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Abstract

Ultrasound imaging is used as a first and most frequent mode for assessing thyroid

nodules. Nodule features like irregular shape, microcalcifications, and taller-than-wide

morphology raise suspicion for malignancy. However, classification of thyroid nodules

using ultrasound images depends heavily on the interpreting physician's experience

and skill, leading to inherent issues with subjectivity and both interobserver and

intraobserver variability. This thesis presents a systematic approach for the detection,

region estimation and classification of thyroid nodules using ultrasound images aimed

at reducing overall subjectivity and inter- and intraobserver variability. This is achieved

through the use of texture analysis, feature extraction, machine learning and deep

learning using ultrasound images with thyroid nodules. The study begins by

differentiating textures of the thyroid gland from surrounding organs in US images

using autoregressive features and machine learning. This is followed by the comparison

of performances from four different deep learning algorithms for the detection and

localization of thyroid nodules. Subsequently, we estimate and quantify the solid and

cystic regions within thyroid nodules using textural analysis and machine learning.

Lastly, extraction of geometric and morphological features, helps classify thyroid

nodules using machine learning techniques that consider the visual characteristics

analyzed by physicians according to TIRADS. Thus, providing them with quantifiable

evidence that supports the classification process. Future research will focus on refining



and validating these models, and determine how best to incorporate them into existing

clinical workflows.
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Chapter 1: Introduction

1.1 The Thyroid Gland

The thyroid gland is a small, bu�erfly-shaped organ located in the front of the neck,

below the larynx and wrapped around the trachea (Figure 1). The gland is an essential

part of the endocrine system and plays a pivotal role in the metabolism, growth, and

development of the human body.

Figure 1: Schematic diagram of the anatomy of the thyroid gland including the location and

parts

The primary function of the thyroid gland is to produce, store, and release thyroid

hormones into the bloodstream. These hormones include:

1. Thyroxine (T4): The primary hormone produced by the thyroid gland. T4 is an

inactive hormone that is converted to its active form, T3, in the liver and other tissues.

2. Triiodothyronine (T3): The active form of thyroid hormone, T3 influences the activity

of virtually all the cells and tissues of the body.
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3. Calcitonin: Produced by the parafollicular cells (also known as C cells) of the thyroid

gland, this hormone helps regulate calcium and phosphate levels in the blood.

The gland is involved in the regulation of metabolism, growth and development,

cardiovascular, digestive and reproductive functions. Though small in size, it plays an

enormous role in maintaining overall body homeostasis and well-being. Thyroid

disorders, therefore, which result in the overproduction (hyperthyroidism) or

underproduction (hypothyroidism) of thyroid hormones, can have significant effects on

a person's health. [1]

1.2 Diseases Affecting the Thyroid Gland

The thyroid gland can be affected by various conditions that disrupt its normal

functioning, potentially leading to a range of symptoms. Some common diseases that

affect the thyroid gland include:

1. Hyperthyroidism: This condition occurs when the thyroid gland produces excessive

amounts of thyroid hormone, leading to a state of overactivity in the body's

metabolism. Common causes include Graves' disease, toxic multinodular goiter, and

toxic adenoma. Symptoms can include rapid heart rate, weight loss, anxiety, irritability,

tremors, and heat intolerance.

2. Hypothyroidism: Hypothyroidism results from an hypoactive thyroid gland

producing insufficient thyroid hormone. Causes include Hashimoto's thyroiditis (an

autoimmune disease), surgical removal of the thyroid, and certain medications.

Symptoms often develop gradually and can include fatigue, weight gain, depression,

constipation, and cold intolerance.
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3. Thyroiditis: This is defined as the inflammation of the thyroid, which can cause both

hyper- and hypothyroidism. Subtypes include Hashimoto's thyroiditis, subacute (de

Quervain's) thyroiditis, and postpartum thyroiditis.

4. Goiter: A goiter is an enlargement of the thyroid gland that can occur for various

reasons, such as iodine deficiency, inflammation, or the presence of nodules. Goiters can

be associated with hyperthyroidism, hypothyroidism, or normal thyroid function.

5. Thyroid Nodules: Thyroid nodules are lumps within the thyroid gland. They are

common, especially in Germany, and can be caused by various conditions, including

iodine deficiency, Hashimoto's thyroiditis, and benign or malignant tumors. Most

thyroid nodules are asymptomatic and noncancerous, but some can cause symptoms

due to their size or the production of excess thyroid hormone. Nodules can be single or

multiple, and their detection often leads to further investigations to rule out

malignancy, including ultrasound imaging, fine-needle aspiration, or even surgical

biopsy. The recent advancements in ultrasound technology and the use of machine

learning algorithms have significantly improved the early detection and risk

stratification of these nodules, leading to be�er management.

6. Thyroid Cancer: Although the majority of thyroid nodules are benign, a small

proportion can be cancerous. There are several types of thyroid cancer, including

papillary, follicular, medullary, and anaplastic thyroid cancer. The prognosis varies

widely depending on the type and stage of the cancer at diagnosis. [2]

1.3 Thyroid Nodules

Thyroid nodules are relatively common and can occur due to various reasons. It's

recognized that ionizing radiation poses a risk factor for the development of both
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benign and malignant thyroid nodules. The individuals exposed to this radiation may

experience an annual growth rate of thyroid nodules at about 2% [4]. Furthermore, the

occurrence of malignancy in palpable nodules of thyroids previously exposed to

radiation has been recorded to be considerably high, ranging between 20% and 50%

[3-5]. Additionally, smoking, alcohol, obesity also contribute to the development of

thyroid nodules.

Most thyroid nodules are benign (non-cancerous), but a small percentage can be

malignant (cancerous). Epidemiological research indicates a prevalence of up to 65% in

the adult population [6-7]. Current guidelines suggest that the malignancy rate of these

nodules lies between 7 to 15% [8-9].

1.3.1 Types of Thyroid Nodules:

Thyroid nodules can be categorized into two primary types: neoplastic and

non-neoplastic. Neoplastic nodules can further be classified as benign or malignant,

with benign neoplastic nodules being either functioning or non-functioning.

Conversely, non-neoplastic nodules encompass hyperplastic and inflammatory nodules.

Thyroid Nodules may be solitary, multiple, cystic, or solid [10]. Despite the fact that

over 90% of detected nodules are typically benign and bear no clinical significance [11,

12], it is crucial to note that thyroid nodules are of clinical importance. This is because

around 4.0% to 6.5% of these nodules can potentially be indicative of thyroid cancer

[13]; however, the malignancy rate in Germany is considerably lower at around 1.1%

[11].

1. Colloid Nodules: Also known as adenomatous nodules, these are the most common

type and are typically benign. They can occur as a single nodule (solitary thyroid

nodule) or as multiple nodules (multinodular goiter).
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2. Thyroid Cysts: These nodules are usually filled with fluid or semi-solid material.

They may be benign or, in rare cases, contain malignant cells.

3. Inflammatory Nodules: These occur as a result of thyroiditis, or inflammation of the

thyroid gland. This can be due to an autoimmune condition like Hashimoto's

thyroiditis.

4. Autonomously Functioning Thyroid Nodules: These nodules produce an excess of

thyroid hormone on their own, leading to an overactive thyroid, or hyperthyroidism.

5. Thyroid Cancer: Malignant thyroid nodules can be one of several types of thyroid

cancer, including papillary thyroid cancer, follicular thyroid cancer, medullary thyroid

cancer, and anaplastic thyroid cancer.

It's important to note that the presence of a thyroid nodule does not necessarily mean

an individual has thyroid cancer. Many nodules are asymptomatic and are discovered

during routine medical examinations, for example, ultrasound imaging. Figure 2

depicts some examples of thyroid nodules where A) is a nodule that is approximately

10% cystic, isoechoic, smooth, wider than tall and no spots, B) and C) are nodules that

are approximately 10-50% cystic, isoechoic, smooth, wider than tall and no spots and D)

is a nodule that is approximately 10%-20% cystic, isoechoic, smooth, wider than tall and

punctated echoic foci. Some may cause symptoms such as a noticeable lump, neck

discomfort, voice changes, or symptoms related to thyroid hormone overproduction.

However, the early detection and management of these nodules help prevent

complications that may arise.
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Figure 2: Examples of thyroid nodules as seen in ultrasound images discovered during routine

medical examinations.

Diagnostic procedures like ultrasound (US), fine-needle aspiration biopsy, and nuclear

medicine imaging can help to determine the type and nature of the nodule, as well as

the appropriate treatment strategy, if needed. Treatment can range from watchful

waiting in the case of benign, asymptomatic nodules, to surgery, radioactive iodine

therapy, or thyroid hormone suppression therapy for more serious conditions [14].

1.4 Diagnosis of Thyroid Nodules using Medical Imaging

The diagnosis of thyroid nodules can be performed using different imaging techniques

These are listed below:
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1. Ultrasound (US) Imaging: This is the most commonly used imaging modality for the

initial evaluation of thyroid nodules. US uses sound waves to create images of the

thyroid gland and can provide details about the size, number, and characteristics (such

as solid or cystic, smooth or irregular borders) of thyroid nodules. It can also identify if

a nodule has characteristics suggestive of malignancy. This imaging modality is

non-invasive, does not use radiation, and can also guide a fine-needle aspiration biopsy

(FNAB), if needed.

2. Radionuclide Imaging: Also known as thyroid scan, this involves the use of small

amounts of radiotracer, typically Tc-99m or I-23 and a special camera to create images of

the thyroid gland. It is particularly useful in assessing the functionality of a thyroid

nodule. "Hot" nodules, which take up more of the radiotracer material, are usually

benign, while "cold" nodules, which take up less radiotracer, can sometimes be

malignant.

3. Computed Tomography (CT): While CT is not routinely used to evaluate thyroid

nodules due to the radiation exposure, it can be used to assess the extension of large

thyroid nodules or goiters into the chest or to evaluate the lymph nodes in the neck for

evidence of spread of thyroid cancer.

4. Magnetic Resonance Imaging (MRI): Similar to CT, MRI is not typically used as a

first-line for evaluation of thyroid nodules. However, it can provide detailed images of

the neck and can be useful in certain cases, particularly for evaluating large goiters or

detecting spread of thyroid cancer.

5. Positron Emission Tomography (PET): While not commonly used for initial

evaluation of thyroid nodules, PET can be useful in specific situations, such as in the
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evaluation of thyroid nodules in patients with a history of malignancy or in the

evaluation of indeterminate nodules detected through FNAB.

In general, the choice of imaging modality depends on various factors, including the

patient's clinical history, physical exam findings, and characteristics of the nodule(s). A

physician can decide the most suitable options based on the individual's specific

situation [15,16].

1.5 Diagnosis of Thyroid Nodules using Ultrasound Imaging

Ultrasound is the most commonly used imaging modality and the first-line diagnostic

tool for evaluating thyroid nodules due to its non-invasive nature, lack of ionizing

radiation, and ability to provide detailed images of the thyroid gland and surrounding

structures.

During a thyroid ultrasound the images generated allow clinicians to visualize the

number, size, and characteristics of thyroid nodules, including aspects such as

echogenicity, margin characteristics, presence of calcifications, and whether the nodule

is solid or cystic.

Importantly, ultrasound can also assess the blood flow within the nodule and

surrounding thyroid tissue using color Doppler flow imaging. Increased blood flow can

sometimes be associated with malignancy.

To stratify the risk of malignancy in thyroid nodules and help decide the necessity of

further steps like fine needle aspiration biopsy (FNA) or scintigraphy, various

classification systems have been developed, among which the Thyroid Imaging

Reporting and Data System (TIRADS) is commonly used.

8



1.5.1 Thyroid Imaging Reporting and Data System (TIRADS)

TIRADS is a risk stratification system developed to assess the malignancy risk of

thyroid nodules detected on ultrasound, and to guide decision-making about the need

for a FNAB.

To elaborate on an example, according to Kwak et al. [17] their system uses suspicious

ultrasound features to determine the TIRADS category of a nodule: solid component,

hypoechogenicity, marked hypoechogenicity, microlobulated or irregular margins,

microcalcifications, and taller than-wide shape. The TIRADS category in turn

corresponds to a specific risk of malignancy. The categories include TIRADS category 3

(no suspicious US features), 4a (one suspicious US feature), 4b (two suspicious US

features), 4c (three or four suspicious US features), and 5 (five suspicious US features).

The higher the category, the higher the recommendation of an FNAB.

While TIRADS has been widely adopted and has significantly improved the

management of thyroid nodules, it should be noted that there are several versions of

TIRADS, including those developed by Kwak et al. [17], the American College of

Radiology (ACR) the American Thyroid Association (ATA) [18], and the EU-TIRADS

[19], among others. Each of these systems has its own criteria and scoring system,

reflecting the ongoing research and debate in this area. As such, clinical judgement and

patient preferences should also be taken into account when deciding on the best

approach to a thyroid nodule. Due to the presence of such variability that arises during

the use of these reporting systems [17-19] a large amount of subjectivity and inter- and

intraobserver variability is seen in the thyroid nodule diagnostic process using US

images. Due to which, the decision making process tends to suffer from inconsistencies

leading to the lack of quality healthcare delivery to the patient. This poses the need for a
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computer aided decision support system that can help introduce objectivity in the

decision making process as well as reduce the observer variability.

1.6 Technical State-of-the-art

This section gives an overview of some of the technologies that are state-of-the-art

(SOTA) used in the detection, risk-stratification and classification of diseases using

medical images. It highlights concepts such as texture analysis, Machine Learning (ML),

Deep Learning (DL) and shape-based features. It must be noted that the techniques and

examples used in this section can most of the time be applied to medical images

irrespective of the modality. The selection of which technique needs to be used is

dependent on the problem statement. Though the field of image processing and

computing is vast, the concepts given in this section are directed more towards their use

with respect to thyroid nodule/cancer diagnosis through computer aided methods.

1.6.1 Texture Analysis

Image texture analysis is a critical step in computer-aided diagnosis systems. Texture

features reflect the spatial distribution of pixel intensities particularly in medical

images, potentially capturing microstructural information that may be difficult to

perceive by the human eye. Additionally, these features act as inputs for algorithms

aimed at aiding in pa�ern recognition, clustering, classification and segmentation as

part of larger problem statements. Algorithms like Grey Level Co-Occurrence Matrix

(GLCM) [20], Grey Level Run Length Matrix (GLRLM) [21], and Local Binary Pa�erns

(LBP) [22] have been utilized in several studies for texture feature extraction. Texture

analysis is a fundamental process in the evaluation of thyroid nodules in ultrasound

images. It refers to a variety of mathematical techniques that characterize the pixel

intensity distribution in an image region. These texture features can capture information

about the inherent microstructure and pa�erns of the tissues, potentially revealing
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insights about the nature of the thyroid nodules. The process of texture analysis in

ultrasound images involves several steps and can be achieved through a combination of

image processing and signal processing. The goal is to quantify specific characteristics

or pa�erns in the pixel intensity distribution that may be associated with the target or

diseased region of interest's properties. In this context, a region of interest could refer

to either a nodule, tumor, region or the thyroid gland itself.

Several categories of texture features are commonly used:

1. Statistical Features: These are derived from the statistical operations and distribution

of pixel intensities. Examples include mean, variance, skewness, kurtosis, and entropy.

Histogram-based features also fall into this category.

2. Model-Based Features: These are based on mathematical models that represent the

texture. For instance, autoregressive models have been used to represent the spatial

dependencies of pixel intensities.

3. Transform-Based Features: These involve transforming the image into a different

space and extracting features from the transformed image. For example, the derivation

of signal information from images to further analyse them in the frequency domain as

opposed to a standard time domain. Examples include Fourier Transform, Wavelet

Transform, and Gabor Filters.

4. Structural Features: These involve defining specific spatial pa�erns (or "structures")

and determining how often they appear in the image [23].

One of the most popular methods for texture analysis is the Gray-Level Co-Occurrence

Matrix (GLCM) [20], which considers the spatial relationship of pixels. It calculates how
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often pairs of pixels with specific values and spatial relationships occur in an image,

creating a matrix from which several texture measures can be extracted, such as

contrast, correlation, energy, and homogeneity. Another method is the Run-Length

Matrix, which counts the length of consecutive pixels that have the same gray level

values [24].

1.6.2 Machine Learning

Machine learning (ML) represents a significant advance in the classification of different

thyroid textures in ultrasound images. It uses mathematical algorithms that improve

automatically through experience. Particularly in medical imaging, ML methods

provide a valuable tool to aid in distinguishing between different thyroid tissue types

based on various features previously extracted. The initial step in this process involves

feature extraction from ultrasound images. Features can be texture-based, capturing the

pa�erns and interrelationships of pixel intensities within the image, or they can be

shape-based, encoding the geometrical properties of the nodules. These features are

instrumental in capturing the underlying micro-structure of thyroid tissue, which can

vary between benign and malignant nodules. Once these features are extracted, they are

used as inputs to train machine learning models, which can learn the pa�erns in the

feature space that correlate with different types of thyroid tissues. There are several ML

techniques available. The ones given below are just a few that were employed in this

work and are meant to provide a very basic understanding.

1. Support Vector Machines (SVM): SVM is a popular choice for the classification of

thyroid nodules due to its robustness in high-dimensional feature space and its ability

to handle non-linear classification problems using kernel functions. It aims to discern

complex pa�erns within image datasets. The algorithm establishes an optimal decision

boundary, also known as a hyperplane, within a multidimensional space of extracted
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features. This hyperplane delineates distinct classes, such as healthy tissue and

pathological anomalies like tumors.

2. Random Forest Classifier (RFC): Random Forest Classifiers aggregate the predictions

of multiple decision trees through bagging and feature randomness, offering excellent

accuracy and resistance to overfi�ing. This approach can be understood by looking at it

as collecting diagnoses from multiple experts and then averaging them to find the best

and fairest possible outcome.

3. k-Nearest Neighbors (k-NN): The k-NN algorithm classifies images based on the class

of their nearest neighbors in the feature space. The "neighbors" refer to the existing

labeled data that acts as a guide for the algorithm to find similar pa�erns in unlabelled

data. It is a simple yet effective method, especially when the distribution of the data is

unknown.

4. Artificial Neural Networks (ANN): ANNs consist of interconnected neurons that

transform the input features through several layers to perform classification. The

algorithm identifies pa�erns it has seen before and finds similarities in new images to

provide a result. Despite requiring more computational resources and being more

prone to overfi�ing, ANNs can capture complex, non-linear relationships in the data.

The performance of these models is assessed using a variety of metrics, such as

accuracy, sensitivity (SE), specificity (SP), Dice Coefficient (DC) and area under the

receiver operating characteristic curve (AUC-ROC).

While these ML methods hold great potential, there are important considerations. The

performance of the models largely depends on the quality of the features extracted from
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the ultrasound images. Furthermore, given that these models learn from the data they

are trained on, the diversity and size of the dataset, as well as the accuracy of the

annotations (ground truth), play a vital role in the model's ability to generalize well to

unseen data [25].

Image segmentation, another crucial step, involves the isolation of the region of interest

(in this case, the thyroid nodule) from the background. This process can be conducted

using several image processing techniques such as thresholding, edge detection, region

growing, and more recently, advanced deep learning models like U-Net [26], ResNet-50

[27] or nnU-Net [28]. The effectiveness of segmentation directly influences the accuracy

of the subsequent feature extraction and classification as previously seen in machine

learning approaches.

1.6.3 Deep Learning

Deep learning, a subset of artificial intelligence, has shown remarkable potential in

medical imaging, particularly in the detection and segmentation of thyroid nodules in

ultrasound images. This technology utilizes multi-layered artificial neural networks that

can learn directly from data, automatically extracting complex pa�erns that can be used

to classify images or segment features of interest. Deep learning can assist physicians in

detecting the presence of thyroid nodules within ultrasound images. Models such as

Convolutional Neural Networks (CNNs) have been particularly effective due to their

ability to process image data directly, removing the need for manual feature extraction

which is required in traditional machine learning models. CNNs use convolutional,

pooling, and fully connected layers to analyze local and global pa�erns within images.

When trained on large datasets of thyroid ultrasound images, these models can learn to

identify the subtle characteristics that may indicate the presence of a nodule [29]. Once

nodules are detected, accurate segmentation, or the process of delineating the boundary
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of the nodule from the surrounding thyroid tissue, is critical for subsequent analysis

and diagnosis. However, due to the heterogeneity and irregular shape of thyroid

nodules, plus the presence of speckle noise in ultrasound images, this task can be

challenging.

Deep learning models have shown promising results in overcoming these challenges.

Specifically, U-Net, a type of CNN, has become a popular choice for medical image

segmentation tasks. U-Net's architecture, consisting of a contracting path to capture

context and a symmetric expanding path for precise localization, allows it to make

accurate segmentations even with a limited number of training images [26]. Other deep

learning models used in segmentation tasks include DeepLabv3 and Mask R-CNN [30].

Further variations on such algorithms also exist such as [28] and continue to improve

the field of segmentation.

It's worth noting that the performance of these deep learning models depends

significantly on the quality and diversity of the training data. Models need to be trained

on a large, diverse set of thyroid ultrasound images to ensure they generalize well to

new, unseen images. Additionally, because these models learn from the annotations

provided in the training data, it's crucial that the ground truth annotations are accurate

and reliable. Deep learning holds significant promise for the detection and

segmentation particularly of thyroid nodules in ultrasound images. It can potentially

increase the efficiency, consistency, and accuracy of these tasks, aiding in the probable

early detection and appropriate management of thyroid conditions. However, as with

any technology, careful validation and interpretation of results are necessary.
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1.6.4 Shape-based Features

Geometric and morphological feature (G-M) extraction is one of the potential

subsequent steps after the segmentation of a region of interest. Such features help in

understanding the size, shape, and structural arrangement of several anomalies found

in medical images, such as nodules, masses or tumors. Features like area, perimeter,

compactness, elongation, and other shape-based descriptors can provide vital clues

about the nature of the nodule.

Geometric and morphological feature extraction plays a pivotal role in the analysis and

classification of thyroid nodules in ultrasound images. These features provide insights

into the physical shape and structure of the nodules, and when used in combination

with other types of features, such as texture-based or intensity-based features, they can

significantly improve the performance of classification algorithms [31]. These features

can be calculated directly once the nodule region has been segmented from the

ultrasound image. For instance, a study by Weinmann et al. found that geometric

features such as solidity and extent, which measure the compactness of the nodule,

could distinguish between benign and malignant nodules with high accuracy [32].

Morphological features go a step further, capturing the spatial arrangement and

configuration of the tissues within the nodule. Morphological features often require

more sophisticated image processing techniques to calculate. For instance, fractal

analysis can be used to calculate the fractal dimension of the nodule, a measure of its

complexity. Shape descriptors, such as circularity, eccentricity, and convexity, can

provide further clues about the nature of the nodule. In addition, the morphology of the

nodule's boundary can be examined. Features like roughness, irregularity, or lobulation

of the boundary have been shown in several studies to correlate with the malignancy of

the nodule.
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Once these geometric and morphological features have been extracted, they can be used

as input to machine learning algorithms for the classification of the nodules. Algorithms

such as SVM, Decision Trees (DTs), RFCs, and/or k-NNs have been used to classify

nodules based on these features.

However, it is important to note that while these features can be informative, they are

not entirely infallible. The performance of these techniques can be influenced by several

factors, including the quality of the ultrasound image, the accuracy of the segmentation,

and the variability in the appearance of thyroid nodules. Furthermore, these techniques

are most effective when used in combination with other forms of analysis, such as

texture analysis and/or clinical information. Therefore, while geometric and

morphological feature extraction provides valuable tools for the classification of thyroid

nodules, it should be considered as part of a larger, multifaceted approach to nodule

analysis and diagnosis.

1.6.5 Application of Discussed State-of-the-Art Technologies in Thyroid Ultrasound

Images

This section provides an overview of the previously highlighted techniques and their

applications in literature.

Consider a cascading approach to the diagnostic process as shown below.

1. Moving from the outer surrounding tissue, to the detection of the thyroid gland

for the localization of the region of interest (thyroid gland)

2. Segmentation of thyroid nodules

3. The region estimation in thyroid nodules

4. Subsequent classification of nodules
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The following sections briefly introduce each of the aforementioned aspects from the

cascading approach and then proceed to highlight relevant work done by researchers in

that particular discipline.

Starting with the detection of the thyroid gland in US images, from a research

standpoint, numerous studies have examined various approaches to segmenting the

thyroid in individual 2D US images. Zhao et al. [33] proposed multiple methods, such

as edge detection, threshold value method, region spli�ing and merging, watershed

segmentation, active contour, graph theory, US image segmentation based on N-cut,

and segmentation based on improved normalized cut.

Kaur and Jindal [34] explored the segmentation of the thyroid from 2D US and

scintigraphy images using active contour without edges, localized region-based active

contour, and distance regularized level set. In another instance, a polynomial SVM was

employed [35] to segment the thyroid gland in US images. A study [36] proposed using

a local region-based active contour to segment and compute the area of the segmented

thyroid in a 2D US image. Mylona et al. [37, 38] implemented a similar region-based

active contour for medical image segmentation, encoding the local geometry

information to control the contour evolution. Keramidas et al. [39] proposed thyroid

segmentation in US images using a novel boundary detection method and local binary

pa�erns for texture analysis. Other researchers used level-set active-contours models for

thyroid segmentation in US images [40, 41], focusing on variable background active

contour and joint echogenicity texture. Garg and Jindal later employed a feed-forward

neural network [42] for thyroid gland segmentation from US images. More recently,

Narayan et al. [43] used speckle-related pixels and imaging artifacts to perform

multi-organ segmentation in thyroid US images.

18



Furthermore, several studies have aimed to segment a full 3D thyroid image. Kollorz et

al. [44] put forward a semi-automated approach for volumetric quantification of the

thyroid gland using geodesic active contour. Chang et al. [45] proposed using a radial

basis function (RBF) neural network to segment the blocks of the thyroid gland.

Iakovidis et al. [46] utilized the fusion of fuzzy statistical distributions in order to

determine how tissue pa�erns occur in the thyroid gland in ultrasound images. Finally,

Osman [47] conducted a complete segmentation and analysis of 3D thyroid images

using a method that involved thresholding voxel intensities and connecting similar

voxels to predict the segmenting regions.

In addition to this Poudel et al. [48, 49] utilized Active Contours Without Edges

(ACWE) models to segment thyroid glands in 2D thyroid US images. They then

employed these segmented 2D images to create 3D representations, a process aimed at

achieving 3D thyroid image segmentation [50].

Another notable contribution to the field was by Illanes et al. [51] They proposed a

unique technique for image texture feature extraction in US images, predominantly

based on parametric modeling. The principal idea of this method was to treat the

texture as data derived from a dynamic process, and identify the various dynamics

embedded in the texture. This enabled them to employ mathematical operations among

these dynamics to yield potential texture features. In executing this approach, a signal

representation of the image was initially generated, where space functioned as the

independent variable. This signal was subsequently broken down into distinct

frequency bands through Wavelet Transformation. In the final stage, an Autoregressive

(AR) parametric model was applied to these decomposed signals, yielding spectral

characteristics that were harnessed for the computation of features.
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In their research, Chang et al. [52] utilized the Decision Trees (DT) model for

segmenting thyroid nodules in 2D thyroid ultrasound images. Their methodology

comprised two stages: image preprocessing and image segmentation. During

preprocessing, histogram equalization was first employed to enhance the contrast

between nodules and their background, followed by the determination of potential

nodular areas through horizontal and vertical projections. Then, 41 features were

extracted using eleven feature extraction techniques, including co-occurrence matrix

[53], statistical feature matrix [54], gray level run-length matrix [55], and more. For

image segmentation, decision trees were used to construct a classifier which classified

image blocks into either nodular or background regions. The accuracy of the

segmentation results was 97.5% for a test dataset of six 2D thyroid ultrasound images.

In parallel, Keramidas et al. [56] proposed a Thyroid Nodule Detection system for

analyzing 2D thyroid ultrasound images and videos. This system's detection process

consisted of five steps, starting from data preprocessing, definition of the region of

interest, feature extraction classification and ending at post-processing. The

preprocessing of data essentially refers to the cleaning and preparation of data before

any mathematical or annotation activities can be carried out. In this case the authors

used image normalization that converts the image and pixels into the same range and

format. The definition of the region of interest involved the determination of the ground

truth. Textural features were extracted and techniques like SVM [57] and k-NN were

used for the classification stage. Misclassified pixels and regions in the output binary

images of the classifier were reduced using a majority voting decision criterion [58] and

referred to as post-processing. The segmentation accuracy of thyroid nodules achieved

by SVM was 91.3%, tested on a dataset of 118 2D thyroid nodule ultrasound images.
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Moving towards the segmentation of thyroid nodules and their classification, it can be

seen that there exists several techniques to achieve the same goal. For instance, deep

neural networks have excelled in tasks like semantic segmentation and object

recognition and detection. Ma et al. [59] employed a deep convolutional neural network

to segment thyroid nodules in 2D thyroid images. Their model included fifteen

convolutional layers and two max pooling layers, and was trained and validated using

tenfold cross validation on a dataset of 22123 ultrasound images. The trained CNN

model yielded a mean overlap value of 86.83%. Distinctively, Ying et al. [60] proposed a

phased CNN model called the cascaded convolutional neural network (CCNN) to

segment thyroid nodules. This model differed from the end-to-end CNN model

described by Ma et al. [59] and was composed of three phases. The CCNN model

involved manual sign recognition and boundary adjustment to make artificial marks

around the nodules. The mean overlap value of the segmentation result on the testing

set was 87.00% [59].

Kumar et al. proposed a novel multi-output convolutional neural network algorithm

with dilated convolutional layers to segment thyroid nodules, cystic components inside

the nodules, and normal thyroid gland from clinical ultrasound B-mode scans. Through

their prospective study, they eliminate the need for a seed in the segmentation process,

thus automatically detecting and segmenting the thyroid nodules and cystic

components with a dice coefficient of 0.76. [61]. Similarly, Nugroho et al. a�empted to

classify the internal contents of a thyroid nodule based on textural features such as

histogram statistic, gray level co-occurrence matrix (GLCM) and gray level run length

matrices (GLRLM). Once features were extracted, the authors used a multi-layer

perceptron (MLP) to obtain a classification of the solid and cystic components with an

accuracy of 90.28%, the sensitivity of 87.80%, specificity of 93.55% and precision of

94.74% [62]. Zulfanahri and team proposed a method to extract shape-based features
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contributing to the classification of thyroid nodules in Ultrasound images. They

successfully extracted 7 geometric features and 14 moment features. The selected

features were classified using a Support Vector Machine and achieved 91.52%, 91.80%

and 91.35% as metrics for accuracy, sensitivity and specificity respectively [63].

1.7 Motivation and Contribution

1.7.1 Motivation

The relevant literature presented above has its own set of limitations. From a clinical

standpoint the current diagnostic process for thyroid nodules using US images is

subjective and consists of a high degree of inter- and intraobserver variability due to the

fact that it depends on the experience level of physicians. This is a cause for concern as

these factors potentially act as risks to the patient's health and their improvement. This

is because it makes the process biased, longer and sometimes conflicting that does not

help a patient in receiving optimal care or in improving their quality of life. From a

technical point-of-view, in terms of thyroid gland detection, current literature deals

with approaches that do not differentiate between the textures of the thyroid gland and

the surrounding structures adequately due to the presence of speckle noise in US

images. The delineation of the thyroid gland helps the assessing physician focus on the

area to be examined with a higher degree of objectivity. Once focused, the next step is to

easily identify the nodules present in the thyroid gland. Literature consists of several

deep learning models that are capable of doing so. However, to aid in the diagnostic

workflow, which of these algorithms is best suited for the task still needs to be

highlighted. As we move through the diagnostic process for thyroid nodules using

ultrasound images, solid and cystic region estimation plays a pivotal part that improves

subjectivity and also helps physicians be�er quantify and estimate these regions. An

example for such a need would be for improved radioiodine dose calculation. The

current literature does not address this as a clinically relevant parameter when it ought
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to do so. With TIRADS being a crucial part of the diagnostic process, particularly when

it comes to visual characteristics of the nodules. Current approaches do not take into

consideration that these characteristics are what physicians look at as well during the

classification process. Overall, current approaches fall short when it comes to taking a

systematic approach that considers the entire diagnostic process as a whole in a way

that addresses the needs and understanding of the physician.

To summarize, the current state of the art (i) does not differentiate between textures of

the thyroid gland and surrounding structures, (ii) rarely states the selection of a proper

deep learning model for the segmentation and localization of thyroid nodules in US

images, (iii) provides no methods for the estimation and quantification of solid and

cystic regions within the nodule to facilitate objectivity and aid in dose calculation for

radioiodine therapy, and (iv) does not address the lack of approaches that employ

shape-based features that ought to be considered in accordance with the visual

characteristics currently used by physicians through TIRADS. Addressing these

shortcomings through a systematic approach for gland detection, nodule localization,

nodule region estimation and overall nodule classification would result in the reduction

of subjectivity and inter- and intraobserver variability during the diagnostic process.

1.7.2 Contribution

The work presented herein contributes to the domain by investigating and developing

techniques using image processing, texture analyses, machine learning and deep

learning for the detection, region quantification and classification of thyroid nodules.

The outcomes of which would support physicians by providing objective and

quantitative assessment of thyroid nodules and hence reduce subjectivity and inter- and

intra-observer variability. Additionally, the work presented will also take into

consideration the features looked at by the physicians during the current diagnostic
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process for thyroid nodules in US images so as to provide a be�er understanding. An

overview of the proposed approach and techniques utilized while depicting the

contributions of this work to the domain are given in Figure 3. Figure 3 also provides a

reasoning for each publication, hence a�empting to justify the systematic nature of the

approach. The proposed approach begins with the detection of the thyroid gland using

autoregressive features in conjunction with machine learning for the analysis and

differentiation of textures from the surrounding structures. This was done to focus the

a�ention of the physician on the region to be examined. The next step involves a

selection of an appropriate deep learning algorithm for the segmentation and

localization of thyroid nodules. For this, a comparison of four well known deep learning

algorithms for segmentation were trained and their performance was compared to

determine the one that best suits the data and problem statement. The third step

involves the use of texture analysis and machine learning in the estimation of solid and

cystic regions within the thyroid nodule. This was done to provide the physicians with

a quantification of these regions that would aid in objective dose calculation for

radioiodine therapy. The final step utilizes shape-based features (geometry and

morphology) together with machine learning approaches to classify thyroid nodules as

either benign or malignant. This was done in an a�empt to capture the visual

characteristics seen by the physician during the use of TIRADS and overall diagnostic

process.

For the development of any form of computer aided diagnostic system, data plays a key

role. Apart from using an open-source dataset [64], this work additionally required

more and varied forms of data. This was needed to (i) gain a be�er understanding of the

current methodologies and techniques used in US based thyroid nodule assessment, (ii)

get involved in the clinical workflow and practices, (iii) establish a data collection

protocol that could be used in future studies and (iv) collect data that could help in the
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analysis and development of the solutions presented in this work. As an additional

contribution to the work a data collection strategy was developed by submi�ing an

ethics proposal to the ethics commission (RAD362-16/19) at the O�o-von-Guericke

University Hospital, Magdeburg. Once ethical clearance was granted, the data collection

was carried out twice a week for a period of 8 months. The data was collected in the

form of B-mode US videos together with an electromagnetic tracking system using a 9L

probe and LOGIQ S8 system from GE (Wisconsin, USA). A total of 47 patients with 78

nodules were found from which 2290 2D-US images containing nodules were extracted

[65]. Three experienced physicians annotated these cases for the generation of the

ground truth in terms of nodules, regions and classification. Each physician first

annotated these images independently and a consensus was achieved through

discussions for cases with conflicts. These images have contributed throughout this

work either in the form data to be used for analyses and development or as a means to

be�er understand the behavior of thyroid nodules in US images. For development, this

data was coupled with the earlier mentioned approaches to detect the thyroid gland,

localize thyroid nodules, estimate nodule regions and provide an overall classification

of nodules using visual shape-based features to support decision making.

The upcoming sections of this thesis are divided as follows. Chapter 2 highlights the

hypotheses for each of the publications and briefly describes the methodology designed

to support them. Chapter 3 presents the results of the selected approaches according to

the publications. Chapter 4 discusses these results together with what is found in

literature while concluding and providing the future scope of the work and summary of

the report.
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Figure 3: Flow diagram of proposed approach. The boxes in the middle (in blue) highlight the general path followed for the work

according to the publications. The boxes (in green) at the top represent the specific feature extraction, machine and deep learning

techniques used in each publication while those at the bo�om provide a reasoning for the work in contribution to the systematic

approach
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Chapter 2: Hypotheses

Based on the background and motivation, the following hypotheses were formulated

for each of the publications included in this report.

H1: The combination of autoregressive features and Machine Learning approaches can

help distinguish between textures of the thyroid and the surrounding structures thus

contributing to more accurate and objective localization of the thyroid gland.

H2: There is a significant difference in the performance of various Deep Learning

algorithms in the semantic segmentation of ultrasound images of thyroid nodules, with

one or more of these algorithms demonstrating superior efficacy in accurately

segmenting and characterizing these nodules.

H3: The combination of autoregressive modelling and Machine Learning techniques

will yield an effective method for estimating the region of thyroid nodules, resulting in

quantifiable evidence to support decision-making.

H4: Machine Learning-aided evaluation of geometric and morphological features can

effectively classify thyroid nodules, thereby enhancing the decision-making process of

physicians by considering visual characteristics of the nodules.
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2.1 Methodology

2.1.1 Detection of the Thyroid Gland using Features Extracted from US images and

Classification using Machine Learning for the Localization of the Thyroid Gland

(H1-Publication 1)

By using textural analysis for feature extraction in conjunction with machine learning

models, we aim to detect the thyroid gland so as to localize and focus the area that

would be analyzed during the diagnostic process. To achieve this, two datasets were

used. Dataset 1 consisted of 675 and Dataset 2 consisted of 3,370 images containing the

thyroid gland. These images were annotated by experts and then split into

non-overlapping texture patches with a size of 20x20 pixels as seen in Figure 4. A total

of 90,816 and 1,791,397 such texture patches were extracted from the original thyroid

gland images for Dataset 1 and Dataset 2. The texture patches were then converted into

signals using four different types of transformation pa�erns. The transformation from

matrix to signal was done using ZigZag and Spiral transformation and also using their

90° rotated patch version as depicted in Figure 5. This was done to capture the texture

dynamics found in the patches. The transformed signals were then decomposed into 4

narrow band signals (low, mid, high and total frequencies) using Continuous Wavelet

Transform (CWT). These frequency bands were then modeled using Autoregressive

modeling and 30 significant features were extracted. The extracted features were then

fed into three different machine learning models to obtain texture classifications (SVM,

ANN and RFC) for Datasets 1 and 2. The performance of these models was also

compared to each other and the state of the art. A post processing step was also

employed in the form of the largest connected component analysis to compensate for

some over-classified texture patches.
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Figure 4: Extraction of 20x20 texture patches from the thyroid gland and surrounding structures

collected for the feature extraction

(i) (ii) (iii) (iv)

Figure 5: Conversion of the extracted texture patches using four different transformations of

matrix to a signal. (i) ZigZag, (ii)ZigZag rotated by 90°, (iii) Spiral and (iv) Spiral rotated by 90°
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2.1.2 A Comparison of Deep Learning Architectures for the Detection of Thyroid

Nodules in US Images (H2 - Publication 2)

The use of DL is aimed at detecting the nodule within the thyroid gland so as to focus

the area of investigation. DL models have the ability to consider features that are not

visible to the naked eye but still quantitatively relevant. The use of deep learning for the

aid in an objective detection of thyroid nodules that can be then used for further

analysis. A total of 1011 ultrasound images containing thyroid nodules were used in

this study. Data preprocessing techniques were used to remove background noise,

identify contours and resize images to bring them to the same scale. Following this data

augmentation techniques such as horizontal and vertical shifts, rotation at angles in

the range of 5 to 15 degrees, different affine transformations, and gray value variations

were employed. Random elastic transformations for the purpose of generating more

generalized results were also used. The transformed data was then fed into four SOTA

deep learning algorithms U-Net [26] (architecture depicted in Figure 6), ResUNet [66]

(architecture depicted in Figure 8), SUMNet [67] (architecture depicted in Figure 7), and

A�ention U-Net [68] (architecture depicted in Figure 9). The results from each of the

algorithms were compared in terms of Accuracy, Dice Coefficient (DC) and Intersection

over Union (IoU).
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Figure 6: U-Net architecture as proposed by Ronnenberger et al. [26] that is used for the

segmentation of structures in biomedical images

Figure 7: SUMNet architecture as proposed by Nandamuri et al. [67] developed specifically for

the segmentation of structures in ultrasound images
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Figure 8: ResUnet architecture as proposed by Diakogiannis et al. [66] used for the segmentation

of images and uses a residual layer together with the architecture of the U-Net
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Figure 9: A�ention U-Net architecture as proposed by Oktay et al. [67] that helps in

segmentation tasks by combining a U-Net architecture with a�ention gates

2.1.3 Solid and Cystic Region Estimation in Thyroid Nodules using US Images to

Facilitate Objective Decision Making Among Physicians through Quantifiable

Evidence (H3 - Publication 3)

Differentiating between cystic and solid regions in a nodule aids in the risk-

stratification. Multiple studies have shown that the portion and percentages of cystic

and solid components in a thyroid nodule can be indicative whether a nodule is benign

or malignant. Thyroid nodules exhibiting a larger cystic portion are considered to be

benign whereas those nodules that are predominantly solid have a higher risk of being

malignant. Therefore, it is helpful for the physician to know these characteristics for a

newly detected nodule and knowing their percentage is aimed at be�er

risk-stratification. Additionally, the determination of the exact percentage of solid and

cystic regions would aid the physician in be�er calculation of doses for radioiodine

therapy. A total of 1019 US images were used in this study. Each of these images

consisted of nodules containing solid and cystic regions. The regions were annotated
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based on the expert input of 4 physicians. Texture patches of size 20x20 pixels were

extracted from each of the solid and cystic regions to create a texture database. The

database consisted of a total of 10190 solid texture patches and 8980 cystic patches.

Each of the texture patches were converted into signals by transformation from matrix

to signal using ZigZag and Spiral transformation and also using their 90° rotated patch

version. Each of the signals were decomposed into 3 frequency bands using CWT

decomposition. Low frequency bands were selected between the ranges of 8-24 Hz. The

mid frequencies were between 25-33Hz while the high frequencies were between 34-46

Hz. A total of 36 features were then extracted using AR modelling and used together

with machine learning algorithms (ANN, k-NN and RFC) to classify the textures of the

regions. The results of the machine learning algorithms were compared and the best

selected. Furthermore, the performance of the machine learning algorithms with the AR

features were compared to their performance using Bispectrum features on the same

textural database. Once the classification was done, the estimated regions of the nodule

were quantified as percentages.

2.1.4 Classification of Thyroid Nodules in US Images using Shape based Features and

Machine Learning to Support Clinical Decisions with Currently Considered Visual

Characteristics (H4 - Publication 4)

Geometric and morphological feature extraction that takes into consideration features

that are closely related to the visual shape-based (TIRADS) features currently used by

physicians. This provides them with additional information and mathematical

evidence to support their current TIRADS-based classification with an extra layer of

objectivity. In this work, we mainly focus on shape-based geometric and morphological

feature extraction for the classification of thyroid nodules as either benign or

malignant. Examining physicians use visual and textural characteristics to classify a

nodule. Geometric and morphological features represent the visual aspect. By using
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shape-based features such as geometry and morphology we are able to emulate the

visual characteristics of the thyroid nodules that are looked at by the physicians.

Coupling these features with Machine Learning gives us the appropriate class of a

thyroid nodule (benign or malignant). An open-access database consisting of 99 cases

featuring thyroid nodules in US images was used. Data augmentation techniques were

used to balance and augment the data to obtain a total of 3188 images. A total of 27

features (19 geometric and 8 morphological) were extracted from the images. The

features were selected based on the expert input from experienced physicians and

further supported by testing the performance of the features using machine learning.

This led to the selection of 11 significant features which were then further assessed by

comparing their performance in classifying nodules as either benign or malignant

using machine learning (RFC).
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Chapter 3: Results

3.1 Results in relation to Publication 1

All three classification methods—SVM, ANN, and RFC—demonstrate good, if not

equal, performance in classifying thyroid texture patches. SVM exhibits the lowest

accuracy among the three, achieving DCs of 0.895 and 0.887 in Datasets 1 and 2,

respectively. In contrast, ANN showed the highest accuracy, with DSC of 0.930 and

0.894 for Datasets 1 and 2, respectively. RFC's accuracy is comparable to that of ANN,

with DSC of 0.925 and 0.891 for Datasets 1 and 2, respectively. Additionally,

performance matrices in terms of DC, SE, and SP from four distinct methodologies

found in literature—Echogenicity-based Quantization (EBQ), Joint Classification

Regression (JCR), Radial Basis Function (RBF), and Feedforward Neural Network

(FNN)—despite these being tested on different datasets than those used in the study

have been provided. Compared to other methods in literature such as Active Contours

Without Edges (ACWE), Graph Cut (GC), Pixel based classifier (PBC) the features

extracted coupled with machine learning methods such as SVM, ANN, and RFC

consistently achieve superior DSC. Hereby validating the robustness of our feature

extraction process for thyroid texture classification. Furthermore, the results for each of

the machine learning algorithms are also represented visually for Datasets 1 and 2. The

details of this can be found in Publication 1 in the appendix.

3.2 Results in relation to Publication 2

This segment details a comparative study of four Deep Learning segmentation

algorithms: U-Net, SUMNet, ResUNet, and A�ention U-Net. Each of these algorithms

underwent training using the same dataset, and their results were evaluated using

performance metrics such as accuracy, the Dice coefficient, and Intersection over Union

(IoU), all in the context of segmenting thyroid nodules in ultrasound images. The
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study's findings indicated that the U-Net architecture performed the segmentation of

the thyroid nodules with 79.7%, 0.766 and 0.635 accuracy, DC and IoU respectively. The

SUMNet architecture presented metrics along the lines of 83.1% accuracy, 0.795 DC and

0.672 IoU. A�ention UNet performed fairly well with an accuracy of 85.4%, 0.821 DC

and 0.720 IoU. But, the ResUNet architecture surpassed the others in performance,

achieving an accuracy of 89.2%, a Dice coefficient of 0.857, and an IoU of 0.767. An

overview of the comparison of metrics is given in Table 1. From this it can be inferred

that using the ResUNet architecture particularly for the given data, it can be utilized in

the further development of computer aided diagnostic tools for the detection of thyroid

nodules using US images. Further details can be found in Publication 2 in the appendix.

Table 1: Comparison of performance metrics obtained using four different deep learning algorithms for

the segmentation of thyroid nodules in US images

Model/Metrics Accuracy (%) Dice Coefficient Intersection over Union

U-Net 79.7 0.766 0.635

SUMNet 83.1 0.795 0.672

ResUnet 89.2 0.821 0.720

A�ention U-Net 85.4 0.857 0.767

3.3 Results in relation to Publication 3

The results obtained from this work are presented as follows. First a comparison of the

performance of the three machine learning algorithms using only the Autoregressive

(AR) features was carried out. Secondly, the performance of the machine learning

algorithms using AR features were compared against the performance of the same

machine learning models using features from Bispectrum analysis. The ANN method
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recorded an accuracy, sensitivity, and specificity of 83.14%, 82.00%, and 84.00%,

respectively. However, utilizing the Bispectrum-extracted features, ANN displayed an

accuracy, sensitivity, and specificity of 78.29%, 79.00%, and 80.00%, respectively. The

k-NN algorithm demonstrated a classification accuracy for cystic and solid regions of

84.55%, with sensitivity and specificity being 83.00% and 86.00%, respectively. In

comparison, when employing Bispectrum features, the k-NN algorithm exhibited an

accuracy, sensitivity, and specificity of 80.12%, 79.00%, and 88.00%, respectively, as per

Table 2. Among the three algorithms, the Random Forest Classifier achieved superior

results, with an accuracy, sensitivity, and specificity of 90.41%, 99.00%, and 91.00%,

respectively using AR features. Additionally, the Random Forest Classifier posted an

accuracy, sensitivity, and specificity of 86.32%, 87.00%, and 86.00% when Bispectrum

features are used. All three algorithms successfully classify cystic and solid regions with

satisfactory accuracy, as seen in both tables. However, upon contrasting the

AR-modeled features and the Bispectrum features, it is clear that the AR-modeled

features yield higher classification accuracy, sensitivity, and specificity. Among the

machine learning models, it was determined that the RFC together with the AR features

was the best suited for the region estimation in thyroid nodules and was further

employed during the visualization step. An overview of this comparison is given in

Table 2. Additional details can be found in Publication 3 in the appendix.
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Table 2: Comparison of performance metrics obtained using three different machine learning algorithms

together with two types of extracted features from the same texture database for the estimation of solid

and cystic textures within thyroid nodules from US images

Features Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

Autoregressive
ANN 83.14 82.00 84.00

k-NN 85.55 83.00 86.00

RFC 90.41 99.00 91.00

Bispectrum
ANN 78.29 79.00 80.00

k-NN 80.12 79.00 88.00

RFC 86.32 87.00 86.00

3.4 Results in relation to Publication 4

In this publication, 11 selected features were fed into the Random Forest Classifier

(RFC). A two-step comparison was carried out. The first step juxtaposes our proposed

method with state-of-the-art methods that utilize the same dataset. The second step

draws parallels between our method and other shape-based feature extraction and

classification approaches utilized in related research.

In the first comparison the results showed that G-M based features a�ain a superior

accuracy of 99.33% compared to literature while using the same database, with a high

specificity score of 99.25%. Regarding sensitivity, G-M features returned a score of

99.39%. These results suggest that our feature extraction method can classify benign

and malignant thyroid nodules with great accuracy, alongside high true positive

(sensitivity) and true negative (specificity) rates.
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In the second step, the classification results garnered from our proposed G-M feature

extraction method, in comparison to two literature-sourced approaches that use

shape-based features for thyroid nodule classification. The two comparative studies

employ features that characterize nodules based on their oval-shaped margins. These

methods utilize different datasets. Here the G-M features, when applied to the RFC

classifier, showcase an accuracy, sensitivity, and specificity of 99.33%, 99.39%, and

99.25%, respectively, marking significant progress over metrics found in literature.

Further details are given in Publication 4 in the appendix.
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Chapter 4: Discussion, Conclusion and Future Scope

Thyroid nodules are a common clinical problem. However, the determination of

whether a nodule is benign or malignant remains a challenging task. Traditional

methods of diagnosis such as FNAB can be invasive, and results often depend on the

experience and expertise of the physician, leading to inter- and intraobserver variability.

In this regard, the application of texture analysis, shape-based feature analysis, machine

learning, and deep learning techniques together with ultrasound imaging of the thyroid

has been a promising development.

By utilizing a signal-based rendition of the ultrasound image which was parametrically

modelled to compute Autoregressive (AR) features the localization of the thyroid gland

was possible. The transformation of the image into a signal holds multiple advantages

over traditional image-based analysis. In particular, the extracted features from this

signal-based method remain largely unaffected by issues such as speckle noise, low

contrast, and low signal-to-noise ratio prevalent in thyroid ultrasound images. This

provides the classifiers with the ability to accurately delineate the thyroid region, even

in smaller areas (like the isthmus of the thyroid), a task that proved challenging with

several state-of-the-art methods such as Active Contour Without Edges (ACWE), Graph

Cut (GC), and Pixel-Based Classification (PBC). Additional comparative analyses

between this method and a variety of other approaches documented in the literature

proved that the selected approach outperforms traditional approaches. The comparison

was conducted in two distinct ways: firstly, by gauging performance on identical

datasets, and secondly, on different datasets. In all conducted tests, our method

surpassed the literature-based approaches with respect to the Dice Similarity Coefficient

(DSC), while demonstrating comparable SE and SP. The results we obtained exhibited a

significant correlation with the ground truth data. In terms of classifier training
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accuracy, the ANN was found to slightly outdo both the SVM and RFC. Moreover, the

approach was completely automated, negating the need for users to actively monitor

the segmentation progress. This represents a marked improvement over techniques like

ACWE, which required restarting the process if the contour initialization lay outside the

thyroid region. It also eliminates the need for manual intervention in Graph Cut, where

users had to remove over-classified regions post-segmentation, and in PBC, where users

needed to perform multiple clicks inside and outside the thyroid regions for a more

accurate estimation of features for training their decision trees. By employing a robust

methodology such as this, the results obtained are indicative of the fact that thyroid

gland textures can be distinguished from the surrounding structures by leveraging a

combination of autoregressive features and machine learning. Hence, this method is

suitable to be used as a method that contributes to more accurate and objective

localization of the thyroid gland and hence helps bring into focus the region to be

examined by the physician (H1).

Deep learning has emerged as a highly effective approach for semantic segmentation in

medical imaging, despite the challenges posed by noise in ultrasound (US) images.

Particularly, the segmentation of thyroid nodules is a critical step as it serves as the

preliminary stage for comprehensive classification. Our study included a comparative

analysis of four distinct deep learning architectures to identify the optimal solution for

this task. The results indicate that the Residual U-Net (ResUNet) architecture surpasses

other examined architectures, achieving high scores across all evaluation metrics. The

standout performance of ResUNet can be a�ributed to its incorporation of residual

blocks of convolutional layers. These blocks facilitate consistent network training as

network depth increases. Moreover, these residual blocks ensure a smooth flow of

gradients to the initial layers through skip connections, thereby expediting network

training in the initial stages. Through the comparison of the architectures presented

42



here we were able to closely examine the differences in their performances when given

the same data. This enabled the selection of an appropriate architecture for future work

towards the development of a holistic computer aided decision support system for the

diagnosis of thyroid nodules (H2).

As discussed previously, AR features prove to be robust and also have the capability to

work with limited amounts of data. This approach when applied to the estimation of

solid and cystic regions within a thyroid nodule yielded high quality results. When

compared to other approaches such as bispectral analysis. These results when combined

with the appropriate machine learning algorithm, which in this case was RFC portrays

results that can classify the textures present in a thyroid nodule as either solid or cystic

regions. This information in turn is used to quantify the regions and thus estimate their

size in a given US nodule image in terms of percentage. Furthermore, the estimation of

these regions could provide physicians with quantifiable evidence to support decision

making and be�er planning for activities such as radioiodine therapy dose calculation

(H3). However, it must be noted that deep learning when used for region estimation

results in a be�er outcome. This needs to be kept in mind while planning for the future

of this work.

When it comes to shape-based (geometry and morphology) features for nodule

classification, through various feature extraction methodologies employing the same

dataset, as well as similar extraction methods using diverse input data, the

Geometric-Morphological (G-M) approach has demonstrated superiority over existing

state-of-the-art techniques. Although comparative studies present high accuracies,

sensitivities, and specificities, the features they extract often lack relevance to physicians

conducting the examination. While some studies partially consider shape features, the

features used don't align with the guidelines set forth in the TIRADS. When physicians
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examine ultrasound images of thyroid nodules, they scrutinize both visual and textural

nodule properties to classify it as benign or malignant. Geometric and morphological

features embody the visual a�ributes of a nodule, providing the closest approximation

to the features established by the gold standard in TIRADS. This has been observable

across all the evaluated metrics, illustrating that the G-M features aptly mimic the visual

characteristics defined in TIRADS. Key visual aspects of a thyroid nodule, such as

margin irregularities and shape, directly correlate with the G-M features extracted in

this research. The coupling of these features with machine learning resulted in the

classification of thyroid nodules as either benign or malignant by considering the visual

characteristics of the nodules (H4).

The evaluation of thyroid nodules in ultrasound images carries inherent subjectivity,

leading to potential interobserver and intraobserver variability. Interobserver variability

refers to the differences in assessments made by different observers (e.g., physicians),

while intraobserver variability refers to the inconsistencies in evaluations made by the

same observer at different times. Several factors contribute to these variabilities. First,

the image quality and presentation of ultrasound can vary based on the se�ings used,

patient anatomy, and nodule characteristics. Second, the interpretation of ultrasound

images requires substantial expertise, and evaluations can differ based on the observer's

training, experience, and individual biases. For example, one physician may perceive a

nodule's echogenicity, shape, margin, or calcification differently from another, leading

to discrepancies in assessments such as TIRADS classification. Existing scientific

literature has documented these issues and is presented in the preceding chapters.

Several studies [69-71] found substantial variability in TIRADS classification between

observers, leading to differences in risk stratification of patients. Similarly, a study by

Seifert et al. found that even when following different guidelines, there was
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considerable interobserver variability in the interpretation of ultrasound features, which

could impact management decisions [72].

The contributions made through this work focuses on the development of automated

systems for the detection, segmentation, and classification of thyroid nodules in

ultrasound images. Leveraging techniques such as geometric and morphological feature

extraction, texture analysis, and machine learning, to mitigate subjectivity and

variability in thyroid nodule analysis is what is needed to further augment and support

current diagnostic practices. Moreover, these approaches also pave the way for more

consistent and reliable diagnostics while also aiding in the tailoring of personalized

therapeutic strategies. Deep learning techniques for the detection and segmentation of

thyroid nodules also offers a solution to reduce variability. As these models learn from

a large amount of data, they have the potential to outperform traditional methods in

terms of consistency and reliability. Furthermore, all these techniques can augment the

capabilities of physicians, especially in complex cases or in resource-limited se�ings

where access to experienced clinicians may be limited.

4.1 Limitations and Future Scope

The general limitations of this work include the fact that the data used was limited.

Further testing of these algorithms needs to be carried out in terms of data from various

machines and manufacturers, imaging specialists, image resolution and dimensions,

and geographic regions to ensure generalizability. Generalizability refers to the ability

of an algorithm to work with different types of data inputs. Future scope of the work to

include echogenic features as well as features describing calcified masses in the nodules

needs to be considered. In doing so the technology has the potential to provide its user

with end-to-end support through the further development of a single integrated system

for thyroid nodule classification process. This would in turn provide them with
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quantifiable data that they can understand and correlate to a reporting system such as

TIRADS. Additionally, the developed systems need to be validated heavily in a clinical

se�ing. This is aimed to be carried out in the near future by designing a study that

measures observer variability with and without the use of the designed technologies.

While subjectivity, interobserver, and intraobserver variability pose challenges in the

detection and classification of thyroid nodules, advancements in image processing and

machine learning offer promising avenues to address these issues. The contributions

help in paving the way towards more reliable, consistent, and objective assessments of

thyroid nodules in ultrasound images.

However, while these automated systems show great promise, it is essential to consider

that they are tools designed to aid clinicians and are not meant to replace their expert

judgement. Clinicians bring to bear not only their image interpretation skills but also

their understanding of the patient's overall clinical context, which is currently beyond

the scope of such automated systems.
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Summary

Thyroid nodules are common and estimated to affect up to 65% of the general

population with females being more prone to suffer from the disease than males. The

vast majority are benign, with only 15% being malignant. Yet, differentiating between

benign and malignant nodules is a critical task to avoid unnecessary invasive

procedures on one side and to promptly treat malignancies on the other side. US

imaging has emerged as the primary modality for thyroid nodule evaluation due to its

non-invasiveness, cost-effectiveness, and accessibility.

US imaging allows clinicians to evaluate a nodule's size, structure, composition, and

vascularity, all crucial for risk stratification and classification. Features such as irregular

shape, microcalcifications, and taller-than-wide morphology raise suspicion for

malignancy. However, the diagnostic accuracy of US depends heavily on the

interpreting physician's experience and skill, leading to inherent issues with subjectivity

and both interobserver and intraobserver variability.

The subjective nature of US interpretation means that different observers may evaluate

the same nodule differently, creating interobserver variability. Additionally,

intraobserver variability exists, whereby the same observer may evaluate the same

nodule differently at different times. These variabilities contribute to diagnostic

inconsistencies and may impact patient care decisions. Studies have shown that

interobserver agreement on key ultrasound features like nodule echogenicity, margin

irregularity, and the presence of microcalcifications can range from poor to moderate,

emphasizing the potential for misdiagnosis or inconsistent risk stratification.
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The work presented herein proposes a systematic approach for the detection,

quantification and classification of thyroid nodules using US images aimed at reducing

overall subjectivity and inter- and intraobserver variability in the diagnostic process.

Techniques such as texture analysis, feature extraction, machine learning and deep

learning were employed in the development of these approaches. The first step

involved the use of autoregressive features together with Machine Learning to

distinguish between the textures of the thyroid gland and surrounding structures in an

a�empt to focus the region to be examined. This was followed by the comparison of

four deep learning algorithms to determine an appropriate one for detection and

localization of thyroid nodules. The next step involved the use of autoregressive

features and machine learning for the estimation and quantification of solid and cystic

regions within US thyroid nodules. This additionally was aimed at aiding the physician

in an objective method for dose calculation during radioiodine therapy. Finally,

geometric and morphological features were extracted and coupled with machine

learning techniques to classify the thyroid nodules. This final step especially takes into

consideration the visual characteristics analyzed by physicians in accordance with

TIRADS. Thus providing them with quantifiable evidence that supports the

classification process.

The integration of computer diagnostic systems such as that proposed, is aimed at

supporting physicians' decisions while enabling consistency. Future research will focus

on refining these models, ensuring their robustness across diverse clinical contexts,

machine manufacturers and varied data sources to determine how best to incorporate

them into existing clinical workflows.
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Zusammenfassung

Schilddrüsenknoten sind weit verbreitet und betreffen schä�ungsweise bis zu 65 % der

Allgemeinbevölkerung, wobei Frauen häufiger als Männer von der Krankheit betroffen

sind. Die überwiegende Mehrheit ist gutartig, nur 15% sind bösartig. Die

Unterscheidung zwischen gutartigen und bösartigen Knoten ist jedoch von

entscheidender Bedeutung, um unnötige invasive Eingriffe auf der einen Seite zu

vermeiden und bösartige Knoten auf der anderen Seite rech�eitig zu behandeln. Die

US-Bildgebung hat sich aufgrund ihrer Nichtinvasivität, Kosteneffizienz und

Zugänglichkeit als primäre Modalität für die Beurteilung von Schilddrüsenknoten

durchgese�t.

Mit Hilfe der US-Bildgebung können Kliniker die Größe, Struktur, Zusammense�ung

und Vaskularität eines Knotens beurteilen, die für die Risikostratifikation und

-klassifizierung entscheidend sind. Merkmale wie eine unregelmäßige Form,

Mikroverkalkungen und eine sogenannte Taller-than-wide-Morphologie, begründen

einen Verdacht auf Malignität. Die diagnostische Genauigkeit des US hängt jedoch stark

von der Erfahrung und den Fähigkeiten des interpretierenden Radiologen ab, was zu

inhärenten Problemen mit der Subjektivität und der Variabilität zwischen und

innerhalb der Beobachter führt.

Die subjektive Natur der US-Interpretation bedeutet, dass verschiedene Beobachter

denselben Knoten unterschiedlich bewerten können, was zu einer

Interobserver-Variabilität führt. Darüber hinaus gibt es eine Intraobserver-Variabilität,

bei der ein und derselbe Beobachter denselben Knoten zu verschiedenen Zeitpunkten

unterschiedlich bewertet. Diese Schwankungen tragen zu diagnostischen

Unstimmigkeiten bei und können sich auf Entscheidungen der Patientenversorgung
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auswirken. Untersuchungen haben gezeigt, dass die Übereinstimmung zwischen den

Beobachtern bei wichtigen Ultraschallmerkmalen wie Echogenität des Knotens,

Unregelmäßigkeit des Randes und Vorhandensein von Mikroverkalkungen schlecht bis

mäßig sein kann, was das Potenzial für Fehldiagnosen oder eine inkonsistente

Risikostratifikation bedingt.

In der hier vorgestellten Arbeit wird ein systematischer Ansa� für die Erkennung,

Quantifizierung und Klassifizierung von Schilddrüsenknoten anhand von US-Bildern

vorgestellt, der darauf abzielt, die allgemeine Subjektivität sowie die Variabilität

zwischen und innerhalb der Beobachter im Diagnoseprozess zu verringern. Techniken

wie Texturanalyse, Merkmalsextraktion, maschinelles Lernen und Deep Learning

wurden bei der Entwicklung dieser Ansä�e eingese�t. In einem ersten Schri� wurden

autoregressive Merkmale zusammen mit maschinellem Lernen verwendet, um

zwischen den Texturen der Schilddrüse und der umgebenden Strukturen zu

unterscheiden und so die zu untersuchende Region einzugrenzen. Anschließend

wurden vier Deep-Learning-Algorithmen miteinander verglichen, um einen geeigneten

Algorithmus für die Erkennung und Lokalisierung von Schilddrüsenknoten zu

ermi�eln. Im darauffolgenden Schri� wurden autoregressive Merkmale und

maschinelles Lernen für die Einschä�ung und Quantifizierung von soliden und

zystischen Regionen innerhalb von US-Schilddrüsenknoten verwendet. Damit sollte

dem Arzt zusä�lich eine objektive Methode zur Dosisberechnung bei der

Radiojodtherapie zur Verfügung gestellt werden. Schließlich wurden geometrische und

morphologische Merkmale extrahiert und mit Techniken des maschinellen Lernens

gekoppelt, um die Schilddrüsenknoten zu klassifizieren. Dieser le�te Schri�

berücksichtigt insbesondere die visuellen Merkmale, die von Ärzten gemäß TIRADS

analysiert werden. Auf diese Weise können quantifizierbare Belege bereitgestellt

werden, die den Klassifizierungsprozess unterstü�en.
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Die Integration computergestü�ter Diagnosesysteme, wie das hierin vorgestellte, zielt

darauf ab, die Entscheidungen der Ärzte zu unterstü�en und gleichzeitig Konsistenz

zu gewährleisten. Künftige Forschungsarbeiten werden sich darauf konzentrieren, diese

Modelle zu präzisieren und ihre Robustheit in verschiedenen klinischen Kontexten, bei

unterschiedlichen Maschinenherstellern und unterschiedlichen Datenquellen zu

gewährleisten, um eine optimale Integration in bestehende klinische Arbeitsabläufe zu

eruieren.
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ABSTRACT The thyroid is one of the largest endocrine glands in the human body, which is involved
in several body mechanisms like controlling protein synthesis, use of energy sources, and controlling the
body’s sensitivity to other hormones. Thyroid segmentation and volume reconstruction are hence essential
to diagnose thyroid related diseases as most of these diseases involve a change in the shape and size of the
thyroid over time. Classification of thyroid texture is the first step toward the segmentation of the thyroid.
The classification of texture in thyroid Ultrasound (US) images is not an easy task as it suffers from low
image contrast, presence of speckle noise, and non-homogeneous texture distribution inside the thyroid
region. Hence, a robust algorithmic approach is required to accurately classify thyroid texture. In this paper,
we propose three machine learning based approaches: Support Vector Machine; Artificial Neural Network;
and Random Forest Classifier to classify thyroid texture. The computation of features for training these
classifiers is based on a novel approach recently proposed by our team, where autoregressive modeling
was applied on a signal version of the 2D thyroid US images to compute 30 spectral energy-based features
for classifying the thyroid and non-thyroid textures. Our approach differs from the methods proposed in the
literature as they use image-based features to characterize thyroid tissues.We obtained an accuracy of around
90% with all the three methods.

INDEX TERMS Medical imaging, support vector machine, artificial neural network, random forest
classifier, texture classification, thyroid ultrasound.

I. INTRODUCTION
The thyroid is a butterfly shaped gland, one of the largest
endocrine glands in the body, located below Adam’s apple
on the front of the neck. It is involved in several body mech-
anisms such as controlling protein synthesis, use of energy
sources and controlling the body’s sensitivity to other hor-
mones. Due to these important functionalities, the thyroid is
one of the important organs in the human body. However, it is
susceptible to many diseases like Graves’ (excessive produc-
tion of thyroid hormones), subacute thyroiditis (inflammation
of thyroid), thyroid cancer, goiter (thyroid swelling), etc [1].
In all of these cases, the size of the thyroid changes over time.
So, it is essential to keep track of the thyroid size over time.

The associate editor coordinating the review of this manuscript and
approving it for publication was Changsheng Li.

Ultrasound (US) imaging has been widely used for thyroid
staging, as it is much safer and painless to use for the patients
compared to other imaging modalities such as MRI which
uses radio and magnetic waves, Computed Tomography (CT)
which uses X-rays and Positron Emission Tomography (PET)
which uses nuclear imaging technique [2]. Segmentation
and volume computation of the thyroid have high clinical
importance when it comes to the diagnosis and treatment
of thyroid diseases. In this work, we will mainly focus on
characterization of thyroid texture in an US image using
three machine learning (ML) techniques. These approaches
are Support Vector Machine (SVM), Artificial Neural Net-
work (ANN) and Random Forest Classifier (RFC).

The features computed in this work for training the clas-
sifier are based on a novel texture characterization algorithm
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published previously by our team [3]. A signal based para-
metrical approach using Autoregressive (AR) modelling has
been proposed to characterize the thyroid texture using 30
AR spectral energy ratios based features that can distinguish
between thyroid and non-thyroid regions. A simple clustering
algorithm has been used to show the significance of the
proposed AR-based features. In this new proposed work,
we go further and use our robust textural features to train
three different machine learning based approaches (SVM,
ANN and RFC) that have already been used to segment US
images in the literature. We show in this work that using
the AR features together with the proposed classifiers the
obtained results outperform other thyroid segmentation algo-
rithm already presented in the literature.

The rest of the paper is organized as following: Section II
presents the reviews on the related works on thyroid segmen-
tation. Section III discusses about the novel feature extraction
that we have used to extract signal based features from thyroid
US images and the different texture classification methods.
Section IV presents the results and compares our results
with the ones from literature. Finally, Section V presents the
discussion on the future works that we have planned as well
as the conclusions that can be drawn from our work.

II. RELATED WORKS
Several approaches have been proposed on how to segment
the thyroid in 2D US images. Zhao et al. [4] proposed several
thyroid US segmentation approaches using edge detection,
thresholding, region splitting and merging, watershed seg-
mentation, active contour, graph theory, US image segmen-
tation based on Ncut and segmentation based on improved
normalized cut. Thyroid segmentation in 2D US and scintig-
raphy images using active contour without edges (ACWE),
localized region based active contour and distance regular-
ized level set were proposed by Kaur and Jindal [5]. China
et al. [6] explored the possibilities of using the apriori infor-
mation based on the US imaging physics and segmented
the thyroid using Iterative Random Walks and Random For-
est (IRWRF). Similarly, segmentation using a polynomial
SVM [7], local region-based active contour [8], a boundary
method and local binary patterns [9] for texture analysis and
level-set active contours models [10] and [11] have been pro-
posed. H. Garg and A. Jindal worked on feed-forward neural
network (FNN) to segment the thyroid in US images [12].
Similarly, Echogenicity based Quantization (EBQ) and Joint
Classification-Regression (JCR) which uses speckle related
pixels and imaging artefacts as a source of information to
perform multi-organ (i.e. thyroid, carotid artery, muscles and
trachea) segmentation in thyroid US images were proposed
by Narayan et al. [13].
Apart from segmentation in 2D images, several research

works have been carried out to segment a fully 3D thyroid.
A semi-automated approach to classify thyroid for volumetric
quantification using geodesic active contour was proposed
by Kollorz et al. [14]. Chang et al. [15] used a radial basis
function (RBF) neural network to segment the blocks of

thyroid gland. Similarly, a complete segmentation and analy-
sis of 3D thyroid images was performed by
Osman [16] by thresholding the voxel intensities and then
connecting similar voxels to predict the thyroid regions.
Poudel et al. [17] have used Active Contours without Edges
(ACWE), Graph Cut (GC) and Pixel Based Classifier (PBC)
to segment 2D thyroid images and later reconstructed them
to compute a 3D thyroid.

Most of the above mentioned approaches involved thy-
roid segmentation using data-driven approaches whichmeans
that, the segmentation of thyroid was carrying out by directly
operating over the pixel values in the US images. Similarly,
several works have been proposed for thyroid nodule classifi-
cation by characterizing the thyroid tissues. These works are
based on computation of Statistical features [7], [18], [19],
Spectral-based features [20], [21] and Higher Order statis-
tics based features [22], [23]. The problem with using these
data-driven approaches for feature computation is that, they
are generally affected by the presence of speckle noise, low
signal to noise ratio (SNR) and resolution in US images and
even the pre-processing steps cannot get rid of these problems
completely.

Similarly, most of the methods in the literature do not
explore texture based features for thyroid segmentation.
We believe this is due to the heterogeneous textural patterns
within the thyroid US images [24] and thus a novel texture
based feature extraction method should be devised to extract
robust features which could be used to train the machine
learning classifiers for thyroid segmentation.

As explained earlier, different machine learning based clas-
sifiers have been trained only using statistical, spectral and
higher order statistical based features in the literature for
thyroid texture classification. However, we have used a set of
novel parametrical based features computed using AR mod-
elling to classify the thyroid textures. To our knowledge, these
features have not been used for training the machine learning
based classifiers for thyroid texture classification. This is the
main contribution of our work. We have used three widely
used methods of texture classification from the literature and
outperformed several other state-of-the art approaches which
use different features compared to ours.

III. METHODS
This section is divided into four sections: database gener-
ation, features computation, texture classification and post-
processing. In the first section, we will mainly discuss how
the 2D US image datasets were acquired and how the tex-
ture patch database for training of the classifiers was pre-
pared. The second section will present how the features
were computed from the texture patches which were used
for training of the classifiers and the third section presents
the thyroid texture classification approach using SVM, ANN
and RFC. Finally, the fourth section will explain a simple
post-processing step that we have used to get rid of the
over classified thyroid texture patches from the three trained
classifiers.
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A. THYROID DATASETS AND TEXTURE
DATABASE GENERATION
A total of two 2D thyroid US datasets were used in this work.
The first dataset (Dataset 1) consisted of six subjects with
each subject containing between 53 and 189 2D thyroid US
images. A total of 675 thyroid images with an image size
of 760 x 500 pixels were used. This dataset was acquired
by a medical expert in SurgicEye GmbH [35] and has been
published and available in [25]. The second dataset (Dataset
2) consisted of sixteen subjects with each subject containing
between 156 and 289 2D thyroid US images. The second
dataset was obtained by a thyroid specialist medical doctor
at University Clinic of Magdeburg, Germany and contains a
total of 3, 370 thyroid US images with an image size of 760×
1020 pixels. It has been presented in [26] and can be down-
loaded from http://opencas.webarchiv.kit.edu/?q=node/29
Along with the US images, we also acquired manually
annotated ground truth images from the respective clinical
experts who acquired the thyroid images. All the images
were acquired using a General Electric (GE) Logiq E9 US
machine equipped with Electromagnetic Tracking system.
The acquired tracking data could be used for 3D reconstruc-
tion of segmented thyroid images and volume assessment
over time.

FIGURE 1. The figure represents the division of a 2D thyroid US images
into smaller texture patches. In the figure, Green: Thyroid Patches,
Blue: Non-Thyroid Patches, Red:Ground Truth and Yellow: Isthmus Region.

The two datasets were further processed to compute the
features for training of the ML classifiers. Each image from
the two datasets were first divided into non-overlapping tex-
ture patches of size 20 x 20 and following the ground truth,
each patch was labelled either thyroid (=0) or non-thyroid
(=1). The size of the texture patch was set in such a way
that it captured important dynamical changes that allowed to
involve a number ofmain frequency components that can help
to spectrally differentiate thyroid and non-thyroid regions
(see [3]). On top of that, it should also cover all the smaller
regions inside the thyroid (for example the isthmus region as
marked by yellow solid lines in Fig. 1).

For the labelling, a thresholding technique was used. Each
pixel inside the patch was compared against the ground
truth pixels. Hence, if a patch consisted of more than 70%
(i.e. 280 pixels) of the total pixels, the patch was labelled
as thyroid. Similarly, any patch that consisted of only black
pixels (i.e. sum of all the pixel intensities inside a patch = 0)
were not used as these patches could not be used to compute
the features. A total of 90, 816 and 1, 791, 397 texture patches
were computed from Dataset 1 and 2 respectively to prepare
a final texture database. An example of separation of a 2D
thyroid US image into texture patches is shown in Fig. 1.
In the figure, the green patches represent the thyroid and the
blue patches represent the non-thyroid patches. The thyroid
patches are always present inside the thyroid region which is
marked as red using the ground truth images.

B. FEATURES COMPUTATION
In this section, we will mainly discuss on how the features
were computed from the thyroid images which were used for
the training of the classifiers for thyroid texture classification.
A detailed explanation onARmodelling, feature computation
and prominent features selection have been explained in our
recent work [3] but we will only introduce the main steps
here. We used AR modelling to compute the features from
the texture patches. The advantage of AR modelling is that
the features are computed not directly from the image data
(which in general contain speckle noise and have low SNR
and contrast) like in Fast Fourier Transform based techniques,
but using a parametrical version of the image data. This
allows computing robust features in noisy images and less
data compared to the standard data-driven methods.

First of all, the texture patches are converted into four
different types of signals which capture the texture dynamics
within the patch. The transformation from matrix to signal
has been performed using ZigZag (obtained by following the
rows direction) and Spiral transformation and also using their
90 degree rotated patch version (see Fig. 2).

FIGURE 2. Conversion of texture patch to four different signals.
((a)ZigZag, (b)ZigZag 90 degree rotated, (c) Spiral and (d) Spiral 90 degree
rotated respectively. Adopted from [3].

These signals were then decomposed into four narrow-
band signals (i.e. low, middle, high and total band frequency
components - LF, MF, GF and TB respectively) by apply-
ing Continuous Wavelet Transformation (CWT). These sig-
nals represent the dynamic textural characteristics such as
smoothness or roughness in the texture patches. A total of
16 narrowband signals were obtained which were modeled
using a parametrical AR model [27]. A set of 30 different
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FIGURE 3. Flowchart representing the entire feature extraction process.

features were computed from the AR parameters using the
energy ratios between different frequency bands for each
texture patch in the texture database. A detailed explana-
tion on AR modelling, features computation and prominent
features selection have been explained in [3]. A flowchart
representing the entire feature computation process is shown
in Fig. 3.

C. TEXTURE CLASSIFICATION
This section will present all the three algorithms that were
used to classify the thyroid texture in US images.

1) SUPPORT VECTOR MACHINE (SVM)
In this work, SVM with radial basis function (rbf) (aka gaus-
sian) kernel was used to classify the thyroid texture patches in
US images. The features that were obtained from the feature
extraction procedure were used to train the SVM. A total of
30 features were used to train the SVM classifier. The trained
classifier was later used to test the input images by classifying
the texture patches as thyroid or non-thyroid.

Let x ∈ Rn be a vector of all the features extracted from
the texture patches to be classified and let a scalar y denote its
class label (i.e. whether the texture patch belongs to thyroid
or not, y ∈ {0, 1}). Also, let {(xi, yi), i = 1, 2, 3, . . . l} be a
set of l training data. For the simplest case, when the training
patterns are linearly separable, there exist a linear function:

f (x) = W T x + C (1)

which separates the two different classes by a hyperplane:

f (x) = W T x + C = 0 (2)

where, C is the regularization parameter which controls the
cost of misclassification on the training data.

However, there might exist many hyperplanes that max-
imize the separating margin between the two classes. The
hyperplane that causes the largest separation between the
different classes is computed by the SVM using minimizing
the cost function [28]:

f (W ) =
1
2
W TW =

1
2
||W T
||
2 (3)

However, when the data are not linearly separable, a hyper-
plane cannot separate the data correctly. Thus, kernel func-
tions are analysed to achieve this separation. In this work,
a radial basis function (rbf) kernel is used which is given by:

k(x, z) = exp(−
||x − z||2

2σ 2 ) (4)

where, (γ = 1
2σ 2

) is the kernel parameter that defines how far
the influence of a single training example reaches. In other
words, if the value of γ is low, then the far away points from
the hyperplane carry more weights and if it is low, the nearer
points carry more weights.

Using this kernel, all the features are sent as the input to
the SVM classifier to train it. The features are represented in
the vector form as:

xi = [fi,1, fi,2, . . . ., fi,n] (5)

where fi,n is the nth feature of the ith texture patch.
These features are used as the training vector to train the

SVM which is later used for testing the input images.The
three parameters that could be optimized while using SVM
are the kernel, C and the gamma γ . A grid search method
with a 10-fold cross validation technique on the training data
was employed to find the optimum parameters. We found that
the SVM performed the best with ‘rbf’ kernel, C = 0.7 and
γ = 1.0. A total of 75% training and 25% testing data were
used to train and test the SVM classifier. The training and
testing of SVM were carried out in Matlab 2017a using the
Image Processing Toolbox.

2) ARTIFICIAL NEURAL NETWORK (ANN)
The classification of thyroid texture patches in US images
was also done using ANN that is primarily an interconnected
web of input nodes, hidden nodes and output nodes called
artificial neurons.

The first step was to pre-process the data. The dataset
was first split into dependent and independent variables.
The independent variables consisted of the 30 features that
were computed in the feature extraction section. The depen-
dent variables consisted of data (represented as 1 or 0) that
indicated whether the features belonged to thyroid or non-
thyroid patches. Following this, the dataset was split into
the training and testing sets by employing the train test split
(75% and 25%) from scikit-learn model selection. Feature
scaling was employed on the training and test sets to ensure
that all the values were in the same range.

The ANN (Multi-layer Perceptron) was built with the
Keras library using TensorFlow on the backend based on
the Stochastic Gradient Descent Algorithm (SGD). SGD was
used as an iterative method to adjust the weights and obtain a
minimum cost function and hence an optimal neural network.
The SGD is represented by the following equation:

Q(w) =
1
n

n∑
i=1

Qi(w)i (6)
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where, Qi(w) is a loss function based on the training data
indexed by i [29].

The optimization of the parameters of ANN involved some
empirical analysis. After few experiments, we found that the
ANN outperformed SVM and RFC. Hence, the following
parameters were chosen as the optimum ones: 100 epochs,
learning rate of 0.1, momentum of 0.9 and 4 layers. The
4 layers consisted of an input layer, two hidden layers (each of
them containing 15 nodes) and an output layer. The Sequen-
tial module was used for the initialization of the network
as a sequence of layers and the Dense module was used to
build the layers.A Rectified Linear Unit (ReLU) activation
function was used for the activation of the hidden layers.
A sigmoid activation function was used for the output layers
and is represented by:

f (x) =
1

1+ e−x
(7)

where, x = value of the weighted sums and e = Euler’s
number (= 2.71828) [30].
The classifier was saved after training the network with a

batch size of 32 and 100 epochs. The trained ANN was used
for testing the input images. The classification using ANN
was carried out using Python 3.6 with the help of libraries
such as Scikit-learn, Keras and TensorFlow.

3) RANDOM FOREST CLASSIFIER (RFC)
In our approach, we trained a random forest classifier for a
binary classification problem, which classifies each of the
patches extracted from the US images as thyroid and non-
thyroid. RFC is basically a type of ensemble learning method
which usually constructs a final classifier by using a set ofM
individual weak classifiers. In this case, these weak classifiers
are the binary decision trees. A train-test split of 75% to 25%
was used.

The input from the training data for each of the trees,
x ∈ {1, . . . ..,M} in the ensemble was created using boot-
strapping of the samples (bagging) from the training dataset
and randomly sampling the subset of the features supplied to
each tree. Introducing this level of randomness helped this
classifier in reducing to an extent, the dependency between
training and testing data. Each tree is a collection of nodes N
and features F , which aid to the final classification result.
A decision tree is made up of a single parent node Np,x and
multiple splitting nodes Ns,x,i∀i ∈ {1, . . . , k} and leaf nodes
Nl,x,j∀j ∈ 1, . . . , p. During the splitting of the nodes, the best
split was not chosen based on all the features but a random
subset of features from the training dataset.

All the leaf nodes inside a decision tree have a final prob-
abilistic model φx,j ∈ [0, 1] associated with it. The final
decision of a forest for each of the patches extracted from the
US images were made by averaging the individual decisions
(φx,j(p)) from all the individual trees in the forest.

PRF (y(p) = 1) =
1
M

M∑
x=1

φx(p) (8)

We have used the most common and recognized method
to train the classifiers [29], [31]. Just like ANN, the clas-
sification using RFC was carried out in Python 3.6 using
Scikit-learn, Keras and TensorFlow libraries.

There are many parameters that can be optimized in RFC.
However, we optimized only the 5 important parameters
which were the depth of the trees, minimum number of
samples required to split a node, minimum number of sam-
ples required at each leaf node, number of trees in the
random forest and whether to use bootstrap or not. The opti-
mum parameters that were obtained after using Randomized
Search method were depth of 10, minimum samples at each
leaf node of 2, minimum samples to split a node 4, 200 trees
and using the bootstrap method for sampling the training data
points.

D. POST-PROCESSING
The texture classification step produced some over-classified
thyroid texture patches. Hence, to get rid of these over-
classifications, a post-processing step was employed.
A largest connected component analysis was performed on
the classified texture patches. For that, the total number of
texture patches were obtained by counting the patches that
were classified as thyroid (i.e. the output label = 1). Then a
threshold value was chosen empirically to identify the thyroid
patches from the over-classified thyroid patches. The blocks
of texture patches that contained more than the threshold
amount of thyroid patches were considered to be thyroid and
the rest were disregarded. Section IV C presents the results
from before and after post-processing steps in details.

IV. RESULTS
A. EXPERIMENTAL SETUP
For the evaluation and quantitative and qualitative analysis
of the proposed feature extraction and texture classifica-
tion technique, we performed two-steps experiments. The
two datasets were trained and tested separately. A total of
90, 816 and 1, 791, 397 texture patches corresponding to
Dataset 1 and 2 respectively were used for this evalua-
tion. Out of these patches, only 68, 112 patches were used
for training and 22, 704 patches were used for testing in
Dataset 1. Similarly, 1, 343, 548 patches were used for train-
ing and 447, 849 patches were used for testing in Dataset 2.
In both datasets, to ensure there was no over-fitting while
training of the classifiers, it was made sure that the train-
ing and testing processes did not involve images or texture
patches from the same subjects. The training and testing
processes involved the 75% and 25% of all the texture patches
respectively.

The feature extraction part was performed usingMATLAB
2017a and the training and testing of the classifiers was
performed in Python 3.6. All the experiments were carried
out using a Lenovo T430 ThinkPad Notebook with Intel Core
i5-3320MCPU, NVIDIANVS 5400 graphics card, 2.60 GHz
processor and 8.00 GB RAM.
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B. QUANTITATIVE ANALYSIS
For the quantitative analysis, we have compared our results
with the approaches in state of art that used the same datasets.
Similarly, we have also compared our approaches with other
approaches but which do not use the same datasets. For the
performance metric, we have used Dice’s Coefficient (DC),
Sensitivity (SE) and Specificity (SP).

DSC is a measure of how similar two objects are, which in
our case is the computation of the overlap area between the
ground truth images and classified thyroid texture patches.
Similarly, SE is the measure of the proportion of actual posi-
tives that are correctly identified as such. SP is the measure of
the proportion of actual negatives that are correctly identified
as such. They can be computed using the following equations:

DSC =
2TP

2TP+ FP+ FN
(9)

SE =
TP

TP+ FN
(10)

SP =
TN

TN + FP
(11)

where, TP = True Positive (Thyroid Patches identified
as Thyroid), FP = False Positive (Non-Thyroid Patches
identified as Thyroid), TN = True Negative (Non-Thyroid
Patches identified as Non-Thyroid) and FN = False Negative
(Thyroid Patches identified as Non-Thyroid).

Using these performance metrics, we have presented the
results of SVM, ANN and RFC and compared themwith state
of arts in the tables below. These comparisons are carried out
in a 2-step procedure. The first step involved the comparison
between all the approaches that use either Dataset 1 or 2 and
in the second step, all the approaches were used for thyroid
segmentation but using different datasets. The comparison
of performance between SVM, ANN and RFC and state of
arts are presented in Table 1 and 2 and Table 3 shows the
comparison between different approaches that use different
datasets. Table 4 summarizes all the parameters we used after
the optimization process in SVM, RFC and ANN classifiers
for texture classification.

TABLE 1. Performance comparison of SVM, ANN and RFC with state of art
methods on Dataset 1.

Table 1 represents the comparison between the approaches
we have used in our work with the works in [3] and [17]
using Dataset 1. Active Contours without Edges (ACWE),
Graph Cut (GC), Pixel based classifier (PBC), Random

TABLE 2. Performance comparison of SVM, ANN and RFC with state of art
methods on Dataset 2.

TABLE 3. Performance analysis of different state of arts for thyroid
segmentation using different Datasets.

TABLE 4. Summary of all the optimized parameters used in SVM, RFC and
ANN.

Forest Classifier (RFC) and Convolutional Neural Net-
work (CNN) were used in [17] for thyroid segmentation.
Out of these 5 approaches, the first three were non-machine
learning (NML) based methods and the last two meth-
ods used machine learning (ML). However, these last two
approaches were operated directly on 3D thyroid images.
Similarly, kmeans (a simple clustering algorithm) was used
in [3] to cluster and segment thyroid region in 2D thyroid
US images.

Similarly, Table 2 presents the comparison between our
three approaches and Iterative Random Walks and Ran-
dom Forest (IRWRF) from [6], a ML based and kmeans
from [3], a NML based approaches using Dataset 2.
We also present the results of thyroid segmentation
using four other algorithms in Table 3. It presents the
results using Echogenicity-based Quantization [13], Joint
Classification-Regression (JCR) [13], RBF Neural Network
(RBF) [15] and Feedforward Neural Network (FNN) [12] in
terms of DSC, SE and SP using different thyroid US datasets.
Despite the fact that these approaches use different datasets
than we use, we present these results just to see how these
algorithms perform in the domain of texture classification in
thyroid US images.

All these metrics were computed using confusion
matrix (CM) for each of the approaches used in our work.
We present the CM for all the three algorithms when used
on both the datasets below. In terms of TP, FN, FP and
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TN, the CM can be represented as below. The CM were
computed during the tests we carried out in the test sets
which consisted of 22, 704 and 447, 849 texture patches in
Dataset 1 and 2 respectively.

CM =
[
TP FN
FP TN

]
(12)

Dataset 1:

SVM =
[
20317 2368
16 3

]
ANN =

[
20311 1576
22 795

]
RFC =

[
20290 1654
43 717

]
Dataset 2:

SVM =
[
397213 50600
34 2

]
ANN =

[
375914 26060
21333 24542

]
RFC =

[
374365 26133
22882 24469

]
From Table 1 and 2, we can see that all the three classifiers

can classify the thyroid texture patches with better if not
comparable accuracies. SVM has the lowest accuracy out
of the three classifiers with a DC of 0.895 and 0.887 in
Datasets 1 and 2 respectively. Similarly, ANN has the highest
accuracy out of the three classifiers with a DC of 0.930
and 0.894 in Datasets 1 and 2 respectively. RFC produces
almost the same accuracy as ANN with a DC of 0.925 and
0.891 in Datasets 1 and 2 respectively. These results can
be visually accessed in the section below (see Section IV
C). Similarly, all the three approaches outperformed ACWE,
GC, PBC, RFC - Volume Based, CNN - Volume Based
and KMEANS on Dataset 1 and KMEANS and IRWRF
on Dataset 2 (except for KMEANS outperforming SVM on
dataset 1). Apart from other methods, the tests with RFC
and CNN - volume based were tested on the 3D thyroid
volumes corresponding to Dataset 1 instead of individual
2D images.

We have also presented the performance matrices in terms
of DSC, SE and SP from four different approaches in the
literature such as EBQ, JCR, RBF and FNN despite the
fact that they were tested on different datasets compared
to what we are using in this work. These results are dis-
played in Table 3. Compared to these approaches too, SVM,
ANN and RFC achieve better DSC and similar SE and
SP in both the datasets. These results prove the robust-
ness of the feature extraction process for thyroid texture
classification.

Apart from the accuracy of classification, the feature
extraction and training and testing of the approaches are
fully automatic compared to ACWE, GC and PBC which use
some level of human interaction. ACWE requires the user

to draw an initial contour, GC requires the user to scribble
the thyroid and non-thyroid region as a initialization process
and PBC requires the users to click inside and outside of the
thyroid regions to extract features from these regions. Also,
the initializations are very important in these approaches as a
wrong initialization could result in a misclassification of the
different regions.

The computation time for feature extraction in our work
is higher compared to the state of art techniques. This is
mainly because we compute the wavelet spectrum for all the
scales (or frequencies) in the LF, MF, HF and TB bands.
An optimization step can be carried out to compute the
spectrum at a scale that best represents these bands. Simi-
larly, during AR modelling, instead of computing the power
spectral densities (PSD) at all the frequency components in
the complex plane, a set of non-repetitive frequency compo-
nents could be chosen. On top of that, we have computed
all the features using MATLAB which makes the process
a lot slower. The optimization processes and the computa-
tion of these features in C++ could increase the frequency
computation speed by a factor of 100. However, it is worth
to mention that these features need to be computed only
once and can be stored in a .csv file for training the net-
works in future. The time taken for classifying a new thyroid
US image is however faster compared to the state of art
methods. This makes it applicable for clinical use as the
doctors and radiologist can just take a set of individual US
images and segment the thyroid regions using the trained
classifiers.

C. VISUAL ANALYSIS
The training of the three classifiers were followed by testing
of individual images which were not part of the training set.
An example of texture classification (first row) and segmen-
tation (second row) on a total of 8 (4 from each dataset) dif-
ferent thyroid US images using SVM on Dataset 1 and 2 are
shown in Fig. 4 and 5 respectively. Similarly, the results using
ANN on Dataset 1 and 2 on the same images as in SVM
are shown in Fig. 6 and 7 respectively. Fig. 8 and 9 show
the results using RFC on Datasets 1 and 2 respectively. The
images in the first row in all the figures from 4-9 show the
results of texture classification using the trained classifiers
and the images in the second row present the segmented
thyroid regions after the post-processing step. In the figures,
the green squares represent the 20 x 20 pixel texture patches
classified as thyroid and the solid red line represents the
ground truth region manually annotated by the expert clini-
cians. For testing purposes, we took the thyroid images from
different locations with respect to the thyroid volume and
from different patients.

The images from the first row in all the figures
(i.e. Fig. 4, 5, 6, 7, 8 and 9) show the texture classification
results from the trained classifiers and the images from
the second row show the post-processed segmented thyroid
region (marked with solid green lines). As evident in the

79360 VOLUME 7, 2019



P. Poudel et al.: Thyroid US Texture Classification Using Autoregressive Features in Conjunction

FIGURE 4. Examples of thyroid texture classification and segmentation using SVM and comparison with ground truth on Dataset 1.

FIGURE 5. Examples of thyroid texture classification and segmentation using SVM and comparison with ground truth on Dataset 2.

FIGURE 6. Examples of thyroid texture classification and segmentation using ANN and comparison with ground truth on Dataset 1.

figures, there are some over-classifications of texture patches
as thyroid. Hence, a post-processing step was carried out to
get rid of these over-classified texture patches.

The sample test images along with their ground truth have
been shown above. From these test images, we can see that
this way of texture classification obtains the larger thyroid
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FIGURE 7. Examples of thyroid texture classification and segmentation using ANN and comparison with ground truth on Dataset 2.

FIGURE 8. Examples of thyroid texture classification and segmentation using RFC and comparison with ground truth on Dataset 1.

FIGURE 9. Examples of thyroid texture classification and segmentation using RFC and comparison with ground truth on Dataset 2.

region compared to the thyroid segmentation using ACWE,
GC and PBC as they fail to segment the isthmus region
inside the thyroid [17]. Despite classifying the regions in the
isthmus, our approach achieves few under-classified results

inside the thyroid. This problem could be solved by calcu-
lating more features (energy based, entropy based, statistical
features, etc.) and using some extensive pre-processing
techniques to choose the most prominent features like
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FIGURE 10. A 3D reconstructed thyroid after texture classification and
segmentation using Imfusion.

Principal Component analysis [32] and Information Gain
Techniques [33].

V. DISCUSSION AND CONCLUSION
In this paper, we have compared the three different machine
learning techniques (SVM, ANN and RFC) for thyroid
texture classification and segmentation. We computed the
features for training of these classifiers using a very novel
feature extraction technique. A signal based version of the US
image was used and parametrically modelled to compute AR
features. This transformation of the image to signal possesses
many advantages compared to the image based analysis.With
this way of treating the images, the extracted features are not
affected by the presence of speckle noise, low contrast issues
and low SNR in thyroid US images. This allows the classifiers
to classify the thyroid region even in the smaller areas (for
example in the isthmus of the thyroid) which was difficult
using some of the state of art methods (ACWE,GC and PBC).

We also performed a comparison analysis between our
approaches and various approaches in the literature. Two
different comparison analysis were performed, first by com-
paring the performance on the same datasets and second on
different datasets. In all of the tests, our approach outper-
formed the approaches in the literature in terms of DSC and
had similar SE and SP. The results that we have obtained show
a close correlation to the ground truth data. While the accu-
racy of training of the classifiers are similar, ANN slightly
outperformed SVM and RFC. Our approaches were fully
automated, so the user did not have to invest time in tracking
the progress of the segmentation like in ACWEwhere the user
had to stop the process and run it again, if the initialization
of the contour was outside of the thyroid region. Similarly,
in graph cut the user had to remove the over-classified regions
after the segmentation and in PBC, the user had to make
more clicks inside and outside the thyroid regions to get a
better estimate of the features in order to train their decision
trees.

One of the main drawbacks of the proposed approach is
that it has only been evaluated with thyroid images from
healthy subjects. In the future, we will explore how nodules
can change the spectral behaviour in the US image. Similarly,
we have used the images from a high-end machine (i.e. Logiq
E9) for our task and the images from low-end machine
might not have the same segmentation accuracy as we have
shown in this work. Additionally, the classification of the
texture patches always produces a non-smooth boarder in the
segmented images. However, the clinical relevance could be
established by training the classifiers on pathological images
and the problem of the rough boarder in the segmented images
could be solved by taking overlapping patches or by using
a multi-resolution patch size and using the best size that
produces a smooth appearance in the boarder region.

As future works, more features can be computed by not
modelling the US images using AR model but by other meth-
ods as well like Bispectral model [34] and these features can
be pre-processed by other pre-processing techniques such as
Principal Component Analysis and InformationGain to select
the prominent features. We could also combine the features
from different modelling techniques and use them for the
classification task. Similarly, the feature computation time
can be reduced by optimizing the wavelet computation and
AR modelling steps.

As mentioned above, the classified thyroid images can be
reconstructed to a 3D volume as we also acquired the tracking
data during the image acquisition phase. An example of the
3D reconstructed thyroid using Imfusion [36] after texture
classification and segmentation is shown in Fig. 10.The Imfu-
sion software allows the user to input all the binary images
obtained from the segmentation as a video file along with
the tracking matrices associated with each image frames. The
reconstruction is then carried by using a technique called
volumetric compounding where an interpolation is carried
out between the corresponding image frames to fill the empty
spaces. The 3D volume information can be used clinically by
the medical experts to monitor the state of thyroid over time.
Sincemost of the thyroid diseases involve change in the shape
and volume of thyroid over time, the 3D reconstruction and
volume computation has a clinical relevance.
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Semantic Segmentation of Ultrasound 
Thyroid Nodules 
Abstract: Ultrasound (US) imaging is used as a preliminary 
diagnostic tool for the detection, risk-stratification and 
classification of thyroid nodules. In order to perform the risk 
stratification of nodules in US images physicians first need to 
effectively detect the nodules. This process is affected due to 
the presence of inter-observer and intra-observer variability 
and subjectivity. Computer Aided Diagnostic tools prove to 
be a step in the right direction towards reducing the issue of 
subjectivity and observer variability. Several segmentation 
techniques have been proposed, from these Deep Learning 
techniques have yielded promising results. This work 
presents a comparison between four state of the art (SOTA) 
Deep Learning segmentation algorithms (UNet, SUMNet, 
ResUNet and Attention UNet). Each network was trained on 
the same dataset and the results are compared using 
performance metrics such as accuracy, dice coefficient and 
Intersection over Union (IoU) to determine the most effective 
in terms of thyroid nodule segmentation in US images. It was 
found that ResUNet performed the best with an accuracy, 
dice coefficient and IoU of 89.2%, 0.857, 0.767. The aim is 
to use the trained algorithm in the development of a 
Computer Aided Diagnostic system for the detection, risk-
stratification and classification of thyroid nodules using US 

images to reduce subjectivity and observer variability. 

Keywords: Ultrasound Imaging, Thyroid Nodules, Deep 
Learning, Image Processing, Computer Aided Diagnosis 

1 Introduction 

 
Thyroid nodules are solid or cystic lumps in the thyroid 
gland, which can either be benign or malignant, and they are 
one of the most commonly diagnosed nodular lesions in the 
adult population [1]. Ultrasound (US) imaging is used as a 
preliminary diagnostic tool for the detection, risk-
stratification and classification of thyroid nodules. It is used 
because of its availability, affordability and lack of ionizing 
radiation. In order to efficiently provide a risk-stratification 
and classification of a thyroid nodule, a physician first needs 
to detect the nodule.   The current detection process is highly 
subjective in nature and there exists a high rate of inter-
observer and intra-observer variability. This stems from the 
varied experience levels and visual perceptions of the 
physicians when it comes to detecting the nodules in US 
thyroid images.  
 
Computer Aided Diagnosis is a solution that addresses the 
issue of inter-observer and intra-observer variability and 
subjectivity. The first step in this process is the detection of 
the thyroid nodule. This is also referred to as the 
segmentation of the nodule. Automatic segmentation of 
ultrasound images is a challenging task due to the heavy 
speckle noise, low contrast, and shadowing effects of 
ultrasound images.  
 
Several segmentation techniques have been used like graph-
based methods, deformable models, and classical methods. 
Kollorz et al. [1] presented an approach to semi-
automatically segment 2D slices of collected 3D US volumes 
using power watersheds independent of the type of the 
nodule. Keramidas et al. [2] presented a Thyroid Boundaries 
Detection algorithm for detection of the thyroid area and later 
applied KNN to classify the small patches out from the 
sliding window based on the Local Binary Patterns texture 
feature. Even though it was an efficient technique, it could 
only output rough shapes and locations where the nodules 
were present. Lakovidis et al. [3] applied active contour 
methodologies for fine detection of thyroid nodules. Chan 
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and Vesse [4] suggested Active Contour without Edges 
technique based on the level-set method. Deep learning 
models have also proven to be efficient in segmentation 
problems and have achieved noteworthy results. Some deep 
learning-based segmentation methods have also been used for 
medical images and achieved exceptional improvements by 
using deep convolutional neural networks (DCNN)[5], fully 
convolutional neural networks (FCN)[6], and its variants[7].  
 
This paper presents a comparison between four state-of-the-
art (SOTA) algorithms developed for the purpose of image 
segmentation. Each algorithm architecture was adapted for 
thyroid US images. The results obtained are compared and 
the best in terms of its overall performance is highlighted. 
The purpose if doing this is to determine which of these 
methods can be used most effectively for the development of 
a complete Computer Aided Diagnostic system for the 
detection, risk-stratification and classification of thyroid 
nodules using US images.  

2 Methods 

This study used US image data of thyroid nodules collected 
at the Department of Radiology and Nuclear Medicine, 
Division of Nuclear Medicine, Otto-von-Guericke University 
Magdeburg, Medical Faculty. A total of 1011 images were 
used in this study. Each image consisted of a minimum of 
one thyroid nodule scanned in both transverse and 
longitudinal planes.   

2.1 Data Pre-processing and 
Augmentation 

 
The images were first pre-processed in order to remove 
unnecessary background information and noise and then 
resized and cropped. This was followed by dilation using a 
kernel of size 15x15. The contours were identified using 
CHAI_APPROX_SIMPLE algorithm on the processed 
output image from the previous step and reshaped the image 
based on the coordinates of the bounding rectangle of the 
contour. The non-square images were then transformed into 
square images of dimensions 256*256. The pre-processed 
image was then centred on its mean and normalized. These 
processed images were then used for training four SOTA 
segmentation algorithms. Data augmentation in terms of 
horizontal and vertical shifts, rotation at angles in the range 
of 5 to 15 degrees, different affine transformations, and grey 
value variations were employed. Additionally, random elastic 
deformations used in the training samples delivered better 
generalization results. The final augmented number of 

images was 6066. A train-test split of 75%-25% was used 
during the experiments.   

2.2 Experimental Setup  

Four SOTA sematic segmentation algorithms were selected 
to be tested and compared in this study. These were UNet [6], 
SUMNet [8], ResUNet [9] and Attention UNet [10]. The 
architectures for these networks were adapted to fit the data 
specifically. The details are given below. 

2.2.1 UNet  

The network architecture was designed as per the 
specifications given in [6]. In order to make the model more 
robust, Gaussian noise was applied in the input along with 
histogram equalization to make the network contrast 
independent. Stochastic Gradient Descent was used as an 
optimizer along with Binary cross entropy as a loss function. 
The network was trained for 350 epochs with a batch size of 
16 and early stoppage.  

2.2.2 SUMNet  

The network architecture was designed as per the 
specifications given in [8]. Adam optimizer was used along 
with a weighted combination of Dice loss and binary cross-
entropy as loss functions. Additionally, a learning rate of 1e-
4 and a beta1=0.99 was set for the network. The network was 
trained for 350 epochs with a batch size of 16 and early 
stoppage. 

2.2.3 ResUNet 

The architecture of the network was designed according to 
the specifications given in [9]. Similarly to UNet, Gaussian 
noise was applied in the input, along with histogram 
equalization so as to make the network contrast independent 
and linearly scaled to obtain the Gaussian distribution. The 
network was trained using an Adam optimizer and a learning 
rate of 1e-4 and beta1= 0.99. Binary cross-entropy was used 
as a loss function. The network was trained for 350 epochs 
with a batch size of 32 and early stoppage. 
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2.2.4 Attention UNet 

The architecture of the network was designed according to 
the specifications given in [10].  The model was trained using 
the Adam optimizer, along with the momentum=0.99, batch-
normalization after each convolutional layer, and deep 
supervision. The model used binary cross-entropy and Dice 
loss as loss functions. Gating parameters were initialized so 
that attention gates can pass through every feature vector at 
all spatial locations. The network was trained for 350 epochs 
with a batch size of 32 and early stoppage. 

2.3 Evaluation 

The evaluation of the output obtained from each algorithm 
was done using the following three techniques. These are 
highlighted as follows:  
 
Accuracy: Can be defined as the percentage of true positive 
outcomes against total outcomes.  

 
Dice Coefficient: Dice coefficient can be defined as (2 * area 
Of overlap between predicted output and ground truth)/total 
number of pixels in both the images. Is positively correlated 
and its value also ranges from 0 to 1. 

 
Intersection over Union (IoU): Intersection-Over-Union 
(IoU), also called the Jaccard Index, is the most commonly 
used metric to measure the performance of semantic 
segmentation. It is defined as the (area of overlap between 
the predicted output and the ground truth)/(area of union 
between the predicted output and the ground truth). 

3 Results & Discussion 

Table 1 shows the comparison of the results for each of the 
selected evaluation metrics for US thyroid nodule 
segmentation. Out of all the proposed architectures, ResUNet 
yields the highest value for all the metrics, followed by 
Attention UNet, SUMNet, and UNet. Figure 1 shows the 
training and validation loss curves for ResUNet. The training 
curve depicts a slow descent to a reduced loss value. This 
ensured proper training of the network while preventing 
over-fitting. The validation curve depicts a rapid descent to a 
low loss value and is maintained through the remaining 
epochs.  
 

 

Table 1: Comparison of results obtained from all four algorithms 
for the selected evaluation metrics for the semantic segmentation 
of US thyroid nodules 

Model/Metrics Accuracy (%) Dice 
Coefficient 

IoU 

UNet 79.7 0.766 0.635 

SUMNet 83.1 0.795 0.672 

ResUNet 89.2 0.857 0.767 

Attention UNet 85.4 0.821 0.720 

 
 

 
Figure 2 shows the segmentation results from two different 
nodules as examples. The segmentation results are given for 
each of the algorithms used along with the original images 
and ground truths. It can be seen that the segmentation 
outputs reflect the results calculated by the metrics. Among 
the four selected algorithms, ResUNet results in a 

Figure 1: Training (A) and validation (B) loss curves for the 
ResUNet  

B 

A 
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segmentation that is closest to the ground truth compared to 
the remaining three algorithms.  

4 Conclusion 

The segmentation of thyroid nodules is a crucial task as it 
acts as the first step towards the overall classification. This 
work presents the evaluation results for the segmentation of 
thyroid US images using four different architectures. From 
the results, it can be observed that ResUNet architecture 
outperforms other architectures with a high value for all the 
metrics used for the evaluation of the model. One of the 

major reasons for superior results obtained using ResUNet is 
the presence of residual blocks of convolutional layers that 
enables consistent training of the network as the depth of the 
network increases. Residual blocks also enable easy flow of 

gradients to the initial layers using skip connections and this 
helps in training the network fast in the early stages. The next 
steps would be testing the developed ResUNet architecture 
with more data and its subsequent integration  in a Computer 
Aided Diagnostic system for the detection, risk-stratification 
and classification of thyroid nodules that can be used by the 
physicians to reduce overall diagnostic subjectivity.  
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Abstract: Ultrasound (US) imaging is used for the diagnosis 

and also evaluation of thyroid nodules. A Thyroid Imaging 

Reporting and Data System (TIRADS) is used for the risk 

stratification of thyroid nodules through US images. The 

composition of thyroid nodules plays an important role in the 

risk-stratification process. The percentages of cystic and solid 

components in a thyroid nodule are one of the features that are 

can be indicative of the risk of malignancy. In this work, we 

attempt to classify and estimate solid and cystic regions within 

nodules.  20x20 texture patches were extracted from solid and 

cystic regions and converted into signals. These signals are 

decomposed into low, mid, and high-frequency bands using 

Continuous Wavelet Transform (CWT). A total of 36 features 

were extracted from the decomposed signals using Auto-

Regressive Modeling. The features were fed into three 

different Machine Learning (ML) algorithms (Artificial 

Neural Networks, K-Nearest Neighbors, and Random Forest 

Classifier) to provide us with a classification of solid versus 

cystic regions in thyroid nodule US images. The Random 

Forest Classifier obtained an Accuracy, Sensitivity, and 

Specificity of 90.41%, 99% and 91% respectively which was 

the highest among the three chosen ML algorithms. 

Additionally, the output from the classification phase was also 

be used to determine the percentage of cystic and solid regions 

with a given thyroid nodule US image. 

Keywords: Ultrasound Imaging, Thyroid Nodules, Feature 

Extraction, Region Estimation, Machine Learning, 

Classification.

1 Introduction

Thyroid nodules are mostly benign neoplasms, the incidence 

of which is higher in females compared to males [1]. Normal 

palpation of the neck results in a 4% to 7% chance of detecting 

a nodule [2, 3]. Ultrasound (US) imaging is used both, for the 

diagnosis and evaluation of thyroid nodules. Nodules are 

detected in up to 76% of the examined population when US is 

used for diagnosis [3 - 5].  

Differentiating between cystic and solid regions in a nodule 

aids in the risk- stratification. Multiple studies have shown that 

the portion and percentages of cystic and solid components in 

a thyroid nodule can be indicative whether a nodule is benign 

or malignant [6, 7]. Physicians use three main types of 

standardized classification methods for the risk stratification 

of thyroid nodules. [8, 9, 10].  Each of these classification 

methods scores thyroid nodules with its own scoring system. 

For example, ACR –TIRADS [8] scores solid and cystic 

thyroid nodules with a more detailed approach as compared to 

KWAK-TIRADS [9]. Physicians experience high levels of 

subjectivity and inter observer variability while scoring 

thyroid nodules, even while using the same classification 

methods. This occurs particularly in the case of nodules with 

a mixed composition of solid and cystic regions. Thyroid 

nodules exhibiting a larger cystic portion are considered to be 

benign whereas those nodules that are predominantly solid 

have a higher risk of being malignant [9]. Therefore, it is 

helpful for the physician, to know these characteristics for a 

newly detected nodule and knowing their percentage is aimed 

at better risk-stratification. Additionally, the determination of 

the exact percentage of solid and cystic regions would aid the 

______
*Elmer Jeto Gomes Ataide: Otto-von-Guericke University 

Medical Faculty, Magdeburg, Germany, e-mail: 
elmer.gomesataide@ovgu.de
Matthews S. Jabaraj: Otto-von-Guericke University, Magdeburg, 
Germany
Alfredo Illanes: Surag Medical GmbH, Magdeburg, Germany.
Simone Schenke: Klinikum Bayreuth, Bayreuth Germany.
Axel Boese, Michael C. Kreissl: Otto-von-Guericke University 
Medical faculty, Magdeburg, Germany. 
Michael Friebe: CEO IDTM GmbH, Recklinghausen, NRW, 
Germany. Professor, AGH UST, Department of Measurement and 
Electronics, Krakow, Poland

cdbme_2022_8_2.pdf   588 8/29/2022   5:46:27 PM

588

DE GRUYTER Current Directions in Biomedical Engineering 2022;8(2): 588-591

Open Access. © 2022 The Author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.



physician in better calculation of doses for radioiodine 

therapy.  

 

Automated assessment could help eliminate subjectivity 

significantly and hence improve the overall risk stratification 

of thyroid nodules. Other approaches for the classification of 

nodules have proven to be successful in terms of classifying 

using various approaches such as deep learning approaches, 

geometry and morphology and even local binary pattern 

variants [11 - 13].  But the drawbacks lie in the fact that these 

approaches use the whole image as an input. This means larger 

volumes of data are required and they do not isolate and 

consider thyroid compositions and regions individually. This 

makes the detailed risk stratification unreliable.  

 

In this work we attempt to classify solid and cystic regions 

within thyroid nodules and aid physicians in objective thyroid 

nodule risk stratification. The core motivation behind this 

work is to provide physicians an objectively accurate region 

classification and estimation within the thyroid particularly 

with respect to solid and cystic regions in order to reduce 

subjectivity. The work done here is directed at solving a 

clinical need as expressed by the physicians.  As a secondary 

motive, this work also aims at achieving comparable results 

with access to limited data. 

2 Materials and Methods   

2.1 Image and Texture Database 

The database was collected at the Medical Faculty at Otto-von-

Guericke University in Magdeburg in the Department of 

Nuclear Medicine. It consists of a total of 24 cases. 

Electromagnetically tracked US videos (12L probe and Logiq 

S8, GE Wisconsin, USA) of the thyroid were obtained. A total 

of 1019 US images containing thyroid nodules were extracted 

from the tracked videos. The number of images per case 

depended on the size number and orientation of the nodules 

present. The resolution of the images was 1442 x 899. The 

ground truth annotations for solid and cystic regions were done 

based on the input of four experienced physicians. A texture 

patch database of solid and cystic regions was generated based 

on this input. This was created in order to isolate, analyse and 

classify these two different regions within a thyroid nodule as 

well as compensate for limited data availability. Patch sizes of 

20x20 pixels were extracted from the two selected regions 

independently. The patch size was determined based on 

previous experiments conducted as well as the literature [14]. 

Patches were selected without any overlap with each other. A 

total of 10190 solid texture patches were first extracted 

followed by 8980 cystic patches. Each of the patches was 

converted into signals following the methods put forth by [14]. 

Following this, CWT decomposition and AR modelling for 

feature extraction was carried out [14].  

 

The approach proposed by [14] has proven to be effective in 

the classification and segmentation of the thyroid gland. In this 

work, we take into consideration the texture characterization 

properties and ability to bypass noise and US artefacts as 

shown by the work in [14]. The difference lies in the type 

frequency band decomposition and features extracted. 

2.2 CWT decomposition and AR 
modelling for feature extraction 

The signals were decomposed into three frequency bands, i.e. 

low, mid and high frequency bands. The low frequency bands 

were selected between the ranges of 8-24 Hz. The mid 

frequencies lay between 25-33 Hz while the high frequencies 

lay between 34-46 Hz. The CWT spectrum of each band was 

reconstructed into signals (low, mid and high) for further 

analysis and feature extraction using the Daubechies 4 (db4) 

wavelet. AR modelling was used to extract features from the 

bands. A total of 36 features (4 signal conversions X 3 

decompositions X 3 main features = 36 features in total) were 

extracted that included Area under the Curve (AUC), 

Maximum Amplitude of the Curve (Max Amp) and Mean 

Value of the Curve (Mean C). The features were compiled for 

the 10190 signals and labelled as 0 and 1 (0 = cystic and 1 = 

solid). A final feature set of 19170 x 36 was generated and 

used in the classification phase 

2.3 Classification 

The classification of the texture patches was done by 

employing Artificial Neural Networks (ANN), K-Nearest 

Neighbours (KNN), and Random Forest Classifier. These 

classifiers were selected based on their different methods of 

classification as well as familiarity. Additionally, the different 

classification methods would help determine the most optimal 

algorithm for the inclusion in future work for the similar 

problem statement.   

A multi- layer perceptron was used for the classification step 

coupled with backpropagation. The input layer consists of nine 

nodes which represent the features extracted. The output layers 

consist of two nodes which represent Solid and Cystic texture 

(labels 0 and 1). The network was built with 7 hidden layers 
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and the sigmoid function was used for activation. The learning 

rate was set for 0.001 and no dropout was used. [15 - 17]

We employed the Linear K-Nearest Neighbor algorithm as an 

Instance-based algorithm for classification. Minkowski 

distance algorithm to compute the similarity metric. In K-NN 

algorithm K is the number of neighbors induced in the 

examination [15, 18, and 19]. For this we used K= 5 which 

was determined to be the optimum number after 

experimenting with several other inputs for K between 1 and 

10. 

Decision trees from randomly selected subsets from the 

training set are created by Random forest Classifier with a total 

number of trees = 100. The votes from the various decision 

trees are aggregated to decide the final class of the object [18]. 

An 80-20 train-test split is used in this section. This were new 

images that are not part of the original training set and the 

testing set created by the internal train-test split. Additionally, 

Bispectrum analysis was used to also extract features from the 

same patch database and trained with the same models to act 

as a comparison. 

3 Results and Discussion  

Table 1 shows the classification results obtained using the 

three different algorithms for the features extracted using AR 

modelling. Table 2 shows the classification using the same 

algorithms but the features used for this were extracted using 

Bispectrum analysis. In Table 1 the ANN depicts an accuracy, 

sensitivity and specificity of 83.14%, 82% and 84% 

respectively. While in Table 2 using the bispectrum features it 

shows an accuracy, sensitivity and specificity of 78.29%, 79% 

and 80% respectively. The K-NN algorithm was able to 

classify the cystic and solid regions with an accuracy of 

84.55%, sensitivity of 83% and Specificity of 86%. Similarly, 

in Table 2 using the bispectrum features K-NN shows an 

accuracy, sensitivity and specificity of 80.12%, 79% and 88% 

respectively. Among the three algorithms, Random Forest 

Classifier obtains the highest values with an accuracy of 

90.41%, sensitivity of 99% and specificity of 91%. This is also 

holds true for the Random Forest results in Table 2 with an 

accuracy, sensitivity and specificity of 86.32%, 87% and 86%. 

All three algorithms are able to classify the cystic and solid 

regions with adequate accuracy in both tables. However, it 

should be noted that while comparing the AR modelled 

features to the bispectrum features, the AR modelled features 

result in a higher classification accuracy, sensitivity and 

specificity. Looking solely at the results from Table 1, the 

Random Forest Classifier outperforms the ANN and K-NN 

algorithms in the domains of sensitivity and specificity. This

means that the Random Forest Classifier is able to more 

accurately determine what the cystic/solid region is and what 

is not better than the remaining two algorithms.  This is why 

the Random Forest Classifier was chosen for generating the 

final image seen in Figure 1. 

Table 1: Results of the Classification of solid and cystic regions in 
the thyroid nodules using four different algorithms using AR 
modelled features

Algorithm Accuracy Sensitivity Specificity

ANN 83.14% 82% 84%

K-NN 84.55% 83% 86%

Random Forest 90.41% 99% 91%

Table 2: Results of the Classification of solid and cystic regions in 
the thyroid nodules using four different algorithms using Bispectrum 
modelled features. 

Algorithm Accuracy Sensitivity Specificity

ANN 78.29% 79% 80%

K-NN 80.12% 79% 88%

Random Forest 86.32% 87% 86%

The output labels obtained from the unseen testing portion of 

classification phase of the Random Forest Classifier are 

further used to estimate the cystic and solid regions in terms of 

percentages for a given thyroid nodule in an US image. This is 

depicted in Fig. 1. From the figure can see that the features 

extracted can be used by classification algorithms to 

adequately detect and estimate in terms of percentages the 

cystic and solid regions within a thyroid nodule in a given US 

image.

Figure 1: An example of the visual representation of the cystic 
(red) and solid (green) region estimation in terms of 
percentages obtained from the output of the classification 
phase
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4 Conclusion and Future Scope    

In this work we attempted to classify and quantify solid and 

cystic regions in thyroid nodules with Machine Learning and 

while using a limited dataset. We do this by extracting patches 

from the available images to create a texture patch database 

followed by AR modelled features. The percentage of solid 

and cystic regions within a nodule can be obtained through 

these results. This would reduce subjectivity among 

physicians during the TIRADS classification. The next steps 

would be to improve the model performance by introducing 

texture patches from different US devices and work on a 3D 

visualization method for the physicians that provides them 

with accurate percentages of solid and cystic components 

within a thyroid nodule.  
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Abstract: The classification of thyroid nodules using ultrasound (US) imaging is done using the

Thyroid Imaging Reporting and Data System (TIRADS) guidelines that classify nodules based on

visual and textural characteristics. These are composition, shape, size, echogenicity, calcifications,

margins, and vascularity. This work aims to reduce subjectivity in the current diagnostic process by

using geometric and morphological (G-M) features that represent the visual characteristics of thyroid

nodules to provide physicians with decision support. A total of 27 G-M features were extracted from

images obtained from an open-access US thyroid nodule image database. 11 significant features

in accordance with TIRADS were selected from this global feature set. Each feature was labeled

(0 = benign and 1 =malignant) and the performance of the selected features was evaluated using

machine learning (ML). G-M features together with ML resulted in the classification of thyroid nodules

with a high accuracy, sensitivity and specificity. The results obtained here were compared against

state-of the-art methods and perform significantly well in comparison. Furthermore, this method can

act as a computer aided diagnostic (CAD) system for physicians by providing them with a validation

of the TIRADS visual characteristics used for the classification of thyroid nodules in US images.

Keywords: thyroid nodules; ultrasound imaging; TIRADS; feature extraction; machine learning;

classification; computer aided diagnosis

1. Introduction

The thyroid is one of the largest endocrine glands located below the epiglottis. It is responsible

for several physiological functions such as the production of hormones, regulation of brain and nerve

cells, and development and functioning of organs like the heart, eyes, hair, skin, and intestines [1].

Irregularities and/or deformations of the thyroid lead to its inability to efficiently carry out these

functions. Nodules within the thyroid are mostly benign neoplasms. Ultrasound (US) imaging is

typically used as the first point of diagnosis and also for the evaluation of the thyroid nodules, as it

effectively images and visualizes soft tissue structures. Additionally, it is free of ionizing radiation and

is the most widely available and affordable imaging modality [2].

The assessment and evaluation of thyroid nodules using US imaging is done by the physician based

on the visual characteristics observed in the scan. For this purpose, the Thyroid Imaging Reporting
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and Data System (TIRADS) approach is used for the risk stratification and classification of benign

vs. malignant nodules. Multiple versions of TIRADS exist such as that of the American Council of

Radiology (ACR) TIRADS [3], Kwak-TIRADS [4], etc. Each of these versions differs, but all consider

visual and textural features, such as margin, shape, calcification, composition, size, echogenicity and

offer a scoring scheme that enables the physician to assess nodule malignancy.

The use of TIRADS has helped to standardize the evaluation of thyroid nodules found in US images.

However, there still exists a considerable amount of inter-observer variability and overall subjectivity.

To address the issue of subjective diagnoses several computer aided diagnostic (CAD) methods

were proposed. These CAD methods use various feature extraction and classification algorithms to

characterize thyroid nodules using US images into benign and malignant.

The aim of our work was to develop a more objective diagnostic approach for thyroid nodules using

US images. The related studies significant to our work will be discussed in the following sub-section.

Related Work

Several methods have been proposed for feature extraction and computer-aided classification

of thyroid nodules using US images. Apart from texture-based features [5], there are other types of

feature extraction methods that can be used, like general shape-based feature extraction/classification

using different image modalities, as well as shape-based feature extraction for the classification of

thyroid nodules in US images. For that we also considered studies that have used the same database

that we accessed.

Jianhua Liu et al. introduced the use of shape features of an image. The boundary and region-based

feature extraction methods are explained in [6]. The use of shape features was observed in several

applications for medical image analysis. Riti et al. employed shape features for the classification of

lung cancer from computed tomography (CT) images and obtained an overall classification accuracy of

85% [7]. The same was seen in the work of Ferreira Junior et.al. where the margin sharpness was used

for the classification of lung nodules in CT images [8]. Hiremath et al. suggested a shape feature-based

approach for detecting follicles in ovarian ultrasound images. The follicles were classified depending

on medical knowledge on parametrically defined measures, such as area, compactness, centroid,

etc. [9]. Huang et al. in their research suggested the use of functional morphological characteristics to

differentiate between benign and malignant breast tumors efficiently. Nineteen morphological features

were extracted from ultrasound images and used for the classification of tumors. They obtained

a classification accuracy of 82% and a sensitivity of 94% using a support vector machine (SVM)

classifier [10]. Nugroho et al. also made use of shape-based feature analysis and extraction for the

classification of breast nodules with a specific focus on the marginal characteristics of uncircumscribed

versus circumscribed margins [11].

In the case of thyroid nodules, Gopinathan et al. performed thyroid nodule risk stratification

and classification by analyzing the roundness and irregularity of nodule margins while using US and

fine-needle biopsy [12]. Zulfanahri et al. suggested a system that can classify thyroid nodules in two

groups, i.e., round to oval and irregular shapes using three chosen characteristics. The suggested system

achieved an accuracy of 91.52% and specificity of 91.35% [13]. Similarly, Lina Choridah et al. proposed

a technique to classify thyroid nodules based on marginal features. The suggested strategy effectively

classified the thyroid nodules into two smooth and uneven classes using US images and obtained

an accuracy and sensitivity of 92.30% and 91.88% respectively [14]. The image pattern classification

technique used by Junying Chen et al. to categorize benign and malignant thyroid nodules proved

efficient in the classification process to verify the types of pattern properties that could be used for the

classification of thyroid nodules in US images [15].

Ding et al. defined statistical characteristics and texture based on elastography of the thyroid

lesion area. The selection of features was then done using the algorithm called minimum redundancy

-maximum-relevance. The selected features were then plugged into an SVM classifier [16].
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Isa et al. used different multi-layer perceptron (MLP) models for the detection of thyroid

diseases [17]. Statistical features coupled with demographic details of a sample were fed into three

different classification algorithms such as random forest classifier (RFC), SVM, and logistic regression by

Patricio et al. to differentiate between thyroid nodules [18]. Song et al. in their work with thyroid nodule

US image classification proposed a hybrid multi-branch convolutional neural network (MBCNN)

based on a feature cropping method for feature extraction. This work used an open-access dataset [19]

as well as a local dataset and obtained a classification accuracy of 96.13% [20]. Chi et al. by using a

fine-tuned deep convolutional neural network (FDCNN) approach obtained a classification accuracy of

98.29% [21]. Using the same dataset, Koundal et al. proposed a complete image-driven thyroid nodule

detection approach that was able to detect thyroid nodules with an accuracy of up to 93.88% [22].

Nanda and Martha in their work with cancerous thyroid nodule detection employed local binary

pattern variants (LBPV)-based feature extraction to classify between benign and malignant thyroid

nodules with an accuracy of 94.5% [23] using [19].

In the presented literature it can be seen that there are several methods for the feature extraction

and classification of thyroid nodules. Studies [6–11] give a broad understanding of the use of

shape-based features in medical image analyses. Using various combinations of these shape-based

features, studies [12–15] were able to classify thyroid nodules in US images with significant outcomes.

Deep learning-based methods [20,21] result in an automatic feature extraction and classification method

that differs from handcrafted features. The methods seen in the literature perform well, but most

of them do not take into account the geometrical and morphological attributes of thyroid nodules

following TIRADS. Since physicians exhibit significant levels of trust in TIRADS, it is essential to

consider the features put forth by [3,4]. These are the attributes that are visible to the physicians on

which their decision is partly based. Even the studies [12–15] that do take into account shape features

do so only to a limited extent.

The purpose of this study is to use geometric and morphological feature extraction that takes into

consideration features that are closely related to the visual shape-based (TIRADS) features currently

used by physicians. This provides them with additional information and mathematical evidence to

support their current TIRADS-based classification with an extra layer of objectivity.

In this work, we mainly focus on shape-based geometric and morphological feature extraction for

the classification of thyroid nodules as either benign or malignant. Examining physicians use visual

and textural characteristics to classify a nodule. Geometric and morphological features represent

the visual aspect. The performance of the features extracted was evaluated using a RFC. The results

obtained from the RFC were compared against other feature extraction and classification techniques

found in the state of the art that use the same database. Furthermore, our approach was also compared

to other shape-based feature extraction and classification methods found in the literature. The rest

of the paper is structured as follows: Section 2 details the materials and methods used in this work.

Section 3 presents the results and comparisons drawn with other feature extraction and classification

methods, and the final Section 4 then provides a conclusion and discusses the next steps.

2. Materials and Methods

This section is divided into three parts: (1) database and data augmentation, (2) feature extraction

and selection, and (3) classification. The section on the database and data augmentation gives details of

the dataset used and the various data augmentation techniques used to balance and maximize the data

usage. The second section presents details on the geometrical and morphological features extracted

from the dataset and discusses the feature selection methods tested and employed for the selection

of the most optimal features. The classification section highlights the classification method used to

evaluate the selected features with subsequent classification into benign and malignant. The workflow

diagram consisting of each step is presented in Figure 1.
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Figure 1. Workflow diagram.

2.1. Dataset and Data Augmentation

For this study, we used the Digital Database of Thyroid Ultrasound Images (DDTI) open-access

dataset of thyroid nodule ultrasound images from the Instituto de Diagnostico Medico (IDIME) [19].

The dataset consists of a total of 99 cases with 2D ultrasound images from different patients that

are annotated and classified based on TIRADS classification. The dataset is divided into JPEG files

and XML files. Each image has a resolution of 560 × 315. Each image has a corresponding XML file.

The XML files provided a detailed classification for each of the nodules. The ground truth (GT) for each

of the nodules was generated by experienced physicians and is available in the form of coordinates in

the XML file. An example of benign and malignant nodules along with their GTs can be seen in Figure 2.

In this study, we only considered two labels (benign and malignant) rather than all the TIRADS labels.

 

Figure 2. Examples of ultrasound images of thyroid nodules (a1) malignant nodule, (a2) its ground

truth, (b1) benign nodule and (b2) its ground truth [19].

These cases were divided into 17 benign cases and 82 malignant cases. To correct the data imbalance,

data augmentation techniques such as flipping, rotation and blurring were employed. Data augmentation

was first used to balance the data and then again to further augment it. Finally, a total of 3188 images

were obtained (1594 Malignant + 1594 Benign) from the original 134 images and used in the feature

extraction phase of the study. The data augmentation was performed using the Augmentor python

package. The percentages of each of the operations (flipping, rotation and blurring) cannot be estimated

as they are applied stochastically.
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2.2. Feature Extraction

In this work, two types of feature were extracted from the GTs of the US thyroid images. These were

in the form of geometric and morphological (G-M) features. A summary of all the extracted features

can be seen in Table 1. Figure 3 gives a visual depiction of a few geometric and morphological features.

Table 1. Overview of 27 extracted geometric and morphological (G-M) features.

Sr. No. Features Type

1 Convex Hull

Geometric Features

2 Convexity
3 Solidity
4 Elongation
5 Compactness
6 Rectangularity
7 Orientation
8 Roundness
9 Major Axis Length
10 Minor Axis Length
11 Eccentricity
12 Circular Variance
13 Elliptic Variance
14 Ratio of Major Axis Length to Minor Axis Length
15 Bounding Box
16 Centroid
17 Convex Area
18 Filled Area
19 Convex Perimeter

20 Area

Morphological Features

21 Perimeter
22 Aspect Ratio
23 Area Perimeter (AP)Ratio
24 Object Perimeter to Ellipse Perimeter (TEP) Ratio
25 TEP Difference
26 Object Perimeter to Circular Perimeter (TCP) Ratio
27 TCP Difference

 

“object” refer to thyroid nodules. The geometric features extracted from the images are as follows. 

𝑃𝑐𝑃𝑛
Solidity helps describe the extent of a shape’s convexity or concavity. It is given by 𝐴𝑛𝐴𝑐

box around an object. The result is a nodule’s elongation measurement given as a value of 0 to 1. The 

𝑊𝑛𝐿𝑛

Figure 3. Visual depiction of geometric and morphological features. (a) Convexity, (b) elongation,

(c) major and minor axes, (d) bounding box, (e1,e2) different instances of eccentricity, (f) orientation,

(g) filled area, (h) convex area, (i) circular variance and (j) elliptical variance.
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2.2.1. Geometric Features

Geometric features are those features that are used to construct an object with certain geometric

elements such as points, curves, and lines as well as information related to edges that describe the

shape or irregularity of a given boundary [24,25]. Note that all instances of the mention of the word

“object” refer to thyroid nodules. The geometric features extracted from the images are as follows.

Convex Hull:

The convex hull of an object is the smallest convex structure within which an object is positioned.

It is the smallest convex polygon that can contain the object. [26,27]:

Convexity:

Convexity is a function that measures the ratio of the convex hull with respect to the original

contour of the shape. In this case, a convex hull is drawn around the original contour of the object.

Convexity is calculated using the following equation [28]:

Convexity =
Pc

Pn
(1)

where Pc = perimeter of the convex hull and Pn = perimeter of the object

Solidity:

Solidity helps describe the extent of a shape’s convexity or concavity. It is given by Equation [29]:

Solidity =
An

Ac
(2)

where An = area of the object and Ac = area of the convex hull. A value of a solid object is 1 and an

object with an irregular boundary is defined with a value less than 1.

Elongation:

Elongation is the feature that measures the ratio between the length and width of a bounding box

around an object. The result is a nodule’s elongation measurement given as a value of 0 to 1. The object

is approximately square or round shaped when the ratio is equal to 1. When the ratio is lower than 1,

the object is more elongated. The equation can be seen below [26,30]:

Elongation =
Wn

Ln
(3)

where Wn =width of the object and Ln = length of the object

Compactness:

Compactness is the ratio between the areas of an object with respect to the area of a circle with a

perimeter equal to that of the object. It is given by the equation below [26,30]:

Compactness =
4πAn

P2
n

(4)

where Pn = perimeter of the object and An = Area of the object

Rectangularity:

Rectangularity is defined as the ratio between the object area and the area of the minimum-bounding

rectangle [31]. When an object returns a rectangularity of 1 it is said to be a rectangular object.

Rectangularity =
An

Ar
(5)

where An = area of the object and Ar = Area of the rectangle.

Roundness:
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The roundness of an object is defined as the ratio between the area of the object and the area of a

circle with the same convex perimeter. It can be represented by the following equation [26,32]:

Roundness =
4πAn

P2
c

(6)

where Pc = the convex perimeter of the object and An = the area of the object

Major Axis length:

The major axis of an object is the endpoints (X, Y) of the longest line traced through the object.

The endpoints of the major axis (X1, Y1, and X2, Y2) are determined by calculating the pixel distance

between every combination of border pixels in the object boundary. This is used to find the pair with

the maximum length. The object’s major axis length is the pixel distance between the major axis

endpoints and is defined by the equation [26,32]:

Major-axis length =

√

(X2−X1)2 + (Y2−Y1)2 (7)

Minor Axis length:

The minor axis is the (x, y) endpoints of the longest line drawn by the object while still perpendicular

to the major axis. The endpoints (x1, y1, and x2, y2) of the minor axis are calculated by computing the

pixel distance between the two border pixel endpoints. The minor-axis length of an object is the pixel

distance between the minor axis endpoints and is defined by the equation [26,32]:

Minor-axis length =

√

(x2− x1)2 + (y2− y1)2 (8)

Eccentricity:

Eccentricity is defined as the ratio between minor axis length and the major axis length of the

object [26]. The result is a measure of the eccentricity of the object, given as a value from 0 to 1.

Eccentricity =
Lma

LMA
(9)

where Lma = length of minor axis and LMA = Length of major axis

Circular Variance:

Circular variance (Cva) is the comparison of an object’s shape with respect to a known shape

such as a circle. The circular variance is the object’s proportional mean-squared error with respect to

the solid circle [26,32]. This returns a null value for a perfect circle and increases and the shape and

complexity change. It is given by the following equation.

Cva =
σR

µR
(10)

where µR and σR are the mean and standard deviation of the radial distance from the centroid (cx, cy)

of the shape to the boundary points (xi, yi), i ǫ [0, N − 1].

They are represented by the formulae:

µR =
1

N

N−1
∑

i=1

di (11)

and

σR =

√

√

√

1

N

N−1
∑

i=1

(di − µR)2 (12)
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where di =

√

(xi − cx)
2 +
(

yi − cy

)2

Elliptic Variance:

Elliptic variance (Eva) is measured similarly to the circular variance. An oval is fitted to the shape

(rather than a circle), and the mean squared error is estimated [32].

Eva =
σ′R

µ′R
(13)

µ
′R =

1

N

N−1
∑

i=1

d′i (14)

and

σ
′R =

√

√

√

1

N

N−1
∑

i=1

(d′i − µ′R)
2 (15)

where

d′i =
√

VT
i
×C−1

ellipse
×Vi

C−1
ellipse

= Inverse of covariance matrix of the shape (ellipse)

Vi =
(

xi−cx
yi−cy

)

and VT
i
= Transpose of Vi

Ratio of Major Axis Length to Minor Axis Length:

Thus is the ratio between major axis lengths to minor axis length.

Ratio of length of Major axis and minor axis =
LMA

Lma
(16)

where LMA = length of major axis and Lma = length of minor axis.

Orientation:

The orientation is angle between the x-axis and the major axis of the object. It can also be defined

as the direction of the shape [26].

Bounding Box:

The bounding box is the region’s smallest rectangle that envelops the object [25]. Dimensions for

the bounding box are those equal to the major and the minor axes.

Area of bounding box = LMA × Lma (17)

where LMA = length of major axis and Lma = length of minor axis.

Centroid:

The centroid is defined as the center of gravity of the object [25].

Convex Area:

The convex area of a nodule is the area surrounded by the convex hull [31].

Filled Area:

Is the total number of pixels within the marked object mask. [26]

Convex Perimeter:

The convex perimeter of an object is the perimeter of the convex hull that encloses the object [25].

2.2.2. Morphological Features

Morphological features are those features that define an object’s structuring elements such as

area, perimeter, aspect ratio, etc. [33]. The following morphological features were considered for the

classification of thyroid nodules in this work.

Area:
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Area is the space occupied by objects on a plane surface. Here area is defined as the number of

pixels inside the object region [34].

Perimeter:

The number of pixels within the object border is the perimeter [26,34]. If x1 . . . xN is a list of

boundaries, and the perimeter is defined by:

Perimeter =
∑N−1

i=1
di =

∑N−1

i=1

∣

∣

∣Xi −Xi+1

∣

∣

∣ (18)

Aspect Ratio:

The aspect ratio is defined as the ratio between the tumor’s depth and width [26]:

Aspect Ratio =
Dn

Wn
(19)

where Dn = Depth of the object and Wn =Width of the object.

AP Ratio (area to perimeter (AP) ratio):

The AP ratio is the ratio between object area and perimeter of the object, and it is defined as:

AP Ratio =
An

Pn
(20)

where An = Area of the object and Pn = Perimeter of the object

TEP Ratio (object perimeter to ellipse perimeter ratio):

The TEP ratio is the ratio of perimeters of an object to the related ellipse [17].

TEP Ratio =
Pn

Pe
(21)

where Pn = perimeter of the object and Pe = perimeter of the ellipse

TEP Difference:

TEP is determined by the difference between the object perimeter and the related ellipse [17]:

TCP Ratio (object perimeter to circle perimeter ratio):

The TCP ratio is the ratio of the perimeter of the object to the relevant circle [17]:

TCP Ratio =
Pn

Pc
(22)

where Pn = perimeter of the object and Pc = perimeter of the circle.

TCP Difference:

The TCP difference is known as the difference between the perimeter of the object and the

corresponding circle [17].

2.2.3. Feature Selection

Feature selection was based on the most relevant visual characteristics in accordance with TIRADS.

This was determined with the help of the two physicians in the Department of Nuclear Medicine at the

University Hospital in Magdeburg, Germany. Clinicians use TIRADS classification that classifies a

nodule based on its geometrical attributes such as shape, size, irregularity in margins and orientation.

The 11 selected features provide the closest estimation to these attributes used by TIRADS. In order to

further validate this claim the authors tested the performance of all the geometric and morphological

features (Global) as well as those that were not selected (discounted). The performance metrics for

each of these are seen in Table 4 in Section 3.

Labels were added to each row of features depending on whether they belonged to 0 = benign or

1 =malignant. An overview of all the extracted features can be seen in Table 1. The feature extraction
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process was carried out using MATLAB 2018b. The feature sets were then exported as .csv files and

used for the classification process. The performance of the features was evaluated using a RFC.

2.3. Classification

An RFC was trained for a binary classification problem where each of the feature rows was labeled

as 0 or 1. RFC is a type of ensemble learning that builds a final classifier by using weak individual

classifiers i.e., binary decision trees. Each tree is a collection of nodes and features that lead to the final

classification result. The aggregation of the results from each of the individual trees is considered the

final result of the classifier. The features were used as the independent variables and the labels as the

dependent variables. The parameters chosen for the RFC are shown in Table 2. A train-test split of

70–30% was used on the data. The classification using RFC was undertaken in Python 3.7 using the

scikit-learn library.

Table 2. Selected random forest classifier (RFC) parameters.

Parameter Value

Number of Decision Trees 400
Criterion Entropy
Bootstrap True

3. Results and Discussion

A total of 27 features were extracted from the thyroid nodule dataset. The feature selection step

led to the selection of the 11 most significant features. We selected three prime metrics to compare the

G-M features against the performance of global and discounted features in our study for the feature

selection as well as the methods found in the literature. The metrics selected were accuracy, sensitivity,

and specificity.

The 11 significant features are given in Table 3. These features were selected based on clinical input

and expertise. Further experiments confirmed the validity of the features selected. This is highlighted in

Table 4.

Table 3. Eleven most significant features selected from the global feature list of 27.

Sr. No. Features Type

1 Solidity

Geometric Features

2 Orientation
3 Roundness
4 Major Axis Length
5 Minor Axis Length
6 Bounding Box
7 Convex Area

8 Area

Morphological Features
9 Perimeter

10 Aspect Ratio
11 AP Ratio

Table 4. Performance metrics of selected features versus global and discounted features.

Method Accuracy (%) Sensitivity (%) Specificity (%)

Global 70.18 48.07 92.29
Discounted 61.55 31.65 91.45

G-M 99.33 99.39 99.25
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As can be seen the accuracy scores of global features and discounted features are considerably lower

(70.18% and 61.55% respectively) than compared to G-M. Additionally, both global and discounted

features exhibit high specificities, but the sensitivities were low (48.07% and 31.65% respectively).

As this is a case of cancer classification, more focus was given to the sensitivity score due to its clinical

relevance (true positive rates). The selected 11 final features resulted in high accuracy, specificity and

sensitivity scores. i.e., the classifier was able to identify benignity and malignancy of the nodules much

more effectively.

The selected 11 features were fed into the RFC and the results obtained were compared against the

results from [20,21,23] that used deep learning-based and LBPV-based methods. These studies used

feature extraction and classification techniques that were different from our proposed approach but

were all tested on the same open-access dataset [19]. Additionally, the results were further compared

against other shape-based feature extraction techniques [13,14] found in the literature.

The same performance metrics were used to present the results obtained from the classifiers.

This is presented in Tables 5 and 6 below. The comparison is done in two steps. The first step involves

the comparison between the proposed method and the methods found in the state of the art that used

the same dataset as us. The second step draws a comparison between the proposed method and other

thyroid nodule feature extraction and classification approaches using shape-based features found in

other related studies.

Table 5. Feature evaluation using RFC compared to the performance of the related approaches using

the same dataset.

Method Accuracy (%) Sensitivity (%) Specificity (%)

MBCNN [20] 96.13 97.18 -
FDCNN [21] 98.29 99.10 93.90

LBPV (SVM) [23] 94.5 97.25 94.50
G-M (RFC) 99.33 99.39 99.25

Table 6. Feature evaluation using RFC compared to the performance of shape-based features found in

related studies using different datasets.

Method Accuracy (%) Sensitivity (%) Specificity (%)

Margin Features [13] 91.52 91.80 91.35
Margin Features [14] 92.30 91.88 92.73

G-M 99.33 99.39 99.25

Table 5 shows the classification results obtained from our proposed feature extraction approach,

G-M and three different thyroid nodule feature extraction and classification approaches found in the

state of the art. i.e., MBCNN [20], FDCNN [21] and LBPV [23]. Each of these methods uses a different

feature extraction and classification method from the proposed approach. However, the dataset used

in all four cases is the same [19]. Data augmentation was used by [20,21]. It can be seen from the table

that G-M based features display a higher accuracy of 99.33% as compared to [20,21,23] while using the

same database. G-M features also result in a high specificity score of 99.25%. In the case of sensitivity,

G-M features exhibit a score of 99.39%. From the depicted results it can be inferred that the proposed

feature extraction method can classify benign and malignant thyroid nodules with high accuracy.

Additionally, this approach also displays high true positive (Sensitivity) and true negative (Specificity)

rates. This means that the feature extracted can be distinguished well.

Table 6 shows the classification results obtained from the proposed G-M feature extraction method

compared to two approaches found in the literature that use shape-based features for the classification

of thyroid nodules. Each of the two studies [13,14] compared to G-M uses features that help characterize

the nodules based on the extent of the margins being oval. Both the compared methods use different

datasets in their work. It can be seen from the table that the G-M features when fed into the RFC
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classifier exhibit an accuracy, sensitivity, and specificity of 99.33%, 99.39%, and 99.25%, respectively.

This is a considerable improvement over the same metrics seen in [13,14].

In both comparison cases, across different feature extraction methods using the same dataset as

well as similar feature extraction methods using different input data, the G-M approach outperforms

the state-of-the-art. Even though [13,14,20,21,23] show high accuracies, sensitivities, and specificities,

the features extracted are often not relevant for the physician performing the examination. To a certain

extent, [13,14] take into account some shape features. But, [20,21,23] use features that are not in

accordance with TIRADS. While reviewing US images of thyroid nodules physicians take into

consideration the visual and textural characteristics of a nodule to classify it as benign or malignant.

The geometric and morphological features encompass the visual characteristics of a nodule. These are

the closest estimation to the features defined by the gold standard in TIRADS. This can be observed

across all three calculated metrics. It is evident that the G-M features adequately emulate the visual

characteristics that are defined in TIRADS. These visual aspects of a thyroid nodule such as margins

irregularity and shape can be directly attributed to the G-M features extracted in this work.

4. Conclusions and Future Work

This study focused on the geometric and morphological feature extraction techniques for the

classification of thyroid nodules from US images. This work used a total of 3188 images. A total of

27 geometric and morphological features were defined and extracted from these images and then the

11 most significant features selected in accordance with the TIRADS-based visual features and labeled

based on their class (0 = benign, 1 =malignant). The performance of the selected features was then

evaluated by the classification accuracy, sensitivity, and specificity obtained from the RFC.

The consideration of G-M features for a computer-aided diagnostic approach for thyroid nodules

is clinically relevant. The 11 selected features in this study proved to be the best combination from

the overall feature set of 27 because these selected features provide information such as the shape,

irregularity in the boundary, orientation, and size of the US thyroid nodule. However, it must be noted

that G-M features are only one part of the features that help in the classification. According to TIRADS,

physicians also need to consider texture features found in a nodule, which were not considered for this

work. Hence, a notable observation of the proposed approach is that it only considers one classification

aspect. When G-M features are combined with texture features the overall accuracy might change,

which needs to be studied further. Another limitation of this work is that everything was carried out

on a single open-source database and further validation of the approach needs to be carried using

additional datasets including different ultrasound scanners. We are currently working on acquiring

data at the Department of Nuclear Medicine at the University Hospital in Magdeburg, Germany.

This would help to improve the robustness of the features extracted across different datasets.

In future work, we would like to omit the use of data augmentation techniques all together.

However, this is dependent on the amount of data that is being currently collected as mentioned.

Until large volumes of US thyroid nodule images are available, there are two possible strategies that

can be employed additionally to test the relevance of the selected features. The first is to augment the

data while being aware of the percentage of each operation (flipping, rotation and blurring) performed.

This would help us determine and understand how each of the selected features behaves with respect

to each data augmentation operation. Additionally, it would also help us determine the extent to which

the data augmentation effects the final classification. The second method would be to test the features

extracted from non-augmented images against features extracted from augmented ones and to show

the deviation between these two sets.

The addition of texture-based features to the G-M features would provide a larger feature set

that would then consider both aspects of a TIRADS classification and provide physicians with better

decision support for the classification of thyroid nodules. Hence, a step towards reducing inter-observer

variability and overall diagnostic subjectivity.
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