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1 Introduction

Spectral invariance is an important phenomenon for applications in the field of partial differential equations
and in the theory of pseudodifferential operators. The first result due to Beals [6] asserts that the inverse of
a pseudodifferential operator T that is (i) invertible on L2(ℝd), and (ii)with a symbol in theHörmander class S00,0,
is again a pseudodifferential operator with a symbol in the same class. In other words, this class of pseudodif-
ferential operators is inverse-closed (closed under inversion) in the algebra A of pseudodifferential operators
with S00,0-symbols. As a consequence, the spectrum of T is independent of the weighted Lp(ℝd) space or of the
choice of Bs,ap,q(ℝd); see [32, 34]. This phenomenon is often referred to as spectral invariance, and the resem-
blance to Wiener’s lemma for absolutely convergent Fourier series has also motivated the terminology of A
being a Wiener algebra.

The next important step in the theory of spectral invariance of pseudodifferential operators was made by
Sjöstrand [36] who introduced a class of non-smooth symbols for which the associated algebra of pseudodif-
ferential operators is spectrally invariant in B(L2(ℝd)). This class, nowadays called the Sjöstrand class, turned
out to be an already known function space that is paramount in time-frequency analysis, namely the modu-
lation space M∞,1(ℝ2d). This connection spawned an intensive investigation of pseudodifferential operators
with time-frequency methods [16, 20, 22, 24, 26, 36, 38–42]. The state-of-the-art is presented in the monographs
of Benyi and Okoudjou [7] and Cordero and Rodino [10].

Among the new results obtained by time-frequency methods was, firstly, a characterization of both the
Hörmander class and the Sjöstrand class by means of the matrix associated to a pseudodifferential opera-
tor with respect to a Gabor frame. Secondly, time-frequency analysis established a firm connection between
the off-diagonal decay of these matrices and the corresponding properties (boundedness, algebra, inverse-
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closedness) of pseudodifferential operators. In this way, every (solid) inverse-closed subalgebra of B(ℓ2(ℤ2d))
can be mapped to an algebra of pseudodifferential operators that is inverse-closed in B(L2(ℝd)) (see [24]). In
contrast to the classical hard analysis methods, the time-frequency approach is so flexible that the theory can
even be formulated for pseudodifferential operators on locally compact abelian groups [26].

The goal of this paper is the extension of the theory of spectrally invariant algebras of pseudodifferential
operators to the realm of quasi-Banach algebras. Quasi-Banach algebras are interesting in their own right, but
quasi-Banach spaces and associated operators occur naturally in approximation theory and data compression
problems; see, e.g., [13, 25]. Additionally, in time-frequency analysis they occur in the formulation of uncertainty
principles [17].

To formulate our main results, we briefly recall the definition of modulation spaces and the Weyl form of
pseudodifferential operators. For a fixed non-zero Schwartz function g ∈ S(ℝd) and a tempered distribution f ,
the short-time Fourier transform Vg f is the function on ℝ2d defined by the formula

Vg f(x, ξ) := ∫
ℝd

f(t)g(t − x)e−2πit⋅ξ dt, (1.1)

with suitable interpretation of the integral. For 0 < p, q ≤∞, the (unweighted) modulation space Mp,q(ℝd) is
defined by the quasi-norm

‖f‖Mp,q := ( ∫
ℝd

( ∫

ℝd

|Vg f(x, ξ)|p dx)
q/p

dξ)
1/q

, (1.2)

with usual modifications in case p =∞ or q =∞, and consists of all tempered distributions f with finite
quasi-norm. Modulation spaces onℝ2d serve as symbol classes for pseudodifferential operators. Our focus will
be on the symbol class M∞,p0 (ℝ2d) for p0 < 1. This is only a quasi-Banach space.

Given a symbol a on ℝ2d , the corresponding pseudodifferential operator in the Weyl calculus is defined
formally by

aw f(x) = ∫
ℝd

∫

ℝd

a(
x + y
2 , ξ)f(y)e2πi(x−y)⋅ξ dy dξ,

again with a suitable interpretation of the integral and for f ∈ S(ℝd).
With these definitions, our main results can be stated as follows.

Theorem 1.1 (Spectral invariance). Let p0 ∈ (0, 1] and a ∈ M∞,p0 (ℝ2d) be such that aw is invertible onMp(ℝd) for
some p ∈ [p0 ,∞]. Then (aw)−1 = bw for some b ∈ M∞,p0 (ℝ2d).

As a consequence, we obtain that the spectrum of a pseudodifferential operator with a symbol in M∞,p0 (ℝ2d)
is independent of the space on which it acts.

Theorem 1.2 (Spectral invariance on modulation spaces). Assume that a ∈ M∞,p0 (ℝ2d) for some p0 ∈ (0, 1]. Then
the following assertions are equivalent:
(i) aw is invertible on L2(ℝd).
(ii) aw is invertible on Mp(ℝd) for some p ∈ [p0 ,∞].
(iii) aw is invertible on Mq(ℝd) for all q ∈ [p0 ,∞].

More generally, we show in Theorem 4.12 the invertibility of aw on the more broad class of modulation spaces
Mr,q(ℝd) with r, q ∈ [p0 ,∞) under the assumptions of the previous theorem.

Both theorems have already a long history in time-frequency analysis. The Banach algebra case of Theo-
rem 1.1 with a ∈ M∞,1(ℝ2d) and aw invertible on L2(ℝd) was already proved by Sjöstrand [36]. For symbols
in a weighted symbol class M∞,11⊗v , the spectral invariance was established with a new time-frequency method
in [24]. Recently, the invertibility results on L2 were further extended to the case of symbols in the weighted
quasi-Banach spaces M∞,p01⊗v for p0 < 1 by Cordero and Giacchi [8].

The implication “(i) ⇒ (iii)” in Theorem 1.2 then follows from these results. We note that, in addition to
treating weights, [8] also treats the class of generalized metaplectic operators.
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Our main contribution is the full characterization of invertibility in Theorem 1.2. To the best of our knowl-
edge, the implication “(ii) ⇒ (i)” is new even for the case of Banach spaces¹. This implication, where we start
with invertibility on Mp(ℝd), p ̸= 2, is much more involved, as there are no Hilbert space techniques avail-
able. For self-adjoint pseudodifferential operators (aw)∗ = aw , one could argue with duality and interpolation
to reduce to the case of invertibility on L2(ℝd), but there is no cheap trick for non-self-adjoint pseudodifferential
operators. When we start with invertibility on a quasi-Banach space Mp(ℝd), p < 1, even duality is no longer
useful. For this reason, we returned to Sjöstrand’s original proof of Wiener’s lemma in [36] and added several
new elements to his proof.

Methods. We follow the outline of proof of [24]. The first step is to study the matrix representation of a pseudo-
differential operator with respect to a Gabor frame and then derive a characterization of the symbol class in
terms of the off-diagonal decay of the associated matrix.

In the second step, this leads to the study of spectrally invariant matrix algebras. The appropriate class in
our context is the class of convolution-dominated matrices, i.e., matrices A = (aλ,ρ)λ,ρ∈Λ with an off-diagonal
decay of the form

|aλ,ρ| ≤ H(λ − ρ)

for a (smooth) function H in Lp(ℝd). It turns out that such matrix classes are spectrally invariant in B(ℓp(Λ)).
To offer a glimpse of this aspect, we formulate a very special case of our main result onmatrices which does not
require technical details.

Theorem 1.3. Let A = (akl)k,l∈ℤd be a matrix over the index set ℤd . Suppose that there exists a sequence
h ∈ ℓp0 (ℤd) for 0 < p0 ≤ 1 such that

|akl| ≤ h(k − l) for all k, l ∈ ℤd .

(i) Spectral invariance: If A is invertible on some ℓp(ℤd) for p ∈ [p0 ,∞], then A is invertible on all ℓq(ℤd) for
q ∈ [p0 ,∞].

(ii) Spectral stability: If, for some ℓp(ℤd) with p ∈ [p0 ,∞], A satisfies the stability condition

‖Ac‖p ≥ C‖c‖p for all c ∈ ℓp(ℤd),

then A satisfies ‖Ac‖q ≥ Cq‖c‖q for all c ∈ ℓq(ℤd) with q ∈ [p0 ,∞].

In our approach, we follow Sjöstrand ingenious proof of Wiener’s lemma for absolutely convergent Fourier
series [36] and built on the presentation in [23]. Our ultimate results on spectral invariance and stability (Theo-
rems 3.5 and 3.15) are a significant extension of the above preliminary statement and provide several new facts
of spectral invariance of infinite matrices:
(i) They yield both spectral stability and spectral invariance.
(ii) They are formulated with respect to arbitrary operator algebrasB(ℓp) (not justB(ℓ2) as is usually done).
(iii) They cover the general case of quasi-Banach algebras.
(iv) In addition, we treat arbitrary index sets and not justℤd or a discrete abelian group as in most references.

Technically, the study of quasi-Banach algebras of convolution-dominated matrices is the main part of our
paper; its application to pseudodifferential operators is then based on the analysis in [24]. Our proof contains
some new features and avoids the functional calculus associatedwith the pseudo-inverse. These argumentsmay
be useful in other contexts as well.

Related results. There are numerous results on the spectral invariance ofmatrices; wemention here [1, 3, 4, 29,
35–39] for a small sample, and [21] for a survey. As long as the index set is a discrete abelian group, one can use
methods from harmonic analysis to establish spectral invariance. This line of thought goes back to Bochner and
Philipps and is used in [3, 4, 8, 11] and many others. All these proofs break down, however, when unstructured
index sets are considered.

1 To focus on this new feature, we treat only unweighted modulation spaces and leave the weighted version to the reader.
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The extension of spectral invariance to quasi-Banach algebras of matrices and operators over ℤd is the
subject of the recent papers [8, 11]. While there is some thematic overlap, not all results are directly comparable.
On the one hand,we restrict our attention to unweighted ℓp-spaces, whereas [8, 11] includeweights. On the other
hand, these papers prove that invertibility of convolution-dominated matrices on the Hilbert space ℓ2 implies
invertibility on all ℓp for p > p0. Our results also provide the converse, namely that invertibility on some ℓp
implies invertibility on ℓ2.

The paper is organized as follows: In Section 2,we collect the relevant definitions about sequence spaces and
amalgam spaces. In Section 3, we treat the spectral invariance of convolution-dominatedmatrices.We treat both
the stability of such matrices on the quasi-Banach spaces ℓp , p < 1, and the spectral invariance of the algebra of
convolution-dominated matrices. The main results are Theorems 3.5 and 3.15. In Section 4, we first recapitulate
the definitions of modulation spaces and Gabor frames and various calculi of pseudodifferential operators, and
then prove ourmain theorems that are already stated in the introduction. For completeness, we have postponed
some easy and known proofs to the appendix.

2 Preliminaries

For the convenience of the reader, we now list the definitions of some function spaces and their properties
needed throughout this paper. We start with the sequence spaces.

2.1 Sequence space ℓp

For each 0 < p ≤∞ and each discrete set J, we recall that the set ℓp(J) consists of all complex-valued sequences a
such that

‖a‖p := (∑
j∈J
|aj|p)

1/p
, a = (aj)j∈J ,

is finite (with usual modifications for p =∞). Then ℓp(J) is a quasi-Banach space with quasi-norm ‖ ⋅ ‖p , which
is even a norm if p ≥ 1.

We recall the following properties for ℓp(J).

Lemma 2.1. Suppose that 0 < p ≤ 1, that J is a discrete set and that Λ is countable. Let a = (aj)j∈J ∈ ℓp(J) and
b, bλ ∈ ℓp(J), λ ∈ Λ. Then the following assertions hold:
(i) ‖a‖p1 ≤ ‖a‖

p
p or 

∑
j∈J
aj


p
≤∑
j∈J
|aj|p .

(ii) If ∑λ∈Λ‖bλ‖
p
p <∞, then ∑λ∈Λ bλ is uniquely defined as an element in ℓp(J), and


∑
λ∈Λ

bλ


p

p
≤ ∑
λ∈Λ
‖bλ‖

p
p .

(iii) If J = ℤd , then also ‖a ∗ b‖p ≤ ‖a‖p‖b‖p .

2.2 Wiener amalgam space

Let X = L∞(ℝd) or X = Cb(ℝd) := L∞(ℝd) ∩ C(ℝd), and letK ⊆ ℝd be convex and compactwith positive volume.
The Wiener amalgam spaceW(X, Lp0 ) for 0 < p0 ≤∞ consists of all f ∈ X such that

‖f‖K,W(X,Lp0 ) := ( ∫
ℝd

‖f‖p0L∞(x+K) dx)
1/p0
<∞.
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This is always a quasi-norm, and a norm, if p0 ≥ 1 (see, e.g., [27]). For p0 =∞, we have W(X, L∞) = X. By
compactness, it follows thatW(X, Lp0 ) is independent of the choice of K, and different K yield equivalent quasi-
norms. For convenience, we set

‖ ⋅ ‖W(X,Lp0 ) = ‖ ⋅ ‖B1(0),W(X,Lp0 ) .

Remark 2.2. We observe that every continuous function with compact support is contained in W(Cb , Lp) for
all p > 0 and thatW(Cb , Lp) is translation invariant (see, e.g., [9] and the references therein).

TheWiener amalgamspaceW(Cb , Lp0 ), 0 < p0 <∞, arises naturally in the formulation of sampling inequalities.
We first recall that a set Λ ⊆ ℝd is relatively separated if

rel(Λ) := sup{#(Λ ∩ B1(x)) : x ∈ ℝd} <∞. (2.1)

Lemma 2.3. Let 0 < p0 <∞, let Λ ⊆ ℝd be relatively separated and let H ∈ W(Cb , Lp0 ). Then (H(λ))λ∈Λ ∈ ℓp0 (Λ).

Lemma 2.3 follows by straight-forward estimates. In order to be self-contained, a proof of the result is given in
Section A.

3 Spectral invariance of convolution-dominated matrices

In this section, we prove a spectral invariance result for infinite dimensional convolution-dominated matrices.
For this we first list some needed auxiliary tools.

We always denote the conjugate exponent of p ∈ [1,∞] by p = p
p−1 , so that p

 ∈ [1,∞] and

1
p +

1
p = 1.

We identify a matrix A = (aλ,ρ)λ∈Λ,ρ∈Π indexed by Λ and Π with a linear operator

(Ab)λ := ∑
ρ∈Π

aλ,ρbρ for b = (bρ)ρ∈Π .

Then A is always well-defined on finite sequences and A maps finite sequences on Π to arbitrary sequences
on Λ. Some boundedness properties of matrices on ℓp-spaces are given by Schur’s test.

Proposition 3.1 (Schur test for p ≥ 1). Let 1 ≤ p ≤∞, let Λ and Π be countable sets and let

A = (aλ,ρ)λ∈Λ,ρ∈Π ∈ ℂΛ×Π

be a matrix satisfying
sup
ρ∈Π
∑
λ∈Λ
|aλ,ρ| ≤ K1 and sup

λ∈Λ
∑
ρ∈Π
|aλ,ρ| ≤ K2 . (3.1)

Then A is a bounded operator from ℓp(Π) to ℓp(Λ), and

‖A‖B(ℓp(Π),ℓp(Λ)) ≤ K
1/p
1 K1/p

2 .

For a proof of Proposition 3.1, see, e.g., [19, Lemma 6.1.2].
Because of (3.1), we let

‖A‖Schur = sup
ρ∈Π
∑
λ∈Λ
|aλ,ρ| + sup

λ∈Λ
∑
ρ∈Π
|aλ,ρ| (3.2)

for every A ∈ ℂΛ×Π .
The following quasi-Banach space version of the Schur test just follows by using the triangle inequality;

see [10, Lemma 6.1.7].

Proposition 3.2 (Schur test for p ≤ 1). Fix 0 < p ≤ 1. Let A = (aλ,ρ)λ∈Λ,ρ∈Π ∈ ℂΛ×Π be a matrix satisfying

‖A‖S−p := sup
ρ∈Π
∑
λ∈Λ
|aλ,ρ|p <∞. (3.3)
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Then A defines a bounded operator from ℓp(Π) to ℓp(Λ). The operator norm is bounded by ‖A‖1/pS−p . If 0 < q ≤ p ≤ 1,
then

‖A‖q/pS−p = (sup
ρ∈Π
∑
λ∈Λ
|aλ,ρ|p)

q/p
≤ sup

ρ∈Π
∑
λ∈Λ
|aλ,ρ|q = ‖A‖S−q . (3.4)

Our treatment of the spectral invariance of pseudodifferential operators relies on spectral invariance properties
of associated convolution-dominated matrices. Roughly speaking, a matrix A ∈ B(ℓ2(Λ)) is called convolution-
dominated if there exists a function H such that

|aλ,ρ| ≤ H(λ − ρ) for all λ ∈ Λ, ρ ∈ Π. (3.5)

The function H is then called an envelope of A. By specifying a norm on envelopes, we define a particular class
of convolution-dominated matrices as follows.

Definition 3.3. Let Λ, Π ⊆ ℝd be relatively separated and let 0 < p0 ≤ 1. The set Cp0 = Cp0 (Λ, Π) consists of all
convolution-dominated matrices A such that (3.5) holds for an envelope H ∈ W(Cb , Lp0 ). For A = (aλ,ρ)λ∈Λ,ρ∈Π ,
we set

‖A‖Cp0 = inf{‖H‖W(Cb ,Lp0 ) : |aλ,ρ| ≤ H(λ − ρ) for all λ ∈ Λ, ρ ∈ Π}.

We set Cp0 (Λ) = Cp0 (Λ, Λ). We observe that if Λ = Π ⊆ ℝd is a lattice, then the restriction of H ∈ W(Cb , Lp0 ) to
Λ belongs to ℓp0 (Λ) due to Lemma 2.3. In this case, A ∈ Cp0 (Λ) if and only if there is a sequence H ∈ ℓp0 (Λ) such
that |Aλ,ρ| ≤ H(λ − ρ) for all λ, ρ ∈ Λ.

We note that ‖A‖Cp0 is a quasi-norm for p0 < 1, and Cp0 is a quasi-Banach ∗-algebra (sometimes called
a p-algebra) with respect to addition and multiplication of matrices. For p0 = 1, C1 is a Banach ∗-algebra with
norm ‖ ⋅ ‖C1 .

For convolution-dominated operators in Definition 3.3, we state the following boundedness result. Here we
set q =∞ when q ≤ 1.

Proposition 3.4. Let 0 < p0 ≤ 1, let Λ and Π be as in Definition 3.3 and let A ∈ Cp0 (Λ, Π). Then A is bounded from
ℓq(Π) to ℓq(Λ) for every q ∈ [p0 ,∞], and

‖A‖B(ℓq(Π),ℓq(Λ)) ≤ C rel(Λ)1/q rel(Π)1/q

‖A‖Cp0 (Λ,Π) , (3.6)

where the constant C > 0 only depends on d.

The result follows by suitable combinations of Hölder’s and Young’s inequalities. In order to be self-contained,
we present a proof in Section A.

3.1 Invariance of the lower bound property on ℓp of convolution-dominated
matrices

Our main technical contribution is the so-called stability of convolution-dominated matrices. By this we mean
the invariance of the lower bound property of such matrices on ℓp .

Theorem 3.5. Let p0 ≤ 1, let q ∈ [p0 ,∞], let Λ, Π ⊆ ℝd be relatively separated, and let A ∈ Cp0 (Λ, Π). Assume that
there exist p ∈ [p0 ,∞] and C0 > 0 such that

‖Ac‖p ≥ C0‖c‖p , c ∈ ℓp(Π). (3.7)

Then there exists a constant C > 0, which is independent of q, such that

‖Ac‖q ≥ C‖c‖q for all c ∈ ℓq(Π). (3.8)

In other words, if A in Theorem 3.5 is bounded from below on some ℓp with p ≥ p0, then A is bounded from
below on ℓq for all q ∈ [p0 ,∞]. Note that (3.7) is equivalent to saying that A is one-to-one on ℓp(Λ) with closed
range in ℓp(Π). Thus if A is one-to-one with closed range for some p ∈ [p0 ,∞], then it is one-to-one with closed
range for all p ∈ [p0 ,∞].
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Note that, by (3.6), A in Theorem 3.5 is bounded from ℓp(Π) to ℓp(Λ) for all p ≥ p0, and hence estimates (3.7)
and (3.8) really make sense.

The proof of Theorem 3.5 is modelled on Sjöstrand’s treatment of Wiener’s lemma for convolution-
dominated matrices. It exploits the flexibility of Sjöstrand’s methods to transfer lower bounds for a matrix
from one value of p to all others.

Remark 3.6. The proof of the previous proposition for p0 = 1 can be found in [23, Proposition 8.1]. Hence we
can restrict ourselves to the case p0 < 1. The following cases have to be considered:
(i) From p ≥ 1 to q ≥ 1.
(ii) From p ≤ 1 to q < p.
(iii) From p ≥ 1 to q < 1.
(iv) From p < 1 to p < q.
Case (iii) is a consequence of cases (i) and (ii). If p ≥ 1, we can assume p = 1 on account of case (i). For p = 1, the
statement of case (iii) is included in case (ii).

We need some preparations for the proof. First, let φ ∈ C∞(ℝd)with 0 ≤ φ ≤ 1, and let supp(φ) ⊆ B2(0) be such
that {φ( ⋅ − k)}k∈ℤd is a partition of unity. Set φεk(x) := φ(εx − k), x, y ∈ ℝ

d . Then

{{{
{{{
{

∑
k∈ℤd

φεk = 1, |φ
ε
k(x) − φ

ε
k(y)| ≲ ε|x − y|, 0 ≤ φεk ≤ 1,

Φε := ∑
k∈ℤd
(φεk)

2 ≍ 1.
(3.9)

By combining these properties, we obtain

|φεk(x) − φ
ε
k(y)| ≲ min{1, ε|x − y|}, x, y ∈ ℝd . (3.10)

For k ∈ ℤd and ε > 0 let
φεkc := φ

ε
k
Π
⋅ c, c = (cρ)ρ∈Π ,

denote the multiplication operator φεk . This multiplication operator enables us to get equivalent norms for
sequence spaces.

Lemma 3.7. Let ε > 0 and let Λ ⊆ ℝ2d be relatively separated. Then, for 0 < q ≤∞, we get

( ∑
k∈ℤd
‖φεka‖

q
q)

1/q
≍ ‖a‖q , a ∈ ℓq(Π), (3.11)

with the usual modifications in case q =∞.

For 1 ≤ q ≤∞, Lemma 3.7 was already proved in [23], and the other cases are obtained by similar arguments.
For completeness, we present a proof for q < 1 in Section A.

Lemma 3.8. Let 0 < p0 ≤ 1, let p, q ∈ [p0 ,∞], let ε > 0, and let Λ ⊆ ℝ2d be relatively separated. Then

∑
k∈ℤd
‖φεka‖

q
p ≍ ‖a‖

q
q , a ∈ ℓq(Π), (3.12)

with the usual modifications in case p =∞ or q =∞. The constants in (3.12) are independent of p, q, but depend
on ε.

In the case p, q ≥ 1, the claim was already shown in [23].

Proof. Let p, q ∈ [p0 ,∞] be arbitrary. For fixed ε > 0, we get

N := sup
k∈ℤd

# supp(φεk
Π
) = sup

k∈ℤd
#{ρ ∈ Π : φεk(ρ) ̸= 0} <∞.

Since q ≥ p0, we have

‖φεka‖q ≤ ‖φ
ε
ka‖p0 ≤ N

1/p0‖φεka‖∞ ≤ N
1/p0‖φεka‖p , a ∈ ℓ∞(Π),
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and similarly
‖φεka‖p ≤ N

1/p0‖φεka‖q , a ∈ ℓ∞(Π).

As a consequence, we obtain, for q ̸=∞,

( ∑
k∈ℤd
‖φεka‖

q
p)

1/q
≍ ( ∑

k∈ℤd
‖φεka‖

q
q)

1/q
, a ∈ ℓq(Π). (3.13)

with constants depending only on the minimal index p0 and ε, but not on p and q.
An application of Lemma 3.7 on (3.13) yields the claim. The corresponding statement for q =∞ follows

similarly.

The technical part of the proof consists of precise estimates for the Schur-type norms

V ε,pj,k := ‖[A, φεk]φ
ε
j ‖S−p , 0 < p ≤ 1, j, k ∈ ℤd , (3.14)

and
V εj,k := ‖[A, φ

ε
k]φ

ε
j ‖Schur , j, k ∈ ℤd , (3.15)

of the commutator [A, φεk] = Aφ
ε
k − φ

ε
kA, when A ∈ C

p0 (Λ, Π) and φεk is considered as a multiplication operator.

Lemma 3.9. Let ε > 0, let p0 ∈ (0, 1], let p, q ∈ (p0 ,∞] be such that q ≤ p, let Λ, Π ⊂ ℝd be relatively separated,
and suppose that

A = (aλ,ρ)λ∈Λ,ρ∈Π ∈ Cp0 (Λ, Π).

Also, let V ε,pj,k and V εj,k be the Schur norms given by (3.14) and (3.15), respectively, and let K := maxx Φε(x)−min(1,p).
Assume that

‖c‖p ≤ ‖Ac‖p , c ∈ ℓp(Π).

Then the following assertions hold:
(i) If p ≤ 1, then

‖φεkc‖
q
p ≤ ‖φεkAc‖

q
p + Kq/p ∑

j∈ℤd
(V ε,pj,k )

q/p‖φεj c‖
q
p , c ∈ ℓp(Π). (3.16)

(ii) If p > 1, then
‖φεkc‖p ≤ ‖φ

ε
kAc‖p + K ∑

j∈ℤd
V εj,k‖φ

ε
j c‖p , c ∈ ℓp(Π). (3.17)

Proof. (i) We apply the triangle inequality for p ≤ 1 (Lemma 2.1 (ii)) and obtain

‖φεkc‖
p
p ≤ ‖Aφεkc‖

p
p

≤ ‖φεkAc‖
p
p + ‖[A, φεk]c‖

p
p

≤ ‖φεkAc‖
p
p + ∑

j∈ℤd
‖[A, φεk]φ

ε
j (Φ

ε)−1φεj c‖
p
p

≤ ‖φεkAc‖
p
p + K ∑

j∈ℤd
V ε,pj,k ‖φ

ε
j c‖

p
p .

Claim (i) now follows by raising this inequality to the power q/p ≤ 1 and applying Lemma 2.1 (i).
Assertion (ii) was proved in [23, (36)] with the same argument.

Next, we consider the matrix V ε with entries (V ε,pj,k )
q/p , j, k ∈ ℤd , in case p ≤ 1 and estimate its q/p-Schur norm

as ε → 0+. First, we prove the convergence of the entries of V ε .

Lemma 3.10. Suppose that the hypothesis of Lemma 3.9 hold true. Then, for ε → 0+,

sup
j,k∈ℤd

V ε,pj,k → 0 if p ≤ 1, and sup
j,k∈ℤd

V εj,k → 0 if p > 1. (3.18)

Proof. The case p ≥ 1 of (3.18) was proved in [23, (38)]. The necessary adaptions for the proof of the case p ≤ 1
are as follows. We first note that the matrix entries of [A, φεk]φ

ε
j , for j, k ∈ ℤ

d , are

([A, φεk]φ
ε
j )λ,ρ = −aλ,ρφ

ε
j (ρ)(φ

ε
k(λ) − φ

ε
k(ρ)), ρ ∈ Π, λ ∈ Λ.
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Using an envelope H ∈ W(Cb , Lp0 ) of A and estimate (3.10) for φεk , we bound the entries of the commutator by

([A, φ
ε
k]φ

ε
j )λ,ρ

p ≲ H(λ − ρ)pmin{1, ε|λ − ρ|}p .

Hence, if we define
Hε,p(x) := H(x)pmin{1, ε|x|}p ,

then, by the choice of H,
V ε,pj,k =
[A, φ

ε
k]φ

ε
j
S−p ≲ rel(Λ)

p/p0‖Hε,p‖W(Cb ,Lp0/p) .

Since H ∈ W(Cb , Lp0 ) and p0 ≤ p ≤ 1, it follows with dominated convergence that

‖Hε,p‖W(Cb ,Lp0/p) → 0 as ε → 0+ .

This proves (3.18) for the case p ≤ 1.

Next, we shall estimate V ε,pj,k in terms of

Δε,q(s) := ∑
t∈ℤd :|εt−s|∞≤5

sup
z∈[0,1]d+t

|H(z)|q , s ∈ ℤd . (3.19)

First, we have the following lemma.

Lemma 3.11. Let 0 < p0 ≤ q ≤ 1, let H ∈ W(Cb , Lp0 ) and let Δε,q(s) be given by (3.19). Then

∑
s∈ℤd ,|s|>6√d

Δε,q(s)→ 0 as ε → 0+ . (3.20)

Proof. Since H ∈ W(L∞ , Lp0 ), we obtain

∑
s∈ℤd ,|s|>6√d

Δε,q(s) ≤ ∑
s∈ℤd ,|s|∞>6

Δε,q(s) ≲ ∑
t∈ℤd ,|t|∞>1/ε

sup
z∈[0,1]d+t

|H(z)q|→ 0

as ε → 0+.

Lemma 3.12. Suppose that the hypotheses of Lemma 3.9 hold true with q ≤ 1 and ε ≤ 1, and let Δε,q(s) be given
by (3.19). Then, for |k − j| > 4, we have

(V ε,pj,k )
q/p ≤ sup

ρ∈Π
∑
λ∈Λ
|([A, φεk]φ

ε
j )λ,ρ|

q ≲ Δε,q(k − j) if p ≤ 1, (3.21)

(V εj,k)
q ≲ Δε,q(k − j) if p > 1. (3.22)

Proof. Suppose that |k − j| > 4. Since φ is supported in B2(0), it follows that φεj (ρ)φ
ε
k(ρ) = 0.

As a consequence, the matrix entries of [A, φεk]φ
ε
j simplify into

([A, φεk]φ
ε
j )λ,ρ = −aλ,ρφ

ε
j (ρ)φ

ε
k(λ), ρ ∈ Π, λ ∈ Λ.

This gives
|([A, φεk]φ

ε
j )λ,ρ|

q ≤ |H(λ − ρ)|qφεj (ρ)
qφεk(λ)

q .

Consequently, using (3.4) for |k − j| > 4 and q/p ≤ 1, we have

(V ε,pj,k )
q/p = [A, φ

ε
k]φ

ε
j

q/p
S−p ≤ sup

ρ∈Π
∑
λ∈Λ

([A, φ
ε
k]φ

ε
j )λ,ρ

q ≤ sup

ρ∈Π
∑
λ∈Λ
|H(λ − ρ)|qφεj (ρ)

qφεk(λ)
q .

If φεj (ρ)φ
ε
k(λ) ̸= 0, then |ερ − j| ≤ 2 and |ελ − k| ≤ 2, whence

|ε(λ − ρ) + (j − k)| ≤ 4. (3.23)

Hence,
sup
ρ∈Π
∑
λ∈Λ

([A, φ
ε
k]φ

ε
j )λ,ρ

q ≲ sup

ρ∈Π
∑
λ∈Λ

|ε(λ−ρ)+(j−k)|≤4

|H(ρ − λ)|q . (3.24)
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For fixed ε ≤ 1, we bound the sum in (3.24) by

∑
λ∈Λ:|ε(λ−ρ)+(j−k)|≤4

|H(ρ − λ)|q ≤ ∑
t∈ℤd

∑
λ∈Λ:|ε(λ−ρ)+(j−k)|≤4
(λ−ρ)∈[0,1]d+t

|H(ρ − λ)|q

≲ rel(ρ − Λ) ∑
t∈ℤd :|εt+(j−k)|∞≤5

sup
z∈[0,1]d+t

|H(z)|q

≲ Δε,q(k − j),

since rel(Λ) is translation-invariant. By substituting this bound in (3.24), we obtain (3.21). Analogously, we
obtain (3.22).

Lemma 3.13. Suppose that the hypotheses of Lemma 3.9 hold for p ≤ 1. Then

sup
k∈ℤd
∑
j∈ℤd
(V ε,pj,k )

q/p + sup
j∈ℤd
∑
k∈ℤd
(V ε,pj,k )

q/p → 0 as ε → 0+ . (3.25)

Proof. Let ε ≤ 1 and Δε,q be defined as in (3.19). Fix j ∈ ℤd and use Lemma 3.12 to estimate

∑
k:|k−j|>6√d

(V ε,pj,k )
q/p ≲ ∑

k:|k−j|>6√d

Δε,q(k − j).

For the sum over {k ∈ ℤd : |j − k| ≤ 6√d}, we use the bound

∑
k:|j−k|≤6√d

(V ε,pj,k )
q/p ≤ #{k : |j − k| ≤ 6√d} sup

s,t
(V ε,ps,t )q/p ≲ sup

s,t
(V ε,ps,t )q/p .

Hence,
∑
k∈ℤd
(V ε,pj,k )

q/p ≲ sup
s,t
(V ε,ps,t )q/p + ∑

|s|>6√d

Δε,q(s),

which tends to 0 uniformly in j as ε → 0+ by Lemmas 3.10 and 3.11. The convergence of the first term in (3.25)
follows in exactly the same way by interchanging the roles of j and k.

With the auxiliary results at hand, we now prove Theorem 3.5.

Proof of Theorem 3.5. As already mentioned, we restrict ourselves to the case p0 < 1; cf. Remark 3.6. Since

W(C0; Lp0 )(ℝd) ⊆ W(L∞; L1)(ℝd),

an application of [23, Proposition 8.1] provides the claim in the Banach space case p, q ≥ 1.

Case p ≤ 1 and q < p. We have q/p < 1. After multiplying A with a constant, we may assume that

‖c‖p ≤ ‖Ac‖p , c ∈ ℓp(Π),

since A is bounded from below on ℓp(Π) by assumption (3.7). By (3.16), we obtain

∑
k∈ℤd
‖φεkc‖

q
p ≤ ∑

k∈ℤd
‖φεkAc‖

q
p + Kq/p ∑

k∈ℤd
∑
j∈ℤd
(V ε,pj,k )

q/p‖φεj c‖
q
p , c ∈ ℓp(Π), (3.26)

for some K > 0. According to Lemma 3.13, we may choose ε > 0 such that

Kq/p sup
j∈ℤd
∑
k∈ℤd
(V ε,pj,k )

q/p <
1
2 .

Using this bound in (3.26) and Proposition 3.2, we obtain that

∑
k∈ℤd
‖φεkc‖

q
p ≤ ∑

k∈ℤd
‖φεkAc‖

q
p +

1
2 ∑k∈ℤd
‖φεkc‖

q
p .

Hence,

( ∑
k∈ℤd
‖φεkc‖

q
p)

1/q
≤ 21/q( ∑

k∈ℤd
‖φεkAc‖

q
p)

1/q
. (3.27)
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Using the equivalent norm of Lemma 3.8 in (3.27), we deduce that, for all p0 ≤ q < p,

‖c‖q ≲ ‖Ac‖q ,

with a constant independent of q (since 21/q ≤ 21/p0 ). This completes the proof of the case p0 ≤ q ≤ p.

Case p < 1 and p < q. Again we may assume that

‖c‖p ≤ ‖Ac‖p , c ∈ ℓp(Π).

According to Lemma 3.13, in case q = p we may choose ε > 0 such that

K sup
j∈ℤd
∑
k∈ℤd

V ε,pj,k <
1
2 and K sup

k∈ℤd
∑
j∈ℤd

V ε,pj,k <
1
2 . (3.28)

Due to Lemma 3.9, we have, for c ∈ ℓp(Π),

‖φεkc‖
p
p ≤ ‖φεkAc‖

p
p + K ∑

j∈ℤd
V ε,pj,k ‖φ

ε
j c‖

p
p .

We set aεk = ‖φ
ε
kc‖

p
p , bεk = ‖φ

ε
kAc‖

p
p and let V ε be the operator associated to the matrix V

ε,p
j,k . Then the previous

inequality can be written as
aεk ≤ b

ε
k + K(V

εaε)k .

We take the q/p−norm of the previous estimate, first applying the triangle inequality. Next, we apply Proposi-
tion 3.1, use (3.28) and get

‖aε‖q/p ≤ ‖bε‖q/p + K‖V εaε‖q/p ≤ ‖bε‖q/p +
1
2 ‖a

ε‖q/p .

In other words, we have ‖aε‖q/p ≤ 2‖bε‖q/p . Reversing the abbreviations, this means that

( ∑
k∈ℤd
‖φεkc‖

q
p)

1/q
= ‖aε‖1/pp ≤ 21/p‖bε‖

1/p
p = 21/p( ∑

k∈ℤd
‖φεkAc‖

q
p)

1/q
.

An application of the norm equivalence of Lemma 3.8 provides the claim

‖c‖q ≲ ‖Ac‖q .

This concludes the proof.

As observed in [23, Remark A.2], the lower bound guaranteed by Theorem 3.5 is uniform for all p.
Now, as an immediate consequence of Theorem 3.5, we get a first spectral invariance result of a matrix

A ∈ Cp0 (Λ, Π) by means of standard functional analytical arguments.

Corollary 3.14. Let p0 ∈ (0, 1], let Λ, Π ⊆ ℝd be relatively separated and suppose that A ∈ Cp0 (Λ, Π) is invertible
from ℓp(Π) to ℓp(Λ) for some p ∈ [p0 ,∞]. Then the following assertions hold:
(i) A is injective from ℓq(Π) to ℓq(Λ) for all q ∈ [p0 ,∞].
(ii) A is invertible from ℓq(Π) to ℓq(Λ) for all q ∈ [p,∞).

Proof. As already observed, A : ℓp(Π)→ ℓp(Λ) satisfies the stability condition ‖c‖p ≲ ‖Ac‖p if and only if A is
one-to-one on ℓp(Π) and has closed range in ℓp(Λ). Thus, if A is invertible on some ℓp(Π), then, by Theorem 3.5
A satisfies the stability condition (3.7) for all q ≥ p0. Consequently, A is one-to-one on all ℓq(Π) for q ≥ p0, which
is (i).

If q ≥ p, then ℓp(Λ) is dense in ℓq(Λ). Since A is onto ℓp(Λ), we obtain ℓp(Λ) = Aℓp(Π) ⊆ ℓq(Λ), and A has
also dense range in ℓq(Λ). Consequently, A is onto ℓq(Λ), and thus invertible on ℓq(Λ).

In the case, when A is invertible on the Hilbert space ℓ2, the above results are already contained in [33, Theo-
rem 4.6 and Theorem 8.5], in [8, Theorem 3.9] and in [11].

Note that Corollary 3.14 asserts only that the invertibility of A on ℓp implies the invertibility on the larger
space ℓq , q > p. To obtain the same conclusion for the smaller spaces ℓq , q < p, we need to refine our arguments.
Wewill show that the inverse ofA has an envelope belonging to the sameWiener amalgam space as the envelope
of A. The main idea of the proof of the following theorem is taken from [36].
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Theorem 3.15. Let 0 < p0 ≤ 1 and let Λ, Π ⊆ ℝd be relatively separated. Suppose that A ∈ Cp0 (Λ, Π) is invertible
from ℓp(Π) to ℓp(Λ) for some p ∈ [p0 ,∞]. Then A−1 ∈ Cp0 (Π, Λ).

Proof. By assumption, the matrix A = (aλ,ρ)λ∈Λ,ρ∈Π has an envelope H1 ∈ W(Cb , Lp0 ) so that |aλ,ρ| ≤ H1(λ − ρ).
We need to prove that thematrix A−1 also has an envelope H2 ∈ W(Cb , Lp0 ). For this we recall the notation used
in the previous lemmas: K = maxx Φε(x)−min(1,p) from Lemma 3.9, and

Ṽ ε =
{
{
{

((KV ε,pj,k )
p0/p)j,k∈ℤd , p ≤ 1,

((KV εj,k)
p0 )j,k∈ℤd , p > 1,

where V ε,pj,k and V εj,k are defined as in (3.14) and (3.15), respectively.
Given c ∈ ℓp(Π), the sequences a and aA are defined by

ak = ‖φεkc‖
p0
p and aA,k = ‖φεkAc‖

p0
p , k ∈ ℤd .

With this notation, Lemma 3.9 (and additionally Lemma 2.1 if p > 1) says that

a ≤ aA + Ṽ εa. (3.29)

Furthermore, Lemma 3.12 can be reformulated as saying that Ṽ ε is convolution-dominated. In fact, recall
from (3.19) that

Δε,p0 (s) := ∑
t∈ℤd :|εt−s|∞≤5

sup
z∈[0,1]d+t

|H1(z)|p0 ,

and define Ψε by Ψε(s) := Δε,p0 (s) for all s ∈ ℤd with |s| > 6√d, and for all s ∈ ℤd with |s| ≤ 6√d, by

Ψε(s) := ( sup
j,k∈ℤd
|V ε,pj,k |)

p0/p

if p ≤ 1, and by
Ψε(s) := ( sup

j,k∈ℤd
|V εj,k|)

p0

if p ≥ 1. In view of the normalization K, Ṽ ε possesses the envelope Kp0/min(1,p)Ψε . This means that

(V ε,pj,k )
p0/p ≲ Ψε(k − j), p ≤ 1, j, k ∈ ℤd , (3.30)

and
V εj,k ≲ Ψ

ε(k − j), p > 1, j, k ∈ ℤd . (3.31)

Our next goal is to represent (I − Ṽ ε)−1 as a Neumann series. For this we choose ε > 0 such that

‖Ṽ ε‖S−1 ≤ Kp0/min(1,p)‖Ψε‖1 ≤
1
2 . (3.32)

This is possible due to Lemma 3.11 and Lemma 3.10, since ♯{s ∈ ℤd : |s| ≤ 6√d} is finite and depends only
on the dimension d.

As a consequence, the geometric series W̃ := ∑∞k=1(Ṽ ε)k converges in the ‖ ⋅ ‖S−1-norm and we obtain

(I − Ṽ ε)−1 =
∞

∑
k=0
(Ṽ ε)k = I + W̃ .

Since all entries of Ṽ ε are non-negative by definition, W̃ also has only non-negative entries and preserves (point-
wise) inequalities. Moreover, since Ṽ ε is convolution-dominated, so is W̃ , and by (3.32) there exists an envelope
W ∈ ℓ1(ℤd) such that

W̃jk ≤ W(k − j), j, k ∈ ℤd .

Now, (3.29) yields
a = (I + W̃)(I − Ṽ ε)a ≤ (I + W̃)aA , (3.33)

or entrywise
‖φεkc‖

p0
p ≤ ‖φεkAc‖

p0
p + ∑

j∈ℤd
W(k − j)‖φεj Ac‖

p0
p . (3.34)
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Since A is assumed to be invertible as a map from ℓp(Π) to ℓp(Λ), there exist bλ ∈ ℓp(Π) such that Abλ = δλ ,
whence the matrix B with entries bρ,λ = (bλ)ρ is the inverse of A. Using bλ in (3.34), we obtain

‖φεkbλ‖
p0
p ≤ ‖φεkδλ‖

p0
p + ∑

j∈ℤd
W(k − j)‖φεj δλ‖

p0
p . (3.35)

Note that
‖φεkδλ‖

p0
p = ( ∑

ρ∈Λ
φ(ερ − k)pδλ(ρ))

p0/p
= φ(ελ − k)p0 .

Let λ ∈ Λ and ρ ∈ Π. For the off-diagonal decay, it suffices to consider only indices satisfying ε|λ − ρ| > 4. Choose
kρ ∈ ℤd such that

|ερ − kρ| < 2 and φ(ερ − kρ)p0 ≥ c

for some constant c (in fact, by (A.2) in the proof of Lemma 3.7, we have c = η−1). Then

|ελ − kρ| ≥ ε|λ − ρ| − |ερ − kρ| > 2,

and consequently φ(ελ − kρ) = 0 in (3.35) since supp(φ) ⊆ B2(0). Now, (3.35) simplifies to

c|(bλ)ρ|p0 ≤ ‖φεkρbλ‖
p0
p ≤ ∑

j∈ℤd
W(kρ − j)φ(ελ − j)p0 ≤ ∑

j:|j−ελ|<2
W(kρ − j). (3.36)

This inequality suggests the following envelope for B = A−1. Let

H(x) = ∑
l∈ℤd :|l−εx|<4

W(l). (3.37)

To obtain a continuous envelope, we use a cut-off function ψ ∈ C∞c (ℝd) satisfying 0 ≤ ψ ≤ 1 and ψ(x) = 1 for
|x| ≤ 4 and set

H̃(x) = ∑
l∈ℤd

W(l)ψ(εx − l).

Since ψ has compact support andW(Cb , ℓ1) is translation invariant, we have

‖H̃‖W(Cb ,ℓ1) ≤ ∑
l∈ℤd
|W(l)| sup

l∈ℤd
‖ψ(ε ⋅ −l)‖W(Cb ,ℓ1) ≲ ‖W‖ℓ1 ,

and therefore H̃ ∈ W(Cb , ℓ1).
Furthermore, since

|kρ − j − ε(λ − ρ)| ≤ |kρ − ερ| + |ελ − j| < 4,

equation (3.37) says that
|bρ,λ|p0 ≤ H(ρ − λ) ≤ H̃(ρ − λ) (3.38)

or
|bρ,λ| = |(bλ)ρ| ≤ H̃(ρ − λ)1/p0 ,

and H̃1/p0 ∈ W(Cb , Lp0 ), as claimed.

This theorem enables us to extend the spectral invariance result of Corollary 3.14 to the case p0 ≤ q ≤ p as
follows.

Theorem 3.16. Let p0 ∈ (0, 1], let Λ, Π ⊆ ℝd be relatively separated and let A ∈ Cp0 (Λ, Π) be invertible from ℓp(Π)
to ℓp(Λ) for some p ∈ [p0 ,∞]. Then A is invertible from ℓq(Π) to ℓq(Λ) for all q ∈ [p0 ,∞).

Proof. According to Corollary 3.14 (ii), A is invertible on ℓq for q ≥ p and A is one-to-one on all ℓq . So, it remains
to prove that A is surjective for p0 ≤ q < p. We assume that A is invertible on ℓp with inverse A−1. Hence for
u ∈ ℓq(Λ) ⊆ ℓp(Λ), there is some c ∈ ℓp(Π)with c = A−1u. By Theorem 3.15, A−1 is bounded on ℓq . Consequently,
since u ∈ ℓq , we have c = A−1u ∈ ℓq . Thus A is onto ℓq(Λ).

The following consequence explains why the statement of Theorem 3.16 is referred to as the spectral invariance
property.
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Corollary 3.17. Let 0 < p0 ≤ 1 be arbitrary. If A ∈ Cp0 (Λ) and A is invertible on ℓp(Λ) for some p ∈ [p0 ,∞], then
A−1 ∈ Cp0 (Λ) and

SpB(ℓq)(A) = SpCp0 (A) for all q ∈ [p0 ,∞),

where SpA(A) denotes the spectrum of A in the algebraA.

In the literature, many variations of this spectral invariance result exist. For an overview of those variations we
refer to [21]. Herewe just want tomention the following ones: In case p0 = 1 and p = q = 2 the previous theorem
also holds in the weighted case. It was proved by Baskakov, e.g., in [3, 4] and by Sjöstrand [36] in the unweighted
case.

4 Spectral invariance of pseudodifferential operators

The aim of this section is to transfer the results on the spectral invariance of matrices to pseudodifferential
operators on unweighted modulation spaces. In the proofs, we mainly follow [20, 24] and replace an arbitrary
spectrally invariant Banach algebra of matrices by the quasi-Banach algebra Cp0 .

First, we list all needed definitions and properties to reach that aim. We start with recalling the modulation
spaces.

4.1 Modulation spaces Mp,q

For the definition of the modulation spaces, we need the short-time Fourier transform, which we recall now.
Let g ∈ S(ℝd) \ {0}befixed. For every f ∈ S(ℝd), the short-time Fourier transform Vg f is the function onℝ2d

defined by the formula
Vg f(x, ξ) := ⟨f, g( ⋅ − x)e2πiξ ⋅⋅⟩. (4.1)

Here ⟨ ⋅ , ⋅ ⟩ is the unique extension of the L2 scalar product on S(ℝd) × S(ℝd) into S(ℝd) × S(ℝd). We observe
that if f ∈ Lp(ℝd) for some p ∈ [1,∞], then Vg f is given by (1.1). If g and f are both defined on ℝ2d , then Vg f is
a function on ℝ4d .

We recall that, for 0 < p, q ≤∞ and fixed g ∈ S(ℝd) \ {0}, the modulation space Mp,q(ℝd) consists of all
f ∈ S(ℝd) such that (1.2) is finite. If 1 ≤ p, q ≤∞, thenMp,q(ℝd) is a Banach space with norm ‖ ⋅ ‖Mp,q (see [14]).
Otherwise, Mp,q(ℝd) is a quasi-Banach space with quasi-norm ‖ ⋅ ‖Mp,q . We write Mp = Mp,p .

It is well known that the definition of Mp,q(ℝd) is independent of the choice of the window function
g ∈ S(ℝd) (see [19]). For p < 1 or q < 1, the proof of this fact can be found in [18]. Additionally, the Schwartz
space S(ℝd) is dense in Mp,q(ℝd) in the case p, q <∞; cf. [18, Remark 14].

Due to [31, Theorem 3.6] and [18, Theorem 3.4], the following continuous embeddings of modulation spaces
hold.

Proposition 4.1. Let 0 < p1 ≤ p2 ≤∞ and 0 < q1 ≤ q2 ≤∞. Then

S(ℝd) → Mp1 ,q1 (ℝd) → Mp2 ,q2 (ℝd) → S(ℝd).

4.2 Gabor frames

For the definition of Gabor frames, it is convenient to use time-frequency shifts π(z)f of f ∈ S(ℝd) given by

(π(z)f)(t) := e2πiξ⋅t f(t − x), z = (x, ξ) ∈ ℝ2d , t ∈ ℝd .

The Gabor system with respect to the (Gabor) atom g ∈ M1(ℝd) \ {0} and lattice Λ ⊆ ℝ2d is given by

G(g, Λ) = {π(λ)g : λ ∈ Λ}.
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Then the analysis operator and synthesis operator

Cg : M∞(ℝd)→ ℓ∞(Λ) and Dg : ℓ∞(Λ)→ M∞(ℝd),

respectively, with respect to g and Λ, are given by

Cg f = (⟨f, π(λ)g⟩)λ∈Λ and Dgc = ∑
λ∈Λ

cλπ(λ)g,

when f ∈ M∞(ℝd) and c = (cλ)λ∈Λ ∈ ℓ∞(Λ). Here the series converges in S(ℝd).
The (Gabor) frame operator

S = Sg1 ,g2 ,Λ : M∞(ℝd)→ M∞(ℝd), g1 , g2 ∈ M1(ℝd),

is defined by
Sg1 ,g2 ,Λ f := ∑

λ∈Λ
⟨f, π(λ)g1⟩π(λ)g2 . (4.2)

If g1 = g2 = g, we write Sg,Λ instead of Sg1 ,g2 ,Λ . It follows that Cg , Dg and Sg,Λ are well-defined and continu-
ous (see, e.g., [19, Chapters 11–14]). Let g ∈ S(ℝd) \ {0}. If Sg,Λ is bounded and invertible on L2(ℝd), then we
call G(g, Λ) Gabor frame. For rectangular lattices Λ = αℤd × βℤd , the existence of Gabor frames is well under-
stood; see [12, 19, 30, 44].

For every Gabor frame G(g, Λ) over a lattice, there exists a dual window γ = S−1g ∈ L2(ℝd) so that every f
can be expanded into a Gabor expansion

f = DgCγ f = ∑
λ∈Λ
⟨f, π(λ)γ⟩π(λ)g, (4.3)

f = DγCg f = ∑
λ∈Λ
⟨f, π(λ)g⟩π(λ)γ. (4.4)

For g ∈ S(ℝd), a fundamental result of Janssen [30] asserts that also γ ∈ S(ℝd). Then the expansion formulas
(4.3) and (4.4) hold for every f ∈ S(ℝd) with weak-∗-convergence.

A Gabor frame G(g, Λ) is called tight if Sg,Λ = C Id for some C > 0. In this case, γ = S−1g,Λg = C−1g, and the
Gabor expansion

f = C−1 ∑
λ∈Λ
⟨f, π(λ)γ⟩π(λ)g

looks like an orthonormal expansion.
Tight Gabor frameswith the constant C = 1 can be constructed as follows. LetG(g, Λ) be a Gabor framewith

frame operator Sg,Λ . Due to [20, Lemma 5.16], S−1/2g,Λ G(g, Λ) is a tight Gabor framewith constant C = 1. By applying
this procedure to a Gaussian window, one sees that there exist tight Gabor frames G(g, Λ) with g ∈ S(ℝd).

For future references, we remark that if p ∈ (0,∞] and f ∈ S(ℝd), then

f ∈ Mp(ℝd) ⇐⇒ Cg f ∈ ℓp(Λ) ⇐⇒ Cγ f ∈ ℓp(Λ), (4.5)

with norm equivalence ‖f‖Mp ≍ ‖Cg f‖ℓp ≍ ‖Cγ f‖ℓp ; see, e.g., [15].

4.3 Pseudodifferential operators

For a real-valued d × d-matrix A ∈ ℝd×d and a symbol a ∈ S(ℝ2d), the pseudodifferential operator OpA(a) is
defined by

OpA(a)u(x) =∬ a(x − A(x − y), ξ)f(y)e2πi(x−y)⋅ξ dy dξ, u ∈ S(ℝd),

where the integrals should be interpreted in distribution sense, if necessary. If A = 0, then OpA(a) agrees with
the Kohn–Nirenberg or normal representation a(x, D). If instead A = 1

2 I, where I is the d × d identity matrix,
then OpA(a) is the Weyl quantization aw of a.
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By [28, 43], for each symbol a1 ∈ S(ℝ2d) and each A1 , A2 ∈ ℝd×d , there is a unique a2 ∈ S(ℝ2d) such that
OpA1 (a1) = OpA2 (a2) and such that

OpA1 (a1) = OpA2 (a2) if and only if a2(x, ξ) = e2πit((A1−A2)Dξ )⋅Dxa1(x, ξ). (4.6)

We refer to [43] for the proof of the following result.

Proposition 4.2. Let A, A1 , A2 ∈ ℝd×d and p, q ∈ (0,∞]. Then the following assertions hold:
(i) e2πit(ADξ )⋅Dx is an isomorphism on Mp,q(ℝ2d).
(ii) OpA1 (Mp,q(ℝ2d)) = OpA2 (Mp,q(ℝ2d)).

We can write a Weyl operator by means of the Wigner distributionW of f, g ∈ L2(ℝd), which is defined by

W(f, g)(x, ξ) := ∫
ℝd

f (x + t2)g(x −
t
2)e

2πiξ⋅t dt, x, ξ ∈ ℝd . (4.7)

Denote the inversion ğ of g ∈ S(ℝd) by ğ(x) := g(−x) for all x ∈ ℝd . Then

W(f, g)(x, ξ) = 2de4πix⋅ξVğf(2x, 2ξ),

and the Wigner distribution is just a slight modification of the short-time Fourier transform. Since the short-
time Fourier transform satisfies V⋅ : S(ℝd) × S(ℝd)→ S(ℝ2d), we immediately get W(f, g) ∈ S(ℝ2d) for all
f, g ∈ S(ℝd).

By means of the Wigner distribution the Weyl operator of a symbol a ∈ S(ℝ2d) is given by the formula

⟨aw f, g⟩ = ⟨a,W(g, f)⟩ for all f, g ∈ S(ℝd).

Pseudodifferential operators of Weyl form are continuous maps from S(ℝd) to S(ℝd); see [28, 41]. Moreover,
they are continuous as maps between certain modulation spaces; cf. [19, 22].

Proposition 4.3. Let 0 < p0 ≤ 1, p, q ∈ [p0 ,∞] and a ∈ M∞,p0 (ℝ2d). Then aw is bounded on Mp,q(ℝd).

As proved in [42, Theorem 3.1], this theorem also holds for more general weighted modulation spaces.

Remark 4.4. Due to [41], it follows thatMp,q(ℝ2d) is invariant under actionswith chirps ei(ADξ )⋅Dx with A ∈ ℝd×d
for all p, q ∈ (0,∞]. Hence all results concerningWeyl operators of this paper also hold for operators of the form
OpA(a).

Next, we show that Gabor frame operators with windows inMp0 are pseudodifferential operators with symbols
in M∞,p0 .

Proposition 4.5. Let p0 ∈ (0, 1], let g1 , g2 ∈ Mp0 (ℝd), let A ∈ M(d × d;ℝ) be a d × d-matrix, let Λ ⊆ ℝ2d be a lat-
tice, and let a ∈ S (ℝ2d) be such that Sg1 ,g2 ,Λ = OpA(a). Then a ∈ M∞,p0 (ℝ2d).

Proof. In view of Remark 4.4, wemay assume that A = 0. TheWeyl symbol of Sg1 ,g2 ,Λ with g1 = g2was calculated
in [2, p. 12], and by similar arguments it follows that the Kohn–Nirenberg symbol is

a(x, ξ) = ∑
(l,λ)∈Λ

g1(x − l)ĝ2(ξ − λ)e2πi(x−l)⋅(λ−ξ) . (4.8)

In order to estimate the M∞,p0 -norm of a, we choose the window Ψ ∈ S(ℝ2d) \ {0} as

Ψ(x, ξ) := ψ(x)ψ̂(ξ)e−2πix⋅ξ .

By straightforward applications of the Fourier inversion formula, it follows that (see, e.g., [26])

(VΨa)(z, w) = ∑
l,λ∈Λ

e−2πi(y⋅ξ+l⋅η)(Vψg1)(x − l, ξ + η − λ) ⋅ (Vψg2)(x + y − l, ξ − λ), (4.9)

with z = (x, ξ) ∈ ℝd ×ℝd and w = (η, y) ∈ ℝd ×ℝd .
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Now, let Λ2 = Λ × Λ, and Λ4 = Λ2 × Λ2 and choose ε = 1
N with integer N ≥ 1 large enough such that

{ψ(x − m)e2πix⋅μ}m,μ∈εΛ and {Ψ(z − w1)e2πiz⋅w2}w1 ,w2∈εΛ2

are Gabor frames of L2(ℝd) and L2(ℝ2d), respectively. Then

‖gj‖Mp0 ≍ ‖Vψgj‖ℓp0 (εΛ2) and ‖a‖M∞,p0 ≍ ‖VΨa‖ℓ∞,p0 (εΛ4) ,

in view of a result in [18].
Let Fj = |Vψgj|. If w1 = (m, μ) ∈ εΛ2 and w2 = (ν, n) ∈ εΛ2, then (4.9) yields

|(VΨa)(w1 , w2)|p0 ≤ ∑
l,λ∈Λ

F1(m − l, μ + ν − λ)p0F2(m + n − l, μ − λ)p0

= (|F̌1|p0 ∗ |F2|p0 )(Tw2), Tw2 = (n, −ν).

The right-hand side does not depend on w1, and therefore

‖a‖M∞,p0 ≍ ‖VΨa‖ℓ∞,p0 (εΛ4)

≲ ‖F̌p01 ∗ F
p0
2 ‖

1/p0
ℓ1(εΛ2)

≤ (‖Fp01 ‖ℓ1(εΛ2)‖F
p0
2 ‖ℓ1(εΛ2))

1/p0

= ‖F1‖ℓp0 (εΛ2)‖F2‖ℓp0 (εΛ2)
≍ ‖g1‖Mp0 ‖g2‖Mp0 .

Thus a ∈ M∞,p0 .

4.4 Almost diagonalization of pseudodifferential operators

In this section, we list several characterizations of symbols inM∞,p0 (ℝ2d), p0 ∈ (0,∞]. The following character-
ization of a symbol class by means of the almost diagonalization of the associated pseudodifferential operator
was found in [20, Theorem 3.2] for p0 = 1, and subsequently generalized to the full range of p0 in [5, Theorem 3.2]
(with almost the same proof). This characterization helps to deduce spectral properties of pseudodifferential
operators from spectral properties of infinite matrices. We only formulate the unweighted case of [5, Theo-
rem 3.2], which is sufficient for this paper.

Theorem 4.6 (Almost diagonalization). We fix a non-zero g ∈ S(ℝd) \ {0} and a lattice Λ ⊆ ℝ2d such that G(g, Λ)
is a Gabor frame for L2(ℝd). Then, for any p0 ∈ (0,∞], the following properties are equivalent:
(i) a ∈ M∞,p0 (ℝ2d).
(ii) a ∈ S(ℝ2d) and there exists a function H ∈ Lp0 (ℝ2d), in fact H ∈ W(Cb , Lp0 ), such that

|⟨awπ(z)g, π(w)g⟩| ≤ H(w − z) for all w, z ∈ ℝ2d . (4.10)

(iii) a ∈ S(ℝ2d) and there exists a sequence h ∈ ℓp0 (Λ) such that

|⟨awπ(ρ)g, π(λ)g⟩| ≤ h(λ − ρ) for all λ, ρ ∈ Λ. (4.11)

As an immediate application, we obtain the following result.

Corollary 4.7. Under the hypotheses of Theorem 4.6, we assume that T : S(ℝd)→ S(ℝd) is continuous and sat-
isfies

|⟨Tπ(ρ)g, π(λ)g⟩| ≤ h(λ − ρ) for all λ, ρ ∈ ℤ2d ,

for some h ∈ ℓp0 (ℤ2d). Then T = aw for some a ∈ M∞,p0 (ℝ2d).

Proof. Because of the continuity of T : S(ℝd)→ S(ℝd), the Schwartz kernel theorem asserts the existence of
a symbol a ∈ S(ℝ2d) with T = aw . An application of Theorem 4.6 yields the claim.
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4.5 Matrix formulation

We fix a lattice Λ and a window g ∈ S(ℝd) \ {0} such that G(g, Λ) is a frame with dual window γ and associated
Gabor expansion (4.3) and (4.4).

For the manipulations to be meaningful, we assume of a symbol a ∈ S(ℝd) that the Weyl operator aw is
bounded on Mp(ℝd) for some p ∈ (0,∞]. Just keep in mind that, due to Proposition 4.1, Mp(ℝd) ⊆ M∞(ℝd).
On account of the Gabor expansion (4.3), we have DgCγ f = f for all f ∈ Mp(ℝd) ⊆ M∞(ℝd). Together with the
continuity of aw on Mp(ℝd), we obtain, for all f ∈ Mp(ℝd),

Cg(aw f)(λ) = ⟨aw f, π(λ)g⟩ = ∑
μ∈Λ
⟨f, π(μ)γ⟩⟨awπ(μ)g, π(λ)g⟩ for all λ ∈ Λ. (4.12)

We define the matrix M(a) of aw with respect to the frame G(g, Λ) by its entries

M(a)λ,μ = ⟨awπ(μ)g, π(λ)g⟩ for all λ, μ ∈ Λ.

We can then recast (4.12) as
Cg(aw f) = M(a)Cγ f. (4.13)

Likewise, Theorem 4.6 now reads as follows.

Corollary 4.8. Let a ∈ S(ℝ2d). Then a ∈ M∞,p0 (ℝ2d) if and only if M(a) ∈ Cp0 .

The matrix P associated to the identity operator has the entries

Pλ,μ = ⟨π(μ)g, π(λ)g⟩ for all λ, μ ∈ Λ. (4.14)

To simplify the analysis of P, we assume from now on that G(g, Λ) is a tight frame with Sg,Λ = I. As mentioned
already, tight frames with a window in S(ℝd) always exist. The matrix P has the following properties.

Lemma 4.9. Assume that G(g, Λ) is a tight frame with g ∈ S(ℝd). Let 0 < p0 ≤ p ≤∞ and let a ∈ S(ℝ2d) be such
that the associated pseudodifferential operator aw is bounded on Mp .
(i) P is a projection from ℓp(Λ) to the range Cg(Mp), i.e., Pc = c ∈ ℓp(Λ), if and only if there exists f ∈ Mp such

that cλ = ⟨f, π(λ)g⟩ = (Cg f)λ for λ ∈ Λ.
(ii) PM(a) = M(a) and M(a)P = M(a).
(iii) P ∈ Cp(Λ).
(iv) For a ∈ M∞,p0 (ℝ2d), we have M(a) + I − P ∈ Cp0 (Λ).

Proof. (i) For all λ, ν ∈ Λ, the assumption that Sg,Λ = Id and (4.2) imply that

(P2)λ,ν = ⟨ ∑
μ∈Λ
⟨π(ν)g, π(μ)g⟩π(μ)g, π(λ)g⟩

= ⟨Sg,Λπ(ν)g, π(λ)g⟩
= ⟨π(ν)g, π(λ)g⟩
= Pλ,ν .

Consequently, P2 = P and P is a projection. Next, let c ∈ ℓp(Λ)with Pc = c. With f = ∑μ∈Λ cμπ(μ)g, we have, for
λ ∈ Λ,

cλ = (Pc)λ = ∑
μ∈Λ
⟨π(μ)g, π(λ)g⟩cμ = ⟨f, π(λ)g⟩ = (Cg f)λ ,

whence c = Cg f . Then the norm-equivalence (4.5) yields f ∈ Mp(ℝd).
Conversely, assume that c = Cg f for some f ∈ Mp(ℝd). Then, due to (4.3), we get

(Pc)λ = ⟨ ∑
μ∈Λ
⟨f, π(μ)g⟩π(μ)g, π(λ)g⟩ = ⟨Sg,Λ f, π(λ)g⟩ = ⟨f, π(λ)g⟩ = cλ , λ ∈ Λ,

and (i) holds.



K. Gröchenig et al., Spectral invariance of quasi-Banach algebras of matrices and PDOs  1219

(ii) This is proved similarly by straightforward calculations using (4.2).
(iii) If g ∈ S(ℝd), then also Vgg ∈ S(ℝ2d), e.g., by [19, Theorem 11.2.5]. In particular, this implies that, for

every N ≥ 0,
|Vgg(z)| ≲ (1 + |z|)−N ,

and thus
|Pλ,μ| = |⟨π(μ)g, π(λ)g⟩| = |Vgg(λ − μ)| ≲ (1 + |λ − μ|)−N .

By choosing N large enough, we see that H(z) = (1 + |z|)−N is inW(Cb , Lp0 ), and consequently P ∈ Cp0 (Λ).
(iv) Since all matrices P, I and M(a) are in Cp0 , their sum M(a) + Id+P is also in Cp0 .

4.6 Spectral invariance

We have already seen before that it is possible to relate a pseudodifferential operator aw to an infinite
matrix M(a). It turns out that there is a connection between the invertibility of aw and M(a).

Lemma 4.10. Assume thatG(g, Λ) is a tight framewith g ∈ S(ℝd). Let 0 < p ≤∞ and a ∈ S(ℝ2d) be such that the
associatedWeyl operator aw is bounded onMp . Then aw is invertible onMp if and only if the following assertions
hold:
(i) ‖M(a)Pc‖p ≳ ‖Pc‖p for all c ∈ ℓp(Λ).
(ii) For every c0 ∈ Pℓp(Λ), there is a c ∈ Pℓp(Λ) such that M(a)Pc = Pc0.
Here the projection P is defined as in (4.14).

Proof. Let aw be invertible on Mp(ℝd). Using (4.13), we obtain

‖M(a)Cg f‖p = ‖Cg(aw f)‖p ≍ ‖aw f‖Mp ≳ ‖f‖Mp ≍ ‖Cg f‖p ,

which is (i).
To prove (ii), let c0 ∈ Pℓp(Λ) be arbitrary. Then there exists h ∈ Mp(ℝd)with Cgh = c0 = Pc0 by Lemma 4.9.

Since aw is bijective on Mp(ℝd), there is a f ∈ Mp(ℝd) such that

aw f = h.

Then we obtain for c = Cg f , due to Lemma 4.9, that Pc = c and that

M(a)Pc = M(a)c = M(a)Cg f = Cg(aw f) = Cgh = c0 = Pc0 .

This implies (ii).
Conversely assume that (i) and (ii) hold. Using (4.13) (with γ = g) and (i), we obtain, for all f ∈ Mp(ℝd),

‖aw f‖Mp ≍ ‖Cg(aw f)‖p = ‖M(a)Cg f‖p ≳ ‖Cg f‖p ≍ ‖f‖Mp .

Hence aw is one-to-one on Mp(ℝd). To prove that aw is surjective, we choose an arbitrary h ∈ Mp(ℝd) and let
c0 := Cgh ∈ ℓp(Λ). Then c0 = Pc0 ∈ Pℓp(Λ).

By assumption (ii), there is a c ∈ Pℓp(Λ) such that

M(a)Pc = Pc0 = c0 = Cgh. (4.15)

Since the image of P is Cg(Mp), there is a f ∈ Mp(ℝd) with

Pc = Cg f.

A combination of (4.3), (4.13) and (4.15) yields

aw f = DgCg(aw f) = DgM(a)Pc = DgCgh = h.

This implies that aw maps onto Mp(ℝd), and is hence invertible on Mp(ℝd).
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In the previous lemma, we proved the equivalence of the invertibility of aw on Mp(ℝd) and of M(a) on Pℓp(Λ).
Since ker P ̸= {0} and M(a) = M(a)P, M(a) cannot be invertible on the whole space ℓp(Λ). In the literature, this
problem is usually overcome by using the pseudo-inverse ofM(a) and holomorphic functional calculus. Herewe
use a new trick, which may be of independent interest. Consider the matrix A = M(a) + Id−P. We can then use
the spectral invariance result for infinite convolution-dominated matrices of Theorem 3.16 to derive a spectral
invariance result for pseudodifferential operators on modulation spaces.

Theorem 4.11 (Spectral invariance on modulation spaces). If a ∈ M∞,p0 (ℝ2d) for p0 ∈ (0, 1] and aw is invertible
on Mp(ℝd) for some p ∈ [p0 ,∞], then aw is also invertible on Mq(ℝd) for all q ∈ [p0 ,∞).

Proof. Let p ∈ [p0 ,∞] be the index for which aw is invertible on Mp(ℝd) and let A = M(a) + Id−P, where P is
the projection defined in (4.14). First, we check the assumptions of Theorem 3.16 and prove that

A = M(a) + I − P is invertible on ℓp(Λ). (4.16)

Assume that Ac = 0 for some c ∈ ℓp(Λ). Then by Lemma 4.9 (i) and (ii),

0 = Ac = (M(a) + I − P)(Pc + (I − P)c) = M(a)Pc + (I − P)c.

If we apply P (resp. I − P) to the previous equality and use Lemma 4.9 again, we obtain

M(a)Pc = 0 and (I − P)c = 0.

Since aw is invertible on Mp , we obtain, by Lemma 4.10 and the previous estimate,

‖Pc‖p ≲ ‖M(a)Pc‖p = 0,

and consequently Pc = 0. Hence c = Pc + (I − P)c = 0, which shows that A is one-to-one.
To show the surjectivity of A, we let c0 ∈ ℓp(Λ) be arbitrary. Since aw is invertible onMp , Lemma 4.10 yields

the existence of c ∈ Pℓp(Λ) with
M(a)Pc = Pc0 . (4.17)

Then c̃ = Pc + (I − P)c0 ∈ ℓp(Λ) and, by Lemma 4.9 and (4.17),

Ac̃ = M(a)c̃ + (I − P)c̃ = M(a)Pc + (I − P)c0 = Pc0 + (I − P)c0 = c0 .

Thus A is onto on ℓp(Λ), and therefore invertible on ℓp(Λ). Due to Lemma 4.9, we have A ∈ Cp0 (Λ). Since (4.16)
also holds, we can apply Theorem 3.16 and get the invertibility of A on ℓq(Λ) for all q ∈ [p0 ,∞).

Next, we show that
M(a) is invertible on Pℓq(Λ) for all q ∈ [p0 ,∞). (4.18)

Let q ∈ [p0 ,∞) be arbitrary. Since I − P ≡ 0 on Pℓq(Λ), the injectivity of A implies that M(a) is one-to-one
on Pℓq(Λ). For an arbitrary c0 ∈ Pℓq(Λ) ⊆ ℓq(Λ), there is some c ∈ ℓq(Λ) with Ac = c0, since A is onto on ℓq(Λ).
Since (I − P)M(a) = 0 by Lemma 4.9, we obtain, after applying I − P to Ac = c0, that

0 = (I − P)c0 = (I − P)Ac = (I − P)c.

Then c ∈ Pℓq(Λ) and
M(a)c = M(a)c + (I − P)c = Ac = c0 .

Hence M(a) is onto Pℓq(Λ) and (4.18) holds. By Lemma 4.10, a is invertible on Mq .

Theorem 4.11 implies Theorem 1.2 of Section 1.
We now prove Theorem 1.1 and obtain more refined information about the inverse (aw)−1.

Proof of Theorem 1.1. By Theorem 4.11, we get the invertibility of aw on M2(ℝd) = L2(ℝd). By [20, Theorem 4.6]
and the embedding M∞,p0 (ℝ2d) ⊆ M∞,1(ℝ2d), there is a symbol b ∈ M∞,1(ℝ2d) with bw = (aw)−1. We consider
the associated matrices M(a) and M(b) with respect to a tight Gabor frame G(g, Λ) with g ∈ S(ℝd) and again
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denote by P the projectionwith entries Pλ,μ = ⟨π(μ)g, π(λ)g⟩. On account of Lemma 4.9, we get for all c ∈ ran Cg
the existence of an f ∈ M2(ℝd) with c = Cg f = Pc. Then, for all c = Cg f = Pc ∈ ran Cg , using (4.13), we obtain

M(b)M(a)c = M(b)M(a)Cg f = M(b)Cg(aw f) = Cg(bwaw f) = Cg f = c.

If Pc = 0, then M(a)c = M(a)Pc = 0, and consequently on ℓ2(Λ) we have

M(b)M(a) = P.

It follows that
(M(b) + Id−P)(M(a) + Id−P) = (M(b) + Id−P)A = Id.

This means that B = M(b) + Id−P is the inverse of the invertible matrix A (since the inverse is unique). Since
A ∈ Cp0 by Lemma 4.9, Theorem 3.15 implies that also B ∈ Cp0 .

Consequently, we have M(b) ∈ Cp0 . Now, the characterization of Corollary 4.8 implies that b ∈ M∞,p0 (ℝ2d),
as claimed.

By using Theorem 1.1, we can now deduce the invertibility of aw on more general modulation spaces, which
generalizes Theorem 1.2.

Theorem 4.12 (Spectral invariance on modulation spaces). If a ∈ M∞,p0 (ℝ2d) for p0 ∈ (0, 1] and aw is invertible on
Mp(ℝd) for some p ∈ [p0 ,∞], then aw is also invertible on Mr,q(ℝd) for all r, q ∈ [p0 ,∞).

Proof. On account of Theorem 1.1, there is a b ∈ M∞,p0 (ℝ2d) with bw = (aw)−1 on Mp(ℝd). By Proposition 4.3,
bw is bounded on Mp,q(ℝd). Since bwaw = awbw = I on S(ℝd) ⊆ Mp(ℝd), we obtain the invertibility of aw on
Mp,q(ℝd) by the density of S(ℝd) in Mp,q(ℝd).

This theorem is an extension of [20, Corollary 4.7] from the case p0 = 1 to p0 < 1. By using the arguments of [24],
one can formulate the corollary for an even more general class of modulation spaces.

Remark 4.13. Let A ∈ ℝd×d . Proposition 4.2 implies that the conclusions in Theorems 1.1, 1.2 and 4.12 remain
true with OpA(a) and OpA(b) in place of aw and bw , respectively, at each occurrence.

As an application of Theorem 4.12, we show the following property of the canonical dual window of an Gabor
frame.

Theorem 4.14. Let 0 < p ≤ 1, let Λ ⊆ ℝ2d be a lattice and let g ∈ Mp(ℝd) be such that G(g, Λ) is a Gabor frame
for L2(ℝd). Then the canonical dual window γ satisfies

γ = S−1g,Λg ∈ M
p(ℝd). (4.19)

Proof. We denote the Kohn–Nirenberg symbol of the frame operator Sg,Λ by a. By Proposition 4.5, we have

a ∈ M∞,p(ℝ2d).

Since Theorem 4.12 also holds for pseudodifferential operators in the Kohn–Nirenberg quantization, Sg,Λ is
invertible on Mp(ℝd). Therefore, (4.19) holds.

A Proofs of some preparatory results

In this appendix, we prove some preparatory results from Sections 2 and 3.

Proof of Lemma 2.3. Let α > 0 be chosen such that [0, α]d ⊆ B1/2(0) and (B1/2(αk))k∈ℤd covers ℝd . Then

‖H‖p0ℓp0 (Λ) ≤ ∑
k∈ℤd
∑

Λ∩B1/2(αk)
|H(λ)|p0 ≲ ∑

k∈ℤd
rel(Λ) ∫

[0,α]d

sup
λ∈B1/2(αk)

|H(λ)|p0 dy.

Since B1/2(αk) ⊆ B1(αk + y) for each y ∈ [0, α]d , the integral just becomes larger if we take the supremum over
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all λ ∈ B1(αk + y) instead of λ ∈ B1/2(αk). A substitution then provides

‖H‖p0ℓp0 (Λ) ≲ ∑
k∈ℤd

rel(Λ) ∫
[0,α]d+αk

sup
λ∈B1(x)
|H(λ)|p0 dx = rel(Λ)‖H‖p0W(Cb ,Lp0 ) .

This concludes the proof.

Proof of Proposition 3.4. For ρ0 ∈ Π and λ0 ∈ Λ fixed, let

sΛ,p0 (ρ0)p0 := ∑
λ∈Λ

H(λ − ρ0)p0 and sΠ,p0 (λ0)p0 := ∑
ρ∈Π

H(λ0 − ρ)p0 .

Then it follows by straightforward estimates that

sΛ,p0 (ρ) ≤ CΛ‖H‖W(Cb ,Lp0 ) , sΠ,p0 (λ) ≤ CΠ‖H‖W(Cb ,Lp0 ) , λ ∈ Λ, ρ ∈ Π,

where CΛ = C0 rel(Λ)1/p0 for some constant C0 > 0 which only depends on d.
Suppose q ≥ 1. Then Hölder’s inequality together with the fact that sΛ,p0 and sΠ,p0 decrease with p0 gives

‖Ab‖qℓq(Λ) ≤ ∑
λ∈Λ
( ∑
ρ∈Π
(H(λ − ρ)1/q|bρ|)H(λ − ρ)1/q


)
q

≤ ∑
λ∈Λ
( ∑
ρ∈Π

H(λ − ρ)|bρ|q)( ∑
ρ∈Π

H(λ − ρ))
q/q

= ∑
λ∈Λ
( ∑
ρ∈Π

H(λ − ρ)|bρ|q)sΠ,1(λ)q/q


≤ (CΠ‖H‖W(Cb ,Lp0 ))q/q

∑
ρ∈Π
( ∑
λ∈Λ

H(λ − ρ))|bρ|q

= (CΠ‖H‖W(Cb ,Lp0 ))q/q

∑
ρ∈Π

sΛ,1(ρ)|bρ|q

≤ Cq/q


Π ‖H‖
q
W(Cb ,Lp0 )CΛ‖b‖

q
ℓq(Π) ,

giving the assertion when q ≥ 1.
If instead p0 ≤ q ≤ 1, then

‖Ab‖qℓq(Λ) ≤ ∑
λ∈Λ
( ∑
ρ∈Π

H(λ − ρ)|bρ|)
q

≤ ∑
ρ∈Π
( ∑
λ∈Λ

H(λ − ρ)q)|bρ|q

≤ ∑
ρ∈Π

sΛ,q(ρ)q|bρ|q

≤ CqΛ‖H‖
q
W(Cb ,Lp0 ) ∑

ρ∈Π
|bρ|q

= (CΛ‖H‖W(Cb ,Lp0 )‖b‖ℓq(Π))q ,
giving the result for q ≤ 1.

Proof of Lemma 3.7 for q < 1. Since supp(φ) ⊆ B2(0), we get

η := sup
ε>0

sup
x∈ℝd

#{k ∈ ℤd : φεk(x) ̸= 0} = sup
ε>0

sup
x∈ℝd

#{k ∈ ℤd ∩ B2(εx)} <∞. (A.1)

So, we obtain the following bound for all x ∈ ℝd:

1 ≤ ∑
k∈ℤd

φεk(x)
q = ∑

k∈ℤd :φεk(x) ̸=0
φεk(x)

q ≤ η sup
k∈ℤd

φεk(x)
q ≤ η.

Therefore, for all x ∈ ℝd ,
1
η ≤ supk∈ℤd

φεk(x)
q ≤ ∑

k∈ℤd
φεk(x)

q ≤ η. (A.2)
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If a ∈ ℓq(Π), then
1
η ∑ρ∈Π
|aρ|q ≤ ∑

ρ∈Π
∑
k∈ℤd

φεk(ρ)
q|aρ|q ≤ η ∑

ρ∈Π
|aρ|q ,

which implies the claim with constants independent of ε and q.

References
[1] A. Aldroubi, A. Baskakov and I. Krishtal, Slanted matrices, Banach frames, and sampling, J. Funct. Anal. 255 (2008), no. 7, 1667–1691.
[2] G. Ascensi, H. G. Feichtinger and N. Kaiblinger, Dilation of the Weyl symbol and Balian–Low theorem, Trans. Amer. Math. Soc. 366

(2014), no. 7, 3865–3880.
[3] A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen. 24 (1990),

no. 3, 64–65.
[4] A. G. Baskakov, Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis, Sibirsk. Mat. Zh. 38

(1997), no. 1, 14–28.
[5] F. Bastianoni and E. Cordero, Characterization of smooth symbol classes by Gabor matrix decay, J. Fourier Anal. Appl. 28 (2022), no. 1,

Paper No. 3.
[6] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), no. 1, 45–57.
[7] A. Bényi and K. A. Okoudjou, Modulation Spaces—with Applications to Pseudodifferential Operators and Nonlinear Schrödinger

Equations, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2020.
[8] E. Cordero and G. Giacchi, Quasi-Banach algebras and Wiener properties for pseudodifferential and generalized metaplectic

operators, J. Pseudo-Differ. Oper. Appl. 14 (2023), no. 1, Paper No. 9.
[9] E. Cordero and F. Nicola, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80 (2009),

no. 1, 105–116.
[10] E. Cordero and L. Rodino, Time-Frequency Analysis of Operators, De Gruyter Stud. Math. 75, De Gruyter, Berlin, 2020.
[11] P. A. Dabhi and K. B. Solanki, Vector valued Beurling algebra analogues of Wiener’s Theorem, preprint (2022),

https://arxiv.org/abs/2210.04444.
[12] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5,

961–1005.
[13] R. A. DeVore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1996), no. 2–3, 173–187.
[14] H. G. Feichtinger, Modulation spaces on locally compact abelian groups, in: Proceedings of International Conference on Wavelets and

Applications 2002, Allied Publishers, New Delhi (2003), 109–140.
[15] H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2,

99–140.
[16] C. Fernández, A. Galbis and J. Toft, Spectral properties for matrix algebras, J. Fourier Anal. Appl. 20 (2014), no. 2, 362–383.
[17] Y. V. Galperin and K. Gröchenig, Uncertainty principles as embeddings of modulation spaces, J. Math. Anal. Appl. 274 (2002), no. 1,

181–202.
[18] Y. V. Galperin and S. Samarah, Time-frequency analysis on modulation spaces Mp,q

m , 0 < p, q ≤∞, Appl. Comput. Harmon. Anal. 16
(2004), no. 1, 1–18.

[19] K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001.
[20] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724.
[21] K. Gröchenig, Wiener’s lemma: Theme and variations. An introduction tospectral invariance and its applications, in: Four Short

Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, Birkhäuser,
Boston (2010), 175–234.

[22] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), no. 4,
439–457.

[23] K. Gröchenig, J. Ortega-Cerdà and J. L. Romero, Deformation of Gabor systems, Adv. Math. 277 (2015), 388–425.
[24] K. Gröchenig and Z. Rzeszotnik, Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier

(Grenoble) 58 (2008), no. 7, 2279–2314.
[25] K. Gröchenig and S. Samarah, Nonlinear approximation with local Fourier bases, Constr. Approx. 16 (2000), no. 3, 317–331.
[26] K. Gröchenig and T. Strohmer, Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class, J. Reine

Angew. Math. 613 (2007), 121–146.
[27] C. Heil, An introduction to weighted Wiener amalgams, in:Wavelets and Their Applications, Allied Publishers, New Delhi (2003),

183–216.
[28] L. Hörmander, The Aalysis of Linear Partial Differential Operators. I–III, Grundlehren Math. Wiss. 274, Springer, Berlin, 1983–1985.
[29] S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré C Anal. Non

Linéaire 7 (1990), no. 5, 461–476.
[30] A. J. E. M. Janssen, Duality and biorthogonality for Weyl–Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), no. 4, 403–436.

https://arxiv.org/abs/2210.04444


1224  K. Gröchenig et al., Spectral invariance of quasi-Banach algebras of matrices and PDOs

[31] M. Kobayashi, Modulation spaces Mp,q for 0 < p, q ≤∞, J. Funct. Spaces Appl. 4 (2006), no. 3, 329–341.
[32] H.-G. Leopold and H. Triebel, Spectral invariance for pseudodifferential operators on weighted function spaces, Manuscripta Math.

83 (1994), no. 3–4, 315–325.
[33] N. Motee and Q. Sun, Sparsity and spatial localization measures for spatially distributed systems, SIAM J. Control Optim. 55 (2017),

no. 1, 200–235.
[34] E. Schrohe, Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted Lp-Sobolev

spaces, Integral Equations Operator Theory 13 (1990), no. 2, 271–284.
[35] C. E. Shin, Wiener’s lemma for infinite matrices of Gohberg–Baskakov–Sjöstrand class, Bull. Korean Math. Soc. 53 (2016), no. 2,

541–550.
[36] J. Sjöstrand, Wiener type algebras of pseudodifferential operators, in: Séminaire sur les Équations aux Dérivées Partielles 1994–1995,

École Polytechnique, Palaiseau (1995), Exp. No. 4.
[37] Q. Sun, Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. R. Math. Acad. Sci. Paris 340 (2005), no. 8,

567–570.
[38] Q. Sun, Wiener’s lemma for infinite matrices, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3099–3123.
[39] Q. Sun, Wiener’s lemma for infinite matrices II, Constr. Approx. 34 (2011), no. 2, 209–235.
[40] N. Teofanov, Modulation spaces, Gelfand–Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process. 5

(2006), no. 2, 225–242.
[41] J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Global Anal. Geom. 26

(2004), no. 1, 73–106.
[42] J. Toft, Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes,

Anal. Appl. (Singap.) 15 (2017), no. 3, 353–389.
[43] J. Toft, Matrix parameterized pseudo-differential calculi on modulation spaces, in: Generalized Functions and Fourier Analysis, Oper.

Theory Adv. Appl. 260, Birkhäuser/Springer, Cham (2017), 215–235.
[44] D. F. Walnut, Lattice size estimates for Gabor decompositions, Monatsh. Math. 115 (1993), no. 3, 245–256.


	Spectral invariance of quasi-Banach algebras of matrices and pseudodifferential operators
	1 Introduction
	2 Preliminaries
	2.1 Sequence space $\ell^p$
	2.2 Wiener amalgam space

	3 Spectral invariance of convolution-dominated matrices
	3.1 Invariance of the lower bound property on $\ell^p$ of convolution-dominated matrices

	4 Spectral invariance of pseudodifferential operators
	4.1 Modulation spaces $M^{p,q}$
	4.2 Gabor frames
	4.3 Pseudodifferential operators
	4.4 Almost diagonalization of pseudodifferential operators
	4.5 Matrix formulation
	4.6 Spectral invariance

	A Proofs of some preparatory results


