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Abstract (Deutsch)

Wenn ein Kristall in seiner eigenen unterkühlten Schmelze wächst, dann kann die
Grenzfläche zwischen den beiden Phasen eine dendritische Form annehmen. Solch ei-
ne Situation entsteht, wenn sich ein Kristallisationskeim in einer Flüssigkeit bildet, de-
ren Temperatur unter ihrem Erstarrungspunkt liegt. Ein Festkörper beginnt zu wach-
sen, und die Phasengrenzfläche nimmt eine bestimmte Form an. Dabei sind ebene
Erstarrungsfronten in der Regel instabil. Statt dessen bilden sich dendritische Muster
aus, und die Anzahl der Dendriten hängt von der Größe der Kristalls und der ato-
maren Gittersymmetrie des Materials ab. Die an der Grenzfläche freigesetzte latente
Wärme muss abtransportiert werden, sonst würde sich die Umgebung des Kristalls
erhitzen, und er würde aufhören zu wachsen sobald er seine Gleichgewichtsform er-
reicht hat. Das System muss also ständig von außen gekühlt werden.

Ein genaues Verständnis des Wachstumsvorgangs und der zu Grunde liegenden
Physik ist wichtig, weil die mikroskopischen Dendriten die makroskopischen Eigen-
schaften einer Festkörperprobe stark beeinflussen. Es war für lange Zeit rätselhaft,
wie das Muster entsteht, bis herausgefunden wurde, dass anisotrope Oberflächen-
spannung den gesuchten Mechanismus zur Stabilisierung darstellt. Aus theoretischer
Sicht erfordert die Lösung des Problems großen Aufwand, selbst wenn das beschrei-
bende Modell auf seine grundlegendsten Aspekte begrenzt wird. Unter Vernachlässi-
gung von Oberflächenspannung existiert eine kontinuierliche Schar von Lösungen,
aus der heraus bei endlicher Oberflächenspannung die stabile Wachstumsmode ge-
funden werden muss. Deshalb nennt man es auch ”Selektionsproblem“.

Die klassische Lösungstechnik basiert auf greenschen Funktionen. Jedoch ist diese
Methode eingeschränkt auf die einfachsten Modelle, bei denen Wärme nur durch Dif-
fusion transportiert wird. Diese Einfachheit wird in der vorliegenden Arbeit überwun-
den. Die hier betrachteten Systeme sind kompliziert in dem Sinne, dass erweiterte
Wärmeleitungseigenschaften einbezogen werden mit dem Ziel, die Auswirkungen auf
die selektierten Wachstumsparameter zu untersuchen und die hier verwendete Me-
thode besser zu verstehen sowie die Breite ihrer Einsatzmöglichkeiten auszutesten.
Die Modelle werden mit asymptotischer Dekomposition behandelt. Die Methode ist
überwiegend analytisch, abgesehen vom letzten Schritt, für den ein C-Programm ge-
schrieben wurde.

Ein großer Teil dieser Arbeit beschäftigt sich mit konvektiven Modellen. Strömun-
gen in der flüssigen Phase stellen nicht nur einen zusätzlichen Transportmechanismus
für Wärme dar, sondern sie verkomplizieren die mathematische Struktur des Pro-
blems drastisch, denn die Anzahl der Feldgleichungen steigt, und sie werden nicht-
linear. Analytische Lösungen des dendritischen Wachstumsproblems mit Konvekti-
on werden in der vorliegenden Arbeit hergeleitet. Dabei wird eine aufgezwungene
Strömungsgeschwindigkeit als zusätzlicher Parameter eingeführt, um vorherzusagen
inwieweit damit das Wachstum kontrolliert werden kann. Es zeigt sich, dass die Strö-
mung die Skalengesetze im System verändert, dass sie jedoch im betrachteten Bereich



für die Strömungsgeschwindigkeit den selektierten Eigenwert nur marginal beein-
flusst.

Darüber hinaus werden nichtlineare Diffusion, thermischer Widerstand und anis-
trope Diffusion betrachtet. In letzterem Fall stellt sich die interessante Frage, ob auch
ohne anistrope Oberflächenspannung eine stabile Lösung selektiert werden kann. Es
wird dafür eine rigorose analytische Lösung präsentiert, und es wird aufgezeigt, dass
die Anisotropie der Diffusion nicht die stabilisierende Rolle der Oberflächenspannung
einnehmen kann.



Abstract (English)

Dendritic patterns occur when a crystal grows in its own undercooled melt. Such a
situation arises, when a germ nucleates in a liquid, the temperature of which is below
its freezing point. A solid starts to grow, and the two-phase boundary takes a dendritic
shape. A transport mechanism is required to remove the latent heat released at the
interface. Otherwise, the vicinity of the crystal would heat up and the growth would
end.

A detailed understanding of the growth procedure and the underlying physics is im-
portant, because the microscopic dendrites strongly influence the macroscopic proper-
ties of a bulk sample. It had been puzzling for a long time, how the pattern is formed,
until it was found out, that anistropic surface tension provides the sought-after mech-
anism stabilizing a parabolic dendrite tip. From a theoretical point of view, solving
the problem requires a notable effort, even if the describing model is constrained to its
most basal features. If surface tension is neglected, there is a continuous family of so-
lutions, out of which the stable growth mode has to be found at finite surface tension.
Therefore, it is also called a “selection problem”.

The classical solution technique is based on Green’s functions. Yet, this method is
restricted to the simplest models, where heat is transported solely by diffusion. That
simplicity is overcome in this work. The systems under consideration here are com-
plex in terms of the advanced heat transport properties taken into account with the
purpose to investigate the effect on the selected growth parameters and to improve
the understanding of the method used here as well as testing its scope of applicability.
The models are treated by means of asymptotic decomposition. The method is pre-
dominantly analytical, apart from the last step, for which a C-program was written.

A considerable part of the work is concerned with convective models. The inclu-
sion of flows in the liquid phase drastically complicates the problem, since the field
equations are rendered nonlinear. Analytical solutions of the dendritic growth prob-
lem with convection are derived in this work. A forced flow velocity is introduced as
additional parameter in order to predict its capability of controling the growth. It is
found, that convection changes the scaling laws in the system, but its influence on the
selected eigenvalue in the considered range for the flow velocity is marginal.

Moreover, nonlinear diffusion, thermal resistance and anisotropic diffusion are con-
sidered. In the latter case, a rigorous analytical solution is presented and it is found,
that the anisotropy of diffusion cannot take the stabilizing role of surface tension.
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Furthermore, I credit Kristian Löwe with parts of the C programming. His experience,
suggestions and code snippets contributed to the numerical tool for selection theory
with convection, which arose from this work.
The financial funding of the German Research Foundation (DFG) under Grant No. KA
672/10-1 is greatly appreciated.





Contents

1. Basic concepts and approaches to dendritic growth 13

1.1. Physics of solidification described by a macroscopic continuum model . 13
1.2. Singular perturbation theory in the symmetric model . . . . . . . . . . . 21

1.2.1. Ivantsov’s needle crystals . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2. Growth mode selection using Green’s functions . . . . . . . . . . 23

1.3. Extended experimental and theoretical study of the selected pattern . . . 27
1.3.1. Features of free dendritic growth . . . . . . . . . . . . . . . . . . . 27
1.3.2. Previous analytical treatment of dendritic growth in convective

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3. Uncertainty about crystalline anisotropy strength measurements

in relevant materials . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2. Advanced approach for dendritic growth in nonlinear systems 33

2.1. Conformal parabolic coordinates and non-dimensionalization . . . . . . 33
2.2. Demonstration of the analytical part of the method by application to the

symmetric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3. Numerical treatment of the local equation . . . . . . . . . . . . . . . . . . 40

3. Convective problems 47

3.1. Potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1. Ivantsov solution for dendritic growth in a potential flow . . . . 48
3.1.2. Continuation to the complex plane and asymptotic decomposi-

tion (potential flow) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3. WKB analysis of the linearized equation far from the singularity

(potential flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.4. Transformation to a small disk around the singularity and a-

symptotic matching to the WKB solution (potential flow) . . . . . 54
3.1.5. Numerical results and dependencies of the observable quantities

and the selected growth mode on the potential flow . . . . . . . . 56
3.2. Oseen flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1. Ivantsov solution for dendritic growth in an Oseen flow . . . . . 60
3.2.2. Continuation to the complex plane and asymptotic decomposi-

tion (Oseen flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3. WKB-analysis of the linearized equation far from the singularity

(Oseen flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4. Transformation to a small disk around the singularity and a-

symptotic matching to the WKB solution (Oseen flow) . . . . . . 67



10 Contents

3.2.5. Scaling laws in the large flow Péclet number limit . . . . . . . . . 68
3.2.6. Numerical results and dependencies of the observables quanti-

ties and the selected growth mode on the Oseen flow . . . . . . . 72

4. Extended heat transport properties 79

4.1. Nonlinear diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.1. Ivantsov solution for dendritic growth in a system with tempera-

ture-dependent thermal diffusivity . . . . . . . . . . . . . . . . . . 79
4.1.2. Continuation to the complex plane and asymptotic decomposi-

tion (nonlinear Diffusion) . . . . . . . . . . . . . . . . . . . . . . . 81
4.2. Thermal resistance at the two-phase boundary . . . . . . . . . . . . . . . 84

4.2.1. Ivantsov solution for dendritic growth with thermal interface re-
sistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2. Shape equation in parabolic and cartesian coordinates for den-
dritic growth with finite thermal resistance . . . . . . . . . . . . . 87

4.3. Anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.1. Rescaled system and Ivantsov solution for dendritic growth with

anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2. Derivation of the shape equation and its WKB solution . . . . . . 93
4.3.3. Derivation of the local equation and its numerical solution for

dendritic growth mode selection with anisotropic diffusion . . . 95
4.4. Arbitrary growth Péclet numbers and asymptotic decomposition . . . . 99

4.4.1. Transformation of the temperature field . . . . . . . . . . . . . . . 100
4.4.2. Continuation to the complex plane and asymptotic decomposi-

tion (arbitrary Péclet numbers) . . . . . . . . . . . . . . . . . . . . 101
4.5. Kinetic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1. Limit of isotropic kinetic effects and anisotropic surface tension . 106
4.5.2. Limit of isotropic surface tension and anisotropic kinetic effects . 107

5. Conclusion 109

Bibliography 111

A. Auxiliary calculations 121

A.1. Potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.1.1. Setup of the model equations . . . . . . . . . . . . . . . . . . . . . 121
A.1.2. Asymptotic decomposition . . . . . . . . . . . . . . . . . . . . . . 122
A.1.3. WKB solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.4. Local equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2. Oseen flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.1. Ivantsov solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.2. Asymptotic decomposition . . . . . . . . . . . . . . . . . . . . . . 133
A.2.3. WKB solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.2.4. Local equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



List of Figures 11

A.3. Thermal resistance in cartesian coordinates . . . . . . . . . . . . . . . . . 149
A.3.1. Interface normal, curvature and anisotropy function in cartesian

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3.2. Derivation of the cartesian shape equation (4.43) . . . . . . . . . . 150

A.4. Anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.4.1. Expansion of the boundary conditions . . . . . . . . . . . . . . . . 153
A.4.2. WKB solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.4.3. Stretching transformation of the shape equation . . . . . . . . . . 155

B. C-code demo 157

B.1. Oseen flow subroutines parallel to the imaginary axis . . . . . . . . . . . 157
B.2. Oseen flow subroutines on the real axis . . . . . . . . . . . . . . . . . . . 164

C. Material parameters 169

List of Figures

1.1. Experimental images of dendritic microstructures in different substances 15
1.2. Instability destroying a planar solidification front and the growing den-

drite in real space with the corresponding temperature profiles . . . . . . 16
1.3. The growing parabolic dendrite, important vectorial quantities . . . . . 22
1.4. Expanding about the Ivantsov-parabola . . . . . . . . . . . . . . . . . . . 24
1.5. Construction of a globally valid approximate solution by asymptotic

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1. Conformal parabolic coordinates . . . . . . . . . . . . . . . . . . . . . . . 34
2.2. Numerical cross-linked integration scheme for local equations . . . . . . 42

3.1. Field vectors of the potential flow velocity around the growing dendrite 49
3.2. Shape correction function (potential flow case) . . . . . . . . . . . . . . . 56
3.3. Dependence of important growth parameters on the forced potential

flow for pivalic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4. Growth velocity and tip curvature radius as functions of the forced po-

tential flow velocity for pivalic acid at different values of the dimension-
less undercooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5. Field vectors of the Oseen flow velocity surrounding the growing dendrite 62
3.6. Asymptotic expansion of the Oseen flow Ivantsov solution at large flow

Péclet number for the derivation of corresponding scaling laws . . . . . 70
3.7. Approximations of the Oseen Ivantsov integral for large flow Péclet

number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8. Growth velocity and dendrite tip curvature radius as functions of the

forced Oseen flow velocity for succinonitrile at different values of the
dimensionless undercooling . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9. Oseen flow: Reciprocal stability parameter for succinonitrile . . . . . . . 75



12 Contents

3.10. Oseen flow: Comparison to experiments with two-component systems . 77

4.1. Two copper blocks immersed in a liquid 3He bath . . . . . . . . . . . . . 85
4.2. Scheme of the liquid crystal system set-up . . . . . . . . . . . . . . . . . . 90
4.3. Structure formulas of the liquid crystal molecules CCH5 and K15 . . . . 97
4.4. Growth velocity and tip curvature radius as functions of the heat diffu-

sion anisotropy strength at different values of the dimensionless under-
cooling, growth velocity shows ”inverted growth” phenomenon . . . . . 98

4.5. Asymptotic decay of the derivative difference at the crossing point of
the two lines of numerical integration as a function of the heat diffusion
anisotropy strength in the case of isotropic surface tension . . . . . . . . 99

4.6. Corrections to the stability parameter by isotropic kinetic effects . . . . . 106
4.7. Selected eigenvalues including anisotropic kinetic effects . . . . . . . . . 108

List of Tables

1.1. Reported values of the fourfold crystalline anisotropy strength of capil-
lary effects from different experiments carried out with pivalic acid . . . 32

3.1. Scaling exponents of the growth velocity and the dendrite tip curvature
radius as functions of the forced Oseen flow velocity for succinonitrile
at different values of the dimensionless undercooling . . . . . . . . . . . 74

C.1. Experimental values of material parameters for various substances used
as input for the numerical calculations in this work . . . . . . . . . . . . 170



13

1. Basic concepts and approaches to

dendritic growth

1.1. Physics of solidification described by a macroscopic

continuum model

Solidification is a phenomenon which is known to everyone just from common ex-
perience, for example regarding a freezing lake. From a technical point of view, it is
important in many production processes. For instance for the casting of metals or for
welding, fundamental understanding of solidification is needed to control these pro-
cesses in a satisfactory manner. The microscopic material properties developed during
solidification heavily affect the macroscopic properties of the solid bulk. In fact, solid-
ification is included in the manufacturing of most products at a certain level. Even
semiconductors for micro-electronics are still obtained from the liquid phase if bulk
material is needed. When solidification is the final production stage, its effect is even
more important [KF92].

Physically, solidification is a first order phase transition. It happens in a liquid at
melting temperature or at an even lower temperature (undercooled liquid), when a
solid nucleus has exceeded a critical size. The solid begins to grow, and a two-phase
boundary is formed. Three different aspects influence the growth process: diffusion,
interface kinetics and capillarity. These are discussed in the following in that very
order. The total differential of the Gibbs free energy per particle is dg = vdp − sdT ,
and its first derivatives behave discontinuously, i.e. the volume per particle v and
the entropy per particle s show a jump behaviour at the melting temperature. The
discontinuity of the entropy per particle implies the release of the latent heat

l = TM (sl − ss) (1.1)

per particle. Here the superscripts l and s point out the quantities in the liquid and the
solid respectively, and TM is the melting temperature of the equilibrium interface. The
latent heat l can be understood from the microscopic properties of the material. When
the spatial alignment of the particles exhibits a far field order, then the solid is a crystal.
Thus, one also speaks of crystal growth. The particles are usually packed denser than
in the liquid phase. The reduction of the mean particle distance is accompanied by a
decrease in the inter-particle potential energy. It happens isothermally at T = TM . But
after the phase transition, the temperature at the liquid-solid interface increases due
to the released latent heat, and growth will stop unless the heat is removed by some
transport mechanism. One such mechanism is heat diffusion.
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To prevent the interface temperature from exceeding TM , one has to cool the system
externally. Indeed there is also crystal nucleation in liquids with T > TM , but these
nuclei are unstable. One distinguishes between two modes of growth: columnar and
equiaxed growth. When a substance solidifies in a vessel, solid nuclei are much more
likely to form close to the walls, because there the temperature is lower due to the
external cooling and there are more inhomogeneities. These crystals can grow in any
direction, and they form the outer equiaxed zone. However, growth is faster parallel
or antiparallel to the favoured heat flux direction, which is perpendicular to the walls.
Crystals growing inwards (away from the walls) outgrow the others, and they align
in a zone of distinct columnar blocks [KF92]. In columnar growth, the solid is cooled
directly at its contact area with the vessel walls. The heat flux is antiparallel to the
growth direction, and the heat is transported through the solid. This growth mode
is favoured, if the absolute values of the local temperature gradients are rather large.
Beyond a certain stage, small branches, that detach from the columnar crystals, can
grow independently. They take an equiaxed shape and form the inner equiaxed zone.
In equiaxed growth, the heat flux is largely parallel to the growth direction [KF92]. A
negative thermal gradient in the liquid enables continuous growth. Equiaxed growth
is the favoured growth mode in systems with high latent heat production rate. The
onset of equiaxed growth is more likely, if fast flows in the melt are present, and elec-
tromagnetic stirring is often used to promote the transition, because equiaxed growth
yields superior material properties of the solid sample for the majority of applications
[KF92].

A different situation arises in the case of directional solidification, where the con-
stant temperature gradient and the growth velocity are forced experimentally by pul-
ling a crucible through a specimen, leading to different growth regimes [PG06]. Often
this is technically favourable. In contrast to that, in free growth both the temperature
profile and the growth velocity are selected by the system and have to be calculated in
a theoretical framework. The special selection mechanism will be discussed later. In
multi-component systems, such as metal alloys, the incorporation of particles into the
solid happens on a fast time scale and the growth is governed by material diffusion. In
this case, a chemical model instead of a thermal model is needed. But this work is con-
cerned almost only with thermal models. Anyway, in both cases the model equations
have the same mathematical structure [Kas96].

Interface kinetics can also influence the growth procedure. In crystal growth, the
probability of adsorption of a particle to the solid surface increases with the number
of nearest lattice neighbours at the free surface site. Kinetic effects are relevant, if their
timescale is slow and less latent heat is produced [KF92]. They affect the lattice planes,
which are observed as the solid surface during facetted growth. It can be investigated
using microscopic models, such as diffusion-limited aggregation (DLA). Thermal dif-
fusion plays a more important role for the growth, if the time scale of kinetic effects is
fast. In this case, considerably more particles get attached to the solid at higher diffu-
sion rates in the liquid. In this work, the growth is always non-facetted, the liquid-solid
interface is microscopically rough and macroscopically smooth. Hence, the relevance
of interface kinetics is assumed to be only marginal for most of the calculations done
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a) succinonitrile dendrite [Ram09]

500 μm

c) pivalic acid (fcc) [MLC92]

100 μm

b) Co-Sm-Cu alloy [GK81]

80 μm

d) xenon doublon [SB01]

500 μm

Figure 1.1.: Experimental images of dendritic microstructures in different substances: a)

succinonitrile dendrite [Ram09], b) multiple Co-Sm-Cu alloy crystals [GK81],

c) pivalic acid crystal with a shape resulting from the underlying fourfold fcc-

lattice symmetry [MLC92], d) doublon structure [SB01]

here. Yet, kinetic effects on the considered systems have been analyzed for complete-
ness (see subsection 4.5).

The shape of the two-phase boundary is basically determined by capillarity if inter-
face kinetics is negligible. If the melt temperature is lower than the interface temper-
ature, then the thermal gradient is negative and planar solidification fronts with con-
stant growth velocity are prohibited by heat conservation [Lan87]. They could only
persist, if the released latent heat was completely absorbed by the solid, which is not
the case in experiments. They are morphologically unstable due to the Mullins-Sekerka
instability [MS64]. As soon as material is attached to the solid and a small protuberance
evolves somewhere on the interface, the isotherms are deformed and the temperature
in the liquid has to decay by the same amount in a slightly smaller range. The ther-
mal gradient becomes steepest at the tip of the protuberance. Hence, heat is removed
most efficiently there, and it is the favoured location for the attachment of additional
material. The tip grows faster than the remainder of the two-phase boundary, and a
dendrite evolves. The dendritic pattern is then stabilized by anisotropic capillary ef-
fects. In turn, this explanation of the instability shows, why planar solidification fronts
may occur in the columnar growth mode, where the thermal gradient is positive. The
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Figure 1.2.: a) A planar solidification front is destroyed by an instability (top). The protu-

berance is marked by a lighter color than the rest of the solid. The corresponding tempera-

ture profile along x = 0 (bottom picture, red graph) shows the negative thermal gradient in

the liquid. It is steeper at the tip compared to the planar front (dashed graph), because the

temperature has to decay by the same amount in a slightly smaller range. This causes the

dendrite to grow. The solid can be considered essentially isothermal. b) The growing den-

drite in real space (top). The isotherms are sketched by black dashed lines. Corresponding

temperature profile (bottom picture, red graph) with an illustration of the dimensionless

undercooling ∆ defined in equation (1.18).

term “dendrite” comes from the greek word δένδρoν (dendron), which means “tree”.
It is chosen, because the microstructure often has a tree-like form. This process of pat-
tern formation in diffusion-limited crystal growth has been an object of research for
years [Lan87]. A beautiful review can be found in [ABK+09]. For pattern formation to
occur, a non-equilibrium situation is often necessary. This is established by the external
cooling. The undercooling is an external control parameter. Without external cooling,
the latent heat increases the temperature in the vicinity of the two-phase boundary up
to TM and the crystal ceases to grow.

Figure 1.1 exhibits four examples of dendritic microstructures in different substan-
ces. The pictures are taken from the cited experimental works. Image 1.1b shows
multiple dendritic crystals on a larger length scale. From this, one can get a notion
of how the amount of tilt and interlocking of the dendrites can affect the robustness
of a macroscopic sample. Though, the mere size of the patterns is more essential for
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the macroscopic properties. Image 1.1c reveals the influence of the underlying atomic
lattice. The fourfold symmetry of the face-centered cubic Bravais lattice is reflected
by the equilibrium crystal shape. Mathematically, this is realized by a well-chosen
anisotropy function of interface surface tension. Figure 1.1d exhibits an example of
a doublon structure, which can be observed under certain system conditions. They
are explained a bit more in one of the upcoming paragraphs. Figure 1.2a illustrates
the instability driven by different temperature gradients, and figure 1.2b exhibits the
growing dendrite (actually only a needle crystal without sidebranches) in real space
with a sketch of the isotherms.

After long times, the crystal ceases to grow and takes an equilibrium shape, which
can be determined by a graphical technique called Wulff construction [Hud92, Sek04].
It is based on a minimization of the free surface energy, the orientational dependence
of which is a consequence of the underlying lattice structure. In the systems here con-
sidered, the capillary effects tend to maximize the length scale of the pattern, whereas
diffusion tends to minimize the length scale of the pattern. The result is a compromise
between the two competing processes. The favoured direction for dendritic growth
is the axis of maximal surface tension or minimal surface stiffness. Furthermore, the
nonlinearity needed to describe pattern formation mathematically arises in the prob-
lem’s Green’s function. But the shape also appears nonlinearly in a capillar interface
condition, which shall be derived in the following. Consider the change rate of the
Gibbs free energy G at the interface:

dG

dt
=
∂Gs

∂V s

dV s

dt
+
∂Gl

∂V l

dV l

dt
+
∂Gs

∂Asl
dAsl

dt
. (1.2)

Here, the superscripts s and l indicate the solid and the liquid domain respectively. Asl

is the area of the two-phase boundary. The total differential of G is dGs,l = V s,l dp −
Ss,l dT . Assuming the pressure to be constant (dp = 0), one finds

∂Gs,l

∂V s,l
= −S

s,l

Ωs,l

T∫

TM

dT ′ = −S
s,l

Ωs,l
(T − TM ) . (1.3)

Here, Ωs,l denotes the volume per mole in the respective phase. This differential ex-
pression may be considered accurate, if the solid and the liquid phases are incompress-
ible [Gli11]. Moreover, the surface tension γ is defined by

∂Gs,l

∂Asl
= γ . (1.4)

γ is positive for any well-defined structure. Mass conservation is written as

1

Ωs

dV s

dt
= − 1

Ωl

dV l

dt
. (1.5)

In a local equilibrium situation, one has Ġ = 0 at the interface. (1.3), (1.4) and (1.5) are
put together into (1.2):

0 =

[
Sl − Ss

Ωs
(T − TM ) + γ

dAsl

dV s

]
V̇ s . (1.6)
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Insofar as the growth rate V̇ s of the solid is arbitrary, the term in the square bracket
has to vanish. dAsl

dV s can be identified with the curvature κ. Introducing the latent heat
per unit volume L = TM (Sl − Ss)/Ωs, one ends up with

T = TM −
TM
L
γκ . (1.7)

Equation (1.7) applies at the liquid-solid interface [Gli11]. It shows that due to capillar-
ity, the equilibrium temperature of the interface depends on its shape (Gibbs-Thomson
effect).1 The selected shape and growth velocity, which are experimentally measurable,
correspond to a structurally stable solution of a model. It turns out that the underlying
selection mechanism is non-trivial.

After all these considerations, a model describing free solidification can be written
down. We examine the two-dimensional problem of a crystal growing in its under-
cooled melt. There may be convective flows in the liquid phase. Furthermore, we
make the assumption, that the thermal diffusivity D is the same in the liquid and
in the solid. The same is assumed for the mass density %m and the volume specific
heat capacity c at constant pressure. The governing equations for this problem are the
temperature diffusion equation in the solid and the temperature diffusion-advection
equation in the liquid:

∂T s

∂t
= ~∇ ·

(
D · ~∇T s

)
in the solid,

∂T l

∂t
+
(
~w · ~∇

)
T l = ~∇ ·

(
D · ~∇T l

)
in the liquid.

(1.8a)

(1.8b)

These equations are phenomenological bulk equations with the temperature T being
the relevant field quantity. They are a continuum representation of energy conserva-
tion. ~w is the flow velocity. In general D is a tensor and it can also depend on the
temperature T (nonlinear diffusion) [Kur87]. The advection term brings a nonlinear
coupling of the field equations into the system. Note that the inclusion of convection
adds tremendous complexity to the problem. This effect has been neglected in most
analytical works on dendritic growth. The boundary conditions, valid at the interface,
are

T s = T l continuity

T s = TM −
L

c
d0κa(θ)− L

c
β̄(θ)~V · ~n Gibbs-Thomson

L

c
~V · ~n = D ·

(
~∇T s − ~∇T l

)
· ~n Stefan condition

(1.9a)

(1.9b)

(1.9c)

with

~V the growth velocity,

d0 the mean capillarity length,

β̄(θ) the anisotropy function of kinetic effects,

1The instability mechanism destroying planar solidification fronts would also work on an isothermal
interface.
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a(θ) the anisotropy function of capillary effects with θ being the angle between the
normal to the interface and a fixed direction,

~n the normal vector to the interface, pointing into the liquid.

They apply at the moving interface. Far away from the interface, homogeneous Dirich-
let boundary conditions are imposed. I.e. the temperature in the liquid must take a con-
stant value T∞, which can be controlled in experiments by external cooling, and the
temperature in the solid must approach TM :

T l → T∞

T s → TM

(1.10a)

(1.10b)

for |~r| → ∞ in either the liquid or the solid. Condition (1.9a) is the temperature
continuity condition at the two-phase boundary. Condition (1.9b) was obtained from
(1.7). In general, the surface tension γ(θ) is orientation-dependent, and then the sur-
face stiffness γ(θ) + γ′′(θ) is the relevant prefactor of the curvature. This is included
in the product d0a(θ). The mean capillary length d0 = TMγ0c/L

2 is proportional to
the mean surface tension γ0 averaged over all angles θ. Equation (1.7) without the
last term is called Gibbs-Thomson condition describing capillary effects under the as-
sumption of local equilibrium. It has been extended by a term representing kinetic
effects of atom transfer at the liquid-solid interface, and it therefore describes a weakly
non-equilibrium situation. The Stefan condition (1.9c) represents local enthalpy conser-
vation at the phase transition, and it supplements (1.8a) and (1.8b) to ensure energy
conservation everywhere. Different mass densities in the two phases would signifi-
cantly increase the complexity of the problem. Material would get sucked towards the
interface, and the symmetry in the Stefan condition gets broken. The flow velocity ~w

is determined by the Navier-Stokes equations for incompressible fluids:

~∇ · ~w = 0 incompressibility,

∂ ~w

∂t
+
(
~w · ~∇

)
~w = − 1

%m
~∇p+ ν∆~w Navier-Stokes.

(1.11)

(1.12)

with the kinematic viscosity ν. The Navier-Stokes equation (1.12) is the momentum
equation (Newton’s second law) arranged for viscous Newtonian fluids. It can also be
derived from classical statistical physics, where a microscopic description turns out to
be futile and the assumption that the mean in the phase space equals the mean in time,
leads to macroscopic differential equations. The boundary conditions for ~w are

~w · ~n = 0 mass conservation

~w · ~t = 0 no-slip

(1.13a)

(1.13b)

at the interface and
~w = −U~ey (1.14)

far ahead of the interface (|~r| → ∞ in the liquid). ~n and ~t are the normal and tangential
unit vectors to the interface respectively. The boundary condition (1.13a) is the mass
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conservation condition. Here the mass densities of the solid and the liquid are assumed
to be equal. Condition (1.13b) holds due to friction, and is sometimes called the no-slip
condition. In the far field boundary condition (1.14), there is a constant forced flow
velocity −U~ey. This is an important external parameter characterizing the flow. The
forced flow is supposed to be anti-parallel to the growth direction, and the interface
is flooded with undercooled liquid. It may be considered a simplified modelling of
buoyancy or natural convection. But it can also be forced artificially in real systems in
order to control the growth process.

Field equations (1.8a),(1.8b) together with boundary conditions (1.9a), (1.9b), (1.9c),
(1.10a) and equations (1.11), (1.12) together with boundary conditions (1.13a), (1.13b),
(1.14) represent a macroscopic continuum description of free solidification. The model
is a nonlinear free boundary problem. Determining the position and the shape of the
interface is part of the problem. That is why the information contained in the addi-
tional condition (1.9c) is needed, although (1.9a)-(1.9b) together with (1.10a)-(1.10b)
already specify values for T on the whole boundaries of the domains. There is also
a one-sided model [Lan87], which is focused only on the liquid domain whereas heat
diffusion in the solid is ignored. This is especially a reasonable simplification in the
chemical model, because impurity diffusion in the solid is so much smaller than in the
liquid, that it can be neglected altogether [Lan87]. But the model introduced above is
already simple enough for most parts of this work and yet quite feasible, because it
can be used for a variety of problems. Concerning the title of this work, the systems
described by the model can be “complex” in the sense that the heat transport may be
rather sophisticated. Convection, nonlinear diffusion or anisotropic diffusion may be
taken into account and these aspects remarkably complicate the problem. However,
the equations can also simplify when being adapted to a particular problem.

One of such simplifications is the following: In all the upcoming chapters we are
going to look for solutions with a shape-preserving solidification front growing with
a steady-state velocity V . Such quasi-stationary solutions are implied by experimental
observations [Dou91]. Thus, the equations can be rewritten in a moving frame. The
only field equation that changes is equation (1.8a). The flow equations (1.11)-(1.12)
as well as the diffusion-advection equation (1.8b) are invariant under Galilean trans-
formation. (For (1.8b), this applies unless flow is neglected.) The results of this work
are presented in chapters 3 and 4. The effect of convection on the growth of dendritic
patterns is analyzed in detail in chapter 3 of this work. Two different approximations
for the flow velocity field are used: A potential flow and the more realistic but more
complex Oseen flow. An analytical solution is derived, which is conjectured to be the
most accurate one so far. The boundary conditions are evaluated numerically, pro-
viding explicitly the dependence of the growth parameters on the flow. In chapter
4, extended aspects of dendritic growth are considered (nonlinear diffusion, thermal
resistance, anisotropic diffusion, arbitrary growth Péclet number, kinetic effects) in or-
der to investigate the scope of the used method. But before, the used analytical and
numerical tools are introduced in chapter 2, allowing for a better understanding and a
more compact presentation in the subsequent chapters.
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1.2. Singular perturbation theory in the symmetric model

The most successful works on dendritic growth employed the symmetric model. It is
the convection-free form of the general model introduced in the preceding section 1.1.
In addition to that, the diffusion coefficient D is assumed to be the same in the solid
and in the liquid.

1.2.1. Ivantsov’s needle crystals

In experiments, a nearly parabolic shape of the dendritic interface pattern is observed
at the tip, i.e. ahead of the sidebranches [RG91a]. In fact, a parabolic solution to the
symmetric model can be found, if surface tension is neglected. The Gibbs-Thomson
condition without kinetic effects has to be simplified:

T s = TM . (1.15)

Hence, the neglect of surface tension results in an isothermal interface, because equa-
tion (1.15) is obtained from (1.9b) by setting d0 = 0 and the capillary length d0 is
proportional to the average surface tension γ0. The interface takes the form

ys(x) =
ρ

2

(
1− x2

ρ2

)
(1.16)

with ρ being the radius of curvature at the growing dendrite’s tip (see fig. 1.3). The
whole solid domain is isothermal at T = TM . The solution is related to the far field
temperature by the equation

∆ =

√
πPc

2
e
Pc
2 erfc

(√
Pc
2

)
(1.17)

with the dimensionless undercooling

∆ =
TM − T∞
L/c

(1.18)

and the growth Péclet number

Pc =
ρV

D
. (1.19)

The complementary error function

erfc (x) =
2√
π

∞∫

x

e−t
2
dt (1.20)

is used in (1.17). Equations of the type of (1.17) are called Ivantsov condition within
this work, because they result from inserting the solution for the case of zero surface
tension (Ivantsov solution) into the far field boundary condition. (1.17) determines the
product of the growth velocity V and the tip curvature radius ρ at given undercooling
∆, but these parameters cannot be calculated separately from the equation. This fam-
ily of solutions had first been found by Ivantsov [Iva47]. Unfortunately, all of these
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Figure 1.3.: The growing parabolic dendrite, illustration of important

vectorial quantities

solutions are unstable. In addition to that, a whole family of solutions seems to be
rather unphysical because in experiments with a certain substance, the same growth
parameters V and ρ are always observed for the same undercooling. Equation (1.17)
can be simplified to ∆ ≈

√
πPc/2 in the case of small undercooling (∆� 1).

Most of the works on dendritic growth are based on perturbation expansions about
Ivantsov’s solution as the solution of the unperturbed problem. It is a selection prob-
lem, because Ivantsov’s continuous solution spectrum is converted into a discrete one,
out of which only one solution is stable. This is going to be the experimentally ob-
served solution. It is shown in detail in the next subsection. A regular perturbation
expansion about an unstable solution cannot lead to any stable solutions. Instead,
singular perturbation theory has to be used. In general, a system is said to be sin-
gularly perturbed, if the structure of its describing equations undergoes a significant
change when a small parameter is set zero. Such structural changes can be a decrease
in the order of the equation or a change of type (for instance elliptic→parabolic or
PDE→ODE). In this case, the small parameter is the stability parameter σ (defined in
the next subsection) proportional to d0, and when it is set zero, the Gibbs-Thomson
condition loses two derivatives and the structure of the solution space is drastically al-
tered. When allowing for a finite value of σ, surface tension is included in the problem
and it becomes technically much more challenging. Once a solution of the perturbed
problem is found, it does not become equivalent to the Ivantsov solution for σ → 0

because this limit is singular.
There used to be the hypothesis that the system selects its operating state at the

point that separates stable and unstable regions of the solution space (marginal stabil-
ity hypothesis [Lan0a, LMK78]). In this respect, the tip curvature radius ρ scales as a
function of the capillary length d0. It turned out to be wrong, although it is often in
agreement with experimental data [GSA76, HG81]. One reason why the hypothesis
fails is that it is based on a stability analysis of a solution with isotropic surface ten-
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sion, but it was later shown, that no solution exists to this particular problem [BM91].
The anisotropic capillary effects arising from surface tension have to be taken into
account to gain access to the real selection mechanism. The concept is also referred
to as ”microscopic solvability theory”: Capillarity provides a mathematical and physical
solvability criterion or selection criterion. The anisotropy of surface tension gives rise
to multiple coldest points on the surface of the growing dendrite [BBL87, BHL87]. This
stabilizes the pattern against tip splitting.

1.2.2. Growth mode selection using Green’s functions

In the first order of a singular perturbation expansion about Ivantsov’s solution, cap-
illary effects must not be neglected. The Gibbs-Thomson condition (1.9b) contains a
term, which is linear in the capillary length d0. It is a small term, since d0 is usually
of the order of several nanometres. But this additional length scale in the system is
exactly what is needed to break the degeneracy of the Ivantsov solution spectrum. Let
ys(x, t) again be the spatial function describing the position of the moving interface at
time t. Unfortunately, this cannot be a plainly parabolic expression anymore. Barber
et al. [BBL87] used Green’s functions to solve the diffusion equation (1.8a) and inserted
it into the Gibbs-Thomson condition (1.9b), again neglecting kinetic effects:

∆− d0κa(θ) =
Pc
4π

∞∫

0

∞∫

−∞

ẏs(x, t− τ)

t

· exp

[
−Pc

4τ

(
(x− x′)2 +

(
y(x, t)− y(x′, t− τ)

)2)
]

dτdx′ .

(1.21)

The same approach was taken by Ben Amar and Pomeau [BP89] as well as by Caroli et
al. [CCRL86]. This boundary integral equation2 holds in the rest frame of the bulk. The
curvature κ is a nonlinear function of ys(x, t). Actually, (1.21) is a retarded equation
[Kas96]: At τ = t−t′ < 0 there is no contribution to the integral because of the causality
principle. The solution ys(x, t) cannot be influenced by the solution ys(x, t−τ) at τ < 0,
because t − τ designates a later point in time for τ < 0. The steady-state shape of the
solidification front is close to the Ivantsov parabola:

ys(x, t) = t− x2

2
+ ζ(x) . (1.22)

Here, lengths are measured in units of the tip curvature radius ρ. The shape of the
solification front is slightly altered and non-parabolic (see fig. 1.4). ζ(x) is the shape
correction function to be determined. Actually, a regular perturbation expansion can
be used to calculate ζ(x) [BM91] with sufficient accuracy. But a singular perturbation
expansion is necessary to determine the growth velocity V . Because of the smallness of
the anisotropy strength of the capillary effects, ζ(x) can be assumed to be small. But its
derivatives need not necessarily be small for all values of their arguments. The time

2Note, that the minus sign on the left hand side of (1.21) is a plus sign in the orginal work of Brener
and Mel’nikov [BM91], because a different algebraic sign of the curvature will be chosen in this work.
This is also accounted for in equation (1.23).
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Figure 1.4.: Expanding about the Ivantsov-parabola, the real dendrite

shape is corrected by a function ζ(x) and is non-parabolic

integration is done using the modified Bessel functions K0 and K1 = −K ′0 (Macdonald
functions) of the zero and first order respectively and R̃ =

(
(x− x′)2 + 1

4(x2 − x′2)2
)1/2

[AP86]:

σκ =
Pc
a(θ)

∞∫

−∞

[
ζ(x)− ζ(x′)

] e
Pc
2

(x2−x′2)

2π

[
K0

(
PcR̃

)
− x2 − x′2

2R̃
K1

(
PcR̃

)]
dx′ .

(1.23)
The undercooling ∆ has been replaced using the Ivantsov condition (1.17). For not too
large growth velocities, the diffusion field in the solid follows the interface adiabati-
cally, and its profile is constant on the time scale of diffusion. The sought-after solution
of equation (1.23) is stationary in a moving frame of reference attached to the dendrite
growing at constant velocity V . The stability parameter

σ =
2d0

ρPc
(1.24)

is the key to the solution of the selection problem. It is the only remaining parameter
group. At small growth Péclet number Pc, σ can be considered independent of the un-
dercooling ∆. Martine Ben-Amar investigated the problem at arbitrary undercooling
and found that there is indeed a dependence of the stability parameter on ∆ at large
Pc [Ama90]. Anyway, finding σ as an eigenvalue from the boundary integral equation
(1.23) will select a solution because together with the Ivantsov condition (1.17), it pro-
vides complete parameter separation for the steady-state growth velocity V and the
tip curvature radius ρ.

Equation (1.23) is sometimes also called the Nash-Glicksman equation [Tan89]. Kessler
and Levine solved it by direct numerical integration [KL86b], and subsequently they
performed a numerical stability analysis [KL86a]. They found a stable solution of
the problem with anisotropic surface tension at low undercooling using the selection
criterion of a smooth tip. In the case of isotropic surface tension, the cusp magnitude
at the tip is∝ e−1/

√
σ, and thus it never vanishes and no solution exists. Meiron solved

a quasistationary approximation of the time-dependent boundary integral equation
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numerically [Mei86], and Saito et al. calculated a numerical solution of the one-sided
model [SGWMK87].

Others [BM91, Lan87] continued analytically: The growth Péclet number Pc is also
assumed to be small (Pc � 1). This is the relevant case in most experiments. Thus, the
modified Bessel functions can be expanded for small arguments and one finds

σa(θ)
ζ ′′(x)− 1

[1 + (ζ ′(x)− x)2]
3/2

=
1

2π

∞∫

−∞

[ζ(x′)− ζ(x)] (x+ x′)[
1 + 1

4(x+ x′)2
]

(x− x′) dx′ . (1.25)

The explicit form of the curvature κ in cartesian coordinates has been inserted. This
equation appears in the works of Langer and Barbieri [Lan87, BL89] as well as in the
work of Brener and Mel’nikov [BM91]. In these works, different analytical procedures
and physical solvability criteria are used. Langer introduces a new dependent function

Z(x) =
ζ(x)

(1 + x2)3/4
(1.26)

and obtains
(D2 + I2) ∗ Z(x) =

σ

(1 + x2)3/4
(1.27)

where the self-adjoint differential operator D2 and the integral operator I2 are defined
by

D2 = σ
d2

dx2
+

√
1 + x2

a(θ)
+O(σ) . (1.28a)

I2 ∗ Z(x) =
(1 + x2)3/4

2πa(θ)

∞∫

−∞

P
(x− x′)

(1 + x′2)3/4(x+ x′)[
1 + 1

4(x+ x′)2
] Z(x′) dx′ . (1.28b)

P denotes the Cauchy principal value, which is necessary because ζ(x) and ζ(x′) are
evaluated separately inside the integral in (1.25). Here, the equation has been lin-
earized in ζ(x) and its derivatives. Apart from that, one non-singular term of the order
O(σ) has been neglected. It is hard to see, how a solution to equation (1.27) could be
constructed. But Fredholm’s alternative grants access to the eigenvalue spectrum with-
out finding an explicit solution Z(x): The equation has a solution, if and only if the
kernel of the adjoint operator D2 + Ĩ2 is orthogonal to the inhomogeneity. It works for
linear operators only. Let Z̃H(x) be a null eigenvector of the adjoint operator, i.e.

(D2 + Ĩ2) ∗ Z̃H(x) = 0 . (1.29)

Then

Λ =

∞∫

−∞

Z̃H(x)

(1 + x2)3/4
= 0 (1.30)

is a solvability condition. It turns out to be equivalent to the suppression of transcen-
dentally small solution contributions at x = 0 in order to obtain a smooth dendrite
tip (ζ ′(0) = 0). A WKB solution of (1.29) is inserted into (1.30) and the integration
is carried out in the complex plane. A finite anisotropy of surface tension shifts the
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branch point of the integrand, around which the path of integration has to be taken.
This leads to the existence of solutions. The root of Λ as a function of σ that corre-
sponds to the stable solution, is found in the crossover range between oscillating and
smooth behaviour of the integral. This yields the selected eigenvalue. All other roots
are located at smaller σ, and they belong to thick, slow dendrites, the tips of which are
unstable [Lan87].

Alternatively, equation (1.25) instead of the Fredholm equation (1.30) can be solved.
Brener and Mel’nikov constructed a solution [BM91] in a way similar to the Kruskal-
Segur method [KS87, KS91]. For large values of |x|, the derivatives of ζ(x) can be ne-
glected. This leads to the outer equation

σ =
(1 + x2)3/2

2π

∞∫

−∞

[ζ(x′)− ζ(x)] (x+ x′)[
1 + 1

4(x+ x′)2
]

(x− x′) dx′, (1.31)

which can be solved exactly by means of the Wiener-Hopf method. The integral is cal-
culated by the method of residues. The left hand side of (1.25) diverges at x = ∓i for
|ζ ′(x)| � 1. Consequently, the next step is to derive a local form of (1.25) close to the
singularity (|x± i| � 1). Then, it must be possible that the solution of the inner equa-
tion asymptotically matches the solution of equation (1.31), as illustrated schematically
in figure 1.5. This provides a solvability criterion. The anisotropy function reads

a(θ) = 1 +
2β

(x− ζ ′ − i)2
, (1.32)

where β is the strength of the crystalline surface tension anisotropy. The inner equation
takes the form

d2F

dz2
−
√

2λτ
7/2
4

τ 2
4 − 2

= −1 (1.33)

with x = i(1 − √βz), ζ(x) = βF (z) and τ4 = z + F ′(z). The stability parameter can
be calculated from the nonlinear eigenvalue λ as σ = β7/4/λ. The local equation (1.33)
is solved numerically yielding the eigenvalue λ = β7/4/σ = 0.42 [AP86]. Though, the
discussion of solvability is fully analytical: The inner solution has its largest slopes
on the three rays (Stokes lines) with arc z = 0,±4π

7 . Since one is interested in existing
global solutions, the growth on these rays has to be suppressed. Otherwise a matching
to the outer solution is not possible. Without anisotropy, there is no parameter λ, and
one has only two integration constants, not enough to suppress growth on three rays.
But with λ, there is a third parameter adjustable to produce a solution. This is how the
stability parameter is selected mathematically in this framework. It shows, why there
are no globally valid solutions at all in the case of isotropic surface tension. For β = 0,
one has λ = 0, and the solution cannot be adjusted. Finally, the eigenvalue with the
highest growth velocity corresponds to the only stable solution [BM91].

Both of the methods described above yield the scaling relations

V ∝ ∆4β
7
4

ρ ∝ ∆−2β−
7
4

(1.34a)

(1.34b)
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Figure 1.5.: Construction of a global approximation by asymptotic mat-

ching of the inner solution and the outer (WKB-)solution

in the case of small Pc. In the limit of small undercooling, an explicit form of the
selected growth velocity can be given:3

V =
2D∆4σ

π2d0
. (1.35)

Due to the linearizations needed for Fredholm’s alternative, only the second approach
is considered to be rigorous. Anyway, both approaches share a crucial disadvan-
tage: They can only be applied to linear field equations, because otherwise there is
no Green’s function. Especially the inclusion of convection into the theory is not pos-
sible with the methods described above.

1.3. Extended experimental and theoretical study of the

selected pattern

1.3.1. Features of free dendritic growth

It is worth mentioning that the mathematical structure of diffusion-limited dendritic
growth is the same as in viscous fingering, where a liquid of small viscosity is pushed

3Note, that if the one-sided model is used instead of the symmetric model, the velocity predicted in
equation (1.35) is twice as large [Mis87].
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into a liquid of high viscosity. In this respect, the pressure p is the relevant field quan-
tity fulfilling a Laplace equation, and Darcy’s law determines the flow velocity field. The
Saffman-Taylor instability gives rise to the growth of finger-like patterns [HL87]. The
problem was first solved in 1986 [Shr86, HL86, CDH+86, DHP86]. Later on, the articles
by Combescot et al. [CHD+88] and by Dorcey and Martin [DM87] presented the mat-
ter more elaborately. The analogy to dendritic growth was shown by Ben Amar and
Brener [AB95]. The solution methods are the same, but the solution of the unperturbed
problem has a very different structure. Apart from that, the sidebranches of Saffman-
Taylor fingers can be unstable [Lan87], whereas in free dendritic growth, sidebranches
are stable and they are observed in every experiment. They also occur in directional
solidification [GP98].4 Sidebranches grow nearly perpendicularly to the growth direc-
tion of the main dendrite, and they migrate down its surface. They have no influence
on the growth mode of the main dendrite [Kas96], although LaCombe stated that there
might be some kind of interaction between the sidebranches and the main dendrite’s
tip causing the growth velocity of the main dendrite to oscillate slightly around its
mean corresponding to the stationary value [LKF+02]. These velocity oscillations are
observed in some experiments. They can be tracked in the Fourier transform of the
tip displacement measured as a function of time. Some modes are more pronounced
than others. Several possible reasons for the oscillations have been proposed. In al-
loy solidification they are said to be a consequence of chemical gradients. Sawada et
al. observed a dependence of the oscillation modes on the orientation of the crystal
relative to the growth direction [SPTB91]. But in fact, the origin of the effect is still a
mystery, and in the vast majority of the experiments, it is not observed.

Some of the hitherto cited experimental works were carried out in three dimen-
sions. Ben Amar and Brener generalized the concept from section 1.2 to the three-
dimensional case [AB93, Bre93]. Brener et al. also examined the problem of combined
motion of melting and solidification fronts [BT05], triple junctions in three-phase sys-
tems [BHPT07, BBH+09] and growth of non-reflection symmetric dendrites [BL91].
The latter case was investigated in more detail by Ben Amar and Brener, and the exis-
tence of double finger structures was predicted [AB95]. An example of these so called
doublon structures is shown in figure 1.1d. They are observed for instance in the ex-
periments of Stalder and Bilgram [SB01], and they can be formed, when an ordinary
dendrite is destroyed by a tip-splitting instability. They can exist in systems with van-
ishing surface tension anisotropy. Doublons are the favourable growth mode at larger
∆. They are the building blocks of the seaweed structure, which grows faster than a
compact dendritic crystal [BMKT96]. In three dimensions, the method described in
subsection 1.2.2 also works. The crucial difference is that the 3D singular perturbation
expansion breaks down far away from the tip. Thus, in the tail region the calculation
has to be performed separately. The shape x ∼ y0.6 for the fins of the needle crystal is
predicted [Bre93] in contrast to the parabolic case in 2D. This result has been checked
and verified by the group of Bilgram using xenon dendrites [SB01, SB04, SB05].

4In directional solidification, the shape of the growth cell is selected for a given wavelength of the
pattern. But the wavelength can take values within a continuous band, and it is determined by the
initial conditions of the problem.
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Dendritic growth also occurs in liquid crystals [OBL87]. In this case, the diffusion
coefficient D is an anisotropic tensor. For instance in a nematic liquid crystal, elec-
trohydroconvection causes an instability selecting a continuous band of possible den-
drite shapes [GG02]. The dynamics of a nematic-isotropic interface was investigated
experimentally in [SL90]. In these systems, the substrate-nematic anchoring energy
significantly enlarges the capillary length [GFM01]. In the work of Börzsönyi et al.
[BBK98], the growth of a homeotropic (liquid crystal directors perpendicular to the 2D
growth plane) smectic-B phase dendritic pattern into a planar (liquid crystal directors
parallel to the 2D growth plane) nematic phase is analyzed. The twofold surface ten-
sion anisotropy strength ε2 is determined from the comparison between experiments
and phase-field simulations. It plays a crucial role, whether the nematic director is
perpendicular or parallel to the growth direction. In case of the director being orienti-
ated perpendicular to growth direction, the molecule incorporation into the smectic-B
phase surface involves mainly twist, whereas in case of the director in growth direc-
tion the incorporation involves mainly splay and the energy of the kinetic changeover
is remarkable. Thermal diffusion is less effective perpendicular to the nematic direc-
tor, and growth happens faster in this direction [GCRPC+98]. This phenomenon is
also referred to as “inverted growth”.

Another interesting aspect to mention is rapid solidification [GFWH04], where the
undercoolings and the growth velocities are large. It corresponds to the case of arbi-
trarily large growth Péclet numbers Pc, which was treated theoretically for instance in
the work of Tanveer [Tan89]. In the experiments of Funke et al. [FPG+06], undercool-
ings of up to 150 K are realized. The experimenters manage to suppress nucleation,
because they use ultra-high purity metals confined without walls in a magnetic field.
The solidification front is tracked by a high-speed camera, because in samples sized
in the millimeter range, the growth velocities are in the range of m/s instead of µm/s
which is the ordinary case. This is directly caused by the large undercooling. Since
metals are optically non-transparent, the dendrite is visualized by a pyrometer. The
released latent heat causes a measurable contrast at the two-phase boundary. The
results agree quite well with microscopic solvability theory including kinetic effects.
However, the agreement with theory might even be improved, when convection is in-
cluded into the model, because there are flows caused by electromagnetic stirring in
the metal droplet, which can be modeled as a forced flow.

Finally, it is worthwhile noting, that a finite thermal resistance (Kapitza resistance)
at the two-phase boundary can influence dendritic growth. This was observed for
instance by Rolley et al. [RBG94], who carried out experiments using fluid 3He at
temperatures in the range 0.1 . . . 0.32 K. In this case, the two phases cannot be treated
symmetrically anymore, and the model equations have to be altered (see section 4.2).

1.3.2. Previous analytical treatment of dendritic growth in convective

systems

Achieving an analytical solution of the dendritic growth problem in a flow with as
much rigour as possible is a main purpose of this work. Because of the high com-
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plexity, there have been only few attempts to treat solidification in convective systems
theoretically without simulations. Schrage developed a simplified, three-dimensional
model for natural convection, e. g. buoyancy-driven flows, from first principles based
on Ivantsov’s theory [Sch99]. The convection is included via an additional energy
transport term in the Stefan condition. This term describes the heat transport away
from the interface on a certain length scale by fluid flow. The model reaches quite
formidable agreement of the flow Péclet number

Pf =
ρU

D
(1.36)

as a function of the undercooling with existing experimental work [GKB+95, RG91a,
LAG93, TG87, BFH89]. However, the model does not provide a value of the stability
parameter, since it is focused on the unstable solution of the problem without surface
tension, comparable to other articles [AM87, ABP88]. There is no direct access to the
flow velocity itself as a parameter. For parameter separation, Schrage takes the ap-
proximation σ ≈ 0.02 from the orbital space flight microgravity experiment of Koss
et al. [KBLG96]. Hence, the stability parameter is considered independent of any sys-
tem parameters. σ is indeed independent of ∆ at low undercoolings, but the effect of
convection on σ is of particular interest here.

Saville and Beaghton showed that a parabolic similarity solution exists in the case of
zero surface tension if a forced Oseen flow is taken into account [SB88]. They predict the
dependence of the growth Péclet number Pc on the flow for fixed undercoolings. Two-
dimensional calculations on growth mode selection using the Oseen flow approxima-
tion were presented by Bouissou and Pelcé [BP89]. Their publication received much
attention. It is based on a linear stability analysis and predicts

1

σ
=

8

β7/4

[
1 + b̃

(
ãUd0

β3/4ρV

) 11
14

]
(1.37)

for the stability parameter as a function of the forced flow velocity U defined in sec-
tion 1.1. ã is defined later in (3.39), and b̃ is a numerical constant. The authors compare
the result (1.37) with their own experiments [BPT89], where a linear increase of 1/σ as
a function of U is measured. It is then concluded, that the agreement is fairly good,
because a scale exponent of 11

14 is hard to distinguish from 1 regarding experimental
accuracy. But the deviations may also be a consequence of the linearizations made in
the calculations. In particular, the operator in the Fredholm-type solvability condition
uses only an approximate form of the curvature. The linearizations are a bad approx-
imation close to the singular point of the problem. Apart from that, the employed
form of the Oseen flow is not a good approximation in 2D [AG91]. More precise re-
sults would be worth some effort. A comparison to the results of Schaefer and Coriell
could be made, who found that very small ethanol concentrations in succinonitrile
are sufficient for an onset of thermosolutal convection and a change of the shape and
the stability properties of the interface [SC84]. Apart from that, especially the newer
convective experiments of Lee [LAG93] or Emsellem [ET95] should be compared to
theories.
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Sekerka et al. described the convective effects on dendritic growth using a stag-
nant film model [SCM94], which is also focused on a buoyancy-driven flow just as
the model of Schrage. Furthermore, there has been a work by Li and Beckermann on
analytical modeling of dendritic growth in thermosolutal melt convection driven by
chemical diffusion [LB02]. Other theoretical publications on dendritic growth in con-
vective systems are about simulations. For some newer results see for example [TA00,
TBKL01, LHL02, MFK06]. In this respect, the phase-field model of Karma and Rappel
has become a maintained standard [KR96]. It had first been applied to the flowless case
of dendritic growth in two and three dimensions [KR98]. The phase of the material is
represented by a field variable with values ranging from −1 in the liquid phase to +1

in the solid phase. It enters the defining equations and varies fast but not infinitely fast
in the two-phase boundary layer. Such phase field simulations are also a suitable tool
for examining directional solidification [ABMK97, GKPT10, KGDD10, DGK13].

1.3.3. Uncertainty about crystalline anisotropy strength measurements in

relevant materials

Any theory on dendritic growth needs material parameters as input to become com-
parable to experiments. A “relevant” material should behave metal-like regarding its
solidification properties, because predictions about metals are desirable due to their
wide application range. However, tracking the growing dendrite with a camera in an
experiment is a convenient method, and this is only possible, if the used substance is
optically transparent. Plastic crystals generally fulfill these two criteria. Two substances
of this type are for instance succinonitrile (body-centered cubic lattice) and pivalic acid
(face-centered cubic lattice).

The strength of the fourfold crystalline anisotropy of capillary effects β is usually
provided by experimental measurements. As mentioned in subsection 1.2.2, the sta-
bility parameter scales as σ ∼ β7/4. This rather strong dependence will lead to notable
deviations in the prediction of σ, if β is not measured accurately enough. In general
one has

γ̃(θ) =
γ(θ)

γ0
= 1 +

∞∑

k=1

ε2k cos (2kθ) (1.38)

for the anisotropic surface tension, where γ0 denotes the average over all angles θ.
In substances with cubic lattice structures the anisotropy is essentially fourfold, i.e.
the ε4-term constitutes the dominant contribution. Physically, this means that there
are several coldest points on the solid surface. This has a stabilizing effect as already
explained in section 1.1. From (1.38), one can calculate the anisotropy function a(θ):

a(θ) = γ̃(θ) + γ̃′′(θ) = 1− 15 ε4︸ ︷︷ ︸
=β

cos (4θ) . (1.39)

γ(θ) + γ′′(θ) is also referred to as surface stiffness. Hence, an error in ε4, which is
usually the measured quantity, is amplified by a factor of 15 when calculating β, even
though a relative error is unchanged. Experimental measurements of the surface en-
ergy γ and its anisotropy strength ε4 for polar liquids and many other substances can
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Table 1.1.: Reported values of the fourfold crystalline anisotropy stren-

gth of capillary effects ε4 and β = 15ε4 from different exper-

iments carried out with pivalic acid

ε4 β citation

0.006 0.09 [Dou91]

0.025 0.375 [MLC92]

0.050 0.75 [GS89]

be found in [NLT02, Cog84]. The most common measurement method (but not the
only one existing) is to determine the angular dependence of the distance between
the center and the surface of a crystal in its equilibrium shape. The parameters are
then calculated by adapting a Wulff construction [Hud92, Sek04]: The anisotropy co-
efficients ε2k are the amplitudes of the angular dependence function’s Fourier modes.
Yet, different values of ε4 for pivalic acid have been measured (see table 1.1). In the
work of Dougherty [Dou91], the most details about the experimental procedure were
given, and the growth samples were equilibrated for the longest time of all three re-
ports listed in the table. This value yields the best agreement between the theory pre-
sented here and experiments. In the work of Muschol et al. [MSL90], a remarkable
deviation between the measured value of σ and the value predicted by microscopic
solvability theory is stated, especially for pivalic acid. But in the publication, the value
predicted by microscopic solvability theory is calculated using their measured value
of ε4 according to the above mentioned scaling relation. The authors themselves state
that the measured value of ε4 is quite large and unreliable. In fact, the crystals were not
measured at constant size and hence, the observed growth shapes were not necessarily
identical to equilibrium shapes. The relatively low experimental values of the stability
parameter together with the relatively high anisotropies from the last two lines in table
1.1 suggest that the ordinary microscopic solvability theory for calculating σ from ε4
might not work for pivalic acid. In fact, pivalic acid crystals grow strongly anisotropic
and with a tendency to facets. This indicates however, that microscopic solvability
theory could still yield accurate results, if kinetic effects, which are assumed to play an
important role in pivalic acid, were taken into account. This is investigated in section
4.5 of this thesis.
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in nonlinear systems

In this chapter, the solution concepts and methods used in this work are introduced.
They are shown in a basal manner, and simple but yet very general examples are used
for illustration. The schemes presented in this chapter are used extensively in the
succeeding chapters, and they allow to conveniently shorten the exhibited calculus at
most points.

2.1. Conformal parabolic coordinates and

non-dimensionalization

From here on, most calculations will be carried out in a coordinate system adapted to
the problem. We use conformal parabolic coordinates in the xy-plane:

x = η ξ ,

y =
1

2

(
η2 − ξ2

)
.

(2.1)

With ξ ∈ [−∞,∞] and η ∈ [0,∞], the whole xy-plane is covered. A line of constant η
is a concave parabola, a point on which is specified by ξ. The boundary conditions are
easy to handle in these coordinates, and describing the Ivantsov isotherms is almost
trivial. Ananth and Gill first used these coordinates [AG91] to construct a similarity
solution for the temperature field in convective dendritic growth. The coordinates
(2.1) are chosen, so that they have a locally orthogonal basis. This is not necessarily
mandatory, but it leaves us with much handier expressions. The coordinate set is
called “conformal”, because it fulfills |∂~r/∂ξ| = |∂~r/∂η|. The normalized basis vectors
are:

~ex =
1√

ξ2 + η2
(η~eξ + ξ~eη) ~ey =

1√
ξ2 + η2

(η~eη − ξ~eξ) (2.2a)

~eξ =
1√

ξ2 + η2
(η~ex − ξ~ey) ~eη =

1√
ξ2 + η2

(ξ~ex + η~ey) . (2.2b)

We find the nabla operator and the Laplace operator:

~∇ =
1√

ξ2 + η2

[
~eξ
∂

∂ξ
+ ~eη

∂

∂η

]
, (2.3a)

∆ =
1

ξ2 + η2

[
∂2

∂ξ2
+

∂2

∂η2

]
. (2.3b)
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Figure 2.1.: Conformal parabolic coordinates, η ∈ [0,∞] specifies a

concave parabola, ξ ∈ [−∞,∞] specifies a point on the

parabola

Let ηs(ξ)− η = 0 describe the interface. The position vector at the interface is

~r = ηsξ~ex +
1

2

(
η2
s − ξ2

)
~ey

and the differential line element is

ds =
√

dx2 + dy2 =
√

(η2
s + ξ2) (1 + η′2s ) dξ . (2.4)

From the condition
0 =

d~r

ds
· ~n = ~t · ~n

we derive the unit tangent vector and the unit normal vector to the interface

~t =
(ηs + ξη′s)~ex + (ηsη

′
s − ξ)~ey√

(η2
s + ξ2) (1 + η′2s )

=
~eξ + η′s~eη√

1 + η′2s
(2.5a)

~n =
(ηs + ξη′s)~ey − (ηsη

′
s − ξ)~ex√

(η2
s + ξ2) (1 + η′2s )

=
~eη − η′s~eξ√

1 + η′2s
(2.5b)

where ~n is chosen to point into the liquid. The curvature is

κ = −~n · d2~r

ds2
= − 1√

ξ2 + η2
s

[
η′′s

(1 + η′2s )
3
2

+
η′sξ − ηs

(ξ2 + η2
s)
√

1 + η′2s

]
. (2.6)
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κ, as noted here, is positive and takes its maximum value at ξ = 0. We will consider a
twofold or a fourfold crystalline anisotropy:

a2(θ) = 1− β2

2
cos(2θ) = 1 +

β2

2

(
1− 2 cos2 θ

)
(2.7a)

a4(θ) = 1− β4 cos(4θ) = 1− β4

(
1− 8 cos2 θ sin2 θ

)
(2.7b)

where

cos θ = ~n · ~ey =
[ξηs]

′
√

(ξ2 + η2
s)(1 + η′2s )

, (2.8a)

sin θ = ~n · ~ex =
ξ − ηsη′s√

(ξ2 + η2
s)(1 + η′2s )

. (2.8b)

Using this, we find the anisotropy functions expressed in parabolic coordinates:

a2(θ) = 1− β2

2

[ξηs]
′2 − (ηsη

′
s − ξ)2

[ξηs]
′2 + (ηsη′s − ξ)2 , (2.9a)

a4(θ) = 1− β4

[
1− 8

(ξ − ηsη′s)2 (ηs + ξη′s)
2

(ξ2 + η2
s)

2 (1 + η′2s )2

]
. (2.9b)

We define the stream function ψ by

~w = ~∇× (ψ~ez) (2.10)

yielding

~w =
1

ξ2 + η2

∣∣∣∣∣∣∣

√
ξ2 + η2~eξ

√
ξ2 + η2~eη ~ez

∂
∂ξ

∂
∂η

∂
∂z

0 0 ψ

∣∣∣∣∣∣∣
=

1√
ξ2 + η2

(~eξψη − ~eηψξ)

in parabolic coordinates. By this choice, condition (1.11) (div ~w = 0) is automatically
fulfilled. I.e. ~w is going to describe an incompressible flow for any function ψ(ξ, η).
This simplification works in 2D, but not necessarily in 3D.

As noted at the end of section 1.1 in the preceding chapter, we are generally inter-
ested in steady-state solutions with stationary growth velocity V . Thus, we switch to
a moving frame of reference,

~r → ~r + V t~ey

~w → ~w + V ~ey

resulting in
∂

∂t
→ −V (~ey · ~∇) = V

(
ξ
∂

∂ξ
− η ∂

∂η

)
.

In addition to that, we apply some scalings, rendering the model equations dimen-
sionless:

• We measure all lengths in units of the dendrite tip curvature radius ρ:

x, y → ρx, ρy, κ→ κ

ρ
.
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• The temperature is made dimensionless and measured in units of the growth
Péclet number Pc = ρV

D :

T → TM + Pc
L

c
T .

• The stream function is measured in units of the diffusion coefficient:

ψ → Dψ, ~w → D

ρ
~w .

• The time is rescaled:

t→ ρ2

D
t .

The resulting dimensionless model equations will be given at the beginning of each
section, adapted to the respective type of problem.

2.2. Demonstration of the analytical part of the method by

application to the symmetric model

The construction of a system analogue to (1.31)-(1.33) selecting the growth mode in
the case of nonlinear field equations is not possible using Green’s functions. The
careful application of an old approximative scheme à la Zauderer [Zau78] can lead to
success: The asymptotic decomposition of partial differential equations on a slowly
varying scale can also be applied to nonlinear problems. In combination with asymp-
totic matching in the complex plane, it works where classical microscopic solvability
theory cannot work. This particular combination of tools was introduced by Thomas
Fischaleck (now named T. Grillenbeck) [FK08].

In this section, the scheme is demonstrated by application to the flowless dendritic
growth problem, which was already treated in section 1.2. This will not provide any
new results, but the reader may get an idea of the method and its power, because the
results presented in section 1.2 can be derived with much less analytical effort.

Using the scalings from the preceding section, the temperature diffusion equation
in the moving frame of reference is

Tξξ + Tηη + Pc(ηTη − ξTξ) = 0 (2.11)

in the liquid and in the solid domains in conformal parabolic coordinates. The Ivant-
sov parabola now reads ηs = 1. The temperature field and the interface position are
expanded about the Ivantsov solution:

T = T Iv + T 1 + . . . (2.12a)

ηs = 1 + h(ξ) + . . . (2.12b)

The interface is shifted by the small term h(ξ) and is no longer perfectly parabolic. The
shape function h(ξ) is to be determined. Since (2.11) is linear, it also applies for T 1 and
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the superscript 1 is dropped right away. Using the definitions

~ϑ =

(
Tξ
Tη

)
(2.13)

A =

(
0 1

−1 0

)
B0 =

(
−Pc ξ Pc η

0 0

)
(2.14)

the field equation is written as a first order system. This step is useful before continu-
ing with the asymptotic decomposition procedure:

~ϑξ +A~ϑη +B0
~ϑ = 0 . (2.15)

The variable ~ϑ shall be written as a linear combination of eigenvectors of A. A has the
eigenvalues i and −i with eigenvectors

~r1 =

(
−i

1

)
and ~r2 =

(
i

1

)
(2.16)

respectively. Now we write the asymptotic decomposition

~ϑ = M~r1 +N~r2 (2.17)

of the temperature field. The coefficients M and N have to be determined as spatial
functions. In the original Zauderer method, one of the two terms in the linear combi-
nation (2.17) is multiplied by a factor ε in order to emphasize that the contribution is
small compared to the other one [Zau78]. A priori we do not know, which term that
is. It shall be investigated here. (2.17) is inserted into (2.15):

(Mξ + iMη)~r1 + (Nξ − iNη)~r2 +B0M~r1 +B0N~r2 = 0 . (2.18)

Again, this equation applies in both phases. The next step is to project (2.18) onto the
invariant subspaces of A. We search for projection operators defined by Pi ~rj = δij~ri
(no summation convention):

P1 =
1

2

(
1 −i

i 1

)
, P2 =

1

2

(
1 i

−i 1

)
. (2.19)

Applying P1, P2 to (2.18) we find

Mξ + iMη =
Pc
2

(ξ − iη)M − Pc
2

(ξ + iη)N , (2.20a)

Nξ − iNη = −Pc
2

(ξ − iη)M +
Pc
2

(ξ + iη)N . (2.20b)

Here, the formulas

P1B0~r1 = −Pc
2

(ξ − iη)~r1 P1B0~r2 =
Pc
2

(ξ + iη)~r1

P2B0~r1 =
Pc
2

(ξ − iη)~r2 P2B0~r2 = −Pc
2

(ξ + iη)~r2

(2.21)
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were used. (2.20a) and (2.20b) simplify in the limit Pc → 0:

Mξ + iMη = 0 , (2.22a)

Nξ − iNη = 0 . (2.22b)

To find out, which one of the functions M and N is small compared to the other one,
the Gibbs-Thomson condition is differentiated along the interface:

dT s

dξ
= T sξ + h′T sη = −1

2
σ[κa(θ)]′ . (2.23)

Regaring the definition (2.13) of ~ϑ and its decomposition (2.17), the derivatives of T s

are

T sξ = i (N s −M s) , T sη = N s +M s . (2.24)

and this is inserted into (2.23):

(1 + ih′)M s − (1− ih′)N s = − i

2
σ[κa(θ)]′ . (2.25)

The curvature from (2.6) on the right hand side of (2.25) diverges at ξ = ±i for h � 1.
We wish to analyze (2.25) in the vicinity of the singularity at ξ = −i, and we follow
Fischaleck [Fis08]. The general solutions of (2.22a) and (2.22b) are of the form

M = M
(
ξ + i(η − 1)

)
, N = N

(
ξ − i(η − 1)

)
. (2.26)

Consider the derivatives (2.24) with the special argument forms from (2.26) at (ξ, η) =

(0, 0):

T sξ = i
(
N s(i)−M s(−i)

)
, T sη = N s(i) +M s(−i) . (2.27)

These derivatives cannot diverge here, because (ξ, η) = (0, 0) is just an ordinary point
in the solid. Consequently, M s(−i) and N s(i) are finite. Thus, when writing (2.25) at
ξ = −i, the singularity can only be compensated by N s(−i). We conclude N s � M s

in the vicinity of ξ = −i, and an analogue argumentation leads to N l � M l at this
location. The perturbative scheme arising from Zauderer decomposition corresponds
to an expansion about the analytic continuation of the Ivantsov solution in the vicinity
of the singularity (at ξ = −i in this work).

Note, that the same statement can be made about the temperature itself instead of
its derivatives: For Pc → 0, the diffusion equation (2.11) reads

Tξξ + Tηη = 0. (2.28)

It is of Laplace type. Consider the two equations

(∂ξ + i∂η)Ta = 0 , (2.29a)

(∂ξ − i∂η)Tb = 0 . (2.29b)

Obviously, solutions of (2.29a) have the form Ta = Ta
(
ξ + i(η − 1)

)
, and solutions of

(2.29b) have the form Tb =
(
ξ − i(η − 1)

)
. Because of ∂ξξ + ∂ηη = (∂ξ + i∂η) (∂ξ − i∂η),
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any solutions of (2.29a) and (2.29b) are also solutions of equation (2.28), and a super-
position of Ta and Tb is a general solution for the temperature field:

T l(ξ, η) = T la
(
ξ + i(η − 1)

)
+ T lb

(
ξ − i(η − 1)

)
, (2.30a)

T s(ξ, η) = T sa
(
ξ + i(η − 1)

)
+ T sb

(
ξ − i(η − 1)

)
. (2.30b)

As explained above, T lb and T sa may be neglected close to ξ = −i. Then T l is a solution
of (2.29a) and T s is a solution of (2.29b):

iT lξ = T lη , (2.31a)

−iT sξ = T sη . (2.31b)

After these considerations, the decomposition (2.17) can be rewritten in an appro-
priate manner:

~ϑ = M~r1 + εN~r2 , (2.32a)
~ϑs = N s~r2 . (2.32b)

(2.32a) applies in the liquid. The superscript l is omitted from now on. Since M s is ex-
pected to be much smaller thanN s in the vicinity of ξ = −i, theM s-term was neglected
completely in (2.32b). We could have proceeded the same way with N in (2.32a). That
would lead to the same result for the equation determining the shape correction h(ξ).
Instead, the N -term is kept because in the next chapter, the field equation in the liquid
will not be a Laplace equation anymore due to convection terms. Then, N will be cru-
cial for the calculation of first order flow contributions, and it shall be demonstrated
here, how to apply the method with three decomposition coefficients instead of only
two. However, N is multiplied by a factor ε to indicate that it is small compared to
M . In case of equation (2.28), the first order Zauderer scheme leads to an exact solu-
tion. However, if the field equation is not a Laplace equation, the neglect of M s or N
is not possible in general, and the presented scheme will only provide an approximate
solution.

We assume the solution to be slowly varying with respect to (ξ, η). Therefore, the
scale transformation

ξ, η → εξ, εη (2.33)

is made. It emphasizes the principal part of the field equations.1 Inserting (2.32a)-
(2.32b) into the field equation (2.15) at Pc = 0 (⇒ B0 = 0), we get

(Mξ + iMη)~r1 + ε (Nξ − iNη)~r2 = 0 in the liquid (2.34a)
(
N s
ξ − iN s

η

)
~r2 = 0 in the solid. (2.34b)

One has to be careful about which terms to neglect, because after returning to the
original scale, a factor ε will be reabsorbed into any coefficients linear in ξ or η. Con-
tributions from a desired effect such as convection must be kept at least in their lowest
occuring order. The intention is to determine the coefficients M , N and N s as the

1The small parameter ε does not need to be chosen arbitrarily. Within the theory it is σ2/7 � 1.
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dependent functions. After the projection part of the method and returning to the
original scale, we find (2.22a)-(2.22b) in the liquid, supplemented by

N s
ξ − iN s

η = 0 (2.35)

in the solid. Note, that equations (2.22a)-(2.22b) have the same mathematical structure
as (2.29a)-(2.29b). These equations can be solved for M , N and N s subsequently. The
boundary conditions of the problem have to be written in their dimensionless form in
parabolic coordinates and they have to be decomposed, too. This has already been car-
ried out in (2.25) exemplarily for the Gibbs-Thomson condition. An explicit exhibition
of those calculations is postponed to the next chapter. Here the solution

N =
i

2

[
σ[κ(ξ)a(θ)]′

1− ih′(ξ)
− [(1− iξ)h(ξ)]′

1− ih′(ξ)

]
(2.36)

is just written down where the interface conditions have already been applied. In
(2.36), ξ has to be considered as a complex variable. For the far field boundary condi-
tion (1.10a) to hold, we must have N → 0 as η →∞, hence

σκa(θ) = (1− iξ)h(ξ) . (2.37)

This equation can also be derived from a parabolic-coordinate version of equation
(1.31) using the residues method. Thus, the results from [BM91] have been repro-
duced by means of asymptotic decomposition in just a few simple steps without using
Green’s functions, Bessel functions or residuals. One could now continue with the
asymptotic matching procedure. (2.37) is valid close to the singular point located at
ξ = −i. If we had wished to expand in the vicinity of the other singularity at ξ = i, we
would have had to use a different ansatz instead of (2.32a)-(2.32b). The results would
have been almost the same. Only the minus sign in the brackets on the right hand side
of (2.37) would be replaced by a plus sign. At ξ = i, one finds nothing but the complex
conjugate problem, which does not contain additional information.

Zauderer’s decomposition scheme seems to have passed largely into oblivion, al-
though it is a powerful tool. For instance, it should also be a suitable approach to the
complex Ginzburg-Landau model of superconductivity, which can be reduced to a free
boundary problem [Cha95].

2.3. Numerical treatment of the local equation

The local equations in the sense of (1.33) appearing in this work have the form

κ̃a(θ) = φt+ P

t∫ t′∫

∞

l̃
(
φ(t′), φ̇(t′), φ(t′′), φ̇(t′′), t′, t′′

)
dt′′dt′ , (2.38)

and they are valid on an asymptotically small disk around the chosen singularity in
the complex plane. In some cases, the right hand side is altered. The equations have
to be treated numerically to find the eigenvalue σ. Here, t is the independent complex
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variable, and φ(t) is the dependent function solving the integro-differential equation
(2.38). φ is the local form of the shape correction function h after stretching transfor-
mation close to the singularity. κ̃ and a(θ) have to be written in terms of φ and t. P is a
dimensionless number to be specified later. It can be considered as a given parameter.

We wish to obtain the function σ(P ) numerically from equation (2.38). This requires
some effort, since we have to solve a second order integro-differential equation in the
complex plane. Most of the common algorithms for ordinary differential equations
require a real first order system. For this purpose, we write

x1(t) = φ(t) ,

x2(t) = φ̇(t) = ẋ1(t) .

Furthermore, we write the integral in (2.38) as an additional dependent function:

x3(t) =

t∫ t′∫

∞

l̃
(
φ(t′), φ̇(t′), φ(t′′), φ̇(t′′), t′, t′′

)
dt′′dt′ .

In this manner, we avoid differentiating, which would leave us with a more com-
plicated third order equation. The next step is to rearrange (2.38) until ẋ2(t) = φ̈(t)

appears solitary on the left hand side. Then, the right hand side is named f ({xi}, t).
Introducing the abbreviations

p1 = x1t+ Px3 p2 = t+ x1

p3 = 1− x2 p4 = 1 + x2

(2.39)

turns out to reasonably simplify things a bit in general. Now the first order system can
be written:

ẋ1 = x2

ẋ2 = f ({xi}, t)
ẋ3 = g ({xi}, t) .

(2.40)

The functions f ({xi}, t) and g ({xi}, t) are given by

f ({xi}, t) = φ̈ (2.41a)

g ({xi}, t) = −
∞∫

t

l̃
(
φ(t), φ̇(t), φ(t′), φ̇(t′), t, t′

)
dt′ (2.41b)

respectively. If we differentiated, the function f ({xi}, t) would contain many more
terms.

Keep in mind that we deal with an eigenvalue problem. For given P , there are solu-
tions only for isolated values of σ. The only stable solution corresponds to the largest
value of σ or to the highest growth velocity V . The strategy to find σ is adapted from
Tanveer [Tan89]. Figure (2.2) visualizes the integration scheme. First, the system of
equations (2.40) is solved on a line with length L1 parallel to the imaginary axis posi-
tioned symmetrically with respect to the real axis, i.e. the independent variable has a
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Figure 2.2.: Numerical cross-linked integration scheme for local equa-

tions in the complex plane adapted from Tanveer [Tan89]

constant non-zero real part t0 ∈ R. The boundary conditions at t = t0±iL1
2 follow from

asymptotic analysis of (2.38) and from symmetry requirements. It is explained in more
detail at the end of this section. Once a solution on this line parallel to the imaginary
axis is found, the values of x1 and x3 at t0 are stored. Subsequently, the problem is
solved on the real axis on a line with length L2 starting at t0 . Here, the stored values
of x1 and x3 are used as lower boundary conditions, since we look for analytic solu-
tions, which have to be continuous in all derivatives. The upper boundary condition
at t = t0 + L2 is obtained by asymptotic analysis again. Then the difference between
x2 at the crossing point of both lines is calculated and driven to zero by an external
root-finder subroutine, which may vary σ as independent variable. The implementa-
tion ensures that the solution fulfills the selection criterion once σ becomes equal to
the eigenvalue. For the results presented in this work, L1 = 20, L2 = 10 and t0 = 2.0

were used, which turned out to be sufficiently large.
Several algorithms have been tried to solve the equation. A shooting method did not

succeed, neither using 6th order Runge-Kutta integration nor using a Kaps-Rentrop-like
subroutine for stiff equations. The commercial ODE integrators of MATLAB also failed.
Finally, a solution was found using the powerful relaxation method. So to speak, we
followed William H. Press’ famous directive “First shoot, then relax!” from the book
“Numerical Recipies” [Pre02], which has become a standard in numerical computation.
The relaxation method determines the solution by starting with an initial guess and
improving it, iteratively. As the iterations improve the solution, the result is said to
relax to the true solution [Pre02]. In preparation of the relaxation procedure, the inte-
gration interval is discretized, and at each mesh point, (2.40) turns into a set of finite
difference equations. We must supply an initial guess for the solution, which is taken
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from asymptotic analysis of equation (2.38). The guess is “relaxed” towards the so-
lution step by step at each discretization point until a sophisticated error criterion is
fulfilled.

The integral g ({xk}, t) constitutes a notable problem. Methods dealing with integro-
differential equations are rare and usually quite advanced [Pre02]. We need to evaluate
the integral at each mesh point during each relaxation iteration. How is that possible?
Fortunately, the integration boundaries of g are compatible with the relaxation inter-
val, and the relaxation method provides a matrix containing the current versions of x1

and x2 at each iteration step. From this, g is calculated by the trapezoidal rule .
In the following, some implementation details parallel to the imaginary axis are

given as an example for the reader to get an idea of the steps to be taken. We write

x1,k =
1

2

(
y1,k + y1,k−1

)
+

i

2

(
y2,k + y2,k−1

)

x2,k =
1

2

(
y3,k + y3,k−1

)
+

i

2

(
y4,k + y4,k−1

)

x3,k =
1

2

(
y5,k + y5,k−1

)
+

i

2

(
y6,k + y6,k−1

)

with the real dependent functions yi,k at the k-th discretization point. Here, their
means 1

2(yi,k + yi,k−1) between two subsequent discretization points were used, so
that the following difference equations can be evaluated using information from both
mesh points at k, k − 1 [Pre02]. We have to pay attention to the Cauchy-Riemann dif-
ferential equations. The six real finite difference equations for the real and imaginary
parts of the xi,k at the k-th discretization point in the “language” of the subroutine are

E1,k = 0 = y1,k − y1,k−1 + h/2
(
y4,k + y4,k−1

)

E2,k = 0 = y2,k − y2,k−1 − h/2
(
y3,k + y3,k−1

)
}

Cauchy-Riemann

E3,k = 0 = y3,k − y3,k−1 + h Im
(
f ({xi,k} , t)

)

E4,k = 0 = y4,k − y4,k−1 − hRe
(
f ({xi,k} , t)

)

E5,k = 0 = y5,k − y5,k−1 + h Im
(
g ({xi,k} , t)

)

E6,k = 0 = y6,k − y6,k−1 − hRe
(
g ({xi,k} , t)

)
.

The Ei,k have to vanish. For implementation, one has to calculate the 72 matrix ele-
ments

Si,j =
∂Ei,k
∂yj,k−1

(2.42a)

Si,j+6 =
∂Ei,k
∂yj,k

(2.42b)

with i, j ∈ [1, 6]. One must thoroughly distinguish between the calculation of the
derivative with respect to a real part and an imaginary part. For example, for x1 the
complex derivative forms are

∂f

∂x1,k
= 2

∂Re(f)

∂y1,k
+ 2i

∂Im(f)

∂y1,k
= 2

∂Im(f)

∂y2,k
− 2i

∂Re(f)

∂y2,k
.
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The factors 2 on the right hand side result from the mean between two adjacent mesh
points. From this, one can see that the derivative of the real or imaginary part of a
function equals the real or imaginary part of the derivative respectively. For x1,k this
means

∂Re (f)

∂y1,k
=

1

2
Re

(
∂f

∂x1,k

)
∂Re (f)

∂y2,k
= −1

2
Im

(
∂f

∂x1,k

)

∂Im (f)

∂y1,k
=

1

2
Im

(
∂f

∂x1,k

)
∂Im (f)

∂y2,k
=

1

2
Re

(
∂f

∂x1,k

)

and analogue formulas are valid for x2,3. The formulas are used to calculate the Si,j ,
Si,j+6. E. g., for S4,1 and S4,1 one finds

S4,1 =
∂E4,k

∂y1,k−1
= −h ∂Re(f)

∂y1,k−1
= −h

2
Re

(
∂f

∂x1,k

)
,

S4,2 =
∂E4,k

∂y2,k−1
= −h ∂Re(f)

∂y2,k−1
=

h

2
Im

(
∂f

∂x1,k

)
.

The advantage of these formulas is that the functions f({xi}, t), g({xi}, t) and their
derivatives do not need to be manually split up into their real and imaginary parts.
Instead, this task is executed by the program. It allows for shorter expressions, and
even if complex variables are used, f and g as well as their corresponding derivatives
may be complicated enough. They are most conveniently implemented in terms of the
pi from (2.39) with i = 1 . . . 4, but they are not given explicitly here.

Since the integral function g ({xi}, t) is calculated using the trapezoidal rule, we
must make some further considerations. Let the number of discretization points be
Mn with n = 1, 2 indicating one of the two lines of integration as depicted in figure
2.2. We write the integrand of g ({xi}, t) as

l̃ ({xi,k}, {xi,j}, tk, tj) = l̃j,k (2.43)

with i = 1, 2, j = 1 . . .Mn, j ≥ k and k = 1 . . .Mn being the number of the current
discretization point. The x’s now have two indices: one for the number of the depen-
dent variable (first index i) and one for the discretization point (second index k for
dependence on t and second index j for dependence on t′). Then we may calculate gk
at the k-th discretization point in terms of the l̃ using the trapezoidal rule:

gk =
1

2

(
l̃k,k + l̃Mn,k

)
+

Mn−1∑

j=k+1

l̃j,k . (2.44)

When differentiating for the calculation of Si,j , Si,j+6, we must keep in mind that we
differentiate with respect to the dependent variables xi,k at the current discretization
point. At j = k one has to differentiate l̃k,k with respect to any of the xi(t), xi(t′), i.e.
with respect to the first two arguments of l̃ from equation (2.43). At j 6= k one has to
differentiate l̃j,k only with respect to xi(t), i.e. only with respect to the first argument of
l̃ from equation (2.43). Consequently, these derivatives are evaluated in two different
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subroutines, one for j = k and one for j 6= k,

∂gk
∂x1,k

=
1

2

(
∂l̃k,k
∂x1,k

+
∂l̃Mn,k

∂x1,k

)
+

Mn−1∑

j=k+1

∂l̃j,k
∂x1,k

(2.45a)

∂gk
∂x2,k

=
1

2

(
∂l̃k,k
∂x2,k

+
∂l̃Mn,k

∂x2,k

)
+

Mn−1∑

j=k+1

∂l̃j,k
∂x2,k

(2.45b)

∂gk
∂x3,k

= 0 . (2.45c)

The boundary conditions are gained by asymptotic analysis of (2.38) for t→∞. On
the first line parallel to the imaginary axis, they are applied at the lower boundary
of the integration interval (Im(t) → −∞). At the upper boundary (Im(t) → ∞), we
demand symmetry of the real part of the solution and antisymmetry of the imaginary
part of the solution. These symmetries are not restricted to the boundaries, but they
must be a feature of the solution as a whole on the first line. The function g ({xk}, t) has
the same symmetry properties as the xi but it is not necessarily continuous at Im(t)→
0±. The reason for the symmetry properties is the following: If one starts with a real
initial guess on the second line on the real axis, then φ as well as t are real. In that case,
equation (2.38) does not contain any complex coefficients. As a result, the solution on
the real axis will remain real at each relaxation iteration, and the whole problem is
implemented as a real problem on the real axis. At the upper integration boundary
(t→∞) on the second line, we use asymptotic analysis boundary conditions again.

If P is proportional to the flow Péclet number Pf = ρU/D, then it can be chosen
freely but consistently with the Ivantsov condition. The corresponding values of Pc
are obtained by numerical solution of the Ivantsov condition for fixed undercooling
∆ using the false position method. The integral in the Ivantsov condition was treated
numerically using gaussian quadrature. This yields the full dataset (σ, Pc, Pf ) equiva-
lent to (ρ, V, U) for a certain material. Figure 3.2 in section 3.1.5 shows a representative
example of the solution φ(t) parallel to the imaginary axis.

Code was written in C using “Numerical recipes in C” [Pre02] and compiled with
the open source GNU C compiler (gcc). Further details and a code demonstration are
given in appendix B. For the convective systems, the program has been developed
further into an integrated tool, including a command line interface, a detailed and
extensive documentation as well as an installation script for the program on Linux-
based systems.
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3. Convective problems

3.1. Potential flow

This section exhibits selection of the operating state of a dendrite growing in a poten-
tial flow. The results of this section have been published in [vKGK13]. The potential
flow approximation describes the idealized limit of a frictionless flow. It is applicable
in superfluid helium. Thus, its range of application is very limited. However, the ap-
proximation is a good point to start with, because it provides a very simple form of
the flow velocity field. It is of particular interest, how the forced flow velocity U will
affect parameter selection. The problem had already been considered by Fischaleck et
al. [Fis08]. Here, the approach is extended by omitting several unnecessary lineariza-
tions. We use the model

field equations:

T lξξ + T lηη = ψηT
l
ξ − ψξT lη in the liquid

T sξξ + T sηη = Pc
(
ξT sξ − ηT sη

)
in the solid

ψξξ + ψηη = 0 potential flow

interface conditions:

T s = T l continuity

T s = −1

2
σκa(θ) Gibbs-Thomson

[ξηs]
′ = −η′s

(
T sξ − T lξ

)
+ T sη − T lη Stefan condition

ψξ + η′sψη = Pc
(
ηs + η′sξ

)
mass conservation

far field boundary conditions:

lim
η→∞

T l = −∆

Pc
in the liquid

lim
|ξ|→∞

T s = 0 in the solid (η < 1)

lim
η→∞

ψη = ξ (Pc + Pf ) flow

(3.1a)

(3.1b)

(3.1c)

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3a)

(3.3b)

(3.3c)

introduced in section 1.1. We are interested in solutions growing at a steady-state ve-
locity V ~ey. The equations are written here non-dimensionally in parabolic coordinates
in a moving frame of reference attached to the interface. D (contained in Pc and Pf )
is assumed to be equal in both the liquid and the solid phase. Again, ηs represents
the interface position. We use the stream function ψ defined in subsection 2.1, the
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dimensionless undercooling ∆ defined in equation (1.18) and the flow Péclet num-
ber Pf = ρU/D as defined in equation (1.36). The model (3.1a)-(3.3c) is derived from
(1.8a)-(1.14) in appendix A.1.1 using the non-dimensionalizations and the parabolic
coordinate formulas from section 2.1. The diffusion-advection equation (1.8b) in the
liquid and the Navier-Stokes equation (1.12) are invariant under Galilean transforma-
tion. The only field equation which is different from its form in the laboratory frame is
(3.1b). The stream function does not appear in the equation describing heat diffusion
in the solid. Equation (3.1c) is equivalent to the requirement 0 = ~∇× ~w = −∆ψ~ez of a
potential flow.

From a mathematical point of view, the Dirichlet boundary conditions (3.2a)-(3.2b),
(3.3a)-(3.3b) for the temperature and the Neumann boundary conditions (3.2d), (3.3c) for
the stream function are sufficient to solve the problem for T l,s and ψ. In addition to
that, the Stefan condition (3.2c) is needed, because ηs has to be calculated. Equation
(3.2d) is the only interface condition applied to the stream function because in the po-
tential flow case, there is no tangential no-slip condition due to the lack of friction in a
non-viscous system. Together with (3.3c), it provides enough information to prescribe
ψ, because it is a scalar function. ψ is determined up to an additive constant, because
only its derivative appears in ~w.

3.1.1. Ivantsov solution for dendritic growth in a potential flow

In the case without surface tension, we search for a temperature of the form T = T (η),
i.e. the isotherms will be parabolas. Equation (3.1a) becomes, dropping the superscript
l,

− ψξTη = Tηη (3.4)

and we conclude ψ = ξf(η), because ψξ cannot depend on ξ regarding equation (3.4).
Equation (3.1c) now reads

ξf ′′(η) = 0 ⇒ f ′′(η) = 0 ⇒ f(η) = c1η + c2.

From conditions (3.2d) and (3.3c) we find c1 = Pc + Pf and c2 = −Pf and finally

ψIv = ξ
(
Pcη + Pf (η − 1)

)
. (3.5)

The superscript “Iv” indicates the Ivantsov-like solution. Without the forced flow (rep-
resented by Pf ), the calculated stream funcion would even fulfill the tangential no-slip
interface condition ~w · ~t = −V ~n · ~ex. Figure 3.1 is a cartesian field vector plot of the
flow velocity ~w described by (3.5) (in combination with the definition (2.10)) in the
vicinity of the growing solid. For y → ∞, the field vectors tend to align vertically
as expected regarding condition (1.14). The flow velocity is almost tangential at the
interface because ~w · ~n ∝ Pc � 1.

The temperature field

T Iv(η) = −e
Pc
2

η∫

1

e−
Pc
2
ω2−

Pf
2

(ω−1)2dω (3.6)
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Figure 3.1.: Field vectors of the potential flow velocity ~w described by

equation (3.5) around the growing dendrite in a cartesian

frame for ∆ = 0.01, Pf = 0.5, Pc = 0.00571; the Ivantsov

condition (3.7) is fulfilled for this parameter set.

is a solution to equation (3.4). It fulfills the interface conditions (3.2b) at zero surface
tension (σ = 0) and (3.2a), because we have T s,Iv ≡ 0 in the solid. We used the Stefan
condition (3.2c) at η = 1 to determine the constant of integration:

1 = −const.× e−
Pc
2 .

The Ivantsov-condition for the isothermal interface reads:

∆

Pc
= −T∞ =

∞∫

1

e−
Pc
2

(ω2−1)−
Pf
2

(ω−1)2dω . (3.7)

with the dimensionless undercooling ∆. Yet, condition (3.7) does not select a growth
velocity, but it can be used to calculate Pc for given values of the undercooling ∆ and
Pf [Iva47].

The equations, to which Zauderer’s decomposition scheme will be applied, are set
up below. We are interested in the deviation from the Ivantsov-like solution. Equations
(2.12a) and (2.12b) are supplemented by

ψ → ψIv + ψ1 (3.8)

with ψIv given in (3.5) and the superscript “1” is dropped right away in the calculations
below for compactness. Equations (3.1a), (3.1b) become

T lξξ + T lηη − (ψη + ξPf )T lξ +
(
ψξ + Pf (η − 1)

)
T lη = ψξ e−

Pf
2

(η−1)2 in the liquid (3.9a)

T sξξ + T sηη = 0 in the solid. (3.9b)
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Here, we have assumed the limit of small growth Péclet number (Pc → 0) to apply.
This is the relevant case in most experiments. It is a good approximation, if the ex-
act solution converges continuously to the solution presented here for Pc → 0. The
interface conditions become

T s = T l − h continuity (3.10a)

T s = −1

2
σκa(θ) Gibbs-Thomson (3.10b)

[ξh]′ =

(
∂

∂η
− h′ ∂

∂ξ

)(
T s − T l

)
Stefan condition (3.10c)

T → 0 far field. (3.10d)

For derivation of the boundary conditions (3.10a)-(3.10c), we expanded T Iv
∣∣
η=1+h

up
to the first order in h and T was just inserted at η = 1 into (3.2a)-(3.2c), because it is
assumed to be a small correction and Tη h is already O(h2),

T + T Iv
∣∣∣∣
ηs=1+h(ξ)

≈ T (η = 1) +
�
��

�
��*

=0

T Iv(η = 1) +

=−1︷ ︸︸ ︷
T Iv
η (η = 1)h(ξ) . (3.11)

In this manner, the two-phase boundary conditions can be conveniently evaluated at
η = 1, although the interface has shifted to ηs = 1 + h(ξ). It is correct up to the
first order in h. For derivation of the expanded boundary conditions for the stream
function, we take the same approach:

ψIv
ξ,η

(
ξ, 1 + h(ξ)

)
≈ ψIv

ξ,η(ξ, 1) +
∂ψIv

ξ,η

∂η

∣∣∣∣∣
η=1

h(ξ) , (3.12a)

ψξ,η
(
ξ, 1 + h(ξ)

)
≈ ψξ,η(ξ, 1) . (3.12b)

Equation (3.1c) is linear, so that it can also be used as the field equation for the correc-
tion of the stream function with the mass-conservation condition

ψξ + h′ψη = −Pf [ξh]′ (3.13)

valid at η = 1 derived from (3.2d).

3.1.2. Continuation to the complex plane and asymptotic decomposition

(potential flow)

We would like to asymptotically decompose the system (3.9a)-(3.9b) with its bound-
ary conditions (3.10a)-(3.10d) and equation (3.1c) with condition (3.13) à la Zauderer
[Zau78]. The variables ~ϑ = (Tξ, Tη)

T and ~ϑs = (T sξ , T
s
η )T are written as linear combi-

nations of the eigenvectors ~r1,2 (given in (2.16)) of the coefficient matrix A (given in
(2.14)) of the first order systems derived from (3.9a)-(3.9b). This step was explained in
section 2.2 and it is executed in equations (2.32a)-(2.32b). The decomposed equations
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in the liquid phase are

Mξ + iMη =
Pf
2

(
ξ − i(η − 1)

)
M − Pf

2

i [ξh]′

(1 + ih′)
e−

Pf
2

(η−1)2 (3.14a)

Nξ − iNη = −Pf
2

(
ξ − i(η − 1)

)
M +

Pf
2

i [ξh]′

(1 + ih′)
e−

Pf
2

(η−1)2 (3.14b)

where the solution to (3.1c) has already been inserted. These equations arise from
the projection part of the Zauderer scheme. Terms of the order O(ε2) were neglected
in the system (3.14a)-(3.14b). Hence, the solution will only be approximate. But the
simplification is necessary in order to obtain decoupled equations. Solutions to these
equations can be found using characteristic coordinates:

s = −i (η − 1) τ = ξ + i (η − 1) (3.15a)

s̄ = i (η − 1) τ̄ = ξ − i (η − 1) . (3.15b)

The boundary conditions become

M =
i

2

[(1 + iτ)h(τ)]′

(1 + ih′(τ))
(3.16a)

N =
i

2

σ [κ(τ̄)a(θ)]′ − [(1− iτ̄)h(τ̄)]′

(1− ih(τ̄)′)
(3.16b)

and the solutions read:

M(s, τ) =
i

2
e
Pf
2 (s2+sτ)

[
[(1 + iτ)h]′

(1 + ih′)
− 2 [τh]′

τ (1 + ih′)

(
1− e−

Pf
2
sτ

)]
,

N(s̄, τ̄) =− Pf
2
τ̄

s̄∫

0

[
M (−ω, τ̄ + 2ω)− i

[(τ̄ + 2ω)h(τ̄ + 2ω)]′

(1 + ih′(τ̄ + 2ω))
e
Pf
2
ω2

]
dω

+
i

2

[
σ[κ(τ̄)a(θ)]′

(1− ih′(τ̄))
− [(1− iτ̄)h(τ̄)]′

(1− ih′(τ̄))

]
.

(3.17a)

(3.17b)

For a more detailed calculation see appendix A.1.2. A detailed discussion can also be
found in [FK08] and [vKGK13].

3.1.3. WKB analysis of the linearized equation far from the singularity

(potential flow)

We will now proceed with the asymptotic matching procedure introduced in subsec-
tion 1.2.2. Regarding the superposition (2.32a), the coefficients M and N must vanish
for η → ∞ in order to fulfill the far field boundary condition (3.10d) requiring the
temperature field correction to vanish far ahead of the interface at y →∞. One can see
that M(s, τ) from (3.17a) becomes zero for s→ −i∞ ⇔ η →∞ due to the exponential
function in front of the square brackets. In addition to that, we demand

lim
s̄→i∞

N(s̄, τ̄) = 0 . (3.18)
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Since τ̄ → ξ − i∞ as s̄ → i∞, it ensures that N behaves analytically in the far field.
Considering equation (3.17b), we introduce some abbreviations and substitutions to
keep formulas more convenient. To start with, we rename

τ̄ = ξ .

Obviously, the new ξ is identical with the original parabolic coordinate only at the
interface. But it can be interpreted as the analytical continuation of the parabolic coor-
dinate to the complex plane. Furthermore, we substitute

ω =
1

2

(
ξ′ − ξ

)
, dω =

dξ′

2
.

Setting
F̃ (ξ) = σκ(ξ)a(θ)− (1− iξ)h(ξ)

z(ξ) = 1 + ih′(ξ)

z̄(ξ) = 1− ih′(ξ)

(3.19)

we get

F̃ ′(ξ) = − i

2
Pfξz̄(ξ)

i∞∫

ξ

M

(
1

2
(ξ − ξ′), ξ′

)
dξ′ − 1

2
Pf z̄(ξ)

i∞∫

ξ

[ξ′h]′

z(ξ′)
e
Pf
8

(ξ−ξ′)2dξ′ (3.20)

and finally using appendix A.1.3

F̃ (ξ) =− 2iz̄(ξ)

i∞∫

ξ

M

(
1

2
(ξ − ξ′), ξ′

)
dξ′ + 2i

ξ∫
h′′(ξ′)

z2(ξ′)

(
1 + iξ′

)
h(ξ′)dξ′

+ 2

ξ∫
h′′(ξ′)

i∞∫

ξ′

M

(
1

2
(ξ′ − ξ′′), ξ′′

)
dξ′′ dξ′ +

z̄(ξ)

z(ξ)
(1 + iξ)h(ξ) ,

(3.21)

which is not quite the form we want. On the one hand, equation (3.21) exhibits a
certain generality, since its form is valid for arbitrary flow approximations within the
model, provided the existence of a similarity solution in the Ivantsov-like case. The
proof for this universality can be found in appendix A.2.3. The idea is that the sec-
ond terms in M and N respectively always compensate each other when expressing
M
(

1
2 (ξ − ξ′) , ξ′

)
in terms of its own derivative with respect to ξ in (3.20). Then, inte-

gration by parts yields equation (3.21). But on the other hand, for the potential flow



3.1. Potential flow 53

case we would appreciate a right hand side, that obviously vanishes for Pf → 0:

σκ(ξ)a(θ) = (1− iξ)h(ξ) +
Pf
4

e
Pf
8
ξ2

ξ∫
e−

Pf
8
ξ′2
[

1− ih′(ξ′)

1 + ih′(ξ′)
ξ′
(
1− iξ′

)
h(ξ′)

+
Pf
2

(
1− ih′(ξ′)

) i∞∫

ξ′

ξ′′h(ξ′′)
ξ′′ − ξ′

1 + ih′(ξ′′)
e
Pf
8

(ξ′−ξ′′)2dξ′′
]
dξ′

− Pf
2

e
Pf
8
ξ2

ξ∫
e−

Pf
8
ξ′2
[(

1− ih′(ξ′)
) i∞∫

ξ′

ξ′′h(ξ′′)
ih′′(ξ′′)

(1 + ih′(ξ′′))2 e
Pf
8

(ξ′−ξ′′)2dξ′′

+ξ′
ξ′∫
h′′(ξ′′)

(
i (1 + iξ′′)h(ξ′′)

(1 + ih′(ξ′′))2 +

i∞∫

ξ′′

M

(
1

2
(ξ′′ − ξ′′′), ξ′′′

)
dξ′′′

)
dξ′′
]
dξ′ .

(3.22)

Equation (3.22) is the shape equation determining the correction function h(ξ) for
dendritic growth in a potential flow. It approximately applies in the vicinity of the
singularity at ξ = −i. At this location in the complex plane, the curvature κ from (2.6)
diverges. To counterbalance that, h(ξ) on the right hand side must also behave singu-
larly at this point. We will search for a solution h(ξ) to equation (3.22) by performing
asymptotic matching. I.e. we look for an approximate solution for ξ asymptotically
close to the singularity. In this limit, we are going to encounter an eigenvalue equa-
tion determining σ. This will be done only in the next section. In addition to that,
we look for an approximate solution far from the singularity (|ξ + i| � 1) using WKB
techniques. The results from both asymptotic regions must match, if a global approxi-
mation of the solution shall be obtained.

To obtain the WKB limit, equation (3.22) is linearized in terms of h and its deriva-
tives. On the right hand side, only the first two terms remain. The curvature from
(2.6) with |ξ| � 1, h and h′ � 1 is used. We stick to the homogeneous part of the
equation, since the homogeneous solution contains the exponentially decaying correc-
tion beyond all orders of a regular perturbation expansion. This correction is to be
matched with the corresponding term of asymptotics beyond all orders from the inner
equation. The integrand of the integral over ξ′′ in the second term on the right hand
side (second line in equation (3.22)) decreases strongly for ξ′′ → i∞, because h(ξ′′), as
an analytic function, must vanish for ξ′′ → i∞ and exp

(
Pf
8 ξ
′′2
)

decays rapidly in this
limit, more rapidly than the present factors with integer powers of ξ′′ can grow. Hence
in the framework of an asymptotic expansion of the integral, it is approximately pro-
portional to the value of its integrand at the starting point ξ′′ = ξ′. This value is zero
and the term is neglected. However, it should be noted that this neglect might be a
very coarse measure,

−σ
(

h′′(ξ)√
1 + ξ2

+
ξh′(ξ)

(1 + ξ2)3/2

)
= (1− iξ)h(ξ)

+
Pf
4

e
Pf
8
ξ2

ξ∫
e−

Pf
8
ξ′2ξ′

(
1− iξ′

)
h(ξ′) dξ′ .

(3.23)
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Equation (3.23) could have also been obtained by directly linearizing equation (3.21),
integrating by parts one time and then dropping all terms, which vanish at ξ′′ = ξ′.
Equation (3.23) has the WKB solution (see appendix A.1.3)

h(ξ) = B1e
Pf
16 (1 + iξ)−

3
8 (1− iξ)−

5
8 e

S0(ξ)√
σ

+
Pf
16
ξ2 (3.24)

with

S0(ξ) = i

ξ∫

−i

(
1 + iξ′

) 1
4
(
1− iξ′

) 3
4 dξ′ . (3.25)

This is an approximate solution far from the singularity, but it was derived from the
homogeneous part of equation (3.22), which is approximately valid close to the singu-
larity. Hence, (3.24) will only lead to the correct selection criterion, if the homogeneous
solution to the exact shape equation in its linearized form contains the same transcen-
dental corrections.

3.1.4. Transformation to a small disk around the singularity and

asymptotic matching to the WKB solution (potential flow)

The next step is to convert the equation determining the function h(ξ) to a local equa-
tion valid asymptotically close to the singularity at ξ = −i. It is reasonable to integrate
(3.20) directly. With M written explicitly, that gives

F̃ (ξ) =
Pf
4

ξ∫ i∞∫

ξ′

z̄(ξ′)

z(ξ′′)

[
ξ′e

Pf
8 (ξ′2−ξ′′2)

([(
1 + iξ′′

)
h(ξ′′)

]′ − 2

ξ′′
[
ξ′′h(ξ′′)

]′

×
(

1− e
Pf
4
ξ′′(ξ′′−ξ′)

))
− 2

[
ξ′′h(ξ′′)

]′
e
Pf
8

(ξ′−ξ′′)2
]

dξ′′dξ′ . (3.26)

We apply the stretching transformation

ξ = −i (1− σαt) (3.27a)

h(ξ) = σαφ(t) (3.27b)

with α = 2
7 to (3.26). Both terms in F̃ (ξ) from (3.19) must have the same order of

magnitude, if (3.26) shall have a solution in the flowless case Pf = 0. Therefore, the
special choice of the scale exponent αmakes sure that these terms are of the same order
in the asymptotically small parameter σ. Then the local equation is solvable by finite
functions. We define

P1 =
Pf
4
σ

2
7 , (3.28)

b = βσ−
4
7 . (3.29)

The transformation is carried out in detail in appendix A.1.4. E. g., the transformed
curvature and the transformed fourfold anisotropy function of capillary effects in F̃

are given by equations (A.24) and (A.23), respectively. The lowest order contribu-
tion from the flow is ∼ P1 = O(σα), meaning that the convective effects will only be
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marginal unless Pf takes very large values (Pf = O(σ−α)). Let us keep terms∝ P1. Af-
ter having prepared all necessary ingredients, the full nonlinear eigenvalue equation
determining σ is written down:

φt+

potential flow contribution︷ ︸︸ ︷

P1

t∫ t′∫

∞

1− φ̇(t′)

1 + φ̇(t′′)

[
eP1(t′−t′′)

(
t′′φ̇− φ

)
+ 2φ̇×

(
t′ − t′′

)]
dt′′dt′ =

1√
2t+ 2φ


 φ̈
(

1− φ̇2
) 3

2

+
1 + φ̇

(2t+ 2φ)

√
1− φ̇2




︸ ︷︷ ︸
curvature


1−

2b
(

1− φ̇
)2

(t+ φ)2
(

1 + φ̇
)2




︸ ︷︷ ︸
capillary anisotropy

.

(3.30)

Equation (3.30) can be solved numerically, yielding the eigenvalue b as a function of P1.
Subsequently, one can determine σ using (3.29), provided an experimental value for β
is known. At this point, there is a connection to the theory in [BM91]: Equation (3.30)
reduces to a special form of (1.33) for P1 = 0 and the eigenvalues are related by b =

λ4/7. The results should agree in the limit of vanishing flow (see subsection 3.1.5). The
growth Péclet number Pc can then be determined numerically from equation (3.7) with
Pf = 4P1σ

−2/7 as input. Thus, the full dataset (σ, Pc, Pf ) is obtained for a fixed value of
the dimensionless undercooling ∆ and the selection problem is solved completely. For
∆ � 1, (3.7) becomes ∆ ≈ Pc

√
π/(2Pf ). Together with (3.29), this yields the scaling

laws
V ∝ ∆

4
3β

7
12U

2
3 ,

ρ ∝ ∆−
2
3β−

7
6U−

1
3 .

(3.31a)

(3.31b)

Thus, the scaling behaviour (1.34a)-(1.34b) is changed discontinuously by the sole
presence of an externally forced potential flow. σ had to be assumed independent
of U for the derivation of (3.31a)-(3.31b). Equation (1.35) has to be changed:

V =

(
2D∆4σU2

d0π2

) 1
3

. (3.32)

Finally, we want to show that the WKB solution (3.24) and a solution from asymp-
totically close to the singularity match for t → ∞. For this purpose, the integral on
the left hand side of (3.30) is substituted by an approximation. The right hand side
of (3.30), i.e. the curvature and the anisotropy, is linearized. The leading asymptotic
behaviour of φ for t → ∞ in the resulting equation is determined by the inhomo-
geneity (2t)−

3
2 . It is just powers of t. Performing asymptotic analysis this way, one

can determine infinitely many orders without finding the transcendental corrections.
The trick is to drop the inhomogeneity right away. Doing this, we get access to the
”beyond-all-orders regime” where the matching has to be done. We find

φ(t) ∼ A1t
− 5

8 exp

(
− 4
√

2
4

7
t
7
4 +

P1

2
t− P2

4
t2
)

(3.33)
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with P2 =
Pf
4 σ

2α = P1σ
α. This matches perfectly (see appendix A.1.4) if

Im (A1) = 0 , (3.34)

which is a necessary requirement to any solution obtained numerically from equation
(3.30). And indeed for any value of P1, the criterion is fulfilled due to the implied
numerical boundary conditions from asymptotic analysis described in section 2.3.

3.1.5. Numerical results and dependencies of the observable quantities and

the selected growth mode on the potential flow
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imaginary part of φ(t)
initial guess real part
initial guess imaginary part

Figure 3.2.: Shape correction function φ(t) (potential flow case) in the

interval of integration parallel to the imaginary axis obtained

with P1 = 0.04, note the symmetry properties

The numerical method described in section 2.3 is applied to equations (3.7) and (3.30).
The real part and the imaginary part of the solution φ(t) as well as their initial guesses
on the line parallel to the imaginary axis are exhibited in figure 3.2. The initial guesses
ensure the (anti-)symmetry from the first iteration on to converge to the right solution.
We are interested in the smallest value of b (largest growth velocity V ) corresponding
to the only stable solution. In the limit of vanishing flow (P1 → 0), the eigenvalue
b = 0.6122 ≈ 0.42 4/7 from Brener’s theory [BM91] (see section 1.2.2) is successfully re-
produced. Convergence was generally achieved in a small but experimentally relevant
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Figure 3.3.: Dependence of important growth parameters on the forced potential flow cal-

culated numerically from equations (3.7) and (3.30) for pivalic acid (β = 0.09

[Dou91]) with ∆ = 0.01 (=̂ 0.12 K), scaling laws in c) and d) determined

using least square fits to the plotted data

range of P1. In this section, results are shown for pivalic acid (abbr. PVA, chemical for-
mula (CH3)3CCO2H). The important material parameters for pivalic acid are shown
below.

pivalic acid:

• L
c = 11.83K [SG90]

• d0 = 3.76 · 10−3 µm = 3.76nm [RG91a]

• D = 7 · 104 µm2

s [RG91a]

• β = 0.09 [Dou91]

• Pr = 134.92 [RG91a] the Prandtl number defined in (3.36).

Pivalic acid is a transparent substance melting at 33..35 ◦C [SG90]. Therefore, it is
useful for experiments. It is a so called plastic crystal or organic crystal. Its properties
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Figure 3.4.: Numerical results from selection theory in a potential flow obtained from equa-

tions (3.7) and (3.30) for pivalic acid dendrites, a) growth velocity V and b)

tip curvature radius ρ as functions of the forced flow velocity U for different

values of the dimensionless undercooling ∆, scaling laws determined using

least square fits to the plotted data for ∆ = 0.01 (dash-dotted line)

were investigated for example in [SG89]. A complete table with material parameters
of all the substances considered in this work can be found in appendix C.

The growth velocity V increases monotonically with increasing forced flow velocity
U . This is intuitively right, because the interface is more and more flooded with un-
dercooled liquid. For U → 0, the stability parameter converges to its flowless value
of σ = 0.03489 (see fig. 3.3). This value deviates somewhat from the experimental
value of σ = 0.022 [GS89, Dou91]. There is a large relative uncertainty of up to 50 % in
the experimental value of β = 0.09 (see section 1.3.3). This can be one reason for the
deviations. We obtain σ = 0.022 by setting β ≈ 0.07, which is well within the error
range. Another possible reason may be that kinetic effects of atomic transfer between
the phases play an important role in pivalic acid. These effects were neglected here.
However, a more quantitative analysis of this issue is given in section 4.5.
U is varied in the range 2.89 . . . 4919.92 µm

s . For V and ρ as functions of U we de-
termine scaling laws using least square fits to the plotted data (see fig. 3.3c,d). The
scaling laws are not exactly the same as the relations given in (3.31a)-(3.31b), because
σ slightly depends on U in equation (3.32). In other words, b was assumed constant in
(3.29) to derive (3.31a)-(3.31b). But there is a dependence of b on U because of the flow
contribution in the eigenvalue equation (3.30). This dependence cannot be written
down analytically and it is expected to become stronger at large Pf . Thus, the pre-
dictions in figure 3.3c,d are more accurate than the analytical approximations (3.31a)-
(3.31b), especially at larger values of Pf . These scaling laws are also found at different
undercoolings, see fig. 3.4. In fact, the selected eigenvalue does not depend on the
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undercooling here at all, because we worked in the limit Pc → 0 in equation (3.30).
But in reality there is a dependence [Ama90], that cannot be neglected at larger under-
coolings. Arbitrary Péclet numbers in the framework of asymptotic decomposition are
investigated in section 4.4.

3.2. Oseen flow

An Oseen flow is more realistic than the potential flow approximation from the pre-
ceeding section 3.1. Again, no full microscopic theory is necessary to approach the
problem. We use the model introduced in section 1.1 in the rest frame of the dendrite
growing at constant velocity V ~ey in a non-dimensional form. The field equations (3.1a)
and (3.1b) for the temperature can also be used here. The flow velocity is determined
by the Oseen equation

−(Pc + Pf )
(
~ey · ~∇

)
~w = −~∇p+ Pr∆~w (3.35)

with the Prandtl number
Pr =

ν

D
(3.36)

and the pressure p. Equation (3.35) is a form of the Navier-Stokes equation 1.12, lin-
earized for small flow velocities. It is an ad hoc approximation for the flow of incom-
pressible fluids provided the Reynolds number

Re =
ρU

ν
(3.37)

is small. It usually applies in highly viscous systems, where the flow velocity is gen-
erally small due to the effect of friction. Bouissou and Pelcé used the same flow ap-
proximation in the limit Pf � Pc [BP89]. In the contrary limit Pc � Pf , (3.35) is the
Stokes equation in the frame of reference moving along with the growing dendrite. The
boundary conditions (3.2a)-(3.3c) are used. In addition, the tangential no-slip condi-
tion (1.13b) is written in the moving frame of reference attached to the dendrite grow-
ing with stationary velocity (i.e. ~w → ~w + V ~ey). This becomes ~w · ~t = −Pc ~ey · ~t in its
dimensionless form. The parabolic coordinate forms of ~t and ~ey from section 2.1 are
inserted and ~w is expressed by ψ using equation (2.10):

~w · ~t =
ψη − η′sψξ√

(ξ2 + η2
s) (1 + η′2s )

= −Pc ~ey · ~t = −Pc
−ξ + ηsη

′
s√

(ξ2 + η2
s) (1 + η′2s )

.

It leads to the condition
ψη − η′sψξ = Pc(ξ − ηsη′s) (3.38)

valid at the interface. It ensures, that the tangential component of the flow velocity ~w

at the two-phase boundary vanishes in the laboratory frame.
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3.2.1. Ivantsov solution for dendritic growth in an Oseen flow

Neglecting capillary effects, the interface is parabolic just as all other isotherms. With
the abbreviations

α̃ =

√
Pc + Pf

2Pr
ã =

2α̃ e−α̃
2

√
π erfc (α̃)

(3.39)

the flow velocity field components read

ψIv
ξ (η) = η

[
Pc + Pf

(
1− erfc (α̃η)

erfc (α̃)

)]
+
Pf ã

2α̃2

[
eα̃

2(1−η2) − 1

]
, (3.40a)

ψIv
η (η, ξ) = ξ

[
Pc + Pf

(
1− erfc (α̃η)

erfc (α̃)

)]
. (3.40b)

We used the complementary error function erfc defined in (1.20). A method for deriva-
tion of (3.40a) and (3.40b) can be found in [Lam32]. It employs a gradient form of
the pressure, which fulfills a Laplace equation [Fis08]. The calculations are shown
in appendix A.2.1. The three-dimensional form of (3.40a) and (3.40b) is calculated in
[AG91]. The complementrary error functions have to be replaced by first exponen-
tial integrals in this case. Note, that (3.40a) and (3.40b) appear also in [BP89], because
they are solutions to the Oseen equation in the limit Pf ã � Pc if α̃ is redefined by
2α̃2 = Pf/Pr.

Let us briefly discuss this solution. Ananth and Gill stated [AG91], that only in three
dimensions a solution of the Oseen problem can be a smooth global approximation of
the flow velocity. In two dimensions, the perturbation represented by the growing
parabola is too strong, much stronger than the paraboloid in three dimensions. Con-
sider a Laplace equation: Indeed, the Green’s function diverges in two dimensions in
the far field. But changing the equation into diffusion type by adding the first time
derivative, the Green’s function becomes bounded even in two dimensions. The same
argumentation can be applied to the Oseen equation (3.35). The linearized term allows
for a non-divergent Green’s function. The stabilizing terms in (3.40a) and (3.40b) are
proportional to Pc and they represent the uniform flow arising after Galilean trans-
formation to the rest frame of the moving interface of the dendrite. The Pf -terms are
perturbative forced flow contributions to the flow velocity field, and these terms have
the form of correction terms. Thus, the solution (3.40a)-(3.40b) can indeed uniformly
approach the real solution of the full incompressible Navier-Stokes equations, but only
in the limit Pc � Pf . Similar arguments have been put forward in [Fis08]. However,
the experimentally relevant case is usually Pc → 0. Thus, any results presented in the
current section are going to correspond to this very limit. Remember, that one formal
change to be made is 2α̃2 → Pf/Pr. So our point of view in the following will be, that
we wish to solve the problem within the Oseen approximation, since only with this
approximation we obtain a solid starting point, i.e. an exact similarity solution in the
Ivantsov limit. The additional interesting question of how well this approximates ex-
perimental flow patterns has to be left to future investigation and to comparison with
experiments.
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The Ivantsov-like solution for the temperature field in the liquid is given by

T Iv
η (η) = −e−I1(η) (3.41)

with

I1(η) =

η∫

1

ψξ(ω)dω

=
Pc
2

(
η2 − 1

)
+

[
Pf
2
η2 +

Pf
4α̃2

] [
1− erfc (α̃η)

erfc (α̃)

]

+
Pf ã

4α̃2

[
1− η

(
2− eα̃

2(1−η2)
)]

.

(3.42)

Solution (3.41) is derived in a manner analogous to the potential flow case. It fulfills
the boundary conditions (3.2a) and (3.2c). It also fulfills the Gibbs-Thomson condition
(3.2b) with σ = 0, because the temperature in the solid is just T s,Iv = 0. The calculation
of the integral I1(η) can be found in appendix A.2.1. We insert the temperature field
(3.41) into the far field boundary condition (3.3a) and get the Ivantsov condition:

∆ = Pc

∞∫

1

e−I1(ω) dω . (3.43)

Figure 3.5 shows the field vectors of ~w in the vicinity of the dendrite and somewhat
far ahead of it. The data was generated using MATLAB. The corresponding values of
Pf and Pc are data pairs resulting from the numerical solution of equation (3.43) for
succinonitrile at an undercooling ∆ = 0.02. Pf ã � Pc is fulfilled. The absolute value
of the vector ~w gradually decreases in the vicinity of the dendrite compared to the far
field region. However, for Pc > 0 the flow does not vanish completely at the interface
in the moving frame of reference. The reason is that |~w| = Pc at the interface, and far
ahead of it ~w fulfills the boundary condition ~w = −(Pf + Pc)~ey.

Note, that the x-component of ~w vanishes at the interface. ~w is parallel to ~ey at the in-
terface and can be decomposed into a finite normal component and a finite tangential
component. This can be seen be replacing the corresponding unit vectors. Indeed our
solution must have this property because, regarding the boundary conditions (3.2d)
and (3.38) together, we demanded ~w(η = 1) = −Pc ~ey for the growing dendrite in the
moving frame of reference.

The solutions calculated so far are now expanded about the perfectly parabolic in-
terface. We rename the solutions (3.40a), (3.40b) and (3.41) to ψIv

ξ , ψIv
η and T Iv

η , respec-
tively. The upper index “Iv” is a homage to Ivantsov, who first calculated T Iv for the
flowless case [Iva47]. In the expanded equations, Pc is set equal to zero, since this is
the relevant case in most experiments. The temperature field correction is determined
by

T lξξ + T lηη −
(
ψη + ψIv

η

)
T lξ +

(
ψξ + ψIv

ξ

)
T lη = ψξ e−I1(η) in the liquid, (3.44a)

T sξξ + T sηη = 0 in the solid. (3.44b)
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Figure 3.5.: Field vectors of the Oseen flow velocity ~w surrounding the

growing dendrite in a cartesian moving frame of reference

for succinonitrile (Pr = 23.03 [Sch99]) at ∆ = 0.02,

Pf = 10.0, Pc = 0.006506; the Ivantsov condition (3.43) is

fulfilled for this dataset.
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The interface is now located at ηs = 1 + h(ξ) with an unknown function h(ξ), which
is to be determined from the moving boundary problem. The boundary conditions
(3.10a)-(3.10d) can be used for the temperature field.

In contrast to the diffusion-advection equation (3.1a), the Oseen equation (3.35) is
linear. Hence, it also holds for the correction terms and we may construct a solution to
the flow velocity field using the method from [Lam32] as before. We write its compo-
nents separately:

ψη = −ϕξ + Pr χξ − Pfξχ , (3.45a)

−ψξ = −ϕη + Pr χη + Pfηχ . (3.45b)

The auxiliary functions ϕ(ξ, η) and χ(ξ, η) are to be calculated, but ϕ(ξ, η) can be elim-
inated from the system of equations. The first equation (3.45a) is differentiated with
respect to η and the second equation (3.45b) is differentiated with respect to ξ. Subse-
quently, the second equation is substracted from the first one.

∂η (3.45a)− ∂ξ (3.45b) ⇒ ψξξ + ψηη = −Pf (ξχη + ηχξ) , (3.46a)

∂ξ (3.45a) + ∂η (3.45b) ⇒ χξξ + χηη = 2α̃2 (ξχξ − ηχη) . (3.46b)

Here, α̃ is given by 2α̃2 = Pf/Pr. (3.46b) can be obtained by adding the derivative
with respect to ξ of (3.45a) to the derivative with respect to η of (3.45b) and exploiting,
that ϕ fulfills a Laplace equation. But its origin can also be found in appendix A.2.1,
where the Ivantsov-like Oseen solution is calculated. (3.46b) is just (A.36a) written
explicitly in parabolic coordinates. These equations determine the correction to the
stream function. In addition to that, we have

ψξ + h′ψη = −ξPf ãhh′ (3.47a)

ψη − h′ψξ = −ξPf ãh (3.47b)

as interface conditions and ~w → 0 (η → ∞) as far field condition for the flow velocity
field. The interface conditions are valid at η = 1. These results can be obtained by
straightforward expansion of the zeroth order equations (3.2d) and (3.38) in the way
demonstrated at the end of subsection 3.1.1. (3.47a)-(3.47b) are prescribed by equa-
tions (3.12a)-(3.12b). Nonlinear terms of h and its first derivative are kept in (3.47a),
because these functions may diverge near the singular point ξ = −i after continuing
the problem to the complex plane. As mentioned above, the relevant case is Pf ã� Pc.
Thus, terms of order Pf ãh must be kept.

3.2.2. Continuation to the complex plane and asymptotic decomposition

(Oseen flow)

We look for a solution to equations (3.44a)-(3.44b) with boundary conditions (3.10a)-
(3.10d) and equations (3.46a)-(3.46b) with boundary conditions (3.47a)-(3.47b). We
start with the latter system describing the flow velocity. Subsequently, the result is
inserted into the diffusion-advection equation (3.44a).



64 3. Convective problems

Can we not just find an exact analytical solution? In fact, there is a power series
solution of the form

χ(ξ, η) =

∞∑

k=0

∞∑

l=0

bk el ξ
k ηl (3.48)

to equation (3.46b) and the expansion coefficients bk, el are determined by recursion
relations (see equations (A.44a)-(A.44b) in appendix A.2.2). Using a separation ansatz,
the Hankel functions and hypergeometric functions turn out to be solutions, too. But we
have good reasons not to follow this path any further. If we did so, the boundary
conditions would have to be evaluated next, if that is even possible. One would have
to find a physical interpretation of the integration constants and calculating all the
bk and el would be much effort. Apart from that, we cannot expect to find a similar
analytical solution to the diffusion-advection equation (3.44a). Thus, we look for a
solution for χ, which shall be fully consistent with the approach to (3.44a).

Another possibility is to use the vorticity ω = rot ~w. One can show, that rot ~w =

−∆ψ~ez . Furthermore, if we apply ~∇× to the Oseen equation (3.35), we get

∆ψ + ω = 0 (3.49a)

∆ω + 2α̃2 (ηωη − ξωξ) = 0 (3.49b)

as a substitute for the system (3.46a)-(3.46b). Both ways are pretty elegant forms of
the Oseen equation. (3.46b) and (3.49b) are actually the same equation expressed by
different quantities. But by introducing the vorticity, the information contained in the
pressure is lost. It has to be regained by an additional integration, which does not have
to be performed when using the system (3.46a)-(3.46b). Of course, one has to deal with
the pressure in one or the other way. But (3.46a) contains only derivatives of χ. This
is a crucial advantage. χξ,η obtained from (3.46b) do not have to be integrated, as we
would have to do with ωξ,η before inserting into (3.49a).

The application of the asymptotic decomposition procedure à la Zauderer as de-
scribed in section 2.2 and the solution of the decomposed equations constitute quite
technical undertakings in this case. The calculations are relegated to appendix A.2.2.
We just write down the solutions here, which are used for asymptotic matching. The
characteristic coordinates given in (3.15a) and (3.15b) also apply here. Let again ~r1,2

be the eigenvectors of the coefficient matrix A of the first order systems derived from
(3.46a) and (3.44a). These vectors are given in (2.16), and A is defined in (2.14). With
the superposition ~v = (ψξ, ψη)

T = β(1)~r1 + εβ(2)~r2, the functions

β(1)(s, τ) = −1

2
Pfτ ãh(τ)eα̃

2[s2−is(1+iτ)] (3.50a)

β(2)(s̄, τ̄) =− i

2
Pf α̃

2ã (1 + iτ̄)

s̄∫

0

(τ̄ + 2ω)h(τ̄ + 2ω)eα̃
2[−ω2+iω(1+iτ̄)]dω

− 1

2
Pf τ̄ ãh(τ̄)

(3.50b)

are determined. The solution ~v and the superposition ~ϑ = (Tξ, Tη)
T = M~r1 + εN~r2 are
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inserted into the first order system derived from (3.44a). Using the abbreviations

a1,2(s, τ) =
1

2

[
ψIv
η (s+ τ, 1 + is)∓ iψIv

ξ (1 + is)
]

(3.51)

the decomposed equations for the coefficients M and N can be written down in their
respective characteristic coordinates:

Ms = a1(s, τ)M +
1

2
β(1)(s, τ)e−I1(1+is) , (3.52a)

Ns̄ = −a1(−s̄, τ̄ + 2s̄)M − 1

2
β(1)(−s̄, τ̄ + 2s̄)e−I1(1−is̄) . (3.52b)

These equations already contain the asymptotically consistent solution to the system
(3.46a)-(3.46b). ψξ,η do not appear in a1,2, because β(1) vanishes when comparing iψξ
and ψη. The β(2)-term was dropped in (3.52a)-(3.52b), since it remains finite at the
singularity (ξ = −i). I.e. the β(2)-term is O(ε2) within the Zauderer scheme in the first
order system corresponding to equation (3.44a). The solutions to (3.52a) and (3.52b)
are

M(s, τ) =

homogenous solution︷ ︸︸ ︷

exp

[ s∫

0

a1(ω, τ) dω

] [
integration constant︷ ︸︸ ︷
i [(1 + iτ)h(τ)]′

2 (1 + ih′(τ))
−Pf

4
ãτh(τ)

×
s∫

0

exp

(
α̃2
(
ω2 − iω (1 + iτ)

)
−

ω∫

0

a2(ω′, τ) dω′
)

dω

]

N(s̄, τ̄) =−
s̄∫

0

a1(−ω, τ̄ + 2ω)M(−ω, τ̄ + 2ω) dω

+
Pf
4
ã

s̄∫

0

(τ̄ + 2ω)h(τ̄ + 2ω)eα̃
2[−ω2+iω(1+iτ̄)]−I1(1−iω) dω

+
i

2

[
σ[κ(τ̄)a(θ)]′

1− ih′(τ̄)
− [(1− iτ̄)h(τ̄)]′

1− ih′(τ̄)

]

(3.53a)

(3.53b)

where the boundary conditions (3.16a) and (3.16b) have been applied.

3.2.3. WKB-analysis of the linearized equation far from the singularity

(Oseen flow)

As in the beginning of subsection 3.1.3, we require N(s̄ → i∞, τ̄) → 0 to fulfill the far
field boundary condition (3.10d), and we set τ̄ → ξ and ω = 1

2(ξ′−ξ). Doing this yields
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an equation determining the function h(ξ):

σ[κ(ξ)a(θ)]′ = [(1− iξ)h(ξ)]′ + i
(
1− ih′(ξ)

)
×
[

ξ∫

i∞

a1

(
1

2

(
ξ − ξ′

)
, ξ′
)
M

(
1

2

(
ξ − ξ′

)
, ξ′
)

dξ′

− Pf
4
ã

ξ∫

i∞

ξ′h(ξ′) eα̃
2[ 14(ξ2−ξ′2)− i

2
(ξ−ξ′)]−I1(1+ i

2
(ξ−ξ′))dξ′

]
.

(3.54)

One could get here without calculating a special form of ψξ,η or ψIv
ξ,η. I.e. if one writes

a1 and I1 in terms of ψξ,η (which we did) and calculatesM the same way as above with-
out inserting a special form of ψξ,η or ψIv

ξ,η, the shape equation (3.54) holds for arbitrary
flows, if an Ivantsov-like solution exists. Unfortunately, it is difficult to analyze and it
is a hopeless matter trying to solve it exactly. Instead, we perform asymptotic match-
ing again. In this subsection, we look for an approximate solution of the linearized
form of (3.54) far from the singularity (|ξ + i| → ∞). Subsequently, the equation is
transformed close to the singularity, and the resulting eigenvalue problem is solved
numerically.

We start with equation (3.21) because it is also valid here, although it is derived in the
section about the potential flow approximation. The proof for its general applicability
can be found at the beginning of appendix A.2.3. Linearizing the Oseen-flow version
of (3.21) and using the abbreviation

I3(−s̄′, ξ′) =

1
2

(ξ−ξ′)∫

0

a1(ω, ξ′) dω (3.55)

we find

− σ
(

h′′(ξ)√
1 + ξ2

+
ξh′(ξ)

(1 + ξ2)3/2

)
= 2h(ξ) +

i∞∫

ξ

[(
1 + iξ′

)
h(ξ′)

]′
eI3(−s̄′,ξ′) dξ′

+
i

2
Pf ã

i∞∫

ξ

ξ′h(ξ′) eI3(−s̄′,ξ′)

1
2

(ξ−ξ′)∫

0

eα̃
2(ω2−iω(1+iξ′)) exp

(
−

ω∫

0

a2(ω′, ξ′) dω′

)
dω dξ′ .

(3.56)

The first integral on the right hand side is integrated by parts. This is reasonable,
because one factor appears as a derivative. The calculations are shown in appendix
A.2.3. The explicit calculation of I3 can also be found in the designated appendix part.
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We get the following form of the shape equation for WKB-analysis:

− σ
(

h′′(ξ)√
1 + ξ2

+
ξh′(ξ)

(1 + ξ2)3/2

)
= (1− iξ)h(ξ) +

i

4
Pf ã

ξ∫

i∞

h(ξ′) eI3(−s̄′,ξ′) ×
[

1 + iξ′

Re

(
1− eα̃

2( 1
4

(ξ−ξ′)2− i
2

(ξ−ξ′))
)
− (1 + ξ′2)

ã

(
1− erfc

(
α̃
(
1 + i

2 (ξ − ξ′)
))

erfc (α̃)

)

− 2ξ′

1
2

(ξ−ξ′)∫

0

eα̃
2(ω2−iω(1+iξ′)) exp

(
−

ω∫

0

a2(ω′, ξ′) dω′

)
dω

]
dξ′ .

(3.57)

Unfortunately, this linear equation (3.57), which was derived from (3.56), is not simple
enough for WKB analysis. The integrals constitute a problem, and they cannot be
eliminated by differentiating the whole equation once with respect to ξ, because ξ also
appears in the integrand. For this reason, the Pf -contributions to the WKB solution
are not calculated in this section:

− σ
(

h′′(ξ)√
1 + ξ2

+
ξh′(ξ)

(1 + ξ2)3/2

)
= (1− iξ)h(ξ) . (3.58)

In (3.58), a linearized form of the curvature κ(ξ) has been used. The inhomogeneity
was dropped to access the transcendental corrections, which are contained only in the
homogeneous solution. We find the WKB solution

h(ξ) = B2 (1 + iξ)−
3
8 (1− iξ)−

5
8 e

S0(ξ)√
σ . (3.59)

to (3.58), again using A.2.3. S0 was given in (3.25). (3.59) is the “outer solution”. B2

is an integration constant. Some terms were integrated with lower boundary −i, i.e.
starting with the singular point. But some terms were integrated indefinitely, because
they diverge at ξ = −i. This is not surprising, since the WKB theory is valid only far
away from this point. In the vicinity of this point, the WKB solution breaks down and
we have to construct another solution.

3.2.4. Transformation to a small disk around the singularity and

asymptotic matching to the WKB solution (Oseen flow)

The WKB solution (3.59) breaks down in the vicinity of ξ = −i. To construct a smooth
global approximation of the function h(ξ) in the complex plane, a better description
close to the singularity needs to be found. For this purpose, (3.54) is integrated directly:

σκ(ξ) = (1− iξ)h(ξ) + i

ξ∫ ξ∫

i∞

(
1− ih′(ξ′)

)
×
[

a1

(
1

2

(
ξ′ − ξ′′

)
, ξ′′
)
M

(
1

2

(
ξ′ − ξ′′

)
, ξ′′
)

−Pf
4
ãξ′′h(ξ′′) eα̃

2[ 14(ξ′2−ξ′′2)− i
2

(ξ′−ξ′′)]−I1(1+ i
2

(ξ′−ξ′′))

︸ ︷︷ ︸
=t6

]
dξ′′dξ′ .

(3.60)
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This equation is transformed onto a small disc around the singularity via the transfor-
mation (3.27a)-(3.27b). The analogue stretching transformation is used for the primed
and double-primed quantities. The first terms on both sides of (3.60) are only of the
same order of σ, if α = 2

7 as in the potential flow case. α is not to be mixed up with

the abbreviation α̃. We find κ = O
(
σ(− 3

7)
)

. The explicit forms of the curvature con-
tribution and the anisotropy factor on the new scale can be read off equation (3.30).
The transformation of the double integral in (3.60) is a bigger challenge. This part is
completely relegated to appendix A.2.4. We use the definition (3.29) and define

P3 =
Pf
4
ãσα, (3.61)

meaning P3 = P1ã, and write the transformed equation:

1√
2t+ 2φ


 φ̈
(
1− φ̇2

)3/2 +
1 + φ̇

(2t+ 2φ)

√
1− φ̇2



[

1− 2b(1− φ̇)2

(t+ φ)2 (1 + φ̇)2

]
− tφ

= P3

t∫ t′∫

∞

1− φ̇(t′)

1 + φ̇(t′′)

[
φ̇(t′′)

(
t′ − t′′

)
+
(

1 + φ̇(t′′)
)
φ(t′′)

]
dt′′dt′ .

(3.62)

Brener showed, that at arbitrary growth Péclet number Pc, a corresponding contri-
bution of the order σα arises on the right hand side of equation (3.62) [BM91]. The
convective P3-term is of the same order of magnitude, which makes sense, because
in the moving frame of reference the Pc-contributions act as a uniform flow. See also
section 4.4 for arbitrary growth Péclet numbers Pc in the framework of asymptotic
decomposition. Thus, equation (3.62) is valid in the limit Pf ã� Pc.

In the limit t → ∞, the solution to (3.62) should match the WKB-solution (3.59).
Using appendix A.2.4, we find the asymptotic approximation

φ(t) = A1t
− 5

8 exp

(
− 4
√

2
4

7
t
7
4

)
, (3.63)

fulfilling the physical condition of a smooth tip only if

0 = Re

(
dηs
dξ

∣∣∣∣
ξ=0

)
∝ Im (A1) . (3.64)

A zero imaginary part of the numerical constant A1 is a necessary requirement to any
solution obtained from equation (3.62).

3.2.5. Scaling laws in the large flow Péclet number limit

The approximate potential flow scaling laws (3.31a)-(3.31b) hold for ∆ � 1. They are
not exact, because the dependence of σ on U was neglected in their derivation. A gen-
eral analogon in the Oseen flow case cannot be given, because the Ivantsov condition
(3.43) does not simplify enough for Pc → 0. But scaling laws can be found in the limit
Pf � 1. Consider the exponent of the integrand in (3.43). If we write

g(ω) := lim
Pc→0

(
−I1(ω)

Pf

)
(3.65)
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with I1(ω) from (3.42), then the function g(ω) has a saddle point at ω = 1. For Pf � 1,
the integrand ePfg(ω) decays rapidly for ω > 1 (see figure 3.6). Thus, the integral is
dominated by its starting point (the maximum at ω = 1). It can be expanded using
Laplace’s method, i.e. the exponent is expanded in a Taylor series around ω = 1 up
to the first non-vanishing order. Since it is a saddle point, the first non-vanishing
contribution will be third order. We write down the derivatives of g(ω):

dg

dω
= lim

Pc→0

(
−ψξ(ω)

Pf

)
(3.66a)

d2g

dω2
= −

[
1− erfc (α̃ω)

erfc (α̃)

]
(3.66b)

d3g

dω3
= −ã eα̃

2(1−ω2) . (3.66c)

One finds g′(1) = 0, g′′(1) = 0 and g′′′(1) = −ã and thus

g(ω)

∣∣∣∣
ω=1

≈ − ã
6

(ω − 1)3 . (3.67)

The integral is approximated as

∞∫

1

e−I1(ω) dω ≈
∞∫

1

e−
Pf ã

6
(ω−1)3 dω =

1

3
Γ

(
1

3

)
3

√
6

ã
PcP

− 1
3

f (3.68)

where it was written in terms of the gamma function. For large Pf , one has α̃ =√
Pf/(2Pr)� 1. Thus, the asymptotic behaviour

erfc (α̃) ∼ e−α̃
2

√
πα̃

α̃→∞ (3.69)

of the complementary error function can be inserted into ã given in (3.39) in order
to derive scaling laws from (3.68). It leads to ã ∼ 2α̃2 = Pf/Pr and the Ivantsov
condition becomes

∆

Pc
=

1

3
Γ

(
1

3

)
3
√

6PrP
− 2

3
f . (3.70)

This, together with σ ∝ β7/4 from the preceeding section, yields the scaling laws

V ∝ ∆
6
5β

7
20U

4
5 , (3.71a)

ρ ∝ ∆−
3
5β−

21
20U−

2
5 . (3.71b)

These laws represent a good description in an intermediate asymptotic range of Pf .
However, at very large Pf equation (3.70) is not the best approximation of the Oseen
Ivantsov condition (3.43). The reason is, that for α̃ � 1, the absolute value of the sec-
ond derivative g′′(ω) given in (3.66b) increases very rapidly from 0 to 1 as ω becomes
slightly larger than 1. Therefore, a quadratic exponent yields better agreement of the
approximated and the real integrand for ω > 1 at α̃ � 1. It can be seen analytically
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by inserting the asymptotic behaviour (3.69) of the complementary error function into
g(ω):

g(ω) = −1

2

(
ω2 +

1

2α̃2

)(
1− erfc (α̃ω)

erfc (α̃)

)
− 1

2

ã

2α̃2

[
1− ω

(
2− eα̃

2(1−ω2)
)]

∼ −1

2
ω2

[
1− 1

ω
eα̃

2(1−ω2)
]
− 1

2

[
1− ω

(
2− eα̃

2(1−ω2)
)]

α̃→∞

= −1

2
(ω − 1)2 +

1

2
eα̃

2(1−ω2)(ω − ω) = −1

2
(ω − 1)2 .

The resulting integral is Gaussian and can be solved analytically:

∆

Pc
=

∞∫

1

e−
Pf
2

(ω−1)2 dω =

√
π

2Pf
. (3.72)

This yields the same scaling laws (3.31a)-(3.31b) and the same explicit relation (3.32)
for the growth velocity V as in the potential flow case. But here they are restricted to
the limit Pf � 1.

Figure 3.7 shows the different forms of the Ivantsov integrals as functions of Pf for
succinonitrile (Pr = 23.03). At Pf ≈ 62, the exact integral from the left hand side of
(3.68) (black graph) and its cubic approximation given on the right hand side of (3.70)
(red graph) take the same value. Here, the corresponding integrands exp (−I1(ω)) and
exp

(
−Pf ã

6 (ω − 1)3
)

are almost the same function on the whole range of integration.
But beyond that point, the deviation between the exact integral and its cubic approx-
imation increases. The blue graph is a plot of the right hand side of (3.72), where the
quadratic approximation of the exponent is used. It approaches the exact form slowly
but monotonically. For Pf ' 2500, the blue graph has crossed the red graph and the
deviation between exact and quadratic is smaller than the deviation between exact and
cubic.

In three dimensions, the stream function can be calculated using the paraboloid co-
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ordinates x = ηξ cosϕ, y = ηξ sinϕ and z = 1
2(η2 − ξ2). Its derivatives read

ψ3D
ξ (ξ, η) = ξη2

[
Pc + Pf

(
1− E1

(
α̃2η2

)

E1 (α̃2)

)]
− Pfξe

−α̃2

ηα̃2E1 (α̃2)

(
1− eα̃

2(1−η2)

)
(3.73a)

ψ3D
η (ξ, η) = ξ2η

[
Pc + Pf

(
1− E1

(
α̃2η2

)

E1 (α̃2)

)]
(3.73b)

if surface tension is neglected. Here, E1 is the first exponential integral:

E1(x) =

∞∫

x

e−t

t
dt . (3.74)

These forms were also given by Ananth and Gill [AG91] with α̃2 = Pf/(2Pr). The
corresponding Ivantsov condition is

∆

Pc
=

∞∫

1

exp


−

ω∫

1

ψ3D
ξ (ξ, ω′)

ξω′
dω′


 dω

ω
(3.75)

and thus we define the function

g3D(ω) = lim
Pc→0


−

ω∫

1

ψ3D
ξ (ξ, ω′)

Pfξω′
dω′




=− 1

2

(
ω2 +

1

α̃2

)(
1− E1

(
α̃2ω2

)

E1 (α̃2)

)
+

e−α̃
2

α̃2E1 (α̃2)

[
lnω +

1

2

(
1− eα̃

2(1−ω2)
)]

(3.76)
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to be used in the exponent in 3D. Inserting the asymptotic behaviour

E1

(
α̃2
)
∼ e−α̃

2

α̃2
α̃2 →∞ (3.77)

into (3.76), we find the quadratic approximation

∆

Pc
=

∞∫

1

e−Pf (ω−1)2 dω

ω
(3.78)

where the logarithm was expanded about ω = 1 up to the quadratic order. This inte-
gral cannot be solved analytically due to the factor 1

ω in the integrand.

3.2.6. Numerical results and dependencies of the observables quantities

and the selected growth mode on the Oseen flow

The set (3.43), (3.62) is solved numerically using the method described in section 2.3.
(3.62) applies in the limit Pf ã � Pc and it turned out, that ã is less than unity for all
materials considered in this subsection and for all values of Pf in use. Consequently,
Pf � Pc definitely holds, if Pf ã � Pc is fulfilled. It allows us to set α̃2 ≈ Pf/(2Pr)

in the Ivantsov condition as well as in the local equation. This conveniently shortens
the numerical working flow, because if (3.62) is completely free of Pc, the resulting
dataset (P3, b) is independent of the undercooling and it has to be determined only
once. Subsequently, it is used as input for (3.43) to calculate Pc at different values of ∆.
Results were obtained among others for succinonitrile (abbr. SCN, chemical formula
C2H4(CN)2), a substance with two nitrile groups.

succinonitrile:

• L
c = 23.12 [RG91b]

• d0 = 2.79nm [RG91a], [RG91b] (thermal capillary length)

• D = 1.13 · 105 µm2

s [RG91a], [RG91b] (thermal diffusivity)

• β = 0.075 [MSL90], [RG91a], [RG91b]

• Pr = 23.03 [Sch99]

• γ = 8.9 · 10−3 J
m2 [RG91b], [TA00]

• ν = 26 · 105 µm2

s [TA00].

In the flowless case (P3 = 0), we reproduce the eigenvalue b = 0.6122 of Brener
[BM91] and Tanveer [Tan89]. For succinonitrile with β = 0.075, this is equivalent to
σ = 0.0254, which deviates somewhat from the experimental value σ = 0.0195 [HG81].
A reason for this deviation can be inaccuracies in the measurements of the anisotropy
strength. Moreover, the eigenvalue might be corrected by including kinetic effects into
the theory (see section 4.5).
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Figure 3.8.: Double logarithmic plot of a) the growth velocity V and b) the dendrite tip

curvature radius ρ as functions of the forced Oseen flow velocity U determined

numerically from equations (3.43) and (3.62) for succinonitrile (SCN, β =

0.075 [RG91a]) at different values of the dimensionless undercooling ∆

Figure 3.8 shows the calculated variables V and ρ as functions of U in the range
57 . . . 7580µm/s, corresponding to Pf = 0.1 . . . 1. The datasets are plotted for different
undercoolings. The highest undercooling in use here is ∆ = 0.04 =̂ 0.92 K, which is
moderate from an experimental point of view. The double logarithmic plots reveal a
power law behaviour. The approximate scaling laws

V ∝ U2/3

ρ ∝ U−1/3

(3.79a)

(3.79b)

are found. These laws are the same as in the case of a potential flow approximation
(see eq. (3.31a), (3.31b)). In the Oseen flow case, they were derived analytically only
for Pf � 1 in the preceding subsection. But for the moderate flow Péclet numbers
used here (Pf = 0.1 . . . 1 as noted above), there is no purely analytical justification of
the power laws (3.79a)-(3.79b), because the Ivantsov condition (3.43) does not simplify
enough in the limit Pf ã � Pc [vKK14]. The results require the analytical and the nu-
merical part of the method. The exact values of the scaling exponents determined from
least-square fits to the data in figure 3.8 are given in table 3.1. The scaling laws depend
only slightly on the undercooling in the probed range of ∆ = 0.01 . . . 0.04. However,
at larger values of ∆, say ∆ > 0.5, they might change significantly. A tendency to this
effect is visible in the table. This effect should be investigated in more detail in future
work. However, at such large ∆, equation (3.43) yields Pc > Pf ã even for moderate
Pf , and equation (3.62) will have to be rederived for arbitrary Pc.

If the scalings (3.79a) and (3.79b) were exact, the stability parameter would be com-
pletely independent of the forced flow velocity U . However, they are only approx-
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Table 3.1.: Scaling exponents of the growth velocity V and the dendrite

tip curvature radius ρ as functions of the forced Oseen flow

velocity U determined from least-square fits to the data in

figure 3.8 for succinonitrile at different values of the dimen-

sionless undercooling ∆.

∆ scaling exponent of V scaling exponent of ρ
0.01 0.6741 -0.3340
0.02 0.6696 -0.3310
0.03 0.6650 -0.3279
0.04 0.6601 -0.3246

imate. In the probed range, σ varies between 0.025 . . . 0.0253. This is a variation of
about 1.2 % corresponding to a change in U of more than one order of magnitude.
For the largest value of U (at Pf = 1.0), σ is decreased by about 1.6 % relative to its
value in the flowless case. This is in rather good agreement with the dynamical phase
field simulations of Tönhardt and Amberg [TA00], where a variation of σ of about 2 %
is observed independently of the undercooling. They simulate natural convection in-
stead of a forced flow. But they find maximum local flow velocities of U ≈ 190× V (at
∆ = 0.02), which is comparable to this work. Thus, the dependence of σ on the flow
is marginal, but our calculations grant access to it. This can also be seen in the local
equation (3.62), where we have kept the flow term proportional to P3. P3 contains the
asymptotically small factor σα, but it can be made finite by assuming Pf ∼ σ−α.

At higher flow Péclet numbers Pf ' 102, where a comparison to the convective
succinonitrile experiments of Lee et al. [LAG93] could be made, we expect a larger
change of σ as a function of U and a decrease in absolute values of the scaling expo-
nents in (3.79a) and (3.79b). This can be seen from the following brief consideration:
As noted above, σ decreases with increasing U . If this dependence becomes significant
and if a power law behaviour of the form σ ∼ U−ε̃ with ε̃ > 0 is assumed, then the
result is V ∼ U (2−ε̃)/3 and ρ ∼ U−(1−2ε̃)/3. Unfortunately, we do not obtain numerical
convergence in this regime. The experiments of Lee et al. were carried out with pure
succinonitrile. Microscopic solvability theory based on capillary effects is known to
yield more realistic results in this material than in pivalic acid. But Lee used extremely
high forced flow velocities of up to U = 1 cm

s . This made a comparison impossible.
The numerical procedure of this work needs to be extended to additional parameter
regimes (e. g. Pf � 1). Future experiments should be carried out with pure substances
such as succinonitrile and forced flow velocities in the range of thermal convection (i.e.
U ≈ 10 µm

s ). A reliable value of the anisotropy strength β should be determined and a
behaviour as displayed in figure 3.8 could be reproduced or disproved.

It should be noted, that a weak dependence of σ on Pf does not mean a weak depen-
dence of either the growth velocity V or the tip curvature radius ρ on the externally
imposed flow velocity U . The introduction of a flow changes the relationship between
the undercooling and Pc via (3.43). Since Pc depends on both ∆ and Pf , the same un-
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dercooling ∆ will lead to a different value of Pc in the absence and in the presence of
flow. As long as σ is changed only slightly, ρ will change inversely proportional to the
change of Pc due to equation (1.24) and with ρ changing and σ ≈ const., V must of
course also change, given that ρ2V ≈ const. according to equation (1.24).

Figure 3.9 shows the reciprocal stability parameter 1/σ as a function of the quantity
χ̃11/14 with the dimensionless flow parameter χ̃ = ãUd0/(β

3/4ρV ). It is a monoton-
ically increasing function approaching the flowless case value as U → 0. The graph
turns out to be independent of the undercooling. In the limit Pf ã� Pc, Bouissou and
Pelcé predict the scaling law[BP89]

1

σ
∝ χ̃ 11

14 . (3.80)

The explicit dependence is given by equation (1.37). Their work was extended for ar-
bitrary growth Péclet numbers Pc by Alexandrov and Galenko [AG13]. For χ̃11/14 >

0.006, we have Pf ã > 10Pc and the solid graph in figure 3.9 should be a straight line
if the theories are to agree. At χ̃11/14 > 0.032, the graph becomes almost linear and
theories agree well. The dash-dotted line results from a least-squares fit in this region
yielding a slope of 16.80, and hence the numerical constant from equation (1.37) is
b̃ = 16.80

8 × β7/4 ≈ 0.0226 for succinonitrile. For χ̃11/14 < 0.032, we observe a slightly
curved graph. Thus, the results of the current work deviate from the scaling law (3.80)
of Bouissou and Pelcé at smaller flow Péclet numbers Pf . When χ̃11/14 becomes sig-
nificantly smaller than 0.006, equation (3.62) is less accurate.

We cannot compare our theory quantitatively with the numerical simulations of
Medvedev et al. [MFK06], because they find stability parameters of about σ ≈ 0.1.



76 3. Convective problems

In this range, σ2/7 ≈ 1
2 cannot be considered an asymptotically small parameter for a

perturbation technique. But the analytic theory of this work is restricted to asymptoti-
cally small σ.

In order to compare the theory in this work to experiments carried out with solu-
tions, we need to make some considerations first: The growth process is then governed
by impurity diffusion instead of thermal diffusion. We follow K. Kassner [Kas96] and
write down the following chemical model:

field equations:

D∆µl =
∂µl

∂t
+ (~w · ~∇)µl in the liquid

D∆µs =
∂µs

∂t
in the solid

interface conditions:

µs = µl continuity

µs = µeq −
γκ

∆c
local equilibrium

V ~ey · ~n = D
(
~∇µs − ~∇µl

)
· ~n Stefan condition.

(3.81a)

(3.81b)

(3.82a)

(3.82b)

(3.82c)

Here, the chemical potential µ is the relevant field quantity. µeq is the equilibrium
value at the phase transition and ∆c is the miscibility gap at concentration c. D is the
impurity diffusivity here. The flow velocity field can be calculated from the Oseen
equation (3.35) with interface conditions (1.13a)-(1.13b). The dimensionless chemical
potential field

u =
1

Pc

µ− µeq

∆c ∂µ∂c
(3.83)

is introduced. The capillary length is set d0 = γ
/(

(∆c)2 ∂µ
∂c

)
. The time, the flow

velocity as well as all lengths are scaled as given in section 2.1. Moreover, a moving
frame of reference is used, moving along with the dendrite, which is assumed to grow
at constant velocity V :

field equations:

∆ul − (~w · ~∇)ul = 0 in the liquid

∆us + Pc(~ey · ~∇)us = 0 in the solid

interface conditions:

us = ul continuity

us = −1

2
σκa(θ) local equilibrium

~ey · ~n =
(
~∇us − ~∇ul

)
· ~n Stefan condition.

(3.84a)

(3.84b)

(3.85a)

(3.85b)

(3.85c)

By renaming u → T , this model becomes mathematically equivalent to the thermal
model used in this chapter. The calculations and equations from the preceding sec-
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Figure 3.10.: Oseen flow: Comparison to experiments with two-component systems; de-

nominator ρ2V of the stability parameter as a function of the forced flow velocity U , a) 2 %

ethanol in pivalic acid at ∆ = 0.0169, β = 0.09, d0 = 32 Å to be compared to [BPT89]

(circles and dash-dotted line), b) solid line: 51 % NH4Br solution in water at ∆ = 0.01,

circles: measured data for 43 % NH4Br solution in water from the experiments of Emsellem

and Tabeling [ET95]

tions can be used. However, an issue about the chemical model has to be noted: The
impurity diffusivity is known to be orders of magnitude smaller in the solid phase
than in the liquid phase [Lan87]. Assuming D to be equal in both domains is a much
rougher approximation in the chemical model than in the thermal model. Strictly
speaking, a one-sided model would have to be used, where the heat balance term
corresponding to us in the Stefan condition (3.85c) is dropped. In summary, the follow-
ing statements concerning the comparison between this work and experiments with
two-component systems should rather be considered as an estimate. An alternative
approach for convective systems is exhibited in a recent theoretical article by Alexan-
drov et al. [AGH10], which constitutes an extension of the linear-stability-analysis-
based work of Bouissou and Pelcé [BP89] to binary systems.

There is no good agreement between this work and the experiments by Bouissou et
al. carried out with pivalic acid [BPT89] (see fig. 3.10a). They use 2 % - 4 % ethanol
in their pivalic-acid-based working substance. Here things are compared to their 2 %-
results. Thus, D was set to 250 µm2

s and d0 was now set to 32 Å for the calculation
of the data (the pure substance value is 37.6 Å [RG91a]). It can be seen, that we are
in the right range. However, one cannot say, that there is a good agreement between
theory and experiment at this point. Our data varies much less with U than the ex-
periments imply. ρ2V exhibits a relatively marginal dependence on the forced flow
velocity despite Pf ã � Pc. Thus, an imposed flow far ahead of the interface has al-
most no impact on the eigenvalue in the considered parameter range. In this respect,
the potential flow yields better results for the pivalic acid solution, although it is sup-
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posed to be the less accurate approximation. The discrepancy might occur partially
because of kinetic interface effects, which were neglected. This is discussed in more
detail for the flowless case in section 4.5. Moreover, the real flow velocity field may
deviate considerably from the approximations used here. In addition to that, as men-
tioned above, the experiments in [BPT89] do not exactly realize the situation described
in this work. Impurity diffusion is much slower in the solid than it was assumed here,
and the solution in the solid probably deviates from the real situation. This is another
reason for the discrepancies.

In contrast to that, there is decent agreement between this work and the experiments
of Emsellem et al. carried out using a 43 % ammonium bromide (NH4Br) solution in
water at an undercooling of ∆ ≈ 0.01 [ET95] (fig. 3.10b). The numerical data is cal-
culated for 51 % NH4Br solution in water by weight (because it seems like Emsellem
et al. simply have not measured D and d0 for their concentration). Additional ex-
perimental work on dendritic growth in this substance can be found in [HS82]. The
viscosity of the solution does not differ much from that of pure water at 25 ◦C. Despite
the finite difference between the concentrations used in the calculation and the exper-
iment, there is rather good agreement in the plotted range. The fact that microscopic
solvability theory yields more realistic results for NH4Br and works worse for pivalic
acid and succinonitrile has already been mentioned before [MLC92]. We find, that ρ2V

is almost constant at 7.52 µm3

s . Accordingly, the forced flow has nearly no effect on the
selected stability parameter σ because P3 � 1 in our data. The important material pa-
rameters of ammonium bromide are shown below. For an overview over the material
parameters of all the substances considered in this work, see appendix C.

ammonium bromide (NH4Br) solution in water:

• β = 0.24 [DG88]

• D = 2600µm2/s [DG88]

• d0 = 0.28nm [DG88]





for 51 % NH4Br solution in water by weight

• ν = 8.931 · 105 µm2/s [ET95] taken from pure water at 25 ◦C

• Pr = 343.5 ν/D from the values above

Finally, the question about the applicability of the Oseen approximation remains
open because, as mentioned above, for experimentally relevant substances, pivalic
acid as well as succinonitrile, at ∆ � 1 we are in the limit Pf ã � Pc. This is the
very limiting case, in which the zeroth order approximation to the flow velocity field
is expected to become inaccurate. Despite Pf ã� Pc, we do not see a large effect of the
forced flow. But if we had taken into account the terms of Pc/Pr at each stage of the cal-
culations, we would have ended up in the case of arbitrary growth Péclet numbers in
the Zauderer scheme, which is not what we wanted to consider here. This is discussed
separately for the flowless case in section 4.4.
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4. Extended heat transport properties

4.1. Nonlinear diffusion

4.1.1. Ivantsov solution for dendritic growth in a system with

temperature-dependent thermal diffusivity

Dendritic growth with a temperature-dependent thermal diffusivity D(T ) was con-
sidered by Kurtze [Kur87]. He reduced the free boundary problem to the solution of
one single one-dimensional ordinary differential equation. D(T ) is now a function of
the dimensionless temperature. It is factorized into a constant dimensional part and a
dimensionless function fD of T .

D(T ) = D · fD(T ) (4.1)

Neglecting convection, the diffusion equation (1.8a) is used to describe heat transport
in the liquid and in the solid domain. I.e. we treat both phases symmetrically. Re-
garding the factorization (4.1) and applying the product rule on the right hand side of
(1.8a), one finds the dimensionless equation

f ′D

∣∣∣~∇T
∣∣∣
2

+ fD∆T + Pc

(
~ey · ~∇

)
T = 0 (4.2)

with the Pc -term resulting from the moving frame of reference attached to the in-
terface. Again, we look for stationary solutions in this frame. The prime denotes the
derivative with respect to the dimensionless temperature T . Equation (4.2) is nonlinear
and therefore, its solution might constitute an unsurmountable obstacle. The bound-
ary conditions (1.9a)-(1.9c) are rewritten using the non-dimensionalizations from sec-
tion 2.1, neglecting the kinetic term. Subsequently, the equations, including (4.2), are
transformed to conformal parabolic coordinates and we find a convenient form of the
problem to be investigated in this section:

diffusion equation:

0 = f ′D
(
T 2
ξ + T 2

η

)
+ fD (Tξξ + Tηη) + Pc (ηTη − ξTξ) in both phases

interface conditions:

T l = T s continuity

T s = −1

2
σκa(θ) Gibbs-Thomson

[ξηs]
′ = fD(T )

(
∂η − η′s∂ξ

) (
T s − T l

)
Stefan condition.

(4.3)

(4.4a)

(4.4b)

(4.4c)



80 4. Extended heat transport properties

Looking for a similarity solution to the problem (4.3)-(4.4c) in the case of vanishing
surface tension (σ = 0), we require T = T (η). Equation (4.3) becomes

0 =
d

dη
(fDTη) + Pc ηTη (4.5)

in the liquid. The boundary conditions (4.4b) and (4.4c) read T (1) = 0 and Tη(1) =

−1/fD(0) respectively. Setting the solid isothermal (T s,Iv = 0), the continuity condition
(4.4a) is fulfilled automatically. After dividing both sides by fD, (4.5) can be solved by
separation of variables,

T Iv(η) = −
η∫

1

1

fD
(
T Iv(η′)

) exp

(
−Pc

η′∫

1

η′′

fD
(
T Iv(η′′)

)dη′′

)
dη′ . (4.6)

This already fulfills the boundary conditions. It is an implicit form of the solution. For
a given algebraic form of fD(T ), equation (4.5) might not be integrable in every case
due to its nonlinearity. The Ivantsov condition is

∆ =

∞∫

1

Pc

fD
(
T Iv(η′)

) exp

(
−Pc

η′∫

1

η′′

fD
(
T Iv(η′′)

)dη′′

)
dη′ . (4.7)

In order to obtain a temperature field correction at finite σ, we make the transition
T → T + T Iv and the function fD

(
T + T Iv) is expanded in a Taylor series about T Iv:

fD
(
T + T Iv) = fD

(
T Iv)+ f ′D

(
T Iv)T . (4.8)

From here on, we will use the short forms

fD
(
T Iv) = f0 f ′D

(
T Iv) = f ′0 (4.9)

for fD
(
T Iv) and f ′D

(
T Iv). The expanded diffusion equation is derived starting from

the non-dimensional form of (4.2) in the moving frame of reference:

0 = Pc(~ey · ~∇)
(
T + T Iv)+ ~∇

(
(f0 + f ′0T )~∇

(
T + T Iv))

= Pc(~ey · ~∇)
(
T + T Iv)+ (f0 + f ′0T )∆

(
T + T Iv)

+
(
f ′0~∇T Iv + f ′′0 T ~∇T Iv + f ′0~∇T

)
~∇
(
T + T Iv)

= Pc(~ey · ~∇)
(
T + T Iv)+ (f0 + f ′0T )∆

(
T + T Iv)

+ f ′0
∣∣~∇
(
T + T Iv)∣∣2 + Tf ′′0

(∣∣~∇T Iv∣∣2 + ~∇T · ~∇T Iv
)

⇒ 0 = Pc

(
η
(
Tη + T Iv

η

)
− ξTξ

)
+ (f0 + f ′0T )

(
Tξξ + Tηη + T Iv

ηη

)

+ f ′0

(
T 2
ξ + T 2

η + 2TηT
Iv
η + T Iv 2

η

)
+ Tf ′′0

(
T Iv 2
η + TηT

Iv
η

)

= Pc (ηTη − ξTξ) + (f0 + f ′0T ) (Tξξ + Tηη)

+ f ′0

(
T 2
ξ + T 2

η + 2TηT
Iv
η + TT Iv

ηη

)
+ Tf ′′0

(
T Iv 2
η + TηT

Iv
η

)

+
���

���
���

���
�:=0 (see (4.5))

PcηT
Iv
η + f ′0T

Iv 2
η + f0T

Iv
ηη .
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Hence, the expanded diffusion equation is

0 = Pc (ηTη − ξTξ) + (f0 + f ′0T ) (Tξξ + Tηη)

+ f ′0

(
T 2
ξ + T 2

η + 2TηT
Iv
η + TT Iv

ηη

)
+ Tf ′′0

(
T Iv 2
η + TηT

Iv
η

) (4.10)

in both phases. The interface is now located at ηs = 1 + h(ξ). T Iv(1 + h) and T Iv
η (1 + h)

in the liquid are expanded in a Taylor series about η = 1. The boundary conditions
(3.10b) and (3.10d) can be used. Because of T Iv(1) = 0 and T Iv

η (1) = −1/fD(0), the
expanded continuity condition is

T l = T s +
h

fD(0)
. (4.11)

Now the Stefan condition (4.4c) is expanded:

ξh′ + 1 + h =
(
fD(0) + f ′D(0)T

) [(
∂η − h′∂ξ

) (
T s − T l

)
− T Iv

η (1)− T Iv
ηη(1)h

]
.

From (4.5), we find

T Iv
ηη(1) = − 1

fD(0)

(
f ′D(0)T Iv 2

η (1) + PcT
Iv
η (1)

)
= − 1

fD(0)

(
f ′D(0)

f2
D(0)

− Pc
fD(0)

)
.

This is inserted into the expanded Stefan condition and after eliminating the 1 on the
left hand side with the −fD(0)T Iv

η (1)-term from the right hand side, we arrive at

[ξh]′ =
(
fD(0) + f ′D(0)T

) (
∂η − h′∂ξ

) (
T s − T l

)

+
f ′D(0)

fD(0)
T +

h

f2
D(0)

(
f ′D(0)− PcfD(0)

) (4.12)

for the expanded Stefan condition. Terms of the order O(Th) were neglected here.

4.1.2. Continuation to the complex plane and asymptotic decomposition

(nonlinear Diffusion)

We would like to decompose equation (4.10) with conditions (4.11)-(4.12), (3.10b) and
(3.10d) à la Zauderer. In contrast to section 2.2, we employ the three-component vari-
able and the corresponding 3× 3-matrices

~ϑ = (Tξ, Tη, T )T (4.13)

E =




0 1 0

−1 0 0

0 0 1


 F =



−u2 −v2 −w2

0 0 0

−1 −1 0


 (4.14)

instead of two-dimensional quanities to write (4.10) as a first order system.

~ϑξ + E~ϑη + F ~ϑ = 0 (4.15)
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The functions u2, v2 and w2 in F are obtained by rearranging the nonlinear equation
(4.10). w2 must contain all expressions multiplying T . Then, Tξ and Tη must be factored
out in the remaining terms for u2 and v2 respectively:

u2 = − 1

f0 + f ′0T

(
f ′0Tξ − Pcξ

)
(4.16a)

v2 = − 1

f0 + f ′0T

(
f ′0Tη + Pcη + 2f ′0T

Iv
η

)
(4.16b)

w2 = − 1

f0 + f ′0T

(
f ′0T

Iv
ηη + f ′′0 T

Iv 2
η + f ′′0 TηT

Iv
η

)
. (4.16c)

The eigenvectors ~r3,4,5 of E, corresponding to the eigenvalues i, −i and 1 respectively,

~r3 =



−i

1

0


 ~r4 =




i

1

0


 ~r5 =




0

0

1


 (4.17)

are used to expand ~ϑ in the liquid and in the solid:

~ϑ = M~r3 + εN~r4 +Q~r5 , (4.18a)
~ϑs = εM s~r3 +N s~r4 +Qs~r5 . (4.18b)

These linear combinations contain the identity Q = T . Then, from the Gibbs-Thomson
condition (3.10b) it is obvious, that Q must diverge at the singularity at ξ = −i. For
this reason, it must not be multiplied by a factor ε in (4.18a) and (4.18b). However, the
derivatives Tξ and Tη diverge faster than Q at the singularity. (4.18a), (4.18b) are in-
serted into (4.15), and after the scale transformation ξ, η → εξ, εη the equation becomes

(Mξ + iMη)~r3 + ε(Nξ − iNη)~r4 + (Qξ +Qη)~r5 + εFM~r3 + εFQ~r5 = 0 (4.19a)

ε(M s
ξ + iM s

η )~r3 + (N s
ξ − iN s

η )~r4 + (Qsξ +Qsη)~r5 + εFN s~r4 + εFQs~r5 = 0 (4.19b)

in the liquid and in the solid respectively, neglecting terms of the orderO(ε2). Equation
(4.19a) is projected onto the invariant subspaces of E. The corresponding projection
operators are

P3 =
1

2




1 −i 0

i 1 0

0 0 0


 , P4 =

1

2




1 i 0

−i 1 0

0 0 0


 , P5 =




0 0 0

0 0 0

0 0 1


 . (4.20)

We use use the formulas

P3F~r3 = −1

2
(u2 + iv2)~r3 P4F~r3 =

1

2
(u2 + iv2)~r4 P5F~r3 = (i− 1)~r5 (4.21a)

P3F~r5 = − i

2
w2~r3 P4F~r5 =

i

2
w2~r4 P5F~r5 = 0 (4.21b)
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and find after projection and returning to the original scale

Mξ + iMη =
1

2
(u2 + iv2)M +

i

2
w2Q (4.22a)

Nξ − iNη = −1

2
(u2 + iv2)M − i

2
w2Q (4.22b)

Qξ +Qη = (1− i)M (4.22c)

in the liquid. Equations (4.16a)-(4.16b) are used to write the function u2 +iv2 explicitly:

u2 + iv2 = − 1

f0 + f ′0T

[
−Pc(ξ − iη) + 2if ′0T

Iv
η + f ′0 (Tξ + iTη)

]
.

The linear combination (4.18a) leads to Tξ = −i(M − N) and Tη = M + N . Thus,
Tξ + iTη = 2iN can be inserted into u2 + iv2 and Tη = M +N is used in w2 from (4.16c).
Furthermore, in w2 the identity f ′0T

Iv
ηη+f ′′0 T

Iv 2
η = d

dη

(
f ′0T

Iv
η

)
is used. Equations (4.22a)-

(4.22b) become

Mξ + iMη =
1

f0 + f ′0Q

[ (
Pc
2

(ξ − iη)− if ′0

(
N + T Iv

η

))
M

− i

2

(
f ′′0 T

Iv
η (M +N) +

d

dη

(
f ′0T

Iv
η

))
Q

]
, (4.23a)

Nξ − iNη = − 1

f0 + f ′0Q

[ (
Pc
2

(ξ − iη)− if ′0

(
N + T Iv

η

))
M

− i

2

(
f ′′0 T

Iv
η (M +N) +

d

dη

(
f ′0T

Iv
η

))
Q

]
. (4.23b)

The coupled system of differential equations (4.23a)-(4.23b) and (4.22c) is nonlinear
and searching for an analytical solution is quite futile. However, things can be sim-
plified to a certain amount. First, we take the limit Pc → 0 as in chapter 3, where
dendritic growth with convection is treated. Second, we neglect nonlinear terms. This
leaves us with equations, which are not correct up to the first order in σ2/7 anymore.
But the effect of the nonlinear diffusion is still present, because the function f ′0 is kept,
multiplying the derivative T Iv

η of the solution of the unperturbed problem,

Mξ + iMη = − i

f0

[
f ′0T

Iv
η M +

1

2

d

dη

(
f ′0T

Iv
η

)
Q

]
,

Nξ − iNη =
i

f0

[
f ′0T

Iv
η M +

1

2

d

dη

(
f ′0T

Iv
η

)
Q

]
.

(4.24a)

(4.24b)

For constant D, we recover (2.22a) and (2.22b). The system (4.24a)-(4.24b), (4.22c) de-
termines the approximate temperature field correction in the liquid. The correspond-
ing equations in the solid can be derived analogously by applying P3,4,5 from the left
to equation (4.19b). But it is not clear, how the system (4.24a)-(4.24b), (4.22c) can be
solved. Despite the linearization and the limit Pc → 0, the equations are still cou-
pled. This problem will not disappear, if the temperature dependence of the thermal
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diffusivity is given explicitly. For instance, assuming the linear limit fD(T ) ∝ T , the
Ivantsov integral remains analytically unsolvable and the issue persists. And even if
a solution could be found, the boundary conditions (4.11)-(4.12), (3.10b) and (3.10d)
would have to be decomposed and applied subsequently, which would constitute an-
other mathematical obstacle, since there are six coefficient functions to be dealt with
here. In summary, the decomposed equations for the temperature field correction were
derived here, but a dendritic growth mode in systems with nonlinear diffusion cannot
be determined in this work. To progress further, an expansion for small deviations
from D(T ) = const. could be tried.

4.2. Thermal resistance at the two-phase boundary

A finite thermal resistance at the interface of the crystal shall be investigated in this
section. Its effect on dendritic growth is negligible in common substances and at com-
mon working temperatures. However, its influence may be significant in systems such
as liquid 3He [GBR89] or alloys at superfluid helium temperatures [PFJ+12]. Imagine
a copper block immersed in liquid helium. The block is heated with constant power P ,
and it takes an equilibrium temperature T1, after the heat fluxes have balanced. Now,
a second copper block is dipped into the fluid without external heating. Heat from
the first block flows through the fluid to the second block, which takes a steady-state
temperature T2. The system is illustrated in figure 4.1. Since T2 remains smaller than
T1 even after long times, there must be some thermal resistance RK = (T1 − T2)/P

in the system. Surprisingly enough, the equilibrium temperature T2 turns out to be
independent of the distance d between the two copper blocks. Thus, the thermal re-
sistance cannot result from the fluid, but it must be an effect of the phase boundary.
The phenomenon is also referred to as Kapitza effect. It influences the dendritic growth
mode, and the model equations from section 1.1 must be altered. The phases can-
not be treated symmetrically anymore, because the thermal diffusivity Ds in the solid
is significantly larger than the thermal diffusivity Dl in liquid 3He 1. Their ratio is
µK = Ds/Dl ≈ 220 at T = 0.1 K [RBG94]. This fact is unusual, but at the interface an
effective ratio can be introduced, which is less than unity, because according to Graner,
Bowley and Nozières [GBN90] and Balibar, Edwards and Saam [BES91], all latent heat
is released into the liquid, and this latent heat has to overcome the thermal resistance
before it can diffuse into the solid [RBG94]. Allowing for different thermal diffusivities
complicates the problem mathematically. For that reason, convection is neglected in
this section, since we are interested in solving a model, which is as simple as possible
(but as accurate as necessary). Yet, flow effects should be more or less easy to consider,
if the helium is superfluid, because a mere potential flow is a good approximation in
this system due to the vanishing viscosity.

1Note, that it is the other way around in superfluid 3He, where Dl is much larger than Ds.



4.2. Thermal resistance at the two-phase boundary 85

liquid 3He

T2T1

heating power P

d

heat flux

Figure 4.1.: Two copper blocks immersed in a liquid 3He bath. The

heating of block 1 with constant power P causes a heat flux

to block 2 at distance d. In equilibrium, one has T1 > T2

due to the thermal resistance at the copper-3He interfaces.

4.2.1. Ivantsov solution for dendritic growth with thermal interface

resistance

In a frame of reference moving at constant growth velocity V ~ey, the dimensionless and
convection-free forms of the bulk equations (1.8a) and (1.8b) read

∆T l + Pc(~ey · ~∇)T l = 0 in the liquid (4.25a)

µK∆T s + Pc(~ey · ~∇)T s = 0 in the solid (4.25b)

with Pc = ρV/Dl. Again, the non-dimensionalizations can be found in section 2.1. Due
to the thermal resistance, the temperature is not continuous at the two-phase boundary
anymore. The (dimensional) temperature difference at the interface is

T l − T s = RK(JE − λ̃J) (4.26)

with the total heat current JE = Qs +TSsJ = Ql +TSlJ through the interface and the
mass current J through the interface [CN80]. Here, Qs,l are the conductive heat flows
in the solid and the liquid phases respectively, and Ss,l are the entropies of each phase
[RBG94]. JE is inserted into the temperature difference:

T l − T s = RK

[
Qs + (TSs − λ̃)J

]
. (4.27)

The coefficient λ̃ determines, which fraction of each entropy is liberated or absorbed
on each side of the interface. Since all latent heat is released into the liquid, the cross
coefficient is λ̃ = TSs, and onlyRKQs remains on the right hand side of (4.27) [RBG94].
The conductive heat flow in the solid isQs = Ks

~∇T s·~nwith the solid heat conductivity
Ks = %mcDs. The interface unit normal vector ~n points into the liquid again. The
dimensionless boundary conditions read:

T l − T s = γK ~∇T s · ~n therm. discontinuity (4.28a)

T l = −1

2
σκa(θ) Gibbs-Thomson (4.28b)

~ey · ~n =
(
µK ~∇T s − ~∇T l

)
· ~n asymmetric Stefan condition. (4.28c)
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Besides, far ahead of the interface, a fixed undercooling is required again: T l →
−∆/Pc. The parameter group γK is defined by

γK =
RKKs

ρ
=
RKKs σPc

2d0
(4.29)

where RK is the Kapitza resistance measured in units of K ·m2/W . Rolley et al. esti-
mated RKKs ≈ 3mm for liquid 3He at T = 0.1 K [RBG94]. There is no ~∇T l-term on
the right hand side of (4.28a) because of the cross coefficient λ̃ = TSs. Kinetic effects
were neglected in the Gibbs-Thomson condition (4.28b). The important material pa-
rameters of 3He are shown below.

liquid 3He at T=0.1 K:

• β = 0.3 [RBG94]

• d0 = 3.8nm [RBG94]

• γ = 6 · 10−5 J
m2 [RBG86]

• Dl = 5.46 · 104 µm2

s [Gre84]

• c = 719 J
kg·K [Gre83]

• RK = 1 cm2·K
W [GBR89]

• RKKs = 3000µm [RBG94]

• µK = 220 [RBG94], [Gre84]

• TM = 0.32K [RBG94]

The equation for the shape correction function is calculated in cartesian and parabo-
lic coordinates in this section. Therefore, we started with cartesian model equations.
In parabolic coordinates, the model (4.25a)-(4.25b), (4.28a)-(4.28c) reads

field equations:

T lξξ + T lηη + Pc(ηT
l
η − ξT lξ) = 0 in the liquid

µK(T sξξ + T sηη) + Pc(ηT
s
η − ξT sξ ) = 0 in the solid

interface conditions:

(T l − T s)
√

(ξ2 + η2
s)(1 + η′2s ) = γK

(
T sη − η′sT sξ

)
therm. discontinuity

T l = −1

2
σκa(θ) Gibbs-Thomson

[ξηs]
′ =

(
∂η − η′s∂ξ

) (
µKT

s − T l
)

asym. Stefan.

(4.30a)

(4.30b)

(4.31a)

(4.31b)

(4.31c)

In the experiments of Rolley et al. [RBG94], the time scale of heat transport in the
solid was much shorter than that of the growth process itself. I.e. the latent heat in the
solid was removed almost instantly causing any thermal gradients in this domain to
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be very small. Thus, assuming the solid to be isothermal is not a bad approximation.
For σ = 0, the temperature depends only on η. Using this information, the form

T l,Iv(η) = −
η∫

1

e−
Pc
2

(ω2−1)dω (4.32)

is a solution to equation (4.30a), and it already fulfills the interface conditions (4.31a)-
(4.31c). Similar calculations were carried out in subsection 3.1.1. The temperature in
the whole solid domain is just T s,Iv = 0. Taking into account the far field boundary
condition, the Ivantsov condition (1.17) holds. This would be more complicated, if a
~∇T l-term was taken into account on the right hand side of the thermal discontinuity
condition (4.28a).

The model equations are expanded about the isothermal interface solution (4.32).
The bulk equations are linear and apply to all orders of the perturbation solution. We
take the limit Pc → 0,

T l,sξξ + T l,sηη = 0 . (4.33)

Again, setting ηs = 1 + h(ξ) and T → T + T Iv, the solution (4.32) and its derivative are
expanded about η = 1:

T l,Iv(1 + h) ≈
�
�
�
�>

=0

T l,Iv(1) +

=−1︷ ︸︸ ︷
T l,Ivη (1)h = −h , (4.34a)

T l,Ivη (1 + h) ≈ T l,Ivη (1)
︸ ︷︷ ︸

=−1

+

�
�
�
���
∝Pc

dT l,Ivη

dη

∣∣∣∣∣
1

h ≈ −1 . (4.34b)

Inserting into (4.31a)-(4.31c) yields

(T l − T s − h)
√(

ξ2 + (1 + h)2
)
(1 + h′2)

= γK
(
T sη − h′T sξ

) therm. discontinuity (4.35a)

T l = −1

2
σκa(θ) + h Gibbs-Thomson (4.35b)

[ξh]′ =
(
∂η − h′∂ξ

) (
µKT

s − T l
)

asym. Stefan. (4.35c)

The system (4.33), (4.35a)-(4.35c) determines the correction to the temperature field.

4.2.2. Shape equation in parabolic and cartesian coordinates for dendritic

growth with finite thermal resistance

As discussed in section 2.2, in the case of purely diffusive heat transport and vanishing
growth Péclet number Pc , we may use

T lξ = −iT lη (4.36a)

T sξ = iT sη (4.36b)

close to ξ = −i, because (4.33) is a Laplace equation. We do not need to calculate
the solutions explicitly. Equations (4.36a) and (4.36b) provide enough information to
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eliminate T l,s and its derivatives from the system of interface equations (4.35a)-(4.35c).
T l,sη in (4.35c) is replaced using (4.36a) and (4.36b). One finds

i [ξh]′ = µK(1− ih′)T sξ + (1 + ih′)T lξ . (4.37)

Taking the total derivative along the interface of equation (4.35b), we find

dT l

dξ
= T lξ + h′T lη = (1 + ih′)T lξ = −1

2
σ[κa]′ + h′ . (4.38)

This is used to replace (1 + ih′)T lξ in (4.37),

(1− ih′)T sξ =
1

µK

[
−[(1− iξ)h]′ +

1

2
σ[κa]′

]
. (4.39)

Since
(1− ih′)T sξ = T sξ + h′T sη =

dT s

dξ
, (4.40)

(4.39) can be integrated directly,

T s =
1

µK

[
−(1− iξ)h+

1

2
σκa(θ)

]
. (4.41)

Now, everything can be put into (4.35a): On the RHS

γK
(
T sη − h′T sξ

)
= −iγK(1− ih′)T sξ ,

(4.39) is inserted. On the LHS, T l − h is replaced using the Gibbs-Thomson condition
(4.35b) and T s is replaced using (4.41),

iγK

[
1

2
σκa(θ) − (1− iξ)h

]′

=
√

(ξ2 + (1 + h)2)(1 + h′2)

[
1

2
σκa(θ)(1 + µK)− (1− iξ)h

]
.

(4.42)

This is the shape equation determining the correction function h(ξ). The analogon of
equation (4.42) in cartesian coordinates reads

iγK

[
1

2
σκa(θ)− (1− ix)ζ

1 + x2

]′
+ γK

(3− x2)x

(1 + x2)3
ζζ ′

=
√

1 + y′2s

[
1

2
σκa(θ)(1 + µK)− (1− ix)ζ

1 + x2

]
(4.43)

with the interface position ys = 1
2(1−x2)+ζ(x). In cartesian coordinates, the curvature

κ and the fourfold anisotropy function a(θ) are

κ = − y′′s
(1 + y′2s )3/2

, (4.44)

a(θ) = 1− β
[
1− 8

y′2s
(1 + y′2s )2

]
. (4.45)
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The derivation of (4.43) and (4.44)-(4.45) can be found in appendix A.3. Note, that a
form of (4.43) was also derived by Fischaleck [Fis08]. It is equation (7.17) in the cited
work. However, the algebraic sign of the first term on the LHS of (4.43) is different.
The reason is that Fischaleck uses a wrong form of the thermal discontinuity condition
from his subsection 7.1.1 on. In addition to that, the nonlinear term on the LHS of
(4.43) does not appear in [Fis08], because in the cited work the expanded form of the
Stefan condition was linearized in terms of ζ and its derivatives.

The stretching transformation ξ = −i(1 − σαt), h(ξ) = σαφ(t) is used in equation
(4.42). Some useful formulas can be found in the analogue transformation in the po-
tential flow problem (see appendix A.1.4). In particular, the transformed versions of κ
and a(θ) are given in equations (A.24) and (A.23) respectively. We find

√(
ξ2 + (1 + h)2

)
(1 + h′2) ≈ σ α2

√
1− φ̇2

√
2t+ 2φ . (4.46)

Setting α = 2
7 and

ΛK = κa(θ)σ
3
2
α = O(σ0) , (4.47)

the transformed version of (4.42) reads

γKσ
− 3

7

[
1

2
Λ̇K − φ− tφ̇

]
=
√

2
(
1− φ̇2

)
(t+ φ)

[
1

2
(1 + µK)ΛK − tφ

]
. (4.48)

This third order equation can be written conveniently as a system of three first order
equations with ΛK as an additional dependent variable. We set φ = x1, φ̇ = x2,
ΛK = x3, b = βσ−4/7 and

p = bγKσ
− 3

7 =
RKKs Pcβ

2d0
. (4.49)

The first order equation for ẋ2 is derived by solving the definition (4.47) of ΛK for φ̈.
The first order equation for ẋ3 is derived by solving (4.48) for Λ̇K ,

ẋ1 = x2

ẋ2 = fK
(
{xi}, t

)

ẋ3 = gK
(
{xi}, t

)

fK
(
{xi}, t

)
=

√
2x3(1− x2)

3
2 (t+ x1)

5
2 (1 + x2)

7
2

(t+ x1)2(1 + x2)2 − 2b(1− x2)2
− (1− x2)(1 + x2)2

2(t+ x1)

gK
(
{xi}, t

)
=
b

p

√
2(1− x 2

2 )(t+ x1)
[
(1 + µK)x3 − 2tx1

]
+ 2(x1 + tx2) .

(4.50a)

(4.50b)

(4.50c)

(4.51a)

(4.51b)

A numerical calculation of the eigenvalue b from the system (4.50a)-(4.50c) was tried
using the method described in section 2.3. No convergence was obtained. An im-
plementation of the cartesian coordinate analogon of (4.48) was also tried but did not
lead to success either. Perhaps the rather large value of RKKs for 3He gives rise to
too many numerical inaccuracies. But the material parameters of succinonitrile with
µK = 1 and p = 0 as well as p = O(1) were also tried, neither succeeding. On the
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other hand, one cannot expect convergence as stable as in the convective problems for
example (equations (3.30) and (3.62)), because in the thermal resistance problem, the
eigenvalue b appears twice (in fK ({xi}, t) and in gK ({xi}, t)) and not just once. The
additional parameter group b/p in gK could not be removed from the equations by a
different choice of the dominant balance scaling exponent α. Hence, the classical scal-
ing laws (1.34a) and (1.34b) for dendritic growth without convection hold even in case
of a finite thermal resistance at the two-phase boundary, if a solution exists.

4.3. Anisotropic diffusion

tw
o-
ph
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e
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ry

homeotropic smectic-B

planar nematic

x

y

b

→

nn

Figure 4.2.: Scheme of the liq-

uid crystal system set-up in the

focus of this section

The special role of anisotropy in microscopic solvabil-
ity theory gives rise to the question, whether the pres-
ence of anisotropic diffusion alone can lead to stable
solutions. This is relevant for example in liquid crys-
tals. In this section, the selection problem of diffusion-
limited dendritic growth with anisotropic heat trans-
port is solved. The existence of a solution without
anisotropy of surface tension is investigated. The fo-
cus lies on the two-dimensional case of a smectic-B liq-
uid crystal, growing in its own undercooled nematic
phase as considered by Börzsönyi et al. [BBK98]. The
orientation of the smectic-B phase is homeotropic, i.e.
its director is perpendicular to the growth plane. The
orientation of the nematic phase is planar, i.e. the ne-
matic director ~nn is parallel to the growth plane. The
system setup is shown in figure 4.2. Thermal diffusion
in the nematic phase is least efficient perpendicular to
the nematic director. This is the growth direction. Ex-

periments show that the growth velocity V takes its largest value in the direction of
lowest thermal diffusivity (“inverted growth”) [GCRPC+98, BBK98]. It is a counterin-
tuitive phenomenon, because diffusion removes the latent heat from the interface and
enables steady-state dendritic growth. Any half-way realistic solution should repro-
duce this feature.

The anisotropic heat transport properties of liquid crystals were investigated in de-
tail by Rondelez et al. for the substance K15 [RUH78]. They reported explicit values
forD and µ, where the dimensionless parameter µ is defined below. Moreover, Buka et
al. performed experiments on the nematic-smectic-B interfaces of different substances
with different crystal orientations in the smectic-B phase [BTKK94]. Their measure-
ments yielded an estimate for the capillary length d0.

The model equations (1.8a)-(1.10b) are written down in an adequate manner, so that
they can be used as a mathematical starting point in this section. Again, the non-
dimensionalizations from section 2.1 will be used. I.e. lengths are measured in units of
the tip curvature radius ρ and the temperature as well as the time are rescaled appro-
priately. From the beginning, we look for solutions with steady-state growth velocity
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V ~ey in a moving frame of reference attached to the dendrite. In this frame, the diffu-
sion equation is

~∇
(
D̂ · ~∇T

)
= −ρV (~ey · ~∇)T (4.52)

and the thermal diffusivity

D̂ =

(
D 0

0 µ2D

)
, µ ∈ (0, 1) (4.53)

has to be specified as a second-rank tensor. µ is the heat diffusion anisotropy strength.
It is a dimensionless, positive number. For µ → 1, the isotropic diffusion limit is
reached. The larger the absolute value of the difference 1 − µ, the stronger is the heat
diffusion anisotropy. In the system displayed in figure 4.2, µ is less than unity. It
renders the heat transport in y-direction less efficient. But theoretically, the case µ > 1

might also occur to indicate that heat diffusion is faster in growth direction.
Heat transport in the smectic-B phase does not have the same anisotropy as in the

nematic phase. Strictly speaking, that anisotropy should be assumed sixfold regard-
ing the smectic-B lattice structure, in contrast to the twofold anisotropy in the nematic
phase. Especially for a homeotropic orientation of the smectic-B liquid crystal, the
anisotropy could be assumed much weaker than in the nematic phase or even zero.
Consequently, D̂ cannot be assumed to be equal in the smectic-B domain and in the
nematic domain, and the two phases cannot be treated symmetrically. However, in
experiments the smectic-B liquid crystal remains nearly isothermal during the whole
growth process [BBK98]. Thus, thermal diffusion in the smectic-B domain can only
play a marginal role. This argument suggests the applicability of a one-sided model,
which significantly simplifies the problem mathematically compared to an approach
with two different diffusion tensors. Hence, the field equation (4.52) will only be
solved in the nematic phase.

The boundary conditions read

T = −d0

ρ
κa(θ) Gibbs-Thomson,

ρV ~ey · ~n = −
(
D̂ · ~∇T

)
· ~n Stefan condition.

(4.54a)

(4.54b)

T is the temperature field in the nematic phase. It is not yet measured in units of the
growth Péclet number. Kinetic effects are neglected here, because they are rather fast
compared with capillarity. They may decrease the growth velocity, but they play no
crucial role for selection of the operating state, as long as the growth is perpendicular to
the nematic director and the molecule incorporation into the smectic-B crystal involves
mainly twist. There is no heat flow term∝ ~∇T s in the Stefan condition (4.54b), because
diffusion in the smectic-B domain is ignored in the one-sided model. Since convection
is neglected here, the field equation (4.52) is linear, and the situation is simpler than in
chapter 3. Cartesian coordinates will be used here.
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4.3.1. Rescaled system and Ivantsov solution for dendritic growth with

anisotropic diffusion

It turns out that the simple spatial rescaling

y = µȳ (4.55)

of the y-axis reduces the problem to the case of isotropic diffusion. In the rescaled
system, the curvature κ is replaced by the function κ̄, and the interface tangent vector ~t
and the interface normal vector ~n have to be substituted by their transformed versions,
too. The new quantities do not have the same geometric meaning. E. g., κ̄ is not the
curvature in the new coordinate system. The model (4.52), (4.54a)-(4.54b) becomes

diffusion equation:

Txx + Tyy + PµTy = 0 in the nematic (4.56)

interface conditions:

T = −1

2
σµκ̄a(θ) Gibbs-Thomson (4.57a)

1 = −
(
∂y − y′s∂x

)
T Stefan condition. (4.57b)

The bar over the new ȳ has been dropped immediately. Here, T is measured in units
of the effective Péclet number

Pµ =
ρV

µD
(4.58)

instead of the growth Péclet number Pc = µPµ, and the effective stability parameter

σµ =
2d0

ρPµ
(4.59)

is related to its previous version by σµ = µσ. The vectors ~t and ~n become

~t =
~ex + µy′s(x)~ey√

1 + µ2y′2s (x)
~n =

~ey − µy′s(x)~ex√
1 + µ2y′2s (x)

(4.60)

and ~n was used in the Stefan condition. These vectors are no longer tangential and
perpendicular to the curve prescribed by

(
x, ys(x)

)
. A derivation of ~t and ~n can be

found in appendix A.3.1, just the µ-factors from the rescaling of the y-axis have to be
inserted to get to the forms (4.60). The Gibbs-Thomson condition (4.57a) is different
because of the function

κ̄ = − µy′′s (x)

(1 + µ2y′2s (x))3/2
(4.61)

and the anisotropy function a(θ). The twofold and fourfold anisotropy functions of
surface tension are

a(θ) = 1 +
β2

2

(
1− 2

1 + µ2y′2s (x)

)
, twofold (4.62a)

a(θ) = 1− β4

(
1− 8µ2y′2s (x)

(1 + µ2y′2s (x))2

)
. fourfold (4.62b)
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Both forms are given here, and choosing one of them is postponed to the upcoming
subsections. A derivation of (4.62a)-(4.62b) can be found in appendix A.3.1, again just
adding the µ-factors from the rescaling of the y-axis.

Apart from the fact, that the sought-after number Pc has been replaced by its ef-
fective “anisotropic-diffusion-specific” value, the field equation (4.56) has the same
mathematical structure as in the classical case without any side effects such as con-
vection or anisotropic heat transport. κ̄ and a(θ) play no role for σµ = 0 and thus,
replacing Pc by Pµ in (1.17) yields an equation determining Pµ for given undercooling
∆:

∆ =

√
πPµ

2
e
Pµ
2 erfc

(√
Pµ
2

)
. (4.63)

This equation is obtained using the far field boundary condition ∆ = −PµT |y→∞, and
it results from the neglect of surface tension. In this case, the interface is isothermal
and one can find a solution with parabolic shape of the dendrite:

T Iv(x, y) = −
√

π

2Pµ
e
Pµ
2

[
erfc

(√
Pµ
2

)
− erfc

(√
Pµ
2

√
y +

√
x2 + y2

)]
. (4.64)

The two-phase boundary is located at

yIv
s (x) =

1

2
(1− x2) . (4.65)

In the equations expanded about the case σµ = 0, the limit Pµ → 0 is considered.
We set T → T Iv + T , ys(x) = yIv

s (x) + ζ(x). The expansion of the boundary conditions
(4.57a)-(4.57b) is more difficult here than in parabolic coordinates, because the expres-
sion for the Ivantsov solution (4.64) is more complicated and it depends on both spatial
coordinates. The calculations can be found in appendix A.4.1. The problem reads

diffusion equation:

Txx + Tyy = 0 in the nematic

interface conditions:

T = −1

2
σµκ̄a(θ) +

ζ(x)

1 + x2
Gibbs-Thomson

[
xζ(x)

1 + x2

]′
= −

(
∂y − y′s(x)∂x

)
T Stefan condition.

(4.66)

(4.67a)

(4.67b)

for the corrections. This describes the extension to a finite anisotropic surface tension
with a non-isothermal, nearly parabolic interface. From (4.66) with (4.67a)-(4.67b), an
equation determining the eigevalue σµ can be derived.

4.3.2. Derivation of the shape equation and its WKB solution

As explained in section 2.2, a general solution of the Laplace equation (4.66) is a super-
position of a function from the kernel of the operator ∂x + i∂y and a function from the
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kernel of the operator ∂x − i∂y:

T (x, y) = Ta
(
x+ i(y − ys)

)
+ Tb

(
x− i(y − ys)

)
. (4.68)

The function κ̄ becomes singular at x = −i/µ for |ζ ′(x) � 1|. Writing the boundary
condition (4.67a) at this point, we find that Ta (−i/µ) + Tb (−i/µ) must also diverge.
Now we consider T

(
0, 1

2 + 1
µ

)
:

T

(
0,

1

2
+

1

µ

)
= Ta (i/µ) + Tb (−i/µ) . (4.69)

Since
(

0, 1
2 + 1

µ

)
is just an ordinary point in the nematic domain for µ > 0, both terms

on the right hand side of (4.69) must be bounded. Thus, Tb (−i/µ) cannot compen-
sate the singularity in the Gibbs-Thomson condition and Ta (−i/µ) must diverge. This
leads to T = Ta close to the singularity and in the limit Pµ → 0. We find

Ty = iTx, (4.70)

because (∂x+i∂y)Ta = 0. This is enough information to derive a shape equation deter-
mining ζ(x). I.e. we just put (4.70) into the boundary conditions without calculating
an explicit form of T (x, y). We take the derivative along the interface of the Gibbs-
Thomson condition (4.67a). Using the formula

dT

dx
= Tx + y′s(x)Ty = −i

(
1 + iy′s(x)

)
Ty , (4.71)

the boundary conditions become

−i
(

1 + iy′s(x)
)
Ty = −1

2
σµ[κ̄a(θ)]′ +

[
ζ(x)

1 + x2

]′
, (4.72a)

−
(

1 + iy′s(x)
)
Ty =

[
xζ(x)

1 + x2

]′
. (4.72b)

From (4.72a)−i(4.72b), one finds an equation free of T and its derivatives, which can
be intergrated right away:

1

2
σµκ̄a(θ) =

ζ(x)

1 + ix
. (4.73)

This is the shape equation determining ζ(x). The underlying model was reduced to the
case of isotropic diffusion with the exception of κ̄ and a(θ), which did not have to be
inserted until now. Thus, (4.73) could have also been obtained by following one of the
classical solution schemes [AP86, Lan87] and neglecting some non-divergent terms.
Here, it was derived in a much simpler manner by using (4.70). Fischaleck explained
that this leads to the same results as the classical methods [FK08]. The factor 1

2 in front
of σµ does not occur in the symmetric model [Mis87]. Equation (4.73) has the WKB
solution (see appendix A.4.2)

ζ(x) = B2

(
−µ (1 + ix)

)1/4
(
2 (1 + µ2x2)

)−3/8
exp



√

2

σµ
i

x∫

−i

(
1 + µ2x′2

)3/4
√
µ(1 + ix′)

dx′


 (4.74)

with the numerical constant B2.



4.3. Anisotropic diffusion 95

4.3.3. Derivation of the local equation and its numerical solution for

dendritic growth mode selection with anisotropic diffusion

In this subsection, a local equation is derived, the solution of which is a good approx-
imation to the function ζ(x) in the vicinity of the singular point of the problem. We
start with equation (4.73) and introduce σ̄ = 1

2σµ. Assuming ζ ′(x) = O(σ̄ αµ) with the
sought-after scale exponent αµ, the function κ̄ from (4.61) and the functions a(θ) from
(4.62a), (4.62b) become singular at x∗ = −i/µ. The stretching transformation has to be
altered:

x = − i

µ
(1− σ̄ αµt) , (4.75a)

ζ(x) = σ̄ 2αµφ(t) . (4.75b)

The double scaling exponent in ζ(x) results in ζ ′(x) being asymptotically small for
σ̄ → 0, but the second derivative ζ ′′(x) remains finite in this limit. A detailed execution
of the transformation can be found in appendix A.4.3. κ̄ becomes

κ̄ =
µ(1 + µ2φ̈)

[2(µ2φ̇+ t)]3/2
σ̄−

3
2
αµ (4.76)

and the anisotropy functions turn into

a(θ) = 1− b2

2(µ2φ̇+ t)
twofold (4.77a)

a(θ) = 1− 2b4

(µ2φ̇+ t)2
fourfold (4.77b)

with b2 = β2/σ̄
αµ and b4 = β4/σ̄

2αµ . The local equations read

1 + µ2φ̈

(2τµ)3/2

(
1− b2

2τµ

)
=

φ

1 + µ
twofold (4.78a)

1 + µ2φ̈

(2τµ)3/2

(
1− 2b4

τ 2
µ

)
=

φ

1 + µ
fourfold (4.78b)

for the two surface tension anisotropy types respectively with τµ = µ2φ̇ + t. One
has to keep in mind that the effective stability parameter σµ has twice the value of σ̄:
σµ = 2σ̄ = 2×(β2/b2)7/2. σ̄ would have the ordinary form, if the symmetric model was
used. The leading terms on both hand sides of the equations are found to be balanced
in their leading order of σ̄, if the scale exponent is chosen to be αµ = α = 2/7. The
eigenvalues b2 and b4 can be assumed to be O(1). For an n-fold anisotropy function of
capillary effects, the scaling law

σn ∝ β 7/n
n (4.79)

from the case of isotropic diffusion applies also for anisotropic diffusion. The explicit
formula (1.35) for the growth velocity V at small undercoolings has to be extended by
an additional factor µ:

V =
2D∆4µσµ(µ)

d0π2
. (4.80)
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For µ → 1, the fourfold surface tension anisotropy version (4.78b) becomes identical
to the local equation of Brener and Mel’nikov [BM91], representing the limit of the
well-known theory for dendritic growth with isotropic diffusion. In fact, equation
(4.78a) can be converted into an equation having the form of the local equation from
the corresponding problem with isotropic diffusion. This is achieved by rescaling:

t = µ
4/7

(
1 + µ

2

) 2
7

t̃ , (4.81a)

φ(t) = µ−
6/7

(
1 + µ

2

) 4
7

Ψ
(
t̃
)
. (4.81b)

The inner equation becomes

1 + Ψ′′

(2τ̃µ)3/2

(
1− b̃2

2τ̃µ

)
=

Ψ

2
(4.82)

with τ̃µ = t̃+ Ψ′, and the nonlinear eigenvalue

b̃2 =
β2

σ̄2/7

[
2

µ2(1 + µ)

] 2
7

(4.83)

is expressed as a function of σ̄ and µ. Here, the prime denotes the derivative with
respect to t̃. Equation (4.82) is equivalent to (4.78a) at µ = 1. Only the respective
eigenvalues b̃2 and b2 are defined differently. A numerical treatment of equation (4.82)
yields the eigenvalue b̃2 = 1.6608, which is equal to b2 at µ = 1. The fourfold surface
tension anisotropy version (4.78b) was also implemented yielding b4 = β4/σ

4/7 =

0.6122 at µ = 1. This value was also found by Brener [BM91] and Tanveer [Tan89].
From (4.83) one finds

σµ =
4

µ2(1 + µ)

(
β2

1.6608

) 7
2

(4.84)

and together with Pµ = ρV/(µD)

V =

(
β2

1.6608

) 7
2 P 2

µD

d0

2

µ(1 + µ)
,

ρ =

(
β2

1.6608

)− 7
2 d0

Pµ

µ2(1 + µ)

2
.

(4.85a)

(4.85b)

For Pµ � 1, (4.63) yields Pµ ≈ 2∆2/π. This is put into (4.85a),

V =
8∆4D

µ(1 + µ)d0π2

(
β2

1.6608

) 7
2

. (4.86)

The same result for V could have been obtained by inserting σµ from (4.84) into (4.80).
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C5H11K15: C N

Figure 4.3.: Structure formulas of the

liquid crystal molecules CCH5 and K15

In this subsection, results are shown for the
substance CCH5. The twofold surface tension
anisotropy is chosen here, because it is the dom-
inant contribution for CCH5 in the configura-
tion with a homeotropically orientated smectic-
B phase and a planar orientation of the ne-
matic phase [BBK98]. CCH5 is a long organic
molecule consisting of a pentyl chain, two cyclo-hexane rings and a nitrile group. The
important material parameters of CCH5 are shown below.

CCH5:

• d0 = 5 · 10−6 µm

• D = 1.25 · 105 µm2

s

• β2 = 0.06 . . . 0.18 [BBK98]

• µ = 0.767.

The values of µ and D were measured for the substance K15 in [RUH78]. But they
can be assumed to be similar for CCH5, because they depend almost only on the alkyl
chain length [TKBV+96], which is equal for both substances (see figure 4.3). Moreover,
the value of d0 is only a rough estimate for nematic-smectic interfaces gained from the
surface tension measurements of Buka et al. [BTKK94].

Figure 4.4 shows plots of the functions from (4.85a)-(4.85b) in the interval µ ∈ [0.1, 1]

for different values of the dimensionless undercooling ∆ and at fixed β2. In fact, µ is
tunable to a limited amount even in experiments by using substances with different
alkyl chain lengths. The required values of Pµ are obtained by solving (4.63) numer-
ically using the corresponding value of ∆. The lowest undercooling in use here is
∆ = 0.02 corresponding to an absolute value of about 0.23 K for CCH5. Börzsönyi
et al. [BBK98] observed the onset of the dendritic growth regime already at under-
coolings ' 0.15 K. Thus, we are in the experimentally relevant range. At the largest
undercooling ∆ = 0.04 used here, the effective growth Péclet number Pµ still hardly
exceeds 10−3. The largest possible value β2 = 0.18 consistent with experiments for
CCH5 [BBK98] was used.

For smaller values of µ, the thermal diffusion anisotropy increases, or rather the heat
transport becomes less efficient in growth direction, and the growth velocity tends
to increase. This may be regarded as a full quantitative description of the “inverted
growth” phenomenon observed for instance in [GCRPC+98]. The relevant direction
for heat transport is perpendicular to the growth direction. I.e. the most heat is re-
moved sideways (in x-direction) without increasing the temperature in front of the
dendrite (in y-direction), and the growth may proceed into cooler regions. The curves
in figure 4.4 are prescribed by equations (4.85a)-(4.85b), and we see that V → ∞ and
ρ → 0 for µ → 0. I.e. in the limit, in which the latent heat is removed only later-
ally (in x-direction), the dendrite becomes an infinitesimal thin needle crystal growing
infinitely fast.
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Figure 4.4.: Observable quantities; a) growth velocity V and b) tip curvature radius ρ as

functions of the thermal diffusion anisotropy strength µ at different values of

the dimensionless undercooling ∆. The curves are prescribed by equations

(4.85a)-(4.85b). The ”inverted growth” phenomenon is shown in a).

As explained in section 2.3, the numerical algorithm is based on a solution of the
local equation on two perpendicular lines in the complex plane. One line lies on the
real axis and the other line is parallel to the imaginary axis. To obtain an analytic solu-
tion, the difference δµ of the derivatives φ̇ on both lines is driven to zero at the crossing
point. This is achieved by adjusting b2 or b̃2, as it was the case for the results shown in
figure 4.4. This procedure leads to the right eigenvalue in the case of isotropic diffusion
[Tan89]. In the case of isotropic surface tension, Kessler and Levine showed that the
cusp magnitude at the dendrite tip is ∝ e−1/

√
σ, which never becomes zero [KL86b].

But it would have to be zero in a physically correct situation. Thus, there is no solution
with isotropic surface tension. Here, the derivative difference δµ cannot be observed
as a function of the effective stability parameter σµ for isotropic surface tension, since
the choice of the scale exponent αµ = 2

7 ensured that (4.78a) is free of σµ for β2 = 0.
A direct solution of the outer equation (4.73) is not possible, too, at least not with
the numerical procedure described in section 2.3, because the equation contains com-
plex coefficients rendering the mandatory symmetry requirements unsustainable. But
from equation (4.78a) for the case of isotropic surface tension (b2 = 0), the derivative
difference δµ can be calculated as a function of the heat diffusion anisotropy strength
µ. This is shown in figure 4.5. The graph decays monotonically and it approximately
approaches δµ = 2 for µ > 1.5. The decay is non-exponential. Nevertheless, there are
no zero-crossings. Thus, we find that heat diffusion anisotropy cannot stabilize the
dendrite.

The numerical evidence is complemented by the fact that µ can be eliminated from
equation (4.78a) by the rescaling (4.81a)-(4.81b). In the resulting equation (4.82), µ ap-
pears only in b̃2, but this eigenvalue is still zero in the case of isotropic surface tension.
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Figure 4.5.: Derivative difference δµ of φ̇ at the crossing point of the two lines of numerical

integration as a function of the heat diffusion anisotropy strength µ (solid

graph) in the case of isotropic surface tension (β2 = 0). The approximate

asymptote at δµ = 2 is marked by a dashed line.

Thus, from a mathematical point of view, it cannot be seen how the sole presence of a
µ < 1 could stabilize the dendrite. If selection was supposed to happen analogously
to the case of finite β2, one would need a factor, that becomes singular at µ = 1. Such
a factor is not present in the local equation. Obviously, (4.78a) with b2 = 0 is not a new
eigenvalue problem for the nonlinear eigenvalue µ, and heat diffusion anisotropy does
not constitute a singular perturbation, which could break the degeneracy of Ivantsov’s
solution spectrum. In stark contrast to that, for finite σµ, the problem is drastically
changed by the capillary term in the Gibbs-Thomson condition (4.57a).

An article about the results of this section has been submitted to Advances in Con-
densed Matter Physics [vKK15]. At the time when this thesis is about to be finished, the
article is passing through the peer review process.

4.4. Arbitrary growth Péclet numbers and asymptotic

decomposition

In this subsection, the applicability of Zauderer’s decomposition scheme in the case
of arbitrary growth Péclet numbers Pc is investigated. In the convective problems of
chapter 3, the limit Pc → 0 was taken in the expansion about the Ivantsov solution.
However, not all physical situations correspond to this limiting case. For instance, in
rapid solidification [GFWH04, FPG+06, AGH10] undercoolings of more than 200 K
can be realized. In this case, Pc terms cannot be neglected.

Regarding the previous sections, experience shows that the bulk equation in the
solid will not be of Laplace type, if Pc is arbitrary. As a consequence, when decom-
posing the solid temperature correction in eigenvectors of the first order system, one
will have to use two terms, rendering the evaluation of the boundary conditions rather
complicated. In order to avoid this problem, the one-sided model is used in this sec-
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tion. We stick to a cartesian frame,

diffusion equation:

Txx + Tyy + PcTy = 0 in the liquid

interface conditions:

T = −1

2
σκa(θ) Gibbs-Thomson

1 = −
(
∂y − y′s(x)∂x

)
T Stefan condition.

(4.87)

(4.88a)

(4.88b)

Here, the equations are already written in non-dimensional form in the moving frame.
T is the temperature in the liquid and it is measured in units of Pc. In this one-sided
model, diffusion in the solid is ignored completely. For this reason, the Stefan condi-
tion has only the heat balance term belonging to the liquid phase.

4.4.1. Transformation of the temperature field

For vanishing surface tension, the interface is located at yIv
s (x) = 1

2(1 − x2), and the
Ivantsov condition resulting from equation (4.87) is given by (1.17). Again, the solution
is expanded about this case. For the temperature correction, equation (4.87) applies
due to its linearity property. With the two-phase boundary shifted to ys(x) = yIv

s (x) +

ζ(x), the boundary conditions read

T = −1

2
σκa(θ) +

ζ(x)

1 + x2
Gibbs-Thomson (4.89a)

(
∂y − y′s(x)∂x

)
T = −

[
xζ(x)

1 + x2

]′
− Pc

ζ(x)

1 + x2
Stefan condition (4.89b)

and they can be obtained by using appendix A.4.1. There, the equations are given
in the framework of the symmetric model for a nematic growing in its own smectic-
B phase. Nevertheless, it can be used, replacing Pµ by Pc and ignoring T s and its
derivatives because of the one-sided model. A term of the order O(ζζ ′) was neglected
in (4.89b).

The transformation
T = T̄ e−

Pc
2
y (4.90)

is introduced, yielding

Ty = e−
Pc
2
y

(
T̄y −

Pc
2
T̄

)
(4.91a)

Tyy = e−
Pc
2
y

(
T̄yy − PcT̄y +

P 2
c

4
T̄

)
(4.91b)

for the derivatives of T with respect to y. The diffusion equation for the temperature
field correction reads

Txx + Tyy −
P 2
c

4
T = 0 (4.92)
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where the bar over T̄ has been dropped right away. In the boundary conditions, an
additional term proportional to T appears in the Stefan condition as well as in the
differentiated form (along the interface) of the Gibbs-Thomson condition. This term
can immediately be substituted using (4.89a),

Tx + y′sTy =−
[[

1

2
σκa(θ)− ζ(x)

1 + x2

]′

+
Pc
2
y′s

(
1

2
σκa(θ)− ζ(x)

1 + x2

)]
e
Pc
2
ys(x)

Gibbs-Thomson, (4.93a)

Ty − y′sTx =−
[[

xζ(x)

1 + x2

]′

+
Pc
2

(
1

2
σκa(θ) +

ζ(x)

1 + x2

)]
e
Pc
2
ys(x)

Stefan condition. (4.93b)

4.4.2. Continuation to the complex plane and asymptotic decomposition

(arbitrary Péclet numbers)

We would like to decompose equation (4.92) with interface conditions (4.93a) and
(4.93b) à la Zauderer. In contrast to section 2.2, we employ the three-component vari-
able ~ϑ = (Tx, Ty, T )T instead of a two-component vector to write (4.92) as a first order
system. Algebraically, the calculations have several aspects in common with asymp-
totic decomposition in the case of nonlinear diffusion (subsection 4.1.2). I.e. we can
use the matrix E from (4.14), its eigenvectors ~r3,4,5 from (4.17) and the corresponding
projection operators P3,4,5 from (4.20). In addition to that, we define

G =




0 0 P 2
c/4

0 0 0

−1 −1 0


 (4.94)

and find the first order system

~ϑx + E~ϑy +G~ϑ = 0 (4.95)

arising from (4.92). Using the ansatz

~ϑ = M~r3 + εN~r4 +Q~r5 (4.96)

and the scaling transformation (x, y)→ (εx, εy), (4.95) becomes

(Mx + iMy)~r3 + ε(Nx − iNy)~r4 + (Qx +Qy)~r5 + εGM~r3 + εGQ~r5 = O
(
ε2
)
. (4.97)

We use the formulas

P3G~r3 = 0 P4G~r3 = 0 P5G~r3 = (i− 1)~r5 (4.98a)

P3G~r5 =
i

8
P 2
c ~r3 P4G~r5 = − i

8
P 2
c ~r4 P5G~r5 = 0 . (4.98b)
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They are used to project (4.97) onto the invariant subspaces of E:

Mx + iMy = −P
2
c

8
iQ (4.99a)

Nx − iNy =
P 2
c

8
iQ (4.99b)

Qx +Qy = (1− i)M . (4.99c)

Here, we have returned to the original scale after figuring out the principal part of the
equation. The characteristic coordinates are

for (4.99a): s = x+ i
(

1−
√

2(y − ix)
)

τ = −i
(

1−
√

2(y − ix)
)

(4.100a)

x = τ + s y = is− 1

2
(τ2 − 1) (4.100b)

for (4.99b): s̄ = x− i
(

1−
√

2(y + ix)
)

τ̄ = i
(

1−
√

2(y + ix)
)

(4.100c)

x = τ̄ + s̄ y = −is̄− 1

2
(τ̄2 − 1) (4.100d)

for (4.99c): s̃ = x+ 1−
√

2(y − x) τ̃ = −1 +
√

2(y − x) (4.100e)

x = τ̃ + s̃ y = s̃− 1

2
(τ̃2 − 1) . (4.100f)

They are chosen appropriately, in a manner so that the interface is at s, s̄, s̃ = 0 and
τ, τ̄ , τ̃ = x ⇔ s, s̄, s̃ = 0. We consider only contributions up to the first order in Pc. So
the terms on the right hand sides of (4.99a) and (4.99b) are dropped, and the system of
differential equations decouples:

Ms = 0 (4.101a)

Ns̄ = 0 (4.101b)

Qs̃ = (1− i)M . (4.101c)

Now we go back to the boundary conditions (4.93a), (4.93b). We insert Tx = −i(M −
N), Ty = M +N :

− i
(

1 + iy′s(x)
)
M + i

(
1− iy′s(x)

)
N

= −
[[

1

2
σκa(θ)− ζ(x)

1 + x2

]′
+
Pc
2
y′s(x)

(
1

2
σκa(θ)− ζ(x)

1 + x2

)]
e
Pc
2
ys(x) , (4.102a)

i
(

1 + iy′s(x)
)
M + i

(
1− iy′s(x)

)
N

= −
[[

xζ(x)

1 + x2

]′
+
Pc
2

(
1

2
σκa(θ) +

ζ(x)

1 + x2

)]
e
Pc
2
ys(x) . (4.102b)
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We perform i(4.102a) + (4.102b) and−i(4.102a) + (4.102b) in order to find the following
boundary conditions:

M(s = 0, τ) =− i

2(1 + iy′s(τ))
e
Pc
2
ys(τ)

[[
1

2
σκa(θ)− (1 + iτ)

1 + τ2
ζ(τ)

]′

− i

2
Pc

[(
1 + iy′s(τ)

)1

2
σκa(θ) +

(
1− iy′s(τ)

) ζ(τ)

1 + τ2

]]
,

(4.103a)

N(s̄ = 0, τ̄) =
i

2(1− iy′s(τ̄))
e
Pc
2
ys(τ̄)

[[
1

2
σκa(θ)− (1− iτ̄)

1 + τ̄2
ζ(τ̄)

]′

+
i

2
Pc

[(
1− iy′s(τ̄)

)1

2
σκa(θ) +

(
1 + iy′s(τ̄)

) ζ(τ̄)

1 + τ̄2

]]
.

(4.103b)

From (4.101a) and (4.101b), we see that M and N must be completely independent of
s and s̄ respectively. Thus, we can read the solutions from the boundary conditions:

M(τ) =− i

2(1 + iy′s(τ))
e
Pc
2
ys(τ)

[[
1

2
σκa(θ)− (1 + iτ)

1 + τ2
ζ(τ)

]′

− i

2
Pc

[(
1 + iy′s(τ)

)1

2
σκa(θ) +

(
1− iy′s(τ)

) ζ(τ)

1 + τ2

]]
,

N(τ̄) =
i

2(1− iy′s(τ̄))
e
Pc
2
ys(τ̄)

[[
1

2
σκa(θ)− (1− iτ̄)

1 + τ̄2
ζ(τ̄)

]′

+
i

2
Pc

[(
1− iy′s(τ̄)

)1

2
σκa(θ) +

(
1 + iy′s(τ̄)

) ζ(τ̄)

1 + τ̄2

]]
.

(4.104a)

(4.104b)

Since

Q(s̃ = 0, τ̃) = −
[

1

2
σκa(θ)− ζ(τ̃)

1 + τ̃2

]
e
Pc
2
ys(τ̃) , (4.105)

as can be deduced from (4.89a) with T = Q, we find the solution for equation (4.101c):

Q(s̃, τ̃) = (1− i)

s̃∫

0

M
(
τ(ω, τ̃)

)
dω −

[
1

2
σκa(θ)− ζ(τ̃)

1 + τ̃2

]
e
Pc
2
ys(τ̃) . (4.106)

In order to fulfill the far field boundary condition, Q must vanish in the limit s̃→∞,

1

2
σκa(θ) =

ζ(τ̃)

1 + τ̃2
+ (1− i)e−

Pc
2
ys(τ̃)

∞∫

0

M
(
τ(ω, τ̃)

)
dω . (4.107)

It would be very convenient, if τ(ω, τ̃) in the integrand in (4.107) were a simple expres-
sion, say x′:

τ = −i
(

1−
√

2(y − ix)
)

!
= x′

⇒ (1− ix′) =
√

2(y − ix)

(1− ix′)2 = 2y − 2ix = 2ω(1− i) + (1− iτ̃)2 .
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In the last line, (4.100f) was inserted with s̃ replaced by ω. Thus, we use

ω =
1

2

(1− ix′)2 − (1− iτ̃)2

1− i
, dω = −i

1− ix′

1− i
dx′ (4.108)

as a substitution in the integral in (4.107). The denominator of the differential dω can-
cels the factor in front of the integral. In addition to that, we rename τ̃ = x,

1

2
σκa(θ) =

ζ(x)

1 + x2
+ i e−

Pc
2
ys(x)

x∫

i∞

(1− ix′)M(x′) dx′ . (4.109)

The next step is to simplify this equation a bit by approximating ys(x) ≈ yIv
s (x). Doing

this, only asymptotically small terms drop out. They are O(ζ2), O(ζζ ′), O(ζ ′2), O(ζσ)

or O(ζ ′σ). Anyway, they can be neglected,

1

2
σκa(θ) =

ζ(x)

1 + x2
+

1

2

x∫

i∞

e
Pc
4

(x2−x′2)

[[
1

2
σκa(θ)− (1 + ix′)

1 + x′2
ζ(x′)

]′

− i

2
Pc

(
(1− ix′)

1

2
σκa(θ) + (1 + ix′)

ζ(x′)

1 + x′2

)]
dx′

=
ζ(x)

1 + x2
+

1

2

[
e
Pc
4

(x2−x′2)

(
1

2
σκa(θ)− (1 + ix′)

1 + x′2
ζ(x′)

)]x

i∞

+
1

2

x∫

i∞

e
Pc
4

(x2−x′2)

[
Pc
2
x′
(

1

2
σκa(θ)− (1 + ix′)

1 + x′2
ζ(x′)

)

− i

2
Pc

(
(1− ix′)

1

2
σκa(θ) + (1 + ix′)

ζ(x′)

1 + x′2

)]
dx′

=
1

4
σκa(θ) +

1

2

(1− ix)

1 + x2
ζ(x)− i

4
Pc

x∫

i∞

e
Pc
4

(x2−x′2)

×
[

1

2
σκa(θ) +

ζ(x′)

1 + x′2
(1 + ix′)(1− ix′)︸ ︷︷ ︸

=1+x′2

]
dx′ .

Here, integration by parts was used. This leads to the final equation of this section:

σκa(θ) = 2
(1− ix)

1 + x2
ζ(x)− i

2
Pc

x∫

i∞

e
Pc
4

(x2−x′2)
(
σκa(θ) + 2ζ(x′)

)
dx′ . (4.110)

It is an equation determining ζ(x) in cartesian coordinates and selecting the eigen-
value σ for arbitrary growth Péclet numbers Pc. In the limit Pc → 0, we retrieve the
well-known result of Misbah [Mis87] for the one-sided model, where the value of the
stability parameter is twice the one from the symmetric model. One can see that under
a formal stretching transformation x = −i(1− σαt), the integral on the right hand side
of (4.110) is of the order O(σ3α). Thus, it scales as the flow terms in chapter 3. This
makes sense indeed, because the Pc -term in the diffusion equation (4.87) arises from
the moving frame of reference. In this frame, a uniform flow is present in the liquid,
even if convection is neglected in the laboratory system.
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4.5. Kinetic effects

In the preceding chapters, several potential reasons for discrepancies between experi-
ments and the theory in this work were discussed:

• flow field approximation inaccuracies,

• anisotropy strength measurement inaccuracies,

• chemical impurities,

• kinetic effects of atomic transfer at the two-phase boundary.

The latter are investigated in more detail and quantified in this section.
Kinetic effects of atomic adsorption to the solid surface further decrease the interface

temperature, which now depends on the growth velocity. The full boundary condition
(1.9b) with all terms has to be taken into account. It was examined in detail by Brener
[Bre90]. He finds that at low undercoolings, the dendrite grows in the direction of max-
imal surface tension as in the ordinary case, whereas at high undercoolings, the growth
velocity strongly increases and the direction of maximal kinetic effects is favoured for
dendritic growth. Regarding the method of the current work, an additional term oc-
curs in the local equation. The anisotropy function of kinetic effects is assumed to be
fourfold and has the same structure as the anisotropy function of capillary effects (e.
g. see eq. (4.45)):

β̄(θ) = β0

(
1− βkin cos(4(θ − θkin))

)
. (4.111)

βkin is the strength of the fourfold anisotropy of kinetic effects, and β0 is the strength
of kinetic effects averaged over all angles θ. (β0 is the kinetic equivalent of the mean
capillary length d0.) θkin is the angle between the growth direction and the direction
of minimal β̄(θ). Regarding equation (1.9b), all that has to be done is to apply the
stretching transformation x = −i(1 − σ2/7t), ζ(x) = σ4/7φ(t) to the kinetic correction
term σkin ~ey · ~n β̄(θ). I.e. we only need

~ey · ~n =
1√

1 + y′2s (x)
=

1√
1 + (ζ ′(x)− x)2

≈ σ−1/7

√
2τ2

. (4.112)

The interface unit normal vector ~n was taken from (A.98). Obviously, the kinetic
term can simply be brought forward into the inner equation, since solely the Gibbs-
Thomson condition has changed, whereas the rest of the model remains the same.
Equation (4.78b) with µ = 1 can be used, adding the kinetic term. We find another
form of the local equation for Pc → 0:

1 + φ̈

(2τ2)3/2

(
1− 2βσ−4/7

τ 2
2

)
+
σ−5/7σkin√

2τ2

(
1− 2βkinσ

−4/7

τ 2
2

)
=
φ

2
. (4.113)

Here we have τ2 = t+ φ̇ again, and

σkin =
2β0V

Pc
(4.114)
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is the stability parameter of kinetic effects resulting from the non-dimensionalizations.
It is a quantitative measure for the strength of the kinetic effects. Equation (4.113) re-
sults from a calculation in cartesian coordinates, and it is written down for the case in
which the directions of maximum surface tension and maximum kinetic effects coin-
cide (θkin = 0). Together with the Ivantsov condition (1.17), equation (4.113) contains
enough information to select the operating state of dendritic growth with anisotropic
capillary effects and anisotropic kinetic effects. For its derivation, σ2/7 was used as
the small parameter for the singular perturbation expansion and the stretching trans-
formation. The anisotropy function of kinetic effects has the same singularity as the
anisotropy function of capillary effects and the curvature. The divergence of these
functions for σ → 0 is crucial. There is a discrete spectrum (σ, σkin), only one data
pair out of which corresponds to the stable solution [Bre90]. For numerical investiga-
tion, either an algorithm determining two eigenvalues simultaneously has to be made
up, or the ratio σkin/σ has to be set to some fixed value. Interesting simplifications to
(4.113) are the cases of

1. isotropic kinetic effects (βkin = 0),

2. isotropic surface tension (β = 0).

4.5.1. Limit of isotropic kinetic effects and anisotropic surface tension

0 0.1 0.2 0.3 0.4
0.01

0.015

0.025

0.03

0.035

σ SCN
exp

σ PVA
exp

k = 0.1836

k = 0.0803

k

σ

PVA
SCN

Figure 4.6.: Kinetic corrections to the stability parameter σ as a function of the ratio k =

σ
7/5
kin /σ: Results are determined numerically from equation (4.115) with anisotropy of surface

tension and without kinetic anisotropy. σkin is a quantitative measure for the strength of the

isotropic kinetic effects. At k = 0.0803, the experimental eigenvalue σ = 0.0195 [HG81]

for succinonitrile (SCN) is reached. At k = 0.1836 the experimental eigenvalue σ = 0.022

[GS89] for pivalic acid (PVA) is reached.
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In case 1. the corresponding local equation reads

1 + φ̈

(2τ2)3/2

[
1− 2b

τ 2
2

]
+

k5/7

√
2τ2

=
φ

2
(4.115)

with b = βσ−4/7 and the ratio

k =
σ

7/5
kin
σ

. (4.116)

This can be obtained directly by setting βkin = 0 in equation (4.113). Assuming k =

O(1), the stability parameters for succinonitrile (SCN) and pivalic acid (PVA) are cal-
culated as functions of k from equation (4.115). This is shown in figure 4.6. k is varied
in the interval [0, 0.45], and σ is a monotonically decreasing function. At k = 0.0803,
the experimental value of the stability parameter σ = 0.0195 measured by Huang and
Glicksman for SCN [HG81] is successfully reproduced by the numerical calculation.
At k = 0.1836, the same statement applies for PVA (σ = 0.022 [GS89]). However, this
does not mean that the strengths of the kinetic effects for SCN and PVA have been
determined here. A solution with anisotropy of kinetic effects would contain more
convincing information and would be more desirable (see case 2. in the next subsec-
tion).

4.5.2. Limit of isotropic surface tension and anisotropic kinetic effects

In case 2. (anisotropic kinetic effects, βkin > 0), a stable solution can be selected, even
though the anisotropy of surface tension is neglected (β = 0) [Bre90]. σ4/5

kin is used for
the stretching transformation. The corresponding inner equation in cartesian coordi-
nates becomes

1

k

1 + φ̈

(2τ2)3/2
+

1√
2τ2

[
1− 2bkin

τ 2
2

]
=
φ

2
(4.117)

with bkin = βkin/σ
4/5
kin . Again, (4.117) is written down for the case, in which the direc-

tions of maximum surface tension and maximum kinetic effects coincide (θkin = 0).
The equation was solved numerically and the eigenvalue bkin was obtained as a func-
tion of k. This is shown in figure 4.7a. k was varied in the interval [0.2, 3]. For k < 1,
where the anisotropic kinetic effects are weaker than the isotropic capillary effects, the
kinetic eigenvalue bkin decreases rapidly for increasing k. The stability parameters can
be calculated at any point (k, bkin) of the plotted curve for given βkin (and for β = 0):

σkin =

(
βkin

bkin

) 5
4

, (4.118a)

σ =
1

k

(
βkin

bkin

) 7
4

. (4.118b)

However, experimental values for βkin were not found at all during this work’s liter-
ature enquiry. Hence, σ for SCN and PVA cannot be calculated here. The only sub-
stance, for which an experimental value of β0 was found, is Nickel (β0 = 0.002 s

m ,
β = 0.27 [FPG+06, CT82]).
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Figure 4.7.: a) selected eigenvalue bkin = βkin/σ
4/5
kin as a function of the ratio k = σ

7/5
kin /σ

calculated numerically with isotropic surface tension and anisotropic kinetic effects from

equation (4.117), b) bkin calculated numerically from (4.117) (red graph) in comparison to

the selected eigenvalue b = β/σ4/7 calculated numerically with isotropic kinetic effects and

anisotropic surface tension from equation (4.115) (blue graph)

In figure 4.7b, the eigenvalues from both limits β = 0 (isotropic surface tension,
red line) and βkin = 0 (isotropic kinetic effects, blue line) are compared. So the two
curves result from the solution of different problems. Again, the data for bkin was
calculated from equation (4.117). The data for b as a function of k was obtained by
solving equation (4.115) numerically. In contrast to bkin, the eigenvalue b governed by
anisotropic capillary effects increases as a function of k. Here, the stability parameters
can be calculated at any point (k, b) of the blue curve for given β using the relations

σ =

(
β

b

) 7
4

(4.119a)

σkin = k5/7

(
β

b

) 5
4

(4.119b)

in the case of isotropic kinetic effects (βkin = 0).
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5. Conclusion

When a crystal germ nucleates in an undercooled liquid, a solid starts to grow. The
temperature of the liquid is below the freezing point. Thus, the system is in a non-
equilibrium state (but one may usually assume local equilibrium at the interface and
metastable equilibrium in front of it). A planar solidification front is unstable against
the Mullins-Sekerka instability [MS64]. Instead, the two-phase boundary takes a den-
dritic shape. The number of dendrites growing from a single nucleus depends on the
symmetry type of the crystal lattice and on the size of the crystal. The bulk material is
strongly affected by the properties of these microstructures, for instance by their size.
The tilt and interlocking of the dendritic branches increases the robustness of a sam-
ple. For this reason, understanding and eventually controling the growth process is a
desirable achievement.

Some transport mechanism has to be included into any model describing the prob-
lem, because latent heat is released at the interface during the solidification process.
If the heat was not removed, the temperature in the vicinity of the interface would
increase up to the melting temperature, and the crystal would cease to grow, taking
its equilibrium shape. Hence, the system has to be cooled externally. In the simplest
models, the heat is transported solely by thermal diffusion. This case of “classic” den-
dritic growth was solved numerically by Kessler and Levine [KL86b]. In the same
year, a rigorous analytical solution was presented by Ben Amar and Pomeau [AP86].
The authors built their solution on the older work of Ivantsov, who neglected surface
tension and found a continuous family of solutions corresponding to parabolic shapes
of the dendrites[Iva47]. However, these solutions are all structurally unstable, due to
the lack of the stabilizing effect of surface tension. Capillary effects, the anisotropy of
which is crucial, were found to introduce the sought-after stabilization mechanism. In
the framework of singular perturbation theory starting from Ivantsov’s solution, the
solution spectrum is converted into a discrete set. Therefore, it is also called a “selec-
tion problem”. But only one member out of the discrete set is stable. Unfortunately,
for the description of most practical situations, the models need to be extended. This
is where this work joins in. It represents progress in the theoretical investigation of
various additional effects, which are not considered in classical dendritic growth.

First, convection is taken into account. Not only does it constitute an additional
transport mechanism, but it drastically complicates the mathematical structure of the
problem. The number of bulk equations is increased and they become nonlinear, ren-
dering them non-accessible to Green’s functions techniques. Approaches to the con-
vective problem have been made in the past [BP89, SCM94, Sch99, LB02], but they were
unsatisfactory due to their simplifications. The key to the rather sophisticated prob-
lem was found by Fischaleck [FK08]. He used asymptotic decomposition [Zau78] to
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manipulate the bulk equations directly instead of dealing with the boundary integral
equation. The investigation of the scope of this method is one purpose of this work.
It is used to derive analytical solutions to the dendritic growth problem with convec-
tion, and the corresponding results are published in [vKGK13, vKK14]. An analytical
expression for the flow velocity is required in the case without surface tension. The
method is predominantly analytical, except the last step, for which a C program was
written. A potential flow and an Oseen flow approximation are employed. A forced
flow velocity is introduced into the problem as an extra control parameter (additional
to the undercooling). It is found that this parameter has only a marginal influence
on the selected eigenvalue in the considered flow velocity range, especially in the Os-
een flow case. However, the presence of a flow strongly changes the scaling laws in
the system. For an ammonium bromide solution, the results of this work agree well
with experiments, whereas there is no good agreement with flow experiments for the
substances pivalic acid (PVA) and succinonitrile (SCN).

Further effects investigated in this work are for instance nonlinear diffusion and a
finite thermal resistance at the two-phase boundary (Kapitza effect). In the first case
of these two, the heat conductivity depends on the temperature, and a coupled sys-
tem of differential equations for the temperature field correction is derived. In the
case of Kapitza effect, an eigenvalue equation determining the shape correction of the
parabolic dendrite is derived in parabolic and cartesian coordinates.

Finally, this work exhibits a rigorous solution of the selection problem of dendritic
growth in systems with anisotropic diffusion. A full quantitative description of the
“inverted growth” phenomenon is given (faster growth in the direction of less efficient
heat transport). One might suspect that the sole presence of diffusion anisotropy can
stabilize the pattern. It is found that it cannot, and the scaling laws remain the same
as in the classical case. Most of the presented results are enabled by the combination
of singular perturbation theory and asymptotic decomposition. It is a powerful tool,
largely enhancing the applicability of the hitherto existing methods.
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a crystal growing in a forced flow, J. Crys. Growth 92 (1988), 97–100.

[AG91] R. Ananth and W. N. Gill, Self-consistent theory of dendritic growth with
convection, J. Crys. Growth 108 (1991), 173–189.

[AG13] D. V. Alexandrov and P. K. Galenko, Selection criterion of stable dendritic
growth at arbitrary Péclet numbers with convection, Phys. Rev. E 87 (2013),
062403.

[AGH10] D.V. Alexandrov, P.K. Galenko, and D.M. Herlach, Selection criterion for
the growing dendritic tip in a non-isothermal binary system under forced con-
vective flow, J. Crys. Growth 312 (2010), 2122–2127.

[AM87] M. Ben Amar and B. Moussallam, Numerical results on two-dimensional
dendritic solidification, Physica 25D (1987), 155–164.

[Ama90] M. Ben Amar, Dendritic growth rate at arbitrary undercooling, Phys. Rev. A
41 (1990), no. 4, 2080–2092.

[AP86] M. Ben Amar and Y. Pomeau, Theory of dendritic growth in a weakly under-
cooled melt, Europhys. Lett. 2 (1986), no. 4, 307–314.
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Appendix A.

Auxiliary calculations

A.1. Potential flow

A.1.1. Setup of the model equations

Field equations

We start with (1.8a)-(1.8b). After Galilean transformation (~r → ~r+V t~ey, ~w → ~w+V ~ey)
we find

∂T s,l

∂t
→ −V ~ey · ~∇T s,l . (A.1)

The diffusion equation (1.8b) in the liquid is invariant under that operation. The time
derivative and the term in ~w containing V compensate each other. Now, the non-
dimensionalizations from section 2.1 are applied:

(1.8b)→ ∆T l = (~w · ~∇)T l , (A.2a)

(1.8a)→ ∆T s = −Pc ~ey · ~∇T s . (A.2b)

Using the parabolic coordinate expressions (2.3a) and (2.3b) for ~∇ and ∆ respectively,
as well as the definition (2.10) of ψ, we end up with the field equations (3.1a)-(3.1b).
For the field equation (3.1c) we just note

0
!

= ~∇× ~w = ~∇×
(
~∇× (ψ~ez)

)
= ~∇

(
~∇ · (ψ~ez)

)
−∆(ψ~ez) = ~∇

=0︷︸︸︷
∂ψ

∂z
−(∆ψ)~ez

⇒ ∆ψ = 0 .

Boundary conditions

The interface condition (3.2a) is identical to (1.9a). (3.2b) is the dimensionless form of
(1.9b). The dimensionless form of the Stefan condition (1.9c) is

~ey · ~n =
(
~∇T s − ~∇T l

)
· ~n (A.3)

and after inserting the parabolic coordinate expressions for ~∇, ~ey and ~n from section
2.1, one finds equation (3.2c). For the mass conservation condition (3.2d), we write
(1.13a)

~w · ~n = − ψξ + η′sψη√
(ξ2 + η2

s) (1 + η′2s )
= −Pc ~ey · ~n = −Pc

ξη′s + ηs√
(ξ2 + η2

s) (1 + η′2s )
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explicitly in the moving frame of reference and in the rescaled system. The moving
frame causes a term containing V on the right hand side, which becomes the Pc-term
in its dimensionless form. This leads directly to (3.2d).

The far field boundary conditions (3.3a) and (3.3b) come out naturally when rescal-
ing (1.10a) and (1.10b). For derivation of (3.3c), the definition of ~w and the parabolic
coordinate form of ~ey are inserted into the dimensionless form of (1.14) in the moving
frame:

ψη~eξ − ψξ~eη√
ξ2 + η2

∼ −η~eη − ξ~eξ√
ξ2 + η2

(Pc + Pf ) η →∞ .

Again, a V -term arises on the right hand side due to the moving frame and the V -
and U -terms become Péclet number terms after rescaling. From this, the asymptotic
behaviour (3.3c) at η →∞ can easily be read.

A.1.2. Asymptotic decomposition

We would like to asymptotically decompose the system (3.9a)-(3.9b) with conditions
(3.10a)-(3.10d) and equation (3.1c) with condition (3.13) à la Zauderer [Zau78]. Ac-
cording to section 2.2, we make some definitions:

~ϑ =

(
Tξ
Tη

)
~ϑs =

(
T sξ
T sη

)
~v =

(
ψξ
ψη

)
(A.4a)

A =

(
0 1

−1 0

)
B =

(
−u0 −v0

0 0

)
C =

(
F0 0

0 0

)
(A.4b)

u0 = ψη + ξPf v0 = −ψξ − Pf (η − 1) F0 = −e−
Pf
2

(η−1)2 . (A.4c)

Now we have the first order system

~ϑξ +A~ϑη +B~ϑ+ C~v = 0 in the liquid (A.5a)
~ϑsξ +A~ϑsη = 0 in the solid (A.5b)

~vξ +A~vη = 0 . for the stream function (A.5c)

The scale transformation ξ, η → εξ, εη with the small parameter ε is made. We assume
εPf to be of the order of unity, which will later turn out to be an adequate assumption.
Apart from that, we expand the variables ~ϑ and ~v in series of eigenvectors of A:

~ϑ = M~r1 + εN~r2 (A.6a)
~ϑs = N s~r2 (A.6b)

~v = V ~r1 . (A.6c)

The eigenvectors ~r1,2 can be read from section 2.2. Inserting into the field equations,
we get, neglecting terms of the order ε2

Mξ~r1 + εNξ~r2 + iMη~r1 − iεNη~r2 + εBM~r1 + εCV ~r1 = 0 in the liquid (A.7a)

N s
ξ − iN s

η = 0 in the solid (A.7b)

Vξ + iVη = 0 . stream function (A.7c)
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The intention is to determine the coefficientsM ,N ,N s and V . The projection operators
defined by Pi ~rj = δij~ri can also be found in section 2.2. The reader may verify himself
or herself that

P1B~r1 = −a~r1 P1C~r1 =
F0

2
~r1 (A.8a)

P2B~r1 = a~r2 P2C~r1 = −F0

2
~r2 (A.8b)

with a = 1
2(u0 + iv0) holds. Applying P1 and P2 to (A.7a), we find

Mξ + iMη − aM +
F0

2
V = 0 (A.9a)

Nξ − iNη + aM − F0

2
V = 0 (A.9b)

returning to the original scale. Provided an expression for V , these equations can be
solved for M and N subsequently.

To express the boundary conditions (3.10a)-(3.10c) and (3.13) in terms of M , N , N s

and V , we need to calculate their derivative with respect to ξ. At the interface, we have
T = T (ξ, 1 + h) and therefore

dT

dξ
= Tξ + h′Tη

and analog in the solid. From the above definitions we remember

Tξ = −i (M −N)

Tη = M +N

T sξ = iN s

T sη = N s

and decompose:

(
1 + ih′

)
M =

(
1− ih′

)
(N −N s) + ih′ continuity (A.10a)

(
1− ih′

)
N s =

i

2
σ [κa(θ)]′ Gibbs-Thomson (A.10b)

[ξh]′ +
(
1− ih′

)
(N −N s) +

(
1 + ih′

)
M = 0 Stefan condition. (A.10c)

Putting (A.10a)-(A.10b) together an, we arrive at

M =
i

2

[(1 + iξ)h]′

(1 + ih′)

(N −N s) = − i

2

[(1− iξ)h]′

(1− ih′)

N s =
i

2

σ [κa(θ)]′

(1− ih′)

(A.11a)

(A.11b)

(A.11c)

at the interface. In the interface condition (A.11b), it can be seen that the liquid and
the solid domain interact via N as mentioned above. We also see that we will not have
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to calculate N s explicitly. It is enough to know its value at the interface, provided a
solution in the solid exists. From equation (3.13) we get

V = − iPf [ξh]′

(1 + ih′)
(A.12)

as a boundary condition for equation (A.7c).
We would like to solve the decomposed system (A.9a) and (A.9b) with boundary

conditions (A.11a), (A.11b) and (A.11c). But first we need to solve equation (A.7c)
with boundary condition (A.12). This is done by using the method of characteristics. I.
e., we search for a set of coordinates (s(ξ, η), τ(ξ, η)), in which equation (A.7c) contains
derivatives with respect to only one of the new coordinates. We write

dV

ds
= Vξ

dξ

ds
+ Vη

dη

ds

and compare coefficients to (A.7c). The result is

dV

ds
= 0 ⇒ V = V (τ)

and
dξ

ds
= 1,

dη

ds
= i .

These equations can be integrated immediately. For comfortability reasons, we wish
the interface to be at s = 0 ⇒ η(s = 0) = 1, and accordingly we want ξ(s = 0) = τ .
That gives

s = −i (η − 1) (A.13a)

τ = ξ + i (η − 1) (A.13b)

V = − iPf [τh(τ)]′

(1 + ih′)
. (A.14)

Equation (A.9a) has the same characteristics and it reads

Ms −
Pf
2

(2s+ τ)M +
iPf [τh(τ)]′

2 (1 + ih′)
e
Pf
2
s2 = 0 . (A.15)

The solution to this equation is given in (3.17a), and it can easily be found by first ig-
noring the inhomogeneity, and then adding a particular solution found by variation of
constants. The constant of integration is deduced from condition (A.11a). In equation
(A.9b) we use the characteristics

s̄ = i (η − 1) (A.16a)

τ̄ = ξ − i (η − 1) (A.16b)

with the interface at s̄ = 0 and τ̄ = ξ (s̄ = 0). In these coordinates equation (A.9b)
reads

Ns̄ = −Pf
2
τ̄M(−s̄, τ̄ + 2s̄) +

iPf [(τ̄ + 2s̄)h(τ̄ + 2s̄)]′

2 (1 + ih′(τ̄ + 2s̄))
e
Pf
2
s̄2 , (A.17)
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which can be integrated immediately. The boundary condition for N is derived by
putting together (A.11b) and (A.11c):

N(s̄ = 0) =
i

2

σκ′(τ̄)

(1− ih′(τ̄))
− i

2

[(1− iτ̄)h(τ̄)]′

(1− ih′(τ̄))
. (A.18)

This leads to the solution given in (3.17b).

A.1.3. WKB solution

Derivation of equations (3.21) and (3.22)

We start from (3.20) with the prime denoting derivatives with respect to ξ or ξ′, de-
pending on the concerning term being outside or inside an integral respectively. Writ-
ing M in these terms, we get

M

(
1

2
(ξ − ξ′), ξ′

)
=

i

2z(ξ′)
e
Pf
8 (ξ2−ξ′2)

[[(
1 + iξ′

)
h
]′ − 2 [ξ′h]′

ξ′

(
1− e−

Pf
4

(ξ−ξ′)ξ′
)]

and
∂

∂ξ
M

(
1

2
(ξ − ξ′), ξ′

)
=
Pfξ

4
M

(
1

2
(ξ − ξ′), ξ′

)
− iPf

4

[ξ′h]′

z(ξ′)
e
Pf
8

(ξ−ξ′)2 .

Putting this into (3.20), it turns out that

F̃ ′(ξ) = −2iz̄(ξ)

i∞∫

ξ

∂

∂ξ
M

(
1

2
(ξ − ξ′), ξ′

)
dξ′

= −2iz̄(ξ)

[
∂

∂ξ

i∞∫

ξ

M

(
1

2
(ξ − ξ′), ξ′

)
dξ′ +M(0, ξ)

]

= −2iz̄(ξ)
∂

∂ξ

i∞∫

ξ

M

(
1

2
(ξ − ξ′), ξ′

)
dξ′ +

z̄(ξ)

z(ξ)
[(1 + iξ)h(ξ)]′ .

This can be integrated by parts. Using

[ z̄
z

]′
= −2i

h′′

z2

we arrive at (3.21). We use (3.21) to eliminate the first term on the right hand side of
(3.20):

F̃ ′(ξ) =
Pf
4
ξF̃ (ξ)− Pf

4
ξ
z̄(ξ)

z(ξ)
(1 + iξ)h(ξ)− i

2
Pfξ

ξ∫
h′′(ξ′)

z2(ξ′)

(
1 + iξ′

)
h(ξ′)dξ′

− Pf
2
ξ

ξ∫
h′′(ξ′)

i∞∫

ξ′

M

(
1

2
(ξ′ − ξ′′), ξ′′

)
dξ′′ dξ′ − Pf

2
z̄(ξ)

i∞∫

ξ

[ξ′h]′

z(ξ′)
e
Pf
8

(ξ−ξ′)2dξ′ .
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This is altered again, using the three identities

i∞∫

ξ

[ξ′h]′

z(ξ′)
e
Pf
8

(ξ−ξ′)2dξ′
p. I.
= −ξh(ξ)

z(ξ)
−

i∞∫

ξ

[
ξ′h(ξ′)

(
(ξ′ − ξ)Pf

4z(ξ′)
− ih′′(ξ′)

z2(ξ′)

)
e
Pf
8

(ξ−ξ′)2
]

dξ′

F̃ ′(ξ)− Pf
4
ξF̃ (ξ) = e

Pf
8
ξ2 d

dξ

[
F̃ (ξ)e−

Pf
8
ξ2
]

2h(ξ)− (1 + iξ)h(ξ) = (1− iξ)h(ξ)

and we get

e
Pf
8
ξ2 d

dξ

[
F̃ (ξ)e−

Pf
8
ξ2
]

=
Pf
4

z̄(ξ)

z(ξ)
ξ (1− iξ)h(ξ)

+
Pf
2
z̄(ξ)

i∞∫

ξ

[
ξ′h(ξ′)

(
(ξ′ − ξ)Pf

4z(ξ′)
− ih′′(ξ′)

z2(ξ′)

)
e
Pf
8

(ξ−ξ′)2
]

dξ′

− i

2
Pfξ

ξ∫
h′′(ξ′)

z2(ξ′)

(
1 + iξ′

)
h(ξ′)dξ′

− Pf
2
ξ

ξ∫
h′′(ξ′)

i∞∫

ξ′

M

(
1

2
(ξ′ − ξ′′), ξ′′

)
dξ′′ dξ′ .

Integrating this, we arrive at the final equation (3.22).

Finding the WKB solution (3.24)

In the WKB ansatz

h(ξ) = exp

(
1

ε

∞∑

k=0

εkSk(ξ)

)
≈ exp

(
1

ε
S0(ξ) + S1(ξ) +

1

ε
S′0(ξ)(ξ′ − ξ)

)
, (A.19)

the small parameter must be ε =
√
σ for consistency. Using (A.19), we can write the

full WKB equation, sorted by powers of ε. The following simplification is used in
(3.56):

Pf
4

e
Pf
8
ξ2

ξ∫
e−

Pf
8
ξ′2+S1(ξ′)ξ′

(
1− iξ′

)
e

1
ε
S0(ξ′)dξ′

∝ Pf
4

(1− iξ) ξe
1
ε
S0(ξ)+S1(ξ) ε

S′0(ξ)
. (A.20)

Since we took into account only S0 and S1 in the ansatz, we neglect terms of the order
ε2:

0 = S′20 +
√

1 + ξ2 (1− iξ)

+ ε

(
ξ

1 + ξ2
S′0 + 2S′0S

′
1 + S′′0 +

Pf
4S′0

√
1 + ξ2 (1− iξ) ξ

)
. (A.21)

From the zero order we get

ε0 : S′20 = −
√

1 + ξ2 (1− iξ)
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and

S0(ξ) = i

ξ∫

−i

(
1 + iξ′

) 1
4
(
1− iξ′

) 3
4 dξ′ .

The first order equation reads

ξ

1 + ξ2
S′0 + 2S′0S

′
1 + S′′0 −

Pf
4
ξS′0 = 0 .

From this, S1 is easily calculated:

ε1 : S′1(ξ) =
Pf
8
ξ − 1

2

[
S′′0
S′0

+
ξ

1 + ξ2

]

S1(ξ) =
Pf
8

ξ∫

−i

ξ′dξ′ − 1

2

ξ∫ [
S′′0
S′0

+
ξ′

1 + ξ′2

]
dξ′

=
Pf
16
ξ2 +

Pf
16
− 1

2
lnS′0 −

1

4
ln
(
1 + ξ2

)

=
Pf
16
ξ2 +

Pf
16

+ ln
[
(1 + iξ)−

3
8 (1− iξ)−

5
8

]
+ const.

Inserting this into the ansatz (A.19) for h, we get the desired asymptotic approximation
(3.24) far from the singularity.

A.1.4. Local equation

Stretching transformation

The formulas

h′ = −iφ̇ (A.22a)

h′′ = −σ−αφ̈ (A.22b)

(1− iξ)h = σ2αφt (A.22c)

are easily derived from (3.27a)-(3.27b). At first, the fourfold surface tension anisotropy
function a(θ) from (2.9b) is transformed. For this purpose, the following expressions
are needed:

[
ξ − (1 + h)h′

]2
= −

[
1− φ̇+ σα

(
t− φφ̇

)]2
≈ −

(
1− φ̇

)2

[
1 + [ξh]′

]2
=
[
1− φ̇+ σα[tφ]′

]2
≈
(
1− φ̇

)2

[
ξ2 + (1 + h)2

]2
=
[
2σα

(
t+ φ

)
+ σ2α

(
φ2 − t2

)]2
≈ 4σ2α

(
t+ φ

)2
(
1 + h′2

)2
=
(
1− φ̇2

)2
.

Only the leading order of each expression is inserted into a(θ). Consequently, in the
numerator there is only one term, and this term is O(1). The term ξ2 + (1 + h)2 from
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the third line of the above equations is responsible for the divergence of a(θ), because
its leading order is O(σα):

a(θ) = 1− β
[
�1 + 8

(
1− φ̇

)4

4σ2α
(
t+ φ

)2(
1− φ̇2

)2
︸ ︷︷ ︸

�1

]
≈ 1− 2βσ−2α

(
1− φ̇

)2
(
t+ φ

)2(
1 + φ̇

)2 . (A.23)

Since b = βσ−2α is assumed to be O(1), the remaining 1 cannot be neglected.
Inserting (A.22a)-(A.22c) into the left hand side of (3.26), using the curvature (2.6)

and keeping only terms of the lowest order of σ we find

κ =
σ−

3
2
α

√
2t+ 2φ


 φ̈
(

1− φ̇2
) 3

2

+
1 + φ̇

(2t+ 2φ)

√
1− φ̇2


 (A.24)

F̃ = σ2α


 1√

2t+ 2φ


 φ̈
(

1− φ̇2
) 3

2

+
1 + φ̇

(2t+ 2φ)

√
1− φ̇2


− φt


 a(θ) (A.25)

for the curvature. Transforming the right hand side of (3.26) takes a bit more effort.
Calculating the terms one by one, we note some identities:

m1 := ξ′2 − ξ′′2 = 2σα
(
t′ − t′′

)
− σ2α

(
t′2 − t′′2

)

m2 := ξ′′
(
ξ′′ − ξ′

)
= σα

(
t′′ − t′

)
+ σ2α

(
t′t′′ − t′′2

)

m3 :=
(
ξ′ − ξ′′

)2
= −σ2α

(
t′ − t′′

)2 !
= m1 + 2m2

[(
1 + iξ′′

)
h
]′

= i
(
σαφ−

(
2− σαt′′

)
φ̇
)

[
ξ′′h
]′

= σαφ−
(
1− σαt′′

)
φ̇

z = 1 + φ̇

z̄ = 1− φ̇ .

With these formulas, the integrand can be calculated quite comfortably. Remembering
dξ = iσαdt, we arrive at

F̃ =
Pf
4
σ3α

t∫ t′∫

∞

1− φ̇(t′)

1 + φ̇(t′′)

[
e
Pf
4
σα(t′−t′′)

(
t′′φ̇− φ

)
+ 2φ̇×

(
t′ − t′′

)]
dt′′dt′ . (A.26)

Here, the functions with σα in the denominator have been expanded in a Taylor se-
ries up to the first order. The exponential function containing m3 is approximately 1.
The lowest order of σ occuring is 3α (before division by σ2α, which has to be done to
reach the final equation). Now, we have all the ingredients to write the full nonlinear
eigenvalue problem (3.30) determining σ.

Matching to the WKB solution (3.24)

The dominant balance in (3.30) is

φt+ P1

t∫
1− φ̇(t′)

1 + φ̇(t′)
φ(t′)t′dt′ ∼ 1

(2t)3/2
. (A.27)
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This does not go to the real ”beyond-all-orders regime”, and an asymptotic analysis
solution to this equation is never going to match properly, no matter how many orders
are calculated. Instead, we approximately calculate the terms of the order σ4α in the
local equation, which were neglected in (3.30). These are

− Pf
4

t∫ (
1− φ̇

) ∞∫

t′

1

1 + φ̇(t′′)

(
−φ(t′′)t′ − φ̇(t′′)t′t′′

)
dt′′dt′

=
Pf
4

t∫ (
1− φ̇

) ∞∫

t′

1

1 + φ̇(t′′)
t′

d

dt′′
[
φ(t′′)t′′

]
dt′′dt′

=− Pf
4

t∫
1− φ̇(t′)

1 + φ̇(t′)
φ(t′)t′2dt′ .

Using t� φ, we find

φ̈√
2t

+
φ̇

(2t)
3
2

= φt+

t∫
1− φ̇(t′)

1 + φ̇(t′)
φ(t′)

(
P1t
′ − P2t

′2) dt′ .

Now we approximate
1− φ̇(t′)

1 + φ̇(t′)
≈ 1 t→∞

and differentiate once with respect to t:

d3φ

dt3
−
√

2t
3
2 φ̇−

√
2tφ

(
1 + P1t− P2t

2
)

= 0 . (A.28)

We make the common asymptotic analysis ansatz φ(t) = eS(t) and find the dominant
balance

S′3 ∼
√

2t
3
2S′

yielding

S = −2
1
4

4

7
t
7
4 + c .

Reinserting, we find the dominant behaviour of the next order.

2c′
√

2t
3
2 ∼
√

2t
(
1 + P1t− P2t

2
)
− 9

4

√
2t

c′ ∼ − 5

8t
+
P1

2
− P2

2
t

c = ln t−
5
8 +

P1

2
t− P2

4
t2 .

Putting S + c into the ansatz, we find (3.33).
We proceed, putting the stretching transformation into the prefactor of the exponen-

tial function in the WKB solution (3.24), keeping only leading orders:

(1 + iξ)−
3
8 (1− iξ)−

5
8 ≈ σ− 5

28 2−
3
8 t−

5
8 .
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Hence, the prefactor is reproduced. Now we calculate S0:

S0 = −
t∫

0

σ
3
14 t′

3
4 2

1
4σ

2
7 dt′ = −2

1
4

4

7
t
7
4
√
σ .

Hence, the first term of the exponent matches. The other terms of the exponent are
also matching each other:

Pf
16

(
ξ2 + 1

)
=
Pf
16

(
2σαt− σ2αt2

)
=
P1

2
t− P2

2
t2 .

Considering h(ξ) = σαφ(t), the constants must be related by

A1 = B12−
3
8σ−

13
28 . (A.29)

To evaluate the physical condition of a smooth tip, we need

dηs
dξ

∣∣∣∣
ξ=0

=
dh

dξ

∣∣∣∣
ξ=0

= B1e
S0(0)√
σ

+
Pf
16

[
=i︷ ︸︸ ︷

S′0(0)√
σ

+
i

4

]

= iA12
3
8σ

13
28 e

S0(0)√
σ

+
Pf
16

[
1√
σ

+
1

4

]

and the condition reads

Re

[
dηs
dξ

∣∣∣∣
ξ=0

]
= Im (A1) 2

3
8σ

13
28 e

−4 4√2
7
√
σ

+
Pf
16

[
1√
σ

+
1

4

]
!

= 0 (A.30)

leading to the selection criterion (3.34).

A.2. Oseen flow

A.2.1. Ivantsov solution

Stream function

Since (3.35) is linear, we will construct a solution by linear combination of two contri-
butions. For the first part ~w 1 we make the ansatz

~w 1 = Pr~∇χ− ~v1χ (A.31)

with ~v1 = −(Pc + Pf )~ey = −P4~ey and a dependent function χ. We insert it into (3.35)
without the pressure term:

(
~v1 · ~∇

)
Pr~∇χ

︸ ︷︷ ︸
=Pr~∇(~v1·~∇χ)

−
(
~v1 · ~∇

)
~v1χ

︸ ︷︷ ︸
=~v1(~v1·~∇χ)

= Pr∆
(
Pr~∇χ

)

︸ ︷︷ ︸
=Pr~∇(Pr∆χ)

−Pr∆
(
~v1χ
)

︸ ︷︷ ︸
=~v1(Pr∆χ)

. (A.32)
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We get
Pr~∇

(
Pr∆χ− ~v1 · ~∇χ

)
= ~v1

(
Pr∆χ− ~v1 · ~∇χ

)
(A.33)

and notice that this will only hold if

Pr∆χ+ P4~ey · ~∇χ = 0 . (A.34)

To obtain a general solution to equation (3.35), we need to add another term ~w 2 and
we make a potential flow ansatz:

~w 2 = −~∇ϕ . (A.35)

One requirement to ~w 2 is to be linearly independent of ~w 1. Let’s see if our ansatz can
succeed,

0 =
(
~v1 · ~∇

)
~∇ϕ− ~∇p− Pr∆

(
~∇ϕ
)

= ~∇
(
~v1 · ~∇ϕ− p− Pr∆ϕ

)
.

If we assume a Laplace equation to be valid for ϕ, we may write a full set of equations
determining the solution ~w

0 = Pr∆χ+ P4~ey · ~∇χ (A.36a)

0 = p+ P4~ey · ~∇ϕ (A.36b)

0 = ∆ϕ (A.36c)

and
~w = ~w 1 + ~w 2 = Pr~∇χ− ~v1χ− ~∇ϕ . (A.37)

As zeroth approximation, we assume a perfectly parabolic interface and look for ap-
propriate solutions [Iva47]. In parabolic coordinates, the interface is at ηs = 1. Ananth
and Gill [AG91] noted, that for a parabolic interface, similarity solutions exist. There-
fore, we want solutions of the kind χ = χ(η) and ϕ = ϕ(η). Using this, equations
(A.36a) and (A.36c) become quite simple:

0 = Prχηη + P4ηχη , (A.38)

0 = ϕηη . (A.39)

These equations are integrated right away. We use the abbreviations (3.39),

χ(η) = c3

η∫

1

e−α̃
2η′2dη′ + c4 , (A.40)

ϕ(η) = c5η + c6 . (A.41)

Writing the components of ~w, we get expressions for the derivatives of the stream
function:

ψη = −P4χξ ,

ψξ = c5 − Pr c3e−α̃
2η2 − P4χη .
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We may now apply the boundary conditions (3.2d), (3.3c) and (3.38) consecutively to
determine the corresponding values of the integration constants:

c4 = −Pc
P4

from (3.38)

c3 = −Pf
P4

2α̃√
π erfc (α̃)

from (3.3c)

c5 = − Pfe−α̃
2

α̃
√
π erfc (α̃)

from (3.2d).

This can but need not be the order of progression. c6 does not appear explicitly in the
solution. It is just an arbitrary base value for the potential function ϕ(η) and can be set
to zero:

c6 = 0 .

We now have all the ingredients to write the solution (3.40b), (3.40a) in a convenient
form. Note, that the η-component of ~w can be expressed using the ξ-component:

ψξ(ξ, η) =
η

ξ
ψη(η) +

Pf ã

2α̃2

[
eα̃

2(1−η2) − 1
]
. (A.42)

Temperature field

The derivation of (3.41) is analogue to the potential flow case. The remaining task is to
calculate I1(η). We use

d

dω
erfc (α̃ω) = − 2α̃√

π
e−α̃

2ω2

and integration by parts several times. Regarding (3.40b), on term to integrate is

t1 =

η∫

1

ω

[
Pc + Pf

(
1− erfc (α̃ω)

erfc (α̃)

)]
dω

p. I.
=

η2

2

[
Pc + Pf

(
1− erfc (α̃η)

erfc (α̃)

)]
− Pc

2
+

1

2
Pf

η∫

1

ω2 d

dω

erfc (α̃ω)

erfc (α̃)
dω

=
η2

2

[
Pc + Pf

(
1− erfc (α̃η)

erfc (α̃)

)]
− Pc

2
−1

2
Pf ã

η∫

1

ω2eα̃
2(1−ω2)dω

︸ ︷︷ ︸
=t2

.

We continue with the next term to integrate. We use the formula

ã

η∫

1

eα̃
2(1−ω2)dω = 1− erfc (α̃η)

erfc (α̃)
.
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It can be verified by substitution:

t2 = −1

2
Pf ã

η∫

1

ω2eα̃
2(1−ω2)dω

p. I.
= −1

2
Pf ã

[
− ω

2α̃2
eα̃

2(1−ω2)
∣∣∣
η

1
+

1

2α̃2

η∫

1

eα̃
2(1−ω2)dω

]

=
Pf ã

4α̃2

[
ηeα̃

2(1−η2) − 1
]
− Pf

4α̃2

[
1− erfc (α̃η)

erfc (α̃)

]
.

Now, only one term remains:

t3 =
Pf ã

2α̃2

η∫

1

(
eα̃

2(1−ω2) − 1
)

dω

= −Pf ã
2α̃2

(η − 1) +
Pf
2α̃2

[
1− erfc (α̃η)

erfc (α̃)

]
.

We get (3.42) with I1(η) = t1 + t3.

A.2.2. Asymptotic decomposition

Power series solution of (3.46b)

We look for an analytical solution to equation (3.46b). Let us try a separation ansatz
for the function χ:

χ(ξ, η) = Ξ(ξ)E(η) . (A.43)

This is inserted into equation (3.46b):

Ξ′′

Ξ
− 2α̃2 ξ

Ξ′

Ξ
= −E

′′

E
− 2α̃2 η

E′

E

!
= c7 .

Both sides have to be constant, because each side depends only on one of the indepen-
dent variables:

Ξ′′ − 2α̃2ξΞ′ − c7Ξ = 0 .

This equation is solved in general by a power series in ξ:

Ξ(ξ) =
∞∑

k=0

bk ξ
k

Ξ′(ξ) =

∞∑

k=0

k bk ξ
k−1 =

∞∑

k=1

k bk ξ
k−1 =

∞∑

k=0

(k + 1) bk+1 ξ
k

Ξ′′(ξ) =
∞∑

k=0

(k + 1) k bk+1 ξ
k−1 =

∞∑

k=1

(k + 1) k bk+1 ξ
k−1

=

∞∑

k=0

(k + 1) (k + 2) bk+2 ξ
k .
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We insert this into the differential equation and collect the coefficients of like powers
of ξ:

0 =
∞∑

k=0

(
(k + 1) (k + 2) bk+2 − k bk 2α̃2 − c7 bk︸ ︷︷ ︸

!
=0

)
ξk .

The coefficients of like powers must vanish identically. The result is a recursive for-
mula determining the coefficients bk:

bk+2 =
2α̃2k + c7

(k + 1) (k + 2)
bk . (A.44a)

The coefficients b0 and b1 must be gained from boundary conditions. They are iden-
tified with the integration constants of the differential equation. Subsequently, the
remaining bk with odd and even k can be calculated one by one using (A.44a). In the
same manner one can derive a solution

E(η) =
∞∑

l=0

el η
l

with a similar recursion relation:

el+2 = − 2α̃2l − c7

(l + 1) (l + 2)
el . (A.44b)

Indeed, we found the exact solution (3.48) for χ.

Calculation of an asymptotically consistent correction to the flow velocity field

The system (3.46a)-(3.46b) is equivalent to four first order equations. We will treat it
as two times two first order equations and decompose two first order 2 × 2-matrix
equations subsequently instead of decomposing one first order 4× 4-matrix equation.
Our choice of procedure is clearer and the results are the same. Equation (3.46b) is
written as a first order system:

~µξ +A~µη + 2α̃2 F (ξ, η)~µ = 0 . (A.45)

with

~µ =

(
χξ
χη

)
, A =

(
0 1

−1 0

)
, F (ξ, η) =

(
−ξ η

0 0

)
.

We repeatedly refer to section 2.2. ~µ is expanded appropriately in eigenvectors ~r1 and
~r2 of A.

~µ = λ(1)~r1 + ελ(2)~r2 (A.46)

ε is a small parameter, which is used for the scale transformation (ξ, η)→ (εξ, εη):
(
λ

(1)
ξ + iλ(1)

η

)
~r1 + ε

(
λ

(2)
ξ − iλ(2)

η

)
~r2 + 2εα̃2 F (εξ, εη)λ(1)~r1 = 0 . (A.47)

This is a new form of (A.45), where we neglectedO(ε2). The term 2εα̃2 F (εξ, εη)λ(1)~r1

is the smallest term kept. This equation is projected onto the invariant subspaces of A:



A.2. Oseen flow 135

λ
(1)
ξ + iλ(1)

η = α̃2 (ξ − iη)λ(1) , (A.48a)

λ
(2)
ξ − iλ(2)

η = −α̃2 (ξ − iη)λ(1) . (A.48b)

We already returned to the original scale. These equations are a coupled system of
first order partial differential equations. It can be solved by means of the method of
characteristics. The characteristic coordinates are given in (3.15a) and (3.15b) for (A.48a)
and (A.48b) respectively. The idea is to integrate on characteristic lines in the C2 along
which the partial differential equations become ordinary,

λ(1)
s = α̃2 [2s− i (1 + iτ)]λ(1) , (A.49a)

λ
(2)
s̄ = α̃2i (1 + iτ̄)λ(1) . (A.49b)

These equations can be integrated immediately,

λ(1)(s, τ) = c8(τ)eα̃
2[s2−is(1+iτ)] , (A.50a)

λ(2)(s̄, τ̄) = α̃2i (1 + iτ̄)

s̄∫

0

λ(1)(−ω, τ̄ + 2ω) dω + c9(τ̄)

= α̃2i (1 + iτ̄)

s̄∫

0

c8(τ̄ + 2ω)eα̃
2[−ω2+iω(1+iτ̄)] dω + c9(τ̄) .

(A.50b)

Now, we can write a proper form of (3.46a):

ψξξ + ψηη = −Pf
[
ξ
(
λ(1) + λ(2)

)
− iη

(
λ(1) − λ(2)

)]
. (A.51)

We use

~v =

(
ψξ
ψη

)
, A =

(
0 1

−1 0

)
, G(ξ, η) =

(
Pf η Pf ξ

0 0

)
,

and write (A.51) as a first order system:

~vξ +A~vη +G(ξ, η)~µ = 0 . (A.52)

Expanding ~v in the same manner as above,

~v = β(1)~r1 + εβ(2)~r2 (A.53)

and doing the scale transformation (ξ, η) → (εξ, εη) again, we have to keep in mind
that λ(2) actually equals ελ(2),

(
β

(1)
ξ + iβ(1)

η

)
~r1 + ε

(
β

(2)
ξ − iβ(2)

η

)
~r2 + εG(εξ, εη)λ(1)~r1 = 0 . (A.54)

The next step is the projection part of the method,

β
(1)
ξ + iβ(1)

η = − i

2
Pf (ξ − iη)λ(1) , (A.55a)

β
(2)
ξ − iβ(2)

η =
i

2
Pf (ξ − iη)λ(1) . (A.55b)



136 Appendix A. Auxiliary calculations

These are transformed to characteristic coordinates

β(1)
s = −Pf

2
i (2s− i (1 + iτ)) c8 (τ) eα̃

2[s2−is(1+iτ)] (A.56a)

β
(2)
s̄ =

Pf
2

(1 + iτ̄) c8(τ̄ + 2s̄)eα̃
2[−s̄2+is̄(1+iτ̄)] (A.56b)

and integrated,

β(1) = −iPr c8(τ)eα̃
2[s2−is(1+iτ)] , (A.57a)

β(2) =
Pf
2

(1 + iτ̄)

s̄∫

0

c8(τ̄ + 2ω)eα̃
2[−ω2+iω(1+iτ̄)]dω + c10(τ̄) . (A.57b)

We can write the boundary conditions (3.47a) and (3.47b) in the following form:
(
1 + ih′

)
β(1) −

(
1− ih′

)
β(2) = −iPfξãhh

′ (A.58a)
(
1 + ih′

)
β(1) +

(
1− ih′

)
β(2) = −Pfξãh (A.58b)

(A.58a) + (A.58b) ⇒ β(1)
∣∣∣
s=0

= −Pf
2
τ ãh(τ) (A.59a)

(A.58b)− (A.58a) ⇒ β(2)
∣∣∣
s̄=0

= −Pf
2
τ̄ ãh(τ̄) . (A.59b)

We apply these to β(1),(2):

c8(τ) = − iPf
2Pr

τãh(τ), c10(τ̄) = −1

2
Pf τ̄ ãh(τ̄) .

This gives (3.50a) and (3.50b).
One has to decompose and solve another Laplace equation for the first order correc-

tion to the potential function ϕ:

ϕξ + iϕη = 0 ,

ϕξ − iϕη = 0 .

The resulting functions depend only on τ and τ̄ respectively. The results would be
added to ψξ,η according to (3.45a) and (3.45b):

ψξ = −i
(
β(1)(−s̄, τ̄ + 2s̄)− β(2)(s̄, τ̄)

)
+ c11(τ̄ + 2s̄) + c12(τ̄) ,

ψη = β(1)(−s̄, τ̄ + 2s̄) + β(2)(s̄, τ̄)− i (c11(τ̄ + 2s̄)− c12(τ̄)) .

But this is already included in the integration constants c8 and c10 of β(1),(2) determined
from the corresponding boundary conditions (A.59a) depending on τ = τ̄ + 2s̄ and
(A.59b) depending on τ̄ . Hence, the contribution from the ϕ-solution is automatically
included in β(1),(2). It happens because (3.45a) and (3.45b) had been differentiated once
to get (3.46a).

At η → ∞ ⇔ s → −i∞, s̄ → i∞, we demand β(2) to be analytic and it is easy to
see that β(1) vanishes in this limit. Thus, ψξ,η also vanish in this limit. The far field



A.2. Oseen flow 137

behaviour of the corrected stream function ψξ,η + ψIv
ξ,η remains correct. This would

not happen if c11, c12 were different from zero. It shows again that these contribu-
tions should be dropped. We found a fully consistent first order correction to the flow
velocity field fulfilling the interface conditions and leaving the far field conditions un-
touched:

ψξ = −i
(
β(1) − β(2)

)
, (A.60a)

ψη = β(1) + β(2) . (A.60b)

It will turn out that β(2) does not have any effect on our theory because it is actually
O(ε) just as λ(2).

Calculation of an asymptotically consistent correction to the temperature field

We want to derive decomposed equations, which can be solved analytically. But since
(3.44a) is nonlinear, there is no guarantee for success. At first, we write the equation as
a first order system:

~ϑξ +A~ϑη +B~ϑ = −i
(
β(1) − β(2)

)
e−I1(η)~j . (A.61)

Here,~j is a basis unit vector in the abstract Zauderer decomposition space referring to
the upper component, i.e. ~r1,2 ·~j = ∓i and ~ϑ = Tξ~j + Tη~k. We have used the following
quantities:

~ϑ =

(
Tξ
Tη

)
, A =

(
0 1

−1 0

)
, B =

(
−ψη − ψIv

η ψξ + ψIv
ξ

0 0

)
.

Similar to the procedure when solving systems of ordinary differential equations, we
expand the solution in the liquid in eigenvectors of A:

~ϑ = M~r1 + εN~r2 .

In the solid, we can write
~ϑs = N s~r2

just as in (2.32a), because in the limit Pc → 0, the right hand side of (3.44b) is zero.
For arbitrary Pc, the ~r1-term in ~ϑs would have to be taken into account in order to
obtain a consistent solution, and things would be much more complicated. We use the
stretched scale again. In this respect, we remember β(2) → εβ(2),

(Mξ + iMη)~r1 + ε (Nξ − iNη)~r2 + εBM~r1 = −iεβ(1)e−I1(η)~j . (A.62)

This is projected onto the invariant subspaces of A. The characteristic coordinates
are given in (3.15a) and (3.15b). The decomposed equations are (3.52a) and (3.52b).
a1 is a function determined by calculating the projection of B~r1 on ~r1 explicitly, i.e.
P1B~r1 = −a1~r1. The boundary conditions are (3.16a) and (3.16b). Let us explain the
formation of (3.53a) a bit. The homogenous solution is just

Mh(s, τ) = c13 exp

[ s∫

0

a1(ω, τ) dω

]
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with

c13 =
i [(1 + iτ)h(τ)]′

2 (1 + ih′(τ))

gained from the boundary condition (3.16a). β(1) had already been calculated in the
right coordinates (s, τ) above, see equation (3.50a). For the particular part Mp of the
solution M , we start to vary the constant: Mp = c13(s)

c13
Mh,

c′13(s) = β(1)(s, τ) exp

(
−I1(η)−

s∫

0

a1(ω, τ) dω

)

= β(1)(s, τ) exp

(
−

s∫

0

(
iψIv
ξ (1 + iω)− 1

2
ψIv
η (s+ τ, 1 + is) +

i

2
ψIv
ξ (1 + is)

)

︸ ︷︷ ︸
=a2(ω,τ)

dω

)

= −Pf
4
ãτh(τ) exp

(
α̃2
(
s2 − is (1 + iτ)

)
−

s∫

0

a2(ω, τ) dω

)
.

This should be enough for the reader to agree with (3.53a). (3.53b) is then obtained by
direct integration of (3.52b).

A.2.3. WKB solution

Proof that (3.21) is valid for arbitrary flows

We start from equations (3.52a)-(3.52b) determining the Zauderer coefficientsM andN
respectively. These equations result from the application of the Zauderer decomposi-
tion scheme in subsection A.2.2 to the expanded diffusion-advection equation (3.44a)
for the case of an Oseen flow approximation. However, when taking a closer look
at the equations together with the definition (3.51) of the function a1(s, τ), it can be
seen clearly that no particular form of ψξ,η or ψIv

ξ,η has been inserted up to this point.
Regarding equations (A.60a) and (3.41), one may take one step back and replace the
inhomogeneities±1

2β
(1)(s, τ)e−I1(η) by∓ i

2ψξT
Iv
η in order to make the expressions even

more general. These functions are abbreviated as

jo(s, τ) = − i

2
ψξ(τ + s, 1 + is)T Iv

η (1 + is) . (A.63)

So within the convective symmetric model used here, the Zauderer decomposition
scheme will generally lead to

Ms = a1(s, τ)M + jo(s, τ) (A.64a)

Ns̄ = −a1(−s̄, τ̄ + 2s̄)M(−s̄, τ̄ + 2s̄)− jo(−s̄, τ̄ + 2s̄) (A.64b)
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with the precondition that the similarity solutions T Iv and ψIv for the case without
surface tension exist. The solutions to these equations are

M = go(s, τ)

[
i [(1 + iτ)h(τ)]′

2 (1 + ih′(τ))
+

s∫

0

jo(ω, τ)

go(ω, τ)
dω

]
(A.65a)

Ns̄ = −
s̄∫

0

[a1(−ω, τ̄ + 2ω)M(−ω, τ̄ + 2ω)− jo(−ω, τ̄ + 2ω)] dω +
F̃ ′(τ̄)

1− ih′(τ̄)
(A.65b)

with

go(s, τ) = exp

( s∫

0

a1(ω, τ)dω

)
(A.66)

and F̃ given in (3.19). To fulfill the far field boundary condition (3.10d), we need
N(s̄ → i∞, τ̄) → 0. In addition to that, rename τ̄ → ξ, which is now the continuation
of the original parabolic coordinate ξ to the complex plane, and we substitute ω =
1
2(ξ′ − ξ) in the integrals:

F̃ ′(ξ)

1− ih′(ξ)
= i

ξ∫

i∞

[
a1

(
1

2
(ξ − ξ′), ξ′

)
M

(
1

2
(ξ − ξ′), ξ′

)
− jo

(
1

2
(ξ − ξ′), ξ′

)]
dω .

(A.67)
Now we calculate

∂

∂ξ
M

(
1

2
(ξ − ξ′), ξ′

)
=

1

2
a1

(
1

2
(ξ − ξ′), ξ′

)
M

(
1

2
(ξ − ξ′), ξ′

)
,

+
1

2
jo

(
1

2
(ξ − ξ′), ξ′

)
.

(A.68)

This can be seen easily from the form (A.65a) of M and we used

∂

∂ξ
go

(
1

2
(ξ − ξ′), ξ′

)
= a1

(
1

2
(ξ − ξ′), ξ′

)
go

(
1

2
(ξ − ξ′), ξ′

)
.

Thus, a1M in (A.67) can be expressed by its own derivative with respect to ξ using
(A.68):

F̃ ′(ξ)

1− ih′(ξ)
= 2i

ξ∫

i∞

[
∂

∂ξ
M

(
1

2
(ξ − ξ′), ξ′

)
+ jo

(
1

2
(ξ − ξ′), ξ′

)
− jo

(
1

2
(ξ − ξ′), ξ′

)]
dω

= 2i

ξ∫

i∞

[
∂

∂ξ
M

(
1

2
(ξ − ξ′), ξ′

)]
dω

= 2i
∂

∂ξ

ξ∫

i∞

[
M

(
1

2
(ξ − ξ′), ξ′

)]
dω +

[(1 + iξ)h(ξ)]′

1 + ih′(ξ)
.

(A.69)

Multiplying both sides of (A.69) with 1 − ih′(ξ) and integrating by parts yields (3.21)
q. e. d.
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Now that the proof was carried out, we may continue with the WKB solution. The
first integral on the right hand side of (3.56) is integrated by parts,

σκ(ξ) = (1− iξ)h(ξ) +

ξ∫

i∞

(1 + iξ′)h(ξ′) eI3(−s̄′,ξ′) dI3(−s̄′, ξ′)
dξ′

dξ′

− i

2
Pf ã

ξ∫

i∞

ξ′h(ξ′) eI3(−s̄′,ξ′)

1
2

(ξ−ξ′)∫

0

eα̃
2(ω2−iω(1+iξ′)) exp

(
−

ω∫

0

a2(ω′, ξ′) dω′

)
dω dξ′ .

(A.70)

Explicit expressions for I3(−s̄′, ξ′) and its total derivative with respect to ξ′ are needed.

Calculation of I3
We start from (3.56). The first integral on the right hand side is tackled with integration
by parts. This seems reasonable because one factor appears as a derivative. But we
need to calculate I3

(
1
2(ξ − ξ′), ξ′

)
. These calculations are quite extensive. It is similar to

the evaltuation of I1(η). We must pay attention and keep in mind that the expressions
should not get out of hand. It is possible but we always have to choose the same
convenient factorization, i.e. we collect terms of Pf ã/Re and terms containing erfc.
The integral is

I3(−s̄′, ξ′) =
1

2

1
2

(ξ−ξ′)∫

0

[
ψIv
η

(
ω + ξ′, 1 + iω

)
− iψIv

ξ (1 + iω)
]

dω

and it is transformed back: η′ = 1+iω. Integration is less extensive with this integration
variable:

I3(η, ξ′) = − i

2

η∫

1

[
ψIv
η

(
ξ′ − i(η′ − 1), η′

)
− iψIv

ξ

(
η′
)]

dη′ = −iI3(−s̄′, ξ′) .

Note, that I3(−s̄′, ξ′) and I3(η, ξ′) are actually different functions. The one is not gained
from the other by just replacing arguments but by substitution under the integral. The
bracket expressions after the identifier “I3” are more like a part of the name than ar-
guments of the function. If one considers them as arguments, one will always have to
know, which version of the integral is viewed. I3(−s̄′, ξ′) can be calculated by replac-
ing η = 1 + iω = 1 + i

2 (ξ − ξ′) in I3(η, ξ′). The same applies for the other Ik presented
in this work. The notation is a bit tricky but reasonable. The (η, ξ′)-notation is used
for evaluation of the integrals. It makes the occuring expressions more convenient.
The (−s̄′, ξ′)-notation is the one, which has to be used in the upcoming sections and
chapters. Using

I4(η, ξ′) =

η∫

1

ψIv
η

(
ξ′ − i(η′ − 1), η′

)
dη′ ,

we can write
I3(η, ξ′) = − i

2
I4(η, ξ′)− 1

2
I1(η) . (A.71)
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We could also set

I2(η, ξ′) = i

η∫

1

a2

(
−i(η − 1), ξ′

)
dη′

and write
I3(η, ξ′) = −I2(η, ξ′)− I1(η, ξ′) . (A.72)

Both ways (A.71) and (A.72) have been taken to compare and verify results. This is
advisable, because I3(η, ξ′) is an elementary part of the results in subsection 3.2.3 and
the theory behind it, but its calculation is prone to mistakes. We will only present the
path of (A.71), because it is shorter. Later on, we will just give the result for I2(η, ξ′),
which the reader may verify herself or himself and use it to evaluate (A.72).

For the first path, we need to evaluate only I4(η, ξ′) because I1(η) is already known.
The Terms are integrated in the same manner as during the calculation of I1(η):

I4(η, ξ′) =

η∫

1

ψIv
η

(
ξ′ − i(η′ − 1), η′

)
dη′

=

η∫

1

(
ξ′ − i(η′ − 1)

)
Pf

(
1− erfc (α̃η′)

erfc (α̃)

)
dη′

= i
(
1− iξ′

)
ηPf

(
1− erfc (α̃η)

erfc (α̃)

)

− i

2
η2Pf

(
1− erfc (α̃η)

erfc (α̃)

)

+

η∫

1

[
i

2
η′2 − i

(
1− iξ′

)
η′
]
Pf ãeα̃

2(1−η′2)dη′

︸ ︷︷ ︸
=t4

.

We continue with auxiliary term t4:

t4 = − iPf ã

4α̃2
η′eα̃

2(1−η′2)
∣∣∣∣
η

1

+
iPf ã

4α̃2

η∫

1

eα̃
2(1−η′2)dη′ + i

(
1− iξ′

) Pf ã
2α̃2

eα̃
2(1−η′2)

∣∣∣∣
η

1

=
iPf
2Re

[
1− erfc (α̃η)

erfc (α̃)

]
+

iPf ã

Re

[
1

2

(
1− ηeα̃

2(1−η2)
)

+
(
1− iξ′

) (
eα̃

2(1−η2) − 1
)]

.

Now we can write I4(η, ξ′):

I4(η, ξ′) = iPf

[
1− erfc (α̃η)

erfc (α̃)

] [
η
(
1− iξ′

)
− η2

2
+

1

2Re

]

+
iPf ã

Re

[
1

2

(
1− ηeα̃

2(1−η2)
)

+
(
1− iξ′

) (
eα̃

2(1−η2) − 1
)]

.
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Now we can write I3(η, ξ′):

I3(η, ξ′) = − i

2
I4(η, ξ′)− 1

2
I1(η)

=
Pf
2

[
1− erfc (α̃η)

erfc (α̃)

] [
η
(
1− iξ′

)
− η2

]

+
Pf ã

2Re

[
1− eα̃

2(1−η2)
] [
η −

(
1− iξ′

)]
.

Now we can write I3

(
1
2(ξ − ξ′), ξ′

)
. We have to replace η = 1 + iω = 1 + i

2 (ξ − ξ′) in
I3(η, ξ′),

I3(−s̄′, ξ′) =
Pf
4

[
1− erfc

(
α̃
(
1 + i

2 (ξ − ξ′)
))

erfc (α̃)

] [
1

2

(
ξ2 − ξ′2

)
− i
(
ξ + ξ′

)]

+
iPf ã

4Re

[
1− eα̃

2( 1
4

(ξ−ξ′)2−i(ξ−ξ′))
] [
ξ + ξ′

]
.

(A.73)

As mentioned above, we will give I2 for completeness. We write it in the form I2(ω, ξ′)

where ω = 1
2 (ξ − ξ′) = −s̄′ can be identified:

I2(ω, ξ′) =− Pf
2

[
1− erfc (α̃ (1 + iω))

erfc (α̃)

] [
(1 + iω)

(
1− iξ′

)
+

1

Re

]

+
Pf ã

2Re

[(
1− iξ′

) (
1− eα̃

2(ω2−2iω)
)

+ iω
]
.

(A.74)

We are now ready to evaluate the integral in (3.56) using integration by parts:

σκ(ξ)a(θ) = 2h(ξ) +
(
1 + iξ′

)
h(ξ′)eI3(−s̄′,ξ′)

∣∣∣
i∞

ξ

−
i∞∫

ξ

(
1 + iξ′

)
h(ξ′)eI3(−s̄′,ξ′) dI3(−s̄′, ξ′)

dξ′
dξ′

=
(
1− iξ′

)
h(ξ′) +

ξ∫

i∞

(
1 + iξ′

)
h(ξ′)eI3(−s̄′,ξ′) dI3(−s̄′, ξ′)

dξ′
dξ′ .

We have used I3(0, ξ) = 0 (in the (−s̄, ξ′)-notation) and the requirement for the func-
tion to vanish at ξ′ → i∞.

Calculation of the derivative of I3

dI3(−s̄′, ξ′)
dξ′

= −1

2
a1

(
1

2
(ξ − ξ′), ξ′

)
+

1

2

1
2

(ξ−ξ′)∫

0

dψIv
η (ω + ξ′, 1 + iω)

dξ′
dω

= −1

4

[
ψIv
η

(
1

2
(ξ + ξ′), 1 +

i

2
(ξ − ξ′)

)
− iψIv

ξ

(
1 +

i

2
(ξ − ξ′)

)]

+
1

2

1
2

(ξ−ξ′)∫

0

dψIv
η (ω + ξ′, 1 + iω)

dξ′
dω ,
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since in the limit Pc → 0

dψIv
η (ω + ξ′, 1 + iω)

dξ′
= Pf

(
1− erfc (α̃ (1 + iω))

erfc (α̃)

)
,

we calculate the following integral:

Pf
2

1
2

(ξ−ξ′)∫

0

(
1− erfc (α̃ (1 + iω))

erfc (α̃)

)
dω

=
Pf
2
ω

∣∣∣∣
1
2

(ξ−ξ′)

0

− Pf
2
ω

erfc (α̃ (1 + iω))

erfc (α̃)

∣∣∣∣
1
2

(ξ−ξ′)

0

− iPf
2
ãeα̃

2

1
2

(ξ−ξ′)∫

0

e−α̃
2(1+iω)2dω

︸ ︷︷ ︸
=t5

=
Pf
4

(
1− erfc

(
α̃
(
1 + i

2 (ξ − ξ′)
))

erfc (α̃)

)
+ t5 .

For calculation of the auxiliary term t5, we resubstitute ω = −i (η′ − 1),

t5 =
iPf
2
ãeα̃

2

η∫

1

(
η′ − 1

)
e−α̃

2η′2dη′

=
iPf ã

4α̃2
eα̃

2(1−η′2)
∣∣∣
1

η
− iPf

2
ãeα̃

2

η∫

1

e−α̃
2η′2dη′

=
iPf ã

2Re

[
1− eα̃

2(1−η2)
]
− iPf

2

[
1− erfc (α̃η)

erfc (α̃)

]
.

Reinserting η = 1 + i
2 (ξ − ξ′) into t5, we are ready to collect the corresponding terms

in dI3(−s̄′,ξ′)
dξ′ :

dI3(−s̄′, ξ′)
dξ′

=− iPf
4

(
1− iξ′

)
[

1− erfc
(
α̃
(
1 + i

2 (ξ − ξ′)
))

erfc (α̃)

]

+
iPf ã

4Re

[
1− eα̃

2( 1
4

(ξ−ξ′)2− i
2

(ξ−ξ′))
]
.

(A.75)

Of course, this result can be approved by direct derivation of (A.73). Just the sequence
of differentiation and integration must be swapped. One should get the same, and this
was checked indeed. Inserting (A.75) into (A.70), one ends up with (3.57).

Finding the WKB solution (3.24)

We use the ansatz (A.19) in (3.58),

− σ
(

h′′(ξ)√
1 + ξ2

+
ξh′(ξ)

(1 + ξ2)
3
2

)
= (1− iξ)h(ξ) . (A.76)
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We have used I3(0, ξ) = 0 again. The derivatives of h(ξ) can be expressed in terms of
h(ξ) itself. We pay attention only to the two lowest orders:

h′(ξ) =

(
S′0(ξ)

ε
+ S′1(ξ)

)
h(ξ) ,

h′′(ξ) =

(
S′′0 (ξ)

ε
+ S′′1 (ξ) +

S′20 (ξ)

ε2
+ S′21 (ξ) +

2

ε
S′0(ξ)S′1(ξ)

)
h(ξ) .

Now we can set up (A.76) up to the order ε1:

0 = S′0(ξ)2 +
√

1 + ξ2 (1− iξ) + ε

(
ξ

1 + ξ2
S′0(ξ) + 2S′0(ξ)S′1(ξ) + S′′0 (ξ)

)
. (A.77)

The zero order is given by (3.25), calculated in appendix A.1.3. The first order can now
be calculated:

ε1 : S′1(ξ) = −1

2

ξ

1 + ξ2
− 1

2

d

dξ

[
ln
(
S′0(ξ)

)]

S1(ξ) = ln
(

(1 + iξ)−
3
8 (1− iξ)−

5
8

)
.

In the calculation of the first order, the integration constants are chosen properly. The
important issue is that the asymptotic matching works later on.

A.2.4. Local equation

We use the simple formulas (A.22a)-(A.22c) and dξ = iσαdt, which can be comple-
mented by

(1 + iξ)h(ξ) = (2− σαt)σαφ(t) . (A.78)

We have to transform

1. a1

(
1
2(ξ′ − ξ′′), ξ′′

)

2. I3

(
1
2(ξ′ − ξ′′), ξ′′

)

3. M
(

1
2(ξ′ − ξ′′), ξ′′

)

4. I1

(
1
2(ξ′ − ξ′′), ξ′′

)

5. auxiliary term t6 from equation (3.60)

and we are going to proceed in that very order. Because of dξ = iσαdt and accordingly
dξ′′dξ′ = −σ2αdt′′dt′, even a zero order contribution from the above listed terms will
end up as O

(
σ2α
)
. Thus, we calculate almost everything only up to the order of σ2α.

This should be by far enough to perform the asymptotic matching to the WKB solution
(3.59) afterwards. When products are formed, for example a1M occurs, more terms
will drop out.
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Transformation of a1
We write a1

(
1
2(ξ′ − ξ′′), ξ′′

)
explicitly using its definition (3.51). This has not been done

so far. The derivatives ψξη of the stream function are known,

a1

(
1

2
(ξ′ − ξ′′), ξ′′

)
=− iPf

2Re
ã
(

eα̃
2[ 14 (ξ′−ξ′′)2−i(ξ′−ξ′′)] − 1

)

− i

2
Pf
(
1 + iξ′

)
(

1− erfc
(
α̃
(
1 + i

2(ξ′ − ξ′′)
))

erfc (α̃)

)
.

(A.79)

Since
ξ′ − ξ′′ = iσα

(
t′ − t′′

)
= 2id1 ,

we have to expand the following complementary error function in a Taylor series, be-
cause it occurs in a1

(
1
2(ξ′ − ξ′′), ξ′′

)
:

erfc

(
α̃

(
1 +

i

2
(ξ′ − ξ′′)

))
= erfc (α̃ (1− d1))|d1=0

≈ erfc (α̃)
[
1 + ãd1 + ãα̃2d2

1

]

= erfc (α̃)

[
1 +

1

2
ãσα

(
t′ − t′′

)
+

1

8
ãReσ2α

(
t′ − t′′

)2
]
.

(A.80)

The expansion is reasonable. For example the estimation
√

Re
2 σ

α ≈ 2.36 × 10−4 � 1

can be made for pivalic acid. Since

1

4

(
ξ′ − ξ′′

)2 − i
(
ξ′ − ξ′′

)
= σα

(
t′ − t′′

)
− σ2α

4

(
t′ − t′′

)2
= 2d1 − d2

1 ,

we have to expand the following exponential function in a Taylor series, because it
occurs in a1

(
1
2(ξ′ − ξ′′), ξ′′

)
:

eα̃
2[ 14 (ξ′−ξ′′)2−i(ξ′−ξ′′)] = eα̃

2(2d1−d21)

≈ 1 +Red1 +
1

2
Re (Re− 1) d2

1

= 1 +
1

2
Reσα

(
t′ − t′′

)
+

1

8
Re (Re− 1)σ2α

(
t′ − t′′

)2
.

(A.81)

We are now ready to finish the transformation of a1:

a1 =− i

2

(
2− σαt′

)
Pf ã

(
1

2
σα
(
t′ − t′′

)
+
Re

8
σ2α

(
t′ − t′′

)2
)

− iPf
2
ã

[
1

2
σα
(
t′ − t′′

)
+

1

8
(Re− 1)σ2α

(
t′ − t′′

)2
]

a1 =
i

4
Pf ãσ

α
(
t′ − t′′

)
− iσ2α

[
Pf
4
ãt′
(
t′ − t′′

)
− Pf

16
ã
(
t′ − t′′

)2
(Re+ 1)

]
. (A.82)

Of course, further terms of higher order arising from multiplication have been ne-
glected. The reader may take more intermediate steps when verifying this result.
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Transformation of I3
We already expanded the corresponding exponential function and the corresponding
complementary error function in the above paragraph. We have

ξ′ + ξ′′ = −i
(
2− σα

(
t′ + t′′

))

ξ′2 − ξ′′2 = 2σα
(
t′ − t′′

)
− 1

2
σ2α

(
t′2 − t′′2

)

−i
(
ξ′ − ξ′′

)
= σα

(
t′ − t′′

)

and we are now ready to finish the transformation of I3:

I3 =− Pf
4
ã

[
−2 + 2σαt′ − 1

2
σ2α

(
t′2 − t′′2

)] [1

2
σα
(
t′ − t′′

)
+
Re

8
σ2α

(
t′ − t′′

)2
]

− Pf
4
ã
[
2− σα

(
t′ + t′′

)] [1

2
σα
(
t′ − t′′

)
+

1

8
(Re− 1)σ2α

(
t′ − t′′

)2
]

I3 = −σ2αPf
16
ã
(
t′ − t′′

)2
. (A.83)

I3 is O
(
σ2α
)
.

Transformation of M

We write M
(

1
2(ξ′ − ξ′′), ξ′′

)
explicitly:

M

(
1

2
(ξ′ − ξ′′), ξ′′

)
= eI3(−s̄′′,ξ′′)

[
i

2

[(1 + iξ′′)h(ξ′′)]′

1 + ih′(ξ′′)

−Pf
4
ãξ′′h(ξ′′)

1
2

(ξ′−ξ′′)∫

0

eα̃
2[ω2−iω(1+iξ′′)]+I2(ω,ξ′′)dω

︸ ︷︷ ︸
=t7

]
. (A.84)

The expansion of eI3 is

eI3 = 1− Pf
16
ãσ2α

(
t′ − t′′

)2
, (A.85)

which will be needed. Apart from that, we need

[(
1 + iξ′′

)
h(ξ′′)

]′
= −i

[
2φ̇(t′′)− σα

(
φ(t′′) + φ̇(t′′)t′′

)]

and
1 + ih′(ξ′′) = 1 + φ̇(t′′) . (A.86)

In M there is another auxiliary term t7,

ξ′′h(ξ′′) = −i
[
σαφ(t′′)− σ2αt′′φ(t′′)

]
. (A.87)

Thus, we need to expand the integral only up to the order σα to get the full term
t7 correctly up to the order σ2α. The upper limit of the integral is i

2d2(t′ − t′′) with
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d2 = σα. The integral is zero for d2 = 0 because the limits become equal in this case.
The zero order vanishes. The first order can be written as

d

dd2




i
2
d2(t′−t′′)∫

0

eα̃
2[ω2−iω(2−d2t′′)]+I2(ω,−i(1−d2t′′))dω




=







i
2
d2(t′−t′′)∫

0

d

dd2
“integrand”dω



d2=0

+ “integrand”

∣∣∣∣
ω=0


 i

2
d2(t′ − t′′) . (A.88)

The first term in the first order becomes zero because once again the limits of the in-
tegral become equal. In the second term, the integrand is an exponential function, the
exponent of which consists of a polynom in ω and I2(ω, ξ′′). The polynom vanishes for
ω = 0, and it is easy to see from equation (A.74) that I2(0, ξ′′) = 0,

t7 = −1

8
Pf ãσ

2α
(
t′ − t′′

)
φ(t′′) .

We prepared all the ingredients to write the transformed version of M :

M =
1

1 + φ̇(t′′)

=eI3︷ ︸︸ ︷[
1− Pf

16
ãσ2α

(
t′ − t′′

)2
]

×
[
φ̇(t′′)− 1

2
σα
(
φ(t′′) + t′′φ̇(t′′)

)
−1

8
Pf ãσ

2α
(
t′ − t′′

)
φ(t′′)

︸ ︷︷ ︸
=t7

(
1 + φ̇(t′′)

)]

M =
φ̇(t′′)

1 + φ̇(t′′)

− σα

1 + φ̇(t′′)

1

2

(
φ(t′′) + t′′φ̇(t′′)

)

− σ2α

1 + φ̇(t′′)

[
Pf
16
ã
(
t′ − t′′

)2
φ̇(t′′) +

Pf
8
ã
(
t′ − t′′

)
φ(t′′)

(
1 + φ̇(t′′)

)]
.

(A.89)

Transformation of I1
We use (3.42). We have

η → 1 +
i

2
(ξ′ − ξ′′) = 1− 1

2
σα(t′ − t′′) .

All the other functions occuring in I1 have already been transformed,

I1 =− Pf
2
ã

[
1

Re
+ 1− σα

(
t′ − t′′

)
+

1

4
σ2α

(
t′ − t′′

)2
]

×
[

1

2
σα
(
t′ − t′′

)
+
Re

8
σ2α

(
t′ − t′′

)2
]

+
Pf

2Re
ã

[
1−

(
1− 1

2
σα
(
t′ − t′′

))

×
(

1− Re

2
σα
(
t′ − t′′

)
− Re

8
(Re− 1)σ2α

(
t′ − t′′

)2
)]
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I1 ≈ 0 . (A.90)

We calculated I1 only up to the order σα. We will see that this is enough because the
remaining factor iξ′′h(ξ′′) in t6 has no zero order (see (A.87)).

Transformation of t6
We wish to expand the exponential function in t6 first,

e−I1 ≈ 1 +O
(
σ2α
)
.

That’s half of it,

1

4

(
ξ′2 − ξ′′2

)
− i

2

(
ξ′ − ξ′′

)
= σα

(
t′ − t′′

)
− 1

4
σ2α

(
t′2 − t′′2

)
.

Now, we expand the rest of the exponential function:

eα̃
2[σα(t′−t′′)− 1

4
σ2α(t′2−t′′2)] ≈ 1 +

Re

2
σα
(
t′ − t′′

)
.

We now prepared all the ingredients to write the transformed version of t6:

t6 = i
Pf
4
ã

=iξ′′h(ξ′′) from (A.87)︷ ︸︸ ︷[
σαφ(t′′)− σ2αt′′φ(t′′)

] [
1 +

Re

2
σα
(
t′ − t′′

)]
(A.91)

≈ i
Pf
4
ã
[
σαφ(t′′)− σ2αt′′φ(t′′)

] [
1 +

Re

2
σα
(
t′ − t′′

)]

t6 = i
Pf
4
ã

[
σαφ(t′′) + σ2αφ(t′′)

(
Re

2
σα
(
t′ − t′′

)
− t′′

)]
. (A.92)

Here, the second factor is (A.81) reduced to the first order. We are almost done.
Regarding equation (3.60), we have

σ
3
7κ− tφ(t) = −i

t∫ t′∫

∞

(
1− φ̇(t′)

)
(a1M + t6) dt′′dt′ .

All that remains to do is to multiply a1 and M :

a1M =
i

1 + φ̇(t′′)

Pf
4
ãφ̇(t′′)

(
t′ − t′′

)
. (A.93)

We stopped after the first order. We can now write the “inner equation” (3.62).

Matching to the WKB solution (3.59)

For t→∞, we may reduce equation (3.62) to its dominant terms:

1√
2t

d3φ

dt3
= φ̇t+ φ . (A.94)

The first derivative with respect to t of (3.62) was taken to arrive at this result. We use
the standard ansatz of asymptotic analysis:

φ(t) = eS(t) . (A.95)
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We insert the ansatz and itterate the scheme one time. I.e. we start with the zero order
and proceed until we have got the first order. The first order dominant balance reads

c′ = − 5

8t

yielding (3.63). We proceed, putting the stretching transformation into the prefactor of
the exponential function in the WKB solution (3.58), keeping only leading orders:

(1 + iξ)−
3
8 (1− iξ)−

5
8 ≈ σ− 5

28 2−
3
8 t−

5
8 .

Hence, the prefactor is reproduced. Now we calculate S0:

S0 = −
t∫

0

σ
3
14 t′

3
4 2

1
4σ

2
7 dt′ = −2

1
4

4

7
t
7
4
√
σ .

Hence, the exponent matches. Considering h(ξ) = σαφ(t), the constants must be re-
lated by

A1 = B12−
3
8σ−

13
28 .

This lead directly to (3.64).

A.3. Thermal resistance in cartesian coordinates

A.3.1. Interface normal, curvature and anisotropy function in cartesian

coordinates

differential line element of the 2D interface:

ds =
√

dx2 + dy2 = dx
√

1 + y′2s (A.96)

unit tangent vector from Frenet’s formula:

~t =
d~r

ds
=

1√
1 + y′2s

d

dx
(x~ex + ys~ey) =

~ex + y′s~ey√
1 + y′2s

(A.97)

unit normal vector from orthonormality relation:

~t · ~n !
= 0 ⇒ ~n =

~ey − y′s~ex√
1 + y′2s

(A.98)

second derivative:

d2~r

ds2
=

1

1 + y′2s

d

dx

[
~ex + y′s~ey

]
=

y′′s
1 + y′2s

~ey (A.99)

curvature:

κ = −~n · d2~r

ds2
= − y′′s

(1 + y′2s )3/2
(A.100)
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anisotropy function:

a(θ) = 1− β(1− 8 cos2 θ sin2 θ) (A.101)

cos θ = ~n · ~ey =
1√

1 + y′2s
(A.102)

sin θ = ~n · ~ex =
−y′s√
1 + y′2s

(A.103)

a(θ) = 1− β
(

1− 8y′2s
(1 + y′2s )2

)
(A.104)

In the case of a twofold anisotropy function of capillary effects, one finds

a(θ) = 1− β2

2
cos(2θ) = 1− β2

2

(
cos2 θ − sin2 θ

)
= 1 +

β2

2

(
1− 2 cos2 θ

)

= 1 +
β2

2

(
1− 2

1 + y′2s

)
.

(A.105)

A.3.2. Derivation of the cartesian shape equation (4.43)

We want to derive equation (4.43) from the interface conditions (4.28a)-(4.28c). The
conditions need to be expanded for

ys =
1

2
(1− x2) + ζ(x) = yIv

s + ζ(x) , (A.106a)

T → T + T Iv . (A.106b)

We need approximate expressions of the Ivantsov-solution T l,Iv and its derivatives
T l,Ivx , T l,Ivy at ys. For convenience, we wish to work with the parabolic coordinate form
(4.32). Thus, derivatives with respect to x, y are expressed by derivatives with respect
to ξ, η. The formulas from section 2.1 are used to get these expressions:

∂

∂x
= ~ex · ~∇ =

η∂ξ + ξ∂η
η2 + ξ2

, (A.107a)

∂

∂y
= ~ey · ~∇ =

η∂η − ξ∂ξ
η2 + ξ2

. (A.107b)

We set r2
p = η2 + ξ2 and note r2

p = 1 + x2 at the interface η = ηIv
s = 1,

T l,Iv(ys) ≈
��

��
�*=0

T l,Iv(yIv
s ) + T l,Ivy (yIv

s )ζ =
ηT l,Ivη

r2
p

∣∣∣∣∣
η=1

ζ = − ζ

1 + x2
. (A.108)

We proceed:
T l,Ivy (ys) ≈ T l,Ivy (yIv

s ) + T l,Ivyy (yIv
s )ζ . (A.109)



A.3. Thermal resistance in cartesian coordinates 151

The first term in this expansion can be read from equation (A.108). The second term
has to be calculated:

T l,Ivyy (yIv
s ) =

1

r2
p

(η∂η − ξ∂ξ)
ηT l,Ivη

r2
p

∣∣∣∣∣
η=1

=
1

r4
p

(
η2

�
�
��
∝Pc

T l,Ivηη + ηT l,Ivη

)

η=1

− 2

r6
p

(
η2 − ξ2

)
ηT l,Ivη

∣∣∣∣
η=1

= − 1

(1 + x2)2
+ 2

1− x2

(1 + x2)3
=

1− 3x2

(1 + x2)3
.

(A.110)

We insert into (A.109):

T l,Ivy (ys) ≈ −
1

1 + x2
+

1− 3x2

(1 + x2)3
ζ . (A.111)

The last expression to calculate is T l,Ivx (ys):

T l,Ivx (ys) ≈ T l,Ivx (yIv
s ) + T l,Ivxy (yIv

s )ζ . (A.112)

The first term in (A.112) is

T l,Ivx (yIv
s ) =

ξ

r2
p

T l,Ivη

∣∣∣∣
η=1

= − x

1 + x2
(A.113)

and the second term in (A.112) is

T l,Ivxy (yIv
s ) =

1

r2
p

(η∂η − ξ∂ξ)
ξT l,Ivη

r2
p

∣∣∣∣∣
η=1

=
1

r4
p

(
ηξ
�
�
��
∝Pc

T l,Ivηη − ξT l,Ivη

)

η=1

− 2

r6
p

(
η2 − ξ2

)
ξT l,Ivη

∣∣∣∣
η=1

=
x

(1 + x2)2
+ 2x

1− x2

(1 + x2)3
= x

3− x2

(1 + x2)3
.

(A.114)

We insert into (A.112):

T l,Ivx (ys) ≈ −
x

1 + x2
+ x

3− x2

(1 + x2)3
ζ . (A.115)

Putting (A.108), (A.111) and (A.115) into the expanded versions of (4.28a)-(4.28c) (us-
ing T → T + T Iv), we find

√
1 + y′2s

(
T l − T s − ζ

1 + x2

)
= γK(T sy − y′sT sx) therm. discontinuity (A.116a)

T l = −1

2
σκa(θ) +

ζ

1 + x2
Gibbs-Thomson (A.116b)

(∂y − y′s∂x)
(
µKT

s − T l
)

= GKζ +HKζ
′ asym. Stefan (A.116c)



152 Appendix A. Auxiliary calculations

with

GK =
1− x2

(1 + x2)2
(A.117a)

HK =
x

1 + x2
− (3− x2)x

(1 + x2)3
ζ . (A.117b)

The dot products with ~n from (A.98) have already been calculated in these expressions.
The expanded bulk equations are simple:

T s,lxx + T s,lyy = 0 . (A.118)

Here, Pc was set to zero. In the vicinity of the singularity at x = −i, (A.118) can be
replaced by its complex factorization (for details see section 2.2):

T ly = iT lx , (A.119a)

T sy = −iT sx . (A.119b)

We write down the total derivatives along the interface:

dT l

dx
= T lx + y′sT

l
y = −i(1 + iy′s)T

l
y , (A.120a)

dT s

dx
= T sx + y′sT

s
y = i(1− iy′s)T

s
y . (A.120b)

(A.116c) is rewritten using (A.119a)-(A.119b):

− iµK (1− iy′s)T
s
x︸ ︷︷ ︸

=dTs

dx

−i (1 + iy′s)T
l
x︸ ︷︷ ︸

=dTl

dx

= GKζ +HKζ
′ . (A.121)

This can be integrated directly using
∫ (

1− x2

(1 + x2)2
ζ +

x

1 + x2
ζ ′
)

dx =
x

1 + x2
ζ

and
∫

(3− x2)x

(1 + x2)3
ζζ ′ dx =

ζ2

2

(3− x2)x

(1 + x2)3
− 1

2

∫
ζ2 d

dx

[
(3− x2)x

(1 + x2)3

]
dx = O(ζ2)→ 0

and we find
µKT

s + T l = iζ
x

1 + x2
(A.122)

or (solved for T s)

T s =
1

µK

[
1

2
σκa(θ)− (1− ix)ζ

1 + x2

]
. (A.123)

In the last step, T l was already replaced using (A.116b). The next step is to rewrite
(A.116a) using (A.116b):

√
1 + y′2s

(
−1

2
σκa(θ)− T s

)
= γK

[
−i(1− iy′s)T

s
x

]
. (A.124)



A.4. Anisotropic diffusion 153

On the LHS of (A.124), T s is replaced using (A.123) and on the RHS of (A.124) −i(1−
iy′s)T

s
x is replaced using (A.121):

√
1 + y′2s

[
− 1

2
σκa(θ)

(
1 +

1

µK

)
+

(1− ix)ζ

µK(1 + x2)

]

=
γK
µK

[
i(1 + iy′s)T

l
x +GKζ +HKζ

′
]
.

(A.125)

Now, the expanded Gibbs-Thomson condition (A.116b) is differentiated along the in-
terface:

T lx + y′sT
l
y = (1 + iy′s)T

l
x = −1

2
σ[κa(θ)]′ +

ζ ′

1 + x2
− 2xζ

(1 + x2)2
. (A.126)

This is used to replace (1 + iy′s)T
l
x in (A.125):

√
1 + y′2s

[
−1

2
σκa(θ)(1 + µK) +

(1− ix)ζ

1 + x2

]

=γK

[
− i

2
σ[κa(θ)]′ +

iζ ′

1 + x2
− 2ixζ

(1 + x2)2
+

1− x2

(1 + x2)2
ζ +

x

1 + x2
ζ ′ − (3− x2)x

(1 + x2)3
ζζ ′
]

=iγK

[
−σ

2
[κa(θ)]′ +

[
ζ

1 + x2

]′
−
[

ixζ

1 + x2

]′
+ iζζ ′

(3− x2)x

(1 + x2)3

]
.

This is a less elegant form of (4.43).

A.4. Anisotropic diffusion

A.4.1. Expansion of the boundary conditions

We expand the boundary conditions of the corresponding symmetric model. The tran-
sition to the one-sided model can be made easily in the end. Let the superscripts n
and s indicate the corresponding quantities in the nematic phase and in the smectic-B
phase, respectively. We need the partial derivatives of Tn,Iv(x, y) from (4.64). We use
the abbreviation r =

√
x2 + y2,

Tn,Ivx (x, y) = −e
Pµ
2

(1−y+r) x

2r
√
y + r

,

Tn,Ivy (x, y) = −e
Pµ
2

(1−y+r)

√
y + r

2r
.

Now, these expressions have to be differentiated once more with respect to y:

Tn,Ivxy (x, y) = −Tn,Ivx (x, y)

(
Pµ
y + r

2r
+
r + 2y

2r2

)
, (A.128a)

Tn,Ivyy (x, y) = −Tn,Ivy (x, y)

(
Pµ
y + r

2r
− r − 2y

2r2

)
. (A.128b)

Here, the second derivatives are reasonably expressed using the respective first deriva-
tive as a factor. Now, yIv

s (x) = 1
2(1− x2) is inserted. We use

r|yIv
s (x) =

1

2
(1 + x2) (A.129a)

√
y + r

∣∣
yIv
s (x)

= 1 (A.129b)
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and calculate the corresponding values:

Tn,Ivx

(
x, yIv

s (x)
)

= − x

1 + x2
(A.130a)

Tn,Ivy

(
x, yIv

s (x)
)

= − 1

1 + x2
(A.130b)

Tn,Ivxy

(
x, yIv

s (x)
)

=
x

(1 + x2)2

(
Pµ +

3− x2

1 + x2

)
(A.131a)

Tn,Ivyy

(
x, yIv

s (x)
)

=
1

(1 + x2)2

(
Pµ +

1− 3x2

1 + x2

)
. (A.131b)

This can be used to expand the temperature in the nematic:

Tn,Iv (x, ys(x)) ≈ Tn,Iv
(
x, yIv

s (x)
)

+ Tn,Ivy

(
(x, yIv

s (x)
)
ζ(x) = − ζ(x)

1 + x2
. (A.132)

Inserting this into T s = Tn, and remembering T → T + T Iv, directly yields the ex-
panded continuity condition

T s = Tn − ζ(x)

1 + x2
. (A.133)

For the Stefan condition 1 =
(
∂y − y′s(x)∂x

)
(T s − Tn), we find

1 =
(
∂y − y′s(x)∂x

)
(T s − Tn)− Tn,Ivy

(
x, yIv

s (x)
)
− Tn,Ivyy

(
x, yIv

s (x)
)
ζ(x)

+
(
ζ ′(x)− x

) (
Tn,Ivx

(
x, yIv

s (x)
)

+ Tn,Ivxy

(
x, yIv

s (x)
)
ζ(x)

)

=
(
∂y − y′s(x)∂x

)
(T s − Tn) +

x

1 + x2
− ζ(x)

(1 + x2)2

(
Pµ +

1− 3x2

1 + x2

)

+
(
ζ ′(x)− x

) [
− x

1 + x2
+

xζ(x)

(1 + x2)2

(
Pµ +

3− x2

1 + x2

)]

=
(
∂y − y′s(x)∂x

)
(T s − Tn) + 1− xζ ′(x)

1 + x2
− (1− x2)ζ(x)

(1 + x2)2
+O

(
ζζ ′, Pµ

)
.

(A.134)

Using
xζ ′(x)

1 + x2
+

(1− x2)ζ(x)

(1 + x2)2
=

[
xζ(x)

1 + x2

]′
, (A.135)

(A.134) becomes
[
xζ(x)

1 + x2

]′
=
(
∂y − y′s(x)∂x

)
(T s − Tn)

+
x(3− x2)ζ(x)ζ ′(x)

(1 + x2)3
− Pµζ(x)

1 + x2

(
1− xζ ′(x)

1 + x2

)
.

(A.136)

This is the most general form of the expanded Stefan condition in the symmetric
model, including nonlinear terms and terms of Pµ. The expanded Stefan condition
(4.67b) is the linearized version of (A.136) in the limit Pµ → 0 and with all T s-terms
dropped due to the one-sided model used in section 4.3. (A.136) is also valid in the
case of isotropic diffusion, if Pµ is replaced by Pc (µ = 1). Note, that these calculations
are also carried out in appendix A.3.2 for the thermal resistance problem using more
convenient but less complete expressions.
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A.4.2. WKB solution

The curvature (4.61) in the homogeneous version of equation (4.73) is linearized:

σµ ζ
′′(x) +

2(1 + µ2x2)3/2

µ(1 + ix)
ζ(x) = 0 . (A.137)

With √σµ = ε, this results in the WKB form

S′20 +
2(1 + µ2x2)3/2

µ(1 + ix)
+ ε

[
S′′0 + 2S′0S

′
1

]
+ ε2

[
S′′1 + S′21

]
= 0 . (A.138)

This is solved iteratively order by order:

ε0 : S′0(x) =

[
−2(1 + µ2x2)3/2

µ(1 + ix)

] 1
2

, S0(x) = i

x∫

−i

√
2(1 + µ2x′2)3/4

√
µ(1 + ix′)

dx′ , (A.139a)

ε1 : S′1(x) = −1

2

d

dx

[
ln
(
S′0(x)

)]
, S1(x) = ln

[(
− µ(1 + ix)

2(1 + µ2x2)3/2

)1/4
]
. (A.139b)

Using

ζ(x) ∼ e
S0(x)√
σµ

+S1(x) |x+ i| → ∞
one ends up with the WKB solution (4.74).

A.4.3. Stretching transformation of the shape equation

The transformation (4.75a)-(4.75b) is applied to equation (4.73). We restrict the expres-
sions to leading terms in order to keep things more compact than in subsection A.2.4.
First, we need the derivatives of ζ(x):

ζ ′(x) = −iµσ̄ αµ φ̇ , (A.140a)

ζ ′′(x) = −µ2φ̈ . (A.140b)

An important expression in the curvature and in the anisotropy functions is

(ζ ′ − x)2 =
(
−iµσ̄ αµ φ̇− i

µ
(1− σ̄ αµt)

)2

= −µ2σ̄ 2αµ φ̇2 + 2σ̄ αµ φ̇ (1− σ̄ αµt)− 1

µ2

(
1− 2σ̄ αµt+ σ̄ 2αµt2

)

≈ − 1

µ2
+ 2σ̄ αµ

(
φ̇+

t

µ2

)
.

(A.141)

With these equations, one can easily get to the forms (4.76) and (4.77a)-(4.77b) for the
curvature and the anisotropy functions respectively. For the right hand side, we need

1 + ix = 1 +
1

µ
(1− σ̄ αµt) ≈ 1 + µ

µ
(A.142)

and find
ζ(x)

1 + ix
=
µσ̄ 2αµφ

1 + µ
(A.143)

for the RHS.
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Appendix B.

C-code demo

The program for calculation of the numerical data presented in this work was written
in C and compiled using the open source GNU C compiler (gcc). The numerical inte-
gration scheme was explained in detail in section 2.3. The ODE solver ‘‘solvde’’ as
well as its driver routine ‘‘relax’’ were taken from “Numerical recipes in C” [Pre02]
and modified subsequently. Any memory allocation routines, complex number rou-
tines, algebraic routines and the false-position root finder were also taken from this
book. However, user-provided functions representing the local system of differential
equations are required. This section of the code is partly exhibited in this appendix
chapter. The routines are shown exemplarily for the Oseen flow problem solved in the
limit of small growth Péclet number Pc in section 3.2. They must be provided sepa-
rately for integration on the line parallel to the imaginary axis and on the real axis. The
corresponding code for the potential flow case (and also for anisotropic diffusion and
kinetic effects numerics) was constructed using the same scheme. Comments in the
files are given in German.

For the convective systems, the program has been developed further into an inte-
grated tool, including a command line interface, a detailed and extensive documen-
tation as well as an installation script for the program on Linux-based platforms. For
further information, contact the author of this PhD thesis, who created the program.

B.1. Oseen flow subroutines parallel to the imaginary axis

Local ODE system

#include <math.h>

#include <stdio.h>

#include "nrutil.h"

#include "complex_mod01.h"

extern float h1 , // Schrittweite

x0, // Kreuzungspunkt

*x1, // x-Achse

F1R ,F3R , // Ableitungen

b, // Eigenwert

P1, // Peclet -Zahl

**gsav; // Integral

extern int M; // Anzahl Gitterpunkte
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void difeq1_Oseen(int k, int k1 , int k2 , int jsf , int is1 , int

isf , int indexv[], int ne , float **s, float **y)

{

fcomplex t,c1,

x_1 ,x_2 ,x_3 ,

f,f1 ,f2 ,f3 ,

g,g1 ,g2 ,u,v,d,

p1 ,p2 ,p3 ,p4 ,

E1 ,E2;

c1.r=1.0;

c1.i=0.0;

t.r=x0;

if(k>k2) t.i=x1[k-1];

else t.i=x1[k];

if(k==1) {

x_1.r=y[1][1];

x_1.i=y[2][1];

x_2.r=y[3][1];

x_2.i=y[4][1];

x_3.r=y[5][1];

x_3.i=y[6][1];

}

else if(k>k2) {

x_1.r=y[1][k-1];

x_1.i=y[2][k-1];

x_2.r=y[3][k-1];

x_2.i=y[4][k-1];

x_3.r=y[5][k-1];

x_3.i=y[6][k-1];

}

else {

x_1.r=0.5*(y[1][k]+y[1][k-1]);

x_1.i=0.5*(y[2][k]+y[2][k-1]);

x_2.r=0.5*(y[3][k]+y[3][k-1]);

x_2.i=0.5*(y[4][k]+y[4][k-1]);

x_3.r=0.5*(y[5][k]+y[5][k-1]);

x_3.i=0.5*(y[6][k]+y[6][k-1]);

}

p1=Cadd(Cmul(t,x_1),RCmul(P1 ,x_3));

p2=Cadd(t,x_1);

p3=Csub(c1 ,x_2);

p4=Cadd(c1 ,x_2);

u=RCmul(sqrt (2.0) ,Cmul(p1,Cmul(Cmul(Cmul(p4,p4),Cmul(p4,

Csqrt(p4))),Cmul(Cmul(p3,Csqrt(p3)),Cmul(Cmul(p2,p2),
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Csqrt(p2))))));

v=Csub(Cmul(Cmul(p2,p2),Cmul(p4,p4)),RCmul (2.0*b,Cmul(p3,

p3)));

d=Cdiv(Cmul(p3,Cmul(p4,p4)),RCmul (2.0,p2));

f=Csub(Cdiv(u,v),d);

f1=Cadd(Cdiv(d,p2),Cdiv(Cmul(u,Cadd(Cdiv(t,p1),Csub(Cdiv(

RCmul (2.5,c1),p2),Cdiv(Cmul(Cmul(p4,p4),RCmul (2.0,p2))

,v)))),v));

f2=Cadd(Cmul(d,Csub(Cdiv(c1 ,p3),Cdiv(RCmul (2.0,c1),p4))),

Cdiv(Cmul(u,Csub(Cdiv(RCmul (3.5,c1),p4),Cadd(Cdiv(

RCmul (1.5,c1),p3),Cdiv

(RCmul (2.0, Cadd(Cmul(p4,Cmul(p2,p2)),RCmul (2.0*b,p3))),v)

))),v));

f3=Cdiv(RCmul(P1 ,u),Cmul(v,p1));

if(k<=(M+1) /2) integralg1_Oseen (&g,&g1 ,&g2 ,k,y); /*

berechnet g’s mit Trapezquadratur */

else {

g.r=*(*( gsav +1)+k);

g.i=*(*( gsav +2)+k);

g1.r=*(*( gsav +3)+k);

g1.i=*(*( gsav +4)+k);

g2.r=*(*( gsav +5)+k);

g2.i=*(*( gsav +6)+k);

}

E1=Csub(p1 ,Cdiv(c1 ,RCmul(pow (2.0 ,1.5),Choch32(t)))); /*

komb. RB */

E2=Cadd(Cadd(Cadd(x_1 ,Cmul(x_2 ,t)),RCmul(P1 ,g)),Cdiv(

RCmul (3.0* pow (2.0 , -2.5),c1),Cmul(t,Cmul(t,Csqrt(t)))))

; /* komb. RB */

if(k==k1) { /* Randbedingung am Anfang */

s[4][6+ indexv [1]]=t.r;

s[4][6+ indexv [2]]= -t.i;

s[4][6+ indexv [3]]=0.0;

s[4][6+ indexv [4]]=0.0;

s[4][6+ indexv [5]]=P1;

s[4][6+ indexv [6]]=0.0;

s[4][ jsf]=E1.r;

s[5][6+ indexv [1]]=t.i;

s[5][6+ indexv [2]]=t.r;

s[5][6+ indexv [3]]=0.0;

s[5][6+ indexv [4]]=0.0;

s[5][6+ indexv [5]]=0.0;

s[5][6+ indexv [6]]=P1;

s[5][ jsf]=E1.i;
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s[6][6+ indexv [1]]= P1*g1.i;

s[6][6+ indexv [2]]=1.0+ P1*g1.r;

s[6][6+ indexv [3]]=t.i+P1*g2.i;

s[6][6+ indexv [4]]=t.r+P1*g2.r;

s[6][6+ indexv [5]]=0.0;

s[6][6+ indexv [6]]=0.0;

s[6][ jsf]=E2.i;

}

else if(k>k2) { /* Randbedingung am Ende */

s[1][6+ indexv [1]]=0.0;

s[1][6+ indexv [2]]=1.0;

s[1][6+ indexv [3]]=0.0;

s[1][6+ indexv [4]]=0.0;

s[1][6+ indexv [5]]=0.0;

s[1][6+ indexv [6]]=0.0;

s[1][ jsf]=y[2][k-1]+y[2][1];

s[2][6+ indexv [1]]=0.0;

s[2][6+ indexv [2]]=0.0;

s[2][6+ indexv [3]]=0.0;

s[2][6+ indexv [4]]=1.0;

s[2][6+ indexv [5]]=0.0;

s[2][6+ indexv [6]]=0.0;

s[2][ jsf]=y[4][k-1]+y[4][1];

s[3][6+ indexv [1]]=0.0;

s[3][6+ indexv [2]]=0.0;

s[3][6+ indexv [3]]=0.0;

s[3][6+ indexv [4]]=0.0;

s[3][6+ indexv [5]]=0.0;

s[3][6+ indexv [6]]=1.0;

s[3][ jsf]=y[6][k-1]+y[6][1];

}

else { /* Matrix dazwischen */

s[1][ indexv [1]]= -1.0;

s[1][ indexv [2]]=0.0;

s[1][ indexv [3]]=0.0;

s[1][ indexv [4]]= h1/2.0;

s[1][ indexv [5]]=0.0;

s[1][ indexv [6]]=0.0;

s[1][6+ indexv [1]]=1.0;

s[1][6+ indexv [2]]=0.0;

s[1][6+ indexv [3]]=0.0;

s[1][6+ indexv [4]]= h1/2.0;

s[1][6+ indexv [5]]=0.0;

s[1][6+ indexv [6]]=0.0;

s[2][ indexv [1]]=0.0;

s[2][ indexv [2]]= -1.0;

s[2][ indexv [3]]= -h1/2.0;
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s[2][ indexv [4]]=0.0;

s[2][ indexv [5]]=0.0;

s[2][ indexv [6]]=0.0;

s[2][6+ indexv [1]]=0.0;

s[2][6+ indexv [2]]=1.0;

s[2][6+ indexv [3]]= -h1/2.0;

s[2][6+ indexv [4]]=0.0;

s[2][6+ indexv [5]]=0.0;

s[2][6+ indexv [6]]=0.0;

s[3][ indexv [1]]=h1 /2.0* f1.i;

s[3][ indexv [2]]=h1 /2.0* f1.r;

s[3][ indexv [3]]= -1.0+ h1/2.0* f2.i;

s[3][ indexv [4]]=h1 /2.0* f2.r;

s[3][ indexv [5]]=h1 /2.0* f3.i;

s[3][ indexv [6]]=h1 /2.0* f3.r;

s[3][6+ indexv [1]]=s[3][ indexv [1]];

s[3][6+ indexv [2]]=s[3][ indexv [2]];

s[3][6+ indexv [3]]=2.0+s[3][ indexv [3]];

s[3][6+ indexv [4]]=s[3][ indexv [4]];

s[3][6+ indexv [5]]=s[3][ indexv [5]];

s[3][6+ indexv [6]]=s[3][ indexv [6]];

s[4][ indexv [1]]= -s[3][ indexv [2]];

s[4][ indexv [2]]=s[3][ indexv [1]];

s[4][ indexv [3]]= -s[3][ indexv [4]];

s[4][ indexv [4]]=s[3][ indexv [3]];

s[4][ indexv [5]]= -s[3][ indexv [6]];

s[4][ indexv [6]]=s[3][ indexv [5]];

s[4][6+ indexv [1]]=s[4][ indexv [1]];

s[4][6+ indexv [2]]=s[4][ indexv [2]];

s[4][6+ indexv [3]]=s[4][ indexv [3]];

s[4][6+ indexv [4]]=s[3][6+ indexv [3]];

s[4][6+ indexv [5]]=s[4][ indexv [5]];

s[4][6+ indexv [6]]=s[4][ indexv [6]];

s[5][ indexv [1]]=h1 /2.0* g1.i;

s[5][ indexv [2]]=h1 /2.0* g1.r;

s[5][ indexv [3]]=h1 /2.0* g2.i;

s[5][ indexv [4]]=h1 /2.0* g2.r;

s[5][ indexv [5]]= -1.0;

s[5][ indexv [6]]=0.0;

s[5][6+ indexv [1]]=s[5][ indexv [1]];

s[5][6+ indexv [2]]=s[5][ indexv [2]];

s[5][6+ indexv [3]]=s[5][ indexv [3]];

s[5][6+ indexv [4]]=s[5][ indexv [4]];

s[5][6+ indexv [5]]=2.0+s[5][ indexv [5]];

s[5][6+ indexv [6]]=s[5][ indexv [6]];

s[6][ indexv [1]]= -s[5][ indexv [2]];
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s[6][ indexv [2]]=s[5][ indexv [1]];

s[6][ indexv [3]]= -s[5][ indexv [4]];

s[6][ indexv [4]]=s[5][ indexv [3]];

s[6][ indexv [5]]= -s[5][ indexv [6]];

s[6][ indexv [6]]=s[5][ indexv [5]];

s[6][6+ indexv [1]]=s[6][ indexv [1]];

s[6][6+ indexv [2]]=s[6][ indexv [2]];

s[6][6+ indexv [3]]=s[6][ indexv [3]];

s[6][6+ indexv [4]]=s[6][ indexv [4]];

s[6][6+ indexv [5]]=s[6][ indexv [5]];

s[6][6+ indexv [6]]=s[5][6+ indexv [5]];

s[1][ jsf]=y[1][k]-y[1][k-1]+h1*x_2.i;

s[2][ jsf]=y[2][k]-y[2][k-1]-h1*x_2.r;

s[3][ jsf]=y[3][k]-y[3][k-1]+h1*f.i;

s[4][ jsf]=y[4][k]-y[4][k-1]-h1*f.r;

s[5][ jsf]=y[5][k]-y[5][k-1]+h1*g.i;

s[6][ jsf]=y[6][k]-y[6][k-1]-h1*g.r;

}

}

Integral gk

void integralg1_Oseen(fcomplex *g, fcomplex *g1 , fcomplex *g2 ,

int k, float **y)

{

int i,kspiegel=M+1-k;

fcomplex x_1t , x_1tstrich , x_2t , x_2tstrich , t, tstrich ,

l[3];

x_1t=Complex (0.5*(y[1][ kspiegel ]+y[1][ kspiegel -1]) ,0.5*(y

[2][ kspiegel ]+y[2][ kspiegel -1]));

x_2t=Complex (0.5*(y[3][ kspiegel ]+y[3][ kspiegel -1]) ,0.5*(y

[4][ kspiegel ]+y[4][ kspiegel -1]));

t=Complex(x0 ,x1[kspiegel ]);

dljk1_Oseen(Complex(y[1][M],y[2][M]),x_2t ,Complex(y[3][M

],y[4][M]),t,Complex(x0,x1[M]),l); /* berechne

Integrand am Endpunkt konsistent fuer alle k */

*g=*(l+0);

*g1=*(l+1);

*g2=*(l+2);

dlkk1_Oseen(x_1t ,x_2t ,l); /* berechne Integrand am

Anfangspunkt */

*g=Cadd(*g,*(l+0));

*g1=Cadd(*g1 ,*(l+1));

*g2=Cadd(*g2 ,*(l+2));

*g=RCmul (0.5 ,*g);

*g1=RCmul (0.5 ,*g1);
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*g2=RCmul (0.5,*g2);

for(i=kspiegel +1;i<M;i++) { /* berechne Integrand auf

Zwischenpunkten */

x_1tstrich=Complex (0.5*(y[1][i]+y[1][i-1]) ,0.5*(y

[2][i]+y[2][i-1]));

x_2tstrich=Complex (0.5*(y[3][i]+y[3][i-1]) ,0.5*(y

[4][i]+y[4][i-1]));

tstrich=Complex(x0 ,x1[i]);

dljk1_Oseen(x_1tstrich ,x_2t ,x_2tstrich ,t,tstrich ,

l);

*g=Cadd(*g,*(l+0));

*g1=Cadd(*g1 ,*(l+1));

*g2=Cadd(*g2 ,*(l+2));

}

// if(k== kspiegel) { /* g muss nicht stetig bei Im(t)=0 sein

! */

// g->i=0.0;

// g1 ->i=0.0;

// g2 ->i=0.0;

// }

g->r*=h1; /* Trapezregel zu Ende und stelle richtige

Symmetrie her */

g->i*=-h1;

g1->r*=h1;

g1->i*=-h1;

g2->r*=h1;

g2->i*=-h1;

*(*( gsav +1)+kspiegel)=g->r; /* speichere Werte von g fuer

obere Seite */

*(*( gsav +2)+kspiegel)=-g->i;

*(*( gsav +3)+kspiegel)=g1 ->r;

*(*( gsav +4)+kspiegel)=-g1 ->i;

*(*( gsav +5)+kspiegel)=g2 ->r;

*(*( gsav +6)+kspiegel)=-g2 ->i;

*(*( gsav +1)+k)=g->r; /* speichere Werte von g fuer untere

Seite (Symmetrie) */

*(*( gsav +2)+k)=g->i;

*(*( gsav +3)+k)=g1 ->r;

*(*( gsav +4)+k)=g1 ->i;

*(*( gsav +5)+k)=g2 ->r;

*(*( gsav +6)+k)=g2 ->i;

}

void dlkk1_Oseen(fcomplex x_1t , fcomplex x_2t , fcomplex l[])

{
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int i=0;

fcomplex p3;

p3=RCsub (1.0, x_2t);

*(l+0)=Cmul(p3 ,x_1t);

*(l+1)=p3;

*(l+2)=RCmul(-1.0,x_1t);

while(i<3) {

*(l+i)=Cmul (*(l+i),Complex (0.0 , -1.0));

i++;

}

}

void dljk1_Oseen(fcomplex x_1tstrich , fcomplex x_2t , fcomplex

x_2tstrich , fcomplex t, fcomplex tstrich , fcomplex l[])

{

int i=0;

fcomplex p3,p4;

p3=RCsub (1.0, x_2t);

p4=RCadd (1.0, x_2tstrich);

*(l+0)=Cmul(p3 ,Cadd(Cdiv(Cmul(x_2tstrich ,Csub(t,tstrich))

,p4),x_1tstrich));

*(l+1)=Complex (0.0 ,0.0);

*(l+2)=Cdiv(RCmul (-1.0,*(l+0)),p3);

while(i<3) {

*(l+i)=Cmul (*(l+i),Complex (0.0 , -1.0));

i++;

}

}

B.2. Oseen flow subroutines on the real axis

Local ODE system

#include <math.h>

#include <stdio.h>

#include "nrutil.h"

#include "complex_mod01.h"

extern float h2, // Schrittweite

x0 , // Kreuzungspunkt

*x2 , // x-Achse

F1R ,F3R , // Ableitungen

b, // Eigenwert

P1 , // Peclet -Zahl
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** gsav_reell; // Integral

extern int M; // Anzahl Gitterpunkte

void difeq2_Oseen(int k, int k1 , int k2 , int jsf , int is1 , int

isf , int indexv[], int ne , float **s, float **y)

{

float t,

x_1 ,x_2 ,x_3 ,

f,f1 ,f2 ,f3 ,

g,g1 ,g2 ,

u,v,d,

p1 ,p2 ,p3 ,p4,

E1;

t=x2[k];

if(k>k2) t=x2[k-1];

if(k==1) {

x_1=y[1][1];

x_2=y[2][1];

x_3=y[3][1];

}

else if(k>k2) {

x_1=y[1][k-1];

x_2=y[2][k-1];

x_3=y[3][k-1];

}

else {

x_1 =0.5*(y[1][k]+y[1][k-1]);

x_2 =0.5*(y[2][k]+y[2][k-1]);

x_3 =0.5*(y[3][k]+y[3][k-1]);

}

p1=x_1*t+P1*x_3;

p2=t+x_1;

p3=1.0-x_2;

p4 =1.0+ x_2;

u=sqrt (2.0)*p1*pow(p2 ,2.5)*pow(p3 ,1.5)*pow(p4 ,3.5);

v=pow(p2*p4 ,2.0) -2.0*b*pow(p3 ,2.0);

d=(pow(p4 ,2.0)*p3)/(2.0* p2);

f=u/v-d;

f1=d/p2+(u/v)*(t/p1 +2.5/p2 -2.0* pow(p4 ,2.0)*p2/v);

f2=d*(1.0/p3 -2.0/p4)+(u/v)*(3.5/p4 -1.5/p3 -2.0*( p4*pow(p2

,2.0) +2.0*b*p3)/v);

f3=(u*P1)/(v*p1);

if(k>1) integralg2_Oseen (&g,&g1 ,&g2 ,k,y);
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E1=p1 -pow (2.0*t,-1.5); /* komb. RB */

if(k==k1) { /* Randbedingung am Anfang */

s[2][ne+indexv [1]]=1.0;

s[2][ne+indexv [2]]=0.0;

s[2][ne+indexv [3]]=0.0;

s[2][ jsf]=y[1][1] - F1R;

s[3][ne+indexv [1]]=0.0;

s[3][ne+indexv [2]]=0.0;

s[3][ne+indexv [3]]=1.0;

s[3][ jsf]=y[3][1] - F3R;

}

else if(k>k2) { /* Randbedingung am Ende */

s[1][ne+indexv [1]]=t; /* komb. RB */

s[1][ne+indexv [2]]=0.0;

s[1][ne+indexv [3]]= P1;

s[1][ jsf]=E1;

}

else { /* Matrix dazwischen */

s[1][ indexv [1]]= -1.0;

s[1][ indexv [2]]= -h2/2.0;

s[1][ indexv [3]]=0.0;

s[1][ne+indexv [1]]=1.0;

s[1][ne+indexv [2]]= -h2/2.0;

s[1][ne+indexv [3]]=0.0;

s[2][ indexv [1]]= -h2/2.0* f1;

s[2][ indexv [2]]= -1.0 -h2/2.0* f2;

s[2][ indexv [3]]= -h2/2.0* f3;

s[2][ne+indexv [1]]=s[2][ indexv [1]];

s[2][ne+indexv [2]]=2.0+s[2][ indexv [2]];

s[2][ne+indexv [3]]=s[2][ indexv [3]];

s[3][ indexv [1]]= -h2/2.0* g1;

s[3][ indexv [2]]= -h2/2.0* g2;

s[3][ indexv [3]]= -1.0;

s[3][ne+indexv [1]]=s[3][ indexv [1]];

s[3][ne+indexv [2]]=s[3][ indexv [2]];

s[3][ne+indexv [3]]=1.0;

s[1][ jsf]=y[1][k]-y[1][k-1]-h2*x_2;

s[2][ jsf]=y[2][k]-y[2][k-1]-h2*f;

s[3][ jsf]=y[3][k]-y[3][k-1]-h2*g;

}

}

Integral gk
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void integralg2_Oseen(float *g, float *g1 , float *g2 , int k,

float **y)

{

int i;

float x_1t , x_1tstrich , x_2t , x_2tstrich , t, tstrich , l

[3];

x_1t =0.5*(y[1][k]+y[1][k-1]);

x_2t =0.5*(y[2][k]+y[2][k-1]);

t=x2[k];

dljk2_Oseen(y[1][M],x_2t ,y[2][M],t,x2[M],l); /* berechne

Integrand am Endpunkt konsistent fuer alle k */

*g=*(l+0);

*g1=*(l+1);

*g2=*(l+2);

dlkk2_Oseen(x_1t ,x_2t ,l); /* berechne Integrand am

Anfangspunkt */

*g+=*(l+0);

*g1+=*(l+1);

*g2+=*(l+2);

*g*=0.5;

*g1 *=0.5;

*g2 *=0.5;

for(i=k+1;i<M;i++) { /* berechne Integrand auf

Zwischenpunkten */

x_1tstrich =0.5*(y[1][i]+y[1][i-1]);

x_2tstrich =0.5*(y[2][i]+y[2][i-1]);

tstrich=x2[i];

dljk2_Oseen(x_1tstrich ,x_2t ,x_2tstrich ,t,tstrich ,

l);

*g+=*(l+0);

*g1+=*(l+1);

*g2+=*(l+2);

}

*g*=h2;

*g1*=h2;

*g2*=h2;

*(*( gsav_reell +1)+k)=*g; /* speichere Werte von g fuer

obere Seite */

*(*( gsav_reell +2)+k)=*g1;

*(*( gsav_reell +3)+k)=*g2;

}

void dlkk2_Oseen(float x_1t , float x_2t , float l[])

{
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float p3;

p3=1.0- x_2t;

*(l+0)=-p3*x_1t; // bedenke l=-lSchlange

*(l+1)=-p3;

*(l+2)=x_1t;

}

void dljk2_Oseen(float x_1tstrich , float x_2t , float x_2tstrich ,

float t, float tstrich , float l[])

{

float p3,p4;

p3=1.0- x_2t;

p4 =1.0+ x_2tstrich;

*(l+0)=-p3*( x_2tstrich *(t-tstrich)/p4+x_1tstrich); //

bedenke l=-lSchlange

*(l+1) =0.0;

*(l+2)=-*(l+0)/p3;

}
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Appendix C.

Material parameters

In this appendix chapter, the material parameters of all the substances under consider-
ation in this work are gathered in one big table (table C.1). The experiments, in which
they were measured, are cited in the table, too.

d0 capillary length
D thermal diffusivity (pure substances) or impurity diffusivity (dissolutions)
β surface tension anisotropy strength
ρm mass density
L/c ratio of latent heat and specific heat
TM equilibrium melting temperature
γ0 mean surface tension averaged over all interface normal orientations
Pr Prandtl number
ν kinematic viscosity
µ heat diffusion anisotropy strength
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