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Zusammenfassung

Die vorliegende Dissertation behandelt Fragen in der enumerativen algebraischen
Geometrie, der kommutativen Algebra, der algebraischen Statistik und der Theorie
der Gitterpolytope. Allen gemeinsam sind Verbindungen zur Kombinatorik.
In Kapitel 1 geht es um das Problem der charakteristischen Zahlen für kubische Hy-
perflächen im projektiven Raum. Wir berechnen unter anderem die Anzahl kubischer
Flächen tangential zu 19 Geraden im P3 und die Anzahl kubischer Dreifaltigkeiten
tangential zu 34 Geraden im P4. Unsere Resultate ermöglichen es prinzipiell, die
analogen Fragen in beliebiger Dimension zu beantworten. Dies ist in Teilen gemein-
same Arbeit mit Mara Belotti, Alessandro Danelon und Claudia Fevola.
In Kapitel 2 bestimmen wir die minimale freie Auflösung des Ideals aller (n − 1)-
Minoren einer spärlich besetzten generischen symmetrischen n × n Matrix. Als
Anwendung berechnen wir die erste nicht-triviale charakteristische Zahl für alle
Familien spärlich besetzter Quadriken ohne diagonale Nullen. Dies ist gemeinsame
Arbeit mit Jiahe Deng.
In Kapitel 3 studieren wir eine gemeinsame Verallgemeinerung von ungerichteten
Gaußschen graphischen Modellen und Kovarianzmodellen, bei denen wir Nullen
in sowohl der Kovarianzmatrix als auch der Konzentrationsmatrix erlauben. Wir
beweisen Strukturresultate für diese Modelle, z.B. Kriterien für Glattheit, Schranken
an die Dimension, implizierte Nullen und Blockstrukturen. Dies ist gemeinsame
Arbeit mit Tobias Boege, Thomas Kahle und Frank Röttger.
Kapitel 4 handelt von symmetrischen Idealen; dies sind Ideale in einem Polynom-
ring, die invariant unter allen Permutationen der Variablen sind. Wir beweisen,
dass Ideale, die von dem Orbit eines generischen homogenen Polynoms erzeugt
werden, in einem präzisen Sinn das größtmögliche Radikal und die kleinstmögliche
Verschwindungsmenge besitzen.
Kapitel 5 ist ein Beitrag zur lokalen Ehrhart-Theorie. Wir studieren dünne Polytope,
also Gitterpolytope, deren lokales h∗-Polynom verschwindet. In Dimension 3 klassi-
fizieren wir dünne Gitterpolytope vollständig und in beliebiger Dimension liefern wir
eine Charakterisierung dünner Gorensteinpolytope. Dies ist gemeinsame Arbeit mit
Christopher Borger und Benjamin Nill.
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Summary

The present thesis deals with questions in enumerative algebraic geometry, commu-
tative algebra, algebraic statistics and the theory of lattice polytopes. All of them
share a combinatorial flavor.
Chapter 1 is about characteristic numbers for cubic hypersurfaces in projective space.
For instance, we explicitly compute the number of cubic surfaces tangent to 19 lines
in P3 and the number of cubic threefolds tangent to 34 lines in P4. In principle, our
results allow us to answer the analogous question in arbitrary dimensions. This is
partly joint work with Mara Belotti, Alessandro Danelon and Claudia Fevola.
Chapter 2 provides the minimal free resolution of the ideal of (n − 1)-minors of a
sparse generic symmetric n × n matrix. As an application, we compute the first
non-trivial characteristic number for all families of sparse quadrics without diagonal
zeros. This is joint work with Jiahe Deng.
In Chapter 3 we study a common generalization of undirected Gaussian graphical
models and covariance models, allowing for zeros in the covariance and the concen-
tration matrix simultaneously. We prove structural results like smoothness criteria,
dimension bounds, implied zeros and block structures. This is joint work with Tobias
Boege, Thomas Kahle and Frank Röttger.
Chapter 4 is about symmetric ideals, i.e., ideals in a polynomial ring invariant under
all permutations of the variables. We prove that ideals generated by the orbit of a
general homogeneous polynomial have, in a precise sense, the largest possible radical
and the smallest possible vanishing set.
Chapter 5 is a contribution to local Ehrhart theory. We study thin polytopes,
i.e., lattice polytopes whose local h∗-polynomial vanishes. We provide a complete
classification in dimension 3 and a characterization of thin Gorenstein polytopes in
arbitrary dimension. This is joint work with Christopher Borger and Benjamin Nill.
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Authorship

Chapter 1 of this thesis is based on the paper [BDFK23]. While all four authors have
contributed significantly to the paper I have taken the leading role, closely followed
by Mara Belotti.
In the numbering of the published version [BDFK23], I have contributed the main
ideas, results and most of the writing of Section 1. Section 2, except for Subsection 2.6,
has been joint work of all four authors but I have taken the leading role, closely
followed by Mara Belotti. Subsection 2.6 is entirely my own work and is crucial
for the main result Theorem 4.2. Section 3 of the paper has initially been worked
out mainly by Mara Belotti with contributions from all other authors. The relevant
coding has been done mainly by Mara Belotti and Claudia Fevola. However, I have
rewritten and streamlined Section 1.3 which is the thesis version of Section 3 of the
paper, and I have written new code that also fits the setting of cubic hypersurfaces
of dimensions larger than 2. Section 4 of the paper is joint work of all four authors
with essentially equal contributions. I have contributed most of Subsection 4.0, in
particular the discussion about cubic surfaces with its consequences for Lemma 4.5.
The introduction of the paper has mainly been written by Claudia Fevola with
contributions from all other authors.
For Chapter 1, I have rewritten and (sometimes strongly) extended essentially
every of the corresponding sections of the paper, to varying degrees. For instance,
the introduction of Chapter 1 is a rewritten version of the one in the paper, and
Proposition 1.1.1, Lemma 1.1.2 and the proof of Lemma 1.2.1 are new. New are also
the entire Subsection 1.2.6, Remark 1.4.2 and Proposition 1.4.3. The main result
Theorem 1.4.1 has been significantly extended due to the new Theorem 1.2.24 and
the new Proposition 1.3.12.
Chapter 2 is based on the accepted version of the paper [DK23] and sticks to it
closely. My coauthor Jiahe Deng did an undergraduate research internship under
my supervision for twelve weeks within the RISE Germany 2022 program of the
DAAD. The starting point of the paper was my project proposal for this internship.
Jiahe Deng was mainly responsible for the coding part and for testing conjectures
computationally. I have contributed all the main ideas and have done almost the
entire writing. The only exception is Example 2.5.1 which has been contributed by
Aldo Conca in personal communication.
Chapter 3 is based on the preprint version of the paper [BKKR23]. In the numbering
of Chapter 3, almost all of Section 3.3 and most of Section 3.4 have been contributed by
myself. This includes in particular all the main results and their proofs. Exceptions
are Remark 3.3.9 which is due to Thomas Kahle and Frank Röttger as well as
Remark 3.3.33 which is due to Tobias Boege. Moreover, Tobias Boege and I have
contributed equally to Remark 3.3.26, Example 3.3.27, Figure 3.1 and Examples 3.4.1
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and 3.4.2. Section 3.2 is almost entirely due to Tobias Boege. Subsection 3.1.1
has been written mostly by Thomas Kahle while Subsection 3.1.2 has been written
mainly by myself.
Chapter 3 is, for the most part, very close to the preprint version of the paper (where
equal contributions apply). Notable exceptions are Subsection 3.3.1 which I have
streamlined and updated as well as the classification in Proposition 3.3.31 which I
have corrected. In both the preprint and the published version this classification was
incomplete because the cases where EG ∩ EH forms a star were missing.
Chapter 4 is based on the paper [Kre23] of which I am the only author. Chapter 4 is
close to the accepted version up to minor improvements.
Chapter 5 is based on the accepted version of the paper [BKN23] and sticks to it
closely. In this case, the main ideas and the biggest part of the writing are due to
Benjamin Nill. The notes and insights of Jan Schepers during the collaboration with
Benjamin Nill on [NS13] contained in particular Lemma 5.5.5 and were the basis of
the proof of Theorem 5.5.3. Lev Borisov contributed the proof of Proposition 5.5.9.
My overall contribution is comparatively larger than that of Christopher Borger.
The first main result Theorem 5.3.3 is a classification result which is joint work of
Christopher Borger and myself with essentially equal contributions; the coding part of
the proof, however, has been done almost entirely by Christopher Borger. Benjamin
Nill and I have written Section 5.1 with my contribution being comparatively smaller.
I have contributed Lemma 5.4.13 with its proof as well as the proof, but not the
statement, of Lemma 5.4.18 which is important in the proof of the second main
result Theorem 5.5.3. In addition, I have done all the coding apart from that used
in the proof of the mentioned classification result Theorem 5.3.3, see also [Kre]. In
particular, I contributed Examples 5.2.17, 5.5.10 and 5.5.11 which I have obtained
computationally.
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0 Introduction

This thesis comprises several topics in enumerative and combinatorial algebraic
geometry. Central themes are excess intersection and syzygies in Chapters 1 and 2,
the structural restrictions imposed by algebraic group actions in Chapters 1 and 4,
and the presence of sparsity in Chapters 2–5.
Chapters 1 and 2 contribute to the characteristic numbers problem in classical
enumerative geometry, in the case of cubic hypersurfaces and in the case of sparse
quadrics. Contact problems in algebraic geometry have a long history; they date back,
if not to antiquity, then at least to the 19th century with early work of Steiner, Chasles,
Maillard, Zeuthen and Schubert [Ste48, Cha64, Mai71, Zeu73, Sch79]. Given some
family F of subvarieties of Pn, one wishes to count the number of members of F
having a contact with each of the given subvarieties Y1, . . . , Yr ⊆ Pn. By definition,
two subvarieties X and Y of Pn make a contact or touch if their conormal varieties in
Pn × P̌n intersect [FKM83]. If codim(X) + codim(Y ) > n, then X touches Y if and
only if X ∩ Y ̸= ∅ which in this case is a non-trivial condition. If on the other hand
codim(X) + codim(Y ) ≤ n, the notion of a contact formalizes the intuitive meaning
of X and Y being tangent. It follows from [FKM83] that every contact problem can
essentially be reduced to the case where each of the given varieties Yi is replaced by
a linear space of the same or smaller dimension. The resulting numbers in this case
are called the characteristic numbers of F .
A classical example is Steiner’s problem of five conics [Ste48]: How many smooth
conics in P2 are tangent to five given conics in general position? Famously, the
correct answer is 3264 [EH16], at least in characteristic ̸= 2. More generally, we may
let F be the family of smooth quadrics in Pn and ask how many of them are tangent
to r = dim(F ) =

(
n+2

2

)
− 1 given varieties of various dimensions. An essentially

complete solution to these problems is given by the space of complete quadrics and
its intersection theory [Vai82].
When it comes to higher degree hypersurfaces, much less is known, see Table 1.
The only cases of smooth degree d > 2 hypersurfaces for which all characteristic
numbers are known are plane cubic and plane quartic curves [Alu90, Vak99]. For
higher degree plane curves, partial results have been achieved, for instance, by
Aluffi [Alu91b, Alu92], but to my knowledge no complete list is known even in
degree 5. More generally, in fact, apart from quadrics almost all families for which
any non-trivial characteristic numbers are known are families of curves.
Our paper [BDFK23] seems to be the first attempt at leaving the realms of curves and
quadrics after Coskun [Cos06a, Cos06b] who has computed some of the characteristic
numbers for rational normal surface scrolls and del Pezzo surfaces, however allowing
only incidence conditions but not tangency conditions. In [BDFK23] we have counted
the number of smooth cubic surfaces in P3 passing through a general points and
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(n, d) Some references
(n, 2) Chasles (1864), Schubert (1879), Vainsencher (1982), ...

(2, 3) Maillard (1871), Zeuthen (1872), Sterz (1986),
Kleiman–Speiser (1986, 1988, 1991), Aluffi (1990), Vakil (1999)

(2, 4) Zeuthen (1873), van Gastel (1991), Aluffi (1991, 1992), Vakil (1999)
(2, d) Partial results, e.g. Aluffi (1991, 1992)
(3, 3) Partial results in our [BDFK23]
(n, 3) Partial results in Chapter 1

Table 1: Characteristic numbers for degree d hypersurfaces in Pn

tangent to b = 19 − a general lines, building on the PhD work of Aluffi [Alu90]. In
Chapter 1 of the present thesis we will extend this result to arbitrary dimensions,
providing methods to compute, in principle, the characteristic numbers with respect
to points and lines for the family of smooth cubic hypersurfaces of any dimension.
Even in the case of quadrics, there are variations of the characteristic numbers
problem which are widely open. For instance, the characteristic numbers for families
of sparse smooth quadrics are unknown. As an application of the main result of
Chapter 2, Theorem 2.1.1, we compute a first non-trivial characteristic number for
all sparse families without diagonal zeros, see Section 2.4. This boils down to a
degree computation for the ideal In−1(A) of all (n − 1)-minors of a sparse generic
symmetric n × n matrix A, i.e., A is a symmetric matrix whose upper triangle is
filled with distinct variables or zeros, and the zeros are allowed at off-diagonal places
only.
However, Theorem 2.1.1 goes beyond a degree computation. We provide the graded
free resolution of In−1(A), employing the pruning method first applied to the ideal of
maximal minors of a (rectangular) sparse generic matrix by Boocher in his thesis
[Boo12, Boo13]. The word pruning refers to the erasing of certain rows and columns
of the matrices defining the resolution in the generic case (without zeros). Contrary
to Boocher’s situation, the standard (n − 1)-minors of a generic symmetric matrix do
not form a universal Gröbner basis. Nonetheless, the pruning procedure still applies
here. In particular, the projective dimension and even the individual graded Betti
numbers of In−1(A) can only be less than in the generic case. This statement fails
quite drastically already in simple cases if zeros are allowed also on the diagonal, see
Example 2.1.2.
My initial motivation to study ideals of certain submaximal minors of A arose in the
context of undirected Gaussian graphical models in algebraic statistics. In Chapter 3
we study a new class of statistical models within the realm of Gaussian normal
distributions which we termed double Markovian, and Definition 3.3.17 introduces
the corresponding conditional independence ideals. Double Markovian models are a
simultaneous generalization of graphical models and so-called covariance models.
The general aim of algebraic statistics is to study geometric, algebraic and com-
binatorial properties of statistical models that are given as real (semi-)algebraic
sets, see for example [DSS09, Sul18]. For instance, a multivariate Gaussian normal
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distribution is determined by its mean vector µ and its covariance matrix Σ which is
symmetric and positive semi-definite. Therefore, the parameter space of all Gaussian
normal distributions is naturally Rn × PSDn, where PSDn is the cone of symmetric
positive semi-definite n × n matrices. Given an undirected graph G with n vertices,
the (undirected) graphical model M(G) associated to G is the set of all normal
distributions such that (Σ−1)ij = 0 whenever i ̸= j and ij is not an edge of G [Lau96,
Chapter 5]. Given another graph H on the same vertex set, a double Markovian
model M(G, H) also prescribes zeros in Σ as determined by H. From the point of
view of real algebraic geometry, double Markovian models are subvarieties of the cone
of positive definite matrices defined by coordinate hyperplanes and the vanishing
of some submaximal minors of the covariance Σ. In Chapter 3 we prove structural
results about these models such as implied zeros and block structures, smoothness
criteria and dimension bounds. These are in part algebraic and in part crucially
rely on the positivity constraint. An example of the latter is Theorem 3.3.23 which
strongly constrains the possible combinations of zero patterns in a positive definite
matrix and its inverse. This might be of independent interest. Another example
where positivity is essential is Theorem 3.3.8 stating that M(G, H) is smooth if every
pair of vertices is joined by an edge in at least one of G and H.
Chapter 4 studies solution sets of symmetric ideals, i.e., ideals in a polynomial ring
K[x1, . . . , xn] which are invariant under all permutations of the variables. Special
classes of symmetric ideals, for instance Specht ideals and Tanisaki ideals, have
been studied intensively in the algebraic combinatorics literature and are related
to the famous work of Haiman on n!, see for example [Hai03, MOY22] and the
references therein. General symmetric ideals and chains thereof in increasingly
larger polynomial rings are an active topic of research in asymptotic commutative
algebra [NR17, LNNR20, LNNR21] and have applications to chemistry and algebraic
statistics [AH07, HS12]. One of the most famous results in this area says that an
S∞-invariant ideal of the infinite polynomial ring is finitely generated up to symmetry
[Coh67, AH07, HS12, Dra14].
The main result of Chapter 4 concerns the class of symmetric ideals (Sn ·f) generated
by all permutations of a single polynomial f ∈ K[x1, . . . , xn] with a prescribed
sparsity structure, i.e., only certain monomials are allowed to appear in f . Here,
Sn denotes the symmetric group on n elements. Surprisingly, experiments show
that the radical

√
(Sn · f) is very often a monomial ideal, necessarily symmetric and

square-free. We prove that this phenomenon in fact occurs for general coefficients
of f if its support is homogeneous and Sn-stable.
The final Chapter 5 is a contribution to local Ehrhart theory. Given a lattice polytope
P ⊆ Rn of dimension d, the number of lattice points in integer dilates kP is a
polynomial function of k of degree d by a famous theorem of Ehrhart [Ehr62]. This
polynomial is called the Ehrhart polynomial of P and agrees with the Hilbert function
of the semigroup algebra C[P ] in non-negative degrees. The numerator polynomial
of the Hilbert series of C[P ] is called the h∗-polynomial of P . Its coefficients are
always non-negative integers. This can be deduced from the Cohen–Macaulayness of
C[P ] [Hoc72] but today several independent combinatorial proofs are known [BS18].
A subtler and far less studied invariant of a lattice polytope P is its local h∗-polynomial,
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denoted ℓ∗
P (t) ∈ Z[t]. This polynomial has first been introduced by Stanley [Sta92].

It, also, has non-negative coefficients and moreover is always palindromic. From
an algebro-geometric perspective, ℓ∗

P (t) encodes the numerical information about
the mixed Hodge structure on the primitive part of the middle cohomology group
of a non-degenerate hypersurface Z of (C∗)d defined by a Laurent polynomial with
Newton polytope P , see [Bat93, BC94, BB96a] and especially [BM03, Section 5]. In
formulas,

ℓ∗
P (t) = t

d−1∑
i=0

dim(PH i,d−1−i
c (Z))ti.

Contrary to the usual h∗-polynomial, for the local h∗-polynomial no combinatorial
interpretation of its coefficients is known beyond the simplex case. Moreover, ℓ∗

P (t)
may vanish identically. In Chapter 5 we study precisely this phenomenon. We
say that a lattice polytope P is thin if ℓ∗

P (t) = 0. Our main results include a
characterization of thinness in dimension 3 and for Gorenstein polytopes of arbitrary
dimension. We have also included an introduction to the local h∗-polynomial with a
survey of previous results.
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1 Characteristic Numbers for Cu-
bic Hypersurfaces

For questions of authorship, please refer to pages IVf.
This chapter is a rewritten and extended version of the paper [BDFK23]. I have
attempted to improve the notation and readability at many places. Several proofs
have been streamlined, some shortened, and some (minor) errors have been caught
and fixed. Most importantly, the main result has been significantly extended:
While the results of [BDFK23] allowed us to provide the characteristic numbers
with respect to point and line conditions for smooth cubic surfaces, this chapter
includes the new Theorem 1.2.24 which makes it possible to compute, in principle, all
characteristic numbers with respect to points and lines for smooth cubic hypersurfaces
of any dimension. The numbers are explicitly derived in the cases of cubic surfaces,
threefolds, fourfolds and fivefolds in Theorem 1.4.1.

Contact Problems for Hypersurfaces
A famous moduli space in enumerative geometry is the space of complete quadrics
[Cha64, Sch79, Vai82]. This is a compactification of the set of smooth quadric
hypersurfaces in Pn. One construction starts with the projective space P(n+2

2 )−1

parametrizing all quadrics and iteratively blows up the proper transforms of the loci
of quadrics with rank at most 1, 2, . . . , n − 1. This variety has been used to answer
the degree 2 case of the question:

How many smooth degree d hypersurfaces in Pn are tangent to
(

n+d
d

)
− 1 general

linear spaces of various dimensions?

Solutions to these kinds of problems are classically called characteristic numbers
(for the family of, in this case, smooth degree d hypersurfaces). In the case of
quadric surfaces, the first complete solution was achieved by Schubert [Sch79] back
in 1879 after Chasles had treated the case of plane conics [Cha64] in 1864. Later,
these questions have been translated into Chow ring computations on the space of
complete quadrics, and beautiful results have been achieved [Sem48, Vai82, DCP85].
For families of quadrics, in effect, an explicit construction of a space is known
where the characteristic numbers problem translates, essentially, into a cohomological
computation. More recently, the space of complete quadrics has even proved useful in
studying some classical problems in algebraic statistics related to maximum likelihood
estimation [MMM+23, MMW21].
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Much less is understood when it comes to higher degree hypersurfaces. To our
knowledge, the only cases where all characteristic numbers are known are plane
cubics and plane quartics. The characteristic numbers for cubics were first computed
by Maillard [Mai71] in 1871. In 1873, Zeuthen computed the characteristic numbers
for plane curves up to degree 4 [Zeu73]. Of course, their methods were relying
on assumptions that were not rigorously justified from a modern perspective. It
took more than a century to re-prove these numbers using the rigorous theoretical
foundations provided by Fulton–MacPherson intersection theory, as for instance in
the works of Kleiman and Speiser [KS86, KS88, KS91], and Aluffi [Alu90, Alu91a]
in the case of plane cubics. For plane quartics, partial results were achieved in
[Alu91b, vG91], and later a full description was given in [Vak99].
A particularly interesting feature of [Alu90] is that the author constructs a variety of
complete plane cubics whose intersection theory allows to compute the characteristic
numbers for, in principle, any family of reduced plane cubics. In a similar fashion as
for complete quadrics, the space of complete plane cubics is constructed through a
sequence of blow-ups of the projective space parametrizing all cubic forms.
As far as we know, the case of higher-dimensional cubic hypersurfaces has been
unexplored. Our aim in this chapter is to generalize the space of complete plane
cubics in loc. cit. to arbitrary dimensions. The result is a smooth projective variety
which we term a variety of 1–complete cubic hypersurfaces. This is, in essence, a
variety whose intersection theory answers the following question:

What is the number of smooth cubic hypersurfaces in Pn passing through np general
points and tangent to

(
n+3

3

)
− np − 1 general lines?

In principle, we are able to answer this question completely, although obtaining the
numbers explicitly for high n is computationally demanding. It should be possible to
turn these results into closed (but possibly very long) formulas for the characteristic
numbers for arbitrary n but I have not pursued this much. An exception in which the
formula is nice and the computation remains doable is provided by Proposition 1.4.3.
We give a brief outline of the construction. Let W be a vector space of dimension
n + 1 with n ≥ 2 over an algebraically closed field K of char(K) ̸= 2, 3. The
set of all cubic hypersurfaces in P(W ) is naturally parametrized by the projective
space P(Sym3(W ∗)) of dimension

(
n+3

3

)
− 1. The classical theory of discriminants

of univariate polynomials shows that the subset of P(Sym3(W ∗)) of cubics tangent
to a given line in P(W ) is a degree 4 hypersurface which we call a line condition.
Similarly, a point condition is the hyperplane in P(Sym3(W ∗)) of all cubics containing
a given point in P(W ). We want to count the finite number of smooth cubics in
the intersection of np general point conditions and nℓ =

(
n+3

3

)
− 1 − np general

line conditions. However, the intersection of such hypersurfaces in P(Sym3(W ∗))
is not always zero-dimensional. Instead, the intersection of all line conditions set-
theoretically agrees with the locus of non-reduced cubics, i.e., those of the form λµ2

for linear forms λ and µ. This makes an excess intersection approach necessary.
Indeed, the goal of the construction is to obtain a smooth variety birational to
P(Sym3(W ∗)) in such a way that in the new space the proper transforms of the line
conditions separate, i.e., the intersection of all these proper transforms is empty. It
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turns out that, as in Aluffi’s case, it is enough to blow up five times along smooth
centers, each of them (apart from the first one) being an irreducible component
of the intersection of all proper transforms of the line conditions. The ultimate
goal of computing the characteristic numbers is finally achieved by subtracting from
the bound provided by Bézout’s theorem a certain correction term which can be
expressed via Chern classes of the normal bundles arising in the blow-up process.
Let us point out one crucial difference to [Alu90], namely the center of the last
blow-up, later denoted B4. In Aluffi’s case n = 2, this is a projectivized line bundle
on the previous center B3 while it turns out that, in general, B4 is the projectivization
of a vector bundle E on B3 of rank

(
n
2

)
. The main difficulty lies in the fact that,

a priori, E is not known explicitly. In particular, there is no obvious method to
obtain the Chern classes ci(E) ∈ CHi(B3) which in turn are necessary to compute
the non-trivial characteristic numbers. This issue is resolved here in Subsection 1.2.6
by identifying E as the pullback to B3 of a normal bundle appearing in the second
step of the construction of the space of complete quadrics. This relationship seems
interesting in itself. The identification of E and the computation of its Chern classes
have no analog in [Alu90]. In particular, Theorem 1.2.24 and Proposition 1.3.12
provide a new proof of the important Lemma 4.2 of loc. cit.
In our presentation we have aimed at providing many details throughout the con-
struction and we have separated the geometric construction from the Chow ring
computations as the former is logically independent of the latter.
This chapter is organized as follows. In Section 1.1 we give the definition of a
1-complete variety of cubic hypersurfaces Ṽ and Theorem 1.1.6 shows how certain
intersection numbers on Ṽ yield the characteristic numbers we were aiming for.
Section 1.2 concerns the construction of the 1-complete variety Ṽ achieved by
performing five blow-ups. In each subsection we spell out the details of each blow-up
by giving local coordinates, the support of the intersection of the proper transforms
of the line conditions, and local equations for this intersection. An irreducible
component of this intersection is then taken to be the center of the next blow-
up. The construction ends with Corollary 1.2.23 where we show that the proper
transforms of the line conditions do no longer intersect.
Section 1.3 is devoted to the Chow rings of the five centers defined in the previous
section and to the computation of the intersection classes needed for the correction
term.
In the final Section 1.4, we gather the data computed so far and provide the
characteristic numbers for cubic surfaces, threefolds, fourfolds and fivefolds.
The code used in [BDFK23] for the case n = 3 of cubic surfaces is available at

https://mathrepo.mis.mpg.de/CountingCubicHypersurfaces.

For the more general results presented here, the Macaulay2 code implementing the
necessary Chow ring and Chern class computations for arbitrary n is available from
the author upon request.
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1.1 First Associated Hypersurfaces and the Hur-
witz Map

We fix an integer d ≥ 2, an algebraically closed field K of characteristic 0 or > d,
and a K-vector space W of dimension n + 1 with n ≥ 2. We refer to [GKZ94,
Section 3.2.E] for the notion of higher associated hypersurfaces of a projective variety.
Specifically, we are interested in the following case: Let X := V(f) ⊆ P(W ) be an
integral hypersurface of degree d, defined by an irreducible homogeneous polynomial
f . If X is smooth, its first associated hypersurface Z1(X) ⊆ Gr(2, W ) consists of
all lines ℓ ⊆ P(W ) such that ℓ is tangent to X at some point or, more precisely,
dim(ℓ ∩ TxX) = 1 for some point x ∈ ℓ ∩ X, where TxX is the (embedded) tangent
space of X at the point x. If instead X is singular, we first consider the lines ℓ for
which there exists a smooth point x satisfying the above conditions and then take
the Zariski closure of this set in the Grassmannian Gr(2, W ).
Some caution is in order because higher associated hypersurfaces are actually not
hypersurfaces in their respective ambient Grassmannians in general. The reason
for this slightly unfortunate terminology is the erroneous [GKZ94, Proposition 2.11]
which would imply that all dual varieties to integral hypersurfaces (over C) are
again hypersurfaces which is known to be false. However, the case of lines and
hypersurfaces is special, and in this case the mentioned proposition is true, see
[Stu17, Theorem 1.1] for a more general result.
We briefly give the argument in the case relevant to us here. Let U := Xsm denote
the smooth locus of X. Consider the incidence subscheme (with the reduced scheme
structure) given by

Z = {(ℓ, p) : p ∈ ℓ ⊆ TpU} ⊆ Gr(2, W ) × U,

with projections p : Z → Gr(2, W ) and q : Z → U . Via q, the incidence subscheme Z
becomes a Pn−2-bundle over U since every local trivialization of the tangent bundle
TU provides a local trivialization of the fiber bundle given by q. In particular, Z is
irreducible of dimension dim(U) + n − 2 = 2n − 3. This shows that Z1(X) = p(Z) is
irreducible of dimension

dim(Z1(X)) = dim(Z) − dim(p−1(ℓ)) = 2n − 3 − dim(p−1(ℓ))

for a general ℓ ∈ p(Z). Hence, dim(Z1(X)) = dim(Gr(2, W )) − 1 if the general fiber
p−1(ℓ) is finite. But this must be the case since otherwise the general tangent line to
U would have to be contained in X. Since the condition for a line in Gr(2, W ) to
be contained in X is closed, every tangent line to U would then be contained in X.
In particular, for any p ∈ U , every line through p in TpU is tangent to U and hence
contained in X, so TpU ⊆ X, whence TpU = X. This contradicts our assumptions
on X. So indeed, Z1(X) is an irreducible hypersurface in Gr(2, W ).
If X is smooth, by [Stu17, Theorem 1.1] the hypersurface Z1(X) ⊆ Gr(2, W ) is
defined by an irreducible element Huf of degree d(d − 1) in the projective coordinate
ring of Gr(2, W ), called the Hurwitz form. The latter is a degree d(d−1) homogeneous
polynomial in the Plücker coordinates, unique up to the degree d(d − 1) piece of the
ideal generated by the Plücker relations.
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On the open set of P(Symd(W ∗)) parametrizing smooth degree d hypersurfaces, we
can therefore define a morphism sending X to the degree d(d−1) hypersurface Z1(X)
of Gr(2, W ). The set of hypersurfaces in Gr(2, W ) of this degree is parametrized by
the projective space |OGr(2,W )(d(d − 1))|. We call this morphism the Hurwitz map
and view it as a rational map

Hu : P(Symd(W ∗)) |OGr(2,W )(d(d − 1))|, [f ] [Huf ].

For instance, if n = 2, this map is simply the one taking a degree d plane curve into
its dual curve.

Proposition 1.1.1. If char(K) = 0 and d ≥ 2, the Hurwitz map is injective on the
locus of smooth degree d hypersurfaces.

Proof. We need to show that we can recover a smooth degree d hypersurface X ⊆
P(W ) from Z1(X) ⊆ Gr(2, W ). If n = 2, i.e., X is a curve, this follows from the
biduality theorem, so we may assume n ≥ 3. As char(K) = 0, by the biduality
theorem it suffices to show that we can recover the dual variety X∗ from Z1(X)
alone.
For this, given a hyperplane H ∈ P(W ∗) and a point p ∈ H ⊆ P(W ), we let

Gp,H := {ℓ ∈ Gr(2, W ) : p ∈ ℓ ⊆ H}.

Given H, consider the set

AH := {p ∈ H|Gp,H ⊆ Z1(X)}.

We claim AH ̸= ∅ if and only if H ∈ X∗. Since AH only depends on Z1(X) but not
on X, this will conclude the proof.
To prove the claim, first observe that H ∈ X∗ is equivalent to H being tangent to X.
In fact, the singular points of the scheme-theoretic intersection X ∩ H are precisely
the points of tangency of H to X. Therefore, if H is tangent to X, every point of
tangency will certainly lie in AH , so AH ̸= ∅.
Conversely, if H ̸∈ X∗, then the scheme-theoretic intersection X ∩ H is smooth (and
connected, hence irreducible). The claim then follows from Lemma 1.1.2 below with
Y = X ∩ H and H playing the role of Pm.

Lemma 1.1.2. Let char(K) = 0, m ≥ 2 and Y ⊆ Pm a smooth hypersurface. Then,
for any point p ∈ Pm, the general line through p is nowhere tangent to Y .

Proof. Consider the orthogonal projection away from p:

π : Pm 99K Pm−1.

The closure of the fiber over a point q is the line through p and any lift of q. If
p ̸∈ Y , then π restricts to a morphism Y → Pm−1, and the scheme-theoretic fiber
over every closed point is the scheme-theoretic intersection of the corresponding line
through p with Y . Since dim(Y ) = m − 1, the general fiber is finite, and by generic
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smoothness in characteristic zero, the general fiber is finite and smooth, i.e., the
general line through p is nowhere tangent to Y .
If p ∈ Y , consider instead the morphism Blp Y → Pm−1. Since the exceptional divisor
has dimension m − 2, the general fiber lies in the complement of the exceptional
divisor. As before, for dimension reasons and by generic smoothness, the general
fiber must be finite and smooth, so the general line through p is not tangent to Y
at any intersection point different from p itself. Since the general line through p is
clearly not tangent to Y at p itself, this concludes the proof.

Following [Stu17, Example 2.2], Huf can be computed as the discriminant of the
homogeneous bivariate degree d polynomial in the variables s and t given by f(sv0 +
tw0, . . . , svn + twn). As a polynomial in s and t, the coefficients of the latter are
bihomogeneous of degree (1, d) in the coefficients of f and the variables vi, wi,
respectively. It follows that the polynomial Huf is bihomogeneous of degree (2(d −
1), 2d(d − 1)) with respect to the aforementioned variables. By SL2-invariance, Huf

can even be expressed as a polynomial in the Plücker coordinates p0,1, p0,2, . . . , pn−1,n

of the Grassmannian Gr(2, W ) given by the 2 × 2 minors pij = viwj − vjwi. Hence,
Huf is bihomogeneous of degree (2(d − 1), d(d − 1)) in the coefficients of f and the
Plücker coordinates, respectively. Notice that the polynomial Huf obtained in this
way makes sense for arbitrary degree d hypersurfaces V(f). It has the property that,
for any fixed f , we have Huf (ℓ) = 0 if and only if V(f) is tangent to ℓ in the sense
that ℓ ⊆ TpV(f) for some p ∈ ℓ ∩ V(f).
In the same line of [Alu90], we define the point condition P p and the line condition
Lℓ as the hypersurfaces in P(Symd(W ∗)) consisting of the degree d hypersurfaces,
respectively, containing the point p and tangent to the line ℓ.

Lemma 1.1.3. The indeterminacy locus of the Hurwitz map Hu is precisely the
scheme-theoretic intersection of all line conditions, which in turn set-theoretically
agrees with the subset S0 ⊆ P(Symd(W ∗)) consisting of all non-reduced hypersurfaces,
i.e., those defined by a polynomial which is divisible by the square of some non-
constant polynomial.

Proof. Fixing a line ℓ ∈ Gr(2, W ), the polynomial Huf (ℓ) is a homogeneous degree
2(d − 1) polynomial in the coefficients of f . Its vanishing set agrees with Lℓ ⊆
P(Symd(W ∗)), hence for the first claim it is enough to see that Huf(ℓ), for fixed
ℓ, is irreducible as a polynomial in the coefficients of f . This is clearly a property
invariant under the action of PGLn, so we can consider the line ℓ = ⟨e0, e1⟩. Then
Huf (ℓ) is precisely the discriminant of the generic homogeneous degree d polynomial
in two variables x0, x1, and this is indeed known to be an irreducible polynomial of
degree 2(d − 1) if char(K) ̸= 2.
Set-theoretically, the indeterminacy locus of Hu consists of all [f ] such that Huf (ℓ) = 0
for all lines ℓ. In this case, the singular locus of the closed subscheme V(f) ⊆ P(W )
must have codimension 0, otherwise the general line would avoid the singular locus of
V(f) and would intersect V(f) transversally in d distinct smooth points by Bertini’s
theorem. But the singular locus of V(f) can only have codimension 0 if V(f) has
an everywhere non-reduced component, so f is divisible by the square of some
non-constant polynomial.
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Remark 1.1.4. The rational map induced by the linear system generated by all line
conditions in H0(P(Symd(W ∗)), O(2(d − 1))) is closely related to Hu. Composing
the former with a suitable linear embedding into |OGr(2,W )(d(d − 1))| gives the latter.

This allows us to present the following definition.

Definition 1.1.5. A 1-complete variety of degree d hypersurfaces is a morphism
π : Ṽ → P(Symd(W ∗)) from a smooth projective variety Ṽ which is an isomorphism
outside π−1(S0) resolving Hu, i.e., such that the intersection of the proper transforms
of all line conditions Lℓ in Ṽ is empty:

Ṽ

P(Symd(W ∗)) |OGr(2,W )(d(d − 1))|.

π
H̃u

Hu

An analogous construction for tangency with respect to s-dimensional planes instead
of lines would lead to the definition of s-complete varieties of degree d hypersurfaces.
In general, however, the intersection of all s-plane conditions set-theoretically agrees
with the subset of P(Symd(W ∗)) given by all degree d hypersurfaces with singular
locus of dimension ≥ n−s, by a Bertini type argument. For s ≥ 2, this set seems hard
to describe explicitly. For example, the case s = 2 yields the set of non-normal degree
d hypersurfaces which always contains the reducible and non-reduced hypersurfaces
as well as the hypersurfaces singular along a linear space of dimension n − 2. For
cubics, this is the full description by [LPS11, Lemma 2.4]. In general, however, there
can be more than these classes.

Theorem 1.1.6. We write V0 := P(Symd(W ∗)). Let Ṽ be a 1-complete variety of
degree d hypersurfaces as above and let F ⊆ V0 \ S0 be a locally closed subvariety.
Denote by F̃ ⊆ Ṽ the proper transform of the closure F and by L̃ℓ, P̃ p ⊆ Ṽ the line
and point conditions of Ṽ , i.e., the proper transforms in Ṽ of the irreducible hyper-
surfaces Lℓ, P p ⊆ V0 corresponding to line and point conditions of V0, respectively,
for the line ℓ ⊆ P(W ) and the point p ∈ P(W ).

(1) For any finite set of subvarieties A1, . . . , Ar ⊆ Ṽ , there exist a point p and a
line ℓ such that P̃ p and L̃ℓ both intersect every Ai properly, i.e., in the expected
dimension. In fact, this is the case for a general point and a general line.

(2) If r = dim(F ), there exist r lines ℓ1, . . . , ℓr such that the corresponding line
conditions in Ṽ intersect F̃ in finitely many points, mapping to F under π.
Again, this is the case for general lines ℓ1, . . . , ℓr.

(3) The number of elements of F , counted with multiplicity, passing through np

general points and tangent to nℓ general lines such that np + nℓ = dim(F )
equals the degree of the 0-cycle P̃ np · L̃nℓ · F̃ ∈ CH0(Ṽ ), where P̃ , L̃ denote the
cycle classes of any point and line condition P̃ p, L̃ℓ in Ṽ .

(4) Assume char(K) = 0. Then for sufficiently general points and lines, the
multiplicity of every element of F from (3) is 1.
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Proof. Both (2) and (3) follow from (1), the arguments being the same as in [Alu90,
Proposition 1]. For (1), we also mimic the strategy of loc. cit. and assume the
conclusion is false, i.e., there are subvarieties A1, . . . , Ar such that for every line ℓ, the
line condition L̃ℓ intersects non-properly at least one of the Ai. As L̃ℓ is an irreducible
hypersurface and all Ai are irreducible, this means that every line condition in Ṽ
contains at least one of the Ai. Pick a point pi ∈ H̃u(Ai) for each i = 1, . . . , r and
denote by Gℓ ⊆ |OGr(2,W )(d(d − 1))| the hyperplane given by all degree d(d − 1)
elements of the projective coordinate ring of Gr(2, W ) vanishing at ℓ. The coefficients
of the linear equation defining Gℓ are the monomials of degree d(d − 1) in the Plücker
coordinates evaluated at the line ℓ. Now, by construction, Hu(Lℓ \ S0) ⊆ Gℓ and
therefore H̃u(L̃ℓ) ⊆ Gℓ. In particular, every hyperplane Gℓ contains at least one of the
finitely many points pi. Dually, in P̌(H0(OGr(2,W )(d(d−1)))) this means that all points
corresponding to the hyperplanes Gℓ are contained in the finite union of hyperplanes
corresponding to the points pi. However, the set of points corresponding to the Gℓ is
the image of the d(d−1)-Veronese embedding Gr(2, W ) → P̌(H0(OGr(2,W )(d(d−1))))
and thus irreducible. Hence, this image would have to be contained in a single
hyperplane. In other words, switching back to the primal setting, there exists some
pi, say p1, that is contained in all hyperplanes Gℓ. Then p1 corresponds to a non-zero
element in the degree d(d − 1) part of the projective coordinate ring of Gr(2, W )
that, as a polynomial in the Plücker coordinates, must vanish at all lines in P(W ),
hence on all of Gr(2, W ). This, of course, is impossible.
Point (4) follows from [FKM83, Theorem (d), p. 162].

1.2 A 1-Complete Variety of Cubic Hypersurfaces
Let K be an algebraically closed field of characteristic ̸= 2, 3 and W a K-vector
space of dimension n + 1 with n ≥ 2. This section is dedicated to the construction
of a 1-complete variety of cubic hypersurfaces, starting from the projective space
V0 := P(Sym3(W ∗)) parametrizing the cubic hypersurfaces in P(W ), by blowing up
V0 five times along smooth centers. At each level except the first, the centers are
given by an irreducible component of the intersection of all proper transforms of the
line conditions.
We saw in the previous section that S0 coincides with the set of cubic hypersurfaces
divisible by the square of a non-constant polynomial. Hence, S0 is the image of the
morphism

ϕ0 : P(W ∗) × P(W ∗) −→ P(Sym3(W ∗)), ([λ], [µ]) 7→ [λµ2]. (1.1)

As ϕ0 is injective, S0 is a subvariety of P(Sym3(W ∗)) of dimension 2n. Let ∆ ⊆
P(W ∗) × P(W ∗) be the diagonal. We write B0 ⊆ V0 for the locus ϕ0(∆) of triple
hyperplanes. For brevity, we will often write Pn = P(W ∗). An immediate generaliza-
tion of [Alu90, Lemma 0.2] implies that the restriction of ϕ0 to Pn × Pn \ ∆ is an
isomorphism onto S0 \ B0.
The following result generalizes [Alu90, Lemma 0.1]. We will often use it without
explicit reference.
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Lemma 1.2.1. The line condition Lℓ ⊆ P(Sym3(W ∗)) corresponding to the line
ℓ ⊆ Pn is an integral degree 4 hypersurface. Let c ∈ Lℓ.

(1) Lℓ is smooth at c if and only if c does not contain ℓ and intersects ℓ with
multiplicity exactly 2 at some (unique) point. In particular, the line conditions
are generically smooth along the locus S0 of non-reduced cubics. More precisely,
Lℓ is smooth at [λµ2] ∈ S0 if and only if [λ] ̸= [µ] and ℓ does not intersect
λ ∩ µ.

(2) If c does not contain ℓ and intersects ℓ with multiplicity 3 at some (unique)
point, then Lℓ has multiplicity 2 at c. In particular, the line conditions have
multiplicity 2 generically along the locus B0 of triple hyperplanes.

(3) The tangent hyperplane to Lℓ at a smooth point c consists of the cubics
containing the unique point p of tangency of c to ℓ. The tangent cone in V0 to
Lℓ at a cubic c not containing ℓ and intersecting ℓ in the unique triple point p
is precisely the “doubled” hyperplane in V0 consisting of all cubics containing
p.

Proof. All claims are PGL-equivariant and can hence be checked for the line ℓ =
V(x2, x3, . . . , xn) ⊆ Pn. The equation defining Lℓ is

0 = − 27a2
(0,0,0)a

2
(1,1,1) + a2

(0,0,1)a
2
(0,1,1) − 4a(0,0,0)a

3
(0,1,1) − 4a3

(0,0,1)a(1,1,1)

+ 18a(0,0,0)a(0,0,1)a(0,1,1)a(1,1,1).
(1.2)

(This is precisely the discriminant of an inhomogeneous univariate cubic polynomial.)
A computation in Macaulay2 shows that the singular locus of Lℓ is set-theoretically
cut out by

0 = 9a(0,0,0)a(1,1,1) − a(0,0,1)a(0,1,1),

0 = a2
(0,0,1) − 3a(0,0,0)a(0,1,1),

0 = a2
(0,1,1) − 3a(0,0,1)a(1,1,1).

Assume now that c = a(0,0,0)x
3
0 + . . . + a(n,n,n)x

3
n is a cubic not containing ℓ and

tangent to ℓ at p. After acting by an element of PGL preserving ℓ we may assume
p = [0 : 1 : 0 : · · · : 0]. The scheme-theoretic intersection of ℓ and c is the subscheme
V(a(0,0,0)x

3
0 + . . . + a(1,1,1)x

3
1) of ℓ ∼= P1. By assumption, the homogeneous bivariate

polynomial a(0,0,0)x
3
0 + . . . + a(1,1,1)x

3
1 factors as x2

0(αx0 + βx1) for some [α : β] ∈ P1,
hence a(0,1,1) = a(1,1,1) = 0. Therefore, c lies in the singular locus of Lℓ if and only
if a(0,0,1) = 0. On the other hand, a(0,0,1) = 0 if and only if β = 0, i.e., if and only
if p is a triple point. If c is a smooth point of Lℓ, so a(0,0,1) ̸= 0, then computing
the partial derivatives of the defining equation of Lℓ above shows that the tangent
hyperplane of Lℓ at c is defined by a(1,1,1) = 0, so it consists precisely of all cubics
passing through p. If c is a singular point of Lℓ not containing ℓ, so that p is a
triple point of the intersection, then a(0,0,1) = a(0,1,1) = a(1,1,1) = 0 and so necessarily
a(0,0,0) ̸= 0 since c does not contain ℓ. In this case, dehomogenizing the defining
equation of Lℓ with respect to a(0,0,0) shows that the tangent cone at any such cubic
c is scheme-theoretically defined by a2

(1,1,1) = 0. This proves all claims.
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The next subsections explain in details the construction of a 1-complete variety of
cubic hypersurfaces. A schematic overview of this construction and the notation
employed is englobed in the following diagram:

V5

V4 B4 = P(E)

V3 B3 = S3 Bl∆ Pn × Pn

B2 V2 S2 Bl∆ Pn × Pn

B1 V1 S1 Bl∆ Pn × Pn

B0 = ν3(Pn) V0 = P(Sym3(W ∗)) S0 Pn × Pn

π5

π4

j4

π3

j3 ϕ3

j2

π2

ϕ2

j1

π1

ϕ1

j0

ϕ0

The above diagram is analogous to the one in [Alu90, p. 514]. The center of each blow-
up is denoted by Bi and we write Vi+1 := BlBi

Vi with blow-up map πi+1 : Vi+1 → Vi

for each i = 0, 1, 2, 3, 4. Moreover, for i ≤ 3 the proper transform of S0 in Vi is
denoted Si.

1.2.0 Cubic Hypersurfaces
By [a(0,0,0) : · · · : a(n,n,n)] we denote the generic homogeneous coordinate vector of
V0 = P(Sym3(W ∗)) (after choosing a basis of W ). In other words, a(i,j,k) is the
coefficient of the monomial xixjxk in the equation of the generic cubic in Pn, where
we assume i ≤ j ≤ k. We write [n] := {0, 1, . . . , n}. Let J0 be the set of multi-indices
(i, j, k) ∈ [n]3 with i ≤ j ≤ k. Let J ∗

0 := J0 \ {(0, 0, 0)}. Let J1 be the set of
multi-indices (i, j, k) ∈ [n]3 with i ≤ j ≤ k and j ≥ 1. Then, the affine chart
D(a(0,0,0)) of V0 is described by the affine coordinates (aI)I∈J ∗

0
. Moreover, in this

same chart the ideal I(B0) of the locus of triple hyperplanes in V0 is generated by
the polynomials (fJ)J∈J1 , where:

f(0,i,i) := 3a(0,i,i) − a2
(0,0,i), for i > 0,

f(0,i,j) := 3a(0,i,j) − 2a(0,0,i)a(0,0,j), for j > i > 0,

f(i,i,i) := 9a(i,i,i) − a(0,0,i)a(0,i,i), for i > 0, (1.3)
f(i,i,j) := 3a(i,i,j) − a(0,i,i)a(0,0,j), for i, j > 0, i ̸= j,

f(i,j,k) := 3a(i,j,k) − a(0,i,j)a(0,0,k), for k > j > i > 0.
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These polynomials will provide local coordinates for the first blow-up. Note that B0
is a smooth complete intersection of codimension

(
n+3

3

)
− 1 − n inside the chosen

affine chart.

1.2.1 First Blow-up
Let V1 = BlB0 V0 and denote by L1, P1 the proper transforms in V1 of a line condition
L and a point condition P , respectively.

Coordinates I. Let ((aI), [bJ ]) denote the coordinates on D(a(0,0,0)) × Pr−1, where
r =

(
n+3

3

)
− 1 − n is the codimension of B0 as subvariety of V0 and I ∈ J ∗

0 , J ∈ J1.
Then, by [Eis95, Exercise 17.14(b)], in this open chart the blow-up V1 is the closed
subscheme of the product defined by

fJ1bJ2 − fJ2bJ1 = 0,

where J1, J2 ∈ J1. In the affine open chart D(a(0,0,0)) ∩ D(b(0,1,1)), introducing a new
variable a′, the blow-up V1 can be described by

a′ − f(0,1,1) = 0, fJ − bJa′ = 0, for all J ∈ J ∗
1 := J1 \ {(0, 1, 1)}.

Hence, this open chart of V1 is described by the coordinates (a(0,0,1), . . . , a(0,0,n), a′, bJ)
with J ∈ J ∗

1 , subject to no more conditions. In particular, this open chart of V1
is just an affine space. The equation for the exceptional divisor E1 in this chart is
a′ = 0.

Denote by NP(W ∗)P(Symd(W ∗)) the normal bundle of the d-th Veronese embedding
νd : P(W ∗) ↪→ P(Symd(W ∗)), [λ] 7→ [λd].

Lemma 1.2.2. Let e ≤ d and assume char(K) = 0 or char(K) > d. Then there is
an embedding of normal bundles

αe,d : NP(W ∗)P(Syme(W ∗)) ↪→ NP(W ∗)P(Symd(W ∗)),

given by “multiplication by λd−e” in the fiber over [λ] ∈ P(W ∗).

Proof. We write R := Sym•(W ) = K[x0, . . . , xn] after choosing a basis of W . The
pullback of the Euler sequence on P(Symd(W ∗)) via νd is

0 → OP(W ∗)
ν∗

d (ε)
→ Symd(W ∗) ⊗ OP(W ∗)(d) → TP(Symd(W ∗))|P(W ∗) → 0,

where ν∗
d(ε) is induced by the graded R-module homomorphism

R → Symd(W ∗) ⊗K R(d), f 7→
∑

|I|=d

(
d

I

)
eI ⊗ (xIf) = f · (e0 ⊗ x0 + . . . + en ⊗ xn)d,

where e0, . . . , en is the basis of W ∗ dual to that of W . (Note that the “diagonal”∑n
i=0 ei ⊗ xi is invariant under change of basis since it corresponds to the identity

map under the isomorphism W ∗ ⊗ W ∼= HomK(W, W ).) The fiber of ν∗
d(ε) over λ is
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therefore just multiplication by λd = (λ0e0 + . . . + λnen)d. More generally, there is a
commutative diagram with exact rows

0 OP(W ∗) W ∗ ⊗ OP(W ∗)(1) TP(W ∗) 0

0 OP(W ∗) Syme(W ∗) ⊗ OP(W ∗)(e) TP(Syme(W ∗))|P(W ∗) 0

0 OP(W ∗) Symd(W ∗) ⊗ OP(W ∗)(d) TP(Symd(W ∗))|P(W ∗) 0.

α1,e α1,e=dνe

αe,d αe,d

In here, αe,d is induced by the graded R-module homomorphism which is multipli-
cation by (e0 ⊗ x0 + . . . + en ⊗ xn)d−e. It can be checked that α1,e = dνe is the
differential of the e-th Veronese embedding. Then αe,d induces the embedding of
normal bundles we are looking for.

For us, e = 2, d = 3. The exceptional divisor is E1 ∼= P(NP(W ∗)P(Sym3(W ∗))) and
we call B1 the image of P(α2,3) in E1. The proper transform of S0 in V1 will be
denoted by S1.

Proposition 1.2.3. The intersection of the proper transforms of all line conditions
in V1 set-theoretically agrees with the union S1 ∪ B1.

Proof. It is enough to check that the intersection of the proper transforms of all line
conditions and E1 equals B1. The intersection of the proper transform L1 of a line
condition L with the fiber over [λ3] ∈ B0 is the image of the tangent cone of L at
the point [λ3] in the projectivized normal bundle P(NB0V0). By definition of α2,3
in Lemma 1.2.2, the fiber of B1 over [λ3] consists of all cubics divisible by λ. Now,
Lemma 1.2.1(3) implies that the intersection of all tangent cones at [λ3] of all line
conditions is contained in the set of cubics containing the hyperplane λ. This proves
that the intersection of E1 with all line conditions in V1 is contained in B1. On the
other hand, every individual L̃ℓ contains a non-empty open of B1 and hence all of
B1, proving equality.

Lemma 1.2.4. The natural action of PGLn+1 = GLn+1 /K× on the exceptional
divisor e ⊆ Bl∆ Pn × Pn is transitive.

Proof. We have e = P(N∆Pn × Pn) = P(T∆); an isomorphism N∆Pn × Pn ∼= T∆
is provided for example by the difference of the differentials of the projections
dpr1 − dpr2. Fix now two points [λ], [µ] ∈ ∆ and two non-zero normal vectors
(v1, v2) ∈ N∆Pn × Pn|[λ] and (w1, w2) ∈ N∆Pn × Pn|[µ]. These two normal vectors
are represented by two curves A1 → Pn × Pn, t 7→ ([λ + tv1], [λ + tv2]) and t 7→
([µ+ tw1], [µ+ tw2]), respectively. We then only need to find A ∈ GLn+1 with Aλ = µ
and A(v1 − v2) = w1 − w2. Such an A exists if v1 − v2 is not a multiple of λ and
w1 − w2 is not a multiple of µ. Both conditions are satisfied by the requirement that
both (v1, v2) and (w1, w2) are non-zero normal vectors.
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Lemma 1.2.5. We have a commutative diagram

Bl∆ Pn × Pn S1 V1

Pn × Pn S0 V0,

ϕ1
∼=

ϕ0

where ϕ1 is an isomorphism. In particular, S1 is smooth.

Proof. We write e for the exceptional divisor of Bl∆ Pn × Pn. The map ϕ0 lifts to a
map ϕ1 : Bl∆ Pn × Pn → S1 via the universal property of blowing up. Indeed, it can
be checked that the pullback of the ideal sheaf I(B0) via ϕ0 is precisely the squared
ideal sheaf I(∆)2 of the diagonal ∆ ⊆ Pn ×Pn, in particular the pullback of I(B0) to
Bl∆ Pn ×Pn defines an effective Cartier divisor, as needed. Clearly, ϕ1 restricts to an
isomorphism of Bl∆ Pn × Pn \ e onto S1 \ E1. As Bl∆ Pn × Pn and S1 are projective
varieties, ϕ1 is a closed map, so surjectivity follows. In order to prove the injectivity of
ϕ1 we observe that ϕ0 is an injective morphism between varieties over an algebraically
closed field, hence ϕ0 is universally injective. Base-changing ϕ0 along the blow-up
map π1 : V1 → V0 hence gives an injection (Pn×Pn)×V0 V1 → V1. The blow-up closure
lemma ensures that Bl∆ Pn × Pn is naturally a closed subscheme of (Pn × Pn) ×V0 V1,
and the composition Bl∆ Pn×Pn → V1 agrees with ϕ1, showing that ϕ1 is injective. By
[Har95, Corollary 14.10], it remains to show that (dϕ1)p : Tp(Bl∆ Pn ×Pn) → Tϕ1(p)V1
is injective for all p in the exceptional divisor e of Bl∆ Pn × Pn. This matter is local
and invariant under the PGL-action, so we may choose any point p in the fiber over
([1 : 0 : · · · : 0], [1 : 0 : · · · : 0]) ∈ ∆ by Lemma 1.2.4. Choose local coordinates

([1 : λ1 : · · · : λn], [1 : µ1 : · · · : µn]) ∈ Pn × Pn.

The equations for ∆ are ui := λi − µi = 0 for all i ∈ {1, . . . , n}. Thus, Bl∆ Pn ×Pn is
described by the points (µ1, . . . , µn, u1, . . . , un, [s1, . . . , sn]) such that uisj − ujsi = 0
for all i, j. In the affine chart D(s1), the morphism ϕ1 is given explicitly in the affine
coordinates (µ1, . . . , µn, u1, s2, . . . , sn) by

a(0,0,1) = 3µ1 + u1,

a(0,0,i) = 3µi + siu1, for i > 1,

a′ = −u2
1,

b(0,i,i) = s2
i , for i > 1,

b(1,i,i) = 2µisi, for i > 1,

b(1,1,i) = 2µ1si, for i > 1,

b(1,1,1) = 2µ1,

b(0,1,i) = 2si, for i > 1,

b(0,i,j) = 2sisj, for j > i > 1,

b(i,i,i) = 2µis
2
i , for i > 1,

b(i,i,j) = 2µisisj, for i, j > 1, i ̸= j,

b(i,j,k) = 2sk(µisj + µjsi), for k > j > i > 0.
The exceptional divisor e now has equation u1 = 0. This explicit description of ϕ1
allows us to conclude the proof by checking the non-degeneracy of the Jacobian at
every point. Indeed, the 2n row vectors in the Jacobian corresponding to a(0,0,i) for
1 ≤ i ≤ n, to b(0,1,i) for 2 ≤ i ≤ n and to b(1,1,1) are linearly independent.

Lemma 1.2.6. The set-theoretic intersection of B1 and S1 is ϕ1(e). Moreover, the
proper transforms of the line conditions are generically smooth along B1 and tangent
to E1 along B1.
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Proof. Since ϕ1 is an isomorphism, we have ϕ1(e) = S1 ∩ E1 and it suffices to show
ϕ1(e) ⊆ B1. By PGL-equivariance, it suffices to prove the inclusion for the fiber in
E1 over [x3

0] ∈ B0. Using the coordinates described above, the intersection of this
fiber with B1 in V1 is described by the equations a(0,0,i) = 0 for all 1 ≤ i ≤ n, a′ = 0
and bJ = 0 for all those multi-indices J ∈ J ∗

1 with first entry non-zero. The explicit
description of ϕ1 shows that the image of the fiber of ([1 : 0 : · · · : 0], [1 : 0 : · · · :
0]) ∈ Pn × Pn satisfies all these equations, proving the claim.
Again by PGL-invariance we can verify the second claim for the line ℓ = V(x2, . . . , xn).
In our affine open chart D(a(0,0,0))∩D(b(0,1,1)) the equation for the proper transform of
the line condition Lℓ is as follows. We start with (1.2) and plug in 3a(0,1,1) = a′+a2

(0,0,1)
and 27a(1,1,1) = 3b(1,1,1)a

′ + a(0,0,1)(a′ + a2
(0,0,1)), obtaining

(a′)2(12b(1,1,1)a(0,0,1) − 4a2
(0,0,1) − 4a′ − 9b2

(1,1,1)) = 0.

Outside of E1 this describes the proper transform Lℓ
1 whose equation is therefore

−4a′ − (3b(1,1,1) − 2a(0,0,1))2 = 0. Since the equation of E1 in the local coordinates
is a′ = 0, every point of E1 belonging to the proper transform is indeed a tangency
point. Moreover, the equation shows that the proper transform is smooth in this
entire chart.
There is a slightly technical but important point here in that the affine open chart
D(a(0,0,0)) ∩ D(b(0,1,1)) intersects the fiber over [x3

0] ∈ B0 in every rank locus of
B1|[x3

0] = P(Sym2(W ∗)/⟨x0 · W ∗⟩), the quadrics on {x0 = 0}. Since the orbits of the
PGL-action on B1 = P(NP(W ∗)P(Sym2 W ∗)) are precisely the rank loci (across the
fibers), we deduce that for every point p ∈ B1 there is a line ℓ such that L̃ℓ is smooth
at p and we have TpL̃ℓ = TpE1 as subspaces of TpV1.

Lemma 1.2.7. The ideal of B1 ⊆ V1 in the open chart D(a(0,0,0)) is generated by
the equations

fJ = 0, for J ∈ J1

f ′
(i,i,i) := 3b(i,i,i) − 2a(0,0,i)b(0,i,i) = 0, for i > 0,

f ′
(i,i,j) := 3b(i,i,j) − a(0,0,i)b(0,i,j) = 0, for i, j > 0, i ̸= j,

f ′
(i,j,k) := 3b(i,j,k) − a(0,0,i)b(0,j,k) − a(0,0,j)b(0,i,k) = 0, for k > j > i > 0.

In the chart D(a(0,0,0)) ∩ D(b(0,1,1)), the first set of equations can be replaced simply
by a′ = 0. These equations clearly form a regular sequence, in fact they define
smooth hypersurfaces intersecting transversally everywhere in the chart.

Proof. From the commutative diagram in the proof of Lemma 1.2.2, the fiber over
[λ3] ∈ B0 of the normal bundle can be naturally identified with the vector space
Sym3(W ∗)/⟨λ2x0, . . . , λ2xn⟩. Any k ∈ Sym3(W ∗)/⟨λ2x0, . . . , λ2xn⟩ can be uniquely
written as a cubic not containing any monomial divisible by x2

0, so we may uniquely
write k = k(0,1,1)x0x

2
1 + . . . + k(n,n,n)x

3
n, and this normal vector is represented by the

germ at 0 of the affine line

A1 → D(a(0,0,0)) ⊆ V0, t 7→ λ3 + t · k.
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Note that the a(0,0,i) coordinate of the latter equals 3λi for all i ≥ 1. The proper
transform of the curve therefore has the coordinates

b(i,j,k) = k(i,j,k) − λkk(0,i,j), for k > j > i > 0,

b(i,i,j) = k(i,i,j) − λjk(0,i,i), for i, j > 0, i ̸= j,

b(i,i,i) = 3k(i,i,i) − λik(0,i,i), for i > 0,

b(0,i,j) = k(0,i,j), for j ≥ i > 0.

On the other hand, it is easy to see that the cubic k is divisible by λ = x0 + λ1x1 +
. . . + λnxn if and only if k satisfies the equations

k(i,j,k) = λik(0,j,k) + λjk(0,i,k) + λkk(0,i,j), for k > j > i > 0,

k(i,i,j) = λjk(0,i,i) + λik(0,i,j), for i, j > 0, i ̸= j,

k(i,i,i) = λik(0,i,i), for i > 0.

The claim can be deduced directly from this.

Lemma 1.2.8. Write N2 := NP(W ∗)P(Sym2(W ∗)) and N3 := NP(W ∗)P(Sym3(W ∗))
and let p1 : B1 → B0 be the restriction of the canonical map from the projective
bundle E1 = P(NB0V0) to its base B0 ∼= P(W ∗). Then there is a natural isomorphism

NB1E1 ∼= p∗
1(N3/N2) ⊗OB1

OB1(1)

∼= p∗
1

(
Sym3(W ∗) ⊗ OP(W ∗)(3)
Sym2(W ∗) ⊗ OP(W ∗)(2)

)
⊗ OB1(1)

∼= p∗
1(Sym3(TP(W ∗))) ⊗ OB1(1).

Hence, over a point ([λ], [q]) ∈ B1, the normal space NB1E1|([λ],[q]) is naturally identified
with Sym3(W ∗)/(λ · Sym2(W ∗)). Points in B2 can be thought of as triples consisting
of a hyperplane λ together with a quadric q and a cubic c inside λ.

Proof. The first isomorphism is given by [EH16, Proposition 9.13]. The Euler
sequences for TP(W ∗), TP(Sym2(W ∗)), TP(Sym3(W ∗)) then give the second and
third equality.

1.2.2 Second Blow-up
Let V2 := BlB1 V1. This is smooth because so is B1. We denote π2 : V2 → V1 the
blow-up map, and respectively Ẽ1, S2, P2, L2 the proper transforms of E1, S1, P1, L1.
Moreover, we define B2 := Ẽ1 ∩ E2 ∼= P(NB1E1), where E2 denotes the exceptional
divisor in V2.

Coordinates II. Let (a(0,0,1), . . . , a(0,0,n), a′, bJ , [ca, cH ]) denote the coordinates for
the product

(
D(a(0,0,0)) ∩ D(b(0,1,1))

)
× Pr−1, where r =

(
n+3

3

)
−
(

n+2
2

)
+ 1 is the

codimension of B1 as subvariety of V1 and J ∈ J ∗
1 . Here, ca denotes a single variable

and cH is the set of variables indexed by J2 := {(i, j, k) ∈ [n]3 : 1 ≤ i ≤ j ≤ k}. Let
also J ∗

2 := J2 \ {(1, 1, 1)}.
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Thanks to Lemma 1.2.7, the blow-up V2 in the open chart D(a(0,0,0)) ∩ D(b(0,1,1)) is
the closed subvariety of the product given by

caf ′
H − a′cH = 0, cH1f ′

H2 − cH2f ′
H1 = 0,

for all H, H1, H2 ∈ J2. In the affine open chart of V2 given by D(c(1,1,1)), these
equations simplify to

caf ′
(1,1,1) − a′ = 0, cHf ′

(1,1,1) − f ′
H = 0,

where H ∈ J ∗
2 . Introducing the new variable b′ := f ′

(1,1,1), this affine open of V2 has
affine coordinates (a(0,0,i), b(0,j,k), b′, ca, cH) with H ∈ J ∗

2 subject to no relations. In
these coordinates, the equation for E2 in V2 becomes b′ = 0 and the equation for the
proper transform Ẽ1 becomes ca = 0.

Lemma 1.2.9. The intersection of the proper transforms of all line conditions in V2
set-theoretically agrees with S2 ∪ B2, where B2 = Ẽ1 ∩ E2 is smooth.

Proof. The variety S2 is clearly a component of the intersection. By Lemma 1.2.6, the
line conditions in V1 are generically smooth along B1 and generically tangent to E1
along B1. Hence, the intersection of the proper transforms of the line conditions with
the exceptional divisor E2 is contained in Ẽ1. On the other hand, every line condition
in V2 contains a non-empty open of B2 and hence all of B2, proving equality.

A similar reasoning as in Lemma 1.2.5 shows also the following.

Lemma 1.2.10. The lift ϕ2 : Bl∆ Pn × Pn → V2 of ϕ1 is explicitly given by

a(0,0,1) = 3µ1 + u1,

a(0,0,i) = 3µi + siu1, for i > 1,

b(0,i,i) = s2
i , for i > 1,

b(0,1,i) = 2si, for i > 1,

b(0,i,j) = 2sisj, for j > i > 1,

b′ = −2u1,

ca = u1/2,

c(1,1,i) = si, for i > 1,

c(1,i,i) = s2
i , for i > 1,

c(i,i,j) = s2
i sj, for i, j > 1,

c(i,i,i) = s3
i , for i ̸= 0, 1,

c(i,j,k) = 2sisjsk, for k > j > i > 0.

By Lemma 1.2.6, the set-theoretic intersection of S1 with B1 is given by ϕ1(e).
Scheme-theoretically, S1 ∩ B1 = ϕ1(e)2, i.e., the ideal sheaf is the square of the ideal
sheaf of the reduced divisor ϕ1(e). It follows that S2 is isomorphic to S1, hence to
Bl∆ Pn × Pn. Abusing notation, we will indicate with e the exceptional divisor of
Bl∆ Pn × Pn as well as all its isomorphic images under the maps ϕi.

Lemma 1.2.11. The following hold:

(1) Scheme-theoretically, S2 ∩ B2 = e.

(2) The line conditions in V2 are generically smooth along B2.
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Proof. The first claim follows from Lemma 1.2.10 above using the PGL-action since
B2 is defined by ca = b′ = 0 in the chosen chart. For the second claim, observe that
the line conditions in V1 are generically smooth along B1. The claim then follows
from the fact that the blow-up of a smooth variety along a smooth center is again
smooth.

Remark 1.2.12. We denote by B2|[λ,q] the fiber of B2 over [λ] ∈ B0 and [q] ∈ B1|[λ] =
P(Sym2(W ∗)/(λ · W ∗)). Every element k ∈ B2|[λ,q] ∼= P(Sym3(W ∗)/(λ · Sym2(W ∗)))
is naturally a cubic on λ. In the chart D(a(0,0,0)), its defining equation can be uniquely
written (up to scaling) in the form k = k(1,1,1)x

3
1 + k(1,1,2)x

2
1x2 + . . . + k(n,n,n)x

3
n, not

containing any monomial divisible by x0. These coefficients are identified with the
projective coordinates [ca, cH ] in Remark 1.2.2 via ca = 0 and kH = 3cH for those
H ∈ J2 with at least two entries in H = (i, j, k) being distinct, and k(i,i,i) = c(i,i,i)
for all i ≥ 1.
Importantly, S2 ∩ B2 consists of all triples ([λ], [q], [k]) = ([λ], [g2], [g3]) for some
hyperplane [g] ∈ P(W ∗/λ) on λ. Inside our chart this follows in coordinates from
the above together with the explicit description of ϕ2 in Lemma 1.2.10. Using the
PGL-action we can deduce the statement everywhere.

Proposition 1.2.13. Let λ := ([λ], [q], [k]) be a point of B2, i.e. a hyperplane λ
together with a quadric q on λ and a cubic k on λ. Consider the line condition Lℓ

2 in
V2 corresponding to a line ℓ ⊆ P(W ). Then:

(1) The line ℓ intersects λ in the quadric q if and only if Lℓ
2 is tangent to E2 at λ.

(2) The line ℓ intersects λ in the cubic k if and only if Lℓ
2 is tangent to Ẽ1 at λ.

Here, by tangency we mean that the tangent space of E2 (respectively Ẽ1) at λ is
contained in that of Lℓ

2, hence they agree whenever the latter is smooth at λ.

Proof. We can assume the hyperplane λ to be V(x0) and ℓ the line V(x1, x3, . . . , xn).
By plugging in the equations c(1,2,2)b

′ −3b(2,2,2) +2a(0,0,2)b(0,2,2) = 0 and a′ −cab′ = 0 in
the equation of the proper transform of the line condition in V1, we get the equation
for Lℓ

2 in local coordinates in V2 as

4b3
(0,2,2)ca + c2

(2,2,2)b
′ = 0.

From Lemma 1.2.7 we get that the quadrics on λ intersecting ℓ are given by the
equation b(0,2,2) = 0. Moreover, from Remark 1.2.12 it follows that the cubics on λ
intersecting ℓ are given by the equation c(2,2,2) = 0. The statements on the tangency
to E2 and Ẽ1 follow from these equations.

Remark 1.2.14. We can notice that if the line ℓ is not contained in λ and does not
intersect q and k in a common point, then the line condition Lℓ is smooth at λ. This
is clear from the proof of the previous lemma when λ = x0 and ℓ = V(x1, x3, . . . , xn).
The claim then follows by PGL-invariance.
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1.2.3 Third Blow-up
Let V3 := BlB2 V2 with exceptional divisor E3 and blow-up map π3 : V3 → V2. We
denote by L3 the proper transform in V3 of the a line condition L2 ⊆ V2 and by S3
the proper transform of S2.

Coordinates III. In the chosen chart for V2 the subvariety B2 is defined by b′ = ca =
0. Consider the product

(
D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1))

)
× P1 with coordinates

(a(0,0,i), b(0,j,k), b′, ca, cH , [dc, db]). The blow-up of B2 in the chosen chart of V2 can be
described as the subvariety of the product given by

b′dc = dbca.

In the affine chart D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) of V3 we can work with
the coordinates (a(0,0,i), b(0,j,k), ca, cH , db) subject to no relations. The exceptional
divisor E3 is cut out by ca = 0 in this chart. (In the chart using D(db) instead, E3
would be cut out by b′ = 0.)

Remark 1.2.15. The line condition Lℓ
3 corresponding to ℓ := V(x1, x3, . . . , xn) has

equation
4b3

(0,2,2) + c2
(2,2,2)db = 0.

Therefore, every other line condition obtained from this one by elements of PGL
preserving the chart of V3 will be of the form

4f(bJ)3 + g(cH)2db = 0,

where f is a linear function in the bJ coordinates and g is a linear function in the cH

coordinates.

We now prove that the intersection of all line conditions coincides with S3.

Proposition 1.2.16. The intersection of all line conditions in V3 is supported on
the smooth variety S3 only.

Proof. Clearly, S3 is an irreducible component of the intersection. To see that
it is the only one, recall that B2 = E2 ∩ Ẽ1 = P(NB1E1) has codimension 2 in
V2. The exceptional divisor E3 = P(NB2V2) is therefore a P1-bundle over B2. By
λ := ([λ], [q], [k]) we denote again a point in B2, i.e., a hyperplane λ together with a
quadric q on λ and a cubic k on λ. Thanks to Remark 1.2.14, a general line condition
in V2 is smooth at λ ∈ B2, has codimension 1 in V2, and contains B2. Its proper
transform intersects the fiber of P(NB2V2) over λ in at most one point. We need
to check that all points of the intersection of E3 with all line conditions in V3 is
contained in the fibers over B2 ∩ S2 = ϕ2(e).
As Ẽ1 and E2 are smooth and intersect transversally everywhere, their proper
transforms in V3 cut the fiber of E3 over any λ ∈ B2 in two different points r1 and
r2, respectively. From Proposition 1.2.13 it follows that if a line ℓ intersects q, then
the line condition Lℓ

3 contains r2, while if ℓ intersects k, then the line condition Lℓ
3

contains the point r1.
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We claim that in order for the line conditions to intersect over λ we must have q = gh
and k = gh2 where g, h are linear forms on the hyperplane λ. In fact, suppose there
is a point of q which is not in k. Then, we can take a line ℓ in Pn passing through
that point and not contained in λ. Thanks to Remark 1.2.14, the line condition Lℓ

2
is smooth at λ and Lℓ

3 intersects the fiber over λ in a unique point, necessarily in r2.
Take now another line condition Lℓ′

2 in V2 such that the line ℓ′ does not intersect the
cubic nor the quadric. The line condition Lℓ′

2 is a hypersurface which is smooth at λ
and contains B2. If its proper transform intersects the fiber over λ in r2, then Lℓ′

2 is
tangent to E2, and by Proposition 1.2.13 it would have to intersect the quadric, so
this is impossible.
Similarly, we can show that there is no point of q which is not in k. Hence, we proved
that in order for the line conditions to intersect over λ we must have V(q) = V(k)
set-theoretically. But this is equivalent to q = gh and k = gh2 with g, h linear forms
on the hyperplane λ.
By Remark 1.2.12, we just have to show that g = h. It is enough to show this for
λ = x0 because the locus B2 ∩ S2 is invariant under the induced PGL-action on V2.
Consider the point x0 = ([x3

0], [q], [k]), where

q = (g1x1 + · · · + gnxn)(h1x1 + · · · + hnxn),
k = (g1x1 + · · · + gnxn)(h1x1 + · · · + hnxn)2

are, respectively, the quadric and the cubic on the hyperplane x0 = 0.
After acting by a suitable element of PGL preserving x0 = 0, we may assume
x0 belongs to our chart D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ⊆ V2. In particular,
g1 ̸= 0 ̸= h1, so after rescaling g1 = h1 = 1.
We claim that for every index i ≥ 2 we have gi = 0 ⇔ hi = 0. Suppose to the
contrary that there is an i ≥ 2 such that hi = 0 and gi ̸= 0 or conversely. Consider the
family of line conditions Lℓt

2 in V2 for the lines ℓt = V(x1 − t−1xi, x2, . . . , x̂i, . . . , xn)
with t ∈ K \ {0}. The equation of Lℓt

2 is

4(t2b(0,i,i) − tb(0,1,i) + 1)3ca + (t3c(i,i,i) − 3t2c(1,i,i) + 3tc(1,1,i) − 1)2b′ = 0

in the chosen affine chart. The proper transform Lℓt
3 then intersects the fiber over x0

in E3 in the point

[−(1 − 3tc(1,1,i)(x0) + 3t2c(1,i,i)(x0))2 : 4(1 − tb(0,1,i)(x0))3]
= [−(1 − tgi + t2h2

i )2 : 4(1 − t(gi + hi))3].

If gi ≠ 0 but hi = 0, it is clear that these would give different points in P1 for different
values of t which means that the intersection of all line conditions above x0 is empty.
If gi = 0 but hi ̸= 0, a short computation shows that the same conclusion holds using
(1 − t2h2

i ) = (1 − thi)(1 + thi). So indeed gi = 0 ⇔ hi = 0 for all i ≥ 2.
Finally, assume there is some i ≥ 2 with gi ̸= 0 ̸= hi. We want to show gi = hi. For
this, consider the line condition Lxi

2 in V2 corresponding to the line given by the
vanishing of all coordinates except for x0 and xi. Its equation is

4b3
(0,i,i)ca + c2

(i,i,i)b
′ = 0
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in the chosen chart. By assumption, b(0,i,i)(x0) = gihi ̸= 0 ̸= gih
2
i = c(i,i,i)(x0).

Letting t tend to zero, the intersection point in P1 for the above family of line
conditions tends to [−1 : 4] ∈ P1, so if the intersection of all line conditions above x0
is non-empty, then every line condition must intersect in the same point, necessarily
in [−1 : 4] by continuity. In particular, we must have

[−1 : 4] = [−(c(i,i,i)(x0))2 : 4(b(0,i,i)(x0))3] ⇔ g2
i h4

i = g3
i h3

i ,

and therefore gi = hi. This proves g = h.

The second part of the last proof where we show g = h seems to be absent from the
proof of [Alu90, Proposition 3.2]. I am unsure whether this is a (minor) gap or I
have missed an insight which would shorten the argument.
Since S3 will be the next center for the blow-up, we write B3 := S3. From
Lemma 1.2.11 we deduce B3 = S3 ∼= S2. The isomorphism ϕ2 : Bl∆ Pn × Pn → S2
defined in Lemma 1.2.10 lifts to the following map.

Lemma 1.2.17. The lift ϕ3 : Bl∆ Pn × Pn → V3 of ϕ2 in the affine open chart is
given by:

a(0,0,1) = 3µ1 + u1,

a(0,0,i) = 3µi + siu1, for i > 1,

b(0,i,i) = s2
i , for i > 1,

b(0,1,i) = 2si, for i > 1,

b(0,i,j) = 2sisj, for j > i > 1,

ca = u1/2,

c(1,1,i) = si, for i > 1,

c(1,i,i) = s2
i , for i > 1,

c(i,i,j) = s2
i sj, for i, j > 1,

c(i,j,k) = 2sisjsk, for k > j > i > 0,

db = −4.

From ϕ3 we get local equations for B3 ⊆ V3 as follows.

Remark 1.2.18. The equations

db + 4 = 0,

g(0,1,i) := b(0,1,i) − 2c(1,1,i) = 0, for i > 1,

g(0,i,i) := b(0,i,i) − c2
(1,1,i) = 0, for i > 1,

g(0,i,j) := b(0,i,j) − 2c(1,1,i)c(1,1,j) = 0, for j > i > 1,

g(1,i,i) := c(1,i,i) − c2
(1,1,i) = 0, for i > 1,

g(i,i,j) := c(i,i,j) − c2
(1,1,i)c(1,1,j) = 0, for i, j > 1,

g(i,j,k) := c(i,j,k) − 2c(1,1,i)c(1,1,j)c(1,1,k) = 0, for k > j > i > 0,

cut out B3 in the affine open chart. Clearly, these equations define smooth hypersur-
faces intersecting transversally everywhere in the chart, in particular B3 is a complete
intersection of codimension

(
n+3

3

)
− 1 − 2n in the chart.
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1.2.4 Fourth Blow-up
Recall that B3 = S3. Let V4 := BlB3 V3. We write E4 for the exceptional divisor and
π4 : V4 → V3 for the blow-up map.

Coordinates IV. In the chosen affine chart of V3 the base locus B3 is cut out by
the equations in Remark 1.2.18. Consider(

D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc)
)

× P(n+3
3 )−2n−2

with coordinates (a(0,0,i), b(0,j,k), ca, cH , db, [ed, eF ]), where ed is a single variable and
F runs through J4 := {(i, j, k) ∈ [n]3 : i ≤ j ≤ k} \ {(0, 0, k), (1, 1, k), (0, 1, 1)}.
Moreover, let J ∗

4 := J4 \ {(0, 1, 2)}. The blow-up of V3 along B3 in the chosen affine
chart can be described as the subvariety determined by

edgF − (db + 4)eF = 0, for F ∈ J4,

eF1gF2 − gF1eF2 = 0, for F1, F2 ∈ J4.

In the affine chart D(a(0,0,0)) ∩ D(y(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) ∩ D(e(0,1,2)) of V4,
introducing the new variable e′ = g(0,1,2), we can work with the coordinates

(a(0,0,1), . . . , a(0,0,n), ca, c(1,1,2), . . . , c(1,1,n), ed, eF , e′)

with F ∈ J ∗
4 subject to no relations. The exceptional divisor E4 is cut out by e′ = 0

in this chart.

Proposition 1.2.19. The intersection of all line conditions in V4 is supported on
a smooth subvariety B4 of codimension

(
n+2

3

)
inside E4. More precisely, B4 = P(E)

where E is a vector subbundle of rank
(

n
2

)
of the normal bundle NB3V3 .

Proof. We generalize the proof of [Alu90, Proposition 4.1]. Let Rµ ⊆ V0 denote the
subvariety of cubics containing the hyperplane µ. Clearly, Rµ

∼= P(Sym2(W ∗)) is
smooth. By Lemma 1.2.1, a line condition Lℓ is smooth at [λµ2] ∈ S0 \ B0 if the line
ℓ intersects µ in a single point outside λ. Clearly, T[λµ2]Rµ ⊆ T[λµ2]L

ℓ for every line ℓ,
and Lemma 1.2.1 shows that ⋂

ℓ⊆P(W )
T[λµ2]L

ℓ = T[λµ2]Rµ.

Clearly, for any fixed point [λµ2] ∈ B3 \ e ∼= S0 \ B0, finitely many line conditions
suffice for the intersection of their tangent spaces to agree with T[λµ2]Rµ, and for
these finitely many line conditions the same will be true in an open neighbourhood
of [λµ2].
Now, by Proposition 1.2.16, the intersection of the proper transforms Lℓ

3 in V3 for
all lines ℓ agrees set-theoretically with S3 = B3. The proper transforms Lℓ

4 in V4
therefore only intersect in the exceptional divisor E4. We claim that their intersection
is precisely the projectivization of a vector subbundle E ⊆ NB3V3. We construct E as
the intersection of the images of the tangent sheaves T Lℓ

3|B3 in NB3V3 corresponding

25



to finitely many lines ℓ. The finiteness will ensure that the resulting subsheaf E of
NB3V3 is coherent.
First, we pick finitely many lines such that the intersection of the tangent spaces
over every point [λµ2] ∈ B3 \ e agrees with T[λµ2]Rµ. The finiteness can be achieved
by the quasi-compactness of B3 \ e. The intersection of the images of the tangent
sheaves in NB3V3 of these line conditions then defines a coherent subsheaf E ′ which
restricts to a vector subbundle over B3 \ e. More precisely, by construction

E ′|[λµ2]
∼= T[λµ2]Rµ/T[λµ2]S0 ⊆ NB3V3|[λµ2]

for the geometric fiber of E ′ over the point [λµ2] ∈ B3 \ e. In particular, the rank of
E ′ over B3 \ e is r =

(
n+2

2

)
− 2n − 1 =

(
n
2

)
. Moreover, by Lemma 1.2.1 and a Zariski

closure argument, every other line condition Lℓ
4 contains P(E ′|B3\e).

Next, we fix a point p ∈ e = B3 ∩E3 lying in our affine open chart. By Remark 1.2.15,
in the chosen chart the equation for Lℓ

3 with ℓ any line passing through the point
[1 : 0 : · · · : 0] does not depend on the variable ca, and the equation determining E3
in V3 is exactly ca = 0. The transversality of such line conditions can therefore be
checked outside of E3 and hence in S0 \ B0. Now, by Lemma 1.2.1, for any point
[λµ2] ∈ B3 \ e in our chart we even have⋂

[1:0:···:0]∈ℓ

T[λµ2]L
ℓ = T[λµ2]Rµ

because the locus of tangency of ℓ and λµ2 (in case ℓ is not contained in the latter)
is the unique point in ℓ ∩ µ. Hence, we achieve the last equation already by running
through all lines ℓ passing through [1 : 0 : · · · : 0] and any point of µ \ (λ ∩ µ) which
will be the unique point of tangency. The corresponding line condition Lℓ will be
smooth at [λµ2] and its tangent hyperplane is the set of cubics containing the point
ℓ ∩ µ. The intersection of all these tangent hyperplanes is then the set of cubics
containing a dense open subset of µ and hence µ itself.
We can therefore deduce that there are codim(Rµ, V0) =

(
n+2

3

)
lines ℓi ⊆ P(W )

passing through [1 : 0 : · · · : 0] such that the line conditions Lℓi
3 are all smooth at

p and intersect transversally at p. Moreover, employing the PGL-action and using
that it acts transitively on e by Lemma 1.2.4, we obtain finitely many more lines
such that the intersection of their tangent spaces at every point of e has dimension
at most r.
Finally, let E be the intersection of E ′ with the images of the tangent sheaves in
NB3V3 of these new line conditions. Then E is a coherent subsheaf of NB3V3 which
still restricts over B3 \ e to a vector subbundle of rank r and has rank ≤ r over every
point of e. By upper semi-continuity of the rank, since E is coherent, E is a vector
subbundle of NB3V3 of rank r everywhere. As P(E) is an irreducible closed subset
of V4, a Zariski closure argument then shows that it is contained in Lℓ

4 for every ℓ,
so it is contained in the intersection of all line conditions in V4. And conversely, by
construction P(E) contains the intersection of some (and hence of all) line conditions
in V4, proving equality.
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Lemma 1.2.20. We have the isomorphism

NB4E4 ∼= (π4|B4)∗(NB3V3/E) ⊗ OB4(1).

Moreover, over U := B4 \ (π4|B4)−1(e) the normal bundle NB4E4 restricts to

NUE4 ∼= (π4|U)∗
(

Sym3(W ∗) ⊗ O(1, 2)
Sym2(W ∗) ⊗ O(1, 1)

)
⊗ OU(1),

where the notation O(a, b) suppresses the restriction to the open Pn × Pn \ ∆. In
particular, the fiber of NB4E4 over some point of B4\π−1

4 (e) mapping to [λµ2] ∈ B3\e
is given by Sym3(W ∗)/(µ · Sym2(W ∗)) ∼= Sym3(W ∗/µ), the cubics on µ.

The proof is similar to that of Lemma 1.2.8.

1.2.5 Fifth Blow-up
Let V5 := BlB4 V4 and E5 the exceptional divisor. Let π5 : V5 → V4 be the blow-up
map.

Lemma 1.2.21. Fix a line ℓ of Pn and a cubic [λµ2] ∈ B3 \ e such that ℓ does not
intersect λ∩µ. The strict transform Lℓ

5 in V5 contains a point p in E5∩Ẽ4 = P(NB4E4)
with (π4 ◦ π5)(p) = [λµ2] if and only if the line ℓ intersects the cubic on µ associated
with p, i.e., the element of Sym3(W ∗)/(µ · Sym2(W ∗)).

Proof. By assumption, Lℓ
3 and its proper transforms are smooth at every point

over [λµ2] ∈ B3. We have (Lℓ
5 ∩ Ẽ4 ∩ E5)|π5(p) = P(NB4(Lℓ

4 ∩ E4)|π5(p)). Since
Lℓ

4 ∩ E4|U = P(NB3Lℓ
3|U) on the smooth locus U of Lℓ

3 inside B3, we have the
canonical isomorphisms

NB4(Lℓ
4 ∩ E4)|π5(p) ∼= ((π4|B4)∗(NB3Lℓ

3/E) ⊗ OB4(1))|π5(p) ∼= (NB3Lℓ
3/E)|[λµ2].

Now, the tangent hyperplane T[λµ2]L
ℓ
3 is given by those cubics containing the point

ℓ ∩ µ by Lemma 1.2.1(3), and the fiber of E over [λµ2] is the quotient of the cubics
containing µ by the tangent space of B3 at [λµ2]. We conclude that (NB3Lℓ

3/E)|[λµ2]
is exactly given by those cubics on µ containing the point ℓ ∩ µ.

Lemma 1.2.22. There exists a point [λµ2] ∈ B3 \ e such that for every point
λµ2 ∈ B4 over [λµ2], the intersection of all line conditions in V5 over λµ2, i.e., in the
fiber E5|λµ2 , is contained in Ẽ4.

Proof. We work in the chart of V3 given by D(a(0,0,0))∩D(b(0,1,1))∩D(c(1,1,1))∩D(dc).
Inside the intersection of this chart with B3 \ e we choose the point [λµ2], where
λ = x0+x1+x2 and µ = x0+x2. Let [q] ∈ B4|[λµ2] = P(Sym2(W ∗)/(λ·W ∗, µ·W ∗)) =
P(Sym2(W ∗/⟨λ, µ⟩)), i.e., q is a quadric on λ ∩ µ determining λµ2. For our choice
of λ and µ, q can be uniquely written, up to scaling, as q = q(2,2)x

2
2 + . . . + q(n,n)x

2
n,

so that the variables x0 and x1 do not occur. After acting by a suitable element of
PGL fixing x0, x1 and x2, we may assume q(2,2) ̸= 0.
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We list some of the projective coordinates of the point λµ2 of B4|[λµ2] corresponding
to [q] in V4:

ed = 0,

e(0,1,i) = 0, for i > 1,

e(0,i,j) = −3q(i,j), for i, j > 1,

e(1,i,j) = −3
2q(i,j), for i, j > 1,

e(i,i,j) = 0, for i, j > 1.

Moreover, c(1,1,i) = 0 for all i ≥ 2. Note that this point does not lie in the chart
D(e(0,1,2)) of V4 but this is not a problem.
It suffices now to provide a family of line conditions Lℓ

4 whose tangent spaces at λµ2

converge to the tangent space of E4 at λµ2. We claim that this is the case for the
line conditions Lℓt associated to the family of lines ℓt := V(x1 − tx2, x3, . . . , xn) with
t ∈ K \ {0}. In our affine chart of V3, the proper transform Lℓt

3 is given by

4
(
t2 − tb(0,1,2) + b(0,2,2)

)3
+
(
t3 − 3t2c(1,1,2) + 3tc(1,2,2) − c(2,2,2)

)2
db = 0.

We can see that Lℓt
3 is smooth at [λµ2] for all t ̸= 0. Hence, the proper transforms

Lℓt
4 in V4 are smooth at every point λµ2 in B4|[λµ2]. It is possible to compute the

equation L = 0 of Lℓt
4 in the chart D(e(0,2,2)) (where e′ corresponds to g(0,2,2)). This

chart contains our point λµ2 by the assumption that q(2,2) ̸= 0. The exceptional
divisor is still cut out by e′ = 0 in this chart, and the degree 0 part in the variable e′

of L is given by

12(t − c(1,1,2))4(e(0,2,2) − te(0,1,2)) + ed(t − c(1,1,2))6

−8(t − c(1,1,2))3(3te(1,2,2) − e(2,2,2)).

It can be checked that all occurring terms of the latter which are not divisible by
t3 evaluate to zero at λµ2. Since λµ2 ∈ B4 ⊆ E4, evaluating an expression at λµ2

includes setting to zero the variable e′. Hence, for every variable y of our chart which
is different from e′, we have that (∂yL)(λµ2) is divisible by t3. On the other hand,
the linear part of L in e′ is

e′
(
12(t − c(1,1,2))2(e(0,2,2) − te(0,1,2))2 + 2ed(t − c(1,1,2))3(3te(1,2,2) − e(2,2,2))

−4(3te(1,2,2) − e(2,2,2))2
)
.

Hence,

(∂e′L)(λµ2) = 12t2
(
e(0,2,2)(λµ2)2 − 3e(1,2,2)(λµ2)2

)
= 27t2q(2,2).

Since the tangent space of Lℓt
4 at λµ2 is precisely the kernel of the gradient of L at

λµ2, these computations show that T
λµ2Lℓt

4
t→0−−→ T

λµ2E4 as subspaces of T
λµ2V4.

Corollary 1.2.23. The intersection of all line conditions in V5 is empty.
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Proof. The line conditions can only intersect in E5. Thanks to Remark 1.2.15 and
the fact that the equations in Remark 1.2.18 do not involve the variable ca, it suffices
to prove the emptiness of the intersection only for the fibers over points [λµ2] ∈ B3 \e.
By the PGL-action it suffices to consider only a single such point [λµ2], for example
the one in Lemma 1.2.22. The claim then follows from Lemmas 1.2.21 and 1.2.22
since the first implies that the intersection of all line conditions is disjoint from
E5 ∩ Ẽ4 while the second one states that it is contained in the latter. Hence, the
intersection must be empty.

We have thus proved that the line conditions separate in V5 and hence that V5 is a
1–complete variety of cubic hypersurfaces.

1.2.6 Identifying the Vector Bundle E

Let V Q
0 := P(Sym2 W ∗) and Ri ⊆ V Q

0 for i ∈ {1, 2} be the locus of quadrics of rank
≤ i, i.e, R1 ⊆ V Q

0 is the image of the second Veronese R1 = ν2(Pn) and R2 is the set
of reducible quadric forms. The proper transform of R2 in V Q

1 := BlR1 V Q
0 is

R̃2 = BlR1 R2 ∼= (Pn)[2] ∼= (Bl∆ Pn × Pn)/S2,

where S2 is the symmetric group on two elements swapping the factors of Pn × Pn,
and (Pn)[2] is the Hilbert scheme of two points of Pn. Let q : Bl∆ Pn × Pn −→ R̃2 be
the quotient map. (In fact, q is the universal family of (Pn)[2].)
We will now describe explicitly an open chart of V Q

1 and its intersection with R̃2. By
q(i,j) for 0 ≤ i ≤ j ≤ n we denote the homogeneous coordinates of P(Sym2(W ∗)) and
work in the affine chart D(q(0,0)). In this chart, R1 is cut out by the equations

Q(i,i) := 4q(i,i) − q2
(0,i) = 0,

Q(i,j) := 2q(i,j) − q(0,i)q(0,j) = 0,

where 1 ≤ i < j ≤ n. These equations define smooth hypersurfaces of D(q(0,0)) which
intersect transversally everywhere. In particular, they form a regular sequence, so
the blow-up can be realized as the closed subscheme of D(q(0,0)) × P(n+1

2 )−1 given by

T(i,j)Q(k,l) − T(k,l)Q(i,j) = 0,

where T(i,j) are the projective coordinates on P(n+1
2 )−1, 1 ≤ i ≤ j ≤ n. The affine

chart D(q(0,0)) ∩ D(T(1,1)) of the blow-up is then isomorphic to the affine space A
with coordinates q(0,1), . . . q(0,n), Q(1,1), T(i,j) where (i, j) ̸= (1, 1) and 1 ≤ i ≤ j ≤ n.
In this chart, R̃2 is cut out by

R(i,j) := T(i,j) − T(1,i)T(1,j) = 0

for 2 ≤ i ≤ j ≤ n. Again, the R(i,j) define smooth hypersurfaces of the chart
intersecting transversally everywhere. If U ′ ⊆ Bl∆ Pn × Pn is the affine space chart
from the proof of Lemma 1.2.5 with coordinates µ1, . . . , µn, u1, s2, . . . , sn, then we
have R̃2 ∩ A = q(U ′). Both U ′ and q(U ′) are affine spaces.
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Theorem 1.2.24. We have E ∼= q∗(NR̃2
V Q

1 ).

Proof. Since both E and q∗(NR̃2
V Q

1 ) are vector bundles on the smooth variety
B3 = Bl∆ Pn × Pn, it is enough to give an embedding of geometric vector bundles

q∗(NR̃2
V Q

1 )|U ↪→ NB3V3|U

whose image agrees with E|U on an open U ⊆ B3 whose complement has codimension
≥ 2 in B3.
To achieve this, we write U = U ′ ∪ U ′′ and give two embeddings of q∗(NR̃2

V Q
1 ) into

NB3V3 over U ′ and U ′′, respectively, which agree on the overlap U ′ ∩ U ′′ and hence
glue to an embedding over U . Here, U ′ is as above and U ′′ := B3 \ e. Hence, B3 \U is
a proper closed subset of e and thus of codimension ≥ 2 in B3 because e is irreducible.
The embedding over U ′′ is the obvious one: Over U ′′, the differential of π3 ◦ π2 ◦ π1
gives an isomorphism NB3V3|U ′′ ∼= NS0\ν3(Pn)V0. Over [λµ2] ∈ S0 \ ν3(Pn) the fiber of
the latter is naturally isomorphic to Sym3(W ∗)/⟨λµ · W ∗, µ2 · W ∗⟩. Similarly,

q∗(NR̃2
V Q

1 )|[λµ2]
∼= Sym2(W ∗)/⟨λ · W ∗, µ · W ∗⟩,

and multiplication by µ gives an embedding of the latter into the former. The image
agrees with E|U ′′ by the proof of Proposition 1.2.19.
The open set U ′ ⊆ B3 is the intersection of B3 with the affine open chart Û ′ :=
D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) of V3 from Coordinates 1.2.3. Both U ′

and Û ′ are affine spaces, the latter has coordinates a(0,0,i), b(0,i,j), ca, cH , db.
We will now describe an embedding of q∗(NR̃2

V Q
1 )|U ′ ↪→ NB3V3|U ′ explicitly in

coordinates. The final step will then be to show that both embeddings agree on the
overlap U ′ ∩ U ′′ = U ′ \ e.
For this, let JR be the Jacobian matrix whose rows are the gradients of the R(i,j).
Then

NR̃2
V Q

1 |q(U ′) = TA|q(U ′)/ ker(JR) ∼= q(U ′) ×
⊕

2≤i≤j≤n

Ke(i,j),

where the last isomorphism is given by multiplication by JR and the e(i,j) are basis
vectors corresponding to the rows of JR.
Similarly, let JG be the Jacobian matrix whose rows are the gradients of the equations
cutting out B3 in the open chart Û ′ of V3, see Remark 1.2.18. Analogously we have

NB3V3|U ′ = T Û ′|U ′/ ker(JG) ∼= U ′ ×

Kedb
⊕

⊕
(i,j,k)∈F

Ke(i,j,k)

 ,

where the isomorphism is again given by multiplication by JG and the edb
, e(i,j,k) are

basis vectors corresponding to the rows of JG.
The embedding q∗(NR̃2

V Q
1 )|U ′ ↪→ NB3V3|U ′ is now defined by sending (p, r) 7→ (p, v),

where r = (r(i,j))2≤i≤j≤n ∈ ⊕
2≤i≤j≤n Ke(i,j) and v ∈ Kedb

⊕⊕(i,j,k)∈F Ke(i,j,k) is given
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by:
vdb

= 0,

v(0,1,i) = 0, for i > 1,

v(0,i,i) = 3
4r(i,i), for i > 1,

v(0,i,j) = 3
2r(i,j), for j > i > 1,

v(1,i,i) = 3
8r(i,i), for i > 1,

v(1,i,j) = 3
4r(i,j), for j > i > 1,

v(i,i,i) = 9
8sir(i,i), for i > 1,

v(i,i,j) = 3
4sir(i,j) + 3

8sjr(i,i), for i ̸= j and i, j > 1,

v(i,j,k) = 3
4skr(i,j) + 3

4sjr(i,k) + 3
4sir(j,k), for k > j > i > 1.

(1.4)

Here, the si = si(p) are (some of) the coordinates of the point p ∈ U ′. This is clearly
an embedding of geometric vector bundles over U ′.
Now let p = [λµ2] ∈ U ′ ∩ U ′′ = U ′ \ e. Since the differential of the blow-up map
gives an isomorphism NR̃2

V Q
1 |q(U ′)\q(e) ∼= NR2\R1D(q(0,0)), any non-zero normal vector

n ∈ NR̃2
V Q

1 |q(p) is represented by the proper transform of an affine line in D(q(0,0)),
centered at q(p) = [λµ], which is not contained in R2. The embedding over U ′′ then
sends n to the normal vector in NB3V3|p which is represented by the proper transform
of the affine line in V0, centered at p = [λµ2], which is just the multiplication by µ of
the affine line in D(q(0,0)). So in order to see that both embeddings agree on U ′ \ e,
we need to compute the proper transforms of the two curves given by

A1 −→ D(q(0,0)) ⊆ P(Sym2 W ∗), t 7→ λµ + t · q̃,

A1 −→ D(a(0,0,0)) ⊆ P(Sym3 W ∗), t 7→ λµ2 + t · q̃µ

in A ⊆ V Q
1 and Û ′ ⊆ V3, respectively. As we shall see, it is enough to consider only

those quadrics q̃ not containing x0 and x1, i.e., q̃(0,i) = q̃(1,j) = 0 for all i, j.
Differentiating the proper transforms of both curves with respect to t and then
setting t = 0 gives a tangent vector in Tq(p)A resp. TpÛ ′. Finally, multiplying these
tangent vectors by JR resp. JG, we need to check that the results agree under the
embedding (1.4).
Computing these proper transforms and derivatives is not particularly enlightening
but also not very hard and can be done, for example, in Macaulay2. We only present
the result. The T(i,j)-coordinates of the proper transform of the first curve are as
follows:

T(i,i) = 4tq̃(i,i) − u2
1s

2
i ,

T(i,j) = 2tq̃(i,j) − u2
1sisj,

T(1,i) = −u2
1si.
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Here, 2 ≤ i < j ≤ n. Differentiating and multiplying by JR gives
r(i,i) = −4q̃(i,i),

r(i,j) = −2q̃(i,j),
(1.5)

where 2 ≤ i < j ≤ n. (This shows that it suffices to consider only those q̃ not
involving x0 and x1.) On the other hand, for the proper transform of the second
curve we have the following coordinates:

db = −4,

b(0,i,i) = −3tq̃i,i + u2
1s

2
i ,

b(0,i,j) = −3tq̃i,j + 2u2
1sisj,

c(1,1,i) = u2
1si,

c(1,i,i) = −3
2tq̃(i,i) + u2

1s
2
i ,

c(i,i,i) = −9
2tsiq̃(i,i) + u2

1s
3
i ,

c(i,i,j) = −3
2t(siq̃(i,j) + sj q̃(i,i)) + u2

1s
2
i sj,

c(i,j,k) = −3
2t(siq̃(j,k) + sj q̃(i,k) + skq̃(i,j)) + 2u2

1sisjsk.

Here, we set s1 := 1. Differentiating and multiplying by JG gives
vdb

= 0,

v(0,1,i) = 0,

v(0,i,i) = −3q̃(i,i),

v(0,i,j) = −3q̃(i,j),

v(1,i,i) = −3
2 q̃(i,i),

v(1,i,j) = −3
2 q̃(i,j),

v(i,i,i) = −9
2siq̃(i,i),

v(i,i,j) = −3
2siq̃(i,j) − 3

2sj q̃(i,i),

v(i,j,k) = −3
2siq̃(j,k) − 3

2sj q̃(i,k) − 3
2skq̃(i,j).

(1.6)

It is now easy to check that (1.5) transforms into (1.6) via (1.4).

The following can be deduced from Theorem 1.2.24. For a different proof, we refer
to [BDFK23, Proposition 2.25]. As we will not make direct use of it, we omit the
proof here.
Corollary 1.2.25. We have

E|e ∼= Sym2(Te/∆) ∼=
π∗

e

(
Sym2(T∆)

)
⊗ Oe(2)

π∗
e (T∆) ⊗ Oe(1) ,

where Te/∆ is the relative tangent bundle of the projective bundle e over ∆.
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1.3 Chow Rings and Chern Classes
In this section we determine the intersection-theoretic information needed for the
computation of the characteristic numbers. This includes the Chow rings of the
centers Bi and the total Chern classes of the normal bundles NBi

Vi. From [Alu90,
Section 2] we recall the following notion: Let V be a smooth variety and B ⊆ V a
smooth subvariety. Moreover, let X ⊆ V be any equidimensional closed subscheme.
The full intersection class B ◦ X of X by B in V is defined as

B ◦ X := c(NBV ) ∩ s(B ∩ X, X)

in the Chow group CH∗(B ∩X), where s(B ∩X, X) denotes the Segre class. By abuse
of notation we will also write B◦X for the cycle class (B∩X ↪→ B)∗(B◦X) ∈ CH∗(B).
We will only need the following fact from [Alu90, p. 512].

Remark 1.3.1. If X = D ⊆ V is a divisor and i : B ↪→ V the inclusion, then

B ◦ D = eBD[B] + i∗([D]) ∈ CH∗(B),

where eBD denotes the multiplicity of D along B. In particular, if B is not contained
in D, then eBD = 0, and if D contains B and is generically smooth along B, then
eBD = 1.

Along the way, we will compute the full intersection classes Bi ◦ Pi and Bi ◦ Li for
all i = 0, 1, 2, 3, 4.

1.3.0 Chow Ring of B0

Lemma 1.3.2. The Chow ring of B0 ∼= P(W ∗) is generated by the hyperplane
class h and we have CH∗(B0) = Z[h]/(hn+1). Moreover,

c(NB0V0) = (1 + 3h)(
n+3

3 )/(1 + h)n+1.

Proof. This follows from the Euler sequences for TP(W ∗) and TV0 pulled back to
P(W ∗) via the third Veronese.

Lemma 1.3.3. The full intersection classes of point and line conditions by B0 in V0
are

B0 ◦ P0 = 3h, B0 ◦ L0 = 2 + 12h.

Proof. This follows from Remark 1.3.1 and the fact that B0 is contained in L0 but
not in P0 and that L0 has multiplicity 2 along B0 by Lemma 1.2.1. (We are sloppy
here in mistaking subschemes for their cycle classes but this simplifies the notation.)
Moreover, for the hyperplane class H ∈ CH1(V0) we have ν∗

3(H) = 3h ∈ CH1(B0)
because ν∗

3(OV0(1)) = OB0(3).
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1.3.1 Chow Ring of B1

In Subsection 1.2.1 we described the center B1. Identifying B0 ∼= P(W ∗), by definition
B1 ∼= P(N1), where N1 = NP(W ∗)P(Sym2(W ∗)).

Lemma 1.3.4. We have dim(B1) =
(

n+2
2

)
− 2. The Chow ring of B1 is

CH∗(B1) = CH∗(B0)[ϵ]/(p1(ϵ, h)) = Z[ϵ, h]/(p1(ϵ, h), hn+1),

p1(ϵ, h) :=
(n+1

2 )∑
i=0

(−ϵ)(
n+1

2 )−i · ci(N1),

where ϵ := (B1 ↪→ V1)∗(E1) = c1(OB1(−1)). Explicitly,

c(N1) = (1 + 2h)(
n+2

2 )/(1 + h)n+1.

Moreover,
∫

B1
hn(−ϵ)(

n+1
2 )−1 = 1. For the total Chern class of NB1V1 we have

c(NB1V1) = (1 + ϵ)(1 + 3h − ϵ)(
n+3

3 )/(1 + 2h − ϵ)(
n+2

2 ).

Proof. For the Chow ring of a projective bundle over a smooth base see [EH16,
Theorem 9.6]. Lemma 9.7 in loc. cit. shows also

∫
B1

hn(−ϵ)(
n+1

2 )−1 = 1. The
total Chern class c(N1) can be computed from the Euler sequences for TP(W ∗)
and TP(Sym2 W ∗), pulled back to P(W ∗) along the second Veronese. Moreover,
c(NB1V1) = c(NE1V1|B1)c(NB1E1) = (1 + ϵ)c(NB1E1), and the second factor may be
computed from Lemma 1.2.8.

Lemma 1.3.5. We have π∗
1(P0) = P1 and π∗

1(L0) = L1 + 2E1. The full intersection
classes of point and line conditions with respect to B1 are:

B1 ◦ P1 = 3h, B1 ◦ L1 = 1 + 12h − 2ϵ.

Proof. The equation π∗
1(L0) = L1 + 2E1 uses that L0 has multiplicity 2 along B0.

The remaining claims follow again from Remark 1.3.1 together with the fact that
B1 is contained in L1 but not in P1 and that L1 is generically smooth along B1 by
Lemma 1.2.6.

1.3.2 Chow Ring of B2

The center B2 = E2 ∩ Ẽ1 ∼= P(NB1E1) was described in Subsection 1.2.2.

Lemma 1.3.6. We have dim(B2) =
(

n+3
3

)
− 3. For the Chow ring we have

CH∗(B2) = CH∗(B1)[ϕ]/(p2(ϕ, ϵ, h)) = Z[ϕ, ϵ, h]/(p2(ϕ, ϵ, h), p1(ϵ, h), hn+1),

p2(ϕ, ϵ, h) :=
(n+2

3 )∑
i=0

(−ϕ)(
n+2

3 )−i · ci(NB1E1),
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where ϕ := (B2 ↪→ V2)∗(E2) = c1(OB2(−1)) and

c(NB1E1) = (1 + 3h − ϵ)(
n+3

3 )/(1 + 2h − ϵ)(
n+2

2 ).

Moreover,
∫

B2
hn(−ϵ)(

n+1
2 )−1(−ϕ)(

n+2
3 )−1 = 1. For the normal bundle NB2V2 we have

c(NB2V2) = (1 + ϕ)(1 + ϵ − ϕ).

Proof. The proof is very similar to that of Lemma 1.3.4. For the last claim we observe
c(NB2V2) = c(NE2V2|B2)c(NB2E2) = (1 + ϕ)c(NB2E2) since NE2V2|B2

∼= OB2(−1).
Moreover, NB2E2 ∼= π2|∗B2(OB1(−1)) ⊗ OB2(1) which follows from the two relative
Euler sequences of the projective bundles B2 and E2 over B1. This shows c(NB2E2) =
1 + ϵ − ϕ.

Lemma 1.3.7. We have π∗
2(P1) = P2 and π∗

2(L1) = L2 + E2. The full intersection
classes of point and line conditions by B2 in V2 are:

B2 ◦ P2 = 3h, B2 ◦ L2 = 1 + 12h − 2ϵ − ϕ.

Proof. By Lemma 1.2.6, L1 is generically smooth along B1, so the same is true for L2
along B2. Hence, (B2 ↪→ V2)∗(L2) = (B2 ↪→ V2)∗(π∗

2(L1) − E2) = 12h − 2ϵ − ϕ.

1.3.3 Chow Ring of B3

Recall from Subsection 1.2.3 that B3 denotes the fourth center in our sequence of
blow-ups, and it is defined as the proper transform in V3 of S0. Moreover, in Lemma
1.2.17, we described the isomorphism ϕ3 : Bl∆ Pn × Pn

∼=−→ S3 = B3.

Lemma 1.3.8. We identify B3 = Bl∆ Pn × Pn. Clearly, dim(B3) = 2n. For the
Chow ring of B3 we have

CH∗(B3) = Z[e, l, m](
ln+1, mn+1, el − em,

∑n
i=0 limn−i +∑n−1

i=0

(
n+1

i

)
li(−e)n−i

) ,

where l and m are the pullbacks of the hyperplane class of Pn via the first resp.
second projection to Pn, and e is the class of the exceptional divisor. Moreover,
CH0(B3) = Z · lnmn and

∫
B3

lnmn = 1.

Proof. The identification of the Chow ring follows from [EH16, Theorem 13.14] and
we omit the details. Importantly, the class of the diagonal is [∆] = ∑n

i=0 limn−i.
Moreover, el = em follows from el = j∗(j∗(l)) = j∗(h∆) = j∗(j∗(m)) = em, where h∆
is the hyperplane class on ∆ ∼= Pn pulled back to e and j : e ↪→ B3 is the inclusion.
We have

∫
B3

lnmn = 1 since lnmn is the pullback of the class represented by any
point in Pn × Pn. The claim about CH0(B3) follows from the last displayed relation
because every monomial in l, m, e in which e has exponent ≥ n is equal to a sum
of terms in which e only occurs with exponents < n. But then, because of el = em
and ln+1 = mn+1 = 0, every monomial of degree dim(B3) = 2n is equal to an integer
multiple of lnmn.
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Remark 1.3.9. The computation of the total Chern class c(NB3V3) can be done
using Fulton’s formula for blowing up Chern classes [Ful98, Theorem 15.4] several
times. The result for n = 3 is

c(NB3V3) = 93960l3m3 − 215300l3m2 − 233400e2m3 + 49580l2m3

− 63500l3m − 33300e2m2 − 25900l2m2 + 132200em3

+ 2220lm3 − 7267l3 − 4107l2m + 4796em2 + 573lm2

− 1367m3 + 705e2 + 120l2 − 1880em + 536lm + 610m2

− 39e + 16l + 36m + 1.

The computation can be carried out, for instance, in Macaulay2, and in principle it
is be possible to write down an explicit formula for c(NB3V3) for arbitrary n.

Lemma 1.3.10. We have π∗
3(P2) = P3 and π∗

3(L2) = L3 + E3. The full intersection
classes of point and line conditions with respect to B3 are:

B3 ◦ P3 = l + 2m, B3 ◦ L3 = 1 + 4l + 8m − 6e.

Proof. In the Chow ring of B3 we have j∗
3(P3) = l + 2m and j∗

3(L3) = 4(l + 2m) −
2(2e) − e − e = 4l + 8m − 6e. The assertion then follows from the fact that P3 does
not contain B3 and that L3 is generically smooth along B3.

1.3.4 Chow Ring of B4

The center of the last blow up is B4 which was described in Subsection 1.2.4. Recall
that B4 = P(E) and that we have we have identified E in Theorem 1.2.24.

Lemma 1.3.11. We have dim(B4) =
(

n+2
2

)
− 2. The Chow ring of B4 is

CH∗(B4) = CH∗(B3)[z]/(p4(z, e, l, m)),

p4(z, e, l, m) =
(n

2)∑
i=0

(−z)(
n
2)−i · ci(E),

where z := c1(OB4(−1)). Moreover, we have CH0(B4) = Z · z(n
2)−1lnmn and∫

B4
(−z)(

n
2)−1lnmn = 1.

Proof. This is similar to the proof of Lemma 1.3.8.

Proposition 1.3.12. We have c(E) = q∗(c(TV Q
1 ))/c(q∗(TR̃2)). In here,

q∗(c(TV Q
1 )) = (1 + l + m)(

n+2
2 )

−
n∑

j=0

(n+1
2 )−j∑
k=0

((n+1
2

)
− j

k

)
−
((n+1

2

)
− j

k + 1

) (−2)k+1αjl
jek+1,

where

αj :=
j∑

i=0

(
n + 1

i

)((n+1
2

)
j − i

)
(−1)i2j−i.
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Moreover, c(q∗(TR̃2)) can be computed from the short exact sequence

0 → TB3 → q∗(TR̃2) → i∗(Oe)(2e) → 0,

where i : e ↪→ B3 is the inclusion. Here,

c(i∗(Oe)(2e)) = 1 + 2e

1 + e
= 1 +

2n∑
i=1

(−1)i−1ei.

Proof. This follows from Theorem 1.2.24 and [Ful98, Theorem 15.4] using q∗(EQ
1 ) =

2e and q∗(HQ) = l + m, where EQ
1 and HQ are the class of the exceptional divisor

and the pullback of the hyperplane class to V Q
1 , respectively, in CH1(V Q

1 ). The short
exact sequence follows from computing the sheaf of relative Kähler differentials Ωq

of the quotient map q : B3 → R̃2 sitting inside the first fundamental sequence for
sheaves of Kähler differentials:

0 → q∗(ΩR̃2
) → ΩB3 → Ωq → 0.

The exactness of this sequence on the left can be checked on stalks and can hence be
verified by a computation in affine open charts. In fact, using the PGL-action, a single
chart intersecting e suffices. This computation also shows Ωq = i∗i

∗Ωq and that i∗Ωq

is a line bundle on e. Moreover, we have the canonical splitting ΩB3|e = Ωe ⊕ Oe(1).
Since q|e is an isomorphism onto its image, the image of the map q∗(ΩR̃2

)|e → ΩB3|e
necessarily contains Ωe, so there is a surjection of sheaves Oe(1) → i∗(Ωq) which is
necessarily an isomorphism. Hence, Ωq

∼= i∗(Oe(1)) ∼= i∗(Oe)(−e). Another reference
is the proof of [SV16, Proposition 11.4].
Now, taking HomB3(−, OB3) of the first fundamental sequence above, the resulting
long exact Ext-sequence contains the short exact sequence

0 → TB3 → q∗(TR̃2) → Ext1(Ωq, OB3) → 0.

This is because Hom(Ωq, OB3) = 0 as Ωq is torsion and Ext1(ΩB3 , OB3) = 0 since
ΩB3 is locally free. The term Ext1(Ωq, OB3) can be computed to be i∗(Oe)(2e) using
Ωq

∼= i∗(Oe)(−e) by tensoring the resolution 0 → OB3(−e) → OB3 → i∗Oe → 0 by
OB3(−e).

Remark 1.3.13. It is possible, in principle, to write down explicit formulas for c(E)
and c(NB4V4) for arbitrary n using Lemma 1.2.20. For n = 3 we get

c(E) = − 22(l3 + m3) − 2(l2m + lm2) + 16em2

+ 30e2 + 15(l2 + m2) − 80em + 26lm

− 9e + 6(l + m) + 1
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and

c(NB4V4) = 33600z2l3m3 + 22400z2l3m2 − 4200z2e2m3 + 28700z2l2m3

− 268100zl3m3 + 10080z2l3m − 840z2e2m2 + 8400z2l2m2 − 97720zl3m2

+ 700z2em3 − 3360ze2m3 − 25900z2lm3 + 51520zl2m3 + 77560l3m3

+ 2730z2l3 + 1890z2l2m − 26040zl3m − 420z2em2 − 2100ze2m2

− 7910z2lm2 + 20440zl2m2 + 12600l3m2 + 5530z2m3 + 15820zem3

+ 15540e2m3 + 19180zlm3 − 43540l2m3 − 270z2e2 − 90z2l2 − 3060zl3

+ 720z2em − 1980z2lm + 5820zl2m − 480l3m + 1550z2m2 + 840zem2

+ 1260e2m2 + 2940zlm2 − 9380l2m2 − 8940zm3 − 7980em3 + 2300lm3

− 135z2e − 585ze2 − 180z2l + 810zl2 − 1470l3 + 360z2m + 1560zem

+ 60zlm − 2010l2m − 1780zm2 + 720em2 + 230lm2 + 1910m3 + 35z2

+ 240ze + 405e2 − 80zl + 45l2 − 240zm − 1080em + 270lm + 415m2

− 9z − 30e + 10l + 30m + 1.

Lemma 1.3.14. We have π∗
4(P3) = P4 and π∗

4(L3) = L4 + E4. The full intersection
classes of point and line conditions with respect to B3 are:

B4 ◦ P4 = l + 2m, B4 ◦ L4 = 1 + 4l + 8m − 6e − z.

Proof. This follows from the fact that B4 is not contained in P4 since B3 is not
contained in P3 and that L3 is generically smooth along B3. The latter also implies
that L4 is generically smooth along B4. Moreover, (B4 ↪→ V4)∗(E4) = z.

1.4 Some Characteristic Numbers for Cubics
Below we give the characteristic numbers with respect to point and line conditions
for smooth cubic hypersurfaces of dimensions 2, 3, 4 and 5 explicitly. Thanks to
Theorem 1.1.6 and [Alu90, Theorem II] we obtain the following formula for the
number Nn(np, nℓ) of smooth cubic hypersurfaces in Pn containing np general points
and tangent to nℓ general lines with np + nℓ =

(
n+3

3

)
− 1:

Nn(np, nℓ) = 4nℓ −
4∑

i=0

∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)nℓ

c(NBi
Vi)

. (1.7)

Theorem 1.4.1. We have the following characteristic numbers.

N3(np, nℓ) =



419−np , np ≥ 7,

67107584, np = 6,

268391296, np = 5,

1072926016, np = 4,

4266198896, np = 3,

16615227040, np = 2,

61810371328, np = 1,

213642327616, np = 0,
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N4(np, nℓ) =



434−np , np ≥ 9,

4503599627298816, np = 8,

18014398504518144, np = 7,

72057593859735296, np = 6,

288230371735956864, np = 5,

1152916410922381056, np = 4,

4611439266223370624, np = 3,

18440552943629755776, np = 2,

73680611961739695744, np = 1,

293743613260159055616, np = 0,

N5(np, nℓ) =



455−np , np ≥ 11,

1237940039285380274890866688, np = 10,

4951760157141521098595270656, np = 9,

19807040628566084336374644736, np = 8,

79228162514264334978909921280, np = 7,

316912650057057265979098451968, np = 6,

1267650600108422245198531502080, np = 5,

5070602390849253903742648557568, np = 4,

20282409173750701918237560930304, np = 3,

81129625967826286127033390178304, np = 2,

324518279007939337388899670437888, np = 1,

1298069289965922934250958638546944, np = 0,

N6(np, nℓ) =



483−np , np ≥ 13,

5575186299632655785383929568162088438726656, np = 12,

22300745198530623141535718272647986547785728, np = 11,

89202980794122492566142873090556667222818816, np = 10,

356811923176489970264571492359935951598780416, np = 9,

1427247692705959881058285969326673318416744448, np = 8,

5708990770823839524233143872781898515562758144, np = 7,

22835963083295357547450367470452446432700268544, np = 6,

91343852333181359672918122382354358401157431296, np = 5,

365375409332720862787005988478342433799333150720, np = 4,

1461501637330683302436966294009082115493377474560, np = 3,

5846006549316096042304679826939505378910363975680, np = 2,

23384026197086430915159132013388781299969309016064, np = 1,

93536104784328168306504740799213619812755181666304, np = 0.
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Proof. The proof is now merely computational. We only give the individual correction
terms for n = 3:

∫
B0

(3h)np(2 + 12h)nℓ(1 + h)4

(1 + 3h)20 =


1769472 np = 3
54263808 np = 2
877658112 np = 1
9948889088 np = 0,

∫
B1

(3h)np(1 + 12h − 2ϵ)nℓ(1 + 2h − ϵ)10

(1 + ϵ)(1 + 3h − ϵ)20 =


434889 np = 3
13011156 np = 2
203305944 np = 1
2199770536 np = 0,

∫
B2

(3h)np(1 + 12h − 2ϵ − ϕ)nℓ

(1 + ϕ)(1 + ϵ − ϕ) =


17951031 np = 3
443328300 np = 2
5677810728 np = 1
49885157976 np = 0,

∫
B3

(l + 2m)np(1 + 4l + 8m − 6e)nℓ

c(NB3V3) =



160 np = 6
6240 np = 5
130224 np = 4
1426504 np = 3
8284040 np = 2
7701512 np = 1
−337368096 np = 0,

∫
B4

(l + 2m)np(1 + 4l + 8m − 6e − z)nℓ

c(NB4V4) =



1120 np = 6
37920 np = 5
685584 np = 4
7186504 np = 3
45754840 np = 2
142629112 np = 1
−460870176 np = 0.

Remark 1.4.2. In principle, the underlying Macaulay2 code works for every n but
the characteristic numbers grow very fast as can already be seen in Theorem 1.4.1.
As n grows, it seems that the non-trivial characteristic numbers, i.e., those in the
range 0 ≤ np ≤ 2n, get very close to the Bézout bound 4nℓ . In other words, in (1.7)
the correction term

f(np, n) :=
4∑

i=0

∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)nℓ

c(NBi
Vi)
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seems to lose asymptotically against 4nℓ . It is an interesting problem to describe
f(np, n), for every np ∈ [0, 2n], as a function of n. We do not expect f(np, −) to be
a polynomial but it is possible, at least theoretically, to express f(np, −) in terms
of “basic” functions involving polynomials in n, exponential functions and binomial
coefficients of which both entries possibly depend on n. Proposition 1.4.3 below is
slightly different in that np depends on n as well. Another general observation is
that for np > n the correction terms coming from B0, B1 and B2 in (1.7) do not
contribute because (Bi ◦ Pi)np = (3h)np = 0 for i = 0, 1, 2. Moreover, for np > n,
expanding the correction terms for B3 and B4, no term involving e will contribute
to the degree because e(l + 2m)np = 0 which follows from ln+1 = mn+1 = 0 and
el = em. These relations hold in both CH∗(B3) and CH∗(B4). Therefore, in fact,
the characteristic numbers in the range n + 1 ≤ np ≤ 2n can be computed without
identifiying the vector bundle E globally, i.e., without Theorem 1.2.24.

Proposition 1.4.3. Let n ≥ 2. The function f(2n, n) is precisely the degree of the
scheme-theoretic intersection of all line conditions in V0. It takes the simple form

f(2n, n) = 2(n+1
2 )
(

2n

n

)
.

Proof. We first observe that in both CH∗(B3) and CH∗(B4) we have (l + 2m)2n =
2n
(

2n
n

)
lnmn. Note that multiplying lnmn by any homogeneous element of positive

degree in CH∗(B3) gives zero since dim(B3) = 2n. The correction term coming from
B3 is therefore precisely 2n

(
2n
n

)
. The correction term coming from B4 is

2n

(
2n

n

)∫
B4

lnmn(1 + 4l + 8m − 6e − z)(
n+3

3 )−1−2ns(NB4V4)

= 2n

(
2n

n

)∫
B4

lnmn(1 − z)(
n+3

3 )−1−2ns(NB4V4)|l=m=e=0.

We have s(NB4V4) = s(NB4E4) · s(NE4V4|B4) = s(NB4E4)/(1 + z). Moreover, by
Lemma 1.2.20 we have s(NB4E4)|l=m=e=0 = 1/(1 − z)(

n+2
3 ). We therefore continue

with

2n

(
2n

n

)∫
B4

lnmn(1 − z)(
n
2)
∑

j≥0
(−z)j



= 2n

(
2n

n

)∫
B3

lnmn(π4|B4)∗

(n
2)−1∑
k=0

∑
j≥0

((n
2

)
k

)
(−z)j+k


= 2n

(
2n

n

)
(2(n

2) − 1)
∫

B3
lnmn = 2(n+1

2 )
(

2n

n

)
− 2n

(
2n

n

)
,

proving the claim.

In contrast, the degree of S0 can be computed to be 2n
(

2n
n

)
, as follows. We have the

commutative triangle
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CH∗(Pn × Pn) CH∗(V0)

CH∗(Spec(K)) = Z.

ϕ0,∗

deg
deg

Since ϕ0,∗([Pn × Pn]) = [S0] and ϕ∗
0([H]) = l + 2m, we get

deg(S0) = deg([S0] · [H]2n) = deg ϕ0,∗((l + 2m)2n) = deg((l + 2m)2n) = 2n

(
2n

n

)
,

where in the second equation we have used the projection formula.
Let us denote the scheme-theoretic intersection of all line conditions by Ŝ0 for the
moment. Then both S0 and Ŝ0 are PGL-invariant closed subschemes of V0. Moreover,
S0 consists of precisely two orbits, namely B0 and S0 \ B0. From this we can deduce
that Ŝ0 is everywhere non-reduced for all n ≥ 2 because otherwise Ŝ0 would have
to be reduced along all of S0 \ B0 and hence either reduced everywhere (whence
Ŝ0 = S0) or non-reduced precisely along B0, making B0 an embedded component of
Ŝ0. In both cases, however, the degrees of S0 and Ŝ0 would have to agree.

Crumbs of hyperplane tangency conditions
We stick to the conventions of Section 1.1. In the case of hyperplane tangency
conditions for degree d hypersurfaces, the base locus is in general hard to describe
explicitly compared to the base locus of tangency with respect to lines. In fact,
hyperplane conditions in P(Symd(W ∗)) intersect in the locus BH

0 of hypersurfaces
with positive-dimensional singular locus

BH
0 (d, n) = {[h] ∈ P(Symd(W ∗)), | dim Sing(V(h)) ≥ 1},

as a Bertini-type argument shows. This set has been studied in [Sla15, Tse20].
Building on [BS07], it is shown in [LPS11, Lemma 2.4] that an integral cubic
hypersurface in Pn which is not normal, i.e., whose singular locus has dimension
n − 2, is necessarily singular exactly along a linear subspace of Pn of dimension n − 2.
For n = 3, this means that the cubic form defining a cubic surface with singular
locus of dimension ≥ 1 is either reducible or the singular locus is precisely a line in
P3. This fact is also known classically [Seg42, p. 144]. It is not hard to see that the
set of reducible cubic forms has dimension 12. The dimension of the other set is 13
because it is birational to

{(ℓ, f) : (gradf)|ℓ ≡ 0} ⊆ Gr(2, 4) × P(Sym3(W ∗)),

a P9-bundle over Gr(2, 4). We deduce that Slavov’s theorem [Sla15, Theorem 1.1]
is also true for cubic surfaces. The work [Suk20] lists the finitely many PGL-orbits
of cubic surfaces with positive-dimensional singular locus and studies containments
among their closures.
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Remark 1.4.4. The variety of all degree d hypersurfaces in P(W ) which are tangent
to H is a hypersurface in P(Symd(W ∗)) of degree n(d−1)n−1. Indeed, let H = V(x0).
The set of hypersurfaces in P(Symd(W ∗)) which are tangent to H is the vanishing
set of the resultant of the polynomials ∂xi

f(0, x1, . . . , xn), i = 1, . . . , n, i.e., the
discriminant of f(0, x1, . . . , xn), where f is the generic degree d polynomial. This
discriminant has degree n(d − 1)n−1.

Proposition 1.4.5 ([Tse20] + classical results). Let char(K) = 0. We consider
the family of smooth degree d hypersurfaces in Pn with n ≥ 2. Assume one of the
following holds:

• d = 2, d = 5 or d ≥ 7,

• n = 2 and d ≥ 2 arbitrary,

• d = n = 3.

Then, if nH < n(d−2)+3, the number N H(np, nH) of smooth degree d hypersurfaces
in Pn tangent to nH general hyperplanes and passing through np =

(
n+d

d

)
− 1 − nH

general points equals
N H(np, nH) = (n(d − 1)n−1)nH .

Proof. If nH is strictly less than the codimension of BH
0 (d, n), the claim follows from

Bézout’s theorem. Now, the codimension of BH
0 (d, n) is known for d = 5 and d ≥ 7

(and arbitrary n) by [Tse20, Theorem 1.6] and equals

codimBH
0 (d, n) = n(d − 2) + 3.

Moreover, this codimension holds true also for quadric hypersurfaces as well as in
the case d = n = 3 of cubic surfaces by the above discussion. For n = 2, moreover,
the base locus BH

0 (d, 2) is the set of non-reduced degree d ternary forms which has
codimension 2d − 1 = 2(d − 2) + 3.
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2 Ideals of Submaximal Minors of
Sparse Symmetric Matrices

For questions of authorship, please refer to pages IVf.
This chapter is based on the accepted version of [DK23].

2.1 Sparse Determinantal Ideals
The ideal of maximal minors of a generic m × n matrix is one of the most studied
objects in combinatorial commutative algebra due to its geometric significance and
its rich combinatorial structure. If one allows the matrix to be sparse, i.e. to have
some entries replaced by zero, some important tools of study disappear, most notably
since the action of the general linear group does not preserve the zero pattern.
Nonetheless, many results have been obtained in the sparse case, for example by
Giusti and Merle [GM82], Boocher [Boo12] and Conca and Welker [CW19], and in
part even for much weaker assumptions on the entries of the matrix, see for example
[CDNG15, CDNG17, CDNG18, CDNG20, CDNG22] for the theory of Cartwright–
Sturmfels ideals and universal Gröbner bases, [Eis88] for the case of arbitrary linear
sections of determinantal varieties of low codimension, and [MR07, MR08] for general
background on determinantal schemes including homological results. The symmetric
case, i.e., the ideal of minors of fixed size of a sparse generic symmetric matrix, is
much less understood. In [CW19], Conca and Welker study geometric and arithmetic
properties like primality, reducedness, codimension and the complete intersection
property of these ideals and of other kinds of sparse determinantal ideals. Homological
invariants, on the other hand, such as the graded Betti numbers, projective dimension
and regularity are in general still unknown in the sparse symmetric case (see, however,
the related [MR07, Section 3]). Our main result fills this gap in the case of submaximal
minors of a sparse generic symmetric matrix, using ideas of Boocher [Boo12, Boo13]
together with a foundational result by Józefiak [Józ78] and combining these with
new Gröbner basis results.
More precisely, let K be a field and R = K[xij : 1 ≤ i ≤ j ≤ n] the polynomial ring,
n ≥ 2. Let X = (xij) be the generic symmetric n × n matrix, i.e. xij := xji for i > j.
Let G be an undirected simple graph with vertex set [n] := {1, 2, . . . , n} and let Z be
the set of all off-diagonal variables corresponding to the non-edges of G. We define
XG to be the matrix obtained from X by substituting zeros for all variables in Z,
and write In−1(X) and In−1(XG) for the ideals of R generated by all (n − 1)-minors
of X and XG, respectively.
If C1, . . . , Cr is the partition of [n] where the Ci are the vertex sets of the connected
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components of G, we define

DG :=
∑

1≤s<t≤r

|Cs| · |Ct|.

Then 0 ≤ DG ≤
(

n
2

)
, and the lower bound is attained if and only if G is connected

while the upper bound is attained if and only if G has no edges at all. The following
is the main result of this chapter.

Theorem 2.1.1. The minimal graded free resolution of R/In−1(XG) is obtained
from the one of R/In−1(X) by substituting zeros for all variables in Z and “pruning”
the resulting complex. The graded Betti numbers are

β1,n−1(R/In−1(XG)) =
(

n + 1
2

)
− DG,

β2,n(R/In−1(XG)) = n2 − 1 − 2DG,

β3,n+1(R/In−1(XG)) =
(

n

2

)
− DG.

All other graded Betti numbers (apart from β0,0 = 1) are zero. Therefore, In−1(XG)
has a linear resolution with regularity reg(In−1(XG)) = n − 1. For the projective
dimension, we deduce pdim(R/In−1(XG)) = 3 except if G has no edges at all, in
which case pdim(R/In−1(XG)) = 2. The quotient ring R/In−1(XG) is reduced, and
it is Cohen–Macaulay if and only if G is either connected or has no edges at all.
Finally,

ht(In−1(XG)) =
3 if G is connected,

2 otherwise.

The proof of Theorem 2.1.1 is contained in Sections 2.2 and 2.3. The pruning
procedure we referred to is the same as the one used by Boocher in [Boo12, Boo13]:
First, we set to zero all variables in Z in all three matrices of the minimal free
resolution of R/In−1(X). Next, all zero columns of the first matrix of the resolution
together with the corresponding rows of the second matrix are erased. Then, all
emerging zero columns of the cropped second matrix together with the corresponding
rows of the third matrix are erased. Finally, we also delete all emerging zero columns
of the cropped third matrix. Theorem 2.1.1 implies that the resulting complex is
again exact and that, if G is connected, no pruning occurs at all.
If one is only interested in the case where G is connected, then the arguments of
Section 2.3 can be avoided. This is because it follows from Section 2.2 that In−1(XG)
has grade 3. Then Józefiak’s result [Józ78, Theorem 3.1] yields that the minimal free
resolution of In−1(X) stays exact after substituting zeros for all variables in Z.

Example 2.1.2. If diagonal variables are set to zero as well, a pruning proce-
dure similar to the above cannot work in general. Explicitly, let n = 5 and
Z = {x11, x22, x13, x14, x23, x24}. Let X ′ be the matrix obtained from X by set-
ting to zero all variables from Z. A computation in Macaulay2 for K = Q shows that
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pdim(R/In−1(X ′)) = 4 while pdim(R/In−1(X)) = 3. The ideal In−1(X ′) is not radi-
cal and has minimal primes of heights 2 and 3, so R/In−1(X ′) is not Cohen–Macaulay.
This contrasts with Theorem 2.1.1.

Let us briefly discuss connections with algebraic statistics since [DK23] was originally
inspired by [BKKR23], see Chapter 3. An undirected Gaussian graphical model
M(G) associated to G is the set of real symmetric positive definite n × n matrices Σ
(i.e., covariance matrices) such that (Σ−1)ij = 0 whenever i ̸= j and ij ̸∈ G. In other
words, M(G) is the image under the matrix inversion map of a coordinate linear
subspace of the cone of positive definite n × n matrices. Extending the ground field
to be C, one can view the matrix inversion map as a rational map

inv : P(Sym2(Cn)) 99K P(Sym2(Cn)), [A] 7→ [A−1].

In geometric terms, this map associates to a smooth quadric its dual quadric (which is
again smooth). The indeterminacy locus of inv is precisely defined by In−1(X). This
can be seen by observing that the cofactor matrix of A, in case A is invertible, is a
scalar multiple of A−1. Restricting the domain of inv to the coordinate linear subspace
LG of G-sparse symmetric matrices, i.e., those A with Aij = 0 whenever i ̸= j and
ij ̸∈ G, the indeterminacy locus becomes the vanishing subscheme V (In−1(XG)). In
[DMV21], the degree of the projective variety inv(LG) is computed in the case where
G = Cn is the n-cycle in order to show that the degree of this projective variety can
be (much) larger than the conjectural maximum likelihood degree of M(Cn) [DSS09,
Section 7.4] even though for general linear concentration models they agree [SU10,
Theorem 1]. The Segre class formula presented in [AGK+21, Theorem 4.2] gives
the precise relationship between the degree of inv(LG) and the maximum likelihood
degree of M(G).
Our Theorem 2.1.1 also sheds some more light on the varieties inv(LG) for arbitrary
graphs G. However, the homological information we have obtained is not, to our
knowledge, sufficient for computing the degree of inv(LG) or the maximum likelihood
degree of M(G). The degree of inv(LG) is equal to the number of smooth G-sparse
quadrics in Pn−1 tangent to dim(LG) general hyperplanes, giving rise to an excess
intersection problem. Theorem 2.1.1 provides answers to the simplest non-trivial
analogues of this question, namely for 2 hyperplanes and, in case G is connected,
also for 3 hyperplanes, see Section 2.4 for details. For more on Gaussian graphical
models and generalizations thereof, see Chapter 3.

2.2 Gröbner Bases
We keep the notation of the introduction. For general background on initial ideals
and Gröbner bases we refer to [BC03]. For the classical determinantal ideals Ik(X),
1 ≤ k ≤ n, of a generic symmetric matrix X (without zeros) Conca proved that the
k-minors form a Gröbner basis with respect to diagonal term orders [Con94b], for
example the lexicographic term order reading the upper triangle of X row by row.
For our purposes, however, it is important to consider certain non-diagonal term
orders associated to graphs. Given a graph G on the vertex set [n], let wG be the
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weight vector for the polynomial ring R = K[xij : 1 ≤ i ≤ j ≤ n] which assigns the
following weights to the variables:

wG(xii) = 2 for all i = 1, . . . , n,

wG(xij) = 2 for all ij ∈ G,

wG(xij) = 1 for all ij ̸∈ G.

In other words, the variables in Z have wG-weight 1 while all others have wG-weight
2. This is analogous to the weights used by Boocher [Boo12, Boo13]. Moreover, by
wdiag we denote the weight vector which assigns weight 2 to the diagonal variables
and weight 1 to the off-diagonal variables (which is the special case of wG where G
has no edges). Let T ⊆ G be a spanning forest, i.e., the union of one spanning tree
for each connected component of G. The main goal of this section is to show that the(

n+1
2

)
standard (n − 1)-minors generating In−1(X) form a Gröbner basis with respect

to the weight order given by <T,G := <wdiag ◦ <wT
◦ <wG

and that in<T,G
(In−1(X))

is a square-free monomial ideal. Here, the composition of the weight orders is to be
read from right to left, i.e., two monomials are first compared with respect to their
wG-degrees, then, in case of equal wG-degrees, with respect to their wT -degrees, and
finally, in case of equal wT -degrees, with respect to wdiag. Of course, this is not a
monomial order since it does not yield a total ordering of the set of all monomials in
R. Nonetheless, the ideals of leading terms of In−1(X) and In−1(XG) with respect to
<T,G are indeed monomial, as we shall see.
We define IT ⊆ R to be the square-free monomial ideal generated by the following
monomials:

x11 · · · xnn

xii

for all i = 1, . . . , n,

x11 · · · xnn

xkkxll

xkl for 1 ≤ k < l ≤ n if in T there is no path between k and l, ∏
i∈[n]\V (p)

xii

 · xp for all paths p in T.

We use the word path in its strictest sense, i.e., no vertex appears twice in a path
and it contains at least one edge. By V (p) we denote the vertex set of the path p
and by xp := ∏

ij∈p xij the product of all off-diagonal variables corresponding to the
edges in p. It is easily seen that all generators are square-free monomials of degree
n − 1, none is redundant in IT and their total number is

(
n+1

2

)
. The latter follows

from realizing that in a tree every path is uniquely determined by its two end points.
We have IT ⊆ in<T,G

(In−1(X)) since the generators of IT are precisely the initial
terms of the standard (n − 1)-minors with respect to <T,G. This can easily be read
off the following formula.

Proposition 2.2.1 ([JW05, BKKR23]). For all 1 ≤ k < l ≤ n we have

(−1)k+l det
(
(XG)[n]\k,[n]\l

)
=

∑
p path in G

between k and l

(−1)|V (p)|−1 · det
(
(XG)[n]\V (p),[n]\V (p)

)
· xp.
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Proof. This is the content of [JW05, Theorem 1] and is recalled in [BKKR23, Propo-
sition 3.19], see Proposition 3.3.19.

Proposition 2.2.2. For any forest T on [n], the ideal IT has linear quotients, and all
graded Betti numbers of IT and In−1(X) agree. Moreover, R/IT is Cohen–Macaulay.

Proof. We first prove that IT has linear quotients. For this, we introduce shorthand
notations: Let mi := x11···xnn

xii
for all i = 1, . . . , n, and denote by mp the monomial

generator of IT corresponding to the path p in T . By m̂ij we denote the generator
corresponding to the pair of vertices ij if i and j lie in different connected components
of T .
We now order the generators of IT in the following way: First, we take the n
monomials mi only containing diagonal variables, then we take all monomials mp

corresponding to paths p of length 1 (i.e., edges) in T , then all monomials mp for
paths p of length 2 in T , and so on. Finally, we take all monomials m̂ij. The order
of the generators in each of these individual groups is arbitrary. The first n − 1 colon
ideals are then generated by a single diagonal variable since

(m1, . . . , mi) : mi+1 = (xi+1,i+1)

for all i = 1, . . . , n − 1. Let r ≥ 1 and I := (m1, . . . , mn, mp| length(p) < r). Let J
be the ideal of R generated by I and any (possibly empty) collection of generators
mp for paths p of length r. Let q be another path of length r in T with endpoints k
and l. Then, we claim

J : mq = (xkk, xll).
The right hand side is contained in the left hand side because the paths q \ k and
q \ l have corresponding generators in J (even for r = 1). Conversely, it is enough to
show that any square-free monomial multiple m of mq contained in J is divisible by
xkk or xll. Indeed, if m is a multiple of some mi, we obviously need to multiply by at
least one of xkk and xll since mq is not divisible by either. If instead m is a multiple
of some mp, then the vertices corresponding to diagonal variables not dividing m
must be contained in p. So if both xkk and xll do not divide m, then p contains q
which is impossible by definition of J .
Finally, let J be the ideal generated by m1, . . . , mn, all the mp and any collection of
the m̂ij. Let m̂kl be any new generator of this type. This time, it is clear that

J : m̂kl = (xkk, xll)

because every generator of IT (and hence of J) other than m̂kl is divisible by at least
one of xkk and xll. This proves that IT has linear quotients.
From [HH11, Corollary 8.2.2], we can now even deduce the statement about graded
Betti numbers. In the notation of loc. cit., we have r1 = 0, r2 = · · · = rn = 1 and
rn+1 = · · · = r(n+1

2 ) = 2. Hence, the minimal graded free resolution of IT has the
form

0 → R(−(n + 1))(
n
2) → R(−n)n2−1 → R(−(n − 1))(

n+1
2 ) → IT → 0,
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just as for In−1(X) by [Józ78], see Section 2.3. This proves βi,j(IT ) = βi,j(In−1(X))
for all i, j. In particular, pdim(R/IT ) = 3. In order to prove that R/IT is Cohen–
Macaulay, by the Auslander–Buchsbaum formula it suffices to show ht(IT ) = 3. This
can be seen directly but it also follows from ht(In−1(X)) = 3 since in<T,G

(In−1(X)) =
IT by the following corollary.

Corollary 2.2.3. The (n − 1)-minors of X form a Gröbner basis of In−1(X) with
respect to <T,G. Equivalently, in<T,G

(In−1(X)) = IT .

Proof. Since IT ⊆ in<T,G
(In−1(X)), it suffices to show that the two ideals have the

same Hilbert functions. But the Hilbert function is determined by the graded Betti
numbers, and these coincide for both ideals by Proposition 2.2.2.

Lemma 2.2.4. Let J ⊆ K[x1, . . . , xm] be an ideal and g1, . . . , gr a Gröbner basis of
J with respect to a monomial order <. Let Z be a subset of the variables x1, . . . , xm

and assume that whenever gi|Z=0 ̸= 0, we have in<(gi) = in<(gi|Z=0). Then, the
non-zero gi|Z=0 are a Gröbner basis for J |Z=0, both as an ideal of K[x1, . . . , xm] and
of K[x1, . . . , xm]/(Z), each time with respect to <. In other words, in<(J |Z=0) =
in<(J)|Z=0, both as ideals of K[x1, . . . , xm] and of K[x1, . . . , xm]/(Z).

Proof. We first consider J |Z=0 as an ideal of the “smaller” polynomial ring, i.e., in
K[x1, . . . , xm]/(Z), and we show that the gi|Z=0 form a Gröbner basis with respect
to <. For this, let f ∈ J . We need to prove that if f |Z=0 ≠ 0, then in(f |Z=0) is
divisible by some in(gi|Z=0). We write f = p + q where p is the sum of all terms of f
not divisible by any variable in Z and q = f − p, i.e., q is the sum of all terms of
f divisible by some variable in Z. Clearly, p|Z=0 = p and q|Z=0 = 0, so f |Z=0 = p,
and we assume p ̸= 0. If the initial term of f is a summand of p, then we are done
since the gi form a Gröbner basis for J . Otherwise, the leading term m of f is
from q. In this case, there is some gi and a scalar multiple of a monomial, say n,
such that m = n · in(gi). Since m|Z=0 = 0, at least one of n and in(gi) is divisible
by some variable in Z. By the assumption that in(gi)|Z=0 = 0 ⇒ gi|Z=0 = 0, this
implies that every term of n · in(gi) is divisible by some variable in Z. Consider now
f ′ := f − n · gi ∈ J and write f ′ = p′ + q′ as before. Then, p′ = p and in(q′) < in(q).
If now in(f ′) comes from p′ = p, we are done. Otherwise the initial term of f ′ lies in
q′ again, and we continue in the same way. But we cannot always choose the initial
term from the q-part since this would result in an infinite chain of strictly decreasing
monomials with respect to the monomial order <, proving our claim.
Secondly, the gi|Z=0 even form a Gröbner basis of J |Z=0 if the latter is considered as
an ideal in K[x1, . . . , xm]. Indeed, write J1 for the ideal in the “smaller” polynomial
ring and J2 for the extended ideal in K[x1, . . . , xm]. Then, with respect to the
inclusion K[x1, . . . , xm]/(Z) ↪→ K[x1, . . . , xm] we have

J2 ∼= J1 ⊗K[x1,...,xm]/(Z) K[x1, . . . , xm].

Let now f ∈ J2 \ {0}. Then, by the preceeding isomorphism, f can be written
uniquely as a sum of monomials in Z with coefficients in J1. The initial term of
f with respect to < is therefore the initial term of some non-zero element of J1
multiplied by some monomial in the Z-variables. This is a multiple of the initial
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term of an element of J1 and therefore divisible by some in(gi|Z=0) by the first part
of the proof.
Corollary 2.2.5. The (n − 1)-minors of XG form a Gröbner basis of In−1(XG) with
respect to <T,G with square-free initial ideal IT |Z=0 ⊆ R. In particular, In−1(XG) is
always radical, and

ht(In−1(XG)) =
3 if G is connected,

2 otherwise.

Proof. It only remains to prove the last claim. Since the polynomial ring R is regular,
dim(R/J) = dim(R) − ht(J) for every ideal J ⊆ R. This proves ht(In−1(XG)) =
ht(IT |Z=0). If G is connected, T is a spanning tree with vertex set [n], and so
IT |Z=0 = IT . Let p be a prime ideal above IT . As p contains the first n generators of
IT which are the n possible products of n − 1 distinct diagonal variables, p contains
at least two distinct diagonal variables, say xii and xjj. All generators of IT which
are not divisible by either of xii and xjj are divisible by xp, where p is the unique
path in T between i and j. Hence, every prime p above IT is generated by at least
three distinct variables, and some are indeed generated by exactly three distinct
variables, so ht(IT ) = 3. If G is not connected, let i and j be two vertices lying in
different connected components. Therefore, there is no path of T involving both i
and j, hence p = (xii, xjj) is a minimal prime above IT |Z=0, so ht(IT |Z=0) = 2 in this
case.

2.3 Minimal Free Resolution of In−1(XG)

2.3.1 The Generic Case
We first recall a foundational result by Józefiak. For this result, S denotes any
noetherian commutative ring with 1 and W any symmetric n × n matrix with
coefficients in S. As usual, we denote by Sn×n the free S-module of n × n matrices
and by tr : Sn×n → S the trace map whose kernel is a free S-module of rank n2 − 1.
By Sym2(Sn) we denote the free S-module of symmetric n×n matrices and by An(S)
that of alternating matrices, i.e., the skew-symmetric n × n matrices with zeros on
the diagonal.
Theorem 2.3.1 ([Józ78, Theorem 3.1]). Let W ∈ Sym2(Sn) and Y ∈ Sym2(Sn) the
cofactor matrix of W . If the grade of In−1(W ) ⊆ S equals 3, then the complex of
free S-modules

L(W ) : 0 → An(S) d3−→ ker(tr : Sn×n → S) d2−→ Sn×n/An(S)
d1−→ S → S/In−1(W ) → 0

is exact and provides a free resolution of S/In−1(W ). Here,

d1(M mod An(S)) := tr(Y M),
d2(N) := WN mod An(S),
d3(A) := AW.
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We observe Sn×n/An(S) ∼= S(n+1
2 ) ∼= Sym2(Sn), where we interpret S(n+1

2 ) as the
S-module of upper triangular matrices.
Let us return to the case where S = R is the polynomial ring. If all entries of W are
homogeneous of the same positive degree and grade(In−1(W )) = 3, then Józefiak’s
result shows that L(W ) is the minimal graded free resolution of R/In−1(W ). If all
entries of W are of degree 1, then all entries of Y are of degree n − 1, and hence
L(W ) has the shape

0 → R(−(n + 1))(
n
2) → R(−n)n2−1 → R(−(n − 1))(

n+1
2 ) → R → R/In−1(X) → 0.

In particular, this is true if W is the sparse generic symmetric matrix XG where G
is connected on [n] by Corollary 2.2.5, using that grade and height agree for ideals in
a regular ring.

2.3.2 Matrices Representing the di

We choose bases of the free R-modules in Józefiak’s minimal graded free resolution
of R/In−1(X). For Rn×n/An(R) = R(−(n − 1))(

n+1
2 ) we choose the graded basis Eij

for i ≤ j, where Eij is the matrix with a 1 in position (i, j) and zeros everywhere
else, with the following order:

E11, E22, . . . , Enn, E12, . . . , E1,n, . . . , En−1,n.

For ker(tr : Rn×n → R) ∼= R(−n)n2−1 we take the graded basis

E22 − E11, E33 − E11, . . . , Enn − E11, E12, E21, . . . , E1,n, En,1, . . . , En−1,n, En,n−1.

Finally, for An(R) ∼= R(−(n + 1))(
n
2) we take the graded basis

E12 − E21, . . . , E1,n − En,1, . . . , En−1,n − En,n−1.

The matrix of d1, with respect to these bases, is simply the row vector whose entries
are the cofactors of X, ordered in the same way as the basis of Rn×n/An(R), i.e., the
principal minors come first and then all the others with the appropriate signs in the
usual lexicographic order.
For d2 we have

d2(Eii − E11) =
n∑

k=1
k ̸=i

(−x1k)E1k +
i∑

k=2
xkiEki +

n∑
k=i+1

xikEik

for all i > 1, and

d2(Eij) =
j∑

k=1
xkiEkj +

n∑
k=j+1

xkiEjk.
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for all i ̸= j. The matrix of d2 can hence be written as a block matrix

[d2] =



−x11 −x11 −x11 . . . −x11
x22 0 0 . . . 0
0 x33 0 . . . 0
0 0 x44 . . . 0
... ... ... . . . ...
0 0 0 . . . xnn

Γ2

∗ ∆2


,

where the only non-zero entries of Γ2 in the row corresponding to Eii are in the
columns corresponding to Eji for some j, and the entry there is precisely xij (the
order of indices matters for the basis elements but not for the variables!). The only
non-zero entries of ∆2 in the row corresponding to Eij, i < j, are in the columns
corresponding to Eij, Eji, Eki for k ̸= i, j, and Ekj for k ̸= i, j, with entries xii,
xjj, xjk, and xik, respectively. In particular, all non-zero entries of [d2] are simply
variables up to sign. Moreover, all non-zero entries of Γ2 are off-diagonal, and no
variable ever appears twice in the same row of Γ2 or ∆2. This implies that, by setting
to zero any set of entries in Γ2, ∆2 and the lower left block ∗, those columns of [d2]
that do not become identically zero will remain linearly independent over the ground
field K. Note also that by setting to zero any set of off-diagonal variables, no column
will become identically zero.
For d3 and i < j we compute

d3(Eij − Eji) = xij(Eii − E11) − xij(Ejj − E11) + xjjEij − xiiEji

+
n∑

k=1
k ̸=i,j

xjkEik +
n∑

k=1
k ̸=i,j

(−xik)Ejk.

So again, all non-zero entries of [d3] are variables up to sign. If we write [d3] as a
block matrix

[d3] =
(

Γ3
∆3

)
,

where the rows of Γ3 correspond to the basis elements Eii −E11, i = 2, . . . , n, and the
rows of ∆3 correspond to the remaining basis elements of ker(tr), then no variable
ever occurs twice in the same row of [d3]. Moreover, all variables appearing in Γ3 are
off-diagonal and precisely one diagonal variable appears in every row of ∆3.

2.3.3 Homogenizing L(X)
Let G be any undirected, simple graph on [n]. We will now homogenize L(X) with
respect to the weight wG from Section 2.2 by introducing a new variable t with
weight 1. We start by homgenizing all (n − 1)-cofactors which are the entries of the
row vector [d1]. We fix one cofactor. All terms of the latter with wG-degree strictly
less than the wG-degree of the cofactor itself are now multiplied by the appropriate
power of t, as usual. The resulting row vector is denoted [d1]h. Next, we fix a column
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of [d2]. Let d be the maximum wG-degree of the product of an entry of this column
with the corresponding (n − 1)-cofactor of [d1]h. Then we multiply every entry of this
column of [d2] by the appropriate power of t such that the product of the resulting
entry and the corresponding minor has combined degree equal to d. This we do for
every column of [d2] and call the result [d2]h. Note that no column of [d2]h is divisible
by t. Similarly, we fix a column of [d3] and we choose any row of [d2]h. Then we
homogenize this column of [d3] in the same way as we did for [d2]. The result does
not depend on the chosen row of [d2]h. Again, no column of [d3]h will be divisible by
t. By construction, the resulting sequence of matrices still gives a complex L(X)h,
i.e. [d2]h[d3]h = 0 and [d1]h[d2]h = 0.

Lemma 2.3.2. Let R be a positively graded finitely generated algebra over the field
R0 = K and let m = R>0 be its homogeneous maximal ideal. View K = R/m as a
graded R-module concentrated in degree 0. Let φ : N ↪→ M be a graded injection of
finitely generated graded R-modules. If all graded pieces of N ⊗R K and M ⊗R K
have the same dimension as K-vector spaces, then φ : N ⊗R K → M ⊗R K (and
hence φ) is an isomorphism.

Proof. Since N and M are finitely generated, both Nd and Md are zero in sufficiently
negative degrees. Inductively, we can therefore assume that we are given some d such
that φ is an isomorphism in all degrees < d and we have to prove the same is true in
degree d. First we observe that this implies that φ is an isomorphism in all degrees
< d by the graded Nakayama lemma. Moreover, by assumption it suffices to show
that φd : (N ⊗R K)d → (M ⊗R K)d is an injection. For this, in turn, let x ∈ Nd such
that φ(x) ∈ Md ∩ (mM). This means φ(x) = ∑

i rimi for some ri ∈ m and mi ∈ M<d

such that deg(ri) + deg(mi) = d. Hence, 0 = φ(x −∑
i riφ

−1(mi)), so the injectivity
of φd implies x = ∑

i riφ
−1(mi) ∈ Nd ∩ (mN), i.e., x = 0 in N ⊗R K.

Proposition 2.3.3. The complex L(X)h|t=0 is exact and therefore the graded
minimal free resolution of R/ inwG

(In−1(X)). Moreover, R/ inwG
(In−1(X)) is Cohen–

Macaulay.

A consequence of this and the graded Nakayama lemma is that L(X)h is exact as
well.

Proof. The reasoning is similar to the proof of [Boo12, Proposition 3.8]. Clearly,
L(X)h|t=0 is a complex of free R-modules. The image of [d1]h|t=0 agrees with
inwG

(In−1(X)) ⊆ R by Corollary 2.2.3 since <T,G refines the weight order <wG
.

But we can say more. Recall that IT = in<T,G
(In−1(X)) = in<T,G

in<wG
(In−1(X)).

From Proposition 2.2.2 and the monotonicity of graded Betti numbers under weight
degenerations [HH11, Theorem 3.3.1] we obtain that all graded Betti numbers
of In−1(X), inwG

(In−1(X)) and IT coincide. Moreover, as a consequence of the
Auslander–Buchsbaum formula, all three ideals define Cohen–Macaulay rings, proving
the second claim.
From this the first claim now follows via Lemma 2.3.2 with N = im(dh

i |t=0) and
M = ker(dh

i−1|t=0) because the dimension of the degree j-part of both im(dh
i |t=0)⊗RK

and ker(dh
i−1|t=0) ⊗R K is precisely βi,j(R/In−1(X)) for i = 2, 3 and all j. For the

former this is a consequence of the fact that (1) every non-zero entry of [di]h|t=0 is a
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variable up to sign, (2) no column of [di]h|t=0 is identically zero and (3) no row of Γ2,
∆2 or [d3] contains any variable more than once.

Theorem 2.3.4. Let G be any undirected, simple graph on [n]. The minimal
graded free resolution of R/In−1(XG) is obtained from L(X) via Boocher’s pruning
procedure.

The proof below is exactly the same as Boocher’s proof of [Boo12, Theorem 4.1]
and follows from a careful study of the wG-grading of L(X)h together with Proposi-
tion 2.3.3. We repeat the argument for the sake of completeness.

Proof. We first observe that all principal minors have wG-weight 2n−2 and the same
is true for det(X[n]\k,[n]\l), k < l, whenever there is a path in G between k and l. All
the other (n − 1)-minors of X have wG-weight 2n − 3. The minors of the smaller
wG-weight 2n − 3 are precisely those which vanish identically after substituting zeros
for all variables in Z. All non-zero entries of the matrices [d2] and [d3] are simply
variables up to sign and hence have wG-weight at most 2. Therefore, the minimal
occurring wG-degree in the wG-graded free R[t]-module of L(X)h at the i-th place is
−2(n − 1) − 2(i − 1) for all i ≥ 1. Therefore, with respect to the wG-grading, L(X)h

has the following shape:⊕
cj<2n+2 R[t](−cj)⊕⊕

R[t](−2n − 2)

[d3]h−→

⊕
bj<2n R[t](−bj)⊕⊕

R[t](−2n)

[d2]h−→

⊕
aj<2(n−1) R[t](−aj)⊕⊕

R[t](−2(n − 1))

[d1]h−→ R[t].

We write
[di]h =

(
Ai Bi

Ci Di

)

for i = 2, 3 and [d1]h =
(
C1 D1

)
, each time according to the direct sum decomposi-

tion. Just as Boocher, we can deduce three things from the grading alone:

• For i = 2, 3, every non-zero entry of Bi has wG-weight at least 3 and is therefore
divisible by t. In particular, Bi|t=0 = 0.

• For i = 2, 3, every non-zero entry of Di has wG-weight 2 and is therefore either
of the form ±xij for ij ∈ G or i = j or of the form ±txij for i < j and ij ̸∈ G.
In particular, Di|t=0 = Di|Z=0. The latter is true also for i = 1.

• For i = 2, 3, all non-zero entries of Ci necessarily have wG-weight 1 and are
hence of the form ±xij for i < j and ij ̸∈ G. Therefore, Ci|Z=0 = 0 for all
i = 1, 2, 3.

After setting t = 0 in L(X)h, we obtain the maps

[d1]h|t=0 =
(
C1 D1|t=0

)
,

[di]h|t=0 =
(

Ai|t=0 0
Ci Di|t=0

)
for i = 2, 3,
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giving an exact sequence by Proposition 2.3.3. Now, tensoring with R/(Z) does not
change Di|t=0 for i = 2, 3 while Ci becomes the zero matrix for all i = 1, 2, 3. The
pruning procedure will hence first erase all columns of C1, so that [d1]h|t=0 becomes
simply D1|t=0, whose image is In−1(XG). The corresponding rows of [d2]h|t=0, which
are precisely those of A2, will be erased as well. Proceeding in the same way, the
resulting pruned complex PG eventually only consists of the three maps D1, D2, D3
with all variables from Z replaced by zeros. The complex PG is then still exact:
Denote by πi : (L(X)h|t=0)i → P i

G the projection onto the second big direct summand.
Then πi([di+1]h|t=0(v)) − Di+1|Z=0(πi(v)) lies in the image of Ci+1 whose non-zero
entries are variables in Z up to sign. If, over R/(Z), the element w is in the kernel of
Di, we consider the obvious lift of w to (0, w) in the kernel of [di]h|t=0, now over R.
By exactness of L(X)h|t=0, there exists v such that (0, w) = [di+1]h|t=0(v) and hence

w = πi((0, w)) = πi([di+1]h|t=0(v)) = Di+1|Z=0(πi(v)) mod Z,

so that over R/(Z) the element w lies in the image of Di+1|Z=0. This shows that
PG is exact over R/(Z) and hence also over R because R is a free module over
R/(Z).

Corollary 2.3.5. The graded Betti numbers of R/In−1(XG) are those stated in
Theorem 2.1.1.

Proof. By Theorem 2.3.4, it is enough to understand which columns of the matri-
ces [di]|Z=0 are identically zero. First, the entries of the row vector [d1]|Z=0 are
± det((XG)[n]\k,[n]\l) for k ≤ l and the latter vanishes if and only if k ̸= l and there
is no path between k and l in G. Next, we consider our explicit description of the
matrix [d2]. We claim that, after pruning, the column of [d2]|Z=0 corresponding to
the basis element Eij, i ̸= j, is zero precisely if there is no path in G between i and
j. The entry in the row corresponding to Eij, if i < j, resp. to Eji, if i > j, is the
diagonal variable xii. Thus, for the column to vanish this row must have been erased
in the pruning process, which is the case if and only if the minor corresponding to ij
vanishes identically after substituting zero for all variables in Z. This, as we saw, is
equivalent to i and j lying in different connected components of G. Conversely, if
this is the case, then the column of [d2]|Z=0 indeed vanishes after pruning because
the remaining variables appearing in this column are xki for k ≠ i which appears only
in the row corresponding to Ekj if k ≤ j resp. Ejk if k > j. But either xki ∈ Z or
ki ∈ G, and in the last case k and j necessarily lie in different connected components
of G, so the row corresponding to Ekj resp. Ejk must have been erased in the pruning
process. The argument for [d3] is similar.

2.4 A Characteristic Number for Sparse Quadrics

Let K = K and char(K) ̸= 2 in this section. The set of quadric hypersurfaces in
Pn−1

K is identified with the set of non-zero symmetric n × n matrices over K up to
scaling, i.e., with P(Sym2(Kn)). A G-sparse quadric is one where all off-diagonal
entries of its associated symmetric matrix corresponding to the non-edges of G are
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zero. Geometrically, this is a coordinate linear subspace of P(Sym2(Kn)), canonically
identified with Proj(RG) = PNG−1, where RG := R/(Z) and NG := dim(RG) =
|EG| + n, EG being the edge set of G.
An immediate consequence of Theorem 2.1.1 is that we can compute the degree of
the vanishing subscheme V (In−1(XG)) ⊆ PNG−1.

Proposition 2.4.1. If G is a disconnected graph on [n], then the codimension of
V (In−1(XG)) ⊆ PNG−1 is 2 and its degree is DG. If G is connected on [n], then the
codimension of V (In−1(XG)) ⊆ PNG−1 is 3 and its degree is

(
n+1

3

)
.

Proof. By Theorem 2.1.1, the minimal graded free resolution of RG/In−1(XG) over
RG (which looks the same as over R) has the form

0 → RG(−(n + 1))(
n
2)−DG → RG(−n)n2−1−2DG → RG(−(n − 1))(

n+1
2 )−DG → RG.

For the Hilbert series of RG/In−1(XG) we deduce

HS(RG/In−1(XG)) =
1 −

((
n+1

2

)
− DG

)
tn−1 + (n2 − 1 − 2DG)tn −

((
n
2

)
− DG

)
tn+1

(1 − t)NG

=
tn−1(1 − t)2DG + (1 − t)3∑n−2

k=0

(
k+2

2

)
tk

(1 − t)NG
.

Observing that ∑n−2
k=0

(
k+2

2

)
=
(

n+1
3

)
, the last computation gives all claims after

canceling (1 − t)2 for DG ̸= 0 or (1 − t)3 for DG = 0.

An application of Proposition 2.4.1 is the following geometric result.

Corollary 2.4.2. Let n ≥ 3 and char(K) = 0. For any graph G on [n], the number
of smooth G-sparse quadrics in Pn−1 tangent to 2 general hyperplanes and passing
through NG − 3 general points is

(n − 1)2 − DG.

If G is a connected graph on [n], then moreover the number of smooth G-sparse
quadrics in Pn−1 tangent to 3 general hyperplanes and passing through NG −4 general
points is

(n − 1)3 −
(

n + 1
3

)
= (n − 1)(n − 2)(5n − 3)

6 .

Proof. This follows from Proposition 2.4.1. The condition of passing through a
given point is a hyperplane in PNG−1 while the condition of being tangent to a
given hyperplane is a hypersurface of degree n − 1 in PNG−1 (defined by some linear
combination of the (n − 1)-minors of XG). By Theorem 2.1.1, the codimension of
V (In−1(XG)) in PNG−1 is 3 or 2 according to whether G is connected or not. Hence,
for codimension 2, cutting V (In−1(XG)) by the NG − 3 hyperplanes corresponding to
the same number of general points gives us a set of deg(V (In−1(XG))) many points,
counted with multiplicities. The two tangency conditions will contain all these
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points in V (In−1(XG)) but will cut down the complement (which is an open of a
2-dimensional linear space) to a zero-dimensional set of (n − 1)2 − deg(V (In−1(XG)))
many points, counted according to their multiplicities. This is an instance of
residual intersection, see [Ful98, Proposition 9.1.2]. If the points and hyperplanes are
sufficiently general, none of the points outside V (In−1(XG)) corresponds to a singular
G-sparse quadric because the intersection of all point conditions is empty and the
intersection of all hyperplane tangency conditions is precisely V (In−1(XG)), so any
fixed proper subset of PNG−1 \ V (In−1(XG)) can be avoided, such as the set of rank
n − 1 quadrics. Finally, by [FKM83, Theorem (d), p. 162], for sufficiently general
points and hyperplanes, the multiplicity of each of the points outside V (In−1(XG))
is 1; note that this uses char(K) = 0. If V (In−1(XG)) has codimension 3, the
argument is analogous.

Let us remark that the statement about multiplicities at the end of the proof is
also true in every positive characteristic p > 2 which does not divide the respective
characteristic number. This is again a consequence of [FKM83, Theorem (c)+(d)].
In particular, for the first of the two given characteristic numbers this is the case for
all p > (n − 1)2 and for the second one p > 5n − 3 will suffice.

2.5 Open Questions

2.5.1 Primality
It would be desirable to have a combinatorial characterization for when In−1(XG)
is prime, and this same question can of course be asked for the ideals of minors of
arbitrary size Ik(XG), 1 ≤ k ≤ n. It is clear that I1(XG) is always a prime ideal but
even for k = 2 and k = n the answer is not entirely trivial. A necessary condition for
Ik(XG) to be prime where 2 ≤ k ≤ n is that G is (n − k + 1)-connected, i.e., for any
subset M ⊆ [n] of cardinality |M | = k, the induced subgraph of G on M is connected.
Indeed, if G|M is disconnected, then the principal minor det((XG)M,M) factors as a
product of two lower-order principal minors because after some permutation of M the
matrix (XG)M,M is block-diagonal. But none of the two factors can be contained in
Ik(XG) for degree reasons. This observation is also present in [CW19, Lemma 7.10].
The following example was provided by Aldo Conca in personal communication. It
shows that this necessary combinatorial condition is not sufficient in general.

Example 2.5.1. Let n = 8, k = 5 and char(K) = 0. Let H be the complement
graph of the complete bipartite graph K4,4 with partition [8] = {1, 2, 3, 4}⊔{5, 6, 7, 8}.
Adding to H the four additional edges 15, 26, 37 and 48, we obtain a graph G. The
induced subgraph of G on any set of 5 vertices is connected, so G is 4-connected.
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The sparse generic symmetric matrices for G and H are:

XG =



x11 x12 x13 x14 x15 0 0 0
x12 x22 x23 x24 0 x26 0 0
x13 x23 x33 x34 0 0 x37 0
x14 x24 x34 x44 0 0 0 x48
x15 0 0 0 x55 x56 x57 x58
0 x26 0 0 x56 x66 x67 x68
0 0 x37 0 x57 x67 x77 x78
0 0 0 x48 x58 x68 x78 x88


,

XH =



x11 x12 x13 x14 0 0 0 0
x12 x22 x23 x24 0 0 0 0
x13 x23 x33 x34 0 0 0 0
x14 x24 x34 x44 0 0 0 0
0 0 0 0 x55 x56 x57 x58
0 0 0 0 x56 x66 x67 x68
0 0 0 0 x57 x67 x77 x78
0 0 0 0 x58 x68 x78 x88


.

We claim that I5(XG) is not prime. For this, let J = (x15, x26, x37, x48). Then, clearly
I5(XG) + J = I5(XH) + J . Since XH is block-diagonal, every 5-minor of XH factors
as a product of either a variable in one block and the determinant of the other block
or as the product of a 2-minor of one block and a 3-minor of the other block. Laplace
expansion shows that the determinant of a square matrix is contained in the ideal
of all submaximal minors. In particular, I5(XH) is contained in I1 + I2, where I1,
I2 are the ideals of all 3-minors of the two blocks, respectively. It is well-known
that I1 and I2 are of height 3. In particular, I1 + I2 + J is a prime ideal of height
3 + 3 + 4 = 10 since the three ideals are geometrically prime and involve disjoint
sets of variables. We obtain I5(XG) ⊆ I5(XG) + J = I5(XH) + J ⊆ I1 + I2 + J . On
the other hand, a computation in Macaulay2 for K = Q gives ht I5(XG) = 10 over
Q and hence over any field K of char(K) = 0. So if I5(XG) was prime, necessarily
I5(XG) = I1 + I2 + J , which is impossible for degree reasons.

Nonetheless, for some values of k the necessary combinatorial condition is actually
sufficient as the next result states.

Proposition 2.5.2. For k = n, the principal ideal In(XG) = (det(XG)) is prime if
and only if G is connected. In case char(K) = 0 and k = 2, 3, again Ik(XG) is prime
if and only if G is (n − k + 1)-connected.

Proof. For k = n, it is enough to prove that det(XG) is an irreducible polynomial
in R. We adapt a combinatorial proof of the case G = Kn.1 First, we recall the
following elementary fact: Let S be any integral domain and f ∈ S[x] a polynomial
over S in a single variable x. If f = ax + b for a, b ∈ S, a ̸= 0, and f factors as
f = gh in S[x], then precisely one of g and h is linear in x, i.e. of the form cx + d,
c ̸= 0, and the other one does not involve x at all.
Let now f := det(XG) where G is connected. We have the following two facts:

1see the accepted answer of the following stackexchange post:
math.stackexchange.com/questions/1893344/determinant-of-symmetric-matrix-is-an-irreducible-polynomial

58

https://math.stackexchange.com/questions/1893344/determinant-of-symmetric-matrix-is-an-irreducible-polynomial


• f is linear in xii for all i = 1, . . . , n.

• For all i < j such that ij ∈ G, we have that f contains terms which are divisible
by xij but no term of f is divisible by xiixij or xjjxij.

Now we assume that f = gh in R. Without loss of generality, we assume that g
is linear in x11, hence h is independent of x11 by the above. Therefore, h is also
independent of x1i for all i > 1 such that 1i ∈ G since otherwise f would contain
some term divisible by x11x1i. Hence, g contains terms divisible by x1i for all i > 1
such that 1i ∈ G since f contains such terms and h does not. We conclude that all
non-zero entries of XG in the first row appear only in g but not in h. Next, for every
i such that 1 is incident to i in G, h must be independent of xii as well, otherwise f
would again contain terms of the form xiix1i. Hence, g must be linear in xii for all i
incident to 1 in G. With the same argument as before, h is then also independent of
all xij such that ij ∈ G while g contains terms divisible by each of these variables.
We conclude that all non-zero entries of XG in the i-th row only appear in g but
not in h for every i such that 1i is an edge of G. Continuing in this way, since G is
connected, we will eventually reach every row of XG, implying that h is constant,
which concludes the proof.
For k = 2, 3 and char(K) = 0, the second claim is just a reformulation of [CW19,
Theorem 7.8] since their graph is precisely the complement graph Gc of G. The
important observation for k = 2, 3 is that the complement of any (n−k+1)-connected
graph G is a forest of maximal degree at most k − 2. Indeed, for k = 2 the graph G is
(n − 1)-connected if and only if G induces a connected graph on any pair of vertices.
This means that G = Kn is the complete graph. Hence, Gc has no edges at all, so Gc

is clearly a forest of maximal degree 0. For k = 3 the graph G is (n − 2)-connected
if and only if G induces a connected graph on any triple of vertices, so either the
triangle or the path. For Gc this means that there is at most one edge between any
three vertices. In particular, every vertex has degree at most 1 in Gc, so Gc is a
forest of maximal degree 1.

Motivated by these results, we ask the following question.

Question 2.5.3. Is the ideal In−1(XG) prime whenever G is 2-connected?

For K = Q, we checked with Macaulay2 that the answer is affirmative if n ≤ 6.

2.5.2 More Sparsity
Graphical models in algebraic statistics motivate the study of ideals generated by only
some submaximal minors of a generic symmetric matrix. If in addition the matrix
is allowed to be sparse, one arrives at the notion of a so-called double Markovian
model [BKKR23], see Chapter 3. The following result answers a combinatorial
question raised in [BKKR23, Remark 9], showing that the positivity assumption of
Corollary 3.3.24 can be relaxed.

Proposition 2.5.4. Let A ∈ Sym2(Kn) be a symmetric n × n matrix which is
principally regular, i.e., all principal minors of A are non-zero. If for all 1 ≤ i < j ≤ n
we have Aij · (A−1)ij = 0, then A is a diagonal matrix.
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Proof. We write A = (aij)i,j∈[n]. First note that any principal submatrix of a princi-
pally regular symmetric matrix is also principally regular by definition. Moreover,
an invertible symmetric matrix is principally regular if and only if so is its inverse.
The latter follows from the formula

det((A−1)I,I) = det(A[n]\I,[n]\I)
det(A)

for any I ⊆ [n]. If A is not diagonal, then after a permutation of [n] we may assume
that there exists a non-zero off-diagonal entry in the first row. We can even assume
that there is k ≥ 2 such that a1i = 0 for all i ≥ k + 1 and a1i ̸= 0 for all 2 ≤ i ≤ k.
Then

A[n]\1,[n]\i =



a12
a13
...

a1k

0
...
0

A[n]\1,[n]\1i


.

By hypothesis it now follows that (A−1)1i = 0 for all 2 ≤ i ≤ k which translates into

0 = (−1)i det(A[n]\1,[n]\i) =
k∑

j=2
(−1)i+ja1j det(A[n]\1j,[n]\1i)

for all 2 ≤ i ≤ k. Equivalently, in matrix form,

(
(−1)i+j det(A[n]\1j,[n]\1i)

)
i,j=2,3,...,k

·


a12
a13
...

a1k

 =


0
0
...
0

 . (2.1)

We observe that

(−1)i+j det(A[n]\1j,[n]\1i) = det(A[n]\1,[n]\1) · ((A[n]\1,[n]\1)−1)i−1,j−1.

But (A[n]\1,[n]\1)−1 is a principally regular symmetric matrix, hence the (k−1)×(k−1)
matrix in (2.1) is invertible, implying a12 = a13 = · · · = a1k = 0.
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3 The Geometry of Gaussian Dou-
ble Markovian Distributions

For questions of authorship, please refer to pages IVf.
This chapter is based on the preprint version of [BKKR23]. The main differences are
the inclusion of the missing cases in the classification of all double Markovian models
M(G, H) with |EG ∩ EH | = 3 in Proposition 3.3.31, a new version of Section 3.3.1
and a reference to Proposition 2.5.4 in Remark 3.3.25. Proposition 2.5.4 answers the
question raised in [BKKR23, Remark 9].

3.1 Mixing Graphical and Covariance Models
Let G and H be two undirected, simple graphs on the vertex set [n] = {1, . . . , n}.
Denote by PDn the set of real symmetric positive definite n × n matrices. In this
chapter, we study the following statistical models.

Definition 3.1.1. The Gaussian double Markovian model of G and H is

M(G, H) :=
{

Σ ∈ PDn :
(
Σ−1

)
ij

= 0 for all ij ̸∈ G, Σkl = 0 for all kl ̸∈ H
}

.

When writing ij ∈ G or ij ̸∈ G, we always assume i ̸= j (and similarly for k and l),
so that diagonal entries are unconstrained since otherwise the set would be empty.
Denoting the complete graph on [n] by Kn, ordinary undirected Gaussian graphical
models occur in Definition 3.1.1 as the special case M(G) := M(G, Kn). Covariance
models are precisely the models M(Kn, H), so both model classes are unified and
generalized here.

3.1.1 Conditional Independence and Graphical Modeling
Conditional independence (CI) constraints are a central tool in mathematical model-
ing of random events. For random variables X1, . . . , Xn, a conditional independence
statement prescribes that one random variable Xi be independent of another vari-
able Xj given a collection of remaining variables (Xk)k∈K where i, j ∈ [n] and
K ⊆ [n] \ {i, j}. CI constraints for discrete or normally distributed random variables
translate into polynomial conditions on elementary probabilities in the discrete case
and on covariance matrices in the Gaussian case. One aim of algebraic statistics is
to understand the algebraic and geometric properties of conditional independence
models and to relate them to properties of statistical inference procedures.

61



We exclusively treat Gaussian random variables in this chapter, i.e., we assume
that (X1, . . . , Xn) has a multivariate normal distribution with a positive definite
covariance matrix Σ ∈ PDn. Since the theory of CI is insensitive to the mean, we
may restrict to centered distributions, i.e., distributions with mean zero.
In graphical modeling, edges and paths represent correlation or interaction and,
conversely, notions of disconnectedness represent independence. Double Markovian
models are conditional independence models whose CI statements are of the following
two forms: either Xk ⊥⊥ Xl , for each non-edge kl of H, or Xi ⊥⊥ Xj

∣∣∣X[n]\{i,j} , for
each non-edge ij of G. Pairwise conditional independence as in the second type is
common in graphical modeling [Lau96]. The resulting Gaussian graphical model of a
simple undirected graph G on [n] with edge set EG is

M(G) = M(G, Kn) =
{

Σ ∈ PDn : (Σ−1)ij = 0 for all ij /∈ G
}

.

In words, the non-edges of G specify zeros of the inverse covariance matrix Σ−1, also
called the concentration matrix. Gaussian graphical models first appeared in [SK86],
and [Uhl19] is a modern survey containing many connections to e.g. optimization
and matrix completion. Marginal independence constraints (as in the first case)
also appear, for example with bidirected [DR02] or dashed graphs [CW93]. These
models M(Kn, H) encode marginal independence constraints and are also known as
covariance graph models [Kau96, LZ22].
A model similar to double Markovian models appeared recently in [LZ22, Exam-
ple 3.4], where the authors consider graphical models with some entries of Σ−1 zero
and complementary entries of Σ nonnegative. They investigate efficient estimation
procedures. These models go back to work of Kauermann [BR03, Kau96]. One way
to describe them is via mixed parametrizations: the regular exponential family of
all multivariate mean-zero Gaussians can be parametrized by the mean parameter
Σ = (σij) or the natural parameter Σ−1 = (kst). One can also employ a mixed
parametrization, using σij and kst for ij ∈ A and st ∈ B, where A∪̇B is a parti-
tion of the entries of an n × n-symmetric matrix. Double Markovian models with
G ∪ H = Kn arise from imposing zeros in the mixed parametrization. In general
they do not form regular exponential families, though. In the terminology of [LZ22],
linear constraints on mixed parameters define mixed linear exponential families. Such
models also appear in causality theory [PW94].
We study geometric properties of statistical models since they can imply favorable
statistical properties. The asymptotic behavior of M -estimators like the MLE
depends on properties of tangent cones that go under the name Chernoff regularity
in [Gey94]. Drton has shown that the nature of singularities determines the large
sample asymptotics of likelihood ratio tests [Drt09]. Smoothness of log-linear models
for discrete random variables has been studied by examining the parametrization
by marginals [Eva15, For12]. Generally, smoothness is favorable because estimation
procedures using analytical techniques like gradient descent rely on it.
In several occasions, for example in Corollary 3.3.21 geometric niceness results follow
because either M(G, H) or its inverse M(H, G) is an ordinary graphical model and
thus irreducible, connected, and smooth. In these cases one has found an effective
new parametrization of M(G, H). This theme has occurred in the literature. For
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example [DR08] asks for a Markov equivalent directed and undirected graph to the
bidirected (i.e. covariance) graph. Our geometric niceness results, however, go beyond
recognizing disguised graphical models.
A systematic analysis of smoothness of Gaussian CI models has been initiated in
[DX10]. That paper treats the n = 4 case in detail. It relies on similar algebraic
techniques as we do here, but also on the characterization of realizable 4-gaussoids
from [LM07]. We deal with a smaller class of models here, but achieve results
independent of the number of random variables, aiming to understand how the
geometry of M(G, H) depends on G and H. In particular, we are interested in
dimension, smoothness, irreducible decompositions and other basic geometric facts
that seem useful and interesting for inference methodology.
Algebraically, a double Markovian model M(G, H) is the vanishing set inside PDn

of an ideal generated by some entries of Σ ∈ PDn and some more of its inverse. The
latter is an algebraic condition as it can be encoded as the vanishing of submaximal
minors of Σ. This puts us broadly in the framework of sparse determinantal ideals,
see Definition 3.3.17 for the concrete class of ideals we are concerned with. The
sparsity is twofold in our setting: our ideals are generated by only some minors of a
sparse generic symmetric matrix, i.e., a symmetric matrix whose entries in the upper
triangle are either distinct variables or zero. To our knowledge, no systematic study
of these ideals has been carried out, even in the case of submaximal minors only.
Minors of symmetric matrices are a classical topic in commutative algebra, see for
example [Con94b, CW19]. Our results, in particular Theorem 3.3.20, can be viewed
as a further step towards the study of this class of sparse determinantal ideals.
We illustrate our results on a simple preliminary example. Section 3.4 contains
further examples.

Example 3.1.2. Let G = be a star with edge set {12, 13, 14} and H =
a path with edge set {12, 23, 34}. To study the model M(G, H), consider two
indeterminate symmetric 4 × 4-matrices Σ = (σij), K = (kij) representing covariance
and concentration matrices. The non-edges of G dictate the zeros of K and the non-
edges of H those of Σ. Algebraically (which means ignoring the positive definiteness
for a moment), the model is specified by the equations

ΣK = 14, k23 = k24 = k34 = σ13 = σ14 = σ24 = 0. (3.1)

These equations can be solved in Macaulay2 [GS] using primary decomposition
algorithms. This computation shows that the complex algebraic variety defined by
(3.1) consists of two irreducible components. In one of the components, k22 = s11 = 0
holds. So, if this component contains covariance matrices at all, then they are of non-
regular Gaussians. We do not consider this further in this example, although boundary
components can be important with respect to marginalization; see Example 3.2.16.
The other component consists of the matrices Σ of the form

Σ =


σ11 σ12 0 0
σ12 σ22 0 0
0 0 σ33 0
0 0 0 σ44

 , K =


k11 k12 0 0
k12 k22 0 0
0 0 k33 0
0 0 0 k44

 ,
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subject to the constraints ΣK = 14. This component is 5-dimensional and contains
positive definite matrices. If one additionally normalizes the variances as σii = 1
for i = 1, . . . , 4, then Σ is positive definite exactly if σ12 ∈ (−1, 1). The (complex)
singular locus of the interesting component is empty. In fact, smoothness is clear
from the simple parametrization.

Several features of this example follow from general results in this chapter. For
example, the vanishing ideal of the model is a monomial ideal by Theorem 3.3.20.
That M1(G, H) is a curve segment is explained by Proposition 3.3.28. The block-
diagonal structure follows from Theorem 3.3.23.

Remark 3.1.3. For computation it is sometimes useful to work in (Σ, K)-space
as in Example 3.1.2. Let Σ = (σij) and K = (kst) be generic symmetric matrices
(possibly with ones on the diagonal). To computationally answer algebraic questions
about constrained covariance matrices, one considers the rings R[σij : i ≤ j] and
R[σij, kst : i ≤ j, s ≤ t] of polynomials with real coefficients and whose indeterminates
stand for entries of the symmetric matrices Σ = (σij) and K = (kst). To impose
equational constraints, one forms quotients by ideals generated by the equations.
For example, the relation that ΣK = 1n is implemented by construction of the
quotient ring R[σij, kst : i ≤ j, s ≤ t]/(ΣK − 1n). Another useful trick is to impose
non-vanishing or invertibility of certain polynomials, for example det(Σ). This is
achieved by localization. The ring R[σij : i ≤ j]det(Σ) is an enlarged version of
R[σij : i ≤ j] where now det(Σ) is invertible. In fact, the natural map

R[σij : i ≤ j]det(Σ)
∼=−→ R[σij, kst : i ≤ j, s ≤ t]/(ΣK − 1n),

defined by mapping σij to σij is an isomorphism, as it should be because the constraint
that K = Σ−1 makes all variables kst functions of the σij. If I ⊆ R[σij : i ≤ j] is an
ideal, then the restriction of its extension in the localization at det(Σ) agrees with its
saturation at det(Σ). This provides a way to study conditional independence ideals
in the ring R[σij, kst : i ≤ j, s ≤ t]/(ΣK −1n), where almost-principal minors of high
degree are directly available as the kst variables. Saturation at det(Σ), however, is of
course not equivalent to the saturation at all principal minors. We recommend [Sul18,
Chapter 3] for a general introduction to computational methods of commutative
algebra with a view towards statistics.

Remark 3.1.4. The term double Markov property appears in [KR13, Lemma 1]
based on [CK11, Exercise 16.25, p. 392] where it is called double Markovity. It
describes constraints on three random variables which are in a special pair of Markov
chains. This notion is unrelated to the Markovness with respect to two undirected
graphs studied here. We judge the potential for confusion low enough to reuse this
term.

3.1.2 Overview of Results
The core of our work are several geometric and algebraic insights having implications
for statistical procedures dealing with M(G, H). In these results it is sometimes
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useful to restrict dimension and work with correlation matrices, which are covariance
matrices with ones on the diagonal. We write PDn,1 for the set of positive definite
matrices with ones on the diagonal. It is bounded and known as the elliptope. Then
M1(G, H) := M(G, H) ∩ PDn,1 is a correlation model. Let EG denote the edge set
of G and G ∩ H the graph on [n] with edge set EG ∩ EH , and similarly G ∪ H the
graph with edge set EG ∪ EH . An important insight is that geometric and algebraic
properties of double Markovian models often depend on features or the simplicity of
G ∩ H. The first result is a decomposition theorem relying on a notion of direct sum
defined via block matrices in Section 3.2.3.

Theorem A (Theorem 3.3.23 and Corollary 3.3.24). Let V1, . . . , Vr be a partition of
[n] such that each Vi is the vertex set of a connected component of G ∩ H. Then

M(G, H) =
r⊕

i=1
M(G|Vi

, H|Vi
),

i.e., every Σ ∈ M(G, H) has a block-diagonal structure with r diagonal blocks having
rows and columns indexed by the Vi. In particular, the correlation model satisfies
M1(G, H) = {1n} if and only if EG ∩ EH = ∅.

The next result exhibits that also the union of G and H contributes. If it is complete,
then the imposed constraints are simple enough to show, for example, smoothness.

Theorem B (Theorems 3.3.8, 3.3.11 and 3.3.15). For all graphs G and H we have
dim(M(G, H)) ≤ |EG ∩ EH | + n. If G ∪ H = Kn, then M(G, H) is smooth and all
connected components have dimension |EG ∩EH |+n. Conversely, if M(G, H) attains
this maximal dimension, its top-dimensional connected components are smooth with
irreducible Zariski closure.

In Section 3.3.3 we initiate the study of connectedness of M(G, H) in the euclidean
topology. We conjecture that all double Markovian correlations models are con-
nected (Conjecture 3.4.5). This contrasts with the fact that, allowing semi-definite
matrices, similarly defined variants of M1(G, H) can consist of isolated points as in
Example 3.4.4. We have the following results.

Theorem C (Corollary 3.3.21, Theorem 3.3.22, and Propositions 3.3.28, 3.3.29
and 3.3.31). The double Markovian model M(G, H) is connected in the following
cases:

(1) For every non-edge kl of G there is at most one path p in H connecting k and l
(or if this holds for G and H exchanged).

(2) There is a vertex i ∈ [n] such that for all non-edges kl of G, every path in H
connecting k and l contains i (or if this holds for G and H exchanged).

(3) |EG ∩ EH | ≤ 3.

The next theorem is our main algebraic result, see Theorem 3.3.20 for a more general
version. Here a forest is a (not necessarily connected) graph with no cycles.
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Theorem D (Theorem 3.3.20). Let G be any graph and H a forest. Then the
vanishing ideal of M1(G, H) is the square-free monomial ideal

I(M1(G, H)) = (σij, σp : ij ̸∈ H, p path in H with e(p) ̸∈ G).

Here, σp is the product of variables corresponding to edges in p, and e(p) denotes its
endpoints.

Finally, in Propositions 3.3.28 to 3.3.31 we give a classification up to symmetry and
matrix inversion of all double Markovian models with |EG ∩ EH | ≤ 3.

3.2 Preliminaries on CI Structures

3.2.1 Gaussian Conditional Independence
Gaussian graphical models as well as the double Markovian models are conditional
independence models: they are sets of Gaussian distributions specified by conditional
independence assumptions derived from a graph or pair of graphs. The conditional
independence relations of random variables can be studied combinatorially, using
abstract properties of conditional independence instead of concrete numerical data
like a density function or covariance matrix. To this end, we introduce formal symbols
(ij|K) where i ̸= j ∈ [n] and K ⊆ [n] \ ij. These formal symbols are subject to the
efficient Matúš set notation where union is written as concatenation and singletons
are written without curly braces. For example, ijK is shorthand for {i} ∪ {j} ∪ K.
The symbol (ij|K) shall represent the conditional independence Xi ⊥⊥ Xj |XK where
XK = (Xk)k∈K . For Gaussian random variables X1, . . . , Xn, the CI statement
XI ⊥⊥ XJ |XK is equivalent to rk ΣIK,JK = |K| by [Sul18, Proposition 4.1.9]. Using
the adjoint formula for the inverse of a matrix, it can be seen that a statement
(ij|[n] \ ij) (as it appears in the definition of a graphical model) is equivalent to
(Σ−1)ij = 0.
If I = i and J = j are singletons, the rank condition is equivalent to the van-
ishing of the determinant of the square submatrix ΣiK,jK . These determinants
are almost-principal minors. It is well-known that the statements (ij|K) com-
pletely describe the entire CI relation of a random vector [Mat97, Section 2].
The set of all conditional independence statements among n random variables
is A[n] = {(ij|K) : i ̸= j ∈ [n], K ⊆ [n] \ ij}. An abstract conditional independence
relation is a subset of A[n]. Fundamental problems in the intersection of probabil-
ity, computer science and information theory concern the set of realizable subsets
R ⊆ 2A[n] , meaning that for R ∈ R there is a random vector X satisfying all
statements in R and none of those in A[n] \ R.
To each positive definite n × n matrix Σ we associate a corresponding CI relation

⟨⟨Σ⟩⟩ := {(ij|K) : rk ΣiK,jK = |K|} ⊆ A[n],

consisting exactly of the CI statements satisfied by Σ. Conversely, the covariance
matrices satisfying all statements of a CI relation R form its Gaussian conditional
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independence model:

M(R) := {Σ ∈ PDn : det(ΣiK,jK) = 0 for all (ij|K) ∈ R}

⊆ PDn ⊆ Sym2(Rn) ∼= R(n+1
2 ).

We consider this set together with the subset topology with respect to the euclidean
topology on the set of symmetric matrices Sym2(Rn). The cone PDn is open in
Sym2(Rn) as it is the preimage of Rn

>0 ⊆ Rn under the continuous map which sends
Σ ∈ Sym2(Rn) to the vector in Rn of all leading principal minors, using Sylvester’s
criterion. Writing Σ = (σij), the associated correlation matrix of Σ has σij√

σii
√

σjj
as

its ij-entry. Its diagonal consists of ones and all non-diagonal entries lie in (−1, 1) as
det(Σij,ij) > 0. Therefore, the set of correlation matrices PDn,1 is an intersection of
PDn with an affine linear subspace of Sym2(Rn). This yields a subspace topology and
also a canonical smooth structure on PDn,1, making it into a smooth submanifold
of PDn of codimension n. It is often convenient to work with the bounded set of
correlation matrices in the model:

M1(R) := {Σ ∈ PDn,1 : det(ΣiK,jK) = 0 for all (ij|K) ∈ R} = PDn,1 ∩M(R).

Many favorable properties transfer between M1(R) and M(R), especially if they are
of differentiable nature, see Lemma 3.3.1. Some care is necessary when considering
algebraic properties such as the number of Zariski irreducible components. M1(R) is
a linear section of M(R), so its algebraic properties may differ; see e.g. Example 3.4.1.
There is no finite axiomatic characterization of the set R of realizable CI relations
that is valid for all n. Neither in general [Stu92] nor for Gaussians specifically [Sul09].
Closure properties of CI relations often have cryptic names going back to the search
for a finite axiomatization. In this terminology, for Σ ∈ PDn, the relation ⟨⟨Σ⟩⟩ is
a weakly transitive, compositional graphoid. The compound of these properties is
also the definition of gaussoid [LM07]. Gaussoids approximate Gaussian conditional
independence in a similar way to matroids approximating linear independence
[BDKS19].

3.2.2 Undirected Graphical Models
If G is a graph on [n], then

⟨⟨G⟩⟩ := {(ij|K) : K separates i and j in G}

denotes the CI separation statements, those that follow from separation in the graph.
We refer to CI relations of the form ⟨⟨G⟩⟩ as Markov relations. See [Lau96] for all details
on modeling CI by graphs. Any relation ⟨⟨G⟩⟩ is realizable, meaning that it equals ⟨⟨Σ⟩⟩
for some Σ ∈ PDn and one can even pick Σ with all positive correlations [BDKS19,
Theorem 4]. The models realizing ⟨⟨G⟩⟩ are smooth as they are inverse linear spaces
and thus parametrized by a diffeomorphism (see Proposition 3.2.2). Since the
CI relation ⟨⟨G⟩⟩ of any graph G is realizable, it follows that ⟨⟨G⟩⟩ is a gaussoid.
In addition, graph separation is upward-stable, meaning that (ij|L) implies (ij|kL)
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for all k ∈ [n] \ ijL, and being an upward-stable gaussoid is even a characterization
of being of the form ⟨⟨G⟩⟩ for some undirected graph G by [Mat97, Proposition 2].
A pseudographoid is an abstract CI structure which satisfies the intersection property,
which together with the semigraphoid axiom forms the definition of graphoid; see
[LM07, Remark 1] for the terminology. The following lemma states that it is sufficient
to verify that Σ satisfies the maximal separation statements (which correspond to
the non-edges in G), for it to satisfy all separation statements for G. In this case Σ
is Markovian for G.
Lemma 3.2.1. Let G be an undirected graph and Σ a complex symmetric matrix
with non-vanishing principal minors and let m = {(ij|[n] \ ij) : i ̸= j} denote the set
of maximal CI statements. Then ⟨⟨G⟩⟩ ∩ m ⊆ ⟨⟨Σ⟩⟩ implies ⟨⟨G⟩⟩ ⊆ ⟨⟨Σ⟩⟩.
Proof. By [Mat05, Corollary 1] the CI structure ⟨⟨Σ⟩⟩ is a weakly transitive, compo-
sitional graphoid already when Σ is a complex symmetric matrix with non-vanishing
principal minors (which includes the real positive definite case). The lemma follows
from [LM07, Lemma 3], by choosing M = ⟨⟨G⟩⟩ ∩ m. Then G is a graph with i and
j adjacent if and only if (ij|[n] \ ij) ̸∈ M. Since M ⊆ ⟨⟨Σ⟩⟩ by assumption, it follows
that ⟨⟨G⟩⟩ ⊆ ⟨⟨Σ⟩⟩.

By Lemma 3.2.1, Σ is Markovian for G if and only if ⟨⟨G⟩⟩ ∩ m ⊆ ⟨⟨Σ⟩⟩. The maximal
CI statements ⟨⟨G⟩⟩ ∩ m point out precisely the non-edges in G and therefore Σ
being Markovian for G is equivalent to (Σ−1)ij = 0 for all ij /∈ G. This shows that
M(G) = M(⟨⟨G⟩⟩).
Proposition 3.2.2. Every Markov relation ⟨⟨G⟩⟩ is realizable by a regular Gaussian
distribution. For each graph G, the model M(G) is irreducible and smooth.
Proof. Realizations for ⟨⟨G⟩⟩ were constructed from (inverses of) generalized ad-
jacency matrices in [LM07, Theorem 1]. By Lemma 3.2.1 the set M(G)−1 =
{Σ−1 : Σ ∈ M(G)} is a linear subspace intersected with the cone PDn. It is the
interior of a spectrahedron. As such it is an irreducible semi-algebraic set and smooth.
These properties are transferred to the inverse M(G) by Lemmas 3.3.1 and 3.3.2
below.

Matúš [Mat12, Theorem 2] proved a geometric characterization of the sets M(G)−1:
among all Gaussian conditional independence models, they are precisely those which
are convex subsets of PDn.

3.2.3 Minors, Duality and Direct Sums
Marginalization and conditioning are natural operations on random vectors and can
also be carried out on conditional independence structures. These abstract operations
mimic the effect of statistical operations on a purely formal level.
Definition 3.2.3. Let R ⊆ A[n] and k ∈ [n]. The marginal and the conditional of
R on [n] \ k are, respectively,

R \ k :=
{

(ij|K) ∈ A[n]\k : (ij|K) ∈ R
}

,

R / k :=
{

(ij|K) ∈ A[n]\k : (ij|k ∪ K) ∈ R
}

.
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Any set R′ ⊆ AS, S ⊆ [n], obtained from R by a sequence of marginalization and
conditioning operations is a minor of R.

On covariance matrices, marginalizing away a variable k ∈ [n] is achieved by taking
the principal submatrix Σ \ k := Σ[n]\k. The conditional distribution on k is the
Schur complement of the k × k entry Σ / k := Σ[n]\k − σ−1

kk Σ[n]\k,k · Σk,[n]\k. This is
proven in [Sul18, Theorem 2.4.2].

Lemma 3.2.4. For Σ ∈ PDn we have ⟨⟨Σ⟩⟩ \ k = ⟨⟨Σ \ k⟩⟩ and ⟨⟨Σ⟩⟩ / k = ⟨⟨Σ / k⟩⟩. In
particular, minors of realizable CI relations are realizable.

For any Gaussian distribution, matrix inversion exchanges the covariance and concen-
tration matrices. The combinatorial version of this operation furnishes an involution
on CI relations.

Definition 3.2.5. The dual of R ⊆ A[n] is R⌉ := {(ij|[n] \ ijK) : (ij|K) ∈ R} ⊆
A[n].

This involution turns a covariance matrix Σ which is Markovian for a graph G into a
concentration matrix K = Σ−1 such that Kij = 0 for all ij /∈ G. It also exchanges
marginal and conditional [LM07, Lemma 1]:

Lemma 3.2.6. For any R ⊆ A[n] and k ∈ [n] we have R⌉ \ k = (R / k)⌉. If Σ is
positive definite, then ⟨⟨Σ⟩⟩⌉ = ⟨⟨Σ−1⟩⟩. In particular, duals of realizable CI relations
are realizable.

The final operation of interest is concatenating two independent Gaussian random
vectors (Xi)i∈S and (Yi)i∈T which are indexed by disjoint ground sets S and T . This is
called direct sum in the structure theory of CI relations [Mat94]. The corresponding
CI relation is as follows.

Definition 3.2.7. Let R and R′ be two CI structures on disjoint ground sets
S and T , respectively. Their direct sum is the CI structure

R ⊕ R′ := {(ij|K) ∈ AST : i ∈ S, j ∈ T}
∪ {(ij|KL) ∈ AST : (ij|K) ∈ R, L ⊆ T}
∪ {(ij|KL) ∈ AST : (ij|K) ∈ R′, L ⊆ S} ⊆ AST .

On the level of covariance matrices, the direct sum imposes a block-diagonal structure
with the summands on the diagonal. For Σ ∈ PDS and Σ′ ∈ PDT let Σ⊕Σ′ =

(
Σ 0
0 Σ′

)
.

The following lemma is immediate.

Lemma 3.2.8. For Σ ∈ PDS and Σ′ ∈ PDT we have ⟨⟨Σ ⊕ Σ′⟩⟩ = ⟨⟨Σ⟩⟩ ⊕ ⟨⟨Σ′⟩⟩. In
particular, the direct sum R ⊕ R′ is realizable if and only if R and R′ are both
realizable. Moreover, the direct sum commutes with duality and minors.

Lemma 3.2.9. For V = M(R) and V ′ = M(R′) on disjoint ground sets S and T ,
respectively, the direct sum U = V ⊕ V ′ on ST is smooth if and only if V and V ′

are both smooth.
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Proof. From the block-diagonal shape of matrices in U and Lemma 3.2.8 it follows
that:

(1) V and V ′ are irreducible if and only if U is irreducible,

(2) TΣ⊕Σ′U = TΣV ⊕ TΣ′V ′, and

(3) dim U = dim V + dim V ′.

Given irreducibility, smoothness means equality of the tangent space dimension to
the model dimension. Therefore the smoothness conditions are equivalent.

Remark 3.2.10. Any direct summand of a CI relation is a marginalization. Marginal-
izations in general need not preserve smoothness, as Example 3.2.16 below shows.
But, one direction of Lemma 3.2.9 yields that a direct summand of a smooth model
is smooth. Consequently, the non-zero entries in off-diagonal blocks are obstructions
to smoothness of marginalizations.

The corresponding operations on graphs have been explained in [Mat97]. For a graph
G and a vertex k, write G \ k for the graph G where vertex k and all incident edges
are deleted and G / k for the graph G where vertex k is deleted and all vertices
previously adjacent to k are connected to form a clique. The direct sum G ⊕ G′ of
graphs G, G′ on disjoint ground sets S, T , respectively, consists of the disjoint unions
of the vertex and edge sets of G and G′ forming an undirected graph on ST . The
operations on CI relations, positive definite matrices and graphs are all aligned:

Lemma 3.2.11. Let G be a graph on a vertex set [n] and k ∈ [n]. We have
⟨⟨G⟩⟩ \ k = ⟨⟨G / k⟩⟩, ⟨⟨G⟩⟩ / k = ⟨⟨G \ k⟩⟩ and ⟨⟨G ⊕ G′⟩⟩ = ⟨⟨G⟩⟩ ⊕ ⟨⟨G′⟩⟩. In particular,
Markov relations are closed under forming minors and direct sums.

Duality has no counterpart in undirected graphical models. If undirected graphical
models are referred to as “concentration models”, their duals are “covariance models”.
Sometimes they are written with bidirected edges instead of undirected ones.

3.2.4 Double Markovian Models
In a double Markovian model a pair of graphs (G, H) specifies vanishing conditions
via G on the concentration matrix and via H on the covariance matrix. This can be
expressed using duality on ordinary Markov relations:

Definition 3.2.12. Let G and H be undirected graphs on vertex set [n]. Their
double Markov relation is ⟨⟨G, H⟩⟩ = ⟨⟨G⟩⟩ ∪ ⟨⟨H⟩⟩⌉.

By Lemma 3.2.1, M(G, H) = M(⟨⟨G, H⟩⟩) and the following is similar to Lemma 3.2.11.

Lemma 3.2.13. Let G and H be graphs on the vertex set [n]. Then

⟨⟨G, H⟩⟩⌉ = ⟨⟨H, G⟩⟩, ⟨⟨G, H⟩⟩ \ k = ⟨⟨G / k, H \ k⟩⟩, ⟨⟨G, H⟩⟩ / k = ⟨⟨G \ k, H / k⟩⟩.

Hence the class of double Markov relations is minor-closed.
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All Markov relations are realizable and their models are smooth. These desirable
properties fail to hold for double Markov relations. The CI relation ⟨⟨G, H⟩⟩ gives
only partial information about the geometry of the model. It is incomplete in the
sense that ⟨⟨G, H⟩⟩ does not necessarily contain all CI statements which are true on
the model M(G, H). The remainder of this section contains examples of pathological
behavior in the double Markovian setting.
Our first example of this is a double Markov relation which is not even a semigraphoid
because it violates the following basic rule, which is satisfied by any probability
distribution (Gaussian or not) and therefore must hold on the model M(G, H):

(12|) ∧ (13|2) ⇒ (13|) ∧ (12|3).

Example 3.2.14. Consider the two graphs G = and H = , where the vertices
are labeled 1, 2, 3, 4, clockwise starting at the top left. The vertex 4 can be replaced
by any graph as long as it is not connected to 123. Because (13|) ̸∈ ⟨⟨G⟩⟩ and
(13|24) ̸∈ ⟨⟨H⟩⟩, (13|) ̸∈ ⟨⟨G, H⟩⟩. However, (13|2) holds in G and (12|L) holds
in H for any L ⊆ 34. But (12|) and (13|2) without (13|) in ⟨⟨G, H⟩⟩ contradict the
semigraphoid property, because by contraction (12|) ∧ (13|2) ⇒ (1, 23|) and then by
decomposition (1, 23|) ⇒ (13|) and by weak union (1, 23|) ⇒ (12|3).

The semigraphoid closure of the CI structure in Example 3.2.14 (with 4 being an
isolated vertex) is A4 and its model consists only of the identity matrix. As explained
by Corollary 3.3.24, this happens because the edge sets of G and H are disjoint.
The next example uses the weak transitivity axiom (12|) ∧ (12|3) ⇒ (13|) ∨ (23|) to
construct a family of graph pairs (G, H) whose model is non-smooth. The basic idea
is that the logical OR in the conclusion of weak transitivity produces two components
of the model. We verify that the CI model of {(12|), (12|3)} has two irreducible
components which intersect in the positive definite cone. In particular, this model is
not smooth.

Example 3.2.15. Pick G = H = which connects 1 with 2 via 3. Making only
small changes to the following arguments, the fourth node can be replaced by any
(possibly empty) graph that is not connected to 123. The CI structure is

⟨⟨G, H⟩⟩ = (A4 \ {(13|L) : L ⊆ 24}) \ {(23|L) : L ⊆ 14} .

In particular the formula (12|) ∧ (12|3) ∧ ¬(13|) ∧ ¬(23|) holds for R = ⟨⟨G, H⟩⟩,
which violates weak transitivity. Because it violates weak transitivity, R is not
a gaussoid and not realizable by a regular Gaussian distribution. There are two
gaussoid extensions of R to consider: R1 which adds (13|L) and R2 which adds
(23|L), for all L, respectively, to R. These extensions are isomorphic by exchanging
the roles of 1 and 2. They are Markov relations corresponding to the complete
graph with one edge removed. Hence, they are realizable and their models are
irreducible and smooth by Proposition 3.2.2. However, the model of R consists of
two copies of this smooth model, intersecting at the identity matrix, which makes it
a singular point.

71



Unlike being double Markovian, the condition on a CI relation to be double Markovian
and having a smooth model is not minor-closed. This is because for instance
marginalizations of irreducible models can be reducible.

Example 3.2.16. The two graphs G = and H = impose the following
relations on a positive definite 4 × 4 matrix Σ = (σij) in their double Markovian
model:

σ12 = σ14 = σ24 = σ34 = 0, from ⟨⟨H⟩⟩⌉,

σ13σ23σ44 = 0, σ13σ22σ44 = 0, from ⟨⟨G⟩⟩.

The bounded model M1(G, H) = M(G, H) ∩ PD4,1 is a curve segment parametrized
by σ23 ∈ (−1, 1) since σ13 is forced to zero on PD4,1. The marginal CI structure on
123 is ⟨⟨G, H⟩⟩ \ 4 = ⟨⟨G / 4, H \ 4⟩⟩ = ⟨⟨ , ⟩⟩, the one from Example 3.2.15. Its
model has two components which intersect in the identity matrix and is therefore
not smooth.
To understand this phenomenon one has to distinguish the model of the marginal
CI structure, M(G/4, H \4), from the pointwise marginalization of M(G, H). What
is discussed above is the former. It is reducible and properly contains the latter
model as one of its two components.
The “unexpected” component of M(G / 4, H \ 4) arises from semi-definite matrices
on the boundary of M(G, H) which become regular after marginalization. Namely,
the two equations

σ13σ23σ44 = 0, σ13σ22σ44 = 0
imply σ13 = 0 on positive definite matrices, but there are semi-definite solutions to
them where (1) σ22 = 0 and σ23 = 0, or (2) σ44 = 0, and σ13 and σ23 are arbitrary.
Thus there are three types of solutions:

σ11 0 0 0
0 σ22 σ23 0
0 σ23 σ33 0
0 0 0 σ44

 ,


σ11 0 σ13 0
0 0 0 0

σ13 0 σ33 0
0 0 0 σ44

 ,


σ11 0 σ13 0
0 σ22 σ23 0

σ13 σ23 σ33 0
0 0 0 0

 .

The first type is visible in PD4 and in M(G, H) and its marginalization forms one
of the components of M(G / 4, H \ 4). The second type of solutions is not visible
in the marginalization because it contains no PD3 matrices. Marginalizing 4 from
the CI structure removes the last row and column of these matrices and imposes
additional constraints, in this case σ13σ23 = 0. This turns the third type of solution
positive definite and reduces the dimension by one. In this case, both the first and
second component arise from this 2-dimensional boundary component.

Next, we present a family of double Markov relations which are realizable but whose
model is singular at the identity matrix. Moreover, this gives an infinite family of
realizable, non-smooth models all of whose proper minors are realizable and smooth.

Example 3.2.17. By [DX10, Proposition 4.2], the model of R = {(12|), (12|[n] \ 12)}
is singular at the identity matrix. It can be represented by the double Markov
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relation ⟨⟨G, G⟩⟩ where G is the graph on [n] whose only non-edge is 12. If k = 1, 2,
the marginalization and conditioning of G by k are both the complete graph, so their
double Markovian model is the entire cone PDn and smooth. If k ∈ [n]\12, then G/k
is a complete graph and G \ k is another graph on [n] \ k whose only non-edge is 12.
Since a complete graph imposes no relations, we find that ⟨⟨G, G⟩⟩ \ k = ⟨⟨G \ k⟩⟩ is a
Markov relation and thus its model is smooth by Proposition 3.2.2. It is clear that all
further minors of these two cases yield smooth models as well. This gives infinitely
many examples of minor-minimal, non-smooth double Markovian CI structures.
Explicit computation in Macaulay2 for n = 4, 5, 6 verifies that (the Zariski closure
of) the model is an irreducible variety and this shows that singularities are not
always caused by an intersection of irreducible components. In Example 3.4.2 we
examine the singular locus of M(G, G) further. It turns out to be another conditional
independence model.

We have no general proof for the irreducibility of the models in the preceding
example when n ≥ 7. It was shown in [Boe22, Lemma 6.4] that the CI structures
{(12|), (12|[n] \ 12)} are realizable by Gaussian distributions for all n ≥ 4. Thus the
models are irreducible in the finite “lattice of CI relations” studied by Drton and
Xiao in [DX10, Section 2.1]. This is a coarsening of the lattice of the usual Zariski
topology induced on PDn, so CI-irreducibility provides a necessary condition for
Zariski-irreducibility.
There is a Galois connection between CI structures R ⊆ A[n] and Gaussian CI mod-
els M(R) ⊆ PDn. The closed CI structures under this connection are termed
complete relations by Drton and Xiao, and their [DX10, Theorem 2.2] character-
izes them as the intersections of realizable gaussoids. The completion of a double
Markovian relation ⟨⟨G, H⟩⟩ adds all CI statements which hold on every matrix in its
model M(G, H). For single Markovian relations ⟨⟨G⟩⟩ is always complete because it
is realizable by Proposition 3.2.2 and its elements can be read off from G.
On the other hand, Example 3.2.14 exhibits a pair of graphs G and H whose
CI structure does not satisfy the semigraphoid property. Since the semigraphoid
axiom holds for every Gaussian distribution, it follows that ⟨⟨G, H⟩⟩ need not be
complete. Moreover, even if the set ⟨⟨G, H⟩⟩ is closed under the compositional
graphoid axioms, which hold for all Gaussians (called semigaussoid axioms by Drton
and Xiao), it may still be incomplete:

Example 3.2.18. Let G = and H = both be 4-cycles. We have ⟨⟨G⟩⟩ =
{(13|24), (24|13)} and ⟨⟨H⟩⟩⌉ = {(12|), (34|)}. Their union R is the set of antecedents
to an instance of inference rule [LM07, Lemma 10 (17)]:

(12|) ∧ (34|) ∧ (13|24) ∧ (24|13) ⇒ (13|)

This formula is valid for all regular Gaussians. Since R is not closed under this rule,
it is not realizable by a positive definite matrix. It is not complete either because the
inference rule (17) is a Horn clause, i.e., it has a unique consequence (13|) which every
realizable superset of R and hence R as their intersection would have to contain if it
were complete.
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However, R is a gaussoid (therefore closed under the compositional graphoid axioms)
and it is realizable by a complex matrix with non-vanishing principal minors. Conse-
quently, working with equations in a computer algebra system like Macaulay2, one
cannot deduce any further CI statements from ⟨⟨G, H⟩⟩. Positive definiteness has to
be taken into account.
The completion of R in the positive definite setting can be computed as its closure
under the semigaussoid axioms [LM07, Definition 1 (7)–(9)] and the higher inference
rules [LM07, Lemma 10 (17)–(21)] of Lněnička and Matúš. It equals R = A4 \
({(14|L) : L ⊆ 23} ∪ {(23|L) : L ⊆ 14}). This structure is a self-dual Markov relation
and hence can be written as the relation of two identical graphs (J, J) such that
⟨⟨J⟩⟩ = ⟨⟨J⟩⟩⌉. Indeed J = G ∩ H gives ⟨⟨J, J⟩⟩ = R. This shows that nevertheless
M(G, H) = M(R) = M(J, J) = M(G ∩ H) is smooth.

Question 3.2.19. Is there a combinatorial criterion similar to separation in undi-
rected graphs to derive a complete set of valid CI statements for M(G, H)?

A first step is Corollary 3.3.24 where the triviality of the model is characterized by
disjointness of the edge sets. In this case, every CI statement is a consequence of the
statements in ⟨⟨G, H⟩⟩.

3.3 Geometry of the Models M(G, H)
Our study of the smoothness of double Markovian models starts with the known
observation that one may as well work with the bounded set of correlation matrices.

Lemma 3.3.1 ([DX10, Lemma 3.2]). The set M(R) is a smooth submanifold of
PDn if and only if M1(R) is a smooth submanifold.

Proof. The map PDn → Rn
>0 ×PDn,1, sending Σ to the pair consisting of its diagonal

and its associated correlation matrix, is a diffeomorphism. Consider the following
commutative diagram:

PDn Rn
>0 × PDn,1 {(1, 1, . . . , 1)} × PDn,1 PDn,1

M(R) Rn
>0 × M1(R) {(1, 1, . . . , 1)} × M1(R) M1(R).

∼=

∼=

All maps are topological embeddings or homeomorphisms, and the upper row con-
sists of diffeomorphisms and embeddings of smooth submanifolds. If M(R) is a
smooth submanifold, Rn

>0 × M1(R) inherits a smooth manifold structure making the
second vertical inclusion an embedding of a smooth submanifold. Now, the product
{(1, 1, . . . , 1)} × M1(R) is the preimage of a regular value under the projection map
Rn

>0 × M1(R) → Rn
>0. This again can be seen from the composition

M(R) ↪→ PDn

∼=→ Rn
>0 × PDn,1 → Rn

>0,

sending Σ ∈ M(R) to its diagonal. The claim follows because for each Σ ∈ M(R)
having only ones on the diagonal and an arbitrary positive diagonal matrix D, we
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have DΣD ∈ M(R) (by the proof of [DX10, Lemma 3.1]). Choosing an appropriate
smooth path of diagonal matrices passing through the identity matrix, we obtain
every possible tangent vector in T(1,1,...,1)Rn

>0.
If M1(R) is a smooth submanifold of PDn, then also of PDn,1, and the product
Rn

>0 × M1(R) inherits a canonical smooth structure making the second vertical
inclusion an embedding of a smooth submanifold. Then clearly the induced smooth
structure on M(R) makes the leftmost vertical inclusion an embedding of a smooth
submanifold as well.

The proof shows that if M1(R) is a smooth submanifold of PDn, then it is in fact
a smooth submanifold of M(R) via the inclusion. The following lemma is easily
verified.

Lemma 3.3.2 ([DX10, Lemma 3.3]). There is a self-inverse diffeomorphism PDn,1 →
PDn,1, given by matrix inversion followed by forming the correlation matrix, mapping
M1(R) onto M1(R⌉).

In particular, M(R) and M1(R) are smooth if and only if M(R⌉) and M1(R⌉) are.
As an image of a linear space under the inversion map, any graphical model M(G)
is smooth. Moreover, the bijective morphism of semi-algebraic sets Rn

>0 × M1(R) →
M(R), (D, Σ) 7→ DΣD can be used to show that the dimensions of M1(R) and
M(R) always differ by n.

3.3.1 Basics from Real Algebraic Geometry
We collect several foundational definitions and results from [BCR98] and refer to
this textbook for an extensive treatment.
A real algebraic set Z ⊆ Rn is the vanishing set V(S) of a collection S ⊆ R[x1, . . . , xn]
of polynomials, and S may be replaced by the ideal (S) it generates. Real algebraic
sets are the closed sets of the Zariski topology on Rn. If Θ ⊆ Rn is any subset, its
ideal is I(Θ) = {f ∈ R[x1, . . . , xn] : f(x) = 0, for all x ∈ Θ}. The real algebraic set
of I(Θ) is the Zariski closure Θ of Θ. Every irreducible component of the Zariski
closure of Θ in Rn intersects Θ. If Z is irreducible in this topology, Z is a real
algebraic variety. A set of the form

Θ = {x ∈ Rn : f1(x) = · · · = fr(x) = 0, g1(x) > 0, . . . , gs(x) > 0} ,

where fi, gj ∈ R[x1, . . . , xn] are real polynomials is a basic semi-algebraic set. A
finite union of basic semi-algebraic sets in a fixed Rn is a semi-algebraic set. The
dimension of a semi-algebraic set Θ ⊆ Rn is the dimension of its coordinate ring
R[x1, . . . , xn]/I(Θ). The dimension of Θ then equals the dimension of its Zariski
closure as I(Θ) = I(Θ). A semi-algebraic set Θ ⊆ Rn is semi-algebraically connected
if for every two disjoint semi-algebraic subsets A, B ⊆ Θ which are closed in Θ and
satisfy A ∪ B = Θ, one has A = Θ or B = Θ. According to [BCR98, Theorem 2.4.5],
a semi-algebraic set Θ ⊆ Rn is semi-algebraically connected if and only if it is
connected with respect to the euclidean topology on Rn.
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Definition 3.3.3. For a real algebraic set V ⊆ Rn with vanishing ideal I(V ) =
(f1, . . . , fr), the Zariski tangent space TpV at p ∈ V is the kernel of the Jacobian
matrix

Jp =
(

∂fi

∂xj

(p)
)

i=1,...,r,
j=1,...,n

.

An algebraic set V is smooth at p ∈ V if p is contained in some irreducible component
Z of V with dim(Z) = dim(TpV ). Finally, V is smooth if it is smooth at every point
p ∈ V .

The principal ideal theorem implies that dim(TpV ) ≥ dim(Z) for all irreducible
components Z of V containing p. If p ∈ V is a smooth point and Z an irreducible
component of V containing p with dim(Z) = dim(TpV ), then rk(Jp) = n − dim(Z)
and Z is the only irreducible component of V containing p. The latter is a consequence
of the fact that regular local rings are integral domains [Kem11, Corollary 13.6].
Another general fact is that the rank of the Jacobian at p does not depend on the
set of generators of I(V ). This follows from the fact that adding an element of the
ideal I(V ) to a list of generators does not change the rank because the gradient of
the additional polynomial is linearly dependent on the gradients of the generators at
every point p ∈ V . This reasoning also proves the following.

Lemma 3.3.4. Let V ⊆ Rn be a real algebraic set with generators f1, . . . , fr of I(V )
and let g1, . . . gs ∈ I(V ) be arbitrary. Then for all p ∈ V we have

rk
(

∂fi

∂xj

(p)
)

i=1,...,r,
j=1,...,n

≥ rk
(

∂gi

∂xj

(p)
)

i=1,...,s,
j=1,...,n

.

The natural application of Lemma 3.3.4 is to bound dim(V ) when no generating set
of I(V ) is known.
Similarly to Definition 3.3.3, a semi-algebraic set Θ ⊆ Rn is smooth at p ∈ Θ if p is
a smooth point of the Zariski closure Θ. If Θ is smooth at every point, then Θ is
smooth. The set of smooth points of Θ is its smooth locus, denoted Θsm. The smooth
locus Vsm of a non-empty real algebraic set V is a non-empty Zariski-open subset
of V by [BCR98, Proposition 3.3.14] and is always Zariski-dense in V because Vsm
intersects every irreducible component of V . We stress that our definition of the
smooth locus of a real algebraic set V differs from that of [BCR98, Notation 3.3.13]
where all irreducible components of dimension less than dim(V ) are counted as
singular. By our definition, instead, a point p ∈ V is smooth if and only if the local
ring (R[x1, . . . , xn]/I(V ))mp

is a regular local ring (of any dimension), which is natural
from a scheme-theoretic point of view. Importantly, the sheaf of regular functions of
V in [BCR98, Definition 3.2.1] is different from its scheme-theoretic structure sheaf.
However, the stalks at all points p ∈ V coincide for both sheaves [BCR98, p. 65].
Therefore, the two definitions of the smooth locus of V coincide if and only if V is
equidimensional, so in particular if V is irreducible.
The smooth locus Vsm is a smooth submanifold of Rn (possibly disconnected with
connected components of different dimensions) by [BCR98, Proposition 3.3.11]. From
this it follows that, if Θ ⊆ Rn is a basic semi-algebraic set, then Θsm is a smooth
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submanifold of Rn by viewing Θsm = Θ ∩ (Θ)sm as an open subset (in the euclidean
topology) of (Θ)sm.

3.3.2 Smoothness of the Models M(G, H)
The geometry of double Markovian models is best understood in terms of semi-
algebraic sets. We can identify

M(G, H) = M(G) ∩ M(H)−1

with

M̃(G, H) :=
{

(Σ, Σ−1) : Σij = 0 for all ij /∈ H and (Σ−1)kl = 0 for all kl /∈ G
}

,

and the latter is a smooth submanifold of PDn × PDn if and only if M(G, H) is a
smooth submanifold of PDn, as follows from the diagram:

PDn PDn × PDn

M(G, H) M̃(G, H).

id × inv

∼=

Because of this, it suffices to study the smoothness of M(G, H).
Both M(G) and M(H)−1 are smooth submanifolds of PDn. It is sufficient for the
intersection to be smooth that the intersection be transverse at every common point
[GP10, Chapter 1 §5], meaning that the sum of the tangent spaces equals the tangent
space of the ambient manifold. This criterion yields Theorem 3.3.8 below.

Proposition 3.3.5. A basis of the tangent space TP M(G) is given by the matrices

M ij := P i · Pj + P j · Pi, for i = j or ij ∈ EG,

where P i is the i-th column of P and Pj is the j-th row of P . A basis of the tangent
space TP M(H)−1 consists of Eij := Eij + Eji for i = j or ij ∈ EH , where Eij is the
n × n matrix having a 1 at the (i, j)-th position and zeros everywhere else.

Proof. We view both tangent spaces as subspaces of TP PDn = TP Sym2(Rn) ∼=
Sym2(Rn). As M(H)−1 is just the intersection of PDn with the linear subspace
of Sym2(Rn) given by the vanishing of the ij-entries for all non-edges ij of H, the
second claim follows. For TP M(G), we use the differential of the matrix inversion
inv : PDn → PDn. In coordinates X = (xij) it is

∂ inv
∂xij

(X) = ∂(X−1)
∂xij

= −X−1EijX−1 = −(X−1)i · (X−1)j.

Now TP −1M(H)−1 is generated by Eij for i = j or ij ∈ EH , and the differential
at P −1 maps TP −1M(H)−1 isomorphically onto TP M(G), and the image of Eij

is −M ij.
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Remark 3.3.6. The proof also shows dim(M(G)) = |EG| + n. Moreover, G ∪
H = Kn if and only if T1nM(G) + T1nM(H)−1 = T1nPDn, that is, if and only
if the intersection is transverse at P = 1n. In particular, under this assumption
M(G, H) = M(G) ∩ M(H)−1 is smooth at 1n and thus at all positive diagonal
matrices by means of the map P 7→ DPD for a fixed positive diagonal matrix D. This
is a diffeomorphism of PDn, restricting to a homeomorphism M(G, H) → M(G, H),
mapping smooth points to smooth points and 1n to D2.

Remark 3.3.7. For H = Kn, the proof of Proposition 3.3.5 implies that the matrix

M := (M ij
kl)kl,ij∈[(n+1

2 )]

is symmetric and invertible whenever P is symmetric and invertible – a fact that
might be difficult to prove directly. If P is positive definite, M is the inverse
information matrix appearing, for example, in the Cramér–Rao inequality and
in [Drt09, Example 2.2].

The following theorem was the original motivation for our paper [BKKR23].

Theorem 3.3.8. If G ∪ H = Kn is the complete graph, then the model M(G, H)
is smooth. In fact, the intersection of M(G) and M(H)−1 is transverse at every
intersection point.

Proof. The inverse information matrix M at a positive definite matrix P ∈ PDn is
positive definite. The matrix

(
M ij

kl

)
kl,ij∈EG\EH

is its principal (EG \ EH × EG \ EH)-
submatrix and therefore also positive definite and in particular invertible. This implies
TP M(G) + TP M(H)−1 = TP PDn, so the intersection of the smooth submanifolds
M(G) and M(H)−1 of PDn is transverse at every common point P . Therefore,
the intersection M(G, H) = M(G) ∩ M(H)−1 is a smooth submanifold of PDn (of
constant dimension) by [GP10, Chapter 1 §5].

Remark 3.3.9. Multivariate centered Gaussian random vectors form a regular
exponential family with mean parameter Σ and natural parameter K = Σ−1 [Sun19,
Chapter 3]. According to [Sun19, Corollary 3.17], a mixed parametrization

(σij, kst)ij∈A,st∈B

with A ∪ B = EKn and A ∩ B = ∅ is a valid parametrization for the exponential
family. In the situation of Theorem 3.3.8, when G ∪ H = Kn, the non-edges of G
and H are disjoint. Therefore one could pick A, B ⊆ EKn such that the non-edges of
G are contained in B and the non-edges of H in A. However, when zero constraints
on both mean and natural parameters are imposed, the result is in general not a
regular exponential family. Therefore smoothness results like Theorem 3.3.8 do not
simply follow from general theory.

In Theorem 3.3.8 we have codim(M(G, H)) = codim(M(G)) + codim(M(H)) and
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so, regarding dimensions, by Remark 3.3.6,

dim(M(G, H)) = n2 + n

2 −
(

n2 − n

2 − |EG| + n2 − n

2 − |EH |
)

= |EG| + |EH | − n2 − 3n

2
= |EG ∩ EH | + n,

where we have used |EG| + |EH | =
(

n
2

)
+ |EG ∩ EH |. The intersection with PDn,1

satisfies

dim(M1(G, H)) = dim(M(G, H) ∩ PDn,1) = dim(M(G, H)) − n = |EG ∩ EH |.

If one is not in the favorable situation G ∪ H = Kn, the dimension computation
becomes more involved. Let G and H now be arbitrary graphs on [n], and denote by
Ec

G the edge complement
[(

n
2

)]
\ EG and similarly for EH . The following lemma is a

technical core for dimension bounds.

Lemma 3.3.10. With Σ = (σst)st∈[(n+1
2 )], let fij = σij for ij ∈ Ec

H and gkl =
det(Σ[n]\k,[n]\l) for kl ∈ Ec

G. Consider the Jacobian matrices

JH =
(

∂fij

∂σst

)
ij∈Ec

H ,st∈[(n+1
2 )]

and JG =
(

∂gkl

∂σst

)
kl∈Ec

G,st∈[(n+1
2 )]

.

For every Σ ∈ M(G, H), define the (|Ec
G| + |Ec

H |) ×
(

n+1
2

)
matrix

J̃Σ :=
(

JG

JH

)
.

Then rk J̃Σ ≥
(

n
2

)
− |EG ∩ EH |.

Proof. The kernel of J̃Σ is the intersection of the kernels of JG and JH . The
Zariski closures M(G) and M(H)−1 in Sym2(Rn) ∩ GL(Rn) of M(G) and M(H)−1

are both irreducible varieties. The Zariski tangent spaces have been computed
in Proposition 3.3.5. Using dim(U ∩ V ) = dim(U) + dim(V ) − dim(U + V ) for
finite-dimensional vector spaces U and V inside a common vector space, we compute

dim(ker(J̃Σ)) = dim(span(Eij : ij ∈ EH or i = j) ∩ span(Mkl : kl ∈ EG or k = l))
= (|EG| + n) + (|EH | + n)
− dim(span(Eij : ij ∈ EH or i = j) + span(Mkl : kl ∈ EG or k = l))
≤ |EG ∩ EH | + n.

In the last step we used that the dimension of the sum of the two vector spaces is
at least |EH ∪ (EG \ EH)| + n = |EG ∪ EH | + n because the matrix (Mkl

st )kl,st∈EG\EH

is a principal submatrix of the inverse of the information matrix and therefore
invertible.
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Theorem 3.3.11. We have dim(M(G, H)) ≤ |EG ∩ EH | + n.

Proof. The polynomials fij and gkl from Lemma 3.3.10 lie in the vanishing ideal
I(M(G, H)) ⊆ R[σst : st ∈

[(
n+1

2

)]
], and hence in the prime ideal of every irreducible

component Z of the Zariski closure V(I(M(G, H))) inside the affine space Sym2(Rn).
Then the Jacobian matrix JΣ at Σ ∈ Z of a generating set of I(Z) satisfies rk JΣ ≥
rk J̃Σ by Lemma 3.3.4. By Lemma 3.3.10, for Σ ∈ M(G, H), rk J̃Σ ≥

(
n
2

)
−|EG ∩EH |.

Then Krull’s principal ideal theorem implies that the Zariski tangent space satisfies
dim(TΣZ) ≥ dim(Z), and so

dim(Z) ≤ dim(TΣZ) =
(

n + 1
2

)
− rk(JΣ) ≤

(
n + 1

2

)
− rk(J̃Σ) ≤ |EG ∩ EH | + n.

Corollary 3.3.12. We have dim(M1(G, H)) ≤ |EG ∩ EH |.

Remark 3.3.13. The inequalities in Corollary 3.3.12 and Theorem 3.3.11 can be
strict. Example 3.2.15 contains a model M1(G, H) of dimension 1 with |EG∩EH | = 2.
It is reducible with two irreducible components which intersect only in the identity
matrix 14.

It is not hard to see that EG∩EH = ∅ if M1(G, H) is zero-dimensional, i.e., a union of
finitely many points (including 1n). Indeed, if EG∩EH ̸= ∅, then dim(M1(G, H)) ≥ 1
because after some permutation of [n] one can assume that 12 ∈ EG ∩ EH . Then

Σ =



1 σ12 0 . . . 0
σ12 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1


lies in M1(G, H) for any σ12 ∈ (−1, 1). Corollary 3.3.24 below strengthens this
further. In fact, EG ∩ EH = ∅ if and only if the model consists only of 1n.

Lemma 3.3.14. Let V := M(G, H) and Σ ∈ M(G, H). Then,

dim(TΣV ) ≤ |EG ∩ EH | + n.

Proof. The Zariski tangent space TΣV is the kernel of the Jacobian matrix JΣ at
Σ ∈ M(G, H) of a generating set of I(V ). By Lemma 3.3.4 and Lemma 3.3.10, we
have rk JΣ ≥ rk J̃Σ ≥

(
n
2

)
− |EG ∩ EH | which yields the claimed inequality.

Theorem 3.3.15. Every connected component of M(G, H) of dimension |EG ∩
EH | + n is smooth and has irreducible Zariski closure.

Proof. Let V := M(G, H) ⊆ Sym2(Rn). Let M be a connected component of
M(G, H) and Z an irreducible component of its Zariski closure M with dim(Z) =
|EG ∩ EH | + n. Then at every point Σ ∈ M ∩ Z, we have

|EG ∩ EH | + n = dim(Z) ≤ dim(TΣZ) ≤ dim(TΣV ) ≤ |EG ∩ EH | + n,
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hence all inequalities are equalities, proving that the local rings OV,Σ with Σ ∈ M ∩Z
are regular. Regular local rings are integral domains by [Kem11, Corollary 13.6].
Hence, for every Σ ∈ M ∩Z, there is only one irreducible component of M containing
Σ, so Z does not intersect any other irreducible component of M inside M . Therefore,
as M is connected, M = Z is irreducible, and M = M ∩ Z is smooth.

Remark 3.3.16. The proof of Theorem 3.3.15 also shows that a connected component
of M1(G, H) of dimension |EG ∩ EH | is smooth and hence has irreducible Zariski
closure. Proposition 3.3.31 (8) contains a smooth model M1(G, H) on 4 vertices of
dimension 3 = |EG ∩ EH | with G ∪ H ̸= K4, so the converse of Theorem 3.3.8 is false,
see however Remark 3.3.32. Even when G ∪ H ̸= Kn, Theorem 3.3.15 still provides
a sufficient criterion for smoothness. In fact, we know of no example of a smooth
model M(G, H) (resp. M1(G, H)) having dimension less than |EG ∩ EH | + n (resp.
|EG ∩ EH |).

We now move on to approximations of the vanishing ideal I(M1(G, H)) of double
Markovian models. Ordinary Gaussian graphical models have rational parametriza-
tions and their vanishing ideals are prime. Vanishing ideals of double Markovian
models need not be prime. They arise from conditional independence ideals by
removing components whose varieties do not intersect PDn and taking the radical.
We do not expect double Markovian CI ideals to be radical in general.
For the rest of the section we restrict to the normalized variance case, i.e., M1(G, H)
as opposed to M(G, H). This removes duplications from the statements. In most
cases only small changes are necessary to change a result for M1(G, H) into one
for M(G, H).

Definition 3.3.17. Let G and H be two graphs on [n] and Σ = (σij) a generic
symmetric matrix with ones on the diagonal. The saturated conditional independence
ideal CIG,H ⊆ R[σij : i < j] is the saturation of the ideal (σij, det(ΣkC,lC) : ij ∈
Ec

H , kl ∈ Ec
G separated by C) at the product of all principal minors of Σ. Similarly,

the simplified saturated conditional independence ideal SCIG,H ⊆ R[σij : i < j] is the
saturation of (σij, det(Σ[n]\l,[n]\k) : ij ∈ Ec

H , kl ∈ Ec
G) at the product of all principal

minors of Σ.

We have SCIG,H ⊆ CIG,H , and both ideals have the same vanishing sets in the
affine space of symmetric matrices with ones on the diagonal over both R and C by
Lemma 3.2.1. The ideals SCIG,H and CIG,H are saturations of determinantal ideals
of symmetric matrices. Certain classes of determinantal ideals of generic symmetric
matrices have been featured already in the early work of Conca [Con94a, Con94b,
Con94c]. Double Markovian models might provide an incentive to further study
ideals generated by only some minors of sparse generic symmetric matrices. This is
related to Chapter 2 but very likely much more difficult.
In the following lemma we consider the affine scheme defined by SCIG,H or CIG,H .
Picking the latter, the dual of the Zariski tangent space at the identity 1n is
m/(CIG,H +m2) where m := (σst : s < t) is the maximal ideal in A := R[σst : s < t]
corresponding to 1n. Its dimension is also known as the embedding dimension of
(A/ CIG,H)m.
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Lemma 3.3.18. Let V be the closed subscheme of the affine space of symmetric
n × n matrices with ones on the diagonal defined by SCIG,H or CIG,H . Then the
embedding dimension of V at 1n equals |EG ∩ EH |.

Proof. The short exact sequence

0 → (CIG,H +m2)/m2 → m/m2 → m/(CIG,H +m2) → 0

shows that

edim((A/ CIG,H)m) =
(

n

2

)
− dimR((CIG,H +m2)/m2),

so it suffices to compute d := dimR((CIG,H +m2)/m2). But m2 contains all products
of two or more σst and therefore det(ΣkC,lC) ≡m2 ±σkl. As every principal minor
contains 1 as a monomial, saturation does not change d. Hence, d = |Ec

G ∪ Ec
H | =(

n
2

)
− |EG ∩ EH |. The proof for SCIG,H is the same.

We recall next Proposition 2.2.1, expressing almost-principal minors of symmetric
matrices via paths in a graph. We keep the convention that a path p traverses no
vertex more than once and denote by V (p) ⊆ [n] the set of vertices in p. Moreover,
let e(p) = kl denote the endpoints of p and σp = ∏

ij∈p σij the product over the
variables corresponding to the edges in p. The sign of p is sgn(p) := (−1)|V (p)|−1.

Proposition 3.3.19. Let H be a graph on the vertex set [n] and let Σ = (σij) be a
generic n × n symmetric matrix with σij = 0 for all ij /∈ EH . Then

(−1)k+l det(Σ[n]\k,[n]\l) =
∑

p path in H,
e(p)=kl

sgn(p) · det(Σ[n]\V (p),[n]\V (p)) · σp.

This formula appears first in [JW05]. We include a quick proof disregarding the
signs since we do not use them in the sequel.

Proof. By the Leibniz formula, det(Σ[n]\l,[n]\k) = ∑
τ sgn(τ)∏i∈[n]\l σi,τ(i), where the

sum is over all bijective τ : [n] \ l → [n] \ k. The summand corresponding to τ is
non-zero if and only if each {i, τ(i)} with τ(i) ̸= i is an edge of H. Starting at the
vertex k, the sequence k, τ(k), τ 2(k), . . . is a path from k to l in H, showing that

det(Σ[n]\l,[n]\k) =
∑

p path in H,
e(p)=kl

±σp ·
∑

τ ′:[n]\V (p)
∼=→[n]\V (p)

sgn(τ ′)
∏

i∈[n]\V (p)
σi,τ ′(i)

=
∑

p path in H,
e(p)=kl

±σp · det(Σ[n]\V (p),[n]\V (p)).

If all but one term in every generator det(Σ[n]\k,[n]\l) vanish, the saturated CI ideal
is a monomial ideal and in fact agrees with the vanishing ideal.

Theorem 3.3.20. Let G and H be graphs on [n] such that for every non-edge kl of
G, there is at most one path p in H connecting k and l. Then

SCIG,H = CIG,H = I(M1(G, H)) = (σij, σp : ij ̸∈ EH , p path in H with e(p) ̸∈ EG).
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Proof. Let Σ be the generic symmetric matrix with ones on the diagonal and
zeros corresponding to non-edges of H. If ij /∈ EH , all terms of almost-principal
minors of Σ which contain σij can be neglected since σij ∈ SCIG,H ⊆ CIG,H . By
Proposition 3.3.19, if p is the unique path connecting k and l inside H, then
det(Σ[n]\k,[n]\l) = ± det(Σ[n]\V (p),[n]\V (p)) · σp, so σp lies in the saturated simplified
conditional independence ideal. If there exists no such path, this almost-principal
minor vanishes. Since the square-free monomial ideal

(σij, σp : ij ̸∈ EH , p path in H with e(p) ̸∈ EG)

agrees with its saturation at the product of all principal minors of Σ, it equals SCIG,H .
To show that this (radical) ideal equals the vanishing ideal, it suffices to see that
each of its components intersects PDn,1 in a smooth real point. This is clear since
all irreducible components of VC(SCIG,H) are coordinate subspaces.

The hypothesis of Theorem 3.3.20 may seem restrictive but, for example, it includes
the case that H is a forest and G is arbitrary. On the other hand, it is easy to find
an example on four vertices where H is a cycle and SCIG,H is not a monomial ideal.
Even determining vanishing ideals of ordinary Gaussian graphical models can be
complicated, see for example [MS21].

3.3.3 Connectedness
In this subsection we study the connectedness of M(G, H) in the euclidean topology.
If the vanishing ideal is known and simple enough, the results are easy as in the next
corollary. Theorem 3.3.22 contains a sufficient condition based on connectedness in
G and H.

Corollary 3.3.21. Under the hypotheses of Theorem 3.3.20, the model M(G, H) is
connected. Moreover the following are equivalent.

(1) M(G, H) is smooth.

(2) M(G, H) is irreducible.

(3) M(G, H) has the maximal dimension |EG ∩ EH | + n.

In this case, M(G, H) = M(G ∩ H)−1 is an inverse graphical model, hence a
spectrahedron.

Proof. As a union of coordinate subspaces intersected with PDn, M(G, H) is star-
shaped with respect to the identity matrix and thus connected. Therefore, having the
maximal dimension implies smoothness by Theorem 3.3.15, and smoothness together
with connectedness implies irreducibility because regular local rings are integral
domains [Kem11, Corollary 13.6]. By Theorem 3.3.20, irreducibility implies that the
square-free monomial ideal SCIG,H is prime. This is equivalent to the condition that
for a path p inside H with e(p) = kl ∈ Ec

G there exists an edge ij ∈ p ∩ Ec
G. Thus,

if G′ is the graph on [n] which is obtained from G by adding all edges in Ec
G ∩ Ec

H ,
then M(G, H) = M(G′, H) = M(G ∩ H)−1, in particular M(G, H) has dimension
|EG ∩ EH | + n.
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Theorem 3.3.22. Let G and H be graphs on [n] with the property that there exists
i ∈ [n] such that for all non-edges kl ∈ Ec

G, every path in H connecting k and l
contains i. Then the model M(G, H) is connected.
Proof. In this proof we denote by H \ i the graph on [n] obtained from H by deleting
all edges incident with i but keeping i as a vertex. The model M(H \ i)−1 is
connected as it is the intersection of a linear space with the convex set PDn, and the
intersection of convex sets is convex, hence connected. Clearly, Σ ∈ M(H \ i)−1 if
and only if Σ ∈ M(H)−1 and σij = 0 for all j ̸= i. The determinantal identity of
Proposition 3.3.19, and the assumptions on G and H imply M(H \ i)−1 ⊆ M(G, H).
Now, let Σ ∈ M(G, H) be arbitrary. It suffices to find a path from Σ to some matrix
in M(H \ i)−1.
For ε ∈ [0, 1] consider

Σε := Σ ⊙



1 . . . 1 ε 1 . . . 1
... ... ... ... ...
1 . . . 1 ε 1 . . . 1
ε . . . ε 1 ε . . . ε
1 . . . 1 ε 1 . . . 1
... ... ... ... ...
1 . . . 1 ε 1 . . . 1


,

where the second factor has entries ε in the i-th row and column, but 1 in entry ii.
The symbol ⊙ denotes the Hadamard product which multiplies matrices entry-wise.
Then Σε is symmetric and positive definite for all ε ∈ [0, 1] as it is the Hadamard
product of a positive definite matrix and a positive semi-definite matrix with strictly
positive diagonal entries. Moreover, Σ1 = Σ and Σ0 ∈ M(H \ i)−1, so it suffices to
show that Σε ∈ M(G, H) for all ε ∈ [0, 1]. This follows from the assumptions on G
and H as for all kl ∈ Ec

G with k ̸= i ̸= l we have

det((Σε)[n]\k,[n]\l) =
∑

p path in G
e(p)=kl

sgn(p) · σε
p · det((Σε)[n]\V (p),[n]\V (p))

= ε2 ·
∑

p path in G
e(p)=kl

sgn(p) · σp · det(Σ[n]\V (p),[n]\V (p))

= ε2 · det(Σ[n]\k,[n]\l) = 0,

using in the second step that, by assumption, i ∈ V (p) for all occurring paths p, so
that the occurring principal minors of Σε agree with the corresponding principal
minors of Σ. Moreover, each monomial σε

p contains exactly two variables that are
scaled by ε. If one of k and l agrees with i, the same calculation works with ε instead
of ε2.

3.3.4 A Decomposition Theorem
Section 3.3.5 contains a classification of models with small |EG∩EH |. This is based on
the following decomposition theorem, whose proof also works for complex hermitian
positive definite matrices.
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Theorem 3.3.23. Let G, H be two graphs on the vertex set [n]. Let V1, . . . , Vr be
a partition of [n] such that each Vi is the vertex set of a connected component of
G ∩ H, considered as the graph on [n] with edge set EG ∩ EH . Then

M(G, H) =
r⊕

i=1
M(G|Vi

, H|Vi
).

In words, every Σ ∈ M(G, H) is block-diagonal with r blocks whose rows and
columns are indexed by the Vi.

Proof. Inductively, it suffices to consider the case r = 2. We set V := V1 and W := V2.
It is then enough to show that every matrix

Σ =
(

ΣV V ΣV W

Σt
V W ΣW W

)
∈ M(G, H)

is block-diagonal, i.e., ΣV W = 0. We partition Σ−1 in the same way as Σ. By
assumption, G ∩ H contains no edges between V and W . This implies that the
matrix ΣV W (Σ−1)t

V W has only zeros on the diagonal as for all v ∈ V ,

(ΣV W (Σ−1)t
V W )vv =

∑
w∈W

Σvw(Σ−1)vw =
∑

w∈W

0 = 0.

In particular, tr(ΣV W (Σ−1)t
V W ) = 0. As ΣV V and ΣW W are positive definite, there

exist symmetric square roots AV and AW such that A2
V = ΣV V and A2

W = ΣW W .
We now define

Σ′ :=
(

A−1
V 0
0 A−1

W

)
· Σ ·

(
A−1

V 0
0 A−1

W

)
=
(

1V A−1
V ΣV W A−1

W

A−1
W Σt

V W A−1
V 1W

)
.

Clearly, tr(Σ′) = |V | + |W | = n. For the inverse matrix we have

Σ′−1 =
(

AV 0
0 AW

)
·Σ−1 ·

(
AV 0
0 AW

)
=
(

(Σ′−1)V V AV (Σ−1)V W AW

AW (Σ−1)t
V W AV (Σ′−1)W W

)
.

Now observe that Σ′
V W (Σ′−1)t

V W = A−1
V ΣV W (Σ−1)t

V W AV as the product A−1
W AW =

1W in the middle cancels out. Since the trace is cyclic, we have

tr(Σ′
V W (Σ′−1)t

V W ) = tr(A−1
V ΣV W (Σ−1)t

V W AV ) = tr(ΣV W (Σ−1)t
V W AV A−1

V ) = 0.

Moreover,
1V = (Σ′Σ′−1)V V = (Σ′−1)V V + Σ′

V W (Σ′−1)t
V W ,

implying tr((Σ′−1)V V ) = tr(1V ) = |V |. Similarly, tr((Σ′−1)W W ) = |W |, so tr(Σ′−1) =
|V | + |W | = n. As Σ′ is real symmetric positive definite there exists a symmetric
square root T with T 2 = Σ′ and thus also T −2 = Σ′−1. Using the inner product
⟨X, Y ⟩ = tr(XY ) = ∑n

i,j=1 xijyij on the space of real symmetric matrices,

⟨T, T ⟩ = tr(T 2) = tr(Σ′) = n,

⟨T −1, T −1⟩ = tr(T −2) = tr(Σ′−1) = n,

⟨T, T −1⟩ = tr(1n) = n.
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Therefore, we have equality in the Cauchy–Schwarz inequality

n2 = ⟨T, T −1⟩2 ≤ ⟨T, T ⟩ · ⟨T −1, T −1⟩ = n2,

implying that T and T −1 are linearly dependent as matrices, i.e., T = λT −1 for some
λ ∈ R. This implies Σ′ = T 2 = λ1n. In particular, 0 = Σ′

V W = A−1
V ΣV W A−1

W as
matrices. But this is equivalent to ΣV W = 0, as desired.

If all Vi are single vertices we get the following.

Corollary 3.3.24. We have M1(G, H) = {1n} if and only if EG ∩ EH = ∅.

In other words, if Σ is a symmetric positive definite (n × n)-matrix with the property
that every off-diagonal entry vanishes either in Σ or in Σ−1 (or both), then Σ is a
diagonal matrix. We have not found this result in the literature.

Remark 3.3.25. A natural question is whether the assumption of positive definite-
ness in Theorem 3.3.23 is necessary. Example 3.4.4 shows that Corollary 3.3.24 does
not hold for positive semi-definite matrices, and Example 3.3.27 below shows that
Theorem 3.3.23 does not hold for principally regular matrices, that is, matrices whose
principal minors do not vanish but that might not be positive definite. Perhaps
surprisingly, however, Corollary 3.3.24 does hold for principally regular matrices over
any field by Proposition 2.5.4.

Remark 3.3.26. A simpler variant of Theorem 3.3.23 can be proven by recursive
direct sum decomposition and duality: To every pair of graphs (G, H) on [n] there
exists a partition V1, . . . , Vr of [n] such that

(1) Gi = G|Vi
and Hi = H|Vi

are connected.

(2) M(G, H) is smooth if and only if all M(Gi, Hi) are smooth.

(3) M(G, H) is connected if and only if all M(Gi, Hi) are connected.

The merit of this simpler assertion is that it does not require positive definiteness. It
also holds for principally regular models of ⟨⟨G, H⟩⟩ over C because the proof uses
only elementary operations on CI relations introduced in Section 3.2.3.

Example 3.3.27. Consider the graph in Fig. 3.1. We study the variety of ⟨⟨G, H⟩⟩
in Macaulay2:

R = QQ[x11,x12,x13,x14,x15,x16, x22,x23,x24,x25,x26,
x33,x34,x35,x36, x44,x45,x46,
x55,x56, x66]
X = genericSymmetricMatrix(R,x11,6)

-- Impose the relations from $H$ directly on the matrix
X = sub(X, { x16=>0, x24=>0, x25=>0, x26=>0, x35=>0 })

86



1

23

4

5 6

Figure 3.1: The graphs for Example 3.3.27. The edges of G ∩ H are drawn black,
G \ H in green and H \ G in blue. Then G ∩ H = K123 ⊕ K456 and G ∪ H = K1···6.

-- Pick an affine slice of the model which is likely to contain
-- positive definite matrices by diagonal dominance
X = sub(X, {
x11=>10, x22=>10, x33=>10, x44=>10, x55=>10, x66=>10,
x12=>1, x13=>1, x23=>1, x45=>1, x46=>1, x56=>1
})



10 1 1 x14 x15 0
1 10 1 0 0 0
1 1 10 x34 0 x36

x14 0 x34 10 1 1
x15 0 0 1 10 1
0 0 x36 1 1 10


Some of the variables are specified to ensure quick termination of the following
computations. If Theorem 3.3.23 held for principally regular matrices, x14, x15, x34
and x36 would vanish on every principally regular matrix satisfying the equations
of ⟨⟨G⟩⟩.

-- The relations imposed by $G$
I = radical ideal(
det submatrix’(X, {0}, {3}), -- $14$
det submatrix’(X, {0}, {4}), -- $15$
det submatrix’(X, {2}, {3}), -- $34$
det submatrix’(X, {2}, {5}) -- $36$
)
-- Saturation at each of the principal minors
J = fold((I,f) -> I : f, I, subsets(numRows(X)) / (K -> det X_KˆK))
decompose J

(x14, x15, x34, x36)
∩ (1210x2

14 − 999, −11x14 + x15, −x14 + x34, −11x14 + x36)
∩ (1210x2

14 − 981, −11x14 + x15, x14 + x34, 11x14 + x36)
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The first component has the desired block structure of K123 ⊕ K456, but the other
components contain real points as well. Consider the last component. It consists of
two real points:

x14 = ±
√

981
1210 , x15 = 11x14, x34 = −x14, x36 = −11x14.

This yields a real matrix satisfying the equations of ⟨⟨G, H⟩⟩ and whose principal
minors are non-zero. However, the determinant of the entire matrix equals −4374

55 ,
which is not positive.
This shows that ⟨⟨G, H⟩⟩ has real, principally regular solutions without block-diagonal
structure. The positive definite matrices in the affine slice J of the model all
fall into the first component and do have the block structure. A purely algebraic
computation, without taking positive definiteness into account, would not be able to
prove Theorem 3.3.23.

3.3.5 Classification of M(G, H) for |EG ∩ EH | ≤ 3
Theorem 3.3.11 bounds the model dimension in terms of |EG ∩ EH |. We finish our
analysis of the geometry of M(G, H) with a classification of models with small
intersections of the edge sets. In view of Theorem 3.3.23 we can restrict to the cases
where EG ∩ EH defines a connected graph on the subset of vertices of [n] incident to
some edge in EG ∩ EH . For any N ′ ⊆ [n], we also write PDN ′ for the set of positive
definite matrices with rows and columns indexed by N ′. For disjoint subsets N ′ and
N ′′, a direct sum PDN ′ ⊕ PDN ′′ indicates the set of block-diagonal positive definite
matrices inside PDN ′∪N ′′ with the rows and columns of the two blocks indexed,
respectively, by N ′ and N ′′, and similarly for PDN ′,1 ⊕ PDN ′′,1 if we restrict to ones
on the diagonal.
Proposition 3.3.28. Let EG ∩ EH = {ij} consist of a single edge. Then

M(G, H) = PDij .

In particular, M1(G, H) is connected and smooth and has the maximal dimension
|EG ∩ EH | = 1.
Proof. Immediate from Theorem 3.3.23 and the definitions.
Proposition 3.3.29. Let |EG ∩ EH | = 2 and so EG ∩ EH = {ij, jk} with distinct
i, j, k.

(1) If ik ∈ EG \ EH , then M(G, H) = M(G ∩ H)−1 is an inverse graphical model.

(2) In case ik ∈ EH \ EG, symmetrically M(G, H) = M(G ∩ H) is a graphical
model.

(3) If ik ̸∈ EG ∪ EH , then M1(G, H) decomposes as

M1(G, H) = {1n + tEij : t ∈ (−1, 1)} ∪ {1n + tEjk : t ∈ (−1, 1)}.

The Zariski closure of M1(G, H) is a pair of lines intersecting in 1n. Thus
M1(G, H) is connected of dimension one, with reducible Zariski closure.
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Proof. After a suitable permutation of [n], we assume ij = 12 and jk = 23. Any
Σ ∈ M1(G, H) has the block-diagonal form consisting of an upper left (3 × 3)-block
and an identity matrix. Therefore we can assume n = 3. Then, in the first case, we
have

Σ =

 1 σ12 0
σ12 1 σ23
0 σ23 1

 , adj(Σ) =

1 − σ2
23 −σ12 σ12σ23

−σ12 1 −σ23
σ12σ23 −σ23 1 − σ2

12

 .

As 13 ∈ EG, we have that G = K3 is complete, so there are no further restrictions
and we obtain M(G, H) = M(G ∩ H)−1. In the second case, the same is true if we
replace Σ by Σ−1 everywhere, so M(G, H) = M(G ∩ H). Finally, in the third case,
13 ̸∈ EG ∪ EH , so we additionally get σ12 = 0 or σ23 = 0, obtaining the union of two
line segments, as desired.

Remark 3.3.30. Proposition 3.3.29 shows that in some non-obvious cases double
Markovian models are graphical or inverse graphical models. This theme has occurred
in the literature. For example, in [DR08, Proposition 12] it is shown that the only
way that a covariance graph model M(Kn, H) is a graphical model M(G, Kn) is if
covariance and concentration matrices have aligned block structures and the model
is a product of PD cones (in particular, G = H is a disjoint union of cliques).

The same ideas also prove the following via direct computations.

Proposition 3.3.31. Let |EG ∩ EH | = 3. If EG ∩ EH = {ij, ik, jk} forms a 3-clique,
then M(G, H) = PDijk. Otherwise EG ∩ EH = {ij, jk, kl} with distinct i, j, k, l
forms a path or EG ∩ EH = {ij, ik, il} is a star. Up to swapping G and H, we can
restrict to the case where H|ijkl has equally many or more non-edges than G|ijkl (i.e.
at least as many prescribed zeros in the covariance matrix as in the concentration
matrix). We can restrict moreover to n = 4 and assume (i, j, k, l) = (1, 2, 3, 4). If
EG ∩ EH = {12, 23, 34} is a path, we have the following cases up to symmetry and
inversion:

(1) EH = EG ∩ EH and EG = K1234. Here, M(G, H) = M(G ∩ H)−1.

(2) EH = EG ∩ EH and EG = K1234 \ {13}. Here, M(G, H) = (PD12 ⊕ PD34) ∪
M({23, 34})−1.

(3) EH = EG ∩ EH and EG = K1234 \ {14}. Here, M(G, H) = (PD12 ⊕ PD34) ∪
M({12, 23})−1 ∪ M({23, 34})−1.

(4) EH = EG ∩EH and EG = K1234 \{13, 14}. Here, M(G, H) is as in the previous
case.

(5) EH = EG ∩ EH and EG = K1234 \ {13, 24}. Here, M(G, H) = (PD12 ⊕ PD34) ∪
PD23.

(6) EG = EH = EG ∩ EH . Here, M(G, H) is as in the previous case.
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(7) EH = (EG ∩ EH) ∪ {13} and EG = K1234 \ {13}. Here,

M1(G, H) =




1 σ12 σ12σ23 0
σ12 1 σ23 0

σ12σ23 σ23 1 σ34
0 0 σ34 1

 : σ12 ∈ (−1, 1), σ2
23 + σ2

34 < 1

 .

(8) EH = (EG ∩ EH) ∪ {13} and EG = K1234 \ {13, 14}. Here, M1(G, H) is as in
the previous case.

(9) EH = (EG ∩ EH) ∪ {13} and EG = K1234 \ {13, 24}. Here,

M1(G, H) = (PD{12},1 ⊕ PD{34},1)

∪




1 σ12 σ12σ23 0
σ12 1 σ23 0

σ12σ23 σ23 1 0
0 0 0 1

 : σ12, σ23 ∈ (−1, 1)

 .

(10) EH = (EG ∩ EH) ∪ {14} and EG = K1234 \ {14}. Here,

M1(G, H) =




1 σ12 0 −σ12σ23σ34

1−σ2
23

σ12 1 σ23 0
0 σ23 1 σ34

−σ12σ23σ34
1−σ2

23
0 σ34 1

 : σ2
12 + σ2

23 < 1, σ2
23 + σ2

34 < 1

 .

(11) EH = (EG ∩ EH) ∪ {14} and EG = K1234 \ {13, 14}. Here,

M1(G, H) = (PD{12},1 ⊕ PD{34},1) ∪




1 0 0 0
0 1 σ23 0
0 σ23 1 σ34
0 0 σ34 1

 : σ2
23 + σ2

34 < 1

 .

If EG ∩ EH = {12, 13, 14} is a star, we have the following cases up to symmetry and
inversion:

(1) EH = EG ∩ EH and EG = K1234. Here, M(G, H) = M(G ∩ H)−1.

(2) EH = EG ∩ EH and EG = K1234 \ {23}. Then

M1(G, H) =




1 0 σ13 σ14
0 1 0 0

σ13 0 1 0
σ14 0 0 1

 : σ2
13 + σ2

14 < 1



∪




1 σ12 0 σ14
σ12 1 0 0
0 0 1 0

σ14 0 0 1

 : σ2
12 + σ2

14 < 1

 ,

a union of two discs intersecting in a line segment.
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(3) EH = (EG ∩ EH) ∪ {23} and EG = K1234 \ {23}. Then

M1(G, H) =




1 σ12 σ13 σ14

σ12 1 σ12σ13
1−σ2

14
0

σ13
σ12σ13
1−σ2

14
1 0

σ14 0 0 1

 ∈ PD4

 .

(4) EH = EG ∩ EH and EG = K1234 \ {23, 24}. Then

M1(G, H) =




1 σ12 0 0
σ12 1 0 0
0 0 1 0
0 0 0 1

 : σ12 ∈ (−1, 1)



∪




1 0 σ13 σ14
0 1 0 0

σ13 0 1 0
σ14 0 0 1

 : σ2
13 + σ2

14 < 1

 .

(5) EH = (EG ∩ EH) ∪ {23} and EG = K1234 \ {23, 24}. Then

M1(G, H) =




1 σ12 σ13 0
σ12 1 σ12σ13 0
σ13 σ12σ13 1 0
0 0 0 1

 : σ12, σ13 ∈ (−1, 1)



∪




1 0 σ13 σ14
0 1 0 0

σ13 0 1 0
σ14 0 0 1

 : σ2
13 + σ2

14 < 1

 .

(6) EG = EH = EG ∩ EH . Then M1(G, H) is the union of the three coordinate
line segments parametrized by σ12, σ13 and σ14, all contained in (−1, 1).

In particular, for |EG ∩ EH | ≤ 3 the models M1(G, H) are all connected in the
euclidean topology. Moreover, in this range M1(G, H) is smooth if and only if its
Zariski closure is irreducible if and only if dim(M1(G, H)) = |EG ∩ EH | is maximal.
However, Example 3.4.2 below shows that there exist irreducible but singular double
Markovian models on four vertices. Proposition 3.3.31 shows that double Markovian
models need not be equidimensional.

Remark 3.3.32. The preceding classification for |EG ∩ EH | ≤ 3 and computer-
assisted computations on n ≤ 4 vertices show that in this range for every smooth
model M(G, H) with G ∩ H connected, there exist graphs G′, H ′ such that

M(G, H) = M(G′, H ′)

and G′ ∪ H ′ = Kn. Hence, in hindsight, the smoothness of the geometric model
follows from Theorem 3.3.8. It is unknown whether there are smooth models without
this property.
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Remark 3.3.33. Any classification project would profit from a complete list of models
of double Markovian CI structures or equivalently the set of completions of relations
⟨⟨G, H⟩⟩. There is no efficient, combinatorial algorithm to compute the completion
of ⟨⟨G, H⟩⟩, although computing the completion can be reduced to invocations of
the Positivstellensatz and thus quantifier eliminiation [BCR98, Chapter 4]. One
such project would be to classify smoothness of double Markovian models on small
vertex sets. Exploiting Theorem 3.3.23, this reduces to multiple smoothness queries
for smaller models. It seems like a worthwhile computational challenge to compile
a table of the pairs of small connected graphs which have a smooth model. We
determined that for n = 3, 4, 5 there are 4+55+2644 pairs of connected graphs which
induce pairwise inequivalent CI structures modulo isomorphy and duality. For more
information on computations see https://gaussoids.de/doublemarkov.html.

3.4 Examples, Counterexamples, and Conjectures
Example 3.4.1. Consider the double Markovian CI structure arising from G = H =

, namely {(14|), (14|23), (23|), (23|14)}. A computation in Macaulay2 shows that
(the Zariski closure of) the model M(G, H) has three irreducible components while
it was determined in [DX10, Example 4.1] that the correlation model M1(G, H) =
M(G, H) ∩ PD4,1 has four. Thus there are algebraic differences between M1(G, H)
and M(G, H).
Example 3.4.2. Continuing Example 3.2.17, suppose that G = H is the complete
graph on [n] minus the edge 12. These double Markovian models are singular at the
identity matrix but the models of all proper minors of ⟨⟨G, G⟩⟩ are smooth. According
to [DX10, Proposition 4.2] with C1 = ∅ and C2 = [n] \ 12, the singular locus of this
model is again a Gaussian CI model and it is described as a submodel of M(G, G)
by the CI statements

(12|) and (12|C2) from ⟨⟨G, G⟩⟩,
(1j|) and (2j|) for all j ∈ C2. (∗)

All but one of them are simple zero constraints on the covariance matrix. By Schur
complement, the remaining almost-principal minor equals

det Σ12|C2 = (σ12 − Σ1,C2 · Σ−1
C2 · ΣC2,2) det ΣC2 .

By all the marginal independence statements in (∗), the vectors Σ1,C2 and ΣC2,2 as
well as the entry σ12 are zero, so the right-hand side of this equality vanishes, and
(12|C2) is implied by the marginal statements. Thus, the singular locus is in fact a
linear subspace of Sym2(Rn) of codimension 2n−3, intersected with PDn. This shows
that double Markovian models can have singular loci of arbitrarily large dimension.
It is instructive to compute the concrete case of n = 4. The maximal possible
dimension of the correlation model in this case is |EG| = 5. However, M1(G, G)
is of dimension 4 < 5. Indeed, the only conditions on a positive definite matrix
Σ ∈ M1(G, G) are σ12 = 0 and (Σadj)12 = 0, which, using σ12 = 0, writes as

f := σ13(σ24σ34 − σ23) + σ14(σ23σ34 − σ24) = 0.
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This is an irreducible polynomial, so the Zariski closure of M1(G, G), which can be
viewed as the vanishing set of the above polynomial inside the affine space where we
forget the variable σ12, is irreducible. In this case, the ideal SCIG,G is prime even
without saturation, and it coincides with I(M1(G, G)) = (σ12, f). Moreover, we can
see again that M1(G, G) is connected: for every positive definite matrix Σ satisfying
σ12 = 0 and f = 0, scale all variables except for σ34 by some ε tending to 0. This
preserves the two equations and establishes a path inside M1(G, G) connecting Σ
to a matrix with only the entry σ34 ∈ (−1, 1) possibly non-zero. The set of these
matrices is clearly connected. As computed above, in the singular locus all variables
but σ34 are forced to zero, showing that it is a line inside PD4. In particular, failure
of smoothness is not always due to reducibility for double Markovian models.

In Example 3.4.2, we have G = H = an almost complete graph, where only one edge
is missing. This model is singular at the identity matrix and therefore shows that
the sufficient condition for smoothness in Theorem 3.3.8, namely that G ∪ H = Kn,
cannot be weakened. The singular locus in this example is a submodel described by
the occurrence of additional CI statements. However, this is not always the case, as
[DX10, Example 4.3] discovered.

Example 3.4.3. Let G = and H = . The model M1(G, H) agrees with its
inverse model up to permutation of [n]. Moreover, G ∪ H = K4 is the complete
graph, so this model is smooth of the expected dimension |EG ∩ EH | = 4. However,
neither M1(G, H) nor its inverse lie in the graphical model M(G ∩ H). Indeed, for
every Σ ∈ M1(G, H) the condition (Σ−1)12 = 0 translates into σ12 = σ13σ23 + σ14σ24,
in particular σ12, σ13, σ14, σ23, σ24 can all be non-zero at the same time. The same is
true for the inverse model, as it arises from the permutation exchanging 1 with 4
and 2 with 3.

Example 3.4.4. Consider the disjoint graphs G = and H = . The semi-definite
model with ones on the diagonal consists of the five points

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 ±1 0 0

±1 1 0 0
0 0 1 ∓1
0 0 ∓1 1

 ,

where the signs in the first two rows and in last two rows agree, respectively, but are
independent of each other. Thus semi-definite models can be disconnected even in
dimension zero.

We have no analogue of Example 3.4.4 with positive definite matrices, and semi-
definite models with no restriction on the diagonal are connected as they are star-
shaped with respect to the zero matrix. The question if double Markovian models
are connected in general is open.

Conjecture 3.4.5. For any G, H, the models M(G, H) and M1(G, H) are connected
in the euclidean topology.
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The connectedness of M(G, H) is equivalent to that of M1(G, H). Moreover,
M1(G, H) \ {1n} can be disconnected as already evidenced by the 1-dimensional
smooth case. Connectedness, even for the Zariski topology, implies:

Conjecture 3.4.6. The model M(G, H) (resp. M1(G, H)) is smooth if it has the
maximal dimension |EG ∩ EH | + n (resp. |EG ∩ EH |).
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4 Symmetric Ideals

For questions of authorship, please refer to pages IVf.
This chapter is based on the accepted version of [Kre23].

4.1 Monomial Radicals of Symmetric Ideals
A symmetric ideal is an ideal in a polynomial ring K[x1, . . . , xn] which is stable
under all permutations of the variables. Special classes of symmetric ideals, for
instance Specht ideals [MOY22] and Tanisaki ideals [Tan82, BG92, GP92], have been
studied intensively in the algebraic combinatorics literature and are related to Kostka–
Macdonald polynomials and the famous work of Haiman on n!, see [Hai03] and the
references therein. In commutative algebra, symmetric ideals are mainly studied for
their asymptotic properties. We refer to [NR17, NR19, LNNR20, LNNR21, NS21]
for plenty of examples as well as to [CF13, CEF15] for foundational results on
representation stability and FI-modules. One of the most well-known results on
symmetric ideals is that an infinite chain of symmetric ideals In ⊆ K[x1, . . . , xn] in
increasingly many variables with In−1 ⊆ In for all n eventually stabilizes in the sense
that In = (Sn · In−1) for all n large enough [Coh67, AH07, HS12, Dra14]. Here, Sn

is the symmetric group on n elements.
As opposed to such stabilization phenomena, in this chapter we investigate a certain
rigidity statement for symmetric ideals in a fixed polynomial ring. We indicate that
solution sets to symmetric systems of general polynomial equations should be very
simple, in the precise sense of Theorem 4.1.1 and Conjecture 4.1.2. Proposition 4.1.4
is an example for how the infinite case can yield simpler and more explicit results.
For a focus on Specht polynomials instead of monomials, see for example [MRV21].
Let us first introduce some relevant notation. The set of occurring monomials in a
polynomial f ∈ K[x1, . . . , xn] over a field K is called its support and written supp(f).
We may identify a monomial in K[x1, . . . , xn] with its exponent vector in (Z≥0)n

and call any non-empty, finite subset A ⊆ (Z≥0)n a support set. A support set A is
called homogeneous of degree d if ∑n

i=1 ai = d for all a ∈ A. It is called symmetric if
all permutations of its elements belong to A as well. We identify KA with the set of
all polynomials f ∈ K[x1, . . . , xn] with supp(f) ⊆ A. We write S∞ for the (small)
infinite symmetric group. Moreover, we denote by An the alternating group, i.e., the
index 2 subgroup of Sn consisting of all even permutations. The action of σ ∈ Sn

on a polynomial f is written σ · f , and it is induced by letting σ · xi := xσ(i). For
the orbit of f under the action of a subgroup G ⊆ Sn we write G · f . Listing the
exponents of a monomial in decreasing order gives a partition of the degree of the
monomial, and we call this partition the type of the monomial. Two monomials have
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the same type if and only if they are permutations of one another. For example, x2
1x2

and x1x
2
3 are of the same type while x1x2x3 has different type. Whenever we use

the term general, the field K is assumed to be infinite. Fixing a support set A, an
assertion about polynomials f ∈ K[x1, . . . , xn] with supp(f) ⊆ A holds for a general
f ∈ KA if the subset of KA for which the assertion holds contains a non-empty
Zariski-open subset. Given a set of polynomials S, by V(S) ⊆ Kn we denote its
vanishing set.

Theorem 4.1.1. Let char(K) = 0 and n ≥ 5. Let A ⊆ (Z≥0)n be a homogeneous,
symmetric support set, and denote by k the minimal number of distinct variables
dividing some monomial in A. Then, for general f ∈ KA,√

(Sn · f) = (Sn · x1x2 · · · xk).

In particular, V(Sn · f) is the union of all (k − 1)-dimensional coordinate subspaces
of Kn.

Theorem 4.1.1 indicates that the surprising behavior of [JKLR20, Example 2.6] might
not be so rare. We even expect the following to hold true.

Conjecture 4.1.2. Let A ⊆ (Z≥0)n be any support set and k as in Theorem 4.1.1.
Then, for a general f ∈ KA, one of the following holds:

• If A is homogeneous, then√
(Sn · f) = (Sn · x1x2 · · · xk).

• If A is inhomogeneous, then

V(Sn · f) ⊆ V(Sn · x1x2 · · · xk) ∪ V(xe
i − xe

j : i, j = 1, . . . , n)

for some 1 ≤ e ≤ deg(f).

Remark 4.1.3. We collect several easy facts.

(1) Assume A is homogeneous but not necessarily symmetric and contains a power
of some variable xd

i . Let G ⊆ Sn act transitively on the variables. Then, for the
general f ∈ KA,

√
(G · f) = (x1, . . . , xn) is the homogeneous maximal ideal, in

particular V(G · f) = {0}. Indeed, for every r ≥ d the dimension of the degree
r piece of the ideal (G · f) is precisely the rank of the matrix whose rows are
the coefficients of the polynomials m · (g · f), written in the monomial basis,
where g ∈ G and m is a monomial of degree r − d. Since the rank is lower
semicontinuous, for any fixed r the general f ∈ KA satisfies

dimK K[x1, . . . , xn]r/(G · f)r ≤ dimK K[x1, . . . , xn]r/(G · xd
i )r.

For r ≥ nd, the right hand side is zero. Therefore, for any fixed r large enough,
(G · f)r is spanned by all monomials of degree r, including the powers of the
variables. This implies immediately

√
(G · f) = (x1, . . . , xn).
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(2) Similarly, if all monomials in A are of the same type and G ⊆ Sn acts transitively
on the set of monomials of this type, then for general f ∈ KA the ideal (G · f)
is monomial, generated by the orbit of any term of f .

(3) It is a natural question whether the ideal generated by the orbit of a homo-
geneous polynomial with sufficiently general coefficients does not only have
a monomial radical but is itself monomial. The answer is negative as Exam-
ple 4.3.2 shows.

(4) If f is inhomogeneous, then (Sn · f) usually does not contain any monomial.
Indeed, if f has at least two homogeneous parts fi and fj which do not vanish
at (1, 1, . . . , 1), then f(t, t, . . . , t) is an inhomogeneous univariate polynomial
which therefore has a non-zero solution in K, in particular VK(Sn · f) intersects
the torus (K \ {0})n.

(5) Theorem 4.1.1 suggests that ideals generated by the orbit of a single polynomial
should rarely be expected to be radical, see however Proposition 4.1.4 for a
notable exception.

Proposition 4.1.4. Let char(K) = 0 or char(K) > n. Let f ∈ K[x1, . . . , xn]
be a homogeneous polynomial of degree d having only square-free terms. Assume
f(1, 1, . . . , 1) ̸= 0. Then, for all N ≥ n + d, we have

(SN · f) = (SN · x1x2 · · · xd) ⊆ K[x1, . . . , xN ].
Proposition 4.1.4 can also be viewed as a representation-theoretic statement about
the SN -representation with a basis given by all d-element subsets of {1, . . . , N}.
The character of this representation is known explicitly,1 nonetheless the result
does not seem to follow in a straightforward way. The proof given below is purely
combinatorial.
Remark 4.1.5. If char(K) = 0, Proposition 4.1.4 implies that the K-linear S∞-
representation Vd given by all d-element subsets of the natural numbers N has a
unique maximal proper subrepresentation, namely the subvector space of Vd defined
by all coefficients summing to zero. Indeed, the theorem implies that any element
which does not lie in this subvector space generates all of Vd. We expect this to be
known to experts on the representation theory of the infinite symmetric group.
Remark 4.1.6. Proposition 4.1.4 provides an example that the statements of
Theorem 4.1.1 and Conjecture 4.1.2 might become simpler, with the possibility of
obtaining the genericity conditions explicitly, in large enough polynomial rings, i.e.,
if the ideals are extended to symmetric ideals in polynomial rings with sufficiently
many variables, or even to the infinite polynomial ring. This feature also appears
in [MRV21].
Remark 4.1.7. Let A ⊆ Zn be a homogeneous support set and f ∈ KA. Experimen-
tally, even the saturation of (Sn · f) at the homogeneous maximal ideal (x1, . . . , xn)
is very often a monomial ideal. It is an open problem whether this statement holds
for the general f ∈ KA.

1see for example the following mathoverflow post:
mathoverflow.net/questions/123721/permutation-character-of-the-symmetric-group-on-subsets-of-certain-size
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4.2 Proofs
For n ≥ 2, there are precisely two Sn-representations of dimension 1, the trivial
representation and the sign representation. For n ≥ 3, n ̸= 4, every irreducible Sn-
representation of dimension > 1 has dimension at least n−1 (assuming characteristic
zero). This follows from the classical representation theory of the symmetric groups,
see for example [FH91]. If m0 is a monomial, the permutation module Mm0 is
the K-vector space generated by all permutations of m0. The multiplicities of the
irreducible Sn-representations in Mm0 are classically known as the Kostka numbers.
We will use that the trivial representation has multiplicity 1 in Mm0 and is spanned
by the monomial symmetric polynomial inside Mm0 . The sign representation has
multiplicity 0 if m0 has at least two equal exponents (also counting zeros). If on
the other hand all exponents of m0 are distinct, then the sign representation has
multiplicity 1 in Mm0 and is spanned by the polynomial∑

m∈An·m0

m −
∑

m∈An·m0

(1, 2).m,

having coefficient 1 in front of all even permutations of m0 and coefficient −1 in front
of all odd permutations of m0. In particular, the sum of the isotypic components
of the trivial and the sign representation in Mm0 has the property that for each
element all coefficients of the even permutations of m0 agree (and the same for the
odd permutations).

Proof of Theorem 4.1.1. We assume k ≤ n−1 since otherwise we may divide f by the
appropriate power of x1x2 · · · xn and proceed with the resulting polynomial. We can
also assume that A contains at least two monomials of different types since otherwise
the conclusion is clear, see also Remark 4.1.3(ii). Moreover, we first let K = K and
give the standard reduction to the case of an arbitrary field of characteristic zero at
the end of the proof.
Elements of KA are interpreted as polynomial functions with support contained in A
and are written as coefficient vectors (cm)m∈A. As A is symmetric, KA is naturally
an Sn-representation. We write elements of its dual representation KA,∗ in the dual
basis (ym)m∈A. We consider the partial Veronese

φ : Pn−1 99K PKA,∗,

sending [x1 : · · · : xn] to the homogeneous coordinate vector [ym] of all monomials
in A, so ym = m(x1, . . . , xn). Set-theoretically, the indeterminacy locus of φ is then
precisely V(Sn · x1x2 · · · xk) ⊆ Pn−1. We denote its complement by U and observe
that φ : U → PKA,∗ is Sn-equivariant. With the idea of an incidence subset, we
define the constructible subset X ⊆ PKA × PKA,∗ as

X = {([cm], [ym]) : [ym] ∈ φ(U),
∑

m∈A
cmyσ·m = 0 for all σ ∈ Sn}.

Denoting by pr1, pr2 the projections onto the factors, the constructible set pr1(X) ⊆
PKA is precisely the set of polynomials g for which

√
(Sn · g) ̸= (Sn · x1x2 · · · xk).
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Hence, it is enough to see that the dimension of X, and thus of pr1(X), is at most
dim(PKA) − 1. To prove the latter, we write X as a union of three constructible
subsets which all satisfy this dimension bound. More precisely, we distinguish the
following three sets of points [ym] ∈ φ(U) ⊆ PKA,∗:

(1) First, assume there is some m0 ∈ A which is not a power of x1x2 · · · xn and
such that 0 ̸= ym0 = yσ·m0 for all σ ∈ An. There are in fact only finitely many
such points [ym] ∈ φ(U). In order to see this, for fixed m0 let Z ⊆ Pn−1 be
the preimage under φ of the set of all these points [ym] ∈ φ(U). Then Z is
contained in the intersection of V(m0 − σ · m0 : σ ∈ An) ⊆ Pn−1 with the
algebraic torus. Write m0 = xe1

1 · · · xen
n . Without loss of generality assume

e1 ≥ e2 ≥ e3 and e1 > e3. Then m0 − (1, 2, 3) · m0 is a monomial multiple of
m′ := xe1−e3

1 −xe1−e2
2 xe2−e3

3 . Hence, Z is contained in the subset of the algebraic
torus defined by all An-permutations of m′. Let a := e1 − e2 and b := e2 − e3.
From the two equations xa+b

1 = xa
2xb

3 and xa+b
3 = xa

1xb
2 we deduce

x
(a+b)2

1 = x
a(a+b)
2 (xa+b

3 )b = x
a(a+b)
2 (xa

1xb
2)b = xa2+b2+ab

2 xab
1 ,

and hence xa2+b2+ab
1 = xa2+b2+ab

2 . Therefore, Z is contained in the closed subset
of the algebraic torus defined by xe

1 = xe
2 = · · · = xe

n with e = (e1 − e3)2 − (e1 −
e2)(e2 − e3). Clearly, there are only finitely many solutions to these equations
in Pn−1, so the image of Z under φ is also a finite set of points. The fiber of
X

pr2−→ PKA,∗ over each of these points is contained in some hyperplane inside
PKA.

(2) Second, assume there is some m0 ∈ A which is not a power of x1x2 · · · xn and
such that

• ∑
m∈Sn·m0 ym ̸= 0 and

• not all ym with m an even permutation of m0 agree (or, without loss
of generality, the same statement with respect to all odd permutations
of m0).

Then the fiber of X
pr2−→ PKA,∗ over such a point is a linear space of codimension

at least n in PKA. Indeed, this fiber is the projectivization of the kernel of the
matrix Y whose rows are all Sn-permutations of (ym)m∈A, and the codimension
of this kernel in KA is precisely the rank of Y . We claim that even the submatrix
Y ′ of Y whose rows are all the Sn-permutations of (ym)m∈Sn·m0 has rank at least
n. This is because the Sn-representation given by the span of all rows of Y ′ is
a subrepresentation of the permutation module Mm0 which contains the trivial
representation (just sum all the rows of Y ′) and also some other irreducible
representation which is neither the trivial nor the sign representation. The
latter follows from the assumption since every element of Mm0 lying in the sum
of the isotypic components of the trivial and the sign representation would have
equal coefficients for all monomials of the even permutations of m0. Hence,
using dim(φ(U)) ≤ n − 1, the dimension of the preimage under X

pr2−→ PKA,∗

of the set of all such points [ym] ∈ φ(U) is at most

dim(φ(U)) + (dim(PKA) − n) ≤ dim(PKA) − 1.
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(3) If the two cases above do not apply, then for all m0 ∈ A which is not a
power of x1x2 · · · xn we have ∑m∈Sn·m0 ym = 0 but not all ym with m an even
permutation of m0 agree. This translates into the codimension 1 condition∑

m∈Sn·m0 m(x1, . . . , xn) = 0 on Pn−1. With a similar argument as in the
previous case, the fiber of any such point [ym] ∈ φ(U) has codimension at least
n − 1, making the dimensions add up to at most dim(PKA) − 1 again.

Now, we deduce the claim for arbitrary fields K of characteristic zero. Let N := |A|.
By the above, there is a non-empty principal open subset DK(α) ⊆ AN

K
for which

the assertion of the theorem holds. But α ∈ K[c1, . . . cN ] only has finitely many
coefficients, so there is a finite field extension L of K such that α ∈ L[c1, . . . cN ].
The integral ring extension L[c1, . . . , cN ] ↪→ K[c1, . . . , cN ] induces the surjective
morphism of affine schemes b : AN

K
→ AN

L , and as b−1(DL(α)) = DK(α), we obtain
b(DK(α)) = DL(α). The finite ring extension K[c1, . . . , cN ] ↪→ L[c1, . . . cN ] induces
the finite surjective morphism b′ : AN

L → AN
K of finite type K-schemes, to which

Chevalley’s theorem on constructible subsets applies. The dimensions of AN
L and

AN
K agree, and by finiteness of b′ the constructible image of the open dense subset

DL(α) under b′ is necessarily dense in AN
K , hence contains a non-empty principal

open DK(β) ⊆ AN
K . Restricting to the set of K-rational points, DK(β) ∩ KN is still

a non-empty open of the irreducible space KN since K is infinite.
Finally, let f ∈ DK(β) ∩ KN . Then f is identified with its corresponding polynomial
f ∈ K[x1, . . . , xn] having supp(f) ⊆ A. As f ∈ DK(β), we have

√
(Sn · f) =

(Sn · x1x2 · · · xk) in the polynomial ring over K. Completing {1} to a K-basis of K,
this equality also follows in the polynomial ring over K.

For smaller n or symmetric inhomogeneous support sets A, the above proof can be
adapted in many cases but the details are tedious and hence omitted.
Proposition 4.1.4 is a consequence of the following more special result. In order to
state it, denote by ed

n(x1, . . . , xn) the elementary symmetric polynomial of degree d
in n variables, 1 ≤ d ≤ n.

Proposition 4.2.1. Let I = (SN · ed
n(x1, . . . , xn)) ⊆ K[x1, . . . , xN ] and N ≥ n + d.

If char(K) = 0 or char(K) > n, then

I = (SN · x1 · · · xd).

Lemma 4.2.2. We have the identity
(

n − 1
d

)
d∑

j=0
(−1)j

(
d−a

j

)(
n−d+a

d−j

)
(

n−1
d−j

) =

(

n
d

)
for a = d

0 for all 0 ≤ a ≤ d − 1

for all 1 ≤ d ≤ n − 1.

Proof. For a = d this can be checked easily and the other case is equivalent to the
well-known formula

r∑
j=0

(−1)j

(
r

j

)
(s + j)r−1 = 0,
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where (s + j)r−1 denotes the falling factorial and r := d − a ≥ 1, s := n − 1 − d ≥ 0.
To see this, observe that this sum is just the r-th discrete derivative of the polynomial
sr−1 which is of degree r − 1 in s. Here, the discrete derivative of a polynomial f(s)
is defined as (∆f)(s) = f(s + 1) − f(s). Clearly, deg(∆f) ≤ deg(f) − 1. It follows
that ∆(r)sr−1 = 0.

Proof of Proposition 4.2.1. For a given field K, our goal is to find a K-linear combi-
nation of the polynomials σ · ed

n with σ ∈ Sn+d which equals a non-zero K-multiple
of the monomial x1 · · · xd. Let first K = Q. We want to find coefficients cj ∈ Q such
that (

n

d

)
x1 · · · xd =

d∑
j=0

(−1)jcj

∑
|J1|=d−j

ed
n(xJ), (4.1)

where the second sum ranges over all subsets J ⊆ {1, . . . , n + d} of cardinality n
such that J1 := J ∩ {1, . . . , d} is of the given cardinality. Moreover, by ed

n(xJ) we
denote the elementary symmetric polynomial of degree d in the n variables indexed
by J . It is easy to see that only the summand with j = 0 contributes elementary
symmetric polynomials that contain the monomial x1 · · · xd, and there are precisely(

n
d

)
of those, which forces c0 = 1 for equation (4.1) to hold. Note moreover that in

the j-th summand of (4.1), all occuring ed
n(xJ) only contain monomials containing at

most d − j of the variables x1, . . . , xd. More precisely, given a square-free monomial
xAxB with A ⊆ {1, . . . d}, B ⊆ {d + 1, . . . , d + n} of degree d we write a = |A|, so
|B| = d − a. Then in the j-th summand of the sum in (4.1), the monomial xAxB

occurs exactly
(

d−a
j

)(
n−d+a

d−j

)
times as a counting argument shows. Obviously, this

does not depend on the sets A and B but only on the cardinality a of A. Now define
c1 in a way such that the monomials xAxB with a = d − 1 in the j = 1 summand
cancel with the corresponding terms in the j = 0 summand. Clearly, there exists
a unique such c1 ∈ Q, and the j = 1 summand does not contribute monomials
with a = d. Similarily, define then c2 ∈ Q to be the unique rational number such
that the monomials xAxB with a = d − 2 in the j = 2 summand cancel out all the
corresponding terms in the j = 0 and j = 1 summands. Again, the j = 2 summand
cannot contribute any monomials with a ≥ d − 1. Continuing in this way, we define
unique numbers c0, . . . , cd ∈ Q depending only on n and d with c0 = 1 and such that
(4.1) must hold by construction. Now fix a monomial xAxB. Then the fact that this
monomial has coefficient

(
n
d

)
if a = d and coefficient 0 otherwise on the right hand

side of the equation (4.1) precisely translates into the binomial identity

d∑
j=0

(−1)jcj

(
d − a

j

)(
n − d + a

d − j

)
=

(

n
d

)
for a = d

0 for all 0 ≤ a ≤ d − 1

for all 1 ≤ d ≤ n − 1. From the uniqueness of the cj and Lemma 4.2.2 we then obtain
cj = (n−1

d )
(n−1

d−j)
. Next, as we now know that the binomial identity of Lemma 4.2.2 holds

over every field K in which all expressions are defined, if additionally char(K) ∤
(

n
d

)
,

then the monomial x1 · · · xd lies in the ideal I by (4.1). Equivalently, a sufficient
assumption on char(K) for the elimination in (4.1) to work is that char(K) does not
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divide
(

n
d

)
nor any denominator of the reduced fractions cj for all 0 ≤ j ≤ d. In

particular, char(K) = 0 or char(K) > n will suffice.

Proof of Proposition 4.1.4. Let J be the set of all d-element subsets of {1, . . . , n}
corresponding to terms of f , so that there are cJ ∈ K for all J ∈ J such that
f = ∑

J∈J cJxJ . We write c := f(1, 1, . . . , 1) = ∑
J∈J cJ . The following polynomial

clearly lies in the ideal (SN · f):∑
σ∈Sn

σ · f =
∑
J∈J

cJ

∑
σ∈Sn

σ · xJ

=
∑

J∈J
cJ

 d!(n − d)!ed
n(x1, . . . , xn) = c · d!(n − d)!ed

n(x1, . . . , xn).

If c ̸= 0 in K, we deduce ed
n(x1, . . . , xn) ∈ (SN · f) and so (SN · f) = (SN · x1x2 · · · xd)

by Proposition 4.2.1.

4.3 Examples
We start with a small addition to Proposition 4.2.1 with slightly weaker assumptions
on the characteristic of the field and on the number of variables N .
Lemma 4.3.1. Let I = (SN · ed

n(x1, . . . , xn)) ⊆ K[x1, . . . , xN ] where either d > 1
and N ≥ n + d − 1 or d = 1 and N ≥ n + 1. If char(K) ∤

(
n
d

)
, then

√
I = (SN · x1 · · · xd).

Otherwise, if char(K) |
(

n
d

)
, then for all N ≥ n the ideal

√
I does not contain any

monomial.
Proof. We proceed in several steps.

• First, we show that the polynomial f := (x1 − xn+1) · · · (xd − xn+d) lies in the
ideal I and hence so do all its permutations. Indeed, write

f1 := ed
n(x1, . . . , xn) − (1, n + 1) · ed

n(x1, . . . , xn)
= (x1 − xn+1)ed−1

n−1(x2, . . . , xn) ∈ I.

Then, similarly,

f2 := f1 − (2, n + 2) · f1

= (x1 − xn+1)(x2 − xn+2)ed−2
n−2(x3, . . . , xn) ∈ I.

Inductively, we obtain f ∈ I, as desired.

• Next, we show that every non-zero entry of y ∈ V(I) ⊆ KN occurs at most
n − 1 times. Indeed, if an entry t ∈ K occurs at n places i1 < · · · < in, then

0 = ed
n(yi1 , . . . , yin) =

(
n

d

)
td,

hence t = 0 by our assumption on char(K).

102



• In fact, we claim that every non-zero entry of y ∈ V(I) can occur at most d − 1
times. Otherwise, if the entry t ̸= 0 occurred r times, where d ≤ r ≤ n − 1,
then there would be at least N − r ≥ d entries of y different from t since
N ≥ n + d − 1. This, however, contradicts f(σ · y) = 0 for all σ because we can
find a permutation σ after which y1 = · · · = yd = t and yn+1, . . . , yn+d are all
different from t and so we would have f(y) ̸= 0 which is impossible. Therefore,
V(I) = V(SN · x1 · · · xd) and hence

√
I = (SN · x1 · · · xd).

• If char(K) |
(

n
d

)
, we observe ed

n(1, 1, . . . , 1) =
(

n
d

)
= 0 in K, so (1, 1, . . . , 1) lies

in V(I).

Example 4.3.2. Let f := x2
1 + tx1x2. Then for all t ̸= 0 the ideal (Sn · f) does not

contain x2
1 for any n ≥ 2. Suppose to the contrary that x2

1 can be written as

x2
1 =

∑
σ∈Sn

cσ(σ · f) =
∑

σ∈Sn

cσx2
σ(1) + t

∑
σ∈Sn

cσxσ(1)xσ(2)

for some cσ ∈ K. Then ∑σ(1)=1 cσ = 1 and ∑σ(1)̸=1 cσ = 0 by looking at the sum only
involving squared variables. The sum only involving square-free variables becomes

0 = tx1
∑

σ(1)=1
cσxσ(2) + t

∑
σ(1)̸=1

cσxσ(1)xσ(2).

Now, we set all variables xn = · · · = x3 := x2 (but x1 stays unchanged). Then the
first sum becomes simply tx1x2, and the second sum, after splitting it up as

t
∑

σ(1)̸=1̸=σ(2)
cσxσ(1)xσ(2) + t

∑
σ(2)=1

cσxσ(1)xσ(2),

becomes

tx2
2

 ∑
σ(1)̸=1̸=σ(2)

cσ

+ tx1x2
∑

σ(2)=1
cσ.

From t ̸= 0 it follows that ∑σ(1)̸=1̸=σ(2) cσ = 0 and ∑σ(2)=1 cσ = −1. But then,

−1 =
∑

σ(1)̸=1̸=σ(2)
cσ +

∑
σ(2)=1

cσ =
∑

σ(1)̸=1
cσ = 0,

a contradiction.

Example 4.3.3. The genericity assumptions of Theorem 4.1.1 and Conjecture 4.1.2
are necessary. The obvious examples here are symmetric polynomials and polynomials
vanishing at (1, 1, . . . , 1). For a less obvious example, we can take f := x2

1x2 + x1x
2
2

and I = (SN · f) ⊆ Q[x1, . . . , xN ], N ≥ 3. For N = 3, a computation in Macaulay2
shows √

I = (S3 · f, x1x2x3),
so for all N ≥ 3 we have x1x2x3 ∈

√
I. However, no permutation of x1x2 lies in

√
I

because all permutations of (1, −1, 0, 0, . . . , 0) lie in V(SN · f). Hence, all monomials
in I and

√
I are divisible by at least 3 distinct variables.
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Example 4.3.4. It is possible even for the ideal generated by the orbit of an
inhomogeneous polynomial to be monomial although it is a rare phenomenon as
explained by Remark 4.1.3. An example is given by I = (S3 · (x1 + x2 + x2

1 − x2
2)) ∈

K[x1, x2, x3] for any field K of char(K) ̸= 2. Indeed, one has I = (x1, x2, x3) as
follows from

2x1 = (x1 + x2 + x2
1 − x2

2) + (x3 + x1 + x2
3 − x2

1) − (x3 + x2 + x2
3 − x2

2) ∈ I.

Example 4.3.5. Proposition 4.1.4 and Proposition 4.2.1 are false in general for
N < n + d. Consider the case n = 3, d = 2, N = 4 < n + d for the ideal
I = (SN · e2

3) ⊆ Q[x1, x2, x3, x4]. Then a computation in Macaulay2 shows that all
permutations of x2

1x2 lie in I but no monomial of degree 2. In particular, I is not
radical. Note that Lemma 4.3.1 still applies.

Example 4.3.6. The statement of Proposition 4.2.1 is false in general under the
weaker assumption on the characteristic char(K) ∤

(
n
d

)
. As an example, consider

the case K = Z/2Z with n = 3, d = 2 and N = n + d = 5 for the polynomial
e2

3 = x1x2 + x1x3 + x2x3. Then (x1x2)2 ∈ I = (SN · e2
3) but x1x2 ̸∈ I, as can be

checked by computing a Gröbner basis of I. The same is still true for N = 6, 7.
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5 Thin Lattice Polytopes

For questions of authorship, please refer to pages IVf.
This chapter is based on the accepted version of [BKN23].

The Local h∗-Polynomial
We propose to investigate thin polytopes: lattice polytopes with vanishing local h∗-
polynomials. Local h∗-polynomials are also called ℓ∗-polynomials or S̃-polynomials.
In the case of lattice simplices, they equal the so-called box polynomial, see Exam-
ple 5.1.15. Thin simplices were first defined in the context of regular A-determinants
and A-discriminants by Gelfand, Kapranov and Zelevinsky [GKZ94, Section 11.4.B]
as those lattice simplices whose Newton numbers are zero, see Remark 5.2.2. As
has been noted in [GKZ94], “a classification of thin lattice simplices seems to be an
interesting problem in the geometry of numbers.” In this chapter, we extend this
endeavor to thin lattice polytopes, which we throughout refer to for simplicity as
thin polytopes. Our main results are a complete classification of thin polytopes up to
dimension 3 (Theorem 5.3.3) and a characterization of thin Gorenstein polytopes in
any dimension (Theorem 5.5.3). The latter relies crucially on a recent non-negativity
result by Katz and Stapledon [KS16, Theorem 6.1]. As a consequence, we solve
the original problem of [GKZ94] in these two cases and answer questions posed by
Borisov, Nill and Schepers that came up in the investigation of stringy E-polynomials
of Gorenstein polytopes.
We hope for a renewed interest in the study of the local h∗-polynomial as a fundamen-
tal invariant of a lattice polytope with many fruitful connections as pioneered in the
work of Stanley [Sta92], Karu [Kar08], Batyrev, Borisov, Mavlyutov [BN08, BM03],
Schepers [Sch12, NS13], and Katz, Stapledon [KS16].
Let us give an overview of this chapter. In Section 5.1 we give a comprehensive
survey on the local h∗-polynomial of a lattice polytope. In Section 5.2 we define
thin polytopes, present the main examples and discuss several open questions (e.g.,
Question 5.2.16). Section 5.3 contains the complete classification of three-dimensional
thin polytopes. In particular, we prove that three-dimensional lattice simplices are
thin if and only if they are lattice pyramids (Corollary 5.3.10). Section 5.5.1 presents
the characterization of thin Gorenstein polytopes (Theorem 5.5.3). In particular,
we deduce that thin Gorenstein polytopes have lattice width 1 (Corollary 5.5.7),
being thin is invariant under the duality of Gorenstein polytopes (Corollary 5.5.12)
and show that Gorenstein simplices are thin if and only if they are lattice pyramids
(Corollary 5.5.15). To obtain these results, we study the behavior of local h∗-
polynomials under joins, particularly for Gorenstein polytopes in Section 5.4.
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5.1 A Primer on Combinatorial Invariants of Lat-
tice Polytopes

Since the local h∗-polynomial is still not as well known in Ehrhart theory as the usual
h∗-polynomial and also has been studied with different names and notations, we will
give a slightly more thorough account on previous research than strictly necessary
for the mere purpose of our results.

5.1.1 Toric g- and h-Polynomials of Lower Eulerian Posets
In [Sta87], Stanley generalized the notion of h-vectors of simplicial complexes and
simplicial polytopes significantly. For this, let us recall some basic terminology.

Definition 5.1.1. The dual of a finite poset P is denoted P∗. A finite poset P is
locally graded if every inclusion-maximal chain in every interval [x, y] has the same
length r(x, y). The rank rk(P) is the length of the longest chain in P . If in addition
there exists a rank function ρ : P → Z, i.e., r(x, y) = ρ(y) − ρ(x) for every interval
[x, y], then P is called ranked. If P is ranked and every interval [x, y] with x ̸= y has
the same number of even rank and odd rank elements, then P is locally Eulerian.
If P is locally Eulerian and contains a minimal element 0̂, then it is called lower
Eulerian. If it also contains a maximum 1̂, then P is called Eulerian. In presence
of a minimum 0̂ in a ranked poset P , we will always assume that the rank function
satisfies ρ(0̂) = 0.

Here is the definition of the g-polynomial and the h-polynomial for lower Eulerian
posets according to Stanley [Sta87].

Definition 5.1.2. Let P be a lower Eulerian poset with rank function ρ and rank
d. We define the g-polynomial gP(t) and the h-polynomial hP(t) recursively by
introducing a third polynomial fP(t) as an intermediate step. Let

f∅(t) = g∅(t) = h∅(t) = 1

and if P ≠ ∅, we set

fP(t) =
∑
x∈P

(t − 1)d−ρ(x)g[0̂,x)(t)

and define for fP(t) = ∑d
i=0 fit

i,

gP(t) =
⌊d/2⌋∑
i=0

(fi − fi−1)ti, and

hP(t) =
d∑

i=0
fd−it

i.

Hence, hP(t) is a polynomial with constant term 1 of degree ≤ d, and gP(t) is a
polynomial with degree ≤ d/2.
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Remark 5.1.3. If for x ∈ P, the interval [0̂, x] is boolean, then g[0̂,x)(t) = 1, see
[Sta87, Proposition 2.1].

Remark 5.1.4. Let us recall the situation of simplicial complexes ∆ (see [Sta87]),
where the previous definition of the h-polynomial agrees with the usual one. For
this, we identify ∆ with its face poset which is a lower Eulerian poset with minimum
∅ ∈ ∆. Throughout, we use the convention that dim(∅) = −1. It follows from
Remark 5.1.3 that g[∅,σ)(t) = 1 for all faces σ of ∆. If ∆ has dimension d − 1, we get
f∆(t) = ∑d

i=0 fi−1(t − 1)d−i, where fj denotes the number of faces of ∆ of dimension
j. Hence, this implies

h∆(t) =
∑
σ∈∆

tdim(σ)+1(1 − t)d−1−dim(σ),

which indeed equals the usual h-polynomial of ∆, and where its coefficients form
the usual h-vector of ∆ [Sta87, p. 199]. For instance, if ∆ is the boundary complex
of a d-dimensional simplex, then h∆(t) = 1 + t + · · · + td. Let us also give one
example to illustrate that the previous formula for h∆(t) fails in the non-simplicial
situation. Let P be the pyramid over the square. In this case, the h-polynomial
of the boundary complex of P equals 1 + 2t + 2t2 + t3, while the previous formula
would give 1 + 2t + t2 + t3. Note that the h-polynomial is palindromic while the
latter expression is not.

Stanley proved in [Sta87, Theorem 2.4] the following combinatorial palindromicity
result generalizing the Dehn–Sommerville equations for face numbers of simplicial
polytopes.

Theorem 5.1.5. Let P̂ be an Eulerian poset and P := P̂ \ 1̂ with rk(P) = d. Then
the h-polynomial hP(t) = ∑d

i=0 hit
i is palindromic of degree d, i.e. hi = hd−i for all

i = 0, . . . , d.

In particular, we have fP(t) = hP(t) in this case.

Remark 5.1.6. We emphasize that in the situation of Theorem 5.1.5 it is important
to distinguish between the g- and h-polynomials of P and P̂ . Indeed, gP̂(t) = 0 and
hP̂(t) = gP(t). Unfortunately, in this regard the different notations employed in the
literature can be confusing. Our notation follows that of Stanley while Katz and
Stapledon in [KS16] write g(P̂; t) for our gP(t) but also use h(P; t) for our hP(t).
In Borisov and Mavylutov [BM03], as well as in [BN08, NS13], our gP(t) and hP(t)
would be gP̂∗(t) and hP̂∗(t).

Let us give the definition of h- and g-polynomials of polytopes.

Definition 5.1.7. For P a polytope we define its (toric) h-polynomial hP (t), and
its (toric) g-polynomial gP (t) as the h-, resp., g-polynomial of the face lattice [∅, P )
of proper faces of P . Note that gP (t) = h[∅,P ](t), see Remark 5.1.6.

Note that by Remark 5.1.3, we have gP (t) = 1 if P is a simplex.
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Theorem 5.1.8. Let P be a polytope of dimension d. Then hP (t) = ∑d
i=0 hit

i is
a palindromic polynomial with positive integer coefficients that form a unimodal
sequence, i.e.,

1 = h0 ≤ h1 ≤ · · · ≤ h⌊ d
2 ⌋.

Equivalently, gP (t) has non-negative coefficients.

Proof. Palindromicity follows from Theorem 5.1.5. For rational polytopes P , nonneg-
ativity follows from the interpretation of the coefficients of hP (t) as the dimensions
of the even intersection cohomology groups of the toric variety associated with
P and the unimodality property follows from the hard Lefschetz theorem [Sta87,
Theorem 3.1, Corollary 3.2]. The non-rational case has been treated by Karu in
[Kar04].

Let us mention the following less well-known duality property of g-polynomials that
will be of importance in Section 5.5.1. This is a result by Kalai, published in [Bra06,
Theorem 4.5] as a consequence of the main result in that paper by Braden. Here, P∗

denotes the dual poset of a poset P .

Theorem 5.1.9. Let P be a polytope. Then

deg(g[∅,P )) = deg(g(∅,P ]∗).

In other words, if Q is any polytope which is combinatorially dual to P , then
deg(gP ) = deg(gQ).

5.1.2 (Relative) Local h-Polynomials of Polyhedral Subdivi-
sions

We give the definition of the local h-polynomial (and its generalized relative version)
of a polyhedral subdivision ∆ of a polytope P , following [Sta92] and [KS16] (the
relative version was introduced independently in [Ath12] and [NS12]). Here, we
define the link of a face σ ∈ ∆ as link(∆, σ) := {ρ ∈ ∆ : σ ⊆ ρ}. We view link(∆, σ)
as a lower Eulerian poset with minimum σ.

Definition 5.1.10. Let P be a polytope, ∆ a polyhedral subdivision of P , and
σ ∈ ∆. The relative local h-polynomial of ∆ with respect to σ is defined as

ℓ∆,σ(t) :=
∑

σ⊆F ≤P

(−1)dim(P )−dim(F )hlink(∆F ,σ)(t) g(F,P ]∗(t),

where F ≤ P means that F is a face of P (including ∅ and P ) and ∆F := {ρ ∈
∆: ρ ⊆ F}.
We call ℓ∆(t) := ℓ∆,∅ the local h-polynomial of ∆.

We suppress P in this notation as it equals |∆| = ⋃
σ∈∆ σ, the support of ∆. We

remark that the same definition of the local h-polynomial can be extended to so
called strong formal subdivisions of Eulerian posets, see [KS16, Definition 4.1].
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Theorem 5.1.11. Let P be a polytope of dimension d, ∆ a polyhedral subdivision
of P , and σ ∈ ∆. Then we can write ℓ∆,σ(t) = ∑d−dim(σ)

i=0 ℓit
i. Moreover, the following

holds:

(1) ℓ∆,σ(t) has nonnegative integer coefficients.

(2) ℓ∆,σ(t) is palindromic, i.e. ℓi = ℓd−dim(σ)−i for i = 0, . . . , d − dim(σ).

(3) If ∆ is regular, then the coefficients of ℓ∆,σ(t) form a unimodal sequence.

Proof. Let us give the references. (2): For the local h-polynomial this is a special case
of [Sta92, Corollary 7.7], for the relative local h-polynomial see [KS16, Corollary 4.5].
(1) and (3): For ∆ a rational polyhedral subdivision this has been proven in [Sta92,
Theorem 7.9], respectively, [KS16, Theorem 6.1] using the decomposition theorem
(cf. [BBD82, dCM09, dCMM18]). As pointed out in [KS16, Remark 6.6], the only
missing ingredient to drop the rationality hypothesis was the relative hard Lefschetz
theorem for the intersection cohomology of fans which was subsequently proven in
[Kar19].

The following decomposition theorem was one of the main motivations of Stanley for
the notion of local h-vectors. This is proven in [Sta92, Theorem 7.8], and the general
version in [KS16] (see, e.g., second equation in proof of Lemma 6.4). To stress the
analogy to Theorem 5.1.17, we state the equality also using the h-polynomial.

Proposition 5.1.12. Let P be a polytope of dimension d, ∆ a polyhedral subdivision
of P , and σ ∈ ∆. Then

hlink(∆,σ)(t) =
∑

σ⊆F ≤P

ℓ∆F ,σ(t)g[F,P )(t) =
∑

σ⊆F ≤P

ℓ∆F ,σ(t)h[F,P ](t).

In particular for σ = ∅, we get ℓ∆(t) ≤ h∆(t) and gP (t) = h[∅,P ] ≤ h∆(t) coefficient-
wise.

As a consequence of the above nonnegativity results, Stanley and later Katz and
Stapledon show that h-polynomials as well as relative local h-polynomials of polyhe-
dral subdivisions are nonnegative and coefficientwise monotone under subdivision
refinement [KS16, Corollary 6.10].

5.1.3 The h∗-Polynomial of a Lattice Polytope
We quickly recall the basic notions of Ehrhart theory. Let P ⊆ Rd be a lattice
polytope with respect to some lattice M ⊆ Rd of maximal rank d, usually M = Zd.
The Ehrhart series of P (with respect to M) is the formal power series

EhrP (t) := 1 +
∑
n≥1

|(nP ) ∩ M |tn ∈ Z[[t]].

By a theorem of Ehrhart [Ehr62], the map ehrP : Z≥1 → Z, n 7→ |(nP ) ∩ M | is a
polynomial in n, called the Ehrhart polynomial of P . It has degree dim(P ), constant
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term 1 and leading coefficient equal to the volume of P normalized with respect to
M . It follows that

EhrP (t) = h∗
P (t)

(1 − t)dim(P )+1 ,

for a unique polynomial h∗
P (t) ∈ Z[t] of degree at most dim(P ), called the h∗-

polynomial of P . Here, h∗
P (t) has non-negative integer coefficients by [Sta80]. More-

over, h∗
P (0) = 1 and h∗

P (1) equals the lattice volume volZ(P ) ∈ Z≥1, which is defined
as dim(P )! times the volume of P normalized with respect to M . Note that the
lattice volume of a lattice point equals 1. The degree of P , denoted deg(P ), is the
degree of its h∗-polynomial h∗

P (t). The codegree of P , denoted codeg(P ), is the
smallest integer k ≥ 1 such that the k-th dilate kP of P contains a lattice point of
M in its relative interior. By convention, a point has codegree 1. It follows from
Ehrhart–MacDonald reciprocity [Mac71] that

deg(P ) + codeg(P ) = dim(P ) + 1.

Let us recall that two lattice polytopes P and Q (with respect to the lattice M) are
called isomorphic (or unimodularly equivalent) if there is an affine lattice automor-
phism of M that maps the vertices of P to the vertices of Q. We say P is a unimodular
simplex if P is isomorphic to the convex hull of an affine lattice basis of M . Now, P
is a unimodular simplex if and only if h∗

P (t) = 1, or equivalently, deg(P ) = 0. For
M = Zd let us also define the standard unimodular simplex ∆d := conv(0, e1, . . . , ed)
for the standard lattice basis e1, . . . , ed.

5.1.4 The Local h∗-Polynomial of a Lattice Polytope
Let us introduce our main player, see [Sta92, Example 7.13] and [KS16, Definition 7.2].

Definition 5.1.13. Let P be a lattice polytope. The local h∗-polynomial or ℓ∗-
polynomial of P is defined as

ℓ∗
P (t) :=

∑
∅≤F ≤P

(−1)dim(P )−dim(F )h∗
F (t)g(F,P ]∗(t).

Let us note that the local h∗-polynomial of the empty face equals 1, while for a point
it equals 0. We also emphasize the analogy of Definition 5.1.13 with Definition 5.1.10
above. See also Subsection 5.1.5 for precise relationships between the h, ℓ, h∗, ℓ∗-
polynomials.

Remark 5.1.14. The local h∗-polynomial has been studied by Batyrev, Borisov,
Mavlyutov, Nill and Schepers under the name S̃-polynomial, see [BM03, Defini-
tion 5.3]. It was used by Borisov and Mavlyutov to simplify the formulas for
the stringy E-polynomial of Calabi–Yau complete intersections in Gorenstein toric
Fano varieties originally described via so-called B-polynomials [BB96a]. We remark
that the reader should be aware that in these papers in the definition of h- and
g-polynomials the dual poset was used compared to the one given here.
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Example 5.1.15. For lattice simplices P (of dimension d > 0) the h∗- and ℓ∗-
polynomial can be easily understood, as in this case the face posets are all Boolean.
Let Π denote the half-open parallelepiped spanned by the vertices of P × {1}. Then
h∗

P (t) (resp., ℓ∗
P (t)) enumerates the number of lattice points in Π (resp., in the interior

of Π). More precisely, we have h∗
P (t) = ∑d+1

i=0 h∗
i t

i and ℓ∗
P (t) = ∑d+1

i=0 ℓ∗
i t

i, where for
i = 0, . . . , d + 1 the coefficient h∗

i (resp. ℓ∗
i ) equals the number of lattice points

in Π (resp., in the interior of Π) with last coordinate i. We refer to [BN08, Prop.
4.6]. This polynomial ℓ∗

P (t) of a lattice simplex P is also often called box polynomial,
cf. [Bra16, Sol19, GS20]. For instance, we have h∗

P (t) = 1 if and only if P is a
unimodular simplex; in this case, ℓ∗

P (t) = 0. Let us note that for h∗-polynomials
this combinatorial interpretation of its coefficients can also be extended to arbitrary
lattice polytopes, e.g., by half-open decompositions [KV08]. On the other hand,
there is not yet a combinatorial counting interpretation for the coefficients of the
local h∗-polynomial of lattice polytopes known.

Let us summarize some of the basic properties of the local h∗-polynomial. Throughout,
we use the convention that the degree of the zero-polynomial is zero.

Theorem 5.1.16. Let P be a lattice polytope of dimension d > 0. Then we can
write the local h∗-polynomial ℓ∗

P (t) = ∑d
i=1 ℓ∗

i t
i. Moreover, the following holds:

(1) ℓ∗
P (t) has nonnegative integer coefficients.

(2) ℓ∗
P (t) is palindromic: we have ℓ∗

i = ℓ∗
d+1−i for i = 1, . . . , d.

(3) If ℓ∗
P (t) does not vanish, then the degree of ℓ∗

P (t) equals at most the degree of
h∗

P (t), and its subdegree (i.e., the smallest i such that the i-th coefficient of
ℓ∗(t) is non-zero) is at least the codegree of P .

(4) ℓ∗
1 = ℓ∗

d equals the number of lattice points in the interior of P .

Proof. Let us give the corresponding references: (1) This was conjectured by Stanley
[Sta92, Conjecture 7.14] and proven by Karu [Kar08]. Using the S̃-notation for ℓ∗ it
also follows from its interpretation as the Hilbert function of a graded vector space
by Borisov, Mavlyutov [BM03, Proposition 5.5]. (2) This was observed in [BM03,
Remark 5.4]. (3) This follows directly, see also [NS13, Corollary 2.16(2)]. (4) For
this observation, see [BN08, Example 4.7].

In particular, the number intZ(P ) of interior lattice points completely determines
the local h∗-polynomial up to dimension 2. If d = 0, then ℓ∗

P (t) = 0; if d = 1, then
ℓ∗

P (t) = intZ(P )t; and if d = 2, then ℓ∗
P (t) = intZ(P )t + intZ(P )t2.

5.1.5 Decomposing and Relating the h, ℓ, h∗, ℓ∗-Polynomials
The following classical result by Betke and McMullen, generalized by Katz and
Stapledon, explains the relation of h∗-polynomials to h-polynomials of a lattice
subdivision (i.e., a polyhedral subdivision whose vertices are lattice points). Recall
that a lattice triangulation is called unimodular if all its simplices are unimodular
simplices.
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Theorem 5.1.17. Let P be a lattice polytope with a lattice subdivision ∆. Then
the following holds:

h∗
P (t) =

∑
σ∈∆

ℓ∗
σ(t) hlink(∆,σ)(t).

In particular, we have h∆(t) ≤ h∗
P (t) coefficientwise, where we have equality if and

only if the local h∗-polynomial of every non-empty face of ∆ vanishes. If ∆ is a
lattice triangulation, then this is equivalent to ∆ being a unimodular triangulation.

Proof. This is Lemma 7.12(3) of [KS16], generalizing [BM85]. We recall that the
consequence follows from the nonnegativity of the occuring polynomials and the fact
that the h-polynomials have constant term 1. Second, the combinatorial description
of the h∗- and ℓ∗-polynomial of a lattice simplex, Example 5.1.15, implies that a
lattice simplex S is a unimodular simplex if and only if ℓ∗

σ(t) = 0 for all non-empty
faces σ of S.

Let us note that this result was one motivation for Stanley to define local h-
polynomials, as these allowed him to prove an analogous result in the combinatorial
setting, namely, Proposition 5.1.12 above. And similar to that formula positively
expressing the h-polynomial of a subdivision into local h-polynomials and toric
h-polynomials, one can also decompose the h∗-polynomial of a lattice polytope
positively into local h∗-polynomials and toric h-polynomials of its face poset.

Corollary 5.1.18. Let P be a lattice polytope. Then

h∗
P (t) =

∑
∅≤F ≤P

ℓ∗
F (t)g[F,P )(t) =

∑
∅≤F ≤P

ℓ∗
F (t)h[F,P ](t).

In particular, ℓ∗
P (t) + gP (t) = ℓ∗

P (t) + h[∅,P ](t) ≤ h∗
P (t) coefficientwise.

A proof in greater generality is given in [Sch12, Proposition 2.9], see also [Kar08,
Corollary 1.1] and [NS13, Proposition 2.5]. We remark that Corollary 5.1.18 gives
significance to thinking of the local h∗-polynomial as the “Ehrhart core” of the
h∗-polynomial. This is most prominently clear in the case of lattice simplices, see
Example 5.1.15.
Now, just as the (generalized) Betke–McMullen formula transparently separates
the lattice data (the ℓ∗-polynomials of the cells) and combinatorial data (the h-
polynomials of the links of the cells) of the h∗-polynomial of the support of a lattice
subdivision, the same can be done for the local h∗-polynomial. This was observed in
[NS12], see also [KS16, Lemma 7.12(4)].

Proposition 5.1.19. Let P be a lattice polytope with a lattice subdivision ∆. Then
the following holds:

ℓ∗
P (t) =

∑
σ∈∆

ℓ∗
σ(t) ℓ∆,σ(t).

In particular, ℓ∆(t) ≤ ℓ∗
P (t) coefficientwise, with equality if ∆ is a unimodular

triangulation.
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Here, we critically used the nonnegativity of the relative local h-polynomial, Theo-
rem 5.1.11(1), for the consequence. In particular, we get another proof of the non-
negativity of the local h∗-polynomial. Moreover, as already observed in [NS12],this
implies that the unimodality of the ℓ∗-vector is an intrinsic obstruction for a lattice
polytope to have a unimodular triangulation (apply Theorem 5.1.11(3) with σ = ∅).
In fact, it is enough to have unimodality of the “local box polynomials” (this is
Remark 7.23 in [KS16]). Such triangulations where called box unimodal in [SVL13].

Corollary 5.1.20. If P admits a regular triangulation such that the local h∗-
polynomials of each cell have unimodal coefficients (e.g., the triangulation is unimod-
ular), then its local h∗-polynomial has unimodal coefficients.

This was used in [GS20] to prove the unimodality of the local h∗-polynomial of
s-lecture hall order polytopes.
For our purposes, the following innocent looking consequence of the nonnegativity of
relative local h-polynomials is crucial.

Corollary 5.1.21. Let P and P ′ be lattice polytopes such that P ′ is obtained from
P by refining the lattice. Then h∗

P (t) ≤ h∗
P ′(t) and ℓ∗

P (t) ≤ ℓ∗
P ′(t) coefficientwise.

Proof. This follows from Theorem 5.1.17, respectively, Proposition 5.1.19, the explicit
combinatorial description of the ℓ∗-polynomial of a lattice simplex, see Example 5.1.15,
and the nonnegativity of the h-polynomial, respectively, of the relative local h-
polynomial.

We remark that for h∗-polynomials this lattice-monotonicity can also easily be seen
combinatorially, e.g., using half-open decompositions (see [BS18]). However, for local
h∗-polynomials there seems to be no such combinatorial argument known. This is
also true for the next result. Note that by Stanley’s famous monotonicity result, the
h∗-polynomial is coefficientwise monotone with respect to inclusion. However, this is
not true for the local h∗-polynomial. Still, it holds when one considers subpolytopes
that do not lie on the boundary.

Corollary 5.1.22. Let P and Q be lattice polytopes such that relint(Q) ⊆ int(P )
(for instance, dim(Q) = dim(P )). Then ℓ∗

Q(t) ≤ ℓ∗
P (t) coefficientwise.

Proof. Choose a lattice subdivision ∆ of P that contains Q as a cell. Then by
the nonnegativity of the appearing polynomials, we see from Proposition 5.1.19
that ℓ∗

Q(t)ℓ∆,Q(t) ≤ ℓ∗
P (t) coefficientwise. It remains to observe that since Q is in

the relative interior of P , it follows directly from Definition 5.1.10 that ℓ∆,Q(t) =
hlink(∆,Q)(t) and hence has constant coefficient 1.

Finally, let us just shortly mention that in the Katz–Stapledon paper [KS16], mo-
tivated by algebraic and tropical geometry, the h∗- and ℓ∗-polynomials are further
refined to bivariate (and even trivariate) polynomials leading to the notion of h∗-
and ℓ∗-diamonds. As we will use the following notation later for the computation of
the local h∗-polynomial in dimension three, let us introduce it here.
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Definition 5.1.23. Let P be a lattice polytope of dimension d. Then we define

h∗
P (u, v) :=

∑
F ≤P

vdim(F )+1ℓ∗
F (uv−1)g[F,P )(uv).

Note that h∗
P (t, 1) = h∗

P (t). In [KS16, Remark 7.7] it is shown that

h∗
P (u, v) = 1 + uv

∑
0≤p,q≤d−1

h∗
p,qu

pvq,

where h∗
i,d−1−i = ℓ∗

i for i = 1, . . . , d. These refined invariants satisfy many beautiful
properties. Let us present here at least one such consequence, namely, the following
lower bound theorem on the coefficients of the ℓ∗-polynomial [KS16, p.184].

Theorem 5.1.24. Let P be a lattice polytope of dimension d with ℓ∗
P (t) = ∑d

i=1 ℓ∗
i t

∗.
Then

ℓ∗
1 ≤ ℓ∗

i for i = 2, . . . , d.

5.2 Definition, Basic Properties and Examples of
Thin Polytopes

5.2.1 Main Definition and Known Results
The following notion is the main focus of this chapter.

Definition 5.2.1. A lattice polytope P is called thin if its local h∗-polynomial
ℓ∗

P vanishes. By the nonnegativity of the coefficients, Theorem 5.1.16(1), this is
equivalent to ℓ∗

P (1) = 0.

Let us note that lattice polytopes of dimension 0 as well as unimodular simplices
are thin, see Example 5.1.15. We remark that thin polytopes naturally appear in
Theorem 5.1.17.

Remark 5.2.2. Thin simplices were first investigated in [GKZ94, Section 11.4.B]
in the context of regular A-determinants and A-discriminants, more precisely, in
the characterization of so-called D-equivalence classes of regular triangulations of A.
There a lattice simplex S was defined to be thin if its Newton number ν(S) equals
zero. Here, the Newton number is defined as follows:

ν(S) :=
∑

∅≤F ≤S

(−1)dim(S)−dim(F )volZ(F ) = 0, (5.1)

where, volZ(∅) := 1 (also volZ(F ) = 1 if dim(F ) = 0). Recall from Example 5.1.15,
that volZ(F ) = h∗

F (1) counts the number of lattice points in the half-open paral-
lelepiped over F . Hence, by inclusion-exclusion, it is straightforward to deduce
ν(S) = ℓ∗

S(1), the number of interior lattice points in the half-open parallelepiped
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over S. Thus, for lattice simplices the definitions agree. Let us note that in [GKZ94]
the nonnegativity of ν(S) follows from quite deep algebro-geometric arguments, while
it is combinatorially obvious from the interpretation of ℓ∗

S as the box polynomial
of the lattice simplex S. The reader should also be warned that the expression in
equation (5.1) may be negative for lattice polytopes. For instance, it equals −1 for
the 0/1-cube [0, 1]3.

Thin simplices were classified in [GKZ94] up to dimension 2. Here, we can deduce
the following statement directly from Theorem 5.1.16(4). Let us define a lattice
polytope to be hollow if it has no lattice points in its interior. Here, a 0-dimensional
lattice polytope is not hollow (but thin).

Proposition 5.2.3. Thin polytopes of dimension > 0 are hollow. The converse also
holds in dimensions 1 and 2.

In particular, ∆1 is the only thin polytope of dimension 1. Hollow polytopes in
dimension 2 are well-known. They are either isomorphic to 2∆2 or have lattice width
1 (i.e., all vertices lie on two parallel hyperplanes of lattice distance one). Note that
hollow three-dimensional lattice polytopes do not have to be thin., e.g., 2∆3 and
[0, 1]3 are not thin.
One important construction for thin polytopes is to take lattice pyramids.

Definition 5.2.4. Let P ⊂ Rd be a lattice polytope. Then

conv(P × {0}, {0} × {1}) ⊂ Rd × R

is called the lattice pyramid over P . By convention, a lattice point is also considered
a lattice pyramid.

It is well-known that the h∗-polynomial, and particularly the degree, does not change
under taking lattice pyramids. The following result has already been observed in
[GKZ94] for lattice simplices and in general in [BN08] for lattice polytopes.

Proposition 5.2.5. Lattice pyramids over arbitrary lattice polytopes are thin.

Using this notation we can state the classification of thin simplices up to dimension
two as follows.

Corollary 5.2.6. A lattice simplex of dimension at most ≤ 2 is thin if and only if it
is isomorphic to 2∆2 or it is a lattice pyramid.

Remark 5.2.7. In [GKZ94] thin triangulations were intensively studied. Recently,
this notion has also been investigated by [dMGP+20] where it was completely
characterized up to dimension 3. As Stanley observed at the end of Section 7 in
[Sta92], a thin triangulation may be defined by the vanishing of its local h-polynomial.
Now, it follows from Proposition 5.1.19 that all lattice triangulations of thin polytopes
are thin. This seems to be a quite strong combinatorial obstruction worth of further
study.

Remark 5.2.8. By Corollary 5.1.21, a thin polytope stays thin if the lattice is
coarsened. We do not know of a purely combinatorial proof of this fact.
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Remark 5.2.9. If a lattice polytope is contained in a thin polytope but not in its
boundary, then it is also thin. This non-trivial fact follows from Corollary 5.1.22.

Remark 5.2.10. Let us note that thin simplices turn up in [SVL13] when studying
conditions for unimodality of (local) h∗-polynomials in the context of box unimodal
triangulations mentioned before Corollary 5.1.20. Here, let us recall the following
observation: if P admits a regular triangulation ∆ such that every non-empty
face of ∆ is thin, then its local h∗-polynomial equals the local h-polynomial of ∆
and its h∗-polynomial equals the h-polynomial of ∆, see Proposition 5.1.19 and
Theorem 5.1.17. Now, in [SVL13] it is asked whether every IDP lattice polytope
has a regular triangulation into lattice simplices that have vanishing or monomial
ℓ∗-polynomial. The motivation was that the existence of a box unimodal triangulation
of an IDP reflexive polytope implies unimodality of its h∗-polynomial. While the
previous question is still open, a proof of the latter result using completely different
methods was recently announced in [APPS21].

5.2.2 Two Classes of Examples of Thin Polytopes
Let us describe two ways to get thin polytopes in higher dimensions.
The first observation is that lattice polytopes of small degree (in other words, ”very
hollow” lattice polytopes) are always thin.

Definition 5.2.11. We say, P is trivially thin if dim(P ) ≥ 2 deg(P ).

Proposition 5.2.12. Trivially thin polytopes are thin.

Proof. A lattice polytope P is trivially thin if and only if deg(P ) < codeg(P ). Now,
the statement follows from Theorem 5.1.16(3).

Typical examples of trivially thin polytopes are Cayley polytopes with many factors.
We will talk about Cayley polytopes with two factors in much more detail later (see
Definition 5.4.7 and Remark 5.4.8), however, let us already now give the definition
of a Cayley polytope to make the previous statement precise. For this, we denote by
a lattice projection Rd → Rm an affine-linear map mapping Zd surjectively onto Zm.
If there is a lattice projection mapping a d-dimensional lattice polytope P onto a
unimodular simplex ∆k with k ≥ 1, then P is called a Cayley polytope with k + 1
factors (namely, the fibers of the vertices of ∆k). One can easily deduce from [BN08,
Proposition 1.12] that P is trivially thin if k ≥ d/2. An alternative way to view
this is also the following. Take r lattice polytopes P0, . . . , Pr−1 in Rm. Then the
Cayley sum of P0, . . . , Pr−1 is defined as the convex hull of P0 × {0} and Pi × {ei}
for i = 1, . . . , r − 1 in Rm+r−1. It is trivially thin if r ≥ m + 1. Note that a Cayley
sum is a Cayley polytope, and every Cayley polytope is isomorphic to a Cayley sum.
A second way to get high-dimensional thin polytopes is to use free joins.

Definition 5.2.13. Let P ⊂ Rn and Q ⊂ Rm be lattice polytopes. We call

P ◦Z Q := conv(P × {0} × {0}, {0} × P × {1}) ⊂ Rn × Rm × R,

the free join of P and Q.
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For instance, the free join of [0, 1] with itself is a unimodular 3-simplex. Note that
isomorphic factors lead to isomorphic free joins. From the Ehrhart-theoretic viewpoint
the free join construction is important because of the following multiplicativity
property, see [HT09, Lemma 1.3] and [NS13, Remark 4.6(5)].

Proposition 5.2.14. Let P ⊂ Rn and Q ⊂ Rm be lattice polytopes. Then

h∗
P ◦ZQ(t) = h∗

P (t) h∗
Q(t), and ℓ∗

P ◦ZQ(t) = ℓ∗
P (t) ℓ∗

Q(t).

Corollary 5.2.15. The free join of two lattice polytopes is thin if and only if at
least one of the two factors is thin.

As a lattice pyramid is the free join of a point (which is thin) and a lattice polytope,
this generalizes Proposition 5.2.5.

5.2.3 Are There Other Examples of Thin Polytopes?
It is not trivial to give examples of thin polytopes (such as Example 5.2.17 below)
that do not fall in above described two classes. In order to formulate a natural
question in this respect, let us recall two notions. First, a lattice polytope P is called
spanning if every lattice point in its affine hull is an integer affine combination of
the lattice points in P . Note that every lattice polytope becomes spanning after a
possible coarsening of the ambient lattice (we refer to [HKN18] for more background
and results on spanning lattice polytopes). Second, let us call a lattice polytope P a
join if there are two non-empty faces F and G of P such that the free join of F and
G is affinely-isomorphic to P . Let us remark that if P is spanning and a join of F
and G where every lattice point in P is contained in F or G, then P is the free join
of F and G.

Question 5.2.16.

(1) Is every thin polytope trivially thin or a join?

(2) Is every spanning thin polytope trivially thin or a free join?

Both questions are closely related but not directly. The reason is that the degree of
the polytope can drop under coarsenings of the lattice, so a non-spanning thin but
not trivially thin polytope could be trivially thin with respect to its spanning lattice.
We also note that trivially thin polytopes are often not joins. For example the unit
square [0, 1]2 has degree 1 and is hence trivially thin, while triangles are the only
polygons which are joins.
As the following example shows, the spanning hypothesis in the second part of
Question 5.2.16 is indeed important. It is one of the apparently rare thin polytopes
that are not trivially thin and not a free join.
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Example 5.2.17. Consider the 4-simplex P = conv(0, e1, e2, (1, 2, 4, 0), (2, 1, 0, 4)) ⊆
R4. The sublattice N of Z4 spanned by all lattice points of P has index 2 and the
quotient Z4/N ∼= Z/2Z is generated by e3 = e4. A computation in SageMath with
backend Normaliz shows that P is thin and h∗

P (t) = t3 + 11t2 + 3t + 1, in particular
deg(P ) = 3, so P is not trivially thin. A computation in Polymake shows that the
lattice width of P is 2, so that P is not a Cayley polytope, in particular not a free
join. It can be checked that with respect to N , P is the lattice pyramid over a
reflexive 3-simplex of lattice volume 8.

Question 5.2.16 should be understood as a guiding question for finding interesting
high-dimensional thin polytopes. Let us discuss this problem in more detail below.
As being hollow is equivalent to deg(P ) < dim(P ), it is evident that every hollow
lattice polytope in dimension ≤ 2 is trivially thin. Hence, by Proposition 5.2.3 every
thin polytope in dimension ≤ 2 is trivially thin. It will be proven in our first main
result Theorem 5.3.3 that in dimension 3 all non-trivially thin polytopes are lattice
pyramids. In particular, Question 5.2.16 has an affirmative answer in dimensions ≤ 3.
Note that conv(e1, e2, −e1 − e2) ◦Z 2∆2 is an example of a thin simplex in dimension
5 that is not trivially thin (it has degree 3), but is not a lattice pyramid, while being
a free join with a (trivially) thin factor.
In higher dimensions our second main result shows that non-trivially thin Gorenstein
polytopes are so-called Gorenstein joins (see Definition 5.4.11) with a trivially thin
factor, so that Question 5.2.16 has an affirmative answer also in the Gorenstein case
(see Corollary 5.5.4).
Computationally, we have verified that Question 5.2.16 has an affirmative answer
for all 4-dimensional lattice polytopes of lattice volume ≤ 21, for all 5-dimensional
lattice simplices of lattice volume ≤ 20 and for all 6-dimensional lattice simplices of
lattice volume ≤ 16. We provide some of the relevant data at [Kre].

5.2.4 Interesting Thin Empty Simplices?
A lattice simplex is called empty if its vertices are its only lattice points. Among
the hollow polytopes this is the class of lattice simplices that has been studied most
intensively, see e.g. [IVnS21] and the references therein. However, it turns out that
there are no interesting thin empty simplices in dimension at most 4. Let us give
the easy reasoning. For this, we recall that the quotient group of a d-dimensional
lattice simplex P ⊂ Rd is defined as the quotient of Zd+1 by the subgroup generated
by the vertices of P × {1}.

Proposition 5.2.18. Let P be a lattice simplex with cyclic quotient group. Then
P is thin if and only if P is a lattice pyramid.

Proof. Let P ⊂ Rd be d-dimensional. We denote by Π the half-open parallelepiped
from Example 5.1.15. Clearly, every element in the quotient group of P has a unique
representative in Π ∩ Zd+1. Let g ∈ Π ∩ Zd+1 be the representative of a generator
of the quotient group of P . We assume that P is thin. Hence, there is a proper,
non-empty subset V ′ of the vertex set of S × {1} such that g is a linear combination
of vertices of V ′. In particular, this also holds for the representatives of all the
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elements in the quotient group of P . Now, it follows from [Nil08, Lemma 12] that P
is a lattice pyramid.

It is well-known that all empty lattice simplices in dimension at most 4 have cyclic
quotient group [BBBK11]. As also in higher dimensions most empty simplices
constructed (but not all of them) have this property (see e.g. [DKNS21]), it seems
to be a challenge to find examples of empty simplices that are thin but not simply
lattice pyramids.

5.2.5 Are Thin Polytopes ‘Flat’?
We observed above that all thin polytopes in dimension at most two have lattice
width 1 except for 2∆2. We leave it as an exercise to the reader to show that
2∆d for even d is the only thin simplex among all lattice simplices of the form
conv(0, k1e1, . . . , kded) ⊂ Rd with k1, . . . , kd ∈ Z≥1 that are not lattice pyramids (i.e.,
ki > 1 for all i). It will follow from our main results that thin polytopes in dimension
three (Corollary 5.3.4) as well as thin Gorenstein polytopes in arbitrary dimension
(Corollary 5.5.7) have lattice width 1. In dimension four Example 5.2.17 has lattice
width 2. As thin polytopes (of dimension > 0) are hollow, in fixed dimension their
lattice width is bounded. Now, our lack of ’non-flat’ examples motivates the following
question.

Question 5.2.19. Can one find (spanning) thin polytopes of arbitrarily large lattice
width?

We expect that such examples with increasing lattice width should exist with
increasing dimension. Note that if one assumes that Question 5.2.16(2) has an
affirmative answer, then for Question 5.2.19 it would be important to find the
maximum width of trivially thin spanning polytopes P . However, it is a folklore
open question, often called ’the’ Cayley conjecture (see [DN10, HNP09, Hig19]), that
any lattice polytope with dim(P ) > 2 deg(P ) has lattice width 1. Thus, assuming
also that the Cayley conjecture holds essentially reduces the previous question to
the study of spanning lattice polytopes with dim(P ) = 2 deg(P ).

5.3 Classification of Thin Polytopes in Dim. 3
As observed above, 3-dimensional lattice polytopes P that are lattice pyramids over
polygons or have degree at most one are thin. Our first main result, Theorem 5.3.3,
shows that in dimension three indeed all the thin polytopes are of this type.
Lattice polytopes of degree at most one are completely known in any dimension. For
this, let us recall the following definition.

Definition 5.3.1. A Lawrence prism is a d-dimensional lattice polytope in Rd

isomorphic to the convex hull conv(0, e1, . . . , ed−1, k0ed, e1 + k1ed, . . . , ed−1 + kd−1ed)
for some k0, k1, . . . , kd−1 ∈ Z≥1.

The following result was proven in [BN07].
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Theorem 5.3.2. Any lattice polytope of degree 1 is either a lattice pyramid, a
Lawrence prism or isomorphic to 2∆2.

Here is the main result of this section.

Theorem 5.3.3. Let P be a 3-dimensional lattice polytope. Then P is thin if and
only if P is a lattice pyramid over a lattice polygon (i.e., over a lattice polytope of
dimension 2) or deg(P ) ≤ 1. Equivalently, P is thin if and only if

• P is a lattice pyramid over a lattice polygon, or

• P is a Lawrence prism.

Corollary 5.3.4. Every 3-dimensional thin polytope has lattice width 1.

The proof of Theorem 5.3.3 relies on two instances that seem to be exceptional to small
dimensions. First, in dimension three all the coefficients of the local h∗-polynomial
can be explicitly determined.

Proposition 5.3.5. Let P ⊆ R3 be a 3-dimensional lattice polytope. Then

ℓ∗
P (t) = | intZ(P )|(t + t3) +

| intZ(2P )| − 4| intZ(P )| −
∑

F ≤P facet
| intZ(F )|

 t2.

Proof. Recall from Theorem 5.1.11 that ℓ∗
1 = ℓ∗

3 = h∗
3 = | intZ(P )|. Hence, we need

only determine ℓ∗
2. From Stanley reciprocity, we deduce h∗

2 = | intZ(2P )| − 4| intZ(P )|.
Now, in the notation of the h∗-diamond introduced in [KS16] (see Definition 5.1.23)
we have h∗

2 = h∗
1,0 + h∗

1,1, where h∗
1,1 = ℓ∗

2 and h∗
1,0 = ∑

F ≤P facet | intZ(F )| by [KS16,
Example 8.9]. This implies the statement.

Let us note that we get from the lower bound theorem of Katz–Stapledon, Theo-
rem 5.1.24, ℓ∗

1 ≤ ℓ∗
2. This leads to the following non-obvious corollary. It would be

very interesting to find a purely combinatorial proof.

Corollary 5.3.6. Let P ⊆ R3 be a 3-dimensional lattice polytope. Then

| intZ(2P )| ≥ 5 | intZ(P )| +
∑

F ≤P facet
| intZ(F )|.

For our purposes, let us note the following numerical characterization of thinness in
dimension three.

Corollary 5.3.7. Let P ⊆ R3 be a 3-dimensional lattice polytope. Then P is thin
if and only if P is hollow and

| intZ(2P )| =
∑

F ≤P facet
| intZ(F )|.
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The second result that is not yet available in higher dimensions is a complete
classification of hollow 3-dimensional lattice polytopes.

Theorem 5.3.8 ([AWW11]). Let P ⊆ R3 be a 3-dimensional hollow lattice polytope.
Then one of the following holds:

(1) P is contained in one of the 12 maximal hollow lattice polytopes classified
in [AWW11].

(2) There is a lattice projection R3 → R1 mapping P onto ∆1.

(3) There is a lattice projection R3 → R2 mapping P onto 2∆2.

Before giving the proof of Theorem 5.3.3 let us also recall the following well-known
formula for the mixed volume (e.g. [Nil20, Corollary 3.2]):

Lemma 5.3.9. Let P1, P2 ⊆ R2 be lattice polytopes. Then

MV(P1, P2) = 1 + (−1)dim(P1+P2)| intZ(P1 + P2)|
+ (−1)dim(P1)−1| intZ(P1)| + (−1)dim(P2)−1| intZ(P2)|.

Proof of Theorem 5.3.3. By Corollary 5.3.7, P is hollow. We treat the three cases
of Theorem 5.3.8 separately. A direct computation in Magma deals with case 1, see
[Kre].
For case 2, denote by P1, P2 ⊆ R2 the preimages in P of the vertices of ∆1. Note
that P1 and P2 are faces of P such that every lattice point of P is either contained
in P1 or P2. (We remark that P is a Cayley polytope of P1 and P2 in the notation
of Definition 5.4.7.) We denote by int2

Z(Q) the set of lattice points in the absolute
interior of a lattice polytope Q ⊆ R2. Then∑

F ≤P facets
| intZ(F )| = | int2

Z(P1)| + | int2
Z(P2)|,

| intZ(2P )| = | intZ(P1 + P2)|,

where the second equation follows from the so-called Cayley trick. Therefore, Corol-
lary 5.3.7 translates into

| int2
Z(P1)| + | int2

Z(P2)| = | intZ(P1 + P2)|.

In case dim(P1) = dim(P2) = 2, plugging this into Lemma 5.3.9 yields MV(P1, P2) =
1, thus (P1, P2) ∼= (∆2, ∆2) by [CCD+13, Proposition 2.7], hence deg(P ) = 1.
If dim(P1) = 2 and dim(P2) = 1, then Lemma 5.3.9 yields MV(P1, P2) = 1+| intZ(P2)|.
On the other hand, MV(P1, P2) = V (πP2(P1))(| intZ(P2)| + 1) by [Sch13, Theo-
rem 5.3.1], where πP2 is a lattice projection along the line segment P2 and V (πP2(P1))
denotes the lattice volume. Hence, V (πP2(P1)) = 1 and therefore πP2(P1) ∼= ∆1.
The lattice projection of P along P2 is then a lattice projection onto ∆2. Thus,
codeg(P ) ≥ 3 and hence deg(P ) ≤ 1, so either deg(P ) = 1 or P ∼= ∆3 is a lattice
pyramid.
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The case dim(P1) = dim(P2) = 1 is similar. Lemma 5.3.9 yields MV(P1, P2) =
1 + | intZ(P1)| + | intZ(P2)|. On the other hand, we again have MV(P1, P2) =
V (πP2(P1))(| intZ(P2)|+1). We may assume | intZ(P1)| ≤ | intZ(P2)|. If V (πP2(P1)) ≥
2 or V (πP2(P1)) = 0, we obtain a contradiction, so V (πP2(P1)) = 1. The same argu-
ment as above shows deg(P ) ≤ 1.
Finally, if one of the Pi is zero-dimensional, then P is a lattice pyramid.

It is left to study case 3, and we may assume P to be of lattice width at least 2
because width 1 is equivalent to P being a Cayley polytope which is precisely case 2.
We distinguish several cases and always start by showing how, in each case, we can
associate to each lattice point in the interior of a facet of P , in an injective way,
a lattice point in the interior of 2P . We then prove that there always exists an
additional lattice point in the interior of 2P , therefore showing that case 3 does not
yield any new thin polytopes by Corollary 5.3.7.
We may assume that P projects onto 2∆2 along the z-axis. As lattice projections
map interior lattice points to interior lattice points, all interior lattice points of a
facet of P are of the form xa

1 = (1, 0, a), xa
2 = (0, 1, a), or xa

3 = (1, 1, a) for suitable
a ∈ Z. By fixing vertices v1 = (0, 2, α), v2 = (2, 0, β), v3 = (0, 0, γ) of P we hence
obtain points 1

2(xa
i + vi) ∈ int(P ), and therefore (xa

i + vi) ∈ intZ(2P ) for all a ∈ Z
such that xa

i is an interior point of a facet of P . Then (xa
i + vi) ̸= (xb

j + vj) if i ≠ j
or a ̸= b.
Now we show the existence of an additional interior lattice point. Indeed, P can
have at most three facets containing interior lattice points, namely at most those
facets, if there are such, that project to one of the three edges of 2∆2.
We proceed by distinguishing these different cases. If there is no such facet at all,
then Corollary 5.3.7 implies that 2P is hollow, so deg(P ) ≤ 1, contradicting the fact
that there is no lattice polytope of degree ≤ 1 with width > 1 by Theorem 5.3.2.
Next, assume that P has exactly two facets containing interior lattice points, and
say these are the facets opposite to v1 and v2. We pick two such points (0, 1, q) and
(1, 0, r). Then we obtain as many interior lattice points in 2P of the form xa

1 + v1
or xa

2 + v2 as there are points in the interiors of facets of P , and (1, 1, q + r) is an
additional interior lattice point of 2P .
Next, assume P has three facets containing interior lattice points. If there exists
i ∈ {1, 2, 3} such that the fiber of 2P containing vi contains more than one lattice
point, then we can similarly construct an additional interior lattice point of 2P by
considering the two points of minimal and maximal height in this fiber. Therefore, we
may assume v1, v2, v3 to be the unique lattice points of P over (0, 2), (2, 0) and (0, 0),
respectively. This implies that all three facets F1, F2, F3 of P lying over the three
edges of 2∆2 have a special form. E.g., the facet projecting to the edge [(0, 0), (2, 0)]
is a quadrangle or triangle which, after a unimodular equivalence, looks similar to
the following:
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x

pmax

Now, we fix one interior lattice point ui := xai
i in each of the facets for some suitable

ai ∈ Z. The three maps xa
i 7→ xa

i + uj for (i, j) ∈ {(1, 2), (2, 3), (3, 1)} map each
interior lattice point of the three facets Fi injectively to an interior lattice point of
2P . Moreover, the images of these three maps are disjoint by construction. Now, we
may assume that in the facet projecting to the edge [(0, 0), (2, 0)], the lattice point
pmax lying over (1, 0) with maximal third coordinate is a vertex as in the picture.
But then we obtain the additional interior lattice point pmax + u2 of 2P not covered
by the images of the three maps above.

The only remaining case is the one where only one facet F of P contains interior lattice
points. We may assume F is the facet which projects onto the edge [(0, 0), (2, 0)].
Then all interior lattice points of F project to (1, 0) and are of the form xa

1 for a ∈ Z
ranging in a suitable interval. From this we obtain | intZ(F )| interior lattice points
v1 + xa

1 of 2P . Observe that all of them have second coordinate 2. Therefore, it is
enough to show that 2P contains an interior lattice point with second coordinate 1.
Again we proceed by distinguishing cases. If F contains at least three lattice points
projecting to (1, 0), then it contains the convex hull of the points (1, 0, a), (1, 0, a+1),
(1, 0, a + 2), (2, 0, b) for some a, b ∈ Z. Recall that v1 = (0, 2, α). Then the point

2 ·
(1

4v1 + 1
4(1, 0, a) + 1

4(2, 0, b) + 1
4(1, 0, a + n)

)
= (2, 1, a + α + b + n

2 )

is an interior lattice point of 2P with second coordinate 1 for precisely one choice
of n ∈ {1, 2}. Hence, by Corollary 5.3.7, P is not thin if F contains at least three
lattice points over (1, 0), which in particular includes the case | intZ(F )| ≥ 3.
Before we proceed further let us observe that the fibers of P over the points (0, 0)
and (2, 0) both consist of at most three lattice points because otherwise another
facet than F would contain interior lattice points. This is because, up to unimodular
equivalence, there are exactly two lattice pyramids of height 2 over a lattice segment
of length ≥ 3, and both contain an interior lattice point:

Now, we can deal with the remaining case | intZ(F )| ∈ {1, 2}. Let F ′ ⊆ F run
through the inclusion-minimal subpolygons of F which contain the same interior
lattice points as F . We will show that there are only two possibilities for F ′.
Let us first consider the case | intZ(F )| = 2. By the previous argument, after a
suitable shear fixing the x = 1 line (within the x-z-plane, i.e. y = 0), F ′ fits inside
the following box:
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As F ′ is inclusion-minimal, it is isomorphic to one of the following polygons:

But only the last one does not contain three lattice points over (1, 0).
Let us also consider the case of | intZ(F )| = 1. Here, we can fit F ′ inside the standard
square [0, 2]2 (inside the x-z-plane) after a suitable shear fixing the x = 1 line, so F ′

can be taken to be one of the following polygons:

Again, only the last one does not contain three lattice points over (1, 0).
Lastly, for each of these two remaining polygons F ′ we may choose a lattice sub-
polytope P ′ of P that is a pyramid of height 2 over F ′. We observe that for given
F ′ there are at most four non-isomorphic possibilities for P ′ to consider as the
first two coordinates of an apex in R2 × {2} over a base polytope in R2 × {0} may
be chosen by a unimodular shearing to be in {(0, 0), (1, 0), (0, 1), (1, 1)}. Now, an
explicit computation in SageMath shows that for all these at most eight cases we
have | intZ(2P ′)| > | intZ(F ′)| = | intZ(F )|, concluding the proof.

We can now answer the original question in [GKZ94] in dimension 3.

Corollary 5.3.10. A three-dimensional lattice simplex is thin if and only if it is a
lattice pyramid.

This follows directly from Theorem 5.3.3. The reader is cautioned not to jump to the
conclusion that the same result may be true in higher dimensions. In dimension 4,
[−1, 1] ◦Z 2∆2 is an example of a (trivially) thin simplex that is not a lattice pyramid.

5.4 Thin Gorenstein Polytopes and Gorenstein
Joins

5.4.1 Gorenstein Polytopes and Their Duals
Definition 5.4.1. A lattice polytope P is called Gorenstein if h∗

P is palindromic.
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Let us recall that reflexive polytopes are precisely the Gorenstein polytopes of codegree
one. For more background on reflexive and Gorenstein polytopes, its relevance in
toric geometry and mirror symmetry, as well as alternative characterizations we refer
to [BB96b, BN08, NS13]. Here, let us summarize definitions and properties of the
dual Gorenstein polytope. We remark that the codegree of a Gorenstein polytope is
often called its index.

Definition 5.4.2. Let P ⊂ Rd be a d-dimensional Gorenstein polytope. In this case,
the dilate codeg(P ) · P is a reflexive polytope (up to lattice translation), and we
denote its unique interior lattice point by w. Then

P × := {y ∈ (Rd+1)∗ : ⟨y, w⟩ = 1 and ⟨y, x⟩ ≥ 0 ∀ x ∈ P × {1}}

is called the dual Gorenstein polytope of P .

Proposition 5.4.3. Let P ⊂ Rd be a d-dimensional Gorenstein polytope. Then
P × is a Gorenstein polytope of the same dimension and degree as P , and it is
combinatorially dual to P .

Note that, if a Gorenstein polytope is lower-dimensional, we consider, as usual, its
ambient lattice in order to get its dual Gorenstein polytope.

Definition 5.4.4. If F is a face of P , we denote by F ∗ the dual face, i.e., the
corresponding face of P ×.

Attention: it is important to distinguish the dual face F ∗ from F ×, the latter being
defined only if F is itself a Gorenstein polytope which is not true in general. Even if
this is the case, the two polytopes might have completely different dimensions (since
the one definition is relative to P while the other one is intrinsic).
Local h∗-polynomials of Gorenstein polytopes (often called S̃-polynomials) allow
to give an elegant formula for computing stringy E-polynomials of Calabi-Yau
complete intersections in toric Gorenstein Fano varieties (we refer to [BM03, BN08]).
In this context, several questions about stringy E-polynomials are still open, see
[BN08, NS13]. Here, we make some progress in this direction by addressing the
question when the local h∗-polynomial of a Gorenstein polytope vanishes. As one
consequence of our main result, Theorem 5.5.3, we will see that not only the degree
of the h∗-polynomials of Gorenstein polytopes and their duals are the same but also
of their ℓ∗-polynomials (Corollary 5.5.13).

5.4.2 Joins, Cayley Polytopes, and Cayley Joins
In the sequel let us discuss some important notions of decomposing lattice polytopes
that turn up naturally when studying Gorenstein polytopes (we refer to [BN08, NS13]).
Let us first introduce a formal notation for a lattice polytope being a join (as already
defined in Subsection 5.2.3).

Definition 5.4.5. Let P ⊆ Rd be a polytope and F, G non-empty subsets of
P . Then P is the join of F and G, written P = F ◦ G, if P = conv(F, G) and
dim(P ) = dim(F ) + dim(G) + 1.
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Equivalently, P is affinely-isomorphic to the free join F ◦Z G. In particular, F and
G are automatically faces of P .

Remark 5.4.6. Note that the join property is associative. Namely, given faces
F, G, H of P , then P = F ◦(G◦H), respectively, P = (F ◦G)◦H, are both equivalent
to P = conv(F, G, H) and dim(P ) = dim(F ) + dim(G) + dim(H) + 2.

Let us also give the formal notation for a lattice polytope being a Cayley polytope.
We recall that the notion of Cayley polytopes and Cayley sums was already shortly
mentioned and defined in Subsection 5.2.2. Here, we will solely focus on the case of
two factors. Note that if a Cayley polytope has more than two factors, it is still a
Cayley polytope with two factors.

Definition 5.4.7. Let P ⊆ Rd be a lattice polytope and F, G non-empty subsets
of P . Then P is the Cayley polytope of (factors) F and G, written P = F ∗ G, if
P = conv(F, G) and there exists an affine-linear map Rd → R mapping Zd → Z,
such that F 7→ 0 and G 7→ 1. In other words, P is a Cayley polytope if and only if
there is a lattice projection mapping P onto ∆1.

If P = F ∗ G, then F and G are necessarily faces of P . Cayley polytopes can also be
characterized as lattice polytopes with lattice width one. Cayley sums are explicit
descriptions of Cayley polytopes.

Remark 5.4.8. Given lattice polytopes F and G in Rd, the convex hull of F × {0}
and G × {1} is called the Cayley sum of F and G. Its dimension is one larger than
the dimension of the Minkowski sum of F and G. If P = F ∗ G, then P is isomorphic
to the Cayley sum of F and G.

Cayley sums are important in the construction of high-dimensional Gorenstein
polytopes, see e.g. [BN08, Theorem 2.6]. Note that the degree of a Cayley polytope
is at most the dimension of the Minkowski sum of its factors, see Proposition [BN07,
Proposition 1.12].

Definition 5.4.9. Let P ⊆ Rd be a full-dimensional lattice polytope and F, G ⊆ P
faces. Then P is the Cayley join of F and G, written P = F ◦Cay G, if P = F ◦ G
and P = F ∗ G.

Clearly, the notion of a Cayley join is more restrictive than that of a Cayley polytope
(e.g., [0, 1]2 is a Cayley polytope of two edges but not a Cayley join). The reader
should be aware that Cayley polytopes and Cayley joins are in general not associative
in the sense of Remark 5.4.6, see Example 5.4.17 below.
Let us recall some properties of a Gorenstein polytope that is a join or Cayley join,
see [NS13, Lemma 4.8, Proposition 4.9].

Proposition 5.4.10. Let P be a Gorenstein polytope.

• If P = F ◦ G, then P × = F ∗ ◦ G∗ with F and G∗ (respectively, G and F ∗)
being combinatorially dual to each other.
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• If P = F ◦Cay G, then F ∗ is a Gorenstein polytope with dual Gorenstein
polytope (F ∗)×, which can be identified with the lattice polytope G with
respect to a refined lattice.

In the last statement, the lattice does not have to be refined if the Cayley join is
even a free join.

5.4.3 Gorenstein Joins
The following notion is defined in [NS13].

Definition 5.4.11. Let F and G be faces of a Gorenstein polytope P . We say P
is a Gorenstein join of F and G, denoted by P = F ◦Gor G, if P = F ◦Cay G and
P × = F ∗ ◦Cay G∗. We call F and G the factors of the Gorenstein join.

We remark that Gorenstein joins do not have to be free joins, see [NS13, Example 4.14].
The following result, a strengthening of Stanleys monotonicity theorem in the case
of faces of Gorenstein polytopes, motivated the previous definition of a Gorenstein
join and gives a direct enumerative criterion for its existence ([NS13, Theorems 3.6
and 4.12]).

Theorem 5.4.12. Let P be a Gorenstein polytope and F a non-empty proper face
of P . Then codeg(P ) ≤ codeg(F ) + codeg(F ∗) (equivalently, deg(F ) + deg(F ∗) ≤
deg(P )), with equality if and only if P is a Gorenstein join with factor F . In this
case, F is a Gorenstein polytope.

Gorenstein polytopes that are not Gorenstein joins have been previously also called
irreducible in [NS13]. As we see from the following result it is not necessary to
compute the dual Gorenstein polytope to check whether a Cayley join is a Gorenstein
join.

Lemma 5.4.13. Let P = F ◦Cay G be a Gorenstein polytope which is the Cayley
join of two faces F, G ≤ P . Then P = F ◦Gor G if and only if codeg(P ) = codeg(F ) +
codeg(G) (or equivalently, deg(P ) = deg(F ) + deg(G)).

Proof. By Theorem 5.4.12, P = F ∗Gor G if and only if codeg(F ) + codeg(F ∗) =
codeg(P ) =: r, and in this case by [NS13, Theorem 4.12] codeg(G) = codeg(P ) −
codeg(F ) = codeg(F ∗). Conversely, assume codeg(G) = codeg(P ) − codeg(F ). By
Theorem 5.4.12, the inequality codeg(F ) + codeg(F ∗) ≥ r always holds, so that by
Theorem 5.4.12 again we only need to prove codeg(F ∗) ≤ codeg(G). As P is the
Cayley join of F and G, Proposition 5.4.10 yields that codeg(F ∗) = codeg((F ∗)×) ≤
codeg(G) as the codegree can only decrease under refinements of the lattice.

Remark 5.4.14. As we will need it for the upcoming proofs, let us recall how to
characterize Gorenstein polytope via cones. For more details, we refer to [BN08].
The cone over P is denoted by CP ⊆ Rd+1 spanned by P × {1} ⊂ Rd+1. Any
polyhedral cone in Rd+1 that is unimodularly equivalent to some CP is called a
Gorenstein cone. Now, P is a Gorenstein polytope if and only if the dual cone
C∨

P = {y ∈ (Rd+1)∗ : ⟨y, x⟩ ≥ 0 ∀ x ∈ CP } is a Gorenstein cone. In this case, C∨
P is

unimodularly equivalent to the cone over P ×.
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The following proposition contains a positive result regarding associativity of Goren-
stein joins. In general, however, we do not expect associativity to hold.

Proposition 5.4.15. Let P ⊆ Rd be a d-dimensional Gorenstein polytope with
faces F, G, H ≤ P such that P = (F ∗Gor G) ∗Gor H. If F is a vertex or H is a
vertex, then P = F ∗Gor (G ∗Gor H). In particular, Gorenstein joins are associative
for dim(P ) ≤ 3.

Proof. By Lemma 5.4.13, the faces conv(F, G) and H of P are themselves Gorenstein
polytopes with r := codeg(P ) = codeg(conv(F, G)) + codeg(H). Applying the same
result to the Gorenstein polytope conv(F, G) = F ∗Gor G, we obtain that F and G
are Gorenstein polytopes with codeg(conv(F, G)) = codeg(F ) + codeg(G). Hence,
r = codeg(F ) + codeg(G) + codeg(H). By Lemma 5.4.13, it hence suffices to show
P = F ∗Cay (G ∗Cay H). That the join of G and H is a Cayley join is immediate
from the assumption, so it is enough to show that the join of F and conv(G, H) is a
Cayley join.
Let first F be a vertex. Hence, P is a pyramid with vertex F and base conv(G, H).
Consider the cone CP ⊂ Rd+1. As P is Gorenstein of codegree r, there is a unique
interior lattice point p ∈ CP on height pd+1 = r. Similarly, let f , g and h be the unique
interior lattice points of CF , CG, CH ⊆ CP on heights codeg(F ), codeg(G), codeg(H),
respectively. Then necessarily f + g ∈ Cconv(F,G) ⊆ CP is the unique interior
lattice point on height codeg(conv(F, G)) of the Gorenstein polytope conv(F, G).
Hence, p = f + g + h. Let u ∈ (Zd+1)∗ be the primitive inner facet normal of the
hyperplane containing conv(G, H). As u is a vertex of P ×, we have ⟨u, p⟩ = 1 (cf.
Definition 5.4.2). Therefore,

1 = ⟨u, p⟩ = ⟨u, f⟩ + ⟨u, g + h⟩ = ⟨u, f⟩.

But this means that F and conv(G, H) have lattice distance equal to 1, i.e., the
combinatorial join F ◦ conv(G, H) is a Cayley join.
Let now H be a vertex, so P is a lattice pyramid with vertex H and base conv(F, G).
As F ◦Cay G, we may assume that lin(F, G) = Rd−1 ×{0}, H = {ed}, and there exists
some u ∈ (Zd−1 × {0})∗ such that ⟨u, F ⟩ = 0 and ⟨u, G⟩ = 1. Now, ⟨u + e∗

d, F ⟩ = 0
and ⟨u+e∗

d, conv(G, H)⟩ = 1. In particular, the join of F and conv(G, H) is a Cayley
join.
Finally, if d = dim(P ) ≤ 3 and P is the join of F , G and H, then necessarily at least
one of F and H is a vertex for dimension reasons, concluding the proof.

We observe that a Gorenstein polytope P is a lattice pyramid over a face F with
apex a vertex v of P if and only if P is a Gorenstein join of F and v. Hence, the
previous result has the following consequence.

Corollary 5.4.16. If P is a Gorenstein join of two faces with one face a lattice
pyramid, then P is also a lattice pyramid.

This result is already contained in the master’s thesis [Mic21]. Let us give an example
that shows that it fails for Cayley joins.
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Example 5.4.17. Consider F := conv(e1, e2)×{0} and G := conv(0, −e1 −e2)×{1}
in R3. Then its convex hull P is a tetrahedron that is a Gorenstein polytope of lattice
volume 2 (with h∗

P (t) = 1 + t2 and ℓ∗
P (t) = t2). It is a Cayley join P = F ◦Cay G but

not a Gorenstein join as deg(P ) = 2 ̸= 0 = deg(F ) + deg(G). Note that F and G
are lattice pyramids, but P is not. In particular, this example shows that the Cayley
join property is not associative, and moreover, a Cayley join does not have to be
thin if a factor of the Cayley join is thin.

5.4.4 Local h∗-Polynomials of Joins
Recall that h∗- and ℓ∗-polynomials are multiplicative with respect to free joins
(Proposition 5.2.14). For general joins, one still gets inequalities.

Lemma 5.4.18. Let P be a lattice polytope which is the join of two faces F and G.
Then

ℓ∗
F (t) · ℓ∗

G(t) ≤ ℓ∗
P (t) and h∗

F (t) · h∗
G(t) ≤ h∗

P (t).
If moreover P is a Gorenstein polytope which is the Gorenstein join of F and G,
then also

ℓ∗
P ×(t) ≤ ℓ∗

F ×(t) · ℓ∗
G×(t) and h∗

P ×(t) ≤ h∗
F ×(t) · h∗

G×(t).

Proof. We will use the notation of [NS13]. Let M = Zd+1, and M(F ) denote the
sublattice of M spanned by the lattice points in the linear hull of F × {1}. Relative
to the sublattice M(F ) ⊕Z M(G) of M , P becomes the free join of F and G. Recall
that by Corollary 5.1.21 both the h∗-polynomial and the ℓ∗-polynomial are (weakly)
monotonically increasing under refinements of the lattice. It hence follows from
Proposition 5.2.14 that ℓ∗

F (t) · ℓ∗
G(t) ≤ ℓ∗

P (t) and h∗
F (t) · h∗

G(t) ≤ h∗
P (t).

For the second claim, assume that P ⊆ Rd is a full-dimensional Gorenstein polytope
of codegree r with respect to the lattice M = Zd ⊆ Rd. By assumption, P is the
Gorenstein join of two faces F and G. By Theorem 5.4.12 and Lemma 5.4.13, F and
G are Gorenstein polytopes and codeg(F ) + codeg(G) = r. For M = Zd+1 we define
the dual lattice N := HomZ(M,Z) ⊆ (Rd+1)∗. By definition, as P is a Gorenstein
polytope, C∨

P is a Gorenstein cone with respect to N . Let n = e∗
d+1 ∈ N be the

unique interior lattice point of C∨
P with P × {1} = CP ∩ {x ∈ Rd+1 : ⟨n, x⟩ = 1}.

In the same way, we denote by m ∈ M the unique interior lattice point of CP such
that P × = C∨

P ∩ {y ∈ (Rd+1)∗ : ⟨y, m⟩ = 1}. Recall that ⟨n, m⟩ = r and hence
m = (p, r) ∈ M ⊕ Z = M with p ∈ M the unique interior lattice point of the r-th
dilate rP of P .
Now, let us consider the sublattice M(F ) ⊕ M(G) ⊆ M . With respect to this coarser
lattice, the polytope P is the free join of F and G, and this is clearly a Gorenstein
polytope of codegree codeg(F ) + codeg(G) = r. Hence, the r-th dilate rP contains
a unique interior lattice point in the original as well as in the coarser lattice. These
two points must therefore agree, so the unique interior lattice point m = (p, r) ∈
(rP ) × {r} ⊆ CP with respect to the original lattice actually lies in M(F ) ⊕ M(G).
Let now Ñ ⊂ (Rd+1)∗ be the dual lattice of M(F )⊕M(G). Hence, P × is with respect
to the finer lattice Ñ the dual Gorenstein polytope of the Gorenstein polytope P
considered with respect to the coarser lattice M(F ) ⊕ M(G). By Proposition 5.4.10,
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the Gorenstein dual of the free join of the Gorenstein polytopes F and G, is the free
join of the Gorenstein duals F × and G×. Again, monotonicity and multiplicativity
proves the second claim: ℓ∗

P ×(t) ≤ ℓ∗
F ×(t) · ℓ∗

G×(t) and h∗
P ×(t) ≤ h∗

F ×(t) ·h∗
G×(t), where

P × is considered with respect to the original lattice N again.

Remark 5.4.19. It follows in the situation of the second part of Lemma 5.4.18 from
Proposition 5.4.10 and Remark 5.2.8 that ℓ∗

F (t) ≤ ℓ∗
(G∗)×(t) and ℓ∗

G(t) ≤ ℓ∗
(F ∗)×(t),

because (G∗)× is just the polytope F with a possibly finer lattice, and analogously
for (F ∗)× and G. The same holds for the h∗-polynomial.

5.5 Characterization of Thin Gorenstein Polytopes

5.5.1 The Main Result
The following notion will occur naturally in the proof of Theorem 5.5.3.

Definition 5.5.1. A lattice polytope P is called g-thin if deg(gP ) = deg(P ).

For instance, any unimodular simplex is g-thin. By Corollary 5.1.18, we always
have deg(gP ) ≤ deg(P ). Since by Definition 5.1.2 we have deg(gP ) ≤ dim(P )/2, we
deduce:

g-thin =⇒ trivially thin

Example 5.5.2. Let P denote the lattice pyramid over [−1, 1]. Then P has dimension
2, degree 1 and deg(gP ) = 0 as it is a simplex. This is an example of a trivially thin
Gorenstein polytope that is not g-thin. For another example, consider 2∆2 which
is a trivially thin (non-Gorenstein) simplex that is not g-thin. This example shows
that a spanning thin polytope that is not a free join does not have to be g-thin (i.e.,
in Question 5.2.16 ’trivially thin’ cannot be strengthened by ’g-thin’).

Here is our main result.

Theorem 5.5.3. Let P be a Gorenstein polytope. Then the following are equivalent:

(i) P is thin,

(ii) P is trivially thin or P = F ∗Gor G with at least one factor trivially thin,

(iii) P is g-thin or P = F ∗Gor G with deg(ℓ∗
F ) = deg(F ) and G g-thin.

Moreover, if P is not thin, then deg(ℓ∗
P ) = deg(P ).

Let us remark that if P is not thin, the last statement implies that ℓ∗
P (t) and h∗

P (t)
have the same leading coefficient 1, as h∗

P (t) is palindromic with constant coefficient
1.
We have to leave it as an open question whether it is possible to strengthen in the
previous result ‘Gorenstein join’ to ‘free join’. Let us point out the following situation
in which a Gorenstein join (or even just a spanning join of faces) is already a free
join.
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Corollary 5.5.4. Let P be a spanning Gorenstein polytope. Then P is thin if and
only if it is trivially thin or a free join with a trivially thin factor (necessarily also a
spanning Gorenstein polytope).

The proof of Theorem 5.5.3 relies critically on the decomposition of the h∗-polynomial
into ℓ∗-polynomials and g-polynomials (Corollary 5.1.18), valid also for general lattice
polytopes.

Lemma 5.5.5. Let P be a lattice polytope with deg(ℓ∗
P ) < deg(P ). Then P is g-thin

or there exists a non-empty, proper face F of P with deg(P ) = deg(ℓ∗
F ) + deg(g[F,P )).

Here, we recall deg(ℓ∗
∅) = deg(1) = 0 and deg(g∗

∅) = deg(1) = 0.

Proof. By the nonnegativity of ℓ∗- and g-polynomials, Corollary 5.1.18 implies that
there exists a face F of P with deg(ℓ∗

F ) + deg(g[F,P )) = deg(h∗
P ). By our assumption,

F ̸= P . If F = ∅, then deg(h∗
P ) = deg(g[∅,P )), so P is g-thin.

Lemma 5.5.6. Let P = F ∗Gor G. Then the Gorenstein polytopes F , G∗, F ×, (G∗)×

have the same degree, dimension, and degree of their g-polynomials. In particular, if
any of these Gorenstein polytopes are trivially thin (respectively, g-thin), then all of
them are.

Proof. The Gorenstein property follows from Proposition 5.4.10. It is well-known, cf.
[BN08], that duality of Gorenstein polytopes keeps dimension and degree invariant.
It follows from Theorem 5.1.9 that this is also true for the degree of the g-polynomial.
By Proposition 5.4.10, F and G∗ are combinatorially dual to each other, hence, have
the same dimension and by Theorem 5.1.9 the same degree of the g-polynomial.
Finally, by Lemma 5.4.13 and Theorem 5.4.12,

deg(P ) − deg(F ) = deg(G) = deg(P ) − deg(G∗),

hence, deg(F ) = deg(G∗).

Proof of Theorem 5.5.3. The implication (iii) ⇒ (ii) is immediate.
(ii) ⇒ (i): Let P = F ∗Gor G with F trivially thin. By Lemma 5.5.6, it follows that
(G∗)× is trivially thin as well. Now, applying Lemma 5.4.18 to the factorization
P × = F ∗ ∗Gor G∗ yields ℓ∗

P (t) ≤ ℓ∗
(F ∗)×(t) · ℓ∗

(G∗)×(t) = 0, so P is thin.
(i) ⇒ (iii): Let P be a Gorenstein polytope. We assume only that deg(ℓ∗

P ) < deg(P )
and will deduce (iii), so that P is in particular thin by the implications we already
proved (and thus, if P is not thin, then deg(ℓ∗

P ) = deg(P )). Let us assume that
P is not g-thin. Now, by Lemma 5.5.5 there exists a non-empty, proper face F of
P with deg(P ) = deg(ℓ∗

F ) + deg(g[F,P )). Theorem 5.1.9 shows that deg(g[F,P )) =
deg(g(F,P ]∗) = deg(gF ∗). Thus, Corollary 5.1.18 and Theorem 5.4.12 imply that

deg(F ∗) ≥ deg(gF ∗) = deg(P ) − deg(ℓ∗
F ) ≥ deg(P ) − deg(F ) ≥ deg(F ∗).

Therefore, F ∗ is g-thin, deg(ℓ∗
F ) = deg(F ), and deg(F ) + deg(F ∗) = deg(P ), which

implies (iii) by Theorem 5.4.12 and Proposition 5.4.10 (with the roles of F and G
exchanged).
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Corollary 5.5.7. Every thin Gorenstein polytope (of dimension > 0) has lattice
width 1.
Proof. As Gorenstein joins are Cayley joins, by Theorem 5.5.3 it remains to show
that a trivially thin Gorenstein polytope of dimension > 0 is a Cayley polytope. This
is precisely the statement of Theorem 3.1 in [HNP09].
Example 5.5.8. Let us illustrate Theorem 5.5.3 by showing that all thin Gorenstein
polytopes P of dimension d = 3 are lattice pyramids over Gorenstein polygons
(without using Theorem 5.3.3 directly). Let us assume otherwise. If P is trivially
thin, then deg(P ) ≤ 1, so by Theorem 5.3.2 P is a Lawrence prism. Palindromicity
implies h∗

P (t) = 1 + t, so lattice volume 2, which is a contradiction because any three-
dimensional Lawrence prism has at least lattice volume 3. Hence, by Theorem 5.5.3
P must be a lattice pyramid or a Gorenstein join of two Gorenstein intervals one of
them being thin. As a thin interval is a unimodular simplex, thus a lattice pyramid,
also P is a lattice pyramid by Corollary 5.4.16.

5.5.2 Borisov’s Proof of deg(ℓ∗) for Gorenstein Polytopes
Theorem 5.5.3 answers affirmatively Question 6.3(b) in [NS13] asking whether for
Gorenstein polytopes having a non-vanishing ℓ∗-polynomial forces its degree to be
maximal (i.e., equal to the degree of the h∗-polynomial). Lev Borisov has provided
us with an alternative algebraic proof of this fact that we reproduce here. It uses
the description of the local h∗-polynomial of a lattice polytope as a Hilbert series of
a graded ideal given in [BM03].
Proposition 5.5.9. Let P ⊆ Rd be a Gorenstein polytope of codegree r. Then
either P is thin or ℓ∗

P (t) starts with tr. In this case, ℓ∗
P (t) has degree deg(P ) and

leading coefficient 1.
Proof. Let K ⊆ Zd+1 be the lattice points in the Gorenstein cone over P × {1}.
Denote by C[K] the associated affine semi-group algebra with N0-grading given by
the exponent of xd+1, viewing C[K] ⊆ C[x±1

1 , . . . , x±1
d , xd+1]. As in [BM03, Section 4],

we let f ∈ C[K]1 be non-degenerate and I ⊆ C[K] the homogeneous ideal generated
by the so called logarithmic derivatives of f . Let moreover J ⊆ C[K] be the
homogeneous ideal generated by all lattice points in the relative interior K◦ of K.
Then Borisov and Mavlyutov define R1(f, K) to be the image of J in the quotient
ring C[K]/I, i.e., R1(f, K) is the homogeneous ideal (I + J)/I of C[K]/I.
Now, by [BM03, Proposition 5.5], ℓ∗

P (t) is the Hilbert series of R1(f, K). Moreover,
as P is Gorenstein of codegree r, we have K◦ = (p, r) + K, where p ∈ (rP ) ∩ Zd is
the unique interior lattice point of rP . Therefore, R1(f, K) is just the image of the
principal ideal (xpxr

d+1) in the quotient C[K]/I. Hence, R1(f, K) is 0 if and only if
xpxr

d+1 ∈ I, and otherwise the lowest degree of its non-zero homogeneous components
is r with R1(f, K)r = ⟨xpxr

d+1⟩ of vector space dimension 1. This proves the first
claim, and the second follows from reciprocity, Theorem 5.1.16(2).

In dimensions ≤ 4 it is a consequence of the reciprocity of ℓ∗
P (t) that for any lattice

polytope P either P is thin or deg(ℓ∗
P ) = deg(P ). In higher dimensions, this property

fails for non-Gorenstein lattice polytopes.
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Example 5.5.10. Consider the full-dimensional lattice simplex P ⊆ R5 given as the
convex hull P = conv(0, e1, e2, e3, (0, 1, 1, 2, 0), (5, 3, 3, 2, 6)). Then ℓ∗

P (t) = 4t3 while
h∗

P (t) = t4 + 5t3 + 4t2 + t + 1. In particular, P is not thin but deg(ℓ∗
P ) < deg(h∗

P ) =
deg(P ). This is the only such example among lattice simplices of dimension 5 with
lattice volume ≤ 15. It was found using the database [Bal]. The computations were
performed in SageMath with backend Normaliz.

Example 5.5.11. Consider the full-dimensional lattice simplex P ⊆ R5 given as
the convex hull P = conv(0, e1, e2, (1, 1, 2, 0, 0), (3, 5, 6, 8, 0), (1, 1, 0, 0, 2)). Then
ℓ∗

P (t) = t3 while h∗
P (t) = 7t3 + 19t2 + 5t + 1. So deg(ℓ∗

P ) = deg(h∗
P ) but the leading

coefficient of ℓ∗
P is strictly smaller.

5.5.3 Thinness Is Invariant under Duality
It was noted in Lemma 5.5.6 that being trivially thin as well as being g-thin is
invariant under duality of Gorenstein polytopes. Let us explain how this allows us
to deduce that also thinness has this beautiful duality property:

Corollary 5.5.12. Let P be a Gorenstein polytope. Then P is thin if and only if
P × is thin.

Proof. By Theorem 5.5.3(ii) we may assume that P is a thin Gorenstein polytope
such that P is a Gorenstein join of faces F and G with F being trivally thin. Hence,
by Lemma 5.5.6 we also have P × = F ∗ ∗Gor G∗ with G∗ being trivially thin. Again,
by Theorem 5.5.3 this implies that P × is thin.

Having such a direct proof answers a question of Lev Borisov, who communicated to
us that this statement might also be proven using vertex algebra techniques.
In particular, as Theorem 5.5.3 implies that there are only two choices for the degree
of the ℓ∗-polynomial of a Gorenstein polytope we see that its degree is also invariant
under duality (as it holds for the degrees of the h∗-polynomial and the g-polynomial).

Corollary 5.5.13. Let P be a Gorenstein polytope. Then deg(ℓ∗
P ) = deg(ℓ∗

P ×).

Example 5.5.14. The reader should be aware that the local h∗-polynomials of a
Gorenstein polytope P and its dual P × may differ. For instance, for P = [−1, 1]3 we
have ℓ∗

P (t) = t + 17t2 + t3 and ℓ∗
P ×(t) = t + 3t2 + t3.

5.5.4 Thin Gorenstein Simplices
For the special case of Gorenstein simplices, we can answer the original question in
[GKZ94] about classifying thin simplices.

Corollary 5.5.15. Let P be a Gorenstein simplex. Then P is thin if and only if P
is a lattice pyramid.

Proof. Let P be thin. If P is g-thin, then deg(P ) = deg(gP ) = 0 as P is a simplex.
Hence, P is a unimodular simplex, in particular, a lattice pyramid.
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Otherwise, Theorem 5.5.3(iii) implies that there are faces F and G of P such that
P = F ∗Gor G with G g-thin. As G is also a simplex, the previous consideration shows
that G is a unimodular simplex, thus, a lattice pyramid. Hence, Corollary 5.4.16
implies that P is also a lattice pyramid.

In particular, if a Gorenstein simplex P satisfies dim(P ) ≥ 2 deg(P ), then P is
a lattice pyramid. This statement can also be deduced from [DRHNP13, Corol-
lary 3.10(2)].
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[KV08] Matthias Köppe and Sven Verdoolaege, Computing parametric rational
generating functions with a primal Barvinok algorithm, Electron. J.
Comb. 15 (2008), no. 1, research paper r16, 19.

[Lau96] Steffen Lauritzen, Graphical models, vol. 17, Oxford University Press,
1996.
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