
A plug-and-play real-time
architecture for MPSoC-FPGAs

targeting interventional
Computed Tomography

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von M. Sc. Daniele Passaretti
geb. am 23. Mai 1992 in Gaeta (Italien)
genehmigt durch die Fakultät für Elektrotechnik und Informa-
tionstechnik der Otto–von–Guericke Universität Magdeburg
Gutachter:
Prof. Dr.-Ing. Thilo Pionteck
Prof. Dr. rer. nat. Nicola D’Ascenzo
Promotionskolloquium am 10. September 2024

Daniele Passaretti: A plug-and-play real-time architecture for MPSoC-FPGAs
targeting interventional Computed Tomography, Copyright © 2024

Abstract

In recent years, new image-guided interventional procedures, such as interventional Com-
puted Tomography (iCT), have been explored to tackle the increasing number of tumors.
During these interventional procedures, surgeons track the needle used for tumor ablation
within the patient’s body with the support of Computed Tomography (CT) or multi-
modal CT/Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI)
techniques. While CT scanners for tumor diagnosis have been typically designed as cus-
tom closed systems, new scanners for interventional procedures aim to be adaptable and
configurable for multimodality scanning, providing real-time images. Therefore, from the
system designer perspective, these scanners are considered Cyber-Physical System (CPS)
devices, where components must be controlled, and data must be acquired and processed
in real time.

The “Konfigurierbarer, Interfaceoffener, Dosissparender Computertomograph” (KIDS-
CT) scanner is the first open-interface CT scanner assembled by Academia aiming to
provide new features: extension for adding new components in a plug-and-play fashion,
and user-accessible sensor/actuator parameters (e.g., individual settings of detector, X-ray
tube voltage, Time-of-flight cameras). These features allow researchers and/or physicians
to explore new multimodality techniques and interventional procedures with the aim of
optimizing the X-ray dose and enhancing reconstruction algorithms.

This thesis addresses the problem of real-time data acquisition and processing in CPSs
and their extension capabilities for adding components in a plug-and-play fashion. It
focuses on the KIDS-CT scanner, for which multimodality functionalities and real-time
support must be provided in order to conduct and explore iCT procedures. To address these
problems at the system and hardware design level, this research work firstly contributes in
the design process of the CT scanner, modeled as a CPS device, by proposing a System
Architecture and the associated Communication Infrastructure; Secondly, it proposes a new
Control-Data Acquisition System (CDAS) architecture for Multi-Processor System-on-Chip
Field Programmable Gate-Array (MPSoC-FPGA) platforms. Although the proposed work
has been implemented and validated targeting the KIDS-CT scanner, it is configurable for
various CPS applications where data must be collected and processed on the fly, while
components must be controlled in real time. In fact, the CDAS plays a crucial role in
controlling CPS components at the device level, collecting and processing data in real time,
and providing plug-and-play capability for the target application, such as the KIDS-CT
scanner.

In order to reach these aims, various methodologies have been proposed: Real-time
and non-real-time tasks are properly mapped between the Programmable Logic and the
Processing System of the MPSoC-FPGA; The Communication Infrastructure has been
modeled in layers and classes that contain different protocols on the base of the task

type; A dataflow-module and a data-processing module have been proposed to collect,
and preprocess data on the fly, without using external memory. In addition, data can be
pre-processed in different formats, making it suitable for exploring the design space by
tuning data formats to determine the most appropriate design configuration to pre-process
data for interventional procedures.

As part of this work, a guideline for designing an open-interface CT scanner has
been provided at the system level and digital signal processing level. The proposed
communication protocols for the plug-and-play capability and the real-time support
have been described. Furthermore, the hardware/software CDAS architecture has been
described through its three main components: the Control-synchronization Module, the
Data-flow Module, and the Data-processing Module. Moreover, a novel hardware isolation
method to enable isolation support on MPSoC-FPGAs has been proposed; the proposed
isolation method solves the problem of isolation between hardware modules inside the
MPSoC-FPGA.

Finally, this work describes the realization of the System Architecture, the Communica-
tion Infrastructure and the CDAS architecture in the specific case of the KIDS-CT scanner.
For this purpose, the XC7Z045 MPSoC-FPGA has been used for implementing the CDAS
architecture. Here, the proposed optimizations have permitted to achieve an efficient
solution, which use only 7.81% of Look-Up Tables, 5.82% of Flip-Flops, 5% of Digital
Signal Processors, and 7.89% of Block RAMs, and collect and process pixel data in an
estimated time of 467.8 ns. Since pixel data are processed on the fly during the acquisition
of each projection, and this processing is faster than the “integration period” required
to acquire a projection, the proposed pre-processing solution adds zero latency to the
acquisition time. Therefore, the Graphics Processing Unit (GPU) on the reconstruction
system only needs to perform the rest of the processing, resulting the entire acquisition
and reconstruction time much faster than before. Such a solution could not be achieved
with the standard approach, as it would exceed the capacity of the available Digital Signal
Processors in the selected MPSoC-FPGA. Furthermore, the proposed optimized solution
is 6.4 times faster than the standard approach. In conclusion, this thesis answers to
the problem of how to provide real-time support and plug-and-play capability within
complex CPSs such as the KIDS-CT scanner, and enables this scanner to explore new
multimodality techniques and interventional procedures.

ii

Zusammenfassung

Um die zunehmende Zahl von Tumorerkrankungen zu bekämpfen, wurden in den letzten
Jahren neue bildgesteuerte interventionelle Methoden erforscht, wie z. B. das Interven-
tional Computed Tomography (iCT)-Verfahren. Bei diesen interventionellen Verfahren
verfolgen die Chirurgen die bei der Tumorentfernung verwendete Nadel im Körper des
Patienten mit Computed Tomography (CT) oder multimodalen CT/Positron Emission
Tomography (PET)/Magnetic Resonance Imaging (MRI)-Techniken. Während diagnosti-
sche CT-Scanner in der Regel als zugeschnittene, geschlossene Systeme konzipiert werden,
sollen neue Scanner für interventionelle Verfahren anpassungsfähig und für multimodales
Scannen konfigurierbar sein sowie Echtzeitbilder liefern. Daher funktionieren diese Scanner
auf der Ebene des Systemdesigns als Cyber-Physical System (CPS)-Geräte, bei denen die
Komponenten gesteuert und die Daten in Echtzeit erfasst und verarbeitet werden müssen.

Der “‘Konfigurierbare, Interfaceoffene, Dosissparende Computertomograph“ (KIDS-
CT)-Scanner ist der erste von der akademischen Welt fertiggestellte CT-Scanner mit
offener Schnittstelle, der neue Funktionen bietet: Erweiterungen für das Hinzufügen neuer
Komponenten im Plug-and-Play-Verfahren und für den Benutzer zugängliche Sensor/Aktor-
Parameter (z. B. individuelle Einstellungen des Detektors, der Spannung der Röntgenröhre
und der Time-of-Flight-Kameras). Diese Funktionen ermöglichen es Forschenden und/oder
Ärzten, neue multimodale Techniken und interventionelle Verfahren mit dem Ziel zu erfor-
schen, die Röntgendosis zu optimieren und die Rekonstruktionsalgorithmen zu verbessern.

Diese Arbeit befasst sich mit der Problematik der Echtzeit-Datenerfassung und -Ver-
arbeitung innerhalb von CPSs und deren Erweiterungsmöglichkeiten für das Hinzufügen
von Komponenten in Plug-and-Play-Weise. Der Fokus liegt auf dem KIDS-CT-Scanner,
für den multimodale Funktionalitäten und Echtzeitunterstützung bereitgestellt werden
müssen, um iCT-Verfahren durchzuführen und zu erforschen. Um diese Probleme auf der
System- und Hardware-Entwurfsebene anzugehen, trägt diese Forschungsarbeit erstens
zum Entwurfsprozess des als CPS-Gerät modellierten CT-Scanners bei, indem sie eine
Systemarchitektur und die zugehörige Kommunikationsinfrastruktur vorschlägt; zweitens
schlägt sie eine neue Control-Data Acquisition System (CDAS)-Architektur für Multi-
Processor System-on-Chip Field Programmable Gate-Array (MPSoC-FPGA)-Plattformen
vor. Obwohl die Arbeit für den KIDS-CT-Scanner implementiert und validiert wurde,
ist sie für verschiedene CPS-Anwendungen konfigurierbar, die unter Verwendung der
entwickelten Systemarchitektur entwickelt werden können. Tatsächlich spielt das CDAS
eine entscheidende Rolle bei der Steuerung von CPS-Komponenten auf Geräteebene, bei
der Erfassung und Verarbeitung von Daten in Echtzeit und bei der Bereitstellung von
Plug-and-Play-Fähigkeiten für die Zielanwendung, wie z. B. den KIDS-CT-Scanner.

Um diese Ziele zu erreichen, werden verschiedene Methoden angewandt: Echtzeit- und
Nicht-Echtzeit-Aufgaben werden auf geeignete Art und Weise zwischen der programmier-

iii

baren Logik und dem Verarbeitungssystem des MPSoC-FPGA abgebildet; die Kommuni-
kationsinfrastruktur wird in Ebenen und Klassen modelliert, die verschiedene Protokolle
auf der Grundlage des Aufgabentyps enthalten; ein Datenflussmodul und ein Datenverar-
beitungsmodul werden implementiert, um Daten zu sammeln und vorzubehandeln, ohne
externen Speicher zu verwenden. Darüber hinaus kann das Datenverarbeitungsmodul
Daten in verschiedenen Formaten vorverarbeiten.

Diese Flexibilität ermöglicht die Erkundung des Designraums durch Anpassung der
Datenformate. Eine solche Abstimmung hilft bei der Bestimmung der am besten geeigneten
Designkonfiguration für die Vorverarbeitung von Daten bei interventionellen Verfahren.

Im Rahmen dieser Arbeit wird ferner ein Leitfaden für die Entwicklung eines CT-Scanners
mit offener Schnittstelle auf Systemebene und auf Ebene der digitalen Signalverarbeitung
bereitgestellt. Die integrierten Kommunikationsprotokolle für die Plug-and-Play Fähigkeit
und die Echtzeitunterstützung werden beschrieben. Darüber hinaus wird die Software-
/Hardware-Architektur von CDAS mit ihren drei Hauptkomponenten beschrieben: das
Steuerungs-/Synchronisationsmodul, das Datenflussmodul und das Datenverarbeitungs-
modul. Darüber hinaus wurde eine neuartige Hardware-Isolationsmethode entwickelt, um
die Isolationsunterstützung auf MPSoC-FPGAs zu ermöglichen; die dazugehörige Isola-
tionsmethode löst das Problem der Isolation zwischen Hardware-Modulen innerhalb des
MPSoC-FPGA.

Insgesamt beschreibt diese Arbeit die Realisierung der Systemarchitektur, der Kom-
munikationsinfrastruktur und der CDAS-Architektur im speziellen Fall des KIDS-CT
-Scanners. Zu diesem Zweck wurde der XC7Z045 MPSoC-FPGA für die Implementierung
der CDAS-Architektur verwendet. Mit den hier implementierten Optimierungen wurde
eine effiziente Lösung erreicht, die nur 7,81% der Look-Up Tables, 5,82% der Flip-Flops,
5% der Digitalen Signalprozessoren und 7,89% der Block RAMs verwendet und Pixeldaten
in einer geschätzten Zeit von 467,8 ns erfasst und verarbeitet. Da die Pixeldaten während
der Erfassung jeder Projektion “on-the-fly” verarbeitet werden und diese Verarbeitung
schneller ist als die für die Erfassung einer Projektion erforderliche Integrationszeit, fügt
die vorgestellte Vorverarbeitungslösung der Erfassungszeit keine Latenz hinzu. Daher
muss die Graphics Processing Unit (GPU) auf dem Rekonstruktionssystem nur den Rest
der Verarbeitung durchführen, wodurch die gesamte Erfassungs- und Rekonstruktionszeit
deutlich schneller ist als bei bisherigen Lösungen. Eine solche Lösung könnte mit dem
Standardansatz nicht erreicht werden, da sie die Kapazität des verfügbaren Digitalen Si-
gnalprozessoren in dem ausgewählten MPSoC-FPGA übersteigen würde. Außerdem ist die
vorgeschlagene optimierte Lösung 6,4-Mal schneller als der Standardansatz. Zusammenfas-
send wird die Frage beantwortet, wie Echtzeit-Unterstützung und Plug-and-Play-Fähigkeit
innerhalb komplexer CPSs, wie dem KIDS-CT-Scanner, bereitgestellt und wie damit neue
multimodale Techniken und interventionelle Verfahren erforscht werden können.

iv

Publications

Publication As First Author

Original works in peer-reviewed international journals

[DP 1] D. Passaretti, M. Ghosh, S. Abdurahman, M. L. Egito, and T. Pionteck.
“Hardware Optimizations of the X-ray Pre-Processing for Interventional Computed
Tomography Using the FPGA”. In: Applied Sciences 12.11 (2022). issn: 2076-3417.
doi: 10.3390/app12115659. url: https://www.mdpi.com/2076-3417/12/11/
5659.

[DP 2] D. Passaretti, M. Steiger, and T. Pionteck. “Enabling Plug-and-Play in Cyber-
Physical Systems Using MPSoC-FPGAs”. In: IEEE Access 11 (2023), pp. 116219–
116234. doi: 10.1109/ACCESS.2023.3325742.

Original works in peer-reviewed international conferences

[DP 3] D. Passaretti, J. M. Joseph, and T. Pionteck. “Survey on FPGAs in Medical
Radiology Applications: Challenges, Architectures and Programming Models”.
In: 2019 International Conference on Field-Programmable Technology (ICFPT).
2019, pp. 279–282. doi: 10.1109/ICFPT47387.2019.00047.

[DP 4] D. Passaretti and T. Pionteck. “Hardware/Software Co-Design of a control and
data acquisition system for Computed Tomography”. In: 2020 9th International
Conference on Modern Circuits and Systems Technologies (MOCAST). 2020,
pp. 1–4. doi: 10.1109/MOCAST49295.2020.9200273.

[DP 5] D. Passaretti and T. Pionteck. “Configurable Pipelined Datapath for Data
Acquisition in Interventional Computed Tomography”. In: 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 2021, pp. 257–257. doi: 10.1109/FCCM51124.2021.00044.

[DP 6] D. Passaretti, F. Boehm, M. Wilhelm, and T. Pionteck. “Hardware Isolation
Support for Low-Cost SoC-FPGAs”. In: Architecture of Computing Systems. Ed.
by M. Schulz, C. Trinitis, N. Papadopoulou, and T. Pionteck. Cham: Springer
International Publishing, 2022, pp. 148–163. isbn: 978-3-031-21867-5.

v

https://doi.org/10.3390/app12115659
https://www.mdpi.com/2076-3417/12/11/5659
https://www.mdpi.com/2076-3417/12/11/5659
https://doi.org/10.1109/ACCESS.2023.3325742
https://doi.org/10.1109/ICFPT47387.2019.00047
https://doi.org/10.1109/MOCAST49295.2020.9200273
https://doi.org/10.1109/FCCM51124.2021.00044

[DP 7] D. Passaretti and T. Pionteck. “A Control Data Acquisition System Architecture
for MPSoC-FPGAs in Computed Tomography”. In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications. Ed. by F. Palumbo, G. Keramidas,
N. Voros, and P. C. Diniz. Cham: Springer Nature Switzerland, 2023, pp. 361–365.
isbn: 978-3-031-42921-7.

Patent

[DP 8] T. Hoffmann, D. Passaretti, R. Frysch, T. Pfeiffer, and G. Rose. MEDI-
CAL IMAGING SYSTEM AND COMPUTER PROGRAM. US Patent US
2023/0377720 A1 (Pub. Date: Nov. 23, 2023), EP EP4225148A1 (Pub. Date: Aug.
16, 2023), JP2023544700A (Pub. Date: Oct. 25, 2023), WO2022073958A1 (Pub.
Date: Apr. 14, 2022). Assignee: Otto-von-Guericke-Universität Magdeburg, Magde-
burg (DE). url: https://patents.google.com/patent/US20230377720A1/en.

Publication With Authors In Alphabetic Order

Original works in peer-reviewed international journals

[DP 9] A. Cilardo, M. Gagliardi, and D. Passaretti. “Hardware Support for Thread
Synchronisation in an Experimental Manycore System”. In: Int. J. Grid Util.
Comput. 11.1 (2020), 62–71. issn: 1741-847X. doi: 10.1504/ijguc.2020.103970.
url: https://doi.org/10.1504/ijguc.2020.103970.

Original works in peer-reviewed international conferences

[DP 10] A. Cilardo, M. Gagliardi, and D. Passaretti. “NoC-Based Thread Synchroniza-
tion in a Custom Manycore System”. In: Advances on P2P, Parallel, Grid, Cloud
and Internet Computing. Ed. by F. Xhafa, S. Caballé, and L. Barolli. Cham:
Springer International Publishing, 2018, pp. 673–682. isbn: 978-3-319-69835-9.

vi

https://patents.google.com/patent/US20230377720A1/en
https://doi.org/10.1504/ijguc.2020.103970
https://doi.org/10.1504/ijguc.2020.103970

Contents

I Introduction xi

1 Introduction 2
1.1 Motivation . 2

1.1.1 Why interventional and multimodality CT matter? 3
1.1.2 Why KIDS-CT? . 3
1.1.3 Why a CT scanner for multimodality/interventional like KIDS-CT

is a CPS? . 3
1.1.4 Why use MPSoC-FPGAs? . 3

1.2 Research Questions . 4
1.3 Research Contributions . 4
1.4 Thesis Outline . 5

2 Technical Background 7
2.1 Cyber-Physical Systems . 7

2.1.1 Physical environment . 8
2.1.2 Embedded system . 8
2.1.3 Physical architecture . 9

2.2 Multi-Processor System-on-Chip Field-Programmable Gate Array 10
2.2.1 On-chip communication architecture 11

2.3 Mixed-Criticality Systems . 13
2.3.1 Shared resources in MCSs . 14
2.3.2 CPSs and MCSs . 14
2.3.3 MPSoC-FPGAs for MCSs . 14

2.4 Interventional Computed Tomography . 15
2.4.1 CT scanner fundamentals . 15
2.4.2 KIDS-CT scanner . 16
2.4.3 CT reconstruction theory . 19

2.5 Design Space Exploration . 27
2.5.1 Data formats for number representation 28

3 Related Works 30
3.1 System Architecture In CPSs . 30
3.2 Control And Data Acquisition Systems . 32

vii

Contents

3.3 Task And Peripheral Isolation . 36
3.3.1 Isolation in AMD-Xilinx architectures 36
3.3.2 Protection units solutions . 38

3.4 Computed Tomography . 41
3.4.1 Controlling and data acquisition systems for CT scanners 41
3.4.2 The data format exploration in CT data processing 43

II Concept 46

4 Problem Analysis 48
4.1 Weakness Of The Current Architectures 48
4.2 Research Questions & Objectives . 50

5 Methodology 52
5.1 Requirement Definition For The Selected CPS Application 52
5.2 System Architecture . 53
5.3 Communication Infrastructure . 53
5.4 Control-Data Acquisition System . 54

6 Cyber-Physical System Architecture 55
6.1 Requirement & Task Classification . 55
6.2 System Architecture . 56
6.3 Communication Infrastructure . 58

6.3.1 Communication interface layer . 60
6.3.2 Transport protocol layer . 61
6.3.3 Application protocol layer . 61

7 Control-Data Acquisition System 66
7.1 Task Partitioning . 66
7.2 Hardware/Software Architecture . 67
7.3 Control-Synchronization Module . 69

7.3.1 Hardware layer . 69
7.3.2 Application layer . 73
7.3.3 Example . 75

7.4 Data-Flow Module . 77
7.4.1 Architecture reconfigurability . 78
7.4.2 Inter-clock domains . 80
7.4.3 Architecture description . 81

7.5 Data-Processing Module . 84
7.5.1 Architecture description . 84

viii

Contents

7.6 Isolation Support For MPSoC-FPGAs . 86
7.6.1 LPU architecture . 88
7.6.2 Example . 89

III KIDS-CT 92

8 System Architecture For The KIDS-CT Scanner 94
8.1 CT Requirement Classification . 94
8.2 System Architecture . 95
8.3 Communication Infrastructure . 97
8.4 Optimization Of The Acquisition And Processing Datapath 99

9 Control-Data Acquisition System For The KIDS-CT Scanner 102
9.1 Hardware/Software Architecture . 102
9.2 Control-Synchronization Module . 103

9.2.1 Software architecture . 104
9.2.2 Hardware architecture . 104

9.3 Data-Flow Module . 106
9.4 Data-Processing Module . 109
9.5 Pixel Processing Optimization . 110

9.5.1 I0-correction step . 111
9.5.2 Cosine weighting and redundancy weighting steps 112

9.6 Design Space Exploration . 115
9.6.1 Selection of input parameters . 116
9.6.2 Selection of metrics . 117

9.7 Component Isolation . 118

IV Validation & Evaluation 120

10 Validation 122
10.1 Validation methodology . 122
10.2 CDAS Design Phase . 123
10.3 CDAS Post-Implementation Phase . 125
10.4 KIDS-CT Post-Integration Phase . 126

11 Performance Evaluation 127
11.1 CDAS Architecture For The KIDS-CT Scanner 127
11.2 Data-Flow Module . 130

11.2.1 Timing Analysis . 132

ix

Contents

11.3 Data-Processing Module . 134
11.4 Lightweight Protection Unit . 136

12 Design Space Exploration 139
12.1 Image Quality Prerequisites . 139

12.1.1 CT scanning configuration . 140
12.1.2 Phantom selection . 141
12.1.3 Calculation of the image quality metrics 143

12.2 Image Quality Analysis . 144
12.3 Hardware Cost & Computing Performance 149
12.4 Design Space Exploration Considerations 151

13 Evaluation Of Functionalities 152
13.1 Plug-and-Play Capability . 152
13.2 Real-Time Support . 154
13.3 Comparison With Related Work . 155

V Finale 158

14 Conclusion 160
14.1 Summary . 160
14.2 Discussion Of Results . 162
14.3 Future Work: Adaptive Computing Acceleration Platforms For CDAS . . . 164

List of Figures 165

List of Tables 168

List of Acronyms 169

Bibliography 176

x

Part I

Introduction

xi

1 Introduction

Interventional Computed Tomography (iCT) procedures are increasingly being used to
treat the growing number of tumors. To perform such medical procedures, surgeons need
Computed Tomography (CT) scanners capable of acquiring and reconstructing images
in real time. In such an environment, these devices can be modeled as Cyber-Physical
Systems (CPSs), where different sensors/actuators need to be controlled and synchronized
while data are acquired and processed in real time [1]. Due to the interoperability
difficulties between components from different vendors that often acquire and store data
offline, supporting plug-and-play capability and real-time controlling/synchronization
and data processing is still an open challenge for many CPS applications, like in CT
scanners [2–4]. Often, these tasks are distributed across different Control System (CS)
and Data Acquisition System (DAS) architectures [5].

This thesis addresses these challenges and proposes a solution considering the CPS
System Architecture, its Communication Infrastructure, and the Control-Data Acquisition
System (CDAS) architectures. A Centralized System Architecture not only enhances
interoperability for plug-and-play capabilities but also improves the estimation of Worst-
Case Execution Time (WCET) for communication tasks which are typically distributed
across various components. The Communication Infrastructure employs distinct “layers”
and “classes” to segregate control/data and non-real-time/real-time tasks. In contrast
to other systems where CS and DAS exist in separate architectures, all these elements
permit to join Control and Data Acquisition architectures in a novel CDAS architecture
based on MPSoC-FPGA platforms. In this way, the various components are coordinated
within a single chip where also data are processed, while the plug-and-play capability and
the real-time support are provided in the target CPS. Indeed, this new hardware/software
architecture is responsible for controlling/synchronizing CPS device components while data
are being acquired and processed on the fly. Finally, in order to demonstrate the impact of
the proposed solution, this work focuses on the iCT application and the “Konfigurierbarer,
Interfaceoffener, Dosissparender Computertomograph (KIDS-CT)” scanner, where it has
been realized, validated and evaluated.

1.1 Motivation

The motivation for this thesis is manifold. Starting from the relevance of the targeted
application and its impact, the motivation can be condensed to the following questions:

2

1 Introduction

1.1.1 Why interventional and multimodality CT matter?

The increasing number of tumors is pushing researchers to explore new medical procedures
where single or combined radiological images are used during diagnosis and surgery [6].
Since CT imaging is one of the most effective support in cancer diagnosis, surgeons started
to exploit it during tumor ablation [7]. Due to the different application requirements
associated to interventional procedures, different radiology scanners can be used. For
this purpose, these must be synchronized to generate images simultaneously and obtain
useful combined images. So, this CT multimodality imaging became a key element during
interventional procedures, contrasting tumors [8]. These factors motivate researchers and
underscore the importance of these CT procedures for health and human life. In addition,
to fulfill the requirements of this new CT application, the real-time support and the
plug-and-play capability became essential requirements for their realization.

1.1.2 Why KIDS-CT?

“KIDS-CT” is the first open-interface CT scanner assembled by and in Academia [9]. It
is an open-interface CT platform where it is possible to add and exchange components
such as X-ray tubes and detector systems in a plug-and-play fashion. Moreover, it has
been designed to exploit and explore multimodality techniques. For instance, it can be
combined with other devices like Time-of-Flight cameras and Ultrasound scanners. These
features allow researchers to explore and test new reconstruction algorithms and new
sensors/actuators suitable for new diagnostic and interventional procedures [10].

1.1.3 Why a CT scanner for multimodality/interventional like KIDS-CT is a CPS?

A CT scanner for diagnostic procedures acquires and reconstructs images offline without
real-time interactions between the physical and the cyber world [11]. In contrast, scanners
for iCT procedures provide real-time images used to control the needle insertion and
its position inside the patient’s body. These real-time images guide surgeons in the
tumor ablation intervention [12, 13]. In addition, based on the needle position, the
scanner parameters are manually or automatically adjusted to save X-ray doses. This
medical procedure is a mere example of real-time interaction between the cyber and the
physical world, given by the CT scanner and surgeon/patient, respectively. This real-time
interaction defines the distinction between an embedded system and a CPS, such as the
KIDS-CT scanner.

1.1.4 Why use MPSoC-FPGAs?

As explained above, a CT scanner for interventional procedures can be modeled as a
CPS, where tasks are executed in real time, and the plug-and-play capability should

3

1 Introduction

be provided for enabling multimodality techniques. To fulfill these strict requirements,
powerful reprogrammable architectures are the most suitable platforms [14]. In recent
years, MPSoC-FPGAs have become the de-facto architecture for reprogrammable archi-
tectures [15]. They offer the computation capability of an accelerator and the hard-
ware/software reprogrammability capability that gives the flexibility to extend the architec-
ture for new components and use cases, such as in the targeted medical application [10, 16].
Furthermore, these platforms are suitable for ensuring the security and the dependability
level of these Mixed-Criticality Systems (MCSs) such as the KIDS-CT scanner, providing
different levels of security and isolation between tasks and peripherals associated with
different application domains.

1.2 Research Questions

Pursued by the importance of providing an open-interface CT scanner such as the KIDS-CT
scanner for interventional and multimodality exploration and by the offered potentiality of
the MPSoC-FPGA platform in providing real-time support and plug-and-play capability
in CPS applications, this work will answer the following research questions:

• How can a CS and a DAS be combined into a CDAS architecture for MPSoC-FPGAs
targeting CPS applications such as the KIDS-CT scanner?

• How can CDAS tasks be partitioned on MPSoC-FPGAs to provide real-time support
and plug-and-play capability?

• How can a CDAS architecture be designed for an MPSoC-FPGA to acquire and
process data on the fly?

• Which data formats optimize computing performance and hardware cost of the CT
pre-processing steps while keeping the image quality suitable for iCT?

• How can task isolation be achieved in low-cost MPSoC-FPGAs while adhering to
the specific requirements of CPSs as MCSs?

1.3 Research Contributions

In relation to the above questions, this work provides the following research contributions:

• A Communication Infrastructure with the related centralized control unit that
supports custom and standard vendor-protocols. It also proposes various application
protocols for real-time and non-real-time commands and data communication tasks.
Here, the centralized control unit is part of the proposed CDAS. This solution,
facilitates the interoperability between CPS components and the support for plug-
and-play capability within CPS devices [DP 2].

4

1 Introduction

• A hardware/software architecture for CDAS within CPS applications. The proposed
architecture targets MPSoC-FPGAs. It provides support for real-time data pro-
cessing and plug-and-play capability for adding components to the CPS. It is also
optimized for iCT applications [DP 3, DP 4].

• A system architecture for diagnostic and interventional CT that guides hardware
and system designers in identifying design requirements of a Medical Cyber-Physical
System (MCPS) like the different CT scanners [DP 3].

• A task partitioning methodology for MPSoC-FPGAs, where control, communication,
and processing tasks are distinguished and mapped on Processing System (PS) and
Programmable Logic (PL) in relation the timing requirements and criticality [DP 4].

• A lightweight dataflow architecture that can be configured at design time and run
time for collecting data from various devices with different acquisition requirements
(e.g., various protocols and data rates) [DP 5].

• A processing core architecture for real-time data processing, configurable for standard
and custom data formats. In this processing core, a hardware optimization of the
algorithm for the I0-correction CT pre-processing step is proposed [DP 1].

• A Design Space Exploration (DSE) of data formats applied to CT data in the
pre-processing steps of the Feldkamp, Davis, and Kress (FDK) algorithm [DP 1].

• An isolation method for MPSoC-FPGAs that allows guaranteeing temporal and
spatial isolation [DP 6].

• An MPSoC-FPGA prototype of the proposed architecture, integrated into the
KIDS-CT scanner. Here, it is responsible for controlling and synchronizing the
various internal components and collecting and pre-processing data in real time [9].

1.4 Thesis Outline

Part I, containing this Chapter, introduces the research area of this thesis. Chapter 2
explains the technical background on which this work is based on. Subsequently, Chapter 3
provides an overview of the related work, focusing on hardware/software architectures for
controlling components and acquiring data in CPSs for medical applications.

Part II explains the process that led the author to the plug-and-play real-time architec-
ture. Here, Chapter 4 systematically defines the problems of actual CPS devices and in the
specific case of the iCT application, and Chapter 5 illustrates the proposed methodology
for this research work. Then, Chapter 6 and Chapter 7 describe the proposed System
Architecture with the Communication Infrastructure, and the CDAS architecture for

5

1 Introduction

CPS devices, respectively. This last Chapter describes the different aspects of the CDAS
architecture that contribute to achieving the research objectives.

Part III focuses on the targeted CPS use case: the KIDS-CT scanner. Here, Chapter 8
defines the requirements and describes how the proposed methodology and System Ar-
chitecture for CPSs fits to model the KIDS-CT scanner. Chapter 9 then illustrates the
CDAS architecture implemented on the XC7Z045 MPSoC-FPGA and integrated into the
KIDS-CT scanner. This includes all the proposed mapping solutions, the modules for
controlling-synchronizing components, and for collecting and processing data in real time.
Furthermore, this Chapter focuses on the specific optimization proposed for the pixel
processing part of the FDK algorithm, which is implemented in the CT reconstruction
system. In addition, it describes how metrics and parameters have been selected to explore
the design space related to the pixel processing part.

Part IV discusses the validation and evaluation of the proposed work, focusing on its real-
ization and implementation for the KIDS-CT scanner use case. Here, Chapter 10 explains
how the CDAS architecture was validated in the design, in the post-implementation, and in
the post-integration phases, along with the System Architecture and the Communication
Infrastructure. Chapter 11 evaluates the computing performance and the hardware cost
of the implemented CDAS architecture implemented for the KIDS-CT scanner; it also
considers other configurations of the different modules to show how the proposed archi-
tecture can also be extended to support additional components. Chapter 12 reports the
results of the image quality analysis applied to the reconstructed images, where different
data formats have been used in the reconstruction algorithm; it explores the design space,
considering which data format is more suitable for interventional procedures. Chapter 13
evaluates and compares the proposed functionalities with the related work, focussing on
the plug-and-play capability and real-time support.

Finally, in Part V, Chapter 14 concludes this thesis by discussing the achieved research
objective and presenting open problems for future research work.

6

2 Technical Background

This Chapter introduces the fundamental concepts on which this thesis is based on.
Initially, it defines a CPS device, clarifying the difference with an Embedded System (ES).
In this context, it reports the various aspects of designing CPSs and introduces the case
of MCSs, which are computing systems like KIDS-CT that can run tasks of different
criticality. Then, it describes the MPSoC-FPGA, which is the ES platform selected for the
proposed CDAS architecture. It also discusses the hardware isolation challenges focusing
on the targeted platform. After that, it describes the background of the CT application,
focusing on the KIDS-CT scanner that is the selected CPS use case of this thesis. Finally,
it explains the fixed-point and floating-point representations used in this work as input
parameters of the DSE for the CT pre-processing steps. The contents of this Chapter have
also been presented by the author in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7,
DP 8].

2.1 Cyber-Physical Systems

From the computing and communication perspectives, various definitions of Cyber-Physical
Systems (CPSs) [17] can be found in the literature. The closest to this work is given by A.E.
Lee, who focuses on the computational aspects and defines CPSs as follows: “Cyber-Physical
Systems are integrations of computation and physical processes” [18]. This definition takes
into account two elements: the computation and the physical environment (i.e., physical
processes). The link between these two elements allows CPSs to be distinguished from
Embedded Systems (ESs), such as smartphones, where there is no physical environment
to consider in the modelling and designing process [18]. In fact, “a CPS comprises an
embedded system (the information processing part) and a (dynamic) physical environment,
or CPS = ES + (dynamic) physical environment” [17], as shown in Fig. 2.1.

Cyber-physical system (CPS)

KIDS-CT scanner

Embedded system Physical enviroment

MPSoC-FPGA interventional CT
 enviroment

target use-case

Figure 2.1: Integration of computation and physical environment

7

2 Technical Background

Furthermore, in order to understand the concept of CPS, it is important to define the
meaning of “system” E.A. Lee defines it as follows: “A system is simply a combination
of parts that is considered as a whole” [18]. In fact, a CPS device can be defined as
a system composed of physical subsystems with their interconnections and computing
units. For instance, the CT scanner contains several components that are standalone
systems; the interaction of these interconnected components with the physical environment
constitutes the CT scanner as CPS. Although, there are several definitions of CPSs, which
also emphasize the concept of interaction between devices connected to the Internet, this
thesis considers CPSs as a device made up of components (sensors/actuators/processing
systems) interconnected through a point-to-point connection or a local area network where
the hardware platform selected for the ESs becomes crucial. In fact, this research work
analyses and proposes solutions to solve problems such as the plug-and-play capability
and the real-time support through the use of MPSoC-FPGA platforms, independently of
the physical environment of the application.

2.1.1 Physical environment

As mentioned above, a CPS comprises a physical environment, also called physical system.
This refers to the real-world settings in which the CPS operates, including everything
from the physical machines and sensors to the natural environment around them [18].
Different models can be used for describing a physical environment based on the interesting
aspects to represent the physical environment. For example, designers can use data-driven
models, mathematical models, formal models et cetera. Modeling the physical environment
accurately is crucial for the effective design, implementation, and operation of CPSs, as it
directly impacts decision-making, system efficiency, and safety.

This thesis targets the CT scanner for interventional procedures, which is a medical CPS
where the surgeon interacts with the patient through the ablation needle and is guided by
real-time images from the CT scanner. These elements and their interactions represent
the physical environment, which is strictly application-dependent, as well as the input
parameters for the proposed plug-and-play real-time architecture for MPSoC-FPGAs.
Defining modelling solutions for the physical environment of the target application is out of
the scope of this thesis, instead a System Architecture and Communication Infrastructure
models are proposed. These permit to realize existing physical environments such as the
autonomous CT scanner for interventional procedures proposed by the author in [DP 8].

2.1.2 Embedded system

An Embedded System (ES) can be defined as follows: “An embedded system is a microprocessor-
based system that is built to control a function or set of functions and is not designed to be
programmed by the end user in the same way as a Personal Computer (PC)”.[19]. This

8

2 Technical Background

definition immediately points to the problem of control, which is an essential element of
ESs. Further, it highlights the impossibility for the end user to program an ES as a PC,
since an ES requires an external system to be programmed. This makes a difference with
general purpose systems like PCs. An ES consists of three parts:

• Sensor: It is a device that measures a physical quantity from the physical environ-
ment [18]. Here, the physical quantity is “sampled and hold” as an analog signal and
converted into a digital signal to be processed.

• Actuator: It is a device that modifies a physical quantity of the physical environ-
ment [18]. Here, a digital signal is properly converted into an analog signal that is
responsible for modifying the physical quantity.

• Processing Unit: It collects and processes sensor data and controls actuators.
It also implements the functionalities of the ES (i.e., use cases of the target CPS
device). The proposed “plug-and-play real-time architecture” for MPSoC-FPGA is
part of the Processing Unit in the CPS.

2.1.3 Physical architecture

Modern CPSs contain many sensor/actuator components that generate a vast amount of
data that cannot be sent and processed in time using the Cloud [20]. Therefore, these data
must be processed on Edge at the device level [20]. For instance, Heinrich [21] reports
that car sensors can generate about 22 GB for an event of 35 seconds. It means that a
car may generate over 18 TB of data in 8 hours of driving. The same problem also exists
for the KIDS-CT scanner that can generate about 24 GB of data in 30 seconds [22], only
from the detector sensors.

Furthermore, to coordinate and synchronize these complex systems and to provide
the control and processing algorithms at the device level, different control architectures
exist [23–25]. As shown in Fig. 2.2, the various solutions can be classified into three types
of control architectures: centralized, distributed, and decentralized along sensors and
actuators on single or multiple chips [24, 25].

Sensor/
Actuator
(Node 0)

...

... ...

...Sensor/
Actuator
(Node i)

Sensor/
Actuator
(Node N)

Control
Unit

1

Control
Unit

i

Control
Unit

N

Sensor/
Actuator
(Node 0)

...

...

...

...

Sensor/
Actuator
(Node i)

Sensor/
Actuator
(Node N)

Control
Unit

1

Control
Unit

i

Control
Unit

N

Sensor/
Actuator
(Node 0)

... ...Sensor/
Actuator
(Node i)

Sensor/
Actuator
(Node N)

Centralized
Control

Unit

a) Decentralized b) Distributed c) Centralized

Figure 2.2: Control architectures

In CPS applications with reliable and hard real-time requirements, such as automotive
systems, CPS vendors tend to choose the centralized solution [26]. For instance, AMD-

9

2 Technical Background

Xilinx [27] and Tesla [28] have introduced a Full-Self Driving (FSD) system for Advanced
Driver-Assistance Systems (ADASs) that implements a centralized control architecture.
Following the same trend, the system architecture proposed in this thesis is based on the
centralized control architecture [DP 3].

2.2 Multi-Processor System-on-Chip Field-Programmable Gate Array

In recent years, technological advances have allowed the development of ESs on Multi-
Processor System-on-Chips (MPSoCs) [29]. These platforms have multiple Central Pro-
cessing Units (CPUs) and peripherals that permit data processing and sensor/actuator
communication in a single integrated circuit [29].

Multi-Processor System-on-Chip Field Programmable Gate-Arrays (MPSoC-FPGAs) go
one step further, providing programmable logic into MPSoCs allowing the implementation
of custom peripherals for custom protocols and application-specific functions with great
performance and power efficiency [16]. These capabilities make MPSoC-FPGAs appealing
architectures for CPSs, compared to traditional processing unit platforms [30]. Following
the AMD-Xilinx taxonomy, MPSoC-FPGAs have the PS and PL parts, as shown in
Fig. 2.3. The former comprises the Application Processing Unit (APU) and peripherals
implemented in the fixed silicon logic. The latter comprises reprogrammable logic capable
of implementing Processing Elements (PEs) [31].

Zynq-7000SoC

 I/O
Peripherals

Programmable Logic to
Memory Interconnect

Memory
Interfaces

APU

ARM Cortex-A9
 CPU

ARM Cortex-A9
 CPU

PL

PS

Central
Interconnect
NIC -301

. . .

 AXI-HP AXI-GPIO

Cyclone V SOC

APU

ARM Cortex-A9
 CPU

ARM Cortex-A9
 CPU

PL

PS

. . .

.

.

.

NIC -301

MAIN
SWITCH

MASTER
PERIPH-
ERALS
SWITCH

SLAVE PERIPHER-
ALS SWITCH

Peripherals

AXI-GPIO

Figure 2.3: MPSoC-FPGA Micro-architecture: Zynq-7000 SoC and Cyclone V SoC

Unlike Application-Specific Integrated Circuits (ASICs), the Field Programmable Gate
Array (FPGA) part (i.e, PL) is configured at boot time by the PS, and can also be
reconfigured at run time [31]. This technological capability permits upgrading the hard-
ware/software architecture at boot and at run time for possible expansion or replacement
of components [32], which has been essential for realizing the proposed plug-and-play

10

2 Technical Background

capability.

2.2.1 On-chip communication architecture

In modern MPSoC-FPGAs, we can have hundreds of PEs, peripherals, and storage
elements, providing flexibility and performance. In order to establish communication
between them, designers define on-chip communication technologies and architectures [33].
In the past, each manufacturer defined its communication infrastructure and protocol, which
made it difficult to integrate third-party elements, such as soft Intelectual Property (IP)
cores. During these years, various bus standards have also been proposed to solve this
problem, and the Advanced Microcontroller Bus Architecture (AMBA) was one of the
most used. ARM proposed this bus to support the communication between their cores.

Nowadays, the de-facto standard interface for on-chip communication is Advanced
eXtensible Interface (AXI), which is part of the AMBA 4 specification [34]. In contrast
to most other communication standards, it does not specify a bus infrastructure but a
communication interface. In this way, the interfaces may be connected by direct connection,
bus, or Network-on-Chip (NoC) architectures also using different technologies and clock
frequencies, facilitating the extension of the PS bus to the PL. It describes a point-to-point
communication between two complementary master and slave interfaces, offering the
following two protocols [35]:

• Memory-mapped protocol: Master and slave interfaces are connected by an
interconnect component that routes or manipulates transactions between the master
and slave. All transactions are associated with a destination address within a system
memory space and data to be transferred. For the memory-mapped protocol, AXI4
provides the Full and the Lite versions. While AXI4-Lite performs single transactions
using few logic signals, AXI4-Full supports 256 burst transactions in a single address
phase.

• Stream protocol: It consists of a direct unidirectional connection between a master
and a slave interface, without the use of addresses.

While the stream communication between two components uses a dedicated physical
link, the memory-mapped communication uses an interconnect component, potentially
permitting communication between a master and a slave interface and causing isolation
problems. For this reason, designers and researchers consider only the memory-mapped
protocol for the isolation issue.

In order to read/write data in memory-mapped mode, AXI4 interface uses five channels:
Read Address channel (RA), Read Data channel (RD), Write Address channel (WA),
Write Data channel (WD) and Write Response (WR) [36]. Thanks to the separation
between read and write channels and between address and data channels, the protocol

11

2 Technical Background

allows data to be moved between master and slave simultaneously. In the read transaction,
the master requests data through the RA channel. Then, the slave responds through the
RD channel as shown in Fig. 2.4.

Master
interface

Slave
interface

Address
and

control

Read
data

Read
data

Read
data

Read
data

Read Address (RA) channel

Read Data (RD) channel

Figure 2.4: AXI4: channel architecture of read operations [36]

In the write transaction, the master first sends the address to write through the WA
channel as shown in Fig. 2.5. Then, it sends the data to write through the WD channel.
Finally, the receiver sends the acknowledgment message through the WR channel.

Master
interface

Slave
interface

Address
and

control

Write
data

Write
data

Write
data

Write
data

Write Address (WA) channel

Write Data (WD) channel

Write
respose

Write Response (WR) channel

Figure 2.5: AXI4: channel architecture of write operations [36]

At the microarchitecture level, each channel consists of multiple signals, some of which
differ from channel to channel. To ensure correct communication, all channels implement a
handshake mechanism between the transmitter and the receiver using the following signals:

• READY - driven by the receiver to indicate to the sender that it is ready to receive
data.

12

2 Technical Background

• VALID - driven by the sender to signal the validity of a transmission data/address.

The handshake is established when both signals are high. Furthermore, to avoid
deadlocks, the master sets the VALID signal high without waiting for the READY signal
and sets it low only when the handshake is established and data are sent. To exploit
the communication infrastructure for isolation purposes, it is important to consider the
following signals of the address channels:

• Identifier (ID) - used to differentiate in-flight transactions; a master can be identified
by a fixed Section of the ID.

• Address (ADDR) - address of the first data to transfer

• Lenght (LEN) - number of burst data to send through the data channel for the
related transaction

• Size (SIZE) - the size of each burst to send

The signals ADDR, LEN, and SIZE describe which data will be transferred. Since AXI-Lite
does not support burst transmission, it does not have ID, LEN, and SIZE signals.

The WD and RD channels transport the data through the data signals (DATA). Finally,
when a transaction is completed, the WRs channel uses the Response (RESP) signal to
indicates the success or the failure of the transaction [36].

2.3 Mixed-Criticality Systems

In Mixed-Criticality Systems (MCSs), tasks are associated with criticality levels on a
shared platform [37]. These levels range from low criticality, where failure or misbehavior
may not affect the physical environment, to high criticality, where failure or misbehavior
could lead to catastrophic events. Therefore, each criticality level must specify a required
level of assurance against failure. In this context, the failure is a consequence of a fault
trigger [38]. In fact, the fault trigger is defined as the set of conditions that activate a
fault and propagate the resulting errors into a failure [39]. There are two types of faults:
temporal and functional. The former usually arise from the long task execution times,
while the latter include permanent or temporary defects. Various techniques exist for fault
tolerance in CPSs [40]. Most works that are focused on temporal faults determine the
upper bounds to the execution time of the provided tasks, commonly called WCET [41].
In MCSs, to reach a high level of assurance, different confidence of the WCET estimation
is associated with the criticality levels [42].

13

2 Technical Background

2.3.1 Shared resources in MCSs

Modern hardware platforms, such as Multi-Cores and MPSoCs, can run multiple tasks
in parallel. On the one hand, they offer performance optimization; on the other hand,
they raise the problem of interference between tasks of different applications that share
resources [43].

The interference problem opens two critical issues in MCSs: the WCETs estimation and
the lack of security. For example, an MPSoC-FPGA may run a high-critical task on one
core and a low-critical task on another core, sharing the same peripherals; in this scenario,
the low-critical task may cause a functional failure by manipulating the shared resource,
or it may cause a temporal failure by accessing the shared resources longer than expected.

For this reason, tasks in such systems are usually associated with criticality domains.
Here, tasks of different domains are isolated from each other, and a shared resource can
exclusively be accessed only by tasks of a granted domain. There are two types of isolation:
temporal and spatial isolation. The former guarantees that tasks accessing a shared
resource cannot interfere with other tasks in the time domain. The latter guarantees that
tasks have exclusive access within the same shared resource.

2.3.2 CPSs and MCSs

In parallel with the evolution of separate research branches for CPSs and MCSs, it has
been noticed that many CPSs are also MCSs [37]. In this context, Schneider et al.
observed that numerous CPS operations must perform deadline-critical and Quality of
Service (QoS)-critical tasks [44]. For example, CT scanners have critical tasks (e.g., High
Voltage (HV) control and synchronization tasks) where safety and reliability are essential
requirements. In order to meet these requirements and to avoid errors from propagating
throughout the system while critical and non-critical tasks are running, isolation is the
primary solution [45]. In addition, critical tasks can be part of two different applications,
which must be isolated to improve security and dependability levels.

2.3.3 MPSoC-FPGAs for MCSs

When MPSoC-FPGAs are used in CPS applications, which are also MCSs, tasks with a
different criticality and/or application domain must be isolated, as explained above. Here,
tasks can also be implemented in dedicated hardware modules on the PL part. In order to
guarantee isolation in MPSoC-FPGAs, which use the memory-mapped input-output, first,
the tasks or components are associated with one or more domains. Second, the resources
refer to peripherals or specific memory regions. Finally, the policies which grant/deny
communication transactions are defined. For this reason, the communication infrastructure
is crucial to guarantee isolation. The following two main approaches are utilized to provide
isolation in MPSoC and platforms:

14

2 Technical Background

• Protection Unit (PU): It is a hardware unit that usually is part of a CPU
architecture or an IP core implemented on the PL. For instance, Arm-M proces-
sors [46] integrate an Memory Protection Unit (MPU) that is supported by e. g.
FreeRTOS [47]. It controls the access to memory regions that are configured by
privileged software, giving access rights only to certain applications. The MPU is
similar to the Memory Management Units (MMUs), but does not provide address
translation, making it suitable for embedded use cases.

• Hypervisor: It is an additional management and security system that is imple-
mented between the Operating Systems (OSs) and the hardware layer, enabling
the parallel running of several OSs in a secure way (i.e., it guarantees the isolation
between the resources accessed by the different OSs). Furthermore, it offers and
manages virtualization, where a single physical resource is divided into multiple
virtual resources. Virtualized resources can include CPUs, memory, I/O peripherals,
timers, and interrupts. To minimize the performance degradation associated with
virtualization, hardware platforms are designed to support this functionality. In
particular, CPU virtualization is enhanced by the introduction of additional CPU
modes [48]. Moreover, hypervisors and virtualization facilitate the deployment of
legacy applications [49]. The isolation mechanism proposed in this thesis lays the
foundation for supporting hypervisors in low-cost MPSoC-FPGA platforms.

2.4 Interventional Computed Tomography

Interventional Computed Tomography (iCT), also known as CT-guided intervention, is a
medical procedure that uses the CT technique to guide a minimally invasive intervention in
a specific area of the body. It is mainly used as a standalone system or in combination with
PET, MRI, and/or Ultrasound for guiding tumor ablation [50]. During an interventional
CT procedure, the patient lies on a table that slides into the CT scanner, which uses
X-rays to create detailed images of the body’s internal structures. CT scanners for iCT
procedures aim to acquire and display reconstructed images in real time, allowing the
surgeon to precisely locate the Region Of Interest (ROI) and guide the needle or other
medical instruments to the desired location [13]. The following Sections describe the basics
of CT scanners, the KIDS-CT scanner, and the theory of CT reconstruction.

2.4.1 CT scanner fundamentals

A CT scanner is a medical imaging device that uses X-rays and computer technology
to create detailed images of bones and soft tissues. To do so, an X-ray detector and an
X-ray tube rotate around the patient and multiple X-ray images are taken from different
angles [11]. A reconstruction unit then processes these projected images called projections

15

2 Technical Background

to create cross-sectional images of the body that can be viewed on a monitor.
Nowadays, CT scanners come in a variety of sizes and configurations, ranging from

small portable units to large, multi-slice machines that can produce high-resolution images
of the entire body taking several minutes [51]. The latest generation of CT scanners also
incorporates advanced technologies such as low-dose radiation techniques [52], iterative
reconstruction algorithms [53], and dual-energy imaging [54], which can improve image
quality while minimizing radiation exposure to the patient. In addition, different scanners
with specific shapes and rotation mechanisms are used depending on the body part of
interest: mammography scanners for the breast, dental cone beam CT scanners for teeth,
C-arm and helical CT scanners for scanning bones and soft tissues [55].

Although distinct scanners are used for different body parts, physicians initially used the
same scanners for diagnostic and interventional procedures. However, due to the different
timing and X-ray dose required for the two applications, companies have begun to design
scanners with identical shape and geometry parameters but different control mechanisms,
dose modulation techniques, and data acquisition and reconstruction components for the
two procedures. For example, Philips and Siemens have proposed two platform systems
for different interventional procedures [56, 57]. Furthermore, various scanners enabling
multimodality techniques have also been proposed, such as the ”MIYABI Angio-CT” [58],
by Siemens, which is also used in surgery rooms for iCT procedures.

2.4.2 KIDS-CT scanner

This work focuses on the KIDS-CT platform, which is an open-interface CT scanner [9].
This scanner has been designed to integrate additional components in a plug-and-play
fashion and to run various CT reconstruction algorithms. It can perform axial and helical
CT scans of the whole body, which are the most common modes for clinical applications.

X-Ray Tube system

Detector(DMS)

Gantry module

Reconstruction Unit

Multi-Modality
(3D sensor camera)

Patient’s Table

Figure 2.6: Representation of the KIDS-CT scanner [DP 3]. Copyright 2019, IEEE

16

2 Technical Background

In its basic configuration, the KIDS-CT scanner consists of the main components shown
in Fig. 2.6: X-ray tube system, Detector Management System (DMS), gantry module,
patient table, collimator module, and reconstruction system. In order to define the
requirements for the KIDS-CT platform the main internal components are described
below.

X-ray tube system

The X-ray tube system consists of the X-ray source, the cooling unit, and the power
distribution system. The KIDS-CT platform mounts the “Xpert bundle with CT6500” in
Ref. [59]. Typically, this generates an X-ray beam with multi-focal spot jumping at the
nominal voltage of 140 kV [59]. Here, the position of the X-ray source is identified by a
single point called focal spot f, as shown in Fig. 2.9.

From a system design point of view, this component has several interfaces for real-time
and non-real-time control tasks and signals. It is mounted on the rotating side of the
gantry, where it is directly connected to the proposed CDAS.

Detector Management System

The Detector Management System (DMS) contains the matrix of the detectors, which
are irradiated by the attenuated X-ray flux. The acquired signal is converted into digital
information and sent to a DAS, which collects and processes all data. In the KIDS-CT
platform, the DAS responsible for collecting detector data is part of the proposed archi-
tecture for CDAS. The DMS mounted on the KIDS-CT platform is the “Philips - 64 row
CD300” in Ref. [22]. This is a cylindrical detector with 43008 detection elements arranged
along an arc. The detector elements are distributed as rounded rectangular. The geometry
distribution, which is essential for reconstructing the 3-Dimensional (3D) voxel pixel, is
explained in Section 2.4.3.

Patient table

For making the scan, a patient lies on a table called the patient table. During the scan, it
is used for positioning the patient between the DMS and the X-ray source [11]. When the
scanner is set to the helical mode for a full body scan, the table is moved towards or away
from the gantry while the DMS, the collimators, and the X-ray tube systems rotate. In
this application, the patient table, the gantry, the DMS, the collimators, and the X-ray
tube system must synchronize their respective positions and speeds in order to acquire
useful images for the reconstruction. Furthermore, to center the body part to be irradiated
with the X-ray source at the iso-center, the KIDS-CT patient table has been designed with
three degrees of movement that must be controlled in real time. The patient table has

17

2 Technical Background

real-time and non-real-time interfaces to communicate with the other CPS components for
controlling and synchronizing issues.

Collimator system

In CT scanners, collimators perform two primary roles: limiting unnecessary patient
exposure to radiation and guaranteeing high-quality imaging. This component is situated
between the X-ray source and the patient. This mechanical device can be manually set
before the scanning or controlled by an engine that changes the direction of the X-ray
beam on the patient. In the KIDS-CT platform, the collimator system uses a real-time
interface to communicate with the CDAS.

Gantry

The gantry is the mounting framework that surrounds the patient [11]. It mainly contains
the X-ray tube system, the DMS, and the collimators. These components are mounted
on a rotating disk (rotating side), that must fulfill positional and angular accuracy. For
high positional accuracy, the gantry has to limit the vibration in all directions. For high
angular accuracy, the disk speed rotation must be constant. For example, in the medical
application, the error for a fraction of millimeters for each collected image has an upper
bound of 500-mm radius [11].

The data are acquired on the rotating side but must be sent to the reconstruction system
on the scanner’s stationary side. Slip-ring technology is used to power devices mounted on
the gantry’s rotating disk and establishes communication with devices on the stationary
side. It includes an electromechanical device consisting of concentric circular rings aligned
with the gantry axes. Brushes connect both ends of the gantry to these rings, ensuring an
electrical link between the rotating and stationary parts of the device [60]. The KIDS-CT
scanner uses a Schleifring Gantry [61].

Reconstruction system

The reconstruction system is situated on the stationary side. It collects the acquired
data streamed via the slip-ring communication link, reconstructs them, and displays
them to the doctor. It consists of a workstation PC having an MPSoC-FPGA for the
synchronization and the data collection and a GPU accelerator for the image reconstruction.
Both these platforms are connected to the PC via a Peripheral Component Interconnect
Express (PCI-E) interface. The collected data are sent from the MPSoC-FPGA through
the PC main memory to the GPU accelerator. Furthermore, to collect data with the
MPSoC-FPGA, the proposed CDAS architecture has been reused and configured only for
this purpose.

18

2 Technical Background

User interface system

The user interface system is situated on the stationary side. It is used by surgeons or
radiologists to control the scanner for acquiring and visualizing the reconstituted 3D
images. It can also be implemented in the same workstation of the reconstruction system.

Controlling and data acquisition system

The Controlling and Data Acquisition System is the core of the KIDS-CT platform. The
proposed architecture controls and synchronizes all the KIDS-CT components in real time,
realizing a centralized CDAS for MPSoC-FPGA. Usually, commercial CT scanners use
various DAS and CDAS architectures, which are custom-designed for the specific device to
implement. For this reason, there is no generic CDAS architecture defined in the literature.
In Chapter 3, the author will describe the significant existing solutions for CT and other
CPS applications as related work of this thesis. Part II of the thesis will describe the
proposed architecture that realizes the CDAS.

2.4.3 CT reconstruction theory

Fundamentals of CT reconstruction

As explained above, a CT scanner measures the X-ray flux passing through an object
from different angles and reconstructs the 3D voxels. If there is no object between the
X-ray source and the detector sensors, the measured values in the ideal case are constant
because there is no attenuation [11]. In clinical applications, bones and soft tissues are
considered to be non-uniform objects, with different attenuations measured at different
angles. Furthermore, the generated X-ray flux is mono-energetic, so the relation between
the input X-ray photons I0 (generated by the X-ray source) and the output X-ray photons
I (measured by the DMS) is expressed by the Beer-Lambert law, in the equation 2.1.

I = I0e
−µ1∆xe−µ2∆xe−µ3∆x · · · e−µn∆x = I0e

−
∑N

n=−1 µn∆x (2.1)

In the equation 2.1, ∆x and µ are the thickness and linear attenuation coefficient of
each element inside the object, respectively. This relates the generated and measured
intensity of the X-ray photons to the density of the elements crossed by them. In fact,
reconstruction algorithms aim to find the µ value for each element (e.g., soft tissue, bone)
inside the object, starting from projected images, where each pixel represents a measured
X-ray photon intensity.

A practical example is shown in Fig. 2.7, where a simple non-uniform object with four
elements has been considered. Each element has a different µ, and the reconstruction
algorithm aims to compute them, starting from the four acquired projections p1, p2,

19

2 Technical Background

μ1 μ2

μ3 μ4

p3 = μ1 + μ3 p5 = μ2 + μ4

p1 = μ1 + μ2

p2 = μ3 + μ4

p4 = μ1 + μ4

Figure 2.7: Example of a 4 voxel object and its projections

p3, and p4. In this simple case, the algebraic system has a unique solution because
there is the same number of equations and unknowns. Therefore, it can be solved with
a mathematical approach using the direct matrix inversion. The same mathematical
approach was used for the first CT scanner in 1967 [11], but in modern CT scanners, this
solution is computationally not applicable due to the complexity of the system.

Nowadays, various methods are used in the state-of-the-art, such as back-projection,
statistical, and machine-learning methods [62]. However, the most successful algorithm
is the FDK, which uses the Filterd Back-Projection (FBP) method. Due to its low
computational cost, the FDK algorithm has also been selected for the KIDS-CT platform
and this thesis.

FDK algorithm

The FDK algorithm was published in 1984 [63]. It is an analytical 3-D reconstruction
method for flat panel and cylindrical detectors, usually implemented with a filtered
back-projection scheme.

d

α = 270

α = 0

α = 90

α = 180
α

Y

X
O

Iso - ray

f(α)

Figure 2.8: CT circular trajectory. “O” represents the iso-center, and “d” is the orthogonal
distance between each point f(α) and the corresponding detector plane

This algorithm considers scanners with a circular trajectory. As shown in Fig. 2.8, the
DMS and the X-ray source rotate along the circle in the direction of α.

The FDK algorithm reconstructs the 3D volume of the scanned object, starting from the

20

2 Technical Background

2-Dimensional (2D) projected images. For matching the object, the X-ray source, and the
DMS position between the 2D pixels and the 3D voxel to reconstruct, different geometry
parameters are required. These parameters are associated with the following coordinate
systems:

• World Coordinate System (WCS): It is a Cartesian coordinate system that is
fixed during the acquisition.

Y

Z

X

f
O

d

Right to Left

Anterior
to
Posterior

In
ferio

r t
o Su

perio
r

Figure 2.9: World Coordinate System. (X,Y,Z) refer to the Left, Posterior, Superior (LPS)
orientation

The WCS is used to indicate the specific locations in 3D global space where the CT
system geometry and object projections are positioned [64]. The WCS has two types
of orientations: LPS and Right, Anterior, Superior (RAS).

In medical imaging, LPS is commonly used to represent the WCS. As shown in
Fig. 2.9, the LPS orientation of the WCS is illustrated, with the positive X, Y, and
Z axes positioned from right to left, anterior to posterior, and inferior to the superior
of the object body, respectively. The reference point of iso-center (O ∈ R3) is located
at the center of the WCS in the CT scanning system.

• Voxel Coordinate System (VCS): The 3D position vector of voxels, which are
discrete units in a 3D space, is defined with discrete indices xi ∈ Z3. The volume
is represented as a discretized grid of Nx × Ny × Nz voxels along the x-direction,
y-direction, and z-direction, respectively. Here, Nx, Ny, and Nz denote the number
of columns, rows, and slices in the volume. The terms ∆x, ∆y, and ∆z represent
the width, height, and depth of each voxel, respectively.

• Detector Coordinate System (DCS): It is used to locate the position of the
pixel in relation to the center of the projection; as shown in Fig. 2.10, it is orthogonal
to the X-ray source.

21

2 Technical Background

0
1
2
3
4
5
6
7

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Columm

Row

A=(0,0)

O=(0,0)

βv

Figure 2.10: Pixel Coordinate System (PCS) and DCS. The rows and columns refer to
the PCS, and point the pixel index in the collected projection; the point A
has coordinate (0,0) in the PCS. Instead, the point O has coordinates (0,0),
following the DCS

• PCS: It is used to locate a specific point in an image by combining rows and columns
to construct an image. As shown in Fig. 2.10, the PCS is ordered from left to right
and from top to bottom (rows increment downward, while columns increment to
the right). For instance, in the KIDS-CT PCSs represents the data array points of
the cylindrical detector plane. As described in Tab. 2.2, the total number of rows
and columns of the data array are defined by Nv and Nu, while the coordinates are
defined as vpix ∈ R: vpix ∈ [1, Nv] and upix ∈ R: upix ∈ [1, Nu].

X

Y

d

f(α)

O

β

Δβ

f(α)

Z

Y

d

Δv

v

O

Figure 2.11: Fan Arc Angle (left) and Fan line height (right). The arrows X, Y, and Z
refers to the WCS with the LPS orientation

∆υ and ∆β are the sampling intervals used to calculate the physical position of the
pixel, starting from the indices vpix and upix, respectively. In the case of cylindrical
detectors such as the KIDS-CT scanner, ∆υ and ∆β represent the pixel height
increment and the fan angle increment, respectively. As shown in Fig. 2.11, they are
sampled equally in angular and column and row distances, respectively.

22

2 Technical Background

Geometry of CT reconstruction

In CT systems, various geometry parameters are required. As explained above, these
parameters are associated with the various coordinate systems and permit the matching
between projected data and voxels of the 3D volume. The geometry parameters are divided
into three main groups:

• Detector geometry parameters: They describe the structural information of the
detector, and the values are constant for all projections. These parameters depend
on the selected DMS and are described in Tab. 2.1.

Parameter name Symbol Unit
Total number of column Nu 1

Total number of rows Nυ 1
Each fan angular increment ∆β radian

Each pixel height ∆υ mm
Row index υi 1

Column index ui 1
Fan arc angle β radian

Fan line height υ mm

Table 2.1: Detector Geometrical Parameters [65]

• Projection geometry parameters: They describe the geometric information of
the data acquisition and 2D cross-sectional image (projection). The variables are
constant for one image because the projection angle α changes position during the
circular scan. These parameters are listed in Tab. 2.2.

Parameter name Symbol Unit
Total number of Projection Nα 1

Projection angle α radian
Source to iso-center distance rf (α) mm
Source to detector distance rfd(α) mm
Beginning rotation angle α0 radian

Last rotation angle αNα−1 radian
Angular increment ∆α radian
Focal spot position f (α) mm
Central row index υ0

pix (α) 1
Central column index u0

pix (α) 1
Vector direction along orthogonal to the detector X 1
Vector direction along detector column direction Y 1

Vector direction along detector row direction Z 1

Table 2.2: Projection Geometry Parameters [65]

23

2 Technical Background

• Volume geometry parameters: They illustrate the geometry of the reconstructed
volume after the reconstruction. These parameters depend on the 3D image to be
reconstructed and are reported in Tab. 2.3

Parameter name Symbol Unit
Total number of columns in the reconstructed volume Nx 1

Total number of rows in the reconstructed volume Ny 1
Total number of slices in the reconstructed volume Nz 1

Reconstructed voxel width ∆x mm
Reconstructed voxel height ∆y mm
Reconstructed voxel depth ∆z mm

Reconstruction center xrc mm
Volume offset (The 3D position vector of first voxel in WCS) x0 mm

Voxel index xi mm

Table 2.3: Volume Geometry Parameters [65]

Algorithm steps

In order to reconstruct the 3D volume of the target object, the FDK algorithm preprocesses
the 2D projected images, then applies the back-projection, as shown in Fig. 2.12.

I0-correction

Redundancy
weighting

Reconstructed
image

Cosine
weighting

Back
projection

Raw image

Ramp
�ltering

Image
 Pre-Processing

Image
 Reconstruction

Figure 2.12: FDK algorithm steps

The pre-processing phase is applied to each pixel. Since there is no dependency between
pixels of different projections, it can be easily parallelized. The pre-processing phase
consists of at least the following three steps:

1. I0-correction: The projected images are acquired in the attenuation domain and
are denoted by d (u, v, α) where u and v define the detector row and column indices,
and α is the projection angle that indicates the single projection. The data in

24

2 Technical Background

the attenuation domain are represented as Natural numbers, like the greyscale
pixels. Before processing, these 2D images must be transformed into X-ray intensity
projections using the following equation:

I(u, v, α) = c · e−d(u,v,α) (2.2)

where c is a scaling factor. I (u, v, α) represents the intensity pixel data of the
2D projection. When the image is converted to the intensity domain, the total
attenuation value in the path of the photon propagation is represented as Real
number and it can be calculated with the following equation:

g (u, v, α) = ln

(
I0 (u, v, α)
I (u, v, α)

)
(2.3)

Where I0 represents the projected images without an object acquired during the
scanner calibration. To summarize, this step has the aim to convert the raw data
from attenuation to intensity domain and to remove scatter X-ray photons which
are acquired also without the object.

2. Cosine weighting: It weights the data based on the pixel position [64]. In addition,
this step considers the shape of the matrix detector, which is cylindrical in the
KIDS-CT scanner. This specific shape results in a different attenuation/intensity
weight for each projection pixel, which in the case of the KIDS-CT scanner is
calculated by the equation 2.4:

gc(u, v, α) = cos(u · ∆β) · D√
D2 + (v · ∆v)2

· g (u, v, α) (2.4)

The value D is constant in the equation 2.4, representing the distance from the focal
spot to the detector. In addition, g(u, v, α) is the intensity image data, which results
from the equation 2.3. The rest of the equation represents the angle between the
iso-ray and the ray connecting source and detector point.

3. Redundancy weighting: In the redundancy weighting, the sum of the weights
corresponding to the same line-integral must equal one [66]. To reduce the intensity
gc(u, v, α) based on its weight, the following equation is used:

gc,r(u, v, α) = wr(u, v, α)gc(u, v, α) (2.5)

In the equation 2.5, gc(u, v, α) is the cosine weighting of the projection, and the
wr is the weighted value of redundancy weighting. In the case of KIDS-CT (full

25

2 Technical Background

Figure 2.13: X-ray intersects the circular focal spot twice in full scanning

circular scanning), the X-ray flux intersects the circular focal spot twice, as shown
in Fig. 2.13. Therefore, the redundancy weighting value will be for full scan [66]:

wr(u, v, α) = 1
2 (2.6)

After the pre-processing phase, there is the filtering step, which is applied to each projection.
In this step, there is a dependency between the nearest pixels, depending on the applied
filter, but there is no dependency between projections. In the FDK, the Ramp filtering
is used. It consists of a high-pass filter to reduce low-frequency noise.

Figure 2.14: Illustration of the ramp filter hramp in the frequency domain

The filtering is performed on a row-by-row basis within the projection; A single row is
taken from the projection and subjected to a 1D convolution using the filter kernel value.
This 1D convolution is applied to all the projections. The results of ramp filtering include
a sharper image and less blurring. The ramp filter equation can be expressed as follows:

gc,r,f (u, v, α) = gc(u, v, α) ∗ hramp(u) (2.7)

26

2 Technical Background

In the equation 2.7, hramp represents the ideal ramp filter shown in Fig. 2.14, and “∗”
represents the convolution operator.

The Back-projection takes the pixel-filtered projection gc,r,f(u, v, α) into the image
space of the VCS to obtain an approximate voxel µ(x) according to the following equation:

µ(x) =
∫ αNα−1

α0

Rf

||x − f(α)||2 gc,r,f (u, v, α)dα (2.8)

In the equation 2.8, the Rf is the source to iso-center distance, f(α) is the focal
spot position. Furthermore, µ(x) is the linear attenuation coefficient, which represents
the reconstructed voxel of the 3D image. The back-projection permits to calculate the
total attenuation of each projection and the sum of all the attenuation values from the
reconstructed image in volume geometry [64].

2.5 Design Space Exploration

CPSs pose significant challenges to embedded designers because they must meet stringent
and conflicting requirements [67]. For instance, interventional CT scanners must acquire
and process data in real time and provide high-quality images with a low X-ray dose.
At the same time, CT scanners should be reliable, flexible, and capable of supporting
multiple medical procedures [68]. On the one hand, MPSoC-FPGAs offer a heterogeneous
architecture that permits addressing these challenges. On the other hand, the complexity
and the increasing number of design options offered by these platforms can lead designers
to make wrong decisions and fail with the final product [69]. For this reason, designers
have defined methods to find optimal design options in the very early design stages, such
as performing a Design Space Exploration (DSE) [70].

The concept of Design Space Exploration initially emerged in the context of logic
synthesis [71]. In this area, designers playing with the constraints observed that it is
possible to reduce the design costs by considering the delay-area trade-off in the design
space. This process of systematically adjusting design parameters has been acknowledged
as DSE [71]. It considers the various design options (e.g., mapping of application tasks
either on a programmable core or a hardware block, communication infrastructure, and
protocols). These design options increase with the number of tasks and the complexity of
the hardware platform, which is generally considered an NP-hard problem [72].

To meet the real-time requirements and to reduce the design space, this thesis focuses
on the design exploration of the task mapping problem and on data formats that enhance
the image pre-processing phase. In the next section, the basics of data formats for number
representation are explained; these concepts give the basis for the proposed exploration of
the data format design space options.

27

2 Technical Background

2.5.1 Data formats for number representation

As explained above, CT sensor data are acquired in the attenuation domain, represented
with positive natural numbers (N+). In order to reconstruct the 3D volume, the data
are converted into the intensity domain, represented with real numbers (R). In computer
science, there are several data formats for representing real numbers, depending on the
accuracy of the representation. The data formats typically utilized for real numbers
are either float or double. These two formats refer to the Standard for Floating-Point
Arithmetic (IEEE 754) [73]. This standard specifies arithmetic representations, conversions,
and arithmetic operations. As shown in Fig. 2.15, three fields represent floating-point
formats: sign (S), exponent (E), and mantissa (M) bits. Moreover, a value can be
represented as a function of S, E, and M, as follows:

f(S, E, M) =

(−1)S · 2E+1−2e−1 · (1 + M · 2−m) for 0 < E < 2e−1,

(−1)S · (1 + M · 2−m) else

In the above function, e and m represent the data width of the exponent and mantissa
fields, respectively (e.g., in 32-bit floating point e is equal to 8 and m is equal to 23).
According to the IEEE 754 standard, there are four different floating-point encoding
formats with varying bit lengths: 16 bits for half-precision, 32 bits for single-precision, 64
bits for double-precision, and 128 bits for quad-precision. As illustrated in Fig. 2.15, S, E,
and M are organized in the same order for all the encoding configurations, but they have
different lengths, varying the subset size of the representable real number.

Figure 2.15: Encodings of the floating-point standard

Furthermore, the various encodings require different arithmetic processing units, having
different performances in execution time, memory utilization, power consumption, and
chip area.

For instance, 32-bit floating point encoding represents numbers within the range of 2−149

to 2128, with a relative error of 2−23 resulting from the truncation of digits.
In recent years, in order to meet stringent computational requirements, designers have

begun to use other standard data formats, such as fixed point, and propose custom
representations for performing operations on real numbers. Although these other formats
can usually represent a smaller subset than IEEE 754, the accuracy of the results may be
sufficient to meet the application requirements. For instance, the fixed-point representation

28

2 Technical Background

may perform better than IEEE 754, using the same data width. In fact, Arithmetic Logic
Units (ALUs) for fixed-point operations are usually faster and uses fewer resources than
IEEE 754 to perform the same operations [74].

The fixed-point representation [75, 76], as shown in Fig. 2.16, has the following two
parts: Integer (I) and Fractional (F).

integer fraction

FI

Figure 2.16: Fixed-point representation

Different from IEEE 754, it has no standardized encoding for the various lengths. In
fact, hardware designers represent the Integer part either with the signed format including
the sign bit or with the unsigned format where sign bit is represented with an additional
field, as shown in Fig. 2.17.

I
SIGNED

S I
UNSIGNED

W = I
SIGNED + F

UNSIGNED

W = S + I
UNSIGNED + F

UNSIGNED
F

UNSIGNED

F
UNSIGNED

Figure 2.17: Fixed-point representation methods

In this work, the author represents the fixed-point representation with the first solution,
where the format length or data Width (W) is equal to ISIGNED + FUNSIGNED. The data
with of I and F will depend on the subset of R to represent. For the results of this work,
the two solutions are independent, so it has been chosen in according to the solution
proposed by AMD-Xilinx for their High-Level Synthesis (HLS) libraries, where the sign
bit is included in the I part [77].

29

3 Related Works

Besides this work, other architectures for MPSoC-FPGAs exist that focus on controlling
components, acquiring and processing data within CPSs [27, 28, 78–85]. Comparing them
reveals strengths and limitations that the proposed work aims to address. Therefore, this
Chapter begins with an overview of system architectures for CPSs, addressing issues to
provide a literature review where plug-and-play capability and real-time support have been
pointed out. This highlights the importance of solving this problem at the CPS device level,
where FPGAs and MPSoC-FPGAs are broadly used to realize CSs and DASs. Furthermore,
related work also highlights the challenges of task mapping on MPSoC-FPGA platforms
within CPS applications. Moreover, the crucial aspect of security in CPSs that have MCS
requirements, such as the CT application, is explored in the context of MPSoC-FPGAs.
Finally, related works that consider these issues in the specific case of the CT application
are considered. Due to the fact that academic researchers usually focus on image processing
problems, and CT scanner manufacturers do not provide these informations, only a few
works have been found on the system architecture. This lack of information also limits
the exploration of multimodality and interventional procedures in Academia, that an
open-interface CT scanner such as the KIDS-CT aims to fulfill. Thus, system architectures
of CT scanners have been examined by the author, pointing to the limits to provide
real-time support and plug-and-play capability. In this context, a deep analysis of existing
work on data formats for CT imaging is also presented. The content of this Chapter is
covered by the articles in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7].

3.1 System Architecture In CPSs

Several system architectures have been proposed in the literature for CPSs, including the
communication infrastructure [78–81, 86]. These works mainly address architectures that
model the interconnection of CPS devices over the network and include the cognitive layer
where decisions are also made over the network. However, this thesis considers CPSs at
the device level, following the definition of CPS given by A.E. Lee in Ref. [18]. Therefore,
the focus of this work mainly addresses real-time support and plug-and-play capability
within the CPS device [2, 3].

The National Institute of Standards and Technology (NIST) has established the Cyber-
Physical Systems Public Working Group (CPS PWG) [3], which operates as an open
public forum supporting designers. Its objective is to develop a generic framework for

30

3 Related Works

CPS. This process begins by examining the three primary aspects of CPSs: conceptualiza-
tion, realization, and assurance. Pertaining to these, the framework suggests activities
to define various CPS models. In these stages, the framework highlights challenges in
interoperability and extensibility among different CPS components. These challenges
stem from the incompatibility of various protocols used, which are crucial for enabling
plug-and-play capabilities. In this context, the Medical Device Plug-and-Play (MDPnP)
initiative has been promoted. It seeks to extend plug-and-play capabilities to medical
devices by developing new models, architectures, and standards [87–89].

The Open Platform Communications (OPC) Foundation has proposed Open Platform
Communications United Architecture (OPC UA), which is a service-oriented architec-
ture that integrates the OPC standard, emphasizing open and interoperable Machine to
Machine (M2M) communications [90]. Based on the OPC UA and the OPC standard,
different architectures for CPS devices have also been proposed [4, 91–93]. Between them,
García et al. [4] presented a Cyber-Physical Production System architecture that aims to
facilitate the collection of data related to “plant floor processes” and the transmission of
commands to control devices in the targeted application. For this purpose, they propose
an OPC UA server for Modbus/TCP industrial networks. Although, OPC UA offers
the possibility to integrate different components in a CPS, allowing extensibility and
interoperability in the CPS architecture, it is limited to legacy protocols and can not be
implemented in small microcontrollers due to its memory requirements [94]. Also Graube
et al. [94] highlight these limitations, which are critical in small CPS components such as
sensors/actuators.

In a systematic mapping study, Hofer [2] also identifies component interoperability and
system extensibility as common challenges of CPS architectures for Industry 4.0. The
challenges of interoperability and extensibility arise from the need to integrate different
components within a CPS, such as sensors, actuators, and communication architectures,
which often use different protocols and technologies. However, legacy systems and the use
of components from different vendors make it difficult to design an architecture that fits
all possible application scenarios.

All the aforementioned works proposing frameworks and architectures for CPS have
mainly pointed out the challenges and solutions focusing on communication standards,
without considering CPSs where sensors/actuators with custom standards and custom
architectures without OS are involved, such as the targeted CT applications. Instead,
Hofer [2] has addressed these challenges at the device level, where several solutions have
also been proposed [27, 28, 95] and they will be discussed in Section 3.2. These works show
that besides the different domains and their applications to provide interoperability and

31

3 Related Works

extensibility, a major challenge should be solved at the device level: designing control units
that provide plug-and-play capability for vendor components using custom and standard
protocols.

3.2 Control And Data Acquisition Systems

As mentioned above, CSs and DASs are responsible for controlling components and
acquiring/collecting data within a CPS device. Several CS and DAS architectures for
MPSoC-FPGAs and FPGAs have been proposed in literature [82, 85, 86, 96–102].

Marjanovic et al. [96] presented an integrated DAS for MRI, based on an MPSoC-FPGA.
The architecture is divided into modules that acquire and process data. Each module is
written in VHSIC Hardware Description Language (VHDL) and is interconnected via the
AXI4 memory-mapped bus interface. The High-Speed Data Link modules acquire and
merge the data and then process them using a streaming interface. The acquisition protocol
is based on the Xilinx Aurora IP core [103]. The bandwidth and the reconfigurability of
the architecture are not specified by the authors.

Yang and Chen [97] present a high-speed embedded platform for image acquisition and
processing. They combine FPGA and Digital Signal Processor (DSP) for image acquisition
and processing tasks and use an ARMv9 processor to communicate with the host. It
achieves a data rate of 36 Mbps. They have a main Finite State Machine (FSM) that
controls the system with a non-pipelined datapath. This solution is only for fixed image
data processing, and the implementation is not parametrizable or configurable for other
use cases or application domains. Like Yang and Chen [97], Shi and Zhang [98] implement
a dual-channel image acquisition system based on an FPGA. This system acquires images
from multiple sensor cameras. It displays the images via an HDMI interface with a
maximum bandwidth of 2.25 Gbps and simultaneously stores them in DDR3 SDRAM.

Xie et al. [99] present an FPGA implementation of a high-speed data acquisition sys-
tem for high-resolution millimeter-wave radar. They achieve 7200 Mbps from the radar
interface. The acquired data are stored in DDR3 SRAM and transmitted off-line to the
external PC. The acquisition data capacity is 48 MB per event. This system does not
support real-time processing, and it has a custom architecture that can only be used
for this specific application. Flouzat et al. [100] introduce an acquisition and processing
platform for automotive applications. It is an FPGA-based solution optimized for high
bandwidth and low latency. It acquires data from 8 cameras in parallel and processes and
stores them via PCI-E, with a throughput of up to 3.2 Gbps.

Salgaro et al. [101] proposed a DAS for PET. This CPS supports a high-speed commu-

32

3 Related Works

nication protocol for a network of various DASs implemented on FPGAs. The authors
propose a Ring-Chain architecture connecting multiple FPGAs in a daisy chain using
Gigabit Transceivers. This architecture ensures data integrity, manages line congestion,
and allows for high-speed data transfer of up to 250 million measures per second. How-
ever, the disadvantage of the distributed solution lies in the complexity of synchronizing
multiple FPGA and effectively managing line congestion, which is crucial for the accurate
functioning of the system.

Min et al. [82] proposed a low-cost C-shaped PET, where the DAS architecture has
been designed and implemented on an FPGA. In this CPS shown in Fig. 3.1, the DMS
can be configured before each scan to acquire and eventually process data before sending
them to the host PC. The acquisition system and the host PC communicate with a USB
connection which is the bottleneck of the system. Therefore, it can only be used for
applications that reconstruct the image offline.

HV

Pre-ampi�iers

Gain-ampi�iers

ADC drivers

iPET detectors

Serial
ADCs

ADC ... ADC HSGP-DAQ64
Board

FPGA Functions

F
I
F
O

B
L
O
C
K

USB Board

RAM

RAM

RAM

RAM

Synchronization

Deserialization

Pulse Summation

Pulse Hight Analyzer

Data Packaging

Con�gure/Load

/

Figure 3.1: Low-cost C-shaped PET architecture

Furthermore, the system is optimized for PET, and can not be configured for additional
sensors or different medical procedures. Since all tasks are hard-wired in custom hardware
modules and the DAS lacks a software stack, the system can not be extended.

Traxler et al. [86] proposed a custom DAS for FPGAs targeting the PET application.
They integrated this architecture into a real-time Jagiellonian-PET (J-PET) scanner,
with three DAS units, each achieving a speed of 3.2 Gbit/sec. As part of the design
of this J-PET scanner, the authors also proposed a Data Processing System (DPS) for
MPSoC-FPGA platforms, allowing the real-time processing of collected data on a single
chip that includes an FPGA, a CPU, and a GPU [83, 84]. This architecture consists of
eight parallel pipelines that acquire data. Within the proposed processing system, data
are decoupled, processed, and then displayed to the doctor. The different architectures
and detectors are coordinated by a CS using a configuration set sent by the host PC.
However, the DAS and the processing system are only reprogrammable for different J-PET

33

3 Related Works

configurations and cannot be adapted for other CPS applications or to extend the J-PET
scanners for multimodality procedures.

A generic DAS architecture for nuclear medical imaging applications has been proposed
by Fysikopoulos et al. [85]. It has been implemented on a AMD-Xilinx Spartan-6 FPGA
and connected to 12-bit octal-channel high-speed Analog-to-Digital Converters (ADCs)
for acquiring data from detectors, as shown in Fig. 3.2.

PMTS/SiPM

ANALOG
READOUT

ACDs

128 MB DDR2
External Memoy

o� chip

MAC PHY
ETHERNET

JTAG

I D LL CTRL

CacheLink(XCL) SDMA

NPI

MPMC Module Interface on chip

Internal
RAM

Microblaze Soft
Core Processor

PROCESSOR LOCAL BUS (PLB)

Soft
TEMAC INTC TIMER MDM

Figure 3.2: Configurable DAS architecture from Fysikopoulos et al. [85]

The DAS has been designed to be configured for different detectors. Due to the limited
FPGA resources, only the calculation of coordinates corresponding to the position of an
event is performed on the DAS, while the other data processing is performing externally.
The DAS stores the data on the main memory during the acquisition, and sends them
to a PC offline; the various control tasks are implemented on a Microblaze soft-core
processor [104]. In order to communicate, this DAS uses an Ethernet connection with
User Datagram Protocol (UDP) and a custom datagram protocol for data acquisition; the
implemented system reaches a data rate of up to 60 Mbits/s. Although this architecture is
configurable for various applications and detectors, it is not extensible in a plug-and-play
fashion yet, and it does not provide real-time support.

From industry, Eltec has proposed a DAS, commonly referred to as a frame grabber,
designed for utilization with cameras and Computed Tomography (CT) scanners. This
system relies on FPGAs for the efficient processing of data [102]. Specifically, the model
designated for CT applications is the PCEY-0600 PC_EYE frame grabber. This particular
model is characterized by its integration of multiple FPGAs on a singular circuit board.
Since it can not send data to the reconstruction system in real time, it uses Dynamic
Random Access Memory (DRAM) for data buffering purposes. The operational protocol

34

3 Related Works

involves initially storing the acquired data on the DAS, followed by a subsequent offline
transfer to the Reconstruction System post-acquisition.

In the context of Advanced Driver-Assistance Systems, Tesla introduced a FSD hardware
architecture [28]. This is an example of dedicated centralized CDAS architecture for CPSs
with a dedicated hardware architecture.

4X CPU

4X CPU

4X CPU L2 Cache

L2 Cache

L2 Cache

32MB SRAM

32MB SRAM

NNA #2

NNA #1 DAM

DAM

ISP

GPU

Security

Interconnect
controller

DRAM
controller

NOC
controller

Non coherent
tra�c

Coherent
tra�c

CAN, LAN,
serial, etc

Camera In

Figure 3.3: Tesla FSD: Block diagram architecture

As shown in the Block Diagram in Fig. 3.3, the camera data are collected by the ISP
that pre-processes and stores them in main memory every few milliseconds. When data
are ready to be processed the CPU actives the Neural-Network Accelerator (NNA) that
processes them to detect objects such as lane lines, cars, pedestrians et cetera. In the
case of post-processing algorithms, the GPU is used. All components and algorithms are
coordinated by a CPU which also runs the autopilot algorithm. The architecture proposed
by Tesla is designed for ASIC. Although the FSD proposed by Tesla acquires/collects data
from different [27] sensors/actuators and processes them in real time, this architecture is
not extensible for adding components in a plug-and-play fashion.

35

3 Related Works

3.3 Task And Peripheral Isolation

In CPSs, such as the KIDS-CT scanner, which must meet MCS requirements, tasks
associated with different applications are run within isolated environments. This isolation,
based on criticality level and/or application domain, helps to prevent interactions between
tasks that could affect timing and dependability issues.

Various approaches have been proposed in the literature for providing isolation within
high-performance computing MPSoC-FPGAs [48, 105–116].

3.3.1 Isolation in AMD-Xilinx architectures

AMD-Xilinx has proposed several isolation mechanisms for their high-performance MPSoC-FPGA
platforms, such as the Ultrascale+ and the Versal architectures [117]. Due to the complex-
ity of these architectures and the large number of attacks that need to be mitigated, they
consider the Swiss cheese model, shown in Fig. 3.4, which has multiple layers with holes
through which attacks can pass individually, but the same attacks cannot pass all layers if
they are stacked [117].

Figure 3.4: Swiss cheese model

Applying this model to provide isolation on their architectures, AMD-Xilinx proposes
the following solutions: Trust Zone, AXI isolation blocks (AIB), Platform Management
Unit (PMU), System Memory Management Unit (SMMU), Xilinx Memory Protection
Unit (XMPU) and Xilinx Peripheral Protection Unit (XPPU) [106], which are mainly not
supported by the low-cost MPSoC-FPGAs targeted by this thesis, such as the Zynq-7000
architecture [118]. Here, the authors have focused on the description of the TrustZone
and the XMPU/XPPU solutions, which will be compared with the proposed isolation
mechanism in part IV.

36

3 Related Works

TrustZone

TrustZone is a security feature within the Arm architecture that divides the system into
secure and non-secure worlds, affecting both software and hardware aspects. While tasks
running in the secure world have access to all memory regions and peripherals, tasks
running in the non-secure world are restricted to their own domain. This dual structure is
realized by two separate processor states, one for each world.

Transactions are marked with the current processor state using the AxPROT[1] bit of the
AXI interface [36]. In addition, compliant IP cores such as the Xilinx AXI Interconnect [119]
can be configured to grant access only to transactions associated with the secure world.
Although widely adopted in systems with Arm processors, this extension primarily manages
only two asymmetric domains [105]. Furthermore, TrustZone technology is not limited to
AMD-Xilinx architectures, but it is also implemented in platforms with ARM processors
such as the Intel Cyclone V [120].

XMPU/XPPU

Xilinx Memory Protection Unit (XMPU) and Xilinx Peripheral Protection Unit (XPPU)
consist of PUs architecture. Unlike traditional PUs that are integrated into the processor,
these units are placed in front of the DDR memory controller and the On-Chip-Memory
(OCM), as well as in front of the peripherals [48].

Data

APB
InterfaceAPB

Control
Registers

AxADDR
AxUSER
AxPROT

AXI

ADDR

ID
Master ID
Lookup

Address
Decode

Permission
RAM

Match

Permission
Check

Aperture
Info

AxADDR
AxUSER
AxPROT

AXI

poison

Figure 3.5: XPPU functional diagram

Both units limit the access of certain ’masters’ to certain memory regions, thus pro-

37

3 Related Works

viding isolation for masters/slaves using PS-PL communication. However, they do not
provide isolation for master/slave components that are both implemented in the PL and
communicate via a PL-PL bus. In addition, they are only supported by high-performance
MPSoC-FPGAs produced by AMD-Xilinx. In order to block AXI transactions, they act
as pass-through components, implementing an AXI slave interface to receive incoming
transactions and a master interface to forward them; for run-time configuration, they also
have an Advanced Peripheral Bus (APB) interface [121], as shown in Fig. 3.5. Since pe-
ripherals use the same memory address space (i.e., memory-mapped Input/Output (I/O))
the XMPU and the XPPU have the same functionality and similar architecture, but the
former is optimized for a larger memory address space than the latter, and the XMPU
for peripherals with finer-grained address spaces than XMPU. Therefore, the rest of this
Section will refer to both architectures as a single architecture called XPPU/XMPU.

When an AXI transaction attempts to cross the XPPU/XMPU, it checks the master
ID and its address. If the address is authorized for this master, the transaction is granted
and forwarded unchanged. If the transaction is denied, it is acknowledged with an error.
This error can be caused by address or attribute poisoning. Address poisoning involves
altering the transaction address to redirect it to an error-generating slave. In attribute
poisoning, a flag is set in the USER-signals, which is detected by a downstream component
responsible for generating error messages.

3.3.2 Protection units solutions

Several PU solutions have been proposed in the literature to provide isolation [107–114].
A taxonomy can also be found in [115], and a formal model that describes configurations
is presented in [116]. Among them, this thesis focuses on the description of the isolation
solutions suitable for low-cost MPSoC-FPGAs that will also be compared in part IV with
the Lightweight Protection Unit (LPU) proposed in this research work.

However, none of these works combines the flexibility with the optimizations of the
LPU that make it the best option for low-cost MPSoC-FPGAs. Nor do any of these works
consider re-routing PS traffic through the PL to provide system-wide PU capabilities.

Network-on-chip firewall

LeMay et al. [112] introduce an isolation mechanism for AXI-based NoC called Network-
on-Chip Firewall (NoCF). The NoCFs are instantiated at the connections between masters
and the NoC interface. These firewalls operate based on a policy defined by allowed address
ranges for both read and write transactions. To optimize performance, dedicated NoCF
are instantiated in the design, handling read and write transactions. The key ideas of their
solution is based on the Policy Decision Point shown in Fig. 3.6. It is implemented by a
dedicated isolated soft microprocessor core that is configured at run time.

38

3 Related Works

Policy Decision
Point

Policy
Con�guration

Interface

Integrity Core

AXI Read
Channel Policy
Enforcement

Point

AXI Read
Channel Policy
Enforcement

Point

Ad
dr

es
s

D
at

a

Re
sp

on
se

Ad
dr

es
s

D
at

a

Re
sp

on
se

Figure 3.6: Network-on-Chip Firewall

MPPU instance example

Kornaro et al. [113] propose an isolation mechanism called Memory Partition Protection
Unit (MPPU). As shown in Fig. 3.7, the MPPU is implemented in the PL part and
connected to the PS that control this. It is based on AXI and exploits the transactions
ID and ADDR signals to identify the application domain and the memory region to
access. In order to do it, a look-up table with the permission is implemented in the
global global memory. This table contains information for read/write, data/instruction,
secure/non-secure, and privileged/unprivileged access. This solution is suitable for low-cost

PS

PL

ARM Cortex A9 x 2

GP
Master

AXI

HP
Slave
AXI

Memory
Controller

System
Memory
(DDR3)

MPPU

AXI-2-AXI
Bridge

AXI-2-AXI
Bridge

IOMMU

DMA

Programming I/F

Data/Instruction
I/F

Device

Int I/F

STNoC

Figure 3.7: MPPU: example of deployment [113]

MPSoC-FPGA, but it is not efficient in terms of timing because policies are written in
the global memory. Due to that, it is not suitable for real-time application because the
access time to policy is not deterministic.

39

3 Related Works

Hardware/software IP management modules

Saha et al. [114] present an approach in which context information is added to AXI
transaction. To do so, they propose a hardware/software architecture, where the Hardware
IP management module (SIMM), running on the PS is responsible for updating the policy
and managing them, while the Hardware IP management module (HIMM) checks the AXI
transactions.

Process PS

OS

Device Driver
Policy
Server

ARM Cortex A9
Core

ARM Cortex A9
Core

Memory

AXI BUS

Context
Match

Context
Miss-match

Median
Filter

Booth
Multiplier

PID
Controller RSA

PL

HIMM HIMMHIMMHIMM
NO

NO

OK

OK

Figure 3.8: Hardware/Software IP management modules overview

Each slave has a HIMM in front that checks all the crossing transactions; it receives
the context information from the SIMM that stores them in a Policy server. An overview
of the resulting architecture for this approach is shown in Fig. 3.8, which shows granted
and denied transactions related to two slaves. Furthermore, in this solution, the HIMM
requests the policies to the SIMM when they are not in the HIMM cache. Due to the
high deviation of timing access to the Policy server, this solution is also not suitable for
real-time applications.

40

3 Related Works

3.4 Computed Tomography

This Section analyzes related works on the targeted CT application. It mainly focuses on
design solutions for CT scanners at the device level, considering the system architecture, the
communication infrastructure, the task partitioning, and how components are controlled
and data acquired in the existing solutions. Since, commercial scanners are closed systems,
where it is not possible to know these details, only a few existing architectural models
could be analyzed for the proposed solution. The lack of existing works and scanners built
in Academia also pushed the author to propose a guideline for hardware designers that
has been the starting point for the proposed architecture of the KIDS-CT scanner [DP 3].

3.4.1 Controlling and data acquisition systems for CT scanners

Altera-Intel has proposed a System Architecture for CT scanners [122]. This architecture
outlines which MPSoC-FPGA and/or FPGA are suitable for controlling internal compo-
nents, as well as for collecting and processing data. They suggest a solution, as shown
in Fig. 3.9, where the Control System, Data Acquisition System, and Data Processing
System are designed as independent architectures. These are to be implemented on
different cards (i.e., components) and platforms. In their CT scanner architecture, four
key components are proposed: the Data Acquisition Card, the Data Consolidation Card,
the Data Processing Card, and the Control Card.

Filtering and
Data Alignment

and Data Alignment

Image Processing

Host
uP/uC

Host
Processor

Data Acquisition Card
Data Consolidation Card
(Slip Ring and Backplane Applications)

Data Processing Card
Control Card

FPGA

A/D Memory

Memory
Memory

DSP DSP DSP

Data

Output
data

for
doctors

Figure 3.9: Altera-Intel CT scanner architecture

The Data Acquisition Card is responsible for acquiring analog signals from sensors,
converting them, and sending them to the Data Consolidation Card. As shown in Fig. 3.9,
there is typically more than one Data Acquisition Card in a CT scanner, and they are
directly connected to the matrix of pixels inside the DMS. For instance, in the DMS
mounted in the KIDS-CT scanner, signals are converted and sent out. However, unlike the
Altera-Intel solution, no pixel processing (e.g., filtering) is performed in the DMS of the
KIDS-CT scanner. As Data Acquisition Card, they suggest the use of FPGAs with a huge

41

3 Related Works

number of Analog (A)/Digital (D) converters and DSPs for filtering such as platforms
belonging to the Cyclone/Arria family [123, 124].

The Data Consolidation Card collects data from the Data Acquisition Cards, buffers,
aligns, and merges them before forwarding it to the Data Processing Card. For this stage, it
is suggested to utilize an MPSoC-FPGA platform from the Stratix family [125]; this allows
for efficient management and combination of various control tasks and data transmissions.
Regarding data processing, the implementation of an FPGA accelerator is recommended,
as represented in Fig. 3.9 by the Data Processing Card. This accelerator should possess
several features: numerous DSPs, Block RAM (BRAM), and DRAM memory, capable
of reaching over 10,000 Giga FLoating-point Operations Per Seconds (GFLOPSs) [126].
Such a configuration yields performance comparable to modern GPUs.

In the context of medical image processing and image-guided surgery, Altera-Intel also
proposes a design framework featuring 18 video functions based on a streaming inter-
face [127]. This approach allows designers to implement software functions in hardware,
facilitating the exploration of architectural challenges related to memory and optimization
of single functional units, such as Convolution and Fast Furier Transform (FFT) architec-
tures, resulting a suitable solution for implementing a CT reconstruction algorithm in the
Data Processing Card. Finally, all the described cards are controlled and coordinated by
the Control Card which can be implemented on a CPU architecture. This solution does
not consider the problem of custom control protocols involved in this application, which
can only be implemented using custom ASICs or FPGAs.

Another CT scanner architecture shown in Fig.3.10 has been proposed by AMD-
Xilinx [128]. Here, the control and data acquisition systems have also been implemented
over four sub-systems: the HV Supply Control, the Data Acquisition & Gantry Control,
the Image Reconstruction and the System Sequencer.

The HV Supply Control system manages all tasks inside the X-ray tube: software
parameters, high voltage power supply, and errors. AMD-Xilinx recommends using a
Zynq Ultrascale+, which is an MPSoC-FPGA designed for high-performance comput-
ing [129]. This system can implement isolated modules in the PL for HV tasks, utilizing
the XMPU/XPPU, and run the related software on the PS part. The Data Acquisition &
Gantry Control system controls and coordinates the Gantry and the DMS while data are
being acquired and forwarded for processing. For this system, the use of an MPSoC-FPGA
from the 7series family is also recommended for implementing various tasks. The Image
Reconstruction system and the System Sequencer respectively implement the reconstruc-
tion algorithm and synchronization tasks within the CT scanner architecture. For the
reconstruction algorithm, AMD-Xilinx proposes to use an adaptive System-on-Chip (SoC)
from the Versal family [130], a new heterogeneous architecture that includes FPGA, CPU,
and DSP or Artificial Intelligence (AI) engine architectures for data processing.

42

3 Related Works

HV Supply Control Data Acquisition & Gantry Control

Image ReconSystem Sequencer

Host
 PC

FPGA ARM PS

FPGA

ARM PS

ARM PS

FPGA ARM PS

HV Pwr Supply Ctrl Detector Data Intf

Gantry Motor Ctrl

Ethernet Comms

Ethernet Comms

Platform Mgmt

System Error Msg

System State Ctrl

Ethernet Comms

Ethernet Comms

System Magmt System Magmt

ErrorMsg & Comms ErrorMsg & Comms

State Control State Control

HV Pwr Protection

FPGA

Sequencing
Comms

System
 Sequencing

Seq. Comms

Seq. Comms

Seq. Comms

ADC/DAC interface ADC/DAC interface

AI Engines

Back-Projection
Calcs

AI Image
Analysis

ACAP Architecture

DISTRIBUTED CONTROL UNIT

Figure 3.10: AMD-Xilinx CT scanner architecture

Both CT solutions analyzed above exemplify a distributed architecture that allows for
the separation of control and processing tasks associated with different critical applications,
thus preventing interference. However, they lack scalability, and components cannot be
integrated in a plug-and-play fashion. In fact, to integrate a new component (e.g., a
detector or an X-ray tube), tasks must be subdivided into subtasks and distributed across
the various control units. In addition, they are designed for diagnostic procedures where
real-time controlling and data processing are not requirements. In fact, a distributed
architecture introduces additional delay in coordinating and synchronizing components
due to the dynamic cross-interactions that a centralized system solves, as also experienced
in automotive applications [131].

3.4.2 The data format exploration in CT data processing

In literature, various algorithms for CT image processing and reconstruction are discussed,
targeting FPGAs[132–138] and GPUs [139–143] platforms, and exploiting their high level
of flexibility and parallelism. This thesis does not aim to propose a new algorithm or
hardware accelerator for CT image processing and reconstruction. Instead, its primary
goal is to provide a CDAS where a selected algorithm can be integrated into a dataflow
architecture, enabling on-the-fly data processing. In this context, this research aims to
find the best data format for interventional CT applications. Therefore, related works
that propose dataflow architecture for MPSoC-FPGAs and exploit mixed-data formats on
GPU and FPGA are mainly considered for the comparison.

43

3 Related Works

Dandekar et al. [144] proposed a reconfigurable architecture for real-time pre-processing
in interventional CT. It consists of a dataflow architecture for FPGA that aims to optimize
latency. They focused on the filtering steps for neighboring voxels. By exploiting the
spatial locality of the data, they proposed a solution using a custom brick-caching schema
to improve memory performance. They described their architecture in VHDL and explored
different fixed-point formats for their solution: 8, 12, and 16 bits. Through a custom
implementation of the proposed optimizations, they achieved a processing rate of 46 frames
per second for images with dimensions of 256 × 256 × 64 voxels.

Nourazar and Goossens [145] developed an iterative CT reconstruction algorithm specif-
ically optimized for the Tensor Cores in NVidia GPUs [146]. To boost performance by
exploiting Tensor Cores, they, first, optimized the index ordering of the system matrix,
which is a sparse matrix that describes the pixel-driven projections. Then, they used a
mixed-precision computation approach in the reconstruction algorithm. The accuracy
resulting from the mixed-precision computation was found to be almost equivalent to
that of 32-bit floating-point computation [145]. Specifically, mixed-precision computation
involves using different data formats within the reconstruction algorithm to represent the
same real value.

Clemens Maaß et al. in [147] have investigated the impact of data formats on CT
reconstructed images. They explored various encodings within the IEEE-754 standard,
demonstrating that utilizing a 16-bit floating point improves the execution time in CT
image reconstruction without compromising image quality [147]. In fact, the 16-bit floating-
point reads and writes in memory half of the data compared to the 32-bit floating point.
Therefore, it improves the throughput and the access to memory itself which is crucial in
this application. This is particularly beneficial during the back-projection phase of CT
image processing, which frequently accesses external memory [147].

Unlike related works, this research work is the first to perform a systematic DSE, where
data formats can be tuned in the image processing steps of a selected CT reconstruction
algorithm, to identify the optimal data format for interventional CT procedures. While
other studies also investigating data format in this application have been limited to
evaluating reconstructed images in terms of Mean Square Error (MSE), this work performs
a hardware performance evaluation and a comprehensive quality analysis for each point in
the design space, including metrics such as contrast and uniformity of the reconstructed
image. This approach is crucial in assessing the impact of data formats on the accurate
identification of tumors by surgeons.

44

Part II

Concept

46

4 Problem Analysis

The KIDS-CT is the first open-interface scanner assembled in Academia with the aim of
exploring multimodality and interventional procedures. The existing CDASs for CPSs
described in Chapter 3 can not be used for the scopes of such a complex system. They do
not provide extensibility capability (i.e., plug-and-play) and real-time support, which are
essentials for the aforementioned medical procedures for which the KIDS-CT scanner is
designed. This Chapter analyzes the limits given by the related work and discusses the
research questions that arise from it. Finally, it presents the research objectives to address
them in complex CPSs such as the KIDS-CT scanner. The content of this Chapter has
been published by the author in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7, DP 8].

4.1 Weakness Of The Current Architectures

Chapter 3 presented different solutions addressing real-time support, as well as exten-
sibility and interoperability issues. This includes considerations for implementing CPS
architectures in conjunction with the related CS and DAS. Related work particularly
focuses on solutions for automotive and medical devices, which are CPS applications that
have common requirements with the targeted CT application. By analyzing the related
work, the following weaknesses have been identified in the current architectures.

1. It is observed that the FSD architecture [28], which is the only centralized system, is
also the only one able to control components, acquire and process data, and provide
real-time support for events with a one-millisecond response time. This centralized
approach contrasts with other systems where these tasks are distributed across
separate CS and DAS which do not offer similar real-time support. In addition, the
distributed solutions are limited by additional communication and synchronization
overhead, which negatively impacts the time efficiency of performing various tasks.

2. Although the Tesla solution provides real-time support, the proposed architecture
is implemented on an ASIC, which limits the ability to add components. In fact,
solutions targeting ASIC [28] or FPGA [82] platforms result in a less flexible architec-
ture compared to those designed for MPSoC-FPGAs [27, 85]. Although FPGAs can
be reprogrammed to extend the architecture for new devices, they do not natively
provide a CPU with an OS and a software stack that can facilitate the control and
integration of new vendor components. For example, many vendor components,

48

4 Problem Analysis

such as the X-ray tube in the KIDS-CT scanner, require a software stack with Unix
libraries to communicate with them. In addition, MPSoC-FPGAs can implement ar-
chitectures where control and data processing tasks can be optimized by strategically
mapping them to PS and PL parts.

3. Several solutions have been proposed in the literature to guarantee temporal and
spatial isolation, but they target only high-performance MPSoC-FPGAs. Although
some of these solutions can be implemented in low-cost MPSoC-FPGAs, they are
not suitable for real-time applications such as CPSs with MCS requirements. By
requiring external memory, these solutions penalize the WCET estimation. Therefore,
to ensure isolation in CPSs such as MCSs, it is necessary to find a solution suitable
for real-time applications that can be implemented on a low-cost MPSoC-FPGAs.

4. DAS architectures proposed in the related work can not acquire and process data
in real time, therefore data are stored in an intermediate memory (e.g., main or
external memory), during the acquisition. In order to process them, data are sent
to an external DPS only after the acquisition is completed. The limits of these
solutions arise from the communication limits and how these architectures handle
the collected data in the architecture itself.

5. Pixel processing and reconstruction algorithms are primarily implemented using
32-bit floating-point formats. Maas et al. [147] observed that by employing the
half-precision floating-point data format, execution time improves while maintaining
image quality. Although this initial investigation yielded positive results, the impact
of different data formats on image quality metrics has not yet been fully explored.
Furthermore, studies have been limited to custom solutions and have not considered
the data format as a variable in the design space. This overlooks the potential to
identify the optimal data format in terms of balancing image quality and performance.

6. The CT scanner architectures in the related work use a distributed solution, where
tasks are associated with diverse CSs, DASs, and DPSs. These solutions have
been designed for dealing with closed commercial systems that address diagnostic
procedures. For instance, to explore multimodality procedures and, therefore, to add
a new component such as a different detector in a CT scanner, the different tasks
should be appropriately partitioned among the distributed CSs, DASs and DPSs.
Dividing tasks among these systems requires an update of all of them, which can be
a really complex process; a distributed solution may also determine synchronization
and timing issues to meet the real-time requirements. Consequently, these closed
systems are not suitable for exploring multimodality techniques and interventional
procedures.

49

4 Problem Analysis

4.2 Research Questions & Objectives

Weaknesses in items [1-4] presented in the previous Section are related to the CPS
architectures. Weaknesses in items [5-6] are related to multimodality techniques and
interventional procedures and are combined with the KIDS-CT scopes. Different aspects
should be considered for complex CPSs such as the KIDS-CT scanner due to the following
requirements:

• Real-time data acquisition and processing of huge amounts of data.

• Real-time control and synchronization of device components.

• Extensibility of the CPS device for new components (i.e., plug-and-play capability).

• Task isolation between different critical applications running on the same CPS device.

Studies in Section 3.2 of CPSs in automotive applications have shown that a central-
ized approach is more efficient than a distributed one in meeting real-time requirements.
However, these works did not consider the interoperability problem between components
and, therefore, the extensibility of the whole system. Moreover, the various solutions did
not exploit MPSoC-FPGAs platforms, which are heterogeneous architectures that can be
reprogrammable at setup and run times. Based on the analysis of the weakness found in
related works, this thesis aims to reach a main research object:

"Find out how CS and DAS architectures can be combined into a CDAS architecture
for MPSoC-FPGAs in order to provide real-time support and plug-and-play capability in
complex CPSs such as the KIDS-CT scanner”

In relation to this research objective, the questions addressed in this thesis are:

• How can a CS and a DAS be combined into a CDAS architecture for MPSoC-FPGAs
targeting CPS applications such as the KIDS-CT scanner?

• How can CDAS tasks be partitioned on MPSoC-FPGAs to provide real-time support
and plug-and-play capability?

• How can a CDAS architecture be designed for an MPSoC-FPGA to acquire and
process data on the fly?

• Which data formats optimize computing performance and hardware cost of the CT
pre-processing steps while keeping the image quality suitable for iCT?

• How can task isolation be achieved in low-cost MPSoC-FPGAs while adhering to
the specific requirements of CPSs as MCSs?

50

4 Problem Analysis

In order to address these questions and the research objective, a CDAS can not be
considered standalone because real-time support and plug-and-play capability involve the
whole CPS device. Therefore, designing a new CDAS architecture implies the redesign
of the System Architecture and the Communication Infrastructure of the CPS device.
Furthermore, a good task partitioning between hardware and software modules in the
MPSoC-FPGA should be done, taking advantage of the platform heterogeneity. Based
on the open-interface KIDS-CT concept and the weakness of the existing CS and DAS,
also minor research objectives should be achieved by the new CDAS for MPSoC-FPGAs
in conjunction with the proposed System Architecture and Communication Infrastructure
for CPS devices:

1. A Centralised System Architecture for CPSs that provides the plug-and-play support
at system level.

2. A Communication Infrastructure that supports the integration of custom/standard
protocols, facilitating the realization of the plug-and-play capability and the real-time
communication between components.

3. A CDAS architecture for MPSoC-FPGAs that permits the integration of additional
components in the CPS device.

4. A partitioning approach of real-time and non-real-time tasks that exploits the
heterogeneity of the MPSoC-FPGA for providing real-time support and facilitating
the integration of new components.

5. A lightweight dataflow architecture that provides support for on-the-fly data acquisi-
tion from sensors with different data rates that contribute to providing plug-and-play
capability and real-time support.

6. A lightweight dataflow architecture that provides support for on-the-fly image
processing, configurable for standard and custom data formats. In addition, it should
offer the capability to explore the design space by tuning different data formats.

7. A selection approach to reduce the number of metrics and parameters of the design
space that aim to find the best data format and computing performance in a targeted
CPS application, such as interventional CT.

8. An isolation method for providing temporal and spatial isolation which results in a
Lightweight Protection Unit suitable for low-cost MPSoC-FPGAs.

9. A prototype of the CDAS architecture should be implemented on an MPSoC-FPGA.
It should be able to provide real-time support and plug-and-play capability for the
KIDS-CT scanner, enabling the support for multimodality techniques and interven-
tional procedures.

51

5 Methodology

After having analyzed the weaknesses of existing architectures for component control,
data acquisition, and data pre-processing in CPSs and CT scanners, this Chapter defines
the ideas and the methodology to achieve the defined objectives. Starting from the
requirement definition, it introduces the methodology followed for designing the proposed
System Architecture for CPSs, the CDAS architecture, and the optimization ideas that
contribute to reaching the research objectives. The content of this Chapter has been
published by the author in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7, DP 8].

5.1 Requirement Definition For The Selected CPS Application

In order to define a generic architecture that provides the plug-and-play capability and
fulfills real-time requirements, this work has started to define the common and the specific
requirements for a target CPS application. The former permits the requirement matching
between a selected CPS application and the proposed architecture. The latest considers
the constraints for the specific application and functionality and eventual plug-and-play
extensions. As shown in Fig. 5.1, the requirement definition consists of three steps: the
Application modes/functionalities, Application requirements, and Design requirements.

APPLICATION
MODES / FUNCTIO-

NALITIES

APPLICATION REQUIRE-
MENTS

DESIGN
REQUIREMENTS

MODE0/
FUNCTIONALITY0 LIST

OF

COMMON

APPLICA-
TION

REQUIRE-
MENTS

LIST OF SPECIFIC
APPLICATION

REQUIREMENTS0

MODEN/
 FUNCTIONALITYN

LIST OF SPECIFIC
APPLICATION

REQUIREMENTSN

LIST

OF

COMMON

DESIGN

REQUIRE-
MENTS

STEP 1 STEP 3STEP 2

LIST OF SPECIFIC
DESIGN

REQUIREMENTS0

LIST OF SPECIFIC
DESIGN

REQUIREMENTSN

Figure 5.1: Application classification and requirement definition steps

52

5 Methodology

In the first step, the designer analyzes the CPS functionalities from an application
perspective (e.g., medical procedures in the case of a CT scanner). In the second step, the
designer defines common and specific application requirements for the related application
functionalities; at this step, the requirements are not related to any hardware or software
implementation but only to the functionalities (e.g., image processing, real-time controlling,
etc.). In the third step the designer defines design requirements for the hardware/software
architecture of the ES within the CPS, based on the defined application requirements (e.g.,
support of custom protocols). The Section 8.1 explains the application of these steps in the
case of the CT application, where the designer starts from the various CT procedures up
to define the design requirements for the hardware/software architecture of the KIDS-CT
scanner.

5.2 System Architecture

As discussed in Chapter 4, a CDAS cannot be considered as a standalone system to provide
real-time support and plug-and-play capability in a CPS device. In order to have a CDAS
that can communicate in real time with all components and that can be easily extended
with new components, this work considers a centralized System Architecture where each
component has a physical level and a logical level. The main idea behind this solution is
to have a CPS where all components are connected to the CDAS. In addition, these levels
allow the separation of the physical requirements, such as interconnection interfaces, from
the logical requirements, where the functional and application requirements are considered.

5.3 Communication Infrastructure

A CPS may contain various vendor components that also have interfaces and protocols
with different communication requirements: real-time and non-real-time communications,
and small and huge amounts of data to be transmitted. Therefore, to facilitate the
integration of new components into a running CPS and the interoperability between these,
protocols and interfaces are grouped within classes and layers in the Communication
Infrastructure. The key idea of such a solution is given by the fact that classes allow the
separation of interfaces and protocols based on the data and time requirements, while
the layers allow a systematic implementation of different vendor interfaces and protocols
from the communication interface layer up to the application protocol layer, where a
common protocol per class is defined. For realizing this Communication Infrastructure,
the CDAS plays a fundamental role as it implements the master for each master-slave
communication and the server for the client-server communication in the CPS device. In
this way, the integration of new components into the CPS device determines the addition
of new modules only in the CDAS, facilitating the plug-and-play capability.

53

5 Methodology

5.4 Control-Data Acquisition System

As explained above, the CDAS architecture is the core of the centralized System Architec-
ture and Communication Infrastructure. On the one hand, it simplifies the interoperability
and synchronization problem between different components, exploiting the heterogeneity
of the MPSoC-FPGA platform. On the other hand, the mapping methodology for the
different task components and groups becomes crucial to meet the criticality and timing
requirements. Based on this, the main idea for the CDAS architecture is to implement
different modules for the application requirements, separating the related functionality
into real-time and non-real-time tasks and mapping them on the PL and PS respectively.

To achieve real-time support, plug-and-play capability, and task optimization, various
optimization approaches specific to MPSoC-FPGAs have also been proposed within the
CDAS architecture:

• A lightweight re-configurable dataflow architecture that collects and prunes data on
the fly. To do so, different clock domains have been defined in the datapath, which
permits the buffering of collected data in on-chip memory and forwarding them fast
enough to avoid external memory. In addition, the architecture is designed to be
configured at design time, and the PS can re-configure it at run time, facilitating
the integration of new components in the CPS.

• A data processing architecture that can be configured to integrate processing algo-
rithms implemented in dataflow hardware units. It can also be configured for custom
and standard data formats. This allows the design space to be explored by tuning
the different data formats. The idea is to provide an architecture in which data
processing algorithms can be integrated and then used to find the best data format
for the target application.

• An isolation method for low-cost MPSoC-FPGAs that can be used to isolate the
CDAS modules associated with different external components or criticalities. The
idea behind this is to realize a Lightweight Protection Unit (LPU) that checks and
grants/denies AXI4 transactions. While memory regions and protection domains
must be configured at design time to optimize the execution time and resource
utilization, the policies are set at run time to provide temporal isolation.

All these optimization solutions focus on a different part of the CDAS architecture to
achieve the research objectives and to allow its configuration for a specific CPS application
such as the KIDS-CT scanner.

54

6 Cyber-Physical System Architecture

To achieve the research objectives and to integrate the proposed CDAS architecture
into a CPS device, it is also necessary to define a System Architecture and its related
Communication Infrastructure. For this purpose, this Chapter initially classifies tasks
based on requirements identified in the related work, where separate architectures are
proposed for the CS and the DAS. Then, a System Architecture, including the CDAS, is
proposed based on these classified task groups. Finally, a Communication Infrastructure
is proposed to meet the different communication requirements of the task groups within
a target CPS. The proposed solutions discussed in this Chapter have been published in
Ref. [DP 2, DP 3, DP 4, DP 7].

6.1 Requirement & Task Classification

The task classification step allows the definition of the task requirements for the proposed
CDAS, for the System Architecture and its Communication Infrastructure. This takes
into account the interactions and the interoperability between the various components.
Following the method presented in Section 5.1, it is crucial to identify the common and
specific requirements from the various functionalities. Based on the analyzed state of
the art on CSs and DASs for CPSs such as the KIDS-CT scanner, the tasks have been
categorized into the following three groups:

• Control and Synchronization: This group includes all the control and synchro-
nization tasks for the various CPS components. Each component must have at least
one control task implemented in the CDAS to be integrated into a CPS; this task
may be real-time or non-real-time. Unlike control tasks, synchronization tasks are
not mandatory for each component and may involve more than one component.
Since vendors may use custom or standard protocols associated with these control
and synchronization tasks, custom peripherals must be supported by the CDAS. Fur-
thermore, the communication tasks associated with the control and synchronization
tasks involve a large number of messages containing small packets and/or control
signals.

• Data Acquisition and Collection: This group includes all real-time and non-real-
time tasks that directly acquire or collect data from a CPS component (i.e., sensor).
They differ from control and synchronization tasks because of the large amount of

55

6 Cyber-Physical System Architecture

data to be considered. Due to the amount of data, they have been divided into
separate task groups. This categorization is necessary because different optimization
strategies are required in terms of task organization to meet real-time requirements.
Consequently, communication in this context typically involves messages with large
packet sizes.

• Data Processing: This group includes all tasks that process large amounts of
data. While the Data Acquisition and Collection group includes tasks that consider
communication issues related to sensors that stream data at different data rates
(e.g., a different data alignment), this group focuses on the processing algorithms.
The tasks of this group are strictly application-dependent; therefore, the CDAS
architecture only aims to provide mechanisms to integrate them easily.

Different hardware/software modules are proposed to implement task groups within
the CDAS architecture. In contrast with related works that implement different tasks on
separated CSs,DASs, and DPSs, here all tasks are implemented in the CDAS. In addition,
the proposed Communication Infrastructure separates the communication tasks associated
with different groups into distinct interface and protocol classes. This classification
simplifies the integration of new components into the CPS device by separating tasks with
different requirements.

6.2 System Architecture

The System Architecture is the conceptual model of a CPS device, representing the
components, the behavior, the connections, and interactions [148]. The proposed model
consists of a physical level and a logical level, as shown in Fig. 6.1.

Tier 1: User Interface

Tier 2: CDAS

Tier 3: Sensors / Actuators

Logical Level

Slave-ClientM

Master-Server

Slave-Client0 Slave-ClientN

Physical Level

Figure 6.1: System Architecture of a CPS

At the physical level, as shown in Fig. 6.2, a centralized architecture has been
proposed. It has two types of nodes: the master-server node and the slave-client node. The

56

6 Cyber-Physical System Architecture

former consists of the CDAS for MPSoC-FPGA. The latter consists of sensors/actuators,
user interfaces, and additional DPSs, which can be implemented on workstation PCs,
microcontrollers, MPSoCs, and FPGAs. All slave-client nodes are connected to the
master-server node, which implements the masters for the master-slave communication
and the server for the client-server communication. This centralized solution allows a
more straightforward realization of real-time communication and synchronization than
distributed architectures. It also simplifies the realization of the plug-and-play capability
at the physical level, as integrating a new component into the system merely involves
connecting a new node to the CDAS, which will control it.

Slave-Client
Node0

Slave-Client
NodeM

Slave-Client
Node0

Slave-Client
NodeN

Master-Server Node

Figure 6.2: System Architecture: Physical level

At the logical level, as shown in Fig. 6.3, this work proposes a multi-tier architecture
where the user sends commands from Tier 1 to Tier 2. Here the commands are interpreted,
adapted for the different components, and sent to the Tier 3, where the sensors/actuators
are updated. In the multi-tier architecture, each upper tier can only communicate with
the lower tier and vice versa.

Interface0
/ Processing0

InterfaceM
/ ProcessingM

Sens. /

Act.0

Sens. /

Act.N

Interface /

Processing0

Interface /

ProcessingM

Sensor0 /
Actuator0

SensorN /
ActuatorN

Tier 1

Tier 3

Tier 2

master

slave

slave

server

master server

client

client

Control-Data Acquisition System

Figure 6.3: System Architecture: Logical level

The multi-tier architecture at logical level also facilitates failure avoidance while allowing

57

6 Cyber-Physical System Architecture

users to parameterize the various sensors/actuators. Although users do not have direct
access to sensors/actuators located at Tier 3, they can configure them by sending commands
from Tier 1, as explained above. In this way, users do not need to know which protocols
are used to establish the connection between the CDAS at Tier 2 and sensors/actuators
at Tier 3.

6.3 Communication Infrastructure

The Communication Infrastructure is the glue element between the nodes in the proposed
System Architecture. It defines the internal communication within the CPS device,
specifying component interfaces at the physical level and transport and application protocols
at the logical level. In order to provide the plug-and-play capability, the Communication
Infrastructure aims to be vendor-agnostic. In addition to related works that only support
standard protocols such as OPC UA [149], the proposed solution also supports custom
interfaces and protocols. For instance, this feature is essential in the KIDS-CT scanner,
where slave-client nodes use different custom protocols defined by the related component-
vendor.

In the Communication Infrastructure shown in Fig. 6.4, all slave-client nodes are
connected to the master-server node, and each node is modeled with three layers: the com-
munication interface layer, the transport protocol layer, and the application protocol layer.
This layered solution permits the master-server node to communicate with components
from different vendors and to add plug-and-play components. While the master-server
node implements the interfaces and transport protocols based on the connected slave-client
nodes, it unifies all the different protocols at the application protocol layer.

Link 0

Link N

...

Application
Protocol Layer

Communication
Interface Layer

Transport Protocol
Layer

Node Slave-Client

...

...

Application
Protocol Layer

Communication
Interface Layer

Transport Protocol
Layer

...

...

Node
Master-Server

Non-Real-time
class

Real-Time
Data class

Real-Time
Control class

Figure 6.4: Communication Infrastructure

Furthermore, as shown in Fig. 6.4, each node also has three types of classes per layer:
the real-time control class, the real-time data class, and the non-real-time class.
These classes allow handling different communication requirements (e.g., real-time and
non-real-time data and control packets). Therefore, each interface and protocol per link is
associated with an appropriate class for each layer when a new component is added.

58

6 Cyber-Physical System Architecture

Real-Time Control Interface
Class
Vendor Interface (e.g., D-SUB,
EtherCAT, Custom Interface, ...)

Real-Time Data Interface
Class
Vendor Interface (e.g., SPI, EtherCAT,
EtherNET, Custom Interface, ...)

Non-Real-Time Interface
Class
Vendor Interface (e.g.,
EtherNET, Wi-Fi, ...)

Control Master-Slave Class
Vendor Protocol (e.g., UART, SPI,
CAN, Custom Protocol, ...)

Data Master-Slave Class
Vendor Protocol (e.g., Aurora 8b/10b,
UART, Custom Protocol, ...)

Client-Server Class
Vendor Protocol (e.g., IPv4 and
TCP/UDP, Custom Protocol, ...)

Application Real-Time
Control Class
Dependable Handshake Protocol

Application Real-Time
Data Class
Application Stream Protocol

Application Non Real-Time
Class
Datagram Protocol

Real-Time Control Syncronization
Tasks Real-Time Data TasksNon-Real-Time Tasks NODE

Application
Protocol

Layer

Transport
Protocol

Layer

Communication
Interface

Layer

}}
Communication Classes

S
t
a
c
k

C
o
m
m
u
n
i
c
a
t
i
o
n

Figure 6.5: Example of the master-server node in the Communication Infrastructure

An example of a master-slave node with different interfaces and transport protocols per
class (UART, IPv4, etc.) is shown in Fig. 6.5. However, there is only one protocol per
class (written in red) at the application protocol layer that unifies the different vendor
protocols. Consequently, each proposed application protocol has been proposed based on
the requirements of the associated class.

Although the Communication Infrastructure is vendor-agnostic, the components must
fulfill two requirements. The first states that each node must have its own control unit,
which sets the node in safe mode if the connection is lost or an error is propagated.
The second formulates that a node must have at least one control interface (real-time or
non-real-time); if a node had only the real-time data interface, it could not be controlled
or triggered from outside.

Node Slave
Client
IPv4

Node Slave
Client
IPv4

switch

Master-Server
Node - CCU

Slave-Client
Node 1

Slave-Client
Node 6

Slave-Client
Node 2

Slave-Client
Node 4

IPv4, TCP, UDP

Custom
Protocol

Custom
Protocol

IPv4, UDP

IPv4, TCP

IPv4, TCP

switch

Slave-Client
Node 3

Non-Real-Time
interface

Control Real-Time
interface

Data Real-Time
interface

Slave-Client
Node 5

IPv4, TCP

Custom
Protocol

Custom
Protocol

Custom
Protocol

 Aur. 8b/10b Aur. 8b/10b Aur. 64b/66b

Aur. 64b/66b

Figure 6.6: Example of node interconnection and interface layer

59

6 Cyber-Physical System Architecture

Fig. 6.6 shows a generic example where nodes have different protocol types and number
of interfaces per node. This example highlights the solution for the interoperability problem.
Although the protocols of two nodes differ at both the communication interface layer
and the transport protocol layer, at the application protocol layer data are encapsulated
in a unique, common protocol for each class. Furthermore, it reports the case where
nodes have only one interface, such as nodes 3 and 4, which have only the non-real-time
interface and the real-time control interface, respectively. At the application protocol layer,
the master-slave node (i.e.,CDAS) manages the communication between tasks of these
different classes interfaces as separate communications. In this way, there are no timing
issues between non-real-time and real-time tasks because they do not interfere with each
other.

6.3.1 Communication interface layer

Each node may have one or more interfaces with different requirements. Therefore, the
following three classes have been defined:

• Non-real-time interface class: This class groups the interfaces for non-real-
time communication between different nodes. It contains all interfaces that will be
associated to the client-server class in the upper layer (e.g., Ethernet and Wi-Fi
connections). Non-real-time control and data processing tasks use the interfaces
such as sensor/actuator configurations. Often, in MPSoC-FPGAs these interfaces
are already implemented as peripherals in the PS part, and they are accessed by
software modules running on the APU.

• Real-time control interface class: This class includes interfaces for real-time
control data and synchronization signals. All of these interfaces use master-slave
protocols in the upper communication layers. Examples of instances for this commu-
nication interface class are interfaces for Universal Asynchronous Receiver Trans-
mitter (UART), Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C),
EtherCAT protocols, and/or custom protocols using custom signals.

• Real-time data interface class: This class includes interfaces associated with
real-time data-flow tasks, where large amounts of data are transferred from sensors
to the collecting system or processing units. The main idea behind this class is to
support streaming communication on the upper layer, independently of its data rate.
The transceiver can require a reference clock and dedicated transceivers, such as the
Gigabit Transceiver (GTX) [150], to support high-speed communication. For this
reason, interfaces of this class within the CDAS are usually mapped with transceivers
placed on the PL part of the MPSoC-FPGA.

60

6 Cyber-Physical System Architecture

6.3.2 Transport protocol layer

The transport protocol layer is above the communication interface layer. It also has three
classes that are associated with the classes of the above layer:

• Client-server class: It groups all client-server protocols for non-real-time commu-
nication. Usually, each component uses a transport protocol for this class which is
defined by the vendor. Therefore, the CDAS which is the master-server node should
support different transport protocols for communicating with the various nodes at
the same time.

• Control master-slave class: This class includes real-time protocols that send
control/synchronization messages. In this class, custom protocols that use control
signals are also encapsulated as packets within messages. The key idea is to separate
small and large packets because packets of similar size can mitigate the convoy
effect [151]. A uniform packet size allows an accurate estimation of the WCET,
essential for real-time tasks. If a communication involves a real-time protocol with a
large amount of data, it is not included in this class. Examples of protocols in this
class are UART, I2C, SPI, and Ether-Cat.

• Data master-slave class: This class includes real-time protocols that transmit
data as a stream. The PL part of the MPSoC-FPGA supports the implementation
of transceivers that can stream data on-chip. This allows data to be processed
on the fly, which is essential for real-time requirements. Aurora 8b/10b [103] and
PCI-Express [152] (stream mode) are examples of protocols associated with this
class.

6.3.3 Application protocol layer

On top of the communication stack is the application communication layer, consisting
of three classes. Unlike the other communication layers that implement various vendor
protocols, this unifies all of them with a unique protocol per class. In this way, it is
possible to provide interoperability between nodes with different interfaces and transmission
protocols. Furthermore, it facilitates the realization of the plug-and-play capability. This
layer has the following classes:

• Application non-real-time class: This class groups non-real-time tasks that
communicate with client-server protocols. Since messages for these tasks range in
size from a few bytes to several megabytes, a generic Application Datagram
Protocol has been proposed for this class.

• Application real-time control class: This class includes real-time control and
synchronization protocols, which can be custom or standard. Although different

61

6 Cyber-Physical System Architecture

real-time protocols need to be used for the different requirements, this thesis proposes
a Handshake Protocol that handles communication errors and lost messages in
real time.

• Application real-time data class: This class groups communication real-time
tasks that stream large amounts of data. It includes serial communication protocols
having a variable message size. Further, messages can be sent in simplex mode
between sender and receiver, which lacks synchronization signals. To solve this
problem, this thesis proposes the Application Stream Protocol that uses various
commands in and between messages to synchronize the sender and the receiver.

Application Datagram Protocol

In the Application Datagram Protocol, data are sent as messages of variable size. Each
message also consists of a variable number of packets with their own variable size and data
format, as shown in Fig. 6.7. This flexible and scalable structure allows the same protocol
to be used for small commands and large data messages. In addition, having packets of
different sizes allows commands and large amounts of data with different formats and
sizes to be encapsulated in two packets of the same single message. Packets are aligned to
16 bits, consequently, command messages smaller than this size have padding bits. As
shown in Fig 6.7, the Application Datagram Protocol has the following three segments:
the Header Segment, the Data Segment, and the Tail Segment.

Message1 Messagei MessageN

Version ID Operation Counter
Data-
Packet1

Data-
PacketN

CRC

... ...

...

...Length Type Data1/
Operation1

DataN/
OperationN

{ {Header segment Data segment Tail seg.

Figure 6.7: Message structure of the Application Datagram Protocol.

The Header Segment has four mandatory fields. The first is the Version field, which
defines the actual client-server protocol version. It is used to verify that a client and the
server are using the same protocol version, thus avoiding decoding errors. In the case
of different versions, the communication is terminated. The second field is the Unique
Identifier (UID) that identifies each application request. If the size of an application

62

6 Cyber-Physical System Architecture

message exceeds the Maximum Transmission Unit, it is split into several messages, and the
UID is incremented by 1. The third field is the Operation field, which specifies the server
operation to run for the received message and component. The fourth is the Counter
field that defines the number of body segments within the message. The body segment is
empty when the operation has no data information, and the Counter equals 0.

The Data segment contains commands and data. These are encapsulated in data
packets of variable size. To decode such variable packets, there is the Length and Type
fields that define the number of bytes and the data type of the sent data. A message ends
with the Tail segment that contains the Cyclic Redundancy Check (CRC) used by the
receiver to check the integrity of the received message.

Handshake Protocol

The Handshake Protocol extends the transport protocols at the application communication
layer, providing real-time error detection and recovery for the application real-time control
class. It also prevents denial-of-service attacks on the master side by terminating the
communication within the receiver if a message is not expected or fails the integrity check.

The vendor transport protocols must meet two essential criteria in order to be supported
by the Handshake Protocol. Firstly, all communication can only be initiated from the
master side. Secondly, every message received under the master-slave protocol requires
an acknowledge (ACK). A unique acknowledgment signal (e.g., valid/error signal) is
mandatory if a control/synchronization message lacks the CRC.

Master-Server
Node

Slave-Client
Node}

M1

M1 ackTmax

TRANSMITTING

RECEIVING

Figure 6.8: Handshake protocol in case of no errors. Tmax is the maximum time before a
timeout event

The Handshake Protocol is implemented close to the transceiver (i.e., transmitter/receiver)
in the PL of the CDAS. In this way, timeout events can be managed and a retransmission
mechanism can be supported using specific signals directly linked to the corresponding
transceivers. Moreover, if a malicious slave attempts to initiate communication with the
master, the incoming message is halted at the receiver. As these events are managed
within the PL, they don’t affect the software scheduler or the execution of other tasks in
the CDAS. The Handshake Protocol has the following two phases, as shown in Fig. 6.8:

• Transmitting phase: In this phase, the master initiates the communication by
sending a single or a burst of messages to a slave-client node. Once the messages

63

6 Cyber-Physical System Architecture

have been sent, the master waits for the ACK message and enters the receiving
phase. The receiver within the master-server node can be set for checking a final
single ACK or a burst of ACKs.

• Receiving phase: When the message arrives at the slave-client node, the Receiving
phase has been initiated on that side. Here, the slave-client node receiver verifies the
integrity of the message and sends back the corresponding ACK. This includes the ID
of the received message and other information depending on the specific transmission
protocol. Once the ACK arrives at the master side within the timeout, the receiver
of the master-server node compares the ID contained in the ACK message with the
ID of the transmitted message. If the IDs match, the communication is correctly
terminated, as shown in Fig. 6.8.

Master-Server
Node

Slave-Client
Node

}
}
}

M1 (re-transm.)

M1 (re-transm.)

M1

M1ack (CRC err.)

Tmax

Tmax M1 ack

Figure 6.9: Handshake protocol. Message lost and CRC error use case

However, the Handshake Protocol generates the retransmission signal if the ACK
exceeds the timeout or fails the integrity check. In the example shown in Fig. 6.9, the
master does not receive the ACK within the timeout (Tmax), so the retransmission
signal is set in the master transmitter. Then, the slave-client node sends the ACK,
but a CRC error occurs, so the message is blocked and the retransmission signal is
set again. Finally, the slave-client node receives the correct message and sends back
the ACK, which matches with the transmitted message, and the communication is
successfully completed. An error flag is set in the corresponding status register if no
correct ACK is received after the maximum number of retransmissions. Depending
on its severity, the error event can then be passed to the appropriate software module
for handling it (e.g., the CPS runs in safe mode).

Application Stream Protocol

The Application Stream Protocol is conceived to handle a stream of data in simplex mode.
The protocol consists of messages and commands. The messages contain the data and can

64

6 Cyber-Physical System Architecture

be of variable size and format. The commands define the start and the end of each message
and allow the receiver to synchronize with the transmitter. In this way, the Application
Stream Protocol enforces the integrity and synchronization issues of the protocols in the
lower communication layers.

Commands and messages consist of packets, which are the smallest amount of information
that can be sent. A packet is sent each clock cycle and corresponds to the data parallelism
of the sender/receiver. For instance, in a transceiver that sends 32 bits per clock cycle, the
packet is 32 bits. For this reason, the packet size is only configurable at design time. To
transmit such packets as a stream, the transmitter encodes and sends them as a stream of
bits, and the receiver decodes and aligns them. For this reason, the synchronization is
crucial for the receiver.

Message1 Messagei MessageN

CRC
command

... {
Data packets

Preamble
command

S
y
n
c

S
y
n
c

...
S
y
n
c

S
y
n
c

...
S
y
n
c

S
y
n
c

...
S
y
n
c

S
y
n
c

1 2 3 1 2 31 ... N

Figure 6.10: Application Stream Protocol

As shown in Fig 6.7, synchronization is performed between each message. The synchro-
nization command consists of a single packet that is sent until a new message is ready to be
sent. The message is announced through the preamble command, a fixed sequence of three
packets. Finally, to end a message, the CRC command is defined, with a sequence of three
packets. This command is also used to identify the CRC packet, which has a fixed size and
is the last packet of the message. In this way, the receiver can check the integrity of the
message and commit the whole message or flush the First In First Out (FIFO). Note that
the synchronization command is the only one that consists of a packet because it is sent
between messages and cannot be misread as a data packet. Furthermore, it simplifies the
synchronization because the decoder aligns the data to this single command. By contrast,
the other commands consist of three packets because they are part of the message, and
a single packet command could be wrongly misread as data packets. Moreover, these
commands enable the support of messages having variable sizes.

When the CPS is powered up, each transmitter sends synchronization commands (i.e.,
packets). In this phase, each corresponding receiver aligns the stream of bits to the
synchronization command. As soon as a message is sent, the receiver is synchronized and
ready to decode it. The receiver stores the entire message in a FIFO. When the CRC
command is detected, the calculated CRC of the message must match with the last packet
to commit the message and forward it to other tasks or internal modules of the node.

65

7 Control-Data Acquisition System

This Chapter introduces the proposed Control-Data Acquisition System (CDAS) architec-
ture, which forms the master-server node of the System Architecture and Communication
Infrastructure. It describes the hardware/software co-design methodology used for the
CDAS architecture and the proposed optimizations that contribute to achieving the
research objectives. The CDAS architecture includes the Data-Flow Module and the Data-
Processing Module which consist of two lightweight configurable dataflow architectures
that collect and process data on the fly. Furthermore, the Data-Processing Module can be
used to explore the design space and optimize the targeted CPS application by tuning the
processing data formats. Finally, this Chapter introduces the proposed isolation method
for MPSoC-FPGAs, which is crucial for CPSs with MCSs requirements, such as medical
Cyber-Physical Systems (CPSs) (e.g., the KIDS-CT scanner). All these contributions of
the CDAS architecture have also been discussed by the author in articles [DP 1, DP 2,
DP 3, DP 4, DP 5, DP 6, DP 7].

7.1 Task Partitioning

In this thesis, tasks are classified into three groups: the control-synchronization, the
data-acquisition/collection, and the data-processing group. Within these groups, tasks
can also be distinguished between real-time and non-real-time. For partitioning the tasks
in the CDAS architecture, two steps have been proposed to provide real-time support and
plug-and-play capability:

1. Tasks associated with different task groups are partitioned into distinct
modules for each slave-client node. This modular approach not only simplifies
the integration of new components into the CPS but also facilitates the isolation of
tasks from different nodes and groups. As explained in Section 6.1, task groups are
categorized based on their operational nature (i.e, component control/synchronization,
data collection, and data processing). As a result, tasks within each group share
similar characteristics and requirements in terms of memory usage, processing
capacity, and I/O demands.

2. Tasks are divided into real-time and non-real-time tasks within each task
group and partitioned on the PL and PS, respectively. This partitioning
method has several advantages for both types of tasks. Tasks implemented in the
PL are statically mapped and do not need to be scheduled, which is usually the

66

7 Control-Data Acquisition System

main issue for real-time tasks. In CPSs, critical tasks are usually real-time, so
implementing them on PL facilitates their isolation. In fact, for tasks that are
statically mapped on the PL, only spatial isolation is required. Tasks running on
PS can take advantage of a CPU architecture and an OS (e.g. virtual memory,
multi-threading, software stack, and software libraries).

The proposed approach can be translated into the mapping steps shown in Fig. 7.1, where
the tasks of each component and use case are first assigned to the task groups and then
separated between real-time (PL) and non-real-time (PS) computing. In the explained
solution, each use case is mapped independently, starting from the associated slave-client
node. In this way, the addition of a new component is facilitated because it doesn’t affect
the previous mapping decisions. Furthermore, a new component can be integrated into
the CPS by iterating such steps that do not affect the hardware/software modules of the
existing slave-client nodes.

use
case0

use
case1

use
casei

use
caseN

Slave-client 0

Slave-client N

task1 task2

task1

task2

task3

task1.1

task1.2

task2

task2.1

task3.1

task3.2

Use Case N

Use Case 1

FUNCTIONALITY GROUP TASK ASSIGNMENT PS/PL MAPPING

Control-Synchronization group

Data-Flow group
Data-Processing group

Software Module

Hardware Module

task1

task2.2

Figure 7.1: Task partitioning and mapping steps

In addition, while the first step is platform independent, the second step assumes a SoC
including programmable logic, such as in the targeted MPSoC-FPGA platform.

7.2 Hardware/Software Architecture

The CDAS is mainly responsible for controlling and synchronizing all CPS components,
collecting data from the various sensors, and processing them in real time. Furthermore, it
handles all the communication tasks between components, implementing the masters for
the master-slave communication and the server for the client-server communication. Based
on the group classification, the CDAS architecture contains the following three modules
for each external component (i.e., slave-client node):

• Control-Synchronization Module: This is responsible for controlling a com-
ponent and then synchronizing it with other components. While other modules

67

7 Control-Data Acquisition System

are not mandatory, each component must have at least the associated Control-
Synchronization Module in the CDAS. The architecture of this module will be
described in Section 7.3.

• Data-Flow Module: This is responsible for collecting data from a component
(e.g., sensors), pruning, and forwarding them to internal and external processing
units in real time. It implements the various protocols for the real-time data class
in a lightweight re-configurable dataflow architecture that processes data on the fly,
without using external memory. It is implemented in the PL and is configured by
a software module running on the PS. It provides the capability to configure the
datapath at run time to acquire/transmit data supporting custom and standard
protocols at different data rates, contributing to the plug-and-play capability. The
lightweight dataflow architecture will be described in Section 7.4.

• Data-Processing Module: This is responsible for processing real-time data. For
example, to process sensor data that must be used for updating actuator parameters.
In order to fulfill real-time requirements, this work proposes a configurable and
scalable processing architecture. It is directly connected to the other modules
via streaming interfaces, supporting on-the-fly processing. The architecture of the
Data-Processing Module will be described in Section 7.5.

As mentioned above, to optimize the implementation of these modules for MPSoC-FPGA
platforms, the real-time and the non-real-time subtasks within each task group are mapped
to the PL and PS, respectively. This solution optimizes the execution time and the
predictability of real-time critical tasks and facilitates the plug-and-play capability.

PL

PS

Data
Processing
Module

Bare-Metal

Input
Output
Peripheral

Core0 CoreN

Control-Synchronization
Unit
Control-Synchronization
Module

Data-Flow
Module

AXI4

NIC

Hypervisor / RTOS / Linux

FSBL APP APPLICATION Application
layer

OS
layer

Hardware
layer

Control
Synchroniza-
tion Module

Interface/Processing/Sensor/Actuators

Interface/Processing/
Sensor/Actuators

Interface/Proc-
essing/Sensor/
Actuators

Data-Flow
Module

Data Proces-
sing Module

Interface/Processing/
Sensor/Actuators

Setup/Con�guration

Isolated Apps

LPU

Figure 7.2: CDAS architecture for MPSoC-FPGAs

68

7 Control-Data Acquisition System

Following this task partitioning solution, the CDAS consists of the multi-layer architec-
ture shown in Fig. 7.2.

The Application layer implements the software modules running on the PS. It
includes the “business logic” of the application, which is a software module responsible for
implementing the logic of the application, manipulating data, and coordinating the other
modules [153]. In the proposed software architecture, the business logic is responsible for
coordinating the commands between Tier 1 and Tier 3, and between different nodes in the
same Tier.

The Hardware layer contains the hardware modules for the task groups running on
the PL, which are the Control-Synchronization Module, the Data-Flow Module, and the
Data-Processing Module. Subtasks mapped on this layer and the Application Layer, and
belonging to the same slave-client node and task group communicate with each other via
AXI4-Lite interfaces. Each interface links the memory space of a PL component with
the global memory of the PS. This solution allows hardware modules to be executed
independently of software modules that communicate asynchronously via the AXI4-Lite
interface. This asynchronous communication avoids situations where real-time tasks
running on the PL have to wait for non-real-time tasks running on the PS, causing them
to miss their deadline.

The communication between these two layers is handled by the OS layer that translates
the physical addresses of hardware modules into the virtual addresses of the software
modules. It can also run different real-time OSs, bare-metal applications, or a hypervisor
on the different CPU cores of the PS. For example, this layer includes the First Stage
Bootloader (FSBL), which is responsible for configuring and booting the PL and PS parts
of the MPSoC-FPGA and booting the OS. Here, the OS implements the scheduler and
the isolation access policies that are essential for coordinating real-time and non-real-time
tasks and for guaranteeing temporal isolation, respectively. For example, the isolation
between modules associated with different slave-client nodes enables error propagation
avoidance. In the rest of the Chapter, the architecture of the three modules presented
above refers to the single instance associated with a client-slave node.

7.3 Control-Synchronization Module

As explained above, the Control-Synchronization Module controls and synchronizes all
external components of the CPS. Therefore, it realizes the non-real-time class type and the
real-time control-synchronization class type of the proposed Communication Infrastructure.

7.3.1 Hardware layer

The Control-Synchronization Module at the hardware layer contains the synchronization
unit and the communication unit, as shown in Fig. 7.3. On the base of the associated

69

7 Control-Data Acquisition System

slave-client node, this module can have multiple instances for these two units.

Hardware Module Software Module

AXI
Interconnet

Communication Unit

Synchronization Unit

0

0

N

N

Business
Logic

Socket
(server)

Figure 7.3: Control-Synchronization Module associated to a single slave-client node. The
hardware and the software modules are implemented at the hardware and
software layers, respectively

The master communication unit handles the communication tasks for the control master-
slave class, the modules that realize the proposed Handshake Protocol for the application
real-time control class.

data_tx data_tx

data_rxdata_rx

control/
status

register

data_tx_valid

available_to_transmit

Control-Flow Unit

Re-Transmission
Unit

counter
transmission

Transmit_Data_packet

Idle

dataUP

Idle

 TX

Wait

RX

rt_tx_valid

Prepare-Packet
Unit

Integrity Packet Unit

Contro/
Status/
Data
Register

Transceiver

TX

RX

valid

Communication Unit Instance

AXI

Interface

Figure 7.4: Control-Synchronization Module: Communication Unit instance

As shown in Fig. 7.4, an instance of this module associated with a slave-client node has
the following units:

• Transceiver Unit: It implements the master transmitter/receiver for the protocol of
the associated slave-client node. Each protocol has its own transceiver; therefore, if a

70

7 Control-Data Acquisition System

node uses multiple connections, multiple transceiver units must also be instantiated,
each associated with it.

• Register Unit: It contains the control, the status, and the data registers. In order
to send commands to the hardware units of the Control-Synchronization Module,
the corresponding software module sets the proper bits in the control registers.
Furthermore, the associated software module reads the status register to check the
state of this module (e.g., check errors and transmission status). The data registers
contain the received data and the data to send over the transceiver.

• Prepare-Packet Unit: When data to be sent are available, this unit packets them,
and waits for the send_valid signal for sending data to the transceiver unit.

• Control-Flow Unit: It implements the logic that coordinates the flow of packets.
When data are ready to be transmitted or re-transmitted, it checks the availability of
the transceiver and generates the send_valid signal. As shown in Fig 7.4, it contains
a FSM having following states:

– start: The initial/reset status used for setting the transceiver. After sending
the setting command, the FSM runs in idle state.

– idle: In this state, the FSM waits for the send_packet signal, which is asyn-
chronously set in the status register by the software module. When this signal
is high and the data to be sent are not yet available in the data register, the
FSM runs in the data state. If the send_packet signal is high and the data are
ready or the re-transmission_packet signal is high, the FSM runs directly in
the send state.

– data: In this status, the FSM waits for the data_ready signal from the prepare-
packet unit. When packets are ready, the FSM runs in send status.

– send: It generates the send_valid signal that triggers the send command in
the transceiver. After that, the FSM runs in the idle state, where it waits for
eventual retransmission or new data to be sent.

• Re-transmission Unit: This implements the logic for the re-transmission mecha-
nism of the proposed Handshake Protocol. It uses a counter, which is set for the
maximum number of re-transmissions to perform in case of errors. This offers the
advantage of re-transmitting messages without additional effort for the software
modules, which only have to deal with cases where errors are repeated beyond the
maximum number of re-transmissions. As shown in Fig. 7.4, this unit consists of a
counter and an FSM with the following states:

– start: It represents the initial/reset status, in which the FSM sets up the unit
and the next state to idle.

71

7 Control-Data Acquisition System

– idle: In this status, the FSM waits for the send_valid signal from the Control-
Flow Unit. When this signal is high, the transmitter (tx) state is triggered.

– tx: It is a transient state in which the FSM runs only for one clock cycle to
increment the counter and eventually send the re-transmission signal to the
Control-Flow Unit.

– wait: In this state, the FSM waits for the response or the ACK associated
to the sent message. If the received message is correct, the FSM runs in
the receiver (rx) state; otherwise, it runs in the tx state, where the re-
transmission signal is generated.

– rx: It is a transient state, which sets the unit for sending a new packet and
sets the next state as idle.

• Integrity Packet Unit: This checks the integrity of the received message using the
CRC. Then, it compares the ID of the received message with the aspected message.
When an error is detected, this unit sends the error signal to the Re-transmission
unit, which manages it, as described above.

Moreover, the Control-Synchronization Module shown in Fig. 7.3 contains one or more
synchronization units at the hardware layer. These are used to synchronize internal units
and client-slave nodes in real time. The logic of these units depends on the specific
application. A synchronization event is the fulfillment of a synchronization condition.
For example, in the KIDS-CT scanner, the synchronization condition that enables data
acquisition checks that the gantry rotation, the DMS and the X-ray tube voltages are
stable.

Status
Error

Trigger
Trigger
Enable

{Node0 } Node0

} NodeN

Status
Error

Trigger{NodeN Trigger
Enable

User
Command

Event
Synch.

clock

Decision Logic

Signal
Align-
ment
Unit

Figure 7.5: Synchronization Unit

72

7 Control-Data Acquisition System

As shown in Fig. 7.5, this unit can have input/output signals from/to multiple nodes,
as the synchronization may involve more than one node. This module has an internal
signal alignment unit that takes all the asynchronous inputs and aligns them to the
same clock; this unit avoids metastability problems caused by the different asynchronous
inputs. The aligned signals are then forwarded to the Decision Logic unit, where the
synchronization is performed, using combinatorial logic. In the case of the KIDS-CT
scanner, a single unit is used to synchronize all external components. By implementing the
signal alignment unit with Flip-Flops (FFs) per input and the synchronization conditions
with combinatorial logic, a synchronization event is updated within 3 clock cycles, which
is the delay introduced by the signal alignment unit.

7.3.2 Application layer

The Control-Synchronization Module implements the non-real-time control and synchro-
nization tasks at the application layer. It also implements the non-real-time communication
tasks associated with the different slave-client nodes, the server for the client-server class,
and the related datagram protocol for the application non-real-time class. While control
and synchronization tasks depend on the selected CPS application, the server architecture
can be designed as a generic architecture. In fact, this Section focuses on describing the
server module that runs the communication tasks associated with each slave-client node
within the Control-Synchronization Module and the application non-real-time class.

To limit the error propagation within each external component (i.e., slave-client node)
and improve system dependability, communication tasks associated with different slave-
client nodes use different server ports to establish the connection with the CDAS. In
addition, to manage the connections separately at the application layer, the server software
architecture has been designed with four modules: Communication, Timer, Command,
and Execute. Each module handles a distinct aspect of the communication, as described
below:

• Communication module: This module instantiates the server-socket associated
with each slave-client node. When a client connection is established, this module
links it to the associated socket base on the connection port. The socket then runs
the command module where the message is processed.

• Command module: This module handles the communication with the connected
client within the server-socket instance. Since a client can only execute a single
command thread at the same time, this module is created as a “singleton instance”
per client. Here, messages are decoded and forwarded to the corresponding Execute
module based on the command operation to be executed. To do that, it utilizes the
FSM shown in Fig. 7.6, which decodes the different messages.

73

7 Control-Data Acquisition System

• Execute module: This module runs the control and synchronization tasks associated
with the received command operation. As discussed above, these tasks depend on
the specific application and they represent the business logic layer [154] of the CPS
architecture. Since controlling and synchronizing tasks can be implemented on the
PS and PL parts, this module also interacts with the hardware modules via the
AXI4-Lite interface. Finally, it generates the response message for the requested
command operation, containing the operation status and the data requested by the
client. All the execution steps are controlled with the FSM shown in Fig. 7.6.

• Timer module: When a socket is created and the connection is established, the
timer is set to N seconds. If a client message (i.e., control/data/ping message) arrives
within N seconds, the COUNTER timer is reset and restarted. The TIME_OUT event is
triggered if no message arrives in N seconds. When a TIME_OUT event occurs, the
client connection is closed and the corresponding Execute and Command modules
are terminated.

Figure 7.6: States of the Execute module during the execution of a received and decoded
message from a slave-client node

In order to instantiate and schedule the tasks associated with the different modules
of each server-socket, a Real-Time Operating System (RTOS) is required. In fact, it
implements the scheduler where the priority of each module is sets based on the following
hierarchy:

1. Timer module (Real-Time priority)

74

7 Control-Data Acquisition System

2. Command module (High priority)

4. Execute module (Medium Priority)

5. Communication module (Low Priority)

Beyond this static hierarchy configuration, the RTOS can update at run time the
priorities of the various modules and their child tasks based on the operation ID from the
incoming datagram message. This priority hierarchy mitigates starvation and deadline
race conditions caused by operations running in the Execute module waiting for lost
messages. For instance, when a module exceeds the TIME_OUT, the timer associated with
the server-socket generates an interrupt that terminates all tasks of the other modules
and terminates the connection.

7.3.3 Example

The example shown in Fig. 7.7 presents a Unified Modeling Language (UML) sequence
diagram of a typical scenario involving hardware and software layers of a Control-
Synchronization module instance and two slave-client nodes. The first node (on the
left) exchanges non-real-time messages using the Application Datagram Protocol for the
client-server communication. The second node (on the right) relies on the Handshake
Protocol, adopting a master-slave communication. Moreover, this use case shows how
non-real-time and real-time tasks interact with each other. This example also shows
the interaction between a User interface at Tier 1 of the Communication Infrastructure
with a sensor/actuator at Tier 3, crossing the Tier 2 that is the CDAS. In the figure,
black arrows indicate the CPS power-up process, orange arrows indicate the client-server
communication, blue arrows indicate the communication between internal software and
hardware tasks, and green arrows indicate the master-slave communication between the
CDAS and the second slave-client node.

When the CPS is powered, the FSBL within the CDAS orchestrates the configuration
of the PL and the booting of the PS, where the RTOS runs. Once all the internal modules
(both software and hardware) are initialized, the CDAS sets up the other slave-client nodes.
For clarity, the UML sequence diagram in Fig. 7.7 illustrates only two nodes with distinct
interfaces, but in the system more slave-client nodes can be involved.

The Communication module instantiates the “Listen task", which accepts incoming
connections. When a connection is established, this module creates the associated socket,
which instantiates the Command module. This last module inits the Timer module while
waiting for messages from the client; the timer configuration is based on the specific
component. It permits the CDAS to verify the availability of the external component. In
fact, if no command, data, or ping messages are received within the TIME_OUT, the CDAS

75

7 Control-Data Acquisition System

Centralized Control Unit PS part
Slave-Client

Node
Slave-Client

NodePL part

Figure 7.7: UML sequence diagram for the client-server communication and the interaction
between modules in operation. Orange indicates TCP/IP operations, green
PL and external hardware communication, and blue PS parts.

notifies the event to the “business logic” that handles it. To instantiate the proper task
for the Execute module, the Command module decodes the message, validates the CRC
packet, and passes the operation ID and data to the FSM within the Execute module. If
a CRC error occurs, the message is discarded, and an error message is returned to the

76

7 Control-Data Acquisition System

client. A task is then initialized with the received command data, which is stored in an
array for active operations via the Execute module thread.

The Execute module matches the operation ID with the related execute task, which
may involve the hardware and software layers and other slave-client nodes. For instance,
in the UML sequence diagram shown in Fig. 7.7, the Execute module sends a real-time
command to the second slave-client node via the hardware layer. As soon as the tasks
within the Execute module are completed, the success status and the data are transmitted
to the client via the Application Datagram Protocol. If the transmission is successful, the
Execute module deletes all retained data, and the corresponding tasks are terminated
and removed from the list of active operations. In the case of an unsuccessful response
message, two attempts are made, each after a 500ms delay. If no one is successful, the
Execute module task activates the TIME_OUT software interrupt and terminates all related
procedures.

7.4 Data-Flow Module

This Section describes the architecture of the Data-Flow Module, shown in Fig. 7.2. This
collects data from a client-slave node (i.e., sensor) and streams them to the Data-Processing
Module and/or to other client-slave nodes. In order to give a comprehensive description of
the architecture, this Section refers to a single architecture instance, as shown in Fig. 7.8.

The logic that controls this module is implemented at the software layer, while the
datapath has been designed as a lightweight re-configurable dataflow architecture. Fur-
thermore, the proposed solution has been designed not to use any external memory and
thus process data on the fly. It can also be configured at design time to be integrated
into other CDASs or simple DASs with different requirements (e.g., data type, data-link
protocol, data rate, and multiple receivers and transmitters).

The architecture is flexible to collect/transmit data from/to single or multiple slave-
client nodes. In addition, the CDAS can implement several isolated instances to guarantee
data isolation between different criticality applications running on the CPS. To achieve
the research objectives, the proposed dataflow architecture introduces two novel features
compared to other DASs in the literature:

• Design-time and Run-time Configuration of the Internal Datapath:
At design time, the designer sets connection parameters that are based on the
physical attributes of the connected slave-client nodes from/to which data will
be received/transmitted (e.g., number of receivers/transmitters, interface protocol,
size of the FIFOs, etc.). This design-time configuration allows the addition of
transmitters/receivers without affecting the existing architecture. In fact, the user
configures the communication and acquisition parameters at run time by setting
the datapath registers mapped in the global memory of the PS. This run-time

77

7 Control-Data Acquisition System

adaptability enables the software module to configure the CPS for different acquisition
scenarios. For instance, in the KIDS-CT scanner, the Data-flow Unit is configured
at run time for acquiring images of different body parts, affecting parameters such as
exposure time, number of detector slices, image dimensions, resolution, and sampling
intervals.

• On-the-fly image acquisition and processing exploiting on-chip memory
and clock domains. The Data-flow Unit collects data that are transmitted
at different rates from the various slave-client nodes. Based on the rate, each
transceiver streams data in the datapath with a specific clock frequency. Therefore,
to simultaneously process data on the fly from/to different client-slave nodes, the
dataflow architecture has been designed with different clock domains that are crossed
by data through asynchronous FIFOs. In order to meet real-time requirements and
process data on the fly, the dataflow architecture processes and/or transmits them
at a higher clock frequency than the collected/acquired data.

7.4.1 Architecture reconfigurability

The dataflow architecture is configured at design time and can be reconfigured at run time.
The design parameters are based on the physical receivers/transmitters and processing
units to be instantiated for real-time data communication within the CDAS. In order to
have a correct dimension for the FIFOs and to avoid data loss, the designer first defines
the depth of each FIFO and then the other parameters. The FIFO depth corresponds
to the maximum size of the received messages associated with the proposed Application
Stream Protocol. For example, in the KIDS-CT scanner, the FIFO depth is equal to the
size of a projection row, since data are collected row by row. Then, the following group
parameters must be set at design time:

• receiver (rx): It contains the parameters related to the physical receivers that use
real-time data communication. The first parameter is N, which indicates the number
of instances for the physical receivers; it also depends on the input data channels
of the receiver since some protocols can use multiple channels/lanes for a single
receiver. In addition to the system clock, the designer sets a rx reference clock
that generates the corresponding rx data clock that is synchronous to the acquired
data. The frequency of these two clocks can also be updated at run time. This
generated clock defines the Receiver domain of each instance, as shown in Fig. 7.8
with the light blue color. The output data clock parameter is also set in relation
to the rx data width parameter defining the maximum rx data rate of the
collected data. Furthermore, each receiver has a data-link parser that is configured
for different protocols. An example protocol is the proposed Application Stream
Protocol.

78

7 Control-Data Acquisition System

• transmitter (tx): It contains the parameters for the physical transmitters that
use real-time data communication. The first parameter is M, which indicates the
number of instances for the physical transmitters. If the transceiver implements
a PCI-Express bus, the number M depends on the lanes (x4, x8, x16). Like the
receivers, each transmitter has a tx reference clock that generates an tx data
clock synchronized to the input data to stream. This clock defines a Transmission
domain, as shown in Fig 7.8, with the orange color. In relation to tx data clock, the
designer set the tx data width to define the maximum tx data rate.

• Processing: In order to collect raw data from nodes and send processed data
to nodes without losing data, the required buffers to connect the Data-Processing
Module should be taken into account. For this purpose, the designer must define the
parameter P, which is the number of channels connected between the Data-Flow
Module instance and the Data-Processing Module instance in both directions. This
parameter contributes to defining the minimum amount of asynchronous FIFOs in the
equation 7.1. These additional asynchronous FIFOs are clocked by the processing
clock that defines the Data-Processing domain.

Finally, to define the minimum number of FIFOs (Fmin) for the CDAS, equation 7.1
has been proposed.

Fmin = 2 · max(N, M) + P (7.1)

To use this equation, the following conditions must be met: tx data rate> rx data
rate, and data arrive continuously. This equation represents an upper bound on possible
optimizations since it gives the minimum number of FIFO to not lose data. In fact,
optimizations can also be made with respect to the depth of each FIFO and the ratio
between the data rates. In addition to the design parameters explained above, the user
sets other parameters relating to the run-time configuration, such as the data acquisition
setting and the structure. For example, by setting the acquisition and message parameters,
the configurable dataflow architecture manages different packet types, data sizes, data
rates, and acquisition periods at run time. For example, in the KIDS-CT scanner, the
acquisition scan parameters are configured through the software module based on the
part of the body to be scanned, the acquisition time, and the number of projections to be
collected per minute. In this application, parameters consist of the exposure time, the
number of slices per projection (shot), the size of data, and the sampling period per image
to acquire.

As shown in Fig. 7.8, at each stage the dataflow architecture contains registers that
are used to set the run-time parameters. Each stage has its own internal datapath and
a control unit, which is configured by these registers. In addition, these registers are
mapped in a unique contiguous global memory region, which is accessed by the PS via

79

7 Control-Data Acquisition System

an AXI4-Lite interface. At the software layer, the related software module accesses these
registers, sets them up before starting the acquisition, and can also read their status during
the acquisition.

These registers are used, for example, to set architecture parameters, such as the clock
frequency of the various clock domains, and to enable the integrity packet module that
generates the retransmission signal used by the Control-Synchronization Module. For
instance, in interventional CT procedures, the retransmission mechanism is essential
because surgeons cannot afford to lose acquisition data and repeat acquisitions multiple
times, so managing transmission errors in the Data-Flow Module helps avoid additional
acquisitions and save X-ray doses. These reconfigurability options allow the implementation
of custom and standard protocols and interfaces that facilitate the integration of new
slave-client nodes into the CPS, contributing to its plug-and-play capability.

7.4.2 Inter-clock domains

As introduced above, each transceiver needs a system clock and a reference clock and
generates a data clock. To manage the collected data, related works have proposed solutions
that use external memory to compensate for the different clock frequencies between the
receiver and the transmitter. In contrast to them, this work proposes a solution where data
cross the different clock domains without using external memory, taking into consideration
the different data rates to avoid data loss.

The reference clock signal is vital in high-speed communication, which is usually used
for acquiring data in real time. This clock is used to adequately sample, covert the analog
signals into bits and de-serialize them according to a defined data width. By modulating
and phase-shifting the reference clock, the data clock is generated. This last clock is used
to stream the data in the datapath. Since a data clock is generated from a reference clock
that is aligned with the specific acquiring data, each data stream has an independent data
clock that is driven by the reference clock. Each data clock drives all the synchronous
logic in the datapath traversed by the associated stream of data. Consequently, each data
clock defines a clock domain.

The management of these clock domains is essential for on-the-fly data-processing and
real-time support because such a solution allows for avoiding external off-chip memory,
which has higher latency access and lower confidence of the WCETs than on-chip memory
(i.e., BRAM, Static Random-Access Memory (SRAM), FFs).

As shown Fig. 7.8 with different colours, five clock domains have been used in the
dataflow architecture:

• Receiver domain;

• Transmitter domain;

80

7 Control-Data Acquisition System

• Data-processing domain;

• Register domain;

• System/Reference domain

In addition, if two or more receivers/transmitters have different data clock frequencies,
different clock domains are defined between each other.

7.4.3 Architecture description

The dataflow architecture consists of a pipelined datapath at the hardware layer (i.e., PL),
which is controlled by a software module running on the PS. In the architecture, each
stage is also internally pipelined and can be fully implemented using on-chip resources
that have a deterministic delay. Therefore, the time taken to collect, prune and send data
can be estimated with high confidence because the only stochastic execution time is given
by the round-robin scheduler to write/read data in the correct asynchronous FIFO. As
shown in Fig 7.8, the following five stages have been defined.

Receivers stage

This stage receives the data from external devices. It supports multiple receivers that
depend on the physical channels of external devices. Here, the data are sampled, aligned,
and put inside packets that the Data-link parser must interpret. There are three kinds
of input clocks: the register clock that is driven by the PS and used to control/monitor
the stage components; the system clock used to control the transceivers; the reference
clock used for acquiring and aligning data in the transceivers. Based on the reference
clock and the data rate, each transceiver generates a data clock. This new clock drives the
synchronous circuit of the Data-link protocol stage and part of the Scheduler stage.

Data-link protocol stage

In this stage, the data-link layer takes the data from the Receiver stage. There are
separated instances per transceiver because each of them generates an independent data
stream. Each instance processes the valid data to send out to another node or to the
Data-Processing Module. The Data-link protocol stage is internally divided into three
sub-stages. The first sub-stage parses the identifier packets from each message in the data
stream. Based on the sequence of values in the identifier packets, it classifies the data
as header, body, and integrity packets and generates the corresponding request to the
Control Unit. In the second sub-stage, the Control Unit performs the operations based on
the parsed packet type. In order to have run-time configurability support the Control Unit
is set up via PS registers for the different acquisition modalities and protocols. Finally,

81

7 Control-Data Acquisition System

G
TX

_R
X

0

G
TX

_T
X

M

G
TX

_R
X

N

Sy
st

em
Cl

k

Sy
st

em
Cl

k

PS
_C

lk

Re
fC

lk
_N

Tx
 O

pt
ic

al

D
at

a
Ch

an
ne

l_
M

RX
 D

at
a

Ch
an

ne
l 0

RX
 D

at
a

Ch
an

ne
l N

Re
fC

lk
_0

Re
fC

lk
_0

va
lid

va
lid

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

�u
sh

va
lid

pa
ck

et
_t

yp
e

�u
sh

da
ta

va
lid

da
ta

va
lid

da
ta

va
lid

pa
ck

et
_t

yp
e

�u
sh

da
ta

da
ta

da
ta

As
yn

cF
IF

O
_0

vali
d

A
sy

nc
FI

FO
_P

A
sy

nc
FI

FO
_N

A
sy

nc
FI

FO
_0

Sc
he

du
le

r

D E M U X D E M U X

S E L E C T O R

M U X

M E R G E

Re
gi

st
er

 F
ile

s
PS

_C
lk

PS
_C

lk
PS

_C
lk

Re
gi

st
er

 F
ile

s
Re

gi
st

er
 F

ile
s

Reg
iste

r Fi
les

PS
_C

lk
Re

gi
st

er
 F

ile
s

in
c_

cn
t

Co
nt

ro
l

U
ni

t

Rx
Cl

k
0

Rx
Cl

k
0

D
at

a_
Li

nk
Pa

rs
er

 N

Rx
Cl

k
N

Rx
Cl

k
N

Tx
Cl

k_
M

G
TX

_T
X

0

Tx
 O

pt
ic

al

D
at

a
Ch

an
ne

l_
0

Sy
ste

mC
lk

va
lid

da
ta

Tx
Cl

k_
0

Tx
Cl

k_
M

D
um

m
y

D
at

a

D
at

a
G

en
er

at
or

Co
nt

ro
l U

ni
t

Re
ce

iv
er

 s
ta

ge
D

at
a-

lin
k

pr
ot

oc
ol

 s
ta

ge
Sc

he
du

le
r s

ta
ge

�f
o

st
ag

e

al
lo

ca
to

r
st

ag
e

se
le

ct

pa
ck

et
st

ag
e

St
re

am
in

g
ge

ne
ra

to
r s

ta
ge

Tr
an

sm
itt

er
 s

ta
ge

Sy
nc

St
re

am

Cm
dS

tr
ea

m

CD
C

re
g

CD
C

re
g

CD
C

re
g

CD
C

CD
C

re
g

CD
C

re
g

CD
C

re
g

CD
C

re
g

D
at

a-
Pr

oc
es

si
ng

M

od
ul

e

Re
fC

lk
_0

Sy
ste

mC
lk

va
lid

da
ta

M U X

Co
nt

ro
l

U
ni

t

CD
C

re
g

Tx
Cl

k_
0

D
um

m
y

D
at

a

D
at

a
G

en
er

at
or

Co
nt

ro
l U

ni
t

Sy
nc

St
re

am

Cm
dS

tr
ea

m
D

at
a_

Li
nk

Pa
rs

er
 0

D
at

a_
Li

nk
Pa

rs
er

 N

Pr
c_

Cl
k

Re
gi

st
er

 d
om

ai
n

Re
ce

iv
er

 d
om

ai
n

Tr
an

sm
itt

er
 d

om
ai

n
Sy

st
em

 C
lo

ck
/R

ef
er

en
ce

 C
lo

ck
D

at
a-

pr
oc

es
si

ng
 d

om
ai

n

Figure 7.8: CDAS: Data-Flow Unit

82

7 Control-Data Acquisition System

the third sub-stage checks the data integrity and forwards them to the Data-Processing
Module (out of the dataflow architecture) in the CDAS and/or to the Scheduler stage
for transmitting data to another node. In case of errors, the third sub-stage flushes
FIFOs in the Scheduler stage, containing the corrupted message. In addition, it sets the
re-transmission bit in the controlling interface, which forwards a re-transmission request
to the node that is transmitting the data.

Scheduler stage

The scheduler stage is the core of the datapath. In this stage, data traverse from one into
another clock domain (i.e., Clock Domain Crossing (CDC)) using asynchronous FIFOs.
A dual clock reading module is used to allow the PL to access the registers mapped into
the PS at different clock frequencies. Moreover, this stage has three internal sub-stages:
the Allocator sub-stage, the FIFO sub-stage, and the Select packet sub-stage. Each data
request arrives in the Allocator sub-stage, which assigns the data to an empty asynchronous
FIFO using a round-robin scheduler. Along with the request, the related data are merged,
prepared, and queued in the assigned empty asynchronous FIFO. These data come from
the Data-link protocol stage or the external Data-Processing Module with different data
rates. The data are collected in the FIFO sub-stage and are committed when the last
packet of the message arrives, and the previous stage checks its error packet. After that,
if there is an error, the entire message is deleted by flushing the FIFO in the FIFO
sub-stage; otherwise, it is committed by sending a commit signal to the FIFO sub-stage.
The FIFO sub-stage contains asynchronous FIFOs and modules that convert the signals
from the receiver clock domains to the transmitter clock domains. Finally, the Select
packet sub-stage schedules all the valid request signals with a round-robin algorithm. This
last stage is driven by the data clock of the corresponding transmitter in the Transmitter
stage.

Streaming generator stage

This stage prepares and packages messages of the defined sender protocol for transmitting
them to another slave-client node. It also generates the synchronization command when
there is no data to transmit. For example, synchronization commands are continuously
streamed between two messages in the proposed Application Stream Protocol described
in Section 6.3.3. This functionality allows the simplex mode communication between the
sender (master) and the receiver (slave) to be kept stable. When the Scheduler stage sends
a message to transmit or store, it adds the appropriate identifier packets according to the
protocol and the message type to handle. In addition, we can have multiple instances of
this stage, one per physical transmitter. If the CPS needs PCI-E transceivers, it generates
the messages according to the PCI-E protocol. This stage can be configured at design

83

7 Control-Data Acquisition System

time for packeting data with different message protocols. Inside, there is a look-up table,
which can be updated with the different identifier packets. Based on the type of message
to be sent, these packets are selected using an FSM.

Transmitter stage

This stage controls the physical transceivers and forwards data to them. Each transceiver
generates a tx data clock that drives units within the Select packet sub-stage and the
Streaming generator stage. Furthermore, it contains the transceiver instances that are
configured and mapped at design time. At run time, the user can update the data rate
and the tx data clock according to the reference clock and the transceiver reconfigurability.
For instance, the Data-Flow Module of the CDAS architecture for the KIDS-CT scanner
uses only one Transmitter domain because all the transceivers have the same data rate
and configuration, but different transceiver configurations are supported, where different
Transmitter domains can also be defined.

7.5 Data-Processing Module

This Section describes the Data Processing Module, which is designed as a configurable
pipelined dataflow architecture. As shown in Fig. 7.8, this module receives data from the
scheduler stage of the Data-Flow Module, then processes and forwards them back. This
module is strictly dependent on the data processing algorithm to be performed by the
targeted CPS application.

In order to achieve a generic architecture that contributes to the research objectives,
this thesis proposes an architecture that can be configured to process custom and standard
data formats and integrates processing algorithms that are also implemented within a
dataflow processing core.

A processing core must use AXI4-Stream interfaces to receive data from the other stages
and be integrated into the proposed Data-Processing Module. In addition, a processing
core can be implemented by using a Hardware Description Language (HDL), a HLS, or an
IP core design flow. In addition, the architecture can be used to explore the design space
considering the data format options. In order to isolate different critical components and
application domains within the CDAS, various instances of the Data-Processing Module
can be implemented and properly connected to the associated Data-Flow Module. To
simplify the architecture description, the following Sections refer to a single instance.

7.5.1 Architecture description

The Data-Processing Module consists of the following three main stages shown in Fig. 7.9:

84

7 Control-Data Acquisition System

• Sensor-data conversion stage: This stage receives raw sensor data from one or more
Data-Flow Modules. It converts each value to the selected processing data format.
It must be configured at design time for the processing data format (e.g., integer,
floating point, fixed point).

• Processing stage: At this stage, the values are ready to be processed in the selected
data representation. It is designed to integrate the dataflow core, which implements
the processing algorithm of the selected application. In order to facilitate the
data communication with the existing IP core, the architecture provides the AXI4-
Stream interface protocol, which is the de-facto standard for on-chip streaming
communication.

• Post-processing conversion stage: This stage receives the processed data and converts
them to the selected format, which is defined at design time. The output results are
ready to be sent to another slave-client node or displayed. Consequently, they are
sent back to the Data-Flow Module, which is responsible for their transmission.

detector type [AXI4-Stream]

Raw0(p,x,y)

RawN(p,x,y)

Raw0(p,x,y) P0(p,x,y)

PM(p,x,y)

P0(p,x,y)

PM(p,x,y)RawN(p,x,y)

Sensor-data
conversion

stage

Post-processing
conversion

stage

Image-processing
stage

image-processing type [AXI4-Stream] reconstruction type [AXI4-Stream]

Figure 7.9: CDAS: Data-Processing Module

As explained above, the Data-Processing Module uses AXI4-Stream as input/output
interface and between the internal stages. It facilitates the integration of new processing
cores into the architecture because this versatile interface offers adjustable data widths,
making it adaptable to various data representations and facilitating the DSE of the data
formats. Thanks to the tunability of different data formats, this architecture has been used
to explore the design space and find better data formats for CT pre-processing, taking
into account image quality, execution time, and resource utilization. This process will be
explained in Section 9.5, together with all the proposed optimizations for the CT use case.

85

7 Control-Data Acquisition System

7.6 Isolation Support For MPSoC-FPGAs

In order to isolate the modules presented in the previous Sections, this thesis proposes an
isolation method that has led to a lightweight architecture for low-cost MPSoC-FPGA,
named Lightweight Protection Unit. As shown in Fig. 7.2, the LPU is also part of the CDAS
architecture for MPSoC-FPGA. It is crucial because in CPSs with MCS requirements,
such as the KIDS-CT scanner, these modules contain hardware units and software modules
belonging to various external components or application domains. Besides the CDAS
architecture, this system can be implemented on different architectures utilizing AXI4. It
also targets a wide range of devices from small embedded to high-performance FPGA and
MPSoC-FPGA to guarantee isolation in a MCS application. In order to protect a desired
memory space or peripheral from different masters (e.g., CPU, PE) trying to access it,
the proposed solution exploits the on-chip communication and blocks transactions that
are considered illegal based on defined policies.

Proposed method

The proposed isolation method must result in a lightweight architecture that can be
integrated into existing architecture for small CPSs and/or their components. In addition,
it must not affect the transaction time with stochastic delay, to meet the real-time require-
ments. To meet such requirements, the decision path responsible for granting/denying a
transaction must be combinatorial. Consequently, the isolation mechanism is based on the
following three elements:

The proposed isolation method is based on the following thee elements:

• Protection Domain (PD): This consists of a group of master components within
the same application domain. Notably, a single master component may be a member
of several PDs. A PD is characterized by a domain ID and a domain mask, which
are used to match AXI transactions belonging to a master with PD. Also an AXI
transaction contains the AXI ID, which is usually defined at design time. For masters,
where the AXI ID is not defined by default, an additional component will be used
between the AXI master interface and the AXI interconnect.

Domain ID: 110000
 bitwise AND

 Mask ID : 111010
=

 110000

 110000
 AXI ID: 110101
 bitwise AND

Mask ID: 111010

The Master
matches with
the Protection Domain

1

Figure 7.10: Matching steps between AXI ID and domain ID

86

7 Control-Data Acquisition System

Given that domain IDs and AXI IDs can vary in size, and an AXI ID may be
associated with several PDs (and vice versa), the domain mask allows for comparison
and identification of the PDs to which a master belongs at run time. Since a domain
ID and an AXI¸ ID can have different sizes and an AXI ID can be associated with
different PDs and vice-versa, the domain mask permits to compare them and identify
which PDs are belong to a master at run time. In detail, the domain ID bits that
are not masked by their domain masks are compared to the corresponding unmasked
bits of the AXI ID. If they all are equals, the transaction is part of that PD, as
shown in Fig. 7.10. For example, Table 7.1 shows that the master ID 1011 belongs
to domains 0 and 2.

Table 7.1: Example of AXI ID associated with different PDs
Domain Mask Domain ID exemplary IDs

PD 0 1100 1000 1011, 1000
PD 1 1110 1000 1000
PD 2 1110 1010 1011

The primary benefit of this matching solution is its efficiency in terms of time and
resources because it can be implemented in the LPU with simple combinatorial logic.

• Memory Region: An Memory Region is defined as an aligned address space.
Similar to how masters can belong to various PDs, a peripheral and a memory
address may simultaneously associate with multiple Memory Regions (MRs). Each
MR is delineated by a starting address and its Most Significative Bit (MSB), which
includes the addresses spanning the entire MR. In fact, an MR always comprises
contiguous addresses.

To enhance the execution time of the MR matching step and the resource utilization
of the LPU, the position of the Least Significant Bit (LSB) is used as a parameter.
By using the LSB as a defining parameter, the LPU only needs to inspect the range
of bits nestled between the MSB and the LSB for each input address. Furthermore,
the LSB position is also used to define the size of the memory region that is equal
to 2LSB pos.. An example of this matching is shown in Fig. 7.11.

Memory Address : 1100 0011 1101 1000
 (transaction) bitwise AND
LSB pos = 6 : 1111 1111 1100 0000 =

 1100 0011 1100 0000

 1100 0011 1100 0000

1

MR starting address

Memory Region Addresses: 1100 0011 11XX XXXX

The Transaction
Memory Address
matsches with the
Memory Region

Figure 7.11: Matching steps between a Transaction Memory Address and MR

87

7 Control-Data Acquisition System

• Access Policy (AP): Each one defines the read/write access rights of masters in a
PD to addresses in an MR. It is composed of rules in the format: “PD_X is allowed
to read/write MR_Y ”. A transaction is granted access if at least one of these rules
permits it. If a master isn’t linked to any PD, its requests are automatically rejected.
Differently from other solutions in the literature that store the APs of different LPU
in a centralized database, the proposed solution will use a look-up table for write
and read in each LPU to store the associated APs. In this way the grant bit in the
AP can be read every clock cycle as an input to the combinatorial logic that will
implement the decision path.

PDs and MRs, along with their parameters, are pre-determined during the design phase.
Conversely, AP are established during run time. This methodology ensures that each LPU
is optimized during the synthesis phase and that the entire decision path is implemented
using the combinatorial logic. The only variable in this equation is the incoming AXI
transaction and the access rules of the AP. It’s crucial that the APs are set at run-time
to ensure that temporal isolation is maintained.

7.6.1 LPU architecture

As explained above the proposed isolation method exploits is applied on the AXI interface.
Therefore, the proposed LPU must be instantiated between masters and slaves, in the
PL part of the MPSoC-FPGA. In this way, each AXI transaction crosses a LPU before
reaching a slave. To do it, the designer can decide to instantiate and connect it on the
master side or on the slave side and to have single or multiple instances.

Demux

Error
Generetion

Con�guration Policy Check
Policy

Permission
Granted

ID
ADDR

LEN
SIZE

1

0

Lightweight Protection
Unit

Full AXI AXI-Lite

Figure 7.12: Architecture of the Lightweight Protection Unit

As shown in Fig. 7.12, a LPU has two types of AXI interfaces: the AXI-Lite and the
AXI-Full which are depicted in blue and orange, respectively. The AXI-Lite interface is
used to read and write controls and status registers, as well as the LPU look-up table. In
contrast, the AXI-Full interfaces connect the master and slave interfaces, where isolation

88

7 Control-Data Acquisition System

must be provided. Here, the granted transactions pass through the LPU without being
affected by it, while the rejected transactions are blocked and terminated.

The LPU architecture consists of the following units:

• Configuration: It contains the registers that are configured at setup time to enable
the isolation mechanism and to set the AP. The run-time configuration permits to
realize also the temporal isolation. In addition, it forwards the values written in the
policy look-up table to the Policy Check unit as signals. In this way, the policies can
be read every clock cycle as input signals from the Policy Check unit.

• Policy Check: This is the core of the LPU and it is responsible for generating the
valid bit for the granted/rejected transaction. Each LPU has two instances of the
policy check unit that are responsible for read and write channels. Every clock cycle
this unit reads the master ID (AXI ID) and the incoming memory address of the
current AXI transaction and matches the associated PDs and MRs according to the
step described above. In this Policy Check unit, there is one PD matcher and a MR
matcher per PD and MR, respectively, as shown in Fig. 7.13. For this reason, the
number of PD and MR defined at design time will also affect resource utilization.
The results of this matcher are used to read the correct value in the policy look-up
table, and if there is at least one APs among the associated PDs and MRs, the
permission is granted. In the example, shown in Fig. 7.13, the AXI-ID matches with
PD0 and PD1, and the memory address of the AXI transaction matches with MR0

and MR1. Since the AP for PD1 and MR1 is equal to 1, the transaction is granted.

• AXI-Demux: It forwards the AXI transactions either to the Error Generator or
outside the LPU. A transaction is forwarded on the base of te the valid signal
of the permission granted, which is connected to the selector signal of this Unit.
The AXI-Demux unit differs from a simple demultiplexer, because it implements all
the logic to handle all signals of an AXI transaction, and can also be set to buffer
transactions, as explained in Ref. [155].

• Error Generator: It has received the AXI transactions that were rejected by the
Policy Check. Such transactions cannot simply be blocked, because the communica-
tion would be stalled, as explained in Ref. [155]. Therefore, they are forwarded to
this unit that asserts an error as defined by the AXI standard.

7.6.2 Example

The following Section illustrates an example, where a LPU has been instantiated and
connected with two masters and two slaves, as shown in Fig. 7.14. This standalone example
illustrates how a LPU can be placed in the design and aims to clarify how it derives
decisions at run time.

89

7 Control-Data Acquisition System

110000
 AND

111000

Domain ID
AND

Mask ID

=

0110 XXXX

01104 03020100

 110 XXX

0110 XXXX

4 LSB

Incoming ADDR:

Incoming ADDR +
SIZE + LEN :

=

=

A
N
D

Memory Region Matcher (MR0)Protection Domain Matcher (PD0)

0 0 0

0

0

1 0

0 1

PD0

PD1

PD2

MR0 MR1 MR2

0 02 1 21

OR between results PERMISSION
GRANTED

Figure 7.13: Policy check functionality

AXI-Interconnect

Slave

Lightweight Protection Unit

Policy

Slave

Master Master

AXI-Interconnect

Figure 7.14: Exemplary of LPU placement

Starting from the design in Fig. 7.14, the example assumes that the first master belongs
to the PD1 and PD0. Rather, the second master belongs to the PD2 and PD0. In the
same way, the address space of the first slave is included in MR1, and the second one in
MR2, while both are associated with the MR0. These associations are defined at design
time, while the AP is set at run time.

According to the proposed isolation methodology, a master can access a slave memory
space, if there exists an AP that encompasses both a PD and an MR to which they belong.
In this example, as shown in Fig. 7.15, the user has defined the following three AP: the

90

7 Control-Data Acquisition System

PD0 can read the MR0, the PD1 can write the MR1, and the PD2 can write the MR2

M
em

or
y

Re
gio

n
2

M
em

or
y

Re
gio

n
1

M
em

or
y

Re
gio

n
0

1|0 0|0 0|0

0|0 0|1 0|0

0|0 0|0 0|1

Domain 0

Domain 1

Domain 2

Read|Write

(a) Example Policy

M
em

or
y

Re
gio

n
2

M
em

or
y

Re
gio

n
1

M
em

or
y

Re
gio

n
0

1|0 0|0 0|0

0|0 0|1 0|0

0|0 0|0 0|1

Domain 0

Domain 1

Domain 2

Read|Write

10

00

(b) Access given

M
em

or
y

Re
gio

n
2

M
em

or
y

Re
gio

n
1

M
em

or
y

Re
gio

n
0

1|0 0|0 0|0

0|0 0|1 0|0

0|0 0|0 0|1

Domain 0

Domain 1

Domain 2

Read|Write

00

00

(c) Access denied

Figure 7.15: Exemplary Policy Configuration and Decision

When the first master attempts to write to the first slave, both PD0 and PD1 match
the master, and MR0 and MR1 match the slave’s memory address. The matching PDs
and MRs activate the green lines in the look-up table shown in Fig. 7.15b. As at least
one of the entries marked in red is equal to one, the permission is granted. Instead, when
the same master tries to write to the other slave associated with MR0 and MR2, all the
red-marked entries are equal to zero, so access is denied.

91

Part III

KIDS-CT

92

8 System Architecture For The KIDS-CT Scanner

This Chapter describes the realization of the proposed System Architecture and Commu-
nication Infrastructure applied to a CPS use case: the KIDS-CT scanner assembled in the
context of this research work. Section 8.1 matches the CT task requirements with the
classification proposed in Section 6.1, following the requirement definition steps presented
in Section 5.1. This process allowed the author to identify the common and specific
elements (i.e., requirements) between diagnostic and interventional CT procedures. Finally,
Section 8.2 and Section 8.3 explain the realization of the System Architecture and the
related Communication Infrastructure in the specific case of the KIDS-CT scanner. The
content presented in this Chapter has been published in Ref. [DP 2, DP 3, DP 4].

8.1 CT Requirement Classification

In order to have a CPS that is scalable and extensible, it is essential to identify the common
and specific elements, starting from the application modes/functionalities down to the
associated design requirements for the hardware/software architecture of the ES within a
CPS device.

MEDICAL
PROCEDURES

MEDICAL
REQUIREMENTS

DESIGN REQUIREMENTS

Mode0:
Diagnostic CT

Mode1:
Multimodality

CT
for

Interventional

Exploration of
medical

procedures

STEP 1 STEP 3STEP 2

Diagnosis;
High resolution
3D image;

X-Ray dose
minimization;
Parameter
tuning; open-
interface for
exploration of
new medical
procedures;
(capability to
add other
components
such as Time-
of-�y cameras,
Ultrasound
sensors,
DMSs
and X-ray
Tubes);

Surgery and Diagnosis;
Live reconstruction
3D image; Live inter-
action between:
Patient’s body/Doctor
/Scanner;Live update
input parameters;
Real-Time image pro-
cessing; Real-Time
controlling; Live X-ray
current update; Mul-
tiple systems data-
merge; Sub-systems
live interaction;

Control and Synchronization:
Safety control units; Real-time
control-synchronization; Custom
control protocols; Global timestamp;
Plug-and-play capability at
communication, system and
control level;

Data Acquisition and Collection:
Custom data link protocol; Simplex data
communication; Low latency interer-
communication; High speed data
communication; Plug-and-play
capability; On-the-�y acquisition;
Multi-sersor acquisition;

Data Processing:
Custom architecture for pixel processing
and reconstruction; Huge memory
space; Plug-and-play capability;
On-the-�y acquisition; Support to
mixed-data-precision processing

O�-line acquisition and
reconstruction; High
data preciosion formats;

Data Acquisition and
Collection &
Data Processing:
Mixed data-precision
formats; Real-time
data acquisition;
Real-time data
procesing;

Figure 8.1: Definition of the KIDS-CT requirements

94

8 System Architecture For The KIDS-CT Scanner

Fig. 8.1 shows the steps to define these requirements for the KIDS-CT scanner, where
the medical procedures are considered as the application/functionality mode of the CPS.
By applying the explained steps, the medical and design requirements have been identified,
starting from the medical procedures. Specifically, the red text in the figure highlights
the requirements that are typically not met by commercial scanners but are met by the
KIDS-CT scanner through the research objectives and outcomes of this thesis. Furthermore,
these design requirements have been grouped and associated with the three main task
groups identified in Section 6.1 for the proposed CDAS architecture: the Control and
Synchronization, the Data Acquisition and Collection, and the Data Processing groups.

8.2 System Architecture

In the KIDS-CT scanners, the X-ray tube, the DMS, the gantry, the patient table, and
the collimator system are sensor/actuator components, while the user interface system
and the reconstruction system are interface/processing components. Following the model
of the proposed System Architecture, all these components are independent slave-client
nodes connected to the master-server node (i.e., CDAS). Using this solution, an additional
component (e.g., DMS, X-ray tube) is also modeled as a new slave-client node to be
connected to the master-server node for being integrated into the scanner.

CDAS

X-Ray TubeGantry Ring Encoder

SoC - CPU
MCU

PL

PS

G
ag

i
ibt ti

ba
gi

G

ti
ba

gi
G

Data
Interface

Control
Interface

Co
nt

ro
l

Si
gn

al
s

Detector
(DMS)

E
T
H

E
T
H

E
T
H

E
T
H

Slip-ring communication link

Ro
ta

tin
g

Si
de

St
at

io
na

ry
 S

id
e

Image
 Data

Set-up
Control

Data-Flow Module

A
X
I

Data-
Processing
Module

Control
Synchronization

Module

Control Unit
(CU)
DMS,X-ray Tube, ...

Registers

others
devices

Safe Module

User
Interface
System

Recon-
struction
System

Patient
Table

L
P
U

Figure 8.2: KIDS-CT System Architecture: Physical level

Fig. 8.2 shows the physical level model, with the mentioned nodes and connections in the
scanner. Due to the physical limitations of connecting components between the rotating
side (on the left side of the figure) and the stationary side (on the right side of the figure),

95

8 System Architecture For The KIDS-CT Scanner

the connection between the CT components and the CDAS is critical in this application.
Since communication between the rotating and stationary sides is limited by the number
of links and the data rate that the associated transceivers can achieve, optimizing these
two constraints will also reduce the cost of the device. The red arrows show the data flow
from the DMS to the reconstruction system.

During the modeling of the System Architecture, it is already possible to optimize
both constraints by placing the master-server node (i.e., CDAS) on the rotating side.
In this way, the number of connections and the amount of data to be transmitted via
the slip-ring communication link with the CDAS can be reduced. In addition, all the
slave-client nodes can be easily connected to the CDAS without crossing the gantry, and
the slip-ring communication links are only used to transmit the control commands with
the user interface system and the processed data with the reconstruction system.

Tier 1

Tier 2

User Interface, (doctor)

Control SW

Linux Operation System

Reconstruction SW Reconstruction

System

Devices

FPGA, GPU, CPU

Detector SU

Detector X-RayTube Gantry others

X-Ray Tube SU Gantry SU others SU

PetaLinux Operation System Processing

System

Programmable

Logic

Axi Bridge - Registers

Control Unit Module Data-Flow

Module

DataProc.

Module

}
}

Tier 3Detector X-Ray Tube Gantry others

masterrequestsrequests

requests

responsesresponses

responsesresponses master

slaves

slaves

Figure 8.3: KIDS-CT System Architecture: Logical level. Copyright 2020, IEEE

At the logical level, the System Architecture for the KIDS-CT scanner has been modeled
according to the proposed multi-tier architecture. As shown in Fig. 8.3, Tier 1 contains the
user interface that allows access to the control software and the reconstruction software;
the physician sets the acquisition parameters and the reconstruction parameters from this
Tier, which is responsible for encoding these parameters and sending them to the CDAS.
In Tier 1, there is no direct connection to sensors/actuators such as the X-ray tube and the
DMS, which are only accessed by Tier 2 (i.e., the CDAS). Tier 2 receives the functional
parameters coming from Tier 1 and updates the local sensor/actuator parameters to be
sent to Tier 3. Finally, the sensors/actuators, such as the X-ray tube and the DMS,
the gantry, are placed in Tier 3. The presence of Tier 2 enables the containment of
sensor/actuator failures and blocks access by attackers originating from the user interface
in Tier 1. In fact, this interface may also be accessed through the World Wide Web to
reach sensors/actuators in Tier 3. Therefore, in case of failure, the CDAS is responsible

96

8 System Architecture For The KIDS-CT Scanner

for containing the issue and setting the rest of the system into a safe mode.

8.3 Communication Infrastructure

Based on the System Architecture, the CT scanner components have been interconnected
according to the proposed Communication Infrastructure as shown in Fig. 8.4. This
depicts the interconnection of the nodes and their interfaces for the different classes.
Associated with the non-real-time class type, each node uses an Ethernet port at the
communication interface layer and IPv4 protocol at the transport protocol layer. For nodes
in the real-time data class, the data between the master-server node and the other nodes
has been transferred over fibre channel, using GTXs at the transport protocol layer, which
can be set for different encodings and protocols.

Node M/S
 ACS FPGA

Node S/C
Control PC

Node S/C
DMS

Node S/C
Reco-PC

Node S/C
X-Ray

Node S/C
Gantry

IPv4

IPv4

Data TX SFP+RX SFP+

Signals

Signals

Signals

Signals

IPv4

IPv4

IPv4

switch switch

Node S/C
Collimator

CAN

SLIP-RING
COMMUNCATION

LINK

Node S/C
Patient Table

IPv4

Non-Real-Time
interface

Control Real-Time
interface

Data Real-Time
interface

Figure 8.4: KIDS-CT: Communication Infrastructure. Signals refer also to custom vendor
protocols

For the real-time control class, which includes communication between the master-server
node and the X-ray tube, DMS, collimator, and gantry nodes, custom interfaces and
custom transport protocols provided by vendors are used. To establish this communication,
an extension board was designed and built. This is connected via a FPGA Mezzanine Card
(FMC+) interface using the “VITA 57.4 FMC+ standard", which allows the connection
of custom vendor interfaces to the General Purpose Input Output (GPIO) pins. At
implementation time, the GPIO pins are mapped to the PL of the MPSoC-FPGA as
digital I/O asynchronous signals. These signals are connected to hardware units that
implement transceivers of the appropriate custom transport protocol, also provided by the
vendor. Fig. 8.5 shows the KIDS-CT scanner with components and their connections to the
master-server node (i.e., CDAS). On top of the Transport Protocol layer, the Handshake

97

8 System Architecture For The KIDS-CT Scanner

Protocol, the Application Datagram Protocol, and the Application Stream Protocol have
been implemented consisting in the application protocol layer. While the lower layers have
different protocols per class, this layer unifies all the different data coming from these
protocols to the corresponding proposed application protocol belonging to the class. This
solution facilitates inter-component communication where different protocols are used at
the transport protocol layer and the communication interface layer. For example, the
DMS, the X-ray tube, and the gantry use different vendor-specific protocols, which are
unified at the application protocol layer.

Figure 8.5: Assembled KIDS-CT scanner. (a): Experimental CT complete system with
(1) X-ray tube, (2) Cooling system, (3) Generator, (4) Gantry subsystem,
(5) Multiline DMS, (6) Patient table. (b): Detailed view of the DMS and
CDAS implemented on the AMD-Xilinx ZC706 Evaluation Kit: (7) Multiline
DMS, (8) Extension-board including the custom interfaces, (9) AMD-Xilinx
ZC706 Evaluation Kit

In addition to the various interconnections, Fig. 8.4 shows the data flow from the DMS
to the reconstruction system via the master-server node. In the KIDS-CT scanner, this
communication is set at a rate of 6.250 Gbit/sec, and thanks to the fibre channel, the
latency is in the order of nanoseconds. This flow is critical for the KIDS-CT scanner to
provide real-time support for the interventional procedures. In contrast to related work
that acquires and pre-processes data offline during the reconstruction steps, such a solution
will allow data to be pre-processed on the fly in the master-server node during acquisition.
The Application Datagram Protocol is used to set the various parameters and registers
for setting up the various components and to read out the logging data. In the case of
the KIDS-CT scanner, in order to identify the different commands and to check that no
connection is lost, different packet types have been defined within a message, resulting in
the following structure shown in Fig. 8.6.

As shown in the figure above, the Pong packet contains only the associated status and

98

8 System Architecture For The KIDS-CT Scanner

Figure 8.6: Structure of four typical message data sections, used in the KIDS-CT scanner

the control registers, so padding bits are required to align and encode it. The Normal
packet has a register field and the data field is based on the amount of data to be
transmitted, which the server calculates at run time using the Length field within the
packet. Additional packet types can be defined when an additional slave-client node is
plugged into the KIDS-CT scanner.

8.4 Optimization Of The Acquisition And Processing Datapath

In order to use the KIDS-CT scanner for interventional procedures, the data should be
collected and processed in real time. For this purpose, existing state-of-the-art datapaths
for diagnostic CT have been analyzed and a new solution has been proposed in this thesis
to overcome the found limitations, which are explained in Chapter 4. In the related
work, most of the CT scanners acquire and store data in a DAS and send them to the
reconstruction system only after the acquisition, as shown in Fig. 8.7.

CT DATA
Data

Acquisition
System

Data
Acquisition

System

Control
System

DMS

DRAM STORAGE DRAM

Accelerator

STORAGE

Slip-Ring communication link

1

2 5

6

7

8

9

10

3

4

Figure 8.7: Acquisition datapath for CT scanners without real-time support

This figure shows the process where the data are stored in the external memory of
the DAS or the reconstruction system. Then, these data are processed offline, on an
accelerator such as GPU or FPGA, which is plugged into the reconstruction system.

99

8 System Architecture For The KIDS-CT Scanner

Unlike related work, to provide real-time support in the KIDS-CT scanner, the data are
collected from the CDAS and forwarded to the reconstruction system on the fly, during
the acquisition. In this way, the reconstruction algorithm can be executed during the
acquisition to display the 3D volume to the surgeon.

Due to the computationally intensive nature of the reconstruction algorithm, running
the entire process on a GPU after data acquisition results in significant time loss and
performance issues, preventing real-time reconstruction. In order to optimize the acquisition
and perform processing steps on the fly during the acquisition, we need to consider the
duration of a full rotation, and thus the duration of an integration period ∆T . This
represents the time spent by a pixel sensor to acquire the information and also denotes
the interval between two successive projection acquisitions. It is typically about 1 ms

in medical procedures, as shown in Fig. 8.8. We can see in the figure that a projection
data (e.g. PRS0) is available in less time than ∆T ; this is because the projection data
transmitted refers to the previous acquisition and it must be transmitted in a time that is
less than the current integration period, otherwise, the sensor buffer would be full after a
few projections and would be lost during the acquisition.

ΔT=Integration Period
≈1 Millisecond

Np

20 1 Np-1

Np = Number of projections per
round

Np

PRS1 PRS
Np-1

PRS
Np

ΔT ΔT ΔT

DATA TRANSMISSION

1

Single projection data

Figure 8.8: Acquisition interval between consecutive projections

Since the CDAS must wait for one integration period for each projection to collect,
and considering that both the Data-Flow Module and the Data-Processing Module are
implemented within a pipelined data-flow architecture capable of collecting and processing
data on the fly, an important implication emerges: if the processing time is less than the
integration period, it effectively adds zero latency to the overall data acquisition time.
Thus, an optimization can already be achieved following this observation.

In order to determine which steps of the reconstruction algorithm are suitable for
implementation in a dataflow architecture to integrate into the Data-Processing Module
of the CDAS, the algorithm has been segmented into three distinct parts, as depicted
in Fig. 8.9. These parts include: the pixel processing part, which is characterized by
the absence of dependency between pixels; the slice processing part, which involves data
dependency between the nearest row pixels within a projection image; and the voxel part,
where there is dependency between pixels across different projections that intersect the

100

8 System Architecture For The KIDS-CT Scanner

I0-correction

Redundancy
weighting

Reconstructed
image

Cosine
weighting

Back
projection

Raw image

Ramp
�ltering

Pixel
Processing

Voxel
Processing

Slice
Processing

Figure 8.9: Image reconstruction: Algorithm steps

same voxel. Moreover, the lack of data dependency allows the pixel part to be performed
on the fly as successive projections are acquired from the DMS. In fact, while the pixel
processing part can be performed on the fly without waiting for any data, the slice
processing part can be processed when an entire row is collected, and to meet the on-the-fly
requirements, all rows within a single projection image should be performed in a ∆T . To
take advantage of this time when no operations are normally being performed, the CDAS
passes the pixel data to the proposed Data-Flow Module, where the pixel processing part
of the algorithm is performed within ∆T , and consequently, no latency is added in the
system.

CDAS

DMS

Control-Synchro-
nization Module

MEM

Slice+Voxel
Processing

Recostruction System

1

2 3

4

5

6

Data Processing
Module: Pixel

Processing

Data-Flow Module

Slip-Ring technology

Data-Flow
Module

Figure 8.10: Optimized datapath for the KIDS-CT scanner

This solution results in the datapath and the algorithm mapping shown in Fig. 8.10,
where data are acquired and forwarded to the reconstruction system, while the pixel
processing part is performed without adding latency. The following Chapter discusses the
various specific optimizations proposed to improve the performance of the CDAS for the
KIDS-CT scanner and compares the final reconstruction time with a solution where the
entire algorithm is implemented in a single accelerator such as a GPU.

101

9 Control-Data Acquisition System For The KIDS-CT
Scanner

This Chapter provides a comprehensive overview of the CDAS architecture integrated
into the KIDS-CT scanner. For this use case, the AMD-Xilinx ZC706 Evaluation Board
with the XC7Z045 MPSoC-FPGA model has been selected [156]. The Section 9.1 intro-
duces the hardware/software CDAS architecture implemented in the KIDS-CT scanner,
focusing on the mapping of the tasks associated with the various client-slave nodes. Then,
Sections 9.2, 9.3 and 9.4 describe the architectural configuration for implementing the
Control-Synchronization Module, the Data-Flow Module, and the Data-Processing Module
in the KIDS-CT scanner, respectively. Finally, Sections 9.5 and 9.6 illustrate the proposed
pre-processing optimizations for the interventional CT application and the DSE applied
to the various data formats for achieving the research objectives in the KIDS-CT scanner.
The contents of this Chapter are partially discussed in the articles in Ref. [DP 1, DP 2,
DP 3, DP 4, DP 5, DP 6, DP 7].

9.1 Hardware/Software Architecture

The CDAS manages all tasks and interactions within the KIDS-CT scanner. Applying the
task partitioning proposed in Section 7.1 on the hardware/software architecture proposed
in Section 7.2, the resulting CDAS architecture shown in Fig. 9.1 has been defined.

PS

Bare-Metal Petalinux RTOS

AXI4 - Interconnect - Register

Control-Synchronization Module

APU - Cortex A9

FSBL DMSX-Ray TubeOthers Collimators Gantry

DMSX-Ray TubeSynch

Data-
Flow
Mod.

Data
Proc.
Mod. Collimators Gantry

Application
layer

OS
layer

Hardware
layer

Figure 9.1: CDAS architecture for the KIDS-CT scanner

At the Hardware layer, the real-time tasks are mapped to the Control-Synchronization
Module and the Data-Flow Module. These are modeled in Register-Transfer Level (RTL)
using the SystemVerilog language, which allows the definition of parametrizable generic

102

9 Control-Data Acquisition System For The KIDS-CT Scanner

modules at design time. Instead, the real-time processing tasks mapped to the Data-
Processing Module are described in the C language, and the RTL model was created using
Vitis™ HLS. The generated RTL was integrated into the design as an IP core for Vivado
Design Suite [157] and implemented in the PL of the MPSoC-FPGA. These modules can
also be parameterized at design time.

At the Application layer, software modules associated with the various CT compo-
nents run on the APU, which consists of a dual-core Cortex-A9 [118]. It implements the
server for the non-real-time communication tasks. It also implements the business logic of
the KIDS-CT scanner. This includes the tasks that coordinate the setup process of the
DMS, the X-ray tube, and other nodes. It is also responsible for notifying the control
systems of errors that cannot be handled at run time. Due to the lack of an isolation
mechanism in the selected MPSoC-FPGA, the proposed LPU has been deployed between
the PS and PL parts. This also provides isolation support between PL-PL and PS-PL
communication. The software modules at the Application layer configure and coordinate
the Control-Synchronization Module, the Data-Flow Module, and the Data-Processing
Module of each associated component, which is implemented at the Hardware layer.

At the OS layer, FreeRTOS and Petalinux RTOS were implemented, deployed, and
evaluated. This allows the designer to choose the OS that best suits its application.
FreeRTOS provides a simple OS structure, where kernels are written as bare-metal code
without the need for virtual memory or additional layers usually provided by an OS. While
tasks running on FreeRTOS access the physical memory directly using the physical address,
Petalinux provides a virtual memory with virtual addresses; in this way, the virtual memory
is linked to the corresponding physical memory only at run-time, providing portability,
extensibility, and compatibility advantages of the software modules. Furthermore, Petalinux
supports Unix libraries, which are essential for the plug-and-play capability because they
facilitate the integration of vendor software/drivers of additional client-slave nodes. For
instance, in the KIDS-CT scanner, the control module for the X-ray tube requires several
Unix libraries to run. In terms of timing performance, both RTOSs achieved the same
results. Therefore, Petalinux was chosen for the KIDS-CT application, where compatibility
and scalability are essential features for providing the plug-and-play capability required
for exploring multimodality and interventional CT procedures.

9.2 Control-Synchronization Module

The CDAS architecture implements a Control-Synchronization Module for each component
(i.e., slave-client node), as shown in Fig. 9.1. While nodes belonging to Tier 1 of the System
Architecture have only the Software Module in the implemented CDAS, nodes belonging to

103

9 Control-Data Acquisition System For The KIDS-CT Scanner

Tier 3 have Software and Hardware Modules because they use custom real-time protocols
and synchronization mechanisms that must be implemented in the PL. Hardware and
software modules belonging to the same node, communicate with each other via an AXI4
interface.

9.2.1 Software architecture

This module contains the software architecture of the non-real-time tasks associated with
the business logic, the server, and the Application Datagram Protocol for the application
non-real-time class. The business logic is implemented in C and it is the main application
that executes the others as subtasks. The server is also implemented in C, following the
architecture presented in Section 7.3. It is configured using the configuration file, which
contains the priority hierarchy, the maximum number of connections to the server (i.e.,
connected clients), and the parameters associated with each node. They consist of the
CDAS static IP address and port of the node, the TIME_OUT value, and the packet structure
for the Application Datagram Protocol. As shown in Fig. 8.4, in the KIDS-CT scanner,
only the CDAS and five other nodes use the client-server communication, so the maximum
number of client connections in the “Communication module” within the server is set to 5.
Splitting the connections into different sockets provides an independent endpoint for each
connection. By setting the maximum number of clients, unexpected connections and/or
malicious clients attempting to connect to the server will be rejected. In addition, when an
authorized client attempts to access a socket associated with another client, the KIDS-CT
scanner is put into safe mode to prevent unnoticed operations. This means that the DMS
is disabled, the high voltage in the X-ray tube is disarmed, the gantry rotation speed is
decreased until it stops, and the software modules are set to default parameters while
the error is reported. The TIME_OUT parameter also has a critical function for the safety
requirements of the KIDS-CT scanner. In fact, to guarantee that the connection to a node
such as the X-ray tube is not lost, the TIME_OUT of the Timer module is set to 2 seconds
for all nodes. Finally, the scanner is put into safe mode if a TIME_OUT event occurs.

9.2.2 Hardware architecture

The Hardware architecture implements the real-time tasks for controlling and communicat-
ing with the nodes at Tier 3, such as the DMS and the X-ray tube. The Communication
Units associated with these nodes are also implemented in SystemVerilog. Since each
node has its own custom vendor protocol, a custom transceiver unit must be used for
each protocol, which has been implemented in the associated component instance for that
module, following the proposed solution presented in Section 7.3.

In addition to the Communication Unit, this module contains the Synchronization Unit,
which is responsible for coordinating the DMS, the gantry, and the X-ray tube during

104

9 Control-Data Acquisition System For The KIDS-CT Scanner

Status
Error

Trigger
Trigger
Enable

{Gantry

Status
Error

Trigger{DMS

} Gantry

} X-ray
Tube

Status
Error

Trigger{X-ray
Tube

Trigger
Enable } DMS

Trigger
Enable

User
Command

Event
Synch.

S
i
g
n
a
l
s

S
y
n
c
h
r
o
n
i
z
e

clock

Decision Logic

Figure 9.2: KIDS-CT Synchronization Unit

the acquisition. This unit, as shown in Fig. 9.2, gets as input asynchronous signals from
the nodes and synchronous commands (e.g., user commands) from the business logic
implemented in the PS, and generates the enable and the trigger signals to synchronize
the operations, such as making a CT scan.

Data
Acquisition
Command

Rotate
Gantrty

Stable
Rotation

G
A
N
T
R
Y

D
M
S

Start
Acquisition
KV error

X
I
R
A
Y

T
U
B
E

Calibrate

Ready
X-Ray on
Voltage
Stable

1

2

2

3

3
4

5

6

7

7

8

8

9

9

AFTER N ACQUISITIONS

LOW
signal

LOW
signal

LOW
signal

LOW
signal

LOW
signal

LOW
signal

LOW
signal

LOW
signal

LOW
signal

t

ErrorU
S
E
R

LOW
signal

Figure 9.3: KIDS-CT: Synchronization steps for making CT scans

In order to make a CT scan, the decision logic checks the status bits associated with
the voltage of the DMS, the X-ray tube, and the gantry speed, all of which must be stable
when the user sends the acquisition command. Fig. 9.3 shows the steps (depicted by the
numbers) to perform a scan, starting from the acquisition command sent by the user until

105

9 Control-Data Acquisition System For The KIDS-CT Scanner

the last projection is collected by the CDAS, without errors.

Data
Acquisition
Command

Rotate
Gantrty

Stable
Rotation

G
A
N
T
R
Y

D
M
S

Start
Acquisition
KV error

X
I
R
A
Y

T
U
B
E

Calibrate

Ready
X-Ray on
Voltage
Stable

1

2

2

3

3
4

5

6

8

8

8

8

7

BEFORE N ACQUISITIONS

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

LOW
 signal

t

ErrorU
S
E
R

LOW
 signal

9

9

Figure 9.4: KIDS-CT: Synchronization errors during a CT scan

If the gantry rotates too fast or too slow or the voltage of the X-ray tube or DMS is
not stable, the synchronization condition is not met. Consequently, the Synchronization
Unit will stop the acquisition in a safe way, following the steps shown in Fig. 9.4, where
the control signals that stop the system are generated within a few clock cycles after the
detection of an error (number 7). In addition, the system is stop independently of the
user interface where the error is only notified.

9.3 Data-Flow Module

This module is responsible for collecting data from sensors (i.e. DMS) and forwarding
them to the reconstruction system. During acquisition, the user can also decide to perform
on-the-fly data processing using the proposed Data-Processing Module within the CDAS
and forward the processed data to the reconstruction system that will only perform the
back-projection step.

The Data-Flow Module implements the proposed lightweight re-configurable dataflow
architecture, which has been configured at design time with the parameters explained
in Section 7.4 and shown in Tab. 9.1 to be integrated into the KIDS-CT scanner. Since
data needs to be collected from the DMS by the CDAS and then from the reconstruction
system to perform the back-projection, this module has been instantiated in the CDAS
and in the reconstruction system, where another MPSoC-FPGA has been plugged-in.

106

9 Control-Data Acquisition System For The KIDS-CT Scanner

For evaluation purposes, also Scale Case (SC) configuration was set up with five receivers.
This collects data, processes them on the fly, and stores them at 25 Gbit/sec in global
memory via PCI-E. This configuration was used to analyze the scaling of the system as
additional sensors such as the DMS are added to the KIDS-CT system. This use case will
be discussed in the resource evaluation of the Data-Flow Module in Section 11.2.

Table 9.1: Design-time parameters of the Data-Flow Modules within the KIDS-CT scanner:
CDAS and the reconstruction system (RS)

Design-Time Parameters
N(rx) P(pr) M(tx) FIFO depth Data-width GTX

CDAS 2 4 1 1 row about 30 bits1 rx / 64 tx Optical Fibre1 (rx)/ SFP+ (tx)
RS 1 0 1 (4 lanes) 1 projection 64 rx / 128 tx SFP+ (rx) / PCI-E (tx)

Tab. 9.1 reports the parameters to see the physical interfaces and the data width for
the AXI-Stream interfaces. We can notice that while the Data-Flow Module implements
two receivers for acquiring data from the DMS, it uses only one transmitter to stream
the processed data to the reconstruction system. We can see that the data depth of the
reconstruction system has been set to 1 projection, while the CDAS has been set to 1 row.
Even though one row is sufficient in the reconstruction system, a projection is required to
implement the ramp filtering in this second system. However, since the system has to wait
for an interval of 1 ms (i.e., integration period) between two projections, this means that
while the system reaches a data rate of 6.250 Gbit/sec during transmission, the average
data rate is equal to 1.5 Gbit/sec due to this waiting time. Therefore, with the FIFO
depth equal to 1 projection, the number of FIFO in the reconstruction system can also be
reduced to 1.

Table 9.2: Runtime parameters of the Data-Flow Modules within the KIDS-CT scanner
Run-time Parameters

Ref. clock [MHz] Data clock [MHz] Protocol
Stage CDAS RS CDAS RS CDAS RS

Receiver 156.250 78.125 156.250 8b/10b
Data-link Prorocol - 78.125 156.250 custom

Scheduler Stage - 78.125/156.125 156.250/250 -
Stream Generator - 156.125 250 custom

Transmitter 156.250 100 156.125 250 8b/10b PCI-E

When the scanner is powered up, the run-time parameters shown in Tab. 9.2 must be
set. These other parameters are required to establish the connections between the involved
nodes. Both run-time and design-time parameters are essential to provide support for
real-time and on-the-fly data acquisition because the number of FIFOs, the receive and
transmit data clocks, and the data-with, allow the system to be dimensioned so that the

1Due to the confidential nature of this matter, the exact information cannot be disclosed.

107

9 Control-Data Acquisition System For The KIDS-CT Scanner

transmit and processing data rates are higher than the acquisition data rate. In addition,
this solution allows the number of on-chip FIFOs to be dimensioned in a way to avoid
external memory to store data, in contrast to the current state of the art. The data module
must be able to send data at a higher rate than it receives.

G
TX

_R
X

 A

G
TX

_T
X

D
at

a_
Li

nk

Pa
rs

er

G
TX

_R
X

 B

cm
d_

va
lid

DA
TA

_B

cm
d_

va
lid

he
ad

er

DA
TA

_A

Sy
st

em
Cl

k

Pr
oc

es
si

ng
Cl

kSy
st

em
Cl

k

Sy
st

em
Cl

k

PS
_C

lk

Re
fC

lk

Tr
x

O
pt

ic
al

D

at
a

Ch
an

ne
l

Rx
 O

pt
ic

al

D
at

a
Ch

an
ne

l

Rx
 O

pt
ic

al

D
at

a
Ch

an
ne

l

Sy
ste

mC
lk

Sy
ste

mC
lk

Re
fC

lk2

va
lid

Re
fC

lk

Pa
rs

er

da
ta

cr
c

he
ad

er
da

ta
cr

c

CR
C

CR
C

cr
c_

va
lid

cr
c_

va
lid

Tr
ig

ge
r

Er
ro

r
Er

ro
r

Er
ro

r
64

64

646464
va

lid

va
lid

vali
d

vali
d

vali
d

vali
d

A
sy

nc
FI

FO
_N

A
sy

nc
FI

FO
_0

Sc
he

du
le

r

D E M U X D E M U X

M U X

M U X

M E R G E

Re
gi

st
er

 F
ile

s
Re

gi
st

er
 F

ile
s

PS
_C

lk
PS

_C
lk

PS
_C

lk
Re

gi
st

er
 F

ile
s

Re
gi

st
er

 F
ile

s
Re

gi
st

er
 F

ile
s

Re
gi

st
er

 F
ile

s
Re

gi
st

er
 F

ile
s

Reg
iste

r Fi
les

Reg
iste

r Fi
les

PS
_C

lk

PS
_C

lk
PS

_C
lk

PS
_C

lk

Re
gi

st
er

 F
ile

s
Re

gi
st

er
 F

ile
s

er
ro

r_
ch

ec
k

in
c_

cn
t

Pa
rs

er
3

st
ag

es

Co
nt

ro
l

U
ni

t

Pa
rs

er
3

st
ag

es
vali

d
vali

d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

vali
d

Rx
Cl

k

Rx
Cl

k
Rx

Cl
k

Rx
Cl

k

Tr
xC

lk

Tr
xC

lk

Tr
xC

lk

Tr
xC

lk
Tr

xC
lk

D
um

m
y

D
at

aD
at

a
G

en
er

at
or

Co
nt

ro
l U

ni
t

Re
ce

iv
er

 s
ta

ge
D

at
a-

lin
k

pr
ot

oc
ol

 s
ta

ge
Sc

he
du

le
r s

ta
ge

st
ag

e
al

lo
ca

to
r

st
ag

e

se
le

ct

pa
ck

et
st

ag
e

St
re

am
in

g
ge

ne
ra

to
r s

ta
ge

Tr
an

sm
itt

er
 s

ta
ge

AX
I

Br
id

ge

AX
I

Re
gi

st
er

In
te

rf
ac

e

Pr
oc

es
si

ng
Sy

st
em

St
re

am
in

g
ge

ne
ra

to
r s

ta
ge

St
re

am
in

g
ge

ne
ra

to
r s

ta
ge

Tr
an

sm
itt

er
 s

ta
ge

Tr
an

sm
itt

er
 s

ta
ge

D
at

a-
Pr

oc
es

sin
g

M
od

ul
e

D
at

a-
Fl

ow
 M

od
ul

e

D
at

a
to

pr
oc

es
s

D
at

a
pr

oc
es

se
d

Sy
nc

St
re

am

Cm
dS

tr
ea

m

Figure 9.5: KIDS-CT: Data-Flow Module instantiated in the CDAS

Based on the parameters defined in Tab. 9.1 and in Tab 9.2, the CDAS is set to collect
and forward data to the reconstruction system at a rate of 6,250 Gbit/sec. Finally,

108

9 Control-Data Acquisition System For The KIDS-CT Scanner

while the internal stages of the architecture were designed in SystemVerilog as generic
parametrizable modules, for the transceivers AMD-Xilinx IP blocks were instantiated and
set based on the described parameters. Finally, the registers of the different stages were
mapped using an AXI4-Lite interface. The Data-Flow Module for the CDAS integrated
into the KIDS-CT scanner resulted in the architecture shown in Fig. 9.5.

Fig. 9.5 shows how the two transceivers in the Receive stage, where data are collected
and send in the Data-Flow Module stages on two channels; the Data-link protocol stage
decodes the packets of these two channels using the custom protocol provided by the
detector vendor. Each projection is stored in a different FIFO selected by a scheduler
implemented in the Scheduler stage. Here, the data are merged and scheduled to an
available FIFO, while the previous projections are read in order from the FIFOs and
passed to the Streaming generator stage or externally to the Data-Processing Module.
Asynchronous FIFOs are involved in this stage to realize the CDC. Finally, the Streaming
stage gets data aligned to 64 bits, packages them according to the proposed Application
Stream Protocol, and passes them to the Transmitter stage, which sends the packaged data
to the reconstruction system via a GTX transceiver. With the exception of the Scheduler
Stage that has not a deterministic delay because different FIFOs are scheduled with a
round-robin algorithm, all other stages has been designed to have a deterministic delay.

9.4 Data-Processing Module

In the KIDS-CT scanner, the Data-Processing Module within the CDAS implements the
pixel processing part based on the mapping done for the proposed datapath optimization
presented in Section 8.4. The algorithm steps are described using C language and then
integrated into the Data-Processing Module as IP cores, from the RTL which is generated
with the C-Synthesis in Vitis™ HLS. They communicate with each other via AXI4-Stream
interfaces, allowing them to be integrated into any design using the AXI4-Stream interface
protocol, independent of the targetMPSoC-FPGA or FPGA. Furthermore, the IP cores
can be configured at synthesis time to handle custom and standard data formats.

Detector data type
[AXI4-Stream]

Raw0(p,x,y)

Raw1(p,x,y)

Raw3(p,x,y)

Raw2(p,x,y)

Raw0(p,x,y)

Raw1(p,x,y)

Raw3(p,x,y)

Raw2(p,x,y)

P0(p,x,y)

P1(p,x,y)

P3(p,x,y)

P2(p,x,y)

P0(p,x,y)

P1(p,x,y)

P3(p,x,y)

P2(p,x,y)

Detector-Data
conversion

stage

Processed-Data
conversion

stage

Pixel-processing
stage

Pixel-processing data type
[AXI4-Stream]

Reconstruction data type
[AXI4-Stream]

Figure 9.6: KIDS-CT: Data-Processing Module

109

9 Control-Data Acquisition System For The KIDS-CT Scanner

In order to process data during the scanning, the Data-Processing Module is connected
to the Data-Flow Module, in the Scheduler Stage, as shown in Fig. 9.5. Here, the collected
data are forwarded to the Data-Flow Module that processes them in the architecture
shown in Fig. 9.6.

The CDAS for the KIDS-CT scanner has been configured to acquire four pixels per
clock cycle. Consequently, the Data-Processing Module has been configured to process
four pixels per clock cycle, as shown in Fig. 9.6. In order to perform these steps in a
dataflow architecture and to process data on the fly, several optimizations have also been
proposed that are specific to the FDK CT reconstruction algorithm. Here the Detector-
Data conversion stage is responsible for converting the detector data into the desired data
format. The Pixel-processing stage performs them in a dataflow architecture, and the
Processed-Data conversion stage converts the data to be sent to the reconstruction system.
If data need to be processed with different data formats in the Pixel-processing stage,
conversion sub-stages can be added between the steps where a different data format can
also be used. By tuning different data formats in the first and third stages, the design
space for the pixel processing part was explored, with the aim to find the best solution in
terms of performance and image quality of the CT reconstructed images.

9.5 Pixel Processing Optimization

The pixel processing part has been implemented in the Data Processing stage of the
Data-Processing Module, using separate IP cores per function, as shown in Fig. 9.7.

Pixel-Processing stage
Detector

Data
Conversion

4 Pixels I0-Correction 4 Pixels Cosine &
Redundancy
Weighting

4 Pixels

DATA - FLOW MODULE

DATA
PROCESSING

MODULE

Reconstruction
Data Conversion

I0-Corr.
Position

Weighting
Position

BRAM
Ctrl.

BRAM

BRAM
Ctrl.

BRAM
Ctrl.BRAM

BRAM

AXI
INTER.

AXI
INTE

LPU PS

POS.

4 Pixels

POS.

Figure 9.7: Implementation of the Pixel-processing stage for the KIDS-CT scanner

110

9 Control-Data Acquisition System For The KIDS-CT Scanner

As shown in the figure above, this Module is externally connected to the Data-Flow
Module and internally includes the following steps: I0-correction, and Cosine & Redundancy
Weighting. Since these steps require additional offline data that depend on the pixel position
to be processed, BRAMs and FFs are used to store this information, which can also be
accessed by the PS via an AXI4 interface. While the data parameters are set at run time,
the type of processing to be applied and the number of pixels to be processed per clock
cycle are set at design time.

9.5.1 I0-correction step

In Section 2.4.3 the theory behind the CT reconstruction algorithm was introduced. As
explained, the raw data are acquired in the attenuation domain, but the I0-correction is
usually applied to the intensity domain data because commercial CT scanners provide
them already converted. According to the steps that usually are performed in the literature,
the reconstruction algorithm should first convert the data from the attenuation to the
intensity domain and then apply the I0-correction to each pixel, performing non-linear
arithmetic operations, as also shown in the equation 9.1. In order to perform these complex
operations on the PL parts, DSP slices are required, resulting in a low-performance data
processing [158]. In order to compare the proposed optimization, this standard solution
has been also implemented and their results are discussed in Section 11.3.

P (u, v, α) = loge(
c · exp(−(f · Raw0(u, v, α)))
c · exp(−(f · Raw(u, v, α)))) (9.1)

In the equation 9.1, the Raw0 input represents the pixel of an object-free projection
that is collected during the scanner calibration; the Raw input represents the current
collected pixel; c and f are constants that depend on the sensor parameters. Since the
KIDS-CT scanner provides raw pixel data in the form shown in the equation 9.1, this can
be used instead of the equation 2.3 usually used in commercial CT scanners. In addition,
this equation contains logarithmic and exponential functions, which can be simplified
because they are also the corresponding inverse functions. Therefore the equation 9.1 can
be simplified into the equation 9.2.

P (u, v, α) = log10(2) · f · (Raw0(u, v, α) − Raw(u, v, α)) (9.2)

The equation 9.2 contains only one multiplication and one subtraction arithmetic
operation, which can be implemented in PL within a few clock cycles, using Look-Up
Tables (LUTs).

111

9 Control-Data Acquisition System For The KIDS-CT Scanner

Raw0(u,v,α)

Raw(u,v,α)

-f c

exp

log

exp

div

mulmul

mulmul

g(u,v,α)

Figure 9.8: Data flow graph of the standard I0-correction

In order to process a pixel on the fly and implement these equations in a dataflow
architecture, they were modeled with the data flow graph shown in Fig. 9.8 and in Fig. 9.9.

Raw0(u,v,α)

Raw(u,v,α)

f*log(2)

mulsub g(u,v,α)

Figure 9.9: Data flow graph of the optimized I0-correction step

In the data flow graphs, the input/output data and constants are modeled with the
square boxes, the operations are modeled with the circular boxes, and the data flow is
modeled with arrows (i.e., vertex) [159]. These show the flow of data and the dependencies
between the operations. The different operations in the boxes have different latencies and
resource utilization in the PL part. The values of these metrics depend on the operation
implemented and the chosen data format. Therefore, by performing the I0-correction
directly on the attenuation domain data, it is possible to have an optimization already in
this step. Furthermore, by tuning the data formats, it will be possible to find the optimum
in the design space, considering the latency, the resource utilization, and the image quality
in the evaluation of the different solutions in the design space.

9.5.2 Cosine weighting and redundancy weighting steps

After the I0-correction step, each pixel must be weighted with the cosine of the angle
between the iso-ray (the ray passing through the iso-center) and the ray intersecting
the detector pixel. As explained in Section 2.4.3 in the case of the cylindrical detector
(i.e., detector elements are arranged along an arc), the cosine weighting reported in equa-
tion 2.4 is calculated by multiplying the I0-corrected pixel with the multiplication factors
“cos(u · ∆β) · D√

D2+(v·∆v)2
”

In order to optimize this operation, various approaches could be followed:

112

9 Control-Data Acquisition System For The KIDS-CT Scanner

1. Perform all operators at run time without pre-computation. This approach
is computationally intensive because it requires performing two multiplications and
two powers, one addition, one division, and one cosine operation, but minimizes
memory usage. It should be implemented according to the data flow graph shown in
Fig. 9.10.

g(u,v,α)

gc(u,v,α)

v

u cos

addpowmul

mul

mul

mul

pow div

D2Δv

Δβ

D

Figure 9.10: Data flow graph of the first approach for the cosine & redundancy weighting

2. Perform only the multiplication between the cosine weight and the input
pixel at run time, using a memory space with the size of Nu by Nv to
store the weights. In the KIDS-CT scanner, this requires a memory space of
672 · 64 = 43008 pixels with the size of the selected data format. This approach
optimizes latency because only a single multiplication needs to be performed, but
requires the highest on-chip memory utilization. It should be implemented according
to the data flow graph shown in Fig. 9.11.

g(u,v,α) gc(u,v,α)

u

v

mul

Nu by Nv

cos(u*Δβ)D/((Δv*v)2+D2)1/2

 MEM

Figure 9.11: Data flow graph of the second approach for the cosine & redundancy weighting

3. Perform of the multiplication with the input pixel and between the row
factor cos(u · ∆β) and the column factor D√

D2+(v·∆v)2
at run time, resulting

113

9 Control-Data Acquisition System For The KIDS-CT Scanner

in a memory space having the size of Nu + Nv pixels. This solution requires
672 + 64 = 736 values with the size of the chosen data format. It optimizes the
latency compared to the first approach and the memory usage compared to the
second approach. Its data flow graph is shown in Fig. 9.12.

g(u,v,α)

u

v

mul

mul
Nu

cos(u*Δβ)

 MEM

Nv

 D/((Δv*v)2+D2)1/2
 MEM

gc(u,v,α)

Figure 9.12: Data flow graph of the third approach for the cosine & redundancy weighting

The factors used for the third approach represent the distance from a pixel in the PCS
and the origin in the DCS. As shown in Fig. 9.13, for each pixel (ui, vi), there are three
other pixels (uj, vj), (ul, vl), and (um, vm) with the same distance (i.e., cosine weight).

0

A = (ui,vi)
B = (uj,vj)
C = (um,vm)
D = (ul,vl)

A B

CD

|Δβ*ui|

|Δv*vi| u
v

|Δv*vj|

|Δv*vm||Δv*vl|

|Δβ*ul| |Δβ*um|

|Δβ*uj|

|Δβ*ui| = |Δβ*uj| = |Δβ*um| = |Δβ*ul|

|Δv*vi| = |Δv*vj| = |Δv*vm| = |Δv*vl|

Figure 9.13: Example of pixels with same weights within a projection

Therefore, it is possible to determine all the weights of a projection, knowing only
the values associated with one of the quadrants. This means that the second proposed
approach can be optimized with a memory space of Nu

2 by Nv

2 values and the third approach
with a memory space of Nu

2 + Nv

2 (i.e. 336 + 32 = 368 values of the chosen data format).
The proposed optimization for the third approach allows the cosine weighting to be
implemented using only two multiplier hardware units. It requires the storage of only 368
values, which are much less values than the storage of the entire cosine weighting matrix
required for the second approach.

After performing the cosine weighting, the redundancy weighting should also be applied
to the input data by multiplying each pixel by wr(u, v, α). In the KIDS-CT scanner,

114

9 Control-Data Acquisition System For The KIDS-CT Scanner

wr(u, v, α) = 1
2 , which is a constant value; therefore, it can also be integrated as part of

either the row or column factors of the redundancy weighting, which are stored off-line.
Although it is possible to implement both the second and the third proposed approaches

and apply the redundancy weighting to them, the third solution has been chosen for the
implementation of the KIDS-CT scanner in order to balance the use of resources between
the different steps implemented in the PL. In addition, the proposed optimization to
reduce the amount of data to be stored offline was applied, and the redundancy weighting
was integrated into the row factor, as shown in Fig. 9.14.

g(u,v,α)

u

v

mul

mul
Nu/2

cos(u*Δβ)

 MEM

Nv/2
 D/2((Δv*v)2+D2)1/2
 MEM

gcr(u,v,α)

Figure 9.14: Data flow graph of the third approach with the memory-optimized for the
cosine & redundancy weighting

The pre-computed weighting values have been mapped to a dual port BRAM. Therefore,
the pixel position is used to read the corresponding factors, which are streamed to the
weighting IP core generated using Vitis™ HLS. The pixel position is calculated while the
I0 correction has been performed to be integrated into the dataflow pipeline architecture
and not add any delay caused by this memory reading.

9.6 Design Space Exploration

In order to optimize performance and provide real-time support, this thesis also proposes
an exploration of the design space for the pixel processing part. By tuning the data formats
of each step, different arithmetic hardware units are used, resulting in different latency and
resource utilization of the Data-Processing Module and image quality of the reconstructed
3D image (i.e., slice). While resource utilization is not critical in this application, the
latency and the image quality are essential variables for interventional procedures.

Due to the size of the design space, given by the input options for the data format
and clock frequency parameters, and due to the time required to implement, generate the
bitstream and deploy on the KIDS-CT scanner and then to analyze the image quality of
each resulting solution, it is not possible to consider all of them. Therefore, in order to

115

9 Control-Data Acquisition System For The KIDS-CT Scanner

make the DSE affordable while limiting the exploration of the design space, two steps have
been defined: the Selection of input parameters and the Selection of metrics. These two
steps are guided by the specific data of the application, from the format provided by the
sensors to the format of the final data to be displayed.

9.6.1 Selection of input parameters

The selection of input parameters aims to simplify the problem by reducing the design
space to be explored. Since the DSE focuses primarily on finding the optimal data format
for CT pixel preprocessing, the clock frequency parameter is set to a fixed value. This is
possible because it does not affect the image quality. Instead, it only affects the latency of
each data format by a linear factor which is proportional to the frequency. Thus, for the
DSE it has been fixed at 100MHz, which is the frequency set for the system clock in the
target MPSoC-FPGA for the CDAS architecture.

Although custom representations can be used, only standard data formats have been
chosen because they can be implemented on other accelerators, such as GPUs and Tensor
Processing Units (TPUs). Therefore, the design space is limited to floating-point and
fixed-point formats, which are introduced in Section 2.5.1. The exploration of the design
space starts from the 32-bit floating-point solution, which is the de facto standard solu-
tion for diagnostic CT reconstruction algorithms. Since the DSE aims to find a better
solution than single-precision floating-point and to improve computing performance and
the hardware cost while maintaining the image quality, only suitable data formats with a
data width between 16 and 32 bits were selected in this step, since the raw sensor data
collected by the CDAS can be represented by the short format, which has a data width of
16 bits. Therefore, the 16-bit floating-point format was selected as the second solution.
In addition, the double format (64-bit data width) was also considered as the reference
format in the image quality analysis. Therefore, the research was limited to three different
standard floating-point formats: half, single, and double precision.

Then, moving to fixed-point representation the selection of the data format becomes
more complex than floating point. While for the floating-point standard, there is only one
encoding option per data width, for the fixed-point standard, a different encoding can be
set for each selected data width. In fact, there are 408 configuration options in the range
of 16 to 32 bits for the fixed-point representation, but the goal of the selection is to find
only two configurations to analyze for this representation. For this reason, only the upper
bound (i.e. 32 bits) and the lower bound (i.e. 16 bits) configurations were considered for
DSE, which reduces to 16 plus 32 possible configurations as a fixed-point representation.
Since 48 configurations cannot even be performed in terms of time cost.

116

9 Control-Data Acquisition System For The KIDS-CT Scanner

In order to achieve the desired two configurations for the fixed-point representation,
where the former refers to the upper bound (32 bits) and the latter to the lower bound (16
bits), the selection was based on the input data format (i.e., raw sensor data); these data
are represented in the Data-Flow Module as 16-bit unsigned values. Therefore, to represent
the entire value in a 32-bit fixed-point format, both the I part and the F part were set
to 16 bits. With this selection, the raw sensor data can be accurately represented in
the 32-bit fixed-point format without the need for any approximation during the conversion.

Since a 16-bit fixed-point representation cannot contain a 16-bit unsigned value, the
raw sensor data must be approximated when this format is selected. For this reason, both
the raw sensor data and the processed data in 64-bit floating point were analyzed to find
the best combination of I part and F. Notably, most values after the pixel processing part
could be represented using only 4 bits in the I part and the rest of the mantissa was for the
F part. Consequently, the optimal configuration for a 16-bit fixed-point was determined
to be 4 bits for I and 12 bits for F. In addition, to verify that this configuration is the
best one, for this application data the MSE of the performed data has been also estimated
with the neighbor configurations has been also performed. The MSE is the mean squared
difference between a reference value and an approximated value [160]. This is often used
to measure the image quality between two images [161].

Following the explained methodology, the number of data formats aimed for the selection
was achieved. Thus, the selected formats are 16-bit and 32-bit floating points and 16-bit
and 32-bit fixed points where I and F are both equal to 16 bits for the 32-bit fixed point
and equal to 4 and 12 bits for the 16-bit fixed point. In addition, the 64-bit floating
point was selected as the reference data format for the evaluation. To prove that all the
selected configurations are suitable to be analyzed in the DSE, their MSE estimations will
be discussed in Chapter 12.

9.6.2 Selection of metrics

In order to evaluate the different solutions given by the selected parameters, appropriate
metrics must also be selected, taking into account computing performance and hardware
cost, as well as the image quality of the reconstructed images. Due to the time required to
perform a quantitative analysis of the image quality, which is essential for finding the best
data format in interventional CT procedures, a selection of metrics was made.

For evaluating hardware cost and computing performance, the “resource utilization” of
the PL and the “latency” of the different solutions were respectively selected as metrics.
The resource utilization in the PL is quantified in terms of DSP, FF, BRAM, and LUT
resources [162]. These metrics were computed at synthesis time by the Vitis™ HLS tool for

117

9 Control-Data Acquisition System For The KIDS-CT Scanner

each processing step and selected parameters, as pre-analysis; then the metrics were also
computed at implementation time using Vivado Design Suite 2021.2. This approach was
preferred for the DSE as it allows for the estimation of resource utilization of the processing
steps before their integration into the CDAS. Then, the implementation results, obtained
after integration into the CDAS using Vivado Design Suite 2021.2, will be reported in
Chapter 12. These results are more accurate as they reflect the implementation considering
the mapping and floorplan of the entire design.

To analyze the image quality of the different solutions, the following metrics were
selected: first the MSE of the processed projections and then the MSE, the “noise", the
“low-contrast” and the “uniformity” of the reconstructed volume. The MSE was applied to
the 2D projections to validate the resulting solution before performing the reconstruction
and the other metrics but this is not enough because it cannot express a qualitative analysis
of the images; it is only useful to understand if the chosen design solution is acceptable
for the reconstruction. However, the uniformity and noise metrics are important in CT
imaging to identify any image degradation caused by the arithmetic approximation of the
different data formats. The low-contrast metric is important for tumor detection [163],
useful in tumor ablation.

The selected parameters and metrics make the DSE affordable. In the next Part of this
thesis, the calculation of the selected metrics will be explained in detail and the results of
the different design options will be presented. These results are useful for the designer
to select the best data format for CT imaging either for diagnostic or interventional
procedures. Furthermore, this selection approach can also be applied to other CPS devices
where data processing is required.

9.7 Component Isolation

The proposed isolation mechanism has been realized by the LPU presented in Section 7.3.
It was implemented in SystemVerilog and packaged as a soft IP core, using the Vivado
Design Suite. This tool permits an RTL module to be packaged into an IP core that is
compatible with any AMD-Xilinx platform from the 7-series family [164]. In fact, the LPU
was then integrated into the CDAS architecture, following the IP design flow proposed by
AMD-Xilinx [165].

In the KIDS-CT scanner, as shown in Fig. 8.2, a single instance of the LPU is connected
between the AXI master interface of the PS and the AXI interconnect. This is the
hardware module that connects all the hardware units associated with the various external
components that are instantiated in the PL. In the actual implementation, the LPU was

118

9 Control-Data Acquisition System For The KIDS-CT Scanner

set at design time to support 2 PDs (i.e., the APUs on the PS) and 5 different MRs. These
MRs are associated with the components within the Control-Synchronization Module, the
Data-Flow Module, and the Data-Processing Module. Although the PD and the MR are
set at design time, the APs that define which PD can access the MRs are defined in the
FSBL and set at boot time before the OS is started. For this, the PS is connected to
the LPU configuration registers via an additional dedicated AXI4-Lite interface, which
can only be accessed by the FSBL as it is not mapped to the OS space memory. For
the KIDS-CT scanner, it was decided to use this conservative solution for setting policies
because they do not need to be updated at run time.

119

Part IV

Validation & Evaluation

120

10 Validation

This Chapter discusses the validation of the work proposed in Chapters 5, 6, and 7, and of
their realization presented in Chapters 8 and 9 for the target KIDS-CT scanner. First, it
presents the validation methodology, including software tools and hardware units used for
the target MPSoC-FPGA. Then, it describes the validation of the various modules within
the CDAS architecture, which is applied during the design phase, the post-implementation
phase, and the post-integration phase of the CDAS architecture into the KIDS-CT scanner.
The contents of this Chapter have also been used to validate the research work presented
by the articles in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7].

10.1 Validation methodology

The implementation of the CDAS architecture has been deployed and validated on the
AMD-Xilinx ZC706 Evaluation Board mounting the XC7Z045 MPSoC-FPGA. As de-
scribed in Chapter 9, the modules mapped to the PL part were described using HDL and
IP cores, and synthesized and implemented using Vivado Design Suite 2021.2 following
the Vivado System-Level Design Flow [166]. The software stack, including the FSBL
and Petalinux at the OS layer, and the software modules at the application layer, were
developed in C language, implemented using the Vitis Unified Software Platform [167],
and deployed on the PS portion of the target MPSoC-FPGA.

All of these tools used for implementing hardware and software modules are also essential
for validating and evaluating the implemented design, allowing designers to analyze, verify,
and modify the design at any step of the flow [168]. Although they are specific to the
AMD-Xilinx MPSoC-FPGA platforms, tools with similar validation functionality are
typically provided by other vendors.

Independent of the tools and the target MPSoC-FPGA, a bottom-up validation ap-
proach has been adopted for theCDAS architecture, including also the proposed System
Architecture and the Communication Infrastructure. It consists of the following three
steps: the design phase, the post-implementation phase, and the post-integration phase.
In the first phase, each hardware unit within the proposed modules was simulated first as
a standalone and then after the integration into the corresponding module; this process
was iterated in a bottom-up approach to cover the validation of the whole module. Then,
in the second phase, the CDAS has also been validated by running the CDAS standalone
in debug mode. Finally, in the last phase, after the integration of the CDAS into the
KIDS-CT, Integrated Logic Analyzers (ILAs) were used to monitor the behavior of the

122

10 Validation

architecture while it was running the different application use cases, such as the scanning
of a phantom. These phases are described in detail in the following Sections.

10.2 CDAS Design Phase

During the design phase, a behavioral clock-cycle simulation was performed for each
hardware unit. For this purpose, a test bench was written for each unit. In addition,
in order to validate the whole module after the integration into the CDAS architecture,
different approaches were defined for the Control-Synchronization Module, the Data-Flow
Module, the Data-Processing Module, and the Lightweight Protection Unit.

• Control-Synchronization Module: To validate this module, sequences of control,
status, and synchronization stimuli (i.e., signals) must be generated and checked.
Therefore, SystemVerilog testbenches have been implemented that consider the
different conditions and compare the actual and the expected output.

• Data-Flow Module: It processes a large amount of data in a streaming fashion,
pruning and merging them in a precise order. Therefore, this module must be
validated by verifying that data are processed in the expected order without loss.
For this reason, the SystemVerilog testbench generates and checks several fixed data
patterns that are sent to and read from this module. A data pattern consists of
commands (e.g., synch, preamble, and CRC commands) and messages that follow
the proposed Application Stream Protocol described in Section 6.3.3. In addition,
each message contains a sequence of ordered values.

• Data-Processing Module: The units within this module have been described in
C language and implemented using HLS. Since they implement pixel processing
steps with different data precisions, each algorithm step has been validated within
the Vitis HLS tool, where testbenches have been developed in C. A testbench reads
a raw projection image and sends pixels as AXI stream packets to the hardware
unit under test. Then the resulting image data that has been generated with the
simulation are compared with the same image data implemented on the CPU. For
comparing the two processed image data the MSE is used as metric.

• Lightweight Protection Unit: Since it involves the handling of AXI4 transactions,
the testbench should generate/check transactions according to the protocols and
verify that granted transactions are kept unmodified and denied transactions are
handled without causing communication deadlocks.

To generate/check stimuli according to the AXI4 interface protocol, the AXI Verifi-
cation IP (VIP) core provided by AMD-Xilinx was instantiated in the design. As
a result, a test design with the three possible configurations was implemented, as

123

10 Validation

LPU

Policy
Slave
VIP

Master
VIP

Master
VIP

(a) Protection Unit only

LPU

Policy

Master
VIP

Master
VIP

In
te

rc
on

ne
ct

LPU

Policy

In
te

rc
on

ne
ct

Slave
VIP

Slave
VIPMaster

VIP

(b) Protection Units slave-side

LPU

Policy

Master
VIP

Master
VIP

In
te

rc
on

ne
ct LPU

Policy

In
te

rc
on

ne
ct

Slave
VIP

Slave
VIP

Master
VIP

(c) Protection Unit master-side

Figure 10.1: Design configurations for the LPU validation. The dashed boxes are related
to the LPU configuration interface, while the other boxes are related to the
transactions to grant/deny

shown in Fig. 10.1. All depicted implementation options consist of a control master
(dashed master VIP box) that sets the policies at runtime, two PDs (master VIP
boxes), and two MRs (slave VIP boxes) set at design time, as shown in Fig. 10.2.

(a) Protection Domain configuration

(b) Memory Region configuration

Figure 10.2: Validation settings of the LPUs

124

10 Validation

10.3 CDAS Post-Implementation Phase

In order to validate the CDAS architecture in the post-implementation phase, different
techniques have been proposed for the different modules. For the Control-Synchronization
Module, a debug software application has been developed that allows the writing/reading
of control/status registers, thus enabling the debug mode. When the system is in debug
mode, the Data-Flow Module can also be tested because the user can select different
multiplexers that forward either the input data or a fixed pattern of data generated by a
traffic generator in the dataflow architecture. To validate and debug the different stages
of the Data-Flow Module, traffic generators have been instantiated in two stages of the
architecture, as shown in Fig. 10.3.

GTX_RX
 A

GTX_TX

Data_Link

Parser

GTX_RX
 B DATA_B

header

DATA_A

SystemClk

Processing
Clk

SystemClk

SystemClk

PS_Clk

RefClk

Trx Optical
Data Channel

Rx Optical
Data Channel

Rx Optical
Data Channel

SystemClk

SystemClk

RefClk2

valid

RefClk

Parser

data
crc

header
data
crc

CRC

CRC

crc_valid

crc_valid

Trigger
Error

64 64

64

64

64
valid

valid

valid

valid

valid

valid
AsyncFIFO_N

AsyncFIFO_0

Scheduler

D
E
M
U
X

D
E
M
U
X

M
U
X

M
U
X

M
E
R
G
E

Register FilesRegister Files
PS_Clk

PS_Clk PS_Clk
Register FilesRegister FilesRegister Files Register FilesRegister Files Register FilesRegister Files

PS_Clk

PS_ClkPS_Clk
PS_Clk

Register FilesRegister Files

error_check

inc_cntParser
3 stages

Control
Unit

Parser
3 stages

validvalid

validvalid

valid

validvalid

validvalid

validvalid

validvalid

RxClk

RxClk
RxClk

RxClk

TrxClk

TrxClk

TrxClk

TrxClkTrxClk

Dummy
Data

Data Generator
Control Unit

Receiver stage Data-link protocol stage Scheduler stage

stage
allocator

stage

select
packet
stage

Streaming generator stage Transmitter stage

AXI
Bridge

AXI
Register
Interface

Processing
System

Streaming generator stageStreaming generator stage Transmitter stageTransmitter stage

Data-Processing Module

Data-Flow
Module

Data to
process

Data
processed

SyncStream

CmdStream

Tra�c
Generator

Tra�c
Generator

Debug_en0

Debug_en1

Debug_en0

M
U
X

M
U
X

M
U
X

Figure 10.3: Validation of the Data-Flow Module. Traffic generators in red boxes

The traffic generator in the receiver stage of the pipeline sends commands and messages
containing an incremental sequence of values according to the Application Stream Protocol.
Another generator in the scheduler stage sends messages that are then packaged and
dispatched by the Streaming generator stage. These two traffic generators, which are
controlled by the PS at run time, allow the designer to debug and validate the entire
Data-flow Module before integrating it into the target application. Moreover, to validate
the hardware units within the various proposed modules, ILAs were instantiated and
connected to their interfaces. These are logic analyzer cores provided by AMD-Xilinx that
can be used to monitor the internal signals of a design while it is running [169]. Because
ILAs increase the resource utilization in the MPSoC-FPGA, a “#ifdef” for each ILA
is used in the HDL modules to give the designer the option to remove them from the
release design. This allows the designer to disable some or all of them before compiling
the SystemVerilog code, and they will not be included in the design during synthesis and
implementation. With the support of the described techniques, the CDAS architecture

125

10 Validation

was validated at run-time already before integrating it within the KIDS-CT scanner.

10.4 KIDS-CT Post-Integration Phase

In order to validate the CDAS architecture at the post-integration phase within the
KIDS-CT scanner, additional ILAs were instantiated in the design. This approach mirrors
the post-implementation phase, where ILAs were selected and included in the design for
validation and potential debugging in the final product. Since ILAs are typically accessed
through a Joint Test Action Group (JTAG) connection implemented in the target board
via a Universal Serial Bus (USB) interface, a USB device server [170] was placed on the
rotating side of the KIDS-CT scanner. This allows the user interface system node to access
the ILA in debugging mode using the same connection that is part of the communication
associated with the non-real-time interface class. This setup was crucial to validate all
the connections to the client-slave nodes and the behavior of the CDAS architecture in
the post-integration phase. For this validation phase, an ILA was instantiated for each
transceiver associated with the real-time control interface class and the real-time data
interface class. In this way, it was possible to monitor and verify the correct communication
between each node and the CDAS. In this way, the CDAS architecture and the KIDS-CT
scanner functionalities were tested and validated during the acquisition of the phantoms,
which were also used for the image quality analysis.

126

11 Performance Evaluation

The following Chapter presents the performance evaluation of the CDAS architecture
within the KIDS-CT scanner. In order to analyze the scalability of the CDAS architecture
and the impact of adding a new component into the CPS, different configurations of the
modules of the CDAS architecture are considered. The evaluation focuses on the hardware
cost and computing performance of the implemented CDAS architecture for the KIDS-CT
scanner. For this evaluation, the resource utilization and latency have been chosen, which
are the same metrics selected for the DSE. The former is crucial to provide plug-and-play
capability, while the latter to support real-time applications. For example, in the mapping
and in the placement & routing of a design, a low percentage of resource utilization allows
for easier extension compared to a design where most resources are utilized, which may be
constrained by resource limitations. The content of this Chapter is further presented in
the articles in Ref. [DP 1, DP 2, DP 3, DP 4, DP 5, DP 6, DP 7].

11.1 CDAS Architecture For The KIDS-CT Scanner

The implemented CDAS architecture has been evaluated on the XC7Z045 MPSoC-FPGA,
with the support of Vivado Design Suite 2021.2. This tool reports the amount of resource
utilization and permits to estimate the delay for the timing analysis of an implemented
design.

Resource utilization

This Section reports the resource utilization of the CDAS architecture considering the
proposed optimizations and the Debug Units for the validation. Before delving into the
resource utilization results, it is important to clarify that in each table the resources of
the “TOP” (i.e. the main RTL module in a hardware design) are not a simple sum of
the sub-module resources, since additional logic may be used in the “TOP” to connect
or control internal sub-modules. In addition, during the synthesis optimization, Vivado
Design Suite allows the synthesis tool to “flatten the hierarchy, perform the synthesis and
rebuilt the hierarchy based on the original RTL” [171]. Therefore, resources of a certain
RTL block can be moved to another RTL block within the hierarchy such as between
TOP and submodules. Then, in 7-Series FPGA, 1 BRAM is a 36 Kbit block of memory;
but this block can be divided into two independent 18 Kbit blocks. Therefore, if 1 block
18 Kbit is used in the logic, Design Suite reports it as 0.5 BRAMs. For instance, the

127

11 Performance Evaluation

Data-Flow Module and the debug units in Tab. 11.1 consist of 18.5 and 5.5 BRAMs.
The implemented CDAS architecture for the KIDS-CT scanner uses less than 8% of the

available resources in the target MPSoC-FPGA, as reported in Tab. 11.1, thanks to all
the proposed optimizations. This implementation also includes the debug units used for
post-integration validation. Although debugging units can usually cause a degradation in
computing performance (e.g., timing issues) due to the additional resources, the CDAS
architecture uses so few resources that the performance is not been affected by debug
units. However, the proposed optimizations for the pixel processing part, implemented
into the Data-Processing Module, are crucial for the achieved results.

Table 11.1: Resource utilization of the CDAS architecture for the KIDS-CT scanner; “TOP”
is refers to the main block that contains all the modules; n refers to the amount
of resources as number and pct to the amount of resources in percentage

LUT FF DSP BRAM
Total available resource 218600 437200 900 545
Unit of measure n pct n pct n pct n pct
Control-Synch. M. 1403 0.64 2063 0.47 0 0 8 1.47
Data-Flow M. 4948 2.26 8084 1.85 0 0 18.5 3.39
LPU 363 0.17 198 0.05 0 0 0 0
Glue logic 1347 0.62 1870 0.43 0 0 0 0
Debug Units 3272 1.50 5173 1.18 0 0 5.5 1.01
Data-Processing M.(std.) 73681 33.71 70722 16.18 1377 153 46 8.44
TOP(std.) 85538 39.13 88376 20.21 1377 153 78 14.31
Data-Processing M.(opt.) 5732 2.62 8039 1.84 45 5 11 2.02
TOP(opt.) 17062 7.81 25430 5.82 45 5 43 7.89

In order to compare the standard (std.) and the proposed optimized (opt.) pixel
processing steps, Tab. 11.1 also reports the resource utilization of the CDAS architecture,
including the Data-Processing Module (std.) that implements the pixel processing part
according to the standard algorithm explained in Sec. 9.5. This comparison shows that
while the optimized architecture uses only 45 DSPs, corresponding to 5% of the available
DSPs, the architecture implementing the standard solution cannot even be implemented
on the target MPSoC-FPGA, since it requires 1377 DSPs, corresponding to 153% of the
available DSPs. Since the target MPSoC-FPGA can not contain the CDAS architecture
with the Data-Processing Module (std.), the reported results for this configuration refer to
the Vivado Design Suite 2021.2 post-synthesis report.

Moreover, the Control-Synchronization Module uses only 0.6%, 0.39%, and 1.46% of
the LUTs, the FFs, and the BRAMs, respectively; this low resource utilization is also the
result of the partitioning between real-time and non-real-time tasks implemented on PL
and PS, respectively. Although such optimization may seem superfluous, it is essential to
facilitate the addition of components to the CPS for plug-and-play capability and to extend
the Data-Processing Module for further processing steps related to real-time support.

128

11 Performance Evaluation

Finally, to demonstrate that the result for the LPU is independent of the specific settings
applied in the KIDS-CT scanner use case, Section 11.4 presents its resource utilization
analysis. This analysis considers various configurations where different numbers of PD
and Memory Resources MR have been set at the design time.

Timing Analysis

This Section discusses the timing analysis of the CDAS architecture. In order to meet
the different timing requirements, the architecture has been implemented on the tar-
get MPSoC-FPGA with the clock domains reported in Tab. 11.2, as also explained in
Section 7.4.2 (Inter-clock domains).

Table 11.2: Clock domains of the CDAS architecture for the KIDS-CT scanner
Clock domains PS DRAM System Reference (GTX) Receiver Transmitter
Frequency [MHz] 667 533.333 100 156.250 78.125 156.250
Clock domains Data-Proc. Module Register Control-Synch. Module
Frequency [MHz] 100 or 200 100 100 and 10

While the clock domains associated with the Data-Flow Module are set to achieve a
data rate at which the collected data can be forwarded without requiring external memory,
as explained in Section 7.4, the other clock domains are set to meet the component
communication and the data processing requirements, providing the real-time support.
The Data-Processing Module can be set to 100 MHz and 200 MHz for this reason two
values have been reported in tab. 11.2.

In order to use the KIDS-CT scanner for interventional procedures, the image should be
reconstructed in real time, while the projections are being acquired. For this purpose, an
optimization of the acquisition and processing datapath has been presented in Section 8.4
and shown in Fig. 8.10. Here, the CDAS is the key component where data are collected,
processed, and forwarded on the fly. In order to perform these operations without additional
latency to the acquisition, the sum of the latency of the Data-Flow Module and the Data-
Processing System must be less than ∆T , which represents the integration period. To use
the KIDS-CT scanner for interventional procedures, ∆T is usually set in the neighborhood
of 1 ms and a minimum of 200 µs. Consequently, the total latency of the Data-Flow
Module and the Data-Processing System must be at least less than 1 ms to be integrated
with no additional latency.

Table 11.3: Latency of the CDAS architecture for the KIDS-CT scanner
CDAS Standard solution Optimized solution
Data-Flow Module 205.8 ns 205.8 ns
Data-Processing Module 2780 ns 260 ns
Sum 2985.8 ns 465.8 ns

129

11 Performance Evaluation

Thanks to the proposed optimizations of the Data-Flow Module and the Data-Processing
Module, the total latency of the acquisition and processing datapath within the CDAS
architecture is equal to 465.8 ns. Unlike, the total latency, where data are processed with
the standard solution, is equal to 2985.8 ns, as reported in Tab. 11.3. This means that in
the worst case, when the minimum integration period (i.e., 200µs) is used, the standard
solution also fails to meet the timing requirements.

11.2 Data-Flow Module

The Dataflow-Flow Module consists of the proposed lightweight dataflow architecture
described in Section 9.3. In addition to the configuration for the CDAS architecture, the
same module has been reused in into the Resconstruction System (RS) architecture to
collect data from the CDAS architecture in the stationary side of the KIDS-CT scanner.
The Data-Flow Module for these systems has been configured with the design-time and
run-time parameters reported in Tab. 9.1 and Tab. 9.2. In order to evaluate the impact on
resource utilization, when an additional component such as a sensor/actuator is plugged into
the CPS, the SC system was also implemented and evaluated. This has been implemented
starting from the RS base architecture, but the Data-Flow Module has been configured
as follows: 4 GTXs mapped to Small form-factor pluggable (SFP+) connectors in the
Receiver Stage, 1 FIFOs in the Scheduler Stage, and 1 PCI-E transceiver with 4 lanes to
stream data to the main memory of the workstation, where it is plugged in. This setup
allows the SC system to reach a data rate of 25 Gbit/sec, while the CDAS and the RS are
set at 6.250 Gbit/sec, according to the requirements of the KIDS-CT scanner.

Resource utilization

The resource utilization for the different configurations (i.e., CDAS, RS, SC), including
the Debug Units for post-implementation validation, has been reported in Tab. 11.4.

Table 11.4: Resource utilization of the Data-Flow Module. Post-implementation resource
occupancy (Vivado report)

LUTs FFs BRAMs
Configurations CDAS RS SC CDAS RS SC CDAS RS SC
Register file 139 163 163 581 596 596 0 0 0
Receiver S. 353 515 1192 549 704 1555 0 0 0
Data-link Prt. S. 173 91 246 158 101 190 0 0 0
Scheduler S. 1349 224 1189 1897 411 1621 8.5 28,5 114
Stream Gen. S. 31 0 0 24 0 0 0 0 0
Transmitter S. 531 11654 16915 626 13021 17271 0 20.5 29.5
Debug Units 438 201 213 161 124 123 0 0 0
Debug ILAs 2493 3442 3208 3722 6022 5385 10 9 9
TOP 4949 16637 23572 8083 21028 27359 18.50 58 152.5

130

11 Performance Evaluation

Although the CDAS and the RS receive the same amount of data, the former uses two
channels, while the latter uses only a single channel in both the Receiver Stage and the
Data-link Protocol Stage. In the Receiver Stage, LUTs and FFs implement the logic for
packet alignment and control of the GTXs; receivers use specific GTX resources that are
hardwired into the MPSoC-FPGAs. Since the GTXs are configured for different data
widths and protocols, a direct relationship between the number of channels and the resource
utilization in this stage can not be defined. However, these stages have been compared for
the SC and the RS configurations as they are integrated into the same base architecture.
This comparison indicates that the SC configuration requires only 1.41 times more LUTs,
1.30 times more FFs, and 2.52 times more BRAMs compared to the RS configuration while
achieving a data rate that is 4 times higher. The comparison of the different utilization
for the carious configurations is also shown in Fig. 11.1.

Figure 11.1: Resource utilization of the Data-Flow Module

Delving into the stages of the different configurations, we can notice the different amount
of BRAMs in the Scheduler stage. The number of BRAMs depends on the "number of
FIFOs" and their "depth". In the CDAS configuration, 8 independent FIFOs with the
depth of 1 projection row have been configured. Although the size of a row is smaller
than 1 BRAM of 36 Kbit, in order to implement asynchronous FIFOs, the entire BRAM
is needed. Different BRAMs per FIFO are required in the design because each FIFO can
be accessed simultaneously with different clock frequencies. The additional 0.5 BRAM
is used by another asynchronous FIFO implemented in the Scheduler sub-stage to store
the index of the selected FIFO for the enqueuing of projection rows. This way, even
if projection rows are written out of order in FIFOs, their index is kept and then used
to dequeue projections in order. In this case, 1 BRAM of 18 Kbits is sufficient, since
only a small amount of data must be stored. In contrast to the CDAS, the RS and the
SC configurations are set with 1 FIFO because they are set to the depth of 1 projec-
tion, according to the design parameters reported in Tab. 9.1. In this case, the number
of BRAMs is determined by the depth of the FIFO configured to collect a single projection.

131

11 Performance Evaluation

While the CDAS architecture needs to packet and send data with the Application
Stream Protocol, the RS and the SC must collect these data and write them into the main
memory of the connected workstation via PCI-E. Consequently, in these configurations the
Stream Generator Stage has been disabled, resulting in its resource usage being effectively
zero. Unlike, the Transmitter Stage of these two configurations, different transceivers are
used for each configuration, which mainly affects resource utilization. For the RS and the
SC configurations, a significant amount of resources are allocated to the PCI-E transceiver.

11.2.1 Timing Analysis

To evaluate the timing performance, an analytical model of latency was defined in ad-
dition to the simulation and test results given by the running KIDS-CT scanner. This
model, based on the queueing theory [172], shows that under the condition in which
Fmin (Equation 7.1) is valid, the queues satisfy the “stability condition”, so FIFOs can be
used because they are not permanently overloaded. Furthermore, the model provides an
estimate of the WCET, which cannot be derived directly from the running system, where
only the average packet latency is measurable.

To accurately estimate the WCET, which in this context is determined by the archi-
tectural latency, each stage must be taken into account. As explained in Section 9.3, the
Data-link Protocol Stage and the Stream Generator Stage have a deterministic latency,
which consists of 3 clock cycles in the implemented architecture. The latency of the
Receiver Stage and the Transmitter Stage is given by two elements: the latency of the
external communication, which can be omitted because it is on the order of nanoseconds,
and the latency of the internal receiver and transmitter, which is of 6 clock cycles, as also
shown in Tab. 11.5.

Table 11.5: Lightweight re-configurable dataflow architecture latency
number of Latency [ns]

clock cycles CDAS RS SC
ρ = 0.0064 ρ = 0.004 ρ = 0.016

Receiver S. 6 76.8 38.4 38.4
Data-link Prt. S. 3 38.4 19.2 19.2
Allocator sub-stage (Sched. S.) 1 12.8 6.4 6.4
FIFO sub-stage (Sched. S.) Eq. (11.1) 12.8 4 24
Select packet sub-stage (Sched. S.) 1 6.4 4 4
Stream Gen. S. 3 19.2 0 0
Transmitter S. 6 39.4 24 24
Sum of Latencies 205.8 96 116

The Scheduler Stage is the most complex stage to estimate the latency because a packet
is enqueued in a FIFO, and the time at which it is dequeued is not deterministic. In

132

11 Performance Evaluation

addition, due to the different FIFOs to schedule, the Scheduler stage has the largest packet
latency, as shown in Tab. 11.5. In order to analytically calculate the average latency of a
packet in a FIFO, the Equation (11.1) has been used.

LatencyF IF OSub−stage = ρ

1 − ρ

E(X2)
2E(X) (11.1)

In equation (11.1), E(X2) and 2E(X) represent the mean square and the mean of
the message length. Equation (11.1) takes the message length because the packets are
enqueued in FIFOs and are scheduled when the entire message is received and committed.
In Equation (11.1), ρ = (µ/λ) represents the average fraction of time in which the Scheduler
stage is occupied and can not accept new messages; ρ < 1 defines the “stability condition”
of the queues; 1/µ is the mean arrival time, and 1/λ is the mean transmission time of the
packets. To avoid losing packets, ρ must be less than 1.

In the KIDS-CT scanner, the DMS [22] has an integration period of ∼200 µ sec, and it
generates a maximum of ∼200 packets per integration period. This means that 1/µ (packet
mean arrival time) is 1000 ns in the worst case. Since the SC configuration can collect
data from 4 DMSs, 1/µ is equal to 250 ns. Then, the dataflow architecture transmits
one packet per clock cycle, so 1/λ (mean transmission time) depends on the data clock of
the transmitters. This means that 1/λ is equal to the associated transmitter data clock
period, which is 6.4 ns for the CDAS transceiver and 4 ns for both the RS and the SC
transceivers. Therefore, the ρ of the CDAS, the RS, and the SC are equal to 0.0064, 0.004,
and 0.016, respectively, which are less than 1. Thus, we can conclude that the architecture
is capable of consuming data faster than producing them for all configurations. Therefore,
the buffers meet the “stability condition", and the number of FIFOs can be set according
to Fmin, avoiding external memory for the buffering.

Finally, to calculate the packet latency for the whole dataflow architecture, the contri-
bution of each sub-stage has been considered using the following equation (11.2):

Latency = TRx + (6 + 3 + 1)PRx + ρ

1 − ρ

E(X2)
2E(X)PF IF O + (1 + 3 + 6)PT x + TT x (11.2)

In equation 11.2, PT x and PRx represent the clock period of the transmitter and receiver
data clocks. PF IF O is the clock period of the FIFOs, which in this case corresponds to PT x.
These variables are multiplied by the contributions of the various stages shown in Tab. 11.5.
This Table also shows the latency of each stage, which is calculated by multiplying the
period of the transmitter/receiver data clock by their clock cycles. The value given in this
Table does not consider the communication latency, which is expressed in Equation (11.2)

133

11 Performance Evaluation

by the variables TRx and TT x. This latency can be neglected for Optical Fibre1 links
because it is typically a few nanoseconds. For calculating the amount of clock cycles spent
by each pixel in the FIFO sub-stage, the Equation 11.1 has been used, resulting in the
following values: 1.6 for the CDAS, 0.4 for the RS and 5.5 for the SC. Since these values
represent the number of clock cycles, they have been rounded to 2, 1, and 6, respectively.

The total latency of the different configurations is given in Tab. 11.5, where the RS has
the lowest latency. Although the RS and SC have the same clock periods, the latency of the
FIFO sub-stage depends on the value of ρ, which is the maximum in the SC configuration.
However, by comparing the latency and the data rate of the RS and the SC, it can be seen
that although the SC has a 4 times higher data-rate, the latency is only a factor of 1.2.
This result is important because it shows that by scaling the architecture and increasing
the data-rate, the latency is slightly affected.

11.3 Data-Processing Module

As explained in Section 11.1, the performance of the Data-Processing Module affects the
acquisition datapath latency of the CDAS architecture. Due to the lack of DSP resources,
the standard solution can not be implemented on the target MPSoC-FPGA because it
requires 153% of the available resources, as shown in Tab. 11.6. Instead, the proposed
optimization solution using only simple Multiplications (MULs), Additions (ADDs) and
Subtractions (SUBs) that fulfill the available resources of the selected MPSoC-FPGA,
using only 5% of the DSPs, as shown in Tab. 11.7. In both tables, each row refers to the
4-pixel parallel processing. For instance, the Cosine & Redundancy Weighting requires
812 DSPs for four pixels, so each pixel requires 203 DSPs.

Table 11.6: Resource utilisation of the Data-Processing Module with the standard solution
Standard solution LUTs FFs DSPs BRAMs
Unit of measure n pct n pct n pct n pct
Stage 1: Detector-Data Conv. 154 0.07 145 0.03 0 0.00 0 0.00
Stage 2: I0-Correction 29746 13.61 29513 6.75 565 62.78 4 0.73
Stage 2: Weighting 43716 20.00 40967 9.37 812 90.22 42 7.71
Stage 3: Processed-Data Conv. 32 0.01 49 0.01 0 0.00 0 0.00
Glue logic 14 0.01 8 0.00 0 0.00 0 0.00
TOP 73681 33.71 70722 16.18 1377 153 46 8.44

When we analyze the optimized solution reported in Tab. 11.7 and compare it with the
standard solution in Tab. 11.6, we can see the enormous difference in terms of resource
utilization. In fact, in the optimized solution of the I0-correction step, only 1 MUL
and 1 SUB have been implemented, while the standard solution requires 4 MULs, 2
Exponentials (EXPs), 1 Division (DIV) and 1 Logarithm (LOG), consuming an enormous

1Due to the confidential nature of this matter, the exact information cannot be disclosed.

134

11 Performance Evaluation

amount of LUTs, FFs and DSPs. The same observation can be made for the Cosine &
Redundancy Weighting step, where the optimized solution requires only 2 MULs, while
the standard solution requires 4 MULs, 2 Powers (POWs), 1 Cosine (COS), 1 ADD, and
1 DIV. Between these different operations, as shown in Tab. 11.8 also Truncate (TRUNC)
operations are executed to cut off the resulting numbers, which exceed the representable
mantissa. Instead in the conversion stage, the Casting (CAST) operation converts data
formats.

Table 11.7: Resource utilisation of the Data-Processing Module with the optimized solution
Optimized solution LUTs FFs DSPs BRAMs
Unit of measure n pct n pct n pct n pct
Stage 1: Detector-Data Conv. 135 0.06 127 0.03 0 0.00 0 0.00
Stage 2: I0-Correction 2673 1.22 3706 0.85 21 2.33 3 0.55
Stage 2: Weighting 2635 1.21 4084 0.93 24 2.67 8 1.47
Stage 3: Processed-Data Conv. 32 0.01 48 0.01 0 0.00 0 0.00
Glue logic 254 0.12 341 0.08 0 0.00 0 0.00
TOP 5732 2.62 8039 1.84 45 5.00 11 2.02

Although the standard solution does not use BRAM resources to store the pre-calculated
weights, it uses more than 4 times the number of BRAM to buffer the data processing
datapath, which is 10 times deeper than the optimized solution. For this reason, it is also
not efficient in terms of memory usage, making it not a suitable solution for MPSoC-FPGA.
Since the optimized solution uses only 2.62 % of LUTs, 1.85 % of FFs, 5 % of DSPs,
and 2.02 % of BRAMs, it is really efficient in terms of resource utilization and offers the
possibility to extend the CDAS architecture for additional processing steps and components
to plug into CPS. In fact, optimizing resource utilization has been a key constraint in the
design flow of the whole CDAS architecture.

The optimized solution improves not only resource utilization but also latency, which is
a key parameter for real-time support. As shown in Tab 11.8, the standard version has a
high latency not only due to the number of operations but especially for their complexity.
In fact, LOG and POW have latencies of 31 and 76 clock cycles, respectively. Moreover,
the table only shows the latency of the critical path in the standard solution, because in
Stage 1 there is another parallel path that performs a MUL and an EXP, and in Stage 2
before the last two MULs, there is a parallel path that performs one MUL, one WRITE
and one COS. For instance, the COS operation has a latency of 23 clock cycles. For this
evaluation, the synthesis has been set to 100 MHz, so the latencies are equal to 260 ns

and 2780 ns.
It is also important to observe that the same operation can have two different latencies,

such as the MUL operation in Stage 2 which has 6 clock cycles, while other MUL operations
have only 4 clock cycles. These different latencies result from the implementation binding

135

11 Performance Evaluation

Table 11.8: Latency of the Data-Processing Module
Optimized Sol. Standard Sol.
Operation c.c. Operation c.c.

Stage 1 READ 1 READ 1
CAST 5 CAST 5

Stage 2:
I0-Correction

SUB 5

MUL 4
BUF 2
EXP 18
MUL 6

TRUNC 2

MUL 4

DIV 12
TRUNC 2

LOG 31
TRUNC 2

BUF 2

Stage 2:
Cosine & Redundancy

Weighting

MUL 4

MUL 4
WRITE 1
POW 76
ADD 7

TRUNC 2

MUL 4

POW 76
TRUNC 2

DIV 12
MUL 4
MUL 4

Stage 3 CAST 2 CAST 2
WRITE 1 WRITE 1

Sum 26 278

used in Vitis™ HLS, which offers the option to implement the same operation with fabric
(i.e., LUT and FF), or DSP, or a hybrid solution, as explained in Ref. [77].

11.4 Lightweight Protection Unit

In order to evaluate the LPU, this Section considers the resource utilization of its internal
hardware units after it has been integrated into the CDAS architecture for the KIDS-CT
scanner. As reported in Tab. 11.9, most of the FFs are utilized by the configuration block,
which consists of the lookup table into which APs are written at run time. Since the
Policy Check unit is implemented using combinatorial logic, decisions are made within
the clock cycle, using only LUTs resources. From this first result, it follows that with
the proposed method and architecture, it is possible to implement a solution where
transactions are granted/denied without adding latency since each transaction is checked
and granted/denied during the transmission, within a clock cycle.

Besides implementing the LPU for the KIDS-CT scanner, three additional primary

136

11 Performance Evaluation

Table 11.9: Resource utilization for the test design
LUTs FFs DSPs BRAMs LUTRAMs

AXI demux 66 28 0 0 0
Configuration block 80 141 0 0 0
Policy check (write) 87 0 0 0 0
Policy check (read) 75 0 0 0 0
AXI error 29 29 0 0 0
Glue logic 27 0 0 0 0
TOP 363 198 0 0 0

configurations were examined. This was done to demonstrate that the proposed LPU
architecture is well-suited for any generic low-cost MPSoC-FPGA. The first with LPUs
placed on the master side, the second with LPUs placed on the slave side, and another
with a single LPU placed between two AXI-Interconnect blocks, as shown in Fig. 11.2. In
the first configuration, each master component is connected to an LPU that is responsible
for managing transactions from that specific master. This setup, as shown in Fig. 11.2a,
ensures that only the addresses within the associated MRs are checked and accessed,
potentially avoiding unwanted transactions and mitigating congestion in the downstream
interconnect by blocking transactions before they pass through the interconnect unit.

AXI-Interconnect

Protection Unit

Policy

Slave

Protection Unit

Policy

Slave

Master Master

(a) LPUs before an AXI-
Interconnect

AXI-Interconnect

Protection Unit

Policy

Slave

Protection Unit

Policy

Slave

Master Master

(b) LPUs after an AXI-
Interconnect

AXI-Interconnect

Slave

Lightweight Protection Unit

Policy

Slave

Master Master

AXI-Interconnect

(c) LPU between two AXI-
Interconnects

Figure 11.2: Exemplary deployment of LPU

Conversely, placing the LPU on the slave side, as shown in Fig. 11.2b, assigns a distinct
LPU to each slave, which is only responsible for the MRs of its respective slave. However,
in the third arrangement, as shown in Fig. 11.2c, since only a single LPU is used alongside
two AXI-Interconnect buses, this solution results to be resource-efficient, especially when
the number of masters and slaves is balanced and limited.

In order to show that the proposed LPUs is suitable for low-cost MPSoC-FPGA,
the presented placements were also evaluated on the XC7Z020 MPSoC-FPGA, which
has almost four times less resources than the XC7Z045 MPSoC-FPGA targeted for the

137

11 Performance Evaluation

KIDS-CT scanner. In the second design, the clock frequency was set to 100 MHz, and
various configurations with different numbers of PDs and MRs were evaluated. Additionally,
as detailed in Tab. 11.10, this Section includes a comparative analysis of resource utilization.
This analysis includes the MPPU proposed by Kornaros et al. [113] and the HIMM proposed
by Kumar Saha and Bobda [114].

Table 11.10: Resources’ utilization and latency (c.c. means clock’s cycle)
LUTs FFs LUTRAMs Latency

LPU, 1PD/16MRs 339 198 0 <10 ns (<1 c.c.)
LPU, 16PDs/1MR 191 198 0 <10 ns (<1 c.c.)
LPU, 16PDs/16MRs 950 678 0 <10 ns (<1 c.c.)
LPU, 1PD/1MR 164 168 0 <10 ns (< 1 c.c.)
MPPU [113] 655 1082 12 (4 c.c.) only the decision
HIMM [114] 86 75 6 220-35000 ns

In the comparison, the proposed solution performs much better than the MPPU solution
in terms of resource utilization, while it performs better than the HIMM solution only
in terms of time (i.e., latency). Because the HIMM solution stores the access policy in
the main memory, it must access this memory whenever access is requested for a new
peripheral. This large range in access time given due to the use of external memory
makes this solution the worst for real-time use cases, such as CPS with MCS requirements
(e.g., the KIDS-CT scanner). In fact, for real-time applications, the WCET should be
considered as latency, which is equal to 35000 ns, while the proposed solution can be
considered as a zero-latency solution. This great timing result has been achieved because
the decision path of the Policy check units is shorter than the critical path. Furthermore,
the proposed LPU allows an area optimization because PDs and MRs are set at design
time. This allows the Policy check unit to be designed using only combinatorial logic and
to be implemented using only with LUTs.

138

12 Design Space Exploration

This Chapter presents the image quality analysis performed on the reconstructed CT
images, taking into account the selected parameters and metrics presented in Section 9.6
for the DSE. Section 12.1 gives an overview of the prerequisites to be met and addresses
the problem of selecting significant data that can be used to characterize the image quality
independently of the human body being scanned. In addition, it explains how quantitative
image quality parameters, such as low-contrast, uniformity, and noise, have been expressed
and estimated with a quantitative approach. Then, Section 12.2 and Section 12.3 discuss
the evaluation results regarding the selected metrics and the different selected data formats,
respectively. These results have also been essential to validate the proposed optimization
of the pixel processing part and the different implementations where data formats are
tuned. In fact, the results of the image quality values have been compared with a GPU
implementation of the same algorithm, from which this work started for all the proposed
data processing optimizations. Finally, Section 12.4 discusses the results of the DSE
pointing out which data formats are best suited for iCT procedures. The content of this
Chapter has been partially discussed by the author in Ref. [DP 1].

12.1 Image Quality Prerequisites

Most work in the literature considers different CT scanners and/or acquisition configu-
rations to investigate how those influence image quality [173–175]. However, this work
aims to find out the influence of data formats on image quality, independent of the CT
scanning configuration. Therefore, to perform the image quality analysis required for the
DSE and to achieve significant results that can be used with the proposed metrics and are
representative of interventional CT procedures, the following conditions must be met:

1. Using the same CT scanning configuration.

2. Using a phantom, which is a representative object for medical procedures. In this
case, this must be representative of the image characterization independently of the
specific human body part to be acquired during a medical procedure.

3. Using a quantitative method for the selected metrics to fairly estimate the image
quality.

139

12 Design Space Exploration

12.1.1 CT scanning configuration

In order to acquire and reconstruct the images with the different data formats, the
experiment was conducted without turning off the scanner between the different acquisitions.
In this way, the X-ray tube and the DMS are calibrated with the same values between the
different acquisitions. In addition, by performing all the acquisitions in the same window,
environmental interferences should affect the different acquisitions in the same way.

Furthermore, to perform the I0-correction step, an axial full-projection acquisition,
without objects is required, as explained in Sec. 2.4.3. Since this image is affected by the
calibration parameters and the environmental interferences, conducting the experiment as
explained above allows to use the same I0-projections for the whole experiment. Fig. 12.1
shows an I0-projection stored in short data format and collected during during the
experiment.

Figure 12.1: I0-image: Image without object

Finally, the KIDS-CT scanner was set up with the standard acquisition parameters
typically used with the selected DMS and shown in Tab. 12.1.

Table 12.1: KIDS-CT scanner: scanning parameters
CT scanning parameters Settings

DMS
number of row slices 64
x and y slice width 0.7 mm1

number projections per round 10001

Gantry rotation speed 1 round per second
X-ray tube

system
voltage 120 KV
intensity 250 mA

RS
reconstruction algorithm FDK algorithm [63]
z slice width 1 mm
size of the reconstructed image 512 x 512 pixels

*note Additional setting parameters can not be
disclosed due to the confidential nature of the information

Although parameters could be selected or tuned to achieve better image quality, this
research only investigates the influence of data formats on image quality and performance.
Therefore, only these parameters were tuned in the experiment to explore the design space.

1This parameter has been generalized due to the confidentiality nature of the information

140

12 Design Space Exploration

12.1.2 Phantom selection

The CATPHAN® 500 [163] was chosen for the experiments. This has 4 modules housed
in a 20 cm case, as shown in Fig. 12.2. Each module is used to perform a different
image quality metric such as the Geometry Alignment, the uniformity, the noise, and the
low-contrast of the reconstructed image. Before describing the modules, it is important
to introduce the Hounsfield Unit (HU), also known as “CT number” It is the relative
quantitative measure of radio-density [176]. Radiologists use the HU to interpret the CT
images. Since different body tissues have different densities, this value can be used to
identify the different soft tissues and bones.

Figure 12.2: CATPHAN® 500 [163] phantom

Among the four modules, only the following were used to perform the selected image
quality metrics:

• CTP515 Low-Contrast Module: This module is composed of cylindrical rods
varying in diameter and featuring three levels of contrast, intended for assessing
low-contrast performance as detailed in [163]. As shown in Fig. [cat500Low], these
rods are placed along the z-axis to avoid volume averaging errors [177]. The different
low-contrast points are useful for identifying small low-contrast parts in the image,
such as tumors in interventional procedures. The module includes sub-slice targets
with a standard contrast of 1.0% and lengths on the z-axis of 3, 5, and 7 mm. For
each of these lengths, there are targets with diameters of 3, 5, 7, and 9 mm [177].
This phantom module is required to perform the low-contrast image quality metric
to find out if different data formats affect the different levels of contrast in the
reconstructed image.

141

12 Design Space Exploration

Supra-Slice
0.3%

Supra-Slice
1.0%

3mm
Length

7mm
Length

5mm
Length

Supra-Slice
1.0% Supra-Slice

0.5%

Figure 12.3: Section of the CTP515 Low-Contrast Module [177]

• CTP486 Uniformity Module: This module is made of a uniform material that
has a “CT number” within 2% of the water density, according to standard scanning
protocols [163]. It is used to measure and then estimate spatial uniformity and noise.
As shown in Fig. 12.4, this module contains various ROI for assessing the uniformity
across different areas of a phantom section. In order to evaluate the accuracy of the
CT number in comparison to the expected value, the average and standard deviation
of a large number of points within a specific ROI of the scanned image are calculated.

ROI

Figure 12.4: CTP486 Uniformity Module [177]

142

12 Design Space Exploration

• CTP401 Slice Geometry and Sensitometry Module: This module is used
to verify the phantom position. As shown in Fig. 12.5, the module includes five
acrylic spheres designed to assess the scanner’s ability to image sub-slice spherical
volumes. These spheres have diameters of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm.
This particular phantom was chosen for human visual analysis of the CT images,
considering the various materials and sizes of the spheres.

23° ramps

Air

Te�on

Acrylic

LDPE

Sensitometry
Samples

50mm spaced
air and Te�on rods

10, 8, 6, 4, 2 mm
acrylic spheres

Figure 12.5: CTP401 Slice Geometry and Sensitometry Module [177]

12.1.3 Calculation of the image quality metrics

For each image quality parameter, a mathematical value of it was calculated. For estimating
the pixel error of the 2D projections, the MSE was calculated, because it gives the error
interpretation of the approximated image [161]. The equation of MSE is the following:

MSE = 1
V

V∑
j=1

(Aj − Sj)2 (12.1)

Here, Aj is the pixel value of a reference image, and Sj is the pixel value of the image to
be analyzed [160]. As reference image, the pre-processed image with double format was
selected, as discussed in Section 9.6.

For the calculation of the noise, uniformity, and low-contrast values related to the
reconstructed volumes, different ROIs per module were considered, as suggested in the
CATPHAN® 500 manual [163]. The identification of the ROIs allows to extract from the
images only the values related to the material of interest. In the specific case, the ROIs
shown in Fig. 12.6 with red and blue circles were selected from the reconstructed images.
Furthermore, to compare the values related to the different data formats, the material

143

12 Design Space Exploration

values contained in the phantom and a reference volume per module were reconstructed.
The reference volume was reconstructed using the Generic Computed Tomography (GCT)
toolkit, which is a GPU-accelerated image reconstruction and processing toolkit for CT
that includes different detectors and projection geometries [178, 179].

(a) CTP486: uniformity and noise analysis (b) CTP515: low-contrast analysis

Figure 12.6: Placements of the ROIs

For the low-contrast analysis, the CTP515 module was used, considering the ROIs
market in Fig. 12.6. A 20-pixel diameter ROI was placed inside a larger ROI to calculate
the ratio between the two contrast areas. For this analysis, both the 1.0% supra-slice
and the 0.5% supra-slice were considered. The Contrast Noise Ratio (CNR) was then
estimated using equation 12.2, where 32 reconstructed slices were averaged. In this way,
the 32 slices contain different contrast values to be analyzed.

CNR = |SA − SB|
σB

(12.2)

In equation 12.2, SA and SB are the signal intensities of the target supra-slice and the
background regions, respectively, and σB is the standard deviation of the background.

The noise was calculated using the standard deviation of the CT numbers of the ROIs
of the CPT846 shown in Fig. 12.6. This module has five ROIs with a diameter of 40
pixels. While the Noise was estimated using the standard deviation, the uniformity was
estimated by calculating the maximum difference between the mean value of the central
ROI and the mean value of one of the peripheral ROIs. In this context, the mean value
corresponds to the average of the CT numbers in HU of the pixels within a ROI.

12.2 Image Quality Analysis

Before analyzing the results of the different data format configurations with the selected
metrics, a human visual analysis of the CTP401 module was performed. With the human

144

12 Design Space Exploration

visual analysis, we can observe that the grid between the sensors has been removed by the
pixel processing steps, and the resulting images look good with the proposed optimizations.
Fig. 12.7 shows a projection of the CTP401 module before and after the pixel processing
steps using the different data format configurations.

(a) Raw sensor data with short format

(b) Pre-processed data with 64-bit floating point

(c) Pre-processed data with 32-bit floating point

(d) Pre-processed data with 16-bit floating point

(e) Pre-processed data with 32-bit fixed point

(f) Pre-processed data with 16-bit fixed point

Figure 12.7: Projection of the CTP401 module, before and after the pixel processing part

Since no differences were observed by the human eye between the different configurations,
the MSE between the 64-bit floating point and the other formats was calculated for the
projections after the pixel processing part. As explained in Section 9.6, the MSE of the
projections is the key metric used to reduce the selected data formats for the DSE, since
it allows a rough estimation of the image quality without performing the reconstruction
and other image quality analysis that require a reconstructed image to be estimated and
take more time than calculating the MSE. Specifically, the MSE was used to select the
two 16-bit and 32-bit fixed-point format configurations, reducing the number of possible
data format configurations from 48 to 2.

As reported in Tab. 12.2, the MSE of the different data formats applied to the processed

145

12 Design Space Exploration

Table 12.2: MSE of the 2D projections
MSE FP64 FP32 FP16 FXP32 FXP16
CTP486 0.0 8.35e-16 7.84e-08 9.29e-04 5.38e-02
CTP401 0.0 8.72e-16 9.92e-08 1.01e-04 5.88e-02
CTP515 0.0 8.53e-16 7.89e-08 9.73e-04 5.64e-02

projections ranges from 10−16 for 32-bit floating point to 10−02 for 16-bit fixed point2.
These values are very good in terms of image quality since the MSE is usually between
2.36 and 2.37 also in medical image compression [180]. Moreover, we can observe that
the MSE is of the same order of magnitude independently of the selected module, but it
changes with respect to the format used for the data processing. This means that it varies
not in relation to the specific scanned phantom but with the selected data representation.

Reference image

Air

Te�o
n

Acry
lic

LDPE

FP64 FP32

FP16 FXP32 FXP16

Figure 12.8: Reconstructed image of the CTP401 module for human visual analysis

After this initial analysis, which showed that the selected format can be used for the
DSE, the reconstruction was performed for all modules and all data formats to analyze
the reconstructed 3D images, which are typically used by radiologists for diagnosis and by
surgeons during the interventional procedures. Human visual analysis was also performed
on the reconstructed images, as shown in Fig. 12.8. In the figure, we can see that all
target materials (i.e., Air, Low-Density PolyEthylene (LDPE), Teflon, and Acrylic) can be

2All tables in the thesis report data formats as follow: 64-bit floating point (FP64), 32-bit floating
point (FP32), 16-bit floating point (FP16), 32-bit fixed point (FXP32), 16-bit fixed point (FXP16)

146

12 Design Space Exploration

distinguished independently of the data format configuration used in the pixel processing
steps. This means that the image quality does not seem to change in terms of human
visual analysis. Therefore, the MSE was also calculated on the reconstructed images
to understand how the pixel processing part influences them when this is performed
with different data formats. In this case, as shown in Tab. 12.3, the MSE related to all
configurations is less than 10−5, which can be considered close to 0 in this application.

Table 12.3: MSE of the 3D volumes
MSE GCT FP64 FP32 FP16 FXP32 FXP16
CTP486 0.0 9.79e-08 9.79e-08 9.83e-08 2.42e-07 8.72e-06
CTP515 0.0 1.01e-07 1.01e-07 1.02e-07 2.53e-07 9.14e-06
CTP401 0.0 1.12e-07 1.12e-07 1.12e-07 2.75e-07 9.58e-06

However, the MSE does not consider all image quality metrics that are relevant to
medical procedures. Therefore, in order to understand how data formats affect the
quality of reconstructed images, measurements of low-contrast, noise, and uniformity were
performed. The reconstructed images needed to calculate these metrics are shown in
figures 12.9 and 12.10.

Reference image FP32 FP32

FP16 FXP32 FXP16

Figure 12.9: Reconstructed image of the CTP486 module, for noise and uniformity analysis

In this case, the same images were also reconstructed pre-processed and reconstructed
from scratch with GCT in order to compare the resulting values of the materials in HU
for the different processing solutions and data formats. Although the reference values
provided with the CATPHAN® 500 are typically used to understand the quality of a

147

12 Design Space Exploration

detector sensor (i.e., DMS sensors) from the reconstructed images, this research uses
these reference values to understand the impact of the data format on the reconstructed
images. In addition, the FDK itself can affect the image quality during reconstruction,
so the best approach is to compare the images reconstructed with GCT, without and
with the proposed optimizations, with the different data formats. The GCT algorithm
was performed with float format, using the “NVIDIA A100 40GB PCIe” GPU, which is
designed with the NVIDIA ampere architecture [181]. This information is important to
know because even if the same algorithm uses the same data format, the resulting images
can have different values because the implemented floating-point arithmetic units can use
different rounding and approximations of the real number.

Reference image
Supra-Slice

0.3%

Supra-Slice
1.0%

3mm
Length

7mm
Length

5mm
Length

Supra-Slice
1.0% Supra-Slice

0.5%

FP64 FP32

FP16 FXP32 FXP16

Figure 12.10: Reconstructed image of the CTP515 module, for low-contrast analysis

The results of the image quality analysis are reported in Tab. 12.4. Here we can see
that for all the metrics and the materials, the values of the selected data formats are close
to the GCT results, except for the 16-bit fixed point. Specifically, for all formats other
than 16-bit fixed-point, the values for uniformity and noise deviate from the GCT by a
maximum of 8.28% and 21.15%, respectively. On the other hand, the values for the 16-bit
fixed-point format show a deviation of 50.9% and 57.19% from the GCT for uniformity
and noise, respectively. Furthermore, LDPE and Teflon materials expressed in HU can
not be identified in the volume reconstructed from the 16-bit fixed-point format, whereas
they are close to the GCT results in the volumes reconstructed from other formats.

From this image quality analysis, it can be concluded that all data formats result in

148

12 Design Space Exploration

Table 12.4: Image quality analysis
GCT FP64 FP32 FP16 FXP32 FXP16

Uniformity 13.95 13.65 13.65 14.20 12.75 6.85
Noise 12.96 10.94 10.94 11.42 10.22 5.55
CNR 1.08 1.28 1.28 1.23 1.28 1.35
Air in [HU] -901.44 -898.44 -898.44 -898.56 -905.12 -949.41
Teflon in [HU] 863.69 867.25 867.25 867.13 744.54 -66.59
LDPE in [HU] -76.08 -77.37 -77.37 -77.45 -138.01 -538.81

acceptable image quality after pixel processing and reconstruction steps, with the exception
of the 16-bit fixed point. As this format results in an image where materials cannot be
identified and noise and uniformity are low only due to the blur effect of the image, it
cannot be used for interventional applications where tumors need to be identified.

12.3 Hardware Cost & Computing Performance

As discussed in Section 9.6, to determine the optimal data format for the pixel processing
part of the reconstruction algorithm for interventional CT procedures, it is essential to
consider not only the image quality but also the computing performance (i.e., latency)
and the hardware cost (i.e., resource utilization) as metrics of the selected formats.

Before analyzing the values in detail, it is important to inform the reader that no pragma
has been used in Vitis™ HLS to specify the mapping of arithmetic operations either to
DSPs or to fabrics (e.g., LUT and FF). For example, the pragma “BIND_OP” may be used
to optimize latency and/or resource utilizations for a deputed arithmetic operation by
binding it to DSP or fabric. Consequently, the use of this pragma can lead to different
results for each configuration in terms of distribution of the resource utilization between
fabric and DSP within the same configuration. Consequently, the usage of DSP and fabric
affect the latency in the order of a few clock cycles per operation.

In this case, where pragmas were not been used, Vitis™ HLS balanced between resource
utilization and latency of the Data-Processing Module. For example, to balance this usage
in the fixed-point representations, the two MUL operations in the Cosine & Redundancy
Weighting were implemented with DSPs, while the SUB and the other MUL in the I0-
correction step were implemented with fabric. This is important to note because the
two different implementations of the same MUL result in completely different amounts of
resource utilization and latency.

The resulting resource utilization and latency are shown in Tab. 12.5. Here, we can see
that the resource utilization of the implementation performed with floating-point represen-
tations uses more LUT, FF, DSP resources than the selected fixed-point representations,
independently of the two selected precisions.

Comparing the resource utilization among the different formats, we observe that although

149

12 Design Space Exploration

Table 12.5: Resource utilization and latency used for the DSE. In the table the resource
utilization and the latency of the stage 1 and 3 have been included in the
I0-correction and Weighting steps, respectively

LUTs FFs DSPs BRAMs Latency
Unit of measure n pct n pct n pct n pct c.c.
FXP16: TOP 3212 1.47 2812 0.64 8 0.89 8 1.47 14
Interconnection 254 0.12 341 0.08 0 0.00 0 0.00 -
I0-Correction 376 0.17 174 0.04 0 0.00 1 0.18 5
Weighting 2586 1.18 2084 0.48 8 0.89 7 1.28 9
FXP32: TOP 4054 1.85 4111 0.94 33 3.67 11 2.02 13
Interconnection 254 0.12 341 0.08 0 0.00 0 0.00 -
I0-Correction 804 0.37 1113 0.25 1 0.11 3 0.55 3
Weighting 2995 1.37 2624 0.60 33 3.67 8 1.47 10
FP16: TOP 4773 2.18 6644 1.52 33 3.67 10 1.83 24
Interconnection 254 0.12 341 0.08 0 0.00 0 0.00 -
I0-Correction 2520 1.15 3630 0.83 16 1.78 3 0.55 15
Weighting 1996 0.91 2640 0.60 17 1.89 7 1.28 9
FP32: TOP 5732 2.62 8039 1.84 45 5.00 11 2.02 26
Interconnection 254 0.12 341 0.08 0 0.00 0 0.00 -
I0-Correction 2808 1.28 3833 0.88 21 2.33 3 0.55 15
Weighting 2667 1.22 4132 0.95 24 2.67 8 1.47 11
FP64: TOP 7753 3.55 12070 2.76 145 16.11 11 2.02 34
Interconnection 252 0.12 341 0.08 0 0.00 0 0.00 -
I0-Correction 4839 2.21 6517 1.49 57 6.33 3 0.55 19
Weighting 2667 1.22 5185 1.19 88 9.78 8 1.47 15

these formats are designed to double the width for both representations, the resource
utilization for FFs and LUTs only increases by a factor of 1.5 between them. In contrast,
the DSP usage increases by a factor of 3.2 when comparing 32-bit to 64-bit floating-
point representations, and by a factor of 4.1 when comparing 16-bit to 32-bit fixed-point
representations.

Although different strategies may yield varying results, the resource utilization and
latency reported in Tab. 12.5 are significant in the context of this DSE. These findings
allow designers to comprehend the relation between data formats in terms of computational
performance and their impact on the overall design. In particular, optimizing DSP usage
and latency becomes crucial when the CDAS architecture needs to be extended to be
integrated into an autonomous CT scanner, as presented in the patent in Ref. [DP 8]. It
also becomes necessary to extend the Data-Flow Module to perform the slice processing
part (i.e., ramp filtering) on the fly, as this demands a large amount of resources and
requires performing operations row by row before calculating an output result.

150

12 Design Space Exploration

12.4 Design Space Exploration Considerations

Even though the best data format in terms of resource utilization is the 16-bit fixed point,
due to the low image quality found with the selected metric, this format can not be used
for interventional procedures. On one hand, among the remaining formats, the best one is
the 32-bit fixed-point, which optimizes computing performance and resource utilization
while keeping the image quality acceptable for interventional procedures; this can be
implemented with the lowest number of DSP, LUT and FF, and it is 2 times faster than
the other suitable formats. On the other hand, the best data format that optimizes the
image quality while keeping the hardware costs is the 16-bit floating point, which also
has the lowest DSP resource utilization, but the image quality is higher, penalizing the
latency compared to the 32-bit fixed-point representation. Therefore the designer can
choose between these two data formats, in relation to the specific requirements of the CT
scanner and internal components.

151

13 Evaluation Of Functionalities

This Chapter evaluates the provided functionalities, particularly the plug-and-play capa-
bility and the real-time support, which represent the main objective of this research work.
Section 13.1 explains how the proposed work facilitates the plugging of a new DMS into the
KIDS-CT scanner, providing the plug-and-play capability. Section 13.2 analyzes how the
proposed work enables real-time support for the KIDS-CT scanner. Finally, Section 13.3
compares the proposed CDAS with related work solutions in terms of functionalities. The
content of this Chapter is further discussed in the articles in Ref. [DP 1, DP 2, DP 3, DP
4, DP 5, DP 6, DP 7].

13.1 Plug-and-Play Capability

This Section validates and evaluates how the proposed work can provide plug-and-play ca-
pability in a CPS. Since this capability cannot be measured or evaluated with quantitative
metrics such as latency and resource utilization, this thesis analyzes the effort to add a new
component in a plug-and-play fashion within a CPS. Specifically, the author focuses on the
target KIDS-CT scanner, which has been modeled with the proposed System Architecture,
and the Communication Infrastructure, which includes the CDAS architecture. The effort
required to add a new component such as a DMS is considered. To highlight the differences
and advantages of the proposed solution over others, this Section also considers the effort
to add the same DMS to a generic CT scanner.

For this purpose, the AMD-Xilinx CT architecture presented in Chapter 3 was chosen
as a meaningful comparison. In contrast to the centralized approach of the proposed work,
the AMD-Xilinx solution uses a distributed approach. In fact, in the AMD-Xilinx solution,
the CS is distributed on the System Sequencer, on the HV Supply Control, and on the Data
Acquisition & Gantry Control, and the DAS is also distributed on the Data Acquisition &
Gantry Control [128].

The XC-Thor photon counting detector [182] was selected as an additional DMS for the
KIDS-CT scanner to investigate the plug-and-play capability. It is a flat panel detector with
two interfaces: a Gigabit Ethernet interface and a custom interface. The former supports
two communication modes for real-time data and non-real-time tasks, while the latter
consists of dedicated custom signals associated with real-time synchronization/control
tasks.

152

13 Evaluation Of Functionalities

The use of the Gigabit Ethernet interface for both real-time data and non-real-time
tasks makes the integration into the AMD-Xilinx CT architecture infeasible without
incorporating an additional component that routes signals/data to the various CSs and
DASs. This is because the tasks associated with this interface are implemented in separate
physical architectures in the AMD-Xilinx solution. It also means that the task requirements
must already be considered by the designer at the system design stage. In contrast, with
the proposed solution, all these interfaces can be directly connected to the CDAS without
considering the associated tasks during this step. The former can be connected to the
available Gigabit Ethernet interface, and the latter to a connector wired to the GPIO
pins of the MPSoC-FPGA. These pins support different input/output standards and are
usually described as signals in the HDL design.

In the specific, the process of integrating this DMS into the KIDS-CT scanner begins
by adding a new slave-client node to the System Architecture and matching its interfaces
to the proposed classes of the Communication Infrastructure. This mapping step treats
standard and custom interfaces in the same way, as the mapping is independent of the type
of protocol and task. Once the interfaces have been mapped to the classes, they must be
identified at the transport protocol layer and application protocol layer. This pre-matching
step is essential to understand in which module of the CDAS architecture the transceivers
and software drivers of the different interfaces should be integrated.

The transceiver for the custom interface associated with the real-time control interface
class is instantiated in the Control-Synchronization Module of the CDAS. It can be
encapsulated in the proposed Communication Unit, which also implements the Handshake
Protocol. In this way, at the application protocol layer, the Handshake Protocol can be
used to handle errors and lost messages. Both the application non-real-time class and
the application real-time data class can concurrently access the Gigabit Ethernet interface
and use the proposed Application Datagram Protocol and Application Stream Protocol,
respectively.

In addition to the effort required to add instances for various interfaces and protocols in
the communication interface layer and the transport protocol layer of the CDAS, these
must also be mapped to the PS part as I/O memory-mapped devices. Furthermore, an
additional module for the new DMS must be instantiated on the software layer. This
module contains the communication component for the server and the control logic for the
new detector, which is not discussed here because it is component-specific and is usually
provided by the vendor.

When the new module is initialized, a configuration file is defined for the DMS. This
file contains connection settings, thread scheduling, and necessary data packets tailored
to the vendor and system requirements. As a result, the server module is configured to
operate independently of the first DMS on a single thread of the CDAS. To facilitate
communication with the PL and PS components of the extension in the existing device

153

13 Evaluation Of Functionalities

tree, new entries containing the IDs and the physical addresses of the new hardware units
must be integrated. Within the software layer, the four server modules are adapted to the
new DMS according to the manufacturer’s specifications.

Communication with the control side is established via the Gigabit Ethernet interface,
and the configuration file in the communication module defines the maximum number of
clients.

The commands for the new DMS are integrated into the structure of the Execute
module and linked to the CDAS PL based on the existing device-tree setup. Alongside
the Execute module, an operation ID for communication is included in the command
datagram. New or custom datagram structures and the decode/encode lookup tables must
also be defined from the configuration file. The Operation IDs are mapped to the Execute
module commands and scheduling options are configured.

The final step is to set the Timer module into the Control-Synchronization Module at
the Software layer of theCDAS associated to the timeout of the component (specified by
the vendor). It’s important to note that all hardware/software extensions only affect the
CDAS and not the other components. However, in the AMD-Xilinx architectural model,
all components are involved due to the implementation of HV power control, sequencer,
data acquisition, and gantry control tasks on different physical components, as in most
related work solutions. These solutions result in higher integration effort and cost of
solutions in related work and the inability of them to provide plug-and-play functionality.

13.2 Real-Time Support

As discussed in the different Parts of this thesis, the real-time support in a CPS is the
result of different contributions, from the centralized System Architecture and the related
Communication Infrastructure to the micro-architecture of the modules within the CDAS,
where also tasks have been mapped taking into account this requirement.

It is not possible to provide an absolute quantitative metric for a real-time CPS, inde-
pendent of the specific use case application. However, common features that a real-time
CPS should include can be outlined. Some of these features provided by the proposed
work for real-time support can be partially found in various related works that also provide
real-time support. For example, the centralized solution is also common to the ADAS
solution proposed by Tesla[28].
Specifically in the proposed System Architecture, the centralized control architecture
has allowed to realize the proposed Synchronization Unit, where errors can be caught and
handled in a few clock cycles, whereas a distributed architecture would take much more
time because of the additional external communications are involved. Moreover, with this
solution, all the different tasks can communicate within the CDAS. Therefore, the WCET

154

13 Evaluation Of Functionalities

is affected by external communication, which usually introduces an additional stochastic
element in the timing estimation.
In the Communication Infrastructure, the division of the nodes into classes has also
contributed to the real-time support, because it allows the separation of the real-time
and non-real-time communication tasks, avoiding missed deadlines due to the interfer-
ence of non-real-time tasks. Furthermore, the additional separation between real-time
control-synchronization and data tasks also facilitates the estimation of the WCET and
avoids the convoy effect that can be caused by the huge difference in size of control and
data tasks. In fact, data tasks, such as acquisition tasks in the KIDS-CT scanner, are
considered long-running tasks that can cause control-synchronization tasks to stall.
In the CDAS architecture, the proposed mapping method also contributes to the real-
time support. In this method, task groups are partitioned into different modules for each
node, and then real-time and non-real-time tasks within each module are separated and
mapped to the PL and PS, respectively. In this way, tasks with different requirements are
separated, and those that must meet real-time requirements are implemented directly on
the PL, which usually facilitates the WCET estimation. In the PL, the execution path and
timing of a task can be precisely controlled and predicted because the hardware logic is
explicitly defined for the task. Within the CDAS architecture, the lightweight architecture
of the Data-Flow Module and the Data-Processing Module also contribute to the
real-time support of on-the-fly data processing. This feature not only enables real-time
data acquisition and processing but also optimizes the acquisition and processing datapath
in the case of the KIDS-CT scanner, providing a solution where no latency is added. This
is achieved by taking advantage of the integration period. In fact, this time is used by the
Data-Flow Module to reduce the data and by the Data-Processing Module to perform the
pixel processing steps and then send the data to the Reconstruction System. Moreover,
the LPU provides a solution that analyzes the AXI transaction during communication
without adding latency to the critical path. In this way, the isolation is provided with
no timing penalty, unlike most of the related work that can be implemented on low-cost
MPSoC-FPGA.

All these elements together contribute to providing the plug-and-play real-time CDAS ar-
chitecture for MPSoC-FPGAs targeting CPS with MCS requirements such as the KIDS-CT
scanner.

13.3 Comparison With Related Work

In order to compare the proposed and the related work, the different functionalities and
performance have been analyzed. While the LPU as a standalone architecture has already
been compared to related work in Section 11.4, the CDAS architecture has not been

155

13 Evaluation Of Functionalities

compared with related work. Although resource utilization and latency are not provided
for all the related work, the comparison has been made in terms of functionality and
supported data rate for collected data, as reported in Tab. 13.1.

Table 13.1: Related work comparison. The acronyms in the table are the following: System
Architecture (SA), Centralized Architecture (C), Distrusted Architecture (D),
not specified (n.s.), at synthesis time(s.t.), at run time (r.t.), not applicable
(n.a)

SA
In

de
pe

nd
en

t
ac

qu
isi

tio
n

st
re

am
s

M
ax

im
um

te
st

ed
ba

nd
w

id
th

[G
bp

s]

R
e-

co
nfi

gu
-

ra
bi

lit
y

Bu
ffe

r
m

em
or

y
ty

pe

D
at

a
Pr

oc
.

C
S & D

A
S

re
al

-
tim

e
iso

-
la

tio
n

ex
te

n-
sib

i-
lit

y
A

pp
lic

at
io

n

Te
sla

[2
8]

C
n.

s.
n.

s.
✗

n.
s

✓
C

D
A

S
✓

n.
s.

✗
au

to
m

ot
iv

e
In

te
l-A

lte
ra

[1
22

]
D

n.
s.

n.
s.

✗
off

-c
hi

p
✓

C
S,

D
A

S
✗

n.
s

✗
di

ag
no

st
ic

C
T

A
M

D
-X

ili
nx

[1
28

]
D

n.
s.

n.
s.

✗
off

-c
hi

p
✓

C
S,

D
A

S
✗

n.
s

✗
di

ag
no

st
ic

C
T

El
te

c
[1

02
]

n.
a.

✗
n.

s.
✗

off
-c

hi
p

✗
D

A
S

✗
n.

s.
✗

di
ag

no
st

ic
C

T
,

im
ag

e
ca

m
er

a
M

ar
ja

no
vi

c
[9

6]
✗

1.
02

4
s.t

.
off

-c
hi

p
✓

C
D

A
S

✓
n.

s.
✗

M
R

I
Ya

ng
[9

7]
✗

n.
s.

✗
off

-c
hi

p
✓

C
S,

D
A

S
✓

n.
s.

✗
im

ag
e

ac
qu

isi
tio

n
Sh

i[
98

]
✗

2.
25

✗
off

-c
hi

p
✗

C
S,

D
A

S
✓

✗
✗

im
ag

e
ac

qu
isi

tio
n

X
ie

[9
9]

✗
7.

2
✗

off
-c

hi
p

✗
D

A
S

n.
s.

✗
✗

ra
da

r
Fl

ou
za

t
[1

00
]

✗
3.

2
✗

off
-c

hi
p

D
A

S
✓

✓
✓

n.
s.

au
to

m
ot

iv
e

Sa
lg

or
o

[1
01

]
✗

8
✗

off
-c

hi
p

✗
D

A
S

✗
n.

s.
✗

PE
T

(p
ro

po
se

d
w

or
k)

C
✓

37
.5

s.
t. & r.
t.

on
-c

hi
p

✓
C

D
A

S
✓

✓
✓

m
ul

ti
m

od
al

it
y

C
T

,i
C

T
,

ge
ne

ri
c

C
P

S

156

13 Evaluation Of Functionalities

In terms of features, as shown in Tab. 13.1, the proposed architecture is the only one able
to acquire simultaneously different streams with different protocols, to offer extensibility
of the system. In addition, it achieves the highest data rate between the related work for
which this information has been shared. While the other DASs collects data and stores
them in off-chip memory, the proposed CDAS uses only in-chip memory, acquiring and
processing data on the fly. Isolation is also a problem that most of the works do not
consider or do not provide information about. Instead, the proposed CDAS has been
designed considering the isolation problem which is essential for targeting MCS. Finally,
all the CS, DAS and CDAS found are closed systems that can not be configured for other
applications. In fact, among the proposed works that target medical applications, it is not
possible to extend them to multimodality techniques or other medical devices. Although
there are related works where CDAS architectures have been proposed, these are closed
systems that can not be configurable with the exception of the CDAS for MRI proposed by
Marjanovic et al. in Ref. [96]. The proposed system is the only one that can be configured
at design time, but it only reaches 1.024 Gbps and cannot be extended to add other
components.

157

Part V

Finale

158

14 Conclusion

This Chapter provides a brief summary of the research contributions. It then discusses
the results in relation to the objectives formulated in Section 4.2. Finally, opportunities
for future improvement and research are highlighted.

14.1 Summary

After having analyzed the weaknesses of the current architectures, targeting CPSs and
CT applications, this research work has proposed a generic CDAS architecture for
MPSoC-FPGAs, providing real-time support and plug-and-play capability. In addition, it
has also proposed a System Architecture, which is based on a centralized solution and the
related Communication Infrastructure, which is organized in “classes” and “layers”. These
form the basis for the realization of the proposed CDAS architecture and its integration
in a CPS device, such as the KIDS-CT scanner, thereby achieving the research objectives.

In order to define a System Architecture, a Communication Infrastructure, and a
CDAS suitable for complex CPSs such as the KIDS-CT scanner, this research work has
developed a methodology for defining and classifying application and design requirements,
starting from the application modes/functionalities. At each step, common and specific
requirements are considered separately. The former defines the requirements that are
shared across different CPS functionalities, while the latter considers constraints for specific
functionalities and potential extensions (i.e., plug-and-play capability). From the common
requirements identified, tasks have been divided into the control-synchronization group, the
data-flow group, and the data-processing group. However, this methodology has also been
applied to the KIDS-CT scanner to identify specific requirements for the different modes,
such as diagnostic CT procedures, interventional CT procedures, including multimodality
techniques for exploring these procedures, which can not be done with commercial CT
scanners.

Before considering the CDAS architecture, the System Architecture has been modeled
by separating the physical level and the logical level. The former consists of two types of
nodes: the master-server node consists of the CDAS, and the client-slave node represents
sensors/actuators, user interfaces, and DPSs. The latter has been modeled with a multi-tier
architecture that permits the logical separation of sensors/actuators from user interfaces
and processing units, facilitating the containment of failures. Furthermore, the separation

160

14 Conclusion

into levels facilitates extensibility and interoperability, which are key features for providing
the desired plug-and-play capability.

Associated to the System Architecture to establish the communication between nodes
a Communication Infrastructure has been proposed. This is composed of layers, each
with three classes. The classes facilitate real-time support; these permit the separation
of real-time control-synchronization, real-time data and non-real-time communication
tasks within each layer, satisfying the different requirements and avoiding interferences
between them. Furthermore, the communication stack is defined by the following layers:
communication interface, transport protocol, and application protocol. For this last layer,
a application protocol layer per class has also been proposed to unify the different vendor
transport protocols. This layered organization permits the CDAS to communicate with
components from different vendors, contributing to the plug-and-play capability.

The defined three task groups take into account the functionality of the tasks but do
not consider their timing requirements. Therefore, a task partitioning methodology has
been also proposed to design the CDAS architecture for real-time support. First, tasks
per node belonging to different groups are partitioned into different modules. Then, the
tasks per node within each group are divided into real-time and non-real-time tasks,
which are mapped onto the PL and PS, respectively. According to the groups, the CDAS
architecture has been designed with three main hardware/software modules: the Control-
Synchronization Module, the Data-Flow Module, and the Data-Processing Module, while
the architecture has been designed on three layers according to the partitioning: the
Hardware layer, the OS layer and the Application layer. Each module is implemented
along these layers in relation to the timing constraints.

In the CDAS architecture, the Control-Synchronization Module implements the business
logic, the server, and the different synchronization and communication units. The Data-
Flow Module consists of a lightweight configurable dataflow architecture, which collects
data, reduces, and forwards them on the fly. In contrast to related work, this architecture
does not require external memory because the timing constraints are met by using different
clock domains between the collected and processed data to send. In addition, this
architecture can be extended to increase the number of receivers/transmitters at design
time and supports different data rates and acquisition modes at run time. The collected
data can also be processed within the CDAS architecture, in the Data-Processing Module.
This consists of a lightweight architecture that can integrate processing steps implemented
with a dataflow paradigm, as it is designed to process data on the fly. This architecture
has been designed to integrate data processing steps and configure them for different data
formats. In fact, it has also been used to explore the design space for the pixel processing
part of the FDK reconstruction algorithm. The DSE aimed to find the best data format
for interventional CT procedures considering computing performance, hardware cost, and
image quality analysis metrics. In addition, to accelerate the FDK algorithm various

161

14 Conclusion

optimizations have been proposed to perform the pixel processing part on the fly. Finally,
the CDAS architecture integrates the LPU, which enables the task isolation for MCS
implemented low-cost MPSoC-FPGAs, such as the KIDS-CT scanner.

For the implementation in the KIDS-CT scanner, the AMD-Xilinx ZC706 Evaluation
Board including the XC7Z045 MPSoC-FPGA was chosen. After successfully implementing
the CDAS architecture on the MPSoC-FPGA, the proposed work was validated and
evaluated both before and after its integration into the KIDS-CT scanner.

14.2 Discussion Of Results

This work has been started with the aim to answer research questions presented in
Chapter 4 and to reach a main research object:

"Find out how CS and DAS architectures can be combined into a CDAS architecture
for MPSoC-FPGA in order to provide real-time support and plug-and-play capability in
complex CPSs such as the KIDS-CT scanner”

This research work can be concluded by stating that the research objective has been
achieved. The research work has effectively addressed the posed questions through the
proposed methodologies and approaches. Specifically, the following results that have been
obtained from the various contributions permit to answer the proposed questions:

• Plug-and-play capability: The System Architecture, the Communication In-
frastructure, and the CDAS provide flexibility and interoperability at the system,
communication, and control level to add an additional component. This functionality
has been evaluated by comparing how an additional detector can be plugged into
the existing KIDS-CT scanner and into a generic CT scanner which is based on
the AMD-Xilinx solution. A critical metric that has been considered to enable the
CDAS architecture for plug-and-play is resource utilization since a new component
in the KIDS-CT scanner requires additional modules (i.e., hardware units in the
PL) on the CDAS architecture to control it and/or collect/process/send data. For
this reason, the proposed optimizations for the pixel processing part were crucial
to implement the CDAS into the KIDS-CT scanner with the target MPSoC-FPGA
due to the limitations of the DSPs. In fact, while the standard implementation
requires 39.13% of LUTs, 20.21% of FFs, 153% of DSPs, and 14.31% of BRAMs,
leading to implementation failure, the architecture implemented with all the proposed
optimizations requires only 7.81% of LUTs, 5.82% of FFs, 5% of DSPs, and 7.89%
of BRAMs.

• Real-time support: The centralized solution of the System Architecture enhances
the estimation of the WCET, particularly when communication between tasks as-

162

14 Conclusion

sociated with different components is involved. This improvement is due to the
elimination of external communication requirements. Additionally, the Communica-
tion Infrastructure, with its various classes per task tailored to their specific time and
data size constraints, effectively preventing the “convoy effect”. This is crucial, as the
“convoy effect” can lead real-time communication tasks to miss deadlines. By stati-
cally mapping real-time tasks onto the PL of the CDAS architecture, the execution
time can be predicted with greater accuracy compared to mapping them onto the PS,
where a scheduler is also required. Furthermore, the proposed lightweight architec-
tures for the Data-Flow Module and the Data-Processing Module acquire and process
data on the fly without using any external memory. As a result, the Data-Flow
Module achieves an estimated latency of 205.8 ns, while the Data-Processing Module
achieves an estimated latency of 260 ns, also thanks to the proposed optimizations of
the FDK pixel processing part. As a result, the total latency from pixel acquisition
to the reconstruction system is approximately 468.8 ns, excluding the link latency,
which is also in the order of nanoseconds. Since the integration period is on the
order of 200 µs, the CDAS does not add any latency because the reconstruction
system must wait for the “integration period” to receive the successive projection.
This means that the proposed solution performs the pixel-processing without adding
latency to the acquisition time. In addition, by pre-processing this part of the
algorithm during the acquisition, also the final reconstruction algorithm running on
GPU has been improved because it only performs the remaining part of the FDK
algorithm.

• Isolation in low-cost MPSoC-FPGAs: The resulting LPU architecture imple-
mented on the XC7Z045 MPSoC-FPGA and the XC7Z020 MPSoC-FPGA achieved
better resource utilization compared to the MPPU solution and also better latency
than the HIMM solution which has a range between 220 ns and 35000 ns. While
other solutions store the police in the external memory, which has a low access
prediction, the proposed LPU stores it in FFs and uses only LUTs to implement
the decision logic. In this way, it also achieves a solution where no latency is added
because the decision path is shorter than the critical path in the implemented de-
sign. Finally, the low resource utilization makes it the best solution for low-cost
MPSoC-FPGAs, since it uses only 0.17% of LUTs and 0.05% of FFs.

• Data format in interventional CT: The 16-bit fixed point is the most resource-
efficient, but it does not meet the requirements for CT reconstruction due to its
low image quality. The 32-bit fixed point, on the other hand, balances computing
performance, resource utilization, and acceptable image quality for these procedures.
It uses fewer resources than other suitable formats and is twice as fast as other
suitable formats. Alternatively, the 16-bit floating point is excellent for optimizing

163

14 Conclusion

image quality and hardware cost efficiency, but while it has the same DSP resource
utilization as the 32-bit fixed-point representation, its latency is higher in comparison.

• KIDS-CT scanner: Finally, all these results have contributed to the realization
of the KIDS-CT scanner, which is the first open-interface CT scanner assembled in
Academia and designed for exploring multimodality techniques and iCT procedures.

14.3 Future Work: Adaptive Computing Acceleration Platforms For
CDAS

As this thesis is close to the end, several future explorations emerge, particularly in relation
to the novel Adaptive Computing Acceleration Platfotms (ACAPs) such as the Versal
architecture [130]. These advanced platforms present exciting opportunities for enhancing
and extending the proposed CDAS architecture, especially in the field of medical devices
and automotive applications within autonomous CPSs.

One particularly promising application lies in the development of autonomous CT scan-
ners. The integration of complex reconstruction algorithms and autonomous functionalities
in CT scanners represents a significant challenge due to the current computing limitations
of targeted MPSoC-FPGA platforms. However, recent advancements in ACAPs, which
have begun to appear in both academic literature and the market, offer a potential solution.
These platforms are rapidly evolving to support the acceleration of real-time, embedded
applications, including the complex CPSs targeted in this thesis.

Although currently, these platforms are sometimes cost-prohibitive and not widely
adopted in the market, they are fascinating architecture to explore in future research. In
fact, this work has identified these architectures as promising platforms for extending
the CDAS architecture. A key application could be in the reduction of X-ray doses
during interventional procedures. By integrating autonomous algorithms into the CDAS,
it may be possible to adjust scanning parameters in real time, based on tumor and needle
positioning, as also described by the author of this thesis in the patent in Ref. [DP 8].

Furthermore, these advanced platforms could be leveraged to enhance the CDAS within
the KIDS-CT scanner. They offer the potential to support new reconstruction algo-
rithms based on AI or to further explore the FDK algorithm, potentially enabling its full
implementation within the CDAS.

However, these opportunities are not without their challenges. The complexity and
heterogeneity of these new platforms present obstacles that require thorough investigation.
Future research should focus on understanding and overcoming these challenges to optimize
and expand the CDAS architecture. This would not only contribute to the field of CDAS
architecture and ACAPs but also significantly advance the capabilities of autonomous
medical and automotive CPS applications.

164

List of Figures

2.1 Integration of computation and physical environment 7
2.3 MPSoC-FPGA Micro-architecture: Zynq-7000 SoC and Cyclone V SoC . . 10
2.4 AXI4: channel architecture of read operations [36] 12
2.5 AXI4: channel architecture of write operations [36] 12
2.6 Representation of the KIDS-CT scanner 16
2.7 Example of a 4 voxel object and its projections 20
2.8 CT circular trajectory . 20
2.9 World Coordinate System . 21
2.10 Pixel Coordinate System and Detector Coordinate System 22
2.11 Fan Arc Angle (left) and Fan line height (right) 22
2.12 FDK algorithm steps . 24
2.13 X-ray intersects the circular focal spot twice in full scanning 26
2.14 Illustration of the ramp filter hramp. 26
2.15 Encodings of the floating-point standard 28
2.16 Fixed-point representation . 29
2.17 Fixed-point representation methods . 29

3.1 Low-cost C-shaped PET architecture . 33
3.2 Configurable DAS architecture . 34
3.3 Tesla FSD: Block diagram architecture . 35
3.4 Swiss cheese model . 36
3.5 XPPU functional diagram . 37
3.6 Network-on-Chip Firewall . 39
3.7 MPPU: example of deployment [113] . 39
3.8 Hardware/Software IP management modules overview 40
3.9 Altera-Intel CT scanner architecture . 41
3.10 AMD-Xilinx CT scanner architecture . 43

5.1 Application classification and requirement definition steps 52

6.1 System Architecture of a CPS . 56
6.2 System Architecture: Physical level . 57
6.3 System Architecture: Logical level . 57
6.4 Communication Infrastructure . 58

165

LIST OF FIGURES

6.5 Example of the master-server node in the Communication Infrastructure . 59
6.6 Example of node interconnection and interface layer 59
6.7 Message structure of the Application Datagram Protocol. 62
6.8 Handshake protocol in case of no errors . 63
6.9 Handshake protocol. Message lost and CRC error use case 64
6.10 Application Stream Protocol . 65

7.1 Task partitioning and mapping steps . 67
7.2 CDAS architecture for MPSoC-FPGAs . 68
7.3 Control-Synchronization Module associated to a single slave-client node . . 70
7.4 Control-Synchronization Module: Communication Unit instance 70
7.5 Synchronization Unit . 72
7.6 FSM of the Execute module . 74
7.7 UML sequence diagram: server modules in the CDAS architecture 76
7.8 CDAS: Data-Flow Unit . 82
7.9 CDAS: Data-Processing Module . 85
7.10 Matching steps between AXI ID and domain ID 86
7.11 Matching steps between a Transaction Memory Address and MR 87
7.12 Architecture of the Lightweight Protection Unit 88
7.13 Policy check functionality . 90
7.14 Exemplary of LPU placement . 90
7.15 Exemplary Policy Configuration and Decision 91

8.1 Definition of the KIDS-CT requirements 94
8.2 KIDS-CT System Architecture: Physical level 95
8.3 KIDS-CT System Architecture: Logical level 96
8.4 KIDS-CT: Communication Infrastructure 97
8.5 Assembled KIDS-CT scanner . 98
8.6 Structure of four typical message data sections, used in the KIDS-CT scanner 99
8.7 Acquisition datapath for CT scanners without real-time support 99
8.8 Acquisition interval between consecutive projections 100
8.9 Image reconstruction: Algorithm steps . 101
8.10 Optimized datapath for the KIDS-CT scanner 101

9.1 CDAS architecture for the KIDS-CT scanner 102
9.2 KIDS-CT Synchronization Unit . 105
9.3 KIDS-CT: Synchronization steps for making CT scans 105
9.4 KIDS-CT: Synchronization errors during a CT scan 106
9.5 KIDS-CT: Data-Flow Module instantiated in the CDAS 108
9.6 KIDS-CT: Data-Processing Module . 109

166

LIST OF FIGURES

9.7 Implementation of the Pixel-processing stage for the KIDS-CT scanner . . 110
9.8 Standard I0-correction . 112
9.9 Optimized I0-correction step . 112
9.10 First approach of the weighting steps . 113
9.11 Second approach of the weighting steps . 113
9.12 Third approach of the weighting steps . 114
9.13 Example of pixels with same weights within a projection 114
9.14 Optimization of the weighting steps . 115

10.1 Design configurations for the LPU validation 124
10.2 Validation settings of the LPUs . 124
10.3 Validation of the Data-Flow Module . 125

11.1 Resource utilization of the Data-Flow Module 131
11.2 Exemplary deployment of LPU . 137

12.1 I0-image: Image without object . 140
12.2 CATPHAN® 500 [163] phantom . 141
12.3 Section of the CTP515 Low-Contrast Module [177] 142
12.4 CTP486 Uniformity Module [177] . 142
12.5 CTP401 Slice Geometry and Sensitometry Module [177] 143
12.6 Placements of the ROIs . 144
12.7 Projection of the CTP401 module, before and after the pixel processing part145
12.8 Reconstructed image of the CTP401 module for human visual analysis . . 146
12.9 Reconstructed image of the CTP486 module, for noise and uniformity analysis147
12.10Reconstructed image of the CTP515 module, for low-contrast analysis . . . 148

167

List of Tables

2.1 Detector Geometrical Parameters . 23
2.2 Projection Geometry Parameters . 23
2.3 Volume Geometry Parameters . 24

7.1 Example of AXI ID associated with different PDs 87

9.1 Design-time parameters of the Data-Flow Modules for KIDS-CT scanner . 107
9.2 Runtime parameters of the Data-Flow Modules for KIDS-CT scanner . . . 107

11.1 Resource utilization of the CDAS architecture for the KIDS-CT scanner . . 128
11.2 Clock domains CDAS architecture for the KIDS-CT scanner 129
11.3 Latency CDAS architecture for the KIDS-CT scanner 129
11.4 Resource utilization of the Data-Flow Module 130
11.5 Lightweight re-configurable dataflow architecture latency 132
11.6 Resource utilization: Data-Processing Module using the standard solution . 134
11.7 Resource utilization: Data-Processing Module using the optimized solution 135
11.8 Latency of the Data-Processing Module . 136
11.9 Resource utilization for the test design . 137
11.10Resources’ utilization and latency (c.c. means clock’s cycle) 138

12.1 KIDS-CT scanner: scanning parameters 140
12.2 MSE of the 2D projections . 146
12.3 MSE of the 3D volumes . 147
12.4 Image quality analysis . 149
12.5 Resource utilization and latency used for the DSE 150

13.1 Related work comparison . 156

168

List of Acronyms

2D 2-Dimensional

3D 3-Dimensional

A Analog

ACAP Adaptive Computing Acceleration Platfotm

ACK acknowledge

ADAS Advanced Driver-Assistance System

ADC Analog-to-Digital Converter

ADD Addition

AI Artificial Intelligence

AIB AXI isolation blocks

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

AP Access Policy

APB Advanced Peripheral Bus

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BRAM Block RAM

CAST Casting

CDAS Control-Data Acquisition System

CDC Clock Domain Crossing

CNR Contrast Noise Ratio

169

List of Acronyms

COS Cosine

CPS Cyber-Physical System

CPS PWG Cyber-Physical Systems Public Working Group

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CT Computed Tomography

CS Control System

D Digital

DAS Data Acquisition System

DCS Detector Coordinate System

DIV Division

DMS Detector Management System

DPS Data Processing System

DRAM Dynamic Random Access Memory

DSE Design Space Exploration

DSP Digital Signal Processor

ES Embedded System

EXP Exponential

F Fractional

FBP Filterd Back-Projection

FDK Feldkamp, Davis, and Kress

FF Flip-Flop

FFT Fast Furier Transform

FIFO First In First Out

FP16 16-bit floating point

170

List of Acronyms

FP32 32-bit floating point

FP64 64-bit floating point

FPGA Field Programmable Gate Array

FSBL First Stage Bootloader

FSD Full-Self Driving

FMC+ FPGA Mezzanine Card

FSM Finite State Machine

FXP16 16-bit fixed point

FXP32 32-bit fixed point

GCT Generic Computed Tomography

GFLOPS Giga FLoating-point Operations Per Second

GPIO General Purpose Input Output

GPU Graphics Processing Unit

GTX Gigabit Transceiver

HDL Hardware Description Language

HIMM Hardware IP management module

HLS High-Level Synthesis

HU Hounsfield Unit

HV High Voltage

I Integer

I/O Input/Output

I2C Inter-Integrated Circuit

iCT interventional Computed Tomography

ILA Integrated Logic Analyzer

IP Intelectual Property

171

List of Acronyms

J-PET Jagiellonian-PET

JTAG Joint Test Action Group

KIDS-CT Konfigurierbarer, Interfaceoffener, Dosissparender Computertomograph

LDPE Low-Density PolyEthylene

LOG Logarithm

LPS Left, Posterior, Superior

LPU Lightweight Protection Unit

LSB Least Significant Bit

LUT Look-Up Table

M2M Machine to Machine

MCPS Medical Cyber-Physical System

MCS Mixed-Criticality System

MMU Memory Management Unit

MPPU Memory Partition Protection Unit

MPSoC Multi-Processor System-on-Chip

MPSoC-FPGA Multi-Processor System-on-Chip Field Programmable Gate-Array

MPU Memory Protection Unit

MR Memory Region

MRI Magnetic Resonance Imaging

MSB Most Significative Bit

MSE Mean Square Error

MUL Multiplication

NIST National Institute of Standards and Technology

NNA Neural-Network Accelerator

NoC Network-on-Chip

172

List of Acronyms

NoCF Network-on-Chip Firewall

OCM On-Chip-Memory

OPC Open Platform Communications

OPC UA Open Platform Communications United Architecture

OS Operating System

OSI Open Systems Interconnection model

PC Personal Computer

PCI-E Peripheral Component Interconnect Express

PCS Pixel Coordinate System

PD Protection Domain

PE Processing Element

PET Positron Emission Tomography

POW Power

PL Programmable Logic

PMU Platform Management Unit

PS Processing System

PU Protection Unit

QoS Quality of Service

RA Read Address channel

RAS Right, Anterior, Superior

RD Read Data channel

ROI Region Of Interest

RS Resconstruction System

RTL Register-Transfer Level

RTOS Real-Time Operating System

173

List of Acronyms

rx receiver

SA System Architecture

SC Scale Case

SFP+ Small form-factor pluggable

SIMM Hardware IP management module

SMMU System Memory Management Unit

SoC System-on-Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

SUB Subtraction

tx transmitter

TPU Tensor Processing Unit

TRUNC Truncate

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

UID Unique Identifier

UML Unified Modeling Language

USB Universal Serial Bus

VCS Voxel Coordinate System

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VIP AXI Verification IP

WA Write Address channel

WCET Worst-Case Execution Time

WCS World Coordinate System

174

List of Acronyms

WD Write Data channel

WR Write Response

XMPU Xilinx Memory Protection Unit

XPPU Xilinx Peripheral Protection Unit

175

Bibliography

[1] S. A. Haque, S. M. Aziz, and M. Rahman. “Review of Cyber-Physical System in
Healthcare”. In: International Journal of Distributed Sensor Networks 10.4 (2014).
Online; Accessed: 23.02.2023, p. 217415. issn: 1550-1477. doi: 10.1155/2014/
217415.

[2] F. Hofer. “Architecture, technologies and challenges for cyber-physical systems in
industry 4.0”. In: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. Ed. by M. Oivo, D. Méndez, and
A. Mockus. New York, NY, USA: ACM, 10112018, pp. 1–10. isbn: 9781450358231.
doi: 10.1145/3239235.3239242.

[3] E. Griffor, C. Greer, D. Wollman, and M. Burns. “Framework for Cyber-Physical
Systems: Volume 1, Overview”. In: (June 2017). doi: 10.6028/NIST.SP.1500-201.

[4] M. V. Garcia, E. Irisarri, F. Pérez, E. Estévez, and M. Marcos. “OPC-UA commu-
nications integration using a CPPS architecture”. In: 2016 IEEE Ecuador technical
chapters meeting (ETCM). IEEE. 2016, pp. 1–6.

[5] D. Crosetto. “A modular VME or IBM PC based data acquisition system for
multi-modality PET/CT scanners of different sizes and detector types”. In: 2000
IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149). Vol. 2.
2000, 12/78–12/97 vol.2. doi: 10.1109/NSSMIC.2000.949946.

[6] L. Martí-Bonmatí, R. Sopena, P. Bartumeus, and P. Sopena. “Multimodality
imaging techniques”. In: Contrast media & molecular imaging 5.4 (2010), pp. 180–
189.

[7] S. A. Wells et al. “Liver ablation: best practice”. In: Radiologic Clinics 53.5 (2015),
pp. 933–971.

[8] S. R. Cherry. “Multimodality imaging: Beyond pet/ct and spect/ct”. In: Seminars
in nuclear medicine. Vol. 39. 5. Elsevier. 2009, pp. 348–353.

[9] F. C. S. O. von-Guericke University of Magdeburg. KIDS-CT, Open-Interface-
CT. Online; Accessed: 10.03.2023. 2021. url: https://www.forschungscampus-
stimulate.de/de/services/open-interface-ct/index.html.

[10] E. Alcaín et al. “Hardware Architectures for Real-Time Medical Imaging”. In:
Electronics 10.24 (2021). issn: 2079-9292. doi: 10.3390/electronics10243118.
url: https://www.mdpi.com/2079-9292/10/24/3118.

176

https://doi.org/10.1155/2014/217415
https://doi.org/10.1155/2014/217415
https://doi.org/10.1145/3239235.3239242
https://doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.1109/NSSMIC.2000.949946
https://www.forschungscampus-stimulate.de/de/services/open-interface-ct/index.html
https://www.forschungscampus-stimulate.de/de/services/open-interface-ct/index.html
https://doi.org/10.3390/electronics10243118
https://www.mdpi.com/2079-9292/10/24/3118

Bibliography

[11] J. Hsieh. Computed Tomography: Principles, Design, Artifacts, and Recent Advances.
4th ed. Vol. PM344. SPIE, 2022. isbn: 9781510646872. url: https://spie.org/
Publications/Book/2605932.

[12] X. Han, C. Wang, et al. Airway Stenting in Interventional Radiology. Springer,
2019.

[13] A. K. Jones, R. G. Dixon, J. D. Collins, E. M. Walser, B. Nikolic, et al. “Best
practice guidelines for CT-guided interventional procedures”. In: J Vasc Interv
Radiol 29.04 (2018), pp. 518–519.

[14] P. Babu and E. Parthasarathy. “Reconfigurable FPGA architectures: A survey and
applications”. In: Journal of The Institution of Engineers (India): Series B 102
(2021), pp. 143–156.

[15] S. Gandhare and B. Karthikeyan. “Survey on FPGA Architecture and Recent
Applications”. In: 2019 International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN). 2019, pp. 1–4. doi: 10.
1109/ViTECoN.2019.8899550.

[16] W.-T. Zhang et al. “Design of heterogeneous MPSoC on FPGA”. In: 2007 7th
International Conference on ASIC. 2007, pp. 102–105. doi: 10.1109/ICASIC.2007.
4415577.

[17] P. Marwedel. Embedded system design: embedded systems foundations of cyber-
physical systems, and the internet of things. Springer Nature, 2021.

[18] E. A. Lee. “Computing foundations and practice for cyber-physical systems: A
preliminary report”. In: University of California, Berkeley, Tech. Rep. UCB/EECS-
2007-72 21 (2007).

[19] S. Heath. Embedded systems design. Elsevier, 2002.

[20] W. Shi and S. Dustdar. “The promise of edge computing”. In: Computer 49.5
(2016), pp. 78–81.

[21] S. Heinrich and L. Motors. “Flash memory in the emerging age of autonomy”. In:
Flash Memory Summit (2017), pp. 1–10.

[22] D. Philips. Detector CD300 with 64 raws. Online; Accessed: 22.03.2023. 2018.
url: https://www.dunlee.com/a-w/ct-solutions/ct-detectors/64-row-
detector.html.

[23] A. G. Mariño, F. Fons, and J. M. M. Arostegui. “The future roadmap of in-vehicle
network processing: A HW-centric (R-) evolution”. In: IEEE access 10 (2022),
pp. 69223–69249.

177

https://spie.org/Publications/Book/2605932
https://spie.org/Publications/Book/2605932
https://doi.org/10.1109/ViTECoN.2019.8899550
https://doi.org/10.1109/ViTECoN.2019.8899550
https://doi.org/10.1109/ICASIC.2007.4415577
https://doi.org/10.1109/ICASIC.2007.4415577
https://www.dunlee.com/a-w/ct-solutions/ct-detectors/64-row-detector.html
https://www.dunlee.com/a-w/ct-solutions/ct-detectors/64-row-detector.html

Bibliography

[24] S. Jogwar and P. Daoutidis. “Community-based synthesis of distributed control
architectures for integrated process networks”. English (US). In: Chemical Engi-
neering Science 172 (2017). Publisher Copyright: © 2017 Elsevier Ltd Copyright:
Copyright 2017 Elsevier B.V., All rights reserved., pp. 434–443. issn: 0009-2509.
doi: 10.1016/j.ces.2017.06.043.

[25] S.-H. Tseng and J. Anderson. “Synthesis to deployment: Cyber-physical control
architectures”. In: arXiv preprint arXiv:2012.05211 (2020).

[26] H. Stähle, L. Mercep, A. Knoll, and G. Spiegelberg. “Towards the deployment of a
centralized ict architecture in the automotive domain”. In: 2013 2nd Mediterranean
Conference on Embedded Computing (MECO). IEEE. 2013, pp. 66–69.

[27] R. V. Chakaravarthy, H. Kwon, and H. Jiang. “Vision Control Unit in Fully Self
Driving Vehicles Using Xilinx MPSoC and Opensource Stack”. In: Proceedings of the
26th Asia and South Pacific Design Automation Conference. ASPDAC ’21. Tokyo,
Japan: Association for Computing Machinery, 2021, 311–317. isbn: 9781450379991.
doi: 10.1145/3394885.3431616. url: https://doi.org/10.1145/3394885.
3431616.

[28] E. Talpes et al. “Compute Solution for Tesla’s Full Self-Driving Computer”. In:
IEEE Micro 40.2 (2020), pp. 25–35. doi: 10.1109/MM.2020.2975764.

[29] W. Wolf, A. A. Jerraya, and G. Martin. “Multiprocessor system-on-chip (MPSoC)
technology”. In: IEEE transactions on computer-aided design of integrated circuits
and systems 27.10 (2008), pp. 1701–1713.

[30] A. Biondi et al. “SPHERE: A multi-SoC architecture for next-generation cyber-
physical systems based on heterogeneous platforms”. In: IEEE Access 9 (2021),
pp. 75446–75459.

[31] AMD-Xilinx. XA Zynq-7000 SoC Data Sheet: Overview (DS188). [Online; Accessed:
22.06.2023]. 2018. url: https://docs.xilinx.com/v/u/en-US/ds188-XA-Zynq-
7000-Overview.

[32] A. A. Prince and V. Kartha. “A framework for remote and adaptive partial re-
configuration of SoC based data acquisition systems under Linux”. In: 2015 10th
International Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC). IEEE. 2015, pp. 1–5.

[33] J. L. Ayala. Communication Architectures for Systems-on-chip. CRC Press, 2018.

[34] AMD-Xilinx. Learn the architecture - An introduction to AMBA AXI. https:
//developer.arm.com/documentation/102202/0300/What-is-AMBA--and-why-
use-it-. Online; Accessed: 24.07.2023. 2023.

178

https://doi.org/10.1016/j.ces.2017.06.043
https://doi.org/10.1145/3394885.3431616
https://doi.org/10.1145/3394885.3431616
https://doi.org/10.1145/3394885.3431616
https://doi.org/10.1109/MM.2020.2975764
https://docs.xilinx.com/v/u/en-US/ds188-XA-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds188-XA-Zynq-7000-Overview
https://developer.arm.com/documentation/102202/0300/What-is-AMBA--and-why-use-it-
https://developer.arm.com/documentation/102202/0300/What-is-AMBA--and-why-use-it-
https://developer.arm.com/documentation/102202/0300/What-is-AMBA--and-why-use-it-

Bibliography

[35] AMD-Xilinx. AXI Reference Guide (UG761). https://docs.xilinx.com/v/u/en-
US/ug761_axi_reference_guide. [Online; Accessed: 10-July-2023]. 2012.

[36] “AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE
and ACE-Lite”. In: Arm (30.03.2013). Online; Accessed: 20.07.2021. url: https:
//developer.arm.com/documentation/ihi0022/e/.

[37] A. Burns and R. Davis. “Mixed criticality systems-a review”. In: Department of
Computer Science, University of York, Tech. Rep (2013), pp. 1–69.

[38] E. Dubrova. “Fundamentals of Dependability”. In: Fault-Tolerant Design. New
York, NY: Springer New York, 2013, pp. 5–20. isbn: 978-1-4614-2113-9. doi:
10.1007/978-1-4614-2113-9_2. url: https://doi.org/10.1007/978-1-4614-
2113-9_2.

[39] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi. “Fault
triggers in open-source software: An experience report”. In: 2013 IEEE 24th Interna-
tional Symposium on Software Reliability Engineering (ISSRE). 2013, pp. 178–187.
doi: 10.1109/ISSRE.2013.6698917.

[40] L. Piardi, P. Leitão, and A. S. de Oliveira. “Fault-tolerance in cyber-physical
systems: Literature review and challenges”. In: 2020 IEEE 18th International
Conference on Industrial Informatics (INDIN). Vol. 1. IEEE. 2020, pp. 29–34.

[41] R. Wilhelm et al. “The worst-case execution-time problem—overview of methods
and survey of tools”. In: ACM Transactions on Embedded Computing Systems
(TECS) 7.3 (2008), pp. 1–53.

[42] S. Altmeyer, B. Lisper, C. Maiza, J. Reineke, and C. Rochange. “WCET and
mixed-criticality: What does confidence in WCET estimations depend upon?” In:
15th International Workshop on Worst-Case Execution Time Analysis (WCET
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[43] A. Abel et al. “Impact of resource sharing on performance and performance pre-
diction: A survey”. In: CONCUR 2013–Concurrency Theory: 24th International
Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Pro-
ceedings 24. Springer. 2013, pp. 25–43.

[44] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. “Multi-
layered scheduling of mixed-criticality cyber-physical systems”. In: Journal of
Systems Architecture 59.10 (2013), pp. 1215–1230.

[45] M. Bottaro and T. Vardanega. “Evaluating a multicore Mixed-Criticality System
implementation against a temporal isolation kernel”. In: Journal of Systems Archi-
tecture 130 (2022), p. 102688. issn: 1383-7621. doi: https://doi.org/10.1016/
j.sysarc.2022.102688. url: https://www.sciencedirect.com/science/
article/pii/S1383762122001916.

179

https://docs.xilinx.com/v/u/en-US/ug761_axi_reference_guide
https://docs.xilinx.com/v/u/en-US/ug761_axi_reference_guide
https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/
https://doi.org/10.1007/978-1-4614-2113-9_2
https://doi.org/10.1007/978-1-4614-2113-9_2
https://doi.org/10.1007/978-1-4614-2113-9_2
https://doi.org/10.1109/ISSRE.2013.6698917
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102688
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102688
https://www.sciencedirect.com/science/article/pii/S1383762122001916
https://www.sciencedirect.com/science/article/pii/S1383762122001916

Bibliography

[46] ARM. “Cortex-M4 Technical Reference Manual r0p0”. In: (2009). Online; Accessed:
19.01.2024. url: https://developer.arm.com/documentation/ddi0439/b/
Memory-Protection-Unit.

[47] FreeRTOS. FreeRTOS-MPU - ARM Cortex-M3 and ARM Cortex-M4 Memory
Protection Unit support in FreeRTOS. Online; Accessed: 19.01.2024. 2023. url:
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html.

[48] Xilinx and Inc. Zynq UltraScale+ Device Technical Reference Manual. Online;
Accessed: 11.06.2021. url: https://www.xilinx.com/support/documentation/
user_guides/ug585-Zynq-7000-TRM.pdf.

[49] G. Heiser. “The role of virtualization in embedded systems”. In: Proceedings of
the 1st workshop on Isolation and integration in embedded systems. Ed. by M.
Engel. New York, NY: ACM, 2008, pp. 11–16. isbn: 9781605581262. doi: 10.1145/
1435458.1435461.

[50] B. Bapst, M. Lagadec, R. Breguet, V. Vilgrain, and M. Ronot. “Cone beam
computed tomography (CBCT) in the field of interventional oncology of the liver”.
In: Cardiovascular and interventional radiology 39 (2016), pp. 8–20.

[51] I. Wisely. Iterative Reconstruction in CT. https : / / www . imagewisely . org /
Imaging-Modalities/Computed-Tomography/Iterative-Reconstruction-in-
CT. Online; Accessed: 16.01.2024. 2023.

[52] T.-Y. Lee and R. K. Chhem. “Impact of new technologies on dose reduction in
CT”. In: European journal of radiology 76.1 (2010), pp. 28–35.

[53] L. L. Geyer et al. “State of the art: iterative CT reconstruction techniques”. In:
Radiology 276.2 (2015), pp. 339–357.

[54] H. W. Goo and J. M. Goo. “Dual-energy CT: new horizon in medical imaging”. In:
Korean journal of radiology 18.4 (2017), pp. 555–569.

[55] H. Scherl. Evaluation of State-of-the-Art Hardware Architectures for Fast Cone-
Beam CT Reconstruction. English. 1st ed. 2011. Aktuelle Forschung Medizintechnik
– Latest Research in Medical Engineering. Vieweg+Teubner Verlag, 2011. isbn:
9783834882592. url: https://doi.org/10.1007/978-3-8348-8259-2?nosfx=y.

[56] Philips. Philips iCT platform. Online; Accessed: 22.03.2023. 2021. url: https:
/ / www . usa . philips . com / healthcare / resources / landing / azurion ?
npagination = 1 & _ga = 2 . 132416206 . 1786482620 . 1679490727 - 592968462 .
1679490720.

[57] Siemens. Siemens iCT platform. Online; Accessed: 22.03.2023. 2021. url: https:
/ / www . siemens - healthineers . com / computed - tomography \ #somatom - x -
platform.

180

https://developer.arm.com/documentation/ddi0439/b/Memory-Protection-Unit
https://developer.arm.com/documentation/ddi0439/b/Memory-Protection-Unit
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://doi.org/10.1145/1435458.1435461
https://doi.org/10.1145/1435458.1435461
https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/Iterative-Reconstruction-in-CT
https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/Iterative-Reconstruction-in-CT
https://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/Iterative-Reconstruction-in-CT
https://doi.org/10.1007/978-3-8348-8259-2?nosfx=y
https://www.usa.philips.com/healthcare/resources/landing/azurion?npagination=1&_ga=2.132416206.1786482620.1679490727-592968462.1679490720
https://www.usa.philips.com/healthcare/resources/landing/azurion?npagination=1&_ga=2.132416206.1786482620.1679490727-592968462.1679490720
https://www.usa.philips.com/healthcare/resources/landing/azurion?npagination=1&_ga=2.132416206.1786482620.1679490727-592968462.1679490720
https://www.usa.philips.com/healthcare/resources/landing/azurion?npagination=1&_ga=2.132416206.1786482620.1679490727-592968462.1679490720
https://www.siemens-healthineers.com/computed-tomography\#somatom-x-platform
https://www.siemens-healthineers.com/computed-tomography\#somatom-x-platform
https://www.siemens-healthineers.com/computed-tomography\#somatom-x-platform

Bibliography

[58] Siemens. Miyabi Angio CT. https://www.siemens- healthineers.com/es/
angio / artis - interventional - angiography - systems / miyabi. [Online; Ac-
cessed: 22.06.2023]. 2023.

[59] D. Philips. Dunlee Xpert bundle with CT6500. https://www.dunlee.com/a-w/ct-
solutions/ct-product-bundles/ct6500.html. [Online; Accessed: 22.03.2023].
2018.

[60] L. Faggioni, F. Paolicchi, and E. Neri. Elementi di tomografia computerizzata. Vol. 4.
Springer Science & Business Media, 2011.

[61] S. GmbH. Schleifring CT Gantry. Online; Accessed: 13.03.2023. 2018. url: https://
www.schleifring.de/fileadmin/08_Downloads/CT-Applications_January18.
pdf.

[62] M. J. Willemink and P. B. Noël. “The evolution of image reconstruction for
CT—from filtered back projection to artificial intelligence”. In: European radiology
29 (2019), pp. 2185–2195.

[63] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone-beam algorithm”.
In: Josa a 1.6 (1984), pp. 612–619.

[64] H. Scherl, M. Kowarschik, H. G. Hofmann, B. Keck, and J. Hornegger. “Evaluation
of state-of-the-art hardware architectures for fast cone-beam CT reconstruction”.
In: Parallel computing 38.3 (2012), pp. 111–124.

[65] F. Noo, J. Pack, and D. Heuscher. “Exact helical reconstruction using native
cone-beam geometries”. In: Physics in Medicine & Biology 48.23 (2003), p. 3787.

[66] D. L. Parker. “Optimal short scan convolution reconstruction for fan beam CT”.
In: Medical physics 9.2 (1982), pp. 254–257.

[67] E. A. Lee. “Cyber physical systems: Design challenges”. In: 2008 11th IEEE
international symposium on object and component-oriented real-time distributed
computing (ISORC). IEEE. 2008, pp. 363–369.

[68] D. Windisch, O. Knodel, G. Juckeland, U. Hampel, and A. Bieberle. “FPGA-
Based Real-Time Data Acquisition for Ultrafast X-Ray Computed Tomography”.
In: IEEE Transactions on Nuclear Science 68.12 (2021), pp. 2779–2786. doi:
10.1109/TNS.2021.3123837.

[69] A. D. Pimentel. “Exploring exploration: A tutorial introduction to embedded
systems design space exploration”. In: IEEE Design & Test 34.1 (2016), pp. 77–90.

[70] M. Gries. “Methods for Evaluating and Covering the Design Space during Early
Design Development”. In: Integr. VLSI J. 38.2 (2004), 131–183. issn: 0167-9260.
doi: 10.1016/j.vlsi.2004.06.001. url: https://doi.org/10.1016/j.vlsi.
2004.06.001.

181

https://www.siemens-healthineers.com/es/angio/artis-interventional-angiography-systems/miyabi
https://www.siemens-healthineers.com/es/angio/artis-interventional-angiography-systems/miyabi
https://www.dunlee.com/a-w/ct-solutions/ct-product-bundles/ct6500.html
https://www.dunlee.com/a-w/ct-solutions/ct-product-bundles/ct6500.html
https://www.schleifring.de/fileadmin/08_Downloads/CT-Applications_January18.pdf
https://www.schleifring.de/fileadmin/08_Downloads/CT-Applications_January18.pdf
https://www.schleifring.de/fileadmin/08_Downloads/CT-Applications_January18.pdf
https://doi.org/10.1109/TNS.2021.3123837
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001

Bibliography

[71] M. Gries. “Methods for evaluating and covering the design space during early
design development”. In: Integration 38.2 (2004), pp. 131–183. issn: 0167-9260.
doi: https://doi.org/10.1016/j.vlsi.2004.06.001. url: https://www.
sciencedirect.com/science/article/pii/S016792600400032X.

[72] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. “Mapping on multi/many-core
systems: Survey of current and emerging trends”. In: 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). 2013, pp. 1–10. doi: 10.1145/2463209.
2488734.

[73] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008),
pp. 1–70. doi: 10.1109/IEEESTD.2008.4610935.

[74] D. L. N. Hettiarachchi, V. S. P. Davuluru, and E. J. Balster. “Integer vs. Floating-
Point Processing on Modern FPGA Technology”. In: 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC). 2020, pp. 0606–0612. doi:
10.1109/CCWC47524.2020.9031118.

[75] A. R. Omondi. Computer arithmetic systems: algorithms, architecture and imple-
mentation. Prentice Hall International (UK) Ltd., 1994.

[76] C. Kormanyos. “Fixed-Point Mathematics”. In: Real-Time C++: Efficient Object-
Oriented and Template Microcontroller Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2018, pp. 267–289. isbn: 978-3-662-56718-0. doi: 10.1007/978-
3-662-56718-0_13. url: https://doi.org/10.1007/978-3-662-56718-0_13.

[77] AMD-Xilinx. Getting Started with Vitis HLS. Online; Accessed: 07.12.2023. 2021.
url: https://docs.xilinx.com/r/2021.2- English/ug1399- vitis- hls/
Getting-Started-with-Vitis-HLS.

[78] A. Ahmadi, C. Cherifi, V. Cheutet, and Y. Ouzrout. “A review of CPS 5 components
architecture for manufacturing based on standards”. In: 2017 11th International
Conference on Software, Knowledge, Information Management and Applications
(SKIMA). 2017, pp. 1–6. doi: 10.1109/SKIMA.2017.8294091.

[79] J. Jamaludin and J. M. Rohani. “Cyber-physical system (cps): State of the art”. In:
2018 International Conference on Computing, Electronic and Electrical Engineering
(ICE Cube). IEEE. 2018, pp. 1–5.

[80] L. Hu, N. Xie, Z. Kuang, and K. Zhao. “Review of Cyber-Physical System Architec-
ture”. In: 2012 IEEE 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. 2012, pp. 25–30. doi: 10.
1109/ISORCW.2012.15.

[81] S. H. Ahmed, G. Kim, and D. Kim. “Cyber Physical System: Architecture, applica-
tions and research challenges”. In: 2013 IFIP Wireless Days (WD). 2013, pp. 1–5.
doi: 10.1109/WD.2013.6686528.

182

https://doi.org/https://doi.org/10.1016/j.vlsi.2004.06.001
https://www.sciencedirect.com/science/article/pii/S016792600400032X
https://www.sciencedirect.com/science/article/pii/S016792600400032X
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/CCWC47524.2020.9031118
https://doi.org/10.1007/978-3-662-56718-0_13
https://doi.org/10.1007/978-3-662-56718-0_13
https://doi.org/10.1007/978-3-662-56718-0_13
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://doi.org/10.1109/SKIMA.2017.8294091
https://doi.org/10.1109/ISORCW.2012.15
https://doi.org/10.1109/ISORCW.2012.15
https://doi.org/10.1109/WD.2013.6686528

Bibliography

[82] E. Min et al. “Development of Compact, Cost-effective, FPGA-Based Data Ac-
quisition System for the iPET System”. In: Journal of Medical and Biological
Engineering 37.6 (2017), pp. 858–866. doi: 10.1007/s40846-017-0245-1.

[83] G. Korcyl et al. “Trigger-less and reconfigurable data acquisition system for positron
emission tomography”. In: Bio-Algorithms and Med-Systems 10.1 (2014). doi:
10.1515/bams-2013-0115.

[84] G. Korcyl et al. “Evaluation of single-chip, real-time tomographic data processing
on FPGA SoC devices”. In: IEEE transactions on medical imaging 37.11 (2018),
pp. 2526–2535.

[85] E Fysikopoulos, G Loudos, M Georgiou, S David, and G Matsopoulos. “A Spartan 6
FPGA-based data acquisition system for dedicated imagers in nuclear medicine”. In:
Measurement Science and Technology 23.12 (2012), p. 125403. doi: 10.1088/0957-
0233/23/12/125403.

[86] M Traxler et al. “A compact system for high precision time measurements (14 ps
RMS) and integrated data acquisition for a large number of channels”. In: Journal
of Instrumentation 6.12 (2011), p. C12004. doi: 10.1088/1748-0221/6/12/C12004.
url: https://dx.doi.org/10.1088/1748-0221/6/12/C12004.

[87] Medical Device "Plug-and-Play" (MD PnP) Interoperability Program. https://
mdpnp.org. Online; Accessed: 17.01.2022.

[88] R. M. Hofmann. “Modeling medical devices for plug-and-play interoperability”.
PhD thesis. Massachusetts Institute of Technology, 2007.

[89] T. Li et al. “From Offline toward Real-Time: A Hybrid Systems Model Checking
and CPS Co-design Approach for Medical Device Plug-and-Play (MDPnP)”. In:
2012 IEEE/ACM Third International Conference on Cyber-Physical Systems. 2012,
pp. 13–22. doi: 10.1109/ICCPS.2012.10.

[90] About OPC Technologies: OPC UA. Online; Accessed: 30.11.2023. OPC Foundation.
url: https://opcfoundation.org/about/opc-technologies/opc-ua/.

[91] J. Kim and J. Jeong. “Design and implementation of opc ua-based vr/ar collabora-
tion model using cps server for vr engineering process”. In: Applied Sciences 12.15
(2022), p. 7534.

[92] V. Jirkovskỳ, P. Kadera, and M. Obitko. “OPC UA realization of cloud cyber-
physical system”. In: 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE. 2018, pp. 115–120.

183

https://doi.org/10.1007/s40846-017-0245-1
https://doi.org/10.1515/bams-2013-0115
https://doi.org/10.1088/0957-0233/23/12/125403
https://doi.org/10.1088/0957-0233/23/12/125403
https://doi.org/10.1088/1748-0221/6/12/C12004
https://dx.doi.org/10.1088/1748-0221/6/12/C12004
https://mdpnp.org
https://mdpnp.org
https://doi.org/10.1109/ICCPS.2012.10
https://opcfoundation.org/about/opc-technologies/opc-ua/

Bibliography

[93] A. Brusaferri, A. Ballarino, F. A. Cavadini, D. Manzocchi, and M. Mazzolini.
“CPS-based hierarchical and self-similar automation architecture for the control
and verification of reconfigurable manufacturing systems”. In: Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE. 2014,
pp. 1–8.

[94] M. Graube, S. Hensel, C. Iatrou, and L. Urbas. “Information models in OPC
UA and their advantages and disadvantages”. In: 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE.
2017, pp. 1–8.

[95] Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu. “Review on cyber-physical systems”.
In: IEEE/CAA Journal of Automatica Sinica 4.1 (2017), pp. 27–40. doi: 10.1109/
jas.2017.7510349.

[96] J. Marjanovic et al. “A reconfigurable platform for magnetic resonance data ac-
quisition and processing”. In: IEEE Transactions on Medical Imaging 39.4 (2019),
pp. 1138–1148.

[97] C. Yang and M. Chen. “Design of High Performance Image Acquisition and Process-
ing Platform Based on DSP and FPGA”. In: 2020 IEEE International Conference
on Advances in Electrical Engineering and Computer Applications(AEECA). 2020,
pp. 684–688. doi: 10.1109/AEECA49918.2020.9213543.

[98] H. Shi and S. Zhang. “Dual-Channel Image Acquisition System Based on FPGA”.
In: 2019 International Conference on Intelligent Transportation, Big Data Smart
City (ICITBS). 2019, pp. 421–424. doi: 10.1109/ICITBS.2019.00110.

[99] Y. Xie et al. “FPGA Implementation of High-Speed Data Acquisition System for
High-Resolution Millimeter Wave Radar”. In: 2020 9th International Conference
on Modern Circuits and Systems Technologies (MOCAST). 2020, pp. 1–4. doi:
10.1109/MOCAST49295.2020.9200252.

[100] C. Flouzat, E. Piriou, M. Guibert, B. Jovanović, and M. Oussayran. “EVPS: an
automotive video acquisition and processing platform”. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2020, pp. 1716–1717.

[101] S Salgaro et al. “Plug-and-Play High-Speed Communication Protocol for Readout-
Systems Network Based on FPGA and Gigabit Optical Fiber Network”. In: 2020
IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).
IEEE. 2020, pp. 1–4.

[102] ELTEC. PCI Express Frame Grabber for Camera Link Cameras ELTEC sys-
tems. (access:20/01/2020). url: "https://www.eltec.de/pdf/datenblaetter/
Datasheet_PC_EYE_CL.pdf".

184

https://doi.org/10.1109/jas.2017.7510349
https://doi.org/10.1109/jas.2017.7510349
https://doi.org/10.1109/AEECA49918.2020.9213543
https://doi.org/10.1109/ICITBS.2019.00110
https://doi.org/10.1109/MOCAST49295.2020.9200252
"https://www.eltec.de/pdf/datenblaetter/Datasheet_PC_EYE_CL.pdf"
"https://www.eltec.de/pdf/datenblaetter/Datasheet_PC_EYE_CL.pdf"

Bibliography

[103] I. LogiCORE. “LogiCORE IP Aurora 8B/10B v6. 2, User Guide 766”. In: San Jose,
CA, USA: Xilinx (2011).

[104] Xilinx Inc. MicroBlaze Processor Reference Guide. Online; Accessed: 20.07.2021.
url: https : / / www . xilinx . com / support / documentation / sw _ manuals /
xilinx2018_2/ug984-vivado-microblaze-ref.pdf.

[105] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. “TrustZone Explained:
Architectural Features and Use Cases”. In: 2016 IEEE 2nd International Conference
on Collaboration and Internet Computing. Piscataway, NJ: IEEE, 2016, pp. 445–451.
isbn: 978-1-5090-4607-2. doi: 10.1109/CIC.2016.065.

[106] Xilinx, Inc. Isolation Methods in Zynq UltraScale+ MPSoCs Application Note.
Online; Accessed: 02.03.2021.

[107] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. “SECA”. In: Proceedings
of the 2005 international conference on Compilers, architectures and synthesis for
embedded systems - CASES ’05. Ed. by T. M. Conte, P. Faraboschi, B. Mangione-
Smith, and W. Najjar. New York, New York, USA: ACM Press, 2005, p. 78. isbn:
159593149X. doi: 10.1145/1086297.1086308.

[108] L. Fiorin, G. Palermo, S. Lukovic, and C. Silvano. “A data protection unit for
NoC-based architectures”. In: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis - CODES+ISSS
’07. Ed. by S. Ha, K. Choi, N. Dutt, and J. Teich. New York, New York, USA:
ACM Press, 2007, p. 167. isbn: 9781595938244. doi: 10.1145/1289816.1289858.

[109] P. Cotret, G. Gogniat, and M. J. Sepúlveda Flórez. “Protection of heteroge-
neous architectures on FPGAs: An approach based on hardware firewalls”. In:
Microprocessors and Microsystems 42 (2016), pp. 127–141. issn: 01419331. doi:
10.1016/j.micpro.2016.01.013.

[110] F. Siddiqui, M. Hagan, and S. Sezer. “Pro-Active Policing and Policy Enforcement
Architecture for Securing MPSoCs”. In: 2018 31st IEEE International System-
on-Chip Conference (SOCC). IEEE, 9/4/2018 - 9/7/2018, pp. 140–145. isbn:
978-1-5386-1491-4. doi: 10.1109/SOCC.2018.8618531.

[111] A. Sensaoui, D. Hely, and O.-E.-K. Aktouf. “Toubkal: A Flexible and Efficient
Hardware Isolation Module for Secure Lightweight Devices”. In: 2019 15th European
Dependable Computing Conference (EDCC). IEEE, 9/17/2019 - 9/20/2019, pp. 31–
38. isbn: 978-1-7281-3929-6. doi: 10.1109/EDCC.2019.00018.

[112] M. LeMay and C. A. Gunter. “Network-on-Chip Firewall: Countering Defective
and Malicious System-on-Chip Hardware”. In: Logic, Rewriting, and Concurrency.
Ed. by N. Martí-Oliet, P. C. Ölveczky, and C. Talcott. Vol. 9200. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2015, pp. 404–426.

185

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1145/1086297.1086308
https://doi.org/10.1145/1289816.1289858
https://doi.org/10.1016/j.micpro.2016.01.013
https://doi.org/10.1109/SOCC.2018.8618531
https://doi.org/10.1109/EDCC.2019.00018

Bibliography

isbn: 978-3-319-23164-8. doi: 10.1007/978-3-319-23165-5{\textunderscore}
19.

[113] G. Kornaros et al. “Hardware Support for Cost-Effective System-Level Protection
in Multi-core SoCs”. In: 2015 Euromicro Conference on Digital System Design.
IEEE, 8/26/2015 - 8/28/2015, pp. 41–48. isbn: 978-1-4673-8035-5. doi: 10.1109/
DSD.2015.65.

[114] S. Kumar Saha and C. Bobda. “FPGA Accelerated Embedded System Security
Through Hardware Isolation”. In: 2020 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST). IEEE, 12/15/2020 - 12/17/2020, pp. 1–6. isbn:
978-1-7281-8952-9. doi: 10.1109/AsianHOST51057.2020.9358258.

[115] I. Polian, F. Regazzoni, and J. Sepulveda. “Introduction to hardware-oriented
security for MPSoCs”. In: 2017 30th IEEE International System-on-Chip Conference
(SOCC). IEEE, 9/5/2017 - 9/8/2017, pp. 102–107. isbn: 978-1-5386-4034-0. doi:
10.1109/SOCC.2017.8226017.

[116] T. Dörr, T. Sandmann, and J. Becker. “A Formal Model for the Automatic Config-
uration of Access Protection Units in MPSoC-Based Embedded Systems”. In: 2020
23rd Euromicro Conference on Digital System Design (DSD). 2020, pp. 596–603.
doi: 10.1109/DSD51259.2020.00098.

[117] Xilinx, Inc. Xilinx Reduces Risk and Increases Efficiency for IEC61508 and
ISO26262 Certified Safety Applications (WP461). Online; Accessed: 08.03.2021.

[118] Xilinx and Inc. Zynq-7000 SoC Technical Reference Manual. Online; Accessed:
11.06.2021. url: https://www.xilinx.com/support/documentation/user_
guides/ug585-Zynq-7000-TRM.pdf.

[119] Xilinx, Inc. “AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059)”. In: ().

[120] Intel. Cyclone V Hard Processor System Technical Reference Manual.

[121] Xilinx, Inc. Isolate Security-Critical Applications on Zynq UltraScale+ Devices
White Paper. Online; Accessed: 02.03.2021.

[122] Intel-Altera. Diagnostic Imaging, FPGA Diagnostic Imaging Applications - Intel
FPGA. Online; Accessed: 27.11.2021. url: https://www.intel.fr/content/www/
fr/fr/healthcare-it/products/programmable/applications/diagnostic-
imaging.html.

[123] Intel Corporation. Cyclone V Hard Processor System Technical Reference Manual.
Online; Accessed: 17.11.2023. Aug. 2023. url: https://www.intel.com/content/
www/us/en/docs/programmable/683126/21-2/introduction-to-the-hard-
processor-system-98309.html.

186

https://doi.org/10.1007/978-3-319-23165-5{\textunderscore }19
https://doi.org/10.1007/978-3-319-23165-5{\textunderscore }19
https://doi.org/10.1109/DSD.2015.65
https://doi.org/10.1109/DSD.2015.65
https://doi.org/10.1109/AsianHOST51057.2020.9358258
https://doi.org/10.1109/SOCC.2017.8226017
https://doi.org/10.1109/DSD51259.2020.00098
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.intel.fr/content/www/fr/fr/healthcare-it/products/programmable/applications/diagnostic-imaging.html
https://www.intel.fr/content/www/fr/fr/healthcare-it/products/programmable/applications/diagnostic-imaging.html
https://www.intel.fr/content/www/fr/fr/healthcare-it/products/programmable/applications/diagnostic-imaging.html
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/introduction-to-the-hard-processor-system-98309.html
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/introduction-to-the-hard-processor-system-98309.html
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/introduction-to-the-hard-processor-system-98309.html

Bibliography

[124] Intel Corporation. Arria V Hard Processor System Technical Reference Manual.
Online; Accessed: 27.11.2023. Dec. 2022. url: https://www.intel.com/content/
www/us/en/docs/programmable/683011/21-2/introduction-to-the-hard-
processor-system-98309.html.

[125] D. Lewis et al. “The Stratix™ 10 highly pipelined FPGA architecture”. In: Proceed-
ings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 2016, pp. 159–168.

[126] M. Parker. “Understanding peak floating-point performance claims”. In: Technical
White Paper WP-012220-1.0 (2014).

[127] Intel-Altera. Medical Imaging Implementation Using FPGAs - White Paper (WP-
MEDICAL-2.0). Online; Accessed: 27.11.2023. url: https://cdrdv2-public.
intel.com/650313/wp-medical.pdf.

[128] Medical Imaging with CT Scanners and MRI Machines. https://www.xilinx.com/
applications/medical/medical-imaging-ct-mri-pet.html, [Online; Accessed:
28.03.2021].

[129] AMD-Xilinx. Scale+ MPSoC Data Sheet: Overview, DS891, Rev. 1.9. 26/05/2021.

[130] AMD-Xilinx. Versal: The First Adaptive Compute Acceleration Platform (ACAP).
White Paper WP505. Online; Accessed: 19.12.2023. Xilinx, 2020. url: https:
//docs.xilinx.com/v/u/en-US/wp505-versal-acap.

[131] S. M. Savaresi. “The role of real-time communication for distributed or centralized
architectures in vehicle dynamics control systems”. In: 2006 IEEE International
Workshop on Factory Communication Systems. IEEE. 2006, pp. 67–72.

[132] S. Coric, M. Leeser, E. Miller, and M. Trepanier. “Parallel-beam backprojection: an
FPGA implementation optimized for medical imaging”. In: Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable gate arrays.
2002, pp. 217–226.

[133] I. Goddard and M. Trepanier. “High-speed cone-beam reconstruction: an embed-
ded systems approach”. In: Medical Imaging 2002: Visualization, Image-Guided
Procedures, and Display. Vol. 4681. SPIE. 2002, pp. 483–491.

[134] B. Heigl and M. Kowarschik. “High-speed reconstruction for C-arm computed tomog-
raphy”. In: Proceedings of the 9th international meeting on fully three-dimensional
image reconstruction in radiology and nuclear medicine. 2007, pp. 25–28.

[135] J. Deng, B. Yan, J. Li, and L. Li. “Parallel no-waiting pipelining accelerating CT
image reconstruction based on FPGA”. In: 2010 3rd International Conference on
Biomedical Engineering and Informatics. Vol. 1. IEEE. 2010, pp. 451–455.

187

https://www.intel.com/content/www/us/en/docs/programmable/683011/21-2/introduction-to-the-hard-processor-system-98309.html
https://www.intel.com/content/www/us/en/docs/programmable/683011/21-2/introduction-to-the-hard-processor-system-98309.html
https://www.intel.com/content/www/us/en/docs/programmable/683011/21-2/introduction-to-the-hard-processor-system-98309.html
https://cdrdv2-public.intel.com/650313/wp-medical.pdf
https://cdrdv2-public.intel.com/650313/wp-medical.pdf
https://www.xilinx.com/applications/medical/medical-imaging-ct-mri-pet.html
https://www.xilinx.com/applications/medical/medical-imaging-ct-mri-pet.html
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap

Bibliography

[136] L. Qiao, G. Luo, W. Zhang, and M. Jiang. “FPGA Acceleration of Ray-Based
Iterative Algorithm for 3D Low-Dose CT Reconstruction”. In: 2020 30th Inter-
national Conference on Field-Programmable Logic and Applications (FPL). IEEE.
2020, pp. 98–102.

[137] Y.-k. Choi and J. Cong. “Acceleration of EM-based 3D CT reconstruction using
FPGA”. In: IEEE transactions on biomedical circuits and systems 10.3 (2015),
pp. 754–767.

[138] D. Windisch, O. Knodel, G. Juckeland, U. Hampel, and A. Bieberle. “FPGA-based
Real-Time Data Acquisition for Ultrafast X-Ray Computed Tomography”. In: IEEE
Transactions on Nuclear Science 68.12 (2021), pp. 2779–2786.

[139] B. Wang, L. Zhu, K. Jia, and J. Zheng. “Accelerated cone beam CT reconstruction
based on OpenCL”. In: 2010 International Conference on Image Analysis and
Signal Processing. IEEE. 2010, pp. 291–295.

[140] J. Chen et al. “A hybrid architecture for compressive sensing 3-D CT reconstruction”.
In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2.3
(2012), pp. 616–625.

[141] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. “Fast GPU-based CT
reconstruction using the common unified device architecture (CUDA)”. In: 2007
IEEE Nuclear science symposium conference record. Vol. 6. IEEE. 2007, pp. 4464–
4466.

[142] X. Zhao et al. “GPU-based 3D cone-beam CT image reconstruction: application to
micro CT”. In: 2007 Ieee Nuclear Science Symposium Conference Record. Vol. 5.
IEEE. 2007, pp. 3922–3925.

[143] B. Shi, S. Chen, F. Huang, C. Wang, and K. Bi. “The parallel processing based on
CUDA for convolution filter FDK reconstruction of CT”. In: 2010 3rd International
Symposium on Parallel Architectures, Algorithms and Programming. IEEE. 2010,
pp. 149–153.

[144] O. Dandekar, C. Castro-Pareja, and R. Shekhar. “FPGA-based real-time 3D image
preprocessing for image-guided medical interventions”. In: Journal of Real-Time
Image Processing 1.4 (2007), pp. 285–301.

[145] M. Nourazar and B. Goossens. “Accelerating iterative CT reconstruction algorithms
using Tensor Cores”. In: Journal of Real-Time Image Processing 18.6 (2021),
pp. 1979–1991.

[146] R. A. Carrasco Cavieres, R. Vega, and C. A. Navarro. Analyzing GPU Tensor
Core Potential for Fast Reductions. Oct. 2018. doi: 10.29007/zlmg. url: http:
//dx.doi.org/10.29007/zlmg.

188

https://doi.org/10.29007/zlmg
http://dx.doi.org/10.29007/zlmg
http://dx.doi.org/10.29007/zlmg

Bibliography

[147] C. Maaß, M. Baer, and M. Kachelrieß. “CT image reconstruction with half precision
floating-point values”. In: Medical physics 38.S1 (2011), S95–S105.

[148] I. Dumitrache, I. S. Sacala, M. A. Moisescu, and S. I. Caramihai. “A conceptual
framework for modeling and design of Cyber-Physical Systems”. In: Studies in
Informatics and Control 26.3 (2017), pp. 325–334.

[149] W. Mahnke, S.-H. Leitner, and M. Damm. OPC unified architecture. Springer
Science & Business Media, 2009.

[150] AMD-Xilinx. Z7 Series FPGAs GTX/GTH Transceivers User Guide (UG476).
14/08/2018.

[151] V. Q. Rodriguez and F. Guillemin. “Performance analysis of VNFs for sizing
cloud-RAN infrastructures”. In: 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). 2017, pp. 1–6. doi:
10.1109/NFV-SDN.2017.8169835.

[152] R. Budruk, D. Anderson, and T. Shanley. PCI express system architecture. Addison-
Wesley Professional, 2004.

[153] B. McLaughlin. Building Java Enterprise Applications: Architecture. Vol. 1. "
O’Reilly Media, Inc.", 2002.

[154] S. T. Albin. The art of software architecture: design methods and techniques. Vol. 9.
John Wiley & Sons, 2003.

[155] A. Kurth et al. “An Open-Source Platform for High-Performance Non-Coherent On-
Chip Communication”. In: IEEE Transactions on Computers 71.8 (2022), pp. 1794–
1809. doi: 10.1109/TC.2021.3107726.

[156] Xilinx. ZC706 Evaluation Board for the Zynq-7000 XC7Z045 SoC. Tech. rep. UG954,
v1.8. Aug. 2019.

[157] T. Feist. “Vivado design suite”. In: White Paper 5 (2012), p. 30.

[158] I. Xilinx. “7 Series DSP48E1 Slice User Guide”. In: UG479 (v1. 10) March 27
(2018).

[159] A. Orailoglu and D. D. Gajski. “Flow graph representation”. In: Proceedings of the
23rd ACM/IEEE Design Automation Conference. 1986, pp. 503–509.

[160] T. Fomby. “Scoring measures for prediction problems”. In: Department of Eco-
nomics, Southern Methodist University, Dallas, TX (2008).

[161] Measures of image quality. https://homepages.inf.ed.ac.uk/rbf/CVonline/
LOCAL_COPIES/VELDHUIZEN/node18.html.

[162] Xilinx. 7 Series FPGAs Configurable Logic Block, UG474 (v1.8. [Online; Accessed:
27.12.2021]. 2016. url: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf.

189

https://doi.org/10.1109/NFV-SDN.2017.8169835
https://doi.org/10.1109/TC.2021.3107726
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Bibliography

[163] T. P. Laboratory. Catphan 500. https://www.phantomlab.com/catphan-500.
Online; Accessed: 23.01.2022.

[164] AMD-Xilinx. XILINX 7 SERIES FPGAS. [Online; Accessed: 22.12.2023]. 2018.
url: https://www.xilinx.com/publications/prod_mktg/7-Series-Product-
Brief.pdf.

[165] AMD-Xilinx. Vivado Design Suite User Guide: Designing with IP (UG896). [Online;
Accessed: 22.12.2023]. 2021. url: https://docs.xilinx.com/r/2021.1-English/
ug896-vivado-ip/IP-Centric-Design-Flow.

[166] Xilinx. Vivado System-Level Design Flows. Online; Accessed: 07.12.2023. 2021. url:
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-
overview/Vivado-System-Level-Design-Flows.

[167] AMD-Xilinx. Getting Started with Vitis. Online; Accessed: 07.12.2023. 2021. url:
https://docs.xilinx.com/r/2021.2- English/ug1400- vitis- embedded/
Getting-Started-with-Vitis.

[168] Xilinx. Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906). Online; Accessed: 07.12.2023. 2021. url: https://docs.xilinx.com/r/
2021.1-English/ug906-vivado-design-analysis/Navigating-Content-by-
Design-Process.

[169] Xilinx. Integrated Logic Analyzer v2.0 Data Sheet (DS875). Online; Accessed:
07.12.2023. 2012. url: https://docs.xilinx.com/v/u/en-US/ds875-ila.

[170] DS-520AN 802.11n Wireless & Gigabit Ethernet USB Device Server Including
802.1X Enterprise Security. Product brochure. Silex Technology. 2017. url: https:
//www.silextechnology.com/hubfs/Resource\%20PDF/DS-520AN\%20Product\
%20Brochure\%20.pdf.

[171] Xilinx. Vivado Design Suite User Guide: Synthesis. Version v2021.2. UG901. 2021.
url: https : / / docs . xilinx . com / v / u / 2021 . 2 - English / ug901 - vivado -
synthesis.

[172] S. P. Morgan. “Queuing disciplines and passive congestion control in byte-stream
networks”. In: IEEE Transactions on Communications 39.7 (1991), pp. 1097–1106.

[173] A. M. A. Roa, H. K. Andersen, and A. C. T. Martinsen. “CT image quality over
time: comparison of image quality for six different CT scanners over a six-year
period”. In: Journal of applied clinical medical physics 16.2 (2015), pp. 350–365.

[174] K. Gulliksrud, C. Stokke, and A. C. T. Martinsen. “How to measure CT image
quality: variations in CT-numbers, uniformity and low contrast resolution for a CT
quality assurance phantom”. In: Physica Medica 30.4 (2014), pp. 521–526.

190

https://www.phantomlab.com/catphan-500
https://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
https://www.xilinx.com/publications/prod_mktg/7-Series-Product-Brief.pdf
https://docs.xilinx.com/r/2021.1-English/ug896-vivado-ip/IP-Centric-Design-Flow
https://docs.xilinx.com/r/2021.1-English/ug896-vivado-ip/IP-Centric-Design-Flow
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/Vivado-System-Level-Design-Flows
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/Vivado-System-Level-Design-Flows
https://docs.xilinx.com/r/2021.2-English/ug1400-vitis-embedded/Getting-Started-with-Vitis
https://docs.xilinx.com/r/2021.2-English/ug1400-vitis-embedded/Getting-Started-with-Vitis
https://docs.xilinx.com/r/2021.1-English/ug906-vivado-design-analysis/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/2021.1-English/ug906-vivado-design-analysis/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/2021.1-English/ug906-vivado-design-analysis/Navigating-Content-by-Design-Process
https://docs.xilinx.com/v/u/en-US/ds875-ila
https://www.silextechnology.com/hubfs/Resource\%20PDF/DS-520AN\%20Product\%20Brochure\%20.pdf
https://www.silextechnology.com/hubfs/Resource\%20PDF/DS-520AN\%20Product\%20Brochure\%20.pdf
https://www.silextechnology.com/hubfs/Resource\%20PDF/DS-520AN\%20Product\%20Brochure\%20.pdf
https://docs.xilinx.com/v/u/2021.2-English/ug901-vivado-synthesis
https://docs.xilinx.com/v/u/2021.2-English/ug901-vivado-synthesis

Bibliography

[175] E. Husby, E. D. Svendsen, H. K. Andersen, and A. C. T. Martinsen. “100 days
with scans of the same Catphan phantom on the same CT scanner”. In: Journal of
applied clinical medical physics 18.6 (2017), pp. 224–231.

[176] T. D. DenOtter and J. Schubert. Hounsfield Unit. StatPearls Publishing, Treasure
Island (FL), 2021. url: http://europepmc.org/books/NBK547721.

[177] T. P. Laboratory. Catphan 500 and 600 Product Guide. Online; Accessed:
23.01.2022. url: https : / / static1 . squarespace . com / static /
5367b059e4b05a1adcd295c2 / t / 615ef40255dbd2709cd9cfbd / 1633612803610 /
CTP500600ProductGuide20211006.pdf.

[178] S. Abdurahman. Generic Computed Tomography (GCT). Online; Accessed:
07.12.2023. 2021. url: https : / / gitlab . stimulate . ovgu . de / shiras -
abdurahman/gct.

[179] C. Huang et al. “Proceedings of the 17th Virtual International Meeting on Fully
3D Image Reconstruction in Radiology and Nuclear Medicine”. In: arXiv preprint
arXiv:2310.16846 (2023).

[180] A. Fidler, U. Skaleric, and B. Likar. “The impact of image information on com-
pressibility and degradation in medical image compression”. In: Medical physics
33.8 (2006), pp. 2832–2838.

[181] NVIDIA Corporation. NVIDIA A100 Data Center GPU Datasheet. https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-
a100-datasheet-us-nvidia-1758950-r4-web.pdf. Online; Accessed: 19.01.2024.
2024.

[182] D. C. a varex image company. XC-THOR PHOTON COUNTING X-RAY DE-
TECTOR. https://www.varximaging.com/wp-content/uploads/2022/01/XC-
THOR_PDS.pdf. [Online; Accessed: 16.11.2022].

191

http://europepmc.org/books/NBK547721
https://static1.squarespace.com/static/5367b059e4b05a1adcd295c2/t/615ef40255dbd2709cd9cfbd/1633612803610/CTP500600ProductGuide20211006.pdf
https://static1.squarespace.com/static/5367b059e4b05a1adcd295c2/t/615ef40255dbd2709cd9cfbd/1633612803610/CTP500600ProductGuide20211006.pdf
https://static1.squarespace.com/static/5367b059e4b05a1adcd295c2/t/615ef40255dbd2709cd9cfbd/1633612803610/CTP500600ProductGuide20211006.pdf
https://gitlab.stimulate.ovgu.de/shiras-abdurahman/gct
https://gitlab.stimulate.ovgu.de/shiras-abdurahman/gct
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.varximaging.com/wp-content/uploads/2022/01/XC-THOR_PDS.pdf
https://www.varximaging.com/wp-content/uploads/2022/01/XC-THOR_PDS.pdf

Confidentiality Note

Please note that this thesis contains information that is subject to confidentiality constraints.
In compliance with these constraints and to respect the privacy and proprietary rights of
the involved parties, certain data, findings, and discussions have been omitted or presented
in a generalized form.

These modifications have been made to adhere to ethical guidelines, legal requirements,
and confidentiality agreements that govern the use of sensitive information. The omitted or
generalized information does not detract from the overall findings and conclusions drawn
in this thesis.

Declaration

Ehrenerklärung
Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die Hilfe eines
kommerziellen Promotionsberaters habe ich nicht in Anspruch genommen. Dritte haben
von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten,
die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter Weise
zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfolgungs-
behörden begründen kann.

Ich erkläre mich damit einverstanden, dass die Dissertation ggf. mit Mitteln der elektron-
ischen Datenverarbeitung auf Plagiate überprüft werden kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form
als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Declaration of Honor
I hereby declare that I produced this thesis without prohibited external assistance and
that none other than the listed references and tools have been used. I did not make use
of any commercial consultant concerning graduation. A third party did not receive any
nonmonetary perquisites neither directly nor indirectly for activities which are connected
with the contents of the presented thesis.

All sources of information are clearly marked, including my own publications.

In particular I have not consciously:

• Fabricated data or rejected undesired results

• Misused statistical methods with the aim of drawing other conclusions than those
warranted by the available data

• Plagiarized data or publications

• Presented the results of other researchers in a distorted way

I do know that violations of copyright may lead to injunction and damage claims of the
author and also to prosecution by the law enforcement authorities. I hereby agree that
the thesis may need to be reviewed with an electronic data processing for plagiarism.

This work has not yet been submitted as a doctoral thesis in the same or a similar form in
Germany or in any other country. It has not yet been published as a whole.

Magdeburg, November 13, 2024

Daniele Passaretti

	Introduction
	Introduction
	Motivation
	Why interventional and multimodality CT matter?
	Why KIDS-CT?
	Why a CT scanner for multimodality/interventional like KIDS-CT is a CPS?
	Why use MPSoC-FPGAs?

	Research Questions
	Research Contributions
	Thesis Outline

	Technical Background
	Cyber-Physical Systems
	Physical environment
	Embedded system
	Physical architecture

	Multi-Processor System-on-Chip Field-Programmable Gate Array
	On-chip communication architecture

	Mixed-Criticality Systems
	Shared resources in MCSs
	CPSs and MCSs
	MPSoC-FPGAs for MCSs

	Interventional Computed Tomography
	CT scanner fundamentals
	KIDS-CT scanner
	CT reconstruction theory

	Design Space Exploration
	Data formats for number representation

	Related Works
	System Architecture In CPS
	Control And Data Acquisition Systems
	Task And Peripheral Isolation
	Isolation in AMD-Xilinx architectures
	Protection units solutions

	Computed Tomography
	Controlling and data acquisition systems for CT scanners
	The data format exploration in CT data processing

	Concept
	Problem Analysis
	Weakness Of The Current Architectures
	Research Questions & Objectives

	Methodology
	Requirement Definition For The Selected CPS Application
	System Architecture
	Communication Infrastructure
	Control-Data Acquisition System

	Cyber-Physical System Architecture
	Requirement & Task Classification
	System Architecture
	Communication Infrastructure
	Communication interface layer
	Transport protocol layer
	Application protocol layer

	Control-Data Acquisition System
	Task Partitioning
	Hardware/Software Architecture
	Control-Synchronization Module
	Hardware layer
	Application layer
	Example

	Data-Flow Module
	Architecture reconfigurability
	Inter-clock domains
	Architecture description

	Data-Processing Module
	Architecture description

	Isolation Support For MPSoC-FPGAs
	LPU architecture
	Example

	KIDS-CT
	System Architecture For The KIDS-CT Scanner
	CT Requirement Classification
	System Architecture
	Communication Infrastructure
	Optimization Of The Acquisition And Processing Datapath

	Control-Data Acquisition System For The KIDS-CT Scanner
	Hardware/Software Architecture
	Control-Synchronization Module
	Software architecture
	Hardware architecture

	Data-Flow Module
	Data-Processing Module
	Pixel Processing Optimization
	I0-correction step
	Cosine weighting and redundancy weighting steps

	Design Space Exploration
	Selection of input parameters
	Selection of metrics

	Component Isolation

	Validation & Evaluation
	Validation
	Validation methodology
	CDAS Design Phase
	CDAS Post-Implementation Phase
	KIDS-CT Post-Integration Phase

	Performance Evaluation
	CDAS Architecture For The KIDS-CT Scanner
	Data-Flow Module
	Timing Analysis

	Data-Processing Module
	Lightweight Protection Unit

	Design Space Exploration
	Image Quality Prerequisites
	CT scanning configuration
	Phantom selection
	Calculation of the image quality metrics

	Image Quality Analysis
	Hardware Cost & Computing Performance
	Design Space Exploration Considerations

	Evaluation Of Functionalities
	Plug-and-Play Capability
	Real-Time Support
	Comparison With Related Work

	Finale
	Conclusion
	Summary
	Discussion Of Results
	Future Work: Adaptive Computing Acceleration Platforms For CDAS

	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

