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ABSTRACT

When constructing infrastructures like buildings or bridges, we need to consider the
influence of external forces such as wind perturbations, moving pedestrians, or even
earthquakes. These forces can cause vibrations or damage within the structure. With
advancements in engineering making structures lighter and more refined, they have be-
come more susceptible to large deflections and fatigue when external forces, especially
those close to the structure’s natural eigenfrequencies, come into play. To prevent these
effects, we include external dampers in the system structure. In this thesis, we aim to
find the best way to position and adjust these dampers so they can absorb the most
critical forces.

We use models to describe the respective constructions and to compute the system
responses, such as changes in the system behavior with applied external damping. How-
ever, when constructions are described in detail, the respective models are of high dimen-
sion. Therefore, evaluating the system’s behavior or optimizing dampers within them
becomes numerically very demanding. Hence, we derive and apply different reduction
methods, depending on the problem settings, generating reduced surrogate models that
are evaluated instead of the full-order model.

In this work, we consider two problem classes: The first one considers inhomogeneous
systems with a given external damper, which require suitable reduction methods. The
second challenge is to optimize the external dampers and the respective parameters
within a vibrational system, where we also need to derive reduction techniques tailored
to parameter-dependent systems.

When considering vibrational systems with a given external damper, inhomogeneous
initial conditions appear that further define the respective displacements and velocities.
Furthermore, linear and quadratic output equations are of interest, while the state equa-
tion can have a first- or second-order structure. Moreover, the state equation can include
physical constraints, which lead to differential-algebraic equations. Most of these sys-
tem structures are non-standard forms that have not been discussed in the literature,
yet they are relevant. Hence, in this work, we derive algorithms and respective error
bounds that determine surrogate models for large-scale systems in a non-standard form.
To approach the problem of reducing systems with inhomogeneous initial conditions



while considering linear and quadratic output equations, we use the superposition prin-
ciple, which allows us to decompose the system behavior into independent components.
The first component corresponds to the transfer between the input and output having
zero initial conditions. In contrast, the others correspond to the system behavior result-
ing from the initial conditions. Based on this superposition of the system, we propose
model reduction schemes that preserve the structure in the surrogate models. To this
aim, we introduce tailored Gramians for the different system structures that incorporate
the controllability and observability properties of each system component. We propose
two resulting methodologies. The first one consists of reducing each of the components
independently using a suitable balanced truncation procedure, which allows flexibility
in the order of the reduced-order models. The sum of these reduced systems provides
an approximation of the original system. The second proposed methodology consists in
extracting the dominant subspaces from the sum of Gramians to construct one surrogate
model. Additionally, we discuss error bounds for the overall output approximation and
illustrate the proposed methods using benchmark problems.

In addition, this thesis investigates the problem of optimizing dampers in vibrational
systems. The aim is to determine the positions and viscosities of external dampers in
such a way that the influence of the input on the output is minimized. We use the energy
response as an optimization criterion, whose calculation involves solving Lyapunov equa-
tions. Hence, the optimization of external dampers can be computationally demanding.
Therefore, we derive reduction techniques suitable for parameter-dependent systems that
determine surrogate models of significantly smaller dimensions. We describe reduced ba-
sis methods that approximate the solution space of the Lyapunov equations, coinciding
with the controllability space of the system, for all possible external dampers. To improve
these methods, we also decouple the solution spaces of the problem to obtain a space
that corresponds to the system without external dampers and serves as a starting point
for the reduction of the optimization problem. Furthermore, we derive spaces that cor-
respond to the different damper positions and that are used to extend the reduced basis
if necessary. This decomposition additionally provides an error estimator that evaluates
the approximation to the controllability space. Moreover, we derive an adaptive scheme
that generates the reduced solution space by adding the subspaces of interest during
the optimization process, resulting in the corresponding reduced optimization problem.
Our new technique leads to a reduced optimization problem with a significantly smaller
dimension, which is fast solvable, especially compared to the original system, which we
illustrate with numerical examples.
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ZUSAMMENFASSUNG

Beim Bau von Infrastruktur wie Gebduden oder Briicken miissen wir den Einfluss duferer
Krifte durch Fukgidnger, Windereignisse oder sogar Erdbeben beriicksichtigen. Diese
Krifte konnen Vibrationen oder Schiden innerhalb der Struktur verursachen. Durch
die Fortschritte in der Technik sind die Bauwerke leichter geworden, aber sie sind auch
anfélliger fiir starke Auslenkungen und Ermiidung der Strukturen, wenn dufere Kréfte
wirken, insbesondere, wenn diese nahe an den natiirlichen Eigenfrequenzen des Bauwerks
liegen. Um diese Effekte zu verhindern, werden externe Dampfer in die Systemstruktur
eingebaut. In dieser Arbeit wollen wir die Positionen und die Stérke dieser Dampfer
optimieren, damit sie die kritischsten Krafte abdampfen konnen.

Wir verwenden Modelle, um die jeweiligen Konstruktionen zu beschreiben und das
Systemverhalten und die Anderungen des Systemverhaltens bei angewandter externer
Démpfung zu berechnen. Wenn die Konstruktionen jedoch detailliert beschrieben wer-
den, haben die entsprechenden Modelle sehr grofte Dimensionen. Daher wird die Auswer-
tung des Systemverhaltens oder die Optimierung von Dampfern in diesen Modellen nu-
merisch sehr anspruchsvoll. Aus diesem Grund leiten wir verschiedene Reduktionsmeth-
oden her und wenden sie je nach Problemstellung an, um reduzierte Ersatzmodelle zu
erzeugen, die anstelle des urspriinglichen Modells ausgewertet werden.

Wir betrachten in dieser Arbeit zwei Problemklassen: Die erste betrachtet inhomo-
gene Systeme mit gegebenen externen Dampfern. Da diese Systeme grofte Dimensio-
nen haben, leiten wir entsprechende Reduktionsverfahren her. Die zweite Problematik
besteht darin, die externen Dampfer und die entsprechenden Parameter innerhalb eines
schwingenden Systems zu optimieren. Auch hier miissen wir Reduktionsverfahren an-
wenden, die auf parameterabhingige Systeme mit einer bestimmten Struktur zugeschnit-
ten sind.

Bei der Betrachtung von schwingenden Systemen mit gegebenen externen Dampfern
spielen auch inhomogene Anfangsbedingungen eine Rolle, da sie die Verschiebungen und
Geschwindigkeiten beeinflussen. Auferdem sind lineare und quadratische Ausgangsgle-
ichungen von Interesse, wihrend die Zustandsgleichung eine Differentialgleichung erster
oder zweiter Ordnung sein kann. Dariiber hinaus kann die Zustandsgleichung physikalis-
che Bedingungen enthalten, die zu differential-algebraischen Gleichungen fiithren. All
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diese Systemstrukturen fithren zu mehreren Systemtypen, die nicht in Standardform
sind und in der Literatur kaum beriicksichtigt wurden, aber von grofser Bedeutung sind.
Daher leiten wir in dieser Arbeit Algorithmen her, welche fiir grofe Systeme in Nicht-
Standardform reduzierte Modelle bestimmen, die das Systemverhalten approximieren.
Um mit inhomogenen Anfangsbedingungen umzugehen und gleichzeitig lineare und
quadratische Ausgangsgleichungen zu beriicksichtigen, verwenden wir das Superposi-
tionsprinzip. Dies ermoglicht es uns, das Systemverhalten in unabhingige Komponen-
ten zu zerlegen. Das erste System entspricht der Ubertragung zwischen dem Eingang
und dem Ausgang bei homogenen Ausgangsbedingungen. Die restlichen Komponen-
ten entsprechen dem Systemverhalten unter Beriicksichtigung der Anfangsbedingungen.
Auf der Grundlage dieser Uberlagerung von Systemen ist es unser Ziel, Modellreduk-
tionsverfahren herzuleiten, welche die relevanten Strukturen erhalten. Dafiir fiihren
wir makgeschneiderte Matrizen, sogenannte Gramschen, fiir jede Systemkomponente ein
und berechnen diese numerisch, indem wir die Lyapunov Gleichungen 16sen. Daraus
resultieren zwei Methoden. Die erste besteht darin, jede der Komponenten unabhéngig
voneinander durch ein geeignetes balanciertes Trunkierungsverfahren zu reduzieren, was
Flexibilitat bei den Dimensionen der reduzierten Modelle ermdglicht. Die Summe dieser
reduzierten Systeme liefert eine Anndherung an das urspriingliche System. Die zweite
vorgeschlagene Methode besteht darin, die dominanten Unterrdume aus der Summe
der Gramschen zu extrahieren, um die Projektionsmatrizen zu erstellen, die zu einem
Ersatzmodell fithren. Dariiber hinaus werden Fehlerschranken fiir die Approximation
der Ausginge diskutiert. Schlieflich werden die vorgeschlagenen Methoden anhand von
Benchmark-Problemen illustriert.

Des Weiteren wird in dieser Arbeit das Problem der Optimierung von D&mpfern in
schwingungsfahigen Systemen untersucht. Ziel ist es, die Positionen und Viskositdten
von externen Dampfern so zu bestimmen, dass der Einfluss des FKingangs auf den Aus-
gang minimiert wird. Als Optimierungskriterium verwenden wir die Energieantwort. Um
die optimalen externen Dampfer zu finden, miissen viele dieser Gleichungen gelst wer-
den. Daher kann der Minimierungsprozess sehr rechenaufwendig sein. Aus diesem Grund
leiten wir Reduktionsverfahren her, um dieses Problem zu 16sen. Um den Prozess der
Suche nach den optimalen Dampfern zu beschleunigen, schlagen wir reduzierte-Basen-
Methoden vor. Unsere Algorithmen erzeugen eine Basis, die den Losungsraum der Lya-
punov Gleichungen, der mit dem Steuerbarkeitsraum des Systems {ibereinstimmt, fiir alle
moglichen Positionen der Dampfer approximiert. Wir entkoppeln die Lésungsriaume des
Problems, um einen Raum zu erhalten, der dem System ohne externe Ddmpfer entspricht
und als Ausgangspunkt fiir die Reduktion des Optimierungsproblems dient. Dariiber
hinaus leiten wir Rdume her, die den verschiedenen Dampferpositionen entsprechen
und bei Bedarf zur Erweiterung der reduzierten Basis verwendet werden. Diese Zer-
legung liefert zusétzlich einen Fehlerschétzer, der die Approximation des Steuerbarkeit-
sraums bewertet. Dariiber hinaus leiten wir ein adaptives Schema her, das den re-
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duzierten Losungsraum durch Hinzufiigen der relevanten Unterrdume wéihrend des Op-
timierungsprozesses erzeugt, was zu dem entsprechenden reduzierten Optimierungsprob-
lem fiihrt. Unsere neuen Methoden fiihren zu reduzierten Optimierungsproblemen mit
einer deutlich geringeren Dimension, das schneller zu l6sen ist als das urspriingliche
Problem, was wir anhand numerischer Beispiele veranschaulichen.
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1.1 Motivation

When constructing large civil engineering infrastructure such as buildings or bridges,
external vibrational forces like wind perturbations or earthquakes need to be taken into
account. These disturbances can cause vibrations, deflection, or even damage in the
construction, which can be prevented by adding external dampers. Due to the continuous
improvement in engineering construction, which provides for lighter and finer structures,
corresponding infrastructures have become more susceptible to large deflections and
fatigue when external forces, with dominant frequencies close to the eigenfrequencies of
the construction, are applied. We eliminate this effect by designing dampers to remove
critical forces from the physical system. In this thesis, we investigate the problem of
optimizing external dampers in vibrational systems. The objective is to determine the
viscosities and positions of external dampers in such a way that the influence of the
input on the output is minimized using the energy response as an optimization criterion.
To model these infrastructures, we consider vibrational systems of the form

Mx(t) + D(c, g)x(t) + Kx(t) = Bu(t), x(0) =x0, %(0) = %o,

where M, D(c,g), K € R™™ are the mass matrix, the damping matrix, and the stiffness
matrix, respectively, for parameters (¢, g) € D, where D is a parameter set. The vectors
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u(t) € R™ and x(t) € R"™ represent the input and state of the system, respectively, and
Xg, Xg € R™ are the position and velocity initial conditions. Naturally, the matrices
M, D(c, g), and K are symmetric and positive semidefinite. Because of their structure,
these systems are asymptotically stable, i.e., all eigenvalues \(c, g) of the polynomial
eigenvalue problem (A(c, 9)*M+ (¢, ¢)D(c, g) + K)x(c, g) = 0 have a negative real part.
Moreover, the mass matrix M can be singular. In this case, we consider differential—
algebraic equations (DAEs) as state equations.

The damping matrix D(c, g) consists of two parts, a parameter-independent internal
damping Dj,; and a parameter-dependent external damping Dy (c, g), i.e.,

D(Cag) :Dint_'_Dext(Cag)' (11)
There are several different models for internal damping. In this work, we use a small
multiple of the critical damping defined as
1
Dy = 2a M3 (M*%KM*%> M3, (1.2)

where « < 1 and M is assumed to be nonsingular, see |34, 36]. However, the theory
presented in this work is more general and can be applied to all modal dampers, which
include, e.g., Rayleigh damping defined in |81, 155].

The external damping Dy (c, g) depends on two types of parameters. The first ones

are the damping positions ¢ = [cl, o ,Cg]T € D, C {1,...,n}*, which are stored in
the matrix F(c) € R™* The structure of the matrix F(c) depends on the damper
type so that, e.g., grounded dampers are described by unit vectors e.,,...,e., which

are concatenated to build the matrix F(c). The second parameters are the damping
gains g = [gl, e ,gg]T €D, C R‘i, which represent the viscosities of the dampers. We
assume that the viscosities g; are fixed over time and lie in given intervals [g;, g]ﬂ, for
all j = 1,...,. We encode these conditions by setting g € D,, where the parameter
set D, contains all given conditions. The different external dampers are described in
more detail for different numerical examples later in this work. The resulting external
damper is then given as

Dexi(c. 9) :=F(0)G(9)F(c)",  G(g) == diag (g1, .-, 90)-

We assume that the number of external dampers ¢ is significantly smaller than the
dimension n, i.e., { < n.

Since it is infeasible to measure and evaluate the behavior of all states individually, if
n is large, we need to define an output function. In this work, two different output types
are investigated. The first one is a linear output equation, which results in a system

Mi(t) + D(c, g)x(t) + Kx(t) = Bu(t),  x(0) = xo, %(0) = %o,

yL(t) = Cix(t) + Cox(t) (1.3)
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Figure 1.1: Structure of a second-order system with a linear output.

with matrices Cy, Cy € RP*" so that we observe the displacements by evaluating C;x(t)
and velocities by evaluating Cy%(t). In practice, we are often only interested in the
displacement properties, i.e., we set Co = 0. The system (1.3) is depicted in Figure 1.1.

The second output type considered in this work is a quadratic output equation that
is described by

Mi(t) + D(c, 9)x(t) + Kx(t) = Bu(t),  x(0) =xo, %(0) = %o,

yo(t) = [x(t)T *(t)T] M Eg;] | (1.4)

where M € R?"*?"_ These systems can be interpreted as a special class of Wiener
models. These output equations arise when investigating the variance or deviation of
the state and velocity variable from a certain reference point, which can be represented
as a quadratic function of the state. Also, when considering the potential and kinetic
energy of the system as an output, which is given by

1 1
Epor = EX(t)TKX(t), | D §x(t)TM>'<(t),

we consider quadratic output equations. Moreover, when considering, e.g., the 2-norm of
the output or some weighted norms, we measure quadratic output equations. Examples
can be found in |12, 40, 69, 70, 99, 100].

In Figure 1.2, the structure of system (1.4) is depicted, where two inputs and outputs
are added to the system to indicate the quadratic output equation.

We want to clarify that images in Figure 1.1 and Figure 1.2 deviate from the typical
used diagrams in the control engineering literature. Nevertheless, they are used in this
dissertation as they serve as a convenient tool for vividly illustrating the approaches
introduced in this work.

To simplify computations, the second-order systems in (1.3) and (1.4) can also be
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Figure 1.2: Structure of a second-order system with a quadratic output.
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Figure 1.3: Structure of a first-order system with a linear output.

written in first-order form, i.e.,

Ex(t) = Alc, 9)z(t) + Bu(t),  2(0) = 2o,

1.5
yL(t) = Cz(t) (1.5)
and
Ea(t) = Alc,)z(t) + Bult),  2(0) =z, o
yL(t) = =z(t) " Ma(t), '
respectively, with first-order matrices
1L, 0 10 L, 10 %o
€= |:O M:| ) ‘A’<C7 g) T |:—K —D(C, 9)1 ) B = |:B:| ) zZy = |:X01 )
M My
¢c=|C, C M = :
|: 1 2] ) |:M’1I‘2 M22:|
(1.7)

The inputs u(t) € R™ and the outputs y.(t) € RP, yo(t) € R are equal to those in (1.3)
and (1.4), and the state in first-order representation is z(t) € RY with N = 2n. The
structures of the two first-order systems (1.5) and (1.6) are depicted in Figure 1.3 and
Figure 1.4, respectively. In the following, we consider the systems in first-order and
second-order representations since both can be advantageous depending on the applica-
tion.
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Figure 1.4: Structure of a first-order system with a quadratic output.

Exhibiting complex dynamic behavior may result in high-fidelity models, i.e., the
dimension of the state vector n or N is large. Hence, engineering design processes become
computationally very demanding. As a remedy, we seek to employ model reduction
techniques that allow us to construct a low-dimensional model that closely resembles
the dynamic behaviors of the high-fidelity model. Our goal is to construct reduced-
order surrogate models while preserving the original structure. We consider, in this
work, parameter-independent systems as well as parameter-dependent ones.

First, we consider systems whose external dampers are already defined and are, there-
fore, parameter-independent. This situation appears, e.g., when we want to investigate
the system behavior for a given external damper. Because of the high dimension of
the original system, we aim to derive a reduced model that approximates the effect of
the input and the initial condition on the output. There are several methods to reduce
dynamical systems in the literature. However, we consider inhomogeneous systems with
linear and quadratic output equations. Since most of these systems are not considered
in the literature so far, in this work, we derive reduction methods tailored for these
non-standard system structures. Therefore, we derive system matrices that are called
Gramians and encode the controllability and observability behavior. These Gramians
are used to identify significant controllability and observability subspaces, which de-
fine the reduced surrogate models. Moreover, we derive respective error bounds for the
presented methods, which are used to evaluate the quality of the system approximations.

Second, we consider the problem of finding optimal external dampers, for which we
have to investigate parameter-dependent systems. These parameter-dependent systems
need to be evaluated at every step of the optimization process. Our goal is to design
the damping values based on the optimization of an objective function J(c,g). For a
given vibrational system, we determine the best damping D(c, g) that ensures optimal
attenuation of the output y, or y,. The Lo-norm of y, or y, is bounded by the system
response and defined as

Jr(c,g9) = tr(€P(c,g)€")
when we consider a system (1.3) with a linear output equation, and

dqlc, g) = tr(MP(c, g)MP(c, g))
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when considering the system (1.4) with a quadratic output equation. The matrix P(c, g)
is the controllability Gramian that spans the controllability space of both systems (1.3)
and (1.4). We aim to optimize the damping values in such a way that the system
response is minimized. This criterion was also used in [25, 60, 140]. The Gramian
P(c, g) is computed by solving the continuous-time Lyapunov equation

Alc, 9)P(c, )& + EP(c,g)A(c,g)T = —BB". (1.8)

To find the damping gains (¢, g) € D that minimize the energy response J(c, g), we have
to solve a Lyapunov equation (1.8) in every step of the optimization method. Since the
Lyapunov equation solves are computationally very demanding if the matrices are of
large dimensions, the minimization process would lead to high computational cost and,
hence, be inefficient or unfeasible in a large-scale setup. To accelerate the optimization
process, we propose new reduction methods. We derive offline-online methods to gener-
ate bases spanning an approximation to the solution space of the Lyapunov equations for
all possible positions and viscosities of the dampers. Furthermore, we derive an adaptive
scheme that generates the reduced solution space by adding the subspaces of interest.
Then, we define the corresponding reduced optimization problem that is solvable in a
reasonable amount of time. Also, we decouple the solution spaces of the problem to
obtain a space that corresponds to the system without external dampers and serves as
a starting point for the reduction of the optimization problem. In addition, we derive
spaces corresponding to the different damper positions, which are used to expand the
reduced basis if needed. To evaluate the quality of the basis, we introduce different error
estimators. Our new techniques produce reduced optimization problems of significantly
smaller dimensions, which are faster to solve than the original problem.

1.2 Literature overview

Vibrational systems and their contained dampers have been studied in the last decades,
for example, in |14, 49, 55, 71, 73, 76, 85, 96, 153|, where external dampers are considered
in systems that already contain internal damping of small magnitude. In this work, we
consider model reduction schemes for parameter-independent and parameter-dependent
vibrational systems.

There is a vast amount of literature that considers parameter-independent systems.
For ordinary differential equation (ODE) systems with a linear output equation and
homogenous initial conditions, there exist several methods to construct reduced-order
models, e.g., singular value-based approaches such as balanced truncation [26, 93, 138]
and Hankel norm approximations [56]. Also, the authors in [20] extend the BT method
for systems with a quadratic output equation. Moreover, moment matching methods
[5, 60, 84] and Krylov subspace methods, e.g., the iterative rational Krylov algorithm
(IRKA) [26, 51, 60, 61] are used frequently. An overview of these methods is given, e.g.,
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in [5, 22, 23, 26]. Moreover, the authors in [13, 15, 66, 121] provide methods to reduce
systems with inhomogeneous initial conditions.

All methods mentioned above treat systems with a nonsingular matrix €. Therefore,
they are not directly applicable to systems with a DAE as a state equation. This issue
is addressed in, e.g., [33, 61, 91, 130]. Existing methods that deal with the DAE case
include interpolatory projection methods [1-3, 61] and balancing-based methods [28, 67,
91, 130, 131]. In this work, we mostly focus on a balancing-based method. DAE systems
require the corresponding projection matrices that describe the deflating subspaces. Such
projection matrices are difficult to form explicitly. However, the structure of the DAE
systems is often known and can be used to define and implicitly apply the projection
matrices in practice. For details, we refer to [28, 31, 67, 116, 133]. Also, the classic
BT method is not directly applicable to the case of quadratic output equations since
the observability space is not of the same form as in the linear output case. Hence,
the observability Gramian, defined in [91], can not be used in this setup. In [20], the
authors derived Gramians corresponding to ODE systems (meaning € = I in (1.5))
with quadratic output equations. However, the methodology proposed in [20] cannot
be directly applied to DAEs due to the singularity of the matrix €. Therefore, there
is a necessity to modify BT to incorporate the differential-algebraic structure, which is
investigated in this dissertation.

For second-order systems, there exist different tailored model order reduction meth-
ods. BT and balancing-based approaches for second-order systems were introduced in
[44, 92, 112]. Also, Krylov methods tailored for second-order systems were derived in
[17, 134] and generalized to rational interpolation in [9, 10, 53, 149]|. Overviews of these
methods can be found, e.g., in [43, 117]. However, none of these methods considers
inhomogeneous systems.

To deal with parameter-dependent systems, in this work, we apply the reduced basis
method (RBM) and modifications of it. We reduce the Lyapunov equation in (1.8) to
derive a surrogate equation that is solvable in a reasonable time. The RBM was first in-
troduced to reduce parameter-dependent partial differential equations, see [68, 109, 150~
152]. Later, it was used for Riccati equations [119], and, finally, the RBM was applied
to Lyapunov equations by Son and Stykel in [126]. In [108], the authors use the RBM
to reduce parametric differential-algebraic systems.

We aim to apply the RBM to optimize the effect of the input on the system out-
put. Therefore, we want to choose external dampers that stabilize the system and
shift eigenfrequencies so that possible external loads do not lead to resonances. The
problem of finding optimal external dampers was widely investigated in the literature,
see |55, 71, 74, 95, 135, 153]. In this work, we use the RBM to accelerate the optimiza-
tion process. In the literature, other approaches were applied to the problem of damping
optimization. Depending on the application, different criteria are chosen to quantify the
stability of systems and the response to external disturbances. When systems (1.3) with
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B = 0 are considered, then the spectral abscissa or the total average energy are used
as described in [36, 52, 97, 144, 147]. In [35, 142, 148], the authors present different
reduction techniques to optimize the related problem of minimizing the total average
energy for the system (1.3) with no input.

In the case B # 0, as considered in this work, external disturbances are taken into
account, which potentially plays an important role in real-life scenarios. In these cases,
the average displacement amplitude can be evaluated, which minimizes the square of
the norm of the displacement x(t) averaged over a certain time period, see [82, 145].
Another criterion used in this work is the average energy amplitude corresponding to
the minimization of the system response, J.(c,g) or dq(c, g), of the system describing
the input-to-output behavior in the frequency domain. This optimization criterion was
also used in 25, 140].

Moreover, the authors in |25] utilize the dominant pole algorithm to build a reduced
minimization problem that is quickly solvable. In [140], an efficient optimization ap-
proach using structure-preserving parametric model reduction based on the iterative
rational Krylov algorithm (sym2IRKA) is used to derive an efficient optimization algo-
rithm. In [16], a sampling-free approach is presented that reduces the system (1.3) for all
admissible parameters. Alternatively, in [37, 141], the authors optimize the H,.-norm
of the systems constraining the Ly-norm of the output y; of the corresponding system,
which can be interpreted as the worst-case amplification of the output energy caused
by an input signal. Most of the established methods consider the optimization of the
damping viscosities.

The optimization of the discrete damper positions is still a challenging problem, espe-
cially for large systems, which has been studied in |34, 50, 50, 62, 62, 75, 136, 139, 143|.
In particular, in [34, 139], the authors describe the optimization using a discrete-to-
continuous approach, which is modified and used in this work.

1.3 Goal of this thesis

In this work, we consider the problem of model reduction and optimization of external
dampers for large-scale vibrational systems. Therefore, the two main goals of this work
are the following.

System theory and model reduction methods for systems in non-standard form
The model order reduction of parameter-independent systems is needed to evaluate the
behavior of (damped) systems, where we consider BT as well as the IRKA method. We
investigate first-order ODE systems, first-order DAE systems, and second-order ODE
systems with inhomogeneous initial conditions. Also, we consider systems with linear
and quadratic output equations. In this work, we derive BT methods for systems in these
non-standard forms that appear when considering vibrational systems. In particular,
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the novelties of this work include the introduction of BT methods for inhomogeneous
ODE systems with quadratic output equations, inhomogeneous DAE systems with linear
and quadratic output equations, and inhomogeneous second-order ODE systems with
linear and quadratic output equations. Therefore, we derive respective suitable system
representations, tailored Gramians for the different system types, the corresponding
energy interpretations, and error bounds that describe the quality of the approximations
based on the respective Gramians. We demonstrate the effectiveness of the derived
algorithms by applying them to some numerical examples.

RBM and damping optimization for vibrational systems We also solve the prob-
lem of reducing parameter-dependent systems that arise when optimizing positions and
viscosities of external dampers in vibrational systems. Therefore, we apply RBM ap-
proaches that generate a basis that spans an approximation of the controllability space
of the system, which defines a reduced surrogate model. First, we use the offline-online
RBM introduced in [126] and extend this method to second-order systems. Moreover,
we derive a decoupling of the controllability space of the respective systems. This de-
coupling can accelerate our RBM for first-order and second-order systems. Afterwards,
we tailor the derived RBM schemes to be more suitable for the damping optimization
process in vibrational systems. In addition, we derive an adaptive scheme in which
we enrich the basis within the optimization process. Therefore, prior knowledge of the
assumed parameters is not necessary. Additionally, we derive several error estimates
suitable for the different methods.

For both topics, similar system theoretical considerations need to be done beforehand.
Hence, first, we investigate the three types of dynamical systems (first-order ODE sys-
tems, first-order DAE systems, and second-order ODE systems) and their controllability,
observability, and the corresponding system energies to have a theoretical foundation for
the rest of the thesis.

1.4 Overview of the author’s contributions

The theory and results presented in this thesis have been partially published in [105—
107]. The theoretical results from [105, 106] are part of Chapter 3, and the resulting
reduction methods are introduced in Chapter 4. The main contributions from [107] are
described in Chapter 5 and Chapter 6. All of the chapters presented in this thesis are
extended versions of these papers.

In [105], the author derives a BT method that reduces DAE systems with quadratic
output equations. New proper and improper Gramians are derived with suitable en-
ergy interpretations that result in a BT method. Also, error bounds are determined to
quantify the quality of the system approximation. This work is a natural extension of
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the theory in [20], where ODE systems with quadratic output equations are considered.
In this thesis, [105] is extended to DAE systems with quadratic output equations and
inhomogeneous initial conditions.

Moreover, in [106], the authors investigate inhomogeneous second-order systems with
nonzero initial conditions. They derive tailored Gramians, energy functionals, and error
bounds, which result in a BT method that reduces second-order systems. In this thesis,
we also derive a BT scheme that reduces inhomogeneous second-order systems with a
quadratic output equation, which is an extension of the published work in [106].

In [107], the authors derive a reduction scheme to optimize the viscosities of some ex-
ternal dampers in vibrational systems. Therefore, they reduce the respective parametric
homogeneous second-order systems using the RBM. Together with an error estimator,
this method exceeded the acceleration rates from [140], where the authors use an IRKA-
based reduction scheme. This method was the fastest so far in the literature. The
RBM-based method from [107] is extended in this dissertation. Hence, we also consider
second-order systems with quadratic output equations.

Finally, in collaboration with Matea Ugrica, Ninoslav Truhar, and Peter Benner, the
author derived a decoupling in the controllability space of parametric homogeneous
second-order systems that is used to derive approximations of the controllability spaces
of the respective systems. These controllability space approximations are used to derive
reduced parametric systems in which the external dampers’ viscosities and positions are
optimized. Also, these theories are extended to systems with quadratic output equations
in this work.

1.5 Outline

This work is organized as follows. In Chapter 2, we review existing theories and methods,
including system theoretical concepts, resulting model reduction schemes, and solution
strategies for Lyapunov equations as part of the reduction methods.

Afterwards, in Chapter 3, we derive different system theoretical concepts for dynamical
systems in a non-standard form. They include transfer functions, system equivalences,
corresponding Gramians, and the respective energy interpretations. These concepts are
used throughout the remaining work.

In Chapter 4, we study model reduction schemes for different parameter-independent
system types, in particular, BT and IRKA methods, where the main focus lies on the BT
method. We extend existing model reduction schemes to systems in non-standard form
and derive respective error estimators. Using some numerical examples, we demonstrate
the efficiency of these methods. These methods are applied in the context of damping
optimization when we have a trial external damper for which we aim to analyze the
respective system behavior.

In Chapter 5, we revisit and extend the RBM to the different system structures.

10
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Moreover, we derive a decoupling of the controllability space, which is used to accelerate
the basis-building process. For the two resulting RBM methods, we also derive suitable
error estimators.

Afterwards, in Chapter 6, the RBM methods are used to reduce the problem of finding
optimal external dampers concerning the system response. Moreover, we derive an adap-
tive scheme that enriches the respective basis within the optimization process. Hence, we
can ensure that no unnecessary information is contained in the reduced basis. Moreover,
we extend this approach by a controllability space decomposition that accelerates the
methods. Moreover, this decoupling leads to an RBM optimization process that does
not require a given parameter set. Again, we derive suitable error estimators and apply
the resulting optimization methods to some numerical examples.

Finally, in Chapter 7, we conclude the work and give an outlook on future work
perspectives.

11






CHAPTER 2

MATHEMATICAL BACKGROUND

Contents
2.1 System theoretical concepts . . . . . . . ..o 14
2.1.1 First-order ODE systems . . . . . . ... .. .. ... .. ..... 14
2.1.2  First-order DAE systems . . . . . . .. .. ... ... ... ... 18
2.1.3 Second-order ODE systems . . . . .. ... ... ... ...... 23
2.2 Model order reduction methods . . . . . . .. ... oo 25
2.2.1 Balanced truncation . . . . .. .. ... L0 26
2.2.2  Tterative rational Krylov algorithm . . . .. .. .. .. ... ... 36
2.3 Lyapunov equations . . . . . . . . . . ... 43
2.3.1 Alternating direction implicit method . . . . . . . . ... ... .. 44
2.3.2  Sign function method . . . . . . ..o oo 47

In this chapter, we give an overview of various mathematical theories and methods that
form the mathematical background of this thesis. First, we describe system properties
and theoretical concepts in Section 2.1.1 for different system structures. Afterwards, we
present model reduction methods for these classes of systems in Section 2.2. One of the
reduction methods, balanced truncation, uses solutions of Lyapunov equations to identify
the dominant controllability and observability subspaces. Therefore, in Section 2.3, we
describe existing numerical methods to solve Lyapunov equations, especially for those
with large dimensions.

In the remaining course of this thesis, the theoretical concepts and methods from this
chapter are extended to systems with inhomogeneous initial conditions and to systems
with quadratic output equations. These extended concepts are needed to solve the
problem of optimizing external dampers in mechanical systems presented in Chapter 1.

13



2 Mathematical background

2.1 System theoretical concepts

In this section, we consider several classes of systems with linear output equations and
provide an overview of the respective basic system theoretical concepts. These will
be used in the remainder of this work to identify significant states and the resulting
dominant controllability and observability spaces corresponding to these systems. The
concepts introduced in this section were originally derived in the field of control theory,
see [4, 88, 127, 159], where the aim is to provide a mathematical implementation of
real-life dynamical systems through analysis of input-output behavior.

We analyze the systems presented in Chapter 1 that arise from mechanical systems
considered in the context of damping optimization. We study parameter-independent
systems, which means we consider the second-order system (1.3) for a fixed external
damper D(c,g) = D. Also, the resulting first-order system (1.5) is assumed to be
parameter independent such that A(c,g) = A. Moreover, we allow the matrix &€ to
be singular in systems with first-order structure (1.5). This situation occurs when the
mass matrix M of the second-order system (1.3) is singular. In this case, we consider
systems with differential-algebraic equations (DAEs) as state equations. However, we
only consider the DAE case in its first-order representation, as considering second-order
descriptor systems is beyond the scope of this work. For system theoretical concepts for
second-order DAE systems, we refer to the work [86] that was further used and extended
in [1, 30, 32, 77| for particular index classes.

The different system structures are analyzed separately below. In Section 2.1.1, we
consider system theoretical aspects of first-order systems with an ODE as a state equa-
tion. In Section 2.1.2, we investigate first-order systems with a DAE as a state equation,
and, finally, in Section 2.1.3, we study second-order systems.

2.1.1 First-order ODE systems

In this subsection, we repeat selected, well-known system theoretical concepts for first-
order systems, that are dynamical systems of the form

Ez(t) = Az(t) + Bu(t), z(0) = 2y,
yu(t) = Cz(t),

where €&, A € RVN B ¢ RV and € € RP*Y, The matrix € is assumed to be
nonsingular so that the state equation in (2.1) is an ODE. The input, the state and the
output are u(t) € R™, z(t) € RY, and y, () € RP, respectively, with u € Ly([0, 00), R™).
The theory repeated in this section is based on [4, 88, 127, 159]. The solution of the
first-order state equation in (2.1) is equal to

(2.1)

t
z(t) = / AT ET By (T)dr + e Ay, (2.2)
0
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2.1 System theoretical concepts

From the state trajectory, stability properties can be derived, i.e., convergence to an
equilibrium state when no external force is acting. Equation (2.2) also describes the
controllability behavior of the system that indicates which states are reachable. Both
properties are significant for the analysis of the system. Moreover, the observability of
(2.1) is of interest in this work, which describes whether states are uniquely identifiable
based on the output observations. Hence, we define these properties formally in the
following.

Definition 2.1:
The system (2.1) is called

1. asymptotically stable if all the solutions z(t) = & Atz of the linear ODE
Ez(t) = Az(t)
satisfy lim;,o z(t) = 0 for all initial states z(0) = zo;

2. controllable if for all initial conditions z(0) = zo € RY and all z; € RY there exists
a time t; > 0 and a control function u € Ly(]0, 00), R™) in the set of all admissible
inputs so that the state trajectory in (2.2) yields

Z(t1> = Z;

3. observable if for two solution trajectories z(-) and z(-) from (2.2) resulting from
the same input u € Ly(]0, 00), R™) it holds that

Cz(t) = Cz(t) for all t>0
implies that z(t) = z(t) for all t > 0. O

We call a system to be in minimal realization if it is controllable and observable. Since
it is difficult to check these properties by definition, we will repeat some equivalent
properties that will help us to characterize the dynamical system (2.1).

Theorem 2.2:
Consider the system (2.1). The following equivalences hold.

1. The system is asymptotically stable if and only if all eigenvalues of the matrix
pencil AE — A lie in the negative complex half-plane, that means if

AE, A) CcC :={1eC | Re(N) <0}.
2. The system is controllable if and only if

rank ([€7'B £7'AET'B ... (8A)NLETIB]) = N,
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2 Mathematical background

3. The system is observable if and only if

¢
cE'A

rank

eE AN 0

After introducing the basic system properties, we derive some tools used to describe the
overall controllability and observability behavior. For this purpose, we study the system
dynamics in the frequency domain, which means we apply the Laplace transform to the
system (2.1) with zero initial conditions, which leads to the state equation

Z(s) = (s& — A)'BU(s),

where Z and U denote the Laplace transforms of z and u, respectively. Inserting Z(s)
into the output equation in the frequency domain with Y, being the Laplace transform
of y. results in

Y. (s) = €(s& — A) ' BU(s). (2.3)

Based on this frequency domain representation of the output, we can define the systems
transfer function that encodes the input-to-output behavior.

Definition 2.3:
Consider the system (2.1). Then the corresponding transfer function is defined as

G.(s) = C(s& —A) B, (2.4)
¢

We use the following definition to describe the system behavior of (2.1) concerning its
transfer function.

Definition 2.4:
Consider the system (2.1). The corresponding transfer function G, (s) as defined in (2.4)
is called

a) strictly proper if im,,_, || Gy (iw)|2 = 0,

b) proper if limy,_, ||Ge(iw)|2 < oo,

¢) improper if lim,, . ||G.(iw)]|2 = oo. O
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2.1 System theoretical concepts

In the following, we introduce some matrices, the so-called Gramians, which provide
information about the controllability and observability spaces of the system, including
all reachable and observable states. To give an intuition of how these Gramians are
defined, we first introduce the input-to-state mapping and the state-to-output mapping

c(t) ==& e B and o.(t) = Cef g1

We add the subscript L to the state-to-output mapping o.(s) to emphasize that we
consider a linear output equation since later in this work, we also investigate systems
with quadratic output equations. Since the mappings ¢ and o, encode the reachable
and observable states of the system, the integration over the entire time domain provides
the Gramians that span the respective spaces.

Definition 2.5:
Consider the asymptotically stable system (2.1). The respective controllability and ob-
servability Gramian are defined as

P = / T Mg g RTE T AT Ty
0 (2.5)

Q, ::/ A ETTETEE ALy O
0

As stated, e.g. in [4], these Gramians are computed by solving the Lyapunov equations
APET + EPAT = —BBT, ATQ.E+&TQ A =-C"¢, (2.6)

where £7Q, &' = Q,. The Gramians introduced in (2.5) are used in the next section
to identify dominant subspaces and derive respective reduced surrogate models that
approximate the input-to-output behavior of the original system (2.1) described by the
transfer functions introduced in (2.4). We recall the definition of Hardy spaces, the
corresponding scalar products, and norms that we utilize to quantify the output errors
between the original system and the reduced approximation by evaluating the respective
transfer functions. The first Hardy space, we consider, is the H},™-space that is defined
as

FHE™ = {9 :Ct — CP*™ : G is analytic in C* and / 1G (iw)|[pdw < oo}. (2.7)
Its scalar product is
1 [e.9]
(H,G)g, = o tr (H(iw)"G(iw)) dw
™ —0oQ

17
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and the resulting norm is

1 1 [ 3
1Gllse, == (G.G)3, = <%/ ||9(iw>||§dw)

This norm provides an upper bound on the L, -norm of the output, which character-
izes the system’s response to an input, as shown in the following proposition from [4,
Proposition 5.2].

Proposition 2.6:
Consider the system (2.1) with the corresponding transfer function G, (s) € H5*™. Then
it holds

Y1z < 1ISellsc [0llz, 0

We see that the JHy-norm of the transfer function serves as a criterion to estimate the
maximal output. This output bound was used in the context of damping optimization
in |25, 107, 140]. We choose this particular bound if we want to limit or minimize the
maximum deflections, and therefore consider the L..-norm of the output.

2.1.2 First-order DAE systems

In this subsection, we consider differential-algebraic systems that are of the structure

Ea(t) = Az(t) + Bu(t),  2(0) =z,

y. (1) = €a(t), (28)

with matrices as in (2.1) and a singular matrix €. Hence, the state equation contains
differential equations as well as algebraic ones. These systems arise when modeling
industrial processes, e.g., electrical circuits, thermal and diffusion processes, multibody
systems, and certain discretized partial differential equations [39, 41]. Throughout this
work, the pencil AE — A is assumed to be regular, i.e., the polynomial det(\E — A) is
not identically zero.

To deal with differential-algebraic systems, we first repeat the Weierstrass canoni-
cal form (WCF). According to [79], there exist matrices W and T that transform the
differential equation of the system (2.8) into WCF, that is
B,

J 0
0 In.

Iy, 0

e-w |l N

]T, A:W[ ]T, B-—W (3:[61 @]T

2

(2.9)

where Ny and N, are the numbers of the finite and infinite eigenvalues of the matrix
pencil (A, E). The matrix J € R™*" represents a Jordan block associated with the
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2.1 System theoretical concepts

finite eigenvalues, and N € RN*Neo ig nilpotent of nilpotency index v. Typically, the

index v is referred to as the indez of the system (2.8) that is also called the Kronecker

indez. In practice, for large-scale systems, we do not calculate this transformed form of

the system explicitly. Based on this form we derive certain theoretical concepts.
Moreover, we define the matrices

Iy, 0
0 0

Iy, 0

_ -1
Pr=1 { 0 0

]T and Plzw{ ]W‘l (2.10)

that are the spectral projectors onto the right and left deflating subspaces of the pencil
AE — A, corresponding to the finite eigenvalues, that describe these subspaces. However,
such projection matrices are challenging to form explicitly. Alternatively, approaches,
as introduced in [89], can be used to derive the deflating subspaces, which is numerically
unfeasible when large-scale systems are considered as the respective computations in-
clude several matrix decompositions, also of dense matrices. Even if one manages, they
can destroy the sparsity of the original matrices and, therefore, increase the computa-
tional burden. However, the structure of the DAE systems is often known and can be
used to define, and implicitly apply the projection matrices in theory without the need
of explicitly forming or multiplying by these projection matrices. For details, we refer

to [31, 67, 116, 133].
By multiplying the system (2.8) from the left by W1 and replacing z(¢) =: T~* [28 ] ,

we obtain the following system in WCF

z1(t) = Jz1(t) + Byu(t), z1(0) = 21,

_ (2.11)
NZQ(t) = Zg(t) + BQU(t), ZQ(O) =1Z30-

The system (2.11) provides the decoupled differential and algebraic states z;(t) and zy(t)
that are

v—1

t
z1(t) = / B (T)dT + ¢z, z(t) =Y -NFBu® (1), (2.12)
0

k=0

where u®)(¢) describes the k-th derivative of the function u € €“71([0, 00), R™) evalu-
ated in the time variable ¢ where we assume that the input is sufficiently differentiable.
Furthermore, we define

et 0
0 0

0 0

Falt) =T | 0 N

]W‘l and  Fn(k) ::T‘l{ ]W‘l (2.13)

and transform z,(t) and z,(t) into the original state space of system (2.8) to obtain the
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2 Mathematical background

differential and algebraic states

2,(t) = T~ lzlét)] _ /0 Syt — ) Bu(r)dr + s ()€ o,

0 v—1 (2.14)
zi(t) = T [@w} = g:;N(k;)Bu(’“) (t)

with z(t) = z,(t) + z;(t) and z,9 = P,zo. We see that for the improper state zy(¢), the
initial conditions need to satisfy

v—1

2,(0) = Y —N*Byu®(0)

k=0
to ensure solvability, that is, an initial state zo = z(0) needs to satisfy

v—1

(Iy = Py)zo = Y _ Fn(k)Bu®(0). (2.15)

k=0

If the system fulfills this condition, it is called consistent. Note that the Weierstrak-
canoncial form will only serve as a tool for analysis, but will not be computed in practice
as its numerical determination is known to be difficult.

According to controllability and observability for ODE systems, introduced in Sec-

tion 2.1.1, we introduce here the concepts of C-stability, C-controllability, and C-observability

that were defined in [129, 130].

Definition 2.7:
The system (2.8) is called

1. C-stable if it has a regular matrix pencil (A, €) and all the finite eigenvalues of
AE — A lie in the open-left half-plane C~ := {\ € C | Re()\) < 0}.

2. C-controllable (completely controllable) if

rank ([8 B]) =N and rank ([)\8 - A %]) = N for all finite A € C.

3. C-observable (completely observable) if

rank ({ED =N and rank ([Ag _ AD — N for all finite \ € C.

¢ %
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2.1 System theoretical concepts

We can also derive the transfer function for the DAE system (2.8), given that the matrix
pencil (A, E) is regular. Since the input-to-output behavior is invariant under transfor-
mation, we use the system in WCF from (2.11) to define G, (s) = G, ,(s) + Goi(s) with

GLp(s) = él(sINf ~ ) 'By, GLi(s) := Co(sN — Iy ) 'B, (2.16)

where G, , is the strictly proper component of the transfer function and Gy ;(s) is called
the polynomial component. Summing over both transfer function components yields the
following definition.

Definition 2.8:
Consider the system (2.8) with a regular matrix pencil (A, E). Its transfer function is
defined as

G.(s) = C(s& —A) "B, O

To describe the properties of the system related to this transfer function, we can apply
the system theoretical concepts introduced in Definition 2.4 and Proposition 2.6. For
more details, we refer to [79, 91, 130].

As for the ODE case, we can derive controllability and observability Gramians corre-
sponding to the proper and improper part of the system as introduced in [91] based on
the input-to-state mappings in the time domain

cp(t) =F;(t)B and ci(k) = Fn(k)B.

The corresponding proper and improper controllability Gramians result when integrating
over the entire time domain and summing over all indices K = 0,...,v — 1, which leads
to the following Gramian definition.

Definition 2.9:
Consider the C-stable system (2.8). The corresponding proper and improper controlla-
bility Gramians are defined as

o v—1
P / F3(t)BB F(1)"dt,  Pri= > Fn(k)BB Fu(k)" (2.17)
0 k=0 <>

The ranges of the matrices P, and P; provide the controllability spaces associated with
the states z,(t) and z;(t), respectively. Furthermore, inserting the definitions of Fy(t)
and Fn(k) into (2.5) yields

P, O 0 O
_ -1 |1 -T e T
P, =T [0 0] TT, P =T [0 PJ T (2.18)
where P, := fooo eJt]A?;l]TD);FeJTtdt and P, := Z;é Nk]§2]§g(Nk)T are the controllability

Gramians corresponding to the states in (2.12) with matrices from (2.9). Using the
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controllability Gramians, we can characterize the hard-to-reach or unreachable states
that play an important role in the reduction of the system. To compute the Gramians
we use that P, and P; defined in (2.5) are the unique solutions of the following projected
continuous-time and discrete-time projected Lyapunov equations

EP AT + APET = -PBB'P/, P, =P.P,Pl,
APAT —EPET =(1-P)BBT(1-P)7, 0 =P, PPl
To describe the observability behavior of the DAE system (2.8), we derive the corre-
sponding state-to-output mappings
0,(t) = CFy(1) and oi(k) = CFn(k)

that are used to derive the respective observability Gramians by integration over the
entire time domain and summation over all indices.

Definition 2.10:

Consider the C-stable system (2.8). The corresponding proper and improper observability
Gramians are defined as

(2.19)

o0 v—1
Q= / Fyt)TCTCFy(t)dr, Q, ;= ZS’N(l@)TGT(*Z&"N(k). (2.20)
0 k=0 O
We insert the definitions of Fy and Fy from (2.13) to derive
wT | Qi 0] 1 _w-T|0 0 -1
w0 P, mwt ) O lwo oo
where Q2 = [° eJTtélTéleJtdt and Qo = Z;é(Nk)TGQTéQNk, with matrices from

(2.9), are the observability Gramians corresponding to the states z;(t) and z,(t) defined
in (2.12). This equation describes the connection between the Gramians of the subsys-
tems in the Weierstrafs-canonical form corresponding to the states z;(¢) and z,(t) and
the Gramians corresponding to the original state spaces.

To compute the Gramians Q, , and Q, ; we utilize that they are the unique solutions
of the following continuous-time and discrete-time projected Lyapunov equations

g, A+ ATQ £ =-PleTep,, Q,,=PlQ P,

AToA - €19, ;€ = (1-P)'€'e1-P)), 0=Pr'Q, P,.

As in the ODE case, the Gramians encode the reachability and observability behavior
as stated in the following theorem from [129].

Theorem 2.11:
Consider a C-stable DAE system of the form (2.8). Then the following equivalences
hold.

a) The system is C-controllable, if and only if P, + P; is positive definite.

(2.22)

b) The system is C-observable, if and only if Q, , + Q, ; is positive definite. O
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2.1 System theoretical concepts

2.1.3 Second-order ODE systems

Finally, we consider the second-order system

Mx(t) + Dx(t) + Kx(t) = Bu(t), x(0) =x0, %(0) = %o,

yi(t) = Cix(t) + Cox(t) (2.23)

with a mass matrix M € R™*", a damping matrix D € R"*", a stiffness matrix K &€
R™™ an input matrix B € R™™, and output matrices C;, Cy € RP*", We assume
that the matrices M, D, and K are symmetric and positive semi definite, so that the
state equation in (2.23) is an ODE. The input, the state, and the output are given as
u(t) € R™, x(t) € R, and y.(t) € RP, respectively.

One possible way to handle second-order systems is to transform them into first-order
systems of the form (2.1) with first-order matrices

€ = {(I) 18[] A= {_OK _ID}, B .= [g}, and €:=[C; Cy|. (2.24)

Then, the respective first-order system has the same input-to-output behavior as the
second-order system and hence can be analyzed instead. The disadvantage of the first-
order representation is that the second-order structure, which characterizes the physical
properties, is not retained. Therefore, in this subsection, we repeat the system theoretical
results for second-order systems introduced in [43, 44, 112]|. According to controllability
and observability for first-order ODE systems, introduced in Section 2.1.1, we define
the concepts of asymptotic stability, controllability, and observability as introduced in
[112]. Those are equivalent to the asymptotic stability, controllability, and observability
of their first-order representation with matrices (2.24).

Definition 2.12:
The system (2.23) is called

1. asymptotically stable if all zeros of the matrix polynomial \>M + AD + K lie in
the open-left half-plane C~ := {A € C | Re()) < 0}.

2. controllable if

rank([A2M+)\D+K B]):n forall )\ e C.

3. observable if

rank ([A>M?* +ADT + KT CT + AC]]) =n forall XeC. O
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To investigate the input-to-output behavior of the system and the respective control-
lability and observability properties, we apply the Laplace transform to the homogenous
system (2.23), i.e., we set x(0) = 0, x(0) = 0, which yields

Y. (s) = C1X(s) + C.X(s) = (Cy + 5Cy)A(s)BU(s)

where A(s) := (s?M + sD + K)~!. The corresponding transfer function that encodes
the input-to-output mapping is extracted and defined in the following.

Definition 2.13:
Consider the second-order system (2.1.3). Its transfer function is defined as

G.(s) :=(Cq + sC2)A(s)B (2.25)
where A(s) := (s*M + sD + K) 1. O

To describe the system properties that result from that transfer function, we can apply
the system theoretical concepts introduced in Definition 2.4 and Proposition 2.6.

We can derive systems Gramians tailored for systems of second-order structures de-
scribing the controllability and observability properties. First, to describe the control-
lability behavior, we introduce the input-to-state mappings in the frequency domain
corresponding to the displacement (position) and to the velocity, which are

Cros(s) = A(s)B and Cral(s) = sA(s)B.

As described in [43, 112], we can derive the respective second-order controllability Grami-
ans as introduced in the following.

Definition 2.14:
Consider the asymptotically stable system (2.23) and define A(s) := (s?M +sD+K)™1.
Then the respective position and velocity controllability Gramians are defined as

vel — o ~

1 (o ¢]
Ppos = o / A(iw)BBYA (iw)"dw, P w?A (iw)BBY A (iw)"dw.

(2.26)
O

Since we consider second-order Gramians, the methods from Section 2.1 can not be
applied to compute them. However, one can show that P, and Py are the upper-left
and the lower-right block, respectively, of the first-order controllability Gramian P as
defined in (2.5) with matrices as introduced in (2.24), see [44].

To derive the second-order observability Gramians, we extract the state-to-output
mappings from G, as defined in (2.25)

Opos(s) = C1A(s)(sM + D) — C2A(s)K, Oyel(s) = (Cy1 + sCy)A(s).

o0

These mappings are now used to define the respective second-order Gramians by inte-
grating over the entire frequency domain, which leads to the following definition.
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2.2 Model order reduction methods

Definition 2.15:
Consider the asymptotically stable system (2.23) and define A(s) := (s*M+sD+K) 1.
Then the respective position and velocity observability Gramians are defined as

1 o0
Qui = 57 [ (M +D)'Aiw)C] ~ KA(iv)'CH)

—0o0

(CA(iw) (iwM + D) — CoA(iw)K)dw,  (2.27)
QL,vel = %/ A(IUJ)H(Cl + iWCQ)H<C1 + 1wC2)A(1w)dw <>

These Gramians are the upper-left and the lower-right block of the first-order observ-
ability Gramian Q, from (2.5) with matrices as defined in (2.24), see again [44].

2.2 Model order reduction methods

Engineering applications such as modeling electrical circuits, structural dynamics, vi-
bration analysis, thermal and diffusion processes, or multibody systems lead to different
types of dynamical systems. Models that exhibit complex dynamic behavior or are de-
rived from the discretization of PDEs are often high-fidelity models, i.e., the dimension of
the state vector is large, lead to computationally expensive engineering design processes.
As a remedy, we seek to employ model reduction techniques that allow us to construct a
low-dimensional model that closely resembles the dynamic behaviors of the high-fidelity
model. We present some well-established model order reduction techniques for homo-
geneous systems as considered in Section 2.1. There are several classes of methods for
reducing the order of a model.

For first-order ODE systems (2.1), examples include singular value-based approaches
such as balanced truncation [26, 93, 138] and Hankel norm approximations [56]. In
addition, there are Krylov subspace-based methods, such as the iterative rational Krylov
algorithm (IRKA) [26, 51, 60, 61] and moment matching, as well as data-driven methods
such as the Loewner framework [57, 90]. A comprehensive overview of these methods
can be found, i.e., in [5, 22, 23, 26].

The methods presented above treat systems in which &€ is nonsingular and is therefore
not directly applicable to the DAE case introduced in (2.8). Several challenges arise
due to the algebraic equations. Since the matrix E is singular, the transfer function
G.(s) := C(sE—A)~'B, defining the input-to-output mapping in the frequency domain,
can have a non-zero polynomial part. A model reduction scheme for DAEs must preserve
the polynomial part of its transfer function when constructing a reduced-order model as
addressed in, e.g., [61, 91, 130]. There exist several methods that deal with DAE systems,
i.e., interpolatory projection methods |2, 3, 61] and balancing-based methods [67, 91, 130,
131]. Also, data-driven approaches have been recently extended to differential-algebraic
systems, see, e.g., [6, 58, 94].
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We also consider methods tailored for systems (2.23) of second-order structure. In the
literature exist several methods enabling model order reduction preserving the second-
order structure [43, 53]. These techniques range from balanced truncation as well as
balancing related model order reduction [44, 112, 128| to moment matching approxima-
tions based on the Krylov subspace method [17, 118]|. The work [115] provides a compre-
hensive comparison between common second-order model reduction methods applied to
a large-scale mechanical fishtail model. Additionally, [18] proposed interpolation-based
methods for systems possessing very general dynamical structures. More recently, the
authors in [19] propose a new philosophy to find the dominant reachability and observ-
ability subspaces, enabling very accurate reduced-order models preserving the structure.
Moreover, an extension of the Loewner framework was proposed in [21]| for the class
of Rayleigh damped systems and in [122] for general structured systems. Second-order
systems were also considered in a vast amount of literature by now, where some Krylov
space-based methods are derived in [9, 10, 43, 53, 117] and balancing reduction methods
are introduced in [43, 44, 92, 112].

In this work, we focus on Balanced Truncation (BT) and Iterative Rational Krylov
Iteration (IRKA). Both methods construct projection matrices for the reduction so that
the multiplication of the system matrices by these projection matrices then yields a
ROM. BT generates an H-optimal surrogate system and has the advantage of guaran-
teed asymptotic stability of the ROM, the existence of an error bound, and respective
numerical techniques for the Lyapunov equations involved [29, 48, 120, 126]. IRKA, on
the other hand, generates an Hs-optimal reduced surrogate system. In the following,
we introduce the balanced truncation method in Section 2.2.1 and the iterative rational
Krylov iteration method in Section 2.2.2 to generate the reduced surrogate systems.

2.2.1 Balanced truncation

In this subsection, we repeat the balanced truncation (BT) method. First, we explain
the original method for a first-order system with an ODE as a state equation from
[20, 26, 93, 138]. Afterwards, we briefly show BT for first-order systems with DAE state

equations as introduced in [91, 130], and for second-order systems as shown in [112].

2.2.1.1 Balanced truncation for first-order ODE systems

We consider systems of the form (2.1) with z(0) = 0 and aim to generate a surrogate
model

&z, (t) = Az, (t) + Bou(t), z,(0) =0,
YL,r(t) = C,z.(1)

where &,, A, € RF*E B, € RE*™ and @, € RP*%, The reduced state and output are
denoted by z.(t) € R® and y, ,(t) € RP, respectively.

(2.28)
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To derive such a reduced system, we use projecting matrices V, and J, € RV*% 5o
that

€ =VIET, A =VIAT, B, =V'B, € =€J,. (229

We aim to find such projecting matrices defining a surrogate model that satisfy the
Petrov-Galerkin orthogonality conditions, where J . approximates the space of reachable
states, i.e., for every z(t) generated by system (2.1) there exists a

z.(t) € R? with z(t) ~ Tz, (). (2.30)

This approximation defines the residual 2(z,(t)) := £€7,2,(t) — AT, z,(t) — B,u(t). The
Petrov-Galerkin condition then imposes that V. is chosen so that

VIR(z:(t)) = VI (ET,2:(t) — AT,2z.(t) — Beu(t)) = 0. (2.31)

We want to build the projecting matrices V, and T, € R¥*® in such a way, that their

dimension R is significantly smaller than the original dimension N, i.e. R < N, and
so that the input-to-output behavior is well-approximated, that means that ||y, — y..||
is small in a suitable norm. The main idea of BT is to truncate states of the systems
that are simultaneously hard to reach and to observe to obtain surrogate models (2.28)
of significantly smaller dimensions.

We derive energy functionals that indicate the controllability and observability prop-

erties of the states in (2.2). First, we define the input energy corresponding to an input
u € Ly((—o00,0],R™) that is

0
Ey = / [u()]12dt = [[ul|7,((—s.0.2m)-

— 00

We evaluate the minimal amount of energy needed to reach a state z(0) = z starting
from z(—o00) = 0 which is equal to

0

By (zo) = inf u(t)]5dt.

@)= oy ol | IO
Z(—OO):O7 Z(O):ZU

The following lemma from [4, Lemma 4.29] describes how the E\,(z¢) is computed.

Lemma 2.16:
Consider the asymptotically stable system (2.1) with zero initial conditions. The minimal
energy needed to reach a state zg € RY is equal to

Eu(z0) = 20 P 29 (2.32)

with u(t) = BTE Te A" € 1p~15, and P as defined in (2.5). O

27
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From (2.32), it follows that states zy corresponding to small eigenvalues of P are harder
to reach since more energy Ey(2z¢) is needed to attain them.

Moreover, we evaluate the output energy of the system (2.1) corresponding to an
output function y, € Lo ([0, 00), R?) that is defined as

By, = / Iy (I2d = 212, om0

We denote the energy generated by system (2.1) with an initial state z(0) = zo and no
input, i.e., u = 0, by

Ey, (zo) = HYLH%Q([O,OO),RP)-
Again, the lemma from [4, Lemma 4.29] is used to compute the energy Ey, (zo).

Lemma 2.17:
Consider the asymptotically stable system (2.1) with zero input u = 0. The energy
generated by the system with an initial state z(0) = zq is equal to

By, (z0) = zg €79, €7 (2.33)

where the output is y, (-) = @ef” A0z, and Q, as defined in (2.5). O

It follows that states corresponding to small singular values of the observability Gramian
9, lead to small amounts of energies that can be observed and are, therefore, neglectable.
These states are truncated in the following. However, the controllability Gramian P and
the observability Gramian Q, are, in general, not equal, and hence, the states that are
hard to reach are not necessarily hard to observe and vice versa. Therefore, we balanced
the system so that the Gramians coincide.

Definition 2.18:

Consider the asymptotically stable dynamical system (2.1) with the controllability Gramian
P and observability Gramian Q, as defined in (2.5). Then the dynamical system is called
balanced if the corresponding Gramians are equal, i.e., it holds

:P — QL — E,
where 3 = diag (01, ...,0x) is a diagonal matrix with oy > -+ > ox. O

We can balance the system by applying simple transformations that generate an equiv-
alent system, i.e., it has the same input-to-output behavior as the systems in (2.1). The
transformed Gramians then coincide and are even diagonal matrices. For that, assume
that R and 8 are Cholesky factors (or if available low-rank factors) of the Gramians of
our original system in (2.1), i.e. P = RRT and Q, = 88". We compute the following
singular value decomposition (SVD)

¥ 0] [VvE
S'ER=UTV" = [U; U, {01 22} {Vﬂ :
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2.2 Model order reduction methods

The matrix ¥ = diag (oy,...,0y) contains the so-called Hankel singular values in de-
creasing order, i.e. o; > --- > oy. The transformation matrices
V,=8Ux"2, J,=RVE 2 (2.34)

satisfy VESTb = I and generate the transformed system

Zb(t) = Vg.ATbe(t) + VEBu(t),
Y. (t) = (‘fﬂ'bzb (t)
with new Gramians
j)b - QL,b - E

The remaining step is to truncate states corresponding to small singular values of 3.
For that, we build projecting matrices

(NI

v, —8U,S 3,  T,=RV,S, (2.35)

that project the system onto the state spaces spanned by U; and V; corresponding to
the largest singular values stored in ¥;. Multiplying the original system in (2.1) by
V, and T, results in the reduced system in (2.28) with the reduced matrices defined in
(2.29) and &, = VI ET, = Ix. This method results in Algorithm 1.

There exists an error bound, described, e.g., in [4], that quantifies the error in the
output of the reduced system, i.e., the error between y, and y,, that is

N
Iy = Yuelle, < NS0 = Sepllacellullz, < (2 >, Uk) [z, (2.36)

k=R+1

where G, and G, , are the transfer functions of the original and the reduced system (2.1)
and (2.28), respectively.

2.2.1.2 Balanced truncation for first-order DAE systems

We consider systems of the form (2.8) and aim to generate a surrogate model

E.z,(t) = A,z.(t) + Bou(t), z,:(0) = 2z, 0,
yu:(t) = Crz, (1),

where &,, A, € REXE B, ¢ R and €, € RP*E. Also the reduced state and
output are z.(f) € R and y,(t) € RP”, respectively, and the initial state is z,o €
R% satisfying the consistency conditions (2.15) . We generate the reduced matrices as
described in (2.29) using projecting matrices V, and J, € RV*®. To generate these
projecting matrices, we follow the method introduced in [91, 130] and investigate the

(2.37)
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Algorithm 1 BT method for the first-order ODE system (2.1).

Require: The original system (2.1) and the reduced order R.

Ensure: The reduced system (2.28).
1: Compute factors of the Gramians P ~ RR" and Q, ~ 88" from Definition (2.5).
2: Perform the SVD of 8TER, and decompose as

3 0] [vE
STER=UEV' = [U; U,] {ol 22} [Vif] :

with ¥, € RFxE,
3: Construct the projection matrices

N

vV, =8U,X %, T,=RV,;5°.

4: Determine the reduced matrices (2.29) of the reduced system (2.28).

proper components of the system and the improper ones separately. The goal is to reduce
the differential parts of the system as they correspond to an ODE in WCF (2.9). Since the
algebraic components encode algebraic constraints, reducing those could generate results
that are physically difficult to interpret. Hence, we aim to find a minimal realization
corresponding to the improper components.

To reduce the differential parts of the system, we consider the energy functional of
the proper component of the DAE system in WCF (2.11). Since a differential state can
be written as z; = T! [ZT }, where z} is a proper state from (2.11), the energy needed

0
to reach a differential state z; is

NTp—1,, % T rpet [P 0] s (2
Ey = (z})"Pi'z} = [(z7)" 0] T'T o ol TT,

where we make use of (2.32) with P; as introduced in (2.18). Hence, we obtain

-1
Ey=(z;)"Plz;  with Py :=T" [Pé 8] T . (2.38)
It follows that proper states z; corresponding to eigenvalues of P, with small magnitudes,
as indicated in (2.17), require large amounts of energy to be reached and are therefore
truncated in the following analysis. Conversely, states corresponding to large eigenvalues
are easier to attain and thus define the dominant proper controllability subspace.
To evaluate the observability behavior of system (2.8), we determine the energy gen-
erated by the system with a differential initial state z; and no input, i.e., u = 0. For
that, we consider the WCF of the system, as presented in (2.11) and investigate the
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2.2 Model order reduction methods

energy corresponding to the proper state z} as shown in (2.33), which yields

* * * I O - O - I O *
By, = (Z1)TQL,1Z1 = (ZP)TTT [0 NT} wiw {%1 0] wow [0 N] T

with Qg as defined in (2.21) and the proper state as z} = T_l[zg]. From (2.21), it
follows, that

Ey, = (z;)"€7Q, €z} (2.39)

for Q, , as defined in (2.20). Hence, proper states corresponding to small eigenvalues of
Q, , generate small amounts of output energy and are hard to observe, while states cor-
responding to large eigenvalues are easy to observe and span the dominant observability
subspaces.

In general, the states corresponding to small eigenvalues of the proper controllability
Gramian P, do not coincide with those corresponding to small eigenvalues of the proper
observability Gramian Q, ,. Therefore, we need to balance the system as in the previous
paragraph, i.e., generate an equivalent system for which the controllability Gramians
and the observability Gramians coincide.

Definition 2.19:

Consider the C-stable system in (2.8), the corresponding proper and improper controlla-
bility Gramians P, and P; as defined in (2.18), and the proper and improper observability
Gramians Q, , and Q. ; from (2.21). We call the system balanced if the Gramians fulfill

O 0 0
J)p - QL,p - [O 01 ) :Pi - QL,i - |:0 ®:|
where X = diag (01, e ,anf), and © = diag (01,...,0,_). O

We follow the methodology presented in [91] to derive a balanced and truncated system.
Since all Gramians are symmetric and positive semi-definite, there exist factorizations

P, =R,R, Q,,=8S, P =—RR 0O,=8TS,

We compute the singular value decompositions

SER =UXVI =[U,, U > Vi
pRp— p p_[ p,1 p,Q] 3, VI |

p,2
e Vi
T 1 i,
S AR, = U0V = [U;; U, { 0] {VTj ,
where ¥ = diag(oy,...,0,), 01 > -+ > 0, includes the proper Hankel singular values of

the system. The proper states that are simultaneously difficult to reach and to observe

31
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correspond to the smallest Hankel singular values 3;. We truncate the corresponding
states that lie in the spaces spanned by U, 5 and V, 5 by building the projection matrices

1 _1 _1 _1
Vr = [SEUPJEI 2 S;TULl@l 2} ) ‘:Tr = [RprJZl 2 %V171@1 2] : (240)
Note that additionally improper states that correspond to zero singular values in O, i.e.,
the states that lie in the spaces spanned by Uj, and Vi, are truncated. Multiplying
the matrices of the system in (2.8) with singular € by V, and T, leads to a reduced
system (2.37) with

I 0 A 0
g =VIET, = [0 EJ . A, =V'AT, { : J , (2.41)
B, =VI'B = gl , e =T, = [61 62} (2.42)
2

and with A; € RE B and E, € RV=*E= heing nilpotent. Consequently, the reduced
system is inherently decoupled into a proper and improper reduced state. The output
error is bounded as

Ny

1y = yorllzs <19 = Geallocelull, < {2 D o | [l (2.43)
k:Rf-Fl

where G, is the transfer function corresponding to the original system (2.8) and G, , is
the transfer function corresponding to the reduced system (2.37).

Remark 2.20:
The BT method presented above decouples the proper and the improper states where
the proper states are reduced while for the improper states, only a minimal realization

is found. O

2.2.1.3 Balanced truncation for second-order systems

In this subsection, we describe BT for homogeneous systems of second-order structure
(2.23), i.e., x(0) = 0, %,(0) = 0, where we aim to find a second-order surrogate model of
the form

M. %, (t) + Dx.(t) + Kix.(t) = B,u(t), x.(0) =0, x.(0)=0,

Vir(t) = Crix,(t) + Co,%, () (2.44)

with reduced matrices M,, D,, K, € R™", B, €¢ R™™, C;,, Cy, € R?”*", x, € R", and
yu:(t)T € RP, r < n. The reduced system (2.44) shall satisfy that ||y, — yp.|| is small
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2.2 Model order reduction methods

Algorithm 2 BT method for the first-order DAE system (2.8).

Require: The original system (2.8) and the reduced order R = Ry + Rx.
Ensure: The reduced system (2.37).
1: Compute factors of the Gramians P, ~ RPIRIT), P ~ RR' and Q,, ~ SESP,
Q, ; ~ 88, from Definition (2.17) and (2.20).
2: Perform the two SVDs and decompose them as

¥ Al © v
som -l o] [ sanete )
P, b

with ¥, € RE £y,
3: Construct the projection matrices

V. = |:8[T)Up,121_% SiTUm@l_%] ’ T = [:vap,lzl_% :Riviﬂle)l_%} '

4: Determine the reduced matrices (2.41) of the reduced system (2.37).

in an appropriate norm. To derive such a system, we build the respectively reduced
matrices using two projection matrices T, W, € R™" that fulfill the Petrov-Galerkin
conditions from (2.30), (2.31) so that

M, = WIMT,, D, = W!DT,, K, = W'KT,,

2.45
Br = WrTBu Cl,r = ClTra CQ,r = CQTr- ( )

We want to emphasize that the reduction using the matrices T, and W, preserves the
second-order structure of the system.

To identify the states that have the least influence on the system dynamics and that are
truncated within this method, we derive the input energies of the second-order system
(2.23). For that, we apply the theory derived in [43, 44, 112] where we consider the first-
order controllability Gramian Pg, corresponding to the first-order matrices in (2.24) as
introduced in (2.5) which has the upper-left block Py; = P and the lower-right block
Py = Po. We apply the Schur complement to obtain

N R TR e S LT
5 Py, Pa =S Pi,Py S™ Riz Rap|’

where S := Py, — PLP P15, As shown in [44], this first-order representation is used to
derive the energy needed to reach a second-order state x(0) = xo with a varying velocity
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at time zero %(0) = %o, that is

Eulxo)=  inf " u@lza = [x7 5] [Bu Bel [x
" 0 _UEL2((_0070]7Rm)7 —00 2 N 0 0 R’lTZ R22 XO
x(O);)(co,x():o(;;)ZO,

T -TpT T :
= Xy R11X0 + 2X0 R12X0 -+ X0 R22X0.

Since we choose X to be variable, we can minimize with respect to this vector which
yields
v,‘(OEu(Xo) = 2R?2X0 + 2R22X0,

and hence the minimal input energy is attained for X = —R,, RL,xo. This yields the
energy

Eu(Xo) = XOTR11X0 — XE‘RHRQ_QIRITQXO = XOT<R11 — ngRz_QIR;FQ)Xo.
Inserting now the matrices Rq1, Ri2, Roo yields
Bu(x0) = XIPiix0 (2.46)

where Pj; = P is the position controllability Gramian as defined in (2.26). The
equation (2.46) describes that states corresponding to small singular values of P, are
hard to reach while states corresponding to large singular values need only little amounts
of energies to be reached so that the eigenvalues of P describe which states to truncate
in reduction methods.

To investigate the state derivative x(¢) in more detail, the authors in [44] determine
the energy needed to reach a velocity xq at time zero for a variable displacement at time
zero Xg, which is

0

R R X

E, = inf HOl2de = [xT xT 11 12 0
(x0) | in / la(®)|l5 [XO XO] {Rng R,

X0

= XOTR11XQ + 2X0TR12X0 + XERQQXO.
We minimize this energy with respect to the vector xq, which yields
VXOEU<X0) = 2R11X0 + 2R12X0

and hence the minimal input energy is attained for xg = —Ro; RioXo. This results in
the input energy

Eu(}.io) - XOTRQQ)'(O - XgR}éRﬁlng}ko — Xg(RQQ - erI‘QRilng)}.Co - XEP;21XO, (247)
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2.2 Model order reduction methods

where Pyy = P is the velocity controllability Gramian as defined in (2.26), and hence,
states corresponding to small eigenvalues of P, are hard to reach.

To investigate the output energy for second-order systems (2.23), the authors in [44]
consider the respective first-order observability Gramian Q, as defined in (2.5) corre-
sponding to the first-order matrices (2.24). This Gramian Q, includes the position
observability Gramian on its upper-left block Qi1 = Q. pos and the velocity observabil-
ity Gramian on its lower-right block Qg2 = Q. ve1. Again, the first-order system analysis
from (2.33) is used to obtain the energy that is generated by a first-order state zg = [, |
that is

E T XOT] |:Q11 Q12

X, . i :
v (20) = [0 T | = x0 Quxo + 2% Q1yx0 + X5 Quoko.
12 Q2| [Xo
The energy functional Ey evaluates the output energy generated by the system if we
are at a state zo without any input u. Since we are interested in the energy generated
by an initial state xq, we first set xg = 0 to evaluate the energy generated by xq that is

E)’L (Xo) = XOTQ11X0. (248)

To evaluate the energy generated by an initial velocity X, the authors in [44] set xq = 0
which yields
Ey, (%X0) = X3 QaaXo. (2.49)
The equations (2.48) and (2.49) show that states corresponding to small singular values
of Q11 and Qg9 generate small amounts of observable energies while states corresponding
to large singular values define the dominant observability subspaces.
Since states corresponding to small singular values of P, Py and Q. pos;, Quver are
hard to reach and hard to observe, respectively, we aim to truncate theses states to
generate a reduced surrogate model. For this purpose, various Gramian combinations

can be used, see [112|. As for first-order systems, the controllability and observability
Gramians need to coincide.

Definition 2.21:

Consider the asymptotically stable second-order system (2.23) and the corresponding
position and velocity controllability Gramians P, Pye as defined in (2.26) and the ob-
servability Gramians Qy pos, Qu ver as introduced in (2.27). The system is called balanced
if it holds

P:QL:E

where 3 = diag (0y,...,0,) is a diagonal matrix, P denotes either P, or Py, and Q,
denotes Q. pos Or Q. vel. O

35
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Assume that the Gramians can be factorized as P = RR"T and Q, = SST where R
and S are either Cholesky factors or low-rank factors of P and Q,, respectively, and P
represents either the position controllability Gramian P, or the velocity controllability
Gramian P while Q, represents either the position observability Gramian Q,, ,.s or the
velocity observability Gramian Q. Considering the position Gramians, we compute
the singular value decomposition of

> Vi
S'TR=UxV'=[U; U] { 221 {VJ

which is used to define the balancing transformation matrices
W, :=SU¥ 2, T,:=RVY 2. (2.50)

For the velocity Gramians, we proceed analogously, but we use the singular value de-
composition of STMR.

BT balances the system and truncates the states corresponding to the smallest singular
values stored in 3. Therefore, states that are simultaneously hardest to reach and
hardest to observe are removed from the system dynamics. To do so, we define the
balancing and truncating bases

W, :=SU;%;2, T,:=RV,X%Z. (2.51)

N

We multiply the system matrices by the two bases W! and T, to generate the reduced
matrices as shown in (2.45) and to define the reduced system (2.44). Up to now, there
exists no a priori error bound for second-order BT methods.

2.2.2 lterative rational Krylov algorithm

In this paragraph, we introduce the iterative rational Krylov algorithm (IRKA) as de-
scribed in [60] to reduce systems of the form (2.1) and extended to DAE systems in [61].
The authors in [140] derive an IRKA method for second-order systems.

2.2.2.1 IRKA for first-order ODE systems

Within the IRKA method, we aim to derive a reduced surrogate model (2.28) approxi-
mating the original dynamical system (2.1). To explain the IRKA method, we consider
the transfer function G, as introduced in (2.4) that encodes the input-to-output behavior
of the original system (2.1). We consider the transfer function of the reduced system
that is G, ;. From Proposition 2.6, it follows that

Iy = ¥ellze < M1Se = Gexllsc 1,
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Algorithm 3 BT method for the second-order ODE system (2.23).

Require: The system (2.23) and the reduced order 7.

Ensure: The reduced system (2.44).
1: Compute factors of the Gramians P ~ RRT and Q ~ SST from (2.26), (2.27).
2: Perform the SVD of STR or STMR, and decompose as

T
S™R or STMR = [U; U, Fl } {Vl] :
b}

4
with 3; € R™".
3: Construct the projection matrices

N

_1 _
W, =SU;3,? and T, = RV, X, .

4: Construct reduced matrices (2.45).

if both transfer functions live in H5*™. That bound provides that reduced outputs y, (t)
are uniformly close to y(¢) over all inputs u € Ly([0,00), R™) if the transfer functions
are close in the JHy-norm. Hence, we aim at constructing a reduced order model that
minimizes the Hy approximation error as follows

HSL - 9L7er}(2 = Hlin HSL - 9L”9’C27 (2'52)
§L is stable

where dim §L denotes the McMillan degree that is the number of the poles of §L. For
a given degree N rational function G,, we seek a degree R rational function G, , that
approximates G; w.r.t. the Hy-norm. This optimization problem is non-convex. There-
fore, the search for a global optimum is infeasible, so we aim to find local minimizers. To
solve this problem, we inspect the optimality conditions that are tangential interpolatory
conditions. In the multi-input multi-output (MIMO) case, we require that G, (s) and
G...(s) coincide for the interpolation points s along determined directions, the tangential
directions. We call G, ,(s) a right tangential interpolant to G.(s) at o along the right
tangential direction b € C™ if

G.(c)b = G,..(0)b (2.53)

and accordingly a left tangential interpolant to G, (s) at o along the left tangential di-
rection ¢ € CP if

c'G.(0) = CTSLJ(O'). (2.54)
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Also G, ,(s) is called a bitangential Hermite interpolant to G, (s) at o along the right
tangential direction b € C™ and the left tangential direction ¢ € CP if

c'G'(o)b=c"G] . (0)b (2.55)

where ()" denotes the derivative with respect to s. For a set of given interpolation points
o1,...,0., and left and right tangential directions cy,...,c, and by, ..., b,, we aim to
find a reduced model that matches these interpolation conditions.

For that, we aim to find projecting matrices V, € R™" and J, € R™" defining a
surrogate model (2.28) with reduced matrices (2.29) and a transfer function G, , that
satisfy the Petrov-Galerkin orthogonality conditions (2.30) and (2.31). As described in,
e.g., [59, 60, 154], the following theorem gives a criterion for generating the reduction
bases.

Theorem 2.22:

Consider the system in (2.1) with the transfer function G, and a reduced order model
(2.28) with the respective transfer function G, , generated by the left and right basis
V., T, as described in (2.29). Assume that oy,...,0g and pq,...u, are right and left
interpolation points and by,..., by and cy,...,cr are given right and left tangential
directions. Then the following statements hold:

a) if (0,€ — A)"'Bby, € range (T,) then G (o4)by = Gy, (0k)by,

b) if (€ — A)"TC€" ¢y € range (V,) then G, (k) = c1Grr(0%),

c) if a) and b) are satisfied at o = 1, then ¢, G (0%)by, = ¢, Gy (0%)by
fork=1,...,R. O

Using Theorem 2.22, we define the bases V, and T, that satisfy the tangential interpo-
lation conditions as

T, = [(0'18 — A)_13b1 R (O'R8 — A)_leR] , (2 56)

Vv, = [(018 — A)*HGHcl .. (og€— A)*HGHCR} '
for some interpolation points o4, . .., o and right and left tangential directions by, ..., b,
and cq,...,c,, respectively. The reduced system and the respective transfer function

generated by these bases satisfy the interpolation conditions without computing the
interpolated values, which is a significant advantage.

After presenting the interpolation of the transfer functions, we use these results to
approach the problem of finding a H, optimal replacement model. To do so, we consider
the pole-residue representation of the reduced transfer function G, ,(s), which is

R~

~1 CkBE
9L,r(5) - er(S((—:r - ‘Ar) er == Z (257)

b)
s— A
=1 k
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where Aq,..., Az are assumed to be distinct poles of G, ,(s), the vectors ¢y, ...,cx and
bi,...,bg are the respective left and right residue directions, and Elng, . ,ERgﬁ the re-
spective matrix residues of G, ,(s) at s = A1,..., Ag. We determine the poles and residue
directions by computing the generalized eigenvalue decomposition of A&, — A,. Since
the dimension R is assumed to be small, the computation of the eigenvalue decomposi-
tion is feasible. To derive the optimal interpolation points and directions corresponding
to the pole-residue representation of G, , described in (2.57), we consider the following
theorem.

Theorem 2.23:
Let G, in pole-residue form (2.57) be a minimizer of the optimization problem (2.52)
with respect to a transfer function G, and assume that G,, has only simple poles

M, ..., Ag. Then G, , interpolates G, and S'L?r interpolates G, at —\q,..., —Ag along
the right and left tangential directions bi,...,brand €,...,¢Cx, ie.,
Ser(—M)by, =G (— )by, S Gu(—A) =€, Gu(— ),
S T 239
Cp Grp(=Ak)br = T G (= Ak) b
holds for k =1,...,R. O

It follows that if the transfer function G, , is a local minimizer of (2.52), the interpolation
conditions in (2.58) are satisfied. Hence, to build the bases in (2.56), we use the poles
and residue direction of the reduced transfer function G, , as interpolation points and
tangential directions. Assume that s := {s1,...,sg} is the set of the currently considered
expansion point and X(s) = {\i,...,A\g} the resulting poles of & 'A,. Then we can
define the function g(s) = s + A(s). Aside from reordering, if g(s) = 0, then the
optimization problem (2.52) is solved by the current basis, which means that G, ,(s)
corresponds to a Hy-optimal reduced system (2.28). Hence, we apply Newton’s method
to the function g to determine iteratively the optimal expansion points s = A(s). This
results in the following iteration

s"H =" — (I - VeA(s)) 7' (s" = A(s"))

where Vg A(s) is the Jacobian of A(s). Since often the entries of V A(s) are small, we
set VsA(s) = 0 and obtain
Sk:—H — }\(Sk)

This iteration defines the IRKA method, described in Algorithm 4.

2.2.2.2 IRKA for first-order DAE systems

For systems of DAE structure as defined in (2.8), we aim to derive a reduced system
(2.37) that approximates the input-to-output behavior described by the Hs-norm of
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Algorithm 4 TRKA method for the first-order ODE system (2.1).

Require: The original system (2.1), maximum number of iterations Ny,.y, tolerance tol,
reduced dimension R.
Ensure: A reduced system (2.28) that satisfies (2.52)

1: Choose initial expansion points si,...,sg, left tangential direction cq,...,cg and
right tangential directions by,..., bg.
2: while Iteration number < N, and sq,...,sr did not converge do

Choose YV, and T, so that

j’r = [(818 - A)—leh cee (SRE — A)_lﬂbR]
V, = [(s:€ — A) e, ..., (sp€ — A) e ep] .

: Build reduced matrices as in (2.29) using J, and V,.
5: Compute the pole-residue expansion (2.57) of G, , corresponding to the by V,
and T, reduced system (2.28).

~

6: SetSj:—)\j7bj:bjaIlde:/(Z\j7j:1,...,R.
7: end while

the transfer function error. The interpolation conditions described in Theorem 2.22
for ODE system also hold for DAE systems. However, applying the IRKA method as
described in Algorithm 4 to generate a reduced system (2.37) might lead to unbounded
error measures. This is because the transfer function G, (s) corresponding to the original
system (2.8) consist of a strictly proper component G, ,(s) and a polynomial one G, ;(s)
as described in (2.16). Hence, the reduced transfer function also requires to have a
strictly proper component G, , ,(s) and a polynomial one G, , ;(s), with G, ;(s) = G .i(s),
so that

9L(5> - 9L,r<5> = 9L,p(5> - 9L,r,p(3> + 9L,i<5> - 9L,r,i(5) = SL,p(S) - 9L,r,p<5)-

Otherwise, the error in the transfer functions is not bounded. However, utilizing the
bases V, and T, determined with Algorithm 4 for the matrices of the DAE system (2.8)
is likely to lead to an ODE system (2.37) if R is smaller that the rank of € so that the
reduced transfer function has no polynomial component or a constant one if we add a
feed-through term D. Therefore, we need to maintain the polynomial component G, ;(s)
of the original transfer function G, (s). The authors in [61, 156] discuss a procedure to
generate a reduced surrogate model that preserves the polynomial system components
as described in the following theorem.

Theorem 2.24:
Consider the transfer function G, (s) = G, ,(s) + G.i(s) corresponding to the DAE sys-
tem (2.8) where G, ,(s) is the strictly proper component and G, ;(s) the polynomial
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one, respectively. Let P, and P) be the spectral projectors defined in (2.10), and let
the columns of T, and V., span the right and left deflating subspaces of (A, E) cor-
responding to the eigenvalues A\ at infinity, i.e., T, and V., span the same spaces as
(I —P,) and (I — P;). Assume that for right and left interpolation points o1,...,0r
and i1, ..., g the matrices 0,& — A, up& — A are invertable for k = 1,..., R and that

by,...,br and cq,...,cg are the right and left nonzero tangent directions. Construct
I, = [(01€& — A)'PBby, ..., (0r€ — A)"'P\Bbg| , (2.59)
Vy, = [(1n€ — A)HPICTcy, ..., (ur€ — A)HPIC ¢y , (2.60)
and define
To=[Tn, T],  Ve=[Vn, V. (2.61)

Assume that G ,(s) = G, p(s) + Grri(s) is the transfer function corresponding to the
reduced system (2.37) with matrices (2.24) generated by the bases V, and J,, where
G..p(s) is the respective strictly proper component and G, ,;(s) is the polynomial one.
Then it holds G, ;(s) = G..i(s) and a) and b) from Theorem 2.22 are fulfilled. If also
o = py holds for k = 1,..., R, then also ¢) from Theorem 2.22 is fulfilled. O

Using this theorem, we define an TRKA method tailored for the first-order DAE system.
For that, we apply Algorithm 4 to derive Ty, and Vy, by replacing B by P;B and €
by CP,. Using these bases we derive the bases I, and V, as defined in (2.61).

2.2.2.3 IRKA for second-order ODE systems

In this paragraph, we briefly present the iterative rational Krylov method (IRKA) suit-
able for the case of second-order systems (2.23), as introduced in [156], where we aim to
find a reduced system (2.44) with a transfer function

G.(s) :=(Cy, + SCQ7r)(S2Mr + 5D, + K,;) 'B.. (2.62)

Within the IRKA approach, we determine a reduced system that maintains the second-
order structure while following an approach similar to the one for first-order systems.
The author in [156] derives projecting matrices W, and T, to construct the reduced
matrices (2.45) and the respective reduced system (2.44). However, the choice of the
projecting bases also depends on additional conditions applied to the reduced systems.
For mechanical systems (2.23), the aim is to find bases that preserve the symmetry and
the positive definiteness of the mass matrix, the damping matrix, and the stiffness matrix
to obtain an asymptotically stable reduced system. Hence, we set V, = T, = W,. Also,
the reduced system is supposed to be of second-order structure. Hence, the methods
presented in [140, 156], the authors generate a reduced transfer function of the structure

41
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Algorithm 5 IRKA method for the first-order DAE system (2.8).

Require: The original system (2.8), maximum number of iterations Ny,.y, tolerance tol,
reduced dimension R.
Ensure: A reduced system (2.37) that satisfies (2.52)
1: Choose initial expansion points si,...,sg, left tangential direction cq,...,cg and
right tangential directions by,..., bg.
2: while s did not converge do
Choose T, = [‘J’Nf TOO} and V, = [VNf Voo}, where

Ty, = [(01€ — A)"'PBby, ..., (0r€ — A)~'PBbg]

f
Vy, = [(u€ — AP, C%, ..., (ur€ — A) P, C"cg]

f

and J .., V are chosen so that they span the right and left deflating subspaces of
(A, E) corresponding to A\ = 0.
: Build reduced matrices as in (2.29) using V, and TJ.

5: Compute the pole-residue expansion (2.57) of Gy, corresponding to the by Vy,
and Ty, reduced system (2.37).

6: Setsj:—)\j,bjzgjandcj:/c\j,jzl,...,R.

7: end while

8: Build reduced matrices as in (2.29) using J, and V,.

shown in (2.62) that represents a second-order system (2.44). For that, they use a
one-sided projection approach that generates a basis V, with

V.= [(siM+sD+K)"'Bb; ... (ssM+s5.D+K) 'Bb,], (2.63)

for interpolation points sy, ..., s, and tangential directions by, ..., b,. The interpolation
points and tangential directions are updated in each step of the method. After a basis
V. is built, the reduced matrices, which correspond to a reduced second-order system
with a transfer function of order 2r, are built. Since this order is twice the dimension we
aim for, we apply an internal reduction step. By applying a second IRKA or BT method
to the system defined by the matrices in (2.45), we obtain a reduced-order system of
dimension r with a transfer function G, ,. We determine the respective poles and residues
to obtain the interpolation points and tangential directions, which are used in the next
step to derive the basis V, and the respective reduced system. This procedure results
in Algorithm 6 from [140].
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Algorithm 6 IRKA method for the second-order ODE system (2.23).

Require: The original system (2.23), maximum number of iterations Ny,.., tolerance
tol, reduced dimension r.
Ensure: A reduced system (2.44) that satisfies (2.58).

1: Choose initial expansion points si, ..., s, and right tangential directions by, ..., b,.
2: while Iteration number < N, and sy, ..., s, did not converge do
3: Set
V.= [(siM+sD+K)"'Bb; ... ($2M+5D+K)'Bb,].
4: Determine reduced matrices as in (2.45).
5: Compute the pole-residue expansion (2.57) of G, , corresponding to the reduced
system (2.44).
6: Determine new interpolation points and tangential directions
81,...,87.:—/\1,...,—>\7., bl,...,bT :Bl,...,gr.

7: end while
8: Determine reduced matrices as in (2.45).

2.3 Lyapunov equations

As shown in Section 2.2.1, we need to solve certain Lyapunov equations to compute the
Gramians of the respective system. Hence, this section we aim to solve the Lyapunov
equations from (2.6) and the projected Lyapunov equations from (2.19), where we fo-
cus on the controllability case while the observability Lyapunov equations are solved
similarly. There are multiple methods to solve this kind of equation. If the matrix di-
mensions are sufficiently small, we use Hammarling’s method [65] or the Bartels-Steward
algorithm [11]. However, these methods are unfeasible if the matrix dimensions are large.
In this case, the alternating-direction implicit (ADI) method [80, 83, 87, 101], the sign
function method [27] and Krylov subspace methods [72, 123, 125] are the state of the
art. Those methods require that the system representation is sparse. An overview and
comparison of those methods is given in |29, 47, 124].

Since we consider in this section Lyapunov equations, including system matrices (2.24)
corresponding to a mechanical system of the structure (2.1.3), we can exploit the struc-
ture of these matrices in the following. Therefore, we consider a decomposition of the
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matrix & 1A that is
E'A=A-UGVT, with
I 0 I ~ 0 < 0
.A = _M—lK _M—lDint:| B U = |:M_1F:| 5 V = |:F:| y (264)

with D = D, + FGFT, into a sparse matrix A and into a low-rank matrix UGVT.

In this work, the methods of choice are the alternating direction implicit (ADI)
method, introduced in Section 2.3.1, and the sign function method shown in Section 2.3.2,
which are both iterative methods that derive the solution of Lyapunov equations that
can make use of the decomposition (2.64) to decrease their computational costs.

2.3.1 Alternating direction implicit method

In this subsection, the alternating direction implicit method (ADI) from [80, 102] is pre-
sented. This method is applied in this manuscript to solve ordinary Lyapunov equations
as defined in (2.6) and projected Lyapunov equations (2.19) that arise when considering
DAE systems. The author in [80] has also derived an ADI method for second-order sys-
tems, which we omit in this work as it converges too slowly in the considered problem
setting.

2.3.1.1 ADI method for classic Lyapunov equations

We aim to compute the solution P of the Lyapunov equation (2.6) of large dimension.
To do so, we utilize that this Lyapunov equation is equivalent to the Stein equation

P =T (p)S(p)PS(p)" —2¢/Re(p)S(p)BB*S(p (2.65)

for 8(p) :== (A + p€)~! and T(p) := (A — p€). We choose several shift parameters
P1,---,pe € C™ so that the spectral radius

p (T (pr)S(px)) < 1

is as small as possible for all £k =1,...,/, and obtain the resulting ADI iteration

3)0 = O,

H H T H (2.66)
Pr = T (pr)8(Pr) Pr—18(pr) " T (px)” — 2Re(pr)8(pi) BB 8(pi) "

Since the right-hand side of the Lyapunov equation consists of the low-rank factor B
with a dimension m < N, the solution P can be well-approximated by P ~ ZZ" with
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2.3 Lyapunov equations

the tall and skinny matrix Z € CV*N2 Ny < N. Hence, by introducing P;, = ZkZE,
the iteration (2.66) is equal to

Zak = [Zk_l —\/2Re(pk)Vk} s ZO = H,
Vi i= Vi1 — (0 + De-1)8(0r) EVi1 = 8(pr) Wi,
Wk = Wk,1 — 2Re(pk)8Vk, Wo = 3,

where Zy is an empty matrix. Using the decomposition from (2.64) we compute the
inverse of (A + pi&) efficiently by applying the Sherman-Morrison-Woodbury formula
as

S(pi) = (A+pe&)™!
(Il 4l — ﬁgi'fT) T
((A+pD)!

A (5 D) A e

with matrices defined in (2.64). Since A + prI and &€ are easy to invert and ﬁ, V are of
small dimension, this structure accelerates the computation of 8(py).

One can show that the norm of the residual after the k-th step Ry = APLET +
EPLA" + BB' is given by || = |[WEW,], and hence, the residual is used as a
stopping criterion that does not require additional computational costs.

If we require a real-valued approximation of P, the shifts have to occur in pairs of
complex conjugate shifts, i.e., if p € C~ \ R then pyy1 = Pj. In that case one can show,
that the (k + 1)-st iterates Vi, and Wy, are equal to

Re(p,)
Im(py)

Wk+1 = Wk,1 — 4Re(pk)8 (Re(Vk) +

Vit = Vi +2

Im(Vk)7

Re(pk)

The remaining task is to determine the shift parameters pq,...,p, where we use the
self-generating shifts presented in [24]. The main idea of these shifts is that we generate
the Ritz values from certain spaces. For that, we assume that we have an orthonormal
basis U € R™*™ gso that the shifts are

{p1,...,pe} = A(UTAU)NC".

The initial shifts are generated using a first basis U that spans the columns of the low-
rank factors of the right-hand side B. For the next iteration steps —assume we are in
the k-th step of the iteration— we use a basis U that fulfills

span(U) = span(Vy) or span(U) = span(Re(Vy), Im(Vy)).
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If the dimension of V} is not large enough to generate a required number of shift pa-
rameters, the columns of the previous iterates Vi_1, Vi_a,... can be used. This ADI
procedure, including the displacement parameters, is implemented in [114] and is used
in this work for the various numerical examples.

2.3.1.2 ADI method for projected Lyapunov equations

This subsection aims to present numerical techniques to solve the projected Lyapunov
equations (2.19) and (2.22) to approximate the Gramians of system (2.1) with the sin-
gular matrix €. We utilize the ADI method to solve the projected continuous-time
Lyapunov equations and the generalized Smith method to solve the discrete-time Lya-
punov equations.

Here, we follow the ideas of [133] to derive an equation equivalent to the projected
continuous-time Lyapunov equation (2.19). First, we extend the Stein equation from
(2.65) to the projected Lyapunov equation as shown in the following lemma.

Lemma 2.25 ([133]):
Let the matrix pencil s&€ — A with &, A € RV*Y be regular. Let further the matrix
A be nonsingular and B € RV*™, Assume that the left and right spectral projectors
onto the finite spectrum of s€ — A from (2.10) are denoted by P;, P, € RMV_ If p e C
is not an eigenvalue of the pencil s A — &, then the projected discrete-time Lyapunov
equation
P, = 8(0)R()PyR(p)"8(p)" —2Re(p)S(n)P BB P8(p)"!, P, =P,P,P (2.67)

with 8(p) := (E+pA)~! and R(p) := (€ —pA) is equivalent to the projected continuous-
time Lyapunov equation (2.19), i. e., their solution sets coincide. O
The projected Stein equation (2.67) motivates the ADI iteration similar to (2.66) that
is

3)0 = O,

Py, = 8(pi)R(pr) Pr1 R(p) "8 (pr)" — 2Re(pi)8(pi) PIBB P8 (py)".
As shown in [133], given a sequence of shift parameters (px);, in C™ with pyy, = py, for
some ¢ > 1 and all k =0, 1, 2, ..., the iteration (2.68) converges to the solution P, of
the projected Lyapunov equation (2.19).

To work with the ADI iteration more efficiently, we aim to compute low-rank factors of
P,, i.e., we aim to determine a tall and skinny matrix Z € CN*N2 Ny < N, such that
P, ~ 2ZM". We can represent the iteration (2.68) by the low-rank factors of P), = %!
with

Z = [k (pr)S(p)P1B - 8(pr)R(pr) Zop-1]

= [k(pi)S(p)P1B  K(pr—1)8(pi) R(pi)S(pr—1)P1B
K(p1)8(pr)R(pk) - - - - 'S(pz)y(pz)s(m)Pl%],

(2.68)
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where k(p,) = /—Re(pr) and Zy is chosen to be an empty matrix in RV*%. We note
that the following properties hold for all 5, k =0, 1,...:

S(pr)AS(p;) = 8(p;)AS(pr),  R(pp)A™'R(p;) = R(p;) A~ R(px),
8(pr)R(p;) = A~ R(p;)8(pr)A.

We further define

(2.69)

By := r(pr)S(pr) P1B and Fj= +(p,) S8(pj))R(pj+1), J=1,.... k.

Using (2.69), we obtain
Zk: [30 g:’k:—lBO 971'...':}’]6_130} .

It remains to solve the discrete-time Lvapunov equation (2.19). Under the assumption
that A is nonsingular, (2.19) is equivalent to the transformed discrete-time Lyapunov
equation

P -AlEPETATT =A Iy -P)BB Iy -P)TA", 0=P. PP
This equation is solved using the Smith method [133]. Since A~ '(I-P}) = (Iy—P,)A™"

and the matrix (Iy — P,)A '€ = A 'E(Iy —P,) is nilpotent with the nilpotency index
v, the iteration stops after v steps. The Smith method then leads to the unique solution

Pi=) (A'E Iy -P)A BB A Iy —P)T((ATE)T.

Instead of computing the full matrix P; we can also generate the low-rank factors P; =

YY" as

Y=[1-P)A'B AEA-P)A'B ... (A€ H(I-P,)A 'B].

2.3.2 Sign function method

As a second Lyapunov equation-solving method, we consider the sign function method
introduced in [27] and extended for system structures that appear in this work by [46].

2.3.2.1 Sign function method for classic Lyapunov equations

To describe the sign function method, we first define the sign function for an arbitrary,
quadratic matrix A.
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Definition 2.26:

For a matrix A € R™" with A(A) NiR = () and a Jordan decomposition A = ZJZ™!
with J = diag (J—, J*),J- € C"*"- A(J7) € C™ and J* € C*+*"+ A(JT) C CT,
the sign function of A is defined as

sign(A) :==7Z {_B" IO } zZ
N

The sign function of a matrix is unique and independent of the eigenvalue order of the
Jordan decomposition. O

The sign function is computed by applying Newton’s method:

1 1
AO = A7 Ak+l = §Ck’Ak + %A]zl — Slgn(A) (270)
k

where ¢, denotes acceleration factor which is chosen to be ¢;, = \/HA,;1 e || Azt within

this work. The convergence of this method is shown in [113].

Within the sign function method, the authors in [46] utilize the structure introduced in
(2.64) to solve the Lyapunov equations more efficiently. Additionally, we notice that the
solution P can be approximated by the low-rank factor % € RN*Nz with P ~ ZZ" due
to the structure of the right-hand side of the corresponding Lyapunov equation (2.19).
Hence, this subsection aims to determine the low-rank factor Z that approximately
solves the Lyapunov equation (2.19). We exploit the fact that this Lyapunov equation
is equivalent to

I ol[A"™ o111 O A" 0 . -1 0
{—? I] [0 —A] [IP I] = LB:BT —A] =W and that sign(W) = [2? I}

We observe that the sign function of W provides the solution P ~ ZZ" of the Lyapunov
equation (2.19) with € = I in its lower left block. We apply Newton’s method described
in equation (2.70) to compute sign(W). We set Ay := A and By := B to obtain the
following iterations:

1

1 1 1 _
Ak+1 = 5 (Ck-Ak + aAk1> , Bk+1 = E {@Bk, —Ckﬂklgk‘| , (271)

Ve

where By converges to \%Z

In order to improve the efficiency while computing the inverse A~ we make use of the
decomposition presented in equation (2.64) and apply the Sherman-Morrison-Woodbury
formula as described in [46] to obtain

1 1 ~ ~ ~
Ap1 = ickﬂk + %‘Ak t= A1 — Uk+1Gk+1Vg+1,
k
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~ 1 ~=-1 ~ ~ 1~ ~ ~—T ~
cp Ay + C_'Ak y Upqr = [Uk, A, Uk} , Vg = [Vk7 'Ak Vk]
1 IR
diag (cka, —C—(G,;1 — V,EAklUk)—1> .
k

We stop this method if ||A; + I||* < tol since A, converges to —I, or if a maximum
number of iterations iter,., is exceeded. The disadvantage of this method is the high
growth rate of the dimension of the low-rank factor Zj. Therefore, even with internal
truncation techniques, the method must converge after a few steps, stop, or become slow
when calculating the next steps.

2.3.2.2 Sign function method for projected Lyapunov equations

As described in [132], the sign function method can be extended for projected Lyapunov
equations of the form (2.19). If the matrix pencil (A, E) is C-stable, i.e., all respective
finite eigenvalues have a negative real part, then the WCF presented in (2.11) contains
a nilpotent matrix N and a matrix J that also only has eigenvalues with a negative
real part, according to [54, 132] . We make use of this decomposition to derive a sign
function extension for projected Lyapunov equations with an arbitrary nilpotency index
v corresponding to N. For that, we need to remove the N matrix from the iteration
by multiplying the matrix € from the left or right by the projecting matrices P, or P,
from (2.10), respectively, and apply Newton’s method from (2.71). To avoid that Aj
converges to a singular matrix we add an additional summand (I — P;).A(I — P,) that
does not affect the method. This leads to the generalized iteration as introduced by
[132]:

A=A, Py=PBBP],

1 —
.Ak = 2 (.Ak; 1+ CkP 8.Ak 18TP + (QCk — 1)(1 — P])A(I — Pr))> =W |:J6€ (I):| T,
Ck
g)k 21 (:Pk 1+ Ckg./q, 1fpk 1.A_T8T)
k

It holds that P;, = P,P,PT and that lim; ., A} PrA." = 2P, with P, = P;P,P,.
Also it holds that limy_, o A = —EP,+A(I—P,), which results in the stopping criterion

Ay + EP, — A(I—P,)|| < tol.

When we aim to find low-rank factors %, € RV*V= with P, ~ Z,%;, the iteration of
P can be replaced by

|:ka_1 Ckg./qglgk_l} 3 Bo = P13

with limy_,oo A, B, = \/_Zp.
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The analysis of the dynamical systems presented in Chapter 1 can provide an under-
standing of their behavior and is therefore used to identify the most significant system
components. In Section 2.1, the properties of homogeneous systems with linear output
equations investigated in established literature were repeated. In this work, however, we
deal with inhomogeneous systems that are evaluated using linear and quadratic output
equations. Therefore, in this chapter, we extend the concepts of Section 2.1.

For first-order systems with an ODE as a state equation and inhomogeneous initial
conditions, some methods have already been developed in [13, 15, 66, 121]. In [13], the
authors propose to shift the state by the initial condition z, i.e., the new state is given
as z(t) := z(t) — zo. In this way, the initial condition is included in the input and output
equations and thus is taken into account in the reduction process. In [66], the input
Bu(t) is extended by the initial condition space Zy, i.e., zg = Zo(p. More precisely, a
new input matrix B := [B Zo] and a new input [u(¢)T ¢I]T are defined such that the
initial condition is taken into account using reduction techniques. In [15], the author’s
strategy is to decompose the system into one with no initial conditions and one with
initial conditions but no input. The sum of the two corresponding outputs is equal to
the original output. This superposition is used to reduce these two systems separately.
Extensions of that methodology for the class of bilinear systems are proposed in [42] and
[110], based on different splittings. A recent approach [121] introduces a new balanced
truncation method based on the shift transformation of the state. This transformation
depends on designing parameters that allow some flexibility and the generalization of
the methods proposed in [66] and [15]. In addition, these parameters can be optimized,
leading to accurate reduced-order models.

In this chapter, the superposition ideas from [15] and the extended-input approach
from [66] are extended to the system classes that are relevant to this work. The in-
troduction of the controllability and observability spaces and the respective Gramians
are novelties of this manuscript, which are used in the remaining chapters to reduce the
systems of the respective structures. Many of these systems have never been analyzed
in the literature, so the theory in this chapter is a valuable addition to existing theories.

Especially for systems with a quadratic output equation and those with inhomoge-
neous initial conditions, new definitions are derived, which are relevant for the rest of
this thesis. Hence, the main contributions of this chapter are the definition of transfer
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functions describing the input-to-output behavior and the respective tailored controlla-
bility and observability Gramians for systems in non-standard form, which also take into
account the effects of initial conditions on the system dynamics. In particular, first-order
ODE systems with quadratic output equations, first-order DAE systems with linear and
quadratic initial equations, and second-order systems with linear and quadratic initial
equations have not been studied until now in the literature. Therefore, these Gramian
derivatives are a significant contribution to the analysis of dynamical systems. The en-
ergy expressions derived in this chapter also provide the basis for the reduction methods
applied later in this manuscript. The concepts presented in this chapter are partially
published in [106].

This chapter is structured as follows. In Section 3.1, we repeat and extend the theory
to first-order systems with an ODE as state equation. Afterwards, in Section 3.2, we
introduce different methods for first-order systems with DAEs as state equations, and
finally, in Section 3.3, we analyze systems with a second-order structure.

3.1 Inhomogeneous first-order ODE systems

In this section, we consider first-order systems with a state equation
Ez(t) = Az(t) + Bu(t), z(0) = zg (3.1)

with &, A € RV*N_ and B € R¥*™, The matrix € is assumed to be nonsingular, so
we consider an ODE as state equation. The vectors z(t) € RY and u(t) € R™ denote
the state and the input, respectively. These systems arise when modeling mechanical
systems, as described in the introduction, but also in circuit simulation, heat transfer
simulations, fluid simulations, and several biological and chemical fields of application.
Examples are shown, e.g., in [38, 45, 158]. The solution trajectory of the dynamical
system (3.1) is given as

t
z(t) = / & AT ET By (T)dr + & gy, (3.2)
0

We observe that the state z(t) = zx(t) + 24, () consists of two components, one corre-
sponding to the input and one that results from the initial condition, that are

t
Z5(t) ::/ & AT e By(r)dr and 2, (1) = €& Mg, (3.3)
0
respectively.

We assume that there exists a matrix Zo € RNz N, € N, so that all admissible
initial conditions satisfy

Z(O) = Zy = ZOCO (34)
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Figure 3.1: Structure of a first-order ODE system with a linear output.

for a vector (y € RV%o, i.e., all possible initial states z, lie in the space spanned by the
matrix Zy. This assumption allows us to analyze all the initial conditions collectively.
In this section, we consider systems with a linear output equation and those with a
quadratic one separately. First, in Section 3.1.1, systems with linear output equations are
considered, where we mainly repeat the concepts presented in [15] and [66]. Afterwards,
in Section 3.1.2, this theory is extended to systems with a quadratic output equation.

3.1.1 Inhomogeneous first-order ODE systems with a linear
output

We consider the first-order system with a linear output equation of the form

Ea(t) = Az(t) + Bu(t),  2(0) = 2o,

y.(t) = €x(). &9
including a state equation (3.1), an output matrix € € R?*¥_ and an output y,(t) € RY.
The corresponding system structure is depicted in Figure 3.1, where we see that the
system, denoted by G, , receives an input u and an initial state zy to generate an output
Yo-

We review two concepts that treat the inhomogeneous initial conditions in this sub-
section. The first one is explained in Section 3.1.1.1 and was introduced in [15], where
the system (3.5) is decomposed into two subsystems, one including the input-to-output
behavior and one including the initial condition-to-output behavior. These two systems
are then analyzed separately. The second approach, discussed in Section 3.1.1.2, derives
a surrogate model that incorporates the initial conditions into the input that is analyzed
instead of the original system, see [66].

3.1.1.1 Multi-system approach for inhomogeneous first-order ODE systems
with a linear output

We describe the multi-system approach, introduced in |15], where the authors utilize
the superposition principle to derive two subsystems that describe the input- and initial
condition-to-output behavior. This approach has the advantage that the subsystems can
be analyzed and reduced separately. When applying reduction techniques, the reduced
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3.1 Inhomogeneous first-order ODE systems

dimensions can, therefore, be chosen more flexibly so that the user can ensure that all
the required information is preserved during the reduction, i.e., the reduced systems
are accurate enough but also choose dimensions that are as small as possible. In the
following, we repeat the steps of this approach, which will be extended to different system
structures throughout this work.

Transfer function To derive an input-to-output mapping that describes the system
dynamics, we investigate the system in its frequency-domain representation. Therefore,
we consider the state components zy(t) and zz (¢) from (3.3) and apply the Laplace
transform, which yields

Zs(s) = (s€E—-A)'B and Z,,(s) = (s& — A) 1 EZy. (3.6)

Applying the Laplace transform to the output y, (¢) from (3.5) and inserting Zy(s) and
Z,,(s) from (3.6) results in the output Y, (s) = Y. 5(s) + Y. z,(s), where Y, is the
Laplace transform of the linear output y, and

Y, 5(s) = C(s€ — A)BU(s) and Y., (5) = C(s& — A) ' Zy(p

are the two output components in the frequency domain that correspond to the input
and the initial state, respectively. From these two outputs, we can extract the respective
input- and initial condition-to-output mappings, leading to the following definition.

Definition 3.1:
Consider the asymptotically stable system (3.5) with an initial condition as defined in
(3.4). Then the transfer functions corresponding to this system are defined as

Grx(s) =C(s&E—-A)'B and G1z,(5) = C(s& — A)'EZ,. (3.7)
%

The first transfer function G, 5(s) has the homogeneous system representation
Ez5(t) = Azx(t) + Bu(t), z5(0) = 0,
yiz(t) = Czs(t),

which coincides with the system considered in (2.1). The second transfer function
G.z,(s) corresponds the system

Ez,, () = Azy (1), 22,(0) = Zo(o,
Yizo(t) = Czg, (1).

As depicted in Figure 3.2, the sum of the two outputs coincides with the output of the
original system. In the following, we make use of this superposition and study the two
systems (3.8) and (3.9) separately. Therefore, we derive the respective controllability
and observability Gramians that encode the controllability and observability behavior.

(3.8)

(3.9)
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Figure 3.2: Structure of two separated first-order ODE systems with a linear output.

Controllability Gramian To describe the controllability behavior of the system (3.8),
we consider its state equation with the respective input-to-state mapping that is given
as

cx(t) = €& METIB, (3.10)

This mapping encodes all reachable states and can, therefore, be used to define a matrix
Py = [7 cx(t)ex(t)Tdt that spans the overall controllability space by integrating over
the whole time domain.

Definition 3.2:
Consider the asymptotically stable system (3.8). The controllability Gramian is defined
as

Py ::/ & AT IBBTETeE Ay (3.11)
0 ¢

The controllability Gramian P, spans the controllability space of system (3.8), i.e., every
reachable state of this system lies in the space, spanned by P5. Consequently, if P
has full rank, then the system is controllable. As shown in (2.6), the Gramian Py is
computed by solving the Lyapunov equation

EPLA" + APLET = —-BB'. (3.12)

Analogously, we extract the initial condition-to-state mapping from the system in
(3.9) that is

Cay(t) 1= AZy. (3.13)
This mapping encodes all reachable states resulting from initial conditions, lying in a

space spanned by Zj. Hence, evaluating this mapping over the entire time domain leads
to a matrix Py, := [[7 ¢z, (t) ez, (£)Tdt that spans the respective reachability space.
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3.1 Inhomogeneous first-order ODE systems

Definition 3.3:
Consider the asymptotically stable system in (3.9). The corresponding controllability
Gramian is defined as

P,, = / & AZ ZT T A gy (3.14)
0 O

Again, we compute the Gramians P, by solving the Lyapunov equation

P, AT+ AP, ET = —€Z,ZTET. 3.15
0 0 0

Observability Gramian To describe the observability behavior of the two subsystems
(3.8) and (3.9), we first note that their observability behavior coincides. The correspond-
ing state-to-output mapping is defined as

o.(t) = Ce® g, (3.16)

This mapping describes the observability behavior of the respective systems and is there-
fore used to define a matrix Q, := [~ 0.(t)T o, (t)dt that spans the observability space.

Definition 3.4:
Consider the asymptotically stable systems (3.8) and (3.9). Then, the corresponding
observability Gramian is defined as

Q, = / g T ATETEE Ag 1y (3.17)
0 O

As shown in (2.6), one can compute the observability Gramian Q,, by solving a Lyapunov
equation

£T0, A+ ATQ, € = —€"e. (3.18)

The Gramians introduced above describe the controllability and observability of the
two subsystems (3.8) and (3.9). They are, therefore, used to identify states with sig-
nificant influence on the system dynamics, which comprise the dominant controllability
and observability subspaces. Therefore, we evaluate the system energies corresponding
to the input- and initial condition-to-state mappings and the state-to-output mapping.
We consider the controllability and observability energies separately.

Controllability Energies First, we analyze the controllability energies of the two sub-
systems (3.8) and (3.9). For that, we investigate the input-to-state mappings ¢, and
¢z, that are defined in (3.10) and (3.13), respectively. They describe the overall system
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3 Inhomogeneous systems and their system theoretical aspects

behavior so that evaluating their energy norms leads to an energy measure that can be
used to identify the most dominant controllability subspaces.
We define the energy norm of a function ¢ € Ly([0, 00), RV*™) as

E(e) := ||C||%2([07oo)’RN><m) = /0 tr(e(t)e(t)") dt. (3.19)

Accordingly, the energy norm encoding the controllability energy of subsystem (3.8) is
given as

Eles) = [[esl2, 0.0 zvmm = / tr(es(t)en(t)”) dt = tr(P) . (3.20)
0

On the other hand, the energy norm corresponding to system (3.9) is described by

E(CZO) — HCZOHEQGO,OO),RNXNZO) — /0v tr(czo (t) cZO (t)T) dt = tr(?zo) . (321)

For a symmetric matrix P it holds that tr(P) = o1 + --- + oy for the eigenvalues
op > -+ > oy > 0 of P. Since the two Gramians Py and P, are by definition
symmetric, it follows from (3.20) and (3.21) that the largest eigenvalues of P and P,
have the most effect on the system dynamics. Therefore, the states corresponding to the
largest eigenvalues of P and P, span the most dominant controllability subspaces.

Observability energies In this paragraph, we aim to analyze the observability energies
of the two subsystems (3.8) and (3.9) to identify the most observable states that span the
dominant observability spaces. To provide an energy measure describing the observabil-
ity properties of the two subsystems, we evaluate the energy norm of the state-to-output
mapping o,, defined in (3.16) according to (3.19), which is

0

Since the mapping o, encodes the observability of all states z(t¢), the evaluation of its
energy norm describes the observability properties of the respective systems. Since the
trace of the Gramian is equal to the sum of its eigenvalues, the states corresponding to
the largest eigenvalues of Q; span the most dominant observability subspace. Moreover,
the eigenvalues of the Gramian Q. that are small have the least influence on the sys-
tem. Hence, the corresponding states are neglectable for the system dynamics and are
truncated in the model reduction procedures.

In this paragraph, we derived two subsystems that encode the input- and initial
condition-to-output behavior represented by their transfer functions. Moreover, we
derived respective controllability and observability Gramians and the resulting energy
norms, which are summarized Table 3.1.
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3.1 Inhomogeneous first-order ODE systems

System (3.8) System (3.9)
Transfer function G.2(s) Gi.z,(5)
Controllability Gramian | Py L
Observability Gramian Q, Q.
Controllability energies | E(cg) = tr(Py) E(cz,) = tr(Py,)
Observability energies E(o.) =tr(9Q,) E(o.) =tr(9Q,)

Table 3.1: Properties of system (3.5) corresponding to its multi-system representation.

3.1.1.2 Extended-input approach for inhomogeneous first-order ODE systems
with a linear output

In this section, we consider a different approach to include the initial conditions in the
analysis of the system dynamics. We describe the method presented in [66], where the
authors add the initial conditions space to the input matrix. As a result, the respective
initial conditions space is taken into account when describing the controllability space.

Transfer functions First, we consider the state of the system in the frequency domain.
Therefore, we apply the Laplace transform to the state z(¢) from (3.2), which yields

Z(s) = (s& — A) 7 (BU(s) + €Zolo) = (s€ — A)'WU(s), (3.23)
for an extended input matrix and an output defined as
W:=[B &Z)] and  U(s):= {Ués)} , (3.24)
0

respectively. Using the state expression from (3.23), we derive the input- and initial
condition-to-output mapping of the original system (3.5). To do so, we apply the Laplace
transform to the linear output equation in (3.5) and insert the state Z(s) from (3.23),
which results in the output

Y, (s) = C(s& — A)"WU(s). (3.25)

We observe that the output Y, (s) is of the same structure as the output in (2.3) that
describes a homogeneous system. Hence, the same theoretical considerations apply,
while the matrix W spans both the input space and the initial condition space. From
the output Y, (s) in (3.25), we derive the input-to-output mapping as defined in the
following.
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3 Inhomogeneous systems and their system theoretical aspects
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Figure 3.3: Structure of a first-order ODE system with an extended input and a linear
output.

Definition 3.5:

Consider an asymptotically stable system (3.5) with initial conditions as defined in (3.4).
Also consider the input matrix W from (3.24). Then, the transfer function corresponding
to that system is defined as

GLw(s) :=C(s& — A)'W. (3.26)
¢

The transfer function defined in (3.26) satisfies Y (s) = G, (s)U(s) and, hence, encodes
the system dynamics of the original system (3.5). Since the transfer function G, has
multiple system representations, the authors in [66] derive the homogeneous system
representation

Ea(t) = Az(t) + Wi(t),  2(0) =0,
yi(t) = Caz(t),

where u € Ly([0,00),R™) is assumed to be a suitable output. The structure of the
surrogate system (3.27) is depicted in Figure 3.3, where we see that only one input
enters the system as it includes the initial conditions.

Instead of investigating the inhomogeneous system (3.5), in the following, we analyze
the homogeneous surrogate model (3.27) and apply the system theoretical concepts from
Section 2.1.1 for homogeneous systems. Note that the surrogate system is only used to
derive controllability spaces and corresponding Gramians that incorporate the influence
of initial conditions on the system. However, to derive a surrogate model of a smaller
dimension, later in this work, we apply reduction techniques to the original system (3.5)
utilizing the controllability spaces derived in this section.

(3.27)

Controllability Gramian To investigate the controllability properties of the surrogate
system (3.27), in this paragraph, we aim to derive the controllability Gramian which
spans the respective controllability space, i.e., the space in which all reachable states lie.
For that, we extract an input-to-state mapping of system (3.27) that is

cw(t) =& HETTW. (3.28)

Since this mapping encodes all reachable states, it is used to derive a matrix P, :=

I, ew(t)ew(t)Tdt that spans the respective controllability space.
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3.1 Inhomogeneous first-order ODE systems

Definition 3.6:
Consider the asymptotically stable system (3.27) with W as defined in (3.24). Then the
corresponding controllability Gramian is defined as

P = / T AL ETIWWT e T A gy (3.29)
0 O

The Gramian P,, spans the controllability space of system (3.27), i.e., all controllable
states lie in the space spanned by P.,. Hence, if the controllability Gramian has full
rank, the respective system (3.27) is controllable. As explained in Section 2.1.1, the
controllability Gramian can be computed by solving a Lyapunov equation of the form
(2.6) that is

APLET + EPLAT = - WWT.

To solve the Lyapunov equation, we use the methods presented in Section 2.3.

Finally, we describe the connection between the Gramian P,,, and the Gramians Py
and P, that result from the extended-input approach and the multi-system approach,
respectively.

Theorem 3.7:

Consider the asymptotically stable system (3.27) with the corresponding controllabil-
ity Gramian P,, from (3.11). Also, consider the asymptotically stable systems (3.8)
and (3.9) with the controllability Gramians Py and P, defined in (3.11) and (3.14),
respectively. Then the following relation holds

?w:?3+?zg- <>

Proof. We insert the definition of W into the definition of P,, to obtain

© —1 _ 3T _ —1 4\T
P = /0 & METH B EZ] {zgng T Ay
_ / £ (ETVBBTET 4 g,7T) o€ Ay

0

- Tg + TZO'

Observability Gramian We aim to describe the observability behavior of the surro-
gate system (3.27). However, we observe that the state-to-output mapping of system
(3.27) coincides with the mapping of the two subsystems (3.8) and (3.9). Hence, the
same observability Gramian defined in (3.17) encodes the observability behavior of the
surrogate system (3.27) as stated in the following definition.
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3 Inhomogeneous systems and their system theoretical aspects

Definition 3.8:
Consider the asymptotically stable system (3.27). The corresponding observability
Gramian is defined as

Q, — / T e T T AT ET e g gy O
0

As described in (3.18), the observability Gramian is computed by solving a Lyapunov
equation.

Controllability energies In this paragraph, we derive the controllability energies cor-
responding to the surrogate system (3.27) including the input-to-state and the initial
condition-to-state behavior of the original system (3.5). To do so, we derive an energy
measure that describes the controllability behavior of the system (3.27). As energy mea-
sure, we use the energy norm introduced in (3.19). We evaluate the energy norm of the
input-to-state mapping ¢, from (3.28), which yields

E(ew) = ||cwllig([o’oo)ﬁRNx(mwzo)) = /OOO tr(ew(t)ew(t)’) dt = tr(Py) . (3.30)

The trace of the Gramian P,, coincides with the sum of its eigenvalues. Hence, large
eigenvalues have a high influence on the system’s energy, while small eigenvalues are
neglectable. Therefore, the states corresponding to the highest eigenvalues span the
most dominant subspaces.

Observability energies As described above, the observability behavior of system (3.27)
is equal to the ones of the subsystems (3.8) and (3.9). Hence, we describe the observabil-
ity energies using the observability Gramian Q,. The energy norm of the state-to-output
mapping oy, from (3.16) is equal to

E(o.) =tr(Q,),

as shown in (3.22). From this energy measure, we follow that states corresponding
to large eigenvalues of the observability Gramian Q,; span the dominant observability
subspaces. On the other hand, states corresponding to small eigenvalues are neglectable
when describing the system dynamics.

In the extended-input approach, we derive a model incorporating the initial condition
space into the input expression. That way, we can derive suitable Gramians and energies
that encode the system properties that are summarized in Table 3.2.
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Figure 3.4: Structure of a first-order ODE system with a quadratic output.

System (3.27)

Transfer function Sew

Controllability Gramian | P,y

Observability Gramian 9,

Controllability energies | E(cw) = tr(Poy)

Observability energies E(o.) = tr(9Q)

Table 3.2: Properties of system (3.5) corresponding to its extended-input representation.

3.1.2 Inhomogeneous first-order ODE systems with a quadratic
output

In this subsection, we study first-order systems of the form
Ez(t) = Az(t) + Bu(t), z(0) = 2o,
Yalt) = z(t) Maz(t),

with a state equation as defined in (3.1), and a quadratic output equation with a sym-
metric output matrix M € RV*Y and an output yo(¢) € R. The resulting system (3.31)
is depicted in Figure 3.4, where we insert two inputs u and an initial condition zy into
the system, denoted G, to indicate the quadratic output equation. The system (3.31)
occurs, particularly in the study of the variance, or deviation, of the state variable from
a given reference point, which can be represented as a quadratic function of the state.
Quadratic output equations also arise when, e.g., evaluating system energies as output
variables.

The authors in [20] derived concepts to evaluate quadratic output equations. However,
they only consider systems with homogeneous initial conditions. Hence, in this section,
we extend the approaches of [66] and [15] to systems with quadratic output equations
(3.31) using the ideas from [20]. Therefore, in Section 3.1.2.1, we apply the superposi-
tion principles to derive four subsystems that describe the overall system behavior and

(3.31)
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are analyzed separately. Afterwards, in Section 3.1.2.2, we apply an extended-input
approach that results in a homogeneous system with an input matrix that includes the
input and the initial condition space. This system is then analyzed instead of the original
system (3.31).

3.1.2.1 Multi-system approach for inhomogeneous first-order ODE systems
with a quadratic output

In this section, we apply the multi-system approach to analyze the system (3.31) while
taking into account the inhomogeneous initial conditions. We apply the superposition
principles to derive subsystems with outputs that sum up to the original output ex-
pression yq(t). By considering the subsystems individually, we gain more flexibility
in analyzing the influences of the initial conditions z, and inputs u(t) to reduce the
respective subsystems later in this work.

We consider the state z(t) = zy(t) + 2z, (t) from (3.2) that consist of two components
defined in (3.3). Using these components, the output equation of system (3.5) can be
written as

Yal(t) = 2(t)" Ma(t)
= 25 (1) "Mz (1) + 25, (1) "Mz (t) + 25 (1) "Mz, (1) + 24, (5) "Mz, (t)  (3.32)
=: Yaz5(t) + Yazon(t) + Y82, (1) + Ya,z02, (1),
where we identify four output components, as the sketch in Figure 3.5 shows. We note
that the terms yg z,5(t) and yq sz, (f) coincide because of the symmetry of M. However,

to describe the output behavior, we need to analyze both components separately, as they
describe different observability spaces.

Transfer function To study the behavior of the system (3.31) concerning the initial
conditions and the input, we consider the four output components defined in (3.32)
separately.

Inserting z(t) from (3.3) into the first output component y 55(t) from (3.32) yields

t t
yQ,B’B (t) _ / / U(Tl)TgT8_TG'ATS_T(t_Tl)MGS_IA(t_Tz)8_1$U(7‘2)d7‘1d7‘2.
0o Jo

From this output expression, we can extract the kernel
gQ,BB(tlg tg) — BTngeleg*Ttl Meﬁflj-ltg 8713'

Since the kernel gq 55(t1,t2) encodes the input-to-output mapping, it is used to describe
the respective system behavior. Therefore, we analyze the respective system dynamics
in the frequency domain using the 2-dimensional Laplace transform.
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Figure 3.5: Structure of four separated first-order ODE systems with a quadratic output.

Definition 3.9:
Let f(t1,t2) : [0,00)> — R™ be a function that is exponentially bounded, i.e., there exist
numbers M and « so that

||f(t1,t2)||2 S Meo‘tl and ||f<t1,t2)||2 S M@at2, for all tl,tg 2 0.

Then the 2-dimensional Laplace transform is defined as

F(Sl, 82) = L{f}(sl, 82) = / / 6_82t2_81t1f(t1,tg)dtldtg. <>
0 0

Applying the 2-dimensional Laplace transform to gqss(t1,%t2) leads to the input-to-
output mapping

Goas(51,82) = BT (5:€ — A) " TM(5,€ — A)'B
in the frequency domain, which is the transfer function corresponding to yq s=(t).

Using the same procedure, we derive the transfer functions for the remaining output
components in (3.32), which yields the following definition.

Definition 3.10:

Consider the asymptotically stable dynamical system (3.31) with an initial condition
as defined in (3.4). Then the four transfer functions corresponding to that system are
defined as

( ) =B (5,& — A) " TM(s5,& — A) !B,
Goz05(51,52) =23 ET(51€ — A) TM(5,€ — A) B, (3.33)
Gomz, (51, 52) =BT (5:€ — A)TM(s5,€ — A)1EZ, ' 0
( ) =ZTET (5:& — A)TTM(5,& — A)'EZ.
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The first transfer function Gg ss(s1,52) corresponding to the first output component
Yass(t) has the following homogeneous system realization

yQ,BB (t) =Zg (t)TMZB (t)
This system has the same structure analyzed in [20]. Therefore, we can treat it the
same way. The two transfer functions G, 5, 5(s1,52) and Gq sz, (51, s2) each include an

input-to-state mapping and an initial condition-to-state mapping. Consequently, two
state equations are needed to define the respective system realizations, which are

(3.34)

E7,(t) = Azy(t) + Bu(t), z5(0) =0,
E27,(t) = Azg, (1), Z7,(0) = ZoCo, (3.35)
Yazos(t) = Zz, (t>TMZB (t),
and
Ez4(t) = Azy(t) + Bu(t), z5(0) =0,
€24,(t) = Azy, (1), Z2,(0) = ZoGo, (3.36)

Yasz,(t) = Zs (t)TMZZU (t).

We observe that both systems lead to the same output ygz,5(t) = Yqsz,(t) as the
matrix M is assumed to be symmetric. However, for consideration later in this work, we
distinguish between them. The remaining transfer function G, 5,2, (s1, s2) that generates
the output component yq, 5,2, (t) corresponds to the system realization

Ez,, (1) = Azg, (1), 22,(0) = Zo(o,
Ya.zozo = Zz, (t)TMZzo (t)

We observe that no input is acting on the system as the system behavior only depends
on the initial condition zg.

In the following, we investigate the four subsystems separately instead of analyzing
the inhomogeneous system (3.31) to describe the overall system behavior. These con-
siderations are used later in Section 4.1.1 to reduce all the subsystems separately within
a model reduction scheme.

(3.37)

Controllability Gramians In this paragraph, we aim to derive controllability Gramians
encoding the controllability properties to the four subsystems (3.34), (3.35), (3.36),
and (3.37). We observe that only two different state equations appear within the four
subsystems that also coincide with the state equations of the systems (3.10) and (3.13).
Also their input- and initial condition-to-output mappings corresponding to the input
Bu(t) and the initial condition Z(y that are

cx(t) = et METIB and Cq(t) i= €& ALy,
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respectively, coincide with those from (3.10) and (3.13). Hence, evaluating these map-
pings over the time domain leads to the respective controllability Gramians as defined
in (3.11) and (3.14).

Definition 3.11:
Consider the asymptotically stable systems (3.34), (3.35), (3.36), and (3.37). The re-
spective controllability Gramians are defined as

P, = / OOeg’lf“e—133T8—Te<8’1f‘>”dt, P, = / h & Z ZT &AL O
0

0
0

These Gramians are determined by solving Lyapunov equations (3.15) and (3.18).

Observability Gramian We aim to determine tailored Gramians encoding observabil-
ity subspaces for ODE systems with quadratic output equations (3.31) that describe
their observability properties. However, extensions of the Gramian definitions for sys-
tems with linear output equations to systems with quadratic output equations are not
straightforward. Hence, in this paragraph, we propose new Gramians that describe the
observability based on the output decomposition (3.32). Therefore, we investigate the
four output components separately. Since the output is a superposition of the four com-
ponents, the Gramians that describe the output components sum up to a Gramian that
describes the overall observability of the system.

For a better understanding, we can rewrite y(¢) by defining the state dependent
function €(z(t)) := z(¢t)T™. Applying this representation to the decomposed output
yields

Ya(t) = C(2s ()2 (1) + C(25(1))22, (1) + C(22, ()2 (1) + €(27,(1))2z,(1).

We observe that the observability of the state zy(¢) in the output yq 2,5 (t) = €(2zz,(t))zs(t)
also depends on the reachability of z, (¢). On the other hand, the observability of the
state zg, (t) corresponding to yq sz, (t) = C(2z5(t))2z4,(t) depends on the reachability of
z5(t). Hence, the outputs yq z,5(t) = Yq.8z,(t) encode two different observability prop-
erties. Analogously, the outputs yqs(t) = C(zs(t))z5(t) and yqz,(t) = C(2z,(t))zz, ()
encode the observability of the state zy(t) depending on the reachability of the same,
and the observability of the state z,,(t) depending on the reachability of the same state
Zz,(t), respectively.

In this paragraph, we define observability Gramians encoding the observability behav-
ior of state the zy(t) corresponding to €(zx(t)) and €(zz,(t)) and observability Gramians
describing the observability of the state z,, (t) corresponding to C(z5(t)) and C(z4,(t)).
Because of the dependencies on the reachability of zx(t) and z,, (t) encoded by C(zx(t))
and C(z4,(t)), we expect that the observability Gramians will depend on the controlla-
bility Gramians P, and P, .
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3 Inhomogeneous systems and their system theoretical aspects

The first subsystem (3.34) encodes the input-to-output behavior from which we ex-
tract the input-to-state mapping ¢5(t) = €& A€ 1B defined in (3.10). The remaining
mapping encodes the state-to-output mapping that is

0g5(t1,t2) = BTeTAE et Ag—1 (3.38)

The output of the third subsystem (3.36) includes the input-to-state mapping ¢z (t) =
e€ A7 from (3.13) so that the remaining state-to-output mapping is equal to 0q 5 as
defined in (3.38). Using the mapping oq s, we can construct a matrix Q5 that spans
the respective observability space by integrating over the time domain, which yields

Qs = / / OQ,B(tlat2>TOQ7B(t17t2)dt1dt2
0 0
= /OO /OO E_TQATg—thMe‘S_IAtl8—1BBT8_T€AT8_Tt1M@g_lﬂme_ldﬁdb
0 0
- / e ETTEMPL M A E
0

according to the definition of Py in (3.11). This consideration is summarized in the
following definition.

Definition 3.12:

We consider the asymptotically stable systems (3.34) and (3.36) and the controllability
Gramian P, as defined in (3.11). Then the observability Gramian corresponding to
those systems is defined as

Qs = / ETeA ETIMP L MeE A E AL (3.39)
0 O

We compute the observability Gramian Qg s by solving the Lyapunov equation
8TQQ7:B-A _|’ ATQQ738 - _M?BM

Since we investigate the controllability and observability behavior of the right state
in the different output components in (3.32), the behavior of the system (3.34) is de-
scribed by the two Gramians Py and Qg 5. Moreover, the behavior of the system (3.36)
is described by the two Gramians P,, and Q, 5. Note that we can also investigate the
controllability and observability behavior of the left states of the quadratic output ex-
pressions, which would lead to similar results, where the Gramians from the two outputs
Yao,z,3 and yq sz, are swapped.

Analogously, we investigate the observability of the subsystem (3.35). We extract the
input-to-state mapping c5(t) from (3.10) and the remaining state-to-output mapping
that is defined as

04,2, (t1,t2) = Z(]TngeATszt1 MeE Atzg 1 (3.40)

68



3.1 Inhomogeneous first-order ODE systems

The subsystem (3.37) also results in the state-to-output mapping 04z, as defined in
(3.40) after the respective input-to-state mapping ¢, (¢) from (3.13) is identified. The
mapping 0q 5, is used to derive a matrix that spans the observability space as

0q,z, (tly t2) — / / 0q,z, (t17 t2) 0q,z, (tl’ t2)dt1dt2
0 0
_ / °° / T ATE Ty e Al ZoZTe & MeE e At dty
0 0

- / T e AT P, Mt g Lt

0

by inserting the definition of P, from (3.14).

Definition 3.13:

We consider the asymptotically stable systems (3.35) and (3.37) and the controllability
Gramian P, as defined in (3.14). Then the corresponding observability Gramian is
defined as

Qqz = / T E IMDP, M ME L. (3.41)
0 0

The observability Gramian Qg 5, is the unique solution of the Lyapunov equation

€70, A+ ATQ, , & = —MP, M.

Controllability Energy In this paragraph, we analyze the controllability energies of
the four subsystems (3.34), (3.35), (3.36), and (3.37) to describe their controllability
properties and identify the dominant controllability subspaces accordingly. Since the
controllability behavior of the different state equations within the four subsystems co-
incides with those of the two subsystems (3.8) and (3.9), we obtain equal energy ex-
pressions. Therefore, we analyze the energy norm of the different input- and initial
condition-to-state mappings ¢x(t) and ¢, (¢) from (3.10) and (3.13), respectively, which
leads to the energy norms

E(cg) = tr(Py) and E(eq,) = tr(Py,)
as described in (3.20) and (3.21). Since the traces of Gramians Py and P, are equal
to the sum of their eigenvalues, the states corresponding to the large eigenvalues of the

controllability Gramians P, and P, span the most dominant controllability subspaces
since the Gramians are by definition symmetric.
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3 Inhomogeneous systems and their system theoretical aspects

Observability energy Analogous to the controllability energies, we want to analyze
the observability energies to identify the states that encode the dominant observability
subspaces. To this end, we consider the state-to-output mappings from (3.38) and (3.40)
describing the observability behavior of the different subsystems with a quadratic output
equation. We apply the respective energy norm which yields the energy expressions

E(oqs) = HOQ,‘BH%Z([O’OO)Q’R’NLXN) = / / tr(0g,s(t, 12)" 0q5(t1, t2)) dtydt (3.42)
o Jo -
= tr(Qq,s)

and

E(oQ,ZO):HoQ,ZO|@2([Om)QﬁszUxN):/0 /0 tr(0q,z,(t1, 12)" 00,2, (t1, t2)) dt1dis

=tr(Qq.z,) -
(3.43)

Again, we note that the traces of the observability Gramians Qg 5 and Qg 5, which are
the summands of their eigenvalues, indicate which states are significant for the system
dynamics. Since the largest eigenvalues of the observability Gramians have the most in-
fluence on the output energies, the corresponding states span the dominant observability
subspaces.

In this section, we have derived four transfer functions with corresponding system
representations, that describe the overall system behavior. Corresponding to these sub-
systems, we have derived suitable Gramians and energy expressions that incorporate the
controllability and observability properties of the original system. Table 3.3 depicts the
derived subsystems with the corresponding transfer functions, the respective Gramians,
and the resulting energies.
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3.1 Inhomogeneous first-order ODE systems

System (3.34) System (3.35) System (3.36) System (3.37)
Transfer Sq,zs(s1, 52) Sa,8z,(51, 52) S,z (51, 52) Sa,202, (51, 52)
function
Controllability | Ps Pz, Py Pz,
Gramian
Observability QQ’B QQ}g QQ,ZO QQ,ZO
Gramian
Controllability | E(cs) = tr(Ps) | E(ecz,) E(cs) E(cz,)
energies = tr(Py,) = tr(Pg) = tr(Py,)
Observability | E(oq,s) E(oq,s) E(0q,z,) E(0q,2,)
energies = tr(Qq,s) = tr(Qq,s) = tr(Qq,z, = tr(Qq,z,

Table 3.3: Properties of system (3.31) corresponding to its multi-system representation.

3.1.2.2 Extended-input approach for inhomogeneous first-order ODE systems
with a quadratic output

As an alternative to the multi-system approach presented before, we apply the extended-
input method from [66] and modify it so that it is suitable for systems with a quadratic
output. Therefore, we derive the transfer function of the original system (3.31) and a
respective homogeneous system representation that is analyzed instead of the original
system.

Transfer function Our objective is to describe the relationship between inputs, initial
conditions, and the output behavior of the system (3.31). To achieve this, we combine
the transfer functions from (3.33), as each encodes a part of the overall input— and initial
condition—to—output behavior, which yields

9Q,ww(517 32) = 9Q,SBB (517 32) + 9Q,93Z0<517 52) + gQ,ZOB<317 52) + SQ,ZUZO(Sb 52)
=W (5:E& — A) "M (5:€ — A)T'W
for the input matrix W defined in (3.24).

Definition 3.14:
Consider the system (3.31) with initial conditions as defined in (3.4). The transfer
function corresponding to this system is defined as

Goow (51, 52) = WT(5:€ — A) UM (5,€ — A)~'W. (3.44)

O
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. Yy
Q
u SQ,WW
—_—

Figure 3.6: Structure of a first-order ODE system with an extended input and a
quadratic output.

Since the transfer function G, v has multiple system realizations, we use a homogeneous
one, that is

Ea(t) = Az(t) + Wii(t),  2(0) =0,
Vo(t) = 2(t) Ma(t),

where u € Ls([0,00), R™) is a suitable input function. In the following, we consider
the homogeneous system (3.45) instead of the inhomogeneous original one (3.31). The
homogeneous system is depicted in Figure 3.6, where no initial conditions are added to
the homogeneous system as they are embedded in the input u. Note, however, that we
only use the surrogate system to describe the controllability and observability behavior.
Later in this work, when we apply model reduction techniques, the resulting spaces are
used to reduce the original system (3.31) and find an inhomogeneous reduced model.

(3.45)

Controllability Gramian To investigate the input-to-output behavior of the homoge-
neous system (3.45), we aim to derive the corresponding controllability Gramian span-
ning the controllability space. We observe that the input-to-output mapping of this
system is equal to the input-to-output mapping of the ODE system with a linear output
equation from (3.27). Hence, the controllability Gramian of the system (3.45) is equal
to the one defined in (3.29), which leads to the following definition.

Definition 3.15:
Consider the asymptotically stable system (3.45) with W as defined in (3.24). Then the
corresponding controllability Gramian is defined as

P, = / T T AL gy WT e E AT gy O
0

Observability Gramians In this paragraph, we aim to derive an observability Gramian
that encodes the observability properties of the homogenous system (3.27), which can
be used to identify dominant observability spaces. Therefore, we consider the output
equation

t t
Yaol(t) = / / U(r)TWTE @A M NE T AR eI Wi (1) dTidrs
0 0
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3.1 Inhomogeneous first-order ODE systems

of system (3.45) and identify the input-to-state mapping ¢, (s) from (3.28). The remain-
ing mapping within the output y(¢) is the state-to-output mapping, which is defined
as

Ogw(tr, ty) := WTETA & et Azg 1 (3.46)

From this mapping, we derive the matrix
QQ,W = / / OQ7W (tl, tQ)TOQnN (tl, tQ)dtldtQ
0o Jo
— /OO /Oo EfTe.ATEiTtgmegilﬂh 871WWT871€(871A)T“M6871At2871dt1dt2
0o Jo
_ / £ TATE TP N A2 gy,
0

that spans the corresponding observability space using the definition of P,, from (3.29).

Definition 3.16:
Consider the asymptotically stable system (3.45) and the controllability Gramian P,,
defined in (3.29). Then, the corresponding observability Gramian is defined as

Qo 1= / e ETTIMP MeE T ME AL, (3.47)

0 O

We observe that the observability Gramian Q, ,, also contains the controllability Gramian
P, as the observability behavior of the right state in the output expression in (3.45)

depends also on the controllability state of the left state encoded by P.,. To compute
the observability Gramian, we solve the Lyapunov equation

ETQ,wA + ATQL € = —MP, M

as described in [20, Lemma 2.1].

Controllability energies To identify the dominant controllability subspaces of the ho-
mogeneous system (3.45), we aim to derive the controllability energies of this system.
We note that the input-to-state mapping, and hence the corresponding controllability
Gramian coincide with those corresponding to the system (3.27) with a linear output
equation. Therefore, as derived in (3.30), we apply the energy norm to state-output
mapping ¢,y defined in (3.28), which yields

E(cy) = tr(Py) .

This energy expression indicates that the states corresponding to the highest eigenvalues
of the controllability Gramian P., span the most dominant controllability subspaces.
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3 Inhomogeneous systems and their system theoretical aspects

Observability Energies In this paragraph, we derive some observability energies to
identify the dominant observability subspaces of the homogeneous system (3.45). We
derive an energy expression based on the state-to-output mapping o . defined in (3.46).
We evaluate the energy norm from (3.19) of this mapping, that is

E(OQ,W) = HOQ,WH%Q([ODO)Q,RerNZOXN) = A /0 tr(OQ,W(thtQ)HOQ,W(t17t2)) dt,dt,

=tr(Qq) .
(3.48)

This energy norm shows, which states are the most significant ones describing the system
dynamics. Since the trace of the observability Gramian Q, , is equal to the sum of its
eigenvalues, it follows that the states corresponding to the largest eigenvalues of Qg .y
encode the dominant observability subspaces.

To summarize the extended-input approach that derives a homogeneous system (3.45)
to describe the system dynamics, Table 3.4 depicts the considered transfer function, the
resulting Gramians, and the respective energies.

System (3.45)

Transfer function Ga,ww(s1,52)

Controllability Gramian | P,y

Observability Gramian | Qg w

)

Controllability energies | E(cw) = tr(Pw)

Observability energies E(oqw) = tr(Qq,w)

Table 3.4: Properties of system (3.31) corresponding to its extended-input representa-
tion.

3.2 Inhomogeneous first-order DAE systems

In this section, we generalize the theory presented above to dynamical systems with a
differential-algebraic equation as a state equation that has the form

Ea(t) = Az(t) + Bu(t),  z(0) =z (3.49)

with &, A € RV*N and B € RV*™ where we assume that € is a singular matrix.
Moreover, we assume in this work that the matrix pencil (A, €) is regular, i.e., A& — A
is not a zero polynomial, and that the consistency conditions in (2.15) are satisfied.
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3.2 Inhomogeneous first-order DAE systems

DAE systems arise when, for example, electrical circuits, heat and diffusion processes, or
multibody systems are modeled using methods such as finite elements or finite volumes.
These systems involve physical constraints, which lead to algebraic equations. Therefore,
tailored analysis tools need to be developed, see |79, 91, 130].

We assume that the matrix Z, € RV*™2 gpans a space containing all admissible initial
states, i.e., for all initial states z, there exists a vector (, € Rz such that

Zy — ZOCO' (350)

The matrix Z, is composed of a proper part Z,, and an improper part Z;o, so that
ZO = Zp70 + Zi,O and

Zp70 = PrZQ and Zi,O == (IN — Pr)ZO (351)

holds for a projection matrix P, as defined in (2.10). The matrices Z,o and Z;, are
used in the following to study the system properties while considering all admissible
initial conditions. According to that initial condition matrix decomposition in (3.51),
the initial state is composed of

Zy = Zppo + Zio with Zpo = PrZO7 Zip = (IN - Pr>Z0 (352)

Note that the initial condition for the algebraic state component z;(t) is already included
in the state trajectory due to the consistency condition (2.15). Hence, Z;( can be chosen
as

u(O)(Q)
Zi,O = [S:’N(O)g tee :']:’N(V - 1)3} with Zip = Zi,O . (353)
u(u—l)(o)

In the following, we analyze the behavior of DAE systems with a state equation (3.49).
Therefore, we generalize existing methods for systems with linear output equations to
include the initial conditions when analyzing the system behavior. Moreover, we inves-
tigate DAE systems with quadratic output equations, which have not been studied in
the literature. For both classes of systems, we consider a multi-system approach and an
extended-input approach, modifying the methods presented in the previous section.

First, in Section 3.2.1, we derive the system properties of DAE systems with linear out-
put equations, and then study systems with quadratic output equations in Section 3.2.2.

3.2.1 Inhomogeneous first-order DAE systems with a linear
output
We consider DAE systems with a linear output equation of the form
Ea(t) = Az(t) + Bu(t),  z(0) = zo,

yu(t) = €a(1), (3.54)
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Figure 3.7: Structure of a first-order DAE system with a linear output.
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Figure 3.8: Structure of a first-order DAE system with a linear output - differential and
algebraic components decoupled.

where the state equation is as defined in (3.49), and the output equation includes the
output matrix € € RP*Y and an output y.(¢t) € RP. The input- and initial condition-
to-output structure of this system is depicted in Figure 3.7, where we have not yet
separated the differential and algebraic components so that it is of the same form as for
the ODE system with a linear output equation depicted in Figure 3.1. Decomposing the
system into its differential and algebraic components as defined in (2.14) leads to the
two outputs

Vip(t) == Czy(1), yui(t) == Czi(t) with yi(t) = yup(t) + yui(t),

as depict in Figure 3.8. We add an input u and an initial condition zy to the differential
system, that are needed to derive the respective proper output y,. To generate the
improper output y; only the input u is needed since the initial conditions satisfy the
consistency conditions (2.15).

In the following, we analyze the input- and initial condition-to-output behavior of
the differential and the algebraic system separately. Therefore, we generate the corre-
sponding Gramians that describe the respective controllability and observability spaces.
These Gramians are then used to derive the system energies, which define the dominant
controllability and observability subspaces. We again utilize two different approaches to
treat the inhomogeneous initial conditions, namely the multi-system approach shown in
Section 3.2.1.1 and the extended-input approach presented in Section 3.2.1.2.
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3.2 Inhomogeneous first-order DAE systems

3.2.1.1 Multi-system approach for inhomogeneous first-order DAE systems
with a linear output

In this paragraph, we derive a multi-system representation of the system (3.54) to treat
the inhomogeneous initial conditions. Therefore, we modify the method introduced in
Section 3.1.1.1 to incorporate the differential and algebraic components of the DAE
system. We again derive some subsystems that are analyzed separately and derive the
respective Gramians and system energies.

Transfer function To evaluate the behavior of the system (3.54), we consider the state
components defined in (2.14) where we decompose the differential state additionally into

2,0(t) = /0 - Bu(ndr and oz, (1) = Fi(0EZ oG (3.55)

We apply the Laplace transform to each of the components z, 5(t), z, z,(t), and z;(t),
which yields

Zp5(s) :=P.(s€ - A)'BU(s), Zipz,(5) = Po(s& — A)'EZ, 0,

(3.56)
Zi(s) = (I-P,)(s€ — A)'BU(s).

To describe not only the input- and initial condition-to-state behavior but also the
respective output, we apply the Laplace transform to the output equation in (3.54) and
insert the three state components from (3.56), to obtain the three outputs

Y., 5(s) = CP.(s& — A)"BU(s), Y. ,2,(5): CP.(s€ — A) 1EZ, o(o,
Y.i(s) = CI-P,)(s& — A)'BU(s).

From these output representations, we can extract the respective transfer functions of
the system (3.54), that encode the proper and improper input- and initial condition-to-
output mappings.

Definition 3.17:

Consider the system (3.54) with a regular matrix pencil s€ — A and the projection matrix
P, defined in (2.10). Assume that the consistency conditions in (2.15) are satisfied. Then
the respective transfer functions are defined as

SLps(s) =CP.(s€ — A)’lB, Gipz,(s) = CP(s€ — A)*lezp,o,

G.i(s) = CI—-P,)(s& - A)'B (3.57)

O
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Figure 3.9: Structure of three separated first-order DAFE systems with a linear output.

The first transfer function, G, , 5, results from the differential system with the homo-
geneous differential initial condition, i.e., Pz, 5(0) = z,9 = 0 as described in (3.52),
which yields the system realization

€z, 5(t) = Az, 5(t) + PyBu(t), P.z,5(0) =0,

3.58
Yupa(t) = Czpa(t) (3:55)

The second transfer function, G, ,, 5, corresponds to the system representation
82p7z(] (t) - AZPZO (t)7 PTZP>Z0 (0> = Zp)OC(]’ (3'59)

yL7p7ZO (t) = CZZP,ZO (t) )

where no input is added to the system and a differential initial condition P,z(0) =
Zpo = Lp0Co is applied. This system describes the differential initial condition-to-output
mapping. The third transfer function, G, ;, has the system representation

€zi(t) = Azi(t) + (I -P)Bu(t), (I-P.)z(0)=zp,
yui(t) = Cz(t)

where we assume that the initial condition (I — P,)z(0) = 2z = Z;o( from (3.52)
satisfies the consistency conditions.

The decomposition of the system (3.54) into the three subsystems (3.58), (3.59), and
(3.60) describing the dynamics of the overall system is depicted in Figure 3.9.

In the following, we investigate the controllability and observability properties of the
three subsystems separately. For that, we derive the respective Gramians spanning their
controllability and observability spaces.

(3.60)

Controllability Gramian To describe the controllability behavior of the three sub-
systems, we derive respective input- and initial condition-to-state mappings. The first
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3.2 Inhomogeneous first-order DAE systems

subsystem (3.58) has the input-to-state mapping
cps(t) = F3(t)B, (3.61)

where Fy(t) is as defined in (2.13). Since this mapping encodes all reachable states of
the subsystem (3.58), it is used to define a matrix Pp5 := [ ¢ps(t)cps(t)Tdt that
spans the corresponding controllability space.

Definition 3.18:
Consider the C-stable system (3.58) with a regular matrix pencil (A, E) and Fy as
defined in (2.13). Then the corresponding proper controllability Gramian is defined as

Pos = / F3(t)BB F;(t) dt. (3.62)
0 O
Furthermore, inserting the definition of F;(t) into (3.62) yields the following lemma.

Lemma 3.19:

Consider the C-stable system (3.58) with a regular matrix pencil (A, E). Assume that
T, W are matrices that transform system (3.58) into Weierstrak canonical form as
described in (2.9). Then the Gramian P, 5 from (3.62) is of the form

PI,B 0

0 O
with B = W/[R!]. O
This lemma vividly shows that the proper controllability Gramian is connected to the
Gramian of the differential states in the WCF from (2.9). Since the differential state
results from an ODE state equation, the theory from Section 3.1 applies to this state
component. Using the controllability Gramian, we can characterize the states that
are difficult to reach or even unreachable, which play a significant role when applying
reduction methods to the system. It remains to compute the Gramian. For that, we

use that the controllability Gramian P, 5 defined in (3.63) is the unique solution of the
continuous-time projected Lyapunov equation

EP, A" + AP, LET = P BB'P], P, =P, P, Pl (3.64)

as described in (2.19).
To describe the controllability behavior of the subsystem (3.59), we derive the respec-
tive input-to-state mapping

Pow =T { }TT, P, = / "B, BT’ dt (3.63)

0

Cp,z, (1) 1= F3(1)€Zo, (3.65)

where F;(t) is as defined in (2.13). This mapping is used to describe the controllability
space of the subsystem (3.59). For that, we define a matrix P, 5, := [ €p.z, (t) €p g, (t) T dt
that encodes the respective controllability space by integrating over the entire times do-
main.
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Definition 3.20:
Consider the C-stable system (3.59) with a regular matrix pencil (A, E) and Fy(t) as
defined in (2.13). Then the respective proper controllability Gramian is defined as

Py ::/ Fy(t)EZZIETF5(t) dt. (3.66)
0 O

To describe the connection between the Gramian P, , and the respective WCF, we
insert the definition of Fy(t) into (3.66) to derive the following lemma.

Lemma 3.21:

Consider the C-stable system (3.59) with a regular matrix pencil (A, E). Assume that
T, W are matrices that transform system (3.59) into Weierstrat canonical form. Then
the Gramian P, 5, from (3.66) is of the form

P, O

j)p,Zo - T_l |: 0 0

]T‘T, Py, = / B AV AT (3.67)
0

with Zo = W[Z!]. O

To compute the Gramian we use that the controllability Gramian P, as defined in
(3.67) is the unique solution of the continuous-time projected Lyapunov equation

EP, AT + AP, , ET = —PEZZ; ETPT, Pz = PP, P (3.68)

Finally, we describe the controllability of the remaining subsystem (3.60), that corre-
sponds to the improper system dynamics of the original system (3.54). Therefore, we
consider the corresponding input-to-state mapping

ci(k) = Fu(k)B, (3.69)

with Fn(k) as defined in (2.13). This mapping is used to derive a matrix P; =
v—1

o Ci(k)ei(k)T that spans the controllability space including all reachable algebraic
states by summing over all discrete matrices defined by ¢;(k).

Definition 3.22:
Consider the system (3.60) with a regular matrix pencil (A, €) and Fx(k) as defined in
(2.13). The corresponding improper controllability Gramian is defined as

k=0 O

The matrix P; spans the controllability space of the subsystem (3.60). Since the Gramian
P; spans the improper controllability space, it is connected to the algebraic components
of the WCF from (2.9). The relation is described in the following lemma.
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Lemma 3.23:

Consider the system (3.60) with a regular matrix pencil (A, E). Assume that T, W
are matrices that transform system (3.54) into Weierstralt canonical form. Then the
Gramian P; from (3.70) is of the form

v—1

0 0 }T‘T, Pys =Y N'B,Bj(NF)T (3.71)
k=0

P -1
R

with B =W/[p!]. O

To compute the controllability Gramian P; defined in (3.67), we use that P; is the
unique solution of the discrete-time projected Lyapunov equation

APAT —€PET = (1-P)BBY(I-P)", 0 =P, PP . (3.72)

The three controllability Gramians derived in this paragraph are used in the following
to identify states that are dominant in the dynamics of the system and states that are
neglectable.

Observability Gramians To describe the observability behavior of the three subsys-
tems (3.58), (3.59), and (3.60), we derive their state-to-output mappings and utilize
them to define the corresponding observability Gramians which encode the observability
properties of the respective system. We observe that the state-to-output mappings co-
incide for the two systems (3.58) and (3.59) that describe the differential components of
the system dynamics. Hence, we derive a proper state-to-output mapping corresponding
to these two systems, which is

0.,(t) == CF;(t) (3.73)

where Fj(t) is as defined in (2.13). Using o, ,(t), we derive a matrix Q,, :=

J5T op(t) 0y (t)dt that spans the proper observability space.

Definition 3.24:

Consider the two proper C-stable systems (3.58) and (3.59) with a regular matrix pencil
(A, E) and Fy as defined in (2.13). Then the corresponding proper observability Gramian
is defined as

Q,, = / ()T (1)t (3.74)
0
0

We insert the Weierstrafs-canonical form from (2.9) to derive the following lemma.
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3 Inhomogeneous systems and their system theoretical aspects

Lemma 3.25:
Consider the proper C-stable systems (3.58) and (3.59) with a regular matrix pencil
(A, E). The observability Gramian Q, ,, as defined in (3.74) satisfies

0

—1 | Qu,
QL,p::WTlél O

} W_la QL,l = / eJTtér{él@Jtdt (3.75)

0
with C; and J corresponding to the WCF of the respective systems defined in (2.9). ¢

This lemma vividly describes the connection between the observability Gramians of the
differential component of the state z, and the respective differential state z; of the
transformed system in WCF. To compute the observability Gramian Q, , defined in
(3.74), we solve the continuous-time projected Lyapunov equation

g9, A+ ATQ €= -PleTep,, Q,, =P P, (3.76)

Now we evaluate the observability behavior of the subsystem (3.60), which encodes
the improper components of the original system (3.54). For that, we extract the state-
to-output mapping, that is

oui(k) = CFn(k), (3.77)

where Fn (k) is as defined in (2.13). We derive a matrix Q, ; := > r_) 0,.5(k)To.;(k) that
spans the improper observability space by summing over all discrete matrices defined by
OL,i(k)'

Definition 3.26:
Consider the improper system (3.60) with a regular matrix pencil (A, E). Then the
corresponding improper observability Gramian is defined as

v—1
Q=Y Fn(k)'€TCFn(k). (3.783
k=0

Again, we insert the Weierstraf-canonical form from (2.9) to derive the following lemma.

Lemma 3.27:
Consider the improper system (3.60) with a regular matrix pencil (A, E). The observ-
ability Gramian Q, ; as defined in (3.78) satisfies

v—1

} T, Qu2=)» (N")'CICN, (3.79)

k=0

0 0

QLi = W_T
’ [0 Qo2

with C, and N corresponding to the WCF of the respective systems defined in (2.9). ¢
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3.2 Inhomogeneous first-order DAE systems

The improper observability Gramian Q, ;, defined in (3.78), is computed by solving a
projected Lyapunov equation as it is the unique solution of the discrete-time projected
Lyapunov equation

ATQA - ETQ, ;€= (1-P)'EeI-P,), 0=PlQ, ;P (3.80)

As for the controllability Gramians, we can characterize states that are hard to observe
or unobservable using the observability Gramians. Such states correspond to the small or
zero eigenvalues of the corresponding Gramians, as described in the following paragraphs.

Controllability energies We now use the Gramians, defined above, to describe the
controllability behavior and the respective energies in more detail. To provide an energy
measure based on the proper input- and initial condition-to-state mappings ¢, and
Cpz, as defined in (3.61) and (3.65), respectively, we evaluate their energy norms as
defined in (3.19) to obtain the following energy expressions

E(cps) = llepslT,(0.00) 25 <m) :/0 tr(cps(t)eps(t)") dt = tr(Ppa), (3.81)
and
Plepa) = lenml gomyavevm) = | tr(epalienn(®)dt = tr@ys) (38

for the Gramians P, 5 and P, 5, defined in (3.62) and (3.66).

To apply such an energy measure to the improper component of the system encoded by
the controllability mapping c;, we define a discrete energy norm. For that, we consider
a sequence (¢(k))g, ¢ : N — RV*™ and assume that ¢ € fo(N,RY>*™) i.e., that

> lle(®)|lr < oo.
k=0
Then the fy-norm of ¢ is defined as
E(c) = |le|lf,wprwm = Y _ tr(e(k)e(k)T). (3.83)
k=0

Applying the ¢y-norm from (3.83) to the input-to-state mapping ¢; from (3.69) yields

E(Ci) = HCiHZ(NJRNxm) = Ztr(cl(k:) Ci<k3)T) = itr(ci(k:)ci(k)T) = tr(ﬂ)l) (384)
k=0 k=0

where P; is as defined in (3.70).

Since the trace of a Gramian is equal to the sum of its eigenvalues, it follows from
(3.81), (3.82), and (3.84) that the most dominant proper controllability subspaces are
those corresponding to the largest eigenvalues of the two proper Gramians P, 5 and
Pp.z,- However, the dynamics of the improper system must be captured precisely, and
only the states corresponding to zero eigenvalues are negligible.
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3 Inhomogeneous systems and their system theoretical aspects

Observability energies In this paragraph, we aim to analyze the observability behavior
of the three subsystems (3.61), (3.65), and (3.69) to identify their dominant observability
subspaces. To derive an energy measure, we evaluate the state-to-output mappings oy,
and o,; as defined in (3.73) and (3.77), respectively. These mappings describe the
observability behavior of the proper and improper components of the subsystems (3.58),
(3.59), and (3.60). Hence, they are used to identify significant subspaces of the state
space. For that, we evaluate the energy norms defined in (3.19) and (3.83) of these
mappings, which yields

E(o.p) = ||0L,pH%2([0,oo),Rpr) = / tr(OL,p(t)TOL,p(t)) dt = tr(Qyp) (3.85)
0
and
v—1
E(o.;) = HOLJHZ(N,RPXN) = Ztr(OL,i(k>TOL,i(k)) = tr(Qy) - (3.86)
k=0

We observe again that the output energies described by the traces of the proper and
improper observability Gramians Q, , and Q, ; are equal to the sum of their eigenvalues,
which allows the conclusion that states corresponding to the largest eigenvalues define
the most dominant observability subspaces. As the improper system (3.59) needs to
maintain the complete system dynamics, only states corresponding to zero eigenvalues of
the respective Gramian Q, ; can be removed, as they do not change the system behavior.

To summarize the multi-system approach presented in this section, Table 3.5 describes
the three derived transfer functions, the respective Gramians, and the resulting energies.
They are used in the following chapters to reduce systems of this structure.

System (3.58) System (3.59) System (3.60)
Transfer function | Gy, »(s) Si.p,z,(5) Si(s)
Controllability Pos Po.z, P,
Gramian
Observability Q. p Q. p Qi
Gramian

Controllability E(cps) =tr(Pps) E(cpz,) = tr(Ppz,) E(¢i) = tr(Py)

energies

Observability en- | E(or ;) = tr(Qyp) E(orp) =tr(Qrp) E(oy;) = tr(Qw;)
ergies

Table 3.5: Properties of system (3.54) corresponding to its multi-system representation.
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3.2 Inhomogeneous first-order DAE systems

3.2.1.2 Extended-input approach for inhomogeneous first-order DAE systems
with a linear output

In this paragraph, we derive an extended-input approach that introduces a model with a
homogeneous differential initial condition that is evaluated instead of the inhomogeneous
original system (3.54). This process will be advantageous if we need one system that
captures the overall system behavior rather than three subsystems.

Transfer function To derive proper and improper transfer functions, which also in-
clude the initial condition space, we first apply the Laplace transform to the differential
state z,(t) from (2.14) to obtain

Z,(s) = P.(s& — A) Y (BU(s) + EZ, () = PL(s€ — .A)’lwpﬁ(s) (3.87)
for the input matrix and the input in the frequency domain
W, = [B €Z,) and  U(s) = [UC(S>] , (3.88)
0

respectively. Applying the Laplace transform to the output equation in (3.54) and insert-
ing the state Z,(s) from (3.87) leads to the proper output Yy, (s) := CP, (s€ — A)"' W, U
from which we extract the respective transfer function

Grpow, (8) i= CP, (s€ — A) "W,

that encodes the input- and initial condition-to-output behavior of the proper compo-
nents of the system (3.54).

To derive a transfer function that encodes the improper input-to-output mapping, we
apply the Laplace transform to the algebraic state z;(¢) from (2.14), which yields

Ziv, (s) =1—-P,)(s€ — A)_l BU(s)

(1-P,)(s€— A 1-P)[B 0] {Uéj)}

(I-P,)(s€—A) ' (I-P) [B ET—P,)Z,0] Uls)
(I-P,)(s€ - A" [B (I-P)EZ,, U(s)
(I-P,) (s&€ —A) " W,U(s)

(3.89)

where we make use of the properties (I — P,)Z,o = 0 and (I — P,)(s€ — A)"! =
(s&€ —A) Y I-P)).

Now, we apply the Laplace transform to the output equation in (3.54) and insert
Ziw, (5), which leads to the output Yy, (s) == €I — P,) (s€ — A)~" W, U. This im-
proper output encodes the input-to-output mapping described by the following improper
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3 Inhomogeneous systems and their system theoretical aspects

— 1 Gy,

O

Yi

—— S.iw,

Figure 3.10: Structure of a first-order DAE system with an extended input and a linear
output - differential and algebraic components decoupled.

transfer function
Griw,(s) == CI—P,) (s€ —A)'W,.

The proper and improper transfer functions sum up to the following transfer function
describing the overall system behavior.

Definition 3.28:

Consider the system (3.54) with a regular matrix pencil (A, €). Also, consider the matrix
W, from (3.88) and assume that the consistency conditions from (2.15) are satisfied.
Then the transfer function corresponding to this system is defined as

Grw, (5) :=C(s&€ —A) ' W, (3.90)
¢

Since the transfer function G, o results from multiple system realizations, we consider
the following one with a homogeneous differential initial condition

Ez(t) = Az(t) + Wyu(t), P.z(0) =0,
yu(t) = Ca(t),
with U € Ly([0,00), R™*Nzo) suitably chosen. The sketch in Figure 3.10 depicts this
surrogate system. We note that no initial conditions are needed to evaluate the system

dynamics since the differential part of the system has homogeneous initial conditions
and the algebraic components satisfy the consistency conditions (2.15).

(3.91)

Controllability Gramian We aim to describe the controllability properties of system
(3.91), which also encodes the controllability behavior of the original system (3.54).
Therefore, we evaluate the differential and the algebraic states separately.

As described in (2.14), the state z(¢) of system (3.91) decomposes into

v—1

z(t) = z,(t) + zi(t) = /Ut Fi(t —m)Wpu(r)dr + Z H’N(k:)wpﬁ(k)(t).

k=0
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3.2 Inhomogeneous first-order DAE systems

We extract the proper and improper input-to-state mappings that are
Cpw, (t) == F3(t)W, and Ciw, (k) == In(k)W,, (3.92)

where Fy(t) and Fn(k) are as defined in (2.13). These mappings are used to define
matrices Ppro, i = [17 Cpw, (£)Cp, (t)Tdt and Piry, i= S"/7) €ire, (k) €iw, (k)T that span
the proper and improper controllability space, respectively.
Definition 3.29:
Consider the C-stable system (3.91) with a regular matrix pencil (A, €) and Fy(t) and
Fn(k) as defined in (2.13). Then the corresponding proper and improper controllability
Gramians are defined as
00 v—1
Py = / FyOWWIF5 ()T, Piy, = > Fn(k)WyWIFn (k)T (3.93)
0 k=0 O

Since the Gramians P}, ., and P;,y, span the controllability spaces, all reachable states
z,(t) and z;(¢) lie in the spaces spanned by these matrices. Furthermore, inserting the
definitions of Fy(t) and Fn(k) into (3.93) yields the following Lemma.

Lemma 3.30:

Consider the C-stable system (3.91) with a regular matrix pencil (A, €). Assume that
T, W are matrices that transform system (3.91) into WCF as introduced in (2.9). Then
the controllability Gramians P, and P; defined in (3.93) are of the following form

P, 0 0 0
_m-1 |t -T -l ~T
:Pp7wp =T |: 0 0:| T ) :Pl,wp T |:O P2:| T (394)
where
00 v—1
P, = / W WM At and Py=) NFW,WJ(NM)T (3.95)
0 k=0
with W, = W[g] and J, N as defined in (2.9). 0
2

Note that the Gramians P, and Py are the proper and improper controllability Gramians
corresponding to the states z;(t) and zy(t) as defined in (2.12), respectively. Using the
controllability Gramians, we can characterize the states that are difficult to reach or
even unreachable, which play a significant role when reducing the system.

To compute the Gramians Py, and P, defined in (3.94), we utilize that they
are the unique solutions of the following continuous-time and discrete-time projected

Lyapunov equations
EPyw, A + AP, ET = —PW, WP, P, =P.P, P, (3.96)
APy AT — EPyy €T = T -PYW, W (1-P)", 0 =P, PPl '

87



3 Inhomogeneous systems and their system theoretical aspects

Observability Gramians When considering systems with a linear output equation as in
system (3.91), the initial conditions do not affect the observability behavior. Hence, the
surrogate system (3.91) has equal observability properties as the homogeneous system
in (2.8). Therefore, the same observability Gramians introduced in (2.20) encode the
observability behavior of system (3.91), leading to the following definition.

Definition 3.31:
Consider the C-stable system (3.91) with a regular matrix pencil (A, E). Then the
corresponding proper and improper observability Gramians are defined as

—_

v—

Q,,:— / FiOTCTCF, (), Q=S Fn(b)TE€TCFN(R),  (3.97)
0

0

i

where Fy(t) and Fn(k) are as defined in (2.13). O

We compute these Gramians by solving the projected Lyapunov equations (2.22).

Controllability energies In this paragraph, we use the controllability Gramians from
(3.93) to describe the controllability behavior of the system (3.91) and corresponding
energies in more detail. To derive an energy measure based on the proper and improper
input-to-state mappings defined in (3.92), we evaluate their energy norms defined in
(3.19) and (3.83) and obtain the expressions

E(cp,wp) = ||cp,Wp||2LQ([O7OO)7RNx<m+Nz0)) = /0 tl”(Cp,wp (t>cp,wp(t>T) dt = tr(:Pp,wp) )

(3.98)
and
v—1
E(Ci,wp) = ||ci’WPHEQ(N7RNX(m+NZO>> == Z tr(cl’wp(k) Cl’wp(kj)T) = tr(g)iva) . (399)
k=0

Since the trace of the Gramian P,y is equal to the sum of its eigenvalues, it follows
from the energy norm in (3.98) that small eigenvalues contribute only small amounts of
energy to the system dynamics and correspond to the least significant states. The same
properties can be observed for the improper Gramian P; ,, . However, the improper sys-
tem components encode algebraic system constraints. Neglecting states corresponding
to nonzero eigenvalues could lead to physically meaningless dynamics so that only the
states corresponding to zero eigenvalues are negligible.
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3.2 Inhomogeneous first-order DAE systems

Observability energies To describe the observability behavior of system (3.91), we
evaluate the respective observability energies in this paragraph. Therefore, we evaluate
the energy norms of the state-to-output mappings o,, and o,;, as defined in (3.73).
Since they coincide with the mappings introduced in (3.73) and (3.77), they provide the
same energy norms as in (3.85) and (3.86), that are

E(o.,,) =1t1(Quyp), E(oy;) =tr(Q.;).
The states corresponding to large eigenvalues of Q, , encode the dominant observability
subspaces. Among the improper states z;(t), only those corresponding to zero eigenvalues
of the improper Gramian Q,; can be neglected since they do not affect the system
dynamics.

The extended-input approach from this paragraph derives a system realization that is
used to define suitable Gramians encoding the controllability and observability spaces.
These Gramians and the resulting energy norms are summarized in Table 3.6.

System (3.91) — differential
component

System (3.91) — algebraic
component

Transfer function Srpw,(5) Siiw, ()
Controllability Gramian Pow, Piw,
Observability Gramian Qo Qi

Controllability energies

E(CP7WP) =tr (:ppva)

E(cLWp) =tr (:Piva)

Observability energies

E(oLp) =tr(Qup)

E(o.;) = tr(Qw;)

Table 3.6: Properties of system (3.54) corresponding to its extended-input representa-
tion.

3.2.2 Inhomogeneous first-order DAE systems with a quadratic
output

As a second class of DAE systems, we investigate systems with a quadratic output that
are of the form

Ea(t) = Az(t) + Bu(t),
Yo(t) = () Maz(t),

with a state equation as defined in (3.49), and an output equation including the sym-
metric output matrix M € RY*YN and the output yo(t) € R. We assume that the

2(0) = 2o, (3.100)

89



3 Inhomogeneous systems and their system theoretical aspects

u
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Figure 3.11: Structure of a first-order DAE system with a quadratic output.

matrix pencil (A, €) is regular and that the consistency conditions in (2.15) are satis-
fied. Figure 3.11 provides a sketch of the system structure where the inputs u and initial
conditions z, appear twice to indicate the quadratic output equation.

We decompose the output matrix M according to the WCF introduced in (2.9) into
M;; M
My N12] T

M=T" (3.101)

M, My,

This decomposition is used in the following for theoretical considerations. As described
for DAE systems with linear output equations in Section 3.2.1, we consider the differ-
ential and algebraic components of the system separately. Therefore, we decompose the
output equation in (3.100) as

Yol(t) = 2p(8) "Mz (t) + 2, (t) "Mz (t) 4 2 () Mz, (£) + 23 () Mz;(t)
=21 (1)"My121(t) + 21 (1) "Myazo(t) + 20 (1) "MLz (t) + 20(t) "Mapzo(t)  (3.102)
= pr(t) + YPi(t) + yip<t> + yii(t)

using the state components from (2.14) and (2.12). We observe that the output consists
of four components. We note that the two output components y;(t) and y;,(t) coincide.
However, they are analyzed separately in this work as they span different observability
spaces. Moreover, both components depend on a differential state and an algebraic one.
Hence, there is no obvious categorization of the outputs into proper and improper ones.

In the following, we consider the subsystems corresponding to the different output
components defined in (3.102) and investigate them individually. Figure 3.12 depicts
the subsystem structure, where we again only add an input u to derive the algebraic
components of the quadratic output since we assume the system satisfies the consistency
conditions. Hence, the initial conditions are included implicitly.

To consider the differential initial conditions while analyzing the system with a quadratic
output, we aim to apply the multi-system and extended-input approach introduced
above. Therefore, in Section 3.2.2.1, we describe the multi-system approach for inho-
mogeneous DAE systems with a quadratic output. Afterwards, in Section 3.2.2.2, we
apply the extended-input approach for this class of systems. For this purpose, we de-
rive suitable transfer functions, the corresponding Gramians, and the resulting energy
interpretations.
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Figure 3.12: Structure of a first-order DAE system with a quadratic output - proper and
improper components decoupled.

3.2.2.1 Multi-system approach for inhomogeneous first-order DAE systems
with a quadratic output

We aim to modify the multi-system approach presented in [15] so that it applies to DAE
systems (3.100) with a quadratic output equation. Within this approach, we derive
subsystems for the different input- and initial condition-to-output mappings. Inserting
the three state components z, 5(t), z, z,(t), and z;(t) from (3.55) and (2.14), respectively,
into the quadratic output equation from (3.102) yields

Yolt) = vaB(t)TMZp,B (t) + Zp,Zo<t>TMZp,B (t) + Zp,B(t)TMZp,Zo (t)
+ Zp 2, () "Mz 5, () + 25 (8) " M2Zi(t) + 2 2, (t) " Mzi(2) (3.103)
+ 7 (1) "Mz 5 () + 25 (t) "Mz, 4, (1) + 25(t) "Mz (2).

We note that the decomposition of the output consists of nine components. Examining
each respective subsystem individually would lead to extensive computations. Therefore,
for the sake of simplicity, we consider only the extended-input approach presented below.

3.2.2.2 Extended-input approach for inhomogeneous first-order DAE systems
with a quadratic output

We apply, in this paragraph, the extended-input approach, to consider the differential
initial conditions while analyzing the respective system. For that, we derive a system
representation with homogeneous differential initial conditions.
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3 Inhomogeneous systems and their system theoretical aspects

Transfer function Our objective is to describe the input- and initial condition-to-
output behavior of the system (3.100). Therefore, we consider the different output
components in (3.103), where, e.g., the first output component is

t ot
Yopss(t) = / / u(Tl)T‘:BTQ:J(t - Tl)TM.‘}"J(t — 73)Bu(m)drdm.
o Jo

We extract the kernel
Soppms(ti, ta) = BT Fy(t)"MF;(t2) B,

which encodes the input-to-output mapping corresponding to the first output component
7.5 (t) "Mz, 5(t). To derive the respective transfer function, we apply the 2-dimensional
Laplace transform, which yields

S ppss(s1,52) = BTP(51:€ — A)TM(s5,€ — A)'PB.

Applying this procedure to all output components in (3.103) and summing over the
resulting transfer functions leads to the transfer function

Saww, (51, 82) = (BTPI + Z P + BTI - P)")(s:&€ — A) "
- M(52€ — A)H(PB +PiZy + (I-P)B)
= (BT +Z;,)(s1€ — A) TM(5:€ — A) ' (Zo, + B)
ZT
— [ 0P (51€ — A) "M (5,€ — A)7! (Zo,, B],

BT

which encodes the overall input-to-output behavior. Using the definition of W, from
(3.88) leads to the following definition.

Definition 3.32:

Consider the system (3.100) with a regular matrix pencil (A, E). Also, consider the
matrix W, from (3.88) and assume that the consistency conditions in (2.15) are satisfied.
Then the transfer function corresponding to the system is defined as

Gow,w, (51, 82) = wg(sls — A) M (52 — AW, (3.104)
O

The transfer function G w, from (3.104) has several system realizations. One of them
is the following DAE system with a homogeneous differential initial condition,

Ez(t) = Az(t) + Wpu(t), P,z(0) =0,

Yao(t) = z(t)" Mz(2), (3.105)
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Figure 3.13: Structure of a first-order DAE system with an extended input and a
quadratic output - differential and algebraic components decoupled.

with Wy, ., w, as defined in (3.88) and a suitable input function u € L([0, o), R™*"20).
In the following, the surrogate system (3.105) is analyzed instead of the original system
(3.100) so that the system analysis involves the initial conditions.

In the following, we investigate the controllability behavior of the right state added
to the quadratic output equation in (3.105). Moreover, we investigate the observability
of the right state under consideration of the left one. Therefore, we distinguish between
the differential and the algebraic right state components in the following. Hence, we
divide the transfer function from (3.104) into a transfer function corresponding to the
differential right state and one that corresponds to the algebraic one while considering all
left states generated by the system (3.105), which results in the proper and the improper
transfer function

G, (51, 52) = Wy (1€ — A) " M(52€ — A) ' PYW,,,

p

gQ,i,Wp (51, SQ) = WIT)(Slg — A)iTM(SQE — .A)il(]: — P])Wp,

respectively. The respective structure is depicted in Figure 3.13.

Controllability Gramians To investigate the controllability behavior of the surrogate
system (3.105), we aim to derive its controllability Gramians that encode the respec-
tive controllability space. We note that the state equation of system (3.100) coincides
with the one corresponding to the DAE system (3.54) with a linear output equation.
Therefore, the same mappings ¢, and ¢; from (3.92) encode the input-to-state behavior,
and hence, the same controllability Gramians defined in (3.29) encode the controllability
spaces.

Definition 3.33:
Consider the C-stable system (3.100) with a regular matrix pencil (A, E). Then the
corresponding proper and improper controllability Gramians are defined as

) v—1
Prone, = / Fit)W, Wi Fs(t)"dt, Piay, =Y Fn(k)W, W, Fn(k)",
0

k=0
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3 Inhomogeneous systems and their system theoretical aspects

where Fj(t) and Fn(k) are as defined in (2.13). O

We compute these Gramians solving the projected Lyapunov equations in (3.96).

Observability Gramians To describe the controllability behavior of system (3.105),
we aim to derive the respective observability Gramians. Therefore, we decompose the
output as described in (3.102) and investigate the proper and improper components
separately. For a better understanding, we can rewrite y,(t) by defining the state-
dependent function €(z(t)) := z(t)™M. Applying this representation to the decomposed
output in (3.102) leads to

Yal(t) = €(zp(t))2p(t) + €z ())2i(t) + C(2:(t)) 2 (£) + C(zi(1))2i(t).

We observe, that the observability of the state z,(t) in the output yq;,(t) = C(zi(t))2z,(t)
also depends on the reachability of z;(¢). On the other hand, the observability of the
improper state z;(t) corresponding to yqpi(t) = C(2z,(t))zi(t) depends on the reacha-
bility of z,(t). Hence, the outputs yqi,(t) = yqpi(t) encode two different observability
properties. Analogously, the outputs yq pp(t) and yq:(t) encode the observability of the
state z,(t) depending on the reachability of the same, and the observability of the state
z;(t) depending on the reachability of the same state z;(t), respectively.

In this paragraph, we define proper and improper observability Gramians encoding the
observability behavior of state the z,(t) and z;(t), respectively, corresponding to €(z, (1))
and C(z;(t)). That way, we obtain a proper observability Gramian corresponding to the
outputs y,,(t) and y;,(¢) and an improper Gramian corresponding to yi(t) and y;(¢).
We want to emphasize that the observability of the right state z,(t) (or z;(¢)) does not
only depend on the matrix M but also on the space in which the left state z,(t) or z;(¢)
live. So it is expected that the observability Gramian for z,(¢) (or z;(¢)) depend on P,
and P; as well.

Proper observability Gramian In this paragraph, we investigate the two outputs
Ypp(t) and y;i,(¢) and their observability properties. We aim to describe the observability
of the right proper state depending on the second (left) state in the quadratic output
equation.

We start investigating the first component of the output y,,(t) = z,(t)"™Mz,(t) that
includes two proper states. Inserting the solution trajectories of the states leads to

t t
ypp(t) = / / ﬁ(Tl)ngng(t — Tl)TMH:J(t - TQ)Wpﬁ(TQ)dTQdTl
0 Jo

- /Ot /Ot VeC(WgCﬁ (t —71)"MF5(t — TQ)WP)T (U(r) ® U(r)) drdr.
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3.2 Inhomogeneous first-order DAE systems

We identify the input-to-state mapping ¢, (t) = F3(t)W, defined in (3.92) within the
output ypp(t) and extract the remaining state-to-output mapping

Opp,wp(tlth) = WES:J(tl)MH:J(tQ),

which encodes the observability of the differential right state while considering the left
differential state. Based on this mapping, we define a matrix

Qpp,wp 3:/ / Opp,Wp (tl,tQ)TOpp’wp(tl,tz)dtldtg
0 0
_ / / (1) PMET 5 (1 W, W (1) VT 5 (1)t it
0 0
- / 9:,] (tQ)TM:Pp’WPMg:J (tg)dtg
0

that spans the respective observability space using the definition of the controllability
Gramian P, from (3.93).

Definition 3.34:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian Py, as defined in (3.93). The proper-proper
observability Gramian Qpp 1, corresponding to the output yp, is defined as

Qpp,w, = / Fs (t2>TM:Pp,pr3:J (t2)dts (3.106)
0

where Fy(t) is defined as in (2.13). O

To describe the connection between the Weierstraf-canonical representation (2.11)
and the system (3.100) in the observability Gramian Q,,, we insert the function Fy(t),
which leads to the following Lemma.

Lemma 3.35:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian P,y as defined in (3.93). The proper-proper
observability Gramian Q,, ., corresponding to the output yp, is of the form

1 | Qi Of (o
Qpp,Wp ::W T|: 011 O W !
where -
Qll ::/ eJTtMlllelleJtdt (3107)
0

with the proper controllability Gramian P; as defined in (3.95) and MH as defined in
(3.101). O
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3 Inhomogeneous systems and their system theoretical aspects

Note that Qi; is the proper-proper observability Gramian corresponding to the state
z1(t) defined in (2.12). The following theorem describes how the Gramian Q. is
computed.

Theorem 3.36:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian P,y as defined in (3.93). The proper observ-
ability Gramian Q. as defined in (3.106) solves the projected Lyapunov equation

STQpp,WpA + ATQPRWPS - _PrTM?p,WpMPn Qop.w, = PITQpp,Wpr
where the projection matrices P; and P, are defined as in (2.10). O

Proof. We first observe that the projection condition is naturally satisfied since Q,, is
by definition equal to W=T[ 1 0]W~! with Qy; as defined in (3.107). To prove that
Q,p,w, satisfies the remaining Lyapunov equation, we show that Q;; solves the Lyapunov
equation

JQu + QuJ = ~M; ;P\ My,. (3.108)
For that we insert Qq; into (3.108) and obtain

o0

/ (JTGJHtMHPlMH@Jt + GJHtﬁllplﬁllejtJ) dt = [GJHtﬁnplﬁneJt 0
0

= —M11P1M11-

Moreover, we insert the WCF of € and A and the definition of P, into the Lyapunov
equation to obtain

I 071[Qy 0][J 0 JT 0] [Qy 011 0
TT[O NTHO11 o] [0 I}TJFTT{O IHO11 o] [0 N}T
_ T |:Q61J 8:|T+TT |:JT(?11 g}T

M, P,M;; 0
_ T 1181V T
et

= —P/M®P, ., MP,.
such that (3.108) implies the statement, since T is a regular matrix. O

Now we consider the third output component y;,(t) = z;i(t)"Mz,(t). We insert the
states z,(t) and z;(t) and obtain

Vip(t) = — z_:/o a® (t))TWES"N(k)TMS’J(t — 7)Wpyu(r)dr

--3 /O vee (W Fn (k) "M (t — 1)W,) " (ii(r) @ 5 (1)) dr.
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3.2 Inhomogeneous first-order DAE systems

We identify the controllability mapping ¢y w, (t) = F3(t)W,, within the output y;,(t)
and define the remaining observability mapping

Oipw, (. k) 1= W, Fn (k)" MF;(t),

that is used to describe the observability behavior of the output y;,(¢). Therefore, we
construct a matrix

v—1 0o
Qip,wp = Z/O‘ Oip,w, (t, k’)Tin7wp (t, k)dt
k=0

= i / ) Fy(t)"MFn (k)W W] Fn (k)" MFy(t)dt

k=0

= / F3(t) T MPMF5(t)dt,
0

that spans the observability space of the state z,(¢) while considering the controllability
space of z;(t).

Definition 3.37:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding improper controllability Gramian P; as defined in (3.93). The improper-proper
observability Gramian Qi ., corresponding to the output yj, is defined as

Qipw, = / F3(t)TMPMF5(¢)dt, (3.109)
0

where Fy(t) is defined in(2.13). O

Lemma 3.38:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the cor-
responding improper controllability Gramian P;,, as defined in (3.93). The improper-
proper observability Gramian Qi ., corresponding to the output yj, is of the form

7 [Q21 O _
Qi = W T{ W
where -
Qo = / e’ "M, PoM L e dt (3.110)
0

with the improper controllability Gramian P, as defined in (3.95) and M., as defined
in (3.101). O
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3 Inhomogeneous systems and their system theoretical aspects

Theorem 3.39:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the cor-
responding improper controllability Gramian P;,, as defined in (3.93). The improper-
proper observability Gramian Qj;, ., solves the projected Lyapunov equation

ETQw, A+ ATQ, € = —PIMP;,y MP,, Qi,., =PI, P
where the projection matrices P; and P, are defined as in (2.10). O
Proof. The proof follows the same argumentation as for Theorem 3.36. O]

We can combine the two proper observability Gramians to obtain one Gramian that
encodes the observability behavior of the differential states z,(t) independent of the
second state, that is, the observability of the output y,(¢) = z(t)"Mz,(t) for an arbitrary
state z(t) generated by system (3.100). Since the sum P, + Piw, spans the full
controllability space of the state z(t), the proper observability Gramian corresponding
to proper and improper left states is given by

Qapn, = [ FaOMPy, + Pion, ) MF2 (O = Dy, + Dy,
0

We summarize this paragraph with the following definition.

Definition 3.40:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €), and the cor-
responding proper and improper controllability Gramian P, and P;,, as defined
n (3.93). The proper observability Gramian corresponding to the output y,(t) =
Vop(t) + ¥ip(t) is defined as

QQ7P7WP = Qppywp + Qip,va (3111)

with Qppw, and Qi e, as defined in (3.106) and (3.109), respectively. O

Improper observability Gramians In this paragraph, we investigate the observ-
ability behavior of the outputs y,i(t) := z,(t)"™Mz;(t) and yi(t) := zi(t)"Mz;(¢). Both
outputs describe the observability of an algebraic (right) state z;(t) while considering
either a differential state or an algebraic one multiplied from the left.

The state ypi(t) is equal to

+ v—1
Vit / )W F;(t — 7)"MFn (k)W u® (t)dr
0

k=0

= /0/ Z Vec(WEH’J(t - T)TM.‘TN(k:)Wp)T (ﬁ(k)(t) ®u(r)) dr.

k=0
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3.2 Inhomogeneous first-order DAE systems

We identify the improper controllability mapping c¢; ., (k) = Fn(k)W,, within the output
ypi(t) and the remaining observability mapping

Opinw, (1, k) = W Fy (1) MFn (k)

that is used to define a matrix

oo V—1
QpLWp = / Z Opi,w, (t, k’)Topiva (t, k‘)dt
0

k=0

oo v—1
/ Z&“N ) TMF 5 ()W, Wi Fy (8) TMFn (k) dt

that spans the observability space of the state z;(¢) while considering the controllability
space of the state z,(t).

Definition 3.41:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian P, ., as defined in (3.93). The proper-improper
observability Gramian Qp; ., corresponding to the output y; is defined as

Dy, Z?N TMP 00, MFn (), (3.112)

where Fn(k) is defines as in (2.13). O

We insert the mapping Fn(k) to derive the following Lemma.

Lemma 3.42:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian P}, .y as defined in (3.93). The proper-improper
observability Gramian Q; ., is equal to the following representation

 _w-T|0 0 -1
Dpiw, = W [0 Q12 W
where .
Qiz ==Y _(-N*)TM[, P, M,y(—N*), (3.113)
k=0

with the proper controllability Gramian P; defined as in (3.95) and M, as in (3.101).0
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3 Inhomogeneous systems and their system theoretical aspects

The Gramian Qi is the improper observability Gramian corresponding to the alge-
braic (right) state zs(f) and the differential (left) state z;(¢) defined in (2.12). Hence,
Lemma 3.42 describes the relation between the observability of the system in WCF
(2.11) and the original system (3.100).

The following theorem is used to compute the Gramian Qp; ,y, .

Theorem 3.43:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the corre-
sponding proper controllability Gramian P,y as defined in (3.93). The proper-improper
observability Gramian Q; ,y, solves the projected Lyapunov equation

ATy, A — €790, € = (I —PIYMP, 0 M(I—P,), PlQ,, P1=0,
where the projection matrices P; and P, are as defined in (2.10). O

Proof. To prove the projection condition, we derive

I 0 0 0 I 0
TO —w-T WTw-T W-I'W Wl —
Py Qpiw, P {O 0} [0 Q12} [0 O] 0.

Moreover, we show that the Gramian Qo defined in (3.113) solves the discrete-time
Lyapunov equation

Qi — NTQuN = M?2P1M12. (3.114)
For that, we insert the definition of Q5 into (3.114). This results in
v—1 v—1
(—N*)"M,P My (—-N*) = ) (=N M, Py My, (—-N*)
k=0 k=0

= (-N°)TM,P,M,(~N°)
= M§,P M,

since N has the nilpotency index v — 1, i.e., N¥ = 0.
To finalize the proof, we insert the WCF of € and A, and the definition of P, into
the remaining Lyapunov equation to obtain

JT 0l fo 0][F 0 1 0o 0][r o
N T e AN e

0 0
=TT — —~ | T
{0 MlTQPle]
= (I - P)MP, . M(I - P,),

which proves the statement. O
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3.2 Inhomogeneous first-order DAE systems

Now, we consider the fourth output component y;;(¢) that describes the observability
space of the algebraic (right) state z;(t) for an algebraic (left) state. The respective
output component is equal to

—_

1

@® () "W Fn (k) TMFn (O W, a0 ()

<

v

yii(t)

7T
- o
T
|

- o

vee(WIFn (k) ™MFn(OW,) " (0 (1) @ a® (1)) .

i

0 ¢

Il
=)

We identify the improper controllability mapping ¢;w, (¢) = Fx(¢)W),, and the remaining
observability mapping

Oiiw, (K, ) = W) Fn (k)" MFn(0).

Based on this mapping oy (k,¢), we define a matrix

P

v—1 v—1
11w : ZZO“W k f Oiiw, (k E)
k=0 ¢=0
v—1 v—1
=33 Fn () TMF (k)W Wi Fne (k) "M T e (0)
k=0 ¢=0
v—1

- Z Fn(O)TMP; 10, MFn(0),
=0

which spans the observability space of the (right) algebraic state z;(t) and a (left) alge-
braic state z;(t).

Definition 3.44:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the cor-
responding improper controllability Gramian P,y as defined in (3.93). The improper-
improper observability Gramian Qj w, corresponding to the output yj is defined as

11 Wy - Z S:N M?i,Wng:N(g)a

where Fn(¢) is defined as in (2.13). O

Lemma 3.45:

Consider the C-stable system (3.100) with a regular matrix pencil (A, &€) and the cor-
responding improper controllability Gramian P; ., as defined in (3.93). The improper-
improper observability Gramian Qj; .y, is equal to the following representation

0 O

i, = W T
e lO Qo2

|
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3 Inhomogeneous systems and their system theoretical aspects

where
v—1

Qoo == Y (~NF) "My Py My (—NP), (3.115)

k=0

with the improper controllability Gramian P defined as in (3.95) and M, as in (3.101).0

Theorem 3.46:

Consider the C-stable system (3.100) with a regular matrix pencil (A, €) and the cor-
responding improper controllability Gramian P; . as defined in (3.93). The improper-
improper observability Gramian Qj;,, solves the projected Lyapunov equation

ATy 0, A — €7Q540, & = (T PHYMP;,y MI—-P,), P[Q;, Pi=0
where P and P, are defined as in (2.10). O
Proof. The proof is similar to the one of Theorem 3.43. n

We can combine the two improper output Gramians Q. and Qj ., to obtain an
improper Gramian that encodes the observability of the output y;(t) = z(t)TMz;(t)
for an arbitrary state z(t) generated by system (3.100). Since the sum Py, + Pi.,
spans the full controllability space of the state z(t), the proper observability Gramian
corresponding to both, differential and algebraic left states, is given by

v—1
Qqiw, = Z Fn(t)"M(Pp, + Pive, MFn(t) = Qpinw, + Diiw, -

k=0
We summarize this paragraph with the following definition.

Definition 3.47:
Consider the C-stable system (3.100) with a regular matrix pencil (A, €), and the cor-
responding proper and improper controllability Gramians P, and P, as defined

in (3.93). The improper observability Gramian Q; ,, corresponding to the output y; is
defined as

Qaiw, = Dpiw, + Liiw, » (3.116)

where the Gramians Qe and Qi are as defined in (3.112) and (3.44). O
Controllability energies As described above, the controllability behavior and hence
the controllability energies of the system (3.105) with a quadratic output equation are

equal to those in (3.91) with a linear output equation. Hence, we consider the energy
measure derived in (3.98) and (3.99) for systems with a linear output equation based on
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3.2 Inhomogeneous first-order DAE systems

the proper and improper input-to-state mappings defined in (3.92). The energy norms
of these mappings are

E(Cp7wp> = tI‘(Tng) s E<ci7Wp) = tr(?i,wp) .

We observe that states corresponding to the large eigenvalues of the Gramian P, ., span
the most dominant proper controllability subspaces. On the other hand, the smallest
eigenvalues, including the zero eigenvalues, are negligible to describe the system dy-
namics. Moreover, it follows from the evaluation of E(cinw,) that zero eigenvalues of
the improper controllability Gramian P; ., are negligible since they do not change the
energy of the system.

Observability energies To investigate the observability energies, we first define the
proper and improper observability mappings as

t,t iw, (£, 1
Opw, (k, 11, 15) = {‘;Pizgkl t;))} . O, (G k1) = {Zp : p((z k;] '

We follow the same methodology as above and evaluate the energy norm of the proper
observability mapping. However, this mapping depends on continuous and discrete
variables. Therefore, we need to define an energy norm that considers both. For a
function o : N x [0, 00) = R™ with o(k,-) € Ly ([0,00), R™) for all k € N, we can
evaluate the Lo-norm as

E(k,-) = |lo(k, ')H%g([O,oo),]R'”XN)‘

Also these norm values define a sequence (E(k,))g, FE(k,-) : N — R. If it holds that
Yo IIE(K,-)||[r < 0o, we can define mixed energy norm as the ¢o-norm of E(k,-) that is
defined as

E(e) = 1Bk, euwm = Y Bk, )] = Z/Ooo tr(o(k,t)o(k,t)T)dt.  (3.117)
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3 Inhomogeneous systems and their system theoretical aspects

Applying the energy norm from (3.117) to the state-to-output mapping oy, yields
v—1

E(Op7wp) = Z || Op7wp</{37 ‘Y ‘)||22([07OO)2,R2<m+NZO)XN)
k=0

v—1 00 0o
:Z/ / tr(opawp(k>tlth)TOp,wp(k,tl,tQ)) dtldt2
k=00 JO
- / / r(oppva (t17 t2) Oppg/\?p (tl, tQ)) dt]_dtg
0 0

v—1 )
+ Z/O tr(in’wp(k,tQ)Tinywp (k,tg)dtz)
k=0

= tr(QPP’Wp) + tr(Qip,Wp) = tI‘(QPva)

with Qg p, w, is the proper observability Gramian defined in (3.111). We observe, that the
largest eigenvalues of the Gramian Q,, ., have the highest influence on the observability
energy while the influence of the smallest eigenvalues is negligible.

We also apply the energy norm from (3.117) to the improper state-to-output mapping
0w, to obtain

E(0im,) = / 190wy (55 V2, v
=0 k=00
v—1 v—-1 )
:Z / tr (01w, (£, k. 1) 05, (0, K, 1)) dt
=0 k=00
v—1

= / tr(oPi,wp(k,t)Topi,wp(k, t)) dt
0

v— 1

+ tr (01w, (0, k) T 0ii40, (€, k)
0 k=0

= tr(Qpiva) + tr(Qii,Wp) = tr<QQvi7Wp> ’

H
T

~
Il
e
Il

where Qg ;. is the improper observability Gramian as defined in (3.116). We observe,
that the largest eigenvalues of the Gramian Q. have the highest influence on the
observability energy. However, since the algebraic states encode physical restrictions on
the system dynamics, only zero eigenvalues are negligible.

From both energy expressions, we follow that the states corresponding to the largest
eigenvalues of the respective Gramians span the most dominant observability subspaces.
Consequently, when reducing the respective system (3.100), we truncate the states cor-
responding to small eigenvalues of Qg ;,,, and zero eigenvalues of Qg w, .
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3.3 Inhomogeneous second-order ODE systems

In Table 3.7, we summarize the transfer functions, the derived Gramians, and the

respective energies that were introduced in this Section.

System (3.105) — differential

component

System (3.105) — algebraic
component

Transfer function

Sapw, (51,52)

Ga.iw, (51, 82)

Controllability Gramian | Py, Piw,

Observability Gramian Qq.p,w, Qq,iw,

Controllability energies E(cpw,) = tr(iPpM,p) E(ciw,) = tl‘(?i,wp)
Observability energies E(opw,) = tr(Qqap,w,) E(0iw,) = tr(Qq,iw,)

Table 3.7: Properties of system (3.100) corresponding to its extended-input representa-
tion.

3.3 Inhomogeneous second-order ODE systems

In this section, we extend the theory from Section 3.1 to second-order systems with a
state equation
Mx(t) + Dx(t) + Kx(t) = Bu(t), x(0) = x9, %x(0) =%g (3.118)
where the mass, damping, and stiffness matrix are M, D, K € R"*", respectively, and
the input matrix is B € R"*™. The matrices M, D, and K are naturally symmetric and
positive semi-definite. Throughout this work, however, we assume positive definiteness.
Also, the state is given as x(t) € R", the input as u(f) € R™, and initial values as
Xy, Xo € R". We assume that there are matrices Xy, € R™*"*0 and Vy € R"*™Vo so that
all admissible initial states and velocities can be written as
X(O) = Xg = X()Xo, X(O) = XO = V()l/(), (3119)
for suitable vectors xo € R"*0 and vy € R™Vo,

Using the matrices introduced in (2.24), the second-order state equation in (3.118)
can be written as first-order equation (3.1) and, hence, the respective system properties
derived in Section 3.1 can be used to describe the system dynamics. However, we aim
to maintain the second-order structure to derive physically meaningful results. There-
fore, in this section, we derive the transfer functions, Gramians, and respective energy
expressions for second-order systems. To do so, we apply the Laplace transform to the
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3 Inhomogeneous systems and their system theoretical aspects

u
X yu

0 9 L ;
X0 ;

Figure 3.14: Structure of a second-order ODE system with a linear output

state equation in (3.118) and obtain
X(s) = A(s) (BU(s) + (D + sM)Xgxo + M V) (3.120)

for A(s) := (s*M + sD + K)~!, where X(s) and U(s) are the Laplace transforms of
x(t) and u(t), respectively. We note that the state X(s) consists of three components:
one arising from the input, one arising from the displacement initial condition, and one
arising from the velocity initial condition. This state composition will be used in the
following to describe the behavior of the system (3.118).

We study second-order systems with different output structures. First, in Section 3.3.1,
we investigate second-order systems with linear output equations, and afterward, in Sec-
tion 3.3.2, systems with quadratic output equations. For this purpose, we derive tailored
second-order systems Gramians and the resulting system energies that describe the re-
spective system behavior. Therefore, we modify the concepts introduced in Section 3.1
for first-order systems.

3.3.1 Inhomogeneous second-order ODE systems with a linear
output

We first consider second-order systems with a linear output equation of the form

Mx(t) + Dx(t) + Kx(t) = Bu(t), x(0) = x9, %(0) = %o,

yi(t) = Cix(t) + Cox(t), (3.121)

with a state equation as introduced in (3.118), and an output equation containing the
output matrices C1, Co € RP*™ and the output y,(t) € RP. In this section, we assume
that Co = 0. Otherwise, if Cy # 0, the first-order representation (3.5) with matrices
(2.24) is used so that we apply the theory from Section 3.1.1.

Figure 3.14 describes the structure of these systems, where we note that the system
is affected by the input, the displacement initial condition, and the velocity initial con-
dition. In the following, we analyze the system dynamics and consider, in particular,
the initial conditions. For this purpose, we extend the superposition ideas from [15] to
the class of second-order systems. Given the superposition principle, we show that the
original system is decomposable into three subsystems. The first subsystem considers
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3.3 Inhomogeneous second-order ODE systems

the mapping between the input u(¢) and the output, where the initial conditions are
zero. The second and the third subsystems correspond to the outputs resulting from the
position initial condition xy and the velocity initial condition X,. Based on the represen-
tation of these subsystems in the frequency domain presented in this thesis, we design
tailored controllability and observability Gramians for the input and initial conditions.
They are valuable tools to describe the controllability spaces corresponding to the ini-
tial conditions since they allow the preservation of physically meaningful second-order
structures. Moreover, these Gramians can be concatenated so that one controllability
Gramian and one observability Gramian encode the overall system behavior.

We propose two methods to study the inhomogeneous systems. The first one an-
alyzes each subsystem independently using the respective Gramians, as introduced in
Section 3.3.1.1. The second proposed method, introduced in Section 3.3.1.2, analyzes
the system as a whole using the extended-input method and the associated Gramians.

3.3.1.1 Multi-system approach for inhomogeneous second-order ODE systems
with a linear output

In this section, we apply the superposition principles to the state equation in (3.120)
to deal with inhomogeneous initial conditions in second-order systems. Therefore, we
derive three subsystems, one corresponding to the input, one to the displacement initial
condition, and one to the velocity initial condition. These subsystems are then analyzed
independently to describe the respective controllability and observability behavior.

Transfer function We apply the Laplace transform to the output equation in (3.121)
and insert the state X(s) as defined in (3.120) to obtain the output in the frequency
domain, that is

Y. (s) = CiA(s)BU(s) + C1A(s)(D + sM)Xoxo + C1A(s) M V. (3.122)

We observe that the output is a superposition of the input-to-output mapping, the po-
sition initial condition-to-output mapping, and the velocity initial condition-to-output
mapping. Corresponding to the three output components, we define the transfer func-
tions describing the input- and initial condition-to-output mappings, which follow di-
rectly from the output decomposition above.

Definition 3.48:

Consider the asymptotically stable second-order system in (3.121) with initial conditions
(3.119) and define A(s) := (s*M + sD + K)~*. The three transfer functions describing
the system behavior are defined as

S.s(s) == C1A(s)B, GLx,(s5) = C1A(s)(D + sM)X, Gy, (s) = CiA(s)M V.
(3.123)
O
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u gL,B You.B

X(J YL,XO yL
SL,XO

JanY
N

X0

Y SL,VO Y%

Figure 3.15: Structure of three separated second-order systems with a linear output.

We generate three subsystems that are treated individually in the following as depicted
in Figure 3.15. The first transfer function G, x(s) with the output component y, 5(t)
corresponds to the homogeneous system representation

Mx(t) + Dx(t) + Kx(t) = Bu(t), x(0) =0, x(0)=0,
yus(t) = Cix(1).

The second transfer function G, x,(¢) has a system representation with an inhomogeneous
displacement initial condition, that is

Mx(t) + Dx(t) + Kx(t) = 0, x(0) = Xoxo, %(0) =0,
Yix,(t) = Cix(t).

Finally, the transfer function G, v, (¢) corresponds to the mapping between the velocity
initial condition and the output and has the system realization

Mi(t) + Dx(t) + Kx(t) =0,  x(0) =0, %(0)= Vo,
Vi, () = Cix(t).

The three systems are treated individually to describe the overall system dynamics. For
that, we derive the corresponding controllability and observability Gramians encoding
the behavior of the subsystems.

(3.124)

(3.125)

(3.126)

Controllability Gramians To derive the controllability Gramians that encode the con-
trollability behavior for the subsystems in (3.124), (3.125), and (3.126), we consider the
respective input- and initial condition-to-state mappings separately.

First, we investigate system (3.124). From the transfer function G, z(s) in (3.123), we
extract the input-to-state mapping

Cx(s) :== A(s)B, (3.127)
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3.3 Inhomogeneous second-order ODE systems

where A(s) := (s°M + sD + K)~'. Using this mapping, we define a matrix
Py = % ffooo Cg(iw)Cg(—iw)Tdw spanning the respective controllability space.

Definition 3.49:

Consider the asymptotically stable second-order system (3.124). Define
A(s) := (s*M+sD+K) ™!, then the corresponding second-order controllability Gramian
is defined as

1 o

:% .

Py : A(iw)BBTA(—iw) dw. (3.128)

O

As we have seen in the previous sections, first-order Gramians are computed by solving
Lyapunov equations. However, for second-order systems, the computation of the respec-
tive Gramians is not straightforward. We define the first-order matrices as in (2.24) to
derive a connection between second-order and first-order Gramians. The following the-
orem from [44, 112] describes how to compute the second-order controllability Gramian
Py as a component of a first-order matrix.

Theorem 3.50:

Consider the asymptotically stable system (3.124) with the second-order controllability
Gramian Py defined in (3.128). Then the Gramian Py is the upper-left block Pg; of
the first-order controllability Gramian

_ [Py Ppo| 1 [ 110 T . _T
Py = [PEQ PB,3:| = %/ (iw€ — A) {B} [O B ](—1w8—./l) dw  (3.129)

with first-order matrices € and A as defined in (2.24). O

Proof. We first apply the Schur complement to (s€ — A)~! and obtain

(3.130)

(s& —A)' = [SI -1 ]_1 _ [A(s)(sM +D)  A(s)

K D+ sM —A(s)K sA(s)

for A(s) := (M + sD + K)~!. Applying this formula provides that its upper-right
block is equal to A(iw), and hence it holds that

1 o
Ppi=o- / A(iw)BB"A(iw)?dw = Py O
™ —0o0

From this theorem, it follows that the controllability Gramian of the corresponding first-
order realization is determined to compute the second-order controllability Gramian,
which is done by solving a Lyapunov equation as described in Section 2.3.
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3 Inhomogeneous systems and their system theoretical aspects

Remark 3.51:

Note, that the mapping Cg(s) from (3.127) is the Laplace transform of the mapping
[I 0] cx(t) with cx(t) as defined in (3.10) for first-order matrices from (2.24). Moreover,
the first-order Gramian Py from (3.129) is equal to the Gramian defined in (3.11). Hence,
we can also define the second-order Gramian in the time domain as

Py = / [I 0]t Mg I BBTE &AM H dt.
0

O

Similarly, we investigate the system (3.125), where we extract from the transfer func-
tion G, x, in (3.123) the position initial condition-to-state mapping

Cx,(s) := A(s)(sM + D)Xy, (3.131)

that we use to define a matrix Py, 1= 5= [7°_ Cx, (iw)Cx, (—iw)"dw that spans the con-
trollability space corresponding to the position initial condition.

Definition 3.52:
Consider the asymptotically stable second-order system (3.125). Define A(s) := (s?M+
sD + K)™!, then the corresponding second-order controllability Gramian is defined as

1 o
Py

’ 21 J_ o

A(iw)(iwM + D)X Xy (—iwM + D)TA(—iw) " dw. (3.132)
O

The following theorem shows that the Gramian Py, is computed by determining the
respective first-order controllability Gramian.

Theorem 3.53:

Consider the asymptotically stable second-order system (3.125) with the second-order
controllability Gramian Py, defined in (3.132). Then the Gramian Py, is the upper-left
block Py, 1 of the first-order Gramian

P, Py e X . _
:PXU — |:P£0:; Pxojj — %/ (1(,08 — A) 1 |: OO:| [XOT O:| (_lwg — .A) wa,
(3.133)

—00

with first-order matrices € and A as defined in (2.24). O

Proof. Applying the Schur complement to (iw€ —A)~! as shown in (3.130) provides that
its upper-left block of (iw€ — A)~! is A(iw)(iwM + D) for A(s) := (s*M + sD + K) !,
and hence, it holds that

1 oo
Px,1 = > / A(iw)(iwM + D)X X; (—iwM + D)TA(iw)?dw = Py, . O
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3.3 Inhomogeneous second-order ODE systems

Theorem 3.53 shows that the second-order controllability Gramian Py, of a system
(3.125) is the upper-left block P; of the controllability Gramian Py, of the first-order
system (2.1) with B := [X0].

Remark 3.54:

Note, that the mapping Cx,(s) from (3.131) is the Laplace transform of the mapping
[I 0] cq,(t) with ¢y, (t) as defined in (3.13) for first-order matrices from (2.24) and
Zo = [ %X ]. Moreover, the first-order Gramian Py, from (3.133) is equal to the Gramian
defined in (3.14) with that matrix Zo. Hence, we can also define the second-order
Gramian in the time domain as

Y e-tare—1 [XoXg 0] oor e-r1ayre [1
PXU—/O I 0]e & {0 086 Odt. o

Now we consider the remaining system (3.126) with the transfer function G, as
defined in (3.123). From this output, we extract the velocity initial condition-to-state

mapping
Cv,(s) == A(s)MVy, (3.134)

which is used to define a matrix Py, := 5~ [7 @y, (iw)Cy,(—iw)"dw that spans the
controllability space corresponding to the velocity initial condition.

Definition 3.55:
Consider the asymptotically stable second-order system (3.126). Define A(s) := (s?M +
sD + K)™1, then the corresponding second-order controllability Gramian is defined as

1 o
PV .

* 2w )

A(wW)MVViMTA(—iw) dw. (3.135)
O

The Gramian Py, corresponding to the systems (3.126) is of the same structure as the
Gramian Pg, and hence, can be computed similarly.

Theorem 3.56:

Consider the asymptotically stable second-order system (3.126) with the second-order
position controllability Gramian Py, defined in (3.135). Then the Gramian Py, is the
upper-left block Py, ; of the first-order Gramian

_|Pvon Py, 1 [ 1| 0 TNTT (s -T
Py, = |:P30,2 PVU,3:| = %/ (iw€ — A) MV, [0 ViIMT'] (—iw€& — A)"dw
(3.136)

—00

with first-order matrices € and A as defined in (2.24). O
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3 Inhomogeneous systems and their system theoretical aspects

Remark 3.57:

Note, that the mapping Cy,(s) from (3.134) is the Laplace transform of the mapping

[I 0] cz,(t) with ¢y, (t) as defined in (3.13) for first-order matrices from (2.24) and
0

MV, |

Gramian defined in (3.14) with that matrix Zy. Hence, we can also define the second-

order Gramian in the time domain as

Zy = Moreover, the first-order Gramian Py, from (3.136) is equal to the

IR etatg—1 |0 0 —r etayTe |1

Observability Gramians In this paragraph, we aim to derive the observability Grami-
ans that encode the observability behavior of the three subsystems. Therefore, we define
the respective state-to-output mappings and the resulting Gramians from the transfer
functions in (3.123). The observability behavior of the three subsystems (3.124), (3.125),
and (3.126) is encoded by the state-to-output mapping

O.(s) := C1A(s). (3.137)

We integrate over the frequency domain to define a matrix Q,, := 5= [ O, (—iw)T O, (iw)dw
that includes all observable states, which leads to the following definition.

Definition 3.58:
Consider the asymptotically stable second-order systems (3.124), (3.125), and (3.126).
Also, define A(s) := (s?M+sD+K) ™!, then the corresponding second-order observability
Gramian is defined as

1 e}

:g N

A(iw)CTCA (iw)dw. (3.138)
¢

The Gramian Q; can be computed as a component of a first-order Gramian, as shown
in the following theorem.

Q. :

Theorem 3.59:

Consider the asymptotically stable second-order systems (3.124), (3.125), and (3.126)
with the second-order observability Gramian Q,, as defined in (3.138). Then this Gramian
is equal to the lower-right block Q3 of the first-order Gramian Q, that is

1 o0 ' B ' B
%= [8;} Sj N %/_M(A“”g) TeTe(A — iw€)dw (3.139)
with first-order matrices €, A, and € as defined in (2.24) with C, = 0. o
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3.3 Inhomogeneous second-order ODE systems

Proof. We apply the Schur complement for (iw€ — A)~! as shown in (3.130) to obtain
C(iw€ — A)~' = [CiA(w)(iwM + D) CyA(iw)] .

Considering the right block of this matrix provides that the lower-right block Qs of
the first-order Gramian Q, is equal to the second-order Gramian Q;, which proofs the
statement. ]

Remark 3.60:

Note, that the mapping O, (s) from (3.137) is the Laplace transform of the mapping
o.(t)[9] with o (t) as defined in (3.16) with first-order matrices from (2.24) and C, = 0.
Moreover, the first-order Gramian Q, from (3.139) is equal to the Gramian defined in
(3.17). Hence, we can also define the second-order Gramian in the time domain as

_ —1 T C C 0 -1 — 0
_ T _(&-1A)Tt 1v1 e lAte—1
Q. = /o [O I} E e [ 0 0} e E {I} de.

Controllability energy We aim to derive the controllability energies of the three sub-
systems to identify the respective important controllability subspaces. To do so, we
consider the three subsystems (3.124), (3.125), and (3.126) separately.

First, we derive an energy measure corresponding to subsystem (3.124) by evaluating
the energy norm of the input-to-state mapping Cg from (3.127). Therefore, we consider
the displacement component of the respective first-order input-to-state mapping cs(t)
(3.10) in the time domain

cs(t) =[I 0]es(t)=[I 0 e g1 B

as the Laplace transform of eg(t) is equal to the mapping Cg from (3.127), for the first-
order matrices €, A, and B as defined in (2.24). We determine the energy norm from
(3.19) of the mapping cg to describe the controllability energy that is

E(CB) = ||CB||%2([O7OO)7]RTLX7") = /0 tr([I 0:| 68_1At8_1BgT8_TeﬂTS—Tt |:é:|) dt
=5- [ (A(w)BBIA(w)") dw
T J-—x
- tr<PB) )
(3.140)

see Remark 3.51. We observe that the energy norm of the mapping cg is equal to the
trace of the respective second-order controllability Gramian Pg. Since this Gramian is
symmetric, its trace is equal to the sum of its eigenvalues, ie., tr(Pg) = o1 + -+ +
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3 Inhomogeneous systems and their system theoretical aspects

on. Hence, large eigenvalues have a significant effect on the energy expression while
smaller eigenvalues are negligible. It follows that the states corresponding to the large
eigenvalues span the most dominant controllability subspaces, which is used later in this
work when we reduce these systems.

Analogously, we derive the initial condition-to-output mappings in the time-domain
corresponding to the remaining two subsystems (3.125) and (3.126) that are

Cx,(t) = [I 0] ﬁo} and ey, () = [T 0] N’J ,
respectively, see Remark 3.54 and Remark 3.57. It holds that the initial condition-
to-state mappings Cy,(s) and €y, (s) are the Laplace transforms of cx, (t) and ¢y, (t).
Hence, to derive the energies that encode the controllability behavior of the two subsys-
tems (3.125) and (3.126), we define the respective energy norms corresponding to these
initial condition-to-state mappings according to (3.19) that are

E(ex,) = tr(Py,), E(ey,) = tr(Py,). (3.141)

Since the traces of Py, and Py, contain the eigenvalues of the corresponding second-order
Gramians, it follows that states corresponding to large eigenvalues span the dominant
controllability subspaces of the respective systems and states corresponding to small
eigenvalues are negligible as they only have little effect on the system dynamics.

Observability energies In this paragraph, we evaluate the observability energies of
the second-order subsystems (3.124), (3.125), and (3.126) encoded by the second-order
observability Gramian Q. Therefore, we consider the energy norm of the respective
state-to-output mapping in the time domain, which is defined using the first-order ma-
trices €, A, and € from (1.7) with Cy = 0, as

o.(t) = @& Arg! m : (3.142)

see Remark 3.60. Note that applying the Laplace transform to this mapping yields the
mapping O, in the frequency domain as defined in (3.137). We apply the energy norm
from (3.19) that results in the energy expressions

E(OL) — ||E(OL)H%2([O’OO)7RPX7L) = / tr([o I} nge.ATS—TteTeeg_lAtefl |:§:):|> dt
0

=tr(Qu) -
(3.143)

The trace of the Gramian Q; coincides with the sum of its eigenvalues. Hence, the
states corresponding to large eigenvalues of the Gramian Q, encode the most dominant
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3.3 Inhomogeneous second-order ODE systems

observability subspaces. On the other hand, states corresponding to small eigenvalues
are negligible as they have negligible effects on the system dynamics.

In this section, we have derived three subsystems encoding the behavior of the orig-
inal system (3.121). For these subsystems, we introduced transfer functions, tailored
Gramians, and energies, which are summarized in Table 3.8.

System (3.124) System (3.125) System (3.126)
Transfer  func- | G 5 1%, Gr.v,
tion
Controllability Py Px, Py,
Gramian
Observability Q. Q. Qo
Gramian
Controllability E(cg) = tr(Pg) E(ex,) = tr(Px,) E(cv,) = tr(Py,)
energies
Observability E(oy) = tr(QL) E(oy) = tr(9Q.) E(oy) = tr(Q.)
energies

Table 3.8: Properties of system (3.121) corresponding to its multi-system representation.

3.3.1.2 Extended-input approach for inhomogeneous second-order ODE
systems with a linear output

In this paragraph, we apply the extended-input approach to treat the inhomogeneous
initial conditions. Therefore, we reformulate the state X(s) from (3.120), using a modi-
fied input matrix that includes the input and initial condition spaces as described in the
following theorem.

Theorem 3.61:

Consider the asymptotically stable second-order system (3.121) with initial conditions
as defined in (3.119). Define the input matrix and the modified input in the frequency
domain as

U(s)
L 0 Xo O ye L
W, = [B 0 MVO] and Us(s) =1 xo0 |, (3.144)
Mo
respectively. Then the state X(s) from (3.120) is equal to
X(s) = A(s) [(D +sM) I W, U(s), (3.145)
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3 Inhomogeneous systems and their system theoretical aspects

with A(s) := (s*M + sD + K) 1. O
Proof. By inserting the definition of Wy, and U(s) from (3.144), we obtain

X(s) = A(s)(BU(s) + (D + sM)Xoxo + M V1)

= A(s) [(SM + D) I] [BU(S)}(_?_XI{)/IVQVJ

0 X, 0 Uls)
B 0 MV,

= A(s) [(sM +D) 1] [
= A(s) [(sM+D) I W,U(s) O

Transfer function Since we aim to derive a surrogate model with the same input- and
initial condition-to-output mapping as the original system (3.121), we first derive the
respective transfer function. For that, we apply the Laplace transform to the output
equation in (3.121) and insert the state X(s) from (3.145) to obtain the output

Y. (s) = CiX(s) = C1A(s) [(D +sM) 1] W, U(s),

which is the Laplace transform of y; (¢). We extract the input-to-output mapping from
Y.(s) to define the respective transfer function in the following.

Definition 3.62:

Consider the asymptotically stable second-order system (3.121) with initial conditions as
defined in (3.119) and the matrix Wy, as defined in (3.144). Then the transfer function
corresponding to this system is defined as

Siw..(s) == CiA(s) [(D +sM) I] W, (3.146)
with A(s) ;= (s*M + sD + K) 1. ¢

Since we aim to maintain the second-order structure while considering a first-order input
matrix Wy,, we are not able to write down a suitable system realization. However, for
theoretical considerations, we assume that there is a homogeneous system representation
of the transfer function G, ., (s) to derive the controllability spaces. This relation is
depicted in Figure 3.16, where the input and the initial conditions are applied by the
matrix Wy, and a suitable input u € Ly([0,00), R"™"*ot™va). In the following, we
derive the controllability and observability Gramians of the second-order system from
(3.121) using the transfer function Gy 1 (s) from (3.146).
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Yo

—*—  Siw.

Figure 3.16: Structure of a second-order ODE system with an extended input and a
linear output.

Controllability Gramian To derive a controllability Gramian that spans the control-
lability space of the original system (3.121), we extract the input-to-state mapping from
the transfer function Gy ., (s) in (3.146), which yields

Cw.,(s) = A(s) [(D+sM) I|W,. (3.147)

Since this mapping encodes the controllability behavior of system (3.121), it is used to
define a matrix Py = 5= [7° Cyy, (iw)Chy,, (iw)"dw that spans the respective control-
lability space.

Definition 3.63:

Consider the asymptotically stable second-order system (3.121) with initial conditions
as defined in (3.119) and the input matrix Wy, as defined in (3.144). Then the corre-
sponding second-order controllability Gramian is defined as

1 oo

21 J_ o

(D + iwM)H

P, I

A(iw) [(D +iwM) ] wsowi{ ]A(iw)Hdw, (3.148)

with A(s) := (M + sD + K) 1. O

The Gramian P, spans the controllability space of the state x(¢) in system (3.121)
without considering its derivative %x(¢), as it does not affect the output. Hence, this
Gramian is called position controllability Gramian.

The following theorem describes that the second-order Gramian P, is determined
by computing a first-order Gramian.

Theorem 3.64:

Consider the asymptotically stable second-order system (3.121) with initial conditions
as defined in (3.119) and the input matrix Wy, as defined in (3.144). The second-order
controllability Gramians P,,_ as defined in (3.148) is equal to the upper-left block P
of the first-order controllability Gramian

Py, = [PLW“ PQ*Ww] N / (iw€ — A)"WGWE (—iwE — A) Tdw  (3.149)

L —
Pow. Psw., 2m

—0o0

with first-order matrices € and A as defined in (2.24). O
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Proof. Applying the Schur complement to (iw€ — A)~! as shown in (3.130) leads to

P I {A(iw)(iwl\/[%—D) A(icfj)

= or | —A(iw)K iwA (iw)

_ 1 < TA(iw) [(in+D) I} e AT
Con /_Oo[ A(iw) [-K  iwI] 1WSOWSO( €-A)d (3.150)

| Pw, *
T ox *

for A(s) := (s?M + sD + K)~! and with P,,_ as defined in (3.148). O

] W WL (iw€ — A) Hdw

To compute the position controllability Gramian P.,,_, we can solve a Lyapunov equation
of the form (3.12) with B = W, to compute a first-order Gramian P,,_  and to extract
P, from its upper-left block. The Gramian P,,_ derived in this paragraph is used later
in this work to apply balanced truncation for systems with a second-order structure.

Remark 3.65:

Note, that the mapping C_ (s) from (3.147) is the Laplace transform of the mapping
[I 0] cw(t) with cy(t) as defined in (3.28) for first-order matrices from (2.24) and
W = W,,. Moreover, the first-order Gramian P,,_ from (3.149) is equal to the Gramian
Py defined in (3.29) for W = Wy,. Hence, we can also define the second-order Gramian
in the time domain as

PW, = /OO |:I O:| 6871At8_1WSOW;8_T€(£71A)Tt |:é:| dt.
0

Observability Gramian To derive the second-order observability Gramian of the sys-
tem (3.121) that describes its observability properties, we extract the state-to-output
mapping from the respective transfer function G, . (s) in (3.146), that coincides with
O.(s) from (3.137). Hence, from that mapping, we derive the same observability
Gramian as defined in (3.138).

Definition 3.66:
Consider the asymptotically stable second-order system (3.121) and define A(s) =
(M + sD + K)~'. Then the corresponding second-order observability Gramian is
defined as

1 o0

Q. : A(iw)*CHC A (iw)dw. (3.151)

:ﬁ N <>

To compute that Gramian, we apply Theorem 3.59, which describes that Q, is equal to
the lower-right block of the first-order controllability Gramian Q; from (3.139). Hence,
we compute that Gramian by solving a Lyapunov equation.
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3.3 Inhomogeneous second-order ODE systems

Controllability energies To describe the controllability behavior of the system (3.121),
we derive the respective system energies. Therefore, we define the input-to-state map-
ping in the time domain, which is

ey, (t) = [T 0] METW,, (3.152)

with first-order matrices € and A as defined in (2.24) and Wy, as defined in (3.144),
so that the mapping C,,_, defined in (3.147) is the Laplace transform of cy_, see Re-
mark 3.65. To evaluate the controllability behavior of the system, we apply the energy
norm from (3.19) to the input-to-state mapping ¢,y , which yields

o0
E(ew,,) = | ew., ig([o 00) B2 (o TV ) :/ tr(cwso(t)cwso (t)T) dt
ooh 0

T (@an (0)Con (1)) (3,153

:% N

- tr(ngo) .

Since the trace of a Gramian is equal to the sum of its eigenvalues, it follows that the
states corresponding to large eigenvalues of P,,_ have the highest impact on the respec-
tive system and, hence, encode the dominant controllability subspaces of the system
(3.121). On the other hand, states corresponding to small eigenvalues of the Gramians
P,,_ have little effect on the system dynamics and are, therefore, negligible.

Observability energies To investigate the output energies of the second-order system
(3.121), we evaluate the energy norm of the state-to-output mapping

o,(t) = Get Atg! {ﬂ
in the time domain. The Laplace transform to the mapping o, is equal to the mapping
O, from (3.137) in the frequency domain. This mapping coincides with the mapping
introduced in (3.142). Hence, applying the energy norm leads to the same energy ex-
pression as in (3.143) that is

E(OL) = tr(QL) :

The trace of the Gramian Q, is equal to the sum of its eigenvalues, which indicates
that the largest eigenvalues have the greatest impact on the energy norm values and
the system’s dynamics. Consequently, the states associated with these large eigenvalues
significantly influence the system’s behavior. Therefore, the states corresponding to the
large eigenvalues of the Gramian Q, form the dominant observability subspaces.

We summarize the extended-input approach and the resulting properties in Table 3.10,
which depicts the transfer function, the derived Gramians, and the respective energies
used in the following chapters to reduce systems of this structure.
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u
X0
X0 y

Q
Sq

u
X0
X0

Figure 3.17: Structure of a second-order ODE system with a quadratic output.

System (3.121)
Transfer function Giw.,(s)
Controllability Gramian Py,
Observability Gramian Q.
Controllability energies E(cw,,) =tr(Pw,)
Observability energies E(o.) =tr(Q.)

Table 3.9: Properties of system (3.121) corresponding to its extended-input representa-
tion.

3.3.2 Inhomogeneous second-order ODE systems with a
quadratic output

In this subsection, we consider the class of second-order systems with a quadratic output
equation of the form

Mi(t) + Dx(t) + Kx(t) = Bu(t),  x(0) =xo, %(0)= %o,

3.154
yalt) =[x %072 [ N
with a state equation as defined in (3.118) and a quadratic output equation that includes
a symmetric output matrix M € R?"*?" and the output yo(t) € R. Figure 3.17 depicts
the system structure where we again indicate the quadratic output equation by adding
the input, the displacement initial condition, and the velocity initial condition twice to
the system dynamics.
The output matrix M is decomposed as described in (1.7), where we additionally
assume that M5 = 0 and My, = 0. Otherwise, if one of these submatrices is not equal
to the zero matrices, we consider the respective system in first-order representation
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3.3 Inhomogeneous second-order ODE systems

(2.24) and apply the theory from Section 3.1.2. Hence, in the following, we investigate
the output equation

yo(t) = [x()" x(t)"] [MO” 8} Egﬂ = x(t)"My;x(t). (3.155)

We aim to preserve the second-order structure and include initial conditions in the
analysis so that the effects of initial conditions on the output are considered.

We have already used two approaches that consider the initial conditions while eval-
uating the controllability and observability behavior. The first approach is the multi-
system approach, in which the superposition principles are used to derive subsystems for
each input and initial condition component. This approach is discussed for second-order
systems with a quadratic output equation in Section 3.3.2.1. The second approach in-
corporates the initial conditions into the input matrix and is called the extended-input
approach, which we present for this class of systems in (3.154).

3.3.2.1 Multi-system approach for inhomogeneous second-order ODE systems
with a quadratic output

We consider the output in (3.155). As described in (3.120), the state consists of three
components: one corresponding to the input u(t), one to the position initial condition
Xg, and one to the velocity initial condition Xg. Inserting the three components of
x(t) leads to 9 different output components that we aim to analyze separately in the
multi-system approach. Analyzing those systems and applying reduction methods to
each of them separately will be numerically prohibitive. Hence, applying the extended-
input approach that includes the initial conditions in the input matrix, presented in the
following subsection, is the preferred strategy for systems of the structure introduced in
(3.154).

3.3.2.2 Extended-input approach for inhomogeneous second-order ODE
systems with a quadratic output

In the extended-input approach, we derive an extended input matrix Wy, that includes
the input space and the initial condition spaces as defined in (3.144). Using this matrix,
we derive a transfer function, tailored Gramians, and the respective energies that encode
the system behavior.

Transfer function To derive the transfer function of the system (3.154), we consider
its first-order representation (3.31) with matrices from (2.24), with W = Wy,. We insert,
the respective matrices into the transfer function as defined in (3.44) and using the Schur
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complement from (3.130) to obtain

9Q,WW<517 32) = WT(818 - A)_HM(SQS — A)_lw

[0 Xo 0 ] [A(s)(sM+D) A(s)]"
[B 0 MVO] [ —A(s)K SA(S)]
M 0] [A(s)(sM+D) A(s) | [0 Xo 0
{O 01[ —A(s)K SA(S)] {B 0 MVO]
(D + s;M)H

= W;ro |: I 1 A(Sl)HMllA(Sg) |:(D + SQM) I:| Wso~
Since we consider matrices corresponding to the second-order system representation,
we denote the respective transfer function G 4y, w., (51, 52) in the following, which yields

the following definition.

Definition 3.67:

Consider the asymptotically stable second-order system in (3.154) with initial conditions
as defined in (3.119). Also consider the input matrix Wy, as defined in (3.144) and define
A(s) := (M + sD + K)~!. Then the transfer function of this system is defined as

A(s1)"™Mi1A(s2) [(D 4 s2M)  I] W,,. (3.156)

D + SlM)H:|
O

Gaw.w.. (51,82) i= wt {( i

We observe that the inhomogeneous second-order system (3.154) has a transfer func-
tion of the same structure as a homogeneous system with the first-order input matrix
W,,. However, since we aim to maintain the second-order structure, we are not able to
write down a suitable system realization. For theoretical considerations, we assume that
there is a homogeneous system representation of the transfer function G . w., (51, 52) to
derive the controllability and observability spaces in the following. Figure 3.18 depicts
that we analyze the system while considering an input matrix Wy, that includes the
input and initial condition spaces, indicated by a suitable input u. In the following, we
describe the behavior of this system in terms of controllability and observability. For
this purpose, we derive the corresponding controllability and observability Gramians
that encode these behaviors.

Controllability Gramians To describe the controllability behavior of system (3.154),
we first derive the input-to-state mapping C,_(t) from the transfer function
Gow.w..(s1,82) in (3.144), that coincides with the one defined in (3.147) as the state
equation coincides for the systems (3.121) and (3.154). Hence, the same controllability
Gramian P,,_ as defined in (3.148) encodes the controllability space of system (3.154).
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bt 9 Q,WsoWso Yo

Figure 3.18: Structure of a second-order ODE system with an extended input and a
quadratic output.

Definition 3.68:

Consider the asymptotically stable second-order system (3.154) with initial conditions
as defined in (3.119) and the input matrix Wy, as defined in (3.144). Then the corre-
sponding second-order controllability Gramian is defined as

1 > i H
P, =5 [ Alw) [(D+ioM) 1] W W PD iy II“’M> ] Aiw)dw,
™ —0o0
with A(s) := (M + sD + K) ™. O

The Gramian P,,  spans the controllability space of the state x(¢) from system (3.154).
This Gramian is computed as the upper-left block of a first-order Gramian P.,_ as
described in Theorem 3.64.

Observability Gramians Now, we describe the observability properties of the system
(3.154). Therefore, we aim to derive an observability Gramian that encodes the respec-
tive observability space. Since we consider a quadratic output equation, we describe
the controllability properties of the state x(¢) multiplied from the right to the quadratic
output expression in (3.154), taking into account the controllability space of the left
state. For that, we can rewrite y,(¢) by defining the state-dependent function

CH (X(t)) = X(t)TMH.

Applying that representation to the output yields y(t) = Cq1 (x(t)) x(¢). We observe,
that the observability of the (right) state x(¢) in the output yq(t) = C11(x(t))x(t) also
depends on the reachability of the (left) state x(¢). Hence, we expect that the observ-
ability Gramian will depend on the controllability Gramian P,,_ defined in (3.148).

From the transfer function G w_w., (51, s2) in (3.144), we identify the input-to-state
mapping C,_ (s) from (3.147) corresponding to the right state X(s) in the frequency
domain, so that the remaining state-to-output mapping is

H
O (o152 = WL | PP Ay MA@, asn
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Since the mapping Ogw., (s1,52) spans the observability space of the right state X(s)
considering the space in which the left state x(s) lives, it is used to define a matrix

1 R e .. ..
Qaw., = W/ / (‘)wa(lwl,1w2)HOQ7WSO(1w1,1w2)dw1dw2

1 R A : :
= (27?)2/ / A(lwg)HMHA(lwl) [(D—i—lwlM) I} Wy,
: H
. W;FO |:<D + lile) :| A(iwl)HMHA(iwg)dwldwg
1 [ . :
= % A(IUJQ)HMHPWSOMHA(IWQ)dUJQ

that spans the observability space of the right state X(s) in the frequency domain or
x(t) in the time domain.

Definition 3.69:

Consider the asymptotically stable second-order system (3.154) with initial conditions
as defined in (3.119), the corresponding controllability Gramian P,,_ as introduced in
(3.148), and the input matrix Wy, as defined in (3.144). Then the corresponding second-
order observability Gramian is defined as

1 o

:% N

Qow., A (iw) "™ Pry, My A (iw)dw (3.158)

with A(s) ;= (s*M + sD + K) 1. O

To compute the second-order observability Gramian Qg .., we apply the following the-
orem.

Theorem 3.70:

Consider the asymptotically stable second-order system (3.154) with initial conditions
as defined in (3.119), the corresponding controllability Gramian P,y from (3.148), the
first-order matrices €, A as defined in (2.24), and the input matrix Wy, as defined in
(3.144). Then the second-order observability Gramian Qg .., as defined in (3.158) is the
lower-right block Qg ., of the first-order matrix

[ Qiw., Qw1 [T —u [ MnPyw My 0f . 1
Qaw, = [Q;f,wso Qg,wsj - 27r/ (i€ —A) { 0 0} (W€ — A)™ dud

—00

Proof. The proof of this theorem is similar to the one for Theorem 3.59. [

124



3.3 Inhomogeneous second-order ODE systems

Controllability energies To identify state spaces that encode the dominant system
dynamics, we derive the respective controllability energies. For that, we derive the
input-to-state mapping in the time domain

cw,, (1) = [T 0] METIW,,

which is equal to the mapping defined in (3.152). Hence, we obtain the same energy
expression as in (3.153) applying the energy norm from (3.19) that is

E(Cwso) = ||cwso iQ([O,OO),RQnX(n+nXU+nV0>) = / tr(cwso (t) cwso (t)T) dt
- tI‘(PWw) .

The trace of the Gramian P,,_ coincides with the sum of its eigenvalues. Therefore, the
eigenvalues of the Gramian P, indicate which states are significant for the system dy-
namics. The states corresponding to large eigenvalues span the dominant controllability
spaces, while states corresponding to small eigenvalues have a negligible influence on the
system dynamics.

Observability energies In this paragraph, we derive the observability energies to iden-
tify the dominant observability subspaces of the system (3.154). Therefore, we consider
the state-to-output mapping

et P ]

whose 2-dimensional Laplace transform is equal to Oq .. (51, s2) from (3.157). Applying
the energy norm from (3.19) to the mapping oq ., leads to

E(oqw.,) = ||OQ,WSO||iQ([0’00)27R(n+nx0+nvo>xn)

:/ / tr(0qw., (t1, t2) T 0gaw., (t1, 12) ) dt1dis

2 / / Oqw., (iwy, iwg)HOQ,WSO(iwl, iwg))dwldwg
)2
= tr(QQ Wao

with Qqw., as defined in (3.158). Since the trace of the Gramian Qq,y., coincides with
the sum of its eigenvalues, the most dominant observability subspaces are determined
by the largest eigenvalues.

We summarize the extended-input approach for system (3.154) in Table 3.10 where
we list the transfer function, the tailored controllability and observability Gramian, and
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3 Inhomogeneous systems and their system theoretical aspects

the resulting energies. They are used in the following chapters to reduce systems of this
type.

System (3.154)
Transfer function G wew., (51,52)
Controllability Gramian Py,
Observability Gramian Qo w.,
Controllability energies E(ew,,) = tr(Pw,.)
Observability energies E(oqw.,) = tr(Qqw.,)

Table 3.10: Properties of system (3.154) corresponding to its extended-input represen-
tation.
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As described in Chapter 1, we aim to optimize external dampers added to vibrational
systems describing civil engineering infrastructure, such as buildings or bridges, to sup-
press external vibration forces caused by, e.g., wind disturbances or earthquakes. In this
chapter, we consider parameter-independent systems, i.e., we assume that one set of
external dampers is given for which we aim to evaluate the system behavior. However,
detailed modeling of these structures leads to systems with large dimensions that make
their evaluation computationally expensive. Therefore, we aim to derive methods that
reduce the model dimension while maintaining or approximating the system dynamics.
Several classes of model order reduction methods for parameter-independent systems
are listed in Section 2.2. Since the methods of choice presented in Section 2.2, BT and
IRKA, consider only homogeneous first-order systems with a linear output equation, in
this chapter, we introduce BT and IRKA for the different systems in the non-standard
form presented in Chapter 3.

The authors in [66] and [15] introduce the BT method and the IRKA method for in-
homogeneous first-order ODE systems with a linear output equation. We describe these
methods and derive new model reduction schemes for inhomogeneous first-order ODE
systems with a quadratic output equation, for inhomogeneous first-order DAE systems
with a linear and a quadratic output equation, and inhomogeneous second-order ODE
systems with a linear and a quadratic output equation. The main contribution of this
section is the introduction of BT schemes for these system types. Moreover, we derive
suitable error bounds, which are needed to evaluate the quality of the approximation.
The IRKA methods for systems with linear output equations are a byproduct of the
modified and decomposed system structures presented in Chapter 3 and are, therefore,
also explained in this chapter, but at a low level of detail.

First, in Section 4.1, we consider first-order systems with an ODE as a state equation.
Then, in Section 4.2, we study first-order systems with a DAE as a state equation, and
finally, in Section 4.3, we consider the case of second-order systems. In all the sections,
we consider systems with linear and quadratic output equations. Moreover, we illustrate
the proposed methods on benchmark problems.
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4.1 Model order reduction for inhomogeneous first-order ODFE systems

4.1 Model order reduction for inhomogeneous
first-order ODE systems

In this section, we reduce first-order systems with a linear output equation and with a
quadratic output equation as described in (3.5) and (3.31), respectively. We assume that
the matrix &€ is nonsingular, i.e., we consider an ODE as a state equation, and the initial
state is equal to z(0) = zg = Zo(p, see (3.4). We aim to reduce the systems (3.5) and
(3.31) to obtain surrogate models with significantly smaller dimensions. These reduced
surrogate models are then supposed to approximate the input- and initial condition-to-
output behavior of the original systems.

We review in this section the BT and TRKA methods widely used in practice. The
authors in [15] and [66] already derived reduction schemes for inhomogeneous first-order
ODE systems with a linear output equation, i.e., for systems of the form (3.5). Therefore,
in Section 4.1.1, we repeat the respective BT method and extend it to systems with a
quadratic output equation. Then, in Section 4.1.2, we describe the IRKA method for
inhomogeneous first-order systems with linear output equations.

4.1.1 BT for inhomogeneous first-order ODE systems

For systems with homogeneous initial conditions and a linear output equation, BT was
introduced in [20, 26, 93, 138] and repeated in Section 2.2.1. Also, in [20], the authors
derive a BT method for homogeneous systems with a quadratic output equation. How-
ever, in this section, we consider the class of inhomogeneous first-order ODE systems.
In the literature, there are some approaches to reduce these inhomogeneous first-order
systems with a linear output equation, see [13, 15, 66, 121]. In this work, we focus on
the methods from [66], where the input Bu(t) is extended by the initial condition space
Zo, and from [15], where the author’s strategy is to decompose the system into a zero
initial condition subsystem and a subsystem with initial conditions but no input. Since
both methods are introduced for systems with a linear output equation, we extend these
methods to systems with a quadratic output equation.

This subsection is structured as follows: First, in Section 4.1.1.1, we apply the method
from [15] to derive some reduced surrogate models that sum up to an output that
approximates the original output. We also extend this method to inhomogeneous first-
order systems with a quadratic output equation. Afterwards, in Section 4.1.1.2, the
method from [66] is applied for systems with a linear output equation and extended to
those with quadratic output equations.

4.1.1.1 Multi-system approach for inhomogeneous first-order ODE systems

When applying the BT method for inhomogeneous first-order ODE systems using the
multi-system approach, we distinguish between systems with linear and quadratic output

129



4 Model order reduction for systems in non-standard form

equations since the subsystems differ. However, the reduction methodology is similar
for both system classes.

BT for systems with a linear output equation First, we repeat the reduction ap-
proach from [15] for the class of inhomogeneous first-order systems (3.5) with a linear
output equation. As we have seen in Section 3.1, the system (3.5) can be decomposed
into two subsystems that are given in (3.8) and (3.9) so that the output is composed of

yo (t) =Y.s (t) + Yz, (t>

where y,, 5(t) and y,, 5, () are the outputs of the subsystems (3.8) and (3.9), respectively.
The idea of the multi-system approach is to reduce both subsystems independently to
obtain two reduced surrogate systems that are

SI‘,BZr(t) — Arygzr(t) + Br’gu(t), ZI—(O) — O,

Yira(t) = Crpz:(t) (4.1)

and

gr,zozr(t) = Ar,zozr(t)> Zr(o) = ZU,rCOa

4.2
Venm() = Cogza(t) (4.2)

with reduced matrices

=V, ET,, A=V AT, B.x=V B, Zy=V),Zo €. =CT,,
(4.3)

encoded by the subscript * that represents either "B’ or ’Zy’. We generate the reduced ma-
trices (4.3) using projecting matrices V, ., T, € RV*f satisfying the Petrov-Galerkin
conditions (2.30) and (2.31), with R, < N. Then the output of the original system (3.5)
is approximated by

yu(t) 2 yie(t) = yirs(t) + Yoz, (). (4.4)

To derive such surrogate systems, we utilize the properties that were derived in Sec-
tion 3.1.1 and summarized in Table 3.1. From the energy expressions in (3.20), (3.21),
and (3.22) it follows that the dominant controllability and observability subspaces of
the subsystems (3.8) and (3.9) are spanned by the states corresponding to the largest
eigenvalues of the controllability Gramians Py and P, , and the observability Gramian
Q, introduced in (3.11), (3.14), and (3.17), respectively. Hence, states corresponding
to the smallest eigenvalues of the respective Gramians are truncated in the following,
resulting in Algorithm 7.
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Algorithm 7 BT method for the first-order ODE system (3.5) with a linear output
using the multi-system approach.

Require: The original system (3.5), the reduced dimensions R., where * is "B’ or "Z’
corresponding to subsystem (3.8) or (3.9).
Ensure: The reduced systems (4.1) and (4.2).
1: Compute factors of the Gramians P, ~ R, R, and Q, ~ 88" from (3.11), (3.14),
and (3.17).
2: Perform the two SVDs of STER, and decompose as

T El,* 0 VT*
8TER, =UNV, = [Us. Uy, { 0 Ez,j {Vif '

with 3, € Ry e (B 7).
3: Construct the projection matrices
1

Vn* — SU].,*E;E? ‘J’n* = :R,*VL*E;’E

4: Construct reduced matrices (4.3).

To evaluate the the matrices
_1\T _1
B, — (8U2,2022;O) B, A=V, AR, V., 5,2

and Y, that is the lower block of Y = [% ], which solves the Sylvester equation
AYE, 4, + EYA,,, = —CTC.y,.

Then the error bound given in [15, Theorem 3.2] is equal to

HyL - yL,rHLoo < HyL,B - }’L,r,BHLOO + HYL,ZO - YL,r,ZOHLC>c

N
< (2 Z 0k,3> ] L, ((0,00),Rm) + \/tr((BzBE +2Y2A12)%5 2,) [ Coll2,

k‘ZRB-‘rl

where 35 = diag (01,5,...,0n,5) and 3y, result from the SVD in Step 2 of the algo-
rithm.

BT for systems with a quadratic output equation Now, we derive a BT method
for a system (3.31) with a quadratic output equation. As presented in Section 3.1.2,
this system can be decomposed into four subsystems (3.34), (3.35), (3.36), and (3.37) so
that the respective outputs satisfy

Yolt) = Youzs(t) + Yoz,s(t) + Yasz,(t) + Yaz0z, (t)-
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Hence, in the multi-system approach, we derive four surrogate models approximating the
input- and initial condition-to-output behavior of these subsystems. The first surrogate
model is given as

gr,BBZr,BB(t) = Ar,BBZr,33 (t) + Br,gzu(t)7 Zr,BB(()) =0,

4.5
YQ,r,'BB(t) = Z; B3 (t)TMr,ﬁBzr,ﬂﬂ (t)a ( )

and approximates the input-to-output behavior of the subsystem (3.34). The second
reduced model that approximates the input- and initial condition-to-output behavior of
subsystem (3.35) is

Sr,ZOBZr,B (t) = ‘ArZUBZr,ﬂ (t) + 3r,zozsu<t)a Zy 3 (O> =0,
8r,ZOBzr,Zo (t> = Ar,ZOBZr,ZU (t)7 Zy .z, (0) = ZO,r,ZOBC07 (46)
Yarzos(t) = Zzo(t)TMr,zoBZB (t)

and the third one approximating the subsystem (3.36) is given as

Sr,ﬁzozr,ﬂ (t) = Ar,BZOZr,B (t) + Br,Bzou(t)7 Z, (O) = O;
8r7gzozr7zo (t) — .A,n:gzoznzo (t), Zr7z0 (0) — ZO,LBZQCO? (47)
Yar,sz,(t) = Zs (t)TMr,Bzozzo (t).

Finally, the surrogate system

‘Sr,zgzozr,zo (t) = Ar,zgzozr,zg (t)u Zy 7, (O) = ZO,r,ZOZOC07

4.8
Ya,r,z0z (t) = 24, (t)TMr,zozoZzo (1), (4.8)

approximates the behavior of the subsystem (3.37). The respective reduced matrices are
build using projecting matrices V, ., and T, ., € RV*® satisfying the Petrov-Galerkin
conditions (2.30), (2.31) with R., < N where the subscripts * and o represent either
"B’or 'Zqy’, which yields the matrices

8r,>o<o = VrT*og'Tr,*oa ‘Ar7*o - VrT*O-ATr,*oa B1r,>ko - vrT*o:B;
T T ’ (4.9)
ZO,r,*o =V Z07 Mr,*o =T MTr,*o-

To derive the four reduced subsystems (4.5), (4.6), (4.7), and (4.8), we identify which
states are most significant to describe the controllability and observability of the system.
Therefore, we utilize the system energies summarized in Table 3.3. From the energy
expression in (3.20), it follows that states corresponding to large eigenvalues of the
controllability Gramian P, from (3.11) span the dominant controllability subspace of the
two subsystems (3.34) and (3.35). Also, it follows from (3.21) that states corresponding
to large eigenvalues of the Gramian P, from (3.14) span the dominant controllability
subspace of the subsystems (3.36) and (3.37). Hence, within the four BT methods
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Algorithm 8 BT method for the first-order ODE system (3.31) with a quadratic output
using the multi-system approach.

Require: The original system (3.31), the reduced orders R,., where % and o are "B’ or
'Zy’ corresponding to the subsystem (3.34), (3.35), (3.36), and (3.37).
Ensure: The reduced systems (4.5), (4.6), (4.7), and (4.8).
1: Compute factors of the Gramians P, =~ R*R;F and Qq, ~ SOSOT from Definition
(3.11), (3.14) and (3.17).
2. Perform the four SVDs of 8TER,, and decompose as

T 21,*0 0 VT*O
So 851* - U*OE*OV*TO - |:U1,*o U2,*O} |: 0 E2,*o:| |:V'II: :

2,%0
with X ., € RF=oXto o ¢ (B 7).
3: Construct the projection matrices

1

_1 _1
Vr,*o = SoUl,*ozl’fa TI‘,*O = g{*vl,*oz :

1,x0°

4: Construct reduced matrices (4.9).

applied to the four subsystems states corresponding to small eigenvalues of P and
P, are truncated as they are negligible when describing the system dynamics. To
investigate the output energies of the four subsystems, we evaluate the energy norms
of the respective state-to-output mappings from (3.42), (3.43), which show that states
corresponding to small eigenvalues of the observability Gramians Qg 5 and Qg z, from
(3.39) and (3.41), respectively, are difficult to observe. Hence, in the following, we apply
BT from Algorithm 1 extended by [20] to systems with quadratic output equations to
truncate the states which are simultaneously hard to reach and to observe which leads to
Algorithm 8. The reduced systems (4.5), (4.6), (4.7), and (4.8) generated by Algorithm 8
approximate the original outputs in the following way

Yol(t) = yau(t) = Yarzs(t) + yQ,LZoB(t) + Yar,sz, (t) + Yarzoz (1)

We now aim to derive an error bound for the presented BT method. Therefore, we
make use of the following decomposition

Ve = Yarllzw < Yass — Yarssllie + 1Yoz0r — Yorzesll Lo
+ ||YQ,BZU - YQ,r,BonLoo + ||YQ,zozo - YQ,r,zuzo”Loo- (4-10)

The authors in [20, Equations (22), (23)| derive an error bound for homogeneous first-
order ODE systems with quadratic output equations that is applicable for the error
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4 Model order reduction for systems in non-standard form

|¥os8—Yaorssli.- Toevaluate the remaining output errors, we apply the same method-
ology, which we demonstrate for the error component ||yq z,s — Yaorzs| z..- Therefore,
we define the mappings

T —1 _
h, 5(t1,t2) = Vec(ZT ATE T8 A2 g 13) ,
ﬁ — 7T Al €07 sUN SrZ zAr, zoslag—1 @ (4.11)
203 (t1,2) 1= vec 0,r,zosC 70T TEO r,zyBC 70 1,ZoB=T,Z0B | -

Using these mappings, the outputs of system (3.35) and (4.6) can be rewritten as

thzog(t,t — ) Mu(r) ® ¢)dr

t

hy,s(t,t — 1) (u(T) ® G)dr

YQ,ZOB(t) =

S— —

YQ,r,zo:B(t) =

Using these representations of y ,» and yq  z,5, the following lemma provides an upper
bound of the respective L-error.

Lemma 4.1:
Consider the asymptotically stable system (3.35) with initial conditions as defined in

~

(3.4), the reduced system (4.6) with matrices (4.9), and the mappings h, 5 , hy 5 as
defined in (4.11). Then, the following inequality holds

nmﬂ—mﬁm%g(/ / %mﬁMﬁ—EﬁMJﬂ@W%)HU®MM.O
0 0

Proof. We consider the output error at time ¢ > 0 that is

Y205 () = Yezen(t)| = ' /Ot <hzog(t, t—7) — hyu(t,t — T))T (u(r) ® Co)dr

Applying the Cauchy-Schwarz inequality multiple times yields

|ﬁ@w—ywﬁ@nsét(m@@t—w—ﬁmﬁi—ﬂ)mvwmowf

[
</

s (t,t = 7) = g (8,6 = 7)|| [(u(r) @ Go)lladr
2
dT)

IWACGCEERE

~

hZOB(t7 t - T) hZOB(t t - 7-)
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4.1 Model order reduction for inhomogeneous first-order ODFE systems

Since we only consider nonnegative values in the integral, the values on the right-hand
side of the bound increase for larger values of ¢t and can be bounded by choosing t = oo,
which leads to the following L.-norm bound of y; 5 — yr z,s:

[¥aus — Yausllin < ( / ) / 7] Edtldtg)é
([ I @)H%m)é
(L

1
~ 2 3
hyys (1, £2) — gy (t1, tg)sztldt2> @, O
For further consideration, we define the following matrices

-~

hZOB(tla t2) - thB(th tQ)

I,%0

0 (4.12)

oo

. &AL AT e Tt

?Zo,*o :/ € ZOZO,r,*oe nreTn dtv
0

o
. E 1At e -1 -T AT e Tt
Pg o= / e E BB, . &, el ottt

and the reduced Gramians

I,%0 T,%0 T, %0

oo
—1 - vo 1 T -T T -T
?371‘7*0 = / esr,*o‘AI, t8 BI‘7>}<OB 8 6Ar,*o€'r,*otdt’
0 (4.13)

0,r,*o

o0
—1 T -T
?Zo,r,*o = / egr,*oﬂr,*otzoyn*OZT eﬂ-r,*oar,*otdt
0

for *x,0 equal to B’ or 'Z,". Since the bound presented in Lemma 4.1 includes the
expression

[ Masttrste) = Battn )t = [ [ (Ihaa(eroto)
0 0 0 0

—~ ~ 2
- 2<hZ03(t17 t2)7 hZOB (tla t2)> + ‘ thB(th t2) 2>dt1dt27

the following lemma is used to determine the different components of the right-hand side
of this bound.

Lemma 4.2:
Consider the asymptotically stable system (3.35) with initial conditions as defined in
(3.4), the reduced system (4.6) with matrices (4.9), the corresponding controllability

Gramians P, and P, as defined in (3.11) and (3.14), respectively, the matrices Pz 5 »
and Pz, 5 from (4.12), and the reduced controllability Gramians Px , z 5 and Pz, ; 7,5
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4 Model order reduction for systems in non-standard form

~

from (4.13). The mappings hy 5 , hy 5 are as defined in (4.11). Then, the following
equations are fulfilled

/ / Dy (1, £2) [2dtrdlts = tr(PsMP, M) (4.14a)
0 0
[ Mt )lBdtdts = @M s P Moin) (4.14D)
0 0

00 00 N ~T »
/ / <hZOB (t17 tg), hZOB(tl, t2)>dt1dt2 =tr (TB,Z03MPZ07ZOBMr7Z03> . (414C)
0 0 <>

Proof. We make use of the property ||[vec(Z)||3 = ||Z||? and the Kronecker product
properties to obtain

| et
0 0
:/ / tr(ﬂTS_TeATsztQMegflmlZOdeAT‘SfT“Megflﬂt?8_13> dt,dty
0 0
_ / r(BTE A NP, M A B diy
0

_ / tr(e8 g BB TAT P, M) diy
0

tr(PxzMP,, M) ,
what proves (4.14a) while (4.14b) is proven analogously. To show that the remaining

equation in (4.14c) is satisfied, we make use of the property (vec(X), vec(Y)) = tr(XTY)
and obtain

/ / (B (1, £2), Bigym (1, £2)) dtrdlts
0 0
= /OO /0O tr<BT8_T6AT8_T'52M€‘S_1A“ZO
0 0

AT e T ¢ el A too—1
r,ZoB%r,zoB" r,ZoBY 1, ZoB 2
e 0B M, 4 me T %0 Sr’ZUB

.77T

0,r,ZoB

By s ) Aty
00 0o — - 1
= / / tr <3T87T6A & t2M:PZO7203Mr7203egr’ZOBAr’ZUBtQ8;;033r7203> dt,dt,
o Jo
~T ~
= tr <?$,Z03M?Z07203Mr,203) . D
From Lemma 4.1 and Lemma 4.2, we derive the following theorem, which provides a

bound of the Ly-error ||yoz,s — Yorzosl Le-
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4.1 Model order reduction for inhomogeneous first-order ODFE systems

Theorem 4.3:

Consider the asymptotically stable system (3.35) with initial conditions as defined in
(3.4), the reduced system (4.6) with matrices (4.9), the corresponding controllability
Gramians Py, P, as defined in (3.11) and (3.14), respectively, the matrices 5’37203 and
JN’ZO,ZOB from (4.12), and the reduced controllability Gramians Pz, 5,5 and Pz, ; 7,5 from
(4.13). The error between the output yq 5,5 and the reduced output yq .z, satisfies the
following bound

~T ~
|Ya.zem — YQ,r,zoBHQLOO < (tr(?BM?zoM) —2tr <?B,z03MTZo,zoﬂMr,zoB>

(P03 Mr 5P 05205 Mo ) ) [0 @ ol (4.15)
0

We apply this error bound to all four error components in (4.10) to obtain an overall
error bound.

Corollary 4.4:

Consider the asymptotically stable system (3.5) with initial conditions as defined in (3.4),
the reduced subsystems (4.5), (4.6), (4.7), and (4.8) with matrices (4.9), the correspond-
ing controllability Gramians Py, P, as defined in (3.11) and (3.14), respectively, the
matrices 5’37*0 and iT)ZO,*O from (4.12), and the reduced controllability Gramians P ; 2 »
and Pz, ;.o from (4.13), for x, o equal to "B’ or ’Z,’". Then, the error between the output
¥ and the reduced output y , satisfies the following bound

1Yo = Yarllze < Z 1Yo = Yool e

*,06{"B’,"Zo’}
~T ~
< ¥ <tr(fP*MIPOCN[) - 2tr(?o,*oM?*,*oMr7*o> (4.16)
*,OG{"B’,’Z()’}
+ tr(:Po,r,*oMr,*o?*,r,*oMr,*o) ) Hu* ® uOH%27
where uz := u and ug, := (p. O

4.1.1.2 Extended-input approach for inhomogeneous first-order ODE systems

In this paragraph, we aim to derive reduced surrogate models of the inhomogeneous
first-order systems with a linear output equation (3.5) and with a quadratic one (3.31),
both of significantly smaller dimension R < N. In contrast to the previous paragraph,
we intend to find one reduced system

E.z.(t) = Az, (t) + B,u(t), z,(0) = Zg (o,

Yur(t) = Crzi (1), (4.17)
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4 Model order reduction for systems in non-standard form

which approximates the original system (3.5) and one reduced system
E.z,(t) = A,z.(t) + B,u(t), 2,(0) = Zo (o,
Yar(t) = Zr(t)TMrZr(t)v

which approximates the system (3.31). The surrogate models include the reduced ma-
trices

(4.18)

& =VIET,, A, = VIAT,, B, =V B,

4.19
Zo. = V7, G, = CT,, M, = T 'MT, (4.19)

generated using the projecting bases V., T, € RV*® that satisfy the Petrov-Galerkin
conditions (2.30) and (2.31).

To derive such surrogate systems, we consider the respective homogeneous systems
from (3.27) and (3.45). The inhomogeneous and the homogeneous systems (3.5) and
(3.27), such as (3.31) and (3.45) have the same input- and initial condition-to-output
behavior in the frequency-domain. Hence, homogeneous systems are used to identify the
states that are hard to reach and to observe. To determine these states, we evaluate the
system energies summarized in Table 3.6 and Table 3.7. The controllability energies from
(3.30) show that states corresponding to small eigenvalues of the controllability Gramian
P, from (3.29) have only negligible influence on the system dynamics, and hence, are
truncated in the following. Also, we investigate the observability energies in (3.22) for
systems (3.27) with a linear output equation, as well as (3.48) for systems (3.31) with a
quadratic output equation. It follows that states corresponding to small eigenvalues of
the observability Gramians Q, and Q. from (3.17) and (3.47), respectively, are hard
to observe and, hence, truncated within the BT method. The controllability Gramian
P, and the observability Gramians Q, .y, Qq.w are in general not equal. Therefore,
we transform the system so that the controllability and observability Gramian coincide
before truncating the negligible states.

We apply BT as introduced in Algorithm 1 to balance the system and truncate the
states spanning the least dominant subspaces. For that, we assume that R and 8 are
Cholesky factors (or, if available, low-rank factors) of the Gramians of the homogenous
systems system (3.27) or (3.45), ie., Py ~ RR" and Q ~ 88, where Q represents
either Q, or Qg .. We compute the singular value decomposition

T T 21 0 VT
S'ER=UXV'=[U; U, { 0 s, Vif : (4.20)
where the matrix ¥ = diag (0y,...,0x) contains the so called Hankel eigenvalues. The

remaining step is to truncate states corresponding to small eigenvalues from 3. For
that, we define the projecting matrices

V,—8U,S 3, T, —RV,5* (4.21)
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4.1 Model order reduction for inhomogeneous first-order ODFE systems

Algorithm 9 BT method for the first-order ODE systems (3.5) and (3.31) with a linear
or quadratic output using the extended-input approach.

Require: The original system (3.5) or (3.31), reduced dimension R.
Ensure: The reduced system (4.17) or (4.18).
1: Compute factors of the Gramians Py ~ RRT and Q ~ 887, with Q equal to Q, or
Q. from (3.29), (3.17), and (3.47).
2: Perform the SVD of 8TER, and decompose as

21 T

8TER = [U, U, [ } Vi V],

b))

with 3, € RF*E,
3: Construct the projection matrices

V,—SU,S %, T, —RV,S %

4: Construct reduced matrices (4.19).

that balance and truncate the system by projecting the state space onto a space spanned
by U; and V; corresponding to the largest eigenvalues stored in ;. Multiplying the
original system (3.5) or (3.31) by V! and T, results in the reduced system (4.17) or (4.18),
respectively, with the reduced matrices (4.19). This methodology leads to Algorithm 9.

Error bound for systems with a linear output equation For the linear output case,
there exists an error bound for the error between the output y; of the original system
(3.5) and the output y, , of the reduced system (4.17), as shown in [66, Theorem 2|, that
is

N
HYL _YL,rHLQ < (2 Z 0k> HuHL2

k=R+1

N 3
+3-273 (8T AZ||2 + [ S04 Zo,l2) * <2 > Uk:) [[Goll2-

k=R+1

Error bound for systems with a quadratic output equation For the case of quadratic
output equations, we again apply the bound from |20, Equations (22), (23)], which was
already used to derive the bound in (4.16). However, in the extended-input case, we set
Vo = Vi, Tiwo = T, with V, and T, as defined in (4.21) for all x,0 € {"B’, 'Z,’}. We
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4 Model order reduction for systems in non-standard form

define the reduced controllability Gramian and the matrix

Py = / T g Ty W E T B A g
% (4.22)
P, = / (£ AE YW T A gy
0
This leads to the following error bound.

Theorem 4.5:

Consider the asymptotically stable system (3.31) with initial conditions as defined in
(3.4) and the reduced system (4.18). Also consider the respective controllability Gramian
P, as defined in (3.29), the reduced controllability Gramian P, as defined in (4.22),

and the matrix P,y from (4.22). Then, the respective output error is bounded by

~T ~
Iva = Yarlle < (t(PuMPM) — 260D MPM,)
(P M P, M) ) (s + [Goll2)* . (423)

O
Proof. We apply the bound from (4.16) to obtain
HYQ - YQ,rHLoo < Z ||YQ,*O - YQ,r,*OHLOO
*x,0€{’ B’ Zo’}
~T ~
< Y (6@MPM) - 20 (P MPM) (4.24)
*,06{’37,’20’}

(P ML) ) [, @,

for the reduced matrices from (4.9), which coincide with those in (4.19), where uy := u,
uz, := (o. The respective controllability Gramians Py and P, are as defined in (3.11)
and (3.14), the matrices P, and ﬁv’zo are defined in (4.12), and the reduced Gramians P,
and P, , are from (4.13). Since Py = Px+P,,, jiw = J’B —HT’ZO, and Pry, = Py, + Py »
holds, the right-hand side of (4.24) is bounded by the one in (4.23), which proves the
statement. [l

4.1.2 IRKA for inhomogeneous first-order ODE systems

In this section, we briefly describe the application of the IRKA method presented in [60]
and in Section 2.2.2 to first-order ODE systems with inhomogeneous initial conditions
and linear output equations. However, we will not describe this method in detail since
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4.2 Model order reduction for inhomogeneous first-order DAE systems

this is not the main contribution of this work. Also, since there is no IRKA approach
for systems with quadratic output equations, we only consider the system (3.5) with
a linear output equation. For this purpose, we use the equivalent systems represented
in Section 3.1, again distinguishing between different approaches to embed the initial
conditions, which are described in the following subsections.

4.1.2.1 Multi-system approach for inhomogeneous first-order ODE systems

To derive reduced surrogate models approximating the input-to-output behavior of the
original system (3.5) using the IRKA method, we decompose this system into two sub-
systems that are (3.8) and (3.9), as described in [15]. We aim to derive two respective
surrogate models (4.1) and (4.2), approximating the behavior of the two subsystems.
Since the transfer functions (3.8) and (3.9) of the two subsystems are of the same struc-
ture as the transfer function of system (2.1) with homogeneous initial conditions, the
IRKA method introduced in Algorithm 4 can be applied to both subsystems individu-
ally, to derive the surrogate systems. To apply the IRKA method to subsystem (3.9),
we would replace the input matrix B by EZ.

4.1.2.2 Extended-input approach for inhomogeneous first-order ODE systems

As described in [66], the inhomogeneous system (3.5) has the same transfer function as
the homogeneous system (3.27) with W as defined in (3.24). Hence, we can apply the
IRKA method presented in Algorithm 4 to the system (3.27) and to derive bases V, and
T, that define the matrices (4.19) of a reduced surrogate model (4.18) that approximates
the input-to-output behavior of the original one.

4.2 Model order reduction for inhomogeneous
first-order DAE systems

In this section, we consider dynamical systems with differential-algebraic equations as
state equations as defined in (3.54) and (3.100) where the matrix € is singular. We
assume that the matrix pencil (A, E) is regular, i.e., det(AE — A) is not a zero poly-
nomial. We seek to employ model reduction techniques that allow us to construct
a low-dimensional model that closely resembles the dynamic behaviors of the original
high-fidelity model.

The BT and IRKA methods presented in the previous Section 4.1 derived for ODE
systems treat the case where &€ is nonsingular. Therefore, they are not directly applica-
ble to the DAE case. In this section, we extend the methods presented above to the case
of inhomogeneous DAE systems (3.54) and (3.100) with a linear and a quadratic output
equation, respectively. To that end, we use the new Gramians presented in Section 3.2.1
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4 Model order reduction for systems in non-standard form

and Section 3.2.2 that allow us to characterize the controllability and observability be-
havior.

We derive in Section 4.2.1 the BT method for inhomogeneous DAE systems with
linear and quadratic output equations and derive respective error bounds to evaluate
the quality of the resulting reduced surrogate systems. Afterwards, in Section 4.2.2, we
briefly describe the application of the IRKA approach for inhomogeneous DAE systems
with linear output equations.

4.2.1 BT for inhomogeneous first-order DAE systems

To derive BT methods that reduce the DAE systems from (3.54) and (3.100), we identify
the least dominant controllability and observability subspaces truncated in this method,
as their effect on the system dynamics is negligible. To determine these subspaces, we
use respective system energies determined by Gramians tailored for these systems. Based
on this, we propose a balancing scheme to determine projection matrices, leading to the
construction of reduced-order models.

We again consider the multi-system and extended-input approaches derived in Sec-
tion 3.2. Both approaches consider the proper and the improper components separately,
while the multi-system representation also derives subsystems corresponding to the input
and subsystems corresponding to the initial condition.

4.2.1.1 Multi-system approach for inhomogeneous first-order DAE systems

In this paragraph, we derive a reduced system representation of the original system
(3.54) with a linear output equation using the multi-system approach introduced in Sec-
tion 3.2.1.1. For systems (3.100) with quadratic output equations, the multi-system ap-
proach leads to too many subsystems as explained in Section 3.2.2.1 so that we apply for
systems of this structure the extended-input approach presented later in Section 4.2.1.2.

We decompose the inhomogeneous system (3.54) into three subsystems. The first
two subsystems (3.58) and (3.59) encode the system dynamics corresponding to the dif-
ferential state component and the third subsystem (3.60) includes the algebraic state
component, as described in Section 3.2.1. Instead of reducing the original system, we
apply the BT method introduced in Algorithm 2 to each subsystem to derive three
reduced surrogate models approximating the input- and initial condition-to-output be-
haviors. The first subsystem (3.58) corresponding to the input Bu(t) is approximated
by a surrogate model

T ’ (4.25)
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4.2 Model order reduction for inhomogeneous first-order DAE systems

while the initial condition-to-output behavior of the second subsystem (3.59) is approx-
imated by the surrogate model

Z1(t) = Ay, 21 (), 71(0) = Z,Co,

yL7P7r720 (t) = 6172021 (t)7
with reduced matrices

(4.26)

A=V AT, Bi,=V,B  Z,=V,Z, C.=€T,. (427
where the subscript * represents either "B’ or 'Z,’. The projecting bases V, ., T, . €
RV*E« are assumed to project on the deflating subspaces of the matrix pencil (A, E)
corresponding to the finite eigenvalues of the matrix pencil. Also, we assume that the
dimensions of the reduced systems are significantly smaller than the original system
dimension, i.e., R, < N.

Moreover, we derive a surrogate model corresponding to the third system (3.60), that
encodes the algebraic system dynamics

EQ/Z\Q(t) = /Z\Q(t) + BQU(t), /Z\2<O) = /Z\270,
Yiix(t) = Caza(t)
with a nilpotent matrix E, € REXE an input matrix By € RE*™ and an output
matrix Cy, € RP*fi, Note that this reduced model is supposed to have the same input-

to-output behavior as the subsystem (3.60) encoding the algebraic component of the

system dynamic. The reduced system (4.28) is generated using projecting matrices V;,
and J;, € RV*Nint a5

E,=VieT,,, By=V.B, = Co=€T,, 7=V 2. (4.29)

The three reduced subsystems approximate the overall input- and initial condition-
to-output behavior as

(4.28)

yu (t) ~ YL,p,r,B(t) + Vi pr,zo (t) + Yiir (t)

To derive such surrogate systems, we apply Algorithm 2 to the three subsystems (3.58),
(3.59), and (3.60). First, we compute Cholesky factors or low-rank factors of the proper
controllability and observability Gramians P, s = 911)7391373, Poz, = %7ZOR£ZO, and
QoL = SgSp corresponding to the first two subsystems (3.58) and (3.59) defined in
(3.62), (3.66), and (3.74), respectively. Computing the improper controllability Grami-

ans P; 5 and P; 5, corresponding to these subsystems results in

v—1
Pin=RiaRy = Fn(k)PBB P Fy(k)" =0,
k=0
v—1
P2y = Riz Ry =Y Fn(k)PIEZLZy €™ P Fy(k)" =0
k=0

143



4 Model order reduction for systems in non-standard form

since FNP) = 0 for Fy and P as defined in (2.13) and (2.10), respectively. Therefore,
only the proper Gramians are considered when reducing the two subsystems (3.58) and
(3.59).

As described in (3.81), (3.82), and (3.85), and later summarized in Table 3.5, states
corresponding large eigenvalues of the proper Gramians P, 5, P, 2, and Q,, span the
most dominant controllability and observability subspaces. The states corresponding to
small eigenvalues, on the other hand, are hard to reach and observe and are therefore
negligible. We truncate these states in the following. To do so, we derive the respective
singular value decompositions

8,5ERy s — [Upin Upas] [Em ] {VE,LB}
p,B ,B p,1,B p,2,B » VT )

2,8 P,2,B

h VvT
Sp2, ERp 2, = [Up,l,zo Up72,zo] { 120 222} {V%LZO} .

p727ZU

Since the improper Gramians corresponding to these two systems are equal to zero, the
respective BT projection matrices corresponding to system (3.58) and (3.59) as derived
in (2.40) have the structure

_1 _1
Vr,% = [SE,BUpvlszl,;] i j'r,:B = [&,3Vp,1,3217;] i
1 1
Vr,ZO = [SgZoUp:LZUEl,;o] ) ‘:Tr,zo = [RP,ZOVI%LZOEL;J .
For the third subsystem (3.60), we derive the improper controllability and observability

Cramians P; = RR;" and Q. ; = 8!8, as defined in (3.70) and (3.78), respectively. Note
that the proper controllability Gramian is

P, = RRT = / T F (1= PYBBI(I — P TF (1) dt = 0

as Fy(t)(I — P)) = 0 with Fy and P, from (2.13) and (2.10). We derive the singular
value decomposition

T
SAR = [Uy, U,y {91 0} {V ]

i1
and the resulting projecting matrices
_1 _1
Vi,r = |:8;I‘Ui71@1 2] ) g'i,r = [RiVu@l 2} .

Computing and applying the projecting matrices to the three different subsystems leads
to Algorithm 10.
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4.2 Model order reduction for inhomogeneous first-order DAE systems

Algorithm 10 BT method for the first-order DAE system (2.8) with a linear output
using the multi-system approach.

Require: The original system (3.54) and the reduced orders R, 5, Ry, z,, and R;.
Ensure: The reduced systems (4.25), (4.26), and (4 28)
1: Compute factors of the Gramians P, 5 = R, R p 5 Ppzo = Rpz, R p 2, and Qp . =

8;381073 corresponding to the first two subsystems (3.58) and (3.59) and P; = RiR,
and Q;; = 8/'8; corresponding to subsystem (3.60).
2: Perform the two SVDs

by A
Sp,BERp,B = [Up,l,B Up,Q,ﬁ] |: Lo 2 :| |:V%IB:| )

p,2,B
b AVAL
szogg{p’zo - [Up,l,zu UP,ZZJ [ - E2Z :| [V%;:O} ’
0 P,4,Zo
©, A
SiAR: = |Uin Uy [ } [ 171}
U1 Uiy o] [V

with 3 5 € Rfesxfos 33 ¢ Rftozo*Fzo,
3: Construct the projection matrices

1 _1
Vp,r,B = 8 Up’17321 B] ) j./p,r,B = [ﬁp’gvp7173217%:| )
_1 1
Vp,r,zo — ngo p71’Z0217201| ) p,r Zy — |:Rp Zanlzo i| )
_1 _1
Vi,r = S;I‘Um(")l 2} ) 9'i,r = [RiVm@l 2} .

4: Determine the reduced system matrices (4.27) and (4.29) of the subsystems (3.58),
(3.59), and (3.60).

To evaluate the quality of the output approximation using the three surrogate systems,
we consider the two proper components separately, while the improper one has an error
equal to zero, so that we estimate

Iy = Vil < HYL,p,I* - YL,p,r,BHLoo + HyL:PJO - YL,p,r,ZoHLoo‘
To derive bounds for the first error component ||y, s — Yioprslr., we define the map-
pings

hys(t) = CFy(t)B,  hys(t) = Crye® 5B, ,, (4.30)

so that the outputs are equal to

t t
Vips(t) = / h, 5(t — 7)u(r)dr, Viprs(t) = / h, 5(t,t — 7)u(r)dr.
0 0
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4 Model order reduction for systems in non-standard form

Using these representations of y, , » and y; s the following Lemma provides an upper
bound of the respective L-error.

Lemma 4.6:
Consider the C-stable system (3.58) with a regular matrix pencil (A, E), the reduced

system (4.25) with matrices (4.27), and h, 5 and Hp,g as defined in (4.30). Then, the
following inequality holds

[
HyL,p,B - YL,p,r,BHLoo S (/ ‘
0

Proof. We consider the norm of the output error at time ¢t > 0 that is

N 2 \2
b (0) a0 )l (23)
O

[¥1.02(8) = Yipra ()], = H /0 t (Bps(t = 7) = By s(t = 7)) u(r)dr

2

Applying the Cauchy-Schwarz inequality multiple times yields

dr

2

[Ye.05(t) = Yepes(t)], < /O t H (hp,,B (t—7) — hyu(t - T)) u(r)
< [ e = 1) = Bt = ) (et

< ([ [watt =~ Bt - ﬂdeTf ([ Hu(T)HédT);-

Hence, we can bound the L.,-norm of the output error as

00 R 3 o0 3
Yo — Yopesll. < ( / ||hp,3<t>—hp,3<t>||§dt) ( / ||u<f>||§dr)

:(/ th,ﬂ<t>—hp,g<t>u§dt> lulz.. =

The bound in (4.31) includes the expression
/]
It is used in the following lemma to determine the different components of the bound
(4.31) using the respective system Gramians. For that, we define

B 2 > h h ’
hp,B (t) - hp,B (t)Hth < / ”hp,B(t)HIQ? - 2<h973 (t)’ hp’B (t)> * ‘ hp’B (t)Hth'

0

P ::/ esflﬂtﬁ_lﬂﬁzﬂe‘&{ﬁtdt, ].317,3 ::/ eKl,BtﬁLBﬁIBe‘&{Btdt. (4.32)
0 0
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4.2 Model order reduction for inhomogeneous first-order DAE systems

Lemma 4.7:
Consider the C-stable system (3.58) with a regular matrix pencil (A, E), the reduced
system (4.25) with matrices (4.27), the corresponding controllability Gramian P, 5 as

defined in (3.62), the matrix J)p,g from (4.32), and the reduced controllability Gramian

~

f’l,g from (4.32). The functions h, 5 and h, 5 are as defined in (4.30). Then, the
following equations hold

2

| sz —t(euen), [ [ha)] d—u(CaPiudh,).
0 0
(4.33a)
/ <hp,3(t),ﬁp,g(t)>dt:tr<ef>p,36{93). (4.33h)
’ 0

Proof. We derive
/ Ihy.s (t)]2dt = / tr(eeﬁ”f‘te—133T8—T6AT8*”6T> dt = tr(€P,EC")
0 0

what proves the first equation in (4.33a) while the second one is proven analogously. To
show the last equation (4.33b), we derive

/0 (. (t), 1y 5(2))dE = /0 tr(eeﬂTS’TtBﬁ{BeK?BtGEB> dt:tr<€§p7gafﬂ>

what proves the lemma. O

From Lemma 4.6 and Lemma 4.7, we derive the following theorem, which provides a
bound of the Lo.-error ||y.ps — Yiprsl i

Theorem 4.8:
Consider the C-stable system (3.58) with a regular matrix pencil (A, E), the reduced
system (4.25) with matrices (4.27). Also, consider the controllability Gramian P, 5 as

defined in (3.62), the matrix flv’pﬁ from (4.32), and the reduced controllability Gramian

f’l,g from (4.32). Then, the error between the output y, ,» and the reduced output
Yiprs satisfies the following bound

¥~ Viproli, < (0(€Py0€T)2tr(€Py4CT, ) +1r(CraPClL) ) ul, 0

We apply the same bounds to the second error component ||y, z, —¥vr.z,|lz... Therefore,
we define

Pz = / & MZYZY M mtldt, Py, = / AZ0,Z3 AL (4.34)
0 0

Applying Theorem 4.8 to the second error component yields the following corollary.

147



4 Model order reduction for systems in non-standard form

Corollary 4.9:

Consider the C-stable system (3.58) with a regular matrix pencil (A, E), the reduced
systems (4.25) and (4.26) with matrices (4.27). Also, consider the controllability Grami-
ans P, 5 and P, 5, are as defined in (3.62) and (3.66), respectively, the matrices iip,B

and 131793 from (4.32), and the matrices Py 5, and P, 5, from (4.34). Then, the error
between the output y, and the reduced output y, , satisfies the following bound

Iy, = yual < ((€Ppa€T) —20x(€P,u€l,) + tr(€aPru€l) ) full,

+ (tr(e?p,Z(,eT) _ 2tr<€15p7ZOCEZO) +tr (ewﬁl,%e?@) )Hgoug (4.35)
0

4.2.1.2 Extended-input approach for inhomogeneous first-order DAE systems

In this paragraph, we apply the extended-input approach to derive surrogate models
of the DAE systems (3.54) and (3.100) with a linear and a quadratic output equation,
respectively, to incorporate the initial conditions into the reduction process. More pre-
cisely, we are concerned with deriving reduced-order models of the form

&2, (t) = A,z (t) + B, ,u(t), 2,(0) = Zo (o,

4.36
Yir(t) = €uzild), (4.56)
and
Srzr(t) = .Arzr(t) + 3p7ru(t), Zr(O) = ZO,rCO; (4 37)
ycz,r(t) = Zr(t>TMrZr(t)a .
with matrices
1 0 A, 0 y/
8r = TSTr = - r — T Tr = ! Lo, = VTZ = | 201
Vr _0 E2:| ) ‘A Vr‘A [ 0 I:| ) 0, r 40 Z[),g ;
B A M, M
B, =VIB=|2!, €=€T.=|C G, M =T'MT, = |1 ZP
P r _BQ |: 1 2] T MrlI‘Q M22
(4.38)

generated using projecting matrices V., T, € RV*® where the reduced dimension R
is significantly smaller than the original dimension N, i.e., R < N. Consequently,
we aim for a reduced system, which is inherently decoupled into a differential and an
algebraic reduced state, i.e., the reduced state z,(t) consists of a differential component
zp.(t) == [Zlﬁa(t)} and an algebraic one z;,(t) := [m,?(t)} with z,(t) = 2p,(t) + 2, (%).
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4.2 Model order reduction for inhomogeneous first-order DAE systems

We aim to find reduced-order models (4.36) and (4.37) that approximate the input-
to-output behavior of the full-order models (3.54) and (3.100), i.e., the expressions
ly. — yu:ll and |[yq — ¥q.l| are small in an appropriate norm. As described in Sec-
tion 3.2.1.2, the original system (3.54) with a linear output equation corresponds to the
same transfer function as the surrogate system (3.91), and as shown in Section 3.2.2.2,
the original system (3.100) with a quadratic output equation corresponds to the same
transfer function as the surrogate system introduced in (3.105). Both surrogate systems
incorporate the initial condition spaces into the input so that the respective controlla-
bility Gramians describe the input- and initial condition-to-output behavior. Hence, in
the following, the respective Gramians are utilized to derive the corresponding reduced
surrogate models (4.36) and (4.37).

As summarized in Table 3.6 and Table 3.7, the states corresponding to large eigen-
values of the Gramians P,y , Qi p, and Qg pw, from (3.93), (3.97), and (3.111), re-
spectively, span the most dominant controllability and observability subspaces of the
respective systems. On the other hand, states corresponding to small eigenvalues are
negligible and, hence, truncated in the BT method. To evaluate the algebraic compo-
nents of the systems, the improper controllability Gramian P;,y from (3.94) and the
improper observability Gramians Q, ; and Qg w, introduced in (3.97) and (3.116) are
used to identify states that are not reachable or not observable, i.e., states that do not
affect the dynamics of the system. These states are then removed to find a minimal
realization of the algebraic system components.

We want to mention that the systems (3.54) and (3.100) have the same proper and
improper controllability Gramians P, and Pj, . The observability Gramians, on
the other hand, differ. However, since the BT method corresponding to both systems
types is the same, we denote the proper observability Gramians Q; ;, and Qg w, in the
following as Q,, and the improper ones Q, ; and Qg w, in the following as Q; so that the
user can choose the correct observability Gramian according to the considered system.

We aim to truncate states corresponding to the small eigenvalues of the proper control-
lability Gramian P}, and the proper observability Gramian Q,,. Therefore, we follow
the methodology presented in Algorithm 2 to derive a balanced and truncated system.
Since all Gramians are symmetric and positive semi-definite, there exist factorizations

Pow, = RpiRIT), Q, = SESP, Piw, = RR', 9 =8"S,.
We compute the singular value decompositions
b A
Spgﬁp = UpEVg = [Up,l Up,Q] |: ! 22:| |:V%1:| )
T
SAR, = U0V = [U;; U, [@1 0] {Vivl} ,
i,2
where 3 = diag(oy,...,0n,,0,...), 01 > -+ > oy,, includes the proper Hankel singular
values of the system. The differential states that are simultaneously difficult to reach
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4 Model order reduction for systems in non-standard form

Algorithm 11 BT method for the first-order DAE systems (3.54) and (3.100) with a
linear or quadratic output equations using the extended-input approach.

Require: The original system (3.54) or (3.100) and the order R.
Ensure: The reduced system (4.36) or (4.37).
1: Compute the proper and improper controllability Gramians Py, and P;,y, .
2: Compute the proper observability Gramians Q, equal to Q. , or Qg w, and the
improper one Q; equal to Qy; or Qg w, -
3: Perform the singular values decomposition

v? e A%
Pl 8AR = [U; U; ! B
Vg’gl ) 1 i [ i,1 1,2:| 0 V;r2

)

b))
Spﬁﬁp: [Up,l Up72:| |: ! 22:|
4: Construct the projection matrices
_1 _1 1 1
V, = [ngp,lzl > 8'U;,0, ] , o Ti= [mpvp,lzl > RiV,09, ] :

5: Construct reduced matrices as defined in (4.38).

and to observe correspond to the smallest Hankel singular values, which are the diagonal
elements of 5. We truncate the corresponding states that lie in the spaces spanned by
U, 2 and V2 by building the projection matrices

1 -1 -3
V.= |8TU,, 5, SIU,0, } e = [%Vp,@ﬁ RiVi,1©,

Note that additionally improper states that correspond to zero eigenvalues in O, i.e.,
the states that lie in the spaces spanned by U;, and V;, are removed. Multiplying the
system matrices of the system in (3.91) and (3 105) by VI and T, leads to a reduced
system in (4.36) and (4.37) with matrices (4.38) where A; is nonsingular and E, is
nilpotent matrix. This method results in the Algorithm 11.

Error bound for systems with a linear output equation To evaluate the quality of
the approximation by the reduced system, we again have to distinguish between systems
with linear output equations and those with quadratic ones. First, we evaluate the
error for systems with a linear output equation. For that, we define the matrix and the
reduced controllability Gramian

Pow, = / Fi(t)W, W Fy(t)"dt,
0 (4.39)

P vy 1= / B A ETIW, W £ T e g,
0
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4.2 Model order reduction for inhomogeneous first-order DAE systems

We apply the bound from (4.35), where all the subsystems are generated using the same
bases V., J., which results in the following theorem.

Theorem 4.10:
Consider the C-stable system (3.54) with a regular matrix pencil (A, E) and the surro-
gate system (4.36). Also consider the controllability Gramian P, ., as defined in (3.93),

the matrix P, from (4.39), and the reduced Gramian P, , from (4.39). Then the
L.-error of the outputs is bounded by

Iy = yisllf < (tr(€Ppa,€T)

- Qtr(eﬁwpef) +tr(C.Ppw, €T ) ([ul2, + 1G]2) . (4.40)
o

Proof. We apply the bound from (4.35) to obtain

||yL — yL7r||%oo < <tr(e?p7B€T) — 2tr <C§B€Eg) + tI'(er,B?p,nBeEg) ) ||11||%2
+ (e, €") — 20r(€P,, €L, ) + tr(€aPn €l ) ) Gl

for the controllability Gramians P, 5 and P, 5, defined in (3.62) and (3.66), respectively,
the reduced controllability Gramians Py 5 and P 5, and the matrices P, 5 and P, 5,
as defined in (4.32) and (4.34). Since it holds that P, = Pps + Pz, Ppw, =

ﬁipﬂs + jv’p,zo, and P, » = Py s + Ppzor, the right-hand side can be bounded by the
one in (4.40), which proves the statement. O

Error bound for systems with a quadratic output equation To describe the output
error for the systems (3.100) and (4.37) with a quadratic output equation, we bound the
error between y, and y, as

Iye = ¥Yarlliw < ¥op = Yoprllie + 1¥oi = Yoixllew + 150 = Yiellzee + i = ¥iirll 2o

according to the four summands defined in (3.102). In the following, we consider the
respective error norms separately. Since we do not truncate the improper states the error
|l¥ii — ¥iirll 2. 1s equal to zero. Also the components ||ypi — ¥pirllze and ||[Yip — Yipr|| 2o
coincide so that only one of them needs to be evaluated. We investigate the remaining
summands in the following. Since we consider inhomogeneous systems, the input-related
behavior and the initial value-related behavior of the system need to be taken into
account. Therefore, we evaluate the input-related components and the initial value-
related component separately. We define the different states

v—1

Z,5(t) == /Ot Fi(t —7)Bu(r)dr, zpgz(t) :=F5(t)Zolo, z(t) = Z?N(t)fBu(k)(t)

k=0
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4 Model order reduction for systems in non-standard form

with Fy and Fy as defined in (2.13), and the reduced state approximations
t =~ AN = AN AN AN
Zpra(t) = / AEDBU()Ar,  Zpeg (t) = AB0rGo, malt) =Y ~BiByu®(1)
0
including the reduced matrices from (4.38) to define the output components.

The proper-proper output error First, we describe the proper-proper output error
|¥pp — Ypprllo.. that includes the output components

Ypporo(t) 1= Zpu(8) " MZpo(t),  Yopwo(t) 1= Zpra(t) Mirzp.o(t)

where the subscripts * and o are equal to "B’ and 'Z,". We evaluate the input-related
components and the initial value-related components separately so that

1Yop = Yol e < Yopas — Yoprss || o

+ 2”3’ppyzoB - prarszBHLoo + ||YPp,ZoZo — Ypp,r,2020 Lo

Since the three components are analyzed analogously, we only show the derivation of a
bound for ||yppss — Ypprss|li.- Afterwards, we apply the same methodology for the
remaining two components.

To analyze the error ||yppss — Ypprssl/z., between the proper-proper output ypp sz
and its approximation y,,, ss, we define the mappings

B (b1, f2) = vec(BTFy (1) MFs(12)B) . Bp(ts, 1) i= vec(BIeA My A 2B, )
(4.41)

so that the outputs can be written as

t t
Vopmn(t) = / / i (tr, £2) (u(t2) @ u(ty))dbrde,
Yo,z (t // o(t1, t2) T (u(ts) ® u(ty))dtdes.

Using these representations of ypp s and ypp ss the following lemma provides an upper
bound of the L..-error in the proper-proper output.

Lemma 4.11:
Consider the C-stable system (3.100) with a regular matrix pencil (A, E), the reduced

system (4.37), and the mappings h,, and Bpp as defined in (4.41). Then, the following
inequality holds

oo [o.¢]
Hyppyﬂﬂs - Ypp,r,BB”LOO S (/ / )
0 0
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4.2 Model order reduction for inhomogeneous first-order DAE systems

Proof. We consider the output error at time ¢ > 0 that is
b’pp,BB — Yppr,zs(
T
‘ / / pp tl,t — tz) hpp<t — tl,t — t2)> (U(tg) X u(tl))dtldtz .

Applying the Cauchy—Schwarz 1nequa11ty multiple times yields

T
ottt — hpp(t—tl,t—t2)>

|YPp7BB() YPprgB |<

(u(ty) @ u(tl))Hthldtg

By (t1,12) = Bp(t1,12)|| [|(0(t2) © (1)) oty

1
2

t R 2
by, (t, t) — oy (t, t) Hthldtg)

([
([ [ u<t1>>|\§cmow2>é

Hence, we can bound the L.,-norm of the output error as

||ypp,BB - ypm,mHLw < (/ / ‘
0 0
UL

Note, that the factor |[u ® ul|, is replaced by |[u ® (o||r, when considering the output
N ”/[\loo and by [|(o]|3 when considering ||Ypp.zozo — Ypprzozo || L - Also the
mappings h,, and hy, need to be replaced accordingly.

Since the bound presented in Lemma 4.11 includes the expression

e
/ / [hpp (t1,22) ||2 hyp(t, ), Doy (t1, £2)) +‘

the following lemma is used to determine the different components of this bound using
the respective system Gramians. For that, we also define the matrices

- 2 3
hy, (t, t2) — By (1, tQ)H2dt1dt2)

(/ / u(ts) ®u(t1))||2dt1dt2>§

1
thldtg) Hu@uHLQ. ]

hpp(tb t2) - ﬁpp(tl, t2)

~ 2
hy, (t, t) — By (f1, tQ)H dt,dt

dtldtg

pp 2517752)
§>p793 ::/ Fy(t)BBT A, f’l,g ::/ eA1'B, BT At (4.42)
0 0
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4 Model order reduction for systems in non-standard form

Lemma 4.12:
Consider the C-stable system (3.100) with a regular matrix pencil (A, E), the reduced
system (4.37), the corresponding proper controllability Gramian iPp » as defined in (3.62),

the matrix ﬂ)p s, and the reduced proper controllability Gramian P, 5 from (4.42). The
mappings hy, and hpp are as defined in (4.41). Then, the following equations are fulfilled

/ / By, (b1, ) [dtrdts = tr(Py s MP, s M), (4.43a)

/ / tl, tQ dtldtQ = tr <]/:‘\)173M\11f)173i/[\11> s (443b)
~T ~ —~

/ / <hpp(t1, tg), hpp(t17 t2)>dt1dt2 =1tr <?p,3MPp,BM11> . (443C)

0 0 <>

Proof. We make use of the property |[vec(Z)|3 = ||Z||3 and the Kronecker product
properties to obtain

[ [ it wlBana
0 0

_ / / 00 (BTFy (1) VT 5 (1) BB F; (1) "MF 5 (£)B) i dt
0 0

_ / 0 (BTF 5 (1) TMP, uMF 5 (1) B)

0

_ / 0 (F 5 (£2) BB F 5 (1) "MP, 2 M) dty
0
— tr(?p’BM?p7BM) ;

what proves the equation in (4.43a), while the one in (4.43b) is proven analogously. To
show that the equation in (4.43c) holds, we make use of the property (vec(X), vec(Y)) =
tr(X"Y) and obtain

/ / By (1, £2), By (t1, 1))ty
:/ / tr BTS"J(tQ) M&“J(tl)BﬁlTeKT“ﬁneMﬁl) dtdt,
= [T (BT ) M () BN L)
—tr (§:73M§p73ﬁ11) . O

From Lemma 4.11 and 4.12, we derive the following theorem, which provides a bound
of the L..-error of the proper-proper output component.
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Theorem 4.13:
Consider the C-stable system (3.100) with a regular matrix pencil (A, E), the reduced
system (4.37), the corresponding proper controllability Gramian Py, s as defined in (3.62),

the matrix ﬂ’p s, and the reduced proper controllability Gramian P, 5 from (4.42). The
error between the proper-proper output y,,ss of the original system (3.100) and the
reduced output y,p . ss satisfies the following bound

1Ypp5 = Yoprsslin,
~T ~ —
< ((PpaMPy M) — 24P, MP, M)

+tr(f’p7BM11f’p7BM11> >||u®u”%2 <>

The improper-proper output error Now, we bound the improper-proper output
error ||yip — Yipr||z., that includes the output components

Yipso(t) == 2i(t) Mzpo(t),  Yipwmo(t) = 2ix(t) Miyzp,o(t)

where the subscript o is equal to "B’ and *Z,’. We evaluate the input-related components
and the initial value-related components separately so that

HYip - Yip7r||LoC S ”yip,BB - yip,r,B:B HLOO + 2||yip,BZO - Yip,r,BZU HLOO'

We derive an error bound for the two components following the same theory. Hence,
we only investigate the error ||yip 55 — Yiprss| L., While the remaining one is computed
analogously. To bound the improper-proper output error, i.e., the error between the
improper-proper output yi, ss(t) and the reduced improper-proper output yip . ss(t),
we define the mappings

hy, (1, k) := vec (BT?N(k:)TM&"J(t)B> and Dy (t, k) := vec (BT(Ek)TM12eAlf1§1).
(4.44)
Using the mappings h;, and h;, from (4.44), we rewrite the outputs as

Yip, s (t) = /0 2 hip(t — T, k‘)T (u(T) %9 u® (t)) dr,

Viprss(t) = /0 i: ﬂip(t — k)" (u(T) @ u® (t)) dr.

We use this representation of the improper-proper outputs to derive the following lemma,
which provides a bound of the respective L..-error.
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Lemma 4.14:
We consider the C-stable system (3.100) with a regular matrix pencil (A, E), the reduced

system (4.37), and h;, and ﬂip as defined in (4.44). Then, the following bound holds

Hyipﬁﬁ —Yipr,ss HLOO

([ w) (S e

Proof. Using the mappings h;, and ﬁip from (4.44), we obtain

1

2 )2
dr] . ¢
2

ip(t, k) 1p(t k;)

-1

/0 T, k) — Eip(t -, /{:))T (u(r) ® u® () dr|.

Yip,B$< — Yip,r, BE ‘ -

By applying the Cauchy-Schwarz inequality multiple times, we obtain the following
bounds

Yip,BB —VYip,r, BB ‘

z (Bt =) = Byt = 7. 0)) () @ ()
k=
(”j [t = 7:4) — Bt — . )| ) (”juu Hj)QdT

([ - manffr) ([ E s

such that the L.,-norm of the output error is bounded by

dr

/0
=

Hyip,B:B - Yip r,BB ||Loo

(/5 o) ([ 8w owolfr) o

When considering the second component ||Yip sz, — Yip.rsz,|l2.., We replace the output

by (1, k) — By ()|

1 ~
norm by (34— [I¢o ® u®(#)||3)? and choose the respective mappings hy, and hy, ac-
cordingly.
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The output error bound from Lemma 4.14 contains the following expression

[

—~ 2
hy (£, k) — (¢, k:)HZdt

_ /OOO i hip (2, &) 3 — 2(hip (£, k), D (2, k) + ‘ b, (1, k)szt

In the following lemma, we derive formulas of the different components of this expression,
which contain the Gramians of the respective systems. To do so, we define the matrix
and the reduced Gramian

- v1 N N vl /T
Piwi= > Fn(k)BBI(NYT,  Pou:=Y EiB,B] (E’;) . (4.45)
k=0

k=0

Lemma 4.15:

We consider the C-stable system (3.100) with a regular matrix pencil (A, E), the reduced
system (4.37). Also, consider the proper and improper controllability Gramians P, 5 and
Pix as defined in (3.62) and (3.70), respectively, the matrices J’p,g and IT’LB, and the
reduced proper and improper controllability Gramians f’LB and PA’ZB as defined in (4.42)

and (4.45). The functionals h;, and ﬁip are as defined in (4.44). Then, the following
equations hold

0o V—1
/ Z [ hip (£, k) || 2dt = tr(P; s MP, M),

0o V—1
/ Z ”hlp t k)||2dt1dt2 = tI‘(PQ BM12P1 BM12>

oo V—1
~T ~ —
/ Z (L, k), hip (£, k))dt = tr (:PLBM?},,BMH) . 0
0
Proof. The proof is analogous to the one from Lemma 4.12. O]

We use Lemma 4.14 and Lemma 4.15 to derive the following bound of the L., error
corresponding to the improper-proper output.

Theorem 4.16:

We consider the C-stable system (3.100) with the nilpotency index v and a regular
matrix pencil, and the reduced system (4.37). Also, consider the proper and improper
controllability Gramians P, 5 and P; 5 as defined in (3.62) and (3.70), respectively, the
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matrices fA]Spﬁ and 5’173, and the reduced proper and improper controllability Gramians

13173 and 13273 as defined in (4.42) and (4.45). The error between the improper-proper
output yi, ss(t) of the original system (3.100) and the reduced output yi,, s (t) satisfies
the following bound

1Vipss(t) = ¥ipr,ss(t) ||%oo
< <tr (?p,gmwmm) 2t (ﬁ,gmi,g@g)

+ tr(PraMuPoa ML ) vl ul?,

for [[ul|es—1 := maxy—q,..,—1 Supsg [[u®(t)|]2 and output functions u € C*~*([0, c0), R™)U
L2([07 Oo)va)‘ O

Proof. We apply Lemma 4.14 and 4.15 to derive the first multiplier of the right-hand
side. Moreover, applying Kronecker product properties and Cauchy-Schwarz inequality
to the second factor from Lemma 4.14 yields

tv—1 tu 1
| Xl @ uio) o - / () ()" (u(r) © u®(1))dr
R 0
tu—l
_ / S ul (1) Tu(r)u(r) Tu® (1) dr
0 k=0
<Z/Huwwm ol
v—1
a3, [a®@)|]* < viulz . ul,,
k=0
which proves the statement. O

The total output error Finally, we use the bounds for the different error compo-
nents introduced in Theorem 4.13 and Theorem 4.16 to derive an expression that bounds
the total error between the output y, and yq,.

Theorem 4.17:
Consider the C-stable system (3.100) with a regular matrix pencil (A, E) and the reduced

approximation (4.37). Also, consider the Gramian P, from (3.93), the matrix ﬁspwp
from (4.39), and the reduced Gramian Py, , from (4.39). Then, the L.-error between
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4.2 Model order reduction for inhomogeneous first-order DAE systems

the two outputs is bounded by

||YQ - YQ,rH%oo
- (tr(yp,wpmp,wpm) (M V) (ﬁl,wpﬁnﬁl,wpﬁll»
(a2, + lIGol3)”
+2 (tr (g)p,pr?i,ﬂsM) —2tr (5’§WPM5’1,BM1TQ> +tr (f)1,wpﬁ12f)2,asﬁ1f2>>
vl ([ull?, + 16l2)

(4.46)
O

Proof. We apply Theorem 4.13 and Theorem 4.16 to all the components of the output
to obtain

Iyo — Yauli.,
< HYpp,ms - ypp,r,BBH%m + 2HYPp,Zo$ - Ypp,r,Zoﬂ|’%oo

+ [|¥pp.zozo — ypp,r,zoon%oo +2[|yip,ss — yip,r,mz”%oo + 4|Yipsz, — Yipr,sz, ||%oo

< (tr(?p,gM(Pp,BM)—%r (P aMPy M) +or (ﬂ,ﬁuﬂﬂﬁll)) Jullz,

+2 (tr(?pﬁMpr,zoM) —2tr <5)E,BM§)p7ZOM\11) +tr <§1,3M\11131,z0/1\/\[11>> 1¢oll3 HUH%2
+ (tr(?p,ZOM?p,ZOM)—ztr (ﬁ%w@p,zﬁll) e (131,%@1131,20/1\211)) S

+2 (tr<j)p,BM?i,BM) —21tr <§)§BM5)1,3/M?2) +tr <§1,Bﬁ12§273ﬁ?2)> VHuHévfl Hu”%g
+4 (tr(ﬂ)pM?iM) —2tr (i)izoMgN)i,Bﬁlfg) +tr (f’l,ZOM\IQf)Q,Bﬁ?Q)) VH“H%V*I 11¢oll3

for P, 5 from (3.62), i}pﬁ from (4.42), f’LB from (4.42), Pz, from (3.66), i’sz from
(4.34), Py 5, from (4.34), P; 5 from (3.70), P; 5 from (4.45), and Py 5 from (4.45). Since
?p’wp — ?p,g + Tp7zo7 j)p7wp — ?p,B + g)p,Z[)? and :Pp,Wp,I‘ — :Pp,B,r + ?p7zo7r hOld, thlS
expression can be reduced to (4.46), which proves the statement. ]
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4 Model order reduction for systems in non-standard form

4.2.2 IRKA for inhomogeneous first-order DAE systems

In this subsection, we extend the IRKA method presented in Algorithm 5 to inhomoge-
neous DAE systems (3.54) with linear output equations. For that, we make use of the
multi-system approach introduced in Section 3.2.1.1 and the extended-input approach
from Section 3.2.1.2. We restrict this subsection to the case of linear output systems
(3.54) since there exists no IRKA approach for systems with quadratic output equations.
IRKA for homogeneous DAE systems was derived in [61]. Since the IRKA method is
not the main topic of this work, we only consider the broad idea of these approaches.

4.2.2.1 Multi-system approach for inhomogeneous first-order DAE systems

In this paragraph, we extend the IRKA method to DAE systems presented in Algorithm 5
to systems (3.54) with inhomogeneous differential initial conditions. For that, we use the
multi-system representation from Section 3.2.1.1 and consider the two proper subsystems
(3.58) and (3.59) individually. We apply Algorithm 5 to these subsystems and derive
two reduced surrogate models of the form (4.25) and (4.26) using the projecting bases

VnB = [VNf,B 0] s Tr,‘.‘B = [:TNf,B O] s Vr,zo = [VNf,Z[) 0} y ‘Inzo = [‘:TNf,zU 0}
with

VNf,:B = [(0'1738 — A)flpleLB, cey (UR3738 — A)ilplfBbRﬂ’g} ,
VNf,ZO = [(0’1’208 — A)_1P18Z0b1720, ey (O_Rzmzog — A)—1P18ZQbRZsz] ,
‘:TNf,* = [(0'1’*8 — .A)iHP;FeHCL*, ey (037*8 — A)iHP?eHCRJ}

for interpolation points oj.,...,0r. and tangential directions bi.,...,bg, . and
Cix,...,Cr« that are chosen individually for the two subsystems represented by the
subscript x that is either "B’ or 'Zy’. The reduced system (4.25) corresponding to x ="B’
and the reduced system (4.26) corresponding to x ='Z,’ are generated as described in
(4.27).

Applying Algorithm 5 to the third subsystem (3.60) results in the bases Vi, = [0 V]
and J;, = [0 CTOO] , where V,, T, are chosen so that they span the left and right
deflating subspaces of (A, E) corresponding to A = co. Generating the reduced system
matrices according to (4.29) leads to the reduced system (4.28).

4.2.2.2 Extended-input approach for inhomogeneous first-order DAE systems

In this paragraph, the extended-input approach, introduced in Section 3.2.1.2, is used
to apply the IRKA method from Algorithm 5 to DAE systems with inhomogeneous
differential initial conditions. For that, we consider the system (3.91) instead of the
original one (3.54) as it has the same input-to-output behavior in the frequency domain
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4.2 Model order reduction for inhomogeneous first-order DAE systems

but also is of the system structure introduced in (2.8) so that Algorithm 5 is applicable.
Applying that method to the system (3.91) leads to the bases

Vr - [VNf VOOi| I gMr - [TNf j.’()O:|

with
Vy, = [(01& = A)'TPW,by, ..., (05€ — A) ' PW,bp]
Ty, = [(01& — A)TPTCcy,. .., (o€ — A) "PTC"cp]
for interpolation points o, ...,0r and tangential directions by,...,bg and cy,...,cp.

Again, V, and T, are chosen so that they span the left and right deflating subspaces of
(A, E) corresponding to A = co. We multiply the system matrices of the original system
(3.54) from the left and the right by the projecting bases V. and T, according to (4.38)
to derive the reduced system (4.36) that approximates the input to output behavior of
the original one.

4.2.3 Numerical results

In this section, we discuss the efficiency of the proposed methodology using several ex-
amples. For that, we focus on the BT methods for DAE systems (3.100) with quadratic
output equations as they are the main focus of this section and the most challenging
system structure considered. We apply our BT methods to systems with homogeneous
and inhomogeneous initial conditions. First, we introduce a homogeneous example of
dimension four and show that the mixed Gramians containing the proper and improper
controllability and observability space information are required to approximate the sys-
tem behavior. Afterwards, we consider an inhomogeneous example of index 2, which
takes into account the input and the initial condition space to reduce the respective
system. Finally, we consider a homogeneous example of index 3, which describes a
mechanical system with additional constraints.

We also verify our theoretical findings in our numerical experiments,e.g., the error
bounds. All the numerical experiments are carried out on a computer with 4 Intel Core
i5-4690 CPUs running at 3.5 GHz and equipped with 8 GB total main memory. The
experiments use Matlab R2019a and examples and methods from M-M.E.S.S.-2.1., see
[114]. All results are available at [104].

4.2.3.1 Example 1: an illustrative example

First, we introduce a small toy example with homogeneous initial conditions to highlight
that we need to consider mixed Gramians Q. and Qi, ., , as introduced in (3.109)
and (3.112) when considering systems with a quadratic output equation. For this, we
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4 Model order reduction for systems in non-standard form

consider the following system in Weierstral canonical form

100 0] 40 [-1 0 0 0] [a®)] 1 0] o
01 00| |20 [0 —10o0 |z |1 0| o
000 1| |0 =0 o 1o0||=s0] |1 0| = lo]"
000 0] |20 0 0 01 |am] | 0| o

o OO =
N O = O
N W W
W N e
AN TN N N
~ T+ T
SN N N N
| —

The proper state is then given by z;(t) = [28} and the improper one as z,(t) = [28 } .

The corresponding system Gramians are

11 2 1
| B E

1 1 1 11 00
Qn:{é 0l Qo = % g ) Qpp = g i ) Q9 0 4

as defined in (3.95), (3.107), (3.110), (3.113), and (3.115). We note that the proper con-
trollability Gramian has rank one. Therefore, the minimal realization of the differential
part of the system is also of rank one, and so is the differential part of the reduced order
model for this example. The improper state is described by a rank two controllability
Gramian and a rank two observability Gramian, namely Qq;is = Qpis + Qiis, so the
minimal realization of the improper part of the system is of rank two. However, we note
that the Gramian of improper-improper observability Gramian is of rank one. This fact
vividly shows that the mixed Gramians must be taken into account.

To investigate the quality of the reduced surrogate system, we consider the system
output obtained by applying the input function u(¢t) = 0.2 - e~*. The results are shown
in Figure 4.1, where the left plot shows the results of the full-order model (FOM), the
reduced-order model (ROM), and the corresponding error (Error) when the mixed Grami-
ans are applied in the reduction process. The right plot shows the same values for the
case when the mixed Gramians were not part of the reduction step, i.e., Qg p s = Qpps
and Qgis = Qi s. We observe that the mixed observability Gramians Q,; 5 and Q;, »
must be considered within the reduction process.
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4.2 Model order reduction for inhomogeneous first-order DAE systems

0 . . , 0 .
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time time
(a) Mixed Gramians are used. (b) Mixed Gramians are not used.

Figure 4.1: Example 1 - Output responses and the corresponding errors.

4.2.3.2 Example 2: an index-2 Stokes example

We consider the creeping flow in capillaries or porous media described by the following
equations

%v(g, t) = pAu(C,t) — Vp(¢,t) + (¢, 1),
0 = div(v(C, 1)),

(4.47)

with appropriate initial and boundary conditions. The position in the domain © C R¢
is described by ¢ € 2, and ¢t > 0 is the time. For simplicity, we use a classical solution
concept and assume that the external force f : Q x [0,00) — R? is continuous and that
the velocities v : 2 x [0, 00) — R? and pressures p : Q x [0, c0) — R? satisfy the necessary
smoothness conditions. We discretize the system (4.47) by a finite difference scheme as
discussed in |91, 131] and add an output equation to measure our quantity of interest.
We choose the matrix M to be 0.01 - Iy, yielding the /5-norm of the state vector with a
scaling factor 0.01, so that we obtain a discretized system of the form

d I of|z@t)| _ A G |z() . B, u(t) z(0)| |20
@ o ol x| = e of [x@)| T (B.|™ x| T o]’ s
_ T T z(1) .
valt) = [a()” A7) 3¢ 510
with system matrices A € R¥*Ne G ¢ RV*Nr and the initial state value zo € RM*1,
The input matrices are given as B; € RY¥*™ B, € RM>*™ and the output matrix is
M € RVY with N = N, + N,. The state consists of z(t) € R and A(t) € RV,
while the input is u(t) € R™ and the output is y,(t) € R. We consider the system of
dimension N = 645 = n, +n,, where the dimensions of the velocity and pressure vectors
are N, = 420 and N, = 225, respectively.
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100 f
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Figure 4.2: Example 2 - Decay of proper Hankel singular values.

As shown in [131], the projection matrices from (2.10) are given as

_or_ [I —TIAG(G'G)™!
Pr=Pr =1y 0

where
1

M=1Iy,-G(G'G) G

The initial value is chosen to be zg = Zg = (I - 1n,%1)/||/IL - 1n,x1||2, where 1y, «; is
the vector containing one-values on every entry. That choice for the initial condition z,
leads to a purely proper initial condition, i.e., zg = Il -z, while the improper component
(In, —II) - zg = 0 is equal to zero.

We need to determine the Gramians corresponding to the proper and improper states
of the system (4.48). For this purpose, we apply the methods described in [131, 133],
noting that the improper Gramians can be computed explicitly. In Figure 4.2, we depict
the decay of the Hankel singular values oy, 09, ... corresponding to the proper Gramians
Pow, and Qqpw, as described in (3.93) and (3.111), respectively. We truncate the
proper Hankel singular values smaller than o; - 1078 and truncate the improper Hankel
singular values equal to zero. The reduced-order model has the dimension R = R, + R,
with R, = 18 and R, = 2. Figure 4.3 shows the output behavior of the full-order model
(3.100) and of the reduced-order model (4.37) for an input function u(t) = sin(t)%e /2.
Additionally, the figure includes the output error and the corresponding error bound.
The actual error is below the estimated error for all time, and we observe that the error
bound is rather conservative. The error is sufficiently small, and the approximation
quality of the reduced-order systems is much better than the estimated one.

4.2.3.3 Example 3: an index-3 mechanical system

Now, we investigate an index-3 system that results from mechanical systems Figure 4.4,
which is of specific interest in this work. It is of the form
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Figure 4.3: Example 2 - Output responses and the corresponding errors.
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7
: my me |f—-c— My_q My, Z
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’ 7

Figure 4.4: Example 3 - Sketch of a mechanical example with one row of masses con-

nected with consecutive springs and one stiff connection between the first
and last mass.

d L., 0 0] [xi(t) 0 I, 0] [xi(?) 0 x1(0) X0
— 10 M 0| |x()] = |- K =D G| |x2(t)| + |B.| u(?), x2(0)| = [xo
g 0 ol |a@ GT 0 0| |A® 0 A(0) 0
x1 ()
Yo(t) = [xi()" xa(t)" AT M | x2(t) | ,

(4.49)

where M, D, K € R99, B, € R G € R4, and M € REs+9x(9+9)  The state
is given by x(t), x2(t) € R9, A(t) € R, the input by u(t) € R™ and the output by
yo(t) € R. We consider the index-3 system (4.49), which arises in the modeling of

165



4 Model order reduction for systems in non-standard form

constraint mechanical systems with matrices

M = diag(my, ..., my),

[dy + 6, —d,
—dy  dy+dy+ 6y —dy
_dg—Z dg—2 + dg—l + 69—1 _dg—l
i —d,_, dy1 + 0, |
-kl + K1 —k |
—k’l kl + kQ + Ko —k’g
K= .

—kg,Q kg,Q + ]ﬂg,1 + Rg—1 —kg,1
_kg—l kg—l + Iig_

G=[1,0...,0,-1" B,=[1,0,...,0 M=Iy.

The matrices are generated using the M-M.E.S.S. function msd ind3, see [114|, with
dimension g = 600. We choose

mlz'--:mgzl, ]{71:"':/{79,1:1.5, d1:: 97120.7,
Kl:...:/{g:Q’ 512-":6920.9.

The projection matrices (2.10) for this example were introduced in [91]. To compute
the Gramians, we follow the same procedure, as presented in [131, 133] modified to the
index-3 case. We assume zero-initial conditions.

Figure 4.5 depicts the proper Hankel singular values. We truncate those smaller than
o1-1078. Additionally, we remove the improper states corresponding to improper Hankel
singular values that are zero. The resulting reduced dimension is R = R, + R, with
R, =20 and R, = 1. The outputs of the full-order model (3.100) and the reduced-order
model (4.37) are described in Figure 4.6 for an input function u(t) = sin(2t)2e~*2. The
figure also shows the error between the outputs and the error bound using (4.46). We
observe that the output error, which is smaller than 1073 for all ¢ € [0, 10], is sufficiently
small and that the error bound is rather conservative.

4.3 Model order reduction for inhomogeneous
second-order ODE systems

In this section, we aim to reduce second-order systems of the structure presented in
(3.121) and (3.154). One possible approach is to transform these systems into systems
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Figure 4.5: Example 3 - Decay of proper Hankel singular values.
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Figure 4.6: Example 3 - Output responses and the corresponding errors.
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of first-order structure (3.5) and (3.31), and evaluate the behavior of these representa-
tions as shown in Section 4.1. However, reducing the first-order systems does not main-
tain the second-order structure, so the reduced first-order systems might be physically
meaningless. Also, a first-order system is generally not transferable into a second-order
representation. On the other hand, having a reduced system of second-order structure
allows us a meaningful physical interpretation and is therefore desired as described in
|111]. Hence, we introduce BT methods for inhomogeneous second-order systems with
linear and quadratic output equations.

First, in Section 4.3.1, the BT method for second-order systems is introduced, and
afterward, in Section 4.3.2, these methods are evaluated by applying them to some
numerical examples.

4.3.1 BT for inhomogeneous second-order ODE systems

BT for second-order systems was derived in [14, 112]| for systems (3.121) with linear
output equation and homogeneous initial conditions. In this subsection, we extend this
method to systems with inhomogeneous initial conditions and to systems with quadratic
output equations, i.e., we consider second-order systems (3.121) and (3.154). Therefore,
we use the different system representations and the respective tailored Gramians pre-
sented in Section 3.3 to construct reduced second-order models via BT.

We first use the multi-system approach in Section 4.3.1.1 to derive surrogate models
corresponding to the system (3.121) with a linear output equation. As described in Sec-
tion 3.3.2.1, applying the multi-system approach for the system (3.154) with a quadratic
output equation would lead to 9 subsystems, which makes this approach numerically
prohibitive. In Section 4.3.1.2, we utilize the extended-input approach to derive reduced
surrogate systems for both systems structures (3.121) and (3.154).

4.3.1.1 Multi-system approach for inhomogeneous second-order ODE systems

To reduce the second-order system (3.121) with a linear output equation while consid-
ering the initial conditions, we utilize the superposition properties of this system. Since
the input- and initial condition-to-output behavior is represented by the subsystems
(3.124), (3.125), and (3.126) as shown in Section 3.3.1.1, we reduce these subsystems
separately.

We aim to derive the reduced surrogate system

M, X, (t) + D, g% () + K, 5%, (t) = B, gu(t), x:(0) =0, %,(0)=0,

YL,r,B(t) = Cl,r,BXr(t>5<r(t), (4'50)

that approximated the input-to-output behavior of the homogeneous subsystem (3.124).
The subsystem (3.125) that corresponds to the position initial condition is approximated
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by the surrogate model

M, x, X (t) + Dy x, % (t) + K, x,x(t) =0, x:(0) = Xorx, X0, %:(0) =0,

4.51
Yirx, (t) = Cl,r,xoxr(t). ( )

Finally, the subsystem (3.126) corresponding to the velocity initial condition shall be
approximated by a reduced system of the structure

Mr,vokr(t) + Dr,voxr<t> + Kr,vgxr(t) = 07 Xr(o) = 07 Xr<0) - VO,r,V0V07

4.52
Yirv, (t) = Cl,r,vox(t)- ( )

We aim to find such subsystems that approximate the output y(¢) as

yu(t) = YL,r(t) = YL,r,B(t) + Yirxo (t) + Yirve (t).

Therefore, we generate the respectively reduced system matrices of the three subsystems
using projecting matrices V, ., T, . € R™"™ with r, < n, where the subscript * is equal
to 'B’, 'X,’, or 'V,’, so that

M,. =V MT,,, D, =V DT, K. =V KT,
Br,B = VEBB7 Cl,r,* - ClTr,*a XO,I‘ - VT XO: VO,I‘,VO = VT VO'

r,Xo r,Vo

We aim to apply the BT method for homogeneous systems from Algorithm 3 to gener-
ate these projecting matrices. However, two of the three subsystems have inhomogeneous
initial conditions. On the other hand, the Gramians and system energies summarized
in Table 3.8 have the same structure as for the homogeneous subsystem (3.124). Hence,
the BT method for homogeneous second-order systems from Algorithm 3 can be ap-
plied to the subsystems (3.124), (3.125), and (3.126) using the suitable Gramians. To
do so, we consider the controllability Gramian P, that is equal to Pg, Py, , or Py,,
and the observability Gramian Q, depending on the considered subsystem according
to Table 3.8. As shown in (3.140), (3.141), and (3.143), the states corresponding to
the large eigenvalues of the respective controllability Gramians P, and the observability
Gramian Q, span the most dominant controllability and observability subspaces while
those corresponding to small eigenvalues are neglectable. Hence, we balance the system
to derive P, = Q. and truncate the least important subspaces within the BT method.
We compute the respective SVD

by vT
T 1,% s
> MR* N [UL* U27*} { E2,*:| |:V;T,j
for P, = R,R! and Q, = SS™. Then, the projecting matrices are defined as

_1 _1
V,.=SU..% 2  and  T,.=R.V,,% 2.
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Algorithm 12 BT method for the second-order ODE system (3.121) with a linear
output using the multi-system approach.

Require: The original system (3.121), the reduced dimensions r,, where x ='B’, "X/,
’Vo’.
Ensure: The reduced systems (4.50), (4.51), and (4.52).
1: Compute factors of the Gramians P, ~ R, R} and Q, ~ SST with * ='B’, ’X,’, or
"V, according to Table 3.8.
2: Perform the SVD of STMR., and decompose as

.
STMR. = [U;. U,.] [ - EQ,J [

with 3, , € R™*",
3: Construct the projecting matrices

_1 _1
V., =SU..% 2 and T,, = R,V,.5, 2.

4: Determine the reduced matrices (4.3.1.1).

Using these bases, we derive the reduced surrogate systems (4.50), (4.51), and (4.52) with
the respective reduced matrices defined in (4.3.1.1). The detailed reduction procedure
for each subsystem is given in Algorithm 12.

To develop an a posteriori error bound for the respective output error, we use the
output error decomposition

||YL - }’L,rHLoo < ||YL,B - yL,r,BHLoo + ||YL,x0 - YL,r,XOHLoo + ||YL,V0 - YL,r,voHLoo (4-53)

and analyze the three error norms separately. For that, we make use of the first-order
matrices from (2.24) and the reduced first-order matrices

| 0 . 0 | o
£, ;:[0 M] A, {_K _DYJ, €:= [Cr. 0],

0 X x, 0 (4.54)
3r,B = B s ) ZO,r,xo = 0 ; ZU,r,VO = VO )

with % equal to 'B’, "X,’, or 'V’ .
To derive a bound for the first error component ||y,s — Yvrsllr., we define the
mappings

hg(t) := Cet AlgT1B and EB(t) = (‘anegr_vll?'A“BtS;éfBr?B, (4.55)
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so that we can rewrite the respective outputs as

~

Ven(t) = /0 ho(t — )u(r)dr and  yeea(t) = /0 Bt — 7)u(r)dr

These representations of y, 5 and y. s are used in the following lemma to derive an
upper bound of the respective L. -error.

Lemma 4.18:
Consider the asymptotically stable second-order system (3.124) with corresponding first-
order matrices as defined in (2.24), the reduced system (4.50) with corresponding reduced

first-order matrices as defined in (4.54), and the mappings hg, hg as defined in (4.55).
Then, the following bound holds

o
”yL,B - yLr,BHLoo < (/ ‘
0

Proof. We consider the 2-norm of the output error at time ¢t > 0 that is

ha(t) — HB(t)Hidt>é .. o

32000 = Siea(Oll, = | [ (balt =) = Bt~ 7)) uirlar

2

Applying the Cauchy-Schwarz inequality multiple times yields

HYL,B( — Yurs(t HQ /H s(t —7) ﬁ t_T> H

ot =) = Bate = )|t o

< ([ it —EB@—T)deTf (f Hu(r)H%dff

Hence, we can bound the L.,-norm of the output error as

= = (o o) ()’
< (/OOO ‘ hy (1) —EB(t)Hith )L, -

The bound presented in Lemma 4.18 includes the expression

/|

<

2

hy(t) — hy(t) hy(t) du,

id’f - /OOO s (6)[ = 2(vec(hn(t)), vec(ba (1)) + |
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The following lemma bounds the different components of this bound. Therefore, we
define the following reduced Gramian and the matrix

[e.9]
o e At -1 T o-T ATge It
Ps .—/ e E BB, & e BBl
0
_ o (4.56)
LA pto—1 T o-T AT e Tt
Pn ::/ e BBE LB g B, g€ ge BBl

0
respectively.
Lemma 4.19:

Consider the asymptotically stable second-order system (3.124), the reduced system
(4.50) with matrices (4.54), the corresponding controllability Gramian Py as defined in

(3.129), the matrix Py, and the reduced controllability Gramian P, g from (4.56). The
mappings hg and hg are as defined in (4.55). Then, the following equations hold

/ I (8) 2t = tr(€P,ET) / IBa(O)l2df = tr(ConPrnCly) . (4572)
0 0

/ " (vee(ha(£)), vee(hin (1)) d = tr(ePyel,). (4.57b)
0 O

Proof. We derive
/ [y ()| 2dt = / tr((‘Zes_lmﬁ_l33T8_T6AT8_Tt€T) dt = tr(€P,E")
0 0

what proves the first equation in (4.57a) while the second one is proven analogously. To
show equation (4.57b), we derive

/ (Vec(hB(t)),vec(lAlB(t)))dt:/ tr(G’e‘c’_lﬂtﬁflBBEBEJ;E@AEBSEE@EB) dt
0 0

— tr(€Pyel,).
0

From Lemma 4.18 and Lemma 4.19, we derive the following theorem, which provides a
bound of the Lo-error ||yLs — Yirsllio.-

Theorem 4.20:

Consider the asymptotically stable second-order system (3.124), the reduced system
(4.50) with matrices (4.54), the corresponding controllability Gramian Py as defined in
(3.129), the matrix Py, and the reduced controllability Gramian P, 5, from (4.56). The
L-error between the output y, g and the reduced output y, .y satisfies the following
bound

[¥im = YirwlE < (10(€PR€ET) = 20r(€PREL, ) + tr(€.pPrnCly) )l (4.58)
O
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4.3 Model order reduction for inhomogeneous second-order ODE systems

To derive similar bounds for the remaining error components in (4.53), we consider
the first-order controllability Gramians Py, from (3.133) and Py, from (3.136). Also,
we define the following reduced Gramians and matrices

Tk 7T % Y

e (4.59)
5’* = / egilmﬁflf*I‘T T AL E s
0

o0
-1 N 1 -T T -T
Tr,* = / eer»*A" tgr,* Fr,*FT E €Ar’*8r’* tdt

Tk 7 T%

with % equal to 'X,’, or 'Vi’, corresponding to the remaining reduced second-order sys-
tems (4.51) and (4.52) where

X 0
1_‘xo = |: 00} ) I‘r,xo = ZO,LXUa Fvo = {MV0:| , Fr,VU = gr,VUZOJ,VU'

Corollary 4.21:

Consider the asymptotically stable second-order system (3.121), the reduced systems
(4.50), (4.51), and (4.52) with matrices (4.54), the corresponding controllability Grami-
ans Py, Px,, and , Py, as defined in (3.129), (3.133), and (3.136), respectively, the
matrices @B, f]v’xo, and flv’vo, and the reduced controllability Gramians P, 5, P, x,, and
Py, from (4.56). The L-error between the output y, and the reduced output y, .
satisfies the following bound

Iy = yeel2. < <tr(efPB€T) — 2tr <€5’B€EB) + tr(er,B?r,Be;rI:B) ) [ul|7,
n <tr(€ﬂ’x0€1T) - Qtr(eixoeﬁxo) +t1(Crx, Prx, Crx, ) ) lIxoll3

+ (tr(€Py,€") —2t(€Py,€1,,) + tr(€ov,Prv, €Ly,) ) 03
(4.60)
¢

4.3.1.2 Extended-input approach for inhomogeneous second-order ODE
systems

In this paragraph, we reduce the second-order systems (3.121) and (3.154) using the
extended-input representation described in Section 3.2.1.2 and Section 3.2.2.2. To con-
sider the initial conditions within the reduction process, we utilize the extended input
matrix Wy, from (3.144).

For the system (3.121) with a linear output equation, we aim to derive a surrogate
system

M, %, (t) + D%, (t) + K.x,(t) = B,u(t), x:(0) = Xo,x0, *x(0) = Vo,1p,

Yir(t) = Crixi(t), (4.61)
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4 Model order reduction for systems in non-standard form

which leads to the output approximation y,(t) ~ y..(t). Analogously, for the system
(3.154) with a quadratic output equation, we aim to derive a surrogate model

M, x,(t) + D%, (t) + K;x.(t) = B,u(t), x:(0) = Xo,x0, *:(0) = Vo, 10,

T (4.62)
y:(t) = x:(t) Mll,rxr(t)v

with yo(t) = yqor(t). To derive the reduced system matrices, we determine projecting
matrices V., T, € R™" with » < n. Then, the reduced matrices are

M, = W/MT,, D,=W'DT,, K,=W!KT,, B,=W/'B, C,,=CT,
XO,r = W;FX0> VO,r = W?V07 Mll,r = TrTMllTr-

(4.63)

For systems (3.121) with a linear output equation, Table 3.9 summarizes the system
Gramians and respective energies. From those energies, it follows that states correspond-
ing to small eigenvalues of the respective controllability and observability Gramians
P, and Q... from (3.148) and (3.138), respectively, are negligible, while states corre-
sponding to large eigenvalues span the most dominant controllability and observability
subspaces.

As described in Table 3.10, the controllability and observability behavior of the sys-
tem (3.154) with a quadratic output equation is encoded by the corresponding second-
order controllability and observability Gramians P, and Qgq.., defined in (3.148)
and (3.158), respectively. The corresponding energy norms summarized in Table 3.10
show that states corresponding to large eigenvalues of the respective Gramians encode
the dominant controllability and observability spaces, while states corresponding to the
small eigenvalues are negligible.

It follows, that for both system classes, we truncate states corresponding to small
eigenvalues of the controllability Gramian P,,_ and of the observability Gramians Q; .,
and Qg w.,. Since these properties are similar to those for homogeneous systems with
a linear output equation, we can apply the BT method for second-order systems as in-
troduced in Algorithm 3. Again, we first balance the system to derive controllability
Gramians and observability Gramians that coincide and truncate the states correspond-
ing to the smallest eigenvalues of those Gramians, which results in Algorithm 13.

Error bound for systems with a linear output equation We develop an a posteriori
error bound for the reduced systems derived by Algorithm 13. Therefore, we utilize the
reduced first-order matrices

B o 1 [0 X, 0 B
Er '—lo M} A= [—Kr —Drl’ Weos = {Br 0 Mrvo,r]’ € =[Cu. 0]
(4.64)
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4.3 Model order reduction for inhomogeneous second-order ODE systems

Algorithm 13 BT method for the second-order ODE systems (3.121) and (3.154) with
a linear or quadratic output using the extended-input approach.

Require: The original system (3.121) or (3.154) and the order r.
Ensure: The reduced system (4.61) or (4.62).
1: Build the input matrix

[0 X, 0
Wao = [B 0 MVJ'

2: Compute factors of Gramians Py, ~ RRT from (3.148) and Q ~ SST, where Q is
equal to Q,, from (3.138) or Qqw,, from (3.158).
3: Perform the SVD of STMR, and decompose as

STMR = [U;, U, Fl ][V1 V)™,

>

with 3; € R™".
4: Construct the projection matrices

W, =SU;3; 2 and T, = RV, % °.

5. Construct reduced matrices (4.63).

and the reduced Gramian and matrix

so,r ~r

N 0 (4.65)
P, = / & METWL WL ETT E L,
0

(o)
—1 _ _ Te—-T
P ::/ & A“tﬁr 11/\750713/\7T & T tdt,

so SO, r —r

Applying the bounds from (4.60) while using the same bases for all subsystems yields
the following theorem.

Theorem 4.22:
Consider the asymptotically stable system (3.121) and the reduced surrogate system
(4.61). Also, consider the controllability Gramian P,,_ as defined in (3.149), the reduced

Gramian P,,_,, and the matrix P, from (4.65). Then, the error between the two
outputs is bounded by

ly — YL,rH?;oo
< (tr(€Py..€7) — 2t (P, €7 ) + tr(€Pr€T) ) (1ull s + Ixoll2 + Ivoll2)”

(4.66)
O
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4 Model order reduction for systems in non-standard form

PT’OOf SlIlCe iPWso - :PB + :PXO + :PVO, ‘j{)wso - :AI/)B + jl)xg ‘I’ ‘jsvo, aIld ?Wsml‘ - ?B,r +
Pxor + Pv,.r, the bounds from (4.60) can be bounded as stated in the theorem. O

Error bound for systems with a quadratic output equation To bound the error for
systems with a quadratic output equation that results from the approximation generated
by Algorithm 13, we consider the respective first-order representation with matrices from
(4.64),

0 0

M 0
e 0]

and M, = {M” O}

We apply the error bound from (4.24), which leads to the following theorem.

Theorem 4.23:
Consider the asymptotically stable system (3.154) and the reduced surrogate system
(4.63). Also, consider the controllability Gramian P,,_ as defined in (3.149), the reduced

Gramian P,,_,, and the matrix P, from (4.65). Then, the error between the two
outputs is bounded by

Iya = yarli. < (P MP M) = 200(Py, MP,, M)

+ tr(?ww,er?ww,er)> (IIxollz + llollz + [lullz,)*. (4.67)
O

Proof. Applying the error bound from (4.24) yields

o = Yarlee < > (6(@MPM) - 200 (BIMP.M,)

#,0€{"B’,Xo’,'Vo'}

(P ML) ) [, @,

for the controllability Gramians Pp, Px,, and , Py, as defined in (3.129), (3.133), and
(3.136), respectively, the matrices Py, Px,, and Py, and the reduced controllability
Gramians P, 5, P, x,, and P, y, from (4.56). Also, the different inputs are ug = u,

ux, = Xo, and uy, = 9. The statement follows since Py = Py + Px, + Pv,, Pw., =

:PB + :PXO + :PVO, aIld ?Wsoﬂ' - ‘J)BJ' + :mer + :PVOJ' hO].dS D

Remark 4.24:
Since the transfer function describing the second-order input- and initial condition-to-
output behavior is equal to

G(s) = C1A(s) [(D + sM) 1] W,,
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4.3 Model order reduction for inhomogeneous second-order ODE systems

the IRKA method as presented in [140] is not applicable. Also, the IRKA method from
[140] only considers systems with homogeneous initial conditions. Consequently, this
method only applies to specific cases of our setting. Hence, to apply the IRKA method
we refer to the first-order IRKA method in Section 4.1.2, which can be applied to the
system after transforming it into first-order form. O

4.3.2 Numerical results

In this section, we illustrate the BT method for second-order systems using two different
examples. The first example is a vibrational model of a building, and the second one
is a mass-spring-damper system. Both examples are considered with a linear and with
a quadratic output equation. We will refer to the original systems (3.121) and (3.154)
as FOM, in the following, and to the reduced systems generated by standard BT that
considers homogeneous systems by ROM_HOM. The reduced system approximation that
is obtained by applying the multi-system approach from Algorithm 12 is referred to
as ROM_MULT and the reduced system that is generated by applying Algorithm 13 as
ROM_EXT.

The computations were done on a computer with 4 Intel® Core™15-4690 CPUs running
at 3.5 GHz. The experiments use Matlab R2021a.

4.3.2.1 Example 4: Building example

We consider the building example from [7, page 17] with dimensions n = 24, m = 1.
The data are available in [98].

Example 4a: Linear output equation As output matrices, we use
Ci=[1 0 ... 0] e R

For the projecting matrix V, that results from the BT procedure for the homogeneous
second-order system (3.121), we consider the singular value decomposition UXVT = V.
Assume that rank(V,) = . The position and velocity initial condition are the (¢ + 1)-st
column of U, i.e.,

XOZXOZVOZXOZU[Z,K‘i‘l}.

In this example, the reduced dimension is set to r = 10 within the multi-system and
the extended-input approach. Figure 4.7a shows the output behavior of the original
system and the reduced ones for an input u(t) = 0.2 - e~*. We observe that the original
output behavior, depicted in green, is well approximated by the separately reduced
subsystems (ROM_MULT), which is depicted by the blue dashed line. The reduced system
ROM_EXT using the extended-input approach (depicted by the orange-colored dashed line)
provides a proper approximation of the original output as well. Additionally, we see that
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L - (' [—FOM | 1071
0.8t | — ROM_HOM 10-2
0.6 F --- ROM_MULT
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; 0.2 . 5 10~4 Error ROM_MULT ||
= 0 TPy A —— = 5 [ - Error ROM_EXT o
o —0.2 C 1077 ey “|--- Error ROM_HOM 4
: bl +]-+- Ly-norm ROM_MULT
—0.4+ 1()76 : i +L_)-ngrnl ROM_EXT ||
—0.61 — Lo-norm ROM_HOM ]
10~ — Estimate ROM_MULT |4
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time time
(a) Output (b) Error

Figure 4.7: Example 4a - Output responses and the corresponding errors.

the output of the reduced system ROM_HOM, depicted in red, fails in approximating the
original system’s transient behavior.

Figure 4.7b depicts the output errors. Additionally, we evaluate the actual Ls-norm
error. Therefore, we plot the integral

\/ /O ly(7) = yea(7)ll3d7 (4.68)

that converges to the Lo-norm of the error. The light blue line with markers depicts the
error of the separately reduced system ROM_MULT and the dashed, brown colored line the
error of the reduced system ROM_EXT using the combined Gramian. The reduced system
ROM_HOM leads to the error depicted by the dashed, orange-colored line. We observe
that the multi-system approach and the extended input approach lead to significantly
smaller errors than the error corresponding to the reduced system ROM_HOM. The dark
blue, dashed line with markers is the integral (4.68) converging to the actual Lo-norm
error of the separately reduced system ROM_MULT. The error bound from (4.60) provides a
value of 1.99-1072 (depicted by the black line). This error bound provides a proper upper
bound of the actual Lo-norm error. The green line with markers provides the integral
(4.68) corresponding to the extended-input approach ROM_EXT and its error estimation
4.5-10~* from (4.66) is depicted by the dashed, black line. The red line shows the integral
(4.68) of the reduced system ROM_HOM. It confirms again that not considering the initial
conditions within the reduction method leads to unsatisfactory approximations for this
example.

Example 4b: Quadratic output equation Now, we consider the building example
with a quadratic output equation. For that, we choose the output matrix to be

My =CiCy, Ci=[1 ... 1],
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Figure 4.8: Example 4b - Output responses and the corresponding errors.

and the position and velocity initial conditions are
Xo=Vo=c¢e,

so that xo = %9 = 0.0137 - e,, while ||B||>» = 0.0137.

We reduce the system (3.154) to obtain a surrogate system of the form (4.62) with
matrices of the reduced dimension » = 10. Figure 4.8a shows the output behavior of
the original system and the reduced ones for an input u(t) = 0.2 - e7*. We observe
that the output behavior of the original system depicted in green is well-approximated
by the reduced outputs that are derived using the extended-input approach and that is
depicted in blue (ROM_EXT).

Figure 4.8b depicts the errors and their Lo-norms. The dashed, brown colored line
shows the error of the reduced system ROM_EXT using the extended-input approach.
Additionally, we evaluate the actual Lo-norm error. Therefore, we plot the integral

\/ / 1¥a(r) — Yar(r)[l2dr (4.69)

that converges to the Lo-norm of the error. The error bound from (4.67) provides a
value of 1.5- 1073 (depicted by the black line). This error bound provides a conservative
upper bound of the actual Lo-norm error. The green line with markers provides the
integral (4.69) corresponding to the reduced system ROM_EXT.

4.3.2.2 Example 5: Mass-spring-damper example

We consider the mass-spring-damper model presented in [137] describing the structure
depicted in Figure 4.9. A more detailed background can be found in [78].
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4 Model order reduction for systems in non-standard form

my |—--—Mn-1

Figure 4.9: Example 5 - Sketch of a mechanical example with one row of masses con-
nected with consecutive springs.

We choose the model of dimensions n = 2000, m = p = 1. The input is the external
forcing on the n-th mass, and the initial conditions are set to be the last and the first
unit vectors

XOZXO = €p, VQZXO =eq.

Example 5a: Linear output equation We consider an output that observes the dis-
placement of the n-th mass, i.e.,

C,=[0 0 ... 1].

In this example, we truncate the systems with a tolerance of 1074, i.e., all Hankel singular
values smaller than 107* - oy are neglected. That way, we obtain reduced systems (4.50),
(4.51), and (4.52) of dimensions 147, 180, 98, respectively, resulting from the multi-
system method. Using the extended-input approach, we obtain a surrogate model (4.61)
of dimension 157.

Figure 4.10a shows the output behavior of the systems for the input u(t) = 0.2 -e™".
The output behavior of the original system is depicted in green. The blue, dashed
line displays the output composed by the separately reduced systems ROM_MULT and
the orange-colored, dashed line the reduced system ROM_EXT using the extended-input
approach. The reduced output resulting from the reduced system ROM_HOM is depicted
in red. We observe that all outputs approximate the original system behavior. However,
ROM_HOM shows oscillations of slightly higher magnitude than the FOM for some timings.

The output errors and their Lo-norms are illustrated in Figure 4.10b. The light blue
line with markers, the brown colored dashed line, and the orange colored dashed line show
the error of the separately reduced outputs, the output corresponding to the extended-
input approach and the output resulting from the reduced system ROM_HOM, respectively.
We observe again that the separately reduced system ROM_MULT and the reduced system
ROM_EXT using the extended-input approach leads to lower errors. Additionally, we
evaluate the actual Ly-norm error and plot the integral (4.68), which converges to the
Lo-norm of the error. The dark blue, dashed line with markers shows the integral
(4.68) for the separately reduced system ROM_MULT and the green one the integral for the
reduced system ROM_EXT using the combined Gramian. The error bounds from (4.60)
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Figure 4.10: Example 5a - Output responses and the corresponding errors.

and (4.66) provide Ly-error estimator values of 7.5490 - 1072 and 3.1922 - 1072 for this
example, respectively. The error bounds are depicted by the black line and the black
dashed line in Figure 4.10b. We observe that the error bounds are rather conservative.
The integral (4.68) of the reduced system ROM_HOM is depicted in red. It converges to an
Lo-error larger than the errors corresponding to the first two reduction methods.

Example 5b: quadratic output equation We consider the mechanical system with
a quadratic output equation where the output matrix is

cTc, 0

M:[o 0

}, C,=[10 ... 0].

We truncate the system with a tolerance of 1074, i.e., all Hankel singular values smaller
than 10~ o, are neglected. That way, we have a reduced system of dimension 213 using
the extended-input approach.

Figure 4.11a shows the output behavior of the systems for the input u(¢) = 0.2 -e™".
The output behavior of the original system is depicted in green, and the orange-colored
dashed line describes the reduced system ROM_EXT using the extended-input approach.
We observe that the output approximates the original system behavior well.

The output errors and their Lo-norms are illustrated in Figure 4.10b. The brown-
colored dashed line shows the output error corresponding to the extended-input ap-
proach. We observe again that the reduced system ROM_EXT leads to small errors. Also,
we evaluate the actual Lo-norm error and plot the integral (4.69) that converges to the
Ly-norm of the error. The green line shows the integral for the reduced system ROM_EXT
using the combined Gramian. The error bound from (4.67) provides an Lo error estima-
tion value 1.15-1073. The black dashed line depicts this bound. We observe that the
error bound is conservative.
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Figure 4.11: Example 5b - Output responses and the corresponding errors.

Summary of reduction methods

In this chapter, we have introduced the BT method and the IRKA method for different
system structures. Therefore, we have used the multi-system approach following the
ideas introduced in [15] and the extended-input approach initially derived in [66] for
first-order ODE systems with linear output equations. Our contributions in this chapter
include the introduction of a BT method for inhomogeneous first-order ODE systems
with quadratic output equations and the respective error bounds in Section 4.1.1. More-
over, we have derived BT methods for inhomogeneous first-order DAE systems with
linear and quadratic output equations, where we again provide a tailored error bound.
We applied these methods to some numerical examples to illustrate their effectiveness.
Finally, in Section 4.3.1, we have derived a BT approach for inhomogeneous second-
order ODE systems with linear and quadratic output equations, including suitable error
bounds that maintain the second-order structure of the respective systems. Again, we
have applied the respective methods to some numerical examples.

Since not every approach applies to all system structures, in Table 4.1, we summarize
the methods available for the different system types.
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BT IRKA
First-order ODE systems Multi-system approach | v/ v
with linear output Extend-input approach | v/ v
First-order ODE systems Multi-system approach | v/ —
with quadratic output Extend-input approach | v/ —
First-order DAE systems Multi-system approach | v/ v
with linear output Extend-input approach | v/ v
First-order DAE systems Multi-system approach | — —
with quadratic output Extend-input approach | v/ —
Second-order ODE systems | Multi-system approach | v/ —
with linear output Extend-input approach | v/ —
Second-order ODE systems | Multi-system approach | — —
with quadratic output Extend-input approach | v/ —

Table 4.1: Available for reduction method for different system structures.
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As described in Chapter 1, this work aims to optimize external dampers in vibrational
systems concerning the system response. However, computing the system response in-
cludes the computation of the respective system Gramians and, hence, the solution
of certain Lyapunov equations. Solving these Lyapunov equations for several external
damper configurations within an optimization process leads to high computational costs,
especially when the dimensions are too large. Therefore, we aim to reduce the respective
Lyapunov equations for all parameters considered within the optimization process. That
way, the Lyapunov equations are approximately solvable in a reasonable time.

To describe the system dynamics of a vibrational system, we can consider the first-
order parameter-dependent systems (1.5) and (1.6) with matrices as defined in (1.7).
Since it is often advantageous to maintain the second-order system structure to generate
physically meaningful results, we also consider the second-order parameter-dependent
systems (1.3) and (1.4).

To avoid the high computational costs during the optimization process, in this chapter,
the reduced basis method (RBM) is applied to accelerate the computation of the differ-
ent Gramians. The RBM is a well-established method to reduce parameter-dependent
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5 Reduced basis method

partial differential equations, see [64, 68, 109, 150, 152]. Moreover, the RBM was applied
to Riccatti equations, see [119] and to Lyapunov equations in [126]. In [108], the authors
derive an RBM method for projected Lyapunov equations corresponding to parametric
first-order DAE systems. However, we do not consider this method in this work as this
would go beyond the scope of this thesis.

To accelerate the solving of the Lyapunov equations for different external dampers
represented by the parameters (c,g) € D, we utilize the RBM from [126] where the
parametric Lyapunov equations are solved only for a few sampling parameters. Then,
based on these solutions, a reduced subspace in which the Lyapunov equation solutions
for all (¢, g) € D approximately live is constructed. The latter steps form the computa-
tionally expensive offiine phase. Using the reduced basis representation, the Lyapunov
equations for all (¢,g) € D can be solved much more efficiently in the online phase.
We also utilize Krylov spaces to determine the corresponding bases, which reduce the
respective Lyapunov equations as introduced in [140] for second-order systems.

A crucial question in the offline phase is the choice of the sample parameters. Usu-
ally, a grid of test parameters is selected. For this grid, the error is quantified using
an a posteriori error bound. Then, new samples are taken at the parameters where the
error bound gives the largest error. However, for the type of problems that are con-
sidered in this work, which are mechanical systems with small internal damping Dy,
the standard error bounds overestimate so significantly that the methods are often not
converging. Hence, one of the main contributions of this chapter is to derive several er-
ror approximations that we use within the different RBM applications. Also, we derive
some decoupling of parameter-independent and parameter-dependent components of the
controllability space and, hence, of the solution spaces of the Lyapunov equation.

To simplify the computations and the numerical effort, we describe briefly an advan-
tageous matrix transformation. As shown in [146, 147], there exists a transformation ®,
called modal matriz, such that

STMP =1, TK® = Q° = diag (wi,...,w]) .

n

The values wy, .. .,w, are the eigenvalues of the undamped system and are called eigen-
frequencies. Moreover, it holds that ®TD;,® = 2. That means that ® diagonalizes
the internal damping D;,. Hence, this damping is called modal damping. The trans-
formed mass matrix is the identity matrix, the transformed stiffness and internal damp-
ing matrix are diagonal matrices, and the external damping matrix is written using the
low-rank factors F(c) := ®'F(c). Hence, with x(¢) := ® 'x(¢) and B := ®TB, the
state equation of the second-order systems (1.3) and (1.4) is equivalent to

X(t) + D(c, g)X(t) + Q*X(t) = Bu(t) (5.1)
where D(c, g) = 20 + F(¢)G(g9)F(¢)T. The respective output equations are given as
yL(t) = CiX(t) + CoX(1)
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5.1 Reduced basis method for first-order systems

with C; := C,;® and C, := Co®, or

5 B ) e sonsf

yQ(t)Z%[i(”T (1)) M, M| [X(t)

with My, := ®TM;®, My := ®TM,®, and My, := ®TMp,®.

In the following, we consider first-order and second-order systems separately as their
controllability spaces differ and, hence, individual investigations are performed. There-
fore, in Section 5.1, Lyapunov equations resulting from first-order ODE systems are
considered. Then, we study the Lyapunov equations that result from second-order ODE
systems in Section 5.2. For both sections, we follow the same procedure. First, we
repeat the RBM with an offline and an online phase and derive an error approximation
suitable for the structure of the considered vibrational systems. Afterwards, we derive
some decoupling of the controllability spaces into parameter-dependent and parameter-
independent components, which is used to derive some offline-online schemes and new
error approximations. We want to mention that this method can also be applied and
extended for the case of DAEs as presented in [108]. However, this is out of the scope of
this thesis. Note that in this chapter, we introduce several algorithms that are applied
later in Chapter 6.

5.1 Reduced basis method for first-order systems

This section aims to simplify the computation of the controllability Gramians
P(c,g) = / et AleotgIBRTE T Al E gy (5.2)
0

for several parameters (¢, g) € D by solving the Lyapunov equations
EP(c, g)A(c,9)" + AP(c,9)€" = —BB". (5.3)

Therefore, we apply the RBM to build a basis V, that approximately spans the solution
space of the Lyapunov equation (5.3) for all parameters (c,g) € D. This basis is then
used to build the approximations of the controllability Gramians P(c, g) as

P(c,9) = P(c, g) = ViPil(c, )V, (5.4)

for a suitable matrix P.(c,g) € REV*EV in the online phase.

This section is structured as follows. We first repeat the offline-online approach,
presented in [126], and introduce an error bound for this method in Section 5.1.1. In
Section 5.1.2, we derive a decoupling strategy for the controllability space. This decou-
pling is used in Section 5.1.3 to derive an accelerated offline-online scheme. Moreover,
we derive an error indicator independent of the parameter set D.
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5 Reduced basis method

5.1.1 Offline-online RBM for first-order systems

We consider the RBM as presented in [126], which follows the paradigm of decomposing
the procedure into an offline and online phase. In the offline phase, we derive subspaces,
which approximate the solution spaces V(c, g) of the Lyapunov equations in (5.3). There-
fore, we compute a basis V, € RV*RV that spans a subspace V, that approximates the
original solution space V(c, g), which approximately coincides with the controllability
space of the corresponding systems (1.5) and (1.6), for all parameters (c,g) € D. This
phase is time-consuming but needs to be performed only once.

In the online phase, the Gramians are then approximated according to (5.4) for any
parameter (c,g) € D. Due to the reduced dimension of the basis V, obtained in the
offline phase, this step is fast and can be performed repeatedly for all required parame-
ters.

To describe the two phases in more detail, we need a criterion to evaluate the quality of
the reduced space V,. Thus, we assume that we have an error approximation A(c, g) that
provides a criterion to determine how well the solution space for a parameter (c, g) € D
is approximated by the current basis V,. The error approximations are described later
in this section. The following offline-online scheme was presented in [126]|, while the
corresponding error approximation provides a novelty in this work.

Offline phase We aim to find a space 'V, and the corresponding basis V, that is built
as

V, = orth ([Zv(cl,gl) . Zv(ch,gNl)]) e RVxRv (5.5)

containing the matrices Zv (cg, gx) for (¢, gx) € D, k=1,..., Ny, where Zv(c, g) spans
an approximation of the solution space V(c,g) := span{P(c,g)} for the parameter
(¢,9) € D. We can approximate the space V(c, g) by a basis Zvy(c, g) that results from
the low-rank factor Zpr(c, g) of P(c,g), i.e.,

Zv(c, g) := Zpr(c, 9) with P(c,g) ~ Zpr(c, 9)Zpr(c,g)". (5.6)

Since the controllability space of the systems (1.5) and (1.6) are spanned by the Gramian
P(c, g), the controllability space and the solution space V(c, g) of the Lyapunov equation
in (5.3) coincide. Hence, alternatively, the space V(c, g) can be approximated by a basis
Z1rka(c, g) that is given by

Zv(c,9) = Zrkalc,g9) = [(s:€ — A(c,9))'Bby ... (sn€—Alc,g))'Bby] (5.7)

for well chosen interpolation points sq,...,sy and tangential directions by,..., by as
described in (2.56). The RBM in [126] only considers the bases Zpr(c, g) from (5.6).
However, in this work, we use both options, Zpr(c,g) and Zrka(c, g), to approximate
the controllability space and denote the corresponding basis as Zv(c, g).
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5.1 Reduced basis method for first-order systems

Since we can not evaluate an infinite number of parameters in D, we define a test-
parameter set

®Test,c X ®Test,g = ®Test cD-= ®c X ®97

which is finite and densely distributed in D. For this test-parameter set D, we
will derive a space V, that approximates the solution space of the Lyapunov equation
(5.3). Additionally, this test-parameter set is used to evaluate the quality of the reduced
solution space V.. Since the test-parameter set Dy is assumed to be well chosen in
D, we expect that the space V, approximates the solution space for all parameters in
D if it does for all parameters in Deg;.

We start constructing a basis V, that spans the reduced space 'V, by picking one test-
parameter (¢o, go) € Drest. For this parameter (o, go), we compute a basis Zv(co, go)
as described in (5.6) or (5.7), which yields the first orthonormal basis

Vr = Orth(ZV(C[)a gO))

Remark 5.1 describes a detailed implementation of the basis orthonormalization. After
forming our first basis, we evaluate the quality of the Gramian approximation for all
remaining parameters in Dr. To this aim, we compute the error approximation A(c, g)
for all these parameters (¢, g) € Dregy and define the largest one as

A™ = A(er, g1) = max  A(e,g)

(Cv Q)GQTcst

where (c1, g1) is the parameter pair that leads to the largest error approximation value.
If A™* is larger than a given tolerance tol, we know that the current basis does not
approximate the solution space well enough for at least one pair of parameters (¢, g1).
Hence, we need to enlarge the basis V,. Therefore, we enrich the basis V. by the
controllability space approximation Zv(c1, g1) for the parameters (c¢;, g1) that result
in this largest error approximation. We compute the basis Zv(c1, ¢g1) that is equal to
ZvBT(Cl, 91) or Z’IRKA(Cla 91) and set

V, = orth([V, Zv(c, a1)]).

We continue this procedure until the maximal error approximation A™* is smaller than
the tolerance tol. That means that for all parameters (¢, g) € Dreg, the solution space
is well approximated by V. which is spanned by the basis V.. If Dy is chosen well in
D, also, the solution space of the remaining parameters in D is approximated by V..

Remark 5.1:

The orthonormalization operator orth(Zy) is implemented in such a way that basis
vectors of Zy corresponding to singular values close to zero are truncated and not
included in the resulting basis. Additionally, we add a maximum for the basis dimension
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5 Reduced basis method

Npmax. To implement this, we compute a singular value decomposition Zy = UXXT
with ¥ = diag (0y,...,0,,). We set

orth(Zyv) :=U[:, 1:q], with toly-o; > 0k1, ¢q=min{k, Nyax},

where toly is a given tolerance and k is the smallest index that satisfies toly - o7 > op4;.
That way, we only use the most dominant columns of Zvy to form the basis. O

Online phase After we have computed a basis V, that spans a space 'V, approximating
the solution space of the Lyapunov equation (5.3) in the offline phase, we derive a reduced
Lyapunov equation that is fast solvable and approximates the solution of (5.3) for all
parameters (¢, g) € D. To do so, we define the reduced matrices as

€ :=VIEV,,  Aleg):=VIAlcgV., B, :=VI'B. (5.8)

Then for all parameters (c,g) € D we can compute an approximation of the solution
P(c,g) as described in (5.4) where P,(c,g) is the solution of the reduced Lyapunov
equation

Srfpr(c, g)‘A’r(Ca g)T + ‘Ar<c7 g)g)r(c> g)g;r = _BrBrTJ (59)

which has dimension r corresponding to the number of vectors in V..

Error approximation For the reduced basis method presented above, error approxi-
mations are needed to evaluate the quality of the resulting basis V.. We can estimate
different quantities to obtain error approximations. One option is to evaluate the norm
of the error in the solution of the Lyapunov equation (5.3), that is |&(c, g)||. The re-

spective error is defined as €(c, g) := P(c, g) — P(c, g) where the approximated solution

P(c,g) is as described in (5.4). There exist various upper bounds of the error norm
II€(c, g)|| that are based on the residual

NR(c,g) .= BB + Alc, g)i’(c, 9)E" + 85)(0, g)A(c,g)". (5.10)

Examples are described in |63, 120, 126]. Often, these bounds are rather conservative
and might not apply to these examples. Hence, we aim to find another approximation
of the error norm ||&(c, g)]|.

To do so, we consider the error equation

Alc,g)€(c,g)&T + E&(c, 9)A(c, 9)T = =M (c, g) (5.11)

and observe, that the error &(c,g) is the solution of this error equation for JR(c, g) as
defined in (5.10). Hence, we can apply a second RBM to approximate the error space

190



5.1 Reduced basis method for first-order systems

spanned by &(c,g) and to determine an error approximation &(c,g) with €(c,g) ~
é(c, g). Therefore, we derive a basis V,, that spans an approximation of the solution
space of the error equation in (5.11). To avoid confusion, we denote the second RBM
that determines the basis for the error approximation in the following as EE-RBM.

We can write the controllability Gramian that is the solution of the Lyapunov equation
(5.3) as P(c,g) = VX(c,g)VT where V is a basis that spans the (full-order) solution
space of the Lyapunov equation (5.3) for all parameters (¢, g) € D. The respective error
is then given as

€<Cy g) = V:X:(C: g)VT - Vr?r(ca g)VrTv

and, hence, we obtain that the error lies in the space spanned by the basis Vg =
orth([V, V]) for all parameters. Since V, is computed within the first RBM, the
remaining task is to determine the basis V. However, the basis V is not available.
Otherwise, we would have a basis that spans the solution space of the Lyapunov equation
(5.3) for all parameters without an error. Hence, we apply the second EE-RBM and
derive an approximation of Vg called V.

Because of the structure of the basis Vg, adding V, and Zvy(c®, ¢°) to the basis is
equivalent to adding a factor Ze(c®, g¢) with E(c®, ¢°) ~ Ze(c®, g°)Ze(c®, ¢°)" to the
basis V. This computation is of a more advantageous structure because of the low-
rank right-hand side BB™ in (5.3) compared to 98(c, g) in (5.11). Hence, in every step
of EE-RBM, we compute a basis Zv(c®, ¢°) in a parameter pair (c°, ¢°) to enrich the
basis of the error equation (5.11) as Vg, = orth([Verr V. Zv(ce,ge)}) and therefore
build a basis that approximates V.

Using the basis V., we determine the approximation

€(c,9) = Veu€(c,g)VE (5.12)

err

where €(c, g) solves the reduced error equation

EVerr@(c, g)VT Alc, g)TVer]r

err

= -VINR(C ¢)Ver. (5.13)

err

VI A(¢, ) Ver€(c, g)VE ETV o + VT

err err err

which results in the error approximation

Ac(c,g) =€, 9)llr = [Ver®(c, ) VI |[r = [ €(c, 9)]p- (5.14)

err

Using this procedure, we derive an error approximation é(c, g) that is fast computable
if the basis dimension of V,, is sufficiently small.

Both, RBM and EE-RBM, run in parallel. The first parameters (cy, go) and (cf, g) are
chosen arbitrarily in Dregt with (co, go) # (c§, g5). We compute the basis V, as described
above and, in addition, determine Zrka (c§, g5) or Zpr(cf, g5) to obtain Ly (cf, g5) such
that our first error space basis is given as

Ve = orth ([V. Zv(c§, g5)]) = orth ([Zv(co, 90) Zv(c§, g5)]) -
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5 Reduced basis method

As described above, the consecutive parameter (¢, g1) is the one that leads to the largest
error approximation A(c, g), and we use the corresponding controllability space basis
Zv(c1, g1) to enrich the basis V,. The consecutive parameter (¢§, ¢7) is chosen to be the
one that results in the largest residual of the error equation in the Frobenius norm, i.e.,
the parameters (c§, ¢5) that lead to the largest value ||9R°(c, g)||r with

e A il(cv ) ?2(07 )
m (07 g) o R’?Q(Cu gg)T Rg2(ca i)
(

= Alc,9)P(c, 9)E" + EP(c, 9)A(c, g)"
+ Ale, g)QNS(c, g)&T + SQNS(C, g)A(c, gt + BBT,

(5.15)

We compute Zv(cf, g7) equal to Zrka(cs, ¢5) or Zpr(c], ¢5) and generate the next error
equation basis

Verr = orth ([Verr Vr Z’V(Cﬁa g(le)}) = orth ([Verr ZV(Cla gl) Z’V(C‘ia g%)]) .

Again, we continue this procedure until the largest error approximation is smaller than a
given tolerance tol. The first RBM combined with the EE-RBM results in Algorithm 14.

We observe that the first steps of the RBM, together with the EE-RBM, lead to rough
error approximations since the basis Vg, includes only a few solutions. However, the
larger and therefore better the basis V, is, the more detailed is V., and we know that
the stopping criterion A™** > tol is meaningful.

Remark 5.2:

It turns out that adding Zv (¢, 0), where 0 is the zero vector of the appropriate dimension,
to the basis V, leads to a more robust basis. Thus, we add Zv(c,0) corresponding to
the undamped system to our basis V.. Since this basis is independent of the damping
values, we calculate it beforehand and do not include this calculation in our procedure.

Remark 5.3:
In practice, we compute R, (c, g) more efficiently. Therefore, we make use of the trace

formulation of the Frobenius norm and utilize the low-rank representations é(c, g) =
Ver€(c,g) VLI and P(c,g) = V.P.(c,g) VI, and the trace properties to obtain the fast

err
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5.1 Reduced basis method for first-order systems

Algorithm 14 Offline phase of the first-order RBM.

Input: € € RVN A : D — RV*N asymptotically stable, B € RV*™ test-parameter
set D, tolerance tol.
Output: Orthonormal bases V., V..

1:
2:

Choose any (607 gO): (687 98) € ®Test Wlth <007 90) 7& (687 g(e))

Determine a basis Zv (co, go) either as Zpr(co, go) from (5.6) or Zirka (o, go) from
(5.7).

Set M := {(co, go)}-

Set Vr = Orth(ZV(C(), go))

5: Determine a basis Zv(c§, g§) either as Zpr(g§, ¢§) from (5.6) or Zrka(c, g§) from

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:

(5.7).
Set Vi, := orth([Zv (co, go) Zv (g, §)])-
Set k:=1.
Determine (ci, g1) = argmax, gen,,. . \mAe(c, 9)-
Set AF™ 1= Ag(cr, g1).
Determine (cf, g7) := argmax, ,cn.. il (c, 9)|[F-
while Ag** > tol do
Determine a basis Zv(cg, gr) either as Zpr(ck, gr) from (5.6) or Zrka(ck, k)
from (5.7).
Set M := MU {(ck, gx) }-
Set V, := orth([Vr Zv(ck,gk)]).
Determine a basis Zv(c§, g;) either as Zpr(c}, gt) from (5.6) or Zrka(cs, gt)
from (5.7).
Set Vg 1= orth([Ve]rr Zv (e, gr) Zv(cs, gz)])
Determine (cxi1, gry1) = argmax. gen,. . \mAe(c, 9)-
Set AG™ = Ae(Chr1s Grt1)-
Determine (¢, g5.1) 1= argmax . e, oo 98°(c. ) -
Set k:=k+ 1.
end while
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computable residual representation

Hmr(cv g) H% =2tr <VT ST‘A(C> g)Verr@(Ca g)VT ST‘A(Ca g)Verr@(ca 9))

err err

+2tr(VS €T A(c, 9) ViPi(c, g) VL ETA(e, 9) V. Po(c, g))
2 (VEA(e, )T A(e, ) Vi Ps (e, ) VIETEV, P, c, )
+4tr(VIETA(c, g) Ve €(c, g) VE ETA(c, g) V. P.(c, g)

err

+ 2tr (VT Ale, )" Alc, 9) Ve €(c, g)VE STSVQH@(C, g))

+4tr (V?STEV‘SH@(C, 9)VE Ale,9)T Alc, ) V. P.(c, g)>
+4tr <BT.A(C, 9)Verr€(c, g)VE 8T3>

+4tr(B A, g)ViPr(c,g) V] E'B)
+tr(B"BB"B). 0

5.1.2 Decoupling of the controllability space of first-order
systems

From Theorem 2.22 and Theorem 2.23 it follows that the controllability space of the
first-order systems (1.5) and (1.6) is spanned by

V(c,g) = span {(s:€ — Alc, 9)) " Bby,.. (s & — Alc,9)) " Bby, } (5.16)

if the interpolation points s; and the tangential directions b, are chosen correctly (e.g.,
the poles of the system) for j =1,..., M.

We consider the first-order representation of the mechanical systems with matrices as
in (1.7) so that for every interpolation point s;, j = 1,..., M we get

(s,€ = Alc, 9)) = T(s;) + F()G(g9)F ()"
with

D(s;) = [Slj{l st:LIDmJ’ Fle) = [F(()c)]' (5.17)

This representation is used to decouple parameter-independent from parameter-dependent
components as shown in the following lemma.
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Lemma 5.4:
Consider the controllability space V(c, g) as defined in (5.16) with interpolation points

S1,...,5y and tangential directions l~)1, . ,BM that spans the controllability space of
systems (1.5) and (1.6) with matrices (1.7). Then, this space fulfills

V(c,9) C Vs UVs(0),

with spaces

Vs :=span {T'(s1) " Bby,...,T(sy) 'Bbu}, (5.18)
Vi (c) := span {T'(mq) "' F(o)fy, ..., T(ma) " Fle)fu } (5.19)
for interpolation points sy, ..., Sy, M, - - ., Mag and tangential directions by, ..., by,
fi, ..., fy, that are chosen in such a way, that
Vs =span {T'(s)'B| s € R} and Vs (c) = span {T'(m) "' F(c)] m € R}
for T'(s) as defined in (5.17). O

Proof. We apply the Sherman-Morrison-Woodbury formula for every entry in (5.16) to
obtain

(3,€ — A(c,9)) ' Bb; = (T(s)) + F(c)G(9)F(c)")
= T'(5;)" ' Bb;
~T(3) ' (c) (Glg) ™ + F()'T(E) 'F(0) " F(o)'T(5)) ' Bby.

' Bb

J

Hence, the j-th subspace span {(§j8 — Ale, 9) ! 3Ej} of V(e, g) satisfies

span { (5,€ — A(c. g)” Bb, | C span {T(5,)"'Bb,, T(,) ' F ()}
where ;(c) := (G(g)™" + F()"T(5;) ' F(c)) "
that

F(c)"I'(5,) "' Bb,. From that, it follows

V(c, g) C span {I‘_l(gl)ﬂgl, . I‘('§M)_lfBEM}

U span {r—l(gl)sr(c)fl(c), . r(gM)—laf(c)?M(c)}
CVyUVs(0). O

Note that the interpolation points and tangential directions s, m;, by, and f;, where
k=1,...,Mgand j=1,..., Mg, are chosen such that the spaces V. and V3(c) not only
include the controllability space V(c, g) but also span the controllability spaces defined
by T's(s), B, and F(c), respectively (see the upcoming systems (5.21) and (5.23)).
This ensures that V5 and V5 are independent of the chosen interpolation points, and
therefore, the derived space Vy remains consistent for all parameters (¢, g) € D.
Applying Lemma 5.4 for every parameter in D yields the following theorem.
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Theorem 5.5:

Assume that V(c, g), defined in (5.16), spans the controllability space of the systems
(1.5) and (1.6) with matrices (1.7) for all parameter pairs (¢, g) € D. Also consider the
spaces V5 and V4 (c) as defined in (5.18) and (5.19), respectively. Define the space

Vs =V U [ Va(o). (5.20)

ceD,

Then the controllability space V(c,g) from (5.16) satisfies that V(c,g) C V4 for all
(¢, 9) € D. O

This theorem is useful for our considerations as it shows that the space V = {J, ycn V(c, 9)
that we aim to approximate lies in the space V5. Hence, if we approximate V5 well, also
V is approximated.

We further investigate the spaces V5 and Vs(c). The space Vy is the controllability
space of the undamped system

Ea(t) = A(c,0)z(t) + Bu(t), (5.21)

where A(c,0) describes a system where the external damping viscosities g are equal
to zero and, hence, no external damping is applied. The corresponding controllability
Gramian that spans the controllability space of the undamped system is defined as

Py =— / N T'(iw)BB'T (iw)"dw (5.22)

Q 00

with I'(iw) as defined in (5.17). This Gramian is equal to the controllability Gramian P
from (2.5) and P(c,0) as defined in (5.3) with an external damping value equal to zero.
Also, the space V4(c) spans the controllability space of the undamped system

€a(t) = A(c,0)a(t) + F(Oult),  F(c) = [F?C)] (5.23)

with a position-dependent input matrix F(c). The corresponding controllability Gramian
that spans the controllability space of system (5.23) is

P, (c) = / " D (i) F(6)F(0) T (i) . (5.24)

" or

— 00

Hence, we can compute the two spaces by setting
Vs = span{Ps}, Vs(c) = span{Ps(c)}.

In what follows, we use this Gramian representation to derive an error indicator that
can be used within the RBM to describe the quality of the approximation of the con-
trollability space by a reduced basis V.
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5.1 Reduced basis method for first-order systems

Error indicator We derive an error indicator from the space decomposition introduced
in (5.20). For that, we consider the respective system in modal form as presented in
(5.1) that includes diagonal matrices as submatrices. We assume that we have a basis
V, € RV*?" 2r < N with Vs C span {V,}, so that the controllability Gramian P4 (c)

is well approximated by a matrix P5(c) that lies in that space spanned by V., i.e, there
exist a matrix Py, € R¥*?" with

Ps(c) = Pyc) = V. Py () VY. (5.25)
Then, the controllability space lies approximately in
V(c,g) C span {Px} Uspan {Ps(c)}
~ span {Pz} U span {jv’g(c)} = span {P5 } Uspan {V, Py, (c)V, }
= span {P} Uspan {V,} = span {V,}.

Hence, to determine the quality of the approximation of the controllability space V(c, g)
by the basis V,, an appropriate criterion is to determine how good P5(c) is approximated

by Ps(c), where the reduced Gramian Ps,(c) solves the Lyapunov equation
A, (¢, 0)Ps 1 (c)EF + EP5.(c)As(c,0)T = —F,(c)F.(c)T

with A, (c,0), &, as in (5.8), and F,(c) := VIF(c). For that, we define the submatrices

Psle) = [35?(534 ngiﬂ Pale) = Bi?((cc))T ngiﬂ (5.26)

Since the Gramian Ps(c) satisfies the Lyapunov equation
A(c,0)P5(c)E" + EP4(c)A(c, 0)T + F(c)F(c)" =0, (5.27)
the approximation 55?(0) leads to the residual

RH(C) ng(c)

A(e,0)P5()ET + EP4(c)A(c,0) + F(O)F ()" = R(c) := l:ng(C)T R22(C)1 . (5.28)

Using the residual fR(c), we can evaluate the trace of the error between P4(c) and
P;(c) as described in the following theorem, which serves as an error indicator within
the RBM.

Theorem 5.6:

Consider the first-order system (5.23) with matrices (1.7) corresponding to a second-
order system in modal form (5.1), the corresponding controllability Gramian Ps(c) as
defined in (5.24), and the respective approximation Py(c) as defined in (5.25). Also
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consider the matrix decompositions as described in (5.26) and the residual PR(c) as
defined in (5.28). Then it holds

Ap,(c) == tr (?,(c) - 91((;))

1 1
= tr(Rya(c)272 — tr(Q 3R (c — —a | tr(Q7 'Ry (c
(Riz(e)275) + 2a ( @)+ (204 ) ( ) (5.29)

+ i tr(ﬂfleg(c)) + i tr(Q2R41(c)) . 0

Proof. The Lyapunov equation in (5.27) and the respective residual equation in (5.28)
lead to the subequations

Xia(c) + Xya(c)t =0, (5.30a)
Xas(c) — X11(c)Q? — 2aX15(c)Q = 0, (5.30b)
— 22X 5(c) — X12(c) "2 — 200X 95 (c) — 2aX95(c)Q + F(c)F(c)t =0, (5.30c)

and

Yio(c) + Yio(e)t = Ryile), (5.31a)
Yoo(c) — Y11(e)2% — 2aY15(c)2 = Ria(c), (5.31b)
—Q2Y12(C> — Y12(C)TQ2 — QOéQYQQ(C) — 20[Y22(C)Q + F(C)F(C)T = RQQ(C). (531C)

From (5.30a) and (5.31a), it follows that Xis(c) = Sx(c¢) and Yia(c) = Sy(c) +
sRi1(c) where Sx(c) and Sy(c) are skew-symmetric matrices so that we define the
skew-symmetric matrix Sxvy(c) := Sx(c) — Sy(c). Hence, it holds

X15(¢) — Yio(c) = Sxy(c) — %Rﬂ(c). (5.32)
We aim to compute the trace expression
tr <5Pg(c) . @(C)) = t2(X11(¢) — Y11(e)) + tr(Xaa(c) — Yan(c)) .

For that, we consider both trace components separately. First, we consider
tr(X11(¢) — Y11(c)). Therefore, we subtract the equation in (5.31b) from the one in
(5.30b), insert (5.32), and multiply from the right by £72 to obtain

(X11(c) = Y11(c)) = Ria(e)Q272 + (Xaz(c) — Y2 (c))Q27% — 2aSxy ()21 + aRy1 (c) Q71
(5.33)
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5.1 Reduced basis method for first-order systems

According to the equation in (5.33), to compute the error between Xy(c) and Yi1(c),
we need to describe (Xaz(c) — Yao(c))Q272 more detailed. We subtract the equation in
(5.31c) from the one in (5.30c), insert(5.32), and multiply from the left by 272 to obtain

1 1
— Qilsxy(C) -+ éﬂilRH(C) - Qigsxy(C)TQ2 -+ 59731{11(6)92
— 206972(X22<C) — Y22(C>) — 20{”73(X22<C) — YQQ(C))Q = —973R22<C).

Applying the trace operator yields

QtT(Q_Q(ng(C) - YQQ(C))) = % (tr(Q_lRH(C)) + tI‘(Q_3R22(C))) (534)

since tr(Q271(Sx(c) —Sy(c))) = 0 because of the skew-symmetry of Sxvy(c) and the
symmetry of Q7. Finally, we apply the trace operator to the equation in (5.33) and
insert the equation from (5.34) to obtain

tr(Xy1(c) — Y11(c))

= tI‘(ng Q 2) tI‘( X22 YQQ(C))Q_2) + OztI‘((RH(C))Q_l)
= tr(Run(0)2°2) + —tr( 3R22( )+ %m(ann@)) ~atr(Ru()Q)
= (Ru()R?) + - (2 Rn(0) + <%—a) (2 Rus ()

Now, we derive a formula for the expression tr(Xas(c) — Yaa(c)). Therefore, we sub-
tract the equation in (5.31¢) from the one in (5.30¢), insert (5.32), multiply from the
left by €2, and apply the trace operator which yields

tI‘((XQQ(C) - YQQ(C))) = i tr(ﬂ_leg(C)) + i tI‘(QRH(C)) .

We combine the two trace components to obtain

r (?g(c) - 53?(0)) = t1(X11(¢) — Y11(c)) + tr(Xaz(c) — Yaa(c)
= tr(Ri2(c)27%) + % tr(Q2°Raa(c)) + <% - a) tr (27 'Ry (c))

1 1
+ @ tr(QilRQQ(C)> + @ tl"(QRH(C>> . ]

199



5 Reduced basis method

5.1.3 Offline-online RBM with a decoupled controllability space
for first-order systems

To accelerate the RBM introduced in Algorithm 14, in this section, we combine the
offline-online RBM from Section 5.1.1 and the controllability space decomposition from
Section 5.1.2. We again aim to build a basis V, € RY*M that approximates the solution
space of the Lyapunov equations in (5.3) for all possible parameters (¢, g) € D and that
spans approximately the controllability space V of the first-order system (1.5) or (1.6).
Using this basis, we derive an approximation of P(c, g) as described in (5.4).

However, in contrast to the first approach presented in (5.5) where we added the
basis Zv (¢, g) to build the basis V,, in this subsection, we utilize the decomposition
of the controllability spaces as presented in Section 5.1.2. For that we repeat that the
controllability spaces V(c, g) satisfy

V(c,g) C Vs =V5U | Vs(c)
ceD.
as shown in (5.20) with V5 and V4(c) as defined in (5.18) and(5.19).

The space Vs is equal to the controllability space spanned by the Gramian P, defined
in (5.22). Similarly, the space V4(c) coincides with the controllability space spanned by
the Gramian Py(c) defined in (5.24). Again because of the low-rank structure of BB"
and F(c)F(c)T the Gramians Py and Ps(c) are well-approximated by some tall and
skinny matrices 2 pr, 25 p7(C), SO that

:PB =~ Z’37BTZ’£,BT and :Pg(C) = Zg7BT(C>Zg~7BT(C)T. (535)

These matrices approximate the controllability spaces V5 and V4 (c).
We also define the approximating bases

Z’:B,IRKA = [Fil(sl)Bbl e F(SNB)ilﬁbNB] , (536&)
Z’SFJRKA(C) s [F_1<81)3:(C)f1 e F(SN:;)_lg:(C)ng] (536b)

generated using the IRKA method from Algorithm 4, so that V, ~ span {Zs rxa} and
Vs (c) ~ span{Zsmka(c)} with I'(s) and F(c) as defined in (5.17).

In the following, we choose Z5 to be either 2y pr or 25 IrKa and Z4(c) to be either
Zoypr(c) or ZyrKa(c). Using these matrices, we build a basis

V., = orth([%93 Zz(c1) ... Zg(c@)}),

which spans an approximation of the solution space V using the decomposition of V;
presented in (5.20). That way, the components in V, are independent of the damping
gains g, and we only consider the different damping positions c¢. Building a basis V,
by using Z5 and Zs(c), we derive a modified RBM that is described in Algorithm 15.
Within this method, we make use of the error approximation Ay (c) (5.29) applied to
the position test-set Dot . C D..
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5.2 Reduced basis method for second-order systems

Algorithm 15 Offline phase of the first-order RBM using a decoupled controllability
space.

Input: € € RVN A : D — RV*N asymptotically stable, B € RV*™ test-parameter
set Drpegt ¢, tolerance tol.

Output: Orthonormal basis V..

Compute the basis 25 that is equal to 25 g as in (5.35) or L5 rxa as in (5.36a).
Set V, := orth(Zs).
Set k:=1.
Determine ¢ := argmax.cp, , Ap,(c).
Set M := {c1}.
Set A%;X = Ag)?<cl).
while Ag** > tol do
Compute the basis Z4(c;) that is equal to Zspr(ck) as in (5.35) or Zg rka (k)
as in (5.36b).
9: Set M := MU {c}.
10 Set V, := orth([V,, Zs(cx)]).
11: Determine cy11 1= argmaX cp,, \nA»s(C):
12: Set ARY = Ap, (Cri1).
13: Set k:=k + 1.
14: end while

5.2 Reduced basis method for second-order systems

We aim to optimize the system response corresponding to the second-order systems (1.3)
and (1.4). The computation of both system response expressions includes the calculation
of a second-order controllability Gramian P, (c, g) from (2.26), which is the upper-left
block of a first-order Gramian

Pleg) = g el (637

from (5.2) as shown in Theorem 3.50. To compute a position controllability Gramian
P,os(c,g) and the respective low-rank factor Zg,(cx, gr), we have to solve a first-order
Lyapunov equation (5.3) with matrices as in (1.7) of dimension N = 2n. Hence, in
every step of the optimization process, we need to compute the respective Gramian by
solving a Lyapunov equation of the form (5.3) for the currently considered parameter
(c,g) € D. Solving a Lyapunov equation for all parameters considered within the
optimization process leads to high computational costs or is even unfeasible. Hence, we
aim to accelerate solving the Lyapunov equations using an RBM. Therefore, we tailor
the RBM presented above for first-order systems to be suitable for second-order systems.

Within this RBM, we then aim to find a basis Vg, € R™™" that approximates the
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5 Reduced basis method

controllability space of the second-order systems (1.3) and (1.4) for all admissible pa-
rameters (¢, g) € D so that there exists a reduced matrix Ppos,(c, g) € R™" with

Ppos(€,9) & Ppos(e, 9) = ViosPposs(c, 9) V. (5.38)
The authors in [140] derived an RBM for second-order systems where the bases are
generated using an IRKA algorithm. We repeat that method and derive a Gramian-
based RBM in this section.

This section is structured as follows. In Section 5.2.1, we derive an RBM including an
offline phase in which the basis V,,, is computed and an online phase that determines
an approximation f’pos(c, g) of the position controllability Gramian P,.(c, g) for all
parameters of interest. Afterwards, we derive a controllability space decomposition
presented in Section 5.2.2, that is used in Section 5.2.3 to derive a numerically more
advantageous second-order RBM.

5.2.1 Offline-online RBM for second-order systems

To simplify the computation of the position controllability Gramians P (c, g) for var-
ious parameters, we derive a basis V,, that approximately spans the controllability
space of the second-order systems (1.3) and (1.4). This basis is constructed in the offline
phase. Afterwards, in the online phase, we use this basis to compute an approximation of
the position controllability Gramian as described in (5.38) for all requested parameters
(¢,g) € D. To describe the quality of the approximation, we assume that there exists
an error approximation A(c, g) that estimates the error between the Gramian P (¢, g)

and the respective approximation P (¢, g), that is specified later in this subsection.

Offline phase To construct a basis Vg, ;, we concatenate the controllability space bases
Z(c, g) for several parameters, which leads to

Vso,r = Orth( [Zso(Cb 91) Ce Zso(cé, gg)} ) c Rnxr

for (cx,gx) € D, k =1,...,¢. We add controllability space bases Zg,(c, g) to the basis
Vo, until the controllability Gramian P.s(c, ) is well-approximated by (5.38) for all
admissible parameters (c, g) € D.

To compute the controllability space bases Zg,(c, g), we either use the low-rank fac-
tors of the respective Gramians or the IRKA method. Because of the structure of the
Gramian P(c, g), there exists a low-rank factors

Z(c,g) = {ZSERTCS;’)Q)} , with P(c,g9) ~ Z(c,9)%(c,g)"
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5.2 Reduced basis method for second-order systems

that result when applying one of the Lyapunov equation solvers presented in Section 2.3.
Hence, the position controllability Gramian P,.(c, g) is approximated by

PPOS(C7 g) ~ Zso,BT(Ca g)Zso,BT(Ca g)T (539)

so that Zs, pr(c, g) spans an approximation of the controllability space Vg (c, g). Alter-
natively, an approximation of the controllability space is spanned by a basis

Zso,IRKA<C> g)
= [(sIM + 5:D(c,g) + K)'Bb; ... (s2 M+ s,,D(c,9) + K)"'Bb,, | (5.40)
for certain interpolation points si,...,s,, and tangential directions by,..., b,, gen-
erated by the IRKA procedure from Algorithm 6. Hence, controllability space bases
Zs(c, g) is computed using Zy, (¢, 9) = Zsonr(C, g) O Zso(C, 9) = Zso mralc, 9).

Since we can not evaluate all infinite parameters in D, as in the first-order case,
we define a finite and well-distributed test-parameter set Dy € D. We build the
basis Vg, by picking an arbitrary parameter pair (co, go) € Drest and determine the
corresponding basis Zg,(co, go) equal to Zg, pr(co, go) O Zsorra(Cos go), that is used to
define the first basis

Vso,r = Orth(ZSO(Cm gg))

For that basis V., we evaluate the quality of the resulting approximations (5.38).
Therefore, we compute the error approximations for all remaining parameters in D
and determine the largest one as
A" = Alc,91) = max A(c, g).
(c.9)€D

If A™** is larger than a given tolerance tol, the current basis does not approximate
the controllability space Vg, (c1,g1) good enough, and, hence, the basis V., needs to
be enlarged. We compute a basis Zg(c1,01) in (c1,01) that is either Zg, pr(ci,¢1) or
Zso1ria(c1, g1), and enrich the basis

Vso,r = orth ([Vso,r Zso(cla 91)]) .

We continue with this method until we have determined a basis V,, that leads to a
maximal error approximation A™** < tol.

Online phase In the online phase, we use the basis V,, to compute an approximation

P,os(c, g) of the position controllability Gramian P (c, g) for all required parameters
(¢, g). For that, we define the first-order basis

Vso,r 0
vl 2 o
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5 Reduced basis method

that is used to reduce the matrices (1.7). We derive the reduced matrices (5.8), which de-
fine the reduced Lyapunov equation (5.9). The reduced position controllability Gramian
Poos:(c, g) is then the upper-left block of the reduced first-order Gramian

PPOS,T(Q g) PlQ,r(C> g) )
P12,r(0, Q)T P22,r(0, 9)

After solving the reduced Lyapunov equation (5.9) to determine P, (c, g), we compute
an approximation of the solution Pp.s(c, g) as defined in (5.38).

Pi(c,g) = (5.42)

Error approximation In the second-order RBM presented above, we require an error
approximation to evaluate the quality of the resulting approximations. We follow a
similar methodology as for the first-order case but modify it in such a way that only the
error in the position controllability Gramian is evaluated, i.e., we aim to approximate
the error

€Ey(c,9) = Ppros(c,g) — lgpos(c, 9) = Ppos(¢, 9) — Vo Ppos:(c, g)VSTO’r. (5.43)

The second-order error €, (c, g) is the upper left block of the first-order error

o QESO(C, g) 612(07 g)
€leg) = {612(0, 9)" Ex(c 9)}

that solves the error equation (5.11) with first-order matrices (1.7) and with the corre-
sponding first-order residual (5.10), which is decomposed as

[ Ruleg) Rialeg)
9‘{(0, g) - |:m12(67 g)T m22(67 g):| . (544)

We apply a second reduced basis method (EE-RBM) to generate a basis Vg, ey that
approximately spans the error space, i.e., the space where the errors & (c, g) for all
(¢, g) € D live. Suppose we have a basis V, such that for each parameter pair (¢, g) € D
there exists a matrix Xy (c, g) with Ppos(c,g9) = VoXeo(c, 9)VE. Then, we can write
the error in the position controllability Gramian as

eso(ca 9) = Vsoxso(c7 9>Vs’1:) - Vso,r?so,r(ca Q)VT

s0,r

and therefore the error &g (c,g) lives in the space spanned by the basis
Ve = orth([Vs, Veo,]) for all parameters (c¢,g) € D. Since V. is known from
the first RBM, it remains to determine the basis Vg,. To compute an approximation of
the space spanned by the basis V,,, we apply a second EE-RBM. In each step of the
EE-RBM, we add a basis Zg(c%, g°) that approximately spans the controllability space
corresponding to a parameter (c¢, g¢), and set

Vso,err = orth ([Vso,err Vso,r Zso(cea ge)]> :
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5.2 Reduced basis method for second-order systems

To compute such a basis Zg(c®, g°), we solve a second Lyapunov equation (5.3) to
obtain a low-rank factor Zg, pr(c®, g°) or derive the corresponding controlability space
approximation Zg, irka(c®, ¢°) resulting from the IRKA approach as described in (5.40).

After determining a basis Vi, o, We approximate the error for a parameter pair (¢, g) €
D as

~

sto(ca 9) ~ Ezso(ca 9) = Vso,erreso(cv g)VT (545)

so,err

where @so(c, g) is the upper-left block of the first-order error

o @so(ca g) é12(ca g)
¢ = |~ g
(€9 =1& 260 Enleg)

that solves the reduced error equation (5.13) for the first-order basis

Vso,err 0
Verr o |: 0 Vso,err‘| .

This error approximation is fast computable if the dimension of the basis Vg, ¢ is suffi-
ciently small. After we have determined a basis Vi, ¢y, we define the error approximation

AGSO<C7 g) = ”éso(ca g)HF = ”Vso,err@so(ca g)VT HF (546)

S0,err

Both reduced basis methods run in parallel where the consecutive parameter corre-
sponding to the error basis Vg en, 1.€., (¢, ¢°) is chosen to be that one that results in
the largest residual of the error equation in the Frobenius norm, i.e.,

(c*,g") = arg max_[|R{,(c,g)|r
(c,9) €D

where RS, (¢, g) is as defined in (5.15). The two parallel second-order RBMs result in
Algorithm 16.

5.2.2 Decoupling of the controllability space of second-order
systems

The controllability space of the second-order systems (1.3) and (1.4) is spanned by
Vao(c, g) = span{ ((s1)*M + s:D(c, g) + K) ' Bby,
ey ((Sjw)zM + SZV[D(C, g) -+ K)il Bbjw} (547)

if the interpolation points sy, ..., sy are chosen very well (e.g., the poles of the system)
for N = 2n. We decompose the kernel for j =1,... M as

sTM + 5;D(c, g) + K = T'yo(s;) + F(c)G(9)F(c)" (5.48)
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Algorithm 16 Offline phase of the second-order RBM.

Input: M, K € R™" D : D — R™" asymptotically stable, B € R"*™ test-parameter
set Dt tolerance tol.
Output: Orthonormal bases Vg, Vo err-

1: Choose any (co, go), (g5, ¢§) € Drest With (co, go) # (5, g§)-

Compute Zs,(co, go) that is either Zg, gpr(co, go) from (5.39) or Zg, mrika (o, go) from
(5.40).
Set M := {(C(), go)}

4: Set Vo, := orth(Zs,(co, 9o))-

(28

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:

Compute Zg,(c§, g5) that is either Zy, pr(cf, g5) from (5.39) or Zgo mka (¢, g§5) from

(5.40).
Set Vso,err = Orth([ZSO(C()? 90), Zso(gga CS)])
Set k:=1.

Determine (ci, 1) := argmax(, g)ep.\Aso.e(C; 9)-
Set ALE = Age(cr,91)
Determine (c5, g¢) = Argmax . epn,, ol R (6 0) -
while AZE > tol do
Compute Zg(ck, gx) that is either Zg, pr(ck, gx) from (5.39) or Zg mka(Ck, 9k)
from (5.40).
Set M := MU {(ck, gx) }-
Set Vo, := orth([Veor, Zso(ck, gx)])-
Compute Zg,(cy, g5) that is either Zg, gr(cs, g5) from (5.39) or Zg, mmxa(cs, 9t)
from (5.40).
Set Vsoerr = Orth([vso,erm Zso(clmgk); Zso(cza 92)])
Determine (cxi1, ghy1) := argmax(, g)ep, \wlso.e(C; 9)-
Set AL = Agoe(Chi1; Grr1)-
Determine (¢, 1) /= ALEMAX e, IR (€, 0) -
Set k:=k+ 1.
end while
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5.2 Reduced basis method for second-order systems

with Ty (s;) := s5M + s;Dine + K where only the low-rank factors F(c)G(g)F(c)" are
parameter-dependent while I's,(s;) is independent of the parameter values. This decom-
position is used to derive parameter-independent and parameter-dependent components
of the controllability space.

Lemma 5.7:
The controllability space (5.47) with interpolation points s1,. .., S2, and tangential di-

rections by, ..., by, of the second-order systems (1.3) and (1.4) satisfies

Vso(cu 9) - Vso,F = VSO,B U VSO,F<C)7 (549)
with
Vo s := span {Fso(sl)_lel, . I‘so(s%)_legn} ,
’ 4 4 (5.50)
Ve r(c) := span {I‘so(ml) F(o)fy, ... Tso(mu) F(c)fM}
for interpolation points si,...,S2,, mi,...,my and tangential directions by, ..., by,
fi,...,fy that are chosen in such a way, that

Vs = {Ts(s)'B| s € R} and Veor(c) = {Tyo(m) 'F(c)| m € R}.

for T, (s;) := s5M + 5;Dine + K. O

Proof. For every entry (E?M +5;D(c,g9) + K)_1 ng, j=1,...,M we can apply the
Sherman-Morrison-Woodbury formula to obtain

(M +3,D(c, g) + K) ' Bb; = (Tw(3;) + F(¢)G(9)F(c)) " Bb,

= T4(3,) 'Bb; — T (5;) 'F(c) (G + F(¢) T (5;) 'F(c)) " FTT4(5;) 'Bb;.
(5.51)

Hence, the j-th entry of Vi, (c, g) satisfies
(M +3,D(c,g) + K) ' Bb; € span {T',(3;) 'B, T (5;) 'F(c)} .
From that, it follows that

Vso(ca g) - Sparn {Fs_ol(sl)Bbla .- -FSO(SM)_IBbM}
Uspan {T_' (my)F(c)f1, ... Tyo(mar) 'F(c)fu }
=V UVsr(c). O

The following theorem is a direct result of Lemma.
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Theorem 5.8:
Consider the second-order systems (1.3) and (1.4), and the space Vg as defined in
(5.49). Then the controllability space Vg, (c, g) from (5.47) fulfills

Vso(ca g) g Vso,F
for all parameters (¢, g) € D. O
Note, that the space Vg, 5 is the controllability space of the externally undamped system

Mi(1) + Dik(t) + Kx(t) = Bu(t). (5.52)

The corresponding controllability Gramian, that is called Py, s, can be well-approximated
by a low-rank factor Zg, s g, so that

Pso,B(Ca g) ~ Zso,B,BTZST(‘)7B7BT' (553)
The space Vg, r(c) is the controllability space of the undamped system
Mx(t) + Diex(t) + Kx(t) = F(c)u(t) (5.54)

with a position-dependent input matrix F(c). The corresponding controllability Gramian
is called Py, ¢(c) with the low-rank factor Zs, r pr, so that

Pso,F(C> ~ Zso,F,BT(C)Zso,F,BT(C)T~ (555)

The controllability spaces V,(0) and Vg, (c) can also be approximated using the IRKA
method, which yields

Zso,B,IRKA = [I‘;)l(Sl)Bbl . FSO(SgB)ilegB} , (556&)
Zso,F,IRKA(C) = [I‘S_Ol (ml)F<C)f1 e Fso(mgB)_lF(C)ng] (556b>
for interpolation points si,...,Sps, M1, ..., My, and tangential directions by, ..., by,

f, ..., fi. as described in (2.63).
Hence, the controllability space Vg, ¢ is approximately spanned by

VSO,F ~ Spall {Zso,B,BT} U span {ZSO,F,BT<C>} and
ceD

VSO,F ~ span {Zso,B,IRKA} U span {ZSO,F,IRKA<C)} .
ceD
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Error indicator We aim to derive an error indicator that results from the space de-
composition in (5.49). We assume that we have a basis Vg, € R™", r <« n, with
Ver C span{Vg,}, so that the controllability Gramian Py, (c) is well-approximated
by a matrix f’so’F(c) that lies in that space spanned by Vg, i.e,

Pso,F(C) ~ Pso,F(C) = Vso,rPso7F,r(C)VT

so,r*

Then, the controllability space lies approximately in

Ve l(c, g) C span {Pg, g} Uspan {Pg, r(c)}

~ span {Py, 5} U span {PSO’F(C)} = span {Py, 5} Uspan {Vso,rPso,F,r(C)VsTo,r}
= span{Py, 5} Uspan {Vy,,} = span{ Vg, }.

Hence, to determine the quality of the approximation of the controllability space Vg, (¢, g)
by the basis Vi, an appropriate criterion is to determine how good P, x(c) is approx-
imated by Py r(¢) = Vi :Psor:(c)V, ..

We consider the system in modal form, i.e., in the transformed representation from
(5.1). We consider the corresponding first-order Gramians (5.26) with Py, p(c) := Xj1(c)
and l?’sojF(c) = Yi1(c). Since we are only interested in the error Py, (c) — ﬁso,p(@ =
X11 — Yy, we modify the error expression from (5.29), which yields the following theo-
rem.

Theorem 5.9:
Consider the second-order system (5.54) corresponding to the modal form introduced in
(5.1) and the corresponding second-order controllability Gramian Py, (c) from (5.55).

Also consider the respective first-order matrices (5.26) and the residual decomposition
as defined in (5.28). Then, it holds

Ay () i= t(Pue(c) = P (0) (5.57)
5.57

= tr(Ri2(c)27%) + % tr(Q2°Raa(c)) + (% — a) tr (27 'Rii(c)) - O

Proof. The statement follows from (5.33) and, hence, a byproduct of the proof of The-
orem 5.6. n

5.2.3 Offline-online RBM with a decoupled controllability space
for second-order systems

In this subsection, we combine the RBM for second-order systems presented in Sec-
tion 5.2.1 and the controllability space decomposition from Section 5.2.2. We aim to
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5 Reduced basis method

build a basis V,,, that spans an approximation of the controllability space Vy(c, )
for all admissible parameters (¢,g) € D but also aim to exploit the structure of the
corresponding second-order system described in (5.48). Hence, we again decompose our
method into an offline and an online phase. The online phase is similar to the one in
Section 5.2.1, so we only describe the offline phase in this section.

We initialize the basis Vg, , by setting

Vso,r = Orth(zso,B) )

where Zg, g is equal to Zg, g g1 Or Zso 5 1rKA as defined in (5.53) and (5.56a), respectively.
The first basis V,, approximates the controllability space of the undamped system
realized by the system in (5.52). Using this basis, we evaluate the error approximations
for all sample parameters in D to determine the largest one

Py = Apg(c1) := ceDos. Are(©).

where Dregt . C D, is the subset of D that contains the position parameters c. If
AR is larger than a given tolerance, the basis V,, does not approximate the con-
trollability space in ¢; sufficiently good, and the basis V,, needs to be enriched. For
that, we determine the basis Zg, r(c1) that approximates the controllability space of the
system (5.54) with ¢ = ¢;. The basis Zg, g(c1) is either equal to Zg, rpr(c1) from (5.55)
if we use the low-rank factor of the respective controllability Gramians or Zg, ¢ irxa(¢1)
as defined in (5.56a) if we use the IRKA method to derive such a basis. Then, we enrich
the basis by setting
Vso,r = orth ([Vso,r Zso,F<Cl)]> .

As before, we continue with this process until the maximal error approximation ApZ* is
smaller than a certain tolerance, and therefore, the controllability space for all parame-
ters in Doy is approximated sufficiently good by the basis V. This method results
in Algorithm 17.

The algorithms presented in this chapter are applied to damping optimization prob-
lems in the next chapter, where we illustrate their efficiency using various numerical
examples.
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5.2 Reduced basis method for second-order systems

Algorithm 17 Offline phase of the second-order RBM using a decoupled controllability
space.

Input: M, K € R"", D : D — R"" asymptotically stable, B € R"*™ test-parameter
set Drpest e, tolerance tol.
Output: Orthonormal basis V.

1:

10:
11:
12:
13:
14:

Compute the basis Zg, g that is equal to Zg gpr as in (5.53) or Zg, prka as in

(5.56a).

Set Vo, 1= orth(Zs 5).

Set k= 1.

Determine ¢; := argmax cp,  Apg(c).
Set M := {c1}.

Set Arl:r)llsix = APF (Cl)-
while Ag™ > tol do
Compute the basis Zg,r(ck) that is equal to Zgrpr(ck) as in (5.55) or
Z’SO,F,IRKA(CIC> as in (556b)
Set M := MU {cg}-
Set Vo, = orth([Veor, Zsor(ck)]).
Determine cj11 1= argmaX cp, . \nApx(C).
Set Ag;x = APF (Ck-Jrl).
Set k:=k+ 1.
end while
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In this section, we consider the problem of semiactive damping, in which external
dampers are added to a vibrational system to minimize the effect of an external force
on the system. In more detail, that means that we consider a system of the form (1.3)
or (1.4) with a parameter-dependent damping matrix D(c, g) as described in (1.1) that
consists of a parameter-independent internal damping D;,; and an external damping
Deyi(c,9) = F(e)G(g)F(c)* for (c,g) € D. The goal is to optimize damper viscosities
g and damper positions ¢ to minimize the effect of external disturbances on the system
and the corresponding output. Various criteria quantify the stability of systems and the
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6 Damping optimization

response to external disturbances, which are selected according to the application. In
this work, the average energy amplitude is used, which is equal to the system responses

Ju(c,9) = IGu(-5¢,9)ll5, = —/ r(G(iw; ¢, 9)"G.(iw; ¢, 9)) dw,
Jo(c,9) =[Gl -5 ¢, 9)ll3,
1 (0.0 (o @]
= W/—oo /_Oo tr(SQ(iwl,iwg;c, 9)"G, (iwy, iws; c, g)) dwdws

in the linear and quadratic output case, respectively. The transfer functions G, (s; ¢, g)
and G, (s1, s9;¢, g) are as defined in (2.4) and (3.33) as Gz, respectively, and describe
the input-to-output behavior in the frequency domain. This optimization criterion was
also used in 25, 140] for systems with linear output equations. We choose this particular
criterion since we aim to minimize the maximal deflections, or more specifically, the
maximal time response magnitude max;>¢ ||y (¢)||, and hence, we consider the L.,-norm
of the output that satisfies the bound

[¥ll2oe < NS5 ¢ 9) s [Pl 2,

To simplify the computation of the system response J(c, g) or dq(c, g), we transform
the second-order system (1.3) or (1.4) into a first-order system (1.5) or (1.6) with corre-
sponding matrices defined in (1.7). As described in [159], the Hy-norm of the transfer
function G (s;¢, g) in the linear output case can be computed as

du(c,g) = 217T /OO r(C(iwE — Alc, g)) BB (iw€ — Alc, g))€") dw (6.1)
= tr(CP(c,g)C"). (6.2)

For the quadratic transfer function Gq(s1, s2; ¢, g) the system response is equal to

dale,g 27T / / tr Hiw & — Alc, 9) "M (1w & — Alc, ) 'B

- B (1w, & — Alc, 9)) "M (iw € — Alc, g))_13> dw;dws

:% h (B (1€ — Alc.)) MP(e. M€ — Ale.g)) ' B) de
% tr(MiP(c 9)M(iw &€ — Alc, g)) " BB" (w1 € — Alc, 9)) ") dw;
:tr(MfP(c, g)MP(c,g)) . (6.3)

Both system response expressions include the computation of the parameter-dependent
controllability Gramian P(c, g) defined in (5.2). Hence, within an optimization process,
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6.1 Damping optimization in the first-order representation

we have to solve multiple Lyapunov equations (5.3) in parameters (¢, g) € D to compute
P(c, g). These computations lead to high computational costs if the respective matrices
are of large dimensions.

_ Hence, we utilize the RBM in the following to approximate the controllability Gramian

P(c,g) = P(c,g), as described in (5.4). This approximation is used to approximate the
system responses as

Ju.(c,g) =tr ((‘35’(0, g)€T> , Jdor(c,g) :=tr (Mflv’(c, g)MﬁS(c, g)) .

If the system response values are well-approximated by Ji,,(c, ¢g) and Jq.(c, g), we can
optimize these reduced system response expressions instead of the original ones to ac-
celerate the optimization process.

Optimization and the respective methods are not the primary focus of this thesis.
To optimize the system responses and their approximations presented in the follow-
ing sections, we utilize the Nelder-Mead method, a multi-dimensional simplex method.
Therefore, we use the fminsearch function in MATLAB, that is, whenever we write
that we find an optimizer or minimizer, we mean that we apply fminsearch to the func-
tion to be minimized. However, analyzing or improving the optimization method itself
is beyond the scope of this thesis. Our focus is on accelerating various computational
steps and reducing the dimensions of the respective matrices to accelerate the overall
optimization process. In particular, the computation of the systems responses Ji(c, g)
and Jq(c, g) includes the computation of the controllability Gramian P(c, g) for several
parameters within the optimization. Consequently, a Lyapunov equation needs to be
solved for every parameter evaluated within the optimization procedure.

The main task in this section is to accelerate the optimization process by approximat-
ing the Gramian P(c, g) for all required parameters (c, g). Since both system response
expressions, J.(c, g) and Jq(c, g), depend on the Gramians P(c, g), the derived methods
coincide for both expressions.

In the following, we distinguish between systems in first-order representation, consid-
ered in Section 6.1 and those in second-order representation, analyzed in Section 6.2.

6.1 Damping optimization in the first-order
representation

In this section, we apply the RBM to accelerate the computation of the controllability
Gramian P(c, g) and hence of the system responses J. (¢, g) and Jq4(c, g) for all param-
eters (¢, g) required during an optimization process. For that, first in Section 6.1.1, we
apply the offline-online RBM introduced in Section 5.1. Afterwards, in Section 6.1.2, we
derive an adaptive scheme that approximates the system responses but does not require
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6 Damping optimization

a given parameter domain. Also, this approach is combined with the decomposition
presented in Section 5.1.2.

6.1.1 Damping optimization using an offline-online RBM for
first-order systems

The Gramian P(c, g) that is used to compute the system responses solves the Lyapunov
equation (5.3) and hence the RBM from Section 5.1 can be used to approximate the
controllability Gramian P(c, g) and the system response expressions g (c, g) and Jq4(c, g)
from (6.1) and (6.3), respectively. For that, we apply Algorithm 14 to generate a basis
V, € RV*Rv that spans a space that approximates the controllability space V of the
systems (1.3) and (1.4), or Algorithm 15 to generate an approximation of the space Vg
from (5.20).

Within the optimization process, for every requested parameter pair (c,g), we use
this basis V., to define the reduced Lyapunov equation from (5.9) with matrices from
(5.8). Solving this reduced Lyapunov equation yields the reduced Gramian P.(c,g)
with P(c, g) ~ P(c,9) = V,P.(c, g)VI. The reduced Gramian P.(c,g) is then used to
determine the reduced system responses

3L,r(c> g) = tr(evrfpr(ca g)VrTeT) )

(6.4)

Jox(c,g) = tr(VIMV,P,(c, g) VMV, P, (c, g))
for the linear and quadratic output case, respectively, that approximate the system
response values from (6.1) and (6.3). We make use of the trace properties and reorder
the matrices so that we can precompute €, := €V, and M, := VIMV, € RW*¥W and
only matrices of dimension Ny need to be multiplied in the online phase.

Error approximation To describe the quality of the system response approximation
from (6.4) by a basis V,, we can either use the error approximation Ag from (5.14) to
approximate the error in the controllability Gramian, or the error indicator Ay, from
(5.29) that indicates the quality of the controllability space approximation.

Also, we can tailor the error approximation from (5.14) to evaluate the error in the
system response values. For systems (1.5) with a linear output equation, this error is
equal to

&y,.(c,9) =3u(c,9) — Ju.(c, g) = tr((‘??(c, g)(‘?T) —tr ((‘35)(0, g)(?T) = tr((‘fQS(c, g)CT)

for the error &(c,g) := P(c,g9) — P(c,g). For systems (1.6) with a quadratic output
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6.1 Damping optimization in the first-order representation

equation, the error in the system response is

QEJQ(C7 g) = HQ(Cﬂ g) - HQ,I"(C7 g)
= tr(M®P(c, ) MP(c, g)) — tr (Mﬁv)(g 9MP(c, g)>

= (M (P(c.0) - Ple.a)) M (P(e.0) + Pe.0)))
=tr <M <?(c, g) — ﬁs(c, g)> M (T(C, g) — 5)(07 g9) + 25)(07 9)))
= tr(MQE(c, M (QE(C, g) + 25)(07 9))) ,

where we only need the Gramian approximation i’(c, g) and the error &(c, g), but not
the actual Gramian P(c, g).

We notice that both error expressions, €y (c,g) and €y, (c,g), include the error

)
&(c,g). Hence, we aim to find an approximation &(c,g) ~ €&(c, g) to determine the
approximations of the system response errors

&y (c,9) ~ @HL(C, g) i=tr ((‘fé(c, g)€T> ,
&y, (c,9) = QNS;;Q(C, g) = tr(Mé(C, M (é(c, g) + 25’(0, g))) )

To do so, we follow the same procedure as described in Section 5.1 and make use of
the fact that the error &(c, g) solves the error equation given in (5.11). Hence, we apply
a second EE-RBM to the error equation (5.11) to determine a basis V,, that spans an
approximation of the solution space of the error equation in (5.11). The basis Vg, is
then used to derive the approximation &(c,g) = Ve (c, g)VE, where €(c, g) solves

err

the reduced error equation (5.13). Using &(c, g), we derive the error approximations

Ay, (c,9) == tr(CéL(c, g)CT> ‘,
Ay, (c,g) = ‘ tr(Mé(c, M (é(c, g9) + 2P(c, g))) ‘

(6.5)

6.1.2 Damping optimization using an adaptive RBM for
first-order systems

If we use the RBM to optimize the system response as described in Section 6.1.1, we
need to know the parameter set D beforehand, which is, in general, not given. Also,
the optimization process might only use parameters from a subset of D such that the
basis V, from Section 6.1.1 may contain unused information and is therefore of too
large dimension what motivates an adaptive scheme. The idea of the adaptive RBM
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6 Damping optimization

is to enrich the basis V, within the optimization process. Consequently, there is no
decomposition into an offline and an online phase.

We select a parameter (cg, go) as the initial value for the optimization process and
compute a basis Zv(co, go) that approximates the respective controllability space using
either Zpr(co, go) from (5.6) or Zrka(co, go) from (5.7). We set the first basis to be
V, = orth(Zv(co, go)) that is used to define the reduced optimization problem (6.4),
where the reduced Gramian P,(c, g) solves the reduced Lyapunov equation in (5.9).

Using the basis V., we start an optimization process to minimize the system re-
sponse (6.4). In contrast to the previous method, we add a stopping criterion within the
optimization process that interrupts the procedure whenever the solution space corre-
sponding to the current parameter (¢, g) is not well-approximated by the basis V,. To
achieve this stopping, we modify the goal function as described by Algorithm 18. In
every iteration of the optimization process, we query the error approximation A(c,g)
of the current parameter (c,g) as described in Step 2. The used error approximation
A(c, g) is derived later in this subsection. If the A(c, g) is smaller than a given toler-
ance, we proceed with the function evaluation in Step 5 and 6 to compute the function
value J(c, g) and continue with the optimization process. On the other hand, if the error
approximation is larger than the tolerance, we know that the current basis V., does not
approximate the solution space of the Lyapunov equation (5.3) for the current parameter
pair (¢, g) sufficiently well. Hence, we return that the minimization did not converge
and enrich the basis V,. Therefore, we compute Zv(c, g) using either Zpr(c, g) from
(5.6) or Zirkal(c, g) from (5.7) and define the updated basis

V., = orth([V,, Zv(c, 9)]).

Consequently, we obtain a new optimization problem (6.4) that is defined with the
new basis V, together with the computation in (5.4) and the corresponding Lyapunov
equation in (5.9). Since the function that is to be optimized depends on the current
basis V., which changes during the optimization procedure, convergence problems may
occur. Hence, we start a new optimization procedure whenever we enrich the basis and
use the current parameter (¢, g) as the initial value. We continue with this procedure
until the optimum is reached.

Error approximation To derive an error approximation used in the adaptive proce-
dure introduced above, we follow the same idea as for the offline-online scheme and run
a second reduced basis method to generate a basis V. that spans an approximation of
the error space. The equations in (5.14) and (6.5) define then two possible error approx-
imations A(c, g) corresponding to the bases V, and V. In this adaptive procedure,
the basis V¢, is enlarged whenever V, is expanded.

The detailed procedure is described in Algorithm 19. We first determine a basis
V., = orth(Zv(co, go)) that spans an approximation of the controllability space, where
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6.1 Damping optimization in the first-order representation

Algorithm 18 Reduced first-order system response.

Input: &€ e RVN A D — RVN B cRV™ € e RPN or M € RY*N | parameters
(c,g) € D, basis V,, tolerance tol.

Output: System response J,(c, g) equal to Ji.(c,g) or Jq.(c,g) from (6.4), variable
conv that shows whether the algorithm converged.

1: Set conv = true.

2. if A(c,g) > tol then

3: Set conv = false, J.(c, g) = oc.

4: else

5: Solve the reduced Lyapunov equation (5.9) to obtain P,(c, g).
6: Compute Jp,.(c, g) or dq.(c, g) from (6.4).

7. end if

Zv (o, go) is either Zpr(co, go) from (5.6) or Zirka(co, go) from (5.7). Then, we choose
a parameter (cf,gy) that is used to determine an error space approximation. To limit
the possibilities of choosing (¢, ¢), we again define a finite set D that can be either
a subset of D, if given, or some set that contains arbitrarily chosen parameters with
some distance to the currently considered parameter. We pick the parameter (cf, gf)
from this finite set D and determine Zv(cf, gj) that approximates the respective
controllability space using either Zpr(cf, gf) from (5.6) or Zirka(cp, g5) from (5.7). The
bases Zv (cf, g5) and V, are then used to define the first error equation basis

Verr - Orth([vra Z’V(667 96)]> - orth([ZV(co, 90)7 Z’V(CB7 96)])

Using V, and V., we define the error approximation A(c, g) that is equal to either
Ag(c,g) from (5.14), or Ag, (¢, g) or Ay, (c,g) from (6.5). The computation of the two
bases is described in Step 1 to 5 of Algorithm 19. After computing the first bases V,
and Ve, we define the system response approximation J,,(c, g) or dq.(c, g) from (6.4),
which is then optimized instead of the original system response. We apply an opti-
mization method to compute the minimal system response and the respective minimizer
(¢, g").

To ensure the optimization process is interrupted if the basis V. is insufficient, we
optimize the function defined in Algorithm 18 instead of the actual system response
approximation. This approach allows the optimization to yield either the minimizer
(c*,g*) or, if conv = false holds, the information that the optimization process did not
converge, indicating the need to enrich the bases. If the bases need to be expanded, in
Step 8 to 12, we enlarge the bases V, and Vg, as

V. = orth([V,, Zv(c,g)]), and Ve, = orth([Ven, Zv(c, g), Zv(c,g")])

where we choose in Step 12 the parameter (¢',g") € Do that results in the largest
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residual

(c",¢") = argmax g)epny,,, [Relc, 9)[|r
with DR, (c, g) defined as in (5.15). Afterwards, in Step 13, we compute the approximated
energy response value and proceed with the minimization process.

Algorithm 19 Adaptive first-order RBM.
Input: &€ ¢ RVN A : D — RVN B c RV¥m € ¢ RP*N or M € RV*V | tolerance
tol.
Output: Minimizer (¢°®", g°®"), energy response Jp,(c°P", g°") or Jq.(c°P*, g°P).
1: Choose (co, go), (¢h; 90) € Drrest, (co, 90) 7# (o, 90)-
2: Determine a basis Zv (co, go) either as Zpr(co, go) from (5.6) or Zrka(co, go) from
(5.7).
3: Set V, := orth(Zv(co, go))-
4: Determine a basis Zv(cf, g5) either as Zpr(cf, gf) from (5.6) or Zrka(cf, g5) from
(5.7).
5: Set Ve, = orth([Zv(co, 90), Zv(ch, 9h)])-
6: Find the minimizer (c°P*, g°P*) of the function Algorithm 18 using fminsearch and
obtain Jy,,(c°P", g°P") or Jq.(c°P", g°"), and conv.
7: while conv = false do
8: Determine a basis Zy (P, g°P") either as Zpr(c®®', ¢°?") from (5.6) or
ZIRKA(COpt,gOpt) from (57)
9: Set 'V, := orth([Vy, Zv (cPt, g°P")]).

10: Determine (c', g*) := argmax, jep,., [|9R:(c, 9)||r-

11: Determine a basis Zvy (¢, g") either as Zpr(c', g*) from (5.6) or Zrka(c', ¢*) from
(5.7).

12: Set Ve = orth([Vey, Zv(c®P, g°Pt), Zv(c", g")]).

13: Find the minimizer (¢°P*, g°P*) of the function Algorithm 18 using fminsearch

and obtain gy, (¢, g°?*) or Jq . (P, g°"), and conv.
14: end while

Remark 6.1:

As described in Remark 5.2, we solve the Lyapunov equation (5.3) in ¢ = 0 € R
(undamped system) to obtain Zy(c,0). The vectors of Zy(c,0) are then added to the
basis V., which turns out to lead to a more robust basis. O

6.1.3 Damping optimization using an adaptive RBM with a
decoupled controllability space for first-order systems

To derive an adaptive RBM that uses the structure of the considered vibrational system,
we combine the adaptive method presented in Algorithm 19 and the decoupling presented
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6.2 Damping optimization in the second-order representation

in Section 5.1.2. Again, we aim to find a basis V, that approximates the solution space
for all parameters of interest. Therefore, we again derive a basis V, that approximates
the controllability space of the systems (1.5) and (1.6) for all parameters (¢, g). Hence,
we again utilize the function in Algorithm 18 using an error indicator A(c, g) equal
to Agp,(c) from (5.29). We initialize a basis by setting V, = orth(Zs) with the basis
Zp equal to Zp rka from (5.36a) or Zgpr from (5.35). Using this basis, we start
the optimization of the reduced energy response function given in Algorithm 18 until
the method either converges or returns conf = false. If conf = false holds, the
optimization process stopped since the current basis is not sufficiently good. In that

case, we enrich the basis
V., = orth([Vr Zg:(C)] ),

where Zg(c) is equal to Zg pr(c) from (5.35) or Zg 1rKa(c) from (5.36b), and ¢ is the cur-
rent, position parameter in which the optimization method stopped. Using the new basis,
we start a new optimization process and continue with this method until it converges.
This results in Algorithm 20.

Algorithm 20 Adaptive first-order RBM using a decoupled controllability space.
Input: € ¢ RVY, A : D — RVYN B ¢ RV € € RPN or M € RV*V | initial
parameters (c, g), tolerance tol.

Output: Minimizer (c°*, g°P"), energy response Jp,,(c°®", g°P*) or Jq(c°P*, g°).

1: Compute the basis Zg equal to 25 rka from (5.36a) or Zg gr from (5.35).
2: Set V, := orth(Zs).
3: Find the minimizer (c°P*, g°*) of the function Algorithm 18 with error indicator Agp,,
from (5.29) using fminsearch and obtain Jy (¢, g°P*) or Jq.(c°Pt, g°®*), and conv.
4: while conv = false do
5: Compute the basis Z5(c°") equal to Zg rka(c°P") from (5.36b) or Zg pr(cP')
from (5.35).
Set 'V, := orth([V,, Z4(c°P")]).
Find the minimizer (¢°P*, g°P*) of the function Algorithm 18 with error indicator
Ay, from (5.29) using fminsearch and obtain Ji,(c°P", g°°*) or Jq . (cPt, g°), and
conv.
8: end while

6.2 Damping optimization in the second-order
representation

We consider second-order systems of the form (1.3) and (1.4). When evaluating the
vibrational systems of these structures, often only the displacements are considered to
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derive an output. Therefore, the first-order output matrices are

e=[C, 0] and M= [M“ 0] |

0 0

If also the velocities are evaluated, we apply the methods from Section 6.1.

We reformulate the system response from (6.1) and (6.3) to take advantage of the
structure of the underlying second-order system. The system response corresponding to
the system (1.3) with a linear output equation is then equal to

3u(c.9) = (1S (5 ¢, 9) I3,
1 o0
= 2—/ tr(ClA(iw;c, g)BBTA(iw;c,g)HclT>dw (6.6)
T J -
= tr(C1Ppos(c, 9)CY) -

for A(s;c,g) == (s2M + sD(c, g) + K) ' . We see that the system response depends on
the second-order controllability Gramian P.(c, g) defined in (2.26). Hence, we can
utilize the second-order structure of the underlying system to compute and approximate
the system response values.

We also rewrite the system response for a system (1.4) with a quadratic output equa-
tion as

3@(07 9) ::HSQ(';Ca 9)”3{2
1 oo
=5 tr (BTA(iw; c, g)HMHPpos(c, g)M1; A (iw; e, g)B) dw; (6.7)
7T —00
= tI‘(P)pos(cv g)MllppOS(C7 g)Mll) .

Again, the system response representation depends on the second-order controllability
Gramian P (¢, g).

In both cases, the system response representation includes the Gramian Pu(c, g),
which is computed by solving a Lyapunov equation. Hence, in every step of the opti-
mization process such a matrix equation needs to be solved, which leads to high com-
putational costs. Therefore, we attempt to approximate the system response values,
including the second-order controllability Gramian, using the RBM presented in Sec-
tion 5.2.

Within the RBM we build a basis Vg, € R™™" that approximates the respective
controllability space, i.e.,

Pros(c,9) 2 Pros(c, 9) = Vio Prosi(c, 9) Vi (6.8)

SO,I

holds for suitable matrices Ppos,(c,g) € R™" of small dimension r < n that are com-
puted as shown in (5.42). This Gramian approximation is then used to approximate the
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6.2 Damping optimization in the second-order representation

system response as

3L(C7 g) = tr((jl]-:)pos(c> g)CFlr) ~ tr(C1VSO7rPPOS7r(C’ g)V;E),rCrlr) ’
HQ(C7 g) == tr(MHPpos(Ca g)MHPpos(Cv g)) (69)
~ tr (Mllvso,eros,r(C7 g)V;l;JMlleo,eros,r(Ca g)VT ) :

SO,r
In the following, we derive different RBMs to compute the system response approxi-
mations from (6.9). First, in Section 6.2.1, we apply the RBM presented in Section 5.2
and derive suitable error approximations. Afterwards, in Section 6.2.2, we introduce
an adaptive scheme to build the reduction basis V., and finally, in Section 6.2.3, we

extent this adaptive scheme using the decomposed controllability space representation
from (5.49).

6.2.1 Damping optimization for second-order systems using an
offline-online RBM for second-order systems

In this subsection, we apply the RBM, introduced in Section 5.2.1 and Section 5.2.3, to
approximate the system responses J.(c, g) and Jqo(c, g). Therefore, we use one of the
offline-online schemes derived in Section 5.2, where we generate a basis Vg, so that
(6.8) holds. The basis Vg, is generated in the offline phase using Algorithm 16 or
Algorithm 17. After building such a basis V,,, we define the reduced system responses

gL,r(Cv g) = tr<(31\[so,r]-:)pos,r(C7 g)VT ClT)a

so,r

3Q,r<c7 9) = tr<VT Mllvso,eros,r(ca g)VT Mllvso,eros,r(C7 g))7

SO,r so,r

(6.10)

where P, (c, g) is the upper-left block of P, (c, g) from (5.42) which solves the reduced
Lyapunov equation (5.9). After determining the basis Vg, ,, we compute the reduced
matrices C;Vy,, and VSTOJMHVSOJ as these matrices do not change in the online phase
and are used multiple times.

Afterwards, in the online phase, we apply an optimization method to minimize the
reduced system responses from (6.10). Within the optimization process, we solve a 2r
dimensional Lyapunov equation (5.42) for every considered parameter instead of solving

a 2n dimensional Lyapunov equation, which accelerates the optimization process.

Error approximation When we apply the offline-online RBM introduced in Section 5.2.1,
for the linear output case, we can tailor the error approximation A¢_ (¢, g) to evaluate
the error in the system response, i.e.,

QEHL(C7 g) = |3L(C7 g) - HL,r(Ca g)|
tr(C1Ppos(c, 9)CY) — tr (le’pos(c, g)C1T> ‘ = ) tr(C1 € (c, g)C1) "
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6 Damping optimization

for &,,(c,g) as defined in (5.43). Also, for the quadratic output case, we can derive the
error

GHQ(C7 g) = HQ(Q g) - 3Q,r<c, g)
=tr (Mllf)pos<c> g)Mllf)pos(Ca g)) —tr (Mllf)pos(cv g)Mllf)pos(Ca g))

= tr(Miy (Pyon(c,0) — Pren(e:9)) Mir (Pre(e 9) + Pyos) )

(M1 (Ppoa(c.9) = Poos) Mt (Pposle 9) = Pra(c,9) + 2Pyes(c,9)) )

= tr<M11Q3so(C7 g9)Mu, <QESO(C, g) + 2i:V)pos(Q 9))) )

We notice that, the error €, (c, g) is needed to compute the errors €, (c, g) and €y, (c, 9).
Hence, we apply a second EE-RBM to find an approximation &g, (c,g) ~ €y (c,g) as

introduced in Algorithm 16. Using the error approximation &g, (c,g) from (5.45), we
derive the error approximations

)

Ay, (c,g) = |tr <C1TEESO(C, g)C?)

AgQ(c, g) = ’ tr <M11 Eso(c, 9) My (Qfso(c, g)+ Qf’pos(c, g)))

(6.11)

9

which are used instead of the approximation Ae_ (c,g) from (5.46).

6.2.2 Damping optimization for second-order systems using an
adaptive RBM for second-order systems

As explained in the previous section for first-order systems, we can use an adaptive
scheme to build the basis V4, so that we do not need prior knowledge about the pa-
rameter domain D. The idea of the adaptive RBM is to enrich the basis V,, within the
optimization process when the current approximation of the system response, described
in (6.10), is not sufficiently good. Consequently, there is no decomposition into an offline
and an online phase.

We select a parameter (cg, go) as the initial value for the optimization process and de-
termine a low-rank factor Zg,(co,go) that is either Zg pr(co,g0) from (5.39) or
Zso1rKA(Cos go) from (5.40). We set the first basis to be Vg, = orth(Zs,(co, go)) and
define the respective reduced system response (6.10). The function that is optimized
is defined in Algorithm 21. In every iteration of the minimization, we query the error
approximation A(c, g) of the current parameter (c, g) as described in Step 2. If the error
approximation is smaller than a given tolerance, we proceed with the function evalua-
tion. In Step 5 and 6, we determine the resulting function value gy, ,(c, g) or Jq.(c, g) as
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6.2 Damping optimization in the second-order representation

defined in (6.6) or (6.7), respectively, and continue with the minimization. On the other
hand, if the error approximation is larger than the tolerance, we know that the current
basis V,, does not approximate the controllability space of the systems (1.3) and (1.4)
for the current parameter (¢, g) sufficiently good. Hence, we return that the minimiza-
tion did not converge and enrich the basis Vi, . Therefore, we compute Zg,(c, g) that is
either Zs, pr(c, g) from (5.39) or Zs, mka(c, g) from (5.40) and define the updated basis

Vso,r = Ol“th( [Vso,r Zso(ca g)] )

Consequently, we obtain a new optimization problem (6.10) that is defined using the
new basis Vg, . Since the optimized function depends on the current basis V,,, which
changes during the optimization procedure, convergence problems may occur. Hence,
we start a new optimization procedure whenever we enrich the basis and use the current
parameter (c, g) as the initial value. We continue with this procedure until the optimum
is reached.

Algorithm 21 Reduced second-order system response.

Input: MK € R D : D — R™ B € R™" C; € R or My; € R™™,
parameter (c, g), basis Vg, tolerance tol.

Output: Energy response Jy,.(c, g) or dq.(c, g), variable conv.

Set conv = true.
if A(c,g) > tol then
Set conv = false, J.(c, g) = oc.
else
Solve the reduced Lyapunov equation (5.9) to obtain P.(c,g) including
Pposvr(cv g)
Compute Jr,.(c, g) or Jq.(c, g) as defined in (6.10).
7: end if

2

Error approximation Finally, we introduce the error approximation A(c,g) that is
used in the adaptive scheme. We follow the same idea as in Section 5.2.1 to generate a
basis Ve that spans an approximation of the error space. Therefore, we run a second
EE-RBM to generate such a basis Vg, e that is enlarged whenever the basis Vg, is
expanded. In this way, the error approximation, and thus the error approximation from
(6.11), becomes more accurate the closer we get to the optimizing parameter. Using the
bases V., and Vo, We define the error approximations Ag, (¢, g) or Ay, (c,g) from
(6.11).

The detailed procedure is described in Algorithm 22. When we determine the first
basis Vg, = orth(Zs,(co, go)), we solve a second Lyapunov equation in an arbitrary
parameter (cf, g5) with (cf, g5) # (o, go) to obtain the solution Zg,(cp, g5). To limit the
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6 Damping optimization

Algorithm 22 Adaptive second-order RBM.

Input: MK € R, D : R’ x N, — R"™*", B € R™", C;, € RP*" or M, € R"™",
tolerance tol.
Output: Minimizer (¢, g°P"), energy response J,,(c°", g°**) or Jq,(c°P", g°°").

1:
2:

Choose (co, 90), (¢b, 95) € Drest With (¢, g) # (', g").

Compute Zs,(co, go) that is either Zg, gpr(co, go) from (5.39) or Zg, mrika (o, go) from
(5.40).

Set Vo, 1= orth(Zs,(co, 90))-

Compute Zs(cf, g5) that is either Zg, gr(cf, g5) from (5.39) or Zg, mka(ch, g5) from
(5.40).

Set Vo err = 0rth([Zso(co, 90)s Zso(ch, 95)])-

6: Find the minimizer (c°P*, g°?*) of the function Algorithm 21 using fminsearch and

10:
11:

12:
13:

14:

obtain Jy, . (c°P", g°P") or Jq.(c°P", g°P"), and conv.
while conv = false do

Compute Zg, (P, ¢g°P*) that is either Zg, pr(c°®*, ¢°®") from (5.39) or
Zo 1rKa (P, g°P") from (5.40)

Set Vo 1= orth([Vior, Zso(c°PF, g°PY)]).

Determine (c, g*) := argmax, ycp., |MRsor(c, 9)lr-

Compute Zg,(c', g*) that is either Zg, gr(c", ¢") from (5.39) or Zg, rxa(c', g*) from
(5.40).

Set Voerr = orth([Vsoerrs Ziso(¢PY, g°PY), Zgo (', g")]).

Find the minimizer (¢°P*, g°P*) of the function Algorithm 21 using fminsearch
and obtain Jp (¢, g°?*) or Jq (¢, g°"), and conv.
end while
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6.3 Numerical results

possibilities of choosing (cf, g;), we again define a finite subset Doy C D and pick the
parameter (cp, gp) from this finite set Dreg. We use the solution Zg, (¢}, gf) and the basis
Vo, to obtain the first error equation basis

Vso,err = Orth([vso,ra ZSO<CB7 g(r))]) = Orth([zso(007 90)7 ZSO(CB7 g[r))])

Using the bases Vg, and Vg, e, we compute the error approximation Ay, (c,g) or
Ay, (c,g) as in (6.11). Again, we choose in Step 12 the parameter (c', g) € Doy that
results in the largest residual

(Cra gr> - argmax(c,g)EDTest HmSO,F(C) g) ||F

with M. (¢, g) = NRi1(c, g) as defined in (5.44).

6.2.3 Damping optimization for second-order systems using an
adaptive RBM with a decoupled controllability space for
second-order systems

Finally, we can combine the adaptive RBM from Section 6.2.2 with the decoupling of the
second-order controllability space presented in Section 5.2.2. For that we again initialize
a basis Vg, = orth(Zs, 5) where Zy, 5 is a basis that spans an approximation of the
controllability space of the second-order system (5.52) with no external damping. We
obtain such a basis either by computing Zg, s gr from (5.53) or by computing Z, s rka
from (5.56a). Using the basis Vg, we define the reduced optimization problem from
(6.10) and run the optimization method to optimize the function defined in Algorithm 21.
If the output conv is equal to false, the current basis V,, does not approximate the
controllability space for this parameter sufficiently well. Therefore, we enrich the basis
Vo: by asecond basis Zg, x(c) that approximates the controllability space of the system
(5.54) in c. For that we use Zg, x(c) that is either equal to Zg, ¢ pr(c) as defined in (5.55)
or Zsor1rka(c) as defined in (5.56b). After we built the new basis Vi, , as

Vso,r = Ol'th( [Vso,r ZSO,F(C)J )

we define a new reduced optimization problem (6.10) and start an optimization process
with (¢, g) as initial parameters as described in Algorithm 23. We continue this process
until conv = true. We want to emphasize that we do not need a given parameter set D
to apply Algorithm 23, which is advantageous compared to the previous methods.

6.3 Numerical results

In this section, we apply the different reduction strategies for optimizing external dampers
to selected examples. For that, we first consider vibrational systems, where only the
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6 Damping optimization

Algorithm 23 Adaptive second-order RBM using a decoupled controllability space.
Input: M,K € R, D : R’ x N\ — R™" B € R"™™, C; € RP*" or My; € R™",
tolerance tol.

Output: Minimizer (c°P*, g°®"), energy response Jp, . (c°P", g°") or Jq.(c°Pt, g°P*).

1: Compute the basis Zs, g that is equal to Zs, g pr as in (5.53) or Zg Birka 23S in
(5.56a).

2: Set Vg, := orth(Zs, ).

3: Find the minimizer (¢°P*, g°?*) of the function Algorithm 21 using fminsearch and
obtain gy, ,(c°®", g°P") or Jq.(c°P", g°**), and conv.

4: while conv = false do

5: Compute the basis Zg, r(cP') that is equal to Zg,ppr(c®") as in (5.55) or
Zgo r1rKA (C°PY) as in (5.56Db).

6: Set Vo := 0rth([Visor, Ziso r(c)]).

7 Find the minimizer (¢°P* g°P*) of the function Algorithm 21 using fminsearch
and obtain Jp (¢, g°?*) or Jq (P, g°"), and conv.

8 end while

damper’s viscosities are optimized as presented, e.g., in [107, 140]. Afterwards, we
optimize the damper’s positions while fixing the damper’s viscosities, and finally, we
optimize both parameters simultaneously. Optimizing the first-order representation of
vibrational systems (1.3) and (1.4) leads to slower results and computational problems
since reducing the first-order matrices € and A(c, g) from (1.7) can lead to reduced
matrix pencils AE, — A, where the eigenvalues \ have a nonnegative real-part. Then,
the respective Lyapunov equation is not uniquely solvable. Therefore, we only consider
the second-order representation and use the first-order reducing basis V, as defined in
(5.41).

In this section, we illustrate the accelerations that arise when we apply the methods
presented in this work to optimize the external dampers. We run the four different
algorithms derived in Section 6.2, each with a Gramians-based basis building and with
an IRKA-based one. Hence, we evaluate the offline-online RBM from Algorithm 16 us-
ing Gramians (off-on RBM BT) and using the IRKA method (off-on RBM IRKA). Also,
we evaluate the offline-online RBM using the decomposition introduced in Section 5.2.2,
which leads to Algorithm 17 using again Gramians (dec off-on RBM BT) and the IRKA
method (dec off-on RBM IRKA). Moreover, we apply the adaptive scheme from Algo-
rithm 22 using Gramians (adpt RBM BT) and using IRKA (adpt RBM IRKA) and the
respective decomposed controllability space in Algorithm 23 using Gramians (dec adpt
RBM BT) and the IRKA method (dec adpt RBM IRKA).

The computations have been done on a computer with 2 Intel Xeon Silver 4110 CPUs
running at 2.1 GHz and equipped with 192 GB total main memory. The experiments
use Matlab 2021a, and the Lyapunov equations were solved using methods from M-
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Figure 6.1: Example 6 - Sketch of the system including one row of masses connected by
consecutive springs.

M.E.S.S.-2.1., see [114]. All results are available at [103].

6.3.1 Damping value optimization

First, we consider examples where we optimize the dampers viscosities. We evaluate
two examples of second-order structure, where the first example has a quadratic output
equation as presented in (1.4) while the second example evaluates a linear equation as
output so that we consider a system of the structure (1.3).

Example 6 First, we consider a vibrational system (1.4) with a quadratic output
equation. It was introduced in [140] and arises in mechanical constructions with n
consecutive masses. Each mass m; is connected to the direct neighbor masses m;_; and
mji1 by springs with stiffness values k; and k;,,. Additionally, each mass is connected
by springs with stiffness values k;_; and k;;5 to the masses next to the neighbor masses
mj_o and m;; 2. The outermost masses are connected to fixed objects via springs with
constants 2k, and 2k, ;. This construction is depicted in Figure 6.1 and results in the
following mass and stiffness matrix

M = diag (mq, ..., my,),
[2k1 + 2ky  —ky —ky i
—ky  2ko+2ks  —ky —ky
—]'Cg —k’3 2]{33 + 2k4 —k4 —k?5
Win_o + 21 ks .
—kp1 i1 + 2k, —k,
—kyy o —k, 2en, + 2kpi1
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6 Damping optimization

We consider an example of dimension n = 1900 with stiffness constants k; = 500, j =
1, ..., n. The mass values are chosen as

=g =141,
’ L4125  j=476,...,1900.

The internal damping Dy, is built as described in (1.2) where the scaling factor is
a = 0.005. We consider external disturbance forces that attack at the sequential masses
from my7; to mugg. Hence, in the input matrix B the values at positions 471 to 480 are
set to be

B(471 : 480, 1 : 10) = diag (10, 20, 30, 40, 50, 50, 40, 30, 20, 10).

The remaining entries of B are equal to zero. Consequently, we have a (n x 10)-
dimensional input matrix B, where the highest magnitude of disturbance is applied
to the mass in the center, whereby the disturbance magnitude gets smaller in the outer
masses. To observe the system behavior, we consider the displacement of the states
T100(t), ®a00(t), - .., T1800(t). In contrast to the example in [110], we consider a quadratic
output equation. Hence, the output matrix My, has zero entries everywhere except on
the positions
(100, 100), (200,200), ..., (1800, 1800),

where the entries are equal to one. We consider four dampers on the positions j, j +
1, k, k+ 1 where j and k can take the following values

{(j,k) | 7 € {50, 150, 250, 350}, k € {850, 950, ..., 1850}}.

Hence, we evaluate the system for 44 possible damping configurations. For each damping
configuration, we optimize the damping values individually. The damping gains g consist
of two values g; and g where the dampers on the j-th and the (j41)-th position have the
damping value ¢g; and the dampers on the k-th and the (k4 1)-th position the damping
value go. We assume that the damping values ¢g; and g5 lie in the interval [500,4000].

To optimize the damping gains for the different damping configurations, we use the
Matlab function fminsearch where we stop the minimization process if the difference
between two successive function values or damping viscosities is smaller than a tolerance
tol = 10~*. We start the optimization process at gy = [1000 1000}T for all damping
configurations. To solve the Lyapunov equations from (1.8), we use the sign-function
method presented in Section 2.3.2 with tol = 107% and a maximum iteration number of
iterymax = 10 because of the fast dimension growth within the method. As test-parameter
set Drege, we use 36 uniformly distributed parameters in [500,4000] x [500, 4000].

To show that the error approximations Ae,, (¢, g) and Ay, (c, g) from (5.46) and (6.5),
respectively, approximate the error well, we evaluate the quality of the error approxi-
mation in Figure 6.2 after the first step of the offline-online RBM for the 11-th damper
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configuration. We observe that the relative error in the position controllability Gramian
IE11(c, ) /P pes (e, 9) s and the corresponding approximation |[Ex (¢, 9) [/ [ Pyos(c, )¢
are very close to the actual error. On the other hand, the energy response is underes-
timated as we evaluate an error approximation and not an error bound. However, for
our purposes, the quality was good enough as the error in the energy response and its
approximate value have a similar order of magnitude.

1074 | TN (G By (9)CT) /1r(C P (g) CY)
—tr(C1E(g)C})/tr(C1P(9)C])

1072 = S

1E11(9)[[5/[P11(9)]|p
Il 1E11(9)[[5/[1P11(g)]lp
10=7

errors/error estimators

0 5 10 15 20 25 30 35
test parameter

Figure 6.2: Example 6 - Errors approximations for the first damping configuration and
the first step of the reduced basis method.

Since the initial value gq is known, we choose this parameter as the first one evaluated
within the RBM. The first parameter g used to derive a first error equation basis is
chosen to be gj = [100 100] within the offline-online RBM and the adaptive RBM
schemes.

The relative errors between the optimal damping gain and the approximations ob-
tained using the methods presented in the previous sections are presented in Figure 6.3.
We observe that all methods approximate the optimal viscosity well. However, the
methods dec off-on RBM BT and dec adpt RBM BT each lead for one configuration to
an error larger than the tolerance of tol = 1072. We observe that all of the methods
approximate, on average, the optimal viscosities sufficiently good, while the methods
using IRKA lead to even better results for this example.

We also evaluate the optimization times, which include the offline and the online
phases when considering the offline-online schemes and the overall methods when adap-
tive procedures are applied. We determine a low-rank factor of the solution of the
Lyapunov equation (1.8) for the undamped system that is added to all bases considered.
Since this low-rank factor is computed beforehand, the computation time of 39 seconds
is not taken into account in any of these methods. We compare the optimization times in
Figure 6.4 and the respective acceleration rates for the different methods in Figure 6.5.
The Matlab-solver lyapchol is used to solve the Lyapunov equations from (1.8). The
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adpt RBM BT

-~dec adpt RBM BT
off-on RBM BT
dec off-on RBM BT
off-on RBM IRKA
dec off-on RBM IRKA
—adpt RBM IRKA

: dec adpt RBM IRKA

error

Configuration

Figure 6.3: Example 6 - Viscosity errors

average errors and acceleration rates are summarized in Table 6.1. We observe that the
off-on RBM BT and dec off-on RBM BT lead to the fastest results.

Errors Acceleration rates
off-on RBM BT 1.64-1073 138
off-on RBM IRKA 2.82-1074 38
dec off-on RBM BT 1.64-1073 138
dec off-on RBM IRKA | 2.82-107* 38
adpt RBM BT 1.64-1073 79
adpt RBM IRKA 3.09-107% 38
dec adpt RBM BT 2.50- 1073 76
dec adpt RBM IRKA 3.28-1074 47

Table 6.1: Example 6 - Comparison of the different algorithms.

We want to mention that the adaptive method is still advantageous since we do not
need a parameter set D in advance for it. Only for the error approximation, the test-
parameter set Do C D is needed that can be replaced by choosing arbitrary param-
eters. In particular, when using the decoupled controllability space and the respective
error indicator Ap,, from (5.57), no prior knowledge about the parameter set is required.
In Figure 6.6, the function values for all 44 damping configurations are evaluated. We
observe that the optimal damping configuration is the 34-th one, which has the damping
positions 7 = 350, k = 850.
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time
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--dec off-on RBM BT
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dec adpt RBM BT
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dec adpt RBM IRKA

Figure 6.4: Example 6 - Optimization times
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Configuration

adpt RBM BT
~-dec adpt RBM BT
off-on RBM BT
dec off-on RBM BT
off-on RBM IRKA
—dec off-on RBM IRKA
—adpt RBM IRKA
dec adpt RBM IRKA

Figure 6.5: Example 6 - Acceleration rates

Configuration

Figure 6.6: Example 6 - Function values

E

= 107

%101,

=

2 1000 & 12 15 20 21 3% 32 36 40 4
& 0 4 8 12 16 20 24 28 32 36 40 44

Example 7 The second example that we consider contains a mass oscillator with 2d +
1 = n masses and n+2 springs that result in a system (1.3) with a linear output equation

as depicted in Figure 6.7. There are two lines of d consecutive masses my, ...

, mg and
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Figure 6.7: Example 7 - Sketch of the system including two rows of masses connected
by consecutive springs.

Mgy1, --., Mog, which are connected by springs. The springs of the first line have all the
stiffness value k;, and the springs in the second line have the stiffness value ks, where
the masses my and mgy, 1 are connected with these springs to a fixed object. The masses
mg and myy are connected to a mass mogr1 = m,, by springs with stiffness constants k;
and ks while the mass m,, is connected to a fixed object via a spring with a constant
ki + ko + k3. This construction results in a stiffness matrix

(2 1 | 0
Kll F.',l —]. 2 —1 :
K= Ko K2 , Ky =k C k=]
KT Ky ki + ko + ks 1 2 -1 N
-1 2 3

for 7 = 1, 2. We choose the dimension to be d = 1000, n = 2001 and set k; = 400,
ko = 100, k3 = 300. The n = 2d + 1 mass values are chosen as follows

100 — &, j=1,...,500,
m; = % + 33, j =9501,...,1000, mago1 = 100.
100 — (j — 99) 2 + U299 - — 1001, ., 2000,

The internal damping Dy, is built as described in (1.2) with the scaling o = 0.003.
Additionally, some disturbances affect 21 masses. The effect on the masses is described
by the matrix B € R™*?! that consists of zero entries except for the following entries

B(1:10, 1:10) = diag (1000, 900, ..., 100),
B(1001 : 1010, 11 : 20) = diag (1000, 900, . .., 100),
B(2001, 21) = 2000.

As output, we observe 42 masses, or more detailed, the displacements of the masses
490 to 510 and those of the masses on positions 1490 to 1510. This is described by the
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output matrix C € R*2x":
C(490 : 510, 1 : 21) = I, C(1490 : 1510, 1 : 21) = I.

In this example, we consider four damping values that are optimized. We consider
two dampers in the first row that are between the masses m; and m,y5 and between
the masses mji99 and mjio5. For the second row, we follow the same pattern and
add two dampers between the masses m; and my.5 and between my o9 and myos.
Consequently, we optimize four damping values g1, ¢», g3, ¢4 that are saved in g € R*.
The corresponding damping position matrix is then of the form

F= [ej —€j45 €j420 — €425 €k — €k45 €k420 — €k+25} )
where j and k are from the sets
{(j, k) | j € {250, 450, 650, 850}, k € {1150, 1250, 1350, 1450, 1550, 1650, 1750} } .

This setting leads to 28 damping configurations. We assume that the damping values
g1, G2, g3, g4 lie in the interval [350,7000]. For the optimization process we set the tol-

erance of 5-107* and start the optimization process at gy = [1000 1000 1000 1000}T
for all damping configurations. The tolerance for the function value error that indi-
cates whether a basis V,, is sufficiently detailed is tol = 1072. As test-parameter
set Dot for the reduced basis method we use 21 uniformly distributed parameters in
[350, 7000]*. The first parameter g used to obtain a first error equation basis is chosen
to be gj = [100 100 100 100] within the RBM and the adaptive RBM schemes.

We evaluate the quality of the error approximations Ae, (c,g) and Ay, (c,g) from
(5.46) and (6.5), respectively, after the first step of the reduced basis method for the
fifth damper configuration in Figure 6.8. We observe that the relative errors in the
position controllability Gramian and the corresponding approximation are very close, so
the error is well approximated.

In Figure 6.9, we evaluate the relative errors in the damper’s viscosities for all con-
sidered methods. We observe that most of the methods approximate, on average, the
optimal viscosities sufficiently good. However, the IRKA methods using a controllability
space decomposition fail in approximating the original system behavior.

Additionally, we evaluate the optimization times. Outside of the applied methods,
we determine a low-rank factor of the solution of the Lyapunov equation (1.8) for the
undamped system. This low-rank factor is included in all the bases and is not taken
into account in the time measures. This solving takes 55 seconds. We compare the
optimization times and the acceleration rates for the different methods in Figure 6.10
and Figure 6.11, respectively. The average errors and respective acceleration times for
all the methods are summarized in Table 6.2. We observe that for this example the
Gramian based methods provide better approximations and acceleration times. The
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Figure 6.8: Example 7 - Errors approximation for the first damping configuration and
the fifth step of the reduced basis method.

IRKA methods that use the decomposed controllability space even fail in approximating
the optimal damping values.

Errors Acceleration rates

off-on RBM BT 8.08-1073 209
off-on RBM IRKA 1.17-1072 43
dec off-on RBM BT 8.08 1073 209
dec off-on RBM IRKA | 2.93-107! 5

adpt RBM BT 8.08-1073 95
adpt RBM IRKA 1.17-1072 43
dec adpt RBM BT 2.13-1072 148
dec adpt RBM IRKA 2.93-1071 5

Table 6.2: Example 7 - Comparison of the different algorithms.

In Figure 6.12, the function values for all 28 damping configurations are evaluated. The
optimal damping configuration is the 25-th one corresponding to the damping positions
J =850, k = 1450.
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6.3.2 Damper position optimization

In this section, we apply the methods that are presented above to two numerical examples
where the dampers’ positions are optimized. For both examples, we first optimize only
the damper’s positions while considering fixed damping gains. Afterwards, we optimize
simultaneously the positions and damping gains.

A difficulty in optimizing the position of dampers is that the positions are discrete val-
ues. Hence, the authors in [157] reformulate the optimization problem to apply standard
optimization methods. Therefore, we define the function

J(e,9) = JI([c],9) = I([ca], -y [ee)s g1, -+ 90) (6.12)

that is a continuous function. This function is optimized in the following as we can
apply, e.g., the Nelder-Mead method encoded in the Matlab function fminsearch to
minimize (6.12).

We define a second function that assumes that the damping gains ¢* = [¢7,...,9;] €
R’ are given and fixed, that is

Jpos(¢) := I([el, g7) = I([ea], - [ed) 00 -5 90)- (6.13)

Optimizing this function using standard optimization methods such as fminsearch
might cause convergence problems if the step size is too small because of the jumps
in the function values in the function definition from (6.13). Hence, we modify this
function to make the function values continuous. We first consider the case where we
only have one damper with the position ¢ € D, C R. We split the current position value
c = ™ + ¢4 where ¢ := |c| and ¢ = ¢ — ¢™. The corresponding function value is
then defined as

/jpos(c> — (1 - CdeC)J<Cint,g*) +CdeCJ<Cint + 179*)a

which provides a linear interpolation between the function values corresponding to two
discrete damper positions.

This idea is now generalized for ¢ dampers, i.e., ¢ € D, C RY. We define for ¢ =
[c1, ..., ¢l the values

. int dec : int . ) dec __ , _ _int s
Cji=c T+ with c; = LCJJ, C; =6 — ¢, forj=1,...,¢
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Figure 6.13: Example 8 - Sketch of the system including one row of masses connected
by consecutive springs.

Accordingly, we define the time continuous function values as

‘/]\pos(c) = (1 - C(liec) T (1 - Cgec)']([cilntv s 7ciént]vg*)
+ C?ec(l - Cgec) e (1 - Cgec)']([cilnt + 1, CiQHtv R Ciﬁnt]vg*)

+ (1 - C(liec) T (1 - C?ECI)C?eCJ([Cilntv S 7Cianl7 Ciént + 1]7.9*)

4 (1 — o) e . o e[t it +1,. .., dM + 1], g%)
+ c(liec """" c?icl(l - C?GC>J([Ci1nt + 17 te 7Ci€n—t1 + 17 Cient]ﬂ g*)

ot I ([d 1Ll 1, g).

We observe that the computation of the function values of 3pos(c) is only accessible for
a small number of external dampers or small system dimensions since the number of
function evaluations rises exponentially with the numbers of dampers, where we need 2°
Lyapunov equation solves if £ is the number of the dampers.

In our examples, the function defined in (6.12) does not have a converging problem,
which is why we apply the function reformulation into jpos only for the case of fixed
viscosities. When viscosities and positions are optimized, such an approach is not needed
for the examples considered in this work.

When applying the methods off-on RBM BT, off-on RBM IRKA, adpt RBM BT, and
adpt RBM IRKA, we use the error approximation Ay, or Ay, from (6.11) depending on
the considered model. On the other hand, we use the error indicator Ap, from (5.57),
when the methods dec off-on RBM BT, dec off-on RBM IRKA, dec adpt RBM BT, and
dec adpt RBM IRKA are applied.

Example 8 The example, we consider in this paragraph, is described in Figure 6.13.
We evaluate a system (1.4) with a quadratic output matrix where the mass matrix is
defined in Matlab notation as

M = sparse(diag([logspace(—1,1,n/2),flip(logspace(—1,1,n/2))])).
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6 Damping optimization

The matrix M leads to mass values between 0.01 and 0.1. The highest mass values are
attained at the middle masses. The outermost masses have the smallest mass values.
Moreover, the stiffness matrix is given as

24 —920
20 40 —20
K= —20 40 —20

We build the internal damping matrix D, using a multiple of the critical damping with
a = 0.005, as described in (1.2). The dimension is n = 1000, so the Lyapunov equations
of dimension 2n = 2000 need to be solved multiple times. Additionally, the input matrix
is defined as a zero matrix beside the entries

B(1,1)=1, B(500,1) =1,  B(1000,1) = 1.

Therefore, an external force is applied to the first, the middle, and the last mass. As
output, we consider a quadratic function defined by an output matrix M with subma-
trices M1, M5 = 0, and My, = 0, where M;; has everywhere zero entries besides on
the (10, 10), (500,500), (990,990) positions where the entries are equal to one so that
the output is equal to yqo(t) = x10(t)? + X500()* + Xg90(t)?.

We apply two grounded dampers at positions k and j so that ¢ = [k, j] and F(c) =
lex, €], where ), and e; are the k-th and the j-th unit vector. We apply the Nelder-Mead
method to optimize the system response as defined in (6.13), which is implemented by
the Matlab function fminsearch. We stop the optimization process when the relative
error in the function values or difference between two consecutive values is smaller than
the tolerance toly,, = 1077.

We run the four different algorithms derived in Section 6.2, each with a Gramian-
based basis building and with an TRKA-based one. For both error approximations Ay,
form (6.11) and Agp, from (5.57), we use a tolerance of tol = 1072 to quantify whether
the current basis is sufficiently good. Moreover, if Ag, (c,g) from (5.46) is smaller than
the tolerance tol = 1072, we stop the method.

Example 8a: Position optimization First, we only optimize the positions of the
two dampers and set the damping gains to be the fixed values g; = go = 1000. The
initial positions are co = [50,90]. The respective timings and errors are evaluated in the
following. In Figure 6.14, the different optimal positions derived using the full-order
model and the reduced models are depicted. We see that the positions are approximated
well by our methods except for the RBM methods using the decomposed controllabil-
ity space. We observe that, in particular, when using the offline-online BT method to
generate the basis and the adaptive methods using the respective controllability space
decompositions, the approximations are not accurate enough. These relations are de-
picted in Figure 6.15, where we show the respective errors. Figure 6.16 depicts the
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Figure 6.14: Example 8a - Position values.
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Figure 6.15: Example 8a - Position errors.
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Figure 6.16: Example 8a - Dimensions, times, and acceleration rates.
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Figure 6.17: Example 8b - Position values.

dimensions, optimization times, and respective acceleration rates that result from the
presented methods. The optimization times include the basis building, as well as the
optimization of the dampers’ positions. Moreover, we present the dimensions of the
final reduced systems. We observe that the dimensions of the reduced systems are sig-
nificantly smaller than the dimensions of the full-order model, where we emphasize that
for every reduction approach, the Gramian based methods lead to faster results than
the IRKA based ones. Also, we observe that the decomposition of the controllability
spaces leads to faster results as the respective Gramians have the smallest dimensions.
However, these small dimensions lead to the largest approximation errors.

Example 8b: Position and viscosity optimization Moreover, we optimize the
damper’s positions and the corresponding gains simultaneously. The initial positions
are again chosen to be ¢y = [50,90], and the initial gains are go = [1000, 1000]. The re-
spective positions and gains are depicted in Figure 6.17 and Figure 6.18. Furthermore,
the respective errors are shown in Figure 6.19. The bar plots that cover the complete
range of the y-axis indicate that the respective error is equal to zero. We observe that
the positions are well-approximated or even coincide with the optimal positions of the
full-order system. Also, the viscosities are approximated well by the different meth-
ods, since all errors are smaller than 1.6 - 1072 which is less than 0.16 percent. In
Figure 6.20, we depict the dimensions, optimization times, and respective acceleration
rates corresponding to the full order and reduced surrogate models. We see that the
different reduction approaches accelerate the computations significantly. In particular,
the offline-online methods using the BT method to build the basis (with and without a
decomposed controllability space) lead to the highest acceleration rates for this exam-
ple. The offline-online method using the IRKA method and a decomposed controllability
space leads to the smallest acceleration rates for this example. However, all the methods
are doing sufficiently well.

Example 9 In this subsection, we investigate a system with three rows of masses
connected by springs as depicted in Figure 6.21. The masses are given as described by
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Figure 6.20: Example 8b - Dimensions, times, and acceleration rates.
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Figure 6.21: Example 9 - Sketch of the system including three rows of masses connected
by consecutive springs.
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the Matlab expression

M = 1e4 x sparse(diag([logspace(—1,1,ceil(n/2)),
flip(logspace(—1,1,floor(n/2)))]));

while the stiffness matrix is built as

T -
Ku K1 -1 2 -1
K — Ko Ko 7 K, =k, € RO
K33 %]
/<Lr1r Hg Iig /€1 + kg + /{73 + /{Z4 —1 21 _21
with x; = [O - 0 ki}T and k; = 20, ko = 10, k3 = 5, ky = 20. We consider a system
of dimension n = 601 = 3d + 1, d = 200 so that we have to solve Lyapunov equations of
dimension 2n = 1202. The input matrix is chosen to be B = —ones(n, 1). We consider

a linear output equation defined by the the output matrix C, which is the zero matrix
of dimension 3 x n with non-zero entries

C(1,10) =1,  C(1,450) =1,  C(1,891) = 1.

We assume that there are three grounded dampers so that F = [e;, e;, €] for i, j, k €
{1,...,n}.

Example 9a: Position optimization Again, we initially consider the case where we
only optimize the damper’s positions. We stop the optimization process when the relative
error in the function values or the difference between two consecutive values is smaller
than the tolerance tol,,, = 1072, The corresponding results of the position optimiza-
tion are given in Figure 6.22, where we chose the initial positions co = [100, 300, 500].
We observe that the positions obtained by optimizing the full-dimensional problem are
still approximated well enough, in the sense that the error is smaller than 1.3 - 1072
that is 1.3% for all the methods as shown in Figure 6.23, where we depict the resulting
errors of the position optimization. Moreover, Figure 6.24 show the resulting dimen-
sions, optimization times, and the acceleration rates, respectively. We observe that the
offline-online scheme using the BT or the IRKA method, and the decoupled controlla-
bility space are leading to the highest acceleration rates. Also, the adaptive method
using the IRKA method and the offline-online methods using BT or IRKA without the
decomposition in the controllability space lead to dimensions that are almost as large as
the original ones. For these cases, the acceleration rates are rather small.
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Figure 6.23: Example 9a - Position errors.
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Figure 6.25: Example 9b - Position values.
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Figure 6.26: Example 9b - Viscosity values.

Example 9b: Position and viscosity optimization Moreover, we optimize the
damper’s positions and the corresponding gains simultaneously. The initial positions are
chosen to be ¢y = [100, 300, 500], and the initial viscosities are go = [1000, 1000, 1000].
The respective positions and gains are depicted in Figure 6.25 and Figure 6.26, respec-
tively. Furthermore, the position and viscosity errors are shown in Figure 6.27. In
Figure 6.28, we depict the dimensions, optimization times, and respective acceleration
rates corresponding to the full-order and reduced surrogate models. This example shows
vividly the limitations of our method. The method (adpt RBM IRKA) that approximates
the original positions and values so that they coincide with the original ones, requires
reduced a dimension of 571 which is almost as large as the original one, and hence,
no acceleration is achieved. The method (dec off-on RBM BT) leading to the highest
acceleration rates of 83 leads to position approximations around 10% and does not ap-
proximate the viscosities sufficiently. However, we observe that all methods can give a
rough estimation of the optimal positions of the external dampers. Hence, in practice,
these could be used to try out different damping position configurations around these
positions together with viscosity optimization approaches from this work illustrated in
Section 6.3.1 and derived in [106, 140].
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Figure 6.28: Example 9b - Dimensions, times, and acceleration rates.
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7.1 Summary

In this work, we have considered two main problems. The first has been to reduce various
types of inhomogeneous systems, which occur when considering vibrational systems. The
aim has been to reduce these systems while considering selected initial values. Therefore,
we have extended two approaches from the literature, the multi-system approach and
the extended-input approach, to the different system structures. In particular, we have
introduced a BT method tailored to an inhomogeneous first-order ODE system with a
quadratic output equation and appropriate error bounds. Therefore, we have derived
customized observability Gramians and energy expressions that have served as trunca-
tion criteria. In addition, we have developed BT methods for inhomogeneous first-order
DAE systems with linear and quadratic output equations based on derived Gramians
and energy expressions, paying particular attention to the algebraic components of the
system. Again, we have derived appropriate error bounds that have served as trunca-
tion criteria. We have also introduced a BT method for inhomogeneous second-order
systems with linear and quadratic output equations, where the particular focus has been
to preserve the system structure. The approach has been based on tailored Gramians
and respective energy norms. Also, we have derived appropriate error bounds and have
illustrated the efficiency of the methods using various numerical examples.

The second main topic of this work has been the optimization of external dampers
based on the reduction of parameter-dependent systems. We have derived RBM schemes
tailored to first- and second-order systems arising from vibrational systems with variable
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external dampers. More detailed, we have used and extended an offline-online scheme,
and introduced an adaptive scheme that has been used to build a basis that approxi-
mates the respective controllability spaces. This basis has been used to derive reduced
system response expressions that have been optimized instead of the original one of large
dimensions. Furthermore, we have derived a decomposition of the controllability space,
which has led to advantageous computational structures. Moreover, we have derived
several error estimators suitable for the different methods that have described the qual-
ity of the resulting approximations of the controllability space and the systems response
values. The derived RBMs have then been used in the context of damping optimization,
where the energy response of the systems has been minimized. In this way, solving the
optimization problem has been accelerated significantly, which we have illustrated using
different numerical examples.

7.2 Outlook and future research directions

The concepts and methods presented in this manuscript are applicable and extendable
to various problems that are out of the scope of this thesis.

For example, in [8], the authors consider the vibration of a plate with tuned vibration
dampers added to the system. The methods from Chapter 4 could be applied to re-
duce systems of similar structures. Also, our methods from Chapter 6 are applicable to
optimize the absorbers so that particular frequencies or the maximum response to dis-
turbances are minimized. For these examples, the controllability space decomposition
is not applicable as the external attenuators are not of a low-rank structure. Another
challenge is that if the Gramians and, hence, the respective controllability spaces are of
high numerical rank, good approximations by reduced models could be unfeasible.

A further possible extension of this work concerns the evaluation of inhomogeneous
systems in non-standard form investigated in Chapter 3. The authors in [121] intro-
duce a balanced truncation method based on the shift transformation of the respective
state for inhomogeneous first-order ODE systems with a linear output equation. This
transformation depends on designing parameters that allow some flexibility and the gen-
eralization of the multi-system and extended-input approach. Hence, the approach from
[121] could be tailored to further inhomogeneous system structures considered in this
work to improve the reduction.

Furthermore, the investigation of second-order systems that evaluate not only the
displacement but also the velocity as an output component is an interesting research
topic for the future. One challenge would be to maintain the second-order structure while
taking into account the different initial conditions, which becomes even more challenging
when quadratic output equations are used. In the multi-system approach, this would
lead to a significant increase in evaluated systems, while in the extended input approach,
the derivation of meaningful second-order Gramians that evaluate the displacement and
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velocity properties is nontrivial. In addition, further work might investigate the IRKA
methods for systems with the non-standard forms considered in this thesis. In particular,
describing the different observability spaces corresponding to systems with a quadratic
output equation is challenging. Considering the state-to-output mappings while building
observability space approximations using the IRKA would be an intuitive extension of
the IRKA method from [60, 61, 156] and [20].

Moreover, a topic of interest is the extension of model order reduction schemes from
this work to second-order systems with a DAE as a state equation. Many approaches
have been developed in the literature that deal with second-order DAE systems. How-
ever, maintaining a second-order structure while dealing with algebraic equations is still
a problem. In particular, we need knowledge about the projecting matrices in the con-
text of DAE systems, which are mostly investigated for the first-order representations
of the systems.
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