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• Spatial interaction effect among resi- 
dents, UGS and HIA is considered. 

• UGS has improved while HIA has shrunk 
within Zhengzhou’s 3rd ring road. 

• Notable mismatch between access to 
cooling service and heat exposure risk 
existed. 

• Locations where residents are at extra 
heat exposure risk should be focused on. 
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a b s t r a c t 

Understanding the spatial interaction among residents, cooling service, and heat risk area in complex urban areas 
is conducive to developing targeted management. However, traditional urban thermal environment assessments 
typically relied on simple linear integration of associated indicators, often neglecting the spatial interaction effect. 
To explore the spatial interaction among the three elements, this study proposes an accessibility-based urban 
thermal environment assessment framework. Using Zhengzhou, a rapidly urbanizing city, as an example, remotely 
sensed images from three periods (2010, 2015 and 2020) were applied to extract urban green space (UGS) and 
hot island area (HIA). An improved two-step floating catchment area (2SFCA) method and bivariate local Moran’s 
I were employed to explore whether residents’ clustering locations are more likely to access cooling service or to 
be exposed to heat risk. The results demonstrate that the UGS in the city has been expanding, whereas the HIA 

shrank within the inner city in 2015 and then increased in 2020. Even though the urban thermal environment 
may have improved in the last decade, the spatial interaction among the residents, cooling service and heat risk 
area could be exacerbated. Spatial autocorrelation shows an increase in locations that are disadvantageous for 
resident congregation. Even when sufficient cooling services were provided, residents in these areas could still 
be exposed to high heat risk. The developed urban thermal environment framework provides a novel insight into 
the residents’ heat risk exposure and cooling service accessibility, and the findings could assist urban planners in 
targeting the improvement of extra heat exposure risk locations. 
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. Introduction 

Urbanization, one of the most direct reflections by economic growth
nd production development, has become a prominent issue worldwide
 Zhang et al., 2019 ). United Nations data shows that in 2018, over half
f the world’s population resided in cities, a figure projected to rise to
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8% by 2050 ( DESA, 2018 ). The rapid expansion of cities, however, has
iven rise to a range of socioecological problems ( Foley et al., 2005 ;
ewbold et al., 2015 ). One of the most pressing among these is urban
eat island (UHI) effect ( Rajagopal et al., 2023 ; Zhang et al., 2021 ), the
henomenon by which city centers tend to be warmer than their rural
urroundings ( Martilli et al., 2020 ). 

The increasing temperature could pose a profound threat to human
ealth ( Wong et al., 2017 ). Studies have consistently linked climate fluc-
uations to a variety of diseases, especially heat-related illnesses like
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ehydration, heat exhaustion, and heatstroke. Such illnesses dispropor-
ionately affect vulnerable populations, including children, the elderly,
nd those with pre-existing medical conditions ( Patz et al., 2005 ), lead-
ng to excess mortality ( Conti et al., 2005 ; Tan et al., 2010 ). Such analo-
ous increases in mortality due to heat exposure have been reported
lobally ( Lee et al., 2018 ; Scortichini et al., 2018 ). This issue could
e further exacerbated by the confluence of rapid urbanization and cli-
ate change, amplifying the threats faced by city residents ( Liu et al.,
022 ; Nimac et al., 2022 ; Park et al., 2021a ). Urban green space (UGS)
s efficient in response to UHI effect, compared to other interventions
uch as cooling pavement materials and changes to urban morphology
 Battista et al., 2023 ). Numerous studies and practices proved that UGS
an significantly adjust the urban microclimate during hot summer pe-
iods. For instance, Smith et al. (2023) suggested that an increase in
ree cover of 1% can create an average cooling effect of − 0.089 K, and
 0.01 increase in albedo can contribute to an average cooling effect
f − 0.187 K. Similarly, Xi et al. (2023) found that a tree-grass ratio of
0% could reduce air temperature by up to 6 °C. Quality and quantity
haracteristics of UGS, such as vegetation greenness, landscape charac-
eristics and proximity to green space also could substantially influence
he cooling effect ( Das et al., 2022 ; Liao et al., 2023 ). 

Given its pivotal role in UHI alleviation, ensuring that all residents
ave adequate access to cooling services offered by UGS has become a
rowing concern. This issue has garnered the attention of scholars, ur-
an planners, and policymakers, leading to the development of several
uantification methods and frameworks ( Yao et al., 2014 ). The two-
tep floating catchment area (2SFCA) method, commonly used to assess
he accessibility of urban services such as parks, schools, and hospi-
als, is mainly based on a spatial supply-demand balance perspective,
hich could effectively identify geographical locations with potential
isparities in resources. Hence, it has also been refined and employed
o assess the rationality of spatial distribution of UGS ( Xing et al., 2020 ;
hang et al., 2022 ). For example, Yang et al. (2023) used the 2SFCA
ethod to examine the street-level discrepancies in the supply and de-
and for UGS in Beijing, identifying key intervention areas where these

mbalances were particularly pronounced. 
Moreover, since the 2SFCA method can be combined with distance

unctions, including the Gaussian function and the Kernel function, re-
earchers also have applied the improved 2SFCA method to spatially
easure the residents’ access to cooling service ( Lan et al., 2022 ), which
ill attenuate with the proximity to UGS ( Das et al., 2022 ; Liao et al.,
023 ; Yao et al., 2022 ). Despite the development of the accessibility-
ased cooling service assessment framework, quantification methods for
esidents’ exposure to heat risk are mostly dependent on the simple sum-
ation or multiplication of associated indicators layers with varying
eights, including socioeconomic data and UHI intensity ( Chen et al.,
021 ; Tieskens et al., 2022 ; Shen et al., 2022 ; Li et al., 2022a ; Zhu and
uan, 2023 ). Residents, however, who cluster around, not within, the
ot areas might also suffer from extra heat risk ( Feng et al., 2019 ;
hou et al., 2015 ). The spatial interaction between residents and warmer
reas tends to be neglected in these heat risk evaluations involving lin-
ar integration. 

In addition, UGS could significantly reduce surrounding tempera-
ure, as enumerated above, making it indeed negatively related between
ooling services and heat exposure risk. Since the latter could also be
egarded as cooling demand in terms of equity perspective, there is a
ropensity highlighting that neither should be isolated when measur-
ng urban thermal environment in order to better target the mismatch
rea by the adaptive mitigation measure ( Li et al., 2022a ; Shen et al.,
022 ). Albeit this, numerous studies have tended to assess urban thermal
nvironment from a single perspective with a coarse resolution, focus-
ng either on cooling service supply or heat risk ( B. Chen et al., 2022 ;
i et al., 2023 ; Park et al., 2021b ). These studies with the coarse resolu-
ion failed to fully capture the comprehensive situation, and it therefore
ecomes challenging for urban planners to identify weak locations at
he city level. 
330
Consequently, based on the existing research gaps, the study aims
o fully capture the urban thermal environment from two negatively re-
ated aspects, that is cooling service supply and heat risk exposure. In
ddition, the spatial interaction among residents, cooling service, and
ot areas is incorporated, and by considering the spatial interaction ef-
ect, the primary objective of the study is to determine whether the spa-
ial clustering pattern of residents is more advantageous in obtaining
ooling services or more susceptible to heat risk exposure. 

To achieve these objectives, we first retrieved UGS and land surface
emperature (LST) using remotely sensed images. The hot island area
HIA) was further extracted from the retrieved LST by spatial autocor-
elation analysis. An improved 2SFCA method was proposed to measure
he accessibility-based cooling service supply and heat exposure risk.
astly, we used bivariate local Moran’s I to identify the locations where
esidents tend to garner more cooling service supply or suffer from extra
eat exposure. A case study was designed in Zhengzhou China, a densely
opulated metropolis that is rapidly urbanizing, to demonstrate the ef-
ectiveness of the accessibility-based urban thermal environment assess-
ent framework. Furthermore, to analyze the spatiotemporal trend of
GS, HIA, and residents’ access to them, data from three periods (2010,
015, 2020) was employed. 

. Materials and methods 

.1. Study area 

Zhengzhou is a national central city, situated in central China. It is
ocated at the demarcation point between the middle and lower reaches
f the Yellow River, spanning 7,567 km2 . The city has a warm temper-
te continental monsoon climate, characterized by distinct seasons and
n average annual rainfall of 632.8 mm. During high summer, the air
emperatures could exceed 40 °C, making it prone to urban heat-related
ssues. As the political, economic and cultural center of Henan Province,
hengzhou has grown dramatically in recent years, with an urbaniza-
ion rate of nearly 80% and a population of over 12 million by the end
f 2021. Rapid population growth and urban expansion, however, have
esulted in a series of socioecological challenges. As a response, authori-
ies formulated Zhengzhou Forest City Construction Master Plan (2011–
020), and the implementation has significantly increased in green areas
cross the city. Hence, Zhengzhou has been known as the green city. The
tudy focuses on the five highly urbanized districts (see Fig. 1 ), covering
n area of 1,080 km2 . In most Chinese cities, the ring roads represent
he urban-suburban gradient, where the urbanization level and devel-
pment intensity dwindle along the spatial gradient. According to the
orldpop data and nighttime light data in 2020, both the population

ensity and the nighttime light brightness decrease along the urban-
uburban gradient. In order to better understand the difference of ther-
al environment across different development levels, the study area was
ivided into four sub-groups based on the ring roads. 

.2. Methodology 

The main focus of this study is on the spatial interaction effect
f urban residents, UGS and HIA using accessibility-based assessment
ethod, with the aim of exploring whether the spatial aggregation pat-

ern of residents is more inclined to access cooling service or more ex-
osed to heat risk. 

Fig. 2 presents the methodological framework of the study, which is
omposed of three main components. The initial part involves the ex-
raction of UGS and LST from Landsat data from three periods (2010,
015, and 2020) which allows for an analysis of the spatiotemporal
ariation of the thermal environment. Getis-Ord Gi∗ spatial analysis is
sed to further distinguish the HIA based on the retrieved LST. The
econd component applies the improved 2SFCA method to spatially
uantify residents’ cooling service supply and heat exposure risk from
ccessibility-based perspective, aiming to capture the spatial interaction
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Fig. 1. Geographical location and boundary of study area. 
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ffect between residents and the two elements. This method integrates
he Gaussian function, normalized difference vegetation index (NDVI)
nd normal difference built-up index (NDBI) to indicate the distance
ecay effect, quality of cooling service and HIA, respectively. The popu-
ation data, used in the method as the demand point, is from WorldPop
331
hile the supply point is determined by the extracted UGS and HIA in
he last part. The objective of the third part is to identify and map the
ormal and abnormal spatial clustering pattern between cooling ser-
ice supply and heat exposure risk by bivariate local Moran’s I . The
rimary components exhibited in the Fig. 2 will be expatiated upon in
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Fig. 2. Methodological framework of the study. 
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he following sections. Considering the data consistency and accuracy
cceptability, the study sets grids with a resolution of 500 m as the basic
ssessment unit. 

.3. Data source and prepossessing 

The population distribution data for the three periods was obtained
rom WorldPop with a resolution of 100 m, and according to the data
332
tatistics, the population within the study area was 4.03 million, 4.54
illion and 5.07 million in 2010, 2015 and 2020, respectively. To main-

ain accuracy while minimizing complexity, we converted the resolution
o 500 m, used each population grid as the basic assessment unit for the
ccessibility assessment. Zhengzhou experiences its comparatively hot
eriod from April to October, characterized by a mean monthly air tem-
erature exceeding 20 °C. As our study aims to analyze the most severe
eat exposure risk, we downloaded imageries for these months during
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𝐴

he years 2010, 2015, and 2020, from the Landsat collection on the
oogle Earth Engine (GEE) platform. We then conducted a quality check

or these remote sensing imageries using the quality assessment band
nd the mask of study area, and extracted imageries with a cloud cover
ithin the study area of less than 5%. These remaining imageries were

orrected using the FLAASH atmospheric correction module in ENVI
oftware to minimize atmospheric noise. We also applied striping cor-
ection to the Landsat 7 ETM + data. Finally, the ring roads for grouping
he study area along the urban-rural gradient were retrieved from Open
treet Map data. 

.4. Extraction of HIA and UGS 

.4.1. LST retrieval 

The LST was retrieved using Landsat data by Radiative Transfer
quation (RTE) method. In comparison to other methods such as Single-
hannel method and Split-window method, the RTE approach has the
dvantage of accurately handling atmospheric path and atmospheric ab-
orption effects, thereby enhancing its overall accuracy ( Yu et al., 2014 ).
fter retrieving LST of all imageries, we composited the maximum val-
es of the LST time series in order to reduce the uncertainty from a
ingle imagery and reflect the most severe thermal situation across the
hole year. The LST retrieval using RTE method can be expressed by
q. (1) and Eq. (2) ( Sekertekin, 2019 ): 

(
𝑇s 
)
=

𝐿𝜆 − 𝐿↑ − 𝜏( 1 − 𝜀) 𝐿↓

𝜏𝜀 
(1) 

here 𝐿𝜆 is the at-sensor thermal infrared radiance; 𝜀 is the land sur-
ace emissivity; 𝐵( 𝑇s ) is the emitted radiance for a black body at tem-
erature Ts ; 𝐿↑ is the upwelling radiance emitted by the surface and
eflected by the atmosphere; 𝐿↓ is the downwelling radiance received
y the sensor; 𝜏 is atmospheric transmission. The atmospheric parame-
ers 𝜏, 𝐿↑ and 𝐿↓ could be obtained from an online atmospheric correc-
ion tool, Atmospheric Correction Parameter Calculator, developed by
ASA ( https://atmcorr.gsfc.nasa.gov/ ). The calculator can output the
tmospheric transmission, upwelling and downwelling radiance based
n location and time information. 

Further, Ts can be finally calculated from B ( Ts ) by plank’s law: 

s =
𝐾2 

ln 
(
𝐾1 ∕𝐵

(
𝑇s 
)
+ 1

) (2) 

here Ts is the land surface temperature in Kelvin; K1 and K2 are con-
tants. 

.4.2. UGS and HIA identification 

The urban-rural dichotomy method has been widely used in UHI ef-
ect identification. This approach, however, has the weakness of subjec-
ively defining rural and urban demarcations, making it challenging to
e utilized in highly urbanized areas that lack a distinct rural context.
urthermore, Martilli et al. (2020) suggested that, instead of focusing on
he temperature gap between rural and urban areas, which is a relative
alue, UHI effect mitigation studies should prioritize the specific heat
ndicators. For these reasons, we applied Getis-Ord Gi∗ spatial analysis,
n objective UHI identification method proposed by Zhang et al. (2015) ,
o identify the HIA. We processed all retrieved LST data at a 100 m
esolution for the spatial clustering analysis. Only the high-high (H-H)
patial clustering pattern was remained and further analyzed. Then, the
ontiguous H-H clustering grids were merged into a single unit and ex-
racted as HIA. The Getis-Ord Gi∗ spatial analysis can be expressed by
q. (3) . 

 =

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑊𝑖𝑗 𝑥𝑖 𝑥𝑗 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑥𝑖 𝑥𝑗 

(3)
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here G is the value of the local Getis-Ord Gi∗ , and the grids pass the
 -test ( z score is above 2.58) under p -value < 0.01 were extracted; 𝑥𝑖 and

𝑗 are the LST on the i th and j th grid respectively ( i ≠j ); wij is the spatial
eight matrix; n is the sum of grids. 

Non-park green space is an essential source of cooling service, often
eglected in previous studies on cooling service ( M. Chen et al., 2022 ;
an et al., 2018 ; Yao et al., 2022 ). Nevertheless, these spaces play a
rucial role in promoting spatial equity ( Ke et al., 2023 ), a primary focus
n this study. Thus, we concentrated on the cooling service provided by
eneral UGS rather than green parks. NDVI is an efficacious indicator for
egetations extraction, and we designated areas with NDVI over 0.4 as
GS ( Lan et al., 2022 ). NDVI can be calculated from Landsat imageries
y Eq. (4) : 

DVI = ( NIR − RED ) ∕( NIR + RED ) (4) 

here NIR is the band 4 and band 5 for Landsat 7 and Landsat 8 images
espectively; RED is the band 3 and band 4 for Landsat 7 and Landsat 8
mages, respectively. 

For the validation of the UGS identified in the three periods, three
roups of 200 random samples of vegetation and non-vegetation were
elected in Google Earth high resolution historical imageries. The kappa
oefficients, which represent classification accuracy, of vegetation and
on-vegetation were 0.82, 0.79 and 0.83 for 2010, 2015 and 2020, re-
pectively, which are all above 0.6, demonstrating an acceptable level
f goodness-of-fit ( Chmura Kraemer et al., 2002 ). 

.5. Quantification of cooling service supply and heat exposure risk 

2SFCA, first introduced by Radke and Mu (2000) and later formal-
zed by Luo and Wang (2003) , originally assesses accessibility to health-
are facility. Currently, it has wider applications in assessment of ratio-
ality of spatial resource distribution, such as flooding risk pressure and
ooling service ( Lan et al., 2022 ; Yang et al., 2023 ), etc. 

The traditional 2SFCA method consists of two steps. In the first step,
or a given search radius, the supply-to-demand ratio is calculated for
ach supply point. Specifically, for the i th supply point, the ratio of the
upply point to the demand points within the search radius is calculated.
his yields a supply-to-demand ratio for each supply point. 

The second step sums these ratios to estimate the level of accessibility
or each demand point. Specifically, for the j th demand point, the sum
f all supply-to-demand ratios calculated in the first step, over all supply
oints within the search radius, is used as an estimate of the accessibility
f the demand point. By aggregating the supply-to-demand ratios, the
SFCA method can provide a comprehensive assessment of accessibility
hat considers the spatial distribution of both demand and supply points.
n this study, UGS and HIA are considered as the supply point while
opulation data are treated as the demand point. 

The residents’ access to cooling service is quantified based on three
actors, including ratio of area to population and quality of UGS and
istance. The most important element is the ratio of area of UGS to pop-
lation within the search radius because the cooling capacity of UGS
s limited at a given area, and a larger population indicates a higher
nthropogenic heat emission, equal to a higher load for the cooling ser-
ice. Moreover, studies have demonstrated that the cooling effect of UGS
s strongly correlated with NDVI than other characteristics ( Das et al.,
022 ; Xiao et al., 2023 ), making NDVI the most applicable to represent
he cooling quality of a UGS. In addition, researches have found that
he cooling effect will decrease with increasing distance from UGS, and
he Gaussian function was therefore employed to generalize the decay
ffect as the distance increases ( Yan et al., 2018 ). The study defined that
he maximum decay distance for cooling effect is 1 km. The calculation
or residents’ access to cooling service is presented as Eq. (5) : 

CS 
𝑖 

=
𝑛 ∑

𝑗=1 

𝑆UGS 
𝑗 

⋅
(
1 + NDVI 𝑗 

)
⋅ 𝑓

(
𝑑ij 

)
∑𝑚 

𝑘 =1 𝐷𝑘 ⋅ 𝑓
(
𝑑kj 

) (5) 

https://atmcorr.gsfc.nasa.gov/


X. Dong, X. Li, Y. Ye et al. Geography and Sustainability 5 (2024) 329–342

w

i  

v  

t  

o  

w  

𝐴  

i

𝑓

 

t  

a  

p  

i  

(  

d  

t  

d  

e  

c  

o

N

w  

r

𝐴

w  

t  

t  

s  

d  

e
 

p  

r  

t  

h

2

 

d  

r  

t
 

p  

T  

T

𝐼

w  

a  

j  

b  

𝑆  

b
 

h  

m  

l  

c  

w  

l  

s  

a  

c  

r  

a  

r  

2  

n  

z  

e  

c

3

3

3

 

T  

g  

o  

2  

P  

1  

t  

i  

a  

c  

h  

t  

U  

6  

p  

U  

t

3

 

t  

u  

a  

t  

n  

3  

s  

p  

i  

r  

H  

U  

r  

i  

2  

w  

w  

n  

s  

i  

n

here 𝐴CS 
𝑖 

is the residents’ access to cooling service on the i th grid; 𝑆UGS 
𝑗 

s the area of the j th UGS; NDVI 𝑗 is the mean normalized difference
egetation index of the j th UGS representing the cooling quality; 𝑓 (𝑑𝑖𝑗 ) is
he Gaussian function, as shown by Eq. (6) , reflecting the decay effect

f cooling service along with the distance; 
𝑚 ∑
𝑘 

𝐷𝑘 is the total population

ithin the 1 km search radius of the j th UGS; the higher the value of
CS 
𝑖 

, the more the surrounding cooling services available to the residents
n the i th location. 

(
𝑑𝑖𝑗 

)
=

{ 

e−1∕2×(𝑑𝑖𝑗 ∕𝑑0 ) 
2 
−e−1∕2 

1−e−1∕2 , 𝑑𝑖𝑗 ≤ 𝑑0 
0 , 𝑑𝑖𝑗 > 𝑑0 

(6) 

Similar to the quantification of cooling service, we also quantified
he accessibility-based heat exposure risk from three aspects, including
rea of HIA, quality and population within given distance. For the pur-
ose of maintaining a same interval as NDVI, we applied NDBI, which
s positively correlated with the LST, to indicate the quality of HIA
 Dutta and Das, 2020 ; Halder et al., 2021 ). Heat exposure risk also could
ecay along with the proximity to heat sources, which is represented by
he Gaussian function ( Feng et al., 2019 ; Zhou et al., 2015 ), and in or-
er to equally measure the spatial interaction effect among the three
lements, we assigned the decay distance of HIA is consistent with the
ooling service. The NDBI is calculated by Eq. (7) , and the quantification
f accessibility-based heat exposure risk is shown in Eq. (8) : 

DBI = ( SWIR − NIR ) ∕( SWIR + NIR ) (7) 

here SWIR is band 5 and band 6 for Landsat 7 and Landsat 8 images,
espectively. NIR is same with that in Eq. (4) . 

HIA 
𝑖 

=
𝑛 ∑

𝑗=1 

[ 

𝑆HIA 
𝑗 

⋅
(
1 + NDBI 𝑗 

)
⋅

𝑚 ∑
𝑘 =1 

𝐷𝑘 𝑓
(
𝑑kj 

)] 1∕2 

⋅ 𝑓
(
𝑑ij 

)
(8) 

here 𝐴HIA 
𝑖 

is the accessibility-based residents’ heat exposure risk of on
he i th grid; 𝑆HIA 

𝑗 
is the area of the j th HIA; NDBI 𝑗 is the mean NDBI of

he j th HIA representing the quality; 𝑓 (𝑑𝑖𝑗 ) is the Gaussian function, as
hown by Eq. (6) , reflecting the decay effect of heat risk along with the
istance; the higher the value of 𝐴HIA 

𝑖 
, the higher the surrounding heat

xposure risk to the residents in the i th location. 
Note that unlike the quantification of residents’ cooling service sup-

ly, the first step of heat exposure risk is calculated as a multiplication
ather than a division, which means that for the j th HIA, the higher
he population within search radius, the more hazardous the HIA. The
igher the 𝐴HIA 

𝑖 
, the higher the residents’ heat exposure risk. 

.6. Spatial autocorrelation analysis 

Local spatial autocorrelation analysis is an effectively measure to
etect similarities and correlations between spatial units and their sur-
oundings, distinguish spatial clustering and isolation, and examine spa-
ial unevenness ( Wang et al., 2021 ). 

We used bivariate local Moran’s I to investigate the spatial clustering
attern between residents’ cooling service supply and heat exposure risk.
he basic unit for the spatial autocorrelation analysis is 500 m2 grids.
he expression of bivariate local Moran’s I is shown as Eq. (9) : 

𝑘𝑙 =
𝑥𝑖 
𝑘 
− 𝑥 𝑘 

𝑆2 
𝑘 

×
𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑤𝑖𝑗 ×
𝑥
𝑗 

𝑙 
− 𝑥 𝑙 

𝑆2 
𝑙 

(9) 

here Ikl is the value of bivariate local Moran’s I ; 𝑥𝑖 
𝑘 

is the cooling service
ccessibility on the i th grid; 𝑥𝑗 

𝑙 
is the accessibility-based heat risk on the

 th grid ( i ≠j ); 𝑥 𝑘 and 𝑥 𝑙 are the mean of cooling service and accessibility-
ased heat risk, respectively; 𝑤𝑖𝑗 is the spatial weight matrix; 𝑆2 

𝑘 
and

2 
𝑙 

are variance of residents’ access to cooling service and accessibility-
ased heat exposure risk, respectively; n is the sum of grids. 

The bivariate local spatial autocorrelation analysis results can be ex-
ibited by the bivariate local indicators of spatial association (BiLISA)
334
ap, which comprises four clustering categories: high-high (H-H), high-
ow (H-L), low-high (L-H), and low-low (L-L). Generally, adequate UGS
ould significantly lower the surrounding temperature. Hence, residents
ho benefit from sufficient cooling service supply tend to suffer from

ess heat exposure risk, and vice versa. Therefore, the H-L, L-H and not
ignificant are normal spatial patterns, whereas the H-H and L -L are the
bnormal clustering patterns. The former implies a disadvantageous lo-
ation and suggests that residents could experience higher heat exposure
isk despite the sufficient cooling service supply while the later indicates
n advantageous location where residents would face less heat exposure
isk albeit relatively lower cooling service supply. Referring to ( Li et al.,
022b ), we used the z -score of Moran’s I to further distinguish the ab-
ormal clustering patterns: moderately extra heat risk exposure (1.96 <
 -score < 2.58); strongly extra heat risk exposure ( z -score > 2.58); mod-
rately cooling service supply (− 2.58 < z -score < − 1.96); strongly extra
ooling service supply ( z -score < − 2.58). 

. Results 

.1. Identification of UGS and HIA 

.1.1. Spatiotemporal variation in UGS 

The spatiotemporal variations in UGS are depicted in Fig. 3 (a–c).
here is a significant spatial unevenness of UGS along the urban-rural
radient. On the whole, UGS coverage increased from the inside to the
utside, and the trend remained unchanged for the three periods. In
010, UGS was deficient and sparsely distributed within the core areas.
articularly inside the 2nd and 3rd ring roads, the coverage was merely
1.4% and 18.0%, respectively. UGS, however, has experienced a dras-
ic increase in the last decade, especially within the 3rd ring road. For
nstance, the coverage nearly tripled to 29.1% inside the 2nd ring road
nd almost doubled to 34.6% between the 2nd to 3rd ring road in 2020,
ompared to the coverage in the first period. Albeit the most striking en-
ancement, the UGS was still insufficient within 3rd ring road compared
o the peripheral areas. Beyond the 4th ring road, the improvement in
GS was comparatively modest, only rising by 6.4%, from 61.9% to
8.3% over the past decade. This was a less pronounced trend com-
ared to that within the 3rd ring road. Generally, the improvement of
GS was more significant within the core areas, and the gap between

he inner and the marginal areas has shrunk. 

.1.2. Spatiotemporal variation in HIA 

The spatiotemporal trend of HIA is shown in Fig. 3 (d–f). Similar
o UGS, HIA also exhibits a significant spatial heterogeneity along the
rban-rural gradient. HIA was mostly concentrated within the inner city,
nd its coverage decreased from the inside to the outside, showing a
rend inverse to that of UGS. Generally, the temporal changes were sig-
ificant. The highest HIA coverage was found in 2010, accounting for
5.3%, 28.5%, 9.4%, and 4.5% in the four spatial gradient zonings, re-
pectively. In contrast, HIA was more sporadically scattered in 2015, es-
ecially in the central areas where the coverage was 26.6% and 15.6%
nside the 2nd ring road and between the 2nd ring road to the 3rd ring
oad, respectively, significantly lower than in the other two periods.
IA changes over the three periods were not as consistent as those of
GS in some respects. For instance, the trend of HIA within the 3rd ring

oad was not monotonic. It first decreased in 2015 and then increased
n 2020. In addition, the spatial pattern differed from each period. In
010, HIA was mostly concentrated in the south-central part of the city
ith some distributed in the north ( Fig. 3 (d)). However, by 2020, HIA
as most concentrated inside the 2nd ring road, and there was almost
o HIA observed beyond the 4th ring road ( Fig. 3 (f)). However, from
patial gradient perspective, the pronounced changes of HIA occurred
nside the 3rd ring road, while the variations in peripheral areas were
ot significant, which was similar to those of UGS. 
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Fig. 3. Spatiotemporal variation in UGS and HIA. (a)–(c) spatiotemporal variation in UGS in 2010, 2015 and 2020, respectively; (d)–(f) spatiotemporal variation in 
HIA in 2010, 2015 and 2020, respectively; (g) and (h) variation in ratio of UGS and HIA to total area, respectively. The colored lines in (a)–(f) are consistent with 
these in Fig. 2 . 
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.2. Accessibility-based thermal environment assessment 

.2.1. Spatiotemporal variation in cooling service accessibility 

Fig. 4 (a–c) illustrates the spatial pattern of accessibility-based cool-
ng service for the three periods. Each grid in Fig. 4 corresponds to a spe-
ific statistic, further demonstrated in Fig. 5 through log-transforming.
he wider sections of these violin plots represent a higher probability.
oreover, the descriptive statistics of these grids is shown in Table 1 .
335
he range of statistics unit of the table, including zone Ⅰ , Ⅱ , Ⅲ and Ⅳ , is
ndicated in Fig. 4 . We applied coefficient of variation (C.V) to indicate
he evenness of the cooling service accessibility. The higher the C.V, the
ore unequal the available cooling service to residents. 

The cooling service accessibility shows a similar spatial pattern over
he three periods, gradually increasing from the inner out. The spots
ith lower cooling service accessibility were mostly located in the in-
er city. Nearly all locations had the lowest cooling service accessibil-
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Fig. 4. Residents’ access to cooling service (a)–(c) and heat exposure risk (d)–(f); the colored lines are consistent with these in Fig. 2 . 

336
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Fig. 5. Violin plots of residents’ cooling service accessibility; the white points and the boxes within each violin plot show the median values and the 95% confidence 
intervals; the width of each violin plot at any given point represents the density of data points at that value. 

Table 1 

Descriptive statistics of cooling service accessibility. 

Year Zone Max Min Median Average C.V 

2010 

Zone Ⅰ 67.5 1.7 10.8 12.4 0.63 
Zone Ⅱ 966.0 5.2 39.2 103.4 1.08 
Zone Ⅲ 2,958.5 7.9 314.0 513.9 0.85 
Zone Ⅳ 4,608.4 43.0 1,158.9 1,185.4 0.43 

2015 

Zone Ⅰ 175.8 4.6 14.2 19.3 0.80 
Zone Ⅱ 723.2 6.9 72.0 110.5 0.96 
Zone Ⅲ 6,521.5 9.3 367.5 555.2 0.94 
Zone Ⅳ 7,245.7 37.5 1,097.1 1,337.4 0.65 

2020 

Zone Ⅰ 213.2 4.4 20.4 27.2 0.65 
Zone Ⅱ 655.1 11.5 73.5 109.1 0.90 
Zone Ⅲ 4,618.1 20.3 368.1 540.8 0.82 
Zone Ⅳ 8,381.8 52.0 958.5 1,245.2 0.69 

Abbreviation: coefficient of variation (C.V). 
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ty level. In contrast, the highest cooling service accessibility level in
he three periods were all observed in zone Ⅳ , which were 4,608.4,
,245.7, and 8,381.8 in 2010, 2015 and 2020, respectively. Within zone
 , the maximum available cooling service rose from 67.5 to 213.2 in the
ast decade, and the highest probability density of the accessibility also
ubstantially increased ( Fig. 5 ), demonstrating that the residents’ access
o cooling service has significantly improved in the urban central ar-
as. Albeit the pronounced improvement, the gap along the urban-rural
radient was still significant. For example, average accessibility levels
ithin zone Ⅰ were 12.4, 19.3 and 27.2, respectively. Comparatively, the
verage accessibility levels within zone Ⅳ were 1,185.4, 1,337.4 and
,245.2, respectively. Notably, the median of cooling service in zone Ⅳ
n turn declined over the period. In addition, the probability distribu-
ion shows multiple peaks in the zone, implying that residents may have
ignificantly unequal access to cooling services. 

The C.V decreased in zone Ⅰ , Ⅱ and Ⅲ , demonstrating that the in-
quality of cooling service accessibility gradually tapered off, whereas
337
he changes of C.V exhibited an opposite trend in zone Ⅳ , increasing
rom 0.43 in 2010 to 0.69 in 2020. 

.2.2. Spatiotemporal variation in accessibility-based heat exposure risk 

Fig. 4 (d–f) illustrate the spatial patterns of residents’ heat exposure
isk across the three periods, with corresponding descriptive statistics
hown in Table 2 . A similar spatial pattern in the three periods was
bserved. The heat exposure risk gradually fell from the inner to the
uter areas. The heat exposure risk was most severe in zone Ⅰ , and almost
ll locations in the zone displayed the highest heat exposure risk level.
ll residents within the 2nd ring road were exposed to heat risk even in
015 when the HIA coverage and average accessibility level (1,139.1)
ere most moderate. Nevertheless, beyond the 4th ring road, more than
alf the areas (51.7%) no longer suffered from heat exposure risk in
020. Although the HIA coverage inside the 2nd ring road was less in
020 than in 2010, the average heat exposure risk levels were higher
n 2020 than in 2010, reaching 2,013.5. The peak of probability density
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Table 2 

Descriptive statistics of heat exposure risk. 

Year Zone Max Min Median Average C.V Proportion of 
non-exposure area (%) 

2010 

Zone Ⅰ 3,587.7 353.8 1,703.9 1,769.3 0.42 0 
Zone Ⅱ 3,378.2 37.3 1,044.7 1,221.4 0.62 1.5 
Zone Ⅲ 2,328.1 20.0 211.7 366.1 0.89 23.8 
Zone Ⅳ 1,104.6 10.8 52.0 95.8 1.10 41.1 

2015 

Zone Ⅰ 2,267.9 184.5 1,123.2 1,139.1 0.47 0 
Zone Ⅱ 2,344.4 38.7 344.7 474.8 0.79 0 
Zone Ⅲ 1,102.3 16.2 119.0 215.4 0.93 11.0 
Zone Ⅳ 969.7 8.3 44.4 104.0 1.17 35.6 

2020 

Zone Ⅰ 4,346.3 189.5 2,185.4 2,013.5 0.47 0 
Zone Ⅱ 3,150.1 39.5 485.5 683.1 0.82 1.2 
Zone Ⅲ 1,664.7 20.3 152.3 235.6 0.88 17.1 
Zone Ⅳ 730.7 10.0 55.6 111.5 0.98 51.7 

Fig. 6. Violin plots of residents’ heat exposure risk; the white points and the boxes within each violin plot show the median values and the 95% confidence intervals; 
the width of each violin plot at any given point represents the density of data points at that value. 
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as also significantly higher in 2020, suggesting a growing number of
esidents in zone Ⅰ were suffering from the higher heat exposure risk
as shown in Fig. 6 (a)). Also, the maximum heat exposure risk in zone Ⅰ
as found in 2020, which was 4,346.3 compared to 3,587.7 and 2,267.9

n 2010 and in 2015, respectively. However, despite the improvement
n cooling service accessibility, the residents’ heat exposure risk in the
nner city actually worsened. 

The C.V of heat exposure risk was highest in zone Ⅳ . In fact, more
esidents in the periphery were no longer exposed to heat risk, suggest-
ng that the inequality of heat exposure risk in the marginal areas was
ignificantly greater than in the core areas. 

.3. Identification of abnormal clustering pattern 

The BiLISA maps for the three periods are shown in Fig. 7 (a–c) and
he statistics of the abnormal and normal clustering patterns are exhib-
ted by Fig. 7 (d) and (e), respectively. The spatial clustering patterns
xhibit a significant spatial unevenness along with the urban-rural gra-
ient. Nearly all locations within the 3rd ring road were L-H clustering,
338
.e. lower cooling service accessibility coupling with higher heat expo-
ure risk. This indicated residents in the zone were still suffering from
igh heat exposure risk though the UGS has sharply increased from 2010
o 2020. Although the L-H clustering still extensively existed, the grids
ith no clustering pattern namely not significant, which could be con-

idered as medium level for cooling service accessibility and heat ex-
osure risk, were also prevailing in zone Ⅲ (between the 3rd ring road
o the 4th ring road), suggesting that the thermal comfort may have
omparatively improved. 

It should be noted that a significant spatial heterogeneity was ob-
erved between the 3rd and 4th ring roads where the four clustering cat-
gories and insignificant areas were all present in a certain proportion
n the three periods. From the inner out, the normal clustering patterns
radually transformed from L-H to not significant to H-L, and the spatial
rend was consistent over the three periods. Beyond the 4th ring road
here the heat exposure risk was lower under plentiful cooling service

upply, most spatial clustering patterns were H-L and insignificant 
The abnormal clustering patterns, namely H-H and L-L clustering

ere mainly aggregated around the 4th ring road, especially the H-H
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Fig. 7. BiLISA map for the three periods. (a) 2010; (b) 2015; (c) 2020; (d) and (e) sum of the normal and abnormal clustering, respectively. 
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lustering in the three periods. The total number of the H-H clustering
as 357, 377 and 452 in 2010, 2015 and 2020, respectively, among
hich moderate extra heat exposure risk spots were minor, while the

trong extra heat exposure risk spots were preponderant, but both ex-
ibited a monotonical increase trend. Almost all L-L clustering was pri-
arily gathered within the zone Ⅲ , and slumped in 2015 and 2020 com-
ared to the first period. However, differing from the H-H clustering,
ost of the L-L clustering was strong extra cooling service accessibility,
hile the moderate extra cooling service accessibility was minor. 

Overall, the abnormal clustering patterns were fewer, and most of
he grids were H-L, L-H, not significant clustering, which demonstrates
he general recognition that residents with higher cooling service acces-
ibility tends to face lower heat exposure risk. Albeit the improvement
f UGS and decrease in HIA in 2020 compared to in 2010, the spatial
lustering revealed that the residents-perceived thermal environment
ay have deteriorated when considering the spatial interaction effect

mong residents, UGS and HIA. In other words, more and more resi-
ents were aggregated in locations where they could suffer from extra
eat exposure while fewer and fewer residents were located where they
ould access extra cooling service. 

. Discussion 

.1. Interaction between UGS and HIA 

Generally, rapid urbanization process is known to encroach upon
reen space, leading to its fragmentation and shrinkage. This re-
339
ults in deterioration of urban thermal environment. This interaction
mong urbanization, UGS and UHI effect is evident in many develop-
ng cities worldwide. For example, Chinese cities of Fuzhou and Dalian
 Yang et al., 2017 ; Yu et al., 2018 ); Indian city of Raiganj ( Basu and
as, 2023 ); Brazilian city of Paço do Lumiar ( Silva et al., 2018 ). How-
ver, in the case of the city of Zhengzhou, the trend was found to be the
pposite due to the implementation of forest city project. This project
as led to a significant improvement of UGS, especially within the in-
er city. A corresponding decrease in the HIA was observed in 2020 as
ompared to 2010. 

As a rapidly developing city, Zhengzhou is a paradigm that has at-
racted many scholars. Consistent findings were reported by researchers
uch as Yang et al. (2022) , where they indicated an increase in the city’s
GS and mitigation of the UHI effect. The effort of forest project also
as recognized in their study. 

In fact, the improvement in UGS, especially for the area, is expected
o significantly enhance the urban thermal environment ( Li et al., 2020 ;
an et al., 2021 ). Nonetheless, the cooling effect also could be influ-
nced by many landscape characteristics besides the area ( Xiao et al.,
023 ). As suggested by Xiao et al. (2018) , the green space may have
o cooling effect and even has higher temperature if its area is small.
anoli et al. (2019) also proved that besides UGS, the magnitude of
HI effect could be largely explained by population and climate. The

wo considerations on some occasions are even more preponderant than
GS. Apparently, there would be marginal difference in climate in city-

evel study and the newly added UGS may have worse cooling pattern
nd smaller area due to the fixed development level in the city core.
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ccordingly, the increase of HIA in 2020 within the 3rd ring road could
e mostly ascribed to the population agglomeration and UGS cooling
andscape pattern. Despite this, the thermal environment was found to
ave generally improved in 2020 compared to 2010. 

.2. Accessibility-based cooling service and heat exposure risk 

In this study, the spatial pattern of cooling service accessibil-
ty, decreasing from the inside to the outside, is consistent with
an et al. (2022) , but contrary to M. Chen et al. (2022) who indicated
hat most of residents in suburbs may not be able to access sufficient
ooling service while the residents in the city center could better access
ooling service. The opposite finding could be ascribed to the different
uantification scope of UGS. M. Chen et al. (2022) only accounted the
ooling service by urban parks, neglecting the role of non-park UGS,
hich is important in cooling service equity ( Ke et al., 2023 ). 

Notably, there was a dramatic increase of cooling service accessibil-
ty in the northwest and southeast periphery in 2020. It is likely due
o the implementation of several large greenery projects, such as Diehu
orest Park, Chaohu Wetland, and Yellow River Cultural Park in recent
ears. However, the overall accessibility level in the periphery (beyond
he 4th ring road) even decreased, and the inequity further enlarged. In
ontrast, the increase in UGS within the 3rd road not only improved the
verall accessibility level but also narrowed the inequity ( Fig. 5 ). 

The inequity festered by large greening projects outside the 4th ring
oad is also corroborated by heat exposure risk. In this zone, growing
reas were inaccessible to HIA over the time, while the overall heat ex-
osure risk level also increased. This is mainly because the large green
arks were implemented in the outskirt, and thus the HIA surround-
ng these parks has largely shrunk, saliently reducing the possibility of
ontiguous residents exposed to heat risk. However, a few residents not
lose to these greening parks may suffer from deteriorated thermal en-
ironment. 

Our results on accessibility-based heat exposure risk differ from
i et al. (2023) who identified that residents in Shenzhen downtown
re less heat risk than in the outskirt. The difference is because they
ppeared to believe that more people aggregated around the heat risk
reas would instead mitigate the severity of the heat risk and used di-
ision, similar to a supply/demand ratio like UGS accessibility, to deal
ith the relationship between population and heat risk areas. 

.3. Abnormal clustering pattern and spatial interaction effect 

The H-H clustering, meaning that residents still are exposed to higher
eat risk with affluent available cooling service, is a disadvantageous
lustering pattern that should be focused on. In Chinese cities, the
anufacturing industries tend to gather around suburban areas due to

ost and pollution concerns ( Wang et al., 2020 ; Wu et al., 2018 ). In
hengzhou, a large number of secondary industries are clustered around
he 4th ring road, which is the demarcation of suburban areas and the
uter suburbs. The 4th ring road is also a primary road with inten-
ive traffic flow. This locational feature will inevitably lead to extra an-
hropogenic pollution emissions, including heat emissions, causing sur-
ounding residents being exposed to extra heat risk despite the availabil-
ty of adequate cooling services ( Koralegedara et al., 2016 ; Murray and
eggie, 2016 ). 

Over the past decade, Zhengzhou attracted a large number of inhab-
tants because of the rapid economic development of the city. Accord-
ngly, there has been a massive outward expansion of residential areas
n order to encounter increasingly thronged population, with some res-
dential quarters even being built around industrial areas ( Wang et al.,
022 ). Therefore, despite the decrease in HIA with the improvement of
GS, an increasing number of people are residing around disadvanta-
eous quarters where they have to face extra heat exposure risk if spatial

nteraction effect is considered. e

340
Furthermore, the urban sprawl has infringed upon natural green
paces and water bodies. Due to different landscape characteristics with
rtificial green infrastructure, these natural green spaces may purvey
reater cooling effect than small and decentralized UGS created by the
orest project ( Gunawardena et al., 2017 ; Zhou et al., 2023 ), resulting in
he advantageous locations where residents could receive extra cooling
ffect largely shrunk. 

.4. Accessibility-based assessment: improvement and practicality 

This study proposes a novel urban thermal environment assessment
ramework in terms of accessibility. It considers population as the de-
and point, and UGS and HIA as the supply points. Unlike tradi-

ional studies that rely on the linear integration of associated indicators
 Chen et al., 2021 ; Tieskens et al., 2022 ; Shen et al., 2022 ; Li et al.,
022a ; Zhu and Yuan, 2023 ), this study employs an improved 2SFCA
ethod. This method allows for the incorporation of the spatial interac-

ion effects among residents, UGS, and HIA. By considering the effect,
e are able to measure the residents-perceived thermal environment on

he basis of spatiotemporal changes of UGS and HIA. Furthermore, as the
hermal environment is quantified in two opposite aspects, namely cool-
ng service accessibility and heat exposure risk, this study could assess
he rationality of residents’ aggregation pattern and identify the loca-
ions that are disadvantageous and advantageous for resident congre-
ation by spatial autocorrelation analysis, except for the accessibility-
ased cooling service and heat exposure risk assessment. However, these
bnormal clustering patterns are seldom involved in traditional thermal
omfort evaluation studies. 

In addition, this study mainly depends on Landsat imageries and
orldPop data, making it a simple and replicable method, and it could

hus be easily applied in other cities all over the world. 

.5. Planning and policy implications 

The spatial autocorrelation analysis reveals a growing number of res-
dents are aggregating in disadvantageous locations, warranting special
ttention. The first priority is to minimize the spatial interaction be-
ween residents and HIA. On one hand, we propose establishing a clear
ivision of industrial areas and preventing the sprawl of industrial zones
nto residential communities. Additionally, the upgrading of industries,
ith a priority to reduce secondary industries with high emissions near
ensely highly populated areas, should also be accelerated. On other
and, urban planning should also aim to limit the new residential de-
elopment around industrial zones and primary traffic roads to reduce
esidents’ aggregation as well as exposure to extra heat risk. The use
f cleaner fuels, changing transportation mode from car to bus and the
evelopment of electric vehicles also could be promoted to decrease
rban anthropogenic heat emissions around the primary traffic roads
 Ribeiro et al., 2021 ). 

In the highly developed city center, the land price is much more exor-
itant than in the outskirt, making increasingly enhancing UGS coverage
nadvisable. We suggest paying close attention to optimizing the quality
NDVI) and landscape patterns of UGS in response to population growth.
owever, the impact of landscape pattern on cooling effect remains con-

roversial. For example, Zhou et al. (2022) corroborated that the UGS
ith an irregular shape can produce a more substantial cooling effect
hile an opposite result was found by Liao et al. (2023) . Thus, focusing
n the improvement in quality of UGS is presumably a more univocal
anagement. Moreover, the small and evenly-decentralized green in-

rastructure with minimal cooling threshold could be easily woven into
he residential communities so that it could better improve the residents’
ooling service accessibility than large greening project under given ar-
as ( Yan et al., 2021 ). 
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.6. Limitations and future directions 

First, the WorldPop data, applied as the demand point in the accessi-
ility quantification, is a quiescent population spatial distribution data
ith a temporal resolution of one year. However, considering the high
obility of urban dwellers, their access to cooling service and faced
eat exposure risk may thereby vary. Subsequent studies should con-
ider adopting dynamic population data, potentially utilizing resources
uch as Baidu heatmaps or social media check-in data. Second, the Gaus-
ian function was used to describe the decay effect of cooling service and
eat risk over distance. To provide a more accurate account of this decay
ffect, it is recommended that future research adopts advanced math-
matical functions, or employs regression analyses, to more robustly
uantify the cooling effect and heat risk prior to the accessibility-based
valuation. Moreover, it is proposed to optimize the quality index by in-
orporating more indicators associated with the cooling effect and heat
isk to reduce the uncertainty from single indicators. 

. Conclusions 

Compared to traditional assessments, which usually depended on lin-
ar integration of associated indicators, this study used the improved
SFCA method to consider the spatial interaction effect among residents,
GS, and HIA. By incorporating the effect, we were able to examine the

ationality of residents’ aggregation pattern in Zhengzhou and identify
he locations that are disadvantageous and advantageous for resident
ongregation. The results revealed an improvement of UGS and decrease
f HIA in 2020 compared to 2010. However, when considering the spa-
ial interaction effect, residents’ heat exposure risk actually increased
espite the reduction in HIA. Especially in the periphery, the inequality
f cooling service accessibility and heat exposure risk further increased.
patial clustering pattern suggested that an increasing number of res-
dents were gathering in disadvantageous locations where they could
uffer from extra heat risk exposure, while fewer and fewer residents
ere located in advantageous areas available to extra cooling service. 

Based on the findings, we propose optimizing the landscape pattern
f UGS within inner city, and establishing a clear division of industrial
reas in order to prevent the sprawl of industrial land into residential
ones. Urban planning should also aim to limit residential development
ear industrial zones and primary traffic roads to minimize residents’
xposure to extra heat risk. The developed method provides a viable
ccessibility-based assessment for the urban thermal environment with
 finer resolution, which could serve as a guide for the improvement of
he urban thermal environment, especially assisting urban planners in
argeting these disadvantageous locations where residents could suffer
rom extra heat exposure risk. 
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