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4,6,

Andreas DrägerID
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Abstract

With the emergence of multidrug-resistant bacteria, the World Health Organization published

a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resis-

tant Acinetobacter baumannii designated as “critical”. Such isolates, frequently detected in

healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of

bacterial metabolism and allow the development of new therapeutics is to apply constraint-

based modeling. Here, we developed a versatile workflow to build high-quality and simula-

tion-ready genome-scale metabolic models. We applied our workflow to create a metabolic

model for A. baumannii and validated its predictive capabilities using experimental nutrient

utilization and gene essentiality data. Our analysis showed that our model iACB23LX could

recapitulate cellular metabolic phenotypes observed during in vitro experiments, while posi-

tive biomass production rates were observed and experimentally validated in various growth

media. We further defined a minimal set of compounds that increase A. baumannii’s cellular

biomass and identified putative essential genes with no human counterparts, offering new

candidates for future antimicrobial development. Finally, we assembled and curated the first

collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their

growth characteristics. The presented models are in a standardized and well-curated format,

enhancing their usability for multi-strain network reconstruction.

Author summary

The emergence of multidrug-resistant bacteria, particularly carbapenem-resistant Acine-
tobacter baumannii, has become a severe global health threat. This pressing issue
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necessitated the development of new antibiotics, as highlighted by the World Health

Organization. To address this need, we aimed to create comprehensive metabolic models

to better understand bacterial metabolism and aid in developing novel therapeutic strate-

gies. In this study, we developed a versatile workflow to construct high-quality, simula-

tion-ready genome-scale metabolic models for bacterial pathogens. Applying this

workflow, we constructed a metabolic model for A. baumannii and validated its accuracy

using experimental data. The model successfully replicated observed metabolic pheno-

types and identified essential genes without human counterparts, suggesting potential tar-

gets for new antibiotics. Additionally, we assembled and curated the first collection of

metabolic reconstructions for distinct A. baumannii strains, analyzing their growth char-

acteristics. These standardized and well-curated models enhance usability, facilitating

multi-strain network reconstruction and further research. These findings provide a robust

tool for understanding A. baumannii’s metabolism, guiding the development of new anti-

microbial therapies.

Introduction

In the 21st century, treating common bacterial infections has become a global health concern.

The rapid emergence of pathogens with newly developed resistance mechanisms led to the

ineffectiveness of hitherto used antimicrobial drugs. According to their resistance patterns,

bacteria are classified into three main categories: multidrug-resistant (MDR, resistant to at

least one agent in more than three antibiotic categories), extensively drug-resistant (XDR,

non-susceptible to one or two categories), and pandrug-resistant (PDR, non-susceptible to all

drugs in all categories) [1]. Pathogens from the last two classes are called “superbugs”. In Feb-

ruary 2022, Murray et al. developed predictive statistical models within a large-scale global

study and estimated 1.27 million deaths directly associated with antimicrobial resistance

(AMR) [2]. The same study underlines the highly virulent ESKAPE pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomo-
nas aeruginosa, and Enterobacter spp.) as the primary cause of AMR-related deaths, while the

World Health Organization (WHO) announced in 2017 the urgent need for novel and effec-

tive therapeutic strategies against these microorganisms, assigning them the “critical status”.

Over the years, numerous studies highlighted the Gram-negative human pathogen Acineto-
bacter baumannii of substantial concern in hospital environments attributable to its high

intrinsic resistance against antimicrobial agents, including biocides [3–6]. A. baumannii (from

the Greek word akínētos, meaning “unmoved”) is a rod-shaped, non-motile, and strictly aero-

bic bacterium. It is an opportunistic pathogen whose adaptable genetic apparatus has caused it

to become endemic in intensive care units (ICUs), affecting immunocompromised patients,

causing pneumonia, bacteremia, endocarditis, and more. Especially the carbapenem-resistant

A. baumannii poses a serious global threat with high mortality rates [7–9]. It targets exposed

surfaces and mucous tissues, colonizes the human nose [10–12], and is frequently associated

with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections [13–16].

The skin has shown to be a community reservoir for A. baumannii in a very small percentage

of samples [17, 18], while its prevalence in the soil is a frequent misconception as species from

the genus Acinetobacter are ubiquitous in nature [5, 19]. Finally, it shows susceptibility to com-

monly used drugs, like β-lactams, aminoglycosides, and polymyxins. The strain ATCC 17978

is a widely studied nosocomial strain notable for its fully sequenced genome that provides a

comprehensive genetic framework for researchers. Historically, it was first isolated in 1951
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from a 4-month-old infant with fatal meningitis [20]. Smith et al. sequenced its complete

genome using high-density pyrosequencing [20]. They reported the presence of putative path-

ogenic islands with virulence genes, including a large island with transposons and integrases,

as well as elements resembling the Legionella/Coxiella Type IV secretion system, crucial for

pathogenesis. Moreover, it is a human-adapted isolate and was the first to be discovered with

an active type VI secretion system (T6SS) encoded on its chromosome [21]. Another remark-

able characteristic is its utilization of microcin Mcc17978 to combat other bacteria such as

closely related Acinetobacter species and E. coli through contact and T6SS-independent com-

petition activity [22]. Previous studies have noted ATCC 17978 for its susceptibility to clini-

cally important antibiotics, serving as a valuable model for studying the basic biology of A.

baumannii, antibiotic susceptibility, and the mechanisms by which resistance can develop

[23–26]. Finally, its lower level of antibiotic resistance makes it valuable for studying the basic

mechanisms of antibiotic action and resistance development, while it is easier to genetically

manipulate [27].

Systems biology, and especially the field of genome-scale metabolic network analysis, is the

key to exploring genotype-phenotype relationships, better understanding mechanisms of

action of such threatening pathogens, and ultimately developing novel therapeutic strategies.

Genome-scale metabolic models (GEMs) combined with constraint-based modeling (CBM)

provide a well-established, fast, and inexpensive in silico framework to systematically assess an

organism’s cellular metabolic capabilities under varying conditions having only its annotated

genomic sequence [28]. As of today, GEMs have numerous applications in metabolic engi-

neering, contributing to the formulation of novel hypotheses towards the detection of new

potential pharmacological targets [29].

It has been more than a decade since the release of the first mathematical model represent-

ing A. baumannii’s metabolism. Kim et al. integrated biological and literature data to manually

build AbyMBEL891, representing the strain AYE [30]. This model was further employed as an

essential foundation for future reconstructions; however, its non-standardized and missing

identifiers limited its use. Following a tremendous increase in the volume of literature and

experimental data on A. baumannii (over 5,670 articles published between 2010 and 2017

according to PubMed), two new strain-specific metabolic networks emerged: the iLP844 [31]

and the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) model

[32]. Both networks were reconstructed through a semi-automated process and simulated the

metabolism of two distinct strains: ATCC 19606 and AB0057, respectively. With the help of

transcriptomic data of sampled colistin responses and iLP844, it was observed that the type

strain ATCC 19606 underwent metabolic reprogramming, demonstrating a stress condition as

a resistance mechanism against colistin exposure. Alterations in gene essentiality phenotypes

between treated and untreated conditions enabled the discovery of putative antimicrobial tar-

gets and biomarkers. Moreover, the model for AB0057 was part of an extensive resource of

GEMs built to elucidate the impact of microbial communities on host metabolism. The

amount of mass- and charge-balanced reactions in these models is very high; however, they

carry few to no database references. Norsigian et al. improved and expanded AbyMBEL891 to

finally create the high-quality model iCN718 with a prediction accuracy of over 80% in experi-

mental data [33], while Zhu et al. built a GEM for ATCC 19606 (iATCC19606) integrating

multi-omics data [34]. Compared to iLP844, iATCC19606 incorporates metabolomics data

together with transcriptomic data enabling the deciphering of bactericidal activity upon poly-

myxin treatment and the interplay of various metabolic pathways. Last but not least, in 2020,

the first in vivo study on A. baumannii infection was published utilizing constraint-based

modeling [35]. This time, the collection of strain-specific models was enriched with the first

GEM for the hyper-virulent strain AB5075 (iAB5075). The model was validated using various
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experimental data, while transcriptomics data was leveraged to identify critical fluxes leading

to mouse bloodstream infections. Our literature search revealed one additional metabolic

model of A. baumannii ATCC 17978, named iJS784 [36]. As of the time of writing, this model

has not been officially published in a scientific journal or been deposited in a mathematical

models’ database. Nonetheless, the model cannot produce biomass even when all uptake reac-

tions are open and all medium nutrients are available to the cell, making it unusable and ham-

pering reproducibility.

We expanded the collection of A. baumanniiGEMs by building a high-quality model for

the nosocomial strain ATCC 17978, named iACB23LX. The presented model follows the FAIR

data principles and community standards and recapitulates experimentally-derived pheno-

types with high predictive capability and accuracy scores. We enriched the model with numer-

ous database cross-references and inferred the minimal nutritional requirements

computationally. Moreover, we used this model to investigate the organism’s growth ability in

defined media and a medium simulating human nasal secretions while we assessed its ability

to predict essential genes using different optimization approaches. Among the examined

strains, ATCC 17978 is one of the most well-studied, with a substantial amount of experimen-

tal data available that can be used to direct model refinement and validation. Besides that, we

systematically refined and evaluated all pre-existing reconstructions’ performance to finally

create the first compendium of curated and standardized models for A. baumannii. With this,

we aim to support further studies to give new insights into this pathogen and promote strain-

and species-specific therapeutic approaches.

Materials and methods

Growth curves of A. baumannii
Growth curves for A. baumannii strains AB5075, ATCC 17978, ATCC 19606, and AYE were

recorded in Luria-Bertani (LB), iMinMed supplemented with acetate as sole carbon source

(0.2% weight per volume), and synthetic nasal medium (SNM) [97]. Overnight cultures of the

strains grown in LB were harvested by centrifugation, and the cell pellet was washed once with

5 mL of phosphate buffered saline (PBS). Cells were then re-suspended in the medium used

for the growth curves. The starting optical density (OD)600nm was adjusted to 0.1 and growth

curves were recorded in 2 mL of medium for 12 h in triplicates using a Tecan infinite M200

PRO plate reader and 12-well plates covered with a plastic lid. Plates were incubated with lin-

ear shaking at 37˚C and the OD600nm was measured every 15 min. Growth rates were deter-

mined as the slope of the linear part of the curves plotting the natural logarithm of OD600nm

against time.

Metabolic network reconstruction workflow

Fig 1 illustrates the workflow developed to create the high-quality genome-scale metabolic net-

work iACB23LX, following the state-of-the-art protocol by Thiele et al. [28]. Our workflow

consists of eight major steps starting from the extraction of an annotated genome until the

model validation using experimental data. Modifications in the model structure, as well as the

inclusion of cross-references to multiple functional databases, were done using the libSBML

[46] library, while all simulations were conducted via the constraints-based reconstruction and

analysis for Python (COBRApy)-0.22.1 suite [58] that includes functions commonly used for

simulations.

The individual steps are described below in more detail with respect to the reconstruction

of iACB23LX.
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Draft reconstruction. The draft model was built with CarveMe version 1.5.1 using the

annotated genome sequence of ATCC 17978 [39]. This was downloaded from the National

Centre for Biotechnology Information (NCBI) at https://www.ncbi.nlm.nih.gov and has the

assembly accession number ASM1542v1 [20]. Seven strain-specific assemblies are registered

in NCBI; however, the chosen entry is also registered in Kyoto Encyclopedia of Genes and

Genomes (KEGG) [38], which supports the model extension. The genome is 3.9 Mbp long and

has two plasmids (pAB1 and pAB2). We set the SBML flavor to activate the extension for flux

balance constraints (fbc) version 2 [98]. This extension enables semantic descriptions for

domain-specific elements, such as metabolite chemical formulas and charges, along with reac-

tion boundaries and gene-protein-reaction associations (GPRs). Moreover, the optional

parameter gramneg provided CarveMe was selected to employ the specialized template for

the Gram-negative bacteria. Compared to the Gram-positive template, the Gram-negative

template comes with phosphatidylethanolamines, murein, and a lipopolysaccharide unit. Its

biomass reaction involves membrane and cell wall components resulting in more accurate

gene essentiality predictions in the lipid biosynthesis pathways.

Manual refinement and extension. We started the manual refinement of the draft model

by resolving syntactical errors within the Systems Biology Markup Language (SBML) [40]

Fig 1. Workflow developed for the metabolic network reconstruction of iACB23LX. The created workflow consists of eight main steps: extraction of

the annotated genome, draft model reconstruction, model refinement, gap-filling, investigation of energy-generating cycles, model annotation, quality

control and quality assurance (QC/QA), and model validation using experimental data. Growth simulations include the examination of growth

requirements and the definition of a minimal growth medium. The last six processes are continuously iterated until the model reaches a satisfied quality

and can recapitulate known phenotypes. Figure created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1012528.g001
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model file using the SBML Validator from the libSBML [46]. These errors involve improper

file structure, incorrect or missing tags, missing or improperly formatted attributes, and

invalid values. Missing metabolite charges and chemical formulas were retrieved from the Bio-

chemical, Genetical, and Genomical (BiGG) [70] and ChEBI [99] databases, while mass- and

charge-imbalanced reactions were corrected. The most intense part of the workflow is the

manual network extension and gap-filling. This was done using the organism-specific data-

bases KEGG [38] and BioCyc [100], together with ModelSEED [71]. We mapped the new gene

locus tags to the old ones using the GenBank General Feature Format (GFF) [101] and added

missing metabolic genes along with the respective reactions and metabolites into our model.

The network’s connectivity was ensured by resolving as many dead-end (only produced but

not consumed) and orphan (only consumed but not produced) metabolites as possible. Also,

reactions with no connectivity were not included in the model, while reactions with no organ-

ism-specific gene evidence were removed from the model.

Erroneous energy generating cycles. Energy-generating cycles (EGCs) are thermody-

namically infeasible loops found in metabolic networks and have not been experimentally

observed, unlike futile cycles. EGCs charge energy metabolites such as adenosine triphosphate

(ATP) and uridine triphosphate (UTP) without any external source of nutrients, which may

lead to incorrect and unrealistic energy increases. Their elimination is crucial for correcting

the energy metabolism, as they can inflate the maximal biomass yields and render unreliable

predictions. We checked their existence in iACB23LX applying an algorithm developed by

Fritzemeier et al. [41].

We created a Python script that (1) defines and adds energy dissipation reactions (EDRs) in

the network:

X½c� þH2O½c� � ! Xþ½c� þH½c� þ Pi½c�;

where X is the metabolite of interest and (2) maximizes each EDR while blocking all influxes.

This can be formulated as follows:

max vedrð Þ

subject to

S �~v ¼ 0

8i =2 E : vmin
i � vi � v

max
i

8i 2 E : vi ¼ 0

ð1Þ

where edr is the index of the current dissipation reaction, S is the stoichiometric matrix,~v the

flux vector, E the set of all exchange reactions, and vmin
i and vmax

i the upper and lower bounds.

The existence of EGCs is indicated by a positive optimal value of vedr.
Totally we examined 14 energy metabolites: ATP, cytidine triphosphate (CTP), guanosine

triphosphate (GTP), UTP, inosine triphosphate (ITP), nicotinamide adenine dinucleotide

(NADH), nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleo-

tide (FADH2), flavin mononucleotide (FMNH2), ubiquinol-8, menaquinol-8, demethylmena-

quinol-8, acetyl-coenzyme A (CoA), and L-glutamate. Moreover, we tested the proton

exchange between cytosol and periplasm.

In the case of existing EGCs, we examined the directionality and the gene evidence of all

participated reactions using organism-specific information from BioCyc as reference [100].

Database annotations. In this stage, the model was enriched with cross-linkings to vari-

ous functional databases. Reactions and metabolites were annotated with relevant databases

(e.g., KEGG [38], BRENDA [102], and UniProt [103]). These were included in the model as
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controlled vocabulary (CV) Terms following the Minimal Information Required In the Anno-

tation of Models (MIRIAM) guidelines [104] and the resolution service at https://identifiers.

org/. We used ModelPolisher [105] to complete the missing available metadata for all metabo-

lites and genes. Similarly, metabolic genes were annotated with their KEGG [38], NCBI Pro-

tein, and RefSeq identifiers using the GFF file [101]. Systems Biology Ontology (SBO) terms

were assigned to different model entities using a freely accessible standalone tool called

SBOannotator [43]. The SBO terms are structured controlled vocabularies used in computa-

tional modeling to define and describe model entities unambiguously [106]. The SBOannota-

tor was developed to automatically assign precise SBO terms to SBML models, mainly

focusing on biochemical reactions, thereby enhancing the reproducibility and usability of bio-

chemical networks [43]. In addition, Evidence and Conclusion Ontology (ECO) terms were

added to every reaction to capture the type of evidence of biological assertions with BQB_IS_
DESCRIBED_BY as a biological qualifier. They are useful during quality control and mirror

the curator’s confidence about the inclusion of a reaction. When multiple genes encode a sin-

gle reaction, an ECO term was added for every participant gene. Both terms were incorporated

into the final model.

Finally, reactions were annotated with the associated subsystems in which they participate

using the KEGG [38] database and the biological qualifier BQB_OCCURS_IN. Moreover, the

“groups” plugin was activated [48]. Every reaction that appeared in a given pathway was added

as a groups:member, while each pathway was created as a group instance with sboTerm=
"SBO:0000633" and groups:kind="partonomy".

Quality control and quality assurance. The metabolic model testing (MEMOTE) [45]

version 0.13.0 was used to assess and track the quality of our model after each modification,

providing us with information regarding the model improvement. The Flux variability, Reac-

tion deletion, Objective function, and Gene deletion (FROG) analysis framework was utilized

to assess model reproducibility, ensuring reusability and results verification [47]. The resulting

reports include comprehensive analyses of flux variability, reaction deletion, objective func-

tion, and gene deletion, providing a thorough evaluation of model performance. The final

model was converted into the latest SBML Level 3 Version 2 [48] format using the libSBML

package, while the SBML Validator tracked syntactical errors and ensured a valid format of the

final model [46].

Constraint-based analysis

The most frequently used constraint-based modeling approach is the flux balance analysis

(FBA) that determines a flux distribution via optimization of the objective function and linear

programming [59]. Prior to this, the metabolic network is mathematically encoded using the

stoichiometric matrix S formalism. This structure delineates the connectivity of the network,

and it is formed by the stoichiometric coefficients of all participating biochemical reactions.

The rows and columns are represented by the metabolites and the mass- and charge-balanced

reactions respectively. At steady state, the system of linear equations derived from the network

is defined as follows:

S �~v ¼ 0 ð2Þ

with S being the stoichiometric matrix and~v the flux vector. With no defined constraints, the

flux distribution may be determined at any point within the solution space. This space must be

further restricted since the system is under-determined and algebraically insoluble. An allow-

able solution space is defined by a series of imposed constraints that are followed by cellular

functions. Altogether the FBA optimization problem, with mass balance, thermodynamic, and
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capacity constraints, is defined as:

max or min Z ¼ cT~v

subject to : S �~v ¼ 0

0 � vi 8 irreversible reactions i

vmin � vi � vmax for i ¼ 1; . . . ; n:

ð3Þ

Here, n is the amount of reactions, Z represents the linear objective function, and~c is a vector

of coefficients on the fluxes~v used to define the objective function.

Growth simulations

Strict aerobic growth check. At the time of writing, CarveMe does not include recon-

struction templates to differentiate between aerobic and anaerobic species. The directionality

of reactions that produce or consume oxygen may affect the model’s ability to grow anaerobi-

cally. A. baumannii is defined to be a strictly aerobic species. Hence, we tested whether our

model could grow with no oxygen supplementation. For this purpose, we examined all active

oxygen-producing reactions under anaerobic conditions. We corrected their directionality

based on the organism-specific information found in BioCyc [100] and kept only those with

associated gene evidence.

Defining a minimal growth medium. To determine the minimal number of nutrients

needed for the bacterium to grow, we defined a minimal medium using iACB23LX. We deter-

mined the minimal amount of metabolites needed for growth using the M9 minimal medium

(M9) (S1 Table) as a reference (iMinMed). We modeled growth on iMinMed by enabling the

uptake of all metabolites that constitute the medium. The lower bound for the rest of the

exchanges was set to 0 mmol/(gDW � h). The final minimal medium is listed in Table 1 and in

S1 Table. It consists of nine transition metals, a carbon source, a nitrogen source, a sulfur

source, and a phosphorus source. The aerobic environment was simulated by setting the lower

bound for the oxygen exchange to −10 mmol/(gDW � h).

Table 1. Composition of the computationally defined minimal growth medium, iMinMed. It consists of nine tran-

sition metals, a carbon source, a nitrogen source, a sulfur source, and a phosphorus source. Oxygen was used to repre-

sent aerobic conditions.

Molecular Formula Name

Carbon source C2H3O2
− Acetate

Nitrogen source NH4
+ Ammonium

Sulfur source SO4
2− Sulfate

Phosphorus source HPO4
2− Phosphate

Ca2+ Calcium

Cl− Chloride

Cu2+ Copper

Fe3+ Ferric iron

Transition metals Co2+ Cobalt

K+ Potassium

Mg2+ Magnesium

Mn2+ Manganese

Zn2+ Zinc

Oxygen source O2 Oxygen

https://doi.org/10.1371/journal.ppat.1012528.t001
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Growth in chemically defined media. We utilized experimentally verified growth media

to examine the growth capabilities of iACB23LX. The LB medium serves as a common

medium for the cultivation of A. baumannii. Consequently, we conducted an assessment of

our model’s capacity to accurately simulate growth in this particular medium. Furthermore,

we examined the growth of our model in the human nasal niche, considering that A. bauman-
nii has been isolated from nasal samples within ICUs [10–12]. For this purpose, we utilized the

SNM that imitates the human nasal habitat [97]. In all cases, if macromolecules or mixtures

were present, we considered the constitutive molecular components for the medium defini-

tion. As our model was initially unable to reproduce growth on the applied media, we deployed

the gap-filling option from CarveMe to detect missing reactions and gaps in the network [39].

All growth media formulations are available in S1 Table.

Rich medium definition. To investigate our model’s growth rate when all nutrients are

available to the bacterial cell, we defined the rich medium. For this purpose, we enabled the

uptake of all extracellular metabolites by the model setting the lower bound of their exchange

reactions to −10 mmol/(gDW � h).

Model validation

Evaluation of carbon and nitrogen utilization. We employed the previously published

Biolog Phenotypic Array data by Farrugia et al. for A. baumannii ATCC 17978 to validate the

functionality of our model [26]. According to the experimental guidelines provided by Farru-

gia et al., we utilized M9 for all simulations [26]. The medium was then supplemented with D-

xylose as a carbon source for the nitrogen testings, while ammonium served as the only nitro-

gen source for the carbon tests. As D-xylose was initially not part of the model, we conducted

an extensive search in the organism-specific databases KEGG [38] and BioCyc [100] to include

missing reactions.

The phenotypes were grouped by their maximal kinetic curve height. A trait was considered

positive (“growth”) if the height exceeded the 115 and 101 OmniLog units for a nitrogen and

carbon source, respectively. The prediction accuracy was evaluated by comparing the in silico-

derived phenotypes to the Biolog results. More specifically, the overall model’s accuracy

(ACC) was calculated by the overall agreement:

ACC ¼
TP þ TN

TPþ TN þ FPþ FN
ð4Þ

where true positive (TP) and true negative (TN) are correct predictions, while false positive

(FP) and false negative (FN) are inconsistent predictions. Discrepancies were resolved via iter-

ative manual model curation.

Gene perturbation analysis. We performed in silico single-gene deletions on iACB23LX

to detect essential genes. For this purpose, we utilized the single_gene_deletion func-

tion from the COBRApy [58] package. A gene is considered to be essential if a flux of 0.0

mmol/(gDW � h) is predicted through the biomass reaction after setting the lower and upper

bounds of the associated reaction(s) to 0.0 mmol/(gDW � h).

Additionally, we examined the effect of gene deletions using two different optimization

approaches: FBA [59] and minimization of metabolic adjustment (MOMA) [60]. Contrary to

FBA, MOMA is based on quadratic programming, and the involved optimization problem is

the Euclidean distance minimization in flux space. Moreover, it approximates the metabolic

phenotype and relaxes the assumption of optimal growth flux for gene deletions [60].

The results were compared to gene essentiality data [57]. Wang et al. generated a random

mutagenesis dataset including 15,000 unique transposon mutants using insertion sequencing
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(INSeq) [57]. Four additional transposon sequencing (Tn-seq) libraries of multiple A. bau-
mannii isolates were employed to validate the model and increase confidence [57, 68, 77–79].

In this case only genes with an ortholog in ASM1542v1 were considered. Analogously to the

experimental settings, the nutrient uptake constraints were set to define the LB medium. From

the 453 genes experimentally identified as essential, 191 could be compared to our predictions.

The rest were not part of iACB23LX due to their non-metabolic functions. To measure the

effect of a single deletion, we calculated the fold change (FC) between the model’s growth rate

after (grKO) and before (grWT) a single knockout. This is formulated as follows:

FCgr ¼
grKO
grWT

ð5Þ

To this end, if FCgr = 0, the deleted gene is classified as essential, meaning its removal pre-

vented the network from producing at least one key biomass metabolite predicting no growth.

Similarly, if FCgr = 1, the deletion of the gene from the network did not affect the growth phe-

notype (labeled as inessential), while when 0< FCgr< 1, the removal of this gene affected par-

tially the biomass production (labeled as partially essential). The complete lists of the gene

essentiality results are available in S2 and S3 Tables.

To explore the potential of in silico identified essential genes as new drug candidates against

A. baumannii infections, we probed the queries of predicted false negative candidates against

the human proteome using Basic Local Alignment Search Tool (BLAST) [107]. The protein

sequences were aligned to the human protein sequences using the default settings of the NCBI

BLASTp tool (word size: 6, matrix: BLOSUM62, gap costs: 11 for existence and 1 for exten-

sion). To eliminate adverse effects and ensure no interference with human-like proteins, que-

ries with any non-zero alignment score with the human proteome were not considered. Lastly,

we searched the DrugBank database version 5.1.9 to find inhibitors or ligands known to act

with the enzymes encoded by the non-homologous genes [66].

Curation of existing metabolic networks

Previously reconstructed models of A. baumannii for multiple strains were collected and

curated following community standards and guidelines. For this, we created a workflow that

comprises four main steps and utilizes model validation and annotation tools. This can be

applied to any metabolic network in SBML [40] format and follows the community “gold stan-

dards” strictly, as proposed by Carey et al. [37]. The curation steps involved changes in the for-

mat, amount, and quality of the included information. The context has not been altered in any

way that could impact the models’ prediction capabilities. We employed a combination of

already existing tools to analyze, simulate, and quality-control the models (COBRApy [58],

MEMOTE [45], and the SBML Validator [46]). Different database cross-references were incorpo-

rated in the models using ModelPolisher [105] and following the MIRIAM guidelines [104],

while the libSBML library [46] was used to manipulate the file format and convert to the latest

version. To resolve inflated growth rates, we determined computationally-defined minimal

growth media. The growth capabilities were examined with respect to various experimentally-

derived growth media, while the LB medium was applied to identify lethal genes. A strain-wise

comparison was not feasible due to strain-specific identifiers, no successful growth, or missing

genes. Hence, we investigated the essential genes across all models with identifiers that could be

mapped with the Pathosystems Resource Integration Center (PATRIC) ID mapping tool [108].

To begin with the debugging, we examined the syntactical correctness and internal consis-

tency of the downloaded files using the SBML Validator from the libSBML library [46]. Two

models (iCN718 and iJS784) could not pass the validator check and reported errors since they
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were not in a valid SBML [40] format right after their attainment. We made iCN718 valid by

deleting the reaction DNADRAIN for which neither a reactant nor a product was assigned

since the associated metabolite was not part of the model. Similarly, the empty groups attri-

bute was removed from iJS784, converting the file into a valid format. Warnings were detected

for iATCC19606, and iAB5075 due to missing definition of the fbc extension (available at the

latest Level 3 release [98]) and the non-alphanumeric chemical formulas. We resolved these

issues by defining the fbc list listOfGeneProducts and the species attribute

chemicalFormula. In more detail, we extracted the given GPRs from the notes field and

defined individual geneProduct classes with id, name, and label. The attribute

chemicalFormula was set equal to the species chemical formulas extracted from the notes

and is particularly essential in reaction’s validation and balancing. Following the SBML [40]

specifications regarding its constitution, in case of ambiguous formulas separated by a semico-

lon (;), the first molecular representation was chosen. With this, the genes and metabolites’

chemical formulas became part of the file’s main structure. Since iATCC19606 carried KEGG

[38] identifiers, we could extract the metabolites’ chemical formulas from the database and

add them to the model. Moving on with the file extension, we declared the remaining missing

attributes from reactions, metabolites, and genes that are required according to the SBML [40]

language guidelines. More specifically, we defined the metaid attribute when missing, while

we fixed any errors regarding the identifiers nomenclature. Further extension involved the

annotation of reactions, metabolites, and genes with a plethora of database cross-references

following the MIRIAM guidelines [104]. For this, we employed ModelPolisher that comple-

ments and annotates SBML [40] models with additional metadata using the BiGG Models

knowledgebase as reference [105]. We also defined precise SBO terms with the sboTerm
attribute using the SBOannotator [43]. The final step of debugging involved the conversion of

all models to the newest available format SBML Level 3 Version 2 [48], as well as the quality

control using MEMOTE [45].

Results

Reconstruction process of the metabolic network iACB23LX

To build a high-quality model for A. baumannii ATCC 17978, we developed a workflow, as

depicted in Fig 1, adhering closely to the community standards [37] (see Materials and

methods).

We named the newly reconstructed network iACB23LX, where i stands for in silico, ACB is

the organism- and strain-specific three-letter code from the KEGG [38] database, 23 the year

of reconstruction, and LX the modellers’ initials. Our protocol involves eight major stages

starting from the attainment of the annotated genomic sequence until the model validation,

applies to any organism from the tree of life (Archaea, Bacteria, and Eukarya), and ensures the

good quality and correctness of the final model. CarveMe [39] was used to build a preliminary

model, which was subsequently extended and curated manually. We resolved SBML [40] syn-

tactical issues and mass and charge imbalances during manual refinement while we defined

missing metabolite charges and chemical formulas. Our final model contains no mass-imbal-

anced reactions and only two charge-imbalanced reactions. After extensive efforts, resolving

all charge imbalances was impossible since all participated metabolites are interconnected to

multiple reactions within the network. Hence, any modification in their charge resulted in

newly introduced imbalances. The model extension process involved incorporating missing

metabolic genes considering the network’s connectivity. Dead-end and orphan metabolites do

not exist biologically in the species, implying knowledge gaps in metabolic networks. More-

over, reactions including such metabolites are not evaluated in FBA. Therefore, reactions with
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zero connectivity and no organism-specific gene evidence were omitted from the gap-filling.

We extended the draft model by 138 reactions, 77 genes, and 110 metabolites in three com-

partments (cytosol, periplasm, and extracellular space). All in all, iACB23LX comprises 2,321

reactions, 1,660 metabolites, and 1,164 genes (Fig 2). It is the most comprehensive model,

while its stoichiometric consistency lies at 100% and contains no unconserved metabolites.

Over 1,800 reactions have a GPR assigned, while 149 are catalysed by enzyme complexes (GPR

contains at least two genes connected via a logical AND).

Furthermore, we tested our model for EGCs to prevent having thermodynamically infeasi-

ble internal loops that bias the final predictions [41]. We defined energy dissipation reactions

(EDRs) for 15 energy metabolites, enabling transmission of cellular energy. Each reaction was

individually added to the model and set as the objective function, while all uptakes were con-

strained to zero (see Materials and methods). A non-zero optimization result indicated an

energy-generating cycle, which was then removed. With this, our final model, iACB23LX, con-

tains no EGCs. As shown in Fig 1, a plethora of database cross-references was embedded in

the model, while SBO terms were defined for every reaction, metabolite, and gene [43]. Addi-

tionally, each reaction was mapped to an ECO term representing the confidence level and the

assertion method (Fig 3).

To assess the model’s quality, we utilized the Metabolic Model Testing tool (MEMOTE) [45]

and the SBML [40] Validator from the libSBML library [46]. Our metabolic network,

iACB23LX, achieved a MEMOTE score of 89% with all syntactical errors resolved. Our model

undoubtedly exhibits the highest quality score among its predecessors (Fig 2). Notably, the

MEMOTE testing algorithm considers only the parent nodes of the SBO directed acyclic graph

and not their respective children. Assigning more representative SBO terms does not increase

the final score but reduces it by 2%. Finally, we assessed the model’s reproducibility using

FROG analyses [47] and submitted the reports along with our model to enable verification of

results. The final model is available in SBML Level 3 Version 2 [48] and JavaScript Object

Notation (JSON) formats with the fbc and groups plugins available.

iACB23LX is of high quality and exhibits an increased predictive accuracy

Prediction and experimental validation of bacterial growth on various nutritional envi-

ronments. Constraint-based modeling approaches, such as FBA, estimate flux rates

Fig 2. Properties of all metabolic networks for A. baumannii. Blue highlights the metabolic network for ATCC 17978 presented in this publication.

The left ordinate shows the counts, while the right ordinate represents the MEMOTE scores. The abscissa labels are annotated with the respective

strains, each accompanied by the count of open reading frames (ORFs) and the percentage of model gene coverage. The reconstruction process is

divided into manual (M, nocomputational tool was used to reconstruct and refine the model) and semi-automated (S, draft obtained via an automated

reconstruction tool, while further extension was done manually) and is written together with the publication year. The new model presented in this

work exhibits the highest quality score and is more comprehensive and complete than the preceding reconstructions.

https://doi.org/10.1371/journal.ppat.1012528.g002
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indicating how metabolites flow through the metabolic network and predict cellular pheno-

types for various growth scenarios. A. baumannii is known to be strictly aerobic and, com-

pared to the majority of Acinetobacter species, it is not considered ubiquitous in nature. As a

nosocomial pathogen, it has been mostly detected in hospital environments, particularly in the

ICUs, and within the human nasal microbiota [10–12]. We examined various growth condi-

tions to ensure that iACB23LX recapitulates these already known and fundamental

phenotypes.

First, we tested our model’s capability to simulate a strictly aerobic growth. For this pur-

pose, we examined the directionality of all active oxygen-producing and -consuming reactions

when the oxygen uptake was disabled (see S1 Fig). We observed an accumulation of periplas-

mic oxygen by reactions that carried remarkably high fluxes, leading to growth even when oxy-

gen import was turned off. We examined each reaction individually and removed those

without gene evidence to correct this. More specifically, we removed the periplasmic catalase

(CATpp), one of bacteria’s main hydrogen peroxide scavengers. This enzyme is typically active

in the cytosol [49] and was not part of any precursor A. baumannii GEM or was found only in

cytosol (iLP844 [31]). To fill the gap and enable the usage of the periplasmic hydrogen perox-

ide, we added the (PEAMNOpp) in the model. Eventually, iACB23LX demonstrated growth

only in the presence of oxygen using a rich medium (all exchange reactions are open).

Furthermore, we determined the minimal number of metabolites necessary for growth

using iACB23LX and the M9 as a reference. Minimal growth media typically consist of carbon,

nitrogen, phosphorus, and sulfur sources, as well multiple inorganic salts and transition met-

als. These metals are crucial for the growth and survival of all three domains of life; however,

they can be transformed into toxic compounds in hyper-availability [50]. The exact composi-

tion of our minimal medium (iMinMed) is shown in Table 1. It comprises nine transition met-

als, acetate as the carbon source, ammonium as a nitrogen source, sulfate as a sulfur source,

and phosphate as a phosphorus source. Previous studies have highlighted the importance of

nutrient metals for A. baumannii to survive within the host. More specifically, the bacterium

utilizes these metals as co-factors for vital cellular processes [51]. Manganese and zinc have

Fig 3. Schematic representation of the SBO and ECO terms mapping. It follows the graphs defined in the repository for biomedical ontologies

Ontology Lookup Service (OLS) [42]. The SBO terms were added using the SBOannotator tool [43]. The ECO terms annotated metabolic reactions and

were declared based on the presence of GPR along with KEGG and UniProt annotations. Providing UniProt identifiers, the Protein Existence Level

guides the mapping to appropriate ECO terms. Figure created with yEd [44].

https://doi.org/10.1371/journal.ppat.1012528.g003
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also been studied as essential determinants of host defense against A. baumannii-acquired

pneumonia through their sequestering by calprotectin via a type of bonding called chelation

[52]. In the computational simulations, growth rates below 2.81 mmol/(gDW � h) were consid-

ered realistic. This threshold corresponds to the doubling time of the fastest-growing organ-

ism, Vibrio natriegens, which is 14.8 minutes [45]. Table 2 displays the predicted growth rates

of iACB23LX in the respective culture media. In LB, our model simulated with the highest

growth rate; 0.6065 mmol/(gDW � h). With our self-defined minimal medium, iMinMed, our

model exhibited the lowest rate; 0.5503 mmol/(gDW � h). Notably, our experimental validation

revealed similarity between the growth rates obtained from the in vitro respiratory curves

(Table 2 and S2 Fig) and those predicted by our in silico simulations. Additionally, we exam-

ined the growth rate of our model in a rich medium, in which all nutrients were available to

the model. With this, the flux through the biomass production was the highest, 2.1858 mmol/

(gDW � h), as expected. This is still less than the growth rate of the fastest organism, increasing

the confidence in our model’s consistency and simulation capabilities. Initially, iACB23LX

could not predict any realistic growth rate for the simulated media. Using the gap-filling func-

tion of CarveMe [39], we detected three enzymes (PHPYROX, OXADC, and LCYSTAT) whose

addition into the metabolic network resulted in successful growth in all tested media.

Functional validation of iACB23LX using nutrient utilization data. Multiple in silico
approaches have hitherto been employed to predict lethal genes and to assess growth metrics

on different carbon/nitrogen sources for severe pathogenic organisms includingMycobacte-
rium tuberculosis [53, 54] and Staphylococcus aureus [55, 56]. In 2013 and 2014, two studies

were published that examined the catabolic phenome and gene essentialities of the strain

ATCC 17978 [26, 57]. We used these datasets to evaluate the overall performance (functional-

ity and accuracy) of iACB23LX.

Our first validation experiment assessed the accuracy of our model’s carbon and nitrogen

catabolism potentials using the large-scale phenotypic data provided by Farrugia et al. [26].

While the authors tested a larger number of compounds overall, we were only able to examine

80 carbon sources and 48 nitrogen sources. For the remaining molecules, either no BiGG iden-

tifier existed, or they were not part of the metabolic network. Following the experimental pro-

tocol by Farrugia et al., we applied the M9 medium and enabled D-xylose as the sole carbon

source for the nitrogen testings. As D-xylose was initially not part of the reconstructed net-

work, we conducted extensive literature and database search to include associated missing

reactions. This improved the prediction accuracy, especially for the carbon sources, where an

amelioration of 19% was achieved. In more detail, despite the comprehensive manual curation,

the first draft model was reconstructed using the automated tool CarveMe [39]. This resulted

in the incorrect inclusion of transport reactions, which were consequently removed to reduce

the number of false positive predictions. In both cases, our main objective was to improve the

accuracy while keeping the number of orphan and dead-end metabolites low and removing

Table 2. Simulated and empirical growth rates of ATCC 17978 in various growth media. The tested media are the

computationally-defined minimal medium (iMinMed), the LB, and the SNM. Computational growth rates are given in

mmol/(gDW � h), while in vitro rates in h−1. Doubling times are calculated in minutes. The media formulations are

available in S1 Table.

Growth Rates Doubling Times

in silico in vitro in silico in vitro
iMinMed 0.5503 0.5402 75.57 76.70

LB 0.6065 0.7369 68.57 56.44

SNM 0.2914 0.3592 142.72 115.78

https://doi.org/10.1371/journal.ppat.1012528.t002
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only reactions with no gene evidence (lack of assigned GPR). Similarly, missing reactions were

identified and included in the network to eliminate the false negative predictions. For instance,

in accordance with the phenotypic data, ATCC 17978 should not be able to grow when utiliz-

ing D-trehalose as the sole carbon source. Our model initially predicted a growth phenotype

for this carbon source. To overcome this conflict, we deleted the reaction TREP with no organ-

ism-specific gene evidence, i.e., no assigned GPR. However, it was not feasible to resolve all

inconsistencies since adding transport reactions to resolve false positives or false negatives in

the nitrogen testings led to more false predictions in the carbon sources. More specifically,

when adenosine, inosine, L-homoserine, and uridine are utilized as sole carbon sources, the

model should not predict growth, while as sole nitrogen sources they should result in a non-

zero objective value. In this case, adding transporters would resolve false predictions in the

nitrogen tests, while it would have induced more false predictions in the carbon sources tests.

Altogether, iACB23LX exhibited an overall accuracy of 86.3% for the carbon and 79.2% for the

nitrogen sources test (Fig 4c). By adding their corresponding transport reactions, we resolved

discrepancies regarding uridine, inosine, adenosine, and L-homoserine. Our model was able to

catabolize 49 sole carbon and 40 sole nitrogen sources (see Fig 4a and 4b), recapitulating totally

69 and 38 experimentally-derived phenotypes, respectively.

We further assessed the ability of iACB23LX to predict known gene essentialities. First,

1,164 in silico single gene deletions were conducted on both LB and rich growth media, respec-

tively to identify all lethal gene deletions. Subsequently, the ratio between the growth rate after

and before the respective knockouts (FCgr) was calculated, and the genes were classified

accordingly (see Materials and methods). For the optimization, two mathematics-based

approaches from the COBRApy [58] package were deployed: the FBA [59] and the MOMA

[60]. Between the two methods, a similar distribution of the FCgr values was observed (Fig 5a

and 5b). Using FBA, 97, 75, and 991 genes were predicted to be essential, partially essential,

and inessential on LB, respectively. Similarly, optimization with MOMA resulted in 110, 85,

and 968 genes (Fig 5c and S3 and S2 and S3 Tables). These genes were primarily associated

with the biosynthesis of cofactors and vitamins, the amino acid/nucleotide metabolism, the

energy metabolism, and the metabolism of terpenoids and polyketides. Additionally, we exam-

ined in more detail how nutrition availability impacts the gene essentiality by conducting sin-

gle-gene knockouts in the rich medium. Both optimization methods yielded a higher number

of essential genes when the model had to adapt its metabolic behavior due to lacking nutrients,

i.e., with LB, compared to the rich medium (Fig 5c and S2 and S3 Tables). In general, FBA

detected more genes to be dispensable for growth in both nutritional environments. On the

other hand, MOMA classified more genes as essential or partially essential (Fig 5c and S2 and

S3 Tables), while genes from FBA build a subset of the essential genes derived by MOMA. Fur-

thermore, we validated the prediction accuracy of iACB23LX using gene essentiality data.

First, we analyzed the transposon mutant library developed by Wang et al. as it examines the

same A. baumannii genome that we used to build our model [57].

Using this dataset and the LB medium, our model demonstrated a prediciton accuracy of

87% with both optimization methods (Fig 5d). To enhance the robustness and generalizability

of our model across diverse datasets, we compared our model’s predictions to four additional

Tn-seq datasets. A total of 43 genes were labeled as essential in all studied Tn-seq data and

were predicted as essential by our model. The derived predictive accuracies ranged between

86.6% and 88.9% (Fig 5e), underscoring the efficacy of our model across diverse high-through-

put gene essentiality datasets. We further analyzed the predicted false negative genes and

probed their proteomes to investigate the existence of human homologs (see Materials and

methods and S4 Table). Our aim was to remove cross-linkings to human-similar proteins, as

pathways or enzymes absent in humans are valuable sources of druggable targets against
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Fig 4. Model predictions compared to the Biolog experimental measurements for various carbon and nitrogen sources. From the Biolog data, only

substances mappable to model metabolites were included, while the M9 medium was applied. (a) and (b) The model’s ability to catabolize various

carbon and nitrogen sources was assessed using the strain-specific phenotypic data by Farrugia et al. [26]. Grey indicates no growth, and orange

indicates growth. Totally, 80 and 48 compounds were tested as sole carbon and nitrogen sources, respectively. Out of these, 69 and 38 phenotypes were

recapitulated successfully by iACB23LX. (c) Confusion matrices of model predictions and Biolog experimental measurements. The overall accuracy of

iACB23LX is 86.3% for the carbon (left matrix) and 79.2% for the nitrogen (right matrix) testings. Orange represents correct predictions, and grey

represents wrong predictions.

https://doi.org/10.1371/journal.ppat.1012528.g004
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infectious diseases [61]. Out of the 37 genes that our model predicted to be essential using FBA

and MOMA, which contradicted the experimental results, 17 were found to be non-homolo-

gous to human (S4 Table). Genes with a zero similarity score were defined as non-homolo-

gous, while those with a non-zero similarity score were excluded to avoid targeting human-

Fig 5. Gene essentiality analysis using iACB23LX. (a) and (b) Distribution of the FCgr values calculated for all genes included in iACB23LX. Red lines

represent FBA predictions and grey are ratios derived with MOMA. Totally 1,164 knockouts were conducted using each method in LB and rich media.

(c) Classification of gene essentialities in essential, inessential, and partially essential based on their FCgr values. (d) Accuracy of gene essentiality

predictions based on empirical data. The in silico results were compared to the Wang et al. transposon library [57]. The LB medium was applied to

mirror the experimental settings. The metabolic network exhibited 87% accuracy with FBA (left) and MOMA (right). Beige indicates correct

predictions; grey indicates incorrect predictions. (e) Comparative analysis of essential genes predicted by iACB23LX versus those identified in multiple

Tn-seq studies.

https://doi.org/10.1371/journal.ppat.1012528.g005
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like proteins. Some examples are the genes encoding the enolpyruvylshikimate phosphate

(EPSP) synthase (A1S_2276), chorismate synthase (A1S_1694), riboflavin synthase

(A1S_0223), phosphogluconate dehydratase (A1S_0483), dihydrofolate reductase (DHFR)

(A1S_0457), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (A1S 0484). The

EPSP synthase converts the shikimate-3-phosphate together with phosphoenolpyruvate to 5-

O-(1-carboxyvinyl)-3-phosphoshikimic acid. Subsequently, the chorismate synthase catalyses

the conversion of the 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid to chorismate, the seventh

and last step within the shikimate pathway [62]. Chorismate is the common precursor in the

production of the aromatic compounds tryptophan, phenylalanine, and tyrosine, as well as

folate and menaquinones during the bacterial life cycle. The shikimate pathway is of particular

interest due to its absence from the human host metabolome and its vital role in bacterial

metabolism and virulence. Moreover, the enzyme riboflavin synthase catalyses the final step of

riboflavin (vitamin B2) biosynthesis with no participating cofactors. Riboflavin can be pro-

duced by most microorganisms compared to humans, who have to externally uptake them via

food supplements. Also, it plays an important role in the growth of different microbes, espe-

cially due to its photosynthesizing property that marks it as a non-invasive and safe therapeutic

strategy against bacterial infections [63]. Lastly, the phosphogluconate dehydratase catalyses

the dehydration of 6-phospho-D-gluconate to KDPG, the precursor of pyruvate and 3-phos-

pho-D-glycerate [64]. This enzyme is part of the Entner–Doudoroff pathway that catabolizes

glucose to pyruvate, similarly to glycolysis, but using a different set of enzymes [65].

We further assessed the druggability of our essential non-homologous proteins and investi-

gated the existence of inhibitors or compounds known to interact with the enzymes. For this,

we used the online DrugBank database that contains detailed information on various drugs

and drug targets [66]. In all cases, the listed drugs are of unknown pharmacological action,

and there is still no evidence indicating the enzymes’ association with the molecule’s mecha-

nism of action. For instance, the flavin mononucleotide and the cobalt hexamine ion were

listed as known inhibitors of yet unknown function against the chorismate synthase, while

glyphosate, shikimate-3-phosphate, and formic acid have been experimentally found to act

with EPSP synthase. Six non-homologous genes were marked as hypothetical or putative in

the KEGG [38] database and/or lacked enzyme-associated information. We searched for drug

leads by aligning the query sequences against the DrugBank’s database to find homologous

proteins. Two out of six were found to have a protein hit. More specifically, the protein

encoded by A1S_0589 was found to have high sequence identity with the phosphocarrier

protein HPr of Enterococcus faecalis (Bit-score: 48.5), while the translation product of A1S_
0706 resembles the sugar phosphatase YbiV of Escherichia coli (Bit-score: 225.3). According

to DrugBank, dexfosfoserine and aspartate beryllium trifluoride have been experimentally

determined to bind to these enzymes; however, their pharmacological action is still unknown.

The S4 Table lists all non-homologous essential genes reported for iACB23LX.

Overall, iACB23LX exhibits high agreement to all validation tests and can, therefore, be

used to systematically derive associations between genotypes and phenotypes.

A curated collection of A. baumannii metabolic models

In 2010, Kim et al. published the first GEM for the multidrug-resistant strain A. baumannii
AYE [30]. After that, multiple studies provided new data and genomic analyses were pub-

lished, paving new ways towards its update and refinement [26, 57, 67, 68]. Since then, a vari-

ety of GEMs was developed aiming at the empowering of drug development strategies and the

enforcement of metabolic engineering by formulating new and reliable hypotheses (Table 3).

However, the amount and format of information contained are inconsistent, with some being
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syntactically invalid or of older formats. Here, we systematically analyzed the quality of all

seven currently existing GEMs, reporting their strengths and weaknesses and debugging them

to finally build a curated, standardized, and updated collection. To do so, we developed a

workflow with curation steps applicable to all models aiming at the standardization and usabil-

ity of published GEMs by the community (Fig 6a). This closely follows the community-driven

workflow published by Carey et al. for the reconstruction of reusable and translatable models

[37]. The curation procedure includes a series of stages aiming at modifying data format, data

amount, and information quality. It is important to note that no contextual modifications

were conducted that could affect the model’s prediction capabilities (see Materials and

methods).

Five A. baumannii strains have been reconstructed throughout the years, with AYE and

ATCC 19606 having two reconstructions each. All models are publicly stored and can be

downloaded either from a database/repository [BioModels, Virtual Metabolic Human (VMH)

[69], BiGG [70], and GitHub] or directly from the publication’s additional material. The use of

Table 3. List of genome-scale metabolic models curated for A. baumannii, along with information relevant to the manual refinement. Default growth rates (i.e.,

model simulated as downloaded), the cellular compartments (C: cytosol, E: extracellular space, P: periplasm, and ER: endoplasmic reticulum), and the reactions and metab-

olites identifiers are listed in the table. MEMOTE scores before and after manual curation are given in the last column. Dark red highlights our reconstruction for the strain

ATCC 17978. After manual curation, our model developed following our workflow in Fig 1 has the highest quality score and comes along with a minimal medium defined.

Availability Used Identifiers Growth by default mmol/(gDW � h) Compartments MEMOTE BioModels ID

AbyMBEL891 [30] BioModels Customized 119.0 Cell 20% + 17% MODEL2406250010

AGORA [32] VMH VMH 134.0 C, E 42% + 37% MODEL2406250011

iLP844 [31] Suppl. Mat ModelSeed 15.88 C, E, P 37% + 21% MODEL2406250005

iCN718 [33] BiGG BiGG 1.31 C, E, P, ER 70% + 3% MODEL2406250007

iATCC19606 [34] Suppl. Mat KEGG 46.34 C, E 14% + 44% MODEL2406250008

iJS784 [36] GitHub ModelSeed 0.0 C, E, P 41% + 18% MODEL2406250006

iAB5075 [35] Suppl. Mat BiGG 1. 729 C, E, P 17% + 50% MODEL2406250009

iACB23LX BioModels BiGG 0.5503 C, E, P 89% MODEL2309120001

https://doi.org/10.1371/journal.ppat.1012528.t003

Fig 6. Collection of strain-specific A. baumannii metabolic models. (a) Debugging workflow to curate and evaluate already published models.

Following the community standards, the existing A. baumanniimodels were curated and transformed into re-usable, simulatable, and translatable

models. Quality controls and metabolic standardized tests were conducted using MEMOTE, while the validity of the file format and syntax were

examined with the SBML Validator [46]. ModelPolisher enhanced the models with missing metadata. (b) In silico-derived growth rates in various

media. The empirical and predicted growth rates of iACB23LX are listed in Table 2.

https://doi.org/10.1371/journal.ppat.1012528.g006
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distinct identifiers prevents the metabolic networks from being compared to each other. More

specifically, iLP844 and iJS784 carry ModelSEED [71] identifiers for reactions and metabolites,

while iCN718 and iAB5075 BiGG [70] identifiers. AbyMBEL891 uses distinct identifiers not

supported by any database, and iATCC19606 includes identifiers derived from KEGG [38].

Most of the models resulted in an unrealistic and inflated growth rate (reference: doubling

time of the fastest growing organism V. natriegens) in their defined medium, while iJS784

showed a zero growth even when all imports were enabled (Table 3). Hence, this model was

excluded from further analysis. For each of the remaining GEM, we defined the minimum

growth requirements that result in a non-zero and realistic objective value. For instance, the

AGORA model required at least 21 compounds (mostly metal ions), while oxygen was suffi-

cient for AbyMBEL891 to simulate a non-zero growth (S5 Table).

Since these models should successfully reflect the bacterium’s metabolic and growth capa-

bilities (S2 Fig), we examined the flux through their biomass reaction in various growth media

known to induce A. baumannii growth (Fig 6b). The majority resulted in a biomass flux of 0.0

mmol/(gDW � h) in the iMinMed, while the AGORA model could not simulate growth in LB

and SNM as well. Thus, we investigated and identified minimal medium supplementations

needed to enable cellular biomass production. As already mentioned, iJS784 was excluded

from further examination (Table 3), together with AbyMBEL891 that debilitated the analysis

due to its non-standardized identifiers and its missing genes and GPRs. When the iMinMed

for iATCC19606 and iAB5075 was supplemented with D-alanine and D-glucose 6-phospahte as

well as guanosine 5’-phosphate (GMP), respectively, their biomass reactions carried a positive

flux rate of 0.5279 mmol/(gDW � h) and 0.6477 mmol/(gDW � h). Supplementation of meso-

2,6-diaminoheptanedioate, menaquinone-8, niacinamide, heme, siroheme, and spermidine

into the medium of the AGORA model resulted in a positive growth rate of 1.9430 mmol/

(gDW � h). Similarly, when supplementing the SNM with glycyl-L-asparagine, the derived

growth rate was 1.5020 mmol/(gDW � h), while the iMinMed needed to be extended with 12

additional components (resulted growth rate: 1.2789 mmol/(gDW � h)). Lastly, like with

iACB23LX, the LB medium, together with FBA and MOMA, were applied to detect lethal

genes in all models (S6 and S7 Tables). Despite remarkable efforts, we could not derive a map-

ping scheme between the strain-specific gene identifiers of iLP844 and iATCC19606 to resolve

PROKKA or HMPREF identifiers. Similar issues arose with iAB5075. Thus, a strain-wise com-

parison of essential genes would be feasible only for the strain ATCC 17978. Subsequently, we

examined which genes were necessary for growth among the remaining models across three

different strains: AYE (iCN718), ATCC 17978 (iACB23LX), and AB0057 (AGORA). Totally,

392 genes were identified as essential, while 34 occurred in all three strains. For instance, when

the genes encoding for dephospho-CoA kinase, phosphopantetheinyl transferase, shikimate

kinase, or chorismate synthase were deleted from the three strains, no growth could be simu-

lated in the LB medium. As already mentioned, the gene encoding the chorismate synthase has

no human-like counterpart. This, together with the fact that it was detected to be vital for

growth across three distinct strains, increases its potential to be a drug candidate for future

therapies. Generally, most essential genes are members of the purine metabolism and encode

various transferases. Besides this, the pantothenate and CoA biosynthesis and the amino acid

metabolism were found to be a prominent target pathways for further drug development.

Discussion

The historical timeline of past pandemics shows the imposed threat of bacteria in causing

repetitive outbreaks with the highest death tolls [72], such as cholera and plague. By 2050, anti-

microbial-resistant pathogens are expected to kill 10 million people annually [73], while the
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antibiotics misuse accompanied by the ongoing Coronavirus Disease 2019 (COVID-19) crisis

exacerbated this global threat. It is noteworthy that elevated morbidity rates were ascribed to

bacterial co/secondary infections during previous viral disease outbreaks [74–76]. Hence,

developing effective antibiotic regimens is of urgent importance. Here, we present the most

recent and comprehensive ready-to-use blueprint GEM for the Gram-negative pathogen A.

baumannii. For this, we created a workflow that applies to any living organism and ensures the

reconstruction of high-quality models following the community standards. Our model,

iACB23LX, was able to simulate growth in SNM that mimics the human nasal niche, the

experimentally defined medium LB, and the model-derived iMinMed. With iMinMed we

denoted the minimal number of compounds needed to achieve non-zero growth. This

medium contains totally 14 compounds, including transition metals and energy sources. Tran-

sition metals have been shown to participate in important biological processes and are vital for

the survival of living organisms [50]. We confirmed the computationally predicted growth

rates by comparing them to our empirically determined growth kinetics data. With this, we

ensured that our model recapitulates growth phenotypes in media that reflect Acinetobacter-
associated environments.

Furthermore, we validated iACB23LX quantitatively and qualitatively using existing experi-

mental data and observed remarkable improvements compared to precursory models. More

specifically, our model predicted experimental Biolog growth phenotypes on various carbon

sources with an overall agreement of 86.3%. This agreement is higher than the prediction capa-

bility of iATCC19606 (84.3%) and iLP844 (84%), and comparable to that of iAB5075 (86.3%).

Similarly, iACB23LX exhibited 79.2% predictive accuracy on nitrogen sources tests, while this

increases to 87.5% after further refinement. Improving and re-defining the biomass objective

function (BOF) based on accurate strain-specific experimental data would be the next step to

diminish the number of inconsistent predictions and to further improve the network and its

predictive potential. During gene lethality analysis in LB medium, our model predicted 110

genes with MOMA to be essential, while 97 of them were also reported by FBA to impair the

growth. Generally, after enriching the nutritional input with all available compounds (rich

medium), less lethal genes resulted, meaning that A. baumannii undergoes metabolic alter-

ations when nutrients are lacking. Our in silico results, when compared to five different strain-

specific gene essentiality data [57, 68, 77–79], achieved accuracies between 88.60% and

88.92%. The predictive accuracies are remarkably higher than all GEMs built for A. baumannii
(e.g., 80.22% for iCN718 and 72% for iLP844), except iAB5075 which performed comparably.

This comprehensive analysis ensures that our model is well-validated and highly reliable, mak-

ing it a valuable tool for predicting gene essentiality in various biological and experimental

settings.

Subsequently, we examined more carefully our false negative predictions and searched for

putative drug targets that could be employed for future therapeutics. More specifically, we

focused on genes found to be essential for growth and encode proteins with no human coun-

terparts (S4 Table). Our study highlighted EPSP and chorismate synthases from the shikimate

pathway as prominent target candidates with no correlation to the human proteome. Several

knockout studies have highlighted the importance of enzymes from the shikimate metabolism

as potential targets against infections caused by threatening microorganisms, e.g.,Mycobacte-
rium tuberculosis [80], Plasmodium falciparum [81], and Yersinia enterocolitica [82]. Umland

et al. identified these two gene products as essential in an in vivo study using a clinical isolate

of A. baumannii (AB307-0294) and a rat abscess infection model [83]. This increases the confi-

dence of our results and indicates that genes found to be essential in silico should be consid-

ered as potential antimicrobial targets. Moreover, our predicted target DHFR has been
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extensively studied as a primary target for antibacterial and anticancer drug development,

given its pivotal role in nucleotide biosynthesis [84–88].

Trimethoprim (TMP), an antifolate antibacterial agent, selectively inhibits the bacterial

DHFR, a crucial enzyme catalyzing the tetrahydrofolic acid (THF) formation. Sulfamethoxazole

(SMX), a bacteriostatic sulfonamide antibiotic, competitively inhibits dihydropteroate synthase,

responsible for the formation of dihydrofolate (DHF). Together as cotrimoxazole or

TMP-SMX, both compounds effectively treat bacterial infections by collectively inhibiting folic

acid synthesis, essential for bacterial growth and replication [89, 90]. Further studies have

shown that antifolates effectively inhibit A. baumanniiDHFR, demonstrating potent antibacte-

rial activity against multidrug-resistant strains and highlighting their potential for further anti-

biotic development [91, 92]. Finally, targeting folate biosynthesis is a well-established strategy

against infectious diseases due to its absence in higher eukaryotic organisms. Altogether, selec-

tively targeting bacterial proteins vital for key cellular functions, such as cell wall biosynthesis,

translation, and deoxyribonucleic acid (DNA) replication, is a well-established strategy in anti-

biotic development. Similarly, numerous studies have suggested one of our further candidates,

riboflavin, as a potential antimicrobial agent for further investigation [63]. Additionally, the

Entner–Doudoroff pathway, in which our candidate targets phosphogluconate dehydratase and

KDPG aldolase act to produce pyruvate, is similar to glycolysis but involves different enzymes.

This pathway has been firstly discovered in P. saccharophila [65] and later in E. coli [93]. Mean-

while, it is vital for the survival of further pathogenic microorganisms, like Neisseria gonor-
rhoeae, K. pneumoniae, and P. aeruginosa [94–96]. However, these targets have not yet been

examined in Acinetobacter species and could be a source of antimicrobial therapeutic strategies.

Hence, these biosynthetic routes could be a valuable resource for targets to fight bacterial infec-

tious diseases. Finally, we investigated the druggability of our essential non-homologous genes.

We searched the DrugBank database to find compounds known to inhibit these genes and that

are already approved by the Food and Drug Administration (FDA). Our analysis resulted in

drugs that have been found to interact with the gene product of interest; however their pharma-

cological action is yet unknown. We further probed the hypothetical and putative non-homolo-

gous genes against the DrugBank’s sequence database to find homologous proteins and

determine their activity. Also in this case, the resulted drugs were listed with still undetermined

pharmacological action. These putative and yet unexplored targets with inhibitory potential are

of great interest in the context of developing new classes of antibiotics. Overall, our model

reached a MEMOTE score of 89%, which is the highest score reported for this organism.

Moreover, we improved and assessed all previously published models and created the first

curated strain-specific collection of metabolic networks for A. baumannii. We created a debug-

ging workflow consisting of four major steps to systematically analyze and curate constraint-

based models focusing on their standardization and the FAIR data principles. We applied this

workflow and curated a total of seven metabolic models for A. baumannii. In addition, most of

the models simulated growth rates by default that were unrealistic when compared to the fast-

est growing organism [45]. Therefore, we determined the minimal number of components

needed for these models to result in non-inflated biomass production rates. The defined mini-

mal media were mostly composed of metal ions (e.g., cobalt, iron, magnesium) that are essen-

tial for bacterial growth. For the model iJS784, the minimization process was infeasible; thus,

the model was not considered for further analysis. We also examined the growth ability of

these models in three media (SNM, LB, and iMinMed) and compared them to our model,

iACB23LX. When the models simulated a zero flux through the biomass reaction, we contin-

ued by detecting the minimal amount of metabolites supplemented in the medium that

resulted in a non-zero growth rate. These would enable the detection of gaps and assist in

future improvement of the models. It is important to note here that with this curation, we
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opted for a systematical assessment of the previously reconstructed models and the detection

of their assets and liabilities. Consequently, we did not undertake any contextual modification

that could alter the models’ predictive capabilities. Finally, we predicted lethal genes among

comparable and simulatable models of A. baumannii. Our analysis incorporated three strains

(AYE, AB0057, and ATCC 17978), and we examined the effect of genetic variation across

strains in the gene essentiality. We highlighted once again the shikimate pathway, as well as

the purine metabolism, the pantothenate, and CoA biosynthesis, and the amino acid metabo-

lism as candidate routes to consider for future new classes of antibacterial drugs with potential

effect across multiple A. baumannii strains. The curated models, together with our model,

would benefit the future prediction of candidate lethal genes by reducing the considerable

resources needed for classical whole-genome essentiality screenings. All in all, this collection

of simulation-ready models will forward the selection of a suitable metabolic network based

on individual research questions and help define the entire species and new hypothesis.

Our new metabolic reconstruction and the curated collection of further strain-specific

models will guide the formulation of ground-breaking and reliable model-driven hypotheses

about this pathogen and help examine the diversity in the metabolic behavior of different A.

baumannii species in response to genetic and environmental alterations. Additionally, they

can be utilized as knowledge bases to detect critical pathways related to responses against mul-

tiple antibiotic treatments. This will ultimately strengthen the development of advanced preci-

sion antimicrobial control strategies against multidrug-resistant (MDR) A. baumannii strains.

Taken together, our workflows and models can be employed to expand this collection fur-

ther with additional standardized strain-specific metabolic reconstructions to finally define the

core and pan metabolic capabilities of A. baumannii.

Supporting information

S1 Fig. Oxygen-producing and -consuming reactions found in iACB23LX together with

their anaerobic fluxes. All flux rates are written in orange and are given in mmol/(gDW � h).

The reaction abbreviations are as follows: O2tpp, O2 transport via diffusion between peri-

plasm and cytosol; CATpp, periplasmatic catalase; H2O2tex, hydrogen peroxide transport

via diffusion; CAT, catalase; O2tex, O2 transport via diffusion between periplasm and extra-

cellular space; EX_h2o2_e, hydrogen peroxide exchange and EX_o2_e, O2 exchange.

Figure generated with Escher [109].

(TIF)

S2 Fig. Experimentally-derived growth curves of A. baumannii. The growth curves for A.

baumannii strains AB5075, ATCC 73217978, ATCC 19606, and AYE were measured in LB and

SNM. Additionally, the in silico-defined minimal medium (iMinMed) was tested for all strains.

(TIF)

S3 Fig. Comparative analysis of essential genes predicted by iACB23LX versus those iden-

tified in Tn-seq libraries [57, 68, 77–79]. (a) Metabolic subsystems distribution of all essential

genes reported in various Tn-seq studies and predicted using iACB23LX (true negatives). (b)

Venn diagrams of essential genes from five examined Tn-seq datasets compared to essential

genes predicted by the model developed in this study.

(TIF)

S1 Table. In silico formulations of examined media compositions. Metabolites are described

by BiGG [70] identifiers.

(XLSX)
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S2 Table. In silico gene knockout results using FBA. The ratio column describes the growth

rate change before and after the respective knockout.

(XLSX)

S3 Table. In silico gene knockout results using MOMA. The ratio column describes the

growth rate change before and after the respective knockout.

(XLSX)

S4 Table. Metabolic genes found to be essential for growth in iACB23LX and encode pro-

teins with no human counterparts.

(XLSX)

S5 Table. Computationally-defined minimal growth media for previously published mod-

els. Due to inflated growth rates in most published A. baumannii GEMs, we established mini-

mal media supporting non-zero biomass flux.

(XLSX)

S6 Table. Gene lethality predictions using previously published A. baumannii models and

FBA.

(CSV)

S7 Table. Gene lethality predictions using previously published A. baumannii models and

MOMA. This offers a complementary perspective on the essential genes in the organism’s

metabolism.

(CSV)

S8 Table. Summary of essential genes predicted by iACB23LX and confirmed in Tn-seq

libraries [57, 68, 77–79]. Five independent Tn-seq datasets were utilized for the comparison.

Both FBA and MOMA were used with the LB medium defined to predict essential genes. The

table also includes the intersection of essential genes identified by both methods, along with

their associated orthologs in the case of different studied genomes. The computed accuracies

verified the high predictive performance of our model.

(XLSX)
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