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Abstract

Many natural phenomena and industrial applications involve turbulent flows, but

the modeling of turbulence remains challenging, especially in complex configurations

such as particle-laden turbulence. A popular alternative to resolving the turbulence

from its largest scales down to the smallest flow structures in numerical simulations

is large eddy simulations (LES), which only solve for the low-pass filtered fluid ve-

locity and pressure and, therefore, significantly reduce the computational costs. The

present cumulative thesis is dedicated to adapt the LES methodology to particle-

laden turbulent flows in order to achieve accurate particle and flow statistics while

maintaining the computational efficiency of a single-phase LES.

In this thesis, modeling framework is proposed that consists of two steps. The first

step is the reconstruction of the subfilter fluid velocity, i.e., the velocity that is not

resolved in an LES. The reconstructed subfilter fluid velocity is added to the fluid

velocity field that is resolved in the LES and the resulting turbulent velocity field is

used to transport the particles. An accurate reconstruction of the subfilter velocity

is achieved by approximately solving the governing equations for the subfilter fluid

velocity with two different bases: a Fourier basis discretized in space by means of

statistically homogeneous sub-domains, and a wavelet basis. Both bases allow for a

statistically inhomogeneous and anisotropic subfilter fluid velocity field and predict

the particle clustering and particle pair dispersion accurately over a wide range of

Stokes numbers.

Once a realistic particle motion in the scope of an LES is achieved, the remaining

second step of the proposed modeling framework is to model the turbulence mod-

ulation by the particles. In LES, the effect of the unresolved turbulence on the

resolved scales is accounted for by the subgrid-scale stress tensor. In particle-laden

turbulence, the subgrid-scale stress tensor has to account for the turbulence modu-

lation by the particles at the subfilter level. In the proposed modeling framework,
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this is achieved by solving a transport equation for the subgrid-scale kinetic energy,

which includes a particle source term. The subgrid-scale kinetic energy is used to

model the subgrid-scale stress tensor and serves as a target kinetic energy for the

reconstructed subfilter fluid velocity field, the first step of the proposed modeling

framework.

With the proposed modeling framework, we can now successfully predict the ex-

pected reduction of subgrid-scale kinetic energy compared to the corresponding

single-phase flow configuration in two-way coupled particle-laden turbulence. This

yields a good agreement of the kinetic energy of the fluid velocity that is resolved

in the LES with the kinetic energy of the explicitly filtered fluid velocity containing

all turbulent length scales.

4



Kurzfassung

Viele der relevanten natürlichen Phänomene und industriellen Anwendungen be-

inhalten turbulente Strömungen, aber die Modellierung von Turbulenz bleibt ei-

ne Herausforderung, insbesondere in komplexen Konfigurationen wie turbulente

Partikelströmungen. In numerischen Simulationen sind sogenannte Grobstruktur-

simulationen (LES) eine beliebte Alternative zur Auflösung der Turbulenz von den

größten bis zu den kleinsten Strömungsstrukturen, welche lediglich die tiefpassge-

filterte Strömungsgeschwindigkeit und den tiefpassgefilterterten Druck auflösen und

somit die Rechenkosten erheblich reduzieren. Die vorliegende kumulative Dissertati-

on widmet sich der Anpassung der LES-Methodik an turbulente Partikelströmungen

um damit genaue Partikel- und Strömungsstatistiken unter Beibehaltung geringer

Rechenkosten zu erzielen.

Es wird ein Modell vorgeschlagen, welches aus zwei Schritten besteht. Der erste

Schritt ist die Rekonstruktion der Feinstruktur-Fluidgeschwindigkeit, der Geschwin-

digkeit, die in einer LES nicht aufgelöst wird. Die rekonstruierte Feinstruktur-Fluidge-

schwindigkeit wird zum aufgelösten Fluidgeschwindigkeitsfeld addiert. Das resultie-

rende turbulente Geschwindigkeitsfeld wird zum Transport der Partikel verwendet.

Eine genaue Rekonstruktion der Feinstruktur-Fluidgeschwindigkeit wird durch die

angenäherte Lösung der Erhaltungsgleichungen für die Feinstruktur-Fluidgeschwin-

digkeit erzielt. Dafür wird die Feinstruktur-Fluidgeschwindigkeit durch eine Fourier-

Basis mit räumlich getrennten statistisch homogenen Teilbereichen oder einer Wavelet-

Basis repräsentiert. Beide Basen ermöglichen ein statistisch inhomogenes und aniso-

tropes Feinstruktur-Fluidgeschwindigkeitfeld und eine genaue Vorhersage über die

Clusterbildung der Partikel und die Dispersion von Partikelpaaren über einen weiten

Bereich von Stokes-Zahlen.

Nachdem eine realistische Partikelbewegung im Rahmen einer LES erreicht ist, be-

steht der verbleibende zweite Schritt des vorgeschlagenen Modells darin, die Tur-
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bulenzveränderung durch die Partikel zu modellieren. In LES wird der Effekt der

nicht aufgelösten Turbulenz auf die aufgelösten Skalen durch den Feinstrukturspan-

nungstensor berücksichtigt. In turbulenten Partikelströmungen muss der Feinstruk-

turspannungstensor jedoch die Turbulenzveränderung durch die Partikel im Bereich

der nicht aufgelösten Skalen berücksichtigen. Im entwickelten Modell wird dies durch

die Lösung einer Transportgleichung für die kinetische Energie der Feinstruktur er-

reicht, die einen Partikelquellterm enthält. Die kinetische Energie der Feinstruktur

wird verwendet um den Feinstrukturspannungstensor zu modellieren und dient als

angestrebte kinetische Energie für das rekonstruierte Feinstrukturfluidgeschwindig-

keitfeld, welches aus dem ersten Modellierungsschritt hervorgeht.

In turbulenten Partikelströmungen mit Zweiwege-Kopplung sagt das Modell erfolg-

reich die erwartete Reduktion der kinetischen Energie der Feinstruktur im Vergleich

zur entsprechenden partikelfreien Strömungskonfiguration voraus. Dies führt zu ei-

ner guten Übereinstimmung der kinetischen Energie der in der LES aufgelösten

Fluidgeschwindigkeit mit der kinetischen Energie der explizit gefilterten Fluidge-

schwindigkeit der vollständig aufgelösten Turbulenz.
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Chapter I
Introduction

I.1 Background

The complexity of swirling flows appears to have fascinated, but also puzzled, re-

searchers for centuries. Already 500 years ago, Leonardo da Vinci described the

chaotic behavior of what was later termed turbulence in his drawings of water mix-

ing in a tank. Despite decades of intense turbulence research, its understanding is

still relatively superficial compared to more recent and, seemingly, more intricate

problems of physics. Direct conclusions from the governing equations are very rare

and the majority of knowledge is empirical. The problem is summarized by Feynman

et al. [37] as follows:

“There is a physical problem that is common to many fields, that is very old,

and that has not been solved. It is not the problem of finding new fundamen-

tal particles, but something left over from a long time ago—over a hundred

years. Nobody in physics has really been able to analyze it mathematically

satisfactorily in spite of its importance to the sister sciences. It is the analysis

of circulating or turbulent fluids.”

Another degree of complexity is added by the fact that the turbulent flows of in-

terest, ranging from natural phenomena such as weather predictions to complex

industrial application such as fluidized beds, often contain at least a second phase

that interacts with the turbulence. In many applications this second phase consists

of rigid, or weakly deforming particles that are affected by the turbulent flow and,

vice versa, modulate the turbulence.

With increasing computational resources, the importance of numerical simulations

of turbulence and particle-laden turbulence is continuously growing, enabling re-
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Chapter I: Introduction

liable predictions of increasingly complex physics. However, full resolution of the

turbulence from the largest down to the smallest scales, which is referred to as di-

rect numerical simulation (DNS), is only affordable for relatively small problems of

mostly academic relevance. A common academic example is the particle-laden tur-

bulent channel-flow, i.e., a turbulent flow between two flat plates, which is depicted

in figure I.1a. There exists a great variety of experimental and computational stud-

ies of the turbulent channel flow with and without particles, e.g., Marchioli et al.

[79], Moin and Kim [89], Ptasinski et al. [99], which makes it a popular test case

of novel models before they are applied to more complex industrial applications

that cannot be simulated with DNS. Due to the mere existence of walls, however,

the main body of theoretical knowledge of turbulence, which is often required for

model development, does not strictly apply to channel flows. Therefore, testing the

models in a turbulent channel flow is typically the second step after the models are

developed with the much simpler and theoretically better accessible configuration of

homogeneous isotropic turbulence (HIT). An example of particle-laden HIT is given

in figure I.1b, which is simulated in a cube that is periodic in every direction.

The modeling of turbulence can generally be divided into two branches, the Reynolds

averaged Navier-Stokes (RANS) simulations, which solve for the ensemble averaged

fluid field and the LES, that solve for the spatially low-pass filtered flow field. While

RANS simulations typically lead to a stronger reduction of computational costs, LES

preserve more essential features, especially temporal features, of the turbulent flow.

RANS simulations and LES of turbulent single-phase flows require closures that

are often tailored to the specific flow configurations. Although satisfactory results

can be achieved for single-phase flows, the industrially highly relevant particle-laden

turbulent flows are typically predicted with poor accuracy. The unresolved flow

quantities that seem to be less essential for the flow, the fluctuating quantities in

RANS simulations and the subfilter quantities in LES, turn out to be crucial for pre-

dicting the right particle behavior. Furthermore, the particles can alter the flow in

an unknown way. It may happen that a RANS simulation or LES of a particle-laden

turbulent flow, which gives sufficiently accurate results for the corresponding single-

phase flow configuration, predicts the flow and particle behavior quantitatively or

even qualitatively wrong. Therefore, models are required that improve the flow and

particle predictions in RANS simulations and LES of particle-laden turbulent flows.

Due to their early stage of development, the models are still evaluated based on the

HIT configuration [7, 94, 131].
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I.1: Background

(a)

(b)

Figure I.1: Fluid velocity magnitude and particles of a DNS of a particle-laden

turbulent channel flow (a) and particle-laden HIT (b).
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Chapter I: Introduction

I.2 Objectives

The overall objective of the present thesis is the development of a modeling frame-

work that can be applied to LES of particle-laden turbulent flows and that predicts

similar particle behavior as particles transported in a DNS and similar flow behavior

as the filtered flow field of the corresponding DNS. Considering the high degree of

modeling in an LES, expecting to perfectly reproduce the particle and flow move-

ment would be too ambitious. Therefore, the aim is to reproduce key statistics,

such as the formation of particle clusters and the dispersion of particle pairs, and

the kinetic energy of the filtered fluid velocity.

Since to the best of the author’s knowledge no framework exists that predicts the

essential statistics of an LES of a particle-laden turbulent flow satisfactorily and

with reasonable computational costs, restrictions regarding the complexity of the

considered flow configuration are imposed. The first major restriction concerns the

boundary conditions of the flow, which are assumed to be periodic throughout the

thesis. The presence of walls, i.e., a Dirichlet boundary condition for the fluid ve-

locity, already constitutes a difficulty in single-phase LES as the spatial low-pass

filtering is not precisely defined in the near-wall region. Therefore, the presence

of walls is excluded in the scope of this thesis for the significantly more complex

case of LES of particle-laden turbulence. However, it should be emphasized that

the aspired modeling framework should be capable of handling inhomogeneous and

anisotropic flow configurations, albeit without walls. The second major restrictions

limits the density ratio between particles and fluid. In the present thesis, density

ratios typical for gas-solid flows are considered, i.e., high ratios of particle to fluid

density, as the fluid dynamical force on the particle reduces to the drag force (see,

e.g., Kuerten [67]). Furthermore, as the third major restriction, it is assumed that

the particles are spherical and smaller than the smallest turbulent length scale.

The objective of an LES modeling framework for particle-turbulence interactions is

divided into two parts. For the first part, the turbulence modulation by the parti-

cles is ignored and the focus lies exclusively on modeling the right particle behavior

based on information that is available in an LES. The path followed in the present

thesis is to reconstruct the subfilter velocity, i.e., the difference between the complete

turbulent fluid velocity field and the filtered fluid velocity field, such that turbulence

characteristics that are crucial to predict the right particle behavior are reproduced.

The reconstructed subfilter velocity field is added to the approximation of the fil-

tered velocity field, which is available in an LES, and the resulting velocity field is

used to transport the particles. If the sum of the LES velocity and the reconstructed
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I.3: Outline of the thesis

subfilter velocity is similar to the fluid velocity field of the corresponding DNS, the

particles moves as in a DNS.

The second part of the modeling framework requires a realistic particle behavior and

aims to predict the turbulence modulation by the particles. The single-phase LES

modeling, commonly referred to as subgrid-scale modeling, has to take into account

the turbulence modification of the subfilter scales by the particles.

The resulting modeling framework is to be tested in HIT and compared with DNS

of the same configuration, and the resulting computational costs should be of the

order of an LES without particular modeling of the particle-turbulence interactions.

I.3 Outline of the thesis

The main body of research conducted in the scope of the present cumulative thesis

is published in three different journal articles. To put this research into a unified

context, a broader background is provided in the following chapters that connect

and motivate the research that is published in the three articles. The remainder of

this thesis is structured the following way:

In Chapter II the fundamental physics of turbulence and particle-laden turbulence

are reviewed. Particular emphasize is given to characteristics that make turbulence

unique and that are crucial for particle transport, and mathematical manipulations

that enable LES modeling.

Chapter III introduces fundamental modeling strategies of single-phase LES, particle-

laden flows, and particle-laden turbulence that serve as basis for the proposed mod-

eling framework. Strengths and weaknesses of existing methodologies are reviewed

and the pathways followed in the articles belonging to the present thesis are moti-

vated.

Individual parts of the proposed modeling framework are published in three inde-

pendent journal articles that are briefly summarized in Chapter IV.

Conclusions and pathways for future extensions and improvements are drawn in

Chapter V.

The journal articles containing the research conducted in the present thesis can be

found in appendix A.1-A.3.
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Chapter II
Fundamentals of particle-laden

turbulence

II.1 Characterization of single-phase turbulence

Although the term turbulence is widely used, a rigorous definition of turbulence

does not exist. To differentiate turbulence from swirling, but not yet turbulent flows

and from other vector fields, properties need to be formulated that characterize a

turbulent flow. Based on the criteria proposed by Tennekes and Lumley [125], the

following criteria may be formulated to identify turbulence:

• Irregularity: Turbulent fluid motion appears random, as precise long term

predictions of turbulence fail. Chaos theory provides an explanation for this

observation by claiming that the flow is not random but infinitely sensitive to

initial conditions. Therefore, even the tiniest error in measuring the current

state eventually causes very large errors in the prediction of future states [58].

• Diffusivity: Turbulence enhances diffusion, or mixing, of objects or proper-

ties that are transported by the fluid velocity field [92]. Increased mixing can,

for instance, be observed for particles, concentrations of chemicals, tempera-

ture, or even the velocity itself. In wall-bounded flows, a turbulent boundary

layer is significantly different to a laminar boundary layer since the turbulent

eddies mix faster velocity structures away from the wall with the slow near-wall

velocity [96].

• Large Reynolds number: The Reynolds number, Re, is defined as the

proportion of inertial effects relative to the effect of viscosity and defined as

Re = ρfUL/µf , where ρf is the density of the fluid, U is a characteristic fluid
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Chapter II: Fundamentals of particle-laden turbulence

velocity, L is a characteristics length scale, and µf is the dynamic viscosity

of the fluid. For large Reynolds numbers, the non-linear components of the

governing fluid equations become predominant and the chaotic nature of the

resulting flow field increases, whereas the viscosity has a stabilizing effect as it

increases the importance of the diffusive character of the governing equations.

The Reynolds number can also be interpreted as the proportion of the largest

length scales to the smallest length scales of the flow, implying that turbulence

is multiscale in nature.

• Three-dimensional: Swirling fluid flow behaves very different in two and

three spatial dimensions. Since three spatial dimensions is the by far most

relevant case in industrial and natural phenomena, turbulence refers to three-

dimensional fluid flow. Three-dimensional mechanisms govern the energy

transfer of turbulence, such as vortex stretching and strain self-amplification

[18, 56, 124, 126].

• Dissipative: Turbulence exhibits an energy cascade, wherein kinetic energy

is transferred from the large scales to small scales until it is dissipated to heat

as a result of large spatial gradients that mostly occur at the smallest scales.

Although this energy cascade can be locally inverse, the so-called forward

energy cascade is dominant and eventually yields dissipation of the kinetic

energy. Therefore, to maintain statistically steady turbulence, the flow has to

be permanently supplied with energy [96].

• Continuum: Turbulence is a phenomenon that can be described under the

assumptions of continuum mechanics if the smallest flow structures are much

larger than the mean free path of the fluid molecules.

• A feature of the flow, not the fluid: Turbulence exhibits similar features

even if the fluids are fundamentally different, e.g., liquids and gases. At equiv-

alent Reynolds number, it is impossible to distinguish the turbulent velocity

field of a liquid from the turbulent velocity field of a gas.

These qualitative criteria provide a general characterization of turbulence, but in

order to pursue turbulence modeling, turbulent flows have to be analyzed quantita-

tively. In the scope of this thesis, the discussions are limited to HIT. In HIT, the

statistics of the flow quantities, the fluid velocity, u, the pressure, p, and derived

quantities, are invariant with respect to the position or direction of evaluation. HIT

allows several simplifications that are beneficial for the development and evaluation
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II.1: Characterization of single-phase turbulence

of new models. However, HIT is an idealized case that can differ fundamentally from

the turbulence observed in practical applications, which can limit the applicability

of models developed in HIT.

A turbulent flow satisfies conservation of mass and momentum. For an incompress-

ible fluid of density ρf , constant dynamic viscosity µf , and without external forces,

the governing equations are the following Navier-Stokes equations (NSE)

∂ui
∂xi

= 0, (II.1)

ρf
∂ui
∂t

+ ρf
∂uiuj
∂xj

= − ∂p

∂xi
+ µf

∂

∂xj

[(
∂ui
∂xj

+
∂uj
∂xi

)]
, (II.2)

where xi and t indicate spatial coordinates and time, respectively. Note that sum-

mation is assumed in terms where indices occur twice. Since no closed-form solution

to the NSE exists for HIT, quantitative knowledge of HIT mainly stems from sta-

tistical analysis and evaluation of experimental data.

Early studies address the quantitative characterization of turbulence using spatial

velocity correlations, which are relatively easily accessible in experimental measure-

ments, the only way of accessing high Re turbulence data at the time of early

breakthroughs [62, 105, 123, 128]. The spatial fluid velocity autocorrelation tensor

(for HIT) is defined as [41, 96]

Bij(r) =
〈ui(x)uj(x

′)〉
〈ui(x)uj(x)〉 , (II.3)

with

r = x′ − x, (II.4)

where 〈.〉 indicates ensemble averaging. Note that the time dependency of the fluid

velocity is omitted for conciseness and that no summation is carried out over the

indices in equation (II.3). The autocorrelation function identifies how strongly the

fluid velocities of two points separated by the vector r correlate. For large distances

r = |r|, fluid velocities of a turbulent flow are fully uncorrelated, hence Bij tends

towards zero. In HIT, two scalar functions are sufficient to describe the whole

autocorrelation tensorBij, the longitudinal and transverse autocorrelation functions,
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Chapter II: Fundamentals of particle-laden turbulence

f(r) and g(r). With

f(r) = B11(re1), (II.5)

g(r) = B22(re1), (II.6)

the autocorrelation tensor is given as [96]

Bij = g(r)δij + (f(r)− g(r))
rirj
r2

, (II.7)

where e1 is a unit vector and δij is the Kronecker delta. The autocorrelation func-

tions contain information about the turbulent length scales present in the flow, since

small length scales lead to rapidly decaying autocorrelations while large length scales

maintain high correlations of the velocities, even for large distances, r. A charac-

teristic measures of the turbulent length scales are given with the longitudinal and

transverse integral length scales

L
(1)
11 =

ˆ ∞
0

f(r)dr, (II.8)

L
(1)
22 =

ˆ ∞
0

g(r)dr (II.9)

and the longitudinal and transverse Taylor microscales

λ2
f =

2〈u2
1〉

〈(∂u1/∂x1)2〉 = − 2

d2f

dr2

∣∣∣∣
r=0

, (II.10)

λ2
g =

2〈u2
2〉

〈(∂u2/∂x1)2〉 = − 2

d2g

dr2

∣∣∣∣
r=0

. (II.11)

Both definitions, the integral length scales and the Taylor microscales, are commonly

used as characteristic fluid length scales in the definition of the Reynolds number of

HIT.

Further information can be extracted from the velocity autocorrelation in spectral

space. Applying the Fourier transform to the velocity autocorrelation tensor (with-

out normalization) gives the velocity spectrum tensor

Fij(k) =
1

(2π)3

ˆ
〈ui(x)uj(x

′)〉e−ik·rdr, (II.12)
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where k is the wave vector. Averaging over spherical shells in wave number space,

i.e., wave vectors with the same magnitude, leads to the kinetic energy spectrum

E(k) =
1

2

ˆ
k=|k|

Fii(k)dS(k). (II.13)

The kinetic energy spectrum is a scalar function that depends on a scalar variable,

the magnitude of the wave vector k = |k|, and contains information on how much

kinetic energy flow structures of a particular wave number possess.

Richardson [105] formulated that kinetic energy does not remain static at flow struc-

tures of specific size l, but rather is transferred to flow structures of a smaller size.

The flow structures are termed eddies or whorls, and lack a precise definition. The

inertial effects of the large eddies outweigh the effect of viscosity, while the small

eddies are dominated by viscous effects. In between, Richardson [105] reports a

successive break up of larger eddies into smaller eddies, until the smallest eddies

are, eventually, dissipated by the viscosity. This process is referred to as the energy

cascade. Tsinober [126] criticizes Richardson’s description of the energy cascade

mainly because of the ambiguous definition of eddies. Mathematically, the energy

transfer is between Fourier modes or wave numbers and caused by the non-linear

and non-local (in spectral space) interactions of the advective term in the NSE. In

contradiction to the energy cascade of Richardson, the energy transfer is bidirec-

tional and non-local, i.e., energy can also be transferred from large wave numbers

to small wave numbers and the energy transfer does not exclusively occur among

neighboring wave numbers but potentially across the whole range of wave numbers.

The ideas of Richardson are formalized by Kolmogorov [62] under the assumption

that for turbulent flows of sufficiently high Re, the small scales, i.e., the scales that

are much smaller than largest length scales of the flow, l0, are isotropic in a sta-

tistical sense, i.e., ensemble averages are independent of the direction. There is

evidence, however, that the statistical isotropy of the small scales is violated at least

for anisotropic large scale turbulent motion [126]. In addition to the hypothesis of

local isotropy, Kolmogorov postulates the following first similarity hypothesis:

The locally isotropic small scale turbulent motion (l� l0) possesses probabil-

ity distributions that are uniquely determined by the kinematic fluid viscosity

νf and the ensemble averaged fluid dissipation 〈ε〉.

From the kinematic fluid viscosity, νf , and the ensemble averaged fluid dissipation,

〈ε〉, a length, time, and velocity scale can be defined that characterize the smallest
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flow structures, the Kolmogorov scales

η =

(
ν3

f

〈ε〉

)1/4

, τη =

(
νf

〈ε〉

)1/2

, uη = (νf〈ε〉)1/4 . (II.14)

A second similarity hypothesis is formulated by Kolmogorov concerning the scales

that are small enough to be assumed isotropic but much larger than the Kolmogorov

length scale:

The turbulent motion of scales η � l� l0 possesses probability distributions

that are uniquely determined by the ensemble averaged fluid dissipation 〈ε〉.

Based on the second similarity hypothesis, Kolmogorov derives relations for the

longitudinal fluid velocity structure functions of the order p

Sp(r) = 〈(u1(x + re1)− u1(x))p〉. (II.15)

By dimensional analysis, it can be concluded for the second order structure function

that

S2(r) ∝ 〈ε〉2/3r2/3. (II.16)

Likewise by dimensional arguments, the kinetic energy spectrum can be derived to

have the following functional form for the wave number range 2π/l0 � k � 2π/η

[96]

E(k) ∝ 〈ε〉2/3k−5/3. (II.17)

Figure II.1 shows the kinetic energy spectrum for HIT at Reλ = 75. The Taylor-

Reynolds number is defined as

Reλ =
λg
√
〈K〉2/3
νf

, (II.18)

where 〈K〉 = uiui/2 is the kinetic energy of the fluid per unit mass, typically just

referred to as kinetic energy of the fluid. For intermediate wave numbers, k = |k|,
i.e., 2π/l0 � k � 2π/η, there is indeed an almost constant slope of the kinetic

energy spectrum proportional to k−5/3, the so-called inertial range. For higher wave

numbers, the kinetic energy spectrum decreases rapidly, which is referred to as

dissipation range. The second similarity hypothesis does not hold in the dissipation
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Figure II.1: Kinetic energy spectrum of HIT at Reλ = 75.

range and the flow is substantially affected by the viscosity. The dimensional analysis

can be extended to structure functions of arbitrary order, such that the structure

function of order p is given as

Sp(r) ∝ 〈ε〉p/3rp/3. (II.19)

The third order structure function, S3(r), is an exception as an exact relation can

be analytically obtained from the NSE. Kolmogorov [61] expresses the Karman-

Howarth equation, an equation for the velocity autocorrelation directly derived from

the NSE [128], in terms of second and third order longitudinal structure functions.

In the statistically steady state, the Kolmogorov equation is

S3(r) = 6νf
∂S2(r)

∂r
− 4

5
〈ε〉r. (II.20)

According to the second similarity hypothesis, the structure functions are indepen-

dent of the viscosity in the inertial range. Therefore, the exact relation for the third

order structure function is obtained for the inertial range

S3(r) = −4

5
〈ε〉r. (II.21)

Contrary to Kolmogorov’s predictions, however, experimental measurements do not

confirm the predictions of equation (II.19) for p ≥ 4, which is commonly known as

anomalous scaling. These deviations are a consequence of the non-Gaussian statis-

tics of turbulence, which is commonly referred to as intermittency [96]. Although

the dimensions match, the ensemble averaging of the fluid dissipation is a somewhat
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Figure II.2: PDF of the longitudinal (a) and transverse (b) velocity gradients in

HIT at Reλ = 75 normalized by their standard deviation. The dashed lines

correspond to Gaussian functions for comparison.

arbitrary choice. Kolmogorov [63] proposed a refined theory to account for inter-

mittency. The non-Gaussian behavior of the dissipation becomes evident in figure

II.2, where the probability density function (PDF) of the longitudinal and trans-

verse velocity gradients, A11 = ∂u1/∂x1 and A12 = ∂u1/∂x2, are shown normalized

by their respective standard deviations, σ11 and σ12. In HIT, the dissipation can be

expressed as [41]

〈ε〉 = νf

〈
∂ui
∂xj

∂ui
∂xj

〉
= 15νf

〈(
∂u1

∂x1

)2
〉

=
15

2
νf

〈(
∂u1

∂x2

)2
〉
. (II.22)

The tails of the PDFs of the velocity gradients are significantly wider than the

tails of a Gaussian, a phenomenon which becomes increasingly dominant for higher

moments. The power of the ensemble averaged dissipation, 〈ε〉p, and the ensemble

average of the power of the dissipation, 〈εp〉, increasingly deviate from each other

for increasing p. The non-Gaussian PDFs are an important quantitative measure to

identify turbulence and not straightforward to reproduce in artificial turbulence.

The kinetic energy of the fluid, K, is governed by the kinetic energy transport

equation, which is obtained by contracting the momentum equation (II.2) with the

fluid velocity [96]

ρf
∂K

∂t
+ ρf

∂ujK

∂xj
= −∂uip

∂xi
+ µf

∂2K

∂xj∂xj
− µf

∂ui
∂xj

∂ui
∂xj

. (II.23)
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The kinetic energy of the fluid is advected by the local fluid velocity (second term

on the left-hand side), redistributed by the pressure (first term on the right-hand

side), diffused (second term on the right-hand side), and dissipated (last term on

the right-hand side). After ensemble averaging, terms of the form ∂(...)/∂xj can be

shown to vanish in HIT (see, e.g., George [41]), such that the ensemble averaged

kinetic energy evolves according to

ρf
∂〈K〉
∂t

= −µf

〈
∂ui
∂xj

∂ui
∂xj

〉
= −ρf〈ε〉. (II.24)

Since the right-hand side is never positive, the fluid dissipation only removes kinetic

energy from the flow. The fluid dissipation is the only term that alters the ensemble

averaged kinetic energy of the flow, the remaining terms of equation (II.23) solely

redistribute kinetic energy in space and in spectral space.

The energy cascade as described by Richardson [105] suggests that flow structures

of different scales interact with each other. The interscale momentum and kinetic

energy exchange is typically studied by decomposing the flow quantities into large

scale and small scale contributions [12, 44, 56, 68], which has practical relevance in

LES. This is achieved by filtering the flow quantity, Φ, with a filter kernel, G, by

convolution

Φ̃(x, t) =

ˆ

Ω

G(|x− y|)Φ(y, t)dVy, (II.25)

where Ω is the flow domain and Φ̃ is the filtered flow quantity. The filter kernel,

which is assumed to be homogeneous and isotropic, must satisfy

ˆ

Ω

G(|x|)dVx = 1. (II.26)

Therefore, flow quantities can be additively decomposed into a large scale contribu-

tion, Φ̃, and a small scale contribution, Φ′ = Φ− Φ̃, or, more precisely, a filtered and

a subfilter contribution. Applying the filtering operation to the NSE leads to the

governing equations for the large flow scales, the filtered Navier-Stokes equations

(FNSE),

∂ũi
∂xi

= 0, (II.27)

ρf
∂ũi
∂t

+ ρf
∂ũiũj
∂xj

= − ∂p̃

∂xi
+

∂

∂xj

[
µf

(
∂ũi
∂xj

+
∂ũj
∂xi

)]
− ρf

∂τij
∂xj

, (II.28)
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where τij is the subfilter stress tensor, often also referred to as subgrid-scale stress

tensor, and given as

τij = uiuj
: − ũiũj. (II.29)

The subfilter stress tensor arises from filtering the non-linear advective term in the

NSE and represents exchange of momentum between filtered and subfilter scales.

The subfilter stress tensor also influences the kinetic energy of the filtered scales,

which becomes evident by considering the evolution of the ensemble averaged kinetic

energy of the filtered scales, KF = ũiũi/2,

ρf
∂〈KF〉
∂t

= −µf〈2S̃ijS̃ij〉+ S̃ijτij (II.30)

which is obtained by contracting equation (II.28) with ũi and subsequently ensemble

averaging, where S̃ij is the filtered strain-rate tensor and defined as

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (II.31)

Note that the following relation can be assumed in incompressible HIT [96]

〈2S̃ijS̃ij〉 =

〈
∂ũi
∂xj

∂ũi
∂xj

〉
, (II.32)

since the terms of the form ∂(...)/∂xj vanish in HIT. The subfilter stress term causes

non-linear energy transfer by scale local and scale non-local vortex stretching and

strain self-amplification and the interactions of large scale strain with small scale

strain vorticity covariance [57]. Overall, the subfilter stress term removes energy

from large scales but can be locally negative, which is commonly known as energy

backscatter or the backward energy cascade.

By subtracting the FNSE from the NSE, the governing equations for the small flow

scales are obtained, the subfilter Navier-Stokes equations (SFNSE)

∂u′i
∂xi

= 0, (II.33)

ρf
∂u′i
∂t

+ ρf
∂

∂xj

(
ũiu
′
j + u′iũj + u′iu

′
j

)
= − ∂p

′

∂xi
+

∂

∂xj

[
µf

(
∂u′i
∂xj

+
∂u′j
∂xi

)]
+ ρf

∂τij
∂xj

(II.34)
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The advection in the SFNSE consists of three contributions, namely (from left to

right) the straining term, the sweeping term and the non-linear relaxation term.

It can be argued that if |〈ũi〉| � |〈u′i〉|, the magnitude of the non-linear relaxation

term is negligible compared to the other terms. This turns out to be valid in flows of

strong large scale strain and is the fundamental assumption of the rapid distortion

theory (RDT), i.e., the linearization of the SFNSE (see, e.g., [54, 96]). Laval et al.

[68] solve the linearized SFNSE together with the FNSE in HIT and observe an

overestimation of the kinetic energy spectrum in the dissipation range and the degree

of intermittency. They conclude that the non-linear relaxation term attenuates the

intermittency and propose to replace it with either a constant additional viscosity

or the following expression, which is obtained using renormalization groups [16]

ν ′t(k) =

ν2
f +

2

5

∞̂

k

q−2E(q)dq

1/2

− νf , (II.35)

where ν ′t is the additional turbulent viscosity.

II.2 Characterization of particle-laden turbulence

II.2.1 Influence of the turbulence on the particles

The complexity of a turbulent flow is further increased if the fluid is suspended with

particles. The momentum balance for each individual particles is given by Newton’s

second law, neglecting body forces such as gravity,

dv

dt
=

1

ρpVp

F f , (II.36)

where v is the velocity of the particle, ρp is the density of the particle, and Vp is the

particle volume. The particle position, xp, follows as

dxp

dt
= v. (II.37)

The fluid dynamical force acting on the particle is obtained by integrating the pres-

sure and viscous stresses of the fluid over the particle surface, ∂Ωp,

Ff,i =

ˆ

∂Ωp

(
−pδij + µf

(
∂ui
∂xj

+
∂uj
∂xi

))
njdA, (II.38)

29



Chapter II: Fundamentals of particle-laden turbulence

where δij is the Kronecker delta and nj is the normal vector on the particle surface

pointing outward from the particle surface into the fluid.

For an analytical evaluation of the fluid dynamical force acting on the particle, the

fluid velocity and pressure field of the flow around the particle have to be known,

which is generally not the case. Under the assumption of a particle moving slowly in

viscous fluid, i.e., a very small particle Reynolds number, Rep = dp|u(xp) − v|/νf ,

where dp is the diameter of the spherical particle, the fluid dynamical force can

be evaluated analytically under some circumstances by solving the unsteady Stokes

equations instead of the NSE

∂ui
∂xi

= 0, (II.39)

ρf
∂ui
∂t

= − ∂p

∂xi
+ µf

∂

∂xj

[(
∂ui
∂xj

+
∂uj
∂xi

)]
. (II.40)

A variety of physical mechanisms can be identified that contribute to the fluid dy-

namical force that are collectively accounted for by the Basset-Boussinesq-Oseen

equation under the assumption of uniform Stokes flow [8, 13, 91]. The Maxey-Riley-

Gatignol equation [40, 84] additionally accounts for curvature of the free stream flow

by incorporating the Faxén correction [33]. In many flow configurations, however,

some of the forces contribute only negligibly to the total fluid dynamical force. A

review of the influence of the various forces in different flow regimes is provided

by Kuerten [67]. In flows with a density ratio ρp/ρf � 1, such as in the presently

considered particle-laden gas flows, the drag force is usually the dominant fluid

dynamical force contribution. For spherical particles that are smaller than the Kol-

mogorov length scale in locally nearly uniform flow with negligible particle rotation,

dynamical lift forces on the particle are negligible. In dilute flows with small particle

volume fractions εp � 1, the fluid dynamical force on the particle can be approx-

imately assumed to be independent of the flow modification due to other ambient

particles. Under all the mentioned restrictions, the fluid dynamical force acting on

the particle is given as

F f = FD, (II.41)

where FD is the drag force on an isolated spherical particle in uniform flow.

The behavior of the considered particles in HIT is characterized by the Stokes num-

ber, St, a measure of the required time it takes particles to adapt to local changes of

the flow. The Stokes number is defined as the ratio of the particle relaxation time

30



II.2: Characterization of particle-laden turbulence
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Figure II.3: Illustration of the dispersion of a particle pair.

to the characteristic fluid time scale

St =
τp

τη
, (II.42)

where τη is the Kolmogorov time scale and the particle relaxation time for particles

in the Stokes regime is given as

τp =
ρpd

2
p

18µf

. (II.43)

Dependent on the Stokes number, particle pairs, i.e., two particles of a specific initial

separation, δ(t = 0), exhibit distinct dispersion statistics in time. The distance

between the two particles, δ(t), may be tracked in time and ensemble averaged,

which yields the particle pair dispersion defined as

〈δ〉(t) = 〈|xp0 − xp1|〉, (II.44)

where xp0(t) and xp1(t) are the positions of the two particles. This particle-pair

dispersion is illustrated in figure II.3. For small Stokes numbers, the particles follow

the spatially correlated motion of the turbulent flow before they rapidly disperse and

reach their maximum separation, which is defined by the size of the periodic domain.

For large Stokes numbers, particles are less affected by the local fluid velocity and

possess statistically higher relative velocities even at small distances. Therefore, the

particles rapidly disperse without a pronounced phase of correlated motion.

Based on the momentum balance of a particle in Stokes flow
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dv(t)

dt
=

u@p(t)− v(t)

τp

, (II.45)

Csanady [24] analytically derives a relation for how particles respond to the tem-

poral modes of the local fluid velocity. The fluid velocity at the particle position is

abbreviated as u@p(t) = u(xp(t), t). The temporal Fourier transform of the particle

momentum balance reads

(1 + iωτp)v̂(ω) = û@p(ω), (II.46)

where i is the imaginary unit and ω is the frequency. After taking the dot product

of the equation with their respective complex conjugate, which is indicated by the

superscript ?, the modal particle kinetic energy response, Ep(ω), is obtained as a

function of the local modal fluid kinetic energy, Ef(ω),

Ep(ω) = H2(ω)Ef(ω), (II.47)

where Ep(ω) = v̂(ω)·v̂?(ω)/2, Ef(ω) = û@p(ω)·û?@p(ω)/2, and the response function

is given as

H2(ω) =
1

1 + ω2τ 2
p

. (II.48)

The response function shows that the particle kinetic energy increasingly lags behind

the fluid kinetic energy for increasing particle relaxation times (large particles, dense

particles, and small fluid viscosity) and for increasing frequency. Therefore, parti-

cles can follow the slow fluid motion well, but cannot respond to fast fluid velocity

changes. In turbulent flows, small frequencies (temporal modes) mainly correspond

to small wave numbers (spatial modes) and large frequencies to large wave numbers.

Hence, particles follow large scale fluid motion better than small scale fluid motion.

The motion of a spherical particle in turbulent flow at small particle Reynolds num-

bers can be further analyzed by considering the differential equation system con-

sisting of equation (II.37) and equation (II.45). After sufficiently long times, the

solution in a turbulent flow is qualitatively independent of the initial conditions.

The formal solution of the differential equation system with the initial conditions

xp(t = 0) = 0 and v(t = 0) = 0 is given as

xp(t) =

ˆ t

0

u(xp(t′), t′)
[
1− e−(t−t′)/τp

]
dt′. (II.49)
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Integrating by parts and truncating errors of the order of O(τ 2
p) gives

xp(t) =

ˆ t

0

u(xp(t′), t′)dt′ − τpu(xp(t), t) +O(τ 2
p), (II.50)

and after differentiating with respect to time

v(t) = u(xp(t), t)− τp
du(xp(t), t)

dt
+O(τ 2

p), (II.51)

where the operator d/dt applied to the fluid velocity indicates the time derivative

along a particle trajectory. The temporal derivative of the fluid velocity along a

particle trajectory may be approximated as

du(xp(t), t)

dt
=
∂u(xp(t), t)

∂t
+ v · ∇u(xp(t), t)

=
∂u(xp(t), t)

∂t
+ u(xp(t), t) · ∇u(xp(t), t) +O(τp), (II.52)

which yields the following approximation for the particle velocity of particles with

small particle relaxation times derived by Maxey [83]

v(t) = u(xp(t), t)− τp

(
∂u(xp(t), t)

∂t
+ u(xp(t), t) · ∇u(xp(t), t)

)
+O(τ 2

p).

(II.53)

By taking the divergence of the approximation of the particle velocity, it becomes

evident that the particle velocity possesses sources and sinks

∇ · v = 2τpQ+O(τ 2
p), (II.54)

where Q is the second invariant of the fluid velocity gradient tensor

Q =
1

2
(ΩijΩij − SijSij) , (II.55)

and the rotation-rate tensor is given as

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (II.56)

Note that the evaluation of the divergence operator applied to the particle velocity, a

Lagrangian quantity, requires an infinite number of uniformly distributed particles.

A spatial derivative is not defined for a single particle.
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St = 1 St = 2 St = 8

Figure II.4: Clustering of particles of three different Stokes numbers in HIT at

Reλ = 75. The particle positions are projected from a slice of thickness η.

Equation (II.54) shows that for particles of small τp, strain leads to negative di-

vergence (particles are attracted) and rotation to positive divergence (particles are

expelled). This clustering of particles is indeed observed in simulations and experi-

ments and strongly depends on the Stokes number. At very small Stokes numbers,

particles follow the streamlines of the divergence-free fluid velocity almost perfectly

and, hence, do not exhibit significant clustering. At large Stokes numbers, particles

are weakly influenced by the turbulent velocity fluctuations and experience them as

pseudo random homogeneous and isotropic forcing, which yields a nearly uniform

particle distribution. There are different explanations for the clustering of particles

at intermediate Stokes numbers. The vortex centrifuge mechanism states that par-

ticles cannot completely follow the curved streamlines in vortical structures because

of the centrifugal force and, therefore, are less likely to be found in these regions of

the flow [5, 14]. The sweep-stick mechanism proposed by Chen et al. [20], explains

particle clustering by an accumulation of particles in zero fluid acceleration regions.

According to either of the mechanisms, however, the reproduction of particle clus-

tering requires the particles to be transported with a vector field of similar spatial

and temporal structure as real turbulence.

Figure II.4 shows the clustering of particles with St = 1, St = 2, and St = 8 in HIT.

It is clearly observed that the density and the shape of the particle clusters depends

on the Stokes number. Particles with St = 1 produce many small clusters of high

density and regions that are completely particle-free. Increasing the Stokes number

to St = 2 yields slightly coarser clusters because of the reduced tendency of particles

to follow the small flow structures. Particles with St = 8 are much more uniformly

distributed but some coarse regions of increased particle density are still observed.
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II.2.2 Influence of the particles on the turbulence

With increasing mass fraction, φ = mp/mf , where mp is the total mass of the

particles and mf is the fluid mass, the impact of the particles on the turbulence

increases. The governing equations of the fluid (II.1) and (II.2) do not change in the

particle-laden case, solely additional boundary conditions for the velocity and the

pressure at the particle surface are required. The additional boundary conditions

may effect the turbulence severely, such that characteristic features of single-phase

turbulence, e.g., the inertial range slope of the kinetic energy spectrum, do not

persist. Because of the Eulerian description of the fluid flow and the Lagrangian

description of the particles, drawing theoretical conclusions is intricate. A common

simplification to analyze the effect of small particles on turbulence is to set the

particle size to zero. The boundary conditions degenerate to zero-dimensional points

and the fluid momentum balance becomes (see, e.g., Boivin et al. [11], Elghobashi

and Truesdell [32], Ferrante and Elghobashi [36], Maxey [81], Maxey and Patel

[82], Maxey et al. [85], Squires and Eaton [116])

ρf
∂ui
∂t

+ ρf
∂uiuj
∂xj

= − ∂p

∂xi
+ µf

∂

∂xj

[(
∂ui
∂xj

+
∂uj
∂xi

)]
−
∑
q

δ(x− xp,q)Ff,q,i (II.57)

where δ(x − xp) is the Dirac distribution and q the index of a particle. With the

point-particle assumption, the ensemble averaged transport equation of the fluid

kinetic energy (II.24) can be extended to particle-laden HIT [86, 119, 129]

d〈K〉
dt

= −〈ε〉+ φ〈Φp〉, (II.58)

where 〈Φp〉 is the ensemble averaged particle energy exchange term in Stokes flow.

Note that averaging over the fluid volume is equivalent to ensemble averaging in HIT.

Approximating the particle velocity for small particle relaxation times according

to equation (II.53), the ensemble averaged particle energy exchange term can be

expressed as

〈Φp〉 = −
ˆ

Ω

∑
q

u ·
(
u− vq
τp

)
δ(x− xp,q)dV

= −
ˆ

Ω

∑
q

(
∂K

∂t
+ uj

∂K

∂xj

)
δ(x− xp,q)dV +O(τp) = −d〈K〉

dt
+O(τp),

(II.59)
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The last equality holds for a sufficiently large number of uniformly distributed par-

ticles. Inserting the resulting expression into equation (II.58), gives [30]

〈Φp〉 =
1

1 + φ
〈ε〉+O(τp), (II.60)

and, hence

d〈K〉
dt

= 〈ε〉
(

φ

1 + φ
− 1

)
+O(τp). (II.61)

For small particle relaxation times, the particle energy exchange term adds energy

to the fluid, which is confirmed by Letournel et al. [71] using point-particle DNS.

Point-particle DNS rely on the point-particle assumption, which conserves the total

momentum but leads to an unphysical loss of energy of the fluid-particle mixture as

shown by Xu and Subramaniam [129]. However, the point-particle assumption is ex-

tensively used in studies of turbulence modulation by particles [11, 32, 36, 71, 77, 116]

and, at least partially, justified by Fröhlich et al. [38], Schneiders et al. [111], Sub-

ramaniam et al. [119], who show theoretically and with numerical simulations that

the point-particle approximation predicts a realistic fluid kinetic energy, although

the fluid dissipation and the particle energy exchange term differ from the actual

expressions.

Although the particle energy exchange term in the limit of vanishing particle re-

laxation time in equation (II.61) is positive, the ensemble averaged fluid kinetic

energy is not necessarily larger in the particle-laden case than in the single-phase

flow. In fact, the fluid dissipation is also a function of the mass fraction [77]. The

impact of particles smaller than the Kolmogorov length scale in turbulence on the

kinetic energy and its spectral distribution is investigated extensively in a variety

of studies [11, 32, 36, 71, 77, 116]. An important conclusion is that particles of

this size can attenuate or enhance turbulence dependent on the configuration. A

typically observed behavior is that the particles remove fluid kinetic energy from

the large flow scales and add kinetic energy to small scales relative to the corre-

sponding single-phase flow. To which extent the turbulence is modulated and which

scales are impacted, strongly depends on the parameters of the turbulence and the

particles. Typically investigated influence parameters for the turbulence modula-

tion by the particles include, e.g., the Stokes number, the mass fraction, the volume

fraction and the particle size with respect to the Kolmogorov length scale. Fig-

ure II.5 shows the kinetic energy spectrum of particles with three different Stokes

numbers compared to the corresponding single-phase kinetic energy spectrum. In
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Figure II.5: Kinetic energy spectrum of HIT at Reλ = 75 without particles and

with particles of three different Stokes numbers. The particle mass fraction is

φ = 1.0 for all of the three Stokes numbers and the simulations are conducted

using the point-particle assumption.

all of the three particle-laden cases, the particle mass fraction is φ = 1.0. For all

Stokes numbers, particles remove kinetic energy from the inertial range and add it

to the dissipation range. The amount of transferred energy and the point where the

single-phase kinetic energy spectrum is crossed differ between the Stokes numbers.

Particles of larger Stokes number remove more energy from the inertial range and

cross the single-phase kinetic energy spectrum at larger wave numbers. Based on

similar observations, Mallouppas et al. [77] propose an empirical correlation for the

particle energy transfer dependent on the wave number that resembles the transfer

of energy from the inertial range to the dissipation range by the particles. Apart

from HIT, however, the general understanding of turbulence modulation by particles

is very limited.
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Chapter III
Modeling of particle-laden

turbulence

III.1 Modeling the flow using LES

From a computational point of view, the simulation of turbulence of high Reynolds

numbers is demanding because of its multi-scale nature. In numerical simulations

of fluid flow, the governing equations (II.1) and (II.2) are discretized using a com-

putational grid, which results in an algebraic equation system that can be solved by

a computer. In HIT, the ratio of the largest flow scale, L, (minimal size of the com-

putational domain) to the Kolmogorov length scale, η, (the order of the largest size

of a computational grid cell) scales as L/η = O(Re3/4). Therefore, the number of

computational grid cells in a three-dimensional domain scales as O(Re9/4). Since the

ratio of largest to smallest time scale is proportional to O(Re1/2) and, independent

of the convergence order of the time integration scheme, the time step is typically

reduced linearly with the grid cell size for stability and consistency reasons [22], the

required computational resources are proportional to O(Re3) [106].

The question may be raised if all of the detailed flow features of the turbulent flow

are equally important or if there are applications where specific features of the flow

can be neglected and the essential behavior of the considered system is conserved.

This idea suggests to decompose the flow quantities into essential and less essential

contributions. Because of the non-linearity of the governing equations (II.1) and

(II.2), the less essential contributions affect the essential contributions and closures

are required. The Reynolds decomposition proposed by Reynolds [103], divides the

flow quantities into an ensemble averaged and a fluctuating component and forms

the basis of the widely used RANS simulations. In many flow configurations, how-
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ever, the ensemble averaged fluid velocity and pressure are not the essential flow

features. In HIT, for instance, the ensemble averaged fluid velocity and pressure

field is a constant value everywhere. In dynamic problems, such as vortex shedding

of the wake of an object, the ensemble averaged fields do not contain information

about the temporal dynamics of the flow. Essential features of the application, e.g.,

the fluid dynamical forces acting on the object, may be incorrect. More information

is retained by decomposing the flow quantities into large scales and small scales us-

ing the filtering operation defined in equation (II.25), which gives the filtered (large

scale) quantity, Φ̃, and the subfilter (small scale) quantity, Φ′. It can be argued that

the large scales are the essential scales in a turbulent flow because they possess the

majority of the kinetic energy as suggested by the steep slope of the kinetic energy

spectrum in the inertial range. Solving the FNSE (II.27) and (II.28) for the large

scales and providing a closure for the subfilter stress tensor, τij = uiuj
: − ũiũj, is

called LES [72, 106, 112, 115]. Note that in the scope of LES the subfilter stress

tensor is commonly referred to as subgrid-scale stress tensor and the subfilter scales

as subgrid scales. In the remainder of the thesis, the words subgrid and subfilter are

used interchangeably.

The size of the smallest flow structures of the filtered flow field increases with the

filter width of the filter kernel G. The size of the computational grid cells is typically

increased accordingly, which leads to fewer computational grid cells and, hence, less

computational effort. Increasing the filter width, however, results in a larger range

of scales that require modeling and the uncertainties in the calculation of the filtered

flow field increase.

In an LES of a single-phase flow, the interactions between the filtered scales and

the subgrid scales are fully contained in the subgrid-scale stress tensor. To compute

the subgrid-scale stress tensor, the fluid velocity, ui, is required, which is not known

in an LES. To derive models for the subgrid-scale stress tensor, it is instructive

to study the phenomenology of the interactions between filtered scales and subgrid

scales. The analysis is significantly simplified if the energetic interactions between

the scales are investigated instead of the momentum exchange. The subgrid-scale

stress tensor can either transfer energy from large to small scales or vice versa at

every point in space. Contracting the filtered momentum equation (II.28) with the

filtered fluid velocity ũi gives the transport equation for the local fluid kinetic energy

of the filtered scales KF = ũiũi/2 [12, 56]

ρf
∂KF

∂t
+
∂Jj
∂xj

= −2µf S̃ijS̃ij + ρfτijS̃ij, (III.1)
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with the spatial fluxes

Jj = ρf ũjKF + ũj p̃− 2µf ũiS̃ij + ρf ũiτij. (III.2)

The terms belonging to Jj transfer kinetic energy in space and can locally exchange

kinetic energy with the subgrid scales. However, since in HIT 〈∂Jj/∂xj〉 = 0,

the spatial fluxes, including the term with the subgrid-scale stress tensor, do not

contribute to the net energy transfer. The first term on the right-hand side of

equation (III.1) is the fluid dissipation, which always removes energy, especially in

high strain regions. The second term on the right-hand side of equation (III.1),

referred to as energy exchange term ρfΠ = −ρfτijS̃ij, includes the subgrid-scale

stress tensor and can potentially have a non-zero global mean. This term occurs

with opposite sign in the transport equation for the subgrid-scale kinetic energy

Ksgs = τii/2 (see, e.g., Ghate and Lele [44], Johnson [55]) and, therefore, represents

the energy exchange between the filtered and subgrid scales. Figure III.1 shows the

PDF of the energy exchange term in HIT. The fluid velocity field is obtained from a

DNS and is explicitly filtered using a spectrally sharp filter of three different cut-off

wave numbers kcut. The PDFs are skewed towards positive values and possess a

positive mean, which results in a net energy transfer from the filtered scales to the

subgrid scales. The larger the filter width, the more energy is removed, on average,

from the filtered scales. The energy transfer from large to small scales is commonly

referred to as forward energy cascade and the opposite process of energy transfer

from small to large scales as backward energy cascade. It is worth noting that the

energy is not necessarily transferred from the smallest filtered scales to the largest

subgrid scales. Because of the spectral non-locality of the energy exchange, even the

largest filtered scales and smallest subgrid scales can exchange energy [126]. The

phenomenological observation that, on average, the subgrid-scale stress tensor acts

as an energy sink in HIT motivates the modeling of the subgrid-scale stress tensor

using an additional viscosity. According to the Boussinesq hypothesis, the modeled

subgrid-scale stress tensor is expressed as [106]

τmod,ij −
1

3
τmod,kkδij = −2νtS̃ij, (III.3)
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Figure III.1: PDF of the normalized energy exchange term of the explicitly filtered

velocity field of HIT. The fluid velocity field is filtered with a spectrally sharp

filter of three different cut-off wave numbers kcut. The vertical dotted lines

indicate the mean values.

where νt is an additional (kinematic) turbulent viscosity. Therefore, the modeled

filtered momentum equation of the fluid is given as

ρf
∂ũi
∂t

+ ρf
∂ũiũj
∂xj

= −∂P̃
∂xi

+
∂

∂xj

[
(µf + ρfνt)

(
∂ũi
∂xj

+
∂ũj
∂xi

)]
, (III.4)

where the trace of the subgrid-scale stress tensor is absorbed by the modified pres-

sure, P̃ .

To derive expressions for the turbulent viscosity, strong assumptions are required

that are, at most, valid only in very specific flow configurations. If it is assumed

that the energy that is transferred to the small scales is instantaneously dissipated

by the small scales such that the kinetic energy spectrum remains constant, i.e., the

turbulence is in local equilibrium, the dissipation induced by the turbulent viscosity

equals the viscous dissipation of the subgrid scales. Additionally, a model spectrum

for HIT has to be assumed to obtain an expression for the viscous dissipation. This

leads to the Smagorinsky model for the turbulent viscosity [115]

νt = (CS∆)2(2S̃ijS̃ij)
1/2, (III.5)

where ∆ is the filter width and CS is a constant. Note that the outlined derivation is

only valid for the ensemble averaged turbulent viscosity and there is no theoretical

justification for evaluating the turbulent viscosity in the widely used form of equation

(III.5). The constant CS is typically chosen in the range 0.1 ≤ CS ≤ 0.2 [21, 26] or
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computed dynamically [42, 73].

Unless the turbulent viscosity is locally negative, the effect of the modeled subgrid-

scale stress tensor is exclusively dissipative, which is contrary to what is observed in

figure III.1. An improved model for the subgrid-scale stress tensor that is capable

of modeling the backward energy cascade is the localized dynamic kinetic energy

model (LDKM) of Menon and coworkers [59, 88] according to which

τmod,ij = −2νtS̃ij +
2

3
Ksgsδij, (III.6)

where the turbulent viscosity is a function of the subgrid-scale kinetic energy

νt = Ck∆
√
Ksgs. (III.7)

The subgrid-scale kinetic energy is not available in an LES but it can be estimated

with the transport equation [72, 88]

∂Ksgs

∂t
+ ũi

∂Ksgs

∂xi
= −τmod,ij

∂ũi
∂xj
− Cε

K
3/2
sgs

∆
+

∂

∂xi

(
νt
∂Ksgs

∂xi

)
. (III.8)

With this procedure, severe limitations of the Smagorinsky model are mitigated.

The turbulence does not necessarily have to be in local equilibrium, because energy

that is transferred to the subgrid scales can accumulate, be transferred back to

large scales or dissipate. Furthermore, the direction of the energy transfer is not

predetermined but can be in both directions dependent on the local flow. The

constants Ck and Cε are computed dynamically to match the subgrid-scale stress

tensor and dissipation at a larger filter level. The dynamic computation allows the

constant Ck to be negative, which mimics the backward energy cascade.

A fundamental limitation of the turbulent viscosity models for the subgrid-scale

stress tensor following the Boussinesq hypothesis according to equation (III.3) is

that they are constructed to replicate the energetic effect of the subgrid-scale stress

tensor and disregard its effect on the fluid momentum. A relatively strong correlation

can be observed between the energy exchange term computed with the turbulent

viscosity and computed by explicit filtering [21, 74], but poor agreement is observed

for the subgrid-scale stress tensor itself. The turbulent viscosity subgrid-scale models

result in a modeled subgrid-scale stress tensor that possesses Eigenvectors aligned

with those of the filtered strain-rate tensor. As shown by Horiuti [53], Tao et al.

[121, 122], however, the Eigenvectors of the subgrid-scale stress tensor obtained

by explicit filtering have a preferential alignment that clearly deviates from the
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Eigenvectors of the filtered strain-rate tensor. Tensor based subgrid-scale models

exist that predict excellent alignment and correlation with the subgrid-scale stress

tensor [12, 87] such as the scale similarity model proposed by Bardina et al. [6]

τmod,ij ∝ ũiũj − ũiũj, (III.9)

where . indicates filtering at a larger scale, or the so-called non-linear model accord-

ing to which the subfilter stress tensor is modeled as [70]

τmod,ij ∝ ∆2 ∂ũi
∂xk

∂ũj
∂xk

, (III.10)

which is essentially an approximation of the scale similarity model by means of a

first order spatial Taylor series expansion of the filtered fluid velocity. It is shown

analytically by Johnson [55] that the non-linear model exactly represents the mech-

anisms of filtered scale strain self-amplification and vortex stretching in the case

of a Gaussian filter. However, these two models predict too few energy transfer

towards the small scales and are, hence, not suitable for the most applications. The

subgrid-scale stress tensor of mixed models combines the scale similarity and tur-

bulent viscosity approach, which leads to a modeled subgrid-scale stress tensor that

predicts enough dissipation and relatively strong alignment with the subgrid-scale

stress tensor obtained from explicit filtering [74].

It is worth noting that there are several difficulties or even conceptional problems

associated to LES that require attention when new LES methodologies are applied

or developed. A detailed discussion exceeds the scope of this thesis but some of

these issues are briefly outlined in the following list.

• Practical applications of LES typically involve complex geometries that require

inhomogeneous and anisotropic computational grids. If the filter in these con-

figurations is adapted to the computational grid, additional closures arise [106].

Consequently, local grid refinement in LES is not straightforward since either

models for the additional closures have to be applied, or the large filter width

and, therefore, a potentially large modeling error persists in the whole domain.

• The discretization of the governing equation imposes a numerical error. If the

filter width in the subgrid-scale model is chosen too small, the numerical error

exceeds the impact of the modeled subgrid-scale stress tensor and dominates

the flow dynamics in a potentially undesired way. Subgrid-scale models exist,

the so-called implicit LES models, that tailor the numerical error to match
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the desired dynamics of the subgrid-scale stress tensor instead of explicitly

modeling it (see, e.g., Margolin et al. [80]).

• It can be argued that many subgrid-scale models are actually exact expres-

sions without any modeling error, as long as the filter kernel, G, is not speci-

fied. If a potentially anisotropic and inhomogeneous filter, G, exist, such that

τmod,ij = uiuj
: − ũiũj, the modeled subgrid-scale stress tensor is equal to the

exact subgrid-scale stress tensor. Even if no subgrid-scale model is applied at

all, the numerical error imposes an unknown filter that yields a subgrid-scale

stress tensor that exactly matches the discretization error. For interpretable

results, however, spatially compact, homogeneous, and isotropic filters are de-

sired. Strictly speaking, proposing subgrid-scale models without specifying the

targeted filter kernel is pointless. In the LES model development a top-hat or

Gaussian filter kernel is often implicitly assumed.

• LES are typically performed on a grid that is fine enough to resolve the highest

wave numbers occurring in the filtered velocity ũi. However, the non-linear

advective term ∂ũiũj/∂xj and the subgrid-scale stress tensor contain wave

numbers that are too large to be resolved by the grid, which can lead to

aliasing errors [65, 90]. Even an exact expression for the subgrid-scale stress

tensor may require an additional viscosity to dampen the aliasing errors and

to avoid instabilities as they are observed when applying the scale similarity

model or the non-linear model.

• The question may be raised if the division of turbulence into large and small

scales is a suitable decomposition of turbulence at all. There exist vortex

structures in turbulence that contain wave numbers very far apart, such as

elongated eddies or vortex filaments [126]. In LES, such structures are partially

resolved and must be partially modeled, which does not only require statistical

but fully localized knowledge of the subgrid scales. Furthermore, the energy

transferred to small scales and the dissipation are only weakly correlated, i.e.,

the energy is not dissipated where it is transferred to the small scales [12]. Both

facts suggest that it could be impossible to suitably model the subgrid-scale

stress tensor from knowledge of the large scale turbulence only.

• The fundamental assumption of LES that the large flow scales are the essential

flow scales is often, but not always, appropriate. It is shown in section III.4

that the small scales can significantly influence the dynamics of a particle-laden

turbulent flow and the subgrid turbulence may require explicit reconstruction.
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Figure III.2: Kinetic energy spectrum (a) and second invariant of the velocity

gradient tensor (b) obtained from the DNS and an LES with the LDKM of

HIT at Reλ = 75.

More detailed discussions and other difficulties of LES may be found in Pope [97],

Tsinober [126].

The effect that an LES has on flow quantities particularly relevant for particle-laden

flows is shown in figure III.2. The kinetic energy spectrum and the second invariant

of the velocity gradient tensor are compared between the DNS and an LES using the

LDKM. The kinetic energy spectrum of the LES possesses the majority of the kinetic

energy of the DNS but the small scales are absent. The PDF of the second invariant

of the velocity gradient tensor is very narrow in the case of the LES compared to

the DNS. Large strain and vorticity events predominantly occur at the small scales

because of the statistically higher probability of large velocity gradients. At least for

small particle relaxation times, analytical analysis suggests that the second invariant

of the velocity gradient tensor substantially influences the particle clustering (see

section II.2.1).

III.2 Coupling between flow and particles

The physical coupling between fluid and particles is by means of boundary condi-

tions. At the surface of the sphere, the fluid velocity is typically assumed to be equal

to the velocity of the particle, which consists in the case of a rigid particle of a su-

perposition of particle translational and rotational motion. The particle experiences
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a translational and rotational acceleration caused by the fluid dynamical stresses

at the particle surface. If the computational mesh possesses a sufficient number of

degrees of freedom on the particle surface, the boundary conditions can be directly

applied to the fluid and the fluid dynamical stresses on the particle surface can be

computed. Therefore, no additional modeling errors are introduced and solely the

discretization errors remain. The described methodology is commonly referred to

as particle-resolved simulation and limited to a relatively small number of parti-

cles, because the number of computational mesh cells rapidly reaches the maximum

of what is possible with currently available computational resources. Hence, it is

inevitable for flow configurations that include millions of particles to model the cou-

pling between fluid and particles.

The fluid-particle coupling is divided into the effect of the flow on the particles and

the modification of the flow by the particles. If only the effect of the fluid on the

particle is modeled, the simulation is commonly referred to as one-way coupled and

if both directions of interaction are considered it is referred to as two-way coupled.

Although collisions between particles are ignored in the present work, it is worth

mentioning that an additional inclusion of particle-particle interactions is called

four-way coupling.

Particle rotation is not considered in the present work and, therefore, the one-way

coupling problem consists of determining the fluid dynamical force acting on the

particle. As discussed in section II.2.1, the dominant force in a particle-laden gas

flow is the drag force, which can be estimated from empirical correlations, e.g., the

correlation of Schiller and Naumann [108], that assumes the fluid velocity at the

particle position to be equal to the uniform free stream velocity of the flow around

an isolated sphere. Note that the correlation of Schiller and Naumann [108] is not

applicable if other particles in the close vicinity disturb the flow significantly. In

this case, corrections for the mean drag and drag fluctuations are required, which is

still an active topic of research [1, 104].

The most common model for the two-way coupling is based on the point-particle as-

sumption that is introduced in section II.2.2. The particle momentum source in the

fluid momentum equation (II.57) contains the Dirac distribution, which is not suit-

able for numerical treatment. Different numerical methods differ in how the Dirac

distribution is regularized. Integrating the particle momentum source over a compu-

tational mesh cell Ωcell, which is consistent with the finite volume fluid discretization,

gives the particle momentum source according to the particle-source-in-cell (PSIC)
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method [23]

ˆ

Ωcell

∑
q

δ(x− xp,q)F f,qdV =
∑
q∈Ωcell

F f,q, (III.11)

where the latter sum indicates the sum over all particles belonging to the compu-

tational grid cell, Ωcell. Another option is to replace the Dirac distribution with a

Gaussian, which distributes the force from the particle across several computational

grid cells [81, 82]. Note however, that for particles of a size comparable to the size

of the smallest flow scales, considering the particles as points may introduce signif-

icant modeling errors. A consistent concept across all particle size to flow scale size

ratios is the volume-filtering [2, 17]. Analog to the spatial filtering applied in the

LES methodology, a filter is applied to the fluid-particle mixture, but the region of

integration is restricted to the volume occupied by the fluid, Ωf ,

εfΦ̃
vf(x, t) =

ˆ

Ωf(t)

G(|x− y|)Φ(y, t)dVy, (III.12)

where the fluid volume fraction is defined as

εf(x, t) =

ˆ

Ωf(t)

G(|x− y|)dVy. (III.13)

A filter width may be defined as a measure of the width of the filter kernel, G, that

determines the size of the smallest flow structures in the volume-filtered fluid ve-

locity field. Similar to the FNSE, the explicitly volume-filtered NSE are not closed

but contain terms that depend on flow quantities that are not volume-filtered. The

implications of these closures are not very clear and because of a lack of models, the

closures are typically neglected without much evidence or replaced with expression

that have not been proven to be appropriate in independent studies [17, 118]. In

a recent study, however, Hausmann et al. [52] systematically investigate the im-

pact of the closures and provide expressions for them. Since the volume-filtering

is inherently linked to LES filtering and even equal to LES filtering far away from

particles, it seems to be a promising alternative to the point-particle approach for

particle-turbulence coupling.
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III.3 Optimal basis functions for different physi-

cal quantities

One main objective of the present thesis is the reconstruction of a turbulent fluid

velocity field to predict the transport of particles in LES accurately. The recon-

structed turbulent fluid velocity field has to be represented by some kind of basis

functions. The choice of the basis functions plays a pivotal role for the physics that

can be represented and for the required computational costs to reconstruct the tur-

bulent fluid velocity field. In the present section, the concept of basis functions is

introduced, and some possible basis functions are assessed regarding their suitability

to represent a turbulent velocity field.

Given a function f : R 7→ R to be represented by an infinite series of orthogonal

basis functions, ϕi : R 7→ R, (see, e.g., Brunton and Kutz [15])

f(x) =
∞∑
i=0

ciϕi(x), (III.14)

where (ϕi(x), ϕj(x)) = 0 if i 6= j, the coefficients, ci, are given as

ci =
(f(x), ϕi(x))

(ϕj(x), ϕj(x))
. (III.15)

The inner product of two real functions f(x) and g(x) is defined as

(f(x), g(x)) =

ˆ
f(x)g(x)dx. (III.16)

Representing the function f(x) by an orthogonal basis is similar to a coordinate

transformation in linear algebra. For specific physical problems, some functional

bases are more suitable than others as they allow to truncate the series expansion

given in equation (III.14) after few terms while preserving the essential properties

of the physical system.

A common basis for turbulent flows is the Fourier basis, leading to the representation

of the function f(x) as a Fourier series expansion, which contains information about

the size of flow structures characterized by the wave number k. In turbulence, for

instance, the Fourier basis allows to compute the kinetic energy spectrum and to

obtain information on how much energy is contained in flow structures of a particular

size. However, the Fourier basis is limited in that it is not localized in physical space

because of the infinite support of the trigonometric basis functions, i.e., there is only
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Figure III.3: Visualization of the support in wave number space and real space

of different bases. The lengths of the rectangles in the respective coordinate

directions, δk and δx, illustrate the size of the support of the basis functions.

The figure is inspired by a figure from Brunton and Kutz [15].

information that a specific wave number exists with a specific magnitude, but not

on where it is localized in space.

Figure III.3 illustrates the support of different basis functions in physical space,

characterized by the position x, and in wave number space, characterized by the

wave number k. The support of the basis functions in wave number space and

physical space is determined by the length of the rectangles, δk and δx, respectively.

A physical basis consists of Dirac distributions at every point in space corresponding

to δx = 0 and, therefore, perfect localization in physical space. However, the support

of the Dirac distribution in wave number space in infinite, such that a physical basis

does not contain information on the wave number of turbulent structures. A Fourier

basis has zero support in wave number space and infinite support in physical space

and can perfectly localize wave numbers, but not where they occur in space.

In order to localize physical quantities in physical space and in wave number space,

the Fourier basis can be multiplied by a function that is compact (or at least rapidly

decaying) in physical and wave number space. If this function is a Gaussian, the

resulting basis is referred to as Gabor basis [100]. Note that the Gabor basis is

not orthogonal. According to the uncertainty principle, the support in physical and

wave number space cannot be arbitrarily reduced [15]. Decreasing the support in

physical space increases the support in wave number space and vice versa. The

Gabor basis is characterized by a constant support for all wave numbers, which is

not optimal. Small wave numbers characterize slow changes in space, which do not

require a high spatial resolution. Therefore, the support in physical space can be

wide for small wave numbers and a higher resolution in wave number space can be
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afforded. Large wave numbers on the contrary, rapidly change in space and require

a high spatial resolution to the cost of a wider support in wave number space. In

this case, more essential information can be captured with the same number of

coefficients as the Gabor basis. The wave number dependent support of the basis

functions is realized with wavelet basis functions, which are constructed by scaling

and shifting in physical space of a prototype function, the so-called mother wavelet

[25, 45].

Note that the optimal basis to represent a physical problem, such as turbulence, is

not always the basis with the most compression. If the turbulence is modeled, the

basis must provide the option of incorporating knowledge of the turbulence. Another

criterion is if the basis is able to significantly simplify the governing equations.

The Fourier basis, for instance, may transform differential equations into algebraic

equations, which is particularly useful to enforce that a vector field is divergence-

free. Although a wavelet basis does not possess this property, wavelet bases may be

constructed that are always divergence-free vector fields, independent of the choice

of coefficients [27, 28, 69].

III.4 LES of particle-laden turbulence

III.4.1 Interactions that require modeling

The fundamental assumption of LES that the large flow scales are sufficient to cap-

ture the essential behavior of the flow is violated if the particles are small enough,

such that their motion is substantially affected by the subgrid scales. The response

function, that is discussed in section II.2.1, shows that particles with a small particle

relaxation time are particularly influenced by the subgrid-scale fluid velocity (see

equation (II.48)). In the same section, the analysis of particles with small particle

relaxation times analytically demonstrates that the particles enhance the turbulent

kinetic energy proportionally to the fluid dissipation, which is a quantity that mainly

acts at the subgrid scales (see equation (II.61)). Both analyses suggest that knowl-

edge of the filtered flow scales does not ensure an accurate prediction of the particle

dynamics.

The momentum interactions between the turbulence and the particles are sketched

in figure III.4. The red arrows indicate the influence of the fluid on the particles by

means of the local fluid velocity field. A correct calculation of the drag force acting

on the particle requires knowledge of the sum of the filtered fluid velocity and the
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Figure III.4: Sketch of the interactions between filtered and subgrid scales and

particles.

subgrid-scale fluid velocity at the particle location

u(xp,q) = ũ(xp,q) + u′(xp,q). (III.17)

To conserve momentum, the same force that acts on the particles has to act with

opposite sign on the fluid. This feedback to the fluid is represented by the blue

arrows in figure III.4. Different ways of distributing the drag force over the fluid

are presented in section III.2, which are collectively represented by the particle

momentum source term, sp(x), that is added to the right-hand side of the single-

phase fluid momentum equation (II.2). Therefore, the particle momentum source

term can represent, e.g., the average of the drag forces of all particles found in a

computational cell according to the PSIC method introduced in section III.2

sp(x) = − 1

Vcell

∑
q∈Ωcell

FD,q, x ∈ Ωcell, (III.18)

where Vcell is the volume of a computational cell, or the sum of the drag forces spread

with the kernel G

sp(x) = −
∑
q

G(|x− xp,q|)FD,q. (III.19)

Note that the time dependencies are omitted for conciseness. Since the fluid flow is

considered to be split into filtered and subgrid-scale motion, the particle momentum

source term is divided as well, such that s̃p is applied to the FNSE and s′p to the
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SFNSE. The total momentum conservation requires

sp(x) = s̃p(x) + s′p(x). (III.20)

The interactions between the filtered and subgrid scales of the fluid are indicated

by green arrows in figure III.4 and represented by the subgrid-scale stress tensor in

the governing equations of the fluid. These interaction also exist in a single-phase

flow, but the knowledge of interscale momentum and energy exchange in single-phase

turbulence may not apply to the particle-laden case as the particles can substantially

modify the filtered and subgrid scales.

III.4.2 Modeling the effect of the unresolved turbulence on

the particles

The modeling of particle-turbulence interactions in the scope of an LES is discussed

separately for the one-way coupling and the two-way coupled case. One-way cou-

pling is assumed when the particles do not substantially modify the flow. Therefore,

the blue interaction in figure III.4 are neglected and the subgrid-scale stress tensor is

assumed to be similar to the subgrid-scale stress tensor in single-phase turbulence.

To accurately compute the drag force acting on the particle, the subgrid-scale ve-

locity at the particle position is required in addition to the filtered velocity. The

former requires modeling and the latter is approximated by solving the FNSE with

a modeled subgrid-scale stress tensor in an LES. A variety of studies exist that

demonstrate that particle clustering and dispersion of particles with Stokes num-

bers St = O(1) is poorly predicted if the particles are only transported with the

filtered fluid velocity field [3, 34, 76, 78, 98, 101].

The particle pair dispersion of particles with St = 1 is depicted in figure III.5 for

the DNS and an LES with the LDKM of HIT at Reλ = 75. Since the small fluid

velocity scales are absent in the LES, the particle pairs disperse slower than in the

DNS. The large scale velocity decorrelates much slower than the small scale veloc-

ity, which causes a small relative motion between the particles in the LES, even at

significant separations.

Figure III.6 shows the fluid velocity magnitude of HIT at Reλ = 75 and of the

corresponding filtered field together with particles of St = 2 that are transported

with the respective field. The subgrid-scale velocity, although only containing a

small fraction of the total kinetic energy of the flow, has significant impact on the

clustering of the particles. The fluid velocity field of the DNS yields many small
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Figure III.5: Comparison of the particle pair dispersion between the DNS and an

LES with the LDKM of particles with St = 1 in HIT at Reλ = 75.

particle clusters while the filtered fluid velocity causes the particles to form large

regions that almost contain no particles. In order to predict the correct particle

clustering for particles with Stokes numbers St = O(1), the subgrid-scale velocity

requires reconstruction in the scope of an LES.

The variety of models for the subgrid-scale velocity in LES can be generally clas-

sified into two groups, Lagrangian models that reconstruct the fluid velocity only

at the particle positions and evolve this Lagrangian fluid velocity for each particle

individually, and the structural models that reconstruct the continuous fluid velocity

field at every point in the domain.

Lagrangian models [9, 10, 35, 60, 98, 114] aim to reconstruct the subgrid-scale fluid

velocity at the position of the particle, u′@p,q(t) = u′(xp,q, t), using a Langevin equa-

tion of the form

du′@p,q = Adt︸︷︷︸
drift term

+ B · dW︸ ︷︷ ︸
diffusion term

, (III.21)

where du′@p,q(t) = u′@p,q(t + dt)− u′@p,q(t) and dW is an increment of an vectorial

Wiener process, i.e., Gaussian white noise. The first term on the right-hand side of

equation (III.21) is a deterministic term containing information about the previous

subgrid-scale velocity and filtered quantities. The second term on the right-hand side

of equation (III.21) is a stochastic term representing the uncertainties from missing

subgrid-scale information and the diffusive characteristic of turbulence. The dif-

ferent Langrangian models differ in how the drift and diffusion terms are modeled

[9, 10, 35, 60, 98, 114]. Although the Lagrangian models are simple to implement,
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DNS filtered

Figure III.6: Fluid velocity magnitude of HIT at Reλ = 75 (top left) and the

corresponding filtered velocity field (top right). Below, the positions of particles

of St = 2 that are transported with the respective velocity field are shown.
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computationally efficient, and can be relatively easily adapted to different boundary

conditions, they cannot reproduce the right spatial velocity correlations. By con-

struction, particles that are close together may experience different fluid velocities

because of the diffusion term. Consequently, Lagrangian models fail to predict ac-

curate particle clustering and are strongly dependent on model parameters [19, 78].

Recent advances suggest that structural models that reconstruct the entire subgrid-

scale fluid velocity field are more promising to replicate the particle statistics of

a DNS in an LES [7, 102, 131]. A spatially continuous field allows to incorporate

knowledge about spatial correlations in turbulence. However, other difficulties arise,

such as ensuring that the generated field is divergence-free and is capable of repre-

senting inhomogeneous and anisotropic fluid velocity fields.

Kinematic simulation based structural models reconstruct the subgrid-scale velocity

by generating random divergence-free Fourier modes, such that the subgrid-scale

velocity is approximated as [39, 64, 75]

u′(x, t) =
∑
m

Am cos(km · x + ωmt) + Bm sin(km · x + ωmt), (III.22)

where km is the wave number vector of the mode m, ωm is the frequency correspond-

ing to the mode m, and Am and Bm are the Fourier coefficient vectors. To obtain a

divergence-free velocity, the coefficient vectors are chosen such that Am ·km = 0 and

Bm · km = 0. Their magnitude is chosen, such that a desired kinetic energy spec-

trum is replicated. When applied to LES of particle-laden turbulence, the particle

clustering is improved for St ≥ 2 but for small Stokes numbers only minor improve-

ments compared to the LES are observed [102, 131]. Kinematic simulations do not

recover the right structure of turbulence, e.g., they cannot accurately predict the

second invariant of the velocity gradient tensor, which is crucial for the clustering

of particles with small Stokes numbers. Another problem of kinematic simulations

is that the Gaussian distribution of the Fourier coefficient vectors is contrary to the

intermittent (non-Gaussian) behavior of turbulence. Furthermore, it is problematic

from a practical point of view that the kinetic energy spectrum is required, which is

not known in an LES, and that the Fourier modes are homogeneous and isotropic,

which limits the application of kinematic simulations to HIT.

The approximate deconvolution method is a simple approximation of the unfiltered

velocity using the successively filtered velocity [66, 113, 117, 127]. The fluid veloc-

ity field may obtained by truncating the following series expansion after sufficiently
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many terms

u =
∞∑
p=0

(1−G∗)pũ, (III.23)

where ∗ indicates the convolution operation. The approximate deconvolution proce-

dure does not introduce wave numbers that are larger than the wave numbers of the

LES. A related method is the dynamic differential filter method proposed by Park

et al. [94]. Since the deficiency of small scale velocity features remains, the improve-

ments in predicting the particle clustering compared to an LES are relatively small.

Domaradzki and Loh [29] propose to compute the subgrid-scale velocity on a refined

grid by extrapolation of the non-linear term, which gives a subgrid-scale velocity

that is not divergence-free without further interventions. Bassenne et al. [7] com-

bine the extrapolation of Domaradzki and Loh [29] with the dynamic differential

filtering of Park et al. [94]. Although accurate particle clustering is predicted, the

model requires a projection operation on a very fine computational grid diminishing

the advantage of the small computational costs of the LES.

Another class of models reconstructs the subgrid-scale fluid velocity by solving the

SFNSE linearized according to the RDT [31, 43, 44]. A fundamental advantage

is that subgrid-scale velocity field possesses directional dependencies based on the

filtered fluid velocity field. In the case of a turbulent shear flow, for instance, the

subgrid-scale velocity adapts accordingly following RDT. Ghate and Lele [43] use

Gabor modes to represent the subgrid-scale fluid velocity and achieve excellent agree-

ment with the velocity field in the planetary boundary layer. However, the generated

velocity is not perfectly divergence-free and the Gabor modes require reinitialization

to prevent them from decaying.

The approximate solution of the linearized SFNSE according to the RDT shows

promising reconstructions of the subgrid-scale velocity in previous studies, which is

why the models proposed in the scope of the present thesis follow a similar direction

[47, 51]. Particularly relevant to predict the right particle clustering is to reproduce

the second invariant of the velocity gradient tensor. To predict the right particle

dispersion, the spatial velocity correlations and intermittency of the subgrid-scale

velocity have to be reproduced. As shown previously, RDT can theoretically provide

a framework to capture these statistics [68]. It is not clear, however, what is the

most suitable type of basis functions to represent the subgrid-scale velocity. At least

the following properties of the basis have to be considered:
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• The computational costs should be of the order of the LES and, hence, the

number of degrees of freedom to represent the subgrid-scale velocity must be

reduced compared to a physical basis. The functional basis has to be able to

represent the essential features of the subgrid-scale velocity by a small number

of degrees of freedom. Representing the subgrid-scale velocity in physical space

requires sampling on a very fine computational grid and is not suitable.

• Since the subgrid-scale velocity is divergence-free, this property should be

either satisfied by construction (e.g., by divergence-free basis functions), or it

should be possible to easily enforce it (in spectral space the projection is an

algebraic equation).

• The basis should provide a sufficient localization in spectral space to be able

to distinguish between filtered and subgrid-scale velocity and to incorporate

spectral space knowledge of turbulence, such as the kinetic energy spectrum.

• The basis should provide a sufficient localization in physical space to represent

statistically inhomogeneous subgrid-scale velocity fields.

Every potential functional basis is typically a compromise of these properties. How-

ever, if the methodology around the chosen functional basis is designed well, some

of the disadvantageous properties may be diminished. In the scope of the present

thesis, a model is developed that reconstructs the subgrid-scale velocity represent-

ing it with a Fourier-basis [47] and another model that represents the subgrid-scale

velocity using divergence-free wavelets [51].

III.4.3 Modeling the effect of the particles and the inter-

scale fluid interactions

After modeling the effect of the subgrid-scale velocity on the particle motion (red

interactions in figure III.4), the treatment of the influence that the particles have on

the flow (blue interactions in figure III.4) and the interactions between the filtered

and the subgrid scales (green interactions in figure III.4) remain to be specified. The

literature on these interactions is very sparse. Although some models for the subgrid-

scale stress tensor under the influence of particles exist [93, 107, 130], their accuracy

has to be proven in standardized test cases, such as HIT. A major difficulty is that

the modeling of the subgrid-scale stress tensor requires consistent coupling with the

model that provides the subgrid-scale fluid velocity. The trace of the subgrid-scale
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stress tensor is the subgrid-scale kinetic energy, which has to be consistent with the

kinetic energy of the generated subgrid-scale velocity, u′. The subgrid-scale con-

tribution of the particle momentum source, s′p, which is influenced by u′, modifies

the subgrid-scale kinetic energy and, therefore, τij. This strong physical coupling

requires strongly coupled models for the subgrid-scale velocity and the subgrid-scale

stress tensor. In the scope of the present thesis, a modeling framework is proposed

that takes into account all the interactions between particles and turbulence shown

in figure III.4 [49].

The simplest of the interactions that remains to be modeled is the impact of the

particles on the filtered flow, i.e., the filtered particle momentum source s̃p. Assum-

ing that the particles are small enough to accurately approximate their influence on

the flow with the PSIC method, the filtered particle momentum source is given as

s̃p(x) = − 1

Ṽcell

ˆ

Ω̃cell

∑
q

δ(x− xp,q)FD,qdV

= − 1

Ṽcell

∑
q∈Ω̃cell

FD,q, x ∈ Ω̃cell, (III.24)

where Ω̃cell is a computational grid cell used in the LES and Ṽcell is its volume. Note

that this term can only be computed accurately, if the drag force is computed using

the subgrid-scale velocity in addition to the filtered fluid velocity.

The modeling of the subgrid-scale velocity and the subgrid-scale stress tensor is

linked to the subgrid-scale kinetic energy. Therefore the modeled transport equation

for the subgrid-scale kinetic energy (III.8) is supplemented with a particle source

term, Φp, that accounts for the subgrid-scale kinetic energy modification by the

particles, such that

∂Ksgs

∂t
+ ũi

∂Ksgs

∂xi
= −τmod,ij

∂ũi
∂xj
− Cε

K
3/2
sgs

∆
+

∂

∂xi

(
νt
∂Ksgs

∂xi

)
+ Φp. (III.25)

The particle source term can be obtained analog to the transport equation for Ksgs,

i.e., by contracting the fluid momentum equation with the fluid velocity and sub-

sequent filtering and subtracting the filtered fluid momentum equation contracted

with the filtered fluid velocity. The resulting particle source term for the PSIC
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method is given as

Φp(x) =
1

ρf Ṽcell

 ∑
q∈Ω̃cell

FD,q · u(xp,q)− ũ(x) ·
∑
q∈Ω̃cell

FD,q

 , x ∈ Ω̃cell. (III.26)

Note that the time dependencies are omitted for conciseness. The resulting subgrid-

scale kinetic energy is used to compute the subgrid-scale stress tensor according

to the LDKM and serves as target kinetic energy of the subgrid-scale velocity.

The framework is referred to as modified localized dynamic kinetic energy model

(mLDKM) and models at least the energetic impact of s′p and τij [49].
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Summaries of publications

IV.1 An efficient model for subgrid-scale veloc-

ity enrichment for large eddy simulations of

turbulent flows

Published in Physics of Fluids 34, 115135 (2022)

IV.1.1 Summary of the publication

Predicting the subgrid-scale fluid velocity with properties similar to the subgrid-

scale velocity of a turbulent flow is crucial to predict accurate particle statistics.

This paper, which is found in the appendix A.1, proposes a model for the subgrid-

scale fluid velocity field based on LES quantities while keeping the computational

costs on the order of the computational costs of an LES without subgrid-scale ve-

locity enrichment.

The subgrid-scale fluid velocity is governed by the SFNSE. In the presented method-

ology, the SFNSE are linearized according to the RDT and the term involving the

subgrid-scale stress tensor, which essentially supplies the subgrid-scale velocity with

kinetic energy, is modeled by a random forcing term. The resulting equations are

referred to as modeled SFNSE and solved in Fourier space using the ansatz given in

equation (III.22), which results in an algebraic set of equations. Since the subgrid-

scale velocity is represented in Fourier space, the subgrid-scale velocity statistics are

homogeneous without further interventions. In order to reproduce inhomogeneous

subgrid-scale velocity statistics, statistically homogeneous sub-domains are defined

each of which receives a distinct set of Fourier coefficients allowing the flow statistics

to vary across the whole domain. The enrichment strategy, which is illustrated in
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Figure IV.1: Enrichment strategy consisting of (I) averaging large scale quantities

of the LES within statistically homogeneous sub-domains that are coarser than

the LES grid, (II) solution of the modeled SFNSE in Fourier space in every

sub-domain, and (III) approximating the turbulent fluid velocity field as the

sum of LES velocity and modeled subgrid-scale velocity.

figure IV.1, consists of averaging the LES quantities in the sub-domains, solving for

the Fourier coefficients in every sub-domain, and superposing the LES velocity and

the modeled subgrid-scale velocity.

The generated enriched fluid velocity field, i.e., the sum of the LES velocity and

the modeled subgrid-scale velocity, approximates the kinetic energy spectrum of

the DNS well, significantly improves the PDF of the second invariant of the veloc-

ity gradient tensor, and predicts accurate non-Gaussian PDFs of the longitudinal

and transverse velocity gradients, which indicates intermittency. Furthermore, it is

shown with the configuration of a turbulent shear flow that the subgrid-scale velocity

possesses inhomogeneous and anisotropic statistics.

IV.1.2 Individual contributions of the candidate

My contribution to the present article [47], which was published in the peer-reviewed

journal Physics of Fluids, was the conceptualization and the development of the new

model, its implementation in the in-house flow solver, the execution of the presented

simulations, the interpretation of the results, and the writing of the manuscript.
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flows

IV.2 Large eddy simulation model for two-way

coupled particle-laden turbulent flows

Published in Physical Review Fluids 8, 084301 (2023)

IV.2.1 Summary of the publication

Based on the previously proposed methodology for reconstructing the subgrid-scale

velocity in the scope of an LES, a modeling framework is presented to predict the

two-way coupled particle-turbulence interactions in LES, which is found in appendix

A.2.

In the proposed modeling framework, the modeled transport equation for the subgrid-

scale kinetic energy given in equation (III.25) is solved using the particle source

term given in equation (III.26). Therefore, the subgrid-scale kinetic energy con-

tains information of the turbulence modulation by the particles at the subgrid-scale

level. According to the LDKM, the subgrid-scale stress tensor is computed using the

subgrid-scale kinetic energy from the transport equation, which consequently also

contains information of the subgrid-scale particle-turbulence interactions. The fluid

velocity at the particle positions is composed of the fluid velocity from the LES and

the subgrid-scale velocity approximated by the previously proposed subgrid-scale

enrichment model. The subgrid-scale kinetic energy serves as target kinetic energy

for the model equations solved in the enrichment model, which is enforced by the

random forcing term. The resulting modeling framework is referred to as mLDKM

and is fully coupled by the subgrid-scale kinetic energy, which determines the mod-

eled subgrid-scale stress tensor and the kinetic energy of the modeled subgrid-scale

velocity.

The proposed framework is tested in one-way coupled and two-way coupled simu-

lations of HIT. The particle clustering and the particle pair dispersion is predicted

accurately for a wide range of Stokes numbers. Figure IV.2 compares the predicted

subgrid-scale kinetic energy with and without the proposed modeling framework

with the explicitly filtered DNS using different filters for particles with St = 1,

St = 2, and St = 8. Without the proposed modeling, the predicted subgrid-scale

kinetic energy is significantly overestimated, which causes a too large turbulent vis-

cosity and a too large kinetic energy of the reconstructed subgrid-scale kinetic energy.

With the mLDKM, the expected reduction of the subgrid-scale kinetic energy by

the presence of the particles is captured well.
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Figure IV.2: Subgrid-scale kinetic energy of decaying HIT predicted by the clas-

sical LES without the proposed modeling framework and by the modeled LES

with the proposed modeling framework. The results are compared to the ex-

plicitly filtered DNS using a spectrally sharp filter and volume averaging in the

LES grid cells. The results are shown for three different Stokes numbers.
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IV.2.2 Individual contributions of the candidate

My contribution to the present article [49], which was published in the peer-reviewed

journal Physical Review Fluids, was the conceptualization and the development of

the new model, its implementation in the in-house flow solver, the execution of

the presented simulations, the interpretation of the results, and the writing of the

manuscript.

IV.3 Wavelet-based modeling of subgrid scales in

large eddy simulation of particle-laden tur-

bulent flows

Published in Physical Review Fluids 8, 104604 (2023)

IV.3.1 Summary of the publication

Representing the subgrid-scale velocity with a Fourier basis, as in the previously

proposed modeling framework, is a highly efficient approach to approximately solve

the modeled SFNSE, as the linear set of differential equations reduces to a set of

algebraic equations. However, the Fourier basis entails the fundamental drawback

of an infinite support in physical space and, therefore, the necessity of additional

interventions to generate a statistically inhomogeneous subgrid-scale velocity field.

The statistically homogeneous sub-domains proposed in Hausmann et al. [47] are

not optimal, since divergence-free interpolation of the subgrid-scale velocity field is

required between the sub-domains, an ad hoc intervention with the thickness of the

interpolation region as an additional parameter.

This paper, which is found in appendix A.3, presents a methodology to represent the

subgrid-scale velocity using a wavelet basis, which is conceptually superior to model

statistically inhomogeneous fields. The wavelet basis functions are depicted in figure

IV.3, which have finite support in physical space and infinite, but rapidly decaying

support in Fourier space. More precisely, a divergence-free but non-orthogonal vector

wavelet basis with piecewise linear and piecewise quadratic spline wavelets is used,

which allows to solve only the curl-free part of the modeled SFNSE that is obtained

after Helmholtz decomposition. However, the modeled SFNSE do not automatically

turn into an algebraic set of equations such as with a Fourier basis. Instead, a

Galerkin approach is used to determine the wavelet coefficients that minimize the
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Figure IV.3: Piecewise linear φ0, ψ0 (a) and piecewise quadratic φ1, ψ1 (b) spline

scaling and wavelet functions that represent the modeled subgrid-scale velocity.

violation of the modeled SFNSE. The computational costs are reduced by exploiting

the linearity of the modeled SFNSE and solve for local least squares, so-called local

wave packets.

The LES velocity field enriched with the modeled subgrid-scale velocity predicts

several single-phase turbulence statistics accurately. The particle pair dispersion

and clustering of particles transported with the wavelet enriched LES velocity field is

significantly improved compared to the LES without the enrichment. The predicted

subgrid-scale kinetic energy of the mLDKM shows the expected reduction relative

to a single-phase flow in two-way coupled particle-laden turbulence.

IV.3.2 Individual contributions of the candidate

My contribution to the present article [51], which was published in the peer-reviewed

journal Physical Review Fluids, was the conceptualization and the development of

the new model, its implementation in the in-house flow solver, the execution of

the presented simulations, the interpretation of the results, and the writing of the

manuscript.
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Chapter V
Conclusions and outlook

V.1 Conclusions

The objective of the present thesis is the design of a modeling framework in the

scope of an LES that captures the essential interactions between the particles and

the turbulence. Because of the substantial lack of small scale information of the

flow field in LES and the ambitious aim to not only model the effect of the turbu-

lence on the particles, but also the two-way coupled interactions between particles

and turbulence, the considered test cases are limited to fully periodic problems in

the present thesis. Furthermore, the presented modeling framework is designed for

particle-laden gas flows with particles sizes smaller than the Kolmogorov length

scale.

Considering one-way coupled simulations of particle-laden turbulent flows as a first

step allows to separate the modeling of the effect of the turbulence on the particles

from the turbulence modulation by the particles. Although a large variety of mod-

els exist for predicting the particle clustering and dispersion in LES, the particle

statistics are either predicted unsatisfactorily or to computational costs that are

not acceptable in the scope of an LES. In the literature, most promising results are

obtained by structural models that reconstruct the subgrid-scale fluid velocity field.

Typical difficulties of structural models are, e.g., the generation of a divergence-

free subgrid-scale velocity field, the generation of a statistically inhomogeneous and

anisotropic subgrid-scale velocity field, and keeping the computational costs reason-

able.

The approaches proposed in the present thesis mitigate the common issues of struc-

tural models and rely on the approximate solution of the SFNSE linearized according

to the RDT. The resulting modeled SFNSE are approximately solved representing
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the subgrid-scale velocity with two different bases, a Fourier basis that is discretized

in space using statistically homogeneous sub-domain, and a divergence-free wavelet

vector basis. Both basis allow for an inhomogeneous and anisotropic subgrid-scale

velocity field and take into account large scale velocity features by solving the mod-

eled SFNSE. Both approaches accurately predict single-phase flow statistics, such

as the PDF of the second invariant of the velocity gradient tensor and the non-

Gaussian PDFs of velocity gradients, which indicates intermittency. Furthermore,

both approaches significantly improve the prediction of particle clustering and par-

ticle pair dispersion over a wide range of Stokes numbers. Although both models

predict relatively similar single-phase and particle-laden flow statistics, the wavelet

basis is conceptually superior as it does not require interpolation of the subgrid-scale

velocity between the sub-domains. However, the wavelet basis leads to computa-

tional costs approximately twice the computational costs of the Fourier basis.

In the two-way coupled case, the particles affect the turbulence at the filtered scales

and at the subgrid scales. The effect on the subgrid-scales is not resolved but must

be considered by means of the modeled subgrid-scale stress tensor, which accounts

for the effect of the unresolved turbulence on the turbulence resolved in an LES.

The central quantity for the proposed coupled modeling framework is the subgrid-

scale kinetic energy, which serves as target kinetic energy for the reconstructed

subgrid-scale velocity and can be used to design a turbulent viscosity model for the

subgrid-scale stress tensor. The subgrid-scale kinetic energy is estimated by solving

a transport equation with a particle source term that accounts for the subgrid-scale

turbulence modulation by the particles. The occurring constants are computed dy-

namically according to the LDKM. The resulting coupled framework is referred to

as mLDKM and successfully predicts the reduction of subgrid-scale kinetic energy

relative to the corresponding single-phase flow turbulence. The kinetic energy of the

fluid velocity field resolved in the LES still shows relatively small deviations from

the kinetic energy of the explicitly filtered DNS velocity. It is shown in Hausmann

et al. [49], however, that deviations of a similar magnitude also persist in an LES

of single-phase turbulence. In particle-laden turbulence, it is shown that the kinetic

energy of the filtered fluid velocity is fairly well predicted in an LES without the

proposed modeling because two errors are compensating. (i) The subgrid-scale ki-

netic energy is too large because of the missing particle source term in the transport

equation, which yields a too large turbulent viscosity and, therefore, a smaller ki-

netic energy of the resolved fluid velocity. (ii) Transporting the particles with the

enriched fluid velocity instead of only the resolved fluid velocity of the LES reduces

the kinetic energy of the resolved fluid velocity. Both effects contribute with opposite
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sign to the kinetic energy of the resolved fluid velocity. With the proposed modeling

framework, the predicted kinetic energy of the fluid in particle-laden turbulence is

of similar accuracy as an LES of the corresponding single-phase flow.

The proposed modeling framework is a significant step towards accurately modeling

particle-turbulence interactions with LES in complex flow configurations. Although

the modeling framework is only designed and tested for periodic boundary condi-

tions, its capabilities of predicting inhomogeneous and anisotropic turbulence opens

doors for further developments enabling predictions in configurations of higher prac-

tical relevance.

V.2 Outlook

A somewhat natural extension of the presented work is the adaption of the proposed

modeling framework to wall-bounded flows. However, there are various difficulties

that arise even in LES of single-phase flows. LES of wall-bounded flows can be

generally classified into two categories [106]: (i) The wall-normal thickness of the

computational grid cells can be reduced as the wall is approached. This is referred

to as wall-resolved LES, which is assumed to not require special treatment of the

near-wall region as a DNS resolution is achieved in the wall-normal direction. If the

filter width is reduced as the wall is approached, additional closures caused by the

non-uniform filter arise. The overall reduction in computational costs compared to a

DNS is relatively small. (ii) The computational grid of the LES can be kept coarse

and equidistant in the wall-normal direction and the unresolved wall shear stress

is modeled, which is referred to as wall-modeled LES. The large grid cells next to

the wall require additional modeling but the computational costs are significantly

smaller compared to a DNS. Since the LES filtering is not defined when the convolu-

tion kernel is ranging beyond the fluid domain, wall-modeled LES are conceptually

problematic near walls.

A common issues observed in LES of wall-bounded flows is that the temporarily

fluctuating streamwise velocity component of the LES exceeds the one of the DNS,

while the spatially filtered fluid velocity field is actually expected to possess smaller

temporal fluctuations (see, e.g., Bae et al. [4], Piomelli et al. [95]). An enrichment

with subgrid-scale velocity using the proposed models consistently further increases

the temporal fluctuations. Due to the modeling error of the resolved LES velocity,

however, the enriched fluid velocity field further deviates from the actual velocity

field. Before adapting the proposed modeling framework to wall-bounded flows, the
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overestimation of the streamwise temporal fluid velocity fluctuations has to be fixed.

The observed mismatch could be caused by the additional, and typically neglected,

closures due to the non-uniform filter. Another potential reason is that the filter

width used in the LES subgrid-scale model is too small. In fact, it is not sufficient

if the computational grid is fine enough to resolve ũi. The non-linear term in the

FNSE, ũiũj, contains wave numbers twice as large as the filtered fluid velocity. Fur-

thermore, the spurious alignment of the Eigenvectors of the modeled subgrid-scale

stress tensor with the Eigenvectors of the strain-rate tensor imposed by the Boussi-

nesq hypothesis could be more severe in the highly anisotropic near-wall flow than

in HIT. A potential remedy could be a tensor based subgrid-scale model, such as

the non-linear model.

Another promising path for future improvements of LES of particle-laden turbulence

is the concept of volume-filtering as generalization of the standard filtering used in

LES. The concept of volume-filtering provides a theoretical framework to consis-

tently incorporate particles and even solid walls. However, additional closures arise

with widely unknown implications. New insights from a recent study of Hausmann

et al. [52] may guide the development of new models.
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ABSTRACT

In some applications of large-eddy simulation (LES), in addition to providing a closure model for the subgrid-scale stress tensor, it is neces-
sary to also provide means to approximate the subgrid-scale velocity field. In this work, we derive a new model for the subgrid-scale velocity
that can be used in such LES applications. The model consists in solving a linearized form of the momentum equation for the subgrid-scale
velocity using a truncated Fourier-series approach. Solving within a structured grid of statistically homogeneous sub-domains enables the
treatment of inhomogeneous problems. It is shown that the generated subgrid-scale velocity emulates key properties of turbulent flows, such
as the right kinetic energy spectrum, realistic strain–rotation relations, and intermittency. The model is also shown to predict the correct
inhomogeneous and anisotropic velocity statistics in unbounded flows. The computational costs of the model are still of the same order as
the costs of the LES.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0127231

I. INTRODUCTION

The concept of large-eddy simulation (LES) has emerged as an
enormously successful tool to describe turbulent flows in their many
different varieties. The property of turbulence of rapidly decreasing
kinetic energy with increasing wave numbers enables capturing the
majority of the kinetic energy of a flow by only resolving its largest
scales. In many applications, a decent approximation of the large scales
of the flow already allows a sufficient understanding of the underlying
processes governing the main features of the flow. The present paper
is dedicated to problems where this is not the case.

The majority of applications that suffer from missing subgrid-
scale velocity content in LES can be found in multiphase flows. The
LES of dispersed multiphase flows performs notoriously poorly with
regard to predicting multi-particle statistics.1–3 Furthermore, when
droplets are deformable, the lack of access to the unresolved rotation
and strain of the velocity field renders the modeling of their defor-
mation challenging.4 Even for simulation methods that at least par-
tially resolve interfaces, a subgrid-scale velocity closure is needed, for
example, as in the dual-scale approach of Herrmann and coworkers.5,6

Apart from multiphase flows, information about the subgrid-scale
velocity may for example also be used to accurately predict the aerody-
namical loads on wind turbines that are immersed in the planetary
boundary layer,7 the chemical reactions and location of the flame front
in reactive flows,8 and combustion applications or heat transfer with
significant turbulent mixing due to the subgrid-scale velocity.

A perfect model for the subgrid-scale velocity in the context of
LES would satisfy the governing flow equations [i.e., the Navier–
Stokes equations (NSE)], which can only be achieved with the compu-
tational cost of a direct numerical simulation (DNS). Characteristic
properties indicating that a generated velocity field is similar to that of
a real turbulent flow are, among others, the kinetic energy spectrum,
the non-Gaussian distribution of derived flow quantities, and the rela-
tions between strain and rotation of the velocity. In addition to the
physical properties of the generated subgrid-scale velocity, additional
demands can be formulated so as to guarantee the practical applicabil-
ity of the model: (i) the computational costs of the model have to be in
the same order of magnitude as the costs of a LES; (ii) if the model
contains tuning parameters, the solution should not sensitively depend
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on their choice; (iii) the model should not be limited to homogeneous
and isotropic flows. Homogeneous isotropic turbulence (HIT) consti-
tutes an important case for theoretical studies of turbulent flows, but
rarely occurs in realistic flow configurations; and (iv) finally, it is desir-
able for the model to be implemented and parallelized straightfor-
wardly, as well as to be appendable to any LES flow solver.

A variety of different approaches for the approximate reconstruc-
tion of the subgrid-scale velocity have emerged in the past decades.
Scotti and Meneveau9 derived a fractal interpolation technique to recon-
struct the subgrid-scale velocity. This purely geometrical reconstruction
does not incorporate important physical properties of turbulence. A
related idea, but with a realization in spectral space, is the so-called
“kinematic simulation.”10–14 With this approach, a divergence-free
velocity field that matches a given kinetic energy spectrum is generated.
Apart from the assumption of a spatially constant kinetic energy spec-
trum, it is difficult to define a physically realistic temporal evolution of
the modes. Domaradzki et al.15,16 proposed a reconstruction of the
subgrid-scale velocity by a defiltering operation that incorporates infor-
mation of the non-linear term. In the work of Park et al.,17 a deconvo-
lution is derived that is dynamically adjusted such that the model is
either kinetic energy or dissipation consistent with the subgrid-scale
model. However, the model does not introduce length scales that are
smaller than the cutoff length scale of the LES grid. A combination of
the models of Domaradski et al. and Park et al. was proposed by
Bassenne et al.18 The idea is a stepwise reconstruction of the subgrid-
scale velocity based on alternating applications of spectral extrapolation
and dynamical approximate deconvolution. Although key parameters,
such as the second invariant of the velocity gradient tensor, can be pre-
dicted well, a severe drawback of the method is the projection operation
that has to be carried out in real space on a grid comparable to the
DNS grid. Thus, the computational costs are of the order of a DNS.
The class of the multilevel methods relies on successive explicit filtering
operations of the Navier–Stokes equations. Within that class, the varia-
tional multiscale method has emerged that uses a Galerkin method to
solve the linearized residual velocity equations together with the filtered
Navier–Stokes equations (FNSE). Apart from this linearization, no
modeling assumptions are introduced.19,20 However, even the solution
of a linear set of equations with a high resolution leads to a large com-
putational overhead compared to a classical LES on a coarse grid. A
second type of multilevel methods uses more than two levels of velocity
scales and is based on temporarily frozen velocity of the respective sub-
grid scales (see, e.g., Terracol et al.21). Another approach is to derive a
set of auxiliary subfilter equations from the Navier–Stokes equation
using localized modes that are extracted via the Gabor transform.22,23

The conducted studies have been of a rather theoretical nature or have
only been performed in two dimensions. More recently, Ghate and
Lele24,25 further developed these ideas and achieved excellent agree-
ment of the kinetic energy spectrum and velocity correlations in a
boundary layer with the generated velocity and DNS results. However,
for long simulation times, the quenching of the modes, which consti-
tutes an application-specific external intervention of relatively high
complexity, is required.

As it is clear from above, existing models for the subgrid-scale
velocity are still limited in computational efficiency, practical applica-
bility, and accuracy of the predictions.

In this paper, we derive a new model for the enrichment of the
LES with a subgrid-scale velocity including physical assumptions and

details for practical realization in Sec. II. Subsequently, two simulation
cases are introduced for evaluating the performance of the enrichment
model compared to the respective DNS in Sec. III. In Sec. IV, the
results of the simulation cases are presented and discussed. Finally,
Sec. V concludes the present paper.

II. THEORY

Despite the main focus of this section lying in the modeling of
the subgrid-scale velocity, the modeling of the filtered velocity (i.e., the
LES) is also briefly summarized for the sake of completeness. The aim
of the newly proposed model is to approximate the velocity field of a
DNS using only information that is available in a LES.

First, the physical background is provided in Sec. IIA. The
remaining sections address the assumptions, the discretization, and
the realization of the model in detail.

A. Scale decomposition and the assumptions
of the rapid distortion theory

The foundation of LES and of the following discussions is that
any physical quantity of interest, / (e.g., velocity and pressure), is
decomposed in a filtered (later referred to as LES part) and a subfilter
part (later also referred to as subgrid part). The filtered part of a physi-
cal quantity, e/, may be defined by the following spatial low-pass filter-
ing operation, as proposed by Leonard:26

e/ðxÞ ¼ ð1
�1

Gðx � nÞ/ðnÞdn; (1)

where G denotes a filter kernel. This filtering kernel determines the
shape of the spectrum of the resulting filtered quantity. The subfilter-
scale contribution, /0, is the difference between the original quantity,
/, and the filtered quantity, e/. Note that in a LES, the filtering opera-
tion is typically not explicitly performed but rather arises naturally
from a numerical bandwidth limitation such as a (too) coarse grid.
Furthermore, space and time are coupled in a flow by the velocity
which implicitly introduces a filtering in time. However, the definition
in Eq. (1) is commonly used for derivations in the LES context and is
therefore also adapted in the present paper. Even if not fully consistent,
the notations eu and u0 are used for referring to the LES velocity and
the modeled subgrid-scale velocity, respectively.27

The incompressible Navier–Stokes equations, with a fluid density
qf, and a kinematic viscosity �f are given by

@ui
@xi
¼ 0; (2)

@ui
@t
þ uj

@ui
@xj
¼ � 1

qf

@p
@xi
þ �f

@2ui
@xj@xj

þ si; (3)

where ui is the velocity, p the pressure, and si an optional source term.
Applying the explicit filtering operation (1) to the Navier–Stokes equa-
tions (NSE) leads to the filtered Navier–Stokes equations (FNSE) that
can be written independently of the filter kernel G,

@eui

@xi
¼ 0; (4)

@eui

@t
þ euj

@eui

@xj
¼ � 1

qf

@ep
@xi
þ �f

@2eui

@xj@xj
�
@sij
@xj
þesi: (5)
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The additional term @sij=@xj appears because of the application of the
filter to the non-linear advection term. The subgrid-scale stress tensor
sij can be expanded using the general relation / ¼ e/ þ /0 to become

sij ¼geuieuj þgu0ieuj þgeuiu0j þgu0iu0j � euieuj: (6)

Subtracting the FNSE from the NSE results in a set of equations for
the subgrid-scale variables

@u0i
@xi
¼ 0; (7)

@u0i
@t
þu0j

@u0i
@xj
þeuj

@u0i
@xj
þu0j

@eui

@xj
¼� 1

qf

@p0

@xi
þ�f

@2u0i
@xj@xj

þ@sij
@xj
þ s0i: (8)

The subgrid-scale equations contain three advection terms, to which
we refer to as: non-linear relaxation (second term on the left-hand
side), sweeping (third term on the left-hand side), and straining
(fourth term on the left-hand side). The coupled system consisting of
Eqs. (4)–(8) can be solved equivalently to the NSE. However, from a
numerical point of view solving this coupled system is much more
challenging than solving the NSE.

Lavel et al.28 performed a numerical analysis of the coupled sys-
tem consisting of Eqs. (4)–(8) and omitted the non-linear relaxation.
Taking into account only the linear terms in Eqs. (7) and (8) resembles
the governing equations for the rapid distortion theory (RDT) that
makes use of this linearization to obtain insights of the small-scale tur-
bulence modification under large-scale distortion.29 Note that under
very high mean strain the viscous term is often also neglected in ana-
lytical studies.30,31 It emanates from these studies that without the
non-linear relaxation term, the turbulent kinetic energy spectrum is
overestimated and the intermittency is increased (i.e., the probability
distribution function of the velocity increments shows wider tails).
With the addition of a turbulent viscosity term, these two effects can
essentially be compensated.28

Apart from the energetic and intermittency effects that have been
observed as a consequence of the neglected non-linear relaxation term
by Laval et al.,28 the strain–rotation relations of the velocity may also
be influenced. This can be quantified with the probability distribution
function of the second invariant of the velocity gradient tensor
Q ¼ 1=2ðXijXij � SijSijÞ, or the angle between the eigenvectors of the
rotation-rate tensor Xij and the strain-rate tensor Sij as for example
investigated by Horiuti.32 In Sec. IVA, evidence is provided that the
non-linear relaxation term contributes to the strain–rotation relations.
Furthermore, the term u0j@u

0
i=@xj redistributes kinetic energy in spec-

tral space, whereas a diffusive term @2u0i=ð@xj@xjÞ exclusively removes
kinetic energy if the (turbulent) viscosity is positive (see, e.g., Pope30).
It can be concluded that the replacement of the non-linear relaxation
termwith a turbulent viscosity may approximate the effects of attenua-
tion of intermittency and high wave numbers of the kinetic energy
spectrum well, but does not reproduce all physical mechanisms of the
original term.

B. Modeling the filtered and subgrid-scale equations

In applications where only a coarse resolution is feasible, the
FNSE can be solved instead of the NSE, using a suitable approximation
for sij. In such a case, all present flow structures can be resolved by the
grid, because the high wave number content of the physical quantities

is removed. Since in a LES the equations for the small scales are not
solved, the subgrid-scale stresses are unknown and require modeling.
Many approaches exist that attempt to close the equations for the large
scales that typically rely on the use of a turbulent viscosity to mimic at
least the energetic effect of additional dissipation by small scales.33–36

This eddy-viscosity type of subgrid-scale models yields a modeled
subgrid-scale stress tensor of the form

sij;mod ¼ �2�teSij þ 1
3
skk;moddij; (9)

where �t is the model-specific turbulent viscosity, dij is the Kronecker
tensor, and eSij is the strain-rate tensor of the large-scale velocity, given
by

eSij ¼ 1
2

@eui

@xj
þ
@euj

@xi

 !
: (10)

Even with a subgrid-scale model that perfectly reproduces the subgrid-
scale stress tensor, only one part of the coupled problem is solved, that
is, only Eqs. (4) and (5) of the system of equations (4)–(8) are solved.
Due to the rapid decrease in the kinetic energy spectrum of a turbulent
flow for increasing wave numbers, the filtered velocity already pos-
sesses the majority of the kinetic energy, which is sufficient for many
applications. However, there are applications for which knowledge of
the subgrid-scale velocity field is required. In this paper, we propose a
model for the subgrid-scale velocity that enables an approximate solu-
tion of the full problem consisting of Eqs. (4)–(8) (including the fil-
tered velocity and the subgrid-scale velocity), but with a
computational cost of the same order of magnitude as that of LES.

The proposed model exploits the previous findings of Lavel
et al.,28 who suggest replacing the non-linear relaxation term in Eq. (8)
by a turbulent viscosity �0t . Based on this work, the following expres-
sion for the turbulent viscosity is used, which is derived from renorm-
alization groups to be37

�0tðkÞ ¼ �2f � C�

ð1
k
q�2EðqÞdq

� �1=2

� �f ; (11)

where k is the wave number, E(k) is the kinetic energy spectrum, and
C� is a constant with an analytical value of C� ¼ 2=5. Equation (11) is
advantageous for the resulting kinetic energy spectrum compared to a
constant turbulent viscosity for the following reason: The omitted
non-linear relaxation is not only responsible for attenuating intermit-
tency, but also for redistributing kinetic energy (mainly toward smaller
scales). The turbulent viscosity of Eq. (11) is larger for small wave
numbers and converges toward zero for high wave numbers. This
means that the turbulent viscosity removes more kinetic energy from
larger scales than from the smaller scales comparable to the physical
mechanism of energy transfer toward small scales.

In addition to the introduction of a turbulent viscosity, a second
modeling step is required for coupling the filtered scales with the sub-
grid scales, that is, modeling the subgrid-scale stress tensor. Assuming
the forward energy cascade to be dominant, the influence of the fil-
tered scales on the subgrid scales is mainly characterized by the sub-
grid scales being supplied with kinetic energy from the filtered scales.
A simple way of mimicking this energy supply is by adding an addi-
tional source term to the right-hand side of the subgrid-scale momen-
tum equations (8). This is inspired by numerical forcing of turbulence
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for maintaining statistical steadiness in HIT, in particular by the forc-
ing scheme of Mallouppas et al.38 It is important to understand that
the forcing maintains a desired kinetic energy of the subgrid scales,
which may be estimated using the model of Yoshizawa39 or the
dynamical model of Moin et al.40 The amount of kinetic energy that is
added to the subgrid scales is not necessarily equal to the kinetic
energy that is removed from the filtered scales. The enrichment consti-
tutes a more general process if it operates independently of the
subgrid-scale model and its choices of constants. Furthermore, model-
ing errors of the subgrid-scale model weigh much more for the subgrid
scales since their kinetic energy is only a small fraction of the total
kinetic energy.

C. Discretization of the subgrid-scale equations

Even with the modeling described in Sec. II B, a numerical solu-
tion of Eqs. (7) and (8) (e.g., with a finite volume solver) would still
require a grid that is fine enough to resolve the smallest flow struc-
tures. Since this would exceed the acceptable amount of computational
time of a LES, a different discretization approach is proposed.

We assume that the subgrid-scale velocity u0 can be represented
by the finite sum

u0 ¼
XNm�1

m¼0
AmðtÞ cosðkm � xÞ þ BmðtÞ sinðkm � xÞð Þ; (12)

where AmðtÞ and BmðtÞ are vectorial coefficients that depend on time
t. Equation (12) is equivalent to a truncated Fourier series expansion
with Nm modes, so the coefficients can be interpreted as contributions
to the velocity at the respective wave number km ¼ jkmj, where km is
the wave number vector. If the coefficients and the wave number vec-
tors are known, the subgrid-scale velocity can be computed at arbitrary
positions using the expansion given by Eq. (12).

The same approach is utilized in kinematic simulations.10–14 It
consists of determining the coefficients, such that (i) the kinetic energy
equals that of a given spectrum, and (ii) the random Gaussian direc-
tions of the coefficients lead to a divergence free velocity field, which
yields the requirement km � AmðtÞ ¼ km � BmðtÞ ¼ 0. In kinematic
simulations, a continuous velocity field that can be evaluated at every
arbitrary position is obtained. The resulting velocity field can lead to
decent predictions of second-order Lagrangian statistics of fluid par-
ticles.14 Since the coefficients do not change in space and the directions
are chosen from a Gaussian distribution with fixed mean and standard
deviation, the resulting velocity is statistically homogeneous and sta-
tionary. Furthermore, it is not clear how to maintain realistic time cor-
relations when the kinetic energy spectrum varies in time. These issues
are addressed and overcome with the present approach.

Consider the NSE for the subgrid scales with the turbulent viscos-
ity, from Eq. (11), that replaces the non-linear relaxation term

@u0i
@xi
¼ 0; (13)

@u0i
@t
þ euj

@u0i
@xj
þ u0j

@eui

@xj
¼ � 1

qf

@p0

@xi
þ ð�f þ �0tÞ

@2u0i
@xj@xj

þ fi; (14)

where fi is a forcing term that models the kinetic energy transfer from
the filtered scales to the subgrid scales. Note that we assume the spec-
tral turbulent viscosity constant in space, so it is treated similar to the

molecular viscosity in the viscous term. In the next step, the series
expansion of the subgrid velocity in Eq. (12) is inserted into the mod-
eled momentum equations (14) for every term of the sum separately
and the pressure term is dropped. Sorting the result by sine and cosine
terms the following equations for the coefficients AmðtÞ and BmðtÞ are
obtained:

A�m;iðtÞ � An
m;iðtÞ

Dt
þ eun

j km;jB
n
m;iðtÞ þ An

m;jðtÞ
@eun

i

@xj

¼ �ð�f þ �0tÞjkmj2An
m;iðtÞ þ fm;i; (15)

B�m;iðtÞ � Bn
m;iðtÞ

Dt
� eun

j km;jA
n
m;iðtÞ þ Bn

m;jðtÞ
@eun

i

@xj

¼ �ð�f þ �0tÞjkmj2Bn
m;iðtÞ þ gm;i; (16)

where Dt indicates the numerical time step. The time level of the coeffi-
cients is indicated with the index n. For this and all the following equa-
tions, no implicit summation over the index m is carried out. Without
the pressure term, only a preliminary solution (indicated with an aster-
isk) is obtained. These coefficients do not lead to a divergence-free
velocity field. However, if the pressure is formally expanded in spectral
space and the divergence of the difference of Eqs. (15) and (16) and the
same equations with pressure is computed, the following projection
operation (details in the Appendix) is obtained to generate a set of
coefficients that lead to a divergence-free velocity field:

Anþ1
m ðtÞ ¼ A�mðtÞ � km

km � A�mðtÞ
jkmj2

; (17)

Bnþ1
m ðtÞ ¼ B�mðtÞ � km

km � B�mðtÞ
jkmj2

: (18)

The computational cost of the solution of one time step consisting of
Eqs (15)–(18) scales linear with the number of modes Nm. In fact, the
coefficients of the new time step are obtained by the explicit solution
of two sets of algebraic equations, which makes their solution
affordable.

Finally, determining the forcing terms fm;i and gm;i is addressed.
Their modeling consists of two components: the magnitude and the
direction. Ideally, the direction of the forcing terms is equal to the
direction of the divergence of the subgrid-scale stress tensor, as defined
in Eq. (9). However, this non-linear expression consists of contribu-
tions from the subgrid-scale velocity, the filtered velocity, their interac-
tion, and the explicit filtering operations. In the present model, the
directions are chosen from a uniform distribution over a spherical
shell

Vm;0 ¼ ðsinðhmÞ cosð/mÞ; sinðhmÞ sinð/mÞ; cosðhmÞÞT (19)

with

/m 2 0; 2p½ �; cosðhmÞ 2 �1; 1½ �: (20)

In order for the forcing directions to have realistic time correlation,
the following algorithm is used to propagate the directions in time:

Vn
m ¼ amVn�1

m þ bmVm;0; (21)

where Vm;0 is a random vector that is newly generated for every wave
number and every time step, and Vn�1

m is the normalized direction of
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the previous time step. The vector Vn
m is the direction of the forcing

term at the current time step. Note that both forcing terms have direc-
tions that are propagated independently. Similar to the divergence of
the subgrid-scale stress tensor, the vector field Vn

m is not divergence
free (km � Vn

m 6¼ 0). The weights am and bm determine how fast the
directions change in time, and are computed as follows:

am ¼ exp �DtTE;mð Þ; bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2m

q
: (22)

The rate of change of the directions depends on the wave number
because the weights are determined based on the eddy-turnover time

of the respective mode TE;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkmj3EðjkmjÞ

q
.10 The kinetic energy

spectrum EðjkmjÞ can be directly computed from the coefficients as

EðjkmjÞ ¼
1

4Dkm
jAmj2 þ jBmj2
� �

; (23)

where Dkm is the distance between consecutive wave numbers for the
wave number km. Similar to the forcing scheme of Mallouppas et al.,38

the source term in the subgrid-scale equation is

fi;m ¼
1
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kdesired
p

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Kactual
pffiffiffiffiffiffiffiffiffiffiffiffiffi

Kdesired
p vtriggeri;m ; (24)

where the trigger velocity of the respective mode follows the slope of
the inertial range and is given by

vtriggeri;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kdesired

Ksource

r
VA;mk

�5=6
m : (25)

The forcing term is zero if the kinetic energy of the subgrid-scale
velocity field Kactual is equal the desired kinetic energy Kdesired. The
trigger velocity is scaled such that it has the same characteristic magni-
tude as the resulting subgrid-scale velocity. In order to do so, the
energy of the source has to be determined as

Ksource ¼
1
4

XNm�1

m¼0
jVA;mk

�5=6
m j2 þ jVB;mk

�5=6
m j2

� �
; (26)

where VA;m and VB;m are the directions for the forcing of the respec-
tive equation of the coefficients Am and Bm, which are determined
from Eq. (21). The kinetic energy that is actually present in the subgrid
scale is computed analogously

Kactual ¼
1
4

XNm�1

m¼0
jAmj2 þ jBmj2
� �

: (27)

The forcing term gi;m has the same magnitude as fi;m, but is based on a
separate evolution of the direction VB;m. Since the expression for gi;m
is almost identical to fi;m, but with VB;m instead of VA;m in Eq. (25),
the explicit formula is not shown here for conciseness. The desired
kinetic energy of the subgrid-scale velocity is estimated with the
approach of Yoshizawa39

Kdesired ¼ CID
22eSijeSij (28)

with the constant CI ¼ 0:0826 and the filter width D. The constant
can also be computed dynamically with the model of Moin et al.40

D. Transition to a sub-domain-based discretization

Since the model described in Sec. IIC is constructed in Fourier
space [i.e., the coefficients AmðtÞ and BmðtÞ are spatially constant], it
can only generate subgrid-scale velocities with spatially constant statis-
tics. However, many types of flows are inhomogeneous, which is the
motivation for modifying the above approach, so that inhomogeneous
statistics across a domain can be achieved. Instead of assuming that
the coefficients obtained from Eqs. (15)–(18) are constant globally,
they are defined on a structured grid of sub-domains, coarser than the
LES grid. This induces motion of the flow field whose scale is of the
order of the sub-domain size. However, considering that the energy of
the corresponding induced velocity is small compared to the energy of
the large scales, its effect is minor compared to other modeling
assumptions in LES. Every sub-domain possesses a distinct set of coef-
ficients. In each sub-domain, the statistics are assumed homogeneous,
but each sub-domain can have different statistics. Thus, the coeffi-
cients formally do not only depend on time, but also vary between the
sub-domains. Therefore, the coefficients have an additional index for
the respective sub-domain and are denoted as Ad;m and Bd;m. This
implies that the spatial variations of scales of the order of the domain
size are represented by spatially varying coefficients and the high wave
number fluctuations by the trigonometric functions in Eq. (12). The
quantities from the LES that are required to solve Eqs. (15)–(18) are
averaged within the respective sub-domain, as indicated by h�idomain.
In particular, this applies to the LES velocity heuiidomain, the gradient of
the LES velocity h@eui=@xjidomain, and theoretically also the estimation of
the kinetic energy of the subgrid-scale velocity hKdesiredidomain. The latter
has severe consequences for the resulting subgrid-scale field, which are
discussed in Sec. II F. A domain average of the subgrid-scale kinetic
energy is thus not applied in the present model. Instead, the subgrid-
scale kinetic energy is estimated at the center of the sub-domain.

Another consequence of this sub-domain discretization is that
the spatial derivatives also possess contributions of the coefficients.
This leads to a modified predictor step for the preliminary coefficients

A�m;i � An
m;i

Dt
þ heun

j idomain km;jB
n
m;i þ

@An
m;i

@xj

 !
þ An

m;j

	
@eun

i

@xj



domain

¼ ð�f þ �0tÞ �jkmj2An
m;i þ

@2An
m;i

@xj@xj
þ 2km;j

@Bn
m;i

@xj

 !
þ fm;i; (29)

B�m;i � Bn
m;i

Dt
þ heun

j idomain

@Bn
m;i

@xj
� km;jA

n
m;i

 !
þ Bn

m;j

	
@eun

i

@xj



domain

¼ ð�f þ �0tÞ �jkmj2Bn
m;i þ

@2Bn
m;i

@xj@xj
� 2km;j

@An
m;i

@xj

 !
þ gm;i: (30)

The temporal and spatial dependencies of the coefficients are omitted
for the sake of simplicity.

Figure 1 summarizes the proposed velocity enrichment strategy
based on a LES. The first step is to perform a time step of the LES and
average the required quantities in the sub-domains. Furthermore, the
subgrid-scale kinetic energy is estimated and the direction and magni-
tude of the forcing terms are computed. The choice of the LES solving
framework is arbitrary. Even a LES on an unstructured grid is possible,
in which case solely the averaging has to be adapted. In the next step,
Eqs. (29), (30), (17), and (18) are solved in every sub-domain to obtain
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a distinct set of coefficients for every sub-domain. This step is rather
inexpensive, since the equations are solved fully explicit and indepen-
dent for every sub-domain. The parallelization is very simple and effi-
cient if it is carried out in spectral space. If every processor solves a
portion of the wave numbers of all sub-domains, no communication is
necessary. The final step consists of adding up the LES velocity and the
subgrid-scale velocity, which is obtained by computing Eq. (12) at the
desired locations.

E. Treatment of the discontinuities

In some applications of the enrichment model, a spatially contin-
uous reconstructed subgrid-scale velocity field may be required. Due
to the proposed sub-domain discretization, this cannot be guaranteed
at the boundaries of the sub-domains. A naive interpolation of the
subgrid-scale velocity or the coefficients of the series expansion in Eq.
(12) would not conserve the property of a divergence-free velocity
field. However, since the divergence is only non-zero at sub-domain
boundaries, the portion of the influenced regions is small compared to
the entire simulation domain.

In this section, we present a modified interpolation between sub-
domains that leads to a continuous and divergence-free velocity field.
The modeled momentum equations are, in general, not satisfied
within the interpolation regions. A compact interpolation kernel
should be preferred in order to keep the regions with the subgrid-scale
velocity that satisfies the model equations as large as possible.

The general idea is to add a correction velocity in a direction tan-
gential to the boundary for every mode. We assume that the interpolated
subgrid-scale velocity u0int consists of a contribution of the lower sub-
domain u0low, the upper sub-domain u0up, and a correction velocity u0corr ,

u0int ¼WðxÞu0low þ ð1�WðxÞÞu0up þ u0corr ; (31)

where W is the interpolation kernel function. In the following, the
interpolation in x direction is derived. The other directions can be

obtained analogously. For this case, the interpolation kernel function
W(x) is exclusively a function of x and the correction velocity has only
contributions in y and z directions. The required criterion for the
interpolated velocity is

r � u0int ¼ 0: (32)

Furthermore, we assume that the velocity fields can be decomposed in
the following way:

u0 ¼
XNm�1

m¼0
u0;m ¼

XNm�1

m¼0
AmðtÞ cos ðkm � xÞ þBmðtÞ sin ðkm � xÞð Þ; (33)

where u0;m is the velocity contribution corresponding to the wave
number jkmj. Since the divergence is a linear operation, Eq. (32) is sat-
isfied if the divergence of every velocity contribution u0;m is zero

r � u0;m ¼ 0: (34)

In the x direction, the divergence-free requirement is expressed as

dWðxÞ
dx

ðu0;mlow � u0;mup Þ þ
@v0;mcorr
@y
þ @w

0;m
corr

@z
¼ 0: (35)

At this point, a choice has to be made for how the divergence of the
velocity field is distributed over the boundary tangential velocities. One
satisfactory way is to either set w0;mcorr ¼ 0, which leads to v0;mcorr ¼WmðxÞ=
km;2 or set v0;mcorr ¼ 0, which leads to w0;mcorr ¼WmðxÞ=km;3. In order to
keep the correction velocity magnitude small, minðjv0;mcorr j; jw0;mcorr jÞ
decides which case is used. The correction velocity kernel is defined as

W xð Þ ¼ @WðxÞ
@x

½ðAlow;m;1 � Aup;m;1Þ sin ðkm � xÞ

�ðBlow;m;1 � Bup;m;1Þ cos ðkm � xÞ�: (36)

The correction theoretically works with every interpolation kernel
W(x). However, we suggest to use a sigmoid function based on the
signed distance to the sub-domain boundary r,

FIG. 1. General enrichment strategy consisting of three steps. (I) Information on the large-scale flow dynamics is obtained by averaging within sub-domains that are coarser
than the LES grid. (II) The model equations (29), (30), (17), and (18) are solved in every sub-domain. (III) The enriched velocity is approximated as the sum of the resolved
LES velocity and the modeled subgrid-scale velocity.
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WðrÞ ¼ 1� 1
1þ e�ar

; (37)

where a is a parameter to control the sharpness of the interpolation
kernel.

An extension to three dimensions is straightforward as long as
the interpolation kernels of different directions are not overlapping.
This leads to complicated integrations that have to be carried out ana-
lytically, which is not possible in some cases. If the overlapping of the
interpolation kernels is ignored, the edges and corners of the sub-
domains are not divergence free. With a sharp interpolation kernel,
these regions are tiny and most likely unimportant for the majority of
the applications. If the integrand is approximated with a Taylor series
of the interpolation kernel, a nearly divergence-free field can also be
obtained in the regions with overlapping interpolation kernels.

The divergence of the modeled subgrid-scale velocity with and
without interpolation between sub-domains is depicted in Fig. 2. The
detailed setup and the definition of the reference time Tref, which is
used for normalization, are specified in Sec. III B 1. The divergence is
computed with central differences for the spatial derivatives of the
subgrid-scale velocity field that is sampled on a DNS-grid (i.e., a grid
that can resolve the Kolmogorov length scale). In Fig. 2(a), where no
interpolation between sub-domains is used, it can be observed that the
divergence is significant between the sub-domains. With the proposed
interpolation in Fig. 2(b), the divergence is approximately zero almost
everywhere; solely at the edges between four sub-domains does non-
zero divergence occur.

The divergence-free interpolation constitutes an option for appli-
cations where the discontinuity in the subgrid-scale velocity is not
acceptable. The results of the present paper are obtained without the
interpolation (i.e., with a discontinuous subgrid-scale velocity).
However, it is shown in Sec. IVA that the influence of the interpola-
tion on the presented statistics is negligible.

F. The role of the estimated subgrid-scale kinetic
energy

As mentioned in Sec. II D, the subgrid-scale kinetic energy is
evaluated in one grid cell within the sub-domain instead of averaged

over all grid cells in the sub-domain. This section justifies this
choice.

The estimation of the kinetic energy of the subgrid-scale velocity
strongly influences the predictions of the presented model, as it
directly impacts the kinetic energy spectrum of the generated velocity
field. For HIT, the estimation of the kinetic energy with Eq. (28) leads
to average subgrid-scale kinetic energies that are close to the values
obtained from a filtered DNS. More specifically, the estimated
subgrid-scale kinetic energy lies within a ten percent margin of the
subgrid-scale kinetic energy obtained from the DNS of the HIT case
described in Sec. III B using a spectrally sharp filter.

Apart from the mean value of the kinetic energy of the subgrid-
scale kinetic energy, its probability distribution is of importance. A
characteristic aspect of turbulent flows is that the probability distribu-
tion function of the velocity gradients (and other quantities) exhibits a
non-Gaussian behavior, which is widely known as “intermittency.”41

Typically, as the Reynolds number increases, the tails of the probability
distribution functions (PDFs) get wider, and that is, high-intensity
events becomemore likely. Since the effect of the subgrid-scale velocity
on the filtered scales in a LES is commonly modeled using a turbulent
viscosity, a spatially averaged LES may be interpreted as a DNS with
smaller Reynolds number. Thus, the PDFs can be expected to tend to
a Gaussian distribution. This is confirmed in Sec. IVA.

Due to the forcing of the subgrid-scale velocity, its distribution
directly depends on the distribution of the subgrid-scale kinetic
energy. Distributions of derived values, such as the subgrid-scale veloc-
ity gradients, thus also depend on the distribution of the subgrid-scale
kinetic energy. This is why the PDF of the subgrid-scale kinetic energy
is of great importance.

In Fig. 3, the probability distribution function of the estimated
subgrid-scale kinetic energy is shown together with a squared
Gaussian distribution. The simulation configuration again refers to the
HIT case described in Sec. III B. The kinetic energy is centered with
respect to the mean hKesti and normalized with standard deviation rk.
As expected, the two distributions do not coincide. More practically,
relevant is how the PDF of the estimated subgrid-kinetic energy aver-
aged in sub-domains consisting of 23 LES grid cells compares to this.
It is not surprising that the averaging leads to a distribution that is

FIG. 2. Normalized divergence of the modeled subgrid-scale velocity computed using central differences. (a) is obtained without interpolation between the sub-domains and
(b) is obtained using the proposed interpolation.
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closer to a Gaussian distribution. As a consequence, derived quantities
of the modeled subgrid-scale velocity field possess different PDFs,
dependent on the averaging volume of the estimated subgrid-scale
kinetic energy.

Since the averaging of the subgrid-scale kinetic energy within the
sub-domains leads to artificial modification of its PDF, the averaging
is avoided in the application of the model. Instead, the kinetic energy
of the subgrid-scale velocity is chosen to be equal to the one computed
for one arbitrary LES grid cell in the sub-domain (e.g., the cell in the
sub-domain center).

Sections III–IV will show the features of the model and validate it
for two flow configurations.

III. SIMULATIONS

The performance of the model proposed in this paper is evalu-
ated on two test cases, HIT and a turbulent unbounded shear flow.
The reference DNS is carried out on a very fine grid that captures all
present length and time scales down to the Kolmogorov scales. LES
that are enriched with the presented model are compared with the
DNS results. Note that wall boundary conditions significantly increase
the complexity of the flow and already constitute a problem for LES
without modeling of the subgrid-scale velocity. This is why the scope
of this paper is limited to unbounded flow configurations.

First, the numerical solution of the NSE and LES equations is
briefly summarized in Sec. IIIA. Then, that the exact configurations of
the two test cases are explained in Sec. III B.

A. Numerical solution of the Navier–Stokes equations
and LES equations

For the two DNS (HIT and turbulent shear flow), the NSE are
solved in their form as given in Eqs. (2) and (3). Since all time and
length scales down to the Kolmogorov scales are resolved, no further
modeling is applied to the set of governing physical equations. The
LES is performed on a grid that is too coarse to resolve the full

turbulent spectrum and is based on the FNSE given by Eqs. (4) and
(5). Due to the presence of the subgrid-scale stress tensor, these equa-
tions are not closed. That is why the following set of equations is
solved in the case of a LES that are referred to as LES equations:

@eui

@xi
¼ 0; (38)

@eui

@t
þeuj

@eui

@xj
¼� 1

qf

@P

@xi
þ @

@xj

ð�f þ�tÞ
2

@eui

@xj
þ
@euj

@xj

 ! !
þFi:

(39)

The modified pressure P accounts for the trace of the subgrid-scale
stress tensor and the turbulent viscosity, �t, models the effect of addi-
tional dissipation by the omitted subgrid scales. For the HIT test case,
the turbulent viscosity is determined by the Smagorinsky model33

�t ¼ ðCSDÞ2jeSijj2; (40)

where CS is the Smagorinsky constant, D is the filter width, and jeSijj is
the following norm of the filtered strain rate tensor:

jeSijj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2eSijeSijq

: (41)

In shear-dominated turbulent flows, it can be advantageous to replace
the Smagorinsky model with the Vreman model,36 which is known to
produce more physical results in transitional shear flows. With this
model, the turbulent viscosity is given by

�t ¼ CV

ffiffiffiffiffiffiffiffiffiffiffi
BbeAijeAij

s
(42)

with the filtered velocity gradient tensor

eAij ¼
@eui

@xj
(43)

and

bij ¼ D2eAikeAjk; (44)

Bb ¼ b11b22 � b2
12 þ b11b33 � b2

13 þ b22b33 � b2
23: (45)

In the case of HIT, a statistically steady state is desired for the evalua-
tion of the model. To achieve this, the same amount of kinetic energy
that is dissipated has to be inserted into the flow. In addition to the
constant kinetic energy, further requirements are that the flow is statis-
tically homogeneous and isotropic. In the present work, the forcing
scheme of Mallouppas et al.38 is used. The applied procedure is very
similar to the forcing of the small scales that is described in Sec. II C

Fi ¼
1
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kdesired
p

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Kactual
pffiffiffiffiffiffiffiffiffiffiffiffiffi

Kdesired
p vtriggeri : (46)

However, there are two differences. Instead of estimating the desired
kinetic energy, Kdesired, its value is given as a parameter and determines
the kinetic energy in the flow. Furthermore, the trigger velocity vtriggeri
is determined from the following series expansion:

vtriggeri ¼
X
m

Um;i cos ðkm;jxj þ wmÞ: (47)

The wave number vector km;j has a magnitude corresponding to the
triggered wave number and has random directions. The phase wm is

FIG. 3. PDF of the centered and normalized estimated subgrid-scale kinetic energy.
We show the difference between averaging the kinetic energy in multiple LES grid
cells (average) and evaluating it for every LES grid cells separately (single). In
order to be able to assess the resulting distributions, a squared Gaussian distribu-
tion is plotted.
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chosen randomly from a uniform distribution in the range
0 � w � 2p. The velocity coefficients Um;i are chosen to lead to a
divergence-free trigger velocity and thus fulfills the condition
Um � km ¼ 0. Its magnitude corresponds to a von K�arm�an kinetic
energy spectrum in the triggered wave number range and is given by

jUmj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EvkðjkmjÞDk

p
; (48)

where Evk is a von K�arm�an spectrum and Dk the difference between
two consecutive discrete wave numbers. Similar to the directions in
the forcing of the small scales, vtriggeri is smoothly propagated in time
by applying Eqs. (21) and (22). The trigger velocity consists only of
modes within a predefined wave number range. This has the reason
that isotropy of the generated velocity field cannot be achieved if the
largest possible scales are triggered.42

In this work, the NSE and the LES equations are discretized with
a finite-volume approach that converges with second order in space
and time. The numerical solution is similar to the one described in
Denner et al.,43 but is carried out on an equidistant structured
Cartesian grid with the corresponding geometrical simplifications that
result from constant cell volumes, cell face areas, and normal vectors
that are aligned with the coordinate axes. The continuity equation and
the three-momentum equations are solved in a single equation system
for multiple iterations every time step. The continuity equation is cou-
pled with the momentum equations using momentum-weighted inter-
polation, a concept that was originally introduced by Rhie and Chow.44

As a result, two distinct velocity fields exist in the numerical frame-
work, a cell centered velocity that satisfies the momentum balance with
high accuracy and a face centered velocity that conserves the mass.
With increasing spatial resolution, the velocities converge toward each
other. The results that are presented in this paper are based on the cell-
centered velocity.

B. Flow configurations

1. Homogeneous isotropic turbulence

The first of the two considered test cases is forced HIT. The simu-
lation domain is a cube with the edge length L and periodic boundary
conditions in all three directions. A statistically steady turbulence is
obtained by applying the forcing procedure described in Sec. IIIA. In
order to obtain a homogeneous, isotropic velocity field, the forcing is
exclusively applied between the wave number kstart and kend. Physical
parameters of the resulting turbulent velocity field are the
Taylor–Reynolds number Rek ¼ kurms=�f , the turbulent Reynolds
number Rel ¼ l11urms=�f , the Kolmogorov length scale g, the Taylor
microscale k, and the longitudinal (l11) and transverse (l22, l33) integral
length scales, and are summarized in Table I. Spatial quantities are
presented normalized by the domain length and temporal quantities
are normalized by a reference time Tref ¼ L=urms, with the root mean
square velocity urms ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=3K

p
and the total kinetic energy K.

The solution of the DNS is obtained on a numerical grid with
2563 cells. This leads to a product of the largest resolved wave number
kmax and the Kolmogorov length scale of kmaxg ¼ 1:37.

The LES of the same case is solved on a grid consisting of 323

cells. The influence of the omitted subgrid scales is accounted for by
adding a turbulent viscosity that is obtained from the Smagorinsky
model with a model constant CS ¼ 0:1 and a filter width D corre-
sponding to the size of a computational cell.

The resulting kinetic energy spectra E(k) of the DNS and the LES
are shown in Fig. 4. The DNS spectrum possesses a pronounced iner-
tial range that is characterized by a slope of jkmj�5=3. It can be
observed that the kinetic energy spectrum of the LES resembles the
one of the DNS well for the smaller wave numbers. The cutoff wave
number of the LES lies within the inertial range.

For a homogeneous isotropic flow, the spatial autocorrelations
Bð1Þaa are defined as45

Bð1Þaa ðrÞ ¼
huaðx; tÞuaðx þ re1; tÞi
huaðx; tÞuaðx; tÞi

; (49)

where r denotes the distance between the evaluated velocities and e1
the unit vector in the first coordinate direction. Thus, Bð1Þ11 indicates the
longitudinal and Bð1Þ22 and Bð1Þ33 the transverse spatial autocorrelation
functions, respectively. As already mentioned, isotropy is not achieved
if the smallest wave numbers are included in the forcing. Based on the
spatial autocorrelations, the integral length scales laa are defined as

laa ¼
ð1
0
Bð1Þaa ðrÞdr: (50)

TABLE I. Parameters of the HIT simulation configuration.

Parameter Value

Rek 75
Rel 205
g=L 0.0017

sg=Tref 0.0075
k=L 0.029
l11=L 0.079
l22=L 0.49
l33=L 0.38

kstartL=2p 3
kendL=2p 6

FIG. 4. Kinetic energy spectrum of forced HIT. We compare the spectra of the HIT
case of a DNS with 2563 grid cells and a LES with 323 grid cells.
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Note that no implicit summation is carried over double occurring
indices a. In isotropic turbulence, the transverse integral length scale is
half the longitudinal integral length scale.30 It can be seen in Table I
that this relation approximately holds for the generated turbulent field.

2. Turbulent shear flow

The second case that is investigated is a turbulent shear flow that
is driven by a source term in the momentum equation. Figure 5
sketches the simulation setup. The domain is a cube with edge length
L and periodic boundary conditions in all the three directions. The
momentum source acts in the x direction and varies with the shape of
one period of a sine-profile in the y direction

s ¼ smax sin ð2py=LÞe1: (51)

The amplitude is given by smax and e1 indicates the unit vector in
x direction. Assuming a shear velocity ushear ¼

ffiffiffiffiffiffiffiffiffiffiffi
smaxL
p

, the shear
Reynolds number can be defined as Reshear ¼ ushearL=�f . The value of
this and other physical parameters is summarized in Table II. Similar
to the shear velocity, a characteristic shear time can be defined for nor-
malization Tshear ¼ L=ushear .

A DNS with 1283 grid cells fully resolves the length scales down
to the Kolmogorov scale of the shear flow (kmaxg ¼ 1:16). In addition
to the DNS, a LES with 163 grid cells is performed. Since it is well
known that the Smagorinsky model is inaccurate in the prediction of
shear-dominated flows (see, e.g., L�evêque et al.46), the eddy viscosity is
computed with the Vreman model using a model constant with the
value CV ¼ 0:025.

Figure 6(a) shows the resulting mean velocity profiles of the DNS
and the LES averaged in time. For both simulations, the mean velocity
profiles in the y and z directions are very close to zero. According to
the profile of the volumetric force that drives the flow, the mean veloc-
ity profiles in x direction have the shape of one period of a sine-
function. However, the amplitudes of the mean velocity profiles differ
significantly.

Figure 6(b) shows the kinetic energy of the DNS and the LES of
the turbulent shear flow over time. The turbulent shear flow behaves
aperiodic and contains strong fluctuations of flow quantities, for
example, the kinetic energy. Periods of pronounced turbulence slow
down the main velocity stream, which reduces the production of new
turbulent structures. The flow becomes less turbulent and the main-
stream accelerates because the resistance due to the turbulence
decreases. This causes a chaotic change between periods of high and
low kinetic energy. As already pointed out, the mean velocity profile of
the LES possesses a higher amplitude than the one of the DNS. The
consequence is that the average kinetic energy of the LES is also
higher.

IV. RESULTS AND DISCUSSION

In Sec. IVA, predictions of the presented model are evaluated in
HIT and the turbulent shear flow. We investigate the extent with
which the actual intermittency and spatial structures can be repro-
duced by the proposed enrichment strategy as described in Sec. IVA.
Furthermore, the ability of the model to generate the anisotropic and
inhomogeneous subgrid-scale velocity of the turbulent shear flow is
assessed in Sec. IVB.

A. Enriched velocity of the HIT case

In order to study the influence of different parameters on the
resulting predictions of the subgrid-scale velocity, a standard model
setup for the enrichment of the HIT case is defined. The standard
model setup contains a grid with eight sub-domains per direction,
which is of a factor four coarser per direction than the LES grid. The
number of modes in the series expansion (12) is Nm¼ 100 and the
constant in the turbulent viscosity in the enrichment model �0t is
C� ¼ 0:4, which corresponds to the analytical value obtained from
renormalization group theory.37 The kinetic energy of the subgrid-
scale velocity is estimated using the model of Yoshizawa39

Kest ¼ CID
22eSijeSij, with the originally proposed value of the model

constant CI ¼ 0:0826.
In Fig. 7, slices of the instantaneous velocity magnitudes of the

DNS, the LES, and the LES enriched with the proposed model are
depicted. The LES does not contain small velocity structures, and the
maximum velocity magnitude is still somewhat smaller than the one
of the DNS. With enrichment, the velocity magnitude of the DNS is
better recovered and smaller velocity structures than in the LES with-
out enrichment are observed. However, the DNS field consists of thin
elongated structures, whereas the enrichment yields a less structured
velocity field. This missing structure in the subgrid-scale velocity can
be traced back to the forcing of the subgrid scales that is applied in
randomly chosen directions instead of the actual directions of the
subgrid-scale stress tensor. Furthermore, the non-linear relaxation
term, which is not part of the model equations, may contribute to the
formation of the observed structures in the DNS velocity field.

FIG. 5. Sketch of the shear flow configuration. The momentum source (black line)
varies in the shape of a sin-profile in y direction and acts in the x direction. The
cubic domain is periodic in all directions. The colors show the velocity in x direction.

TABLE II. Parameters of the turbulent shear flow simulation configuration.

Parameter Value

Reshear 3115
g=L 0.0029

sg=Tshear 0.026
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Figure 8 shows the kinetic energy spectrum that results from the
subgrid-scale velocity. The kinetic energy spectrum of the modeled
subgrid-scale velocity coincides well with the DNS. The LES and the
modeled subgrid-scale spectrum together recover the entire range of
scales of the DNS. Note that the subgrid-scale spectrum is obtained
directly from the coefficients of the series expansion Eq. (12). If the
discrete Fourier transform of the sampled subgrid-scale velocity field,
which is discontinuous across the sub-domains, were to be computed,
additional spurious spectral content would occur. This is known as the
Gibbs phenomenon and is avoided here by computing the kinetic
energy spectrum directly from the coefficients in Eq. (23).

The kinetic energy spectrum provides insight into the average
kinetic energy belonging to a certain wave number. However, it does
not contain information on how likely events with a specific intensity
are. A characteristic of turbulent flows is that the PDFs exhibit a higher
incidence of high-intensity events, leading to a non-Gaussian (more
widely shaped) distribution of the velocity gradients.41 Figure 9 shows

the PDFs of the longitudinal and transverse velocity gradients A11 and
A12 normalized with their standard deviations rA11 and rA11 . In both
cases, the LES predicts the gradients with smaller magnitudes, and the
PDF tends to be closer to a Gaussian distribution than the PDF of the
DNS. With the LES including the newly proposed enrichment model
with the standard model setup, a much wider distribution of the veloc-
ity gradients is achieved that increases the intermittency of the flow
compared to the LES. Solely, the very rare events with the greatest
magnitude (i.e., the ends of the tails of the PDF) cannot be fully repro-
duced. It may seem surprising, that despite the Gaussian forcing of the
subgrid-scale velocity, a non-Gaussian PDF of the velocity gradients is
accomplished. There are two main reasons for the observed non-
Gaussian distribution of the velocity gradients of the enriched LES:
first, the forcing is only Gaussian within a sub-domain. Since the esti-
mated subgrid-scale kinetic energy shows a non-Gaussian distribution,
the forcing is also non-Gaussian on a scale of the domain size, and sec-
ond, there are other terms in the model equations (13) and (14) apart

FIG. 6. (a) Comparison of the mean velocity profiles over the y-coordinate in the turbulent shear flow of the DNS (solid line) and the LES with the Vreman model (dashed line)
and (b) dimensionless kinetic energy over dimensionless time for the DNS and the LES of the turbulent shear flow. The dashed lines are the average kinetic energies.

FIG. 7. Slices in the x–y plane of the velocity magnitudes of (a) the DNS velocity, (b) the LES velocity without enrichment, and (c) the LES velocity enriched with the proposed
model for the HIT case.
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from the forcing term that verifiably cause intermittency, that is, the
sweeping term and the straining term.28 It is also worth noting that the
PDF of the longitudinal velocity gradient possesses a non-zero skew-
ness. The modeled subgrid-scale velocity obtained from the enrich-
ment model has difficulties in reproducing this asymmetric behavior.

In addition to the distribution of single entries in the velocity gradi-
ent tensor, a characteristic feature of turbulence is the distribution of the
second invariantQ of the velocity gradient tensor, which is defined as

Q ¼ 1
2

XijXij � SijSij
� �

; (52)

where Xij is the rotation-rate tensor and Sij is the strain-rate tensor.
The second invariant of the velocity gradient tensor can be interpreted
as a measure of how strong rotation is compared to straining. The
right prediction of Q is of practical importance, for instance in
particle-laden flows, since the vorticity-strain relations of a turbulent

flow can be directly related to the clustering behavior of inertial par-
ticles of very small Stokes numbers that are immersed in the flow.47,48

The ability to predict this behavior is often viewed as important prop-
erty for structural subgrid-scale models to predict the right amount of
particle clustering.13,18,49,50 Note however that the right prediction of
Q does not guarantee that the right particle clustering is obtained.

The PDFs of the second invariant of the velocity gradient tensor
of the DNS, the LES, and multiple predictions of the enriched LES
velocity are compared in Fig. 10. Four different parameters of the
model are systematically varied with respect to the standard model
setup in order to determine their impact: (i) the number of sub-
domains, (ii) the kinetic energy of the subgrid-scale velocity, (iii) the
number of modes, and (iv) the model constant C� in the turbulent vis-
cosity �0t of the subgrid-scale momentum equation.

The most obvious observation in Fig. 10 is that the LES without
an enrichment model severely underpredicts the width of the PDF
compared to the DNS. The previously defined standard model setup,
which is depicted for comparison in all of the figures, improves the
width and also the shape of the PDF of the second invariant of the
velocity gradient tensor. However, the skewness is somewhat less pro-
nounced than for the DNS.

An indication for the observed bias in the PDF of the second
invariant of the velocity gradient tensor may be obtained by decom-
posing Q as follows:

Q ¼ 1
2

XijXij � SijSij
� �

¼ � 1
2
@ui
@xj

@uj
@xi
¼ � 1

2
@

@xi
uj
@ui
@xj

 !
: (53)

In fact, the divergence of the advective term is proportional to the sec-
ond invariant of the velocity gradient tensor. Neither the non-linearity
in the subgrid-scale momentum equation (8) nor the non-linearities in
the subgrid-scale stress tensor are represented correctly in the model.
The second invariant of the velocity gradient tensor can be further
expanded

Q ¼ @

@xi

@

@xj
euieuj þ euiu

0
j þ u0ieuj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

non�local contributions

þu0iu0j
 !

: (54)

FIG. 8. Kinetic energy spectrum of forced HIT. We compare the results of the DNS
with 2563 grid cells, the LES with 323 grid cells, and the modeled subgrid-scale
velocity field.

FIG. 9. PDF of longitudinal (a) and transverse (b) velocity gradient for DNS, LES without enrichment, and enriched LES (LES-E) velocity field normalized with their standard
deviations together with a Gaussian distribution for comparison. The results of the enriched LES are obtained with the standard model setup.
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In contrast to the local contributions euieuj and u0iu
0
j, the non-local

terms in Eq. (54) are represented in the model equations and contrib-
ute to the improved results of the PDF compared to the LES. This sug-
gests that for further improvements of the predictions of the second
invariant of the velocity gradient tensor, the non-linear relaxation
term has to be included and the forcing has to be modified.

Next to the standard setup of the enrichment model, other con-
figurations with variation of the four previously defined influence
parameters are also shown. Figure 10(a) compares the obtained PDFs
for the second invariant of the velocity gradient tensor with a varying
number of sub-domains that are used for the solution of the model
equations. Instead of the 83 sub-domains of the standard model setup,
two further simulations are performed with 163 and 323 sub-domains,
respectively. The PDFs of the three cases almost coincide, suggesting
that neither the smaller averaging volume for the LES quantities nor
the increased accuracy of the spatial derivatives of the coefficients in
Eq. (12) yields improved strain–rotation relations in HIT. However,
the number of sub-domains becomes important if an inhomogeneous
flow is considered, since the sub-domains have to be small enough to
resolve the spatial changes of the mean or larger structures.

The next investigated model parameter is the estimated subgrid-
scale kinetic energy. The effect of multiplying the estimated kinetic

energy with a factor of 1.5 and 2.0 on the PDF of the second invariant
of the velocity gradient tensor is shown in Fig. 10(b). A higher kinetic
energy leads to wider tails of the PDF, because larger absolute velocity
gradients become more likely. The shape of the PDF does not notably
change with different kinetic energies. The lack of asymmetry as
observed with the standard model setup still remains.

Another investigated parameter is the number of modes in the
series expansion of the subgrid-scale velocity in Eq. (12). Its influence is
shown in Fig. 10(c). For this parameter, no clear trend can be observed
in the PDF. The second invariant of the velocity gradient tensor is rela-
tively independent of the number of modes of the subgrid-scale velocity,
for Nm � 100. Since the non-linear term is not present in the model
equations for the subgrid-scale velocity, Eqs. (13) and (14), there is no
information exchange between the coefficients of different wave num-
bers. This has an advantageous side effect for the implementation. The
parallelization of the solution procedure for Eqs. (29), (30), (17), and (18)
can be carried out straightforwardly in wave number space. However, it
is expected that, in order to properly represent the kinetic energy spec-
trum and achieve a suitable complexity of the sampled subgrid-scale
velocity field, a minimal amount of wave numbers is required.

The last model parameter, which is investigated with respect to
the PDF of the second invariant of the velocity gradient tensor, is the

FIG. 10. PDF of the second invariant of the velocity gradient tensor for DNS, LES without enrichment, and the enriched LES (LES-E) for the HIT case. The influence of four
parameters of the proposed enrichment model is compared to the previously defined standard model setup: (a) the number of sub-domains, (b) the estimated subgrid-scale
kinetic energy, (c) the number of modes in the series expansion (12), and (d) the constant C� in the subgrid-scale turbulent viscosity.
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constant in the expression of the subgrid-scale turbulent viscosity
given in Eq. (11), C� . The PDFs of the second invariant of the velocity
gradient tensor are shown for different values of C� in Fig. 10(d).
Higher values of this constant lead to slightly wider PDFs compared to
smaller values. This can be explained by the fact that higher turbulent
viscosities marginally increase the kinetic energy for the higher wave
numbers relative to the small wave numbers, which typically yields
larger velocity gradient magnitudes and hence wider tails of the PDF.
The shape of the PDF is not affected. Even though the constant is var-
ied by a factor of 16, the difference between the PDFs is very small.
Thus, the results are not very sensitive to the choice of C� .

The specific choice of parameters in the model depends on the
application of the enrichment with subgrid-scale velocity. General
guidelines for the choice of parameter are thus not possible. However,
it is shown that the subgrid-scale velocity statistics are rather insensi-
tive to the change of parameters.

In order to verify that the interpolation proposed in Sec. II E does
not significantly influence the results of this paper, the PDFs of Q with
and without the proposed divergence-free interpolation between sub-
domains is shown in Fig. 11. The PDFs almost coincide, suggesting that
the interpolation does not affect the turbulence statistics on a global
scale. The fact that the desirable properties are conserved and the result-
ing velocity field is divergence free makes the combination of the enrich-
ment with the proposed interpolation between sub-domains advisable.

For the application of the model, it is also interesting to measure
the increase in computational time due to the enrichment compared
to the LES. In Table III, the computational times for the DNS, the LES,
and the enriched LES with the standard model setup are compared
with each other. The computational time is shown that it is needed to
simulate a physical time of Tref. The enrichment approximately dou-
bles the required computational time of the LES. Compared to the
computational time required for the DNS, this is an acceptable
increase in computational time. The computational time of the DNS is
approximately four orders of magnitude larger compared to the

enriched LES. The presented statistics of the enriched LES are much
closer to the DNS compared to the LES by only increasing the compu-
tational costs by a factor of two.

B. Enriched velocity of the turbulent shear flow case

In order to verify the ability of the proposed enrichment model at
simulating inhomogeneous and anisotropic flows, the enrichment is
applied to the turbulent shear flow configuration that is described in
Sec. III B 2. The fact that a distinct set of coefficients exists for every
sub-domain makes the model capable of representing inhomogeneous
subgrid-scale velocity fields. Furthermore, anisotropy of the subgrid-
scale velocity [i.e., preferential alignment of the coefficients in the
series expansion of Eq. (12)] may be induced by the sweeping and
straining terms in the governing equations for the subgrid scales.

Due to the chaotic fluctuations of the kinetic energy of the shear
flow, temporal averaging has to be performed over long times. The sta-
tistics are evaluated within a time span of 140Tshear , starting from a
flow field that converged toward a statistically steady state for at least
the same time, in order to obtain meaningful statistics.

The generated subgrid-scale velocity is investigated in terms of its
anisotropy and spatial variation. The results are assessed based on the
averaged fluctuation velocity correlations

Cij ¼ h ui � huiið Þ uj � huji
� �

i; (55)

where the ensemble average h:i in this case stands for averaging in
time and along the homogeneous directions (i.e., x and z directions).
Similarly, the filtered velocity eu or the subgrid-scale velocity u0 can be
used in Eq. (55) in order to obtain the velocity correlations for the fil-
tered velocity and the subgrid-scale velocity, respectively.

In Fig. 12, the velocity correlations for the DNS and the LES [Fig.
12(a)] as well as for the subgrid-scale velocity obtained with the model
[Fig. 12(b)] are depicted. Similar to the standard model setup of Sec.
IVA, the model equations are solved for Nm¼ 100 modes, with the
analytical value of the constant in the subgrid-scale turbulent viscosity
C� ¼ 0:4 and a subgrid-scale kinetic energy estimation with the model
of Yoshizawa and the analytical constant CI ¼ 0:0826. However, the
number of sub-domains is 163, which corresponds to the LES grid.
Since the model equations are solved based on the domain-averaged
filtered velocity, the average modeled subgrid-scale velocity is approxi-
mately constant in a domain, which is why a relatively high number of
sub-domains is required to resolve the mean velocity profile.

The profiles of the correlations C11; C22, and C33 in Fig. 12(a)
exhibit the same qualitative behavior. Over one domain length two
periods of the correlations can be observed, which is the double fre-
quency of the mean velocity profile in x direction. The maximum val-
ues of the correlations are in the regions of the highest mean shear.
The cross-correlation C12 has the same frequency as the mean velocity

FIG. 11. PDF of the second invariant of the velocity gradient tensor of the enriched
velocity of the HIT case. The velocity field of the enrichment with the standard
model setup is used with discontinuities between the sub-domains and with the pro-
posed divergence-free interpolation.

TABLE III. Comparison of the computational times for the DNS, the LES, and the
enriched LES for the simulation time Tref.

Type Computational time per Tref

LES 32 � 103 s
LES þ model (standard setup) 69 � 103 s

DNS 340 � 106 s
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in x direction. It is negative for positive values of @u1=@y and positive
for negative values of @u1=@y. The other two cross-correlations are
zero, which is not shown in Fig. 12(a).

The velocity correlations obtained with the LES clearly deviate
from the velocity correlations of the DNS, especially for C11 and C22.
This can be explained with the too high amplitudes of the mean veloc-
ity profile. Adding the subgrid-scale velocity to the LES velocity does
not correct the observed deviations. Compared to the total kinetic
energy, the kinetic energy of the subgrid scales is very small in this
configuration. However, note that the subgrid-scale velocity possesses
properties that are important for some applications (e.g., increased tur-
bulent mixing) and omitting them can lead to wrong results.

As it can be observed in Fig. 12(b), the generated subgrid-scale
velocity field possesses a similar qualitative behavior as the velocity
field of the DNS. Note that the magnitude of the velocity correlations
of the subgrid-scale velocity is smaller, since the kinetic energy of the
subgrid scale is only a small fraction of the total kinetic energy. Since
the correlations vary in the y direction, an inhomogeneous field is gen-
erated. Furthermore, the regions of high and low values of the correla-
tions coincide with those of the DNS. The reasons for the stepwise
increase and decrease in the correlations are caused by the statistically
homogeneous subgrid-scale velocity in the sub-domains. The ability of
the model to generate an inhomogeneous subgrid-scale velocity field is
a prerequisite to predict turbophoresis in a particle-laden flow.

In addition to the inhomogeneity of the subgrid-scale velocity,
there is also evidence that the velocity field is anisotropic. In particular,
the cross-correlation C12 demonstrates the capability of the model to
produce an anisotropic velocity field. It has a similar trend as the
cross-correlation of the DNS, whereas the other two cross-correlations
C13 andC23 are zero (not shown in the figure).

It can be concluded that the concept of sub-domains indeed ena-
bles inhomogeneous subgrid-scale velocity fields. Moreover, the spatial
change of the temporally averaged subgrid-scale velocity correlations

behaves qualitatively the right way. Furthermore, anisotropy of the
subgrid-scale velocity is obtained, because the correlations differ in
function of the used subgrid-scale velocity components.

V. CONCLUSIONS

A new model for enriching the velocity of a LES with a subgrid-
scale velocity is introduced. The enrichment model enables closures
for LES when these are required. It is shown that the generated
subgrid-scale velocity possesses several important characteristic prop-
erties of real turbulent fields, such as the shape of the kinetic energy
spectrum, non-Gaussian PDFs of velocity gradients, and similar
strain–rotation relations. Compared to other models for the subgrid-
scale velocity, common problems are mitigated with our proposed
model: the influence of the small number of tuning parameters
required in the model is shown to be insignificant, the computational
cost of the enrichment model is of the order of the LES, and it is shown
that inhomogeneous and anisotropic subgrid-scale velocities can also
be generated. These properties make our enrichment model suitable
for a variety of applications, in which a closure for the subgrid-scale
velocity is required.
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APPENDIX: PROJECTION OF THE MODEL EQUATIONS

Equation (14) can be written in a short form

@u0i
@t
þAi ¼ �

1
qf

@p0

@xi
þDi þFi (A1)

using A; D, and F for the convective term, diffusive term, and
source term, respectively. Neglecting the pressure term and approx-
imating the time derivative with an explicit Euler scheme yields a
preliminary subgrid-scale velocity u0;�i

u0;�i � u0;ni
Dt

þAn
i ¼ Dn

i þFn
i : (A2)

The same equation but with the pressure term leads to the physi-
cally right (up to discretization error of the time derivative)
subgrid-scale velocity of the next time level u0;nþ1i

u0;nþ1i � u0;ni
Dt

þAn
i ¼ �

1
qf

@p0

@xi
þDn

i þFn
i : (A3)

The difference of u0;nþ1i and u0;�i is obtained by subtracting Eq. (A2)
from (A3)

u0;nþ1i � u0;�i
Dt

¼ � 1
qf

@p0

@xi
: (A4)

Assuming the divergence of the subgrid-scale velocity of the next
time level to vanish, the following Poisson equation can be derived:

@u0;�i
@xi
¼ Dt

qf

@2p0

@xi@xi
: (A5)

Similar to the subgrid-scale velocity, the pressure can be written as
a truncated Fourier series

p0 ¼
XNm�1

m¼0
PmðtÞ cos ðkm � xÞ þ QmðtÞ sin ðkm � xÞð Þ (A6)

with the gradient

rp0 ¼
XNm�1

m¼0
km �PmðtÞ sin ðkm � xÞ þ QmðtÞ cos ðkm � xÞð Þ (A7)

and the Laplacian

r2p0 ¼
XNm�1

m¼0
�jkmj2 PmðtÞ cos ðkm � xÞ þQmðtÞ sin ðkm � xÞð Þ: (A8)

Plugging the Fourier series expansions into Eq. (A5) yields

XNm�1

m¼0
km �A�mðtÞ sin ðkm � xÞþB�mðtÞ cos ðkm � xÞ
� �

¼ Dt
qf

XNm�1

m¼0
� jkmj2 PmðtÞ cos ðkm � xÞþQmðtÞ sin ðkm � xÞð Þ: (A9)

After sorting by cos- and sin-terms and evaluating each mode sepa-
rately, the following relations for the coefficients PmðtÞ and QmðtÞ
are obtained:

PmðtÞ ¼ �
qf

Dtjkmj2
km � B�mðtÞ; (A10)

QmðtÞ ¼
qf

Dtjkmj2
km � A�mðtÞ: (A11)

Finally, the divergence-free coefficients for the subgrid-scale veloc-
ity Anþ1

m ðtÞ and Bnþ1
m ðtÞ can be computing using Eq. (A4)

Anþ1
m ðtÞ ¼ A�mðtÞ �

Dt
qf

QmðtÞkm ¼ A�mðtÞ � km
km � A�mðtÞ
jkmj2

; (A12)

Bnþ1
m ðtÞ ¼ B�mðtÞ þ

Dt
qf

PmðtÞkm ¼ B�mðtÞ � km
km � B�mðtÞ
jkmj2

: (A13)
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In this paper, we propose a modeling framework for large eddy simulations of particle-
laden turbulent flows that captures the interaction between the particle and fluid phase on
both the resolved and subgrid scales. Unlike the vast majority of existing subgrid-scale
models, the proposed framework not only accounts for the influence of the subgrid-scale
velocity on the particle acceleration but also considers the effect of the particles on
the turbulent fluid flow. This includes the turbulence modulation of the subgrid scales by
the particles, which is taken into account by the modeled subgrid-scale stress tensor and the
effect of the unresolved particle motion on the resolved flow scales. Our modeling frame-
work combines a recently proposed model for enriching the resolved fluid velocity with
a subgrid-scale component, with the solution of a transport equation for the subgrid-scale
kinetic energy. We observe very good agreement of the particle pair separation and particle
clustering compared to the corresponding direct numerical simulation. Furthermore, we
show that the change of subgrid-scale kinetic energy induced by the particles can be
captured by the proposed modeling framework.

DOI: 10.1103/PhysRevFluids.8.084301

I. INTRODUCTION

To capture particle-turbulence interactions within the whole turbulence spectrum down to the
Kolmogorov length and timescale, a direct numerical simulation (DNS) has to be performed.
For academic cases, DNSs of particle-laden turbulent flow is commonly used to gain insights
into the underlying physical phenomena. As the flow configurations become more relevant for
practical applications, however, resolving such a wide range of flow length and timescales becomes
prohibitively expensive. An established surrogate in single phase flows is large eddy simulation
(LES), which resolves only the large flow scales and models the mainly dissipative effect of the
small scales. Even though many challenges still remain, LES is commonly applied to different single
phase flow applications. Severe problems can arise, however, if particle-laden flows are considered,
especially if the particles significantly affect the flow (two-way coupling).

The majority of the literature on particle-laden flows focuses on the one-way coupling, where
the modification of the particle statistics by the flow is considered but not the effect of the particles
on the flow. The effect of neglecting the subgrid-scale velocity contributions on the transport of the
particles has been investigated and quantified in a variety of studies [1–4]. It has been observed that
even though the kinetic energy of the subgrid-scale velocity is small, the consequence of neglecting

*Also at Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
14853, USA.

†berend.vanwachem@ovgu.de

2469-990X/2023/8(8)/084301(29) 084301-1 ©2023 American Physical Society



M. HAUSMANN, F. EVRARD, AND B. VAN WACHEM

the subgrid-scale fluid velocity on the motion of the particles can strongly affect the preferential
concentration and other statistics of the particles.

There are several classes of models that attempt to produce realistic particle statistics in the scope
of LES. Lagrangian models typically rely on the solution of a stochastic differential equation for
every individual particle (see, e.g., Fede et al. [5], Bini and Jones [6], Berrouk et al. [7], Shotorban
and Mashayek [8], Pozorski and Apte [9], and Knorps and Pozorski [10]). These models are
typically simple to implement, computationally efficient, and can also be applied in complex
domains. However, they usually contain empirical parameters and their Lagrangian nature prevents
them from predicting accurate particle pair statistics. Other models rely on successive deconvolution
of the LES velocity and use the resulting fluid velocity field to transport the particles [11,12]. Park
et al. [13] extended the deconvolution of the filtered velocity by dynamically adjusting an elliptic
differential filter such that the model is either kinetic energy or dissipation consistent with the
subgrid-scale model. The main drawback of approximate deconvolution methods is that they do
not introduce velocities with higher wave numbers than the LES, but only modify the LES velocity.
That is why these models are not able to reproduce the particle statistics of a DNS to the full extent.

The most promising predictions of particle statistics using a LES framework are obtained with
models that reconstruct the subgrid-scale velocity. Bassenne et al. [14] proposed such a model
that alternatingly applies the dynamic approximate deconvolution of Park et al. and a spectral
extrapolation based on the work of Domaradzki and Loh [15]. The proposed model improves the
prediction of particle clustering for a wide range of Stokes numbers. However, the model requires
a projection operation that has to be carried out with a resolution comparable to the DNS to obtain
a divergence-free subgrid-scale velocity, which introduces prohibitively high computational costs.
The kinematic simulation is a much cheaper approach and relies on the reconstruction of the
subgrid-scale velocity using a truncated Fourier series [16–18]. The Fourier coefficients required
for the kinematic simulation are chosen such that the resulting velocity field is divergence-free
and matches a given kinetic energy spectrum. Even though kinematic simulations yield improved
predictions of particle clustering for Stokes numbers St > 1.5, it only applies to spatially homo-
geneous problems. Considering the available models, there still does not exist a model that yields
satisfying improvements in predicting particle clustering and the Lagrangian particle statistics, while
maintaining important features for practical applicability, such as a reasonable computational cost
and the absence of empirical model parameters of critical influence.

Extensive research has been carried out to better understand the modulation of turbulence by
particles. Studies of forced and decaying homogeneous isotropic turbulence (HIT) have shown that
the presence of particles can modify the total dissipation in two ways [19–23]: (i) The particles can
remove or add kinetic energy to the turbulent flow. The sign of the particle kinetic energy transfer
and the scales at which the kinetic energy transfer occurs have been shown to depend on at least three
parameters: the Stokes number, the particle number density, and the mass fraction [21]. (ii) The fluid
dissipation is influenced by the presence of particles [19]. Similarly, depending on the characteristic
turbulence and particle parameters and on the considered length scales, the fluid dissipation can
either be enhanced or diminished.

A LES only resolves part of the kinetic energy spectrum and can thus only account directly for a
modified total dissipation at the resolved scales. While the particle dissipation at the subgrid scale is
fully disregarded in a classical LES, the subgrid-scale fluid dissipation is assumed to be equal to the
fluid dissipation of a single phase flow. Classical LES uses one of the many subgrid-scale models
designed for single phase flows (see, e.g., Sagaut [24]) and a fluid-particle coupling force obtained
without information of the subgrid-scale fluid velocity at the particle positions. The application of
several single-phase subgrid-scale models to particle-laden flows has been investigated by Boivin
et al. [25], displaying very different results between the models. Boivin et al. also argued that at
high particle mass fractions, the modeling error in predicting the fluid dissipation becomes less
important, since the particle dissipation is then dominant. In fact, we show in the present paper
that the neglected portion of the particle dissipation and fluid dissipation partially compensate each
other. Rohilla et al. [26] showed that the Smagorinsky or dynamic Smagorinsky model applied to
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particle-laden flows is unable to predict the critical particle volume loading at which the turbulence
in a channel flow collapses (i.e., the flow becomes laminar). They state that one of the main reasons
for this issue is the error made in modeling subgrid-scale dissipation.

Due to the complexity of two-way coupled turbulent particle-laden flows, models that account
for all the coupling effects between the particles and all fluid length and timescales are very rare.
An attempt has been made by Yuu et al. [27], who derived an algebraic model for the subgrid-scale
kinetic energy that serves as input for a turbulent viscosity. In the studies of Pannala and Menon [28]
and Sankaran and Menon [29], a source term accounting for the presence of particles is added to
an evolution equation for the subgrid-scale kinetic energy equation, in a manner somewhat similar
to the method presented in this paper. However, their particle source term is not closed because it
contains the subgrid-scale velocity, which requires additional modeling.

In this paper, we present a framework that accounts for particle turbulence interactions that are
typically neglected in a LES. The framework contains two coupled models: (i) a subgrid-scale model
based on the localized dynamic kinetic energy model (LDKM) of Menon and coworkers [30,31],
with an additional source term accounting for the influence of the particles on the subgrid-scale
kinetic energy, and (ii) a model for the subgrid velocity that is used to close the particle equations of
motion and the particle source terms in the momentum and subgrid-scale kinetic energy equa-
tions [32]. In Sec. II, the general numerical framework for treating the particle-laden flows in this
paper is introduced, including the transport equation for the subgrid-scale kinetic energy upon which
the subgrid-scale model is built. Section III gives an overview of the closures that are required in a
particle-laden LES and provides a derivation of the proposed modeling framework. Subsequently,
simulation setups for one-way and two-way coupled HIT are introduced in Sec. IV, and results of
the comparison between DNS, LES, and modeled LES are presented in Sec. V. Finally, Sec. VI
concludes the present paper.

II. GENERAL NUMERICAL FRAMEWORK

In this paper, we consider an incompressible fluid with density ρf and kinematic viscosity νf in
the absence of a gravitational field. The fluid is laden with particles of index p having a density ρp

and volume Vp. By volume filtering the Navier-Stokes equations (NSEs), the effect of the particles
on the fluid can be modeled without needing to solve for the detail of the flow around each individual
particle. The following equations are commonly used to approximate the volume-filtered velocity u
and pressure p for small particle volume fractions (see, e.g., Maxey [33]):

∇ · u = 0, (1)

∂u
∂t

+ ∇ · (u ⊗ u) = − 1

ρf
∇p + ∇ · σ − 1

ρf

∑
p

g(|x − xp|)F p, (2)

where σ = νf (∇u + (∇u)T) is the Newtonian viscous stress tensor and F p is the sum of the fluid-
particle interface forces of the particle with index p that can originate from drag, lift, added mass,
or other effects. Gravity is neglected in the present paper. The kernel g of the volume filtering
operation (see, e.g., Anderson and Jackson [34]) corresponds to filter size δ. Note that the filtering
is only applied over volumes that are occupied by the fluid. Strictly speaking, the solution of Eqs. (1)
and (2) is the approximation of volume-filtered quantities, which is not equivalent to the actual fluid
velocity and pressure. In a simulation, the smallest resolvable flow structures are related to the
smallest affordable cell size of the numerical grid. Similar to the LES approach, the volume-filtered
approach solves for the large scales that can be resolved by the grid and models the effect of the
small scales. It should be noted that in this paper, the influence of particle volume fraction αp is
not considered in the governing equations of the DNS and LES, even though it can be significant in
dense particle regimes (i.e., αp > 0.01). The proposed modeling is also only valid for dilute regimes.
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Particles are considered as Lagrangian rigid point-particles. The particle position xp is governed
by the equation

dxp

dt
= vp, (3)

and the particle velocity by Newton’s second law:

dvp

dt
= 1

ρpVp
F p. (4)

There are a variety of mechanisms that lead to different forces acting on the particle, and additional
source terms can arise in Eq. (4) if, e.g., gravity is considered, which is neglected in this paper.
A summary of the possible force contributions and the regimes whereby their consideration is
important has been provided by Kuerten [35].

We only consider cases in which the particles are significantly smaller than the Kolmogorov
length scale (i.e., the smallest turbulent structures). The turbulence of the scales down to the
Kolmogorov length scale are resolved with the DNS. Note that the DNS is based on the assumption
of point particles. In cases, where not even the smallest flow structures can be resolved by the
numerical grid, a LES can be performed. The governing equations for the LES are obtained by
filtering Eqs. (1) and (2) once more with a filter G of width �, with � � δ:

∇ · ũ = 0, (5)

∂ũ
∂t

+ ∇ · (ũ ⊗ u) = − 1

ρf
∇ p̃ + ∇ · σ̃ − 1

ρf

∑
p

g(|x − xp|)F p
�

. (6)

Note that the filter G is applied to already continuous quantities (due to the previous filtering with g)
and .̃ represents the filtering operator. No further assumptions are introduced with the second filter
level.

Due to the fact that the particles are much smaller than the Kolmogorov length scale (and
therefore of the grid spacing), the numerical discretization of the source terms is realized with the
particle-source-in-cell (PSIC) method of Crowe et al. [36],∑

p

g(|x − xp|)F p ≈ 1

Vcell(x)

∑
p∈�cell (x)

F p (7)

and ∑
p

g(|x − xp|)F p
� ≈ 1

Ṽcell(x)

∑
p∈�̃cell (x)

F p, (8)

where �cell and �̃cell indicate computational cells of the DNS and the LES, respectively, and Vcell <

Ṽcell their volumes.
For the modeling of the flow scales that are filtered out by kernel G, a transport equation for the

subgrid-scale kinetic energy Ksgs = 1/2(ũ · u − ũ · ũ) is derived. This is done in two steps. First,
Eq. (2) is dotted with the velocity u and subsequently filtered with G, which yields

1

2

∂u · u�

∂t
+ 1

2
∇ · (u ⊗ u · u
�

)

= − 1

ρf
∇ · (pu�) + ∇(σ · u�) − ∇̃u : σ − 1

ρfṼcell

∑
p∈�̃cell

F p(u(xp)) · u(xp). (9)

The last term on the right-hand side is realized by multiplying the fluid-particle interface forces F p

with the fluid velocity at the particle position and taking the sum over all particles within a LES
grid cell. In the following, we will emphasize that the forces F p require the unfiltered fluid velocity
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at the particle position by explicitly writing its dependency on u(xp). The reader may be reminded,
however, that the forces may also depend on additional parameters.

The sum over all particles within a LES grid cell replaces the filtering operation F p · u
�

. In
fact, this resembles the approach of Schumann [37], who defines a set of LES equations based
on averaging over the volume of the computational cell, which is arguably closer to the numerical
realization of a LES than a spatially continuous filtering operation. Second, Eq. (6) is dotted with
the filtered velocity ũ, which leads to

1

2

∂ũ · ũ
∂t

+ 1

2
∇ · (ũ ⊗ u · ũ)

= − 1

ρf
∇ · ( p̃ũ) + ∇ · (̃σ · ũ) − ∇ũ : σ̃ − 1

ρfṼcell
ũ ·

∑
p∈�̃cell

F p(u(xp)). (10)

The numerical realization of the last term on the right-hand side includes a sum of the forces F p

within a LES grid cell and subsequent multiplication with the LES velocity of the present grid cell.
Subtracting Eq. (10) from Eq, (9) yields an equation for Ksgs:

∂Ksgs

∂t
+ 1

2

∂

∂x j
(ũiu jui − uiu j

�ũi )

= − 1

ρf

∂

∂xi
( p̃ui − p̃ũi ) + νf

∂2Ksgs

∂x j∂x j
− νf

⎛⎜⎝ ∂ui

∂x j

∂ui

∂x j

�
− ∂ ũi

∂x j

∂ ũi

∂x j

⎞⎟⎠
− 1

ρfṼcell

⎛⎝ ∑
p∈�̃cell

Fi,p(u(xp))ui(xp) − ũi

∑
p∈�̃cell

Fi,p(u(xp))

⎞⎠. (11)

The last term on the right-hand side is the source term due to the subgrid-scale kinetic energy transfer
by the particles. This equation is the foundation for the modeling of the turbulence modulation by
particles of scales that are filtered out by G.

III. MODELING IN THE LES FRAMEWORK

The second filtering operation with G leads to equations governing the fluid behavior that
cannot be solved explicitly without knowing the fluid velocity u. We model these equations in the
framework of a LES. In addition to the modeling of the subgrid-scale stress tensor, a particle-laden
flow requires further closures, which are first explained and then modeled.

A. Required closures

The fluid equations with the assumption of a dilute particle-laden flow with sufficiently small
particles and subsequent filtering with the kernel G can be written in the typical form of a LES [38]
as

∂ ũi

∂xi
= 0, (12)

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρf

∂ p̃

∂xi
+ νf

∂2ũi

∂x j∂x j
− ∂τi j

∂x j
− 1

ρfṼcell

∑
p∈�̃cell

FD,i,p(u(xp)), (13)

where we assumed that only the drag force FD acts on the particles. The subgrid-scale stress tensor
τi j is defined as

τi j = ũiu j − ũiũ j . (14)
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With the particle force reducing to the drag force, the particle velocity vp is governed by

dvp

dt
= 1

ρpVp
FD,p(u(xp)). (15)

To solve for the filtered fluid velocity ũ and the particle velocity vp, two further modeling steps
are required: (i) The subgrid-scale stress tensor τi j has to be closed to model the effect of the
unresolved subgrid scales on the resolved (filtered) quantities. It should be noted that the presence
of the particles modifies the subgrid-scale velocity. As a consequence, models for the subgrid-scale
stress tensor that are based on assumptions of the single-phase flow subgrid-scale velocity are,
strictly speaking, not valid. (ii) To compute the drag force acting on the particle and vice versa,
the force that is coupled back to the fluid with opposite sign, the unfiltered fluid velocity at the
particle position is required, which is an unknown quantity in a LES. It is well understood that
the particles behave differently when the drag force is obtained from the filtered fluid velocity at the
particle position FD,p(ũ(xp)) [2,3]. In the present paper, a modeling framework for both closures is
provided.

B. Modeling the subgrid-scale stress tensor

The subgrid-scale stress tensor accounts for the effect of the subgrid-scale velocities on the
velocity that is resolved in a LES. In a LES, this subgrid-scale stress tensor is modeled. Typically,
the focus lies exclusively on modeling the energetic effects of the subgrid scales on the resolved
scales, even though the mechanisms of turbulent energy transfer (vorticity stretching and strain
self-amplification) possess characteristic directional dependencies [39]. In single phase turbulent
flows, the construction of the subgrid-scale model can be based on the assumption that the energy
transferred towards smaller scales is either dissipated by the viscosity or scattered back towards
larger scales. In a particle-laden turbulent flow, however, additional energy sources and sinks occur
due to the interactions with the particles that classical subgrid-scale models (designed for single
phase flows) do not account for.

To take the interactions of the fluid with the particles into account, we modify the LDKM of
Menon and coworkers [30,31]. The modeling of the subgrid-scale stress tensor is based on an eddy
viscosity νk,

τi j = −2νk S̃i j + 2
3 Ksgsδi j, (16)

where S̃i j is the filtered strain-rate tensor and δi j is the Kronecker tensor. The eddy viscosity is
computed from the subgrid-scale kinetic energy,

νk = Ck

√
Ksgs�, (17)

where Ck is a constant. The evolution of the subgrid-scale kinetic energy Ksgs is governed by the
transport Eq. (11). However, several terms of the transport equation for Ksgs require the unfiltered
fluid velocity. Lilly [40] introduced a model for the transport Eq. (11) (without particle source term),
such that it can be solved by knowing filtered quantities only, which is the basis of the LDKM,

∂Ksgs

∂t
+ ũi

∂Ksgs

∂xi
= −τi j

∂ ũi

∂x j
− Cε

K3/2
sgs

�
+ ∂

∂xi

(
νk

∂Ksgs

∂xi

)
+ ΦP, (18)

where Cε is a constant. The particle source term ΦP is not part of the original LDKM but introduced
in the present model based on the derivations in Sec II:

ΦP = − 1

ρfṼcell

⎛⎝ ∑
p∈�̃cell

FD,i,p(u(xp))ui(xp) − ũi

∑
p∈�̃cell

FD,i,p(u(xp))

⎞⎠. (19)

The particle source term represents the kinetic energy added to or removed from the subgrid-scale
velocity by the particles. Although the source term is written as a function of the drag force, the
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derivation in Sec. II shows that the source term can be computed from all the fluid-particle interface
forces used in the fluid momentum equation, such as lift force or added mass force.

Note that Pannala and Menon [28] and Sankaran and Menon [29] already applied the concept
of a particle source term in the transport equation of the subgrid-scale kinetic energy, but with a
different realization and without providing a rigorous derivation. To distinguish the present model
including the particle source term Eq. (19) from the original LDKM, we refer to it as modified
LDKM (mLDKM). The constants Cε and Ck are computed dynamically based on the assumption of
scale similarity. The Leonard stress tensor is defined as

Li j = ̂̃uiũ j − ˆ̃ui ˆ̃u j, (20)

where .̂ indicates a filtering operation with the filter width �̂ = 2�. Assuming that the Leonard
stress tensor is analogously computed to the subgrid-scale stress tensor,

Li j = −2Ck�̂K1/2
test

ˆ̃Si j + 1
3δi jLkk, (21)

the constant Ck can be dynamically computed from

Ck = 1

2

Li jσi j

σlmσlm
, (22)

with

σi j = −�̂K1/2
test

ˆ̃Si j (23)

and

Ktest = 1
2 (̂̃uiũi − ˆ̃ui ˆ̃ui ) = 1

2 Lii. (24)

Note that δi j S̃i j = 0 for incompressible flows.
Assuming the scale similarity to also be valid for the dissipation gives

Cε

K3/2
test

�̂
= (νf + νk )

(
∂̂ ũi

∂x j

∂ ũi

∂x j
− ∂ ˆ̃ui

∂x j

∂ ˆ̃ui

∂x j

)
. (25)

With this, the dynamic value of Cε can be obtained from

Cε = �̂(νf + νk )

K3/2
test

(
∂̂ ũi

∂x j

∂ ũi

∂x j
− ∂ ˆ̃ui

∂x j

∂ ˆ̃ui

∂x j

)
. (26)

The original LDKM for single phase flows (without the particle source term) has some advanta-
geous properties. The dynamical constant Ck can become negative and, thus, theoretically enables
emulating the backward energy cascade. However, similar to Kim et al. [41], the eddy viscosity
is numerically limited to νk > −νf to ensure a stable numerical solution of the flow equations. In
contrast to the dynamic model of Germano et al. [42], no averaging along statistically homogeneous
directions is required with the LDKM, which requires the existence of statistically homogeneous di-
rections. With the dynamic computation of the constants, the model does not contain any adjustable
constants.

Besides the theoretical advantages of the LDKM in a single phase flow, the main advantage is
that it provides a framework for incorporating the particle source term in a deterministic way. If the
particles remove kinetic energy from the subgrid scales, Ksgs decreases and the fluid dissipation (i.e.,
the eddy viscosity) is reduced. However, the model is not capable of considering at which scales
the enhancement or attenuation of turbulence takes place. In reality, the spectral distribution of the
subgrid-scale kinetic energy can play an important role.

The particle source term ΦP is not closed in the scope of LES because the unfiltered velocity at
the particle position is required, whereas only the filtered velocity is available. Thus, the mLDKM
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including the particle source term is only applicable if a suitable model for the subgrid-scale velocity
at the particle position is provided.

C. Approximate reconstruction of the subgrid-scale velocity

The computation of the drag force acting on the particle requires knowledge of the fluid velocity
at the particle positions, which is used in the equations of motion of the particles and as the feedback
force on the fluid. In addition to the LES velocity, the subgrid-scale velocity has to be provided. We
approximate the subgrid-scale velocity as a truncated Fourier-series expansion,

u′ =
Nm−1∑
m=0

(Am(t ) cos(km · x) + Bm(t ) sin(km · x)), (27)

where Am(t ) and Bm(t ) are time-dependent coefficients, Nm the number of modes, and km the wave
vectors. With similar coefficients for the entire domain, the subgrid-scale velocity is statistically
homogeneous. To overcome the limitation of global statistical homogeneity, statistically homoge-
neous subdomains �domain ∈ � are defined that own a distinct set of coefficients Am(t ) and Bm(t ),
respectively. Quantities that are known in the LES may be averaged over the subdomain,

〈φ〉domain = 1

Vdomain

∫
�domain

φdV, (28)

where Vdomain indicates the volume of a subdomain. We exploit the findings of Laval et al. [43]
that suggest that the effects of the nonlinear term in the governing equations for the subgrid-scale
velocity on the kinetic energy spectrum and intermittency may be replaced by an additional viscosity
that can be obtained from renormalization groups [44],

ν ′
t (k) =

(
ν2

f + Cν

∫ ∞

k
q−2E (q)dq

)1/2

− νf , (29)

with the fluid kinetic energy spectrum E and an analytical constant Cν = 2/5. An equation to obtain
a preliminary set of coefficients A∗

m,i and B∗
m,i can be derived [32]:

A∗
m,i − An

m,i

�t
+ 〈ũn

j〉domain

(
km, jB

n
m,i + ∂An

m,i

∂x j

)
+ An

m, j

〈
∂ ũn

i

∂x j

〉
domain

= (νf + ν ′
t )

(
−|km|2An

m,i + ∂2An
m,i

∂x j∂x j
+ 2km, j

∂Bn
m,i

∂x j

)
+ fm,i, (30)

B∗
m,i − Bn

m,i

�t
+ 〈ũn

j〉domain

(
∂Bn

m,i

∂x j
− km, jA

n
m,i

)
+ Bn

m, j

〈
∂ ũn

i

∂x j

〉
domain

= (νf + ν ′
t )

(
−|km|2Bn

m,i + ∂2Bn
m,i

∂x j∂x j
− 2km, j

∂An
m,i

∂x j

)
+ gm,i. (31)

Note that no summation over the index m is carried out. The index n indicates the time level
and fm,i and gm,i are forcing terms to maintain a desired kinetic energy of the subgrid scales.
The coefficients are made divergence-free by applying a subsequent projection operation to the
preliminary coefficients

An+1
m (t ) = A∗

m(t ) − km
km · A∗

m(t )

|km|2 , (32)

Bn+1
m (t ) = B∗

m(t ) − km
km · B∗

m(t )

|km|2 . (33)
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FIG. 1. Visualization of the modeled interactions in a classical LES (top) compared to the modeled
interactions in the modeled LES (bottom).

Since with discretized spatial derivatives the solution for the coefficients essentially consists of
explicit algebraic operations, the numerical solution is rather inexpensive. Numerical experiments
show that the solution for the coefficients Am,i and Bm,i requires a computing time of the same order
as the LES [32].

The fact that every subdomain possesses a distinct set of coefficients requires the interpolation of
the coefficients between the subdomains. In Hausmann et al. [32], an interpolation of the coefficients
is presented that leads to a divergence-free subgrid-scale velocity field between subdomains. Homo-
geneous Dirichlet boundary conditions for the subgrid-scale velocity, as they occur in wall-bounded
flows, may be realized by using the divergence free interpolation between the subdomains and the
fluid velocity at the wall.

D. Coupling between the fluid phase and the particle phase

In a particle-laden LES, at least three effects are not or insufficiently considered: (i) The particles
are accelerated by a drag force which requires the fluid velocity at the particle position. Using the
filtered fluid velocity instead leads to different clustering and Lagrangian statistics of the particles
[2,3]. (ii) The effect of the particles on the scales that are resolved in a LES is incomplete, since
the feedback force is only computed from the filtered velocity instead of the unfiltered velocity.
(iii) The effect of the particles on the subgrid scales is not considered in a classical LES. The
modified subgrid-scale velocity changes the subgrid-scale stress tensor compared to a single phase
flow (i.e., the dissipation by the subgrid-scale fluid velocity).

In Fig. 1, the procedure of a classical LES is compared to our proposed modeling framework
that combines the mLDKM and the model for the subgrid-scale velocity. We refer to the latter
as modeled LES. In the classical LES, the filtered fluid velocity ũ is obtained by solving the
filtered NSE with a subgrid-scale stress tensor that is predicted by one of the subgrid-scale models
commonly used for single phase flows. Note that subgrid-scale models for single phase flows do not
incorporate information of the fluid-particle coupling force. The coupling force is computed from
the filtered velocity at the particle position and is used to obtain the particle acceleration and the
source terms in the fluid momentum equation.

The modeled LES exhibits a stronger coupling between the fluid phase and the particle phase.
Using the filtered fluid velocity and the coupling force as input, the mLDKM returns a prediction
of the subgrid-scale stress tensor, which is used for solving the filtered NSE and the subgrid-scale
kinetic energy, which serves as the target kinetic energy for the generated subgrid-scale velocity.
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With the modeled subgrid-scale velocity, the coupling force is computed considering all turbulent
length and timescales down to the Kolmogorov scales. This enables a more realistic prediction
of the particle velocity, the momentum source term in the filtered NSE, and the kinetic energy
source term in the mLDKM. As a consequence, the subgrid-scale stress tensor and the modeled
subgrid-scale velocity contain information about the turbulence modification by the particles at the
unresolved scales. In theory, the modeled LES covers all occurring interactions between the fluid
and the particles.

In Sec. V A, we also study one-way coupling simulations with the modeled LES, in which case
all arrows of Fig. 1 that point from the coupling force to anything else than the particle velocity
vanish. The mLDKM then reduces to the original LDKM or can be replaced by any subgrid-scale
model that is developed for single phase flows. The subgrid-scale kinetic energy that is required as
input for the modeling of the subgrid-scale velocity can be alternatively estimated with the model
of Yoshizawa [45] or the dynamic model of Moin et al. [46].

IV. SIMULATIONS

Our proposed modeling is verified and validated by means of DNS and LES of particle-laden
turbulent flows. For all the simulation cases, HIT is considered. First, the model for the subgrid-scale
velocity at the particle position is assessed by comparing the particle statistics in the modeled LES
with the particle statistics in a DNS of the same one-way coupled case of statistically stationary
turbulence. In a second case, the feedback force of the particles on the fluid is investigated. This
requires the full modeling framework as described in Sec. III D, which is evaluated by comparing
the modeled LES and DNS of two-way coupled particle laden decaying turbulence. The subsequent
sections provide details of the realizations and configurations of the simulations.

A. Solving the governing equations

The NSE are solved with a finite volume approach that is second order in space and time [47].
The continuity equation and the momentum equations are coupled using momentum weighted
interpolation [48]. Therefore, two distinct velocity fields exist numerically, a cell-centered velocity
accurately satisfying the momentum balance and a face centered velocity conserving mass.

Statistically steady turbulence is maintained by supplying the flow with energy through source
terms in the momentum equations [49]. An important property of the forcing is that the artificial
source terms can be introduced in a limited range of wave numbers, k ∈ [kstart, kend]. For particle-
laden flows, this is essential to avoid directly impacting the particle behavior by the forcing.

The particle equations of motion Eqs. (3) and (4) are solved with the Verlet scheme [50]. The
drag force acting on the Lagrangian particle p is computed from

FD,p = CD
ρf

8
πd2

p|urel|urel, (34)

with the drag coefficient from the Schiller-Naumann correlation [51]

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, (35)

and the particle Reynolds number Rep = |urel|dp/νf . The relative velocity urel is defined as
the difference between the fluid velocity at the particle position and the particle velocity urel

= u(xp) − v.
To obtain the fluid velocity at the particle position, an interpolation from the Cartesian grid is

required. An essential property of the interpolation scheme is that the interpolated velocity needs to
be divergence-free. In the present paper, a second-order divergence-free interpolation from the face-
centered velocity (that fulfills the continuity equation with high accuracy) to the particle position is
applied [52].
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TABLE I. Single phase flow parameters of the
HIT simulation configuration.

Parameters Values

Reλ 75
Rel 205
η/L 0.0017
τη/Tref 0.0075
λ/L 0.029
l11/L 0.079
kstartL/2π 3
kendL/2π 6

In the case of the two-way coupling simulations, the PSIC method of Crowe et al. [36] is utilized.

B. Simulation setups

1. Single phase flow setups

The studies in this paper consist of two different flow types: (i) one-way coupling simulations
of forced HIT and (ii) two-way coupling simulations of decaying HIT. The computational domain
of both simulation types is a cube with periodic boundary conditions in all directions and an edge
length of L. Time quantities are given with respect to a reference time Tref = L/

√
2/3〈K〉, where

〈K〉 is the average kinetic energy of the fluid.
The setup of the single-phase flow simulations is summarized in Table I. The given values

correspond to the statistically steady state of the flow (before the decay) without the particles.
The two-way coupled simulations also undergo a two-way coupled forcing period to obtain a
statistically steady state before the forcing is turned off. The symbols in the table correspond to
the Taylor-Reynolds number Reλ, the turbulent Reynolds number based on the integral length scale
Rel , the Kolmogorov timescale τη, the Taylor microscale λ, and the longitudinal integral length
scale l11.

The DNS are carried out on a grid consisting of N3 = 2563 grid cells, which leads to a product
of the maximum resolvable wave number kmax and the Kolmogorov length scale of kmaxη = 1.37.
The LES are solved on a grid with N3 = 323 cells.

2. Particle setups of the one-way coupled case

In the one-way coupled case, particles of five different Stokes numbers, St = τp/τη, are intro-
duced in the previously defined flow setup. The Stokes numbers are based on the Kolmogorov
timescale of the statistically steady single phase flow. Since in the one-way coupling simulations
the flow does not experience any feedback by the particles, the previously defined parameters of the
flow do not change.

The particle relaxation time, τp = ρpd2
p/(18ρfνf ), the number of particles of the respective

simulation Np, and the particle diameter to mesh spacing ratio dp/�h are summarized in Table II. In

TABLE II. Particle configurations of the one-way coupling case.

Parameter St = 0.5 St = 1 St = 2 St = 4 St = 8

τp/Tref 0.0037 0.0075 0.015 0.03 0.06
Np 480115 480115 480115 480115 480115
dp/�h 0.2 0.2 0.2 0.2 0.2
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TABLE III. Particle configurations of the two-way coupling case.

Parameter St = 1 St = 2 St = 8

τp/Tref 0.0075 0.015 0.060
Np 91377408 45830011 12057066
dp/�h 0.1 0.1 0.1
φ 1.0 1.0 1.0

the one-way coupled simulation cases, the ratio of the particle diameter to the Kolmogorov length
scale is dp/η = 0.047 for all Stokes numbers.

The simulations run more than 150τη before the statistics are evaluated to obtain converged
statistics that are independent of the initial conditions.

3. Particle setups of the two-way coupled case

Two simulation configurations are performed, including two-way coupled particles of two dif-
ferent Stokes numbers. Both configurations are started with a period of forced turbulence until
the particle-laden turbulence reaches a statistically steady state (at least 150τη). The decay of the
turbulence and the tracking of the statistics starts after this forcing period. Note that the Kolmogorov
timescale and thus also the Stokes numbers are based on the statistically steady single phase
flow turbulence. In the one-way coupled simulation cases, the ratio of the particle diameter to the
Kolmogorov length scale is dp/η = 0.023, and the particle mass fraction is φ = 1.0, for all Stokes
numbers. The particle related parameters of the two two-way coupled simulations are summarized
in Table III.

4. Parameters of the modeling framework

Besides the DNS and the classical LES, we also conduct simulations using the proposed LES
modeling framework. For the mLDKM part of the modeling framework, there are no tunable model
parameters that have to be specified. The model for the subgrid-scale velocity however, requires
us to choose some parameters. It was shown by Hausmann et al. [32] that the statistics of the
subgrid-scale velocity are relatively insensitive to the values of these parameters.

The number of statistically homogeneous subdomains, Ndomain, depends on the characteristic
length scales at which the statistics of the subgrid-scale velocity vary. Based on experience, we
suggest choosing the size of a subdomain approximately four times the size of a LES grid cell per
direction. Note that in previous studies, the number of subdomains did not critically influence the
velocity statistics.

Another parameter is related to the interpolation between the subdomains to obtain a divergence-
free velocity field. The interpolation kernel is [32]

W (r) = 1 − 1

1 + e−αr
, (36)

where r is the distance to the respective subdomain boundary, and α a parameter that determines
the thickness of the region that is influenced by the interpolation. In general, the influence region
of the interpolation should be as small as possible to keep the region that is not affected by the
interpolation as large as possible. However, the influence region should not be so small that the
particles experience the subdomain boundary as discontinuity of the subgrid-scale velocity. We
empirically found that α = 40/�hdomain works well for the considered cases, where �hdomain is
the width of a subdomain. It is shown in Appendix A that the clustering of the particles is not
significantly influenced even if the parameter α is varied over a wide range.

The remaining parameter that has to be set is the number of modes Nm in the series expansion
Eq. (27). Similar to the number of subdomains, it has been shown previously that the influence of

084301-12



LARGE EDDY SIMULATION MODEL FOR TWO-WAY …

TABLE IV. Parameters of the model for the
subgrid-scale velocity.

Parameter Value

Ndomain 8
α 40/�hdomain

Nm 108

Nm on the velocity statistics is negligible as long as Nm = O(102). The particular choice for Nm in
the present paper is mainly based on load balancing considerations. Although we did not observe
the results to sensitively depend on the choice of the number of modes in our previous study [32],
we cannot exclude that as the range of modeled scales increases significantly, e.g., by a significantly
larger Reλ, the number of modes needs to increase accordingly. The values of the parameters in the
present paper are summarized in Table IV.

V. RESULTS AND DISCUSSIONS

A. One-way coupled configurations

In this section, the configurations described in Sec. IV B 2 are investigated. In the following, it is
referred to as enriched LES if the particles are propagated with a drag force based on the sum of the
LES velocity and the modeled subgrid-scale velocity at the particle positions.

The particle pair dispersion is evaluated in the enriched LES, the classical LES, and the DNS. The
particle pair dispersion is defined as the ensemble-averaged and time-dependent distance between
particle pairs, whereas a particle pair is considered as two particles with an initial separation of the
Kolmogorov length scale,

〈δ〉(t ) = 〈|xp0(t ) − xp1(t )|〉, (37)

where xp0(t ) and xp1(t ) are the positions of the particles belonging to a particle pair and 〈δ〉(t =
0) = η.

The particle pair dispersion in the DNS, the classical LES, and the enriched LES for the five
different Stokes numbers of the one-way coupling case is depicted in Fig. 2. It can be observed
that for all the considered Stokes numbers, the particle pairs stay together for a short time before
they disperse rapidly. Eventually, the average separation reaches a steady state, which corresponds
approximately to the half domain size, indicating that the maximum separation that is possible
in a fully periodic cubic domain is reached. For higher Stokes numbers, the particle pairs stay
close to each other for a shorter time, as particles with a large Stokes numbers are more likely to
have different velocities caused by their high inertia. The classical LES predicts the particle pairs
to disperse much slower than in the DNS due to the missing effect of the subgrid-scale velocity
sweeping the particles into regions of different large scale velocities. This effect is observed for all
investigated Stokes numbers, but is slightly more dominant for the larger Stokes numbers.

In the enriched LES, the predicted particle pair dispersion almost overlaps with those of the DNS.
An important reason why the enriched LES performs so well is that the subgrid-scale velocity at
the particle position is computed from a spatially continuous velocity field. As a consequence, two
particles that are very close also experience a similar subgrid-scale velocity. This is not the case
for Lagrangian models (see, e.g., Fede et al. [5], Bini and Jones [6], Pozorski and Apte [9]), which
typically solve an evolution equation for each particle individually. Lagrangian models typically
perform poorly in particle pair dispersion [53].

084301-13



M. HAUSMANN, F. EVRARD, AND B. VAN WACHEM

FIG. 2. Particle pair dispersion of the one-way coupled simulations for different Stokes numbers in forced
HIT with the flow parameters given in Table I. The results are shown for the DNS, the classical LES, and the
enriched LES.

A property that is of high practical importance is the extent with which particles form clusters.
Particle clustering can be quantified by the radial distribution function, defined as

g(r) =
〈

Np,i(r)/�Vi(r)

Np/V

〉
, (38)

where Np,i(r) is the number of particles in a spherical shell with radius r centered at the location of
the original particle and Vi(r) is the volume of this spherical shell. The radial distribution function
is normalized by the total number of particles Np and the total volume of the domain V . Values of
g > 1 indicate particle clustering and g = 1 uniformly distributed particles.
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FIG. 3. Radial distribution function of the one-way coupled simulations for different Stokes numbers in
forced HIT with the flow parameters given in Table I. The results are shown for the DNS, the classical LES,
and the enriched LES. The results of the classical LES and the enriched LES are additionally shown with a
coarser resolution of N3 = 243 cells.

In Fig. 3, the radial distribution functions are shown. In addition to the LES simulations using
N3 = 323 cells, we also investigate particle clustering as a key statistic for assessing the influence of
turbulence on particles in an even coarser LES, using N3 = 243 cells. The setup for the enriched LES
is similar to that of the LES with N3 = 323 cells, with the exception of the number of subdomains.
According to the presented guidelines, N3 = 243 cells require Ndomain = 6 subdomains, with each
subdomain size corresponding to four times the size of a LES cell per direction. We have shown
that other parameters have little influence on the observed fluid statistics [32].

084301-15



M. HAUSMANN, F. EVRARD, AND B. VAN WACHEM

The clustering reaches its maximum at St ≈ 1. For smaller and larger Stokes numbers, clustering
is reduced. The classical LES yields an underestimation of the clustering for St = 0.5 and St = 1
and to an overestimation of the clustering for the Stokes numbers St = 2, St = 4, and St = 8. This
phenomenon has also been observed in previous studies [2,14,17]. This means that the modeled
subgrid-scale velocity has to increase the clustering for the small St and increase the dispersion for
the larger St. Note that increasing the particle dispersion is much simpler to achieve than increasing
the particle clustering. In fact, the relations between strain and rotation of the velocity field are
crucial for the correct prediction of particle clustering [54,55].

The enriched LES using N3 = 323 cells shows that for Stokes numbers St = 2, St = 4, and
St = 8, particle clustering almost matches the clustering predicted by the DNS. When using a
coarser resolution, clustering slightly increases, and the radial distribution function obtained from
the enriched LES shows a small deviation from the DNS radial distribution function. For the Stokes
numbers St = 4 and St = 8, a similar increase in clustering is observed in classical LES using
N3 = 243 cells. Therefore, the more accurate prediction of clustering behavior observed in the
enriched LES is relatively independent of the LES resolution for these Stokes numbers.

For Stokes numbers St = 0.5 and St = 1, particle clustering is increased by the enriched LES
compared to classical LES. However, the agreement with the DNS is not as good as for higher
Stokes numbers, and the improvement in the radial distribution function for St = 1 is minor. With a
coarser grid of N3 = 243 cells, the radial distribution function of the enriched LES remains almost
unchanged, while the clustering intensity of the classical LES is further reduced due to the coarser
resolution.

Our previous study [32] has shown that the probability distribution function (PDF) of the second
invariant of the velocity gradient tensor is significantly improved with the enriched LES compared
to the classical LES, which explains the ability of the model to increase the clustering of particles
with small Stokes numbers.

The kinetic energy of the classical LES relative to the kinetic energy of the DNS is KLES/KDNS ≈
0.83. Together with the estimated subgrid-scale kinetic energy, this gives (KLES + Ksgs)/KDNS ≈
1.07. The fact that the total kinetic energy of the enriched LES overpredicts the kinetic energy of
the DNS is important for the interpretation of the following results.

Figure 4 shows the PDF of the cosine of the angles between the particle velocity and the fluid
velocity at the particle position, together with the mean values. The most likely event for all the
considered Stokes numbers is the case where the fluid velocity is aligned with the particle velocity.
However, for increasing Stokes numbers the probability of larger angles between the fluid velocity
and the particle velocity also increases. Except for St = 0.5, the classical LES always predicts too
strong an alignment of fluid and particle velocities. For higher Stokes numbers, in particular, the
particles are too heavy to follow the subgrid-scale velocity fluctuations, which typically change
with high frequency and small magnitude. In the classical LES, these fluctuations are missing. The
enriched LES provides the subgrid-scale fluctuations, which explains the improved PDF and means
of velocity alignment for larger Stokes numbers. However, for Stokes numbers St = 0.5, St = 1,
and St = 2, the enriched LES does not improve the results of the classical LES. It is worth noting,
however, that when considering all Stokes numbers, the prediction of the mean angle between the
fluid velocity and the particle velocity is better for the enriched LES, as the absolute deviations from
the mean angle of the DNS increase with the Stokes number. One possible reason for the deviation
for St = 0.5 and St = 1 is that it is caused by the too-high kinetic energy of the enriched LES. There-
fore, the particles with the small Stokes numbers cannot follow the velocity fluctuations as well as
in the case of the DNS and the classical LES. For higher Stokes numbers, the deviation between the
velocities is more significant and the higher subgrid-scale kinetic energy has a smaller influence.

From the results of the one-way coupled simulations, it can be concluded that the enrichment
with subgrid-scale velocity can significantly improve the particle statistics in HIT for Stokes
numbers St � 2. Particularly worth highlighting is that the clustering can be improved for both
qualitatively different cases of St � 1 and St > 1 with the modeled subgrid-scale velocity although
the improvements for the smaller Stokes numbers are less pronounced.
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FIG. 4. PDF of cosine of angle between the fluid velocity at the particle position and the particle velocity
of the one-way coupled simulations for different Stokes numbers in forced HIT with the flow parameters given
in Table I. The results are shown for the DNS, the classical LES, and the enriched LES. The vertical lines
indicate the respective mean value.

The computational cost of the proposed model is of high practical relevance, but it strongly
depends on the specific configuration being considered. Solving for the enriched LES velocity
approximately doubles the computational cost compared to the classical LES. However, there is
an additional computational cost if particles are transported, namely, the subgrid-scale velocity
interpolation to each particle position. For example, in the present one-way coupled simulations,
the enriched LES with 2.4 million particles is six to seven times more expensive than the classical
LES without enrichment. However, the total enriched framework is still orders of magnitude cheaper
than the DNS.
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FIG. 5. Particle positions of the two-way coupled simulations with St = 2 of HIT with the flow parameters
given in Table I. The results are evaluated at the last forced time step. The particle positions are projected from
a slice of thickness equal to the Kolmogorov length scale η. (a) shows the particles of the DNS, (b) the particles
of the classical LES, and (c) the particles of the modeled LES.

B. Two-way coupled configurations

In the present section, the modification of the turbulent flow by the particles is considered, which
enables the assessment of the full modeling framework including the modeling of the subgrid-scale
velocity combined with the mLDKM (previously introduced as modeled LES).

In Fig. 5, the projected particles in a slice of the thickness η are plotted for the case of St = 2
for the DNS, the classical LES, and the modeled LES. The positions are evaluated at the end of the
forcing period. The particles reached steady statistics at this point in time.

The shapes of the clusters that are formed by the DNS and the classical LES differ significantly.
The clusters of the classical LES are much coarser and more pronounced than the clusters of the
DNS. The additional subgrid-scale velocity of the modeled LES breaks up the large clusters of the
classical LES into clusters of smaller size, which are also less dense.

Figure 6 shows the kinetic energy spectra of the two-way coupled simulations for St = 1, St = 2,
and St = 8, respectively. Due to the interaction with the particles, the results obtained with the DNS
deviate significantly from the inertial range slope of single phase turbulence. In addition to the DNS,
the results of the classical LES and the modeled LES are depicted. The kinetic energy spectrum that
is resolved by the LES grid is shown separately from the kinetic energy spectrum of the modeled
subgrid-scale velocity.

The filter imposed by the spatially varying turbulent viscosity is unknown. To achieve realistic
particle transport, it is advantageous if the kinetic energy spectrum of the LES is similar to that
of the DNS. In other words, it is desirable that the turbulent viscosity imposes a filter that closely
resembles a spectrally sharp filter.

The classical LES overestimates the subgrid-scale fluid dissipation, resulting in a deviation from
the slope of the DNS spectrum. The modeled LES takes into account the reduced subgrid-scale fluid
dissipation caused by particle dissipation. As a result, the modeled LES leads to a spectrum that is
in better agreement with the DNS spectrum for all three Stokes numbers.

The kinetic energy spectrum of the modeled subgrid-scale velocity is in good agreement with
the DNS spectrum but its shape deviates in all three cases. The shape of the modeled subgrid-scale
kinetic energy spectrum is very similar for St = 1, St = 2, and St = 8 even though the shapes of the
two DNS spectra are very different. The model for the subgrid-scale velocity does not receive any
information on the presence of the particle, except for the kinetic energy. Therefore, the modeled
subgrid-scale kinetic energy spectrum is a shifted spectrum that matches very well with a single
phase flow spectrum [32].

A classical LES does not fully consider the interphase kinetic energy transfer, since the inter-
actions of the subgrid-scale velocity with the particles and the unresolved particle motion with the
resolved flow scales are neglected. For small-particle Reynolds numbers, the kinetic energy transfer
is proportional to the fluid velocity times the Stokes drag, u · (v − u)/τp, which is plotted in Fig. 7
for the present cases. Negative values indicate that kinetic energy is removed from the fluid and
positive values correspond to kinetic energy that is added to the fluid by the particles. Note that, as
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FIG. 6. Kinetic energy spectrum of the two-way coupled simulations with St = 1, St = 2, and St = 8 of
HIT with the flow parameters given in Table I. The results are evaluated at the last forced time step. Compared
are the DNS, the classical LES, and the modeled LES. The spectrum of the modeled LES is split into a part
that is resolved by the LES grid and a subgrid-scale contribution that is modeled.

shown by Xu and Subramaniam [56], the energy that is removed from the fluid does not necessarily
equal the kinetic energy that is added to the particles in a point-particle simulation.

The PDF in Fig. 7 shows a negative mean value for all Stokes numbers, indicating that, on
average, the particles remove energy from the fluid. The PDF becomes wider and possesses larger
absolute mean values as the Stokes number increases. The classical LES underpredicts the absolute
of the mean values of the DNS for all Stokes numbers. With the proposed modeled LES, the kinetic
energy that is removed by the particles is increased, which is qualitatively similar to the behavior of
the DNS relative to the classical LES. In the classical LES, the particle velocities tend to align more
with the local fluid velocity compared to the DNS because of the absence of small vortices that the
particles cannot follow. With the proposed modeling, small velocity structures are provided, which
increases the absolute energy transfer. However, for all Stokes numbers the width of the PDFs is
overpredicted by the modeled LES.

The second effect that is neglected in a classical LES is the reduced subgrid-scale kinetic energy
due to the turbulence modification by the particles. The subgrid-scale kinetic energies over time
are depicted in Fig. 8. The subgrid-scale kinetic energy of the DNS is computed by subtracting
the kinetic energy of the spectrally sharp filtered DNS from the kinetic energy of the DNS.
Since the actual filter of a LES imposed by the turbulent viscosity is unknown, the DNS is also
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FIG. 7. PDF of the kinetic energy transfer between fluid and particles of the two-way coupled simulations
with St = 1, St = 2, and St = 8 of HIT with the flow parameters given in Table I. The results are evaluated at
the last forced time step. The vertical lines indicate the respective mean values.

volume averaged for comparison. The kinetic energies of the LES are obtained from the transport
equation in the LDKM and mLKDM, respectively. It is observed that for all Stokes numbers, the
classical LES predicts a much higher subgrid-scale kinetic energy than the DNS. The subgrid-scale
kinetic energy of the modeled LES is significantly smaller because of the source term ΦP in the
transport equation for the subgrid-scale kinetic energy. A higher subgrid-scale kinetic energy yields
a higher eddy viscosity and thus more subgrid-scale dissipation. The classical LES overpredicts the
kinetic energy of the subgrid-scale velocity because the particle dissipation at high wave numbers
is not accounted for. The additional source term in the subgrid-scale kinetic energy equation of
the mLDKM considers the effect of the particles on the subgrid-scale quantities. The choice of
the explicit filter introduces uncertainties that complicate the quantitative comparison of the LES
predictions with the DNS. Nonetheless, the reduction of subgrid-scale kinetic energy is qualitatively
consistent with the results obtained from explicitly filtering the DNS.

It is observed that the effects that are neglected in a classical LES act in opposite directions for
the considered configurations. While the classical LES underpredicts the dissipation by the particles,
it over-predicts the dissipation of the subgrid-scale velocity. Thus, these two errors at least partially
compensate each other, which in total may lead to fair agreement with the total kinetic energy
of the DNS. However, the proposed modeled LES considers each effect (i.e., the increased particle
dissipation and the reduced fluid dissipation) separately and does not rely on compensation of errors.
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FIG. 8. Normalized subgrid-scale kinetic energy over time of the two-way coupled simulations with St =
1, St = 2, and St = 8 of decaying HIT with the flow parameters given in Table I. Compared are the results of
the DNS (with a spectrally sharp filter and volume averaged), the classical LES, and the modeled LES with
particle source term.

Figure 9 shows the normalized kinetic energy over time for the two-way coupled simulations with
St = 1, St = 2, and St = 8, respectively. Besides the spectrally sharp filtered and volume averaged
DNS (FDNS) and the classical LES, the results of the modeled LES are plotted. To investigate the
influence of the particle source term ΦP in the transport Eq. (18) of the subgrid-scale kinetic energy,
the modeled LES is shown with the source term (modeled LES-mLDKM) and without the source
term (modeled LES-LDKM). For St = 1 and St = 2, the LES, the modeled LES-mLDKM, and the
modeled LES-LDKM predict a slower decay of the fluid kinetic energy than the DNS. The deviation
of the three LES cases from the DNS is much smaller for St = 8. All Stokes numbers show only
relatively small deviations between the LES cases. For St = 1, the kinetic energy predicted by the
classical LES and the modeled LES-mLDKM are nearly identical. This is remarkable considering
that the particle dissipation and fluid dissipation are significantly different between the two methods.
The kinetic energy of the modeled LES-LDKM is always smaller than the kinetic energy of the
modeled LES-mLDKM.

It is known from the literature that for Stokes numbers that are not significantly smaller than one,
the total dissipation in a particle-laden flow is increased [19–21,23], which also applies to the Stokes
numbers investigated in the present paper. The total dissipation has contributions from the particles
and the fluid, as occurs in a single-phase flow. In a LES, the particle and the fluid dissipation have to
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FIG. 9. Normalized kinetic energy over time of the two-way coupled simulations with St = 1, St = 2, and
St = 8 of decaying HIT with the flow parameters given in Table I. Compared are the FDNS (with a spectrally
sharp filter and volume averaged), the classical LES (LES-LDKM), the modeled LES with particle source term
(modeled LES-mLDKM), and the modeled LES without particle source term (modeled LES-LDKM).

be modeled. As already pointed out, both contributions have opposite signs in the present cases. This
becomes evident by the fact that the modeled LES without the particle source term ΦP increases the
total dissipation. The difference to the classical LES in this case is that the two-way coupling force is
computed using the total fluid velocity consisting of the LES velocity and the modeled subgrid-scale
velocity, which leads to increased dissipation relative to the classical LES. The dissipation by the
particles yields a negative source term ΦP, which reduces the subgrid-scale kinetic energy. This is
why the total dissipation of the modeled LES-mLDKM is smaller than the total dissipation of the
modeled LES-LDKM.

Note that both effects, the increased dissipation due to the particles and the reduced fluid
dissipation, are at least qualitatively in agreement with the literature and desired. Since both effects
act in opposite directions, the classical LES is still in acceptable agreement with the DNS even
though it accounts for neither of the two effects.

We investigate the effect of LES resolution on two-way coupling statistics by conducting a
coarser LES with N3 = 243 cells of the two-way coupled simulation configuration with particles
with a Stokes number St = 2. Figure 10 displays the results, which exhibit similar overall trends to
those observed in the LES with N3 = 323 cells. Notably, the shape of the kinetic energy spectrum
of the modeled LES in Fig. 10(a) is closer to the DNS spectrum than the classical LES spectrum.
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FIG. 10. Kinetic energy spectrum (a), PDF of the kinetic energy transfer between fluid and particles (b),
subgrid-scale kinetic energy over time (c), and resolved kinetic energy over time (d) of decaying HIT with
particles of Stokes number St = 2 and the flow parameters given in Table I. Compared are the results of the
DNS (with a spectrally sharp filter and volume averaged), the classical LES and the modeled LES with particle
source term. The LES are performed on a grid of N3 = 243 cells.

However, the subgrid-scale kinetic energy spectrum from the modeled LES underpredicts the DNS
spectrum. In Fig. 10(b), it is noticeable that the classical LES predicts a PDF of the kinetic energy
transfer that is too narrow, and this discrepancy is even more pronounced than in the higher
resolution case. The modeled LES yields an improved shape of the PDF and the mean when
compared to the classical LES. The subgrid-scale kinetic energy of the modeled LES is smaller,
which leads to better agreement with the DNS results than the modeled LES with N3 = 243 cells.
The subgrid-scale kinetic energy is shown in Fig. 10(c). As expected, the predicted subgrid-scale
kinetic energies are higher than with the finer resolution. The modeled LES reduces the too high
subgrid-scale kinetic energy of the classical LES but predicts too small values during the beginning
of the decay. The trends of the resolved kinetic energy in Fig. 10(d) are similar to the higher
resolution. Both classical LES and modeled LES predict a too-slow decay of kinetic energy. The
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FIG. 11. Subgrid-scale kinetic energy over time (a) and resolved kinetic energy (b) of decaying HIT
without particles and the flow parameters given in Table I. Compared are the results of the DNS (with a
spectrally sharp filter and volume averaged) and the classical LES.

results of LES with N3 = 243 cells suggest that the conclusions drawn for the proposed modeling
framework qualitatively also apply to coarser LES.

To determine the source of the deviation of the resolved kinetic energy of the LES from the
FDNS, it is instructive to investigate decaying single phase flow turbulence of the DNS and the
classical LES with the LKDM. In Fig. 11, the subgrid-scale kinetic energy and the resolved kinetic
energy of the classical LES are compared with DNS values that are obtained by explicit filtering.
Owing to the uncertainties of the choice of the explicit filter, the spectrally sharp filtered and volume
averaged DNS are both plotted. The subgrid-scale kinetic energy predicted by the LES is larger
than the both estimations from the FDNS. The resolved kinetic energy of the LES shows the same
discrepancy from the FDNS as the LES of the two-way coupled simulation, namely, a too-slow
decay. If the subgrid-scale kinetic energy is too large and the decay of kinetic energy is too slow,
it may be inferred that the primary source of error causing the inaccuracies lies in the computation
of the viscosity constant Ck. On average, this constant seems to be too small, which results in the
deviations of the modeled LES from the filtered DNS. It can be concluded that the introduced
particle source term in the transport equation for the subgrid-scale kinetic energy plays a minor
role in these inaccuracies, since the reduction of the predicted subgrid-scale kinetic energy and the
increased particle dissipation are qualitatively captured by the model. The dynamical computation
of Ck leaves space for future improvements of the model.

VI. CONCLUSIONS

In the present paper, we propose a model for predicting the behavior of two-way coupled particle-
laden flow in the framework of LES. The model accounts for the interactions that are not captured
by a classical LES of a particle-laden flow, which are (i) the prediction of the particle motion due
to the missing subgrid-scale fluid velocity, (ii) the effect of the particles on the resolved flow scales,
and (iii) the effect of the particles on the subgrid scales.

The proposed modeling framework consists of two components, a modeled transport equation for
the subgrid-scale kinetic energy that includes a source term which accounts for the modification of
the subgrid-scale kinetic energy by the particles and a model for the subgrid-scale velocity, which
is used to close the particle equations of motion and the source-term in the transport equation for
the subgrid-scale kinetic energy. The two model components are further coupled by directly using
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the resulting subgrid-scale kinetic energy of the transport equation as input for the model for the
subgrid-scale velocity that thus also accounts for the turbulence modulation of the subgrid-scales
by the particles.

One-way coupled simulations are performed that are used to assess the isolated effect of missing
subgrid-scale velocity in the computation of the forces acting on the particles and its modeling
using the enriched LES. The proposed model accurately predicts particle pair-dispersion over a
wide range of Stokes numbers using the modeled subgrid-scale velocity. Additionally, for Stokes
numbers St � 2, the model accurately recovers the particle clustering observed in the correspond-
ing DNS simulations. For the challenging case of a small Stokes number (St = 0.5), the model
significantly improves particle clustering, while the improvement is less pronounced for St = 1.
The improvements achieved in the enriched LES come with computational costs that are reasonable
within the scope of a LES. Furthermore, two-way coupled simulations of decaying HIT are carried
out that require modeling of the turbulence modulation by the particles. The coupled framework
yields an increased particle dissipation compared to the classical LES by considering the modeled
subgrid-scale velocity in the feedback force. The subgrid-scale fluid dissipation is decreased relative
to the classical LES because the mLDKM predicts a subgrid-scale kinetic energy that considers the
turbulence modulation by the particles. Both effects are in agreement with the observed physics in a
DNS. As a consequence, we observe a kinetic energy spectrum with the proposed modeling that is
in good agreement with the spectrum observed in the DNS. We demonstrate that the predictions of
the model are only weakly affected by changes in resolution of the LES while keeping Reλ constant.
However, investigating the ability of the model to accurately predict particle-turbulence interactions
as the ratio between grid spacing and the Kolmogorov length scale, �/η, significantly increases, is
an area that requires further investigation in future studies.

Finally, it is important to mention that the proposed modeling strategy possesses the prereq-
uisites for simulating inhomogeneous and anisotropic flows since the subgrid-scale enrichment is
formulated on a grid of statistically homogeneous subdomains, which allows for spatially varying
statistics. Considering this, the present modeling framework has the potential to improve the
capabilities of LES of particle-laden turbulent flows for a wide range of applications.
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APPENDIX

Figure 12 shows the radial distribution function of the one-way coupled simulations for different
Stokes numbers and varying parameter α in the interpolation of the modeled subgrid-scale velocity
between the subdomains. The parameter α is reduced and increased by a factor of 2 relative to
the value α = 40 that is used in the present paper, respectively. It can be observed that even for
this relatively wide parameter range the radial distribution functions almost coincide. The particle
clustering is thus essentially independent of α for the considered range of values.
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FIG. 12. Radial distribution function of the one-way coupling simulations for different Stokes numbers
and different thickness constants α of the interpolation of the subgrid-scale velocity between the subdomains
in forced HIT with the flow parameters given in Table I.
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We propose a model to obtain the subgrid-scale velocity in the context of large-eddy sim-
ulation (LES) of particle-laden turbulent flows, to recover accurate particle statistics. In our
wavelet enrichment model, the subgrid-scale velocity is discretized with a divergence-free
wavelet vector basis, and the coefficients of the expansion are obtained by minimizing the
squared error of the linearized subfilter Navier-Stokes equations (SFNSE). The compact
support of the wavelet basis is exploited to achieve continuously varying subgrid-scale
velocity statistics across the domain. The performance of our wavelet enrichment model is
evaluated in single-phase and particle-laden flow simulations, comparing the results with
the results of direct numerical simulations (DNS). The simulations show that the model
can generate inhomogeneous and anisotropic velocity statistics, accurate strain-rotation
relations, and a good approximation of the kinetic energy spectrum of the corresponding
DNS. Furthermore, the model significantly improves the prediction of the particle-pair
dispersion, the clustering of the particles, and the turbulence modulation by particles in
two-way coupled simulations. The proposed model recovers the most important interac-
tions between fluid turbulence and the behavior of the particles, while maintaining the
computational cost on the order of an LES.

DOI: 10.1103/PhysRevFluids.8.104604

I. INTRODUCTION

The understanding of the underlying physics of the interactions between turbulence and particles
has attracted a lot of research interest for many decades, because of its ubiquity in natural and
industrial processes. The only way to capture the most important complex phenomena of these
multiphase flows numerically is to perform direct numerical simulation (DNS), which resolves
the turbulent length- and timescales down to the Kolmogorov scales. In single-phase turbulence,
extensive research and model development have enabled good predictions of turbulence statistics
with computational costs significantly smaller than the costs of a DNS. One of the methods that
achieves this is large-eddy simulation (LES), which resolves the large flow structures with the
numerical grid while modeling the effect of the smaller, unresolved scales. The success of LES
in single-phase turbulence does not apply to particle-laden flows, since various interactions between
the phases are not captured by existing LES models.

The dispersion and preferential concentration of particles in the turbulent flow can be very
different if they are transported with the filtered fluid velocity field instead of the fluid velocity
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field that contains the full turbulent spectrum [1–4]. A solution to this is to model the unresolved
fluid velocity at each particle position.

The reconstruction of the subgrid-scale fluid velocity field, even in the absence of particles, has
been a topic of interest for decades, which explains the large variety of existing models. The majority
of these models, however, suffers from drawbacks that make them unsuitable for the application to
particle-laden turbulent flows.

A well-known method to generate a fictitious subgrid-scale fluid velocity field is the kinematic
simulation that approximates the fluid velocity field as a truncated Fourier series with coefficients
that are chosen from a Gaussian distribution, such that a given kinetic energy spectrum is achieved,
and the resulting velocity field is divergence-free [5–7]. Since real turbulence is typically not
Gaussian and potentially statistically inhomogeneous and anisotropic, the kinematic simulation does
not provide a realistic turbulent field. The subgrid-scale velocity field can also be reconstructed
by fractal interpolation as proposed by Scotti and Meneveau [8]. Even though the model is
computationally cheap, no physical knowledge of turbulence is incorporated. Domaradzki and Loh
[9] proposed a velocity field extrapolation method for the velocity field on a refined grid using
explicit filtering of the nonlinear advective term in the Navier-Stokes equations. Without further
modification, however, the resulting velocity field is not divergence-free. Another family of models
either solves the subfilter Navier-Stokes equations (SFNSE) with a simplifying numerical method
such as, e.g., partially freezing the velocity field [10], or model the SFNSE itself [11–15]. Even
though accurate predictions are reported, the models can be computationally expensive or may
introduce assumptions that cannot be justified in some contexts [16].

Approaches that approximate turbulent velocity fields inspired the development of models
for LES of particle-laden flows. A class of models emerged that solve a stochastic differential
equation for every particle independently (see, e.g., Refs. [17–22]), which turns out to be versatile
and computationally efficient. By construction, however, these models predict poor particle pair
statistics, and their results strongly depend on the choice of model parameters [23]. Improved
particle statistics are observed with models that apply a deconvolution operator on the LES velocity
field [24–26], but these models merely modify the velocity field on the LES grid and do not augment
the range of modeled scales. Bassenne et al. [27] combine the dynamical deconvolution of Park
et al. [26] with the subgrid extrapolation of Domaradzki and Loh [9] and obtain realistic particle
clustering with LES of homogeneous isotropic turbulence (HIT) and for a wide range of Stokes
numbers. The high computational cost, originating from a divergence-free projection on a very fine
grid, make this model unsuitable for LES. Recently, Hausmann et al. [28] proposed a model that
solves the linearized SFNSE with Fourier basis functions in statistically homogeneous subdomains
and apply it to particle-laden turbulent flows. In LES of HIT, the model mainly recovers particle pair
dispersion and clustering of the corresponding DNS for particles of many Stokes numbers. Because
of the statistically homogeneous subdomains, however, the subgrid-scale velocity field is partially
discontinuous and requires interpolation.

In the present work, we derive a model for predicting the subgrid-scale fluid velocity field
that recovers characteristic properties of turbulence, while maintaining computational costs that
are acceptable in the scope of an LES. To obtain the right particle statistics and clustering, the
modeled subgrid-scale velocity field is expected to have realistic spatial and temporal correlations,
strain-rotation relations, and non-Gaussian distributions of, e.g., the fluid velocity gradients. A
model for the subgrid-scale velocity must also be able to generate statistically inhomogeneous and
anisotropic velocity fields.

In our model, the SFNSE are linearized by means of the rapid distortion theory and approx-
imately solved by minimizing their squared error. The discrete solution spaces are spanned by
divergence-free wavelet vector functions. The narrow support of the wavelet basis in physical and
spectral space allows for spatially varying fluid velocity statistics and localization in spectral space,
that is required to control the kinetic energy spectrum. Conceptually, the wavelet enrichment is
superior to Fourier enrichment, which requires special treatment, such as statistically homogeneous
subdomains, to generate an inhomogeneous subgrid-scale velocity field [15]. Divergence-free
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wavelet vector bases are also used by Letournel [29] to generate a turbulent velocity field by
transporting the wavelet coefficients by a stochastic Langevin model. In the proposed model,
however, a transport equation for the wavelet coefficients is derived that minimizes the error in the
momentum balance. Other application of wavelets in reduced order turbulence modeling include the
modeling of the subgrid-scale stress tensor in the scope of LES, by applying a wavelet transform to
the resolved fluid velocity (see, e.g., Denev et al. [30]), which models the effect of the subgrid-scale
velocity on the resolved scales but not the subgrid-scale velocity itself. A different approach involves
performing LES with adaptive mesh refinement based on a wavelet decomposition of the resolved
velocity. This approach employs thresholding to preserve only the most energetic scales, in contrast
to the standard LES, which preserves only the largest scales (see, e.g., De Stefano and Vasilyev [31]).
In contrast to the present work, however, the unresolved scales are not reconstructed. In a related
study, Xiong et al. [32] study the particle statistics of particles transported with the fluid velocity
field of an LES with wavelet-based adaptive mesh refinement (corresponding to the energetically
optimal wavelet filtered DNS) and compare it to the statistics of particles transported with the
fluid velocity field of a standard LES. It is concluded that the right particle statistics can be better
recovered if the most energetic fluid velocity structures are used to transport the particles instead of
the largest structures, which are resolved in a standard LES. In a subsequent study, they apply the
dynamical deconvolution method of Park et al. [26] to the wavelet filtered DNS [33]. However, no
model is proposed that can be applied to a standard LES to account for the unresolved fluid velocity
field on the particle motion.

Even though the literature on LES of particle-turbulence interaction is dominated by studies
and models for the subgrid-scale velocity at the particle positions, to enable one-way coupled
simulations, more modeling is required in the case of two-way coupled simulations (i.e., where
the turbulence modification by the particles is taken into account). Recently, Hausmann et al. [28]
proposed a modeling framework that models the two-way coupling effects in an LES, caused by the
unresolved fluid velocity field.

The paper is outlined as follows. The wavelet enrichment is derived in Sec. II, and the background
of the governing equations and the wavelet basis is provided. In Sec. III, we introduce the simulation
configuration that we use to evaluate the performance of the wavelet enrichment. The results
and validation for single-phase and particle-laden flows are given in Sec. IV before the paper is
concluded in Sec. V.

II. WAVELET MODEL FOR THE SUBGRID-SCALE VELOCITY

In this section, we describe the wavelet enrichment for the subgrid-scale velocity. The subgrid-
scale fluid velocity field is projected onto a wavelet basis, and the coefficients of the expansion are
determined by locally minimizing the mean-squared error of the linearized SFNSE.

A. Scale decomposition

LES is based on separating the flow into large-scale contributions and small-scale contributions.
This is realized mathematically by filtering a quantity ϕ [34]:

ϕ̃(x) =
∫ ∞

−∞
G(x − ξ )ϕ(ξ )dξ, (1)

where .̃ indicates a filtered quantity and G is the filter kernel. Subfilter quantities are given by
ϕ′ = ϕ − ϕ̃, which we also refer to as subgrid-scale quantities in the scope of LES. Filtering the
Navier-Stokes equations (NSE) of an incompressible fluid with constant density ρf and kinematic
viscosity νf yields the filtered Navier-Stokes equations (FNSE):

∂ ũi

∂xi
= 0, (2)
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∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρf

∂ p̃

∂xi
+ νf

∂2ũi

∂x j∂x j
− ∂τi j

∂x j
+ s̃i, (3)

where ui is the velocity and p is the pressure. The source term si represents, for instance, the
momentum coupling of a second phase or a forcing to maintain statistically stationary turbulence.
The subgrid-scale stress tensor accounts for the influence of the subgrid scales on the filtered scales
and is given by

τi j = ũiu j − ũiũ j . (4)

By subtracting the FNSE from the NSE, the governing equations for the subgrid-scale fluid velocity
are obtained. In models for the subgrid-scale velocity, the nonlinear term in the SFNSE is often
omitted, or replaced by, a turbulent viscosity [11,12,14,15,35]. The resulting linearized SFNSE can
be written as

∂u′
i

∂xi
= 0, (5)

∂u′
i

∂t
+ ũ j

∂u′
i

∂x j
+ u′

j

∂ ũi

∂x j
= − 1

ρf

∂ p′

∂xi
+ (νf + ν ′

t )
∂2u′

i

∂x j∂x j
+ ∂τi j

∂x j
+ s′

i. (6)

The turbulent viscosity can be derived from renormalization groups [36]:

ν ′
t (k) =

(
ν2

f + 2

5

∫ ∞

k
q−2E (q)dq

)1/2

− νf , (7)

where E (k) is the kinetic energy spectrum of the wave number k. The replacement of the nonlinear
term with a turbulent viscosity can be justified energetically and by means of their contribution to
intermittency [35]. Similar to subgrid-scale models relying on the Boussinesq hypotheses, however,
the linearization mistakenly assumes an alignment of the eigenvectors of the subgrid-scale stress
tensor with those of the fluid velocity gradient tensor (see, e.g., Horiuti [37]). Therefore, the use
of an eddy viscosity, may it be in the SFNSE or LES subgrid-scale models, are only justified
energetically. Furthermore, the derivation of Eq. (7) relies on the assumption homogeneous isotropic
turbulence [36]. We justify its use in inhomogeneous and anisotropic configurations by the fact that
the small velocity scales, which are reconstructed in the proposed model, are typically much more
homogeneous and isotropic than the large scales. This is a typical assumption for modeling the
subgrid-scale stress tensor [16].

Similar to our recently proposed model, we aim to efficiently solve the linearized SFNSE to
approximate the subgrid-scale fluid velocity field. Instead of expanding the subgrid-scale fluid
velocity field in Fourier space [15], we approximate it as a finite series of wavelet basis functions.
The rapidly decaying support of a wavelet basis in spectral and physical space enables a model that
incorporates spectral space information and spatial inhomogeneities.

B. Multiresolution analysis

A Fourier series consists of basis functions (i.e., sines and cosines) that are perfectly localized
in spectral space (they can be associated to exactly one wave number), but it has no localization
in physical space (it is unknown where a frequency occurs). Convoluting the trigonometric basis
functions of a Fourier series with a Gaussian window function enables localization of the spectral
information in physical space. This is known as the discrete Gabor transform (see, e.g., Ref. [38]).
Because of the constant window size, the low wave numbers tend to be spectrally underresolved
and high wave numbers spatially underresolved. In fact, it is more appropriate to provide a wide
physical support for small wave numbers and a narrow physical support for large wave numbers.
A multiresolution analysis (MRA) applies this idea [38,39]. A MRA uses scaling functions φ and
wavelets ψ as basis functions, that have compact support (or at least decay rapidly) in physical
and spectral space. The scaling functions and the wavelets are elements of function spaces, which
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have specific properties. We consider subspaces of the Lebesgue space (Vj ) j∈Z ⊂ L2(R), where the
index j can be understood as an indicator of the range of wave numbers the functions possess that
are deduced from the respective subspace. Functions that belong to subspaces of a large index j
contain higher wave numbers than functions belonging to subspaces of a smaller index j. In the
context of turbulence, that means that functions deduced from a subspace approximate eddies of
a particular range of size, whereas a larger index corresponds to smaller eddies. The subspaces Vj

have the following properties [39]:
(i) the subspaces are nested Vj ⊂ Vj+1,
(ii) their intersection is zero

⋂
j∈Z Vj = {0},

(iii)
⋃

j∈Z Vj is dense in L2(R),
(iv) they are invariant with respect to scaling f ∈ Vj ⇐⇒ f (2.) ∈ Vj+1, and
(v) they are invariant with respect to translation f ∈ Vj ⇒ f (. − k) ∈ Vj,∀k ∈ Z.
One can imagine the functions of a subspace to represent a prototype eddy that is scaled in size,

shifted in space, and superposed. Complementary spaces to Vj can be defined such that

Vj+1 = Vj ⊕ Wj . (8)

Every function f ∈ Vj+1 is either f ∈ Vj or f ∈ Wj , but not both. Consequently, we can decompose
the L2(R) as

L2(R) = V0

∞⊕
j=0

Wj . (9)

From the so-called scaling function, or father wavelet, φ ∈ V0 and mother wavelet ψ ∈ W0 functions
are deduced such that Vj is spanned by {φ jk; j, k ∈ Z} and Wj is spanned by {ψ jk; j, k ∈ Z}:

φ j,k (ξ ) = φ(2 jξ − k), (10)

ψ j,k (ξ ) = ψ (2 jξ − k). (11)

Thus, a function f ∈ L2(R) may be expressed with a basis of scaling functions and wavelet
functions

f (ξ ) =
∑
k∈Z

c0,kφ0,k (ξ ) +
∑
j�0

∑
k∈Z

d j,kψ j,k (ξ ). (12)

Note that it is common to scale φ j,k and ψ j,k with a factor of 2 j/2. For simplicity, we absorb this
factor in the coefficients c0,k and d j,k .

The mother scaling function is defined by the low pass filter

φ

(
ξ

2

)
=

∑
k∈Z

hkφ(ξ − k), (13)

and the mother wavelet function is defined by the high pass filter

ψ

(
ξ

2

)
=

∑
k∈Z

gkφ(ξ − k). (14)

The coefficients hk, gk characterize the different scaling functions and wavelets with different
properties. We express the subgrid-scale velocity as a finite sum of divergence-free wavelet vector
basis function as derived by Lemarié-Rieusset [40]

u′(x) =
jmax∑

j= jmin

∑
k

∑
ε

dε
div, j,kΨ

ε
div, j,k[ξ(x)], (15)
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(a) (b)

FIG. 1. Plot of the piecewise linear (a) and piecewise quadratic (b) spline scaling and wavelet functions.

where dε
div, j,k are the wavelet coefficients, Ψ ε

div, j,k are divergence-free wavelet vector basis functions,
jmin and jmax the limits of the considered levels, and ξ(x) is a mapping from physical space
coordinates x to the reference coordinates ξ. The index ε specifies one of the 14 basis vector
functions such that Ψ ε

div, j,k form a Riesz basis of the space of divergence-free vector functions in R3

[41]. Note that 21 basis vector functions are required to span the whole R3, and the projection onto
the divergence free subspace reduces the number of basis vector functions to 14. The derivation of
the basis functions and their exact expressions is relatively lengthy and can be found in Deriaz and
Perrier [41]. Therefore, we do not repeat the derivation in the present work. The divergence-free
vector functions are composed of four one-dimensional compactly supported spline functions that
are depicted in Fig. 1 and defined by the coefficients hk, gk (in the proposed model similar to
coefficients given by Deriaz and Perrier [41] but multiplied with a factor

√
2).

The mapping from physical coordinates to reference coordinates is given as

ξi(xi ) = (xi − xi,min)/(xi,max − xi,min), (16)

where xi,min and xi,max are the limits of the cuboid domain. With the given mapping a periodic basis
can be realized for j � 3, which is the first level with a support smaller than one.

C. Local least-squares approximation of the model equations

The subgrid-scale fluid velocity field lies within the space of divergence free vector functions
in R3. Hence, it can be expressed as an infinite series of wavelet vector functions Ψ ε

div, j,k and
coefficients dε

div, j,k. We are searching coefficients of the finite series expansion Eq. (15), such that
the subgrid-scale fluid velocity field is approximated well, which is divergence-free and conserves
momentum at least by fulfilling the linearized momentum equation (6). With the expansion of the
subgrid-scale velocity with the divergence-free vector functions, the former is satisfied immediately.
The latter is achieved by a least-squares approximation, which is explained in the following.

The advective term in the linearized SFNSE can be Helmholtz decomposed in a divergence-free
and a curl-free contribution. Since we seek a solution in the divergence-free wavelet vector space,
the curl-free contribution can be dropped together with the pressure term, which gives

∂u′
i

∂t
+ A⊥

i = Di + F⊥
i , (17)

where A⊥
i = (ũ j

∂u′
i

∂x j
+ u′

j
∂ ũi
∂x j

)⊥ is an abbreviation for the projected advective term, Di = (νf +
ν ′

t )
∂2u′

i
∂x j∂x j

for the diffusive term, and F⊥
i = ( ∂τi j

∂x j
)⊥ for the projected forcing term, which originates
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from the subgrid-scale stress tensor and mainly supplies the subgrid-scale velocity field with kinetic
energy (further details in Appendix B).

Minimizing the squared error of Eq. (17) over the whole domain results in the well known
Galerkin method, which we refer to as globally optimal solution.

If the vector valued error of a differential equation at time t and point x is given as Ei(t, x), the
optimal solution is achieved if ∫

Ei(t, x)Ei(t, x)dVx

is minimal. This can be achieved by adjusting the coefficients dε
div, j,k of the discretized solution such

that a stationary point is found, which corresponds to a minimum.
To make the solution for the coefficients affordable in the scope of an LES, we seek locally

optimal solutions for every j and k independently:

∂

∂dζ ,n+1
div, j,k

∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]2

dVx = 0, (18)

which yields the condition∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]
· Ψ

ζ

div, j,k[ξ(x)]dVx = 0. (19)

The fluid velocity field local in j and k, which we also refer to as local wave packets, is given as

u′
j,k(x) =

∑
ε

dε
div, j,kΨ

ε
div, j,k[ξ(x)], (20)

and A⊥
j,k, D j,k, and F⊥

j,k are the projected advective, diffusive, and projected forcing term, as a
function of the local velocity wave packets, respectively. The time derivative is discretized with an
explicit Euler-scheme, where n indicates the time level.

Relaxing the global optimality condition to local j, k avoids the solution of a large equation sys-
tem of size 14Nk × 14Nk. Instead, we invert Nk systems of size 14 × 14. Note that the matrix is
always identical, and in practice only one inversion of the 14 × 14 matrix is required. The linear
nature of the projected linearized SFNSE (17) allows for superposition of solutions, such as the
approximated solutions for the local wave packets u′

j,k(x). If the local wave packets would perfectly
satisfy Eq. (17), then their superposition would also satisfy Eq. (17). Since u′

j,k(x) is a numerical
approximation, the discretization errors add up by superposing the solutions and, in total, lead to
an error that is larger than the solutions of the global optimization using the Galerkin method.
However, only with the localization of the optimization, and the associated increase of the numerical
error compared to the Galerkin method, the solution for the subgrid-scale velocity field becomes
computational feasible in the scope of LES. Together with the linearization of the SFNSE, the
localization of the optimization constitutes the main assumption of our wavelet model.

Since the wavelet basis possesses no degrees of freedom in the space that is orthogonal to
the divergence-free [L2(R3)]3, no explicit projection of the advective term is required to obtain
a divergence-free subgrid-scale velocity. The projected advective term is obtained by expanding it
in a series of wavelet basis functions (similar to the subgrid-scale velocity field) and solving the
following problem: 〈A⊥

j,k

∣∣Ψ ε
div, j,k

〉 = 〈A j,k

∣∣Ψ ε
div, j,k

〉
, (21)

where 〈.|.〉 indicates the inner product. Equation (19) is solved with the resulting coefficients, which
leads to the same discrete equations as using A j,k without prior projection in Eq. (19).
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Note the solution of Eq. (19) is guaranteed to produce the energetically optimal coefficients,
because the Hessian

H j,k = Hε,ζ

j,k = ∂2

∂dε,n+1
div, j,k∂dζ ,n+1

div, j,k

∫ [
u′,n+1

j,k − u′,n
j,k

�t
+ A⊥

j,k − D j,k − F⊥
j,k

]2

dVx

= 2

�t2

∫
Ψ ε

div, j,k[ξ(x)] · Ψ
ζ

div, j,k[ξ(x)]dVx, (22)

is positive-definite, i.e., vTH j,kv > 0,∀v ∈ R14 \ {0}. It follows that Eq. (18) constitutes a convex
optimization problem and the solution has always a minimal error.

For a solution of Eq. (19) to exist, all terms of Eq. (19) must be integratable and finite, which
means that the following expression have to be satisfied:

(i)
∫

Ψ ε
div, j,k(x) · Ψ

ζ

div, j,k(x)dVx < ∞,

(ii)
∫ ∂ (Ψ ε

div, j,k (x)·Ψ ζ

div, j,k (x))

∂x j
dVx < ∞,

(iii)
∫

Ψ ε
div, j,k(x) · ∇2Ψ

ζ

div, j,k(x)dVx < ∞,

where Ψ ε
div, j,k must possess second-order weak derivatives. The divergence-free basis introduced in

Sec. II B satisfies these requirements.

D. Realization of the model in practice

The forcing term Fi represents the energy transfer from the resolved scales to the subgrid scales
and is modeled in the proposed framework. A direct evaluation of Fi = ∂τi j

∂x j
requires explicit filtering

with an a priori unknown filter. Kinetic energy can be added to the subgrid-scale velocity by the
advective terms and the subgrid-scale stress tensor, that both underlie modeling assumptions (e.g.,
the linearization and the explicit filtering) and discretization errors. Consequently, undesired high
or low kinetic energies can occur and even destabilize the numerical solution.

Since it is essential for the subgrid-scale velocity to have a realistic kinetic energy, we seek a
model forcing term that can easily adjust the kinetic energy in both directions. The advective term
Ai can add and remove kinetic energy across the scales. The diffusive term Di, however, always
removes kinetic energy if the viscosity is positive. The advective term and the diffusive term are
scaled to remove kinetic energy from or add kinetic energy to the subgrid-scale velocity field. The
total viscosity is replaced by an effective viscosity:

νeff (k) =
√

Kj,k

Kj,desired
[νf + ν ′

t (k)]. (23)

The kinetic energy of each wavelet is obtained with

Kj,k = Cd→K

Nε

∑
ε

(
dε

div, j,k

)2
, (24)

where Cd→K is a constant that depends on the distribution of dε
div, j,k and is frequently adjusted by

rearranging Eq. (24) and sampling Kj,k = (u′
j,k · u′

j,k )/2 at random positions. The desired kinetic
energy follows the scaling of the spectrum of the inertial range

Kj,desired = Kdesired

N k−5/3
j �k j, (25)

with the norm

N =
∑

j

k−5/3
j �k j, (26)
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and the wave number k j = 2 j2π/L. The wave number step is given by

�k j = k j+1 − k j−1

2
, (27)

and L indicates the size of the domain. Since the basis functions are associated with a range of wave
numbers, k j must be interpreted as a characteristic wave number of the respective level j.

The advective term is also scaled with a factor of
√

Kj,desired/Kj,k, which accelerates the adaption
to the desired kinetic energy. This procedure for maintaining the kinetic energy is stable and
insensitive to external disturbances, such as momentum sources originating from two-way coupled
particles. Note that no forcing is introduced that prescribes a specific (typically Gaussian) probabil-
ity distribution function (PDF).

As described in Sec. II B, the wavelet basis functions are shifted by discrete integer values in
space. This leads to points in space that coincide with peaks of the basis functions and, consequently,
to statistically higher kinetic energy at these points. To avoid such a spatial bias, the basis functions
are not fixed in space but move with a velocity much smaller than the eddy-turnover time of the
respective level and within a small region near their original position. There are many ways of
realizing a random movement of the wavelets. The method we applied is described in Appendix A.
Note that the movement of the wavelets solely requires modification of the sampling of the subgrid-
scale velocity because the coefficients dε

div, j,k are determined independently for every j and k.
In practice, the solution for the wavelet coefficients requires the evaluation of integrals, such as∫

Ψ ε
div, j,k[ξ(x)] · Ψ

ζ

div, j,k[ξ(x)]dVx.

Other integrals also contain spatial derivatives of the wavelet basis functions. Since the basis
functions do not change, the integrals can be computed only once and can be reused. The advective
term requires the filtered fluid velocity and the filtered fluid velocity gradient. The interpolation of
the filtered quantities to the position of the respective wavelet is the only interaction of the wavelet
enrichment with the LES flow solver. This simple interpolation step can be realized across different
types of flow solvers. Solving for the wavelet coefficients results in the solution of the following
linear equation system for every j and k:∑

ζ

Aε,ζ

j,k dζ

div, j,k = bε
j,k, (28)

where the coefficient matrix Aε,ζ

j,k is of size 14 × 14 and identical for all j and k. The right-hand
side vector bε

j,k contains the wavelet coefficients of the previous time step and interpolated LES
quantities. Therefore, its values change every time step.

III. SIMULATION SETUPS

The predictions of the proposed wavelet enrichment model are evaluated by means of different
single-phase and particle-laden flow configurations. In this section the numerical solution of the flow
and the particle transport is briefly introduced, and the parameters of the simulations are provided.

A. Numerical solution

The NSE and FNSE are solved numerically for different configurations in cubic domains of size
L and periodic boundary conditions in every direction. The subgrid-scale stress tensor in the LES
is modeled with the localized dynamic kinetic energy model (LDKM) as proposed by Menon and
coworkers [42,43] and extended to two-way coupled particle-laden flows by Hausmann et al. [28]
(referred to as mLDKM). Note that the mLDKM requires a model for the subgrid-scale velocity at
the positions of the particles to be closed. Besides the subgrid-scale stress tensor, the mLDKM also
provides an estimation of the subgrid-scale kinetic energy considering the turbulence modulation
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FIG. 2. Sketch of the turbulent shear flow configuration. A source term in x direction is added that varies
with one period of a sin-profile across the y direction and drives a turbulent shear flow. The black arrows
indicate the profile of the momentum source and the color represents a slice of the velocity in x direction.

by the particles. This subgrid-scale kinetic energy serves as Kdesired for the wavelet enrichment
in Eq. (25). Therefore, the generated subgrid-scale velocity considers, at least energetically, the
turbulence modulation by the particles. Note that the effect of a changing slope of the kinetic
energy spectrum is not accounted for. Altogether, the two-way coupling framework accounts for
the influence of the subgrid-scale velocity on the particle transport, the influence of the particles on
the resolved flow scales, and the effect of the particles on the subgrid scales. Details on how the
two-way coupling interactions are modeled, can be found in Hausmann et al. [28]. A second-order
finite volume solver is used to numerically solve the flow equations. More details on the flow solver
may be found in Denner et al. [44] and Bartholomew et al. [45].

The investigated configurations differ in the source terms that appear in the momentum equations.
We consider simulations of HIT, where a statistically steady state is obtained by continuously sup-
plying kinetic energy through turbulence forcing. The forcing procedure is described in Mallouppas
et al. [46].

A second type of flow investigated in this paper is a turbulent shear flow. This flow is simulated
by a constant momentum source that varies as a sin-function across the domain:

s = smax sin(2πy/L)e1, (29)

where smax is the amplitude of the momentum source, and e1 is the basis vector in the x direction. For
this turbulent shear flow configuration a shear Reynolds number is defined Reshear = L

√
smaxL/νf .

A sketch of this configuration is provided in Fig. 2.
We also assess the wavelet enrichment model using a simulation configuration with two-way

coupled point-particles, where the particle-induced momentum source is taken into account with
the particle-source-in-cell (PSIC) method [47]

s = − 1

ρfVcell

∑
p∈�cell

F p, (30)

where �cell represents a computational grid cell used in the finite volume solver that has a volume
of Vcell. The particles are treated in a Lagrangian framework, and their motion is governed by the
fluid-particle interface force, F p. We consider small, heavy, and spherical particles that we assumed
to be only influenced by the drag force F p = FD,p, which we compute using Stokes’ law augmented
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TABLE I. Summary of the parameters that define the four simulations configurations.

Name HIT-f-s TS-s HIT-f-1wc HIT-d-2wc

Flow type Forced HIT turb. shear flow Forced HIT Decaying HIT
Energy supply Turb. forcing Sinusoidal force Turb. forcing –
Particles – – One-way coupled Two-way coupled
Taylor Reynolds number Reλ 75 – 75 75
Turbulent Reynolds number Rel 205 – 205 205
Shear Reynolds number Reshear – 3115 – –
Reference time Tref L/

√
2/3〈K〉 √

L/smax L/
√

2/3〈K〉 L/
√

2/3〈K〉
Kolmogorov length scale η/L 0.0017 0.0029 0.0017 0.0017
Kolmogorov timescale τη/Tref 0.0075 0.026 0.0075 0.0075
Computational cells DNS N3

DNS 2563 1283 2563 2563

Computational cells LES N3
LES 323 163 323 323

Number of particles Np – – 5 × 480 115 12 057 066
Stokes number St – – 0.5, 1, 2, 4, 8 8

with the Schiller-Naumann correlation [48]

FD,p = CD
ρf

8
πd2

p|urel|urel, (31)

with the drag coefficient

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, (32)

where dp is the diameter of the particle with the index p and Rep = ureldp/νf is its Reynolds number.
The relative velocity is the difference between the velocity of the particle vp and the fluid velocity
u(xp) at the position of the particle xp:

urel = u(xp) − vp. (33)

The particle position changes according to

dxp

dt
= vp, (34)

and the particle velocity according to Newton’s second law

dvp

dt
= 1

ρpVp
F p, (35)

where ρp is the density of the particle. The motion of the particles is obtained using the
Verlet-scheme [49]. The fluid velocity is interpolated to the particle position by divergence-free
interpolation [50].

B. Parameters of the simulations

We consider four different simulation configurations to assess the predictions of the proposed
model: forced HIT of a single-phase flow (HIT-f-s), a single-phase turbulent shear flow (TS-s),
forced HIT with one-way coupled particles of five different Stokes numbers (HIT-f-1wc), and
decaying HIT with two-way coupled particles of Stokes number St = 8 and a particle mass fraction
of φm = 1 (HIT-d-2wc). In Table I, important parameters of the four simulations are summarized.
The flow quantities of the simulation HIT-d-2wc are given for the corresponding single-phase flow
and before the onset of the decay of the turbulence.
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(a) (b)

(c) (d)

FIG. 3. Slice of the velocity magnitude for the simulation configuration HIT-f-s. The results are shown for
the LES (a), the subgrid-scale velocity obtained from the wavelet enrichment (b), the superposition of the LES
velocity and the the modeled subgrid-scale velocity (c), and the DNS (d). The color scaling of all subfigures is
the same even though the maximum velocities are different.

The forcing is only applied in the wave number range kL/2π ∈ [3, 6] for the forced HIT
simulations. For the HIT simulations, the resolution is kmaxη = 1.37, and for the turbulent shear
flow it is kmaxη = 1.16. The maximum resolved wave number is defined as kmax = πNDNS/L.

In the LES of the HIT with the wavelet enrichment the range of considered levels is j ∈ [4, 6]
and in the LES of the turbulent shear flow j ∈ [3, 5]. The lowest levels are chosen such that their
characteristic wave numbers correspond to the respective cutoff wave numbers of the LES. The
upper level limits are chosen such that the significant amount of kinetic energy is captured with the
modeled wave numbers.

IV. RESULTS AND DISCUSSIONS

In the present section we evaluate the predictions of the wavelet-enriched LES (LES-WL) and
compare it to an LES without enrichment and the corresponding DNS. We separately discuss the
single-phase flow statistics and the statistics of particle-laden flows.

A. Single-phase flow statistics

We first consider the flow statistics of the forced HIT configuration (HIT-f-s). Figure 3 compares
the normalized fluid velocity magnitudes of the LES, the modeled subgrid-scale velocity obtained
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(a) (b)

FIG. 4. Kinetic energy spectrum (a) and PDF of the second invariant of the velocity gradient tensor (b) for
the simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the wavelet-enriched
LES (LES-WL). The inertial range slope is plotted for comparison.

from the wavelet enrichment, and their sum with the DNS. The small flow structures, which
are absent in the LES and provided by the wavelet enrichment, possess regions with different
kinetic energies. This is possible because the compact support of the wavelet basis enables varying
statistics across the domain. Some small regions with very high kinetic energy are observed. Such
rare high intensity events are characteristic for turbulence and an indicator for intermittency. The
superposition of the LES velocity and the modeled subgrid-scale velocity approximates the DNS
velocity, which is widely similar in magnitude and range of length scales, but shows differences
in the shape of the flow structures. The wavelet enrichment minimizes the local errors and, hence,
prevents the systematical formation of flow structures with the neighbor wave packets.

The similarities of the velocity fields of the DNS and the wavelet-enriched LES can be quantified
by comparing the kinetic energy spectra E normalized by the Kolmogorov length scale η and
velocity uη as shown in Fig. 4. The kinetic energy of the small wave numbers is recovered well by
the LES. For the unresolved fluid velocity field the LES, the kinetic energy spectrum of the modeled
subgrid-scale fluid velocity field approximates the kinetic energy spectrum of the DNS. Except for
an overprediction of the spectrum of relatively small energy at high wave numbers, the general trend
is captured. The observed deviation originates from the inertial range power law scaling prescribed
by the forcing and may be improved if knowledge of the dissipation range is incorporated in the
model.

As shown analytically by Maxey [51], the clustering of inertial particles of very small Stokes
number is proportional to the second invariant of the fluid velocity gradient tensor

Q = 1
2 (�i j�i j − Si jSi j ), (36)

with the rotation-rate tensor �i j and the strain-rate tensor Si j . Therefore, to be able to correctly
predict clustering, an accurate prediction of this tensor is crucial. Figure 4 shows the PDF of the
second invariant of the velocity gradient tensor for the LES, the wavelet-enriched LES and the
DNS. It can be observed that the LES by itself does not predict very high strain and low vorticity,
or high vorticity and low strain events as is predicted by the DNS. With the wavelet-enriched LES,
such events occur, even with a very similar probability as in the DNS; only the degree of asymmetry
of the PDF (i.e., the higher probability of high rotation low strain events) is slightly underestimated
as compared to the DNS. With the linearization of the SFNSE, the nonlinear term, as a contribution
to the second invariant of the velocity gradient tensor, is modeled by a turbulent viscosity, that does
not affect the second invariant of the velocity gradient tensor the same way as the nonlinear term.
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(a) (b)

FIG. 5. Longitudinal (a) and transverse (b) fluid velocity autocorrelations over the distance r for the
simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the wavelet-enriched LES
(LES-WL).

This linearization can be an explanation for the observed deviation between the wavelet-enriched
LES and the DNS.

Figure 5 shows the longitudinal and transverse fluid velocity autocorrelation functions, B‖
and B⊥, for the DNS, the LES without wavelet enrichment and the wavelet-enriched LES. For
homogeneous isotropic flows, they are defined as [52]

B‖(r) = 〈uα (x, t )uα (x + re‖, t )〉
〈uα (x, t )uα (x, t )〉 , (37)

B⊥(r) = 〈uα (x, t )uα (x + re⊥, t )〉
〈uα (x, t )uα (x, t )〉 , (38)

where r denotes the distance between the evaluated fluid velocities and e‖ and e⊥ the unit vector in
the longitudinal and transverse direction, respectively. Note that no summation is carried out over
the index α.

It can be seen in Fig. 5, that the fluid velocity decorrelates faster in the transverse direction than
in the longitudinal direction, which is qualitatively also captured by the two LES. The LES without
wavelet enrichment, however, predicts too slow decorrelation of the velocity in the longitudinal
and transverse direction. The decorrelation can be accelerated by the wavelet-enriched LES, as
it provides the unresolved subgrid-scale velocity field. As a results, the autocorrelations of the
wavelet-enriched LES are in very good agreement with the autocorrelations of the DNS for small
distances r. As the distance increases, the energetic resolved eddies dominate the autocorrelation
and the autocorrelations of the wavelet-enriched LES converge toward the autocorrelations of the
LES without wavelet enrichment.

Figure 6 shows the PDF of the longitudinal and transverse velocity gradients, A11 = ∂u1/∂x1

and A12 = ∂u1/∂x2, normalized by their respective standard deviations, σ11 and σ12. Similar to
the DNS, the wavelet-enriched LES increases the probability of events of high magnitude of the
gradients compared to the LES. The tails of the PDFs of the wavelet-enriched LES are wider than
in a Gaussian distribution, which is also observed in the DNS. In the PDF of the transverse velocity
gradients, the wavelet-enriched LES shows a good agreement with the shape of the DNS. For
the longitudinal gradients, the PDF of the wavelet-enriched LES lacks asymmetry, but the overall
agreement with the PDF of the DNS is significantly improved compared to the LES without wavelet
enrichment.

104604-14



WAVELET-BASED MODELING OF SUBGRID SCALES IN …

(a) (b)

FIG. 6. PDF of longitudinal (a) and transverse (b) velocity gradients normalized by their standard de-
viations for the simulation configuration HIT-f-s. The results are shown for the DNS, the LES, and the
wavelet-enriched LES (LES-WL). The dashed lines represent a Gaussian.

The analysis of the forced HIT proves that characteristic properties of turbulence can be repro-
duced by the wavelet enrichment, which cannot be achieved by, for instance, sampling random
coefficient of Fourier-modes as done by a kinematic simulation (see, e.g., Zhou et al. [53]).

The computational cost of the wavelet-enriched LES for the simulation configuration HIT-f-
s are approximately a factor 3–4 of the computational cost of the LES without enrichment. The
computational cost of the corresponding DNS is four orders of magnitude higher.

Even though the wavelet enrichment proves to be capable of predicting realistic single-phase
flow statistics in HIT, the vast majority of relevant flows in industry and nature is inhomogeneous
and anisotropic. A simple inhomogeneous and anisotropic flow configuration is the turbulent shear
flow (TS-s) introduced in Sec. III. In Fig. 7, we compare the spatial correlations of the subgrid-scale
velocity, which are defined as

Ci j = 〈(u′
i − 〈u′

i〉)(u′
j − 〈u′

j〉)〉, (39)

where 〈.〉 indicates temporal averaging and averaging along the spatially homogeneous directions
(i.e., x and z directions). The reference subgrid-scale fluid velocity field is obtained by subtracting

(a) (b)

FIG. 7. Normalized spatial correlations in the y direction for the simulation configuration TS-s. (a) The
correlations of the DNS explicitly filtered with a spectrally sharp filter and (b) the correlations of the subgrid-
scale velocity that is modeled with the wavelet enrichment.
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the explicitly filtered fluid velocity field of the DNS from the unfiltered fluid velocity field of the
DNS, where a spectrally sharp filter is used. Because of the arbitrary choice of the filter, we compare
the results only qualitatively.

It can be seen from Fig. 7 that the correlations of the wavelet enrichment are not as smooth as the
correlations of the DNS. Because of the shape of the wavelet basis functions, regions occur that have
statistically higher kinetic energy than other regions. Owing to the temporarily changing positions
of the wavelet basis functions, which is explained in Sec. II D, the fluctuations are significantly
reduced, but fluctuations remain in the ensemble averaged correlations that, however, are much
smaller than the instantaneous velocity fluctuations.

The velocity correlations C11, C22, and C33 vary with two periods of a sine-shape across the
y direction. With the wavelet enrichment this shape can be reproduced, albeit with different
magnitudes, which can be traced back to the filter choice of the DNS and the estimation of the
subgrid-scale kinetic energy. The cross-correlation C12 varies with one period of a sine-shape. At
the domain center the velocities in the x and y directions are positively correlated and at the domain
boundary negatively correlated. The wavelet enrichment reproduces this trend, which proves that the
right anisotropic behavior can be generated from information that the wavelet enrichment receives
from the LES.

B. Particle-laden flow statistics

We evaluate the particle statistics by comparing the results of forced HIT laden with one-way
coupled particles (HIT-f-1wc). Figure 8 shows the particle pair dispersion, which is defined as the
ensemble averaged temporal evolution of the distance between particle pairs with the position xp0(t )
and xp1(t ):

〈δ〉(t ) = 〈|xp0(t ) − xp1(t )|〉. (40)

A particle pair is defined as two particles that have an initial separation of approximately the
Kolmogorov length scale.

For all the considered Stokes numbers, three phases of the dispersion are observed in Fig. 8:
(i) Particle pairs are located in the same eddy and stay close together, before (ii) they rapidly disperse
by experiencing widely uncorrelated fluid velocities, and (iii) their maximum separation is reached,
which is determined by the domain size. Since the LES only contains the largest eddies, that even the
particles with the largest considered Stokes number can follow well, the dispersion is much slower
than for the particles transported with the DNS velocity field. The wavelet-enriched LES leads to a
particle pair dispersion that almost coincides with the DNS, for all considered Stokes numbers.

Most important for many applications is a correct prediction of particle clustering, i.e., that the
particles preferentially concentrate in specific regions. A quantitative measure of particle clustering
is provided by the radial distribution function, defined as

g(r) =
〈

Np,i(r)/�Vi(r)

Np/V

〉
, (41)

where �Vi(r) is the volume of spherical shells in a distance r, and Np,i(r) is the number of particle
in the respective spherical shell. The radial distribution function is normalized with the total number
of particles Np,i(r) and the total volume of the simulation domain V .

The radial distribution function in Fig. 9 predicted by the LES without wavelet enrichment
significantly deviates from the radial distribution function predicted by the DNS, whereas the
LES predicts too little clustering for St ∈ {0.5, 1} and too strong clustering for St ∈ {2, 4, 8}.
For the small Stokes numbers, the small eddies, that are absent in the LES without wavelet
enrichment, move the particles toward regions of small vorticity and large strain. The particles
with the larger Stokes numbers cannot follow the small eddies well. Consequently, the small fluid
velocity structures increase the dispersion of the particles with large Stokes numbers. The correct
prediction of clustering of the particles with small Stokes numbers is far more challenging, because
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FIG. 8. Particle pair dispersion of particles with Stokes numbers in the range St ∈ {0.5, 1, 2, 4, 8} for the
simulation configuration HIT-f-1wc. The considered particles pairs have an initial separation of the size of
the Kolmogorov length scale η. The results are shown for the DNS, the LES, and the wavelet-enriched LES
(LES-WL).
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FIG. 9. Radial distribution function of particles with Stokes numbers in the range St ∈ {0.5, 1, 2, 4, 8} for
the simulation configuration HIT-f-1wc. The results are shown for the DNS, the LES, and the wavelet-enriched
LES (LES-WL).
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(a) (b)

FIG. 10. Subgrid-scale kinetic energy over time (a) and kinetic energy spectrum before the onset of the
decay (b) in decaying HIT laden with particles of Stokes number St = 8 for the simulation configuration
HIT-d-2wc. The results are shown for the DNS, the LES, and the wavelet-enriched LES (LES-WL). The inertial
range slope is plotted for comparison.

the strain-rotation relations of the small fluid velocity structures have a larger impact. It is observed
in Fig. 9 that the wavelet-enriched LES significantly improves the radial distribution function for
the Stokes numbers St � 2. The increased dispersion by the modeled subgrid-scale fluid velocity
field yields an excellent agreement of the radial distribution function of the wavelet-enriched LES
with the radial distribution function of the DNS. For the intricate case of Stokes numbers St = 0.5
and St = 1, only a relatively minor increase in particle clustering is observed.

The computational costs of the wavelet-enriched LES mainly depend on the levels, i.e., functions
of the subspaces Vj that are considered and the number of particles that require sampling of the
subgrid-scale velocity. The sampling of the subgrid-scale velocity at the positions of the particles
is much more computationally expensive than computing the wavelet coefficients. The wavelet-
enriched LES requires approximately twice the CPU-time for the HIT-f-1wc configuration than
the Fourier enrichment [28]. This corresponds to approximately 10–15 times the CPU-time of the
corresponding LES, which is significant, but still orders of magnitudes cheaper than a DNS.

The final test case considered in this paper considers two-way coupling. The abilities of the
wavelet enrichment to predict the unresolved effects of two-way coupled particle-laden flows is
assessed with the simulation configuration HIT-d-2wc, representing decaying HIT with two-way
coupled particles with Stokes number St = 8. Figure 10(a) shows the temporal evolution of the
subgrid-scale kinetic energy predicted by the LES without the wavelet enrichment and the LDKM,
the wavelet-enriched LES with the mLDKM including the effect of the particles, and the DNS.

The reference subgrid-scale kinetic energy is obtained by explicit filtering the DNS. In an
LES, the spatially varying turbulent viscosity imposes the filtering. This unknown filter leads to
an uncertainty of the actual subgrid-scale kinetic energy. Therefore, the DNS is explicitly filtered
with two different filters, a spectrally sharp filter and by volume averaging. During the whole decay
the LES without wavelet enrichment and with the single-phase flow subgrid-scale model predicts
a much too large subgrid-scale kinetic energy. The subgrid-scale model, i.e., the LDKM, assumes
single-phase turbulence for the unresolved velocity scales, which contains more kinetic energy than
the same flow laden with particles of Stokes number St = 8. Since the wavelet-enriched LES enables
the use of the mLDKM that takes the turbulence modification by the particles into account, the
predicted subgrid-scale kinetic energy is much smaller and lies between the subgrid-scale kinetic
energy obtained from the DNS using the two different explicit filters. Note that the subgrid-scale
kinetic energy obtained from the DNS is sensitive to the specific filter that is used.
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The kinetic energy spectra before the onset of the decay are shown in Fig. 10(b). The turbulence
modulation by the particles leads to a clear deviation of the DNS spectrum from the well known
power-law of the inertial range that is observed in single-phase turbulence. Close to the cutoff wave
number, the spectrum of the LES without wavelet enrichment using the LDKM deviates from the
DNS spectrum because of the overestimated subgrid-scale kinetic energy and, thus, the too large
turbulent viscosity. This is improved by the wavelet-enriched LES using the mLDKM that predicts
a smaller turbulent viscosity and a better agreement with the kinetic energy spectrum of the DNS.
The kinetic energy of the subgrid-scale velocity generated by the wavelet enrichment is slightly
larger than the kinetic energy of the DNS. The shape of the kinetic energy spectrum, however, is
very similar to the kinetic energy spectrum of the DNS.

V. CONCLUSIONS

We propose a model to predict the unresolved subgrid-scale fluid velocity field in the scope of an
LES. In LES of particle-laden turbulent flows, the subgrid-scale velocity at the particle positions is
required to predict correct particle behavior, such as their dispersion and clustering. Our wavelet
enrichment model discretizes the subgrid-scale velocity by means of a divergence-free wavelet
vector basis. The coefficients of this basis are obtained by minimizing the squared error of the
linearized SFNSE. In contrast to structural models using a Fourier basis, the wavelet enrichment
enables a continuous change of velocity statistics across the domain and, hence, the generation
of an inhomogeneous subgrid-scale velocity field. Furthermore, the wavelet enrichment does not
require to specify parameters that critically affect the results.

The model is validated with four distinct test cases that separately assesses the predictions of the
wavelet enrichment in single-phase and particle-laden flows. Simulations of forced HIT show that
the wavelet enrichment produces strain-rotation relations that are similar to the DNS. The PDFs of
the longitudinal and transverse velocity gradients possess the expected non-Gaussian behavior. The
wavelet enrichment is shown to be capable of predicting inhomogeneous and anisotropic velocity
fields in a turbulent shear flow, where the spatial velocity correlations match those of DNS.

One-way coupled simulations of forced HIT of particles with different Stokes numbers revealed
excellent agreement with the particle pair dispersion of the DNS. The predictions of particle
clustering are improved, whereas the wavelet-enriched LES recovers the radial distribution function
of the DNS very well for Stokes numbers St � 2. By combining the wavelet enrichment with the
recently proposed modification of the LDKM [28] to particle-laden flows, we report improved
predictions of the subgrid-scale kinetic energy and the kinetic energy spectrum in two-way coupled
decaying HIT.

The proposed wavelet enrichment is able to recover the most important interactions between
turbulence and particles while maintaining computational costs of the order of the costs of an LES.
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APPENDIX A: MOVEMENT OF THE WAVELETS

Let x j,k,c(t ) be the coordinates of the center positions of the wavelets with the indices j and k
that are initially given as

xi, j,k,c(t = 0) = xi,max − xi,min

2 j
(ki + 1/2) + xi,min. (A1)

A wavelet center is allowed to move within a region

x j,k,c(t = 0) − δ j � x j,k,c(t ) � x j,k,c(t = 0) + δ j, (A2)
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where

δi, j = xi,max − xi,min

2 j+1
. (A3)

Within this region target coordinates x j,k,t are generated from a uniform distribution. The wavelet
center moves toward the target coordinates with a constant velocity that is equal to 10% of the
local eddy turnover time. As soon as the center coordinates are close to the target coordinates, new
random target coordinates are generated

APPENDIX B: PROJECTION OF THE LINEARIZED SFNSE

This Appendix describes how the pressure term in the linearized SFNSE can be dropped if we
solve it in the divergence-free subspace. We start from the linearized SFNSE

∂u′
i

∂t
+ Ai = −Pi + Di + Fi, (B1)

with the abbreviations

Ai = ũ j
∂u′

i

∂x j
+ u′

j

∂ ũi

∂x j
,

Pi = 1

ρf

∂ p′

∂xi
,

Di = (νf + ν ′
t )

∂2u′
i

∂x j∂x j
, and Fi = ∂τi j

∂x j
.

Taking the divergence gives

∂

∂xi
Pi = − ∂

∂xi
Ai + ∂

∂xi
Fi, (B2)

because the divergence of the time derivative of the velocity and the diffusive term are zero, as it
can be easily verified. Similarly, by taking the curl of Eq. (B1), we get

Curl

(
∂u′

i

∂t

)
+ Curl(Ai ) = Curl(Di ) + Curl(Fi ). (B3)

Because the curl of a gradient is zero, the curl of the pressure term vanishes. According to the
Helmholtz decomposition, the advective term and the forcing term can be decomposed into a
divergence-free contribution, indicated with a ⊥, and a curl-free contribution, indicated with the
superscript curl, as follows:

Ai = A⊥
i + Acurl

i , (B4)

Fi = F⊥
i + F curl

i . (B5)

Equation (B2) is satisfied if

Pi = −Acurl
i + F curl

i , (B6)

and Eq. (B3) is satisfied if

∂u′
i

∂t
+ A⊥

i = Di + F⊥
i . (B7)

Adding Eq. (B6) and Eq. (B7), gives the linearized SFNSE (B1). Equations (B6) and (B7) can be
solved instead of solving the continuity equation together with Eq. (B1).
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