
Integral Projection Models Across Scales

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der Naturwissenschaftlichen Fakultät I – Biowissenschaften –

der Martin-Luther-Universität Halle-Wittenberg,

Vorgelegt von

Herrn Sam C. Levin, M.Sc.

Gutachter:

1. Dr. Tiffany Knight

2. Dr. Ingolf Kühn

3. Dr. Brian Enquist

Verteidigt am Juni 24th, 2024

1

Contents
Summary 4

Zusammenfassung 4

Chapter 1: Introduction 6
1.1 Population models in ecology . 6
1.2 Simple Integral Projection Models . 7
1.3 General Integral Projection Models . 10
1.4 Survey of available tools for IPM implementation . 11
1.5 Demographic data for broader syntheses . 12
1.6 IPMs and consideration of scale . 13
1.7 Objectives of the dissertation . 14

Chapter 2: ipmr: Flexible implementation of Integral Projection Models in R 19

Chapter 3: Rpadrino: an R package to access and use PADRINO, an open access database
of Integral Projection Models 29

Chapter 4: Relationship between climate and fitness of a highly invasive succulent 37

Synthesis 49

Acknowledgements 55

Appendix 1: ipmr Case Study 1 56

Appendix 2: ipmr Case Study 2 75

Appendix 3: Supplementary Information for Chapter 2 86

Appendix 4: PADRINO Case Study 1 87

Appendix 5: PADRINO Case Study 2 125

Appendix 6: Supplementary Information for Chapter 3 143

Appendix 8 165
Zusätzliches Information . 165
A) Curriculum Vitae . 166
B) List of publications for the dissertation . 170
C) Author contributions . 171
D) Eigenständigkeitserklärung . 172

2

Copyright notice: Chapters 2 and 3, and Appendices 1, 2, 3, 4, 5, and 6 have been published
in international journals under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original authors
and source are credited. For the other parts of this dissertation, reprint of the presented
material requires the authors’ permissions. Copyright is with the authors.

3

Summary

The study of structured populations dynamics has become a key aspect of many sub-disciplines within ecology
as a whole. Structured population models provide an elegant tool to scale from individual observations to
population level inference. Life tables are probably the most widely used tool to study human demography.
Currently, matrix population models (MPMs) are the most widely used structured population models in
ecology. Integral projection models (IPMs) are newer, but are seeing increasingly frequent use in the literature.
IPMs allow researchers to study the demography of population structured by one or more continuously
distributed traits in discrete time. Concurrently, researchers have developed a variety of tools and techniques
to parameterize and implement IPMs. However, pressing questions in ecology, evolution, and conservation,
and their associated data and computational requirements, have outpaced the development of tooling to
aid their implementation, interpretation, and synthesis. This dissertation contributes to filling these gaps
by introducing new computational tools and data collection techniques, and then applying them them to
an invasive plant genus that has invaded multiple continents. These tools and analyses enable large scale
data collection, ease the implementation of complex IPMs, and provide a more streamlined experience for
syntheses.

In Chapter 2, I introduce a new R package, ipmr, to implement and analyse IPMs. This R package
provides a domain specific language to implement deterministic and stochastic models, with two options
for handling the latter. Furthermore, ipmr handles density dependence with minimal additional overhead.
Density dependence is a critically important population process that, until ipmr, was not implemented in any
R packages for structured populations. ipmr is designed to accommodate almost any type of regression model
used in the vital rate fitting process, and also includes methods for extracting the basic building blocks used
in many downstream analyses. This chapter includes two appendices with detailed case studies demonstrating
the package’s use, and the package itself contains six vignettes that are intended for audiences from a range
of technical backgrounds.

In Chapter 3, I introduce two additional tools: the PADRINO IPM Database, and Rpadrino, an R package
for interfacing with PADRINO. PADRINO houses IPMs extracted from published peer-reviewed studies,
as well as extensive metadata that enables researchers to filter the database down to models that fit their
research questions. Rpadrino provides a clean interface to rebuild these models from R using the ipmr R
package as a backend. This chapter also includes two detailed case studies on how to use these tools for both
standalone analyses and in conjunction with other databases to power much larger scale syntheses.

InChapter 4, I examine the drivers of invasiveness in the Carpobrotus genus using data collected by unmanned
aerial vehicles (UAVs, drones) on four continents. We examine how climate impacts the population dynamics
of this widely invasive genus using a combination of IPMs and Life Table Response Experiments (LTREs). We
do not find any link between climate drivers and overall population performance, and unmeasured site-specific
effects are more important than climate with respect to fitness. This chapter further demonstrates how to
scale inference across levels of organization (individuals to populations) and space (local to regional, regional
to continental).

In Chapter 5, I provide a synthesis of previous chapters. Specifically, I highlight both knowledge gaps
that this dissertation fills and new computational capabilities this dissertation provides, the dissertation’s
limitations, and suggest directions for future research.

Keywords: Integral Projection Model, climate change, invasive species, demography

Zusammenfassung

Die Untersuchung der Dynamik strukturierter Populationen ist zu einem Schlüsselaspekt vieler Teildisziplinen
innerhalb der Ökologie als Ganzes geworden. Strukturierte Populationsmodelle bieten ein elegantes Instrument,
um von Einzelbeobachtungen auf die Populationsebene zu schließen. Sterbetafeln sind wahrscheinlich das
am häufigsten verwendete Instrument zur Untersuchung der menschlichen Demografie. Derzeit sind Matrix-
Populationsmodelle (MPMs) die am häufigsten verwendeten strukturierten Populationsmodelle in der Ökologie.

4

Integrale Projektionsmodelle (IPMs) sind neuer, werden aber in der Literatur immer häufiger verwendet.
Mit IPMs können Forscher die Demografie von Populationen untersuchen, die durch ein oder mehrere
kontinuierlich verteilte Merkmale in diskreter Zeit strukturiert sind. Gleichzeitig haben die Forscher eine
Vielzahl von Instrumenten und Techniken zur Parametrisierung und Umsetzung von IPMs entwickelt. Die
drängenden Fragen in den Bereichen Ökologie, Evolution und Naturschutz und die damit verbundenen
Daten- und Berechnungsanforderungen haben jedoch die Entwicklung von Instrumenten zur Unterstützung
ihrer Umsetzung, Interpretation und Synthese überholt. Diese Dissertation trägt dazu bei, diese Lücken zu
schließen, indem sie neue Berechnungswerkzeuge und Datenerfassungstechniken vorstellt und sie dann auf
eine invasive Pflanzengattung anwendet, die in mehrere Kontinente eingedrungen ist. Diese Werkzeuge und
Analysen ermöglichen eine groß angelegte Datenerfassung, erleichtern die Umsetzung komplexer IPMs und
bieten eine rationalisierte Erfahrung für Synthesen.

In Kapitel 2 stelle ich ein neues R-Paket, ipmr, vor, um IPMs zu implementieren und zu analysieren.
Dieses R Paket stellt eine domänenspezifische Sprache zur Verfügung, um deterministische und stochastische
Modelle zu implementieren, mit zwei Optionen für die Handhabung letzterer. Darüber hinaus behandelt ipmr
die Dichteabhängigkeit mit minimalem zusätzlichem Overhead. Dichteabhängigkeit ist ein sehr wichtiger
Populationsprozess, der bis ipmr in keinem R Paket für strukturierte Populationen implementiert war. ipmr
ist so konzipiert, dass es fast alle Arten von Regressionsmodellen aufnehmen kann, die im Prozess der
Anpassung der Vitalrate verwendet werden, und enthält auch Methoden zur Extraktion der grundlegenden
Bausteine, die in vielen nachgeschalteten Analysen verwendet werden. Dieses Kapitel enthält zwei Anhänge
mit detaillierten Fallstudien, die die Verwendung des Pakets demonstrieren, und das Paket selbst enthält
sechs Vignetten, die für ein Publikum mit unterschiedlichem technischen Hintergrund gedacht sind.

In Kapitel 3 stelle ich zwei zusätzliche Werkzeuge vor: die PADRINO IPM-Datenbank und Rpadrino, ein
R Paket zur Anbindung an PADRINO. PADRINO enthält IPMs, die aus veröffentlichten, von Experten
begutachteten Studien stammen, sowie umfangreiche Metadaten, die es Forschern ermöglichen, die Datenbank
nach Modellen zu filtern, die ihren Forschungsfragen entsprechen. Rpadrino bietet eine saubere Schnittstelle,
um diese Modelle von R aus neu zu erstellen, wobei das _R-Paket ipmr als Backend dient. Dieses Kapitel
enthält auch zwei detaillierte Fallstudien, wie diese Werkzeuge sowohl für eigenständige Analysen als auch
in Verbindung mit anderen Datenbanken verwendet werden können, um Synthesen in größerem Umfang
durchzuführen.

In Kapitel 4 untersuche ich die Triebkräfte der Invasivität der Gattung Carpobrotus anhand von Daten, die
von unbemannten Luftfahrzeugen (UAVs, Drohnen) auf vier Kontinenten gesammelt wurden. Wir untersuchen,
wie sich das Klima auf die Populationsdynamik dieser weit verbreiteten invasiven Gattung auswirkt, indem
wir eine Kombination aus IPMs und Life Table Response Experiments (LTREs) verwenden. Wir finden
keinen Zusammenhang zwischen Klimatreibern und der Gesamtleistung der Population, und nicht gemessene
standortspezifische Effekte sind im Hinblick auf die Fitness wichtiger als das Klima. In diesem Kapitel wird
außerdem gezeigt, wie man Schlussfolgerungen auf verschiedenen Organisationsebenen (Individuen bis hin zu
Populationen) und räumlichen Ebenen (lokal bis regional, regional bis kontinental) ziehen kann.

In Kapitel 5 gebe ich eine Zusammenfassung der vorangegangenen Kapitel. Insbesondere hebe ich sowohl
Wissenslücken hervor, die diese Dissertation schließt, als auch neue rechnerische Möglichkeiten, die diese
Dissertation bietet, sowie die Grenzen der Dissertation und schlage Richtungen für zukünftige Forschung vor.

Keywords: Integral Projection Model, Klimawandel, invasive Arten, Demographie

5

Chapter 1: Introduction

1.1 Population models in ecology

Understanding population dynamics is central to ecology (Crone et al. 2011), evolution (Metcalf & Pavard
2007), and conservation (Morris & Doak 2002). Rates of survival and reproduction form the two main fitness
components that drive evolution, and determine the fate of populations as a whole (Coulson 2012). These
vital rates are therefore crucial to understanding numerous other phenomena, such as change in population
size, changes in causes of mortality and/or fertility, or the direction and magnitude of natural selection.
Indeed, the utility of this idea - that the fates of closed populations are determined by rates of birth and death
- has been demonstrated numerous times over the years. Notable applications include (though are certainly
not limited to) understanding predator-prey interactions (Lotka 1925, Volterra 1926), the consequences
of age/stage/size structure in populations (Leslie 1945, Lefkovitch 1965), invasive and endangered species
management (Caswell 1978, de Kroon et al. 1986, Morris & Doak 2002), and the consequences of climate
change (Teller et al. 2016, Compagnoni et al. 2021).

Early applications of population biology focused on human populations and modeled total population size
(rather than, for example, number of age a individuals). These yielded insight into drivers of exponential
population growth (and an unhealthy dose of nativist and racist sentiment, Franklin 1751, Malthus 1798).
They gave the classic equation:

N(t) = N0e
rt. (1.1.1)

N(t) is the population size at time t, N0 is the initial population size, and r is the intrinsic rate of population
growth. Subsequent developments of logistic growth to account for carrying capacity were introduced by
Verhulst in 1838, and (perhaps more famously) applied by A.G. McKendrick (1911) to study bacterial growth:

N(t+ 1) = (1 + r(1− N(t)
K

))N(t). (1.1.2)

Here, K represents the carrying capacity of the population, which is the maximum population size that the
environment can support. Shortly afterwards, biologists began to recognize the importance of dividing the
population into sub-groups to understand how within-population differences in vital rates impacts dynamics.
In other words, not all individuals in the N(t) terms are identical. The practice of sub-dividing the population
based on some trait is referred to as “structuring the population”. Beginning in the early 1900s, theoretical
advancements aimed to understand age-specific rates of birth and death are recognized as the beginning of
this field of study (McKendrick 1926):

δn

δt
+ δn

δa
= −m(a)n (1.1.3)

Here, m(a) is the age specific mortality rate. However, this approach did not become popular in ecology for
quite some time, likely due to the tedious nature of the calculations (Ebert 1999). P.H. Leslie introduced
the discrete time, age structured projection matrix in 1945 (Leslie 1945). This approach provided a more
elegant way of summarizing vital rates, though still required dutiful attention to detail when performing the
calculations by hand:

N(a, t+ 1) = AN(a, t). (1.1.4)

N(a, t) and N(a, t + 1) represent the population age distribution at time t and t + 1, and A is an m ×m
matrix with m age classes and their associated age-specific survival and fertility rates (where m is maximum
age a of the organism in question). Extensions of Leslie’s age-based approach to incorporate stage-structured
populations (Lefkovitch 1965) and multiple structuring variables (Goodman 1969) advanced theory, but did

6

not necessarily drive broader uptake. The advent of personal computers and the recognition that numerical
analysis methods fit well with this rapidly growing technology lead to a rapid adoption in the late 1970s
and early 1980s. Concurrently, Hal Caswell and colleagues’ showed how to calculate population responses
to absolute (sensitivity, 1978) and proportional (elasticity, 1986) perturbations to matrix elements, which
are still a vital analytical tool for applied practitioners and theoreticians. A subsequent text book provided
computer code to implement these analyses, along with many others, which helped make these approaches
more accessible (Caswell 1989).

In the intervening years, further developments have enabled researchers to accommodate additional biological
realism into their structured population models, such as density dependence (Leslie 1959, Liu & Cohen
1987, Jensen 1995) and environmental stochasticity (Caswell 1989). However, there was also a recognition
that many species have their life cycle structured by a continuous trait, like weight, height, diameter, or
hatching date. Furthermore, partitioning these continuous traits up into discrete categories introduced
increased data requirements for parameterization and/or reduced the biological realism of the model by
treating all individuals in a given class as identical (Vandermeer 1978). The integral projection model (IPM)
was proposed to alleviate this issue (Easterling et al. 2000). IPMs provide a framework to model the dynamics
of populations structured by any number of continuous and discrete traits (Ellner & Rees 2006, Ellner et
al. 2016). Further developments to the IPM framework yielded methods for including a variety of additional
factors, including density dependence (Rose et al. 2005, Adler et al. 2010), environmental stochasticity (Childs
et al. 2004, Rees & Ellner 2009), spatial structure (Jongejans et al. 2011), and demographic stochasticity
(Vindenes et al. 2011). These developments have enabled analyses across a variety of fields, including evolution
(e.g. Coulson et al. 2011), conservation biology (e.g. Ferrer-Cervantes et al. 2012), and global change biology
(e.g. Nicole et al. 2011, Simmonds et al. 2020).

The main strengths of IPMs lie in i) the ability to choose continuous traits to model populations, ii) the ability
to flexibly incorporate discrete and continuous traits into the same model, iii) efficient parameterization of
the model using regression-based toolkits, and iv) numerical computation of the integrals (see 1.2) mean tools
available for matrix models are usually available for IPMs. Thus, there is a rich array of life cycles one can
model, with a variety of well understood tools for fitting functional forms to real data, and a broad repertoire
of tools and frameworks to analyze the resulting IPM with.

1.2 Simple Integral Projection Models

An IPM describes how the abundance and distribution of a trait (denoted z and z′) changes from time t to
time t+ 1. Simple IPMs are IPMs that use one, and only one, trait to structure the population in question.
The current trait distribution is given by the function n(z, t). A simple IPM for the trait distribution of z′ at
t+ 1 is then:

n(z′, t+ 1) =
∫ U

L

K(z′, z)n(z, t)dz. (1.2.1)

K(z′, z) is a kernel function (often referred to as a kernel) that describes all possible transitions of existing
individuals (survival and maturation) and recruitment of new individuals ((a)sexual reproduction) from t
to t + 1. L,U are the lower and upper bounds that the value of trait z can take, and the interval [L,U]
is referred to as the domain. To compute total population size, we simply integrate the trait distribution
functions

∫ U

L
n(z, t) (

∫ U

L
n(z′, t+ 1) to get the population size at t+ 1).

To aid interpretability, the kernel K(z′, z) is usually decomposed into sub-kernels representing transitions
related to existing individuals (i.e. survival, change in trait value) and creation of new individuals:

K(z′, z) = P (z′, z) + F (z′, z) + C(z′, z). (1.2.2)

P (z′, z) describes transitions of existing individuals due to survival and change in trait value. F (z′, z) describes
per-capita sexual reproduction contributions. C(z′, z) describes per-capita asexual reproduction contributions.

7

IPM theory assumes these sub-kernels are somewhat smooth functions, with piecewise continuity satisfying
this assumption (Ellner et al. 2016, Ch 2.2).

The P (z′, z), F (z′, z), and C(z′, z) sub-kernels are in turn comprised of vital rate functions. It is at this step
that IPMs link the researcher’s data to the population dynamics. For most IPMs, these vital rate functions
are generated via regression models fit to real data collected in the field or in the lab (or some combination
thereof).

For example, the P (z′, z) kernel from Bogdan et al. (2021) for Carpobrotus spp. contains two vital rate
functions:

P (z′, z) = s(z)G(z′, z). (1.2.3)

s(z) was parameterized using a logistic regression of survival outcome (either 0 (dead) or 1 (alive)) at t+ 1
on plant size z. G(z′, z) was parameterized using a linear regression of size z′ on size z. This resulted in:

Logit(s(z)) = β0,s + β1,s ∗ z, (1.2.4)

G(z′, z) = fG(z′|µG(z), σG), (1.2.5)

µG(z) = β0,G + β1,G ∗ z. (1.2.6)

β0,i and β1,i are intercepts and slopes from each regression, respectively, and fG in 1.2.6 denotes a Gaussian
probability density function. σG is the standard deviation of the residuals from the growth regression.

The integrals are usually impossible to solve analytically (Ellner & Rees 2006), so numerical approximations
are computed instead. The midpoint rule is the most commonly used one (others are possible, see Ellner
et al. 2016, Chapter 6). This divides the domain [L,U] into m artificial bins centered at zi with a width of
h = (U −L)/m, and midpoints zi = L+ (i− 0.5) ∗ h for i = 1, 2, . . . ,m. The midpoint rule approximation of
1.2.1 becomes:

n(zj , t+ 1) = h

m∑

i=1
K(zj , zi)n(zi, t). (1.2.7)

The numerical integration creates a discretized projection matrix K analogous to A in 1.1.4. Matrix
multiplication of the discretized kernel and the discretized trait distribution generates a new trait distribution.

Because of the smiliarity between K(zj , zi) in 1.2.7 and A in 1.1.4, many of the tools developed for matrix
models can be applied to IPMs with little to no additional effort. These include (but are not limited to!)
population growth rates (λ), stable trait distributions (w), reproductive values (v), sensitivity and elasticity
analysis. Statistical and mathematical methods for incorporating environmental stochasticity (Rees & Ellner
2009) and density dependence (Rose et al. 2005, Adler et al. 2010) are available. Furthermore, there are
guides available for assistance with the former (Metcalf et al. 2015) and the latter (Ellner et al. 2016, Ch 5).

Simple IPMs have been developed for a wide array of applications, ranging from the theoretical to the
practical. For example, Metcalf and colleagues (2009) combined simple IPMs for six tropical tree species with
a discretely varying light environment to model life expectancy, age specific mortality, and passage times to a
given size conditional on initial state. Bassar and colleagues (2016) developed a simple, density dependent
IPM to show how asymmetric competition affects various life histroy traits of Poecilia reticulata). Nicole and
colleagues (2011) examined how climate change and local habitat conditions would influence the viability
of the endangered Dracocephalum austriacum. I developed a simple, density-independent IPM for Lonicera
maackii to show that the degree of competitive release was a function of phylogenetic and functional novelty
in its new local community (Levin et al. 2019, Levin et al. 2020). Zucaratto and colleagues (2020) developed

8

−4 −2 0 2 4

−
4

−
2

0
2

4

Size (t)

S
iz

e
(t

 +
 1

)

A

−4 −2 0 2 4

−
4

−
2

0
2

4
Size (t)

S
iz

e
(t

 +
 1

)

B

Size (t)

S
iz

e
(t

 +
 1

)

−4.5 −2.78 −1.07 0.65 2.37 4

−
4.

5
−

2.
78

−
1.

07
0.

65
2.

37
4

C

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

P
op

ul
at

io
n

gr
ow

th
 r

at
e

D

Figure 1: The link between data (A-B) and an IPM (C-D). This is typically a reversal of the way IPMs are
described above, in that researchers start with data on sizes and demographic outcomes (A). These data get
turned into functions in 1.2.4 - 1.2.6 using a variety of statistical methods, most typically a regression (B).
In B, the solid black line depicts the predicted mean size at t+1 vs observed size at t. The red lines depict
the variation around the predicted mean. Note that the variance shrinks as the initial size increases - this
illustrates the power of IPMs to accommodate a variety of functional relationships. Once individual vital
rate functions are computed, these are combined to form P, F, and K (C) found in equations 1.2.2 and 1.2.3.
From there, some biological inference is conducted (D). In this case, the per-capita growth rate (λ) and its
confidence interval are depicted.

9

a simple IPM for the invasive Roystonea oleracea to develop a management plan for preserving Ilha Grande,
an island off the coast of Brazil whose Atlantic Forest habitat is threatened. Despite the wide application
of simple IPMs, there is a need to model life cycles and species that aren’t readily summarized by a single,
continuous trait (e.g. plants with a discrete seed bank stage). To that end, Ellner & Rees (2006) developed
the general IPM, which is covered in the next section.

1.3 General Integral Projection Models

General IPMs are an extension of simple IPMs that allow researchers to model a population structured by
multiple continuously and/or discretely traits. For example, many plants have long-lived seed banks, and
researchers are typically consider this a discrete stage because of low trait variation across individuals, or
because they lack sufficient data on said trait variation to create a continuous trait distribution (but see
Eager et al. 2013). Therefore, the seedbank is a discrete stage represented by a single number (the number
of seeds that are in it). Similarly, age- and trait-structured models may contain many copies of the same
trait distribution - one for each age class. For example, an age × size structured IPM for Ovis aries may
have 21 copies for log transformed body weight denoted za for a ∈ [0, 20] (Ellner, Childs, & Rees 2016, Ch 6).
General IPMs allow researchers to accommodate these more complex life cycles in a single model.

The trait space in a general IPM is no longer one dimensional. We represent the entirety of the space
with Z. Z can include discrete points D = {z1, z2, . . . , zD}, and a set of continuous domains C =
{ZD+1, ZD+2, . . . , ZD+C} (Ellner et al. 2016, Chapter 6). Each continuous domain in C is either a closed
interval [L,U] (like in a simple IPM), or a closed finite rectangle (e.g. with individuals cross-classified by size z
and “individual quality” q). Similarly, the population state is now comprised of different components. Discrete
states are represented nj(t), j = 1, 2, . . . D which give the number of individuals with state D. Continuous
components are represented nj(zj , t), j = D+ 1, D+ 2, . . . D+C, where the integral

∫
Zj
nj(zj , t)dzj gives the

number of individuals with state j. Transitions within and between traits are defined by a set of sub-kernels
Kij , 1 ≤ i, j ≤ D +C. When individuals in with trait Zj(t) contribute to Zi(t+ 1), Kij 6= 0. Thus, there are
four possible kinds of kernel components:

1. Discrete to discrete transitions: Kij is a single number. This includes, for example, the fraction of seeds
in a seedbank that do not germinate and survives to remain in the seedbank the following year, or,
when insect eggs remain in stasis across time steps, neither hatching nor dying.

2. Discrete to continuous transitions: Kij = kij(z′). kij(z′i) is a state distribution that gives the probability
of trait value z′ at t+ 1, and is the same for all individuals in Zj . This includes, for example, the size
distribution of seedlings emerging from the seedbank, or the size of newly hatched insects.

3. Continuous to discrete transitions: Kij = kij(z). kij(zj) is the state dependent per-capita contribution
to state i at t+ 1 from state j at time t. This includes, for example, the number of seeds that a size zj

plant produces that do not immediately germinate and enter the seedbank, or the number of insect
eggs that a size zj adult produces that do not hatch immediately.

4. Continuous to continuous transitions: Kij = Kij(z′i, zj). These are bivariate kernels functions like the
ones introduced above in the simple IPM section. These include, for example, survival/growth and
fecundity kernels of existing plants, or survival/growth kernels of adult insects structured by body
length. It is worth noting that i and j don’t need to be the same trait here. For example, trees may have
a continuously structured seedling stage where seedlings are structured by height, and a continuously
structured adult stage where adults are structured by diameter at breast height (DBH). In this case,
seedlings may start a transition with height zj at t and become adults with DBH z′i at t+ 1.

There are two assumptions made by the general model: i) there are a finite number of domains, and ii) all
of the continuous domains are bounded. The first assumption is not overly restrictive, because states like
ontogeny only have a few possible values. Age is bounded by the maximum lifespan of the species, which
need not depend on rate of senescence (which some species do escape) but on the maximum observed age in
the data used to parameterize the model (incorporating the biological reality that everything dies eventually).
The second assumption is not restrictive unless the state in question is spatial location (in which case, see

10

Ellner et al. 2016, Ch 8). Most species have a maximum size they can grow to (or, at least, a maximum size
they regularly attain before something else kills them), and so imposing a closed domain on the model will
not create unrealistic populations (Ellner, Childs & Rees 2016, Ch 6.3).

General IPMs unlock an even broader range of applications, some going beyond traditional ecological
questions. For example, IPMs have been embedded into the SIR epidemiological model to estimate onward
transmission probability of malaria parasites based on within-host parasite load dynamics (Metcalf et al. 2015).
Stepping back into the realm of more traditional ecology, Bruno et al. (2011) used a general IPM to model
population dynamics of corals infected with a fungal pathogen. Invasion biology has also benefited from
general IPMs, with a multitude of publications addressing mechanisms underlying their rapid population
growth (e.g. Crandall & Knight 2017, Levin et al. 2020), rate of spread (e.g. Jongejans et al. 2011), probability
of invasion given future climate (e.g. Merow et al. 2017), and potential control pathways (e.g. Erickson et
al. 2017, Lommen et al. 2018). General IPMs have proven useful for quantifying how biotic (e.g. Adler
et al. 2010, Simmonds et al. 2020) and abiotic interactions (Rees & Ellner 2009, Compagnoni et al. 2021)
influence population dynamics. This is far from an exhaustive list, but hopefully illustrates the range of
possibilities along the theoretical to applied continuum.

1.4 Survey of available tools for IPM implementation

In parallel with developments in IPM theory, researchers have produced tools to assist with their implementa-
tion. For example, there are numerous “how-to” guides covering implementation of environmental variation
(Metcalf et al. 2015), a practical guide for conservation biologists (Merow et al. 2013), and at least two R
packages to assist with creating some types of IPMs (Metcalf et al. 2013, Shefferson et al. 2021). Additionally,
a book published by Ellner, Childs & Rees (2016) contains in-depth examinations of the theory underlying
various IPM applications, and provides free R code demonstrating how to implement these with real data.

Additionally, at least two R packages exist to help with fitting and implementing IPMs. IPMPack assists with
both vital rate regression modelling and IPM implementation (Metcalf et al. 2013). It can handle a variety
of IPM types, including simple IPMs, a subset of general IPMs, and includes functionality for specifying
stochastic variation and conducting a variety of analyses, including life table response experiments, computing
life expectancies, passage times, population growth rates, and perturbation based analyses. Furthermore, it
contains excellent diagnostic tools to help users understand how their model is performing, and whether it
may contain common flaws (e.g. lots of eviction, unrealistic size ranges, etc). lefko3 is an R package offering
a similar level of abstraction as IPMPack (i.e. handles both statistical modelling and IPM implementation).
lefko3 is designed specifically to help with analyses that incorporate an individual’s history into the future
state (i.e. n(z, t+ 1) = f(n(z, t), n(z, t− 1)), Shefferson et al. 2021). It is more general than IPMPack in that
it can handle a greater range of data non-independence (i.e. with mixed effects models) and a greater range
of distributions for z. Both packages require a fixed set of vital rate functional forms, and rely on other R
packages, such as nlme, lme4, VGAM, and glmmTMB. This introduces a tradeoff between perceived ease of use
on the one hand, and flexibility in modeling single vital rates (and by extension, the life cycle as a whole) on
the other hand. This tradeoff represents a substantial gap in the available tooling at our disposal, because
pressing research questions demand more flexibility in IPM parameterization and underlying functional forms.

Much of this required complexity arises from the need to faithfully represent vital rates and their dependence
not just on the trait (or traits) in the IPM, but external environmental factors as well. These external factors
can include (but are not limited to) other species or changing climate conditions. Furthermore, the responses
need not be linear (in fact, they often may not be). These issues are actually a subset of general regression
modelling problems, and the field of computational statistics is constantly developing new tools to address
them. For example, mgcv implements generalized additive models to handle estimation of semi-parametric
smooth functions using maximum likelihood (Wood 2017). lme4 similarly uses maximum likelihood to
estimate linear mixed models to handle non-independence in the underlying data (e.g. from spatial clustering,
phylogenetic structure, or nested experimental design, Bates et al. 2015). brms has become a popular interface
to the Stan library for estimating Bayesian models with Markov Chain Monte Carlo algorithms (Buerkner
2018, Stan Development Team 2020). brms is particularly popular because of it provides a familiar R formula
interface and allows users to specify nearly any type of model, linear or non-linear, that they desire. It also

11

leverages mgcv’s spline basis-generating functions (and the duality of certain spline bases as random effects)
to estimate GAMs in a fully Bayesian framework.

There is an astounding array of additional tools researchers may use to estimate trait-demography relationships,
and this is only a brief overview. However, population biologists do not have a framework that allows us to
harness the full breadth of these tools in an IPM context without writing all analysis code from scratch. This
is problematic because 1) untested IPM code may contain bugs, 2) it potentially creates barriers to access for
early career researchers who may not have a strong support network to teach them how to create IPMs, and
3) it creates problems in performing syntheses because we have no common data structure to represent IPMs
and their underlying functional forms.

1.5 Demographic data for broader syntheses

Given the age and maturity of modelling structured populations, researchers have become interested in
compiling databases of published literature for synthesis applications. COMPADRE (Salguero-Gomez et
al. 2014), COMADRE (Salguero-Gomez et al. 2015), and DatLIFE (DatLIFE 2018) are the most directly
relevant efforts for this dissertation. Others, including popler (Compagnoni et al. 2019), BIEN (Maitner
et al. 2017), and D3 (Hintze et al. 2013) are all important sources of information, but do not necessarily
incorporate population structure or the entire life cycle of the species into their data. Still others, such as
the HMD (Human Mortality Database 2022), HLD (Human Lifetable Database 2022), and IPUMS Terra
(Ruggles et al. 2018) are important contributions, but limit their phylogenetic scope to Homo sapiens.

COMPADRE and COMADRE are the most closely linked databases to this dissertation. Their history
stretches back to the late 1980s, when Silvertown and Franco began archiving published MPMs as time- and
space-averaged matrix models. The synthetic rewards included, for example, the concept of the fast-slow
continuum of plant strategies (Franco & Silvertown 1997), a broad examination of the relative contributions
of vital rates to population growth rates (Silvertown et al. 1993), and a synthesis of the evolution of senesence
in plants (Silvertown et al. 2001). Researchers spent much of the 2000s working in parallel to compile similar
data sets until unifying under the umbrella of COMPADRE (and expanding to mammals via COMADRE) in
2011 (Salguero-Gomez et al. 2014). In subsequent years, these databases have been enhanced with additional
data and metadata to assist researchers in linking these data to other data sources to address increasingly
complicated questions. Since becoming open access in 2014 (COMPADRE) and 2015 (COMADRE), they
have been cited 157 and 77 times, respectively. Clearly, these data sources have provided a substantial return
on investment. Some of these returns include quantifiying the diversity of rates of ageing (Jones et al. 2014),
plant and mammal species responses to climate change (Compagnoni et al. 2021, Paniw et al. 2021), and
the expansion of the fast-slow continuum theory to include a reproductive strategy axis (Salguero-Gomez et
al. 2015).

IPM usage is growing rapidly (Levin et al. 2021). IPMs are now the tool of choice to analyze populations that
are structured by continuous traits, because they alleviate the need to construct arbitrary bins that discretize
these continuous traits (e.g. create size classes for a tree species, Ellner & Rees 2006). Given the success of
MPM repositories, a database of IPMs is necessary for synthetic studies in ecology. However, there are unique
challenges posed in implementing such a database. Existing approaches to digitizing MPMs entail entering
the iteration matrix/sub-matrix elements into databases (i.e. entering that actual value of the matrix cell).
This is feasible for MPMs, since most do not have many rows and columns (the majority of COMPADRE
and COMADRE matrices are less than 20× 20). Furthermore most transition elements are on the order of
[0.01, 1], making them easier to enter by hand. IPM iteration matrices are much higher dimensional (on the
order of 50× 50− 1, 000× 1, 000), and the transition elements can be much smaller (i.e. [1−10, 1−2]). Entering
the latter by hand would inevitably result in errors, and might not even be possible since researchers rarely
publish raw projection kernels (SC Levin, personal observation). Finally, capturing the IPM’s underlying
functional form, rather than just the iteration matrices/sub-matrices, enables more applications. Thus, in
addition to the usual metadata and parameter value digitization that comes with creating a database, there
are two extra tasks that must be completed to have a working IPM database:

1. Define a syntax to represent IPMs symbolically in a database. This representation needs to be flexible

12

enough to accommodate models across the range of complexities in the existing literature, and able to
handle as much forthcoming, additional complexity as possible.

2. Implement an engine that can transform this database representation into something that’s actually
useful for a researcher who is not interested in the underlying technical details, and simply wants to focus
on their research questions (i.e. most researchers). Given the dominance of R (R Core Development
Team 2022) in the field of ecology, this would be the logical choice for such an engine. However, to
facilitate including a broader array of backgrounds, bindings to other languages would be ideal. Thus,
the syntax in Objective 1 should not be overly specific to R, and follow more general mathematical
notation.

1.6 IPMs and consideration of scale

Given the range of applications for IPMs, it is worth stepping back and considering the various scales they
might function across and how they have been applied to these scales so far. When using the term scale, I
am referring broadly to time, space, and phylogeny. Within each of these, there are differing ways in which
they apply:

1. Temporal scale, with respect to IPMs, usually comes in two flavors - the time step of the model
iteration (i.e. the amount of actual time between t and t+ 1), and the time frame of the total projection
(i.e. stochastic models versus transient dynamic models versus asymptotic dynamics in deterministic
models). In the former, the value is usually determined either by the speed in which the organism
completes its life cycle, or, by the time step that has a meaningful biological interpretation. The latter
is largely determined by the research question. Stochastic and asymptotic dynamics have dominated
the literature over the years, but there is growing appreciation of the importance of transient dynamics.

2. Spatial scale, with respect to IPMs, typically refers to either the extent of a population, or the number
of populations studied and how far apart they are, or both. The former can very greatly across study
species. For example, the sampling grain for a population of Canis lupus (Yellowstone National Park,
Coulson et al. 2011) is very different from the sampling grain for Carduus nutans (1m× 1m plots, Levin
et al. 2019). For the latter, there are numerous considerations, largely driven by the research question.
For example, consideration of competitive interactions across many sites would require separate models,
as competitive pressure decays rapidly with distance between individuals. Consideration of weather
drivers of population dynamics requires sampling a broad spatial extent at small spatial grains to
capture variation in both weather and population performance. This is far from an exhaustive list, and
is only meant to illustrate that space must be considered.

3. Phylogenetic scale, with respect to IPMs, is not one that is often considered. However, it is a useful
concept, as many questions in ecology and evolution seek to generalize from species to genus to family,
etc. The vast, vast majority of IPMs quantify dynamics of one species. Some may include feedbacks
between species (e.g. Bruno et al. 2011, Adler et al. 2010). However, there is some work that examines
“family-level” demography (Traill et al. 2021).

Invasive species, in addition to presenting a pressing ecological (Duenas et al. 2021) and economic threat
(Pimentel et al. 2005), present an ideal system to examine all three of these meanings of scale. Species that
become invasive usually undergo rapid spread, presenting a series of transient dynamics at the leading edge,
while converging to asymptotic dynamics in the older center of invasion (Powell et al. 2011). The spatial
scale of invasions can be viewed as local, in which the individuals in the population come to dominate their
immediate area, and large extents (e.g. regional, continental) into which they spread and establish larger
populations (Powell et al. 2011). Phylogenetic scale is especially prominent in the context of invasion biology,
with work spanning nearly every taxonomic level of organization from single species (Zucaratto et al. 2021),
collections of species (e.g. Suehs et al. 2004), and even the entire angiosperm clade (Darwin 1859). Despite all
of this, there is still much debate over how these various meanings of scale should apply to invasion biology.

13

1.7 Objectives of the dissertation

The first objective of this dissertation is to provide a consistent interface for implementing IPMs. ipmr
(Chapter 2) provides an engine for implementing IPMs from symbolic representations. It imposes no restric-
tions on vital rate models - researchers may use the full breadth of R’s modelling capabilities. Furthermore, it
provides tools for basic analyses, and is extensively documented with examples of more complicated ones. The
latter point substantially reduces difficulty in beginning to use the package, and helps researchers focus on
their research questions rather than details of programming. Chapter two is published as: Levin, S.C., Childs,
D.Z., Compagnoni, A., Evers, S., Knight, T.M. & Salguero-Gomez, R (2021) ipmr: flexible implementation of
Integral Projection Models in R. Methods in Ecology and Evolution 12(10): 1826-1834.

The second objective of this dissertation is to provide a database of peer-reviewed published IPMs that
researchers may use for large scale synthesis. This breaks down into a two sub-objectives:

1. Provide a central repository with consistent representations of peer-reviewed published IPMs. This is
provided via PADRINO (Chapter 3).

2. Provide a tool that abstracts away the details of the database and enables researchers to easily subset
and reproduce these IPMs. This is provided via Rpadrino (Chapter 3) and ipmr (Chapter 2).

PADRINO provides a repository for IPMs with extensive metadata. It also contains symbolic represen-
tations of the IPMs and the parameters used to implement them. It can store determinstic or stochastic,
density/frequency-dependent or -independent, and simple or general IPMs. The syntax used to store the
IPMs symbolically mirrors the mathematical notation for them. Rpadrino provides an interface to download
PADRINO, subset PADRINO, and translate PADRINO’s syntax into valid ipmr code. ipmr is then used
as backend for reconstructing IPM objects. Chapter 3 is published as: Levin, S.C., Evers, S., Potter, T.,
Guerrero, M.P., Childs, D.Z., Compagnoni, A., Knight, T.M. & Salguero-Gomez, R. (2022) Rpadrino: an R
package to access and use PADRINO, an open access database of Integral Projection Models. Methods in
Ecology and Evolution. DOI: https://doi.org/10.1111/2041-210X.13910.

Chapter 4 of this dissertation examines how environmental drivers affect demography of invasive species
at both local and broad spatial scales using the Carpobrotus genus. I used drones to collect demographic
data from 13 sites on four continents across the native and invaded range. I develop an IPM using ipmr for
each site that includes environmental covariates to show how Carpobrotus responds to environmental drivers.
Finally, I use a Life Table Response Experiment to quantify the contributions of climate drivers to overall
fitness.

In Chapter 5, I provide a synthesis of findings and recommendations for future research.

Citations

1. Adler, P.B., Ellner, S.P. & Levine, J.M. (2010). Coexistance of perennial plants: an embarassment of
niches. Ecology Letters 13: 1019-1029. https://doi.org/10.1111/j.1461-0248.2010.01496.x

2. Bassar, R.D., Childs, D.Z., Rees, M., Tuljapurkar, S., Reznick, D.N. & Coulson, T. (2016) The effects
of asymmetric competition on the life history of Trinidadian guppies. Ecology Letters 19(3): 268-278.

3. Bogdan, A., Levin, S.C., Salguero-Gómez, R., Knight, T.M. (2021). Demographic analysis of Israeli
Carpobrotus populations: management strategies and future directions. PLoS ONE 16(4): e0250879.
https://doi.org/10.1101/2020.12.08.415174

4. Caswell, H. (1978). A general formula for the sensitivity of population growth rate to changes in life
history parameters. Theoretical Population Biology 14(2): 215-230. https://www.jstor.org/stable/
2528566

5. Caswell, H. (1989). Matrix Models 1st edition.

14

https://doi.org/10.1111/2041-210X.13910
https://doi.org/10.1111/j.1461-0248.2010.01496.x
https://doi.org/10.1101/2020.12.08.415174
https://www.jstor.org/stable/2528566
https://www.jstor.org/stable/2528566

6. Childs, D.Z., Rees, M., Rose, K.E., Grubb, P.J., & Ellner, S.P. (2004). Evolution of size-dependent
flowering in a variable environment: construction and analysis of a stochastic integral projection model.
Proceedings of the Royal Society B 271(1547): 425-434. https://doi.org/10.1098/rpsb.2003.2597

7. Compagnoni, A., Levin, S.C., Childs, D.Z., Harpole, S., Paniw, M., Roemer, G., Burns, J.H., Che-
Castaldo, J., Rueger, N., Kunstler, G., Bennett, J.M., Archer, C.R., Jones, O.R., Salguero-Gómez,
R., & Knight, T.M. (2021). Herbaceous perennial plants with short generation time have stronger
responses to climate anomalies than those with longer generation time. Nature Communications 12:
1824. https://doi.org/10.1038/s41467-021-21977-9

8. Compagnoni, A., Bibian, A.J., Ochocki, B.M., Rogers, H.S., Schultz, E.L., Sneck, M.E., Elderd, B.D.,
Inouye, D.W., Jacquemyn, H. & Miller, T.E.X. (2016) The effect of demographic coorelations on the
stochastic population dynamics of perennial plants. Ecological Monographs 86(4): 480-494.

9. Compagnoni, A., Bibian, A.J., Ochocki, B.M., Levin, S.C., Zhu, K. & Miller, T.E.X. (2019) popler: an
R package for extraction and synthesis of population time series from long-term ecological research
(LTER) network. Methods in Ecology and Evolution 11(2): 258-264.

10. Coulson, T., MacNulty, D.R., Stahler, D.R., von Holdt, B., Wayne, R.K., & Smith, D.W. (2011).
Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history.
Science 334(6060): 1275-1278. https://doi.org/10.1126/science.1209441

11. Crandall, R.M. & Knight, T.M. (2017). Role of multiple invasion mechanisms and their interaction
in regulating the population dynamics of an exotic tree. Journal of Applied Ecology 55(2):885-894.
https://doi.org/10.1111/1365-2664.13020

12. Crone, E.E., Menges, E.S., Ellis, M.M., Bell, T., Bierzychudek, P, Ehrlen, J. et al. (2011) How do
ecologists use matrix population models? Ecology Letters 14(1): 1-8. DOI: https://doi.org/10.1111/j.
1461-0248.2010.01540.x

13. Darwin, C. (1859) On the Origin of Species By Means of Natural of Selection. John Murray: UK.

14. Doak, D. & Morris W.F. (2002). Quantitative Conservation Biology: Theory and Practice of Population
Viability Analysis. Oxford, UK: Oxford University Press

15. Easterling, M.R., Ellner, S.P., & Dixon, P.M. (2000). Size-specific sensitivity: Applying a new structured
population model. Ecology 81(3): 694-708. https://doi.org/10.1890/0012-9658(2000)081%5B0694:
SSSAAN%5D2.0.CO;2

16. Ebert, T.A. (1999). Plant and Animal Populations: Methods in Demography. Academic Press, San
Diego, California.

17. Ellner, S.P. & Rees, M. (2006). Integral Projection Models for species with complex demography. The
American Naturalist 167(3): 410-428.

18. Ellner, S.P., Childs, D.Z., & Rees, M. (2016) Data driven modelling of structured populations: a
practical guide to the Integral Projection Model. Springer, Switzerland.

19. Erickson, R.A., Eager, E.A., Brey, M.B., Hansen, M.J., & Kocovsky, P.M. (2017). An integral projection
model with YY-males and application to evaluating grass carp control. Ecological Modelling 361: 14-25.
https://doi.org/10.1016/j.ecolmodel.2017.07.030

20. Franco, M. & Silvertown, J. (1997) Life History Variation in Plants: An Exploration of the Fast-Slow
Continuum Hypothesis. Cambridge University Press, Cambridge, UK, New York, NY, USA.

21. Franklin, B. (1751) Observations concering the increase of mankind, peopling of countries, etc.

22. Ferrer-Cervantes, M.E., Mendez-Gonzalez, M.E., Quintana-Ascencio, P-F., Dorantes, A., Dzib, G., &
Duran, R. (2012). Population dynamics of the cactus Mammillaria gaumeri: an integral projection
model approach. Population Ecology 54: 321-334. DOI: https://doi.org/10.1007/s10144-012-0308-7

15

https://doi.org/10.1098/rpsb.2003.2597
https://doi.org/10.1038/s41467-021-21977-9
https://doi.org/10.1126/science.1209441
https://doi.org/10.1111/1365-2664.13020
https://doi.org/10.1111/j.1461-0248.2010.01540.x
https://doi.org/10.1111/j.1461-0248.2010.01540.x
https://doi.org/10.1890/0012-9658(2000)081%5B0694:SSSAAN%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081%5B0694:SSSAAN%5D2.0.CO;2
https://doi.org/10.1016/j.ecolmodel.2017.07.030
https://doi.org/10.1007/s10144-012-0308-7

23. Goodman, L.A. (1969) The analysis of population growth when the birth and death rates depend upon
several factors. Biometrics 25(4): 659-681.

24. Jensen, A.L. (1995) Simple density-dependent matrix for population projection. Ecological modelling
77: 43-48.

25. Jones, O.R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C.G., Schaible, R., Casper, B.P., et al.
(2014). Diversity of ageing across the tree of life. Nature 505: 169-173.

26. Jongejans, E., Shea, K., Skarpaas, O., Kelly, D., & Ellner, S.P. (2011). Importance of individual and
environmental variation for invasive species spread: a spatial integral projection model. Ecology 92(1):
86-97. https://doi.org/10.1890/09-2226.1

27. de Kroon, H., Plaisier A., van Groenendael, J., & Caswell, H. (1986). Elasticity: the relative contribution
of demographic parameters to population growth rate. Ecology 67(5): 1427-1431. https://doi.org/10.
2307/1938700.

28. Human LifetableDatabase. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany). Available at www.lifetable.de.

29. Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de.

30. Lefkovitch, L.P. (1965). The study of population growth in organisms grouped by stages. Biometrics
21(1): 1-18. https://www.jstor.org/stable/2528348

31. Leslie, P.H. (1945) The use of matrices in certain population mathematics. Biometrika, 33(3): 183–212.

32. Levin, S.C., Crandall, R.M. & Knight, T.M. (2019) Population projection models for 14 alien plant
species in the presence and absence of aboveground competition. Ecology 100(6): e02681.

33. Levin, S.C., Crandall, R.M., Pokoski, T., Stein, C. & Knight, T.M. (2020) Phylogenetic and functional
distinctiveness explain alien plant population responses to competition. Proceedings of the Royal
Society B 287: 20201070.

34. Levin, S.C., Childs, D.Z., Compagnoni, A., Evers, S., Knight, T.M. & Salguero-Gomez, R (2021) ipmr:
flexible implementation of Integral Projection Models in R. Methods in Ecology and Evolution 12(10):
1826-1834.

35. Liu, L. & Cohen, J.E. (1987). Equilibrium and local stability in a logistic matrix model for age-structured
populations. Journal of Mathematical Biology 25: 73-88.

36. Lommen, S.T.E., Jongejans, E., Leitsch-Vitalos, M., Tokarska-Guzik, B., Zalai, M., Mueller-Schaerer,
H. & Karrer, G. (2018) Time to cut: population models reveal how to mow invasive common ragweed
cost-effectively. NeoBiota 39: 53-78. DOI: 10.3897/neobiota.39.23398

37. Lotka, A.J. (1925) Elements of Physical Biology, Williams and Wilkins.

38. Maitner B.S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Duran, S.M. et al. (2017) The BIEN
R package: a tool to access the Botanical Information and Ecology Network database. Methods in
Ecology and Evolution 9(2): 373-379.

39. Hintze C., Heydel, F., Hoppe, C., Cunze, S., Koenig, A. & Tackenberg, O. (2013). Dˆ3: The Dispersal
and Diaspore Database - baseline data and statistics on seed dispersal. Perspectives in Plant Ecology,
Evolution, and Systematics 15(3): 180-192.

40. Malthus, T. (1798) An essay on the principle of population. J. Johnson, London, England.

41. McKendrick, A.G. (1926) Applications of mathematics to medical problems. Proceedings of the
Edinburgh Mathematical Society 44: 98-130

16

https://doi.org/10.1890/09-2226.1
https://doi.org/10.2307/1938700
https://doi.org/10.2307/1938700
https://www.jstor.org/stable/2528348

42. McKendrick, A.G. & Kesava Pai, M. (1911). The Rate of Multiplication of Micro-organisms:
A Mathematical Study. Proceedings of the Royal Society of Edinburgh. 31: 649–653. doi:
10.1017/S0370164600025426.

43. Merow, C., Dahlgren, J.P., Metcalf, C.J.E., Childs, D.Z., Evans, M.E.K., Jongejans, E., Record,
S., Rees, M., Salguero-Gomez R., & McMahon, S.M. (2014). Advancing population ecology with
integral projection models: a practical guide. Methods in Ecology and Evolution 5: 99-110. https:
//doi.org/10.1111/2041-210X.12146S

44. Merow, C., Bois, S.T., Allen, J.M., Xie, Y. & Silander Jr., J.A. (2017) Climate change both facilitates
and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences
114(16): E3276-E3284.

45. Metcalf et al. (2009) A time to grow and a time to die:

46. Metcalf, C.J.E., Ellner, S.P., Childs, D.Z., Salguero-Gómez, R., Merow, C., McMahon, S.M., Jongejans,
E., & Rees, M. (2015). Statistical modelling of annual variation for inference on stochastic population
dynamics using Integral Projection Models. Methods in Ecology and Evolution 6(9): 1007-1017.
https://doi.org/10.1111/2041-210X.12405

47. Metcalf, C.J.E., Graham, A.L., Martinez-Bakker, M. & Childs, D.Z. (2015) Opportunities and challenges
of Integral Projection Models for modelling host-parasite dynamics. Journal of Animal Ecology. DOI:
10.1111/1365-2656.12456

48. Metcalf, C.J.E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. (2013). IPMpack: an R
package for integral projection models. Methods in Ecology and Evolution. 4(2): 195-200. https:
//doi.org/10.1111/2041-210x.12001

49. Metcalf, C.J.E. & Pavard, S. (2007) Why evolutionary biologists should be demographers. Trends in
Ecology and Evolution 22(4): 205-212. DOI: 10.1016/j.tree.2006.12.001.

50. Nicole, F., Dahlgren, J.P., Vivat, A., Till-Bottraud, I. & Ehrlen, J. (2011). Interdependent effects
of habitat quality and climate on population growth of an endangered plant. Journal of Ecology 99:
1211-1218.

51. Rees, M. & Ellner, S.P. (2009) Integral projection models for populations in temporally varying
environments. Ecological Monographs 79(4): 575-594.

52. Rose, K.E., Louda, S.M. & Rees, M. (2005) Demographic and evolutionary impacts of native and
invasive insect herbivores on Cirsium canescens. Ecology 86(2): 453-465.

53. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

54. Ruggles, S., Manson, S.M, Kugler, T.A., Haynes, D.A., Van Riper, D.C., Bakhtsiyarava, M. (2018).
IPUMS Terra: Integrated data on population and environment: Version 2. Minneapolis, MN: IPUMS.

55. Salguero-Gómez, R., Jones, O.R., Archer, C.R., Bein, C., de Buhr, H., Farack, C., Gottschalk, F.,
Hartmann, A., Henning, A., Hoppe, G., Roemer, G., Ruoff, T., Sommer, V., Wille, J. Voigt, J., Zeh, S.,
Vieregg, D., Buckley, Y.M., Che-Castaldo, J., Hodgson, D., et al. (2016) COMADRE: a global database of
animal demography. Journal of Animal Ecology 85: 371-384. https://doi.org/10.1111/1365-2656.12482

56. Salguero-Gómez, R, Jones, O.R., Archer, C.A., Buckley, Y.M., Che-Castaldo, J., Caswell, C., Hodgson,
D., Scheuerlein, A., Conde, D.A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, F., Hartmann, A.,
Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., et al. (2014) The COMPADRE Plant
Matrix Database: an online repository for plant population dynamics. Journal of Ecology 103: 202-218.
https://doi.org/10.1111/1365-2745.12334

57. Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache, C.,
Zuidema, P., de Kroon, H., & Buckley, Y.M. (2015). Fast-slow continuum and reproductive strategies

17

https://doi.org/10.1111/2041-210X.12146S
https://doi.org/10.1111/2041-210X.12146S
https://doi.org/10.1111/2041-210X.12405
https://doi.org/10.1111/2041-210x.12001
https://doi.org/10.1111/2041-210x.12001
https://www.R-project.org/
https://doi.org/10.1111/1365-2656.12482
https://doi.org/10.1111/1365-2745.12334

structure plant life history variation worldwide. Proceedings of the National Academy of Sciences
113(1): 230-235.

58. Silvertown, J., Franco, M. & Perez-Ishiwara, R. (2001) Evolution of senescence in iteroparous perennial
plants. Evolutionary Ecology Research, 3, 393–412.

59. Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. (1993) Comparative plant demography: relative
importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials.
Journal of Ecology, 81, 465–476.

60. Simmonds E.G., Cole, E.F., Sheldon, B.C., & Coulson, T. (2020). Phenological asynchrony: a
ticking time-bomb for seemingly stable populations? Ecology Letters 23(12): 1766-1775. https:
//doi.org/10.1111/ele.13603

61. Shefferson, R.P., Kurokawa, S., & Ehrlen, J. (2020). LEFKO3: analysing individual history through size-
classified matrix population models. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-
210X.13526

62. Teller, B.J., Adler, P.B., Edwards, C.B., Hooker, G. & Ellner, S.P. (2016) Linking demography with
drivers: climate and competition. Methods in Ecology and Evolution 7: 171-183. DOI: 10.1111/2041-
210X.12486

63. Traill, L., Plard, F., Galliard, J-M. & Coulson, T. (2021). Can we use a functional trait to construct a
generalized model for ungulate populations? Ecology 102(4): e03289.

64. Vandermeer, J. (1978). Choosing category size in a stage projection matrix. Oecologia 32: 79-84.

65. Verhulst, P.H. (1838) Notice sur la loi que la population poursuit dans son accroissement. Corresp.
mathématique et physique 10, 113–121

66. Vindenes, Y. Engen, S. & Saether, B-E. (2011) Integral projection models for finite populations in a
stochastic environment. Ecology 92(5): 1146-1156.

67. Volterra, V. (1926) “Variazioni e fluttuazioni del numero d’individui in specie animali conviventi”, Mem.
Acad. Lincei Roma, 2, 31–113.

68. Zucarratto, R., Pires, A.S., Bergallo, H.G. & Portela, R.de C.Q. (2020) Felling the giants: integral
projection models indicate adult management to control an exotic invasive palm. Plant Ecology. DOI:
10.1007/s11258-020-01090-5

69. Suehs, C.M., Affre, L., & Medail, F. (2004). Invasion dynamics of two alien Carpobrotus (Aizoaceae)
taxa on a Mediterranean island: I. Genetic diversity and introgression. Heredity 92, 31–40. doi:
10.1038/sj.hdy.6800374

70. Powell, K.I., Chase, J.M., & Knight, T.M. (2011). A synthesis of plant invasion effects on biodiversity
across spatial scales. American Journal of Botany 98: 539-548. https://doi.org/10.3732/ajb.1000402

71. Duenas, M-A., Hemming, D.J., Roberts, A., & Diaz-Soltero, H. (2021). The threat of invasive species
to IUCN-listed critically endangered species: A systematic review. Global Ecology and Conservation
26: e01476 https://doi.org/10.1016/j.gecco.2021.e01476

72. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs
associated with alien-invasive species in the United States Ecological Economics 82(3): 273-288.
https://doi.org/10.1016/j.ecolecon.2004.10.002

18

https://doi.org/10.1111/ele.13603
https://doi.org/10.1111/ele.13603
https://doi.org/10.1111/2041-210X.13526
https://doi.org/10.1111/2041-210X.13526
doi:10.1038/sj.hdy.6800374
doi:10.1038/sj.hdy.6800374
https://doi.org/10.3732/ajb.1000402
https://doi.org/10.1016/j.gecco.2021.e01476
https://doi.org/10.1016/j.ecolecon.2004.10.002

Chapter 2: ipmr: Flexible implementation of Integral Projection
Models in R

Authors:

Sam C. Levin

Sanne Evers

Tomos Potter

Mayra Pena-Guerrero

Dylan Z. Childs

Aldo Compagnoni

Tiffany M. Knight

Roberto Salguero-Gomez

Published in Methods in Ecology and Evolution 12(10): 1826-1834.

https://doi.org/10.1111/2041-210X.13683

19

https://doi.org/10.1111/2041-210X.13683

Methods Ecol Evol. 2021;00:1–9.  |  1wileyonlinelibrary.com/journal/mee3

Received: 3 February 2021  |  Accepted: 21 June 2021

DOI: 10.1111/2041-210X.13683

A P P L I C A T I O N

ipmr: Flexible implementation of Integral Projection Models in R

Sam C. Levin1,2,3  | Dylan Z. Childs4  | Aldo Compagnoni1,2,3  | Sanne Evers1,2,5  |
Tiffany M. Knight1,2,5  | Roberto Salguero- Gómez3

This is an open access article under the terms of the Creat ive Commo ns Attri bution-NonCo mmercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

'Tiffany M. Knight and Roberto Salguero- Gómez contributed equally to this work

1Institute of Biology, Martin Luther
University Halle- Wittenberg, Halle (Saale),
Germany
2German Centre for Integrative Biodiversity
Research (iDiv) Halle- Jena- Leipzig, Leipzig,
Germany
3Department of Zoology, University of
Oxford, Oxford, UK
4Department of Animal and Plant Sciences,
University of Sheffield, Sheffield, UK
5Department of Community Ecology,
Helmholtz Centre for Environmental
Research- UFZ, Halle (Saale), Germany

Correspondence
Sam C. Levin
Email: levisc8@gmail.com

Funding information
R.S.- G. was supported by a NERC
Independent Research Fellowship (NE/
M018458/1). S.C.L., A.C., S.E. and T.M.K.
were funded by the Alexander von
Humboldt Foundation in the framework of
the Alexander von Humboldt Professorship
of TM Knight endowed by the German
Federal Ministry of Education and Research.

Handling Editor: Giovanni Strona

Abstract
1. Integral projection models (IPMs) are an important tool for studying the dynamics

of populations structured by one or more continuous traits (e.g. size, height, body
mass). Researchers use IPMs to investigate questions ranging from linking drivers
to population dynamics, planning conservation and management strategies, and
quantifying selective pressures in natural populations. The popularity of stage-
structured population models has been supported by R scripts and packages (e.g.
IPMpack, popbio, popdemo, lefko3) aimed at ecologists, which have introduced a
broad repertoire of functionality and outputs. However, pressing ecological, evo-
lutionary and conservation biology topics require developing more complex IPMs,
and considerably more expertise to implement them. Here, we introduce ipmr, a
flexible R package for building, analysing and interpreting IPMs.

2. The ipmr framework relies on the mathematical notation of the models to express
them in code format. Additionally, this package decouples the model parameteri-
zation step from the model implementation step. The latter point substantially in-
creases ipmr's flexibility to model complex life cycles and demographic processes.

3. ipmr can handle a wide variety of models, including those that incorporate density
dependence, discretely and continuously varying stochastic environments, and
multiple continuous and/or discrete traits. ipmr can accommodate models with
individuals cross- classified by age and size. Furthermore, the package provides
methods for demographic analyses (e.g. asymptotic and stochastic growth rates)
and visualization (e.g. kernel plotting).

4. ipmr is a flexible R package for integral projection models. The package substan-
tially reduces the amount of time required to implement general IPMs. We also
provide extensive documentation with six vignettes and help files, accessible from
an R session and online.

K E Y W O R D S

elasticity, integral projection model, life history, population dynamics, population growth rate,
sensitivity, structured populations

20

2  |    Methods in Ecology and Evoluon LEVIN Et aL.

1  | INTRODUC TION

Integral projection models (IPMs) are an important and widely used
tool for ecologists studying structured population dynamics in dis-
crete time. Since the paper introducing IPMs was published over
two decades ago (Easterling et al., 2000), at least 255 peer- reviewed
publications on at least 250 plant species and 60 animal species have
used IPMs (ESM, Table S1; Figure S1). These models have addressed
questions ranging from invasive species population dynamics (e.g.
Crandall & Knight, 2017), effect of climate drivers on population
persistence (e.g. Compagnoni et al., 2021), evolutionary stable strat-
egies (e.g. Childs et al., 2004) and rare/endangered species conser-
vation (e.g. Ferrer- Cervantes et al., 2012).

The IPM was introduced as alternative to matrix population
models, which model populations structured by discrete traits
(Caswell, 2001). Some of the advantages of using an IPM include
(a) the ability to model populations structured by continuously dis-
tributed traits, (b) the ability to flexibly incorporate discrete and
continuous traits in the same model (e.g. seeds in a seedbank and a
height- structured plant population, Crandall & Knight, 2017, or num-
ber of females, males and age- 1 recruits for fish species, Erickson
et al., 2017), (c) efficient parameterization of demographic processes
with familiar regression methods (Coulson, 2012), and (d) the numer-
ical discretization of continuous kernels (see below) means that the
tools available for matrix population models are usually also appli-
cable for IPMs. Furthermore, researchers have developed methods
to incorporate spatial dynamics (Jongejans et al., 2011), environ-
mental stochasticity (Rees & Ellner, 2009) and density/frequency
dependence into IPMs (Adler et al., 2010; Ellner et al., 2016). These
developments were accompanied by the creation of software tools
and guides to assist with IPM parameterization, implementation and
analysis. These tools range from R scripts with detailed annotations
(Coulson, 2012; Ellner et al., 2016; Merow et al., 2014) to R packages
(Metcalf et al., 2013; Shefferson et al., 2020).

Despite the array of resources available to researchers, im-
plementing an IPM is still not a straightforward exercise. For
example, an IPM that simulates a population for 100 time steps
requires the user to either write or adapt from published guides
multiple functions (e.g. to summarize demographic functions into
the proper format), implement the numerical approximations of
the model's integrals, ensure that individuals are not accidentally
sent beyond the integration bounds (‘unintentional eviction’, sensu
Williams et al., 2012) and track how the population state changes
over the course of a simulation. Stochastic IPMs present further
implementation challenges. In addition to the aforementioned el-
ements, users must generate the sequence of environments that
the population experiences. There are multiple ways of simulating
environmental stochasticity, each with their own strengths and
weaknesses (Metcalf et al., 2015).

ipmr manages these key details while providing the user flex-
ibility in their models. ipmr uses the rlang package for metapro-
gramming (Henry & Wickham, 2020), which enables ipmr to
provide a miniature domain- specific language for implementing

IPMs. ipmr aims to mimic the mathematical syntax that describes
IPMs as closely as possible (Figure 1; Box 1; Tables 1 and 2). This R
package can handle models with individuals classified by a mixture
of any number of continuously and discretely distributed traits.
Furthermore, ipmr introduces specific classes and methods to deal
with both discretely and continuously varying stochastic environ-
ments, density- independent and - dependent models, as well as
age- structured populations (Case Study 2). ipmr decouples the pa-
rameterization (i.e. regression model fitting) and implementation
steps (i.e. converting the regression parameters into a full IPM),
and does not attempt to help users with the parameterization task.
This provides greater flexibility in modelling trait– demography re-
lationships, and enables users to specify IPMs of any functional
form that they desire.

2  | TERMINOLOGY AND IPM
CONSTRUC TION

An IPM describes how the abundance and distribution of trait values
(also called state variables/states, denoted z and z′) for a population
changes in discrete time. The distribution of trait values in a popula-
tion at time t is given by the function n (z, t). A simple IPM for the
trait distribution z′ at time t + 1 is then

K
(
z′, z

)
, known as the projection kernel, describes all possible

transitions of existing individuals and recruitment of new individuals
from t to t + 1, generating a new trait distribution n

(
z�, t + 1

)
. L,U

are the lower and upper bounds for values that the trait z can have,
which defines the domain over which the integration is performed.
The integral ∫ U

L
n (z, t) dz gives the total population size at time t.

To make the model more biologically interpretable, the projec-
tion kernel K

(
z′, z

)
 is usually split into sub- kernels (Equation 2). For

example, a projection kernel to describe a life cycle where individ-
uals can survive, transition to different state values, and reproduce
via sexual and asexual pathways, can be split as follows.

where P
(
z′, z

)
 is a sub- kernel describing transitions due to survival

and trait changes of existing individuals, F
(
z′, z

)
 is a sub- kernel de-

scribing per- capita sexual contributions of existing individuals to re-
cruitment and C

(
z′, z

)
 is a sub- kernel describing per- capita asexual

contributions of existing individuals to recruitment. The sub- kernels
are typically comprised of functions derived from regression mod-
els that relate an individual's trait value z at time t to a new trait
value z′ at t + 1. For example, the P kernel for Soay sheep Ovis aries
on St. Kilda (Equation 3) may contain two regression models: (a) a
logistic regression of survival on log body mass (Equation 4) and (b)

(1)n
(
z�, t + 1

)
=

U

∫
L

K
(
z�, z

)
n (z, t) dz.

(2)K
(
z�, z

)
= P

(
z�, z

)
+ F

(
z�, z

)
+ C

(
z�, z

)
,

21

     |  3Methods in Ecology and EvoluonLEVIN Et aL.

a linear regression of log body mass at t + 1 on log body mass at t
(Equations 5– 6). In this example, fG is a normal probability density
function with �G given by the linear predictor of the mean, and with
�G computed from the standard deviation of the residuals from the
linear regression model.

(3)P
(
z�, z

)
= s (z) ∗ G

(
z�, z

)
,

(4)Logit (s (z)) = �s + �s ∗ z,

(5)G
(
z�, z

)
= fG

(
z�, �G , �G

)
,

F I G U R E 1   There are generally six steps in defining an IPM with ipmr. (1) Vital rate models are fit to demographic data collected from field
sites. This step requires the use of other packages, as ipmr does not contain facilities for regression modelling. The figure on the left shows
the fitted relationship between size at t and t + 1 for Carpobrotus spp. in Case Study 1. (2) The next step is deciding what type of IPM is
needed. This is determined by both the research question and the data used to parameterize the regression models. This process is initiated
with init_ipm(). In step (3), kernels are defined using ipmr's syntax to represent kernels and vital rate functions. (4) Having defined symbolic
representations of the model, the numerical definition is given. Here, the integration rule, domain bounds and initial population conditions
are defined. For some models, initial environmental conditions can also be defined. (5) make_ipm() numerically implements the proto_ipm
object, (6) which can then be analysed further. The figure at the bottom left shows a K

(
z′, z

)
 kernel created by make_ipm() and make_iter_

kernel(). The line plots above and to the right display the left and right eigenvectors, extracted with left_ev() and right_ev(), respectively

22

4  |    Methods in Ecology and Evoluon LEVIN Et aL.

BOX 1 Code to implement a simple IPM from parameter estimates in ipmr. Because ipmr does not include
functions to assist with regression modelling, this example skips the step of working with actual data and instead
uses hypothetical parameter values. We see that given this set of conditions, if nothing were to change, the
population would increase by ~2% each year. The case studies provide details on further use cases and analyses that
are possible with ipmr.

library(ipmr)

 # This section produces the result of Step 1 in Figure 1.

data_list <- list(
 s_i = - 0.65, # Intercept of the survival model (Logistic regression)
 s_z = 0.75, # Slope of the survival model
 G_i = 0.96, # Intercept of the growth model (Gaussian regression)
 G_z = 0.66, # Slope of the growth model
 sd_G = 0.67, # Standard deviation of residuals of growth model
 mu_r = - 0.08, # Mean of the recruit size distribution
 sd_r = 0.76, # Standard deviation of the recruit size distribution
 r_n_i = - 1, # Intercept of recruit production model (Poisson regression)
 r_n_z = 0.3 # Slope of recruit production model.
)

 # Step 2 in Figure 1. This is how ipmr initializes a model object.
 # All functions prefixed with define_* generate proto_ipm objects. These
 # are converted into IPMs using the make_ipm() function in step 5.

example_proto_ipm <- init_ipm(sim_gen = "simple",
 di_dd = "di",
 det_stoch = "det")

 # Step 3 in Figure 1. Note the link between how the model was defined
 # mathematically and how it is defined here.

example_proto_ipm <- define_kernel(
 example_proto_ipm,
 name = "P",
 formula = surv * Grow,
 surv = plogis(s_i + s_z * z_1),
 Grow = dnorm(z_2, mu_G, sd_G),
 mu_G = G_i + G_z * z_1,
 data_list = data_list,
 states = list(c("z"))
)

example_proto_ipm <- define_kernel(
 example_proto_ipm,
 name = "F",
 formula = recr_number * recr_size,
 recr_number = exp(r_n_i + r_n_z * z_1),
 recr_size = dnorm(z_2, mu_r, sd_r),
 data_list = data_list,
 states = list(c("z"))
)

23

     |  5Methods in Ecology and EvoluonLEVIN Et aL.

TA B L E 1   Translations between mathematical notation, R’s formula notation and ipmr's notation for the simplified version of Bogdan et
al.'s Carpobrotus IPM. The ipmr column contains the expressions used in each kernel's definition. R expressions are not provided for sub-
kernels and model iteration procedures because they typically require defining functions separately, and there are many ways to do this
step (examples are in the R code for each case study in the appendix). The plogis() function computes the inverse logit transformation of an
expression. s corresponds to survival, G corresponds to change in size conditional on survival, rp is the probability of reproducing, rn is the
number of propagules produced by reproductive individuals and pr is the probability that a propagule becomes a new recruit at t + 1

Math formula R formula ipmr

�G = �G + �G ∗ z size_2 ~ size_1, family =gaussian() mu_G = G_int + G_slope * z

G
(
z� , z

)
= fG

(
z� , �G , �G

)
G = dnorm(z_2, mu_G, sd_G) G = dnorm(z_2, mu_G, sd_G)

logit (s (z)) = �s + �s ∗ z surv ~size_1, family = binomial() s = plogis(s_int + s_slope * z)

log
(
rn (z)

)
= �rn + �rn ∗ z fec ~size_1, family = poisson() r_n = exp(r_n_int + r_n_slope * z)

logit
(
rp (z)

)
= �rp + �rp ∗ z repr ~ size_1, family = binomial() r_p = plogis(r_p_int + r_p_slope * z)

rd
(
z�
)
= frd

(
z� , �rd

, �rd
)

dnorm(z_2, mu_f_d, sigma_f_d) r_d = dnorm(z_2, f_d_mu, f_d_sigma)

pr =
Recruits(t + 1)
flowers(t)

p_r = n_new_recruits / n_flowers p_r = n_new / n_flowers

P = s (z) ∗ G
(
z� , z

)
P = s * G

F
(
z� , z

)
= rp (z) ∗ rn (z) ∗ rd

(
z�
)
∗ pr F = r_p * r_n * r_d * p_r

n
(
z� , t + 1

)
= ∫ U

L
[P

(
z� , z

)
+ F

(
z� , z

)
]n (z, t) dz

 # Step 4 in Figure 1. These next 3 functions define:
 # 1. The numerical integration rules and how to iterate the
 # model (define_impl).
 # 2. The range of values the the trait "z" can take on, and the number of
 # meshpoints to use when dividing the interval (define_domains).
 # 3. The initial population state (define_pop_state).

example_proto_ipm <- define_impl(
 example_proto_ipm,
 list(
 P = list(int_rule = "midpoint", state_start = "z", state_end = "z"),
 F = list(int_rule = "midpoint", state_start = "z", state_end = "z")
)
)

example_proto_ipm <- define_domains(
 example_proto_ipm,
 z = c(- 2.65, 4.5, 250) # format: c(L, U, m), m is number of meshpoints
)

example_proto_ipm <- define_pop_state(
 example_proto_ipm,
 n_z = rep(1/250, 250)
)

 # Step 5 in Figure 1.

example_ipm <- make_ipm(example_proto_ipm)

 # Step 6 in Figure 1.

lambda(example_ipm)

BOX 1 (Continued)

24

6  |    Methods in Ecology and Evoluon LEVIN Et aL.

Analytical solutions to the integral in Equation 1 are usually not
possible (Ellner & Rees, 2006). However, numerical approximations
of these integrals can be constructed using a numerical integration
rule. A commonly used rule is the midpoint rule (more complicated
and precise methods are possible and will be implemented, though
are not yet, see Ellner et al., 2016, Chapter 6). The midpoint rule
divides the domain

[
L, U

]
 into m artifical size bins centered at zi

with width h = (U − L) ∕m. The midpoints zi = L + (i − 0.5) ∗ h for
i = 1, 2, . . . , m. The midpoint rule approximation for Equation 1
then becomes:

In practice, the numerical approximation of the integral converts the
continuous projection kernel into a (large) discretized matrix. A matrix
multiplication of the discretized projection kernel and the discretized
trait distribution then generates a new trait distribution, a process re-
ferred to as model iteration (sensu Easterling et al., 2000).

Equations 1 and 2 are an example of a simple IPM. A critical as-
pect of ipmr's functionality is the distinction between simple IPMs
and general IPMs. A simple IPM incorporates a single continuous
state variable. Equations 1 and 2 represent a simple IPM because
there is only one continuous state, z, and no additional discrete

states. A general IPM models one or more continuous state vari-
ables, and/or discrete states. General IPMs are useful for modelling
species with more complex life cycles. Many species’ life cycles con-
tain multiple life stages that are not readily described by a single
state variable. Similarly, individuals with similar trait values may be-
have differently depending on environmental context. For example,
Bruno et al. (2011) modelled aspergillosis impacts on sea fan coral
Gorgonia ventalina population dynamics by creating a model where
colonies were cross classified by tissue area (continuously distrib-
uted) and infection status (a discrete state with two levels— infected
and uninfected). Coulson et al. (2010) constructed a model for Soay
sheep where the population was structured by body weight (contin-
uously distributed) and age (discrete state). Mixtures of multiple con-
tinuous and discrete states are also possible. Indeed, the vital rates of
many species with complex life cycles are often best described with
multivariate state distributions (Caswell & Salguero- Gómez, 2013).
A complete definition of the simple/general distinction is given in
Ellner et al. (2016, Chapter 6).

2.1 | A brief worked example of a simple IPM

Box 1 shows a brief example of how ipmr converts parameter es-
timates into an IPM. Perhaps the most frequently used metric de-
rived from IPMs is the asymptotic per- capita population growth
rate (�, Caswell, 2001). When 𝜆 > 1, the population is growing,

(6)�G = �G + �G ∗ z.

(7)n
(
zj , t + 1

)
= h

m∑
i=1

K
(
zj , zi

)
n
(
zi , t

)
.

TA B L E 2   Translations between mathematical notation, R’s formula notation and ipmr's notation for Ellner et al. (2016) Ovis aries IPM. The
ipmr column contains the expressions used in each kernel's definition. R expressions are not provided for sub- kernels and model iteration
procedures because they typically require defining functions separately, and there are many ways to do this step (examples are in the R
code for each case study in the appendix). ipmr supports a suffix based syntax to avoid repetitively typing out the levels of discrete grouping
variables. These are represented as ‘a’ in the Math column, ‘age’ in the R formula column, and are highlighted in bold in the ipmr column. s
corresponds to survival, G corresponds to change in size conditional on survival, mp is the probability of mating, rp is the probability that a
mating produces a new recruit at t + 1 and B is the size distribution of new recruits at t + 1 whose mean depends on parent size at time t. Fa is
divided by 2 because this IPM only tracks females

Math formula R formula ipmr

Logit (s (z, a)) = �s + �s,z ∗ z + �s,a ∗ a surv ~ size_1 + age, family = binomial() s_age = plogis(s_int + s_z * z_1 + s_a * age)

G
(
z� , z, a

)
= fG

(
z� , �G (z, a) , �G

)
G = dnorm(size_2, mu_G_age, sigma_G) G_age = dnorm(z_2, mu_G_age, sigma_G)

�G (z, a) = �G + �G,z ∗ z + �G,a ∗ a size_2 ~ size_1 + age, family = gaussian() mu_G_age = G_int + G_z * z + G_a * age

Logit
(
mp (z, a)

)
= �mp

+ �mp ,z
∗ z + �mp ,a

∗ a repr ~size_1 + age, family = binomial() m_p_age = plogis(m_p_int + m_p_z * z +
m_p_a * age)

Logit
(
rp (a)

)
= �rp + �rp ,a ∗ a recr ~age, family = binomial() r_p_age = plogis(r_p_int + r_p_a * age)

B
(
z� , z

)
= fB

(
z� , �B (z) , �B

)
b = dnorm(size_2, mu_rc_size, sigma_rc_size) rc_size = dnorm(z_2, mu_rc_size,

sigma_rc_size)

�B (z) = �B + �B,z ∗ z rc_size_2 ~ size_1, family = gaussian() mu_rc_size = rc_size_int + rc_size_z * z

Pa
(
z� , z

)
= s (z, a) ∗ G

(
z� , z, a

)
P_age = s_age * g_age * d_z

Fa
(
z� , z

)
= s (z, a) ∗ mp (z, a) ∗ rp (a) ∗ B

(
z� , z

)
∕2 F_age = s_age * f_p_age * r_p_age * rc_size

/ 2

n0
�
z� , t + 1

�
=

∑M+1

a=0
∫ U
L
Fa

�
z� , z

�
na (z, t) dz

na
(
z� , t + 1

)
= ∫ U

L
Pa−1

(
z� , z

)
na−1 (z, t) dz

nM+1
(
z� , t+1

)
= ∫ U

L
[PM+1

(
z� , z

)
nM+1 (z, t)

+PM
(
z� , z

)
nM (z, t)]dz

25

     |  7Methods in Ecology and EvoluonLEVIN Et aL.

while 𝜆 < 1 indicates population decline. ipmr makes deriving es-
timates of � straightforward. Box 1 demonstrates how to param-
eterize a simple, deterministic IPM and estimate �. The example
uses a hypothetical species that can survive and grow, and repro-
duce sexually (but not asexually, so C

(
z�, z

)
= 0 in Equation 2). The

population is structured by size, denoted z and z′, and there is no
seedbank.

The P
(
z′, z

)
 kernel is given by Equation 3, and the vital rates

therein by Equations 4– 6. The F
(
z′, z

)
 kernel is given Equation 8:

Equation 9 is a recruit size distribution (where frd denotes a normal
probability density function), and Equation 10 describes the number of
new recruits produced by plants as a function of size z.

The code in Box 1 substitutes the actual probability density
function (dnorm()) for fG and frd, and uses inverse link functions in-
stead of link functions. Otherwise, the math and the code should
look quite similar.

2.2 | Case study 1: A simple IPM

One use for IPMs is to evaluate potential performance and man-
agement of invasive species in their non- native range (e.g. Erickson
et al., 2017). Calculating sensitivities and elasticities of � to kernel
perturbations can help identify conservation management strat-
egies (Baxter et al., 2006; Caswell, 2001; de Kroon et al., 1986;
Ellner et al., 2016). Bogdan et al. (2021) constructed a simple IPM
for a Carpobrotus species growing north of Tel Aviv, Israel. The
model includes four regressions, and an estimated recruit size dis-
tribution. Table 1 provides the mathematical formulae, the corre-
sponding R model formulae and the ipmr notation for each one.
The case study materials also offer an alternative implementation
that uses the generic predict() function to generate the same out-
put. The final part of the case study provides examples of functions
that compute kernel sensitivity and elasticity, the per- generation
growth rate, and generation time for the model, as well as how to
visualize these results.

2.3 | Case study 2: A general age × size IPM

We use an age- and size- structured IPM from Ellner et al. (2016)
to illustrate how to create general IPMs with ipmr. This case study
demonstrates the suffix syntax for vital rate and kernel expres-
sions, which is a key feature of ipmr (highlighted in bold in the
‘ipmr’ column in Table 2). The suffixes appended to each variable
name in the ipmr formulation correspond to the subscript- and/or

superscript used in the mathematical formulation. ipmr internally
expands the model expressions and substitutes the range of ages
and/or grouping variables in for the suffixes. This allows users to
specify their model in a way that closely mirrors its mathematical
notation, and saves users from the potentially error- prone process
of re- typing model definitions many times or using for loops over
the range of discrete states. The case study then demonstrates
how to compute age- specific survival and fertility from the model
outputs.

3  | DISCUSSION OF ADDITIONAL
APPLIC ATIONS

We have shown above how ipmr handles a variety of model imple-
mentations that go beyond the capabilities of existing scripts and
packages. The underlying implementation based on metaprogram-
ming should be able to readily incorporate future developments in
parameterization methods. Regression modelling is a field that is
constantly introducing new methods. As long as these new meth-
ods have functional forms for their expected value (or a function to
compute them, such as predict()), ipmr should be able to implement
IPMs using them.

Finally, one particularly useful aspect of the package is the
proto_ipm data structure. The proto_ipm is the common data
structure used to represent every model class in ipmr and pro-
vides a concise, standardized format for representing IPMs.
Furthermore, the proto_ipm object is created without any raw
data, only functional forms and parameters. We are in the pro-
cess of creating the PADRINO IPM database using ipmr and
proto_ipms as an ‘engine’ to re- build published IPMs using
only functional forms and parameter estimates. This database
could act as an IPM equivalent of the popular COMPADRE
and COMADRE matrix population model databases (Salguero-
Gómez et al., 2016; Salguero- Gómez et al., 2014). Recent work
has highlighted the power of syntheses that harness many
structured population models (Adler et al., 2014; Compagnoni
et al., 2021; Salguero- Gómez et al., 2016). Despite the wide va-
riety of models that are currently published in the IPM litera-
ture, ipmr's functional approach is able to reproduce nearly all
of them without requiring any raw data at all.

ACKNOWLEDG EMENTS
We thank the Associate Editor and two anonymous reviewers for
comments that greatly improved this manuscript.

CONFLIC TS OF INTERE S T
The authors declare no conflicts of interest.

AUTHORS' CONTRIBUTIONS
All authors contributed to package design. S.C.L. implemented the
package. All authors wrote the first draft of the manuscript and con-
tributed to revisions.

(8)F
(
z�, z

)
= rd

(
z�
)
∗ rn (z) ,

(9)rd
(
z�
)
= frd

(
z�, �rd

, �rd
)
,

(10)Log
(
rn (z)

)
= �rn + �rn ∗ z.

26

8  |    Methods in Ecology and Evoluon LEVIN Et aL.

PEER RE VIE W
The peer review history for this article is available at https://publo
ns.com/publo n/10.1111/2041- 210X.13683.

DATA AVAIL ABILIT Y S TATEMENT
The Carpobrotus dataset is included in the ipmr R package. The pack-
age is available on GitHub at https://github.com/levis c8/ipmr, CRAN at
https://cran.r- proje ct.org/web/packa ges/ipmr/index.html (Levin et al.,
2021), and Zenodo at https://doi.org/10.5281/zenodo.5095062 (Levin,
2021). The paper and case studies do not use any other data.

ORCID
Sam C. Levin https://orcid.org/0000-0002-3289-9925
Dylan Z. Childs https://orcid.org/0000-0002-0675-4933
Aldo Compagnoni https://orcid.org/0000-0001-8302-7492
Sanne Evers https://orcid.org/0000-0002-8002-1658
Tiffany M. Knight https://orcid.org/0000-0003-0318-1567
Roberto Salguero- Gómez https://orcid.
org/0000-0002-6085-4433

R E FE R E N C E S
Adler, P. B., Ellner, S. P., & Levine, J. M. (2010). Coexistance of perennial

plants: An embarassment of niches. Ecology Letters, 13, 1019– 1029.
https://doi.org/10.1111/j.1461- 0248.2010.01496.x

Adler, P. B., Salguero- Gómez, R., Compagnoni, A., Hsu, J. S., Ray-
Mukherjee, J., Mbeau- Ache, C., & Franco, M. (2014). Functional
traits explain variation in plant life history strategies. Proceedings
of the National Academy of Sciences of the United States of
America, 111(2), 740– 745. https://doi.org/10.1073/pnas.13151
79111

Baxter, P. W. J., McCarthy, M. A., Possingham, H. P., Menkhorst, P.
W., & McLean, N. (2006). Accounting for management costs in
sensitivity analyses of matrix population models. Conservation
Biology, 20(3), 893– 905. https://doi.org/10.1111/j.1523- 1739.
2006.00378.x

Bogdan, A., Levin, S. C., Salguero- Gómez, R., & Knight, T. M. (2021).
Demographic analysis of Israeli Carpobrotus populations: Management
strategies and future directions. PLoS ONE, 16(4), e0250879. https://
doi.org/10.1101/2020.12.08.415174

Bruno, J. F., Ellner, S. P., Vu, I., Kim, K., & Harvell, C. D. (2011). Impacts
of aspergillosis on sea fan coral demography: Modeling a mov-
ing target. Ecological Monographs, 81(1), 123– 139. https://doi.org/
10.1890/09- 1178.1

Caswell, H. (2001). Matrix population models: Construction, analysis, and
interpretation (2nd ed.). Sinauer Associates Inc.

Caswell, H., & Salguero- Gómez, R. (2013). Age, stage and senescence
in plants. Journal of Ecology, 101(3), 585– 595. https://doi.org/
10.1111/1365- 2745.12088

Childs, D. Z., Rees, M., Rose, K. E., Grubb, P. J., & Ellner, S. P.
(2004). Evolution of size- dependent flowering in a variable en-
vironment: Construction and analysis of a stochastic integral
projection model. Proceedings of the Royal Society B: Biological
Sciences, 271(1547), 425– 434. https://doi.org/10.1098/rpsb.
2003.2597

Compagnoni, A., Levin, S. C., Childs, D. Z., Harpole, S., Paniw, M., Roemer,
G., Burns, J. H., Che- Castaldo, J., Rueger, N., Kunstler, G., Bennett,
J. M., Archer, C. R., Jones, O. R., Salguero- Gomez, R., & Knight, T.
M. (2021). Herbaceous perennial plants with short generation time
have stronger responses to climate anomalies than those with

longer generation time. Nature Communications, 12, 1824. https://
doi.org/10.1038/s4146 7- 021- 21977 - 9

Coulson, T. N. (2012). Integral projection models, their construction and
use in posing hypotheses in ecology. Oikos, 121, 1337– 1350. https://
doi.org/10.1111/j.1600- 0706.2012.00035.x

Coulson, T., Tuljapurkar, S., & Childs, D. Z. (2010). Using evolutionary de-
mography to link life history theory, quantitative genetics and popu-
lation ecology. Journal of Animal Ecology, 79, 1226– 1240. https://doi.
org/10.1111/j.1365- 2656.2010.01734.x

Crandall, R. M., & Knight, T. M. (2017). Role of multiple invasion mecha-
nisms and their interaction in regulating the population dynamics of
an exotic tree. Journal of Applied Ecology, 55(2), 885– 894. https://doi.
org/10.1111/1365- 2664.13020

de Kroon, H., Plaisier, A., van Goenendael, J., & Caswell, H. (1986).
Elasticity: The relative contribution of demographic parameters to
population growth rate. Ecology, 67(5), 1427– 1431.

Easterling, M. R., Ellner, S. P., & Dixon, P. M. (2000). Size specific sensi-
tivity: Applying a new structured population model. Ecology, 81(3),
694– 708.

Ellner, S. P., Childs, D. Z., & Rees, M. (2016). Data- driven modelling of struc-
tured populations: A practical guide to the integral projection model.
Springer International Publishing AG.

Ellner, S. P., & Rees, M. (2006). Integral projection models for species
with complex demography. The American Naturalist, 167(3), 410– 428.

Erickson, R. A., Eager, E. A., Brey, M. B., Hansen, M. J., & Kocovsky, P.
M. (2017). An integral projection model with YY- males and applica-
tion to evaluating grass carp control. Ecological Modelling, 361, 14– 25.
https://doi.org/10.1016/j.ecolm odel.2017.07.030

Ferrer- Cervantes, M. E., Mendez- Gonzalez, M. E., Quintana- Ascencio,
P.- F., Dorantes, A., Dzib, G., & Duran, R. (2012). Population dynam-
ics of the cactus Mammillaria gaumeri: An integral projection model
approach. Population Ecology, 54, 321– 334. https://doi.org/10.1007/
s1014 4- 012- 0308- 7

Henry, L., & Wickham, H. (2020). rlang: Functions for base types and core
R and ‘Tidyverse’ features. R package version 0.4.7. https://CRAN.R-
proje ct.org/packa ge=rlang

Jongejans, E., Shea, K., Skarpaas, O., Kelly, D., & Ellner, S. P. (2011).
Importance of individual and environmental variation for invasive
species spread: A spatial integral projection model. Ecology, 92(1),
86– 97. https://doi.org/10.1890/09- 2226.1

Levin, S. C. (2021). Data from: Levisc8/ipmr: (Version v0.0.3). Zenodo,
https://doi.org/10.5281/zenodo.5095062

Levin, S. C., Compagnoni, A. C., Childs, D. Z., Evers, S., Salguero- Gomez,
R., & Knight, T. M. (2021). ipmr: Fits Integral projection models using
an expression based framework. R package version 0.0.2. https://
CRAN.R- proje ct.org/packa ge=ipmr

Merow, C., Dahlgren, J. P., Metcalf, C. J. E., Childs, D. Z., Evans, M. E. K.,
Jongejans, E., Record, S., Rees, M., Salguero- Gomez, R., & McMahon,
S. M. (2014). Advancing population ecology with integral projection
models: A practical guide. Methods in Ecology and Evolution, 5, 99–
110. https://doi.org/10.1111/2041- 210X.12146S

Metcalf, C. J. E., Ellner, S. P., Childs, D. Z., Salguero- Gómez, R.,
Merow, C., McMahon, S. M., Jongejans, E., & Rees, M. (2015).
Statistical modelling of annual variation for inference on sto-
chastic population dynamics using Integral Projection Models.
Methods in Ecology and Evolution, 6(9), 1007– 1017. https://doi.org/
10.1111/2041- 210X.12405

Metcalf, C. J. E., McMahon, S. M., Salguero- Gómez, R., & Jongejans,
E. (2013). IPMpack: An R package for integral projection mod-
els. Methods in Ecology and Evolution., 4(2), 195– 200. https://doi.
org/10.1111/2041- 210x.12001

Salguero- Gómez, R., Jones, O. R., Archer, C. R., Bein, C., de Buhr, H., Farack,
C., Gottschalk, F., Hartmann, A., Henning, A., Hoppe, G., Roemer, G.,
Ruoff, T., Sommer, V., Wille, J., Voigt, J., Zeh, S., Vieregg, D., Buckley,

27

     |  9Methods in Ecology and EvoluonLEVIN Et aL.

Y. M., Che- Castaldo, J., … Vaupel, J. W. (2016). COMADRE: A global
database of animal demography. Journal of Animal Ecology, 85, 371–
384. https://doi.org/10.1111/1365- 2656.12482

Rees, M., & Ellner, S. P. (2009). Integral projection models for populations
in temporally varying environments. Ecological Monographs, 79(4),
575– 594. https://doi.org/10.1890/08- 1474.1.

Salguero- Gómez, R., Jones, O. R., Archer, C. A., Buckley, Y. M., Che-
Castaldo, J., Caswell, C., Hodgson, D., Scheuerlein, A., Conde, D.
A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, F., Hartmann,
A., Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., …
Vaupel, J. W. (2014). The COMPADRE Plant Matrix Database:
An online repository for plant population dynamics. Journal of
Ecology, 103, 202– 218. https://doi.org/10.1111/1365- 2745.
12334

Shefferson, R. P., Kurokawa, S., & Ehrlen, J. (2020). LEFKO3:
Analysing individual history through size- classified matrix pop-
ulation models. Methods in Ecology and Evolution. https://doi.
org/10.1111/2041- 210X.13526

Williams, J. L., Miller, T. E. X., & Ellner, S. P. (2012). Avoiding unintentional
eviction from integral projection models. Ecology, 93(9), 2008– 2014.
https://doi.org/10.1890/11- 2147.1

SUPPORTING INFORMATION
Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Levin, S. C., Childs, D. Z.,
Compagnoni, A., Evers, S., Knight, T. M., & Salguero- Gómez,
R. (2021). ipmr: Flexible implementation of Integral
Projection Models in R. Methods in Ecology and Evolution, 00,
1– 9. https://doi.org/10.1111/2041- 210X.13683

28

Chapter 3: Rpadrino: an R package to access and use PADRINO,
an open access database of Integral Projection Models

Authors:

Sam C. Levin

Sanne Evers

Tomos Potter

Mayra Pena-Guerrero

Dylan Z. Childs

Aldo Compagnoni

Tiffany M. Knight

Roberto Salguero-Gomez

Published in Methods in Ecology and Evolution 13(9): 1923-1929.

https://doi.org/10.1111/2041-210X.13910

29

https://doi.org/10.1111/2041-210X.13910

Methods Ecol Evol. 2022;13:1923–1929.  | 1923wileyonlinelibrary.com/journal/mee3

Received: 8 March 2022  | Accepted: 20 May 2022

DOI: 10.1111/2041-210X.13910

A P P L I C A T I O N

Rpadrino: An R package to access and use PADRINO, an open
access database of Integral Projection Models

Sam C. Levin1,2,3  | Sanne Evers1,2  | Tomos Potter3,4 | Mayra Peña Guerrero1,2 |
Dylan Z. Childs5 | Aldo Compagnoni1,2,3 | Tiffany M. Knight1,2,6 |
Roberto Salguero- Gómez3

1Institute of Biology, Martin Luther University Halle- Wittenberg, Halle (Saale), Germany; 2German Centre for Integrative Biodiversity Research (iDiv) Halle-
Jena- Leipzig, Leipzig, Germany; 3Department of Zoology, University of Oxford, Oxford, UK; 4Department of Biological Sciences, Florida State University,
Tallahassee, FL, USA; 5Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK and 6Department of Community Ecology, Helmholtz
Centre for Environmental Research- UFZ, Halle (Saale), Germany

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Tiffany M. Knight and Roberto Salguero- Gómez— Joint senior authors.

Correspondence
Sam C. Levin
Email: levisc8@gmail.com

Funding information
Alexander von Humboldt- Stiftung; Natural
Environment Research Council, Grant/
Award Number: NE/M018458/1

Handling Editor: Giovanni Strona

Abstract
1. Discrete time structured population projection models are an important tool

for studying population dynamics. Within this field, integral projection models
(IPMs) have become a popular method for studying populations structured by
continuously distributed traits (e.g. height, weight). Databases of discrete time,
discrete state structured population models, for example DATLife (life tables)
and COMPADRE & COMADRE (matrix population models), have made quantita-
tive syntheses straightforward to implement. These efforts allow researchers
to address questions in both basic and applied ecology and evolutionary biol-
ogy. Since their introduction in 2000, over 300 works containing IPMs have
been published, offering opportunities for ecological synthesis too. We describe
a novel framework to quickly reconstruct these models for subsequent analyses
using Rpadrino R package, which serves as an interface to PADRINO, a new
database of IPMs.

2. We introduce an R package, Rpadrino, which enables users to download, subset,
reconstruct, and extend published IPMs. Rpadrino makes use of recently created
software, ipmr, to provide an engine to reconstruct a wide array of IPMs from
their symbolic representations and conduct subsequent analyses. Rpadrino and
ipmr are extensively documented to help users learn their usage.

3. Rpadrino currently enables users to reconstruct 280 IPMs from 40 publica-
tions that describe the demography of 14 animal and 26 plant species. All of
these IPMs are tested to ensure they reproduce published estimates. Rpadrino
provides an interface to augment PADRINO with external data and modify

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

30

1924  |   Methods in Ecology and Evoluon LEVIN et al.

1  |  INTRODUC TION

Demography provides an excellent approach to examine the ecology
(Crone et al., 2011), evolutionary biology (Metcalf & Pavard, 2007),
and conservation biology of any species (Doak & Morris, 2002).
Environmental conditions and biotic interactions influence vital
rates (e.g. survival, development, and reproduction) across the en-
tire life cycle, which then govern its short- term and long- term per-
formance (Caswell, 2001). A variety of methods exist for combining
vital rates into demographic models; discrete- time, structured pop-
ulation models are among the most popular (Caswell, 2001; Crone
et al., 2011). Indeed, there is a rich history of using such structured
population models across a variety of sub- disciplines in ecology
(e.g. Adler et al., 2010; Caswell, 2001; Easterling et al., 2000; Ellner
et al., 2016).

In ecology, matrix projection models (MPMs) are the most
widely used structured population model. MPMs divide the popu-
lation into discrete classes corresponding to some trait value (e.g.
developmental state, age, or size), and then model the population
using vital rates computed for each class. Researchers have also
recognized that, for some species, vital rates are best predicted
as a function of one or more continuous traits (e.g. size, height,
mass), rather than as a function of discrete classes (Easterling
et al., 2000). Integral projection models (IPMs), which are continu-
ously structured population models, have become an increasingly
important tool for ecologists interested in addressing broad biolog-
ical questions through a demographic lens (Gonzalez et al., 2021).
IPMs combine vital rate functions of continuous traits into projec-
tion kernels, which describe how the abundance and distribution
of trait values in a population change in discrete time (Easterling
et al., 2000). IPMs have been used to investigate a variety of
topics, such as invasive species spread (e.g. Erickson et al., 2017;
Jongejans et al., 2011), evolutionary stable strategies (e.g. Childs
et al., 2004), the effect of climate drivers on population per-
sistence (Compagnoni, Pardini, & Knight, 2021; Salguero- Gómez
et al., 2012), and linking evolutionary feedbacks to population dy-
namics (Coulson et al., 2011).

In order to reconstruct and use an IPM, researchers need, at a
minimum, the symbolic representation of the model and the associ-
ated parameter values. Existing demographic databases enter tran-
sition values directly, rather than a symbolic version of the model
and the values associated with the symbols separately. For example,
COMPADRE and COMADRE store transition matrices as numeric
matrices (sub- matrices corresponding to survival and development
(U), sexual reproduction (F), asexual reproduction (C), and their sum
(A), rather than symbolic matrices with parameter values separately.
In general, this data format limits the variety of potential analyses,
because individual matrix elements may be composed of multiple
vital rates and this information is lost by storing only the resulting
values (i.e. the elements of F may be comprised of both probability
of reproducing and the per- capita number of propagules produced).
To avoid this issue for IPMs, one needs to reconstruct the IPM using
the functional form of the kernels and vital rates, as well as the as-
sociated parameter estimates. One can use tools that associate the
symbols with their values to accomplish this task (e.g. metaprogram-
ming and rlang, Henry & Wickham, 2021). ipmr is an R package for
users to interactively develop their own IPMs from symbolic model
representations and parameter estimates, and perform downstream
analyses (Levin et al., 2021). Rpadrino extends this framework to in-
clude reconstructing previously published IPMs that are stored in the
PADRINO database.

Here, we introduce Rpadrino. Rpadrino provides access to
PADRINO, an open access database of IPMs. Specifically, PADRINO
houses symbolic representations of IPMs, their parameter values,
and associated metadata to aid users in selecting appropriate
models. Rpadrino is an R package that enable users to download
PADRINO, manage the dataset locally, modify, reconstruct, and
analyse IPMs from PADRINO. In the following, we describe how to
interact with PADRINO using Rpadrino and discuss future directions
for Rpadrino and PADRINO. We also provide two case studies that
demonstrate (a) how to use PADRINO and Rpadrino to reconstruct
published IPMs, conduct perturbation analyses, compute some
life cycle events, and troubleshoot problems, and (b) how to use
Rpadrino and ipmr to combine PADRINO IPMs with user- specified

parameter values, creating a platform to extend models beyond their original
purpose while retaining full reproducibility.

4. PADRINO and Rpadrino provide a toolbox for asking new questions and con-
ducting syntheses with peer- reviewed published IPMs. Rpadrino provides a
user- friendly interface so researchers do not need to worry about the database
structure or syntax, and can focus on their research questions and analyses.
Additionally, Rpadrino is thoroughly documented and provides numerous ex-
amples of how to perform analyses which are not included in the package's
functionality.

K E Y W O R D S

database, demography, elasticity, life history, open access, population dynamics, sensitivity

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

31

    |  1925Methods in Ecology and EvoluonLEVIN et al.

IPMs, and then how to use PADRINO data with other databases,
using BIEN (Maitner et al., 2017) and COMPADRE (Salguero- Gómez
et al., 2014) as examples. The latter is intended to demonstrate the
potential for Rpadrino in broad, interoperable, macro- ecological
applications. Finally, our supplementary materials also contain a
detailed overview of the PADRINO database, along with the associ-
ated assumptions and challenges.

2  |  AN INTRODUC TION TO IPMs AND
PADRINO

First, we provide a brief review of how IPMs are structured. The
simplest form of the IPM can be expressed as

where n
(
z
�, t + 1

)
 and n(z, t) are the distributions of trait values (z) of

individuals in the population at time t + 1 and t, P
(
z
′, z

)
 is a kernel de-

scribing the survival and development of existing individuals, F
(
z
′, z

)

is a kernel describing per- capita sexual reproduction and C
(
z
′, z

)
 is a

kernel describing per- capita asexual reproduction (i.e. clonal repro-
duction). Each kernel may be comprised of any number of vital rate
functions (Ellner et al., 2016). Analytical solutions to the integrals in
Equation (1) are not available (Ellner & Rees, 2006). Therefore, the inte-
grals are numerically approximated, resulting in a large iteration matrix
(typically ranging from 45 × 45 to 1,000 × 1,000 in dimension, based
on data from PADRINO), and then some quantities of interest are com-
puted (Ellner et al., 2016).

Before introducing Rpadrino, we provide a brief overview of
PADRINO. PADRINO is an open- access database of integral pro-
jection models. PADRINO defines a syntax to symbolically repre-
sent IPMs as text strings, and stores the values of those symbols in
separate tables. The syntax used is very similar to the mathematical
notation of IPMs and is largely ‘language- agnostic’ (i.e. aims to avoid
idiosyncrasies of specific programming languages). For example, a
survival/growth kernel with the form P

(
z
�, z

)
= s(z) ∗ G

(
z
�, z

)
 would

be P = s * G in PADRINO's syntax. G
(
z�, z

)
= fG

(
z�|�g(z), �G

)

(where fG denotes a normal probability density function) becomes
G = Norm(mu_g, sd_g). This notation should be translatable
to many computing languages beyond just R (e.g. Python or Julia).
Additionally, PADRINO stores extensive metadata to help research-
ers find IPMs that work for their questions. A more complete de-
scription of the database, how IPMs are digitized, and the associated
challenges is available in the ESM and the project webpage (https://
padri nodb.github.io/Padri no/, Table  1, Appendix, Tables S1 and S2).

3  |  RPADRINO AND IPM R

Rpadrino is an R package that contains functions for downloading
the PADRINO database, data querying and management, modifying
existing functional forms and parameter values, and reconstructing
models. Model reconstruction is powered by the ipmr R package
(Levin et al., 2021). While users do not need to know how to use
ipmr to use Rpadrino, the two packages are designed to work with
and enhance each other. This means that users can combine IPMs
reconstructed with Rpadrino with IPMs of their own constructed
with ipmr in a single, coherent analysis (case study 2). Furthermore,
users can go from downloading the database to reconstructing IPM
objects in as little as 3 function calls. A more in depth workflow is
provided below.

The flexibility of IPMs and their broad application across
ecology, evolution, and conservation biology mean that there
is no fixed set of steps in a workflow using Rpadrino. However,
there are generally four steps that a researcher must take when
using Rpadrino. The first step is to identify studies of interest
(Figure 1, Step 1a), and, optionally, augment PADRINO's meta-
data with additional information from other sources (e.g. en-
vironmental data, GBIF, Figure 1, Step 1). Rpadrino represents
PADRINO objects as a list of data.frames (referred to as tables
in subsequent text). Rpadrino uses the shared ipm_id column
across all tables to track information related to each IPM.
Therefore, subsetting relies on identifying the correct ipm_ids,
and then using those to select the IPMs of interest (Box 1, case
study 1 and 2). data.frames should be familiar to most R users,
and the ability to modify them should readily accommodate the
range of further analyses that researchers may be interested
in. Users may augment any table with additional information
corresponding to, for example, spatial or temporal covariates
from other open access databases. Furthermore, Rpadrino pro-
vides numerous access functions for metadata that streamline
subsetting (Box 1).

The second step in the Rpadrino workflow is to construct a list
of proto_ipm objects using pdb_make_proto_ipm() (Figure 1,
Box 1). This function translates PADRINO's syntax into ipmr code,
and then builds a proto_ipm object for each unique ipm_id. For
some models, users may choose to create deterministic or stochas-
tic IPMs at this step. Rpadrino's default behaviour is to generate de-
terministic models whenever possible. This behaviour encompasses
instances where authors generated models with no time or space

(1)n
(
z
�, t+1

)
=∫

U

L

[
P
(
z
�, z

)
+F

(
z
�, z

)
+C

(
z
�, z

)]
n(z, t)dz,

TA B L E 1  Taxonomic representation of IPMs accessible via
Rpadrino. These numbers represent the number of models that are
error checked and accurately reproduce the published IPM (see
‘Data Validation’ in the Appendix for more details). Models that are
partially entered or still contain errors are not considered here. We
are in the process of correcting them and/or retrieving additional
information from the authors. See Appendix for details.

Kingdom
of unique
ipm_ids

of unique
species

of
publications

Totals 280 56 40

Animalia 22 16 14

Plantae 258 40 26

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

32

1926  |   Methods in Ecology and Evoluon LEVIN et al.

varying parameters, and where authors included discretely varying
environments. The latter can be implemented as deterministic mod-
els because all parameter values are known before the IPM is built.
IPMs with continuous environmental variation require sampling the
environment at each model iteration, usually by sampling from dis-
tributions randomly. These are always considered stochastic models.
This is also the step where, if needed, users should combine their
own proto_ipm's produced by ipmr with the proto_ipm's pro-
duced by Rpadrino.

The third step in the Rpadrino workflow is creating IPM objects
with pdb_make_ipm() (Figure 1, Box 1). pdb_make_ipm() uses ip-
mr's make_ipm() function to build IPM objects. Users may specify
additional options to pass to make_ipm() (e.g. normalize the pop-
ulation size to always equal 1, return the vital rate function values
as well as the sub- kernels and population state). The various argu-
ments users can modify are described in the ipmr documentation for
make_ipm().

The fourth and final step in an Rpadrino workflow is to conduct
the analyses of interest (Figure 1, Box 1). Rpadrino provides functions
to extract per- capita growth rates, eigenvectors (Caswell, 2001;
Ellner et al., 2016, Ch. 2, demonstrated in Box 1), assess convergence
to asymptotic dynamics (Caswell, 2001), compute mean kernels for

stochastic IPMs (Ellner et al., 2016, Ch 7), and modify existing IPMs
with new parameter values and functional forms. Additionally, the
documentation on the Rpadrino website (https://padri nODB.github.
io/Rpadr ino/index.html) and the Supplementary Materials for this
paper contain details on how to conduct more complicated analy-
ses with IPM objects (e.g. perturbation analyses (Ellner et al., 2016,
Ch 4), size at death calculations (Metcalf et al., 2009)). The pack-
age documentation and the recent publication describing ipmr also
contain code demonstrating analyses on single IPM objects (Levin
et al., 2021). These can be extended via the apply family of functions.

Install and load the CRAN version:
install.packages(“Rpadrino”)
library(Rpadrino)

Step 1 from main text - - - - -

pdb_download() downloads a copy PADRINO. We can

specify a path to save the

downloaded database using `save = TRUE` and
̀ destination = ‘path/to/file/’`. We'll call the

object we create ‘pdb’,

which is short for Padrino DataBase.

pdb < − pdb_download(save = FALSE)

F I G U R E 1  An overview of general workflows with Rpadrino. The upper row of boxes displays the workflow, while the lower row provides
additional details on each step and how ipmr fits in to them. The first step is to download and subset PADRINO based on the research
question at hand. At this point, if the research question calls for it, users may augment the PADRINO object with data from other sources.
The extensive metadata table in PADRINO is designed to make this as straightforward as possible. Once the dataset is prepared, users can
also generate automated reports on their data subset (1). After preparing the dataset, users create proto_ipm objects using a single function:
pdb_make_proto_ipm(). This function translates PADRINO's syntax into ipmr code and then uses ipmr to generate the proto_ipm objects.
All of these steps take place internally, and so users do not need to understand PADRINO's syntax or how ipmr works to move forward
(2). Once proto_ipms are created, users generate IPM objects with a single function, pdb_make_ipm(). Examples of how to modify default
building settings are in each case study in the supplementary materials and in the function's documentation (3). Finally, Rpadrino provides
some basic analytical machinery, including deterministic and stochastic growth rates and eigenvectors, the ability to make iteration kernels
from sub- kernels, and mean kernels (4). Examples of how to conduct more complex analyses are included in the package vignettes and the
case studies in the supplementary materials

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

33

    |  1927Methods in Ecology and EvoluonLEVIN et al.

We can use Rpadrino's metadata accessors to get

a selection of ipm_ids

that we want to use. For this example, we'll

select models for Carpobrotus

species and Geum radiatum. First, extract the

‘species_accepted’ column.

The output of this will be named, and the names

are the ipm_id associated

with each piece of metadata. Thus, we can sub-

set the names of the ‘spps’

object to get the ipm_ids we need.

spps <− pdb_species_accepted(pdb)
ids < − names(spps)[spps %in% c(“Carpobrotus_spp”,

“Geum_radiatum”)]

Step 2 from main text - - - - -

Next, we create a list of proto_ipm's using

pdb_make_proto_ipm().

my_proto_ipms <− pdb_make_proto_ipm(pdb,
ipm_id = ids)

Step 3 from main text - - - - -

After creating the proto_ipm list, we can call

pdb_make_ipm() to construct

actual IPM objects.

my_ipms <− pdb_make_ipm(my_proto_ipms)
Step 4 from main text - - - - -

After re- building our published IPMs, the next

step is to analyse them.

In this case, we'll just extract the asymptotic

population growth rates,

stable size distribution, and the reproductive

values. Note that for the

Geum IPMs, there are multiple year- specific

values that are returned.

All values related to population- level traits are computed via

iteration,

as this approach handles more complicated IPM

systems more efficiently

than eigenvector/eigenvalue based approaches

for larger IPMs, and

introduces little to no additional computation

time for simpler and/or

smaller IPMs.

lambdas <− lambda(my_ipms)
ssds <− right_ev(my_ipms, iterations = 150,

tolerance = 1e- 7)
repro_vs < − left_ev(my_ipms, iterations = 150,

tolerance = 1e- 7).

4  |  CHALLENGES

There are numerous challenges associated with reproducing pub-
lished IPMs. Challenges related to digitizing and storing IPMs are
discussed in the ESM. Important challenges remain in the recon-
struction of IPMs. Semi- or non- parametric models may be used to
generate IPMs whose functional form is not known a priori. We have
not yet developed a general syntax for representing these models in
PADRINO, though work is ongoing. Additionally, ipmr is not yet able
to handle two- sex models (e.g. Stubbered et al., 2019), time- lagged
models (e.g. Kuss et al., 2008), or periodic models (e.g. Letcher
et al., 2014). These types of IPMs do not yet represent a substantial
portion of the literature. Nonetheless, it is our intention to continue
developing functionality to accommodate them in future releases of
Rpadrino, ipmr and PADRINO.

5  |  OPPORTUNITIES AND FUTURE
DIREC TIONS

Rpadrino presents unique opportunities for synthesis in both theo-
retical and applied contexts. The expanded range of phylogenetic
and geographical coverage can be used in conjunction with other
demographic databases (e.g. COM(P)ADRE (Salguero- Gómez
et al., 2014; Salguero- Gómez et al., 2016), popler (Compagnoni et al.,

BOX 1  An example of a simple analysis workflow
using Rpadrino

The first step in using Rpadrino is to install and load the pack-
age. After that, we can use Rpadrino to download PADRINO
and, optionally, save it locally on our computer. Once the data
are downloaded, we can make use of Rpadrino's metadata
accessor functions to quickly select models that meet our
criteria (step 1). The concept of the ipm_id is explained in
greater detail in the Appendix of this manuscript. The next
step is to use these ipm_ids to create a list of proto_ipm's
using pdb_make_proto_ipm() (step 2). After this step, we
can create actual IPM objects using pdb_make_ipm() (step
3). Once IPM objects are created, the following steps are ac-
cording to the demands of the research question. In this case,
asymptotic population growth rates, stable size distributions,
and reproductive values are extracted (step 4). Note that since
the Geum radiatum model includes a number of year- specific
estimates, multiple values are generated for each quantity we
want to extract. The concise representation and reconstruc-
tion of models such as this is powered by ipmr's parameter set
index notation, which is described in greater detail on the pack-
age website (https://levisc8.github.io/ipmr/articles/index-
notation.html). However, users do not need to be familiar with
this notation unless they wish to modify the IPM in question
(see case study 1 for an example of modifying PADRINO IPMs
with Rpadrino).

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

34

1928  |   Methods in Ecology and Evoluon LEVIN et al.

2019), DatLife (DatLife, 2021)) to power larger scale syntheses than
were possible before (e.g. Compagnoni, Levin, et al., 2021). For ex-
ample, one could use IPMs from PADRINO and matrix population
models from COMPADRE and COMADRE to create life tables (Jones
et al., 2021), which could then be combined with life tables from
DATLife for further analysis (e.g. Jones et al., 2014). The intermedi-
ate life table conversion steps may not be necessary, as many of the
same life history traits and population level parameters may be cal-
culated from all of these models (Caswell, 2001; Ellner et al., 2016).
Furthermore, recent publications combine biotic and abiotic interac-
tions into demographic models providing a robust theoretical tool-
box for exploring species responses to environmental drivers such
as climate change (e.g. Abrego et al., 2021; Simmonds et al., 2020).
Rpadrino also provides functionality to modify parameter values and
functional forms of the IPMs it stores, giving theoreticians a wide
array of realistic life histories to experiment with. These features will
enable researchers to carry out more detailed and comprehensive
analyses at various spatial, temporal, and phylogenetic scales. The
examples given here are far from an exhaustive list, but hopefully
demonstrates the potential for this new tool in demography, ecology
and evolutionary biology (Table 1).

AUTHORS' CONTRIBUTIONS
S.C.L. designed ipmr and Rpadrino with contributions from all au-
thors, and S.C.L. implemented the packages; S.E., T.P., M.P.G., and
S.C.L. entered the data into PADRINO; S.C.L. wrote the first draft of
the manuscript and all authors provided comments.

ACKNOWLEDG EMENTS
We thank L Sfedu for help with designing the figures, and the associ-
ate editor and two anonymous reviewers for comments that greatly
improved this manuscript.

FUNDING INFORMATION
R.S.- G. was supported by a NERC Independent Research Fellowship
(NE/M018458/1). S.C.L., A.C., S.E. and T.M.K. were funded by
the Alexander von Humboldt Foundation in the framework of the
Alexander von Humboldt Professorship of T.M.K.

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

PEER RE VIE W
The peer review history for this article is available at https://publo
ns.com/publo n/10.1111/2041- 210X.13910.

DATA AVAIL ABILIT Y S TATEMENT
PADRINO (Levin et al., 2022a, 2022b) is available via the Rpadrino
R package, as well as on Github (https://github.com/padri noDB/
Padrino) and Zenodo (https://zenodo.org/badge/ lates tdoi/10944
8718). Rpadrino (Levin et al., 2022a, 2022b) is available on CRAN
(https://cran.r- proje ct.org/packa ge=Rpadrino), Github (https://
github.com/padri noDB/Rpadrino), and Zenodo (https://zenodo.

org/badge/ lates tdoi/12424 5125). pdbDigitUtils (Levin et al., 2022a,
2022b) is available on Github (https://github.com/padri noDB/pdbDi
gitUtils) and Zenodo (https://zenodo.org/badge/ lates tdoi/34873
7812). There is no other data associated with this paper.

ORCID
Sam C. Levin https://orcid.org/0000-0002-3289-9925
Sanne Evers https://orcid.org/0000-0002-8002-1658
Roberto Salguero- Gómez https://orcid.
org/0000-0002-6085-4433

R E FE R E N C E S
Abrego, N., Roslin, T., Huotari, T., Ji, Y., Schmidt, N. M., Wang, J., Yu, D.

W., & Ovaskainen, O. (2021). Accounting for species interactions
is necessary for predicting how arctic arthropod communities
respond to climate change. Ecography, 44, 885– 896. https://doi.
org/10.1111/ecog.05547

Adler, P. B., Ellner, S. P., & Levine, J. M. (2010). Coexistance of perennial
plants: An embarassment of niches. Ecology Letters, 13, 1019– 1029.
https://doi.org/10.1111/j.1461- 0248.2010.01496.x

Caswell, H. (2001). Matrix population models: Construction, analysis, and
interpretation (2nd ed.). Sinauer Associates Inc.

Childs, D. Z., Rees, M., Rose, K. E., Grubb, P. J., & Ellner, S. P. (2004).
Evolution of size- dependent flowering in a variable environment:
construction and analysis of a stochastic integral projection model.
Proceedings of the Royal Society B: Biological Sciences, 271(1547),
425– 434. https://doi.org/10.1098/rpsb.2003.2597

Clark, J. S. (2003). Uncertainty in population growth rates calculated from
demography: The hierarchical approach. Ecology, 84, 1370– 1381.

Compagnoni, A., Bibian, A. J., Ochocki, B. M., Levin, S. C., Zhu, K., &
Miller, T. E. X. (2019). popler: An R package for extraction and
synthesis of population time series from the long- term ecological
research (LTER) network. Methods in Ecology and Evolution, 11(2),
258– 264.

Compagnoni, A., Levin, S. C., Childs, D. Z., Harpole, S., Paniw, M., Roemer,
G., Burns, J. H., Che- Castaldo, J., Rueger, N., Kunstler, G., Bennett,
J. M., Archer, C. R., Jones, O. R., Salguero- Gómez, R., & Knight, T.
M. (2021). Herbaceous perennial plants with short generation time
have stronger responses to climate anomalies than those with lon-
ger generation time. Nature Communications, 12, 1824. https://doi.
org/10.1038/s4146 7- 021- 21977 - 9

Compagnoni, A., Pardini, E., & Knight, T. M. (2021). Increasing tem-
perature threatens an already endangered coastal plant species.
Ecosphere, 12(3), e03454. https://doi.org/10.1002/ecs2.3454

Coulson, T., MacNulty, D. R., Stahler, D. R., von Holdt, B., Wayne, R. K., &
Smith, D. W. (2011). Modeling effects of environmental change on
wolf population dynamics, trait evolution, and life history. Science,
334(6060), 1275– 1278. https://doi.org/10.1126/scien ce.1209441

Crone, E. E., Menges, E. S., Ellis, M. M., Bell, T., Bierzychudek, P.,
Ehrlen, J., Kaye, T. N., Knight, T. M., Lesica, P., Morris, W. F.,
Oostermeijer, G., Quintana- Ascencio, P. F., Stanley, A., Ticktin, T.,
Valverde, T., & Williams, J. L. (2011). How do ecologists use ma-
trix population models? Ecology Letters, 14(1), 1– 8. https://doi.
org/10.1111/j.1461- 0248.2010.01540.x

DATLife – The Demography Across the Tree of Life – database. (2021).
Max- Planck Institute for Demographic Research (Germany).
Retrieved from www.datli fe.org

Doak, D., & Morris, W. F. (2002). Quantitative conservation biology: Theory
and practice of population viability analysis. Oxford University Press.

Easterling, M. R., Ellner, S. P., & Dixon, P. M. (2000). Size specific sensi-
tivity: Applying a new structured population model. Ecology, 81(3),
694– 708.

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

35

    |  1929Methods in Ecology and EvoluonLEVIN et al.

Ellner, S. P., Childs, D. Z., & Rees, M. (2016). Data- driven modelling of struc-
tured populations: A practical guide to the integral projection model.
Springer International Publishing AG.

Ellner, S. P., & Rees, M. (2006). Integral Projection Models for species with
complex demography. The American Naturalist, 167(3), 410– 428.

Erickson, R. A., Eager, E. A., Brey, M. B., Hansen, M. J., & Kocovsky, P. M.
(2017). An integral projection model with YY- males and application
to evaluating grass carp control. Ecological Modelling, 361, 14– 25.
https://doi.org/10.1016/j.ecolm odel.2017.07.030

Gonzalez, E., Childs, D. Z., Quintana- Ascenscio, P. F., & Salguero- Gomez,
R. (2021). Integral projection models. In R. Salguero- Gomez, & M.
Gamelon (Eds.), Demographic methods across the tree of life. Oxford
University Press.

Henry, L., & Wickham, H. (2021). rlang: Functions for base types and core
R and ‘Tidyverse’ features. R package version 0.4.11. Retrieved
from https://CRAN.R- proje ct.org/packa ge=rlang

Jones, O. R., Barks, P., Stott, I., James, T. D., Levin, S. C., Petry, W. K.,
Capdevila, P., Che- Castaldo, J., Jackson, J., Römer, G., Schuette,
C., Thomas, C. C., & Salguero- Gómez, R. (2021). Rcompadre and
Rage— Two R packages to facilitate the use of the COMPADRE and
COMADRE databases and calculation of life history traits from
matrix population models. Methods in Ecology and Evolution, 13(4),
770– 781. https://doi.org/10.1111/2041- 210X.13792

Jones, O. R., Scheuerlein, A., Salguero- Gómez, R., Camarda, C. G.,
Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlén, J., García, M. B.,
Menges, E. S., Quintana- Ascencio, P. F., Caswell, H., Baudisch, A., &
Vaupel, J. W. (2014). The diversity of ageing across the tree of life.
Nature, 505, 169– 173. https://doi.org/10.1038/natur e12789

Jongejans, E., Shea, K., Skarpaas, O., Kelly, D., & Ellner, S. P. (2011).
Importance of individual and environmental variation for invasive
species spread: A spatial integral projection model. Ecology, 92(1),
86– 97. https://doi.org/10.1890/09- 2226.1

Kuss, P., Rees, M., Aegisdottir, H. H., Ellner, S. P., & Stoecklin, J. (2008).
Evolutionary demography of long- lived monocarpic perennials: A
time- lagged integral projection model. Journal of Ecology, 96, 821–
832. https://doi.org/10.1111/j.1365- 2745.2008.01374.x

Letcher, B. H., Schueller, P., Bassar, R. D., Nislow, K. H., Coombs, J. A.,
Sakrejda, K., Morrissey, M., Sigourney, D. B., Whiteley, A. R.,
O'Donnell, M. J., & Dubreuil, T. L. (2014). Robust estimates of
environmental effects on population vital rates: An integrated
capture- recapture model of seasonal brook trout growth, survival
and movement in a stream network. Journal of Animal Ecology, 84(2),
337– 352. https://doi.org/10.1111/1365- 2656.12308

Levin, S. C., Childs, D. Z., Compagnoni, A., Evers, S., Knight, T. M., &
Salguero- Gómez, R. (2021). ipmr: Flexible implementation of
Integral Projections Models in R. Methods in Ecology and Evolution,
12, 1826– 1834. https://doi.org/10.1111/2041- 210X.13683

Levin, S. C., Evers, S., Potter, T., Guerrero, M. P., Childs, D. Z., Compagnoni,
A., Knight, T. M., & Salguero- Gómez, R. (2022a). PADRINO v0.0.1.
https://doi.org/10.5281/zenodo.6573870

Levin, S. C., Evers, S., Potter, T., Guerrero, M. P., Childs, D. Z., Compagnoni,
A., Knight, T. M., & Salguero- Gómez, R. (2022b). Rpadrino v0.0.4.1:
Methods in ecology and evolution release. https://doi.org/10.5281/
zenodo.6573880

Maitner, B., Boyle, B., Casler, N., Condit, R., Donoghue, J., Duran,
S. M., Guaderrama, D., Hinchliff, C. E., Jørgensen, P. M., Kraft,
N. J. B., McGill, B., Merow, C., Morueta- Holme, N., Peet, R. K.,

Sandel, B., Schildhauer, M., Smith, S. A., Svenning, J.- C., Thiers,
B., … Enquist, B. J. (2017). The bien r package: A tool to access
the Botanical Information and Ecology Network (BIEN) data-
base. Methods in Ecology and Evolution, 9(2), 373– 379. https://doi.
org/10.1111/2041- 210X.12861

Metcalf, C. J. E., & Pavard, S. (2007). Why evolutionary biologists should
be demographers. Trends in Ecology and Evolution, 22(4), 205– 212.

Metcalf, C. J. E., Horvitz, C. C., Tuljapurkar, S., & Clark, D. A. (2009).
A time to grow and a time to die: A new way to analyze the dy-
namics of size, light, age and death of tropical trees. Ecology, 90,
2766– 2778.

Salguero- Gómez, R., & Gamelon, M. (2021). Demographic methods across
the tree of life. Oxford University Press.

Salguero- Gómez, R., Jones, O. R., Archer, C. A., Buckley, Y. M., Che-
Castaldo, J., Caswell, C., Hodgson, D., Scheuerlein, A., Conde, D.
A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, F., Hartmann, A.,
Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., … Vaupel,
J. W. (2014). The COMPADRE Plant Matrix Database: An online
repository for plant population dynamics. Journal of Ecology, 103,
202– 218. https://doi.org/10.1111/1365- 2745.12334

Salguero- Gómez, R., Jones, O. R., Archer, C. R., Bein, C., de Buhr, H.,
Farack, C., Gottschalk, F., Hartmann, A., Henning, A., Hoppe,
G., Roemer, G., Ruoff, T., Sommer, V., Wille, J., Voigt, J., Zeh,
S., Vieregg, D., Buckley, Y. M., Che- Castaldo, J., … Vaupel, J.
W. (2016). COMADRE: A global database of animal demog-
raphy. Journal of Animal Ecology, 85, 371– 384. https://doi.
org/10.1111/1365- 2656.12482

Salguero- Gómez, R., Siewert, W., Casper, B. B., & Tielboerger, K. (2012).
A demographic approach to study effects of climate change in
desert plants. Philosophical Transactions of the Royal Society B, 367,
3100– 3114.

Simmonds, E. G., Cole, E. F., Sheldon, B. C., & Coulson, T. (2020).
Phenological asynchrony: A ticking time- bomb for seemingly sta-
ble populations? Ecology Letters, 23(12), 1766– 1775. https://doi.
org/10.1111/ele.13603

Stubbered, M. W., Vindenes, Y., Vollestad, L. A., Winfield, I. J., Stenseth,
N. C., & Langangen, O. (2019). Effects of size- and sex- selective
harvesting: an integral projection model approach. Ecology and
Evolution, 9, 12556– 12570. https://doi.org/10.1002/ece3.5719

SUPPORTING INFORMATION
Additional supporting information may be found in the online
version of the article at the publisher’s website.

How to cite this article: Levin, S. C., Evers, S., Potter, T.,
Guerrero, M. P., Childs, D. Z., Compagnoni, A., Knight, T. M.,
& Salguero- Gómez, R. (2022). Rpadrino: An R package to
access and use PADRINO, an open access database of
Integral Projection Models. Methods in Ecology and Evolution,
13, 1923–1929. https://doi.org/10.1111/2041-210X.13910

 2041210x, 2022, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13910 by U
niversitaetsbibliothek L

eipzig, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

36

Chapter 4: Relationship between climate and fitness of a highly
invasive succulent

Authors:

Sam C. Levin

Roberto Salguero-Gómez

Tiffany M. Knight

Abstract

Invasive species pose a substantial threat to biodiversity. As such, understanding the drivers that explain
the success of their populations is key for prevention and management. Mediterranean dune ecosystems are
especially threatened by biological invasions and climate change due to their widespread distribution. To
understand the relationship between climate change in biological invasions, we need detailed information
on how climate influences the fitness and performance of invasive species. Carpobrotus species are a widely
distributed invasive species in dune ecosystems, making them ideal for studying how climate affects fitness.
We developed a novel, drone-based method of collecting demographic data for 13 sites distributed across
the native and invaded ranges, and used these data to parameterize Integral Projection Models to estimate
individual fitness and population performance as a function of climate variables. Contrary to our initial
expectations, a life table response experiment on these models indicates that climate is not a strong driver
of fitness. We discuss the multiple local factors that may contribute to Carpobrotus’ success. Our results
suggest that climate change is not likely to increase the invasive potential of this genus around the globe,
despite of the changing climatic conditions projected for the coming decades.

Introduction

Invasive species are ecological pests at local, regional, and global scales (Pimentel et al. 2005, Vila et al. 2011,
Levin et al. 2020). There is an extensive body of work devoted to understanding how species become invasive
(reviewed in Lowry et al. 2013 and Jeschke & Heger 2018). However, generalization across families, genera,
and even species remains challenging as environmental contexts can vary greatly across the invaded range,
and population level processes (e.g. founder effects, rapid evolution, or hybridization) can induce rapid change
in the invading population (reviewed in Prentis et al. 2008). The environmental context of invasive species
is receiving increasing attention, as there is growing recognition that climate change may favor invasive
populations and produce an even greater threat to ecosystems (Beaury et al. 2020).

There is a growing body of literature using species distribution models to understand how climate influences
species ranges and to predict how climate change will alter them. These studies find contrasting expectations
for species. For example, Bradley and colleagues (2009) predicted that Centauria solstitialis and various
Tamarix spp should undergo range expansion, while Bromus tectorum is expected to undergo range contraction
under future climate conditions. Similarly, Merow & colleagues (2017) found that Allaria petiolata will likely
experience range contraction, but Berberis thumbergii will likely undergo range expansion. Furthermore,
Allen & Bradley (2016) found that, while the hundreds of invasive plants in the continental U.S. would
persist under future climate, the invasive plant species richness would decline in large portions of the country.
Despite the effort dedicated to studying this, there is no clear consensus on when climate change should cause
range expansion or contraction. Furthermore, there are substantial gaps left in our knowledge of how the
many facets of climate change (e.g. increased temperature, variance in precipitation, CO2 enrichment) will
affect various species and biomes (reviewed in Ziska 2022).

Species distribution models (SDMs) are often employed to understand species’ current and future ranges
under climate change (Guisan & Thullier 2005, Bradley et al. 2009, Allen & Bradley 2020). However, SDMs
have also been criticized for their applications (Briscoe et al. 2019, Lee-Yaw et al. 2021), as they are often

37

unable to predict occurrences in environments that are not covered by the observed range of the species in
question (Merow et al. 2017, reviewed in Liu et al. 2020 and in Lake et al. 2020). Classical SDMs make
use of presence data (or presence-absence data in the best cases) for a given species, and do not necessarily
include information on spatial variation in population performance. Furthermore, making predictions on
invaded range occupancy and performance based solely on data from the native range is risky because of
novel biotic interactions that may arise, and because this practice often involves extrapolating estimates
beyond the observed range of environmental data (Broennimann & Guisan 2008). Finally, the assumption
that species are at equilibrium with their environment and thus occupy all suitable areas is unlikely to be
true when using data from the native range (Elith et al. 2010).

One approach to handling these issues is to incorporate demographic data from both the native and invaded
range, and sample broadly across environmental gradients (Merow et al. 2017, Briscoe et al. 2019). This
approach explicitly links vital rates (e.g. survival, reproduction, and dispersal) to environmental conditions,
allowing for a mechanistic approach to making performance projections (Briscoe et al. 2019). A drawback of
this method is that it entails sampling populations on multiple continents and combining data from multiple
sources, which is laborious and expensive. However, new methods of rapidly collecting demographic data,
such as unmanned aerial vehicles (UAVs, drones hereafter) can reduce those burdens. Indeed, a number of
authors have already used this technology to map populations of invasive species and estimate their fitness
(Innangi et al. 2023, Bogdan et al. 2020, reviewed in Cavendar-Bares et al. 2022).

Mediterranean biomes are threatened by both climate change and invasions (Klausmeyer & Shaw 2009).
These biomes are home to vast array of endemic plant and animal species. The Mediterranean ecosystems
are threatened by the Carpobrotus genus (Aizoaceae), particularly C. edulis, C. acinaciformis, C. chilensis,
and their hybrids, which are native to South Africa but have been introduced on six continents. These
Carpobrotus species are spreading, mat forming succulents that are exceptionally competitive for water and
light (D’Antonio & Mahall 1991, Novoa et al. 2012, Campoy et al. 2018). There is a growing body of evidence
indicating these species are allelopathic, with their dessicated litter acidifying the soil and preventing other
species from germinating (Novoa et al. 2012, Novoa et al. 2014).

Here, we apply novel demographic sampling methods to the Carpobrotus genus across 13 sites spread
throughout their native and invaded range. We use drones as a fast and cheap way of generating detailed
maps of each population (Jackson et al. 2022). We repeat sampling of populations across two years to
estimate vital rates as a function of climate variation. Mediterranean ecosystems can experience strong water
limitation, and Carpobrotus is exceptionally competitive for water resources (D’Antonio & Mahall 1991,
Novoa et al. 2012, Campoy et al. 2018). We expect that this combination of factors will lead to reduced
competition at water limited sites, because Carpobrotus will exclude inferior competitors for this essential
nutrient. Therefore, we expect that Carpobrotus populations will have higher per-capita growth rates in
environments that receive less precipitation. We use a combination of Integral Projection Models (IPMs,
Easterling et al. 2000, Ellner & Rees 2006), generalized additive models (GAMs), and a life table response
experiment (LTRE, Caswell 1989) to test these hypotheses.

Methods

The primary goal of this study was to understand how environmental variation affects Carpobrotus population
dynamics. Therefore, we chose geographic areas to sample based on maximizing the amount of climate
space that we would sample with our study. Within each geographic area, we chose sites based on the
extent of the population (i.e. had enough ramets to perform statistical analysis on), and the ability to
sample without disturbing local flora and fauna (i.e. was not home to threatened/endangered bird species,
Table 4.1). Consequently, this study was conducted across 13 sites spread across South Africa (native
range), New Zealand (invaded), Portugal (invaded), and Israel (invaded, Figure 4.1). Sites in the Northern
Hemisphere were sampled in March/April of 2018-2020, and sites in the Southern Hemisphere were sampled
in September/October of 2018-2019, so that plants were observed during their peak flowering period (i.e.
early spring).

We used drones to collect aerial imagery each population. Briefly, we developed flight plans to map each

38

population using DJI Ground Station Pro v2 (henceforth called “GSP”, SZ DJI Technology Co.) for iPad
(Apple Inc). Transects were flown with a DJI Phantom 4 Pro v1 (SZ DJI Technology Co.) along the lines
of the flight plan generated by DJI GSP and images were recorded at 1.8 - 2m intervals. When batteries
reached a critical level of power (i.e. ~20%), we landed the drone, switched the batteries out, and the flight
was resumed from the last stopping point. We generated flight plans by using the GSP app to draw polygons
over an area of interest, and then let the app compute the optimal flight path given our desired output image
resolution. We selected a flight path that generated a resolution of 0.2 - 0.45 cm/pixel. Flight altitude and
degree of image overlap are key factors in determining the resolution of imagery and the ability to combine
images to form a single map. We needed to generate resolutions of less than 2 cm/pixel in the resulting
orthomosaic maps of each population (see below). Therefore, we used the app generate flight plants that had
70-85% image overlap on the front and side, and flew at altitudes between 10 and 15m above ground level.
The average width of open flowers is 7.46 cm (+/- 0.008 S.E.) and unripe fruits is 2.32 cm (+/- 0.002 S.E.)
across all populations (SC Levin, unpublished data), so this resolution is sufficient to allow us to mark the
vast majority of unripe fruits and flowers in the resulting maps (orthomosaics, see below for more details).
We deviated from these protocols when vegetation structure would not allow us to sample conventionally
(e.g. there was a large tree in the middle of the site). In those cases, we flew the portions of the missions with
obstacles manually, and deviated from flight plans to avoid collisions.

We mapped populations and extracted demographic data from these digitized maps. Once all images were
captured after the first aerial survey, individual photos were processed into a single composite, georeferenced
orthomosaic map using Pix4Dmapper (Pix4D SA, 2019). We drew individual polygons around contiguous
Carpobrotus ramets that were visible on the orthomosaic, assigned each polygon a unique ID number, and
counted flowers using a point layer in QGIS (QGIS Development Team 2021). We repeated the process in
2019 by overlaying the 2019 orthomosaic on the 2018 orthomosaic and marking polygons for all surviving
individuals as well as new recruits also in QGIS. The surveys sometimes did not perfectly overlap with each
other, so ramets from the first survey that were not flown over again were included in probability of flowering
and flower production analyses, but not in survival and growth analyses (see below). Individual ramets that
were within the range of space sampled in both time periods but not found again in our second aerial survey
were scored as dead. Only one site had substantial disturbance in the year between samplings, likely due to
a large storm off the coast of Christchurch and the resulting storm surge inundating the population for an
extended period. This site was excluded.

In addition to mapping small, medium, and large ramets, we also needed to collect information on seedling
demography to estimate the survival rate of seedlings and their size the following year, conditional on survival
(see vital rate descriptions below for more information). In 2018, we delineated 2 40cm× 40cm plots and
manually counted the number of seedlings. In 2019, we returned and flew brief surveys with the drone at ~
1.2m above ground level. We generated orthomosaics using the same procedure described above, and then
counted surviving seedlings and drew polygons around them to estimate their size. Unfortunately, we did not
find seedlings in sufficient quantities at other sites to establish plots, and so our sample size is limited to
these two plots at a single site for these parameters.

Our goal was to convert the data contained in orthomosaics into spatially referenced sets of polygons, and
then use the polygons to estimate of size- and environmentally-dependent vital rates. Orthosomosaic maps
were aligned between the first and second surveys using the Georeferencer GDAL plugin (QGIS Development
Team 2021) in QGIS because the georeferencing of the orthomosaics was only accurate to ~5m. This plugin
allows users to manually find and mark common points on both images and set them as reference points for
transformation between the old coordinate system (map coordinates of survey 2) and the new coordinate
system (map coordinates of survey 1). We used the thin plate splines transformation for the coordinate
systems and nearest neighbor resampling method (GDAL contributors 2022). The reference points are
available in the supplementary materials.

In addition to drawing polygons around the individual plants, we drew polygons around ground truth targets
of known sizes (2-8 per site, depending on ease of site access and slope aspect of the terrain within it). We
calculated target sizes on the image and then computed the ratio of calculated areas under the polygon vs
the known sizes of the targets. We then re-scaled all computed sizes of plants using this ratio. Once all sizes,
flowering information, and survival data were digitized, we used the sf (Pebesma 2018) and dplyr (Wickham

39

et al. 2022) R packages to join all the ramet data into a single dataset.

Table 4.1: Locations of the study populations of Carpobrotus, drone mission dates to monitor their population
dynamics, and the number of unique ramets identified in orthomosaic generated from the first mission at
each population.

Site Lat Lon Date Flight 1 Date Flight 2 N Ramets
Colares 38.81 -9.48 3/24/2019 3/18/2020 267
Foxton -40.46 175.22 10/15/2018 10/22/2019 1055
Havatselet 32.36 34.86 4/19/2018 4/26/2019 603
Melkboss -33.71 18.45 9/24/2018 9/23/2019 105
Praia de Areao 40.52 -8.78 3/20/2019 3/17/2020 320
Rarangi -41.42 174.04 10/24/2018 11/5/2019 1741
Rooisand -34.35 19.09 9/12/2018 9/15/2019 1559
Rough Island -41.27 173.11 10/18/2018 11/4/2019 391
Springfontein -34.43 19.41 9/16/2018 9/17/2019 68
St Francis -34.18 24.82 9/10/2018 9/10/2019 361
Struisbaai -34.81 20.06 9/4/2018 9/7/2019 194
Vogelgat -34.40 19.32 9/16/2018 9/16/2019 64
Whirinaki -39.38 176.89 10/29/2018 10/19/2019 226

To understand how environmental variation constrains or facilitates invasion by Carpobrotus species, we
compiled a data set of georeferenced Carpobrotus records from across the globe from GBIF (GBIF 2023).
These data were subsequently cleaned with the CoordinateCleaner R package (Zizka et al. 2019, Figure
4.1) to remove occurrences that are associated with botanical gardens, cities, and other spatial confounds.
We downloaded monthly ERA5 climate data from 2018 - 2020 for temperature (θt), precipitation (θp), and
soil water content (θs,i where i is the soil layer with values 1-3 to denote 0-7cm, 7-30cm, and 30-100cm
deep, respectively). ERA5 data has a resolution of 0.25o × 0.25o. We wanted to estimate climate values
more precisely for each GBIF occurrence and for the sites we sampled for demographic data. Therefore,
environmental covariates were krigged for each occurrence point, plus our site coordinates using the krigR R
package (Kusch & Davy, 2022).

Two key characteristics of Mediterranean biomes is a cool, wet winter and a warm dry summer. We
hypothesized that competition for water drives the success of Carpobrotus species in their new environment.
We expected that differences in the seasonal patterns of temperature and precipitation across sites and regions
would also contribute to variance in performance. Therefore, we aggregated data by wet and dry season
(i.e. θs values for the wet season, and θs values for the dry season). Finally, we computed how many standard
deviations each of our sites was from the global mean value of each environmental covariate to create a
standardized environmental value for each site in our data set (Compagnoni et al. 2021).

To test our hypotheses introduced above, we needed to derive fitness estimates for each population to address
our hypotheses. Integral Projection Models (IPMs) are mathematical models that track the distribution and
abundance of a continuously distributed trait (e.g. plant size) in a population through time (Ellner, Childs,
& Rees 2016). Additionally, they can be used to estimate (among other quantities) the per-capita growth
rate of a population (λ). Regression modeling is a means of linking trait- and environmentally dependent
information to vital rate functions that comprise an IPM. We modeled size-dependent survival (Bernoulli
model with logit link, sa(z, θ)), size at time t+1 (z′) conditional on survival and size at time t (Gaussian model
with identity link and size dependent variance, G(z′|z, µg, σg, θ)), size-dependent probability of flowering
(Bernoulli model with logit link, pf (z, θ)), and size-dependent flower production (negative binomial model
with log link, rf (z, θ)). In addition to size, we included environmental covariates (θ, described in previous
paragraph). We constructed Bayesian generalized linear mixed models (GLMMs) and compared different
structures using WAIC, posterior predictive checks, and visual inspection of predictions against the observed
data. We selected the best models chosen by WAIC that also made realistic predictions as determined by the
latter graphical checks. Each of the potential forms used θt, θp and one of the θs,i values as predictors, and

40

Sampled For Demography Yes No

EU/Israel South Africa New Zealand

Figure 4.1: Geographic distribution of all GBIF occurrences for Carpobrotus edulis, C. acinaciformis, and
C. chilensis used for climate envelope calculations (in black) and all sites used for demographic modeling (in
red). Insets show demographic sampling locations within each region.

41

interactions between size and environmental covariates were tested as well. Because the responses of pf (z, θ)
and rf (z, θ) are based on state at time t, we included environmental covariates from the year before the initial
demographic sampling (i.e. t−1 to t), whereas sa(z, θ) and G(z′|z, σ, θ) to t+ 1 used environmental data from
the year between demographic samples. All candidate models included a population-specific intercept term
and interaction between size and nativity. All vital rate models were implemented with the brms R package
(Bürkner et al. 2018). See appendix 7 for a Complete description of vital rate models used in the IPM.

In addition to the vital rates above, we also modeled the size of new recruits at time t + 1 (ra(z′)), and
estimated probabilities for flower pod survival (pfv) and maturation (pm) to time t + 1, immediate seed
germination (gi), total viability (vs), and seed establishment probability (pe), and seed bank germination (gsb)
and survival (ssb). Data for ra(z′) was collected from the Rooisand site in South Africa using the seedling
plot methods described above. We conducted literature reviews to gather estimates of other seed-related
parameters, and these were estimated by averaging over the reported estimates. For two vital rates (pe and
ssb), we could not find values in the literature. Therefore, we conducted simulations to examine a reasonable
range of values (1−5 − 1−4 and 1−2 − 1−1, respectively) to examine how our results changed as a function of
these values. Our conclusions are not sensitive to these values (see Appendix 7).

We used the parameters and functions described above to generate an IPM for each site (Ellner, Childs &
Rees 2016). Our IPM included 1 continuous trait, size (z, z′), and 3 discrete states - mature fruits (mf),
seedlings (sdl), and seeds in the seed bank (sb) (see Appendix 7 for life cycle diagram, complete equations,
and parameter distributions describing the IPM). We combined the vital rate functions described above into
an IPM in R using the ipmr package (Levin et al. 2021). Point estimates of the deterministic per-capita
growth rate for each site, λi were computed from IPMs parameterized with mean values of the posterior
distribution for each parameter estimated in the Bayesian regression models described above. We then used
the posterior distributions for each regression model to create 4000 λi values representing a range of plausible
IPMs for each site.

Our goal was to determine both the shape and magnitude of a climate driver’s effect on λ and the relative
importance of each driver for Carpobrotus’s fitness at a global scale, with the expectation that precipitation
would be the primary environmental driver of fitness. To address the first goal, we constructed GAMs with
the estimated λ values as the response and each climate driver as a predictor. GAMs are well suited to
this task because population responses to a climate driver may be non-linear across the range of sampling
(Ellner, Childs, & Rees 2016). To address the second goal, we conducted an Life Table Response Experiment
(LTRE) with λ as the response and the spatially varying IPM parameters as predictors (Caswell 2001, Ellner,
Childs & Rees 2016). LTREs decompose the contributions of a parameter, vital rate, or specific element of
a discretized projection kernel, to λ by constructing a (non-) linear model between the response (λ) and
predictor (parameters, vital rates, kernel elements, Caswell 2001, Ellner, Childs & Rees 2016). Specifically, we
used a random forest to estimate the relationship between the posterior draws for λ and the IPM regression
parameters. Random forests are well suited for this analysis because they are non-parametric, non-linear
models that can handle high dimensional data (Breiman 2001). We assessed the importance of each variable
by randomizing parameter values and computing the change in mean squared error (MSE) of the of the
overall regression tree. Larger increases in MSE for a given parameter value indicate that it is more important
in predicting λ, and therefore contributing more to the observed value of λ (Ellner, Childs & Rees 2016). We
implemented all of the LTRE analyses using the randomForest R package (Liaw & Weiner 2002).

Results

IPMs yielded λi values between 0.6 and 1.3 for the 13 studied populations of Carpobrotus. GAMs for λi as a
function of each climate variable show differing responses, though no relationship was statistically significant.
Climate parameters were generally of low importance in predicting λ values, yielding little evidence of a
relationship between climate and population performance (Figure 4.2). Dry season precipitation showed the
most negative, yet non-significant, effect on λi (p = 0.243, soil water content results not shown here). All
other regressions of λ on a climate driver were not significant.

The random forest LTRE explained 92% of the variance in λ across sites. Decomposing the contributions of

42

Dry season precipitation (t − 1) Wet season precipitation (t − 1)

Dry season precipitation (t) Wet season precipitation (t)

−1 0 1 2 3 −1 0 1

−1 0 1 −1 0 1

0.6

0.8

1.0

1.2

0.6

0.8

1.0

1.2

Climate Value (SD from global mean)

λ

native

Invasive
Native

site

Colares
Foxton
Havatselet
Melkboss
Praia_de_Areao
Rarangi
Rooisand
Rough_Island
Springfontein
St_Francis
Struisbaai
Vogelgat
Whirinaki

Figure 4.2: Relationship between the population growth rate λ of our 13 studied Carpobrotus populations
and the climate variables included in the IPMs. Black dashed lines represent the fit from the GAMs of lambda
~ <climate_variable>, and red dotted lines indicate λ = 1, meaning the population is demographically
stable. None of the relationships shown here are statistically significant.

43

each parameter showed that site specific random effects were the most important parameters in the model.
Climate related vital rate parameters were of substantially lesser importance than these random effects,
but many, including wet and dry season precipitation’s impact on growth variance and the probability of
flowering, were included in the top 20 most important parameters in the IPMs (Figure 4.3).

Flower # Size X Temperature Dry

Growth Size

Growth Sigma Temperature Wet

Pr(flowering) Temperature Wet

Growth Size X Precipitation Dry

Growth Sigma Temperature Dry

Pr(flowering) Precipitation Dry

Growth Sigma Nativity

Pr(flowering) Temperature Dry

Survival Random Intercept

Pr(flowering) Nativity

Growth Sigma Fixed Intercept

Growth Sigma Precipitation Wet

Pr(flowering) Precipitation Wet

Growth Sigma Precipitation Dry

Flower # Random Intercept

Flower # Random Slope

Growth Random Intercept

Growth Sigma Random Intercept

Pr(flowering) Random Intercept

0.0000 0.0005 0.0010 0.0015
Importance

V
ita

l R
at

e
R

eg
re

ss
io

n
P

ar
am

et
er

Climate Related Not Climate Related

Figure 4.3: Top 20 most important variables and their importance in explaining λ, as determined by the
random forest. Climate-related parameters are orders of magnitude less important than site-specific random
effects, indicating that unmeasured variation is explaining more variance in λ.

Discussion

Understanding how climate shapes the population dynamics of invasive species is one of the missing pieces
in the puzzle of conservation biology (Beaury et al. 2020). Here we examined the drivers of population
performance in 13 populations of the widespread, invasive species Carpobrotus spp. across three continents.
Our models report a considerable amount of variation in their population growth rates across populations,
ranging from λ ≈ 0.55 at Foxton in New Zealand to λ ≈ 1.15 at Praia de Areao in Portugal (Figure 4.2).
However, much of the variation λ is explained by unmeasured variables - the LTRE results showed that the
random intercepts and slopes contribute the most to explaining variance in λ (Figure 4.3). While climate
factors were much less important than random variables in the LTRE, sites with lower dry season precipitation
appeard to have higher λ values (Figure 4.2). This result is not statistically significant and does not yield
robust support for our hypothesis that Carpobrotus has higher performance in drier sites.

44

Many factors may contribute to a species success at local scales and might explain why unmeasured variables
contribute more to the variation in λ. First, phylogenetic and functional distinctiveness of Carpobrotus to
the local native plant community may have a greater fitness impact than abiotic conditions when species are
introduced to novel settings, as this distinctiveness can lead to novel resource use (Mathakutha et al. 2019) and
weaker effects of competitors on vital rates and λ (Levin et al. 2020). Second, Carpobrotus was intentionally
introduced in much of its invaded range, largely for ornamental purposes (Portela et al. 2022). Horticultural
introductions usually entail human preference for desirable characteristics, such as heavy flower production,
which are also desirable characteristics for an invader that escapes cultivation (Caño et al. 2008). Such
anthropogenic selection may induce founder effects for more fit phenotypes than are present in its native range,
allowing it to become more dominant (Mayr 1942). Third, we note that the introduced range sometimes
contains multiple Carpobrotus species and their hybrids (Suehs et al. 2004). The high fitness in a few of
the populations could be the result of hybridization between multiple introduced populations could yield
super-hybrids (Novoa et al. in review).

The successional stage of the Carpobrotus population might also contribute to the unexplained site variation
in the population growth rate λ. Carpobrotus tends to be an early successional species in its native range,
losing out to other Fynbos species as the ecosystem matures after fire (T. Masayiti, personal communication).
However, the dense litter that forms under plants as they grow inhibits germination of native species and
alters the soil geochemistry in the invaded range, which may delay or halt succession in habitats where native
species are not adapted to the presence of Carpobrotus (Santoro et al. 2011, Novoa et al. 2013, Compoy
et al. 2018). An alteration of the successional trajectory of the ecosystem and the associated competitive
release that comes with that could easily mask the smaller effect of climate on overall fitness. Documenting
the succesional stage of populations cannot be easily done post-hoc as the orthomosaic outputs from the
drone do not preserve the vertical structure of the populations. Point clouds generated in the process of
orthomosaic construction could provide a suitable alternative (Pix4D SA, 2019), and would not require
subjective assessments of successional stage.

In contrast to expectations, fitness was not significantly higher in the introduced range than the native
range. Both the best and worst performing populations were present in the introduced range. For example,
Praia de Areao was the highest performing, and is situated in full sun along the Portuegese coast. This is a
relatively mild winter climate, which may be helpful to the population. In contrast, Foxton is located on the
southwestern side of New Zealand’s North Island. Strong winds, cooler temperatures, and shifting dunes are
all factors that may contribute to this site’s relative lack of performance.

Future work investigating climate drivers of invasions should consider that spatial environmental gradients
alone are not sufficient for robust statistical inference. We specifically recommend replicating sites both within
and across climate bands. A recent simulation study illustrated that replicating 10 sites within a climate
band for 3 years provides as much power for detecting climate-demography relationships as a 20-30 year data
set at a single site (Compagnoni et al. 2022). Our study design only yielded three sites that could serve as
climate replicates of each other, while all other sites were spread across a considerable distances and were in
different climate bands. This yielded a broad climate gradient, but also did not allow partitioning of site
specific variability and climate signal (because n = 1 for every level of climate in our data set). Our power to
detect climate driven effects would be 0.3-0.5, depending on the inter-site climate correlations (Compagnoni
et al. 2022). For 13 spatial replicates, we would likely need to sample for at least 10 transitions to detect a
climate effect with confidence, and/or increase our replication within climate bands (Compagnoni et al. 2022).

In general, concerns that climate change may favor the fitness and population growth of a harmful invasive
species are not supported by this study. Climate is not found to be a strong predictor of demographic
success for Carpobrotus. This could be because anthropogenic factors are stronger predictors of invasion
success than ecological ones (Wohlwend et al. 2021). While climate change may open up new areas to
invasion, long distance dispersal events are still required for a species to realize this new niche space. In the
Anthropocene, these dispersal events are far more likely to occur due to economic factors than demographic
ones, as evidenced by the fact that initial introductions of Carpobrotus were almost exclusively intentional
throughout the invaded range. It is therefore more important to focus on limiting trade of these species to
curtail spread at the macroecological scale.

45

Citations

1. Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R
Journal, 10(1), 395-411. doi:10.32614/RJ-2018-017

2. Liaw, A. & Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3), 18–22.

3. Breiman, L. (2001). Random Forests. Machine Learning 45: 5-32. DOI: https://doi.org/10.1023/A:
1010933404324

4. Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R
Journal 10 (1), 439-446, https://doi.org/10.32614/RJ-2018-009

5. Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A Grammar of Data Manipulation.
R package version 1.0.7. https://CRAN.R-project.org/package=dplyr

6. Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., et al. (2019).
“CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases.”
Methods in Ecology and Evolution 10. DOI: 10.1111/2041-210X.13152 (URL: https://doi.org/10.1111/
2041-210X.13152), R package version 2.0-20

7. Portela, R., Barreiro, R., Alpert, P., Xu, C-Y., Webber, B.L., & Roiloa, S.R. (2022). Comparative
invasion ecology of Carpobrotus from four continents: responses to nutrients and competition. Jourcnal
of Plant Ecology, in press. https://doi.org/10.1093/jpe/rtac034

8. Wohlwend, M.R., Craven, D., Weigelt, P., Seebens, H., Winter, M., Kreft, H., et al. (2021). Anthro-
pogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity
and Distributions. https://doi.org/10.1111/ddi.13260

9. Santoro, R., T. Jucker, M. Carranza, and A. T. R. Acosta. (2011). Assessing the Effects of Carpobrotus
Invasion on Coastal Dune Soils. Does the Nature of the Invaded Habitat Matter? Community Ecology
12 (2): 234–240. doi:10.1016/j.jnc.2011.08.003.

10. Novoa, A., L. González, L. Moravcová, and P. Pyšek. (2013). Constraints to Native Plant Species Es-
tablishment in Coastal Dune Communities Invaded by Carpobrotus edulis: Implications for Restoration.
Biological Conservation 164: 1–9. doi:10.1016/j.biocon.2013.04.008.

11. Campoy, J.G., Acosta, A.T.R., Affre, L., Barreiro, R., Brundu, G., Buisson, E. et al. (2018). Monographs
of invasive plants in Europe: Carpobrotus. Botany Letters. https://doi.org/10.1080/23818107.2018.
1487884

12. Pimentel D, Zuniga R, Morrison D. 2005 Update on the environmental and economic costs associated
with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. (doi:10.1016/j.ecolecon.
2004.10.002)

13. Vila M et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species,
communities and ecosystems. Ecology Letters 14, 702–708. (doi:10.1111/j.1461-0248.2011.01628.x)

14. Levin, S.C., Crandall, R.M., Pokoski, T., Stein, C., & Knight, T.M. (2020). Functional and phylogenetic
distinctiveness explain alien plant population responses to competition. Proceedings B 287: 20201070
http://dx.doi.org/10.1098/rspb.2020.1070

15. Lowry E, Rollinson EJ, Laybourn AJ, Scott TE, Aiello- Lammens ME, Gray SM, Mickley J, Gurevitch
J. (2013). Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol.
Evol. 3, 182–196. (doi:10.1002/ece3.431)

16. Jeschke JM, Heger T. (2018). Invasion biology: hypotheses and evidence. Boston, MA: CABI Publishing.

17. Novoa, A., L. González, L. Moravcová, and P. Pyšek. (2012). Effects of Soil Characteristics, Allelopathy
and Frugivory on Establishment of the Invasive Plant Carpobrotus edulis and a Co-Occuring Native,
Malcolmia littorea. PLoS ONE 7 (12): e53166. doi:10.1371/journal.pone.0053166.

46

doi:10.32614/RJ-2018-017
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.32614/RJ-2018-009
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1111/2041-210X.13152
https://doi.org/10.1111/2041-210X.13152
https://doi.org/10.1093/jpe/rtac034
https://doi.org/10.1111/ddi.13260
doi:10.1016/j.jnc.2011.08.003
doi:10.1016/j.biocon.2013.04.008
https://doi.org/10.1080/23818107.2018.1487884
https://doi.org/10.1080/23818107.2018.1487884
doi:10.1016/j.ecolecon
doi:10.1111/j.1461-0248.2011.01628.x
http://dx.doi.org/10.1098/rspb.2020.1070
doi:10.1002/ece3.431
doi:10.1371/journal.pone.0053166

18. Novoa, A., and L. González. (2014). Impacts of Carpobrotus edulis (L.) NE Br. On the Germination,
Establishment and Survival of Native Plants: A Clue for Assessing Its Competitive Strength. PLoS
ONE 9 (9): e107557. doi:10.1371/journal.pone.0107557.

19. D’Antonio, C.M. & Mahall, B.E. (1991). Root Profiles and Competition between the Invasive, Exotic
Perennial, Carpobrotus edulis, and Two Native Shrub Species in California Coastal Scrub. American
Journal of Botany 78(7): 885-894.

20. Guisan, A. and Thuiller, W. (2005) Predicting Species Distribution: Offering More than Simple Habitat
Models. Ecology Letters, 8, 993-1009. http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x

21. Liu, C., Wolter, C., Xian, W., & Jeschke, J. (2020). Species distribution models have limited spatial
transferability for invasive species. Ecology Letters 23(11): 1682-1692.

22. Merow, C., Bois, S.T., Allen, J.M., Xie, Y., Silander Jr., J.A. (2017). Climate change both facilitates
and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences.
E3276–E3284. www.pnas.org/cgi/doi/10.1073/pnas.1609633114

23. Garcia-Callejas, D., Molowny-Horas, R., & Retana, J. (2017). Projecting the distribution and abundance
of Mediterranean tree species under climate change: a demographic approach. Journal of Plant Ecology
10(5): 731-743.

24. Broennimann, O. & Guisan, A. (2008). Predicting current and future biological invasions: both native
and invaded ranges matter. Biology Letters 4(5):585-589.

25. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in
Ecology and Evolution 1(4): 330-342.

26. QGIS Development Team (2022). QGIS Geographic Information System. Open Source Geospatial
Foundation Project. http://qgis.osgeo.org

27. Briscoe, N.J., Elith, J., Salguero-Gomez, R., Lahoz-Monfort, J.J., Carnac, J.S., Glijohann K.M. et
al. (2019). Forecasting species range dynamics with process-explicit models: matching methods to
applications. Ecology Letters 22: 1940-1956.

28. Ellner, S.P., Childs, D.Z., Rees, M. (2016) Data-driven modelling of structured populations: a practical
guide to the integral projection model. Basel, Switzerland: Springer International Publishing AG

29. Levin, S.C., Childs, D.Z., Compagnoni, A., Evers, S., Knight, T.M., & Salguero-Gomez, R. (2021).
ipmr: flexible implementation of Integral Projection Models. Methods in Ecology and Evolution 12
(10): 1826-1834.

30. Caswell, H. (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn.
Sunderland, MA: Sinauer Associates Inc

31. Prentis, P.J., Wilson, J.R.U., Dormontt, E.E., Richardson, D.M., & Lowe, A.J. (2008). Adaptive
evolution in invasive species. Trends in Plant Science 13(6): 288-294.

32. Compagnoni A., Pardini, E., & Knight, T.M. (2021). Increasing temperature threatens an already
endangered coastal dune plant. Ecosphere 12(3): e03454

33. Klausmeyer, K.R. & Shaw. M.R. (2009). Climate Change, Habitat Loss, Protected Areas and the
Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide. PLoS ONE 4(7):
e6392. https://doi.org/10.1371/journal.pone.0006392

34. Caño, L., Escarre, J., Fleck, I., Blanco-Moreno, J.M., & Sans, F.X. (2008). Increased fitness and
plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. Journal of
Ecology 96: 468-476.

35. Beaury, E.M., Fusco, E.J., Jackson, M.R. et al. Incorporating climate change into invasive species
management: insights from managers. Biological Invasions 22, 233–252 (2020). https://doi.org/10.
1007/s10530-019-02087-6

47

doi:10.1371/journal.pone.0107557
http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x
http://qgis.osgeo.org
https://doi.org/10.1371/journal.pone.0006392
https://doi.org/10.1007/s10530-019-02087-6
https://doi.org/10.1007/s10530-019-02087-6

36. Allen, J., & Bradley, B.A. (2016). Out of the weeds? Reduced plant invasion risk with climate change in
the continental United States. Biological Conservation 203, 306-312. https://doi.org/10.1016/j.biocon.
2016.09.015

37. Ziska, L.H. (2022) Plant Invasions, Rising CO2, and Global Climate Change. Chapter in Global Plant
Invasions. 71-87. https://link.springer.com/chapter/10.1007/978-3-030-89684-3_4

38. Cavender-Bares, J., Schneider, F.D., Santos, M.J. et al. Integrating remote sensing with ecology and
evolution to advance biodiversity conservation. Nature Ecology & Evolution. 6, 506–519 (2022).
https://doi.org/10.1038/s41559-022-01702-5

39. Lake, T.A., Runquist, R.D.B, & Moeller, D.A. (2020). Predicting range expansion of invasive species:
Pitfalls and best practices for obtaining biologically realistic projections. Diversity and Distributions
26(12): 1767-1779.

40. Innangi, M., Marzialetti, F., Di Febbraro, M., Acosta, A.T.R., De Simone, W., Frate, L., Finizio, M.,
Perna, P.V., & Carranza, M.L. (2023). Coastal Dune Invaders: Integrative Mapping of Carpobrotus sp.
pl. (Aizoaceae) Using UAVs. Remote Sensing. 15, 503. https://doi.org/10.3390/rs15020503

41. GDAL/OGR contributors (2022). GDAL/OGR Geospatial Data Abstraction software Library. Open
Source Geospatial Foundation. URL https://gdal.org DOI: 10.5281/zenodo.5884351

42. Muñoz Sabater, J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change
Service (C3S) Climate Data Store (CDS). (Accessed on < 02-02-2022 >), 10.24381/cds.e2161bac

43. Mathakutha, R., Steyn, C., le Roux, P. C., Blom, I. J., Chown, S. L., Daru, B. H., Ripley, B. S., Louw,
A., & Greve, M. (2019). Invasive species differ in key functional traits from native and non-invasive
alien plant species. Journal of Vegetation Science 30(5): 994-1006. https://doi.org/10.1111/jvs.12772

44. Compagnoni, A., Evers, S., & Knight, T.M. (2022). Spatial replication should be prioritized to advance
our understanding of population responses to climate. BioRxiv https://doi.org/10.1101/2022.06.24.
497542

45. Lee-Yaw, J.A., McCune, J.L., Pironon, S., & Sheth, S.N. (2021). Species distribution models rarely
predict the biology of real populations. Ecography 2022: e05877, doi: 10.1111/ecog.05877

46. Caswell, H. (1989) The analysis of life table response experiments. I. Decomposition of effects on
population growth rate. Ecological Modelling, 46, 221–237.

47. Jackson, J., Lawson, C.S., Adelmant, C., Huhtala, E., Fernandes, P., Hodgson, R., et al. (2022). Short-
range multispectral imaging is an inexpensive, fast, and accurate approach to estimate biodiversity in a
temperate calcareous grassland. Ecology and Evolution 12(12): e9623. https://doi.org/10.1002/ece3.
9623

48. Ellner, S.P. & Rees, M. (2006). Integral projection models for species with complex demography.
American Naturalist 167(3): 410-428

48

https://doi.org/10.1016/j.biocon.2016.09.015
https://doi.org/10.1016/j.biocon.2016.09.015
https://link.springer.com/chapter/10.1007/978-3-030-89684-3_4
https://doi.org/10.1038/s41559-022-01702-5
https://doi.org/10.3390/rs15020503
https://gdal.org
https://doi.org/10.1111/jvs.12772
https://doi.org/10.1101/2022.06.24.497542
https://doi.org/10.1101/2022.06.24.497542
https://doi.org/10.1002/ece3.9623
https://doi.org/10.1002/ece3.9623

Synthesis

There is a long history in plant and animal demography of considering demographic responses across relatively
small spatial and temporal grains, and a current need to expand this understanding to broader scales
(Crone et al. 2010, Roemer et al. 2021). Macroecologists consider how climate influences the distribution
and abundance of species, and use models to predict how these patterns may change with climate change.
However, demographic studies that focus on vital rates (survival, growth, fecundity) provide a mechanistic
understanding for how species respond to climate (e.g. Compagnoni et al. 2021). Studying demography at
macroecological scales can provide a better understanding of how different populations are responding to
climate, and what drivers are most important for their vital rates and persistence.

Moving towards broader spatial scales in demography has been limited by having appropriate tools for synthesis
and rapid demographic data collection. This dissertation aims to fill these gaps and study populations of the
same species that occur across different continents. I develop and apply new tools that can help researchers
address questions related to demography and population dynamics across various temporal and spatial scales,
and applies them to a focal genus to understand how climate affects the population dynamics of a problematic
invasive plant species. The computational framework introduced in chapter 2, ipmr, is both a standalone
tool for creating Integral Projection Models (IPMs) of any population (Chapter 4, Bogdan et al. 2021) and
is an underlying engine for synthesis work (Chapter 3). In Chapter 3, I demonstrate how to use ipmr and
Rpadrino to implement many IPMs across many spatial scales, and the supplementary materials provide a
framework for addressing the relationship between range centrality and species fitness, demonstrating their
use for macro-ecological applications. In chapter 4, I use a novel data collection techniques (unmanned aerial
vehicles) and ipmr to study the demographic responses of an invasive succulent plant species across multiple
continents that span its native and exotic ranges. I show that climate does not constrain the fitness of this
plant species as hypothesized, suggesting that other factors may mediate its ability to colonize and thrive.

Advances in standalone IPMs

Integral projection models have become a popular tool for researchers across many disciplines to model
population performance, evolutionary and life history trajectories, and species fitness in continuously structured
populations (Ellner, Childs, & Rees 2016). Following their introduction in 2000 (Easterling, Ellner & Dixon
2000), researchers have developed increasingly complex IPMs to capture the nuanced responses to drivers
such as climate (e.g. Hindle et al. 2018), competition (Adler et al. 2010), and changes in continuous structure
within discrete groups (e.g. two sex models, Erickson et al. 2017). In parallel with these theoretical and
applied developments, researchers created computational tools that help create and analyze IPMs (Metcalf
et al. 2013, Shefferson et al. 2020). Despite the uptick in the popularity of IPMs, computational tools to
implement IPMs have not kept pace with development of theory.

In chapter 2, I introduced the R package, ipmr. ipmr provides a miniature domain specific language to
implement a wide range of IPMs. ipmr provides functionality for basic analyses, and extensive documentation
to aid researchers in implementing more complex analyses (Appendix 1 & Appendix 2). At present, it can
handle both simple and general IPMs (sensu Ellner & Rees 2006), deterministic and two types of stochastic
models (Rees & Ellner 2009), and density/frequency-independent or -dependent models. Furthermore, ipmr
handles two-sex models (W. Petry, personal communication), and nested combinations of continuous traits
within discrete trait models (e.g. Ellner, Childs & Rees 2016, Chapter 6, Metcalf et al. 2009), which were
either exceptionally difficult or impossible to implement with previously written R packages.

ipmr provides a syntax that mimics the mathematical notation of IPMs, and it does not attempt to abstract
over the vital rate modeling step of IPM construction. These two features provide a number of advantages
over prior work. First, these two features enable researchers to use any functional form they desire to specify
the relationship between a trait value and a vital rate. These two features enable researchers to leverage
new developments in regression modeling as they become available, rather than having to wait for ipmr’s
maintainers to implement a way of integrating them into the package. As long as a researcher can write
out the functional form of the response (or the regression technique includes a predict() method), then it

49

is available for use in ipmr. Second, there is no limit on the number of vital rates, structuring traits, and
there are no rules on how these may relate to each other (though, in practice, having too many of either
may result in painfully slow performance - the curse of dimensionality spares no one). This feature enables
researchers to model populations of increasing complexity without having to think too hard about model
implementation - the researcher can keep adding new sub-kernels to the IPM and ipmr will implement them.
One final implication of decoupling vital rate modelling from IPM implementation is that raw data are not
required to implement an IPM with ipmr. One can assume functional forms for different vital rates, work out
reasonable ranges for parameter values, and then simulate populations. Prior to this development, researchers
who wished to use an R package to implement their IPM would have to simulate data, fit regression models
to that data, and then construct an IPM. This feature also enables PADRINO (introduced in chapter 3) to
drastically reduce the amount of data it has to store to reconstruct published IPMs.

Summary of new features for synthesis

Another key piece of ipmr’s functionality that sets it apart from prior work is the proto_ipm data structure.
This data structure provides a unified way of describing every IPM that one can implement with ipmr, and
so is a common form that can be shared by both user-defined IPMs and ones defined by PADRINO, which is
introduced in chapter 3. The proto_ipm is essentially a data frame that houses the symbolic definition of the
sub-kernels, the parameters associated with this definition, and then the numerical details that implement the
model (e.g. domain limits for continuous traits, integration rules, etc.). This means that once a user defines
one or more proto_ipms using their own data and/or data from PADRINO, a single set of computational
machinery can be applied to implement their models, drastically reducing the amount of time required to
conduct multi-model synthesis work.

PADRINO provides a database that stores peer-reviewed, published IPMs. Rpadrino leverages the aforemen-
tioned features of ipmr to reconstruct them for users. Specifically, PADRINO stores the mathematical form
of published IPMs as text strings and Rpadrino makes use of R’s ability to parse text into code as well as
modify code’s evaluation environments to ensure that IPMs are reconstructed as published. Rpadrino breaks
this down into two steps: re-generating proto_ipms from PADRINO’s symbolic model definitions, and then
generating actual IPM objects. This segmenting of the steps enables users to combine their own IPMs with
database-generated ones. Furthermore, the consistent structure of the outputs makes programming complex
synthesis more straightforward, as there is type-consistency in the outputs.

In Appendix 4 of Chapter 3, I show how to use these larger data sets for synthetic work. Specifically, I use a
single interface for implementing multiple models by re-constructing IPMs for 23 species and then computing
sensitivities and elasticities of population growth rate, as well as mean lifetime recruit production. This
appendix further demonstrates the advantages of using an expression based framework by demonstrating how
to alter vital rate functions and compute function value perturbations. For example, I provide a case study
for how to correct unrealistic functions in an IPM. This functionality allows users to make more complete
use of the data stored in the database by correcting issues with published IPMs that would otherwise be
unusable for a particular analysis. The combination of Rpadrino and PADRINO also provides a framework
for theoreticians to experiment with the consequences of altering the relationships between traits and vital
rates using realistic demographic information.

Appendix 5 of Chapter 3 demonstrates another important result for researchers interested in synthesis. This
appendix combines data from user-defined models as well as other open access databases to informally address
a long-standing question in ecology. This appendix leverages range maps from BIEN (Maitner et al. 2017)
and COMPADRE (Salguero-Gomez et al. 2014) to estimate the relationship between range centrality and
population growth rate (λ). In doing so, I provide a code template that can be repurposed by other researchers
to clean and filter publicaly accessible data and conduct larger scale syntheses than were previously possible.

50

Applications

Thus far, I have detailed only of what might be done with the novel tools I have developed, rather than what
has been done with them. ipmr has been used to construct a simple model for a population of Carpobrotus
species in Israel (Bogdan et al. 2020), examine the effects of harvesting and fire on three economically
important tree species in the Western Ghats of India (Neeraja et al. 2022), explore the role of climate change
on perennial grasslands (Andrzejak et al. 2023), and to construct an age and size structured model of the
impacts of temperature on the invasive Asian Carp (Brook 2021).

In chapter 4, I use ipmr to generate an IPM that examines population performance at the local scale and
species performance at a macro-ecological scale to investigate how climate affects the Carpobrotus genus
across its native and invaded range. Contrary to my expectations, this work revealed that climate is not very
important in determining the success of this invasive genus. There are a myriad of reasons why this may be
the case, ranging from the statistical limitations (i.e. a lack of power) to the biological drivers (e.g. biotic
interactions are more important and mask the relatively smaller climate effects). Climate’s lack of importance
in explaining λ reveals the importance of both temporal and spatial scale in studies like this. Regarding the
former, single years are often not sufficient to capture a relationship between climate variables and population
performance, due to, for example, single year deviations from longer-term weather patterns may confound
signal (Compagnoni et al. 2023). Regarding biological explanations, populations may experience different
biotic interactions, and genetic bottlenecks that are imposed on a species via introduction to a new region
(founder effects and subsequent adaptation).

It has been suggested that space might be substituted for time when studying various facets of biodiversity and
population biology (Blois et al. 2013, but see Dammand 2019). As such, sampling multiple populations that
experience different climates in a single year might provide insight into how a single population would respond
to climate changes that occur across longer time scales. However, I found that sampling 13 populations
spread across 4 continents was not sufficient to detect climate effects on demography. I argue that a more
successful approach, in hindsight, would have been to increase replication within each climate band, rather
than sampling populations that span across a broad climate gradient. This alternative approach would have
allowed me to disentangle the within-band, across site variation on one hand, and the variation arising across
climate bands on the other hand (Compagnoni et al. 2022).

Limitations of these new frameworks

In addition to the limitations of the space for time substitutions, which are discussed in chapter 4 and in
the preceding paragraph, there are other limitations to this dissertation’s research. The R packages ipmr
and Rpadrino, and the PADRINO database, for all of their flexibility, are not capable of implementing all
possible IPMs. For example, ipmr is not able to accommodate time-lagged models (i.e. historical IPMs sensu
Shefferson et al. 2020) or periodic models (Letcher et al. 2014). Despite ipmr’s ability to handle semi- and
non-parametric models for vital rates, a general syntax for describing them in PADRINO has not yet been
developed either. Thus, IPMs that include, for example, generalized additive models (Wood 2017) are not
yet available for synthesis. Another, more general, limitation of PADRINO is that the data contained therein
may not be biologically correct - the only criteria for inclusion in that database is that the model has received
some sort of peer review (i.e. are either published in a peer reviewed journal, are part of an MSc. or PhD
thesis, or a technical report). Therefore, the models may be all biologically unrealistic, even if they have
passed peer review. For an example of how this limitation looks in practice (and how to overcome it provided
it is recognized by the user), see Appendix 4 of Chapter 3.

Future directions for research

Ecology faces the challenge of scaling our understanding of ecological systems across different spatial and
temporal grains. To tackle this challenge, ecologists must develop methods and frameworks for integrating
data and observations across scales. This dissertation contributes to advancing ecology by filling key gaps

51

in our ability to study demography at broad spatial and temporal scales. There are some key areas that
are important to develop along this line in future research. The first recommendation for future research
is with regard to chapters 2 and 3. The R packages ipmr and Rpadrino are promising tools for generating
point estimate of demographic quantities. However, quantifying uncertainty is an essential exercise for every
scientist, regardless of field. Currently, neither framework provides off the shelf functionality to propagate
uncertainty in parameters/vital rates into uncertainty in the demographic quantities of interest. At the
moment, an ipmr vignette is the only resource provided to users to demonstrate how one might generate a
posterior distribution for the population growth rate λ. This documentation alone is certainly insufficient
given that no robust inference can be made without an understanding of how the outcome of interest may
vary. This is an important area of future development for both tools to reach their full potential.

The outcome of interest in most studies extends beyond λ. While ipmr contains functionality to calculate
deterministic and stochastic eigenvectors, this R package does not contain functionality to calculate many
other metrics. The documentation provides some overview of how to compute other metrics, though it is far
from exhaustive (see Ellner, Childs, & Rees 2016). This limitation is largely by design, as combining too
much into a single piece of software makes it harder to maintain (the principle of conscious decoupling). A
third package is needed that contains functionality to conduct more complex analyses on ipmr and Rpadrino
outputs.

There is an ever growing list of publications that make use of IPMs, and PADRINO will require constant
attention to keep it updated. One priority for the digitization team should be to balance out the phylogenetic
representation of the database. Currently, it is quite plant-heavy, which reflects my own personal interests
but is not reflective of the sampling effort made by the field as whole. Synthesis requires consideration of
sample sizes and the balance of each factor under consideration, so it would be ideal to allow users to make
full use of data without having to correct for these issues as much as they currently may have to.

Ecologists are aware that large scale drivers may exhibit small effect sizes when studied at finer spatial or
temporal grains. Chapter 4 highlights this phenomenon. There are two key next steps for this work. First, to
ensure that future sampling adds additional sites that are close to existing ones, rather than attempting to
add sites that occupy additional climate space. Second, consider other drivers of invasiveness simultaneously
to understand relative importance of these drivers. These two improvements will likely yield far more insight
than the broad scale sampling of climate alone discussed in Chapter 4.

Concluding remarks

The computational framework introduced in chapters 2 and 3 provides a new way for researchers to generate
and synthesize demographic data across a variety grains and scales. Their flexibility will hopefully provide
researchers with a toolkit to address broader questions with the appropriate methods and statistical power.
Despite their limitations, they have already found use in the literature. As they are open source and open
access, both using and contributing to them can be a collaborative endeavor.

In practice, devising an appropriate sampling scheme for detecting climate drivers on demographic responses
is far more nuanced and challenging than simply sampling far and wide, as I did in Chapter 4. Careful
consideration must be given to the spatial and temporal scales of the expected effects in question, and to
the level of replication required to detect them. On the other hand, regardless of the presence or absence
of a detectable climate effect on fitness, we do know that invasive species are harmful to biodiversity and
economic interests. We should not take the absence of an observed climate effect to indicate that a species
poses no threat beyond its current distribution, and policy should reflect this existing knowledge.

Citations

1. Bogdan, A., Levin, S.C., Salguero-Gomez, R. (2020) Demographic analysis of an Israeli Carpobrotus
population. PLoSONE. https://doi.org/10.1371/journal.pone.0250879

52

https://doi.org/10.1371/journal.pone.0250879

2. Ellner, S.P., Childs, D.Z., Rees, M. (2016) Data-driven modelling of structured populations: a practical
guide to the integral projection model. Basel, Switzerland: Springer International Publishing AG

3. Easterling, M.R., Ellner, S.P., & Dixon, P.M. (2000). Size specific sensitivity: applying a new structured
population model. Ecology 81(3): 694-708.

4. Ellner, S.P. & Rees, M. (2006). Integral Projection Models for species with complex demography. The
American Naturalist 167(3): 410-428.

5. Rees, M., & Ellner, S. P. (2009). Integral projection models for populations in temporally varying
environments. Ecological Monographs, 79(4), 575–594. https://doi.org/10.1890/08-1474.1.

6. Maitner, B., Boyle B., Casler N., Condit R., Donoghue J., Duran S.M., et al. (2017) The bien r package:
A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology
and Evolution 9(2): 373-379. https://doi.org/10.1111/2041-210X.12861

7. Levin, S.A. (1989). The problem of pattern and scale in ecology. Ecology 73(6): 1943-1967.

8. Erickson, R.A., Eager, E.A., Brey, M.B., Hansen, M.J., & Kocovsky, P.M. (2017). An integral projection
model with YY-males and application to evaluating grass carp control. Ecological Modelling 361: 14-25.
https://doi.org/10.1016/j.ecolmodel.2017.07.030

9. Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R., & Jongejans, E. (2013). IPMpack: An R
package for integral projection models. Methods in Ecology and Evolution., 4(2), 195–200. https:
//doi.org/10.1111/2041-210x.12001

10. Shefferson, R. P., Kurokawa, S., & Ehrlen, J. (2020). LEFKO3: Analysing individual history through size-
classified matrix population models. Methods in Ecology and Evolution. https://doi. org/10.1111/2041-
210X. 13526

11. Metcalf, C. J. E., Horvitz, C. C., Tuljapurkar, S., & Clark, D. A. (2009). A time to grow and a time to
die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology, 90(10),
2766-2778.

12. Salguero-Gómez, R, Jones, O.R., Archer, C.A., Buckley, Y.M., Che-Castaldo, J., Caswell, C., Hodgson,
D., Scheuerlein, A., Conde, D.A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, F., Hartmann,
A., Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., etal. (2014) The COMPADRE Plant
Matrix Database: an online repository for plant population dynamics. Journal of Ecology 103: 202-218.
https://doi.org/10.1111/1365-2745.12334

13. Neeraja, U. V., Saneesh, C. S., Dyda, V., Reddy, H., Yadama, G. N., & Knight, T. M. (2022). Harvesting
has variable effects on demographic rates and population growth across three dry forest tree species.
Biotropica, 54(6), 1376-1389.

14. Brook, M. (2021). Impacts of temperature on Asian Carp life history and population growth (Master’s
thesis, University of Waterloo).

15. Letcher, B.H., Schueller, P., Bassar, R.D., Nislow, K.H., Coombs, J.A.,Sakrejda, K. et al. (2014).
Robust estimates of environmental effects on population vital rates: an integrated capture-recapture
model of seasonal brook trout growth, survival and movement in a stream network. Journal of Animal
Ecology 84(2): 337-352. https://doi.org/10.1111/1365-2656.12308

16. Wood, S.N. (2017). Generalized Additive Models: An Introduction with R (2nd edition). Chapman
and Hall/CRC.

17. Compagnoni, A., Levin, S., Childs, D.Z. et al. Herbaceous perennial plants with short generation time
have stronger responses to climate anomalies than those with longer generation time. Nat Commun 12,
1824 (2021). https://doi.org/10.1038/s41467-021-21977-9

18. Hindle, B., Rees, M., Sheppard, A.W., Quintana-Ascensio, P.F., Menges, E.S., & Childs, D.Z. (2018).
Exploring population responses to environmental change when there’s never enough data: a factor

53

https://doi.org/10.1890/08-1474.1
https://doi.org/10.1111/2041-210X.12861
https://doi.org/10.1016/j.ecolmodel.2017.07.030
https://doi.org/10.1111/2041-210x.12001
https://doi.org/10.1111/2041-210x.12001
https://doi
https://doi.org/10.1111/1365-2745.12334
https://doi.org/10.1111/1365-2656.12308
https://doi.org/10.1038/s41467-021-21977-9

analytic approach. Methods in Ecology and Evolution 9(11): 2283-2293. https://doi.org/10.1111/2041-
210X.13085

19. Adler, P.B., Ellner, S.P., & Levine, J.M. (2010). Coexistence of perennial plants: an embarrassment of
niches. Ecology Letters 13(8): 1019-1029. https://doi.org/10.1111/j.1461-0248.2010.01496.x

20. Compagnoni, A., Evers, S., & Knight, T.M. (2022). Spatial replication should be prioritized to advance
our understanding of population responses to climate. BioRxiv https://doi.org/10.1101/2022.06.24.
497542

21. Crone, E.E., Menges, E.S., Ellis, M.M., Bell, T., et al. (2010). How do plant ecologists use matrix
population models? Ecology Letters 14(1): 1-8.

22. Roemer, G., Dahlgren, J.P., Saluero-Gomez, R., Stott, I.M., Jones, O.R. (2023). Plant demographic
knowledge is biased towards short-term studies of temperate-region herbaceous perennials. BioRXiv.
https://doi.org/10.1101/2021.04.25.441327

23. Andrzejak, M., Knight, T.M., Plos, C., & Korell, L. (2023). Reproductive success mediates the
effects of climate change and grassland management on plant populations dynamics. BioRXiv. https:
//doi.org/10.1101/2023.04.26.538388

24. Blois, J.L., Williams, J.W., Fitzpatrick, M.C., Jackson, S.T., & Ferrier, S. (2013). Space can substitute
for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of
Sciences 110(23): 9374-9379. https://doi.org/10.1073/pnas.1220228110

25. Dammand, C. (2019). A Critique of the Space-for-Time Substitution Practice in Community Ecology.
Trends in Ecology and Evolution 34(5): 416-421. https://doi.org/10.1016/j.tree.2019.01.013

54

https://doi.org/10.1111/2041-210X.13085
https://doi.org/10.1111/2041-210X.13085
https://doi.org/10.1111/j.1461-0248.2010.01496.x
https://doi.org/10.1101/2022.06.24.497542
https://doi.org/10.1101/2022.06.24.497542
https://doi.org/10.1101/2021.04.25.441327
https://doi.org/10.1101/2023.04.26.538388
https://doi.org/10.1101/2023.04.26.538388
https://doi.org/10.1073/pnas.1220228110
https://doi.org/10.1016/j.tree.2019.01.013

Acknowledgements

I could not, nor would not, have done this work alone. I first want to thank my supervisors, Tiffany Knight and
Roberto Salgeuro-Gomez. Your mentorship has been invaluable, and I cannot think of two more supportive
advisors in academia. I also want to thank the members of the Knight Lab over the last 6 years. None of these
ideas would have happened were it not for the unrelenting support, intellectual brilliance, and comic relief
you provided. So thanks to Aldo Compagnoni, Sanne Evers, Neeraja Venkataraman, Valentin Stefan, Dylan
Craven, Joanne Bennett, Leana Zoller, Neeraja Venkataraman, Elena Motivans, Martin Andrzejak, Amibeth
Thompson, Demetra Rakosy, Lotte Korell, and Michael Wohlwend. Finally, I owe a debt to T. Michael
Anderson and Miles Silman, who introduced me to ecological research, and encouraged me to continue with
it after undergrad.

I also owe a great debt to those who kept me sane throughout this whole ordeal, particularly Andrea
Pacheco, Eduardo Arle, the three Leana’s, Mike, Sanne, Max, Valentin, Martin, and Amibeth. Thanks for
the impromptu nights out, the parties, and the Hops nights with Franz and Stine (and also to the latter for
putting up with us all these years).

I would be remiss in skipping over my friends back home: Alex, Henry, Ryan, Christian, Andy, Keith, Drew,
and the rest of the Denver team. Home was always a reset switch for me, and it was largely because of you
that it felt that way.

Speaking of home, I now have to thank my family. To my parents, Steve and Chris, my brothers, Daniel and
M, and my girlfriend, Larissa - I have no words to convey how grateful I am for your love and support, and
how impossible this would have been without it. Finally, I must thank my grandparents Betty and Buddy
Levin for their dedication to education and their support of mine, and to Robert and Lib Conner for inspiring
my love of nature.

55

Appendix 1: ipmr Case Study 1

56

Case Study 1: Bogdan et al. 2020

Two versions of a simple model

The first case study in this manuscript creates a model for Carpobrotus spp. The dataset used in this case
study was collected in Havatselet Ha’Sharon, a suburb of Tel Aviv, Israel. The data were collected by drones
taking aerial imagery of the population in successive years. Images were combined into a single high-resolution
orthomosaic and georeferenced so the map from year 2 laid on top of the map from year 1. Flowers on each
plant were counted using a point layer, and polygons were drawn around each ramet to estimate sizes and
survival from year to year. Plants that had 0 flowers were classified as non-reproductive, and any plant
with 1 or more flowers was classified as reproductive. This led to four regression models - survival, growth
conditional on survival, probability of flowering, and number of flowers produced conditional on flowering.
Finally, plants present in year 2 that were not present in year 1 were considered new recruits. The mean and
variance of their sizes were computed, and this was used to model the recruit size distribution.

The resulting IPM is a simple IPM (i.e. no discrete states, one continuous state variable). The data that the
regressions are fit to are included in the ipmr package, and can be accessed with data(iceplant_ex) (the
name comes from the common name for Carpobrotus species, which is “iceplants”).

The IPM can be written on paper as follows:

1. n(z′, t+ 1) =
∫ U

L
K(z′, z)n(z, t)dz

2. K(z′, z) = P (z′, z) + F (z′, z)

3. P (z′, z) = s(z) ∗G(z′, z)

4. F (z′, z) = pf (z) ∗ rs(z) ∗ pr ∗ rd(z′)

The components of each sub-kernel are either regression models or constants. Their functional forms are
given below:

5. Logit(s(z)) = αs + βs ∗ z
6. G(z′, z) = fG(z′, µG(z), σG)

7. µG(z) = αG + βG ∗ z
8. Logit(pf (z)) = αpf

+ βpf
∗ z

9. Log(rs(z)) = αrs
+ βrs

∗ z
10. rd(z′) = frd

(z′, µrd
, σrd

)

αs and βs correspond to intercepts and slopes from regression models, respectively. Here, fG and frd
are

used to denote normal probability density functions. The other parameters are constants derived directly
from the data itself.
library(ipmr)

Warning: package 'ipmr' was built under R version 4.2.3

Welcome to `ipmr`! `browseVignettes('ipmr')` to get started.
data(iceplant_ex)

growth model.

57

grow_mod <- lm(log_size_next ~ log_size, data = iceplant_ex)
grow_sd <- sd(resid(grow_mod))

survival model

surv_mod <- glm(survival ~ log_size, data = iceplant_ex, family = binomial())

Pr(flowering) model

repr_mod <- glm(repro ~ log_size, data = iceplant_ex, family = binomial())

Number of flowers per plant model

flow_mod <- glm(flower_n ~ log_size, data = iceplant_ex, family = poisson())

New recruits have no size(t), but do have size(t + 1)

recr_data <- subset(iceplant_ex, is.na(log_size))

recr_mu <- mean(recr_data$log_size_next)
recr_sd <- sd(recr_data$log_size_next)

This data set doesn't include information on germination and establishment.
Thus, we'll compute the realized recruitment parameter as the number
of observed recruits divided by the number of flowers produced in the prior
year.

recr_n <- length(recr_data$log_size_next)

flow_n <- sum(iceplant_ex$flower_n, na.rm = TRUE)

recr_pr <- recr_n / flow_n

Now, we put all parameters into a list. This case study shows how to use
the mathematical notation, as well as how to use predict() methods

all_params <- list(
surv_int = coef(surv_mod)[1],
surv_slo = coef(surv_mod)[2],
repr_int = coef(repr_mod)[1],
grow_int = coef(grow_mod)[1],
grow_slo = coef(grow_mod)[2],
grow_sdv = grow_sd,
repr_slo = coef(repr_mod)[2],
flow_int = coef(flow_mod)[1],
flow_slo = coef(flow_mod)[2],
recr_n = recr_n,
flow_n = flow_n,
recr_mu = recr_mu,
recr_sd = recr_sd,
recr_pr = recr_pr

)

58

The next chunk generates a couple constants used to implement the model. We add 20% to the smallest and
largest observed sizes to minimize eviction, and will implement the model with 100 meshpoints.

NB: L is multiplied by 1.2 because the log of the minimum observed size is negative, and we want to extend
the size range to make it more negative. If L were positive, we’d multiply by 0.8.
L <- min(c(iceplant_ex$log_size,

iceplant_ex$log_size_next),
na.rm = TRUE) * 1.2

U <- max(c(iceplant_ex$log_size,
iceplant_ex$log_size_next),

na.rm = TRUE) * 1.2

n_mesh_p <- 100

We now have the parameter set prepared, and have the boundaries for our domains set up. We are ready to
implement the model.

We start with the function init_ipm(). This function has five arguments: sim_gen, di_dd, det_stoch,
kern_param, and uses_age. For now, we will ignore the last argument, as it is covered in case study 2. The
first 4 arguments specify the type of IPM we are building:

1. sim_gen: "simple"/"general"

• A. simple: This describes an IPM with a single continuous state variable and no discrete stages.

• B. general: This describes and IPM with either more than one continuous state variable, one or
more discrete stages, or both of the above. Basically, anything other than an IPM with a single
continuous state variable.

2. di_dd: "di"/"dd"

• A. di: This is used to denote a density-independent IPM.

• B. dd: This is used to denote a density-dependent IPM.

3. det_stoch: "det"/"stoch"

• A. det: This is used to denote a deterministic IPM. If this is the third argument of init_ipm,
kern_param must be left as NULL.

• B. stoch: This is used to denote a stochastic IPM. If this is the third argument of init_ipm,
kern_param must be specified.

This particular model is deterministic, as there are no data on temporal or spatial changes in vital rates. An
introduction to stochastic models is available here. This example does not make use of the final argument,
kern_param, because it is not a stochastic model, so we’ll ignore it for now.

Once we’ve decided on the type of model we want, we create the model class using one of the two options for
each argument. Since there is no stochasticity, we can leave the fourth argument empty (its default is NULL).
This case study is a simple, density independent, deterministic IPM, so we use the following:
carpobrotus_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det")

After we have initialized our IPM, we need to start adding sub-kernels using the define_kernel() function.
These correspond to equations 3 and 4 above. We’ll start with the P kernel. It contains functions that
describe survival of individual ramets, and, if they survive, their new sizes. Note that in ipmr, the order in
which we define kernels for an IPM makes no difference, so we could also start with the F if we wanted to.

1. Survival is modeled with a logistic regression to predict the probability of survival to t+ 1 based on
the size of the ramet at t (surv_mod). In order to use the coefficients from that model to generate a

59

survival probability, we need to know the inverse logit transformation, or, a function that performs it
for us based on the linear predictor.

2. Size at t+ 1 is modeled with a Gaussian distribution with two parameters: the mean and standard
deviation from the mean. The mean value of size at t+ 1 (mu_G) is itself a linear function of size at t
and is parameterized with coefficients from the linear model (grow_mod). The standard deviation is a
constant derived from the residual variance from the linear model we fit.

We start providing information on the P kernel by giving it a name. The name is important because we can
use it to reference this kernel in higher level expressions later on. It can have any name we want, but P is
consistent with the literature in this field (e.g. Easterling, Ellner & Dixon 2000, Ellner & Rees 2006). Next,
we write the formula. The formula is the form of the kernel, and should look like Equation 3, without the z
and z′ arguments.
carpobrotus_ipm <- define_kernel(

proto_ipm = carpobrotus_ipm,
name = "P",
formula = s * G,
...

)

The family comes after formula. It describes the type of transition the kernel is implementing. family can
be one of 4 options:

1. "CC": Continuous state -> continuous state.

2. "DC": discrete state -> continuous state.

3. "CD": continuous state -> discrete state.

4. "DD": discrete state -> discrete state.

Since this is a simple IPM with only 1 continuous state variable and 0 discrete state variables, the family
will always be "CC". In general IPMs, this will not always be true.
carpobrotus_ipm <- define_kernel(

proto_ipm = carpobrotus_ipm,
name = "P",
formula = s * G,
family = "CC",
...

)

We’ve now reached the ... section of define_kernel(). The ... part takes a set of named expressions that
represent the vital rate functions we described in equations 5-7 above. The names on the left hand side of the =
should appear either in the formula argument, or in other parts of the The expressions on the right hand
side should generate the values that we want to plug in. For example, Equation 5 (Logit(s(z)) = αs + βs ∗ z)
makes use of the plogis function in the stats package to compute the survival probabilities from our linear
model. The names of the coefficients match the names in the all_params object we generated above. Another
thing to note is the use of z_1 and z_2. These are place-holders for z, z′ in the equations above. ipmr will
generate values for these internally using information that we provide in some of the next steps.
carpobrotus_ipm <- define_kernel(

proto_ipm = carpobrotus_ipm,
name = "P",
formula = s * G,
family = "CC",
G = dnorm(z_2, mu_g, grow_sdv),
mu_g = grow_int + grow_slo * z_1,

60

s = plogis(surv_int + surv_slo * z_1),
...

)

After setting up our vital rate functions, the next step is to provide a couple more kernel-specific details:

1. data_list: this is the all_params object we created above. It contains the names and values of all
the constants in our model.

2. states: A list that contains the names of the state variables in the kernel. In our case, we’ve just called
them "z". The states argument controls the names of the variables z_1 and z_2 that are generated
internally. We could just as easily call them something else - we would just have to change the vital
rate expressions to use those names instead. For example, in this model, z, z′ is the log-transformed
surface area of ramets. We could abbreviate that with "log_sa". In that case, z_1,z_2 would become
log_sa_1, log_sa_2 in the vital rate expressions.

3. evict_cor: Whether or not to correct for eviction (Williams et al. 2012).

4. evict_fun: If we decide to correct for eviction, then a function that will correct it. In this example, we
use ipmr’s truncated_distributions function. It takes two arguments: fun, which is the abbreviated
form of the probability function family (e.g. “norm” for Gaussian, “lnorm” for log-normal, etc.), and
target, which is the name in ... that it modifies.

carpobrotus_ipm <- define_kernel(
proto_ipm = carpobrotus_ipm,
name = "P",
formula = s * G,
family = "CC",
G = dnorm(z_2, mu_g, grow_sdv),
mu_g = grow_int + grow_slo * z_1,
s = plogis(surv_int + surv_slo * z_1),
data_list = all_params,
states = list(c("z")),
evict_cor = TRUE,
evict_fun = truncated_distributions(fun = "norm",

target = "G")
)

We’ve now defined our first sub-kernel. The next step is to repeat this process for the F kernel, which is
Equations 4 and 8-10.
carpobrotus_ipm <- define_kernel(

proto_ipm = carpobrotus_ipm,
name = "F",
formula = recr_pr * r_s * r_d * p_f,
family = "CC",
r_s = exp(flow_int + flow_slo * z_1),
r_d = dnorm(z_2, recr_mu, recr_sd),
p_f = plogis(repr_int + repr_slo * z_1),
data_list = all_params,
states = list(c("z")),
evict_cor = TRUE,
evict_fun = truncated_distributions(fun = "norm",

target = "r_d")
)

We’ve defined our sub-kernels. The next step is tell ipmr how to implement it numerically, and pro-

61

vide the information needed to generate the correct iteration kernel. To do this, we use define_impl(),
define_domains(), and define_pop_state().

The first function tells ipmr which integration rule to use, which state variable each kernel acts on
(state_start), and which state variable each kernel produces (state_end). The format of the list
it takes in the kernel_impl_list argument can be tricky to implement right, so the helper function
make_impl_args_list() makes sure everything is formatted properly. The kernel_names argument can be
in any order. The int_rule, state_start, and state_end arguments are then matched to kernels in the
proto_ipm based on the order in the kernel_names. Note that, at the moment, the only integration rule
that’s implemented is "midpoint". "b2b" (bin to bin) and "cdf" (cumulative density functions) are in the
works, and others can be implemented by popular demand.
carpobrotus_ipm <- define_impl(

proto_ipm = carpobrotus_ipm,
make_impl_args_list(

kernel_names = c("P", "F"),
int_rule = rep('midpoint', 2),
state_start = rep('z', 2),
state_end = rep('z', 2)

)
)

Next, we define the range of values that our state variable, z/z can take on. This is done using define_domains.
The ... argument should have named vectors. The name should match the name of the state/domain. The
first value in the vector is lower boundary, the second entry is the upper boundary, and the third entry is the
number of bins to divide that range into.
carpobrotus_ipm <- define_domains(

proto_ipm = carpobrotus_ipm,
z = c(L, U, n_mesh_p)

)

Finally, we define the initial population state. In this case, we just use a uniform vector, but we could also
use custom functions we defined on our own, or pre-specified vectors. The name of the population vector
should be the name of the state/domain, with an "n_" attached to the front.
carpobrotus_ipm <- define_pop_state(

proto_ipm = carpobrotus_ipm,
n_z = rep(1/100, n_mesh_p)

)

Up until this point, all we’ve done is add components to the proto_ipm. We now have enough information in
proto_ipm object to build a model, iterate it, and compute some basic quantities. make_ipm() is the next
function we need. It generates the vital rate functions from the parameters and integration details we provided,
and then builds the sub-kernels. At this point, it checks to make sure that everything makes numerical
sense (e.g. there are no negative values or NAs generated). If we set iterate = TRUE, make_ipm() also
generates expressions for iterating the model internally, and then evaluates those for the number of iterations
supplied by iterations. There are a number of other arguments to make_ipm() that can prove helpful for
subsequent analyses. return_main_env is one of these. The main_env object contains, among other things,
the integration mesh and bin width information specified in define_domains(). We’ll need the meshpoints
and bin width for the analyses we’ll do in the Further Analyses section, so we’ll set return_main_env =
TRUE.
carpobrotus_ipm <- make_ipm(

proto_ipm = carpobrotus_ipm,
iterate = TRUE,
iterations = 100,

62

return_main_env = TRUE
)

asymp_grow_rate <- lambda(carpobrotus_ipm)
asymp_grow_rate

lambda
0.9759257

We see that the population is projected to shrink slightly. ipmr computes all values by iteration. Our measure
of the asymptotic growth rate is the ratio Nt+1

Nt
for the final iteration of the model. If we are concerned

about whether or not we’ve iterated our model enough to trust this value, we have two options: check for
convergence using the helper is_conv_to_asymptotic(), or create the full iteration kernel, compute the
dominant eigenvalue of that, and compare our estimate with the value obtained by iteration.
Option 1: is_conv_to_asymptotic

is_conv_to_asymptotic(carpobrotus_ipm)

lambda
TRUE
Option 2: generate iteration kernel and compute eigenvalues

K <- make_iter_kernel(carpobrotus_ipm)

lam_eigen <- Re(eigen(K$mega_matrix)$values[1])

If we've iterated our model enough, this should be approximately 0 (though
maybe a little off due to floating point errors).

asymp_grow_rate - lam_eigen

lambda
3.463896e-14

We can also inspect our sub-kernels, the time series of the population trait distribution, and make alterations
to our model using some helpers from ipmr.
Sub-kernels have their own print method to display the range of values
and some diagnotic information.

carpobrotus_ipm$sub_kernels

$P
##
Minimum value: 0, maximum value: 0.08763
All entries greater than or equal to 0: TRUE
##
$F
##
Minimum value: 0, maximum value: 0.02512
All entries greater than or equal to 0: TRUE
Extract the time series of the population state (n_z),
and the n_t+1/n_t values (lambda)

63

pop_time_series <- carpobrotus_ipmpop_staten_z
lambda_time_series <- carpobrotus_ipmpop_statelambda

Next, we'll tweak the intercept of the p_f function and re-fit the model.

new_proto_ipm <- carpobrotus_ipm$proto_ipm

The parameters setter function takes a list. It can replace single values,
create new values, or replace the entire parameter list, depending on how you
set up the right hand side of the expression.

parameters(new_proto_ipm) <- list(repr_int = -0.3)

new_carp_ipm <- make_ipm(new_proto_ipm,
iterations = 100)

lambda(new_carp_ipm)

lambda
0.9720439

Next, we’ll go through an alternative implementation of the model using predict(surv_mod) instead of the
mathematical form of the linear predictors. After that, we’ll explore a couple additional analyses to see what
is going on with this population of iceplants.

Using predict methods instead

We can simplify the code a bit more and get rid of the mathematical expressions for each regression model’s
link function by using predict() methods instead. The next chunk shows how to do this. Instead of
extracting parameter values, we put the model objects themselves into the data_list. Next, we specify the
newdata object where the name corresponds to the variable name(s) used in the model in question, and the
values are the domain you want to evaluate the model on.

Above, we added parts to the carpobrotus_ipm object in a stepwise fashion. However, every define_*
function in ipmr takes a proto_ipm as the first argument and returns a proto_ipm object. Thus, we can
also use the %>% operator from the magrittr package to chain together the model creation pipeline. The
%>% is included in ipmr, so we don’t need to load any additional packages to access it. This example will
demonstrate that process as well.
pred_par_list <- list(

grow_mod = grow_mod,
grow_sdv = grow_sd,
surv_mod = surv_mod,
repr_mod = repr_mod,
flow_mod = flow_mod,
recr_n = recr_n,
flow_n = flow_n,
recr_mu = recr_mu,
recr_sd = recr_sd,
recr_pr = recr_pr

)

predict_method_carpobrotus <- init_ipm(sim_gen = "simple",
di_dd = "di",

64

det_stoch = "det") %>%
define_kernel(

name = "P",
formula = s * G,
family = "CC",
G = dnorm(z_2, mu_g, grow_sdv),
mu_g = predict(grow_mod,

newdata = data.frame(log_size = z_1),
type = 'response'),

s = predict(surv_mod,
newdata = data.frame(log_size = z_1),
type = "response"),

data_list = pred_par_list,
states = list(c('z')),
evict_cor = TRUE,
evict_fun = truncated_distributions("norm", "G")

) %>%
define_kernel(

name = "F",
formula = recr_pr * r_s * r_d * p_f,
family = "CC",
r_s = predict(flow_mod,

newdata = data.frame(log_size = z_1),
type = "response"),

r_d = dnorm(z_2, recr_mu, recr_sd),
p_f = predict(repr_mod,

newdata = data.frame(log_size = z_1),
type = "response"),

data_list = pred_par_list,
states = list(c("z")),
evict_cor = TRUE,
evict_fun = truncated_distributions("norm", "r_d")

) %>%
define_impl(

make_impl_args_list(
kernel_names = c("P", "F"),
int_rule = rep('midpoint', 2),
state_start = rep('z', 2),
state_end = rep('z', 2)

)
) %>%
define_domains(

z = c(L, U, n_mesh_p)
) %>%
define_pop_state(

n_z = rep(1/100, n_mesh_p)
) %>%
make_ipm(iterate = TRUE,

iterations = 100)

65

Further analyses

Many research questions require a bit more than just computing asymptotic growth rate (λ). Below, we will
compute the kernel sensitivity, elasticity, R0, and generation time. First, we will define a couple of helper
functions. These are not included in ipmr, but will eventually be implemented in a separate package that
can handle the various classes that ipmr works with.

The first is sensitivity of λ to perturbations in the projection kernel. Here, we can use the right_ev and
left_ev functions in ipmr to get the right and left eigenvectors, and then compute the sensitivity surface.

Technical note: right_ev and left_ev both compute eigenvectors via iteration. left_ev generates a
transpose iteration using the state_start and state_end information contained in the proto_ipm object
(defined in define_impl, for a full overview of transpose iteration, see Ellner & Rees, 2006, Appendix A).
Because the form of for left iteration is different from the default of right iteration, left_ev() will always
have to iterate a model. On the other hand, right_ev will always check to see if the model is already iterated.
If so, and the population’s trait distribution has converged to its asymptotic state, then it will just pull out
the final distribution from the ipm object, scale it to sum to 1, and then return that without re-iterating
anything. If not, it will use the final trait distribution from the ipm object as the starting point and iterate
the model for 100 iterations (this can be adjusted as needed using the iterations argument to right_ev).
If this fails to converge, it will return NA with a warning.

It is also important to note that we have a second argument here named d_z. This is the width of the
integration bins. We’ll see how to get that from our IPM below.
sens <- function(ipm_obj, d_z) {

w <- right_ev(ipm_obj)[[1]]
v <- left_ev(ipm_obj)[[1]]

return(
outer(v, w) / sum(v * w * d_z)

)

}

Next, we can define a function to compute the elasticity of λ to kernel perturbations. This uses the sens
function from above, and the lambda() function from ipmr.
elas <- function(ipm_obj, d_z) {

K <- make_iter_kernel(ipm_obj)$mega_matrix

sensitivity <- sens(ipm_obj, d_z)

lamb <- lambda(ipm_obj)

out <- sensitivity * (K / d_z) / lamb

return(out)

}

We may also want to compute the per-generation population growth rate. The function below uses the
sub-kernels contained in the carpobrotus_ipm object to do that.
R_nought <- function(ipm_obj) {

66

Pm <- ipm_obj$sub_kernels$P
Fm <- ipm_obj$sub_kernels$F

I <- diag(dim(Pm)[1])

N <- solve(I - Pm)

R <- Fm %*% N

return(
Re(eigen(R)$values)[1]

)

}

Finally, generation time is a useful metric in many analyses. Below, we make use of our R_nought function
to compute one version of this quantity (though other definitions exist. Covering those is beyond the scope of
this case study).
gen_time <- function(ipm_obj) {

lamb <- unname(lambda(ipm_obj))

r_nought <- R_nought(ipm_obj)

return(log(r_nought) / log(lamb))
}

We need to extract the d_z value and meshpoints from the IPM we built. We can extract this information
in a list form using the int_mesh() function from ipmr on our IPM object. The d_z in this case will be
called d_z because we named our domain "z" when we implemented the model. However, it will have a
different name if the states argument in define_kernel has different values. Once we have that, we can
begin computing all the values of interest. For example, if states = list(c("dbh", "height")), then
int_mesh() would a return a list with d_dbh and d_height.
mesh_info <- int_mesh(carpobrotus_ipm)

sens_mat <- sens(carpobrotus_ipm, mesh_info$d_z)
elas_mat <- elas(carpobrotus_ipm, mesh_info$d_z)

R0 <- R_nought(carpobrotus_ipm)
gen_T <- gen_time(carpobrotus_ipm)

R0

[1] 0.5079748
gen_T

[1] 27.79469

We may want to visualize our sub-kernels, iteration kernel, and the results of our sensitivity and elasticity
analyses. We’ll go through two options: one using the graphics package and one using the ggplot2 package.

First, the graphics package.
lab_seq <- round(seq(L, U, length.out = 6), 2)
tick_seq <- c(1, 20, 40, 60, 80, 100)

67

par(mfrow = c(2, 2))

Sub-kernels - ipmr contains plot methods for sub-kernels

plot(carpobrotus_ipm$sub_kernels$P,
do_contour = TRUE,
main = "P",
xlab = "size (t)",
ylab = "size (t + 1)",
yaxt = "none",
xaxt = "none")

axis(1, at = tick_seq, labels = as.character(lab_seq))
axis(2, at = tick_seq, labels = as.character(lab_seq))

plot(carpobrotus_ipm$sub_kernels$F,
do_contour = TRUE,
main = "F",
xlab = "size (t)",
ylab = "size (t + 1)",
yaxt = "none",
xaxt = "none")

axis(1, at = tick_seq, labels = as.character(lab_seq))
axis(2, at = tick_seq, labels = as.character(lab_seq))

Sensitivity and elasticity

class(sens_mat) <- c("ipmr_matrix", class(sens_mat))
class(elas_mat) <- c("ipmr_matrix", class(elas_mat))

plot(sens_mat,
do_contour = TRUE,
main = "K Sensitivity",
xlab = "size (t)",
ylab = "size (t + 1)",
yaxt = "none",
xaxt = "none")

axis(1, at = tick_seq, labels = as.character(lab_seq))
axis(2, at = tick_seq, labels = as.character(lab_seq))

plot(elas_mat,
do_contour = TRUE,
main = "K Elasticity",
xlab = "size (t)",
ylab = "size (t + 1)",
yaxt = "none",
xaxt = "none")

axis(1, at = tick_seq, labels = as.character(lab_seq))
axis(2, at = tick_seq, labels = as.character(lab_seq))

68

P

size (t)

si
ze

 (
t +

 1
)

 0.02
 0.04

 0.06

−7.26 −5.01 −2.76 −0.52 1.73 3.98

3.
98

1.
73

−
0.

52
−

2.
76

−
5.

01
−

7.
26

F

size (t)

si
ze

 (
t +

 1
)

 0.005

 0.01

−7.26 −5.01 −2.76 −0.52 1.73 3.98

3.
98

1.
73

−
0.

52
−

2.
76

−
5.

01
−

7.
26

K Sensitivity

size (t)

si
ze

 (
t +

 1
)

 0.1

 0.2

 0.
3 0.4

 0
.5

−7.26 −5.01 −2.76 −0.52 1.73 3.98

3.
98

1.
73

−
0.

52
−

2.
76

−
5.

01
−

7.
26

K Elasticity

size (t)

si
ze

 (
t +

 1
)

 0.05

 0.1

−7.26 −5.01 −2.76 −0.52 1.73 3.98

3.
98

1.
73

−
0.

52
−

2.
76

−
5.

01
−

7.
26

If we want to plot the iteration kernel, we can use ipmr’s make_iter_kernel() function to create one, and
then the plot() method to plot that as well.
par(mfrow = c(1, 1))
K <- make_iter_kernel(carpobrotus_ipm)

plot(K$mega_matrix,
do_contour = TRUE,
main = "K",
xlab = "size (t)",
ylab = "size (t + 1)",
yaxt = "none",
xaxt = "none")

axis(1, at = tick_seq, labels = as.character(lab_seq))

69

axis(2, at = tick_seq, labels = as.character(lab_seq))

K

size (t)

si
ze

 (
t +

 1
)

 0.02

 0
.0

2

 0.04

 0.06

−7.26 −5.01 −2.76 −0.52 1.73 3.98

3.
98

1.
73

−
0.

52
−

2.
76

−
5.

01
−

7.
26

Now, for the ggplot2 version. First, we create a long format of the matrix using ipmr’s ipm_to_df function.
ipm_to_df can handle either bare matrices, or objects produced by make_ipm. The latter case is useful for
plotting kernels directly using ggplot2. Once we’ve generated the long format sensitivity and elasticity
matrices, we can use geom_tile and geom_contour to generate the ggplots, and grid.arrange from the
gridExtra package to put them side by side.
library(ggplot2)
library(gridExtra)

p_df <- ipm_to_df(carpobrotus_ipm$sub_kernels$P)
f_df <- ipm_to_df(carpobrotus_ipm$sub_kernels$F)
k_df <- ipm_to_df(K$mega_matrix)

70

sens_df <- ipm_to_df(sens_mat)
elas_df <- ipm_to_df(elas_mat)

Create a default theme for our plots

def_theme <- theme(
panel.background = element_blank(),
axis.text = element_text(size = 16),
axis.ticks = element_line(size = 1.5),
axis.ticks.length = unit(0.08, "in"),
axis.title.x = element_text(

size = 20,
margin = margin(

t = 10,
r = 0,
l = 0,
b = 2

)
),
axis.title.y = element_text(

size = 20,
margin = margin(

t = 0,
r = 10,
l = 2,
b = 0

)
),
legend.text = element_text(size = 16)

)

p_plt <- ggplot(p_df) +
geom_tile(aes(x = t,

y = t_1,
fill = value)) +

geom_contour(aes(x = t,
y = t_1,
z = value),

color = "black",
size = 0.7,
bins = 5) +

scale_fill_gradient("Value",
low = "red",
high = "yellow") +

scale_x_continuous(name = "size (t)",
labels = lab_seq,
breaks = tick_seq) +

scale_y_continuous(name = "size (t + 1)",
labels = lab_seq,
breaks = tick_seq) +

def_theme +
theme(legend.title = element_blank()) +
ggtitle("P kernel")

71

f_plt <- ggplot(f_df) +
geom_tile(aes(x = t,

y = t_1,
fill = value)) +

geom_contour(aes(x = t,
y = t_1,
z = value),

color = "black",
size = 0.7,
bins = 5) +

scale_fill_gradient("Value",
low = "red",
high = "yellow") +

scale_x_continuous(name = "size (t)",
labels = lab_seq,
breaks = tick_seq) +

scale_y_continuous(name = "size (t + 1)",
labels = lab_seq,
breaks = tick_seq) +

def_theme +
theme(legend.title = element_blank()) +
ggtitle("F kernel")

k_plt <- ggplot(k_df) +
geom_tile(aes(x = t,

y = t_1,
fill = value)) +

geom_contour(aes(x = t,
y = t_1,
z = value),

color = "black",
size = 0.7,
bins = 5) +

scale_fill_gradient("Value",
low = "red",
high = "yellow") +

scale_x_continuous(name = "size (t)",
labels = lab_seq,
breaks = tick_seq) +

scale_y_continuous(name = "size (t + 1)",
labels = lab_seq,
breaks = tick_seq) +

def_theme +
theme(legend.title = element_blank()) +
ggtitle("K kernel")

sens_plt <- ggplot(sens_df) +
geom_tile(aes(x = t,

y = t_1,
fill = value)) +

geom_contour(aes(x = t,
y = t_1,
z = value),

72

color = "black",
size = 0.7,
bins = 5) +

scale_fill_gradient("Value",
low = "red",
high = "yellow") +

scale_x_continuous(name = "size (t)",
labels = lab_seq,
breaks = tick_seq) +

scale_y_continuous(name = "size (t + 1)",
labels = lab_seq,
breaks = tick_seq) +

def_theme +
theme(legend.title = element_blank()) +
ggtitle("K Sensitivity")

elas_plt <- ggplot(elas_df) +
geom_tile(aes(x = t,

y = t_1,
fill = value)) +

geom_contour(aes(x = t,
y = t_1,
z = value),

color = "black",
size = 0.7,
bins = 5) +

scale_fill_gradient("Value",
low = "red",
high = "yellow") +

scale_x_continuous(name = "size (t)",
labels = lab_seq,
breaks = tick_seq) +

scale_y_continuous(name = "size (t + 1)",
labels = lab_seq,
breaks = tick_seq) +

def_theme +
theme(legend.title = element_blank()) +
ggtitle("K Elasticity")

grid.arrange(
p_plt, f_plt, k_plt,
sens_plt, elas_plt,

layout_matrix = matrix(c(1, 1, 2, 2,
NA, 3, 3, NA,
4, 4, 5, 5),

nrow = 3,
byrow = TRUE))

73

−7.26

−5.01

−2.76

−0.52

1.73

3.98

−7.26 −5.01 −2.76 −0.52 1.73 3.98

size (t)

si
ze

 (
t +

 1
)

0.02
0.04
0.06
0.08

P kernel

−7.26

−5.01

−2.76

−0.52

1.73

3.98

−7.26 −5.01 −2.76 −0.52 1.73 3.98

size (t)

si
ze

 (
t +

 1
)

0.005
0.010
0.015
0.020
0.025

F kernel

−7.26

−5.01

−2.76

−0.52

1.73

3.98

−7.26 −5.01 −2.76 −0.52 1.73 3.98

size (t)

si
ze

 (
t +

 1
)

0.02
0.04
0.06
0.08

K kernel

−7.26

−5.01

−2.76

−0.52

1.73

3.98

−7.26 −5.01 −2.76 −0.52 1.73 3.98

size (t)

si
ze

 (
t +

 1
)

0.2

0.4

0.6

K Sensitivity

−7.26

−5.01

−2.76

−0.52

1.73

3.98

−7.26 −5.01 −2.76 −0.52 1.73 3.98

size (t)

si
ze

 (
t +

 1
)

0.04
0.08
0.12
0.16

K Elasticity

74

Appendix 2: ipmr Case Study 2

75

Case Study 2: Ellner, Childs & Rees 2016

A more complicated, age and size structured model

Many life cycles cannot be described by a single, continuous state variable. For example, some plants are
best modeled using height or diameter at breast height (DBH) as a state variable, and may also form a seed
bank. Seeds in the seed bank can’t have a value for height or DBH, but may lose their viability as they age.
Thus, we require a discrete state to capture the dynamics of the seed bank. Models that include discrete
states and/or multiple continuous state variables are general IPMs.

Many species exhibit age-dependent demography. Age may interact with a measure of size, for example body
mass, resulting in neither single variable reliably predicting demography on its own. Data sets for which
individuals are cross-classified by age and size represent an interesting opportunity for demographic research.

This case study will use an age and size structured population to illustrate how to implement general IPMs
in ipmr. We will use an age and size structured model from Ellner, Childs, & Rees (2016) to explore how to
work with general IPMs in ipmr. The data are from a long term study of Soay sheep (Ovis aries) on St. Kilda.
The population has been studied in detail since 1985 (Clutton-Brock & Pemberton 2004). Individuals are
caught, weighed, and tagged shortly after birth, and re-weighed each subsequent year. Maternity can be
inferred from field observations, so we can also model the link between parental state and offspring state.
More detailed methods are provided in Clutton-Brock & Pemberton (2004) and Childs et al. 2011.

In addition to computing the per-capita growth rate (λ) and right and left eigenvectors (wa(z) and va(z),
respectively), we will also show how to compute age specific survival and fertility for these models.

With size denoted z, z′, age denoted a, and the maximum age an individual can have denoted M , the model
can be written as:

1. n0(z′, t+ 1) =
M∑

a=0

∫ U

L
Fa(z′, z)na(z, t)dz

2. na(z′, t+ 1) =
∫ U

L
Pa−1(z′, z)na−1(z, t)dz for a = 1, 2, ...,M

In this case, there is also an “greybeard” age class M + 1 defined as a ≥ M + 1. We need to define one more
equation to indicate the number of individuals in that age group.

3. nM+1(z′, t+ 1) =
∫ U

L
[PM (z′, z)nM (z, t) + PM+1(z′, z)nM+1(z, t)]dz

Below, fG and fB denote normal probability density functions. The sub-kernel Pa(z′, z) is comprised of the
following functions:

4. Pa(z′, z) = s(z, a) ∗G(z′, z, a)

5. Survival: Logit(s(z, a)) = αs + βs,z ∗ z + βs,a ∗ a
6. Growth: G(z′, z, a) = fG(z′, µG(z, a), σG)

7. Mean Growth: µG(z, a) = αG + βG,z ∗ z + βG,a ∗ a
and the sub-kernel Fa(z′, z) is comprised of the following functions:

8. F0 = 0

9. Fa = s(z, a) ∗ pb(z, a) ∗ pr(a) ∗B(z′, z) ∗ 0.5

76

This model only follows females, and we assume that the population is half female. Thus, we multiply the Fa

kernel by 0.5. If needed, we could adjust the sex ratio based on observed data, and update this multiplication
accordingly.

10. Probability of reproducing: Logit(pb(z, a)) = αpb
+ βpb,z ∗ z + βpb,a ∗ a

11. Probability of recruiting: Logit(pr(a)) = αpr
+ βpr,a ∗ a

12. Recruit size distribution: B(z′, z) = fB(z′, µB(z), σB)

13. Mean recruit size: µB(z) = αB + βB,z ∗ z
Equations 5-7 and 10-13 are parameterized from regression models. The parameter values are taken from
Ellner, Childs & Rees, Chapter 6 (2016). These can be found here. In the code from the book, these
parameters were used to simulate an individual based model (IBM) to generate a data set. The data were
then used to fit regression models and an age×size IPM. We are going to skip the simulation and regression
model fitting steps steps and just use the “true” parameter estimates to generate the IPM.

Model Code

First, we will define all the model parameters and a function for the Fa kernels.
library(ipmr)

Warning: package 'ipmr' was built under R version 4.2.3

Welcome to `ipmr`! `browseVignettes('ipmr')` to get started.
Set parameter values and names

param_list <- list(
Survival
surv_int = -1.70e+1,
surv_z = 6.68e+0,
surv_a = -3.34e-1,
growth
grow_int = 1.27e+0,
grow_z = 6.12e-1,
grow_a = -7.24e-3,
grow_sd = 7.87e-2,
reproduce or not
repr_int = -7.88e+0,
repr_z = 3.11e+0,
repr_a = -7.80e-2,
recruit or not
recr_int = 1.11e+0,
recr_a = 1.84e-1,
recruit size
rcsz_int = 3.62e-1,
rcsz_z = 7.09e-1,
rcsz_sd = 1.59e-1

)

define a custom function to handle the F kernels. We could write a rather
verbose if(age == 0) {0} else {other_math} in the define_kernel(), but that
might look ugly. Note that we CANNOT use ifelse(), as its output is the same
same length as its input (in this case, it would return 1 number, not 10000

77

numbers).

r_fun <- function(age, s_age, pb_age, pr_age, recr) {

if(age == 0) return(0)

s_age * pb_age * pr_age * recr * 0.5

}

Next, we set up the Pa kernels (Equations 4-7 above). Because this is a general, deterministic IPM, we
use init_ipm(sim_gen = "general", di_dd = "di", det_stoch = "det", uses_age = TRUE). We set
uses_age = TRUE to indicate that our model has age structure as well as size structure. There are 3 key
things to note:

1. the use of the suffix _age appended to the names of the "P_age" kernel and the mu_g_age variable.

2. the value age used in the vital rate expressions.

3. the list in the age_indices argument.

The values in the age_indices list will automatically get substituted in for "age" each time it appears in
the vital rate expressions and kernels. We add a second variable to this list, "max_age", to indicate that we
have a “greybeard” class. If we wanted our model to kill all individuals above age 20, we would simply omit
the "max_age" slot in the age_indices list.

This single call to define_kernel() will result in 22 actual kernels, one for each value of age from 0-21. For
general IPMs that are not age-structured, we would use uses_par_sets and par_set_indices in the same
way we’re using age below.

The plogis function is part of the stats package in R, and performs the inverse logit transformation.
age_size_ipm <- init_ipm(sim_gen = "general",

di_dd = "di",
det_stoch = "det",
uses_age = TRUE) %>%

define_kernel(
name = "P_age",
family = "CC",
formula = s_age * g_age * d_z,
s_age = plogis(surv_int + surv_z * z_1 + surv_a * age),
g_age = dnorm(z_2, mu_g_age, grow_sd),
mu_g_age = grow_int + grow_z * z_1 + grow_a * age,
data_list = param_list,
states = list(c("z")),
uses_par_sets = FALSE,
age_indices = list(age = c(0:20), max_age = 21),
evict_cor = FALSE

)

The Fa kernel (equations 8-13) will follow a similar pattern - we append a suffix to the name paramter, and
then make sure that our functions also include _age suffixes and age values where they need to appear.
age_size_ipm <- define_kernel(

proto_ipm = age_size_ipm,
name = "F_age",
family = "CC",
formula = r_fun(age, s_age, pb_age, pr_age, recr) * d_z,

78

s_age = plogis(surv_int + surv_z * z_1 + surv_a * age),
pb_age = plogis(repr_int + repr_z * z_1 + repr_a * age),
pr_age = plogis(recr_int + recr_a * age),
recr = dnorm(z_2, rcsz_mu, rcsz_sd),
rcsz_mu = rcsz_int + rcsz_z * z_1,
data_list = param_list,
states = list(c("z")),
uses_par_sets = FALSE,
age_indices = list(age = c(0:20), max_age = 21),
evict_cor = FALSE

)

Once we’ve defined the Pa and Fa kernels, we need to define starting and ending states for each kernel.
Age-size structured populations will look a little different from other models, as we need to ensure that all
fecundity kernels produce age-0 individuals, and all survival-growth kernels produce age individuals. We
define the implementation arguments using define_impl(), and set each kernel’s state_start to "z_age".
Because the fecundity kernel produces age-0 individuals, regardless of the starting age, its state_end is
"z_0".
age_size_ipm <- define_impl(

proto_ipm = age_size_ipm,
make_impl_args_list(

kernel_names = c("P_age", "F_age"),
int_rule = rep("midpoint", 2),
state_start = c("z_age", "z_age"),
state_end = c("z_age", "z_0")

)
)

We define the domains using define_domains() in the same way we did for Case Study 1.
age_size_ipm <- age_size_ipm %>%

define_domains(
z = c(1.6, 3.7, 100)

)

Our definition of the initial population state will look a little different though. We want to create 22 copies of
the initial population state, one for each age group in the model. We do this by appending _age to the n_z
in the ... part of define_pop_state. We’ll also set make_ipm(...,return_all_envs = TRUE) so we can
access the computed values for each vital rate function in the model.
age_size_ipm <- define_pop_state(

proto_ipm = age_size_ipm,
n_z_age = rep(1/100, 100)
) %>%
make_ipm(

usr_funs = list(r_fun = r_fun),
iterate = TRUE,
iterations = 100,
return_all_envs = TRUE

)

79

Basic analysis

We see that the population is projected to grow by about 1.5% each year. As in Case Study 1, we can check
for convergence using the is_conv_to_asymptotic() function.
lamb <- lambda(age_size_ipm)
lamb

lambda
1.014833
is_conv_to_asymptotic(age_size_ipm)

lambda
TRUE

For some analyses, we may want to get the actual vital rate function values, rather than the sub-kernels
and/or iteration kernels. We can access those with vital_rate_funs(). Note that right now, this function
always returns a full bivariate form of the vital rate function (i.e. for survival, it returns a n X n kernel,
rather than a 1 x n vector, where n is the number of meshpoints). It is also important to note that these
functions are not yet discretized, and so need to be treated as such (i.e. any vital rate with a probability
density function will contain probability densities, not probabilities).
vr_funs <- vital_rate_funs(age_size_ipm)

Age 0 survival and growth vital rate functions

vr_funs$P_0

s_0 (not yet discretized): A 100 x 100 kernel with minimum value: 0.0019 and maximum value: 0.9995
g_0 (not yet discretized): A 100 x 100 kernel with minimum value: 0 and maximum value: 5.0691
mu_g_0 (not yet discretized): A 100 x 100 kernel with minimum value: 2.2556 and maximum value: 3.528
Age 12 fecundity functions

vr_funs$F_12

s_12 (not yet discretized): A 100 x 100 kernel with minimum value: 0 and maximum value: 0.9744
pb_12 (not yet discretized): A 100 x 100 kernel with minimum value: 0.0217 and maximum value: 0.9345
pr_12 (not yet discretized): A 100 x 100 kernel with minimum value: 0.965 and maximum value: 0.965
recr (not yet discretized): A 100 x 100 kernel with minimum value: 0 and maximum value: 2.5091
rcsz_mu (not yet discretized): A 100 x 100 kernel with minimum value: 1.5038 and maximum value: 2.9779

We can also update the model to use a new functional form for a vital rate expression. For example, we
could add parent size dependence for the probability of recruiting function. This requires 3 steps: extract
the proto_ipm object, set the new functional form, and update the parameter list. We have to wrap the
assignment in new_fun_form() to prevent parsing errors.
new_proto <- age_size_ipm$proto_ipm

vital_rate_exprs(new_proto,
kernel = "F_age",
vital_rate = "pr_age") <-

new_fun_form(plogis(recr_int + recr_z * z_1 + recr_a * age))

parameters(new_proto) <- list(recr_z = 0.05)

new_ipm <- make_ipm(new_proto,
return_all_envs = TRUE)

80

lambda(new_ipm)

lambda
1.017868

Next, we’ll extract and visualize eigenvectors and compute age specific fertility and survival.

Further analyses

The right_ev and left_ev functions also work for age × size models. We can use extract these, and plot
them using a call to lapply. We will use the notation from Ellner, Childs, & Rees (2016) to denote the left
and right eigenvectors (va(z) and wa(z), respectively).

NB: we assign the lapply call to a value here because lines returns NULL invisibly, and this clogs up the
console. You probably don’t need to do this for interactive use. We’ll also divide the dz value back into each
eigenvector so that they are continuous distributions, rather than discretized vectors.
d_z <- int_mesh(age_size_ipm)$d_z

stable_dists <- right_ev(age_size_ipm)

w_plot <- lapply(stable_dists, function(x, d_z) x / d_z,
d_z = d_z)

repro_values <- left_ev(age_size_ipm)

v_plot <- lapply(repro_values, function(x, d_z) x / d_z,
d_z = d_z)

par(mfrow = c(1, 2))
plot(w_plot[[1]], type = 'l',

ylab = expression(paste("w"[a],"(z)")),
xlab = "Size bin")

x <- lapply(w_plot[2:22], function(x) lines(x))

plot(v_plot[[1]], type = 'l',
ylab = expression(paste("v"[a],"(z)")),
xlab = "Size bin",
ylim = c(0, 0.2))

x <- lapply(v_plot[2:22], function(x) lines(x))

81

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Size bin

w
a(

z)

0 20 40 60 80 100
0.

00
0.

05
0.

10
0.

15
0.

20

Size bin

v a
(z

)

Next, we’ll compute age-specific survival (l̃a/l_a) and fecundity (f̃a/f_a) values. These are defined as follows:

l̃a = eP ac

f̃a = (eFP ac)/la
where c is some distribution of newborns.

We’ll initialize a cohort using the stable size distribution for age-0 individuals that we obtained above. Next,
we’ll iterate them through our model for 100 years, and see who’s left, and how much they reproduced.

NB: do not try to use this method for computing R0 - it will lead to incorrect results because in this particular
model, parental state affects initial offspring state. For more details, see Ellner, Childs & Rees (2016),
Chapters 3 and 6.

A couple technical notes:

1. We are going to split out our P and F sub-kernels into separate lists so that indexing them is easier
during the iteration process.

2. We need to set our max_age variable to 22 now, so that we don’t accidentally introduce an “off-by-1”
error when we index the sub-kernels in our IPM object.

3. We use an identity matrix to compute the initial value of l_a, because by definition all age-0 individuals
must survive to age-0.

Initialize a cohort and some vectors to hold our quantities of interest.

init_pop <- stable_dists[[1]] / sum(stable_dists[[1]])

82

n_yrs <- 100L

l_a <- f_a <- numeric(n_yrs)

P_kerns <- age_size_ipm$sub_kernels[grepl("P", names(age_size_ipm$sub_kernels))]
F_kerns <- age_size_ipm$sub_kernels[grepl("F", names(age_size_ipm$sub_kernels))]

We have to bump max_age because R indexes from 1, and our minimum age is 0.

max_age <- 22

P_a <- diag(length(init_pop))

for(yr in seq_len(n_yrs)) {

When we start, we want to use age-specific kernels until we reach max_age.
after that, all survivors have entered the "greybeard" class.

if(yr < max_age) {

P_now <- P_kerns[[yr]]
F_now <- F_kerns[[yr]]

} else {

P_now <- P_kerns[[max_age]]
F_now <- F_kerns[[max_age]]

}

l_a[yr] <- sum(colSums(P_a) * init_pop)
f_a[yr] <- sum(colSums(F_now %*% P_a) * init_pop)

P_a <- P_now %*% P_a
}

f_a <- f_a / l_a

Looks like most are dead at after 25 years, so we'll restrict our
plot range to that time span

par(mfrow = c(1, 2))

plot(l_a[1:25], type = 'l',
ylab = expression(paste("l"[a])),
xlab = "Age")

plot(f_a[1:25], type = 'l',
ylab = expression(paste("f"[a])),
xlab = "Age")

83

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

l a

5 10 15 20 25
0.

00
0.

10
0.

20
0.

30

Age

f a

We can also calculate the age-specific survival probability pa as la+1
la

. We’ll restrict our calculations to the
first 25 years of life, as we’ll see that almost no sheep live longer than that.
p_a <- l_a[2:26] / l_a[1:25]

plot(p_a, type = 'l',
ylab = expression(paste("p"[a])),
xlab = "Age")

84

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

Age

p a

Citations

Childs DZ, Coulson T, Pemberton JM, Clutton-Brock TH, & Rees M (2011). Predicting trait values and
measuring selection in complex life histories: reproductive allocation decisions in Soay sheep. Ecology Letters
14: 985-992.

Clutton-Brock TH & Pemberton JM (2004). Soay Sheep: Dynamics and Selection in an Island Population.
Cambridge University Press, Cambridge.

85

Appendix 3: Supplementary Information for Chapter 2

Figure S3.1

A

0

200

400

600

1980 2000 2020

C
um

ul
at

iv
e

P
ub

lic
at

io
ns

Database COMPADRE MPM Database PADRINO IPM Database

B

IPMpack Introduced
Ellner, Childs, & Rees,
Merow et al. Published

0

20

40

1980 2000 2020

N
um

be
r

pe
r

Ye
ar

Figure S3.1: The usage of integral projection models (IPMs) has increased rapidly since their introduction.
Cumulative number of publications using matrix projection models (MPMs, red) and IPMs (black) (A) and
number of publications per year for each type of model (B). IPMs have been adopted rapidly since their
introduction in 2000. Unfortunately, software packages to assist with their implementation have not kept
pace with their theoretical advancements and applications to ever more complex demographic data.

86

Appendix 4: PADRINO Case Study 1

87

Stand-alone analyses with PADRINO and Rpadrino

PADRINO and Rpadrino

We have created Rpadrino to streamline the process of interacting with PADRINO from R. The goal of
Rpadrino is data management and model construction - not necessarily to do analyses for you. Thus, there
is still some minimum amount of programming knowledge required to use it. It will also be helpful to
understand how ipmr, the engine that powers model reconstruction, creates model objects and the things that
it returns. ipmr is extensively documented here, and reading at least the introduction to that will certainly
help understand the code that follows here. Eventually, we plan to create the ipmtools package, which will
house functions designed to work with the IPMs stored in PADRINO to conduct more extensive analyses
(e.g. perturbations, LTREs, life history traits).

Usage

This case study makes use of dplyr to help with data transformation. If you do not already have it, install it
(and Rpadrino) with:
install.packages(c("dplyr", "Rpadrino"))

We will show how to compute sensitivity and elasticity for simple models, and then derive some demographic
quantities from models housed in PADRINO. The first step is to identify models that have the information
we want. Sensitivity and elasticity computations will make use of functions contained in ipmr, and we will
define a couple of our own to help tie it all together.

After perturbation analyses, we will compute the mean lifetime output of recruits as a function of initial
size z0, r̄(z0). This is defined as r̄(z0) = eFN , where F represents a the fecundity kernel, and N is the
fundamental operator. The fundamental operator can be thought of as the expected amount of time spent
in any state z′ prior to death given an initial state z0 (Caswell 2001), and is computed as N = (I − P)−1

(where P is the survival/growth kernel, and I is an identity operator such that IP = PI = P).

Finally, we will compute mean size at death (ω̄(z0) = (i ◦ (1 − s))N), and the size at death kernel
(Ω(z′, z0) = (1− s(z′))N(z′, z0). Thus, we need models that contain information on survival and growth, and
sexual reproduction. To keep things simpler, we will restrict ourselves to simple IPMs.

NB: The above formulae are from Ellner, Childs, & Rees (2016), Table 3.3. Their derivations are
described in detail in Chapter 3 of the book.

Subsetting using Metadata and other tables

We can find simple IPMs in PADRINO using a combination of dplyr (Wickham et al. 2021) and Rpadrino
code. Rpadrino provides the pdb_subset() function. pdb_subset() currently only takes ipm_ids that we
want to keep. The functionality will get expanded, but it’s surprisingly complicated to manage that in a
user-friendly interface (see the PADRINO explorer app for additional help). This means that we have to
work out which ipm_ids correspond to the models we want, and then pass those to pdb_subset().

88

It is a good idea to consult the table guide so that you are familiar with table and variable names, and what
information they provide. This case study will introduce some of the variables and tables, but it does not
cover them all!
library(dplyr)
library(Rpadrino)

Warning: package 'ipmr' was built under R version 4.2.3
pdb <- pdb_download(save = FALSE)

Simple models only make use of 1 trait/state variable. Therefore, if a model
has more than 1, it is, by definition, not a simple model. The code below
calculates the number of traits per "ipm_id", and then filters out those
that have more than 1 trait. The final piece with the square brackets makes sure
the final result is a character vector containing only ipm_id's, rather than
a data.frame

simple_mod_ind <- pdb$StateVariables %>%
group_by(ipm_id) %>%
summarise(N = n()) %>%
filter(N < 2) %>%
.[, "ipm_id", drop = TRUE]

simple_pdb <- pdb_subset(pdb, simple_mod_ind)

We have quite a few to choose from! However, a number of these may be stochastic and/or density-dependent
models. We will want to get rid of those too, as sensitivity analyses can be trickier and more time consuming
for them. This process will use the Metadata, EnvironmentalVariables, and ParSetIndices tables to find
those.
The first piece of stoch_ind examines the EnvironmentalVariables table. This
contains information on IPMs that include continuous environmental variation.
Rpadrino treats these as stochastic by default, because PADRINO almost
always uses random number generators to sample the distributions of environmental
values. Therefore, there is not really a way to sample these in a way that makes
them deterministic while still preserving the published model.

stoch_ind <- unique(simple_pdb$EnvironmentalVariables$ipm_id)

The second piece of stoch_ind examines the ParSetIndices table. This table
describes discrete environmental variation. These models do not have to be
stochastic, but they will make the analysis a bit more complicated, so we are
going to drop those for now.

stoch_ind <- c(stoch_ind, unique(simple_pdb$ParSetIndices$ipm_id))

The final piece of stoch_ind checks for density dependence. This information
is stored in the 'has_dd' column of the Metadata table.

stoch_ind <- c(stoch_ind,
unique(simple_pdb$Metadata$ipm_id[simple_pdb$Metadata$has_dd]))

det_pdb <- pdb_subset(simple_pdb, setdiff(simple_pdb$Metadata$ipm_id,
stoch_ind))

89

For simple models in PADRINO, the kernels are pretty consistently named with respect to the broader IPM
literature: P denotes survival and growth, F denotes sexual reproduction, and C denotes asexual reproduction.
The IpmKernels table stores the names, functional forms of the kernels, as well as other information needed
to implement them. We can use the kernel names column, kernel_id, to do a quick sanity check to make
sure our subsetting produced only these kernels like so:
unique(det_pdb$IpmKernels$kernel_id)

[1] "P" "F"

Great, all Ps and Fs! Finally, we are going to make sure we only have one IPM per species in our analysis.
This is certainly not required for any analyses, just to keep things tractable for now. Rpadrino’s metadata
access functions return the ipm_id’s as names of each value, so we can use names() to get the IDs we need.
keep_ind <- pdb_species_accepted(det_pdb) %>%
.[!duplicated(.)] %>%
names()

my_pdb <- pdb_subset(det_pdb, keep_ind)

Re-building IPMs

Now that we have our data subsetted, we can start making IPMs. The first step is always to create proto_ipm
objects. These are an intermediate step between the database and a set of usable kernels. Because ipmr
also uses these as an intermediate step, we can combine models from PADRINO with ones that we create
ourselves. There is an example of this in the second case study.

Under the hood

If you’re interested in how PADRINO actually stores IPMs, and specifically the expressions that comprise
them, keep reading. If not, skip to the next heading.

Lets have a look at how PADRINO stores kernels, vital rates, and parameters. These are in the IpmKernels,
VitalRateExpr, and ParameterValuess tables, respectively.
head(my_pdb$IpmKernels[, 1:3])

ipm_id kernel_id formula
43 aaaa34 P P = s * g * d_lnsize
44 aaaa34 F F = r * fn * pE * d * d_lnsize
47 aaaa36 P P = s * g * d_lnsize
48 aaaa36 F F = r * fn * pE * d * d_lnsize
92 aaa144 P P = s * g * d_size
93 aaa144 F F = rep_p * es_p * sdl_s *n_infl * n_fl * n_seed * d_size
head(my_pdb$VitalRateExpr[, 1:3])

ipm_id demographic_parameter formula
147 aaaa34 Survival s = 1/(1+exp(-(s_b + s_m * lnsize_1)))
148 aaaa34 Growth g = Norm(g_mean, g_var)
149 aaaa34 Growth g_mean = g_b + g_m * lnsize_1
150 aaaa34 Growth g_var = sqrt(gv_b + gv_m * lnsize_1)
151 aaaa34 Fecundity r = 1/(1+exp(-(r_b + r_m * lnsize_1)))
152 aaaa34 Fecundity fn = exp(fn_b + fn_m * lnsize_1)

90

head(my_pdb$ParameterValues)

ipm_id demographic_parameter state_variable parameter_name parameter_value
619 aaaa34 Survival lnsize s_b -0.5612335
620 aaaa34 Survival lnsize s_m 0.4628431
621 aaaa34 Growth lnsize g_b 1.1088198
622 aaaa34 Growth lnsize g_m 0.5148672
623 aaaa34 Growth lnsize gv_b 0.9504887
624 aaaa34 Growth lnsize gv_m 0.0000000

We can see that the kernels and vital rate expressions are all defined symbolically, and the parameter values
are stored elsewhere. This helps us reuse parameters that appear in multiple expressions without re-typing
them, reducing the risk of errors. Additionally, it’ll make it easier for us to modify parameter values, vital
rate expressions, and kernel formulae if we want to. However, the syntax in the tables is probably not the
easiest to work with directly. Therefore, Rpadrino provides the pdb_make_proto_ipm() function. This takes
a pdb object and produces a list of proto_ipms. In the chunk after this one, we will see that it translates the
syntax in IpmKernels and VitalRateExpr into usable R code. There are additional options that we can pass
to this, but we will ignore those for now, and just focus on creating and understanding what the outputs are.

Creating the proto_ipm list

The following line generates a set of proto_ipm’s for the species in our subsetted database:
simple_det_list <- pdb_make_proto_ipm(my_pdb)

'ipm_id' aaa310 has the following notes that require your attention:
aaa310: 'Geo and time info retrieved from COMPADRE (v.X.X.X.4)'

'ipm_id' aaa323 has the following notes that require your attention:
aaa323: 'Simulated demographic data derived from Nicole J Ecol 2011'

'ipm_id' aaa326 has the following notes that require your attention:
aaa326: 'Demographic data from Metcalf Funct Ecol 2006'

'ipm_id' aaa385 has the following notes that require your attention:
aaa385: 'Same data as AAA385. State variable Height (Cm)'

'ipm_id' ddddd3 has the following notes that require your attention:
ddddd3: 'Frankenstein IPM'

'ipm_id' ddddd4 has the following notes that require your attention:
ddddd4: 'assumes mean surface temp of 10.34 °C, and constant survival probability of
large pike'

'ipm_id' dddd24 has the following notes that require your attention:
dddd24: 'Assumes no external recruitment'

'ipm_id' dddd26 has the following notes that require your attention:
dddd26: '1 ipm digitized, additional ipms taking into account dispersal still
possible to digitize'

'ipm_id' dddd30 has the following notes that require your attention:
dddd30: 'Frankenstein IPM'

'ipm_id' dddd37 has the following notes that require your attention:
dddd37: 'MS contains 2 det and 2 stoch IPMs, only 1 det inlcuded here'

'ipm_id' dddd39 has the following notes that require your attention:
dddd39: 'Only deterministic model included here: assumes precipitation = 104mm'

91

'ipm_id' dddd40 has the following notes that require your attention:
dddd40: 'DEB-IPM - these vital rates assume NO shrinking. 1 model digitized: assumes
that scaled functional response E_Y = 0.65, with var(E_Y) = 0.1 - see paper for
details'

'ipm_id' dddd41 has the following notes that require your attention:
dddd41: 'DEB-IPM - these vital rates shrinking IS possible. 1 model digitized:
assumes that scaled functional response E_Y = 0.65, with var(E_Y) = 0.1 - see paper
for details'

First, we note that the building process threw out a few messages. The first is that the coordinates and
duration information come from COMPADRE, not necessarily the original publication. This is not really
alarming - COMPADRE is pretty trustworthy. The next few are related to demographic data sources and
GPS location. “Frankenstein IPM” refers to a situation where some vital rates are measured directly from
demographic data the authors collected, while other vital rates were retrieved from the literature (i.e. the
object is cobbled together from disparate sources, Shelley 1818). Again, not necessarily alarming, though
we’d want to know this info if our study question required that all vital rates come from one place (e.g.
matching environmental conditions to demographic performance). The next few tell us that the publication
actually contains more IPMs, but that our PADRINO digitization team hasn’t finished entering all of them
yet. And finally, there is a note about the assumptions contained by the model.

we will inspect a couple of the objects in this list to get a feel for what a proto_ipm contains:
simple_det_list

This list of 'proto_ipm's contains the following species:
Poa alsodes
Poa sylvestris
Aeonium haworthii
Cotyledon orbiculata
Aconitum noveboracense
Dracocephalum austriacum
Cirsium arvense
Lonicera maackii
Mimulus cardinalis
Reynoutria japonica
Carpobrotus spp
Crocodylus niloticus
Esox lucius
Sisturus catenatus catenatus
Ovis aries
Oncorhynchus clarkii
Tridacna maxima
Gadus morhua
Podarcis lilfordi
Nerodia sipedon
Ostrea edulis
Dipsastraea favus
Platygyra lamellina
Ficedula hypoleuca
Testudo graeca
Manta alfredi
Rhizoglyphus robini
##
You can inspect each model by printing it individually.

92

simple_det_list$aaaa34

A simple, density independent, deterministic proto_ipm with 2 kernels defined:
P, F
##
Kernel formulae:
##
P: s * g
F: r * fn * pE * d
##
Vital rates:
##
s: 1/(1 + exp(-(s_b + s_m * lnsize_1)))
g_mean: g_b + g_m * lnsize_1
g_var: sqrt(gv_b + gv_m * lnsize_1)
g: dnorm(lnsize_2, g_mean, g_var)
r: 1/(1 + exp(-(r_b + r_m * lnsize_1)))
fn: exp(fn_b + fn_m * lnsize_1)
d: dexp(lnsize_2, 1/d_mean)
##
Parameter names:
##
[1] "s_b" "s_m" "g_b" "g_m" "gv_b" "gv_m" "r_b" "r_m"
[9] "fn_b" "fn_m" "t_r" "d_mean" "pE"
##
All parameters in vital rate expressions found in 'data_list': TRUE
##
Domains for state variables:
##
lnsize: lower_bound = 0, upper_bound = 5, n_meshpoints = 500
##
Population states defined:
##
n_lnsize: Pre-defined population state.
##
Internally generated model iteration procedure:
##
n_lnsize_t_1: right_mult(kernel = P, vectr = n_lnsize_t) + right_mult(kernel = F,
vectr = n_lnsize_t)
simple_det_list$dddd30

A simple, density independent, deterministic proto_ipm with 2 kernels defined:
P, F
##
Kernel formulae:
##
P: s * g
F: s * r * pg * 0.5 * d
##
Vital rates:
##
s: 1/(1 + exp(-(aS + bS * svl_1 + cS * svl_1^2)))
muG: svl_1 + (Linf - svl_1) * (1 - exp(-k * tg))

93

g: dnorm(svl_2, muG, sigmaG)
r: exp(aR + bR * svl_1)
pg: ifelse(svl_1 < svlM, 0, 1)
d: dnorm(svl_2, muD, sigmaD)
##
Parameter names:
##
[1] "aS" "bS" "cS" "Linf" "k" "tg" "sigmaG" "aR"
[9] "bR" "svlM" "muD" "sigmaD"
##
All parameters in vital rate expressions found in 'data_list': TRUE
##
Domains for state variables:
##
svl: lower_bound = 120, upper_bound = 1200, n_meshpoints = 1000
##
Population states defined:
##
n_svl: Pre-defined population state.
##
Internally generated model iteration procedure:
##
n_svl_t_1: right_mult(kernel = P, vectr = n_svl_t) + right_mult(kernel = F,
vectr = n_svl_t)

We can see that Rpadrino has translated PADRINO’s syntax into a set of R expressions that correspond to
the vital rate functions and sub-kernel functional forms, as well as checked that the model can be implemented
with the parameter values that are present in PADRINO. Finally, it has generated the model iteration
expression, which shows how the sub-kernels interact with each trait distribution at time t to produce new
trait distributions at time t+ 1. We can now build the actual IPM objects. We will also check for convergence
to asymptotic dynamics using the is_conv_to_asymptotic function.
all_ipms <- pdb_make_ipm(simple_det_list)

check_conv <- is_conv_to_asymptotic(all_ipms)

The following IPMs did not converge: aaa310, aaa341, ccccc1, ddddd3, ddddd5,
dddd10, dddd24, dddd26, dddd30, dddd33, dddd35, dddd36, dddd37, dddd39, dddd40,
dddd41
check_conv

[1] FALSE

We can see that a few of these need more than the default number of iterations to converge to asymptotic
dynamics. All λ values are computed via iteration, rather than computing eigenvalues. Since we need correct
λ values to compute elasticity, we will need to re-run those models until they converge (or at least come
very close to convergence). pdb_make_ipm() contains the addl_args argument that tells the function how to
deviate from the default behavior of ipmr::make_ipm(). It’s accepts nested lists with the following format:
list(<ipm_id_1> = list(<make_ipm_arg_name_1> = <XXX>,

<make_ipm_arg_name_2> = <YYY>),
<ipm_id_2> = list(<make_ipm_arg_name_1> = <XXX>,

<make_ipm_arg_name_5> = <ZZZ>))

We replace the values in <> with the actual ipm_ids, argument names, and values we want them to have. We
can do this many models a bit more concisely:

94

Create an empty list with names that correspond to ipm_id's that we want to add
additional iterations for.

ind_conv <- c(paste0("aaa", c(310,341)),
paste0("ccccc", 1),
paste0("ddddd", c(3,5)),
paste0("dddd", c(10, 24, 26, 30, 33, 35, 36, 37, 39, 40, 41)))

Next, we set create an entry in each list with iterations = <some number>
we will use 250 for this example. We need to set the names of the list to be
the ipm_id's, so that pdb_make_ipm() knows which models to use the additional
arguments with.

arg_list <- lapply(ind_conv,
function(x, n_iter) list(iterations = n_iter),
n_iter = 250) %>%

setNames(ind_conv)

new_ipms <- pdb_make_ipm(simple_det_list, addl_args = arg_list)

Check for convergence out to 5 digits. This should be close enough for what
we want to do.

check_conv <- is_conv_to_asymptotic(new_ipms, tolerance = 1e-5)

We can also plot the lambda time series using conv_plot methods for pdb_ipms.
The last two models may not have converged
par(mfrow = c(4, 2))

conv_plot(new_ipms)

95

0 10 20 30 40 50

1.
0

1.
5

2.
0

2.
5

aaaa34

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1
2

3
4

5
6

aaaa36

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1.
5

2.
0

2.
5

3.
0

3.
5

aaa144

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1
2

3
4

5
6

7

aaa227

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
96

1.
00

1.
04

aaa310

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1.
00

1.
10

1.
20

aaa323

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

0
5

10
15

20
25

aaa326

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

1.
5

2.
5

3.
5

aaa341

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

96

0 10 20 30 40 50

5
10

15
aaa351

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1.
2

1.
4

1.
6

aaa385

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
80

0.
90

ccccc1

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

1
2

3
4

5

ddddd3

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

0
5

10
15

ddddd4

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

1
2

3
4

5
6

ddddd5

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1.
00

1.
04

1.
08

ddddd7

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0
5

10
15

20

dddd10

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

97

0 50 100 150 200 250

1.
0

1.
2

1.
4

1.
6

dddd24

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0
50

15
0

25
0

dddd26

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 10 20 30 40 50

1.
0

1.
1

1.
2

1.
3

dddd29

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
5

1.
0

1.
5

2.
0

2.
5

dddd30

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

1.
0

1.
4

1.
8

dddd33

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

1.
10

1.
15

1.
20

dddd35

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
96

1.
00

1.
04

dddd36

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
5

1.
5

2.
5

dddd37

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

98

0 50 100 150 200 250

0.
98

5
0.

99
5

1.
00

5
1.

01
5

dddd39

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
65

0.
75

0.
85

0.
95

dddd40

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

0 50 100 150 200 250

0.
96

1.
00

1.
04

1.
08

dddd41

Transition

S
in

gl
e

T
im

e
S

te
p

 λ

99

dddd24, dddd26, dddd40 and dddd41 are still not converging. We will remove those from our further analyses:
keep_ind <- setdiff(names(new_ipms), c("dddd24", "dddd26",

"dddd40", "dddd41"))

new_ipms <- new_ipms[keep_ind]

Further analyses

Rpadrino contains methods for most of ipmr ’s analysis functions. These include (but are not limited to!)
lambda, left_ev, and right_ev. We need all three of these to compute sensitivity and elasticity. We also
need the binwidth of the integration mesh so we can perform integrations. Rpadrino’s has the int_mesh()
function for that, and the binwidth is always the first element in the list that it returns. We can extract
them like so:
lambdas <- lambda(new_ipms)
repro_vals <- left_ev(new_ipms, tolerance = 1e-5)
ssd_vals <- right_ev(new_ipms, tolerance = 1e-5)

d_zs <- lapply(new_ipms, function(x) int_mesh(x, full_mesh = FALSE)[[1]])

Sensitivity

With these, we can now compute sensitivity. This is given by s(z′0, z0) = v(z′
0)w(z0)
〈v,w〉 , where v(z′0) is the left

eigenvector and w(z0) is the right eigenvector. It will be helpful to write a function that takes these values as
arguments and returns the sensitivity kernel. We will use lapply(seq_along()) to iterate over each model.
r_evs: right eigenvectors
l_evs: left eigenvectors
d_zs: binwidths
lapply(seq_along()) generates a sequence of numbers that correspond to indices
in the list of eigenvectors and binwidths. Since each of these objects is a
list of lists, we need to use [[index]][[1]]. The first[[]] gets the correct
list entry, and the second [[1]] converts it to a numeric vector by unlisting
the second layer of the list.
NB: Some tidyverse-oriented users may wish to substitute this with pmap() and
pluck(). This is fine, just not demonstrated here.

sens <- function(r_evs, l_evs, d_zs) {

lapply(seq_along(r_evs),
function(ind, r_ev, l_ev, d_z){

outer(l_ev[[ind]][[1]], r_ev[[ind]][[1]]) /
(sum(l_ev[[ind]][[1]] * r_ev[[ind]][[1]] * d_z[[ind]]))

},
r_ev = r_evs,
l_ev = l_evs,
d_z = d_zs)

}

100

sens_list <- sens(ssd_vals, repro_vals, d_zs) %>%
setNames(names(lambdas))

We can plot these using image():
par(mfrow = c(1, 1))
image(t(sens_list$aaa385))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Elasticity

We can compute elasticity without much more effort. We need one more piece of information from the IPM
list that we have not extracted - the iteration kernel. We can get those using make_iter_kernel() on the
new_ipms object, and then computing the elasticity using e(z′0, z0) = K(z′

0,z0)
λ s(z′0, z0).

iter_kerns <- make_iter_kernel(new_ipms)

elas_list <- lapply(seq_along(iter_kerns),
function(ind, iter_kernels, sens_kernels, lambdas, d_zs) {

(iter_kernels[[ind]][[1]] / d_zs[[ind]] / lambdas[[ind]]) *
sens_kernels[[ind]]

},
iter_kernels = iter_kerns,
sens_kernels = sens_list,

101

lambdas = lambdas,
d_zs = d_zs) %>%

setNames(names(lambdas))

Similarly, we can plot this using image():
image(t(elas_list$aaa385))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean lifetime recruit production

We can calculate the expected number of recruits produced over an individuals lifetime as function of its
initial size. This is defined as r̄(z0) = eFN . F is the fecundity kernel, and we can get these kernels from
each IPM in our list using:
F_kerns <- lapply(new_ipms, function(x) x$sub_kernels$F)

N is the fundamental operator. This tells us the expected amount of time an individual will spend in
state z′ given an initial state z0. The fundamental operator is defined as (I − P)−1 (see Ellner, Childs,
& Rees 2016 Chapter 3 for the derivation of this). I is an identity kernel (I(z′, z) = 1 for z′ = z, and
I(z′, z) = 0 for z′ 6= z). This code is only a bit more complicated:
Function to create an identity kernel with dimension equal to P
make_i <- function(P) {
return(
diag(nrow(P))

)

102

}

N_kerns <- lapply(new_ipms, function(x) {

P <- x$sub_kernels$P
I <- make_i(P)

solve() inverts the matrix for us (the ˆ(-1) part of the equation)
solve(I - P)

})

e is a constant function e(z) ≡ 1. In practice, the left multiplication of eF has the effect of computing the
column sums of F . We will replace the e with a call to colSums() in our code below (this will run faster
than doing the multiplication). We now have everything we need to compute and visualize the expected
lifetime reproductive output:
We wrap the computation in as.vector so that it returns a simple numeric vector
rather than a 1 x N matrix

r_bars <- lapply(seq_along(N_kerns),
function(idx, Fs, Ns) {

as.vector(colSums(Fs[[idx]]) %*% Ns[[idx]])

},
Fs = F_kerns,
Ns = N_kerns) %>%

setNames(names(F_kerns))

we will extract the meshpoint values so that the x-axes on our plots look
prettier.
x_seqs <- lapply(new_ipms,function(x) int_mesh(x, full_mesh = FALSE)[[2]])

Finally, we can plot the data by looping over the lists and creating a
a simple line plot (type = "l")

par(mfrow = c(4, 2))

for(i in seq_along(r_bars)) {

plot(r_bars[[i]], x = x_seqs[[i]], type = 'l', main = names(r_bars)[i],
ylab = expression(bar(r)(z[0])),
xlab = expression(z[0]))

}

103

0 1 2 3 4 5

0
2

4
6

8
12

aaaa34

z0

r(z
0)

0 1 2 3 4 5

0
10

30
50

aaaa36

z0

r(z
0)

0 10 20 30 40 50

51
0

52
0

53
0

54
0

aaa144

z0

r(z
0)

0 10 20 30 40 50

40
60

80
10

0

aaa227

z0

r(z
0)

0 1 2 3 4 5 6

0.
4

0.
8

1.
2

1.
6

aaa310

z0

r(z
0)

2 4 6 8 10

0
5

10
15

20

aaa323

z0

r(z
0)

−2 −1 0 1 2

0
50

10
0

15
0

20
0

aaa326

z0

r(z
0)

0 100 200 300 400 500−
40

00
00

0
−

20
00

00
0

aaa341

z0

r(z
0)

104

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

aaa351

z0

r(z
0)

0 50 100 150 200 250

0
1

2
3

4

aaa385

z0

r(z
0)

−6 −4 −2 0 2 4

0
1

2
3

4
5

6

ccccc1

z0

r(z
0)

50 100 150 200 250

0
50

00
15

00
0

ddddd3

z0

r(z
0)

0 20 40 60 80 100 120

0
20

40
60

ddddd4

z0

r(z
0)

200 400 600 800 1000

0
10

30
50

ddddd5

z0

r(z
0)

0 10 20 30

0
1

2
3

4
5

6

ddddd7

z0

r(z
0)

100 200 300 400

0
10

30
50

dddd10

z0

r(z
0)

105

10 20 30 40 50 60 70 80

2
4

6
8

10
dddd29

z0

r(z
0)

200 400 600 800 1000 1200

0
2

4
6

8
10

dddd30

z0

r(z
0)

0 5000 10000 15000

0
10

20
30

40
50

dddd33

z0

r(z
0)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5
10

15
20

dddd35

z0

r(z
0)

1 2 3 4

0
1

2
3

4
5

6
7

dddd36

z0

r(z
0)

110 120 130 140 150

0
2

4
6

8

dddd37

z0

r(z
0)

50 100 150

0
10

0
20

0
30

0

dddd39

z0

r(z
0)

106

Troubleshooting and Modifying IPMs

The plot of the output above provides a cautionary tale: r̄(z0) is negative in model aaa341! This is not
biologically possible - we can not make negative recruits. We know there is some quirk in that model that
produces these results. PADRINO would flag a model with negative numbers in the F kernel when it’s built,
so we need to check the N kernel for that model for negative values.
range(N_kerns$aaa341)

[1] -5008.038563 1.020386

We have found the problem in the N kernel, but what causes that? It turns out that the P kernel, when
discretized, is either close to or exactly singular, and so the determinant (I − P) is very close to singular as
well (and negative!). This can happen when the survival function is exactly 1 for some range of initial trait
values (Ellner, Childs & Rees 2016, Chapter 3).
P <- new_ipms$aaa341$sub_kernels$P
I <- make_i(P)
det(I - P) # negative and very close to 0

[1] -1.29379e-09

It is important to remember that PADRINO provides models as they are published, and does not try to
correct these problems. Thus, data in here can cause problems if not treated with care!

We can try to modify the model very slightly to see if we can make this kernel non-singular. We will try to
set a parallel minimum for the s function value in that model, which will hopefully pull our det(I − P) into
positive territory. We need to work with the proto_ipm object for this, because we want to propagate the
function value changes to the sub-kernels (i.e. the P kernel).

We can alter the s function with vital_rate_exprs<- and pdb_new_fun_form(). We will update it to take
the parallel minimum of the published s function, and the maximum value we’d want the function to ideally
have (in this case, 0.98).
First, peak at the current functional form
vital_rate_exprs(simple_det_list)$aaa341

s: 1/(1 + exp(-(si + ss1 * size_1 + ss2 * size_1^2)))
g_mean: gi + gs * size_1
g: dnorm(size_2, g_mean, g_sd)
Fp: 1/(1 + exp(-(fpi + fps * size_1)))
Fs: exp(fi + fs * size_1)
Fd: dnorm(size_2, fd_mean, fd_sd)
Now, update it with our desired maximum value
vital_rate_exprs(simple_det_list) <- pdb_new_fun_form(
list(
aaa341 = list(
s = pmin(0.98, 1/(1 + exp(-(si + ss1 * size_1 + ss2 * size_1ˆ2))))

)
)

)

we will skip rebuilding the whole list - we just want to make sure we have fixed
this particular model. The species in this model is Lonicera maackii.

new_lonicera <- pdb_make_ipm(simple_det_list["aaa341"])

107

P <- new_lonicera$aaa341$sub_kernels$P
I <- make_i(P)

cat("New det(I - P) is: ", det(I - P))

New det(I - P) is: 1.22853e-05
N <- solve(I - P)
F <- new_lonicera$aaa341$sub_kernels$F

r_bar_lonicera <- as.vector(colSums(F) %*% N)

plot(r_bar_lonicera,
type = 'l',
ylab = expression(bar(r)(z[0])),
xlab = expression(z[0]))

0 100 200 300 400 500

10
0

20
0

30
0

40
0

50
0

z0

r(z
0)

Since we are now happier with how this IPM is behaving, we will insert it into
our list for subsequent analyses
new_ipms$aaa341 <- new_lonicera$aaa341

That looks a bit closer to reality!

108

Vital rate and parameter level analyses

We can also run analyses at the parameter and the vital rate level for PADRINO. These require more care
- it is strongly recommended to check the original publications to for the meaning of each parameter and
vital rate. There is simply too much variability in the way vital rates and parameters are estimated in the
literature to provide systematic descriptions of them in PADRINO. With this caveat in mind, we will proceed
to a couple examples of using vital rate functions and parameters in further analyses.

The ability to perturb function values and parameter estimates is one of the great strengths of IPMs.
Furthermore, computing many life history traits requires the values of vital rate functions. Therefore, we
took great pains when designing the database to ensure these analyses were still possible. As noted above,
they require some additional effort, but are usually worth it. We will step through the code pieces required
to extract these below. We will start with an example computing the sensitivity of λ to vital rate function
values. After that, we will show how to compute the mean size at death conditional on initial state z0 and
the size at death kernel Ω(z′, z0), both of which rely on extracting the survival functions.

Vital rate function value perturbations

These require modifying the general sensitivity formula to compute the partial derivative of λ with respect to
change in f(z). These expressions depend on the form of the kernel, and so no general formula exists for
function value perturbations. However, we can use the chain rule and the general formula for sensitivity to a
given perturbation to work it out. The latter formula is:

1. ∂λ
∂ε

∣∣∣∣
ε=0

= 〈v,Cw〉
〈v,w〉 .

Here, v and w are the left and right eigenvectors of the iteration kernel (provided by left_ev and right_ev),
and C is the perturbation kernel, which we will need to identify. We will take the following steps:

1. Identify models we want to use.

2. Inspect the kernel formulae and vital rate functions using print methods.

3. Write down the perturbation kernels for each model.

4. Construct the IPM objects and extract v and w.

5. Implement the perturbations in R.

Identifying models (1)

In order to keep things simple, we will work with models where survival only occurs in 1 kernel.
There are numerous examples of how to extend these analyses elsewhere (e.g. Ellner, Childs & Rees
2016). We can look into this using the pdb$VitalRateExpr$kernel_id column in conjunction with the
pdb$VitalRateExpr$demographic_paratemer column.
Find all rows in VitalRateExpr corresponding to survival
init_ind <-
my_pdb$VitalRateExpr[
my_pdb$VitalRateExpr$demographic_parameter == "Survival",]

Next, select ipm_id's that have survival functions that only show up
in "P"

keep_ind <- init_ind$ipm_id[init_ind$kernel_id == "P"] %>%
unique()

109

To keep things quick, we will just use the first 3 in this index

keep_ind <- keep_ind[1:3]

vr_sens_pdb <- pdb_subset(my_pdb, keep_ind)

Inspect the kernels and vital rate expressions (2)

Next, we will construct proto_ipm objects for each model and check to see how the kernels are constructed:
proto_list <- pdb_make_proto_ipm(vr_sens_pdb)

proto_list[[1]]

A simple, density independent, deterministic proto_ipm with 2 kernels defined:
P, F
##
Kernel formulae:
##
P: s * g
F: r * fn * pE * d
##
Vital rates:
##
s: 1/(1 + exp(-(s_b + s_m * lnsize_1)))
g_mean: g_b + g_m * lnsize_1
g_var: sqrt(gv_b + gv_m * lnsize_1)
g: dnorm(lnsize_2, g_mean, g_var)
r: 1/(1 + exp(-(r_b + r_m * lnsize_1)))
fn: exp(fn_b + fn_m * lnsize_1)
d: dexp(lnsize_2, 1/d_mean)
##
Parameter names:
##
[1] "s_b" "s_m" "g_b" "g_m" "gv_b" "gv_m" "r_b" "r_m"
[9] "fn_b" "fn_m" "t_r" "d_mean" "pE"
##
All parameters in vital rate expressions found in 'data_list': TRUE
##
Domains for state variables:
##
lnsize: lower_bound = 0, upper_bound = 5, n_meshpoints = 500
##
Population states defined:
##
n_lnsize: Pre-defined population state.
##
Internally generated model iteration procedure:
##
n_lnsize_t_1: right_mult(kernel = P, vectr = n_lnsize_t) + right_mult(kernel = F,
vectr = n_lnsize_t)
proto_list[[2]]

110

A simple, density independent, deterministic proto_ipm with 2 kernels defined:
P, F
##
Kernel formulae:
##
P: s * g
F: r * fn * pE * d
##
Vital rates:
##
s: 1/(1 + exp(-(s_b + s_m * lnsize_1)))
g_mean: g_b + g_m * lnsize_1
g_var: sqrt(gv_b + gv_m * lnsize_1)
g: dnorm(lnsize_2, g_mean, g_var)
r: 1/(1 + exp(-(r_b + r_m * lnsize_1)))
fn: exp(fn_b + fn_m * lnsize_1)
d: dexp(lnsize_2, 1/d_mean)
##
Parameter names:
##
[1] "s_b" "s_m" "g_b" "g_m" "gv_b" "gv_m" "r_b" "r_m"
[9] "fn_b" "fn_m" "t_r" "d_mean" "pE"
##
All parameters in vital rate expressions found in 'data_list': TRUE
##
Domains for state variables:
##
lnsize: lower_bound = 0, upper_bound = 5, n_meshpoints = 500
##
Population states defined:
##
n_lnsize: Pre-defined population state.
##
Internally generated model iteration procedure:
##
n_lnsize_t_1: right_mult(kernel = P, vectr = n_lnsize_t) + right_mult(kernel = F,
vectr = n_lnsize_t)
proto_list[[3]]

A simple, density independent, deterministic proto_ipm with 2 kernels defined:
P, F
##
Kernel formulae:
##
P: s * g
F: rep_p * es_p * sdl_s * n_infl * n_fl * n_seed
##
Vital rates:
##
s: ssurv * wsurv
ssurv: exp(ssurv_i + ssurv_s * ((log(size_1^3) - smlv)/sslv) + ssurv_el *
elev_s)/(1 + exp(ssurv_i + ssurv_s * ((log(size_1^3) - smlv)/sslv) +
ssurv_el * elev_s))
wsurv: exp(wsurv_i + wsurv_s * ((log(size_1^3) - wmlv)/wslv) + wsurv_f *

111

cumfrost)/(1 + exp(wsurv_i + wsurv_s * ((log(size_1^3) -
wmlv)/wslv) + wsurv_f * cumfrost))
g_mean: sign(growth) * abs(growth)^(1/3)
growth: g_i + g_el * elev_g + g_frost * annfrost + g_s * (size_1^3)
g: dnorm(size_2, g_mean, g_sd)
rep_p: fl_p * germ_p
fl_p: exp(fl_i + fl_s * ((log(size_1^3) - fmlv)/fslv))/(1 + exp(fl_i +
fl_s * ((log(size_1^3) - fmlv)/fslv)))
germ_p: exp(germ_i + germ_el * elev_germ)/(1 + exp(germ_i + germ_el *
elev_germ))
n_infl: exp(infl_n)
n_fl: exp(fl_n)
n_seed: exp(seed_i)
sdl_s: dnorm(size_2, sdl_mean, sdl_sd)
##
Parameter names:
##
[1] "ssurv_i" "ssurv_el" "ssurv_s" "wsurv_i" "wsurv_s" "wsurv_f"
[7] "g_i" "g_el" "g_frost" "g_s" "g_sd" "fl_i"
[13] "fl_s" "germ_i" "germ_el" "es_p" "sdl_mean" "sdl_sd"
[19] "infl_n" "fl_n" "seed_i" "smlv" "sslv" "wmlv"
[25] "wslv" "fmlv" "fslv" "annfrost" "cumfrost" "elev_germ"
[31] "elev_g" "elev_s"
##
All parameters in vital rate expressions found in 'data_list': TRUE
##
Domains for state variables:
##
size: lower_bound = 2, upper_bound = 55, n_meshpoints = 1000
##
Population states defined:
##
n_size: Pre-defined population state.
##
Internally generated model iteration procedure:
##
n_size_t_1: right_mult(kernel = P, vectr = n_size_t) + right_mult(kernel = F,
vectr = n_size_t)

We can see that for each IPM, P = s(z) ∗G(z′, z). In the third models, s(z) is comprised of two additional
functions, which we can perturb individually. We will show a quick example of that after applying our
perturbation kernels to all 3.

Write out the perturbation kernels (3)

Our perturbation kernel for all 3 models will take the following form: C(z′, z) = δz0(z)G(z′, z). With a little
rearranging (see Ellner, Childs, & Rees 2016 Chapter 4), we find the following:

∂λ

∂s(z0) =
∫
v(z′)G(z′, z0)w(z0)dz′∫

v(z)w(z)dz = (vG) ◦ w
〈v, w〉 .

The second portion of the equations above is the first part re-written to use operator notation (which drops
the zs and z′s for brevity). The ◦ denotes point-wise multiplication.

112

Implement the models (4)

Now that we have written down our perturbation formulae, we need to rebuild the models, and make use
of some non-standard arguments to pdb_make_ipm. By default, Rpadrino does not return the vital rate
functions values. To get those, we need to specify return_all_envs = TRUE in the addl_args list.
arg_list <- lapply(keep_ind, function(x) list(return_all_envs = TRUE)) %>%
setNames(keep_ind)

ipm_list <- pdb_make_ipm(proto_list, addl_args = arg_list)

r_evs <- right_ev(ipm_list)
l_evs <- left_ev(ipm_list)

Implement the perturbations (5)

Next, we need to implement the formula above. This is fairly straightforward, and we will make use of another
function in Rpadrino: vital_rate_funs() (not to be confused with vital_rate_exprs()!). This extracts
the vital rate function values from each model and returns them in a named list (vital_rate_exprs()
extracts the expressions that create these values). Let’s see what this looks like:
vr_funs <- vital_rate_funs(ipm_list)

vr_funs$aaaa34

$P
s (not yet discretized): A 500 x 500 kernel with minimum value: 0.3638 and maximum value: 0.852
g_mean (not yet discretized): A 500 x 500 kernel with minimum value: 1.1114 and maximum value: 3.6806
g_var (not yet discretized): A 500 x 500 kernel with minimum value: 0.9749 and maximum value: 0.9749
g (not yet discretized): A 500 x 500 kernel with minimum value: 0 and maximum value: 0.1293
##
$F
r (not yet discretized): A 500 x 500 kernel with minimum value: 0.0062 and maximum value: 0.9969
fn (not yet discretized): A 500 x 500 kernel with minimum value: 43.05 and maximum value: 1280.9888
d (not yet discretized): A 500 x 500 kernel with minimum value: 0 and maximum value: 0.1481
vr_funs$aaa144

$P
s (not yet discretized): A 1000 x 1000 kernel with minimum value: 0.9712 and maximum value: 0.9997
ssurv (not yet discretized): A 1000 x 1000 kernel with minimum value: 0.9729 and maximum value: 0.9997
wsurv (not yet discretized): A 1000 x 1000 kernel with minimum value: 0.9983 and maximum value: 1
g_mean (not yet discretized): A 1000 x 1000 kernel with minimum value: 18.6951 and maximum value: 42.1968
growth (not yet discretized): A 1000 x 1000 kernel with minimum value: 6534.029 and maximum value: 75134.2259
g (not yet discretized): A 1000 x 1000 kernel with minimum value: 0 and maximum value: 0.0798
##
$F
rep_p (not yet discretized): A 1000 x 1000 kernel with minimum value: 0 and maximum value: 0.0049
fl_p (not yet discretized): A 1000 x 1000 kernel with minimum value: 0 and maximum value: 0.3948
germ_p (not yet discretized): A 1000 x 1000 kernel with minimum value: 0.0124 and maximum value: 0.0124
n_infl (not yet discretized): A 1000 x 1000 kernel with minimum value: 2.4843 and maximum value: 2.4843
n_fl (not yet discretized): A 1000 x 1000 kernel with minimum value: 131.6307 and maximum value: 131.6307
n_seed (not yet discretized): A 1000 x 1000 kernel with minimum value: 13.1971 and maximum value: 13.1971
sdl_s (not yet discretized): A 1000 x 1000 kernel with minimum value: 0 and maximum value: 0.3988

113

We see from the printed values that each vital rate function contains the complete n× n set of values for
each combination of meshpoints. Additionally, it warns us that these are not yet integrated. This is actually
a good thing - we want the continuous function values for the sensitivity, not the discretized values. We know
from our formula above that we need to extract G(z′, z), and that these are named g in each model. This will
not always be true for PADRINO, so care must be taken at this step to make sure you extract the correct
values!

Recall that we are about to implement: (vG) ◦ w
〈v,w〉 . The 〈...〉 is the inner product of v, w, and so we also need

the value of dz to implement the denominator. We will get those using int_mesh() again.
mesh <- lapply(ipm_list, function(x) int_mesh(x, full_mesh = FALSE))
d_zs <- lapply(mesh, function(x) x[[1]])

sens_list <- lapply(seq_along(vr_funs),
function(idx, r_evs, vr_funs, l_evs, d_zs) {

Extract objects to temporary values so the formula is more
readable

G <- vr_funs[[idx]]Pg
v <- unlist(l_evs[[idx]])
w <- unlist(r_evs[[idx]])
d_z <- d_zs[[idx]]

numerator <- as.vector((v %*% G) * w)
denominator <- sum(v * w * d_z)

numerator / denominator

},
r_evs = r_evs,
l_evs = l_evs,
vr_funs = vr_funs,
d_zs = d_zs)

par(mfrow = c(3, 1))

for(i in seq_along(sens_list)) {

plot(sens_list[[i]], x = mesh[[i]][[2]],
type = "l",
main = names(mesh)[i],
ylab = expression(bold(s)(z[0])),
xlab = expression(z[0]))

}

114

0 1 2 3 4 5

0
2

4
6

8
aaaa34

z0

s(
z 0

)

0 1 2 3 4 5

0
2

4
6

8
10

aaaa36

z0

s(
z 0

)

0 10 20 30 40 50

0
1

2
3

4

aaa144

z0

s(
z 0

)

Other perturbation kernels

As mentioned above, the survival function in the last IPM is comprised of two additional functions: ssurv and
wsurv. Thus, we could re-write the P kernel as P (z′, z) = ss(z)∗sw(z)∗G(z′, z). Thus, if we wanted to know the
effect of perturbing only sw(z), we would re-write our perturbation kernel as C(z′, z) = δ(z0) ∗ ss(z) ∗G(z′, z),
and our perturbation formula (in operator notation) becomes ss(z0) = (vssG) ◦ w

〈v,w〉 . We will drop the first
model from our lists because this analysis does not apply to it. We can implement this by slightly modifying
the code above:

115

s_s <- vr_funs[[3]]Pssurv
G <- vr_funs[[3]]Pg
v <- unlist(l_evs[[3]])
w <- unlist(r_evs[[3]])
d_z <- d_zs[[3]]

numerator <- as.vector((v %*% (s_s * G)) * w)
denominator <- sum(v * w * d_z)

sens_s_w <- numerator / denominator

par(mfrow = c(1, 1))

mesh_ps <- mesh[[3]][[2]]
nm <- names(mesh)[3]

plot(y = sens_s_w, x = mesh_ps,
type = "l",
main = nm,
ylab = expression(bold(s)[s[w]](z[0])),
xlab = expression(z[0]))

0 10 20 30 40 50

0
1

2
3

aaa144

z0

s s
w
(z

0)

116

Mean size at death and size at death kernels

We can also use vital rate function values in conjunction with sub-kernels to implement calculations of life
history traits. For this example, we will examine mean size at death and the size at death kernel. These are
given by the following equations:

Mean size at death = ω̄ = (i ◦ (1− s))N and size at death kernel = Ω(z′, z0) = (1− s(z′)) ∗N(z′, z0).

In these equations, s and s(z′) are survival functions, and N is the fundamental operator, which is defined as
N = (I − P)−1, where P is the survival/growth kernel from the IPM and I is an identity kernel (analogous
to an identity matrix). Fortunately, we can reuse our N_kerns code from above. However, it is important to
remember that the (1− s) term represents all mortality pathways, and species may have more than one way
to die (e.g. monocarpic perennials die through natural mortality as well as the flowering process). Therefore,
we also want to check our kernel formulae and see if those include additional terms that may represent
alternative mortality pathways. Additionally, we need to get the meshpoints which correspond to i.

This time, we will use considerably more IPMs - we will get those from the new_ipms object we created
earlier. However, we need to rebuild them with return_all_envs = TRUE so that we can access the vital
rate function values.
arg_list <- lapply(names(new_ipms), function(x) list(return_all_envs = TRUE,

iterations = 250)) %>%
setNames(names(new_ipms))

new_ipms <- pdb_make_ipm(simple_det_list, addl_args = arg_list)

Removing our these problem IPMs we identified before

keep_ind <- setdiff(names(new_ipms), c("dddd24", "dddd26",
"dddd40", "dddd41"))

new_ipms <- new_ipms[keep_ind]

kernel_formulae(new_ipms)

$aaaa34
P: s * g
F: r * fn * pE * d
$aaaa36
P: s * g
F: r * fn * pE * d
$aaa144
P: s * g
F: rep_p * es_p * sdl_s * n_infl * n_fl * n_seed
$aaa227
P: s * g
F: rep_p * es_p * sdl_s * n_infl * n_fl * n_seed
$aaa310
P: s * g
F: f_n * f_d
$aaa323
P: s * g
F: p_es * sdl_size * n_seeds
$aaa326
P: (1 - p_fl) * s * g

117

F: p_fl * fec1 * sdl_size * est_p
$aaa341
P: s * g
F: Ep * Fp * Fs * Fd
$aaa351
P: s * g
F: Pf * Nfruit * Nseeds * Pe * Fd
$aaa385
P: s * g
F: f * fd
$ccccc1
P: s * g
F: p_r * r_s * r_d * r_r
$ddddd3
P: s * g
F: d * r
$ddddd4
P: s * g
F: d * r
$ddddd5
P: s * g
F: d * r
$ddddd7
P: s * g
F: d * r
$dddd10
P: s * g * d_len
F: d * r
$dddd29
P: s * g
F: (s * r * pHS * d)/2
$dddd30
P: s * g
F: s * r * pg * 0.5 * d
$dddd33
P: s * g
F: rp * f * EP * d
$dddd35
P: s * g
F: p_fertile * polyps * fec * p_est * d
$dddd36
P: s * g
F: p_fertile * polyps * fec * p_est * d
$dddd37
P: s * g
F: d * r
$dddd39
P: s * g
F: f1 * f2 * f3 * f4 * f5 * d * 0.5

Upon further inspection, model ID aaa326 contains a (1 p_fl) term, which represents mortality due to
flowering. We need to include this in the calculations above. We do this like so:

ω̄ = (i ∗ (pfl + (1− pfl) ∗ (1− s))N,

118

and

Ω(z′, z0) = (pfl(z′) + (1− pfl(z′)) ∗ (1− s(z′)))N(z′, z0).

This can be summarized by saying “a plant dies with flowering probability pfl, and if the plant does not
flower (1− pfl), it dies with probability 1− s.” We are now ready to proceed with our calculations!
N_kerns <- lapply(new_ipms, function(x) {

P <- x$sub_kernels$P
I <- make_i(P)

solve(I - P)

})

surv_funs <- lapply(new_ipms, function(x) {
vital_rate_funs(x)Ps

})

p_flower <- vital_rate_funs(new_ipms$aaa326)$P$p_fl

The i corresponds to the sizes in each IPM. Thus, we want to get the meshpoints, which we do with int_mesh
like before. The lapply(x[[2]]) extracts the value of z_1, as this is always the second entry in the list of 3
returned by int_mesh (and we do not need the d_z or z_2 values).
i_vals <- int_mesh(new_ipms, full_mesh = FALSE) %>%
lapply(function(x) x[[2]])

Now, we just have to implement the calculations:
omega_bar_z <- lapply(seq_along(new_ipms),

function(index, i_vals, surv_funs, N_kerns, p_flower) {

id <- names(i_vals)[index]
i <- i_vals[[index]]

The survival function is represented as a bivariate
function in ipmr even though it is actually a univariate
function of z. Thus, we need to pull out the
univariate form of it to ensure we get the correct
result from (1 - s) (_i.e._ a vector, not an array!).
The correct univariate form is given by the rows,
as every column contains the same values.

s <- surv_funs[[index]][1,]
N <- N_kerns[[index]]

if(id == "aaa326") {
Same indexing as the survival function
p_fl <- p_flower[1,]

out <- (i * (p_fl + (1-p_fl) * (1 - s))) %*% N
} else {

out <- (i * (1 - s)) %*% N

119

}

return(out)
},
i_vals = i_vals,
surv_funs = surv_funs,
N_kerns = N_kerns,
p_flower = p_flower) %>%

setNames(names(i_vals))

Omega_z0_z <- lapply(seq_along(new_ipms),
function(index, surv_funs, N_kerns, p_flower) {
id <- names(surv_funs)[index]

s <- surv_funs[[index]][1,]
N <- N_kerns[[index]]

if(id == "aaa326") {
p_fl <- p_flower
out <- (p_fl + (1-p_fl) * (1 - s)) %*% N

} else {

out <- (1 - s) * N
}

return(out)
},
surv_funs = surv_funs,
N_kerns = N_kerns,
p_flower = p_flower) %>%

setNames(names(i_vals))

par(mfrow = c(4, 2))

for(i in seq_along(omega_bar_z)) {

plot(x = i_vals[[i]],
y = as.vector(omega_bar_z[[i]]),
type = "l",
main = names(i_vals)[i],
xlab = expression(paste(z[0])),
ylab = expression(paste(bar(omega),"(z)")))

}

120

0 1 2 3 4 5

0.
5

1.
5

2.
5

aaaa34

z0

ω
(z

)

0 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

aaaa36

z0

ω
(z

)

0 10 20 30 40 50

19
.3

19
.5

19
.7

19
.9

aaa144

z0

ω
(z

)

0 10 20 30 40 50

10
12

14
16

aaa227

z0

ω
(z

)

0 1 2 3 4 5 6

0.
4

0.
6

0.
8

aaa310

z0

ω
(z

)

2 4 6 8 10

1
2

3
4

5

aaa323

z0

ω
(z

)

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

aaa326

z0

ω
(z

)

0 100 200 300 400 500

10
0

20
0

30
0

40
0

aaa341

z0

ω
(z

)

121

0 2 4 6 8 10 12

0
2

4
6

8
aaa351

z0

ω
(z

)

0 50 100 150 200 250

20
40

60
80

aaa385

z0

ω
(z

)

−6 −4 −2 0 2 4

−
7

−
5

−
3

−
1

ccccc1

z0

ω
(z

)

50 100 150 200 250

20
60

10
0

14
0

ddddd3

z0

ω
(z

)

0 20 40 60 80 100 120

0
20

40
60

ddddd4

z0

ω
(z

)

200 400 600 800 1000

30
0

50
0

70
0

90
0

ddddd5

z0

ω
(z

)

0 10 20 30

5
10

15
20

25

ddddd7

z0

ω
(z

)

100 200 300 400

50
10

0
15

0
20

0
25

0

dddd10

z0

ω
(z

)

122

10 20 30 40 50 60 70 80

45
55

65
dddd29

z0

ω
(z

)

200 400 600 800 1000 1200

20
0

60
0

10
00

dddd30

z0

ω
(z

)

0 5000 10000 15000

20
00

60
00

dddd33

z0

ω
(z

)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
4

1.
8

2.
2

2.
6

dddd35

z0

ω
(z

)

1 2 3 4

1.
0

1.
5

2.
0

2.
5

3.
0

dddd36

z0

ω
(z

)

110 120 130 140 150

11
5

12
0

12
5

13
0

dddd37

z0

ω
(z

)

50 100 150

40
80

12
0

16
0

dddd39

z0

ω
(z

)

123

This is an interesting variety of relationships! Sometimes, it increases linearly, whereas other times we get
a parabolic relationships. This is a good first pass on an analysis, though subsequent digging would likely
reveal quirks in some of these models that we’d need to address more thoroughly. After these exercises, you
should have the tools to do just that!

Recap

We first showed how to subset PADRINO using the Metadata table, as well as a few others. Next, we
demonstrated how to rebuild kernels from the database, as well as basic analyses such as deterministic
population growth rates and perturbations. Next we moved into some examples of life cycle properties, such
as recruit production and size at death. Along the way, we encountered some issues with data that required
us to manipulate the underlying proto_ipms. This is far from an exhaustive display of potential analyses.
However, this case study should serve as a guide for posing questions and solving issues with PADRINO.

Citations

1. Caswell, H. (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn.
Sunderland, MA: Sinauer Associates Inc

2. Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A Grammar of Data Manipulation.
R package version 1.0.6. https://CRAN.R-project.org/package=dplyr

3. Shelley, M. (1818) Frankenstein; or, the Modern Prometheus. London, Lackington, Hughes, Harding,
Mayor, & Jones.

4. Ellner, S.P., Childs, D.Z., Rees, M. (2016) Data-driven modelling of structured populations: a practical
guide to the integral projection model. Basel, Switzerland: Springer International Publishing AG

124

Appendix 5: PADRINO Case Study 2

125

Combined analyses with Rpadrino, ipmr, and other databases

Overview

In this case study, we demonstrate how PADRINO can be used in conjunction with (1) your own unpublished
data, and (2) external data repositories.

In many cases, we may wish to combine data that we’ve collected and not yet published with data from
PADRINO. For example, we may wish to compare the vital rates or sensitivities of our (as-yet-unpublished)
study system with those from published IPMs on e.g. similar species. We describe how to do this in Section 1
of this case study.

Using PADRINO in conjunction with external data sources presents unique opportunities to address synthetic
questions in ecology, evolutionary biology, and conservation. External data sources could (though are not
limited to) include climate data, species range distributions, phylogenies, or life tables. We describe how to
use PADRINO in conjunction with BIEN in Section 2 of this case study.

Combining your own data with PADRINO

In this section, we demonstrate how to combine data from PADRINO with a users own unpublished data.
The first part of the code generates two IPMs - these are our “unpublished IPMs”. The next section shows
how to combine our unpublished IPMs with those stored in PADRINO, and how to perform simple analyses
(i.e. calculate population growth rate) across the combined set of IPMs.

Creating our own IPMs

The goal of this case study is to show how to combine data, and not necessarily how to use ipmr. ipmr is
extensively documented on the project’s website and in the publication describing the package. Therefore,
the next few chunks of code assume you have already consulted these resources and will have a reasonable
understanding of what’s going on. If you have not already consulted these, please do so now.

Our first “homemade” IPM will be a general IPM. For now, we are only going to construct proto_ipm objects
for each one of these homemade IPMs. Once we have our PADRINO IPMs selected, we will splice everything
together and generate actual IPM objects.
Loading Rpadrino automatically loads ipmr, so we do not need to load both.
library(Rpadrino)

Warning: package 'ipmr' was built under R version 4.2.3
Set up the initial population conditions and parameters.
These are hypothetical values and do not correspond to any particular
species.

data_list <- list(
g_int = 5.781,
g_slope = 0.988,
g_sd = 20.55699,

126

s_int = -0.352,
s_slope = 0.122,
s_slope_2 = -0.000213,
r_r_int = -11.46,
r_r_slope = 0.0835,
r_s_int = 2.6204,
r_s_slope = 0.01256,
r_d_mu = 5.6655,
r_d_sd = 2.0734,
e_p = 0.15,
g_i = 0.5067,
sb_surv = 0.2

)

Lower bound, upper bound, and number of meshpoints.
L <- 1.02
U <- 624
n <- 500

Initialize a population vector. The continuous state will have 500 meshpoints,
and we will pretend there's a seedbank.

init_pop_vec <- runif(500)
init_seed_bank <- 20

my_general_ipm <- init_ipm(sim_gen = "general", di_dd = "di", det_stoch = "det") %>%
define_kernel(
name = "P",
formula = s * g * d_ht,
family = "CC",
g = dnorm(ht_2, g_mu, g_sd),
g_mu = g_int + g_slope * ht_1,
s = plogis(s_int + s_slope * ht_1 + s_slope_2 * ht_1ˆ2),
data_list = data_list,
states = list(c('ht')),
uses_par_sets = FALSE,
evict_cor = TRUE,
evict_fun = truncated_distributions('norm',

'g')
) %>%
define_kernel(
name = "go_discrete",
formula = r_r * r_s * d_ht,
family = 'CD',
r_r = plogis(r_r_int + r_r_slope * ht_1),
r_s = exp(r_s_int + r_s_slope * ht_1),
data_list = data_list,
states = list(c('ht', "b")),
uses_par_sets = FALSE

) %>%
define_kernel(
name = "stay_discrete",
family = "DD",

127

formula = sb_surv * (1 - g_i),
data_list = data_list,
states = list(c("b")),
uses_par_sets = FALSE

) %>%
define_kernel(
name = 'leave_discrete',
formula = e_p * g_i * r_d * d_ht,
r_d = dnorm(ht_2, r_d_mu, r_d_sd),
family = 'DC',
data_list = data_list,
states = list(c('ht', "b")),
uses_par_sets = FALSE,
evict_cor = TRUE,
evict_fun = truncated_distributions('norm',

'r_d')
) %>%
define_impl(
list(
P = list(int_rule = "midpoint",

state_start = "ht",
state_end = "ht"),

go_discrete = list(int_rule = "midpoint",
state_start = "ht",
state_end = "b"),

leave_discrete = list(int_rule = "midpoint",
state_start = "b",
state_end = "ht"),

stay_discrete = list(int_rule = "midpoint",
state_start = "b",
state_end = "b")

)
) %>%
define_domains(
ht = c(L, U, n)

) %>%
define_pop_state(
pop_vectors = list(
n_ht = init_pop_vec,
n_b = init_seed_bank

)
)

Our next IPM will be a simple one:
Another hypothetical model. These parameters also do not correspond to any
species.

my_data_list = list(s_int = -2.2,
s_slope = 0.25,
g_int = 0.2,
g_slope = 0.99,
sd_g = 0.7,
r_r_int = 0.003,

128

r_r_slope = 0.015,
r_s_int = 0.45,
r_s_slope = 0.075,
mu_fd = 2,
sd_fd = 0.3)

my_simple_ipm <- init_ipm(sim_gen = "simple",
di_dd = "di",
det_stoch = "det") %>%

define_kernel(
name = "P_simple",
family = "CC",
formula = s * G,
s = plogis(s_int + s_slope * dbh_1),
G = dnorm(dbh_2, mu_g, sd_g),
mu_g = g_int + g_slope * dbh_1,
data_list = my_data_list,
states = list(c('dbh')),
evict_cor = TRUE,
evict_fun = truncated_distributions(fun = 'norm',

target = 'G')
) %>%
define_kernel(
name = 'F_simple',
formula = r_r * r_s * r_d,
family = 'CC',
r_r = plogis(r_r_int + r_r_slope * dbh_1),
r_s = exp(r_s_int + r_s_slope * dbh_1),
r_d = dnorm(dbh_2, mu_fd, sd_fd),
data_list = my_data_list,
states = list(c('dbh')),
evict_cor = TRUE,
evict_fun = truncated_distributions(fun = 'norm',

target = 'r_d')
) %>%
define_impl(
make_impl_args_list(
kernel_names = c("P_simple", "F_simple"),
int_rule = rep("midpoint", 2),
state_start = rep("dbh", 2),
state_end = rep("dbh", 2)

)
) %>%
define_domains(
dbh = c(0,

50,
100

)
) %>%
define_pop_state(
n_dbh = runif(100)

)

129

my_ipm_list = list(ipm_1 = my_general_ipm, ipm_2 = my_simple_ipm)

Combining user-defined and PADRINO-defined IPMs

Next, we will create a list of proto_ipm objects from PADRINO, and then put everything together. For
simplicity, we will select a small number of plant species. The pdb object is contained within the Rpadrino
package. It is not a complete version of PADRINO. We will use the complete data set in the next section,
accessed with pdb_download().
data(pdb)

id_index <- c(
paste0("aaaa", c(34, 55)),
paste0("aaa", c(310, 312, 339, 341, 353, 388))

)

small_db <- pdb_subset(pdb, id_index)

Next, we need to create a list that holds both the PADRINO IPMs and the ones we created above. After
that, we can call pdb_make_ipm() on the combined data set, and voila! We have our database IPMs and our
own homemade ones.

proto_list <- c(
pdb_make_proto_ipm(small_db),
my_ipm_list

)
'ipm_id' aaa310 has the following notes that require your attention:
aaa310: 'Geo and time info retrieved from COMPADRE (v.X.X.X.4)'
'ipm_id' aaa388 has the following notes that require your attention:
aaa388: 'Same data as AAA388. State variable Height (Cm)'

Great! In that single step, we combined PADRINO IPMs with our own IPMs. Because these are all in the
proto_ipm format, we do not need to think about technical differences between each type - we can use the
exact same toolbox for analyzing both! Let’s build the IPM objects and calculate deterministic per-capita
growth rates!
ipm_list <- pdb_make_ipm(proto_list)
lambdas <- lambda(ipm_list)

We could now proceed with any further analyses just as we did in the case study 1. Since those types of
analyses are already covered by the previous case study, we will move on to combining PADRINO data with
information from other databases.

Extending analyses with other databases

Here, we show how to combine data from PADRINO with data from other external sources. Specifically,
we show how to combine with data from COMPADRE MPM database and BIEN , a database containing
the spatial distribution and phylogenies of many plant species. We then demonstrate how we can use these
combined datasets to address the question: “How do population growth rates vary by the distance of the
studied population from the known range edge of that species?”

Given the question we posed above, we need to get range maps for each species and the per-capita growth
rate for some populations. For the former, we will use range maps from BIEN.For the latter, we will augment

130

PADRINO with data from COMPADRE. This analysis will not be the most complete - it is intended to
demonstrate the steps for combining data, not to make a scientific point. With that in mind, let’s dive in!

Required packages

BIEN allows users to download range maps programmatically from their database using the BIEN R package.
You can install that from CRAN using the chunk below. we will also use Rcompadre, mgcv, ggplot2, sf, and
dplyr to work with the data, so you’ll need to install those as well. Finally, we need to install rgeos so
that we can slightly modify the function that downloads range maps from BIEN (the current version of this
function does not work with the newest version of sf and sp).
install.packages(c("BIEN", "ggplot2", "sf", "rgeos" ,

"dplyr", "Rcompadre", "mgcv"))

After that, we have to load them:
library(BIEN)
library(rgeos)
library(methods)
library(ggplot2)
library(sf)
library(dplyr)
library(Rcompadre)
library(Rpadrino)
library(mgcv)

Data identification

BIEN allows us to programmatically query the database and retrieve all species names for which there is a
range map. we will load that, then load COMPADRE and PADRINO, and see how much overlap there is.
bien_rng_spps <- BIEN_ranges_list()
pdb <- pdb_download(save = FALSE)
cdb <- cdb_fetch("compadre")

This is COMPADRE version 6.23.5.0 (release date May_06_2023)
See user agreement at https://compadre-db.org/Help/UserAgreement
See how to cite at https://compadre-db.org/Help/HowToCite
Insert an underscore to make sure name format matches between COMPADRE,
PADRINO, and BIEN

cdb_spp <- gsub(" ", "_", cdb$SpeciesAccepted)

pdb_spp <- pdb_species_accepted(pdb)

Nice! We have 509 overlapping species between COMPADRE/PADRINO and BIEN’s range maps. This next
chunk determines which species from PADRINO and COMPADRE have range maps available in BIEN:
all_spp <- unique(c(cdb_spp, pdb_spp))
pos_spp <- all_spp[all_spp %in% bien_rng_spps$species]

pdb_rng_spp <- unique(pdb_spp[pdb_spp %in% pos_spp])
cdb_rng_spp <- unique(cdb_spp[cdb_spp %in% pos_spp])

131

Subsetting

We probably should not use all of these, as those calculations would take quite some time for a tutorial, so
we will select a subset. we will take the species for which the demographic data are from North America. For
PADRINO, we need to find their ipm_ids, and then pass those into pdb_subset(). For COMPADRE, we
can just use dplyr verbs as if we were working with a data.frame.
First, we will create a vector of ipm_id's which meet the following requirements:
1. They have range maps in BIEN (species_accepted %in% pdb_rng_spp)
2. The model is from data collected in North America (continent == "n_america")
3. The data are from unmanipulated populations (treatment == "Unmanipulated")

pdb_ids <- pdb$Metadata$ipm_id[pdb$Metadata$species_accepted %in% pdb_rng_spp &
pdb$Metadata$continent == "n_america" &
pdb$Metadata$treatment == "Unmanipulated"]

use_pdb <- pdb_subset(pdb, pdb_ids)

For COMPADRE, we have to first replace "_" in the species names with a space.
Then we can use filter() syntax to subset COMPADRE to the species we want.

cdb_rng_spp_f <- gsub("_", " ", cdb_rng_spp)

use_cdb <- filter(cdb,
SpeciesAccepted %in% cdb_rng_spp_f &
Continent == "N America" &
MatrixTreatment == "Unmanipulated")

Check data quality

PADRINO data is validated before it is uploaded to ensure the IPM behaves as the published version behaves.
There are additional checks you might want to perform on your own, and those depend on the subsequent
anaylsis. Case study 1 shows an example of a singular kernel creating some biologically impossible results.
However, there are not built-in functions in Rpadrino yet to assist with this. Therefore, it is usually a good
idea to check the original publications just to be sure there are not caveats to the model that the authors
have raised. We can find the citations using pdb_citation() and pdb_report(). pdb_citation() returns
a character vector of citations in APA style, whereas pdb_report() generates an RMarkdown report based
on the information in the database.
cites <- pdb_citations(use_pdb)

pdb_report(use_pdb)

we will also want to check COMPADRE for some common data issues using the cdb_flag() function. This
is documented much more thoroughly in the Rcompadre package website. For simplicity, we will just use
ones which do not raise any flags, as fixing issues with COMPADRE data is beyond the scope of this case
study. Furthermore, we will subset out the mean matrices, as we want to work with individual transitions.
cdb_f <- cdb_flag(use_cdb)

use_cdb <- filter(cdb_f, !check_NA_A & !check_NA_U & !check_NA_F & !check_NA_C&
!check_zero_U & !check_singular_U & check_component_sum &
check_ergodic & check_irreducible & check_primitive &
check_surv_gte_1 & MatrixComposite == "Individual")

132

Data transformation

Next, we need to do a bit of data wrangling. From PADRINO, we only need the ipm_id and species names
for plotting and analyzing, so we will just grab those from the metadata table. We’re going to create an
sf object for this data using the coordinates stored in the "lat" and "lon" columns of the metadata. sf
provides a standardized interface for dealing with multiple types of spatial data, and also plays nicely with
dplyr, which makes managing data much easier. The st_as_sf() function handles the conversion for us.
Create a standard data.frame with ipm_id, species, lat+lon data from PADRINO

temp_coords <- use_pdb$Metadata %>%
select(ipm_id, species_accepted, lat, lon)

This next bit does the following:
1. Creates a data.frame from COMPADRE data with the same columns as PADRINO.
2. Changes the names so they match the PADRINO version.
3. Combines the COMPADRE and PADRINO versions.
4. Eliminates studies that do not have complete latitude/longitude information.

temp_db <- use_cdb@data %>%
select(MatrixID, SpeciesAccepted, Lat, Lon) %>%
setNames(names(temp_coords)) %>%
rbind(temp_coords) %>%
.[complete.cases(.),]

Finally, create an 'sf' object with the combined coordinates from COMPADRE and
PADRINO

study_coords <- st_as_sf(temp_db,
coords = c("lon", "lat"),
crs = "WGS84")

Querying BIEN

Now that we have our final species list, we’re going to download the range maps for each species using the
BIEN_ranges_load_species() function, and then convert that into an sf object which will make subsequent
analysis and plotting easier. Below, we define a modified version of the BIEN_ranges_load_species()
function because the current package’s version fails with the newest version of sf and sp installed.
BIEN_ranges_load_species <- function(species,

...) {

species <- gsub(" ", "_", species)

set the query
query <- paste(
"SELECT ST_AsText(geom),species,gid FROM ranges WHERE species in (",
paste(shQuote(species, type = "sh"), collapse = ', '),
") ORDER BY species ;")

create query to retrieve
df <- BIEN:::.BIEN_sql(query, ...)

133

if(length(df) == 0){

message("No species matched")

}else{

poly <- list()
for(l in 1:length(df$species)){
Species<-df$species[l]
#sp_range<-readWKT(df$st_astext[l])
poly[[l]]<-readWKT(df$st_astext[l], p4s = st_crs(4326)[[2]])

#assigns a unique ID to each species' polygon
slot(object = poly[[l]]@polygons[[1]],

name = "ID") <- as.character(df$gid[l])

} #for species in df loop

}

poly <- SpatialPolygons(unlist(lapply(poly, function(x) x@polygons)))
poly <- SpatialPolygonsDataFrame(Sr = poly,data = df['species'],match.ID = FALSE)
poly@proj4string <- CRS(projargs = st_crs(4326)[[2]])
return(poly)

}

After converting the range maps to an sf object, we also need to create a different version of the polygons
that are a set of lines representing the edges. This will allow us to quickly calculate the distance between our
study points and the edge of the range. st_cast() handles this conversion for us.
The next piece:
1. Downloads range maps
2. Converts each range map into an 'sf' object
3. Resolves issues that arise in the conversion process (e.g. self intersections)
4. Sorts the resulting 'sf' object alphabetically on species

rng_maps <- BIEN_ranges_load_species(study_coords$species_accepted) %>%
st_as_sf() %>%
st_make_valid() %>%
arrange(species)

We need to create a copy of each range map that, rather than a polygon format,
is a line format. This enables us to use functions to compute distance to edge
much more easily.

line_maps <- st_cast(rng_maps, "MULTILINESTRING")

Put the "_"'s back into study_coords so that we can match all names later on.

study_coords$species_accepted <- gsub(" ", "_", study_coords$species_accepted)

Finally, sort study_coords alphabetically as well. Now, the species_accepted

134

column should be identical to the species column in rng_maps. This will be
important in the next step.

study_coords <- arrange(study_coords, species_accepted) %>%
.[!duplicated(.$species_accepted),]

Compute distance from edges

Ok, we’re finally ready to compute the distance from each study site to the range edge. We’re going to use the
st_distance() function for this. This finds the minimum distance between the first and second arguments
and computes a matrix for all possible combinations. It will ignore the fact that sometimes the closest edge
is an ocean (which our species cannot grow in). However, working out how to improve that calculation is a
problem for another day!

We start by extracting a distance matrix and taking the diagonal. The diagonal represents the shortest
distance between our species study site and the edge of the polygon of its range map (NB: This only works
because we sorted each object alphabetically ahead of time!). Next, we add in the species name information
and set the data frame’s names to something useful. Finally, we will convert the distances to kilometers.
Quickly check to make sure all of our species line up positionally.
If not, we'd need to make sure they do, otherwise it will be difficult
to extract the distances from the distance matrix we are about to compute!

stopifnot(all(line_maps$species == study_coords$species_accepted))

This next piece does:
1. Computes distances between all pairs of points and line objects
2. Extracts the diagonal of the distance matrix. This represents the distance
from a species' study site to the edge of its range (again, only because
we sorted study_coords and line_maps alphabetically).
3. converts this information to a data.frame
4. Adds the species names to that data.frame
5. Sets column names for that data.frame
6. Converts the distance to km

dist_from_edge <- st_distance(study_coords, line_maps) %>%
diag() %>%
data.frame() %>%
cbind(study_coords$species_accepted, .) %>%
setNames(c("species", "distance_in_meters")) %>%
mutate(
distance_in_km = round(as.numeric(distance_in_meters) / 1e3, 2)

)

Visualize our dataset

we will plot our range maps with the study sites overlaid on them using ggplot2. ggplot2 has built in geoms
designed to handle sf objects, which will make our lives much easier!
world <- map_data("world")
n_america <- filter(world, region %in% c("USA", "Canada", "Mexico"))

ggplot(rng_maps) +

135

geom_sf(aes(fill = species), alpha = 0.4) +
geom_polygon(data = n_america, aes(x = long, y = lat, group = group),

inherit.aes = FALSE,
color = "grey70",
fill = NA) +

geom_sf(data = study_coords) +
coord_sf(xlim = c(-140, -55),

ylim = c(15, 50)) +
theme_bw() +
theme(
legend.position = "none"

)

15°N

20°N

25°N

30°N

35°N

40°N

45°N

50°N

140°W 120°W 100°W 80°W 60°W
long

la
t

Already, we can see that our range maps do not perfectly align with the COMPADRE and PADRINO
population coordinates. We can check and see which study populations are actually contained by their range
map like so:
Notice that now we are using the POLYGONS object (rng_maps) as opposed to the
to the LINESTRING version (line_maps).

covered_ind <- st_covered_by(study_coords,
st_make_valid(rng_maps),
sparse = FALSE) %>%

diag()

Print studies not covered by BIEN range map

136

study_coords[!covered_ind ,]

Simple feature collection with 6 features and 2 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -122.9567 ymin: 18.45 xmax: -85.82 ymax: 45.16667
Geodetic CRS: WGS 84
A tibble: 6 x 3
ipm_id species_accepted geometry
<chr> <chr> <POINT [°]>
1 241875 Astragalus_tyghensis (-121.3167 45.16667)
2 242052 Calathea_ovandensis (-95.2 18.45)
3 239708 Euphorbia_telephioides (-85.82 30.21972)
4 244332 Lupinus_tidestromii (-122.9567 38.10861)
5 247007 Mammillaria_gaumeri (-89.4 21.3)
6 241182 Tillandsia_deppeana (-96.58333 19.51667)

These are COMPADRE matrices. Rather than try to figure out what’s going on, we will just drop those out
of our analysis.
study_coords <- study_coords[covered_ind,]

Compute lambdas for each type of model

Great! The next step is to generate and then join our lambda values with the distance information. This is a
two-step process. First, we will build our PADRINO IPMs:
Extract PADRINO IDs - we do not want to give COMPADRE ones to PADRINO machinery!

pdb_ids <- study_coords$ipm_id[study_coords$ipm_id %in% pdb$Metadata$ipm_id]

Construct the proto_ipm list
proto_list <- pdb_make_proto_ipm(
use_pdb,
pdb_ids

)

'ipm_id' aaa310 has the following notes that require your attention:
aaa310: 'Geo and time info retrieved from COMPADRE (v.X.X.X.4)'

'ipm_id' aaa329 has the following notes that require your attention:
aaa329: 'Based on IPM from Rose Ecology 2005; The GPS coordinates were approximated
to the closest geographic location described in the reference'

'ipm_id' aaa385 has the following notes that require your attention:
aaa385: 'Same data as AAA385. State variable Height (Cm)'
Construct the IPMs

ipm_list <- pdb_make_ipm(proto_list)

Some IPMs may have many values for lambda, because they were constructed from
vital rate models that have time varying parameters (e.g. random effects for
year). we will need to account for this. We need to convert those from a list to
a data.frame for modeling, and need to keep track of which lambda belongs to
which ID. The loop below will correctly format this.

137

lambdas <- lambda(ipm_list, type_lambda = "last")

temp <- data.frame(ipm_id = NA,
lambda = NA)

for(i in seq_along(lambdas)) {

Create a temporary object to store lambda values and ipm_id's. Each lambda
value will have its own row, with the corresponding ipm_id next to it. This
will help us track which value belongs to which model.

temp_2 <- data.frame(ipm_id = names(lambdas)[i],
lambda = lambdas[[i]])

I don't normally recommend using rbind in a 'for' loop, but there aren't many
iterations here, so we will not worry about the memory footprint
temp <- rbind(temp, temp_2)

}

Remove the dummy row of NAs

temp <- temp[-1,]

Next, we will get our COMPADRE lambdas, and stick them back in with the PADRINO lambdas.
use_cdb <- filter(use_cdb, MatrixID %in% study_coords$ipm_id)

matAs <- matA(use_cdb)

use_cdb@data$lambda <- vapply(matAs,
function(x) Re(eigen(x)$values[1]),
numeric(1L))

cdb_lambda <- use_cdb@data %>%
select(MatrixID, lambda) %>%
setNames(c("ipm_id", "lambda"))

all_lambdas <- rbind(temp, cdb_lambda)

Finally, we need to join lambda values with coordinate data set to recover the species names, and then use
those to join with the distance from edge object. Once that’s done, we can plot everything!
all_lambdas <- left_join(all_lambdas, study_coords, by = "ipm_id") %>%
select(-geometry)

all_data <- left_join(all_lambdas, dist_from_edge,
by = c("species_accepted" = "species"))

138

Regression modelling

We’re ready to plot and analyze the data. GAMs (Wood 2011) are a great way to spot general trends in
data, so we will use those.
lambda_by_dist <- gam(lambda ~ s(distance_in_km, bs = "cs"),

data = all_data,
family = Gamma(link = "identity"))

summary(lambda_by_dist)

##
Family: Gamma
Link function: identity
##
Formula:
lambda ~ s(distance_in_km, bs = "cs")
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.13381 0.04843 23.41 9.22e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(distance_in_km) 6.463 9 1.305 0.135
##
R-sq.(adj) = 0.197 Deviance explained = 47.5%
GCV = 0.059745 Scale est. = 0.048724 n = 27
plot(lambda_by_dist)

139

0 100 200 300 400 500

−
0.

5
0.

0
0.

5

distance_in_km

s(
di

st
an

ce
_i

n_
km

,6
.4

6)

preds <- cbind(data.frame(predict(lambda_by_dist,
data.frame(distance_in_km = seq(0, 550, 1)),
type = "response",
se.fit = TRUE)),

x = seq(0, 550, 1)) %>%
mutate(upper = fit + se.fit * 1.96,

lower = fit - se.fit * 1.96)

ggplot(all_data, aes(x = distance_in_km, y = lambda)) +
geom_point() +
geom_smooth(method = "glm",

formula = y ~ x,
method.args = list(family = Gamma("identity")),
color = "red",
linetype = "dotted") +

geom_line(data = preds,
aes(x = x, y = fit),
inherit.aes = FALSE,
color = "blue",
size = 1.2) +

geom_ribbon(data = preds,
aes(x = x, ymin = lower, ymax = upper),
color = "grey",
alpha = 0.4,

140

inherit.aes = FALSE) +
theme_bw() +
xlab("Distance from range edge (km)") +
ylab(expression(lambda))

0.5

1.0

1.5

2.0

0 200 400
Distance from range edge (km)

λ

There is a positive trend in range centrality and species performance (red line), and the GAM is likely
overfit (blue line). There is a lot of residual variance, and we can certainly find better ways to model this
phenomenon, but this is a good start for an exploratory analysis. We will leave the further analyses as an
exercise to you!

Recap

We have shown how to combine PADRINO data with user-defined IPMs as well as join it with information
from other databases. This is hardly a comprehensive overview of PADRINO’s applications - there are many
other uses and databases one could combine PADRINO with. It is our hope that this and the previous case
study provide a general guide to the considerations and steps one needs to take when using this data!

Citations

1. Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

141

2. Maitner, B., Boyle B., Casler N., Condit R., Donoghue J., Duran S.M., et al. (2017) The bien r package:
A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology
and Evolution 9(2): 373-379. https://doi.org/10.1111/2041-210X.12861

142

Appendix 6: Supplementary Information for Chapter 3

143

Introduction to PADRINO

PADRINO v0.0.1 consists of 10 tables (Table 1, Figure S1). In this first version, PADRINO currently contains
280 IPMs from 40 peer-reviewed publications that consider 14 animal and 26 species (Table 1 main text).
However, we highlight that PADRINO is under active development, and we continue to digitize studies for
release in future versions. These tables form a database, with tables linked using a common column across all
tables: ipm_id. The scope of each ipm_id is determined by the way that an IPM is parameterized. IPMs
that characterize the same species across, for example, many years or sites, with the same functional form, are
included under a single ipm_id. For instance, a growth model that includes a random intercept for different
years could be used to generate many unique projection kernels. These are stored under a single ipm_id
because the functional form of the IPM is identical for each year, and only the parameter values change. One
exception to this grouping rule is when the sites (i.e. where the raw data are reported to have come from)
are far enough apart that separate sets of GPS coordinates are used to describe them. These IPMs are split
into separate ipm_ids so that the spatial distinctions are preserved, which facilitates matching PADRINO
data with, for example, gridded environmental data (e.g. Compagnoni et al. 2021b, Case Study 2).

Finally, there are two important details potential users should be aware of. The first detail is that PADRINO
provides IPMs as they are published following peer review. We do not alter these IPMs when digitizing them,
except to correct typographical errors that may have found their way into the peer-reviewed publication.
The second detail is that PADRINO does not store any raw data used to create the IPMs. Users should be
aware of these, and we encourage all users to consult and cite the original publications of each IPM before
including it in an analysis.

The Digitization Process

The IPM digitization process begins when a peer-reviewed paper containing an IPM is published. We have set
alerts for the following keyword searches: “Integral Projection Model OR IPM OR sensitivit* OR elasticit*
OR Vital rate OR LTRE”. This automatic weekly search is run on Google Scholar and Scopus, and resulting
hits are examined manually to find publications that contain an IPM. Once a paper containing an IPM is
identified, we extract five types of metadata: taxonomic information (e.g. species names, functional groups),
publication information (e.g. authors, complete citation, year of publication), temporal metadata (e.g. study
duration, data collection beginning and ending months and years), spatial metadata (e.g. latitude/longitude,
ecoregion), and model specific metadata (e.g. experimental treatments applied, density-(in)dependent). Table
S1 contains a complete description of the metadata table in PADRINO.

Following the metadata digitization, we extract functional forms of each sub-kernel, vital rate function,
and how the environment varies (if applicable). The functional forms of each component of the model are
expressed in the syntax introduced in the main text. Finally, we extract all of the parameter values, as well
as information on the range of values each trait can take on and how they are numerically approximated (i.e.
integration rules). The parameter values and integration information are then substituted for symbol names
when the user requests a built model. For example, in Rpadrino, the Norm(mu_g, sd_g) from the main text
would be translated to dnorm(z_2, mu_g, sd_g).

Often times, not all of the required information is present in the publication or its supplementary materials.
Therefore, we often contact authors to request the required information and/or ask for clarification. We also
extract a target value for the data validation step (see next section), so that we can ensure that released data
really does replicate the published IPM. A complete guide to our digitization process and documentation of
the database syntax is publicly available on PADRINO’s webpage (https://padrinoDB.github.io/Padrino/).

Data Validation and Reproducibility

The PADRINO IPM Database has automated testing built into the data release process. All IPMs are checked
to ensure they recover the behavior of the published version prior to release. In most cases, validation consists

144

of reproducing the kernel-specific asymptotic population growth rate (λ) to within ± 0.03 of the published λ
value in the source publication. It is worth noting that this margin of error is considerably lower than the
uncertainty that arises from fitting statistical models to the raw data used in the IPM (e.g. Clark 2003),
and so it should be acceptable for almost any application. For stochastic models with continuously varying
environments, it is often not computationally feasible to re-run the IPM for 10-50,000 iterations since they are
time consuming to run and there are many in PADRINO. Thus, we manually check for shorter term behavior
that is similar to published dynamics (e.g. stochastic population growth rate (λs) after 1000 iterations). For
publications where population growth rates are not available, we manually examine the publication and check
the model digitized in PADRINO against some reported behavior (e.g. generation time). A given IPM can
only enter a scheduled database release if it is explicitly flagged by a digitizer as validated, or if it passes its
automated test. The manual testing functionality is contained in the open source R package pdbDigitUtils
(available on GitHub (https://github.com/padrinoDB/pdbDigitUtils)), and PADRINO’s build scripts are in
the project’s GitHub repository (https://github.com/padrinoDB/Padrino/tree/main/R).

Challenges

Digitizing IPMs into the PADRINO IPM Database is not without issues. First, it is often the case that the
complete form of the IPM is not reported: approximately 80% of papers we have examined thus far fall into
this category. Many studies may report the general form of the model (e.g. n(z′, t+1) =

∫ U

L
K(z′, z)n(z, t)dz),

but do not then report the functional forms of the sub-kernels or vital rates. Without the functional form of
all vital rates and sub-kernels, it is impossible to reproduce the IPM. Second, some parameter values may be
missing from the main text or supplementary materials - common culprits are terms for the variation of the
growth/fecundity kernels, number of meshpoints, and integration bounds (i.e. L,U in Eq 1). The authors of
this paper have been guilty of this, as well as other sins of omission, in their own IPM publications. The
intent here is not to alienate other authors, but offer a gentle reminder that reporting all parameter values
and functional forms can go a long way towards making their science reusable and extensible. Reproducible
science can often bring great benefit to the original authors as well as the broader community (Kousta et
al. 2019).

Adding your own IPMs to PADRINO

The easiest way to ensure your own IPMs can get added to PADRINO is to use ipmr when constructing
them. Since both Rpadrino and ipmr use the proto_ipm object to generate IPM objects, almost all the
information the PADRINO digitization team needs to make the model available is already contained in the
proto_ipm. We provide the make_ipm_report() in ipmr to help users generate a reproducible document
containing equations, parameter values, and implementation details of their IPMs, so that things like notation
don’t become stumbling blocks in reporting.

Of course, as acknowledged in the main text, there are IPMs that ipmr cannot handle currently. We
therefore advocate that as a general rule for reproducibility, writing down the IPM and vital rate equations
in either the main text or supplementary information of the publication, and all associated parameter values
implementation details (e.g. integration rule, range of the trait values used).

There are certainly columns in the Metadata table which cannot be inferred from the proto_ipm or the
equations and parameter values described above (e.g. latitude/longitude of populations, starting/ending year
of data collection, species names). We therefore advocate for authors provided comprehensive descriptions for
their study species and sites, regardless of what software they use to construct IPMs.

Technical overview of PADRINO

PADRINO is structured such that each model gets one row for the Metadata table, and an arbitrary number
of rows for every table after that. Some models may have 0, 1, or many rows for some of these tables.

145

Information for each model is linked across tables by the ipm_id column. Complete descriptions of each
column are provided here.

When a user calls pdb_make_proto_ipm() and specifies ipm_ids, the function loops over the specified IDs
subsetting the database to each single one. It then calls .make_proto(), which first translates each IPM
component from PADRINO syntax into ipmr syntax, then calls define_* functions from ipmr to generate
a proto_ipm. If there is more than one ID requested, then pdb_make_proto_ipm() repeats the process
as many times as requested to generate a list of proto_ipms. This list can be passed to pdb_make_ipm(),
pdb_make_ipm() is a thin wrapper around ipmr’s make_ipm(), and allows for different sets of additional
arguments to be passed to each individual IPM build process.

146

AAAAAAAA

La
tit

ud
e

Longitude

Animalia: 14
Plantae: 26

BB

0

50

100

150

200

2000 2005 2010 2015 2020
Year

C
um

ul
at

iv
e

P
ub

lic
at

io
ns

Figure S1: The geographic and temporal coverage of studies in the PADRINO IPM Database. (A)
Geographic distribution of publications currently contained in PADRINO (i.e. studies from Table 1). (B)
Cumulative number of publications found by our search criteria by year (solid lines), and the number that
are in the released version of PADRINO (dashed lines). Future releases will include those that we have found,
but are not yet completely digitized (i.e. those represented by solid lines, but not yet included in the dashed
lines). See the Supplementary Data for a complete list of IPM publications.

147

Table S1: Summaries of the information contained in each table of the PADRINO database. A complete guide to each column in each table is available
on the project’s webpage in the form of the guide provided to digitizers (there are too many columns to provide the information here).

Table Description
Metadata This table contains metadata for each IPM. This is organized into taxonomic information (full taxonomy plus functional

group information), publication information (citation, authorship, source), data collection information (study period/duration,
GPS coordinates, ecoregion), and model specific information (studied sexes, eviction corrections, treatments applied, and
model implementation details). See Table S2 for more information on these columns.

State Variables This table contains the names of the state variables used in the model and whether or not they are discrete or continuously
distributed.

Continuous States This table contains names and ranges for each continuously distributed state variable in the model, as well as which kernels
they apply to (kernels are the P(z’,z), F(z’,z), and C(z’,z) in Main Text’s Eq 1).

Integration Rules This table contains information on how each continuous state variable is numerically approximated in the model (i.e. number
of meshpoints, which integration rule was used).

Population Trait
Distributions

This table contains the names of the population trait distributions used in the model (n(z,t) and n(z’,t+1) in Main Text’s Eq.
1).

IPM Sub-kernels This table contains the functional forms of each sub-kernel in the IPM (_e.g._ P(z’,z) in Main Text’s Eq 1 becomes ’P = s *
G’), and information on which traits it acts on and creates. This table makes use of ipmr’s [parameter set index
notation](https://levisc8.github.io/ipmr/articles/index-notation.html) to concisely represent models which may produce many
kernels.

Vital Rate Functions This table contains the functional forms of each vital rate in the IPM (e.g. ’mu_g = int_g + slope_g * z_1’). This table
makes use of ipmr’s [parameter set index notation](https://levisc8.github.io/ipmr/articles/index-notation.html) to concisely
represent models which may produce many kernels.

Parameter Values This table contains the names and values of each parameter in the model, with the exception of parameters that are
associated with continuous environmental variation.

Continuous
Environmental Variation

This table contains parameter values and functional forms of any continuously varying environmental conditions (e.g. yearly
variation in precipitation and/or temperature). Any model that contains information in this table is considered stochastic by
default, as these variables must be sampled at least once to construct a model with Rpadrino.

Parameter Set Indices This table contains the parameter set indices. These are substituted into the IPM kernels and vital rate expressions when a
model is built, so that a single symbolic expression can represent an arbitrary number of realized expression. For example, the
vital rate expression ’mu_g_yr = g_int_yr + g_slope * z_1’ can be used to represent a range of years for a model with
year-specific intercepts. This table contains values substituted in for ’_yr’ across the model. See the [ipmr vignette on Index
Notation](https://levisc8.github.io/ipmr/articles/index-notation.html) for more details.

148

Table S2: All columns contained in the Metadata table.

Concept Column Name Description
ipm_id Unique ID for each model.

Taxonomy species_author The Latin species name used by the authors of the paper.
species_accepted The Latin species name accepted by Catalogue of Life.
tax_genus The genus name accepted by Catalogue of Life.
tax_family The family name accepted by Catalogue of Life.
tax_order The order name accepted by Catalogue of Life.
tax_class The class name accepted by Catalogue of Life.
tax_phylum The phylum name accepted by Catalogue of Life.
kingdom The kingdom name accepted by Catalogue of Life.
organism_type General functional type of the species (_e.g._ annual, fern, mammal, reptile).
dicot_monocot If a plant species, whether the species is a dicot or a monocot.
angio_gymno If a plant species, whether the species is an angiosperm, gymnosperm, or neither.

Source authors All of a study authors’ last names, separated by ’;’.
journal Abbreviated journal name (www.abbreviations.com/jas.php), or ’PhD’, ’MSc’ if a thesis.
pub_year The year of publication.
doi Digital object identifier and/or ISBN (if available).
corresponding_author The name of the corresponding author on the paper.
email_year The email address of the corresponding author and the year it was extracted (some email addresses

may be defunct now).
remark Additional remarks from the digitizer regarding the publication, if any.
apa_citation The full APA citation for the source.
demog_appendix_link The URL for the Supplementary information containing additional model details, if available.

Temporal Metadata duration The duration of the study, defined ’study_end - study_start + 1’. Does not consider skipped years.
start_year The year demographic data collection began.
start_month The month demographic data collection began.
end_year The year demographic data collection ended.
end_month The month demographic data collection ended.
periodicity Frequency of the model (1: annual transition, 2: semi-annual transition, 0.2: 5 year transition).

Spatial Metadata population_name The name of the population given in the data source.
number_populations The number of populations that a given model describes.
lat The decimal latitude of the population.
lon The decimal longitude of the population.
altitude The altitude of the population above sea level, obtained either from the publication or Google Earth.
country The ISO3 code for the country or countries in which the data were collected.
continent The continent or continents on which the data were collected.

149

Table S2: All columns contained in the Metadata table. (continued)

Concept Column Name Description
ecoregion The terrestrial or aquatic ecoregion corresponding to the [World Wildlife

Fund](https://www.worldwildlife.org/biomes) classification. If data are from a controlled setting
(greenhouse, lab), denoted with ’LAB’.

Model-specific metadata studied_sex Sexes used to construct the model.
eviction_used Whether or not the authors explicitly state that they corrected for eviction (see Williams et al.

2012).
evict_type If the authors did correct for eviction, then the type of correction that was applied. Current options

are ’stretched_domain’, ’truncated_distributions’, and ’disctrete_extrema’.
treatment A description of any experimental treatment applied to the population.
has_time_lag Whether or not the model contains a time lagged vital rate/kernel.
has_age Whether or not the model has age structure in addition to other continuous state variables.
has_dd Whether or not the model is density dependent.
is_periodic Whether or not the model is periodic.

150

Appendix 7: Supplementary Information for Chapter 4

Model diagram

The following diagram describes a single iteration of the IPM.

151

Seed bank (t) Seed bank (t +1)

Plant (t) Plant (t + 1)

Seedling (t) Seedling (t + 1)

s(z) * G(z’, z)

Mature fruit (t) Mature fruit (t + 1)

𝑠𝑠𝑏 ∗ (1 − 𝑔𝑠𝑏)

152

See the next section for a complete description of each vital rate parameter.

IPM Equations

IPMs describe how the abundance and distribution of a continuously distributed trait changes in a population
through discrete time. Vital rates are combined in projection kernels that describe state-dependent per-capita
contributions of existing individuals to the population trait distribution in the following time step via survival
and development (denoted (P (z′, z))) and sexual and asexual reproduction (denoted F (z′, z) and C(z′, z)
respectively).

n(z′, t+ 1) =
∫ U

L

[G(z′|z, σ, θ) ∗ sa(z, θ)]n(z, t)dz + ss ∗ ra(z′)sdl(t), (4.1.1)

mf(t+ 1) =
∫ U

L

[pf (z, θ) ∗ sa(z, θ) ∗ rf (z, θ) ∗ pm ∗ pfv]n(z, t)dz, (4.1.2)

sdl(t+ 1) = pe ∗ gi ∗ vs ∗mf(t) + ssb ∗ gsb ∗ pe ∗ sb(t), (4.1.3)

and

sb(t+ 1) = ssb ∗ (1− gsb) ∗ sb(t) + (1− gi) ∗ vs ∗mf(t). (4.1.4)

The survival probability of non-seedlings function, sa(z, θ), is given by:

Logit(sa(z, θ)) = β0,s,i + βs,z ∗ z+ (4.1.5)

βs,θt,dry ∗ θt,dry,i + βs,θt,wet ∗ θt,wet,i+
βs,θp,dry ∗ θp,dry,i + βs,θp,wet ∗ θp,wet,i+

βs,θs3,dry ∗ θs3,dry,i + βs,θs3,wet ∗ θs3,wet,i+

βs,θt×z,dry ∗ θt,dry,i ∗ z + βs,θt×z,wet ∗ θt,wet,i ∗ z+
βs,θp×z,dry ∗ θp,dry,i ∗ z + βs,θp×z,wet ∗ θp,wet,i ∗ z+

βs,θs3×z,dry ∗ θs3,dry,i ∗ z + βs,θs3×z,wet ∗ θs3,wet,i ∗ z+
βs,native ∗ g(i) + βs,i,

where wet and dry denote wet season and dry seasons covariation values, i indexs each site in Table 4.1, and
the function g() takes a site i and returns 0 for sites in the invaded range and 1 for sites in the native range.
The development function, G(z′|z, σ, θ) is given by:

G(z′|z, σ, θ) = fG(z′|µG(z, θ), σG(z, i)), (4.1.6)

where fG denotes a normal probability density function, µG(z, θ) is given by:

µG(z, θ) = β0,G,i+ (4.1.7)

βG,θt,dry ∗ θt,dry,i + βG,θt,wet ∗ θt,wet,i+
βG,θp,dry ∗ θp,dry,i + βG,θp,wet ∗ θp,wet,i+

βG,θs3,dry ∗ θs3,dry,i + βG,θs3,wet ∗ θs3,wet,i+

153

βG,θt×z,dry ∗ θt,dry,i ∗ z + βG,θt×z,wet ∗ θt,wet,i ∗ z+
βG,θp×z,dry ∗ θp,dry,i ∗ z + βG,θp×z,wet ∗ θp,wet,i ∗ z+
βG,θs3×z,dry ∗ θs3,dry,i ∗ z + βG,θs3×z,wet ∗ θs3,wet,i ∗ z,

βG,native ∗ g(i) + βG,i,

σG(z, i) is given by:

σG(z, θ) = β0,σG,i+ (4.1.8)
βσG,θt,dry ∗ θt,dry,i + βσG,θt,wet ∗ θt,wet,i+
βσG,θp,dry ∗ θp,dry,i + βσG,θp,wet ∗ θp,wet,i+

βσG,θs3,dry ∗ θs3,dry,i + βσG,θs3,wet ∗ θs3,wet,i+
βσG,native ∗ g(i) + βσG,i,

The probability of flowering function, pf (z, θ), is given by:

Logit(pf (z, θ)) = β0,pf ,i + βz,pf
∗ z+ (4.1.9)

βpf ,θt,dry ∗ θt,dry,i + βpf ,θt,wet ∗ θt,wet,i+
βpf ,θp,dry ∗ θp,dry,i + βpf ,θp,wet ∗ θp,wet,i+

βpf ,θs1,dry ∗ θs1,dry,i + βpf ,θs1,wet ∗ θs1,wet,i+
βpf ,θt×z,dry ∗ θt,dry,i ∗ z + βpf ,θt×z,wet ∗ θt,wet,i ∗ z+
βpf ,θp×z,dry ∗ θp,dry,i ∗ z + βpf ,θp×z,wet ∗ θp,wet,i ∗ z+
βpf ,θs1×z,dry ∗ θs1,dry,i ∗ z + βpf ,θs1×z,wet ∗ θs1,wet,i ∗ z,

βpf ,native ∗ g(i) + βpf ,native×z ∗ g(i) ∗ z + βpf ,i,

The number of flowers produced conditional on flowering function, rf (z, θ), is given by:

Log(rf (z, θ)) = β0,rf ,i + βz,rf
∗ z+ (4.1.10)

βrf ,θt,mean ∗ θt,mean,i + βrf ,θt,seas ∗ θt,seas,i+
βrf ,θp,total ∗ θp,total,i + βrf ,θp,seas ∗ θp,seas,i+

βrf ,θs3,mean ∗ θs3,mean,i + βrf ,θs3,seas ∗ θs3,seas,i+
βrf ,θt×z,mean + θt,mean,i ∗ z + βrf ,θt×z,seas ∗ θt,seas,i ∗ z+
βrf ,θp×z,total + θp,total,i ∗ z + βrf ,θp×z,seas ∗ θp,seas,i ∗ z+

βrf ,θs3×z,mean + θs3,mean,i ∗ z + βrf ,θs3×z,seas ∗ θs3,seas,i ∗ z+
βrf ,native ∗ g(i) + βrf ,native×z ∗ g(i) ∗ z.

g(i) is a function that returns 1 if site i in the native range (South Africa) and 0 when site i is located
elsewhere. Finally, the size distribution of newly observed non-seedling plants, ra(z′), is given by:

ra(z′) = fra(z′|µra , σra), (4.1.11)

where fra
is a Gaussian probability density function.

Vital rate model summaries

154

Survival model

summary(surv_mod)

Family: bernoulli
Links: mu = logit
Formula: alive ~ log_size + temp_dry_t * log_size + temp_wet_t * log_size + prec_dry_t * log_size + prec_wet_t * log_size + sw3_dry_t * log_size + sw3_wet_t * log_size + native + (1 | site)
Data: data (Number of observations: 5958)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
##
Group-Level Effects:
~site (Number of levels: 13)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.23 0.18 0.01 0.69 1.00 1157 1632
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 2.45 0.60 1.31 3.71 1.00 1224 1661
log_size 0.23 0.13 -0.02 0.49 1.00 1292 1963
temp_dry_t -0.84 0.38 -1.60 -0.05 1.00 1383 1440
temp_wet_t -0.43 0.52 -1.49 0.57 1.00 1700 1880
prec_dry_t -2.92 0.50 -3.92 -1.90 1.00 1384 1678
prec_wet_t 1.64 0.62 0.36 2.88 1.00 1193 1547
sw3_dry_t 1.95 0.78 0.35 3.44 1.00 1167 1591
sw3_wet_t -2.00 1.05 -4.01 0.18 1.00 1251 1706
native 0.13 0.57 -1.05 1.30 1.00 2530 2167
log_size:temp_dry_t -0.38 0.08 -0.52 -0.22 1.00 2060 2461
log_size:temp_wet_t 0.11 0.10 -0.08 0.30 1.00 2575 2853
log_size:prec_dry_t -1.04 0.12 -1.28 -0.81 1.00 1495 2215
log_size:prec_wet_t 0.84 0.14 0.57 1.12 1.00 1256 1832
log_size:sw3_dry_t 1.05 0.17 0.71 1.39 1.00 1265 1735
log_size:sw3_wet_t -1.11 0.23 -1.57 -0.66 1.00 1428 1971
##
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

155

Growth model

summary(grow_mod)

Family: gaussian
Links: mu = identity; sigma = log
Formula: log_size_next ~ log_size + temp_dry_t * log_size + temp_wet_t * log_size + prec_dry_t * log_size + prec_wet_t * log_size + sw3_dry_t * log_size + sw3_wet_t * log_size + native + (1 | site)
sigma ~ log_size + temp_dry_t + temp_wet_t + prec_dry_t + prec_wet_t + sw3_dry_t + sw3_wet_t + native + (1 | site)
Data: data (Number of observations: 4280)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
##
Group-Level Effects:
~site (Number of levels: 13)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.46 0.21 0.21 1.02 1.01 1210 1625
sd(sigma_Intercept) 0.21 0.12 0.09 0.50 1.00 967 932
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 0.05 0.68 -1.30 1.41 1.00 1806 1599
sigma_Intercept -0.50 0.31 -1.16 0.10 1.00 1844 1386
log_size 0.85 0.03 0.79 0.92 1.00 1898 2330
temp_dry_t 0.06 0.51 -0.95 1.02 1.00 2139 1514
temp_wet_t -0.24 0.68 -1.56 1.16 1.00 2313 1630
prec_dry_t -0.40 0.55 -1.54 0.68 1.00 1813 1343
prec_wet_t 0.15 0.74 -1.34 1.65 1.00 1554 1560
sw3_dry_t -0.10 0.91 -1.93 1.73 1.00 1604 1501
sw3_wet_t 0.24 1.25 -2.28 2.77 1.00 1682 1524
native 0.25 0.83 -1.44 1.98 1.00 2605 1933
log_size:temp_dry_t -0.08 0.02 -0.11 -0.04 1.00 2477 2803
log_size:temp_wet_t 0.05 0.02 0.01 0.10 1.00 3051 2866
log_size:prec_dry_t -0.14 0.03 -0.20 -0.09 1.00 1838 2660
log_size:prec_wet_t 0.12 0.04 0.04 0.21 1.00 1876 2457
log_size:sw3_dry_t 0.20 0.05 0.11 0.29 1.00 1938 2312
log_size:sw3_wet_t -0.19 0.06 -0.30 -0.07 1.00 2116 2460
sigma_log_size -0.12 0.01 -0.13 -0.10 1.00 7536 3177
sigma_temp_dry_t 0.22 0.23 -0.24 0.68 1.00 2154 1600
sigma_temp_wet_t -0.34 0.32 -0.98 0.29 1.00 2396 1582

156

sigma_prec_dry_t 0.05 0.25 -0.49 0.54 1.00 1752 1395
sigma_prec_wet_t 0.23 0.34 -0.44 0.94 1.00 1693 1388
sigma_sw3_dry_t 0.07 0.42 -0.76 0.94 1.00 1682 1234
sigma_sw3_wet_t -0.26 0.59 -1.49 0.87 1.00 1743 1297
sigma_native 0.49 0.41 -0.32 1.31 1.00 2558 1790
##
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Pr(Flowering) model

summary(repr_mod)

Family: bernoulli
Links: mu = logit
Formula: repro ~ log_size + temp_dry_t_1 * log_size + temp_wet_t_1 * log_size + prec_dry_t_1 * log_size + prec_wet_t_1 * log_size + sw1_dry_t_1 * log_size + sw1_wet_t_1 * log_size + log_size * native + (1 | site)
Data: data (Number of observations: 6581)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
##
Group-Level Effects:
~site (Number of levels: 13)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 2.58 0.99 1.35 5.06 1.00 1536 2058
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
Intercept -0.97 1.72 -4.26 2.45 1.00 3793
log_size 1.59 0.14 1.33 1.87 1.00 2421
temp_dry_t_1 -0.87 2.80 -6.57 4.55 1.00 2473
temp_wet_t_1 1.23 3.89 -6.63 9.35 1.00 2426
prec_dry_t_1 0.08 4.35 -8.91 8.89 1.00 2433
prec_wet_t_1 -0.49 2.75 -6.05 4.94 1.00 2309
sw1_dry_t_1 -0.14 6.29 -12.89 12.90 1.00 2342
sw1_wet_t_1 -0.32 5.05 -10.74 9.89 1.00 2336
native -1.92 3.88 -10.23 5.54 1.00 2644
log_size:temp_dry_t_1 0.39 0.27 -0.14 0.93 1.00 2085

157

log_size:temp_wet_t_1 -0.56 0.33 -1.23 0.10 1.00 1742
log_size:prec_dry_t_1 -0.96 0.29 -1.55 -0.41 1.00 2016
log_size:prec_wet_t_1 0.61 0.24 0.16 1.10 1.00 1774
log_size:sw1_dry_t_1 1.37 0.45 0.50 2.31 1.00 1709
log_size:sw1_wet_t_1 -0.67 0.33 -1.33 -0.03 1.00 1916
log_size:native 0.21 0.41 -0.63 1.00 1.00 2119
Tail_ESS
Intercept 2636
log_size 2590
temp_dry_t_1 2066
temp_wet_t_1 2340
prec_dry_t_1 1659
prec_wet_t_1 2071
sw1_dry_t_1 2113
sw1_wet_t_1 2371
native 1988
log_size:temp_dry_t_1 2866
log_size:temp_wet_t_1 2470
log_size:prec_dry_t_1 2425
log_size:prec_wet_t_1 2277
log_size:sw1_dry_t_1 2005
log_size:sw1_wet_t_1 2342
log_size:native 2547
##
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Flower number model

summary(flow_mod)

Family: negbinomial
Links: mu = log; shape = identity
Formula: flower_n ~ log_size + temp_dry_t_1 * log_size + temp_wet_t_1 * log_size + prec_dry_t_1 * log_size + prec_wet_t_1 * log_size + sw3_dry_t_1 * log_size + sw3_wet_t_1 * log_size + native + (log_size | site)
Data: data (Number of observations: 1093)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

158

##
Group-Level Effects:
~site (Number of levels: 13)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sd(Intercept) 0.53 0.29 0.15 1.24 1.00 1322
sd(log_size) 0.25 0.15 0.05 0.65 1.00 982
cor(Intercept,log_size) 0.01 0.54 -0.92 0.93 1.00 1215
Tail_ESS
sd(Intercept) 1283
sd(log_size) 1769
cor(Intercept,log_size) 1916
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
Intercept 1.25 0.41 0.37 2.03 1.00 2700
log_size 0.64 0.20 0.21 1.02 1.00 2174
temp_dry_t_1 -1.28 0.88 -3.14 0.34 1.00 1407
temp_wet_t_1 2.90 1.46 0.15 6.04 1.00 1423
prec_dry_t_1 -0.07 0.32 -0.75 0.58 1.00 1765
prec_wet_t_1 -1.69 0.90 -3.59 0.15 1.00 1242
sw3_dry_t_1 -3.25 1.78 -6.94 0.28 1.00 1206
sw3_wet_t_1 5.19 2.92 -0.78 11.30 1.00 1170
native -0.43 1.19 -2.67 1.74 1.00 1409
log_size:temp_dry_t_1 -0.46 0.34 -1.27 0.13 1.00 1100
log_size:temp_wet_t_1 1.01 0.72 -0.22 2.63 1.00 1025
log_size:prec_dry_t_1 -0.17 0.15 -0.50 0.11 1.00 1389
log_size:prec_wet_t_1 -0.62 0.45 -1.63 0.21 1.00 917
log_size:sw3_dry_t_1 -1.30 0.89 -3.34 0.23 1.00 914
log_size:sw3_wet_t_1 2.12 1.44 -0.36 5.39 1.00 891
Tail_ESS
Intercept 2376
log_size 1927
temp_dry_t_1 1979
temp_wet_t_1 1744
prec_dry_t_1 2067
prec_wet_t_1 1652
sw3_dry_t_1 1520
sw3_wet_t_1 1360
native 2485

159

log_size:temp_dry_t_1 1209
log_size:temp_wet_t_1 1060
log_size:prec_dry_t_1 1676
log_size:prec_wet_t_1 1269
log_size:sw3_dry_t_1 1088
log_size:sw3_wet_t_1 1152
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
shape 2.36 0.14 2.10 2.65 1.00 6013 2820
##
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Recruit size model

summary(recr_mod)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: log_size_next ~ 1
Data: recruits (Number of observations: 15)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept -8.62 0.14 -8.91 -8.34 1.00 1685 1566
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.54 0.12 0.37 0.84 1.00 1800 1777
##
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

160

Sensitivity of site-level λs to simulated parameter values

We could not find parameter values for establishment probability (pe) or seedbank survival rate (ssb).
Therefore, we simulated a range of values from 0-1 for each (incrementing by 0.05), re-building the model,
and then computing λ. The results are reported here. Dotted, red vertical lines how the parameter value we
used in the results reported in the main text.

pe

161

Whirinaki

Springfontein St_Francis Struisbaai Vogelgat

Praia_de_Areao Rarangi Rooisand Rough_Island

Colares Foxton Havatselet Melkboss

0.001 0.010 0.100

0.001 0.010 0.100 0.001 0.010 0.100 0.001 0.010 0.100

0.960

0.965

0.970

0.975

0.980

0.94

0.96

0.98

1.00

1.02

0.74774

0.74776

0.74778

0.74780

0.74782

0.908

0.912

0.916

0.920

0.792430

0.792435

0.792440

0.792445

0.792450

0.825

0.850

0.875

0.900

0.5523

0.5524

0.5525

0.5526

0.5527

0.5528

0.9590

0.9595

0.9600

0.9605

0.9610

0.9615

0.810

0.812

0.814

0.816

0.818

0.95045

0.95050

0.95055

0.95060

0.95065

0.95070

1.05

1.10

1.15

1.20

1.25

1.30

0.984

0.988

0.992

0.996

0.730

0.732

0.734

Establishment probability

P
er

−
ca

pi
ta

 G
ro

w
th

 R
at

e
(λ

)

162

ssb

163

Whirinaki

Springfontein St_Francis Struisbaai Vogelgat

Praia_de_Areao Rarangi Rooisand Rough_Island

Colares Foxton Havatselet Melkboss

0.01 0.10 1.00

0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00

0.964

0.966

0.968

0.94

0.96

0.98

1.00

1.02

0.74775

0.74776

0.74777

0.74778

0.910

0.911

0.912

0.913

0.7924300

0.7924325

0.7924350

0.7924375

0.7924400

0.83

0.84

0.85

0.5524

0.5525

0.5526

0.9592

0.9594

0.9596

0.9598

0.810

0.811

0.812

0.9504

0.9505

0.9506

1.13

1.15

1.17

1.19

0.984

0.985

0.986

0.987

0.730

0.731

Seedbank Survival rate

P
er

−
ca

pi
ta

 G
ro

w
th

 R
at

e
(λ

)

164

Appendix 8

Zusätzliches Information

Supplementary materials for each chapter, including published manuscripts, are included in Appendices 1-7.
Additionally, for published manuscripts (Chapters 2 & 3), supplementary materials, including R code and
associated data, can be digitally downloaded from the respective journal’s website. Text and figures can be
found on the attached CD.

165

A) Curriculum Vitae

Samuel C. Levin

Education

Martin Luther University Halle-Wittenberg

PhD Biology 2018-2024

Martin Luther University Halle-Wittenberg

MSc Biology 2016-2017

Wake Forest University

BA Biology 2008-2012

Work Experience

Pivot Bio, Inc.

Data Scientist II 2024-Present

Data Scientist I 2022-2024

Martin Luther University Halle-Wittenberg

Research Officer 2018-2022

Helmholtz-Zentrum für Umweltforschung

Student Research Assistant 2017

German Centre for Integrative Biodiversity

Student Research Assistant 2016 - 2018

Publications

Journal Articles ∗ denotes mentee

Novoa, A., Hirsch, H., Castillo, M.L., Canavan, S., Gonzalez, L., Richardson, D.M., et al. (2023) Genetic
and morphological insights into the Carpobrotus hybrid complex around the world. Neobiota. DOI:
10.3897/neobiota.89.109164.

Levin SC, Evers S∗, Pena-Guerrero M, Compagnoni AC, Childs DZ, Knight TM & Salguero-Gomez R
(2022). Rpadrino: an R package to access and use PADRINO, an open access database of Integral Projection
Models. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.13910

Jones OR, Barks P, Stott I, James TD, Levin SC, Petry WK et al. (2022). Rcompadre and Rage—Two R
packages to facilitate the use of the COMPADRE and COMADRE databases and calculation of life-history
traits from matrix population models. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.13792

Levin SC, Childs DZ, Compagnoni AC, Evers S∗, Knight TM & Salguero-Gomez R (2021). ipmr: Flexible
implementation of Integral Projection Models in R. Methods in Ecology and Evolution. DOI: 10.1111/2041-
210X.13683

Keppel G, Craven D, Weigelt P, Smith SA, van der Sande MT, Sandel B, Levin SC, Kreft H & Knight TM
(2021). Synthesizing tree biodiversity data to understand global patterns and processes of vegetation. Journal
of Vegetation Science. DOI: 10.1111/jvs.13021

166

Bogdan A∗, Levin SC, Salguero-Gomez R & Knight TM. (2021). Demographic analysis of an Israeli
Carpobrotus population. Plos One. DOI: 10.1371/journal.pone.0250879.

Paniw M, James T, Archer CR, Romer G, Levin SC, Compagnoni AC, et al. (2021). Global analysis
reveals complex demographic responses of mammals to climate change. Journal of Animal Ecology. DOI:
10.1111/1365-2656.13467

Compagnoni AC, Levin SC, Childs DZ, Harpole S, Paniw M, Romer G, et al. (2021). Short-lived plants
have stronger demographic responses to climate. Nature Communications. Nature Communications. DOI:
10.1038/s41467-021-21977-9

Levin SC, Crandall RM, Pokoski TC∗, Stein C & Knight TM (2020). Phylogenetic and functional
distinctiveness explain alien plant population responses to competition. Proceedings of the Royal Society B.
DOI: 10.1098/rspb.2020.1070

Sandel B, Weigelt P, Kreft H, Keppel G, van der Sande MT, Levin SC, Smith S, Craven DC & Knight TM
(2019). Current climate, isolation, and history drive global patterns of tree phylogenetic endemism. Global
Ecology and Biogeography. DOI: 10.1111/geb.13001

Compagnoni A, Bibian BJ, Ochocki BM, Levin SC, Zhu K & Miller TEX (2019). popler: an R package for
extraction and synthesis of population time series from the long-term ecological research (LTER) network.
Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.13319

Levin SC, Crandall RM, Knight TM (2019) Population projection models for 14 alien plant species in the
presence and absence of above-ground competition. Ecology. DOI: 10.1002/ecy.2681.

Carl G, Levin SC, Kühn I. (2018) spind: an R Package to Account for Spatial Autocorrelation in the
Analysis of Lattice Data. Biodiversity Data Journal. DOI: 10.3897/BDJ.6.e20760.

Workshops & Invited Talks

Schwartz A, Levin SC et al.. A high throughput, automated ARACAS platform measures nitrogen fixation
rates from associative diazotrophs in undisturbed, soil-grown cereals. North American Symbiotic Nitrogen
Fixation Conference. Burlington, VT, June 2024.

Levin SC, Childs DZ, Compagnoni AC, Evers S, Knight TM & Salguero-Gomez R. ipmr: An R Package
for Easy and Flexible Construction and Interpretation of Integral Projection Models. Ecological Society of
America, Long Beach, August 2021.

Levin SC. Invasive plants: research, control, and what you can do to help! Point Reyes National Seashore,
May 2020. (Cancelled due to COVID-19 pandemic).

Levin SC & Salguero-Gomez R. Effective, efficient, and safe data collection with UAVs. Oxford University,
January 2020.

Salguero-Gomez R, Jones OR, et al. A gentle introduction to the COMADRE & COMPADRE databases for
demographic analyses. British Ecological Society, Belfast, December 2019.

Conference Presentations

∗ denotes mentee; # denotes poster presentations, otherwise oral

2020

Salguero-Gomez R,Che-Castaldo JP, Jones O, Caswell H, Ezard T, Hernandez-Yanez H, Hodgson D, Knight
TM, Levin SC, Stott I, Thomas C, Vaupel J. (2020) The next generation of demographic databases: Building
and delivering a distributed network for user contributions and engagement. Ecological Society of America

2018

167

Levin SC, RM Crandall, TC Pokoski, Stein C, Knight TM. Mechanisms underlying the differential success
of alien plant species. Ecological Society of America – New Orleans, USA

2016

Levin SC, Stein C, Knight TM. Phylogenetic novelty alters the strength of biotic interactions for exotic
plant species. NeoBiota 2016 – Vianden, Luxembourg

Levin SC, Stein C, Knight TM. Phylogenetic novelty alters the strength of biotic interactions for exotic
plant species. iDiv Conference – Leipzig, Germany

2015

Poor E∗,Thompson AH∗, Levin SC, Knight TM. Novel functional traits aid the success of the invasive
biennial Carduus nutans. Washington University in St. Louis Undergraduate Research Symposium – St. Louis,
MO #

Workman M∗, Thompson AH∗, Levin SC, Knight TM. Competitive release may increase the fitness of
exotic plants in their novel range. Washington University in St. Louis Undergraduate Research Symposium –
St. Louis, MO #

2014

Patterson A∗, Galluppi CG, Levin SC, Maynard EE, Knight TM. How plant species become common: exam-
ining the success strategies of native and invasive plants. Washington University in St. Louis Undergraduate
Research Symposium – St. Louis, MO #

Van Horn T∗, Galluppi CG, Levin SC, Knight TM. Examining the enemy release hypothesis in Ozark woody
species. Washington University in St. Louis Undergraduate Research Symposium – St. Louis, MO #

Software

Maintainer (current) and developer (> v2.0.0) of spind. Project page and CRAN.

Maintainer and developer of ipmr. Project page and CRAN.

Maintainer and developer of the PADRINO IPM Database and Rpadrino. PADRINO page and RPadrino
page.

Contributed to development of popler, bRacatus, taxlist, plotbiomes, popdemo, Rcompadre, and Rage.

Languages

Fluent in English and R, proficient with Stan, Git, shell, and C++, and familiar with Python and German.

Certifications

United States FAA Part 107 UAV Pilot License

United States NPS S212 A Faller

Mentoring

Sanne Evers Helmholtz-Zentrum für Umweltforschung

Ana Bogdan Babeş-Bolyai University, Cluj-Napoca, Romania

Tyler Pokoski University of Iowa 2017

168

https://github.com/levisc8/spind
https://cran.r-project.org/package=spind
https://padrinoDB.github.io/ipmr/
https://cran.r-project.org/package=ipmr
https://padrinoDB.github.io/Padrino/
https://padrinoDB.github.io/RPadrino/
https://padrinoDB.github.io/RPadrino/
https://github.com/ropensci/popler
https://github.com/EduardoArle/bRacatus
https://github.com/ropensci/taxlist
https://github.com/valentinitnelav/plotbiomes
https://github.com/iainmstott/popdemo
https://github.com/jonesor/Rcompadre
https://github.com/jonesor/Rage

Tom Collins Missouri S&T 2017

Amy Patterson Washington University in St. Louis 2015

Amibeth Thompson Illinois College 2014

Sami Hunkler University of California, Berkeley 2017

Thomas Van Horn Washington University in St. Louis 2018

Sarah Link Eureka High School 2015

Brenda Alvarado Francis Howell North 2015

Matilda Workman Kirkwood High School 2017

Elizabeth Poor Clayton High School 2017

Service

Reviewer for rOpenSci, Functional Ecology, BMC Ecology, Annals of Botany, and Plant Ecology

Philadelphia, Pennsylvania, United States of America, den 01.10.2024 Sam C. Levin

169

B) List of publications for the dissertation

Levin SC, Evers S, Pena-Guerrero M, Compagnoni AC, Childs DZ, Knight TM & Salguero-Gomez R (2022).
Rpadrino: an R package to access and use PADRINO, an open access database of Integral Projection Models.
Methods in Ecology and Evolution 13(9): 1923-1929.

Levin SC, Childs DZ, Compagnoni AC, Evers S, Knight TM & Salguero-Gomez R (2021). ipmr: Flexible
implementation of Integral Projection Models in R. Methods in Ecology and Evolution 12(10): 1826-1834.

Conference participation and invited talks

Levin SC, Childs DZ, Compagnoni AC, Evers S, Knight TM & Salguero-Gomez R. ipmr: An R Package
for Easy and Flexible Construction and Interpretation of Integral Projection Models. Ecological Society of
America, Long Beach, August 2021.

Salguero-Gomez R,Che-Castaldo JP, Jones O, Caswell H, Ezard T, Hernandez-Yanez H, Hodgson D, Knight
TM, Levin SC, Stott I, Thomas C, Vaupel J. (2020) The next generation of demographic databases: Building
and delivering a distributed network for user contributions and engagement. Ecological Society of America

Levin SC & Salguero-Gomez R. Effective, efficient, and safe data collection with UAVs. Oxford University,
January 2020.

Salguero-Gomez R, Jones OR, et al. A gentle introduction to the COMADRE & COMPADRE databases for
demographic analyses. British Ecological Society, Belfast, December 2019.

170

C) Author contributions

Chapter 2: Levin SC, Childs DZ, Compagnoni AC, Evers S, Knight TM & Salguero-Gomez R (2021). ipmr:
Flexible implementation of Integral Projection Models in R. Methods in Ecology and Evolution 12(10):
1826-1834.

• Design: Sam Levin (70%), Dylan Childs (15%), Tiffany Knight(5%), Roberto Salguero-Gomez (10%).

• Implementation: Sam Levin (100%).

• Analysis: Sam Levin (100%).

• Writing: Sam Levin (60%), Dylan Childs (10%), Aldo Compagnoni (5%), Sanne Evers (5%), Tiffany
Knight (10%), Roberto Salguero-Gomez (10%).

Chapter 3: Levin SC, Evers S, Pena-Guerrero M, Compagnoni AC, Childs DZ, Knight TM & Salguero-Gomez
R (2022). Rpadrino: an R package to access and use PADRINO, an open access database of Integral
Projection Models. Methods in Ecology and Evolution 13(9): 1923-1929.

• Data Collection: Sam Levin (5%), Sanne Evers (70%), Mayra Pena-Guerrero (5%), Tomos Potter
(20%).

• Implementation: Sam Levin (100%).

• Analysis: Sam Levin (100%).

• Writing: Sam Levin (60%), Dylan Childs (10%), Aldo Compagnoni (5%), Sanne Evers (5%), Tiffany
Knight (10%), Roberto Salguero-Gomez (10%).

Chapter 4: Levin SC, Salguero-Gomez R & Knight TM (2023). Relationship between climate and fitness of a
highly invasive succulent unpublished.

• Design: Sam Levin (70%), Tiffany Knight (20%), Roberto Salguero-Gomez (10%).

• Data collection: Sam Levin (100%).

• Analysis: Sam Levin (100%).

• Writing: Sam Levin (70%), Tiffany Knight (20%), Roberto Salguero-Gomez (10%).

Philadelphia, Pennsylvania, United States of America, den 01.10.2024 Sam C. Levin

171

D) Eigenständigkeitserklärung

Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel “Integral Projection Models Across Scales”
bisher weder an der Naturwissenschaftlichen Fakultät I der Martin-Luther-Universität Halle-Wittenberg noch
einer anderen wissenschaftlichen Einrichtung zum Zweck der Promotion vorgelegt wurde.

Ferner erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne unzulässige fremde Hilfe verfasst,
sowie keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die den Werken wörtlich oder
inhaltlich entnommenen Stellen wurden als solche von mir kenntlich gemacht. Ich erkläre weiterhin, dass ich
mich bisher noch nie um einen Doktorgrad beworben habe.

I hereby declare that the present work entitled “Integral Projection Models Across Scales” has not previously
been submitted to the Faculty of Natural Sciences I of the Martin Luther University Halle-Wittenberg or to
any other scientific institution for the purpose of a doctorate.

Furthermore, I declare that I have written this thesis independently and without unauthorized outside help,
and that I have not used any sources or aids other than those indicated. The passages taken verbatim or in
terms of content from the works were marked as such by me. I further declare that I have never applied for a
doctoral degree before.

Philadelphia, Pennsylvania, United States of America, den 01.10.2024 Sam C. Levin

172

	Summary
	Zusammenfassung
	Chapter 1: Introduction
	1.1 Population models in ecology
	1.2 Simple Integral Projection Models
	1.3 General Integral Projection Models
	1.4 Survey of available tools for IPM implementation
	1.5 Demographic data for broader syntheses
	1.6 IPMs and consideration of scale
	1.7 Objectives of the dissertation

	Chapter 2: ipmr: Flexible implementation of Integral Projection Models in R
	Chapter 3: Rpadrino: an R package to access and use PADRINO, an open access database of Integral Projection Models
	Chapter 4: Relationship between climate and fitness of a highly invasive succulent
	Synthesis
	Acknowledgements
	Appendix 1: ipmr Case Study 1
	Appendix 2: ipmr Case Study 2
	Appendix 3: Supplementary Information for Chapter 2
	Appendix 4: PADRINO Case Study 1
	Appendix 5: PADRINO Case Study 2
	Appendix 6: Supplementary Information for Chapter 3
	Appendix 8
	Zusätzliches Information
	A) Curriculum Vitae
	B) List of publications for the dissertation
	C) Author contributions
	D) Eigenständigkeitserklärung

