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Abstract: Background/Objectives: Survival prospects following SARS-CoV-2 infection may ex-
tend beyond the acute phase, influenced by various factors including age, health conditions, and
infection severity; however, this topic has not been studied in detail. Therefore, within this study,
the mortality risk post-acute COVID-19 in the CRIT-COV-U cohort was investigated. Methods:
Survival data from 651 patients that survived an acute phase of COVID-19 were retrieved and
the association between urinary peptides and future death was assessed. Data spanning until
December 2023 were collected from six countries, comparing mortality trends with age- and
sex-matched COVID-19-negative controls. A death prediction classifier was developed and
validated using pre-existing urinary peptidomic datasets. Results: Notably, 13.98% of post-
COVID-19 patients succumbed during the follow-up, with mortality rates significantly higher
than COVID-19-negative controls, particularly evident in younger individuals (<65 years). These
data for the first time demonstrate that SARS-CoV-2 infection highly significantly increases the
risk of mortality not only during the acute phase of the disease but also beyond for a period
of about one year. In our study, we were further able to identify 201 urinary peptides linked
to mortality. These peptides are fragments of albumin, alpha-2-HS-glycoprotein, apolipopro-
tein A-I, beta-2-microglobulin, CD99 antigen, various collagens, fibrinogen alpha, polymeric
immunoglobulin receptor, sodium/potassium-transporting ATPase, and uromodulin and were
integrated these into a predictive classifier (DP201). Higher DP201 scores, alongside age and
BMI, significantly predicted death. Conclusions: The peptide-based classifier demonstrated
significant predictive value for mortality in post-acute COVID-19 patients, highlighting the
utility of urinary peptides in prognosticating post-acute COVID-19 mortality, offering insights
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for targeted interventions. By utilizing these defined biomarkers in the clinic, risk stratification,
monitoring, and personalized interventions can be significantly improved. Our data also suggest
that mortality should be considered as one possible symptom or a consequence of post-acute
sequelae of SARS-CoV-2 infection, a fact that is currently overlooked.

Keywords: long COVID; PASC; biomarker; mortality; peptides; urine

1. Introduction

The life expectancy of SARS-CoV-2 survivors remains a subject of critical inquiry,
affected by various factors such as age, pre-existing health conditions, and the severity
of the initial infection [1]. While much attention has been directed toward understanding
the acute phase of COVID-19, there is a growing recognition of the long-term health
implications for those who have recovered. It has become increasingly evident that the
impact of SARS-CoV-2 extends beyond the immediate symptoms experienced during
the acute phase of the disease. The COVID-19 pandemic has markedly elevated global
mortality [2], with a significant proportion of COVID-19 survivors facing lingering
health challenges and increased morbidity in the months and years following recovery
from acute infection.

Among those at risk for severe outcomes, older individuals with pre-existing health
conditions such as cardiovascular disease, diabetes, and respiratory disorders are par-
ticularly vulnerable [3,4]. Studies have shown that male sex and ethnicity—specifically
Black or South Asian backgrounds—as well as the severity of the initial infection correlate
with higher rates of COVID-19-related death [5]. These factors contribute to a complex
interplay of risks that affect the long-term prognosis of COVID-19 survivors. Some patients
experience persisting or new developing disease burdens after the acute SARS-CoV-2
infection that cannot be attributed to any alternative diagnosis. This phenomenon is also
documented after other acute respiratory infections but to a lesser extent [6]. Common
symptoms include fatigue, shortness of breath, cognitive dysfunction, and reduced ability
to perform daily activities of life, and new symptoms are also being observed [7]. The over-
lapping conditions and the variable onset of symptoms were recently reviewed in detail [8].
In October 2021, the World Health Organisation established the first clinical case definition
for long COVID (LC), which was recently redefined [9–12]. Given the estimate that 10%
of persons with SARS-CoV-2 acquire LC, there are at least 65 million individuals around
the world affected [8]. Vaccination has been shown to reduce the incidence of LC [13,14].
Because of the absence of any biomarkers for LC, the diagnosis is almost entirely reliant on
reported symptoms and questionnaires [15]. Investigations in large cohorts show a large
variety of new or persisting symptoms in up to 45% of COVID-19 survivors [16]; however,
correcting for individual pre-existing symptoms and comparing with symptom dynamics
in COVID-19-negative populations during the pandemic leads to a much lower prevalence
of LC [17]. The average duration of LC symptom clusters is estimated to be 9.0 months for
hospitalized individuals and 4.0 months for non-hospitalized individuals, with 15.1% who
continue to experience symptoms at 12 months [12]. Women are clearly more affected [12].

The pathophysiology of LC remains insufficiently understood. Persistent SARS-CoV-2
in the body has been considered a potential factor [18,19]. Patients with persisting infection
showed more than 50% higher odds of self-reporting LC [20]. The COVID-19 duration was
also associated with cognitive deficits after recovery [21]. Additionally, reduced serotonin
levels may contribute to the neurocognitive symptoms associated with viral persistence
in LC [22]. Persisting immunological dysfunction in LC patients might also play an
important role [23]. Further analyses revealed significant heterogeneity and large biological
diversity in LC with clusters and subsets with distinct signatures, reaching from persistent
inflammation to non-inflammatory LC [23,24]. Multidimensional immune phenotyping
identified discriminating biological features associated with LC [25]. Despite the growing
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body of research on acute COVID-19 and LC, the long-term mortality among COVID-19
survivors is poorly understood, with specific underlying mechanisms remaining elusive.
It is hypothesized that the prolonged effects and ongoing physiological stress and organ
damage caused by persistent COVID-19 symptoms could contribute to an increased risk of
mortality, especially among those with pre-existing conditions or those who experienced
severe acute infection [26]. This study seeks to address this knowledge gap by examining
mortality rates among patients who have survived the acute phase of the illness and by
identifying specific urinary peptides that may be associated with future death. Urinary
peptides are short sequences of amino acids that can reflect pathological processes in the
body, and their identification could potentially serve as biomarkers for predicting long-term
health outcomes in COVID-19 survivors.

Staessen et al. in the study “Prospective Validation of a Proteomic Urine Test for Early
and Accurate Prognosis of Critical Course Complications in Patients with SARS-CoV-2 Infec-
tion” (CRIT-COV-U) investigated urinary peptides in 1012 adults with PCR-confirmed
COVID-19 [27]. The research focused on the acute phase of the disease with a me-
dian follow-up of 10 days. The authors demonstrated that it is possible to predict
adverse COVID-19 outcomes within the acute phase of the illness using specific uri-
nary peptides, and this prediction can be made within 4 days of a positive PCR test [27].
Within this study, mortality rates among patients who have survived the acute phase
of COVID-19 are investigated to identify potential predictors of long-term post-acute
COVID-19 mortality (PACM), including demographic factors, clinical characteristics,
and laboratory parameters. Additionally, the role of urinary peptides as biomarkers
of future death is examined, leveraging recent advances in proteomic technology to
explore their predictive value. Detection of urinary peptides associated with future
mortality could have significant implications for risk stratification and personalized
care among COVID-19 survivors.

Incorporating these biomarkers into clinical practice could allow healthcare providers
to better identify individuals at high risk of adverse outcomes and tailor interventions
accordingly. This would ultimately improve long-term outcomes and quality of life for
survivors of COVID-19, contributing to more effective management of the pandemic.
By integrating advanced biomarker detection with traditional clinical assessments, the
ability to predict, monitor, and manage the long-term health impacts of COVID-19 can be
enhanced, ensuring that survivors receive the comprehensive care they need to mitigate
future health risks.

2. Materials and Methods
2.1. Study Population

Post-acute survival data of 651 unvaccinated patients were gathered from the “Prospec-
tive Validation of a Proteomic Urine Test for Early and Accurate Prognosis of Critical Course
Complications in Patients with SARS-CoV-2 Infection” (CRIT-COV-U) study, spanning until
December 2023 across six countries and nine centers (Table S1) [27]. These patients were
enrolled during the initial and subsequent waves of the pandemic in 2020–2021, predomi-
nantly infected with the wild-type virus, and had survived the acute phase of COVID-19.
Urine peptide data of first urine samples collected within 3 days of a positive PCR were
used. The cohort was stratified into discovery (n = 324) and validation (n = 327) sets
through random partitioning. This project complied with the Helsinki Declaration. The
Ethics Committee of the German–Saxonian Board of Physicians (Dresden, Germany; num-
ber EK-BR-70/23-1) and the Institutional Review Boards of the recruiting sites provided
ethical approval. To assess the impact of age on mortality within this cohort, compar-
isons were made against age- and sex-matched data from individuals not infected with
SARS-CoV-2 (n = 5192), sourced from the Human Urinary Database [28].
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2.2. Urinary Peptidomics

Data were extracted from the Human Urinary Proteome Database, which contains
datasets acquired using capillary electrophoresis coupled with mass spectrometry (for
details on the CE-MS analysis, please see [29]) as described previously [28]. Data were
evaluated using MosaFinder software (version 1.4) and normalized based on the abundance
of 29 collagen peptides [30]. Of the 5071 sequenced peptides identified to date, only those
present in at least 50% of the entire discovery cohort of 324 individuals (923 peptides) were
retained for further analyses.

2.3. Statistical Analysis

As descriptive statistics for the samples, the median and interquartile range (IQR)
were used for continuous variables and absolute (N) and relative frequencies (%) for
categorical variables. Hypotheses of no differences in scale or distribution of patient
characteristics between the death and non-death groups were tested with Wilcoxon–
Mann–Whitney test for continuous variables and with χ2 homogeneity tests for cat-
egorical variables. Adjustment for multiple testing was implemented according to
Benjamini [31,32]. Visualized are kernel density estimates of the distribution of the
scores split by mortality groups. Mortality per person–time stratified by age and DP201
groups, is estimated as the ratio of the number of the deceased to the sum of all patients’
observation times within each group scaled to 100 person-years. The corresponding
mortality probabilities and their 95% confidence intervals (CI) for each group represent
estimates from a logistic regression including all 651 patients.

2.4. Classifier Development

A classifier combining multiple features (peptides) into a single variable was devel-
oped using support vector machine modeling as described in [33]. All peptides demonstrat-
ing a significant difference (adjusted for the false-discovery rate set at 0.05) between cases
and controls were included in the classifier. Classification was performed by determining
the Euclidian distance (classification score) of the vector to a separating hyperplane. The
optimal parameters for C (cost of misclassification) and gamma (flexibility of the separat-
ing hyperplane) were determined via leave-one-out cross-validation error estimation, as
described in more detail in [34].

3. Results
3.1. Assessment of Mortality in Acute COVID-19 Survivors

Of the 893 patients from the CRIT-COV-U study surviving acute COVID-19, follow-
up data from 651 patients could be obtained (Table 1). At the time of inclusion in the
CRIT-COV-U study (and urine sampling), the median age of the 651 patients was 63 years
(IQR: 48–76)), with a male predominance of 53.5%. The median body mass index (BMI)
recorded was 27.0 (IQR: 24.4–30.3) kg/m2, and the estimated glomerular filtration rate
(eGFR) was 90.0 (IQR: 70–111) mL/min/1.73 m2. The majority of patients, 56.4%, had
no recorded comorbidities. The entry WHO scores were 1–3 in 311 (48%) participants,
4–5 in 317 (49%) participants, and 6 in 23 (4%) participants. Throughout the follow-up
period, spanning a median of 2.92 years (IQR: 2.67–3.09), pertinent data were collected
to assess mortality outcomes in survivors of the acute phase of COVID-19.

Among the 651 patients who survived the acute phase of COVID-19 and could be
followed up on, 91 individuals (13.98%) succumbed during the follow-up duration, with
55 (8.45%) of these fatalities occurring within the first year post-infection. In stark contrast,
among the age- and sex-matched controls totaling 5192 individuals, a markedly lower pro-
portion of 92 (1.77%) deaths were recorded within the same time frame. Notably, mortality
displayed an age-dependent pattern across both cohorts, with significantly elevated rates
observed among those who had survived COVID-19 compared to their COVID-19-negative
counterparts (Figure 1A–E). Specifically, within the first year post-infection, mortality
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rates surged up to 4.7 times higher in patients younger than 65 years compared to the
COVID-19-negative controls.

Table 1. Baseline cohort characteristics. Median and IQR are shown for continuous variables and
absolute (N) and relative frequencies (%) for categorical variables.

No Death (n = 560) Death (n = 91) p-Value

Age 60 (45–73) 78 (70–83) <0.0001
BMI [kg/m2] 27.1 (24.5–30.3) 26.5 (23.7–29.9) 0.1929

Number of comorbidities 0.0 (0.0–1.0) 1 (0.3–2.0) <0.0001
eGFR [mL/min/1.73 m2] 92.47 (76.00–112.17) 69 (52.00–90.00) <0.0001
Heart rate [beats per min] 80.0 (72.0–80.0) 80.0 (70.0–86.5) 0.1827

Diastolic blood pressure [mm Hg] 78.0 (70.0–82.0) 73.0 (64.3–80.0) 0.0494
Systolic blood pressure [mm Hg] 128 (115.0–140.0) 128 (110.0–140.0.) 0.5809

sex, men (%) 289 (51.6) 58 (63.7) 0.0416
WHO score admission 3 (2–4) 4 (3–4) <0.0001
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3.2. Identification of Biomarkers Associated with Post-Acute COVID-19 Mortality

For the identification of biomarkers potentially associated with mortality after sur-
viving the initial acute phase of COVID-19, the previously acquired urinary peptidomics
datasets from baseline samples of COVID-19-diagnosed patients within the CRIT-COV-U
study were utilized. These datasets were stratified into discovery (n = 324) and validation
cohort (n = 327) sets through random partitioning. Urinary peptides potentially associated
with PACM were defined by applying the Mann–Whitney test to compare 44 deceased and
280 surviving patients within the discovery set. Subsequently, adjustments for multiple
testing were implemented to ensure statistical robustness.

The analysis of urinary peptidome datasets within the discovery set enabled the iden-
tification of 201 peptides (listed in Table S2) as significantly associated with PACM when
comparing deceased and surviving patients. These peptides encompassed upregulated frag-
ments of albumin, alpha-2-HS-glycoprotein, apolipoprotein A-I, and beta-2-microglobulin,
alongside downregulated fragments of CD99 antigen, various collagens, fibrinogen alpha,
polymeric immunoglobulin receptor, sodium/potassium-transporting ATPase, and uro-
modulin. Among these peptides, 14 overlapped with the previously established Cov50
classifier designed for prognosticating unfavorable COVID-19 outcomes during the acute
phase [35].

3.3. Establishment and Validating a Classifier Predicting Post-Acute COVID-19 Mortality

The 201 peptides significantly associated with PACM were combined to form a
support-vector machine-based classifier (DP201). This classifier enabled separating the
discovery set with 80% sensitivity and 83% specificity upon complete leave-one-out
cross-validation (area under the curve (AUC) = 0.86, Figure 2A). Subsequently, this
classifier was applied to the independent validation cohort, consisting of 47 deceased
and 280 surviving patients, which resulted in significant separation of the groups with
an AUC of 0.78, as shown in Figure 2B.
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Figure 2. ROC curves (displayed as solid lines) for the classification of the deceased and surviving pa-
tients in the complete leave-one-out cross-validated discovery cohort (A) and independent validation
cohort (B). Dotted lines display 95% confidence bounds.

The resultant outcomes in relation to follow-up time are depicted in Figure 3A,B,
illustrating a clear correlation between higher classification scores and heightened mortality
risk. Further Cox regression analysis revealed that age, BMI, and DP201 were significantly
associated with PACM, while sex, number of comorbidities, eGFR, and COVID-19 WHO
score did not exhibit statistical significance. Integration of these three parameters into Cox’s
model yielded a hazard ratio of 6.28 (95%CI: 3.54–11.44) compared to age and DP201 alone
(Figure 3C,D).
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and age (C) could be increased using a model including DP201, age, and BMI (D).

4. Discussion

Our findings first and foremost demonstrate that COVID-19 is associated with a
highly significantly increased risk of mortality even after the acute phase of the dis-
ease. To date, this issue was apparently not well-covered by the studies, which either
investigated the immediate outcome of the acute infection or the long-term effect in the
context of the post-acute sequelae of SARS-CoV-2 infection (PASC). However, PASC was
typically only assessed in patients still alive. Our data indicate that a significant number
of patients may have died as a result of the consequences associated with the previous
SARS-CoV-2 infection. The mortality in post-acute COVID-19 patients was significantly
higher than in age- and sex-matched controls and the deaths could be potentially labeled
as PASC-related deaths.

A retrospective analysis of 13,638 patients with COVID-19 hospitalization documented
a significantly increased risk for future mortality; increased 12-month mortality was ob-
served in patients with severe COVID-19 compared to COVID-19-negative patients, which
was concluded to be an under-investigated sequela of COVID-19 [36].

Another large retrospective analysis of long-term outcomes of 22,571 adult patients
hospitalized due to COVID-19 in Austria in the year 2020 found an increased mortality
compared to 217,295 propensity score matched controls [37]. Similar to our results, the
difference between patients and controls remained significant in the younger age groups
(41–64 years and 65–74 years, p < 0.001) but not in the oldest age group (p = 0.078) [37].

An investigation was conducted on the long-term risks in over 800,000 COVID-19
patients compared the risk of post-discharge death with 56,409 Influenza patients as a
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historical control; patients who were discharged alive from a COVID-19-related hospital-
ization admission had nearly twice the risk of post-discharge death compared to historical
controls admitted to hospital with influenza [38].

Data from a large study with 47,780 English patients discharged alive after COVID-19
hospitalization showed an increased risk of readmission and mortality during a follow-up
of 140 days. The post-discharge mortality risk was eight times greater than in matched
controls and with the largest differences in the age group < 70 years [26].

A report from the US investigated the mortality after recovery from the initial episode
of COVID-19 and reported a significantly higher 24-month-adjusted all-cause mortality risk
for patients with severe COVID-19 compared to COVID-19-negative comparators (HR 2.01).
The risk of excess death was highest during days 0 to 90 after infection (aHR 6.36) and still
elevated during days 91 to 180 (aHR 1.18). Beyond 180 days after infection there was no
excess mortality during the next 1.5 years [39]. A recent large US cohort of 135,161 people
with SARS-CoV-2 infection and 5,206,835 controls were followed for 3 years to estimate
risks of death and PASC. Among non-hospitalized individuals, the increased risk of death
was no longer present after the first year of infection, while among hospitalized individuals,
risk of death was high in the first year (incidence rate ratio: 3.17) and declined but remained
significantly elevated even in the third year after infection (IRR 1.29) [40].

SARS-CoV-2 infection obviously poses a persistent threat to individuals even be-
yond the acute phase. Importantly, among those who successfully navigate the acute
phase of COVID-19, the risk of mortality escalates significantly during the subsequent
follow-up period. Particularly noteworthy is the observation that within the first year
following infection, mortality rates surge dramatically among individuals who have
survived the acute phase of the illness when compared to a COVID-19-negative con-
trol cohort. What is striking is that this increase in mortality risk is most pronounced
among younger individuals, highlighting a concerning trend that defies conventional
assumptions regarding age-related vulnerability to severe outcomes. The most abundant
significantly changed peptides in patients experiencing death during follow-up are
derived from β2-microglobulin (B2M). Higher B2M serum concentrations are associated
with higher mortality in the general population, non-dialyzed chronic kidney disease
patients, and patients receiving hemodialysis (HD) [41].

The data also show a consistently higher level of uromodulin peptides in patients
without event. This is in very good agreement with a recent study presented by Vasquez-
Rios and colleagues, where increased levels of uromodulin were found associated with a
lower risk of cardiovascular death [42]

Thymosin beta4 (TB4) is an abundant actin-sequestering protein that has been de-
scribed in the context of multiple (patho)physiological processes, among others, including
wound healing, angiogenesis, and migration, to name just a few. It has also been described
as increased in kidney disease, with the highest levels detected in patients with end-stage
kidney disease [43]. Drum and colleagues found TB4 to be significantly increased in women
with heart failure with preserved ejection fraction and associated with mortality. The strict
association with female sex may be the result of TB4 being an X-linked gene product, which
consequently is also found higher in women [44].

The Sodium/potassium-transporting ATPase subunit gamma (FYXD2) is found to be
highly expressed in the kidney distal tubulus. In previous studies, a reduced abundance
of peptides derived from FYXD2 has been observed as associated with the progression of
CKD, specifically of IgA nephropathy [45].

Reduced levels of a peptide derived from S100A9 consequently reduced degradation
of this protein and likely results in increased levels of calprotectin, which was described as
associated with an increased risk of mortality [46].

Reduced abundance of peptides from the polymeric immunoglobulin (PIGR) receptor
was previously found associated with acute COVID-19 mortality [35]. Similarly, increased
complement activation, which result in an increase in complement-derived urine peptides,
was also described as associated with increased COVID-19 mortality [47].



Biomedicines 2024, 12, 2090 9 of 14

The most pronounced effect is on collagen fragments, with both an increase and
decrease in specific collagen-derived peptides being observed. A change in collagen
peptides has been described for multiple diseases and was also found to be associated with
mortality, including mortality in the context of COVID-19 [27,48]. As observed here, both
the up- and downregulation of collagen fragments were observed. This was interpreted
as disruption of collagen degradation, leading to increased fibrosis. Two urinary peptide-
based classifiers, CKD273 [49] and FPP_BH29 [50]—both based on multiple specific collagen
peptides—were presented as highly significantly associated with fibrosis. To investigate
if the changes observed in this study are associated with increased fibrosis, we applied
these two classifiers onto the data and compared the scoring in the survivors vs. patients
experiencing death in follow-up. As shown in Figure 4, we observe a highly significant
increase in both scores, indicating increased fibrosis in the case group.
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Also, a consistent reduction in CD99 was observed in severe cases of COVID-19,
where a significant reduction in CD99 also was found on the surface of peripheral blood
lymphocytes [51]. Based on the data, the authors hypothesized that reduction in CD99 may
have a negative impact on the endothelial barrier integrity, a well-known phenomenon in
severe COVID-19.

The increase in urinary albumin, fetuin, and apolipoprotein A1 may all be conse-
quences of a similar underlying mechanism: endothelial dysfunction resulting in a loss
of functionality of the glomerular filtration barrier. In fact, an increase in albuminuria is
well-known and associated with an increased risk of mortality.

The increase in alpha 1 antitrypsin, a major plasma inflammatory protein, was found
associated with increased mortality in the Nagahama study based on 9682 subjects [52].
This is in line with the observed increase associated with PACM in our study, which may
be further exacerbated by the proteinuria, as mentioned above.

Furthermore, the identification of specific urinary peptides capable of predicting
heightened mortality risk at the outset of SARS-CoV-2 infection underscores the intricate
interplay between molecular biomarkers and clinical outcomes. These peptides serve as
early indicators of the likelihood of mortality, providing valuable insights into the underly-
ing pathophysiological mechanisms driving adverse outcomes in COVID-19 patients. By
leveraging these predictive biomarkers, healthcare professionals can proactively identify
individuals at elevated risk of mortality and implement targeted interventions aimed at
mitigating this risk, thereby potentially altering the trajectory of the disease course, like
already shown for chronic kidney and heart diseases [53].

A shortcoming of this study may be that the patients investigated were not immunized
against SARS-CoV-2 as at the time of the initial study, the vaccine was generally not
available. While mortality due to acute COVID-19 has been reduced dramatically as a
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result of immunization, it is not certain that immunity protects from PACM equally well,
and this needs to be investigated in a subsequent study.

5. Conclusions

Our findings underscore the multifaceted nature of SARS-CoV-2 infection, extending
far beyond the acute phase and exerting a lasting impact on mortality outcomes. The acute
phase of COVID-19 appears to initiate a complex disease trajectory in many survivors.
Apparently, recovery from the acute phase does not necessarily equate to a return to pre-
infection health. Instead, many survivors experience ongoing health challenges, often
referred to “long COVID” or PASC, which includes persistent fatigue, cardiovascular
complications, cognitive impairments, and other chronic conditions. Our study adds
mortality risk in COVID-19 survivors to the list of symptoms. This risk is driven by
the interplay between demographic factors (such as age), pre-existing health conditions
(like cardiovascular disease, diabetes mellitus, and respiratory disorders), and molecular
changes, detectable in the urinary peptidome. Understanding these interactions may help
in identifying individuals who are at higher risk of adverse outcomes, enabling more
precise and effective healthcare interventions.

The identified predictive biomarkers represent a significant advancement in our
ability to foresee and manage long-term health risks in COVID-19 survivors. These
biomarkers offer a window into the biological processes that continue to affect patients
long after the initial infection has resolved. The approach applied here not only enhances
our understanding of the disease but also holds the promise of improving monitoring
and treatment of COVID-19 survivors. By integrating predictive biomarkers into clini-
cal practice, a more effective risk stratification and personalized interventions can be
achieved. Personalized interventions, informed by a patient’s unique biomarker pro-
file [53], can improve management strategies and optimize treatment plans, ultimately
leading to better health outcomes.

This research lays the groundwork for improved clinical management and patient
outcomes by providing a robust framework for predicting and mitigating long-term risks
associated with SARS-CoV-2 infection, consequently offering a path toward more proactive
and patient-centered care. By focusing on the long-term health of COVID-19 survivors,
their quality of life can be enhanced and mortality rates could be reduced.
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