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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Analyse von Softwarephantomen für die medizinis-

che Bildverarbeitung. Dazu werden neue Verfahren in zwei unterschiedlichen Aufgaben-

gebieten vorgestellt: (1) Die Entwicklung von Phantomen und deren Anwendung sowie (2)

die Validierung von Phantomen.

Ein wichtiger erster Schritt für die Entwicklung von Softwarephantomen ist die Betra-

chtung der Phantomart und der zugrundeliegenden Anwendung. Die ersten Kapitel dieser

Arbeit geben daher zunächst einmal einen Überblick über Designmethoden. Darüber hin-

aus werden Parameter untersucht, die man häufig für die Phantomerstellung verwendet.

Basierend auf den Ergebnissen dieser Betrachtung erfolgt dann die Entwicklung eines mod-

ularen Designs für Phantome. Unser Ziel ist eine Art Baukasten, der eine formalisierte

Beschreibung von Parametern nutzt. Dies ermöglicht den Austausch einzelner Parameter

durch neue Modelle.

Basierend auf unserer Designmethode, entwickeln wir im nächsten Schritt Phantome für

unterschiedliche Anwendungen. Besonders die Entwicklung von Multiple Sklerose (MS)

Läsionsphantomen sowie von Gehirntumorphantomen stehen im Vordergrund. Dabei wer-

den verschiedene Aspekte untersucht, wie etwa das Objektvolumen. Darüber hinaus wird

eine makroskopische Simulation von Wachstumsprozessen basierend auf einem physikalisch

motivierten, elastischen Modell, vorgeschlagen, das bereits für die Erfassung von Formverän-

derungen während neurochirurgischer Eingriffe verwendet wurde. Da für die entwickelten

Phantome ein hoher manueller Aufwand notwendig ist, ist die Zahl der verfügbaren Phan-

tomdatensätze für eine Anwendung typischerweise sehr klein. In einem weiteren Schritt

schlagen wir daher eine vollautomatisierte Methode vor, mit der eine große Zahl an Phan-

tomen erstellt werden kann. Die zugehörigen Parametermodelle werden dabei aus Patien-

tendaten abgeleitet. Mit Hilfe unseres Baukastenprinzips haben wir zusätzlich einen inter-

aktiven Software-Assistenten für die Erstellung von Phantomen implementiert, der den En-

twicklungsaufwand für ein Phantom stark reduziert. Eine Reihe von Phantomen aus dieser

Arbeit wurden mit dem Assistenten entwickelt.

Unsere Phantome bieten eine gute Grundlage für die Evaluierung von Algorithmen, die

häufig in der klinischen Routine oder in Studien auftreten. Zum Beispiel analysieren wir

die Qualität einer rein visuellen Bewertung von Läsionen im Rahmen einer Studie mit mehr

als 20 Teilnehmern. Weiterhin werden neue Ansätze für eine genaue und reproduzierbare
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Volumetrie von Läsionen untersucht. Der Fokus liegt dabei vor allem auf kleinen Läsionen,

wie sie beispielsweise bei Patienten mit MS auftreten. Für die Evaluierung werden mehr als

50 Datensätze mit Läsionsphantomen unterschiedlicher Volumina und Formen erzeugt und

manuell von mehreren neuroradiologischen Experten ausgewertet. Darüber hinaus nutzen

wir unsere Phantome für die Bewertung von Segmentierungsalgorithmen.

Der Schwerpunkt im zweiten Teil der Arbeit liegt auf der Analyse der Phantomqual-

ität. Auf Grund der bekannten Ground Truth für alle modellierten Parameter sind Phantome

heute ein weit verbreitetes Werkzeug. Trotzdem gibt es praktisch keine Methoden, die eine

Bewertung dieser Phantome ermöglichen. Unser erster Schritt in diese Richtung ist daher

zunächst einen Untersuchung von Methoden verwandter Gebiete im Bereich der medizinis-

chen Bildverarbeitung. Danach wird schließlich ein neues Verfahren für die Validierung

von Phantomen vorgestellt, das Verbindungen mit dem Designansatz aus dem ersten Teil

dieser Arbeit aufweist. Unsere Methode ermöglicht sowohl eine standardisierte Analyse

einzelner Phantome als auch den Vergleich einer Menge von Phantomen. Darüber hinaus

wird mit dem sogenannten Analytischen Hierarchieprozess eine Methode verwendet, die

eine Bestimmung des Eignungsgrades für alle verwendeten Parameter ermöglicht.

Bis ein Phantom eine akzeptable Konfidenz für eine bestimmte Anwendung aufweist

sind viele Schritte notwendig. Diesen Aspekt bilden wir auch auf die Phantomvalidierung

ab und schlagen einen iterativen Prozess vor, der aus vielen einzelnen Validierungsmetho-

den besteht. Den übergeordneten Prozess teilen wir in drei Schritte ein: Methodenauswahl,

Methodenvalidierung und Phantomvalidierung. Jede betrachtete Methode vergrößert bzw.

verkleinert die Konfidenz in ein Phantom. Dazu müssen zwei Merkmale bewertet werden:

die Eignung und die Korrektheit einer Methode. Für die Methodenvalidierung schlagen wir

eine Funktion vor, die beide Merkmale miteinander kombiniert. Eine multiplikative Fusion

der Ergebnisse aller Methoden liefert schließlich die finale Phantombewertung. Die Qualität

eines Phantoms wird mit diesem Ansatz also durch eine Zahl beschrieben.

Für eine konkrete Bewertung der vorgestellten Phantomvalidierung werden die MS Lä-

sionsphantome aus dem ersten Teil dieser Arbeit verwendet. Fünf verschiedene Validierungs-

methoden werden dazu untersucht und kombiniert. Anhand einer Studie mit vier Experten

bewerten wir beispielsweise die Detektionsleistung von Läsionsphantomen in Patienten-

daten mit echten Läsionen. Eine weitere Methode nutzt den Vergleich von Segmentierungs-

ergebnissen zwischen Phantomen und Patientendaten. Die Analyse jeder Methode besteht

dabei aus einer kurzen Beschreibung der zugrunde liegenden Daten und einer Diskussion

der Ergebnisse.



Summary

The validation of algorithms is an important aspect in medical image analysis. Today, a

validation study serves as a major decision factor of a method’s value to the user. Thereby,

phantoms have become a widely accepted tool. This thesis deals with the analysis of soft-

ware phantoms in medical image processing. New approaches are proposed in two areas:

(1) Phantom development and applications and (2) phantom validation.

The first step towards developing a phantom is to decide what kind of phantom is re-

quired for the targeted application. Therefore, we start our investigation with a general

overview of design approaches and examine parameters used in phantom development.

Based on the knowledge of the underlying application domain and the phantom type, we

then focus on the actual design. Our goal is a modular phantom design based on a set of

components. To this end, we formalize the overall development process and propose mod-

els for major parameters used in medical image analysis such as object position, shape, or

intensity values. After modeling all relevant parameters for an application, we combine

them to our final phantom.

Several phantoms are developed using our new design approach. We focus on applica-

tions in the field of neurology and neurosurgery, including lesion phantoms that appear in

patients with Multiple Sclerosis (MS) as well as brain tumor phantoms. Several character-

istic properties are investigated such as the object volume or the selected intensity values.

A macroscopic simulation of growth-induced deformations based on a linear elastic model

is proposed, which was previously used to capture shape changes of the brain during neu-

rosurgery. Instead of developing only a small amount of hand-crafted phantoms, we also

present a fully automatic method to build an arbitrary number of MS phantoms. Thereby,

our parameter models such as the lesion shape and the lesion position are based on actual

patient data.

Based on the modular design process, we propose a new interactive software assistant

for the development of software phantoms. Several phantoms developed in this work are

generated with the software assistant, reducing the time to build a phantom from hours to a

few minutes. The developed software phantoms provide an excellent basis for the evaluation

of typical algorithms that frequently occur in clinical practice and trials. We investigate the

quality of visual assessment in MS lesion volumetry based on a study with more than 20

participants. Furthermore, new methods for an accurate and reproducible volumetry are
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presented. Here, the focus is on small lesions that appear in patients with MS. More than

50 software phantoms with different lesion shapes and volumes are generated, and both

manual and semi-automatic approaches are analyzed. Finally, our phantoms are used for

the evaluation of segmentation methods. Several algorithms ranging from manual to fully-

automatic are analyzed.

In the second part of this work, we focus on the analysis of the phantom quality. Phan-

toms are a widely used tool, since the ground truth is known for all modeled parameters.

However, algorithms for phantom validation are widely unknown. Therefore, our first step

towards an analysis of the phantom quality consists of a survey of work in related fields of

medical image analysis. We then propose an approach that is closely related to the phantom

design process. It enables the analysis of a single phantom as well as the comparison of

phantoms. A multi-criteria decision making technique is applied to evaluate the suitability

of the modeled parameters.

Several steps are required to reach a reasonable confidence in a phantom. Therefore, we

define phantom validation as an iterative process that comprises several validation methods.

Three steps are distinguished: method selection, method validation, and phantom validation.

Each method increases or decreases the confidence in the phantom. Thereby, an analysis of

the method’s suitability and correctness is performed. A validation function is introduced

that fuses these two features.

A multiplicative combination of all validation methods is used to compute the final

phantom validation. In other words, the phantom quality is expressed by a single value.

To evaluate our phantom validation approach, we use the MS lesion phantoms proposed

in the first part of this thesis. Different validation methods are analyzed such as a user study

to assess the detection performance of lesion phantoms in patient data sets with several

real MS lesions. We also propose a comparison of segmentation overlap measures between

phantoms and patient data using the results obtained in the first part of this thesis. For each

validation method, a short description of the underlying data and a discussion of the results

is given.
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1. Introduction

Medical image processing has become a powerful tool for analyzing normal and patholog-

ical processes in the human body. With the growing amount of data per case acquired by

medical imaging devices, the variety and complexity of post-processing algorithms are in-

creasing. Today, image segmentation and quantification of anatomical structures are integral

parts of virtually any image analysis system for basic research and for clinical applications

in surgical planning and therapy monitoring. Therefore, each algorithm has to be evaluated

carefully with respect to advantages and drawbacks.

Unfortunately, each quantitative analysis is subject to errors or uncertainties. There

are errors related to the acquisition process such as a limited spatial resolution or motion

artifacts. Other errors are related to anatomical and pathological variability. Therefore, ac-

curacy and reproducibility of a proposed method are fundamental issues. To reach clinical

acceptance, and to understand the intrinsic characteristics and behavior of a method, dedi-

cated validation strategies are required.

Patient data can provide a realistic evaluation basis for novel methods. However, a

large data pool is often required to account for major anatomical variations and pathologies.

Furthermore, the lack of common reference data sets with an exactly known ground truth

for the underlying application makes validation and comparison a difficult task. Today,

researchers usually have their own small pool of patient data sets for the evaluation of new

image analysis techniques.

Publicly available databases have been proposed in different fields of medical image

analysis such as computer aided detection of calcifications in mammograms. Today, several

workshops at major conferences use a set of patient data with manual expert segmentations

for an analysis of new algorithms e.g., the ’Grand Challenge’ workshops at the MICCAI

conference. Two major requirements for a validation tool are accomplished: A number

of data sets for the development, training, and evaluation of new algorithms, plus a com-

mon basis for the comparison of performance between different approaches. One of the

most popular databases in this area has been introduced by Karssemeijer (1993), containing

40 digitized film-screen mammograms of different clinically relevant cases with associated

ground truth. Another, much larger, public database is the Digital Database for Screening

Mammography (DDSM), maintained by the University of Florida. The DDSM database

contains approximately 2.500 studies (Heath et al. 1998). In the field of lung cancer de-
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2 1. Introduction

tection, a cooperative effort known as the Lung Image Database Consortium (LIDC) was

launched in year 2000 to construct a database that contains CT scans from both diagnostic

and screening studies (Armato et al. 2004). Various information is stored for each data set

in addition to the actual image data including technical scan parameters, patient informa-

tion, and nodule features (McNitt-Gray et al. 2007). The assessment of lesion boundaries

is based on manual outlining performed by expert radiologists.

Although such image databases provide a common source of clinically relevant images

for researchers around the world, a quantitative analysis is rarely possible due to the lack of

a ground truth. The exact object parameters such as boundaries and tissue quantities within

a voxel are simply unknown, and a manual object labeling suffers from intra- and inter-

observer variability. Therefore, phantom data are a useful tool for developing, training, and

evaluating new segmentation and quantification methods.

Early approaches to simulate human anatomy in medicine were developed in the 1960’s

for dosimetry calculations in radiography and radiotherapy (Fisher and Snyder 1966). To-

day, new algorithms are often accompanied by a phantom-based evaluation study. One of

the most popular digital phantoms in medical image analysis is the freely available brain

phantom from the BrainWeb project (Collins et al. 1998). More than 100 groups have al-

ready used the associated data sets for various image analysis and evaluation tasks (Aubert-

Broche et al. 2006). Unfortunately, there are only few other publicly available software

phantoms, and a common repository or database has not yet been established. One reason

might be the large manual effort required during phantom development. Fully automatic

approaches could prove helpful here. Furthermore, it is important to understand and to

evaluate intrinsic characteristics and behavior of the data sets, used as a surrogate ground

truth. In other words, we need a structured decision process that can be documented and

replicated. Today, most phantoms are accompanied by at least some kind of evaluation.

However, a proper approach beyond an expert-based rating is still missing. Formalizing the

overall development process is a first step towards this goal.

1.1. Objectives

A frequent argument against the use of phantoms is their lack of complexity and struc-

tures encountered under clinical conditions. A phantom typically has only a reduced set of

modeled parameters, putting in question the reliability of drawn conclusions as well as the

overall data quality. Two main aspects are analyzed in this work: Phantom development

and phantom validation. We address the following questions:

Phantom Development

• How to develop phantoms for medical image analysis?

• What are the benefits of our phantoms?
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Phantom Validation

• Why is an analysis of the phantom quality required?

• What are the benefits of our phantom validation?

1.2. Contributions and Publications

This work contains several novel contributions. Our overall aims are the development of

phantoms, applications associated with these phantoms, and an assessment of the phantom

quality. We focus on two clinical applications in the field of neuroimaging: Lesions that

appear in patients with Multiple Sclerosis (MS) and the analysis of brain tumors. Magnetic

resonance imaging (MRI) is used as underlying imaging modality. In detail, the following

novelties have been presented:

• A modular approach for the development of software phantoms, which provides a

formalization of the phantom design process. A general overview has been published

in (Rexilius and Tönnies 2014a).

• Software phantoms for Multiple Sclerosis based on an overall manual design have

been developed in (Rexilius et al. 2003; Rexilius et al. 2005). An extension using

a fully automatic method to build an arbitrary number of MS data sets was later

published in (Rexilius and Tönnies 2014b).

• A software phantom for brain tumors has been published in (Rexilius et al. 2004).

Tumor growth is simulated based on a linear elastic model. Initially, we developed

this model to capture shape changes of the brain during neurosurgery (Rexilius et al.

2001; Rexilius et al. 2002). An overview of our approach together with other meth-

ods can be found in (Warfield et al. 2002). Furthermore, our non-linear registration

method has been used for a multi-modal analysis (Verhey et al. 2002; Verhey et al.

2005).

• To provide an easy-to-use tool for manual phantom design, we developed an interac-

tive software assistant. The results have been published in (Rexilius et al. 2008).

• The implemented MS lesion software phantoms have been used for several applica-

tions. In (Rexilius et al. 2003; Rexilius et al. 2005), we used them to evaluate lesion

volumetry algorithms including manual and semi-automatic methods. A phantom-

based evaluation of a well-known segmentation method has been published in (Rexil-

ius and Tönnies 2014b).

• Similar to MS lesion phantoms, we also used our brain tumor phantoms for the eval-

uation of a segmentation algorithm. Our current brain tumor phantom consists of
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only a single sequence. A multispectral extension will enable the analysis of our own

segmentation algorithm (Rexilius et al. 2007), which is part of future work.

• Today, only few approaches are used for phantom validation in medical imaging. We

propose an iterative approach based on an evaluation of different validation methods.

Our long term goal is a standardization of phantom validation. Therefore, the formal-

ization of the validation process proposed in this work is an important step. Initial

results of our work have been published in (Rexilius and Tönnies 2014b). The itera-

tive validation method has been presented in (Rexilius and Tönnies 2014a).

1.3. Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2. Chapter 2 provides a general overview of phantom design approaches and pro-

poses a new classification scheme. Furthermore, we introduce design requirements,

which each phantom should reflect to a certain extent. Since our work focuses on

software phantoms, we propose an additional categorization for this phantom type

into stylized phantoms, voxel phantoms, and hybrid phantoms.

Chapter 3. In this chapter, we perform a detailed examination of parameters used in phan-

tom development. Furthermore, we propose a classification into different groups,

each modeling a certain aspect of a phantom.

Chapter 4. In this chapter, we introduce a modular design approach that is suited to de-

scribe any phantom. Based on a formalized description for each parameter, we pro-

pose several methods for parameter modeling. Furthermore, an easy-to-use software

assistant is presented that enables an interactive design of software phantoms.

Chapter 5. After discussing how to design a phantom and the underlying parameters, we

introduce three example phantoms. For each of them, the template sheet introduced

previously is used to provide a brief overview. Two phantoms are based on a manual

object design, targeting Multiple Sclerosis lesions as well as brain tumors. Object

deformations affecting the background data are modeled to describe tumor growth

based on a linear elastic model. The third example extends the above methods to

a fully automatic approach. A statistical map of object positions and an automatic

selection of other parameters such as shape or volume enable the generation of an

arbitrary number of phantom data sets.

Chapter 6. In Chapter 6, the phantoms developed so far are used for the evaluation of al-

gorithms that frequently occur in clinical practice and trials. First, we analyze the

quality of visual assessment in MS lesion volumetry. Further applications are the

evaluation of current algorithms for lesion volumetry as well as an analysis of seg-

mentation methods.
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Chapter 7. This chapter concludes the first part of our work. We discuss the main ob-

jectives related to phantom development and recapitulate our contributions. This es-

tablishes the basis for an in-depth analysis of the phantom quality in Part II of this

work.

Chapter 8. Chapter 8 gives an overview of validation approaches used in medical image

analysis and summarizes important characteristics. Furthermore, we discuss current

validation strategies, which can be applied to phantoms.

Chapter 9. This chapter is dedicated to the validation of phantoms. In the first part, we

recapitulate major challenges of phantom validation and identify a link to the overall

requirements for phantom development already addressed in Chapter 2. To assess the

phantom quality, we then propose a novel iterative validation approach. Each iteration

consists of a separate validation approach, that increases or decreases the confidence

in the phantom.

Chapter 10. In Chapter 10, we apply the proposed phantom validation approach to validate

the MS lesion phantoms introduced in Chapter 5.

Chapter 11. Finally, Chapter 11 concludes this thesis. We reflect the main challenges of

phantom validation and our contributions in this field. The thesis is completed with a

discussion of future work.
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2. Related Work

What is a phantom? In this chapter, we provide a general overview of today’s phantom

design approaches and outline early and more recent work. A principal definition of a

phantom and general requirements are given. Furthermore, we propose a categorization

into different layers that abstract the core functionality from the actual application: the

phantom type, the simulation approach, and the overall phantom appearance. Since our own

work largely focuses on software phantoms, we present a comprehensive survey on software

phantom design. A common classification scheme into stylized and voxel phantoms as well

as the combination of both, so-called hybrid software phantoms, is considered in this work.

2.1. Phantoms – Principles and Definitions

In manufacturing and engineering, quality control (QC) or quality assurance (QA) have

become an important requirement to meet customer requirements. When a new MR scanner

is installed or maintained within a clinical environment, extensive calibration and testing

are necessary to ensure that the system is operating within the demanded specifications

(Chen et al. 2004). Thereby, QA is largely concerned with image quality using specifically

designed phantoms, i.e., test objects with a known ground truth with respect to different

imaging parameters (McRobbie et al. 2003). Such phantoms gain even more importance

for testing and calibration when data is collected and analyzed by different scanners and at

different institutes, e.g., in multicenter trials (Fu et al. 2006).

Besides QA of scanner parameters, the usage of phantoms is also an integral tool during

the design, implementation, and utilization of new image analysis methods. Simulations of

different image acquisition parameters, such as the slice thickness, provide a standardized

way to generate data with known ground truth. Realistic simulations of anatomical struc-

tures further allow a dedicated performance characterization and evaluation of segmentation

7
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and registration methods. Even education and training of medical students and professionals

in medical disciplines involving anatomy and radiology are now common applications for

simulation environments (Hoehne et al. 2003). Furthermore, surgical training with differ-

ent normal and pathological cases can benefit from phantoms based on anatomical models

(Petersik et al. 2003).

Unfortunately, not all effects of an MR system or of an examined pathology can be

simulated with a phantom in a sufficient way; simplifications of the geometry or of the ac-

quisition parameters are inevitable. Human control subjects, on the other hand, yield com-

pletely realistic images and could thus provide a basis for parameter evaluation. However,

a known ground truth is usually not available and reference measurements are computed by

software or by human observer, e.g., manual segmentations by a radiologist. Furthermore,

large multispectral image acquisition protocols can be tedious for a subject, and there may

be ethical issues concerning (repeated) injection of contrast agent. Healthy and patholog-

ical structures and organs also show high variability with respect to appearance, size, or

shape, complicating the generation of established and representative data sets. Therefore, a

method to generate different phantoms with a known ground truth constitute a general tool

for an initial analysis and a quantitative validation of both new image analysis methods and

scanner parameters.

2.1.1. General Requirements

Besides the different tasks a phantom should be able to perform, the actual design process

raises several questions. How can we build a phantom? How can we measure the quality of

a phantom? And what is a good phantom anyway? General requirements for phantoms are

suitability, flexibility, and correctness (cf. Fig. 2.1).

Suitability. In our definition we already highlighted a known ground truth for a phan-

tom as a central aspect. Thus, the first requirement is a preferably complete modeling of

all features of real image data. Unfortunately, it is not possible to model all features of

an image, because some of them might not even be known or very complex to model. A

reasonable compromise could be to model only aspects, relevant for the application in mind.

For example, analyzing a lesion segmentation based on global thresholding will not require

a phantom with exact positions for each lesion.

An alternative strategy could be the utilization of post-mortem images of histological

sections such as cryosection images of representative male and female cadavers (Spitzer

and Whitlock 1998), applied to the confirmation of in-vivo data. However, various nonlin-

ear deformation artifacts such as shrinkage, tearing, or partial loss of tissue are introduced

within the tissue, and suitable correction methods must be applied. Moreover, physical

changes within the observed tissue may result in modifications of magnetic characteristics

and thus in different tissue intensity contrast.

Correctness. After deciding on the required parameters of a phantom, each parame-

ter should be generated from a correct model and in an appropriate parameter distribution.
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Figure 2.1. General design properties of a phantom.

Anatomically detailed properties allow for a plausible design with respect to examined struc-

tures of the human body. Especially parameters such as a known size and volume are an

important step towards representative data sets for a quantitative analysis.

However, characterizing the quality of a parameter or even of the whole phantom is

difficult and heavily depends on the considered task. While phantoms used for QA usually

do not depend on a mixture of components or complicated structures, a sophisticated design

with complex shape assumptions and several different tissue classes is often required for

phantoms. Common measurement tools comprise visual assessment of the acquired images

by medical experts. Other approaches try to ensure anatomical and functional correctness

by adapting the phantom to a given patient data set (Prastawa et al. 2009). For example,

a heart phantom based on intensity-averaged MR series of a single healthy volunteer is

proposed by Moore et al. (2003).

Flexibility. The third requirement for a phantom is a flexible design approach. Each

parameter should be easily changeable, resulting in the ability to generate phantoms of

arbitrary shape, appearance, structure, or contrast behavior. Furthermore, simulation of

dynamic processes including contrast enhancement or deformations due to tissue growth

and shrinkage respectively would allow for a broad range of different applications.

2.1.2. The ’Perfect’ Phantom

After discussing general design requirements in the previous section, what would be a per-

fect phantom? Generally, such a phantom should reflect all requirements (suitability, correct-

ness, flexibility) to a certain extent. However, each application will have its own definition

of what is needed for evaluation. A scanner calibration procedure does not need a phantom

shaped like a real organ. Therefore, an object as shown in Figure 2.2 (a) could be described

as a perfect phantom to control certain imaging parameters of an MR scanner.

In the field of medical image analysis on the other hand, a different approach is required.

Here, a simple shape is often not enough to model anatomical variability of a real patient

data set (cf. Fig. 2.2 (b)). For example, validating a new liver segmentation method requires

a phantom with an appropriate shape model of the liver. A following quantification approach
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(a) (b) (c)

Figure 2.2. From simple phantoms to actual patient data sets — the perfect phantom for an appli-
cation. (a) Physical phantom (from General Electrics) used for scanner calibration, (b) simple
software phantom consisting of two circles for initial algorithmic evaluations, (c) CT patient data
set of the liver without known ground truth.

Figure 2.3. Categorization of the phantom design process.

would also require a known object volume of the phantom. Here, a perfect phantom consists

of a data set that is not distinguishable from a patient data set. Additionally, the ground truth

should be known for each parameter and should be easily changeable.

2.2. A Categorization Scheme for Phantoms

In addition to basic requirements for a phantom, a taxonomy should be established catego-

rizing the design process. In this work, we propose a partition into different layers that are

separated from the actual application. Figure 2.3 gives an overview of the proposed cate-

gories. Three main layers are identified, each employing certain constraints to determine

the properties of a phantom.
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2.2.1. Physical vs. Software

The first design decision in the phantom development process includes the choice of the

required QA procedure for the system in mind, and thus the general phantom type. Testing

of medical imaging devices requires real objects to be placed in the scanner, which are thus

denoted physical phantoms. Physical phantoms were introduced into medicine for radio-

logical use in the 1910’s (Lee and Lee 2006). At that time, water tanks and wax blocks

were usually applied for x-ray experiments. Although some are still in use in certain appli-

cations, technology has evolved along with radiological imaging equipment since. Today,

physical phantoms are manufactured using a variety of available materials and processes.

Tanks filled with water, oil, or other liquids are commonly used for acceptance testing of

MR systems. Incorporated geometric objects based on acrylic compounds such as plastic

allow for an examination of a broad range of imaging parameters.

Physical phantoms can also be generated from actual tissue. For example, Sekhar et al.

(2014) propose a bovine–porcine tissue phantom for liver biopsy simulations. A model that

allows to simultaneously capture internal images of a working heart and to record physio-

logical parameters of both mammalian and human beating hearts has been proposed as well

(Visible Heart Project ). Another interesting approach is proposed by Klink et al. (2014).

In their work, the authors develop a brain phantom from segmented MR and CT data of a

patient. Different rapid prototyping methods such as a 3D printer are used to generate the

modeled tissue classes.

If the development and testing of a new system is very complex or even too expensive to

be implemented at every design stage, computerized models and simulations are an advanta-

geous alternative in many areas including engineering, physics, and biology. Such software

phantoms provide a flexible, reproducible, and cost-effective way for the evaluation of new

methods and systems. Medicine as well as medical image analysis have also become an

established field for the utilization of software phantoms. Early approaches for the simula-

tion of human anatomy in medicine were used for planning of radiotherapy, developed in

the 1960’s (Caon 2004). Evaluations of modern segmentation and quantification methods

are commonly based on both simple artificial objects such as a square or a sphere (Noe and

Gee 2001; Warfield et al. 2004), as well as on models of anatomical structures (Collins et al.

1998; Kazemi et al. 2011).

The different approaches to represent human anatomy have led to a further specializa-

tion of software phantoms into three classes: stylized phantoms, voxel phantoms, and a com-

bination of both, so-called hybrid phantoms (cf. Fig. 2.4). Each of these, also called com-

putational anthropomorphic phantoms, differ in their basic design properties (cf. Fig. 2.1).

An extensive review of the three software phantom classes can be found in (Caon 2004; Lee

and Lee 2006). An example for each software phantom category is shown in Figure 2.5. A

comparable categorization could also be established for physical phantoms.

A more detailed overview of parameters used in both physical and software phantom

design along with their targeted applications is given in the next chapter.
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Figure 2.4. Categorization of software phantoms.

Stylized Phantoms

Stylized or mathematical phantoms describe the shape of a considered structure using sim-

ple mathematical representations such as planes, cylinders, spheres, or combinations thereof,

i.e., the underlying ground truth is defined by mathematical equations. One of the first mod-

els was developed for dosimetry calculations in radiography and radiotherapy at the Oak

Ridge National Laboratory (ORNL) (Fisher and Snyder 1966; Cristy 1980). These phan-

toms, also known as ’MIRD’ phantoms (after the Medical Internal Radiation Dose Com-

mittee), assemble the major body sections and principal organs from simple equations. For

example, the brain is represented by an ellipsoid, and the liver by an elliptical cylinder cut

by a plane. In medical image analysis, stylized phantoms are an important step in validation

studies of new segmentation and registration algorithms, e.g., (Drexl et al. 2004). Espe-

cially during early development stages, simple shapes with known geometries provide an

excellent testing environment.

Voxel Phantoms

With the advances of modern tomographic imaging technology such as MR and CT, high-

resolution 3-dimensional digital images of anatomical structures can be acquired, facilitat-

ing a better representation of the human body. Concomitantly, software phantoms con-

structed from such data sets have gained importance for different applications. These

voxel or tomographic phantoms typically consist of a patient data set with manual or semi-

automatic segmentations of different tissues or organs. Voxel phantoms may even comprise

images from more than one individual.

The Zubal phantom offers a precisely labeled segmentation of different organs and other

internal structures from a CT data set of a single subject. Furthermore, T2-weighted MR

images of the brain were outlined, resulting in 62 designated neurological and taxonomical

structures (Zubal et al. 1994). One of the most popular digital phantoms in medical image

analysis is the brain phantom proposed by Collins et al. (1998). Due to its quality and its free

availability from the Montreal Neurological Institute (MNI), it is often used in validation
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(a) (b) (c)

Figure 2.5. Examples of stylized, voxel, and hybrid software phantoms. (a) Stylized phantom:
combination of geometric primitives, (b) voxel phantom: slice of the BrainWeb phantom (T1-
weighted data set), (c) hybrid phantom: slice of the BrainWeb phantom with MS lesions (T2-
weighted data set).

studies (Hahn et al. 2004; Cuadra et al. 2005), or as template in atlas-based segmentation

and quantification methods (van Leemput et al. 1999).

Hybrid Phantoms

An approach that takes advantage of the flexibility of stylized phantoms and the anatomi-

cal correctness of patient-based voxel phantoms are hybrid phantoms. An interesting ap-

proach has been implemented by Segars et al. (1999). In their work, smooth surfaces are

constructed from segmentations of a cardiac MR data set based on non-uniform rational

B-splines (NURBS) technology. This enables the development of a model of the human

heart. Similar approaches for modeling respiratory mechanics (Segars et al. 2001) as well

as simulation of dynamic respiratory models for individual lung lobes and the airway tree

are proposed by the same group (Garrity et al. 2003).

Burgess et al. (2003) propose a software phantom for mass discrimination in mammo-

grams. In their work, masses extracted from digitized surgical specimen radiographs are

added to regions of digitized normal mammograms. A similar technique has been applied

to study the effect of wavelet-based data compression on lesion detection in digital mam-

mograms (Suryanarayanan et al. 2005). A software phantom consisting of two concentric

ellipsoidal surfaces with varying sizes and levels of segmentation error, and missing surface

information for the segmentation of radiofrequency ablation induced thermal lesions is pro-

posed by Lazebnik et al. (2002). Furthermore, a physical phantom using in vivo lesion

images obtained from an animal model is used in their work.

2.2.2. Static vs. Dynamic

Once we have decided on the required phantom type, the next step is to determine what

to simulate. Here we consider structural or static approaches and dynamic approaches that
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simulate processes. The typical static method includes a certain object used for testing

purposes, and the examined QA parameters largely denote morphological measurements

such as the size and the volume of a lesion or an organ. A more complex task is to simulate

a dynamic process within a phantom. Recent approaches include biomechanical modeling

of deformations due to tissue growth and infiltration of brain tumors, as well as simulating

treatment strategies for therapy planning (Swanson et al. 2003). A simulation of contrast

enhancement characteristics is proposed in (Brix et al. 1999). A phantom that combines

different organ models of the torso with cardiac and respiratory motion simulations has

been developed in (Segars et al. 1999; Garrity et al. 2003).

2.2.3. Artificial vs. Realistic

A further design decision is the actual appearance of the phantom and its complexity. Ar-

tificial objects based on simple geometric primitives such as a cube or a sphere provide an

easy-to-handle test framework with a known ground truth based on simple mathematical

expressions (Cinti et al. 2004; Warfield et al. 2004). Moreover, they present a cost-effective

design strategy for physical phantoms. For example, an inexpensive tissue-equivalent breast

phantom consisting of lard (a solid cooking fat) surrounding a commercial jelly product is

proposed by Liney et al. (1999). Nevertheless, anatomical correctness is favored in many

cases. Especially image analysis methods that make use of anatomical prior information

require realistic phantoms tailored to the considered application. Common design schemes

consist of complex representations of anatomical structures using plastic cutouts (Hoffman

et al. 1990), or use data sets from patients and/or healthy volunteers (Zubal et al. 1994).

To take advantage of features from both, standardized mathematical equations and anatomi-

cal realism, hybrid phantoms have also been proposed by some investigators (Garrity et al.

2003).

2.3. Discussion

This chapter introduced two aspects we focus on in this work. The first part was dedicated to

the question: What is a phantom? The second part provided an overview over common ap-

proaches in medical image analysis that will be further discussed in the context of phantom

design in the upcoming chapters.

So, what is a phantom? Creating a model before creating a product has become a com-

mon technique in many engineering disciplines. Automobile designers build scale models

of a new car and create 3D computer visualizations in order to provide a visible, early so-

lution of their design. Such prototypes allow designer and customer to validate the require-

ments and design specifications. Phantoms in medical imaging are designed to achieve sim-

ilar goals: The development of a phantom is concerned with the evaluation of new analysis

approaches or the calibration and testing of imaging devices. Thereby, phantoms provide a

cost-effective and time-saving approach in comparison to an analysis based on actual patient
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Figure 2.6. Degree of agreement of the three software phantom types with the general design
requirements introduced in Section 2.1.1. Good (+), average (◦), low (−).

data. Furthermore, they allow focusing on the really important features of a testing proce-

dure. For example, analyzing the field inhomogeneity of an MR scanner does not require a

shape of a human organ. However, the quality and importance of the modeled parameters

are essential issues for the applicability of the whole phantom, and the following chapters

will discuss this aspect in detail.

Software Phantoms

Besides a general overview of design requirements we also proposed a categorization scheme

that partitions a phantom into three categories, namely the phantom type, the simulation ap-

proach, and the phantom appearance (cf. Fig. 2.3). Especially software phantoms were

surveyed, because they present the main category in this work. They provide a flexible and

more reproducible design approach and an advantageous alternative to physical phantoms

for many applications, e.g., applications that require a detailed object shape.

We divided software phantoms into three groups (cf. Fig. 2.4): stylized phantoms, voxel

phantoms, and hybrid phantoms, each having their own advantages and drawbacks. Figure

2.6 illustrates the degree of agreement with the proposed design properties for each group.

A similar categorization could also be used for physical phantoms.

Stylized Phantoms. The simple mathematical description of each object in stylized

phantoms allows for a flexible and simple adaptation of imaging parameters. Furthermore,

changing the volume or position of an object can be easily achieved. However, geometrical

models based on mathematical equations alone inherently limit exact modeling of complex

shapes, resulting in a low degree of agreement with respect to suitability and correctness of

the considered parameters.

Voxel Phantoms. Although voxel phantoms offer the ability to create appropriate mod-

els of the human anatomy that surpass stylized phantoms (suitability & correctness), several

limitations still exist. An important drawback is the missing ground truth of the scanned

anatomical structures. For example, the amount of white matter in the brain or the volume

of a tumor is not known and can only approximated, which makes an analysis of new quan-
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tification techniques difficult. Furthermore, a limited data pool and a limited resolution can

not account for all anatomical variations and pathologies. The phantom construction can

also be time consuming due to the required segmentation task for each structure. Moreover,

small structures in the order of the voxel dimension may not be accurately segmented, and

extensive acquisition protocols with long scanning times or repeated injection of contrast

agents often prevent from scanning patients or probands in the preferred way. Therefore,

this approach results in a limited flexibility.

Hybrid Phantoms. Hybrid phantoms are most suitable for the analysis of new methods

and systems, since they combine the advantages of the two other categories. The resulting

data sets provide a suitable model for several parameters plus a flexible handling of them.

A main feature is the separation between object and background. An example of a hybrid

phantom could be as follows: An object with a suitable shape incorporated into a patient

data set. In other words, we focus on the development of objects with relevant parameter

models, and assume the background to be already available. This approach provides great

flexibility and suitability during object modeling. However, this approach results into a

phantom design with only moderate correctness, since some parameters may not result from

actual patient or volunteer data and have a rather simple layout. To this end, a careful

selection of the important features has to be taken by the developer. The following chapters

will present a survey on how different parameters can be modeled, and present our approach

to phantom development. Furthermore, an analysis of possible applications and limitations

is provided.



Part I.

Phantom Development
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3. Parameters in Phantom Development

The development of phantoms in medical imaging is a challenging task. Important aspects

are the complexity of the underlying problem domain and the difficulty of modeling all re-

quired parameters in a sophisticated way. The previous chapter has given a general overview

of design approaches and proposed a categorization into different layers. Now, we present

a more detailed examination of parameters used in phantom development. We propose a

categorization into different groups: The first group contains morphological and topolog-

ical parameters associated with the appearance of an object such as shape or volume (cf.

Sec. 3.1). The second group includes parameters related to the acquisition process, such as

noise, uniformity, or spatial resolution (cf. Sec. 3.2). The last two groups contain a general

scanner parameter and the modeling of processes such as tumor growth (cf. Sec. 3.3). See

Figure 3.1 for an overview.

For each group we present a general description of examined parameters. Furthermore,

we give an overview of typical phantom examples from literature, that model the consid-

ered parameters as well as associated applications. Thereby, the description of phantoms

is divided into physical and software phantoms. Each section concludes with a compact

summary of the presented modeling approaches, again divided into physical and software

phantoms.

3.1. Morphological and Topological Parameters

The initial design decision in phantom development is typically related to the appearance

where important aspects are the morphology and the topology of the generated objects.

This includes parameters such as shape, orientation, or volume. For example, a muscle has

a different imaging characteristic than the liver. Normal tissue has a different appearance

than pathological tissue.

19
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Figure 3.1. Overview of parameter groups presented in this chapter.

3.1.1. Parameter Description

Shape

The shape of a structure is an integral part of many clinical applications forming a rela-

tionship between visual appearance and function. Each organ has a characteristic shape,

and pathologies are often related to an abnormal shape of the analyzed structure. Using

shape related parameters has also become a common approach in medical image analysis.

Many segmentation methods incorporate specific knowledge about the morphology of an

organ to constrain the approximation of the object contour, e.g., by using a statistical shape

model which provides a parametric description of object variations based on a set of aligned

training data.

For example, Liney et al. (2006) propose a number of shape features such as convexity

or circularity to differentiate benign and malignant breast lesions. Thereby, a common

challenge is the typically large variability of anatomy within a shape population.

Structure

Another parameter to describe the appearance of an object is related to its underlying struc-

ture, i.e., the different components or tissue classes. Such a classification plays an important

role in diagnosis and therapy planning, and multispectral acquisition protocols are often re-

quired. For example, a brain tumor can consist edema, active tumor, or necrosis. Here, a

differentiation is essential of these tissue classes for treatment planning such as resection or

radiation therapy.
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Volume

The volume of an object is another important descriptor. Several studies have reported the

clinical use of volumetric measurements as a surrogate marker for different applications and

body parts. For example, brain atrophy as well as atrophy of certain brain structures such

as the hippocampus have emerged as sensitive predictive markers for disease progression

in Multiple Sclerosis and in Alzheimer disease (Miller et al. 1998; Henneman et al. 2009).

A volumetric growth assessment of lesions is also an essential task in many applications

including oncological therapy monitoring (Ko et al. 2003), estimation of total lesion load

in Multiple Sclerosis (Molyneux et al. 1998), or the computation of residual tumor volume

as a predictive survival rate after brain surgery (Wood et al. 1988).

Topology

Besides the general appearance of an examined object, its topology has to be considered for

an in-depth analysis. We relate the topology to the location or position of an object within

the background, as well as the position in relation to other objects. Although anatomical

structures have their pre-defined positions or at least a reference range of typical locations,

deviations can give insight into potential pathologies. Furthermore, the location of a patho-

logical structure such as a lesion is an important feature for diagnosis and treatment plan-

ning: A tumor deep inside the brain is more difficult to access for surgical removal than one

at the surface. In liver surgery, a tumor close to a large vessel can have major impact on

the remaining liver volume, since a surgeon removes the tumor with a lap of surrounding

healthy tissue.

3.1.2. Phantoms

After discussing common parameters related to morphology and topology, we now present

a survey of phantoms modeling these features. The same categorization as above is used to

group the referenced publications. Of course, the discussed phantoms in this section only

present a subset of possible applications. We focus on common examples including brain,

breast, heart, or liver.

Shape

Shape is an important spatial property of a phantom. Unfortunately, complex anatomical

and pathological shapes are difficult to model, especially for physical phantoms. Further-

more, these phantoms have to cope with the problem of long-term physical stability. Nev-

ertheless, several physical phantoms with a realistic anatomical appearance have been pro-

posed, and some are even commercially available, e.g., via CIRS, Norfolk, USA. The Hoff-

man brain phantom (Hoffman et al. 1990) comprises a representation of the outer edge of

the human brain, of the interface of white and gray matter, as well as of the ventricle region.
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Nineteen independent plastic plates that can be stacked in a plastic cylinder, facilitate com-

plex simulations of radioisotope distributions found in the brain. User-defined defects can

be added to simulate clinical abnormalities. A related approach is presented in (Pupi et al.

1990).

Other groups use rather simple shapes such as spheres or ellipsoids to model their phan-

toms. Ko et al. (2003) use a realistically shaped chest phantom composed of different

materials simulating bone, lung, muscle, and fat to study quantification methods for small

pulmonary nodules. The actual nodules are acrylic spheres placed into small wells drilled

into the material of each lung. A physical phantom of the upper abdomen consisting of 17

synthetic lymph nodes of ten different sizes is proposed in (Keil et al. 2009). A related, how-

ever much simpler phantom consisting of wells within a Plexiglas cylinder is presented by

Drexl et al. (2004) for the analysis of vessel segmentation approaches. Physical phantoms

for many other anatomical structures and applications have been proposed as well (Timinger

et al. 2006; Mattila et al. 2007; Tofts et al. 1997; Cinti et al. 2004).

Similar to their physical counterpart, software phantoms have been proposed with a

wide range of different shapes, each shape again being on a scale of simple geometric

objects to realistic anatomical appearance. One approach to model anatomically realistic

shapes within a software phantom is to use digitized real lesions, e.g., obtained after biopsy.

A software phantom for mammograms is proposed by Burgess et al. (2003). Here, digitized

masses from patient data sets are incorporated into normal mammograms. However, digi-

tized real lesions are often not available, and other representations of these structures are

required. A common method is to extract the shape from segmented volunteer or patient

data sets. A popular example is the BrainWeb phantom by Collins et al. (1998). In a related

approach, Kauffmann et al. (2003) use segmentations of the tibia and the femur geometries,

as well as of cartilage for the quantification of cartilage thickness and volume changes.

Several simple geometric software phantoms have been proposed as well. Stylized phan-

toms are a common approach for dosimetry calculations in radiotherapy (Fisher and Snyder

1966; Lee and Lee 2006). Schlüter et al. (2005) propose a phantom for the analysis of

fiber tracking algorithms on diffusion tensor data. Synthetic fiber bundles based on mathe-

matical equations as well as clinical data serve as basis for evaluation. A spherical lesion

phantom is added to assess the robustness of fiber tracking methods to fiber disturbance. A

software phantom consisting of two concentric ellipsoidal surfaces with varying sizes and

levels of segmentation error is proposed by Lazebnik et al. (2002) for the segmentation of

radiofrequency ablation induced thermal lesions.

Structure

Developing phantoms that consist of several components is a challenging task, especially

for physical phantoms. Each structure requires its own anatomical shape and imaging pa-

rameters such as contrast or noise. Therefore, common physical phantoms consist of one

or more geometric structures and of a single material. Depending on the targeted applica-
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tion, this can be an acceptable solution, e.g., for quality assurance of MR systems (Price

et al. 1990). However, analyzing anatomical or functional patterns within the human body

requires phantoms with a more detailed underlying structure. To give an example, a suitable

phantom to examine brain tissue deformations during neurosurgery should include a model

of all important structures such as different tissue types as well as blood vessels. A first step

in this direction is presented in (Reinertsen and Collins 2006). Several physical phantoms

of more than one component for other structures have been proposed as well (Hoffman et al.

1990; Timinger et al. 2006).

Software phantoms have the ability to be easily composed of different tissue classes, and

phantoms have been proposed for various anatomical structures up to whole body phantoms

(Lee and Lee 2006). Again, the BrainWeb phantom is a prominent example. It consists of

ten tissue classes including gray matter (GM), white matter (WM), and cerebrospinal fluid

(CSF). Furthermore, an extension with additional structures (blood vessels, the dura matter,

marrow, etc.) is proposed by Aubert-Broche et al. (2006). A brain phantom including

tumor and edema is presented in (Prastawa et al. 2005). A diffusion-reaction model is used

to guide edema growth and tumor infiltration. Zhang et al. (2008) propose a breast phantom

including the simulation of skin, adipose tissue, and fibro-glandular tissue.

Volume

Phantoms used to analyze the volume of an anatomical or pathological structure often have

a rather simple geometric shape. Reasons are the associated time and costs for develop-

ing complex objects with known volume plus correct imaging parameters and morphology.

Another aspect is anatomical feasibility. Especially, methods that quantitatively assess the

volume of lesions use roundish or ellipsoidal objects (Luft et al. 1996). Multiple Sclerosis

lesions (Tofts et al. 1997) and pulmonary nodules (Ko et al. 2003; Winer-Muram et al.

2003) are typical examples. Kuhnigk et al. (2006) use a physical lung phantom consisting

of 39 spherical and non-spherical objects of different diameters for a volumetric assessment

of lung nodules.

Nevertheless, a detailed volumetric analysis often requires phantoms with a more com-

plex shape. The BrainWeb software phantom is one of the most common data sets for the

evaluation of methods for brain volumetry, see for example (Shattuck et al. 2001; Hahn

et al. 2004; Cuadra et al. 2005).

Topology

The position of an object within the background structure is seldom explicitly modeled in

physical or software phantoms. Instead, objects incorporated in phantoms are spread ran-

domly or in some pre-defined pattern throughout the underlying background material (Pikus

et al. 2006). Furthermore, a specific object position presumes a surrounding background

related to an anatomical structure, i.e., there is no need for careful positioning if the back-
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ground is made of a single material without any specific anatomical shape (Winer-Muram

et al. 2003).

An approach towards a realistic topology could be to position objects at similar loca-

tions found in patient data sets. Reynolds et al. (2007) propose a direct mapping of 2D

coordinates of melanoma positions onto a 3D anatomical model created from the Visible

Human data set. Ko et al. (2003) place several wells at typical positions of lung nodules

in the periphery of each lung at a pre-defined distance to the pleura and in the center of the

lungs. Phantoms in the field of radiation dose calculation use the shape of a human body

with incorporated objects (Lee and Lee 2006). Each object is shaped as an internal organ

and placed at an approximately correct position.

Summary

This section provides a brief overview of the modeling approaches discussed above. Thereby,

physical phantoms and software phantoms are given for each parameter.

3.2. Imaging Parameters and Artifacts

Besides morphological and topological parameters, imaging parameters and artifacts are

further important aspects in phantom development. Acquiring a data set from an MR or CT
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scanner comprises many features related to the acquisition process and associated artifacts.

Image artifacts are intensity values in an image that do not have a corresponding anatomical

basis, i.e., values that are not present in the imaged object. Thus, they influence the image

appearance such as a hyperintense signal in the background or a drop-out of signal where

there should be something. Each modality causes own artifacts, and considering all will

go beyond the scope here. Therefore, we focus on MRI image data in this work, which

have numerous potential sources of image artifacts and each pulse sequence has its own

problems.

Here we only give a brief overview of common imaging parameters and artifacts. For

an in-depth discussion we refer to standard literature and textbooks such as (McRobbie et al.

2003).

3.2.1. Parameter Description

Contrast/Intensity

To examine normal anatomical or pathological structures within an image, a contrast be-

tween adjacent tissue classes is needed. In MR imaging, an intensity value depends on

several effects influenced by the used pulse sequence. Thereby, altering the local magnetic

field with respect to a voxel position varies the signal intensity in the examined tissue. Fur-

thermore, several new and evolving imaging techniques such as diffusion tensor imaging

(DTI), magnetization transfer imaging (MTI), or MR Spectroscopy (MRS) have opened up

new opportunities in MR imaging. Another possibility to change the contrast between cer-

tain tissue types is to administer a contrast agent to a patient. For example, a contrast agent

based on the paramagnetic gadolinium is used to visualize areas of enhancing brain tumors

with a disrupted blood-brain-barrier.

Noise

Unfortunately, imperfect imaging conditions result in fluctuations in the signal measured

with an MR scanner and thus of the voxel values in an image. The term noise or random

signal is used to describe this component. Different sources of noise arise during an acquisi-

tion such as thermal noise from the imaged subject or the coil temperature, or quantization

artifacts from the analog to digital conversion. However, anatomical variations in a mea-

sured tissue may also result in deviations from the expected signal intensity. See (Sijbers

1998) for a more detailed overview. A noise measure is the Signal to Noise Ratio (SNR) that

quantifies the amount of signal with respect to the amount of noise. A common definition

is given by McRobbie et al. (2003) as

SNR =
µ

σ
(3.1)
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SNR Signal to Noise Ratio
µ mean value of signal
σ standard deviation of noise.

The SNR will be large for areas with a large mean signal value or a low noise level. The

above mentioned spread of possible intensity values is commonly described by a Probability

Density Function (PDF). The complex MR signal noise can be described by a Gaussian PDF

as

p(i) =
1

σ
√

2π
exp

[

−(xi −µ)2

2σ2

]

(3.2)

p(i) Gaussian PDF with model parameters θ = (µ,σ)

µ mean value
σ standard deviation.

For magnitude MR images, this PDF transforms into a Rician distribution (Sijbers 1998). In

the special case of low SNR, e.g., in the background of an MR image, this PDF is reduced to

a Rayleigh distribution. For high SNR, the Rician PDF is well approximated by a Gaussian

distribution. This result will be applied in Part II of this work on image segmentation and

classification, where we use a Gaussian PDF to characterize the distribution of brain tissue

classes. Other imaging modalities such as CT or PET have their own noise models.

Resolution

The spatial resolution of an image describes the level of detail, an MR scanner is able to

achieve. Or simply stated, the image resolution is determined by the size of a voxel —

the larger the voxel size, the lower the resolution, and the less accurate an object is imaged.

Thereby, we have to consider the in-plane resolution and the slice thickness, which are often

different. In this work, we typically work with data sets having an in-plane resolution of

1× 1mm2 and a slice thickness of 1− 3mm. Unfortunately, MR resolution is limited with

respect to the amount of SNR. The available scan time is another limiting factor.

Field Inhomogeneities / Nonuniformity

MR scanners seldom have a uniform magnetic field. Therefore, a measured homogeneous

tissue region will often not result in a uniform MR signal intensity, but in variations across

the image. These distortions are typically caused by hardware imperfections, but can also

result from susceptibility of the imaged object.

Motion Artifacts

Another common artifact is caused by motion of the imaged object during the acquisition,

resulting in a blurring of an entire image or parts of it. Two types of artifacts due to motion
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Figure 3.2. Illustration of the partial volume effect. A black object is sampled in a white background,
resulting into voxels with different gray values between black and white at the object boundary.

can be observed: involuntary movements, such as respiration and cardiac motion, and ran-

dom patient movements. A reduction of the first type can be used to gate the acquisition to

the breathing or the cardiac cycle of a patient. Patient movement during the acquisition can

be reduced by immobilizing the imaged body part.

Partial Volume Artifacts

Digitizing a continuous signal into a finite number of data points results into voxels that

contain a mixture of tissue types, which is referred to as Partial Volume (PV) effect. The

intensity values of these PV voxels can be calculated as proportional sum over the individual

tissues. For example, a black object in a white background will result into PV voxels with

mid-range gray values, i.e., the PV effect spreads out the object and it will appear larger

than it actually is. This could for example have influence on treatment planning if the PV

effect is not taken into consideration during measuring the object size. See Figure 3.2 for

an illustration of the PV effect in such an image.

Several parameters have an effect on the PV effect, only some of which can be con-

trolled. PV effects strongly depend on the size of an examined object. For example, the

volume of the liver might be analyzed with a larger voxel size than a lesion with a diameter

of only a few millimeters. A way out of this dilemma could be to increase the resolution and

acquire data with a voxel size that is small enough for the examined object. Unfortunately,

scanner and acquisition protocol, as well as patient acceptance of long scan times limit the

feasible data resolution. Another parameter influencing the amount of PV is the shape of an

object. A large surface area for a given volume will result in a larger amount of PV. Thus,
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an irregular object is more affected than a spherical or cuboidal one, because a larger part

of the object is close to the boundary and thus prone to PV effects.

Further Imaging Artifacts

Besides the above mentioned artifacts, several other can occur as well. Some are mentioned

in this section.

Susceptibility and (metal) artifacts. Magnetic susceptibility describes the degree of mag-

netization of a tissue when placed in an external magnetic field. Different tissue types be-

come magnetized to different extents, causing local distortions that result in a loss of signal.

Similar artifacts occur in the presence of metals, which produce large magnetic field inho-

mogeneities because of their different susceptibility than body tissue.

Gibbs ringing. Truncation or Gibbs ringing artifacts are parallel bright or dark lines

that can occur parallel or adjacent to high-contrast boundaries. The effect can be reduced

by collecting more high-frequency data, i.e., by increasing the resolution. Another approach

is to apply a smoothing filter.

Chemical shift. Chemical shift artifacts refer to signal alternations that result from dif-

ferences in the resonance frequency (Lamor frequency) of nuclear spins between different

body tissues. An important example is the shift between fat and water. Because fat has

a lower Lamor frequency than water, signals from water and fat protons at the same loca-

tion will be assigned different locations when converting from the frequency to the spatial

domain, causing a misregistration.

3.2.2. Phantoms

Other than phantoms related to morphological and topological parameters presented in Sec-

tion 3.1.2, phantoms modeling imaging parameters often do not require a complex appear-

ance or a specific clinical application, Since few publications only model a single parameter,

some phantoms are addressed more than once. An approach to develop phantoms dedicated

to a single imaging parameter is presented by Price et al. (1990). The authors summa-

rize different methods for quality assurance of an MR system and their associated physical

phantoms. Required design criteria including appearance and material are examined, and

applicable sequences and scan conditions are specified. To the best of our knowledge, a

similar approach for software phantoms has not been proposed yet.

Contrast/Intensity

A physical phantom consisting of obliquely positioned cylinders within a plastic container

for the analysis of brain lesion quantification methods has been developed in (Tofts et al.

1997). To obtain lesion-like intensity values, the lesion to white matter contrast is extracted

from a data set of a patient with Multiple Sclerosis. Because these intensities vary over dif-

ferent positions within the white matter, different gray value transformations are proposed
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for a more realistic appearance. Another approach to obtain appropriate intensity values for

a physical phantom is to use material with relaxation times similar to that of human tissue.

For example, Yoshimura et al. (2003) use carrageenan gel, a polysaccharide extracted from

red seaweeds.

A common approach for software phantoms is to use so-called tissue templates, i.e., gray

values extracted from patient data or from healthy volunteers (Burgess et al. 2003; Surya-

narayanan et al. 2005). Other methods such as the popular BrainWeb phantom (Collins et al.

1998) uses an MR simulator based on a simulation of Bloch equations to provide realistic

intensity values (Kwan et al. 1999).

Noise

As described in Section 3.2.1, magnitude MR images have Rician distributed noise within

tissue and Rayleigh distributed noise in the background respectively. The BrainWeb phan-

tom uses these distributions during the simulation of MR signal intensity values (Kwan et al.

1999). Other software phantoms often simplify this approach and model image noise by a

Gaussian distribution (Noe and Gee 2001), which is also a common assumption in many

image analysis methods.

In order to determine the amount of noise, two approaches can be found: MR simulators

compute a distribution from an explicit model (Kwan et al. 1999). On the other hand, noise

can also be measured directly from an MR scan. For example, Gedamu et al. (2008)

estimate the standard deviation of the noise intensity distribution from a mask drawn in the

background of a patient data set. Price et al. (1990) draw a region-of-interest in the data set

of a physical phantom that consists of a uniform signal-producing material.

Resolution

For quality assessment or for the evaluation of new sequences, spatial resolution can be as-

sessed with physical phantoms by bar patterns, i.e., by an array of altering signal-producing

elements and non-signal-producing elements (McRobbie et al. 2003). The length of each

bar should be at least twice the slice thickness (Price et al. 1990). A convenient way for

software phantoms to model spatial resolution is to downsample a high-resolution data set.

Field Inhomogeneities / Nonuniformity

Similar to the analysis of noise or of the signal-to-noise ratio of a scanner, evaluating field in-

homogeneities requires a physical phantom filled with a uniform signal-producing material.

In image analysis, several algorithms use a nonuniformity correction as a pre-processing

step. A software phantom consisting of a cube with a random intensity distribution mul-

tiplied by a parabolic function is used for the evaluation of the popular N3 method (Sled

et al. 1998). A similar approach is used to extend the BrainWeb phantom with intensity

inhomogeneities.
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Motion Artifacts

As described in the previous section, patient motion can have several reasons, including

breathing or heart motion as well as minor patient movement during a scan. Each variant

causes blurring and ghosting artifacts and is difficult to analyze for a phantom. Sophisticated

phantoms for this task should be able to generate a number of motion patterns for each

application.

A common approach for physical phantoms is a movable device that can be controlled

by some software program. For example, Fitzpatrick et al. (2005) developed a movable plat-

form allowing the simulation of different motion patterns. Different objects can be placed

on the device resulting in a range of potential applications. Timinger et al. (2006) propose

an MR compatible ventricle phantom of the heart. Silicon tubes serve as model of the vas-

cular structure. To model arbitrary motion patterns simulating heartbeat and respiration, the

phantom is placed on a rigid plastic frame that can be mechanically controlled. A low-cost

phantom that models cardiac motion is proposed in (Huber et al. 2000).

Instead of actually moving an object within the scanner, software phantoms provide a

computational model of the underlying motion. A generic approach to obtain such a model

is based on markers placed outside a patient’s body during an acquisition that can be easily

tracked. McClelland et al. (2006) propose a patient-specific motion model to describe

deformations of lung tumors and of adjacent tissue classes during an average respiratory

cycle. The model is reconstructed from a patient data set at free breathing by non-rigid

registration of a high-resolution reference data of the same patient. Another approach has

been implemented by Segars et al. (1999). In their work, a set of surface models is created

from gated MR cardiac data of a normal patient and transferred into a 4D software phantom.

Non-uniform rational B-splines (NURBS) are used to model heart motion and to permit the

generation of arbitrary time-points. A similar approach is used by the same group to model

respiratory motion (Segars et al. 2001; Garrity et al. 2003).

Besides the above-mentioned, patient-specific models, several paper propose physiolog-

ical or biomechanical models to simulate involuntary patient movement. Wu et al. (2004)

describe the respiratory motion of patients by a finite state model including three repeating

breathing states, each corresponding to a typical action: exhale, end-of-exhale, and inhale.

An analytical simulation of cardiovascular and respiratory mechanics is presented in (Kaye

et al. 1998).

Partial Volume Artifacts

The size and shape of an object as well as the scan direction are the most prominent pa-

rameters influencing the partial volume (PV) effect, i.e., causing the border between tissue

classes to be blurred. Therefore, a common approach for physical phantoms is to study ob-

jects with differing known volume or scanning them at different spatial resolution. Typical

applications include the analysis of MS lesions (Tofts et al. 1997; Ballester et al. 2002) and
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of lung nodules (Ko et al. 2003), where the lesion size is often small compared to the slice

thickness. A similar approach is presented in (Plewes and Dean 1981). Here, a phantom

consisting of a solid block with several holes of varying diameter is used to study contrast

loss due to partial volume averaging.

A popular software phantom for the analysis of PV effect in image data of the brain is

the BrainWeb phantom (Collins et al. 1998). Other software phantoms use object blurring

or model PV artifacts as a separate layer within an object. For example, Shin et al. (2006)

use Gaussian filtering of a binary object to simulate the decreased intensity values at the

object’s boundary. A square divided into three vertically separated regions is used by Noe

and Gee (2001) to evaluate a segmentation with an explicit model for PVE. Two regions are

considered as pure tissue classes with intensity values drawn from a normal distribution. In

between, the third region is computed by linear interpolation.

Summary

To summarize this section, we give a brief overview for each parameter, divided into physi-

cal and software phantoms.
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3.3. Other Parameters

In the previous sections, we have analyzed parameters affecting the quality of a scanner or

the output of an image processing algorithm. Now, we present two additional parameters

that did not fit so far, namely scanner and process. The first parameter subsumes general

features such as an update of the scanner software or a new sequence setup. The second

parameter describes dynamic processes within a phantom.

3.3.1. Parameter Description

Scanner

Manufacturers of MR scanners offer a range of scanner types for different applications.

Thereby, each scanner has its own hardware and software configuration including different

field strengths, coils, scan sequences, etc. During the life time of a scanner several of

these components will change due to hardware or software upgrades, and modifying such

a parameter can lead to changes in the resulting image data. An example, that shows the

effect of the parameter ’scanner’ is presented in (Han et al. 2006). Here, an evaluation of

the reliability of cortical thickness measurements within as well as across different scanner

platforms is performed. The results show a variability in the global mean of the cortical

thickness across platforms as well as across different field strengths. On the other hand, an

upgrade to a newer scanner version did not have a significant effect on the results. Several

other work also demonstrate the effect of field strength changes on the resulting image data,

e.g., changes from 1.5T to 3T.

Process

Dynamic processes within a phantom comprise a number of different mechanisms. They

can be regarded as a subgroup of the category ’simulation approach’ defined in Section 2.2.2

(cf. also Fig. 2.3). In this work we focus on processes related to enhancement characteristics

after contrast agent injection and on deformations, e.g., due to tissue growth or shrinkage.

Contrast agents are commonly used in MRI to improve the scanned images by alter-

ing relaxation times after injection. Thus, the contrast between different tissue classes is
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increased in various parts of the body where the agent resides. Today, the paramagnetic

gadolinium is one of the most commonly applied contrast agents. Applications include

the evaluation of blood vessels, the analysis of infections and inflammations, diagnosis of

cancer, or the characterization of different lesion types. For example, dynamic contrast en-

hanced MRI of the breast has shown to be a sensitive modality for early detection of cancer.

Thereby, a series of scans is acquired at different time points, enabling an analysis of the

uptake and wash-out characteristics of the tissue. Differences in contrast uptake between

normal and pathological tissue provides a basis for differentiation.

As stated above, the second process analyzed in this section is related to deformations.

In this work, we focus on deformations of pathological structures such as tumors: The pro-

gression of a tumor is a complex process with different stages from an initial avascular phase

to invasion and metastasis. A hallmark is the breakdown of normal cellular interaction and

control of replication. Angiogenesis is another process during tumor development, forming

new blood vessels from existing vasculature in response to chemical signals from a tumor.

See also (Hanahan and Weinberg 2000; Swanson et al. 2003) and references therein for a

more detailed review. Another process resulting in deformations is caused by intraoperative

movement. For example, the brain undergoes deformations during neurosurgery after the

skull has been opened (brain shift).

3.3.2. Phantoms

Scanner

We relate this parameter to the overall process of phantom development rather than to a

specific attribute. Today, no phantoms are known to model these parameters. One reason

might be, that changing the scanner manufacturer or upgrading the hardware or software of

a scanner have only a minor impact on the results as already described above. Furthermore,

no detailed information are available from manufacturers, e.g., about software upgrades in

an MR system.

Process

Simulations of object deformations and contrast enhancements allow the incorporation of

clinical and biological knowledge into the phantom development process. Multi-compartment

models are commonly used to describe the enhancement of macromolecular contrast agent

particles in tissue and thus are an important tool for computer-assisted analysis of dynamic

MRI. The Tofts&Kermode model is a popular approach to generate simulated perfusion

data sets (Tofts and Kermode 1991). A simulation of contrast enhancement characteristics

of different lesion types is proposed in (Brix et al. 1999).

The second investigated aspect in process modeling is related to deformations. In this

work, we focus on tumor growth models, which can be classified into two categories: (1)

cellular and microscopic models, and (2) macroscopic models.
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Cell population models typically start from a small number of proliferating tumor cells

and comprise a set of rules describing the evolution of their state and position. Kansal

et al. (2000) propose a three-dimensional cellular automaton for solid brain tumor growth.

The authors use a delaunay triangulation with a variable grid size for the underlying lattice,

which allows for a tumor growth modeling over several orders of magnitude. A cellular

automaton as well as a particle based tumor growth model are proposed in (Sierra et al.

2006). The authors put special emphasis on a realistic macroscopic appearance of common

pathologies including polyps and myomas, to meet the requirements of a surgical training

simulator for hysteroscopy.

Approaches that simulate tumor growth on a macroscopic level typically model soft tis-

sue deformations Thereby, two main directions can be taken: a biomechanical approach and

a computational discrete approach (Delingette 1998). Common models typically consist of

reaction-diffusion equations (Clatz et al. 2005). Furthermore, models based on continuum

mechanics assuming linear elastic (Wasserman et al. 1996) as well as nonlinear elastic

material (Kyriacou et al. 1999) have been described in literature. Here, tumor growth is in-

fluenced through internal and external forces that deform the underlying anatomy. Several

additional anatomical constraints are introduced to facilitate a realistic tumor expansion and

a deformation of surrounding tissue. In the last few years, these physics-based models have

also gained increasing popularity in medical image registration due to their ability to con-

strain the underlying deformation in a plausible manner (Ferrant et al. 2001; Christensen

et al. 1996). Thereby, an image is treated as a physical entity, either an elastic solid (Bajcsy

and Kovacic 1989) or a viscous fluid (Christensen et al. 1996). The underlying physical

principals, i.e., elasticity theory and fluid dynamics respectively, are a branch of continuum

mechanics. An overview of registration approaches using physics-based models can be

found in (Modersitzki 2004).

Unfortunately, these approaches only model the growth process and thus only one pa-

rameter. Phantoms with a model for tissue deformations plus imaging parameters such as

noise or the correct contrast between tissue classes are hardly available. Sierra et al. (2006)

manually texture the surface of their phantoms with image fragments from previous intra-

operative recordings, to provide an image appearance similar to that of an intra-operative

scene. A phantom for brain-shift simulations, suited for MR and ultrasound imaging, has

been developed by Reinertsen and Collins (2006). This phantom consists of several parts

simulating cerebral falx, brain, and vessel structures. To deform the brain, a catheter balloon

is placed under the phantom and inflated by injecting water.

Summary

Similar to the other modeling groups, we provide an overview of discussed modeling ap-

proaches in tabular form, divided into physical and software phantoms.
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3.4. Discussion

After introducing general aspects of a phantom in the previous chapter, this chapter focused

on parameters used in phantom development. We presented a classification into four groups,

each modeling a certain aspect of a phantom.

1. Morphology and topology

2. Imaging parameters and artifacts

3. Dynamic processes

4. Other scanner characteristics

A description of each parameter was followed by a discussion of characteristic phantoms

proposed in literature.

Today, phantoms are used for many applications, and only some have been discussed

in more detail in this chapter. We concentrated on phantoms for major anatomical and

pathological structures such as brain and heart as well as lesions. Furthermore, phantoms

for the evaluation of segmentation and quantification approaches were presented. This will

be a focus in the upcoming chapters.

General

Both, physical and software phantoms have their own characteristic construction methods,

and both types have been proposed in literature for the parameters presented in this chapter.

Physical phantoms are commonly developed for quality assurance, since they can be placed

in a scanner. Unfortunately, building such a phantom is associated with a large manual

effort. One has to gather all components and assemble them to form the final phantom. This

often results in objects with a simple shape, although realistic anatomical appearances have

been proposed as well and are even commercially available. Another issue is chemical and
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physical long-term stability: A phantom should not change its parameters over time, e.g.,

contrast changes due to different relaxation times.

Software phantoms on the other hand do not need any assembling of hardware objects.

Their strength lies in the flexible and correct parameter modeling, and many different ap-

proaches have been proposed. Nevertheless, building a software phantom is by no means

less challenging or less time consuming. Correct models of the imaging parameters need

to be extracted. Furthermore, data sets of an investigated body region have to be acquired

to extract anatomically realistic morphology and topology, which can require hours of scan

time.

A common approach to software phantom design is a direct simulation of the underly-

ing acquisition process. Thereby, the imaging parameters are controlled via mathematical

equations. For example, Kwan et al. (1999) introduce an MR simulator, that is also used

in the BrainWeb project. Drexl et al. (2004) propose a simplified model of the CT scan-

ning process to generate software phantoms consisting of a homogeneous background with

small vessel-like structures. A more sophisticated software package simulating the process

of projecting X-rays through an object is available from the CTSim project (CTSim 5.1.2 ).

Another method to software phantom development is to simulate a data set from a differ-

ent modality. Kiebel et al. (1997) use high-resolution MR data to generate simulated PET

images. They apply a set of transformations including intensity modifications and smooth-

ing. Furthermore, Gaussian noise and a rigid body transformation are added. The resulting

PET data are then used to evaluate multi-modal image registration methods.

This approach is especially beneficial for the evaluation of registration algorithms, be-

cause both images originate from the same data set with the same artifacts. Moreover, mo-

tion artifacts with known ground truth can be easily added. Unfortunately, such a ground

truth is not available for many other parameters including morphological as well as imaging

parameters.

Although we have discussed major parameters used in phantom design, not all features

of the acquisition process and the considered structures can be investigated. Some might

not be known to have an influence on the results or might even not be known at all. Others,

such as the global parameter scanner are not used because they only have a small impact

on the resulting phantom, and little information is available about parameter changes, e.g.,

changes due to scanner upgrades.

Parameter Selection and Grouping

An important constraint in this chapter was the chosen parameters. But why is this selection

a correct assumption? The parameters related to morphology and topology (cf. Sec. 3.1)

as well as the parameters describing dynamical processes (cf. Sec. 3.3) are selected based

on the examination of published work in the field of medical image analysis. Therein, the

shape or the volume of an anatomical or pathological structure are important markers for

diagnosis and therapy monitoring, as we have already presented in the previous sections.
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The selected imaging parameters in Section 3.2 are commonly used in quality assur-

ance (QA) programs of MR scanners (McRobbie et al. 2003). They have a major effect

on the resulting image quality and are thus key parameters in QA. Firbank et al. (2000)

developed guidelines for QA based on a comprehensive analysis of an MR scanner over

the course of one year. They measured various imaging parameters including the signal

to noise ratio, image uniformity, and resolution using two different physical phantoms. In

a nationwide survey on quality assurance on MR scanners in England with 24 participat-

ing hospitals, Koller et al. (2006) found SNR and image uniformity tests to be among the

most frequently evaluated parameters in QA programs. A similar study was performed by

McRobbie and Quest (2002), monitoring effectiveness and relevance of quality assurance

for 17 MR systems from four manufacturers.

The analysis of different parameters in this chapter has shown that each parameter re-

quires its own modeling approach. Furthermore, it is not only related to the considered

application, but also to the phantom type, i.e., physical vs. software. Thereby, various meth-

ods from physics and biology are used, modeling normal as well as pathological processes

in the human body. Other approaches use statistical methods based on training data sets that

show typical variations of the modeled parameter. To give an example, evaluating a brain

segmentation approach requires a different phantom shape than evaluating a liver segmenta-

tion. Furthermore, a segmentation will focus on different parameters than a quantification

of the same structure.

Nevertheless, parameters can seldom be considered separately, and changing one pa-

rameter will affect others. For example, changing the shape of an object from a cube to a

sphere will also influence the resulting partial volume artifacts. The quality of a phantom

might even worsen if one parameter excessively changes, e.g., large motion artifacts can

impede the analysis of a quantification algorithm or even make it infeasible. Thus, each

parameter has to be described by its individual scope, which can change from application

to application. Unfortunately, a method is still missing that defines such a range for all

application-relevant parameters.

Relation to Design Properties

Even if we might have chosen all relevant parameters for a phantom, the overall perfor-

mance is still unclear. In Section 2.1.1 we defined general design properties for this task,

namely suitability, correctness, and flexibility. But to what extent do the cited phantoms

meet these requirements? To provide a more in-depth analysis of this issue, we discuss

three examples that were frequently used in this chapter. See also Figure 3.3 for examples

of these phantoms.

Tofts et al. (1997). This work proposes a physical phantom for the quantitative analysis

of brain lesion volume estimation schemes. Nine cylinders are placed in a container

at different positions and with different orientations. Adjustments are made to the
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Figure 3.3. Examples of typical phantoms that are frequently referenced in this work. (a) Physical
phantom for analysis of MS lesions proposed by Tofts et al. (1997) (left: whole phantom; right:
zoom of single annulus), (b) physical chest phantom with drilled wells proposed by Ko et al.
(2003), (c) slice of the BrainWeb phantom (T2-weighted data set).

resulting image data to obtain more realistic intensity values. Although the authors

state that the phantom is quick to manufacture (about 2h), especially morphology

related parameters such as a more complex object shape will be difficult to change.

Therefore, the flexibility of the phantom is low. On the other hand, the ground truth

is available for various parameters. Especially for those relevant to the targeted ap-

plication, e.g., PV artifacts, contrast, and resolution. Other parameters can only be

estimated (noise) or are not considered at all (field inhomogeneities, motion). This

results in an average suitability and correctness of the phantom.

Ko et al. (2003). In a related approach, Ko et al. use a physical chest phantom with wells

inside the lungs for the analysis of lung nodules. Each well contains an approximately

spherical nodule object. The selected phantom type again reduces the flexibility of

this approach. Suitability and correctness also receive only average grades. However,

the usage of a chest phantom results in a better quality than the previous approach.

For example, the underlying structure lacks of several components such as vessels or

bronchi that will affect the results in real patient data.

Collins et al. (1998). The BrainWeb phantom is a software phantom of the brain resulting

from a sequence of processing steps. It offers a great flexibility for various parameters

including the amount of noise or the resolution. The phantom also has a good suitabil-

ity and correctness, since its construction is based on a set of scans from one volunteer,

affecting morphological parameters such as shape and structure. Additionally, an MR

simulator is used to predict image contrast, PV artifacts, noise, and nonuniformities.

On the other hand, the phantom is generated from a single individual, reducing the

parameter distribution and thus the flexibility and correctness of this approach. For

example, it is not possible to change the shape of white matter or cerebrospinal fluid.

Unfortunately, the descriptions above and the rather fuzzy terms (good, average, low) pro-

vide only a qualitative analysis of a phantom. An objective discussion including quantitative
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measurements is still missing. This will be addressed in Part II of this work.

Lessons Learned

To conclude, important aspects of parameter modeling for phantoms can be summarized as

follows:

1. Not all parameters can be modeled.

2. Each parameter requires an application-specific modeling.

3. Each parameter has a range of suitable values.

4. Modifying one parameter has also an effect on others.

5. A phantom models more than one parameter.

Based on these aspects, we will propose a new approach for software phantom development

in Chapter 4 that covers several parameters discussed in this chapter. For each parameter,

we present a dedicated model and discuss relations between parameters. An application-

specific modeling with appropriate parameter ranges is then proposed in Chapter 5 and

Chapter 6.
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4. Design and Construction of Software Phantoms

After an overview of current phantom design approaches and modeled parameters in the

previous chapters, we now focus on how to develop our own phantoms. Since we aim at the

design of hybrid phantoms that propose a separation between object and background, we

focus on the parameters required for object design. Our goal is a set of building blocks that

can be easily described and exchanged. This will allow us to efficiently design own phan-

toms, for example within a dedicated software assistant. Therefore, we introduce a modular

approach for the phantom design process in the first part of this chapter. Our novel method

is suited to describe any phantom, including both physical and software phantoms. Three

main tasks are distinguished: object design, background design, and object incorporation,

where each task has its own characteristics and design properties.

In Section 4.2, we then propose models for all major parameters such as object position,

shape, or intensity values. A formalized description for each parameter is given based on

our modular design approach. Based on the developed set of building blocks, we introduce a

software assistant for the development of software phantoms in the third part of this chapter.

We propose an easy-to-use tool that allows us to interactively combine the parameter models

described before.

4.1. Modular Phantom Design

Phantoms have become a standard way to validate the quality of measurements during the

development and evaluation of new imaging devices and algorithms. Especially software

phantoms are an integral part of solid test specifications for new image analysis methods.

However, most approaches today facilitate a merely ad hoc design dedicated to the underly-

ing application. A general design approach is still missing.

In this work, we propose a modular description of the phantom design process, charac-

terized by a set of modules with different functionalities. We aim at a system that enables

an information fusion of several parameters, allowing for a sound analysis and comparison

of different design approaches. Thereby, our goal is to provide a systematic description of

an arbitrary physical or software phantom.

Three main steps are required to determine the overall phantom development process:

41
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The design of a suitable object, the design of a related background, and the incorporation of

one or more of these objects into the background. Each step consists of a number of process-

ing steps, providing a detailed description of required parameters and modeling schemes.

See Chapter 3 for an overview of characteristic parameters used in phantom design. Fur-

thermore, each phantom has its own targeted application domain consisting of a specific

task, a body region, and an imaging protocol. A similar notation is also used by Udupa et al.

(2006) to specify the application domain of image segmentation evaluation methods.

In this work, the object of a phantom mainly determines the task of the targeted applica-

tion, whereas the background typically specifies the body region. For example a phantom

dedicated to the evaluation of liver tumor (object) segmentation methods using a CT scan

(background). If the background is merely used as image background and consists of a ho-

mogeneous material or a constant gray level, the object already determines the body region.

For example, Reinertsen and Collins (2006) propose a brain-shaped object with a vessel

structure for the simulation of brain-shift. In their work, the brain is placed in a liquid filled

acrylic plastic container.

4.1.1. Modules

To formalize the overall phantom design process, we propose a structured development

based on functional units that contribute to the overall system. Each of these so-called mod-

ules consists of a set of properties and behaviors, allowing to extract or combine information.

We also denote the description of a module a model. A module Mt of type t is then defined

as a tupel

Mt := 〈H,x, f ,θ,y〉 (4.1)

Mt Module of type t, t ∈ {parameter, f usion,state}
H hypothesis
x input value(s), x = {x1, . . . ,xN}
f transition function
θ parameters of transition function
y output value.

The first parameter determines the overall assumptions of the module. In other words, each

module is developed based on a certain hypothesis H. For example, this could be a charac-

teristic object intensity value. Nevertheless, this provides only a description. A discussion

about the correctness of the underlying assumptions is not given, but will be proposed in

Part II. Besides the hypothesis, a module consists of one or more input values x, which

can be image data or other external sources, as well as the output of another module. A

module has one output value y. A transition function f (x,θ) with a set of parameters θ is

used to transform the input. Therefore, it also provides a description of the module’s task.

For example, a module dedicated to the simulation of cardiac motion based on non-uniform

rational B-splines ( f ) is proposed by Segars et al. (1999). Therein, patient data (x) are used

to extract a 4D motion model of the heart (y). A graphical representation of a module is
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Figure 4.1. Illustration of a module. (a) General module layout: Input of a module are parameters
θ as well as input values x such as image data. The transition function f is used to compute the
output y. (b) Differentiation of different module types.

shown in Figure 4.1.

To summarize, our modules are somewhat related to components in component-based

software engineering (Brown and Wallnau 1998; Broy et al. 1998), and can be described as

follows:

In contrast to the definition given in Equation 4.1, our definition above is a rather informal

description similar to the definitions of quantification or segmentation given in Chapter 2.

Nevertheless, it covers the main features of a module, i.e., being a part of a phantom with

a clear interface allowing a common description as well as a flexible replacement. Thereby,

only modules that actually involve a concrete model are used. Parameters that can only be

estimated, e.g., noise or partial volume effects for a physical phantom, are thus not used as

part of the phantom specification (cf. Fig. 4.3-4.5). For example, an explicit noise model is

not specified in the phantom by Ko et al. (2003) and the corresponding module is thus not

given in the phantom description (cf. Fig. 4.4). Tofts et al. (1997) add additional Gaussian

noise to their phantom after image acquisition. In this case, we list the associated module

in brackets (cf. Fig. 4.3).

Three different module types are distinguished (cf. Fig. 4.1):

1. Parameter Module

2. Fusion Module

3. State Module

A parameter module delineates the most elementary module. It represents a parameter

model and can be further divided into groups as proposed in Chapter 3. We distinguish

between imaging parameters, morphological and topological parameters, and other param-

eters such as general scanner properties and the modeling of processes. A fusion module
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Figure 4.2. A modular approach to phantom development.

combines different parts of a phantom. For example, the Incorporation module is supplied

by the two state modules object and background (cf. Fig. 4.2). Finally, a state module

describes one of the three main outputs during phantom development, namely the object,

the background, or the final phantom.

4.1.2. A General Phantom Description

After defining the components required during phantom design as well as their interactions,

we now combine the different modules within a common representational format. The three

main steps, i.e., object and background design and incorporation, are integrated as fusion

modules. Thereby, object and background design consist of several parameter modules. The

result of the design process is a state module, i.e., object or background. The fusion module

Incorporation takes these two states as input and combines them to the final phantom. To

simplify the workflow, no additional parameter modules are used in this stage. However,

please note that more than one object might be involved during object incorporation as

discussed above. Figure 4.2 illustrates our resulting approach with the required modules.

To summarize, our approach offers two ways to describe a phantom: (1) A rather high-

level description providing a quick overview especially including the phantom type, the

targeted application, and the main hypotheses and modeled parameters, and (2) a detailed

analysis of all modules used during phantom development. We have developed an easy-

to-use tabular description based on the high-level description that will be used throughout

this work. To demonstrate the general applicability of our method and to illustrate our

description, we exemplarily show three typical phantoms that were already used in Chapter
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Figure 4.3. Description of the physical phantom proposed by Tofts et al. (1997).

3 to review phantom design properties (cf. Sec. 3.4). Both, physical and software phantoms

are used. See also Section 4.4 for a discussion of our approach.

Figure 4.3 gives a description of the phantom developed by Tofts et al. (1997). The

objects of this physical phantom are several cylinders placed in a container at different po-

sitions and with different orientations. A container filled with water is used as background.

Adjustments are made to the resulting MR images for more realistic intensity values. The

second phantom is based on the work of Ko et al. (2003) and consists of wells drilled into

a chest phantom. Approximately spherical objects are inserted into small wells simulating

lung nodules. See Figure 4.4 for an overview. Finally, Figure 4.5 summarizes the phantom

described by Collins et al. (1998). The BrainWeb software phantom uses a number of pro-

cessing steps to simulate an MR image data set of the brain. Thereby, several parameters
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Figure 4.4. Description of the physical phantom by Ko et al. (2003).
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Figure 4.5. Description of the BrainWeb phantom proposed by Collins et al. (1998).
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are addressed including the spatial distribution of different tissue classes as well as imaging

parameters such as noise or intensity values.

4.2. Parameter Modeling

After introducing a general phantom description, let us now focus on the required parame-

ters. Our component-based phantom description does not make any specific assumption on

the phantom type or appearance and is therefore suited for a large range of applications. Be-

cause we focus on applications in the field of neurology and neurosurgery, some parameter

models are already tailored to meet the requirements of the targeted phantoms within these

areas, e.g., the modeling of object positions. Nevertheless, other applications are possible

and a discussion about potential applications is given at the end of the first part of this work.

We use the categorization introduced in Chapter 3, i.e., first parameters that describe the

overall object appearance (cf. Sec 4.2.1) followed by imaging parameters in Section 4.2.2.

In Chapter 5, we will additionally provide examples on how to model parameters for object

growth and enhancement characteristics.

In the following sections, each parameter model is formalized by a module description

based on the definition given in Equation 4.1.

4.2.1. Morphology and Topology

The first parameter group is related to morphological and topological parameters character-

izing the overall object appearance. In the following sections, we present models for four

different parameters, i.e., shape, structure, volume, and topology.

Object Shape

The first investigated parameter is dedicated to the overall object shape. We propose a

parameter module Mpshape
that can be used to build object appearances of varying complexity,

ranging from simple shapes to complex models that better reflect anatomical reality. A

software assistant that provides a user-controlled design is introduced in Section 4.3.

A common method to shape development is object shapes based on geometric primitives.

Mathematical equations provide a standardized and yet flexible approach that is sufficient

for many applications. Unfortunately, these phantoms can not capture anatomical variability

with typically irregular shapes. An important step towards this goal is to give up this rather

strict object definitions with a smooth and homogeneous surface. In (Rexilius et al. 2003),

we applied a generic approach that allows the construction of objects from a combination of

geometric primitives. Ellipsoids of different size and shape are iteratively placed at random

positions on the initial object surface in an iterative fashion. A schematic overview of this

algorithm as well as exemplary results are given in Figure 4.6 (top row).
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Figure 4.6. Three approaches for object shape design used in this work. (top) Object shape based
on a combination of geometric primitives such as ellipsoids, (middle) geometric primitive that is
subsequently deformed using a WEM data structure, (bottom) object shape from segmentation
mask.

Since an iterative object placement as described above can be time-consuming, we use

a further approach that introduces geometric distortions to a given object surface. The 3D

representation of the current object is based on a boundary representation (also known as

b-Rep), which describes the object as a collection of connected surface elements. Both,

the geometric data of primitive geometric entities such as faces, edges, and vertices, and

the topological data maintaining the connectivity between these entities are stored. We

use a winged-edge mesh representation (WEM) as data structure, allowing a quick traversal

between faces, edges, and vertices in 2D and 3D. An arbitrary viewer position in the vicinity

of a WEM contour can be interactively selected, which influences all nodes within a sphere

around the click point. These nodes will then follow any mouse movement to a certain

degree (cf. Fig. 4.6 (middle row)). A comprehensive review of winged-edge data structures

can be found in (Baumgart 1975).
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(a) (b) (c)

Figure 4.7. Brain tumor phantom with different amount of necrosis. (a) T1gd reference image with
incorporated tumor, (b) tumor phantom with necrosis scaled to maxnecrosis = 50%, (c) examples
for active tumor tissue and necrosis maps.

In (Rexilius et al. 2004), we introduced a third approach to object design for software

phantoms, based on manual segmentations of anatomical structures. Different object shapes

are generated from segmentations of different patient data sets with similar anatomical struc-

tures. For example, Figure 4.6 (bottom row) shows an object resulting from a manual seg-

mentation of a brain tumor. Unfortunately, this method limits anatomical variability to the

number of available data sets. Here, additional geometric deformations of the segmenta-

tion mask might be allowed, e.g. based on an interactive approach as described above. To

summarize, the parameter module Mpshape
is described by

Parameter Description (Mpshape
)

H Compact object shape, i.e., all voxels are connected

x Zero or one input data depending on selected approach (cf. Fig. 4.6)

f Manual drawing; deformation of WEM structure; segmentation

y IbinOb j (binary object volume)

Object Structure

If an object consists of more than one component, e.g., a brain with white matter, gray

matter, and cerebrospinal fluid, each structure, i.e., tissue class, requires its own modeling.

This includes a dedicated shape for each tissue class, which can be generated with one of the

methods described above. Furthermore, the amount of tissue per pixel has to be determined

for all components. Similar to the shape module, this can be a user-defined definition done

by an expert. Another approach is to segment an actual patient data set and then define

the portions based on the resulting tissue maps. For example, we will develop brain tumor

phantoms consisting of two overlapping tissue classes, active tumor tissue and necrosis in

Section 5.3. An example is shown in Figure 4.7.
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A related approach to generate reasonable object portions is texture synthesis from a

sample database extracted from patient data, as proposed for brain tumors in (Prastawa et al.

2009). Unfortunately, this method requires a large amount of reference data to model a

sufficient amount of anatomical variability. In this work, we propose a parametric model

based on 3D simplex noise introduced by Perlin (2002) to generate different lesion textures,

which is frequently used for organ surface-like textures in surgery simulators. Instead of

relying on a large pool of reference data, this approach allows us to automatically generate

largely heterogeneous object appearances by changing very few parameters. In Section 5.2,

we will use this approach to develop textured MS lesion objects. See also Figure 5.6 for

a comparison of different real lesions and corresponding phantom results. The resulting

parameter module Mpstructure
is given by

Parameter Description (Mpstructure
)

H An object consists of N tissue classes ti, i = 1, . . . ,N

x ti ∈ [0,1], ∑
N
i=1 ti = 1

f Shape: cf. Mpshape
, tissue portion: user-defined, segmentation result

y Iob j,k, for tissue class k (Iob j,k ∈ [0,1])

Approximation of a Continuous Volume Model

After we have decided for an appropriate object shape, we generate a binary object volume

for each considered tissue type. A major focus of the considered applications in the fol-

lowing chapters is on quantitative image analysis. Therefore, an accurate approximation

of the correct object volume often is an indispensable requirement. Our design process

consists of digitized data, so that a good approximation implies a small size of a single

voxel with respect to the whole object volume. We concentrate on medical image data sets

used in clinical routine or in studies, using a voxel size about ten times smaller than the

in-plane resolution, where a typical in-plane resolution is around 1mm. Although this is a

rather heuristic choice, it provides a good trade-off between computational complexity and

accuracy.

A more formal description of our approach can be given as follows: We generate a high-

resolution binary object volume Iob j,k for each tissue type k with signal intensity values

Iob j(u), Iob j(u) = 1 for u ∈ ob ject, and Iob j(u) = 0 otherwise. Thereby, the actual object is

obtained on a lower resolution and is then resampled. Finally, the volume is given by the

sum over all object voxels

VIob j
= ∑

Θ

Iob j(u) , (4.2)
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VIob j
object volume

Θ object domain
u = (u,v,w)⊤ voxel position, u ∈ Θ

Iob j(u) intensity value Iob j(u) ∈ {0,1} at position u

We typically consider a 5123 grid for object delineation. Different object volumes can then

be easily generated by specifying a different voxel size of Iob j. The resulting parameter

module Mpvolume
is

Parameter Description (Mpvolume
)

H The volume can be approximated by voxel counting

x High-resolution object

f Voxel counting approach to approximate the object volume

y Volume VIob j

Topology

The position of an object within the background is another parameter that has significant

impact on the later appearance of the phantom data set. Important attributes are the spatial

relation between different objects as well as the actual object position within the background.

For example, Multiple Sclerosis lesions predominantly appear in the white matter of the

brain. Possible object positions could therefore be restricted to this area. For example, a

white matter mask is used for this task in Section 5.2.

In this work, we propose three approaches for object placement. The first method is

based on manual object placement. Here, the user selects the final object position (cf.

Fig. 4.8 (top row)). To provide this functionality in a structured workflow, we have devel-

oped a software assistant, facilitating an interactive manipulation of appropriate positions

by simple user interactions. See Section 4.3 for a detailed description.

Our second approach uses a reference patient data set plus a segmentation mask of the

targeted objects within this data set, e.g., a segmentation of lung nodules. In a first step,

the original patient data are aligned with the background image data using an automatic

registration algorithm. The resulting transformation is then applied to the segmentation

mask so that this information can be used in the coordinate system of the background image.

Finally, the center of mass of the segmented objects is used to position objects within the

background. See Figure 4.8 (middle row) for an illustration of this approach.

The third approach is related to the previous one. Again, we use a patient data set as

reference. However, we do not constrain the segmentation mask to come from a single

patient. Instead, we use a number of data sets with segmentations of the targeted structure

and create a probability map of cross-subject variability. To this end, we register the training

data as well as the segmentations to the reference data. The resulting average map is then

used to constrain the spatial object positioning (cf. Fig. 4.8 (bottom row)). This approach is
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Figure 4.8. Methods for object topology modeling used in this work. (top) User-defined placement
of object position, (middle) Object position obtained from reference patient data via registration,
(bottom) automatic object placement based on probability map.

used in Section 5.2 to place lesion objects at reasonable positions. The associated parameter

module Mptopology
is described by

Parameter Description (Mptopology
)

H Suitable object positions known a priori

x Objects and background

f User-defined or automatically selected object positions

y List of user-defined object positions within background
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4.2.2. Imaging Parameters

The second parameter group is related to imaging parameters and artifacts. Our phantom

development process includes the following parameter modules: contrast, noise, PV effects,

and resolution.

Determination of Object Intensities

The aim of this parameter module is to generate a volume Igv with intensity values igv(x)

for each modeled tissue type at voxel positions x = (x,y,z)⊤, x ∈ Θ. A common approach

assumes constant gray values for each tissue class throughout the whole object volume.

Although anatomical structures seldom have a uniform intensity on a macroscopic level,

this is often a valid assumption for small structures with a compact local appearance in an

MR scan. Additional object textures can be added using the methods introduced for the

parameter module Mpstructure
.

In this work, we use a different intensity model for each tissue class. The models are

obtained from a number of training data sets based on segmentations of each investigated

tissue class as well as their adjacent anatomical structures. For example, we segment a

lesion in the white matter of the brain as well as the adjacent white matter itself (cf. Sec. 5.1).

To remove smoothly varying intensity values across the image, an intensity normalization

algorithm can be applied to the data, e.g., the N3 algorithm proposed by Sled et al. (1998).

The final gray value map Igv for each structure is then obtained using the mean and the

intersubject variability as descriptors of the object appearance (Rexilius et al. 2005). The

ratio between object and adjacent tissue classes is used as a relative measure for the object

intensity value. For example, a hyperintense lesion in the white matter of the brain will

result in a high ratio. The parameter module Mpcontrast
for intensity values is given by

Parameter Description (Mpcontrast
)

H Each tissue class is described by a single intensity value

x Number of training data sets

f Subject-specific mean value of segmented area

y Resulting gray value map Igv

Noise

Object noise is described by a Gaussian PDF (cf. Eq. 3.2), assuming zero-mean and a

standard deviation σ. This results in a new object intensity map Ĩgv with intensity values

given as
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Figure 4.9. Diagram of main components to determine the object intensity values.

ĩgv = igv + N(µ = 0,σ) (4.3)

igv initial intensity value
ĩgv final intensity value with added noise
N(µ,σ) Gaussian distribution
µ noise mean value
σ noise standard deviation.

This parameter module Mpnoise
is given by

Parameter Description (Mpnoise
)

H Noise can be described by a Gaussian PDF

x Number of training data sets

f Combination of intensity value and Gaussian noise (cf. Eq. 4.3)

y Ĩgv

Partial Volume Effects

One of the major limiting factors for an accurate quantitative analysis are partial volume

effects. Especially in structures of the same order of magnitude as the slice thickness of the

associated imaging protocol, a dedicated handling of these effects becomes necessary for

an applicable phantom.

In order to generate software phantoms with a correct partial volume handling, we pro-

pose an approach based on changing the resolution of a binary object volume Iob j (Rexilius

et al. 2003). Therein, a high-resolution object is downsampled to the same voxel size as

the background image using trilinear interpolation, and then reformat the object into the

same coordinate system. This results in a probability map Ĩob j : Ω → R with intensity val-

ues λ := ĩob j(x) ∈ [0,1], defining the amount of partial volume at each voxel. A decreasing

density can be observed starting from the object core, yielding a typical blurring at the ob-

ject border. To ensure the correctness of this step, we verify the exact volume of Ĩob j by

comparing it with the original volume of VIob j
. The parameter module Mppve

is given by
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Parameter Description (Mppve
)

H PV effects arise from object downsampling

x High-resolution binary object Iob j

f Object downsampling

y Downsampled image Ĩob j

Resolution

A parameter related to the modeling of PV effects presented in the previous section is the

object’s spatial resolution. Similar to this previous approach, the resolution is defined by

object downsampling to the same voxel size as the background image using trilinear inter-

polation. The corresponding module Mpresolution
is described by

Parameter Description (Mpresolution
)

H Object resolution is defined by the background resolution

x High-resolution binary object Iob j

f Object downsampling

y Downsampled image Ĩob j

4.2.3. Background Design

In this work, we use volumetric MR data sets Ibg : Ω → R acquired from actual patients or

healthy volunteers as background model. Voxel phantoms such as the BrainWeb phantom

by Collins et al. (1998) are applied as well. Additional noise can be added similar to the

noise model described in Section 4.2.2. A different approach could be a homogeneous back-

ground model with a constant gray value. Although this results in a simplified evaluation

process, the applicability for the evaluation of image analysis methods is rather low. To-

day, many image analysis techniques make use of prior information such as the gray value

distribution of tissue classes or certain structural characteristics of the underlying anatomy.

For example, brain tissue classification schemes are often based on an atlas-based initializa-

tion. Furthermore, segmentation methods typically include prior shape information about

a regarded structure. In these cases, a software phantom with a homogeneous background

model is not an appropriate evaluation tool, due to missing shape and texture information.

4.2.4. Object Incorporation

The final step of our phantom design approach combines the determined object and the

selected background model. More specifically, we incorporate the object volume Ĩgv con-

taining appropriate gray values for each tissue class into the background Ibg using a linear

weighting function. The amount of partial volume at each voxel, derived from the high-

resolution binary object volume as described in Section 4.2.2, serves as weighting factor. A
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Figure 4.10. Illustration of incorporation step. Two different resulting phantom images as well as
the corresponding parameter settings are presented with different object positions and volumes.
Please note that the selected object positions can also denote different slices within the data set.
In this example, slice number 21 and 22 are used.

phantom data set Ip is then generated by a convex combination at each voxel defined as:

ip =
K

∑
k=1

(

λk · ĩgv,k

)

+
(

1−
K

∑
k=1

λk

)

· ibg , (4.4)

ip intensity value of resulting phantom data set
λk object probability map for tissue class k (cf. Sec. 4.2.2)
ĩgv,k object intensity value for tissue class k
ibg background intensity value
K number of modeled tissue classes

with ∑
K
k=1 λk = 1. This technique is sometimes also called ’alpha blending’ (Shin et al.

2006).

Figure 4.10 provides an overview of the construction process, showing the original back-

ground and the object image as well as resulting phantom images and their parameter set-

tings. Different object positions and volumes are used to demonstrate flexibility of our

approach.
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4.3. A Software Assistant for Interactive Parameter Modeling

The concretization our hybrid phantom design approach by explicite models for a number of

modules gives us the building blocks required to develop a software assistant for the design

of software phantoms (Rexilius et al. 2008). The following sections provide an overview of

the underlying concepts as well as the different processing tasks.

4.3.1. Design Concepts

Our goal is an easy-to-use tool that can be applied to many different tasks occurring dur-

ing the design and evaluation of new algorithms in medical image analysis. This way,

researchers can generate a data basis for evaluating performance and limitations of their

own algorithms. Moreover, the exchange of data sets between research groups is supported,

enabling a standardized and objective validation with a set of reference data.

An important aspect for the success of such a software assistant is a clear and easily op-

erated graphical user interface. Our software assistant consists of three different processing

steps, related to the design tasks in Section 4.1, namely object design, background design,

and object incorporation. For each step, a separate component has been implemented, facil-

itating a hierarchical encapsulation of the underlying methods. To enable rapid prototyping

of software assistants, our software is designed as part of the modular development platform

MeVisLab (MeVisLab 1.5 ).

In addition to the actual graphical user interface, a common data scheme for the descrip-

tion of the resulting image and meta data is an important requirement, e.g., noise variance,

voxel size, object volume. Our software supports several image data formats including DI-

COM, DICOM/TIFF, or the Analyze file format. Further information, e.g., about object

intensity values or the object volume, are stored in a separate data structure using the Exten-

sible Markup Language (XML).

4.3.2. Processing Steps

Object Design

The main functionality of the first processing step is the definition of object shapes that

are appropriate for the considered application. Ten predefined shapes including spheres

and ellipsoids of different geometries can be used. Object shapes that have been used in

previous work are available as well (Rexilius et al. 2003; Rexilius et al. 2005). This allows

for a direct comparison of new analysis methods with a comparable data pool. Besides the

already available shapes, own object files can be loaded as described below. Furthermore,

new object shapes can be generated by interactively modifying the surface of a currently

selected object. The user interface with an exemplary parameter setting is illustrated in

Figure 4.11.
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Figure 4.11. First step of our software assistant: Object design.

The software assistant provides 2D as well as 3D representation of a selected object

shape. The 3D representation of the current object is based on a winged-edge mesh (WEM)

data structure. An implementation of a comprehensive WEM library is readily accessible

as part of the standard MeVisLab package.

To tailor a given object shape to the application in mind, the software assistant allows

for an intuitive deformation of the object surface. Thereby, the user can interactively select

an arbitrary viewer position close to the surface. All nodes in the neighborhood of this

dragging position are then influenced by subsequent mouse movements to a certain degree.

This way, different local and global object deformations can be achieved, depending on the

set influence radius. See also Figure 4.6 for an example.

Defining new WEM object shapes

An important feature for a broad applicability of our software assistant is the ability to use

not only the predefined objects that come along with the software, but also new ones. These

could be user-defined shapes or even shapes defined by other researchers. So how to import

a new object into the application?

In order to generate a new WEM structure, we developed an additional application that

can be selected via button from the parameter section of the current object definition step.

This application facilitates the design of new shapes from a binary image, e.g., from a man-

ual segmentation of a tumor. We extract an iso surface from the loaded segmentation mask,

which stores the result in a WEM. In a subsequent step, a simplification of the mesh is per-
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Figure 4.12. Integrating own object shapes from binary segmentation masks. (left) User interface,
(right) overview of algorithm steps.

formed, employing a multi-pass edge collapse algorithm. Thereby, all edges are sorted in a

priority queue according to an angle criterion in each pass. Then, a sequence of edge col-

lapse transformations is applied. The resulting WEM preserves visually important features

of a mesh and greatly reduces the required space for saving the data. Finally, an optional

surface smoothing can be applied to the mesh. Figure 4.12 (right) gives an overview of

the performed processing steps. The proposed user interface of this application is shown in

Figure 4.12 (left).

Background Design

We propose two different approaches for the background design: An image with a constant

gray value and predefined image size and voxel size, as well as other, more problem specific

image data. Additional Gaussian noise can be added to a selected background. A screenshot

of the user interface of this step is presented in Figure 4.13.

Object Incorporation

The last processing step of our software assistant combines object and background. There-

fore, the selected object has to be resampled to the same voxel size as the background data

set, allowing for an incorporation into this data set at a suitable position. To enable a flexible
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Figure 4.13. Second step of our software assistant: Background design.

workflow, this step facilitates a number of parameter adjustments. An illustration of the user

interface is given in Figure 4.14.

Two general workflow scenarios can be distinguished: Either both object and back-

ground have been selected in the previous two steps, or an object is selected directly in this

last step. For the first case, we have to define a suitable voxel size first – typically about

ten times smaller than the smallest resolution of the used background image. An isotropic

voxel size that fulfills these demands is automatically computed as a first guess. Then, the

user has to define an object volume and the object is downsampled to meet this value. Be-

cause the object image data has a high resolution, this is the most time consuming step of

the whole application. To avoid any resampling, we added an additional feature that per-

mits the determination of an object shape and volume from previously processed objects.

Thereby, an important prerequisite is an equal voxel size of the background data set and

the downsampled object data set. Otherwise, the incorporated object volume would not be

correct. This constraint is automatically verified for all data sets.

After object downsampling, we can incorporate it into the background. An appropriate

object position within the background can be chosen interactively. The amount of partial

volume at each voxel serves as weighting factor as described in Section 4.2.4. An extra

object shift by up to one voxel within the (x,y,z)-direction can be applied, causing additional

partial volume effects. In a final step, proper object intensity values as well as a suitable

noise level have to be selected by the user. We also added the possibility to integrate more

than one object into the current background.

The resulting software phantom image data can be saved using the MeVisLab-specific

DICOM/TIFF format. Further general as well as data-specific information are stored into
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Figure 4.14. Third step of our software assistant: Object incorporation.

an XML structure. Especially the characteristics of an included object are important. We

retain information about the volume of each object, its exact position within the background,

as well as the gray value and the amount of noise. An evaluation by four field experts with

respect to applicability resulted in an overall good rating.

Processing Time

Our software assistant provides an efficient tool that reduces the total time required for

phantom design from hours to minutes, depending on the lesion complexity and the number

of required lesions in the phantom.

Object Selection For object selection, the user can select an available shape from a list.

Nevertheless, this step can become rather time-consuming, if additional manual shape

deformations are performed. Although the user is supported in this task, adding sev-

eral large and small deformations can take up to five minutes. The object design step

should be repeated several times and the resulting objects should be stored in advance.

Background Selection This step mainly consists in selecting an appropriate background

data set plus additional noise if required. No further processing is done. Therefore,

users typically need less than a minute for this step.

Incorporation Several parameters can be changed in this last step such as the voxel size,

the object intensity value or the noise level. Furthermore, several objects can be accu-
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mulated within one phantom. For a phantom with only a single object, this processing

step takes no longer than 2 minutes.

4.4. Discussion

Standard reference data sets are an important tool for the development and evaluation of

algorithms in medical image analysis. Furthermore, they can serve as basis for discussions

with clinical experts, e.g., about accuracy and precision of current measurement tools. Es-

pecially software phantoms of anatomical and pathological structures provide a flexible and

cost-effective approach for this task.

Our overall goal is an efficient and reusable design of hybrid software phantoms. To

this end, we proposed an approach that allows for a generic specification of phantoms. An

integral part is a set of modules providing an in-depth description of parameters used dur-

ing phantom design. Based on this description, we then presented modeling schemes for

various parameters that will be used in the following chapters for software phantom design.

This provides the building blocks to develop a software assistant that allows us to combine

several parameters in an interactive fashion, adding additional flexibility to the phantom

design process.

4.4.1. Modular Phantom Development

In Chapter 2, we first introduced phantoms based on very general design properties, fol-

lowed by a description of relevant parameters in Chapter 3. Now we focus on how to pro-

vide an easy-to-use phantom description. We developed a template data sheet that provides

an easy-to-use phantom description and allow for a quick overview of the most important

phantom parameters Figures 4.3-4.5 exemplarily illustrate this description for three phan-

toms. Both, physical and software phantoms are presented to show the wide applicability

of our approach.

Our phantom description can be categorized into three basic steps: Object design, back-

ground design, and incorporation. Each step includes a task-specific description of parame-

ters used during phantom development. Thereby, major parts of such a parameter, which we

also call a module, are input and output values as well as a transition function to transform

the input. Furthermore, a module is based on a certain hypothesis presenting an understand-

able description of the underlying assumptions. For example, Ko et al. (2003) assume a

spherical object appearance in their phantom.

Phantoms have become an inevitable tool for algorithm development and evaluation in

medical image processing. Nevertheless, a standardized analysis that allows a comparison

between different design approaches has not been proposed yet. Therefore, some publica-

tions focus on a domain-specific literature survey of phantoms. For example, Lee and Lee

(2006) present a review of phantoms related to radiation dose distribution calculations in

the human body. Price et al. (1990) develop a set of standard physical phantoms dedicated
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(a) (b) (c) (d)

Figure 4.15. Examples of software phantoms for hyperintense brain lesions with wrong or missing
object modules. (a) Oversimplified object shape, (b) unrealistic object volume, (c) wrong object
intensity value, (d) no consideration of partial volume effects.

to the evaluation of a single imaging parameter such as spatial resolution or uniformity. Un-

fortunately, these paper merely provide a summary of recent work. Moreover, related work

in the field of image analysis as well as an explicit categorization of phantoms has not been

proposed yet.

In this work, we present a method that is suited to describe any phantom, and some

examples have been given in this chapter. To the best of our knowledge, we provide the first

approach towards a comprehensive description of phantom design processes in medical

image analysis. Furthermore, we propose a standardized analysis for both physical and

software phantoms, that enables a description of modules and of their interactions. We adopt

a notation proposed by Udupa et al. (2006), where the domain of a segmentation method is

determined by three entities: Task, body region, and imaging protocol (cf. Sec. 8.6.1).

Introducing a general description of the phantom design process also allows direct com-

parison of different phantoms. For example, our approach enables a quantitative analysis,

e.g., about the number of used modules. Furthermore, we can carry out a qualitative anal-

ysis of the modules used for phantom design. Thereby, the enclosed field of application

allows for a domain-specific comparison. To give an example, Figure 4.15 shows four soft-

ware phantoms for small hyperintense brain lesions. In each picture, at least one module is

not within the correct parameter range or is based on wrong assumptions. For example, an

oversized object volume (cf. Fig. 4.15 (b)) or a wrong object intensity value (cf. Fig. 4.15

(c)). Nevertheless, a statement about the actual phantom quality remains difficult. To this

end, we propose a new method for phantom validation in Part II of this work.

4.4.2. Our Phantom Approach

Today, phantoms are often based on simple geometric objects with known volumes, espe-

cially when using physical phantoms. Additionally, these objects usually consist of a single

material or tissue type. In Chapter 2 we introduced three different types of software phan-

toms: stylized phantoms, voxel phantoms, and hybrid phantoms. We found the last category
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to be most suited since these phantoms combine several advantages of the other two classes

(cf. Fig. 2.6). In this chapter, we focused on a hybrid method that incorporates objects into

tomographic image data of a patient or a volunteer. Based on our modular design approach,

we modeled various parameters that are typically used during phantom development. For

example, we propose different methods for the development of a suitable object shape. Fur-

ther aspects of our phantom are an application-specific parameter modeling and a range of

suitable values, which were identified as important issues for phantom parameter modeling

(cf. Sec. 3.4).

Used Modules

In Chapter 3 we already discussed a number of characteristic modules, which are frequently

used in medical image analysis or represent a common choice in scanner quality assurance

programs. Our phantom design uses several of these modules to enhance the acceptance

of our approach. For example, we assume a commonly used noise model described by a

Gaussian PDF. Nevertheless, we also introduce extensions to current modeling approaches

such as an interactive method to deform a given surface that is used to change a given object

shape. Furthermore, we propose different methods to define the object topology. These

are not only based on the common manual object placement at ’typical positions within

the human body’, but also obtain a suitable position from reference data such as patient

data as well as from probability maps of cross-subject variability. Another specific feature

of our phantom is a high-resolution binary object that is used to determine an accurate

volume measurement and to model partial volume effects via downsampling. Other than

the object design, the background does not contain any concrete parameter modules. Here,

we use volunteer image data where the underlying ground truth is not available for most

parameters. A similar difficulty occurs for example for imaging parameters in physical

phantoms as already discussed in this chapter.

To summarize, we developed specific models for eight parameter modules divided into

two categories:

Category Modules

Morphology and Topology Shape, Structure, Volume, Topology

Imaging Contrast, Noise, Resolution, PV Effects

For each module, we provided a detailed analysis plus a tabular summary that consists of

input and output values, applied transition functions, and the underlying hypothesis. Com-

pared to the number of relevant parameters introduced in Chapter 3, only three are not

included in the above list.

Uniformity. A model for intensity nonuniformity will be available for the phantom

proposed in Section 5.2. Therein, we use the bias field available from the BrainWeb project.

Motion. The second imaging parameter not included in our modeling approach is a

module for motion artifacts, because it is simply not required for our targeted applications.
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Process. A general approach for modeling dynamic processes for phantoms is not possi-

ble. However, we propose dedicated modules for growth and a simulation of contrast agent

enhancement characteristics in the context of brain tumors in Section 5.3 of this work.

Several phantom results based on our modeled parameters are shown in Chapter 5. For

example, Multiple Sclerosis lesion phantoms (cf. Fig. 5.2) or brain tumor phantoms in

Figure 5.13. To the best of our knowledge, our approach represents the first hybrid software

phantom with this amount of object modules.
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In the previous chapter, we proposed new modeling schemes for parameters commonly used

in phantom design. This finally enables us to develop our own phantoms. In this chapter, we

present three examples. For each phantom, the parameter models proposed in the previous

chapter are used to generate a phantom. Extensions are described and examples of the

resulting software phantoms are given. Furthermore, the template sheet introduced in the

last chapter is applied to provide a compact description and a quick overview of the most

important aspects of all phantoms.

Our first example describes the design of phantoms for Multiple Sclerosis (MS) lesions

(cf. Sec. 5.1). Therein, an interactive object design of typical lesion shapes incorporated into

an MR dataset of a healthy volunteer is used. The software assistant proposed in Section

4.3 is used to design the final phantoms. Section 5.2 then introduces an extension of this

manual approach. Here, we propose a fully automatic method to build an arbitrary number

of MS data sets. The BrainWeb phantom (Collins et al. 1998) is used as reference data set.

The third example is a phantom for brain tumors (cf. Sec. 5.3). Here, we introduce

two modeling scheme for process modules. A biomechanical model is used to simulate

tumor growth and the associated deformations inside the brain. Furthermore, a simulation

of contrast agent enhancement characteristics is presented. Compared to the lesion objects

above, we also develop additional tissue classes to model the amount of edema and active

tumor. Again, our software assistant is used to generate the phantoms.

5.1. Interactive Design of MS Lesion Phantoms

Multiple Sclerosis (MS) is a chronic disease affecting the central nervous system (CNS),

which includes the brain and spinal cord. It is one of the most common neurological dis-

eases in Central Europe, predominantly affecting young and middle-age adults. Currently,

approximately 130,000 persons have been diagnosed with MS in Germany. Around 2,5

million people are affected worldwide. The etiology of MS is still unknown, but current

studies point out a multifactorial genesis. A high degree of variability and diversity charac-

terize the clinical signs and symptoms of the disease, that histo-pathologically results from

a progressive demyelination and an axonal loss within the CNS (Lassmann 2002).

67
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Currently, no predictable pattern is known for presentation of patients with MS, which

makes the diagnosis clinically challenging. Most patients with MS initially have a relapsing-

remitting (RRMS) subtype characterized by episodes of neurological dysfunction followed

by periods, during which a stabilization or a partial to full recovery of the symptoms can

be observed. Over time, the initially relapsing-remitting MS gradually worsens often into

a more progressive course of the disease, called secondary progressive (SPMS). Another

subtype that can be distinguished is the primary progressive MS (PPMS), characterized by

a gradual progression from its onset with no remissions at all (Inglese 2006).

Several therapeutic options are available to patients to treat the disease symptomatically.

However, no curative treatment is available for Multiple Sclerosis today, so that there is a

considerable demand to develop new and more effective drugs.

Diagnosis of MS and the Role of Magnetic Resonance Imaging

Multiple Sclerosis can be very difficult to diagnose at first and there is no simple test be-

cause of the high variability in signs and symptoms that may suggest a number of conditions.

Commonly used methods of quantifying MS are neurological disability scales such as the

Expanded Disability Status Scale (EDSS) (Kurtzke 1983). During the last years, MRI has

become an important imaging modality for understanding and managing several aspects of

MS. Today, it is an integral part of standard diagnostic especially for follow-up examinations

and plays a primary role as a surrogate marker of drug efficacy in clinical trials (Miller et al.

1998). In more than 95% of patients with MS, abnormalities can be seen on MR images

(Compston and Coles 2002). To make use of the advances in MRI techniques, an interna-

tional panel was convened and recommended revised diagnostic criteria for MS, known as

McDonald criteria that formally incorporated MRI (McDonald et al. 2001; Polman et al.

2005).

Typical multispectral image acquisition protocols include proton density (PD-), T2-

weighted, and FLAIR (fluid attenuated inversion recovery) sequences, as well as T1 se-

quences pre and post contrast with a slice thickness of 3-5mm (Traboulsee et al. 2003).

T2- and PD-weighted images are very sensitive in detecting MS lesions, where lesions ap-

pear as areas of increased signal intensities, predominantly in the white matter of the brain.

Chronic abnormalities such as axonal degeneration and the presence of demyelination can

be observed as hypointense lesions on T1-weighted images (’black holes’). Enhancing le-

sions (’active lesions’), found on T1-weighted images after contrast administration, show

the inflammatory stage of the disease. Besides established imaging sequences, a number

of other modalities have gained attention in the last few years, including MR-Spectroscopy

(MRS), functional MRI (fMRI), high-resolution morphometrical imaging combined with

accurate atrophy measurements, or diffusion weighted imaging (DWI) and diffusion tensor

weighted imaging (DTI) (Miller et al. 1998). Each sequence offers a specific view on dif-

ferent aspects of the disease and each radiology department typically has its own standard

protocols.
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(a) (b) (c)

Figure 5.1. Modeling of different lesion types. (a) Standard T2 hyperintense lesion, (b) same
volume and position of lesion as in (a) on a T1-weighted image; (c) same lesion object as in (b),
but now hypointense on T1-weighted image (black hole).

In this section we develop MS lesion phantoms, that we introduced first in (Rexilius

et al. 2003). We propose a manual object design of typical lesion shapes. The lesion objects

are incorporated into an MR dataset of a healthy volunteer. In Chapter 6 we will then

reuse the resulting software phantoms to investigate the quality of visual assessment in MS

lesion volumetry as well as for the evaluation of MS lesion quantification and segmentation

approaches.

5.1.1. Morphology and Topology

Shape and Structure

To cover a variety of realistic-shaped MS lesions, we generate different lesion objects such

as sphere-like objects and ellipsoidal objects with several deformations. Thereby, we as-

sume that a lesion consists of a single homogeneous tissue class. Each object is constructed

from a combination of geometric primitives. To this end, ellipsoids of different size and

shape are placed at manually selected positions on the object surface in an iterative fashion.

A similar approach has also been used for the design of lung nodule phantoms (Shin et al.

2006).

Volume

Each lesion phantom is defined on a 5123 grid, i.e., a lesion volume is defined as the number

of voxels inside this grid. Different volumes then can be easily generated from a lesion

phantom by specifying a different voxel size. We use a voxel size ten times smaller than the

inplane resolution of the available MR scan.
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Position

The lesion objects are generated manually and placed at typical paraventricular positions in

the white matter of the brain. See Figure 5.2 for examples.

5.1.2. Imaging Parameters

Gray value and noise

A lesion object with a reasonable constant intensity value for MS lesions for each available

sequence is created, and Gaussian noise is added. The standard deviation of the Gaussian

noise is set approximately equal to the noise of the brain scans, estimated from unstructured

regions inside the white matter for each available imaging sequence separately. A similar

approach is used to generate appropriate lesion gray values. Mean gray values for white

matter, as well as for lesion tissue, are computed manually from several patient data sets,

and the ratio is used as guideline for the phantom lesion gray values. Different ratios are

computed for the available MR sequence. Furthermore, phantom lesion gray values are

adjusted based on inspections of patient data sets with MS lesions.

Resolution

The spatial resolution of the images is determined by the underlying reference data.

PV Effects

To account for partial volume effects, we resample the lesion mask using trilinear interpo-

lation after modeling all morphological parameters, i.e., shape, structure, and volume. The

resulting probability map defines the amount of partial volume at each voxel.

5.1.3. Background Design and Object Incorporation

The images used as background in this study were acquired from a healthy volunteer (a 28-

year-old male) on a 1.5 T scanner (Magnetom Vision; Siemens, Erlangen, Germany). The

data-acquisition protocol contained axial and coronal PD-, T2-, and T1-weighted images

with an in-plane resolution of 0.449×0.449mm2 and a slice thickness of 3 mm, matrix of

512× 512, and 34 axial and 51 coronal continuous slices, respectively. All images were

acquired in one session with head fixation and without table movement, such that all data

sets are perfectly aligned without visible motion artifacts.

The final phantom values iphantom are computed by linear combining all structures avail-

able within a voxel, i.e., iphantom = λ · ilesion +(1−λ) · iWM,λ ∈ [0,1] (cf. Eq. 4.4).
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Phantom Data Patient Data

Figure 5.2. Examples of different generated phantom MS lesions showing the potential of our ap-
proach on axial PD- and T2-weighted axial images. (Left column) MR scan of a healthy volunteer
used in this work with different incorporated MS lesion phantoms, (Right column) a patient’s MR
scan with several MS lesions.

5.1.4. Resulting Software Phantoms

An summary of the resulting phantom using the proposed template is given in Figure 5.3.

Furthermore, Figure 5.1 and 5.2 illustrate the potential of our approach. A comparison of a

patient MR scan with several MS lesions and a modeled data set with corresponding lesion

types is shown in Figure 5.2. Each lesion object is placed at a position in the volunteer scan

that roughly corresponds to a lesion appearance in the patient scan.

Figure 5.1 demonstrates the flexibility of our phantoms. Different lesion types can be

generated by simply changing the intensity value of an object. A typical hyperintense lesion

within a T2-weighted data set is shown in Figure 5.1 (a). Figure 5.1 (b) and (c) show the



72 5. Phantom Examples

Figure 5.3. Summary of the developed MS lesion phantoms.

same lesion in a T1-weighted image with varying intensity values resulting in hyper- and

hypointense lesions.

5.2. Automatic Design of MS Lesion Phantoms

A major drawback of the lesion phantoms introduced in the previous section is the overall

manual design. Each object shape is constructed from a single geometric primitive with

manually added ellipsoids at various positions on the object surface. A feasible object

position within the background data is then selected by hand. Furthermore, we assume that

a lesion consists of a single homogeneous tissue class, which does not allow to change the

object texture.
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(a) (b) (c)

Figure 5.4. Visualization of lesion positions within reference data. (a) The center of gravity (red
points) for all reference lesions; (b) statistical position map for one slice; (c) position map overlay
on T1-weighted image slice.

In this section, we introduce an extension of the manual approach (Rexilius and Tönnies

2014b). Instead of developing a small amount of hand-crafted lesions, we present a fully

automatic method to build an arbitrary number of MS data sets. Several parameters are mod-

eled for each lesion such as shape, volume, or position. The BrainWeb phantom (Collins

et al. 1998) serves as reference data set. Our approach can thus be seen as extension of the

BrainWeb data by an additional MS lesion class.

5.2.1. Morphology and Topology

Position

MS lesions have a variety of typical locations. In a pre-processing step, we compute a

statistical map of lesion positions from a list of patient data sets (cf. Fig. 5.4 (a)-(c)). The

BrainWeb data are used as reference coordinate system. The underlying registration process

can be described as follows: In the first step, an automatic brain extraction is performed for

each patient data set based on an evolving deformable model (Smith 2002). This reduces

the degrees of freedom for the following registration steps. Moreover, no information is

eliminated since all lesions are located inside the brain. In the next step, we perform a global

affine registration followed by a local nonrigid B-spline registration (Klein et al. 2010)

to reduce inter-patient shape variabilities. The final map of lesion positions is computed

by applying the resulting transformations to the corresponding manual segmentations. An

example of the registration results shown as overlay on the BrainWeb data is given in Figure

5.5. This map is then used to automatically place a lesion within the BrainWeb data, using

randomly selected positions from the map. Furthermore, a minimum distance between two

lesions can be defined.
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(a) (b) (c)

Figure 5.5. Registration results. (a) Reference data. (b) Reference data with patient data overlay
(affine registration). (c) Reference data with patient data overlay (affine + B-spline registration).

Figure 5.6. Modeling lesion texture using Perlin Noise. (top row) patient data; (middle row)
phantom with incorporated lesion; (bottom row) synthetic lesion mask with texture.

Shape

Similar to the lesion positions, their shape also shows a considerable intra- and inter-patient

variability. Thus, instead of developing a few handmade shapes, a database consisting of

all lesion objects extracted from the registered segmentation masks, as described in the

previous section, is used. To reduce the effect of manual segmentation errors, an isosurface

is computed from each segmentation mask and further modified by applying a smoothing

operation. The result is then transformed back to image space.

Structure

Another important parameter to describe the appearance of an MS lesion is related to its

underlying structure or texture. Histologically, MS is characterized by different processes
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(a) (b) (c) (Patient Data)

Figure 5.7. Example using scaling of lesion texture. Top row: T2-weighted data with incorporated
lesion. Bottom row: corresponding lesion probability mask. (a) Homogeneous lesion; (b) texture
values ∈ [0.3,1]; (c) texture values ∈ [0,1].

including inflammation, myelin breakdown, and gliosis. This results in a large heterogeneity

in appearance, which is further increased by changing imaging and scanner parameters

between data acquisitions. Nevertheless, current methods for MS lesion phantoms use only

a single homogeneous tissue class (Tofts et al. 1997; Rexilius et al. 2005).

One way to generate a reasonable lesion structure is texture synthesis from a sample

database extracted from patient data, as proposed for brain tumors in (Prastawa et al. 2009).

However, we aim at a high-resolution lesion object that is later downsampled to model

partial volume effects during image acquisition. A texture extracted directly from patient

data can hardly meet these requirements.

In this work, we propose a parametric model based on 3D simplex noise introduced

by Ken Perlin (Perlin 2002) to generate different lesion textures. Such an approach is fre-

quently used for example for organ surface-like textures in surgery simulators. Changing

the parameter values, i.e. the number of octaves, frequency, and persistence, results in a

wide range of different texture samples. Figure 5.6 shows a comparison of different real le-

sions and corresponding phantom results. Furthermore, the underlying lesion mask is given

for each example.

After determining an adequate lesion structure, the resulting texture map is scaled to

[vmin,1]. Figure 5.7 shows a lesion with an example texture incorporated into the reference

BrainWeb data. Different values vmin ∈ {1,0.3,0} are used to demonstrate the flexibility of

our design approach.

Volume

The lesion volume is computed by accumulating all segmented voxels within the segmen-

tation mask. The amount of lesion tissue is used as weight at each voxel, accounting for
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Figure 5.8. Result of automatic lesion volume selection. (left) Random selection of volume v ∈
[minV,maxV ]. (middle) v = maxV . (right) v = minV .

both partial volume effects and textural changes. Moreover, the final volume is randomly

selected from a range depending on the original volume. Figure 5.8 shows the result of this

approach for different lesions. We use the maximal (Fig. 5.8, middle) and minimal (Fig. 5.8,

right) possible volume as well as a random volume selection (Fig. 5.8, left) within the given

range for each lesion. This way, the same reference lesion will receive slightly different

volumes in different phantom data set. Another approach could be for example to use only

lesions from the database that exceed a certain volume threshold.

5.2.2. Imaging Parameters

Gray value and noise

The lesion gray value is defined via the ratio between mean white matter and lesion gray

values, extracted from the reference patient data sets. This way, a typical range of values

is defined. The final lesion value is then randomly selected from this range. In addition

to a gray value, Gaussian noise is added to each lesion. The noise standard deviation is

set approximately equal to the reference data noise, selected from a homogeneous region

within the white matter.

Resolution and uniformity

The spatial resolution of the images is determined by the underlying BrainWeb reference

data. Several inhomogeneity fields are also available from BrainWeb and can be used to add

further challenges to the phantom data.

PV Effects

We use the same method that was already proposed for the manual lesion design, i.e., re-

sampling the final lesion mask using trilinear interpolation. The resulting probability map

defines the amount of partial volume at each voxel.
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Figure 5.9. Summary of the developed MS lesion phantoms.

5.2.3. Background Design and Object Incorporation

The BrainWeb data are used as background. Several different settings are available for

download from the associated website. We use PD-, T2-, and T1-weighted images with a

slice thickness of 1mm and an in-plane pixel size of 1mm×1mm. Furthermore, a noise level

of 3% is selected. Additional noise levels (0%, 1%, 5%, 7%, 9%) as well as slice thickness

(1mm, 5mm, 7mm, 9mm) are available from the website.

The developed lesion probability map is used as additional tissue class. Due to regis-

tration inaccuracies, it is limited to the white matter mask of the brain. The final lesion

phantoms are then incorporated into the MR data sets using an independently computed

gray value for each lesion.
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PHANTOM1 PHANTOM2 PHANTOM3

Figure 5.10. Examples of the resulting phantom data sets. Row 1-3: T2-, PD-, T1-weighted data of
one phantom.

5.2.4. Resulting Software Phantoms

The tabular phantom description with the most important aspects is given in Figure 5.9. We

developed 16 phantom data sets with varying amount of lesions. The associated total lesion

load (TTL) has a range from 1.12ml to 7.18ml. An overview is given in Table 6.8. Three

examples of the resulting phantoms are shown in Figure 5.10. The overall quality of the

data sets is assessed by a domain expert using a rating scale based on fuzzy terms (poor,

low, average, high, very high). The detailed results for each data set are given in Table 5.1.

Adding a more complex texture model results in a higher rating for all phantoms.
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Table 5.1. Visual assessment of the quality of each phantom data set performed by a domain expert.
See also Sec. 6.3 for additional information about the phantom data sets.

HOMOGENEOUS LESIONS

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Ranking avg avg avg avg avg avg avg avg

LESIONS WITH TEXTURE

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Ranking high high high high high high high high

5.3. Brain Tumor Phantoms

Tumors of the central nervous system (CNS) are considered some of the most lethal and

difficult to treat forms of cancer. The main types of treatment are surgery, radiation therapy,

and chemotherapy (Osborn and Tong 1999). Characteristic properties that have to be taken

into account include the anatomy and vascularity of a tumor, its relation to adjacent struc-

tures, as well as neurological functions of underlying areas. Furthermore, a fundamental

issue is the accuracy of the calculated qualitative and quantitative parameters, which can

have direct impact on treatment planning and therapy monitoring.

Today, MRI is often the imaging method of choice in clinical routine due to its high

soft-tissue contrast combined with versatile parameterization alternatives (Thornton et al.

1992). Common acquisition protocols include T2- and FLAIR-weighted sequences, which

are sensitive to edema and to tissue infiltration, providing an indication of the extent of

low malignant tumor parts. Furthermore, T1-weighted sequences pre- and post-contrast

facilitate an estimation of blood-brain barrier dysfunctions, often caused by high malignant

tumor parts.

The boundary of a tumor and its volume are often used as objective parameters. How-

ever, since brain tumors can largely vary in size, shape, amount of edema, and enhancement

characteristics, any analysis used in clinical routine and in multi-center studies has to be

carefully evaluated. Varying acquisition protocols and image quality add to complexity of

this task. Unfortunately, publicly available reference data sets are hardly available. Further-

more, a ground truth is usually not known for brain tumors.

In this section, we develop brain tumor phantoms, which have been introduced in (Rex-

ilius et al. 2004). A biomechanical model enables us to simulate deformations that occur

due to tumor growth inside the brain (cf. Sec. 5.3.3). Additional properties such as the

amount of edema at each voxel (cf. Sec. 5.3.2) as well as a simulation of contrast agent

enhancement characteristics are provided within the software phantom (cf. Sec. 5.3.5). An

extension of our work was proposed by Prastawa et al. (2009). Their phantoms have also

been used as training data at the BRATS challenge at MICCAI 2012.
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(a) (b) (c) (d)

Figure 5.11. Examples of tumor phantoms without simulation of edema that differ only in size
and amount of necrosis in comparison to original MR data. (a) Original T1-weighted image post
contrast (T1gd) of healthy volunteer, (b) T1gd image with small tumor, (c) T1gd image with large
tumor, (d) T1gd image with large tumor and necrotic tissue scaled to 5%.

5.3.1. Overall Phantom Design

To develop a realistic object shape and appearance for brain tumors, we use two different

tissue classes: active tumor and necrosis. Furthermore, we introduce an additional class for

edema (cf. Sec. 5.3.2). This approach can be considered as an extension of the one-class

approach proposed for MS lesions in the previous sections of this chapter.

Both, active tumor tissue and necrosis are obtained from segmentation masks of a real

tumor patient, and are resampled onto a high-resolution grid (5123 grid). The amount of

necrosis can be easily changed by appropriate scaling (cf. Fig. 5.11 and 5.12). Suitable

object gray values as well as noise characteristics for both tissue classes are determined

from the patient data set, and are adjusted to the underlying background data set.

Three-dimensional T1-weighted pre and post contrast MR images from a healthy vol-

unteer are used as background data. All data are obtained from a clinical 1.5T scanner

(Siemens Magnetom Vision, Siemens, Erlangen, Germany) with 1.0mm isotropic voxel

size, 256x256 matrix (cf. Fig. 5.11 (a)). A simulation of deformations induced by tumor

growth is performed to provide a more realistic background model. Furthermore, we in-

troduce an additional tissue class, to simulate edema. The following sections give a more

detailed description of these steps. Finally, the objects for each tissue class are incorporated

into the volunteer MR data sets as a linear combination of the deformed MR scan and the

tumor tissue classes.

5.3.2. Modeling of Edema

In addition to the actual tumor tissue, edema is another important structure that should be

taken into account. Brain edema is an inflammatory response to the tumor, which causes

the brain around the tumor to swell, and is mostly located in the white matter (Osborn

and Tong 1999). Because the brain is located in a confined space and cannot expand, and
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(a) (b) (c)

Figure 5.12. Second example of tumor phantoms without simulation of edema, similar to Figure
5.11. (a) T1gd image with small tumor, (b) image with large tumor, (c) necrotic tissue scaled to
5%.

because the fluid that accumulates cannot easily be carried away, an edema can impair the

normal brain functions and cause an increase of intracranial pressure. Therefore, an accurate

segmentation and quantitative analysis could add valuable information for a physician. For

example, a method for tumor segmentation with an explicit model for edema is proposed in

(Prastawa et al. 2003).

We simulate the amount of edema at each voxel, using a geodesic distance transfor-

mation (Soille 2003) starting from the tumor boundary. The basic idea is to constrain the

distance computation to remain within a subset of the image volume. We use a white matter

mask, because the edema is usually located in the white matter of the brain. Depending on

the resulting distance map we define a region of pure edema and of a mixture between pure

edema and normal brain tissue. This way, various degrees of edema dissemination can be

simulated. The amount of PV is scaled accordingly. Further PV effects that occur between

edema and tumor tissue at the boundary of the tumor are considered as well. The result-

ing edema probability mask is then added to the structure module as additional tissue class.

Suitable intensity values and noise level are again extracted from the associated patient data.

See Figure 5.13 for an example.

Unfortunately, the amount of edema is not only influenced by the distance to the tumor

boundary. Other aspects such as tumor infiltration should also be taken into account. Fur-

thermore, methods that account for preferred tumor dissemination pathways could provide

a more accurate basis for the tumor and edema growth, e.g., maps of the principal diffusivity

directions derived from diffusion tensor imaging.
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5.3.3. Modeling of Deformations Induced by Tumor Growth

An important aspect in generating a realistic phantom for brain tumors is to simulate the

deformation imposed by tumor growth. A fundamental assumption is that surrounding

brain tissue is pushed away from the tumor. In order to gain insight into the process of

tumor growth, mathematical modeling has become an increasingly important role and vari-

ous methods have been proposed.

We simulate the three-dimensional tumor growth using a physics-based model. Our ap-

proach is based on a linear elastic model that was previously used to capture shape changes

of the brain during neurosurgery (Ferrant et al. 2001; Rexilius et al. 2001). Since a rigid

model can be assumed for surrounding tissue such as the dura mater, the model is con-

strained at the boundaries of a brain mask generated by a watershed transform (Hahn and

Peitgen 2000), so that motion is restricted to areas inside the brain. Tumor growth is then

simulated from an initial start point. Thereby, a brain tumor object is placed at an arbitrary

position inside the brain with a given radial displacement u(d) = αd,α ∈ R
+ in each di-

rection d ∈ R
3. The center of gravity of the tumor object is used as point of origin. The

constraints for tumor and brain boundary are then introduced as external forces into the

elastic model defined in Equation 5.1 with material parameters E = 3kPa (Young’s moduls

measured in Pascal) and ν = 0.4 (Poisson’r ratio) as

E(u) =
1

2

∫

Ω

σ⊤ε dΩ −
∫

Ω

F⊤u dΩ . (5.1)

Ω image domain
σ strain
ε stress
F external forces
u displacement.

Similar parameters have been used for example by Ferrant et al. (2001). The computed

constraints for both, tumor and brain boundary are then introduced as external forces into

the elastic model. Thus, changes in the shape of the brain are modeled to result in an

equilibrium state of energy with a displacement u that minimizes the total potential energy

as defined in Equation 5.1.

The resulting equation is solved by a finite element approach (Zienkewickz and Tay-

lor 1987). We chose a structured mesh with a triangulation done using tetrahedra and linear

shape functions. To solve the resulting system of equations, we use a fast parallel implemen-

tation, which was already implemented as part of a nonrigid registration approach (Rexilius

et al. 2001).

Finally, an iterative tumor growth is applied as proposed in Equation 5.2. We start with

a deformation restricted to the boundary of a downsampled tumor shape (factor 5). The

center of gravity is placed at the same position as for the full-scale tumor, so that even brain
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Phantom Data Patient Data

Figure 5.13. Examples of different software phantoms with simulated edema compared to actual
patient data. (Left column) MR scan of a healthy volunteer with incorporated tumor object, (Right
column) MR scans of patients with a brain tumor.

structures very close to or even inside the full-scale object’s boundaries can be pushed away

from the tumor. The amount of displacement per iteration varies with the scale factor α as

defined above.

un(x) = un−1(x)+u(x+un−1(x)) . (5.2)

un−1(x) displacement at time point n

un−1(x) displacement at time point n−1.

The maximum deformation in the full-scale tumor size is set as stopping criterion for the

iteration process. The amount of displacement per iteration varies with the scale factor α as
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Figure 5.14. Summary of the developed brain tumor phantoms.

defined above. The associated parameter module Mpgrowth
is defined as follows:

Parameter Description (Mpgrowth
)

H Tumor growth modeled by iterative linear elastic model

x Background data set and initial tumor shape

f Compute background deformations using Eq. 5.1 and Eq. 5.2

y Pixel-wise displacement map

5.3.4. Resulting Software Phantoms

Figure 5.13 illustrates the resulting software phantoms. Similar to the generated software

phantoms for MS lesions, we present a comparison of a patient MR with a brain tumor
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and a phantom data set. To evaluate the quality of these phantom data sets, we conducted

a visual assessment by two clinical experts. All four image data sets were shown to the

participants, i.e., the two patient and the two phantom data sets. The first example (top

row in Fig. 5.13) was clearly identified as tumor phantom. Especially the edema region

appeared to be too homogeneous. Nevertheless, one expert also rated the patient data as

possible software phantom. In the second example, the bottom row in Figure 5.13, both

experts rated the tumor phantom as potential patient data set. A summary of the phantom

and its major components is given in Figure 5.14.

5.3.5. Simulation of Contrast Enhancement Characteristics

In this section we add an additional parameter model to our brain tumor phantom that allows

the simulation of contrast agent enhancement characteristics. Since the focus in this work is

not on dynamic MRI, we merely provide exemplary results to showcase the flexibility and

potential of our approach.

Multi-compartment models are commonly used to describe the enhancement of macro-

molecular contrast agent particles in tumor tissue and thus are an important tool for com-

puter assisted analysis of dynamic MRI. We have used the Tofts&Kermode model to gener-

ate simulated perfusion data sets (Tofts and Kermode 1991). This enables us to combine the

prediction of contrast agent enhancement and a known ground truth for a quantitative anal-

ysis in simulated brain tumors. To apply the Tofts&Kermode model to the tumor phantom,

we generate maps of the artificial distribution of physiologic parameters: The permeability

of tissue and the extracellular volume fraction that is accessible for the contrast agent. Since

most of the active tumor tissue is usually located at the border of the tumor, we assume an

increase of the permeability from the center to the border. A very low permeability is as-

signed to necrotic tissue using the simulated amount at each voxel as a scaling factor. The

extracellular volume fraction is assumed to vary only slightly between 0.7 and 0.8. We set

a higher value for necrosis than for active tumor tissue. Finally, contrast enhancement is

simulated at a 0.5 minutes scan-interval from 0 minutes up to 15 minutes after injection of

contrast agent at a dose of 0.1mmol/kg. The associated parameter module Mpenhancement
is

Parameter Description (Mpenhancement
)

H Enhancement characteristics can be simulated via Tofts&Kermode model

x Phantom data set with tumor object

f Tofts&Kermode model

y Pixel-wise enhancement characteristic over N time-steps.

Figure 5.15 (b) provides a color-coded visualization of the wash-in and wash-out of

contrast agent within the tumor region. The red area corresponds to active tumor, the blue

area to necrosis. The corresponding enhancement curves for different positions inside the

tumor are shown in Figure 5.15 (c). For example, the simulation of active tumor tissue (red
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(a) (b) (c)

Figure 5.15. Simulated enhancement characteristics. The imaging parameters are adapted to the
parameters of the real MR scan (T1w gradient echo, TE=5ms, TR=15ms, FlipAngle=30◦). (a)
Slice of phantom data set, (b) combined colorized visualization of wash-in and wash-out of con-
trast agent (red: active tumor, blue: necrosis) (c) relative enhancement curves for selected regions
inside the tumor.

curve) results in a rapidly increasing curve due to high values in the generated permeability

parameter map.

5.4. Discussion

Today, different software phantom approaches are available, and some have already been

discussed in the previous chapters. For example, evaluation of segmentation methods is

often based on artificial phantoms that consist of geometric primitives. Although such an

approach provides a reasonable tool in many cases, a dedicated validation of algorithms

using anatomical or other prior knowledge is not feasible, because these artificial phantoms

can only provide a very rough approximation of anatomy. Voxel phantoms such as the

BrainWeb phantom (Collins et al. 1998) on the other hand, enable a realistic representation

of anatomical structures, and have gained importance in medical image analysis. However,

only a small number of data sets are available for public use. The current BrainWeb data

consist of only one data set with T1-, T2-, and PD-weighted sequences. Twenty additional

data sets (only T1-weighted) are available based on the work of Aubert-Broche et al. (2006).

In this work, we develop hybrid phantoms that have proven to be an elegant way to

a flexible software phantom design (cf. Sec. 2.2.1). Our phantoms are well suited for

tasks such as algorithm development and evaluation, and some examples are given in the

upcoming chapter. We propose a phantom design based on the embedding of objects into

already available anatomical structures. The object design consists of several parameter

modules related to morphology and imaging parameters. Furthermore, our approach allows

for an extension to growth-induced deformations of objects. The background is based on

actual patient data or well-known software phantom data.
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Two phantoms are based on a manual object design. In Section 5.1, we developed MS

lesion phantoms consisting of a single tissue class from hand-crafted objects of typical le-

sion shapes. An extension of this approach is presented in Section 5.3 for brain tumors.

Besides a tumor class, we model edema as additional tissue class. Furthermore, object de-

formations affecting the background data are applied to model tumor growth. Nevertheless,

the actual tumor objects are still modeled by hand based on reference patient data. For both

applications, our software assistent introduced in Section 4.3 is used.

The phantoms described above provide a high degree of flexibility. However, generat-

ing a new phantom requires a long processing time and a large amount of manual work.

Therefore, we extended the above methods to a fully automatic approach for MS lesion

phantoms in Section 5.2. A statistical map of object positions and an automatic selection of

other parameters such as shape or volume enable the generation of an arbitrary amount of

phantom data sets. To the best of our knowledge, our approach represents the first method

of this type.
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6. Applications

After developing several brain lesion phantoms in the previous chapter, we now discuss how

such phantoms can be used to evaluate algorithms that frequently occur in clinical practice

and trials. We focus on MS lesions and brain tumor phantoms. Four different applications

are analyzed: First, we investigate the quality of visual assessment in MS lesion volumetry

(cf. Sec. 6.1). Based on a specially developed software assistant, a survey with more than

20 participants is carried out. Typical tasks are evaluated such as estimating volume change

between two lesion phantoms by pure visual inspection.

In Section 6.2, we then evaluate common methods for lesion volumetry including man-

ual tracing by three field experts plus voxel counting as well as two semi-automatic methods.

More than 50 phantom data sets are generated for this task. Furthermore, we perform an

intra-observer study, where all phantom data sets are repeatedly analyzing. Our results

demonstrate frequent problems with inter- and intra-observer reproducibility, and the im-

portance of an improved gold standard in lesion volumetry beyond voxel counting.

Finally, the use of phantoms for the evaluation of segmentation methods is discussed

in Section 6.3 and Section 6.4. Several algorithms ranging from manual to fully-automatic

are analyzed. The Dice similarity coefficient is used to compare the results with the ground

truth known from phantom data.

6.1. Visual Assessment in MS Lesion Volumetry

The change of lesion load on yearly T2-weighted MR scans of the brain is widely used in

clinical routine and clinical trials. Thereby, the expected change is estimated to be around

10% (Filippi et al. 1998). Today, common measurements are based on manual segmenta-

tion followed by voxel counting within the segmentation mask, or even by a simple visual

inspection of the available image data. But how reliable are such measurements, and what

are their chances and pitfalls?

In this section, we present a survey of a common quantitative measurement used in clin-

ical practice, namely pure visual inspection. Thereby, an assessment heavily relies on the

human eye to detect changes, which are then characterized in a qualitative way. To allow

for a more quantitative analysis, visual rating scales have been proposed in several medical

89
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disciplines. Nomori et al. (2005) compared visual assessment and a semi-quantitative anal-

ysis of fluorodeoxyglucose (FDG) uptake on PET for the evaluation of lung nodules. Three

grades were used to describe each nodule. A retrospective analysis of a visual grading from

unenhanced CT data for the diagnosis of 30% or higher of hepatic steatosis in living donor

liver transplantation candidates was proposed by (Lee et al. 2007). An overview of differ-

ent visual rating scales used for the analysis of anatomical and pathological white matter

changes in the brain is given in (Malloy et al. 2007).

In this section, MS software phantoms of different shape and volume are used to provide

a large range of different realistic data sets (cf. Chap. 4). Furthermore, the exact ground

truth is known for each modeled lesion. To this end, we developed a software assistant

that consists of several steps, comprising different tasks for the user. Each data set contains

exactly one lesion object that can be easily detected by the user.

6.1.1. The Software

The user interface consists of two parts: A viewing section and a description and question

section. To simplify the viewer handling, we provide several predefined zoom factors. Fur-

thermore, the number of visible slices per viewer can be interactively adjusted. Since we

are not interested in an evaluation of object detection, a region of interest is drawn around

a lesion. The lower part of the user interface in each step consists of a description of the

requested tasks as well as a short documentation of the current step and viewer functionality.

Additionally, a box with questions is given.

To participate in the survey, a user has to download the application from a website and

install it on her/his computer. A preamble serves to acquire some personal information

including age and sex as well as work experience (in years) and area of expertise (radiology,

neuroradiology, computer science, etc.). The results are stored in a separate structure that is

automatically returned as plain text by email after answering all questions.

Three different aspects are investigated, each consisting of at least two steps with differ-

ent lesion objects:

(1) Visual inspection.

The first part of the survey consists of five steps (S1–S5). In each step, a set of three

lesions are presented, and the user is requested to estimate their relative volumes.

In two steps the lesion objects have different shapes, whereas the three other steps

comprise a single shape. We asked for the largest/smallest lesion or if all lesions have

the same volume respectively. The questions are given as follows:

• Q1 : All lesions have equal volume?

Possible answers: yes, no

• Q2: Which is the largest lesion volume?

Possible answers: left, middle, right
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Figure 6.1. First part of the software assistant: Visual inspection.

• Q3: Which is the smallest lesion volume?

Possible answers: left, middle, right

Figure 6.1 shows an example of the corresponding user interface.

(2) Segmented mask volume.

In the second part of the survey, different segmentation masks are presented to the

user as overlay over a lesion object (two steps, S6–S7). Besides the above mentioned

interaction and viewing properties (zooming, etc.), the transparency of a segmentation

mask as well as its color can be adjusted to provide further flexibility. We asked for

the largest/smallest segmented mask volume as well as for the best fit of the true

lesion volume. The questions are given as follows:

• Q4: Which is the largest segmented mask volume?

Possible answers: left, middle, right

• Q5: Which is the smallest segmented mask volume?

Possible answers: left, middle, right

• Q6: Which segmented mask volume is closest to the true lesion volume?

Possible answers: left, middle, right

Figure 6.2 gives an example of the user interface.

(3) Lesion growth.

Finally, an examination of lesion growth and shrinkage has to be performed. Here,
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Figure 6.2. Second part of the software assistant: Segmented mask volume.

two lesion objects of different volume are presented to the user in each step (three

steps, S8–S10). The image in the left viewer is regarded as original data set, the other

image as follow-up data set. The questions are given as follows:

• Q7: Is a volume change visible between original data and follow-up data?

Possible answers: no volume change, volume shrinkage, volume growth

• Q8: Volume shrinkage in percent:

Possible answers: -5%, -10%, -25%, -30%, -40%, -50%, -75%, -100%

• Q9: Volume growth in percent:

Possible answers: 5%, 10%, 25%, 30%, 40%, 50%, 75%, 100%

An example of the user interface is given in Figure 6.3.

6.1.2. Results

Five women and 16 men participated in the survey. The average years of experience of

all participants was 4.93 (min = 0.5, max = 15). All of them already worked with medical

image analysis software before. The largest group of participants were experts in the field

of software development and research in medical imaging (19; 90.5%). Among them were

16 computer scientists, two mathematicians, and one physicist. Furthermore, 2 physicians

(radiology, neuroradiology) participated in the survey.

Twenty software phantom data sets including different lesion shapes and volumes have
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Figure 6.3. Third part of the software assistant: Lesion growth.

been developed for this study. The object volumes range between 0.05ml and 0.6ml. No

participant correctly answered all questions in the ten steps of the software assistant. Es-

pecially the lesion volume change between two data sets was often miscalculated. In the

following, we present the results of the three different tasks of this study.

(1) Visual inspection.

The first part of this study deals with the assessment of relative lesion volumes. Ei-

ther a single volume for all data sets or three different volumes are used, ranging from

0.05ml to 0.44ml. Thereby, for a step that contains different volumes, the volumetric

difference between lesion objects within one step is at least 10%, which is the ex-

pected change per year as described above. The underlying volumes as well as the

correct answers for each step are given in Table 6.1.

S1: Three different lesion shapes with equal volume are shown in this step. The

correct answers, i.e., equal volume for all three lesions, were given by nine

participants (42.9%).

S2: A single lesion shape is presented in all viewers. The largest and the smallest

volume were correctly estimated by 18 participants (80.7%). No participant

voted for an equal volume for all lesions.

S3: Again three different lesion shapes with equal volume are shown. Here, eight

participants (38.1%) gave the correct answer.
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Table 6.1. Ground truth for each step of task ’visual inspection’.

Step Volume (in ml) Questions
left middle right Q1 Q2 Q3

S1 0.1 0.1 0.1 yes – –
S2 0.36 0.12 0.25 no left middle
S3 0.36 0.36 0.36 yes – –
S4 0.4 0.44 0.36 no middle right
S5 0.05 0.05 0.05 yes – –

S4: The three viewers show a single lesion shape. The largest as well as the smallest

volume were correctly estimated by five participants (23.8%). Five participants

voted for an equal volume for all lesions.

S5: In this task, a single lesion shape with equal volume is presented. Most partici-

pants (19, 90.5%) voted for the correct answer.

(2) Segmented mask volume.

In the second part of this survey, segmentation masks are overlayed on the lesion

objects. A volume of 0.36ml is chosen in step 6, and a volume of 0.12ml in step 7.

See Table 6.2 for the underlying ground truth of the segmented mask volumes and the

correct answers.

Table 6.2. Ground truth for each step of task ’segmented mask volume’.

Step Lesion Volume Mask Volume (in ml) Questions
(in ml) left middle right Q4 Q5 Q6

S6 0.36 0.59 0.53 0.56 left middle middle
S7 0.12 0.26 0.20 0.23 left middle middle

S6: The largest mask was correctly identified by 13 participants (61.9%), the small-

est mask by only two participants (9.5%). Furthermore, nine participants (42.9%)

selected the correct mask volume closest to the true lesion volume.

S7: For this task, ten participants (47.6%) correctly identified the largest mask. The

smallest mask was correctly identified by no participant (0%). Nevertheless, 18

participants (85.7%) selected the correct mask volume closest to the true lesion

volume.

(3) Lesion growth.

The change of lesion volume between two data sets has to be estimated in the last part
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of the survey. Table 6.3 provides the true volumes as well as the requested growth

rates. Our results show that this last task has been the most difficult one.

Table 6.3. Ground truth for each step of task ’lesion growth’.

Step Volume (in ml) Questions
left right Q7 Q8 Q9

S8 0.4 0.6 Growth – 50%
S9 0.4 0.28 Shrinkage -30% –
S10 0.1 0.125 Growth – 25%

S8: Only two participants (9.5%) correctly estimated the volume growth. Two par-

ticipants (9.5%) estimated no volume growth at all. No one decided for a volume

shrinkage. Furthermore, no participant overestimated the volume growth (0%).

The mean estimated volume growth was 21.2% (min = 0%, max = 50%).

S9: The correct amount of volume shrinkage was estimated by one participant (9.5%).

No one underestimated the amount of shrinkage. Furthermore, no one estimated

a volume growth. Nevertheless, four participants (19.0%) estimated no volume

growth at all. The mean estimated volume shrinkage was -13.1% (min = 0%,

max = -30%).

S10: In this step, most participants (12; 57.1%) estimated no volume growth. One

participant selected the correct volume growth (4.8%). The mean estimated

volume growth was 3.8% (min = 0%, max = 25%).

6.1.3. Discussion

The survey has demonstrated the capabilities of our software phantoms. Typical drawbacks

of visual rating schemes have been identified. For example, only few participants were able

to correctly estimate the largest or smallest lesion, if three different lesion volumes were

shown. This also implies an overall low performance for a differentiation between different

segmentation masks. Furthermore, a comparison of the change in lesion volumes between

two data sets clearly revealed the importance of computer assistance for the quantitative

analysis of lesions. Although most participants were at least able to give the correct trend

in the data, i.e., growth or shrinkage, the volume change was typically underestimated.

6.2. Accuracy in MS Lesion Volumetry

Besides visual inspection of clinical data, a manual or (semi-)automatic assessment of the

volumetric lesion load often is used as an objective parameter. A fundamental issue is the
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accuracy of the calculated lesion volume because this can increase the impact of lesion vol-

umetry on diagnosis and therapy monitoring of the disease. Several methods have been

proposed to quantify lesion burden, ranging from manual tracing of each lesion by experts

to semiautomated and fully automated methods. A common method used in many clinical

trials that evaluate cancer treatments is the Response Evaluation Criteria In Solid Tumors

(RECIST) (Therasse et al. 2000), which uses a one-dimensional measurement of the tumor

size, the diameter, to approximate the volume. Molyneux et al. (1998) evaluate the perfor-

mance of manual outlining and a semi-automatic contour technique for the segmentation

of MS lesions from 16 patient data sets. The authors show that the semi-automatic method

results in a more robust quantification of the lesion load. A related approach is proposed in

(Ashton et al. 2003), where manual tracing is compared with two semi-automatic methods.

Nevertheless, both studies apply a simple voxel counting without considering PV effects

during volume calculation, i.e., the volume is computed as the number of voxels within a

segmentation mask multiplied by the volume of a single voxel (Clark et al. 1998; Joe et al.

1999; Kaus et al. 2001). An illustration of this method is shown in Figure 8.2.

The aim of this section is to introduce a new approach for the validation of MS lesion

volumetry. Because of the absence of a ground truth in patient data, we generate software

phantom data sets of MS lesions with known exact volumes (Rexilius et al. 2005).

Extensive experimental studies over a broad range of different lesions are carried out

manually by domain experts. Furthermore, a three-dimensional region growing combined

with voxel counting within the segmentation mask as well as a robust semi-automatic vol-

umetry approach based on Bayesian classification with explicit PV modeling are used for

comparison.

6.2.1. Software Phantoms for the Evaluation of MS Lesion Quantification

The software phantoms use in this study are developed based on the approach proposed in

Section 5.1. The images used as background in this study were acquired from a healthy

volunteer (a 28-year-old male) on a 1.5 T scanner (Magnetom Vision; Siemens, Erlangen,

Germany). The data-acquisition protocol contained axial and coronal PD-, T2-, and T1-

weighted images with an in-plane resolution of 0.449×0.449mm2 and a slice thickness of

3 mm, matrix of 512×512, and 34 axial and 51 coronal continuous slices, respectively. All

images were acquired in one session with head fixation and without table movement, such

that all data sets are perfectly aligned without visible motion artifacts.

The lesion objects are generated manually and placed at typical paraventricular posi-

tions in the white matter of the brain. To cover a variety of realistic-shaped MS lesions,

we generate three different lesion objects: a sphere-like lesion (L1), an ellipsoidal lesion

(L2), and an elongated lesion containing several deformations (L3). We did not use regular-

shaped cylinders or spheres because this would not lead to a realistic lesion appearance. A

3D surface rendering of these shapes is shown in Figure 6.4.

In addition to various shapes, six different lesion volumes are chosen: 0.05, 0.1, 0.2,
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Figure 6.4. Examples of software phantoms for MS lesions with different shapes and sizes. The
top row shows a slice of the resulting phantom in 2D, the bottom row shows the employed lesion
objects in 3D. (a) Sphere-like, (b) ellipsoidal, and (c) irregular shape containing several deforma-
tions.

0.4, 0.7, and 1.0ml, resulting in a total amount of 18 different lesion objects. The voxel size

for the largest volume (1.0 ml) was set to an isotropic voxel size of 0.05 mm, resulting in

8,000,000 voxels. Voxel sizes for the remaining volumes are calculated accordingly.

6.2.2. Setup for Manual Expert Analysis

Each data set is analyzed by three experts. In order to provide an intuitive but still powerful

tool for the manual analysis of the provided phantom data sets, we developed an application

with a graphical user interface based on the research and development platform MeVisLab

(MeVisLab 1.5 ). Therein, an expert is able to trace the boundaries of a lesion, shown as

overlay on the original slices. The actual volume is then computed using the voxel counting

approach. In addition to basic drawing functionalities, the user may adjust the lookup-table

and simultaneously view several neighboring slices. Furthermore, it is possible to change

between available sequences during outlining a lesion on one slice. Because we want to

analyze volumetric results and not the lesion detection task of different experts, only one

lesion is incorporated per data set.

6.2.3. Semi-Automatic Volumetry

Two semi-automatic measurement techniques are evaluated in this work. To provide results

corresponding to a popular method for the segmentation of MS lesions in clinical routine

and studies, a seeded region growing algorithm is used (Sonka et al. 1998). This technique

requires a user to place a "seed" within the lesion using a single mouse click. The region then
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successively grows and neighboring voxels are added to the region up to a certain intensity

threshold. A compact shape that does not deviate excessively between two neighboring

intensity thresholds is used to constrain the process. The lesion volume is computed by

voxel counting on the resulting mask similar to the manual approach.

The second algorithm combines a 3D marker-based segmentation and a bimodal his-

togram analysis with an explicit model for PV effects. Only the T2-weighted images are

considered due to their high lesion contrast. In a first step, a cuboid subvolume that contains

the entire lesion is selected and resampled in z-direction to an isotropic voxel size. Then,

an interactive watershed transformation is applied to generate an over-inclusive segmenta-

tion (Hahn and Peitgen 2000). Two different marker types are used. One include marker is

placed inside the lesion and up to five exclude markers are used to separate the lesion from

other hyperintense structures. The resulting region contains the complete object boundaries

including all voxels where PV effects occur.

In a subsequent step, the lesion is classified with a statistical parametric classification

algorithm, which are widely used in image analysis. The overall probability density function

(PDF) of a voxel is given by

P(i) = ∑
m∈T

P(wm)P(i|wm) , T = {background, lesion,PV} , (6.1)

P(i) M-component mixture density
wm underlying tissue class in the image
P(wm) mixing proportions
P(i|wm) component density of given tissue class wm

i observed value of a random vector (here: intensity value).

The weights or prior probabilities, P(wm), which act as scaling parameters of each class

PDF, are nonnegative quantities that sum up to one, i.e.,

0 ≤ P(wm) ≤ 1 (m = 1, . . . ,M)

and
M

∑
m=1

P(wm) = 1.

A Gaussian PDF (cf. Eq. 3.2) is assumed for the two pure tissue classes lesion and back-

ground.

Because of a typically small object size for MS lesions in the order of the slice thick-

ness and the complexity of tissue boundaries, partial volume (PV) voxels, i.e., a mixture

of pure tissue classes, is likely to occur. A common assumption for the modeling of par-

tial volume voxels is a uniform distributed linear mixture of pure tissues because mixture

voxels may consist of any fraction of pure tissue. This mixture model can be incorporated

directly into the clustering algorithm, and the extended classification process therefore can
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be implemented computationally efficient. Model parameters for the partial volume tissue

class are defined as a convex combination of the model parameters of the two pure tissue

classes, as proposed in (Noe and Gee 2001). The intensity of a voxel is then determined by

a weighted sum of lesion tissue with intensity i1 and background tissue with intensity i2 as

υ = a1 i1 +(1−a1) i2 .

The corresponding PDF is again a Gaussian density function with parameters

µmix = aµ1 + (1−a)µ2 , (6.2)

σmix = a2 σ1 + (1−a)2 σ2 .

The EM algorithm is applied to estimate appropriate parameters for each class (van Leemput

et al. 1999).

Finally, the object volume is computed by

V =

[

P(wlesion)+
P(wPV )

2

]

·Vvoxel ·N (6.3)

P(wlesion) computed weight for lesion object
P(wPV ) computed weight for partial volume region
Vvoxel voxel volume
N number of voxels in ROI.

Equation 6.3 assumes a symmetric PV distribution, so that only 50% of the computed weight

P(wPV ) are added to the total volume.

6.2.4. Results

We evaluated 54 phantom MR data sets generated from a brain scan of a normal volunteer

with exactly one MS lesion phantom per data set as described above. Lesion objects were

placed at typical paraventricular positions in the white matter of the brain. Eighteen dif-

ferent lesions were generated for this study, consisting of six different volumes (0.05, 0.1,

0.2, 0.4, 0.7, and 1.0 ml) for each of three generated lesion shapes (L1, L2, and L3). The

maximum diameters of the three lesion shapes are L1 = 75.4mm (L2 = 7.6mm, L3 = 7.2mm)

for the smallest lesions (0.05ml), and L1 = 713.5mm (L2 = 18.4mm, L3 = 19.3mm) for the

largest lesions (1.0ml). Each lesion phantom is incorporated into both, axial and coronal ori-

entations at corresponding positions. To simulate inter-examination variability with respect

to partial volume artifacts and apparent lesion size, an additional set of images is created by

randomly shifting each lesion in z-direction on the axial images.

The MS lesions were manually traced by three experienced raters using the software

assistant described above. Furthermore, the two semi-automatic volumetry approaches in-

troduced in the previous section were used for comparison. The required interactions for
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Figure 6.5. Results of manual and semi-automatic volume measurements in a boxplot. (a) Over-
all results calculated for each rater and algorithm separately. PVE refers to the semi-automatic
partial volume analysis. (b) Results for each available volume, i.e., experts 1 to 3 and both semi-
automatic approaches.

both algorithms were performed by Expert3.

Figure 6.5 (a) illustrates the overall error for each rater and the two semi-automatic

methods in percentage of the true volume in a boxplot. A detailed analysis for each vol-

ume is given in Figure 6.5 (b). The overall median overestimation as well as the median

overestimation computed for small lesions (<0.3ml) and intermediate lesions (>0.3ml) for

each method is shown in Table 6.4. It can be clearly observed that all experts overestimated

the true lesion volume, all to a comparable amount. The overall median overestimation for

manual evaluation of the three experts ranges between 42.9% and 63.2%. The variability

decreases with increasing volume size, because small changes already cause a significant rel-

ative error for small volumes. For small lesions the median overestimation over all experts

is 73.2%, and 45% for intermediate lesions. No significant shape effect has been observed.

Similar results are obtained using the semi-automatic region growing approach com-

bined with voxel counting. Here, the overall median overestimation is 46.3%. The semi-

automatic approach with dedicated PV modeling, on the other hand, provides far more ac-

curate results with a low error margin especially for intermediate lesions. Here, the overall

median overestimation is 0.4%. Especially the deviation from the median is much smaller

than for both voxel counting based methods.

To evaluate the intra-observer variability, repeatability analyses of the axial phantom

data sets for each method were carried out by one rater, assessing each data set ten times.

Figure 6.6 and Table 6.5 show the mean and the variance of the measured volumes. The

manual approach was found to be highly variable especially for small lesions, whereas both

semi-automatic methods provide a high reproducibility.
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Table 6.4. Median overestimation of computed lesion volume for each expert and the two semi-
automatic volumetry methods; #data sets: n = 27 (small and intermediate lesions), n = 54 (total).

Median Overestimation (%)
Small Intermediate

Method Lesion Lesion Total

Manual, expert 1 87.7 57.2 63.2
Manual, expert 2 58.3 35.5 42.9
Manual, expert 3 78.0 47.0 52.9
Region growing 66.5 31.6 46.3
Partial volume analysis 7.3 -0.9 0.4

Table 6.5. Systematic error and intra-observer variability trials for all proposed methods, assessing
each data set (n = 18) ten times.

Mean Error ± SD (%)
Small Intermediate

Method Lesion Lesion

Manual, expert 3 91.4 ± 32.3 56.5 ± 17.0
Region growing 81.1 ± 2.8 38.4 ± 1.6
Partial volume analysis 14.7 ± 1.0 1.3 ± 0.4

6.2.5. Discussion

Manually outlined contours can provide a good estimation of visible lesion boundaries, al-

though results may vary depending on the experts’ common training. However, volumetric

results using the common gold standard based on voxel counting within the segmentation

mask show massive overestimation with poor interobserver and intraobserver reproducibil-

ity, even for lesions of intermediate size. Here, the partial volume effect is the largest source

of systematic error. The computed volumetry results clearly depend on lesion size because,

for small lesions, relatively more voxels are affected by partial volume.

This also has direct impact on the accuracy of other voxel-counting based methods, and

one cannot expect significant improvement for these methods in general. Moreover, the

negative effect on total lesion load measurements becomes evident. In this work, a common

region-growing algorithm was used as an example. Our results show median overestimation

similar to the manual approach, even if the semiautomatic method has a slightly lower error.

However, a higher degree of automation could improve the reproducibility of the method

and reduce the amount of training needed for inexperienced observers.

To accurately compute lesion volumes, algorithms with a model for partial volume ef-
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Figure 6.6. Results of an intra-observer study for all proposed methods, assessing each axial data
set ten times. ( ⋄, manual analysis; �, region growing; ◦, PV analysis).

fects have to be taken into account. The proposed partial volume analysis method is robust

for intermediate and large lesions.

Although correlation between MRI and clinical findings remains difficult, volumetric

analysis of the lesion load has become an important issue and an active research field. How-

ever, analysis of the common gold standard in MS lesion volumetry among three experts

shows a large median overestimation. The overall maximum was approximately 200% for

one expert. An intraobserver study also showed large variability, even for a single rater. No

manual tracing underestimated or met the true volume.

Similar results were obtained for a semiautomatic approach based on region growing.

Although this method generates reproducible lesion segmentations, the actual volumetry is

still based on voxel counting and thus is error prone. Because accuracy is an important

factor for the clinical relevance of a method, results clearly indicate the importance of an

improved gold standard in lesion volumetry beyond voxel counting. New measurements

that accurately address partial volume artifacts are likely to correspond better to clinical

findings. Therefore, our phantoms can provide a basis for comparison and testing of current

and new approaches.

6.3. Segmentation of MS Lesions

Prior to a quantitative analysis of volumetric lesion load as discussed in the previous section,

detection and segmentation are important pre-processing steps for diagnosis and treatment

monitoring of MS lesions. An extensive description of lesion segmentation methods includ-

ing both semi-automatic and automatic algorithms can be found in (Mortazavi et al. 2012).

To evaluate a lesion segmentation method, using patient data and associated manual seg-
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mentations, which serve as a surrogate ground truth, is a common approach. However, a

large data pool is required to account for major anatomical variations and pathologies. Fur-

thermore, exact measurements of parameters such as the volume of an imaged organ are not

possible with patient data sets. Today, only few data sets that include both patient data plus

manual expert segmentations are freely available for the community. An exception for ex-

ample is the Lesion Segmentation Challenge workshop at the MICCAI conference (Styner

et al. 2008).

Instead of another patient data set with unknown ground truth, we propose software

phantoms for this task in this section. In Section 6.3.1, manual and semi-automatic methods

are tested. A fully automatic approach is evaluated in Section 6.3.2.

6.3.1. Manual and Semi-Automated Segmentation

The Algorithms

Two algorithms are analyzed that were already used in Section 6.2. The first method is a

manual expert segmentation. Here, a domain expert interactively outlines the lesion bound-

ary. The second algorithm is a semi-automatic region growing, where a seed is manually

placed within the lesion as starting position.

Results

To evaluate the two segmentation approaches, we use the same lesion phantoms that were

proposed for lesion volume estimation (cf. Sec. 6.2). A total number of 18 phantom MR

data sets is analyzed. For each data set (MS brain scan of normal volunteer), one MS lesion

phantom is placed in the white matter of the brain. Three different lesion shapes were

generated and six different lesion volumes are chosen for each shape (0.05, 0.1, 0.2, 0.4,

0.7, and 1.0ml) resulting in 18 different lesion objects.

To measure the overlap of the segmentation results with our ground truth, the Dice simi-

larity coefficient DSC(A,B)= 2|A∩B|/(|A|+ |B|), (A=AlgorithmResult,B=GroundTruth)

is used (cf. also Sec. 8.2). Since both segmentation algorithm compute a binary lesion mask,

we calculate the overlap only for ground truth voxels with ≥ 50% lesion probability.

Table 6.6 gives the results for all phantoms. The expert segmentation usually resulted

in lower overlap values compared to the semi-automatic region growing algorithm, inde-

pendent of the segmented lesion. The values for the manual segmentation range between

0.58 and 0.90 and for the region growing approach between 0.61 and 0.96. Note, that a

value of DSC = 0.7 is generally regarded as good segmentation. Similar to the volumet-

ric lesion analysis, the computed similarity measure increases with increasing volume size.

No significant shape effect is observed. For small lesions (<0.3ml), the mean similarity is

DSCmanual = 0.75 and DSCrg = 0.78 respectively, while for intermediate lesions the mean

values increase to DSCmanual = 0.84 and DSCrg = 0.88.
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Table 6.6. Comparison of segmentation algorithms (manual segmentation, semi-automatic region
growing) to ground truth using the Dice similarity coefficient (DSC). For the phantom ground
truth data, only voxel with ≥ 50% lesion probability are included.

DSC (%)
Method 0.05ml 0.1ml 0.2ml 0.4ml 0.7ml 1.0ml

Spherical Object

Manual 0.85 0.84 0.78 0.83 0.86 0.90
Region growing 0.95 0.85 0.81 0.84 0.88 0.85
Ellipsoid Object

Manual 0.87 0.75 0.58 0.85 0.85 0.84
Region growing 0.91 0.69 0.61 0.89 0.96 0.81
Deformed Object

Manual 0.76 0.68 0.61 0.81 0.81 0.82
Region growing 0.80 0.70 0.69 0.83 0.95 0.87

6.3.2. Automated Multi-Spectral Segmentation

The Algorithm

After evaluating two segmentation algorithms that require user interaction, we now analyze

a fully automatic approach. We use the lesion segmentation algorithm proposed by van

Leemput et al. (2001), which has become quite popular within the medical imaging com-

munity. A search for citing papers on IEEE Xplore returned 121 documents (performed on

November 6th, 2014). Furthermore, the source code is freely available for download from

the EMS website (EMS ).

The algorithm performs an intensity-based segmentation from multispectral MR images.

Each voxel is classified into one of four healthy tissue classes (white matter, gray matter, csf,

and other). Spatial information for each tissue type is incorporated using a Markov random

field (MRF). Moreover, MR field inhomogeneities can be corrected. Finally, MS lesions are

detected as outliers that are not well explained by a model for normal brain MR images.

Results

We apply the same parameters as proposed on the EMS website (EMS ) in Section "Addi-

tional intensity and contextual constraints." An overview of parameters and corresponding

values is given in Table 6.7. The computed mask contains a value for lesion probability at

each voxel.

The reference data used in this work consist of twenty patient data sets (Styner et al.

2008) with manually segmented lesions acquired on a 3T MR scanner. The data-acquisition

protocol includes T1-, T2-, and FLAIR-weighted images. The T1-weighted data are used
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Parameter Value

Modalities T 1,T 2,PD

Order of Bias Field Polynomial Model 4
Type of Polynomial 3D

Mahalanobis Threshold 3
MRF yes

Intensity Constraints iT 2 ≥ gmT 2

Lesion Tissue wm (white matter)
Other Outliers no

Table 6.7. Parameters and values of the evaluated segmentation approach proposed by van Leemput
et al. (2001) (EMS).

as input for the initial brain extraction algorithm and the global and local B-spline registra-

tion. The resulting lesion position map is computed from approximately 500 lesions with a

volume range of 0.001ml to 4.38ml (mean=0.25ml). See Section 4 for more details.

Sixteen lesion phantoms have been generated with a total lesion load (TLL) ranging

from 1.12ml to 7.18ml. Therein, we developed six phantom pairs that only differ in the

texture model (Data3,...,Data8), which is varied from homogeneous to inhomogeneous (cf.

Sec. 5.2). Furthermore, four additional phantoms were generated without this restriction

(2x homogeneous, 2x inhomogeneous). See Table 6.8 for an overview.

Again the Dice similarity coefficient (DSC) is used to compare the segmentation results

with our ground truth. An illustration of the algorithm results is given in Figure 6.7. Since

the ground truth as well as the computed lesion mask contain a voxel-wise lesion proba-

bility, we threshold the values before computing the overlap measure. Only values with a

lesion probability of ≥ 50% are used. The average similarity measure for phantoms with

homogeneous lesions is mean(DSChomogen) = 0.67 (min= 0.57, max= 0.77). For phantoms

with inhomogeneous lesions this value is reduced to mean(DSCperlin) = 0.49 (min = 0.35,

max = 0.55). Even more, no result for the homogeneous phantoms is lower than any result

for the inhomogeneous phantoms. The largest difference is 0.23.

One reason for the low segmentation overlap for inhomogeneous lesions is the incor-

rectly computed amount of lesion tissue by the EMS algorithm. This results in a larger

lesion mask compared to the underlying ground truth. See Figure 6.8 for a visualization.

The yellow area, i.e., the voxels with ≥ 50% lesion probability, is much larger for homoge-

neous lesions (cf. Fig. 6.8 (b)) than for inhomogeneous lesions (cf. Fig. 6.8 (d)).

Besides the segmentation overlap, our phantom also enables a comparison of the total

lesion load. Instead of using only voxels with ≥ 50% lesion probability, the whole lesion

mask is used. The last rows in Table 6.8 give the total lesion load for homogeneous and

textured lesions computed by the EMS algorithm (TLL-EMS). The mean overestimation

for homogeneous lesions is 161%. For textured lesions, it is 224%.
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HOMOGENEOUS LESIONS

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

TLL (ml) 3.76 5.08 2.06 3.28 3.20 2.66 7.18 5.19
DSC 0.66 0.68 0.71 0.77 0.57 0.65 0.70 0.61
TLL-EMS (ml) 6.57 8.00 4.21 5.60 5.84 4.92 13.52 11.05

LESIONS WITH TEXTURE

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

TLL (ml) 2.18 2.86 1.12 2.03 2.13 1.70 4.50 4.60
DSC 0.49 0.52 0.51 0.54 0.35 0.51 0.55 0.43
TLL-EMS (ml) 4.91 6.04 3.29 4.39 4.90 3.92 9.21 7.73

Table 6.8. (1st row) Total lesion load (in ml) of lesion phantom (TLL); (2nd row) Dice similarity
coefficient (DSC) to compare the computed segmentation overlap with the ground truth; (3rd row)
Total lesion load computed by segmentation method (TLL-EMS, in ml).

6.3.3. Discussion

Segmentation of MS lesions in brain MR image data is an important step towards diagnosis

and patient follow-up, and has been widely investigated in recent years. Several algorithms

ranging from manual to fully automatic have been proposed. Evaluation of these approaches

is usually performed with both phantom as well as real patient data sets. Phantom data are

especially used to detect algorithmic errors in early development stages.

A major point of criticism of phantoms is their overall data quality. Most phantoms have

only a very limited anatomical and pathological variability and are thus not as challenging

as patient data. This behavior can also be observed with our data: The computed values

using our phantoms are about 33.7% to 41.5% higher compared to the values reported in

(van Leemput et al. 2001) for patient data sets.

Nevertheless, a phantom-based evaluation is an excellent tool especially in early algo-

rithmic development stages, since each phantom can be adapted to the specific needs of the

developer. We have shown that changing parameters can yield lesion objects with increased

complexity. In this work, the object structure is modified. The resulting in inhomogeneous

lesions provide a more challenging task for the segmentation algorithm with a lower seg-

mentation overlap measure and a higher volume overestimation. Furthermore, the values

now differ only by 7.2% compared to the values by Leemput et al. reported on patient data

sets.

6.4. Segmentation and Quantification of Brain Tumors

In this section, we use our brain tumor software phantoms for the evaluation of a segmen-

tation and quantification approach that has become popular in the field of cancer therapy
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Figure 6.7. Phantoms with segmentation result overlay. The associated T1- and PD-weighted
images used for segmentation are shown in Figure 5.10. Red: algorithm result (van Leemput et al.
2001) with ≥ 50% lesion probability, yellow: phantom data with ≥ 50% lesion probability.

(a) (b) (c) (d)

Figure 6.8. Comparison of segmentation results for homogeneous and inhomogeneous lesions. (a)
Homogeneous lesions; (b) segmentation overlay on (a); (c) inhomogeneous lesions; (d) segmen-
tation overlay on (c). Red: algorithm result (van Leemput, Maes, Vandermeulen, Colchester, and
Suetens 2001), yellow: phantom data. Only voxels with ≥ 50% lesion probability are used.

monitoring, namely OncoTREAT (Bornemann et al. 2007).

OncoTREAT facilitates a semi-automatic segmentation of different lesion types in CT

data sets including lung nodules, enlarged lymph nodes, and liver metastases. Furthermore,

a segmentation of brain metastases in MR scans included in the software prototype. The un-

derlying algorithm combines an initial seeded region growing and an automatic morpholog-

ical refinement to exclude adjacent structures with similar gray values. A detailed descrip-

tion can be found in (Kuhnigk et al. 2006). Since this approach requires a rather compact

lesion appearance, a new method has been proposed for the segmentation of ring-enhancing

tumors by Bornemann et al. (2007), which has shown to result in a more appropriate seg-

mentation for many cases especially of brain metastases. In addition to the different seg-

mentation tools, a fully automatic volumetry is implemented within OncoTREAT. For brain

tumors, the software assistant uses a voxel counting approach, i.e., the volume is calculated

as the number of voxels within the segmentation mask multiplied by the voxel volume.
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Figure 6.9. Segmentation results of software phantoms Case1 and Case2 using OncoTREAT. From
left to right: Slice of T1 post contrast, 2D tumor segmentation overlay, and tumor segmentation
in 3D.

Table 6.9. Evaluation of OncoTREAT results for all data sets using the Dice similarity coefficient.
Overlap1: ≥ 50% tumor tissue in reference segmentation mask, Overlap2: > 0% tumor tissue in
reference segmentation mask

Case 1 Case 2 Case 3 Case 4 Case 5

Overlap1 0.90 0.88 0.96 0.89 0.94
Overlap2 0.90 0.87 0.94 0.87 0.91

6.4.1. Results

Five data sets are analyzed representing different tumor shapes, locations, and sizes (Case1,

Case2, ..., Case5). T1-weighted post contrast MR image data of a healthy volunteer are used

as background, obtained from a clinical 1.5T scanner (Siemens Magnetom Vision, Siemens,

Erlangen, Germany; 256x256 matrix; 1.0mm3 isotropic voxel size). Case1 shows a rather

homogeneous tumor shape that is composed only of active tumor. The tumor objects in

Cases2 to Case5 contain a model for active tumor tissue and necrosis. Furthermore, in

Case3 the amount of necrotic tissue is scaled to 50%. See Figure 6.9 and Figure 6.10 (left)

for an example of each data set. The volume and the overlap statistics for all data sets are

computed from the combination of both tissue types.

Table 6.9 shows the resulting similarity values for each tumor phantom. For comparison,
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Figure 6.10. Segmentation results of software phantoms Case3, Case4, and Case5 using On-
coTREAT. From left to right: Slice of T1 post contrast, tumor segmentation overlay in 2D, and
tumor segmentation in 3D.

we used two different reference segmentations: The number of voxels with ≥ 50% tumor

tissue in the segmentation mask, and the number of voxels with > 0% tumor tissue. All

cases show a high degree of overlap for both reference segmentation masks. The mean

Dice similarity coefficient is DSCmean = 0.92 using a manual segmentation as reference,

and DSCmean = 0.90 for the ground truth reference. The segmentation results also show a

good visual correspondence with the underlying ground truth (cf. Fig. 6.9 and 6.10).

Besides an evaluation of the segmentation overlap, we also calculated the tumor vol-

ume as well as the volumetric error (cf. Table 6.10). OncoTREAT uses the voxel counting

approach as already delineated above, which is still the gold standard in medical image quan-

tification. The resulting volumetric error ranges between -17.24% and 5.263%. Especially

Case4 and Case5 underestimate the volume by more than 10%. Here, the segmentation al-
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gorithm does not include the whole tumor due to necrosis and PV voxels, which has already

resulted in a lower overlap value (cf. Table 6.9).

Table 6.10. Estimated tumor volume and volumetric error for all data sets using the approach
implemented in OncoTREAT.

Case Ground Truth Volume Error
(in ml) (in ml) (in %)

Case1 2 1.951 -2.450
Case2 8 8.421 5.263
Case3 25 25.771 3.084
Case4 25 20.690 -17.240
Case5 25 22.234 -11.064

6.4.2. Discussion

Data quality was already discussed as important issue in the previous section. The computed

similarity coefficients for our phantoms have very high values, ranging between [0.87−
0.96]. Again, we conclude that our phantoms are not as challenging as typical patient data

sets. It is interesting to note that the similarity coefficient is slightly lower using all voxels

with > 0% tumor tissue, especially for large tumors. Here, an important factor are PV

effects at the tumor boundary. Furthermore, our software phantoms consist of areas at the

tumor boundary that have a higher amount of necrosis, resulting in a lower gray value. Both

characteristics yield in a set of voxels that are difficult to identify as tumor tissue on the data

set by the segmentation algorithm, and thus are missing in the final tumor mask.

Despite the very accurate segmentation, the tumor volume is not estimated correctly

using the voxel counting approach. Similar results were already obtained for the MS lesion

phantoms in the previous sections. For the brain tumor phantoms, the inhomogeneous object

appearance leads to a volumetric underestimated in most cases.
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In this chapter, we discuss the main objectives related to phantom development and our

contributions.

How to develop phantoms for medical image analysis?

A phantom is an artificial object with known properties used to test certain aspects of an

algorithm within a chosen application domain (cf. Chap. 2). Based on this definition, we

can derive several requirements for phantom development in medical image analysis.

The first step towards developing a phantom is to decide what kind of phantom is re-

quired for the considered task. Therefore, we started our investigation in this work with

a general overview of design approaches and proposed a categorization scheme that par-

titions software phantoms into three categories: stylized phantoms, voxel phantoms, and

hybrid phantoms. We focus on hybrid phantoms, which provide a separation between ob-

ject and background. Based on the knowledge of the underlying application domain and the

phantom type, we can focus on the actual design in the next step.

In Chapter 4, we proposed a formalization consisting of three main parts: The design

of a suitable object, the design of a related background, and the incorporation of one or

more of these objects into the background. Each part of a phantom is based on certain

hypotheses and parameters. Therefore, the next step of the phantom design is to choose

and to model the relevant parameters. In Chapter 3, we provided a detailed examination

of parameters used in phantom development. To help the user in the selection process, we

proposed a classification into four groups, each modeling a certain aspect of a phantom.

The parameters are selected based on the examination of work in the field of medical image

analysis. For example, segmentation algorithms make assumptions about the underlying

models for typical parameters such as the volume or the gray value. The shape or the volume

of an anatomical or pathological structure are also important markers for diagnosis and

therapy monitoring. Furthermore, the selected imaging parameters are commonly used in

quality assurance (QA) programs of MR scanners. After modeling all required parameters,

we can combine them to our final phantom.

111
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What are the benefits of our approach?

Modular Design. In this work, we aim at a new approach for modular phantom design

based on a set of components. To this end, we formalized the overall development process

in Chapter 4, which is an essential step towards reusing components in a software assistant.

This yields a flexible standard of the required processing steps and encourages devel-

opers to thoroughly investigate all aspects of a phantom before starting the actual design

process. Moreover, it provides a straightforward description of phantoms when only lim-

ited knowledge about the design process is available. For this task, we developed a template

data sheet that is used throughout this thesis. For example, we used it in Part II to initiate

a discussion with experts about our phantoms. The template turned out to be an efficient

basis for our discussions.

Parameter Reuse. Besides a phantom description, our implemented parameter mod-

ules can also be easily changed without affecting other modules. For example, a different

object shape does not change the underlying model for intensity values. This eventually

saves time, e.g., through reuse of parameter models for new phantoms, and helps to elimi-

nate the risk of design errors. Several parameter models such as noise or volume developed

for MS lesion phantoms were later reused to develop our brain tumor phantoms. Moreover,

new parameters can be added. For example, the brain tumor phantoms used the MS lesion

phantoms as basis and extended them by additional modules such as tumor growth.

Similar to parameter reuse, our design process also allows to develop different classes of

phantoms with varying complexity by simple parametric manipulations of one parameter. In

this work, we developed two sets of phantoms with equal object positions, shapes, etc., but

with different object texture. Thereby, our design process allows to change the texture model

without affecting other parameters such as noise. The results have been used to compare

how a segmentation algorithm is affected by modifications of the input data. A comparable

analysis is not possible with patient data sets. Different appearances for a single object are

usually not available or need to be acquired over a long time period. Moreover, such follow-

up scans require scanner and imaging parameters equal to the initial data, which might not

always be feasible.

To the best of our knowledge, this is the first approach towards a comprehensive descrip-

tion of the phantom design process in medical image analysis. Thereby, a controlled and doc-

umented construction of parameter models and phantoms provides an excellent overview of

the underlying parameters and assumption.

Software Assistant. Using our component-based phantom design, we introduced an

interactive software assistant that provides an easy-to-use tool for phantom development

(cf. Sec. 4.3). In this work, we used the software assistant to develop the manual phantoms

proposed in Chapter 5. The development time for each phantom is reduced from hours to a

few minutes depending on the number of objects per phantom. Different implementations

are available, for example to generate a suitable object shape. Furthermore, a set of ten

pre-defined shapes is already available.
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Fully Automatic Phantom Design. Besides the above mentioned manual approach,

we also proposed a fully automatic method for phantom design. Thereby, the component-

based design helps us to concentrate on the automatization of one parameter at a time. In-

stead of following the common design approach and of developing the one best phantom,

we introduced a method to automatically generate a large set of phantoms. The majority

of our parameter models are based on actual patient data such as lesion shape and position.

This way, our approach allows us to capture the variability encountered in clinical practice.

Furthermore, our design process enables a large applicability of the resulting phantoms as

well as of the individual parameter models. In other words, the development of a parameter

model should start with an analysis of the already available feature pool.

Phantom Diversity. Our modular design approach introduces new perspectives for

a broad range of phantoms in medical image analysis as described above. However, some

limitations remain. First of all, we focused on hybrid phantoms. Although this enables a

practical separation between object and background design, incorporating an object into this

background must be possible. Furthermore, we focused on background consisting of volun-

teer or patient images. Therefore, we can only cope with pathological structures added to

the underlying data. This will lead to rather compact object shapes in most cases. Modeling

other structures such as whole organs, e.g., the heart or the liver, is not yet possible. An ex-

tension to this approach could be a brain phantom. In this case the background is generated

from a patient or volunteer data set, where the brain tissue is cropped out algorithmically,

leaving only the skull. The object then consists of brain structures such white matter, gray

matter and fluid, which is incorporated into this cavity.

Two clinical applications were analyzed more closely in this work, namely the analy-

sis of Multiple Sclerosis (MS) lesions and of brain tumors. The quality of each phantom

is visually confirmed by an expert, even if this can only give a hint of the actual quality.

Nevertheless, further applications with different modalities such as CT are possible as well.

For example, the analysis of lung nodules and hepatic lesions, or coronary artery plaque

detection in angiographic images. A validation including a measure of the overall phantom

quality as well as the quality of each module will be the focus of Part II in this work.

Ground Truth for Applications. Besides different phantom types, modalities, etc.

our phantom design approach covers the evaluation of a wide range of algorithms that occur

in clinical practice and trials. An evaluation study for each algorithm was proposed in

Chapter 6. For example, an extensive analysis of MS lesion volumetry over a broad range

of different lesions is performed in Section 6.2. Our results clearly show the importance

of an improved gold standard in lesion volumetry beyond voxel counting. A similar study

would not have been possible with patient data sets.

Furthermore, we evaluated an algorithm proposed by van Leemput et al. (2001). Lesion

segmentation and volumetry results were compared with the phantom ground truth data.

Both approaches show that our inhomogeneous lesions provide a more challenging task with

a lower segmentation overlap measure and a higher volume overestimation. An analysis of
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the computed lesion mask showed that the computed lesion probability at each pixel is too

high for low-contrast lesion pixels.



Part II.

Phantom Validation
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8. Validation in Medical Image Analysis

An important aspect of any development in medical imaging is a thorough analysis of the

underlying assumptions and the modeled parameters with respect to their quality. Especially

the validity of a method needs to be demonstrated, having considerable impact on its value to

the user, and no model should be accepted before it has passed elaborate testing. Moreover,

the level of confidence in a method increases, as it passes more tests. The purpose of

this chapter is to give an overview of validation in medical image analysis. We discuss

current concepts and provide a general overview of terms and definitions. Furthermore,

we introduce prominent validation approaches for common fields of application including

image segmentation and quantification. Thereby, phantoms used as reference data play an

important role.

8.1. Principles and Definitions

Validation is characterized by an iterative process to demonstrate the compliance of a method

with a set of given criteria. A method has to pass elaborate testing before it is accepted.

Thereby, the level of confidence increases with the number of passed tests. In contrast to

the verification of a system that ensures that a method is built right, i.e., that it includes

all required parameters, validation determines that the right method is built. Thereby, val-

idation does not give an answer to the question ’is the method correct?’, since a system

specification is rarely precise, and it is impossible to test a method under all possible events.

Therefore, no method is ever 100% accurate. Instead, validation ensures the degree of re-

quired accuracy for its underlying purpose, which can vary from one application to another.

As a consequence, this also implies the exact knowledge of a methods’ objectives before it

can be validated. For example, a segmentation algorithm may have been validated for use

in brain tumor segmentation. However, this does not necessarily enable a valid use for the

analysis of liver tumors. In this work, we use a definition of validation similar to that given

by the American Institute of Aeronautics and Astronautics (1998):

117
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Today, most algorithms are accompanied by some kind of validation study, and several

examples are given in this chapter. A key criterion is that a method must model the clini-

cal setting, i.e., a validation should consist of a broad spectrum of actual clinical use cases

(Gee 2000). A number of publications focusing on this aspect have been proposed as well,

each suggesting a slightly different method with its own terminology (Buvat et al. 1999;

Jannin et al. 2006; Udupa et al. 2006). Nevertheless, a widely accepted approach is not

yet available. Besides algorithm development in a research setting, commercial products

should especially follow a rigorous validation process. For example, the Food and Drug Ad-

ministration (FDA ) provides general principles for the management and control of software

validation in medicine. In their guidelines, validation is used to assure software quality by

assessing the fulfilled requirements.

In order to assess the degree of compliance with the underlying purpose of a method,

e.g., the above mentioned validation of clinical use cases, validation metrics are an invalu-

able aspect, and we will provide a broad overview of used measures in the upcoming sec-

tions. Each application has its own set of examined parameters, depending on the required

level of validation, e.g., early development stage vs. late stage. For example, methods

used in segmentation and quantification are discussed in Section 8.6. Therein, validation

parameters consist of overlap ratios between the analyzed algorithm and the ground truth.

Nevertheless, several other parameters often have to be considered as well, including com-

putation time or susceptibility to errors. The availability of common data sets and reference

algorithms used as benchmark for comparison are also important contributing factor to an

effective validation.

8.2. Phantom-Based Validation

Both physical and software phantoms are used for validation purposes. Thereby, the com-

plexity of the applied phantom depends on the considered application as well as on the

current stage of the development process. Simple geometric phantoms such as a square

or a sphere are often used during initial development and evaluation phases (Noe and Gee

2001). More complex phantoms are applied in later stages. Unfortunately, phantom devel-

opment is also a challenging task, and we already analyzed several issues in the previous

chapters. For example, anatomical and pathological structures and organs are highly vari-

able with respect to their appearance, size, or shape. Moreover, each parameter requires an

application-specific modeling, and modifying one parameter also affects others.

Besides their advantages and weaknesses, an explicit analysis of the quality of phantoms
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is still missing. In other words: ’Why does a phantom represent an adequate validation

approach for a certain method?’ In Section 2.3, we introduced a rather simple validation

approach based on a qualitative analysis with fuzzy terms (good, average, low). Although

this method yields a general categorization (cf. also Sec. 3.4), an in-depth analysis of a

phantom is infeasible. Today, only few validation approaches are used for phantoms in

medical imaging. A common strategy uses visual inspection and expert knowledge about

anatomical or pathological structures. (Tofts et al. 1997; Segars et al. 2001; Suryanarayanan

et al. 2005). Other publications propose a validation based on visual comparison with

patient data sets or with images from literature (Pupi et al. 1990; Tofts et al. 1997; Prastawa

et al. 2005). However, a method that provides a systematic analysis of the accuracy and

precision of a phantom is not available, and some phantoms are even proposed without any

validation. Furthermore, several phantoms have only a very limited parameter distribution.

For example the popular BrainWeb phantom is created from a single individual (Collins et al.

1998). To this end, we propose a new phantom validation approach in the next chapter.

8.3. Validation without Phantoms

If a phantom is not available, one has to resort to other sources that allow validating a

method. A number of approaches have been proposed, and each technique has its own

pros and cons. We roughly distinguish between methods that are either based on expert

knowledge or on all sorts of databases.

8.3.1. Expert Validation

An approach particularly suited for early development stages of a new method is the so-

called face validation. Therein, field experts are asked if the results of a method are reason-

able. Face validation provides a quick and rather informal validation. To give an example,

a physician’s opinion is a suitable way to determine the quality of a new segmentation algo-

rithm during its conceptual phase. It allows for the identification of gross errors such as an

under-segmentation or a leakage into adjacent structures. Unfortunately, accurate measure-

ments are difficult to perform with the human eye, leaving the computer as supplementary

tool. A further potential uncertainty can result from inferior visualizations. Moreover, repro-

ducibility is often limited. For example, we performed a study to evaluate visual assessment

in MS lesion volumetry in Section 6.1.

A related approach to obtain expert knowledge is to perform a comparison to other

(valid) methods that have been proposed for the same application, and that are used as

expert knowledge instead. This enables an overview of similar algorithms and provides

information about important parameters. For example, Hagemann et al. (1999) extract

appropriate elasticity constants for a physically-based registration algorithm of the head

from a comprehensive literature study. In their work, the mean value calculated from nine

different publications finally serves as an estimate of the correct values.
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Another way to incorporate expert knowledge into the validation process is based on

manual measurements such as manual segmentation of anatomical structures. An overview

of related approaches is given in Section 8.6.1.

8.3.2. Databases

Another validation approach is the use of image data and associated segmentations from

databases. Thereby, gathering appropriate image data and acquiring segmentations also

requires expert knowledge. Nevertheless, this knowledge differs from expert validation as

discussed above since it is rather used to assemble the data. Today, several public research

resources are available in different fields of medical image analysis such as computer aided

detection of calcifications in mammograms. A well-known initiative is the Visible Human

Project that was established in 1989 to build a digital library of volumetric image data

(Spitzer et al. 1996). The public domain data sets consist of complete, anatomically detailed

representations of the human body based on MR and CT scans as well as cryosection images

of male and female cadavers.

One of the most popular databases for the evaluation of methods in mammography

was introduced by Karssemeijer (1993), containing 40 digitized film-screen mammograms

of different clinically relevant cases with associated ground truth. Another, much larger,

public database is the Digital Database for Screening Mammography (DDSM), maintained

by the University of Florida. The DDSM database contains approximately 2.500 studies

(Heath et al. 1998).

In the field of lung cancer detection, a cooperative effort known as the Lung Image

Database Consortium (LIDC) was launched in year 2000 to construct a database that con-

tains CT scans from both diagnostic and screening studies (Armato et al. 2004). Various

information are stored for each data set in addition to the actual image data including tech-

nical scan parameters, patient information, and nodule features (McNitt-Gray et al. 2007).

The assessment of lesion boundaries is based on manual outlining performed by expert ra-

diologists.

A related project is the Reference Image Database to Evaluate Response (RIDER) that

was initiated in 2004 (Armato et al. 2008). This initiative provides a web accessible public

database of images for different organ systems. Currently, RIDER consists of a CT image

archive of lung cancer subjects collected longitudinally over the course of treatment. An

important aim of this project is the assembly of so-called validated data sets. This includes

expert measures such as RECIST as well as associated meta-data including radiologist anno-

tations. Furthermore, RIDER is intended to provide standardized methods for the evaluation

of algorithms. To this end, a set of training and test data sets will be established.

An open and freely accessible database related to Alzheimer’s Disease has been devel-

oped as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The database

includes 200 elderly controls, 400 individuals with mild cognitive impairment, and 200

individuals with Alzheimer’s disease. See Mueller et al. (2005) for an overview of the
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initiative.

Besides databases for a specific modality or a specific body part, approaches focusing

on the underlying image analysis task have been proposed as well. A synthetic database

for the validation of brain image registration and segmentation methods is proposed in (Ens

et al. 2009), including image data from 50 patient MR scans (T1-weighted) as well as a

labeled brain atlas and an averaged multi-patient brain atlas. The database is generated in

a three-step process: The first step consists of a linear transformation to register all data

sets to the same coordinate system. In the second step, a non-rigid registration scheme

with an elastic regularization is applied to match the labeled atlas data to the data of the

average atlas. Additionally, three different methods are used to obtain a registration from

the atlas scan onto each of the 50 patient MR data sets. The last step applies the computed

deformation fields to transform the labeled atlas data to each patient data set. The resulting

deformation fields can be used as basis for the validation of registration approaches. The

labeled data sets can be used to evaluate segmentation methods. A major drawback of this

approach is the lacking definition of the correct deformation field. Each registration method

produces a slightly different deformation and each has its eligibility. However, the right

deformation is still unknown. Furthermore, only an indirect and thus less accurate labeling

of the patient data is available with this approach.

8.4. Gold Standards

Today, most studies compare the quality of a method with some kind of reference. Such

a gold standard is presumed to contain the correct result (the ground truth) or be at least

close to it. For example, segmentation methods typically use manually outlined image data

(cf. Sec. 8.6.1). Therefore, establishing an appropriate gold standard is an essential task for

validation. In the previous section we already described different types of gold standards.

One approach is the use of phantoms since they allow direct access to the modeled param-

eters (cf. Sec. 8.2). Depending on the underlying application, the ground truth can also be

based on manual segmentations or a database consisting of patient data. If no ground truth

is available, other methods are required that serve as gold standard. Examples include the

STAPLE algorithm by (Warfield et al. 2004) or a comparison by field experts (cf. Sec. 8.3).

But what makes a reliable gold standard? In a seminal paper, Lehmann (2002) proposes

five attributes that should be considered:

1. Reliance: The development must follow an exactly determined and reproducible pro-

tocol.

2. Equivalence: The generated data must be equal to real-life data w.r.t. all important

parameters.

3. Independence: The resulting data must rely on a different procedure than that to be

evaluated.
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4. Relevance: An evaluated algorithm must be self-reproducible, i.e., robust to parame-

ter changes.

5. Significance: The number of gold standard images used for evaluation must be suffi-

ciently large.

Based on this characterization, Lehmann (2002) then defines a reference standard as fol-

lows:

Reference Standard Fulfilled Criteria

Gold Standard (1),(2),(3)

Silver Standard (1),(2) or (1),(3)

Plastic Standard otherwise

Properties (4) and (5) are used to define a meaningful evaluation of an image processing

algorithm.

In Chapter 2 we defined similar requirements for the design of phantoms, namely suit-

ability, flexibility, and correctness. Based on our classification, a ’perfect’ phantom – and

thus a good gold standard – should fulfill these three requirements. Especially suitability

and flexibility overlap with the attributes that are needed for the gold standard definition

by (Lehmann 2002). Particularly equivalence, i.e., the quality of the considered parameters.

Nevertheless, the definitions of reliance and independence deviate from our requirements:

Although we agree to an exactly determined and reproducible protocol (reliance), phantom

design can still include a great amount of manual work, which is explicitly prohibited by

Lehmann. Furthermore, independence between training and test data is a crucial aspect

during algorithm validation, but should have less importance for phantom design.

In conclusion, we believe that the parameters used by (Lehmann 2002) provide an ex-

cellent approach to characterize a reliable gold standard, and to our knowledge this is to

date the only attempt to provide a unified classification scheme for this task. However, the

three features are somewhat mixed with the task of algorithm validation. The work rather

provides an upper bound for a gold standard, and a phantom that meets our requirements is

already sufficient.

8.5. General Approaches

After introducing general principles of validation, we now focus on actual methods used in

medical image processing. These approaches include general frameworks as well as more

specific tasks such as the validation of visual assessment and segmentation. In this section,

we provide a survey of methods that are concerned with a standardization of the overall

validation process regarding terminology and methodology: Some papers are related to

algorithm evaluation (Buvat et al. 1999), or discuss the validation of algorithm performance

(Gee 2000). Other papers focus on the validation process itself (Jannin et al. 2006).
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Fryback and Thornbury (1991) analyze the efficacy of diagnostic imaging. They pro-

pose a hierarchical model outlining the contribution of diagnostic imaging to the patient

management process. Six levels are distinguished: (1) Technical efficacy, (2) diagnostic ac-

curacy efficacy, (3) diagnostic thinking efficacy, (4) therapeutic efficacy, (5) patient outcome

efficacy, and (6) societal efficacy. Additionally, typical measures for analyses are provided

for each level. For example the analysis of ROC curves (Level 2: diagnostic accuracy ef-

ficacy) or the number of cases in which an image is judged helpful to making a diagnosis

(Level 3: diagnostic thinking efficacy). An important aspect of the presented hierarchy is

that demonstrating the efficacy on a lower level is necessary, but not sufficient, to assure

efficacy at higher levels. For example, the quality of scanner parameters (Level 1: technical

efficacy) has to be assessed before a diagnosis of the resulting patient data can be evaluated

(Level 2: diagnostic accuracy efficacy).

Buvat et al. (1999) propose a hierarchical approach to algorithm evaluation. They

apply the six levels of efficacy defined by Fryback and Thornbury (1991) to the evaluation

of medical image processing. Level 1 is related to validation or feasibility studies of a

method; level 2 is associated with the method accuracy by measuring its performance; level

3 measures whether a method helps a clinician; level 4 evaluations determine that a method

provides information, which contributes to the appropriateness of patient management; level

5 efficacy corresponds to how a method affects patient outcome; level 6 efficacy is related

to the benefit of a method for the society.

Buvat et al. (1999) also present a generic evaluation model (GEM) that identifies re-

quired components and provides guidelines for evaluation studies. The main components

include an abstract aim, a context, and a hypothesis. The abstract aim results from the

method to be assessed and the level of evaluation. The context defines the underlying envi-

ronment in which a method is evaluated. It also includes the components required to define

the evaluation protocol. Finally, the hypothesis is related to tests performed within a con-

text to extract information about the abstract aim. A detailed description including further

components required during an evaluation process are given in the paper.

An approach that introduces a model to describe the main components used for valida-

tion procedures in medical imaging is proposed by Jannin et al. (2006). It presents one

of the few more recent general validation methods in medical image analysis. The model

focuses on level 1 and level 2 efficacy. As an example, a relation of these levels to image

registration is given. Therein, level 1 efficacy is associated with performance criteria of

an algorithm, whereas level 2 efficacy is related to an evaluation at clinically meaningful

anatomical or pathological structures. The validation process model is related to the evalua-

tion model of Buvat et al. (1999), where a clinical context is specified as well as a clinical

objective, i.e., a hypothesis. The validation process aims at testing this hypothesis. Jannin

et al. (2006) base their model on the evaluation of data sets and input parameters, given

a reference method that estimates the ground truth. Thus, the model provides a detailed

description of common reference-based validation scenarios. An illustration is given in Fig-
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Figure 8.1. Overview of reference-based validation model presented in (Jannin et al. 2006).

ure 8.1. Besides a detailed description of the process model, Jannin et al. also provide a

checklist of components that should be included when reporting a validation study. The pre-

sented model is validated on the basis of 38 papers that include validation studies. Results

are summarized in a database and are accessible via a website (VMIP ).

An approach that is not only related to algorithm validation, but to the whole develop-

ment process is presented by Thacker et al. (2008). In their work, the authors propose

a characterization of algorithms based on the analysis of representative tasks in computer

vision including feature detection, stereo vision, or face recognition. Moreover, measuring

structural differences in medical images is examined. Central aspects of algorithm perfor-

mance evaluations are extracted, resulting in a set of key questions such as ’how is testing

currently performed?’, ’is there a data set for which the correct answers are known?’, or

’are there data sets in common use?’. Answering these questions during the development

and evaluation of an algorithm is stated to be an important step towards validation.

8.6. Applications

After introducing rather general approaches to validation in medical image analysis, the

following sections cope with specific applications.

8.6.1. Segmentation

Segmentation of medical image data is a crucial task for the analysis of normal and patho-

logical processes, where small changes can already be of paramount importance. Today a

vast amount of different methods is available for various applications and levels of automa-

tion, ranging from manual outlining to fully automatic segmentation. Many approaches
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have also been proposed for the validation of these methods. See for example (Udupa et al.

2006) and references therein. However, a widely accepted performance measure is not yet

established, making it still difficult to compare two different segmentation methods.

In order to provide a systematic evaluation framework, several authors proposed a cat-

egorization of segmentation algorithms into different classes. Zhang et al. (2008) propose

a categorization into two major categories: subjective and objective evaluation methods.

Thereby, a subjective evaluation is related to visual inspection by a human observer as al-

ready described in Section 8.3.1. Further categories are supervised and unsupervised meth-

ods, where supervised refers to the use of a ground truth image, and unsupervised can do

without one. Udupa et al. (2006) present an evaluation framework consisting of five compo-

nents: (F1) a specification of meaningful metrics of efficacy, (F2) real life image data, (F3)

reference segmentations (ground truth) (F4) a number of available standard segmentation

algorithms, (F5) a software incorporating evaluation methods and segmentation algorithms.

In their work, an application is determined by three entities:

T : A task.

B: A body region.

P: An imaging protocol.

Each realization of these entities presents a specific application domain 〈T,B,P〉, and a

general statement or a comparison between different application domains cannot be made.

Due to the required reference data (component F3), the work of Udupa et al. can be assigned

to the category of supervised evaluation methods.

Despite the difficulties to evaluate a segmentation algorithm, most paper provide at least

some kind of analysis. Especially applications, where public databases or software phan-

toms are available, play a pioneer role. For example, a comparison of different brain tissue

segmentation methods is performed in (Cuadra et al. 2005; Hahn et al. 2004). Another

evaluation of seven algorithms for the same task is presented in (Bouix et al. 2007).

Unfortunately, a comparison of different algorithms is often difficult as most of them are

not freely available, and a re-implementation is time-consuming or often even not possible.

A more promising approach is to provide a public database with training and test cases

where the ground truth for the test data is not publicly available. This way, a research group

does not have to release their algorithms to the community. Another approach, that has

become popular in the past years, is to arrange an on-site competition of several research

teams during a conference. At the MICCAI conference 2007, the first ’Grand Challenge’

workshop was held, attributed to the comparison of liver segmentation methods. A summary

can be found in (Heimann et al. 2009). Several subsequent workshops for other organs and

pathologies such as head or MS lesion segmentation have been carried out since.
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Similarity Measures for Supervised Evaluation

Several metrics have been proposed to measure the similarity of two sets of segmented vox-

els. Two commonly used measures based on the regional overlap are the Jaccard Similarity

J (Jaccard 1912) and the Dice coefficient DSC (Dice 1945), given as

J(S,T ) =
|S∩T |
|S∪T | (8.1)

DSC(S,T ) =
2|S∩T |
|S|+ |T | (8.2)

J Jaccard similarity measure ∈[0,1]
DSC Dice similarity coefficient ∈[0,1]
|.| stands for the number of elements
S set of voxels segmented by algorithm 1
T set of voxels segmented by algorithm 2 (or ground truth).

Both coefficients are equal to zero if the voxel sets S and T cover disjoint regions, and one

if they are identical. Thereby, the Dice coefficient is always larger than the Jaccard metric,

except at 0 and 1. Furthermore, both values are related by the function DSC = 2J/(J+1). A

value DSC > 0.7 is often reported to indicate ’excellent agreement’ between segmentations

(Zijdenbos et al. 1994).

A drawback of such measures is that they only consider the number of overlapping vox-

els and do not take into account their positions. To this end, Pichon et al. (2004) proposed a

generalization of these global overlap measures, using the distance between the segmented

voxels to the ground truth, defined as:

d(x) =











0, x ∈ S∩T

mins∈S ‖x− s‖, x ∈ T \S

mint∈T ‖t − x‖, x ∈ S\T

(8.3)

d resulting distance measure
x voxel ∈ S∪T

S set of voxels segmented by algorithm 1
T set of voxels segmented by algorithm 2.

The mean value and the standard deviation over all voxels with a distance of d > 0 are

used to measure the segmentation error. Furthermore, the error distance of the worst f %

voxels is used. A related approach is presented by Crum et al. (2006). Here, the authors

introduce a fuzzy multilabel overlap value plus an associated error measure based on the

overlap distance.

Besides using one specific approach for evaluation, some authors have proposed to cal-

culate the quality of a segmentation method based on a combination of different measures.
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Moretti et al. (2000) derive several evaluation criteria based on the BrainWeb software

phantom for the analysis of brain tissue segmentation methods. This includes overlap ra-

tios and a distance map from the object’s contour. Furthermore, a distance histogram as

well as derived features such as the mean and the standard deviation are computed from

the distance map. Gerig et al. (2001) developed a tool for validation and comparison of

object segmentation. The tool uses several algorithms, again including overlap ratios and

distance measures. Both 2D cross-sections with label overlay as well as 3D visualizations

are available to illustrate differences between algorithms, or between an algorithm and the

gold standard. The tool is freely available from the web.

While the above methods provide a separate analysis for each measure, Cardenesa et al.

(2009) propose a multidimensional evaluation technique. To this end, a vector of different

similarity measures is assembled and the overall similarity is defined as the l2-norm of this

vector. Moreover, a principal component analysis (PCA) is applied to allow for a dimen-

sionality reduction and a 2D visualization of the results.

Similarity Measures for Unsupervised Evaluation

As described above, unsupervised methods work without any reference image. Zhang et al.

(2008) analyze 16 evaluation methods used in the field of computer vision applications. For

example, intra-region metrics such as texture metrics measure the texture uniformity, assum-

ing that a ’smoother’ image is preferred. Other metrics use differences between regions, e.g.,

the inter-region color difference. A third class of measures is related to shape information.

Furthermore, a combination of all three classes is presented.

In the field of medical imaging, unsupervised methods have become popular with the in-

troduction of the STAPLE (simultaneous truth and performance level estimation) algorithm

by Warfield et al. (2004). The algorithm allows for an evaluation of a set of segmentations

by simultaneously estimating performance parameters (sensitivity and specificity) and the

hidden true segmentation for each voxel, based on an expectation-maximization (EM) al-

gorithm. STAPLE can also be used to estimate a reference image. Thereby, the algorithm

computes the highest consensus between segmentations, which is typically assumed to be

close to the ground truth. Details of the algorithm can be found in (Warfield et al. 2004).

Bouix et al. (2007) propose the Williams Index as efficient alternative to the STAPLE

method. Considering a set of r raters and a similarity s(Xi,X j) between rater i and j, e.g.,

the Jaccard similarity measure, the Williams Index for rater i is defined as
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Figure 8.2. Current gold standard in medical image quantification: The voxel counting approach.

WIi =

(r−2)
r

∑
j 6=i

s(Xi,X j)

2
r

∑
j 6=i

j−1

∑
k 6=i

s(X j,Xk)

(8.4)

WIi Williams’ Index for rater i

r number of raters
Xi set of voxels segmented by rater/algorithm i.

If this index is greater than one, it can be concluded that rater i agrees with the other raters

at least as much as they agree with each other. In their work, Bouix et al. (2007) found

similar results for this measure compared to the STAPLE algorithm.

8.6.2. Quantification

Today, validating quantification methods is largely based on the comparison with results

from domain experts. We therefore term these approaches supervised similar to the cate-

gories used for segmentation evaluation. Unsupervised methods on the other hand, i.e., a

validation without a reference standard, are rather uncommon. One approach could be to

perform a reproducibility study, where an object is quantified several times. However, this

can only provide information about the precision of an algorithm and not about its accuracy.

Similar to image segmentation, a ground truth is often difficult to obtain especially for

small objects such as tumors, and a ’surrogate’ ground truth has to be used. The voxel

counting method (cf. Fig. 8.2) represents the current gold standard for validation, where the

ground truth is defined by counting the number of voxels from an expert’s hand labeling. A

common issue with this approach is that human observers are known to be quite variable

during manual segmentations. Furthermore, partial volume effects are not accounted for.
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8.7. Discussion

Validation is gaining growing attention in medical image analysis. Today, several work-

shops at major conferences also focus on this topic, e.g., the ’Grand Challenge’ workshops

at the MICCAI conference. Other works include application-specific frameworks (Gedamu

et al. 2008; Neumuth et al. 2009) as well as specific tasks such as segmentation (Udupa

et al. 2006). However, these are typically not used by research groups different from those

of the initial authors. Moreover, validation is rarely the main objective in current publica-

tions, but often regarded as an add-on to the development of a new method. Exceptions

from literature include procedures suggesting a standardization of the validation process.

For example, validation protocols have been presented by Buvat et al. (1999) or Jannin et al.

(2006). Unfortunately, a widely accepted method is not yet available.

In this chapter, we have given an overview of current validation concepts in medical

imaging. Each application has its own set of validation methods. Nevertheless, we propose

a common classification into supervised and unsupervised methods for each application,

where supervised refers to a validation based on some reference image. In addition to

this categorization, we determined different approaches to validate a method, including

validation methods using a phantom and validation methods without a phantom.

If no phantom with known ground truth is available, databases are a common alterna-

tive. Thereby, associated segmentations of anatomical structures such as brain tissue classes

serve as a surrogate ground truth, and this approach is the gold standard for many applica-

tions. A major issue when using databases is the continually evolving technology used to

create the data. For example, changes in acquisition protocols, e.g., due to a larger field

strength, or new imaging sequences will result in a different set of data in clinical practice.

A database used for training and evaluation will have to adapt to these changes, which can

result in a huge effort and financial burden. Another issue is the required sample size of

the database. If the sample size is too small, an algorithm will adapt to the data and not

be able to generalize to new data sets (Gee 2000). A potential solution could be a public

repository where data can be freely submitted. However, data sets from different sites can

have a different quality, e.g., different amount of imaging artifacts, and merging these data

in one database could make the evaluation of algorithms even more challenging. Moreover,

databases consisting of patient data do not provide ground truth for many parameters such

as the volume or the shape of an imaged organ.

Expert knowledge is another validation approach which does not require a phantom. It

is especially useful during early development stages of a method. Unfortunately, expert

knowledge is subjective and often not reproducible, and also consensus meetings with sev-

eral experts can not provide a ground truth.
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Validation of Phantoms

In addition to the methods discussed above, phantoms provide an excellent basis for valida-

tion. Because the ground truth of the modeled parameters is known exactly, they provide a

convenient approach compared to other data that can merely act as surrogate ground truth

such as manual segmentations of patient data. Furthermore, the development of phantoms

can concentrate on important features of a method, and each application requires its own

type (cf. Chap. 2). For example, physical phantoms are often used for quality assurance

of medical devices, whereas software phantoms often present a more flexible alternative for

algorithm validation.

Today, phantoms are used for many applications in medical imaging. However, devel-

oping a phantom can be time-consuming and cost-intensive, and only few are freely or

commercially available. Similar to an expert segmentation of a patient data set, the quality

of the underlying ground truth is now in the hands of the phantom developer. Moreover, the

representativeness of the modeled parameters for the targeted application has to be consid-

ered during the design process. Therefore, validating a phantom is particularly important.

Lessons Learned

To summarize, important characteristics of validation in medical image analysis are as fol-

lows:

1. Validation is application-dependent.

2. Validation is an iterative process.

3. Each validation step increases the confidence in a method.

4. It is often impossible to validate all aspects of a method.

5. Sufficient data are essential for the success of validation.

In the next chapters, we propose different approaches to validate a phantom.
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Phantoms have become a widely accepted tool for validating new algorithms and imaging

equipment. Nevertheless, an objective evaluation of the accuracy and precision has not

been proposed yet, and most approaches are based on an ad hoc design. In the first part

of this chapter, we recapitulate major challenges of phantom validation and identify a link

to the overall requirements for phantom development already addressed in Chapter 2. Our

approach enables the validation of a single phantom as well as the comparison of different

phantoms.

To assess the phantom quality, we then propose a novel iterative validation approach.

Each iteration consists of a separate validation method that increases or decreases the confi-

dence in the phantom. For example, one applications is a user-study to analyze the detection

performance of lesion phantoms. Furthermore, the effect of parameter changes is investi-

gated. Thereby, we propose a new method based on a multi-criteria decision making tech-

nique, the so-called Analytic Hierarchy Process, to select a parameter of high importance.

Our overall validation approach consists of three major steps: method selection, method

validation, and finally phantom validation. Two attributes are considered, namely the suit-

ability of a method and its correctness. A validation function is proposed that combines

both parameters. An example application will be used in the next chapter to evaluate our

approach.

9.1. General Approach

An important characteristic of a phantom is the availability of an exactly known ground

truth for the modeled parameters. Therefore, it is widely used as gold standard, i.e., as

a reference used to analyze a method. But how to validate a phantom? In Chapter 8 we

defined validation as the degree to which a model is a sufficiently accurate representation of

reality from the perspective of its intended uses. Applied to phantoms, validation assesses

the degree a phantom is an adequate reference for the targeted application. Unfortunately, a

proper analysis of phantoms is difficult, and often only the developer of a phantom is able

to fully understand and test it. Current validation approaches are often based on an expert-

based visual comparison with patient data sets or with data from literature. A systematic

131
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analysis has not been proposed yet.

An important step towards phantom validation is to identify the underlying challenges.

A first step is to determine core features that need to be examined for successful phantom

validation. In Chapter 8, we analyzed validation approaches and provided an overview of

methods commonly used in medical imaging. This eventually led us to a summary of the

most important characteristics in Section 8.7. These results are now applied to the process

of phantom validation. The three most relevant aspects are:

1. It is often impossible to validate all aspects of a phantom. (Correctness)

A key issue for the validation of phantoms is a commonly lacking parameter correct-

ness. Although the ground truth might be available for some parameters, the correct

model and an appropriate parameter distribution for all parameters are often difficult

to obtain or not known at all. Therefore, phantoms can only act as a surrogate ground

truth, and the simplified model might not be suited for the underlying task. For ex-

ample, pathological structures such as tumors have a high variability, and surgical

resection would be required to determine the true appearance.

2. Validation is application-dependent. (Suitability)

Each application requires its own phantom and many examples were given in the

previous chapters. For instance, a phantom used to analyze contrast enhancement

characteristics is different from one used to evaluate a segmentation algorithm. Even

a phantom used for one algorithm might not be suited to evaluate another. The chal-

lenge is to identify the relevant parameters for an application. Eventually, this will

also lead to a different validation procedure for each application.

3. Sufficient data are essential for the success of validation. (Flexibility)

Developing a physical phantom can require a large manual effort depending on the

modeled structure. Even for the more flexible design process of software phantoms,

generating a distribution of different models is time-consuming. For example, con-

sider building an adequate model of the gray matter of the brain for a large amount of

phantoms. Therefore, only a small number of phantoms or even a single exemplar is

typically used during algorithm evaluations in medical image analysis.

To summarize, validating a phantom requires methods that assess three general properties,

namely correctness, suitability, and flexibility. Thereby, correctness and flexibility are re-

lated to the analyzed phantom, whereas suitability is related to the targeted application. The

same parameters were already addressed as general requirements for phantom development

in the first background chapter of this work (cf. Fig. 2.1).
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Table 9.1. Scale used to characterize the correctness and suitability of a module. Intermediate
values between two levels (2,4,6,8) do not get a separate naming.

Explanation poor low average high very high
Value 1 2 3 4 5 6 7 8 9

9.2. Processing Steps

A simple validation approach could be to let an expert directly assign a value between zero

and one, with one being a phantom of high quality. Unfortunately, expert knowledge is

subjective and often not reproducible. In order to derive a more sophisticated approach, let

us have a look at the phantom design process. In Chapter 3, we started with an analysis

of the parameters typically required for phantoms. For each relevant parameter, we then

developed an appropriate model. Finally, the generated lesion objects are incorporated into

a given background.

In this work, we propose a novel phantom validation method that is derived from this

design process. For this approach we evaluate a number of methods (Method Selection)

with respect to their quality and relevance for the targeted application (Method Validation).

The final phantom validation is then determined as a combination of all methods (Phantom

Validation).

Step 1: Method Selection

The first step of our algorithm is an in-depth analysis of the targeted application. In this step,

a set M = {M1,M2, ...,MN} of methods is selected. Furthermore, the importance (suit : M →
[0,1], suit(Mi) = s) is determined for each considered criteria Mi.

The values are calculated via an expert validation, which provides a quick and informal

approach. However, expert decisions are based upon multiple subjective criteria and are

heavily affected by accumulated experience. Moreover, expert decisions are based upon

multiple criteria and are heavily affected by accumulated experience. in which several ex-

perts work together towards common recommendations. A related approach is the compar-

ison with information extracted from published work. A more detailed overview can be

found in Section 8.3.

In this work, we propose a set of qualitative criteria given in fuzzy terms: poor, low,

average, high, very high. The corresponding function values are integral numbers from 1

to 9. Thereby, the values 1,3,5,7, and 9 are associated with one of the criteria given above,

while the other values (2,4,6,8) characterize intermediate levels (cf. Tab. 9.1). Finally, the

results are normalized by the function fexpert(z) = z/9.
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Table 9.2. The main processing steps of the phantom validation process.

Step 1. Method Selection

Determine the set of relevant methods and quantify their suitability.

Step 2. Method Validation

Define measures for each method based on the functions corr and suit.

Step 3. Phantom Validation

Compute an overall validation measure or a ranking of available alternatives.

Step 2: Method Validation

Besides the relevance of a method, the quality of the computed results is another important

aspect. Therefore, the second validation step determines the correctness of a method and

combines both parameters within a validation function. The correctness is defined similar

to the suitability by a function corr : M → [0,1], corr(Mi) = c. Another approach could be

to use a comparison with reference data. However, adequate reference data are difficult to

obtain. For example, the correct shape of a complex object such as the white matter can

only be estimated from patient data.

The third attribute to be tested is the flexibility. For example, a module that is very

difficult to develop and requires substantial manual work could result in an overall lower

validation value than a module that does not require a difficult development process. Unfor-

tunately, estimating the amount of flexibility is difficult. Moreover, even a module that is

difficult to create can still be of a high quality, so that this attribute should only be consid-

ered as a minor factor during module validation. In fact, we do not include the flexibility

parameter during phantom validation.

The validation function vMi
: M ×M → [0,vmax], vMi

(c,s) = v combines the suitability

and correctness values. Important features of this function can be summarized as follows:

We aim at a multiplicative aggregation of all validation functions in the phantom validation

step (cf. Tab. 9.2), so that a value v = 1 represents a somewhat neutral result. To this

end, methods with low suitability (suit ≪ 1) should result in values close to one. In other

words, there is no need to heavily weight unimportant methods, independent from their

correctness. On the other hand, an important method that is not correctly modeled should

result in a low value v ≪ 1, reducing the confidence in the phantom. Finally, important and

correctly modeled methods should result in a value v > 1, i.e., we increase the confidence

in the phantom. Table 9.3 provides a summary of these features. Based on these properties,

we propose a module validation function given by
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Table 9.3. Summary of general features of validation function v.

1. Not required criteria do not affect the validation result (v(c,0) = 1, c ∈ [0,1]).

2. Important and correctly modeled criteria get a high value (v(1,suitmax) = vmax).

3. Important and not correctly modeled criteria get a low value (v(0,suitmax) = 0).

4. v(c,s)> 1 enhances the confidence in the phantom.

5. v(c,s)< 1 decreases the confidence in the phantom.

v(c,s) =
vmax

suitmax

· s · c− 1

suitmax

· s+1 (9.1)

v Module validation function
c Measure of module correctness (corr(Ci) = c)

s Measure of module suitability (suit(Ci) = s)

vmax Maximum value of v

suitmax Maximum module suitability.

The function proposed in Equation 9.1 reaches its maximum value vmax for methods with

a maximum relevance and correctness. Due to the normalization function used in Step 1

(Method Selection) f (z) = z/9, we select vmax = 3 as an arbitrary value within the range

1 < vmax < 9. The maximum input suitability is given by suitmax ∈ [0,1].

The function is derived using the following steps: Taking into account the first and third

item in Table 9.3, we initially define a linear function between v(0,0) = 1 and v(0,suitmax) =

0 as

v1(0,s) = 1− 1

suitmax

· s, v1 ∈ [0,1] .

From the first and second item in Table 9.3 we then derive a second linear function between

v(1,0) = 1 and v(1,suitmax) = vmax given by

v2(1,s) = 1+
vmax −1

suitmax

· s, v2 ∈ [1,vmax] .

The proposed module validation function finally results from linear combination of a point

in function v1 with a corresponding point in v2. See Figure 9.1 for a visualization.

Step 3: Phantom Validation

The last step combines all validation functions vMi
, resulting in an overall measure for the

analyzed phantom. The multiplicative aggregation results in
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Figure 9.1. Visualization of the validation function introduced in Equation 9.1. The underlying
functions v1 and v2 are plotted as dashed line (see text for a description).

vphantom(P) =
N

∏
i=1

vMi
(P) (9.2)

vphantom Phantom validation function
P Analyzed phantom
vMi

Validation function for module Mi, i = 1, . . . ,N.

A value of vMi
> 1 denotes an improved phantom confidence. Thus, evaluating many correct

and relevant methods will result in a large value for vphantom. On the other hand, a single

method with vMi
≪ 1 is sufficient to greatly reduce the overall phantom validation result.

If the goal is a comparison of different phantoms, the result can also be a ranking of

the available alternatives. Thereby, the aim is to evaluate a set of alternatives describing a

separate phantom. The best alternative should receive the highest value.

9.3. Iterative Phantom Validation

Phantom validation is an iterative process that requires several steps to reach a reasonable

confidence level. In other words, not only one but several methods should be used to validate

a phantom, each increasing or decreasing the confidence. Unfortunately, a proper analysis

of phantoms is difficult.

In this section, we introduce an iterative phantom validation approach that combines the

results of several separate validation methods to an overall measure of the phantom quality.

In Chapter 10 we will discuss these methods in the context of MS lesion phantoms.
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9.3.1. Fusion of Parameter Validations

The first method introduces a direct analysis of the phantom based on an expert analysis.

The suitability of this method is given by the expert’s experience. The correctness value,

i.e., the phantom quality, is calculated by fusing the validation of all parameters to a single

measure. Two features need to be investigated for each parameter: suitability and correct-

ness.

The Analytic Hierarchy Process

We introduce a validation approach, that allows for an explicit analysis of the relationships

between modules. The proposed method is based on the so-called Analytic Hierarchy Pro-

cess (AHP). AHP is a multi-criteria decision making technique developed by Thomas L.

Saaty (Saaty 1977; Saaty 1990). It has become one of the most widely applied tools for a

variety of decision situations, e.g., for ranking a set of alternatives or for making the best

choice from a number of options. Instead of analyzing all parameters at once, the AHP

approach uses pairwise comparisons, which has demonstrated in studies to be an efficient

and accurate approach.

A literature review including several areas of applications such as engineering, gov-

ernment, or education can be found in (Vaidya and Kumar 2006). A review focusing on

healthcare and medical decision making based on AHP is given in (Liberatore and Nydick

2008). The authors investigate 50 articles, classified into seven categories such as diagnosis,

therapy/treatment, or project and technology evaluation and selection.

The AHP approach starts by sorting out all parameter modules that are not important for

the targeted application. The definition of a hierarchy of different levels is an essential as-

pect of the AHP. Thereby, modules of an upper level are only influenced by modules of the

adjacent lower level. Based on this hierarchy, the suitability of the remaining modules is ex-

amined. A frequently used method in psychology is to use pairwise comparison, since it has

turned out to be easier and more accurate to choose between two elements than simultane-

ously between all available alternatives. The AHP uses the same approach. In other words,

a pairwise comparison is performed of (1) all object modules and of (2) all background

modules. Then, the two parameter sets are averaged, meaning that we weight the object and

background design equally important. Finally, the resulting values are normalized.

The comparisons of object and background modules can each be organized into a matrix.

For N modules, this yields an N ×N matrix C with
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C =















c11 . . . c1 j . . . c1N

. . . . . . . . . . . . . . .

ci1 . . . ci j . . . ciN

. . . . . . . . . . . . . . .

cN1 . . . cN j . . . cNN















, (9.3)

C Comparison matrix for N modules
ci j Matrix entry delineating the comparison between element i and j.

The matrix has the following properties:

• ci j > 0, i, j = 1, . . . ,N.

• ci j = 1/c ji, i, j = 1, . . . ,N.

• ci j = 1, i = j.

Before we now derive the actual module suitability from C as proposed in the AHP

approach, we need to define an adequate judgment scale. The AHP commonly uses a ratio

scale consisting of values from one to nine (Saaty 1990) as given in Table 9.4. A value of

one denotes two modules of equal importance, whereas nine indicates the highest suitability

difference between two modules. A description for all values of this scale is given in Table

9.4.

To give an example, let us consider a phantom developed to evaluate liver segmentation

algorithms. Thereby, we define the object contrast to be more important than the position

parameters, and parameters modeling processes will be much less important. The corre-

sponding matrix entries are then: cimg,pos = 3, cpos,proc = 7, cimg,proc = 7. The resulting

matrix M will then be

C =







1 3 7

1/3 1 7

1/7 1/7 1






.

After assembling the comparison matrix C, we can compute the suitability for all mod-

ules at a given hierarchy level. The AHP derives the weights for each module from an

eigenvalue analysis of C

C · p = λmax · p (9.4)

C Comparison matrix (cf. Eq. 9.3)
λmax Maximum eigenvalue
p Eigenvector (priorities) corresponding to λmax.

The eigenvector p corresponding to the largest eigenvalue of V , normalized by dividing by

its sum (i.e., ∑
N
i=1 pi = 1), contains the suitability for each module. If all modules have equal

importance, the resulting matrix V is singular and the maximum eigenvalue is λmax = N. In
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Table 9.4. The 1−9 fundamental scale as defined in (Saaty 1990).

Intensity Definition Explanation

of importance

1 Equal importance Two activities contribute equally
to the objective

3 Moderate importance Experience and judgment moderately
favor one activity over another

5 Strong importance Experience and judgment strongly
favor one activity over another

7 Very strong importance An activity is strongly favored and
its dominance demonstrated in practice

9 Extreme importance The evidence favoring one activity is
of highest possible order of affirmation

2,4,6,8 Intermediate values

this case, each module gets a suitability value of 1/N. Besides the normalization of the

priorities, a further normalization can be performed across various hierarchy levels. Such

a composition eventually leads to a global suitability measure of each parameter module,

reducing the complexity of upcoming validation steps. For our example above, the resulting

suitability measures are pimg = 0.633, ppos = 0.3043, pproc = 0.0627.

An interesting feature of the AHP is that it provides an inherent consistency analysis

of the performed pairwise comparisons, i.e., of the comparison matrix of a certain level,

and thus a quality measure of the determined judgments. A consistency index CI has been

proposed by Saaty (1977), which is related to the eigenvalue analysis described above.

CI =
λmax −N

N −1
(9.5)

CI Consistency index
λmax Largest eigenvalue
N Dimension of comparison matrix M.

A further normalization of this index can be applied, resulting in the so-called consistency

ratio CR. This value is computed as the ratio of the consistency index CI and a random

index RI

CR =CI/RI (9.6)

CR Consistency ratio
CI Consistency index
RI Random index.
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Table 9.5. Random indices RI as calculated in (Saaty 1977).

n 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

The random index RI is commonly defined by averaging the CI values of 500 randomly

filled comparison matrices based on the AHP fundamental scale (cf. Tab. 9.4). See (Saaty

1990) for a detailed discussion. Table 9.5 shows the values for RI for matrices of order three

to ten as given in (Saaty 1977). A high CR value corresponds to a low matrix consistency,

and the entries, i.e., the comparisons, should be reevaluated. Consistency ratios of less than

0.1 are usually considered acceptable. A ratio of CR = 1 characterizes inconsistent and

rather random value selection.

Method Validation

To summarize, the AHP approach computes the degree of suitability for all object and back-

ground modules. The next step is now to integrate our results into the validation method.

Since the sum of all AHP values is equal to one, we normalize each value by dividing it

by the largest output. This way, the most relevant parameter receives suitparam = 1. The

second feature for a parameter, the parameter correctness, is assigned via an expert analysis.

The resulting overall phantom correctness is then defined as the minimum of all parameter

validations

corrphantom = min(∀vparam) .

Equation 9.1 is used to calculate the result of each validation function vparam. In other

words, we choose the lowest combination of correctness and suitability normalized over all

parameters. The input values for this validation method are then

Suitability suit = expert experience ∈ [0,1]

Correctness corr = min(∀vparam)

9.3.2. Number Of Parameters

The next validation method is extracted from our development process. Each phantom mod-

els a certain amount of object and background parameters. Assuming that a larger number

of modeled parameters results in a better phantom, this value is an adequate validation step.

Since this approach does not include any statement about the quality of the modeled parame-

ters, we set the importance of this approach to be only moderate (suit = 4/9), i.e., we select

a value between ’low’ and ’average’. The correctness is calculated as ratio of the number of

modeled parameters and the number of relevant parameters for the targeted application. To
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summarize, the input values for the method validation (Step 2) are

Suitability suit = 4/9

Correctness corr = (#modeled params) / (#relevant params)

9.3.3. Lesion Detection Performance

Another interesting approach is to analyze the object detection performance compared to

patient data sets. Here, the user is asked to identify phantom objects in a patient data set

that contains similar objects. Unfortunately, this approach does not give any information

about the background used in the phantom data sets. It can also only be used in patient

data with more than one object. Therefore, we choose the importance of this approach to

be moderate (suit = 6/9). The correctness should be derived from the computed detection

performance.

Suitability suit = 6/9

Correctness corr = derived from detection results

9.3.4. Segmentation Overlap Measures: Phantom vs. Patient Data

Phantoms have become a widely accepted tool for the evaluation of segmentation algo-

rithms. They have a known ground truth and provide a good alternative to the analysis of

patient data sets. A good phantom should be able to predict the performance of an evalu-

ated algorithm on patient images never seen before. Comparing the segmentation results for

phantoms and patient data sets is thus a good way to derive the phantom quality.

An important assumption of this approach is that all relevant parameters are modeled.

Nevertheless, a poor parameter model can still result in an unrealistic phantom with compa-

rable segmentation overlap. Nevertheless, we believe that this approach is suited to evaluate

the quality of a phantom, and therefore assign suit = 7/9. The reference values can be ex-

tracted from publications related to the segmentation algorithm or from own investigations,

i.e., from segmentation of own patient data sets. The correctness values are estimated from

the segmentation overlap using the Dice similarity coefficient.

Suitability suit = 7/9

Correctness corr = comparison of segmentation overlap

9.3.5. Effect of Parameter Changes

Changing the complexity or the value range of a parameter has an effect on the resulting

phantom quality. For example, a wrong object position will reduce the applicability of the
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phantom. One way to test the effect of parameter changes is to compare the segmentation

overlap for different parameter settings with those of patient data. Therefore, we believe

that this approach is well suited to act as an indirect measure of phantom quality and assign

suit = 8/9.

Our aim for this validation method is to compare phantom pairs where certain parame-

ters are changed to some extent. Therefore, we want to use a parameter with high impor-

tance. The Analytic Hierarchy Process introduced in Section 9.3.1 is used for this task. An

important assumption of this approach is that all relevant parameters are modeled.

Suitability suit = 8/9

Correctness corr = comparison of segmentation overlap

9.4. Discussion

A good phantom should be able to predict the performance of an evaluated algorithm on

images never seen before. In other words, if the phantom is useful, the evaluated algorithm

should produce comparable results for both phantom data and patient data. In this chapter,

we introduced a novel phantom validation approach. We associate the overall requirements

for phantom development given in Chapter 2 with those of phantom validation. Furthermore,

our approach is closely related to the phantom development process proposed in Chapter 4.

Our validation approach supports the design process of these hybrid software phantoms

already at the initial development phase by an analysis of the required parameters. We

propose a method based on a multi-criteria decision making technique, namely the Analytic

Hierarchy Process. An important aspect of this method is the use of pairwise comparisons,

where each module is compared to all other modules within the same group. This way,

dependencies between modules are explicitly modeled. In contrast, two important modules

will both receive a high suitability value if analyzed separately.

The AHP method uses an expert analysis of the phantom. This method requires user

involvement as well as expert knowledge of the underlying problem domain. Increasing the

number of modules also increases the required pairwise comparisons. Analyzing an object

including all modules introduced in this work results in 12 ∗ 11/2 = 66 comparisons, i.e.,

N(N −1)/2 comparisons. Although this is a significantly higher number compared to a sin-

gle evaluation of each parameter, we gain an explicit assessment of module dependencies.

Comparison with Related Work

Current phantom validation approaches are based on a visual comparison with patient data

sets or apply some expert knowledge for evaluation (cf. Sec. 8.7). Nevertheless, at least

some related work can be found that goes beyond these fairly subjective methods.

In Section 8.5, we reviewed several methods that propose a standardization of the overall
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validation process. Even though these methods focus on the validation of image processing

algorithms, some characteristics are also important for phantom validation. The work by

Jannin et al. (2006) introduces a general validation concept (cf. Fig. 8.1). In their work,

the authors propose a checklist of roughly 30 components that need to be observed when

reporting a validation study. These parameters include the clinical context or the method

to be validated. Similar to our approach, Jannin et al. (2006) aim at a formalization of

the validation process. Furthermore, they also emphasize the application dependency of

validation and delineate the clinical context and the method to be validated as important

parameters. However, the authors propose a reference-based process, i.e., the underlying

validation data is already known. In our work, we start one step earlier and focus on the

analysis of the underlying reference data instead.

Another approach related to phantom validation is the analysis of ground truth data

in medical image processing. In Section 8.4, we discussed the work by Lehmann (2002),

who proposed five attributes that should be considered for any appropriate gold standard:

reliability, equivalence, independence, relevance, and significance. Although this approach

provides an interesting attempt towards a classification scheme for reference data, it is not

accompanied by an objective measurement for the proposed attributes. Therefore, only a

descriptive analysis can be performed, reducing the overall reproducibility between different

raters.

Iterative Validation

Validation is an iterative process that requires several steps to reach a reasonable confidence

level (cf. Sec. 8.7). Furthermore, it is application-dependent. In this work, we propose a

novel iterative validation approach consisting of several evaluation methods. Each method

increases or decreases the confidence in a phantom. Our validation approach is divided into

three steps: method selection, method validation, and phantom validation (cf. Tab. 9.2).

For each validation method phantom-related measures (correctness) and application-related

measures (suitability) are analyzed. To combine these two measures, we proposed a valida-

tion function (cf. Eq. 9.1). The same function is used for all investigated methods.

In the last step of our validation approach, all validation methods are combined to a final

measurement for the analyzed phantom. Our goal is an approach where the phantom quality

is expressed in a single value. This allows for a straightforward comparison of different

validation results among several raters or among different phantoms. We aim at a function,

which ensures that unimportant methods have only a limited influence independent from

their correctness. Important methods on the other hand can heavily increase or decrease

the confidence in the phantom. To this end, we propose a multiplicative aggregation of all

validation functions.

Based on the iterative fusion proposed in this chapter and the chosen validation methods,

we believe that our approach allows for an estimation of the phantom quality. Thus, a highly

rated phantom will be able to predict the performance on patient data. To the best of our
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knowledge this is the first method of this type. Given a phantom we can evaluate to what

degree this phantom is appropriate for a certain application, and also assess if one phantom

is better suited than another. Moreover, phantom developers and users are supported in

analyzing advantages and drawbacks of a phantom in more detail. This was also found

useful for our own phantom development in the first part of this work and justifies the

additional effort of the proposed validation approach. The next chapter will provide a more

detailed analysis on the basis of a validation of our MS lesion phantoms.



10. Validation of MS Lesion Phantoms

In the previous chapter, we proposed a new phantom validation approach based on an it-

erative analysis. Each iteration consists of a separate validation method, which increases

or decreases the confidence in the phantom. In this chapter, we apply our approach to the

validation of our MS lesion phantoms proposed in Chapter 5.

Five validation methods are analyzed. For example, we perform an expert-based analy-

sis of the phantom quality. The Analytic Hierarchy Process is used to derive the suitability

of all required object parameter modules. Another validation method carries out a user-

study to analyze the detection performance of lesion phantoms. Furthermore, the effect of

parameter changes is investigated. For each step, a short description of the underlying data

and a discussion of the results is provided.

10.1. Fusion of Parameter Validations

The first validation method is a direct analysis of the phantom. We use an expert validation

for this method. A detailed description of this validation method is given in Section 9.3.1.

The suitability is defined as the expert’s experience. In our case, two raters performed the

analysis our MS lesion phantoms. Both with several years of expertise in medical image

analysis.

The correctness value, i.e., the phantom quality, is calculated by fusing the validation

of all parameters to a single measure. Again, two features need to be investigated for each

parameter: suitability and correctness. Since our focus in this work is on hybrid software

phantoms, only the lesion object is analyzed. Nevertheless, an additional validation is con-

ceivable that also includes the background.

To analyze the parameter modules of our phantoms, the first step classifies the parameter

modules into the binary categories relevant and negligible. Modules that have no effect

on the targeted application are sorted out. A consensus meeting was held to decide on

the remaining parameters. The resulting comparison matrix consists of the following nine

modules: shape, structure, volume, topology, contrast, noise, resolution, PV effects, and

uniformity. All object parameters are modeled in our approach. Since the sum of all AHP

values is equal to one, we normalize each value by dividing by the largest output. This way,

145
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Table 10.1. Expert analysis for each parameter. The suitability values are calculated via the AHP
approach described in Section 9.3.1. All parameters are normalized to [0,1].

Parameter Suitability Correctness
Rater1 Rater2 Rater1 Rater2

Shape 1.0 1.0 0.78 0.67
Structure 1.0 0.99 0.78 0.67
Volume 0.38 0.41 0.78 0.78
Topology 0.67 0.67 0.89 0.78
Contrast 0.81 0.85 0.78 0.89
Noise 0.33 0.28 0.89 0.89
Resolution 0.10 0.09 1.0 1.0
PV effects 0.29 0.36 0.78 0.89
Uniformity 0.09 0.06 0.78 0.89

the most relevant parameter receives suitparam = 1 (cf. Tab. 10.1).

The second feature, the parameter correctness, is assigned via an expert analysis. The re-

sults of this evaluation are also given in Table 10.1. The values for correctness and suitability

are then used as input for the validation function (cf. Eq. 9.1), resulting in a value vparam for

each parameter module. Finally, the overall phantom correctness for the current validation

method is defined as the minimum of all parameter validations, i.e., corr = min(∀vparam).

Evaluation

Both experts rated their experience to be ’high’ (suit = 7/9). The correctness values are

extracted from the analysis of the parameter modules. Therein, the computed values are

approximately the same for both raters. Four parameter modules get assigned high suit-

ability values of over 65%, namely shape, structure, topology, and contrast. Furthermore,

all modules got assigned a correctness value larger then five, i.e., better than average. The

resulting overall phantom correctness, defined as the minimum of all parameter validations,

is corr = 0.78 for Rater1 and corr = 0.67 for Rater2.

Rater1 Rater2

Suitability suit = 7/9 suit = 7/9

Correctness corr = 0.78 corr = 0.67

The validation results are for Rater1 v = 2.04, and for Rater2 v = 1.78.
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10.2. Number of Parameters

The first step of the AHP-based validation described above extracts all relevant modules and

sorts out the rest. Assuming that the amount of modeled parameters directly corresponds

to the phantom quality, we can derive a phantom validation approach. Similar to the AHP-

based validation presented above, only the lesion objects are analyzed.

Evaluation

In Section 10.1, we extracted nine relevant parameters. All of them are modeled in our phan-

tom approach. See also Figure 5.9 for an overview. Because we calculate the correctness

as ratio of the number of modeled parameters divided by the number of relevant parameters,

our phantom receives the highest value corr = 1.

An advantage of this approach, compared for example to the comparison of segmen-

tation results, is that the phantom does not necessarily have to be available. A list of all

modeled parameters is sufficient. Therefore, we investigated related work on MS lesion

phantoms and carried out a similar parameter analysis. The phantom by Tofts et al. (1997)

models five parameters resulting in v = 1.30, which is a decrease by 35.1% compared to

our approach. The work of Melhem et al. (2003) models eight parameters. The validation

result decreases by 8.7% to v = 1.74.

The resulting values for our validation function are

Suitability suit = 4/9

Correctness corr = 9/9

The validation result for our approach is v = 1.89.

10.3. Lesion Detection Performance

The next method to assess the phantom quality, is a human observer study. Therein, the

detection performance of lesion phantoms in patient data sets with several real MS lesions

is investigated. To carry out the study, we developed a software assistant with an intuitive

graphical user interface. It consists of a viewer showing the current image data as well

as a simple parameter panel to select the current lesion type. Two different marker types

are available. A ’lesion’ marker is used for real lesions and a ’phantom’ marker for lesion

phantoms. Six data sets from different patients were analyzed (Case1, Case2, ..., Case6).

Two to three MS lesion phantoms were incorporated in each MR scan at different positions

in the white matter (T2-weighted, matrix 256×256, 3mm slice thickness). The size and

intensity values were adjusted to match the real MS lesions in the underlying patient data.

Only two different object shapes were used for all data sets. To reduce the detection task for

each participant, only the lesions on one slice had to be detected. Nevertheless, the raters
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Table 10.2. Results of human observer study averaged over six patient data sets with included lesion
phantoms.

Rater1 Rater2 Rater3 Rater4

Sensitivity (in %) 27.27 23.08 23.08 38.46
Specificity (in %) 67.57 86.00 81.13 56.10

were able to slice through the whole data set, whereas the slice to be rated was highlighted

by a rectangle.

Two physicians (Rater1, Rater2) as well as two computer scientists with considerable

experience in computational neuroimaging (Rater3, Rater4) participated in the study. All

raters were blinded in the number of real MS lesions and lesion phantoms. All used the same

computer and monitor devices to carry out the detection task. Figure 10.1 (c)-(f) show the re-

sulting marked lesions for each expert (Case6). The corresponding ground truth is presented

in Figure 10.1 (b). The raters correctly marked 26.9% (min = 23.08%, max = 38.46%) of thir-

teen lesion phantoms. The overall sensitivity was 27.97%, the overall specificity 72.70%.

No significant differences were found in the resulting detection rate of all four raters. The

values for each participant is separately given in Table 10.2.

Evaluation

The results clearly show the plausibility of our software phantom design approach with

respect to clinical image data. A broad range of software phantoms can be generated that

are indistinguishable from actual MS lesions for a human observer. The ability to correctly

identify lesion phantoms, i.e., the sensitivity, is very low for all four raters (<30%), even

though we only used two different object shapes. Three out of four raters were not able to

correctly mark more than 25% of all lesion phantoms. Only Rater4 had a slightly better

overall detection rate of approximately 40%. However, the corresponding specificity of this

rater is very low (56.10%). All participants suspected several real MS lesions to be lesion

phantoms (cf. Fig. 10.1). Therefore, we assign a high correctness of corr = 8/9 to this

validation approach.

Suitability suit = 6/9

Correctness corr = 8/9

The validation result for this approach is v = 2.11.
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(a) (b) (c)

(d) (e) (f)

Figure 10.1. Lesion detection performance using a patient data set with additional lesion phantoms
(Case6). (×, real MS lesions (yellow); +, lesion phantom (green)). (a) Slice of original image
data with incorporated lesion phantoms, (b) ground truth, (c)-(f) Rater1–Rater4.

10.4. Segmentation Overlap Measures: Phantom vs. Patient

Data

In this validation step, we propose an evaluation of phantom quality using results of an

adequate segmentation method. We apply the lesion segmentation algorithm proposed by

van Leemput et al. (2001), which has become quite popular within the medical imaging

community with more than 100 citing papers on IEEE Xplore. It is also freely available

and therefore well suited as a reference method for comparison. See also Section 6.3.2 for

a more detailed overview of the parameter settings. The segmentation results are shown in

Table 6.8 (upper table).

Evaluation

To evaluate this validation step, we need to compare our results with those calculated on

patient data. In (van Leemput et al. 2001), segmentations of 20 low-resolution patient

data sets with an in-plane resolution of 0.9×0.9 and 5 mm slice thickness were performed.

Furthermore, three data sets with a slice thickness of 2.4 mm are analyzed. Expert segmen-

tations are used as reference. The best DSC value in the paper is max(DSC) = 0.45 for the
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low-resolution data sets and max(DSC) = 0.51 for the high-resolution data sets.

Similar results were recorded by García-Lorenzo et al. (2011). In their work, the authors

used the EMS method to segment ten patient data sets (in-plane resolution 0.97 × 0.97,

3 mm slice thickness) with a total lesion load (TTL) ranging from 1.0 ml to 47.7 ml. Again,

a manual expert segmentation is used as reference ground truth. The calculated DSC values

have a large range of [0.31,0.77] with a mean value of mean(DSC) = 0.56.

Our results are mean(DSC) = 0.67 with min(DSC) = 0.57 and max(DSC) = 0.77. In

other words, our mean values differ from those of García-Lorenzo et al. (2011) by 16.4%.

Furthermore, our max values differ from those of van Leemput et al. (2001) by 41.5% for

the low-resolution data and by 33.7% for the high-resolution data. A moderate correctness

is therefore selected for this approach (corr = 6/9). Nevertheless, we believe that this

approach is suited to evaluate the quality of a phantom and assign suit = 7/9. The values

for our validation function are given by

Suitability suit = 7/9

Correctness corr = 6/9

The validation result for this approach is v = 1.77.

10.5. Effect of Parameter Changes

Changing the complexity or the value range of a parameter has an effect on the resulting

phantom quality. For example, a wrong object position will reduce the applicability of the

phantom. One way to test the effect of parameter changes is to compare the segmentation

overlap for different parameter settings with those of patient data. Therefore, we believe

that this approach is well suited to act as an indirect measure of phantom quality and assign

suit = 8/9.

An important assumption of this approach is that all relevant parameters are modeled.

Nevertheless, a poor parameter model can still result in an unrealistic phantom with com-

parable segmentation overlap. Our aim for this validation method is to compare phantom

pairs where certain parameters are changed to some extent. Therefore, our goal is to select

a parameter of high importance. We choose the structure parameter for the subsequent eval-

uation, since it got assigned a high suitability value in the AHP analysis in Section 10.3 by

two experts.

To assess the effect of parameter changes on the phantom quality, we use the same ap-

proach presented in the previous section. First, all phantoms are segmented with the MS

lesion segmentation algorithm proposed by van Leemput et al. (2001). The Dice similarity

coefficient computed from segmentation mask and ground truth is used to evaluate the re-

sults. The calculated values are then compared with segmentation results from real patient

data.

In Section 6.3.2 we generated 16 phantoms from two different parameter setups. The
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first set consists of a homogeneous lesion structure and was already used in the previous

section. The second set includes inhomogeneous lesions using a parametric model to change

the lesion texture (cf. Sec. 5.2). The resulting overlap measures and the total lesion load for

each data set is given in Table 6.8 (lower table).

Evaluation

Changing the lesion structure to an inhomogeneous texture model has a large effect on

the segmentation results. Because of the more complex lesion appearance, we expect a

decrease in the overlap measure. In fact, the mean overlap measure decreases by 26.8% to

mean(DSC) = 0.49 (min(DSC) = 0.35, max(DSC) = 0.55). Compared to the patient data

results of van Leemput et al. (2001), the max values now differ only by 7.2%. We can

further evaluate the effect of adding lesion texture using a Wilcoxon matched pairs signed-

ranks test. The test results indicate that a significant difference exists between lesions with

and without our texture model at the p ≤ 0.05 significance level. Therefore, this validation

approach receives a high correctness value of corr = 8/9.

Suitability suit = 8/9

Correctness corr = 8/9

The validation result for this approach is v = 2.48.

10.6. Result of Phantom Validation

After analyzing each validation method separately, the final phantom quality is computed

by fusing all results as described in the previous sections. In this work, we analyzed five

different validation methods. All results have a value v > 1 and thus increase the confidence

in our phantom. The overall phantom validation value is

vphantom = vexpert1 · vexpert2 · v#params · vdetect · vsegm · vchangeParam

= 2.04 · 1.78 · 1.89 · 2.11 · 1.77 · 2.48

= 63.71

To understand how to interpret the validation result, we compare it with those of a

slightly different phantom. Let us assume, that the object structure is not generated by the

proposed texture model, but by a checkerboard pattern. In other words, only one parameter

model is changed. This will still increase the lesion complexity and result in a lower overlap

measure for the applied segmentation approach as described in Section 10.5. The low object

quality will be detected by an expert validation. For the given example, we select a low

correctness value of corrparam = 1/9 for both experts. The phantom validation proposed

in Section 10.1 will then be v = 0.48 (v = 0.48) instead of v = 2.04 (v = 1.78). This will
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decrease the result of the iterative phantom validation by 93.7% to vphantom = 4.03. Even

if only one expert assigns a low rate, e.g., Rater1, the result will decrease by 76.5% to

vphantom = 14.98.

If the new phantom is evaluated by different raters, interobserver variability is difficult

to avoid. Nevertheless, our approach is able to detect the reduced phantom quality using

the method described in Section 10.1. Rating the parameter correctness between ’poor’ and

’low’ with corrparam = 2/9 instead of 1/9 for both raters will decrease the resulting phantom

value by 84.1% to vphantom = 10.13. An even higher value for both raters (corrparam =

3/9), i.e., a ’low’ correctness, will still reduce the phantom validation value by 72.4% to

vphantom = 17.57.

10.7. Discussion

Phantom validation is an iterative process in which several steps are required to reach a

reasonable confidence in a phantom. In the previous chapter, we introduced five different

validation methods for this task that were applied to the analysis of our MS lesion phantoms

in this chapter. The final phantom quality is computed by fusing the results of all methods.

All methods increased the confidence in our lesion phantoms, i.e., all validation results have

a value greater than one.

The first method performed an expert validation, analyzing all object parameters. Our

approach goes beyond a simple visual rating of a phantom by only looking at it. Instead, we

provide an explicit analysis of the relationships between parameter modules based on the

Analytic Hierarchy Process, which has become a widely applied decision making technique.

Our method uses pairwise comparisons of parameters, which has been demonstrated in

studies to be an efficient and accurate approach. Two raters performed the validation for our

MS lesion phantoms.

In another validation method, we analyzed the effect of object parameter changes. Again,

the AHP approach is applied to select a parameter with high importance. The developed

phantoms are then used to analyze a well-known MS lesion segmentation algorithm pro-

posed by van Leemput et al. (2001). The resulting overlap measure for the lesion mask

is compared with segmentation results from patient data. Results from published work of

two different research groups are used for comparison. Our results indicate that it is worth

developing complex parameters, that better reflect the challenges of related patient data.

Our validation yields a single value for the phantom quality, that directly depends on the

number of validation methods. However, the result of our iterative approach does not have

an upper bound. Adding the result of a new method to our current evaluation in Section 10.6

will change the overall validation and increase or decrease the confidence in our phantom.

Thereby, the methods analyzed in this chapter provide a good starting point. To the best of

our knowledge, this is the first time a phantom is analyzed to this extent.

Establishing an absolute value for ’good’ phantoms is complex because it requires de-
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velopers to thoroughly evaluate their own phantoms and many experts to review the results

of each validation method. Our approach provides a formalized process for phantom val-

idation, which is an important step in this direction. Using our method, different raters

should be able to obtain related results. Our approach can be easily extended by new vali-

dation methods to a point where the output value has reached a level, at which the phantom

is considered to be sufficiently validated. Moreover, the multiplicative combination of all

validation methods has the benefit that even a single method with high suitability and low

correctness is sufficient to greatly decrease the built up confidence in a phantom.



154 10. Validation of MS Lesion Phantoms



11. Conclusion Part II

In this last chapter, we reflect the main challenges of phantom validation and our contribu-

tions in this field. The thesis is completed with a discussion of future work.

Why is an analysis of the phantom quality required?

To reach clinical acceptance, and to fully understand a method, dedicated evaluation strate-

gies are required. Today, most algorithms are accompanied by some kind of validation

study, where the quality of a method is compared with some kind of reference. Therefore,

establishing an appropriate gold standard, that is presumed to contain the correct result (the

ground truth) or be at least close to it, is an essential task. Phantoms provide an excellent

basis, because the ground truth is known for all modeled parameters.

Nevertheless, tools that analyze the phantom quality are largely unknown. In Chapter 8,

we reviewed methods that have been proposed for the validation of image processing algo-

rithms. Several methods use a reference database consisting of patient scans or phantoms.

However, only few are actually available for research groups other than the initial devel-

opers. Our approach starts one step earlier and focuses on the analysis of the underlying

reference data.

A characteristic of validation methods in medical image processing – also important for

phantom validation – is a formalized and reproducible analysis. Today, the most common

phantom validation approach is a visual assessment by a field expert, which provides a quick

and informal method. However, expert knowledge is subjective and often not reproducible.

To analyze the quality of a phantom, we need standardized tools that demonstrate the

advantages and drawbacks of a phantom for the targeted application. For example, a bad

phantom with wrong object intensity values can heavily effect the output of a segmentation

algorithm and reduce the relevance of the calculated results. Furthermore, methods that

enable a ranking of different phantoms for the same application are required.
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What are the benefits of our phantom validation?

Link to Phantom Design. In this work, we proposed a novel phantom validation method

that is closely related to the design process (cf. Chap. 9). Therein, models for the rele-

vant parameters of an object are developed and the results are incorporated into a given

background. To support this process already early in the design phase, our phantom valida-

tion starts with an analysis of the required parameters. We proposed a method based on a

multi-criteria decision making technique, namely the Analytic Hierarchy Process. The AHP

approach uses pairwise comparisons of parameters, which has demonstrated in studies to

be an efficient and accurate approach. It allows for an explicit analysis of the relationships

between modules. This way, phantom developers and users are supported in analyzing ad-

vantages and drawbacks of a phantom in more detail, which was also found useful during

development in this work. For example, the computed importance values were used in our

automatic phantom design proposed in Chapter 5 to focus on the relevant parameters.

Iterative Process. Besides the evaluation of relevant parameters for phantom design,

an assessment of the actual phantom is required. Validation is an iterative process that

requires several steps to reach a reasonable confidence level. In this work, we proposed

a novel iterative approach consisting of several evaluation methods. The methods can be

analyzed independent of one another, so that a new method does not have to take previous

validation results into account. Our overall phantom validation approach is divided into

three steps: method selection, method validation, and phantom validation. Each method

increases or decreases the confidence in a phantom through an analysis of the method’s

quality and its relevance for validation.

Phantom Quality Measurement. Our goal is to express the phantom quality by

a single value, which enables a straightforward comparison of different validation results

among several raters or among different phantoms. After selecting the validation methods,

an analysis of their suitability and correctness is performed. We proposed a validation

function that combines these two features for each validation method (cf. Eq. 9.1). The last

step of our approach then combines all validation methods to a final measurement.

Our validation process ensures that unimportant methods have only limited influence in-

dependent from their correctness. Relevant methods on the other hand can heavily increase

or decrease the confidence in the phantom. To this end, we propose a multiplicative aggre-

gation of all validation functions. Methods with low suitability result in values close to one,

whereas the output of the validation function is larger than one for important and correctly

modeled methods.

Applications. The result of our iterative validation approach does not have an upper

bound. Instead, each new method adds further information about the phantom and thus

changes the validation value. Thereby, the computed result of our approach provides a good

starting point for subsequent validation methods. Furthermore, it enables a comparison with

other phantoms that carry out the same methods.

Five validation methods have been proposed in Chapter 9. These methods were then
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applied in Chapter 10 for the validation of our MS lesion phantoms. All methods increased

the confidence in our phantoms. For example, we compared the segmentation overlap com-

puted for phantom data with those from patient data using the same algorithm. Furthermore,

we analyzed the effect of object parameter changes. Similar to supporting the initial phan-

tom design phase, the Analytic Hierarchy Process is used to select a parameter with high

importance. Our results show that it is worth developing complex parameters, that better

reflect the challenges of related patient data.

In Section 10.5, we compared our results with those of a phantom where only one

parameter is modified. Our validation helped to detect a major change in phantom quality.

A comparison with phantoms that did not use the same validation methods is also possible

if the applied methods have the same relevance.

Standardization of Validation. Our long term goal is a standardization of phantom

validation. The iterative approach proposed in this work provides a formalization of the

validation process, and the applied methods have shown the capabilities for validation. This

way, a phantom that is considered to have a good quality by our approach can enhance the

clinical acceptance of evaluation studies for new algorithms in medical image analysis.
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Future Research

This thesis has given insights into phantom development and validation and has presented

several new ideas. Nevertheless, several extensions of our work are conceivable.

Phantom Development

In Part I of this work, our focus was on the development of software phantoms. A future

direction could be to put more emphasis on the automatic design of phantoms. An ad hoc

solution that develops a phantom from single patient data set should no longer be needed.

Large databases are required to do sufficient testing of an algorithm. Our automatic ap-

proach allows to parametrically generate not only tens, but hundreds of phantoms. To this

end, families of phantoms should be developed categorized into imaging, normal, and patho-

logical variability encountered in clinical practice. Since our approach uses patient data to

capture this variability, additional data are required.

Another future work of our phantom design is to focus on further imaging modalities

such as CT or PET. This will particularly require the development of new parameter modules

such as a new object noise model. Furthermore, currently missing parameter modules could

be added for additional flexibility. New applications within new areas of medical image

analysis is another interesting topic. An example is the evaluation of registration methods

using phantoms.

Our current phantom design approach covers hybrid software phantoms, which limits

the possible objects and thus the clinical applications. An extension of our approach to the

automatic development of data sets where the modeled object is an organ, e.g., the heart or

the liver, is of great interest. A reasonable software phantom that allows for modeling of

parameters within a range extracted from patient data is currently not available.

On-site competitions of several research teams during a conference have become popu-

lar in the last years, e.g., the Grand Challenge workshops at the MICCAI conference. An

interesting extension of the current patient data used for training and testing are phantoms.

For example, a segmentation challenge using our data sets could add new insights into both

the tested algorithms as well as the underlying phantom data.

Phantom Validation

An important aspect of our current validation approach is the user involvement. We rely

on rater decisions, which includes some inherent and inevitable subjectiveness. A common

method to overcome this issue is a consensus meeting of several experts. For example,

Sloane et al. (2003) used seven development stages with different participants to assess

the criteria required to purchase specific clinical equipment within an AHP-based approach.

Furthermore, the competence of each expert is important. Tsyganok et al. (2011) conclude

that the individual expertise of a rater can be neglected for large groups of more than 50

persons. On the other hand, for relatively small groups, expert competence should be taken
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into consideration. A different approach could be to remove the manual rating from the vali-

dation process. For example, a distance function measuring the similarity between phantom

data and a database with a sufficient amount of reference data could be used to compute the

correctness of a parameter model.

Besides the already proposed features, several additional parameters could be consid-

ered for validation such as the required time and costs to develop a phantom. Another re-

lated factor is the amount of manual processing required to assemble a phantom. Although

such parameters can affect the development process, they should not change the overall

phantom quality and are therefore not considered in this work.

Future work will extend our approach by new validation methods to a level where the

confidence in our phantom is determined as sufficient. To demonstrate the wide applicability

of our validation, we also plan to investigate phantoms from other groups. Thereby, data

availability is an important topic for both phantom development and validation. Today, only

few data sets are available or are widely accepted in medical image analysis. A step towards

this goal are public data sets within a database plus an easy-to-use web interface. This

would allow other researchers to upload their phantoms as well as their validation results

for an already available phantom. Additionally, it would allow selecting a suitable phantom

for evaluation studies. Thereby, our validation approach can provide a common basis for

comparisons. Furthermore, determining the required modules and their suitability provides

an excellent platform for discussions.

In Chapter 4, we proposed a formalization of the phantom design process and developed

a template that can be used to provide an easy-to-use phantom description. A similar ap-

proach could also be beneficial for phantom validation. In this case, the description contains

not only the output of the overall validation. Also, all validation steps are included with a

short description and the values and meanings for suitability and correctness.
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