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Abstract

Local minimizers of integral functionals of the calculus of variations are analyzed under growth con-
ditions dictated by different lower and upper bounds for the integrand. Growths of non-necessarily power 
type are allowed. The local boundedness of the relevant minimizers is established under a suitable balance 
between the lower and the upper bounds. Classical minimizers, as well as quasi-minimizers are included in 
our discussion. Functionals subject to so-called p, q-growth conditions are embraced as special cases and 
the corresponding sharp results available in the literature are recovered.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

We are concerned with the local boundedness of local minimizers, or quasi-minimizers, of 
integral functionals of the form
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F(u,�) =
ˆ

�

f (x,u,∇u)dx, (1.1)

where � is an open set in Rn, with n ≥ 2, and f : � ×R ×Rn → R is a Carathéodory function 
subject to proper structure and growth conditions. Besides its own interest, local boundedness 
is needed to ensure certain higher regularity properties of minimizers. Interestingly, some reg-
ularity results for minimizers admit variants that require weaker hypotheses under the a priori 
assumption of their local boundedness.

Local boundedness of local minimizers of the functional F is classically guaranteed if 
f (x, t, ξ) is subject to lower and upper bounds in terms of positive multiples of |ξ |p , for some 
p ≥ 1. This result can be traced back to the paper [36], which, in turn, hinges upon methods intro-
duced by De Giorgi in his regularity theory for linear elliptic equations with merely measurable 
coefficients.

The study of functionals built on integrands f (x, t, ξ) bounded from below and above by 
different powers |ξ |p and |ξ |q , called with p, q-growth in the literature, was initiated some fifty 
years ago. A regularity theory for minimizers under assumptions of this kind calls for additional 
structure conditions on f , including convexity in the gradient variable. These conditions are 
needed in the derivation of a Caccioppoli-type inequality. In its proof, the different lower and 
upper bounds on f force an absorption argument for the gradient terms to be performed via 
direct use of the functional F(u, �), and this is only possible if f enjoys extra properties.

As shown in various papers starting from the nineties of the last century, local minimizers of 
functional with p, q-growth are locally bounded under diverse structure conditions, provided that 
the difference between q and p is not too large, depending on the dimension n. This issue was 
addressed in [49,51] and, more recently, in [25,26]. Related questions are considered in [8,34,
53] in connection with anisotropic growth conditions. By contrast, counterexamples show that 
unbounded minimizers may exist if the exponents p and q are too far apart [35,43,45,46]. The 
gap between the assumptions on p and q in these examples and in the regularity results available 
until recently has been filled in the paper [40], where the local boundedness of minimizers is 
established for the full range of exponents p and q excluded from the relevant counterexamples. 
A generalization of the techniques from [40] has been applied in [31] to extend the boundedness 
result to obstacle problems.

In the present paper, the conventional realm of polynomial growths is abandoned and the 
question of local boundedness of local minimizers, and quasi-minimizers, is addressed under 
bounds on f of Orlicz type. More specifically, the growth of f is assumed to be governed by 
Young functions, namely nonnegative convex functions vanishing at 0. The local boundedness 
of minimizers in the case when lower and upper bounds on f are imposed in terms of the same 
Young function follows via a result from [20], which also deals with anisotropic Orlicz growths. 
The same problem for solutions to elliptic equations is treated in [42]. The local Hölder regularity 
of bounded local solutions to elliptic equations subject to Orlicz growth conditions is treated in 
[44].

Our focus here is instead on the situation when different Young functions A(|ξ |) and B(|ξ |)
bound f (x, t, ξ) from below and above. Functionals with p, q-growth are included as a special 
instance. A sharp balance condition between the Young functions A and B is exhibited for any 
local minimizer of the functional F to be locally bounded. Bounds on f (x, t, ξ) depending on 
a function E(|t |) are also included in our discussion. Let us mention that results in the same 
spirit can be found in the paper [27], where, however, more restrictive non-sharp assumptions are 
imposed.
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The global boundedness of global minimizers of functionals and of solutions to boundary 
value problems for elliptic equations subject to Orlicz growth conditions has also been examined 
in the literature and is the subject e.g. of [1,2,19,54,55]. Note that, unlike those concerning the 
local boundedness of local minimizers and local solutions to elliptic equations, global bounded-
ness results in the presence of prescribed boundary conditions just require lower bounds in the 
gradient variable for integrands of functionals or equation coefficients. Therefore, the question 
of imposing different lower and upper bounds does not arise with this regard.

Beyond boundedness, several further aspects of the regularity theory of solutions to variational 
problems and associated Euler equations, under unbalanced lower and upper bounds, have been 
investigated. The early influential papers [46,47] have been followed by various contributions 
on this topic, a very partial list of which includes [3,4,6,7,9–12,16,17,24,28,30,32,33,38,48]. 
A survey of investigations around this area can be found in [50]. In particular, results from 
[3,9,16,29,39] demonstrate the critical role of local boundedness for higher regularity of local 
minimizers, which we alluded to above.

2. Main result

We begin by enucleating a basic case of our result for integrands in (1.1) which do not depend 
on u. Namely, we consider functionals of the form

F(u,�) =
ˆ

�

f (x,∇u)dx, (2.1)

where

f : � ×Rn → R.

A standard structure assumption to be fulfilled by f is that

the function Rn � ξ �→ f (x, ξ) is convex for a.e. x ∈ �. (2.2)

Next, an A, B-growth condition on f is imposed, in the sense that

A(|ξ |) − L ≤ f (x, ξ) ≤ B(|ξ |) + L for a.e. x ∈ � and every ξ ∈Rn, (2.3)

where L is a positive constant, A is a Young function and B is a Young function satisfying the 
�2-condition near infinity. By contrast, the latter condition is not required on the lower bound A.

The function A dictates the natural functional framework for the trial functions u in the mini-
mization problem for F . It is provided by the Orlicz-Sobolev class V 1

locK
A(�) of those weakly 

differentiable functions on � such that
ˆ

�′
A(|∇u|) dx < ∞

for every open set �′ � �.
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Besides standard local minimizers, we can as well deal with so-called quasi-minimizers, via 
the very same approach. A function u ∈ V 1

locK
A(�) is said to be a local quasi-minimizer of F if

F(u,�′) < ∞
for every open set �′ � �, and there exists a constant Q ≥ 1 such that

F(u, suppϕ) ≤ QF(u + ϕ, suppϕ) (2.4)

for every ϕ ∈ V 1
locK

A(�) such that suppϕ � �. Plainly, u is a standard local minimizer of F
provided that the inequality (2.4) holds with Q = 1.

Throughout the paper, we shall assume that

∞̂(
t

A(t)

) 1
n−1

dt = ∞. (2.5)

Indeed, if A grows so fast near infinity that

∞̂(
t

A(t)

) 1
n−1

dt < ∞, (2.6)

then every function u ∈ V 1
locK

A(�) is automatically locally bounded, irrespective of whether it 
minimizes F or not. This is due to the inclusion

V 1
locK

A(�) ⊂ L∞
loc(�), (2.7)

which holds as a consequence of a Sobolev-Poincaré inequality in Orlicz spaces.
Heuristically speaking, our result ensures that any local quasi-minimizer of F as in (2.1) is 

locally bounded, provided that the function B does not grow too quickly near infinity compared 
to A. The maximal admissible growth of B is described through the sharp Sobolev conjugate 
An−1 of A in dimension n − 1, whose definition is recalled in the next section. More precisely, if

n ≥ 3 and

∞̂(
t

A(t)

) 1
n−2

dt = ∞, (2.8)

then B has to be dominated by An−1 near infinity, in the sense that

B(t) ≤ An−1(Lt) for t ≥ t0, (2.9)

for some positive constants L and t0.
On the other hand, in the regime complementary to (2.8), namely in either of the following 

cases ⎧⎪⎨⎪⎩
n = 2

n ≥ 3 and

∞̂(
t

) 1
n−2

dt < ∞,
(2.10)
A(t)
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no additional hypothesis besides the �2-condition near infinity is needed on B . Notice that, by an 
Orlicz-Poincaré-Sobolev inequality on Sn−1, both options in (2.10) entail that V 1

locK
A(Sn−1) ⊂

L∞
loc(S

n−1), and V 1KA(Sn−1) ⊂ L∞(Sn−1).
Altogether, our boundedness result for functionals of the form (2.1) reads as follows.

Theorem 2.1. Let f : � ×Rn →R be a Carathéodory function satisfying the structure assump-
tion (2.2). Suppose that the growth condition (2.3) holds for some Young functions A and B , 
such that B ∈ �2 near infinity. Assume that either the condition (2.10) is in force, or the con-
dition (2.8) is in force and B fulfills the estimate (2.9). Then any local quasi-minimizer of the 
functional F in (2.1) is locally bounded in �.

Assume now that F has the general form (1.1), and hence

f : � ×R×Rn → R.

Plain convexity in the gradient variable is no longer sufficient, as a structure assumption, for a 
local boundedness result to hold. One admissible strengthening consists of coupling it with a 
kind of almost monotonicity condition in the u variable. Precisely, one can suppose that{

the function Rn � ξ �→ f (x, t, ξ) is convex for a.e. x ∈ � and every t ∈R,

f (x, t, ξ) ≤ Lf (x, s, ξ) + E(|s|) + L if |t | ≤ |s|, for a.e. x ∈ � and every ξ ∈ Rn,
(2.11)

where L is a positive constant and E : [0, ∞) → [0, ∞) is a non-decreasing function fulfilling 
the �2-condition near infinity.

An alternate condition which still works is the joint convexity of f in the couple (t, ξ), in the 
sense that

the function R×Rn � (t, ξ) �→ f (x, t, ξ) is convex for a.e. x ∈ �. (2.12)

The growth of f is governed by the following bounds:

A(|ξ |) − E(|t |) − L ≤ f (x, t, ξ) ≤ B(|ξ |) + E(|t |) + L

for a.e. x ∈ � and every t ∈R and ξ ∈Rn, (2.13)

where A is a Young function, B is a Young function satisfying the �2-condition near infinity, 
and E is the same function as in (2.11), if this assumption is in force.

The appropriate function space for trial functions in the definition of quasi-minimizer of the 
functional F is still V 1

locK
A(�), and the definition given in the special case (2.1) carries over to 

the present general framework.
The bound to be imposed on the function B is the same as in the u-free case described above. 

On the other hand, the admissible growth of the function E is dictated by the Sobolev conjugate 
An of A in dimension n. Specifically, we require that

E(t) ≤ An(Lt) for t ≥ t0, (2.14)

for some positive constants L and t0.
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Our comprehensive result then takes the following form.

Theorem 2.2. Let f : � ×R ×Rn → R be a Carathéodory function satisfying either the struc-
ture assumption (2.11) or (2.12). Suppose that the growth condition (2.13) holds for some Young 
functions A and B and a non-decreasing function E, such that B, E ∈ �2 near infinity. Assume 
that either the condition (2.10) is in force, or the condition (2.8) is in force and B fulfills estimate 
(2.9). Moreover, assume that E fulfills the estimate (2.14). Then any local quasi-minimizer of the 
functional F in (1.1) is locally bounded in �.

Our approach to Theorems 2.1 and 2.2 follows along the lines of De Giorgi’s regularity re-
sult for linear equations with merely measurable coefficients, on which, together with Moser’s 
iteration technique, all available proofs of the local boundedness of local solutions to variational 
problems or elliptic equations are virtually patterned. The main novelties in the present frame-
work amount to the use of sharp Poincaré and Sobolev inequalities in Orlicz spaces and to an 
optimized form of the Caccioppoli-type inequality. The lack of homogeneity of non-power type 
Young functions results in Orlicz-Sobolev inequalities whose integral form necessarily involves 
a gradient term on both sides. This creates new difficulties, that also appear, again because of the 
non-homogeneity of Young functions, in deriving the optimized Caccioppoli inequality. The lat-
ter requires an ad hoc process in the choice of trial functions in the definition of quasi-minimizers. 
The advantage of the use of the relevant Caccioppoli inequality is that its proof only calls into 
play Sobolev-type inequalities on (n − 1)-dimensional spheres, instead of n-dimensional balls. 
This allows for growths of the function B dictated by the (n −1)-dimensional Sobolev conjugate 
of A. By contrast, a more standard choice of trial functions would only permit slower growths 
of B , not exceeding the n-dimensional Sobolev conjugate of A. Orlicz-Sobolev and Poincaré in-
equalities in dimension n just come into play in the proof of Theorem 2.2, when estimating terms 
depending on the variable u. The trial function optimization strategy refines that used in diverse 
settings in recent years. The version exploited in [40] – a variant of [5] – to deal with functionals 
subject to p, q-growth conditions is sensitive to the particular growth of the integrand. The con-
ditions imposed in the situation under consideration here are so general to force us to resort to a 
more robust optimization argument, implemented in Lemma 5.1, Section 5. The latter is inspired 
to constructions employed in [13] in the context of div-curl lemmas, and in [41] in the proof of 
absence of Lavrientiev-phenomena in vector-valued convex minimization problems.

We conclude this section by illustrating Theorems 2.1 and 2.2 with applications to a couple of 
special instances. The former corresponds to functionals with p, q-growth. It not only recovers 
the available results but also augments and extends them in some respects. The latter concerns 
functionals with “power-times-logarithmic” growths, and provides us with an example associated 
with genuinely non-homogenous Young functions.

Example 2.1. In the standard case when

A(t) = tp,

with 1 ≤ p ≤ n, Theorem 2.1 recovers a result of [40]. Indeed, if n ≥ 3 and 1 ≤ p < n − 1, we 

have that An−1(t) ≈ t
(n−1)p

(n−1)−p , and the assumption (2.9) is equivalent to

B(t) � t
(n−1)p

(n−1)−p near infinity. (2.15)
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Here, the relations � and ≈ mean domination and equivalence, respectively, in the sense of 
Young functions.

If p = n − 1, then An−1(t) ≈ et
n−1
n−2 near infinity, whereas if p > n − 1, then the second 

alternative condition (2.10) is satisfied. Hence, if either n = 2 or n ≥ 3 and p ≥ n − 1, then any 
Young function B ∈ �2 near infinity is admissible.

The condition (2.15) is sharp, since the functionals with p, q-growth exhibited in [35,43,45,
46] admit unbounded local minimizers if the assumption (2.15) is dropped.

Let us point out that the result deduced from Theorem 2.1 also enhances that of [40], where 
the function ξ �→ f (x, ξ) is assumed to fulfill a variant of the �2-condition, which is not imposed 
here.

On the other hand, Theorem 2.2 extends the result of [40], where integrands only depending 
on x and ∇u are considered. The conclusion of Theorem 2.2 hold under the same bound (2.15)

on the function B . Moreover, An(t) ≈ t
np

n−p if 1 ≤ p < n and An(t) ≈ et
n

n−1 near infinity if p = n. 
Hence, if 1 ≤ p < n, then the assumption (2.14) reads:

E(t) � t
np

n−p near infinity.

If p = n, then any non-decreasing function E satisfying the �2-condition near infinity satisfies 
the assumption (2.14), and it is therefore admissible.

Example 2.2. Assume that

A(t) ≈ tp(log t)α near infinity,

where 1 < p < n and α ∈ R, or p = 1 and α ≥ 0, or p = n and α ≤ n − 1. Observe that these 
restrictions on the exponents p and α are required for A to be a Young function fulfilling the 
condition (2.5). From an application of Theorem 2.2 one can deduce that any local minimizer of 
F is locally bounded under the following assumptions.

If n ≥ 3 and p < n − 1, then we have to require that

B(t) � t
(n−1)p

(n−1)−p (log t)
(n−1)α

(n−1)−p near infinity.

If either n = 2, or n ≥ 3 and n − 1 ≤ p < n, then any Young function B ∈ �2 near infinity is 
admissible.

Moreover, if p < n, then our assumption on E takes the form:

E(t) � t
np

n−p (log t)
nα

n−p near infinity.

If p = n, then any non-decreasing function E ∈ �2 near infinity is admissible.

3. Orlicz-Sobolev spaces

This section is devoted to some basic definitions and properties from the theory of Young 
functions and Orlicz spaces. We refer the reader to the monograph [52] for a comprehensive 
presentation of this theory. The Sobolev and Poincaré inequalities in Orlicz-Sobolev spaces that 
play a role in our proofs are also recalled.
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Orlicz spaces are defined in terms of Young functions. A function A : [0, ∞) → [0, ∞] is 
called a Young function if it is convex (non trivial), left-continuous and A(0) = 0.

The convexity of A and its vanishing at 0 imply that

λA(t) ≤ A(λt) for λ ≥ 1 and t ≥ 0, (3.1)

and that the function

A(t)

t
is non-decreasing in (0,∞). (3.2)

The Young conjugate Ã of A is defined by

Ã(t) = sup{τ t − A(τ) : τ ≥ 0} for t ≥ 0 .

The following inequalities hold:

s ≤ A−1(s)Ã−1(s) ≤ 2s for s ≥ 0, (3.3)

where A−1 and Ã−1 denote the generalized right-continuous inverses of A and Ã, respectively.
A Young function A is said to satisfy the �2-condition globally – briefly A ∈ �2 globally – 

if there exists a constant c such that

A(2t) ≤ cA(t) for t ≥ 0. (3.4)

If the inequality (3.4) just holds for t ≥ t0 for some t0 > 0, then we say that A satisfies the 
�2-condition near infinity, and write A ∈ �2 near infinity. One has that

A ∈ �2 globally [near infinity] if and only if there exists q ≥ 1

such that
tA′(t)
A(t)

≤ q for a.e. t > 0 [t ≥ t0]. (3.5)

A Young function A is said to dominate another Young function B globally if there exists a 
positive constant c such that

B(t) ≤ A(ct) (3.6)

for t ≥ 0. The function A is said to dominate B near infinity if there exists t0 ≥ 0 such that (3.6)
holds for t ≥ t0. If A and B dominate each other globally [near infinity], then they are called 
equivalent globally [near infinity]. We use the notation B � A to denote that A dominates B , and 
B ≈ A to denote that A and B are equivalent. This terminology and notation will also be adopted 
for merely nonnegative functions, which are not necessarily Young functions.

Let � be a measurable set in Rn. The Orlicz class KA(�) built upon a Young function A is 
defined as

KA(�) =
{
u : u is measurable in � and

ˆ
A(|u|) dx < ∞

}
. (3.7)
�
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The set KA(�) is convex for every Young function A.
The Orlicz space LA(�) is the linear hull of KA(�). It is a Banach function space, equipped 

with the Luxemburg norm defined as

‖u‖LA(�) = inf

⎧⎨⎩λ > 0 :
ˆ

�

A

( |u|
λ

)
dx ≤ 1

⎫⎬⎭ (3.8)

for a measurable function u. These notions are modified as usual to define the local Orlicz class 
KA

loc(�) and the local Orlicz space LA
loc(�).

If either A ∈ �2 globally, or |�| < ∞ and A ∈ �2 near infinity, then KA(�) is, in fact, a 
linear space, and KA(�) = LA(�). Here, |�| denotes the Lebesgue measure of �.

Notice that, in particular, LA(�) = Lp(�) if A(t) = tp for some p ∈ [1, ∞), and LA(�) =
L∞(�) if A(t) = 0 for t ∈ [0, 1] and A(t) = ∞ for t ∈ (1, ∞).

The identity

‖χE‖LA(�) = 1

A−1(1/|E|) (3.9)

holds for every Young function A and any measurable set E ⊂ �. Here, χE stands for the char-
acteristic function of E.

The Hölder inequality in Orlicz spaces tells us that

ˆ

�

|uv|dx ≤ 2‖u‖LA(�)‖v‖
LÃ(�)

(3.10)

for u ∈ LA(�) and v ∈ LÃ(�).
Assume now that � is an open set. The homogeneous Orlicz-Sobolev class V 1KA(�) is 

defined as the convex set

V 1KA(�) = {
u ∈ W 1.1

loc (�) : |∇u| ∈ KA(�)
}

(3.11)

and the inhomogeneous Orlicz-Sobolev class W 1KA(�) is the convex set

W 1KA(�) = KA(�) ∩ V 1KA(�). (3.12)

The homogenous Orlicz-Space V 1LA(�) and its inhomogenous counterpart W 1LA(�) are ac-
cordingly given by

V 1LA(�) = {
u ∈ W 1.1

loc (�) : |∇u| ∈ LA(�)
}

(3.13)

and

W 1LA(�) = LA(�) ∩ V 1LA(�). (3.14)

The latter is a Banach space endowed with the norm
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‖u‖W 1,A(�) = ‖u‖LA(�) + ‖∇u‖LA(�). (3.15)

Here, and in what follows, we use the notation ‖∇u‖LA(�) as a shorthand for ‖ |∇u| ‖LA(�).
The local versions V 1

locK
A(�), W 1

locK
A(�), V 1

locL
A(�), and W 1

locL
A(�) of these sets/spaces 

is obtained by modifying the above definitions as usual. In the case when LA(�) = Lp(�) for 
some p ∈ [1, ∞], the standard Sobolev space W 1,p(�) and its homogeneous version V 1,p(�)

are recovered.
Orlicz and Orlicz-Sobolev classes of weakly differentiable functions u defined on the (n −1)-

dimensional unit sphere Sn−1 in Rn also enter our approach. These spaces are defined as in 
(3.7), (3.8), (3.11), (3.13), and (3.14), with the Lebesgue measure replaced with the (n − 1)-
dimensional Hausdorff measure Hn−1, and ∇u replaced with ∇Su, the vector field on Sn−1

whose components are the covariant derivatives of u.
As highlighted in the previous section, sharp embedding theorems and corresponding inequal-

ities in Orlicz-Sobolev spaces play a critical role in the formulation of our result and in its proof. 
As shown in [19] (see also [18] for an equivalent version), the optimal n-dimensional Sobolev 
conjugate of a Young function A fulfilling

ˆ

0

(
t

A(t)

) 1
n−1

dt < ∞ (3.16)

is the Young function An defined as

An(t) = A(H−1
n (t)) for t ≥ 0, (3.17)

where the function Hn : [0, ∞) → [0, ∞) is given by

Hn(s) =
( sˆ

0

(
t

A(t)

) 1
n−1

dt

) n−1
n

for s ≥ 0. (3.18)

The function An−1 is defined analogously, by replacing n with n − 1 in the equations (3.17) and 
(3.18).

In the statements of Theorems 2.1 and 2.2, the functions An and An−1 are defined after modi-
fying A near 0, if necessary, in such a way that the condition (3.16) be satisfied. The assumptions 
(2.3) and (2.13) are not affected by the choice of the modified function A, thanks to the presence 
of the additive constant L. Membership of a function in an Orlicz-Sobolev local class or space 
associated with A is also not influenced by this choice, inasmuch as the behavior of A near 0 is 
irrelevant (up to additive and/or multiplicative constants) whenever integrals or norms over sets 
with finite measure are concerned.

An optimal Sobolev-Poincaré inequality on balls Br ⊂ Rn, centered at 0 and with radius r
reads as follows. In its statement, we adopt the notation

uBr
=
 

Br

u(x) dx,

where 
ffl

stands for integral average.
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Theorem A. Let n ≥ 2, let r > 0, and let A be a Young function fulfilling the condition (3.16). 
Then, there exists a constant κ = κ(n) such that

ˆ

Br

An

(
|u − uBr

|
κ
(´

Br
A(|∇u|)dy

) 1
n

)
dx ≤

ˆ

Br

A(|∇u|) dx (3.19)

for every u ∈ V 1KA(Br ).

As a consequence of the inequality (3.19) (which continues to hold for balls centered at any 
point in Rn) and of Lemma 4.1, Section 4, one has that

V 1
locK

A(�) ⊂ KA
loc(�) (3.20)

for any open set � ⊂Rn and any Young function A. Thereby,

V 1
locK

A(�) = W 1
locK

A(�).

Hence, in what follows, the spaces V 1
locK

A(�) and W 1
locK

A(�) will be equally employed.
Besides the Sobolev-Poincaré inequality of Theorem A, a Sobolev type inequality is of use in 

our applications and is the subject of the following theorem. Only Part (i) of the statement will 
be needed. Part (ii) substantiates the inclusion (2.7).

Theorem B. Let n ≥ 2, let r > 0, and let A be a Young function fulfilling the condition (3.16).

(i) Assume that the condition (2.5) holds. Then, there exists a constant κ = κ(n, r) such that

ˆ

Br

An

(
|u|

κ
(´

Br
A(|u|) + A(|∇u|)dy

) 1
n

)
dx ≤

ˆ

Br

A(|u|) + A(|∇u|) dx (3.21)

for every u ∈ W 1KA(Br ).
(ii) Assume that the condition (2.6) holds. Then, there exists a constant κ = κ(n, r, A) such that

‖u‖L∞(Br ) ≤ κ

(ˆ

Br

A(|u|) + A(|∇u|) dx

) 1
n

(3.22)

for every u ∈ W 1KA(Br ).

In particular, if r ∈ [r1, r2] for some r2 > r1 > 0, then the constant κ in the inequalities (3.21)
and (3.22) depends on r only via r1 and r2.

A counterpart of Theorem B for Orlicz-Sobolev functions on the sphere Sn−1 takes the fol-
lowing form.
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Theorem C. Let n ≥ 2 and let A be a Young function such that

ˆ

0

(
t

A(t)

) 1
n−2

dt < ∞ if n ≥ 3. (3.23)

(i) Assume that n ≥ 3 and

∞̂(
t

A(t)

) 1
n−2

dt = ∞. (3.24)

Then, there exists a constant κ = κ(n) such that

ˆ

Sn−1

An−1

( |u|
κ
(´

Sn−1 A(|u|) + A(|∇Su|)dHn−1(y)
) 1

n−1

)
dHn−1(x)

≤
ˆ

Sn−1

A(|u|) + A(|∇Su|) dHn−1(x) (3.25)

for u ∈ W 1KA(Sn−1).
(ii) Assume that one of the following situations occurs:⎧⎪⎪⎪⎨⎪⎪⎪⎩

n = 2 and limt→0+ A(t)
t

> 0

n ≥ 3 and

∞̂(
t

A(t)

) 1
n−2

dt < ∞.

(3.26)

Then, there exists a constant κ = κ(n, A) such that

‖u‖L∞(Sn−1) ≤ κ

( ˆ

Sn−1

A(|u|) + A(|∇Su|) dHn−1(x)

) 1
n−1

(3.27)

for u ∈ W 1KA(Sn−1).

Theorems A and B are special cases of [22, Theorems 4.4 and 3.1], respectively, which hold 
in any Lipschitz domain in Rn (and for Orlicz-Sobolev spaces of arbitrary order). The assertions 
about the dependence of the constants can be verified via a standard scaling argument. Theo-
rem C can be derived via arguments analogous to those in the proof of [22, Theorem 3.1]. For 
completeness, we offer the main steps of its proof.

Proof of Theorem C. Part (i). Let us set

uSn−1 =
 

n−1

u(x)dHn−1(x).
S
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A key step is a Sobolev-Poincaré type inequality, a norm version of (3.19) on Sn−1, which tells 
us that

‖u − uSn−1‖LAn−1 (Sn−1)
≤ c‖∇Su‖LA(Sn−1) (3.28)

for some constant c = c(n) and for u ∈ V 1LA(Sn−1). A proof of inequality (3.28) rests upon the 
following symmetrization argument combined with a one-dimensional Hardy-type inequality in 
Orlicz spaces.

Set

cn = Hn−1(Sn−1) (3.29)

and denote by u◦ : [0, cn] → [−∞, ∞] the signed decreasing rearrangement of u, defined by

u◦(s) = inf{t ∈ R :Hn−1({u > t}) ≤ s} for s ∈ [0, cn].

Moreover, define the signed symmetral u� : Sn−1 → [−∞, ∞] of u as

u�(x) = u◦(V (x)) for x ∈ Sn−1,

where V (x) denotes the Hn−1-measure of the spherical cap on Sn−1, centered at the north pole 
on Sn−1, whose boundary contains x. Thus, u� is a function, which is equimeasurable with u, 
and whose level sets are spherical caps centered at the north pole.

The equimeasurability of the functions u, u◦ and u� ensures that

‖u − uSn−1‖LAn−1 (Sn−1)
= ‖u� − uSn−1‖LAn−1 (Sn−1)

= ‖u◦ − uSn−1‖LAn−1 (0,cn)
. (3.30)

Moreover, since u◦(cn/2) is a median of u◦ on (0, cn) and uSn−1 agrees with the mean value of 
u◦ over (0, cn), one has that

‖u◦ − u◦(cn/2)‖
LAn−1 (0,cn)

≥ 1
2‖u◦ − uSn−1‖LAn−1 (0,cn)

= 1
2‖u − uSn−1‖LAn−1 (Sn−1)

, (3.31)

see e.g. [23, Lemma 2.2].
On the other hand, a version of the Pólya-Szegö principle on Sn−1 tells us that u◦ is locally 

absolutely continuous, u� ∈ V 1LA(Sn−1), and∥∥∥∥ISn−1(s)
(

− du◦

ds

)∥∥∥∥
LA(0,cn)

= ‖∇Su� ‖LA(Sn−1) ≤ ‖∇Su‖LA(Sn−1), (3.32)

where ISn−1 : [0, cn] → [0, ∞) denotes the isoperimetric function of Sn−1 (see [14]). It is well-
known that there exists a positive constant c = c(n) such that

ISn−1(s) ≥ c min{s, cn − s} n−2
n−1 for s ∈ (0, cn). (3.33)

Hence,
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c

∥∥∥∥min{s, cn − s} n−2
n−1

(
− du◦

ds

)∥∥∥∥
LA(0,cn)

≤ ‖∇Su‖LA(Sn−1). (3.34)

The absolute continuity of u◦ ensures that

u◦(s) − u◦(cn) =
cn/2ˆ

s

(
− du◦

dr

)
dr for s ∈ (0, cn). (3.35)

Thanks to the equations (3.30), (3.31), (3.34), (3.35), and to the symmetry of the function 

min{s, cn − s} n−2
n−1 about cn/2, the inequality (3.28) is reduced to the inequality

∥∥∥∥
cn/2ˆ

s

r− n−2
n−1 φ(r) dr

∥∥∥∥
LAn−1 (0,cn/2)

≤ c‖φ‖LA(0,cn/2) (3.36)

for a suitable constant c = c(n) and for φ ∈ LA(0, cn/2). The inequality (3.36) is in turn a con-
sequence of [19, Inequality (2.7)].

Next, by Lemma 4.2, Section 4, applied with n replaced with n − 1,

1

Ã−1(t)

1

A−1
n−1(t))

≤ 1

t
n−2
n−1

for t > 0.

Hence, by the inequality (3.10), with � replaced with Sn−1, one has that

‖uSn−1‖LAn−1 (Sn−1)
= |uSn−1 |‖1‖

LAn−1 (Sn−1)
≤ 2

cn

‖u‖LA(Sn−1)‖1‖
LÃ(Sn−1)

‖1‖
LAn−1 (Sn−1)

(3.37)

= 2

cn

1

Ã−1(1/cn)

1

A−1
n−1(1/cn)

‖u‖LA(Sn−1) ≤ 2

c
1

n−1
n

‖u‖LA(Sn−1).

Coupling the inequality (3.28) with (3.37) and making use of the triangle inequality entail that

‖u‖
LAn−1 (Sn−1)

≤ c
(‖∇Su‖LA(Sn−1) + ‖u‖LA(Sn−1)

)
(3.38)

for some constant c = c(n) and for u ∈ W 1LA(Sn−1).
Now set

M =
ˆ

Sn−1

A(|∇Su|) + A(|u|) dHn−1(x),

and apply the inequality (3.38) with the function A replaced with the Young function AM given 
by

AM(t) = A(t)
for t ≥ 0.
M
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Hence,

‖u‖
L(AM)n−1 (Sn−1)

≤ c
(‖∇Su‖LAM (Sn−1) + ‖u‖LAM (Sn−1)

)
, (3.39)

where (AM)n−1 denotes the function obtained on replacing A with AM in the definition of An−1. 
The fact that the constant c in (3.38) is independent of A is of course crucial in deriving the 
inequality (3.39). Observe that

(AM)n−1(t) = 1

M
An−1

( t

M
1

n−1

)
for t ≥ 0. (3.40)

On the other hand, by the definition of Luxemburg norm and the choice of M ,

‖u‖LAM (Sn−1) ≤ 1 and ‖∇Su‖LAM (Sn−1) ≤ 1. (3.41)

Therefore, by the definition of Luxemburg norm again, the inequality (3.39) tells us that

1

M

ˆ

Sn−1

An−1

( |u(x)|
2cM

1
n−1

)
dHn−1(x) ≤ 1.

Hence, the inequality (3.25) follows.

Part (ii). First, assume that n ≥ 3 and the integral condition in (3.26) holds. Let A be the Young 
function defined as

A(t) =
(

t
n−1
n−2

∞̂

t

Ã(r)

r1+ n−1
n−2

dr

)̃
for t ≥ 0, (3.42)

where (· · · )̃ stands for the Young conjugate of the function in parentheses. Notice that the con-
vergence of the integral on the right-hand side of equation (3.42) is equivalent to the convergence 
of the integral in (3.26), see [21, Lemma 2.3]. Since we are assuming that A fulfills the condition 
(3.23), the same lemma also ensures that

ˆ

0

Ã(r)

r1+ n−1
n−2

dr < ∞. (3.43)

From [15, Theorem 4.1] one has that

A
(
c‖u − uSn−1‖L∞(Sn−1)

) ≤
 

Sn−1

A(|∇Su|) dHn−1 (3.44)

for some positive constant c = c(n) and for u ∈ V 1KA(Sn−1).
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Furthermore, by Jensen’s inequality,

A
(‖uSn−1‖L∞(Sn−1)

) ≤ A

(  

Sn−1

|u|dHn−1
)

≤
 

Sn−1

A(|u|) dHn−1. (3.45)

Thanks to [15, Inequality (4.6)],

A(t) ≤ A(t) for t ≥ 0. (3.46)

Moreover, the inequality (3.43) ensures that

t
n−1
n−2

∞̂

t

Ã(r)

r1+ n−1
n−2

dr ≤ c t
n−1
n−2 for t ≥ 0, (3.47)

where we have set

c =
∞̂

0

Ã(r)

r1+ n−1
n−2

dr.

Taking the Young conjugates of both sides of the inequality (3.47) results in

A(t) ≥ ctn−1 for t ≥ 0, (3.48)

for some constant c = c(n, A). The inequality (3.27) follows, via the triangle inequality, from the 
inequalities (3.44), (3.45), (3.46) and (3.48).

Assume next that n = 2 and the condition on the limit in (3.26) holds. If we denote by a this 
limit, then

A(t) ≥ at for t ≥ 0. (3.49)

A simple one-dimensional argument, coupled with Jensen’s inequality and the increasing mono-
tonicity of the function tA−1(1/t) shows that

A
( 1

2π
‖u − uS1‖L∞(S1)

) ≤
 

S1

A(|∇Su|) dH1 (3.50)

for u ∈ V 1KA(S1) (see [15, Inequality (4.8) and below]). The inequality (3.27) now follows 
from (3.45) (which holds also when n = 2), (3.49) and (3.50). �
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4. Analytic lemmas

Here, we collect a few technical lemmas about one-variable functions. We begin with two 
inequalities involving a Young function and its Sobolev conjugate.

Lemma 4.1. Let n ≥ 2 and let A be a Young function fulfilling the condition (3.16). Then, for 
every k > 0 there exists a positive constant c = c(k, A, n) such that

A(t) ≤ An(kt) + c for t ≥ 0. (4.1)

Proof. Fix k > 0. Since An(t) = A(H−1
n (t)) and limt→∞ H−1

n (t)

t
= ∞, there exists t ≥ t0 such 

that A(t) ≤ An(kt) for t ≥ t0. The inequality (4.1) hence follows, with c = A(t0). �
Lemma 4.2. Let n ≥ 2 and let A be a Young function fulfilling the condition (3.16). Then,

1

Ã−1(t)

1

A−1
n (t)

≤ 1

t
1
n′

for t > 0. (4.2)

Proof. Hölder’s inequality and the property (3.2) imply that

t =
tˆ

0

(
A(r)

r

) 1
n
(

r

A(r)

) 1
n

dr ≤
( tˆ

0

A(r)

r
dr

) 1
n
( tˆ

0

(
r

A(r)

) 1
n−1

dr

) 1
n′

(4.3)

≤
(

A(t)

t

) 1
n

t
1
n Hn(t) = A(t)

1
n Hn(t) for t > 0.

Hence,

A−1(t) ≤ t
1
n Hn(A

−1(t)) for t ≥ 0. (4.4)

The first inequality in (3.3) and the inequality (4.4) imply that

t ≤ A−1(t)Ã−1(t) ≤ t
1
n Hn(A

−1(t))Ã−1(t) for t ≥ 0. (4.5)

Hence, the inequality (4.2) follows. �
The next result ensures that the functions A, B and E appearing in the assumption (2.13)

can be modified near 0 in such a way that such an assumption is still fulfilled, possibly with a 
different constant L, and the conditions imposed on A, B and E in Theorem 2.2 are satisfied 
globally, instead of just near infinity. Of course, the same applies to the simpler conditions of 
Theorem 2.1, where the function E is missing.

Lemma 4.3. Assume that the functions f , A, B and E are as in Theorem 2.2. Then, there exist 
two Young functions Â, ̂B : [0, ∞) → [0, ∞), an increasing function Ê : [0, ∞) → [0, ∞), and 
constants L̂ ≥ 1 and q > n such that:
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Â(|ξ |) − Ê(|t |) − L̂ ≤ f (x, t, ξ) ≤ B̂(|ξ |) + Ê(|t |) + L̂

for a.e. x ∈ �, for every t ∈R, and every ξ ∈Rn, (4.6)

t
n

n−1 ≤ L̂ Ân(t) for t ≥ 0, (4.7)

lim
t→0+

Â(t)

t
> 0, (4.8)

Ê(2t) ≤ L̂Ê(t) for t ≥ 0, (4.9)

Ê(t) ≤ Ân(L̂t) for t ≥ 0, (4.10)

B̂(λt) ≤ λqB̂(t) for t ≥ 0 and λ ≥ 1. (4.11)

Moreover, if the assumption (2.8) is in force, then the function B satisfies the assumption (2.9)
and

B̂(t) ≤ Ân−1(L̂t) for t ≥ 0; (4.12)

if the assumption (2.10) is in force, then

B̂(t) ≤ L̂tq for t ≥ 0. (4.13)

Here, Ân−1 and Ân denote the functions defined as An−1 and An, with A replaced with Â.

Proof. Step 1. Construction of Â. Denote by t1 the maximum among 1, the constant t0 appearing 
in the inequalities (2.14) and (2.9), and the lower bound for t in the definition of the �2-condition
near infinity for the functions B and E. Let us set a = A(t1)

t1
, and define the Young function Â as

Â(t) =
{

at if 0 ≤ t < t1

A(t) if t ≥ t1.
(4.14)

Clearly, Â satisfies the property (4.8) and

A(t) ≤ Â(t) for t ≥ 0. (4.15)

Also, the convexity of A ensures that

Â(t) ≥ at for t ≥ 0. (4.16)

Since

Ĥn(s) =
( sˆ

0

(
t

Â(t)

) 1
n−1

dt

) n−1
n

for s ≥ 0,

we deduce that
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Ĥn(s) ≤ a− 1
n s

n−1
n for s ≥ 0,

whence

a
1

n−1 t
n

n−1 ≤ Ĥ−1
n (t) for t ≥ 0.

Inasmuch as Ân = Â ◦ Ĥ−1
n , the latter inequality and the inequality (4.16) yield:

Ân(t) ≥ Â(a
1

n−1 t
n

n−1 ) ≥ (at)
n

n−1 for t ≥ 0.

This shows that the inequality (4.7) holds for sufficiently large L̂.
For later reference, also note that

Ân(t) = (at)
n

n−1 for t ∈ [0, t1]. (4.17)

Next, we have that

An(t) ≤ Ân(t) for t ≥ 0. (4.18)

Indeed, the inequality (4.15) implies that

Ĥn(s) ≤ Hn(s) for s ≥ 0.

Thus, H−1
n (t) ≤ Ĥ−1

n (t) for t ≥ 0, whence the inequality (4.18) follows, on making use of (4.15)
again.

Moreover, there exists t2 ≥ t1, depending on n and A, such that

Ân(t) ≤ An(2t) for t ≥ t2. (4.19)

Actually, if s ≥ t1 and is sufficiently large, then

Ĥn(s) =
( sˆ

0

(
t

Â(t)

) 1
n−1

dt

) n−1
n ≥

( sˆ

t1

(
t

Â(t)

) 1
n−1

dt

) n−1
n

=
( sˆ

t1

(
t

A(t)

) 1
n−1

dt

) n−1
n ≥ 1

2
Hn(s).

Observe that the last inequality holds, for large s, thanks to the assumption (2.5). Hence, 
Ĥ−1

n (t) ≤ H−1
n (2t) for sufficiently large t and thereby

Ân(t) = Â(Ĥ−1
n (t)) = A(Ĥ−1

n (t)) ≤ A(H−1
n (2t))) = An(2t) for t ≥ t2,

provided that t2 is sufficiently large. The inequality (4.19) is thus established.
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Step 2. Construction of B̂ . First, consider the case when (2.8) and (2.9) hold. Since B is a Young 
function, there exists t3 ≥ t2, where t2 is the number from Step 2, such that B(t3) > An−1(t1). 
Define the Young function B̂ as

B̂(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ân−1(t) if 0 ≤ t < t2

t3−t
t3−t2

Ân−1(t2) + t−t2
t3−t2

B(t3) if t2 ≤ t < t3

B(t) if t ≥ t3.

We claim that the inequality (4.12) holds with this choice of B̂, provided that L̂ is large enough. 
If t ∈ [0, t2), the inequality in question is trivially satisfied with L̂ = 1. If t ∈ [t2, t3), then

B̂(t) ≤ B̂(t3) = B(t3) ≤ An−1(Lt3) ≤ Ân−1(Lt3) ≤ Ân−1((Lt3/t2)t),

where the third inequality holds thanks to (4.18). Finally, if t > t3, then

B̂(t) = B(t) ≤ An−1(Lt) ≤ Ân−1(Lt).

Altogether, the inequality (4.12) is fulfilled with L̂ = max
{
1, Lt3

t2

}
.

In order to establish the inequality (4.11), it suffices to show that B̂ satisfies the �2-condition 
globally. Since B̂ is a Young function, this condition is in turn equivalent to the fact that there 
exists a constant c such that

tB̂ ′(t)
B̂(t)

≤ c for a.e. t > 0. (4.20)

Since B is a Young function satisfying the �2-condition near infinity, and B̂(t) = B(t) for large 
t , the condition (4.20) certainly holds for large t . On the other hand, since

lim
t→0+

tB̂ ′(t)
B̂(t)

= lim
t→0+

tÂ′
n−1(t)

Ân−1(t)
= n − 1

n − 2
,

the condition (4.20) also holds for t close to 0. Hence, it holds for every t > 0.
Next, consider the case when (2.10) holds. The �2-condition near infinity for B implies that 

there exist constants q > 1, t4 > 1 and c > 0 such that B(t) ≤ ctq for all t ≥ t4. Since t4 > 1, 
we may suppose, without loss of generality, that q > n. Inasmuch as B(t) ≤ L̂(tq + 1) for t ≥ 0, 
provided that L̂ is sufficiently large, the choice B̂(t) = L̂tq makes the inequalities (4.11) and 
(4.13) true.

Step 3. Construction of Ê. We define Ê analogously to B̂, by replacing B with E and Ân−1
with Ân. The same argument as in Step 2 tells us that the inequalities (4.9) and (4.10) hold for a 
suitable choice of the constant L̂.

Step 4. Conclusion. Since

f (x, t, ξ) ≤ B(|ξ |) + E(|t |) + L ≤ B̂(|ξ |) + Ê(|ξ |) + B(t3) + E(t3) + L
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and

f (x, t, ξ) ≥ A(|ξ |) − E(|t |) − L ≥ Â(|ξ |) − Ê(|ξ |) − A(t1) − E(t3) − L,

for a.e. x ∈ �, and for every t ∈R and ξ ∈ Rn, equation (4.6) follows, provided that L̃ is chosen 
sufficiently large. �

We conclude this section by recalling the following classical lemma – see e.g. [37, Lemma 
6.1]:

Lemma 4.4. Let Z : [ρ, σ ] → [0, ∞) be a bounded function. Assume that there exist constants 
a, b ≥ 0, α > 0 and θ ∈ [0, 1) such that

Z(r) ≤ θZ(s) + (s − r)−αa + b if ρ ≤ r < s ≤ σ .

Then,

Z(r) ≤ c
(
(s − r)−αa + b

)
if ρ ≤ r < s ≤ σ ,

for some constant c = c(α, θ) > 1.

5. Proof of Theorem 2.2

We shall limit ourselves to proving Theorem 2.2, since the content of Theorem 2.1 is just a 
special case of the former. A key ingredient is provided by Lemma 5.1 below. In the statement, 
�q : [0, ∞) → [0, ∞) denotes the function defined for q ≥ 1 as

�q(t) =
{

t if 0 ≤ t < 1

tq if t ≥ 1.
(5.1)

One can verify that

�q(λt) ≤ λq�q(t) for λ ≥ 1 and t ≥ 0. (5.2)

Moreover, given a function u ∈ W 1KA(B1), we set

F(u,ρ,σ ) =
ˆ

Bσ \Bρ

A(|u|) + A(|∇u|) dx (5.3)

for 0 < ρ < σ < 1.

Lemma 5.1. Let A and B be Young functions and 0 < ρ < σ < 1.
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(i) Suppose that the condition (2.8) is in force. Assume that there exist constants L ≥ 1 and 
q > 1 such that

B(t) ≤ An−1(Lt) and B(λt) ≤ λqB(t) for t ≥ 0 and λ ≥ 1. (5.4)

Then, for every u ∈ W 1KA(B1) there exists a function η ∈ W
1,∞
0 (B1) satisfying

0 ≤ η ≤ 1 in B1, η = 1 in Bρ, η = 0 in B1 \Bσ ‖∇η‖L∞(B1) ≤ 2

σ − ρ
, (5.5)

and such that

ˆ

B1

B(|u∇η|) dx ≤c�q

(
κF(u,ρ,σ )

1
n−1

(σ − ρ)
n

n−1 ρ

)
F(u,ρ,σ ) (5.6)

for some constant c = c(n, q, L) ≥ 1. Here, κ denotes the constant appearing in the inequal-
ity (3.25).

(ii) Suppose that the condition (3.26) is in force. Assume that there exist constants L ≥ 1 and 
q > n such that

B(t) ≤ Ltq for t ≥ 0. (5.7)

Then, for every u ∈ W 1KA(B1) there exists a function η ∈ W
1,∞
0 (B1) satisfying (5.5), such 

that

ˆ

B1

B(|u∇η|) dx ≤ cκqF (u,ρ,σ )
q

n−1

(σ − ρ)q−1+ q
n−1 ρq−(n−1)

(5.8)

for some constant c = c(n, q, L) ≥ 1. Here, κ denotes the constant appearing in the inequal-
ity (3.27).

Proof. Let u ∈ W 1KA(B1). Define, for r ∈ [0, 1], the function ur : Sn−1 → R as ur(z) = u(rz)

for z ∈ Sn−1. By classical properties of restrictions of Sobolev functions to (n − 1)-dimensional 
concentric spheres, one has that ur is a weakly differentiable function for a.e. r ∈ [0, 1]. Hence, 
by Fubini’s theorem, there exists a set N ⊂ [0, 1] such that |N | = 0, and ur ∈ W 1KA(Sn−1) for 
every r ∈ [0, 1] \ N . Set

U1 =
{
r ∈ [ρ,σ ] \ N :

ˆ

Sn−1

A(|∇Sur(z)|) dHn−1(z) ≤ 4

(σ − ρ)rn−1

ˆ

Bσ \Bρ

A(|∇u|)dx

}
.

(5.9)
From Fubini’s Theorem, the inequality |∇Sur(z)| ≤ |∇u(rz)| for Hn−1-a.e. z ∈ Sn−1, and the 
very definition of the set U1 we infer that
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ˆ

Bσ \Bρ

A(|∇u|) dx =
σ̂

ρ

rn−1
ˆ

Sn−1

A(|∇u(rz)|) dHn−1(z) dr

≥
ˆ

(ρ,σ )\U1

rn−1
ˆ

Sn−1

A(|∇Sur(z)|) dHn−1(z) dr

≥4((σ − ρ) − |U1|)
(σ − ρ)

ˆ

Bσ \Bρ

A(|∇u|) dx.

Hence, |U1| ≥ 3
4 (σ − ρ). An analogous computation ensures that the set

U2 =
{
r ∈ [ρ,σ ] \ N :

ˆ

Sn−1

A(|ur(z)|) dHn−1(z) ≤ 4

(σ − ρ)rn−1

ˆ

Bσ \Bρ

A(|u|) dx

}
(5.10)

has the property that |U2| ≥ 3
4 (σ − ρ). Thereby, if we define the set

U = U1 ∩ U2,

then

|U | ≥ |(ρ,σ )| − |(ρ,σ ) \ U1| − |(ρ,σ ) \ U2| ≥ 1

2
(σ − ρ). (5.11)

Next, define the function η : B1 → [0, 1] as

η(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 0 ≤ |x| < ρ

1

|U |
σ̂

|x|
χU(s) ds if ρ ≤ |x| ≤ σ

0 if σ < |x| ≤ 1.

One has that 0 ≤ η ≤ 1, η = 1 in Bρ , η = 0 in B1 \Bσ , η ∈ W
1,∞
0 (B1) and

|∇η(rz)| =
{

0 for a.e. r /∈ U
1

|U | for a.e. r ∈ U ,
(5.12)

and for z ∈ Sn−1. Hence, the function η satisfies the properties claimed in (5.5).
Next, set, for r ∈ [0, 1] \ N ,

Fr(u) =
ˆ

Sn−1

A(|ur(z)|) + A(|∇Sur(z)|) dHn−1(z). (5.13)

By the definition of the set U ,
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Fr(u) ≤ 4

(σ − ρ)rn−1 F(u,ρ,σ ) for a.e. r ∈ U . (5.14)

We have now to make use of different inequalities, depending on whether we deal with case (i) 
or (ii).

Case (i). Owing to the inequality (3.1) and to the second inequality in (5.4),

B(λt) ≤ �q(λ)B(t) for λ ≥ 0 and t ≥ 0. (5.15)

The following chain holds:

ˆ

B1

B(|u∇η|) dx ≤
ˆ

U

rn−1
ˆ

Sn−1

B

(∣∣∣∣ 2

(σ − ρ)
ur(z)

∣∣∣∣)dHn−1(z) dr (5.16)

=
ˆ

U

rn−1
ˆ

Sn−1

B

(∣∣∣∣ 2κur(z)Fr(u)
1

n−1

κ(σ − ρ)Fr(u)
1

n−1

∣∣∣∣)dHn−1(z) dr

≤
ˆ

U

rn−1�q

(∣∣∣∣2LκFr(u)
1

n−1

(σ − ρ)

∣∣∣∣) ˆ

Sn−1

An−1

(∣∣∣∣ ur(z)

κFr(u)
1

n−1

∣∣∣∣)dHn−1(z) dr

≤
ˆ

U

rn−1�q

(∣∣∣∣2LκFr(u)
1

n−1

(σ − ρ)r

∣∣∣∣)Fr(u)dr

≤�q

(∣∣∣∣2Lκ4
1

n−1 F(u,ρ,σ )
1

n−1

(σ − ρ)1+ 1
n−1 ρ

∣∣∣∣)4F(u,ρ,σ ),

where the second inequality is a consequence of the inequality (5.15) and the first inequality in 
(5.4), the third inequality follows from the Sobolev inequality (3.25), and the last inequality relies 
upon the inequality (5.14) and the fact that |U | ≤ (σ − ρ). Clearly, the inequality (5.6) follows 
from (5.16).

Case (ii). The following chain holds:

ˆ

B1

B(|u∇η|) dx ≤L

ˆ

U

rn−1
ˆ

Sn−1

∣∣∣∣ 2

(σ − ρ)
ur(z)

∣∣∣∣q dHn−1(z) dr (5.17)

≤L2qcnκ
q

(σ − ρ)q

ˆ

U

rn−1Fr(u)
q

n−1 dr

≤L2qcnκ
q

(σ − ρ)q

ˆ

U

rn−1
(

4F(u,ρ,σ )

(σ − ρ)rn−1

) q
n−1

dr

≤ L2q4
q

n−1 cnκ
q

(σ − ρ)q−1+ q
n−1 ρq−(n−1)

F (u,ρ,σ )
q

n−1 ,
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where cn is given by (3.29), the first inequality holds by the inequality (5.7), the second one by 
the inequality (3.27), the third one by the inequality (5.14), and the last one since |U | ≤ (σ − ρ). 
The inequality (5.8) follows via (5.17). �

We are now in a position to accomplish the proof of our main result.

Proof of Theorem 2.2. Owing to Lemma 4.3, without loss of generality we can assume that 
the functions A, B and E also satisfy the properties stated for the functions Â, B̂ and Ê in the 
lemma. When we refer to properties in the statement of this lemma, we shall mean that they are 
applied directly to A, B and E. In particular, q denotes the exponent appearing in the statement 
of the lemma. Moreover, Q is the constant from the definition of quasi-minimizer.

We also assume that B1 � � and prove that u is bounded in B 1
2
. The general case follows 

via a standard scaling and translation argument. For ease of presentation, we split the proof into 
steps.

Step 1. Basic energy estimate.
Set, for r > 0 and l > 0,

Al,r = Br ∩ {x ∈ � : u(x) > l} (5.18)

and

J (l, r) =
ˆ

Br

A((u − l)+) + A(|∇(u − l)+|) dx. (5.19)

Here, the subscript “+” stands for the positive part.
If the assumption (2.8) holds, then we claim that there exists a constant c = c(n, q, L, Q) ≥ 1

such that

ˆ

Bρ

A(|∇(u − k)+|) dx ≤c

(
�q(κJ (k, σ )

1
n−1 )

(σ − ρ)
qn

n−1
J (k,σ ) +

ˆ

Ak,σ

(E(|u|) + 1) dx

)
(5.20)

for k ≥ 0 and 1
2 ≤ ρ < σ < 1, where κ denotes the constant from the inequality (3.25).

If the assumption (2.10) holds, then we claim that there exists a constant c = c(n, q, L, Q) ≥ 1
such that

ˆ

Bρ

A(|∇(u − k)+|) dx ≤c

(
κq

(σ − ρ)
qn

n−1
J (k,σ )

q
n−1 +

ˆ

Ak,σ

(E(|u|) + 1) dx

)
(5.21)

for k ≥ 0 and 1
2 ≤ ρ < σ < 1, where κ denotes the constant from the inequality (3.27).

We shall first establish the inequalities (5.20) and (5.21) under the assumption (2.11).
Given k ≥ 0 and 1

2 ≤ ρ < σ ≤ 1, let η ∈ W
1,∞
0 (B1) be as in the statement of Lemma 5.1, 

applied with u replaced with (u − k)+. Choose the function ϕ = −ηq(u − k)+ in the definition 
of quasi-minimizer for u. From this definition and the first property in (2.11) one infers that
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ˆ

Ak,σ

f (x,u,∇u)dx ≤ Q

ˆ

Ak,σ

f (x,u + ϕ,∇(u + ϕ)) dx

= Q

ˆ

Ak,σ

f (x,u + ϕ, (1 − ηq)∇u − qηq−1∇η(u − k)) dx

≤ Q

ˆ

Ak,σ

(1 − ηq)f (x,u + ϕ,∇u) + ηqf

(
x,u + ϕ,−q∇η

η
(u − k)

)
dx .

Hence, since 0 ≤ u + ϕ ≤ u on Ak,σ , the second property in (2.11), the upper bound in (2.13), 
and the monotonicity of the function E ensure that

ˆ

Ak,σ

f (x,u,∇u)dx ≤Q

ˆ

Ak,σ

(1 − ηq)
(
Lf (x,u,∇u) + E(u) + L

)

+ ηq

(
B

(
q|∇η|

η
(u − k)

)
+ E(u) + L

)
dx. (5.22)

Inasmuch as 0 ≤ η ≤ 1 and η = 1 in Bρ , the use of the inequality (4.11) on the right-hand side of 
(5.22) yields:

ˆ

Ak,σ

f (x,u,∇u)dx ≤QL

ˆ

Ak,σ \Bρ

f (x,u,∇u)dx + Q

ˆ

Ak,σ

qqB
(|∇η|(u − k)

)
+ E(|u|) + Ldx. (5.23)

Now, suppose that the assumption (2.8) holds. Combining the inequality (5.23) with the estimate 
(5.6) (applied to (u − k)+) tells us that

ˆ

Ak,ρ

f (x,u,∇u)dx ≤QL

ˆ

Ak,σ \Bρ

f (x,u,∇u)dx + cQ�q

(
2κJ (k, σ )

1
n−1

(σ − ρ)
n

n−1

)
J (k,σ )

+ Q

ˆ

Ak,σ

(E(u) + L)dx (5.24)

for some constant c = c(n, q, L) ≥ 1. Observe that in deriving the inequality (5.24), we have 
exploited the inequalities 1

2 ≤ ρ and F((u − k)+, ρ, σ) ≤ J (k, σ).
Adding the expression QL ́ Ak,ρ

f (x, u, ∇u) dx to both sides of the inequality (5.24) and 
using the inequality (5.2) enable one to deduce that

ˆ

A

f (x,u,∇u)dx ≤ QL

QL + 1

ˆ

A

f (x,u,∇u)dx
k,ρ k,σ

83



A. Cianchi and M. Schäffner Journal of Differential Equations 401 (2024) 58–92
+ c

(
�q

(
κJ (k, σ )

1
n−1

)
(σ − ρ)

qn
n−1

J (k,σ ) +
ˆ

Ak,σ

(E(u) + 1) dx

)
,

for some constant c = c(n, q, L, Q) ≥ 1. The estimate (5.20) follows via Lemma 4.4 and the 
lower bound in (2.13).

Assume next that the assumption (2.10) holds. Hence, the full assumption (3.26) holds, thanks 
to equation (4.8). One can start again from (5.23), make use of the inequality (5.8), and argue as 
above to obtain the inequality (5.21). The fact that

1

(σ − ρ)q−1+ q
n−1

≤ 1

(σ − ρ)
qn

n−1
,

since σ − ρ ≤ 1, is relevant in this argument.
It remains to prove the inequalities (5.20) and (5.21) under the alternative structure condition 

(2.12).
Let ϕ be as above, and observe that u +ϕ = ηqk + (1 −ηq)u on Ak,σ . Hence, by the property 

(2.12),

ˆ

Ak,σ

f (x,u,∇u)dx ≤Q

ˆ

Ak,σ

f (x,u + ϕ,∇(u + ϕ)) dx

=Q

ˆ

Ak,σ

f
(
x, (1 − ηq)u + ηqk, (1 − ηq)∇u − qηq−1∇η(u − k)

)
dx

≤Q

ˆ

Ak,σ

(1 − ηq)f (x,u,∇u) + ηqf

(
x, k,−q∇η

η
(u − k)

)
dx.

Thanks to the assumption (2.13) and the monotonicity of E, which guarantees that E(k) ≤ E(u)

in Ak,σ , we obtain that

ˆ

Ak,σ

f (x,u,∇u)dx ≤Q

ˆ

Ak,σ

(1 − ηq)f (x,u,∇u) + ηq

(
L + E(u) + B

(
q|∇η|

η
(u − k)

))
dx.

(5.25)

A replacement of the inequality (5.22) with (5.25) and an analogous argument as above yields 
the same conclusions.

Step 2. One-step improvement.
Let us set

cB = max{κ,1},

where κ denotes a constant, depending only on n, such that the inequality (3.21) holds for every 
r ∈ [ 1 , 1]. We claim that, if h > 0 is such that
2
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cBLJ (h,σ )
1
n ≤ 1, (5.26)

then

J (k,ρ) ≤c

(
1

(σ − ρ)
qn

n−1
+ 1

(k − h)
n

n−1
+ Llog2(

k
k−h

)

)
J (h,σ )1+ 1

n if k > h, (5.27)

for a suitable constant c = c(n, q, L, Q, A) ≥ 1.
To this purpose, fix h > 0 such that the inequality (5.26) holds. We begin by showing that 

there exists a constant c = c(n, L) such that

|Ak,σ | ≤ c
J (h,σ )

n+1
n

(k − h)
n

n−1
if k > h. (5.28)

The inequality (5.28) is a consequence of the following chain:

|Ak,σ |An(k − h) =
ˆ

Ak,σ

An(k − h)dx ≤
ˆ

Ah,σ

An(u − h)dx (5.29)

≤
ˆ

Ah,σ

An

(
cB(u − h)J (h,σ )

1
n

cBJ (h,σ )
1
n

)
dx

≤cBJ (h,σ )
1
n

ˆ

Ah,σ

An

(
u − h

cBJ (h,σ )
1
n

)
dx.

Notice that the last inequality holds thanks to the inequality (3.1), applied with A replaced with 
An, and to the assumption (5.26). Coupling the inequality (5.29) with (3.21) enables us to deduce 
that

|Ak,σ | ≤cBJ (h,σ )
n+1
n

An(k − h)
.

Hence the inequality (5.28) follows, via (4.7).
Next, by the monotonicity of E and the assumption (4.9),

ˆ

Ak,σ

E(u)dx =
ˆ

Ak,σ

E((u − k) + k) dx ≤
ˆ

Ak,σ

E(2(u − k)) + E(2k) dx (5.30)

≤L

ˆ

Ak,σ

E(u − k) + E(k)dx for k > 0.

From the inequality (3.1) applied to An and the assumption (5.26) one infers that
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ˆ

Ak,σ

E(u − k) dx ≤
ˆ

Ah,σ

E(u − h)dx ≤
ˆ

Ah,σ

An(L(u − h)) dx (5.31)

≤cBLJ (h,σ )
1
n

ˆ

Ah,σ

An

(
u − h

cBJ (h,σ )
1
n

)
dx ≤ cBLJ (h,σ )1+ 1

n if k > h.

Owing to the assumption (4.9) and the chain (5.31),

ˆ

Ak,σ

E(k) =E

(
k

k − h
(k − h)

)
|Ak,σ | ≤ E

(
2�log2

k
k−h

�+1(k − h)

)
|Ak,σ | (5.32)

≤Llog2(
k

k−h
)+1E(k − h)|Ak,σ | ≤ Llog2(

k
k−h

)+1
ˆ

Ah,σ

E(u − h)dx

≤Llog2(
k

k−h
)+1cBLJ (h,σ )1+ 1

n if k > h,

where � · � stands for integer part. Combining the inequalities (5.30)–(5.32) yields:

ˆ

Ak,σ

E(u)dx ≤ cLlog2(
k

k−h
)J (h,σ )

n+1
n if k > h, (5.33)

for some constant c = c(n, L).
From this point, the argument slightly differs depending on whether the condition (2.8) or 

(3.26) holds.
Assume first that (2.8) is in force. The assumption (5.26) implies that there exists a constant 

c = c(n, q, L) such that

�q(κJ (k, σ )
1

n−1 ) ≤ cJ (k, σ )
1

n−1 if k > h, (5.34)

where κ is the constant from the inequality (3.25). Making use of the inequalities (5.28), (5.33)
and (5.34) to estimate the right-hand side of (5.20) results in the following bound for its left-hand 
side:

ˆ

Bρ

A(|∇(u − k)+|) dx ≤ c

(
J (h,σ )

n
n−1

(σ − ρ)
qn

n−1
+ J (h,σ )

n+1
n

(k − h)
n

n−1
+ Llog2(

k
k−h

)J (h,σ )
n+1
n

)
(5.35)

≤ c′
(

1

(σ − ρ)
qn

n−1
+ 1

(k − h)
n

n−1
+ Llog2(

k
k−h

)

)
J (h,σ )

n+1
n if k > h,

for suitable constants c = c(n, q, L, Q) ≥ 1 and c′ = c′(n, q, L, Q) ≥ 1. From the inequality 
(4.1) we infer that
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ˆ

Bρ

A((u − k)+) dx ≤
ˆ

Bρ

An((u − k)+) dx + c|Ak,ρ |

≤
ˆ

Bσ

An((u − h)+) dx + c|Ak,σ | if k > h, (5.36)

for some constant c = c(n, A). A combination of the latter inequality with (5.28) and (5.29) tells 
us that

ˆ

Bρ

A((u − k)+) dx ≤ cJ (h,σ )1+ 1
n + c

J (h,σ )1+ 1
n

(k − h)
n

n−1
if k > h, (5.37)

for some constant c = c(n, L, A). Coupling the inequality (5.35) with (5.37) yields (5.27).
Assume now that the condition (3.26) holds. The assumption (5.26) and the inequality q > n

guarantee that there exists a constant c = c(n, q, L) such that

J (k,σ )
q

n−1 ≤ cJ (k, σ )
n+1
n if k > h. (5.38)

From the inequalities (5.28), (5.33) and (5.38) one obtains (5.35) also in this case. The inequality 
(5.27) again follows via (5.35) and (5.37).

Step 3. Iteration.
Given K ≥ 1 and � ∈N ∪ {0}, set

k� = K(1 − 2−(�+1)), σ� = 1

2
+ 1

2�+2 , and J� = J (k�, σ�). (5.39)

Thanks to the inequality (5.27), if � ∈N is such that

cBLJ
1
n

� ≤ 1, (5.40)

then

J�+1 ≤c

(
2�

qn
n−1 + K− n

n−1 2� n
n−1 + L�

)
J

1+ 1
n

� (5.41)

for a suitable constant c = c(n, q, L, Q, A) ≥ 1. Clearly, the inequality (5.41) implies that

J�+1 ≤c22γ �J
1+ 1

n

� , (5.42)

where γ = max{q n
n−1 , log2 L} and c2 = c2(n, q, L, Q, A) ≥ 1 is a suitable constant. Let τ =

τ(n, q, L, Q, A) ∈ (0, 1) be such that

c22γ τ
1
n = 1. (5.43)

Set
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ε0 = min{(cBL)−n, τn}.

We claim that, if

J0 ≤ ε0, (5.44)

then

J� ≤ τ �J0 for every � ∈ N ∪ {0}. (5.45)

We prove this claim by induction. The case � = 0 is trivial. Suppose that the inequality (5.45)
holds for some � ∈N . The assumption (5.44) entails that

cBLJ
1
n

� ≤ cBL(τ�J0)
1
n ≤ cBLε

1
n

0 ≤ 1.

Therefore, thanks to the equations (5.42), (5.45), and (5.43),

J�+1 ≤c22γ �J
1+ 1

n

� ≤ c2(2
γ τ

1
n )�J

1
n

0 (τ �J0) ≤ c1−�
2 ε

1
n

0 τ �J0 ≤ τ �+1J0. (5.46)

Notice that the last inequality holds thanks to the inequalities c2 ≥ 1, � ≥ 1, and ε0 ≤ τn. The 
inequality (5.45), with � replaced with � + 1, follows from (5.46).

Step 4. The assumption (5.44) holds for large K .
Since

J0 = J (K/2,B 3
4
),

the inequality (5.44) will follow, for sufficiently large K , if we show that

lim
k→∞J (k,B 3

4
) = 0. (5.47)

Inasmuch as u ∈ V 1
locK

A(�), from the inclusion (3.20) we infer that limk→∞ |A
k, 3

4
| = 0. Hence, 

the dominated convergence theorem guarantees that

lim
k→∞

ˆ

B 3
4

A(|∇(u − k)+|) dx = lim
k→∞

ˆ

A
k, 3

4

A(|∇(u − k)+|) dx = 0. (5.48)

It thus suffices to show that

lim
k→∞

ˆ

B 3
4

A(|(u − k)+|) dx = 0. (5.49)

To this purpose, note that, by the inequality (4.1) and the monotonicity of An,
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ˆ

B 3
4

A(|(u − k)+|) dx ≤ c|A
k, 3

4
| +

ˆ

B 3
4

An(|(u − k)+|) dx (5.50)

≤ c|A
k, 3

4
| +

ˆ

B 3
4

An

(
2

∣∣∣∣(u − k)+ −
 

B 3
4

(u − k)+dy

∣∣∣∣)dx

+
ˆ

B 3
4

An

(
2

∣∣∣∣  
B 3

4

(u − k)+dy

∣∣∣∣)dx

for some constant c = c(n, A). Moreover,

lim
k→∞A

k, 3
4

= 0,

and

lim
k→∞

ˆ

B 3
4

An

(
2

∣∣∣∣ 
B 3

4

(u − k)+
∣∣∣∣)dx ≤ lim

k→∞|B 3
4
|An

(2‖(u − k)+‖L1(B 3
4
)

|B 3
4
|

)
= 0.

It remains to prove that the second addend on the rightmost side of the chain (5.50) vanishes 
when k → ∞. Thanks to the limit in (5.48), for every δ > 0 there exists kδ ∈ N such that

ˆ

B 3
4

A(|∇(u − k)+|) dx ≤ δ if k ≥ kδ . (5.51)

Choose δ in (5.51) such that 2cBδ
1
n ≤ 1. The property (3.1) applied to An, and the Sobolev-

Poincaré inequality in Orlicz spaces (3.19) applied to the function (u −k)+ ensure that, if k > kδ , 
then

ˆ

B 3
4

An

(
2

∣∣∣∣(u − k)+ −
 

B 3
4

(u − k)+
∣∣∣∣)dx ≤2cBδ

1
n

ˆ

B 3
4

An

( ∣∣(u − k)+ − ffl
B 3

4

(u − k)+dy
∣∣

cB

(´
B 3

4

A(|∇(u − k)+|)dy
) 1

n

)
dx

≤2cBδ
1
n

ˆ

B 3
4

A(|∇(u − k)+|) dx.

Since the last integral tends to 0 as k → ∞, equation (5.49) is established.

Step 5. Conclusion.
The inequality (5.45) tells us that inf�∈N J� = 0. Hence, from the definitions of J� and J (h, σ)

we deduce that
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ˆ

B 1
2

A((u − K)+) dx ≤ J (K,B 1
2
) ≤ inf

�∈N
J� = 0.

Therefore, u ≤ K a.e. in B 1
2
.

In order to prove a parallel lower bound for u, observe that the function −u is a quasimin-
imizer of the functional defined as in (1.1), with the integrand f replaced with the integral f̃
given by

f̃ (x, t, ξ) = f (x,−t,−ξ) for (x, t, ξ) ∈ � ×R×Rn.

The structure conditions (2.11) and (2.12) and the growth condition (2.13) on the function f are 
inherited by the function f̃ . An application of the above argument to the function −u then tells 
us that there exists a constant K ′ > 0 such that −u ≤ K ′ a.e. in B 1

2
. The proof is complete. �
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