1)
TMFJ(t2)B,

which encodes the input-to-output mapping corresponding to the �rst output component
zp,B(t)

TMzp,B(t). To derive the respective transfer function, we apply the 2-dimensional
Laplace transform, which yields

GQ,pp,BB(s1, s2) := BTPT
l (s1E−A)−TM(s2E−A)−1PlB.

Applying this procedure to all output components in (3.103) and summing over the
resulting transfer functions leads to the transfer function

GQ,WpWp
(s1, s2) := (BTPT

l + ZT
0P

T
l +BT(I−Pl)

T)(s1E−A)−T

·M(s2E−A)−1(PlB+PlZ0 + (I−Pl)B)

= (BT + ZT
0,p)(s1E−A)−TM(s2E−A)−1(Z0,p +B)

=

[
ZT

0,p

BT

]
(s1E−A)−TM(s2E−A)−1

[
Z0,p B

]
,

which encodes the overall input-to-output behavior. Using the de�nition of Wp from
(3.88) leads to the following de�nition.

De�nition 3.32:
Consider the system (3.100) with a regular matrix pencil (A,E). Also, consider the
matrixWp from (3.88) and assume that the consistency conditions in (2.15) are satis�ed.
Then the transfer function corresponding to the system is de�ned as

GQ,WpWp
(s1, s2) = WT

p (s1E−A)−TM(s2E−A)−1Wp. (3.104)
♢

The transfer function GQ,WpWp
from (3.104) has several system realizations. One of them

is the following DAE system with a homogeneous di�erential initial condition,

Eż(t) = Az(t) +Wpũ(t), Prz(0) = 0,

yQ(t) = z(t)TMz(t),
(3.105)
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Figure 3.13: Structure of a �rst-order DAE system with an extended input and a
quadratic output - di�erential and algebraic components decoupled.

with Wp,WpWp
as de�ned in (3.88) and a suitable input function ũ ∈ L([0,∞),Rm+nZ0 ).

In the following, the surrogate system (3.105) is analyzed instead of the original system
(3.100) so that the system analysis involves the initial conditions.
In the following, we investigate the controllability behavior of the right state added

to the quadratic output equation in (3.105). Moreover, we investigate the observability
of the right state under consideration of the left one. Therefore, we distinguish between
the di�erential and the algebraic right state components in the following. Hence, we
divide the transfer function from (3.104) into a transfer function corresponding to the
di�erential right state and one that corresponds to the algebraic one while considering all
left states generated by the system (3.105), which results in the proper and the improper
transfer function

GQ,p,Wp
(s1, s2) := WT

p (s1E−A)−TM(s2E−A)−1PlWp,

GQ,i,Wp
(s1, s2) := WT

p (s1E−A)−TM(s2E−A)−1(I−Pl)Wp,

respectively. The respective structure is depicted in Figure 3.13.

Controllability Gramians To investigate the controllability behavior of the surrogate
system (3.105), we aim to derive its controllability Gramians that encode the respec-
tive controllability space. We note that the state equation of system (3.100) coincides
with the one corresponding to the DAE system (3.54) with a linear output equation.
Therefore, the same mappings cp and ci from (3.92) encode the input-to-state behavior,
and hence, the same controllability Gramians de�ned in (3.29) encode the controllability
spaces.

De�nition 3.33:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E). Then the
corresponding proper and improper controllability Gramians are de�ned as

Pp,Wp
:=

∫ ∞

0

FJ(t)WpW
T
pFJ(t)

Tdt, Pi,Wp
:=

ν−1∑
k=0

FN(k)WpW
T
pFN(k)

T,
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3 Inhomogeneous systems and their system theoretical aspects

where FJ(t) and FN(k) are as de�ned in (2.13). ♢

We compute these Gramians solving the projected Lyapunov equations in (3.96).

Observability Gramians To describe the controllability behavior of system (3.105),
we aim to derive the respective observability Gramians. Therefore, we decompose the
output as described in (3.102) and investigate the proper and improper components
separately. For a better understanding, we can rewrite yQ(t) by de�ning the state-
dependent function C(z(t)) := z(t)TM. Applying this representation to the decomposed
output in (3.102) leads to

yQ(t) = C(zp(t))zp(t) + C(zp(t))zi(t) + C(zi(t))zp(t) + C(zi(t))zi(t).

We observe, that the observability of the state zp(t) in the output yQ,ip(t) = C(zi(t))zp(t)
also depends on the reachability of zi(t). On the other hand, the observability of the
improper state zi(t) corresponding to yQ,pi(t) = C(zp(t))zi(t) depends on the reacha-
bility of zp(t). Hence, the outputs yQ,ip(t) = yQ,pi(t) encode two di�erent observability
properties. Analogously, the outputs yQ,pp(t) and yQ,ii(t) encode the observability of the
state zp(t) depending on the reachability of the same, and the observability of the state
zi(t) depending on the reachability of the same state zi(t), respectively.
In this paragraph, we de�ne proper and improper observability Gramians encoding the

observability behavior of state the zp(t) and zi(t), respectively, corresponding to C(zp(t))
and C(zi(t)). That way, we obtain a proper observability Gramian corresponding to the
outputs ypp(t) and yip(t) and an improper Gramian corresponding to ypi(t) and yii(t).
We want to emphasize that the observability of the right state zp(t) (or zi(t)) does not
only depend on the matrix M but also on the space in which the left state zp(t) or zi(t)
live. So it is expected that the observability Gramian for zp(t) (or zi(t)) depend on Pp

and Pi as well.

Proper observability Gramian In this paragraph, we investigate the two outputs
ypp(t) and yip(t) and their observability properties. We aim to describe the observability
of the right proper state depending on the second (left) state in the quadratic output
equation.
We start investigating the �rst component of the output ypp(t) = zp(t)

TMzp(t) that
includes two proper states. Inserting the solution trajectories of the states leads to

ypp(t) =

∫ t

0

∫ t

0

ũ(τ1)
TWT

pFJ(t− τ1)
TMFJ(t− τ2)Wpũ(τ2)dτ2dτ1

=

∫ t

0

∫ t

0

vec
(
WT

pFJ(t− τ1)
TMFJ(t− τ2)Wp

)T
(ũ(τ2)⊗ ũ(τ1)) dτ2dτ1.
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3.2 Inhomogeneous �rst-order DAE systems

We identify the input-to-state mapping cp,Wp
(t) = FJ(t)Wp de�ned in (3.92) within the

output ypp(t) and extract the remaining state-to-output mapping

opp,Wp
(t1, t2) := WT

pFJ(t1)MFJ(t2),

which encodes the observability of the di�erential right state while considering the left
di�erential state. Based on this mapping, we de�ne a matrix

Qpp,Wp
:=

∫ ∞

0

∫ ∞

0

opp,Wp
(t1, t2)

Topp,Wp
(t1, t2)dt1dt2

=

∫ ∞

0

∫ ∞

0

FJ(t2)
TMFJ(t1)WpW

T
pFJ(t1)

TMFJ(t2)dt1dt2

=

∫ ∞

0

FJ(t2)
TMPp,Wp

MFJ(t2)dt2

that spans the respective observability space using the de�nition of the controllability
Gramian Pp,Wp

from (3.93).

De�nition 3.34:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability Gramian Pp,Wp

as de�ned in (3.93). The proper-proper
observability Gramian Qpp,Wp

corresponding to the output ypp is de�ned as

Qpp,Wp
:=

∫ ∞

0

FJ(t2)
TMPp,Wp

MFJ(t2)dt2 (3.106)

where FJ(t) is de�ned as in (2.13). ♢

To describe the connection between the Weierstraÿ-canonical representation (2.11)
and the system (3.100) in the observability Gramian Qpp, we insert the function FJ(t),
which leads to the following Lemma.

Lemma 3.35:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability Gramian Pp,Wp

as de�ned in (3.93). The proper-proper
observability Gramian Qpp,Wp

corresponding to the output ypp is of the form

Qpp,Wp
:= W−T

[
Q11 0
0 0

]
W−1

where

Q11 :=

∫ ∞

0

eJ
TtM̃11P1M̃11e

Jtdt (3.107)

with the proper controllability Gramian P1 as de�ned in (3.95) and M̃11 as de�ned in
(3.101). ♢
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3 Inhomogeneous systems and their system theoretical aspects

Note that Q11 is the proper-proper observability Gramian corresponding to the state
z1(t) de�ned in (2.12). The following theorem describes how the Gramian Qpp,Wp

is
computed.
Theorem 3.36:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability Gramian Pp,Wp

as de�ned in (3.93). The proper observ-
ability Gramian Qpp,Wp

as de�ned in (3.106) solves the projected Lyapunov equation

ETQpp,Wp
A+ATQpp,Wp

E = −PT
r MPp,Wp

MPr, Qpp,Wp
= PT

l Qpp,Wp
Pl,

where the projection matrices Pl and Pr are de�ned as in (2.10). ♢

Proof. We �rst observe that the projection condition is naturally satis�ed since Qpp is
by de�nition equal to W−T

[
Q11 0
0 0

]
W−1 with Q11 as de�ned in (3.107). To prove that

Qpp,Wp
satis�es the remaining Lyapunov equation, we show thatQ11 solves the Lyapunov

equation
JTQ11 +Q11J = −M̃11P1M̃11. (3.108)

For that we insert Q11 into (3.108) and obtain∫ ∞

0

(
JTeJ

HtM̃11P1M̃11e
Jt + eJ

HtM̃11P1M̃11e
JtJ
)
dt =

[
eJ

HtM̃11P1M̃11e
Jt
]∞
0

= −M̃11P1M̃11.

Moreover, we insert the WCF of E and A and the de�nition of Pr into the Lyapunov
equation to obtain

TT

[
I 0
0 NT

] [
Q11 0
0 0

] [
J 0
0 I

]
T+TT

[
JT 0
0 I

] [
Q11 0
0 0

] [
I 0
0 N

]
T

= TT

[
Q11J 0
0 0

]
T+TT

[
JTQ11 0

0 0

]
T

= −TT

[
M̃11P1M̃11 0

0 0

]
T

= −PT
r MPp,Wp

MPr.

such that (3.108) implies the statement, since T is a regular matrix.

Now we consider the third output component yip(t) = zi(t)
TMzp(t). We insert the

states zp(t) and zi(t) and obtain

yip(t) = −
ν−1∑
k=0

∫ t

0

(ũ(k)(t))TWT
pFN(k)

TMFJ(t− τ)Wpũ(τ)dτ

= −
ν−1∑
k=0

∫ t

0

vec
(
WT

pFN(k)
TMFJ(t− τ)Wp

)T (
ũ(τ)⊗ ũ(k)(t)

)
dτ.
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We identify the controllability mapping cp,Wp
(t) = FJ(t)Wp within the output yip(t)

and de�ne the remaining observability mapping

o ip,Wp
(t, k) := WT

pFN(k)
TMFJ(t),

that is used to describe the observability behavior of the output yip(t). Therefore, we
construct a matrix

Qip,Wp
:=

ν−1∑
k=0

∫ ∞

0

o ip,Wp
(t, k)To ip,Wp

(t, k)dt

=
ν−1∑
k=0

∫ ∞

0

FJ(t)
TMFN(k)WpW

T
pFN(k)

TMFJ(t)dt

=

∫ ∞

0

FJ(t)
TMPiMFJ(t)dt,

that spans the observability space of the state zp(t) while considering the controllability
space of zi(t).

De�nition 3.37:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding improper controllability Gramian Pi as de�ned in (3.93). The improper-proper
observability Gramian Qip,Wp

corresponding to the output yip is de�ned as

Qip,Wp
=

∫ ∞

0

FJ(t)
TMPiMFJ(t)dt, (3.109)

where FJ(t) is de�ned in(2.13). ♢

Lemma 3.38:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the cor-
responding improper controllability Gramian Pi,Wp

as de�ned in (3.93). The improper-
proper observability Gramian Qip,Wp

corresponding to the output yip is of the form

Qip,Wp
:= W−T

[
Q21 0
0 0

]
W−1

where

Q21 :=

∫ ∞

0

eJ
TtM̃12P2M̃

T
12e

Jtdt (3.110)

with the improper controllability Gramian P2 as de�ned in (3.95) and M̃12 as de�ned
in (3.101). ♢
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Theorem 3.39:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the cor-
responding improper controllability Gramian Pi,Wp

as de�ned in (3.93). The improper-
proper observability Gramian Qip,Wp

solves the projected Lyapunov equation

ETQip,Wp
A+ATQip,Wp

E = −PT
r MPi,Wp

MPr, Qip,Wp
= PT

l Qip,Wp
Pl,

where the projection matrices Pl and Pr are de�ned as in (2.10). ♢

Proof. The proof follows the same argumentation as for Theorem 3.36.

We can combine the two proper observability Gramians to obtain one Gramian that
encodes the observability behavior of the di�erential states zp(t) independent of the
second state, that is, the observability of the output yp(t) = z(t)TMzp(t) for an arbitrary
state z(t) generated by system (3.100). Since the sum Pp,Wp

+ Pi,Wp
spans the full

controllability space of the state z(t), the proper observability Gramian corresponding
to proper and improper left states is given by

QQ,p,Wp
=

∫ ∞

0

FJ(t)
TM(Pp,Wp

+Pi,Wp
)MFJ(t)dt = Qpp,Wp

+Qip,Wp
.

We summarize this paragraph with the following de�nition.

De�nition 3.40:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E), and the cor-
responding proper and improper controllability Gramian Pp,Wp

and Pi,Wp
as de�ned

in (3.93). The proper observability Gramian corresponding to the output yp(t) =
ypp(t) + yip(t) is de�ned as

QQ,p,Wp
:= Qpp,Wp

+Qip,Wp
, (3.111)

with Qpp,Wp
and Qip,Wp

as de�ned in (3.106) and (3.109), respectively. ♢

Improper observability Gramians In this paragraph, we investigate the observ-
ability behavior of the outputs ypi(t) := zp(t)

TMzi(t) and yii(t) := zi(t)
TMzi(t). Both

outputs describe the observability of an algebraic (right) state zi(t) while considering
either a di�erential state or an algebraic one multiplied from the left.
The state ypi(t) is equal to

ypi(t) =

∫ t

0

ν−1∑
k=0

ũ(τ)TWT
pFJ(t− τ)TMFN(k)Wpũ

(k)(t)dτ

=

∫ t

0

ν−1∑
k=0

vec
(
WT

pFJ(t− τ)TMFN(k)Wp

)T (
ũ(k)(t)⊗ ũ(τ)

)
dτ.
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We identify the improper controllability mapping ci,Wp
(k) = FN(k)Wp within the output

ypi(t) and the remaining observability mapping

opi,Wp
(t, k) = WT

pFJ(t)
TMFN(k)

that is used to de�ne a matrix

Qpi,Wp
=

∫ ∞

0

ν−1∑
k=0

opi,Wp
(t, k)Topi,Wp

(t, k)dt

=

∫ ∞

0

ν−1∑
k=0

FN(k)
TMFJ(t)WpW

T
pFJ(t)

TMFN(k)dt

=
ν−1∑
k=0

FN(k)
TMPp,Wp

MFN(k),

that spans the observability space of the state zi(t) while considering the controllability
space of the state zp(t).

De�nition 3.41:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability Gramian Pp,Wp

as de�ned in (3.93). The proper-improper
observability Gramian Qpi,Wp

corresponding to the output ypi is de�ned as

Qpi,Wp
=

ν−1∑
k=0

FN(k)
TMPp,Wp

MFN(k), (3.112)

where FN(k) is de�nes as in (2.13). ♢

We insert the mapping FN(k) to derive the following Lemma.

Lemma 3.42:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability GramianPp,Wp

as de�ned in (3.93). The proper-improper
observability Gramian Qpi,Wp

is equal to the following representation

Qpi,Wp
= W−T

[
0 0
0 Q12

]
W−1,

where

Q12 :=
ν−1∑
k=0

(−Nk)TM̃T
12P1M̃12(−Nk), (3.113)

with the proper controllability Gramian P1 de�ned as in (3.95) and M̃12 as in (3.101).♢
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The Gramian Q12 is the improper observability Gramian corresponding to the alge-
braic (right) state z2(t) and the di�erential (left) state z1(t) de�ned in (2.12). Hence,
Lemma 3.42 describes the relation between the observability of the system in WCF
(2.11) and the original system (3.100).
The following theorem is used to compute the Gramian Qpi,Wp

.

Theorem 3.43:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the corre-
sponding proper controllability GramianPp,Wp

as de�ned in (3.93). The proper-improper
observability Gramian Qpi,Wp

solves the projected Lyapunov equation

ATQpi,Wp
A− ETQpi,Wp

E = (I−PT
r )MPp,Wp

M(I−Pr), PT
l Qpi,Wp

Pl = 0,

where the projection matrices Pl and Pr are as de�ned in (2.10). ♢

Proof. To prove the projection condition, we derive

PT
LQpi,Wp

PL = W−T

[
I 0
0 0

]
WTW−T

[
0 0
0 Q12

]
W−1W

[
I 0
0 0

]
W−1 = 0.

Moreover, we show that the Gramian Q12 de�ned in (3.113) solves the discrete-time
Lyapunov equation

Q12 −NTQ12N = M̃T
12P1M̃12. (3.114)

For that, we insert the de�nition of Q12 into (3.114). This results in

ν−1∑
k=0

(−Nk)TM̃T
12P1M̃12(−Nk)−

ν−1∑
k=0

(−Nk+1)TM̃T
12P1M̃12(−Nk+1)

= (−N0)TM̃T
12P1M̃12(−N0)

= M̃T
12P1M̃12,

since N has the nilpotency index ν − 1, i.e., Nν = 0.
To �nalize the proof, we insert the WCF of E and A, and the de�nition of Pr into

the remaining Lyapunov equation to obtain

TT

[
JT 0
0 I

] [
0 0
0 Q12

] [
J 0
0 I

]
T−TT

[
I 0
0 NT

] [
0 0
0 Q12

] [
I 0
0 N

]
T

= TT

[
0 0
0 Q12 −NTQ12N

]
T

= TT

[
0 0

0 M̃T
12P1M̃12

]
T

= (I−PT
r )MPp,Wp

M(I−Pr),

which proves the statement.
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3.2 Inhomogeneous �rst-order DAE systems

Now, we consider the fourth output component yii(t) that describes the observability
space of the algebraic (right) state zi(t) for an algebraic (left) state. The respective
output component is equal to

yii(t) =
ν−1∑
k=0

ν−1∑
ℓ=0

(ũ(k)(t))TWT
pFN(k)

TMFN(ℓ)Wpũ
(ℓ)(t)

=
ν−1∑
k=0

ν−1∑
ℓ=0

vec
(
WT

pFN(k)
TMFN(ℓ)Wp

)T (
ũ(ℓ)(t)⊗ ũ(k)(t)

)
.

We identify the improper controllability mapping ci,Wp
(ℓ) = FN(ℓ)Wp and the remaining

observability mapping

o ii,Wp
(k, ℓ) = WT

pFN(k)
TMFN(ℓ).

Based on this mapping o ii,Wp
(k, ℓ), we de�ne a matrix

Qii,Wp
:=

ν−1∑
k=0

ν−1∑
ℓ=0

o ii,Wp
(k, ℓ)Ho ii,Wp

(k, ℓ)

=
ν−1∑
k=0

ν−1∑
ℓ=0

FN(ℓ)
TMFN(k)WpW

T
pFN(k)

TMFN(ℓ)

=
ν−1∑
ℓ=0

FN(ℓ)
TMPi,Wp

MFN(ℓ),

which spans the observability space of the (right) algebraic state zi(t) and a (left) alge-
braic state zi(t).

De�nition 3.44:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the cor-
responding improper controllability Gramian Pi,Wp

as de�ned in (3.93). The improper-
improper observability Gramian Qii,Wp

corresponding to the output yii is de�ned as

Qii,Wp
:=

ν−1∑
ℓ=0

FN(ℓ)
TMPi,Wp

MFN(ℓ),

where FN(ℓ) is de�ned as in (2.13). ♢

Lemma 3.45:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the cor-
responding improper controllability Gramian Pi,Wp

as de�ned in (3.93). The improper-
improper observability Gramian Qii,Wp

is equal to the following representation

Qii,Wp
= W−T

[
0 0
0 Q22

]
W−1,
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3 Inhomogeneous systems and their system theoretical aspects

where

Q22 :=
ν−1∑
k=0

(−Nk)TM̃22P2M̃22(−Nk), (3.115)

with the improper controllability GramianP2 de�ned as in (3.95) and M̃22 as in (3.101).♢

Theorem 3.46:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the cor-
responding improper controllability Gramian Pi,Wp

as de�ned in (3.93). The improper-
improper observability Gramian Qii,Wp

solves the projected Lyapunov equation

ATQii,Wp
A− ETQii,Wp

E = (I−PT
r )MPi,Wp

M(I−Pr), PT
l Qii,Wp

Pl = 0

where Pl and Pr are de�ned as in (2.10). ♢

Proof. The proof is similar to the one of Theorem 3.43.

We can combine the two improper output Gramians Qpi,Wp
and Qii,Wp

to obtain an
improper Gramian that encodes the observability of the output yi(t) = z(t)TMzi(t)
for an arbitrary state z(t) generated by system (3.100). Since the sum Pp,Wp

+ Pi,Wp

spans the full controllability space of the state z(t), the proper observability Gramian
corresponding to both, di�erential and algebraic left states, is given by

QQ,i,Wp
=

ν−1∑
k=0

FN(t)
TM(Pp,Wp

+Pi,Wp
)MFN(t) = Qpi,Wp

+Qii,Wp
.

We summarize this paragraph with the following de�nition.

De�nition 3.47:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E), and the cor-
responding proper and improper controllability Gramians Pp,Wp

and Pi,Wp
as de�ned

in (3.93). The improper observability Gramian Qi,Wp
corresponding to the output yi is

de�ned as

QQ,i,Wp
:= Qpi,Wp

+Qii,Wp
, (3.116)

where the Gramians Qpi,Wp
and Qii,Wp

are as de�ned in (3.112) and (3.44). ♢

Controllability energies As described above, the controllability behavior and hence
the controllability energies of the system (3.105) with a quadratic output equation are
equal to those in (3.91) with a linear output equation. Hence, we consider the energy
measure derived in (3.98) and (3.99) for systems with a linear output equation based on
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3.2 Inhomogeneous �rst-order DAE systems

the proper and improper input-to-state mappings de�ned in (3.92). The energy norms
of these mappings are

E(cp,Wp
) = tr

(
Pp,Wp

)
, E(ci,Wp

) = tr
(
Pi,Wp

)
.

We observe that states corresponding to the large eigenvalues of the Gramian Pp,Wp
span

the most dominant proper controllability subspaces. On the other hand, the smallest
eigenvalues, including the zero eigenvalues, are negligible to describe the system dy-
namics. Moreover, it follows from the evaluation of E(ci,Wp

) that zero eigenvalues of
the improper controllability Gramian Pi,Wp

are negligible since they do not change the
energy of the system.

Observability energies To investigate the observability energies, we �rst de�ne the
proper and improper observability mappings as

op,Wp
(k, t1, t2) :=

[
opp,Wp

(t1, t2)
o ip,Wp

(k, t2)

]
, o i,Wp

(ℓ, k, t) :=

[
opi,Wp

(ℓ, t)
o ii,Wp

(ℓ, k)

]
.

We follow the same methodology as above and evaluate the energy norm of the proper
observability mapping. However, this mapping depends on continuous and discrete
variables. Therefore, we need to de�ne an energy norm that considers both. For a
function o : N× [0,∞) → Rm×N with o(k, ·) ∈ L2

(
[0,∞),Rm×N

)
for all k ∈ N, we can

evaluate the L2-norm as

E(k, ·) = ∥o(k, ·)∥2L2([0,∞),Rm×N ).

Also these norm values de�ne a sequence (E(k, ·))k, E(k, ·) : N → R. If it holds that∑∞
0 ∥E(k, ·)∥F < ∞, we can de�ne mixed energy norm as the ℓ2-norm of E(k, ·) that is

de�ned as

E(c) := ∥E(k, ·)∥ℓ2(N,R) =
∞∑
k=0

|E(k, ·)| =
∞∑
k=0

∫ ∞

0

tr
(
o(k, t)o(k, t)T

)
dt. (3.117)
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3 Inhomogeneous systems and their system theoretical aspects

Applying the energy norm from (3.117) to the state-to-output mapping op,Wp
yields

E(op,Wp
) :=

ν−1∑
k=0

∥op,Wp
(k, ·, ·)∥2

L2([0,∞)2,R2(m+NZ0
)×N)

=
ν−1∑
k=0

∫ ∞

0

∫ ∞

0

tr
(
op,Wp

(k, t1, t2)
Top,Wp

(k, t1, t2)
)
dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
opp,Wp

(t1, t2)
Topp,Wp

(t1, t2)
)
dt1dt2

+
ν−1∑
k=0

∫ ∞

0

tr
(
o ip,Wp

(k, t2)
To ip,Wp

(k, t2)dt2
)

=tr
(
Qpp,Wp

)
+ tr

(
Qip,Wp

)
= tr

(
Qp,Wp

)
with QQ,p,Wp

is the proper observability Gramian de�ned in (3.111). We observe, that the
largest eigenvalues of the Gramian Qp,Wp

have the highest in�uence on the observability
energy while the in�uence of the smallest eigenvalues is negligible.
We also apply the energy norm from (3.117) to the improper state-to-output mapping

o i,Wp
to obtain

E(o i,Wp
) :=

ν−1∑
ℓ=0

ν−1∑
k=0

∫ ∞

0

∥Oi,Wp
(ℓ, k, ·)∥2

L2([0,∞),R2(m+NZ0
)×N)

=
ν−1∑
ℓ=0

ν−1∑
k=0

∫ ∞

0

tr
(
o i,Wp

(ℓ, k, t)To i,Wp
(ℓ, k, t)

)
dt

=
ν−1∑
k=0

∫ ∞

0

tr
(
opi,Wp

(k, t)Topi,Wp
(k, t)

)
dt

+
ν−1∑
ℓ=0

ν−1∑
k=0

tr
(
o ii,Wp

(ℓ, k)To ii,Wp
(ℓ, k)

)
=tr

(
Qpi,Wp

)
+ tr

(
Qii,Wp

)
= tr

(
QQ,i,Wp

)
,

where QQ,i,Wp
is the improper observability Gramian as de�ned in (3.116). We observe,

that the largest eigenvalues of the Gramian Qp,Wp
have the highest in�uence on the

observability energy. However, since the algebraic states encode physical restrictions on
the system dynamics, only zero eigenvalues are negligible.
From both energy expressions, we follow that the states corresponding to the largest

eigenvalues of the respective Gramians span the most dominant observability subspaces.
Consequently, when reducing the respective system (3.100), we truncate the states cor-
responding to small eigenvalues of QQ,p,Wp

and zero eigenvalues of QQ,i,Wp
.
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3.3 Inhomogeneous second-order ODE systems

In Table 3.7, we summarize the transfer functions, the derived Gramians, and the
respective energies that were introduced in this Section.

System (3.105) � di�erential

component

System (3.105) � algebraic

component

Transfer function GQ,p,Wp
(s1, s2) GQ,i,Wp

(s1, s2)

Controllability Gramian Pp,Wp
Pi,Wp

Observability Gramian QQ,p,Wp
QQ,i,Wp

Controllability energies E(cp,Wp
) = tr

(
Pp,Wp

)
E(ci,Wp

) = tr
(
Pi,Wp

)
Observability energies E(op,Wp

) = tr
(
QQ,p,Wp

)
E(o i,Wp

) = tr
(
QQ,i,Wp

)
Table 3.7: Properties of system (3.100) corresponding to its extended-input representa-

tion.

3.3 Inhomogeneous second-order ODE systems

In this section, we extend the theory from Section 3.1 to second-order systems with a
state equation

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0 (3.118)

where the mass, damping, and sti�ness matrix are M, D, K ∈ Rn×n, respectively, and
the input matrix is B ∈ Rn×m. The matrices M, D, and K are naturally symmetric and
positive semi-de�nite. Throughout this work, however, we assume positive de�niteness.
Also, the state is given as x(t) ∈ Rn, the input as u(t) ∈ Rm, and initial values as
x0, ẋ0 ∈ Rn. We assume that there are matrices X0 ∈ Rn×nX0 and V0 ∈ Rn×nV0 so that
all admissible initial states and velocities can be written as

x(0) = x0 = X0χ0, ẋ(0) = ẋ0 = V0ν0, (3.119)

for suitable vectors χ0 ∈ RnX0 and ν0 ∈ RnV0 .
Using the matrices introduced in (2.24), the second-order state equation in (3.118)

can be written as �rst-order equation (3.1) and, hence, the respective system properties
derived in Section 3.1 can be used to describe the system dynamics. However, we aim
to maintain the second-order structure to derive physically meaningful results. There-
fore, in this section, we derive the transfer functions, Gramians, and respective energy
expressions for second-order systems. To do so, we apply the Laplace transform to the
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3 Inhomogeneous systems and their system theoretical aspects

GL

u

x0

ẋ0

yL

Figure 3.14: Structure of a second-order ODE system with a linear output
.

state equation in (3.118) and obtain

X(s) = Λ(s) (BU(s) + (D+ sM)X0χ0 +MV0ν0) (3.120)

for Λ(s) := (s2M + sD + K)−1, where X(s) and U(s) are the Laplace transforms of
x(t) and u(t), respectively. We note that the state X(s) consists of three components:
one arising from the input, one arising from the displacement initial condition, and one
arising from the velocity initial condition. This state composition will be used in the
following to describe the behavior of the system (3.118).
We study second-order systems with di�erent output structures. First, in Section 3.3.1,

we investigate second-order systems with linear output equations, and afterward, in Sec-
tion 3.3.2, systems with quadratic output equations. For this purpose, we derive tailored
second-order systems Gramians and the resulting system energies that describe the re-
spective system behavior. Therefore, we modify the concepts introduced in Section 3.1
for �rst-order systems.

3.3.1 Inhomogeneous second-order ODE systems with a linear

output

We �rst consider second-order systems with a linear output equation of the form

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

yL(t) = C1x(t) +C2ẋ(t),
(3.121)

with a state equation as introduced in (3.118), and an output equation containing the
output matrices C1, C2 ∈ Rp×n and the output yL(t) ∈ Rp. In this section, we assume
that C2 = 0. Otherwise, if C2 ̸= 0, the �rst-order representation (3.5) with matrices
(2.24) is used so that we apply the theory from Section 3.1.1.
Figure 3.14 describes the structure of these systems, where we note that the system

is a�ected by the input, the displacement initial condition, and the velocity initial con-
dition. In the following, we analyze the system dynamics and consider, in particular,
the initial conditions. For this purpose, we extend the superposition ideas from [15] to
the class of second-order systems. Given the superposition principle, we show that the
original system is decomposable into three subsystems. The �rst subsystem considers
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3.3 Inhomogeneous second-order ODE systems

the mapping between the input u(t) and the output, where the initial conditions are
zero. The second and the third subsystems correspond to the outputs resulting from the
position initial condition x0 and the velocity initial condition ẋ0. Based on the represen-
tation of these subsystems in the frequency domain presented in this thesis, we design
tailored controllability and observability Gramians for the input and initial conditions.
They are valuable tools to describe the controllability spaces corresponding to the ini-
tial conditions since they allow the preservation of physically meaningful second-order
structures. Moreover, these Gramians can be concatenated so that one controllability
Gramian and one observability Gramian encode the overall system behavior.
We propose two methods to study the inhomogeneous systems. The �rst one an-

alyzes each subsystem independently using the respective Gramians, as introduced in
Section 3.3.1.1. The second proposed method, introduced in Section 3.3.1.2, analyzes
the system as a whole using the extended-input method and the associated Gramians.

3.3.1.1 Multi-system approach for inhomogeneous second-order ODE systems

with a linear output

In this section, we apply the superposition principles to the state equation in (3.120)
to deal with inhomogeneous initial conditions in second-order systems. Therefore, we
derive three subsystems, one corresponding to the input, one to the displacement initial
condition, and one to the velocity initial condition. These subsystems are then analyzed
independently to describe the respective controllability and observability behavior.

Transfer function We apply the Laplace transform to the output equation in (3.121)
and insert the state X(s) as de�ned in (3.120) to obtain the output in the frequency
domain, that is

YL(s) = C1Λ(s)BU(s) +C1Λ(s)(D+ sM)X0χ0 +C1Λ(s)MV0ν0. (3.122)

We observe that the output is a superposition of the input-to-output mapping, the po-
sition initial condition-to-output mapping, and the velocity initial condition-to-output
mapping. Corresponding to the three output components, we de�ne the transfer func-
tions describing the input- and initial condition-to-output mappings, which follow di-
rectly from the output decomposition above.

De�nition 3.48:
Consider the asymptotically stable second-order system in (3.121) with initial conditions
(3.119) and de�ne Λ(s) := (s2M+ sD+K)−1. The three transfer functions describing
the system behavior are de�ned as

GL,B(s) := C1Λ(s)B, GL,X0
(s) := C1Λ(s)(D+ sM)X0, GL,V0

(s) := C1Λ(s)MV0.
(3.123)

♢
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GL,B

GL,X0

GL,V0

u

x0

ẋ0

yL

yL,B

yL,X0

yL,ẋ0

+

Figure 3.15: Structure of three separated second-order systems with a linear output.

We generate three subsystems that are treated individually in the following as depicted
in Figure 3.15. The �rst transfer function GL,B(s) with the output component yL,B(t)
corresponds to the homogeneous system representation

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), x(0) = 0, ẋ(0) = 0,

yL,B(t) = C1x(t).
(3.124)

The second transfer function GL,X0
(t) has a system representation with an inhomogeneous

displacement initial condition, that is

Mẍ(t) +Dẋ(t) +Kx(t) = 0, x(0) = X0χ0, ẋ(0) = 0,

yL,X0
(t) = C1x(t).

(3.125)

Finally, the transfer function GL,V0
(t) corresponds to the mapping between the velocity

initial condition and the output and has the system realization

Mẍ(t) +Dẋ(t) +Kx(t) = 0, x(0) = 0, ẋ(0) = V0ν0,

yL,V0
(t) = C1x(t).

(3.126)

The three systems are treated individually to describe the overall system dynamics. For
that, we derive the corresponding controllability and observability Gramians encoding
the behavior of the subsystems.

Controllability Gramians To derive the controllability Gramians that encode the con-
trollability behavior for the subsystems in (3.124), (3.125), and (3.126), we consider the
respective input- and initial condition-to-state mappings separately.
First, we investigate system (3.124). From the transfer function GL,B(s) in (3.123), we

extract the input-to-state mapping

CB(s) := Λ(s)B, (3.127)
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3.3 Inhomogeneous second-order ODE systems

where Λ(s) := (s2M + sD + K)−1. Using this mapping, we de�ne a matrix
PB := 1

2π

∫∞
−∞ CB(iω)CB(−iω)Tdω spanning the respective controllability space.

De�nition 3.49:
Consider the asymptotically stable second-order system (3.124). De�ne
Λ(s) := (s2M+sD+K)−1, then the corresponding second-order controllability Gramian
is de�ned as

PB :=
1

2π

∫ ∞

−∞
Λ(iω)BBTΛ(−iω)Tdω. (3.128)

♢

As we have seen in the previous sections, �rst-order Gramians are computed by solving
Lyapunov equations. However, for second-order systems, the computation of the respec-
tive Gramians is not straightforward. We de�ne the �rst-order matrices as in (2.24) to
derive a connection between second-order and �rst-order Gramians. The following the-
orem from [44, 112] describes how to compute the second-order controllability Gramian
PB as a component of a �rst-order matrix.

Theorem 3.50:
Consider the asymptotically stable system (3.124) with the second-order controllability
Gramian PB de�ned in (3.128). Then the Gramian PB is the upper-left block PB,1 of
the �rst-order controllability Gramian

PB =

[
PB,1 PB,2

PT
B,2 PB,3

]
=

1

2π

∫ ∞

−∞
(iωE−A)−1

[
0
B

] [
0 BT

]
(−iωE−A)−Tdω (3.129)

with �rst-order matrices E and A as de�ned in (2.24). ♢

Proof. We �rst apply the Schur complement to (sE−A)−1 and obtain

(sE−A)−1 =

[
sI −I
K D+ sM

]−1

=

[
Λ(s)(sM+D) Λ(s)

−Λ(s)K sΛ(s)

]
(3.130)

for Λ(s) := (s2M + sD + K)−1. Applying this formula provides that its upper-right
block is equal to Λ(iω), and hence it holds that

PB,1 =
1

2π

∫ ∞

−∞
Λ(iω)BBTΛ(iω)Hdω = PB.

From this theorem, it follows that the controllability Gramian of the corresponding �rst-
order realization is determined to compute the second-order controllability Gramian,
which is done by solving a Lyapunov equation as described in Section 2.3.
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Remark 3.51:
Note, that the mapping CB(s) from (3.127) is the Laplace transform of the mapping[
I 0

]
cB(t) with cB(t) as de�ned in (3.10) for �rst-order matrices from (2.24). Moreover,

the �rst-order Gramian PB from (3.129) is equal to the Gramian de�ned in (3.11). Hence,
we can also de�ne the second-order Gramian in the time domain as

PB =

∫ ∞

0

[
I 0

]
eE

−1AtE−1BBTE−Te(E
−1A)Tt

[
I
0

]
dt.

♢

Similarly, we investigate the system (3.125), where we extract from the transfer func-
tion GL,X0

in (3.123) the position initial condition-to-state mapping

CX0
(s) := Λ(s)(sM+D)X0, (3.131)

that we use to de�ne a matrix PX0
:= 1

2π

∫∞
−∞ CX0

(iω)CX0
(−iω)Tdω that spans the con-

trollability space corresponding to the position initial condition.

De�nition 3.52:
Consider the asymptotically stable second-order system (3.125). De�ne Λ(s) := (s2M+
sD+K)−1, then the corresponding second-order controllability Gramian is de�ned as

PX0
:=

1

2π

∫ ∞

−∞
Λ(iω)(iωM+D)X0X

T
0 (−iωM+D)TΛ(−iω)Tdω. (3.132)

♢

The following theorem shows that the Gramian PX0
is computed by determining the

respective �rst-order controllability Gramian.

Theorem 3.53:
Consider the asymptotically stable second-order system (3.125) with the second-order
controllability Gramian PX0

de�ned in (3.132). Then the Gramian PX0
is the upper-left

block PX0,1 of the �rst-order Gramian

PX0
=

[
PX0,1 PX0,2

PT
X0,2

PX0,3

]
=

1

2π

∫ ∞

−∞
(iωE−A)−1

[
X0

0

] [
XT

0 0
]
(−iωE−A)−Tdω,

(3.133)

with �rst-order matrices E and A as de�ned in (2.24). ♢

Proof. Applying the Schur complement to (iωE−A)−1 as shown in (3.130) provides that
its upper-left block of (iωE−A)−1 is Λ(iω)(iωM+D) for Λ(s) := (s2M+ sD+K)−1,
and hence, it holds that

PX0,1 =
1

2π

∫ ∞

−∞
Λ(iω)(iωM+D)X0X

T
0 (−iωM+D)TΛ(iω)Hdω = PX0

.

110



3.3 Inhomogeneous second-order ODE systems

Theorem 3.53 shows that the second-order controllability Gramian PX0
of a system

(3.125) is the upper-left block P1 of the controllability Gramian PX0
of the �rst-order

system (2.1) with B :=
[
X0
0

]
.

Remark 3.54:
Note, that the mapping CX0

(s) from (3.131) is the Laplace transform of the mapping[
I 0

]
cZ0

(t) with cZ0
(t) as de�ned in (3.13) for �rst-order matrices from (2.24) and

Z0 =
[
X0
0

]
. Moreover, the �rst-order Gramian PX0

from (3.133) is equal to the Gramian
de�ned in (3.14) with that matrix Z0. Hence, we can also de�ne the second-order
Gramian in the time domain as

PX0
=

∫ ∞

0

[
I 0

]
eE

−1AtE−1

[
X0X

T
0 0

0 0

]
E−Te(E

−1A)Tt

[
I
0

]
dt.

♢

Now we consider the remaining system (3.126) with the transfer function GL,V0
as

de�ned in (3.123). From this output, we extract the velocity initial condition-to-state
mapping

CV0
(s) := Λ(s)MV0, (3.134)

which is used to de�ne a matrix PV0
:= 1

2π

∫∞
−∞ CV0

(iω)CV0
(−iω)Tdω that spans the

controllability space corresponding to the velocity initial condition.

De�nition 3.55:
Consider the asymptotically stable second-order system (3.126). De�ne Λ(s) := (s2M+
sD+K)−1, then the corresponding second-order controllability Gramian is de�ned as

PV0
:=

1

2π

∫ ∞

−∞
Λ(iω)MV0V

T
0 M

TΛ(−iω)Tdω. (3.135)
♢

The Gramian PV0
corresponding to the systems (3.126) is of the same structure as the

Gramian PB, and hence, can be computed similarly.

Theorem 3.56:
Consider the asymptotically stable second-order system (3.126) with the second-order
position controllability Gramian PV0

de�ned in (3.135). Then the Gramian PV0
is the

upper-left block PV0,1 of the �rst-order Gramian

PV0
=

[
PV0,1 PV0,2

PT
V0,2

PV0,3

]
=

1

2π

∫ ∞

−∞
(iωE−A)−1

[
0

MV0

] [
0 VT

0 M
T
]
(−iωE−A)−Tdω

(3.136)

with �rst-order matrices E and A as de�ned in (2.24). ♢
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Remark 3.57:
Note, that the mapping CV0

(s) from (3.134) is the Laplace transform of the mapping[
I 0

]
cZ0

(t) with cZ0
(t) as de�ned in (3.13) for �rst-order matrices from (2.24) and

Z0 =

[
0

MV0

]
. Moreover, the �rst-order Gramian PV0

from (3.136) is equal to the

Gramian de�ned in (3.14) with that matrix Z0. Hence, we can also de�ne the second-
order Gramian in the time domain as

PV0
=

1

2π

∫ ∞

0

[
I 0

]
eE

−1AtE−1

[
0 0
0 MV0V

T
0 M

T

]
E−Te(E

−1A)Tt

[
I
0

]
dt.

♢

Observability Gramians In this paragraph, we aim to derive the observability Grami-
ans that encode the observability behavior of the three subsystems. Therefore, we de�ne
the respective state-to-output mappings and the resulting Gramians from the transfer
functions in (3.123). The observability behavior of the three subsystems (3.124), (3.125),
and (3.126) is encoded by the state-to-output mapping

OL(s) := C1Λ(s). (3.137)

We integrate over the frequency domain to de�ne a matrixQL := 1
2π

∫∞
−∞OL(−iω)TOL(iω)dω

that includes all observable states, which leads to the following de�nition.

De�nition 3.58:
Consider the asymptotically stable second-order systems (3.124), (3.125), and (3.126).
Also, de�neΛ(s) := (s2M+sD+K)−1, then the corresponding second-order observability
Gramian is de�ned as

QL :=
1

2π

∫ ∞

−∞
Λ(iω)HCT

1C1Λ(iω)dω. (3.138)
♢

The Gramian QL can be computed as a component of a �rst-order Gramian, as shown
in the following theorem.

Theorem 3.59:
Consider the asymptotically stable second-order systems (3.124), (3.125), and (3.126)
with the second-order observability GramianQL as de�ned in (3.138). Then this Gramian
is equal to the lower-right block Q3 of the �rst-order Gramian QL that is

QL =

[
Q1 Q2

QT
2 Q3

]
=

1

2π

∫ ∞

−∞
(A+ iωE)−TCTC(A− iωE)−1dω (3.139)

with �rst-order matrices E, A, and C as de�ned in (2.24) with C2 = 0. ♢
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Proof. We apply the Schur complement for (iωE−A)−1 as shown in (3.130) to obtain

C(iωE−A)−1 =
[
C1Λ(iω)(iωM+D) C1Λ(iω)

]
.

Considering the right block of this matrix provides that the lower-right block Q3 of
the �rst-order Gramian QL is equal to the second-order Gramian QL, which proofs the
statement.

Remark 3.60:
Note, that the mapping OL(s) from (3.137) is the Laplace transform of the mapping
oL(t)[ 0I ] with oL(t) as de�ned in (3.16) with �rst-order matrices from (2.24) and C2 = 0.
Moreover, the �rst-order Gramian QL from (3.139) is equal to the Gramian de�ned in
(3.17). Hence, we can also de�ne the second-order Gramian in the time domain as

QL =

∫ ∞

0

[
0 I

]
E−Te(E

−1A)Tt

[
CT

1C1 0
0 0

]
eE

−1AtE−1

[
0
I

]
dt.

♢

Controllability energy We aim to derive the controllability energies of the three sub-
systems to identify the respective important controllability subspaces. To do so, we
consider the three subsystems (3.124), (3.125), and (3.126) separately.
First, we derive an energy measure corresponding to subsystem (3.124) by evaluating

the energy norm of the input-to-state mapping CB from (3.127). Therefore, we consider
the displacement component of the respective �rst-order input-to-state mapping cB(t)
(3.10) in the time domain

cB(t) =
[
I 0

]
cB(t) =

[
I 0

]
eE

−1AtE−1B

as the Laplace transform of cB(t) is equal to the mapping CB from (3.127), for the �rst-
order matrices E, A, and B as de�ned in (2.24). We determine the energy norm from
(3.19) of the mapping cB to describe the controllability energy that is

E(cB) = ∥cB∥2L2([0,∞),Rn×m) =

∫ ∞

0

tr

([
I 0

]
eE

−1AtE−1BBTE−TeA
TE−Tt

[
I
0

])
dt

=
1

2π

∫ ∞

−∞
tr
(
Λ(iω)BBTΛ(iω)H

)
dω

= tr(PB) ,
(3.140)

see Remark 3.51. We observe that the energy norm of the mapping cB is equal to the
trace of the respective second-order controllability Gramian PB. Since this Gramian is
symmetric, its trace is equal to the sum of its eigenvalues, i.e., tr(PB) = σ1 + · · · +
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σn. Hence, large eigenvalues have a signi�cant e�ect on the energy expression while
smaller eigenvalues are negligible. It follows that the states corresponding to the large
eigenvalues span the most dominant controllability subspaces, which is used later in this
work when we reduce these systems.
Analogously, we derive the initial condition-to-output mappings in the time-domain

corresponding to the remaining two subsystems (3.125) and (3.126) that are

cX0
(t) =

[
I 0

]
eE

−1At

[
X0

0

]
and cV0

(t) =
[
I 0

]
eE

−1At

[
0
V0

]
,

respectively, see Remark 3.54 and Remark 3.57. It holds that the initial condition-
to-state mappings CV0

(s) and CV0
(s) are the Laplace transforms of cX0

(t) and cV0
(t).

Hence, to derive the energies that encode the controllability behavior of the two subsys-
tems (3.125) and (3.126), we de�ne the respective energy norms corresponding to these
initial condition-to-state mappings according to (3.19) that are

E(cX0
) = tr(PX0

) , E(cV0
) = tr(PV0

) . (3.141)

Since the traces ofPX0
andPV0

contain the eigenvalues of the corresponding second-order
Gramians, it follows that states corresponding to large eigenvalues span the dominant
controllability subspaces of the respective systems and states corresponding to small
eigenvalues are negligible as they only have little e�ect on the system dynamics.

Observability energies In this paragraph, we evaluate the observability energies of
the second-order subsystems (3.124), (3.125), and (3.126) encoded by the second-order
observability Gramian QL. Therefore, we consider the energy norm of the respective
state-to-output mapping in the time domain, which is de�ned using the �rst-order ma-
trices E, A, and C from (1.7) with C2 = 0, as

oL(t) = CeE
−1AtE−1

[
0
I

]
, (3.142)

see Remark 3.60. Note that applying the Laplace transform to this mapping yields the
mapping OL in the frequency domain as de�ned in (3.137). We apply the energy norm
from (3.19) that results in the energy expressions

E(oL) = ∥E(oL)∥2L2([0,∞),Rp×n) =

∫ ∞

0

tr

([
0 I

]
E−TeA

TE−TtCTCeE
−1AtE−1

[
0
I

])
dt

= tr(QL) .
(3.143)

The trace of the Gramian QL coincides with the sum of its eigenvalues. Hence, the
states corresponding to large eigenvalues of the Gramian QL encode the most dominant
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observability subspaces. On the other hand, states corresponding to small eigenvalues
are negligible as they have negligible e�ects on the system dynamics.
In this section, we have derived three subsystems encoding the behavior of the orig-

inal system (3.121). For these subsystems, we introduced transfer functions, tailored
Gramians, and energies, which are summarized in Table 3.8.

System (3.124) System (3.125) System (3.126)

Transfer func-

tion

GL,B GL,X0
GL,V0

Controllability

Gramian

PB PX0
PV0

Observability

Gramian

QL QL QL

Controllability

energies

E(cB) = tr(PB) E(cX0
) = tr(PX0

) E(cV0
) = tr(PV0

)

Observability

energies

E(oL) = tr(QL) E(oL) = tr(QL) E(oL) = tr(QL)

Table 3.8: Properties of system (3.121) corresponding to its multi-system representation.

3.3.1.2 Extended-input approach for inhomogeneous second-order ODE

systems with a linear output

In this paragraph, we apply the extended-input approach to treat the inhomogeneous
initial conditions. Therefore, we reformulate the state X(s) from (3.120), using a modi-
�ed input matrix that includes the input and initial condition spaces as described in the
following theorem.

Theorem 3.61:
Consider the asymptotically stable second-order system (3.121) with initial conditions
as de�ned in (3.119). De�ne the input matrix and the modi�ed input in the frequency
domain as

Wso :=

[
0 X0 0
B 0 MV0

]
and Ũso(s) :=

U(s)
χ0

ν0

 , (3.144)

respectively. Then the state X(s) from (3.120) is equal to

X(s) = Λ(s)
[
(D+ sM) I

]
WsoŨ(s), (3.145)
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with Λ(s) := (s2M+ sD+K)−1. ♢

Proof. By inserting the de�nition of Wso and Ũ(s) from (3.144), we obtain

X(s) = Λ(s)(BU(s) + (D+ sM)X0χ0 +MV0ν0)

= Λ(s)
[
(sM+D) I

] [ X0χ0

BU(s) +MV0ν0

]

= Λ(s)
[
(sM+D) I

] [ 0 X0 0
B 0 MV0

]U(s)
χ0

ν0


= Λ(s)

[
(sM+D) I

]
WsoŨ(s)

Transfer function Since we aim to derive a surrogate model with the same input- and
initial condition-to-output mapping as the original system (3.121), we �rst derive the
respective transfer function. For that, we apply the Laplace transform to the output
equation in (3.121) and insert the state X(s) from (3.145) to obtain the output

YL(s) = C1X(s) = C1Λ(s)
[
(D+ sM) I

]
WsoŨ(s),

which is the Laplace transform of yL(t). We extract the input-to-output mapping from
YL(s) to de�ne the respective transfer function in the following.

De�nition 3.62:
Consider the asymptotically stable second-order system (3.121) with initial conditions as
de�ned in (3.119) and the matrix Wso as de�ned in (3.144). Then the transfer function
corresponding to this system is de�ned as

GL,Wso
(s) := C1Λ(s)

[
(D+ sM) I

]
Wso, (3.146)

with Λ(s) := (s2M+ sD+K)−1. ♢

Since we aim to maintain the second-order structure while considering a �rst-order input
matrix Wso, we are not able to write down a suitable system realization. However, for
theoretical considerations, we assume that there is a homogeneous system representation
of the transfer function GL,Wso

(s) to derive the controllability spaces. This relation is
depicted in Figure 3.16, where the input and the initial conditions are applied by the
matrix Wso and a suitable input ũ ∈ L2([0,∞),Rm+nX0

+nV0 ). In the following, we
derive the controllability and observability Gramians of the second-order system from
(3.121) using the transfer function GL,Wso

(s) from (3.146).
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3.3 Inhomogeneous second-order ODE systems

GL,Wso

ũ yL

Figure 3.16: Structure of a second-order ODE system with an extended input and a
linear output.

Controllability Gramian To derive a controllability Gramian that spans the control-
lability space of the original system (3.121), we extract the input-to-state mapping from
the transfer function GL,Wso

(s) in (3.146), which yields

CWso
(s) = Λ(s)

[
(D+ sM) I

]
Wso. (3.147)

Since this mapping encodes the controllability behavior of system (3.121), it is used to
de�ne a matrix PWso

:= 1
2π

∫∞
−∞ CWso

(iω)CWso
(iω)Hdω that spans the respective control-

lability space.

De�nition 3.63:
Consider the asymptotically stable second-order system (3.121) with initial conditions
as de�ned in (3.119) and the input matrix Wso as de�ned in (3.144). Then the corre-
sponding second-order controllability Gramian is de�ned as

PWso
:=

1

2π

∫ ∞

−∞
Λ(iω)

[
(D+ iωM) I

]
WsoW

H
so

[
(D+ iωM)H

I

]
Λ(iω)Hdω, (3.148)

with Λ(s) := (s2M+ sD+K)−1. ♢

The Gramian PWso
spans the controllability space of the state x(t) in system (3.121)

without considering its derivative ẋ(t), as it does not a�ect the output. Hence, this
Gramian is called position controllability Gramian.
The following theorem describes that the second-order Gramian PWso

is determined
by computing a �rst-order Gramian.

Theorem 3.64:
Consider the asymptotically stable second-order system (3.121) with initial conditions
as de�ned in (3.119) and the input matrix Wso as de�ned in (3.144). The second-order
controllability Gramians PWso

as de�ned in (3.148) is equal to the upper-left block P1

of the �rst-order controllability Gramian

PWso
=

[
P1,Wso

P2,Wso

PT
2,Wso

P3,Wso

]
=

1

2π

∫ ∞

−∞
(iωE−A)−1WsoW

T
so(−iωE−A)−Tdω (3.149)

with �rst-order matrices E and A as de�ned in (2.24). ♢
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Proof. Applying the Schur complement to (iωE−A)−1 as shown in (3.130) leads to

PWso
=

1

2π

∫ ∞

−∞

[
Λ(iω)(iωM+D) Λ(iω)

−Λ(iω)K iωΛ(iω)

]
WsoW

T
so(iωE−A)−Hdω

=
1

2π

∫ ∞

−∞

[
Λ(iω)

[
(iωM+D) I

]
Λ(iω)

[
−K iωI

] ]
WsoW

T
so(iωE−A)−Hdω

=

[
PWso

∗
∗ ∗

] (3.150)

for Λ(s) := (s2M+ sD+K)−1 and with PWso
as de�ned in (3.148).

To compute the position controllability Gramian PWso
, we can solve a Lyapunov equation

of the form (3.12) with B = Wso to compute a �rst-order Gramian PWso
and to extract

PWso
from its upper-left block. The Gramian PWso

derived in this paragraph is used later
in this work to apply balanced truncation for systems with a second-order structure.

Remark 3.65:
Note, that the mapping CWso

(s) from (3.147) is the Laplace transform of the mapping[
I 0

]
cW(t) with cW(t) as de�ned in (3.28) for �rst-order matrices from (2.24) and

W = Wso. Moreover, the �rst-order Gramian PWso
from (3.149) is equal to the Gramian

PW de�ned in (3.29) for W = Wso. Hence, we can also de�ne the second-order Gramian
in the time domain as

PWso
=

∫ ∞

0

[
I 0

]
eE

−1AtE−1WsoW
T
soE

−Te(E
−1A)Tt

[
I
0

]
dt.

♢

Observability Gramian To derive the second-order observability Gramian of the sys-
tem (3.121) that describes its observability properties, we extract the state-to-output
mapping from the respective transfer function GL,Wso

(s) in (3.146), that coincides with
OL(s) from (3.137). Hence, from that mapping, we derive the same observability
Gramian as de�ned in (3.138).

De�nition 3.66:
Consider the asymptotically stable second-order system (3.121) and de�ne Λ(s) :=
(s2M + sD + K)−1. Then the corresponding second-order observability Gramian is
de�ned as

QL :=
1

2π

∫ ∞

−∞
Λ(iω)HCH

1 C1Λ(iω)dω. (3.151)
♢

To compute that Gramian, we apply Theorem 3.59, which describes that QL is equal to
the lower-right block of the �rst-order controllability Gramian QL from (3.139). Hence,
we compute that Gramian by solving a Lyapunov equation.
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Controllability energies To describe the controllability behavior of the system (3.121),
we derive the respective system energies. Therefore, we de�ne the input-to-state map-
ping in the time domain, which is

cWso
(t) =

[
I 0

]
eE

−1AtE−1Wso, (3.152)

with �rst-order matrices E and A as de�ned in (2.24) and Wso as de�ned in (3.144),
so that the mapping CWso

de�ned in (3.147) is the Laplace transform of cWso
, see Re-

mark 3.65. To evaluate the controllability behavior of the system, we apply the energy
norm from (3.19) to the input-to-state mapping cWso

, which yields

E(cWso
) = ∥cWso

∥2
L2([0,∞),R2n×(n+nX0

+nV0
))
=

∫ ∞

0

tr
(
cWso

(t)cWso
(t)T

)
dt

=
1

2π

∫ ∞

−∞
tr
(
CWso

(iω)CWso
(iω)H

)
dω

= tr(PWso
) .

(3.153)

Since the trace of a Gramian is equal to the sum of its eigenvalues, it follows that the
states corresponding to large eigenvalues of PWso

have the highest impact on the respec-
tive system and, hence, encode the dominant controllability subspaces of the system
(3.121). On the other hand, states corresponding to small eigenvalues of the Gramians
PWso

have little e�ect on the system dynamics and are, therefore, negligible.

Observability energies To investigate the output energies of the second-order system
(3.121), we evaluate the energy norm of the state-to-output mapping

oL(t) = CeE
−1AtE−1

[
0
I

]
in the time domain. The Laplace transform to the mapping oL is equal to the mapping
OL from (3.137) in the frequency domain. This mapping coincides with the mapping
introduced in (3.142). Hence, applying the energy norm leads to the same energy ex-
pression as in (3.143) that is

E(oL) = tr(QL) .

The trace of the Gramian QL is equal to the sum of its eigenvalues, which indicates
that the largest eigenvalues have the greatest impact on the energy norm values and
the system's dynamics. Consequently, the states associated with these large eigenvalues
signi�cantly in�uence the system's behavior. Therefore, the states corresponding to the
large eigenvalues of the Gramian QL form the dominant observability subspaces.
We summarize the extended-input approach and the resulting properties in Table 3.10,

which depicts the transfer function, the derived Gramians, and the respective energies
used in the following chapters to reduce systems of this structure.
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GQ

u
x0

ẋ0

u
x0

ẋ0

yQ

Figure 3.17: Structure of a second-order ODE system with a quadratic output.

System (3.121)

Transfer function GL,Wso
(s)

Controllability Gramian PWso

Observability Gramian QL

Controllability energies E(cWso
) = tr(PWso

)

Observability energies E(oL) = tr(QL)

Table 3.9: Properties of system (3.121) corresponding to its extended-input representa-
tion.

3.3.2 Inhomogeneous second-order ODE systems with a

quadratic output

In this subsection, we consider the class of second-order systems with a quadratic output
equation of the form

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), x(0) = x0, ẋ(0) = ẋ0,

yQ(t) =
[
x(t)T ẋ(t)T

]
M

[
x(t)
ẋ(t)

]
(3.154)

with a state equation as de�ned in (3.118) and a quadratic output equation that includes
a symmetric output matrix M ∈ R2n×2n and the output yQ(t) ∈ R. Figure 3.17 depicts
the system structure where we again indicate the quadratic output equation by adding
the input, the displacement initial condition, and the velocity initial condition twice to
the system dynamics.
The output matrix M is decomposed as described in (1.7), where we additionally

assume that M12 = 0 and M22 = 0. Otherwise, if one of these submatrices is not equal
to the zero matrices, we consider the respective system in �rst-order representation
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(2.24) and apply the theory from Section 3.1.2. Hence, in the following, we investigate
the output equation

yQ(t) =
[
x(t)T ẋ(t)T

] [M11 0
0 0

] [
x(t)
ẋ(t)

]
= x(t)TM11x(t). (3.155)

We aim to preserve the second-order structure and include initial conditions in the
analysis so that the e�ects of initial conditions on the output are considered.
We have already used two approaches that consider the initial conditions while eval-

uating the controllability and observability behavior. The �rst approach is the multi-
system approach, in which the superposition principles are used to derive subsystems for
each input and initial condition component. This approach is discussed for second-order
systems with a quadratic output equation in Section 3.3.2.1. The second approach in-
corporates the initial conditions into the input matrix and is called the extended-input
approach, which we present for this class of systems in (3.154).

3.3.2.1 Multi-system approach for inhomogeneous second-order ODE systems

with a quadratic output

We consider the output in (3.155). As described in (3.120), the state consists of three
components: one corresponding to the input u(t), one to the position initial condition
x0, and one to the velocity initial condition ẋ0. Inserting the three components of
x(t) leads to 9 di�erent output components that we aim to analyze separately in the
multi-system approach. Analyzing those systems and applying reduction methods to
each of them separately will be numerically prohibitive. Hence, applying the extended-
input approach that includes the initial conditions in the input matrix, presented in the
following subsection, is the preferred strategy for systems of the structure introduced in
(3.154).

3.3.2.2 Extended-input approach for inhomogeneous second-order ODE

systems with a quadratic output

In the extended-input approach, we derive an extended input matrix Wso that includes
the input space and the initial condition spaces as de�ned in (3.144). Using this matrix,
we derive a transfer function, tailored Gramians, and the respective energies that encode
the system behavior.

Transfer function To derive the transfer function of the system (3.154), we consider
its �rst-order representation (3.31) with matrices from (2.24), with W = Wso. We insert
the respective matrices into the transfer function as de�ned in (3.44) and using the Schur
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complement from (3.130) to obtain

GQ,WW(s1, s2) := WT(s1E−A)−HM(s2E−A)−1W

=

[
0 X0 0
B 0 MV0

]T [
Λ(s)(sM+D) Λ(s)

−Λ(s)K sΛ(s)

]H
·
[
M11 0
0 0

] [
Λ(s)(sM+D) Λ(s)

−Λ(s)K sΛ(s)

] [
0 X0 0
B 0 MV0

]
= WT

so

[
(D+ s1M)H

I

]
Λ(s1)

HM11Λ(s2)
[
(D+ s2M) I

]
Wso.

Since we consider matrices corresponding to the second-order system representation,
we denote the respective transfer function GQ,WsoWso

(s1, s2) in the following, which yields
the following de�nition.

De�nition 3.67:
Consider the asymptotically stable second-order system in (3.154) with initial conditions
as de�ned in (3.119). Also consider the input matrixWso as de�ned in (3.144) and de�ne
Λ(s) := (s2M+ sD+K)−1. Then the transfer function of this system is de�ned as

GQ,WsoWso
(s1, s2) := WT

so

[
(D+ s1M)H

I

]
Λ(s1)

HM11Λ(s2)
[
(D+ s2M) I

]
Wso. (3.156)

♢

We observe that the inhomogeneous second-order system (3.154) has a transfer func-
tion of the same structure as a homogeneous system with the �rst-order input matrix
Wso. However, since we aim to maintain the second-order structure, we are not able to
write down a suitable system realization. For theoretical considerations, we assume that
there is a homogeneous system representation of the transfer function GQ,WsoWso

(s1, s2) to
derive the controllability and observability spaces in the following. Figure 3.18 depicts
that we analyze the system while considering an input matrix Wso that includes the
input and initial condition spaces, indicated by a suitable input ũ. In the following, we
describe the behavior of this system in terms of controllability and observability. For
this purpose, we derive the corresponding controllability and observability Gramians
that encode these behaviors.

Controllability Gramians To describe the controllability behavior of system (3.154),
we �rst derive the input-to-state mapping CWso

(t) from the transfer function
GQ,WsoWso

(s1, s2) in (3.144), that coincides with the one de�ned in (3.147) as the state
equation coincides for the systems (3.121) and (3.154). Hence, the same controllability
Gramian PWso

as de�ned in (3.148) encodes the controllability space of system (3.154).
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3.3 Inhomogeneous second-order ODE systems

GQ,WsoWso

ũ

ũ

yQ

Figure 3.18: Structure of a second-order ODE system with an extended input and a
quadratic output.

De�nition 3.68:
Consider the asymptotically stable second-order system (3.154) with initial conditions
as de�ned in (3.119) and the input matrix Wso as de�ned in (3.144). Then the corre-
sponding second-order controllability Gramian is de�ned as

PWso
:=

1

2π

∫ ∞

−∞
Λ(iω)

[
(D+ iωM) I

]
WsoW

H
so

[
(D+ iωM)H

I

]
Λ(iω)Hdω,

with Λ(s) := (s2M+ sD+K)−1. ♢

The Gramian PWso
spans the controllability space of the state x(t) from system (3.154).

This Gramian is computed as the upper-left block of a �rst-order Gramian PWso
as

described in Theorem 3.64.

Observability Gramians Now, we describe the observability properties of the system
(3.154). Therefore, we aim to derive an observability Gramian that encodes the respec-
tive observability space. Since we consider a quadratic output equation, we describe
the controllability properties of the state x(t) multiplied from the right to the quadratic
output expression in (3.154), taking into account the controllability space of the left
state. For that, we can rewrite yQ(t) by de�ning the state-dependent function

C11(x(t)) := x(t)TM11.

Applying that representation to the output yields yQ(t) = C11 (x(t))x(t). We observe,
that the observability of the (right) state x(t) in the output yQ(t) = C11(x(t))x(t) also
depends on the reachability of the (left) state x(t). Hence, we expect that the observ-
ability Gramian will depend on the controllability Gramian PWso

de�ned in (3.148).
From the transfer function GQ,WsoWso

(s1, s2) in (3.144), we identify the input-to-state
mapping CWso

(s) from (3.147) corresponding to the right state X(s) in the frequency
domain, so that the remaining state-to-output mapping is

OQ,Wso
(s1, s2) := WT

so

[
(D+ s1M)H

I

]
Λ(s1)

HM11Λ(s2). (3.157)
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3 Inhomogeneous systems and their system theoretical aspects

Since the mapping OQ,Wso
(s1, s2) spans the observability space of the right state X(s)

considering the space in which the left state x(s) lives, it is used to de�ne a matrix

QQ,Wso
:=

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
OQ,Wso

(iω1, iω2)
HOQ,Wso

(iω1, iω2)dω1dω2

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Λ(iω2)

HM11Λ(iω1)
[
(D+ iω1M) I

]
Wso

·WT
so

[
(D+ iω1M)H

I

]
Λ(iω1)

HM11Λ(iω2)dω1dω2

=
1

2π

∫ ∞

−∞
Λ(iω2)

HM11PWso
M11Λ(iω2)dω2

that spans the observability space of the right state X(s) in the frequency domain or
x(t) in the time domain.

De�nition 3.69:
Consider the asymptotically stable second-order system (3.154) with initial conditions
as de�ned in (3.119), the corresponding controllability Gramian PWso

as introduced in
(3.148), and the input matrixWso as de�ned in (3.144). Then the corresponding second-
order observability Gramian is de�ned as

QQ,Wso
:=

1

2π

∫ ∞

−∞
Λ(iω)HM11PWso

M11Λ(iω)dω (3.158)

with Λ(s) := (s2M+ sD+K)−1. ♢

To compute the second-order observability Gramian QQ,Wso
, we apply the following the-

orem.

Theorem 3.70:
Consider the asymptotically stable second-order system (3.154) with initial conditions
as de�ned in (3.119), the corresponding controllability Gramian PWso

from (3.148), the
�rst-order matrices E, A as de�ned in (2.24), and the input matrix Wso as de�ned in
(3.144). Then the second-order observability Gramian QQ,Wso

as de�ned in (3.158) is the
lower-right block Q3,Wso

of the �rst-order matrix

QQ,Wso
:=

[
Q1,Wso

Q2,Wso

QT
2,Wso

Q3,Wso

]
=

1

2π

∫ ∞

−∞
(iωE−A)−H

[
M11PWso

M11 0
0 0

]
(iωE−A)−1dω.♢

Proof. The proof of this theorem is similar to the one for Theorem 3.59.
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3.3 Inhomogeneous second-order ODE systems

Controllability energies To identify state spaces that encode the dominant system
dynamics, we derive the respective controllability energies. For that, we derive the
input-to-state mapping in the time domain

cWso
(t) =

[
I 0

]
eE

−1AtE−1Wso

which is equal to the mapping de�ned in (3.152). Hence, we obtain the same energy
expression as in (3.153) applying the energy norm from (3.19) that is

E(cWso
) = ∥cWso

∥2
L2([0,∞),R2n×(n+nX0

+nV0
))
=

∫ ∞

−∞
tr
(
cWso

(t)cWso
(t)T

)
dt

= tr(PWso
) .

The trace of the Gramian PWso
coincides with the sum of its eigenvalues. Therefore, the

eigenvalues of the Gramian PWso
indicate which states are signi�cant for the system dy-

namics. The states corresponding to large eigenvalues span the dominant controllability
spaces, while states corresponding to small eigenvalues have a negligible in�uence on the
system dynamics.

Observability energies In this paragraph, we derive the observability energies to iden-
tify the dominant observability subspaces of the system (3.154). Therefore, we consider
the state-to-output mapping

oQ,Wso
(t1, t2) := WT

soE
−TeA

TE−Tt1

[
M11 0
0 0

]
eE

−1At2E−1

[
0
I

]
whose 2-dimensional Laplace transform is equal to OQ,Wso

(s1, s2) from (3.157). Applying
the energy norm from (3.19) to the mapping oQ,Wso

leads to

E(oQ,Wso
) = ∥oQ,Wso

∥2
L2([0,∞)2,R(n+nX0

+nV0
)×n)

=

∫ ∞

0

∫ ∞

0

tr
(
oQ,Wso

(t1, t2)
ToQ,Wso

(t1, t2)
)
dt1dt2

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
tr
(
OQ,Wso

(iω1, iω2)
HOQ,Wso

(iω1, iω2)
)
dω1dω2

= tr(QQ,Wso
)

with QQ,Wso
as de�ned in (3.158). Since the trace of the Gramian QQ,Wso

coincides with
the sum of its eigenvalues, the most dominant observability subspaces are determined
by the largest eigenvalues.
We summarize the extended-input approach for system (3.154) in Table 3.10 where

we list the transfer function, the tailored controllability and observability Gramian, and
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3 Inhomogeneous systems and their system theoretical aspects

the resulting energies. They are used in the following chapters to reduce systems of this
type.

System (3.154)

Transfer function GQ,WsoWso
(s1, s2)

Controllability Gramian PWso

Observability Gramian QQ,Wso

Controllability energies E(cWso) = tr(PWso)

Observability energies E(oQ,Wso
) = tr(QQ,Wso

)

Table 3.10: Properties of system (3.154) corresponding to its extended-input represen-
tation.
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4.3 Model order reduction for inhomogeneous second-order ODE systems . . 166
4.3.1 BT for inhomogeneous second-order ODE systems . . . . . . . . . 168

4.3.1.1 Multi-system approach for inhomogeneous second-order
ODE systems . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3.1.2 Extended-input approach for inhomogeneous second-order
ODE systems . . . . . . . . . . . . . . . . . . . . . . . . 173
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As described in Chapter 1, we aim to optimize external dampers added to vibrational
systems describing civil engineering infrastructure, such as buildings or bridges, to sup-
press external vibration forces caused by, e.g., wind disturbances or earthquakes. In this
chapter, we consider parameter-independent systems, i.e., we assume that one set of
external dampers is given for which we aim to evaluate the system behavior. However,
detailed modeling of these structures leads to systems with large dimensions that make
their evaluation computationally expensive. Therefore, we aim to derive methods that
reduce the model dimension while maintaining or approximating the system dynamics.
Several classes of model order reduction methods for parameter-independent systems
are listed in Section 2.2. Since the methods of choice presented in Section 2.2, BT and
IRKA, consider only homogeneous �rst-order systems with a linear output equation, in
this chapter, we introduce BT and IRKA for the di�erent systems in the non-standard
form presented in Chapter 3.
The authors in [66] and [15] introduce the BT method and the IRKA method for in-

homogeneous �rst-order ODE systems with a linear output equation. We describe these
methods and derive new model reduction schemes for inhomogeneous �rst-order ODE
systems with a quadratic output equation, for inhomogeneous �rst-order DAE systems
with a linear and a quadratic output equation, and inhomogeneous second-order ODE
systems with a linear and a quadratic output equation. The main contribution of this
section is the introduction of BT schemes for these system types. Moreover, we derive
suitable error bounds, which are needed to evaluate the quality of the approximation.
The IRKA methods for systems with linear output equations are a byproduct of the
modi�ed and decomposed system structures presented in Chapter 3 and are, therefore,
also explained in this chapter, but at a low level of detail.
First, in Section 4.1, we consider �rst-order systems with an ODE as a state equation.

Then, in Section 4.2, we study �rst-order systems with a DAE as a state equation, and
�nally, in Section 4.3, we consider the case of second-order systems. In all the sections,
we consider systems with linear and quadratic output equations. Moreover, we illustrate
the proposed methods on benchmark problems.
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4.1 Model order reduction for inhomogeneous �rst-order ODE systems

4.1 Model order reduction for inhomogeneous

�rst-order ODE systems

In this section, we reduce �rst-order systems with a linear output equation and with a
quadratic output equation as described in (3.5) and (3.31), respectively. We assume that
the matrix E is nonsingular, i.e., we consider an ODE as a state equation, and the initial
state is equal to z(0) = z0 = Z0ζ0, see (3.4). We aim to reduce the systems (3.5) and
(3.31) to obtain surrogate models with signi�cantly smaller dimensions. These reduced
surrogate models are then supposed to approximate the input- and initial condition-to-
output behavior of the original systems.
We review in this section the BT and IRKA methods widely used in practice. The

authors in [15] and [66] already derived reduction schemes for inhomogeneous �rst-order
ODE systems with a linear output equation, i.e., for systems of the form (3.5). Therefore,
in Section 4.1.1, we repeat the respective BT method and extend it to systems with a
quadratic output equation. Then, in Section 4.1.2, we describe the IRKA method for
inhomogeneous �rst-order systems with linear output equations.

4.1.1 BT for inhomogeneous �rst-order ODE systems

For systems with homogeneous initial conditions and a linear output equation, BT was
introduced in [20, 26, 93, 138] and repeated in Section 2.2.1. Also, in [20], the authors
derive a BT method for homogeneous systems with a quadratic output equation. How-
ever, in this section, we consider the class of inhomogeneous �rst-order ODE systems.
In the literature, there are some approaches to reduce these inhomogeneous �rst-order
systems with a linear output equation, see [13, 15, 66, 121]. In this work, we focus on
the methods from [66], where the input Bu(t) is extended by the initial condition space
Z0, and from [15], where the author's strategy is to decompose the system into a zero
initial condition subsystem and a subsystem with initial conditions but no input. Since
both methods are introduced for systems with a linear output equation, we extend these
methods to systems with a quadratic output equation.
This subsection is structured as follows: First, in Section 4.1.1.1, we apply the method

from [15] to derive some reduced surrogate models that sum up to an output that
approximates the original output. We also extend this method to inhomogeneous �rst-
order systems with a quadratic output equation. Afterwards, in Section 4.1.1.2, the
method from [66] is applied for systems with a linear output equation and extended to
those with quadratic output equations.

4.1.1.1 Multi-system approach for inhomogeneous �rst-order ODE systems

When applying the BT method for inhomogeneous �rst-order ODE systems using the
multi-system approach, we distinguish between systems with linear and quadratic output
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4 Model order reduction for systems in non-standard form

equations since the subsystems di�er. However, the reduction methodology is similar
for both system classes.

BT for systems with a linear output equation First, we repeat the reduction ap-
proach from [15] for the class of inhomogeneous �rst-order systems (3.5) with a linear
output equation. As we have seen in Section 3.1, the system (3.5) can be decomposed
into two subsystems that are given in (3.8) and (3.9) so that the output is composed of

yL(t) = yL,B(t) + yL,Z0
(t)

where yL,B(t) and yL,Z0
(t) are the outputs of the subsystems (3.8) and (3.9), respectively.

The idea of the multi-system approach is to reduce both subsystems independently to
obtain two reduced surrogate systems that are

Er,Bżr(t) = Ar,Bzr(t) +Br,Bu(t), zr(0) = 0,

yL,r,B(t) = Cr,Bzr(t)
(4.1)

and

Er,Z0
żr(t) = Ar,Z0

zr(t), zr(0) = Z0,rζ0,

yL,r,Z0
(t) = Cr,Z0

zr(t)
(4.2)

with reduced matrices

Er,∗ = VT
r,∗ETr,∗, Ar,∗ = VT

r,∗ATr,∗, Br,B = VT
r,BB, Z0,r = VT

r,Z0
Z0, Cr,∗ = CTr,∗

(4.3)

encoded by the subscript ∗ that represents either 'B' or 'Z0'. We generate the reduced ma-
trices (4.3) using projecting matrices Vr,∗,Tr,∗ ∈ RN×R∗ satisfying the Petrov-Galerkin
conditions (2.30) and (2.31), with R∗ ≪ N . Then the output of the original system (3.5)
is approximated by

yL(t) ≈ yL,r(t) := yL,r,B(t) + yL,r,Z0
(t). (4.4)

To derive such surrogate systems, we utilize the properties that were derived in Sec-
tion 3.1.1 and summarized in Table 3.1. From the energy expressions in (3.20), (3.21),
and (3.22) it follows that the dominant controllability and observability subspaces of
the subsystems (3.8) and (3.9) are spanned by the states corresponding to the largest
eigenvalues of the controllability Gramians PB and PZ0

, and the observability Gramian
QL introduced in (3.11), (3.14), and (3.17), respectively. Hence, states corresponding
to the smallest eigenvalues of the respective Gramians are truncated in the following,
resulting in Algorithm 7.
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4.1 Model order reduction for inhomogeneous �rst-order ODE systems

Algorithm 7 BT method for the �rst-order ODE system (3.5) with a linear output
using the multi-system approach.

Require: The original system (3.5), the reduced dimensions R∗, where ∗ is 'B' or 'Z0'

corresponding to subsystem (3.8) or (3.9).
Ensure: The reduced systems (4.1) and (4.2).
1: Compute factors of the Gramians P∗ ≈ R∗R

T
∗ and QL ≈ SST from (3.11), (3.14),

and (3.17).
2: Perform the two SVDs of STER∗ and decompose as

STER∗ = U∗Σ∗V
T
∗ =

[
U1,∗ U2,∗

] [Σ1,∗ 0
0 Σ2,∗

] [
VT

1,∗
VT

2,∗

]
.

with Σ1,∗ ∈ RR∗×R∗ , ∗ ∈ {B,Z0}.
3: Construct the projection matrices

Vr,∗ = SU1,∗Σ
− 1

2
1,∗ , Tr,∗ = R∗V1,∗Σ

− 1
2

1,∗ .

4: Construct reduced matrices (4.3).

To evaluate the the matrices

B2 =
(
SU2,Z0

Σ
− 1

2
2,Z0

)T
B, A12 = VT

r,Z0
ARZ0

V2,Z0
Σ

− 1
2

2,Z0
,

and Y2 that is the lower block of Y =
[
Y1
Y2

]
, which solves the Sylvester equation

ATYEr,Z0
+ EYAr,Z0

= −CTCr,Z0
.

Then the error bound given in [15, Theorem 3.2] is equal to

∥yL − yL,r∥L∞ ≤ ∥yL,B − yL,r,B∥L∞ + ∥yL,Z0
− yL,r,Z0

∥L∞

≤

(
2

N∑
k=RB+1

σk,B

)
∥u∥L2([0,∞),Rm) +

√
tr((B2BT

2 + 2Y2A12)Σ2,Z0
)∥ζ0∥2,

where ΣB = diag (σ1,B, . . . , σN,B) and Σ2,Z0
result from the SVD in Step 2 of the algo-

rithm.

BT for systems with a quadratic output equation Now, we derive a BT method
for a system (3.31) with a quadratic output equation. As presented in Section 3.1.2,
this system can be decomposed into four subsystems (3.34), (3.35), (3.36), and (3.37) so
that the respective outputs satisfy

yQ(t) = yQ,BB(t) + yQ,Z0B
(t) + yQ,BZ0

(t) + yQ,Z0Z0
(t).
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4 Model order reduction for systems in non-standard form

Hence, in the multi-system approach, we derive four surrogate models approximating the
input- and initial condition-to-output behavior of these subsystems. The �rst surrogate
model is given as

Er,BBżr,BB(t) = Ar,BBzr,BB(t) +Br,BBu(t), zr,BB(0) = 0,

yQ,r,BB(t) = zr,BB(t)
TMr,BBzr,BB(t),

(4.5)

and approximates the input-to-output behavior of the subsystem (3.34). The second
reduced model that approximates the input- and initial condition-to-output behavior of
subsystem (3.35) is

Er,Z0B
żr,B(t) = ArZ0B

zr,B(t) +Br,Z0B
u(t), zr,B(0) = 0,

Er,Z0B
żr,Z0

(t) = Ar,Z0B
zr,Z0

(t), zr,Z0
(0) = Z0,r,Z0B

ζ0,

yQ,r,Z0B
(t) = zZ0

(t)TMr,Z0B
zB(t)

(4.6)

and the third one approximating the subsystem (3.36) is given as

Er,BZ0
żr,B(t) = Ar,BZ0

zr,B(t) +Br,BZ0
u(t), zr,B(0) = 0,

Er,BZ0
żr,Z0

(t) = Ar,BZ0
zr,Z0

(t), zr,Z0
(0) = Z0,r,BZ0

ζ0,

yQ,r,BZ0
(t) = zB(t)

TMr,BZ0
zZ0

(t).

(4.7)

Finally, the surrogate system

Er,Z0Z0
żr,Z0

(t) = Ar,Z0Z0
zr,Z0

(t), zr,Z0
(0) = Z0,r,Z0Z0

ζ0,

yQ,r,Z0Z0
(t) = zZ0

(t)TMr,Z0Z0
zZ0

(t),
(4.8)

approximates the behavior of the subsystem (3.37). The respective reduced matrices are
build using projecting matrices Vr,∗◦ and Tr,∗◦ ∈ RN×R∗◦ satisfying the Petrov-Galerkin
conditions (2.30), (2.31) with R∗◦ ≪ N where the subscripts ∗ and ◦ represent either
'B'or 'Z0', which yields the matrices

Er,∗◦ = VT
r,∗◦ETr,∗◦, Ar,∗◦ = VT

r,∗◦ATr,∗◦, Br,∗◦ = VT
r,∗◦B,

Z0,r,∗◦ = VT
r,∗◦Z0, Mr,∗◦ = TT

r,∗◦MTr,∗◦.
(4.9)

To derive the four reduced subsystems (4.5), (4.6), (4.7), and (4.8), we identify which
states are most signi�cant to describe the controllability and observability of the system.
Therefore, we utilize the system energies summarized in Table 3.3. From the energy
expression in (3.20), it follows that states corresponding to large eigenvalues of the
controllability Gramian PB from (3.11) span the dominant controllability subspace of the
two subsystems (3.34) and (3.35). Also, it follows from (3.21) that states corresponding
to large eigenvalues of the Gramian PZ0

from (3.14) span the dominant controllability
subspace of the subsystems (3.36) and (3.37). Hence, within the four BT methods
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Algorithm 8 BT method for the �rst-order ODE system (3.31) with a quadratic output
using the multi-system approach.

Require: The original system (3.31), the reduced orders R∗◦, where ∗ and ◦ are 'B' or
'Z0' corresponding to the subsystem (3.34), (3.35), (3.36), and (3.37).

Ensure: The reduced systems (4.5), (4.6), (4.7), and (4.8).
1: Compute factors of the Gramians P∗ ≈ R∗R

T
∗ and QQ,◦ ≈ S◦S

T
◦ from De�nition

(3.11), (3.14) and (3.17).
2: Perform the four SVDs of ST

◦ER∗, and decompose as

ST
◦ER∗ = U∗◦Σ∗◦V

T
∗◦ =

[
U1,∗◦ U2,∗◦

] [Σ1,∗◦ 0
0 Σ2,∗◦

] [
VT

1,∗◦
VT

2,∗◦

]
.

with Σ1,∗◦ ∈ RR∗◦×R∗◦ , ∗, ◦ ∈ {B,Z0}.
3: Construct the projection matrices

Vr,∗◦ = S◦U1,∗◦Σ
− 1

2
1,∗ , Tr,∗◦ = R∗V1,∗◦Σ

− 1
2

1,∗◦.

4: Construct reduced matrices (4.9).

applied to the four subsystems states corresponding to small eigenvalues of PB and
PZ0

are truncated as they are negligible when describing the system dynamics. To
investigate the output energies of the four subsystems, we evaluate the energy norms
of the respective state-to-output mappings from (3.42), (3.43), which show that states
corresponding to small eigenvalues of the observability Gramians QQ,B and QQ,Z0

from
(3.39) and (3.41), respectively, are di�cult to observe. Hence, in the following, we apply
BT from Algorithm 1 extended by [20] to systems with quadratic output equations to
truncate the states which are simultaneously hard to reach and to observe which leads to
Algorithm 8. The reduced systems (4.5), (4.6), (4.7), and (4.8) generated by Algorithm 8
approximate the original outputs in the following way

yQ(t) ≈ yQ,r(t) := yQ,r,BB(t) + yQ,r,Z0B
(t) + yQ,r,BZ0

(t) + yQ,r,Z0Z0
(t).

We now aim to derive an error bound for the presented BT method. Therefore, we
make use of the following decomposition

∥yQ − yQ,r∥L∞ ≤ ∥yQ,BB − yQ,r,BB∥L∞ + ∥yQ,Z0B
− yQ,r,Z0B

∥L∞

+ ∥yQ,BZ0
− yQ,r,BZ0

∥L∞ + ∥yQ,Z0Z0
− yQ,r,Z0Z0

∥L∞ . (4.10)

The authors in [20, Equations (22), (23)] derive an error bound for homogeneous �rst-
order ODE systems with quadratic output equations that is applicable for the error
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4 Model order reduction for systems in non-standard form

∥yQ,BB−yQ,r,BB∥L∞ . To evaluate the remaining output errors, we apply the same method-
ology, which we demonstrate for the error component ∥yQ,Z0B

− yQ,r,Z0B
∥L∞ . Therefore,

we de�ne the mappings

hZ0B
(t1, t2) := vec

(
ZT

0 e
ATE−Tt1MeE

−1At2E−1B
)
,

ĥZ0B
(t1, t2) := vec

(
ZT

0,r,Z0B
eA

T
r,Z0B

E−T
r,Z0B

t1Mr,Z0B
eE

−1
r,Z0B

Ar,Z0Bt2E−1
r,Z0B

Br,Z0B

)
.

(4.11)

Using these mappings, the outputs of system (3.35) and (4.6) can be rewritten as

yQ,Z0B
(t) =

∫ t

0

hZ0B
(t, t− τ)T(u(τ)⊗ ζ0)dτ,

yQ,r,Z0B
(t) =

∫ t

0

ĥZ0B
(t, t− τ)T(u(τ)⊗ ζ0)dτ.

Using these representations of yQ,Z0B
and yQ,r,Z0B

, the following lemma provides an upper
bound of the respective L∞-error.

Lemma 4.1:
Consider the asymptotically stable system (3.35) with initial conditions as de�ned in

(3.4), the reduced system (4.6) with matrices (4.9), and the mappings hZ0B
, ĥZ0B

as
de�ned in (4.11). Then, the following inequality holds

∥yZ0B
− yr,Z0B

∥L∞ ≤
(∫ ∞

0

∫ ∞

0

∥hZ0B
(t1, t2)− ĥZ0B

(t1, t2)∥22dt1dt2
) 1

2

∥u⊗ ζ0∥L2 . ♢

Proof. We consider the output error at time t ≥ 0 that is∣∣yZ0B
(t)− yr,Z0B

(t)
∣∣ = ∣∣∣∣ ∫ t

0

(
hZ0B

(t, t− τ)− ĥZ0B
(t, t− τ)

)T
(u(τ)⊗ ζ0)dτ

∣∣∣∣.
Applying the Cauchy-Schwarz inequality multiple times yields∣∣yZ0B

(t)− yr,Z0B
(t)
∣∣ ≤ ∫ t

0

∥∥∥(hZ0B
(t, t− τ)− ĥZ0B

(t, t− τ)
)
(u(τ)⊗ ζ0)

∥∥∥dτ
≤
∫ t

0

∥∥∥hZ0B
(t, t− τ)− ĥZ0B

(t, t− τ)
∥∥∥
2
∥(u(τ)⊗ ζ0)∥2dτ

≤
(∫ t

0

∣∣∣hZ0B
(t, t− τ)− ĥZ0B

(t, t− τ)
∣∣∣2
2
dτ

) 1
2

·
(∫ t

0

∥(u(τ)⊗ ζ0)∥22dτ
) 1

2

.
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4.1 Model order reduction for inhomogeneous �rst-order ODE systems

Since we only consider nonnegative values in the integral, the values on the right-hand
side of the bound increase for larger values of t and can be bounded by choosing t = ∞,
which leads to the following L∞-norm bound of yZ0B

− yr,Z0B
:

∥yZ0B
− yZ0B

∥L∞ ≤
(∫ ∞

0

∫ ∞

0

∥∥∥hZ0B
(t1, t2)− ĥZ0B

(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

·
(∫ ∞

0

∥(u(τ)⊗ ζ0)∥22dτ
) 1

2

=

(∫ ∞

0

∫ ∞

0

∥∥∥hZ0B
(t1, t2)− ĥZ0B

(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

∥u⊗ ζ0∥L2 .

For further consideration, we de�ne the following matrices

P̃B,∗◦ :=

∫ ∞

0

eE
−1AtE−1BBr,∗◦E

−T
r,∗◦e

AT
r,∗◦E

−T
r,∗◦tdt,

P̃Z0,∗◦ :=

∫ ∞

0

eE
−1AtZ0Z0,r,∗◦e

AT
r,∗◦E

−T
r,∗◦tdt,

(4.12)

and the reduced Gramians

PB,r,∗◦ :=

∫ ∞

0

eE
−1
r,∗◦Ar,∗◦tE−1

r,∗◦Br,∗◦B
T
r,∗◦E

−T
r,∗◦e

AT
r,∗◦E

−T
r,∗◦tdt,

PZ0,r,∗◦ :=

∫ ∞

0

eE
−1
r,∗◦Ar,∗◦tZ0,r,∗◦Z

T
0,r,∗◦e

AT
r,∗◦E

−T
r,∗◦tdt

(4.13)

for ∗, ◦ equal to 'B' or 'Z0'. Since the bound presented in Lemma 4.1 includes the
expression∫ ∞

0

∫ ∞

0

∥hZ0B
(t1, t2)− ĥZ0B

(t1, t2)∥22dt1dt2 =
∫ ∞

0

∫ ∞

0

(
∥hZ0B

(t1, t2)∥22

− 2⟨hZ0B
(t1, t2), ĥZ0B

(t1, t2)⟩+
∥∥∥ĥZ0B

(t1, t2)
∥∥∥2
2

)
dt1dt2,

the following lemma is used to determine the di�erent components of the right-hand side
of this bound.

Lemma 4.2:
Consider the asymptotically stable system (3.35) with initial conditions as de�ned in
(3.4), the reduced system (4.6) with matrices (4.9), the corresponding controllability
Gramians PB and PZ0

as de�ned in (3.11) and (3.14), respectively, the matrices P̃B,Z0B

and P̃Z0,Z0B
from (4.12), and the reduced controllability Gramians PB,r,Z0B

and PZ0,r,Z0B
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4 Model order reduction for systems in non-standard form

from (4.13). The mappings hZ0B
, ĥZ0B

are as de�ned in (4.11). Then, the following
equations are ful�lled∫ ∞

0

∫ ∞

0

∥hZ0B
(t1, t2)∥22dt1dt2 = tr(PBMPZ0

M) , (4.14a)∫ ∞

0

∫ ∞

0

∥ĥZ0B
(t1, t2)∥22dt1dt2 = tr(PB,r,Z0B

Mr,Z0B
PZ0,r,Z0B

Mr,Z0B
) , (4.14b)∫ ∞

0

∫ ∞

0

⟨hZ0B
(t1, t2), ĥZ0B

(t1, t2)⟩dt1dt2 = tr
(
P̃

T

B,Z0B
MP̃Z0,Z0B

Mr,Z0B

)
. (4.14c)

♢

Proof. We make use of the property ∥vec(Z)∥22 = ∥Z∥2F and the Kronecker product
properties to obtain∫ ∞

0

∫ ∞

0

∥hZ0B
(t1, t2)∥22dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
BTE−TeA

TE−Tt2MeE
−1At1Z0Z

T
0 e

ATE−Tt1MeE
−1At2E−1B

)
dt1dt2

=

∫ ∞

0

tr
(
BTE−TeA

TE−Tt2MPZ0
MeE

−1At2E−1B
)
dt2

=

∫ ∞

0

tr
(
eE

−1At2E−1BBTE−TeA
TE−Tt2MPZ0

M
)
dt2

= tr(PBMPZ0
M) ,

what proves (4.14a) while (4.14b) is proven analogously. To show that the remaining
equation in (4.14c) is satis�ed, we make use of the property ⟨vec(X), vec(Y)⟩ = tr

(
XTY

)
and obtain∫ ∞

0

∫ ∞

0

⟨hZ0B
(t1, t2), ĥZ0B

(t1, t2)⟩dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
BTE−TeA

TE−Tt2MeE
−1At1Z0

· ZT
0,r,Z0B

eA
T
r,Z0B

E−T
r,Z0B

t1Mr,Z0B
eE

−1
r,Z0B

Ar,Z0Bt2E−1
r,Z0B

Br,Z0B

)
dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
BTE−TeA

TE−Tt2MP̃Z0,Z0B
Mr,Z0B

eE
−1
r,Z0B

Ar,Z0Bt2E−1
r,Z0B

Br,Z0B

)
dt1dt2

= tr
(
P̃

T

B,Z0B
MP̃Z0,Z0B

Mr,Z0B

)
.

From Lemma 4.1 and Lemma 4.2, we derive the following theorem, which provides a
bound of the L∞-error ∥yQ,Z0B

− yQ,r,Z0B
∥L∞ .
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4.1 Model order reduction for inhomogeneous �rst-order ODE systems

Theorem 4.3:
Consider the asymptotically stable system (3.35) with initial conditions as de�ned in
(3.4), the reduced system (4.6) with matrices (4.9), the corresponding controllability
Gramians PB, PZ0

as de�ned in (3.11) and (3.14), respectively, the matrices P̃B,Z0B
and

P̃Z0,Z0B
from (4.12), and the reduced controllability Gramians PB,r,Z0B

and PZ0,r,Z0B
from

(4.13). The error between the output yQ,Z0B
and the reduced output yQ,r,Z0B

satis�es the
following bound

∥yQ,Z0B
− yQ,r,Z0B

∥2L∞ ≤
(
tr(PBMPZ0

M)− 2 tr
(
P̃

T

B,Z0B
MP̃Z0,Z0B

Mr,Z0B

)
+ tr(PB,r,Z0B

Mr,Z0B
PZ0,r,Z0B

Mr,Z0B
)
)
∥u⊗ ζ0∥2L2

. (4.15)
♢

We apply this error bound to all four error components in (4.10) to obtain an overall
error bound.

Corollary 4.4:
Consider the asymptotically stable system (3.5) with initial conditions as de�ned in (3.4),
the reduced subsystems (4.5), (4.6), (4.7), and (4.8) with matrices (4.9), the correspond-
ing controllability Gramians PB, PZ0

as de�ned in (3.11) and (3.14), respectively, the
matrices P̃B,∗◦ and P̃Z0,∗◦ from (4.12), and the reduced controllability Gramians PB,r,Z0B

and PZ0,r,∗◦ from (4.13), for ∗, ◦ equal to 'B' or 'Z0'. Then, the error between the output
yQ and the reduced output yQ,r satis�es the following bound

∥yQ − yQ,r∥L∞ ≤
∑

∗,◦∈{'B','Z0'}

∥yQ,∗◦ − yQ,r,∗◦∥L∞

≤
∑

∗,◦∈{'B','Z0'}

(
tr(P∗MP◦M)− 2 tr

(
P̃

T

◦,∗◦MP̃∗,∗◦Mr,∗◦

)
+ tr(P◦,r,∗◦Mr,∗◦P∗,r,∗◦Mr,∗◦)

)
∥u∗ ⊗ u◦∥2L2

,

(4.16)

where uB := u and uZ0
:= ζ0. ♢

4.1.1.2 Extended-input approach for inhomogeneous �rst-order ODE systems

In this paragraph, we aim to derive reduced surrogate models of the inhomogeneous
�rst-order systems with a linear output equation (3.5) and with a quadratic one (3.31),
both of signi�cantly smaller dimension R ≪ N . In contrast to the previous paragraph,
we intend to �nd one reduced system

Erżr(t) = Arzr(t) +Brũ(t), zr(0) = Z0,rζ0,

yL,r(t) = Crzr(t),
(4.17)
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4 Model order reduction for systems in non-standard form

which approximates the original system (3.5) and one reduced system

Erżr(t) = Arzr(t) +Brũ(t), zr(0) = Z0,rζ0,

yQ,r(t) = zr(t)
TMrzr(t),

(4.18)

which approximates the system (3.31). The surrogate models include the reduced ma-
trices

Er := VT
r ETr, Ar := VT

r ATr, Br := VT
r B,

Z0,r := VT
r Z0, Cr := CTr, Mr := TT

r MTr,
(4.19)

generated using the projecting bases Vr, Tr ∈ RN×R that satisfy the Petrov-Galerkin
conditions (2.30) and (2.31).
To derive such surrogate systems, we consider the respective homogeneous systems

from (3.27) and (3.45). The inhomogeneous and the homogeneous systems (3.5) and
(3.27), such as (3.31) and (3.45) have the same input- and initial condition-to-output
behavior in the frequency-domain. Hence, homogeneous systems are used to identify the
states that are hard to reach and to observe. To determine these states, we evaluate the
system energies summarized in Table 3.6 and Table 3.7. The controllability energies from
(3.30) show that states corresponding to small eigenvalues of the controllability Gramian
PW from (3.29) have only negligible in�uence on the system dynamics, and hence, are
truncated in the following. Also, we investigate the observability energies in (3.22) for
systems (3.27) with a linear output equation, as well as (3.48) for systems (3.31) with a
quadratic output equation. It follows that states corresponding to small eigenvalues of
the observability Gramians QL and QQ,W from (3.17) and (3.47), respectively, are hard
to observe and, hence, truncated within the BT method. The controllability Gramian
PW and the observability Gramians QL,W, QQ,W are in general not equal. Therefore,
we transform the system so that the controllability and observability Gramian coincide
before truncating the negligible states.
We apply BT as introduced in Algorithm 1 to balance the system and truncate the

states spanning the least dominant subspaces. For that, we assume that R and S are
Cholesky factors (or, if available, low-rank factors) of the Gramians of the homogenous
systems system (3.27) or (3.45), i.e., PW ≈ RRT and Q ≈ SST, where Q represents
either QL or QQ,W. We compute the singular value decomposition

STER = UΣVT =
[
U1 U2

] [Σ1 0
0 Σ2

] [
VT

1

VT
2

]
. (4.20)

where the matrix Σ = diag (σ1, . . . , σN) contains the so called Hankel eigenvalues. The
remaining step is to truncate states corresponding to small eigenvalues from Σ. For
that, we de�ne the projecting matrices

Vr = SU1Σ
− 1

2
1 , Tr = RV1Σ

− 1
2

1 (4.21)
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Algorithm 9 BT method for the �rst-order ODE systems (3.5) and (3.31) with a linear
or quadratic output using the extended-input approach.

Require: The original system (3.5) or (3.31), reduced dimension R.
Ensure: The reduced system (4.17) or (4.18).
1: Compute factors of the Gramians PW ≈ RRT and Q ≈ SST, with Q equal to QL or

QQ,W from (3.29), (3.17), and (3.47).
2: Perform the SVD of STER, and decompose as

STER =
[
U1 U2

] [Σ1

Σ2

] [
V1 V2

]T
,

with Σ1 ∈ RR×R.
3: Construct the projection matrices

Vr = SU1Σ
− 1

2
1 , Tr = RV1Σ

− 1
2

1 .

4: Construct reduced matrices (4.19).

that balance and truncate the system by projecting the state space onto a space spanned
by U1 and V1 corresponding to the largest eigenvalues stored in Σ1. Multiplying the
original system (3.5) or (3.31) byVT

r and Tr results in the reduced system (4.17) or (4.18),
respectively, with the reduced matrices (4.19). This methodology leads to Algorithm 9.

Error bound for systems with a linear output equation For the linear output case,
there exists an error bound for the error between the output yL of the original system
(3.5) and the output yL,r of the reduced system (4.17), as shown in [66, Theorem 2], that
is

∥yL − yL,r∥L2 ≤

(
2

N∑
k=R+1

σk

)
∥u∥L2

+ 3 · 2−
1
3

(
∥STAZ0∥2 + ∥Σ1ArZ0,r∥2

) 1
3

(
2

N∑
k=R+1

σk

) 2
3

∥ζ0∥2.

Error bound for systems with a quadratic output equation For the case of quadratic
output equations, we again apply the bound from [20, Equations (22), (23)], which was
already used to derive the bound in (4.16). However, in the extended-input case, we set
Vr,∗◦ = Vr, Tr,∗◦ = Tr, with Vr and Tr as de�ned in (4.21) for all ∗, ◦ ∈ {'B', 'Z0'}. We
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4 Model order reduction for systems in non-standard form

de�ne the reduced controllability Gramian and the matrix

PW,r =

∫ ∞

0

eE
−1
r ArtE−1

r WrW
T
r E

−T
r e(E

−1
r Ar)Ttdt,

P̃W =

∫ ∞

0

eE
−1AtE−1WWT

r E
−T
r e(E

−1
r Ar)Ttdt.

(4.22)

This leads to the following error bound.

Theorem 4.5:
Consider the asymptotically stable system (3.31) with initial conditions as de�ned in
(3.4) and the reduced system (4.18). Also consider the respective controllability Gramian
PW as de�ned in (3.29), the reduced controllability Gramian PW,r as de�ned in (4.22),
and the matrix P̃W from (4.22). Then, the respective output error is bounded by

∥yQ − yQ,r∥L∞ ≤
(
tr(PWMPWM)− 2 tr

(
P̃

T

W
MP̃WMr

)
+ tr(PW,rMrPW,rMr)

)
(∥u∥L2 + ∥ζ0∥2)2 . (4.23)

♢

Proof. We apply the bound from (4.16) to obtain

∥yQ − yQ,r∥L∞ ≤
∑

∗,◦∈{'B','Z0'}

∥yQ,∗◦ − yQ,r,∗◦∥L∞

≤
∑

∗,◦∈{'B','Z0'}

(
tr(P∗MP◦M)− 2 tr

(
P̃

T

◦MP̃∗Mr

)
+ tr(P◦,rMrP∗,rMr)

)
∥u∗ ⊗ u◦∥2L2

(4.24)

for the reduced matrices from (4.9), which coincide with those in (4.19), where uB := u,
uZ0

:= ζ0. The respective controllability Gramians PB and PZ0
are as de�ned in (3.11)

and (3.14), the matrices P̃B and P̃Z0
are de�ned in (4.12), and the reduced Gramians PB,r

and PZ0,r are from (4.13). Since PW = PB+PZ0
, P̃W = P̃B+P̃Z0

, and PW,r = PB,r+PZ0,r

holds, the right-hand side of (4.24) is bounded by the one in (4.23), which proves the
statement.

4.1.2 IRKA for inhomogeneous �rst-order ODE systems

In this section, we brie�y describe the application of the IRKA method presented in [60]
and in Section 2.2.2 to �rst-order ODE systems with inhomogeneous initial conditions
and linear output equations. However, we will not describe this method in detail since
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

this is not the main contribution of this work. Also, since there is no IRKA approach
for systems with quadratic output equations, we only consider the system (3.5) with
a linear output equation. For this purpose, we use the equivalent systems represented
in Section 3.1, again distinguishing between di�erent approaches to embed the initial
conditions, which are described in the following subsections.

4.1.2.1 Multi-system approach for inhomogeneous �rst-order ODE systems

To derive reduced surrogate models approximating the input-to-output behavior of the
original system (3.5) using the IRKA method, we decompose this system into two sub-
systems that are (3.8) and (3.9), as described in [15]. We aim to derive two respective
surrogate models (4.1) and (4.2), approximating the behavior of the two subsystems.
Since the transfer functions (3.8) and (3.9) of the two subsystems are of the same struc-
ture as the transfer function of system (2.1) with homogeneous initial conditions, the
IRKA method introduced in Algorithm 4 can be applied to both subsystems individu-
ally, to derive the surrogate systems. To apply the IRKA method to subsystem (3.9),
we would replace the input matrix B by EZ0.

4.1.2.2 Extended-input approach for inhomogeneous �rst-order ODE systems

As described in [66], the inhomogeneous system (3.5) has the same transfer function as
the homogeneous system (3.27) with W as de�ned in (3.24). Hence, we can apply the
IRKA method presented in Algorithm 4 to the system (3.27) and to derive bases Vr and
Tr that de�ne the matrices (4.19) of a reduced surrogate model (4.18) that approximates
the input-to-output behavior of the original one.

4.2 Model order reduction for inhomogeneous

�rst-order DAE systems

In this section, we consider dynamical systems with di�erential-algebraic equations as
state equations as de�ned in (3.54) and (3.100) where the matrix E is singular. We
assume that the matrix pencil (A,E) is regular, i.e., det(λE − A) is not a zero poly-
nomial. We seek to employ model reduction techniques that allow us to construct
a low-dimensional model that closely resembles the dynamic behaviors of the original
high-�delity model.
The BT and IRKA methods presented in the previous Section 4.1 derived for ODE

systems treat the case where E is nonsingular. Therefore, they are not directly applica-
ble to the DAE case. In this section, we extend the methods presented above to the case
of inhomogeneous DAE systems (3.54) and (3.100) with a linear and a quadratic output
equation, respectively. To that end, we use the new Gramians presented in Section 3.2.1
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4 Model order reduction for systems in non-standard form

and Section 3.2.2 that allow us to characterize the controllability and observability be-
havior.
We derive in Section 4.2.1 the BT method for inhomogeneous DAE systems with

linear and quadratic output equations and derive respective error bounds to evaluate
the quality of the resulting reduced surrogate systems. Afterwards, in Section 4.2.2, we
brie�y describe the application of the IRKA approach for inhomogeneous DAE systems
with linear output equations.

4.2.1 BT for inhomogeneous �rst-order DAE systems

To derive BT methods that reduce the DAE systems from (3.54) and (3.100), we identify
the least dominant controllability and observability subspaces truncated in this method,
as their e�ect on the system dynamics is negligible. To determine these subspaces, we
use respective system energies determined by Gramians tailored for these systems. Based
on this, we propose a balancing scheme to determine projection matrices, leading to the
construction of reduced-order models.
We again consider the multi-system and extended-input approaches derived in Sec-

tion 3.2. Both approaches consider the proper and the improper components separately,
while the multi-system representation also derives subsystems corresponding to the input
and subsystems corresponding to the initial condition.

4.2.1.1 Multi-system approach for inhomogeneous �rst-order DAE systems

In this paragraph, we derive a reduced system representation of the original system
(3.54) with a linear output equation using the multi-system approach introduced in Sec-
tion 3.2.1.1. For systems (3.100) with quadratic output equations, the multi-system ap-
proach leads to too many subsystems as explained in Section 3.2.2.1 so that we apply for
systems of this structure the extended-input approach presented later in Section 4.2.1.2.
We decompose the inhomogeneous system (3.54) into three subsystems. The �rst

two subsystems (3.58) and (3.59) encode the system dynamics corresponding to the dif-
ferential state component and the third subsystem (3.60) includes the algebraic state
component, as described in Section 3.2.1. Instead of reducing the original system, we
apply the BT method introduced in Algorithm 2 to each subsystem to derive three
reduced surrogate models approximating the input- and initial condition-to-output be-
haviors. The �rst subsystem (3.58) corresponding to the input Bu(t) is approximated
by a surrogate model

˙̂z1(t) = Â1,Bẑ1(t) + B̂1,Bu(t), ẑ1(0) = 0,

yL,p,r,B(t) = Ĉ1,Bẑ1(t),
(4.25)
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

while the initial condition-to-output behavior of the second subsystem (3.59) is approx-
imated by the surrogate model

˙̂z1(t) = Â1,Z0
ẑ1(t), ẑ1(0) = Ẑ0,rζ0,

yL,p,r,Z0
(t) = Ĉ1,Z0

ẑ1(t),
(4.26)

with reduced matrices

Â1,∗ = VT
p,∗ATp,∗, B̂1,B = VT

p,BB, Ẑ0,r = VT
p,Z0

Z0, Ĉ1,∗ = CTp,∗ (4.27)

where the subscript ∗ represents either 'B' or 'Z0'. The projecting bases Vp,∗, Tp,∗ ∈
RN×R∗ are assumed to project on the de�ating subspaces of the matrix pencil (A,E)
corresponding to the �nite eigenvalues of the matrix pencil. Also, we assume that the
dimensions of the reduced systems are signi�cantly smaller than the original system
dimension, i.e., R∗ ≪ N .
Moreover, we derive a surrogate model corresponding to the third system (3.60), that

encodes the algebraic system dynamics

Ê2
˙̂z2(t) = ẑ2(t) + B̂2u(t), ẑ2(0) = ẑ2,0,

yL,i,r(t) = Ĉ2ẑ2(t)
(4.28)

with a nilpotent matrix Ê2 ∈ RRi×Ri , an input matrix B̂2 ∈ RRi×m and an output
matrix Ĉ2 ∈ Rp×Ri . Note that this reduced model is supposed to have the same input-
to-output behavior as the subsystem (3.60) encoding the algebraic component of the
system dynamic. The reduced system (4.28) is generated using projecting matrices Vi,r

and T i,r ∈ RN×Ninf as

Ê2 = VT
i,rET i,r, B̂2 = VT

i,rB, Ĉ2 = CT i,r, ẑ2,0 = VT
i,rz0. (4.29)

The three reduced subsystems approximate the overall input- and initial condition-
to-output behavior as

yL(t) ≈ yL,p,r,B(t) + yL,p,r,Z0
(t) + yL,i,r(t).

To derive such surrogate systems, we apply Algorithm 2 to the three subsystems (3.58),
(3.59), and (3.60). First, we compute Cholesky factors or low-rank factors of the proper
controllability and observability Gramians Pp,B = Rp,BR

T
p,B, Pp,Z0

= Rp,Z0
RT

p,Z0
, and

Qp,L = ST
pSp corresponding to the �rst two subsystems (3.58) and (3.59) de�ned in

(3.62), (3.66), and (3.74), respectively. Computing the improper controllability Grami-
ans Pi,B and Pi,Z0

corresponding to these subsystems results in

Pi,B = Ri,BR
T
i,B =

ν−1∑
k=0

FN(k)PlBBTPT
l FN(k)

T = 0,

Pi,Z0
= Ri,Z0

RT
i,Z0

=
ν−1∑
k=0

FN(k)PlEZ0Z
T
0E

TPT
l FN(k)

T = 0
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4 Model order reduction for systems in non-standard form

since FNPl = 0 for FN and Pl as de�ned in (2.13) and (2.10), respectively. Therefore,
only the proper Gramians are considered when reducing the two subsystems (3.58) and
(3.59).
As described in (3.81), (3.82), and (3.85), and later summarized in Table 3.5, states

corresponding large eigenvalues of the proper Gramians Pp,B, Pp,Z0
, and Qp,L span the

most dominant controllability and observability subspaces. The states corresponding to
small eigenvalues, on the other hand, are hard to reach and observe and are therefore
negligible. We truncate these states in the following. To do so, we derive the respective
singular value decompositions

Sp,BERp,B =
[
Up,1,B Up,2,B

] [Σ1,B

Σ2,B

] [
VT

p,1,B

VT
p,2,B

]
,

Sp,Z0
ERp,Z0

=
[
Up,1,Z0

Up,2,Z0

] [Σ1,Z0

Σ2,Z0

] [
VT

p,1,Z0

VT
p,2,Z0

]
.

Since the improper Gramians corresponding to these two systems are equal to zero, the
respective BT projection matrices corresponding to system (3.58) and (3.59) as derived
in (2.40) have the structure

Vr,B =
[
ST
p,BUp,1,BΣ

− 1
2

1,B

]
, Tr,B =

[
Rp,BVp,1,BΣ

− 1
2

1,B

]
,

Vr,Z0
=
[
ST
p,Z0

Up,1,Z0
Σ

− 1
2

1,Z0

]
, Tr,Z0

=
[
Rp,Z0

Vp,1,Z0
Σ

− 1
2

1,Z0

]
.

For the third subsystem (3.60), we derive the improper controllability and observability
Gramians Pi = RiR

T
i and QL,i = ST

i Si as de�ned in (3.70) and (3.78), respectively. Note
that the proper controllability Gramian is

Pp = RpR
T
p =

∫ ∞

0

FJ(t)(I−Pl)BBT(I−Pl)
TFJ(t)

Tdt = 0

as FJ(t)(I − Pl) = 0 with FJ and Pl from (2.13) and (2.10). We derive the singular
value decomposition

SiARi =
[
Ui,1 Ui,2

] [Θ1

0

] [
VT

i,1

VT
i,2

]
,

and the resulting projecting matrices

Vi,r =
[
ST
i Ui,1Θ

− 1
2

1

]
, T i,r =

[
RiVi,1Θ

− 1
2

1

]
.

Computing and applying the projecting matrices to the three di�erent subsystems leads
to Algorithm 10.
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

Algorithm 10 BT method for the �rst-order DAE system (2.8) with a linear output
using the multi-system approach.

Require: The original system (3.54) and the reduced orders Rp,B, Rp,Z0
, and Ri.

Ensure: The reduced systems (4.25), (4.26), and (4.28).
1: Compute factors of the Gramians Pp,B = Rp,BR

T
p,B, Pp,Z0

= Rp,Z0
RT

p,Z0
, and Qp,L =

ST
p,BSp,B corresponding to the �rst two subsystems (3.58) and (3.59) and Pi = RiR

T
i ,

and Qi,L = ST
i Si corresponding to subsystem (3.60).

2: Perform the two SVDs

Sp,BERp,B =
[
Up,1,B Up,2,B

] [Σ1,B

Σ2,B

] [
VT

p,1,B

VT
p,2,B

]
,

Sp,Z0
ERp,Z0

=
[
Up,1,Z0

Up,2,Z0

] [Σ1,Z0

Σ2,Z0

] [
VT

p,1,Z0

VT
p,2,Z0

]
,

SiARi =
[
Ui,1 Ui,2

] [Θ1

0

] [
VT

i,1

VT
i,2

]
with Σ1,B ∈ RRp,B×Rp,B , Σ1,Z0

∈ RRp,Z0
×Rp,Z0 .

3: Construct the projection matrices

Vp,r,B =
[
ST
p,BUp,1,BΣ

− 1
2

1,B

]
, Tp,r,B =

[
Rp,BVp,1,BΣ

− 1
2

1,B

]
,

Vp,r,Z0
=
[
ST
p,Z0

Up,1,Z0
Σ

− 1
2

1,Z0

]
, Tp,r,Z0

=
[
Rp,Z0

Vp,1,Z0
Σ

− 1
2

1,Z0

]
,

Vi,r =
[
ST
i Ui,1Θ

− 1
2

1

]
, T i,r =

[
RiVi,1Θ

− 1
2

1

]
.

4: Determine the reduced system matrices (4.27) and (4.29) of the subsystems (3.58),
(3.59), and (3.60).

To evaluate the quality of the output approximation using the three surrogate systems,
we consider the two proper components separately, while the improper one has an error
equal to zero, so that we estimate

∥yL − yL,r∥L∞ ≤ ∥yL,p,B − yL,p,r,B∥L∞ + ∥yL,p,Z0
− yL,p,r,Z0

∥L∞ .

To derive bounds for the �rst error component ∥yL,p,B − yL,p,r,B∥L∞ , we de�ne the map-
pings

hp,B(t) := CFJ(t)B, ĥp,B(t) := Ĉ1,Be
Â1,BtB̂1,B, (4.30)

so that the outputs are equal to

yL,p,B(t) =

∫ t

0

hp,B(t− τ)u(τ)dτ, yL,p,r,B(t) =

∫ t

0

ĥp,B(t, t− τ)u(τ)dτ.
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4 Model order reduction for systems in non-standard form

Using these representations of yL,p,B and yL,p,r,B the following Lemma provides an upper
bound of the respective L∞-error.

Lemma 4.6:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E), the reduced

system (4.25) with matrices (4.27), and hp,B and ĥp,B as de�ned in (4.30). Then, the
following inequality holds

∥yL,p,B − yL,p,r,B∥L∞ ≤
(∫ ∞

0

∥∥∥hp,B(t)− ĥp,B(t)
∥∥∥2
2
dt

) 1
2

∥u∥L2 . (4.31)
♢

Proof. We consider the norm of the output error at time t ≥ 0 that is∥∥yL,p,B(t)− yL,p,r,B(t)
∥∥
2
=

∥∥∥∥∫ t

0

(
hp,B(t− τ)− ĥp,B(t− τ)

)
u(τ)dτ

∥∥∥∥
2

.

Applying the Cauchy-Schwarz inequality multiple times yields∥∥yL,p,B(t)− yL,p,r,B(t)
∥∥
2
≤
∫ t

0

∥∥∥(hp,B(t− τ)− ĥp,B(t− τ)
)
u(τ)

∥∥∥
2
dτ

≤
∫ t

0

∥∥∥hp,B(t− τ)− ĥp,B(t− τ)
∥∥∥
2
∥u(τ)∥2dt

≤
(∫ t

0

∥∥∥hp,B(t− τ)− ĥp,B(t− τ)
∥∥∥2
2
dτ

) 1
2
(∫ t

0

∥u(τ)∥22dτ
) 1

2

.

Hence, we can bound the L∞-norm of the output error as

∥yL,p,B − yL,p,r,B∥L∞ ≤
(∫ ∞

0

∥hp,B(t)− ĥp,B(t)∥22dt
) 1

2
(∫ ∞

0

∥u(τ)∥22dτ
) 1

2

=

(∫ ∞

0

∥hp,B(t)− ĥp,B(t)∥22dt
) 1

2

∥u∥L2 .

The bound in (4.31) includes the expression∫ ∞

0

∥∥∥hp,B(t)− ĥp,B(t)
∥∥∥2
2
dt ≤

∫ ∞

0

∥hp,B(t)∥2F − 2⟨hp,B(t), ĥp,B(t)⟩+
∥∥∥ĥp,B(t)

∥∥∥2
F
dt.

It is used in the following lemma to determine the di�erent components of the bound
(4.31) using the respective system Gramians. For that, we de�ne

P̃p,B :=

∫ ∞

0

eE
−1AtE−1BB̂T

1,Be
ÂT

1,Btdt, P̂1,B :=

∫ ∞

0

eÂ1,BtB̂1,BB̂
T
1,Be

ÂT
1,Btdt. (4.32)
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

Lemma 4.7:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E), the reduced
system (4.25) with matrices (4.27), the corresponding controllability Gramian Pp,B as
de�ned in (3.62), the matrix P̃p,B from (4.32), and the reduced controllability Gramian
P̂1,B from (4.32). The functions hp,B and ĥp,B are as de�ned in (4.30). Then, the
following equations hold∫ ∞

0

∥hp,B(t)∥2Fdt = tr
(
CPp,BC

T
)
,

∫ ∞

0

∥∥∥ĥp,B(t)
∥∥∥2
F
dt = tr

(
Ĉ1,BP̂1,BĈ

T
1,B

)
,

(4.33a)∫ ∞

0

⟨hp,B(t), ĥp,B(t)⟩dt = tr
(
CP̃p,BĈ

T
1,B

)
. (4.33b)

♢

Proof. We derive∫ ∞

0

∥hp,B(t)∥2Fdt =
∫ ∞

0

tr
(
CeE

−1AtE−1BBTE−TeA
TE−TtCT

)
dt = tr

(
CPBC

T
)
,

what proves the �rst equation in (4.33a) while the second one is proven analogously. To
show the last equation (4.33b), we derive∫ ∞

0

⟨hp,B(t), ĥp,B(t)⟩dt =
∫ ∞

0

tr
(
CeA

TE−TtBB̂T
1,Be

ÂT
1,BtĈT

1,B

)
dt = tr

(
CP̃p,BĈ

T
1,B

)
what proves the lemma.

From Lemma 4.6 and Lemma 4.7, we derive the following theorem, which provides a
bound of the L∞-error ∥yL,p,B − yL,p,r,B∥L∞ .

Theorem 4.8:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E), the reduced
system (4.25) with matrices (4.27). Also, consider the controllability Gramian Pp,B as
de�ned in (3.62), the matrix P̃p,B from (4.32), and the reduced controllability Gramian
P̂1,B from (4.32). Then, the error between the output yL,p,B and the reduced output
yL,p,r,B satis�es the following bound

∥yL,p,B−yL,p,r,B∥2L∞ ≤
(
tr
(
CPp,BC

T
)
−2 tr

(
CP̃p,BĈ

T
1,B

)
+tr
(
Ĉ1,BP̂1,BĈ

T
1,B

))
∥u∥2L2

. ♢

We apply the same bounds to the second error component ∥yL,Z0
−yL,r,Z0

∥L∞ . Therefore,
we de�ne

P̃p,Z0
:=

∫ ∞

0

eE
−1AtZ0Z

T
0,re

AT
r,Z0

tdt, P̂1,Z0
:=

∫ ∞

0

eÂ1tẐ0,1Ẑ
T
0,1e

ÂT
1 tdt. (4.34)

Applying Theorem 4.8 to the second error component yields the following corollary.
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4 Model order reduction for systems in non-standard form

Corollary 4.9:
Consider the C-stable system (3.58) with a regular matrix pencil (A,E), the reduced
systems (4.25) and (4.26) with matrices (4.27). Also, consider the controllability Grami-
ans Pp,B and Pp,Z0

are as de�ned in (3.62) and (3.66), respectively, the matrices P̃p,B

and P̂1,B from (4.32), and the matrices P̂1,Z0
and P̃p,Z0

from (4.34). Then, the error
between the output yL and the reduced output yL,r satis�es the following bound

∥yL − yL,r∥2L∞ ≤
(
tr
(
CPp,BC

T
)
− 2 tr

(
CP̃p,BC

T
r,B

)
+ tr

(
Cr,BP̂1,BC

T
r,B

))
∥u∥2L2

+
(
tr
(
CPp,Z0

CT
)
− 2 tr

(
CP̃p,Z0

CT
r,Z0

)
+ tr

(
Cr,BP̂1,Z0

CT
r,Z0

))
∥ζ0∥22 (4.35)

♢

4.2.1.2 Extended-input approach for inhomogeneous �rst-order DAE systems

In this paragraph, we apply the extended-input approach to derive surrogate models
of the DAE systems (3.54) and (3.100) with a linear and a quadratic output equation,
respectively, to incorporate the initial conditions into the reduction process. More pre-
cisely, we are concerned with deriving reduced-order models of the form

Erżr(t) = Arzr(t) +Bp,ru(t), zr(0) = Z0,rζ0,

yL,r(t) = Crzr(t),
(4.36)

and

Erżr(t) = Arzr(t) +Bp,ru(t), zr(0) = Z0,rζ0,

yQ,r(t) = zr(t)
TMrzr(t),

(4.37)

with matrices

Er = VT
r ETr =

[
I 0

0 Ê2

]
, Ar = VT

r ATr =

[
Â1 0
0 I

]
, Z0,r = VT

r Z0 =

[
Ẑ0,1

Ẑ0,2

]
,

Bp,r = VT
r B =

[
B̂1

B̂2

]
, Cr = CTr =

[
Ĉ1 Ĉ2

]
, Mr = TT

r MTr =

[
M̂11 M̂12

M̂T
12 M̂22

]
(4.38)

generated using projecting matrices Vr, Tr ∈ RN×R, where the reduced dimension R
is signi�cantly smaller than the original dimension N , i.e., R ≪ N . Consequently,
we aim for a reduced system, which is inherently decoupled into a di�erential and an
algebraic reduced state, i.e., the reduced state zr(t) consists of a di�erential component
zp,r(t) :=

[
z1,r(t)

0

]
and an algebraic one zi,r(t) :=

[
0

z2,r(t)

]
with zr(t) = zp,r(t) + zi,r(t).
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We aim to �nd reduced-order models (4.36) and (4.37) that approximate the input-
to-output behavior of the full-order models (3.54) and (3.100), i.e., the expressions
∥yL − yL,r∥ and ∥yQ − yQ,r∥ are small in an appropriate norm. As described in Sec-
tion 3.2.1.2, the original system (3.54) with a linear output equation corresponds to the
same transfer function as the surrogate system (3.91), and as shown in Section 3.2.2.2,
the original system (3.100) with a quadratic output equation corresponds to the same
transfer function as the surrogate system introduced in (3.105). Both surrogate systems
incorporate the initial condition spaces into the input so that the respective controlla-
bility Gramians describe the input- and initial condition-to-output behavior. Hence, in
the following, the respective Gramians are utilized to derive the corresponding reduced
surrogate models (4.36) and (4.37).
As summarized in Table 3.6 and Table 3.7, the states corresponding to large eigen-

values of the Gramians Pp,Wp
, QL,p, and QQ,p,Wp

from (3.93), (3.97), and (3.111), re-
spectively, span the most dominant controllability and observability subspaces of the
respective systems. On the other hand, states corresponding to small eigenvalues are
negligible and, hence, truncated in the BT method. To evaluate the algebraic compo-
nents of the systems, the improper controllability Gramian Pi,Wp

from (3.94) and the
improper observability Gramians QL,i and QQ,i,Wp

introduced in (3.97) and (3.116) are
used to identify states that are not reachable or not observable, i.e., states that do not
a�ect the dynamics of the system. These states are then removed to �nd a minimal
realization of the algebraic system components.
We want to mention that the systems (3.54) and (3.100) have the same proper and

improper controllability Gramians Pp,Wp
and Pi,Wp

. The observability Gramians, on
the other hand, di�er. However, since the BT method corresponding to both systems
types is the same, we denote the proper observability Gramians QL,p and QQ,p,Wp

in the
following as Qp and the improper ones QL,i and QQ,i,Wp

in the following as Qi so that the
user can choose the correct observability Gramian according to the considered system.
We aim to truncate states corresponding to the small eigenvalues of the proper control-

lability Gramian Pp,Wp
and the proper observability Gramian Qp. Therefore, we follow

the methodology presented in Algorithm 2 to derive a balanced and truncated system.
Since all Gramians are symmetric and positive semi-de�nite, there exist factorizations

Pp,Wp
= RpR

T
p , Qp = ST

pSp, Pi,Wp
= RiR

T
i , Qi = ST

i Si.

We compute the singular value decompositions

SpERp = UpΣVT
p =

[
Up,1 Up,2

] [Σ1

Σ2

] [
VT

p,1

VT
p,2

]
,

SiARi = UiΘVT
i =

[
Ui,1 Ui,2

] [Θ1

0

] [
VT

i,1

VT
i,2

]
,

where Σ = diag(σ1, . . . , σNf
, 0, . . . ), σ1 ≥ · · · ≥ σNf

, includes the proper Hankel singular
values of the system. The di�erential states that are simultaneously di�cult to reach
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4 Model order reduction for systems in non-standard form

Algorithm 11 BT method for the �rst-order DAE systems (3.54) and (3.100) with a
linear or quadratic output equations using the extended-input approach.

Require: The original system (3.54) or (3.100) and the order R.
Ensure: The reduced system (4.36) or (4.37).
1: Compute the proper and improper controllability Gramians Pp,Wp

and Pi,Wp
.

2: Compute the proper observability Gramians Qp equal to QL,p or QQ,p,Wp
and the

improper one Qi equal to QL,i or QQ,i,Wp
.

3: Perform the singular values decomposition

SpERp =
[
Up,1 Up,2

] [Σ1

Σ2

][
VT

p,1

VT
p,2

]
, SiARi =

[
Ui,1 Ui,2

] [Θ1

0

][
VT

i,1

VT
i,2

]
.

4: Construct the projection matrices

Vr =
[
ST
pUp,1Σ

− 1
2

1 ST
i Ui,1Θ

− 1
2

1

]
, Tr =

[
RpVp,1Σ

− 1
2

1 RiVi,1Θ
− 1

2
1

]
.

5: Construct reduced matrices as de�ned in (4.38).

and to observe correspond to the smallest Hankel singular values, which are the diagonal
elements of Σ2. We truncate the corresponding states that lie in the spaces spanned by
Up,2 and Vp,2 by building the projection matrices

Vr =
[
ST
pUp,1Σ

− 1
2

1 ST
i Ui,1Θ

− 1
2

1

]
, Tr =

[
RpVp,1Σ

− 1
2

1 RiVi,1Θ
− 1

2
1

]
.

Note that additionally improper states that correspond to zero eigenvalues in Θ, i.e.,
the states that lie in the spaces spanned by Ui,2 and Vi,2 are removed. Multiplying the
system matrices of the system in (3.91) and (3.105) by VT

r and Tr leads to a reduced
system in (4.36) and (4.37) with matrices (4.38) where Â1 is nonsingular and Ê2 is a
nilpotent matrix. This method results in the Algorithm 11.

Error bound for systems with a linear output equation To evaluate the quality of
the approximation by the reduced system, we again have to distinguish between systems
with linear output equations and those with quadratic ones. First, we evaluate the
error for systems with a linear output equation. For that, we de�ne the matrix and the
reduced controllability Gramian

P̃p,Wp
:=

∫ ∞

0

FJ(t)WpW
T
pFJ(t)

Tdt,

Pp,Wp,r :=

∫ ∞

0

eE
−1
r ArtE−1Wp,rW

T
p,rE

−TeA
T
r E

−T
r tdt.

(4.39)
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

We apply the bound from (4.35), where all the subsystems are generated using the same
bases Vr, Tr, which results in the following theorem.

Theorem 4.10:
Consider the C-stable system (3.54) with a regular matrix pencil (A,E) and the surro-
gate system (4.36). Also consider the controllability Gramian Pp,Wp

as de�ned in (3.93),
the matrix P̃p,Wp

from (4.39), and the reduced Gramian Pp,Wp,r from (4.39). Then the
L∞-error of the outputs is bounded by

∥yL − yL,r∥2L∞ ≤
(
tr
(
CPp,Wp

CT
)

− 2 tr
(
CP̃WpC

T
r

)
+ tr

(
CrPp,Wp,rC

T
r

) ) (
∥u∥2L2

+ ∥ζ0∥22
)
. (4.40)

♢

Proof. We apply the bound from (4.35) to obtain

∥yL − yL,r∥2L∞ ≤
(
tr
(
CPp,BC

T
)
− 2 tr

(
CP̃BC

T
r,B

)
+ tr

(
Cr,BPp,r,BC

T
r,B

) )
∥u∥2L2

+
(
tr
(
CPZ0

CT
)
− 2 tr

(
CP̃Z0

CT
r,Z0

)
+ tr

(
Cr,BPr,Z0

CT
r,Z0

) )
∥ζ0∥22

for the controllability Gramians Pp,B and Pp,Z0
de�ned in (3.62) and (3.66), respectively,

the reduced controllability Gramians P̂1,B and P̂1,Z0
, and the matrices P̃p,B and P̃p,Z0

as de�ned in (4.32) and (4.34). Since it holds that Pp,Wp
= Pp,B + Pp,Z0

, P̃p,Wp
=

P̃p,B + P̃p,Z0
, and Pp,Wp,r = Pp,B,r + Pp,Z0,r, the right-hand side can be bounded by the

one in (4.40), which proves the statement.

Error bound for systems with a quadratic output equation To describe the output
error for the systems (3.100) and (4.37) with a quadratic output equation, we bound the
error between yQ and yQ,r as

∥yQ − yQ,r∥L∞ ≤ ∥ypp − ypp,r∥L∞ + ∥ypi − ypi,r∥L∞ + ∥yip − yip,r∥L∞ + ∥yii − yii,r∥L∞

according to the four summands de�ned in (3.102). In the following, we consider the
respective error norms separately. Since we do not truncate the improper states the error
∥yii − yii,r∥L∞ is equal to zero. Also the components ∥ypi − ypi,r∥L∞ and ∥yip − yip,r∥L∞

coincide so that only one of them needs to be evaluated. We investigate the remaining
summands in the following. Since we consider inhomogeneous systems, the input-related
behavior and the initial value-related behavior of the system need to be taken into
account. Therefore, we evaluate the input-related components and the initial value-
related component separately. We de�ne the di�erent states

zp,B(t) :=

∫ t

0

FJ(t− τ)Bu(τ)dτ, zp,Z0
(t) := FJ(t)Z0ζ0, zi(t) :=

ν−1∑
k=0

FN(t)Bu(k)(t)
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4 Model order reduction for systems in non-standard form

with FJ and FN as de�ned in (2.13), and the reduced state approximations

zp,r,B(t) :=

∫ t

0

eÂ1(t−τ)B̂1u(τ)dτ, zp,r,Z0
(t) := eÂ1tẐ0,1ζ0, zi,r(t) :=

ν−1∑
k=0

−Êk
2B̂2u

(k)(t)

including the reduced matrices from (4.38) to de�ne the output components.

The proper-proper output error First, we describe the proper-proper output error
∥ypp − ypp,r∥L∞ that includes the output components

ypp,∗◦(t) := zp,∗(t)
TMzp,◦(t), ypp,r,∗◦(t) := zp,r,∗(t)

TM̂11zp,r,◦(t)

where the subscripts ∗ and ◦ are equal to 'B' and 'Z0'. We evaluate the input-related
components and the initial value-related components separately so that

∥ypp − ypp,r∥L∞ ≤ ∥ypp,BB − ypp,r,BB∥L∞

+ 2∥ypp,Z0B
− ypp,r,Z0B

∥L∞ + ∥ypp,Z0Z0
− ypp,r,Z0Z0

∥L∞ .

Since the three components are analyzed analogously, we only show the derivation of a
bound for ∥ypp,BB − ypp,r,BB∥L∞ . Afterwards, we apply the same methodology for the
remaining two components.
To analyze the error ∥ypp,BB − ypp,r,BB∥L∞ between the proper-proper output ypp,BB

and its approximation ypp,r,BB, we de�ne the mappings

hpp(t1, t2) := vec
(
BTFJ(t1)

TMFJ(t2)B
)
, ĥpp(t1, t2) := vec

(
B̂T

1 e
ÂT

1 t1M̂11e
Â1t2B̂1

)
,

(4.41)

so that the outputs can be written as

ypp,BB(t) =

∫ t

0

∫ t

0

hpp(t1, t2)
T(u(t2)⊗ u(t1))dt1dt2,

ypp,r,BB(t) =

∫ t

0

∫ t

0

ĥpp(t1, t2)
T(u(t2)⊗ u(t1))dt1dt2.

Using these representations of ypp,BB and ypp,r,BB the following lemma provides an upper
bound of the L∞-error in the proper-proper output.

Lemma 4.11:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E), the reduced

system (4.37), and the mappings hpp and ĥpp as de�ned in (4.41). Then, the following
inequality holds

∥ypp,BB − ypp,r,BB∥L∞ ≤
(∫ ∞

0

∫ ∞

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

∥u⊗ u∥L2 . ♢
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

Proof. We consider the output error at time t ≥ 0 that is∣∣ypp,BB(t)− ypp,r,BB(t)
∣∣

=

∣∣∣∣ ∫ t

0

∫ t

0

(
hpp(t− t1, t− t2)− ĥpp(t− t1, t− t2)

)T
(u(t2)⊗ u(t1))dt1dt2

∣∣∣∣.
Applying the Cauchy-Schwarz inequality multiple times yields

|ypp,BB(t)− ypp,r,BB(t)| ≤
∫ t

0

∫ t

0

∥∥∥(hpp(t− t1, t− t2)− ĥpp(t− t1, t− t2)
)T

· (u(t2)⊗ u(t1))
∥∥∥
2
dt1dt2

≤
∫ t

0

∫ t

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥
2
∥(u(t2)⊗ u(t1))∥2dt1dt2

≤
(∫ t

0

∫ t

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

·
(∫ t

0

∫ t

0

∥(u(t2)⊗ u(t1))∥22dt1dt2
) 1

2

.

Hence, we can bound the L∞-norm of the output error as

∥ypp,BB − ypp,r,BB∥L∞ ≤
(∫ ∞

0

∫ ∞

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

·
(∫ ∞

0

∫ ∞

0

∥(u(t2)⊗ u(t1))∥22dt1dt2
) 1

2

=

(∫ ∞

0

∫ ∞

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

) 1
2

∥u⊗ u∥L2 .

Note, that the factor ∥u⊗ u∥L2 is replaced by ∥u⊗ ζ0∥L2 when considering the output
∥ypp,Z0B

−ypp,r,Z0B
∥L∞ and by ∥ζ0∥22 when considering ∥ypp,Z0Z0

−ypp,r,Z0Z0
∥L∞ . Also the

mappings hpp and ĥpp need to be replaced accordingly.
Since the bound presented in Lemma 4.11 includes the expression∫ ∞

0

∫ ∞

0

∥∥∥hpp(t1, t2)− ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

=

∫ ∞

0

∫ ∞

0

∥∥hpp(t1, t2)
∥∥2
2
− 2⟨hpp(t1, t2), ĥpp(t1, t2)⟩+

∥∥∥ĥpp(t1, t2)
∥∥∥2
2
dt1dt2

the following lemma is used to determine the di�erent components of this bound using
the respective system Gramians. For that, we also de�ne the matrices

P̃p,B :=

∫ ∞

0

FJ(t)BB̂T
1 e

AT
1 tdt, P̂1,B :=

∫ ∞

0

eA1tB̂1B̂
T
1 e

AT
1 tdt. (4.42)
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4 Model order reduction for systems in non-standard form

Lemma 4.12:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E), the reduced
system (4.37), the corresponding proper controllability GramianPp,B as de�ned in (3.62),
the matrix P̃p,B, and the reduced proper controllability Gramian P̂1,B from (4.42). The
mappings hpp and ĥpp are as de�ned in (4.41). Then, the following equations are ful�lled∫ ∞

0

∫ ∞

0

∥hpp(t1, t2)∥22dt1dt2 = tr(Pp,BMPp,BM) , (4.43a)∫ ∞

0

∫ ∞

0

∥∥∥ĥpp(t1, t2)
∥∥∥2
2
dt1dt2 = tr

(
P̂1,BM̂11P̂1,BM̂11

)
, (4.43b)∫ ∞

0

∫ ∞

0

⟨hpp(t1, t2), ĥpp(t1, t2)⟩dt1dt2 = tr
(
P̃

T

p,BMP̃p,BM̂11

)
. (4.43c)

♢

Proof. We make use of the property ∥vec(Z)∥22 = ∥Z∥2F and the Kronecker product
properties to obtain∫ ∞

0

∫ ∞

0

∥hpp(t1, t2)∥22dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
BTFJ(t2)

TMFJ(t1)BBTFJ(t1)
TMFJ(t2)B

)
dt1dt2

=

∫ ∞

0

tr
(
BTFJ(t2)

TMPp,BMFJ(t2)B
)
dt2

=

∫ ∞

0

tr
(
FJ(t2)BBTFJ(t2)

TMPp,BM
)
dt2

= tr(Pp,BMPp,BM) ,

what proves the equation in (4.43a), while the one in (4.43b) is proven analogously. To
show that the equation in (4.43c) holds, we make use of the property ⟨vec(X), vec(Y)⟩ =
tr
(
XTY

)
and obtain∫ ∞

0

∫ ∞

0

⟨hpp(t1, t2), ĥpp(t1, t2)⟩dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
BTFJ(t2)

TMFJ(t1)BB̂T
1 e

ÂTt1M̂11e
Ât2B̂1

)
dt1dt2

=

∫ ∞

0

∫ ∞

0

tr
(
eÂ1t2B̂1B

TFJ(t2)
TMFJ(t1)BB̂T

1 e
ÂT

1 t1M̂11

)
dt1dt2

= tr
(
P̃

T

p,BMP̃p,BM̂11

)
.

From Lemma 4.11 and 4.12, we derive the following theorem, which provides a bound
of the L∞-error of the proper-proper output component.
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Theorem 4.13:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E), the reduced
system (4.37), the corresponding proper controllability GramianPp,B as de�ned in (3.62),
the matrix P̃p,B, and the reduced proper controllability Gramian P̂1,B from (4.42). The
error between the proper-proper output ypp,BB of the original system (3.100) and the
reduced output ypp,r,BB satis�es the following bound

∥ypp,BB − ypp,r,BB∥2L∞

≤
(
tr(Pp,BMPp,BM)− 2 tr

(
P̃

T

p,BMP̃p,BM̂11

)
+ tr

(
P̂p,BM̂11P̂p,BM̂11

))
∥u⊗ u∥2L2

. ♢

The improper-proper output error Now, we bound the improper-proper output
error ∥yip − yip,r∥L∞ that includes the output components

yip,B◦(t) := zi(t)
TMzp,◦(t), yip,r,B◦(t) := zi,r(t)

TM̂T
12zp,r,◦(t)

where the subscript ◦ is equal to 'B' and 'Z0'. We evaluate the input-related components
and the initial value-related components separately so that

∥yip − yip,r∥L∞ ≤ ∥yip,BB − yip,r,BB∥L∞ + 2∥yip,BZ0
− yip,r,BZ0

∥L∞ .

We derive an error bound for the two components following the same theory. Hence,
we only investigate the error ∥yip,BB − yip,r,BB∥L∞ , while the remaining one is computed
analogously. To bound the improper-proper output error, i.e., the error between the
improper-proper output yip,BB(t) and the reduced improper-proper output yip,r,BB(t),
we de�ne the mappings

hip(t, k) := vec
(
BTFN(k)

TMFJ(t)B
)

and ĥip(t, k) := vec
(
B̂T

2 (Ê
k
2)

TM̂T
12e

Â1tB̂1

)
.

(4.44)
Using the mappings hip and ĥip from (4.44), we rewrite the outputs as

yip,BB(t) =

∫ t

0

ν−1∑
k=0

hip(t− τ, k)T
(
u(τ)⊗ u(k)(t)

)
dτ,

yip,r,BB(t) =

∫ t

0

ν−1∑
k=0

ĥip(t− τ, k)T
(
u(τ)⊗ u(k)(t)

)
dτ.

We use this representation of the improper-proper outputs to derive the following lemma,
which provides a bound of the respective L∞-error.

155



4 Model order reduction for systems in non-standard form

Lemma 4.14:
We consider the C-stable system (3.100) with a regular matrix pencil (A,E), the reduced

system (4.37), and hip and ĥip as de�ned in (4.44). Then, the following bound holds

∥yip,BB − yip,r,BB∥L∞

≤

(∫ ∞

0

ν−1∑
k=0

∥∥∥hip(t, k)− ĥip(t, k)
∥∥∥2
2
dτ

) 1
2
(∫ ∞

0

ν−1∑
k=0

∥∥∥u(τ)⊗ u(k)(t)
∥∥∥2
2
dτ

) 1
2

. ♢

Proof. Using the mappings hip and ĥip from (4.44), we obtain

∣∣yip,BB(t)− yip,r,BB(t)
∣∣ = ∣∣∣∣ ∫ t

0

ν−1∑
k=0

(
hip(t− τ, k)− ĥip(t− τ, k)

)T (
u(τ)⊗ u(k)(t)

)
dτ

∣∣∣∣.
By applying the Cauchy-Schwarz inequality multiple times, we obtain the following
bounds∣∣yip,BB(t)−yip,r,BB(t)

∣∣
≤
∫ t

0

∣∣∣∣ ν−1∑
k=0

(
hip(t− τ, k)− ĥip(t− τ, k)

)T (
u(τ)⊗ u(k)(t)

) ∣∣∣∣dτ
≤
∫ t

0

(
ν−1∑
k=0

∥∥∥hip(t− τ, k)− ĥip(t− τ, k)
∥∥∥2
2

) 1
2
(

ν−1∑
k=0

∥∥∥u(τ)⊗ u(k)(t)
∥∥∥2
2

) 1
2

dτ

≤

(∫ t

0

ν−1∑
k=0

∥∥∥hip(t, k)− ĥip(t, k)
∥∥∥2
2
dτ

) 1
2
(∫ t

0

ν−1∑
k=0

∥∥∥u(τ)⊗ u(k)(t)
∥∥∥2
2
dτ

) 1
2

.

such that the L∞-norm of the output error is bounded by

∥yip,BB − yip,r,BB∥L∞

≤

(∫ ∞

0

ν−1∑
k=0

∥∥∥hip(t, k)− ĥip(t, k)
∥∥∥2
2
dτ

) 1
2
(∫ ∞

0

ν−1∑
k=0

∥∥∥u(τ)⊗ u(k)(t)
∥∥∥2
2
dτ

) 1
2

.

When considering the second component ∥yip,BZ0
− yip,r,BZ0

∥L∞ , we replace the output

norm by
(∑ν−1

k=0 ∥ζ0 ⊗ u(k)(t)∥22
) 1

2 and choose the respective mappings hip and ĥip ac-
cordingly.
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The output error bound from Lemma 4.14 contains the following expression

∫ ∞

0

ν−1∑
k=0

∥∥∥hip(t, k)− ĥip(t, k)
∥∥∥2
2
dt

=

∫ ∞

0

ν−1∑
k=0

∥hip(t, k)∥22 − 2⟨hip(t, k), ĥip(t, k)⟩+
∥∥∥ĥip(t, k)

∥∥∥2
2
dt.

In the following lemma, we derive formulas of the di�erent components of this expression,
which contain the Gramians of the respective systems. To do so, we de�ne the matrix
and the reduced Gramian

P̃i,B :=
ν−1∑
k=0

FN(k)BB̂T
2 (N

k)T, P̂2,B :=
ν−1∑
k=0

Êk
2B̂2B̂

T
2

(
Êk

2

)T
. (4.45)

Lemma 4.15:
We consider the C-stable system (3.100) with a regular matrix pencil (A,E), the reduced
system (4.37). Also, consider the proper and improper controllability Gramians Pp,B and
Pi,B as de�ned in (3.62) and (3.70), respectively, the matrices P̃p,B and P̃i,B, and the
reduced proper and improper controllability Gramians P̂1,B and P̂2,B as de�ned in (4.42)
and (4.45). The functionals hip and ĥip are as de�ned in (4.44). Then, the following
equations hold ∫ ∞

0

ν−1∑
k=0

∥hip(t, k)∥22dt = tr(Pi,BMPp,BM) ,

∫ ∞

0

ν−1∑
k=0

∥ĥip(t, k)∥22dt1dt2 = tr
(
P̂2,BM̂

T
12P̂1,BM̂12

)
,

∫ ∞

0

ν−1∑
k=0

⟨hip(t, k), ĥip(t, k)⟩dt = tr
(
P̃

T

i,BMP̃p,BM̂12

)
. ♢

Proof. The proof is analogous to the one from Lemma 4.12.

We use Lemma 4.14 and Lemma 4.15 to derive the following bound of the L∞ error
corresponding to the improper-proper output.

Theorem 4.16:
We consider the C-stable system (3.100) with the nilpotency index ν and a regular
matrix pencil, and the reduced system (4.37). Also, consider the proper and improper
controllability Gramians Pp,B and Pi,B as de�ned in (3.62) and (3.70), respectively, the
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matrices P̃p,B and P̃i,B, and the reduced proper and improper controllability Gramians
P̂1,B and P̂2,B as de�ned in (4.42) and (4.45). The error between the improper-proper
output yip,BB(t) of the original system (3.100) and the reduced output yip,r,BB(t) satis�es
the following bound

∥yip,BB(t)− yip,r,BB(t)∥2L∞

≤
(
tr
(
Pp,BMPi,BM

)
− 2tr

(
P̃

T

p,BMP̃i,BM̂
T
12

)
+ tr

(
P̂1,BM̂12P̂2,BM̂

T
12

))
ν∥u∥2Cν−1∥u∥2L2

for ∥u∥Cν−1 := maxk=0,...,ν−1 supt≥0 ∥u(k)(t)∥2 and output functions u ∈ Cν−1([0,∞),Rm)∪
L2([0,∞),Rm). ♢

Proof. We apply Lemma 4.14 and 4.15 to derive the �rst multiplier of the right-hand
side. Moreover, applying Kronecker product properties and Cauchy-Schwarz inequality
to the second factor from Lemma 4.14 yields

∫ t

0

ν−1∑
k=0

∥∥u(τ)⊗ u(k)(t)
∥∥2
2
dτ =

∫ t

0

ν−1∑
k=0

(u(k)(t)⊗ u(τ))T(u(τ)⊗ u(k)(t))dτ

=

∫ t

0

ν−1∑
k=0

u(k)(t)Tu(τ)u(τ)Tu(k)(t)dτ

≤
ν−1∑
k=0

∫ ∞

0

∥u(τ)∥2dτ
∥∥u(k)(t)

∥∥2
=

ν−1∑
k=0

∥u∥2L2

∥∥u(k)(t)
∥∥2 ≤ ν∥u∥2

Cν−1∥u∥2L2
,

which proves the statement.

The total output error Finally, we use the bounds for the di�erent error compo-
nents introduced in Theorem 4.13 and Theorem 4.16 to derive an expression that bounds
the total error between the output yQ and yQ,r.

Theorem 4.17:
Consider the C-stable system (3.100) with a regular matrix pencil (A,E) and the reduced

approximation (4.37). Also, consider the Gramian Pp,Wp
from (3.93), the matrix P̃p,Wp

from (4.39), and the reduced Gramian Pp,Wp,r from (4.39). Then, the L∞-error between
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the two outputs is bounded by

∥yQ − yQ,r∥2L∞

≤

(
tr
(
Pp,Wp

MPp,Wp
M
)
− 2 tr

(
P̃

T

p,Wp
MP̃p,Wp

M̂11

)
+ tr

(
P̂1,Wp

M̂11P̂1,Wp
M̂11

))
·
(
∥u∥2L2

+ ∥ζ0∥22
)2

+ 2

(
tr
(
Pp,Wp

MPi,BM
)
− 2 tr

(
P̃

T

p,Wp
MP̃i,BM̂

T
12

)
+ tr

(
P̂1,Wp

M̂12P̂2,BM̂
T
12

))
· ν∥u∥2

Cν−1

(
∥u∥2L2

+ ∥ζ0∥22
)
.

(4.46)
♢

Proof. We apply Theorem 4.13 and Theorem 4.16 to all the components of the output
to obtain

∥yQ − yQ,r∥2L∞

≤ ∥ypp,BB − ypp,r,BB∥2L∞ + 2∥ypp,Z0B
− ypp,r,Z0B

∥2L∞

+ ∥ypp,Z0Z0
− ypp,r,Z0Z0

∥2L∞ +2∥yip,BB − yip,r,BB∥2L∞ + 4∥yip,BZ0
− yip,r,BZ0

∥2L∞

≤

(
tr(Pp,BMPp,BM)−2 tr

(
P̃

T

p,BMP̃p,BM̂11

)
+tr
(
P̂1,BM̂11P̂1,BM̂11

))
∥u∥4L2

+2

(
tr(Pp,BMPp,Z0

M)−2 tr
(
P̃

T

p,BMP̃p,Z0
M̂11

)
+tr
(
P̂1,BM̂11P̂1,Z0

M̂11

))
∥ζ0∥22∥u∥2L2

+

(
tr(Pp,Z0

MPp,Z0
M)−2 tr

(
P̃

T

p,Z0
MP̃p,Z0

M̂11

)
+tr
(
P̂1,Z0

M̂11P̂1,Z0
M̂11

))
∥ζ0∥42

+2

(
tr(Pp,BMPi,BM)−2 tr

(
P̃

T

p,BMP̃i,BM̂
T
12

)
+tr
(
P̂1,BM̂12P̂2,BM̂

T
12

))
ν∥u∥2

Cν−1∥u∥2L2

+4

(
tr(PpMPiM)−2 tr

(
P̃

T

p,Z0
MP̃i,BM̂

T
12

)
+tr
(
P̂1,Z0

M̂12P̂2,BM̂
T
12

))
ν∥u∥2

Cν−1∥ζ0∥22

for Pp,B from (3.62), P̃p,B from (4.42), P̂1,B from (4.42), Pp,Z0
from (3.66), P̃p,Z0

from
(4.34), P̂1,Z0

from (4.34), Pi,B from (3.70), P̃i,B from (4.45), and P̂2,B from (4.45). Since
Pp,Wp

= Pp,B + Pp,Z0
, P̃p,Wp

= P̃p,B + P̃p,Z0
, and Pp,Wp,r = Pp,B,r + Pp,Z0,r hold, this

expression can be reduced to (4.46), which proves the statement.
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4 Model order reduction for systems in non-standard form

4.2.2 IRKA for inhomogeneous �rst-order DAE systems

In this subsection, we extend the IRKA method presented in Algorithm 5 to inhomoge-
neous DAE systems (3.54) with linear output equations. For that, we make use of the
multi-system approach introduced in Section 3.2.1.1 and the extended-input approach
from Section 3.2.1.2. We restrict this subsection to the case of linear output systems
(3.54) since there exists no IRKA approach for systems with quadratic output equations.
IRKA for homogeneous DAE systems was derived in [61]. Since the IRKA method is
not the main topic of this work, we only consider the broad idea of these approaches.

4.2.2.1 Multi-system approach for inhomogeneous �rst-order DAE systems

In this paragraph, we extend the IRKAmethod to DAE systems presented in Algorithm 5
to systems (3.54) with inhomogeneous di�erential initial conditions. For that, we use the
multi-system representation from Section 3.2.1.1 and consider the two proper subsystems
(3.58) and (3.59) individually. We apply Algorithm 5 to these subsystems and derive
two reduced surrogate models of the form (4.25) and (4.26) using the projecting bases

Vr,B =
[
VNf ,B 0

]
, Tr,B =

[
TNf ,B 0

]
, Vr,Z0

=
[
VNf ,Z0

0
]
, Tr,Z0

=
[
TNf ,Z0

0
]

with

VNf ,B =
[
(σ1,BE−A)−1PlBb1,B, . . . , (σRB,BE−A)−1PlBbRB,B

]
,

VNf ,Z0
=
[
(σ1,Z0

E−A)−1PlEZ0b1,Z0
, . . . , (σRZ0

,Z0
E−A)−1PlEZ0bRZ0

,Z0

]
,

TNf ,∗ =
[
(σ1,∗E−A)−HPT

r C
Hc1,∗, . . . , (σR,∗E−A)−HPT

r C
HcR,∗

]
for interpolation points σ1,∗, . . . , σR,∗ and tangential directions b1,∗, . . . ,bR∗,∗ and
c1,∗, . . . , cR,∗ that are chosen individually for the two subsystems represented by the
subscript ∗ that is either 'B' or 'Z0'. The reduced system (4.25) corresponding to ∗ ='B'
and the reduced system (4.26) corresponding to ∗ ='Z0' are generated as described in
(4.27).
Applying Algorithm 5 to the third subsystem (3.60) results in the basesVi,r =

[
0 V∞

]
and T i,r =

[
0 T∞

]
, where V∞, T∞ are chosen so that they span the left and right

de�ating subspaces of (A,E) corresponding to λ = ∞. Generating the reduced system
matrices according to (4.29) leads to the reduced system (4.28).

4.2.2.2 Extended-input approach for inhomogeneous �rst-order DAE systems

In this paragraph, the extended-input approach, introduced in Section 3.2.1.2, is used
to apply the IRKA method from Algorithm 5 to DAE systems with inhomogeneous
di�erential initial conditions. For that, we consider the system (3.91) instead of the
original one (3.54) as it has the same input-to-output behavior in the frequency domain
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4.2 Model order reduction for inhomogeneous �rst-order DAE systems

but also is of the system structure introduced in (2.8) so that Algorithm 5 is applicable.
Applying that method to the system (3.91) leads to the bases

Vr =
[
VNf

V∞
]
, Tr =

[
TNf

T∞
]

with

VNf
=
[
(σ1E−A)−1PlWpb1, . . . , (σRE−A)−1PlWpbR

]
,

TNf
=
[
(σ1E−A)−HPT

r C
Hc1, . . . , (σRE−A)−HPT

r C
HcR

]
for interpolation points σ1, . . . , σR and tangential directions b1, . . . ,bR and c1, . . . , cR.
Again, V∞ and T∞ are chosen so that they span the left and right de�ating subspaces of
(A,E) corresponding to λ = ∞. We multiply the system matrices of the original system
(3.54) from the left and the right by the projecting bases Vr and Tr according to (4.38)
to derive the reduced system (4.36) that approximates the input to output behavior of
the original one.

4.2.3 Numerical results

In this section, we discuss the e�ciency of the proposed methodology using several ex-
amples. For that, we focus on the BT methods for DAE systems (3.100) with quadratic
output equations as they are the main focus of this section and the most challenging
system structure considered. We apply our BT methods to systems with homogeneous
and inhomogeneous initial conditions. First, we introduce a homogeneous example of
dimension four and show that the mixed Gramians containing the proper and improper
controllability and observability space information are required to approximate the sys-
tem behavior. Afterwards, we consider an inhomogeneous example of index 2, which
takes into account the input and the initial condition space to reduce the respective
system. Finally, we consider a homogeneous example of index 3, which describes a
mechanical system with additional constraints.
We also verify our theoretical �ndings in our numerical experiments,e.g., the error

bounds. All the numerical experiments are carried out on a computer with 4 Intel Core
i5-4690 CPUs running at 3.5 GHz and equipped with 8 GB total main memory. The
experiments use Matlab R2019a and examples and methods from M-M.E.S.S.-2.1., see
[114]. All results are available at [104].

4.2.3.1 Example 1: an illustrative example

First, we introduce a small toy example with homogeneous initial conditions to highlight
that we need to consider mixed Gramians Qpi,Wp

and Qip,Wp
, as introduced in (3.109)

and (3.112) when considering systems with a quadratic output equation. For this, we
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4 Model order reduction for systems in non-standard form

consider the following system in Weierstraÿ canonical form


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0



ż1(t)
ż2(t)
ż3(t)
ż4(t)

 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



z1(t)
z2(t)
z3(t)
z4(t)

+


1
1
1
1

u(t),


z1(0)
z2(0)
z3(0)
z4(0)

 =


0
0
0
0

 ,

yQ(t) =
[
z1(t) z2(t) z3(t) z4(t)

] 
1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 2



z1(t)
z2(t)
z3(t)
z4(t)

 .

The proper state is then given by z1(t) =
[
z1(t)
z2(t)

]
and the improper one as z2(t) =

[
z3(t)
z4(t)

]
.

The corresponding system Gramians are

P1 =

[
1
2

1
2

1
2

1
2

]
, P2 =

[
2 1
1 1

]
,

Q11 =

[
1
4

0
0 0

]
, Q21 =

[
1 1

2
1
2

1
2

]
, Q12 =

[
1
2

1
2

1
2

1

]
, Q22 =

[
0 0
0 4

]

as de�ned in (3.95), (3.107), (3.110), (3.113), and (3.115). We note that the proper con-
trollability Gramian has rank one. Therefore, the minimal realization of the di�erential
part of the system is also of rank one, and so is the di�erential part of the reduced order
model for this example. The improper state is described by a rank two controllability
Gramian and a rank two observability Gramian, namely QQ,i,B = Qpi,B + Qii,B, so the
minimal realization of the improper part of the system is of rank two. However, we note
that the Gramian of improper-improper observability Gramian is of rank one. This fact
vividly shows that the mixed Gramians must be taken into account.

To investigate the quality of the reduced surrogate system, we consider the system
output obtained by applying the input function u(t) = 0.2 · e−t. The results are shown
in Figure 4.1, where the left plot shows the results of the full-order model (FOM), the
reduced-order model (ROM), and the corresponding error (Error) when the mixed Grami-
ans are applied in the reduction process. The right plot shows the same values for the
case when the mixed Gramians were not part of the reduction step, i.e., QQ,p,B := Qpp,B

and QQ,i,B := Qii,B. We observe that the mixed observability Gramians Qpi,B and Qip,B

must be considered within the reduction process.
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(a) Mixed Gramians are used.
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(b) Mixed Gramians are not used.

Figure 4.1: Example 1 - Output responses and the corresponding errors.

4.2.3.2 Example 2: an index-2 Stokes example

We consider the creeping �ow in capillaries or porous media described by the following
equations

d

dt
v(ζ, t) = µ∆v(ζ, t)−∇p(ζ, t) + f(ζ, t),

0 = div(v(ζ, t)),
(4.47)

with appropriate initial and boundary conditions. The position in the domain Ω ⊂ Rd

is described by ζ ∈ Ω, and t ≥ 0 is the time. For simplicity, we use a classical solution
concept and assume that the external force f : Ω× [0,∞) → Rd is continuous and that
the velocities v : Ω×[0,∞) → Rd and pressures p : Ω×[0,∞) → Rd satisfy the necessary
smoothness conditions. We discretize the system (4.47) by a �nite di�erence scheme as
discussed in [91, 131] and add an output equation to measure our quantity of interest.
We choose the matrix M to be 0.01 · IN , yielding the ℓ2-norm of the state vector with a
scaling factor 0.01, so that we obtain a discretized system of the form

d

dt

[
I 0
0 0

] [
z(t)
λ(t)

]
=

[
A G
GT 0

] [
z(t)
λ(t)

]
+

[
B1

B2

]
u(t),

[
z(0)
λ(0)

]
=

[
z0
0

]
,

yQ(t) =
[
z(t)T λ(t)T

]
M

[
z(t)
λ(t)

] (4.48)

with system matrices A ∈ RNv×Nv , G ∈ RNv×Np , and the initial state value z0 ∈ RNv×1.
The input matrices are given as B1 ∈ RNv×m, B2 ∈ RNp×m and the output matrix is
M ∈ RN×N with N = Nv + Np. The state consists of z(t) ∈ RNv and λ(t) ∈ RNp ,
while the input is u(t) ∈ Rm and the output is yQ(t) ∈ R. We consider the system of
dimension N = 645 = nv+np, where the dimensions of the velocity and pressure vectors
are Nv = 420 and Np = 225, respectively.
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Figure 4.2: Example 2 - Decay of proper Hankel singular values.

As shown in [131], the projection matrices from (2.10) are given as

Pl = PT
r =

[
Π −ΠAG(GTG)−1

0 0

]
where

Π = INv −G
(
GTG

)−1
GT.

The initial value is chosen to be z0 = Z0 = (Π · 1Nv×1)/∥Π · 1Nv×1∥2, where 1Nv×1 is
the vector containing one-values on every entry. That choice for the initial condition z0
leads to a purely proper initial condition, i.e., z0 = Π ·z0, while the improper component
(INv − Π) · z0 = 0 is equal to zero.
We need to determine the Gramians corresponding to the proper and improper states

of the system (4.48). For this purpose, we apply the methods described in [131, 133],
noting that the improper Gramians can be computed explicitly. In Figure 4.2, we depict
the decay of the Hankel singular values σ1, σ2, . . . corresponding to the proper Gramians
Pp,Wp

and QQ,p,Wp
as described in (3.93) and (3.111), respectively. We truncate the

proper Hankel singular values smaller than σ1 · 10−8 and truncate the improper Hankel
singular values equal to zero. The reduced-order model has the dimension R = Rv +Rp

with Rv = 18 and Rp = 2. Figure 4.3 shows the output behavior of the full-order model
(3.100) and of the reduced-order model (4.37) for an input function u(t) = sin(t)3e−t/2.
Additionally, the �gure includes the output error and the corresponding error bound.
The actual error is below the estimated error for all time, and we observe that the error
bound is rather conservative. The error is su�ciently small, and the approximation
quality of the reduced-order systems is much better than the estimated one.

4.2.3.3 Example 3: an index-3 mechanical system

Now, we investigate an index-3 system that results from mechanical systems Figure 4.4,
which is of speci�c interest in this work. It is of the form
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Figure 4.3: Example 2 - Output responses and the corresponding errors.

m1 m2 mn−1 mn

Figure 4.4: Example 3 - Sketch of a mechanical example with one row of masses con-
nected with consecutive springs and one sti� connection between the �rst
and last mass.

d

dt

Inx 0 0
0 M 0
0 0 0

x1(t)
x2(t)
λ(t)

 =

 0 Inx 0
−K −D G
GT 0 0

x1(t)
x2(t)
λ(t)

+

 0
Bx

0

u(t),

x1(0)
x2(0)
λ(0)

 =

x0

x0

0


yQ(t) =

[
x1(t)

T x2(t)
T λ(t)T

]
M

x1(t)
x2(t)
λ(t)

 ,

(4.49)

where M, D, K ∈ Rg×g, Bx ∈ Rg×m, G ∈ Rg×q, and M ∈ R(2g+q)×(2g+q). The state
is given by x1(t), x2(t) ∈ Rg, λ(t) ∈ Rq, the input by u(t) ∈ Rm and the output by
yQ(t) ∈ R. We consider the index-3 system (4.49), which arises in the modeling of
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4 Model order reduction for systems in non-standard form

constraint mechanical systems with matrices

M = diag(m1, . . . , mg),

D =


d1 + δ1 −d1
−d1 d1 + d2 + δ2 −d2

. . . . . . . . .
−dg−2 dg−2 + dg−1 + δg−1 −dg−1

−dg−1 dg−1 + δg

 ,

K =


k1 + κ1 −k1
−k1 k1 + k2 + κ2 −k2

. . . . . . . . .
−kg−2 kg−2 + kg−1 + κg−1 −kg−1

−kg−1 kg−1 + κg

 ,

G = [1, 0, . . . , 0, −1]T, Bx = [1, 0, . . . , 0]T, M = I2g+1.

The matrices are generated using the M-M.E.S.S. function msd_ind3, see [114], with
dimension g = 600. We choose

m1 = · · · = mg = 1, k1 = · · · = kg−1 = 1.5, d1 = · · · = dg−1 = 0.7,

κ1 = · · · = κg = 2, δ1 = · · · = δg = 0.9.

The projection matrices (2.10) for this example were introduced in [91]. To compute
the Gramians, we follow the same procedure, as presented in [131, 133] modi�ed to the
index-3 case. We assume zero-initial conditions.
Figure 4.5 depicts the proper Hankel singular values. We truncate those smaller than

σ1 ·10−8. Additionally, we remove the improper states corresponding to improper Hankel
singular values that are zero. The resulting reduced dimension is R = Rv + Rp with
Rv = 20 and Rp = 1. The outputs of the full-order model (3.100) and the reduced-order
model (4.37) are described in Figure 4.6 for an input function u(t) = sin(2t)2e−t/2. The
�gure also shows the error between the outputs and the error bound using (4.46). We
observe that the output error, which is smaller than 10−13 for all t ∈ [0, 10], is su�ciently
small and that the error bound is rather conservative.

4.3 Model order reduction for inhomogeneous

second-order ODE systems

In this section, we aim to reduce second-order systems of the structure presented in
(3.121) and (3.154). One possible approach is to transform these systems into systems
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Figure 4.5: Example 3 - Decay of proper Hankel singular values.

0 2.5 5 7.5 10
10−5

10−4

10−3

10−2

10−1

100

time

ou
tp
u
t

FOM
ROM

(a) Output

0 2.5 5 7.5 10
10−20

10−15

10−10

10−5

time

er
ro
r

Error
Error estimator

(b) Error

Figure 4.6: Example 3 - Output responses and the corresponding errors.
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of �rst-order structure (3.5) and (3.31), and evaluate the behavior of these representa-
tions as shown in Section 4.1. However, reducing the �rst-order systems does not main-
tain the second-order structure, so the reduced �rst-order systems might be physically
meaningless. Also, a �rst-order system is generally not transferable into a second-order
representation. On the other hand, having a reduced system of second-order structure
allows us a meaningful physical interpretation and is therefore desired as described in
[111]. Hence, we introduce BT methods for inhomogeneous second-order systems with
linear and quadratic output equations.
First, in Section 4.3.1, the BT method for second-order systems is introduced, and

afterward, in Section 4.3.2, these methods are evaluated by applying them to some
numerical examples.

4.3.1 BT for inhomogeneous second-order ODE systems

BT for second-order systems was derived in [44, 112] for systems (3.121) with linear
output equation and homogeneous initial conditions. In this subsection, we extend this
method to systems with inhomogeneous initial conditions and to systems with quadratic
output equations, i.e., we consider second-order systems (3.121) and (3.154). Therefore,
we use the di�erent system representations and the respective tailored Gramians pre-
sented in Section 3.3 to construct reduced second-order models via BT.
We �rst use the multi-system approach in Section 4.3.1.1 to derive surrogate models

corresponding to the system (3.121) with a linear output equation. As described in Sec-
tion 3.3.2.1, applying the multi-system approach for the system (3.154) with a quadratic
output equation would lead to 9 subsystems, which makes this approach numerically
prohibitive. In Section 4.3.1.2, we utilize the extended-input approach to derive reduced
surrogate systems for both systems structures (3.121) and (3.154).

4.3.1.1 Multi-system approach for inhomogeneous second-order ODE systems

To reduce the second-order system (3.121) with a linear output equation while consid-
ering the initial conditions, we utilize the superposition properties of this system. Since
the input- and initial condition-to-output behavior is represented by the subsystems
(3.124), (3.125), and (3.126) as shown in Section 3.3.1.1, we reduce these subsystems
separately.
We aim to derive the reduced surrogate system

Mr,Bẍr(t) +Dr,Bẋr(t) +Kr,Bxr(t) = Br,Bu(t), xr(0) = 0, ẋr(0) = 0,

yL,r,B(t) = C1,r,Bxr(t)ẋr(t),
(4.50)

that approximated the input-to-output behavior of the homogeneous subsystem (3.124).
The subsystem (3.125) that corresponds to the position initial condition is approximated
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by the surrogate model

Mr,X0
ẍr(t) +Dr,X0

ẋr(t) +Kr,X0
x(t) = 0, xr(0) = X0,r,X0

χ0, ẋr(0) = 0,

yL,r,X0
(t) = C1,r,X0

xr(t).
(4.51)

Finally, the subsystem (3.126) corresponding to the velocity initial condition shall be
approximated by a reduced system of the structure

Mr,V0
ẍr(t) +Dr,V0

ẋr(t) +Kr,V0
xr(t) = 0, xr(0) = 0, ẋr(0) = V0,r,V0

ν0,

yL,r,V0
(t) = C1,r,V0

x(t).
(4.52)

We aim to �nd such subsystems that approximate the output yL(t) as

yL(t) ≈ yL,r(t) = yL,r,B(t) + yL,r,X0
(t) + yL,r,V0

(t).

Therefore, we generate the respectively reduced system matrices of the three subsystems
using projecting matrices Vr,∗,Tr,∗ ∈ Rn×r∗ with r∗ ≪ n, where the subscript ∗ is equal
to 'B', 'X0', or 'V0', so that

Mr,∗ = VT
r,∗MTr,∗, Dr,∗ = VT

r,∗DTr,∗, Kr,∗ = VT
r,∗KTr,∗,

Br,B = VT
r,BB, C1,r,∗ = C1Tr,∗, X0,r = VT

r,X0
X0, V0,r,V0

= VT
r,V0

V0.

We aim to apply the BT method for homogeneous systems from Algorithm 3 to gener-
ate these projecting matrices. However, two of the three subsystems have inhomogeneous
initial conditions. On the other hand, the Gramians and system energies summarized
in Table 3.8 have the same structure as for the homogeneous subsystem (3.124). Hence,
the BT method for homogeneous second-order systems from Algorithm 3 can be ap-
plied to the subsystems (3.124), (3.125), and (3.126) using the suitable Gramians. To
do so, we consider the controllability Gramian P∗ that is equal to PB, PX0

, or PV0
,

and the observability Gramian QL depending on the considered subsystem according
to Table 3.8. As shown in (3.140), (3.141), and (3.143), the states corresponding to
the large eigenvalues of the respective controllability Gramians P∗ and the observability
Gramian QL span the most dominant controllability and observability subspaces while
those corresponding to small eigenvalues are neglectable. Hence, we balance the system
to derive P∗ = QL and truncate the least important subspaces within the BT method.
We compute the respective SVD

STMR∗ =
[
U1,∗ U2,∗

] [Σ1,∗
Σ2,∗

] [
VT

1,∗
VT

2,∗

]
for P∗ = R∗R

T
∗ and QL = SST. Then, the projecting matrices are de�ned as

Vr,∗ = SU1,∗Σ
− 1

2
1,∗ and Tr,∗ = R∗V1,∗Σ

− 1
2

1,∗ .
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Algorithm 12 BT method for the second-order ODE system (3.121) with a linear
output using the multi-system approach.

Require: The original system (3.121), the reduced dimensions r∗, where ∗ ='B', 'X0',

'V0'.

Ensure: The reduced systems (4.50), (4.51), and (4.52).
1: Compute factors of the Gramians P∗ ≈ R∗R

T
∗ and Q◦ ≈ SST with ∗ ='B', 'X0', or

'V0' according to Table 3.8.
2: Perform the SVD of STMR∗ and decompose as

STMR∗ =
[
U1,∗ U2,∗

] [Σ1,∗
Σ2,∗

] [
VT

1,∗
VT

2,∗

]
with Σ1,∗ ∈ Rr∗×r∗ .

3: Construct the projecting matrices

V∗,r = SU1,∗Σ
− 1

2
1,∗ and T∗,r = R∗V1,∗Σ

− 1
2

1,∗ .

4: Determine the reduced matrices (4.3.1.1).

Using these bases, we derive the reduced surrogate systems (4.50), (4.51), and (4.52) with
the respective reduced matrices de�ned in (4.3.1.1). The detailed reduction procedure
for each subsystem is given in Algorithm 12.
To develop an a posteriori error bound for the respective output error, we use the

output error decomposition

∥yL − yL,r∥L∞ ≤ ∥yL,B − yL,r,B∥L∞ + ∥yL,X0
− yL,r,X0

∥L∞ + ∥yL,V0
− yL,r,V0

∥L∞ (4.53)

and analyze the three error norms separately. For that, we make use of the �rst-order
matrices from (2.24) and the reduced �rst-order matrices

Er,∗ :=

[
Ir∗ 0
0 Mr,∗

]
, Ar,∗ :=

[
0 Ir∗

−Kr,∗ −Dr,∗

]
, C :=

[
C1,r,∗ 0

]
,

Br,B :=

[
0

Br,B

]
, Z0,r,X0

:=

[
X0,r,X0

0

]
, Z0,r,V0

:=

[
0

V0,r

]
,

(4.54)

with ∗ equal to 'B', 'X0', or 'V0'.
To derive a bound for the �rst error component ∥yL,B − yL,r,B∥L∞ , we de�ne the

mappings

hB(t) := CeE
−1AtE−1B and ĥB(t) := Cr,Be

E−1
r,BAr,BtE−1

r,BBr,B, (4.55)
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4.3 Model order reduction for inhomogeneous second-order ODE systems

so that we can rewrite the respective outputs as

yL,B(t) =

∫ t

0

hB(t− τ)u(τ)dτ and yL,r,B(t) =

∫ t

0

ĥB(t− τ)u(τ)dτ.

These representations of yL,B and yL,r,B are used in the following lemma to derive an
upper bound of the respective L∞-error.

Lemma 4.18:
Consider the asymptotically stable second-order system (3.124) with corresponding �rst-
order matrices as de�ned in (2.24), the reduced system (4.50) with corresponding reduced
�rst-order matrices as de�ned in (4.54), and the mappings hB, ĥB as de�ned in (4.55).
Then, the following bound holds

∥yL,B − yL,r,B∥L∞ ≤
(∫ ∞

0

∥∥∥hB(t)− ĥB(t)
∥∥∥2
F
dt

) 1
2

∥u∥L2 . ♢

Proof. We consider the 2-norm of the output error at time t ≥ 0 that is

∥∥yL,B(t)− yL,r,B(t)
∥∥
2
=

∥∥∥∥∫ t

0

(
hB(t− τ)− ĥB(t− τ)

)
u(τ)dτ

∥∥∥∥
2

.

Applying the Cauchy-Schwarz inequality multiple times yields

∥∥yL,B(t)− yL,r,B(t)
∥∥
2
≤
∫ t

0

∥∥∥(hB(t− τ)− ĥB(t− τ)
)
u(τ)

∥∥∥
2
dτ

≤
∫ t

0

∥∥∥hB(t− τ)− ĥB(t− τ)
∥∥∥
2
∥u(τ)∥2dt

≤
(∫ t

0

∥∥∥hB(t− τ)− ĥB(t− τ)
∥∥∥2
2
dτ

) 1
2
(∫ t

0

∥u(τ)∥22dτ
) 1

2

.

Hence, we can bound the L∞-norm of the output error as

∥yL,B − yL,r,B∥L∞ ≤
(∫ ∞

0

∥∥∥hB(t)− ĥB(t)
∥∥∥2
2
dt

) 1
2
(∫ ∞

0

∥u(τ)∥22dτ
) 1

2

≤
(∫ ∞

0

∥∥∥hB(t)− ĥB(t)
∥∥∥2
F
dt

) 1
2

∥u∥L2 .

The bound presented in Lemma 4.18 includes the expression∫ ∞

0

∥∥∥hB(t)− ĥB(t)
∥∥∥2
F
dt =

∫ ∞

0

∥hB(t)∥2F − 2⟨vec(hB(t)), vec(ĥB(t))⟩+
∥∥∥ĥB(t)

∥∥∥2
F
dt.
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4 Model order reduction for systems in non-standard form

The following lemma bounds the di�erent components of this bound. Therefore, we
de�ne the following reduced Gramian and the matrix

P̃B :=

∫ ∞

0

eE
−1AtE−1BBT

r,BE
−T
r,B e

AT
r,BE−T

r,Btdt,

Pr,B :=

∫ ∞

0

eE
−1
r,BAr,BtE−1

r,BBr,BB
T
r,BE

−T
r,B e

AT
r,BE−T

r,Btdt,

(4.56)

respectively.

Lemma 4.19:
Consider the asymptotically stable second-order system (3.124), the reduced system
(4.50) with matrices (4.54), the corresponding controllability Gramian PB as de�ned in
(3.129), the matrix P̃B, and the reduced controllability Gramian Pr,B from (4.56). The
mappings hB and ĥB are as de�ned in (4.55). Then, the following equations hold∫ ∞

0

∥hB(t)∥2Fdt = tr
(
CPBC

T
)
,

∫ ∞

0

∥ĥB(t)∥2Fdt = tr
(
Cr,BPr,BC

T
r,B

)
, (4.57a)∫ ∞

0

⟨vec(hB(t)), vec(ĥB(t))⟩dt = tr
(
CP̃BC

T
r,B

)
. (4.57b)

♢

Proof. We derive∫ ∞

0

∥hB(t)∥2Fdt =
∫ ∞

0

tr
(
CeE

−1AtE−1BBTE−TeA
TE−TtCT

)
dt = tr

(
CPBC

T
)
,

what proves the �rst equation in (4.57a) while the second one is proven analogously. To
show equation (4.57b), we derive∫ ∞

0

⟨vec(hB(t)), vec(ĥB(t))⟩dt =
∫ ∞

0

tr
(
CeE

−1AtE−1BBT
r,BE

−T
r,B e

AT
r,BE−T

r,BtCT
r,B

)
dt

= tr
(
CP̃BC

T
r,B

)
.

From Lemma 4.18 and Lemma 4.19, we derive the following theorem, which provides a
bound of the L∞-error ∥yL,B − yL,r,B∥L∞ .

Theorem 4.20:
Consider the asymptotically stable second-order system (3.124), the reduced system
(4.50) with matrices (4.54), the corresponding controllability Gramian PB as de�ned in
(3.129), the matrix P̃B, and the reduced controllability Gramian Pr,B from (4.56). The
L∞-error between the output yL,B and the reduced output yL,r,B satis�es the following
bound

∥yL,B − yL,r,B∥2L∞ ≤
(
tr
(
CPBC

T
)
− 2 tr

(
CP̃BC

T
r,B

)
+ tr

(
Cr,BPr,BC

T
r,B

) )
∥u∥2L2

. (4.58)
♢
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4.3 Model order reduction for inhomogeneous second-order ODE systems

To derive similar bounds for the remaining error components in (4.53), we consider
the �rst-order controllability Gramians PX0

from (3.133) and PV0
from (3.136). Also,

we de�ne the following reduced Gramians and matrices

Pr,∗ :=

∫ ∞

0

eE
−1
r,∗Ar,∗tE−1

r,∗Γr,∗Γ
T
r,∗E

−T
r,∗ e

AT
r,∗E

−T
r,∗ tdt,

P̃∗ :=

∫ ∞

0

eE
−1AtE−1Γ∗Γ

T
r,∗E

−T
r,∗ e

AT
r,∗E

−T
r,∗ tdt.

(4.59)

with ∗ equal to 'X0', or 'V0', corresponding to the remaining reduced second-order sys-
tems (4.51) and (4.52) where

ΓX0
:=

[
X0

0

]
, Γr,X0

:= Z0,r,X0
, ΓV0

:=

[
0

MV0

]
, Γr,V0

:= Er,V0
Z0,r,V0

.

Corollary 4.21:
Consider the asymptotically stable second-order system (3.121), the reduced systems
(4.50), (4.51), and (4.52) with matrices (4.54), the corresponding controllability Grami-
ans PB, PX0

, and , PV0
as de�ned in (3.129), (3.133), and (3.136), respectively, the

matrices P̃B, P̃X0
, and P̃V0

, and the reduced controllability Gramians Pr,B, Pr,X0
, and

Pr,V0
from (4.56). The L∞-error between the output yL and the reduced output yL,r

satis�es the following bound

∥yL − yL,r∥2L∞ ≤
(
tr
(
CPBC

T
)
− 2 tr

(
CP̃BC

T
r,B

)
+ tr

(
Cr,BPr,BC

T
r,B

) )
∥u∥2L2

+
(
tr
(
CPX0

CT
1

)
− 2 tr

(
CP̃X0

CT
r,X0

)
+ tr

(
Cr,X0

Pr,X0
CT

r,X0

) )
∥χ0∥22

+
(
tr
(
CPV0

CT
)
− 2 tr

(
CP̃V0

CT
r,V0

)
+ tr

(
Cr,V0

Pr,V0
CT

r,V0

) )
∥ν0∥22.
(4.60)

♢

4.3.1.2 Extended-input approach for inhomogeneous second-order ODE

systems

In this paragraph, we reduce the second-order systems (3.121) and (3.154) using the
extended-input representation described in Section 3.2.1.2 and Section 3.2.2.2. To con-
sider the initial conditions within the reduction process, we utilize the extended input
matrix Wso from (3.144).
For the system (3.121) with a linear output equation, we aim to derive a surrogate

system

Mrẍr(t) +Drẋr(t) +Krxr(t) = Bru(t), xr(0) = X0,rχ0, ẋ(0) = V0,rν0,

yL,r(t) = C1,rxr(t),
(4.61)
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4 Model order reduction for systems in non-standard form

which leads to the output approximation yL(t) ≈ yL,r(t). Analogously, for the system
(3.154) with a quadratic output equation, we aim to derive a surrogate model

Mrẋr(t) +Drẋr(t) +Krxr(t) = Bru(t), xr(0) = X0,rχ0, ẋr(0) = V0,rν0,

yr(t) = xr(t)
TM11,rxr(t),

(4.62)

with yQ(t) ≈ yQ,r(t). To derive the reduced system matrices, we determine projecting
matrices Vr,Tr ∈ Rn×r with r ≪ n. Then, the reduced matrices are

Mr = WT
r MTr, Dr = WT

r DTr, Kr = WT
r KTr, Br = WT

r B, C1,r = C1Tr,

X0,r = WT
r X0, V0,r = WT

r V0, M11,r = TT
r M11Tr.

(4.63)

For systems (3.121) with a linear output equation, Table 3.9 summarizes the system
Gramians and respective energies. From those energies, it follows that states correspond-
ing to small eigenvalues of the respective controllability and observability Gramians
PWso

and QL,Wso
from (3.148) and (3.138), respectively, are negligible, while states corre-

sponding to large eigenvalues span the most dominant controllability and observability
subspaces.
As described in Table 3.10, the controllability and observability behavior of the sys-

tem (3.154) with a quadratic output equation is encoded by the corresponding second-
order controllability and observability Gramians PWso

and QQ,Wso
de�ned in (3.148)

and (3.158), respectively. The corresponding energy norms summarized in Table 3.10
show that states corresponding to large eigenvalues of the respective Gramians encode
the dominant controllability and observability spaces, while states corresponding to the
small eigenvalues are negligible.
It follows, that for both system classes, we truncate states corresponding to small

eigenvalues of the controllability Gramian PWso
and of the observability Gramians QL,Wso

and QQ,Wso
. Since these properties are similar to those for homogeneous systems with

a linear output equation, we can apply the BT method for second-order systems as in-
troduced in Algorithm 3. Again, we �rst balance the system to derive controllability
Gramians and observability Gramians that coincide and truncate the states correspond-
ing to the smallest eigenvalues of those Gramians, which results in Algorithm 13.

Error bound for systems with a linear output equation We develop an a posteriori
error bound for the reduced systems derived by Algorithm 13. Therefore, we utilize the
reduced �rst-order matrices

Er :=

[
Ir 0
0 Mr

]
, Ar :=

[
0 Ir

−Kr −Dr

]
, Wso,r :=

[
0 X0,r 0
Br 0 MrV0,r

]
, C :=

[
C1,r 0

]
(4.64)
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Algorithm 13 BT method for the second-order ODE systems (3.121) and (3.154) with
a linear or quadratic output using the extended-input approach.

Require: The original system (3.121) or (3.154) and the order r.
Ensure: The reduced system (4.61) or (4.62).
1: Build the input matrix

Wso =

[
0 X0 0
B 0 MV0

]
.

2: Compute factors of Gramians PWso
≈ RRT from (3.148) and Q ≈ SST, where Q is

equal to QL from (3.138) or QQ,Wso from (3.158).
3: Perform the SVD of STMR, and decompose as

STMR =
[
U1 U2

] [Σ1

Σ2

] [
V1 V2

]T
,

with Σ1 ∈ Rr×r.
4: Construct the projection matrices

Wr = SU1Σ
− 1

2
1 and Tr = RV1Σ

− 1
2

1 .

5: Construct reduced matrices (4.63).

and the reduced Gramian and matrix

PWso,r :=

∫ ∞

0

eE
−1
r ArtE−1

r Wso,rW
T
so,rE

−T
r eA

T
r E

−T
r tdt,

P̃Wso
:=

∫ ∞

0

eE
−1AtE−1WsoW

T
so,rE

−T
r eA

T
r E

−T
r tdt.

(4.65)

Applying the bounds from (4.60) while using the same bases for all subsystems yields
the following theorem.

Theorem 4.22:
Consider the asymptotically stable system (3.121) and the reduced surrogate system
(4.61). Also, consider the controllability Gramian PWso

as de�ned in (3.149), the reduced
Gramian PWso,r, and the matrix P̃Wso

from (4.65). Then, the error between the two
outputs is bounded by

∥yL − yL,r∥2L∞

≤
(
tr
(
CPWso

CT
)
− 2 tr

(
CP̃Wso

CT
r

)
+ tr

(
CrPWso,rC

T
r

))
(∥u∥L2 + ∥χ0∥2 + ∥ν0∥2)2 .

(4.66)
♢
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Proof. Since PWso
= PB + PX0

+ PV0
, P̃Wso

= P̃B + P̃X0
+ P̃V0

, and PWso,r = PB,r +
PX0,r +PV0,r, the bounds from (4.60) can be bounded as stated in the theorem.

Error bound for systems with a quadratic output equation To bound the error for
systems with a quadratic output equation that results from the approximation generated
by Algorithm 13, we consider the respective �rst-order representation with matrices from
(4.64),

M :=

[
M 0
0 0

]
, and Mr :=

[
Mrr 0
0 0

]
.

We apply the error bound from (4.24), which leads to the following theorem.

Theorem 4.23:
Consider the asymptotically stable system (3.154) and the reduced surrogate system
(4.63). Also, consider the controllability Gramian PWso

as de�ned in (3.149), the reduced
Gramian PWso,r, and the matrix P̃Wso

from (4.65). Then, the error between the two
outputs is bounded by

∥yQ − yQ,r∥2L∞ ≤
(
tr(PWso

MPWso
M)− 2 tr

(
P̃

T

Wso
MP̃Wso

Mr

)
+ tr(PWso,rMrPWso,rMr)

)
(∥χ0∥2 + ∥ν0∥2 + ∥u∥L2)

2 . (4.67)
♢

Proof. Applying the error bound from (4.24) yields

∥yQ − yQ,r∥L∞ ≤
∑

∗,◦∈{'B','X0','V0'}

(
tr(P∗MP◦M)− 2 tr

(
P̃T

◦MP̃∗Mr

)
+ tr(Pr,◦MrPr,∗Mr)

)
∥u∗ ⊗ u◦∥2L2

for the controllability Gramians PB, PX0
, and , PV0

as de�ned in (3.129), (3.133), and
(3.136), respectively, the matrices P̃B, P̃X0

, and P̃V0
, and the reduced controllability

Gramians Pr,B, Pr,X0
, and Pr,V0

from (4.56). Also, the di�erent inputs are uB = u,
uX0

= χ0, and uV0
= ν0. The statement follows since PWso

= PB + PX0
+ PV0

, P̃Wso
=

P̃B + P̃X0
+ P̃V0

, and PWso,r = PB,r +PX0,r +PV0,r holds.

Remark 4.24:
Since the transfer function describing the second-order input- and initial condition-to-
output behavior is equal to

G(s) = C1Λ(s)
[
(D+ sM) I

]
Wso
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4.3 Model order reduction for inhomogeneous second-order ODE systems

the IRKA method as presented in [140] is not applicable. Also, the IRKA method from
[140] only considers systems with homogeneous initial conditions. Consequently, this
method only applies to speci�c cases of our setting. Hence, to apply the IRKA method
we refer to the �rst-order IRKA method in Section 4.1.2, which can be applied to the
system after transforming it into �rst-order form. ♢

4.3.2 Numerical results

In this section, we illustrate the BT method for second-order systems using two di�erent
examples. The �rst example is a vibrational model of a building, and the second one
is a mass-spring-damper system. Both examples are considered with a linear and with
a quadratic output equation. We will refer to the original systems (3.121) and (3.154)
as FOM, in the following, and to the reduced systems generated by standard BT that
considers homogeneous systems by ROM_HOM. The reduced system approximation that
is obtained by applying the multi-system approach from Algorithm 12 is referred to
as ROM_MULT and the reduced system that is generated by applying Algorithm 13 as
ROM_EXT.
The computations were done on a computer with 4 Intel® Core�i5-4690 CPUs running

at 3.5 GHz. The experiments use Matlab R2021a.

4.3.2.1 Example 4: Building example

We consider the building example from [7, page 17] with dimensions n = 24, m = 1.
The data are available in [98].

Example 4a: Linear output equation As output matrices, we use

C1 =
[
1 0 . . . 0

]
∈ R1×24.

For the projecting matrix Vr that results from the BT procedure for the homogeneous
second-order system (3.121), we consider the singular value decompositionUΣVT = Vr.
Assume that rank(Vr) = ℓ. The position and velocity initial condition are the (ℓ+1)-st
column of U, i.e.,

X0 = x0 = V0 = ẋ0 = U[ : , ℓ+ 1 ].

In this example, the reduced dimension is set to r = 10 within the multi-system and
the extended-input approach. Figure 4.7a shows the output behavior of the original
system and the reduced ones for an input u(t) = 0.2 · e−t. We observe that the original
output behavior, depicted in green, is well approximated by the separately reduced
subsystems (ROM_MULT), which is depicted by the blue dashed line. The reduced system
ROM_EXT using the extended-input approach (depicted by the orange-colored dashed line)
provides a proper approximation of the original output as well. Additionally, we see that
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Figure 4.7: Example 4a - Output responses and the corresponding errors.

the output of the reduced system ROM_HOM, depicted in red, fails in approximating the
original system's transient behavior.
Figure 4.7b depicts the output errors. Additionally, we evaluate the actual L2-norm

error. Therefore, we plot the integral√∫ t

0

∥yL(τ)− yL,r(τ)∥22dτ (4.68)

that converges to the L2-norm of the error. The light blue line with markers depicts the
error of the separately reduced system ROM_MULT and the dashed, brown colored line the
error of the reduced system ROM_EXT using the combined Gramian. The reduced system
ROM_HOM leads to the error depicted by the dashed, orange-colored line. We observe
that the multi-system approach and the extended input approach lead to signi�cantly
smaller errors than the error corresponding to the reduced system ROM_HOM. The dark
blue, dashed line with markers is the integral (4.68) converging to the actual L2-norm
error of the separately reduced system ROM_MULT. The error bound from (4.60) provides a
value of 1.99·10−2 (depicted by the black line). This error bound provides a proper upper
bound of the actual L2-norm error. The green line with markers provides the integral
(4.68) corresponding to the extended-input approach ROM_EXT and its error estimation
4.5·10−4 from (4.66) is depicted by the dashed, black line. The red line shows the integral
(4.68) of the reduced system ROM_HOM. It con�rms again that not considering the initial
conditions within the reduction method leads to unsatisfactory approximations for this
example.

Example 4b: Quadratic output equation Now, we consider the building example
with a quadratic output equation. For that, we choose the output matrix to be

M11 = CT
1C1, C1 =

[
1 . . . 1

]
,

178



4.3 Model order reduction for inhomogeneous second-order ODE systems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2.5

5
·10−2

time

ou
tp
u
t

FOM
ROM_EXT

(a) Output

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−8

10−6

10−4

10−2

100

time

er
ro
r

Error ROM_EXT
L2-norm ROM_EXT
Estimate ROM_EXT

(b) Error

Figure 4.8: Example 4b - Output responses and the corresponding errors.

and the position and velocity initial conditions are

X0 = V0 = en

so that x0 = ẋ0 = 0.0137 · en while ∥B∥2 = 0.0137.
We reduce the system (3.154) to obtain a surrogate system of the form (4.62) with

matrices of the reduced dimension r = 10. Figure 4.8a shows the output behavior of
the original system and the reduced ones for an input u(t) = 0.2 · e−t. We observe
that the output behavior of the original system depicted in green is well-approximated
by the reduced outputs that are derived using the extended-input approach and that is
depicted in blue (ROM_EXT).
Figure 4.8b depicts the errors and their L2-norms. The dashed, brown colored line

shows the error of the reduced system ROM_EXT using the extended-input approach.
Additionally, we evaluate the actual L2-norm error. Therefore, we plot the integral√∫ t

0

∥yQ(τ)− yQ,r(τ)∥2dτ (4.69)

that converges to the L2-norm of the error. The error bound from (4.67) provides a
value of 1.5 · 10−3 (depicted by the black line). This error bound provides a conservative
upper bound of the actual L2-norm error. The green line with markers provides the
integral (4.69) corresponding to the reduced system ROM_EXT.

4.3.2.2 Example 5: Mass-spring-damper example

We consider the mass-spring-damper model presented in [137] describing the structure
depicted in Figure 4.9. A more detailed background can be found in [78].
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m1 m2 mn−1 mn

Figure 4.9: Example 5 - Sketch of a mechanical example with one row of masses con-
nected with consecutive springs.

We choose the model of dimensions n = 2000, m = p = 1. The input is the external
forcing on the n-th mass, and the initial conditions are set to be the last and the �rst
unit vectors

X0 = x0 := en, V0 = ẋ0 := e1.

Example 5a: Linear output equation We consider an output that observes the dis-
placement of the n-th mass, i.e.,

C1 =
[
0 0 . . . 1

]
.

In this example, we truncate the systems with a tolerance of 10−4, i.e., all Hankel singular
values smaller than 10−4 ·σ1 are neglected. That way, we obtain reduced systems (4.50),
(4.51), and (4.52) of dimensions 147, 180, 98, respectively, resulting from the multi-
system method. Using the extended-input approach, we obtain a surrogate model (4.61)
of dimension 157.
Figure 4.10a shows the output behavior of the systems for the input u(t) = 0.2 · e−t.

The output behavior of the original system is depicted in green. The blue, dashed
line displays the output composed by the separately reduced systems ROM_MULT and
the orange-colored, dashed line the reduced system ROM_EXT using the extended-input
approach. The reduced output resulting from the reduced system ROM_HOM is depicted
in red. We observe that all outputs approximate the original system behavior. However,
ROM_HOM shows oscillations of slightly higher magnitude than the FOM for some timings.
The output errors and their L2-norms are illustrated in Figure 4.10b. The light blue

line with markers, the brown colored dashed line, and the orange colored dashed line show
the error of the separately reduced outputs, the output corresponding to the extended-
input approach and the output resulting from the reduced system ROM_HOM, respectively.
We observe again that the separately reduced system ROM_MULT and the reduced system
ROM_EXT using the extended-input approach leads to lower errors. Additionally, we
evaluate the actual L2-norm error and plot the integral (4.68), which converges to the
L2-norm of the error. The dark blue, dashed line with markers shows the integral
(4.68) for the separately reduced system ROM_MULT and the green one the integral for the
reduced system ROM_EXT using the combined Gramian. The error bounds from (4.60)
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Figure 4.10: Example 5a - Output responses and the corresponding errors.

and (4.66) provide L2-error estimator values of 7.5490 · 10−3 and 3.1922 · 10−2 for this
example, respectively. The error bounds are depicted by the black line and the black
dashed line in Figure 4.10b. We observe that the error bounds are rather conservative.
The integral (4.68) of the reduced system ROM_HOM is depicted in red. It converges to an
L2-error larger than the errors corresponding to the �rst two reduction methods.

Example 5b: quadratic output equation We consider the mechanical system with
a quadratic output equation where the output matrix is

M =

[
CT

1C1 0
0 0

]
, C1 =

[
1 0 . . . 0

]
.

We truncate the system with a tolerance of 10−4, i.e., all Hankel singular values smaller
than 10−4 ·σ1 are neglected. That way, we have a reduced system of dimension 213 using
the extended-input approach.
Figure 4.11a shows the output behavior of the systems for the input u(t) = 0.2 · e−t.

The output behavior of the original system is depicted in green, and the orange-colored
dashed line describes the reduced system ROM_EXT using the extended-input approach.
We observe that the output approximates the original system behavior well.
The output errors and their L2-norms are illustrated in Figure 4.10b. The brown-

colored dashed line shows the output error corresponding to the extended-input ap-
proach. We observe again that the reduced system ROM_EXT leads to small errors. Also,
we evaluate the actual L2-norm error and plot the integral (4.69) that converges to the
L2-norm of the error. The green line shows the integral for the reduced system ROM_EXT

using the combined Gramian. The error bound from (4.67) provides an L2 error estima-
tion value 1.15 · 10−3. The black dashed line depicts this bound. We observe that the
error bound is conservative.
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Figure 4.11: Example 5b - Output responses and the corresponding errors.

Summary of reduction methods

In this chapter, we have introduced the BT method and the IRKA method for di�erent
system structures. Therefore, we have used the multi-system approach following the
ideas introduced in [15] and the extended-input approach initially derived in [66] for
�rst-order ODE systems with linear output equations. Our contributions in this chapter
include the introduction of a BT method for inhomogeneous �rst-order ODE systems
with quadratic output equations and the respective error bounds in Section 4.1.1. More-
over, we have derived BT methods for inhomogeneous �rst-order DAE systems with
linear and quadratic output equations, where we again provide a tailored error bound.
We applied these methods to some numerical examples to illustrate their e�ectiveness.
Finally, in Section 4.3.1, we have derived a BT approach for inhomogeneous second-
order ODE systems with linear and quadratic output equations, including suitable error
bounds that maintain the second-order structure of the respective systems. Again, we
have applied the respective methods to some numerical examples.

Since not every approach applies to all system structures, in Table 4.1, we summarize
the methods available for the di�erent system types.
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4.3 Model order reduction for inhomogeneous second-order ODE systems

BT IRKA

First-order ODE systems Multi-system approach ✓ ✓

with linear output Extend-input approach ✓ ✓

First-order ODE systems Multi-system approach ✓ −

with quadratic output Extend-input approach ✓ −

First-order DAE systems Multi-system approach ✓ ✓

with linear output Extend-input approach ✓ ✓

First-order DAE systems Multi-system approach − −

with quadratic output Extend-input approach ✓ −

Second-order ODE systems Multi-system approach ✓ −

with linear output Extend-input approach ✓ −

Second-order ODE systems Multi-system approach − −

with quadratic output Extend-input approach ✓ −

Table 4.1: Available for reduction method for di�erent system structures.
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CHAPTER 5

REDUCED BASIS METHOD
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As described in Chapter 1, this work aims to optimize external dampers in vibrational
systems concerning the system response. However, computing the system response in-
cludes the computation of the respective system Gramians and, hence, the solution
of certain Lyapunov equations. Solving these Lyapunov equations for several external
damper con�gurations within an optimization process leads to high computational costs,
especially when the dimensions are too large. Therefore, we aim to reduce the respective
Lyapunov equations for all parameters considered within the optimization process. That
way, the Lyapunov equations are approximately solvable in a reasonable time.
To describe the system dynamics of a vibrational system, we can consider the �rst-

order parameter-dependent systems (1.5) and (1.6) with matrices as de�ned in (1.7).
Since it is often advantageous to maintain the second-order system structure to generate
physically meaningful results, we also consider the second-order parameter-dependent
systems (1.3) and (1.4).
To avoid the high computational costs during the optimization process, in this chapter,

the reduced basis method (RBM) is applied to accelerate the computation of the di�er-
ent Gramians. The RBM is a well-established method to reduce parameter-dependent
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5 Reduced basis method

partial di�erential equations, see [64, 68, 109, 150, 152]. Moreover, the RBM was applied
to Riccatti equations, see [119] and to Lyapunov equations in [126]. In [108], the authors
derive an RBM method for projected Lyapunov equations corresponding to parametric
�rst-order DAE systems. However, we do not consider this method in this work as this
would go beyond the scope of this thesis.
To accelerate the solving of the Lyapunov equations for di�erent external dampers

represented by the parameters (c, g) ∈ D, we utilize the RBM from [126] where the
parametric Lyapunov equations are solved only for a few sampling parameters. Then,
based on these solutions, a reduced subspace in which the Lyapunov equation solutions
for all (c, g) ∈ D approximately live is constructed. The latter steps form the computa-
tionally expensive o�ine phase. Using the reduced basis representation, the Lyapunov
equations for all (c, g) ∈ D can be solved much more e�ciently in the online phase.
We also utilize Krylov spaces to determine the corresponding bases, which reduce the
respective Lyapunov equations as introduced in [140] for second-order systems.
A crucial question in the o�ine phase is the choice of the sample parameters. Usu-

ally, a grid of test parameters is selected. For this grid, the error is quanti�ed using
an a posteriori error bound. Then, new samples are taken at the parameters where the
error bound gives the largest error. However, for the type of problems that are con-
sidered in this work, which are mechanical systems with small internal damping Dint,
the standard error bounds overestimate so signi�cantly that the methods are often not
converging. Hence, one of the main contributions of this chapter is to derive several er-
ror approximations that we use within the di�erent RBM applications. Also, we derive
some decoupling of parameter-independent and parameter-dependent components of the
controllability space and, hence, of the solution spaces of the Lyapunov equation.
To simplify the computations and the numerical e�ort, we describe brie�y an advan-

tageous matrix transformation. As shown in [146, 147], there exists a transformation Φ,
called modal matrix, such that

ΦTMΦ = I, ΦTKΦ = Ω2 = diag
(
ω2
1, . . . , ω

2
n

)
.

The values ω1, . . . , ωn are the eigenvalues of the undamped system and are called eigen-
frequencies. Moreover, it holds that ΦTDintΦ = 2αΩ. That means that Φ diagonalizes
the internal damping Dint. Hence, this damping is called modal damping. The trans-
formed mass matrix is the identity matrix, the transformed sti�ness and internal damp-
ing matrix are diagonal matrices, and the external damping matrix is written using the
low-rank factors F̃(c) := ΦTF(c). Hence, with x̃(t) := Φ−1x(t) and B̃ := ΦTB, the
state equation of the second-order systems (1.3) and (1.4) is equivalent to

¨̃x(t) + D̃(c, g) ˙̃x(t) +Ω2x̃(t) = B̃u(t) (5.1)

where D̃(c, g) = 2αΩ+ F̃(c)G(g)F̃(c)T. The respective output equations are given as

yL(t) = C̃1x̃(t) + C̃2
˙̃x(t)
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5.1 Reduced basis method for �rst-order systems

with C̃1 := C1Φ and C̃2 := C2Φ, or

yQ(t) =
1

2

[
x̃(t)T ˙̃x(t)T

] [M̃11 M̃12

M̃T
12 M̃22

][
x̃(t)
˙̃x(t)

]
=
[
x̃(t)T ˙̃x(t)T

]
M̃

[
x̃(t)
˙̃x(t)

]
with M̃11 := ΦTM11Φ, M̃12 := ΦTM12Φ, and M̃22 := ΦTM22Φ.
In the following, we consider �rst-order and second-order systems separately as their

controllability spaces di�er and, hence, individual investigations are performed. There-
fore, in Section 5.1, Lyapunov equations resulting from �rst-order ODE systems are
considered. Then, we study the Lyapunov equations that result from second-order ODE
systems in Section 5.2. For both sections, we follow the same procedure. First, we
repeat the RBM with an o�ine and an online phase and derive an error approximation
suitable for the structure of the considered vibrational systems. Afterwards, we derive
some decoupling of the controllability spaces into parameter-dependent and parameter-
independent components, which is used to derive some o�ine-online schemes and new
error approximations. We want to mention that this method can also be applied and
extended for the case of DAEs as presented in [108]. However, this is out of the scope of
this thesis. Note that in this chapter, we introduce several algorithms that are applied
later in Chapter 6.

5.1 Reduced basis method for �rst-order systems

This section aims to simplify the computation of the controllability Gramians

P(c, g) :=

∫ ∞

0

eE
−1A(c,g)tE−1BBTE−TeA(c,g)TE−Ttdt (5.2)

for several parameters (c, g) ∈ D by solving the Lyapunov equations

EP(c, g)A(c, g)T +AP(c, g)ET = −BBT. (5.3)

Therefore, we apply the RBM to build a basis Vr that approximately spans the solution
space of the Lyapunov equation (5.3) for all parameters (c, g) ∈ D. This basis is then
used to build the approximations of the controllability Gramians P(c, g) as

P(c, g) ≈ P̃(c, g) := VrPr(c, g)V
T
r (5.4)

for a suitable matrix Pr(c, g) ∈ RRV×RV , in the online phase.
This section is structured as follows. We �rst repeat the o�ine-online approach,

presented in [126], and introduce an error bound for this method in Section 5.1.1. In
Section 5.1.2, we derive a decoupling strategy for the controllability space. This decou-
pling is used in Section 5.1.3 to derive an accelerated o�ine-online scheme. Moreover,
we derive an error indicator independent of the parameter set D.
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5 Reduced basis method

5.1.1 O�ine-online RBM for �rst-order systems

We consider the RBM as presented in [126], which follows the paradigm of decomposing
the procedure into an o�ine and online phase. In the o�ine phase, we derive subspaces,
which approximate the solution spaces V(c, g) of the Lyapunov equations in (5.3). There-
fore, we compute a basis Vr ∈ RN×RV that spans a subspace Vr that approximates the
original solution space V(c, g), which approximately coincides with the controllability
space of the corresponding systems (1.5) and (1.6), for all parameters (c, g) ∈ D. This
phase is time-consuming but needs to be performed only once.
In the online phase, the Gramians are then approximated according to (5.4) for any

parameter (c, g) ∈ D. Due to the reduced dimension of the basis Vr obtained in the
o�ine phase, this step is fast and can be performed repeatedly for all required parame-
ters.
To describe the two phases in more detail, we need a criterion to evaluate the quality of

the reduced space Vr. Thus, we assume that we have an error approximation∆(c, g) that
provides a criterion to determine how well the solution space for a parameter (c, g) ∈ D

is approximated by the current basis Vr. The error approximations are described later
in this section. The following o�ine-online scheme was presented in [126], while the
corresponding error approximation provides a novelty in this work.

O�ine phase We aim to �nd a space Vr and the corresponding basis Vr that is built
as

Vr = orth
([
ZV(c1, g1) . . . ZV(cNℓ

, gNℓ
)
])

∈ RN×RV (5.5)

containing the matrices ZV(ck, gk) for (ck, gk) ∈ D, k = 1, . . . , Nℓ, where ZV(c, g) spans
an approximation of the solution space V(c, g) := span {P(c, g)} for the parameter
(c, g) ∈ D. We can approximate the space V(c, g) by a basis ZV(c, g) that results from
the low-rank factor ZBT(c, g) of P(c, g), i.e.,

ZV(c, g) := ZBT(c, g) with P(c, g) ≈ ZBT(c, g)ZBT(c, g)
T. (5.6)

Since the controllability space of the systems (1.5) and (1.6) are spanned by the Gramian
P(c, g), the controllability space and the solution space V(c, g) of the Lyapunov equation
in (5.3) coincide. Hence, alternatively, the space V(c, g) can be approximated by a basis
ZIRKA(c, g) that is given by

ZV(c, g) := ZIRKA(c, g) =
[
(s1E−A(c, g))−1Bb1 . . . (sNE−A(c, g))−1BbN

]
(5.7)

for well chosen interpolation points s1, . . . , sN and tangential directions b1, . . . ,bN as
described in (2.56). The RBM in [126] only considers the bases ZBT(c, g) from (5.6).
However, in this work, we use both options, ZBT(c, g) and ZIRKA(c, g), to approximate
the controllability space and denote the corresponding basis as ZV(c, g).
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5.1 Reduced basis method for �rst-order systems

Since we can not evaluate an in�nite number of parameters in D, we de�ne a test-
parameter set

DTest,c ×DTest,g = DTest ⊂ D = Dc ×Dg,

which is �nite and densely distributed in D. For this test-parameter set DTest, we
will derive a space Vr that approximates the solution space of the Lyapunov equation
(5.3). Additionally, this test-parameter set is used to evaluate the quality of the reduced
solution space Vr. Since the test-parameter set DTest is assumed to be well chosen in
D, we expect that the space Vr approximates the solution space for all parameters in
D if it does for all parameters in DTest.
We start constructing a basis Vr that spans the reduced space Vr by picking one test-

parameter (c0, g0) ∈ DTest. For this parameter (c0, g0), we compute a basis ZV(c0, g0)
as described in (5.6) or (5.7), which yields the �rst orthonormal basis

Vr := orth(ZV(c0, g0)).

Remark 5.1 describes a detailed implementation of the basis orthonormalization. After
forming our �rst basis, we evaluate the quality of the Gramian approximation for all
remaining parameters inDTest. To this aim, we compute the error approximation∆(c, g)
for all these parameters (c, g) ∈ DTest and de�ne the largest one as

∆max := ∆(c1, g1) := max
(c, g)∈DTest

∆(c, g)

where (c1, g1) is the parameter pair that leads to the largest error approximation value.
If ∆max is larger than a given tolerance tol, we know that the current basis does not
approximate the solution space well enough for at least one pair of parameters (c1, g1).
Hence, we need to enlarge the basis Vr. Therefore, we enrich the basis Vr by the
controllability space approximation ZV(c1, g1) for the parameters (c1, g1) that result
in this largest error approximation. We compute the basis ZV(c1, g1) that is equal to
ZBT(c1, g1) or ZIRKA(c1, g1) and set

Vr = orth(
[
Vr ZV(c1, g1)

]
).

We continue this procedure until the maximal error approximation ∆max is smaller than
the tolerance tol. That means that for all parameters (c, g) ∈ DTest, the solution space
is well approximated by Vr which is spanned by the basis Vr. If DTest is chosen well in
D, also, the solution space of the remaining parameters in D is approximated by Vr.

Remark 5.1:
The orthonormalization operator orth(ZV) is implemented in such a way that basis
vectors of ZV corresponding to singular values close to zero are truncated and not
included in the resulting basis. Additionally, we add a maximum for the basis dimension
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5 Reduced basis method

Nmax. To implement this, we compute a singular value decomposition ZV = UΣXT

with Σ = diag (σ1, . . . , σnZ
). We set

orth(ZV) := U[ : , 1 : q ], with tolV · σ1 > σk+1, q = min{k,Nmax},

where tolV is a given tolerance and k is the smallest index that satis�es tolV ·σ1 > σk+1.
That way, we only use the most dominant columns of ZV to form the basis. ♢

Online phase After we have computed a basisVr that spans a space Vr approximating
the solution space of the Lyapunov equation (5.3) in the o�ine phase, we derive a reduced
Lyapunov equation that is fast solvable and approximates the solution of (5.3) for all
parameters (c, g) ∈ D. To do so, we de�ne the reduced matrices as

Er := VT
r EVr, Ar(c, g) := VT

r A(c, g)Vr, Br := VT
r B. (5.8)

Then for all parameters (c, g) ∈ D we can compute an approximation of the solution
P(c, g) as described in (5.4) where Pr(c, g) is the solution of the reduced Lyapunov
equation

ErPr(c, g)Ar(c, g)
T +Ar(c, g)Pr(c, g)E

T
r = −BrB

T
r , (5.9)

which has dimension r corresponding to the number of vectors in Vr.

Error approximation For the reduced basis method presented above, error approxi-
mations are needed to evaluate the quality of the resulting basis Vr. We can estimate
di�erent quantities to obtain error approximations. One option is to evaluate the norm
of the error in the solution of the Lyapunov equation (5.3), that is ∥E(c, g)∥. The re-
spective error is de�ned as E(c, g) := P(c, g)− P̃(c, g) where the approximated solution
P̃(c, g) is as described in (5.4). There exist various upper bounds of the error norm
∥E(c, g)∥ that are based on the residual

R(c, g) := BBT +A(c, g)P̃(c, g)ET + EP̃(c, g)A(c, g)T. (5.10)

Examples are described in [63, 120, 126]. Often, these bounds are rather conservative
and might not apply to these examples. Hence, we aim to �nd another approximation
of the error norm ∥E(c, g)∥.
To do so, we consider the error equation

A(c, g)E(c, g)ET + EE(c, g)A(c, g)T = −R(c, g) (5.11)

and observe, that the error E(c, g) is the solution of this error equation for R(c, g) as
de�ned in (5.10). Hence, we can apply a second RBM to approximate the error space
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spanned by E(c, g) and to determine an error approximation Ẽ(c, g) with E(c, g) ≈
Ẽ(c, g). Therefore, we derive a basis Verr that spans an approximation of the solution
space of the error equation in (5.11). To avoid confusion, we denote the second RBM
that determines the basis for the error approximation in the following as EE-RBM.
We can write the controllability Gramian that is the solution of the Lyapunov equation

(5.3) as P(c, g) = VX(c, g)VT where V is a basis that spans the (full-order) solution
space of the Lyapunov equation (5.3) for all parameters (c, g) ∈ D. The respective error
is then given as

E(c, g) = VX(c, g)VT −VrPr(c, g)V
T
r ,

and, hence, we obtain that the error lies in the space spanned by the basis VE =
orth(

[
Vr V

]
) for all parameters. Since Vr is computed within the �rst RBM, the

remaining task is to determine the basis V. However, the basis V is not available.
Otherwise, we would have a basis that spans the solution space of the Lyapunov equation
(5.3) for all parameters without an error. Hence, we apply the second EE-RBM and
derive an approximation of VE called Verr.
Because of the structure of the basis VE, adding Vr and ZV(c

e, ge) to the basis is
equivalent to adding a factor ZE(c

e, ge) with E(ce, ge) ≈ ZE(c
e, ge)ZE(c

e, ge)T to the
basis Verr. This computation is of a more advantageous structure because of the low-
rank right-hand side BBT in (5.3) compared to R(c, g) in (5.11). Hence, in every step
of EE-RBM, we compute a basis ZV(c

e, ge) in a parameter pair (ce, ge) to enrich the
basis of the error equation (5.11) as Verr = orth(

[
Verr Vr ZV(c

e, ge)
]
) and therefore

build a basis that approximates VE.
Using the basis Verr, we determine the approximation

Ẽ(c, g) = VerrÊ(c, g)VT
err (5.12)

where Ê(c, g) solves the reduced error equation

VT
errA(c, g)VerrÊ(c, g)VT

errE
TVerr +VT

errEVerrÊ(c, g)VT
errA(c, g)TVerr

= −VT
errR(c, g)Verr. (5.13)

which results in the error approximation

∆E(c, g) := ∥Ẽ(c, g)∥F = ∥VerrÊ(c, g)VT
err∥F = ∥Ê(c, g)∥F. (5.14)

Using this procedure, we derive an error approximation Ẽ(c, g) that is fast computable
if the basis dimension of Verr is su�ciently small.
Both, RBM and EE-RBM, run in parallel. The �rst parameters (c0, g0) and (ce0, g

e
0) are

chosen arbitrarily inDTest with (c0, g0) ̸= (ce0, g
e
0). We compute the basisVr as described

above and, in addition, determine ZIRKA(c
e
0, g

e
0) or ZBT(c

e
0, g

e
0) to obtain ZV(c

e
0, g

e
0) such

that our �rst error space basis is given as

Verr = orth
([
Vr ZV(c

e
0, g

e
0)
])

= orth
([
ZV(c0, g0) ZV(c

e
0, g

e
0)
])

.
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As described above, the consecutive parameter (c1, g1) is the one that leads to the largest
error approximation ∆(c, g), and we use the corresponding controllability space basis
ZV(c1, g1) to enrich the basis Vr. The consecutive parameter (ce1, g

e
1) is chosen to be the

one that results in the largest residual of the error equation in the Frobenius norm, i.e.,
the parameters (ce1, g

e
1) that lead to the largest value ∥Re(c, g)∥F with

Re(c, g) :=

[
Re

11(c, g) Re
12(c, g)

Re
12(c, g)

T Re
22(c, g)

]
:= A(c, g)P̃(c, g)ET + EP̃(c, g)A(c, g)T

+A(c, g)Ẽ(c, g)ET + EẼ(c, g)A(c, g)T +BBT.

(5.15)

We compute ZV(c
e
1, g

e
1) equal to ZIRKA(c

e
1, g

e
1) or ZBT(c

e
1, g

e
1) and generate the next error

equation basis

Verr = orth
([
Verr Vr ZV(c

e
1, g

e
1)
])

= orth
([
Verr ZV(c1, g1) ZV(c

e
1, g

e
1)
])

.

Again, we continue this procedure until the largest error approximation is smaller than a
given tolerance tol. The �rst RBM combined with the EE-RBM results in Algorithm 14.

We observe that the �rst steps of the RBM, together with the EE-RBM, lead to rough
error approximations since the basis Verr includes only a few solutions. However, the
larger and therefore better the basis Vr is, the more detailed is Verr, and we know that
the stopping criterion ∆max > tol is meaningful.

Remark 5.2:
It turns out that adding ZV(c, 0), where 0 is the zero vector of the appropriate dimension,
to the basis Vr leads to a more robust basis. Thus, we add ZV(c, 0) corresponding to
the undamped system to our basis Vr. Since this basis is independent of the damping
values, we calculate it beforehand and do not include this calculation in our procedure.♢

Remark 5.3:
In practice, we compute Rr(c, g) more e�ciently. Therefore, we make use of the trace

formulation of the Frobenius norm and utilize the low-rank representations Ẽ(c, g) =

VerrÊ(c, g)VT
err and P̃(c, g) = VrPr(c, g)V

T
r , and the trace properties to obtain the fast
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5.1 Reduced basis method for �rst-order systems

Algorithm 14 O�ine phase of the �rst-order RBM.
Input: E ∈ RN×N , A : D → RN×N asymptotically stable, B ∈ RN×m, test-parameter
set DTest, tolerance tol.
Output: Orthonormal bases Vr, Verr.

1: Choose any (c0, g0), (ce0, g
e
0) ∈ DTest with (c0, g0) ̸= (ce0, g

e
0).

2: Determine a basis ZV(c0, g0) either as ZBT(c0, g0) from (5.6) or ZIRKA(c0, g0) from
(5.7).

3: Set M := {(c0, g0)}.
4: Set Vr := orth(ZV(c0, g0)).
5: Determine a basis ZV(c

e
0, g

e
0) either as ZBT(g

e
0, c

e
0) from (5.6) or ZIRKA(c

e
0, g

e
0) from

(5.7).
6: Set Verr := orth(

[
ZV(c0, g0) ZV(g

e
0, c

e
0)
]
).

7: Set k := 1.
8: Determine (c1, g1) := argmax(c,g)∈DTest\M∆E(c, g).
9: Set ∆max

E := ∆E(c1, g1).
10: Determine (ce1, g

e
1) := argmax(c,g)∈DTest\M∥R

e(c, g)∥F.
11: while ∆max

E > tol do
12: Determine a basis ZV(ck, gk) either as ZBT(ck, gk) from (5.6) or ZIRKA(ck, gk)

from (5.7).
13: Set M := M ∪ {(ck, gk)}.
14: Set Vr := orth(

[
Vr ZV(ck, gk)

]
).

15: Determine a basis ZV(c
e
k, g

e
k) either as ZBT(c

e
k, g

e
k) from (5.6) or ZIRKA(c

e
k, g

e
k)

from (5.7).
16: Set Verr := orth(

[
Verr ZV(ck, gk) ZV(c

e
k, g

e
k)
]
).

17: Determine (ck+1, gk+1) := argmax(c,g)∈DTest\M∆E(c, g).
18: Set ∆max

E := ∆E(ck+1, gk+1).
19: Determine (cek+1, g

e
k+1) := argmax(c,g)∈DTest\M∥R

e(c, g)∥F.
20: Set k := k + 1.
21: end while
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5 Reduced basis method

computable residual representation

∥Rr(c, g)∥2F = 2 tr
(
VT

errE
TA(c, g)VerrÊ(c, g)VT

errE
TA(c, g)VerrÊ(c, g)

)
+ 2 tr

(
VT

errA(c, g)TA(c, g)VerrÊ(c, g)VT
errE

TEVerrÊ(c, g)
)

+ 2 tr
(
VT

r E
TA(c, g)VrPr(c, g)V

T
r E

TA(c, g)VrPr(c, g)
)

+ 2 tr
(
VT

r A(c, g)TA(c, g)VrPr(c, g)V
T
r E

TEVrPr(c, g)
)

+ 4 tr
(
VT

r E
TA(c, g)VerrÊ(c, g)VT

errE
TA(c, g)VrPr(c, g)

)
+ 4 tr

(
VT

r E
TEVerrÊ(c, g)VT

errA(c, g)TA(c, g)VrPr(c, g)
)

+ 4 tr
(
BTA(c, g)VerrÊ(c, g)VT

errE
TB
)

+ 4 tr
(
BTA(c, g)VrPr(c, g)V

T
r E

TB
)

+ tr
(
BTBBTB

)
. ♢

5.1.2 Decoupling of the controllability space of �rst-order

systems

From Theorem 2.22 and Theorem 2.23 it follows that the controllability space of the
�rst-order systems (1.5) and (1.6) is spanned by

V(c, g) = span
{
(s1E−A(c, g))−1

Bb1, . . . (sME−A(c, g))−1
BbM

}
(5.16)

if the interpolation points sj and the tangential directions bj are chosen correctly (e.g.,
the poles of the system) for j = 1, . . . ,M .
We consider the �rst-order representation of the mechanical systems with matrices as

in (1.7) so that for every interpolation point sj, j = 1, . . . ,M we get

(sjE−A(c, g)) = Γ(sj) +F(c)G(g)F(c)T

with

Γ(sj) :=

[
sjI −I
K sjM+Dint

]
, F(c) :=

[
0

F(c)

]
. (5.17)

This representation is used to decouple parameter-independent from parameter-dependent
components as shown in the following lemma.
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5.1 Reduced basis method for �rst-order systems

Lemma 5.4:
Consider the controllability space V(c, g) as de�ned in (5.16) with interpolation points

s̃1, . . . , s̃M and tangential directions b̃1, . . . , b̃M that spans the controllability space of
systems (1.5) and (1.6) with matrices (1.7). Then, this space ful�lls

V(c, g) ⊆ VB ∪VF(c),

with spaces

VB := span
{
Γ(s1)

−1Bb1, . . . ,Γ(sM)−1BbM

}
, (5.18)

VF(c) := span
{
Γ(m1)

−1F(c)f1, . . . ,Γ(mM)−1F(c)fM
}

(5.19)

for interpolation points s1, . . . , sMB
, m1, . . . ,mMF

and tangential directions b1, . . . ,bMB
,

f1, . . . , fMF
that are chosen in such a way, that

VB = span
{
Γ(s)−1B| s ∈ R

}
and VF(c) = span

{
Γ(m)−1F(c)| m ∈ R

}
for Γ(s) as de�ned in (5.17). ♢

Proof. We apply the Sherman-Morrison-Woodbury formula for every entry in (5.16) to
obtain

(s̃jE−A(c, g))−1
Bb̃j =

(
Γ(sj) +F(c)G(g)F(c)T

)−1
Bb̃j

= Γ(s̃j)
−1Bb̃j

− Γ(s̃j)
−1F(c)

(
G(g)−1 +F(c)TΓ(s̃j)

−1F(c)
)−1

F(c)TΓ(s̃j)
−1Bb̃j.

Hence, the j-th subspace span
{
(s̃jE−A(c, g))−1

Bb̃j

}
of V(c, g) satis�es

span
{
(s̃jE−A(c, g))−1

Bb̃j

}
⊆ span

{
Γ(s̃j)

−1Bb̃j, Γ(s̃j)
−1F(c)f̃j(c)

}
,

where f̃j(c) :=
(
G(g)−1 +F(c)TΓ(s̃j)

−1F(c)
)−1

F(c)TΓ(s̃j)
−1Bb̃j. From that, it follows

that

V(c, g) ⊆ span
{
Γ−1(s̃1)Bb̃1, . . .Γ(s̃M)−1Bb̃M

}
∪ span

{
Γ−1(s̃1)F(c)f̃1(c), . . .Γ(s̃M)−1F(c)f̃M(c)

}
⊆ VB ∪VF(c).

Note that the interpolation points and tangential directions sk, mj, bk, and fj, where
k = 1, . . . ,MB and j = 1, . . . ,MF, are chosen such that the spaces VB and VF(c) not only
include the controllability space V(c, g) but also span the controllability spaces de�ned
by Γso(s), B, and F(c), respectively (see the upcoming systems (5.21) and (5.23)).
This ensures that VB and VB are independent of the chosen interpolation points, and
therefore, the derived space VB remains consistent for all parameters (c, g) ∈ D.
Applying Lemma 5.4 for every parameter in D yields the following theorem.
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5 Reduced basis method

Theorem 5.5:
Assume that V(c, g), de�ned in (5.16), spans the controllability space of the systems
(1.5) and (1.6) with matrices (1.7) for all parameter pairs (c, g) ∈ D. Also consider the
spaces VB and VF(c) as de�ned in (5.18) and (5.19), respectively. De�ne the space

VF := VB ∪
⋃
c∈Dc

VF(c). (5.20)

Then the controllability space V(c, g) from (5.16) satis�es that V(c, g) ⊆ VF for all
(c, g) ∈ D. ♢

This theorem is useful for our considerations as it shows that the spaceV =
⋃

(c,g)∈D V(c, g)
that we aim to approximate lies in the space VF. Hence, if we approximate VF well, also
V is approximated.
We further investigate the spaces VB and VF(c). The space VB is the controllability

space of the undamped system

Eż(t) = A(c, 0)z(t) +Bu(t), (5.21)

where A(c, 0) describes a system where the external damping viscosities g are equal
to zero and, hence, no external damping is applied. The corresponding controllability
Gramian that spans the controllability space of the undamped system is de�ned as

PB =
1

2π

∫ ∞

−∞
Γ(iω)BBTΓ(iω)Hdω (5.22)

with Γ(iω) as de�ned in (5.17). This Gramian is equal to the controllability Gramian P

from (2.5) and P(c, 0) as de�ned in (5.3) with an external damping value equal to zero.
Also, the space VF(c) spans the controllability space of the undamped system

Eż(t) = A(c, 0)z(t) +F(c)u(t), F(c) :=

[
0

F(c)

]
(5.23)

with a position-dependent input matrixF(c). The corresponding controllability Gramian
that spans the controllability space of system (5.23) is

PF(c) =
1

2π

∫ ∞

−∞
Γ(iω)F(c)F(c)TΓ(iω)Hdω. (5.24)

Hence, we can compute the two spaces by setting

VB = span {PB} , VF(c) = span {PF(c)} .

In what follows, we use this Gramian representation to derive an error indicator that
can be used within the RBM to describe the quality of the approximation of the con-
trollability space by a reduced basis Vr.
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5.1 Reduced basis method for �rst-order systems

Error indicator We derive an error indicator from the space decomposition introduced
in (5.20). For that, we consider the respective system in modal form as presented in
(5.1) that includes diagonal matrices as submatrices. We assume that we have a basis
Vr ∈ RN×2r, 2r ≪ N with VB ⊂ span {Vr}, so that the controllability Gramian PF(c)

is well approximated by a matrix P̃F(c) that lies in that space spanned by Vr, i.e, there
exist a matrix PF,r ∈ R2r×2r with

PF(c) ≈ P̃F(c) = VrPF,r(c)V
T
r . (5.25)

Then, the controllability space lies approximately in

V(c, g) ⊂ span {PB} ∪ span {PF(c)}

≈ span {PB} ∪ span
{
P̃F(c)

}
= span {PB} ∪ span

{
VrPF,r(c)V

T
r

}
= span {PB} ∪ span {Vr} = span {Vr} .

Hence, to determine the quality of the approximation of the controllability space V(c, g)
by the basisVr, an appropriate criterion is to determine how good PF(c) is approximated
by P̃F(c), where the reduced Gramian PF,r(c) solves the Lyapunov equation

Ar(c, 0)PF,r(c)E
T
r + ErPF,r(c)Ar(c, 0)

T = −Fr(c)Fr(c)
T

with Ar(c, 0), Er as in (5.8), and Fr(c) := VT
r F(c). For that, we de�ne the submatrices

PF(c) =

[
X11(c) X12(c)
X12(c)

T X22(c)

]
, P̃F(c) =

[
Y11(c) Y12(c)
Y12(c)

T Y22(c)

]
. (5.26)

Since the Gramian PF(c) satis�es the Lyapunov equation

A(c, 0)PF(c)E
T + EPF(c)A(c, 0)T +F(c)F(c)T = 0, (5.27)

the approximation P̃F(c) leads to the residual

A(c, 0)P̃F(c)E
T + EP̃F(c)A(c, 0) +F(c)F(c)T := R(c) :=

[
R11(c) R12(c)
R12(c)

T R22(c)

]
. (5.28)

Using the residual R(c), we can evaluate the trace of the error between PF(c) and
P̃F(c) as described in the following theorem, which serves as an error indicator within
the RBM.

Theorem 5.6:
Consider the �rst-order system (5.23) with matrices (1.7) corresponding to a second-
order system in modal form (5.1), the corresponding controllability Gramian PF(c) as
de�ned in (5.24), and the respective approximation P̃F(c) as de�ned in (5.25). Also

197



5 Reduced basis method

consider the matrix decompositions as described in (5.26) and the residual R(c) as
de�ned in (5.28). Then it holds

∆PF
(c) := tr

(
PF(c)− P̃F(c)

)
= tr

(
R12(c)Ω

−2
)
+

1

2α
tr
(
Ω−3R22(c)

)
+

(
1

2α
− α

)
tr
(
Ω−1R11(c)

)
+

1

4α
tr
(
Ω−1R22(c)

)
+

1

4α
tr(ΩR11(c)) .

(5.29)
♢

Proof. The Lyapunov equation in (5.27) and the respective residual equation in (5.28)
lead to the subequations

X12(c) +X12(c)
T = 0, (5.30a)

X22(c)−X11(c)Ω
2 − 2αX12(c)Ω = 0, (5.30b)

−Ω2X12(c)−X12(c)
TΩ2 − 2αΩX22(c)− 2αX22(c)Ω+ F(c)F(c)T = 0, (5.30c)

and

Y12(c) +Y12(c)
T = R11(c), (5.31a)

Y22(c)−Y11(c)Ω
2 − 2αY12(c)Ω = R12(c), (5.31b)

−Ω2Y12(c)−Y12(c)
TΩ2 − 2αΩY22(c)− 2αY22(c)Ω+ F(c)F(c)T = R22(c). (5.31c)

From (5.30a) and (5.31a), it follows that X12(c) = SX(c) and Y12(c) = SY(c) +
1
2
R11(c) where SX(c) and SY(c) are skew-symmetric matrices so that we de�ne the

skew-symmetric matrix SXY(c) := SX(c)− SY(c). Hence, it holds

X12(c)−Y12(c) = SXY(c)−
1

2
R11(c). (5.32)

We aim to compute the trace expression

tr
(
PF(c)− P̃F(c)

)
= tr(X11(c)−Y11(c)) + tr(X22(c)−Y22(c)) .

For that, we consider both trace components separately. First, we consider
tr(X11(c)−Y11(c)). Therefore, we subtract the equation in (5.31b) from the one in
(5.30b), insert (5.32), and multiply from the right by Ω−2 to obtain

(X11(c)−Y11(c)) = R12(c)Ω
−2 + (X22(c)−Y22(c))Ω

−2 − 2αSXY(c)Ω
−1 +αR11(c)Ω

−1.
(5.33)
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5.1 Reduced basis method for �rst-order systems

According to the equation in (5.33), to compute the error between X11(c) and Y11(c),
we need to describe (X22(c) −Y22(c))Ω

−2 more detailed. We subtract the equation in
(5.31c) from the one in (5.30c), insert(5.32), and multiply from the left by Ω−3 to obtain

−Ω−1SXY(c) +
1

2
Ω−1R11(c)−Ω−3SXY(c)

TΩ2 +
1

2
Ω−3R11(c)Ω

2

− 2αΩ−2(X22(c)−Y22(c))− 2αΩ−3(X22(c)−Y22(c))Ω = −Ω−3R22(c).

Applying the trace operator yields

2 tr
(
Ω−2(X22(c)−Y22(c))

)
=

1

2α

(
tr
(
Ω−1R11(c)

)
+ tr

(
Ω−3R22(c)

))
(5.34)

since tr(Ω−1(SX(c)− SY(c))) = 0 because of the skew-symmetry of SXY(c) and the
symmetry of Ω−1. Finally, we apply the trace operator to the equation in (5.33) and
insert the equation from (5.34) to obtain

tr(X11(c)−Y11(c))

= tr
(
R12(c)Ω

−2
)
+ tr

(
(X22(c)−Y22(c))Ω

−2
)
+ α tr

(
(R11(c))Ω

−1
)

= tr
(
R12(c)Ω

−2
)
+

1

2α
tr
(
Ω−3R22(c)

)
+

1

2α
tr
(
Ω−1R11(c)

)
− α tr

(
(R11(c))Ω

−1
)

= tr
(
R12(c)Ω

−2
)
+

1

2α
tr
(
Ω−3R22(c)

)
+

(
1

2α
− α

)
tr
(
Ω−1R11(c)

)
.

Now, we derive a formula for the expression tr(X22(c)−Y22(c)). Therefore, we sub-
tract the equation in (5.31c) from the one in (5.30c), insert (5.32), multiply from the
left by Ω, and apply the trace operator which yields

tr((X22(c)−Y22(c))) =
1

4α
tr
(
Ω−1R22(c)

)
+

1

4α
tr(ΩR11(c)) .

We combine the two trace components to obtain

tr
(
PF(c)− P̃F(c)

)
= tr(X11(c)−Y11(c)) + tr(X22(c)−Y22(c))

= tr
(
R12(c)Ω

−2
)
+

1

2α
tr
(
Ω−3R22(c)

)
+

(
1

2α
− α

)
tr
(
Ω−1R11(c)

)
+

1

4α
tr
(
Ω−1R22(c)

)
+

1

4α
tr(ΩR11(c)) .
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5 Reduced basis method

5.1.3 O�ine-online RBM with a decoupled controllability space

for �rst-order systems

To accelerate the RBM introduced in Algorithm 14, in this section, we combine the
o�ine-online RBM from Section 5.1.1 and the controllability space decomposition from
Section 5.1.2. We again aim to build a basisVr ∈ RN×NV that approximates the solution
space of the Lyapunov equations in (5.3) for all possible parameters (c, g) ∈ D and that
spans approximately the controllability space V of the �rst-order system (1.5) or (1.6).
Using this basis, we derive an approximation of P(c, g) as described in (5.4).
However, in contrast to the �rst approach presented in (5.5) where we added the

basis ZV(c, g) to build the basis Vr, in this subsection, we utilize the decomposition
of the controllability spaces as presented in Section 5.1.2. For that we repeat that the
controllability spaces V(c, g) satisfy

V(c, g) ⊆ VF := VB ∪
⋃
c∈Dc

VF(c)

as shown in (5.20) with VB and VF(c) as de�ned in (5.18) and(5.19).
The space VB is equal to the controllability space spanned by the Gramian PB de�ned

in (5.22). Similarly, the space VF(c) coincides with the controllability space spanned by
the Gramian PF(c) de�ned in (5.24). Again because of the low-rank structure of BBT

and F(c)F(c)T the Gramians PB and PF(c) are well-approximated by some tall and
skinny matrices ZB,BT, ZF,BT(c), so that

PB ≈ ZB,BTZ
T
B,BT and PF(c) ≈ ZF,BT(c)ZF,BT(c)

T. (5.35)

These matrices approximate the controllability spaces VB and VF(c).
We also de�ne the approximating bases

ZB,IRKA :=
[
Γ−1(s1)Bb1 . . . Γ(sNB

)−1BbNB

]
, (5.36a)

ZF,IRKA(c) :=
[
Γ−1(s1)F(c)f1 . . . Γ(sNF

)−1F(c)fNF

]
(5.36b)

generated using the IRKA method from Algorithm 4, so that VB ≈ span {ZB,IRKA} and
VF(c) ≈ span {ZF,IRKA(c)} with Γ(s) and F(c) as de�ned in (5.17).
In the following, we choose ZB to be either ZB,BT or ZB,IRKA and ZF(c) to be either

ZF,BT(c) or ZF,IRKA(c). Using these matrices, we build a basis

Vr = orth(
[
ZB ZF(c1) . . . ZF(cℓ)

]
),

which spans an approximation of the solution space V using the decomposition of VF

presented in (5.20). That way, the components in Vr are independent of the damping
gains g, and we only consider the di�erent damping positions c. Building a basis Vr

by using ZB and ZF(c), we derive a modi�ed RBM that is described in Algorithm 15.
Within this method, we make use of the error approximation ∆PF

(c) (5.29) applied to
the position test-set DTest,c ⊂ Dc.
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Algorithm 15 O�ine phase of the �rst-order RBM using a decoupled controllability
space.
Input: E ∈ RN×N , A : D → RN×N asymptotically stable, B ∈ RN×m, test-parameter
set DTest,c, tolerance tol.
Output: Orthonormal basis Vr.

1: Compute the basis ZB that is equal to ZB,BT as in (5.35) or ZB,IRKA as in (5.36a).
2: Set Vr := orth(ZB).
3: Set k := 1.
4: Determine c1 := argmaxc∈DTest,c

∆PF
(c).

5: Set M := {c1}.
6: Set ∆max

PF
:= ∆PF

(c1).
7: while ∆max

PF
> tol do

8: Compute the basis ZF(ck) that is equal to ZF,BT(ck) as in (5.35) or ZF,IRKA(ck)
as in (5.36b).

9: Set M := M ∪ {ck}.
10: Set Vr := orth([Vr, ZF(ck)]).
11: Determine ck+1 := argmaxc∈DTest,c\M∆PF

(c).
12: Set ∆max

PF
:= ∆PF

(ck+1).
13: Set k := k + 1.
14: end while

5.2 Reduced basis method for second-order systems

We aim to optimize the system response corresponding to the second-order systems (1.3)
and (1.4). The computation of both system response expressions includes the calculation
of a second-order controllability Gramian Ppos(c, g) from (2.26), which is the upper-left
block of a �rst-order Gramian

P(c, g) =

[
Ppos(c, g) P12(c, g)
P12(c, g)

T P22(c, g)

]
, (5.37)

from (5.2) as shown in Theorem 3.50. To compute a position controllability Gramian
Ppos(c, g) and the respective low-rank factor Zso(ck, gk), we have to solve a �rst-order
Lyapunov equation (5.3) with matrices as in (1.7) of dimension N = 2n. Hence, in
every step of the optimization process, we need to compute the respective Gramian by
solving a Lyapunov equation of the form (5.3) for the currently considered parameter
(c, g) ∈ D. Solving a Lyapunov equation for all parameters considered within the
optimization process leads to high computational costs or is even unfeasible. Hence, we
aim to accelerate solving the Lyapunov equations using an RBM. Therefore, we tailor
the RBM presented above for �rst-order systems to be suitable for second-order systems.
Within this RBM, we then aim to �nd a basis Vso,r ∈ Rn×r that approximates the
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5 Reduced basis method

controllability space of the second-order systems (1.3) and (1.4) for all admissible pa-
rameters (c, g) ∈ D so that there exists a reduced matrix Ppos,r(c, g) ∈ Rr×r with

Ppos(c, g) ≈ P̃pos(c, g) := Vso,rPpos,r(c, g)V
T
so,r. (5.38)

The authors in [140] derived an RBM for second-order systems where the bases are
generated using an IRKA algorithm. We repeat that method and derive a Gramian-
based RBM in this section.
This section is structured as follows. In Section 5.2.1, we derive an RBM including an

o�ine phase in which the basis Vso,r is computed and an online phase that determines
an approximation P̃pos(c, g) of the position controllability Gramian Ppos(c, g) for all
parameters of interest. Afterwards, we derive a controllability space decomposition
presented in Section 5.2.2, that is used in Section 5.2.3 to derive a numerically more
advantageous second-order RBM.

5.2.1 O�ine-online RBM for second-order systems

To simplify the computation of the position controllability Gramians Ppos(c, g) for var-
ious parameters, we derive a basis Vso,r that approximately spans the controllability
space of the second-order systems (1.3) and (1.4). This basis is constructed in the o�ine
phase. Afterwards, in the online phase, we use this basis to compute an approximation of
the position controllability Gramian as described in (5.38) for all requested parameters
(c, g) ∈ D. To describe the quality of the approximation, we assume that there exists
an error approximation ∆(c, g) that estimates the error between the Gramian Ppos(c, g)

and the respective approximation P̃pos(c, g), that is speci�ed later in this subsection.

O�ine phase To construct a basisVso,r, we concatenate the controllability space bases
Zso(c, g) for several parameters, which leads to

Vso,r = orth
( [

Zso(c1, g1) . . . Zso(cℓ, gℓ)
] )

∈ Rn×r

for (ck, gk) ∈ D, k = 1, . . . , ℓ. We add controllability space bases Zso(c, g) to the basis
Vso,r until the controllability Gramian Ppos(c, g) is well-approximated by (5.38) for all
admissible parameters (c, g) ∈ D.
To compute the controllability space bases Zso(c, g), we either use the low-rank fac-

tors of the respective Gramians or the IRKA method. Because of the structure of the
Gramian P(c, g), there exists a low-rank factors

Z(c, g) =

[
Zso,BT(c, g)
Z2(c, g)

]
, with P(c, g) ≈ Z(c, g)Z(c, g)T
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5.2 Reduced basis method for second-order systems

that result when applying one of the Lyapunov equation solvers presented in Section 2.3.
Hence, the position controllability Gramian Ppos(c, g) is approximated by

Ppos(c, g) ≈ Zso,BT(c, g)Zso,BT(c, g)
T (5.39)

so that Zso,BT(c, g) spans an approximation of the controllability space Vso(c, g). Alter-
natively, an approximation of the controllability space is spanned by a basis

Zso,IRKA(c, g)

=
[
(s21M+ s1D(c, g) +K)−1Bb1 . . . (s2nV

M+ snV
D(c, g) +K)−1BbnV

]
(5.40)

for certain interpolation points s1, . . . , snV
and tangential directions b1, . . . ,bnV

gen-
erated by the IRKA procedure from Algorithm 6. Hence, controllability space bases
Zso(c, g) is computed using Zso(c, g) = Zso,BT(c, g) or Zso(c, g) = Zso,IRKA(c, g).
Since we can not evaluate all in�nite parameters in D, as in the �rst-order case,

we de�ne a �nite and well-distributed test-parameter set DTest ⊂ D. We build the
basis Vso,r by picking an arbitrary parameter pair (c0, g0) ∈ DTest and determine the
corresponding basis Zso(c0, g0) equal to Zso,BT(c0, g0) or Zso,IRKA(c0, g0), that is used to
de�ne the �rst basis

Vso,r = orth(Zso(c0, g0)).

For that basis Vso,r, we evaluate the quality of the resulting approximations (5.38).
Therefore, we compute the error approximations for all remaining parameters in DTest

and determine the largest one as

∆max := ∆(c1, g1) := max
(c,g)∈D

∆(c, g).

If ∆max is larger than a given tolerance tol, the current basis does not approximate
the controllability space Vso(c1, g1) good enough, and, hence, the basis Vso,r needs to
be enlarged. We compute a basis Zso(c1, g1) in (c1, g1) that is either Zso,BT(c1, g1) or
Zso,IRKA(c1, g1), and enrich the basis

Vso,r = orth
([
Vso,r Zso(c1, g1)

])
.

We continue with this method until we have determined a basis Vso,r that leads to a
maximal error approximation ∆max < tol.

Online phase In the online phase, we use the basis Vso,r to compute an approximation
P̃pos(c, g) of the position controllability Gramian Ppos(c, g) for all required parameters
(c, g). For that, we de�ne the �rst-order basis

Vr =

[
Vso,r 0
0 Vso,r

]
, (5.41)
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that is used to reduce the matrices (1.7). We derive the reduced matrices (5.8), which de-
�ne the reduced Lyapunov equation (5.9). The reduced position controllability Gramian
Ppos,r(c, g) is then the upper-left block of the reduced �rst-order Gramian

Pr(c, g) =

[
Ppos,r(c, g) P12,r(c, g)
P12,r(c, g)

T P22,r(c, g)

]
. (5.42)

After solving the reduced Lyapunov equation (5.9) to determine Ppos,r(c, g), we compute
an approximation of the solution Ppos(c, g) as de�ned in (5.38).

Error approximation In the second-order RBM presented above, we require an error
approximation to evaluate the quality of the resulting approximations. We follow a
similar methodology as for the �rst-order case but modify it in such a way that only the
error in the position controllability Gramian is evaluated, i.e., we aim to approximate
the error

Eso(c, g) := Ppos(c, g)− P̃pos(c, g) = Ppos(c, g)−Vso,rPpos,r(c, g)V
T
so,r. (5.43)

The second-order error Eso(c, g) is the upper left block of the �rst-order error

E(c, g) =

[
Eso(c, g) E12(c, g)
E12(c, g)

T E22(c, g)

]
that solves the error equation (5.11) with �rst-order matrices (1.7) and with the corre-
sponding �rst-order residual (5.10), which is decomposed as

R(c, g) =

[
R11(c, g) R12(c, g)
R12(c, g)

T R22(c, g)

]
. (5.44)

We apply a second reduced basis method (EE-RBM) to generate a basis Vso,err that
approximately spans the error space, i.e., the space where the errors Eso(c, g) for all
(c, g) ∈ D live. Suppose we have a basisVso such that for each parameter pair (c, g) ∈ D

there exists a matrix Xso(c, g) with Ppos(c, g) = VsoXso(c, g)V
T
so. Then, we can write

the error in the position controllability Gramian as

Eso(c, g) = VsoXso(c, g)V
T
so −Vso,rPso,r(c, g)V

T
so,r

and therefore the error Eso(c, g) lives in the space spanned by the basis
Vso,E = orth([Vso,Vso,r]) for all parameters (c, g) ∈ D. Since Vso,r is known from
the �rst RBM, it remains to determine the basis Vso. To compute an approximation of
the space spanned by the basis Vso, we apply a second EE-RBM. In each step of the
EE-RBM, we add a basis Zso(c

e, ge) that approximately spans the controllability space
corresponding to a parameter (ce, ge), and set

Vso,err = orth
([
Vso,err Vso,r Zso(c

e, ge)
])

.
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5.2 Reduced basis method for second-order systems

To compute such a basis Zso(c
e, ge), we solve a second Lyapunov equation (5.3) to

obtain a low-rank factor Zso,BT(c
e, ge) or derive the corresponding controlability space

approximation Zso,IRKA(c
e, ge) resulting from the IRKA approach as described in (5.40).

After determining a basisVso,err, we approximate the error for a parameter pair (c, g) ∈
D as

Eso(c, g) ≈ Ẽso(c, g) = Vso,errÊso(c, g)V
T
so,err (5.45)

where Êso(c, g) is the upper-left block of the �rst-order error

Ê(c, g) =

[
Êso(c, g) Ê12(c, g)

Ê12(c, g)
T Ê22(c, g)

]
that solves the reduced error equation (5.13) for the �rst-order basis

Verr :=

[
Vso,err 0

0 Vso,err

]
.

This error approximation is fast computable if the dimension of the basis Vso,err is su�-
ciently small. After we have determined a basisVso,err, we de�ne the error approximation

∆Eso(c, g) := ∥Ẽso(c, g)∥F = ∥Vso,errÊso(c, g)V
T
so,err∥F. (5.46)

Both reduced basis methods run in parallel where the consecutive parameter corre-
sponding to the error basis Vso,err, i.e., (ce, ge) is chosen to be that one that results in
the largest residual of the error equation in the Frobenius norm, i.e.,

(c∗, g∗) := arg max
(c,g)∈D

∥Re
11(c, g)∥F

where Re
11(c, g) is as de�ned in (5.15). The two parallel second-order RBMs result in

Algorithm 16.

5.2.2 Decoupling of the controllability space of second-order

systems

The controllability space of the second-order systems (1.3) and (1.4) is spanned by

Vso(c, g) = span
{ (

(s1)
2M+ s1D(c, g) +K

)−1
Bb1,

. . . ,
(
(sM)2M+ sMD(c, g) +K

)−1
BbM

}
(5.47)

if the interpolation points s1, . . . , sM are chosen very well (e.g., the poles of the system)
for N = 2n. We decompose the kernel for j = 1, . . . ,M as

s2jM+ sjD(c, g) +K = Γso(sj) + F(c)G(g)F(c)T (5.48)
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Algorithm 16 O�ine phase of the second-order RBM.
Input: M, K ∈ Rn×n, D : D → Rn×n asymptotically stable, B ∈ Rn×m, test-parameter
set DTest, tolerance tol.
Output: Orthonormal bases Vso,r, Vso,err.

1: Choose any (c0, g0), (ge0, c
e
0) ∈ DTest with (c0, g0) ̸= (ce0, g

e
0).

2: Compute Zso(c0, g0) that is either Zso,BT(c0, g0) from (5.39) or Zso,IRKA(c0, g0) from
(5.40).

3: Set M := {(c0, g0)}.
4: Set Vso,r := orth(Zso(c0, g0)).
5: Compute Zso(c

e
0, g

e
0) that is either Zso,BT(c

e
0, g

e
0) from (5.39) or Zso,IRKA(c

e
0, g

e
0) from

(5.40).
6: Set Vso,err := orth([Zso(c0, g0), Zso(g

e
0, c

e
0)]).

7: Set k := 1.
8: Determine (c1, g1) := argmax(c,g)∈DTest\M∆so,E(c, g).
9: Set ∆max

so,E := ∆so,E(c1, g1).
10: Determine (ce1, g

e
1) := argmax(c,g)∈DTest\M∥R

e
11(c, g)∥F.

11: while ∆max
so,E > tol do

12: Compute Zso(ck, gk) that is either Zso,BT(ck, gk) from (5.39) or Zso,IRKA(ck, gk)
from (5.40).

13: Set M := M ∪ {(ck, gk)}.
14: Set Vso,r := orth([Vso,r, Zso(ck, gk)]).
15: Compute Zso(c

e
k, g

e
k) that is either Zso,BT(c

e
k, g

e
k) from (5.39) or Zso,IRKA(c

e
k, g

e
k)

from (5.40).
16: Set Vsoerr := orth([Vso,err, Zso(ck, gk), Zso(c

e
k, g

e
k)]).

17: Determine (ck+1, gk+1) := argmax(c,g)∈DTest\M∆so,E(c, g).
18: Set ∆max

so,E := ∆so,E(ck+1, gk+1).
19: Determine (cek+1, g

e
k+1) := argmax(c,g)∈DTest\M∥R

e
11(c, g)∥F.

20: Set k := k + 1.
21: end while
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with Γso(sj) := s2jM + sjDint +K where only the low-rank factors F(c)G(g)F(c)T are
parameter-dependent while Γso(sj) is independent of the parameter values. This decom-
position is used to derive parameter-independent and parameter-dependent components
of the controllability space.

Lemma 5.7:
The controllability space (5.47) with interpolation points s̃1, . . . , s̃2n and tangential di-

rections b̃1, . . . , b̃2n of the second-order systems (1.3) and (1.4) satis�es

Vso(c, g) ⊆ Vso,F := Vso,B ∪Vso,F(c), (5.49)

with

Vso,B := span
{
Γso(s1)

−1Bb1, . . .Γso(s2n)
−1Bb2n

}
,

Vso,F(c) := span
{
Γso(m1)

−1F(c)f1, . . .Γso(mM)−1F(c)fM
} (5.50)

for interpolation points s1, . . . , s2n, m1, . . . ,mM and tangential directions b1, . . . ,bM ,
f1, . . . , fM that are chosen in such a way, that

Vso,B = {Γso(s)
−1B| s ∈ R} and Vso,F(c) = {Γso(m)−1F(c)| m ∈ R}.

for Γso(sj) := s2jM+ sjDint +K. ♢

Proof. For every entry
(
s̃2jM+ s̃jD(c, g) +K

)−1
Bb̃j, j = 1, . . . ,M we can apply the

Sherman-Morrison-Woodbury formula to obtain(
s̃2jM+ s̃jD(c, g) +K

)−1
Bb̃j =

(
Γso(s̃j) + F(c)G(g)F(c)T

)−1
Bb̃1

= Γso(s̃j)
−1Bb̃j − Γso(s̃j)

−1F(c)
(
G−1 + F(c)TΓso(s̃j)

−1F(c)
)−1

FTΓso(s̃j)
−1Bb̃j.

(5.51)

Hence, the j-th entry of Vso(c, g) satis�es(
s̃2jM+ s̃jD(c, g) +K

)−1
Bb̃j ∈ span

{
Γso(s̃j)

−1B, Γso(s̃j)
−1F(c)

}
.

From that, it follows that

Vso(c, g) ⊆ span
{
Γ−1

so (s1)Bb1, . . .Γso(sM)−1BbM

}
∪ span

{
Γ−1

so (m1)F(c)f1, . . .Γso(mM)−1F(c)fM
}

= Vso,B ∪Vso,F(c).

The following theorem is a direct result of Lemma.
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Theorem 5.8:
Consider the second-order systems (1.3) and (1.4), and the space Vso,F as de�ned in
(5.49). Then the controllability space Vso(c, g) from (5.47) ful�lls

Vso(c, g) ⊆ Vso,F

for all parameters (c, g) ∈ D. ♢

Note, that the space Vso,B is the controllability space of the externally undamped system

Mẍ(t) +Dintẋ(t) +Kx(t) = Bu(t). (5.52)

The corresponding controllability Gramian, that is calledPso,B, can be well-approximated
by a low-rank factor Zso,B,BT, so that

Pso,B(c, g) ≈ Zso,B,BTZ
T
so,B,BT. (5.53)

The space Vso,F(c) is the controllability space of the undamped system

Mẍ(t) +Dintẋ(t) +Kx(t) = F(c)u(t) (5.54)

with a position-dependent input matrix F(c). The corresponding controllability Gramian
is called Pso,F(c) with the low-rank factor Zso,F,BT, so that

Pso,F(c) ≈ Zso,F,BT(c)Zso,F,BT(c)
T. (5.55)

The controllability spaces Vso(0) and Vso(c) can also be approximated using the IRKA
method, which yields

Zso,B,IRKA :=
[
Γ−1

so (s1)Bb1 . . . Γso(sℓB)
−1BbℓB

]
, (5.56a)

Zso,F,IRKA(c) :=
[
Γ−1

so (m1)F(c)f1 . . . Γso(mℓB)
−1F(c)fℓF

]
(5.56b)

for interpolation points s1, . . . , sℓB , m1, . . . ,mℓF and tangential directions b1, . . . ,bℓB ,
f1, . . . , fℓF as described in (2.63).
Hence, the controllability space Vso,F is approximately spanned by

Vso,F ≈ span {Zso,B,BT}
⋃
c∈D

span {Zso,F,BT(c)} and

Vso,F ≈ span {Zso,B,IRKA}
⋃
c∈D

span {Zso,F,IRKA(c)} .
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Error indicator We aim to derive an error indicator that results from the space de-
composition in (5.49). We assume that we have a basis Vso,r ∈ Rn×r, r ≪ n, with
Vso,B ⊂ span {Vso,r}, so that the controllability Gramian Pso,F(c) is well-approximated
by a matrix P̃so,F(c) that lies in that space spanned by Vso,r, i.e,

Pso,F(c) ≈ P̃so,F(c) = Vso,rPso,F,r(c)V
T
so,r.

Then, the controllability space lies approximately in

Vso(c, g) ⊂ span {Pso,B} ∪ span {Pso,F(c)}

≈ span {Pso,B} ∪ span
{
P̃so,F(c)

}
= span {Pso,B} ∪ span

{
Vso,rPso,F,r(c)V

T
so,r

}
= span {Pso,B} ∪ span {Vso,r} = span {Vso,r} .

Hence, to determine the quality of the approximation of the controllability space Vso(c, g)
by the basis Vso,r, an appropriate criterion is to determine how good Pso,F(c) is approx-
imated by P̃so,F(c) = Vso,rPso,F,r(c)V

T
so,r.

We consider the system in modal form, i.e., in the transformed representation from
(5.1). We consider the corresponding �rst-order Gramians (5.26) with Pso,F(c) := X11(c)

and P̃so,F(c) = Y11(c). Since we are only interested in the error Pso,F(c) − P̃so,F(c) =
X11 −Y11, we modify the error expression from (5.29), which yields the following theo-
rem.

Theorem 5.9:
Consider the second-order system (5.54) corresponding to the modal form introduced in
(5.1) and the corresponding second-order controllability Gramian Pso,F(c) from (5.55).
Also consider the respective �rst-order matrices (5.26) and the residual decomposition
as de�ned in (5.28). Then, it holds

∆PF
(c) := tr

(
Pso,F(c)− P̃so,F(c)

)
= tr

(
R12(c)Ω

−2
)
+

1

2α
tr
(
Ω−3R22(c)

)
+

(
1

2α
− α

)
tr
(
Ω−1R11(c)

)
.

(5.57)
♢

Proof. The statement follows from (5.33) and, hence, a byproduct of the proof of The-
orem 5.6.

5.2.3 O�ine-online RBM with a decoupled controllability space

for second-order systems

In this subsection, we combine the RBM for second-order systems presented in Sec-
tion 5.2.1 and the controllability space decomposition from Section 5.2.2. We aim to

209



5 Reduced basis method

build a basis Vso,r that spans an approximation of the controllability space Vso(c, g)
for all admissible parameters (c, g) ∈ D but also aim to exploit the structure of the
corresponding second-order system described in (5.48). Hence, we again decompose our
method into an o�ine and an online phase. The online phase is similar to the one in
Section 5.2.1, so we only describe the o�ine phase in this section.
We initialize the basis Vso,r by setting

Vso,r = orth(Zso,B),

where Zso,B is equal to Zso,B,BT or Zso,B,IRKA as de�ned in (5.53) and (5.56a), respectively.
The �rst basis Vso,r approximates the controllability space of the undamped system
realized by the system in (5.52). Using this basis, we evaluate the error approximations
for all sample parameters in DTest to determine the largest one

∆max
PF

:= ∆PF
(c1) := max

c∈DTest,c

∆PF
(c),

where DTest,c ⊂ Dc is the subset of DTest that contains the position parameters c. If
∆max

PF
is larger than a given tolerance, the basis Vso,r does not approximate the con-

trollability space in c1 su�ciently good, and the basis Vso,r needs to be enriched. For
that, we determine the basis Zso,F(c1) that approximates the controllability space of the
system (5.54) with c = c1. The basis Zso,F(c1) is either equal to Zso,F,BT(c1) from (5.55)
if we use the low-rank factor of the respective controllability Gramians or Zso,F,IRKA(c1)
as de�ned in (5.56a) if we use the IRKA method to derive such a basis. Then, we enrich
the basis by setting

Vso,r = orth
([
Vso,r Zso,F(c1)

])
.

As before, we continue with this process until the maximal error approximation ∆max
PF

is
smaller than a certain tolerance, and therefore, the controllability space for all parame-
ters in DTest is approximated su�ciently good by the basis Vso,r. This method results
in Algorithm 17.
The algorithms presented in this chapter are applied to damping optimization prob-

lems in the next chapter, where we illustrate their e�ciency using various numerical
examples.
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Algorithm 17 O�ine phase of the second-order RBM using a decoupled controllability
space.
Input: M, K ∈ Rn×n, D : D → Rn×n asymptotically stable, B ∈ Rn×m, test-parameter
set DTest,c, tolerance tol.
Output: Orthonormal basis Vso,r.

1: Compute the basis Zso,B that is equal to Zso,B,BT as in (5.53) or Zso,B,IRKA as in
(5.56a).

2: Set Vso,r := orth(Zso,B).
3: Set k := 1.
4: Determine c1 := argmaxc∈DTest,c

∆PF
(c).

5: Set M := {c1}.
6: Set ∆max

PF
:= ∆PF

(c1).
7: while ∆max

PF
> tol do

8: Compute the basis Zso,F(ck) that is equal to Zso,F,BT(ck) as in (5.55) or
Zso,F,IRKA(ck) as in (5.56b).

9: Set M := M ∪ {ck}.
10: Set Vso,r := orth([Vso,r, Zso,F(ck)]).
11: Determine ck+1 := argmaxc∈DTest,c\M∆PF

(c).
12: Set ∆max

PF
:= ∆PF

(ck+1).
13: Set k := k + 1.
14: end while
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In this section, we consider the problem of semiactive damping, in which external
dampers are added to a vibrational system to minimize the e�ect of an external force
on the system. In more detail, that means that we consider a system of the form (1.3)
or (1.4) with a parameter-dependent damping matrix D(c, g) as described in (1.1) that
consists of a parameter-independent internal damping Dint and an external damping
Dext(c, g) = F(c)G(g)F(c)T for (c, g) ∈ D. The goal is to optimize damper viscosities
g and damper positions c to minimize the e�ect of external disturbances on the system
and the corresponding output. Various criteria quantify the stability of systems and the
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response to external disturbances, which are selected according to the application. In
this work, the average energy amplitude is used, which is equal to the system responses

JL(c, g) := ∥GL(· ; c, g)∥2H2
=

1

2π

∫ ∞

−∞
tr
(
GL(iω; c, g)

HGL(iω; c, g)
)
dω,

JQ(c, g) := ∥GQ(·, · ; c, g)∥2H2

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
tr
(
GQ(iω1, iω2; c, g)

HGQ(iω1, iω2; c, g)
)
dω1dω2

in the linear and quadratic output case, respectively. The transfer functions GL(s; c, g)
and GQ(s1, s2; c, g) are as de�ned in (2.4) and (3.33) as GQ,BB, respectively, and describe
the input-to-output behavior in the frequency domain. This optimization criterion was
also used in [25, 140] for systems with linear output equations. We choose this particular
criterion since we aim to minimize the maximal de�ections, or more speci�cally, the
maximal time response magnitude maxt≥0 ∥y(t)∥∞, and hence, we consider the L∞-norm
of the output that satis�es the bound

∥y∥L∞ ≤ ∥G(·; c, g)∥H2∥u∥L2 .

To simplify the computation of the system response JL(c, g) or JQ(c, g), we transform
the second-order system (1.3) or (1.4) into a �rst-order system (1.5) or (1.6) with corre-
sponding matrices de�ned in (1.7). As described in [159], the H2-norm of the transfer
function GL(s; c, g) in the linear output case can be computed as

JL(c, g) =
1

2π

∫ ∞

−∞
tr
(
C(iωE−A(c, g))−1BBH(iωE−A(c, g))−HCT

)
dω (6.1)

= tr
(
CP(c, g)CT

)
. (6.2)

For the quadratic transfer function GQ(s1, s2; c, g) the system response is equal to

JQ(c, g) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
tr
(
BH(iω1E−A(c, g))−HM(iω2E−A(c, g))−1B

·BH(iω2E−A(c, g))−HM(iω1E−A(c, g))−1B
)
dω1dω2

=
1

2π

∫ ∞

−∞
tr
(
BH(iω1E−A(c, g))−HMP(c, g)M(iω1E−A(c, g))−1B

)
dω1

=
1

2π

∫ ∞

−∞
tr
(
MP(c, g)M(iω1E−A(c, g))−1BBH(iω1E−A(c, g))−H

)
dω1

=tr(MP(c, g)MP(c, g)) . (6.3)

Both system response expressions include the computation of the parameter-dependent
controllability Gramian P(c, g) de�ned in (5.2). Hence, within an optimization process,

214



6.1 Damping optimization in the �rst-order representation

we have to solve multiple Lyapunov equations (5.3) in parameters (c, g) ∈ D to compute
P(c, g). These computations lead to high computational costs if the respective matrices
are of large dimensions.
Hence, we utilize the RBM in the following to approximate the controllability Gramian

P̃(c, g) ≈ P(c, g), as described in (5.4). This approximation is used to approximate the
system responses as

JL,r(c, g) := tr
(
CP̃(c, g)CT

)
, JQ,r(c, g) := tr

(
MP̃(c, g)MP̃(c, g)

)
.

If the system response values are well-approximated by JL,r(c, g) and JQ,r(c, g), we can
optimize these reduced system response expressions instead of the original ones to ac-
celerate the optimization process.
Optimization and the respective methods are not the primary focus of this thesis.

To optimize the system responses and their approximations presented in the follow-
ing sections, we utilize the Nelder-Mead method, a multi-dimensional simplex method.
Therefore, we use the fminsearch function in MATLAB, that is, whenever we write
that we �nd an optimizer or minimizer, we mean that we apply fminsearch to the func-
tion to be minimized. However, analyzing or improving the optimization method itself
is beyond the scope of this thesis. Our focus is on accelerating various computational
steps and reducing the dimensions of the respective matrices to accelerate the overall
optimization process. In particular, the computation of the systems responses JL(c, g)
and JQ(c, g) includes the computation of the controllability Gramian P(c, g) for several
parameters within the optimization. Consequently, a Lyapunov equation needs to be
solved for every parameter evaluated within the optimization procedure.
The main task in this section is to accelerate the optimization process by approximat-

ing the Gramian P(c, g) for all required parameters (c, g). Since both system response
expressions, JL(c, g) and JQ(c, g), depend on the Gramians P(c, g), the derived methods
coincide for both expressions.
In the following, we distinguish between systems in �rst-order representation, consid-

ered in Section 6.1 and those in second-order representation, analyzed in Section 6.2.

6.1 Damping optimization in the �rst-order

representation

In this section, we apply the RBM to accelerate the computation of the controllability
Gramian P(c, g) and hence of the system responses JL(c, g) and JQ(c, g) for all param-
eters (c, g) required during an optimization process. For that, �rst in Section 6.1.1, we
apply the o�ine-online RBM introduced in Section 5.1. Afterwards, in Section 6.1.2, we
derive an adaptive scheme that approximates the system responses but does not require
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a given parameter domain. Also, this approach is combined with the decomposition
presented in Section 5.1.2.

6.1.1 Damping optimization using an o�ine-online RBM for

�rst-order systems

The Gramian P(c, g) that is used to compute the system responses solves the Lyapunov
equation (5.3) and hence the RBM from Section 5.1 can be used to approximate the
controllability Gramian P(c, g) and the system response expressions JL(c, g) and JQ(c, g)
from (6.1) and (6.3), respectively. For that, we apply Algorithm 14 to generate a basis
Vr ∈ RN×RV that spans a space that approximates the controllability space V of the
systems (1.3) and (1.4), or Algorithm 15 to generate an approximation of the space VF

from (5.20).
Within the optimization process, for every requested parameter pair (c, g), we use

this basis Vr, to de�ne the reduced Lyapunov equation from (5.9) with matrices from
(5.8). Solving this reduced Lyapunov equation yields the reduced Gramian Pr(c, g)

with P(c, g) ≈ P̃(c, g) = VrPr(c, g)V
T
r . The reduced Gramian Pr(c, g) is then used to

determine the reduced system responses

JL,r(c, g) := tr
(
CVrPr(c, g)V

T
r C

T
)
,

JQ,r(c, g) := tr
(
VT

r MVrPr(c, g)V
T
r MVrPr(c, g)

) (6.4)

for the linear and quadratic output case, respectively, that approximate the system
response values from (6.1) and (6.3). We make use of the trace properties and reorder
the matrices so that we can precompute Cr := CVr and Mr := VT

r MVr ∈ RNV×NV and
only matrices of dimension NV need to be multiplied in the online phase.

Error approximation To describe the quality of the system response approximation
from (6.4) by a basis Vr, we can either use the error approximation ∆E from (5.14) to
approximate the error in the controllability Gramian, or the error indicator ∆PF

from
(5.29) that indicates the quality of the controllability space approximation.
Also, we can tailor the error approximation from (5.14) to evaluate the error in the

system response values. For systems (1.5) with a linear output equation, this error is
equal to

EJL(c, g) := JL(c, g)− JL,r(c, g) = tr
(
CP(c, g)CT

)
− tr

(
CP̃(c, g)CT

)
= tr

(
CE(c, g)CT

)
for the error E(c, g) := P(c, g) − P̃(c, g). For systems (1.6) with a quadratic output
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6.1 Damping optimization in the �rst-order representation

equation, the error in the system response is

EJQ(c, g) := JQ(c, g)− JQ,r(c, g)

= tr(MP(c, g)MP(c, g))− tr
(
MP̃(c, g)MP̃(c, g)

)
= tr

(
M
(
P(c, g)− P̃(c, g)

)
M
(
P(c, g) + P̃(c, g)

))
= tr

(
M
(
P(c, g)− P̃(c, g)

)
M
(
P(c, g)− P̃(c, g) + 2P̃(c, g)

))
= tr

(
ME(c, g)M

(
E(c, g) + 2P̃(c, g)

))
,

where we only need the Gramian approximation P̃(c, g) and the error E(c, g), but not
the actual Gramian P(c, g).
We notice that both error expressions, EJL(c, g) and EJQ(c, g), include the error

E(c, g). Hence, we aim to �nd an approximation Ẽ(c, g) ≈ E(c, g) to determine the
approximations of the system response errors

EJL(c, g) ≈ ẼJL(c, g) := tr
(
CẼ(c, g)CT

)
,

EJQ(c, g) ≈ ẼJQ(c, g) := tr
(
MẼ(c, g)M

(
Ẽ(c, g) + 2P̃(c, g)

))
.

To do so, we follow the same procedure as described in Section 5.1 and make use of
the fact that the error E(c, g) solves the error equation given in (5.11). Hence, we apply
a second EE-RBM to the error equation (5.11) to determine a basis Verr that spans an
approximation of the solution space of the error equation in (5.11). The basis Verr is
then used to derive the approximation Ẽ(c, g) = VerrÊ(c, g)VT

err where Ê(c, g) solves
the reduced error equation (5.13). Using Ẽ(c, g), we derive the error approximations

∆JL(c, g) :=
∣∣∣ tr(CẼL(c, g)C

T
) ∣∣∣,

∆JQ(c, g) :=
∣∣∣ tr(MẼ(c, g)M

(
Ẽ(c, g) + 2P̃(c, g)

)) ∣∣∣. (6.5)

6.1.2 Damping optimization using an adaptive RBM for

�rst-order systems

If we use the RBM to optimize the system response as described in Section 6.1.1, we
need to know the parameter set D beforehand, which is, in general, not given. Also,
the optimization process might only use parameters from a subset of D such that the
basis Vr from Section 6.1.1 may contain unused information and is therefore of too
large dimension what motivates an adaptive scheme. The idea of the adaptive RBM

217



6 Damping optimization

is to enrich the basis Vr within the optimization process. Consequently, there is no
decomposition into an o�ine and an online phase.
We select a parameter (c0, g0) as the initial value for the optimization process and

compute a basis ZV(c0, g0) that approximates the respective controllability space using
either ZBT(c0, g0) from (5.6) or ZIRKA(c0, g0) from (5.7). We set the �rst basis to be
Vr = orth(ZV(c0, g0)) that is used to de�ne the reduced optimization problem (6.4),
where the reduced Gramian Pr(c, g) solves the reduced Lyapunov equation in (5.9).
Using the basis Vr, we start an optimization process to minimize the system re-

sponse (6.4). In contrast to the previous method, we add a stopping criterion within the
optimization process that interrupts the procedure whenever the solution space corre-
sponding to the current parameter (c, g) is not well-approximated by the basis Vr. To
achieve this stopping, we modify the goal function as described by Algorithm 18. In
every iteration of the optimization process, we query the error approximation ∆(c, g)
of the current parameter (c, g) as described in Step 2. The used error approximation
∆(c, g) is derived later in this subsection. If the ∆(c, g) is smaller than a given toler-
ance, we proceed with the function evaluation in Step 5 and 6 to compute the function
value J̃(c, g) and continue with the optimization process. On the other hand, if the error
approximation is larger than the tolerance, we know that the current basis Vr does not
approximate the solution space of the Lyapunov equation (5.3) for the current parameter
pair (c, g) su�ciently well. Hence, we return that the minimization did not converge
and enrich the basis Vr. Therefore, we compute ZV(c, g) using either ZBT(c, g) from
(5.6) or ZIRKA(c, g) from (5.7) and de�ne the updated basis

Vr = orth([Vr,ZV(c, g)]).

Consequently, we obtain a new optimization problem (6.4) that is de�ned with the
new basis Vr together with the computation in (5.4) and the corresponding Lyapunov
equation in (5.9). Since the function that is to be optimized depends on the current
basis Vr, which changes during the optimization procedure, convergence problems may
occur. Hence, we start a new optimization procedure whenever we enrich the basis and
use the current parameter (c, g) as the initial value. We continue with this procedure
until the optimum is reached.

Error approximation To derive an error approximation used in the adaptive proce-
dure introduced above, we follow the same idea as for the o�ine-online scheme and run
a second reduced basis method to generate a basis Verr that spans an approximation of
the error space. The equations in (5.14) and (6.5) de�ne then two possible error approx-
imations ∆(c, g) corresponding to the bases Vr and Verr. In this adaptive procedure,
the basis Verr is enlarged whenever Vr is expanded.
The detailed procedure is described in Algorithm 19. We �rst determine a basis

Vr = orth(ZV(c0, g0)) that spans an approximation of the controllability space, where
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6.1 Damping optimization in the �rst-order representation

Algorithm 18 Reduced �rst-order system response.
Input: E ∈ RN×N , A : D → RN×N , B ∈ RN×m, C ∈ Rp×N or M ∈ RN×N , parameters
(c, g) ∈ D, basis Vr, tolerance tol.
Output: System response Jr(c, g) equal to JLr(c, g) or JQ,r(c, g) from (6.4), variable
conv that shows whether the algorithm converged.

1: Set conv = true.
2: if ∆(c, g) > tol then
3: Set conv = false, Jr(c, g) = ∞.
4: else
5: Solve the reduced Lyapunov equation (5.9) to obtain Pr(c, g).
6: Compute JL,r(c, g) or JQ,r(c, g) from (6.4).
7: end if

ZV(c0, g0) is either ZBT(c0, g0) from (5.6) or ZIRKA(c0, g0) from (5.7). Then, we choose
a parameter (cr0, g

r
0) that is used to determine an error space approximation. To limit

the possibilities of choosing (cr0, g
r
0), we again de�ne a �nite set DTest that can be either

a subset of D, if given, or some set that contains arbitrarily chosen parameters with
some distance to the currently considered parameter. We pick the parameter (cr0, g

r
0)

from this �nite set DTest and determine ZV(c
r
0, g

r
0) that approximates the respective

controllability space using either ZBT(c
r
0, g

r
0) from (5.6) or ZIRKA(c

r
0, g

r
0) from (5.7). The

bases ZV(c
r
0, g

r
0) and Vr are then used to de�ne the �rst error equation basis

Verr = orth([Vr, ZV(c
r
0, g

r
0)]) = orth([ZV(c0, g0), ZV(c

r
0, g

r
0)]).

Using Vr and Verr, we de�ne the error approximation ∆(c, g) that is equal to either
∆E(c, g) from (5.14), or ∆JL(c, g) or ∆JQ(c, g) from (6.5). The computation of the two
bases is described in Step 1 to 5 of Algorithm 19. After computing the �rst bases Vr

and Verr, we de�ne the system response approximation JL,r(c, g) or JQ,r(c, g) from (6.4),
which is then optimized instead of the original system response. We apply an opti-
mization method to compute the minimal system response and the respective minimizer
(c∗, g∗).
To ensure the optimization process is interrupted if the basis Vr is insu�cient, we

optimize the function de�ned in Algorithm 18 instead of the actual system response
approximation. This approach allows the optimization to yield either the minimizer
(c∗, g∗) or, if conv = false holds, the information that the optimization process did not
converge, indicating the need to enrich the bases. If the bases need to be expanded, in
Step 8 to 12, we enlarge the bases Vr and Verr as

Vr = orth([Vr, ZV(c, g)]), and Verr = orth([Verr, ZV(c, g), ZV(c
r, gr)])

where we choose in Step 12 the parameter (cr, gr) ∈ DTest that results in the largest
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residual
(cr, gr) = argmax(c,g)∈DTest

∥Rr(c, g)∥F
withRr(c, g) de�ned as in (5.15). Afterwards, in Step 13, we compute the approximated
energy response value and proceed with the minimization process.

Algorithm 19 Adaptive �rst-order RBM.
Input: E ∈ RN×N , A : D → RN×N , B ∈ RN×m, C ∈ Rp×N or M ∈ RN×N , tolerance
tol.
Output: Minimizer (copt, gopt), energy response JL,r(c

opt, gopt) or JQ,r(c
opt, gopt).

1: Choose (c0, g0), (cr0, g
r
0) ∈ DTest, (c0, g0) ̸= (cr0, g

r
0).

2: Determine a basis ZV(c0, g0) either as ZBT(c0, g0) from (5.6) or ZIRKA(c0, g0) from
(5.7).

3: Set Vr := orth(ZV(c0, g0)).
4: Determine a basis ZV(c

r
0, g

r
0) either as ZBT(c

r
0, g

r
0) from (5.6) or ZIRKA(c

r
0, g

r
0) from

(5.7).
5: Set Verr = orth([ZV(c0, g0), ZV(c

r
0, g

r
0)]).

6: Find the minimizer (copt, gopt) of the function Algorithm 18 using fminsearch and
obtain JL,r(c

opt, gopt) or JQ,r(c
opt, gopt), and conv.

7: while conv = false do
8: Determine a basis ZV(c

opt, gopt) either as ZBT(c
opt, gopt) from (5.6) or

ZIRKA(c
opt, gopt) from (5.7).

9: Set Vr := orth([Vr,ZV(c
opt, gopt)]).

10: Determine (cr, gr) := argmax(c,g)∈DTest
∥Rr(c, g)∥F.

11: Determine a basis ZV(c
r, gr) either as ZBT(c

r, gr) from (5.6) or ZIRKA(c
r, gr) from

(5.7).
12: Set Verr = orth([Verr, ZV(c

opt, gopt), ZV(c
r, gr)]).

13: Find the minimizer (copt, gopt) of the function Algorithm 18 using fminsearch

and obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and conv.
14: end while

Remark 6.1:
As described in Remark 5.2, we solve the Lyapunov equation (5.3) in g = 0 ∈ Rℓ

(undamped system) to obtain ZV(c, 0). The vectors of ZV(c, 0) are then added to the
basis Vr, which turns out to lead to a more robust basis. ♢

6.1.3 Damping optimization using an adaptive RBM with a

decoupled controllability space for �rst-order systems

To derive an adaptive RBM that uses the structure of the considered vibrational system,
we combine the adaptive method presented in Algorithm 19 and the decoupling presented
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in Section 5.1.2. Again, we aim to �nd a basis Vr that approximates the solution space
for all parameters of interest. Therefore, we again derive a basis Vr that approximates
the controllability space of the systems (1.5) and (1.6) for all parameters (c, g). Hence,
we again utilize the function in Algorithm 18 using an error indicator ∆(c, g) equal
to ∆PF

(c) from (5.29). We initialize a basis by setting Vr = orth(ZB) with the basis
ZB equal to ZB,IRKA from (5.36a) or ZB,BT from (5.35). Using this basis, we start
the optimization of the reduced energy response function given in Algorithm 18 until
the method either converges or returns conf = false. If conf = false holds, the
optimization process stopped since the current basis is not su�ciently good. In that
case, we enrich the basis

Vr = orth(
[
Vr ZF(c)

]
),

where ZF(c) is equal to ZF,BT(c) from (5.35) or ZF,IRKA(c) from (5.36b), and c is the cur-
rent position parameter in which the optimization method stopped. Using the new basis,
we start a new optimization process and continue with this method until it converges.
This results in Algorithm 20.

Algorithm 20 Adaptive �rst-order RBM using a decoupled controllability space.
Input: E ∈ RN×N , A : D → RN×N , B ∈ RN×m, C ∈ Rp×N or M ∈ RN×N , initial
parameters (c, g), tolerance tol.
Output: Minimizer (copt, gopt), energy response JL,r(c

opt, gopt) or JQ,r(c
opt, gopt).

1: Compute the basis ZB equal to ZB,IRKA from (5.36a) or ZB,BT from (5.35).
2: Set Vr := orth(ZB).
3: Find the minimizer (copt, gopt) of the function Algorithm 18 with error indicator∆PF

from (5.29) using fminsearch and obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and conv.
4: while conv = false do
5: Compute the basis ZF(c

opt) equal to ZF,IRKA(c
opt) from (5.36b) or ZF,BT(c

opt)
from (5.35).

6: Set Vr := orth([Vr,ZF(c
opt)]).

7: Find the minimizer (copt, gopt) of the function Algorithm 18 with error indicator
∆PF

from (5.29) using fminsearch and obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and
conv.

8: end while

6.2 Damping optimization in the second-order

representation

We consider second-order systems of the form (1.3) and (1.4). When evaluating the
vibrational systems of these structures, often only the displacements are considered to
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derive an output. Therefore, the �rst-order output matrices are

C =
[
C1 0

]
and M =

[
M11 0
0 0

]
.

If also the velocities are evaluated, we apply the methods from Section 6.1.
We reformulate the system response from (6.1) and (6.3) to take advantage of the

structure of the underlying second-order system. The system response corresponding to
the system (1.3) with a linear output equation is then equal to

JL(c, g) := ∥GL(·; c, g)∥2H2

=
1

2π

∫ ∞

−∞
tr
(
C1Λ(iω; c, g)BBTΛ(iω; c, g)HCT

1

)
dω

= tr
(
C1Ppos(c, g)C

T
1

)
.

(6.6)

for Λ(s; c, g) := (s2M+ sD(c, g) +K)
−1

. We see that the system response depends on
the second-order controllability Gramian Ppos(c, g) de�ned in (2.26). Hence, we can
utilize the second-order structure of the underlying system to compute and approximate
the system response values.
We also rewrite the system response for a system (1.4) with a quadratic output equa-

tion as

JQ(c, g) :=∥GQ(·; c, g)∥2H2

=
1

2π

∫ ∞

−∞
tr
(
BTΛ(iω; c, g)HM11Ppos(c, g)M11Λ(iω; c, g)B

)
dω1

=tr(Ppos(c, g)M11Ppos(c, g)M11) .

(6.7)

Again, the system response representation depends on the second-order controllability
Gramian Ppos(c, g).
In both cases, the system response representation includes the Gramian Ppos(c, g),

which is computed by solving a Lyapunov equation. Hence, in every step of the opti-
mization process such a matrix equation needs to be solved, which leads to high com-
putational costs. Therefore, we attempt to approximate the system response values,
including the second-order controllability Gramian, using the RBM presented in Sec-
tion 5.2.
Within the RBM we build a basis Vso,r ∈ Rn×r that approximates the respective

controllability space, i.e.,

Ppos(c, g) ≈ P̃pos(c, g) = Vso,rPpos,r(c, g)V
T
so,r (6.8)

holds for suitable matrices Ppos,r(c, g) ∈ Rr×r of small dimension r ≪ n that are com-
puted as shown in (5.42). This Gramian approximation is then used to approximate the
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6.2 Damping optimization in the second-order representation

system response as

JL(c, g) = tr
(
C1Ppos(c, g)C

T
1

)
≈ tr

(
C1Vso,rPpos,r(c, g)V

T
so,rC

T
1

)
,

JQ(c, g) = tr(M11Ppos(c, g)M11Ppos(c, g))

≈ tr
(
M11Vso,rPpos,r(c, g)V

T
so,rM11Vso,rPpos,r(c, g)V

T
so,r

)
.

(6.9)

In the following, we derive di�erent RBMs to compute the system response approxi-
mations from (6.9). First, in Section 6.2.1, we apply the RBM presented in Section 5.2
and derive suitable error approximations. Afterwards, in Section 6.2.2, we introduce
an adaptive scheme to build the reduction basis Vso,r and �nally, in Section 6.2.3, we
extent this adaptive scheme using the decomposed controllability space representation
from (5.49).

6.2.1 Damping optimization for second-order systems using an

o�ine-online RBM for second-order systems

In this subsection, we apply the RBM, introduced in Section 5.2.1 and Section 5.2.3, to
approximate the system responses JL(c, g) and JQ(c, g). Therefore, we use one of the
o�ine-online schemes derived in Section 5.2, where we generate a basis Vso,r so that
(6.8) holds. The basis Vso,r is generated in the o�ine phase using Algorithm 16 or
Algorithm 17. After building such a basis Vso,r, we de�ne the reduced system responses

JL,r(c, g) := tr(C1Vso,rPpos,r(c, g)V
T
so,rC

T
1 ),

JQ,r(c, g) := tr(VT
so,rM11Vso,rPpos,r(c, g)V

T
so,rM11Vso,rPpos,r(c, g)),

(6.10)

where Ppos,r(c, g) is the upper-left block of Pr(c, g) from (5.42) which solves the reduced
Lyapunov equation (5.9). After determining the basis Vso,r, we compute the reduced
matrices C1Vso,r and VT

so,rM11Vso,r as these matrices do not change in the online phase
and are used multiple times.
Afterwards, in the online phase, we apply an optimization method to minimize the

reduced system responses from (6.10). Within the optimization process, we solve a 2r
dimensional Lyapunov equation (5.42) for every considered parameter instead of solving
a 2n dimensional Lyapunov equation, which accelerates the optimization process.

Error approximation When we apply the o�ine-online RBM introduced in Section 5.2.1,
for the linear output case, we can tailor the error approximation ∆Eso(c, g) to evaluate
the error in the system response, i.e.,

EJL(c, g) := |JL(c, g)− JL,r(c, g)|

=
∣∣∣ tr(C1Ppos(c, g)C

T
1

)
− tr

(
C1P̃pos(c, g)C

T
1

) ∣∣∣ = ∣∣∣ tr(C1Eso(c, g)C1)
T
∣∣∣
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for Eso(c, g) as de�ned in (5.43). Also, for the quadratic output case, we can derive the
error

EJQ(c, g) := JQ(c, g)− JQ,r(c, g)

= tr
(
M11P̃pos(c, g)M11P̃pos(c, g)

)
− tr

(
M11P̃pos(c, g)M11P̃pos(c, g)

)
= tr

(
M11

(
Ppos(c, g)− P̃pos(c, g)

)
M11

(
Ppos(c, g) + P̃pos

))
= tr

(
M11

(
Ppos(c, g)− P̃pos

)
M11

(
Ppos(c, g)− P̃pos(c, g) + 2P̃pos(c, g)

))
= tr

(
M11Eso(c, g)M11

(
Eso(c, g) + 2P̃pos(c, g)

))
,

We notice that, the errorEso(c, g) is needed to compute the errorsEJL(c, g) andEJQ(c, g).

Hence, we apply a second EE-RBM to �nd an approximation Ẽso(c, g) ≈ Eso(c, g) as
introduced in Algorithm 16. Using the error approximation Ẽso(c, g) from (5.45), we
derive the error approximations

∆JL(c, g) :=
∣∣∣ tr(CT

1 Ẽso(c, g)C
T
1

) ∣∣∣,
∆JQ(c, g) :=

∣∣∣ tr(M11Eso(c, g)M11

(
Eso(c, g) + 2P̃pos(c, g)

)) ∣∣∣, (6.11)

which are used instead of the approximation ∆Eso(c, g) from (5.46).

6.2.2 Damping optimization for second-order systems using an

adaptive RBM for second-order systems

As explained in the previous section for �rst-order systems, we can use an adaptive
scheme to build the basis Vso,r so that we do not need prior knowledge about the pa-
rameter domain D. The idea of the adaptive RBM is to enrich the basis Vso,r within the
optimization process when the current approximation of the system response, described
in (6.10), is not su�ciently good. Consequently, there is no decomposition into an o�ine
and an online phase.
We select a parameter (c0, g0) as the initial value for the optimization process and de-

termine a low-rank factor Zso(c0, g0) that is either Zso,BT(c0, g0) from (5.39) or
Zso,IRKA(c0, g0) from (5.40). We set the �rst basis to be Vso,r = orth(Zso(c0, g0)) and
de�ne the respective reduced system response (6.10). The function that is optimized
is de�ned in Algorithm 21. In every iteration of the minimization, we query the error
approximation ∆(c, g) of the current parameter (c, g) as described in Step 2. If the error
approximation is smaller than a given tolerance, we proceed with the function evalua-
tion. In Step 5 and 6, we determine the resulting function value JL,r(c, g) or JQ,r(c, g) as
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6.2 Damping optimization in the second-order representation

de�ned in (6.6) or (6.7), respectively, and continue with the minimization. On the other
hand, if the error approximation is larger than the tolerance, we know that the current
basis Vso,r does not approximate the controllability space of the systems (1.3) and (1.4)
for the current parameter (c, g) su�ciently good. Hence, we return that the minimiza-
tion did not converge and enrich the basis Vso,r. Therefore, we compute Zso(c, g) that is
either Zso,BT(c, g) from (5.39) or Zso,IRKA(c, g) from (5.40) and de�ne the updated basis

Vso,r = orth(
[
Vso,r Zso(c, g)

]
).

Consequently, we obtain a new optimization problem (6.10) that is de�ned using the
new basis Vso,r. Since the optimized function depends on the current basis Vso,r, which
changes during the optimization procedure, convergence problems may occur. Hence,
we start a new optimization procedure whenever we enrich the basis and use the current
parameter (c, g) as the initial value. We continue with this procedure until the optimum
is reached.

Algorithm 21 Reduced second-order system response.
Input: M,K ∈ Rn×n, D : D → Rn×n, B ∈ Rn×m, C1 ∈ Rp×n or M11 ∈ Rn×n,
parameter (c, g), basis Vso,r, tolerance tol.
Output: Energy response JL,r(c, g) or JQ,r(c, g), variable conv.

1: Set conv = true.
2: if ∆(c, g) > tol then
3: Set conv = false, Jr(c, g) = ∞.
4: else
5: Solve the reduced Lyapunov equation (5.9) to obtain Pr(c, g) including

Ppos,r(c, g).
6: Compute JL,r(c, g) or JQ,r(c, g) as de�ned in (6.10).
7: end if

Error approximation Finally, we introduce the error approximation ∆(c, g) that is
used in the adaptive scheme. We follow the same idea as in Section 5.2.1 to generate a
basis Vso,err that spans an approximation of the error space. Therefore, we run a second
EE-RBM to generate such a basis Vso,err that is enlarged whenever the basis Vso,r is
expanded. In this way, the error approximation, and thus the error approximation from
(6.11), becomes more accurate the closer we get to the optimizing parameter. Using the
bases Vso,r and Vso,err, we de�ne the error approximations ∆JL(c, g) or ∆JQ(c, g) from
(6.11).
The detailed procedure is described in Algorithm 22. When we determine the �rst

basis Vso,r = orth(Zso(c0, g0)), we solve a second Lyapunov equation in an arbitrary
parameter (cr0, g

r
0) with (cr0, g

r
0) ̸= (c0, g0) to obtain the solution Zso(c

r
0, g

r
0). To limit the
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6 Damping optimization

Algorithm 22 Adaptive second-order RBM.
Input: M,K ∈ Rn×n, D : Rℓ × Nℓ

+ → Rn×n, B ∈ Rn×m, C1 ∈ Rp×n or M11 ∈ Rn×n,
tolerance tol.
Output: Minimizer (copt, gopt), energy response JL,r(c

opt, gopt) or JQ,r(c
opt, gopt).

1: Choose (c0, g0), (cr0, g
r
0) ∈ DTest with (c, g) ̸= (cr, gr).

2: Compute Zso(c0, g0) that is either Zso,BT(c0, g0) from (5.39) or Zso,IRKA(c0, g0) from
(5.40).

3: Set Vso,r := orth(Zso(c0, g0)).
4: Compute Zso(c

r
0, g

r
0) that is either Zso,BT(c

r
0, g

r
0) from (5.39) or Zso,IRKA(c

r
0, g

r
0) from

(5.40).
5: Set Vso,err = orth([Zso(c0, g0), Zso(c

r
0, g

r
0)]).

6: Find the minimizer (copt, gopt) of the function Algorithm 21 using fminsearch and
obtain JL,r(c

opt, gopt) or JQ,r(c
opt, gopt), and conv.

7: while conv = false do
8: Compute Zso(c

opt, gopt) that is either Zso,BT(c
opt, gopt) from (5.39) or

Zso,IRKA(c
opt, gopt) from (5.40)

9: Set Vso,r := orth([Vso,r,Zso(c
opt, gopt)]).

10: Determine (cr, gr) := argmax(c,g)∈DTest
∥Rso,r(c, g)∥F.

11: Compute Zso(c
r, gr) that is either Zso,BT(c

r, gr) from (5.39) or Zso,IRKA(c
r, gr) from

(5.40).
12: Set Vso,err = orth([Vso,err, Zso(c

opt, gopt), Zso(c
r, gr)]).

13: Find the minimizer (copt, gopt) of the function Algorithm 21 using fminsearch

and obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and conv.
14: end while
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possibilities of choosing (cr0, g
r
0), we again de�ne a �nite subset DTest ⊂ D and pick the

parameter (cr0, g
r
0) from this �nite set DTest. We use the solution Zso(c

r
0, g

r
0) and the basis

Vso,r to obtain the �rst error equation basis

Vso,err = orth([Vso,r, Zso(c
r
0, g

r
0)]) = orth([Zso(c0, g0), Zso(c

r
0, g

r
0)]).

Using the bases Vso,r and Vso,err, we compute the error approximation ∆JL(c, g) or
∆JQ(c, g) as in (6.11). Again, we choose in Step 12 the parameter (cr, gr) ∈ DTest that
results in the largest residual

(cr, gr) = argmax(c,g)∈DTest
∥Rso,r(c, g)∥F

with Rso,r(c, g) = R11(c, g) as de�ned in (5.44).

6.2.3 Damping optimization for second-order systems using an

adaptive RBM with a decoupled controllability space for

second-order systems

Finally, we can combine the adaptive RBM from Section 6.2.2 with the decoupling of the
second-order controllability space presented in Section 5.2.2. For that we again initialize
a basis Vso,r = orth(Zso,B) where Zso,B is a basis that spans an approximation of the
controllability space of the second-order system (5.52) with no external damping. We
obtain such a basis either by computing Zso,B,BT from (5.53) or by computing Zso,B,IRKA

from (5.56a). Using the basis Vso,r we de�ne the reduced optimization problem from
(6.10) and run the optimization method to optimize the function de�ned in Algorithm 21.
If the output conv is equal to false, the current basis Vso,r does not approximate the
controllability space for this parameter su�ciently well. Therefore, we enrich the basis
Vso,r by a second basis Zso,F(c) that approximates the controllability space of the system
(5.54) in c. For that we use Zso,F(c) that is either equal to Zso,F,BT(c) as de�ned in (5.55)
or Zso,F,IRKA(c) as de�ned in (5.56b). After we built the new basis Vso,r as

Vso,r = orth(
[
Vso,r Zso,F(c),

]
)

we de�ne a new reduced optimization problem (6.10) and start an optimization process
with (c, g) as initial parameters as described in Algorithm 23. We continue this process
until conv = true. We want to emphasize that we do not need a given parameter set D
to apply Algorithm 23, which is advantageous compared to the previous methods.

6.3 Numerical results

In this section, we apply the di�erent reduction strategies for optimizing external dampers
to selected examples. For that, we �rst consider vibrational systems, where only the
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Algorithm 23 Adaptive second-order RBM using a decoupled controllability space.
Input: M,K ∈ Rn×n, D : Rℓ × Nℓ

+ → Rn×n, B ∈ Rn×m, C1 ∈ Rp×n or M11 ∈ Rn×n,
tolerance tol.
Output: Minimizer (copt, gopt), energy response JL,r(c

opt, gopt) or JQ,r(c
opt, gopt).

1: Compute the basis Zso,B that is equal to Zso,B,BT as in (5.53) or Zso,B,IRKA as in
(5.56a).

2: Set Vso,r := orth(Zso,B).
3: Find the minimizer (copt, gopt) of the function Algorithm 21 using fminsearch and

obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and conv.
4: while conv = false do
5: Compute the basis Zso,F(c

opt) that is equal to Zso,F,BT(c
opt) as in (5.55) or

Zso,F,IRKA(c
opt) as in (5.56b).

6: Set Vso,r := orth([Vso,r,Zso,F(c
opt)]).

7: Find the minimizer (copt, gopt) of the function Algorithm 21 using fminsearch

and obtain JL,r(c
opt, gopt) or JQ,r(c

opt, gopt), and conv.
8: end while

damper's viscosities are optimized as presented, e.g., in [107, 140]. Afterwards, we
optimize the damper's positions while �xing the damper's viscosities, and �nally, we
optimize both parameters simultaneously. Optimizing the �rst-order representation of
vibrational systems (1.3) and (1.4) leads to slower results and computational problems
since reducing the �rst-order matrices E and A(c, g) from (1.7) can lead to reduced
matrix pencils λEr − Ar where the eigenvalues λ have a nonnegative real-part. Then,
the respective Lyapunov equation is not uniquely solvable. Therefore, we only consider
the second-order representation and use the �rst-order reducing basis Vr as de�ned in
(5.41).
In this section, we illustrate the accelerations that arise when we apply the methods

presented in this work to optimize the external dampers. We run the four di�erent
algorithms derived in Section 6.2, each with a Gramians-based basis building and with
an IRKA-based one. Hence, we evaluate the o�ine-online RBM from Algorithm 16 us-
ing Gramians (off-on RBM BT) and using the IRKA method (off-on RBM IRKA). Also,
we evaluate the o�ine-online RBM using the decomposition introduced in Section 5.2.2,
which leads to Algorithm 17 using again Gramians (dec off-on RBM BT) and the IRKA
method (dec off-on RBM IRKA). Moreover, we apply the adaptive scheme from Algo-
rithm 22 using Gramians (adpt RBM BT) and using IRKA (adpt RBM IRKA) and the
respective decomposed controllability space in Algorithm 23 using Gramians (dec adpt

RBM BT) and the IRKA method (dec adpt RBM IRKA).
The computations have been done on a computer with 2 Intel Xeon Silver 4110 CPUs

running at 2.1 GHz and equipped with 192 GB total main memory. The experiments
use Matlab 2021a, and the Lyapunov equations were solved using methods from M-
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m1 m2 m3 m4 mn

2k1 k2 k3 k4

k1

k2

k3

2kn+1

g1g1

Figure 6.1: Example 6 - Sketch of the system including one row of masses connected by
consecutive springs.

M.E.S.S.-2.1., see [114]. All results are available at [103].

6.3.1 Damping value optimization

First, we consider examples where we optimize the dampers viscosities. We evaluate
two examples of second-order structure, where the �rst example has a quadratic output
equation as presented in (1.4) while the second example evaluates a linear equation as
output so that we consider a system of the structure (1.3).

Example 6 First, we consider a vibrational system (1.4) with a quadratic output
equation. It was introduced in [140] and arises in mechanical constructions with n
consecutive masses. Each mass mj is connected to the direct neighbor masses mj−1 and
mj+1 by springs with sti�ness values kj and kj+1. Additionally, each mass is connected
by springs with sti�ness values kj−1 and kj+2 to the masses next to the neighbor masses
mj−2 and mj+2. The outermost masses are connected to �xed objects via springs with
constants 2k1 and 2kn+1. This construction is depicted in Figure 6.1 and results in the
following mass and sti�ness matrix

M := diag (m1, . . . , mn) ,

K :=



2k1 + 2k2 −k2 −k3
−k2 2k2 + 2k3 −k3 −k4
−k3 −k3 2k3 + 2k4 −k4 −k5

. . . . . . . . . . . .
2kn−2 + 2kn−1 −kn−2 −kn−1

−kn−1 2kn−1 + 2kn −kn
−kn−2 −kn 2kn + 2kn+1


.

229
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We consider an example of dimension n = 1900 with sti�ness constants kj = 500, j =
1, . . . , n. The mass values are chosen as

mj =

{
144− 3

20
j, j = 1, . . . , 475,

j
10

+ 25, j = 476, . . . , 1900.

The internal damping Dint is built as described in (1.2) where the scaling factor is
α = 0.005. We consider external disturbance forces that attack at the sequential masses
from m471 to m480. Hence, in the input matrix B the values at positions 471 to 480 are
set to be

B(471 : 480, 1 : 10) = diag (10, 20, 30, 40, 50, 50, 40, 30, 20, 10) .

The remaining entries of B are equal to zero. Consequently, we have a (n × 10)-
dimensional input matrix B, where the highest magnitude of disturbance is applied
to the mass in the center, whereby the disturbance magnitude gets smaller in the outer
masses. To observe the system behavior, we consider the displacement of the states
x100(t), x200(t), . . . , x1800(t). In contrast to the example in [140], we consider a quadratic
output equation. Hence, the output matrix M11 has zero entries everywhere except on
the positions

(100, 100), (200, 200), . . . , (1800, 1800),

where the entries are equal to one. We consider four dampers on the positions j, j +
1, k, k + 1 where j and k can take the following values

{(j, k) | j ∈ {50, 150, 250, 350}, k ∈ {850, 950, . . . , 1850}}.

Hence, we evaluate the system for 44 possible damping con�gurations. For each damping
con�guration, we optimize the damping values individually. The damping gains g consist
of two values g1 and g2 where the dampers on the j-th and the (j+1)-th position have the
damping value g1 and the dampers on the k-th and the (k+1)-th position the damping
value g2. We assume that the damping values g1 and g2 lie in the interval [500, 4000].
To optimize the damping gains for the di�erent damping con�gurations, we use the

Matlab function fminsearch where we stop the minimization process if the di�erence
between two successive function values or damping viscosities is smaller than a tolerance
tol = 10−4. We start the optimization process at g0 =

[
1000 1000

]T
for all damping

con�gurations. To solve the Lyapunov equations from (1.8), we use the sign-function
method presented in Section 2.3.2 with tol = 10−6 and a maximum iteration number of
itermax = 10 because of the fast dimension growth within the method. As test-parameter
set DTest, we use 36 uniformly distributed parameters in [500, 4000]× [500, 4000].
To show that the error approximations ∆Eso(c, g) and ∆JQ(c, g) from (5.46) and (6.5),

respectively, approximate the error well, we evaluate the quality of the error approxi-
mation in Figure 6.2 after the �rst step of the o�ine-online RBM for the 11-th damper
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con�guration. We observe that the relative error in the position controllability Gramian
∥E11(c, g)∥F/∥P̃pos(c, g)∥F and the corresponding approximation ∥Ẽ11(c, g)∥F/∥P̃pos(c, g)∥F
are very close to the actual error. On the other hand, the energy response is underes-
timated as we evaluate an error approximation and not an error bound. However, for
our purposes, the quality was good enough as the error in the energy response and its
approximate value have a similar order of magnitude.

0 5 10 15 20 25 30 35

10−8

10−7
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10−5

10−4

test parameter

er
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/e
rr
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es
ti
m
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s tr(C1E11(g)C

T
1 )/tr(C1P̃(g)CT

1 )

tr(C1Ẽ(g)C
T
1 )/tr(C1P̃(g)CT

1 )

∥Ẽ11(g)∥F/∥P̃11(g)∥F
∥E11(g)∥F/∥P̃11(g)∥F

Figure 6.2: Example 6 - Errors approximations for the �rst damping con�guration and
the �rst step of the reduced basis method.

Since the initial value g0 is known, we choose this parameter as the �rst one evaluated
within the RBM. The �rst parameter gr0 used to derive a �rst error equation basis is
chosen to be gr0 =

[
100 100

]
within the o�ine-online RBM and the adaptive RBM

schemes.
The relative errors between the optimal damping gain and the approximations ob-

tained using the methods presented in the previous sections are presented in Figure 6.3.
We observe that all methods approximate the optimal viscosity well. However, the
methods dec off-on RBM BT and dec adpt RBM BT each lead for one con�guration to
an error larger than the tolerance of tol = 10−2. We observe that all of the methods
approximate, on average, the optimal viscosities su�ciently good, while the methods
using IRKA lead to even better results for this example.
We also evaluate the optimization times, which include the o�ine and the online

phases when considering the o�ine-online schemes and the overall methods when adap-
tive procedures are applied. We determine a low-rank factor of the solution of the
Lyapunov equation (1.8) for the undamped system that is added to all bases considered.
Since this low-rank factor is computed beforehand, the computation time of 39 seconds
is not taken into account in any of these methods. We compare the optimization times in
Figure 6.4 and the respective acceleration rates for the di�erent methods in Figure 6.5.
The Matlab-solver lyapchol is used to solve the Lyapunov equations from (1.8). The
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Figure 6.3: Example 6 - Viscosity errors

average errors and acceleration rates are summarized in Table 6.1. We observe that the
off-on RBM BT and dec off-on RBM BT lead to the fastest results.

Errors Acceleration rates

off-on RBM BT 1.64 · 10−3 138

off-on RBM IRKA 2.82 · 10−4 38

dec off-on RBM BT 1.64 · 10−3 138

dec off-on RBM IRKA 2.82 · 10−4 38

adpt RBM BT 1.64 · 10−3 79

adpt RBM IRKA 3.09 · 10−4 38

dec adpt RBM BT 2.50 · 10−3 76

dec adpt RBM IRKA 3.28 · 10−4 47

Table 6.1: Example 6 - Comparison of the di�erent algorithms.

We want to mention that the adaptive method is still advantageous since we do not
need a parameter set D in advance for it. Only for the error approximation, the test-
parameter set DTest ⊂ D is needed that can be replaced by choosing arbitrary param-
eters. In particular, when using the decoupled controllability space and the respective
error indicator∆PF

from (5.57), no prior knowledge about the parameter set is required.
In Figure 6.6, the function values for all 44 damping con�gurations are evaluated. We
observe that the optimal damping con�guration is the 34-th one, which has the damping
positions j = 350, k = 850.
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Figure 6.4: Example 6 - Optimization times
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Figure 6.5: Example 6 - Acceleration rates
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Figure 6.6: Example 6 - Function values

Example 7 The second example that we consider contains a mass oscillator with 2d+
1 = n masses and n+2 springs that result in a system (1.3) with a linear output equation
as depicted in Figure 6.7. There are two lines of d consecutive masses m1, . . . , md and
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Figure 6.7: Example 7 - Sketch of the system including two rows of masses connected
by consecutive springs.

md+1, . . . , m2d, which are connected by springs. The springs of the �rst line have all the
sti�ness value k1, and the springs in the second line have the sti�ness value k2, where
the masses m1 and md+1 are connected with these springs to a �xed object. The masses
md and m2d are connected to a mass m2d+1 = mn by springs with sti�ness constants k1
and k2 while the mass mn is connected to a �xed object via a spring with a constant
k1 + k2 + k3. This construction results in a sti�ness matrix

K =

K11 κ1

K22 κ2

κT
1 κT

2 k1 + k2 + k3

 , Kjj = kj


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , κj =


0
...
0
kj

 ,

for j = 1, 2. We choose the dimension to be d = 1000, n = 2001 and set k1 = 400,
k2 = 100, k3 = 300. The n = 2d+ 1 mass values are chosen as follows

mj =


100− j

10
, j = 1, . . . , 500,

j
30

+ 33, j = 501, . . . , 1000,

100− (j − 99) 5
20

+ (j−999)2

5000
, j = 1001, . . . , 2000,

m2001 = 100.

The internal damping Dint is built as described in (1.2) with the scaling α = 0.003.
Additionally, some disturbances a�ect 21 masses. The e�ect on the masses is described
by the matrix B ∈ Rn×21 that consists of zero entries except for the following entries

B(1 : 10, 1 : 10) = diag (1000, 900, . . . , 100) ,

B(1001 : 1010, 11 : 20) = diag (1000, 900, . . . , 100) ,

B(2001, 21) = 2000.

As output, we observe 42 masses, or more detailed, the displacements of the masses
490 to 510 and those of the masses on positions 1490 to 1510. This is described by the
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output matrix C ∈ R42×n:

C(490 : 510, 1 : 21) = I21, C(1490 : 1510, 1 : 21) = I21.

In this example, we consider four damping values that are optimized. We consider
two dampers in the �rst row that are between the masses mj and mj+5 and between
the masses mj+20 and mj+25. For the second row, we follow the same pattern and
add two dampers between the masses mk and mk+5 and between mk+20 and mk+25.
Consequently, we optimize four damping values g1, g2, g3, g4 that are saved in g ∈ R4.
The corresponding damping position matrix is then of the form

F =
[
ej − ej+5 ej+20 − ej+25 ek − ek+5 ek+20 − ek+25

]
,

where j and k are from the sets

{(j, k) | j ∈ {250, 450, 650, 850}, k ∈ {1150, 1250, 1350, 1450, 1550, 1650, 1750}} .

This setting leads to 28 damping con�gurations. We assume that the damping values
g1, g2, g3, g4 lie in the interval [350, 7000]. For the optimization process we set the tol-
erance of 5 · 10−4 and start the optimization process at g0 =

[
1000 1000 1000 1000

]T
for all damping con�gurations. The tolerance for the function value error that indi-
cates whether a basis Vso,r is su�ciently detailed is tol = 10−2. As test-parameter
set DTest for the reduced basis method we use 21 uniformly distributed parameters in
[350, 7000]4. The �rst parameter gr0 used to obtain a �rst error equation basis is chosen
to be gr0 =

[
100 100 100 100

]
within the RBM and the adaptive RBM schemes.

We evaluate the quality of the error approximations ∆Eso(c, g) and ∆JL(c, g) from
(5.46) and (6.5), respectively, after the �rst step of the reduced basis method for the
�fth damper con�guration in Figure 6.8. We observe that the relative errors in the
position controllability Gramian and the corresponding approximation are very close, so
the error is well approximated.
In Figure 6.9, we evaluate the relative errors in the damper's viscosities for all con-

sidered methods. We observe that most of the methods approximate, on average, the
optimal viscosities su�ciently good. However, the IRKA methods using a controllability
space decomposition fail in approximating the original system behavior.
Additionally, we evaluate the optimization times. Outside of the applied methods,

we determine a low-rank factor of the solution of the Lyapunov equation (1.8) for the
undamped system. This low-rank factor is included in all the bases and is not taken
into account in the time measures. This solving takes 55 seconds. We compare the
optimization times and the acceleration rates for the di�erent methods in Figure 6.10
and Figure 6.11, respectively. The average errors and respective acceleration times for
all the methods are summarized in Table 6.2. We observe that for this example the
Gramian based methods provide better approximations and acceleration times. The
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Figure 6.8: Example 7 - Errors approximation for the �rst damping con�guration and
the �fth step of the reduced basis method.

IRKA methods that use the decomposed controllability space even fail in approximating
the optimal damping values.

Errors Acceleration rates

off-on RBM BT 8.08 · 10−3 209

off-on RBM IRKA 1.17 · 10−2 43

dec off-on RBM BT 8.08 · 10−3 209

dec off-on RBM IRKA 2.93 · 10−1 5

adpt RBM BT 8.08 · 10−3 95

adpt RBM IRKA 1.17 · 10−2 43

dec adpt RBM BT 2.13 · 10−2 148

dec adpt RBM IRKA 2.93 · 10−1 5

Table 6.2: Example 7 - Comparison of the di�erent algorithms.

In Figure 6.12, the function values for all 28 damping con�gurations are evaluated. The
optimal damping con�guration is the 25-th one corresponding to the damping positions
j = 850, k = 1450.
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Figure 6.9: Example 7 - Viscosity errors
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237



6 Damping optimization

6.3.2 Damper position optimization

In this section, we apply the methods that are presented above to two numerical examples
where the dampers' positions are optimized. For both examples, we �rst optimize only
the damper's positions while considering �xed damping gains. Afterwards, we optimize
simultaneously the positions and damping gains.

A di�culty in optimizing the position of dampers is that the positions are discrete val-
ues. Hence, the authors in [157] reformulate the optimization problem to apply standard
optimization methods. Therefore, we de�ne the function

J̃(c, g) := J([c], g) = J([c1], . . . , [cℓ], g1, . . . , gℓ) (6.12)

that is a continuous function. This function is optimized in the following as we can
apply, e.g., the Nelder�Mead method encoded in the Matlab function fminsearch to
minimize (6.12).

We de�ne a second function that assumes that the damping gains g∗ = [g∗1, . . . , g
∗
ℓ ] ∈

Rℓ are given and �xed, that is

J̃pos(c) := J([c], g∗) = J([c1], . . . , [cℓ], g
∗
1, . . . , g

∗
ℓ ). (6.13)

Optimizing this function using standard optimization methods such as fminsearch

might cause convergence problems if the step size is too small because of the jumps
in the function values in the function de�nition from (6.13). Hence, we modify this
function to make the function values continuous. We �rst consider the case where we
only have one damper with the position c ∈ Dc ⊂ R. We split the current position value
c = cint + cdec where cint := ⌊c⌋ and cdec = c− cint. The corresponding function value is
then de�ned as

Ĵpos(c) := (1− cdec)J(cint, g∗) + cdecJ(cint + 1, g∗),

which provides a linear interpolation between the function values corresponding to two
discrete damper positions.

This idea is now generalized for ℓ dampers, i.e., c ∈ Dc ⊂ Rℓ. We de�ne for c =
[c1, . . . , cℓ] the values

cj := cintj + cdecj with cintj := ⌊cj⌋, cdecj = cj − cintj , for j = 1, . . . , ℓ.
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m1 m2 mn−1 mn

Figure 6.13: Example 8 - Sketch of the system including one row of masses connected
by consecutive springs.

Accordingly, we de�ne the time continuous function values as

Ĵpos(c) := (1− cdec1 ) · · · · · (1− cdecℓ )J([cint1 , . . . , cintℓ ], g∗)

+ cdec1 (1− cdec2 ) · · · · · (1− cdecℓ )J([cint1 + 1, cint2 , . . . , cintℓ ], g∗)

+ (1− cdec1 ) · · · · · (1− cdecℓ−1)c
dec
ℓ J([cint1 , . . . , cintℓ−1, c

int
ℓ + 1], g∗)

...

+ (1− cdec1 )cdec2 · · · · · cdecℓ J([cint1 , cint2 + 1, . . . , cintℓ + 1], g∗)

+ cdec1 · · · · · cdecℓ−1(1− cdecℓ )J([cint1 + 1, . . . , cintℓ−1 + 1, cintℓ ], g∗)

+ cdec1 · · · · · cdecℓ J([cint1 + 1, . . . , cintℓ + 1], g∗).

We observe that the computation of the function values of Ĵpos(c) is only accessible for
a small number of external dampers or small system dimensions since the number of
function evaluations rises exponentially with the numbers of dampers, where we need 2ℓ

Lyapunov equation solves if ℓ is the number of the dampers.
In our examples, the function de�ned in (6.12) does not have a converging problem,

which is why we apply the function reformulation into Ĵpos only for the case of �xed
viscosities. When viscosities and positions are optimized, such an approach is not needed
for the examples considered in this work.
When applying the methods off-on RBM BT, off-on RBM IRKA, adpt RBM BT, and

adpt RBM IRKA, we use the error approximation ∆JL or ∆JQ from (6.11) depending on
the considered model. On the other hand, we use the error indicator ∆PF

from (5.57),
when the methods dec off-on RBM BT, dec off-on RBM IRKA, dec adpt RBM BT, and
dec adpt RBM IRKA are applied.

Example 8 The example, we consider in this paragraph, is described in Figure 6.13.
We evaluate a system (1.4) with a quadratic output matrix where the mass matrix is
de�ned in Matlab notation as

M = sparse(diag([logspace(−1, 1, n/2), flip(logspace(−1, 1, n/2))])).
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The matrix M leads to mass values between 0.01 and 0.1. The highest mass values are
attained at the middle masses. The outermost masses have the smallest mass values.
Moreover, the sti�ness matrix is given as

K =


24 −20
−20 40 −20

−20 40 −20
. . . . . . . . .

 .

We build the internal damping matrix Dint using a multiple of the critical damping with
α = 0.005, as described in (1.2). The dimension is n = 1000, so the Lyapunov equations
of dimension 2n = 2000 need to be solved multiple times. Additionally, the input matrix
is de�ned as a zero matrix beside the entries

B(1, 1) = 1, B(500, 1) = 1, B(1000, 1) = 1.

Therefore, an external force is applied to the �rst, the middle, and the last mass. As
output, we consider a quadratic function de�ned by an output matrix M with subma-
trices M11, M12 = 0, and M22 = 0, where M11 has everywhere zero entries besides on
the (10, 10), (500, 500), (990, 990) positions where the entries are equal to one so that
the output is equal to yQ(t) = x10(t)

2 + x500(t)
2 + x990(t)

2.
We apply two grounded dampers at positions k and j so that c = [k, j] and F(c) =

[ek, el], where ek and ej are the k-th and the j-th unit vector. We apply the Nelder�Mead
method to optimize the system response as de�ned in (6.13), which is implemented by
the Matlab function fminsearch. We stop the optimization process when the relative
error in the function values or di�erence between two consecutive values is smaller than
the tolerance tolopt = 10−3.
We run the four di�erent algorithms derived in Section 6.2, each with a Gramian-

based basis building and with an IRKA-based one. For both error approximations ∆JQ

form (6.11) and ∆PF
from (5.57), we use a tolerance of tol = 10−2 to quantify whether

the current basis is su�ciently good. Moreover, if ∆Eso(c, g) from (5.46) is smaller than
the tolerance tol = 10−3, we stop the method.
Example 8a: Position optimization First, we only optimize the positions of the

two dampers and set the damping gains to be the �xed values g1 = g2 = 1000. The
initial positions are c0 = [50, 90]. The respective timings and errors are evaluated in the
following. In Figure 6.14, the di�erent optimal positions derived using the full-order
model and the reduced models are depicted. We see that the positions are approximated
well by our methods except for the RBM methods using the decomposed controllabil-
ity space. We observe that, in particular, when using the o�ine-online BT method to
generate the basis and the adaptive methods using the respective controllability space
decompositions, the approximations are not accurate enough. These relations are de-
picted in Figure 6.15, where we show the respective errors. Figure 6.16 depicts the
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Figure 6.14: Example 8a - Position values.
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Figure 6.15: Example 8a - Position errors.
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Figure 6.16: Example 8a - Dimensions, times, and acceleration rates.
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Figure 6.17: Example 8b - Position values.

dimensions, optimization times, and respective acceleration rates that result from the
presented methods. The optimization times include the basis building, as well as the
optimization of the dampers' positions. Moreover, we present the dimensions of the
�nal reduced systems. We observe that the dimensions of the reduced systems are sig-
ni�cantly smaller than the dimensions of the full-order model, where we emphasize that
for every reduction approach, the Gramian based methods lead to faster results than
the IRKA based ones. Also, we observe that the decomposition of the controllability
spaces leads to faster results as the respective Gramians have the smallest dimensions.
However, these small dimensions lead to the largest approximation errors.

Example 8b: Position and viscosity optimization Moreover, we optimize the
damper's positions and the corresponding gains simultaneously. The initial positions
are again chosen to be c0 = [50, 90], and the initial gains are g0 = [1000, 1000]. The re-
spective positions and gains are depicted in Figure 6.17 and Figure 6.18. Furthermore,
the respective errors are shown in Figure 6.19. The bar plots that cover the complete
range of the y-axis indicate that the respective error is equal to zero. We observe that
the positions are well-approximated or even coincide with the optimal positions of the
full-order system. Also, the viscosities are approximated well by the di�erent meth-
ods, since all errors are smaller than 1.6 · 10−3 which is less than 0.16 percent. In
Figure 6.20, we depict the dimensions, optimization times, and respective acceleration
rates corresponding to the full order and reduced surrogate models. We see that the
di�erent reduction approaches accelerate the computations signi�cantly. In particular,
the o�ine-online methods using the BT method to build the basis (with and without a
decomposed controllability space) lead to the highest acceleration rates for this exam-
ple. The o�ine-online method using the IRKA method and a decomposed controllability
space leads to the smallest acceleration rates for this example. However, all the methods
are doing su�ciently well.

Example 9 In this subsection, we investigate a system with three rows of masses
connected by springs as depicted in Figure 6.21. The masses are given as described by
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Figure 6.18: Example 8b - Viscosity values.
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Figure 6.19: Example 8b - Position and viscosity errors.
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Figure 6.20: Example 8b - Dimensions, times, and acceleration rates.
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Figure 6.21: Example 9 - Sketch of the system including three rows of masses connected
by consecutive springs.

243



6 Damping optimization

the Matlab expression

M = 1e4 ∗ sparse(diag([logspace(−1, 1, ceil(n/2)),

flip(logspace(−1, 1, floor(n/2)))]));

while the sti�ness matrix is built as

K =


K11 κ1

K22 κ2

K33 κ3

κT
1 κT

2 κT
3 k1 + k2 + k3 + k4

 , Kii = ki


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ Rd×d,

with κi =
[
0 · · · 0 ki

]T
and k1 = 20, k2 = 10, k3 = 5, k4 = 20. We consider a system

of dimension n = 601 = 3d+1, d = 200 so that we have to solve Lyapunov equations of
dimension 2n = 1202. The input matrix is chosen to be B = −ones(n, 1). We consider
a linear output equation de�ned by the the output matrix C, which is the zero matrix
of dimension 3× n with non-zero entries

C(1, 10) = 1, C(1, 450) = 1, C(1, 891) = 1.

We assume that there are three grounded dampers so that F = [ei, ej, ek] for i, j, k ∈
{1, . . . , n}.
Example 9a: Position optimization Again, we initially consider the case where we

only optimize the damper's positions. We stop the optimization process when the relative
error in the function values or the di�erence between two consecutive values is smaller
than the tolerance tolopt = 10−3. The corresponding results of the position optimiza-
tion are given in Figure 6.22, where we chose the initial positions c0 = [100, 300, 500].
We observe that the positions obtained by optimizing the full-dimensional problem are
still approximated well enough, in the sense that the error is smaller than 1.3 · 10−2

that is 1.3% for all the methods as shown in Figure 6.23, where we depict the resulting
errors of the position optimization. Moreover, Figure 6.24 show the resulting dimen-
sions, optimization times, and the acceleration rates, respectively. We observe that the
o�ine-online scheme using the BT or the IRKA method, and the decoupled controlla-
bility space are leading to the highest acceleration rates. Also, the adaptive method
using the IRKA method and the o�ine-online methods using BT or IRKA without the
decomposition in the controllability space lead to dimensions that are almost as large as
the original ones. For these cases, the acceleration rates are rather small.
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Figure 6.22: Example 9a - Position values.
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Figure 6.23: Example 9a - Position errors.
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Figure 6.24: Example 9a - Dimensions, times, and acceleration rates.
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Figure 6.25: Example 9b - Position values.
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Figure 6.26: Example 9b - Viscosity values.

Example 9b: Position and viscosity optimization Moreover, we optimize the
damper's positions and the corresponding gains simultaneously. The initial positions are
chosen to be c0 = [100, 300, 500], and the initial viscosities are g0 = [1000, 1000, 1000].
The respective positions and gains are depicted in Figure 6.25 and Figure 6.26, respec-
tively. Furthermore, the position and viscosity errors are shown in Figure 6.27. In
Figure 6.28, we depict the dimensions, optimization times, and respective acceleration
rates corresponding to the full-order and reduced surrogate models. This example shows
vividly the limitations of our method. The method (adpt RBM IRKA) that approximates
the original positions and values so that they coincide with the original ones, requires
reduced a dimension of 571 which is almost as large as the original one, and hence,
no acceleration is achieved. The method (dec off-on RBM BT) leading to the highest
acceleration rates of 83 leads to position approximations around 10% and does not ap-
proximate the viscosities su�ciently. However, we observe that all methods can give a
rough estimation of the optimal positions of the external dampers. Hence, in practice,
these could be used to try out di�erent damping position con�gurations around these
positions together with viscosity optimization approaches from this work illustrated in
Section 6.3.1 and derived in [106, 140].
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Figure 6.27: Example 9b - Position and viscosity errors.
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7.1 Summary

In this work, we have considered two main problems. The �rst has been to reduce various
types of inhomogeneous systems, which occur when considering vibrational systems. The
aim has been to reduce these systems while considering selected initial values. Therefore,
we have extended two approaches from the literature, the multi-system approach and
the extended-input approach, to the di�erent system structures. In particular, we have
introduced a BT method tailored to an inhomogeneous �rst-order ODE system with a
quadratic output equation and appropriate error bounds. Therefore, we have derived
customized observability Gramians and energy expressions that have served as trunca-
tion criteria. In addition, we have developed BT methods for inhomogeneous �rst-order
DAE systems with linear and quadratic output equations based on derived Gramians
and energy expressions, paying particular attention to the algebraic components of the
system. Again, we have derived appropriate error bounds that have served as trunca-
tion criteria. We have also introduced a BT method for inhomogeneous second-order
systems with linear and quadratic output equations, where the particular focus has been
to preserve the system structure. The approach has been based on tailored Gramians
and respective energy norms. Also, we have derived appropriate error bounds and have
illustrated the e�ciency of the methods using various numerical examples.
The second main topic of this work has been the optimization of external dampers

based on the reduction of parameter-dependent systems. We have derived RBM schemes
tailored to �rst- and second-order systems arising from vibrational systems with variable
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7 Conclusions

external dampers. More detailed, we have used and extended an o�ine-online scheme,
and introduced an adaptive scheme that has been used to build a basis that approxi-
mates the respective controllability spaces. This basis has been used to derive reduced
system response expressions that have been optimized instead of the original one of large
dimensions. Furthermore, we have derived a decomposition of the controllability space,
which has led to advantageous computational structures. Moreover, we have derived
several error estimators suitable for the di�erent methods that have described the qual-
ity of the resulting approximations of the controllability space and the systems response
values. The derived RBMs have then been used in the context of damping optimization,
where the energy response of the systems has been minimized. In this way, solving the
optimization problem has been accelerated signi�cantly, which we have illustrated using
di�erent numerical examples.

7.2 Outlook and future research directions

The concepts and methods presented in this manuscript are applicable and extendable
to various problems that are out of the scope of this thesis.
For example, in [8], the authors consider the vibration of a plate with tuned vibration

dampers added to the system. The methods from Chapter 4 could be applied to re-
duce systems of similar structures. Also, our methods from Chapter 6 are applicable to
optimize the absorbers so that particular frequencies or the maximum response to dis-
turbances are minimized. For these examples, the controllability space decomposition
is not applicable as the external attenuators are not of a low-rank structure. Another
challenge is that if the Gramians and, hence, the respective controllability spaces are of
high numerical rank, good approximations by reduced models could be unfeasible.
A further possible extension of this work concerns the evaluation of inhomogeneous

systems in non-standard form investigated in Chapter 3. The authors in [121] intro-
duce a balanced truncation method based on the shift transformation of the respective
state for inhomogeneous �rst-order ODE systems with a linear output equation. This
transformation depends on designing parameters that allow some �exibility and the gen-
eralization of the multi-system and extended-input approach. Hence, the approach from
[121] could be tailored to further inhomogeneous system structures considered in this
work to improve the reduction.
Furthermore, the investigation of second-order systems that evaluate not only the

displacement but also the velocity as an output component is an interesting research
topic for the future. One challenge would be to maintain the second-order structure while
taking into account the di�erent initial conditions, which becomes even more challenging
when quadratic output equations are used. In the multi-system approach, this would
lead to a signi�cant increase in evaluated systems, while in the extended input approach,
the derivation of meaningful second-order Gramians that evaluate the displacement and

250



7.2 Outlook and future research directions

velocity properties is nontrivial. In addition, further work might investigate the IRKA
methods for systems with the non-standard forms considered in this thesis. In particular,
describing the di�erent observability spaces corresponding to systems with a quadratic
output equation is challenging. Considering the state-to-output mappings while building
observability space approximations using the IRKA would be an intuitive extension of
the IRKA method from [60, 61, 156] and [20].
Moreover, a topic of interest is the extension of model order reduction schemes from

this work to second-order systems with a DAE as a state equation. Many approaches
have been developed in the literature that deal with second-order DAE systems. How-
ever, maintaining a second-order structure while dealing with algebraic equations is still
a problem. In particular, we need knowledge about the projecting matrices in the con-
text of DAE systems, which are mostly investigated for the �rst-order representations
of the systems.
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