
MRS BULLETIN • VOLUME 47 • AUgUst 2022 • mrs.org/bulletin              765

 

Machine‑learning correction 
to density‑functional crystal 
structure optimization
Robert Hussein,*  Jonathan Schmidt, Tomás Barros, 
Miguel A.L. Marques, and Silvana Botti

Density functional theory is routinely applied to predict crystal structures. The 
most common exchange-correlation functionals used to this end are the Perdew–
Burke–Ernzerhof (PBE) approximation and its variant PBEsol. We investigate the 
performance of these functionals for the prediction of lattice parameters and show 
how to enhance their accuracy using machine learning. Our data set is constituted 
by experimental crystal structures of the Inorganic Crystal Structure Database 
matched with PBE-optimized structures stored in the materials project database. 
We complement these data with PBEsol calculations. We demonstrate that the 
accuracy and precision of PBE/PBEsol volume predictions can be noticeably 
improved a posteriori by employing simple, explainable machine learning models. 
These models can improve PBE unit cell volumes to match the accuracy of PBEsol 
calculations, and reduce the error of the latter with respect to experiment by 
35 percent. Further, the error of PBE lattice constants is reduced by a factor of 
3–5. A further benefit of our approach is the implicit correction of finite temperature 
effects without performing phonon calculations.

Introduction
Computational high-throughput studies 
form the basis for the discovery of new 
materials in modern materials science. 
In solid-state physics, these studies are 
mostly performed within Kohn–Sham den-
sity functional theory (DFT).1–3 Although 
DFT formally provides an exact descrip-
tion of the many-body Schrödinger equa-
tion, it relies in practice on approximations 
for the exchange-correlation energy. In 
solid-state physics, one commonly uti-
lizes the Perdew–Burke-Ernzerhof’s (PBE) 
functional.4 Although PBE and its variants 

are successful in predicting structural and 
electronic properties of solids, they may 
yield, nevertheless, non-negligible devia-
tions from experiments. Specifically, PBE 
underestimates atomic bond lengths, thus, 
overestimating lattice  constants5–7 and vol-
umes. Variants of PBE such as the PBE for 
solids (PBEsol)8 were designed to improve 
upon this problem.9 However, they still do 
not achieve the desired accuracy in com-
parison with experiments.

The correctness of the lattice constants 
and the corresponding unit cell volumes 
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Impact statement 
Knowledge about the crystal structure of solids is essen-
tial for describing their elastic and electronic properties. 
In particular, their accurate prediction is essential to 
predict the electronic properties of not-yet-synthesized 
materials. Lattice parameters are most commonly 
calculated by density functional theory using the 
Perdew–Burke–Ernzerhof (PBE) approximation and 
its variant PBEsol as exchange-correlation functional. 
They are successful in describing materials properties 
but do, however, not always achieve the desired accu-
racy in comparison with experiments. We propose a 
computationally efficient scheme based on interpret-
able machine learning to optimize crystal structures. 
We demonstrate that the accuracy of PBE- and PBEsol-
structures can be, therewith, enhanced noticeably. In 
particular, the PBE unit cells, available in materials 
databases, can be improved to the level of the more 
accurate PBEsol calculations and the error of the lat-
ter with respect to the experiment can be reduced by 
35 percent. An additional advantage of our scheme 
is the implicit inclusion of finite temperature correc-
tions, which makes expensive phonon calculations 
unnecessary.
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is indispensable for a reliable prediction of bulk electronic 
 properties10–12 and when considering experimental realizations 
of composite materials. For instance, the lattice mismatch 
between growth substrates and films can be a source of major 
problems in experiments. Another reason to focus on lattice 
parameters is the fact that this is the material property for 
which it is possible to find the largest amount of experimen-
tal data, collected in the Inorganic Crystal Structure Database 
(ICSD).13

In this article, we demonstrate that machine learning meth-
ods can improve the lattice volume predictions based on PBE/
PBEsol without increasing the computational effort. Machine 
learning enjoyed over the past few years great success in a 
wide variety of  applications14 ranging from property predic-
tions of  bandgaps15–17 and elastic  moduli18 to the stability 
analysis of  crystals19,20 and molecular force-field estima-
tions.21 Recently, the prediction of lattice constants and vol-
umes generated much interest.22–30 The majority of these stud-
ies are, however, limited to a particular crystal structure. In 
contrast to previous studies that are mainly based on direct cal-
culations, we are building our approach on first-principles cal-
culations, aiming at improving their accuracy in comparison 
with corresponding experiments. Our approach is not limited 
to a specific crystal structure or a subset of chemical elements. 
We will focus here on applying explainable machine learning 
 methods31,32 to correct errors of PBE/PBEsol calculations of 
crystal structures of newly predicted materials. Specifically, 
we will employ model agnostic supervised local explanations 
(MAPLEs)33 in combination with a random forest  model34 to 
combine the high accuracy of tree models for small data sets 
and the interpretability of MAPLE models.

Before diving into detail, we can observe in Figure 1 
the primitive unit cell volumes Vpred , predicted from DFT 

calculations using PBE and PBEsol functionals, plotted against 
the experimental unit cell volumes Vexp . We remark that the 
primitive cell volume is the simplest quantity that can be 
directly compared, independently of the specific details of the 
crystal structure and chemical composition. Their correlation 
gives a first impression about the accuracy (systematic error) 
and precision (variability) of the theoretically estimated unit 
cell volumes. Calculations with the PBE functional (magenta 
circles) significantly overestimate the measured volumes by 
roughly 11%, whereas PBEsol (green squares) provide a much 
better approximation of them.

On a closer look, one sees that Vexp constitutes a soft lower 
bound on the PBE volumes in the sense that about 90% of 
the predicted volumes lay above it. This is a consequence of 
the tendency of PBE to underbind. This soft bound entails a 
skewness on the predicted PBE volume distribution, which 
we revisit later. The inset of Figure 1 shows a close-up view 
of primitive unit cell volumes of about 0.32 nm3 to better dis-
tinguish the individual data points. We additionally include in 
the inset the volumes obtained by correcting PBE calculations 
with machine learning (gray tripods) to anticipate visually the 
strong error reduction. We will discuss thoroughly the machine 
learning corrections in the next sections.

The remaining article is organized as follows. In “Pre-
dictive models,” we present the employed machine learning 
models. Details on the experimental and theoretical data sets 
and their matching are discussed in “Data set.” We analyze 
in “Volume predictions” our predictive models and compare 
their performance with the one of underlying DFT calcu-
lations. In “Lattice constants,” we discuss the correction 
of the lattice constants. The last section is devoted to our 
conclusions.

Predictive models
Tree-ensemble-based models such as random  forests34 and 
gradient  boosting35,36 are known to be suitable to the descrip-
tion of materials properties for relatively small data sets,37,38 
but they are not restricted to them.39 A drawback of employ-
ing multiple-decision trees is however their general lack of 
interpretability.32 Appropriate combination with local linear 
models,40–42 as in model agnostic supervised local explana-
tions (MAPLEs),33 overcomes this deficiency by providing 
local and example-based explanations. The former addresses 
causal relations between specific input features of an indi-
vidual prediction (such as lattice constants) and its outcome 
by identifying their importance.33,43,44 The latter asks instead 
for the contribution of specific training points.45–47 Note that 
local and example-based explanations are helpful to under-
stand the specific predictions of the model, but do not explain 
its global behavior. For this, we have to resort to simpler mod-
els, such as the analytic formulas used in symbolic regression 
methods.48,49

In this work, we employ the MAPLE implementation of 
Plumb et al.33 as well as tree models and utility functions from 
Reference 50. We evaluate the machine learning models by 

0.3 0.32

0.34

0.34

0.42

0
0

1.2

1.2

2.4

3.6
PBE
PBEsol

Vexp

≈1.11Vexp

≈0.99Vexp

Vexp (nm3)

V p
re
d
(n
m

3 )

Figure 1.  Correlation between measured primitive unit cell vol-
umes Vexp and predicted ones Vpred . Ideal predictions match the 
black dashed line. The blue dash-dotted line depicts PBE’s linear 
regression. The inset additionally considers the machine learning 
prediction pred = PBE+MAPLE marked by gray tripods.
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tenfold Monte Carlo cross-validation. We choose this approach 
instead of using an independent test set, because our full 
data set exhibits a large variance in structures/elements while 
being relatively small in size. In each independent run of the 
cross-validation scheme, the full data set is randomly split 
at a ratio 1:9 without replacement into a test and a training 
set. The hyper parameter optimization has been performed 
on a separate random splitting. Here, the number of trees 
forming the tree ensemble turns out to be the most important 
hyper parameter. The minimal number of samples controlling 
the splitting is of minor importance. The theoretical crystal 
structures calculated using DFT at the PBE and PBEsol level 
serve as input parameters for the training. Specifically, we 
consider seven structural input parameters, which are namely 
the primitive unit cell volume, the lattice constants, and the 
angles between the lattice vectors. We complement them with 
44 composition-specific features provided by Matminer.51

By training the MAPLE models with the data sets discussed 
in “Data set,” we find that the primitive cell volume prediction 
is, indeed, to a large extent based on structural quantities (see 
Table SI in the Online Resource). Here, we use the average of 
the root-node impurity over the decision tree ensemble as an 
estimator to quantify the relevance of the features. The binary 
splittings of an individual decision tree are such constructed 
that they minimize its impurity. In this sense, the first splitting 
and, therewith, the respective root-node feature has a major 
impact on the decision tree structure and the model prediction. 
In particular, the splitting of the training set with respect to the 
root feature is in more than 50% of the cases directly related 
to the crystal structure of the compounds, through (e.g., the 
volume V, the lattice constants a, b, c, and the corresponding 
angles α, β, γ). Concerning the compositional features, the 
periodic-table-based features and averaged thermal properties 
of the elements play by far the largest role exceeding also two 
of the lattice angles in importance. In order to better assess 
the contribution of structure- and composition-specific fea-
tures to the volume optimization, we study in Section I of the 
Online Resource how the MAPLE models perform when only 
trained on one of these subsets. Our models are available at 
Reference 52.

In Section II of the Online Resource, we address different 
machine learning methods. In particular, we consider the sym-
bolic regression method  Operon49 as well as the Crystal Graph 
Convolutional Neural  Network53 discussed among others in 
the benchmark by Dunn et al.54

Data set
For our analysis and model training, we consider roughly 2000 
PBE-structures from the Materials Project (MP).55 The cor-
responding PBEsol calculations are available from Reference 
56. The experimental crystal structures are extracted from the 
ICSD.13 A mapping of ICSD- and MP-identifiers is provided 
in Table SII of the Online Resource.

We remark that experiments are conducted at finite tem-
perature (2–373 K) and pressure ( ≤ 1 bar) whereas DFT 

calculations describe equilibrium structures at zero tempera-
ture and pressure. In order to obtain PBE(sol) crystal struc-
tures in the same thermodynamic conditions than experimental 
samples, they should be corrected by expensive phonon calcu-
lations for thermal expansions and zero-point effects arising 
from finite lattice fluctuations.57–60 For small molecules, the 
ambient pressure has additionally to be taken into  account61 
but may be neglected for solids.57 By training the predictive 
models on finite temperature volumes Vexp as target variables 
one has the advantage to implicitly include finite temperature 
corrections. In principle, the ambient temperature of the meas-
urements could be included as an input parameter for machine 
learning. However, it turns out that the resulting models are 
mostly independent of temperature, because the large majority 
of the experiments are performed at roughly the same tempera-
ture (about 293 K, median and mode). The mean value of the 
temperature distribution is indeed 271 K.

Volume predictions
In this section, we compare volume predictions obtained with 
various machine learning models. First, we give an overview 
of these predictions by discussing the central characteristics 
of their volume residuals. Then, we study their cross-valida-
tion error and finally, address the convergence of the model 
training.

We show in Figure 2a violin  plots62 of the volume residu-
als Vexp − Vpred  . One sees clearly that the median of the 
DFT-PBE calculations (red line in magenta violin) of about 
Q2 ≈ −7.4Å

3 is, indeed, corrected by simple linear regres-
sion (blue violin). Also its interquartile range IQR ≡ Q3 − Q1 
of about 14 Å 3 is roughly reduced by 2 Å 3 with the drawback 
that already well predicted volumes worsen. The skewness 
remains. Employing MAPLE cures the skewness and reduces 
the spreading further up to a third of the initial value (see 
gray violin). Intriguingly, its volume forecast is comparable 
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Figure 2.  Violin plot (a) and probability densities (b) of the volume 
residuals Vexp − Vpred for the indicated test sets. The suffix "+lr" 
indicates linear regression and Qk is the kth quartile.
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to the simple linear regression prediction starting from PBEsol 
volumes. Beyond the median and the interquartile range, the 
violin shapes in Figure 2a estimate the entire probability den-
sities of the volume residuals. For the purpose of assessing 
their estimation quality, we compare the DFT-PBE estimate 
with the corresponding normalized histogram depicted in Fig-
ure 2b. The estimate captures well the curve progression but 
is less pronounced around its mode located at −1.3 Å 3 . Addi-
tionally, we show in panel (b) the normalized histogram of the 
MAPLE prediction that corrects PBE volumes. As prefigured, 
it is considerably narrower and can be well approximated by 
a slightly biased Lorentzian (gray solid line) with a linewidth 
of roughly its interquartile range.

For a more quantitative comparison of the different 
models, we focus in the following on the cross-valida-
tion error. The cross-validation error of a specific model 
is obtained by evaluating for each test set the error of its 
prediction with respect to the measured value, and tak-
ing the arithmetic mean of these errors. Additionally, 

we determine the standard deviation of the individual 
errors. As error metrics we chose the mean absolute error 
MAE =

∑

n

k=1
| yk,exp − yk | /n and the mean absolute per-

centage error MAPE = 100

∑

n

k=1
| yk,exp − yk | / | nyk,exp | , 

where yk,exp ( yk  ) indicates the measured (predicted) prop-
erty of the k-th sample. Because all experimental volumes 
are finite, MAPE is well defined. In Figure 3, we show the 
cross-validation errors of the predicted primitive unit-cell vol-
umes for different models. Their numerical mean values and 
standard deviations are listed in Table I. As expected, DFT-
PBE itself leads overall to the worst cross-validation errors 
whereas PBE corrected with linear regression (+lr) improves 
the MAE leaving the MAPE unchanged. The MAPLE model 
based on PBE volumes reduces the PBE-MAE by about 50% 
and is slightly better than DFT-PBEsol volumes. However, 
PBEsol corrected with linear regression is once again better. 
Most importantly, the MAPLE model based on PBEsol shows 
the best MAE improving by roughly 35% upon DFT calcula-
tions alone with this functional. The IQRs in Table I show 
the same tendency as the MAE and MAPE, supporting the 
conclusion regarding the possible improvements achievable 
with the MAPLE models. Additionally, we report therein the 
MAPLE models using the measured temperature as an input 
feature. They perform, however, very similarly to the models 
that do not include such feature, as expected in view of the 
fact that most experiments were conducted at about the same 
temperature.

To assess the learning progress of the MAPLE models, 
we study in Figure 4 the dependence of their MAE on the 
training-set size ntrain . The MAE’s are again obtained by ten-
fold cross-validation. As expected, they decrease polynomi-
ally with the training-set size ntrain.63,64 In particular, we find 
with MAE ∝ n

−0.28

train
 for PBE+MAPLE and MAE ∝ n

−0.24

train
 for 

PBEsol+MAPLE a similar learning behavior for both predic-
tive models. Including the total data available in the ICSD, 
the cross-validation error could be potentially reduced by 
50 percent. The relatively fast decay of the cross-validation 
errors with respect to the training-set size makes these cor-
rection procedures already applicable for small training sets. 
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Figure 3.  Cross-validation errors for different models with stand-
ard deviations as error bars.

Table I.  Cross-validation errors of volume predictions and standard deviations for different DFT functionals and correction models.

a Indicates the corresponding models including the temperature of the measurement as an additional feature.

Model MAE (Å3) MAPE (%) IQR (Å3)

Mean Std Mean Std Mean Std

PBE 15.6 2.1 5.5 0.3 14.0 0.7
PBE+lr 10.2 1.2 5.5 0.4 11.9 1.1
PBEsol 7.1 0.5 3.1 0.3 6.9 0.7
PBE+MAPLE 6.8 1.2 2.7 0.4 5.1 0.8
PBE+MAPLE

a 6.6 0.9 2.6 0.3 4.9 0.4
PBEsol+lr 5.4 0.6 2.6 0.2 5.5 0.5
PBEsol+MAPLE

a 4.8 0.7 2.1 0.3 4.2 0.6
PBEsol+MAPLE 4.6 0.7 2.1 0.2 4.2 0.5



MRS BULLETIN • VOLUME 47 • AUgUst 2022 • mrs.org/bulletin              769

MAchinE‑LEArning cOrrEctiOn tO dEnsity‑fUnctiOnAL crystAL strUctUrE OptiMizAtiOn

We would expect it to generalize to other materials properties 
such as bulk moduli or formation energies for which very few 
experimental data are available and DFT results are a worse 
starting point.

Lattice constants
Thus far, we have discussed volume corrections. To a certain 
extent, we can, therewith, also improve the lattice constants as 
we show in this section. To this end, we recall how the volume 
is calculated. The unit cell volume V (a, b, c) is obtained from 
the triple product of the three lattice vectors a , b , c and can 
be written as product V = abc | polsin (α, β, γ) | of a factor 
abc only depending on their lengths and a dimensionless fac-
tor | polsin (α, β, γ) | only depending on their interior angles.* 
The latter is for cubic crystal systems well predicted by PBE 
and PBEsol with a MAPE on the order of 0.02% whereas 
lower symmetric systems do not exceed a MAPE of 0.6 per-
cent. Exploiting the simplification that all lattice constants 
coincide for cubic crystals, we can extract the lattice constant 
correction by the prescription

for DFT calculations using PBE(sol). Therewith, the MAPE 
of the lattice vectors is roughly reduced by a factor of 5 (see 
Figure 5). If we use the same prescription as an approximate 
way to correct the lattice constants of non-cubic systems, we 
observe a consistent reduction of the MAPE of a factor of 3–5. 

(1)a → a
∗
≡ a

3

√

VPBE(sol)+MAPLE

VPBE(sol)

In particular, we observe that when the three lattice parameters 
display different errors, the largest errors are those that get 
reduced more effectively, suppressing overall the MAPE of 
PBE lattice constants to less than 1 percent.

Conclusions
We have investigated machine-learning-based unit cell volume 
corrections for DFT calculations. Model agnostic supervised 
local explanations improve both PBE’s and PBEsol’s volume 
prediction of the primitive unit cell. By applying MAPLE 
on PBE, one achieves overall improvements on the level of 
PBEsol calculations, hence, trivially reducing PBE’s volume 
deviations from experiments by about 50 percent. This is of 
great convenience because all large solid-state databases rely 
on PBE calculations. We provide our implementation at Refer-
ence 52. Furthermore, PBEsol+MAPLE outperforms PBEsol 
with a roughly 1.5 times smaller mean absolute error. The 
most relevant features contributing to the MAPLE models are, 
indeed, given by the lattice parameters calculated with DFT, 
whereas composition-specific features are significantly less 
important. A further benefit of our approach is the implicit 
correction of finite temperature effects rendering time-con-
suming phonon calculations unnecessary. Because the con-
sidered experiments are mostly performed at the same (room) 
temperature, our trained MAPLE models are, however, not 
expected to generalize well to other temperatures. We plan 
to address this point in future by training on data sets with a 
larger temperature variation.
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