
Understanding and Monitoring
attitudes of product properties

over time

Max Zimmermann

Computer Science

University of Magdeburg

A thesis submitted for the degree of

Doctor of Engineering

May 7, 2015

Zusammenfassung

Durch die Möglichkeiten des Internets gibt es heutzutage ein verstärktes In-

teresse des Meinungsaustauschs; dadurch existiert eine enorme Menge von

Daten, die täglich wächst. Von zunehmender Bedeutung sind dabei aktuel-

le Fragestellungen nach dem Verständnis und der Beobachtung subjektiver

Standpunkte innerhalb eines Datenstroms. Diese Arbeit leistet einen Beitrag

in diese Richtung. Das Ziel der vorliegenden Arbeit besteht in der Entwick-

lung von Opinion Stream Mining Methoden, welche dazu genutzt werden,

Änderungen von Standpunkten gegenüber Produkten zu beobachten und zu

verstehen. Für viele Anwendungen ist nicht nur das spezielle Produkt von In-

teresse; vielmehr stehen die subjektiv für wichtig angenommenen Eigenschaf-

ten der Produkte im Mittelpunkt des Interesses an den Produktrezensionen.

Solche Eigenschaften gibt es für alle Produkte einer gewissen Kategorie; sie

geben Auskunft darüber, welche Eigenschaften den potentiellen Käufer po-

sitiv bzw. negativ beeinflussen. Dies erlaubt Anbietern von Produkten, eine

durchdachte Entscheidung zu treffen, um Produkte zu verbessern oder sie

geeignet zu vermarkten. Es wurden zwei verschiedene Arten von Ansätzen

untersucht.

Zunächst haben wir untersucht, wie die Gegensätze in einem Datenstrom

von subjektiven Dokumenten gelernt werden können, wenn nur eine kleine,

begrenzte Menge von annotierten Dokumenten vorhanden ist: Das Prüfen

und Annotieren von Dokumenten als positiv oder negativ ist eine mühsame

Aufgabe; Systeme, welche Dokumente als positiv oder negativ klassifizie-

ren, müssen Mechanismen entwickeln, die neu eintreffende Dokumente mit

möglichst minimalem menschlichen Zutun einstufen. Darüber hinaus ändert

sich das verwendete Vokabular im Verlauf des Datenstroms, weshalb sich auch

der Merkmalsraum auf dem ein geeignetes Modell gelernt wird ändert: Perso-

nen benutzen eine große Fülle von Wörtern, wobei sie teils sogar neue Wörter

entwickeln, um ihren Gefühlen besseren Ausdruck zu verleihen. Wir schlagen

Opinion Stream Klassifikatoren vor, die nur eine kleine Menge vorannotierter

Dokumente als Input benutzen und sich anschließend adaptieren, indem sie

neue, nicht annotierte Dokumente zum Trainieren verwenden. Da der Daten-

strom von Meinungen Abweichungen der Konzepte unterworfen ist, schla-

gen wir Mechanismen vor, welche neue Inhalte sukzessive in die anfängliche

Menge von vorannotierten Dokumenten einarbeiten. Die Einarbeitung erfolgt

unter Beachtung von Konzeptänderungen des Vokabulars bzw. der Wortver-

teilungen. Dabei werden alte Dokumente herabgestuft, um stets die aktuelle

Population des Datenstroms zu berücksichtigen. Wir untersuchen die Per-

formance unserer Klassifikatoren anhand drei reeller Datensätze unter der

Einhaltung der natürlichen Ordnung und unter einer modifizierten Ordnung,

die es uns erlaubt, eine Entwicklung des Vokabulars zu simulieren.

Im zweiten Teil stellen wir das Framework SENTISTREAM vor; ein Opinion

Stream Mining Framework für das Entdecken und Beobachten von Stand-

punkten aus expliziten Produkteigenschaften. Es werden dabei solche Pro-

dukteigenschaften berücksichtigt, die von den Käufern als wichtig angesehen

werden. Unser Framework umfasst Gruppenbildung auf Datenströmen, Ge-

winnung von Produkteigenschaften auf Textgruppen, teilüberwachtes Lernen

von Meinungen über einzelne Gruppen und Adaption von Gruppen, während

sich der Datenstrom entfaltet. Insbesondere untersuchen wir, welche Pro-

dukteigenschaften für Käufer wichtig sind und beobachten, wie sich die in-

dividuellen Standpunkte hinsichtlich der Produkteigenschaften über die Zeit

entwickeln. Zu diesem Zweck stellen wir einen Algorithmus vor, der auf zwei

Ebenen gruppiert und den Schwerpunkt auf eine möglichst weiche Adapti-

on der Gruppen legt. Der Algorithmus extrahiert Eigenschaften und Teilei-

genschaften aus einem Datenstrom und beobachtet die Entwicklung dieser

über die Zeit. Weiterhin trainiert er für jede Gruppe einen geeigneten Klas-

sifikator, welcher die Meinung der Rezensenten, anhand ihrer Rezensionen,

und jeder (Teil)Gruppe abschätzt. Wir berichten über die Performance von

SENTISTREAM anhand von zwei reellen Datenströmen von Produktrezen-

sionen, wobei wir das Zweiebenen-Modell evaluieren, und dabei vor allem

bewerten, wie es extrahierte Eigenschaften über die Zeit verwaltet. Darüber

hinaus berichten wir über die Genauigkeit der teilüberwachten, gruppenspe-

zifischen Klassifikatoren bei der Beurteilung von Standpunkten hinsichtlich

der (Teil)Eigenschaften und deren Entwicklung über die Zeit.

ii

Abstract

Nowadays a rising interest on opinion sharing takes place on the Web; a

vast amount of opinionated data exists and grows every day. Understanding

and monitoring attitudes of a stream of opinionated text data is a current

research challenge with increasing importance. This thesis contributes to

this task. The goal is the development of opinion stream mining methods to

monitoring and understanding how attitudes towards products change over

time. For many applications, though, not only a specific product is of inter-

est but also the properties on which people bestow their opinions and thus

properties that they consider important for the whole category of products:

such properties appear on all products of a given brand and can deliver clues

to understand which product properties influence customers positively or

negatively; this may allow vendors to make well-informed decisions on im-

proving their products or marketing them properly. Two different types of

approaches are studied in detail.

First, we investigate the problem of polarity learning over a stream of opinion-

ated documents while facing the challenge of learning with a limited amount

of labeled data: inspecting and labeling opinions is a tedious task, systems

analyzing opinions must devise mechanisms that label the arriving stream of

opinionated documents with minimal human intervention. Further, the vo-

cabulary of the stream, and thus the feature space used for learning, changes

over time: people use an abundance of words, and sometimes even invent

new ones to express their feelings. We propose opinion stream classifiers that

use a small seed of labeled documents as input and thereafter adapt them-

selves, as they consume documents with unknown labels. Since the stream

of opinions is subject to concept drift, we propose adaptation mechanisms

that gradually incorporate new content to the seed according to changes in

the vocabulary resp. word count distributions; and which downgrade old

and possible outdated documents reflecting the underlying population of the

stream. We study the performance of the classifiers on three real world opin-

ionated streams under the natural order of document arrival and under a

modified ordering that allows us to simulate vocabulary evolution.

Second, we propose SENTISTREAM, a opinion stream mining framework for

the discovery and attitude monitoring of explicit product properties deemed

important in reviews on different products. Our framework encompasses

stream clustering, extraction of product properties from the clusters, semi-

supervised sentiment learning inside each cluster and cluster adaptation as

the stream evolves. In particular, we investigate which properties of the prod-

ucts are important for the customers, and monitor how attitudes towards

such properties evolve. To this purpose, we use a two-level stream clustering

algorithm - with emphasis on smooth cluster adaptation - that extracts and

monitors properties and subproperties from an opinionated stream. We cou-

ple it with dedicated semi-supervised cluster specific classifiers that assess the

polarity of each extracted (sub)property. We report on the performance of

SENTISTREAM on two real world datasets with product reviews, whereby

we evaluate both, the stream clustering approach for product property mon-

itoring and the cluster specific semi-supervised attitude monitoring method.

iv

Contents

1 Introduction 1

1.1 Research Tasks . 4

1.2 Concept . 5

1.3 Outline of the Thesis . 7

2 Basics 8

2.1 Processing Text . 8

2.1.1 Document Preprocessing . 8

2.1.2 Document Representation . 10

2.1.3 Similarity Measures . 11

2.2 Opinion Mining . 12

2.2.1 Opinion Definition . 12

2.2.2 Property Extraction . 13

2.2.3 Polarity Classification . 15

2.3 Stream Mining . 16

2.3.1 Data Windows . 17

2.3.2 Concept Drift . 18

2.3.3 Stream Classification . 18

2.3.4 Stream Clustering . 20

3 Semi-Supervised Self-Learned Opinion Stream Classification 23

3.1 Basic concepts . 24

3.1.1 Semi-supervised Classification . 25

3.1.1.1 Self-Training . 25

3.1.1.2 Motivation and Limitations using Self-Training as stream

classification approach . 26

3.2 Basic Definitions and Notation . 28

3.3 Adaptive Learning with only an initial seed 29

3.3.1 Adaptive Multinomial Naive Bayes As Base Learner 30

3.3.1.1 Frequency Estimation . 32

v

3.3.1.2 Re-computing the conditional probabilities of words . . . 34

3.3.2 Adaptation at Document Level while expanding the seed 35

3.3.2.1 Usefulness . 35

3.3.3 Adaptation at Word Level while keeping the seed unchanged . . . 38

3.3.3.1 Using Known and Unknown Words Vocabulary 39

3.3.3.2 Initializing the probabilities of unknown words 41

3.3.3.3 Maintaining class distribution for unknown words 41

3.3.3.4 Updatable Multinomial Naive Bayes 42

3.4 Backward Adaptation by Ageing . 45

3.4.1 Backward Adaptation . 45

3.4.2 Adaptation of the Age . 46

3.4.3 Using Backward Adaptation in ADASTREAM 47

3.4.4 Using Backward Adaptation in S*3Learner 51

3.5 Complexity . 55

3.6 Experiments . 56

3.6.1 Datasets . 56

3.6.1.1 The effect of unknown words over the stream 58

3.6.1.2 The class distribution over the stream 59

3.6.2 Evaluation Measure . 60

3.6.3 Methods against which we compare 61

3.6.4 Comparing against the baselines 62

3.6.4.1 Results on stream ReviewJi 62

3.6.4.2 Results on stream TwitterTS 64

3.6.4.3 Results on stream ReviewHu 65

3.6.5 Impact of usefulness threshold α on ADASTREAM 66

3.6.6 Impact of MaxEntr and MinFreq thresholds on S*3Learner 66

3.6.7 Impact of Lambda on ADASTREAM and S*3Learner 69

3.6.8 Impact of the seed size on ADASTREAM and S*3Learner 70

3.6.9 Runtime . 72

3.7 Related Work . 73

3.7.1 Supervised Opinion Stream Classification 74

3.7.2 Opinion stream classification with limited amount of labeled data . 75

3.8 Discussion and Conclusion . 79

vi

4 Extracting and Monitoring Product Properties and the Attitudes on

them 82

4.1 Related Work . 84

4.2 Core Concepts and Overview . 88

4.2.1 Core functionalities of SENTISTREAM 90

4.2.2 Definitions and Notation . 91

4.2.3 Components . 94

4.3 Extracting an Initial Hierarchy of Polarized Properties 96

4.3.1 The Core of the SENTISTREAMClus 97

4.3.1.1 Specifying the feature space 99

4.3.1.2 Deriving the polarized property of each cluster 99

4.3.1.3 Assign arriving reviews to clusters or containers 100

4.3.2 The Basic Learner for SENTISTREAM PolLearner 101

4.4 Adapting the Cluster Hierarchy . 102

4.4.1 Incorporate Novelty . 103

4.4.1.1 Rationale of our Approach 103

4.4.1.2 Description Length as Quality Indicator 105

4.4.1.3 Impact of Merging on Cluster Description Length 106

4.4.1.4 Deciding for Hierarchy Rebuilds on the Basis of Fatigue . 107

4.4.1.5 Adapting the Hierarchy with or without Cluster Rebuilds 109

4.4.2 Internal Hierarchy Adaptation . 111

4.4.2.1 Merging similar subclusters 113

4.4.2.2 Importance update in the merged cluster 115

4.4.2.3 Polarized property extraction in the merged cluster . . . 115

4.4.2.4 Polarity classifier in the merged cluster 116

4.4.3 Bookkeeping . 116

4.4.4 Adapting the Evolving Polarities of the Properties 117

4.4.4.1 Adaptation – Incorporating New Reviews 117

4.4.4.2 Removing Unimportant Reviews 118

4.5 Workflow . 119

4.6 Experiments . 120

4.6.1 Datasets . 121

4.6.2 Evaluation Measure . 122

4.6.2.1 Average weighted purity (avgWPurity) 123

4.6.2.2 Average weighted cohesion (avgWCohesion) 124

4.6.2.3 Kappa . 125

4.6.3 Comparing against baselines . 125

4.6.3.1 Methods against which we compare 126

4.6.3.2 Cluster Extraction . 126

vii

4.6.3.3 Evaluation of the Efficiency 127

4.6.3.4 SENTISTREAM PolLearner component 128

4.6.4 Evaluation of the clustering structure 130

4.6.5 Influence of reclustering and cluster merge 132

4.6.6 Evaluation of the Parameters which effect the Clustering 134

4.6.6.1 Effect of the importance review threshold β 134

4.6.6.2 Effect of the decay factor λ 136

4.6.6.3 Effect of number of global clusters KG 136

4.6.6.4 Effect of number of local clusters KL 138

4.6.6.5 Effect of the initial seed set S 138

4.6.6.6 Effect of the global similarity threshold δG 139

4.6.6.7 Effect of the local similarity threshold δL 140

4.6.6.8 Effect of the fatigue threshold γ 141

4.6.6.9 Discussion . 142

4.6.7 Evaluation of the Parameters which effect the Polarity Learning . 143

4.6.7.1 Results on the effect of δG 144

4.6.7.2 Results on the effect of KG 145

4.6.7.3 Results on the effect of α 145

4.7 Discussion and Conclusion . 146

5 Conclusion 149

5.1 Summary . 149

5.2 Contributions . 151

5.3 Application / Benefits . 152

5.4 Future Work . 153

A Document Preprocessing 156

A.1 List of stop words . 156

B Results on Opinion Stream Classification 157

C Results on SENTISTREAM 160

C.1 Results on the cluster specific classifiers 160

C.2 Cluster Structure . 162

Bibliography 185

viii

List of Figures

1.1 Usage of social data on individual’s and business’ perspective 2

2.1 Process of stream classification . 19

2.2 Example of micro-clusters . 21

3.1 Process of semi-supervised self-trained stream classification 27

3.2 Semi-supervised opinion classification on a stream of opinionated documents 29

3.3 Example of the exponential function . 46

3.4 Known and unknown words for ReviewJi 58

3.5 Known and unknown words for TwitterTS 58

3.6 Known and unknown words for ReviewHu 59

3.7 Class distribution on ReviewJi . 59

3.8 Class distribution on TwitterTS . 60

3.9 Class distribution on ReviewHu . 60

3.10 Kappa on ReviewJi comparing to baselines 63

3.11 Kappa on TwitterTS comparing to baselines 64

3.12 Kappa on ReviewHu comparing to baselines 65

3.13 Kappa on TwitterTS re-ordering for S*3Learner 67

3.14 Kappa on ReviewJi re-ordering for S*3Learner 67

3.15 Kappa on ReviewHu re-ordering for S*3Learner 68

3.16 Kappa on ReviewHu natural ordering for S*3Learner 68

3.17 Kappa on TwitterTS varying seed sizes for S*3Learner and ADASTREAM 70

3.18 Kappa on ReviewJi varying seed sizes for S*3Learner and ADASTREAM 70

3.19 Kappa on ReviewHu varying seed sizes for S*3Learner and ADASTREAM 71

4.1 Two level property hierarchy over camera reviews 89

4.2 core functionalities of SENTISTREAM 91

4.3 The components of SENTISTREAM . 95

4.4 Components of the two-level hierarchy . 96

4.5 The workflow of SENTISTREAM . 120

4.6 Stream ReviewHu: number of properties per batch 122

ix

4.7 Stream ReviewHu: entropy per batch . 122

4.8 Stream ReviewJi: number of properties per batch 123

4.9 Stream ReviewJi: entropy per batch . 123

4.10 Cohesion and purity on ReviewHu for SENTISTREAM and baseline . . . 127

4.11 Cohesion and purity on ReviewJi for SENTISTREAM and baseline 128

4.12 Kappa on ReviewHu and ReviewJi: comparing to baselines 129

4.13 ReviewHu: Juxtaposing cluster centroids to real product properties 131

4.14 SENTISTREAMNoInt.Merges on ReviewHu: Cluster structure over time . 132

4.15 SENTISTREAM on ReviewHu: Cluster structure over time 132

4.16 SENTISTREAMNoInt.Merges on ReviewJi: Cluster structure over time . . 133

4.17 SENTISTREAM on ReviewJi: Cluster structure over time 133

4.18 Purity and Cohesion on ReviewHu varying β 135

4.19 Purity and Cohesion on ReviewJi varying β 136

4.20 Purity and Cohesion on ReviewHu varying λ 136

4.21 Purity and Cohesion on ReviewJi varying λ 137

4.22 Purity and Cohesion on ReviewHu varying KG 137

4.23 Purity and Cohesion on ReviewJi varying KG 138

4.24 Purity and Cohesion on ReviewHu varying KL 138

4.25 Purity and Cohesion on ReviewJi varying KL 139

4.26 Purity and Cohesion on ReviewHu varying seed size 139

4.27 Purity and Cohesion on ReviewJi varying seed size 139

4.28 Purity and Cohesion on ReviewHu varying δG 140

4.29 Purity and Cohesion on ReviewJi varying δG 140

4.30 Purity and Cohesion on ReviewHu varying δL 141

4.31 Purity and Cohesion on ReviewJi varying δL 141

4.32 Purity and Cohesion on ReviewHu varying γ 142

4.33 Purity and Cohesion on ReviewJi varying γ 142

4.34 Kappa on ReviewHu andReviewJi varying δG 144

4.35 Kappa on ReviewHu and ReviewJi varying KG 145

4.36 Kappa on ReviewHu and ReviewJi varying α 146

5.1 Social Media Monitoring . 153

B.1 Results: ADASTREAM on stream ReviewJi varying α 157

B.2 Results: ADASTREAM on stream TwitterTS varying α 157

B.3 Results: ADASTREAM on stream ReviewHu varying α 158

B.4 Results: ADASTREAM +Ageing on stream ReviewJi varying λ 158

B.5 Results: S*3Learner +Ageing on stream ReviewJi varying λ 158

B.6 Results: ADASTREAM +Ageing on stream TwitterTS varying λ 158

B.7 Results: S*3Learner +Ageing on stream TwitterTS varying λ 159

x

B.8 Results: ADASTREAM +Ageing on stream ReviewHu varying λ 159

B.9 Results: S*3Learner +Ageing on stream ReviewHu varying λ 159

C.1 Results: cluster specific classifiers varying δL 160

C.2 Results: cluster specific classifiers varying KL 160

C.3 Results: cluster specific classifiers varying KL 161

C.4 Results: cluster specific classifiers varying KL 161

C.5 Results: cluster specific classifiers varying KL 161

C.6 Results: cluster specific classifiers varying KL 161

xi

List of Tables

2.1 Property-opinion pairs from [151] (property is bold) 14

2.2 Types of relationships between properties and opinions by [129] 15

3.1 Basic parameters for the classification . 28

3.2 Notation of the estimated frequencies . 33

3.3 Notation of parameters used for the definition of usefulness 38

3.4 Notation of parameters used for the definition of S*3Learner 40

3.5 Dataset statistics . 57

3.6 Runtimefor ADASTREAM and S*3Learner 72

3.7 Difference among the proposed semi-supervised opinion stream classifiers 80

4.1 Basic parameters for the definitions of our framework SENTISTREAM . 92

4.2 Parameters for the extraction of the cluster hierarchy 97

4.3 Parameter Setting: Comparing Baselines 127

4.4 Comparing runtime of baselines and SENTISTREAM 128

4.5 Example of cluster mismatches . 130

4.6 Parameter settings for SENTISTREAM evaluation 135

C.1 Centroid-based label for stream ReviewHu 162

C.2 Members-based property distribution for stream ReviewHu 165

xii

List of Algorithms

1 Self-training . 26

2 Self-Adaptive Stream Learner . 30

3 ADASTREAM . 36

4 S*3Learner . 40

5 Batch Processing . 47

6 ADASTREAM + Ageing . 50

7 S*3Learner + Ageing . 54

8 SENTISTREAM . 98

9 FindMostProximalCluster . 101

10 Incorporate Novelty . 110

11 InternalHierarchyAdaptation . 113

xiii

xiv

Chapter 1

Introduction

By the advent of the WEB 2.0 the amount of social media content has risen tremen-

dously and created abundant opportunities for understanding the opinions, views and

experiences of social network users and consumers towards company strategies, market-

ing campaigns and products. When facing various options, e.g. product alternatives,

we strive to make informed decisions since valuable resources such as time or money

while buying products might be spent. Thus, we often ask our friends, relatives or other

people we trust, and rely on their opinions when deciding to buy a product [35].

The WEB 2.0 provides new media to conveniently create and share social content,

e.g. opinions, ideas, reports, with everyone connected to the World Wide Web. Blogs

(such as blogospehere), forums (e.g. Yahoo fora), social network sites (including Face-

book, YouTube and Flikr) and microblogging services (such as twitter) help people

share their experiences [33, 28]. Indeed, an increasing interest on opinion sharing is tak-

ing place on the Web, the so called word-of-mouth [106]. This vast amount of voluntary

and bona fide feedback on products represents a valuable resource for both consumers

and vendors and bears a plethora of new opportunities (see Figure 1.1):

Consumers benefit from the diverse experiences of thousands of other consumers

in making more informed purchase decisions [80]. Vendors acquire genuine customer

voices that essentially help them to understand what customers’ like and what they

do not like. They might be quickly acquainted with problems of products or services

faced by customers and react accordingly by improving or adjusting the related prod-

ucts or marketing strategies [106], e.g. assessing and predicting public attitudes toward

their brand. As stated by [109] customer reviews further contribute while improving

customer relationship management and recommending through positive and negative

customer feedback. Besides learning about their own products, they may also acquire

information about competitors such as implicit weaknesses, declined aspects or how one

can compete [122]. Thus, monitoring and analyzing social media content demanded

1

to be considered as an important foundation of knowledge for business intelligence ap-

plications [76]. Indeed, it should be highly regarded because, compared to traditional

(structured) surveys, the analysis of voluntary and bona fide user feedback comes with

the huge advantage of being available in real-time at almost no costs.

Which camera to buy?
Which film to watch?
Which hotel to book?

How can we compete?
What are the weaknesses?
What do people not like?

Figure 1.1: Usage of social data on individual’s (left) and business’ perspective (right)

To achieve the above, the reliable analysis of the opinionated document streams

is indispensable. The analysis of opinionated social content is investigated in opinion

mining and sentiment analysis. The term sentiment analysis first appeared in Nasukawa

and Yi [100] and widely refers to the derivation of sentiment including irony, sarcasm,

satire and anger [106, 133, 38]. Opinion mining as stated in [98] derives the opinion or

the attitude, a common use case for this is to discover the attitude about a particular

topic, e.g. product. In this thesis we concentrate on opinion mining. It spreads in the

analysis of customer reviews [64, 110, 151], political debates [11, 10], as part of spam

detection systems [69, 141] or recently in microblogging services (e.g. twitter) [68, 17, 15].

The four main tasks in opinion mining as stated in [77] are the following:

• entity extraction:: extract all expressions of an entity from a document.

• property extraction: extract all property expressions of the entities.

• opinion holder extraction: extract the opinion holders from documents.

• polarity classification: determine whether an opinion on an property is positive,

neutral or negative.

This thesis focuses on polarity classification and property extraction. Polarity clas-

sification is employed when a piece of text, stating an opinion on a single property, is

2

classified as one of two opposing sentiments (positive or negative) [107]. Property extrac-

tion mainly extracts property of products from online product reviews that have been

commented by reviewers [66].

As the understanding of textual data varies among the domains, e.g. more formal

language is observed in political debates compared to the rather casual language in mi-

crobloggs or customer reviews, the complexity of analysis and also the concrete methods

differ broadly [31]. We concentrate on opinion mining in microbloggs on products and

customer reviews. In particular we focus on opinion mining when the associated

customer reviews or microbloggs on products arrive in a stream of opinion-

ated documents, which is named opinion stream mining.

Opinion stream mining is rather new [24, 67, 55]. Traditional opinion mining aims to

understand the attitude towards products, while opinion stream mining aims to monitor

how this attitude and also the product changes with time. Additionally, opinion stream

mining has to manage the undergoing concept drift to which the opinionated data stream

is typically subjected. Zliobaite et al. [157] categorize such concept drifts as “sudden,

gradual, incremental and recurring”. For example, the service (property) of an hotel

can improve or degrade over time [80]. In the following we list the main challenges

associated with opinion stream mining when the underlying opinionated documents

refer to products and their properties.

1. Concept drift

The attitudes towards entities may change and also the polarity of single words.

For instance, we may observe tweets regarding the weather which expose the tem-

perature as being warm, sunny and dry and thus perceiving it as rather positive.

As the summer progresses the weather might become more sunny, warm and dry,

so the people appear to be annoyed of the weather while expressing the weather

as too sunny, warm, dry, i.e. the polarity of the words switches.

2. Scarcity of labels

Polarity learning on a stream of documents is driven by scarcity of labeled data,

since up to date labeled reviews or tweets are not available – it is impractical

to expect that a human expert inspects and labels arriving reviews or tweets on

sentiment, especially in an infinite data stream scenario [89, 153]. Hence, polarity

learning must be performed on a small, relatively to the size of the stream, initial

seed of labeled documents.

3. Polysemous words

Opinion stream mining is prone to polysemous words, for example “heavy” is

negative for a laptop but may be positive for a lens, also the word “cool” might

3

assert satisfaction while talking about beer but it might express a negative attitude

when exchanging about the current weather.

4. Monitoring properties

New properties must be detected as they start becoming important in the arriving

opinionated stream and old, unimportant properties must be removed from the

model. Thus, we make sure that the whole set of discovered properties evolves

smoothly from one moment to the next and can be monitored comprehensively.

In this thesis, methods being capable of monitoring properties over time are stressed

while having no information of property labels neither of the number of properties

stretched in the stream: the variety of product properties is to large in order to be

captured in total also it is absurd to expect that a human expert goes through all doc-

uments labeling the discussed property therein, especially in an infinite data stream

scenario. Monitoring of product properties is a natural extension of static learning; it is

useful for two reasons. First, products enter and exit the market, but the popularity of

some properties remains, e.g. the lens of any camera, the battery lifetime for any laptop.

Second, properties that suddenly become popular call for the producers’ attention: if

many reviews on the “charge device” of different cameras emerge, this indicates that

customers have become interested in that property [152].

Moreover, we extend static opinion mining by the task of polarity monitoring on

product properties, additional to polarity classification, when considering the underlying

population of the document stream and the scarcity of labeled documents. Polarity

monitoring delivers insights into the stream allowing to develop systems that track

public viewpoints on a large scale by offering, for instance, graphical summarization of

trends [116].

Hence, we are primarily interested in property-oriented opinion mining over

a stream of opinionated documents exposing how attitudes towards product

properties change over time while monitoring product properties and assessing the

expressions on sentiment towards individual properties as the stream progresses.

1.1 Research Tasks

The main research goal is to understand and monitor attitudes on products and on

their properties over time. Observing a textual stream of documents, we aim to discover

and monitor sentiment of customers towards the properties of the reviewed products.

We distinguish among the following research tasks.

Research Task 1. Classify the polarity of documents as either positive or negative.

Train a classification model and employ the model upon arriving documents to learn

whether these documents are positive or negative.

4

Research Task 2. As social streaming data evolves w.r.t the vocabulary, w.r.t. the

implicit product properties and w.r.t. the positive or negative attitude of people towards

these properties; how to adapt the classification model according to the evolving stream?

Research Task 3. As social data streams face scarcity of labels; how to train a classifier

on a small set of labeled instances and how to adapt the classifier with new arriving,

unlabeled documents for which the classifier predicts the label to reflect the evolving data

stream?

Research Task 4. Derive the most interesting, explicit product properties from a stream

of textual documents, e.g. on which is reported predominantly. As the stream progresses;

how to adjust the properties, how to forget unpopular ones and how to recognize emerging

ones?

Research Task 5. As polarity learning is prone to polysemous words across the dis-

cussed product properties; how to learn the polarity label of a document discussing a

specific product property?

1.2 Concept

To address the above research tasks our approach encompasses opinion mining on streams,

property extraction and assigning polarity to properties. The concept for this is discussed

in the following.

Learning document polarity over a stream We propose semi-supervised stream

classifiers that only require a small set of initial labeled documents to learn the labels of

arriving documents. As the stream progresses, the learner selects unlabeled documents,

labels them and adds them to the training set. Chapter 3 describes this method.

To select the unlabeled documents to be added to the training set, we propose meth-

ods that assess how informative and reliable these documents and the distinct words

of them are. Section 3.3 stretches these methods. To adapt the classification model to

concept drift, we gradually downgrade old documents. That is, we downgrade the weight

of some of the earlier seen documents actively by employing age-depending weighting

functions. Section 3.4 discusses this method.

5

Extracting product properties We propose a two-level hierarchy of product proper-

ties that allows to express properties at two levels of granularity. For instance, assuming

the product type “camera” then presumed properties are “battery” or “lens” whereas

these properties might be further specified into “battery weight” or “battery life” and

into “zoom” or “aperture”, carrying out a granular perspective on the property “battery”

resp. “lens”.

For this hierarchy, we propose a stream clustering algorithm that associates each

1st/2nd level cluster with a representative concept, retains documents not fitting to any

cluster into containers, and regularly merges the containers with clusters, attempting to

adjust the hierarchy with as few changes of existing “representatives” as possible, see

Chapter 4. We compute a representative that serves as the description of the related

product property, e.g. for “lens” there might be a description such as {zoom, optic,

length, aperture, opening, light, angle} and for a more specified property such as “aper-

ture”, the description might be {aperture, opening, light, angle}.
The two-level cluster model serves as initial model to depict the current state of the

stream. Maintaining the model over time according to the evolving product properties,

we filter documents based on their age and their relevance regarding the related prop-

erty, i.e. documents are filtered which are old and have less relevance w.r.t. the related

property, see Section 4.4.

Opinionated product property extraction We propose a framework for discover-

ing and monitoring explicit opinionated product properties suspected important in the

reviews on different products. This encompasses, learning the above semi-supervised

sentiment learner for each extracted cluster of the two level hierarchy w.r.t. to the un-

derlying documents belonging to the related cluster. Additionally we derive the polarity

label of a cluster based on the cluster specific classifier and monitor the polarity over

time. We discuss this method in Chapter 4.

Evaluation At the end of Chapter 3 and 4, describing our approach, we elaborate

the performance on real world datasets. We report detailed on the performance of our

classifiers addressing evaluation procedures explicitly suited in the case of data streams.

We provide results on product reviews and microbloggs on products while comparing our

methods against fully supervised classifiers and state-of-the-art sentiment classification

methods.

We further provide a detailed evaluation of our clustering framework tailoring eval-

uation measures specifically suited for the two-level hierarchy. Additionally we provide

a comprehensive study of all parameters employed by our methods to reveal the vul-

nerability of them regarding the performance and to expose dependencies among the

6

parameters. The extensive study also encompasses common stream based evaluation

such as execution time and memory storage.

1.3 Outline of the Thesis

The thesis is structured into two large chapters, Chapter 3 Semi-Supervised Opinion

Stream Classification and Chapter 4 Discovering and Monitoring Product Properties

and their Attitudes. Besides, the thesis addresses fundamental requirements of handling

opinionated, natural language text streams in the smaller Chapter2 Basics to ease the

understanding of the two large chapters; it discusses results, contribution towards the

research tasks and ongoing work in the small Chapter 5 Conclusion.

In Chapter 4 we introduce to the topic self-learned semi-supervised opinion stream

classification when only limited amount of data is available. We discuss therefore Self-

Learning in a stream environment in Section 3.1. While in Section 3.3 Adaptive Learning

with only an initial seed we introduce the two developed classifiers which have their

origin in self-learning; preliminary, in Section 3.2 we present the notation and definition

utilized to describe the classifiers. Section 3.4 covers the proposed ageing concept and

the coupling with the classifiers. The evaluation of the two classifiers is covered by

Section 3.6. In Section 4.1 we discuss the related in supervised stream classification and

opinion stream classification with limited amount of labeled data. The chapter concludes

with Section 3.8 while juxtaposing the functionalities and the performance of the two

algorithms.

In Chapter 4 we present the framework SENTISTREAM to discover and monitor

product properties and their attitudes over time. We first discuss the related work in

Section 4.1 which covers the area extracting opinionated product properties from review

data by text stream clustering. We then give the fundamental definitions and the core

concept of our method in Section 4.2 followed by the description to extract product

properties (Section 4.3) and to maintain the properties over time (Section 4.4). We

propose elaborated adaptation mechanisms to reflect underlying drifts of the opinionated

review stream in Subsection 4.4.2. In Section 4.6 we present the extensive evaluation

of our framework including tailored evaluation measures results on effects of a relevant

parameters that influence the framework. We conclude the chapter with a comprehensive

discussion of the results and the performance of our method in Section4.7.

7

Chapter 2

Basics

The purpose of this chapter is to introduce the basic concepts and approaches that

are requirements for the work presented in this thesis. The chapter deals with aspects

of the research field of opinion mining in particular when the data source is a stream

of opinionated documents. The developed algorithms operate and are evaluated upon

streams of text documents. Section 2.1 presents fundamental methods for preprocessing

natural language text, document representation and similarity measures to compare

documents. Section 2.2 covers the basic aspects of opinion mining including definitions,

of an opinion, the tasks for property extraction and the classification of polarity. The

last section (Section 2.3) discusses the main aspects of stream mining, i.e. maintenance

of windows, dealing with concept drift and algorithms for clustering and classification

of stream data.

2.1 Processing Text

This thesis focuses on mining natural language texts while considering text as data

instances. The evaluation of the developed algorithms were all carried out upon tex-

tual data. Natural written text requires preprocessing steps before mining them. This

section covers the steps preparing documents so as to be utilized by our algorithms

which includes document preprocessing in Subsection 2.1.1, document representation

(Section 2.1.2) and similarity measures (Section 2.1.3).

2.1.1 Document Preprocessing

Classification and clustering techniques cannot be applied directly upon the texts raw

form. In fact, documents are transformed into a representation being more suitable. The

procedure to create a document representation in a form such that our algorithms can

be applied is called document preprocessing. There are the following steps of document

preprocessing [86, 47]:

8

• Tokenization

• Stop words removal

• Word stemming

• Part-of-Speech Tagging

The first step includes breaking up the continuous character of a text into meaningful

constituents. This is done at several different levels. Documents can be broken up into

chapters, sections, paragraphs, sentences, words etc. We will focus on breaking up a

document into its words since we are interested in the words bearing some meaningful

content. The task to break up a document into its words is called tokenization. The

main challenge lies in identifying the boundaries of a word so as to identify its end. This

is accomplished by the recognition of white space characters. Special attention needs

to be paid to special characters, punctuation marks, digits etc. though. We used the

framework Lucene [92] to tokenize a document, in particular the WhitespaceTokenizer

and LowerCaseTokenizer of Version 3.5. At the end of the tokenization there might be

many words to be exploited. Some words describe a document well while discriminating

the document from others while other words are rather common an so not very helpful

to describe a document.

To get rid of words showing no meaningful unit of a document, i.e. words being

extremely common and which would appear to be of little benefit to assess documents,

we exclude stop words (step 2). Examples of stop words are articles, prepositions and

conjunctions; there might be further units considered to be stops words depending on

the occurrence in a collection of documents. Manning and Schuetze [86] describe a

way to extract a list of stop words while going through the entire collection counting

the appearance of words and eliminate those which have a high occurrence. Facing an

endless stream of documents this procedure is not adaptable for us. We apply a static

list of English stop words commonly used for mining natural language text. The list is

displayed in Appendix A.

To reduce inflectional forms, e.g. am, are, is→ be or bear, bore, borne, bears,→ bear,

and also to reduce the variety of representations for the same word, we use stemming

(step 3). Stemming maps a word to its word stem. This helps to make document

better comparable as it can be recognized that two words, e.g. bear and borne, are

from the same stem and thus carry the same meaning. We opt for the Porter Stemmer

[111] as stemming algorithm mapping words to its stem. It is the most commonly

stemming algorithm for English, and one that has been shown to be empirically very

effective. Lovins Stemmer [84] and Paice/ Husk Stemmer [103] have also been used for

preprocessing, however, it is beyond the scope of this thesis describing them in detail.

9

Besides stop words removal there is a another method to exclude unwanted words,

e.g. words that bear less semantic. For instance, some word categories might carry a

certain kind of information while other do not bear this information. Assuming the goal

is to assess a document on its sentiment expressed by the author, then verbs and adverbs

bear more sentiment than nouns, consequently nouns can be excluded. Therefore the

words are tagged with its appropriate part of speech. This process is called Part-of-

Speech Tagging (step 4). It encompasses to decide whether a word is a noun, verb,

adjective or whatever. POS tags divide words into categories based on the role they

play in the sentence in which they appear; they also provide semantic information of a

word. For tagging while applying our experiments we utilize the Tree Tagger by Helmut

Schimd [117] and the associated Penn Treebank POS 1.

2.1.2 Document Representation

As our algorithms cannot directly process the text documents in their original form

the documents are converted into a more manageable representation after being prepro-

cessed. Typically, the documents are represented in a vector space model. Based on

the preprocessing step as described earlier, the set of words build a vocabulary V. All

terms in V makes up the feature space of the vector model. The number of dimensions

of the feature space is equal to the number of different words in all of the documents

processed thus far. A feature of the vector is then a dimension, i.e. a word, in the vector

space, whereas a document is represented as a vector in this space. Each document d

is therefore a vector of length |V|, i.e. the number of distinct words in the vocabulary

which remain after the preprocessing:

~d =

 w1 : tf − idf(w1, d)
...

w|V| : tf − idf(w|V|, d)


Each entry refers to a word, while a word is represented by its term weight. It expresses

the association of the word with its specific document. The methods of giving weights

to the words may vary. The simplest is the binary in which the word weight is either

one - if the corresponding word is present in the document - or zero otherwise [47]. A

more complex weighting scheme is the tf − idf weighting which takes into account the

frequencies of the word in the document and in the entire collection. It is defined as

follows:

tf − idf(w, d) = TermFreq(w, d) ∗ log(N/DocFreq(w)) (2.1)

1Available at: https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html

10

where TermFreq(w, d) is the frequency of the word in the document d, N is the number

for all documents seen thus far and DocFreq(w) is the number of documents containing

the word w. While using tf-idf weighting scheme rather than weighting by term fre-

quency only we may discriminate better among documents: words being very frequent

in a document are not distinctive for the document neither are words which appear

frequent among all documents in the collection. In contrast very rare words might be

very expressive but due to their low appearance their overall impact is rather small: in

extreme case they occur only in a single document and thus provide no information when

computing whether two documents are similar. As stated in Manning and Schuetze [86],

words with medium frequency have the highest power in discriminating documents. tf-

idf weighting scheme follows this idea. In particular, tf-idf enhances the importance of

words with medium frequency while using the inverse document frequency idf to reduce

the impact of high frequency words, i.e. words that appear in a lot of documents. The

model described above is called bag-of-words with tf-idf weighting scheme; it is commonly

used in text processing [47] and works best to discriminate among documents.

2.1.3 Similarity Measures

The above described techniques to preprocess and represent documents have the common

aim of making the documents more discriminate so as to compare them easily. To

compute how similar two documents are, we need a similarity measure on the vector

space model. In a vector space model, the similarity function is usually based on the

similarity between the vectors in some metric. Similarity measures always return a value

between 0 and 1. A value close to zero expresses dissimilarity, while a value close to 1

expresses similarity. Formally, a similarity measure is defined as follows:

Definition 2.1. A similarity measure is a function sim : X×X → <≥0,≤1 that satisfies

the following conditions for all x, y ∈ X, where X is an arbitrary set:

• sim(x,y) = sim(y,x)

• sim(x,y) ≤ sim (x,x)

• sim(x,y) = 1 ↔ x = y

�

The most popular metric used when processing natural language text is the cosine

similarity. It is defined as follows:

cosineFR(~di, ~dj) =
~di · ~dj
|~di| · |~dj |

=

|FR|∑
t=1

di,tdj,t√
|FR|∑
t=1

d2
i,t

√
|FR|∑
t=1

d2
j,t

(2.2)

11

where F is the set of features extracted from a collection R of documents, e.g. reviews.

There are many other popular measures for comparing documents suitable for partic-

ular purposes; they include the Euclidean and Manhattan distance as well as the Jaccard

coefficient similarity. The Jaccard coefficient is a set similarity metric. It is applied to

a vector space model by considering its nonzero elements as set items. By considering

this logic the Jaccard coefficient measures commonality, represented by the intersection

of the two documents normalized by their union [5].

J(D1, D2) =
|D1 ∩D2|
|D1 ∪D2|

where D1 and D2 are set representations of documents d1 and d2 We opt for the cosine

similarity though as it is the most common measure when comparing text documents.

Also the advantage of the measure is its independence towards the length of the docu-

ments.

2.2 Opinion Mining

One major aspect of this thesis is extracting attitudes of product properties from users

written content such as product reviews. Such data are usually unstructured and huge.

Conventional methods used in information retrieval and text mining are mainly con-

cerned with the overall information presented and have limited applicability in assessing

the attitude of product properties. For example, a review about a laptop not only

provides an overall sentiment but also provides separate sentiments on its individual

properties. Such as battery life, mobility, processing power etc. The individual proper-

ties and their sentiments hidden in review texts cannot be detected with methods that

work upon the overall text only. Thus, a more in-depth analysis that takes smaller tex-

tual fragments into consideration is imperative. This has led the researchers to combine

methods from the domain of information retrieval and natural language processing to

perform information extraction at higher granularity, e.g., paragraphs, sentences and

words. The resulting research area is called Opinion Mining [74, 132]. In the following

we capture, for this thesis relevant, aspects of Opinion Mining including property ex-

traction and polarity classification. First, though, we stretch definitions towards opinion

mining based on Liu [77].

2.2.1 Opinion Definition

An opinion is always expressed towards a target. This target can be an entity or an

property of the entity.

12

Definition 2.2 (Entity). An entity e is a product service, topic, issue, person, organi-

zation, or event. It can be described with a hierarchy of properties, subproperties, and

so on. �

For example, a particular model of a camera is an entity, e.g. Canon G12. It has

a set of properties, e.g. lens, viewfinder and battery whereas each property may have

related subproperties, e.g. lens may have aperture as subproperty.

Beside the entity an opinion has always a orientation. This orientation is called

polarity and is normally positive, negative or neutral ; or it is expressed with different

intensity such as 1-5 stars used by most review sits. In this thesis we positive and

negative as polarity orientation. An opinion is then defined as:

Definition 2.3 (Opinion). An opinion is a quintuple, (ei, aij , pijkl), hk, tl, where ei is

the entity, aij is an property of ei, pijkl is the sentiment polarity on property aij of entity

ei, hk is the opinion holder, and tl is the time when the opinion is expressed. �

Regarding this definition, an opinion always has a target (entity of property of the

entity), a author (the opinion holder), a time when it is expressed and a polarity. In this

thesis we are interested in assessing the polarity of an opinion as well as the property

which the opinion targets. In particular we are interested in finding the explicit property

expressed in a document, which is defined as follows:

Definition 2.4 (Explicit Property). A property expressed by nouns or noun phrases is

called an explicit property. �

An example of an explicit property is “picture quality” in the sentence “The picture

quality of this camera is great”. In contrast to explicit properties there are implicit

properties which are not nouns or noun phrases and thus expressed implicitly. For

example, “expensive” is an implicit property in the sentence “This camera is expensive”.

It implies the property price. In this thesis we extract explicit properties.

2.2.2 Property Extraction

The main task of property extraction is to find the different properties regarding an

entity (e.g. product, policy, event and etc.) about which opinions are expressed. There

are many methods extracting the properties from a text. To describe the task of property

extraction we refer in the following to the different approaches giving a broad overview of

how properties can be extracted from different natural language texts such as product/

movie reviews, blog entries etc.

Most of the property extraction methods rely on part-of-speech (POS) tagging,

cf. Section 2.1.1, for the identification of the properties. The method of [64] performs

mining of product properties from product reviews. After the POS tagging, they use

13

a classification rule miner (CBA) to identify different properties of the products. They

only consider noun phrases for this purpose and assume that users usually converge when

talking about properties. Any discovered itemset that is frequent (with a support of at

least 1%) is treated as a property of the product. A pruning step is then performed to

remove the infrequent properties. The same authors proposed an improvement to their

original method [78] by extracting properties from pros and cons from shorter sentences.

great cast
JJ amod NN

script fails
NN nsubj VB

movie is masterpiece
NN nsubject VB dobj NN

Table 2.1: Property-opinion pairs from [151] (property is bold)

The approaches presented in [151, 132] specifically deal with the property extraction

from movie reviews. Zhuang et al. [151] provide a list of keywords that are potential

properties, e.g. property class ST is related to screenplay, story, script and property class

PAC is related to actors, actresses, supporting cast. They also crawl the imdb 2 site to

acquire a complete list of cast to ease the property extraction process for proper names

of the actors. To identify explicit opinion-property pairs they use a dependency gram-

mar graph. Table 2.1 depicts examples of opinion-property pairs extracted while using

dependency graphs. For example, from the sentence “the movie is a masterpiece” the

noun phrase movie is masterpiece can be extracted. For identifying implicit properties,

e.g. “I wanted it to end as soon as possible” (i.e. movie is boring), they use a simple

hard coded technique that can identify few properties only. Method of [132] use a similar

method which can perform pronoun resolutions as well. They also employ a rule-based

approach that automatically tag the sentences into different properties, e.g. overall, cast,

storyline and etc.

The method of Blair-Goldensohn et al. [21] divides the property extraction process

into two steps: dynamic and static property extraction. The dynamic extraction is based

on the method of [64] as described above. Additionally, they employ rule based methods

to aid in property extraction. For example, a rule might be that an adjective usually

precedes a noun phrase (usually a property), such as, ”great picture quality”. In the

static extraction phase, the method is provided with a list of coarse-grained properties

that may be of special interest, e.g. “food”, “decor”, and “service” for reviews about

restaurants; rooms, location, and facilities for hotel reviews. The list of properties has

to be defined manually though.

2Internet Movie Database: www.imdb.com

14

Relationship Description

child Property depends on the opinion.
I like this camera.

parent Opinion depends on the property.
I have found that this camera takes incredible pictures.

sibling Both opinion and property depend on the same word.
The pictures some time turn out blurry.

grandchild Property depends on the word which depends on the opinion
It’s great having the LCD display.

grandparent Opinion depends on the word which depends on the property.
It has movie mode that works good for a digital camera.

Table 2.2: Types of relationships between properties and opinions by [129]

More recently, Somprasertsri et al. [129] propose an elaborated approach for ex-

tracting different properties from opinionated text fragments. Their work is similar to

that of Zhuang et al. [151] in the sense that they also try to extract properties using

opinion-property pairs and also make use of dependency grammar. The try to model

opinion-property pairs using different types of relationships (cf. Table 2.2). Their method

first uses different variations of noun phrases to extract possible property candidates and

then for each candidate it finds the relevant opinion words. A probabilistic model is used

to predict the opinion-relevant product properties. For alleviating the draw back of cus-

tomers using different words to refer to the same property (e.g. , memory card, compact

flash, CF card and etc. for referring removable memory), they manually construct prod-

uct ontologies through manufactures product descriptions.

2.2.3 Polarity Classification

Given a set of documents R, where each d ∈ R is labeled as either positive or negative

the objective of polarity classification is to find the sentiment orientation of documents

for which the label is unknown. Liu [75] gives a comprehensive overview of the polarity

classification within the area of opinion mining. He distinguishes among classification

at the document level, at the sentence level and at the property level and gives and

overview of the proposed methods for each corresponding task.

At the document level, the goal is to recognize the sentiment in the whole docu-

ment/review, but since this classification is too coarse for most applications, i.e. within

single document there might be different sentiments, methods for sentiment identifica-

tion at a sentence level were developed. The goal is to recognize subjective sentences in

a text. More specific are the methods for property sentiment identification that try to

find what the opinion holder liked and disliked.

15

In this thesis we develop methods to classify at the document level. However, we

preprocess the documents in a way that a document does bear subjective text towards a

single polarity orientation only, i.e. positive or negative. The smallest unit of a document

are the words contained in it. The polarity of words or phrases expresses the authors

polarity orientation at the finest level. Adjectives and adverbs are the dominant type of

words for sentiment word extraction and orientation identification in current research.

Extracting those words is usually the first phase in finding the polarity orientation

of a whole document. The main approaches to identify the semantic orientation of a

word/phrases are statistical based or lexicon based.

The lexicon based approach works upon a given set of words for which the label is

known. The most common lexicon for polarity classification is SentiWordNet by Esuli

and Sebastiani [46]. Given a unlabeled document the easiest way to apply a lexicon is

to look up the polarity for each single word in the lexicon. A simple calculation over

the words may then expose the polarity of the document. A huge drawback of the

lexicon approach is its dependence towards the lexicon, e.g. if the lexicon is too general

the classification of topic specific documents may fail. Also, to cover a broad topic of

interest a large lexicon is required.

Statistical approaches instead need only a set of labeled documents from the topic

of interest, e.g. reviews about hotels. Depending on the approach, a small set might be

sufficient to train a good model, which is then applied to predict the polarity of words

in a document. A well-known statistical based approach has been proposed by Hu and

Liu [64]. They use the semantic orientation of synonyms and antonyms to predict the

orientation of adjectives.

In this thesis we develop statistical approaches to predict the polarity of a document

while exploiting the polarity orientation of its words. Moreover we develop classifiers

that handle dynamic domains such as Twitter [17] 3. The amount of generated opinions

in Twitter is huge and volatile and thus, classifiers that are able to handle a stream of

documents are more appropriate in this domain. The task of the classifiers is then called

stream classification. It is discussed in the next section.

2.3 Stream Mining

A data stream is a potentially infinite consecutive sequence of instances

. . . , dt, dt+1, . . . , dt+n, . . .

, where each instance is associated with a timestamp referring to the time when the

instance was observed. When dealing with data streams typically large amounts of

3Twitter is a micro-blogging service that allows users to broadcast their opinions about everything
from products, to persons and ideas

16

data, high arrival rate and dynamic aspects are involved. Data streams may exists in

domains such as sensor networks, wireless networks and naturally in domains where data

is produced continuously, e.g. product reviews.

Due to the fast and infinite amount data in a stream, they pose special requirements

towards algorithms operating on them: (i) the data cannot be accommodated in the

main memory, (ii) each instance of the stream is only seen once, when it arrives and

(iii) the underlying process generating the instances in a stream may change over time,

i.e. the stream undergoes concept drifts. In the following, we introduce the concept

of maintaining data windows over data streams, methods for learning from continuous

data, i.e. classification and clustering, and how these learning adapts when concept drift

occurs.

2.3.1 Data Windows

While the nature of the data is open-ended only, a chunk of (most recent) data fit into

the memory buffer. Data windows are a way of looking at relevant chunks of a data

stream and thus reflecting the actual stream by a small fraction of meaningful data.

The associated aim is to limit the amount of data to be processed based on different

characteristics and thus improving the performance of executed learning algorithms.

One of the easiest way of limiting data is by applying a fixed sliding window : it may

contain the most recent n data points or it depicts the most recent t time units of the

data; outdated data is forgotten. In either ways the window relies on a constant (n or t).

Due to its simplicity in implementation, the model is widely used. For example, in Lee

and Stolfo [73] it is applied to detect regions of anomalous network activity. However the

performance strongly relies on the window width, i.e. choosing a wrong window width

may produce inaccurate data handling.

Extending the fixed window size of the sliding window, Bifet et al. [18] introduced

the adaptive windowing technique (ADWIN) which dynamically expands the size of the

window when data is static and shrinks the window size when data starts to change.

ADWIN is applied in many algorithms, for example the method of Zhu et al. [148] which

clusters data streams and maintains a different window for each cluster.

Depending on the application of the stream a simple landmark window may also be

sufficient for handling data streams. It tracks the evolution of the data instances at

a fixed point in time, the so called landmark; it then includes all data instances from

that particular landmark. That is, it works accumulative while the window grows. The

model gets quickly unprocessable as the window reaches a huge size. Though, it may be

used for certain applications such as observing the average price of a stock in the current

month.

A window model technique for a more wide application is the damped window. It

assigns weights to the data instances rather than performing a binary decision on whether

17

to include or exclude a instance. The weights depend on the age of a data instance,

i.e. the time when the instance arrived. Rather commonly an exponential ageing function

is used [29] that assigns old data a small weight - however does not completely disregard

- and recent data a bigger weight. Damped windows are utilized in domains where one

is interested in recent data while not forgetting old data though.

2.3.2 Concept Drift

A recorded data stream always refers to an application whose environment is subjected

to change. For example, considering a stream of product reviews, the environment might

be the market where the product is placed; a change is then any variation in the market,

e.g. a new product is placed. Hence a stream underlies changes exposed by the data

instances. Such changes are called concept drift. Zliobaite et al. [157] categorize concept

drifts as “sudden, gradual, incremental and recurring”.

Concept drift in social data might be particularly triggered by changing environ-

ments or by real-world events promoting that attitude and their vocabulary to express

the attitude might change and evolve over time. For example, we may observe tweets

regarding the weather which expose the temperature as being warm, sunny and dry

and thus perceiving it as rather positive. As the summer progresses the weather might

become more sunny, warm and dry, so the people appear to be annoyed of the weather

while expressing the weather as too sunny, too warm and too dry. In the following, we

concentrate on two types of concept drift: (i) the evolving polarity and (ii) the evolving

popularity of products resp. product properties over time.

(i) is considered in the stream classification task discussed mainly in Chapter 3.

It is reflected by word count distributions changing its ratio of positive and negative

counts over time; where the positive count is the number of positive documents with the

related word and the negative count is the number of negative documents with that word.

Assuming a word w occurred in 20 positive and 5 negative documents; the distribution

is (20,5). As the stream progresses w occurs in 20 negative documents, thus the changes

towards the negative class; the distribution is (20,25).

(ii) occurs when monitoring the product properties undertaken in Chapter 4. It

is reflected by the frequency of documents discussing a certain property. Assuming

property x is discussed by 100 documents at timepoint t; as time goes by, no more

documents regarding x arrive, rather a second property y is predominantly discussed by

the arriving documents. Thus the popularity of x has changed.

2.3.3 Stream Classification

In stream classification the interest is in modeling a class variable (label) on the basis

of feature variables w.r.t. the underlying (a) resource constraints towards memory and

18

running time, (b) concept drifts over time and (c) the concept- and feature evolution. In

this fully supervised task, any given observation x ∈ S is associated with a corresponding

class variable y ∈ Y , where x is drawn in a real-value feature space, i.e. S ∈ <d, and

that Y = {y1, . . . , yN} is the set of N class labels reflecting the ground truth of the

classification problem. The training set is therefore defined as follows:

S = {(xi, yi)|xi ∈ <d, yi ∈ Y, 1, . . . ,m}

The classification process can be broadly divided into two phases: model training

resp. rebuilding/adapting and model testing, drawn by Figure 2.1

Data
Window

Stream

Δ
classifier

re-building /
adapting

model testing

decrease
of quality?

adapt
window

yes

train model

Initial
Set

Figure 2.1: Process of stream classification

Model building encompasses a learning algorithm that induces a model while running

over a data set containing instances that bear the true class variables (training dataset).

The model is then utilized to estimate class variables of instances not being part of

the training set. The quality of this estimation is assessed in the model testing phase

deciding whether the model is outdated (decrease of quality) and thus demands to be

rebuilt or adapted.

Rebuilding the model is an expensive task facing an infinite stream. It cannot be

applied on the entire stream seen thus far. In fact, the model is rebuilt upon the current

window of the stream which fulfills given criteria, e.g. containing the most informative

19

instances or reflecting the current population of the stream, cf. Subsection 2.3.1. To

estimate the quality of the model the test phase is utilized which can be for each instance

separately or for a set of instances.

Based on the framework in Figure 2.1 there are many solutions following the above

issues of stream classification. For instance, [39, 140] propose stream classifiers that deal

with the issue of detecting concept drifts, [4, 50] focus on huge data streams processing

them in real-time and thus concentrating on memory efficiency while [87] deal with the

issue of evolving feature and concepts, i.e. the set of feature variables as well as class

variables changes. Describing them all in detail goes beyond the scope of this thesis.

Rather this thesis focuses on the issue when the testing data do not carry any evidence

of the class variables, the so called semi-supervised stream classification discussed in

Chapter 3.

2.3.4 Stream Clustering

Clustering streams is a tedious task because of the high amounts of constantly arriv-

ing data. It has been researched extensively in recent years due to its emerging and

broad applications. Traditional clustering algorithms cannot overcome the challenges

specifically occuring when dealing with data streams, e.g. massive volume of data, con-

tinuously evolving patterns, different domains of data which depends on the underlying

application.

Regarding the massive volume of data, one major constraint of stream clustering

approaches is that they should minimize the runs over the data, in best case the algorithm

runs only ones over the data. Hence, the most stream clustering algorithms aim to

keep the number of I/O operations small rather than taking care of the number of

CPU operations. Another important aspect of the clustering algorithms is the temporal

locality issue as the stream progresses over time. Many algorithms take such issues into

account while applying snapshot-based and decay based techniques as well as windowing

as discussed above (cf. Subsection 2.3.1).

To achieve the aforementioned challenges, almost all streaming methods use summa-

rization techniques to compute intermediate representations [5] upon which a clustering

algorithm is then applied. That is, stream clustering methods maintain summaries on-

line, while the actual clustering takes place offline, upon the summaries rather than upon

the original raw data. Clustream [3] was the first to propose this online-offline rationale:

the online component incrementally maintains a set of micro-clusters, whereas a vari-

ation of k-means is applied offline, to discover the actual clusters. The micro-clusters

summaries comprise an extension of the cluster property vector of BIRCH [146]. Figure

2.2 depicts a set of micro-clusters (on the right) extracted from the corresponding data

set (on the left) while having applied the CluStream algorithm on it.

5Massive Online Analysis available at: http://moa.cms.waikato.ac.nz/

20

Figure 2.2: Example of micro-clusters (right) and the corresponding data set (left)
processed using the CluStream algorithm [3] from the MOA 5Framework.

DenStream [30] follows the online-offline rationale but it discovers clusters of arbi-

trary shapes following the density-based clustering paradigm [45]. The stream is summa-

rized by micro-clusters and the final clusters are described as sets of micro-clusters. The

damped window model is adopted, thus allowing for the ageing of the data. DStream [34]

uses a grid structure to capture the density of the stream, whereas it also follows the

damped window model for the ageing of the data.

Another type of summarizing technique, proposed by Guha et al. [56], progresses

upon chunks of data, i.e. the stream D is divided into chunks D1 · · · ,Dr of size m thus

each chunk contains not more than m instances; m is selected so that all instances of a

chunk fit to the main memory. The algorithm then applies a variation of k-means clus-

tering upon the first chunk to extract k representatives. In addition it applies k-means

upon the second chunk to extract another k representatives. Hence, after r chunks

were progressed, there a r ∗ k representatives. If the number of representatives is equal

or greater to m, k-means is applied on the representatives to extract k representatives

which are stored as level-2 representatives. Hence, in general the algorithm converts a

set of level-p representatives into k level-(p+1) representatives if the number of level-p

representatives reaches m. At the end of processing stream D, all remaining representa-

tives of different levels are clustered together into one final cluster model while applying

k-means. The algorithm has its limitation when the underlying stream evolves as it is

difficult for the clustering process to adapt to changes; also it does not provide insights

21

over different time horizons. The aforementioned online-offline approach gives better

insights at different time-horizons.

Another challenge which predominantly occurs in text data streams is the high di-

mensionality that emerges as the stream progresses. The approach of He et al. [60]

reduces the dimensionality while preselecting words (dimensions) on the basis of the

word’s burstiness; burstiness is based on the frequent presence of a few words in the

stream. That is i.e. documents are represented by bursty words rather than all words of

the documents in the stream. In this thesis we develop a stream clustering method for

opinionated text data that adheres to a mixture of the chunk type and the online-offline

approaches while using a two-level cluster structure that represents at the lower level

a broad view on the stream and on the higher level a fine grained picture. We reduce

the number of dimensions while applying a technique that focuses on certain instances

which may be important to represent the stream, cf. Chapter 4.

22

Chapter 3

Semi-Supervised Self-Learned
Opinion Stream Classification

This chapter, focuses on stream classification upon an opinionated stream of documents

with limited amount of labeled data. Facing a stream of unlabeled documents where

only a small set of initial seen documents are labeled, the goal is to assess the labels for

new arriving documents by semi-supervised stream mining techniques. We concentrate

on the subjective text of the documents examining solely adjectives and adverbs.

Per se adjectives and adverbs capture more information towards the opinion of the

author as any other word categories. They are also commonly recognized as the opin-

ion bearing word categories across the overall customer content [135, 144]. Hereinafter,

whenever we apply opinion stream classification upon a stream of customer content, we

always address the adjectives and adverbs of a stream. The limited amount of labeled

data when facing opinionated data requires stream classification methods exploiting the

small set of labeled instances so as to reduce classification errors made for new arriv-

ing, unlabeled documents. We, therefore, opt for semi-supervised stream classification

making the algorithms developed thereon appropriate to the restricted environment of

having only a small set of labeled instances.

This chapter contributes to research task Research Task 1, Research Task 2 and

Research Task 3 formulated in Section 1.1. We repeat them here for convenience.

Research Task 1. Classify the polarity of documents as either positive or negative.

Train a classification model and employ the model upon arriving documents to learn

whether these documents are positive or negative.

Research Task 2. As social streaming data evolves w.r.t the vocabulary, w.r.t. the

implicit product properties and w.r.t. the positive or negative attitude of people towards

these properties; how to adapt the classification model according to the evolving stream?

23

Research Task 3. As social data streams face scarcity of labels; how to train a classifier

on a small set of labeled instances and how to adapt the classifier with new arriving,

unlabeled documents for which the classifier predicts the label to reflect the evolving data

stream?

The methods presented in this chapter contribute to the binary classification prob-

lem of distinguishing among positive and negative documents, when (a) the amount of

training instances is much smaller than the unlabeled documents and (b) the unlabeled

documents constitute a stream which evolves over time, i.e. the attitudes as well as the

vocabulary, used by the authors, changes over time. This contributes to research task

Research Task 1 and Research Task 3. Moreover the methods undertake the problem

of changes underlying in social streaming data, e.g. words which might became obsolete

as they are not longer used by the authors, or words which are not class-informative as

they do not help to differentiate among the two classes. Those methods refer to research

task Research Task 2.

We elaborate on the performance of our classifiers while utilizing several real world

data streams. To assess the quality of the developed methods, the algorithms must be

compared with upper and lower baselines. Specifically, they need to be compared with

methods having always the true labels available (upper baselines) and with methods

that operate only upon a limited amount of labeled instances (lower baselines). To this

purpose, we develop a dedicated framework.

The rest of this chapter is structured as follows. In the next section we introduce to

self-training in a stream environment followed by the definitions and notation that we

utilize describing our semi-supervised stream classifiers. We propose the classification

algorithms in detail in Section 3.3 and 3.4 introducing first to our basic learner which we

extended by two adaptation strategies that allows to employ the classifier upon evolving

review streams; in the following section we extend the two classifiers by a ageing concept

that downgrades old and probably outdated reviews and emphasizes recent reviews.

We evaluate all proposed classifiers in Section 3.6 and juxtapose the classifiers in the

conclusion discussing functionalities and performance.

3.1 Basic concepts

In this section we motivate self-training as semi-supervised stream classification while

also introducing the basic concept of semi-supervised stream classification when only

a limited amount of labeled instances is available. Hence, this section builds upon

the general process of stream classification considering concept drift, discussed in Sub-

section 2.3.3; it then first acquaints with the notation and process of semi-supervised

stream classification and concludes by the self-training approach and its benefits regard-

ing stream classification.

24

3.1.1 Semi-supervised Classification

Semi-supervised classification deals with the problem that creating sufficient labeled data

can be very time-consuming while unlabeled samples are easy to obtain, e.g. the World

Wide Web can be seen as a large collection of unlabeled data. In contrast, annotating

the data manually by an subject expert is sometimes the only way to obtain labeled

data, which might be an expensive and tedious process. Hence, a small set of labeled

instances

S = {(xi, yi)|xi ∈ <d, yi ∈ Y, 1 ≤ i ≤ m}

is observed and a huge stream

D = {di ∈ <d|i = 1, . . . ,M}

with unlabeled instances arrive, i.e. |m| << |M |. The main challenge of semi-

supervised classification is then to use both labeled and unlabeled data to build a stream

classifier ∆ that makes class predictions of unlabeled instances which match quite often

with the true labels.

In the literature there are several approaches of learning a semi-supervised classifier

∆ within a static environment; they might address different problems but all of them deal

with the above challenge. However, only few approaches exits for a stream environment.

In the following we discuss the common families of semi-supervised learning in the light

of the dynamic framework of Figure 2.1. In particular, we discuss them towards the

memory and running time constraints, concept drift and feature evolution.

3.1.1.1 Self-Training

Self-training, first introduced by Fralick in [48], convinces by its simplicity. The algo-

rithm is abstracted in Algorithm 1. First a seed set of labeled data is used to construct

a classifier (line 1). The classifier is then applied to unlabeled data while predicting the

class label and taking the predictions to be correct for such instances where the predic-

tion is most confident. The function select (line 3) preserves instances, on whose label

the classifier has high confidence, and adds them to the training set. A new classifier

is trained afterwards (lines 3-4). The process of labeling new data and retraining the

classifier until a stopping condition is satisfied may be iterated (lines 2-4).

Self-training is widely used in computational linguistics [61, 63, 142]. One of the most

popular application is given by Yarowsky et al. [142], who addresses the problem of word-

sense disambiguation (i.e. deciding whether the word ”spring“ means a a season of the

year or a natural source of water) while starting with one sense per word and expanding

the list of word-senses iteratively by self-training. Another research area utilizing self

training is pattern recognition, e.g. in handwriting, Frinke et al. [49] employ a framework

25

Algorithm 1: Self-training

Input: S: labeled data, D: unlabeled data
1 ∆← train(S)
2 while stopping criterion is not met do
3 S = S ∪ select(label(D,∆))
4 ∆← train(S)

5 return ∆

based on self-training proposing retraining rules that determine which data should be

used for retraining; Esparza et al. [43] study self-learning for emotion recognition from

speech data using soft labels for unlabeled instances rather than crisp labels.

There are many variants of algorithms using self-training as foundation for learning

upon a small set of labeled and a large set of unlabeled instances [1]. Among others, self-

training found attention in generative probabilistic model learning, e.g. one of the earliest

semi-supervised approach, McLachlan’s Algorithm [93], considers mixtures of gausssian

distributions. Moreover, self-training contributes essentially to semi-supervised algo-

rithms such as label propagation through a graph [142], co-training [23], perceptron

learning, e.g. support vector machines [13] or support vectors machines coupled with

transductive inference [137], also boosting [14] is based on self-training.

Self-training is also used as framework for semi-supervised stream classification prob-

lems [88, 25, 101, 7, 85]. This is mainly because of its simplicity and its functionalities to

providing reasonable advantages w.r.t. to memory and running time constraints, concept

drift and feature evolution.

Regarding memory and running time constraint, self-training only keeps instances

on which the classifier is confident. Additionally, the classifier is re-learned by instances

with high-confidence labels solely. Hence, the amount of stored instances is limited, also

the set of labeled instances on which the classifier is re-learned contains an assessable

amount of examples. Concept drift is taken into account while gradually re-learning the

classifier on the expanded set of labeled instances. The problem of feature evolution,

i.e. the feature vector demands to be adjusted, can be addressed as expanding the feature

vector w.r.t. to the expanded list of labeled instances. The feature vector is then always

the set of unified features upon by all labeled instances. Hence, self-training based

algorithms suit very well for a stream environment as given by Figure 2.1.

3.1.1.2 Motivation and Limitations using Self-Training as stream classifica-
tion approach

In this section it shall be shortly motivated why a self-training approach was followed and

what is yet needed to make it thoroughly suitable for streams. As pointed out in [150] and

26

[121] self-training is a wrapper algorithm, i.e. it provides a framework (cf. Algorithm 1)

that, in principle, can be applied to any supervised learning algorithm. This is similar

to the process of stream classification given by Figure 2.1 where any type of classifier

can be applied.

Besides, there is more conformity among the frameworks: the classifier is updated

gradually with new instances and only a selected set of instances is used for re-building.

This allows us to map self-training into the process of stream classification to exploit the

unlabeled instances arriving over time. Figure 3.1 depicts the process of semi-supervised

stream classification with self-training: a stream with no evidence of true labels arrives;

the labels are predicted and also the confidence regarding the prediction is determined;

instances labeled with high confidence are used to expand the training set, upon which

the classifier is then re-built.

confident
instances/
training

set
Δ

classifier

⋯

Stream with no true labels

⋯

model building /
re-building

predict label

is label
confident?

expand
training set

yes

xi xi+2xi+1

yi

Figure 3.1: Process of semi-supervised self-trained stream classification

In contrast to stream classification, the process of semi-supervised self-trained stream

classification is not enriched with true labels. In fact, re-building is employed on pre-

dictions of class labels rather than on true labels. That is, a classification error may

reinforce itself. In the rest of this chapter we propose semi-supervised stream classifiers

that minimize the probability of adding classification errors by means of heuristics, based

on entropy and word frequency, so that the classifier is only adjusted by instances reveal-

ing reliable predictions w.r.t. to the class label. Furthermore, our suggested classifiers

act online labeling each arriving instance only once; making it particularly suitable for

huge streams.

27

3.2 Basic Definitions and Notation

This section provides a definition of semi-supervised opinion stream classification as

well as the basic notation of an stream of opinionated documents featured through this

thesis. We observe a textual stream D of documents arriving at distinct timepoints

. . . t, t + 1, . . . , t + i, The timestamps may be chosen to have a temporal semantic

(e.g. days, months). A document d ∈ D is represented by the bag-of-words model,

i.e. the ordering of the words is ignored. d = {w1, w2, · · · , w|d|}, where wi corresponds to

the word at position i, |d| is the number of distinct words in d. The incoming documents

d ∈ D are unlabeled that is, there are no class information in the documents.

Parameter Description

t timepoint t

D stream of unlabeled opinionated documents

St set of labeled opinionated documents at timepoint t

d document

wi word in a document at position i

Y set of class labels

yj class label j, yj ∈ Y
Vt vocabulary of words derived from St at t

∆t classifier trained upon St at t

Table 3.1: Basic parameters for the classification of an opinionated stream of documents

We assume, unlike in typical stream classification and similarly to semi-supervised

classification, that the only training set being available is a handcrafted collection S
of documents, to which an expert has assigned a class label. That is, for each d ∈
S, the label class(d) ∈ Y is known (Y is the set of all labels). Accordingly, d =

{w1, w2, · · · , w|d|, yj}, where yj is the label of d. The set of words accumulated across S
is the vocabulary V. The essential parameters of an opinionated stream are depicted in

Table 3.1.

The considered task of semi-supervised opinion stream classification can be visualized

as in Figure 3.2. Based on the given set of labeled instances, a classifier ∆t is trained.

New arriving documents are consumed at each individual timepoint t. For each document

d at timepoint t the label, which is learned by the current classifier ∆t, is accepted as

predicted label for d. The classifier is then adapted by the content of document d

w.r.t. the predicted label. The task of semi-supervised opinion stream classification can

be defined as follows:

Problem specification: (Semi-Supervised Opinion Stream Classification)

Given a small set S of documents labeled by the true labels, and a stream of unlabeled

28

Δ
t

classifier

⋯

predict
label

adapt classifier
by predicted label

Stream of
opinionated documents

for each document

set of reviews
with true labels

train

adapt

learn

DocDoc
tt⋯ DocDoc

t+1t+1
DocDoc
t+2t+2

Figure 3.2: Semi-supervised opinion classification on a stream of opinionated documents

opinionated documents D, arriving at distinct timepoints t, t + 1, t + 2, . . . , t + i, . . . for

which the labels shall be learned. The labeled documents serve as training set on which the

initial classifier ∆0 is trained. How to add new instances d to the training set adapting

the model incrementally across the stream?

In the next section we focus on the adaptation process, proposing techniques to adapt

on document and word level. Besides we introduce the stream classifier ∆ to assess the

label of new arriving documents on the basis of the labeled documents in S.

3.3 Adaptive Learning with only an initial seed

According to research task Research Task 3, this section proposes adaptive learning on an

opinionated stream where only a small initial seed of labeled instances is available. The

goal is to assess the polarity labels of new arriving documents correctly while exploiting

the labeled instances; and also reflecting the underlying population as using predicted

labels to enrich the learner. We, therefore first introduce the main concept of our learner,

followed by the base learner used to assess sentiment labels and the incremental process

to maintain the learner over time concluded by two approaches selecting reliable content

to adapt the learner at document and word level.

29

Our self-adaptive stream learner is depicted by Algorithm 2 and explained briefly in

the following. The initial classifier ∆0 is trained upon the initial seed set S0 (cf. line

1). At each timepoint t there arrives a single document. For each arriving document d

from the stream (lines 2 – 8), the class label for d is predicted by the current version of

the classifier ∆t (line 4). The class prediction is examined w.r.t. to the current classifier;

and if the prediction and the document d satisfy the criterions of examination, then the

classifier is adapted (lines 6 – 7). Finally, we increase the timepoint by 1 (line 8).

Algorithm 2: Self-Adaptive Stream Learner

Input : D ← stream;S ← seed set
1 t ← 0; ∆t ← train initial classifier on seed set St
2 while D do
3 d← read incoming document from D
4 classt(d) ← predict(∆t, d)
5 yj ← classt(d)
6 if satisfyCriterion(yj , d) = TRUE then
7 ∆t+1 = adapt(∆t, d, yj)

8 t ← t +1

The base classifier is introduced in Section 3.3.1 while we propose extensions to that

classifier through the Sections 3.3.2 and 3.3.3. The criterions are part of our extensions

regarding the basic classifier in Section 3.3.2 and 3.3.3.

3.3.1 Adaptive Multinomial Naive Bayes As Base Learner

This section introduces the base learner for assessing the polarity label of documents.

We first present the model for the static case and refer then to maintaining the model

when the underlying dataset is a stream.

We use a Multinomial Naive Bayes (MNB) [91] to train a classifier ∆(S) over a labeled

training set S. The Multinomial Naive Bayes has been widely used for text classification.

It is simple to implement, very fast for induction, robust to irrelevant attributes, while

providing reasonable prediction performance. [40]. Moreover the MNB can be easily

adjusted with new words which is important when dealing with data streams.

Beside MNB there is the multi-variate Bernoulli model drawing each word wi by

a random variable Wi ∈ {0, 1}: word appears in a document then Wi=1 else Wi=0.

However, [91] showed that MNB performs better than the multi-variate Bernoulli model

for text classification. Thus, we opt for MNB as base learner.

Naive Bayes classifiers are in general based on the assumption that documents are

generated by a mixture model while classes refer to mixture components. A document

is created by the mixture component of a selected class. The total probability of a

30

document d is:

p(d) =

Y∑
j=1

p(|yj |)p(d|yj)

where p(yj) is the prior probability that class yj is selected, and p(d|yj) is the probability

that the mixture component referring to yi generates document d. In optimal case

p(d) = 1, depicting that d is drawn perfectly by the mixture model.

As MNB employs Bayesian rule, the model is inverted to obtain the posterior prob-

ability that d was generated by the mixture component referring to yj :

p(yj |d) =
p(yj)p(d|yj)

p(d)

where p(d) is the prior of d and is assumed to be the same over all documents. Thus it

does not depend on the class and can be ignored. To classify a document, we select the

class with maximum posterior probability:

class(d) = argmax
j
p(yj)p(d|yj) (3.1)

where P (yj) are the prior probabilities of classes yj ∈ Y . The priors can be directly

estimated from the underlying dataset, note that we still concentrate on the static case.

For the conditional probabilities of documents d given the class label, we use bag-of-

words model, cf. Section 2.1. That is we model a document as a vector where each entry

of the vector refers to a word of the vocabulary Vt at timepoint t; the vocabulary is

derived from the set St containing all distinct words which appear in documents d ∈ St.
Then, according to Schum [120]; assuming that d contains the words w1, · · · , wnd :

p(yj)p(d|yj) = p(yi, wnd , · · · , w1) = p(yj |wnd , · · · , w1) ∗
nd∏
i=1

p

(
wi|

i−1⋂
k=1

wk

)

The computation of the distribution takes much computational costs for long term

documents though. The Naive Bayes classifier makes the naive assumption that the

class conditional probabilities of words are distributed independently which makes the

computation much easier. That is,

p(d|yj) ∝
nd∏
i=1

p(wi, f
d
i |yj)

where fdi is the number of occurrences of wi in document d.

The class conditional probabilities of words wi are drawn from a Multinomial distri-

bution:

31

p(wi, f
d
i |yj) = p(wi|yj)f

d
i

The resulting equation of the conditional probability of a class yj given a document

d is then:

p(yj |d) =

p(yj)
|d|∏
i=1

p(wi|yj)f
d
i

p(d)

Dealing with texts while taking the frequency of the appearance of a word within a

document into account does not work well though. This has been shown by several stud-

ies on Multinomial Naive Bayes for different text classification domains [114, 118, 95].

Intuitively, the pure word occurrence matters more than the word frequency. For in-

stance, the occurrence of the word fantastic may tell a lot about the sentiment orientation

of a document, while the fact that it occurs five times may not tell much more about

the sentiment of the author. Moreover, Katz [70] has studied the distribution of words

in documents. He has shown that words often exhibit burstiness, i.e. the probability

that a word appears a second time in a document is much larger than the probability

that it appears at all in a document. The naive assumption that the occurrence of a

word within a document does not depend on the number of times the word has already

appeared in the document, does not reflect this behavior well. An intuitive solution is to

replace multiple occurrences of the same word in a document with a single occurrence.

The resulting model is a binarized Multinomial Naive Bayes, cf. Turney et al. [135]. It

is given as:

p(yj |d) =

p(yj)
nd∏
i=1

p(wi|yj)

p(d)
(3.2)

The class label yj is then the one which shows the maximum posterior probability

and p(d) can be ignored as it does not depend on the class, cf. Equation 3.1.

3.3.1.1 Frequency Estimation

Thus far we proposed the static version of the MNB. As this thesis deals with a stream of

documents as input dataset though, we employ the t symbol in the following notation and

refer as of now to streams. To compute the conditional probabilities we use frequency

estimation. That is, the prior and conditional probabilities are estimated by frequency

estimates 1 from the training set St. These estimations are temporary and not final since

the stream is progressing, therefore we employ the t symbol in the above and following

1Parameter estimates are indicated by a “hat” (̂)

32

notation. The estimates at a timepoint t are computed based on the seed set St. The

notation of the estimated frequencies are given by table 3.2.

Parameter Description

p̂t(yj) estimated prior probability of class label yj at time t

p̂t(wi|yj) estimated conditional probability of word wi given class yj at time t

ntj # of documents in St having class yj
ntij # of documents in St having class yj and containing word wi till time t

N t
j set of all word counts ntij regarding class yj

Table 3.2: Notation of the estimated frequencies

The class prior pt(yj) regarding a class label yj ∈ Y at timepoint t is the fraction of

the training set documents belonging to class yj till timepoint t

pt(yj) =
ntj
Y∑
yu

ntu

(3.3)

where ntj is the number of documents having the class label yj till timepoint t, i.e.

∀yj ∈ Y : ntj = |{d : classt(d) = yj ∧ d ∈ St}|

The conditional probability of word wi given class yj at timepoint t, pt(wi|yj) is

estimated by the relative frequency of word wi in documents of class label yj as follows:

p̂t(wi|yj) =
ntij + 1∑|Vt|

k=1 n
t
kj + |V t|

(3.4)

where ntij is the number of occurrences of word wi in documents with label yj at timepoint

t, i.e.

∀wi ∈ V : ntij = |{d : d ∈ St ∧ classt(d) = yj}| (3.5)

Vt is the vocabulary over St and pt(d) is the prior of d (assumed the same for all

documents). We apply laplacian correction (initializing to 1 instead of 0) to avoid the

zero-frequency problem. That is, the conditional probability of a word given a class

label yj it derived by the ratio of number of documents with label yj to all documents

having label yj while also considering the laplacian correction (cf. Section 3.3.1.2). Thus

we propagate the class label of a document d to all words wi ∈ d, i.e. all words of a

document with label yj also have the label yj .

33

3.3.1.2 Re-computing the conditional probabilities of words

The words in the initial seed set S0 constitute the initial vocabulary of known words V0 .

As the stream progresses, the vocabulary must change: people use additional, previously

unknown words to express their positive or negative opinion about some subject. There

are two cases related to new appearing words which entails different treatment by the

classifier: (i) the word appears the first time and (ii) the word re-appears.

For case (i) we apply laplacian correction to assign a conditional probability of the

unknown word wi given class yj greater than zero:

p̂t(wi|yj) =
1

|V t|

Also we establish a new word count entry: nij = 1 w.r.t. to the class yj . For case

(ii), we update the probability of a word wi given a class label yj from the document

containing this word and having label yj . This probability is updated incrementally as

follows:

1. For each word wi and label yj , we count the number of documents containing wi
and having label yj . Until timepoint t− 1, this number is nt−1

ij .

2. For each incoming document d from the stream at timepoint t, we predict its class

label yj ∈ Y using the classifier ∆t. The predicted label is propagated to the

document’s words wi ∈ d and all related entries in the vocabulary are increased by

1, i.e. :

∀wi ∈ d,wi ∈ V : nt+1
ij = ntij + 1

where yj is the predicted class of d based on the current classifier ∆t. Note, counts of

words that are not part of document d remain unchanged.

Moreover, we increase the number ntj of documents belonging to class yj by one.

nt+1
j = ntj + 1

In the next subsection we propose two approaches selecting only reliable and useful

content with which the learner is expanded and thus with which the class counts are

adapted. These two approaches refer to research taskResearch Task 3. The first approach

operates at document level, i.e. considering entire documents to adapt, while the second

approach promotes to operate at word level, allowing single words of a document to

adapt the learner.

34

3.3.2 Adaptation at Document Level while expanding the seed

As the stream of documents evolves over time, the initial classifier ∆0 trained upon the

initial seed set S0 might become outdated over time and demands to be adapted. Hence,

we adapt the initial classifier ∆0 by incorporating new documents into the initial seed

set S0 after deriving their labels with ∆0. The considered documents are instances of

the stream which arrive over time and might comprise “useful” instances for the already

built classifier ∆0 (we explain the notion of “usefulness” hereafter). Moreover, we expand

the list of words V0 derived from S0 by adding new words to it and maintain the counts

for them over time w.r.t. to the label of the related documents.

In Section 3.3.1.2 we explained how we update the conditional probabilities of words

given the class, by exploiting the labels of documents. Since the labels are predicted,

we cannot rely on all predictions equally. Our algorithm ADASTREAM [153] decides at

each timepoint t whether the new document is “useful” and thus can be used to expand

the training set and to re-estimate the probabilities of the words.

The pseudocode of the algorithm is depicted in Algorithm 3: the seed set S0 is used

to initially train a sentiment classifier ∆0 (cf. Section 3.3.1). At each timepoint t the

label of a new arriving document d is derived from the current classifier ∆t based on the

seed set St (line 4). Also, a usefulness test on each d is applied (line 6). Then, only the

word counts of a useful document are updated (line 7-12), expanding the vocabulary V
while establishing new counts for words wi /∈ V (line 9-11); and increasing the counts

by 1 of existing word counts, i.e. words which already belongs to the vocabulary V
(line 12). Finally the class counts nj , reflecting number of documents with label yj ,

are increased by 1; also the seed set is extended by d. The concept of “usefulness” is

explained hereafter.

3.3.2.1 Usefulness

As stated above, we select only “useful” documents to adapt the classifier. “Useful”

documents intend to emphasize the existing model but also referring to the evolving

stream and thus allowing the model to change when required by the underlying popu-

lation. Inspired by the attribute selection measures used in decision trees [96] we use

shannon entropy as base of our usefulness definition. In decision trees the entropy is

used to decide for selecting that attribute which separates a given data partition at

best. In particular, the attribute that minimizes the randomness (impurity) to classify

the instances of the resulting partition is selected, i.e. the entropy is a measure of the

purity within a partition: the smaller the entropy the greater is the purity. A decrease

in entropy due to the addition of a new document, means that the decision on the class

label is easier after the addition (e.g. the majority class is enhanced by more documents,

so the distinction between majority and minority class in a 2-class classification scenario

35

Algorithm 3: Adaptive Opinion Stream Classifier while expanding the seed based
on “useful” documents: ADASTREAM

Input : initial seed S0, stream D, usefulness threshold α
1 t ← 0; ∆t ← train initial classifier on St
2 while D do
3 d← read incoming document from D
4 classt(d)← predict(∆t, d); yj = classt(d)
5 if usefulness of d ≥ α then
6 for i=1 to |d| do

// update word counts based on d
7 if wi /∈ Vt then

// word wi seen for the first time: create new entry

8 ntij = 1

9 N t+1
j = N t

j ∪ nt
ij

10 Vt+1 = Vt ∪ wi
11 else

12 nt+1
ij = nt

ij + 1

13 nt+1
j = nt

j + 1

14 S t+1 ← S t ∪ d
15 t ← t +1;

is easier). On the other side, an increase in entropy means that the minority class is

enhanced by more documents and thus the decision on the class labels becomes more

difficult.

Since our goal is to further “boost” the existing model, we should expand the seed

set by documents that decrease the entropy. However, aiming to adapt the classifier by

documents that reflect the current model but also allow the model to change smoothly

over time, we consider for the expansion of the seed set documents that increase the

entropy but within some safety limits. Increasing the entropy allows to add new infor-

mation to the model, whereas the constraint to increase the entropy only within some

safety limit ensures that the added documents should agree to a great extent with the

existing model. This we accumulate in the definition of usefulness, which is based on

the increase/decrease of entropy (aka information gain):

Definition 3.1. [Usefulness] Let d be a new document, to which ∆t assigns the label yj
at timepoint t. The usefulness of d at timepoint t is then

Usefulness t(d) =
∑
wi∈d

H(St, wi)−H(St ∪ d,wi) (3.6)

36

d is useful for learning at timepoint t if Usefulness t(d) is greater than the threshold

α ∈ (−1, 0]: Here, H(St, wi) is the entropy of St w.r.t. wi, which expresses how pure

the word count distribution of wi at timepoint t is; H(St ∪ d,wi) is the entropy w.r.t. wi
when considering also the occurrence of wi in d. The entropy H(St, wi) is defined as:

H(St, wi) = −
∑
yj∈Y

ptij ∗ log2p
t
ij (3.7)

where the probability that word wi belongs to class yj according to the seed set St at

timepoint t is:

ptij =
ntij
ntj

which is the ratio of documents containing the word wi and having the class label yj
w.r.t. all documents of St being classified with label yj. �

Informally, a document that decreases the entropy difference in Eq. 3.12 is useful

because it “boosts” the performance of the existing classifier by adding to St documents

that are very likely to have indeed the label assigned to them. On the other hand, a

document that increases the entropy difference is also useful, since it forces the classifier

to adapt to documents that are different from those seen thus far; which might be caused

by the evolving stream. That is, the information gain as stated in Eq. 3.12 may help to

decide whether the predicted class label of a new document d does reflect the current

orientation of the word count distributions for words w ∈ d; or whether it reflects a

change regarding the current orientation.

We regulate the usefulness of documents with the threshold α ∈ (−1, 0): values close

to 0 promote smooth adaptation, because they require that the newly added documents

in the model agree with the old classifier, while values close to −1 promote diversity. In

general, lower values of α allow considering documents that are very different from the

seed.

It is noted that in the usefulness definition we use the entropy difference over only

words wi ∈ d, rather than over all words in winSt. The reason is that d is the only

difference between the two sets, so there is no need to iterate over all the words of the

seed. If d is useful w.r.t. the usefulness threshold α, the seed set St is expanded by d, so

the new seed set is St∪d. Also, the parameters of the classifier are updated accordingly,

based on d. This is an efficient update, as we need to update only the counts nij for all

words wi ∈ d and class label class(d) ∈ Y . The parameters exploited in the definition

of usefulness are depicted in Table 3.3, giving a comprehensive and clear notation of the

parameters related to usefulness through the rest of the thesis.

37

Parameter Description

α usefulness threshold, α ∈ (−1, 0]

Ht(St, wi) entropy of word wi at timepoint t

pt(ij) probability that wi belongs to class yj at timepoint t

St expanded seed set till timepoint t

Table 3.3: Notation of parameters used for the definition of usefulness

Dealing with Concept Drift To reflect concept drift, i.e. the word count distribution

changes, we incrementally adapt the word counts by “useful” documents. According to

the usefulness given by Def. 3.1, the counts are adapted by two kinds of documents either

by documents that emphasize the existing classifier or by documents that are different to

the model within some safety limit. Concept drift involves that new arriving documents

are different to the existing model. That is, only the latter kind of documents may include

concept drift. The classifier adapts only to drifts that have a limited strength. The

strength of the concept drifts to be considered is regulated by the usefulness threshold

α: the smaller α the sharper the concept drift allowed to be considered. As α ∈ (−1, 0],

the strength of the concept drift is limited. So, documents which vary much from the

existing model and therefore imply a sharp drift are not considered by the classifier.

Rather, the classifier adapts to smooth drift.

Résumé The above method builds upon the base learner introduced in Section 3.3.1.

It applies an adapting mechanism, which is based on information gain, to decide whether

new arriving documents d ∈ D are “useful” for the classifier ∆t according to their

predicted label yj - being derived from ∆t- and the threshold α. This refers to research

task 3. Only useful documents, i.e. which information gain is above the threshold α,

are then considered to adapt the classifier including expansion of the seed set St and of

word counts referring to yj .

3.3.3 Adaptation at Word Level while keeping the seed unchanged

People might use new words to express their sentiments, and they also give up ones

that are used out - for example, when the word “cool” was not cool enough any more,

“supercool” emerged. The approach above considers this only partially: there we add

new documents to the training set by classifying each arriving document d and then

deciding whether d would be a beneficial addition to the training set. However, whether

single words are useful is not captured separately, rather the decision on adding a word

depends on the “usefulness” of the related document. Thus, words being a useful addition

to the training set are ignored if the related document appears to be not beneficial.

38

We claim that the information needed to adapt a semi-supervised classifier is encap-

sulated in the words, not in the documents. Accordingly, we propose a semi-supervised

stream classifier, based on the base learner described in Section 3.3.1, that adapts itself

by assessing the polarity of newly seen words, based on the derived label of the related

documents, and adding those to the vocabulary U , for which the polarity has been as-

sessed to an adequately reliable extend and for which no evidence in seed set is available.

Following our example, “supercool” would become part of the vocabulary U and used for

labeling only after acquiring enough evidence that this word is positive. The vocabulary

V0 constituting the set of words from the initial seed S0 remains unchanged as well as

S0.

Our learning and adaption method, which we call S*3Learner, is depicted in Al-

gorithm 4 and explained in the next sections. Briefly, the initial classifier is trained

upon the initial seed set S0 (line 2). For each new document d from the stream (lines

3–15), the class label for d is predicted by the current version of the classifier (line 5) -

this is the base learner extension we describe in the following by the next subsections.

Based on the class prediction of d, the unknown words wi of d are chosen to adapt the

existing classifier, i.e. the class counts of unknown words that appear in the document

are updated (lines 7-12) while increasing class counts for existing unknown words (line

9). Additionally, new initial class counts and entries in the unknown vocabulary U t are

established of such unknown words which appear for the first time (line 11–13). Finally,

also based on the class prediction of d, the document class count is updated (line 14). We

summarize the parameters referring S*3Learner used through this thesis in Table 3.4.

3.3.3.1 Using Known and Unknown Words Vocabulary

According to Section 3.3.1 there might appear new words over time, we extend the part

of our method that deals with them over time, as described in Section 3.3.1.2, as follows.

Note: we use the t notation for estimates and parameters related directly to the stream

D and thus which change over time. In contrast, we avoid the t notation for static

estimates computed on the seed set S and thus remaining unchanged.

Let d be a new arriving document from the stream at timepoint t. For each word

wi ∈ d at timepoint t there are three cases: (i) wi ∈ V, i.e. wi might be part of the initial

vocabulary V and its class distribution counts nij , yj ∈ Y are known, (ii) wi /∈ V and

wi /∈ U t, i.e. wi occurs for the first time in the stream and there is no information on its

class distribution counts, (iii) wi /∈ V, but wi ∈ U t, i.e. wi does not appear in the seed

set but it has appeared in the stream before and therefore belongs to the vocabulary of

unknown words U t and its class distribution counts mt
ij , yj ∈ Y are estimated from the

stream.

In case (i), we take over the class distribution from the initial seed set S to compute

the class conditional probabilities p̂(wi|j), yj ∈ Y,wi ∈ V. This is already described

39

Algorithm 4: Semi-supervised self-adaptive Opinion Stream Classifier:
S*3Learner

Input : D: stream, S0: seed set, V0: initial vocabulary, MinFreq, MaxEntr
1 t ← 0; U t = empty
2 ∆t ← train initial classifier on S0

3 while D do
4 d← read incoming document from D
5 classt(d) ← predict(∆t,MinFreq,MaxEntr, d); yj ← classt(d)
6 for i=1 to |d| do
7 if wi /∈ V0 then
8 if wi ∈ U t then

// word wi already seen: update class count

9 mt+1
ij = mt

ij + 1

10 else
// word wi seen for the first time: create new entry

11 mt+1
ij = 1

12 U t+1 = U t ∪ di
13 Mt+1

j =Mt
j ∪m

t+1
ij

14 mt+1
yj = mt

yj + 1; // update class counts

15 t ← t+1

Parameter Description

U t vocabulary of unknown words at timepoint t

mt
i # documents containing wi at timepoint t

mt
yj # documents having class yj at timepoint t

mt
ij # documents having class yj and containing word wi at timepoint t

Mt
j set of all word counts mt

ij regarding class yj at timepoint t

Table 3.4: Notation of parameters used for the definition of S*3Learner

in Section 3.3.1, Equation 3.4. In case (ii), we use the Laplace correction to initial-

ize the conditional probabilities in order to avoid the zero frequency problem (cf. Sec-

tion 3.3.3.2). In case (iii), we estimate the conditional probabilities from the stream D.

Since the stream progresses over time, these estimations might also change over time;

their maintenance is described in Section 3.3.3.3.

In order to enrich the classifier and make it adaptable over the course of the stream,

we propose a combination of the vocabulary of known words V and that of unknown

words U t at each timepoint t(cf. Section 3.3.3.4).

40

3.3.3.2 Initializing the probabilities of unknown words

For an unknown word wi /∈ V in a new arriving document d at timepoint t, which is not

in U t we make an initial estimate of its class probability by employing Laplace correction

(similarly to cf. Section 3.3.1.2): p̂(wi|c) = 1
|V| , wi /∈ U

t. That is, the probabilities of all

unknown words are initialized to the above score. We opt to divide by |V| and not by

e.g. |U t| because the U t is ever growing and therefore, the initial probability for unknown

words gets lower and lower over time. Relying on |U t| for the regularization would mean

that words appearing later in the stream would be penalized.

Based on the predicted label of d by our classifier ∆t we establish an entry in U t

which is either (1,0) when the positive class was predicted or (0,1) if d was predicted as

being negative. The word wi is included in the vocabulary of unknown words U t and its

class distribution is maintained from now on over the streams.

3.3.3.3 Maintaining class distribution for unknown words

For an unknown word wi, we maintain its class distribution over the stream based on the

predicted class labels of the incoming documents by the existing classifier ∆t. This is an

informed guess since it relies on the predicted and not the true class labels. Moreover,

this informed guess is based on an estimation of the class distribution, which is itself

temporary.

Given the current timepoint t, we maintain two lists of word counts Mt
j - one for

each class - that store the number of times a word wi ∈ U t has occurred in documents

of the related class labels till timepoint t. Hence, for each word wi ∈ U t there is an

entry mt
ij , yj ∈ Y keeping track of the number of times wi occurred in documents that

were predicted as class yj in the stream. The update of the above counts is as follows:

For each incoming document d from the stream at timepoint t, we predict its class

label classt(d) ∈ Y based on the classifier ∆t and therefore on the list of word counts

Nj derived from the seed S and Mt
j derived from the stream stream till the current

timepoint t. The predicted label is propagated to the document’s words wi ∈ d and all

related entries in the vocabulary of unknown words are increased by 1, i.e. :

∀wi ∈ d,wi ∈ U t : mt
ij = mt−1

ij + 1

where yj is the predicted class of d based on the current classifier ∆t.

That is, for each unknown word, we maintain some sort of evidence on its class label

“preferences”. Though this evidence is not completely reliable, in the sense that the

class counts are based on the predictions by the maintained classifier and not on true

labels, nevertheless such an approach is much more intuitive and informative than just

using a constant probability estimate for all unknown words based on Laplace correction

(i.e. treating all of them as appearing for the first time).

41

3.3.3.4 Updatable Multinomial Naive Bayes

As the stream of documents evolves, the initial classifier ∆0 (which was based solely

on the vocabulary of known words, V) evolves through the concurrent consideration of

unknown words wi ∈ U t over time.

The updated classifier at timepoint t, ∆t, relies upon the known word counts Nj and

the unknown ones Mt
j . The estimation of class conditional distributions for known and

unknown words is different. In case of known words, the estimates Nj come from the

seed set S which is assumed to be reliable in terms of the class labels. In case of unknown

words though, the estimatesMt
j come from the prediction of the classifier and therefore

any errors in the classifier are reflected in these estimates. Moreover, there might be

not enough observations for these words and therefore the estimates might be biased.

For example, if an unknown word was observed just once as positive, it will affect the

classification decision towards the positive class. However, that prediction might not be

correct as the probability estimation is based on just one observation.

To deal with the issue of few document observations per word, we introduce the so-

called min word occurrence threshold : MinFreq. Unknown words that will be considered

for classifier’s update should occur in at least MinFreq documents. This threshold solves

the poor observation issue, however except for enough word observations we are also in-

terested in words with pure class distributions, i.e. words which have a clear sentiment.

Words that equally occur to both positive and negative classes do not contribute in the

classification decision and therefore are not informative for the task per se. To capture

this requirement we introduce the so-called max word entropy threshold : MaxEntr. Re-

call that the higher the entropy of a set, the less pure in terms of classes the result is.

The entropy threshold solves the non-informative words problem and only words with

a low entropy w.r.t. the MaxEntr threshold are allowed to adapt the classifier. Words

being informative with a low entropy are considered as reliable.

We introduce the observed entropy of a word wi at a given time t for words belonging

to the unknown vocabulary U t.

ObservEntrt(wi) =

{
H(Dt, wi), if mt

i ≥ MinFreq AND wi ∈ U t
1, otherwise

(3.8)

where H(Dt, wi) is the Shannon entropy, cf. Equation 3.7, regarding the documents

of stream Dt at timepoint t. That is, the observed entropy is equal to the Shannon

entropy, which is based on the word counts of wi observing wi in documents having class

yj ∈ Y , if there are more than MinFreq observations of wi in the incoming documents

till timepoint t; and word wi does not already belong to vocabulary V derived from the

S. In such a case enough observations of wi has been made so as to trust in the entropy

of wi. Otherwise wi occurred not frequent enough thus far so that we do not trust the

current observation of wi at t. Instead we set the entropy to 1, i.e. the maximum value

42

for a 2-class classification problem which shall indicate that the word is not reliable. The

number of word observations mt
i at timepoint t is defined as:

∀wi ∈ U t : mt
i = |{d : d ∈ Dt ∧ wi ∈ d}|

where Dt defines the set of documents from the stream till t. That is, only words

whose entropy is less than the entropy threshold MaxEntr are reliable enough to be

considered by the classifier. To reflect this in the classifier, the number of documents

containing the word wi and having class yj ∈ Y is filtered according to the word occur-

rence threshold MinFreq. The filtered number m̂t
ij is given as follows:

m̂t
ij =

{
mt
ij if ObservEntrt(wi) < MaxEntr

0 otherwise
(3.9)

The value 0 for words that violate the entropy threshold means actually that these

words are non-informative and thus contribute to the classifier no more than initialized

unknown words, i.e. 1/|V|. We define the filtered number of documents from the stream

D having class yj till time t as:

m̂t
yj = |{d : d ∈ Dt ∧ classt(d) = yj ∧ ∃wi ∈ d : ObservEntrt(wi) ≤ MaxEntr}|

These are the documents having a predicted class label yj and contain at least one

word for which the ObservEntr is below or equal to MaxEntr.

The new classification model that makes use of both, the known vocabulary V and

the unknown vocabulary U t, is defined by Equation 3.10:

Definition 3.2 (Updatable Multinomial Naive Bayes). The class label of a new doc-

ument d arriving from the stream at timepoint t is the one maximizing the posterior

probability of the document being generated by the class. The class prior estimations

and the word class conditional estimations make use of both the vocabulary of known

words V and of that of unknown words U t. In the first case, the probabilities are derived

from the seed set of true class labels whereas in the second one the estimates come from

the observed word class occurrences in the stream where the class information is derived

from the classifier.

classt(d) = argmax
yj

m̂t
j + nj∑

yj∈Y
m̂t
j + nj

∗
∏
wi∈d

p̂t(wi|yj)filtered (3.10)

where,

p̂t(wi|yj)filtered =


nij+1∑

wk∈V
nkj+|V | if wi ∈ V

m̂tkj+1∑
wk∈V∪Ut

(m̂tkj+nkj)+|V |
otherwise

�

43

Hence, words wi /∈ S and thus words which occurred in documents for which we have

no evidence of true labels, are included to the classifier. We include them to the classifier

while adjusting the class priors with new arriving documents that contain at least one

word being reliable, i.e. ObservEntrt() ≤ MaxEntr; and while incrementally adapting

the conditional probability of a word given the class with word class counts of reliable

words. Thus we reflect underlying changes in the stream by considering and adapting

the conditional probabilities of new occurring words. We limit the contribution of new

occurring words that are not reliable by considering the laplace correction for them so

as to trust estimates of reliable words more. So, when using the classifier to predict the

class label of a document we utilize the unchanged seed and words wi /∈ S which are

reliable.

Dealing with Concept Drift According to concept drift, i.e. the polarity of words

changes, the proposed filtering by entropy does adapt slowly to drift: assuming a word

w has been observed in 20 positive documents and in 5 negative documents, i.e. the

entropy is rather small. As the stream progresses, w appears predominantly in nega-

tive documents so that after 20 timepoints the word count distribution has changed to

(20,25); which means a bigger entropy as the distribution is more mixed. Probably the

entropy would be > MaxEntr and thus indicating that w is not reliable; resulting that w

would contribute by the laplace correction value to the classifier. Only if more negative

documents containing w arrive, the classifier would consider the drift caused by w while

considering the updated conditional probabilities related to w.

The adaptation to concept drift is not considered for the conditional probabilities of

words w ∈ S given the class. We remain those probabilities unchanged while willing to

propagate no prediction errors to the classifier. The class priors consider change though.

They are controlled by the predominant polarity of new arriving documents, i.e. if much

more negative documents than positive ones arrive, the class prior of the negative class

increases.

Résumé We proposed S*3Learner a method assessing sentiment labels to new arriving

unlabeled documents d ∈ D while building upon the base learner from Section 3.3.1. It

extends the base learner by an adaptation mechanism that utilizes the only evidence

of true labels (the seed) most effectively while not allowing classification errors being

propagated to the seed set. This is ensured by remaining counts related to words wi ∈ S
unchanged and thus the related conditional probabilities of such words given the class

remain also unchanged. The classifier is adapted by maintaining the class distributions

Mt
j of unknown words, i.e. words not part of the seed, over time. The counts for the

class distributions are derived from documents for which the classifier has predicted a

label, i.e. the predicted label of a document is propagated to all words of that document.

44

Furthermore, the classifier filters out words not being reliable, i.e. words which have a

mixed class distribution and a low occurrence thus far. In particular it quantifies the

reliability of such words using the entropy and word frequency over time.

3.4 Backward Adaptation by Ageing

In the previous section we introduced our base learner Adaptive Multinomial Naive

Bayes. Build upon that we proposed two methods using different approaches to adapt

the learner while including new arriving documents over time. In this section, we pro-

pose a technique that gradually downgrades the contribution of old, outdated documents

to the model by weighting the documents regarding their age, i.e. old documents have

a lower weight than more recent ones. We call that process of gradually downgrading

backward adaptation. This technique refers to research task Research Task 2. Accord-

ingly, the model is adapted while downgrading the contribution of old documents as the

stream progresses. Although most stream classifiers use a sliding window over the data,

backward adaptation through actively downgrading the contribution of past information

to the model is a rather new adaptation modality, which has just recently used in stream

classification [124, 125, 12] and which was presented by us in [153].

We first introduce to our model of weighting documents by their age, then we propose

how we adapt the weighted documents and the related word counts over time which

refers to our concept of downgrading by ageing. Then we propose the extension to

ADASTREAM (cf. Section 3.3.3) by the ageing concept. Next, we introduce to the

notation of weighting words that are not part of the seed, i.e. unknown words. This

notation is then utilized to extend S*3Learner (cf. 3.3.2) by the concept of ageing.

3.4.1 Backward Adaptation

We propose a new method that weights documents by their age, so that older documents

have gradually less effect on the classifier. Technically, old documents are weighted

lower while new arriving documents are denoted with a higher weight. The weighting

mechanism allows us to damp the impact of old documents regarding the model over time

and to emphasize on recent documents, thus adapting the classifier to the underlying

population.

For the weighting scheme we use the exponential ageing function, which has been

widely used in temporal applications and data streams, see e.g. [102]. According to this

function, the weight of a document decreases exponentially over time. More formally:

Definition 3.3. [Document Age] Let d be a document, τd its related time factor, e.g. the

timepoint t when d arrived. The age of d regarding the time factor τ is

age(d, τ) = e−λ·(τ−τd)

45

where λ > 0 is the decay rate and age(d, τ) ∈ (0, 1]). The higher the value of λ, the

lower the impact of old documents, according to the exponential function depicted in

Figure 3.3. �

So, we assign each document a weight according to the rule: the older the document

the lower its weight.

Figure 3.3: Example of the exponential function

3.4.2 Adaptation of the Age

The age resp. weight of documents is affected by the arrival of new documents i.e. as

new documents arrive the weight of old documents is downgraded, this is reflected by the

increasing time factor. So, after each change of the time factor all counts are updated.

This is rather runtime expensive as all documents seen thus far are involved by the

updating. To reduce the costs we suggest to progress documents by batches, i.e. we

accumulate documents into batches of a fixed size streamSpeed. We only update the

age of the documents seen thus far if streamSpeed new documents have arrived. The

skeleton of this process is depicted by Algorithm 5.

Briefly, we train the initial classifier upon the initial seed set S0; consume at each

timepoint t a new document for which we first predict the label based on the current

classifier; then we adapt the classifier by documents that satisfy the criterions of ex-

amination proposed in Section 3.3.2 and 3.3.3 (lines 1–8). The updating may involve

adding the new document to the seed and adding new words to the vocabulary. We skip

46

Algorithm 5: Batch Processing

Input : D ← stream;S0 ← initial seed set
1 t ← 1; ∆t ← train initial classifier on St
2 τ ← 1; batch← empty
3 while D do
4 d← read incoming document from D
5 insert d into batch
6 classt(d) ← predict(∆t, d); yj ← classt(d)
7 if satisfyCriterion(yj , d) = TRUE then
8 ∆t+1 = adapt(∆t, d, yj)
9 if size of batch ≥ streamSpeed then

10 τ ← τ + 1; batch← empty
11 ∀d ∈ Dt : update age(d, τ)

12 t ← t +1

the exact description here because the focus is on the batch learning and the updating

differs among S*3Learner and ADASTREAM. We give a exact description of the two al-

gorithms extended by batch learning and ageing hereafter. Finally the batch processing

comes into account: the batch is expanded by documents satisfying the criterion (line

9); the age of all documents considered by the classier and all related counts are updated

if the batch has absorbed enough documents, i.e. size of batch is equal to streamSpeed

(line 10-11).

So, we update the counts being involved by a new document once per timepoint and

modify the weights resp. the age of all documents related to the classifier once per time

factor τ . By differing among the arriving time t of a document and the time-factor τ

describing the age of a document, we reduce the processing overhead: we do not need

to downgrade the weights after each document, rather we need to do the downgrading

once, at the end of the batch, since all documents in a batch share the same timepoint.

This makes the updating procedure much more efficient.

3.4.3 Using Backward Adaptation in ADASTREAM

We now extend our ADASTREAM algorithm, given by Algorithm 3 in Section 3.3.2 by

the document ageing defined above in Definition 3.3. First we introduce to the notation

of the counts when considering the concept of ageing, then we present the extension to

the algorithm. We incorporate the ageing into the word class counts by replacing ntij
from Equation 3.5 with nt

aged

ij , defined as:

47

∀wi ∈ V : nt
aged

ij =
St∑
d

age(d, τ) : wi ∈ d ∧ classt(d) = yj

where the number of occurrences of word wi in documents d with label yj is the sum

over the weighted documents d of the seed St at timepoint t which contain word wi.

Hence, the conditional probability of wi given class yj (Eq. 3.4) is replaced by:

p̂t(wi|yj)aged =
nt
aged

ij + µ∑|Vt|
k=1 n

taged
kj +

∑
d∈St

age(d, τ)
(3.11)

The parameters µ and
∑

d∈St age(d, τ) serve as Laplace correction; µ is the smallest

weight – referring to a document that appeared at timepoint 0 (beginning of the stream);

µ gets smaller as the stream progresses but only within the range of (0,1] and thus there

is not much influence by that effect. Furthermore we include the ageing into the class

counts nj of Equation 3.3 with nt
aged

j reflecting the weighted number of documents

belonging to class yj from the seed St at timepoint t:

∀yj ∈ Y : nt
aged

j =
St∑
d

age(d, τ) : classt(d) = yj

To include the document age into ADASTREAM, we extend ADASTREAM by

the batch processing while establishing a batch per time factor τ accumulating new

documents. The size of the batch deals then as indicator, i.e. if the size of the batch

is equal to streamSpeed we update the age of all documents d ∈ St at timepoint t.

Moreover we extend ADASTREAM by the “weighted usefulness” that considers the age

of the documents:

Definition 3.4. [Weighted Usefulness] Let d be a new document, to which ∆t assigns

the label yj at timepoint t. The weighted usefulness of d at timepoint t is then

Usefulness tweighted (d) =
∑
wi∈d

H(St, wi)aged −H(St ∪ d,wi)aged (3.12)

d is useful for learning at timepoint t if Usefulness tweighted (d) is greater than the threshold

α ∈ (−1, 0]: Here, H(St, wi)aged is the entropy of St w.r.t. wi and the age of the docu-

ments. H(St ∪ d,wi)aged is the entropy w.r.t. wi when considering also the occurrence

of wi in d. The entropy H(St, wi)aged is defined as:

H(St, wi)aged = −
∑
yj∈Y

pt
aged

ij ∗ log2p
taged

ij (3.13)

48

where the probability that word wi belongs to class yj according to the seed set St at

timepoint t is:

pt
aged

ij =
nt
aged

ij

nt
aged

j

where nt
aged

ij is the weighted number of documents with wi and having class yj at timepoint

t. pt
aged

ij is then the weighted ratio of documents containing word wi and having class

label yj w.r.t. all documents of St having label yj. �

The pseudocode of our method that includes ageing is depicted by Algorithm 6:

similar to Algorithm 3, on which it builds, the initial classifier is trained by the seed set

S0; for each new arriving document d the label is predicted followed by the usefulness

test allowing only useful documents to expand the vocabulary Vt, increase the word

counts and finally being included into the batch (lines 1-14). The age of the documents

is updated also the word class counts and class counts are recomputed if the batch

indicates to be full, i.e. if the size of the batch is equal to streamSpeed (lines 17-20).

Effect of Ageing While employing ageing to documents, the weight of old documents

is downgraded. This effects the weighted word counts upon the weighted usefulness of

a documents is computed, cf. Def 3.4. In particular the weighted ratio of positive and

negative documents with word wi is effected by ageing. For example, considering the

ratio (20:0) of positive to negative documents with word w at time factor τ so that the

weight of each document is 1. The ratio is directed towards the positive class. As the

stream progresses the time factor increases to τ + 2, thus the age of the documents is

e−λ(2) according to Def 3.3; when using λ = 0.5, the age is e
-1 per document; thus the

counts of positive documents is 20∗e−1 ≈ 7.3. That is, the number of positive documents

is downgraded. Also 10 negative “useful” documents containing w arrive with which the

classifier is adapted. So, the ratio changes to (7.3:10). The weighted value of the positive

count is smaller than the weighted value of the negative counts albeit more positive than

negative documents have arrived thus far. Hence, there is much influence of recent

documents towards the word counts and the related word count distributions; while the

influence of old documents decreases as the stream progresses, i.e. the weighted word

counts of a word w decrease over time when no more words w occur. Another effect of

the ageing is that counts related to documents from the seed are downgraded over time.

That is, the influence of the initial seed decreases as the stream progresses.

Dealing with Concept Drift As stated in Section 3.3.2, the usefulness threshold

limits the strength of the concept drift that is considered, i.e. only smooth concept drift

is regarded. The question is, does ageing promotes a fast adaptation to concept drift or

does it slow the adaptation? While employing ageing to the documents, the influence

49

Algorithm 6: ADASTREAM + Ageing

Input : initial seed S0, stream D, usefulness threshold α
1 t ← 0; ∆() ← train initial classifier on St
2 τ ← 1; batch← empty
3 while D do
4 d← read incoming document from D
5 classt(d)← predict(∆t, d); yj = classt(d)
6 if weighted usefulness of d ≥ α then
7 for i=1 to |d| do

// update word counts based on d
8 if wi /∈ V then

// word wi seen for the first time: create new entry

9 ntaged
ij = 1

10 N t+1aged

j = N taged
j ∪ ntaged

ij

11 Vt+1 = Vt ∪ wi
12 else

13 nt+1aged

ij = ntaged
ij + 1 // initial age of d is always 1

14 batch← batch ∪ d

15 nt+1aged

j = ntaged
j + 1 // initial age of d is always 1

16 S t+1 ← S t ∪ d
17 if size of batch ≥ streamSpeed then

// Backward adaptation

18 τ ← τ + 1; batch← empty
19 ∀d ∈ St : update age(d, τ)

20 ∀yj ∈ Y ∧ wi ∈ Vt : recompute nt+1aged

j ∧ nt+1aged

ij

21 t ← t +1;

of recent documents is greater and the influence of old documents towards word counts

decreases as the stream progresses. Considering a drift in the word count distribution of

a word w, the distribution is initially directed towards the positive class, e.g. 20 positive

and 5 negative documents w appeared, as the stream progresses more negative documents

with w occur, assuming that all those documents are useful for the classifier, thus the

distribution changes towards the negative class. Since old documents and their related

weighted word counts are downgraded, the value for the positive count decreases over

time while the weighted negative count increases as more negative documents with w

occur. Hence, in this example, the ageing concept coupled with ADASTREAM allows a

fast adaptation to concept drift while actively downgrading the weighted positive counts

50

of w.

3.4.4 Using Backward Adaptation in S*3Learner

Similar to the extension described above, we include the ageing into the S*3Learner which

is presented in previous Section 3.3.3. S*3Learner considers the word count distribution

of single words being adapted over time while it establishes new word counts for words

not contained in the seed vocabulary V. That is, the seed set S and the vocabulary

remain completely unchanged, i.e. no possible classification errors are propagated to

them. While extending S*3Learner by document ageing, we keep this concept so that

the seed S and the vocabulary V is not affected by ageing. Hence, only unknown words

are underlaid by ageing and therefore can be forgotten over time.

As in S*3Learner, single words contribute with the laplace correction to the classifier

if they are not reliable. The reliability of a word is based one the ObservEntr, i.e. if

the frequency is below MinFreq and if its entropy is greater MaxEntr then the word is

considered as not reliable. Thus, we extend the notation of ObservEntr, cf. Equation 3.8

by the concept of age:

ObservEntrtaged(wi) =

{
H(Dt, wi)aged, if mtaged

i ≥ MinFreq AND wi ∈ U
1, otherwise

(3.14)

where H(Dt, wi)aged is the aged entropy regarding the unknown words at t. According

to the Shannon Entropy, defined in Equation 3.7, mtaged
i is the weighted number of

documents from stream Dt at timepoint t which carry wi and having class yj :

∀yj ∈ Y : mtaged

j =
Dt∑
d

age(d, τ) : classt(d) = yj ∧ wi ∈ d

We incorporate the ageing into Shannon entropy as follows:

H(Dt, wi)aged = −
∑
yj∈Y

p̂t
aged

ij ∗ log2p̂
taged

ij

where the probability that word wi belongs to class yj according to the documents Dt

till timepoint t is:

p̂t
aged

ij =
m̂taged
ij

m̂taged
j

m̂taged
ij is then the weighted number of documents having class yj and which contain word

wi at timepoint t, if the word is reliable (ObservEntr ≤ MaxEntr). Otherwise m̂taged
ij

is zero and the words contributes by the laplace correction to the classifier. Hence, we

include the ageing into the word class counter of Equation 3.9 as follows:

51

m̂taged

ij =

{
mtaged
ij if ObservEntrt

aged
(wi) < MaxEntr

0 otherwise

where

mtaged

ij =
Dt∑
d

age(d, τ) : wi ∈ d ∧ classt(d) = yj

Moreover, in the denominator of p̂t
aged

ij we utilize the filtered weighted number of

documents belonging to class yj from stream Dt at timepoint t which contain at least

one word that has an weighted entropy below or equal to MaxEntr:

m̂taged

j = |{d : d ∈ Dt ∧ classt(d) = yj ∧ ∃wi ∈ d : ObservEntrt
aged

(wi) ≤ MaxEntr}|

The Updatable Multinomial Naive Bayes classification model of Definition 3.2 is

then changed while replacing all counts related to unknown words by the above depicted

counts which include the ageing. Similar to the Updatable Multinomial Naive Bayes we

define the Updatable Multinomial Naive Bayes With Ageing classifier as follows:

Definition 3.5 (Updatable Multinomial Naive Bayes With Ageing). the

classt(d) = argmax
yj

m̂taged
j + nj∑

yj∈Y
m̂taged
j + nj

∗
∏
wi∈d

p̂t(wi|yj)
aged

filtered
(3.15)

where,

p̂t(wi|yj)
aged

filtered
=


nij+1∑

wk∈V
nkj+|V | if wi ∈ V

m̂tkj+1∑
wk∈V∪Ut

(m̂t
aged
kj +nkj)+|V |

otherwise

�

As the stream progresses we maintain the counts over time similarly to Section 3.4.2.

That is, we also apply the batch processing requiring an update of the document’s age

only at the end of a batch and thus making the update procedure rather efficient.

We extend the ADASTREAM (cf. Algorithm 4 in Section 3.3.3) that filters out

those words from contributing to classifier being not reliable, i.e. words for which the

observed frequency is low and which have a mixed distribution. Similar to the extension

of ADASTREAM by the document age, we utilize the batch processing while applying a

batch per time factor τ . The batch accumulates documents from the D and indicates to

be full if the size of the batch is equal to streamSpeed. This indication is used to update

the age of all documents seen till timepoint t. Furthermore we exchange the ObservEntr

52

by the weighted ObservEntr (cf. Equation 3.14) so as to apply the weighted frequency

and the weighted entropy of a word, i.e. both terms are related to the document age.

The pseudocode of our method is depicted by Algorithm 7 which is based on the

S*3Learner, thus the lines 1-14 are rather similar to those of Algorithm 4; apart from

the fact that the weighted counts are applied. We, therefore, refer here to Algorithm 4

for the lines 1-14 and omit to repeat the description. The batch processing is taken

over from Section 3.4.2: it is checked whether the batch covers indicates updating of the

document age (line 16); if so, the time factor τ is increased by 1 (line 17); the document

age is updated regarding the increased value of τ (line 18); and finally all counts related

to unknown words resp. new arriving documents are recomputed (line 19).

Effect of Ageing The decision whether a word wi is reliable, depending on the words

frequency, may change over time. For instance, wi might be reliable at one timepoint

as its observed frequency is high. Note, we assume that the entropy of the word is

considered pure and so it satisfies the criterion ob being reliable. While the stream

progresses though no more documents with word wi arrive; the weight of documents

related to wi is downgraded. Thus, the frequency of wi is decreased as well so as to be

smaller than the frequency threshold. The word is not reliable anymore. Consequently

the words contribution to the classifier is reduced while considering the laplace correction

for it cf. Section 3.3.3. Hence, ageing allows the observed frequency of words to decrease

and thus it makes the classifier more flexible in cases when a word becomes unpopular,

i.e. does not appear anymore. This effect is related to research task Research Task 2.

Dealing with Concept Drift The ageing concept ensures a fast adaptation to drift

in comparison to S*3Learner which adapts rather slow to drift (cf. Section 3.3.3.4).

Assuming a word w has been observed in 20 positive documents and in 5 negative

documents at τ = 1, i.e. the word count distribution is (20,5), thus the entropy is small.

As the stream progresses w appears predominantly in negative documents so that the

word count distribution changes to be more pure towards the negative class. The speed

of that change reflected by word count distribution depends on the value of λ: the higher

the value of λ the faster the change is reflected by the word count distribution. This

is because the weight of the initial 20 positive and 5 negative documents drops which

means that the influence of the positive documents towards the word count distribution

decreases and the recently occurred negative documents influence the the word count

distribution of w more. The weight drops faster for bigger values of λ cf. Definition 3.3.

Additionally, the word count distribution of a word w may change even though no

new documents with w arrive. This effect occurs if documents with w appear across

different time factors, i.e. documents with w that have a different age, so that the weight

of the documents is downgraded differently. Assuming 100 positive documents with w

53

Algorithm 7: Semi-supervised self-adaptive Opinion Stream Classifier With Age-
ing: S*3Learner + Ageing

Input : D: stream, S: seed set, V: initial vocabulary, N word class-count
distributions derived from V, MinFreq, MaxEntr

1 t ← 1; Mt = empty; U t = empty; τ ← 1; batch← empty
2 ∆t(N) ← train initial classifier on initial word count distributions N derived

from the seed set S
3 while D do
4 d← read incoming document from D
5 classt(d) ← ∆t(N ,Mt,MinFreq,MaxEntr,d) yj ← classt(d)
6 for i=1 to |d| do
7 if wi /∈ V then
8 if wi ∈ U t then

// word wi already seen: update class count

9 mt+1aged

ij = mtaged
ij + 1

10 else
// word wi seen for the first time: create new entry

11 mt+1aged

ij = 1

12 U t+1aged = U t
aged ∪ di

13 Mt+1aged

j =Mtaged
j ∪mt+1aged

ij

14 mt+1aged

j = mtaged
j + 1; // update class counts

15 insert d into batch
16 if size of batch ≥ streamSpeed then

// Backward adaptation

17 τ ← τ + 1; batch← empty
18 ∀d ∈ Dt : update age(d, τ)

19 ∀yj ∈ Y ∧ wi ∈ U t : recompute mt+1aged

j ∧ mt+1aged

ij

20 t ← t+1

at τ = 1 and 10 negative documents with w at τ = 4; then the word count distribution

would be more towards the direction of the positive class. As time goes by, the weight of

the 100 positive documents would probably downgrade faster (depending on the value

of λ) than the weight of the 10 negative documents so that the word count distribution

would point to the negative direction when enough time has passed.

54

3.5 Complexity

Making use of the conditional independence assumption presented in Section 3.3.1, the

Naive Bayes has a linear training time complexity of O(Np) regarding the number of

samples, where N is the number of training examples and p is the number of features,

i.e. the number of different words. Predicting the label for a new document can be done

straightforward by deriving the conditional word probabilities directly from the word

estimates. Maintaining the estimates over time is done by simply increasing counts as

explained in Section3.3. Thus, the time complexity is O(p) where p is the number of

distinct words carried by the new document. The adaptive multinomial Naive Bayes is a

single path algorithm, i.e. a document is seen once and is then directly included into the

model. Hence, the overall time complexity regarding training, learning and adapting is

at maximum linear. In comparison to other classification algorithms commonly used in

text stream classification, e.g. Support Vector Machine which has a minimum quadratic

training complexity w.r.t. the training examples [26], the Naive Bayes is a rather fast

classifier and therefore perfectly suited for large scale data such as social data streams.

While adapting the classifier we proposed two techniques to select reliable content for

the classifier. The method ADASTREAM proposed in Section 3.3.2 utilizes “usefulness”,

cf. Def. 3.1. This is based on the entropy of word count distributions. That is, for

each word we maintain its word count distribution juxtaposing the number of negative

and positive documents with the related word. This is done by increasing the counts

incrementally. The second method, S*3Learner, presented in Section 3.3.3 employs also

the entropy of words as well as the overall frequency of the words. The word frequency

is increased incrementally over time.

The ageing strategy proposed in Section 3.4 requires adaptation of all words as soon

as the time factor τ changes. We apply batch processing, cf. Section 3.4.2 to adapt the

age of the documents and the related weighted word counts. The number of overall

adaptations to age is regulated by the size of a batch, given by the value streamSpeed.

That is, the smaller streamSpeed the more often adaptation to age is required and thus

the more running time is spent. However, by selecting a moderate size of a batch, the

number of adaptations regarding ageing can be kept small. For example, considering a

batch size streamSpeed = 500 at timepoint t = 100.000, then we had to adapt the age

only 200 times (100.000/500) at timepoint t.

The classifiers operate upon a vector-space model, cf. Section 2.1.2. That is, the

incoming documents are mapped into the vector space by utilizing the bag-of-words

model. Rather than storing the original structure of the documents, i.e. the order of the

words as they occur in a document as well as the structure of the sentences, we store

only the words and the related label of the document. In particular, we store for each

word the word count distribution, cf. Section 2.3.2, that depicts the number of negative

55

and positive documents with the related word. Moreover we store an overall document

count distribution juxtaposing the overall number of positive and negative documents.

To incorporate ageing into the classifiers we store the time factor τ of each document as

well as a link to the contained words so as to weight each word by its related documents

wherein it occurred.

The number of different weights a word can have is limited to the ratio of streamSpeed

(size of the batch) to size of the stream, e.g. considering a batch size streamSpeed = 500

at timepoint t = 100.000, then there are only 200 (100.000/500) different time factor

values and thus 200 different values of the age function, cf. Def. 3.3. We maintain a list

of age values incrementally over time while adding a new age value to the list when the

τ has increased. When adapting the age for each word we directly derive the age from

this list. In this way, we safe computational time avoiding to compute the age for each

word individually.

3.6 Experiments

This section presents the experiments that we performed to evaluate ADASTREAM and

S*3Learner plus the extension by the ageing concept proposed in this chapter. The evalu-

ation is done upon three real world datasets which are described in detail in Section 3.6.1.

All of them consist of real streams of opinionated text documents from different domains,

namely product reviews and tweets. All documents were preprocessed in the same way

as summarized in Section 2.1 to obtain a bag-of-words representation. Moreover, we fo-

cused only on adjectives and adverbs because for sentiment analysis these are the opinion

bearing words [135, 144], representing the actual opinion of the author.

The original datasets come with a natural ordering. In order to show the effect

of adaptation in the performance of our method, we also re-ordered the datasets so

that the ratio of content not being related to the seed increases gradually over time

(cf. Section 3.6.1.1). For each dataset, we experiment with both the natural ordered

version and the re-ordered one. We compare our method against four baselines and

the method of [126] presented in Section 3.6.3. For comparison we employ prequential

kappa evaluation which is the state-of-the-art evaluation procedure for opinionated data

streams [17], cf. Section 3.6.2. We further study the impact of the usefulness threshold

α, the word entropy and word occurrence threshold MaxEntr, resp. MinFreq, the decay

factor λ and the seed size. We conclude this section by a discussion on the runtime of

the proposed classifiers.

3.6.1 Datasets

We utilize three real world opinion stream datasets for evaluating our methods. They

are from different sources, i.e. two of them represent product reviews, while one consists

56

of tweets. In Table 3.5, we depict the number of documents per stream and also the

average number of adjectives and adverbs per document. The TwitterTS dataset contains

almost twice as much opinion bearing words (6 per document) in comparison to the two

review datasets ReviewJi (3.5 per document) and ReviewHu (2.6 per documents) albeit

Twitter allows only 140 characters per tweet. Hence, the authors of tweets use in average

a higher variety of sentimental words, i.e. few number of tweets cover more content than

the same number of product reviews. Therefore, proportionally a labeled tweet captures

more subjective information than a review. Regarding our semi-supervised methods that

use a small set of labeled documents to train a classifier, an initial model trained by a

small set of tweets would expose a more accurate initial model than a model trained

on the same size of reviews. Thus, we expect the overall performance of our methods

built upon a set of labeled tweets being better than for a set of labeled reviews. In the

following the datasets are described in more detail.

Stream name # documents avg #adjectives & #ad-
verbs per document

Category

ReviewHu 540 2.64 Product Reviews

ReviewJi 13.650 3.5 Product Reviews

TwitterTS 250.000 6.0 Twitter

Table 3.5: Dataset statistics

Stream ReviewJi comes from a dataset first introduced by Yu et al. in [145], which

contained data crawled from cnet.com, viewpoints.com, reevoo.com and gsmarena.com.

The true labels of the reviews were derived from the star-rating and therefore made

by the authors themselves. We use only reviews describing single product properties,

after removing very short reviews containing less than 2 adjectives. The final stream

ReviewJi contains 13.650 product reviews and was partitioned into 273 batches of 50

reviews. The dataset is skewed towards the negative class, at each batch both classes

are present though, cf. Section 3.6.1.2. The dataset is available online. 2

Stream TwitterTS was first introduced in [52] 3. The stream was collected by querying

the (non-streaming) Twitter API for messages between April 2009 and June 25, 2009.

The stream is very heterogeneous regarding the content as it captures several different

topics. The true labels (ground truth) of the tweets were acquired through the Maximum

Entropy classifier using emoticons as class labels. The original stream contains 1.600.000

tweets, where the class distribution in the first 1.450.000 tweets is skewed towards the

positive class while the last 250.000 tweets are only from the negative class. Since we

are interested in investigating our approach according to drifts within the class distri-

bution, we take a snippet of the original stream which captures the drift by maintaining

2 https://www.dropbox.com/s/8d0z8v6j3qoxk4j/datasetReviewJI.zip
3Available at: http://help.sentiment140.com/for-students

57

the original order. In particular, the shortened stream contains the tweets 1.235.000 -

1.485.000, i.e. 250.000 tweets, which were partitioned into 500 batches of 500 tweets.

Stream ReviewHu is derived from the dataset of opinionated reviews [64], as we also

did in [152]. The stream was partitioned in ca. 11 batches of 50 reviews. It contains 540

reviews on 9 products, where each review refers to one (explicit) product property, from

a total of 38 properties. Most of the properties appear in between 5 and 30 reviews,

i.e. there is no property which occurs in most of the reviews making the stream rather

heterogeneous regarding the properties that it covers.

3.6.1.1 The effect of unknown words over the stream

To show the effect of unknown words in S*3Learner and adapting the seed in ADASTR-

EAM, we re-ordered the original streams in such a way that the number of known words

decreases over time whereas the number of unknown ones increases. In particular, for

each original stream we “designed” its re-ordered counterpart as follows:

i) the seed contains clear class count distributions, i.e. it consists of documents with

words that belong to one of the classes; (ii) the stream starts with documents containing

words exclusively from the vocabulary of known words V and as it progresses, we reduce

the ratio of known words per document, ending in documents that consist only of words

wi ∈ U . That is, the ratio of words from the initial seed to all words in the documents

drops gradually.

Figure 3.4: ReviewJi: % of known and unknown words over time (avg per batch) for natural
order (left, |S|=1.090) and re-ordered (right, |S|=140)

Figure 3.5: TwitterTS: % of known and unknown words over time (avg per batch) for natural
order (left |S|=2.500) and re-ordered (right), |S|=10.000.

The percentage of known and unknown words per document over time for the re-

ordered version and the natural ordered version of the streams is drawn in Figures 3.4, 3.5

58

Figure 3.6: ReviewHu: % of known and unknown words over time (avg per batch) for natural
order (left,|S| = 50) and re-ordered (right,|S| = 100)

and 3.6. For the unknown words, we distinguish between first-time observed unknown

words (in gray) and already monitored unknown words (in blue). Note that the results

are not accumulative, but rather show the proportion of known, first time unknown and

monitored unknown words in each incoming batch from the stream.

For the natural order of the datasets, we observe that at each batch we receive a

high number of known words and an increasing number of unknown words. Regarding

the unknown words, we observe that the first-time observed unknown words are more

at the beginning of the stream but over time the number of already monitored unknown

words increases. First-time appearing unknown words exist at all timepoints, showing

that new content is added over time from the stream. Their number is higher for the

TwitterTS stream compared to the stream ReviewJi and ReviewHu (gray area dominates

blue area in Figure 3.5), because the first one covers a wide variety of topics, whereas

the second and third datasets refer only to products. On the contrary, in the re-ordered

versions the number of unknown words is increasing over time and after some point the

stream bears merely unknown words. However, the number of first-time observed words

is rather static over time showing a continuously increasing variety of words over time.

We expect better performance of the classifiers over the original streams, the reason for

re-ordering is to show the performance of the different methods in extreme/ hard cases.

3.6.1.2 The class distribution over the stream

The class distributions of the ReviewJi, TwitterTS and ReviewHu stream are displayed

in natural order by Figures 3.7, 3.8, 3.9 left side. In the corresponding right sides the

distribution in the re-ordered datasets are displayed.

Figure 3.7: ReviewJi: Class distribution over time (the numbers are avg per batch) for natural
order (left) and re-ordered (right), |S| = 140.

59

Figure 3.8: TwitterTS: Class distribution over time (the numbers are avg per batch) for natural
order (left) and re-ordered (right), |S|=10.000.

Figure 3.9: ReviewHu: Class distribution over time (the numbers are avg per batch) for natural
order (left) and re-ordered (right), |S|=100.

The class distribution of stream ReviewJi for the natural order is almost stationary

over time and skewed towards the negative class. Whereas the distribution of TwitterTS is

slightly skewed towards the positive class until the end of the observation period where it

consumes only negative documents. The class distribution of ReviewHu for the natural

order and the re-ordered stream is intensely skewed towards the positive class.

The re-ordered stream of ReviewJi and TwitterTS depicts a more fluctuating behavior:

it is also slightly skewed towards the positive class but shows up several sudden changes

where it consumes, for a while, only negative tweets. Hence, with stream ReviewJi we

capture the case of facing an almost stationary class distribution while dealing with many

known words (natural order) and with only few or no known words (re-ordered). With

stream TwitterTS on the contrary, we evaluate how our method performs on a changing

class distribution, especially in case of the re-ordered TwitterTS stream. By stream

ReviewHu we evaluate our method on a stationary but very skewed class distribution

willing to show how our learner copes with a imbalanced stream.

3.6.2 Evaluation Measure

To evaluate the quality of our classifiers, we use kappa statistic within an interleaved

test-then-train evaluation also known as prequential evaluation. Hence, each instance of

the stream is first used for testing the performance of the classifier and then for training.

This method is appropriate for data streams since it is highly adaptive and most robust

to overfitting [17].

As evaluation measure, we use kappa statistic [17] which normalizes accuracy by that

of a chance classifier:

60

k =
pexaminedClassifier − pchanceClassifier

1− pchanceClassifier
(3.16)

, where pexaminedClassifier denotes the accuracy of the examined classifier, while

pchanceClassifier is the probability that a chance classifier, designed to assign the same

number of examples to each class as the examined classifier, makes a correct prediction.

Kappa lies in the -1 to 1 scale; 1 denotes perfect agreement, 0 is what would be expected

by chance and negative values indicate agreement less than chance [138]. The higher the

value, the more often the predictions match with the true labels. Kappa is preferred to

accuracy for data streams as it can handle imbalanced class distributions.

3.6.3 Methods against which we compare

Below we outline the approaches we used to compare to our methods. They are all based

on Multinomial Naive Bayes, similar to our methods, but do not employ document/word

filtering nor the ageing strategy. In particular, they differ on whether i) the classifier

is adapted based on new documents from the stream, ii) the adaptation is done on the

basis of the true or the predicted class labels and iii), which part of the vocabulary is

adapted, V, U or both? They are described as follows.

• Lower Baseline I:

This is the static case, where no errors in the class label predictions of incoming

documents are propagated to the classifier but neither the classifier is updated by

new content, i.e. the vocabulary of known words V, and the seed set S is static also

all word class counts and class counts remain unchanged. There is no differentiation

among known and unknown words as no adaptation is applied.

• Lower Baseline II:

Predicted class labels of incoming documents are always propagated to the classi-

fier, i.e. there is no document filtering based on “usefulness” word-filtering; V and

existing word class counts are continuously updated. Thus, errors in the class la-

bel predictions are fully propagated. Moreover, unknown words are not considered

and therefore no word filtering is applied.

• Upper Baseline I:

There is no differentiation among known and unknown words, both are updated

gradually based on the true class labels (full supervised case). There is, no word

filtering for the unknown words, all words are monitored and contribute to the

classifier. Also no document filtering is employed. In fact all arriving documents

are considered by the classifier for adapting. That is no errors in the class label

61

predictions are propagated as only the true classes are considered. Ageing is not

utilized, i.e. documents are not weighted by their age.

Upper Baseline II:

V is static, we only adapt U and M with the true class labels of the incoming

documents (fully supervised). No errors in the class label predictions are propa-

gated. There is no word filtering nor document filtering on the unknown words

resp. incoming documents.

Moreover, we evaluate our methods against the approach by Silva et al. [126] denoted

as Silva hereafter. The algorithm Silva is a semi-supervised rule learner, so it uses

different parameters than our methods but faces also a limited amount of labeled data.

We used the following settings. We set the minimum support for considering a rule for

classification to 1(1 supporting review) and minimum confidence to 0.001; minimum rule

size = 3 and threshold for adding a review to the training set = 0.6. These values are

conservative, intended to ensure that Silva will find rules even in a heterogeneous stream

like TwitterTS. The results of the comparison are discussed in the next sections.

3.6.4 Comparing against the baselines

In this section, we compare our semi-supervised methods S*3Learner and ADASTR-

EAM against the two supervised baselines, the two semi-supervised baselines and the

approach of [126], cf. Section 3.6.3, based on the performance of kappa over time. We

do not compare against our methods extended by ageing since the concept of ageing

documents does not improve the performance of the classifiers which is discussed in Sec-

tion 3.6.7. We examine the performance of our approaches on the natural order and the

re-ordered version of the three datasets, ReviewJi, TwitterTS and ReviewHu.

3.6.4.1 Results on stream ReviewJi

The kappa over time of the compared approaches and our methods on stream Re-
viewJi natural order (left) and re-ordered (right) is depicted in Figure 3.10. We utilize

a seed set of 140 documents to show how our methods perform on a large amount of

unknown words, i.e. less influence of true labels. In particular, the results on the nat-

ural order of stream ReviewJi show how our approaches perform on a large but rather

static amount of new content, i.e. content that is not associated with the seed. The

re-ordered version of stream ReviewJi exposes how our methods perform on a large and

also increasing amount of unlabeled content.

S*3Learner reveals the highest kappa values over time across the semi-supervised

baselines for a large but static amount of unknown words, depicted in the left picture of

Figure 3.10; while the two approaches, which adapt by true labels, show the best kappa

62

Figure 3.10: Kappa over time for the five baselines plus ADASTREAM α = 0.0 and
S*3LearnerMaxEntr = 0.8; MinFreq = 10 on stream ReviewJi natural order (left) and
re-ordered (right), size of the seed=140

values among all approaches. However, the adaptation mechanism of S*3Learner based

on the filtering by the two threshold MaxEntr and MinFreq works well since the kappa

increases as the stream progresses and even overcomes the fully supervised baseline (UBI)

at the end of the stream. We use 0.8 and 10 as values for the threshold MaxEntr resp.

MinFreq as this setting shows the best performance of S*3Learner.

ADASTREAM exhibits the most stable kappa values on the natural ordered stream

ReviewJi over time, while oscillating only slightly along the y-axis. The kappa of ADA-

STREAM for both orders is smaller than the kappa of S*3Learner though. Hence,

filtering out documents, which enhance a more mixed word count distribution pays off

as it stabilized the performance of the learner. We utilized a usefulness threshold α of

0.0 as it reveals the highest kappa for ADASTREAM.

Facing a large and increasing amount unknown words exposes that the supervised

methods show a kappa being rather constant over time, whereas the semi-supervised ap-

proaches, including our methods, draw a decreasing kappa over time, cf. right picture of

Figure 3.10. This is the case because the amount of unknown words gradually increases

over time till only unknown words arrive (cf. left picture of Figure 3.4) and the influence

of documents with true labels for the class prediction of unlabeled documents decreases.

Across the semi-supervised approaches, S*3Learner carries out the best performance

while showing an increasing kappa when there are only unknown words arriving. Hence,

the adaptation mechanism of S*3Learner works very well so that even documents carry-

ing only unknown words, i.e. having no impact of true labels, can be correctly classified.

ADASTREAM performs similarly to LBI, which does not adapt at all, implying that

most of the newly arriving documents do not satisfy the usefulness threshold and thus

are filtered out. That is, similarly to the semi-supervised baselines, ADASTREAM per-

forms not well when only unknown words arrive. The approach of Silva et al. [126]

performs worse than our methods on the entire stream ReviewJi re-ordered case.

63

3.6.4.2 Results on stream TwitterTS

The results on stream TwitterTS natural order (left) and re-ordered (right) for the com-

pared approaches and our methods are shown by Figure 3.11. In case of the natural

order of stream TwitterTS, we use a seed size of 2500 tweets while we evaluate our exper-

iments on the re-ordered version of TwitterTS with a seed size of 10.000 tweets. In both

the streams, we use MaxEntr=1 and MinFreq=10 for S*3Learner and α = 0.0 showing

the best kappa values over time for our methods. The fully supervised approach (UBI)

which adapts the seed set as well as the unknown words U by true labels, draws the best

kappa over time for both streams. The fully supervised but only adaptive on U baseline

(UBII), i.e. the seed set is kept static, does not perform well on stream TwitterTS though.

This might indicate that the seed set captures most of that part of the stream which is

affected by changes over time, cf. Section 3.6.8 for more information on the impact of

the seed size.

Figure 3.11: Kappa over time for the five baselines plus ADASTREAM α = 0.0 and
S*3LearnerMaxEntr = 1.0; MinFreq = 10 on stream TwitterTS natural order (left),
|S|=2.500 and re-ordered (right),|S|=10.000

The experiments on the natural order of stream TwitterTS exhibit a constant kappa

value over time for the compared approaches, ADASTREAM and S*3Learner whereas

there are obvious differences of kappa among the approaches: the lowest kappa is drawn

by Silva and baseline LBII, which adapts U by predicted labels, followed by ADA-

STREAM. S*3Learner performs rather similar to the supervised baseline UBII, which

adapts partially, and the fully static baseline. Hence, our method S*3Learner performs

well when the unknown part of the stream does not capture much changes, i.e. the most

changing content is captured by the seed.

The re-ordered version of stream TwitterTS shows much fluctuation towards the doc-

ument class distribution - number of positive resp. negative documents over time-,

i.e. there are sudden changes in the distribution receiving only negative documents for

a while, cf. Figure 3.8 (right). S*3Learner deals with these changes better than ADA-

STREAM and all compared approaches apart from the fully supervised baseline UBI:

64

it draws a small kappa at the beginning but soon, as the stream progresses, the kappa

increases and overcomes the baselines and maintains that advantage till the end of the

recorded stream.

3.6.4.3 Results on stream ReviewHu

Stream ReviewHu has rather imbalanced class distribution. Results on ReviewHu are

depicted on the left (naturally ordered) and on the right (re-ordered) of Figure 3.12.

We compare our approaches on a seed size of 50 for the natural order and a value of

100 for the re-ordered version. On both orders we utilized MaxEntr=0.1 and Min-

Freq=5 for S*3Learner and α=0.0 for ADASTREAM, showing the best results across

the settings. S*3Learner exhibits a high kappa over time on the natural ordered version

of stream ReviewHu, while it reaches at timepoint 350 a similar kappa value than the

fully supervised baseline UBI ; among the semi-supervised methods including the Silva,

S*3Learner performs best. ADASTREAM scores a bigger kappa than Silva but per-

forms worse in comparison to the other baselines. Apart from the supervised baselines,

the remaining approaches fail towards the end of the stream while showing a kappa value

close to zero. Thus the true labels of the seed set are not propagated well by neither

by ADASTREAM norS*3Learner through a stream that captures an imbalanced class

distribution.

Figure 3.12: Kappa over time for the five baselines plus ADASTREAM α = 0.0
and S*3LearnerMaxEntr = 0.1; MinFreq = 5 on stream ReviewHu natural ordering
(left),|S|=50 and re-ordered (right),|S|=140

Experiments on the re-ordered version of stream ReviewHu reveal similar insights: all

approaches drop in performance as the stream progresses. However, S*3Learnerrecovers

towards the end of the stream and outperforms the supervised baselines UBI and UBII.

That is, adapting the learner by unknown words and filtering out words that have might

be biased (i.e. not occurring frequently and showing a pure word count distribution) pays

off when the stream is imbalanced and contains many unknown words, cf. Figure 3.9,

3.6.

65

3.6.5 Impact of usefulness threshold α on ADASTREAM

To evaluate the usefulness threshold we study the performance of kappa over time, while

varying the usefulness threshold α in (−1, 1) range. Detailed results of our experiments

are depicted in FigureB.1, B.2 and B.3 in Appendix B. As we can see for streams

ReviewJi and TwitterTS, extending the seed set with documents that have expected labels

(high value for α) influences the performance of the kappa positively for both versions

of the datasets, i.e. natural order and re-ordered. It appears that an α smaller than 0.0

shows a poor performance over time; and an α ≥ 0.0 reveals a high kappa that does not

vary much along different values of α. A α close or greater than zero means that the label

of the predicted document is expected, i.e. the words of a document for which a label

was predicted reflect the orientation of their current word count distributions w.r.t. the

predicted label (cf. Section 3.3.2). That is, when dealing with a balanced stream or with

a stream showing a slightly skewed class distributions, the seed must be adapted with

documents that have expected labels. Moreover, a large value for α must be set when a

changing or static class distribution undergoes the stream.

Facing, however, a stream with an imbalanced class distribution, as stream Re-
viewHu exhibits, smaller values for α shows better performance on kappa, especially if

there are many unknown words. In particular, it seems that adapting the seed with

documents for which a unexpected class label was predicted, i.e. a label that does not

reflect the current orientation of related word count distributions, promotes high kappa

values if not much evidence of one of the classes is available. Hence, considering pre-

dictions being unforeseen allows to gather more evidence for the underrepresented class

and thus extending the classifier positively. When dealing with a balanced class distri-

bution (e.g. TwitterTS and ReviewJi) then a larger α should be chosen allowing to adapt

the classifier with documents for which an expected label was predicted. An imbalanced

corpus (e.g. ReviewHu) though requires a smaller value for α as not much evidence of the

underrepresented class is available and therefore it needs to be enriched by predictions

that do not reflect the current word count distributions of the related words.

3.6.6 Impact of MaxEntr and MinFreq thresholds on S*3Learner

In this section we discuss the entropy threshold MaxEntr and the word frequency thresh-

old MinFreq for filtering out words from the stream which are not class-informative,

i.e. words which have a word count distribution that is too mixed to be considered or

they occur too fewer times to be class-informative. We examine the effects of drastic fil-

tering, i.e. only words with a pure class distribution and a high frequency are maintained,

and of calm filtering, i.e. words with a mixed class distribution and a small frequency

are maintained.

66

We did the experiments on various settings of MaxEntr and MinFreq, observing that

drastic filtering caused by a small MaxEntr together with a big value of MinFreq does

not exhibit a good performance by S*3Learner. The reason is that to many words

are filtered out and thus being treated similarly by S*3Learner as their conditional

probabilities are all equal to the Laplace correction. This is considered as the zero

frequency problem mentioned in Section 3.3.3. Moreover, the experiments reveal that

calm filtering, caused by a low value of MinFreq and a high value of MaxEntr, influences

S*3Learner negatively. It shows a bad performance that grows worse over time as all

unknown words are considered. In particular, such unknown words are maintained which

might be not very class-informative neither they have a pure class distribution impairing

a clear decision on the class label. Hence, classification errors are heavily promoted and

propagated through the stream which experiences a performance drop over time.

Figure 3.13: TwitterTS: Kappa over time
on re-ordered for different settings of Max-
Entr and a fixed MinFreq=10, |S|=10.000.

Figure 3.14: ReviewJi: Kappa over time
on re-ordered version for different settings
of MinFreq and a fixed MaxEntr=0.4,
|S|=140

S*3Learner performs best when applying calm filtering by one threshold and set-

ting the other threshold in such a way to trigger drastic filtering. The decision of the

thresholds depends on the structure of the stream. Considering TwitterTS, which has

huge variation of words through the stream depicted by the gray colored bars in Fig-

ure 3.5. It comes up with many words being observed only few times and thus having

a biased class distribution, i.e. many pure class distributions derived from less obser-

vations. There, S*3Learner performs best when using MinFreq as drastic word filter

(filtering out words with a small frequency) and MaxEntr as calm filter allowing mixed

word distributions to be considered. This can be seen by Figure 3.13 where we fixed

a small value (10) for MinFreq while changing the values for the MaxEntr threshold

from 0.1-1.0. The picture exposes the best performance MaxEntr=1.0 and drops in

performance for decreasing value of MaxEntr. So, our algorithm filters out many words

that bias the classifier since they appeared only few times, and regulates the amount

67

of unknown words while allowing words to contribute which might have a mixed class

distribution. Hence, the zero frequency problem can be avoided.

The word distribution for the ReviewJi dataset in Figure 3.4 shows only a slight

variety of words, depicted by a small gray bar through the stream, so the influence of

first-time observed words is less than for stream TwitterTS. However, there is a large

amount of unknown words, shown by the blue bar in Figure 3.4, which promotes many

mixed class distributions for the unknown words. We employed S*3Learner with a

small value for MaxEntr while varying the word frequency threshold MinFreq from 1-

100. This shows us the influence of first-time observed words, when selecting a satisfying

MaxEntr threshold that does not allow the contribution of to many words with mixed

class distribution. Figure 3.14 shows a stable performance of S*3Learner along different

settings of MinFreq while keeping a static value of 0.4 for MaxEntr. Hence, our algorithm

is not affected by first-time observed words if there amount is small and if the value of

the MaxEntr threshold is selected carefully so that words with a mixed class distribution

are not allowed to contribute.

Figure 3.15: ReviewHu: Kappa over time
on re-ordered version for different settings
of MinFreq and MaxEntr, |S|=100

Figure 3.16: ReviewHu: Kappa over time
on natural ordering for different settings of
MinFreq and MaxEntr, |S|=50

Facing a stream with many unknown and first time appearing words over time, such

as stream ReviewHu (cf. Figure 3.6) requires a careful selection of the two parameters as

Figure 3.15 and 3.16 depicts: at the beginning of the stream drastic filtering by entropy

and calm filtering by frequency shows the highest kappa. At the end of the stream

though, calm filtering by entropy and drastic filtering by frequency performs best. That

is, initially there are many words with mixed class distribution, as the stream progresses

though many biased class distributions occur, i.e. many words with low frequency and

pure class distribution. Hence, the values for MinFreq and MaxEntr might not hold

over the entire stream if the stream shows a large fluctuation of unknown words. In

fact, it is recommended to adjust the values of MaxEntr and MinFreq according to the

amount of unknown words: few unknown words require a small entropy threshold and

68

a big frequency threshold while many unknown words require big entropy and small

frequency thresholds.

3.6.7 Impact of Lambda on ADASTREAM and S*3Learner

To show the effect of our ageing strategy, proposed in Section 3.4, which weights the

words resp. arriving documents by their age and thus gradually decrease the influence

of old words resp. documents. We discuss, in particular, the impact of the decay rate

λ on our two approaches ADASTREAM and S*3Learner. The value of λ manages

the contribution of the history: the higher the value of λ, the lower the impact of

old documents, i.e. selecting a small value for λ causes less influence of the history,

cf. Definition 3.3. Remind that the objective of the ageing is to reflect the underlying

population of the stream while emphasizing on recent documents.

We examine the effect of λ for ADASTREAM and S*3Learner on the three datasets

including their re-orderings while varying along different values (0.0, 0.1, 0.3, 0.5, 0.7,

0.8) for λ. Note that λ = 0.0 entails that there is actually no weighting by age as e0 = 1.

The detailed results are depicted in Figure B.4, B.6 and B.8 for ADASTREAM and in

Figure B.5, B.7 and B.9 for S*3Learner in Appendix B. Our experiments show similar

impact caused by λ on kappa across the two approaches: a value 0.0 for λ posts mostly

the highest kappa values across the natural ordered and re-ordered streams. This is

because, while declining the influence of old documents, the contribution of the seed set

wanes as well. In particular the method ADASTREAM, where the documents from the

seed set are weighted according to their age over time, shows a small kappa for λ > 0.0.

But also S*3Learner with ageing exposes low performance for a λ > 0.0. Implying that

downgrading weights of documents for which the classifier has made the prediction early

in time, reduce the quality of the classifier. This is due to the fact that the labels of

old documents are derived from the classifier at a point in time where no classification

errors have been propagated to it. Hence, the labels of old documents are more reliable

than the labels of recent documents.

Moreover, the results differ among the orderings of the stream. For the natural

ordered streams, the setting λ = 0 scores commonly the highest kappa values. This is

because, the seed sets of the natural ordered versions of the streams contain a small

amount of words which have a pure class distribution (small entropy), i.e. words which

distinguish among the two classes well, cf. Section 3.6.1.1; while the seed sets of the

re-ordered streams bear many words possessing low entropy regarding the two classes.

Hence, ageing fails if the seed does not contain many words having a pure class count

distribution.

69

3.6.8 Impact of the seed size on ADASTREAM and S*3Learner

We examine how the performance of our approaches S*3Learner and ADASTREAM is

affected by the size of the seed set S. Recall that the documents in S reflect the only evi-

dence of true class labels. Therefore, we experiment with different sizes of S, i.e. different

number of documents with true labels.

For stream ReviewJi, we select the following |S|: 140, 280, 540, 820, 1090, 1365 and

1638 while for stream TwitterTS we use the values 2.500, 5.000, 10.000, 15.000, 20.000,

25.000 and 30.0000; these values correspond roughly to 1%, 2%, 4%, 6%, 8%, 10% and

12% of the related stream. For stream ReviewHu we select the values 5, 10, 25, 35, 50,

100 and 150.

As datasets, we used the natural ordered streams in these experiments, since the

ordering of the stream remains the same in this case allowing us to compare across

different seed sizes. Whereas the order of the re-ordered versions, as described in section

3.6.1, is strongly related with the size of the vocabulary V derived from the seed. Hence,

as intending to order the stream based on V so as to reflect an increasing ratio of unknown

words per batch, the different seed sets result in different re-ordered streams.

Figure 3.17: Kappa over time for various seed sizes |S| for TwitterTS on S*3Learner left
(MaxEntr=1.0, MinFreq=10) and ADASTREAM right (α=0.0)

Figure 3.18: Kappa over time for various seed sizes |S| for ReviewJi on S*3Learner left
(MaxEntr=0.8, MinFreq=10) and ADASTREAM right (α=0.0)

70

The kappa over time on streams TwitterTS, ReviewJi and ReviewHu from S*3Learner

and ADASTREAM for different seed sizes is depicted in Figures 3.17, 3.18 and 3.19.

For TwitterTS dataset, the bigger S and thus the larger the amount of known words,

shows a higher kappa. However as S becomes larger, there is no big difference in kappa:

doubling the seed size has a clear benefit in the beginning (red, blue, black lines) but

after |S| = 10.000 the performance improvement is getting lower. This description holds

for both the approaches.

Our experiments on ReviewJi dataset reveal similar results for S*3Learner but dif-

ferent behavior of ADASTREAM, cf. Figure 3.18. S*3Learner (picture on the left of

Figure 3.18) shows, for a large amount of known words, a high kappa at the beginning

of the stream while, as the stream progresses, smaller seed sizes perform better. In con-

trast, ADASTREAM (picture on the right of Figure 3.18) exposes the best performance

for a big seed size.

Hence, regarding S*3Learner, the large seed sets might capture most of the variety

of words so that no more unknown words can occur over time. Since S*3Learner adapts

only unknown words, willing not to violate word class distributions obtained from true

labels, it is not capable to reflect emerging changes in population induced by known

words. In fact, S*3Learner works only well when the seed set is not too large capturing

the complete variety of words in the stream. For ADASTREAM, though, a large seed

emphasizes high kappa values as the classifier is learned upon more true labeled data.

More conclusive, ADASTREAM expands the seed set over time by documents for which

it has predicted the labels and thus may also capture drifts in the seed.

Figure 3.19: Kappa over time for various seed sizes |S| for ReviewHu on S*3Learner left
(MaxEntr=0.1, MinFreq=5) and ADASTREAM right (α=0.0)

In contrast the results on the small, imbalanced stream ReviewHu show different be-

havior of our methods: on both versions of the stream, the classifier learned upon 25 seed

documents performs best along the compared seed size values. Also a seed size of only

10 documents reveals a rather good performance for S*3Learner and ADASTREAM.

Implying that our conclusions made above regarding the seed sizes do not hold on a

imbalanced and small stream. In fact, a small seed set but of high quality reveals higher

71

kappa values than a large seed but of poor quality. With quality we mean the amount

of words in the true labeled documents distinguishing distinctly among the two classes.

The experiments made on the three datasets show clearly the fact that in a stream we

also deal with new content which is not in the initial seed set.

3.6.9 Runtime

Beside the quality of classification, the runtime and scalability is an important criterion

for a method being applicable under real-world conditions. In Section 3.5 it was stated

that Naive Bayes has a linear training time complexity as well as a linear learning

and adapting complexity w.r.t. to the number of training examples resp. the number of

words in a new arriving document used to adapt the model. Since the baselines are based

on Naive Bayes differentiating in being supervised or semi-supervised, ADASTREAM,

S*3Learner and the baselines have the same complexity while for the approach of Silva

et al. [126] the complexity cannot be given as it is not mentioned by them.

Method ReviewJi ReviewJi ReviewHu ReviewHu TwitterTS TwitterTS
natural re-ordered natural re-ordered natural re-ordered

S*3Learner 1.8 2.3 0.23 0.19 27.7 27.9

S*3Learner 1.4 1.6 0.18 0.17 37.8 36.4
(Ageing)

ADASTREAM 1.3 1.3 0.18 0.22 28.8 23.1

ADASTREAM 1.2 1.3 0.18 0.17 25.5 24.8
(Ageing)

UB I 1.9 2.1 0.2 0.19 41.0 39.0

UB II 1.8 2.0 0.21 0.21 27.7 31.6

LB I 1.1 1.2 0.17 0.18 20.4 19.8

LB II 1.8 1.6 0.18 0.17 36.4 35.7

SILVA 20.2 20.9 0.2 0.2 6528 8738

Table 3.6: Runtime in seconds on the naturally ordered and re-ordered versions of the
datasets for the compared baselines, ADASTREAM and S*3Learner

Table 3.6 depicts the runtime measurements for the classification experiments on

the three streams ReviewJi, ReviewHu and TwitterTS in natural order as well as in the

re-ordered version. The Naive Bayes approaches clearly outperform the rule mining

approach of Silva in terms of runtime along the ReviewJi and TwitterTS datasets. On

the ReviewHu dataset all compared methods come up with similar runtime values. Re-
viewHu dataset might be to small exposing differences in the runtime. It can be noted

that the runtime linearly increases with the number of documents carried by the stream.

For instance, considering the runtime of S*3Learner (first row) on ReviewJi and Twit-
terTS naturally ordered version, the time on TwitterTS is roughly 18 times more than on

72

ReviewJi which conforms the proper difference in size among the two streams, cf. Sec-

tion 3.6.1.

Although the complexity of the Naive Bayes approaches is same, there are slight

differences in time between the compared methods though which are exposed by stream

TwitterTS at best (since it is the biggest stream): the baseline LBI posts the short-

est runtime getting along with no adaptation at all while UBI carries out the highest

runtime applying no filtering and thus adapting with every new arriving document.

ADASTREAM outperforms S*3Learner slightly as it filters out entire documents and

therefore adapts the model less while S*3Learner filters in a fine grained manner allow-

ing single words adapting the model. Our methods combined with ageing reveals longer

runtime for S*3Learner but shorter runtime in case of ADASTREAM. This is because,

S*3Learner maintains the age of all words over time while ADASTREAM only maintains

the age of the seed words plus those words captured by useful documents. Moreover,

ageing obviously reduces the amount of useful documents in ADASTREAM and thus

the number of adaptations over time which is exposed by a shorter runtime. Though,

ADASTREAM + ageing ends up in a poor performance of the classifier as shown in

Section 3.6.7.

3.7 Related Work

In this section we provide the related work in the field of opinion stream classification,

i.e. the presented related methods cope with evolving streams of opinionated documents.

We distinguish among methods demanding true labels through the entire stream and

methods which train with a limited amount of labeled instances.

Existing methods in opinion stream classification basically follow the framework given

by Figure 2.1 while differ in the classifier which is applied to learn and test the model.

Semi-supervised opinion stream classifiers inherit the general procedure of self-training,

i.e. they learn an initial model upon a labeled set of documents and make predictions

on unlabeled new arriving documents which are then considered to re-build the model.

Across the current opinion stream methods predicting is employed by various classifiers

which makes each method distinct. Besides, the approaches differ in the kind of ex-

ploiting predicted documents while some act online, i.e. the adapt the classifier with

predicted documents rather than learning a new model, and others re-build the classifier

for each considered document so that labels of documents are learned again when the

model is re-trained.

3.7.1 Supervised Opinion Stream Classification

Due to the abundance of opinionated texts nowadays, there is a lot of research in the

field of sentiment analysis and opinion mining. However, most of the works focus on

73

static datasets and work in a fully-supervised manner, cf. the pioneering work by Pang

et al. [107]. In fact, classification on streams of opinionated documents is a rather

new research challenge. Its attractiveness has gradually increased over time as more

and more new social network platforms constituting streams of opinionated documents,

e.g. twitter, facebook instagram, are established. In the following, specific approaches

from the latest literature regarding opinion stream mining will be presented, forming

a representative selection of the existing literature. The objective is in presenting the

main contribution of them while outlining shortcomings w.r.t. to our methods.

Go et al. [52] first proposed a approach for automatically classifying the sentiment

of Twitter messages. They use emoticons to label a training data consists of tweets.

Emoticons are visual cues that are associated with emotional states (e.g. some emoti-

cons express happiness and some express sadness). This approach was first introduced

by Read [113]. Due to the easy extraction of large amounts of tweets which contain

emoticons, Go et al. collected a huge training data set with labeled tweets on which

they learned a naive Bayes classifier and a Support Vector Machine. Words are repre-

sented as unigrams, i.e. each word is considered as a single dimension in a vector space

model.

In [104], Pak and Paroubek propose a technique to collect a corpus of tweets, training

a sentiment classifier upon it. Their classifier is able to determine positive, negative and

neutral sentiments of documents. The classifier is based on the multinomial Naive Bayes

classifier while utilizing N-grams and POS-tags as word-value vector. To distinguish

among objective and subjective text, Pak et al. employ entropy assessing such n-grams

as objective which appear uniformly across positive, negative and neutral datasets. The

NB classifier achieves good accuracy values.

Another work of Pak and Paroubek [105] proposed using twitter to disambiguate

sentiment ambiguous adjectives such as large, small, high, low. Those adjectives express

in some context a positive opinion, e.g. large income, and in a other context a negative

opinion, e.g. large amount of taxes. They train a classifier based on training data labeled

by emoticons (similarly to Go et al. [52]) to classify texts into positive or negative sets.

In contrast to [52], they use a combination of unigrams, bigrams and trigrams to model

the words. The classes are then used to determine statistics that disambiguate sentiment

ambiguous adjectives.

Bermingham and Smeaton compared the performance of SVM and Multinomial

Naive Bayes (MNB) classifiers on microblog data and reviews in [16]. It turns out

that in almost all cases the two classifiers yield better results on short-length, opinion-

rich microblog messages rather than on long texts, nesting more than one emotion of the

author. As class distributions may vary along the stream of data, there is requirement

to follow these changes and update the classifiers model accordingly.

74

One of the firsts dealing with adaptable classifiers in streams of opinionated docu-

ments are Bifet and Frank in [17]. They investigate sentiment classification on a stream

of tweets considering unbalanced classes with challenges like drifts and shifts in the

class distribution, under the requirement of quick response and memory constraints.

They experimented with three incremental classifiers: Multinomial Naive Bayes (MNB),

Stochastic Gradient Descend (SGD) and Hoeffding Trees (HT). For evaluation, they em-

ploy prequential accuracy and Kappa statistic. They utilize a stream of 1.6M instances

and show that SGD and MNB performance best when the class distribution remains

constant. For a altering class distribution, SGD adapts better than MNB, while HT

performs poorly.

Inspired by Bifet and Frank [17] Gokulakrishnan et al. [53] study popular classifi-

cation algorithms such as Multinomial Naive Bayes, Random Forest, Bayesian Logistic

Regression and Support Vector Machines using sequential minimal optimization for the

classification in twitter data streams while updating the classifiers incrementally with

new occurring tweets. Across the tested classifiers, the Multinomial Naive Bayes showed

the best performance for all applied data sets.

Aston et al. [9] perform dynamic feature selection similar to Carvalho et al. [32] but

they adjust their single-pass online learning algorithm Winnow by a balanced factor

so as to be less vulnerable to unbalanced class distributions. Similarly Aston et al. [8]

propose a perceptron algorithm employed over a stream of tweets which is updated by

tweets whose prediction was wrong. Detecting sentiment shifts, Tsytsarau et al. [134]

propose an algorithm that makes use of the first statistical moments of sentiment values

to reveal contradictions among tested labels and the model, i.e. if the computed label of

new arriving documents differs from the statistical moments then a shift in sentiment is

recognized.

All of the above discussed methods act online and update the related classifier incre-

mentally according to the true class of new arriving documents. We propose classifiers

which also act online but do not require true labels as they adapt itself by the predicted

labels. Yet, existing literature in opinion stream mining have not undertaken concept

drift w.r.t. to single words. Our methods consider the fact that words might change their

label while employing heuristics measuring the distribution of words along the classes as

well as the particular class distributions of the words.

3.7.2 Opinion stream classification with limited amount of labeled data

Due to the scarcity of true labels when dealing with a stream of opinionated documents,

techniques focusing on training classifiers with a small amount of labeled instances have

gained huge popularity. In the following we introduce to the common literature in this

area giving a comprehensive selection of the most recent articles.

75

Active Learning Yerva et al. [143] propose an active stream learning based classifier

for classifying tweets into relevant or irrelevant for a given company. Their idea is to built

a company profile of positive and negative evidence words and test the tweet against

the profile to decide on its class. To obtain the class, an oracle is asked and returns the

true class. The profile is maintained online over the stream; initially a small set of words

is included but the seed set is expanded by also including words that co-occur often in

the stream with words in the seed set. We also expand in a word-basis, however our

approaches are not topic specific but broader.

Kranjc et al. [71] present an active learning framework for selecting the most suit-

able tweets w.r.t. a initial trained classification model. The label of the selected tweets

are obtained by an oracle, similar to [143]. Kranjc use as classifier a machine learning

approach (SVM) and re-build the model as soon as new suitable tweets are selected.

Similarly [128] contribute an incremental active learning approach distinguishing opin-

ionated (positive and negative) from non-opinionated (neutral) tweets in finance twitter

data streams. Based on an SVM classifier, Smailovic et al. determine a query strategy

for active learning, combining advantages from uncertainty sampling and random sam-

pling. The strategy is adapted to sentiment analysis of streams of financial tweets and

applied to predictive stream mining in a financial stock market application. Selected

examples are then used to update the classifier incrementally. Rather than asking an

oracle for true class labels, we do not require true class labels but utilize predicted class

labels. Moreover, we adapt the trained model by predicted documents incrementally and

do not re-build from scratch. The demand for labels in the stream is partially alleviated

in active stream learning [158], but the involvement of the human expert is still a major

constraint. The next paragraph outlines approaches which require only true labels for

training the initial model but omit them as the stream progresses.

Semi-Supervised Learning Adaptation to concept drift is particularly challenging

for semi-supervised classifiers; as time progresses the initial seed might not be reflected

by the current class distribution. Among others, this issue has been investigated by Dyer

and Polikar in [42]. Their method is promising, but it is very sophisticated and resource-

demanding, and it is unclear how it scales for data with more than two dimensions.

Since the feature space of opinionated documents has a substantially larger cardinality

we propose less sophisticated methods that rely on entropy and word frequency of the

arrived tweets for the classifier.

Wang et al. [139] introduce a self-training approach, based on a lexicon-based method,

which adapts the seed set by adding iteratively such instances to the seed set which show

a high confidence regarding their learned labels. They employ the classifier to distinguish

subjective from objective documents within a static environment. We, in contrast, con-

sider a stream of opinionated documents and utilize our classifier to differentiate among

76

positive and negative documents. Moreover, our classifier adapts not by all words from

the documents rather it augments the classifier by only class-informative words which

promotes a finer-grained adaptation mechanism.

The method of Silva et al. [126] operates on an initial seed of documents, building

upon advances of semi-supervised classification. Their classifier consists of a set of

sentiment rules, extracted from the initial seed. Such a rule consists of a set of terms

as antecedent and the predicted sentiment label as consequent. Using the rules, the

likelihood of each sentiment/label is computed for a document, and then the document

is labeled with the most likely label. These newly labeled documents are included to the

seed, provided that their sentiment score exceeds a threshold. To update the classifier

with a new document, Silva et al. increase counts like confidence, support and cardinality

of related rules and also extract new rules; extracting new rules is very costly though.

No rules are discarded, although some of them may be outdated: Silva et al. [126]

do not differentiate between old and new documents, so that rules describing only old

documents are not forgotten. In contrast, we propose methods that adapts itself by

fading out old documents and assigning higher weights to recent documents.

Guerra et al. [27] present a transfer learning strategy to perform real time sentiment

analysis. They analyze sentiments by transferring user biases, i.e. a characteristic of the

author showing lack in neutrality of argumentation caused by personal favoritism, to

textual features while combining them to compute the overall content polarity. Their

strategy of using human bias is robust and shows good performance on topics having

high polarization among user opinions, such as politics and sports. The quality of our

methods is not topic driven rather our methods are also suitable for topics with lower

degrees of polarization such as sentiment analysis of product review data.

In [83] Lourenco et al. propose a stream classifier that re-builds when relevant

training instances w.r.t. to drifts arrive. Selecting only relevant examples keeps the

training set small while providing to the classifier the capabilities to suit itself to, and to

recover itself from, different types of sentiment drifts. Relevance is based on adaptiveness,

i.e. incorporating fresh messages into the current training set, while discarding obsolete

ones, and memorability which retains messages belonging to pre-drift distributions. We,

in contrast, propose techniques to select reliable new arriving content which might be

documents or only single words of arriving documents, composing a more fine-grained

approach. Moreover, we utilize adapting strategies so as to omit rebuilding the model

from scratch.

[79] propose a adaptive semi-supervised SVM model for crossdomain sentiment clas-

sification in twitter data set. They employ co-training exploiting conventional text fea-

tures (such as adjectives) and non-text features including biological clock, emoticons, and

punctuation. Co-training is based on the assumption that non-text and text features

77

are independent allowing a collaboratively transfer among the adaptive S3VM classi-

fiers. Since adapting S3VM classifiers is very costly w.r.t. runtime, the authors propose

an iterative algorithm alternating among optimization, unlabeled data selection, and

adaptive feature expansion steps. Solving the nonconvex of the problem by convergence,

heuristics policies are adapted iteratively. Due to the high complexity of S3VM classi-

fiers, the approach of Liu et al. appears rather costly in terms of runtime. There are no

studies regarding the runtime denying to estimate how expensive the method is. Our

classifiers are less complex also the experiments include studies regarding the runtime.

If a classifier incorporates new unlabeled instances on the basis of a small initial seed,

then it will be unable to depart from the initial concept and thus will fail to respond to

drift. Therefore, we propose to downgrade old data, not simply by taking old instances

out of the sliding window but by downgrading their contribution to the model. Our

approach is inspired by the relational stream classifier proposed in [124], which applies

an ageing function on the decision tree: if a branch receives no new instances for some

time, it is discarded. We build upon this principle by using the age of the instances

to decide when to discard them from the model, thereby allowing for arbitrary model

learners, not just decision trees.

Drury et al. [41] propose a semi-supervised classification algorithm that trains the

model from an initial seed and relearns the classifier with a seed extended by self-training.

As in [126], a document is added to the seed, if the label has been assigned with high

confidence. However, Drury et al. [41] do not consider a stream of text messages rather

they consider a static environment, where all text messages contribute equally to the

classifier. We though employ an ageing function, so that recent documents have a greater

impact on the classifier. [131] propose a sentiment damping technique for large scales

of twitter streams. Their suggested method damps sentiment predictions that show a

significantly different sentiment level than the previous texts and thus being misclassified,

according to a classifier. Based on two rules, the predictions are adjusted w.r.t. to the

most recent seen documents.

Guerra et al. [55] present a supervised model for a real-time sentiment analysis ap-

plying different propensity users disclosing positive and extreme feelings, in comparison

to negative and average feelings. In contrast to the approaches above, Guerra generates

labeled data not by manual or predictive inspection but by exposing noisy labels of the

sort of heuristics and rules. As source of the noisy labels Guerra et al. take psychology

patterns into account,i.e. humans are more motivated to report positive feelings rather

than negative ones. Based on the noisy labels, they train a classifier and update it incre-

mentally over time. The psychology patterns are group dependent, i.e. the author of a

document belongs to a group and thus the author and also groups are required. Finding

groups is not a trivial task though and demands runtime resources.

78

[67] utilize emotional contagion such as connected individuals are more likely to have

similar behaviors or hold similar opinions, facilitating sentiment analysis in the context

of microblogging. Their classifier integrates sentiment relations between the texts and

therefore lowers the emergency of labeled instances. Similar to [55], Hu’s approach

requires knowing the authors of text messages. However, they are not always known,

e.g. many product reviews are written by anonymous authors. Our methods do not

require any information of the writer of text messages neither do we involve groups of

authors for the labeling of new arriving instances which is requested by [55].

3.8 Discussion and Conclusion

This chapter coped with semi-supervised opinion stream classification over streams of

opinionated documents. Semi-Supervision was obtained through the usage of a small

initial seed, containing labeled documents (the only supervision source), to learn the

classifier which is then applied to predict the label of new arriving, unlabeled documents.

The classifier is adapted by the words of the new documents regarding their predicted

class label. Different approaches were presented throughout this chapter that propose

adaptation techniques selecting useful and reliable content and gradually downgrade old

documents over time by the concept of ageing. The developed algorithms were tested

extensively under real-world conditions. We experimented on three real-world datasets

referring to different textual structure such as product reviews and tweets and also

represent contrasting class distributions (e.g. equal, skewed and drastic imbalanced).

Moreover, to show how the classifiers perform under extreme/hard conditions, we re-

ordered the streams in such a way that we obtained streams with an increasing variety

of words as well as an increasing amount of unknown words being not part of the initial

seed. In this context, the development of the S*3Learner, distinguishing among known

and unknown words, is an important contribution.

Approaches In this chapter, two different approaches selecting content of new docu-

ments to adapt the classifier by this content were presented. Furthermore one technique

to downgrade old, outdated documents was introduced. The comparison of the ap-

proaches is summarized in Table 3.7 and throughout the following paragraphs.

We introduced an opinion stream classifier S*3Learner that utilizes the only evidence

of true labels (the seed) most effectively while not allowing classification errors being

propagated to the seed set. But adapts by maintaining the class distributions of the

unknown words, i.e. words not part of the seed, w.r.t. to the class label predictions of

related documents. We, however, adapt merely by reliable unknown words. In particular

we quantify the reliability of unknown words using entropy and word frequency as basis.

Furthermore we presented and opinion stream classifier ADASTREAM selecting only

79

ADASTREAM ADASTREAM S*3Learner S*3Learner
+ageing +ageing

filter con-
tent

usefulness usefulness
ageing

MaxEntr
MinFreq

MaxEntr
MinFreq
ageing

usage of un-
labeled data

mixed with labeled data maintained separately to la-
beled data

adaptation
by

complete documents single words

classification
quality

S*3Learner without ageing is best over all streams

runtime second best as
more adapta-
tions

best as least
adaptations

high as all
words are
maintained

highest as
all words
plus their re-
lated age are
maintained

Table 3.7: Difference among the proposed semi-supervised opinion stream classifiers

some of the arriving unlabeled documents for incorporation into the seed set; these are

documents, on whose derived label the classifier is confident, but also documents that

are different from those seen thus far. We quantify the notion of usefulness for these

documents, using entropy as basis.

As a second adaptation mechanism we introduced ageing of documents to gradually

eliminate old, outdated documents from the model. Albeit window-based stream classi-

fication is a widespread strategy, the elimination of old documents from a learned model

has not been considered in semi-supervised stream classification before. We combined

the ageing strategy with the two adaptation methods obtaining two new approaches:

S*3Learner + Ageing and ADASTREAM + Ageing

Classification Performance Our experiments on streams of opinionated tweets and

product reviews show that S*3Learner suits very well to the changing environment of

opinion stream mining where only few labeled documents are available and the used

words to express opinions change rather often. In particular, the experiments reveal

that S*3Learner overcomes the fully-supervised approaches when the selected seed is

relatively small and the observed stream captures many unknown words; thus it works

very well. Observing a large seed so that not many unknown words appear through the

stream, S*3Learner is competitive with fully-supervised approaches and overcomes the

compared semi-supervised methods. The evaluation of ADASTREAM shows that it is

competitive in comparison to the fully supervised baselines while exposing stability in

80

the presence of drift. Overall, S*3Learner scores a higher performance than ADASTR-

EAM though. Particularly when only unknown words arrive, the gap in performance

becomes rather obvious. Implying that S*3Learner should be preferred for streams that

carry a high variety of words and thus containing more new appearing words over time.

We further showed that the interplay of adaptation and ageing does not improve

the performance of the classifiers nor it enhances the stability. That is, removing the

influence of old documents from the model after some time, so that the model is more

oriented towards new documents, decreases the quality of the classifiers. This is because

the labels of old documents are more reliable than the labels of recent documents as

they were derived directly from the seed. In particular ageing fails if the seed does not

contain many words which have a pure class count distribution, i.e. if the seed does not

carry much information.

81

Chapter 4

Extracting and Monitoring
Product Properties and the
Attitudes on them

In the previous chapter, opinion stream classification was studied while presenting semi-

supervised stream classifiers deriving the labels of arriving, unlabeled documents. This

chapter focuses on methods for monitoring and understanding how the attitude towards

product properties changes over time. We propose SENTISTREAM which is based

on our work in [154, 152], a framework for the discovery and polarity monitoring of

explicit product properties deemed important in the reviews on different products. Our

framework encompasses stream clustering, extraction of product properties from the

clusters, cluster adaptation and semi-supervised sentiment learning inside each cluster.

These components build upon our work on product property discovery and monitoring

[156, 152], with emphasis on smooth cluster adaptation. We report on the performance of

SENTISTREAM on two real datasets with product reviews, whereby we evaluate both

the stream clustering approach for product property monitoring and the semi-supervised

polarity monitoring method.

This chapter, contributes to Research Task 4 and Research Task 5, formulated in

Section 1.1. We repeat them here for conveniences:

Research Task 4. Derive the most interesting, explicit product properties from a stream

of textual documents, e.g. on which is reported predominantly. As the stream progresses;

how to adjust the properties, how to forget unpopular ones and how to recognize emerging

ones?

Research Task 5. As polarity learning is prone to polysemous words across the dis-

cussed product properties; how to learn the polarity label of a document discussing a

specific product property?

82

The objectives of the methods presented in this chapter are to discover product

properties and assess/monitor their polarity in the dynamic context of a stream of opin-

ionated product reviews. This is a dual problem. The discovery of product properties

is an unsupervised task, for which the stream of product reviews must be partitioned

into topic clusters, as investigated e.g. in [6, 81]. The challenge lays in detecting new

topics/properties as they start becoming important in the product reviews, while mak-

ing sure that the whole set of discovered properties evolves smoothly from one moment

to the next and can thus be monitored in a comprehensive way. This refers to research

task Research Task 4.

The monitoring of the properties’ polarity is a supervised learning task, for which

labeled reviews are needed. The challenge lays in learning under an evolving stream

while attitudes on product properties change over time [17, 19]. Supervised learning

on the stream of reviews must consider the scarcity of labeled data as usual in social

content data [89, 153]; that is, up to date labeled reviews cannot be available. Hence,

polarity monitoring must be performed on an initial seed of labeled documents, similar

to Chapter 3.

SENTISTREAM is an integrated solution to the challenges of discovering product

properties and assessing/monitoring their polarity in the dynamic context of a stream

of reviews. It encompasses an adaptive stream clustering method that derives prod-

uct properties at two levels of granularity, adding new properties and forgetting those

becoming outdated as the stream progresses. Each cluster corresponds to a product

property, the polarity we learn with cluster specific stream classifier, i.e. we train classi-

fiers over documents representing the same product property. Those trained classifiers

aim to bypass the problem of polysemous words to which polarity classifiers are nor-

mally prone. This refers to research task 5. To deal with the absence of up-to-date

labeled documents, we use the semi-supervised stream classifier proposed in Chapter3

and presented in [153, 155].

The rest of this chapter is structured as follows: in the next section we discuss the lat-

est work towards opinionated property extraction over time, followed by definitions and

the core concept of our framework SENTISTREAM ; we discuss the property extraction

part of SENTISTREAM afterwards before we propose our adaptation methods to deal

with the changing environment in product review streams. We present the extensive

evaluation of our method in Section 4.6 while running experiments on relevant parame-

ters that might influence the performance. We conclude this chapter with a discussion

on the results and the performance of our method.

83

4.1 Related Work

We study a stream of documents, in which people have written their opinions on the

products under observation. The discovery of the product properties mentioned in this

stream translates into a text stream clustering task, where a “property” is the descriptor

(usually: centroid) of a cluster. As the stream progresses, properties that are not men-

tioned any more must be forgotten and new properties must take their place. Relevant

literature encompasses advances on product property extraction, opinionated property

extraction, property extraction from a stream of opinionated documents, and on stream

clustering.

Extraction of Product Properties from Reviews Property extraction and moni-

toring from a stream is a new subject. For property extraction on a static set of reviews,

Liu identifies four research subtopics [77], of which the identification of frequent nouns

and of noun phrases are closest to our research.

Long et al. [82] extract core words for an “aspect” (an aspect is defined as an prop-

erty of an entity, e.g. service of restaurants), compute their frequencies, estimate their

distance to other words and use it to acquire further words related to the aspect. Zhu

at al. [149] consider the frequency of terms that contain other terms and apply a boot-

strapping technique over a given set of properties. As we define a “property” as a cluster

centroid; we refine clusters into subclusters, so that a property is refined into a set of

(sub)properties [152, 154].

Mukherjee et al. [99] extract properties and relationships among them: a property

is a noun, relationships among nouns are relationships among properties. All nouns are

treated as candidates of properties in absence of domain knowledge. We use clustering to

group the nouns. Moreover, we find relations between the properties while distinguishing

the properties into broad and specific properties. For property extraction, Mukherjee

et al. [99] consider all nouns. In contrast, we suppress very frequent nouns by means of

tf-idf weighting.

Moghaddam and Ester [97] define a property as a frequent itemset of nouns. They

want to find multi-part noun phrases like “LCD display”; they use tf-idf weighting of

nouns with non-stopword stems at document and paragraph level; they apply Apriori

to find frequent noun combinations. We also aim to find multi-word terms, but use

two-level clustering instead; this allows us to identify also refinements of properties.

All above methods are static; our approach also captures emerging properties and

gradually forgets properties that are no longer important.

84

Text Stream Clustering Text stream clustering methods have been influenced by

advances on model adaptation for conventional streams (see e.g. [3, 56, 30]).

The text stream clustering algorithm of Aggarwal and Yu [6] propose an online ap-

proach for clustering massive text streams in which they maintain a fixed number of K

clusters over time. A new document is assigned to the cluster with the closest “sum-

mary” (called “droplet” and consisting of two vectors of values describing the words’

distribution in the cluster). If a new document is too far from all existing clusters, it can

become the seed of a new cluster, but only if some old cluster receives no new members

and can thus be deleted. Otherwise, the document is assigned to the closest existing

cluster, even if it is far from it; irrespectively of some similarity threshold violation.

Liu et al. [81] follow a similar approach for the actualization of K clusters as the text

stream progresses. However, instead of using single words as document features, they

use multiword phrases as topic signatures, and a more elaborate proximity computation.

In particular they extend the semantic smoothing model from Information Retrieval to

text streams. Their summary structure, called “cluster profile” models both the sum

of word frequencies and the sum of topic signature translation probabilities over time.

New documents are assigned to their closest clusters based on the log likelihood of the

new document being generated by an existing cluster.

These methods have a number of shortcomings. First, they assume an a priori fixed

feature space. As new product properties emerge, it is likely to be associated with

words or terms that are not part of the feature space. This caveat is addressed in

the framework MONIC [130], which however focuses on the a posteriori interpretation

of change, and not on the discovery of product properties. Furthermore, the set of

dimensions is extended by re-computation, re-vectorization of the documents w.r.t. the

new dimensions and reclustering. This is a very expensive step that should be done only

to prevent serious performance deterioration.

Second, the aforementioned text stream clustering methods assign each arriving doc-

ument to some cluster. If the feature space is fixed, then this assignment may take place

on the basis of keywords that are not characteristic of the current product properties.

Even if the feature space is adjustable, as in [119] which builds upon [130], there is

danger of overseeing keywords that are not yet frequent enough to become part of the

feature space.

Moreover, the aforementioned methods attempt to describe all data with a fixed

set of K clusters (stream clustering). This disagrees with the fact that a text stream

featuring product properties may correspond to a broad set of coarse-grain properties,

each one containing fine-grain (sub)properties, e.g. “lens” is a property of the product

“camera” and ‘zoom” or “aperture” are (sub)properties of “lens”. Treating fine-grain

(sub)properties as first-level properties implies setting K to a very large value, and using

85

a very large feature space 1. In contrast, we distinguish between first-level properties and

second-level subproperties inside a property. This allows us to learn subproperties with

a property-specific small feature space, and to adapt the subproperties of a property

independently of other (sub)properties.

A further shortcoming of the above methods is the distinction between noise and

(sub)property. Text stream clustering methods attempt to place each document to a

cluster, hence a document is either the seed of a new property or it belongs to an existing

property. In contrast, Sebag et al. [147] maintain a “reservoir” of outliers and perform

a statistical test to decide whether the clusters must be rebuilt to accommodate the

outliers. Shou et al. [123] create new clusters for documents being very distant from all

other clusters; they diminish the effect of noise by deleting clusters which are not updated

frequently, i.e. which did not consume documents recently. Ester et al. [44] and Lee et

al. [72] group instances based on their density connectivity and treat noises as outliers

that would not be involved in any cluster. In contrast, we assign each document to a first-

level property and to a second-level (sub)property, and place in a (sub)property specific

container each document that is too dissimilar to the (sub)property. The documents

in a container are temporarily treated as noise, and adjusting of clustering structure is

performed only if the container indicates to be merged with a existing (sub)property

that is associated with the container, leaving the rest of the properties intact.

Social Text Stream Clustering Social data streams are challenging for data anal-

ysis as they produce massive amount of data which evolves over time [2]. Mathioudakis

and Koudas propose the TwitterMonitor system in [90] to detect trend over the Twit-

ter stream. The system detects sharp increases (“bursts”) in the frequency of sets of

keywords found in tweets. Trends are defined as sets of bursty keywords that occur

frequently together in tweets. He and Parker [59] study emerging bursts in scientific

publications, considering as basis for their method models of “burstiness” designed for

social media. Their approach is confined to platforms where information is propagated,

rather than arbitrary news providers.

Hawwash et al. [58] propose a framework to track trendy stories as well as their major

milestones such as start, end and intermediate events in Twitter messages. The authors

apply online clustering where they describe a cluster by a set of metrics such as squared

distance of all points in a cluster They further apply a individual regression model for

each cluster metric to track the characteristics of the clusters across the applied cluster

metrics.

Petrovic et al. [108] propose a framework for real-time story detection in a stream

of tweets. They use a nearest neighbor approach finding the first tweet discussing a

1The complexity of stream clustering and dynamic topic modeling methods is exponential to the size
of the feature space.

86

particular event. Based on the cosine similarity and on buckets accumulating documents

of the same event, Petrovice et al. count for each incoming tweet the number of times

it is the nearest neighbor of “tweets” in the same bucket: the tweet with the highest

number defines the event. The oldest tweet of a bucket is removed from the bucket if

the size of the bucket exceeds a certain threshold.

The incremental method of Gu et al. [54] on topic monitoring in Twitter is hierarchi-

cal and can thus distinguish between global and local topics. Gu et al. refer to “events”

and propose methods for modeling, accommodating and updating them. They first iden-

tify the core blocks of a single event by finding key phrases that are used by many users

for the description of this event. These blocks are then organized into a theme hierarchy

based on their similarity and according to a list of properties that the hierarchy should

have; for example, the parent of a node must have less keywords than the node itself.

When a new tweet arrives, it may be assigned to an existing theme/node or become a

new theme, whereupon the hierarchy is re-constructed. This decision is taken on the

basis of snapshot quality versus temporal smoothness [36]. However, performing such a

test (or re-constructing the hierarchy) in response to a single tweet seems too drastic,

because a tweet that is too different from all others may be noise; an emerging property

should be supported by several documents.

To deal with social text stream, we present the stream clustering method SENTI-

STREAM which builds upon the TStream algorithm proposed in [156] and its exten-

sions in [152] and [154] towards opinion stream monitoring. It is designed to monitor

smoothly emerging (and declining) product properties, i.e. we focus on gradually emerg-

ing (sub)properties, rather than finding bursts. Similar to Petrovic et al. [108] we also

use a hierarchy of topics but adjust it with a more elaborate criterion than the age of

the oldest tweet. Hawwash et al. [58] do not consider the polarity of a cluster rather

they concentrate on metrics describing the shape of the cluster. We instead monitor the

evolution of the cluster’s polarity over time exposing changes in the sentiment. More-

over we disentangle the individual events of the stream into first and second level topics,

which is not followed by Gu et al. [54].

Opinionated property extraction Lately a lot of work has been done in the area

of opinionated property extraction. In contrast to properties, which describe coherent

content, opinionated properties also describe the sentiment associated with this content.

Mei et al. [94] introduce the problem of topic-sentiment analysis in a Weblog and propose

a probabilistic model to simultaneously capture the mixture of topics and sentiment in

them. To derive opinionated topics, they use a topic-sentiment mixture model, consid-

ering a fixed number of k topics and a fixed number of classes, i.e. the positive and

negative sentiment classes.

87

Blair-Goldensohn et al. [22] consider only noun phrases that are related to sentiment-

bearing sentences. In order to identify relationships between opinion words and prop-

erties they rely on direct neighbor and dependency relations. Given a review, all the

words of the review and their relationships are modeled in a graph; the nodes are the

words and the edges correspond to relations between words. The property words have

different semantics from the rest of the words in the review and are modeled as property

nodes. To extract the polarity of a specific property, a dependency extraction method

is proposed that assigns the rest of the review words to their closest property node in

the graph. The closest property node for a word is determined in terms of the shortest

path between the word and the property node.

Hao et al. [57] present an approach that explores large volumes of twitter comments

w.r.t. what was commented positively or negatively. By means of a novel topic-based text

stream analysis technique, Hao et al. detect frequent attributes in tweets while observing

their density distribution w.r.t. to the geographical location of tweets, negativity, and

influence characteristics.

Quan and Ren [112] propose a framework to extract product specific properties and

their polarity. Based on specific property words such as “phone” for the product camera,

Quan et al. apply a word distance measure, to find those words (nouns) from a review

dataset which are most similar to the product specific words. The polarity of a property

is derived by opinion words (adjectives) belonging to reviews pointing to this property:

the polarity of a opinion word is derived from a opinion lexicon (General Inquirer).

Closest to our approach is the framework of Bifet et al. [19] that consists of (i) a

twitter filter to convert tweets into tf-idfvectors, (ii) an adaptive frequent itemset miner

that stores the frequency of the most frequent terms and (iii) a change detector that

explores changes in the frequency distribution of the items. The framework monitors

changes in the frequency of words.

All the above approaches use either general classifiers or global lexica assessing the

overall polarity of an extracted properties. We propose a method for property specific

opinion word assessment. We cover polysemous words that show a specific polarity

w.r.t. to the related property. Moreover, we forget unimportant properties showing no

arriving documents referring to them, while the above approaches do not forget such

properties.

4.2 Core Concepts and Overview

We study a stream of product reviews. We organize the stream in batches of fixed size,

streamSpeed, arriving at distinct timepoints t0, t1, . . . , ti, . . ., so that ti marks the arrival

of the ith batch. A review r is represented by the bag-of-words model, i.e. the ordering

88

of the words in the review is ignored whereas for each word wi ∈ r its frequency f ri is

stored, cf. Section 2.1.2.

Camera
Reviews

Battery Price

Size Life Size Price
positive

Weight Life

Weight

Zoom Aperture

Battery BatteryLensPicture

Quality

Figure 4.1: Example of a two level property hierarchy over camera reviews: green reflects
a positive polarity label and red a negative one

Our goal is to organize this stream into a two-level hierarchy of broad product prop-

erties and more specific (sub)properties. For example, a property “lens” of the product

camera may cover all reviews associated to “lens” while two of its (sup)properties de-

scribe in particular the “aperture” and the “zoom” of the lens. Moreover we assess the

polarity assigned to each (sub)property revealing the popularity of the (sub)properties

based on the polarity of the related reviews assigned by the authors. Figure 4.1 depicts

such a two-level hierarchy of product properties and their associated polarities. Since the

document stream evolves over time, we maintain the two-level hierarchy online adapt-

ing to changes in property polarity over time as well as reflecting the evolution of the

underlying property population.

Our approach is designed for streams of product reviews, where each review refers to

a single property of the product. The stream itself, though, covers a variety of properties

of the different products. The requirement of one property per review may look a bit

restrictive at first. However, we are mainly interested in the few dominant products

properties that customers focus on, especially when they decide to write only brief re-

views. Long appraisals of content (e.g. for books) are beyond our scope. Long reviews

that address many properties of the same product can be split into short sentences by

text segmentation. Techniques applying text segmentation are proposed in [62, 37, 136]:

broadly they compute how similar two sentences are based on its cohesion; sentences

which are minimally similar obviously discuss different properties.

Briefly, our framework works as follows. On the stream of batches, we first perform

text stream clustering: SENTISTREAM builds upon our TStream, which derives topics

and subtopics from a stream of news [156]. We opt for an unsupervised technique such as

stream clustering because the labels of the properties are not available neither the number

89

of the properties referred through the stream are known. SENTISTREAM partitions

the first batch of reviews into KG global clusters at the first hierarchy level – from these

clusters we extract the product properties. We then partition each global cluster into KL

local clusters – from these we extract the product subproperties. A cluster can be seen as

a group of reviews which discuss the same product property. By grouping we demarcate

the product properties without knowing the labels of the product properties in advance

As new batches arrive, the original TStream pushes reviews down the hierarchy, while

keeping reviews that do not fit any cluster into containers. When containers are filled, the

hierarchy is rebuilt by TStream. For SENTISTREAM we extend TStream to detect and

process only “important” reviews, which are, informally, similar to many other reviews

and can thus serve as representatives, as presented in [152]. We further extend TStream

by a more elaborated technique to decide when the hierarchy requires a rebuilding from

scratch, as presented in [154]; and a internal merge strategy merging those subclusters

which move close to each other preventing the hierarchy to be rebuilt. For each global

and local cluster, we learn a polarity classifier. All classifiers are initialized on a first seed

of true labeled reviews and then extended through self learning by labels of new arriving

reviews, similar to our classifier ADASTREAM presented in Section 3.3.2. When a

cluster is rebuilt, its dedicated classifier is also re-learned.

We first present the core functionalities of SENTISTREAM cf. Section 4.2.1 and

then introduce basic concepts (see Section 4.2.2). This section finishes with the SENTI-

STREAM components and workflow in Section 4.2.3.

4.2.1 Core functionalities of SENTISTREAM

SENTISTREAM encompasses two core functionalities: adaptive unsupervised learning

of the explicit product properties and adaptive semi-supervised learning of the polarities

of these properties. The first functionality is undertaken by our adaptive stream clus-

tering algorithm SENTISTREAMClus (cf. Figure 4.2, left part): it learns a two-level

hierarchy of clusters from the initial set of reviews S and maintains it over time (step

1), where a cluster corresponds to a “product property” – a set of representative words

derived from the cluster’s centroid (step 6); to allow for emerging properties, it maintains

reviews that do not fit into the clusters in “containers” (step 2) and decides regularly

whether container contents should be merged into the clusters (step 4). Due to smooth

changes in the hierarchy caused by drift in the population, subproperties might start

mowing towards each other. Thus, initially distant subproperties that exhibit a high

degree of similarity are merged (step 5). To make sure that the words representative

of each “product property” are captured, the algorithm identifies “important reviews”

inside each cluster (step 3) and considers only the words of these reviews to re-build

the set of dimensions D during cluster maintenance (step 1). The concepts used by

90

the SENTISTREAMClus are presented in subsection 4.2.2 hereafter, while SENTISTR-

EAMClus itself is described in detail in Section 4.4.

SENTISTREAM_Clusterer:
1. Maintains a two-level hierarchy of clusters
2. Maintains a single global container and one

local container per first level cluster
3. Identifies important reviews in each cluster
4. Decides whether a container should be

merged with its cluster (and how)
5. Decides whether two subclusters should be

merged with each other (and how)
6. Computes the ``properties'' represented by

the cluster
7. Invokes the

inside each cluster

SENTISTREAM_PolarityLearner:
1. Trains a classifier on the

training set
2. Propagates the polarity of the

reviews in each cluster to the
``property'' represented by
the cluster

3. Adds ``useful'' reviews to the
training set

SENTISTREAM_polarityLearner

Figure 4.2: The two core functionalities of SENTISTREAM for discovering and moni-
toring product properties and their polarities

The second functionality, semi-supervised stream classification, is undertaken by our

SENTISTREAM PolLearner (cf. Figure 4.2, right part), which is invoked inside each clus-

ter (step 7 of SENTISTREAMClus in Figure 4.2). The SENTISTREAM PolLearner en-

compasses the following steps: a polarity classifier is trained inside each cluster of the

first and of the second hierarchy level (step 1). Once the classifier has assigned labels to

all reviews in a cluster, the dominant label in the cluster is propagated to the product

property as its polarity label (step 2). For training, we assume an initial seed set S
of reviews labeled on the true polarity; as new reviews arrive, the algorithm uses the

learned classifier to assign labels to them and then selects those reviews that it considers

“useful” for adaptive learning and adds them to the training set (step 3). This is similar

to our self-training ADASTREAM approach presented in Section 3.3.2; thus it learns in

a semi-supervised way. The concepts used by SENTISTREAM PolLearner are presented

in Subsection 4.2.2, while the learner itself is discussed in Section 4.3.2.

4.2.2 Definitions and Notation

This subsection presents definitions and notation or our framework. The essential pa-

rameters used hereafter for the definitions are depicted in Table 4.1.

In SENTISTREAM we observe recent reviews as more important for model learning

than old and probably outdated ones. We use the concept of “review age” to model the

91

Parameter Description

KG number of global clusters

KL number of local clusters per global one

λ decay factor to determine the age of a review

k number of nearest neighbours taken into account

β threshold to define when a review is considered as important

R set of reviews R

FR feature space of nouns derived from the set of reviews R

δ threshold to define when a review is considered as novel

Ĉ centroid of a cluster C

Rβ set of important reviews according to the threshold β

Cpolarity polarity label of a cluster ∈ {positive, negative}

Table 4.1: Basic parameters for the definitions of our framework SENTISTREAM

recency of a review, cf. Section 3.4. It has been widely used in temporal applications and

data streams, see e.g. [102]. We weight reviews by their age, so that reviews containing

old words have gradually less effect on cluster hierarchy. Technically, old reviews are

weighted lower while reviews with new words are denoted with a higher weight. The

weighting mechanism allows us to damp the impact of old documents based on the

words used in the document; and thus to emphasize on recent documents, adapting the

hierarchy to the underlying population.

Definition 4.1 (Review Age). The age of a review r is the average age of all words wi
contained in r:

age(r) =
1

|r|
∑
wi∈r

exp (−λ · (t− twi)) (4.1)

where t is the current timepoint, twi is the most recent time wi appeared in a review and

λ ∈ < (1 ≥ λ > 0) is a decay factor; the higher the value of λ, the lower the impact of

old reviews. �

So, we assign each review a weight according to the age of its words based on the

rule: the older the words the lower the weight of the document.

We define the importance of a review w.r.t. a set of reviews - defined by a cluster -

while measuring how well the review represents the set resp. the cluster.

Definition 4.2 (Review Importance). Let R be a set of reviews. We define the impor-

tance of a review r ∈ R with respect to R as the number of reviews in R that have r

among their k nearest neighbors, whereby the reviews are weighted on their age.

importance(r,R) =
∑
ri∈R

age(ri) · isRevNeighbour(r, ri, R) (4.2)

92

where isRevNeighbour(r, ri, R) =

{
1, r ∈ NN(k, ri, R)
0, otherwise

and

NN(k, ri, R) is the set of k-nearest neighbors of ri in R, where we use cosine similarity

as the similarity function. �

Hence, a review is important with respect to some dataset R. This dataset is a cluster

of the two-level hierarchy. Within R, r is imporant if it appears among the k nearest

neighbors of many recent reviews and can thus serve as their representative. Recency is

regulated by our concept of Review Age, cf. Def. 4.1.

On the basis of Defs. 4.2 & 4.1, we rank reviews on importance and apply a review

importance threshold β to select the most important ones. Then, we denote the subset of

important reviews subject to threshold β as Rβ ⊆ R. For simplicity, we use the notation

R over Rβ to refer to a subset of R containing only important reviews. From this subset,

we derive a feature space of nouns FR. We use the feature space to vectorize the reviews

with tf-idf. Then clustering is performed, partitioning the batch into first level clusters

and, respectively, partitioning each first level cluster into second level clusters. For a

cluster C ⊂ R we define the “polarized property” as a cluster centroid with an associated

polarity label:

Definition 4.3 (Polarized Property). Let R be a set of reviews labeled on polarity. Let

R ⊆ R be the set of important reviews, and let FR be the set of nouns in R; FR becomes

the feature space, on which we vectorize the reviews. Further, let ζR be the set of clusters

over R and let C ∈ ζR be a cluster. The “polarized property” represented by C consists

of:

• the centroid ≺ w1, w2, . . . , w|FR| �, where wi is the average tf-idf weight of noun

word ki ∈ FR, i = 1 . . . |FR|,

• the polarity label Cpolarity, defined as the majority class label among the reviews in

C.

�

We learn the clusters of the first level only from the important reviews. The same

is done at the second level: within each “global cluster” (first level cluster), the unim-

portant reviews are removed, the local feature space is computed and the cluster is

partitioned into subclusters (“local clusters”). The centroid of a local cluster, associated

with the majority class label in it is then a polarized (sub)property according to Def.

4.3. Since we have a two-level hierarchy, polarized properties of the 1st level correspond

to product properties, while polarized properties of the 2nd level refine properties of the

first level.

Not all arriving reviews fit into the existing hierarchy though. We define the notion

of review novelty with respect to the existing clusters/properties of the hierarchy:

93

Definition 4.4 (Review Novelty). Let r be a new review. Let R be the set of important

reviews and let ζR be a set of clusters extracted from R under the feature space FR. Given

a similarity threshold δ ∈ [0, 1], r is novel with respect to ζR if its cosine similarity,

cf. Def. 2.2, to its most similar cluster centroid is less than δ: 2

max
C∈ζ

cosineFR(Ĉ, r) < δ

, where Ĉ is the centroid of C. �

It is obvious that by this definition each outlier is candidate for novelty. Hence,

we need a mechanism to decide whether a review is an outlier or rather indicates an

emerging concept (i.e. an emerging product property). To make sure that emerging

concepts are not overseen, we store novel reviews in containers. We associate the first

hierarchy level with a global container, which accommodates reviews that are too far

from the centroids of all global clusters. Each such cluster is further associated with

a local container, which accommodates reviews that are close to its centroid but far

from all centroids of its subclusters (local clusters). To make sure that outliers are not

perceived as emerging concepts, we provide solutions on i) quantifying novelty and ii)

regularly incorporating novel reviews that are not outliers into the hierarchy. These

issues are addressed in Section 4.4.

We train a default classifier upon all reviews currently in the hierarchy including the

reviews in the containers to assess the polarity label of reviews being assigned to the

global container. Reviews of the global container do not fit any first level cluster, thus

the cluster specific classifiers are not appropriate to predict a label for them. We utilize

the cluster specific classifiers of global clusters to predict the label of reviews from local

containers, i.e. the label of a review that was assigned to the global cluster C but not to

any further subcluster of C is predicted by the classifier trained upon the reviews of C.

4.2.3 Components

SENTISTREAM has two components, shown in Figure 4.3. The Initialization Com-

ponent (Figure 4.3, left part) processes an initial seed of labeled reviews S and invokes

SENTISTREAMClus to build the two-level hierarchy of properties, where a property

is formally defined in Def. 4.3. As can be seen from Figure 4.3 and Figure 4.2, the

Initialization Component does not invoke all steps of the SENTISTREAMClus be-

cause the stream has not yet been deployed, i.e. the stream has not evolved yet. For the

same reason, only the supervised learning steps of the SENTISTREAM PolLearner are

invoked to learn from the labeled S and derive the polarity of the property (cf. Def. 4.3)

represented in each cluster.

2Obviously, the cosine similarity depends on the feature space FR.

94

SENTISTREAM frameworkInitialization Component:
1. Invokes

on the initial seed set
2. Invokes

inside each cluster

SENTISTREAM_polarityLearner:
Steps 1, 2 only

SENTISTREAM_clusterer:
Steps 1, 5 only Adaptation Component:

Invokes

on each arriving batch of reviews

SENTISTREAM_clusterer

Figure 4.3: The components of SENTISTREAM (cf. Figure 4.2)

The Adaptation Component deploys the complete functionality of the SENTI-

STREAMClus and the SENTISTREAM PolLearner as the stream of reviews progresses.

The invoked SENTISTREAMClus exploits the concepts of review age (cf. Def. 4.1) to

reduce the weight of reviews during clustering, and considers only important reviews

(cf. Def. 4.2) to specify the feature space inside each cluster: only words from these

reviews are considered for vectorization and specification of the centroid and, hence, of

the properties (cf. Def. 4.3). The adaptation process is described in detail in Section 4.4.

Unlike the Initialization Component, the Adaptation Component invokes

the SENTISTREAM PolLearner indirectly, via the SENTISTREAMClus (cf. Fig. 4.2, left

part, step 7). It chooses reviews that are “useful” with respect to the current concept

and adds them, with their derived labels, into the training set S. This set is shrunken

again as reviews becoming unimportant are forgotten (cf. concept of ageing in Def. 4.1

and concept of Review Importance in Def. 4.2). Whether a review is “useful” is defined

by the usefulness of a review as described in Section 3.3.2 of the previous chapter.

Informally, the usefulness of a review for learning is measured on how much it reduces

the entropy towards the word count distributions derived from the training set (cf. Def.

3.1).

In Figure 4.4, the two-level hierarchy is depicted and for each level, the maintained

entities are described. The first level of the hierarchy, consists of KG first level clusters

and the global container. At the second level of the hierarchy, the second level clusters

are maintained; there are KL clusters for each first level cluster, and KG local containers,

each accommodating documents that are close to the related first level cluster centroid

but far from all centroids of the corresponding second level clusters. Each cluster in the

hierarchy is described in terms of its important reviews as cluster members, “polarized

95

Cluster 1Cluster 1 Cluster Cluster

Important reviews

Polarized property

Cluster specific classifier

per second level cluster

Important reviews

Polarized property

Cluster specific classifier

per first level cluster

........

1st level

2nd level

Default classifierDefault classifier

Local
container

Local
container

Global containerGlobal container

........

Stream

KG
Local

container
Local

container K1

K G

Cluster1,K L
Cluster1,1 Cluster K G ,1 Cluster K G , K L

Figure 4.4: Two-level hierarchy built by SENTISTREAM encompassing clusters at
each level and cluster specific classifiers; we explicitly denote the important reviews in
each cluster and the container associated with.

property” as centroid and the cluster specific classifier derived from the cluster members.

The full workflow is described in the next sections, starting with the initialization in

Section 4.3.

4.3 Extracting an Initial Hierarchy of Polarized Properties

This section describes the extraction of the initial hierarchy of polarized properties.

The Initialization Component of SENTISTREAM invokes first the SENTISTR-

EAMClus to build a two-level hierarchy Θt at t = 0 of clusters on the initial seed set

S (cf. Figure 4.3, left part, step 1). We assume that the reviews in S are labeled, so

we use them to learn a initial default classifier ∆t upon all reviews of S and for each

global cluster CGi a cluster specific classifier ∆t
i at t = 0 (cf. Figure 4.3, left part, step 2).

Additionally we train a cluster specific classifier ∆t
i,j upon reviews of each local cluster

CLi,j . Those two initialization steps are described below. All essential parameters are

depicted in Table 4.2.

We further present here the pseudocode of our framework and explain the invoked

methods in the following sections in detail. The pseudocode is depicted in Algorithm 8:

the set of parameters L consists of δG, δL, β, λ, k,KG,KL

Briefly, the initial two-level hierarchy is extracted from the seed (line 1). Processing

the stream D by batches of fixed size, the reviews are processed individually (lines 2–

96

Parameter Description

Θt hierarchy model at t

CGi i′th global cluster

CLi,j j′th local cluster of global cluster i

ζGt set of global clusters at t

ζLt,i set of local clusters with i′th global cluster as parent at t

δG global threshold to consider a review as novel

δL local threshold to consider a review as novel

∆t default classifier at t

∆t
i cluster specific classifier of the i′th global cluster

∆t
i,j j′th cluster specific classifier with i′th global cluster as parent

Zt global container at t

Zti local container of the i′th global cluster at t

Rt set of important reviews at t

CGi set of important reviews based on the i′th global cluster

γ threshold to decide on global- and local reclustering

Table 4.2: Parameters for the extraction of the cluster hierarchy

21): first the most proximal global cluster of the next review is computed, according to

Review Novelty cf. Def. 4.4 (line 6). Reviews which are not novel regarding the global

clusters are added to the most proximal global cluster, updating the cluster centroid and

expanding the set of review R (line 8–10); additionally the most proximal local cluster

is computed (line 11). Again, reviews which are not novel are added to the local cluster,

refining the local cluster centroid (lines 13–14). The cluster specific classifier ∆t
i,j of the

most proximal local cluster CLi,j is applied to predict the polarity label; a review which is

“useful” according to the usefulness defined by Def. 3.1 in Section 3.3.2 is used to adapt

∆t
i,j (line 15). A review which is novel regarding the local cluster of CGi is assigned

to the local container Zti ; also, the label is predicted by the cluster specific classifier

∆t
i of the global cluster CGi and the classifier is adapted by “usefull’ reviews (lines 17–

18). Novel reviews are assigned to the global container and the polarity label of these

reviews is learned by the default classifier (lines 20–21). After a batch was processed, the

hierarchy is adapted while incorporating novelty, recomputing the importance of reviews

and updating the cluster centroids (lines 22–26), which is presented in Section 4.4.

4.3.1 The Core of the SENTISTREAM Clus

To extract the hierarchy of properties from the initial seed set of opinionated reviews S
we use our adaptive stream clustering algorithm, cf. line 1, Algorithm 8. It partitions the

set of reviews into the hierarchy Θt of KG global clusters (1st hierarchy level) and then

partitions each global cluster into KL local clusters (2nd hierarchy level). It uses fuzzy

97

Algorithm 8: SENTISTREAM

Input : Initial seed: S; Stream: D; set of parameters L
1 t ← 0; R = S; Θt ← extractPolarizedHierarchyAndClassifiers(R,L)
2 while D do
3 batch← read incoming batch from D; t ← t +1
4 for l=1 to |batch| do
5 currentReview ← l′th position in batch
6 CGi ← FindMostProximalCluster(currentReview, δG, ζGt , R

t)
// cf. Algorithm 9, Section 4.3.1.3

7 if cosineFR(ĈGi , currentReview) ≥ δG then

8 updateCentroid(currentReview, ĈGi)
9 assignToCluster(currentReview,CGi)

10 R = R ∪ currentReview
11 CLi,j ← FindMostProximalCluster(currentReview, δL, ζLt,i, C

G
i)

// cf. Algorithm 9, Section 4.3.1.3

12 if cosineF
CG
i

(ĈLi,j , currentReview) ≥ δL then

13 updateCentroid(currentReview, ĈLi,j)

14 assignToCluster(currentReview,CLi,j)

15 assignLabel(currentReview,∆t
i,j)

16 else
17 assignToContainer(Zti , currentReview)
18 assignLabel(currentReview,∆t

i)

19 else
// review is novel

20 assignToContainer(Zt, currentReview)
21 assignLabel(currentReview,∆t)

22 incorporateNovelty(Θt, γ) // See Algorithm 10, Section 4.4.1.5

23 internalHierarchyAdaptation(Θt) // See Algorithm 11, Section 4.4.2

24 importanceBookKeepingOfReviews(Θ, t, λ, k) // See Section 4.4.3

25 removeUnimportantReviews(Θt, β) // See Section 4.4.3

26 updateClusterCentroids(Θt) // cf. Section 4.4.3

c-means as basic clustering algorithm, and applies it on an elaborately derived feature

space F at each global level. The two-level hierarchy reflects the actual dependency

among product properties, cf. Figure 4.1 also it allows to refine the feature space based

on the underlying cluster which is discussed in the following.

98

4.3.1.1 Specifying the feature space

The specification of the feature space for clustering is a core activity for our clustering

approach: instead of considering all reviews, we concentrate on important ones. This

reduces the number of dimensions in the feature space which, if the feature space is too

large, can be bottleneck when computing the clusters 3.

For the set of reviews R, we extract (at initialization and at each later timepoint)

the subset of important ones R (cf. Def. 4.2) subject to threshold β. We then define

the set of dimensions FR as the set of all nouns in R, vectorize the reviews using tf-

idf weighting and build KG first level clusters while applying fuzzy c-means on the new

vectorized, important reviews. For each first level cluster CGi , we again identify the

subset of important reviews CGi from the global cluster CGi and derive similarly the set

of dimensions FCGi
, i.e. the distinct nouns of the important reviews in CGi . We then

vectorize the reviews in CGi and partition it into KL subclusters (2nd level) by fuzzy

c-means .

While using tf-idf as weight for each word, cf. Section 2.1.2, the weight of the words

changes w.r.t. the the set of reviews. That is, a word w of a review that belongs to the

global cluster CGi may have a small tf-idf as the word does is not very distinctive, i.e. the

word appears in many reviews of the same cluster, and thus w is not relevant for the

cluster. However, as dividing CGi into further local clusters, w may become relevant for

the local cluster CLi,j since it is very distinctive feature for CLi,j . Hence, by refining the

feature space w.r.t. the cluster we may find better and more distinctive subclusters.

4.3.1.2 Deriving the polarized property of each cluster

According to Def. 4.3 the polarized property is defined by the cluster’s centroid and its

polarity label. For a first level cluster CGi , the centroid’ words come from important

reviews FR; for a second level cluster CLi,j with parent cluster CGi , the centroid’ words

come from the important reviews w.r.t. the parent cluster, i.e. F
CGi

. Those words are

specific for describing the cluster CGi and therefore appropriate for describing refinements

of the properties with parent CGi . While refining the feature space w.r.t. a global cluster

we remove such words from the vector space which have have tf-idfequal to zero, i.e. the

vector space is decreased.

Example: Figure 4.1 depicts an example of a two-level hierarchy for reviews on cam-

eras. There, the first level contains KG=3 properties (“Battery”, “Picture”, “Lense”),

while each property has KL=2 subproperties (“Battery” = {“Weight”,“Life”}; “Pic-

ture” = {“Size”,“Quality”}; “Lense” = {“Zoom”,“Aperture”}). The color expresses the

associated polarity (green for positive polarity, red for negative polarity). The polarity of

3The complexity of stream clustering is exponential to the size of the feature space

99

the properties at each level is assessed by the SENTISTREAM PolLearner as we describe

in Section 4.3.2.

Learn polarity label The polarity label for a review that belongs to a local cluster CLi,j
is learned by the cluster specific classifier ∆t

i,j . These local cluster specific classifiers are

the most specific classifiers in SENTISTREAM. They are trained upon reviews which

refer to the same local product property, i.e. they belong to the same local cluster

CLi,j . The classifiers might therefore not prone to polysemous words which occur across

different product properties. For example, the word “warm” is positive regarding the

product heater, e.g. “The heater keeps us warm.”, while it might refer to something

negative when describing a laptop, e.g. “The laptop gets warm quite quickly.”. This fact

refers to research task Research Task 5.

The polarity label for reviews which fit to a global cluster CGi but which are novel,

cf. Def. 4.4, regarding all local clusters of CGi is learned by the global cluster specific

classifier ∆t
i. This classifier is trained upon the reviews of the global cluster CGi . That

is, they are also specific but more general in contrast to ∆t
i,j ; they are trained upon

reviews referring to a broader range of properties, e.g. to reviews that discuss laptops

including all subcomponents of laptops (battery, screen etc.). The polarity label of a

review which is novel w.r.t. the two-level hierarchy is derived by the default classifier ∆t.

The default classifier is trained upon all reviews of the model and thus reflects a wide

range of reviews which discuss across different product properties.

4.3.1.3 Assign arriving reviews to clusters or containers

After the initialization phase, each incoming review r in the current batch is placed in

the hierarchy. The SENTISTREAMClus checks whether it fits the existing hierarchy

by assessing its novelty (cf. Definition 4.4). We first check whether r is novel w.r.t. the

global clusters (1st level of the hierarchy). If the review is novel, i.e. its similarity to

any cluster centroid is below the global novelty threshold δG, then r is assigned to the

single global container Zt of the 1st level. If rather r fits to a global cluster CGi , i.e. its

cosine similarity to the most proximal cluster centroid ĈGi is above or equal to δG, we

perform the novelty check again for the 2nd level clusters to which CGi is partitioned: we

compute the cosine similarity to the most proximal local cluster CLi,j and check whether

the similarity to its centroid ĈLi,j is above or equal to the local novelty threshold δL; if so

we assign r to CLi,j . If r fits to no local cluster though, then it is assigned to the local

container Zti of cluster CGi .

It is noted here that we use a local novelty threshold δL for the 2nd level clusters.

This threshold should have a higher value than the global novelty threshold, owing the

fact that the 2nd level clusters are more property specific (fine-grained) and that the

2nd level novelty check for a review r is only applied if the r passes the 1st level novelty

100

check, i.e. if there is at least one global cluster centroid ĈGi to which r has a similarity

≥ δG. Thus the similarity between a review and a local cluster is in average higher than

the average similarity between review and global cluster.

Algorithm 9: FindMostProximalCluster

Input : r: review; δ: novelty threshold; ζ: set of clusters; R: set of important
reviews belonging to the clusters in ζ

Output: Most proximal cluster
1 mostProximal← null; similarity = 0
2 for i=1 to |ζ| do

3 tmp← cosineFR(Ĉi, r) if tmp ≥ δ AND tmp > similarity then
4 mostProximal← Ci
5 similarity = tmp

6 return mostProximal

The basic procedure to find the most proximal cluster w.r.t. a novelty threshold δ

and a set of clusters ζΘt is depicted by Algorithm 9: the similarity between a review

r and each cluster Ci of the set ζΘt is computed whereas the most proximal cluster

mostProximal is stored if the similarity among the cluster and r is above or equal to

the given threshold δ (lines 2-5).

If a review r is assigned to a 1st level or 2nd level cluster, the document frequency of

the word w.r.t. to the cluster changes as well as the number of documents. According to

Equation 2.1 in Section 2.1.2, the tf-idf of a word depends on the document frequency.

Thus, the tf-idf of all words in a cluster are updated when assigning a new review (line

8 & 13, Algorithm 8). While updating the related centroids by each review we might

capture small changes in the relevance of words (recall: the higher the tf-idf the more

relevant the word) and thus we reflect evolving product properties. Particularly in local

cluster which might capture few rather property specific reviews, small variations in the

document frequency, e.g. adding a single review, might rather affect the tf-idf of the

words. Updating the centroids refers to research task 4.

4.3.2 The Basic Learner for SENTISTREAM PolLearner

Our basic learner for polarity classification is a Multinomial Naive Bayes (MNB) [91].

MNB is widely appreciated in text classification because it is very fast and (despite

the naive assumption of independence among the words) it exhibits good performance

and does ignore irrelevant words. Below, we briefly recall MNB which was described

extensively in Section 3.3.1.

The probability of a class y given a review r is given as:

101

P (y|r) =

P (y)
|r|∏
i=1

P (wi|y)

P (r)

where P (y) is the prior probability of class y, P (wi|y) is the conditional probability of

word wi belonging to class y. All of these quantities can be easily estimated from the

training set, i.e. the initial seed set S 4. The class prior P (y) equals to the fraction of

the seed set documents having class y. The conditional probability P (wi|y) is given by:

P̂ (wi|y) =
Niy + 1∑|V|

j=1Njy + |V |

whereNiy is the number of occurrences of the word wi in documents of class y and V is the

vocabulary of distinct words built upon the seed set S. Finally, P (r) is the probability

of observing document r. In our case, we consider all documents of the same importance

so the probability is the same for all documents. To avoid the zero-frequency problem,

we use the laplacian correction that initializes all counts to one instead of zero. The

document r is assigned finally to the class y that maximizes the conditional probability

P (y|r):

argmax
y∈Y

P (y|r) =

P (y)
|r|∏
i=1

P (wi|y)

P (r)

, where Y is the set of classes.

The Initialization Component invokes the classifier as part of the SENTISTR-

EAM PolLearner inside each cluster to learn a cluster-specific model of the reviews in

the cluster (cf. step 1 of SENTISTREAM PolLearner in Figure 4.2). Then, the polarity

of the property represented by the cluster is derived as the polarity of the majority of

the reviews in the cluster (cf. Definition 4.3). In the Initialization Component, the

invocation of SENTISTREAM PolLearner ends at this point (cf. step 2 of SENTISTR-

EAM PolLearner in Figure 4.2). The modification of the training set by adding reviews

(cf. step 3 of SENTISTREAM PolLearner in Figure 4.2) are only invoked by the Adap-

tation Component. The adaptation workflow is described in the next two sections.

4.4 Adapting the Cluster Hierarchy

The Adaptation Component invokes the complete set of functionalities of our SEN-

TISTREAMClus for cluster adaptation. Adaptation is done at each timepoint t on the

current batch (containing streamSpeed reviews) from the stream. We introduce our

4Parameter estimates are indicated by a “hat” (ˆ).

102

adaptation approach that adapts the hierarchy smoothly - modifying the product prop-

erties as rarely as possible - while considering internal and external adaptation criteria.

We reckon novel reviews as external criteria for hierarchy adaptation since they are

accumulated as novelty from the stream into the containers. Additionally, not only re-

siding on external criteria, we also consider internal criteria for adaptation, namely the

proximity of subclusters in the hierarchy due to ageing and drift of the underlying pop-

ulation. Thus, we adapt the hierarchy internally while merging two similar subclusters

to one single subcluster, it is described in In Section 4.4.2. We further present the incre-

mental calculating of the review importance as the stream progresses in Section 4.4.3;

and introduce how we adapt the cluster specific classifiers over time in Section 4.4.4.

This section refers to research task Research Task 4.

4.4.1 Incorporate Novelty

According to Def.4.4 and as pointed out in Subsection 4.3.1.3, novel reviews do not fit

the existing two-level cluster hierarchy, i.e. they are too far from the global clusters; we

assign them to containers. While storing novel reviews in containers, we may determine

whether a novel review is an outlier or indicates an emerging concept (i.e. an emerging

product property) as we can take the context of other reviews of the container into

account, e.g. a outlier is also an outlier in context of other reviews in the container, while

a review of an emerging property is probably similar to other reviews of the container.

To make sure that outliers are not perceived as emerging concepts, we provide solutions

on i) how to quantify adequate novelty in the arriving reviews and ii) how to regularly

incorporate novel reviews that are not outliers into the existing hierarchy.

4.4.1.1 Rationale of our Approach

Regarding question ii), we should first consider the possible implications of incorporating

novelty into the existing hierarchy. In the simplest case, a review is simply assigned to

a cluster or, if it is novel, to a container, as explained in 4.3.1.3. That is, reviews not

fitting the hierarchy are initially retained of contributing to the cluster hierarchy. Rather

we accumulate them in order to see whether they are part of an emerging property or

outliers. If a “sufficient” number of novel reviews (cf. question i)) have been accumulated

in a cluster’s container, then it is reasonable to incorporate the container’s reviews

into the hierarchy as they might shape a new property. Incorporating reviews from

containers can be seen as updating the hierarchy drastically as the reviews of container

refer to possible change w.r.t. the existing hierarchy. While incorporating reviews from

containers the hierarchy responds to drastic change caused by the evolving data stream.

There are several options for updating the hierarchy so as to incorporate changes:

adaptation of hierarchy nodes (cluster adaptation) , reconstruction of only some branch

103

of the hierarchy (local reclustering); reconstruction of the whole hierarchy from scratch

(global reclustering). Cluster adaptation by reviews from containers may require change

in the cluster centroid as the review may contain new words w.r.t. to the existing centroid,

i.e. product property, which was monitored thus far, may be replaced. More extreme

is local reclustering which is caused by a drastic change within a global cluster. For

example, assuming a global cluster referring to the product “laptop” and in particular

to the “battery” and the “screen” of the laptop, as only reviews arrive that refer to the

“CPU” and the “keyboard”, the cluster changes; the related global property and the

local properties have to be rebuilt. Global reclustering the most extreme change in the

hierarchy: all reviews must be re-vectorized, and all product properties vanish and are

replaced by new ones; this is undesirable, because it forces the human observer to study

and comprehend the attitudes towards new properties. Global reclustering makes only

sense if the stream of opinions has undergone very drastic changes. This is, for instance,

the case if the new arriving reviews refer to complete other product properties than the

ones represented by the centroids of the clusters in the hierarchy. Hence, we have two

reasons for keeping the number of (local and global) reclusterings low: to reduce the

computationally expensive re-vectorization operations and, to reduce the mental effort

of the human observer, who monitors the product property popularity over time.

When is the number of novel reviews “sufficient” (cf. question i) to justify cluster

adaptation, local, or even global reclustering? In [156], we quantified sufficient novelty

through container size. However, linking novelty to container size is only sustainable

when assuming that the existing cluster hierarchy including the containers are far apart

from each other. This assumption may not hold though: as reviews grow older and

disappear, the semantics of important reviews inside the clusters may change and thus

the clusters and their containers may “start moving towards each other”. In such a case,

a reclustering is not always necessary; it may be sufficient to merge a cluster C with its

container Zt, possibly without even changing the product property represented by C,

i.e. without changing the cluster’s centroid. While merging we incorporate novel content

into the hierarchy and adapt the cluster to the evolving stream reflected by the container.

We propose to merge the hierarchy with the containers and proceed with the reclustering

only if merge is not possible. Merging requires less computational effort as only one

cluster and the related container are involved; the other clusters remain unchanged. In

contrast, reclustering (local or global) requires recomputation of all product properties

as well as re-vectorization of the vector space. That is, we apply reclustering as a last

resort.

By “merging hierarchy with the containers”, we mean to merge each (sub)cluster

CGi or CLi,j of the hierarchy with its associated container global Zt resp. local container

104

Zti . There are different ways to merge a container Zt with a cluster C, we consider the

following strategies: 5

Merge Strategy I: merge Z and C, while preserving the feature space in C, FRC
versus.

Merge Strategy II: merge Z and C, and recompute a new feature space FRC∪Z from

the contents of both C and Z.

The first option does not affect the product property represented by the cluster since the

feature space remains same; it requires less computational costs while it causes smoother

changes to the hierarchy. Whereas the second one does affect the property and lead to

more computational effort as the feature space of related global or local clusters are

revised.

To decide whether a merge is beneficial, and which merge option should be used, we

compute the quality of the model before and after the anticipated merge action. We

propose a quality indicator based on cluster description length (cf. subsection 4.4.1.2),

and model the two merge strategies on the basis of this indicator (cf. subsection 4.4.1.3).

We decide between merging and reclustering (cf. subsection 4.4.1.5) after quantifying

the notion of (human) fatigue as the result of global reclustering (cf. subsection 4.4.1.4).

4.4.1.2 Description Length as Quality Indicator

As indicator of quality for a cluster (before and after a merge), given a feature space, we

use the notion of Description Length, first introduced by Rissanen [115]. Informally the

DL of a review measures how well the review can be compressed w.r.t. the underlying

feature space, the smaller the DL the less bits are required to describe the review. If

P (r) is the probability of observing the vector of review r, then its Description Length

in bits is DL(r) = − log2 P (r). We now define the description length for a set of reviews.

Definition 4.5 (Description Length of a Cluster). Let C be a cluster and let FC be its

feature space derived from the set of important reviews R in cluster C. We define the

Cluster Description Length of C given FC as:

CDL(C,FC) = −
∑
r∈C

log2P (r|C,FC) (4.3)

where we define P (r|C,FC) as the probability of observing the vector values of r, formed

in the feature space FC inside cluster C. Lower CDL() values are better. �

5Note, in the following we use a simplified notation of (sub)cluster and its associated container to
keep the definitions straightforward: (sub)cluster:=C and container:=Z

105

Hence, the CDL of a cluster C measures how well the reviews of C can be compressed

w.r.t. the feature space; the smaller the CDL the better is the compression of the reviews

and thus he less bits are required to describe the reviews.

To compute the probabilities in Def. 4.5, we first assume that the words in the

reviews inside a cluster are independent given the cluster (the typical näıve assumption).

We further assume normal distribution for each word/feature. Then, the conditional

probability P (r|C,FC) is defined as:

P (r|C,FC) =
∏

w∈r∩FC

P (x = vrw|C) (4.4)

where vrw is the value of the vector of r for word w, i.e. the frequency of w in r. We derive

P (x = vrw|C) from the cumulative distribution function FX() of the normal distribution

N (µCw , (σ
C
w)2) with mean µCw and standard deviation σCw of a word w ∈ FC given C. It

holds that

FX(x) = P (X ≤ x) =

x∫
−∞

f(x) with f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

for the normal distribution. Since the probability for x to take any single value a is

0 6, we approximate the probability of x while setting the upper limit of the integral to

x+ ε where ε = 0.001 serves as the tolerance value. Hence:

P (x = vrw|C) ≈ P (x+ ε ≤ vrw|C)− P (x ≤ vrw|C) (4.5)

By defining the description length of a cluster conditional to a feature space, we can

check whether the merging of a cluster with its container decreases the CDL() value -

depending on whether the feature space is retained or replaced. The intuition is that a

merge between two sets is beneficial if the description length of the (one) merged set is

smaller than that of the two initial sets.

4.4.1.3 Impact of Merging on Cluster Description Length

Using the CDL() (Def. 4.5), we check the impact of each merge strategy on the number

of bits needed to describe a cluster after it is merged with its container.

Merge Strategy I For cluster C and its container Z, this strategy translates to the

question: ”Do we gain in quality if we merge C with Z, while retaining the feature space

FC?”. We quantify this by applying the strategy under the

Conditional I :CDL(C|FC) + CDL(Z|FZ)− CDL(C ∪ Z|FC) > 0.

6An integral with coinciding upper and lower limits is always equal to 0

106

In this conditional, the feature space FC is derived from the set of important reviews

in C, as explained in Subsection 4.3.1.1. In CDL(Z|FZ) we treat the container as a

cluster and vectorize the reviews in it on the feature space FZ : the container consists

of all words of the container’s reviews (since reviews in containers are not filtered by

importance).

If Conditional I is satisfied, then the number of bits required to describe C∪Z under

FC is less than the number of bits needed to describe cluster and container separately,

i.e. the merge brings a gain in quality. So, SENTISTREAMClus merges Z with C and

updates the centroid Ĉ of C., i.e. the tf-idf values of the words are updated as the

document frequency changes cf. Section2.1.2.

If the conditional is not satisfied, this means that the container Z is far apart from

the contents of C w.r.t. the feature space FC of C. Then, we may consider a change in

the feature space, corresponding to the second merge strategy.

Merge Strategy II For cluster C and its container Z, this strategy is invoked if the

Conditional I is not satisfied. Strategy II translates to the question: ”Do we gain in

quality if we merge Z with C while using a new feature space that is derived from both

C and Z?” We quantify this by applying strategy II under the

Conditional II :CDL(C|FC) + CDL(Z|FZ)− CDL(C ∪ Z|FC∪Z) > 0

where the feature space FC∪Z contains the words of the important reviews in cluster C

and the words of all reviews in Z (similarly for FZ). It is equal to FC ∪ FZ
If Conditional II is satisfied, the bits needed to describe C ∪ Z under FC∪Z are

less than those needed to describe Z and C separately by FZ resp. FC . Hence, the

merge implies a gain in quality, so SENTISTREAMClus merges Z with C, but also

renews the feature space of C. This results essentially in a new cluster C ∪Z and to the

recomputation of the product property represented by the cluster, i.e. the cluster centroid

is adjusted while adding words w ∈ Z∧ /∈ C to the cenroid as well as recomputing the tf-

idf of existing and new words. This refers to local reclustering of the cluster as described

at the beginning of this section. Thus, a cluster merged under Conditional II is rebuilt

and all its related documents are re-vectorized.

4.4.1.4 Deciding for Hierarchy Rebuilds on the Basis of Fatigue

The replacement of a cluster’s feature space while merging cluster and container is a local,

yet drastic change in the two-level hierarchy, because all reviews in the affected cluster

must be vectorized anew. Also, its product property, which was monitored thus far, is

replaced, i.e. the centroid which represents the property is recomputed. As mentioned

at the beginning of this section: global reclustering are more drastic since all reviews of

the hierarchy must be re-vectorized, and all product properties vanish and are replaced

107

by new ones. We keep the number of (local and global) reclusterings to a minimum in

order to avoid the computationally expensive re-vectorization operations and, to reduce

the mental effort of the human observer, who monitors the product properties over time.

Our assumption is that restructuring the hierarchy all the time is not appealing for

the end user since it would require a huge effort from his/her side to comprehend the

changes. The more the hierarchy changes, the higher the effort for the end user would

be. On the contrary, a stable hierarchy requires no big effort from the end user, since

he/she is already familiar with it. To quantify the mental effort caused by such rebuilds

of clusters, we introduce the notion of fatigue (i.e. we want to keep the fatigue of the

application owner), and model it as the ratio of the number of reviews involved in rebuilds

between two adjacent timepoints and the number to all reviews within the model. We

use the percentage of reviews involved in rebuilds in order to weight the clusters which

are rebuilt: the effort of a user to comprehend changes of cluster with many reviews

is higher than for a cluster with only few reviews. Clusters with many reviews have

probably a larger set of distinct words and thus the centroid is more elaborated. So, it

requires more effort to comprehend changes of a large centroid. The fatigue is defined

as follows:

Definition 4.6 (Fatigue). Let Θt be the hierarchy model at timepoint t and n be the

number of reviews that are contained in the clusters of Θt. Also, let {Θt \Θt−1} denote

the set of clusters which are rebuilt at t. We define the fatigue as the percentage of

reviews involved in the rebuilt clusters:

fatigue =
1

n
∗

∑
C∈{Θt\Θt−1}

|C| (4.6)

where |C| is the number of reviews in cluster C. �

By this definition, fatigue corresponds to the mental effort a user has to make to

inspect a new part of the two-level hierarchy: the polarized product property and the

reviews associated with them. In that context, a cluster rebuild is not limited to a re-

construction of the feature space only: if a 1st level cluster is merged with the global

container, then, obviously, all its subclusters must be rebuilt. Thus, cluster rebuilds cover

all local reclusterings and the global reclustering that involves rebuilding the entire hier-

archy. Fatigue increases as the clusters (product properties), change from one moment

to the next, since the user has to read and comprehend new content: fatigue=0 (best

value), if no clusters are rebuild or adapted so as to affect their description (centroid)

and fatigue=1 (worst value), if the whole hierarchy is rebuild (global reclustering).

108

4.4.1.5 Adapting the Hierarchy with or without Cluster Rebuilds

Aiming to apply as less rebuilds and reclusterings as possible in order to keep the com-

putational costs and the mental effort, occurring for humans when trying to compre-

hend changes in the cluster hierarchy, small; but also adapting the hierarchy with novel

reviews that might cause emerging properties or changes in the existing properties re-

garding the evolving stream; we apply the afore-mentioned fatigue and the two merge

strategies to decide whether and how novelty is incorporated. Our approach is depicted

by Algorithm 10 and discussed in the following.

For each cluster CGi of the 1st level, we derive its set of local cluster ζLt,i and check

for each local cluster whether it should be merged with the local container Zti according

to Merge Strategy I (lines 6–8): if Conditional I is satisfied, then the reviews in the

container become part of the local cluster. Whenever Conditional I is not satisfied, we

check whether Merge Strategy II can be applied on the local cluster. However, this

strategy implies a change in the feature space of cluster CLi,j , and thus an increase in

fatigue. That is, we identify the local clusters, for which Conditional II is satisfied

(lines 9–11) and stop iterating over the other local clusters related to CGi as the local

container can only be merged with one local cluster. We store the cluster to compute

the fatigue after all cluster have been progressed (line 10). After the local cluster of CGi
have be progressed, the global cluster is checked for merging with the global container

Z while using the two merge strategies (lines 12–17). The cluster is progressed similar

the description above. However, if a global cluster is a candidate to be merged with

the global container based on merge strategy II, then the reviews of the container are

109

subsequently placed to the subclusters of the global one, i.e. they are also rebuilt.

Algorithm 10: Incorporate Novelty

Input : Θt: hierarchy; γ: fatigue threshold
Output: updated hierarchy Θt

1 ζGt ← set of global clusters from Θt

2 setInvolvedReviews← empty; identifiedClusters← empty
3 for i=1 to ζGt do
4 ζLt,i ← set of local cluster of CGi
5 for j=1 to ζLt,i do

6 if Merge Strategy I on CLi,j satisfies then

7 Merge CLi,j and container Zti while keeping feature space F
CLi,j

8 break

9 else if Merge Strategy II on CLi,j satisfies then

10 identifiedClusters = identifiedClusters ∪ CLi,j
11 break

12 if Merge Strategy I on CGi satisfies then
13 Merge CGi and container Z while keeping feature space F

CGi

14 break

15 else if Merge Strategy II on CGi satisfies then
16 identifiedClusters = identifiedClusters ∪ CGi
17 break

18 fatigue = computeFatigue(identifiedClusters)
19 if fatigue ≤ γ then
20 for i=1 to identifiedClusters do Θt ← localReclustering(Ci,Θ

t)

21 else Θt ← globalReclustering(Θt)
22 return Θt

The found clusters correspond to the anticipated cluster rebuilds, as mentioned in the

previous Section 4.4.1.4 and Def. 4.6: we use them to compute the fatigue and juxtapose

it to a fatigue threshold γ while using the following rules.

• If the fatigue is less than γ, i.e. the mental effort to comprehend the current changes

can be undertaken by the user, SENTISTREAMClus performs local reclustering

(lines 19–20): each of the identified clusters is rebuilt, i.e. the feature space is

recomputed, the reviews are vectorized anew and the 2nd level sublclusters are

re-computed from scratch if the cluster is a global one. This implies that if a first

level property is merged with the container all its subproperties are replaced by

new ones.

110

• If the fatigue is more than γ, SENTISTREAMClus rebuilds the whole hierarchy

from scratch (line 21).

The rationale behind the threshold γ is that a large number of local reclusterings and

re-vectorizations may be ultimately more confusing to the human expert than the re-

construction of the whole hierarchy. We therefore set a threshold of the fatigue to define

the effort that a user can undertake to comprehend the changes in the hierarchy. The

greater γ the more effort is expected for the user.

Adopted Window Model For clarity, we describe here which part of the stream

participates in a rebuild. In a stream environment, there are different ways to deal

with ageing, namely, the landmark window model that considers everything since the

beginning of the stream, the sliding window model that considers only the most recent

history and the damped window model that assigns some age-dependent weight on data

points so as most recent points count more [51] (cf. Subsection 2.3.1). Though in our case

the stream arrives in batches of fixed sizes, as in the sliding window model, a hierarchy

rebuild does not rely solely on the reviews within the current batch. Rather, older

reviews are maintained also in the hierarchy either as members of the hierarchy clusters

or as members of their corresponding containers. The ageing function that characterizes

the recency of a review (cf. Def.4.1), downgrades old reviews so recent ones are given

higher weights but nevertheless old ones might be still present in the hierarchy, as long as

they are important based on Def. 4.2. Therefore, we could describe our adopted window

model as a combination of the sliding window model and the damped window model.

The sliding window model part, which focuses only on the recent history of the stream,

allows us to adapt faster to changes in the underlying population whereas the damped

window model part, which downgrades older reviews based on the exponential ageing

function, allows us for smoother adaptation over time as the stream history is also taken

into account to the degree of the decay factor λ: the higher the value of λ, the lower the

contribution of the stream history.

4.4.2 Internal Hierarchy Adaptation

In the previous section, we elaborated on how hierarchy is updated based on the accu-

mulated novelty from the stream in the containers while incorporating the container’s

content into the hierarchy. Note though, that due to the ageing of the data and the drift

in the underlying population, the extracted (sub)properties in the hierarchy change over

time and therefore, initially distant (sub)properties might start moving towards each

other. Therefore, their centroids might start looking similar, representing reviews that

cover similar content (words) and therefore similar product properties.

111

To account for such cases, beside the external criteria, we also incorporate internal

criteria in the hierarchy update process, by merging subproperties that exhibit a high

degree of similarity 7. While merging such properties, at a first glance, it seems that

the resulting cluster might lose their compactness as the captured content is of a wider

range w.r.t. the discussed property. However, in fact, we enhance the stability of the

clusters w.r.t. their living time as their content becomes broader and allows to capture a

larger range or new arriving reviews. For example, assuming there are two subproperties

“battery weight” and “battery shape” of the property “laptop”; these properties are

modeled initially by two separate subclusters as the reviews referring to them discuss few

very specific aspects of the weight resp. shape of the battery. As the stream progresses

new reviews arrive referring to them but discuss more general aspects of the weight

and the shape that might possibly intersect, e.g. “The shape expects a heavy battery”

or “The weight of the battery is heavy but its shape looks brilliant”. The initial very

specific reviews lose their importance w.r.t. the subclusters as no new reviews arrive that

discuss the same specific aspects; consequently the subclusters would die. However, while

merging these subclusters a more loose cluster emerges that accumulates the general

reviews and which has a longer expected living time. Moreover, due to the new cluster,

the range of the hierarchy w.r.t. the content is expanded sophisticatedly and thus fewer

reviews are indicated as novel so that less cluster rebuilds are required. Hence, the

computational effort to maintain the model regarding the evolving stream is reduced.

The internal hierarchy adaptation takes place at the end of each batch after assigning

all batch reviews to the hierarchy or container and re-organizing the hierarchy if contain-

ers overflow (line 23 of Algorithm 8). We describe hereafter (a) whether such a merge is

possible and the implications that such a merge might incur, namely, (b) effect on the

review importance, (c) extraction of the polarized property from the merged cluster and

(d) deriving the cluster specific classifier. The pseudocode of the internal adaptation

7We restrict the merge to the subproperties level only, although from a technical point of view it
could be also applied to first level features. Semantically though, the merge is meaningful when it refers
to subproperties of the same property, i.e. to refinements of a product’s property.

112

method is depicted in Algorithm 11.

Algorithm 11: InternalHierarchyAdaptation

Input : Hierarchy Θt

1 ζGt ← set of global clusters from Θt

2 for i=1 to |ζGt | do
3 c1 ← null; c2 ← null;min = MaxV alue
4 ζLt,i ← set of local clusters of CGi

// find local cluster pair which has the smallest KL distance

5 while ζLt,i is not empty do

6 Cnext ← next local cluster of ζLt,i
7 for j=1 to |ζLt,i \ Cnext| do

8 tmp = KL(Cnext, C
L
i,j)

9 if tmp < min then min = tmp; c2 ← CLi,j ; c1 ← Cnext

10 remove Cnext from ζLt,i

11 µ← µ(KLC) // mean KL distance among the local cluster pairs

12 σ ← σ(KLC) // variance KL distance among the local cluster pairs

13 if min < (µ− σ) then mergeLocalCluster(c1,c2)

Briefly, for each global cluster CGi the local cluster CLi,j (lines 2–13) are processed

while finding the local cluster pair which is the most closest one (line 5–10). This local

cluster pair is merged if their distance is small w.r.t. to the distances of the other local

cluster pairs having CGi as parent cluster (lines 11–13). That is, a pair of clusters should

be rather close in context of the other local cluster in order to be merged.

4.4.2.1 Merging similar subclusters

After all reviews of batch have been processed, we check whether internal adaptation in

the hierarchy is applicable by comparing the centroids of the corresponding subclusters

and detecting similar subclusters. In the following we describe how we detect similar

subclusters. To keep the notation simple, we depict C as being a sublcuster.

Let C1, C2 be two subclusters in the hierarchy with the same parent cluster and let

V be the set of words derived from their union. We represent each subcluster in terms

of the back-off model [20] that models a sublcuster as a discrete probability distribution

over the words in the subcluster so that
|C|∑
w∈C

P (X = w) = 1.

It derives a word probability by estimation using the relative frequency of a word within

C. Additionally, the back-off model regards the fact that in practice, often not all the

words in C1 appear also in C2. Therefore it assigns words which are in C1 but not in C2

an ε probability equal to the probability of unknown words. The resulting formula is:

113

P (wi, C) =

{
ηP (wi|C) if wi occurs in C
ε else

where wi ∈ V and the conditional probability P (wi|C) can be estimated by the

relative frequency of the word within C:

P (wi|C) =
NiC∑|VC |
j=1 NjC

where NiC is the number of occurrences of the word wi in reviews of subcluster C

and VC is the vocabulary of distinct words derived from C. Moreover, the parameter

η discounts the conditional probability so as
∑

wi∈VC
P (wi, C) = 1. It is derived from the

following constraint:

∑
wi∈C

ηP (wi|C) + |{w : w ∈ V,w /∈ C}| ∗ ε = 1 ,where η = 1− |{w : w ∈ V,w /∈ C}| ∗ ε

Hence, words not occurring in a subcluster C are assigned a probability equal to ε.

Similar to [20], we derive ε from two subclusters C1 and C2 as follows:

ε = argmin
c1,c2

P (w|C) ∗ 0.01

To compute the similarity of two subcluster C1 and C2, we first represent them

through the back-off model so as to achieve two probability distributions P for C1 and Q

for C2, and then we use the symmetric Kullback-Leibler (KL) divergence [20] to compute

their distance. The KL is defined as:

KL(P ||Q) =
∑
x∈X

(
(P (x)−Q(x)) log

P (x)

Q(x)

)
The KL between two distributions P and Q can be seen as the average number

of bits that are wasted by encoding reviews from a distribution P with a code based

on reviews from distribution Q. The smaller the number of wasted bits, the closer the

distributions, and conversely.

Employing the KL divergence upon two subclusters C1 C2, we obtain the following

formula, which we name “KL-distance” (KLD) between two subclusters:

KLD(C1, C2) =
∑
wi∈V

{
(P (wi, C1)− P (wi, C2))× log

(
P (wi,C1)
P (wi,C2)

)}
,where V = {w ∈ C1} ∪ w ∈ C2}

(4.7)

We merge two subclusters from the same parent cluster if their KL-distance is below

a threshold. In particular, let C be a global cluster and let C1, . . . , Ck be its subclusters,

114

with k ≥ 3. We define the average KL-distance µ(KL,C) as the average over the

distances of all pairs of subclusters of C, and the standard deviation σ(KL,C) as their

distance to the average. Then, two subclusters Ci, Cj with i ≤ k, j ≤ k and i 6= j are

merged if and only if:

KLD(Ci, Cj) < µ(KL,C)− σ(KL,C)

That is, two subclusters with parent cluster C are merged if there KL-distance sig-

nificantly deviates towards the left side (smaller value) from the average KL-distance

derived from all subcluster pairs with parent cluster C. Hence, we determine whether

two cluster are close towards each other, in order to be merged, while considering the

location of the two clusters in terms of all clusters which have the same parent. This

prevents us to utilize a manually selected threshold which could fail depending on the

distances of the clusters. For example, in some cases this threshold could be selected to

small, e.g. if the clusters are all rather distant towards each other; and in other cases it

could be selected to large, e.g. if the clusters are close towards each other.

Obviously, merging can only be performed as long as k ≥ 3. If only two subclusters

remain for a cluster C, merging them would correspond to giving up the refinement (2nd

level) for the global cluster C. Also, two remaining clusters are probably far apart and

refer to rather different local properties. However, in case they are close to each other,

merging them would not lead to any benefit regarding an expansion of their stability

w.r.t. life time: the parent cluster covers probably a rather specific property so that

merging the two subclusters would not help to accumulate more reviews.

4.4.2.2 Importance update in the merged cluster

The importance of a review relies upon its k nearest neighbors, so by merging two

clusters the importance of their reviews might change as there are more candidates for

kNN in the merged cluster. We describe the procedure to update the importance in

Section 4.4.3.

4.4.2.3 Polarized property extraction in the merged cluster

The centroid of the new merged subcluster is computed based on its updated review

members, according to Definition 4.3. That is, the vector space is re-vectorized and

the tf-idf values of the words are recomputed. Since the merged subclusters are rather

similar to each other, i.e. they contain similar words, we do not need to predict the

polarity of the reviews again. Rather we keep the already predicted polarity of their

initial subcluster (before the merge).

115

4.4.2.4 Polarity classifier in the merged cluster

For the newly merged subcluster, we learn a new cluster specific classifier based on the

merged set of reviews, i.e. the union of the two review sets from the related subclusters,

following that procedure which we described already in Section 4.3.2.

4.4.3 Bookkeeping

According to Algorithm 8 in Section 4.3, at the end of each batch we update the age and

importance score of all reviews in a cluster (line 24, Algorithm 8) since reviews are subject

to ageing and since their k-review neighborhoods might change due to the arrival of new

reviews. In particular, we update the review age (cf. Def. 4.1), then use the updated

age values to recompute the k nearest neighbors of each review. We thus recompute

the importance of each review (cf. Def. 4.2) and juxtapose it to the review importance

threshold β (cf. text after Def.4.2). Reviews that are not (resp. no more) important

are removed (line 25, Algorithm 8). Hence, the set of important reviews for a cluster

C, c, may change at the end of each batch. Moreover, the updating of the importance

of reviews implies updates in the centroids of the (sub)properties (line 26, Algorithm 8)

(cf. Def. 4.3), since old important reviews might be removed whereas new reviews might

now be considered important. Updating the centroids requires re-computation of the

related tf-idf values according to the importance of the reviews.

Note that there is no need to update the importance of all the reviews in the hierarchy

after the arrival of a new review. We do need to update the importance of only such

reviews captured by that cluster where this review has been assigned to since the kNN’s

might change due to the addition of the new review. For the rest of the reviews though,

change in the importance can be triggered only due to the natural ageing of the keywords

and we need to update them only once per timepoint. Recall that more than one review

might arrive per timepoint, described by the streamSpeed parameter.

To facilitate the ageing computations in the importance formula (cf. Def. 4.2) and

the re-computation of the centroids, we maintain for each cluster in the hierarchy a

hashmap containing the words that appear in the cluster reviews, their frequency in

the cluster and the last timestamp where each word has been observed in the cluster.

This information is adequate for computing the ageing of each keyword in the cluster

as well as the tf-idf values, while the hashmap entries are easily maintained as new

reviews are assigned to the cluster and older, no longer important reviews are removed

as outdated. The kNN queries are also not a bottleneck since they are restricted within

each cluster and moreover, only the important reviews within a cluster contribute to

their computation as non-important reviews are removed from the cluster. With this

hashmap, SENTISTREAMClus identifies very fast which words do not belong anymore

116

to FC and which are new in it. In the experiments, we show that the consideration of

only important reviews has a big effect on the runtime of our method, cf. Section 4.6.6.1.

4.4.4 Adapting the Evolving Polarities of the Properties

The SENTISTREAM PolLearner is invoked by the SENTISTREAMClus inside each clus-

ter. At an abstract level, this is done after cluster adaptation (Section 4.4); in fact,

the SENTISTREAM PolLearner is interwoven with the SENTISTREAMClus: as soon as

a review is added to a cluster, the SENTISTREAM PolLearner uses the existing cluster

specific classifier to assign a label to it. Then, it checks whether this review would be

useful for training; if yes, it adds it to the training set in a process called adaptation.

After fixing the contents of each cluster, occasionally merging a cluster with its container

or even reclustering the SENTISTREAM PolLearner retains only important reviews and

thus removes unimportant ones from the training set. This is process is similar to the

semi-supervised classification based on self-training, cf. Section 3.1.1.1. In particular we

employ ADASTREAM as cluster specific classifier which was presented in Section 3.3.2.

4.4.4.1 Adaptation – Incorporating New Reviews

We update the initial classifier ∆t at timepoint t = 0 by incorporating new reviews into

the initial seed set St after deriving their labels with ∆t, this is similar to our adaptation

method described in Section3.3. We use then the extended training set St+1 to adapt

the model into ∆t+1. To select new reviews that extend St+1 with reviews for which the

label was predicted , we utilize the concept of usefulness (cf. Def. 3.1) which is based

on the entropy of the word count distributions, i.e. the tuple juxtaposing the number of

positive and negative documents per word cf. Section 2.3.2, derived from the seed set.

Informally, a review that decreases the entropy difference is useful because it “boosts”

the performance of the old classifier by adding to St reviews which reflect the current

word count distributions and thus that are very likely to have indeed the label assigned

to them. On the other hand, a review that increases the entropy difference is also useful:

it forces the classifier to adapt to reviews that are different from those seen thus far,

i.e. the word count distributions are different from those of the current classifier. We

regulate the usefulness of reviews with the threshold α ∈ (−1, 0) (cf. Section 3.3.2):

values close to 0 promote smooth adaptation, since they require that the word count

distributions of newly added reviews in the model agree with the distributions of the old

classifier; values close to −1 promote diversity. Hence we use our concept of usefulness

as it allows to adapt the classifier smoothly while considering reviews which reflect the

current classifier and also documents that carry a different concept towards the word

count distributions.

117

It is noted that in the usefulness definition we use the entropy difference over all

words wi ∈ d, instead of over all words in St and St ∪ d, respectively. The reason is that

d is the only difference between the two sets. If d is useful w.r.t. the usefulness threshold

α, the seed set St is expanded by d, so the new seed set is St ∪ d. Also, the parameters

of the MNB classifier are updated based on d. This is an efficient update, as we need to

update only the word counts Niy for all words wi ∈ d and the class count ny regarding

the predicted label y.

4.4.4.2 Removing Unimportant Reviews

Next to our adaptation method, we remove such reviews from St which become unim-

portant regarding our definition of review importance (Def.3.1) in Section 3.3.2. As the

definition of review importance is based on the review age (cf. Def.3.3) older reviews have

gradually less effect on the classifier and very old ones might be discarded from St if

they are indicated as unimportant. We remove such unimportant reviews as they might

no be property specific anymore, i.e. they are not characteristic to describe the existing

property. While removing them we maintain that the classifiers remain cluster specific

and thus are not prone to polysemous words as proposed by research task Research

Task 5. Removing unimportant reviews also helps to reflect changes in the population

of the properties caused by the the evolving stream. For example, assuming a property

“battery” referring predominantly to the shape of the battery as the stream progresses

new reviews arrive which refer to the life of the battery. That is, words such as “long”

or “short” are used to describe the shape negatively resp. positively; the same words ex-

press also the attitude towards the battery life; while “long” refers to a positive attitude

and “short” to a negative one. That is, the words are polysemous across the battery life

and the weight of the battery. Though the reviews about the weight become unimpor-

tant as no reviews referring to them arrive, i.e. they are deleted from the hierarchy and

also from the classifiers; thus the classifier is not prone to polysemous words.

We do not incorporate weighting by age into the classifier as proposed in Section 3.4

rather we use the word class counts as it is presented in Section 3.3.1. Hence, there is

no gradual downgrading of the weight of a word by the ageing function (cf. Def. 3.3 in

Section 3.4) as the stream progresses. Weighting the words has not revealed an increase

of the classifier’s performance; rather it harms the classifier as the weights of words with

true labels, i.e. words from the initial seed set S0 are forgotten quickly and so the only

evidence of true labels is lost. This affect has been described by our experiments on

ADASTREAM presented in Section 3.6.

Removing unimportant reviews d is a straightforward operation and thus does not

require much computational effort: for a review d that is removed, we incrementally

downgrade the word counts N of all words w ∈ d by 1 regarding the related class label

of d, further we downgrade the class count n of the review’s class by one.

118

4.5 Workflow

To give an overview of how SENTISTREAM processes the stream of reviews which

arrive in batches of fixed size, we present in this section the workflow of our method.

Figure 4.5 depicts the complete workflow:

SENTISTREAM encompasses the initialization component cf. Section 4.3 (orange

part of the figure); and a much larger component responsible for the maintenance of the

cluster hierarchy cf. Section 4.4 (green part):

• Initialization of polarized property hierarchy: The initialization component extracts

the two level hierarchy of (sub)properties through clustering from the initial seed

set S (cf. Section 4.3.1) and contains a further subcomponent:

• Train polarity classifier per cluster: This subcomponent uses the seed set S, which

contains labeled reviews, and the extracted hierarchy to train a cluster specific

classifier for each (sub)cluster w.r.t. to the related reviews of that (sub)cluster; it

then propagates the polarity labels to the (sub)properties described by the cluster

(cf. Def.4.3) on property polarity and Subsection 4.3.2 on polarity learning).

• Adaptive hierarchy maintenance: After a batch was processed, the hierarchy of

(sub)properties is adapted to reflect the evolving stream including merging of clus-

ters with their containers and including merging of subclusters that move towards

each other and that have the same parent cluster (cf. Section 4.4.2). To do so,

the feature space and the related cluster centroid is adapted while considering

words that gain in importance. Since not all reviews contain equally informative

words, the concept of important review is applied building the feature space from

the words of reviews found to be important (cf. Section4.2). Reviews turning to

be not important are removed from the hierarchy and consequently also from the

polarity classifiers. The full adaptation process is presented in Section 4.4.

• Assign new reviews: Based on our definition of review novelty (cf. Def.4.4) new

arriving reviews are either assigned by SENTISTREAM PolLearner to a container –

if they are novel; or they are assigned to the most proximal cluster as described in

Section 4.3.1.3. The classifiers inside each cluster are adapted: some of the arriving

reviews are added to S after SENTISTREAM PolLearner has assigned labels to

them. Not all reviews are added after labeling though; only reviews that are useful

w.r.t. the sub(cluster) and the current concept are selected. Hence, the seed is

expanded in a semi-supervised way, adding new reviews to adapt to concept drift

caused by the evolving stream. The notion of review “usefulness” is derived from

our stream classifier ADASTREAM presenetd in Section 3.3.2 and described in

terms of SENTISTREAM in Section 4.3.2.

119

Seed

Clustering

Train polarity classifier
per cluster

Batch i

Hierarchy of
polarized
properties

Updated
training

set

For each review

Is
review
novel?

Assign to
cluster

Learn polarity

Is
review
usefull?

Adaptation

Assign to
container

yes

no

yes

For batch i

For each 1st level cluster c
and related container b

Merge
Strategy

I

fatigue⩾γ

Merge b to c,while
keeping feature
space of c

Global
reclustering

Fatigue?

Local
reclustering

fatigue<γ

Retain only important reviews

Select useful reviews

Importance book keeping

Initialization of polarized
property hierarchy

no yes

Polarized property hierarchy maintenance

Update cluster centroids

Merge
Strategy

II

yes

Derive the property
represented by each cluster

For each 1st level cluster c

Compute that subcluster pair
of c with minimun

KL-Based
Merge?

Merge subclusters yes
ci , c j

KL(ci ,c j)
ci ,c j

Assign new reviews

Adaptive hierarchy maintenance

Figure 4.5: The workflow of SENTISTREAM

4.6 Experiments

In this section we extensively experiment with SENTISTREAM that updates the topic

hierarchy based on the accumulated novelty from the stream and the importance of the

120

clustered reviews. Also it considers internal-merges of subproperties in the hierarchy.

We evaluate SENTISTREAM in terms of the quality of both the extracted prop-

erties and the learned property polarities. In particular, we evaluate the SENTISTR-

EAMClus component on the purity and the cohesion of the clusters it produces, and

the SENTISTREAM PolLearner component on the quality of the classifiers it creates

in a semi-supervised way. We employ prequential kappa as evaluation measure which

is the state-of-the-art in stream classification. We present our evaluation measures in

Section 4.6.2. Moreover, we study the effect of the different parameters on SENTISTR-

EAM performance and select parameters experimentally, Section 4.6.6; and also whether

the inclusion of the internal hierarchy update in SENTISTREAM leads to improvements.

We run our experiments on two real world datasets (cf. Section 4.6.1).

We compare SENTISTREAM, consisting of a two-level hierarchy, against flat clus-

tering algorithm that does not use a two level hierarchy of (sub)properties, denoted as

ClusteringBaseline. For property polarity learning, we compare with the non cluster

specific but also semi-supervised classifier ADASTREAM presented in Section 3.3.2,

denoted as PolarityBaseline hereafter, and also with the method of Silva et al. [127],

denoted as Silva hereafter. We also evaluate the efficiency of SENTISTREAM in terms

of its execution time and required storage in Section 4.6.3.3.

4.6.1 Datasets

For the evaluation, we use the two review datasets ReviewJi and ReviewHu of opinionated

(positive and negative) reviews which we already utilized to evaluate our classifiers,

cf. Section 3.6.1. To distinguish between the explicit product properties discovered by

SENTISTREAM according to Def. 4.3 and the explicit properties in the datasets, we

use the term true property for the latter. Obviously, a property (which is described

by words with probabilities) cannot be exactly matched withtrue property ; a semantic

matching can only be done manually.

Stream ReviewHu is derived from the dataset of opinionated reviews [65] containing

540 reviews on 9 products, where each review refers to one true property, from a total

of 38 true properties. Most of the true properties appear in between 9 and 30 reviews,

i.e. there is no true property which occurs in most of the reviews. It also shows that the

true properties reappear across the reviews; i.e. the number of true propertiesis smaller

than the number of documents. From this dataset we derived the stream ReviewHu by

sorting the reviews so as to deliver all 38 properties within the first 220 reviews; also we

filter reviews which are associated to true properties that occur less than 9 times across

the dataset. Each review is associated with positive/negative polarity.

The stream was partitioned in 11 batches of 50 reviews. The number of properties

per batch is depicted in Figure 4.6. It is stressed that the batches are ordered, so the

algorithms will encounter a slightly increasing number of properties after the 4’th batch.

121

In Figure 4.7, we show the entropy distribution per batch, where we compute entropy

with respect to the polarity of reviews. An entropy value of 1.0 means that the reviews

in the batch are uniformly distributed with respect to the classes, while an entropy of

0.0 means that all reviews in the batch are of the same class. We see that the entropy

is close to 1, i.e. there is a mix of positive and negative reviews in each batch.

Figure 4.6: Stream ReviewHu: number of
properties per batch

Figure 4.7: Stream ReviewHu: entropy per
batch, entropy is computed w.r.t. the po-
larity of the reviews in the batch. Higher
values indicate more mixed sentiment in
the batch, i.e. more similar percentages of
positive/ negative reviews.

Stream ReviewJi comes from an opinionated dataset first introduced by Yu et al.

in [145], which contained data crawled from cnet.com, viewpoints.com, reevoo.com and

gsmarena.com as described in Section 3.6.1. As also stated in Section 3.6.1, we use only

reviews that describe a single true property, after removing very short reviews (those

containing less than 2 adjectives or 2 nouns).

The final stream ReviewJi contains 12.750 reviews on 327 properties with posi-

tive/negative polarities 8. We use the timestamps of the reviews to build ca. 255

batches, each one containing 50 reviews. As for stream ReviewHu, we show the number

of reviews per batch in Figure 4.8 and the entropy per batch in Figure 4.9.

We see that the number of properties varies strongly from one batch to the next,

which will make adaptation challenging for all algorithms. Entropy follows the same

non-smooth pattern, its values are rather high, in the [0.7-1] range, indicating that the

batches contain both negative and positive reviews and there is no clear sentiment label

winner in the batches.

4.6.2 Evaluation Measure

We evaluate the quality of SENTISTREAM in terms of both external and internal

measures. External measures compare to ground truth, which in our case are the actual

product properties in the dataset; we use average weighted purity for this purpose.

8available at
http://omen.cs.uni-magdeburg.de/itikmd/cms/upload/Datasets/D2.zip

122

Figure 4.8: Stream ReviewJi: number of
properties per batch

Figure 4.9: Stream ReviewJi: entropy per
batch, entropy is computed w.r.t. the po-
larity of the reviews in the batch. Higher
values indicate more mixed sentiment in
the batch, i.e., more similar percentages of
positive/ negative reviews.

Internal measures evaluate the quality of a cluster in terms of its members; we use

average weighted cohesion towards this aim. We present the two evaluation measures in

the following.

4.6.2.1 Average weighted purity (avgWPurity)

We use purity as an external measure which evaluates how pure are the extracted

(sub)clusters in terms of the original product properties. A (sub)cluster supporting

a single property has the best purity, whereas a (sub)cluster supporting many different

properties has a low purity score.

The purity is defined below: Each review within a cluster C (of the first or the second

level) reflects a true product property. We define the majority property for a cluster C

as the one which is reflected by the the most reviews in C. Accordingly, we denote

the set of ”Reviews referring to the Majority Property” in C as RMP (C). Further,

#coveredProperties(C) is the total number of product properties that are reflected by

reviews in C. Ideally, #coveredProperties(C) = 1, whereupon the RMP (C) contains

all reviews in the cluster.

We define the local purity of a second level cluster CLi,j ∈ CGi (i.e. CLi,j is contained

in the global cluster CGi being a children of CGi) as:

localPurity(CLi,j) =
|RMP (CLi,j)|
|CLi,j |

The local purity refers to the ratio of reviews in CLi,j which reflect the majority

property represented by the local cluster. Then, for a 1st level cluster CGi , we define its

normalized global purity as:

globalPurity(CGi) =
∑
j

localPurity(CLi,j) ·#coveredProperties(CLi,j) · |CLi,j |∑
k

localPurity(CLΘt,i,k) ·#coveredProperties(C
L
Θt,i,k) · |C

L
Θt,i,k|

123

where the sum of normalized local purity values is computed over all local clusters.

Hence, global purity is in the range of [0, 1], facilitating the interpretation and comparison

across different datasets; value 0 can only occur when the cluster is empty.

Finally, we define the purity of the two-level hierarchy Θt as the average of the global

purity values of its 1st level clusters:

avgWPurity(Θt) =

KG∑
i=1

globalPurity(CGi)

KG
(4.8)

where KG denotes the number of 1st level clusters. Higher purity values are better

and the best purity of 1.0 is achieved when all reviews in each cluster refer to a single

property. However, the number of product properties appearing through a stream is un-

known a priori. Therefore, if the number of clusters that accommodate these properties

is set lower than the number of product properties in the stream, then some clusters

will inevitably accommodate more than one property and therefore a value of 1.0 cannot

be achieved. That is, a low purity does not necessarily indicate poor performance of

the model. To assess the quality of a model, we employ the average weighted cohesion

measuring the similarity of reviews within a (sub)cluster as presented in the following.

4.6.2.2 Average weighted cohesion (avgWCohesion)

As an internal measure of cluster quality, we use cohesion, which evaluates the average

similarity of cluster members to its centroid. The cohesion values lie in the [0, 1] range.

Formally, it is defined as follows: The local cohesion of a second level cluster CLi,j ∈ CGi
(i.e. CLi,j is contained in the global cluster CGi) as:

localCohesion(CLi,j) =
1

|CLi,j |
∑
d∈CLi,j

cosineFi(d, ĈLi,j)

where ĈLi,j is the centroid of the local cluster CLi,j and cosineFi(a, b) is the cosine similarity

between a and b within the feature space Fi derived from the nouns of such reviews

belonging to the global cluster CGi
Then, for a 1st level cluster CGi , we define its normalized and weighted global cohesion

as:

globalCohesion(CGi) =

KL∑
j=1

localCohesion(CLi,j) · |CLi,j |∑
k

localCohesion(CLΘt,i,k) · |C
L
Θt,i,k|

where the sum of local cohesion values is computed over all local cluster of CGi and we

weight by the size (number of reviews that are covered) of local clusters in CGi . Finally,

124

similar to the average purity, we define the cohesion of the two-level hierarchy Θt as the

average of the global cohesion values of its 1st level clusters:

avgWCohesion(Θ) =

KG∑
i=1

globalCohesion(CGi)

KG
(4.9)

where KG denotes the number of 1st level clusters. Higher cohesion values are better as

the show that reviews captured by the same cluster are closely related, i.e. their content

is similar.

4.6.2.3 Kappa

For the evaluation of the classifiers’ part, we use Kappa [17] that normalizes classifier’s

accuracy with that of a chance predictor, within a sliding window. Kappa was already

introduced in Chapter3 where we used it to evaluate our semi-supervised classifiers. For

conveniences we repeat it here:

k =
pexaminedClassifier − pchanceClassifier

1− pchanceClassifier
. (3.16)

where pexaminedClassifier denotes the accuracy of the examined classifier, while

pchanceClassifier is the probability that a chance classifier, designed to assign the same

number of examples to each class as the examined classifier, makes a correct prediction.

Kappa lies in the -1 to 1 scale; 1 denotes perfect agreement, 0 is what would be expected

by chance and negative values indicates agreement less than chance [138]. The higher

the value, the more often the predictions match with the true labels. Kappa is preferred

to accuracy for data streams as it is not prone to imbalanced class distributions.

4.6.3 Comparing against baselines

In this section we compare the cluster component SENTISTREAMClus and the clas-

sifier component SENTISTREAM PolLearner of SENTISTREAM against the baselines

which we introduce in the next subsubsection. We evaluate SENTISTREAMClus on

purity (cf. Equation 4.8) and cohesion (cf. Equation 4.9) while we evaluate SENTI-

STREAM PolLearner on kappa presented by Equation 3.16. Moreover we compare the

efficiency of the cluster component exposing the runtime on different number of global

resp. local clusters. We examine the performance of our approaches on the two real

world datasets ReviewHu and ReviewJi. The results are averaged over three runs of

SENTISTREAM resp. the baselines. First, though, we introduce the baselines to which

we compare.

125

4.6.3.1 Methods against which we compare

Below we outline the approaches we used to compare to SENTISTREAM PolLearner and

SENTISTREAMClus of SENTISTREAM. The baseline for the cluster component fo-

cuses on carrying out how good the two-level hierarchy performs when extracting and

monitoring product properties over time. The classifier baselines instead concentrate on

exposing how good is the performance of the cluster specific classifiers in supervised and

semi-supervised case when in comparison there is only one cluster unspecific classifier.

The baselines are described as follows.

• ClusteringBaseline:

It depicts SENTISTREAMClus while selecting a flat clustering, i.e. no second level

clusters are considered (KL=1). Rather we select a high number of global clusters

capturing reviews referring to the same product property. That is, there is no

differentiation among first level properties and second level, more fine grained,

properties.

• MNB Semi:

There is only one classifier trained upon the whole initial seed of documents, namely

a multinomial naive bayes. Over time the classifier is incrementally adapted with

new arriving documents; for adapting the predicted labels are utilized.

• MNB Fully:

There is only one classifier trained upon the whole initial seed of documents. Over

time the classifier is incrementally adapted with the true labels of new arriving

documents. Hence, the approach is fully supervised.

4.6.3.2 Cluster Extraction

In the following we discuss the evaluation of the cluster extraction component depicted

by the purity and cohesion over time obtained over the two datasets. In Table 4.3

we depict the parameter settings regarding the two datasets. We selected those values

for the parameters which show the highest and most stable cohesion and purity over

time. Deriving the cluster baseline ClusteringBaseline, we selected a high number of

global clusters and set the number of local clusters to be 1. The exact number of global

clusters among the datasets are as follows: ReviewHu KG = 12 and 24; ReviewJi KG =

20 and 36.

126

Stream KG KL λ k β δG δL γ intial seed α

ReviewHu 4 6 0.5 4 0.6 0.6 0.8 0.3 100 0.0

ReviewJi 10 10 0.5 4 0.6 0.4 0.8 0.3 500 0.0

Table 4.3: Parameter Setting: Comparing Baselines

Results on ReviewHu The purity and cohesion over time showing the cluster extrac-

tion performance of the ClusteringBaseline and SENTISTREAMClus are depicted in the

left, resp. right picture of Figure 4.6.3.2: SENTISTREAMClus (4 global and 6 local

clusters) clearly outperforms the baselines applied with 12 and 24 global clusters. Thus,

utilizing a two level hierarchy (local and global) rather than a single level cluster struc-

ture extracts clusters which are more pure; also the clusters contain reviews which are

closely related, i.e. which share similar content. The quality of clusters extracted from

SENTISTREAMClus is therefore higher than those by the ClusteringBaseline.

Figure 4.10: Stream ReviewHu: Cohesion (left) and purity (right) over time for SENTI-
STREAM when KG = 4 and KL = 6 and the ClusteringBaseline for KG = 12 and 24.

Results on ReviewJi The left and the right picture of Figure 4.11 show the cohesion

and the purity over time determined by SENTISTREAMClus (10 global and 10 local

clusters) including the two-level hierarchy and the ClusteringBaseline (20 and 36 global

clusters). Our two-level hierarchy clearly outperforms the baseline in terms of cohesion

and purity while revealing higher values of both the evaluation measures over time.

Thus, clusters extracted by our two-level hierarchy from stream ReviewJi are of higher

quality than those extracted by the ClusteringBaseline.

4.6.3.3 Evaluation of the Efficiency

In this subsubsection we show the efficiency, based on runtime, of our method using

two levels (global and local clusters) in contrast to the flat methods where only global

clusters are utilized. Table 4.4 depicts the runtime in seconds of the baselines, i.e. Re-
viewHu KG = 12 and 24; ReviewJi KG = 20 and 36, and our method for settings as

stated in Table 4.3 on the two datasets.

127

Figure 4.11: Stream ReviewJi: Cohesion (left) and purity (right) over time for SENTI-
STREAM when KG = 10 and KL = 10 and the ClusteringBaseline for KG = 20 and 36.

KG KL runtimeinseconds Stream

24 1 13.1 ReviewHu
12 1 7.3 ReviewHu
4 6 3.4 ReviewHu
36 1 1310 ReviewJi
20 1 688 ReviewJi
10 10 371 ReviewJi

Table 4.4: Comparing runtime of baselines and SENTISTREAM

On ReviewHu our method with 4 global and 6 local clusters exhibits the shortest

runtime (3.4 seconds) which is less than the half required by the baselines. The runtime

values on ReviewJi expose similar results: the shortest runtime is achieved by 10 global

and 10 local clusters. Table 4.4 also reveals that the more global clusters, the longer

the runtime. Thus, the runtime depends on the first level cluster rather than the local

clusters, e.g. 10 global * 10 local cluster (in total 110 clusters) require less runtime than

36 global clusters. That is, dividing a global cluster into local ones tunes our method so

as less time is required to run through the stream. The reason might be the long runtime

being spent when finding many global clusters in a rather huge word-value vector space

as it is taken place when extracting many global clusters. In contrast, the time required

to find local clusters is reduced while limiting the feature space of a global cluster to

words captured by the important reviews of this cluster, cf. Subsection 4.3.1.1. Hence,

it is an advantage towards the runtime when applying few global cluster and many local

ones rather than having many global cluster and few local ones.

4.6.3.4 SENTISTREAM PolLearner component

In the following we discuss the evaluation of the SENTISTREAM PolLearner component

depicted by kappa over time upon the two datasets ReviewHu and ReviewJi. We selected

4 as the number of global and local clusters for ReviewHu and 6 for ReviewJi; both

the settings showed good kappa values over time. The other parameters were selected

128

similarly to the ones depicted in Table 4.3; we selected those values for the parameters

that show the highest and most stable kappa over time.

We evaluate the cluster specific classifiers in a fully supervised and semi-supervised

case. Thus, we carry out the performance of the SENTISTREAM PolLearner component

when using the true labels resp. the predicted labels for adapting. Figure 4.12 juxtaposes

the kappa over time determined by SENTISTREAM PolLearner in supervised (noted as

Fully) and semi-supervised case (noted as Semi) and the baseline in supervised and semi-

supervised case (noted as MNB Fully and MNB Semi): the left picture of Figure 4.12

depicts the results for stream ReviewHu while the right picture shows the results on

stream ReviewJi.

Figure 4.12: Kappa over time on stream ReviewHu(left) and stream ReviewJi(right)

The results on stream ReviewHu reveal that SENTISTREAM PolLearner in the semi-

supervised version performs very well in comparison to the supervised baseline: at

the start of the stream, all methods perform similar as trained upon the same initial

seed; as of review 250 the supervised baseline and also the supervised SENTISTR-

EAM PolLearner show a higher kappa than the semi-supervised methods; however as of

review 400 our method captures the highest kappa along the baselines as well as the

supervised version of our method; this changes at the end of the stream though as the

supervised baseline exposes the highest kappa. Hence, for stream ReviewHu the cluster

specific classifiers show a better performance than the single global classifier. Also the

semi-supervised version of SENTISTREAM PolLearner partially overcomes the supervised

baseline which always consumes the true label.

The results on stream ReviewJi, right picture of Figure 4.12, show that the supervised

baseline (MNB Fully) draws the highest kappa over time along the supervised and semi-

supervised version of SENTISTREAM PolLearner. Our method though, in both versions,

overcomes the semi-supervised baseline clearly while showing an increasing kappa over

time, whereas the semi-supervised baseline exhibits a dropping kappa. That is, the

cluster specific classifiers, when applied in a semi-supervised setting, are well suited for

both the datasets.

129

4.6.4 Evaluation of the clustering structure

The goal of this section is to show the cluster structure over time. To this end, we first

juxtapose for each product property in the dataset, the number of times it was detected

in some cluster based on (i) the cluster members and (ii) the cluster label based on the

centroid. With respect to (i), the true labels of the reviews in the cluster were employed

(ground truth). With respect to (ii), we extracted the property from the cluster label

(artificial) using the top-4 keywords representing the cluster centroids. We do so in

order to see whether the property inferred from the cluster centroid agrees with the

ground truth of the cluster. The inference of a property from the centroid, i.e. case

(ii), is not always straightforward though as the top-4 keywords might be ambiguous,

e.g. a centroid c = {router, odor, software, touchpad} can be inferred differently. That

is, there are mixed clusters representing more than one property; when there is no clear

winner, we opt for the more general property. Note that the property themselves are

also overlapping, for example there is a property “battery lifetime” and a more generic

one, “battery”.

The results of juxtaposition for ReviewHu 9, are depicted in Figure 4.13. In the

x-axis the real product property detected in some clusters in the dataset are depicted.

For each detected property, the blue column represents the number of clusters for which

this property was detected based on cluster members, i.e. case i). The orange column

represents the number of clusters for which this property was detected based on cluster

labels, i.e. case ii).

There are some properties, like “pictures” and “quality”, for which the number of

clusters representing the corresponding property are lower when the cluster label is em-

ployed comparing to when the cluster members are employed. In the vast majority of

the cases though, the cluster labels and the ground truth agree, implying that SEN-

TISTREAM manages to extract meaningful and correct cluster structures over time.

Some examples of matches and mismatches are depicted in Table 4.5:

Cluster ID Members-based property dis-
tribution

Centroid-based label Match

c : 3 {setup:67; install:11; touch-
pad:11; power:11;}

{setup; router; touch; pro-
cess;}

yes

c : 8 {software:50; install:25; sup-
port:25;}

{software; symantec; files;
window;}

yes

c : 45 {software:33; sound:33; bat-
tery:33;}

{time; backup; battery; prod-
ucts;}

no

Table 4.5: Example of cluster mismatches

9Parameters used: KG=4; KL=4; S=100; streamSpeed=50; δG=0.4; δL=0.8; β= 0.3; λ = 0.5; k=4,
γ=0.3

130

0

1

2

3

4

5

6

7

8

9

10

#truePropertiesAsLabel #centroidKeywordsAsLabel

Figure 4.13: ReviewHu: Juxtaposing cluster centroids to real product properties

Note that in the above picture, some of the 38 covered product properties (cf. Sec-

tion 4.6.1) are not covered; this is due to their low occurrence in the dataset and also

due to the fixed number of clusters in the hierarchy at each time point. We use less clus-

ters than the product properties and therefore capturing all the properties, especially

the ones with low occurrence, is not possible. The entire cluster structure when using

member-based and centroid-based labeling is given in the Appendix C.2 by Table C.2,

resp. Table C.1.

It is difficult to provide a similar chart for ReviewJi, due to the size of the dataset

(327 covered product properties, cf. Section 4.6.1 and approx. 13.000 reviews resulting

in over 250 batches of 50 review per batch) there are more reclusterings so that 298

clusters were created over time. From the inspection of the results though, similar con-

clusions to ReviewHu can be drawn. For example, the property “battery” was detected

in 13 clusters based on cluster members and on 8 clusters based on cluster labels. The

misses usually correspond to cases of mixed clusters, i.e. when there is more than one

property covered by the same percentage of cluster members. An example of a mismatch

of ReviewJi cluster is as follows: cenroid-based label= “pixel; sub; lot; consequences;”

131

and corresponding word distribution inside the cluster= “mp:25; pixel:25; battery:25;

expensive:25 ”.

4.6.5 Influence of reclustering and cluster merge

In this section we provide results on how the number of reclusterings is effected by in-

ternal hierarchy adaptation (cf. Section 4.4.2); also we show how the cluster merge and

local resp. global reclustering effects the memory usage while exposing the number of

documents captured by the model. We did experiments on the two datasets employ-

ing SENTISTREAM, once with internal hierarchy adaptation and once without internal

adaptation. We name the method that uses no internal adaptation as SENTISTR-

EAMNoInt.Merges hereafter. The figures below drawing our results are twofold: at the

top, the number of important reviews with their polarity labels are depicted, whereas

at the bottom, the number of reclusterings (local and global), the number of internal-

merges and the number of container-merges are depicted. For ReviewHu, the results

of SENTISTREAMNoInt.Merges and SENTISTREAM are depicted in Figure 4.14 and

4.15, respectively. For ReviewJi, the corresponding results are depicted in Figure 4.16

and 4.17, respectively.

Results on ReviewHu For ReviewHu10, one sees (top of the figures) that SENTISTR-

EAM (Figure 4.15) and SENTISTREAMNoInt.Merges (Figure 4.14) both find more

positive reviews (green color) than negative ones (red color). This describes the true

stream (cf. left picture of Figure 3.9 in Section 3.6.1.2) very well.

Figure 4.14: SENTISTR-
EAMNoInt.Merges on ReviewHu: Cluster
structure over time (green color for positive
class, red for negative)

Figure 4.15: SENTISTREAM on Re-
viewHu: Cluster structure over time (green
color for positive class, red for negative)

10Parameters used: KG=6; KL=6; S=100; streamSpeed=50; δG=0.4; δL=0.8; β= 0.2; λ=0.5; k=4;
γ=0.3

132

Regarding the reclusterings/merges (bottom of the figures), SENTISTREAM shows

no global reclusterings but many internal-merges, some container-merges and some lo-

cal reclusterings whereas SENTISTREAMNoInt.Merges shows one global reclustering, no

merges but some local reclusterings. SENTISTREAM may compensate the not occur-

ring global reclustering with the internal-merges. Which means that the internal-merges

promote smooth hierarchy adaptation over time so that changes in the stream are re-

flected by the hierarchy without any need of rebuilding the hierarchy from scratch.

The memory usage of the SENTISTREAM is depicted by the bars over time in the

upper picture of Figure 4.15: the higher a bar at a timepoint, the more important reviews

contains the hierarchy at this timepoint. Comparing our method with the baseline,

one sees that the internal hierarchy adaptation, utilized in SENTISTREAM, leads to

less reviews captured by the model while not loosing information regarding the class

distribution, as reflecting the true class distribution of the stream.

Results on ReviewJi For ReviewJi 11, one sees (top of the figures) that the number of

important reviews is less for SENTISTREAM (mostly below 200 reviews) in comparison

to the baseline (mostly above 200 reviews) for most of the timepoints. The number of

reviews is rather stable over time though for both the methods.

Figure 4.16: SENTISTR-
EAMNoInt.Merges on ReviewJi: Cluster
structure over time (green color for positive
class, red for negative)

Figure 4.17: SENTISTREAM on Re-
viewJi: Cluster structure over time (green
color for positive class, red for negative)

Regarding the class distribution, we can see that SENTISTREAM achieves a better

spread of the positive/ negative classes over time in contrast to the baseline where there

are a lot of timepoints with many positive reviews (green color), which does not reflect

the true class distribution depicted in the left picture of Figure 3.7 in Section 3.6.1.2).

11Parameters used: KG=6; KL=6; S=500; streamSpeed=50; δG=0.4; δL=0.8; β= 0.2; λ = 0.5; k=4,
γ=0.3

133

The number of local reclusterings is similar for both methods. The number of global

reclusterings is greater for SENTISTREAM, however there are only a few reclusterings at

the beginning of the stream. Due to internal-merges in SENTISTREAM, the time of local

reclusterings is different from SENTISTREAMNoInt.Merges. SENTISTREAM shows

many internal-merges and container-merges at the beginning of the stream which, is less

as the stream progresses. SENTISTREAMNoInt.Merges exposes a continuous number of

container-merges over time: at least one per timepoint.

Our method with internal hierarchy adaptation (cf. Section4.4.2) shows a better

performance regarding the memory usage for both datasets in comparison to SENTI-

STREAMNoInt.Merges as discussed above, i.e. less important reviews are stored while no

information of the model structure is lost (class distribution remains similar). During

the merge of two cluster, reviews which were important before the merge, can loose their

importance in the merged cluster, are thus removed from the model. This is since the

k nearest neighbors (cf. Def. 4.2) of the reviews change when merging two clusters as

there are more candidates for kNN in the merged cluster, cf. Section 4.4.2.2. Hence,

the set of important reviews changes after merging two clusters. In particular, as our

experiments showed, the number of important reviews is reduced after internal-merge.

4.6.6 Evaluation of the Parameters which effect the Clustering

In this subsection we evaluate the parameters which effect the (sub)property hierarchy

extraction and maintenance part, i.e. clusterer, of our SENTISTREAM at most. The

evaluation is done over the parameters KG (number of global clusters), KL (number of

local clusters), β (review importance threshold), λ (decay factor), the size of the seed

S (|S|) and γ (the fatigue threshold) over the two datasets ReviewHu and ReviewJi. As

in the subsection before, we use purity and cohesion as evaluation measures, cf. Eq. 4.8

resp. Eq. 4.9. To evaluate the parameters we vary over one parameter while keeping the

other parameters constant. Table 4.6.6 depicts the parameter setting in detail.

4.6.6.1 Effect of the importance review threshold β

The effect of β on the quality of purity and cohesion is depicted in Figure 4.18 for stream

ReviewHu and in Figure 4.19 for ReviewJi. The results on ReviewHu reveal a tendency

that higher values of β, that is, being more selective, result in a better performance

regarding purity and cohesion; indicating that considering reviews in the hierarchy which

are more important leads to quality improvements.

In contrast to ReviewHu where higher values of β result in higher quality, for stream

ReviewJi higher (that is, more selective) values of β perform rather poor in contrast to

lower values of β (that is, non selective at all). The highest cohesion values are achieved

for β = 0.1, whereas the highest purity values are yielded by β = 0.1− 0.3 (i.e. no clear

134

Parameter settings used on both datasets in all experiments
streamSpeed: 50 k: 4 n: 2× streamSpeed

Parameter settings for ReviewHu
Experiment

KG KL δG δL β λ seed S γ
KG effect varied 4 0.4 0.8 0.3 0.6 100 0.1
KL effect 4 varied 0.4 0.8 0.3 0.6 100 0.1
δG effect 4 4 varied 0.8 0.3 0.6 100 0.1
δL effect 4 4 0.4 varied 0.3 0.6 100 0.1
β effect 4 4 0.4 0.8 varied 0.6 100 0.1
λ effect 4 4 0.4 0.8 0.3 varied 100 0.1
seed S effect 4 4 0.4 0.8 0.3 0.6 varied 0.1
γ effect 4 4 0.4 0.8 0.3 0.6 100 varied

Parameter settings for ReviewJi
Experiment

KG KL δG δL β λ seed S γ
KG effect varied 6 0.4 0.8 0.2 0.5 500 0.2
KL effect 6 varied 0.4 0.8 0.2 0.5 500 0.2
δG effect 6 6 varied 0.8 0.2 0.5 500 0.2
δL effect 6 6 0.4 varied 0.2 0.5 500 0.2
β effect 6 6 0.4 0.8 varied 0.5 500 0.2
λ effect 6 6 0.4 0.8 0.2 varied 500 0.2
seed S effect 6 6 0.4 0.8 0.2 0.5 varied 0.2
γ effect 6 6 0.4 0.8 0.2 0.5 500 varied

Table 4.6: Parameter settings for SENTISTREAM evaluation

Figure 4.18: ReviewHu: purity (left),cohesion (right) over time for different settings of
β

winner). A possible explanation is the complexity of the ReviewJi dataset per se, there

are 20-30 properties at each batch and 327 properties in total (cf. Figure 4.8 and 4.9)

therefore more reviews are required in order to build a good hierarchy.

135

Figure 4.19: ReviewJi: purity (left),cohesion (right) over time for different settings of β

4.6.6.2 Effect of the decay factor λ

The effect of λ on the quality of the results for stream ReviewHu is depicted in Figure 4.20.

Though there is no big effect, it seems that higher λ values, therefore consideration of

more recent reviews, result in slightly higher purity over time; whereas lower λ values

(considering also older reviews), in particular λ = 0.4, show a stable and high cohesion

over time.

Figure 4.20: ReviewHu: purity (left),cohesion (right) over time for different settings of
λ

The results on stream ReviewJi, depicted in Figure 4.21, show better performance

regarding cohesion and purity for lower λ values. Thus, considering old reviews by

utilizing lower λ values pays off towards the quality of the hierarchy, while achieving

higher cohesion and purity values. However, since the results are different among the

datasets, the value of λ depends on the structure and the size of the dataset. A proposal

regarding the λ value can not be drawn though. It seems that a stream with high

diversity towards the properties similar to ReviewJi requires a low λ value.

4.6.6.3 Effect of number of global clusters KG

The purity and cohesion w.r.t. the number of global clusters KG for stream ReviewHu are

depicted in Figure 4.22. Higher values are achieved for larger KG as expected. For

example, KG=2 results in the worse performance, since it is difficult to accommodate

136

Figure 4.21: ReviewJi: purity (left),cohesion (right) over time for different settings of λ

all product properties with only two global clusters. Along all settings of KG, purity

and cohesion depict a drop at the beginning (which might be due to a poor initialization

of the hierarchy or due to changes in the underlying data distribution). They start to

increase slightly as of the middle of the stream (after timepoint 300).

Figure 4.22: ReviewHu: purity (left),cohesion (right) over time for different values of
KG

The purity and cohesion over time with respect to the number of global clusters

KG for stream ReviewJi is depicted in Figure 4.23. Higher values of KG result in more

homogeneous clusters in terms of cluster purity, however no clear conclusion can be

drawn for the purity. Recall though that ReviewJi is a complex stream of 327 properties

in total and 20-30 distinct properties per batch. Therefore, accommodating such a

complex stream is not easy.

The results on cohesion expose a slightly different behavior: larger KG values deter-

mine dense clusters regarding cohesion at the beginning; as time goes by though, the

cohesion drops below the cohesion values obtained from KG = 2. Hence, albeit the

stream is complex two global cluster show a better quality in terms of cohesion than

higher values for KG. Considering that the purity values are low for KG = 2, it seems

that the properties in stream ReviewJi are similar in terms of words while KG = 2

exposes good cohesion values.

137

Figure 4.23: ReviewJi: purity (left),cohesion (right) over time for different values of KG

4.6.6.4 Effect of number of local clusters KL

In Figure 4.24 the purity (left) and the cohesion (right) w.r.t. the number of local clusters

KL are depicted for ReviewHu. As expected and similar to the effect of KG: the more

local clusters, the higher the quality towards cohesion and purity.

Figure 4.24: ReviewHu: purity (left),cohesion (right) over time for different values of
KL

We draw the purity and cohesion over time for ReviewJi, cf. Figure 4.25. Similarly

to the results of ReviewHu, the more local clusters, the higher the values of cohesion

and purity. Different to the effect on KG (as described in the previous subsubsection),

the lowest cohesion over time is achieved by the lowest value for KL. Hence, KL is

more sensitive than KG, e.g. reducing the number of global clusters by x, reduces the

overall number of (sub)clusters by x whereas, reducing the number of local clusters by x,

reduces the overall number of (sub)clusters by KG∗x as each global cluster is influenced.

4.6.6.5 Effect of the initial seed set S

The effect of the size of the seed set S on the quality of the results for ReviewHu is

depicted in Figure 4.26. The quality seems similar along the different settings for S.

Thus one cannot see a clear effect in terms of the seed size on ReviewHu.

The effect of the initial seed set S on the quality of the results on ReviewJi is depicted

in Figure 4.27. The effect is rather short term, i.e. affects mainly the beginning of the

138

Figure 4.25: ReviewJi: purity (left),cohesion (right) over time for different values of KL

Figure 4.26: ReviewHu: purity (left),cohesion (right) over time for different values of
S.

stream: greater values for the seed size expose a better quality regarding cohesion and

purity at the beginning of the stream. Later on though, it seems that the size of the

initial seed set does not have any effect on the quality.

Figure 4.27: ReviewJi: purity (left),cohesion (right) over time for different values of S.

4.6.6.6 Effect of the global similarity threshold δG

The effect of the global similarity threshold δG on stream ReviewHu is depicted in Fig-

ure 4.28. There is a clear effect of δG regarding the cohesion and purity: the higher the

value of δG the better is the quality of the clusters in terms of cohesion and purity. As

expected, a δG close to 1 leads to purer and denser cluster. This is intuitive as a high

139

δG value means that reviews are assigned to clusters if they have a high similarity with

the clusters centroid, thus the cluster gets per se a higher quality.

Figure 4.28: ReviewHu: purity (left),cohesion (right) over time for different values of
δG

The purity (left) and the cohesion (right) for different values of δG on stream Re-
viewJi is drawn by Figure 4.29. Different to ReviewHu, lower δG values achieve a better

quality of the clusters; in particular the purity values expose this effect. Recall that

ReviewJi is a very complex dataset having a high diversity in terms of product proper-

ties. Consequently, the content of reviews is also very diverse; resulting in rather generic

cluster centroids to which the reviews are not very similar. Thus a high δG might retain

most of the reviews being assigned to clusters.

Figure 4.29: ReviewJi: purity (left),cohesion (right) over time for different values of δG

4.6.6.7 Effect of the local similarity threshold δL

We depict the effect of δL on ReviewHu in Figure 4.30. Similar to δG there is a clear

correlation among δL and the quality of the clusters: the higher the δL value the higher

the cohesion and purity. This effect is very obvious for δL ≥ 0.9. Hence, the filter, based

on the local clusters by δL, works very well on ReviewHu while improving the quality of

the clusters in terms of cohesion and purity.

Similar to ReviewHu, the same effect of δL can be seen on ReviewJi in Figure 4.31.

However, the effect is not that strong as for stream ReviewHu. In fact, the results on

140

Figure 4.30: ReviewHu: purity (left),cohesion (right) over time for different values of
δL

cohesion show that low δL values lead to a stable performance of the clusters over time;

higher δL values drop while approaching the end of the stream. This might be due to the

complexity and diversity of ReviewJi as discussed in the previous subsubsection. Also,

as mentioned in the previous subsubsection regarding the effects of the global similarity

threshold, many reviews will not be assigned to a cluster if the threshold is set too high.

This effect does not show up that obvious for the local similarity threshold though as

the low value (0.4) of the δG (cf. parameter setting in Table 4.6.6) allows reviews to be

assigned to global clusters; and thus the model is updated on the global level.

Figure 4.31: ReviewJi: purity (left),cohesion (right) over time for different values of δL

4.6.6.8 Effect of the fatigue threshold γ

In this subsubsection we discuss the effect of the fatigue threshold γ towards the cluster

quality. According to Section 4.4.1.5, a small value for γ leads to more global reclus-

terings while a high value results in less global reclusterings but more local ones: if the

fatigue of our model falls below γ then we perform local reclusterings; if the fatigue,

however, exceeds γ than we rebuild the whole hierarchy from scratch.

Figure 4.32 depicts the results on stream ReviewHu: the purity on the left of the

figure reveals that there is not much difference in the purity over time among the values

of γ. The same holds for the cohesion over time shown by the right picture of Figure 4.32.

141

Figure 4.32: ReviewHu: purity (left),cohesion (right) over time for different values of γ

In Figure 4.33 we depict the purity (left) and the cohesion (right) over time for stream

ReviewJi. It can be identified that the smallest value for γ (0.1) achieves the highest

purity and cohesion values over time. Hence, rebuilding from scratch pays off for stream

ReviewJi towards the cluster quality. The reason for this might be the high complexity

of ReviewJi: the variety of properties is rather high over time and thus many clusters,

representing the properties, might get out of time so that the entire model requires to

be rebuilt.

Figure 4.33: ReviewJi: purity (left),cohesion (right) over time for different values of γ

4.6.6.9 Discussion

To conclude this subsection we briefly summarize our results on the effect of parameters

towards the property extraction part. Essentially, the influence of the parameters is

higher on ReviewJi than on ReviewHu. This is because stream ReviewJi is more diverse.

The effect of the single parameters differs among the streams. It seems that for stream

ReviewHu, the number of global clustersKG, the global and local similarity threshold (δG

and δL) and the importance threshold β are the most effective factors for the performance

of our method. The size of the seed, the fatigue threshold γ and the decay factor λ have

not much influence on the performance. The results on stream ReviewJi show that,

additional to β, λ has much influence of the cluster quality, while the number of global

clusters δG and the local distance threshold δL influence the performance less.

142

Regarding the parameter β, more qualitative reviews result in better quality of clus-

ters. For example, the best performance for ReviewHu (cf. Figure 4.18) was achieved

for the most selective β (i.e. highest value for β). However, an adequate amount of re-

views should exist in any case in order to build a good hierarchy. For ReviewJi this was

depicted in Figure 4.18, where a low β results in better quality than the most selective

one.

The decay factor λ does not affect the quality of simple streams such as ReviewHu sig-

nificantly. However, it effects the stability of the clusters for complex streams positively,

i.e. as we saw for ReviewJi (cf. Figure 4.21 while emphasizing old reviews (i.e. a small

value for λ) contributing to the cluster structure. Also smaller values of λ achieve a

higher cluster quality at the beginning of the stream.

The effect of the size of the initial seed set S is limited to the complex stream

ReviewJi and there only towards beginning of the stream. It does not incur any differ-

entiation later on: higher cluster quality is obtained for bigger seed sizes.

The number of global and local clusters (KG, KL) has basically a positive effect

on the cluster quality, i.e. the more clusters the higher the purity and cohesion. This

is intuitive since more clusters allow a better distinction among the product properties.

That is, the clusters separate the reviews regarding the properties, carried by the reviews,

well.

The effect of the local similarity threshold δL is stringent among the streams: the

more selective (larger value for δL) the higher the quality of the clusters as we saw

in Figure 4.30 and 4.31. This is because only reviews which fit the centroids of the

clusters very well are considered for adaptation and thus the cohesion and purity remain

high. The effect of δL is larger for ReviewHu though. The global similarity thresholds

δG influences the cluster quality of ReviewHu positively when it is set to a value close

to 1, i.e. being selective, as we saw in Figure 4.28. While for ReviewJi, being less

selective, results in higher quality of the clusters. This is the case because when setting

the threshold as being too selective, no further reviews can be added to the clusters

and thus the clusters may not reflect properties well. This effect is very obvious for

ReviewJi as we saw in Figure 4.29 since the reviews are more diverse towards products

properties; a smaller value for δG is better in such a case.

4.6.7 Evaluation of the Parameters which effect the Polarity Learning

In this subsection we present how the cluster specific classifier’s performance is affected

by the different parameters of the methods. We applied the experiments while varying

one parameter and keeping the other parameters constant. We follow the same structure

of the parameters as shown in Table 4.6. In particular we tested the cluster specific

classifier on the usefulness threshold α which is directly related to the classifier; and on

the cluster hierarchy related parameters: importance threshold β, the decay factor λ and

143

the number of global resp. local clusters KG resp. KL, the global and local similarity

thresholds δG and δL, the size of the seed and the fatigue threshold γ. Since the cluster

specific classifiers are tailored to the (sub)clusters and since the (sub)cluster hierarchy

depends on the parameters as shown in Subsection 4.6.6 the derived classifiers might

also depend on the parameters related to the clustering.

Our experiments reveal though, that the classifier is less driven by the parameters

related to the clustering structure, i.e. the classifiers performance is stable along differ-

ent settings of the parameters related to the cluster hierarchy. Slightly influential and

distinct factors for the performance of the classifier are the number of global cluster KG

and the global similarity threshold δG. We discuss the effect of the two parameters in

the following. Also we expose the experiments on the usefulness threshold α since it

directly influences the classifier. The rest of our results on the cluster specific classifiers

are shown in Appendix C.1.

4.6.7.1 Results on the effect of δG

Considering that the similarity factor appears rather selective the higher the value is set,

thus only those reviews are assigned to clusters which fit the cluster’s centroid very well;

the rest is accumulated in containers, cf. Section 4.4. Further, recall that the polarity

label for a new arriving review is learned by the cluster specific classifier that was derived

from the most proximal cluster to which the review was assigned, cf. Section 4.3.1.3; the

label of a review assigned to a container is learned by the default classifier whereas the

default classifier is trained upon all reviews which belong to (sub)clusters.

Figure 4.34: [
Kappa on ReviewHu and ReviewJi varying δG] Kappa: ReviewHu (left),ReviewJi (right)
over time for different values of δG

Hence, a large value on δG leads to less reviews being assigned to clusters rather

many reviews are accumulated in containers whereas the label for those is learned by

the default classifier. Moreover, the larger δG is set, the fewer reviews are assigned to

clusters and thus the default classifier is trained on only few reviews. Our experiments,

depicted in Figure 4.34, show that a large value (0.7) on the similarity threshold exposes

144

the highest kappa values over time along the two streams. That is, the default classifier

and the cluster specific classifiers work very well if (a) the cluster specific classifiers are

trained upon reviews being rather similar in content and (b) the default classifier is

trained upon a moderate number of reviews.

4.6.7.2 Results on the effect of KG

The number of global cluster KG determines the number of cluster specific classifiers

at the first level. The smaller the value of KG the less cluster specific classifiers are

utilized. A big value for KG would probably result in many small and find grained first

level clusters, i.e. many clusters which capture only few reviews which are rather similar

to each other. Thus the associated classifiers are very specific since they are trained

upon few, very similar, reviews.

Figure 4.35: Kappa: ReviewHu (left),ReviewJi (right) over time for different values of
KG

Our experiments on ReviewHu (cf. left of Figure 4.35) reveal that too many first

level cluster (8 and 12) result in low classifier performance. The best kappa (most stable

and highest value) over time is shown by KG = 4. Probably the number of reviews

covered by a cluster and therefore to train a classifier is to less obtaining a classifier that

performs well. Similar conclusion can be made for stream ReviewJi as depicted in the

right picture of Figure 4.35: the highest and most stable kappa over time is achieved by

KG = 8 while 12 global cluster expose the lowest quality of the classifier. The difference

of the value for KG achieving the highest kappa among the two streams is because of

the different number of properties captured by the streams, cf. Section 4.6.1.

4.6.7.3 Results on the effect of α

A high value for the usefulness threshold α includes less reviews drifting from the un-

derlying population of the stream while a small α allows to include more reviews that

vary from population of the stream. Thus, considering drift regarding the word class

distributions, cf. Section 3.3.2, requires a small α.

145

Figure 4.36: Kappa: ReviewHu (left),ReviewJi (right) over time for different values of
α

Figure 4.36 depicts the kappa over time for different values of α (1.0, 0.5, 0.0, -0.5,

-1.0) for ReviewHu on the left and ReviewJi on the right. For stream ReviewHu the

most stable and highest kappa over time can be achieved by α = 0.5 and −1.0. The

results on ReviewJi expose a good performance by α = 0.0 at the beginning but as the

stream progresses, α = −0.5 shows high kappa values; as approaching the end of the

stream α = 0.5 shows the best kappa values. Hence, for streams that are somewhat

homogeneous towards product properties, such as ReviewHu, adapting the classifiers

with reviews containing drift regarding the underlying word class distributions helps

to improve the performance of the classifier. Streams which are more diverse towards

product properties, require different settings of α along the stream. This might be due

to the changing diversity over time, i.e. the number of properties referred by documents

per batch differs; also the entropy regarding the polarity label per batch fluctuates

(cf. Figure 4.8 and 4.9). Thus, we might adjust α over time. Fitting α towards the

underlying diversity of the stream is an open issue though.

4.7 Discussion and Conclusion

In this chapter, we presented algorithms for the discovery of explicit product properties

over an opinionated stream of product reviews. In particular, we presented the frame-

work SENTISTREAM for the extraction of product properties from product reviews and

the monitoring of attitudes towards these properties over time. SENTISTREAM en-

compasses stream clustering over an evolving set of dimensions, extending our previous

methods presented in [152] and [154] with a more elaborated adaptation mechanism

and a technique to merge such subclusters which show similar content while moving

towards each other. SENTISTREAM incorporates our semi-supervised stream clas-

sification method introduced in Section 3 and presented in [153] that learns property

polarity inside each cluster. More specifically, the polarity of the derived properties is

assessed by learning a classifier inside each (sub)cluster; the classifier learns the polarities

of the reviews in the cluster and then propagates this polarity to the cluster’s property

146

based on majority voting. In this chapter though, we concentrated on the clustering

part as the classifier is discussed in Chapter 3 in much detail; we also reported on the

impact of clustering towards the classification quality as well as the performance of the

cluster specific classifiers.

SENTISTREAM derives a two-level hierarchy of properties and their refined sub-

properties, associates a polarity to each property and subproperty in the hierarchy, and

then monitors each propertie’s lifeline as the stream progresses. Stream evolution im-

plies that properties may disappear, while new ones emerge, and that their polarity

changes. Accordingly, we propose mechanisms for their monitoring and adaptation to

evolution, paying emphasis on the accumulation of novel reviews that seem like out-

liers at first but may be indicative of an emerging concept, i.e. reviews that represent a

new concept which manifests itself slowly; we accommodate them into containers, which

are occasionally merged with clusters while retaining the properties represented by the

clusters.

To avoid outliers and to suppress properties that appear only casually in the opin-

ionated reviews, we introduce the notion of important review, as one that is similar to

many other reviews and can thus serve as their representative: the extraction of prop-

erties is based on the important reviews in the clusters, ensuring that properties remain

robust and stable over time. Old reviews are assigned less weight and are forgotten after

a while, ensuring that the hierarchy of properties is dominated by concepts appearing

in new documents. While our approaches in [152] and [154] do not consider moving

clusters, SENTISTREAM also merges subclusters with very similar content and thus

examines clusters moving towards each other. Moreover we assess the polarity of prop-

erties from the polarity of the reviews in each cluster. This allows us to predict the label

of new arriving reviews in a semi-supervised way, using only an initial seed of labeled

reviews. We opt for a semi-supervised method as it is a more realistic approach towards

the real-world scenario where there is only a limited amount of labeled reviews available.

Performance We report on extensive experiments on two opinionated streams, one

containing a modest number of properties, the other containing a rather large number

of properties. The goal of the experiments is to investigate (a) how different parameter

settings affect the performance of the algorithms over time, (b) how cluster merging in-

fluences the hierarchy towards memory usage and quantity of reclusterings from scratch,

(c) how the two-level hierarchy performs in contrast to flat clustering and (d) how the

cluster specific classifiers perform in contrast to a single classifier in fully supervised and

semi-supervised case.

In terms of (a) our results show that the effect of the parameters differs among

the streams. This is due to the different complexity of the streams, e.g. the decay

factor λ does not affect the quality of our method upon stream ReviewHu whereas it

147

effects the stability of the clusters for complex streams, such as ReviewJi, positively. One

important influence factor for our algorithm, across the streams, is the threshold β, which

determines the number of important reviews being retained for learning. The impact of

this threshold is even more paramount than the decay factor λ that regulates how soon

reviews are forgotten. This is not surprising, since the concept of review importance is

meant to bypass the naive forgetting mechanism of simply weighting all past reviews

alike, depending only on their age. The number of global resp. local clusters is also a

decisive factor for our method: if the number of global clusters is set to be small, this

leads to lower performance, even if the number of local clusters is large. In other words,

the first level of the hierarchy seems to play a more influential role in capturing product

properties than the second level. An explanation is that the product properties in the

datasets are distinct from each other and cannot be refined well.

Regarding (b), the two modes of adaptation, local reclustering, i.e. reclustering at

the second level, and internal cluster merges lead to better memory usage while storing

less important reviews but not loosing information regarding the true class distribution.

Additionally, internal-merge responds smoothly to drift while adapting the hierarchy

over time so that changes in the stream are reflected by the hierarchy without any need

of rebuilding the hierarchy from scratch.

Towards (c) the two level hierarchy overcomes the flat clustering in terms of cluster

quality and runtime, i.e. computing more pure clusters which share more common content

in a short runtime. In terms of (d), the cluster specific classifiers are well suited for

semi-supervised classification as overcoming the single classifier for both streams. This

is because the few labeled reviews are promoted better in cluster specific classifiers than

in a single global classifier where they can get lost. More specifically, the cluster specific

classifiers capture a smaller range of properties as being trained on subsets (clusters) of

reviews that cover the same content rather than on one huge set with diverse reviews.

This emphasizes the initial labeled reviews and reduces the classification error of arriving

reviews.

148

Chapter 5

Conclusion

This chapter concludes the thesis. First we summarize the thesis in the next section.

Section 5.2 discusses the contributions made by the thesis, followed by a discussion

towards the practical utilization of our method. In the last section we present future

work.

5.1 Summary

This thesis deals with the extraction and monitoring of product properties and their

attitudes over time from a stream of opinionated documents, e.g. product reviews or

tweets. In particular the thesis delivers a framework for property-oriented opinion stream

mining that enables a fine grained monitoring of properties and their attitudes over time.

It promotes a fine grained analysis of the opposing sentiments towards individual product

properties considering concept drift among the sentiment as well as the changing nature

of the products’ latent market environment.

First, methods of semi-supervised stream classification were studied and applied in

a stream environment when only limited amount of labeled data is available. In par-

ticular, we utilized self-training to tune the basic learner (cf. Section 3.3.1) being ap-

plicable to such a stream environment. Two different approaches ADASTREAM and

S*3Learner were introduced that select unlabeled documents to be added to the train-

ing set. The proposed methods are based on heuristics that compute how informative

and reliable new arriving documents and the distinct words of them are. We further

extended both methods by age-depending weighting functions that allow to gradually

downgrade old documents. The elimination of old documents from a learned model has

not been considered in semi-supervised stream classification before. To measure the

benefits, a comprehensive evaluation on real world datasets was employed. We com-

pared the semi-supervised methods against fully supervised baselines, i.e. true labels are

149

always available throughout the stream. In the case of a very small initial set of la-

beled instances and a stream capturing many unknown words, our approach S*3Learner

overcomes the supervised baselines. The applicability of the two approaches differ due

to their different focus of new arriving content: ADASTREAM considers new arriving

documents while S*3Learner regards the single words of the new instances. The ex-

periments exhibit that S*3Learner is preferred for streams that carry a high variety of

words while ADASTREAM is chosen for streams capturing much drift. Moreover, the

evaluation considered the interplay of adaptation and ageing exposing that downgrading

old documents fails, i.e. the performance of the classifiers drops, if the initial seed does

not contain many words having a pure class count distribution. Due to its application

on a small amount of labeled data, both classifiers are well suited for real world problems

such as the classification of product reviews towards its polarity.

Second, we proposed the framework SENTISTREAM for discovering and monitoring

explicit opinionated product properties. The framework comes along with a two-level

hierarchy that supports a fine grained perspective of (sub)properties. The hierarchy

is extracted and maintained by a explicitly developed stream clustering algorithm rep-

resenting properties by cluster centroids; and retaining documents not fitting to any

cluster into containers which are regularly merged with clusters adjusting the hierarchy

with only few changes of the centroids towards concept drift. Additionally, two clusters

moving towards each other as the stream progresses, are merged into one single clus-

ter, adapting the hierarchy internally rather than recomputing from scratch and thus

reducing the computation costs while still reflecting the underlying population. As a

further concept for operating under concept drift we remove documents based on their

importance that they exhibit w.r.t. the related property (cluster), i.e. those documents

are filtered out which are old and have less relevance. To assess and monitor the polarity

of properties we train a cluster specific classifier (ADASTREAM) upon each extracted

(sub)cluster based on the underlying documents belonging to the related cluster. The

polarity label of a property is determined while classifying the documents of that prop-

erty by the related cluster specific classifier and employing majority voting across the

labels of the documents. The extensive evaluation on two real world streams, that differ

in the variation of properties, reveal that the values of the parameters should be selected

carefully and in terms of the property variety reflected by the incoming stream, e.g. a

large number of first level clusters is required for a high variety. The hierarchy can be

stabilized along the stream when considering the history of the stream. Moreover, the

experiments exhibit that internal cluster merging adapts the model smoothly regarding

concept drifts and also ends up in better memory usage while storing less documents.

It was further shown that the two level hierarchy overcomes flat clustering (only one

level) in terms of cluster quality and runtime; the cluster specific classifiers emphasize

150

the initial labeled documents and reduce classification errors, thus they are well suited

for real world problems where only a limited number of labeled instances is available.

5.2 Contributions

In the following we discuss the contributions made by this thesis regarding the research

tasks presented in Section 1.1. We therefore repeat the tasks here and discuss in terms

of individual contributions.

Research Task 1. Classify the polarity of documents as either positive or negative.

Train a classification model and employ the model upon arriving documents to learn

whether these documents are positive or negative.

In this thesis we applied a multinomial boolean naive bayes model as sentiment classi-

fier to predict the label of documents in a stream (Section 3.3.1). The classifier is trained

upon a small set of labeled documents and predicts the label of unlabeled documents as

either positive or negative.

Research Task 2. As social streaming data evolves w.r.t the vocabulary, w.r.t. the

implicit product properties and w.r.t. the positive or negative attitude of people towards

these properties; how to adapt the classification model according to the evolving stream?

Two different strategies to select reliable and informative documents for adaptation

are implemented by the classifiers. One operates on the word level selecting unbiased

and reliable words to adapt the classifier (Section 3.3.3) and the other promotes adap-

tation by whole documents (Section 3.3.2). Moreover, a ageing concept was developed

that downgraded old documents. We extended the classifiers so that old and outdated

documents are downgraded (Section 3.4). Thus the classifiers are dynamic in case of

concept drift and might reflect underlying changes of the stream.

Research Task 3. As social data streams face scarcity of labels; how to train a classifier

on a small set of labeled instances and how to adapt the classifier with new arriving,

unlabeled documents for which the classifier predicts the label to reflect the evolving data

stream?

The two proposed classifiers are trained upon a small set of labeled documents and

apply self-training (cf. Section 3.1.1.1) to adapt the trained model with documents for

which the label was predicted, cf. Section 3.3. In particular, the classifiers maintain for

each word two counts over time: counting the number of times a word appeared within

positive resp. negative labeled documents. The counts are incrementally expanded to

cover emerging changes in the word count distributions, cf. Section 3.3.1.2.

151

Research Task 4. Derive the most interesting, explicit product properties from a stream

of textual documents, e.g. on which is reported predominantly. As the stream progresses;

how to adjust the properties, how to forget unpopular ones and how to recognize emerging

ones?

In Section 4.2 a strategy to assess documents on their importance is proposed. The

importance measure is based on our cluster hierarchy while it takes the document’s

relevance for its related (sub)cluster into account. To cover the progress of the stream,

the documents are weighted by its age, e.g. old documents are assigned a low weight

so that the important scores evolve over time; documents with a low importance are

removed from the model. Hence, only important documents are retained and contribute

to the clusters centroid which is utilized as the representative for a property. Emerging

clusters are captured by the fact that documents describing the emerging cluster may not

fit to the current cluster hierarchy. Documents that do not fit any cluster of the hierarchy

are accumulated in containers; the accumulated documents may shape a emerging cluster

as more documents arrive following the same property (cf. Section 4.4). We incorporate

the emerging cluster while merging the container with the most proximal cluster.

Research Task 5. As polarity learning is prone to polysemous words across the dis-

cussed product properties; how to learn the polarity label of a document discussing a

specific product property?

In Chapter 4 we propose cluster specific classifiers. Based on the cluster hierarchy,

we train individual classifiers upon each (sub)cluster. While training a cluster specific

classifier only documents of the same cluster are used, and thus only words related to

the same property are utilized.

5.3 Application / Benefits

As stated above, property-oriented opinion stream mining is a valuable computational

process to revealing and monitoring attitudes of properties in a stream of opinionated

documents. From the viewpoint of a potential customer it may help to give the cus-

tomer a comprehensive overview of the product. For example we may reveal that most

customers of a specific camera are pleased with it in general; as time goes by, though,

many people complain about the short battery-life and the heavy weight of the camera

while having predominantly a positive sentiment over time. The fine-grained analysis

may promote a detailed summary of the single product properties so as to harvest di-

rected information towards properties of interest. Thus, it helps to alleviate making a

ignorant purchase decision. For a vendor, it can reveal trends of the product providing a

detailed monitoring of individual product properties and hence getting quickly enrolled

with problems of a product.

152

Forums Blogs

Review Sites ...

Internet

Opinionated
stream

customers

consumed by
create/
adjust

camera company

read

write opinion
become

Social media monitoring

Context

Context

Figure 5.1: Example: usage of social media monitoring influencing customers and com-
pany of a camera

To summarize, this thesis provides methods to support social media monitoring while

extracting entity properties and assessing them regarding their polarity label as the

stream of opinionated documents evolves. Figure 5.1 depicts an example using social

media monitoring to influence customers and companies: a camera company creates a

new camera on the basis of monitoring social context which is derived from the related

underlying opinionated stream. This stream is fed by the opinions of customers which

purchased similar products to those of the company. Next, people being interested in a

new camera are persuaded buying the camera and thus becoming new customers while

benefiting from the experience of previous customers.

5.4 Future Work

The methods studied in this thesis can be used as foundation for interesting research in

the field of opinion stream mining. In the following we discuss briefly possible aspects

of future work.

153

Semi-Supervised Polarity Classification Semi-supervised stream classification on

opinionated streams is a new topic in opinion stream mining and deserves, due to its

practical potential, more attention. Nowadays, most of the real world classification prob-

lems in opinion mining deal with dynamic environments for which only small portions

of evidence is available (scarcity of labeled instances). Analyzing such data requires

classifiers which are adaptable, while not asking for true labels, and thus overcome the

changing environment of the underlying stream. Future work include more elaborated

mechanisms to find reliable words, i.e. selecting such words for which enough informa-

tion is available, and also heuristics for the selection of informative new documents. We

further want to investigate how our method performs when the concept of words changes

quickly, i.e. within a short while words which express positive sentiment change as being

used to express negative opinions. Moreover, we are eager to find mechanisms to adapt

the seed but without propagating classification errors, thus changes of words within the

seed would be examined.

Another step of future work includes how our heuristics selecting informative content

to adapt the classifier would perform when employing them upon other basic classifiers

such as Maximum Entropy or Support Vector Machines. These basic classifiers exposed

good performance in case of static sentiment analysis as shown by Turney [135]. So,

it would be interesting to see how they perform when coupled with our heuristics in a

stream environment.

Cluster Specific Classifiers The findings of the proposed cluster specific classifiers

are for a particular type of opinionated stream, one containing product properties deemed

important by the consumers. As a next step, we want investigate the performance of the

cluster specific classification, for different types of opinionated streams, such as longer

microblog entries referring to events or politics. There, we expect more stable polarized

properties (they would correspond to topics of discussion) with a stronger correlation

between the polarity of the individual words and the polarity of the property.

From the technical point of view, the coupling of stream clustering with classification

deserves refinement: in SENTISTREAM, the semi-supervised stream classifier (ADA-

STREAM) is learned inside each cluster. In some cases though, our second developed

classifier S*3Learner adjusts better to drifts as shown by the experiments. Hence future

work encompasses using S*3Learner as cluster specific classifier rather than ADASTR-

EAM.

SENTISTREAM only distinguishes between positive and negative sentiment, i.e. neu-

tral reviews are not considered at all. We intend to include reviews with neutral label

in the initial seed, and investigate how the three-class problem setting affects the per-

formance of the semi-supervised cluster specific stream classifier.

154

Clustering Framework Future work includes further simplification of the cluster

adaptation process: the updating of the set of dimensions may be resource-demanding

and distressing, because it forces the human expert to inspect new product properties

and map them mentally to those that have been monitored before. We intend to find

ways of modifying the set of dimensions as infrequently as possible, e.g. by considering

only a fixed set of selected words as dimensions. We also want to devise visualization

aids for the human expert to help him/her link the old and the new product properties.

Also, measuring the quality of evolving derived property is an open issue, for which we

want to identify appropriate measures.

Our framework considers sentences as independent; also the incoming documents

refer to only one property. Exploiting the correlations among sentences and the con-

sideration of documents referring to multiple properties is issue for future work. We

examined two levels of granularity in the framework. However, some application require

a more granular view. Future work includes therefore a study of a dynamic hierarchy

not limited to a fixed number of levels.

155

Appendix A

Document Preprocessing

A.1 List of stop words

’tis, ’twas, a, able, about, across, after, ain’t, all, almost, also, am, among, an, and,

any, are, aren’t, as, at, be, because, been, but, by, can, can’t, cannot, could, could’ve,

couldn’t, dear, did, didn’t, do, does, doesn’t, don’t, either, else, ever, every, for, from, get,

got, had, has, hasn’t, have, he, he’d, he’ll, he’s, her, hers, him, his, how, how’d, how’ll,

how’s, however, i, i’d, i’ll, i’m, i’ve, if, in, into, is, isn’t, it, it’s, its, just, least, let, likely,

may, me, might, might’ve, mightn’t, most, must, must’ve, mustn’t, my, neither, no, nor,

of, off, often, on, only, or, other, our, own, rather, said, say, says, shan’t, she, she’d,

she’ll, she’s, should, should’ve, shouldn’t, since, so, some, than, that, that’ll, that’s, the,

their, them, then, there, there’s, these, they, they’d, they’ll, they’re, they’ve, this, tis,

to, too, twas, us, wants, was, wasn’t, we, we’d, we’ll, we’re, were, weren’t, what, what’d,

what’s, when, when, when’d, when’ll, when’s, where, where’d, where’ll, where’s, which,

while, who, who’d, who’ll, who’s, whom, why, why’d, why’ll, why’s, will, with, won’t,

would, would’ve, wouldn’t, yet, you, you’d, you’ll, you’re, you’ve, your

156

Appendix B

Results on Opinion Stream
Classification

This chapter shows the detailed results of the stream classifiers proposed in Chapter 3.

Experiments on three real world datasets were conducted; the datasets were described in

Section 3.6.1. All results are pictured while using kappa over time as evaluation measure.

Figure B.1: Kappa over time for ADASTREAM for different values of α on stream
ReviewJi natural order (left, |S|=1.090) and re-ordered (right, |S|=140), drawn as (α)

Figure B.2: Kappa over time for ADASTREAM for different values of α on stream
TwitterTS natural order (left, |S|=2.500) and re-ordered (right, |S|=10.000), drawn as
(α)

157

Figure B.3: Kappa over time for ADASTREAM for different values of α on stream
ReviewHu natural order (left, |S|=1.090) and re-ordered (right, |S|=140), drawn as (α)

Figure B.4: Kappa over time for ADASTREAM + ageing for different values of λ
and α = 0.0 on stream ReviewJi natural order (left, |S|=1.090) and re-ordered (right,
|S|=140), drawn as (λ)

Figure B.5: Kappa over time for S*3Learner + ageing for different values of λ and
MinFreq = 10,MaxEntr = 0.8 on stream ReviewJi natural order (left, |S|=1.090) and
re-ordered (right, |S|=140), drawn as (λ)

Figure B.6: Kappa over time for ADASTREAM + ageing for different values of λ
and α = 0.0 on stream TwitterTS natural order (left, |S|=2.500) and re-ordered (right,
|S|=10.000), drawn as (λ)

158

Figure B.7: Kappa over time for S*3Learner + ageing for different values of λ and
MinFreq = 10,MaxEntr = 0.8 on stream TwitterTS natural order (left, |S|=2.500) and
re-ordered (right, |S|=10.000), drawn as (λ)

Figure B.8: Kappa over time for ADASTREAM + ageing for different values of λ and
α = 0.0 on stream ReviewHu natural order (left, |S|=50) and re-ordered (right, |S|=100),
drawn as (λ)

Figure B.9: Kappa over time for S*3Learner + ageing for different values of λ and
MinFreq = 5,MaxEntr = 0.8 on stream ReviewHu natural order (left, |S|=50) and re-
ordered (right, |S|=100), drawn as (λ)

159

Appendix C

Results on SENTISTREAM

This chapter shows the detailed results of our framework SENTISTREAM presented in

Chapter 4.

C.1 Results on the cluster specific classifiers

This section shows the results on the cluster specific classifiers in SENTISTREAM as

described in Section 4.3.1.2. Experiments on two real world datasets were conducted;

the datasets were described in Section 4.6.1. all results are pictured while using kappa

over time as evaluation measure.

Figure C.1: Kappa over time for SENTISTREAM for different values of δL; the other
parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left and
ReviewJi right, drawn as (δL)

Figure C.2: Kappa over time for SENTISTREAM for different values of KL; the other
parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left and
ReviewJi right, drawn as (KL)

160

Figure C.3: Kappa over time for SENTISTREAM for different values of γ; the other
parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left and
ReviewJi right, drawn as (γ)

Figure C.4: Kappa over time for SENTISTREAM for different values of seed size; the
other parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left
and ReviewJi right, drawn as (seed size)

Figure C.5: Kappa over time for SENTISTREAM for different values of β; the other
parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left and
ReviewJi right, drawn as (β)

Figure C.6: Kappa over time for SENTISTREAM for different values of λ; the other
parameters are set regarding Table 4.6 in Section 4.6.5, α = 0.0; ReviewHu left and
ReviewJi right, drawn as (λ)

161

C.2 Cluster Structure

This section depicts the cluster structure which was discussed in Section 4.6.4.

Table C.1: Centroid-based label for stream ReviewHu, parameters
used: KG=4; KL=4; S=100; streamSpeed=50; δG=0.4; δL=0.8;
β= 0.2; λ = 0.5; k=4, γ=0.3

time 1 2 3 4 5 6 7 8 9

c:1 quality;
router;
speakers;
interface;

setup;
touch;
interface;
quality;

setup;
touch;
interface;
quality;

c:2 diaper;
pail;
micro;
person;

diaper;
player;
problem;
screen;

sound;
size;
price;
diaper;

c:3 setup;
instal-
lation;
touch;
fact;

c:4 price;
sound;
head-
phones;
set;

price;
sound;
head-
phones;
set;

c:6 time;
control;
pocket;
errors;

right;
adjust-
ment;
pocket;
height;

c:7 adjust-
ment;
height;
bit; hand;

c:8 syman-
tec;
folder;
anything;
nortron;

syman-
tec;
folder;
anything;
files;

c:9 router;
setup;
plastic;
player;

router;
setup;
plastic;
pieces;

c:11 camera;
player;
design;
down-
loads;

design;
cameras;
colors;
player;

design;
cameras;
colors;
player;

colors;
quality;
picture;
refund;

need;
refills;
brands;
colors;

c:12 quality;
ipod;
mini;
hassles;

quality;
ipod;
mini;
zen;

quality;
ipod;
mini;
zen;

quality;
ipod; zen;
hassles;

ipod;
com-
puter;
people;
pc;

c:13 quality;
picture;
colors;
desire;

c:14 program;
people;
hate;
love;

program;
people;
ipod; pc;

c:16 battery;
problem;
size; life;

battery;
prob-
lem; life;
hours;

battery;
prob-
lem; life;
hours;

problem;
product;
night-
mare;
ability;

problem;
product;
night-
mare;
ability;

c:17 capacity;
norton;
untill;
buttons;

nokia;
use;
price;
backup;

nokia;
use;
price;
backup;

days;
recharge;
nokia;
use;

hand;
zen; al-
ternative;
wmas;

c:18 itunes;
ipod;
voila;
cable;

itunes;
ipod;
usb;
software;

itunes;
ipod;
usb;
software;

Continued on next page

162

Table C.1 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:19 diapers;
works;
odor;
land;

diapers;
odor;
pail; life;

c:20 router;
adjust-
ment;
height;
setup;

router;
adjust-
ment;
height;
setup;

router;
adjust-
ment;
height;
setup;

c:21 battery;
amazon;
hitachi;
time;

any-
thing;
diaper;
plastic;
etc;

any-
thing;
diaper;
plastic;
info;

c:22 syman-
tec;
support;
software;
tech;

syman-
tec;
folder;
window;
anything;

syman-
tec;
folder;
window;
anything;

c:23 control;
range;
ipod;
ones;

c:24 plenty;
power;
micro;
hitachi;

plenty;
power;
micro;
hitachi;

c:25 etc;
avail; life;
battery;

head-
phones;
earbud;
norton;
support;

c:27 don;
etc; gb;
screen;

don; etc;
norton;
gb;

c:33 bit;
router;
works;
battery;

c:34 quality;
ipod; zen;
micro;

c:35 pictures;
camera;
quality;
vga;

c:38 software;
number;
solutions;
inter-
faces;

c:39 diapers;
odor;
baby;
years;

c:40 prob-
lems;
instal-
lation;
people;
breeze;

c:43 use;
ipod;
ease;
battery;

c:44 phone;
size;
blue-
tooth;
time;

c:46 head-
phones;
ones; ve;
didn;

c:48 player;
price;
don; mp;

Continued on next page

163

Table C.1 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:49 screen;
appear-
ance;
fluid;
knob;

c:50 time;
interface;
touch-
pad;
buttons;

c:51 cam-
era; xp;
windows;
software;

c:57 parts;
strap;
ipod;
anything;

parts;
strap;
ipod;
setup;

parts;
strap;
ipod;
setup;

c:58 laptop;
card;
movies;
connec-
tion;

laptop;
card;
movies;
connec-
tion;

laptop;
card;
movies;
connec-
tion;

c:59 player;
drop; etc;
drive;

size;
player;
bit;
settings;

battery;
size;
player;
bit;

c:62 speed;
control;
size;
router;

sound;
speed;
interface;
bonus;

sound;
speed;
interface;
bonus;

c:63 pail;
hand;
refills;
diapers;

pail;
hand;
refills;
screen;

pail;
hand;
refills;
screen;

c:64 dura-
bility;
sound;
bonus;
interface;

c:67 quality;
couldn;
phone;
support;

couldn;
quality;
kbps;
head-
phones;

c:68 ipod;
opinion;
quality;
music;

c:70 quality;
pictures;
paper;
camera;

time;
quality;
pictures;
elph;

c:72 battery;
lithium;
station;
camera;

battery;
lithium;
gas;
vacation;

lithium;
gas; va-
cation;
place;

c:73 hours;
addition;
charge;
battery;

hours;
addition;
charge;
battery;

hours;
addition;
charge;
battery;

c:74 web; dis-
charges;
browser;
power;

c:76 quality;
pictures;
couldn;
diaper;

c:78 player;
lcd;
drive;
places;

c:79 time;
router;
stores;
opinion;

164

Table C.2: Members-based property distribution for stream
ReviewHu, parameters used: KG=4; KL=4; S=100;
streamSpeed=50; δG=0.4; δL=0.8; β= 0.2; λ = 0.5; k=4,
γ=0.3

time 1 2 3 4 5 6 7 8 9

c:1 inter-
face:40;
in-
stall:20;
qual-
ity:20;
acces-
sories:20;

setup:27;
inter-
face:20;
install:7;
soft-
ware:7;

setup:27;
inter-
face:20;
install:7;
soft-
ware:7;

c:2 diaper
pail:33;
blue-
tooth:17;
adjust-
ment:17;
power:17;

diaper
pail:22;
screen:11;
blue-
tooth:11;
adjust-
ment:11;

price:14;
sound:14;
diaper
pail:14;
work-
ing:9;

c:3 setup:44;
soft-
ware:11;
touch-
pad:11;
power:11;

c:4 price:27;
sound:27;
ease of
use:9;
diaper
pail:9;

price:27;
sound:27;
ease of
use:9;
diaper
pail:9;

c:6 sup-
port:20;
sound
qual-
ity:20;
size:20;
con-
trol:10;

adjust-
ment:17;
size:12;
sup-
port:8;
sound
quality:8;

c:7 adjust-
ment:57;
soft-
ware:14;
price:14;
size:14;

c:8 in-
stall:50;
sup-
port:50;

in-
stall:20;
sup-
port:20;
sound:20;
use:20;

c:9 in-
stall:25;
speed:25;
setup:25;
head-
phones:25;

in-
stall:25;
speed:25;
setup:25;
head-
phones:25;

c:11 de-
sign:25;
size:17;
look:8;
price:8;

de-
sign:17;
size:13;
sup-
port:9;
use:9;

de-
sign:17;
size:13;
sup-
port:9;
use:9;

sup-
port:20;
look:10;
battery
life:10;
touch-
pad:10;

sup-
port:25;
look:12;
pic-
tures:12;
power:12;

c:12 sound
qual-
ity:25;
soft-
ware:12;
sound:12;
qual-
ity:12;

sound
qual-
ity:25;
soft-
ware:12;
sound:12;
qual-
ity:12;

use:18;
sound
qual-
ity:18;
iTunes:9;
soft-
ware:9;

iTunes:25;
use:25;
inter-
face:25;
sound
qual-
ity:25;

iTunes:100;

c:13 pic-
tures:33;
de-
sign:33;
size:33;

Continued on next page

165

Table C.2 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:14
iTunes:100; iTunes:50;

inter-
face:50;

c:16 bat-
tery:29;
size:21;
installa-
tion:14;
battery
life:14;

bat-
tery:29;
size:21;
installa-
tion:14;
battery
life:14;

bat-
tery:29;
size:21;
installa-
tion:14;
battery
life:14;

stor-
age:100;

stor-
age:100;

c:17 capac-
ity:40; in-
stall:20;
battery
life:20;
inter-
face:20;

speed:14;
capac-
ity:14;
install:7;
battery
life:7;

in-
stall:10;
speed:10;
use:10;
capac-
ity:10;

speed:9;
use:9;
adjust-
ment:9;
install:5;

speed:8;
battery
life:8;
adjust-
ment:8;
sound:8;

c:18
iTunes:100; iTunes:33;

adjust-
ment:33;
pic-
tures:33;

iTunes:20;
odor:20;
adjust-
ment:20;
pic-
tures:20;

c:19 odor:50;
size:50;

odor:50;
size:50;

c:20 adjust-
ment:27;
setup:13;
size:13;
install:7;

sound:23;
installa-
tion:8;
look:8;
odor:8;

sound:20;
installa-
tion:10;
look:10;
odor:10;

c:21 price:40;
bat-
tery:20;
power:20;
sound
qual-
ity:20;

c:22 sup-
port:43;
soft-
ware:29;
in-
stall:14;
screen:14;

in-
stall:33;
screen:33;
soft-
ware:33;

in-
stall:33;
screen:33;
soft-
ware:33;

c:23 con-
trol:14;
sound:14;
ease of
use:14;
use:14;

c:24
screen:14;
blue-
tooth:14;
capac-
ity:14;
power:14;

blue-
tooth:25;
capac-
ity:25;
power:25;
small:25;

c:25 battery
life:20;
use:20;
diaper
pail:20;
work-
ing:20;

sup-
port:22;
installa-
tion:11;
battery
life:11;
use:11;

c:27
c:33 battery

life:19;
bat-
tery:19;
power:11;
speed:6;

Continued on next page

166

Table C.2 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:34
sound:25;
sup-
port:11;
sound
quality:8;
works:6;

c:35 pic-
tures:54;
cam-
era:23;
use:8;
size:8;

c:38 soft-
ware:60;
install:7;
screen:7;
blue-
tooth:7;

c:39 use:40;
odor:27;
diaper
pail:13;
refills:13;

c:40 installa-
tion:29;
pic-
tures:7;
head-
phones:7;
setup:7;

c:43 use:23;
battery
life:9;
design:9;
size:9;

c:44 size:43;
blue-
tooth:14;
look:7;
screen:7;

c:46 head-
phones:43;
adjust-
ment:14;
speed:14;
sound:14;

c:48 price:27;
look:7;
iTunes:7;
battery
life:7;

c:49
screen:62;
price:12;
use:12;
LCD:12;

c:50 touch-
pad:24;
look:18;
sup-
port:12;
inter-
face:12;

c:51 soft-
ware:29;
cam-
era:14;
ease of
use:14;
small:14;

c:57 price:50;
acces-
sories:50;

odor:17;
price:17;
sound:17;
setup:17;

odor:17;
price:17;
sound:17;
setup:17;

Continued on next page

167

Table C.2 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:58 battery
life:25;
installa-
tion:12;
in-
stall:12;
blue-
tooth:12;

battery
life:25;
installa-
tion:12;
in-
stall:12;
blue-
tooth:12;

battery
life:25;
installa-
tion:12;
in-
stall:12;
blue-
tooth:12;

c:59 qual-
ity:20;
diaper
pail:20;
inter-
face:20;
work-
ing:20;

iTunes:12;
speed:12;
qual-
ity:12;
diaper
pail:12;

iTunes:11;
speed:11;
bat-
tery:11;
qual-
ity:11;

c:62 con-
trol:30;
inter-
face:20;
size:20;
speed:10;

con-
trol:21;
inter-
face:21;
price:16;
size:11;

con-
trol:21;
inter-
face:21;
price:16;
size:11;

c:63 refills:50;
use:25;
size:25;

refills:33;
installa-
tion:17;
screen:17;
use:17;

refills:33;
installa-
tion:17;
screen:17;
use:17;

c:64 price:33;
inter-
face:22;
con-
trol:11;
sound:11;

c:67
sound:50;
qual-
ity:50;

sound:57;
qual-
ity:29;
sound
qual-
ity:14;

c:68
sound:50;
sound
qual-
ity:50;

c:70 pic-
tures:50;
small:50;

odor:7;
sup-
port:7;
touch-
pad:7;
pic-
tures:7;

c:72 bat-
tery:100;

bat-
tery:50;
de-
sign:50;

bat-
tery:67;
de-
sign:33;

c:73 battery
life:50;
bat-
tery:50;

bat-
tery:50;
battery
life:17;
adjust-
ment:17;
use:17;

bat-
tery:50;
battery
life:17;
adjust-
ment:17;
use:17;

c:74 bat-
tery:100;

c:76
sound:25;
qual-
ity:12;
soft-
ware:6;
odor:6;

c:78 work-
ing:25;
inter-
face:25;
LCD:25;
stor-
age:25;

Continued on next page

168

Table C.2 – continued from previous page
time 1 2 3 4 5 6 7 8 9

c:79 battery
life:25;
price:25;
sup-
port:25;
works:25;

169

Bibliography

[1] S. Abney. Semisupervised Learning for Computational Linguistics. Chapman &

Hall/CRC, 1st edition, 2007.

[2] C. C. Aggarwal. Mining text and social streams: A review. SIGKDD Explor.

Newsl., 15(2):9–19, June 2014.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering

evolving data streams. In VLDB, 2003.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand classification of data

streams. In Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’04, pages 503–508, New York, NY,

USA, 2004. ACM.

[5] C. C. Aggarwal and C. K. Reddy, editors. Data Clustering: Algorithms and Ap-

plications. CRC Press, 2014.

[6] C. C. Aggarwal and P. S. Yu. A framework for clustering massive text and cate-

gorical data streams. In SDM, 2006.

[7] Z. Ahmadi and H. Beigy. Semi-supervised ensemble learning of data streams in the

presence of concept drift. In Proceedings of the 7th International Conference on

Hybrid Artificial Intelligent Systems - Volume Part II, HAIS’12, pages 526–537,

Berlin, Heidelberg, 2012. Springer-Verlag.

[8] N. Aston, J. Liddle, and W. Hu. Twitter sentiment in data streams with percep-

tron. Journal of Computer and Communications, Apr. 2014.

[9] N. Aston, T. Munson, J. Liddle, G. Hartshaw, D. Livingston, and W. Hu. Sen-

timent analysis on the social networks using stream algorithms. Journal of Data

Analysis and Information Processing, Apr. 2014.

170

[10] R. Awadallah, M. Ramanath, and G. Weikum. Language-model-based pro/con

classification of political text. In Proceedings of the 33rd International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’10,

pages 747–748, New York, NY, USA, 2010. ACM.

[11] A. Balahur, Z. Kozareva, and A. Montoyo. Determining the polarity and source

of opinions expressed in political debates. In Proceedings of the 10th International

Conference on Computational Linguistics and Intelligent Text Processing, CICLing

’09, pages 468–480, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] M. W. Bartosz Krawczyk. Incremental learning and forgetting in one-class clas-

sifiers for data streams. In Proc. of the 8th Int. Conf. on Computer Recognition

Systems CORES 2013, Milkow, Poland, 2013.

[13] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In

Advances in Neural Information Processing Systems, pages 368–374. MIT Press,

1998.

[14] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble

methods. In Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’02, pages 289–296, New York,

NY, USA, 2002. ACM.

[15] A. Bermingham and A. F. Smeaton. Classifying sentiment in microblogs: Is brevity

an advantage? In Proceedings of the 19th ACM International Conference on

Information and Knowledge Management, CIKM ’10, pages 1833–1836, New York,

NY, USA, 2010. ACM.

[16] A. Bermingham and A. F. Smeaton. Classifying sentiment in microblogs: Is brevity

an advantage? In Proceedings of the 19th ACM International Conference on

Information and Knowledge Management, CIKM ’10, pages 1833–1836, New York,

NY, USA, 2010. ACM.

[17] A. Bifet and E. Frank. Sentiment knowledge discovery in twitter streaming data.

In Proceedings of the 13th International Conference on Discovery Science, DS’10,

pages 1–15, Berlin, Heidelberg, 2010. Springer-Verlag.

[18] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-

dowing. In In SIAM International Conference on Data Mining, 2007.

[19] A. Bifet, G. Holmes, and B. Pfahringer. Moa-tweetreader: real-time analysis in

twitter streaming data. In Proc. of the 14th Int’l. conference on Discovery science,

DS’11, pages 46–60, Berlin, Heidelberg, 2011. Springer-Verlag.

171

[20] B. Bigi. Using kullback-leibler distance for text categorization. In Proceedings of

the 25th European Conference on IR Research, ECIR’03, pages 305–319, Berlin,

Heidelberg, 2003. Springer-Verlag.

[21] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G. Reis, and J. Reynar.

Building a Sentiment Summarizer for Local Service Reviews. In NLPIX, 2008.

[22] S. Blair-goldensohn, T. Neylon, K. Hannan, G. A. Reis, R. Mcdonald, and J. Rey-

nar. Building a sentiment summarizer for local service reviews. In In NLP in the

Information Explosion Era, 2008.

[23] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.

In Proceedings of the Eleventh Annual Conference on Computational Learning The-

ory, COLT’ 98, pages 92–100, New York, NY, USA, 1998. ACM.

[24] J. Bollen, H. Mao, and A. Pepe. Modeling public mood and emotion: Twitter

sentiment and socio-economic phenomena. In ICWSM, 2011.

[25] H. Borchani, P. Larrañaga, and C. Bielza. Mining concept-drifting data streams

containing labeled and unlabeled instances. In Proceedings of the 23rd Interna-

tional Conference on Industrial Engineering and Other Applications of Applied

Intelligent Systems - Volume Part I, IEA/AIE’10, pages 531–540, Berlin, Heidel-

berg, 2010. Springer-Verlag.

[26] L. Bottou and C.-J. Lin. Support vector machine solvers. In L. Bottou,

O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines,

pages 301–320. MIT Press, Cambridge, MA., 2007.

[27] P. H. Calais Guerra, A. Veloso, W. Meira, Jr., and V. Almeida. From bias to opin-

ion: A transfer-learning approach to real-time sentiment analysis. In Proceedings

of the 17th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’11, pages 150–158, New York, NY, USA, 2011. ACM.

[28] E. Cambria, B. Schuller, Y. Xia, and C. Havasi. New avenues in opinion mining

and sentiment analysis. IEEE Intelligent Systems, 28(2):15–21, Mar. 2013.

[29] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving

data stream with noise. In In 2006 SIAM Conference on Data Mining, pages 328–

339, 2006.

[30] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving

data stream with noise. In SDM, 2006.

172

[31] G. Carenini and G. Murray. Methods for mining and summarizing text conver-

sations. In Proceedings of the 35th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR ’12, pages 1178–1179,

New York, NY, USA, 2012. ACM.

[32] V. R. Carvalho and W. W. Cohen. Single-pass online learning: Performance, voting

schemes and online feature selection. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’06,

pages 548–553, New York, NY, USA, 2006. ACM.

[33] H. Chen and D. Zimbra. Ai and opinion mining. IEEE Intelligent Systems,

25(3):74–80, May 2010.

[34] Y. Chen and L. Tu. Density-based clustering for real-time stream data. In KDD,

2007.

[35] J. A. Chevalier and D. Mayzlin. The effect of word of mouth on sales: Online book

reviews. Journal of Marketing Research, 43(3):345–354, August 2006.

[36] Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng. Evolutionary spectral clustering

by incorporating temporal smoothness. In KDD, 2007.

[37] F. Y. Y. Choi. Advances in domain independent linear text segmentation. In Pro-

ceedings of the 1st North American Chapter of the Association for Computational

Linguistics Conference, NAACL 2000, pages 26–33, Stroudsburg, PA, USA, 2000.

Association for Computational Linguistics.

[38] D. Davidov, O. Tsur, and A. Rappoport. Semi-supervised recognition of sarcastic

sentences in twitter and amazon. In Proceedings of the Fourteenth Conference on

Computational Natural Language Learning, CoNLL ’10, pages 107–116, Strouds-

burg, PA, USA, 2010. Association for Computational Linguistics.

[39] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of

the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’00, pages 71–80, New York, NY, USA, 2000. ACM.

[40] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss. Mach. Learn., 29(2-3):103–130, Nov. 1997.

[41] B. Drury, L. Torgo, and J. J. Almeida. Classifying news stories with a constrained

learning strategy to estimate the direction of a market index. IJCSA, 9(1):1–22,

2012.

173

[42] K. B. Dyer and R. Polikar. Semi-supervised learning in initially labeled non-

stationary environments with gradual drift. In The 2012 Int. Joint Conf. on Neural

Networks (IJCNN), 2012.

[43] J. Esparza, S. Scherer, and F. Schwenker. Studying self- and active-training meth-

ods for multi-feature set emotion recognition. In Proceedings of the First IAPR

TC3 Conference on Partially Supervised Learning, PSL’11, pages 19–31, Berlin,

Heidelberg, 2012. Springer-Verlag.

[44] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clus-

tering for mining in a data warehousing environment. In Proceedings of the 24rd

International Conference on Very Large Data Bases, VLDB ’98, pages 323–333,

San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[45] M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm for discov-

ering clusters in large spatial databases with noise. pages 226–231. AAAI Press,

1996.

[46] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for

opinion mining. In In Proceedings of the 5th Conference on Language Resources

and Evaluation (LREC’06, pages 417–422, 2006.

[47] R. Feldman and J. Sanger. The Text Mining Handbook: Advanced Approaches in

Analyzing Unstructured Data. Cambridge University Press, December 2006.

[48] S. Fralick. Learning to recognize patterns without a teacher. IEEE Trans. Inf.

Theor., 13(1):57–64, Jan. 1967.

[49] V. Frinken and H. Bunke. Self-training strategies for handwriting word recognition.

In Proceedings of the 9th Industrial Conference on Advances in Data Mining. Ap-

plications and Theoretical Aspects, ICDM ’09, pages 291–300, Berlin, Heidelberg,

2009. Springer-Verlag.

[50] M. Gaber, S. Krishnaswamy, and A. Zaslavsky. On-board mining of data streams

in sensor networks. Advanced Methods for Knowledge Discovery from Complex

Data, pages 307–335, 2005.

[51] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st

edition, 2010.

[52] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant

supervision. Processing, pages 1–6, 2009.

174

[53] B. Gokulakrishnan, P. Priyanthan, T. Ragavan, N. Prasath, and A. S. Perera.

Opinion mining and sentiment analysis on a twitter data stream. In Proceedings of

2012 International Conference on Advances in ICT for Emerging Regions (ICTer),

ICTer ’12, pages 182 – 188. IEEE, 2012.

[54] H. Gu, X. Xie, Q. Lv, Y. Ruan, and L. Shang. Etree: Effective and efficient event

modeling for real-time online social media networks. In Proceedings of the 2011

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent

Agent Technology - Volume 01, WI-IAT ’11, pages 300–307, Washington, DC,

USA, 2011. IEEE Computer Society.

[55] P. C. Guerra, W. Meira, Jr., and C. Cardie. Sentiment analysis on evolving social

streams: How self-report imbalances can help. In Proceedings of the 7th ACM

International Conference on Web Search and Data Mining, WSDM ’14, pages

443–452, New York, NY, USA, 2014. ACM.

[56] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering

data streams: Theory and practice. IEEE TKDE, 15(3):515–528, 2003.

[57] M. C. Hao, C. Rohrdantz, H. Janetzko, U. Dayal, D. A. Keim, L.-E. Haug, and

M. Hsu. Visual sentiment analysis on twitter data streams. In IEEE VAST, pages

277–278, 2011.

[58] B. Hawwash and O. Nasraoui. From tweets to stories: Using stream-dashboard

to weave the twitter data stream into dynamic cluster models. In Proceedings of

the 3rd International Workshop on Big Data, Streams and Heterogeneous Source

Mining: Algorithms, Systems, Programming Models and Applications, BigMine

2014, New York City, USA, August 24, 2014, pages 182–197, 2014.

[59] D. He and D. S. Parker. Topic dynamics: An alternative model of bursts in streams

of topics. In Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’10, pages 443–452, New York, NY,

USA, 2010. ACM.

[60] Q. He, K. Chang, E.-P. Lim, and J. Z. 0005. Bursty feature representation for

clustering text streams. In SDM. SIAM, 2007.

[61] M. A. Hearst. Noun homograph disambiguation using local context in large text

corpora. In University of Waterloo, pages 1–22, 1991.

[62] M. A. Hearst. Texttiling: Segmenting text into multi-paragraph subtopic passages.

Comput. Linguist., 23(1):33–64, Mar. 1997.

175

[63] D. Hindle and M. Rooth. Structural ambiguity and lexical relations. Comput.

Linguist., 19(1):103–120, Mar. 1993.

[64] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings

of the tenth ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD ’04, pages 168–177, New York, NY, USA, 2004. ACM.

[65] M. Hu and B. Liu. Mining opinion features in customer reviews. In Proceedings

of the 19th national conference on Artifical intelligence, AAAI’04, pages 755–760.

AAAI Press, 2004.

[66] M. Hu and B. Liu. Opinion extraction and summarization on the web. In Pro-

ceedings, The Twenty-First National Conference on Artificial Intelligence and the

Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-

20, 2006, Boston, Massachusetts, USA, pages 1621–1624, 2006.

[67] X. Hu, L. Tang, J. Tang, and H. Liu. Exploiting social relations for sentiment

analysis in microblogging. In Proceedings of the Sixth ACM International Confer-

ence on Web Search and Data Mining, WSDM ’13, pages 537–546, New York, NY,

USA, 2013. ACM.

[68] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Twitter power: Tweets as

electronic word of mouth. J. Am. Soc. Inf. Sci. Technol., 60(11):2169–2188, Nov.

2009.

[69] N. Jindal and B. Liu. Opinion spam and analysis. In Proceedings of the 2008

International Conference on Web Search and Data Mining, WSDM ’08, pages

219–230, New York, NY, USA, 2008. ACM.

[70] S. M. Katz. Distribution of content words and phrases in text and language mod-

elling. Nat. Lang. Eng., 2(1):15–59, Mar. 1996.

[71] J. Kranjc, J. Smailović, V. Podpečan, M. Grčar, M. Žnidaršič, and N. Lavrač. Ac-

tive learning for sentiment analysis on data streams: Methodology and workflow

implementation in the clowdflows platform. Information Processing & Manage-

ment, Apr. 2014.

[72] C. Lee and T. Chien. Leveraging microblogging big data with a modified density-

based clustering approach for event awareness and topic ranking. J. Information

Science, 39(4):523–543, 2013.

[73] W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection. In

Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7,

SSYM’98, pages 6–6, Berkeley, CA, USA, 1998. USENIX Association.

176

[74] K. Lerman, S. Blair-Goldensohn, and R. McDonald. Sentiment summarization:

evaluating and learning user preferences. In Proceedings of the 12th Conference

of the European Chapter of the Association for Computational Linguistics, EACL

’09, pages 514–522, Stroudsburg, PA, USA, 2009. Association for Computational

Linguistics.

[75] B. Liu. Opinion mining and summarization. In Tutorial at the World Wide Web

Conference (WWW), Beijing, China, 2008.

[76] B. Liu. Sentiment analysis and subjectivity. In Handbook of Natural Language

Processing, Second Edition. Taylor and Francis Group, Boca, 2010.

[77] B. Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human

Language Technologies. Morgan & Claypool Publishers, 2012.

[78] B. Liu, M. Hu, and J. Cheng. Opinion observer: analyzing and comparing opinions

on the web. In Proceedings of the 14th international conference on World Wide

Web, WWW ’05, pages 342–351, New York, NY, USA, 2005. ACM.

[79] S. Liu, F. Li, F. Li, X. Cheng, and H. Shen. Adaptive co-training svm for sentiment

classification on tweets. In Proceedings of the 22Nd ACM International Conference

on Conference on Information & Knowledge Management, CIKM ’13, pages

2079–2088, New York, NY, USA, 2013. ACM.

[80] Y. Liu, X. Yu, A. An, and X. Huang. Riding the tide of sentiment change: Senti-

ment analysis with evolving online reviews. World Wide Web, 16(4):477–496, July

2013.

[81] Y.-B. Liu, J.-R. Cai, J. Yin, and A. Fu. Clustering text data streams. Journal of

Computer Science and Technology, 23(1):112–128, 2008.

[82] C. Long, J. Zhang, and X. Zhut. A review selection approach for accurate fea-

ture rating estimation. In Proc. of the 23rd Int’l. Conference on Computational

Linguistics, COLING ’10. Association for Computational Linguistics, 2010.

[83] R. Lourenco Jr., A. Veloso, A. Pereira, W. Meira Jr., R. Ferreira, and

S. Parthasarathy. Economically-efficient sentiment stream analysis. In Proceed-

ings of the 37th International ACM SIGIR Conference on Research & Devel-

opment in Information Retrieval, SIGIR ’14, pages 637–646, New York, NY, USA,

2014. ACM.

[84] J. B. Lovins. Development of a stemming algorithm. Translation and Computa-

tional Linguistics, 11(1):22–31, 1968.

177

[85] C. Luo, X. Cai, and N. Chowdhury. Self-training temporal dynamic collaborative

filtering. In PAKDD (1), pages 461–472, 2014.

[86] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-

trieval. Cambridge University Press, New York, NY, USA, 2008.

[87] M. M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham. Classi-

fication and novel class detection of data streams in a dynamic feature space. In

Proceedings of the 2010 European Conference on Machine Learning and Knowl-

edge Discovery in Databases: Part II, ECML PKDD’10, pages 337–352, Berlin,

Heidelberg, 2010. Springer-Verlag.

[88] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A practical ap-

proach to classify evolving data streams: Training with limited amount of labeled

data. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, ICDM ’08, pages 929–934, Washington, DC, USA, 2008. IEEE Computer

Society.

[89] M. M. Masud, C. Woolam, J. Gao, L. Khan, J. Han, K. W. Hamlen, and N. C.

Oza. Facing the reality of data stream classification: coping with scarcity of labeled

data. Knowl. Inf. Syst., 33(1):213–244, 2011.

[90] M. Mathioudakis and N. Koudas. Twittermonitor: Trend detection over the twitter

stream. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’10, pages 1155–1158, New York, NY, USA, 2010.

[91] A. McCallum and K. Nigam. A comparison of event models for naive bayes text

classification. In IN AAAI-98 WORKSHOP ON LEARNING FOR TEXT CAT-

EGORIZATION, pages 41–48. AAAI Press, 1998.

[92] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action, Second Edi-

tion: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA,

2010.

[93] G. J. McLachlan. Iterative reclassification procedure for constructing an asymp-

totically optimal rule of allocation in discriminant analysis. 70(350):365–369, June

1975.

[94] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture:

modeling facets and opinions in weblogs. In In Proceedings of the 16th international

conference on World Wide Web, WWW’07, pages 171–180, New York, NY, USA,

2007. ACM.

178

[95] V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive bayes

- which naive bayes? In CEAS 2006 - The Third Conference on Email and Anti-

Spam, July 27-28, 2006, Mountain View, California, USA, 2006.

[96] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1

edition, 1997.

[97] S. Moghaddam and M. Ester. Opinion digger: an unsupervised opinion miner

from unstructured product reviews. In Proc. of the 19th ACM Int’l. conference on

Information and knowledge management, CIKM ’10. ACM, 2010.

[98] S. Morinaga, K. Yamanishi, K. Tateishi, and T. Fukushima. Mining product

reputations on the web. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 341–349,

New York, NY, USA, 2002. ACM.

[99] S. Mukherjee and P. Bhattacharyya. Feature specific sentiment analysis for product

reviews. In Proc. of the 13th international conference on Computational Linguistics

and Intelligent Text Processing, CICLing’12, pages 475–487. Springer-Verlag, 2012.

[100] T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using natu-

ral language processing. In Proceedings of the 2Nd International Conference on

Knowledge Capture, K-CAP ’03, pages 70–77, New York, NY, USA, 2003. ACM.

[101] H.-L. Nguyen, W.-K. Ng, Y.-K. Woon, and D. H. Tran. Concurrent semi-

supervised learning of data streams. In Proceedings of the 13th International

Conference on Data Warehousing and Knowledge Discovery, DaWaK’11, pages

445–459, Berlin, Heidelberg, 2011. Springer-Verlag.

[102] E. Ntoutsi, A. Zimek, T. Palpanas, P. Kroger, and H.-P. Kriegel. Density-based

projected clustering over high dimensional data streams. In Proc. of the 12th SIAM

Int. Conf. on Data Mining (SDM), Anaheim, CA, 2012.

[103] C. D. Paice. Another stemmer. SIGIR Forum, 24(3):56–61, 1990.

[104] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opin-

ion mining. In Proceedings of the Seventh conference on International Language

Resources and Evaluation (LREC’10), Valletta, Malta, May 2010. European Lan-

guage Resources Association (ELRA).

[105] A. Pak and P. Paroubek. Twitter based system: Using twitter for disambiguating

sentiment ambiguous adjectives. In Proceedings of the 5th International Workshop

on Semantic Evaluation, SemEval ’10, pages 436–439, Stroudsburg, PA, USA,

2010. Association for Computational Linguistics.

179

[106] B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf.

Retr., 2(1-2):1–135, Jan. 2008.

[107] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: Sentiment classification

using machine learning techniques. In Proceedings of the ACL-02 Conference on

Empirical Methods in Natural Language Processing - Volume 10, EMNLP, pages

79–86, Stroudsburg, PA, USA, 2002. ACL.

[108] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection with

application to twitter. In Human Language Technologies: The 2010 Annual Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics, HLT ’10, pages 181–189, Stroudsburg, PA, USA, 2010. Association for

Computational Linguistics.

[109] L. Plaza and J. Carrillo de Albornoz. Sentiment Analysis in Business Intelligence:

A survey, pages 231–252. IGI-Global, 2011.

[110] A.-M. Popescu and O. Etzioni. Extracting product features and opinions from re-

views. In Proceedings of the conference on Human Language Technology and Em-

pirical Methods in Natural Language Processing, HLT ’05, pages 339–346, Strouds-

burg, PA, USA, 2005. Association for Computational Linguistics.

[111] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, July

1980.

[112] C. Quan and F. Ren. Unsupervised product feature extraction for feature-oriented

opinion determination. Inf. Sci., 272:16–28, 2014.

[113] J. Read. Using emoticons to reduce dependency in machine learning techniques

for sentiment classification. In Proceedings of the ACL Student Research Work-

shop, ACLstudent ’05, pages 43–48, Stroudsburg, PA, USA, 2005. Association for

Computational Linguistics.

[114] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger. Tackling the poor assump-

tions of naive bayes text classifiers. In In Proceedings of the Twentieth International

Conference on Machine Learning, pages 616–623, 2003.

[115] J. Rissanen. Modeling by shortest data description. In Automatica 14, Automatica,

pages 465–471, 1978.

[116] E. Schinas, S. Papadopoulos, S. Diplaris, Y. Kompatsiaris, Y. Mass, J. Herzig,

and L. Boudakidis. Eventsense: Capturing the pulse of large-scale events by min-

ing social media streams. In Proceedings of the 17th Panhellenic Conference on

Informatics, PCI ’13, pages 17–24, New York, NY, USA, 2013. ACM.

180

[117] H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Interna-

tional Conference on New Methods in Language Processing, pages 44–49, Manch-

ester, UK, 1994.

[118] K. Schneider. On word frequency information and negative evidence in naive bayes

text classification. In Advances in Natural Language Processing, 4th International

Conference, EsTAL 2004, Alicante, Spain, October 20-22, 2004, Proceedings, pages

474–486, 2004.

[119] R. Schult and M. Spiliopoulou. Discovering emerging topics in unlabelled text

collections. In Proceedings of the 10th East European Conference on Advances in

Databases and Information Systems, ADBIS’06, pages 353–366, Berlin, Heidelberg,

2006. Springer-Verlag.

[120] D. Schum. The evidential foundations of probabilistic reasoning. Wiley series in

systems engineering. J. Wiley, 1994.

[121] F. Schwenker and E. Trentin. Pattern classification and clustering: A review of

partially supervised learning approaches. Pattern Recognition Letters, 37:4–14,

2014.

[122] B. Seerat and F. Azam. Opinion Mining: Issues and Challenges (A survey). In-

ternational Journal of Computer Applications, 49(9), 2012.

[123] L. Shou, Z. Wang, K. Chen, and G. Chen. Sumblr: Continuous summarization

of evolving tweet streams. In Proceedings of the 36th International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’13,

pages 533–542, New York, NY, USA, 2013. ACM.

[124] Z. F. Siddiqui and M. Spiliopoulou. Tree induction over a stream of perennial

objects. In Proc. of 22nd Int. Conf. on Scientific and Statistical Database Man-

agement, SSDBM ’10, volume 6187 of LNCS, pages 640–657. Springer, 2010.

[125] Z. F. Siddiqui and M. Spiliopoulou. Classification rule mining for a stream of

perennial objects. In Proc. of 5th Int. Symposium on Rules: Research Based,

Industry Focused (RuleML-2011), collocated with IJCAI 2011), Barcelona, Spain,

July 2011.

[126] I. S. Silva, J. Gomide, A. Veloso, W. Meira, Jr., and R. Ferreira. Effective sentiment

stream analysis with self-augmenting training and demand-driven projection. In

Proceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’11, pages 475–484, New York, NY,

USA, 2011. ACM.

181

[127] I. S. Silva, J. Gomide, A. Veloso, W. Meira, Jr., and R. Ferreira. Effective sentiment

stream analysis with self-augmenting training and demand-driven projection. In

Proceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’11, pages 475–484, New York, NY,

USA, 2011. ACM.

[128] J. Smailovič, M. Grčar, N. Lavrač, and M. Žnidaršič. Stream-based active learning

for sentiment analysis in the financial domain. Information Sciences, Apr. 2014.

[129] G. Somprasertsri and P. Lalitrojwong. Mining feature-opinion in online customer

reviews for opinion summarization. J. UCS, 16(6):938–955, 2010.

[130] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic: Modeling

and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’06,

pages 706–711, New York, NY, USA, 2006. ACM.

[131] M. Thelwall, K. Buckley, G. Paltoglou, M. Skowron, D. Garcia, S. Gobron, J. Ahn,

A. Kappas, D. Kuester, and J. A. Holyst. Damping sentiment analysis in online

communication: Discussions, monologs and dialogs. In Proceedings of the 14th

International Conference on Computational Linguistics and Intelligent Text Pro-

cessing - Volume 2, CICLing’13, pages 1–12, Berlin, Heidelberg, 2013. Springer-

Verlag.

[132] T. T. Thet, J.-C. Na, and C. S. Khoo. Sentiment classification of movie reviews

using multiple perspectives. In Proceedings of the 11th International Conference on

Asian Digital Libraries: Universal and Ubiquitous Access to Information, ICADL

08, pages 184–193, Berlin, Heidelberg, 2008. Springer-Verlag.

[133] O. Tsur, D. Davidov, and A. Rappoport. ICWSM - A great catchy name: Semi-

supervised recognition of sarcastic sentences in online product reviews. In Proceed-

ings of the Fourth International Conference on Weblogs and Social Media, ICWSM

2010, Washington, DC, USA, May 23-26, 2010, 2010.

[134] M. Tsytsarau, T. Palpanas, and K. Denecke. Scalable discovery of contradictions

on the web. In Proceedings of the 19th International Conference on World Wide

Web, WWW ’10, pages 1195–1196, New York, NY, USA, 2010. ACM.

[135] P. D. Turney. Thumbs up or thumbs down?: semantic orientation applied to un-

supervised classification of reviews. In Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, ACL ’02, pages 417–424, Stroudsburg,

PA, USA, 2002. Association for Computational Linguistics.

182

[136] M. Utiyama and H. Isahara. A statistical model for domain-independent text

segmentation. In Proceedings of the 39th Annual Meeting on Association for Com-

putational Linguistics, ACL ’01, pages 499–506, Stroudsburg, PA, USA, 2001.

Association for Computational Linguistics.

[137] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New

York, Inc., New York, NY, USA, 1995.

[138] A. J. Viera and J. M. Garrett. Understanding interobserver agreement: The kappa

statistic. Family Medicine, 37(5):360–363, 2005.

[139] D. Wang and Y. Liu. A cross-corpus study of unsupervised subjectivity identifica-

tion based on calibrated em. In Proceedings of the 2Nd Workshop on Computational

Approaches to Subjectivity and Sentiment Analysis, WASSA ’11, pages 161–167,

Stroudsburg, PA, USA, 2011. ACL.

[140] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams

using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 226–235,

New York, NY, USA, 2003. ACM.

[141] G. Wu, D. Greene, and P. Cunningham. Merging multiple criteria to identify

suspicious reviews. In Proceedings of the Fourth ACM Conference on Recommender

Systems, RecSys ’10, pages 241–244, New York, NY, USA, 2010. ACM.

[142] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised meth-

ods. In Proceedings of the 33rd Annual Meeting on Association for Computational

Linguistics, ACL ’95, pages 189–196, Stroudsburg, PA, USA, 1995. Association for

Computational Linguistics.

[143] S. R. Yerva, Z. Miklós, and K. Aberer. Entity-based classification of twitter mes-

sages. IJCSA, 9(1):88–115, 2012.

[144] H. Yu and V. Hatzivassiloglou. Towards answering opinion questions: Separating

facts from opinions and identifying the polarity of opinion sentences. In Proceed-

ings of the 2003 Conference on Empirical Methods in Natural Language Processing,

EMNLP ’03, pages 129–136, Stroudsburg, PA, USA, 2003. Association for Com-

putational Linguistics.

[145] J. Yu, Z.-J. Zha, M. Wang, K. Wang, and T.-S. Chua. Domain-assisted product

aspect hierarchy generation: Towards hierarchical organization of unstructured

consumer reviews. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, EMNLP ’11, pages 140–150, Stroudsburg, PA, USA,

2011.

183

[146] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. In Proceedings of the 1996 ACM SIGMOD inter-

national conference on Management of data, SIGMOD ’96, pages 103–114, New

York, NY, USA, 1996. ACM.

[147] X. Zhang, C. Furtlehner, J. Perez, C. Germain-Renaud, and M. Sebag. Toward

autonomic grids: Analyzing the job flow with affinity streaming. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’09, pages 987–996, New York, NY, USA, 2009. ACM.

[148] H. Zhu, Y. Wang, and Z. Yu. Clustering of evolving data stream with multiple

adaptive sliding window. In Proceedings of the International Conference on Data

Storage and Data Engineering, DSDE 2010, Bangalore, India, 9-10 February 2010,

pages 95–100, 2010.

[149] J. Zhu, H. Wang, B. K. Tsou, and M. Zhu. Multi-aspect opinion polling from tex-

tual reviews. In Proc. of the 18th ACM conference on Information and knowledge

management, CIKM’09, pages 1799–1802. ACM, 2009.

[150] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Com-

puter Sciences, University of Wisconsin-Madison, 2005.

[151] L. Zhuang, F. Jing, and X.-Y. Zhu. Movie review mining and summarization. In

Proceedings of the 15th ACM international conference on Information and knowl-

edge management, CIKM ’06, pages 43–50, New York, NY, USA, 2006. ACM.

[152] M. Zimmermann, E. Ntoutsi, and M. Spiliopoulou. Extracting opinionated

(sub)features from a stream of product reviews. In Discovery Science, pages 340–

355, 2013.

[153] M. Zimmermann, E. Ntoutsi, and M. Spiliopoulou. Adaptive semi supervised

opinion classifier with forgetting mechanism. In Proceedings of the 29th Annual

ACM Symposium on Applied Computing, SAC ’14, pages 805–812, New York, NY,

USA, 2014. ACM.

[154] M. Zimmermann, E. Ntoutsi, and M. Spiliopoulou. Discovering and monitoring

product features and the opinions on them with opinstream. Neurocomput. (to

appear 2014), 2014. accepted 4/2014, to appear 2014.

[155] M. Zimmermann, E. Ntoutsi, and M. Spiliopoulou. A semi-supervised self-adaptive

classifier over opinionated streams. In Proceedings of the 2014 IEEE 14th Inter-

national Conference on Data Mining Workshops (to appear 2014), ICDMW ’14,

Washington, DC, USA, 2014. IEEE Computer Society. accepted, to appear De-

cember 2014.

184

[156] M. Zimmermann, I. Ntoutsi, Z. F. Siddiqui, M. Spiliopoulou, and H.-P. Kriegel.

Discovering global and local bursts in a stream of news. In Proceedings of the 2012

ACM Symposium on Applied Computing (SAC), Riva del Garda (Trento), Italy,

March 26-30, 2012, 2012.

[157] I. Zliobaite. Learning under concept drift: an overview. CoRR, abs/1010.4784,

2010.

[158] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with evolving

streaming data. In Proc. of ECML PKDD 2011, volume 6913 of LNCS. Springer-

Verlag, 2011.

185

	Introduction
	Research Tasks
	Concept
	Outline of the Thesis

	Basics
	Processing Text
	Document Preprocessing
	Document Representation
	Similarity Measures

	Opinion Mining
	Opinion Definition
	Property Extraction
	Polarity Classification

	Stream Mining
	Data Windows
	Concept Drift
	Stream Classification
	Stream Clustering

	Semi-Supervised Self-Learned Opinion Stream Classification
	Basic concepts
	Semi-supervised Classification
	Self-Training
	Motivation and Limitations using Self-Training as stream classification approach

	Basic Definitions and Notation
	Adaptive Learning with only an initial seed
	Adaptive Multinomial Naive Bayes As Base Learner
	Frequency Estimation
	Re-computing the conditional probabilities of words

	Adaptation at Document Level while expanding the seed
	Usefulness

	Adaptation at Word Level while keeping the seed unchanged
	Using Known and Unknown Words Vocabulary
	Initializing the probabilities of unknown words
	Maintaining class distribution for unknown words
	Updatable Multinomial Naive Bayes

	Backward Adaptation by Ageing
	Backward Adaptation
	Adaptation of the Age
	Using Backward Adaptation in ADASTREAM
	Using Backward Adaptation in S*3Learner

	Complexity
	Experiments
	Datasets
	The effect of unknown words over the stream
	The class distribution over the stream

	Evaluation Measure
	Methods against which we compare
	Comparing against the baselines
	Results on stream ReviewJi
	Results on stream TwitterTS
	Results on stream ReviewHu

	Impact of usefulness threshold on ADASTREAM
	Impact of MaxEntr and MinFreq thresholds on S*3Learner
	Impact of Lambda on ADASTREAM and S*3Learner
	Impact of the seed size on ADASTREAM and S*3Learner
	Runtime

	Related Work
	Supervised Opinion Stream Classification
	Opinion stream classification with limited amount of labeled data

	Discussion and Conclusion

	Extracting and Monitoring Product Properties and the Attitudes on them
	Related Work
	Core Concepts and Overview
	Core functionalities of SENTISTREAM
	Definitions and Notation
	Components

	Extracting an Initial Hierarchy of Polarized Properties
	The Core of the SENTISTREAMClus
	Specifying the feature space
	Deriving the polarized property of each cluster
	Assign arriving reviews to clusters or containers

	The Basic Learner for SENTISTREAMPolLearner

	Adapting the Cluster Hierarchy
	Incorporate Novelty
	Rationale of our Approach
	Description Length as Quality Indicator
	Impact of Merging on Cluster Description Length
	Deciding for Hierarchy Rebuilds on the Basis of Fatigue
	Adapting the Hierarchy with or without Cluster Rebuilds

	Internal Hierarchy Adaptation
	Merging similar subclusters
	Importance update in the merged cluster
	Polarized property extraction in the merged cluster
	Polarity classifier in the merged cluster

	Bookkeeping
	Adapting the Evolving Polarities of the Properties
	Adaptation – Incorporating New Reviews
	Removing Unimportant Reviews

	Workflow
	Experiments
	Datasets
	Evaluation Measure
	Average weighted purity (avgWPurity)
	Average weighted cohesion (avgWCohesion)
	Kappa

	Comparing against baselines
	Methods against which we compare
	Cluster Extraction
	Evaluation of the Efficiency
	SENTISTREAMPolLearner component

	Evaluation of the clustering structure
	Influence of reclustering and cluster merge
	Evaluation of the Parameters which effect the Clustering
	Effect of the importance review threshold
	Effect of the decay factor
	Effect of number of global clusters KG
	Effect of number of local clusters KL
	Effect of the initial seed set S
	Effect of the global similarity threshold G
	Effect of the local similarity threshold L
	Effect of the fatigue threshold
	Discussion

	Evaluation of the Parameters which effect the Polarity Learning
	Results on the effect of G
	Results on the effect of KG
	Results on the effect of

	Discussion and Conclusion

	Conclusion
	Summary
	Contributions
	Application / Benefits
	Future Work

	Document Preprocessing
	List of stop words

	Results on Opinion Stream Classification
	Results on SENTISTREAM
	Results on the cluster specific classifiers
	Cluster Structure

	Bibliography

