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Abstract

The use of mathematical models for analyzing complex biological processes,
including metabolism, signal transduction and gene regulation in mam-
malian cells or bacteria, is a powerful approach to obtain deep systems
understanding. However, this approach is in the need of realistic, predic-
tive mathematical models. During the modeling identification of such com-
plex systems, scientists have to cope with numerous challenges, e.g. limited
knowledge about the underlying mechanisms, lack of sufficient dynamic or
static experimental data, large experimental and biological variability. This
work presents methodological solutions for model identification of (i) ordi-
nary differential equation systems describing dynamic cellular processes and
(ii) large-scale biochemical interaction networks based on high-throughput
data.

The solution to part (i) addresses the problem of robustly designing a dis-
criminative cell stimulus in the presence of distributed model parameters.
Such a robustification of an experimental design is especially important at
the beginning of the model identification phase, since many of the parame-
ters are initially badly constraint, and thus most often lead to highly mis-
specified experiments. Designing an optimal stimulus profile in combination
with parameter uncertainty considerations results in a numerically intense
dynamic optimization problem. Using the sigma point method, a numer-
ically feasible robust open-loop-control method is developed. As is shown
in this work, the developed method is ideally suited for highly nonlinear
models with widely distributed model parameters.

The solution to part (ii) presents the modular identification framework
TRANSWESD (TRANSitive Reduction in WEighted Signed Digraphs),
which is tailored to infer static, large-scale networks from high-throughput
data. Within the scope of this thesis, the framework is developed for gene
network reconstruction based on one-perturbation at a time data. Being
flexible in its design, the reconstruction framework works also on geneti-
cal genomics data, where naturally occurring multifactorial perturbations
(e.g. polymorphisms) in properly controlled and screened genetic crosses
are used to elucidate causal relationships in gene regulatory networks. Al-
though genetical genomics data contain rich information, a clear dissection
of cause and effect is even harder to make compared to one-perturbation at



a time data. Still, as is shown in this work, the reconstruction framework
performs very well on several different kinds of in silico and in vitro data
sets. Following a simple yet effective paradigm, the framework has been
awarded 1st and 3rd place at independent, international and highly com-
petitive method assessment benchmarks. In this way, a simple yet effective
approach is shown to outperform more complex methods with respect to (a)
reconstruction quality (especially for small sample sizes) and (b) applicabil-
ity to high-throughput data, which provides a powerful tool for genome-scale
network reconstruction.



Zusammenfassung

Die Verwendung von mathematischen Modellen für die Analyse komplexer
biologischer Prozesse, einschließlich Metabolismus, Signaltransduktion und
Genregulation in Säugerzellen oder Bakterien, ist ein leistungsfähiger Ansatz,
um ein besseres Systemverständnis zu erhalten. Dieser Ansatz setzt jedoch
das Vorhandensein von prädiktiven Modellen voraus. Um zu einem prädik-
tiven Modell zu gelangen, müssen während der Modellierung solcher kom-
plexen Systeme zahlreiche Herausforderungen wie begrenztes Wissen über
die zugrunde liegenden Mechanismen, Mangel an ausreichend zeitaufgelösten
oder statischen Messdaten, sowie große experimentelle und biologische Vari-
abilität bewältigt werden. Die vorliegende Arbeit liefert methodische Lösun-
gen zur Modellidentifikation von (i) gewöhnlichen Differentialgleichungssys-
temen und (ii) großskaligen, biochemischen Interaktionsnetzwerken.

Die Lösung zu Teil (i) adressiert das Problem des modellgestützten, robusten
Entwurfs von Zellstimuli, welcher verteilte Modellparameter berücksichtigt
und optimale Daten zur Modelldiskriminierung liefern soll. Diese Art der
Robustifizierung eines experimentellen Entwurfes ist insbesondere zu Be-
ginn der Modellidentifikationsphase wichtig, da viele Modellparameter initial
schlecht bestimmt sind, und deshalb häufig zu suboptimalen Experimenten
führen. Der Entwurf von optimalen Stimulusprofilen unter Berücksichtigung
von Modellparameterunsicherheiten mündet in ein numerisch recheninten-
sives, dynamisches Optimierungsproblem. Unter Verwendung von Sigma-
punkten wird in dieser Arbeit eine numerisch stabile und effiziente Methodik
zur dynamischen Optimierung entwickelt, welche den robusten Entwurf von
diskriminierenden Stimulusprofilen erlaubt. Die entwickelte Methodik ist
besonders für komplexe, stark nichtlineare mathematische Modelle mit ver-
teilten Parametern geeignet.

Die Lösung zu Teil (ii) ist ein modularer, methodischer Identifikationsansatz
namens TRANSWESD (TRANSitive Reduction in WEighted Signed Di-
graphs), welcher auf die Identifikation von großskaligen biochemischen In-
teraktionsnetzwerken basierend auf Hochdurchsatzdaten zugeschnitten ist.
Die Methodik wird zu Beginn für die Rekonstruktion von genregulatorischen
Netzwerken auf der Basis von Einfachperturbationsdaten verwendet. Auf-
grund des modularen Konzeptes kann die Rekonstruktionsmethodik nach
Anpassung auch auf genomische Daten mit multifaktoriellen Perturbationen



wie beispielsweise Polymorphismen angewandt werden. Obwohl genomis-
che Daten reichhaltige Interaktionsinformationen enthalten, ist eine klare
Abgrenzung von Ursache und Wirkung noch schwieriger als im Vergleich
zu Einfachperturbationsdaten. Hier erweist sich die entwickelte Methodik
als besonders effektiv. Der entwickelte Identifikationsansatz, welcher dem
Paradigma einfach jedoch effektiv folgt, liefert für verschiedene in silico
und in vitro Datensätze sehr gute Ergebnisse. Bei internationalen, hoch
kompetitiven Rekonstruktionswettbewerben erlangte die Methodik mehrere
Podiumsplätze. Dadurch konnte gezeigt werden, dass ein einfacher Ansatz
komplizierte und rechenintensive Methoden in Bezug auf (a) Rekonstruk-
tionsqualität und (b) Anwendbarkeit auf Hochdurchsatzdaten übertrifft.
Damit stellt die entwickelte Rekonstruktionsmethodik ein leistungsfähiges
Werkzeug für die Analyse von Hochdurchsatzdaten dar.
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Glossary

Roman Symbols

A gene-to-marker association

a a vector

C variance-covariance matrix

Clog estimated variance-covariance matrix
of log-normal PDF

D experimental design

D1 inter-pulse time

D2 (second) pulse dose

dmin threshold for minimal genotypic cor-
relation

E estimated expectation of some PDF

Elog estimated expectation of log-normal
PDF

E set of edges

e edge

eM relative MSE of moment estimate M

Fdf1,df2 F distribution with df1,df2 degrees of
freedom, also F test statistics

f right hand side function of an ODE

G graph

g readout function

g gene

H unit step function

h mapping function

J Jacobi matrix

L linkage map

Ln likelihood for n samples

ln log-likelihood for n samples

L2 space of square-integrable functions

LR likelihood ratio statistics

M statistical moment

m marker

m metabolite

ni integer, used to indicate an amount
for samples, parameters, readouts,
stimuli etc., which are indicated by
the subscript i

O design objective

PΘ probability of the realization θ

p protein

Q indicates the genotype of a
gene/marker

r Pearson correlation coefficient

rQiTj genotype-phenotype Pearson correla-
tion coefficient

S+/− sign label matrix

s sign (+,-)

sM(u(t)) model M for an input function

si scaling parameters in the modeling
application

S sensitivity matrix

t time point vector

T T-criterion for model discrimination

T indicates the expression phenotype
(etrait) of a gene/marker

t time

tQT threshold for genotype-phenotype
Pearson correlation coefficient

U stimulus parameter vector

u vector of stimulus profile(s)

V set of vertices

wij edge weight

W collocation point weighting matrix

X,Y vectors of random variables

x vector of system states, can represent
a realization of the random variable
X
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y vector of system readouts, can repre-
sent a realization of the random vari-
able Y

Greek Symbols

α significance level

β tuning parameter sigma points

δθ relative parameter change

δχ2
df,α χ2 distribution quantile for given

degrees of freedom and significance
level α

∆ij variation measure for a node pair
(i, j)

δ[·] generalized Dirac delta distribution

ε measurement noise as a random vari-
able

ε measurement noise realization of ε

ζ tuning parameter sigma points

η standard deviation scaling factor

Γ weight mapping

θ vector of kinetic model parameters,
may include readout parameters as
well and can also indicate a realiza-
tion of Θ

Θ vector of random variable

κ tuning parameter sigma points

λ lumped tuning parameter sigma
points

µ vector of true mean

µi set of markers linked to marker mi

ξ constant or protein ratio

πi indicator of perturbation direction of
node i, up πi = +1, down πi = −1

ρX(x) PDF of X with realization x

Σ true variance-covariance

Σε diagonal variance-covariance matrix
of the measurement noise

Φ average overlap of Φ(t)

φ sign mapping

Φ(t) general overlap as a function of t

χ2 χ2 distribution, also χ2 test statistics

χ2
B Bartlett’s χ2 test statistics

χ2
n residual sum of squares, n indicates

the number of samples

ψ tuning parameter to control overall
association strength of a path

Superscripts

† optimal

* indicates a true value

p positive, real-valued weighting factor
in Φ, not to be confused with a p-
value

T transpose

Subscripts

0 initial value

f final value

exp experiment

i, j, k, l, q enumerates a quantity

PL profile likelihood

sim simulation

s, k, t sign labels

TR transitive reduction

Other Symbols

·̂ estimated value of ·

·̃ indicates a different entity of ·

Ai generic set as a subset of the real val-
ued vector space Rni

D experimental design region

E PDF estimation method

F parameterization of error variance

L linearization estimate

M place holder for a generic model, also
used as model index

MC Monte Carlo estimate

N(µ,C) multivariate Normal distribution
with mean vector µ and variance-
covariance matrix C

R+ one-dimensional vector space over
the field of positive real numbers
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Rn n-dimensional vector space over the
field of real numbers

〈S〉 mean model prediction variance-
entropy

S sigma point estimate

T time point design region

U stimulus design region

〈V 〉 mean model prediction variance

Y readout design region

Abbreviations

AD Anderson-Darling

AIC Akaike’s information criterion

AIL advanced intercross line

aNHEJ alternative non-homologous end join-
ing

ANOVA analysis of variance

ATM protein kinase ataxia telangiectasia
mutated

ATM-P phosphorylated protein kinase ataxia
telangiectasia mutated

ATR ataxia telangiectasia and Rad3-
related

AUPR area under the precision-recall curve

AUROC area under the receiver operating
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CMA-ES Covariance Matrix Adaptation Evo-
lutionary Strategy

cNHEJ classical non-homologous end joining

COV covariance terms of C

CRα confidence region at significance α
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cri,α mapping into a confidence interval at
significance α

CSS chromosome substitution strain
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DNA-PKcs DNA-dependent protein kinase, cat-
alytic subunit
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eQTL expression-QTL

FIM Fisher information matrix
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1

Introduction

1.1 Aim of this work

Nature with all its secrets has fascinated human perception since the beginning of night
and day. Secrets that lie ahead of, between and beyond ameba and man have been,
still are and will always be the source of our wondering. How poor is a world without
secrets? Yet the journey of understanding has brought us a long way on diverse fields of
investigations. This thesis humbly tries to support the understanding of living systems
by contributing methodological solutions to problems arising in mathematical model
identification.

A mathematical or computational model is a generic, well-established tool for ana-
lyzing complex natural processes. Often, these processes are based on many elementary
interaction mechanisms where complex phenomena emerge from coupling of such to
form a large interaction network. Such emergence can often only be understood with
the help of mathematical models. As for instance in climate research, mathematical
models of climate shaping processes allow simulating the dynamics of certain model
states (associated to real world entities) to, for instance, judge the influence of the trend
winds on the Baltic Sea level via global warming effects. In this way, system states that
are not directly accessible at any place and time (e.g. salinity or temperature of the
oceans) can be visualized and understood. Mathematical models of the earth’s climate
are further used to interpret its past based on ice core or sedimentary data. Model
predictions on different scenarios of control policies serve to find best action choices for
policy makers for reaching a predefined target, e.g. the 2◦ C goal (Parry et al., 2009).

Moving on to the focus of this work, that is model-based analysis and design of
biochemical systems, we are facing challenges that arise from emergent biological com-
plexity, from often only vaguely known elementary biological interaction mechanisms
paired with inherent biological variability and tricky experimental procedures. Still,
the strength of combining mathematical models and biology to an interdisciplinary and
integrative research approach - often referred to as systems biology - lies in synergist
effects for a better understanding of biological functioning as a result of more or less

1



1. INTRODUCTION

effortless in silico experiments via simulation and prediction of system states. In this
way, biological states, which are hard to measure in vitro, can be simulated for arbi-
trary biological scenarios, thus allowing analysis and design of targeted manipulation
strategies. To name a few examples: The urge of new scientific insights to understand
function and dysfunction of biological processes in a world with an aging population, to
ultimately provide biomedical solutions for advanced model-based understanding of dia-
betes. Models of diabetes that account for patient specific factors bear a huge potential
for designing individualized insulin therapies, reducing unwanted side effects (Hovorka
et al., 2004; Nucci & Cobelli, 2000; Pollard Jr et al., 2005). Thinking bigger and be-
yond engineering a personalized drug or therapy, understanding of biochemical systems
provides the basis for rational design of biochemical production processes. Driven by
the shift from fossil to renewable biomass feedstock, the emerging economy of microbial
production is in the need of sophisticated tools for engineering efficient and sustainable
technologies that transform biomass into chemicals, material and electricity (Dishisha,
2013). Although microorganisms can generate an amazingly diverse plethora of valuable
products interesting for pharmaceutical and industrial production, they often come at
very low yield. Here, a mathematical model of the metabolism of a microbial organism
(e.g. Saccharomyces cerevisiae and Escherischia coli), can serve as a basis for engineer-
ing suitable variants of this organism (=strain design) that has an enhanced product
yield or altered product spectrum (Gruchattka et al., 2013). In this way, old-fashioned
biotechnology is transformed into a biochemical engineering approach, which builds on
rational biochemical systems design for innovative, resource-efficient solutions to a sus-
tainable future of our globe. The approach of systems biology is thus inverted, from
understanding biological functioning to intelligent redesign and creation of new biology.

Despite its power, model-based analysis is in the need of a realistic model, i.e. a
model that adequately describes data of the true system. This is where the challenge
of any model-based approach lies - the generation of a predictive (=realistic) model.
Biological systems are inherently diverse and complex. Parametric models thereof are
thus often nonlinear mathematical expressions, which typically outnumber the amount
of data to a huge extent. This is also referred to as the curse of dimensionality (Bellman,
1957) and most often leads to parameter identifiability problems. Additional to identi-
fiability problems, natural biologic variability, experimental variations and limitations
directly result in distributed parameters, which must be accounted for to not render
model predictions questionable. Therefore, sophisticated theoretical tools are needed
for generating and analyzing mathematical models of biological processes. Otherwise it
is virtually pointless to put biology into equations. In Fig. 1.1 the engineering view of
a biological system (here thought of as a cell) is presented, which is commonly taken
in computational biology and in this thesis as well. Most often, biological systems are
abstracted in terms of biochemical interaction networks, neglecting physical processes
like diffusion or convection when it comes to modeling. From a high level point of view,
the cell is viewed as a processing unit, taking inputs, which are processed and converted
into proper cellular responses, including signals, products and phenotypes (s. Fig. 1.1).
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1.2 Thesis Guide

The thesis is centered around two research foci, (i) optimized data generation including
model-based experimental design, and (ii) high-throughput data analysis. Research fo-
cus (i) addresses the following questions that arise during model identification supported
by experimental design:

1. Given data and a set of competing plausible models, which one to select for model-
based analysis, prediction and design?

2. How to design stimulus experiments, which generate optimal data with respect to
model selection, even though model parameters are highly uncertain?

Within research focus (ii) the following questions are addressed:

1. Given high-throughput data, how to derive an interaction structure?

2. How to deal with the problem of many interactions between biochemical players
but few data samples, i.e. nnetwork nodes � nsamples?

Within the scope of (i) a new experimental stimulus design approach is presented, which
optimizes experiments and thus data for identifying complex, nonlinear dynamic mod-
els in the form of ordinary differential equations (ODEs) describing dynamic biological
processes. The advantage of this approach is a numerically efficient consideration of dis-
tributed model parameters, which allows robustifying the experimental design. Regard-
ing research focus (ii), a methodology for identifying large-scale structures of biochem-
ical reaction networks for given high-throughput data is presented. This methodology
provides a solution to the curse of dimensionality, i.e. few data but many parameters.
Ultimately, both research foci provide solutions to biological model identification. In
the lower part of Fig. 1.1, the modeling challenges that motivated the contributions of
this thesis are put into perspective of the biological system abstraction.

According to the research foci, the thesis is structured into two parts. Part (i) starts
with a recall of statistical methods for identifying computational models of complex
biological system (Ch. 2). The recall includes a brief discussion on dynamic modeling
based on ODEs in the light of distributed determinism, parameter inference, parame-
ter identifiability analysis and model selection. A sound basis of inference methods is
important given the setting of few data but many parameters. Here, parameter iden-
tifiability analysis has proven to be an important tool to asses the predictive power of
a computational model. The methodological introduction is intended to provide the
fundamentals of statistical ODE model identification for complex, nonlinear systems.
With the methodological fundamentals in mind, the concepts of optimal experimental
design (OED) are presented in the last part of Ch. 2.

In Ch. 3 a methodology for designing an experiment aimed at model discrimina-
tion in the presence of distributed model parameters is introduced. The method is
benchmarked on in silico data. The chapter, and thus part (i) of the thesis, is closed
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1.2 Thesis Guide

by illustrating the entire process of model identification, including the application of
the robust OED method. Within this application the identified dynamic model that
describes DNA damage detection signaling upon ionizing irradiation is analyzed and
verifiable predictions are given.

Part (ii) of the thesis starts with a methodological survey on large-scale reconstruc-
tion of biochemical reaction networks (Ch. 4). The focus is put on gene regulatory
network and it is briefly discussed how to interpret such interaction graphs.

In Ch. 5 TRANSWESD (TRANSitive Reduction in WEighted Signed Digraphs),
a methodology for reconstructing biochemical reaction networks is presented. Applica-
tions of TRANSWESD to in silico and in vitro data sets are also presented. Finally, in
Ch. 6 the achievements of the thesis are summarized and an outlook on further devel-
opments is given. Used abbreviations are always explained in the text, but can also be
found in the glossary. Further, bold letters are used to indicate vectors and matrices.
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2

Methods for identifying dynamic
models of biochemical reaction
systems

From step to jump, from jump to flight.

Otto Lilienthal’s† 1896 strategy to become
pioneer in gliding flights.

In this chapter a survey on essential methods used in modeling dynamic systems
with ordinary differential equations is given. It should serve as a hands-on guide for be-
ginners new to the field of modeling dynamic biological systems and is thus not intended
as a comprehensive review on dynamic modeling. The presentation focuses on impor-
tant, well-established but also recent approaches, which are indispensable for inferring
predictive, dynamic models of biological systems. Surfacing challenges for nonlinear
model identifications are discussed and recent solutions to some of these challenges are
presented. The experienced reader may skip this chapter and move directly to the next
one, where a methodological contribution within the field of optimal experimental de-
sign is presented. Comprehensive presentations on classical model identification topics
can be found in excellent textbooks including Box et al. (2005); Himmelblau (1970);
Seber & Wild (2003); Walter & Pronzato (1997).

2.1 Dynamic modeling of biochemical reaction systems

This section is partially taken and adapted from Secs. 2.1-2.2 of Flassig & Sundmacher
(2012b).

Ordinary differential equations provide the modeling basis to describe the dynamics
of biochemical reaction networks. The dynamics of the internal states x(t,u(t),θx) ∈

7
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Ax ⊂ Rnx , e.g. protein concentrations, is thus determined by the solution of an initial
value problem of the form

d

dt
x(t) = f(x(t),u(t),θx), (2.1)

with initial system states x(t0) = x0 and right hand side function f(x(t),u(t),θx)

describing biological interaction mechanisms, which depends on the system states x(t),
(multiple) inputs u(t) (=stimulus) and kinetic parameter set θx. Assuming f to be
Lipschitz in x(t), u(t) and continuous in t, the readout variables are determined by

y(t,θ) = g(x(t,θx),θy), (2.2)

where the function g - assumed to be sufficiently smooth - relates the internal system
states to the readouts of the experiment with corresponding readout parameters θy,
which together with dynamic parameters and initial conditions are merged into the
model parameter vector θ = [θx,θy]T, with redefined dynamic parameter vector θx ≡
[θx,x0]T. The dynamic model defined by Eqs. (2.1,2.2) can be understood as a time-
dependent mapping from the model parameter space Aθx × Aθy = Aθ ⊂ Rnθ to the
model output space Ay ⊂ Rny ,

h : R× Aθ → Ay (2.3)
(t,θ) 7→ h(t,θ) = y(t,θ). (2.4)

Although biological systems might follow deterministic rules, repeated measure-
ments, even though with very accurate measurement techniques, will yield different
results. The reasons for that are manifold. Additionally to unavoidable measurement
errors, biologic variability, i.e. systems with intrinsically distributed parameters, can
induce a large spread in the transient dynamics and stationary behavior. In case of the
existence of multiple steady states this spreading effect might even be more pronounced.
Varying parameters during the measuring procedure and local parameter perturbations
by non-stationary noise also contribute to a distributed measurement signal, (Lorenz,
2006; Lorenz et al., 2007). Complex, nonlinear models of biological systems might also
behave chaotic, further contributing to distributed response measurements. Thus, the
conventional sharp and deterministic system representation needs to be extended by
the notion of distributed determinism, i.e. although the system might completely be
deterministic, its perceived signals are distributed realizations of the underlying de-
terministic mechanisms. This can be done by considering the parameters, and hence,
internal states and model responses as random variables Θ, X and Y, respectively, each
characterized by a probability distribution function (PDF). Within this interpretation,
the system and hence the model is assumed to naturally possess distributed parameters.
Consequently, a distributed response is not solely explained by additive measurement
noise and limited quality of the data but also by other sources of variations, which may
be represented by distributed model parameter sets. Measurement noise is then also
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2.2 Parameter inference

described by a distributed readout parameter, and therefore not explicitly stated in Eq.
(2.2).

Let the model parameters be distributed according to some well-defined PDF ρΘ(θ),
with θ ∈ AΘ being a realization of Θ. The PDF of the random model response Y at
time t can be derived from the normalized integral over all possible parameter and
corresponding response realizations, weighted with the parameter PDF, i.e.

ρY(y, t) =
%Y(y, t)

‖%Y(y, t)‖1
, (2.5)

with
%Y(y, t) =

∫
AΘ

δ[h(t,θ)− y]ρΘ(θ)dθ, (2.6)

where δ[·] represents the generalized Dirac delta distribution (Au & Tam, 1999). The
normalization employs the L1-norm with respect to y ∈ AY. Note that y represents
an arbitrary realization of Y in AY, whereas h(t,θ) describes the model response at
time t for fixed stimulus time course(s) u(t0 → t) and given parameter realization θ.
Consequently, for every single point in time, the shape of Eq. (2.5) is determined by
the parameter PDF, choice of model, Eqs. (2.1,2.2) and stimulus time course. This fact
can be used to ground experimental design on the model response PDF. In doing so,
such an experimental design is robustified accounting for variabilities in the parameters
and model specific mapping of the parameter PDF to the response space in terms of
model response PDF. A key challenge within this robust approach is the derivation of
the response PDF. In Chapter 3 linearization and sigma point methods are introduced
within the scope of robust discriminative stimulus design and compared against Monte
Carlo simulations. As will be seen, all three methods represent different approaches for
estimating Eq. (2.5) in the case of non-closed form expressions of the integral in Eq.
(2.6).

2.2 Parameter inference

Parameter inference - sometimes referred to as model calibration - is a necessary step for
model identification and model-based prediction. In the model mapping interpretation
of the previous section, Eq. (2.4), parameter inference is the inversion of such, subjected
to optimality constraints. Thus, in line with what has been pointed out in Kreutz
(2011), parameter inference represents a prediction of Θ given model and data Y,
which has to be quantified regarding predictive power, e.g. in terms of confidence
intervals. In contrast to parameter estimation of linear models, calibrating ODE models
of biochemical reaction networks is a delicate task. This is on the one hand due to the
inherently nonlinear character of this model class. For instance, even the solution x(t)

to the simplest ODE model describing a protein degradation process via dx
dt = −θx is

highly nonlinear with respect to the parameter θ. On the other hand, experimental data
tend to be scarce in comparison to the number of model parameters including initial
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conditions, reaction rate constants and scaling parameters, which is typical of the order
of 10 to 100 for small models of for instance cell signaling. On genome scale, one is
very quickly well above orders of O(104), and until now, dynamic modeling on this scale
seems hopeless, in contrast to structural approaches (Ch. 5).

Classical approaches for quantifying the quality of the parameter estimates in form of
confidence intervals may work on ODE models, but often fail owing to the requirement
of linearity in combination with small sample sizes and high dimensional parameter
spaces. It is thus of utmost importance to have sophisticated parameter estimation
methods at hand, which efficiently quantify uncertainties of parameter estimates and
reversely allow a numerically feasible mapping of uncertainties from the parameter to
the model response space.

ODE models of dynamic biological processes can be regarded as meta-mechanistic.
Besides describing direct physical interactions, they most often track flow of information.
As an example: although posttranslational modifications of proteins can be measured,
the direct physical interactions and potential mediators are often unknown. As a con-
sequence, sheer parameter values of (lumped) kinetics are not that much of interest.
What is more interesting is whether the parameters of a given model are identifiable.
Because then, model predictions can serve the purpose of supporting experimental anal-
ysis by looking deeper into the system’s details. Of course under the premise that the
model structure is correct, which can be partially explored by discriminating amongst
plausible models.

In the following, approaches for parameter estimation, quantifying parameter un-
certainties and identifiability owing to limited information from measurements are dis-
cussed. Intrinsic parameter variability is excluded for ease of presentation. Noting that
intrinsically distributed parameters may be thought of as hyper-parameters (=param-
eter PDFs), these concepts can also be applied to intrinsically distributed parameters.

2.2.1 Maximum likelihood

This subsection follows the presentation of Wasserman (2004) to outline the maximum
likelihood approach in general, which will be of later use in this chapter. For con-
venience, a single response at one time point as well as a one-dimensional parameter
space is discussed, extension of this discussion to the multidimensional case (several
readouts, time points and parameters) is an exercise of indexing, but straightforward.
Given samples y1, . . . , yn (=measurements including repetitions) of a studied system
and some parametric model M = {ρY (y; θ), θ ∈ AΘ} that is assumed to describe the
studied system, maximum likelihood seeks for the model parameter which most likely
generated the given samples. For this purpose, the likelihood

Ln(θ) =
n∏
i=1

ρY (yi; θ), (2.7)
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or log-likelihood

ln(θ) = log(Ln(θ)) (2.8)

is maximized with respect to the parameters. As can be seen in Eq. (2.7), the likeli-
hood is the joint probability of the data, but it is treated as a function of the model
parameter Ln : θ → [0,∞). In general, Ln(θ) is not normalized with respect to θ, i.e.∫

AΘ
Ln(θ)dθ 6=

i.g.
1. The maximum likelihood estimator (MLE) θ̂n is the parameter value

that maximizes the likelihood. Since the logarithm is a monotonic function, the MLE
of the likelihood is equivalent to the MLE of the log-likelihood. Working with the log-
likelihood is convenient in the case of y1, . . . , yn being normally distributed. Then, the
log-likelihood ln(θ) is proportional to the standardized residual sum of squares χ2

n(θ),
and least-squares estimation is equivalent to maximum likelihood estimation. In detail,
if y1, . . . , yn ∝ N(µY , σ

2
Y ) and M = {ρY (y; θ) = N(µ, σ2

Y ), θ = µ ∈ Θ}, i.e. the exact
PDF of the sample generating system as well as the variance is known, the likelihood
and log-likelihood read

Ln(µ) =
n∏
i=1

1√
2πσ2

Y

exp

(
−(yi − µ)2

2σ2
Y

)
, (2.9)

ln(µ) =
n∑
i=1

−1

2
log(2π)− 1

2
log(σ2

Y )− (yi − µ)2

2σ2
Y

, (2.10)

which can be related to the residual sum of squares

χ2
n(µ) =

n∑
i=1

(yi − µ)2

σ2
Y

= const.− 2ln(µ). (2.11)

Only the last term depends on µ, and therefore minimizing χ2
n(µ) with respect to

µ is equivalent to maximizing ln(µ). The MLE estimator properties are consistency,
functional invariance and asymptotic normality. For details see Wasserman (2004).

MLEs of ODE model parameters are most commonly obtained by assuming that
the error on the data yi, exp is normally distributed with known error variance σ2

i, exp.
Then, the MLE is obtained by minimizing the residual sum of squares

θ̂ = arg min
θ∈AΘ

χ2(θ) (2.12)

= arg min
θ∈AΘ

n∑
i=1

(yi, exp − yi,sim(θ))2

σ2
i, exp

, (2.13)

where the subscript for the number of total measurements n of the MLE is dropped.
In case of unknown error variance, one has to maximize l(θ̃), with θ̃ = (θ, σ1, . . . , σn),
where the error variance can be estimated from a parameterized error model σi, exp =

F(yi(θ), θF). Minimization of the residual sum of squares (Eq. (2.13)) is the most
frequently used objective in parameter estimation.
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2.2.2 Confidence intervals

Confidence intervals or, more generally, regions are used to quantify predictions (e.g.
parameters) with respect to type 1 errors at a given confidence level giving a feeling on
the prediction quality. For a given structurally identifiable model in the light of data,
confidence regions result from limited information content owing to limited measurement
capabilities including sampling granularity, experimental noise or number of different
readouts. For proper statistical analysis, systematic errors and/or confounding effects
are to be eliminated and structural identifiability has to be ensured by the experimental
design. Then, a consistent estimate is possible; meaning that estimates tend to their
true values, see e.g. Walter & Pronzato (1997). According to Donaldson & Schnabel
(1987), a general definition for a joint confidence region CR for a parameter estimate θ̂
at 1− α confidence level, α ∈ [0, 1] ⊂ R+, can be stated by using the mapping

crα :AY → AΘ = a region in RnΘ (2.14)
Y 7→ crα(Y) = Θ, (2.15)

that satisfies
PΘ(θ ∈ crα(Y)) ≥ 1− α. (2.16)

Here, crα represents the (non)linear transformation from the random variable Y to
the random variable Θ via a parameter estimation procedure. PΘ is the probability of
realization θ. In linear regression, the mapping crα corresponds to the normal equations.
Equivalently, a confidence interval CRi for parameter estimate θ̂i can be defined by the
mapping

cri,α :AY → AΘi = an interval in R (2.17)
Y 7→ cri,α(Y) = Θi, (2.18)

that satisfies
PΘi(θi ∈ cri,α(Y)) ≥ 1− α. (2.19)

Assuming that Y and its transformed form Θ = crα(Y) can be represented by
some PDF, say ρY(y) and ρΘ(θ), a confidence region of θ̂ ∈ AΘ can be constructed by
determining the integration domain ÃΘ that satisfies

∫
ÃΘ∈CRα ρΘ(θ)dθ = 1− α, which

is equivalent to inverting the corresponding parameter CDF to find the 1−α confidence
quantiles. However for nonlinear models, closed form expressions for the parameter
PDF are usually not at hand. Therefore one is left to either construct a parameter PDF
or corresponding percentiles of the parameter PDF via appropriate sampling and/or
approximations of crα(Y). There are, however, three main challenges: (i) sampling
strategies have to cope with the curse of dimensionality of the parameter space, (ii)
approximations of crα(Y) face problems that arise from the nonlinear character of the
transformation and (iii) dimensions of parameter and response space rarely coincide,
resulting in under- or overdetermination of the image or pre-image speaking in the
mapping interpretation of parameter inference, which is related to the identifiability of
a prediction (e.g. parameter).
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Note on confidence intervals By reconstructing a parameter PDF or percentiles
thereof, it is not possible to measure the distance between estimated and (unknown) true
parameter. What is meant here is the distance between best estimate and alternative
estimates. The assumption then made is, that the distribution of distance between best
and alternative estimates corresponds to the distribution of the distances between true
parameter and best estimates (Press et al., 1989). Constructed confidence regions thus
correspond to observed ones, which for large numbers of observations converge to the
true confidence regions, given the model is correct and constructed confidence regions
are exact and not approximates. From a frequentist point of view, true parameters
are thought to be constant and confidence intervals quantify type 1 errors for a given
level of confidence with respect to their estimates. From a Bayesian point of view,
confidence intervals represent probability statements with respect to the parameters,
i.e. parameters are thought to be distributed (Louis & Carlin, 2000).

Linear approximation It is instructive to start with confidence regions for linear,
dynamic models in the form

y(ti,θ) = y(ti, θ̂) + J(ti, θ̂)(θ − θ̂) + εi (2.20)

with additive, white measurement noise ε ∝ N(0,Σε) and matrix J (suggestive for
Jacobian) one has from linear least squares theory (Donaldson & Schnabel, 1987; Seber
& Wild, 2003; Wasserman, 2004)

(θ̂ − θ) ∝ N(0,CΘ(Σεi)). (2.21)

The corresponding confidence region represents an ellipsoid and can be derived in closed
form,

CRα =
{
θ : (θ̂ − θ)TCΘ(Σεi)(θ̂ − θ) ≤ nθFnθ ,ny−nθ,1−α

}
. (2.22)

For each parameter one has the confidence interval

CRi,α =
(
θ̂i − zα/2

√
[CΘ(Σεi)]ii, θ̂i + zα/2

√
[CΘ(Σεi)]ii

)
, (2.23)

with zα/2 being the (1 − α/2) percentile of the standard Normal distribution. If the
variance of the noise is estimated rather than known, Student’s t-distribution is used
instead of the standard Normal distribution. The parameter covariance matrixCΘ(Σεi)

is given by
CΘ(Σεi) = FIM−1, (2.24)

with Fisher information matrix FIM =
∑

ti
J(ti, θ̂)T[Σεi ]

−1J(ti, θ̂). The FIM corre-
sponds to XT(Σε)

−1X for linear regression models. For clearance, X is given in the
conventional nomenclature of linear regression, representing factors. Here, it does not
represent a random state variable.
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Confidence regions for nonlinear models can be constructed by linearizing the model
output. Here it is assumed that variations in the model output owing to parameter
variations can be approximated by

yL(ti,θ) ≈ y(ti, θ̂) + J(ti, θ̂)(θ − θ̂) + εi, (2.25)

for ODEs, the Jacobian J can be derived by solving the sensitivity equations as described
in Sec. 3.2.1. Then, results from linear regression theory apply and the confidence
region/intervals are given by Eqs. (2.22), (2.23), whereas the variance-covariance matrix
is approximated by the Cramer-Rao inequality

CΘ(Σεi) ≥
∂E[θ̂]

∂θ
FIM−1∂E[θ̂]

∂θ

T

(2.26)

assuming additive, white noise ε ∝ N(0,Σε) and appropriate regularity conditions
to hold (Kay, 1993; Seber & Wild, 2003). If the parameter estimate is additionally
unbiased, i.e. E[θ̂] = θ̂, one has

CΘ(Σεi) ≥ FIM−1, (2.27)

an ideal lower bound for the parameter variance-covariance matrix. Depending on the
nonlinearity, confidence regions based on this linear approximation are strong over- or
underestimations, for instance in case of small ∂E[θ̂]

∂θ (see Schenkendorf et al. (2009) for
an example).

Asymptotics Asymptotic confidence regions can be constructed by using the asymp-
totic properties of the MLE. For an MLE one has (θ̂ − θ) ∝ N(0,CΘ). The variance-
covariance matrix of the parameters is given by (Donaldson & Schnabel, 1987; Wasser-
man, 2004)

CΘ =

(
−E

[
∂2l(θ)

∂θi∂θj

])−1 εi∝N(0,Σεi )

↓
= FIM−1. (2.28)

The confidence region is again given by Eq. (2.22). As is indicated in Eq. (2.28),
asymptotically both confidence regions are equivalent for nonlinear models. For linear
models, they are equivalent. For small sample size, however, estimated confidence
regions might differ significantly since Eq. (2.28) comprises second order derivatives of
the model output with respect to the parameters (Seber & Wild, 2003). In Donaldson
& Schnabel (1987) it is argued that the simplest approximation via FIM seems often
the most appropriate choice given estimation accuracy, numerical effort and stability.
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Likelihood Based on the likelihood, an exact confidence region can be defined ac-
cording to (Seber & Wild, 2003)

CRα = {θ : Ln(θ) ≤ ξ Ln(θ̂)}, (2.29)

and likewise the confidence interval

CRi,α = {θi : Ln(θi) ≤ ξ Ln(θ̂i)}, (2.30)

where ξ > 1 represents some constant of statistical significance. This definition is
simply the inversion of the likelihood ratio test. Depending on the number of data and
available knowledge about noise realization, a statistically significant value for ξ can be
derived, e.g. based on F or χ2 statistics (Walter & Pronzato, 1997). Since in general
the likelihood function is not given in closed form, several Monte Carlo and bootstrap
based methods exist to derive likelihood-based confidence regions (Efron, 1987; Gilks
et al., 1996).

Another elegant concept, which is related to likelihood-based confidence regions,
is based on the profile likelihood. Profile likelihood-based confidence intervals are
grounded on marginalized likelihoods subjected to the constraint of maximizing the
likelihood. Once determined, the profile likelihood can also be used for parameter iden-
tifiability analysis (Sec. 2.2.3), model prediction uncertainty estimation (Sec. 3.5, Flas-
sig et al. (2014)) and experimental design (Raue et al., 2009). The profile likelihood and
confidence regions are determined as follows: Starting from additive, white noise, the
weighted residual sum of squares (Eq. 2.11) can be used to construct likelihood-based
confidence intervals according to

CRα{θi : χ2(θi)− χ2(θ̂i) ≤ δχ2
df,α}, (2.31)

with δχ2
df,α being the α quantile of the χ2 distribution for df degrees of freedom. Point-

wise confidence intervals are obtained by df = 1, simultaneous ones via df = nθ (Meeker
& Escobar, 1995; Royston, 2007). Importantly here to notice, parameter dependencies
are neglected. In contrast, the profile likelihood uses the following modification, which
allows projecting the entire likelihood information of the high dimensional parameter
space onto one parameter coordinate, treating the remaining parameters as nuisance
parameters but accounting for parameter interdependencies via

χ2(θi)PL = min
θi 6=j∈AΘ

χ2(θ). (2.32)

Here χ2(θi)PL of parameter θi represents values of the smallest residual sum of squares
(=largest likelihood levels) when moving θi away from θ̂i. Then, profile likelihood-based
confidence intervals correspond to Eq. (2.31), with χ2(·) being replaced by χ2

PL(·)
(Royston, 2007). Royston (2007) illustrated, that in the small sample case, profile
likelihood-based confidence regions have better coverage range than asymptotic-based
ones. This results from the fact that likelihood ratio statistic converges faster to its
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asymptotic χ2 distribution than the equivalent Wald statistic (Royston, 2007; Wald,
1943). Likewise for the log-likelihood and weighted residual sum of squares in case of
standard conditions to hold. It is important to note that often and especially in the
small sample case the residual sum of squares Eq. (2.11) needs not to follow a χ2

distribution. Regarding confidence intervals, it is then necessary to numerically derive
the distribution of Eq. (2.11) - see next paragraph for possible approaches - and adjust
the threshold parameter accordingly.

Sample-based approach Sample-based approaches repeat the parameter estimation
procedure several times. From the resulting set of parameter estimates, a joint or
marginal parameter PDF as well as percentiles may be constructed. Simple Monte
Carlo based approaches simulate the model for a sufficiently large set of independent and
identically distributed parameter samples. Then, for each of the simulation realizations
a new parameter estimation is performed. Based on the resulting population of best
estimates, a confidence region can then be constructed (Geyer, 2010; Louis & Carlin,
2000).

Bootstrapping is an alternative to Monte Carlo, which replaces the initial simulation
step via bootstrapping the data itself (Diciccio & Tibshirani, 1987; Efron, 1987). Here
pseudo data are generated from the original data by drawing samples from the original
data set with equal probability and replacement. Then, for each bootstrap sample a pa-
rameter estimate is derived resulting in a population of best parameter estimates, which
again represent the parameter PDF. Markov chain Monte Carlo (MCMC) methods have
become very popular over the last years, as they allow drawing correlated samples - thus
increasing convergence compared to simple MC approaches - from an arbitrary PDF
to learn a Markov chain, which represents the parameter PDF by its stationary dis-
tribution (Geyer, 2010; Louis & Carlin, 2000). One might also use the deterministic
sigma point method, as illustrated in Schenkendorf et al. (2009). Here, deterministically
chosen samples from the data are transformed by the parameter estimation and used to
derive an expected parameter estimate and corresponding confidence interval, including
information on the bias of the estimate. The sigma point method was also used in this
thesis to design robust discrimination experiments as is discussed in detail in Sec. 3.2.2.

2.2.3 Parameter identifiability

When it comes to model predictions on internal dynamics, or domains beyond data
coverage, model identifiability is of crucial importance. Model identifiability analysis
investigates whether a model parameter can be uniquely determined based on a given
input-output setting. It is often referred to as parameter identifiability analysis. In an
idealized setting, where the model M(θ) corresponds to the data generating process in
addition to assuming perfect measurement conditions, i.e. no noise, free choice of input
and measurement time points, a definition for structural identifiability can be given as
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follows. A model M(θ) with output y(t,θ,u) is uniquely identifiable at θ∗ (true value),
if there is only one solution to the equation

y(t, θ̂,u) = y(t,θ∗,u), ∀ t ∈ R+, ∀u ∈ Au and θ̂ ∈ AΘ, (2.33)

namely θ̂ = θ∗. Because the true value is rarely known, structural identifiability has
either a global or local character. In the later case, there exists a countable set of
solutions θ̂ to Eq. (2.33), which ensures that a neighborhood around θ∗ can be defined,
in which θ̂ is unique (Walter & Pronzato, 1997). For non-identifiable parameters, there
exists an uncountable set of parameters, which yield the same model input-output
behavior, whereas predictions on internal states - states that are not directly observed
- may be completely different.

Consequently, such an identifiability analysis has two obvious reasons. First, non-
identifiable parameters hint at a necessary re-design of the applied or envisioned input-
output setup. If this is not possible a model re-parameterization can resolve non-
identifiabilities, or at last, an exclusion of non-identifiable parameters from the param-
eter estimation procedure avoids poor convergence of the parameter estimation proce-
dure. A second reason results from the purpose of modeling. Model-based predictions
on internal states that are related to non-identifiable parameters have to be considered
with care. Further, non-identifiabilities can be resolved by accounting for parameter
constraints, e.g. by imposing the Wegscheider condition for a thermodynamic con-
sistent model calibration (Ederer & Gilles, 2007; Jenkinson & Goutsias, 2011) or by
parameterizing the model in a thermodynamic safe way (Liebermeister & Klipp, 2006;
Liebermeister et al., 2010).

There exist several approaches for identifiability analysis, which can be classified
into theoretical (structural, a priori) and practical (a posterior) identifiability analy-
sis. Theoretical identifiability analysis serves the aforementioned first reason, whereas
practical identifiability analysis is mainly used to address the second reason in the light
of data. Theoretical identifiability analysis is solely based on structural properties of
a given model, trying to clarify the uniqueness of a parameter set as defined in Eq.
(2.33). Approaches include Laplace transform (Bellman & Astroem, 1970), Taylor/Lie
series (Pohjanpalo, 1978), similarity transformations and differential algebra approaches
(Bellu et al., 2007; Sedoglavic, 2002). Here, the right choice of method is not straight
forward and heavily depends on model size, complexity and degree of nonlinearity. Dur-
ing my Ph.D. work, we have been testing software packages provided by Bellu et al.
(2007); Sedoglavic (2002) within the scope of ODE modeling in Flassig & Sundmacher
(2012b) and a student research project by Katja Tummler (Tummler, 2010). Whereas
the method from Bellu et al. (2007) - implemented in the computer algebra system RE-
DUCE (Hearn, 1987) - seems only applicable to small, nonlinear systems, the method
from Sedoglavic (2002) is also applicable to larger systems at the cost of only providing
a probabilistic statement about identifiability. However, given its fast computation time
even for larger systems, the method by Sedoglavic (2002) seems favorable.
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Besides structural a priori analysis, a posterior analysis allows assessing practical
identifiability of an estimated parameter set for given input-output data with limited
information content resulting from limited sampling rates, limited number of differ-
ent input profiles and corruption by noise. It is closely related to the construction of
confidence regions and yields in most of the cases a local identifiability statement corre-
sponding to definition in Eq. (2.33). For model identification, a practical identifiability
analysis is mandatory to understand prediction limitations for a given model. For bio-
logical models, identifiability methods based on the shape estimation of the likelihood
function, e.g. Hessian or Fisher information (Jacquez & Greif, 1985; Vajda et al., 1989;
Van Doren et al., 2009), only work well in cases where identifiability problems arise from
linear interdependencies between parameters, which is often not the case for nonlinear
models as for instance illustrated by Raue et al. (2009).

A well-proven approach, which works well for (non-)linear models is the profile like-
lihood approach. Here, the profile likelihood is used to determine whether parameters
are practically (non-)identifiable (Raue et al., 2009). It is also possible to reveal struc-
tural non-identifiabilities. In the later case, profile likelihoods are perfectly flat, since
non-identifiable parameter variations are either compensated by proper adjustment of
other parameters (over parameterization) or structurally not observable (Walter et al.,
1984). Practical non-identifiable parameters are characterized by an initial increase
of the χ2 function (decrease of the profile likelihood), which at least for one direction
gradually flattens out when moving away from the MLE. An identifiable parameter has
an increasing χ2 (decreasing profile likelihood) when de-/increasing a parameter from
its MLE, which eventually hits the critical confidence level defined by Eq. (2.31). Ex-
amples of profile likelihoods are given in one of the applications in Sec. 3.5. Further
details on concepts and methods for identifiability analysis can be found in Anguelova
(2007); Raue et al. (2009); Sedoglavic (2002); Vajda et al. (1989); Van Doren et al.
(2009); Walter & Pronzato (1997); Walter et al. (1984).

2.3 Model discrimination

In the previous section, concepts of parameter estimation, confidence regions and iden-
tifiability have been discussed for a given model structure. However, when modeling a
system from scratch, modelers typically start with a set of several alternative models.
Then, model discrimination can be used to select the most plausible model or to at least
establish a plausibility hierarchy amongst the competing models. This sections recalls
and illustrates important concepts of model discrimination, which can be understood
as a generalization to parameter identification and identifiability (Walter et al., 1984).

2.3.1 Model distinguishability

Structural parameter identifiability analysis has been discussed in Sec. 2.2.3 as an im-
portant step in model identification to asses whether a given input-output setup allows
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identifying a parameter set for a defined model structure in a unique way. With regard
to model discrimination, a related concept known as model output distinguishability
applies (Walter et al., 1984). Here, it is desired to know, whether a given input-output
setup allows discriminating between two given models structures M(θ) and M̃(θ̃). Ac-
cording to Walter et al. (1984), the following definition of structural model output
distinguishability can be given:
M̃ is structurally output distinguishable from M if, for almost any θ ∈ AΘ the equation

ỹ(t, θ̃,u) = y(t,θ,u), ∀ t ∈ R+, ∀u ∈ Au, and θ̃ ∈ AΘ̃ (2.34)

has no solution for θ̃. Further, that M̃ is structurally output distinguishable from M

does not imply that M is structurally output distinguishable from M̃. If both directions
hold, thenM and M̃ are structurally output distinguishable. In the case of three or more
competing models, a pairwise comparison has to be performed. Typically, an exhaustive
summary is derived, which allows eliminating time and input functions, see e.g. Walter
et al. (1984). Still, owing to the fact that parameter spaces of the competing models
may be of different dimensions, testing model output distinguishability directly from
the above definition is a non-trivial task. In practice, Laplace transform approaches
can be helpful, but also other modified methods based on the ones used for parameter
identifiability analysis (Ljung, 1999; Szederkenyi et al., 2011; Walter et al., 1984).

Finally, although structural parameter identifiability and structural output distin-
guishability are closely related, identifiability is neither a necessary nor sufficient condi-
tion for structural output distinguishability. Consequently, optimal experimental design
aimed at model discrimination is also applicable to unidentifiable models. Also note
that identifiability analysis seeks to proof uniqueness of the solution to Eq. (2.33),
whereas output distinguishability analysis aims at proving non-existence of a solution
to Eq. (2.34).

2.3.2 Model selection

Besides structural distinguishability analysis, model selection or discrimination refers to
several other aspects of the model identification procedure. At the very beginning of the
modeling process, an appropriate modeling approach has to be chosen for the desired
model purpose, which comprises defining a desired degree of model complexity (level
of detail, number of variables, computational effort, physico-chemical rigor) (Lorenz,
2006; Verheijen, 2003). By doing so, the modeler already discriminates between the set
of all possible models associated to the chosen modeling approach and the remaining
model classes. In the following, it is assumed that a modeling purpose, a set of data and
models are given. The task of model discrimination is then to identify a model or set
of model structures, which serve the modeling purpose and is consistent with the data
(Buzzi-Ferraris & Forzatti, 1983; Verheijen, 2003; Zucchini, 2000). In this setting, model
discrimination is in fact model adequacy testing (=falsification procedure) sorting out
models that do not adequately describe existing data (Chen & Asprey, 2003; Stewart
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et al., 1998). From the remaining models, one might then discriminate, again based on
trading off godness-of-fit and model complexity. Finally, if the data do not suffice to
identify one final model or at least to obtain a statistically significant hierarchy amongst
the remainder-models, new data using OED should be generated (s. application in Sec.
3.5).

As for confidence intervals, model discrimination is based on comparing distances
between models’ predictions and data. Here either classical hypothesis testing or ap-
proaches from information theory are available. Whereas classical hypothesis testing
seeks to sort out models based on test statistics, which allow specifying p-values given
a test distribution. For the finite sample case, proper statistical model testing is how-
ever limited to nested models (Burnham & Anderson, 2002). Alternatively, Bayesian
or information theory approaches can be used, which easily extend to non-nested mod-
els (Burnham & Anderson, 2002). Both approaches have been developed in the 70s.
Hunter & Reiner (1965) proposed a simple measure of divergence, whereas Kullback
(1959) thought of a discrimination function, i.e. a model response PDF, which has been
extended by Box & Hill (1967) to incorporate prior model probabilities.

In the case of nested models, there exists a structural hierarchy between models
such that one model is a special case of a larger model. This is for instance found
in linear regression. In such a case, one might either use an F- or likelihood ratio
test (Himmelblau, 1970; Wasserman, 2004). Both tests are asymptotically equivalent,
whereas the likelihood ratio test has more power (Müller, 2002). Having two models
M(θ̂) and M̃(

ˆ̃
θ), with parameter MLE θ̂, ˆ̃

θ and corresponding χ2
M(θ̂), χ2

M̃
(
ˆ̃
θ) values,

whereas M̃ is nested in M, the test statistics

F =
χ2
M̃

(
ˆ̃
θ)− χ2

M(θ̂)

nθ − nθ̃
nY − nθ − 1

χ2
M(θ̂)

(2.35)

follows an F-distribution, F ∝ Fnθ−nθ̃ ,nY−nθ−1, and asymptotically (nY →∞) becomes
a χ2

nθ−nθ̃
distribution. Based on this statistics, it is then possible to sort out all models,

which differ from the expected statistics for a predefined level of statistical significance
and are thus not adequate, either due to lack of fit or over-fitting (noise). The likelihood
ratio test follows the same principle with test statistic

LR = 2(L(M̃(θ̃))− L(M(θ))), (2.36)

which is χ2
nθ−nθ̃

distributed. Just as for the F-test, models need to be nested and
M(θ) must belong to the class of the true model. Following the line of reasoning for
these two test procedures, it is thus possible to discriminate models, which do not fall
into a certain range of model complexity consistent with the data. In stepwise linear
regression, this is applied by forward and backward elimination (Efroymson, 1960) of
parameters. Forward elimination would correspond to an engineering strategy (seek
minimal model required for adequate description of the data), backward elimination
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would correspond to a scientific strategy (seek the most complex model still supported
by the data) (Verheijen, 2003).

In the case of non-nested models an analogous reasoning is not straight forward.
In contrast to linear regression, where model complexity is measured by the number of
parameters or degrees of freedom, it is not clear which model is to be used as the most
complex/simple one to which all others should be compared. In this case, Bartlett’s χ2

test of homogeneity of variances amongst the models can help to sort out models with
large error variances in the following way (Bartlett, 1937). The test statistic

χ2
B =

∑nM

M=1(nY − nθM) log(χ2
tot/χ

2
M)

1 + 1
3(M−1)

(∑nM

M=1
1

nY−nθM
− 1∑nM

M=1 nY−nθM

) , (2.37)

should follow a χ2 distribution with nM − 1 degree of freedoms and χ2
tot =

∑nM

M=1 χ
2
M

the total error variance over all models. If χ2
B is rejected, then remove the model with

the largest error variance, re-evaluate χ2
B and possibly remove additional models until

χ2
B cannot be rejected anymore. Alternatively, a J-test (James, 1983) or adjusted like-

lihood ratio statistic can be used but remains questionable for the finite sample size
as it still relies on a reference distribution, which is only valid asymptotically. For de-
tails on adjusted likelihood ratio tests see Cox (1961); Pesaran & Weeks (2001). In the
most general case, i.e. non-nested models, misspecified models and non-Gaussian ob-
servational noise, an appropriate test statistic can be estimated via simulation without
any need for an asymptotic argument. Here bootstrapping has become an important
method owing to increased availability of computational power. For details and exam-
ples on bootstrapping based selection methods see for instance Davison (1997); Efron
& Tibshirani (1994); Hall & Wilson (1991); Müller (2002); Munk & Czado (1998).

Information-based model selection criteria follow a different paradigm. Here, model
discrimination is understood as identifying an evident-based (=plausibility) hierarchy
amongst the models that are supported by the data. This is in principle also pos-
sible with hypothesis testing using p-values, but the classical view is to classify into
significant and non-significant models. Information-based model selection disregards
the rather unlikely assumption of one correct model in the modeling pool (...all models
are wrong, some are useful... (Box & Draper, 1987, p. 74)). Model discrimination is
thus understood as building an order from best to worst model trading of godness-of-
fit and model complexity. Information-based selection often builds on the principle of
Occam’s razor, which follows the principle of parsimony, i.e. preferring the least com-
plex hypothesis still compatible with given data. Here Akaike’s information criterion
(AIC) as an estimator of the relative expectation of Kullback-Leibler distance based on
Fisher’s maximized log-likelihood is the most prominent model discrimination criterion
and often used in biological science (Burnham & Anderson, 2002; Fisher, 1935; Lud-
den et al., 1994). However, as illustrated in Schenkendorf & Mangold (2013), AIC can
be very sensitive to noise. It is thus important to also consider the variability of any
information-based criterion, see Sec. 2.4.4. Further details on information-based model
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selection and discussions including critical AIC values for discrimination, Bayesian infor-
mation criterion, minimal description length or Mallows’s C can be found in Burnham
& Anderson (2002). A comparison between F-test and AIC selection is for instance
given by Ludden et al. (1994).

Finally, residual analysis provides an additional tool for discriminating models. As-
suming standard conditions to hold, residuals of the fitted models should follow a stan-
dard Normal (error variance known a priori) or t distribution (error variance estimated
from samples). Therefore, one can look at a qq-plot of residuals vs. standard Normal/t
distribution or derive p-values from a Normality/t-test, e.g. Kolmogorov-Smirnoff or
Anderson-Darling tests. Furthermore, such tests allow identifying outliers, which may
point to model weaknesses, convergency problems of the parameter estimation or ex-
perimental errors. They may also reveal non-overlapping features or misspecification
of two competing models. The most appropriate model should have a small residual
sum of squares with Normal residual distribution and small number of parameters. An
example of such analysis is given in Andrae et al. (2010), where it is shown that minimal
χ2 values do not necessarily ensure normal residual distribution owing misspecification
in the model. In Sec. 3.5, Anderson-Darling testing was also applied to justify the
model choice.

Note on Bayesian analysis The aforementioned methods belong to frequentist ap-
proaches, i.e. inference is based on fixed, deterministic, parametric models in the light
of varying data. This also holds for the case of distributed parameters, since here a fixed
parameter PDF is assumed. In contrast, the Bayesian school has a stochastic model
interpretation and inference is based on the prior, or on the belief in a given hypothesis.
Data are then used to modify the belief, whereas frequentists create belief out of data.
Bayesian methods rely on Bayes’ theorem, which relates prior and post belief in form of
a distribution function via the normalized likelihood. An advantage but also a catch of
the Bayesian approach is the possibility of incorporating prior knowledge via the prior.
If however this prior knowledge is poor, then flat priors have to be used, which in turn
means that the posterior distribution is approximately the normalized likelihood func-
tion. Then Bayesian analysis is more or less equivalent to frequentist analysis. Further
details can be found in Louis & Carlin (2000).

2.4 Optimal experimental design

Data analysis is as old as mankind has started to explore and analyze its surround-
ings. Structured analysis of detailed observation by means of mathematics has been
developed ever since and gave rise to a plethora of mathematical methodologies, in-
cluding simple correlation, linear regression or analysis of variances (ANOVA). But no
matter how sophisticated mathematical methodologies for data analysis may be, they
cannot overcome the lack of information contained in the data. From a naive point
of view one might think that increasing the number of repetitions may serve the goal

22



2.4 Optimal experimental design

to increase data quality in terms of information content. In principle, this is one way,
since according to the central limit theorem the precision of averaged data is improved
as STD [E[y]]n=m = STD[E[y]n=1]√

m
with n,m ∈ N+ and STD standard deviation. But

additionally, each set of repetitions can be improved to contain maximal information
with respect to a specific objective or data analysis goal.

Well-designed experiments are the most substantial ingredient for informative data
and successful model identification. Methodologies for design of experiments have been
developed from the beginning of the 1920s including seminal work by Box & Lucas
(1959); Fisher (1935); Hunter & Reiner (1965). Back then factorial, blocking and ran-
domization strategies have been used to plan experiments for optimal model identifi-
cation using empirical linear regression models, which allowed to derive several closed
form expressions for optimal experimental plans. In contrast, models in form of ordinary
differential equations do not allow to explicitly state an optimal design. Here, owing
to the lack of closed-form expressions, an iterative model-based optimization approach
has to be followed, which is often hampered by highly uncertain parameters resulting
in large uncertainties in the model predictions. For large-scale network reconstruction
in genetical genomics, experimental design in its classical form is used to design strains
with the aim to generate a study population yielding most informative data with respect
to gene-gene but also gene-phenotype interactions. Several design examples are given
in Sec. 4.2.

2.4.1 Working definition: Optimal experimental design

An experimental design specifies a set of independent experimental variables that influ-
ence the system of interest. The idea of OED is to optimally choose these independent
experimental variables. Optimality refers to some performance score, which represents
an objective, being optimally adjusted by the corresponding optimal design D†, whereas
D ∈ D represents an experimental design within the feasible design region D, for in-
stance D ∈ D = T×U× Y encompassing selection of discrete measurement time points
tk ∈ T, stimulus design u(t) ∈ U and readout design g ∈ Y. In general, different
objectives yield different optimal designs.

Experimental design strategies may be divided into qualitative and quantitative
approaches. In Secs. 2.2.3, 2.3.1, the concepts of a priori identifiability and input-
output distinguishability have been introduced. Qualitative experimental designs for
model identification aim at resolving potential identifiability or distinguishability prob-
lems based on the model structure only, by identifying suitable new input or output
variables. Schenkendorf & Mangold (2011) have developed an approach for qualitative
OED that allows identifying measurement signals that are most informative for param-
eter estimation based on adjacency matrix of the extended system. In this work we
focus on sequential, quantitative experimental design, i.e. for given data, models are
(re)analyzed, possibly modified and experiments are planned and performed for further
model identification until convergence is reached, Fig. (2.1). Quantitative experimen-
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Figure 2.1: Model identification based on a cyclic iteration between model analysis and
experiments, including OED. Starting from the purpose the model should serve - usually
help answering a scientific question or achieve an engineering goal - models are generated
based on initial knowledge and data at hand. Then, in an iterative workflow, this knowledge
is refined by adjusting the models until convergence to a validated model, which serves the
initial model purpose by verifiable model-based predictions (scientific insights, rational
design).

tal design can further be grouped into off- and online designs. In offline designs, all
acquired data are used to optimize future experiments. In contrast, online designs are
optimized during an experimental run, taking advantage of new measurements during
the experimental run Galvanin et al. (2009); Schenkendorf & Mangold (2013). This
however requires an experimental setup, which allows instant data collection and pro-
cessing coupled to an optimizer that feeds back adjustments to the design variables
based on updated model predictions. In this thesis we are concerned with offline opti-
mization, which is still the most prevailing setting found in nowadays biological research
activities.

2.4.2 Experimental design for optimal parameter estimation

Much work on optimal experimental design for biological systems with distributed pa-
rameters focuses on information maximization with respect to parameter identification,
e.g. Heine et al. (2008); Raue et al. (2009); Schenkendorf et al. (2009); Vanlier et al.
(2012). Here, for a given pool of plausible ODE models, OED aimed at best parameter
estimation predicts experimental conditions, which yield time course data that decouple
model parameters and at the same time contain maximal information for all parameter
values. This is analogous to improving the condition on the design matrix in combi-
nation with reduced covariances for linear models. Classical approaches use the Fisher
information (Sec. 2.2) to find experimental designs that are A, D, E, optimal, which
represent a selection of different criteria condensing the Fisher information into one
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numerical value, see for instance Franceschini & Macchietto (2008); Walter & Pronzato
(1997). Note that A, D and E are not to be confused with the nomenclature of this
thesis. A-optimal designs maximize the trace of the Fisher information matrix or min-
imize that of the parameter variance-covariance matrix. D-optimal designs maximize
the determinant of the Fisher information matrix or minimize that of the parameter
variance-covariance matrix. E-optimal designs maximize the smallest eigenvalue of the
Fisher information matrix or minimize the largest eigenvalue of the parameter variance-
covariance matrix. In a recent study, Weber et al. (2012) demonstrated that designs
based on the FIM, which operate in the parameter space, may be outperformed by
designs that directly minimize model prediction variances.

2.4.3 Experimental design for optimal model discrimination

An experimental design aimed at model discrimination is typically generated at a point,
where existing data do not provide further discriminative information for a pool of
competing models. Research on discriminative experimental design dates back to the
1960s, including work from Hill (1978); Hunter & Reiner (1965). Hunter & Reiner
(1965) formulated a divergence criterion as the square difference between two competing
model predictions. Box & Hill (1967) derived a divergence measure starting from the
concept of entropy. Atkinson & Fedorov (1975) introduced the notion of T-optimality
(T means test) for two competing regression models. Buzzi-Ferraris & Forzatti (1983);
Buzzi Ferraris et al. (1984) have build on these works to develop a modified T criterion
and extension to multiple response setups, where model prediction uncertainties are
also accounted for. This represents a robustification of the experimental design against
parameter variations. Finally, Chen & Asprey (2003) have extended the criterion from
Buzzi Ferraris et al. (1984) to the dynamic case. For two competing models M = {i, j}
with dynamic output ysim,M(tk,D), the modified T criterion reads (Buzzi Ferraris et al.,
1984)

Tij(D) =
1

nt

nt∑
k=1

(ysim,i(tk,D)− ysim,j(tk,D))T S(tk,D)−1 (ysim,i(tk,D)− ysim,j(tk,D))

(2.38)

S(t,D) = 2Sexp(t,D) + Si(t,D) + Sj(t,D). (2.39)

Here, Sexp(t,D) represents the variance-covariance matrix of experimental errors, SM(t,D)

the variance-covariance of the expected response based on model M = {i, j}. For a sin-
gle response system one has

Tij(D) =
1

nt

nt∑
k=1

(ysim,i(tk,D)− ysim,j(tk,D))2

2σ2
exp + σ2

sim,i(tk,D) + σ2
sim,j(tk,D)

. (2.40)

Apparently, for two rivaling models, one needs to find a design D that maximizes
Tij(D) > 1, since then the variance of the divergences between the expected model

25



2. METHODS FOR IDENTIFYING DYNAMIC MODELS OF
BIOCHEMICAL REACTION SYSTEMS

responses is explained in terms of error variance of the experiment and variance of the
expected responses. One may interpret Tij(D) as the absolute value of a z-score, which
needs to exceed one standard deviation in order to have statistical significance. As
noted by Buzzi Ferraris et al. (1984), even under Normality assumption of the model
responses, T is not properly distributed as an F distribution owing to correlations
between the model divergencies (ysim,i(tk,D) − ysim,j(tk,D)). If the expected model
response E[ysim,M(tk,D)]Θ is easily computed, it should be preferred over ysim,M(tk,D).

In the case of multivariate, multi-modal and non-Gaussian response distributions
the modified T criterion partially fails to adequately represent differences in the model
predictions. Multi-modalities are not accounted for, which frequently occur when mod-
eling multi-site phosphorylation events in signal transduction systems with ODEs, e.g.
Holstein et al. (2013). Here, a further generalization of the T criterion to the model
overlap has been given by Lorenz (2006); Singh (1999). The generalization is based on
directly comparing model response PDFs. Details on the model overlap are given in
Ch. 3.

2.4.4 Robust optimal experimental design

A major challenge of experimental design focused at model identification is that it relies
on predictions from models that yet have to be identified. Therefore, it is to be ques-
tioned, whether an OED derived from model predictions is superior to ad hoc choices
based on the experience of experimenters. This becomes even more problematic when
dealing with uncertainties in the data and thus model parameters. Sources of uncer-
tainties in the data comprise biological variability but also complex measurement tech-
niques and sub-optimally performed experiments (including insufficient observability of
parameters). In order to overcome this problem, model-based experimental design can
be robustified. This means that the performance score of an experimental design is less
sensitive to the different kinds of uncertainties. In detail, robustness of the experimental
design is achieved by considering

(i) pure uncertainty of the model itself,

(ii) distributed model predictions that arise from distributed model parameters,

(iii) measurement noise and

(iv) design variabilities (e.g. variations of the applied stimulus)

during the conduction of the experiment. Notice that in applications, (ii) and (iii)
will jointly contribute to a distributed parameter space, and thus distributed model
responses. The difference is that (ii) is an intrinsic and (iii) an extrinsic source of
variability in the parameter and response space, respectively. In the context of OED
modeling of biological systems, several authors have demonstrated that robustification of
the design against parameter uncertainties strongly improves the designed experiments
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and experimental data quality (Apgar et al., 2008; Chen & Asprey, 2003; Donckels et al.,
2009; Flassig & Sundmacher, 2012b; Melykuti et al., 2010; Michalik et al., 2009; Raue
et al., 2009; Schenkendorf & Mangold, 2013; Skanda & Lebiedz, 2010; Vanlier et al.,
2014).

Notice that variations of the measurement system, e.g. temperature, pressure, initial
conditions or cell cycle state, can have a strong influence on the state of the biological
system. That is, cell activity and related measurements can be altered completely
under the same experimental design. Consideration and reduction of such covariates
(=confounding effects) is of utmost importance, in order to draw valid conclusions from
measurements. This is typically achieved by increasing the number of experimental
replicates and randomization (Fisher, 1935), but also by focusing on in vitro analysis of
one specific cell type, which is cloned and cultivated throughout the experiments under
constant conditions. Still, the variability in the replicate data may be high. Spencer
et al. (2009) have demonstrated that even sister cells can respond differently under
stress conditions owing to natural occurring differences in protein levels.

A robust experimental design that accounts for prediction uncertainties (i-iii) is
obtained by optimizing the expected objective O

E [O(D)]M,ε,θ =
∑
M

PM

∫
Aε

∫
Aθ

ρε(ε)ρΘM
(θM)O(D, θM, ε)dεdθ, (2.41)

where PM represents the probability of model structure M, which can be derived from
prior or - in case of new experimental data - posterior model analysis. Further, prediction
uncertainties that result from uncertain parameters and measurements are accounted
by their respective PDFs, i.e. ρΘM

(θM) and ρε(ε). Although point (iii) is typically
independent of the design it should be included in the robustification to predict whether
a specific experimental design will yield significant results under the given measurement
noise. To account for design variabilities, one might use

E[E[O(D)]M,ε,θ]D =

∫
D
ρD(D̃)E[O(D̃)]M,ε,θdD̃, (2.42)

where the design variabilities are described by ρD(D̃). The subscript D indicates, that
ρD(D̃) itself is a function of the actual design D. For practical application, one will
typically use ρD(D̃) ∝ N(D,C(D)), where variance-covariance C(D) will depend on
the design. For biological experiments, this reflects the variance of the used devices,
conduction complexity, experimental reproducibility but also experimental skills of the
wet lab for the design D. As should be clear, robust OED is a delicate task, comprising
integration in high dimensional spaces that is embedded in an optimization framework
trading off best expectation at minimal variance, for instance by performing multi-
objective (see Sec. 3.5), worst case or minimax optimization, e.g. Skanda & Lebiedz
(2013); Walter & Pronzato (1997).

Ch. 3 presents a methodology that addresses points (ii) and (iii) of OED robus-
tification for nonlinear models focusing on discriminative stimulus design. Figure 2.2
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Figure 2.2: Robustification of a stimulus design by accounting for the parameter PDF.
The kinetic parameter θ may also represent a design variable and its associated PDF
then quantifies variability in the design itself, e.g. variability of the stimulus profile or
measurement time points during conduction of the experiment.

illustrates this robustification concept with respect to model parameter uncertainties
for an optimal experimental stimulus design. One should note that a design based on
the objective in Eq. (2.42) will only be optimal on average and one should therefore also
have a look at the objective’s variance. Therefore, the developed robust experimental
design methodology is based on a scalar criterion, where expectation and variance of a
design objective are merged into one single scalar - the model overlap. An extension to
a multi-objective experimental design is straightforward as is illustrated in the real life
application (s. Sec. 3.5).

2.5 Summary

In this chapter a survey on the most essential approaches for inferring predictive ODE
models has been given. The ODE modeling approach has been illustrated and its
extended interpretation from single trajectories to distributed determinism was given.
Further structural concepts regarding parameter estimation and model discrimination,
which solely rely on model structure and input-output setups were discussed. Given
data at hand, it was shown how to asses the quality of parameter estimates and model
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structures by means of statistical tests. For model discrimination, information-based
concepts have also been discussed. Finally, it was discussed how to plan experiments
to support the just mentioned inference methods with optimized data. Here, well-
established OED methods for the inter-related objective of best parameter estimation
and model discrimination have been illustrated. The next chapter focuses on generating
data that support model discrimination using the overlap concept.
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3

Optimal experimental design in the
presence of distributed model
parameters

We are at the very beginning of time for the
human race. It is not unreasonable that we
grapple with problems. But there are tens of
thousands of years in the future. Our
responsibility is to do what we can, learn what
we can, improve the solutions, and pass them
on.

Richard Feynmann
The Value of Science, 1955

In this chapter, a robust design methodology that allows designing stimulus experi-

ments aimed at best model discrimination taking the model response PDF into account

is introduced. After introducing the method, its performance is analyzed by using two

in silico examples from cell signaling. Further, an application of the method to a real

life case is discussed. In this real life case a dynamic model describing DNA double

strand break signaling upon ionizing irradiation had to be identified (Flassig et al.,

2014). The method has been published in Flassig & Sundmacher (2012a,b). It is based

on the model overlap concept (Lorenz, 2006; Lorenz et al., 2007; Singh, 1999) and sigma

points (Julier & Uhlmann, 1996). Results presented in this chapter are taken from Flas-

sig & Sundmacher (2012a,b); Flassig et al. (2014), so are text passages which have been

adopted and modified to fit the presentation in this chapter.
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DISTRIBUTED MODEL PARAMETERS

3.1 Model overlap as a robust discrimination criterion

Closely related to the modified T criterion is the model overlap, which is a robust
discrimination criterion measuring dissimilarities of model response PDFs. It allows
estimating the discriminative power of a design for the case of multi-variate and multi-
modal PDFs. The general overlap shall be defined as the probability product kernel of
two multivariate PDFs ρpY|i, ρ

p
Y|j ∈ L2(AY)

Φ(t,u(t)) =

∫
AY

ρY|i(y, t,u(t))pρY|j(y, t,u(t))pdy (3.1)

with the densities being raised to some power p ∈ R+\{0} (Jebara et al., 2004). It
provides a bounded, positive-definite measure of similarity between distributions on
the set AY (Jebara et al., 2004), whereas the parameter p controls the weighting of
regions with small vs. large densities. This measure is used in vector machine learning
to measure statistical distances for the sake of discriminative learning. Singh (1998)
proposed to use Eq. (3.1) with p = 1/2 - known as Bhattacharyya’s affinity between
distributions - for discriminating nonlinear regression models. In this case (p = 1/2),
the overlap can be interpreted as the scalar product between two PDFs measuring
cosine similarity (Aherne et al., 1998). Bhattacharyya’s affinity is closely related to
Hellinger’s distance, which represents a symmetrized approximation to the Kullback-
Leibler divergence (Topsoe, 2000). The general overlap thus comprises several criteria
from information theory (Burnham & Anderson, 2002), which all measure (dis)similarity
between two PDFs.

Using model response PDFs ρY|M(y, t,u(t)) from Eq. (2.5) for two competing mod-
els M = {i, j} the overlap provides one with a measure of model dissimilarities for a
given experimental design. From the general overlap, the average overlap of the time
course is

Φ = E[Φ(D)]t =
1

nt

nt∑
k=1

Φ(tk,u(tk)), (3.2)

where D ∈ D represents an experimental design point as described in Sec. 2.4.1. For
p = 1 the overlap is the expected model response likelihood of model i with response
PDF ρY|i(y, t,u(t)) under model j with ρY|j(y, t,u(t)) and vice versa. In this case,
assuming one of the models to be true, the overlap yields the expected likelihood of the
other model depending on the experimental design D. Consequently, an optimal model
discrimination design D† minimizes Eq. (3.2).

In the following, the overlap as defined in Eq. (3.2) with p = 1 is used. In this work,
it is referred to as model overlap as this directly represents the time-averaged, expected
likelihood of one model under the other. As for the T criterion, assuming one of the
models to be true, expected p-values can be derived via a likelihood ratio test to assess
whether a new optimized design potentially allows model discrimination. In detail (for
two competing models): From the ratio of the estimated model overlap (p = 1, expected
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Figure 3.1: Approximation of nonlinear PDF mapping.

likelihood) at the new design point and model overlap from the initial/previous design
can be used to conclude via a likelihood ratio test, if the new design yields significant
discriminative information. Alternatively, one may also derive a hierarchy of p-values
for each model separately, by comparing initial/previous data-model overlap to the new
model overlap, assuming that one model is generating the data, thus equivalent to the
true system. The overlap can also be combined with Bayes theorem to derive expected
model posteriors, given appropriate model priors.

3.2 Estimation of nonlinear PDF mapping

If the solution h(t,θ) to the dynamic systems Eq. (2.1) can be obtained in closed
form, it is straightforward to derive the model response PDF for a given parameter
PDF using Eq. (2.5). However, in most of the cases the model response h(t,θ) for a
specific parameter realization is obtained by numerical integration. Here, besides ran-
dom sampling techniques based on Monte-Carlo simulations, the approximate model
response PDF may also be obtained by deterministic sampling, e.g. by enumeration via
optimized latin hypercubes of the parameter space and application of Eq. (2.6). For a
very large number of samples, the true model response PDF can be constructed from
these samples, which can be used for a subsequent evaluation of Eq. (3.2) to judge
the quality of a given design. Such procedures become computational inefficient for an
increasing number of model parameters and cannot be used in an optimization frame-
work. Therefore we suggested to approximate parameter/response PDFs via Normal
PDFs and estimate the Normal response PDFs with the sigma point method, instead
of the linearization method.

1. Normality approximation From initial data, one may obtain accurate estimates
of the true parameter PDF, e.g. by MCMC sampling, which can be approximated
by unimodal Normal PDFs ρΘ(θ) ' N(µΘ,ΣΘ), possibly multivariate. The model
response PDF can also be approximated by

ρY|M(y, t,u(t)) ' N
(
µY|M(t,u(t)),ΣY|M(t,u(t))

)
.

Note that for skewed or multimodal PDFs one should apply a transformation, e.g. Box-
Cox or inverse hyperbolic sine transformation in order to achieve normality of the PDF
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(Box & Cox, 1964; Johnson, 1949) or apply Gaussian mixture densities (GMD), e.g.
Rossner et al. (2010). In this way, one is not restricted to normal PDFs and the robustifi-
cation via the overlap can then account for multi-modalities. The Normality assumption
dramatically reduces the computational costs as only the two first statistical moments
(i.e. expectation and variance-covariance) need to be estimated. In the case of a GMD
representation, one of course has to estimate expectation and variance-covariance for
each GMD component. The task of solving Eq. (2.5) to obtain model response PDFs
and subsequent integration of Eq. (3.2) to evaluate the discriminative power of a given
design in an optimization framework is then reduced to estimating the time course of
mean vector µY|M(t,u(t)) and variance-covariance matrix ΣY|M(t,u(t)) of two model
response PDFs for given parameter expectation µΘ|M and variance-covariance ΣΘ|M,
see Fig. 3.1. In the following, as true mean and variance-covariance of the parameters
are unknown, these are replaced by their sample-based estimates, i.e. µΘ by E[Θ] and
ΣΘ by C[Θ].

2. Normality estimation Estimates of response expectation and variance-covariance
can be obtained by linearizing the system at additional computational costs that scale
linearly with the number of parameters using forward sensitivity analysis. But this
approach can become sub-optimal or yield even misleading designs as is illustrated in
Sec. 3.4. On the additional expense of O(n2

θ) estimates may be improved by a quadratic
response approximation of the system, which may become infeasible for larger systems,
as do Monte Carlo based approaches. In Schenkendorf et al. (2009) the sigma point
method has been shown to perform very well for experimental design aimed at param-
eter optimization. Further, as it has an additional computational expense of O(nθ)

comparable to linearization we chose the sigma point method as an alternative for esti-
mating the response PDF for a robustified discrimination design based on the overlap
concept.

3.2.1 Estimation based on linearization

The classical approach to estimate model response variabilities is linearization of the
nonlinear model mapping h(t,θ) with respect to the parameters. The linearization of
the model response is given by applying the chain rule to Eq. (2.2)

yL(t,θ) = h(t,E[Θ]) + S(t,y)T
∣∣
θ=E[Θ]

(θ −E[Θ]), (3.3)

with response sensitivity matrix S(t,y) = ∂h(t,θ)
∂x Sx(t,x) + ∂h(t,θ)

∂θ and state sensitivity
matrix Sx(t,x) = ∂x

∂θ , which can be obtained by solving

d

dt
Sx(t,x)

∣∣∣∣
θ=E[Θ]

=
∂f

∂x
Sx(t,x)

∣∣∣∣
θ=E[Θ]

+
∂f

∂θ

∣∣∣∣
θ=E[Θ]

(3.4)

with initial condition Sx(t0,x0) along the systems dynamics, which is known as the
forward sensitivity matrix equation. The additional computational effort is of order
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O(nθx), as nθx additional ODEs have to be solved in Eq. (3.4), since ∂x
∂θy

= 0nx×nθy .
One may also formulate an adjoint system to derive the state sensitivities in a backward
manner or use numerical differentiation.

Having determined the parameter sensitivities of the system, the linear estimates of
expectation and variance-covariances of the model response PDF can be calculated to
yield

EL
t [Y] = h (t,E[Θ]) (3.5)

CL
t [Y] = S(t,y) C[Θ] S(t,y)T. (3.6)

For nonlinear models, the estimate of the expectation is typically biased, i.e., Bi =

EL
t [Y]−µY 6= 0 and errors are introduced at second and higher orders. The quality of

the predicted variance-covariance cannot readily be judged as the errors are of fourth
and higher order, whereas the contributions depend on the system. Notice that the
linear design approach yields a local estimate in the parameter space, i.e. parameter
dependent coexisting stable states will be missed, resulting in significant estimation
errors in both moments (Sec. 3.4.2). The estimators are exact for linear systems, as
higher order terms vanish.

3.2.2 Estimation based on sigma points

Julier & Uhlmann (1996) introduced the sigma point method for advanced Kalman fil-
tering and state estimation. It is based on the idea that with a fixed set of parameters
(sigma points), it is easier to approximate a nonlinearly transformed PDF by a Gaussian
distribution than the nonlinear transformation itself. Julier & Uhlmann (1996) show
that expectation and variance-covariance of a random variable Y, given by a transfor-
mation Y = h(t,Θ), possibly nonlinear, of a random variable Θ with expectation E[Θ]

and variance-covariance C[Θ] can be estimated according to the following procedure:

1. Select 2nθ + 1 sigma points in the original domain according to

θ(0) = E[Θ]; θ(i) = θ(0) ±
√
nθ + λ

√
C[Θ]

(i)
,

where
√

C[Θ]
(i)

is the ith column of the square root of the variance-covariance
matrix. Further one has λ = ζ2(nθ + κ) − nθ, with tuning factors ζ and κ (see
below).

2. Propagate these points through the model

y
(i)
t = h(t,θ(i)).
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3. Estimated expectation and variance-covariance of the transformed variable based
on the sigma points are given by the linearly weighted sums

ES
t [Y] =

nθ∑
i=−nθ

w(i)y
(i)
t (3.7)

CS
t [Y] = (1− ζ2 + β)

(
y

(0)
t −Et[Y]

)(
y

(0)
t −Et[Y]

)T
+ (3.8)

+

nθ∑
i=−nθ

w(i)
(
y

(i)
t −Et[Y]

)(
y

(i)
t −Et[Y]

)T

with weights w(0) = λ
nθ+λ , w

(±i) = 1
2(nθ+λ)

and additional tuning parameter β (see below).

According to Julier & Uhlmann (1996), the error of the expectation estimate is of fourth
and higher order, whereas the variance-covariance estimates have an error of fourth and
higher order. This however only holds for scalars, i.e. nθ = 1 as pointed out by
Gustafsson & Hendeby (2008). For nθ > 1, the sigma point parameters ζ, β, κ can be
used to tune the estimated moments by including a priori knowledge about the PDFs,
i.e., β and κ allow to account for higher order moments of the parameter PDF and
should be set to β = 2 for an initial Gaussian, whereas for nθ > 3 one should choose
κ = 0. Further, ζ controls the sigma point spread and should lie within 0 < ζ ≤ 1,
Julier & Uhlmann (1996). The sigma points have several advantages:

• no need to calculate derivative information (neither Jacobian nor Hessian have to
be available or need to exist), which makes this method numerically robust and
applicable to a wide range of system classes,

• use of curvature information of the system,

• deterministic sampling method with computational effort that scales linearly with
the number of distributed variables, i.e. O(nθ),

• since each sigma point is independently propagated, parallelization can easily
be applied to speed up estimate calculation of the transformed expectation and
variance-covariance.

As has been pointed out by Van Der Merwe (2004), the sigma point method can be
understood as a statistical linearization. This corresponds to a nonlocal evaluation
of the moment propagation and allows retaining higher order information as is done
by Gaussian integration. There exists another approach based on Stirling-Polynoms,
which has been independently developed by Norgaard et al. (2000) and Ito & Xiong
(2000). It is derived from a Taylor expansion of the nonlinear transformation. As
shown by Padulo et al. (2007), both approaches perform equally well, although some
slight differences exist, e.g. number of tuning parameters.
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3.3 Robust optimal stimulus design

The problem of finding an optimal stimulus design can be stated as an optimal control
problem. Given a nonlinear dynamic system of the form Eq. (2.1,2.2) and corresponding
parameter set (expectation and variance-covariance), an optimal stimulus is an admis-
sible control defined over an interval [t0, tf ], say experimental time window, at which
a cost function assumes its infimum (or supremum) with the set of all admissible con-
trols. Robustness of such a control with respect to distributed model responses can
be achieved by incorporating expectation and variance-covariance into a robust design
criterion (e.g. model overlap). Within the sigma point approach, variabilities in the
stimulus conductions can also be accounted by interpreting a design u(t) as the time de-
pendent mean of a distributed variable. Then, for a design u(t), model response PDF is
determined by the propagation of sigma points given by mean and variance-covariances
of (i) model parameters and (ii) stimulus. The problem of finding an optimal control
may be solved by (i) Hamilton-Jacobi-Bellman, (ii) variational, (iii) NLP-based or (iv)
flatness-based approaches, e.g. Nevistic (1997); Varigonda et al. (2001). The following
two direct NLP-based approaches are used (Biegler, 2007), which can easily be combined
with the methods discussed in Secs. 3.2.1 and 3.2.2 for mapping distributed parameters
onto the design criterion:

• Direct Sequential Approach: A control vector parameterization in combination
with numerical integration of the model equations. This approach is suited for
design problems without nonlinear path constraints and stable behavior with re-
spect to variations in the control and parameters.

• Direct Simultaneous: A full discretization of the problem, e.g. control vector
and state/response vector parameterization based on orthogonal collocation on
finite elements. If the design problem includes nonlinear path constraints, this
solution approach can be beneficial, since feasibility of the solution is ensured at
the collocation points of each finite element.

Both NLP approaches are typically non-convex, i.e. there exist several local and possibly
one global optimal design solution. Therefore, resulting solutions to the NLP problem
are local optima. Global optimality of the design can be achieved - but is not ensured - by
(i) performing local optimizations from many different initial starting points and/or (ii)
deterministic/stochastic/heuristic global optimizers (Floudas & Gounaris, 2009; Horst,
2000; Zabinsky, 2003). Note that optimal design solutions need not necessarily be global
in real life applications. Local optimal solutions can be very close to the global solution
with respect to the design criterion. Therefore, non-convexity allows to account for
further experimental constraints - restricting the degrees of freedom in the design space
- without losing, e.g. discriminative power.
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3.4 In silico results

Results presented in the following two subsections are based on Flassig & Sundmacher
(2012a,b).

3.4.1 Benchmark using a signaling cascade

The highly conserved mitogen-activated protein kinase signaling cascade (Pearson et al.,
2001) with two different hypothesized negative feedbacks was used as a nonlinear test
system for benchmarking the two design approaches with respect to estimation accuracy
and design quality. The respective ODE systems - adapted from Behar et al. (2007) -
of two model candidates M ∈ {A,B} that describe the change in protein concentration
of the phosphorylated forms are

d

dt
x∗1M(t) =

k1Mu(t)x1M(t)

K1M + x1M(t)
− v2Mx

∗
1M(t)

K2M + x∗1M
− r1M

d

dt
x∗2M(t) =

k3Mx
∗
1M(t)x2M(t)

K3M + x2M(t)
− v4Mx

∗
2M(t)

K4M + x∗2M(t)
− r2M

d

dt
x∗3M(t) =

k5Mx
∗
2M(t)x3M(t)

K5M + x3M(t)
− v6Mx

∗
3M(t)

K6M + x∗3M(t)

with model M = A:

r1A = k9Ax
∗
4(t)x∗1A(t) ; r2A = k10Ax

∗
3A(t)x∗2A(t)

d

dt
x∗4A(t) =

k7Ax
∗
3A(t)x4A(t)

K7A + x3A(t)
− v8Ax

∗
4A(t)

K8A + x∗4A(t)

and model M = B:

r1B =
k9Bx

∗
3B(t)x∗1B(t)

K9B + x∗1B(t)
; r2B =

k10Bx
∗
3B(t)x∗2B(t)

K10B + x∗2B(t)

no x4B(t), x∗4B(t).

For both models it was assumed that

xtot
iM(t) = xiM(t) + x∗iM(t)

x∗iM(t0) = 0

with the total concentration of each species xtot
iM as an additional model parameter and

i ∈ {1, 2, 3, (4)B}. The measurement response signals were defined as

y1M(t) = x∗2M(t) + ε and y2M(t) = x∗3M(t) + ε, (3.9)

where ε represents additive measurement noise which is assumed to be normally dis-
tributed with zero mean and variance σ2

ε . We assumed that the response signals could
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Table 3.1: Monte Carlo verifications of randomly selected stimulus profiles for different η
and number of samples n. Corresponding expectation and standard deviation STD of the
overlap (scaled by 105) were taken over 100 runs.

n η = σi/E[Θi] 0.1 0.3 0.4

50 E[ΦM] STD[ΦM] 2 0.05 3.18 0.17 3.24 0.04

100 E[ΦM] STD[ΦM] 2 0.05 3.17 0.06 3.27 0.04

1000 E[ΦM] STD[ΦM] 2 0.02 3.14 0.02 3.27 0.02

10000 E[ΦM] STD[ΦM] 2 0.02 3.15 0.007 3.27 0.005

be measured at nt specific time points. Based on an initial stimulus design, the model
parameters were adjusted, so that both model responses matched up to a small error,
which did not allow preferring one over the other model to mimic the starting point of
an OED for model discrimination. Parameter values and further details on the imple-
mentation are given in the supplementary material of Flassig & Sundmacher (2012b).
Since biological systems often follow a log-normal distribution (Gutenkunst et al., 2007;
Limpert et al., 2001), a log-normal transformation to the response was applied in order
to improve the Normality approximation used in the estimation approaches for the re-
sponse PDF (Secs. 3.2.1, 3.2.2). Therefore, the response signal Eq. (3.9) used for the
overlap calculation was redefined as

ỹiM(t) = log(yiM(t) + λ), (3.10)

with i = 1, 2, λ > 0. For each model, the dynamic parameters were assumed to have
a log-normal distribution, with nominal value being the expectation Elog[Θ] = θ and
diagonal covariance matrix

√
Clog[Θ] = diag(ηELog[Θ]), with scaling parameter η. The

measurement noise is typically independent on the stimulus design, and was thus held
constant at σε = 0.01. The sigma points for the log-normal parameter PDF were
obtained in the following way: In the parameter space, the normal equivalents of log-
normal expectation and covariance were derived to calculate the normal sigma points,
which were then exponentiated. The log-normal sigma points were propagated through
the model, including Eq. (3.10) to obtain the normal estimates via Eqs. (3.7,3.8).
Further details can be found in the appendix A.2. In the following the tilde is dropped
from the redefined response signal in Eq. (3.10).

Following the direct sequential approach, the stimulus (single input) was parameterized
as

u(U, t) = uk for tk ≤ t ≤ tk+1, (3.11)

with [U]k = (uk, dtk)T, k ∈ {0, . . . , nu}, whereas dtnu = 0. Here, uk represents the
amount of stimulus between the time point tk and tk+1 = dtk +

∑k
j=0 tj . If for the
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last time point tnu < tf , we put u(U, tnu < t ≤ tf ) = unu . On the other hand, if
tnu > tf , the design was given a penalty. Depending on the estimation method E ∈ {L =

linearization, S = sigma points} the resulting optimization problem for discriminating
between models A and B was formulated as an NLP problem, i.e.

UE
† = arg min

U∈U⊂D
ΦE(U) = E

[
ΦN
(
EE
tA|B

[Y],CE
tA|B

[Y],U
)]

t
(3.12)

subject to systems dynamic, additionl constraints and method E to estimate EE
tA|B

[Y]

and CE
tA|B

[Y]. We further have E [·]t = 1
nt

∑nt
i=1 ·i, i.e. average of · over a set of discrete

measurement time points. Further details can be found in the appendix A.1.
The number of optimization parameters was nutot = 39, which allowed 20 stimu-

lations uk with 19 stimulus durations dtk. Since the problem is non-convex, a hybrid
optimization strategy, consisting of the evolutionary-based CMA-ES algorithm (Hansen
& Ostermeier, 2001), in combination with a subsequent gradient-based optimizer was
used. Owing to the stochastic nature, the hybrid optimization is performed 40 times
for each parameter variance level, which is derived from the scaling parameter η. The
benchmark is based on a Monte Carlo verification of the resulting optimal stimulus
designs. For each optimal design, the overlap, including expectation and variance-
covariance of the model responses, was calculated based on sampling the parameter
space 104 times for each model and corresponding optimal stimulus design. The MC
sample size was derived by comparing the change in expectation and variance of the
overlap for different sample sizes (s. Tabl. 3.1) for a reference design. The relative
mean squared error (MSE) of the moment estimate is given by

eEM =
1

2ntny

∑
M=A,B

ny∑
i=1

nt∑
t=1

(
ME −MMC

MMC

)2

(3.13)

withME being the moment estimates of the best designs (expectation EE
tA|B

[Yi], variance-
covariance split into variance VARE

tA|B
[ Yi] and covariance terms COVE

tA|B
[Yi]). The

Monte Carlo reference is represented by MMC.
Table 3.2 illustrates that for all parameter variance levels, both methods have

negligible relative MSE in the mean response estimates (maximal MSE: eLE < 10−7;
eSE < 10−9). In contrast, the relative MSEs for linearization increases with the param-
eters variance levels up to 0.03 for the variance and 0.18 for the covariance estimates.
Here, the sigma point approach performs better with maximal relative MSE of the
variance estimate 0.007 and covariance estimate 0.096. In this application both ap-
proaches estimate mean responses of the models very well, although the maximal MSE
of the sigma points is still two orders of magnitudes smaller than the maximal MSE
for linearization. For the (co)variance estimates, the sigma point approach consistently
outperforms the linearization approach for increasing parameter variance level.

In the lower part of Tab. 3.2 discriminative powers of the resulting designs for
different parameter variance levels are compared. From the Monte Carlo verifications
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(E = MC), it is apparent that for small variances, both methods yield designs that have
the same discriminative power (ΦLMC

† ≡ ΦMC(UL
† ) vs. ΦSMC

† ≡ ΦMC(US
†)). However, for

widely distributed parameters (starting at η = 0.3) sigma point based designs perform
up to 1.3 times better than linearization-based designs and their estimates coincide
with the MC validation, which is not the case for linearization. For both methods,
optimization time for one design is 1.3± 0.1 h on a standard desktop computer (4 GB
ram, 3 GHz quad core processor), whereas the validation time (104 MC samples) of a
single optimal design is 0.4± 0.1 h.

3.4.2 Bistable system

The Schlögl model is a canonical example of a biochemical system exhibiting bistability
(Schlögl, 1972). It describes an autocatalytic, tri-molecular reaction, which may occur
in biochemical systems such as cell metabolism or signaling. Two model alternatives
M = {A,B} for the rate of concentration change of specie x are given by

d

dt
xM(t) = k1 a sM(u(t))x2

M(t)− k2x
3
M(t)− k4xM(t) + k3b, (3.14)

sA(u(t)) = u(t) or sB(u(t)) =
1

2
(u(t) + u2(t)) (3.15)

and distributed initial conditionX0 ∝ N(E[x0], (ηE[x0])2). The model alternatives differ
in the input layer sM(u(t)) (scaled to relative units by an arbitrary reference stimulus
level). Parameters a and b represent the concentration of two reaction partners a and
b of specie x, which both are assumed to be in constant exchange with a material
bath. The parameter values are taken from Vellela & Qian (2009). For an initial, sub-
optimal experiment with stimulus u(t) = 1, models A and B cannot be distinguished,
given yM(t) = xM(t) + ε to be the response signal. Additionally to a distributed initial
condition x0, constant additive measurement noise with zero mean and σ2

ε = 0.1 was
assumed. The stimulus is thought to control the concentration in the reservoir of species
a to find an optimal discriminative stimulus.

In a first analysis, the stimulus is parameterized as

u(t) = u1 (H[u2 − t] + (1−H[2u2 − t]H[3u2 − t])) ; H[t] =

{
1, if t ≤ 0

0, else,
(3.16)

which allows analyzing the overlap landscape as a function of u1 and u2 (see Fig. 3.2).
Both parameters are subjected to box constraints mimicking experimental limitations,
i.e. ui|lb ≤ ui ≤ ui|ub, i = {1, 2}.

In Fig. 3.2A the design dependent overlap landscapes, Eq. (3.2), for nt = 30 and
different levels of parameter variances derived from σx0 = ηE[x0] are shown. For small
parameter variances η = 0.01, the overlap landscapes of linearization, sigma point and
Monte Carlo estimations coincide. In this case, all methods would yield the same robust
optimal design DE

† , again with E = L linearization, E = S sigma points and E = MC
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Monte Carlo. When the uncertainty of the initial condition is increase (η = 0.3),
the overlap landscapes differ quantitatively for all estimation methods. However, the
optimal designs still coincide (optimal design point at the maximum of the (negative)
overlap landscape). For η = 0.6 overlap landscapes and the best design points differ
between linearization and sigma point predictions, i.e. DL

† 6= DS
† . From the Monte

Carlo reference, one has DS
† = DMC

† , i.e. the optimal design point estimated with the
sigma points coincides with Monte Carlo prediction. Further, the predicted value of the
overlap at the optimal point agree, which is not the case for the linearization estimate.
In panel B in Fig. 3.2 time courses of the estimated moments are shown for the best
designs DE

† . Evaluating the discrimination performance of the optimal linear design with
sigma points and Monte Carlo reveals a larger expected overlap ΦLMC

† = ΦLS
† > ΦL

† .
In contrast to the simga point approach, linearization cannot capture two coexisting
states at the same time. As a result, linearization misses the true location of the
expected response, due to the existence of a second stable state. Further, the time
course prediction of the sigma points for the linear optimal design almost matches the
Monte Carlo reference. Evaluating the discrimination performance of the optimal sigma
point design with linearization and Monte Carlo reveals good agreement between sigma
points and Monte Carlo, whereas linearization overestimates the variance at early time
points. Here again, the predicted overlap coincide for sigma points and Monte Carlo.

The reason why linearization fails in this case lies in the local property of this
approach. The optimal sigma point design minimizes the overlap by switching optimally
between the two stable states while keeping the variance minimal, whereas the linear
design misses the bistability.

The next analysis illustrates the differences between linearization and sigma point
approach when deriving a more complex or flexible stimulus design allowing more or
less continuous stimulus changes over time. In this example, nonlinear constraints to
account for possible control limitations have been included. In detail, it was assumed
that subsequent stimulations can be applied, but a minimal time period has to pass
in between. Such nonlinear constraint optimization can efficiently be solved within the
direct simultaneous approach, which here was applied using orthogonal collocation on
100 finite elements (each with 3 collocation points) to discretize control and system
states. The objective of the resulting non-convex NLP problem was the same as in Eq.
(3.12), however, subjected to different constraints, i.e. system dynamics in form of a
nonlinear algebraic equation system and additional constraints. For details see appendix
A.1. For the linear design strategy, sensitivity equations (Eq. (3.4)) were implemented.
For the sigma point design, constraints have to simultaneously hold for all (2nθ + 1)

sigma points. The solver AMPL in combination with the optimizer CONOPT was used
to solve the above NLP problem (Drud, 1985). For a given optimization setup (η and
estimation method) the solution took about 2 minute on a standard desktop computer.
Since CONOPT yields local solutions, the optimization was performed for 1000 different
randomized initial designs for a given optimization setup, from which the best solution
was selected.
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Figure 2: Time course estimates of both models (A gray, B black) for h = 0.6.

method is able to make use of the bistability due to its nonlocal estimation property.
Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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method is able to make use of the bistability due to its nonlocal estimation property.
Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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method is able to make use of the bistability due to its nonlocal estimation property.
Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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method is able to make use of the bistability due to its nonlocal estimation property.
Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
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method is able to make use of the bistability due to its nonlocal estimation property.
Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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Further we see, that the estimated variances of the Sigma-Point method encompass both
stable states, whereas the estimated expectation lies between the stable states. In contrast,
the linearization method captures only one of the states, which results into underestimated
variances, biased expectation estimates and suboptimal OESD. As both method have the
same computational effort, we conclude that the Sigma-Point method provides a power-
ful estimation method, when dealing with complex, nonlinear biochemical ODE models
having widely distributed parameters and associated multiple stable states.
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Figure 3.2: (A) Comparison of estimated overlap landscape over the design space for
different noise levels (a)-(c) and estimation methods (L=linearization, S=sigma points,
MC=Monte Carlo with 103 samples for 837 design point evaluations). The approximate
evaluation times for each landscape are obtained with a 1.6 Ghz Intel Core i5, 4 GB at
1.333 MHz ram speed. In panel (B) the best designs predicted from linearization/sigma
points and the corresponding time courses of the model predictions (model A solid gray
lines, model B solid black lines) with 95% confidence bands (dashed lines) are indicated for
linearization, sigma point and Monte Carlo estimates. The Monte Carlo simulations are
also given for each design so are the estimated overlaps. Panel (C) illustrates the stimulus
parameterization. Figure adapted from Flassig & Sundmacher (2012a).
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3.4 In silico results

In Fig. 3.3 the resulting stimuli designs for η = 0.35 based on linearization, sigma
point estimation and corresponding Monte Carlo reference simulations are shown. Re-
examination of the optimized linear design with MC simulations revealed a large un-
derestimation of the estimated overlap: ΦL

† = 0.004 vs. ΦLMC
† = 0.17, i.e. misleading

discriminative power by 2 orders of magnitude. The local estimation property of the
linear approach yields a highly biased expectation and underestimation of the variance
with relative MSE of 0.44 for the expected response and 6.66 for the variance (see Fig.
3.3, estimated response of model B, (B) vs. (C)). The sigma point based design (D)
in Fig. 3.3 has a relative MSE of 0.15 for the expected response and 0.38 for the vari-
ance. The overlap estimate of the sigma point design closely matches the MC validation
(ΦS
† = 0.04 vs. ΦSMC

† = 0.03). Further, the sigma point design performs 5.7 better than
the linear design ΦSMC

† = 0.03 vs. ΦLMC = 0.17). As can be seen in Fig. 3.3, the non-
local propagation property of the sigma points enables the optimizer to find a stimulus
that drives the expected response of model B to the upper steady state. This behavior
was already observed for the simpler parameterization of the stimulus in Eq. (3.16)
(estimated time courses in Fig. 3.2B vs. Fig. 3.3). However initially, in the more
flexible parameterization, the optimal stimulus profile first moves both models into the
lower stable state by simply not stimulating at all, to then push the expected response
of model B to the upper stable state. This is due to the fact that the simpler parame-
terization has to immediately stimulate the models at the beginning. From the model
equations (3.14,3.15), this behavior seems also plausible, since any stimulus u > 1 will
have a higher impact on model B than on model A, simply due to the quadratic impact
on the right hand side function in Eq. (3.14). Note also that owing to a more flexible
stimulus design compared to Eq. (3.16), the predicted overlap is smaller.

From these two examples one can see the benefit of the nonlocal estimation property
of the sigma point method. The optimizer is aware of the bistability and uses it to
separate the two model responses for optimal discrimination. As linearization and sigma
points have the same computational effort, the sigma point method should be favored
providing a powerful estimation method when designing discrimination experiments for
complex, nonlinear biochemical ODE models having widely distributed parameters and
associated multiple stable states, even though the estimation of the overlap is restricted
to expectation and variance.

An application that extends this approach to approximate multi-modality of the
response PDF via GMDs is given in the Bachelor thesis of Soldmann (2013), which we
have supervised during my Ph.D. phase. In another Bachelor thesis, we have investi-
gated the hierarchy amongst shape classes of parameterized stimuli including ramp, step,
double-step, pulse and double-pulse profiles (Diedrich, 2011). This investigation hints
at the following: best discrimination is achieved with stimuli that have a bang-bang like
characteristics, i.e. the stimulus is either on its upper or lower bounds. Bang-bang like
solutions to an optimal control problem can result from the Hamiltonian being linear
in the control (details see for instance Chachuat (2007)). This was the case in Diedrich
(2011). The bang-bang property in optimal control can be related to optimal designs
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3.5 A real life application

in linear regression. For linear regression, best results are achieved when placing the
design points at their boundaries.

3.4.3 Summary robust optimal experimental design methodology

Using the overlap, discrimination of different models with distributed parameters is
based on comparing model response PDFs. Here we explored the use of the sigma point
method for estimating model response PDFs. For benchmarking the performance of
the sigma points, the response PDF was derived with the sigma point method and was
compared against the classical linearization approach in terms of estimation accuracy
of the nonlinearly propagated parameter PDFs. Both approaches were presented and
compared owing to the same linear scaling of the additional numerical costs with re-
spect to the number of distributed parameters. The comparison in the light of optimal
experimental stimulus design for robust model discrimination is based on Monte Carlo
validation of the predicted optimal designs assuming perfect experimental conduction,
i.e. no design variability. As noted above, for a given distribution of design variability,
the applied sigma point method may also be used. In the next section, the presented
stimulus design methodology is applied in a sequential experimental design approach
for model identification.

3.5 A real life application

This section exemplifies a sequential experimental design, which has been performed
in an iterative work between experiments and modeling. This in vitro study is applied
on DNA damage signaling, which is of utmost importance for understanding how cells
maintain genomic integrity and how cancer therapy by means of γ-irradiation can be
optimized. Here, the modified T criterion Eq. (2.38) was used, as it directly yields a sta-
tistical measure for the discriminative power of the optimal design. For one-dimensional
responses it is equivalent to the overlap up to some constants (Jebara et al., 2004; Lorenz,
2006; Lorenz et al., 2007). The following results have been submitted for publication in
Flassig et al. (2014).

3.5.1 Background of the in vitro application

Living cells are constantly affected by DNA damage, resulting from ionizing γ-irradiation
(IR), genotoxic or replication stress and reactive oxygen species. DNA damage, includ-
ing single and double strand breaks (DSB), base modification, deletions or point muta-
tions, seriously affects genome stability and cell integrity if not properly detected and
repaired by the DNA damage response (DDR) (Ciccia & Elledge, 2010). Upon DNA
damage, higher order chromatin has to be made accessible by various modifications
before DSB can be detected and repaired (Kruhlak et al., 2006). Among several DNA-
damage associated histone modifications, phosphorylation of H2AX is widely accepted
as an indicator of DSB. H2AX becomes rapidly phosphorylated at serine 139 (γH2AX)
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to generate foci at the DSB site (Yuan et al., 2010). The assembly of chromatin remod-
eling complexes at the DSB site greatly depends on γH2AX and enables the accessibility
of the damaged DNA to repair proteins (Stucki & Jackson, 2006). Depending on the
stimulus, γH2AX is induced by different members of the phosphoinositide 3-kinase like
kinase (PIKK) family; ataxia telangiectasia mutated (ATM), ataxia telangiectasia and
Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs).
ATR phosphorylates H2AX upon replicative stress (Ward & Chen, 2001), whereas ATM
and DNA-PKcs are responsible for this phosphorylation upon DSB induced by IR (Wang
et al., 2005). The interplay between ATM and DNA-PKcs in IR-induced H2AX phos-
phorylation remains puzzling because although ATM is required (Burma et al., 2001),
DNA-PKcs can substitute for it (Hickson et al., 2004). Here we analyzed the interplay
of DNA-PKcs and ATM to the phosphorylation of histone H2AX with a computational
model. This enabled us to look at the dynamics of the very first minutes post irradi-
ation damage without the need for direct measurements of protein activities, reducing
confounding effects from experimental manipulations. The challenge of informative ex-
periments with respect to proteins of interests is therefore shifted to the challenge of
generating a predictive dynamic model.

Cucinotta et al. (2008) have created a dynamic model solely focused on DNA-PKcs

to predict dose and dose-rate effects on γH2AX dynamics. ATM dynamics in the context
of DNA damage has been modeled, albeit on theoretical grounds (Mouri et al., 2009).
A dynamic model for DNA-PKcs/ATM interactions with regard to γH2AX activation
integrating biochemical time course data was missing. Therefore, an iterative work-
flow was established to identify a predictive dynamic model involving DNA-PKcs/ATM
mediated H2AX phosphorylation. Starting from several models, optimal experimental
design was applied to optimize experiments for model identification. The identified
model was used to analyze the dynamic contribution of ATM and DNA-PKcs to H2AX
phosphorylation.

The following subsections show results regarding (i) model identification workflow,
(ii) model analysis and (iii) model predictions. As stated in the beginning of this section,
results including figures and tables are taken from Flassig et al. (2014). For reasons of
condensed and focused presentation, details on data processing procedures, data in
raw and processed form as well as experimental materials and methods are not included
herein, but can be found in Flassig et al. (2014) and supplementary information thereof.

3.5.2 Model identification

Defining network structures for γH2AX activation upon IR The network
structures (Fig. 3.4A) have been constructed based on meta-analysis (Kinner et al.,
2008; Mladenov & Iliakis, 2011; Poltz & Naumann, 2012; Shrivastav et al., 2009) focusing
on the initial activation dynamic within the nucleus. DDR initiates with recognition of
damaged DNA (DDNA1). Ku7080 as a sensor for non-homologous end joining (cNHEJ)
associates to the damage site (RC11) forming the DNA-PK complex (RC12). Then,
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3.5 A real life application

the catalytic subunit of DNA-PK is either phosphorylated by active ATM or/and au-
tophosphorylated at the T2609 cluster to initiate cNHEJ (Neal et al., 2011). The MRN
complex (Mre11-Rad50-Nbs1), a sensor for homologous recombination repair pathway
(HR), can also co-localize to the damage site to promote ATM autophosphorylation at
Ser1981. Failure of DNA repair via cNHEJ potentially allows HR proteins to access the
damage site. This is modeled by splitting the initial DSB pool (DDNA) into DDNA1
and DDNA2, whereby DDNA2 is associated to HR and/or alternative non-homologous
end joining (aNHEJ) (Neal & Meek, 2011). Phosphorylation of H2AX can be achieved
by active DNA-PKcs or active ATM.

Four dynamic models in the form of ordinary differential equation systems were
derived from the network structures in Fig. 3.4A describing various interplays between
ATM, DNA-PKcs and γH2AX. The ODE systems were implemented in MATLAB using
the solver CVODES (Hindmarsh et al., 2005; MATLAB, 2010). The equation systems
and further details on the choice of kinetic rate laws are given in the appendix A.3.
After the poor discrimination performance of OED 0 and OED I data (see following
paragraph), the models were extended to also describe p53 activation dynamics. The
tumor suppressor p53 is an important effector protein during DDR. Phosphorylation of
p53 at Ser15 by ATM promotes its release from MDM2 and results in p53 activation
(Canman et al., 1998; Shieh et al., 1997). Activation of p53 by DNA-PKcs has also
been described (Lees-Miller et al., 1992). However, DNA-PK-/- MEFs show normal
p53 activation (Jimenez et al., 1999). In our study (Flassig et al., 2014), evidence
for a DNA-PKcs contribution to the p53 phosphorylation was not found. This agrees
with earlier data (Shaheen et al., 2011). Therefore, p53 activation was implemented
as an ATM-dependent process only. As described in detail in the appendix A.3, 19
kinetic and 8 scaling parameters were estimated by maximizing the likelihood function,
whereas variances have been estimated from data replicates. Parameter estimation
was performed for each model in an iterative manner, according to the 3 datasets (OED
0/I/II). Optimization of the likelihood function was performed iteratively, using a hybrid
strategy. A genetic algorithm from the global optimization toolbox of MATLAB (2010),
which was used to obtain a population of suitable starting solutions for a local optimizer,
was combined with a gradient-based optimization.

Experimental design for model identification For model calibration purpose, an
initial time course of H2AX phosphorylation in response to IR was studied in MDCK
cells in a dose-dependent manner using 0.5, 1, 2, 5, 40 Gy. γH2AX levels increased with
IR dose, while concurrently signal attenuation was delayed (see Fig. 3.4B). These results
agree with data from Burma et al. (2001). From the competing network structures, we
derived ordinary differential equation models and calibrated them as described above.
Simulations of the initial data set for all models are shown in Fig. 3.4C. Based on χ2

statistics, none of the models could be rejected at a significance level of α0.05 = 0.05 (Ta-
ble 3.3, OED 0). P-values of Anderson-Darling (AD) residual statistics also indicated
that all models seemed adequate for the initial data. In Diedrich (2011) we have shown
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Figure 3.4: Network structures and initial data (OED 0). (A) The network structures
of four different models are shown as an interaction graph. Interactions are modeled via
state transitions (arrows with squares), enzyme catalysis (lines with circles) and complex
formation (joined lines). Stimulus and inhibitors have round-edge boxes. Four mechanisms
have been considered for branching (A1, A2, B1, B2). A and B refer to the location of
the catalytic activity of ATM and index 1 and 2 refer to the kinetic law used. For index
1 branching to DDNA2 is catalyzed by the total amount of damaged DNA. Index 2 does
not use the total amount of damaged DNA. (B) MDCK cells were irradiated with different
doses and the insoluble nuclear extracts were analyzed by immunoblot. Lamin B2 or
HDAC1 served as loading control. (C) Model simulation and quantified experimental data
for OED 0 using the estimated band intensities of γH2AX. Data represent mean ± 2STD
of 3-5 independent experiments. Reproduced from Flassig et al. (2014).
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that pulse and double-pulse profiles are powerful stimulus profile classes providing dis-
criminative power that is comparable to more complex stimulus, however at moderate
experimental effort. Therefore, to discriminate between models, we subsequently de-
signed (i) an IR double-pulse (Fig. 3.5 A-D) and (ii) an IR double-pulse in combination
with kinase inhibitors (Fig. 3.6). The IR double-pulse design D = [D1D2]T was pa-
rameterized with 2 design variables, namely inter-pulse time D1 and second pulse dose
D2, where the first pulse was fixed at 1 Gy (Fig. 3.5A). The measurement time points
were fixed to t = [0 15 35 60 160 240 370 420 450]T minutes for all subsequent designs.
The first 6 time points were chosen from simulating OED 0 conditions to fully cap-
ture rising and falling flanks of the initial γH2AX peak, whereas the remaining time
points were placed based on the estimated second signal peak. The objective was to
maximize O = [Tred〈V 〉〈S〉]T. Herein Tred is the reduced, modified T criterion of Eq.
(2.38) to measure the average discriminative power along all model pair combinations
(Buzzi-Ferraris & Forzatti, 1983), whereas 〈V 〉, 〈S〉 represent mean model prediction
variance and variance-entropy. The latter two criteria measure parameter information
and distribution within the γH2AX signal via

〈V 〉 =
1

ntnMny

nt∑
i=1

nM∑
j=1

σ2
sim,j(ti,D) (3.17)

〈S〉 =

nM∑
j=1

nt∑
i=1

−σ̃2
sim,j(ti,D) log σ̃2

sim,j(ti,D), (3.18)

with
∑nM

j=1

∑nt
i=1 σ̃

2
sim,j(ti,D) = 1. For OED I (Fig. 3.5), the optimal design D†I was

chosen by trading off maximal Tred, 〈V 〉 and 〈S〉 (Fig. 3.5B). Recalibration of all models
to data from OED 0 and I, and additional inclusion of p53-P data (Fig. 3.5E) from
titration experiments did not allow for model discrimination (all p-values > α0.05 for
both fit statistics; Tab. 3.3), but reduced prediction variances (Tab. 3.4).

Table 3.4: Design criteria for the experimental runs, OED 0 (initial), and optimized OED
I, II. For details on the criteria see text.

OED I OED II
Criterion prior OED I post OED I prior OED II post OED II
T T0 107.13 6.5 45.1 0.3 4.6E03 44.7 1.5E03 51.5

Tred Tred,0 0.05 3E-3 0.02 1E-04 28.2 0.3 9.3 0.3
〈V 〉 〈V 〉0 1.53 4E-08 0.52 2E-07 2.2 6E-08 0.6 1e-05
〈S〉 〈S〉0 7.05 2.26 7 2.29 20.1 7.5 5.1 3.1

Kinase inhibitors were employed for OED II to better dissect DNA-PKcs and ATM
contributions. Titration of two highly specific inhibitors, namely Nu7441 and Ku55933
for DNA-PKcs and ATM, respectively, identified the optimal concentration for each.
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Further, we used the phosphorylation of p53 at S15 as a read-out to show the specificity
of the inhibitors. Two successive pulses with different intensities (1 and 20 Gy) show in
the immunoblot that the contribution of DNA-PKcs to this particular phosphorylation
of p53 is marginal (Fig. 3.5E). This confirms earlier data (Canman et al., 1998; Jimenez
et al., 1999). OED II was designed for three different inhibitor settings, namely Nu7441
and/or Ku55933 (Fig. 3.6). The estimated optimal design D†II potentially allowed for
discrimination (Tab. 3.4, T criterion for OED II; Fig. 3.6). The initial γH2AX peak
showed a comparable reduction for both inhibitors. Phosphorylation of H2AX after the
second pulse seemed to decay more rapidly for inhibited ATM compared to inhibited
DNA-PKcs. Both inhibitors together showed synergistic effects on γH2AX (Fig. 3.6B).
According to the fit statistics of OED II (Tab. 3.3) only model A2 could not be rejected
in terms of χ2. However, we found significant AD p-values for all four models, whereas
models A2 and B2 had non-significant AD3σ p-values, which account only for residuals
smaller than 3σ. This behavior may be attributed to outliers in one of the experimental
conditions (Fig. 3.6C) owing to experimental variations or deficits of the models in
describing experimental conditions of OED II. We selected model A2 as the final model
for further analysis, since it was the only model with p-values of χ2 and AD3σ statistics
exceeding α0.05 for all 3 experimental runs.

3.5.3 Model identifiability analysis

Before DNA-PKcs, ATM and γH2AX dynamics can be analyzed with model A2, an iden-
tifiability analysis was performed based on the profile likelihood to assess the uniqueness
of the model prediction for unmeasured states. The profile likelihood samples can also be
used to derive approximate prediction uncertainty bands via the envelope of all model
trajectories associated to the parameter samples from the confidence interval. Since
only relative data were at hand, ξ = [H2AXtot]

[Ku7080tot] and the readout scaling parameters are
non-identifiable. This means, that the model cannot be used to predict absolute values
of protein concentration. However, quantitative predictions regarding protein dynamics
are possible. This is due to the fact, that the scaling parameters do no influence the
right hand side of the ODE system. Like the authors of Bachmann et al. (2011), we
thus treated scaling parameters as nuisance parameters. Regarding the kinetic param-
eters we found that 8 kinetic parameters are not fully identifiable for the given data
and optimization constraints (upper and lower bounds such, that the parameters can
vary 4 orders of magnitudes). Six of these parameters were non-significant at the upper
bound, whereas the other two were non-significant at the lower bound. One parame-
ter was structurally non-identifiable. The non-identifiable parameters were not decisive
for the question of kinase contribution to H2AX phosphorylation. In Fig. 3.7, the
reaction scheme and corresponding parameters including their identifiability property
are shown. A discussion on each non-identifiable parameter and its meaning regarding
model prediction interpretation is given in the following.
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Figure 3.5: Parameterization of the stimulus design, design criteria and respective im-
munoblots. (A) Parameterization of the stimulus design for OED I/II. (B) Design criteria
predicted from the model simulations are plotted over the feasible design space. The opti-
mal design point for OED I D†I and corresponding criteria are indicated. (C) A represen-
tative immunoblot from an experiment based on D†I is shown. MDCK cells were irradiated
as indicated and the insoluble nuclear extracts were analyzed by immunoblot. Lamin B2
served as loading control. (D) Corresponding model simulation implements the acquired
data for γH2AX (C), model colors as in Fig. 3.4. Data represent mean ± 2 STD of 3 in-
dependent experiments. (E) MDCK cells were irradiated as indicated. Inhibitors Ku55933
and Nu7441 were used at different concentrations and whole cell lysates were analyzed for
p53-P and γH2AX. GAPDH served as loading control. Model simulation and quantified
experimental data for p53-P are shown. Data of a single experiment. Reproduced from
Flassig et al. (2014).
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Figure 3.6: Design criteria and respective immunoblots. Parameterization of the stimulus
design as in Fig. 3.5. (A) The optimal design D†II is obtained as in Fig. 3.5B. (B) Sample
data where MDCK cells were incubated with 1 µM of the indicated inhibitor and irradiated
as indicated. The insoluble nuclear extracts were analyzed by immunoblot. HDAC1 served
as loading control. (C) The corresponding model simulations compare the acquired data
for γH2AX before and after OED II (mean ± 2 STD of 2-4 independent experiments).
Colors as in Fig. 3.5. Reproduced from Flassig et al. (2014).
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Figure 3.7: The model structure for model A2 is shown including reaction parameters
and the identifiability status: parameter p is [p] identifiable, [p]∗ identifiable but exceeding
the upper optimization bound, [p) non-identifiable at the upper limit, (p] non-identifiable
at the lower limit, (p) structurally non-identifiable. The identified interaction that belongs
to model A2 and could be discriminated with respect to the other models is indicated in
blue. Reproduced from Flassig et al. (2014).

Parameter α0 has a non-identifiable upper bound for the given parameter estimation
setup. The parameter represents the number of DNA double strand breaks per
dose generated for a given dose rate. This means that the model structure has
enough degrees of freedom to compensate higher but not too low DNA double
strand breaks per dose rates. Thus, a minimal rate of DNA damage is needed
to trigger the signaling. Compensation abilities by the model owing to limited
information in the data is also apparent from the many parameter variations in
terms of relative parameter change along the profile likelihood of α0, see appendix
A.3.3. The parameter can be interpreted as a damage impact scaling parame-
ter setting the scale of the downstream parameters. The qualitative behavior of
protein dynamics is thus not changed.

Parameter α12 represents the complex formation step between Ku7080 and DNA-PKcs.
According to the profile likelihood bounds, a minimal rate of complex formation

56



3.5 A real life application

is needed, whereas the upper bound is unconstrained. This means that complex
formation may be arbitrary fast, thus this reaction step may be neglected (model
reduction). However, we kept this step in the model, as it represents a verified
interaction (Chan et al., 2002; Cui et al., 2005; Ferguson et al., 2000; Martin et al.,
2005). Here, the model is in the need of data that represent α12.

Although α13 is practically non-identifiable for the given optimization setup, if it is
increased above the upper optimization constraint, it then becomes identifiable.
This means, that in principle the parameter is identifiable.

Parameter α142 describes the catalysis of the second phosphorylation step of DNA-
PKcs by ATM and has an unconstrained upper bound. This means, that catalysis
of ATM seems to be necessary (lower bound is constrained), however, several pa-
rameters can compensate increased catalytic activity of this reaction (see relative
change of the parameters along the profile likelihood in the detailed figures given
in the appendix A.3.3). For instance α141, which represents the parallel reaction
not catalyzed by ATM, anti-correlates with α142. Note that α142 is identifiable ow-
ing to the data set where ATM is inhibited, which in turn makes the contribution
of α142 negligible small and thus uncovers α141.

Parameter δ16 is used to model the final repair step for both, cNHEJ and HR/aNHEJ.
This parameter has a lower bound, ensuring a minimal turnover of RC21pp, which
is related to the measurement signal. Since the upper bound of δ16 is uncon-
strained, both repair steps can be arbitrarily fast in the model.

Parameter α17 represents the reaction from Rad52 to RC22. As no measurement
information is provided for this specific step, this reaction is thus unconstrained
for the given data. Note that the subsequent δ16 reaction has a lower bound, since
it is also used in the DNA-PKcs part.

Parameters α25M and a25 are both related to the activation of γH2AX. Parameter a25

has an unconstrained upper bound, whereas α25M is unconstrained on the lower
bound.

Parameter α25 represents the degradation of p53-P and can in principle be arbitrarily
fast.

Having the identifiability characteristics of each parameter and associated states in
mind, one can now move to model predictions.
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Figure 3.8: Model predictions for the dynamic contribution of DNA-PKcs and ATM to γH2AX. (A) Simulated time
courses of active DNA-PKcs and ATM and resulting biphasic γH2AX activity for IR pulses of different dose levels (1 mGy
to 100 Gy). At larger dose, ATM shows a damped oscillation as a result of a positive feedback (autophosphorylation).
(B) Model prediction of the corresponding dose response in terms of time points at maximal activity of γH2AX, DNA-
PKcs and ATM. Shaded areas indicate 95% confidence regions of the model predictions estimated from simulation along
the profile likelihood. (C) Ratio of maximal DNA-PKcs-P to ATM-P. Thin lines indicate 95% confidence region of the
model predictions, estimated as in (B). (D,E) Simulations of in silico experiments with indicated inhibitors (color code)
illustrating the co-regulation of DNA-PKcs and ATM, resulting in a partial redundancy. Reproduced from Flassig et al.
(2014).
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3.5.4 Model predictions

To investigate contributions of DNA-PKcs and ATM to the H2AX phosphorylation,
we analyzed times of maximal peak activity post irradiation. We simulated a single
IR pulse from 1 mGy to 100 Gy (Fig. 3.8A-C). Active DNA-PKcs (DNA-PKcs-P)
responds directly after irradiation within 2-10 minutes and shows fast signal attenuation.
Response time of active ATM (ATM-P) in terms of maximal activity is delayed with
respect to H2AX and dose-dependent ranging from 10 minutes to about 56 minutes.
These model predictions are in line with the literature: DNA-PKcs activation peaks at
10 minutes after IR treatment, whereas ATM has its peak activity at around 20 minutes
(Davidson et al., 2013).

According to the model predictions, phosphorylation of H2AX is biphasic, following
a dose independent temporal activation order: The first activation phase of γH2AX
right after stimulation is associated to DNA-PKcs, whereas the second phase is linked
to ATM-P (Fig. 3.8A). The γH2AX signal decays on the scale of hours and correlates
with ATM-P. This kind of dynamics, fast initial and prolonged response is known from
coherent feed forward loops, which serve as a signal persistence detector (Mangan &
Alon, 2003). At doses below 1 dGy, peak level of γH2AX is dominated by DNA-PKcs,
whereas above 1 dGy it is dominated by ATM (Fig. 3.8B, C). For larger dose levels,
ATM auto-phosphorylation results in a prolonged activation phase, with γH2AX peak
activity shifted from 10 minutes at 10 Gy to 40 minutes at 100 Gy.

Simulations of γH2AX dynamics with inhibited DNA-PKcs or/and ATM show that
exclusive inhibition of ATM is nearly compensated by DNA-PKcs replacing the ATM
associated activation phase of γH2AX by a prolonged DNA-PKcs associated phase (Fig.
3.8D left; 3.8E black vs. orange). In contrast, DNA-PKcs inhibition leads to loss
of the DNA-PKcs associated activation phase. Owing to slower activation kinetics,
ATM cannot compensate this delay (Fig. 3.8D left; 3.8E black vs. blue). At doses
where DNA-PKcs dominates, γH2AX peak activity is delayed by roughly 45 minutes.
Simulations of simultaneous inhibition of DNA-PKcs and ATM show a 3- to 10-fold
reduction in γH2AX peak level, depending on IR dosage, whereas exclusive inhibition
of either DNA-PKcs or ATM is not as much affecting peak activity of γH2AX (Fig.
3D right and 3E). For all inhibition scenarios, the biphasic phosphorylation kinetics of
H2AX is lost.

3.5.5 Discussion of in vitro application

This application illustrates an iterative workflow combining experimental work, compu-
tational modeling and experimental design methodologies to shed light on the interplay
of two PIKK family members (DNA-PKcs and ATM) to the rapid histone H2AX phos-
phorylation in the context of DNA damage sensing upon γ-irradiation. By performing
optimized dynamic stimulation experiments, an extensive set of time-resolved data was
generated to identify a computational model for analyzing DNA-PKcs-P, ATM-P and
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γH2AX dynamics. The parameter identifiability analysis revealed that the computa-
tional model could be used to predict internal state dynamics, e.g. phosphorylation of
DNA-PKcs and ATM. With a predictive model at hand, it was then possible to investi-
gate the fast phosphorylation kinetics of DNA-PKcs, ATM and H2AX post irradiation
without the need of direct kinase activity measurements, thus reducing confounding
effects from experimental manipulations.

The model simulations show that H2AX phosphorylation is biphasic, with initial
and succeeding phase associated to DNA-PKcs and ATM, respectively, in which the
individual contributions to peak level of γH2AX are dose-dependent. It is tempting to
link the dose-dependent biphasic response of γH2AX observed in silico to the known
biphasic signaling responses of cNHEJ and HR, that is fast DNA-PKcs- and slower
ATM-related repair activity (Neal & Meek, 2011). In fact, following DNA-PKcs in-
hibition Davidson et al. (2012) have shown that HR activity is increased. Further,
Neal et al. (2011) showed that DNA-PKcs enzymatic activity inhibits HR in a titrat-
able fashion. From simulating DNA-PKcs inhibition one may hypothesize that this
is a consequence of delayed γH2AX activation, associated chromatin remodeling and
DNA repair initiation of cNHEJ. This fact may be exploited by cancer therapy devel-
opment. One can further conclude that DNA-PKcs and ATM have distinct roles in
H2AX phosphorylation equipping cells with a signal persistence detection function, i.e.
fast initial response (DNA-PKcs) and delayed signal attenuation (ATM). This ensures
reliable damage detection and repair signaling.

3.6 Summary optimal experimental design

Biological variability in combination with experimental measurement noise leads to dis-
tributed response signals, which is one of the main challenges when modeling biological
systems deterministically with ODEs. To account for this variability, the parameter
set needs to be extended to a parameter distribution. In this way, natural variabili-
ties in the dynamic parameters as well as measurement noise can be readily accounted
for. However, an exact quantification is computationally expensive and infeasible in an
optimization framework for large systems. Therefore, approximate descriptions of the
PDFs and the nonlinear mapping process between parameter and model response space
are used. This chapter presented a nonlinear design approach based on sigma points
within the application of model-based OED aimed at model discrimination. Its appli-
cation and performance were illustrated using two numerical approaches from optimal
control and several nonlinear model examples. Using the model overlap and modified T
criterion as a robust design criterion, it was shown that in the case of nonlinear models
with widely distributed parameter PDFs, the sigma point predictions and designs con-
sistently outperform the linearization approach. In the case of bi-(multi)stability, the
benefit of the nonlocal propagation property was illustrated. The sigma points come
with several additional numerical advantages, including linear scaling of the numerical
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costs with respect to distributed parameters and derivative free estimation of nonlin-
early mapped expectation and variance-covariance. The latter property allows applying
a robust OED to dynamic models that have non-smooth right-hand side functions, e.g.
cybernetic models of cellular metabolism Ramkrishna (1982).

Finally, a real life application was described, where a cyclic workflow between wet
and dry labs has been established to analyze DNA damage sensing. In this application
well-established experimental protocols regarding the readout γH2AX were combined
with robust dynamic stimulus experiments for generating a computational model. Af-
ter careful identifiability analysis, the computational model could then be used as a
surrogate of the experimental system to analyze the rapid dynamics and interplay of
important sensor molecules post stimulation. Model predictions were in line with exist-
ing literature and gave rise to new verifiable experiments (biphasic response of γH2AX)
and allowed understanding the roles of the two PIKK family members (DNA-PKcs and
ATM) in DNA damage signaling.
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4

Methods for identifying structural
models of biochemical reaction
systems

The cause is hidden, but the result is well
known.

Publius Ovidius Naso
Metamorphoses

The previous chapters demonstrated how challenging the identification of small sig-
naling models can be, even though a moderate amount of time course data and highly
sophisticated modeling methods are at hand. From these demonstrations it should be
clear that a large-scale dynamic model identification of an entire biological system, say
mammalian cell, organ or microorgansim, including interaction quality and kinetic pa-
rameters is a challenging if not hopeless venture. In the last decade however, biochemical
network reconstruction has become a very active field of research. Network reconstruc-
tion aims at identifying large-scale biological interactions structures only. Algorithms
from network reconstruction allow analyzing the increasing amount of data generated
by omics technologies (Gardner & Faith, 2005; Hecker et al., 2009; Markowetz & Spang,
2007). Whereas the structure of metabolic reaction networks could be reconstructed -
mainly from genomic information - in great detail for many organisms (Oberhardt et al.,
2009) knowledge of the topology of regulatory and signal transduction networks is in
many cases still incomplete and wiring diagrams even of canonical signaling pathways
may differ in different cell lines (Saez-Rodriguez et al., 2009). From a conceptual point
of view, network reconstruction is equivalent to model and/or parameter identification
as it is based on discriminating causal from correlation behavior between players in a
biochemical network (gene, proteins, metabolites etc.) on the basis of perturbation ex-
periments. Just as in model or parameter identification, network reconstruction can be
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regarded as a classification problem, where for given data one has to decide (=classify)
whether a certain interaction is plausible or not.

This second part of the thesis presents our recent work and contributions to al-
gorithms that aim at reconstructing biochemical interaction networks based on high-
throughput data from diverse types of microarrays (Hoheisel, 2006), whereas the focus
was put on the fundamental class of biological interaction networks, namely gene reg-
ulators networks. In principle the presented methods can also be applied to arbitrary
interaction networks, e.g. metabolism or signaling networks. However, appropriate data
need to be provided. In this chapter, a survey on (i) how to interpret reconstructed
gene regulatory network, (ii) challenges for reconstruction and (iii) important methods
for reconstruction is given. The following terms are used synonymously throughout the
presentation: network model identification, network reconstruction, reverse engineering
networks and network inference.

4.1 What are gene regulatory networks?

Gene regulatory networks provide the basis for systems-level understanding of interact-
ing genes and phenotype formation in living systems. They condense different types of
molecular interactions on the signaling, metabolic and genetic level to a network rep-
resentation of causalities. Therefore, gene regulatory networks represent a causal pro-
jection of gene activities, neglecting detailed molecular mechanisms, Fig. 4.1 (Brazhnik
et al., 2002). This means that for given data (s. Sec. 4.2), reconstructed interactions
may on the one hand represent direct gene-to-gene interactions. On the other hand,
interactions can also represent influential interactions between two genes involving sig-
nal transduction, metabolism or epigenetic (Jaenisch & Bird, 2003). Epigenetic refers
to effects on gene expression levels, which result from mechanisms other than DNA
sequence alteration or change in transcription factor activity. Examples of epigenetic
regulations are histone modifications or DNA methylation. The fact that one cannot
distinguish between projected or direct interaction is an inherent problem resulting from
experimental limitations, as not all relevant input-output factors are observed. As a re-
sult, additional pseudo interactions may be derived during network identification owing
to statistical dependencies, which have nothing to do with either projected or direct
interactions and are referred to as indirect interactions. There exist several methods for
removing such statistical dependencies, including TRANSWESD, which is presented in
Ch. 5 for different kind of data sets.

4.1.1 Definition of a gene regulatory network

A gene regulatory network can be represented as a graph G = (V,E) made up from a set
of nodes or vertices V and a set of edges E interconnecting nodes. Nodes can represent
states (phenotypes) of genes, gene regions, mRNA, proteins etc., whereas edges represent
direct physical or influential interactions as discussed in the previous section. Targeted
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Figure 4.1: Gene regulatory network and what interactions in the gene space may rep-
resent. Dashed lines indicate the gene regulatory network, solid lines represent the actual
mechanistic interaction. For instance: gene g1 up-regulates gene g2 via protein p1, which
may represent a transcription factor. The interaction between gene g2 and gene g4 is
achieved via protein synthesis p2 and metabolite conversion m1 → m2, which impacts on
gene g4.
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perturbation experiments allow identifying pairs of nodes via cause and effect reasoning.
An edge e ∈ E is an ordered pair e = (i, j) indicating that node i affects or regulates
by direct physical or influential causes node j and is thus called a directed edge, which
is denoted as i → j. The graph is then called a directed graph or digraph. Further,
a signed digraph G = (V,E, φ) has an additional sign function φ : E → {−,+}. The
sign function maps the quality of the interconnection, i.e. promoting or inhibiting effect
from the regulating node to the target node, which is indicated by the sign s via i→s j.
Finally a weighted signed digraph has an additional weight mapping Γ : E → R+\0,
assigning a non-zero, non-negative weight to each edge. Edge weights can be used to
indicate the belief in a certain edge. Some algorithms deliver refined representations
such as Boolean networks (Akutsu et al., 2003; Saez-Rodriguez et al., 2009), reaction
networks (Durzinsky et al., 2008) or differential equations (Nelander et al., 2008) but
the main result is still the underlying network topology (s. Sec. 4.3.2).

4.1.2 Reconstructing a gene regulatory network

Reconstructing a gene regulatory network is the task of identifying interactions between
known genes or gene regions, using experimental data, which represent the network of
interest. Thus, as for parameter identifiability or model output distinguishability, a
unique reconstruction of such an interaction structure is only possible when properly
represented by the data. Besides identifiability restrictions owing to the specific ex-
perimental design and structural properties of a gene regulatory network, practical
identifiability is also challenging. Typically one has the scenario ngenes � ndata, result-
ing in non-unique reconstruction solutions or non-identifiability issues. As in parameter
estimation for ODE models, such ambiguities can partially be resolved by including
prior knowledge (e.g. topological constraints or known node-node interactions), which
reduces the space of possible solutions, ultimately yielding a unique, experimentally
verifiable solution (Rau et al., 2013; Tavakkolkhah & Küffner, 2013)). Besides the curse
of dimensionality, many of the reconstruction algorithms (s. Sec. 4.3.2) apply numerical
optimization, resulting in computational complex and demanding problems. Therefore,
in Klamt et al. (2010) and Flassig et al. (2013) methods based on simple correlation
measures were developed especially tailored to (i) be applicable to genome scale recon-
struction problems and (ii) perform well for the case of small sample sizes. Details on
this method are given in Secs. 5.1, 5.2.

Even though the solution to the reconstruction problem may be non-unique, inferred
gene regulatory networks can be used as a guide for further, detailed experimental anal-
ysis. GRN thus provide a tool for constrained hypothesizing reducing experimental
efforts and costs especially for large scale reconstruction and refinement of gene regu-
latory networks. In this way, reconstructed GRNs can be used to narrow down genetic
analysis by massively reducing the number of potential molecular interactions or lo-
cations of interaction sites. In the same way, GRNs can be used to identify putative
intervention points by relating genetic spots to pathologic phenotypes (Schadt et al.,
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2005; Vallat et al., 2013). With regard to biotechnological production processes, GRNs
can further be used to help optimize such, e.g. with respect to product spectrum and
product yield.

4.2 Reconstruction data

As for the dynamic ODE model identification, network identification needs experimental
data. Here non-targeted and targeted data classes can be distinguished. Each of these
data types can be measured in a static or dynamic way. The term static is used instead
of steady state, since a priori it is not clear, whether a specific snapshot of the system is
in steady state or not. To the class of non-targeted experiments belong measurements
that track changes in gene expression levels, without any information on the causes
(non-targeted perturbation). From these data, only undirected networks can be recon-
structed. Undirected refers to the lack of knowledge whether gene g1 activates g2 or vice
versa. Targeted experiments keep track of changes in expression levels upon a known
network perturbation (e.g. gene knock-out). Here, experimental designs comprise either
one-perturbation at a time (or one-factorial, e.g. Hughes et al., 2000) or multi-factorial
perturbations (Jansen, 2003; Jansen & Nap, 2001). One-perturbation at a time exper-
iments may provide reliable identification for identifying GRNs (Brazhnik et al., 2002;
Wagner, 2001). Large-scale reconstruction on one-perturbation at a time data is how-
ever not feasible given costs and technical difficulties. Further one-perturbation at a
time experiments are typically based on gene knock-outs/ins, which can induce artificial
biological effects (confounding effects) and are sometimes even unstable or lethal.

In contrast to one-factorial experiments, systems genetics builds on multi-factorial
experiments using naturally occurring, multi-factorial genetic variations (e.g. single nu-
cleotide polymorphisms (SNP)) as multi-factorial perturbations from which causalities
can be unraveled more efficiently (Jansen, 2003; Jansen & Nap, 2001). Systems genet-
ics methods use properly controlled genetic crosses (segregating populations) such as
recombinant congenic strains (RCSs), recombinant inbred lines (RILs), advanced inter-
cross lines (AILs) or chromosome substitution strains (CSSs) to causally link genetic or
chromosomal regions to observed phenotypic trait data (Jansen, 2003; Rockman, 2008).
In this way, systems genetics can reveal complex genetic interactions in biological sys-
tems by relating genetic variations to various phenotypic data from high-throughput
measurements (Jansen, 2003; Jansen & Nap, 2001; Rockman & Kruglyak, 2006). The
choice of strain design depends on the reconstruction goal and should support a rigorous
network reconstruction.

4.3 Methodological approaches for network reconstruction

Gene regulatory network reconstruction methodologies can be grouped into (i) physical
or (ii) influential interaction based identification approaches. Physical approaches are
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based on DNA motif analysis seeking for pairs of DNA motifs and transcription fac-
tors, which may potentially interact on pure molecular basis. It is thus restricted to
direct, physical interaction. This restriction simplifies network identification, but does
not allow reconstructing gene interactions based on mechanisms other than transcrip-
tion factors. Here the influential approach has an advantage of reconstructing a more
comprehensive interaction network, capturing gene-to-gene interactions independent on
their interaction mechanism. Current research on reconstruction algorithms has focused
on influential approaches owing to the fact that less prior knowledge is needed and less
specific data have to be generated. Depending on the data, influential approaches may
also infer physical interactions. For instance, interactions reconstructed from data re-
flecting activity (e.g. expression levels) of transcription factors and genes most likely
represent direct molecular interactions. Therefore, when it comes to interpreting the
reconstructed networks one has to be aware of whether a specific reconstructed edge
(=interaction) is based on physical or influential information. In the following, data
preprocessing and influential reconstruction approaches are discussed.

4.3.1 Data preprocessing

Before any reconstruction method can yield meaningful results, data need to be pre-
processed in order to account for technical errors and biological variance. This includes
normalization (remove systematic variations to for instance compare different microar-
rays) and transformation (Quackenbush, 2002). A transformation may be necessary for
approaches that use binarized data or assume a specific distribution of measurement
variations. Depending on the reconstruction method, feature reduction by means of
filtering (e.g. noise) and clustering (e.g. gene regions) may be needed in order to obtain
a numerically tractable problem (Marczyk et al., 2013; Shannon et al., 2003). In Secs.
5.1 and 5.2 noise filtering (experimental and biological variance) as well as clustering
is applied using z-score and Pearson correlation. The z-score only works well for nor-
mally distributed gene activity data, which is typically not the case for raw, unprocessed
data. Here, a logarithmic transformation has proven to often yield approximate normal
distributions.

4.3.2 Reconstruction methods

Identification of gene regulatory networks is a highly challenging task asking for sound
knowledge in biological and technological aspects but also in data mining, statistical
analysis, network modeling and graph theory. In the following, the most frequently used
reconstruction methods are briefly discussed. The discussion is however not complete,
since many methodological variations exist. The reason lies in the fact, that data sets
are often very special depending on the biological question, and thus existing methods
have been tailored to fit the problem demands. Therefore, in contrast to the detailed
survey on recent dynamic model identification methods in chapter 2 this part gives a
rough classification of methodological approaches for network reconstruction.
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System of linearized equations Equation systems can be used to interrelate changes
in gene activity levels, e.g. expression levels. Owing limited amount of data, linear
equation systems of the form

xi = a x (4.1)

are being used, relating the activity level xi of a gene i to the activity levels xj of genes
j = 1, ..., ngenes (note that one may exclude self-regulation via j 6= i). By doing so, linear
and additive interaction mechanisms are assumed. The vector a needs to be estimated
from data for each gene and can be used to form an ngenes × ngenes matrix representing
the interaction or association weights (Chen et al., 1999). Structural equation modeling
as an extension to multiple regression has been applied to reconstruct gene regulatory
networks (Liu et al., 2008; Xiong et al., 2004). Regression algorithm have further been
improved with regard to covariate selection to address the problem of small sample size.
Here, least angle regression (Efron et al., 2004) and regression shrinkage via the lasso
(Tibshirani, 1996) have been proven to be very useful. An extension of Eq. (4.1) to a
dynamic description is achieved by linear ordinary differential equations (Chen et al.,
1999; D’Haeseleer et al., 1999; Perkins et al., 2004). As pointed out in the introduction
of this chapter, such models are however only applicable to small-scale networks, owing
to the tremendous amount of experimental effort to generate dynamic expression data.

Boolean network Boolean networks are network interaction graphs that also de-
scribe the quality of interaction. Using Boolean logic, Boolean networks allow to incor-
porate regulatory mechanisms on a very crude level (Kauffman, 1993; Lähdesmäki et al.,
2003). One of the earliest method for reconstructing biological Boolean networks has
been proposed by Liang et al. (1998). In Silvescu & Honavar (2001) temporal Boolean
networks are developed describing temporal effects on a discrete time steps. A further
extension to describe dynamic state transitions on a continuous basis was proposed by
Krumsiek et al. (2010). Here, the logical gates are represented by continuous functions
to derive a set of ordinary differential equations.

Bayesian network A Bayesian network is represented by a directed, acyclic graph
and a set of (conditional) probability distributions. The probability distributions de-
scribe state probabilities of the nodes. Thus, in a Bayesian network, nodes repre-
sent stochastic variables, whereas edges represent conditional interdependencies. If two
nodes are not interacting, their conditional probability is simply the product of the
probability of each node. Bayesian network reconstruction methods allow to incorpo-
rate prior knowledge in an easy way, by specifying the corresponding prior distributions
(Friedman et al., 2000; Murphy & Mian, 1999). They are also very flexible when it
comes to incomplete data sets (Rau et al., 2013). A limitation of Bayesian networks is
their restriction to acyclic graphs, e.g. Vignes et al. (2011).
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Association network Association networks are derived from association measures
as mutual information or correlation coefficients (Klamt et al., 2010; Margolin et al.,
2006). The main advantage of such an approach is that even large-scale data can be
used to derive an association measure with very little computational effort. Typically,
no optimization algorithm for estimating network parameters is applied, approaches
are solely based on analyzing the provided data alone. A disadvantage is, that often
only one-by-one interactions are considered, which may potentially lead to problems
when a gene is regulated by a combination of several genes (Michaelson et al., 2010).
Conditional association measures may be used, e.g. conditional correlation (Bing &
Hoeschele, 2005), to overcome this problem. Then however, computational demands
increase. Association networks are ideally suited for data containing differential infor-
mation, e. g. knock-out vs. control conditions. Being easily scaleable, association based
reconstruction methods can be used on genome scale, either to directly reconstruct a
GRN or to filter potential interactions, which may be refined by methods that also
account for higher order interactions. Also, methods from machine learning have been
tailored to reconstruct gene regulatory networks. The random forest approach is used
for classification and regression problems (Breiman, 2001; Geurts et al., 2009). As cor-
relation based approaches, random forests do not assume a specific kind of interaction.
One advantage of the random forest approach is its scaleability, owing to the fact that
each tree in the random forest can be trained independently (Huynh-Thu et al., 2010).

4.4 Summary

In this chapter a survey on identifying gene regulatory networks was given. Starting
from a general discussion on gene regulatory network interpretation, required data,
challenges and methodological approaches were outlined. As has been illustrated, there
exist many different approaches for network inference, whereas the choice of method
mostly depends on the specific scientific question and available data. The next chapter
presents two methodological approaches based on association networks that have been
developed for reconstructing large-scale gene regulatory networks.
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5

TRANSWESD: A reverse
engineering algorithm for
identifiying gene regulatory
networks

Everything should be as simple as it is, but not
simpler.

Freely adapted from Albert Einstein

This chapter presents the original TRANSWESD (TRANSitive Reduction for WEigh-
ted Signed Digraphs) reconstruction algorithm, a generalized variant of transitive re-
duction designed for one-perturbation at a time data, which has been published in
Klamt et al. (2010). In Pinna et al. (2013), we refined the original TRANSWESD in
an international collaboration for one-perturbation at a time data, whereas in Flassig
et al. (2013) we developed a reconstruction framework based on TRANSWESD for mul-
tifactorial perturbation data. With TRANSWESD we combined and extended existing
variants (Albert et al., 2007; Tresch et al., 2007) to handle weighted perturbation graphs
with negative cycles. Despite its conceptual simplicity, TRANSWESD is highly com-
petitive with other reverse engineering methods and especially useful for the scenario
ngenes >> ndata. The presentation in this chapter is based on Klamt et al. (2010),
Flassig et al. (2013), Heise et al. (2013) and Pinna et al. (2013).

5.1 TRANSWESD

This section is based on results that we have generated and published in Klamt et al.
(2010).

A simple yet smart method for reconstructing a regulatory network with n nodes
comprises the following steps: the node states of a biochemical reaction network are
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measured in a control scenario, e.g. unperturbed wild-type. Then at least n different
perturbation experiments are conducted: in experiment i node i is perturbed, whereas
all other n− 1 nodes are screened for potential state changes compared to their control
states. If a perturbation in node i affected j according to some statistical measure (s.
below), a directed edge from node i to j, i → j is initially assumed. The complete
set of observed effects in all perturbation experiments leads to an initial perturbation
graph. As pointed out in Ch. 4, each edge in the perturbation graph reflects either a
direct (including direct projection) or an indirect (statistical dependency) effect of one
node upon another. The next step deals with a central issue in network reconstruc-
tion, namely identification and removal of edges that represent indirect effects. Here,
transitive reduction as used by Wagner (2001) can be used to find the minimal (most
parsimonious) subgraph that can explain all effects seen in the experiments. Transitive
reduction in its most general form allows removal and addition of edges to find the
minimum graph (Aho et al., 1972). However, in the context of network reconstruc-
tion, one usually focuses on the special case where edges may only be removed, i.e.
where one searches for a minimal subgraph explaining the perturbation graph. This
is also known as minimum equivalent graph problem (Berman et al., 2009; Moyles &
Thompson, 1969). Therefore, TRANSWESD uses transitive reduction restricted to edge
removal. Wagner (2001) determined the minimal subgraph from the perturbation graph
by removing all edges i→ j for which a (simple) path starting in i and ending in j (not
using i→ j) can be found, assuming the effect of i on j to be indirect, thus explainable
by the path. The resulting graph is the transitive reduction of the perturbation graph.
A simple example is depicted in Fig. 5.1A. The method proposed by Wagner (2001) has
some drawbacks. First, transitive reduction as described above does not consider the
full amount of information that is available from perturbation experiments, even when
considering only qualitative observations. If a node shows a significant response to a
perturbation, one can at least classify the measured effect as up or down. This informa-
tion can be taken into account by adding a sign label to each edge in the perturbation
graph, which becomes then a signed directed graph (see Fig. 5.1B, a signed version of
Fig. 5.1A). Transitive reduction can then be performed in a similar way: an edge i→ j

is deleted only if there is a path from i to j whose overall sign (product of the signs of
the involved edges) corresponds to the sign of this edge. As can be seen in the example
in Fig. 5.1B, this may save edges that were mistakenly deleted in the unsigned version.
A second drawback of the original approach of transitive reduction is the risk to remove
true edges, even in signed perturbation graph. The radical pruning strategy of transitive
reduction aims at minimizing false positive (FP, type I error) edges in the reconstructed
network but it may lead to a high number of false negatives (FNs, type II error). This
effect becomes visible in networks comprising many (coherent) feed-forward loops where
a node may affect another node via direct (edge) and indirect (path) links of the same
sign. Since feed-forward loops have been shown to occur frequently in gene regulatory
networks (Shen-Orr et al., 2002), this property can become a serious limitation of the
method. A third shortcoming is the prerequisite that the perturbation graph is acyclic -
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a condition that is often not fulfilled in realistic biological networks. If the perturbation
graph is cyclic, the solution of transitive reduction is, in general, not unique. Further,
negative cycles in signed perturbation graphs may bring about even more complications
for transitive reduction. These drawbacks motivated the development of TRANSWESD
in Klamt et al. (2010). Major changes and improvements concern: (i) new statistical
approaches for generating high-quality perturbation graphs from systematic perturba-
tion experiments, (ii) the use of edge weights (association strengths) for recognizing
true redundant structures, (iii) causal interpretation of cycles, (iv) relaxed definition of
transitive reduction, and (v) approximation algorithms for large networks. The follow-
ing sections introduce the method in detail using the example of one-perturbation at a
time data. In Sec. 5.2, modification of TRANSWESD to work on multi-factorial per-
turbation data are described. Standardized benchmark tests are used to demonstrate
the potential of TRANSWESD. As the results highlight, despite its conceptual simplic-
ity, TRANSWESD outperforms existing variants of transitive reduction and is highly
competitive with other reverse engineering methods (s. Sec. 5.1.6, 5.2.2.1,5.2.2.2).

5.1.1 General workflow of TRANSWESD for one-perturbation at a
time data

• Step 1 (Sec. 5.1.2): as explained in the introduction, starting point is a wild-type
experiment plus n perturbation experiments in each of which one of the n nodes
is perturbed and the resulting response of the other nodes is measured, either in
transient phase or in steady state. The control or wild-type states are denoted with
x0 (x0,i denotes the control state of the i-th node). It is further assumed, that
appropriated normalization and transformation have been performed to have a
normally distributed measurement signals. The vector of normalized state activity
(e.g. gene expression) measured in the i-th perturbation experiment (where node i
is perturbed) is denoted by xij , i.e. xij is the state of the j-th node in perturbation
experiment i.

• Step 2 (Sec. 5.1.3): for each node, the unperturbed state (x0,j) is compared to
the measured states in the perturbation experiments (xij). Using an appropriate
classification strategy, significant changes are identified and included as signed
edges i→ i in the resulting signed, cyclic perturbation digraph G1.

• Step 3 (Sec. 5.1.4): each identified edge in the perturbation graph is endowed with
a weight extracted from the measurements indicating the association/interaction
strength between the two connected nodes, extending G1 to the signed, cyclic and
weighted perturbation digraph G2.

• Step 4 (Sec. 5.1.5): the final step is the computation of the transitive reduction
graph G3 using TRANSWESD, which can handle weighted, cyclic and signed
digraphs. Note that, in principle, TRANSWESD may accept any perturbation
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5.1 TRANSWESD

graph, even if the way to generate the graph is different from Steps 1-3. This is
illustrated in Sec. 5.2.

5.1.2 Perturbation graph

5.1.2.1 Single perturbation data

To decide whether a perturbation of i induces a significant effect on node j (and is
thus integrated as edge i→ j in the perturbation graph) one can either use correlation
analysis of the entire data or only direct variation measures quantifying the change
of xj when perturbing xi. The correlation measure of the entire data is beneficial for
determining the strength of association between nodes (see Sec. 5.1.4). Following the
simple idea of relating state changes with respect to the control, one might completely
ignore the presence of noise and define the variation measure for node pair (i, j) as

∆ij ≡ (xij − x0,j)π
i, (5.1)

with πi as an indicator of perturbation direction (up πi = +1 by e.g. knockout or
knockdown, down πi = −1 by e.g. over-expression). Initially, edges may be introduced
according to

i→− j if ∆ij < 0 (5.2)
i→+ j if ∆ij > 0, (5.3)

leading to an initial, signed perturbation graph. Apparently, this graph will capture
direct (edge) and indirect (path) effects.

Owing to measurement and intrinsic noise, many spurious direct and indirect in-
teractions will be identified as well. A naive use of Eq. (5.1) will therefore result in a
very dense - most likely a fully connected - perturbation graph, containing many false
positive interaction predictions. A simple extension to Eq. (5.1) can be obtained as
follows: If the data set is large enough, meaning that either several hundreds of nodes
have been measured and/or several replicates are available, it may be advisable to (i)
replace x0,j by a robust control level E[xj ] derived from averaging over all available data
of node j and (ii) by weighting ∆ij with the state sample standard deviation STDj of
node j:

zij =
xij − E[xj ]

STDj
. (5.4)

By doing so, deviations from the control level are robustified against fluctuations of the
control level itself. Further, deviations are weighted according to the overall variance
of the target node, which may heavily depend on the position and connectivity of the
target node. Such a robustification is justified if the target node j is only directly
affected by a small number of perturbations. In addition, the above z-score in Eq. (5.4)
may be refined iteratively by excluding node state measurements from sample mean and
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standard deviation calculation that correspond to identified edges. This approach has
been proven to be very powerful when measuring perturbations on hundreds of nodes.
It has been successfully applied in Flassig et al. (2013) and Klamt et al. (2013).

5.1.3 Identifying significant edges

The z-score from Eq. (5.4) can be used to identify significant deviations from the con-
trol E[xj ], which result from direct or indirect interactions and are thus interpreted as
potential regulations. If the distribution of measurement fluctuations (including noise,
inherent and also higher order influence from further away perturbations) is known, sig-
nificant deviation from the mean (=outliers) can be derived for a given p-value, which
functions as a threshold parameter for significant edges. The p-value choice can be opti-
mized, since a specific significance level of say α = 0.05 must not correspond to a biolog-
ical significant effect. Here, there are several approaches for deriving an optimal value.
Either training against known networks or a selection based on the minimal/maximal
number of expected edges to be found. Further, an optimal threshold value can be
derive based on the rate of edge inclusion when increasing/decreasing the threshold.
At a threshold value where the rate of edge inclusion increases significantly, one can
assume that this is the critical level, where interactions cannot be distinguished from
noise. Note that thresholds may be defined based on p-values but also directly in terms
of standard deviations, provided that the sample based z-score follows a standardized
normal distribution (which is the case for properly processed data following a Normal
distribution). A suitable threshold strategy for obtaining a high quality perturbation
graph from noisy data is an important step, since there is a critical edge density for each
graph up to which transitive reduction related algorithms work well in terms of pruning
result and computational time. Whereas edges reflecting indirect effects may be filtered
by TRANSWESD at a later stage (see below), edges indicating neither direct nor in-
direct (thus noise) effects cannot be corrected and will lead to reconstruction errors.
On the other hand, the number of FNs is also to be minimized as they cannot be re-
covered by transitive reduction. An example illustrating the z-score based thresholding
strategy is given in the supplementary material of Klamt et al. (2010). After defining
a threshold value, significant directed signed edges are selected, whereas the sign is de-
rived from Eqs. (5.2,5.3) applied to Eq. (5.4). The resulting initial perturbation graph
G0 represents a signed digraph, which may contain cycles.

Initially, in Klamt et al. (2010) we have introduced two thresholds based on (i)
the overall sample standard deviation and (ii) the individual standard deviation of
each node. An overall standard deviation was thought to reflect the magnitude of the
variation measure Eq. (5.1) in contrast to the overall variation when searching for
edges. The node specific standard deviation was introduced to account for individual
dynamic nature of each node. Recently, we demonstrated in Pinna et al. (2013) that
the individual standard deviation in combination with the correlation coefficient as an
overall variation measure and a sign consistency check (positive or negative z-score
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deviation vs. sign of the corresponding Pearson correlation coefficient) performs much
better than our original approach in Klamt et al. (2010). In the original approach, we
also ignored sign inconsistencies between correlation coefficient and z-score.

5.1.4 Weight association to the edges

Signed, weighted perturbation digraphs enable TRANSWESD to also work on cyclic
network structures. In the original TRANSWESD (Klamt et al., 2010), weights are
derived from a conditional Pearson correlation rij , where perturbation data on node j
are excluded to not bias the correlation. Accordingly, rij is not symmetric with respect
to index permutation. For each potential edge in the perturbation graph G0 a weight

wij = 1− |rij | (5.5)

is assigned, reflecting behavioral distance or association uncertainty leading to the
signed, weighted, perturbation digraph G= (V,E, φ,Γ). The higher the weight, the
weaker is the association of nodes i and j, thus the more unlikely is the identified di-
rect edge between them. This weight representation may seem contrary to other work,
where edge weights typically represent confidence or likelihood. However, this weight
representation can directly be used by TRANSWESD when calculating shortest paths
for identifying paths with lowest overall weight (=highest overall association).

5.1.5 Removing indirect edges: TRANSWESD

The reconstruction may stop at G, however, as described in the introduction of this chap-
ter, it is very likely that edges display direct (edges) or indirect relationships (paths).
Edges that represent indirect effects result in false positive predictions, which transitive
reduction seeks to remove to obtain true negatives (TNs). However, this removal is at
the risk to also remove true positive (TP) predictions resulting in false negatives. In
the following, the description of the developed algorithm TRANSWESD is started with
simple signed acyclic perturbation graphs. Then the algorithm is extended to signed,
weighted acyclic graphs to finally obtain the full TRANSWESD algorithm for signed,
weighted cyclic perturbation graphs. In this way, the idea of transitive reduction is
generalized step by step and extensions of TRANSWESD to minimize shortcomings of
previous variants can easily be followed.

5.1.5.1 Transitive reduction in signed acyclic graphs

Wagner (2001) used transitive reduction to prune unsigned acyclic perturbation graphs.
It is straightforward to generalize this procedure to signed acyclic perturbation graphs
G (at this point weights are neglected). The basic idea is to check for each edge i→s j

in G whether there is an elementary path i ⇒s j (a sequence of edges between nodes,
where no node occurs twice) not involving edge i →s j, which can then be seen as an
explanation for the observed influence i →s j allowing one to remove this particular
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edge. For this purpose, in a first step for each pair of nodes (i, j) the shortest positive
(positive overall sign) and shortest negative (negative overall sign) path is calculated.
Shortest paths can be used to test whether a positive and/or negative path from i to j
exists at all. As one is only interested in the existence of paths one may use arbitrary
edge weights, e.g. setting all to one, and arbitrary metric. The double label algorithm
is employed, which is a generalized version of the Dijkstra algorithm, for computing
shortest positive/negative paths. The double label algorithm delivers exact results in
polynomial time if the signed graph is acyclic (Hansen, 1984; Klamt & von Kamp, 2009).
The lengths of the shortest positive and negative paths are stored in a matrix S+ and
S−, respectively. For example, S+(i, j) stores the length of the shortest positive path
from i to j. An infinite length (∞) is stored if no path exits. After this preparatory
step, G is pruned to the minimal graph GTR. Here minimal refers to the number of
edges. The minimal graph satisfies

S+
TR(i, j) <∞ ∀ removed positive edges i→+ j in G (5.6)

and

S−TR(i, j) <∞ ∀ removed negative edges i→− j in G. (5.7)

In acyclic signed graphs, the unique solution can easily be found with the help of S+/−.
For each edge i→s j one simply checks the existence of a successor k 6= j with i→q k

and k ⇒t j which fullfils the sign condition qt = s. Such a path k ⇒t j exists if
St(k, j) < ∞. If such successor k exists, one can conclude that i →s j is explainable
by the augmented path i →q k ⇒t j. Then, one can remove the direct edge i →s j.
This line of reasoning only holds for acyclic graphs. Note that it is not necessary to
re-compute the shortest paths lengths S+/− after removal of the edge i →s j. In all
paths where this particular edge is contain one can replace the latter with i→q k ⇒t j.
Here again, acyclicity of the graphs ensures that the resulting path is still elementary
and thus a valid explanation. Eliminating all such removable edges, one obtains the
unique minimal equivalent graph GTR which yields the same perturbation effects as
the original graph G. Transitive reduction in unsigned graph uses the same algorithm
but neglects the sign condition. This definition of transitive reduction differs in some
aspects from the version used in Albert et al. (2007). First, only elementary paths (not
involving cycles) are considered as possible explanations for edges. Second, instead of
condition in Eqs. (5.6,5.7), Albert et al. (2007) follow the original definition of transitive
reduction, which is

S+
TR(i, j) <∞ whereever S+(i, j) <∞ (5.8)

and

S−TR(i, j) <∞ whereever S−(i, j) <∞. (5.9)
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This condition can be relaxed to condition in Eqs. (5.6,5.7), since there is no necessity
to preserve a path i ⇒s j between two nodes i and j if no edge i →s j (i.e. neither a
direct nor an indirect effect of i on j) could be deduced from the experiments. However,
as long as acyclic graphs are considered, both conditions will lead to the same result
because then, condition in Eqs. (5.8,5.9) follows from condition Eqs. (5.6,5.7). The
example in Fig 5.1B illustrates that accounting for edge signs avoids edge removals that
cannot be explained: in contrast to Fig. 5.1A (unsigned perturbation graph) the edge
A →− B is kept because the path A →+ C →+ B cannot explain the negative sign of
this edge.

5.1.5.2 Transitive reduction in signed and weighted acyclic graphs

Transitive reduction cannot detect redundant structures such as coherent feed-forward
loops implying a possibly large number of FNs. A relaxed pruning strategy could
be achieved by considering also edge weights quantifying the overall strength of the
associations. In this step of developing TRANSWESD, it is now allowed to remove an
edge (then considered as an indirect influence) only if its sign and also its weight can
be explained by another path. The condition in Eqs. (5.6,5.7) is thus generalized to
demanding that the pruned graph GTR should be minimal and satisfy

S+
TR(i, j) < ψwij ∀ removed positive edges i→+,wij j in G (5.10)

and

S−TR(i, j) < ψwij ∀ removed negative edges i→−,wij j in G, (5.11)

with positive confidence factor ψ. In order to fulfill the condition Eqs. (5.10,5.11), the
transitive reduction step has to be modified as follows: remove an edge i →+,w j if a
successor k 6= j of i can be found such that i →q,c k and k ⇒t,d j exist which fulfill
(i) sign condition qt = s and (ii) weight condition max(c, d) < ψw. Notice that for
quantifying the overall weight (=length) of a path, the MAX-metric is used (maximal
weight along the path). This reflects the property that an influence path is as good as
its weakest edge having the largest weight and thus lowest degree of association. For
path calculation, the double label algorithm adapted for the MAX-metric is used. The
factor ψ controls the overall association strength a path must have in order to explain a
given edge. It represents another tuning factor of TRANSWESD (besides the threshold
for edge detection, Sec. 5.1.3). For results produced in Klamt et al. (2010), Flassig
et al. (2013) and Pinna et al. (2013) we used ψ = 0.95, i.e. a value close to one. Smaller
values of ψ require larger associations in all edges of a path to explain an edge. For
ψ = 0 on has GTR = G. If ψ > 1 one would accept paths to explain an edge, despite
the fact of the overall weight being smaller than the weight of the edge, which is to be
explained by the path. For ψ = ∞ the condition Eqs. (5.10,5.11) coincide with Eqs.
(5.8,5.9), thus the original transitive reduction in unweighted graphs. Importantly to
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note, an acyclic graph ensures that the augmented path i →q,c k ⇒t,d j resulting in
i⇒s,max(c,d) j is elementary, i.e. k ⇒t,d j does not contain edge i→q,c, k and is thus a
valid explanation for i→s,w j. Additionally, acyclicity reduces computational demands,
since S+/− do not have to be re-computed after edge removal. In Fig. 5.1C the impact
of the additional weight consideration is shown. Here an edge is kept if alternative paths
cannot explain its high association strength. In contrast to Fig. 5.1B, A →−,0.3 D is
retained because the path A→−,0.6 B →+,0.5 D has weight 0.6 and is thus not a valid
explanation for ψ < 1. Rice et al. (2005) use an analogous scheme, however limited to
triangle motifs, i.e. an edge i → j is removed only if two consecutive edges i → k → j

can explain the effect from i on j.

5.1.5.3 Transitive reduction in signed and weighted cyclic graph

Finally, signed weighted digraphs with cycles are considered, which are of course present
in most cellular networks. Although cyclic structures are of vital importance to cellu-
lar systems, e.g. to damp a specific response via a feedback leading to complex dy-
namics within the network, they hamper network reconstruction. As in the acyclic
case, TRANSWESD starts with the computation of shortest path lengths S+/−. Here,
one faces an intrinsic algorithmic problem: in graphs containing negative cycles this
problem is known to be NP-complete for elementary paths (Lapaugh & Papadim-
itriou, 1984). Fortunately, one can check with low computational demand whether
a negative cycle exists or not. If not, one may again use the double label algorithm
computing exact results in polynomial time. Even if negative cycles exist, it turns
out that exact shortest path computation is often possible in realistic cellular net-
works with several hundreds of nodes by using a depth first search or special vari-
ants thereof (Klamt & von Kamp, 2009). The latter article also describes a polyno-
mial algorithm that produces reasonable approximations in large-scale networks. A
second technical issue concerns the interpretation of causality in negative cycles. In
Fig. 5.1D, a small example of a perturbation graph containing the negative cycle
C →+,0.3 D →−,0.4 C is shown. The key question is whether the negative non-
elementary path (walk) A →+,0.2 C →+,0.3 D →−,0.4 C →+,0.3 D →+,0.3 B is con-
sidered as a valid explanation for the negative influence A →−,0.6 B observed when
perturbing A. With ψ < 1, sign and length of this walk would support such a reason-
ing. Tresch et al. (2007) considered walks as possible explanations and although Albert
et al. (2007) did not consider weights, their approach is also based on this interpretation.
This brings the advantage that one only needs to compute the shortest positive/negative
walks, which is computationally easy, e.g. by an adapted Floyd-Warshall algorithm (Al-
bert et al. (2007); Tresch et al. (2007)), in contrast to shortest elementary paths. For
the following reason, the negative edge between A and B is kept by TRANSWESD:
As described in Sec. 4.2, provided data mostly reflect the network in steady state af-
ter perturbation of A (without loss of generality an over-expression in A is assumed).
The negative edge in the perturbation graph in Fig. 5.1D indicates that a decreased
activation level of B was measured. From system theory (Maurya et al., 2003), one can
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prove that the graph without this edge cannot show a decrease in B upon constitutive
over-expression of A when the response of B is measured in transient or steady-state
phase. The initial response in a network is governed by the sign of the elementary
paths. Since removal of edge A →−,0.6 B would imply that only a positive elementary
path from A to B remains, the initial response would be positive in B (simply speaking,
the effect of the positive path cannot be overtaken by the effect of the negative feed-
back induced by this path when looking at the initial response in B). Also in steady
state, B cannot exhibit a decreased activity (compared to unperturbed wild-type) if
the negative edge from A to B is removed. If only positive elementary paths from A

to B exist, a negative feedback can induce an opposite effect in steady state only in
conjunction with other structural requirements including positive feedbacks (Maurya
et al., 2003). Albeit a negative effect in B might be observed transiently, one generally
considers non-elementary paths containing a negative cycle as not sufficient for explain-
ing an edge; only elementary paths with appropriate sign and weight are accepted. The
negative edge from A to B is, therefore, kept in Fig. 5.1D. A third problem that may
arise in cyclic graphs is non-uniqueness. An advantage of TRANSWESD is that edge
weights eliminate many possible sources of non-uniqueness, in particular those related
to positive cycles. Figure 5.1E depicts an unweighted perturbation graph containing a
positive cycle. The positive edge from A to B could be explained by the positive path
A→+ C →+ B. On the other hand, the positive edge from A to C could be explained
by the positive path A →+ B →+ C. Methods based on unweighted perturbation
graphs as in Albert et al. (2007) will thus remove one of both edges and keep the other.
The choice depends on the edge processing order. With additional information on as-
sociation strengths (edge weights) a unique solution can often be found with ψ < 1 as
shown in Fig. 5.1F: one would remove the edge from A to B as it can be explained by
the positive path from A to C via B whose overall length (in MAX-metric) is shorter
than that of the edge whereas the edge from A to C would be kept. However, even with
edge weights non-uniqueness may occur as illustrated in Fig. 5.1G. In a first step, one
may remove edge A→+,0.8 C (with ψ = 0.95 explainable by path A→+,0.5 B →+,0.6 C

or, alternatively, by A→+,0.35 D →+,0.4 B →+,0.6 C). In a second step, one may either
remove edge A →+,0.5 B (explainable by A →+,0.35 D →+,0.4 B) or edge D →+,0.4 B

(explainable by D →−,0.3 E →+,0.2 C →−,0.25 B). One can only remove one of both
and then have to stop pruning because otherwise no explanation for the removed edge
A →+,0.8 C would remain in the network and thus violate condition Eqs. (5.10,5.11).
Hence one may end up with two possible minimal solutions for the reconstructed graph.
In general, such case can only occur if for a given edge at least two explaining paths
exist and, again, if the network contains negative cycles. In TRANSWESD, a greedy
strategy is used, i.e. in each iteration the explainable edge with largest weight (lowest
association strength) is removed obeying condition Eqs. (5.10,5.11).
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5.1.6 In silico application: DREAM4 challenge

This subsection, presents part of the results published in Klamt et al. (2010).
The fourth challenge of the Dialogue of Reverse Engineering Assessments and Meth-

ods (DREAM4) on in silico gene network reconstruction was used as a testbed for
TRANSWESD in the form described above (Sec. 5.1.1-5.1.5.3). The DREAM project
offers a platform for objective assessment of rivaling methods based on in silico data pro-
viding a realistic scenario for high-throughput gene expression profiling and reconstruc-
tion of gene regulation networks (Marbach et al., 2009; Stolovitzky et al., 2007, 2009).
The dataset used for testing TRANSWESD belongs to the Insilico-Size-100 subchal-
lenge and can be downloaded from the DREAM website (www.the-dream-project.org).
It comprises 5 sub-networks of 100 nodes sampled from gene networks of Escherichia coli
and yeast, realistic kinetic models with randomly selected parameters were generated
and simulated with GeneNetWeaver (Marbach et al., 2009) using stochastic differential
equations. For reconstructing these networks, in silico data were provided containing
noisy steady-state mRNA expression levels of wild-type and single- gene knockout and
knockdown experiments as well as time-series data. The gold standards of the five
networks were provided after announcing the results of all submissions. Thus, an inde-
pendent assessment of participating groups with different reconstruction methodologies
was possible.

For each network, the perturbation graph was generated as described in Sec. 5.1.2
using the wild-type and knockout steady-state data. Edge weights were computed as
conditional correlation coefficients from knockout and knockdown data. The results
were very similar when using the knockout data only. The provided time series data
were not used at all. Then TRANSWESD was applied to the generated perturbation
graphs yielding the final reconstructed graph.

For benchmarking based on AUROC (area under the receiver operator character-
istics curve) and AUPR (area under the precision-recall curve) values, potential edges
were sorted according to their weights. Receiver operator characteristics and precision-
recall curves are used in machine learning for characterizing binary classifiers. In the
case of network reconstruction, a binary classification is given by predicting an edge
or no-edge. Although both characterization curves are related, they provide different
perspectives of the prediction (Davis & Goadrich, 2006). Precision-recall curves can
indicate how precise the most confident detected edges are. On the other hand, ROC
curves indicate the overall trade-off between TP and FP detection rate. Precision as a
measure of fidelity is defined as

prec = TP/(TP + FP) (5.12)

and recall as a measure of completeness as

rec = TP/(TP + FN). (5.13)
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The ROC curve represents false positive rate (FPR=FP/(FP+TN)) vs. true positive
rate (equivalent to recall). Figure 5.2 gives an illustrative example on how ROC and PR
curves can look like for different noise settings in the data. Here, it was assumed that
the distributions of an edge score describing the truth are known, i.e. one distribution
associated to true edges and one distribution associated to true no-edges. In the lower
part of Fig. 5.2 the impact of the data quality (red, green, orange) on PR and ROC
curves for a given threshold level can be seen. The threshold level is used for edge
detection based on the edge score (e.g. z-score of gene expression levels). Threshold
variations along the curves are also indicated. An ideal PR curve has 100% precision
for all recall values. In practice, this is however not achieved. In Fig. 5.2 it is seen that
when decreasing the threshold, TPs are gained but on the cost of precision, since also
more FPs are included. A comparison of different classifiers - in our case reconstruction
algorithms - based on curves is a rather daunting task, especially when comparing to
many different reconstruction settings. Therefore the areas under the respective curve
are being used (AUROC and AUPR). Further details can be found in (Prill et al.,
2010; Stolovitzky et al., 2009). For the DREAM4 challenge, TRANSWESD obtained
an overall score of 64.715, being ranked 3rd place out of 19 submissions. The winning
team had an overall score of 71.5889. The overall score represents a log-transformed
average of AUROC and AUPR p-values over the 5 networks and is computed as score=
−0.5 log10 (〈PAUROC〉〈PAUPR〉). Further details on the scoring metrics for this specific
challenge can be found on the DREAM website (www.the-dream-project.org). After a
correction of a minor implementation bug and improved procedures for perturbation
graph generation and transitive reductions (Pinna et al., 2013), the score could be
increased up to 88.7594 for TRANSWESD.

5.1.7 Summary TRANSWESD on one-perturbation at a time data

In this section 5.1 TRANSWESD was presented as a modular procedure for reconstruct-
ing gene regulatory networks. Starting from

1. data analysis and processing,

2. the perturbation graph is obtained providing the basis for

3. TRANSWESD to reduce FP predictions

to ultimately obtain the final reconstructed GRN. Step 2 for generating the perturba-
tion graph consists of three sequential steps: (i) planning and conducting perturbation
experiments, (ii) generation of signed perturbation graph from experimental data and
(iii) edge weight (reflecting association strengths) association derived from correlation
measures. Each of the above modules might be exchanged or adapted, e.g. if other types
of data are available as is done in Sec. 5.2. Certain interactions may not be deducible
from single perturbations or/and steady-state data and may require special perturba-
tion strategies. For instance, only multiple knockouts, will detect a positive influence of
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Figure 5.2: Illustration of precision-recall and receiver-operating characteristics curves.
Different settings (small, medium, large noise) of overlapping edge score (e.g. z-score of
gene expression levels) distributions associated to a true edge (black) and true no-edge
(blue) illustrate the impact on PR and ROC curves. For clearance vertical axes have
been omitted on the distribution plots. Further indicated is the qualitative behavior when
varying the edge detection threshold parameter (=discriminating edge score: for edge scores
above/below an edge/no-edge is introduced).
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one node upon another if this influence is combined with others via Boolean OR-logic.
It is straightforward to integrate information of single and multiple perturbations when
deriving the perturbation graph. Furthermore, data of the transient response combined
with suitable data analysis could also be considered when generating the perturbation
graph. Notice that depending on the specific perturbation data (transient, steady-state,
time-courses) other, possibly nonlinear correlation measures such as mutual information
might be better suited to quantify strengths of associations (Daub et al., 2004), though
linear measures appear to be appropriate if monotone dependencies (unique edge signs)
can be assumed.

In Pinna et al. (2013), TRANSWESD was optimized with regard to perturbation
graph generation and weight derivation used to quantify path lengths. In the optimized
versions of TRANSWESD, the perturbation graph is derived by a combination of z-
score and correlation measure, whereas different edge weights are used for the transitive
reduction and edge sorting. A further improvement is obtained by restricting potential
explanation paths for indirect effects to a maximal length of two edges. Since the
optimized version of TRANSWESD follows the same principle as described in Sec.
5.1.5 we refer to Pinna et al. (2013) for further details and in depth discussion on
algorithmic improvements. Generally, the success of transitive reduction depends to
a large extent on the quality of the perturbation graph, and thus on the properties
of the available data. This includes signal to noise ratio, the type of data (e.g. gene
expression, protein level, protein phosphorylation level, etc.) and the contribution of
biologic variance itself, which all profoundly affect the observable perturbation effects.
For an in depth analysis on an extensive data set, comprising different combinations of
experimental and biological noise ratios as well as network topologies see Heise et al.
(2013).

5.2 Systems genetics

This section presents a framework for reconstructing gene regulatory networks from ge-
netical genomics data where genotype and phenotype correlation measures are used to
derive an initial graph, which is subsequently reduced by pruning strategies, including
the core algorithm of TRANSWESD to minimize false positive predictions. Applied to
realistic simulated genetic data from a DREAM challenge (DREAM5, subchallenge 3A),
it is demonstrated that this simple approach is effective and outperforms more complex
methods (including the best performer) with respect to (i) reconstruction quality (espe-
cially for small sample sizes) and (ii) applicability to large data sets due to relatively low
computational costs. The presentation of the results as well as the results themselves
are adopted from Flassig et al. (2013) and Heise et al. (2013).

Systems genetics approaches, in particular those relying on genetical genomics data,
put forward a new paradigm of large-scale genome and network analysis. These methods
use naturally occurring multifactorial perturbations (e.g. polymorphisms) in properly
controlled and screened genetic crosses to elucidate causal relationships in biological
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networks. However, although genetical genomics data contain rich information, a clear
dissection of causes and effects as required for reconstructing gene regulatory networks
is not easily possible. In genetical genomics, a particular subclass of systems genetics,
gene-expression levels are considered as phenotypic traits (called etraits) and identified
QTLs (quantitative trait loci, comprising single genes or gene regions) are referred to
as expression-QTLs (eQTLs). One application of eQTL maps obtained from genetical
genomics approaches is the reconstruction of GRNs. According to Liu et al. (2010), a
GRN reconstruction pipeline for genetical genomics data consists of three major steps:
(i) eQTL mapping, (ii) candidate regulator selection, and (iii) network refinement. Step
(i) is used to identify chromosomal regions (eQTLs) that impact on expression levels
(=traits) of genes. A detailed review on eQTL mapping is, for instance, given by
Michaelson et al. (2009). In step (ii), the eQTL map in combination with a genetic
map is used to select single candidate (regulator) genes from the eQTLs. Frequently
used methods include conditional correlation (Bing & Hoeschele, 2005; Keurentjes et al.,
2007), local regression (Liu et al., 2008), or analysis of between-strains SNPs (Li et al.,
2005). In the third step (iii), network refinement methods are employed to the topology
obtained in step (ii), e.g. with the goal to identify and eliminate FP edges arising from
indirect effects. Here, Bayesian network approaches (Zhu et al., 2007) and structural
equation modeling, SEM, (Liu et al., 2008) have been used.

The here presented GRN reconstruction framework is tailored to genetical genomics
data, which incorporates the three major reconstruction steps mentioned above in a
modular fashion (Flassig et al., 2013). The framework follows a simple-yet-effective
paradigm: it is based on simple correlation measures, without the need for computa-
tional demanding optimization steps. This approach is therefore suited for small- and
large-scale networks and performs well in the case of little samples but many genes, as
illustrated in Flassig et al. (2013) and Heise et al. (2013) using simulated and biological
data.

5.2.1 GRN reconstruction on genetical genomics data

The workflow of the framework with a simple illustrative example is shown in Fig.
5.3. Starting from a typical set of genetical genomics data that include genotyped
markers, phenotyped genes and gene-to-marker association, marker linkage analysis and
genotype assignment for each gene is performed in a preprocessing step. From these
data an unweighted and unsigned perturbation graph G1 is derived using genotype-
phenotype correlation in combination with an appropriated thresholding strategy. The
nodes in the graph directly correspond to genes while linkage information is kept to
allow later eQTL assignment for each gene. The perturbation graph G1 is refined to G2
by quantifying each identified edge with respect to edge sign and weight, which indicate
activation/repression and interaction strength, respectively. Due to genetic linkage true
regulators may be masked by other genes, e.g. on adjacent positions on the genetic map,
leading to eQTLs. EQTLs of a given target gene ti can be identified on the basis of
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Figure 5.3: Workflow of the proposed framework for reconstructing gene regulatory net-
works from genetical genomics data (left) with an illustrative example (top panel and right).
For detailed explanations see text. Reproduced with permission of Oxford University Press
from Flassig et al. (2013).
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all potential regulator genes of ti and the marker linkage map. These relationships are
captured in graph G3. Graph G4 is subsequently obtained by selecting one candidate
regulator per eQTL based on the maximum of the edge weights. G4 is referred to as
the final perturbation graph, whose edges reflect direct and indirect effects between
genes induced by genetic variations. To remove indirect edges that can be explained by
the operation of sequences of edges (paths) TRANSWESD is applied resulting in the
final graph G5. Optionally, if one is left to verify the interactions experimentally, it is
desirable to have a list of edges sorted with respect to edge confidences. Such a list is
also used by the DREAM5 evaluation procedures to assess the quality of a reconstructed
network.

5.2.1.1 Preprocessing genetical genomics data

A genetical genomics dataset typically consists of the following information (see Fig.
5.3): From a segregating population such as RILs, each segregant is genotyped for
a set of polymorphic genetic markers that cover the genome or at least part of it.
The genotype of each marker in each RIL is captured in a matrix P (e.g. two-valued
(0/1) in the case of haploidic genomes). Additionally, genes are expression-profiled in
each RIL (stored in a matrix T ). In the typical case that several genes are associated
to one marker, genes can be associated to a specific marker based on their position
on the genome map (yielding the list A in Fig. 5.3). From this information, one
extracts by simple preprocessing steps two additional matrices needed before the actual
reconstruction process is started. First, the gene-to-marker association A is used to
assign, for each RIL, an (approximated) genotype Q to each gene, which is taken from
its associated marker genotype P . This genotype assignment is based on the assumption
of genetic linkage between markers and genes. Further, genetic linkage of the markers
needs to be taken into account to identify potential eQTLs in G3 at a later reconstruction
step. If genetic linkage of the markers is unknown, a linkage analysis can be performed
based on genotype-genotype Pearson correlation of the markers mi and mj (Pi and Pj
denoting their genotype). With a given threshold dmin ∈ [0, 1], then mj ∈ µi with
µi being the set of markers linked to marker mi. By this procedure one obtains a
linkage map L. The parameter dmin represents the minimal genotypic correlation at
which two markers are considered to be linked. The threshold can be derived from
(i) testing for significance of deviation from zero by a t-test (e.g. appendix of Bing &
Hoeschele (2005)), whereas empirical significant levels can be derived from permutation
tests (Carlborg et al., 2005; Churchill & Doerge, 1994), (ii) the typical separation of
candidate regulators in the eQTL map based on rQiTj (see Fig. 5.3 right, panel of
G1). Specifically, one may analyze the average number of eQTLs over the genome as a
function of dmin. Regions of dmin where the average number of eQTLs does not change
much, indicate an optimal value. A similar thresholding strategy could be applied if
genetic distances (given in centiMorgan) between the markers are known a priori.
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5.2.1.2 Generating the raw perturbation graph from genetical genomics
data

The next step is the generation of the perturbation graphs G1 and G2 from the (pre-
processed) genetical genomics data. The idea for detecting a potential regulator-target
interaction is - as in the case for one-perturbation at a time data - that a variation in a
regulator gene’s genotype causes a variation in the phenotype of the target gene. Tj is
used to indicate the expression phenotype (etrait) of a gene j and Qi for the genotype
of a gene i (obtained from the marker genotype as described above). Based on the
genotype-phenotype Pearson correlation coefficient rQiTj , an edge i → j is assumed to
exist, if it exceeds a threshold value tQT :

|rQiTj | ≥ tQT . (5.14)

The derived candidate edges reflect regulation of gene j by gene i by either cis, cis-trans
or trans effects. In the case of i = j it is most likely a cis effect, otherwise one has to
condition on i: if gene i has a cis effect then gene j is cis-trans regulated else it is
trans regulated. All three effects will result in increased correlations and Eq. (5.14)
can thus be used to derive candidate edges for the GRN. The threshold tQT ∈ [0, 1]

can be selected based on a combination of several criteria, including (i) similar to the
marker linkage analysis by p-values for rejecting |rQiTj | > 0 based on a t-test, (ii)
minimal/maximal edge numbers one expects to find in the GRN and (iii) existing data.
In the case of small sample size, Spearman correlation might be more appropriate. For
diploidic genomes, where Qi is three-valued, one may apply the same procedure for each
pairwise combination of genotypes and merge the resulting networks to G1.

Importantly, the nodes in the obtained graph G1 directly correspond to genes (as
required to eventually reconstruct gene regulatory networks); the eQTL (regions) will
be assigned later in graph G3 based on the linkage map L. Beforehand, edge signs and
edge weights are assigned to each candidate edge i → j in G1 resulting in G2 (Fig.
5.3). The edge sign sij is derived from via φ(rTiTj ), i.e. the sign mapping applied on
the correlation coefficient of expression levels of genes i and j. The strength wij of an
edge is quantified by

wij =
(
|rQiTj |+ |rTiTj |

)
/2. (5.15)

The edge weight accounts for genotype-phenotype (QT -) and phenotype- phenotype
(TT -) correlations by averaging both. This is especially important for (cis-)trans-
regulated targets, as these are affected by both, geno- and phenotype of the potential
regulator. We have also tested either QT - or TT -correlation alone, which in both cases
led to reconstructed GRN of significant lower quality (at least when applied to the
DREAM5/3A data). We also found that substituting the QT correlation coefficient
in Eq. (5.14) by the average TT - and QT -correlations as used in Eq. (5.15) is not
favorable, probably because then many high TT -correlation wrongly indicate a directed
relationship, e.g. owing to common upstream regulators.
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5.2.1.3 Identification of eQTLs and candidate regulator selection

Due to genetic linkage (correlated genotypes), a gene j that is found to be targeted by
a gene i (i.e. an edge from i to j exists in G2) is typically also targeted by several other
genes genetically adjacent to i resulting in an eQTL. An eQTL with respect to a given
target gene j is identified by the set of all those genes that are potential regulators of j
in G2 and that are genetically linked via their markers (see Fig. 5.3, G3: target gene g3

has one eQTL formed by {g2, g4, g5}). Importantly, two potential regulators gi and gj
can be in the same eQTL, even in the case of their associated markers mi and mj being
not linked in the linkage map L. This happens if there is another candidate regulator
gk whose marker mk is linked to mi and mj in L. Note also that for each target gene,
there may exist several eQTLs: in Fig. 5.3, gene g6 has two eQTLs formed by genes
{g4, g5} and {g1, g3}. Once all eQTL(s) are idenified for each target gene one arrives
at the eQTL graph G3 (Fig. 5.3) in which the edges connect eQTLs with their target
genes. G3 would represent the final result of classical eQTL mapping. If eQTL mapping
was the envisioned goal, one could stop the procedure at this point. However, if the
reconstruction of a gene regulatory network is the ultimate goal then single candidate
genes from each eQTL need to be selected. Since the probability is quite high that only
a few or even only one of all the potential regulators of an eQTL are truely connected
with the target gene, keeping all interactions in G2 that emanate from one and the same
eQTL (the eQTLs being captured in G3) would result in many false positive predictions
in the reconstructed network. Therefore we suggested selecting the candidate regulator
from each eQTL with the maximal edge weight to be the true regulator of the target
gene, i.e. for each eQTL identify i → j with wij = max(wkj), k ∈ eQTL, as the true
edge and all other edges are removed from the eQTL. One then has the final perturbation
graph G4 in Fig. 5.3 in which the nodes represent again genes.

5.2.1.4 Identifying and removing indirect effects (TRANSWESD)

Candidate regulator selection in the previous section leads to the reduced graph G4
where genetic linkage effects have been removed. One can now assume that edges in G4
reflect true causalities. However, an edge may still represent an indirect effect induced
by a chain of interactions. For instance the effect of gene g4 on gene g6 in G5 of Fig.
5.3 is likely to be induced by the double-negative (thus positive) path g4 →− g3 →− g6.
The goal of this final step is therefore to identify and eliminate edges that arise from
indirect effects. To this end TRANSWESD is used (Klamt et al., 2010). TRANSWESD
needs association weights w̃ij between nodes of the graph, which can be directly derived
from the edge weight via w̃ij = 1−wij , i.e. a low w̃ij indicates a high association (small
distance) between i and j, as in Eq. (5.5). After applying TRANSWESD the final,
reconstructed graph G5 is obtained.
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5.2.1.5 Sorted edge list

Optionally, a sorted list (ranking) of regulator-target interactions can be generated from
the final graph G5, e.g. for prioritizing edges for experimental validation. One possible
sorting is made up of two parts. The first part of the sorted edge list contains all edges
from the final graph, sorted according to edge weights wij with highest weights (=most
significant) first. In order to also account for edges that potentially have been wrongly
dropped during thresholding (not contained in G1), cluster removal, or by TRAN-
SWESD, the second part contains all of these removed edges, also sorted according to
their edge weights Eq. (5.15) in descending order.

5.2.2 Applications

The following subsections illustrate the application of the developed framework to (i)
synthetic genetical genomics data that were provided for a systems genetics challenge
of the DREAM project (DREAM 5, subchallenge 3A), and (ii) real genetical genomics
data from yeast, which were originally published in Brem & Kruglyak (2005).

5.2.2.1 In silico application: DREAM5 challenge

The task of the systems genetics challenge of DREAM (DREAM5, subchallenge 3A) was
to infer causal gene regulatory networks from phenotype expression data of a genotyped,
segregated population. Due to lack of reliable experimental data sets for benchmarking
different reconstruction algorithms, participants were given realistic in silico data which
were generated by the SysGenSIM software (Pinna et al., 2011). The provided simu-
lated data represent (noisy) data from homozygous recombinant inbred lines (RILs),
whereas the genome of each individual consists of 1000 genes and is made up of 20
chromosomes with 50 genes each. Five different networks of modular scale free topol-
ogy had to be reconstructed for three different sample sizes (populations of 100, 300
and 999 RILs) eventually resulting in 15 reconstructed GRN. The haploidic genotype
for all genes in all RILs was given as a binary vector (simulating the ideal situation
of one marker per gene). The genotypes of adjacent genes were correlated mimicking
genetic linkage. Each gene was assumed to have one functional genetic variant, either
in the promotor (cis effect on the gene’s expression rate) or coding region (trans ef-
fect on the target gene) of the gene. One motivation of the challenge was to analyze
the reconstruction quality of participating methods when the population size becomes
very small in comparison to the number of genes (e.g., 100 RILs / 1000 genes). For
each sample size, the reconstructed networks in form of a sorted edge list (last step in
Fig. 5.3) are passed to the evaluation script of DREAM (for details see Stolovitzky
et al. (2009) and www.the- dream-project.org). Since self-regulation was excluded by
the challenge, candidate edges i → j where i = j were removed. The evaluation of
the reconstruction quality is based on AUROC and AUPR values derived from compar-
ing the reconstructed GRN to the gold standard. The resulting overall score is based
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on empirical p-values computed from all submitted reconstructed GRNs (Stolovitzky
et al., 2009). Applying the developed systems genetic reconstruction framework to the
described DREAM5/3A data was straightforward and led the results presented in Table
5.1. The preprocessing step (see Fig. 5.3) was reduced to generating the marker/gene
linkage map L, since each gene had its own associated marker. When applying the
framework parameters tQT and dmin need to be specified. Two scenarios were consid-
ered for the threshold tQT . First, based on the gold standards, optimal values for each
of the three RIL population sizes were determined (delivering the highest overall score
for all networks of this size), which were then used for all five networks. It turns out that
smaller population sizes require larger threshold values: 0.23 for 100 RILs; 0.15 for 300
and 0.09 for 999. These optimal values correspond to p-values smaller than 0.01, when
assuming t-statistic. In addition, for an unbiased scenario, tQT was sampled uniformly
in the range of 0.05 . . . 0.6, which defines a plausible range of maximal and minimal
edge numbers contained in G1. Further average result over all networks (column G5*
in Table 1) are computed to have an estimate of an the average reconstruction perfor-
mance. Regarding the parameter dmin required for identifying eQTLs dmin = 0.5 was
chosen after inspecting geno-phenotype relationships in the data (see Fig. 5.3, panel
G2). As it turned out, results were extremely robust with respect to changes of dmin.
For example, the overall scores varied less than 1% when varying dmin in a large range of
0.3-0.8. In contrast, disregarding genetic linkage between markers by setting dmin = 1

lead to much lower reconstruction quality (see Tab. 5.1 overall scores of G2 vs. G4).
This also holds for the other extreme case dmin = 0, which would result in one large
eQTL for all identified regulator candidates.

Several key observations can be made. Moving from the initial perturbation graph
G2 to G4 by the candidate regulator selection approach, one can see a clear improvement
with respect to FP reduction at minimal loss of TPs by one order of magnitude. For
example, for the 999 RIL individual scenario, when transforming G2 to G4 the number
of FPs reduces on average from 51644 down to 3368; whereas the number of TPs reduces
only from 2371 to 1844. Undesired removal of TPs may occur by selecting the wrong
regulator gene of an eQTL or because several genes from an eQTL target the same gene
concurrently. In the second pruning step from G4 to G5, TRANSWESD removes many
indirect edges due to alternative paths found in G4 improving in almost all cases the
AUPR value. As the precision (TP/(TP+FP)) of the reconstructed network increases
significantly in all cases upon applying TRANSWESD one could expect an even better
relative improvement of the AUPR value. However, there is only a moderate increase
of the AUPR because TRANSWESD removes mainly edges with lower edge weight
and thus with lower confidence (and ranking position) in the edge list. Generally,
TRANSWESD works better for networks with lower connectivity (in DREAM5/3A,
the edge density increases with increasing network index from approximately 2000 up
to 5000 edges) and with larger sample size.

The made observations also hold for averaged scores from uniformly sampled thresh-
old parameters tQT (see G5∗ in Tab. 5.1), i.e. the method is robust against threshold
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selection. Comparing the results of the proposed framework to the best performer of
the DREAM5/3A challenge for each RIL sample size and different network topologies
(last column in Tab. 5.1), one can see a clear improvement also for randomly chosen
threshold parameters (G5* in Tab. 5.1). Even without applying any FP reduction, G2
is almost always better than the best performer, although it was constructed based on a
simple eQTL mapping approach alone. G4/G5 obtained after pruning are always better
than the best performer. This also holds for an improved version of the best performer
method (Vignes et al., 2011). Further, moving from large to small sample sizes one can
see a clear relative improvement, i.e. increase of the overall score (e.g. of G5* averaged
over the 5 different networks) with respect to all DREAM participant submissions. Con-
sequently, the developed method performs especially well for small sample sizes. At a
given sample size, the method has averaged AUPR values which are up to 3 times larger
than the best performer in the case of 100 samples (G5∗ vs. best performer averaged
over the 5 networks). This shows, that for small sample sizes, a rather simple method
based on pure correlation measures in combination with FP reduction methods seems to
be the best choice, keeping in mind that many different methods have been used by the
16 participants in this specific reconstruction challenge of DREAM (Flassig & Klamt,
2009). However, even for the largest RIL populations provided in the DREAM5/3A
challenge, the developed method still achieves significantly higher scores.

5.2.2.2 In vitro application: genetical genomics data of yeast

As a real life test case for the developed genetical genomics data based reconstruction
method, genotypic and expression data from 112 segregants obtained from a yeast cross
between BY and RM strains of S. cerevisiae (Brem & Kruglyak, 2005) have been used.
Only 1573 of all 2956 markers were associated to at least one of the 5736 expression-
profiled genes. Further, a gene-to-marker association list A was available. In contrast
to the DREAM5/3A data, there were thus much fewer markers than genes. After
preprocessing the data by computing the linkage map L from the marker genotypes
in the RILs with dmin = 0.5 (same value as for the in silico data), the reconstruction
framework was applied to the matrices T and Q to obtain G2. The correlation threshold
was set to tQT = 0.23, corresponding to the determined optimal threshold for the in
silico data with 100 RILs (as this is closest to the 112 RILs available in this study).
The two parameters were thus unbiased and not specifically optimized for this dataset.
Using the linkage map L, the eQTL graph G3 was obtained, which was used to derive
the final perturbation graph G4 by selecting from each eQTL the gene-target interaction
in G2 that has the highest edge weight.

In the literature and in some databases one can find published (most likely sub-
networks) of the yeast gene regulatory network, whose interactions have been identified
from different sources, including ChIP-chip and motif finding studies (Lee et al., 2002;
Reimand et al., 2010). However, a rigorous evaluation of the inferred network is not triv-
ial, as the reliability of the gold standards from the sources mentioned above is unclear.
Therefore the following strategy for evaluating the quality of the reconstructed network
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Table 5.2: Reconstruction results for the yeast genetical genomics data set Brem &
Kruglyak (2005) compared to the yeast gold standard of DREAM5/4.4. The first row
shows (separately for G2, G3 and G5) the AUPR, the p-value of AUPR and the (virtual)
rank within the DREAM5/ 4.4 AUPR performance ranking (total number of participants:
29). The second row gives the same values with respect to AUROC. Reproduced from
Flassig et al. (2013) with permission of Oxford University Press.

G2 G4 G5
AUPR/pAUPR/rank 0.0274/5.7E-11/4 0.0293/2.34E-14/3 0.0293/1.89E-14/3

AUROC/pAUROC/rank 0.5396/6.7E-28/1 0.5407/6.14E-30/1 0.5407/6.4E-30/1

was followed: In another challenge of DREAM5 (subchallenge 4.4; not to be confused
with the systems genetics subchallenge 3A described in the previous Sec. 5.2.2.1) the
goal was to infer a subpart of the yeast GRN focusing on 333 candidate transcription
factors (TF) and their interactions with 5950 (potential target) genes based on 536
microarrays each containing expression profiles for a given perturbation (e.g. specified
gene knock-out or over expression, including partial replicates). The evaluation in this
challenge was based on a given gold standard containing interactions considered to exist
between the genes of the given transcriptions factors and all other genes (by the time of
the analysis, it was not known to me nor my collaborators how this gold standard was
compiled), whereas self-regulation has been excluded. Most genes (5451) of the data
from Brem & Kruglyak (2005) are present in the DREAM5/challenge 4.4 yeast gold
standard. To compare the absolute performance with respect to this gold standard and
relatively to the other 29 participants of this challenge, a subgraph of the reconstructed
yeast GRN was evaluated, which was restricted to potential interactions between the
333 TFs as regulators and the 5451 target genes present in DREAM5/4.4. The specific
DREAM5 evaluation script was used, which computes the AUPR and AUROC (and
their p-values) of an inferred network with respect to the provided gold standard. The
results are presented in Table 5.2. First observe that even though the reconstruction
was based on only 112 RILS samples (compared to the large number of 536 microarray
experiments available to the participants of this challenge), the reconstruction belongs
to the very best of the submissions (rank 1 for AUROC, rank 3 for AUPR). Therefore, as
observed also for the in silico data in Sec. 5.2.2.1, the performance of the reconstruction
framework proves again its suitability for small sample sizes. In Table 5.2 one can also
see that the FP pruning strategies always improves the precision-recall and associated
p-values when moving from G2 via G4 to G5. The same holds for the AUROC score,
except that in G5 a minor reduction of the p-value can be observed due to the loss of
some TPs during FP reduction.

Regarding the absolute quality of the reconstructed network, notice that it does not
meet the high scores of the in silico challenge DREAM5/3A, Sec. 5.2.2.1. There are
several possible reasons for this behavior. First, the amount and resolution of the in
silico data quality is much better, in particular, there was one marker per gene (whereas
only 1573 markers for 5736 genes are available in the yeast data). Although noise has
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been added to the in silico data, it might be much higher under realistic conditions
or/and other sources of uncertainty might also hamper the visibility of true interactions
as illustrated in Heise et al. (2013). Furthermore, the given gold standard for the yeast
transcriptional network cannot automatically be considered to be the full truth. The
similar low or even worse quality of reconstructed networks submitted by the other
participants for DREAM5/4.4, may, at least partially, point to missing or false edges
in the gold standard itself. To test the relevance of the inferred networks, it would
therefore be interesting whether the top-ranked interactions of the reconstructions (not
present in the gold standard) could be validated in experiments.

5.2.3 Summary TRANSWESD on systems genetics data

In this section a simple yet effective modular framework for gene regulatory network re-
construction from genetical genomics data was presented. In the case of the DREAM5/3A
in silico data, the methodological framework was shown to outperform the best per-
former (even in the non-tuned case), who applied a combination of Bayesian network
analysis, LASSO, and the Dantzig selector (Vignes et al., 2011). In the case of real
data, the DREAM5/4.4 yeast GRN gold standard has been used to assess the quality of
the yeast GRN inferred by the framework applied to genetical genomics data relatively
to networks inferred by classical perturbation experiments and microarray data. The
performance of the reconstructed network compares to the very best of the submissions,
although here only 112 RILs have been used, in contrast to DREAM5/4.4 submissions,
which were based on 536 microarrays with well-defined perturbations. Consequently,
these results indicate that simple correlation methods paired with subsequent FP prun-
ing strategies outperform complex methods, especially for small sample sizes (exper-
imentally still most relevant). This is most likely due to a larger noise sensitivity of
multi-locus method in contrast to univariate correlation analysis. Since correlation-
based eQTL mapping yields many true positive, but also many false positive interac-
tions, a local pruning based on linkage information and a global pruning based on path
knowledge is important.

The proposed framework performs best on data with one marker per gene, which
might be realistic for future ultra-high-throughput sequencing methods. As illustrated
in Sec. 5.2.2.2, the framework can be readily applied to the general case where markers
cover several genes and it can also be adapted easily to cases with more than two differ-
ent genotypes. The presented local pruning approach for genetic linkage assumes that
only one regulator gene is selected per eQTL, which therefore cannot account for the
case that a target has several regulators within one eQTL. A relaxed selection strategy
can be used based on partial correlation to potentially select more than one candidate
regulator per eQTL (Bing & Hoeschele, 2005). In the case of complex traits, i.e. a
trait is influenced by several eQTLs, the univariate approach to generate G1 based on
correlating one Qi with one Tj at a time possibly misses combinatorial effects and could
potentially result in a higher number of false-negative regulator-target interactions. Al-
ternatively, a multi-locus method as the Lasso (Tibshirani, 1996), the elastic net (Zou
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& Hastie, 2005) or the random forests (Geurts et al., 2009) might be used. However,
as has been pointed out by Michaelson et al. (2010), for very large data sets (millions
of dense markers and phenotyped genes), multi-locus methods cannot be used due to
computational overload. Here, the presented approach provides a computationally fea-
sible and effective framework for filtering the most important interaction sites (on which
multi-locus approaches can be applied) as it does not use any optimization algorithm.

In order to apply the developed framework, one needs to specify threshold parame-
ters. Several ways for determining optimal values based on an explorative data analysis
have been discussed. As was further shown, the reconstruction framework allows an
adjustment to other reconstruction methods, i.e. modules in the workflow (Fig. 5.3)
may be replaced. For instance the candidate regulator selection based on the eQTL
map G3 may be exchanged by other approaches, e.g. partial correlation or local re-
gression. Although the framework is based on a univariate analysis it can provide
reconstructed GRN at higher precision-recall level than advanced multi-locus methods,
even for smaller sample size. This might not hold when combinatorial or epigenetic
effects (Brazhnik et al., 2002) are present, where multi-locus approaches may become
advantageous (Michaelson et al., 2010). Therefore, in line with the key result of the
DREAM initiative stating that community efforts based on many different reconstruc-
tion methods produce best results (Prill et al., 2011), meta-methods, e.g. as proposed
by Vignes et al. (2011), should combine both simple and complex methods.

5.3 Summary

This chapter introduced and analyzed TRANSWESD, a FP reduction methodology in
a modular framework for reconstruction gene regulatory networks. Overall, the frame-
work constitutes simple, exchangeable modules, as has been illustrated when adapting
the original TRANSWESD for one-factorial data to multi-factorial data. As was shown
by several examples, TRANSWESD including its preprocessing procedures is a power-
ful approach despite its simplicity and especially suited for large-scale reconstruction
or filtering. Finally, note that we have successfully applied the z-score approach of
TRANSWESD in a species translation network reconstruction challenge provided by
sbv IMPROVER platform (Meyer et al., 2011, 2012). Here we were ranked 1st place
(Klamt et al., 2013). Just like the DREAM project, sbv IMPROVER provides biologi-
cal challenges focused on industrial applications of systems biology (Meyer et al., 2011,
2012) and enables an objective evaluation of methods.
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6

Concluding Remarks

It is perfectly true, as philosophers say, that life must be understood
backwards. But they forget the other proposition, that it must be lived
forwards. And if one thinks over that proposition it becomes more and
more evident that life can never really be understood in time simply because
at no particular moment can I find the necessary resting place from which
to understand it backwards.

Søren Kierkegaard
Journals and Papers, 1843

6.1 Summary

This thesis presents methodological solutions to model identification problems within
the application field of systems biology, more generally, biochemical systems. The solu-
tions are (i) a robust experimental stimulus design methodology for supporting compu-
tational model identification of dynamical processes in biochemical reaction systems and
(ii) a modular framework for structural network identification based on high-throughput
data. The developments were driven by challenges that come along with this specific
class of systems, which are not as often found in physical, nonliving systems analysis.
Most of the nonliving systems are very well characterized and understood, whereas bio-
chemical systems are often only understood on a qualitative basis owing to their inherent
complexity paired with strong biological variability. Further, experimental probing of
biochemical systems is not as straightforward as is the case for physical systems.

In this challenging setting of strong inherent variability, difficult experimental prob-
ing, vague mechanistic knowledge and complexity (with regards to the number of players
involved, but also with regard to the emergent properties), we are in the need of so-
phisticated methods, that help using our existing skills in an optimal way, to ultimately
follow the engineering paradigm of model-based understanding and design.
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In this work, a new experimental design approach with the focus on robust stim-
ulus design aimed at model discrimination was created (Ch. 3). The approach has
been benchmarked with several in silico test cases. As was shown, it is ideally suited
for nonlinear models that have highly uncertain parameters enabling researchers to ro-
bustly design complex stimulus profiles with little computational effort. In this way,
model-based predictions are robustified against parametric uncertainties, which repre-
sent experimental and inherent biological variabilities.

The developed stimulus design method was applied within an interdisciplinary re-
search project (Prof. Dr. rer. nat. Michael Naumann, adj. Prof. Dr.-Ing. Michael
Mangold, Dr. rer. nat. Michael Wulkow, Prof. Dr.-Ing. Kai Sundmacher). Here, we
could demonstrate a cyclic workflow, including experiments, experimental design and
computational modeling. In this way, a predictive, dynamic signaling model for DNA
damage detection could be identified, that allowed predicting individual contributions
to a specific protein modification, which is essential for DNA repair pathway initiation
(Ch. 3). Within this research project we thus exemplified how difficult experimental
tasks can be transferred to computational modeling challenges by using the model as a
crutch for understanding biological signaling processes. By applying statistical method-
ologies for data and model analysis, including the developed optimal experimental design
methodology, a predictive model could be used to generate verifiable predictions.

Finally, in collaboration with the group of Dr.-Ing. Steffen Klamt, TRANSWESD
was developed as a framework for large-scale network reconstruction based on one- or
multi-factorial perturbation data (Ch. 5). The framework has been benchmarked on
international platforms for in silico network reconstruction problems and proven to
be one of the leading approaches for structural network identification. Further, the
performance on a real life application underpinned the strength and applicability of
TRANSWESD, although it was shown, that there is still a discrepancy between in
silico and in vitro performance. Despite this discrepancy, in silico benchmarking is an
important tool for identifying strengths and weaknesses of reconstruction methodologies.

In total, the most important achievements of this work are methodological advances
in mathematical model identification tailored to handle the challenges of biochemical
systems with a high degree of variability and complexity. The achievements may be
summarized as follows:

• A new experimental design methodology for robustly designed stimulus profiles,
aimed at providing data for best model discrimination in the presence of parameter
uncertainties

• An illustration of an iterative model identification procedure of a dynamic cell
signaling model, including experimental design and model analysis

• A new dynamic model for DNA damage signaling upon ionizing irradiation

• TRANSWESD, a framework for large-scale reconstruction of biochemical reaction
networks including benchmark tests
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• An illustration of TRANSWESD to a real life test case

Also important to note that TRANSWESD has been acknowledged as one of the state-
of-the-art network reconstruction algorithms. In international reconstruction challenges
it has been ranked 3rd and 1st place (Flassig & Klamt, 2009; Klamt et al., 2013).

6.2 Conclusion and Outlook

From a high level point of view, identification of dynamic models or large-scale net-
work structures use the same methodological principle, namely statistical classification,
which is most likely one of the key approaches to the identification of reliable, biochem-
ical models. Although both contributions were either driven by computational model
identification of dynamic signaling processes or by reconstructing gene regulatory net-
works, they are - taken cum grano salis - not restricted to these specific applications.
This is simply the consequence of the fact that one can reinterpret the entities described
by the mathematical formulas. Therefore, depending on the specific application, the
developed methodologies help distinguishing (i) plausible from unlikely dynamic ODE
models and (ii) edges from no-edges in large-scale interaction networks.

Even though methodological advances have been quite impressive over the last years
within the field of computational modeling of biological processes, one should keep in
mind that only the inclusion of experimental advances will help reaching the next level of
systems understanding. This work has also given a flavor in this direction by illustrating
an interactive, highly integrative working mode that combines experimental and mod-
eling strengths to increase biochemical systems understanding. Systems understanding
includes new knowledge about how molecules interact and respond to ex- or internal
stimuli and how this impacts on the phenotype of the cell, tissue, organ and ultimately
the living organism. This knowledge allows designing strategies to influence and modify
living organisms and bears huge potential in the area of biomedical applications by,
for instance, reducing the time of clinical trials for vaccine candidates or by optimizing
cancer therapy with individualized protocols based on the patient’s bio-marker profile,
which can serve as a bio-fingerprint (Rappuoli & Aderem, 2011).

Additionally, with emerging knowledge, understanding and LEGO R©-like biological
building bricks (Heinemann & Panke, 2006), synthetic biology should pave the way to
a rational design of biochemical devices and reaction systems either from scratch or via
modification of existing biological building blocks. Examples for such applications in-
clude diagnostic tools for patients’ care or optimized strains for biological productions
processes (e.g. yeast or fungal based production of proteins for industry or medical
application (Benner & Sismour, 2005; Khalil & Collins, 2010; Purnick & Weiss, 2009;
Rollié et al., 2012)). Finally, one should note that such a technology should not miss
a sound dispute about ethical questions and responsibilities, in order to explore impli-
cations of manipulating life by means of adaption or even creation (Boldt & Müller,
2008).
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Appendix A

Supplementary methodological
information

A.1 NLP problem formulation for optimal experimental
stimulus design

For completeness of the thesis, the NLP problem formulation is included. It is taken
from the supplementary material of Flassig & Sundmacher (2012b).

A.1.1 Direct sequential approach

Within the direct sequential approach, the stimulus is parameterized, whereas the sys-
tem dynamics is solved by numeric integration. The basic structure of the resulting
NLP problem is given by

UE
† = arg min

U∈U⊂D
OE(U) = E

[
ΦN
(
EE
tA|B

[Y],CE
tA|B

[Y]
)]

t
(A.1)

subject to:

d

dt
xm(t) = fm(xm(t), u(U, t),θxm) (A.2)

xm(t0) = x0m (A.3)

ym(t) = [x∗2m(t), x∗3m(t)]T (A.4)
xim(t) ≥ 0 ; yjm(t) ≥ 0 (A.5)

umin ≤u(U, t) ≤ umax (A.6)
dtmin ≤dtk ≤ dtmax (A.7)

(nt−1)∑
k=0

dtk ≤ (tf − t0) (A.8)

+method to estimate EE
tA|B

[Y] and CE
tA|B

[Y], (A.9)
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where i ∈ {1, 2, 3, (4)B} index the species, j ∈ {1, 2} the response measurement signals
and m ∈ {A,B} the models. The measurement time points are being fixed and placed
according to t = [t0, t1, . . . , t(nt−1) = tf ]T with constant dt =

tf−t0
nt

.

A.1.2 Direct simultaneous approach

A full discretization of the dynamic system equations by means of orthogonal collocation
results into nonlinear constraints in the form of nonlinear algebraic equations, which
represent an implicit Runge-Kutta scheme (Biegler, 2007). The advantage of this ap-
proach is the straight forward implementation of additional nonlinear path constraints
and the availability of powerful NLP solvers. The basic structure of the resulting NLP
problem is given by

UE
† = arg min

U∈U⊂D
OE(U) = E[ΦN

(
EE
tA|B

[Y],CE
tA|B

[Y]
)

]t (A.10)

subject to:

xlkA|B = xl0A|B + dtlA|B
nc−1∑
j=0

WkjfA|B(xljA|B ,Ul,θx) (A.11)

xl−1nc−1A|B = xl0A|B ∀ l = 2 . . . nFE (A.12)

x10A|B = x0A|B (A.13)

ylkA|B = xlkA|B (A.14)

ul = ul+1 = ... = ul+b ∀ l = 1, (2 + b), ... ≤ (nFE − b) (A.15)
+ additional box constraints on all variables, (A.16)

with nFE = 100 representing the number of finite elements, indexed by l = 1 . . . nFE ,
nc = 3 being the number of collocations points in each finite element, indexed by
k; j = 0 . . . (nc−1). Index b ≤ nFE represents the number of subsequent design variables
that cannot be varied, i.e. the minimal time window of stimulus change. Wkj is
the collocation point weighting matrix and fA|B the model dependent right hand side
in the ODE system. When using the linear design strategy, the sensitivity equation
and corresponding constraints (analogous to the system state discretization x(t)) were
implemented. For the sigma point design, Eqs. (A.11-A.16) have to simultaneously hold
for the (2nθ+1) sigma points. For the presented results, box constraints were chosen in
such a way, that switching between two stable states might be induced (0.5 ≤ Ul ≤ 2.5).

A.2 Transformation of log-normal to normal PDF

This section concerns the log-transformations applied in Sec. 3.4.1, in order to account
for log-normality. In the case of uncorrelated parameters one can start directly from
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the log-normal moments of the parameter PDF Elog[Θ] and Clog[Θ] to derive the corre-
sponding normal moments, i.e. the moments of the normal PDF that characterizes the
parameter on the logarithmic scale. In detail, if a parameter Θ has a log-normal PDF,
then Θ̃ = log(Θ) is normally distributed. For each model parameter Θi, the transfor-
mation of the log-normal moments (expectation and variance) in one-dimensional form
to the corresponding normal moments of Θ̃ is given by (Aitchison & Brown, 1969)

Enorm[Θi] = log (Elog[Θi])−
1

2
log

(
1 +

σ2
Θi

E2
log[Θi]

)
(A.17)

σ2
norm = log

(
1 +

σ2
Θi

E2
log[Θi]

)
, (A.18)

whereas σ2
Θi

represents a diagonal element of Clog[Θ]. These moments can be used to
derive the sigma points SPnorm for the normal parameter PDF. The next step consists
of exponentiating the normal sigma points to obtain the corresponding sigma points on
the original logarithmic scale in the parameter space

SPlog = Exp (SPnorm) .

Then, the ODE system is solved for the resulting SPlog to yield the propagated sigma
points, i.e. model response trajectories on the normal scale. These model response
trajectories can then be used to calculated the estimates for response expectations and
variance-covariances.

If the parameter distribution can be represented by samples, which show clear cor-
relations, one can simply log-transform the samples and derive estimates for the normal
moments from these. Then again, calculate the sigma points, exponentiate and propa-
gate these through the ODE system. Note that this discussion applies to any transfor-
mation moving an arbitrary, multivariate skewed PDF to normality (or at least close
to normality). Within the linearization approach, one simply linearizes the response in
logarithmic form with respect to the parameters.
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A.3 Supplementary in vitro application information

A.3.1 Model equations

The model equations are scaled to the total concentration of [Ku7080]tot to make use

of the intrinsic scale invariance of ODE in dimensional form to improve parameter

estimation in terms of efficiency, see for instance supplement of Bachmann et al. (2011).

Therefore, brackets - usually indicating a protein in concentration units - have been

dropped, as the states of the ODE then represent relative concentration levels and are

thus dimensionless.

initially damaged DNA:
d
dt

DDNA1 = R1 −R2 (A.19)

complex {Ku7080:DDNA1}:
d
dt

RC11 = R2 −R3 (A.20)

complex {DNA-PKcs:RC11}:
d
dt

RC12 = R3 −R4 −R6M (A.21)

1st phosphorylation step RC12:
d
dt

RC12p = R4 −R5 (A.22)

2nd phosphorylation step RC12:
d
dt

RC12pp = R5 −R7 (A.23)

complex damaged DNA:
d
dt

DDNA2 = R6M −R9M (A.24)

complex {MRN:DDNA1}:
d
dt

RC20 = R10 −R11 (A.25)

complex {ATM:RC20}:
d
dt

RC21 = R11 −R12 (A.26)

double phosphorylated ATM:
d
dt

RC21pp = R12 −R15 (A.27)

complex repair step:
d
dt

RC22pp = R9M −R8 (A.28)

repaired DNA:
d
dt

RDNA1 = R7 (A.29)

repaired DNA:
d
dt

RDNA2 = R8 (A.30)

γH2AX:
d
dt
γ = R13 −R14 (A.31)

total damaged DNA:
d
dt

tDSB = R1 (A.32)

phosphorylated p53:
d
dt

p53p = R16 −R17 (A.33)
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Corresponding rates

R1 = α0
dD
dt
u(t) (A.34)

R2 = α11DDNA1 (A.35)
R3 = α12RC11 (A.36)
R4 = α13RC12 (A.37)
R5 = α141(1 + α142RC21pp)RC12p (A.38)

R6A1 = α15tDSBRC21ppRC12 (A.39)
R6B1 = α15tDSBRC12 (A.40)
R6A2 = α15RC21ppRC12 (A.41)
R6B2 = α15RC12 (A.42)
R7 = δ16RC12pp (A.43)
R8 = δ16RC22pp (A.44)

R9A12 = α17DDNA2 (A.45)
R9B12 = α17RC21ppDDNA2 (A.46)
R10 = α21DDNA1 (A.47)
R11 = α22RC20 (A.48)
R12 = α231(1 + α232RC21pp)RC21) (A.49)

R13 =
a25(RC12p + RC12pp + RC21pp)
a25M + RC12p + RC12pp + RC21pp

(ξ − γ) (A.50)

R14 = α26γ (A.51)
R15 = α23RC21pp (A.52)
R16 = α24RC21pp (A.53)
R17 = α25p53p. (A.54)

Here, u(t) represents the stimulus in form of a switching function, i.e. if the system is
irradiated at dose rate dD

dt , u(t) = 1. If the system is not irradiated, u(t) = 0.

A.3.2 Parameter Inference

The parameters are estimated based on the maximum likelihood principle. Owing data
processing, log-transform, noise model and ANOVA analysis, standard conditions can
be assumed to hold. In fact, this assumption was verified after obtaining a fit by using
Anderson-Darling statistics (s. Sec. 3.5, Tab. 3.3). By this we also tested model
adequacy.

The objective function Eq. (2.13) itself was minimized using a hybrid optimiza-
tion strategy, combining a genetic algorithm and interior-point/active-set optimization,
which are implemented in MATLAB, to find a nearly global optimum. The models
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were also implemented in MATLAB and solved using the CVODES solver from (Hind-
marsh et al., 2005). Rate constants and scaling parameters are positive and typically
distributed on a logarithmic scale (Gutenkunst et al., 2007; Limpert et al., 2001). There-
fore, the parameter estimation was performed on a logarithmic scale. Further, possible
realizations of the kinetic parameters were constrained to the interval [10−2 . . . 10+2],
whereas upper bounds of scaling parameters have been adjusted up to 104. Overall,
19 kinetic parameters and 8 scaling parameters per model were estimated. As already
mention above, initial conditions of the proteins where assumed to be zero, reflecting
zero activity of the unperturbed states. The inactive proteins Ku7080, MRN, DNA-
PKcs, ATM and H2AX have large abundances, which allowed to reduce the number of
parameters by assuming a constant supply of inactive to active protein forms. In the
case of γH2AX, the conservation relation

H2AXtot = H2AX + γH2AX (A.55)

has been used to simplify the back reaction. The final parameter for the final identified
model A2 are given in Table A.1 in logarithmic representation. The lower and upper 95%

point-wise confidence bounds are derived from the profile likelihood (see Sec. A.3.3).
Bounds with ±∞ indicate that the profile likelihood did not reach the critical value for
significance. Notice that we have restricted the optimization effort for each model by
constraining the parameter bounds on a range of 4 orders of magnitude in logarithmic
space.

A.3.3 Profile Likelihood Analysis

For model A2, we calculated the profile likelihood χ2
PL as for instance described in

(Raue et al., 2009), which we have implemented in MATLAB in combination with the
fast CVODES ODE integration package (Hindmarsh et al., 2005). Absolute and relative
tolerances have been set to 10−7 and 10−6, respectively. The MATLAB implementation
of the profile likelihood algorithm has been parallelized and is based on a template from
the first author of (Raue et al., 2009). In Figures A.1-A.19, we show the profile likeli-
hoods for the kinetic parameters and the parameter dependencies in terms of relative
parameter change for each kinetic parameter, when moving along the profile likelihood
of each specific parameter in log-space. The relative parameter change of a parameter
θm for in- or decreasing parameter θn from its maximum likelihood estimate and n 6= m

is defined as

δθi,m =
θi,m − θm

θm
, (A.56)

with index i representing a position along the profile likelihood of θn and θm being the
maximum likelihood estimate of model A2, m ∈ {1, ..., 19}\n.

As a rough interpretation guide, flat profile likelihoods indicate non-identifiable pa-
rameters, whereas profile likelihood that pass the critical χ2

α=0.05,df=1 value on both sides
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of the maximum-likelihood estimate of each parameter indicate an identifiable param-
eter. Profile likelihoods that hit the critical χ2

α=0.05,df=1 value (in the Figures indicated
by the red line) only on one side indicate practically non-identifiable parameters. In
this case, at least the lower or upper bound of the parameter are bounded.
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Table A.1: Final parameter set for model A2 and profile likelihood base lower and upper
(LB,UB) 95% point-wise confidence bounds in log-space. Scaling parameters are repre-
sented as ξ = [H2AXtot]

[Ku7080tot]
and si and are in principle non-identifiable owing relative mea-

surement data.

Parameter Units LB log10(θ) UB
α0 = a0

[Ku7080tot] Gy−1 1.2024 1.7262 ∞
α11 = a11[Ku7080tot] min−1 -1.6041 -1.4588 -1.3195
α12 = a12[Ku7080tot] min−1 -0.2517 1.5123 ∞
α13 = a13[Ku7080tot] min−1 1.8086 2.0000 ∞
α141 = a141[Ku7080tot] min−1 -0.9869 -0.5246 -0.2279
α142 = a142

a141
[Ku7080tot] 1 1.2977 1.7342 ∞

α15 = a15[Ku7080tot] min−1 -0.7768 -0.2492 0.1913
δ16 = d16[Ku7080tot] 1 1.4718 1.9601 ∞
α17 = a17[Ku7080tot] min−1 −∞ 0.5089 ∞
α21 = a21[Ku7080tot] min−1 -0.7612 -0.4635 0.2067
α22 = a22[Ku7080tot] min−1 -0.9253 -0.6773 -0.3882
α231 = a231[Ku7080tot] min−1 -1.7834 -0.3972 0.2888
α232 = a232[Ku7080tot] min−1 0.7257 1.2354 1.5524
a25 min−1 0.2562 1.355 ∞
α25M = a25M [Ku7080tot] M2 −∞ -2 -1.8033
α26 = a26[Ku7080tot] min−1 -0.1947 0.6083 1.0618
α23 = a23[Ku7080tot] min−1 -0.0538 0.2526 1.1834
α24 = a24[Ku7080tot] min−1 -1.6565 -1.2240 -0.8093
α25 = a25[Ku7080tot] min−1 −∞ -1.7197 -0.8152
ξ = [H2AXtot]

[Ku7080tot] 1 - -0.6832 -
s0 1 - 2.7705 -
s1 1 - 2.4559 -
s2 1 - 2.6787 -
s3 1 - 2.7727 -
s4 1 - 3.0366 -
s5 1 - 1.9483 -
s6 1 - -1.0169 -
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