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Abstract

The present work is devoted to the study of crystallization process in the melt of short
semiflexible polymer chains near surfaces. In particular, systems with two unstructured hard
repulsive walls, as well as systems with one repulsive and one attractive wall are considered.
A comparison of the observed phenomena is made with the bulk system without confinements.
The occurrence of a two-dimensional crystalline layer near the attractive wall is discussed,
as well as the possibility of distinguishing between heterogeneous nucleation and prefreezing
crystallization scenarios at longer computation times.

The study is carried out with the Stochastic Approximation Monte Carlo (SAMC) simu-
lation, which is a method of the realization of the flat histogram Monte Carlo approach. We use
a coarse-grained tangent hard sphere model. SAMC allows to sample configurations uniformly
over the entire energy interval in the microcanonical ensemble and to analyze the transition
between the isopropic melt at high energies and completely crystallized noisy structures at low
energies. Inside the transition, we observe intermediate structures (configurations) consisting
of crystalline and melted domains. We have also proposed new methods to analyze local crys-
talline ordering based on local bond order parameters (known as Steinhardt parameters) applied
to properly averaged particle coordinates, which allowed us to observe the coexistence of do-
mains with different local crystalline symmetry.





Zusammenfassung

Die vorliegende Arbeit widmet sich der Untersuchung des Kristallisationsprozesses in
der Schmelze von kurzen halbflexiblen Polymerketten in der Nähe von Oberflächen. Im Speziel-
len werden Systeme mit zwei unstrukturierten, harten, abstoßenden Wänden sowie Systeme mit
einer abstoßenden und einer anziehenden Wand betrachtet. Es wird ein Vergleich der beobach-
teten Phänomene mit dem Bulk-System ohne Begrenzungen durchgeführt. Das Auftreten einer
zweidimensionalen kristallinen Schicht in der Nähe der anziehenden Wand wird ebenso disku-
tiert wie die Möglichkeit, bei längeren Berechnungszeiten zwischen heterogenen Keimbildungs-
szenarien und Kristallisationsszenarien durch "prefreezing" zu unterscheiden.

Die Studie wird mit Hilfe der Stochastic Approximation Monte Carlo (SAMC) Simula-
tion durchgeführt, die eine Methode zur Umsetzung des Flat Histogram Monte Carlo Ansatzes
ist. Wir verwenden ein vergröbertes tangentiales Modell harter Kugeln. Mit SAMC können wir
Konfigurationen gleichmäßig über das gesamte Energieintervall im mikrokanonischen Ensem-
ble abtasten und den Übergang zwischen der isotropischen Schmelze bei hohen Energien und
vollständig kristallisierten verrauschten Strukturen bei niedrigen Energien zu analysieren. In-
nerhalb des Übergangs beobachten wir Zwischenstrukturen (Konfigurationen), die aus kristalli-
nen und geschmolzenen Domänen bestehen. Wir haben auch neue Methoden zur Analyse
lokaler kristalliner Ordnungen vorgeschlagen, die auf lokalen Bindungsordnungsparametern
(bekannt als Steinhardt Parameter) beruhen, die auf korrekt gemittelte Teilchenkoordinaten
angewandt werden, wodurch wir die Koexistenz von Domänen mit unterschiedlicher lokaler
kristalliner Symmetrie beobachten konnten.





Research cannot be completed at all, it can only be stopped.

Paraphrased from M. Zhvanetsky
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Chapter 1

Introduction

1.1 Goals, systems, methods: a short overview

In this dissertation, polymer crystallization is studied by means of computer simulation
of a generic coarse-grained (CG) model in the bulk and in thin films between two hard ho-
mogeneous non-structured walls which either can be purely repulsive or can have an attractive
potential.

Understanding the microscopic mechanisms of crystallization in different polymer sys-
tems still remains open problem in polymer physics [1–4]. Currently, there is no doubt about the
widespread use of polymer materials, in particular of semi-crystalline polymers, due to the di-
versity of their physical properties. The properties of semi-crystalline polymers, such as optical
properties, mechanical strength, and charge conductivity, are greatly influenced by crystalliza-
tion conditions, in particular, an interfacial boundary (substrate or container walls) is critical in
the polymer crystallization process [5, 6]. Therefore, the study of the crystallization process in
polymer systems at different substrates is not only of fundamental, but also of applied interest.
Depending on polymer – substrate combination the crystallization process can occur according
to one of two scenarios.

The first scenario is known as heterogeneous nucleation [7] and consists of two principal
stages: the formation of crystalline nuclei exceeding a critical size and the subsequent growth of
these crystalline nuclei. Since heterogeneous nucleation is an activated process, it is necessary
to supercool the sample below the bulk melting temperature Tm. In this case, crystal nuclei
will arise and decay on the surface of a substrate. If the nuclei size exceeds the critical size, it
overcomes the energy barrier, becomes stable and the growth stage begins.

Another scenario is much less studied and is called prefreezing. Prefreezing has been
observed for crystallization in low molecular weight substances, in colloids, as well as in poly-
mers, and it has become an object of interest quite recently [8–13]. Experimental studies have
demonstrated that prefreezing exhibits characteristics of a first-order transition [11, 14]. This is
evidenced by the reversible and abrupt formation of the crystalline phase at a substrate, so the
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1.1. Goals, systems, methods: a short overview

melting of the prefrozen crystalline layer occurs discontinuously. In the case of prefreezing, a
crystalline layer of finite thickness is formed abruptly on the surface of a substrate at a temper-
ature Tpre f above the bulk melting point Tm [15–18] (Fig.1.1). At the moment of appearance,
this crystalline layer has the thickness about several molecular layers and a macroscopic size in
directions parallel to the substrate, and then its thickness continuously grows with decreasing
temperature. When Tm is reached, the system becomes completely crystallized in bulk. This
process is similar to prewetting of a liquid layer from the gas phase at a solid interface [19, 20].
The understanding of wetting and prewetting transitions can be extended to prefreezing, with
small distinctions arising from the different nature of vapor-liquid and crystal-melt transitions
[14, 18].

(a)

(b)

Figure 1.1: (a) Schematic phase diagram for crystallization process. Solid blue line is a
coexistence line of crystal and melt, while wetting transition occurs at the wetting temperature
Tw. The blue dashed line indicates a prewetting line (dashed). The dotted red horizontal line

corresponds to an experiment in which crystallization occurs during cooling at ambient
pressure. Crystallization can either be induced by prefreezing starting at Tmax or by nucleation

below Tm.
(b) Schematic growth of crystal layer thickness with decreasing temperature at T < Tpre f in

prefreezing scenario. Both pictures are taken from Ref. [14].

Our focus in this dissertation is on the surface phenomena in polymer crystallization, in
particular on the distinguishing between two scenarios – heterogeneous nucleation and prefreez-
ing. Our main goal is to identify those distinctive features and parameter values of the model
system of a polymer melt near the surface that have a decisive influence on the crystallization
scenario.

Our CG model is a dense melt of semiflexible chains of tangent hard spheres (THS).
Systematic computer simulation studies of crystallization in athermal dense systems of freely
jointed chains of tangent hard spheres has been initiated in Refs. [21, 22], and a review of some
results can be found in Ref. [23], as well as in other publications, and some of these results
will be mentioned later in this dissertation. We use flat histogram Monte Carlo simulations
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Chapter 1. Introduction

(FHMC) [24], in particular the Stochastic Approximation Monte Carlo (SAMC) algorithm,
first suggested in Refs. [25, 26]. We have chosen this method because our goal is to study
two different phase transitions – crystallization and prefreezing – that could be actually quite
close to each other in temperature, and therefore we need to determine the temperature and
the order of phase transitions in our simulations as exact as possible, and we should also be
able to distinguish the cases when the prefreezing transition is present or absent in our model
system. The main advantage of FHMC techniques is the more exact determination of the order
of phase transitions and of the transition points, in comparison to the accuracy of other methods.
This is due to the fact that the sampling takes place in much more broad regions of the phase
space available to a system. The main shortcoming of FHMC algorithms is that only very small
systems can be studied (because of the same reason of much more detailed sampling of the
phase space).

Now we will present a review of literature on the bulk and surface crystallization in
related systems, while the details on the model and method will be given in Chapter 2.

1.2 Review of relevant literature

A CG model with particles can shed light on the mechanisms of polymer crystallization
at surfaces, in particular it is able to distinguish between scenarios of heterogeneous nucleation
and prefreezing and to reveal model features responsible for each scenario, especially if it is
used in combination with flat histogram Monte Carlo (FHMC) techniques. A CG model has
all necessary features to take into account the essential details of polymer systems that may be
responsible for phenomena under study, and at the same time, it does not include unnecessary
atomistic details that most likely affect only non-essential peculiar properties of the systems
behavior. To the best of our knowledge, the study of a prefreezing transition in CG polymer
models by means of FHMC techniques has not yet been performed.

Simultaneously with a number of experiments to study the mechanisms of crystallization
(heterogeneous nucleation and prefreezing) [12, 27], a phenomenological theory describing the
phenomenon of prefreezing was developed [28, 29]. The theory based on classical nucleation
theory shows that interfacial free energies determine the mechanism by which the crystalliza-
tion process takes place. So, according to the Young’s equation, γsm = γsc + γcm · cos(θ), the
interfacial free energies at the interface substrate-melt (γsm), substrate-crystal (γsc), and crystal-
melt (γcm) determine the contact angle θ . In the case of heterogeneous nucleation the crystal
nucleus is assumed to have a shape of a spherical cap with a certain non-zero contact angle
θ with the substrate. In the case of γsm > γsc + γcm prefreezing occurs and the contact angle
θ becomes equal to zero, which leads to the formation of a crystalline layer on the surface
of the substrate [28] (Fig.1.2). Thus, the same polymer can follow a different crystallization
mechanism depending on the substrate.
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(a) (b)

Figure 1.2: Illustration for crystallization on a flat substrate:
(a) heterogeneous nucleation, formation of a critical crystal nucleus at T < Tm;

(b) prefreezing, formation of a crystalline layer at Tm < T < Tpre f . Adapted from [28].

At the same time, additional study of the phenomenon of polymer crystallization near
substrates using computer simulation methods can provide a description taking into account the
microscopic behavior (e.g. scenario of processes, packing and layering effects, chain confor-
mations) of the system and complement the existing knowledge about this phenomenon. The
phenomenon of prefreezing was previously discovered in computer simulations of hard spheres
and Lennard-Jones particles [10, 15–18]. Since there is no connection of particles into a chain,
this model describes colloidal systems. At the same time, a number of simulation studies were
carried out on polymer crystallization near the walls [30–32]. It also was found out that walls
contribute to orientational (nematic) ordering near them [33–35], which can also potentially
exhibit a prewetting transition [18].

Computer simulations of crystallization in polymer systems have been performed by
several groups using different methods [23, 36–48]. We will mention here those results that are
in some aspects related to the phenomena which we observe in our study.

Different models have been studied by means of coarse-grained molecular dynamics
(CGMD) simulations and the influence of different factors has been considered: intrachain stiff-
ness [36, 37], inter- and intrachain interaction potential between particles [49], structure and in-
teraction potential of walls (for polymer films) [50], density [51], molecular weight distribution
[52, 53], chain architecture [54]. For a mesoscopic bead-spring model with an intramolecu-
lar stiffness potential, it has been demonstrated that chain stiffness alone, without an attractive
inter-particle potential, is a sufficient driving force for the formation of chain-folded lamellae
[36, 37]. In CGMD simulations for the same model between confining walls, a preorder is
induced near the walls already in the melt at high temperature, and then it propagates into the
film, while this growth can be influenced by prestructuring the wall [50]. The importance of the
coupling between chain stiffness and density for polymer crystallization has been shown, e.g.,
in Ref. [51]. Recently, it has been shown by means of CGMD simulation using self-seeding
algorithm that various chain architectures (linear vs. branched) result in different multilamella
structures [54].

The CGMD simulation of hexagonal structure of crystals with long methylene sequences
has been first reported in Ref. [55]. The difference between nematic and hexagonal ordering in

4



Chapter 1. Introduction

the melts of semiflexible chains has been first studied theoretically in Refs. [56, 57]. In these
papers, a theoretical model has been developed combining density-functional theory for freez-
ing with the Onsager theory of orientational ordering, and phase diagrams with and without
intermediate nematic phase between isotropic and hexagonal phases have been obtained: for
the high temperature or short persistence length, the phase diagram shows a direct isotropic-
hexagonal transition as the pressure or density is increased, with no intermediate nematic phase
[57]. Polymer crystallization in thin films (quasi-2d geometry) has been also studied both ex-
perimentally and theoretically [58, 59]. Some simple generic lattice model (like the diffusion
limited aggregation or the percolation model) was used [58, 59], that allows to observe clusters
like those seen in the experiment [58, 59], and is also suitable to study polymer crystallization
on pre-patterned substrates [60]. This theoretical approach considers polymer crystallization
in terms of the formation of a nonequilibrium structure, with particular focus on the morpho-
genesis of polymer crystals during growth and annealing processes [61, 62]. In particular, it
has been demonstrated that reorganization processes precede melting, and the stability of the
polymer crystal is not directly correlated with the structures that are formed at the crystallisa-
tion point [61, 62]. Several morphological phases have been identified that are observed under
different growth and annealing conditions, including thickening of crystal edges, formation of
hole-rim patterns, and droplet phase. The simulations reveal certain nonequilibrium proper-
ties, including internal energy and nonequilibrium heat capacity. It has been demonstrated that
multi-peak melting endotherms result from morphogenetic transformations, and the concepts
of melting-recrystallization phenomena have been discussed [61]. The behavior of microcrys-
talline domains has also been studied by molecular dynamics methods [63–65, 39].

Similar melting-recrystallization phenomena have been observed for the Asakura-Oosa-
wa model in computer simulations of three-dimensional systems, and phase coexistence be-
tween a crystalline nucleus and surrounding fluid has been reported in Ref. [66]. These phenom-
ena are in some sense quite similar to the droplet evaporation-condensation transition [67–69],
where some intermediate structures have been observed in the course of liquid-vapor transition.
The appearance of such structures also manifested itself in the form of "steps" inside the first-
order transition loop in the equation of state [67–69]. Because we see similar phenomena inside
our crystallization transition, although for other functions, these references were very useful for
correct interpretations of our results.

In principle, the stability of particular configurations (microstates) at given values of ex-
ternal parameters, e.g., at a given temperature, can be studied also in our flat histogram Monte
Carlo (FHMC) simulations, which deliver information on equilibrium thermodynamics of sys-
tems, because we are able to calculate probability densities for sampled microstates. However,
this will be pure thermodynamic stability, while in real systems and in molecular dynamics sim-
ulations the kinetic effects influence the stability as well, because some of thermodynamically
stable microstates may be inaccessible for purely kinetic reasons.

A common feature of all CG models mentioned above is that the particles (polymer
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beads) in them are soft, i.e., they are in most cases either soft spheres or Lennard-Jones particles,
and this is because the MD method is not very suitable for hard core potentials, although large-
scale molecular dynamics simulations of hard sphere systems have been also performed [70–
72].

The model of hard spheres (HS) is widely used in theory and simulations of colloidal
systems and it describes rather well experimental results on crystallization in colloidal systems
[73]. The model of tangent hard spheres (THS) is very popular for polymer systems. It describes
flexible polymers, if tangent hard spheres are freely jointed, and semiflexible polymers, if some
bending potential on the angles between rigid bonds adjacent along the chain is applied. Phase
transitions in such systems, in particular crystallization and liquid crystalline transition, are
entropy driven. The Monte Carlo (MC) method is very convenient for computer simulation of
such models and has been widely used for more than three decades [74–76].

Due to the convenience of these models, a wide range of studies of THS systems was
carried out by N. Ch. Karayiannis and M. Laso with colleagues using the MC method. As
already mentioned above, systematic computer simulation studies of crystallization in athermal
dense systems of freely jointed chains of tangent hard spheres has been initiated in Refs. [21–
23]. The subsequent study of entropy induced crystallization in these systems was carried out
using the characteristic crystallographic element (CCE) norm methodology [77–80]. In addi-
tion to fixed bond length models, those studies have highlighted the influence of bond length
fluctuations on the crystallization of chains [81]. It was shown that increasing the bond gap
widens the crystallization rate (nucleation and growth, measured in MC steps), and the bond
tolerance affects the morphology of the structure [81]. The existence of random hexagonal
close packing (rhcp), face-centered cubic ( f cc) and hexagonal close-packed (hcp) morphology
has been demonstrated [81]. In our semi-flexible THS model, we also observe structures sim-
ilar to f cc and hcp in systems with and without confinements. An extensive research on the
effect of stiffness of chains with different harmonic stiffness potentials for different densities in
unconstrained systems has been performed [82].

Another research direction related to this dissertation are studies of systems with con-
straints in the form of parallel non-penetrating walls of flexible THS chains [83, 84]. When
different average chain lengths and volume fractions were investigated, f cc and hcp structures
were also observed [84]. The observed crystallization processes both in the bulk and near the
walls in these systems are entropy driven. Extremly small the wall spacing equal to the bead
size allows to investigate two-dimensional effects [85, 86].

Theory of the two-dimensional crystallization has been first suggested in [87]. Al-
ready there, it was shown that conventional crystalline long-range order in two dimensions
for power-law potentials of the Lennard-Jones type is not possible. Appearance of long-range
translational order in continuous two-dimensional models with short-range interactions is for-
bidden by Hohenberg-Mermin-Wagner theorem [88–90]. Theory of dislocation-mediated two-
dimensional melting was proposed in [91, 92] and is known as Kosterlitz-Thouless-Halperin-
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Nelson-Young (KTHNY) theory. Monte Carlo computer simulations of the two-dimensional
melting transition using hard disks has been performed in Ref. [93], where all results were in
good agreement with the KTHNY theory, and a first-order phase transition with small corre-
lation length and a one-stage continuous transition was ruled out. However, in Ref. [94] the
scenario of the liquid–solid transition of hard discs (first-order vs. KTHNY transition) was in-
vestigated more attentively, and the possibility of a (very weak) first-order transition from the
fluid to the crystal could not be firmly ruled out. These studies are directly relevant to our work,
as in our study we have also found a similar transition.

One of the advantages of MC methods is the possibility to accelerate the sampling of
configurational phase space by means of using "unphysical" but very efficient trial moves [95,
96]. In our work, we have also invested a lot of time in looking for the most efficient moves,
but we still have not reached desired speed of phase space sampling.

Flat histogram Monte Carlo (FHMC) simulations [24] allow to sample configurational
phase space more widely and to obtain equilibrium thermodynamic behavior of a system more
precisely, in order to study those effects in polymer crystallization that arise from the under-
lying thermodynamics, and distinguish them from purely kinetic effects [24, 97, 98]. How-
ever, FHMC is very time consuming, so that only much smaller systems can be studied by this
method in comparison to CGMD. The crystallization in dense polymers melts has been studied
on the model systems consisting of 720 chains, each composed of 10 beads, i.e., totally 7200
particles, by FHMC simulations in Ref.[97]. In this dissertation, we have build our research
on the model and algorithm used in Ref.[97]. We perform simulations of Stochastic Approxi-
mation Monte Carlo (SAMC) method [24, 99–101], which allows to implement canonical and
micro-canonical analysis. Since SAMC allows us to uniformly visit regions of phase space with
different energies, this method is the most optimal for calculating (pseudo-)phase diagrams. The
effectiveness of this method has been demonstrated in studies on crystallization in bulk [97].
We consider systems with a fixed chain length. The number of particles in the system and the
size of the system are also fixed during the simulation process, ensuring a constant average
density in the system. Our goal here is to examine the phenomenon of crystallization near walls
with different wall potentials (purely repulsive and with different degree of attraction) in the
hope to identify microscopic properties corresponding to different crystallization mechanisms.
Also, for comparison, an additional analysis of a system without walls is carried out. To detect
finite size effects, we consider systems of different sizes (Lx = Ly = 20 for all systems with
Lz = {19,20,39,40} depending on the system (see chapter 2.1)).

Finally, in computer simulations of crystallization, the reasonable choice of parame-
ters allowing to analyze the observed structure plays an important role. We compare existing
methods (local bond order parameters [102–104], various modifications of common neighbor
analysis (CNA) [105–108], Voronoi cell analysis [109, 110], local chain segments alignment
parameters [48, 40]) based on the conformations of the systems under study, as well as for test
structures (sc, f cc, bcc, hcp). Among mentioned methods of investigation of crystal structures
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as well as radial distribution function [111], structure factor and the characteristic crystallo-
graphic element (CCE) norm [77, 80], etc., the local bond order (LBO) parameters [102] occupy
a special place. The local bond order parameters or Steinhardt parameters [102] have been sug-
gested to distingush crystals with different symmetries. However, these parameters work well
only for perfect crystals or for crystals with very weak fluctuations in the particle positions, but
they need modifications for typical cases in real soft matter systems, and such modifications
have been suggested [103, 104, 112, 113]. We have found that these modifications are still not
entirely accurate for the systems studied in this dissertation, so that we have suggested another
new modification for Steinhardt parameters and called it a noise reduction procedure. Looking
ahead, we have also developed a novel methodology how to reconstruct "perfect" structure in
the whole simulation box that would be most close to a real local noisy crystalline symmetry
when averaged over the whole box.

Finally, I would like to mention here two my previous papers [F1,F2] which were pub-
lished before I started to work on the topic of this dissertation but which are thematically related
to this study. The method was different, but the studied phenomena were related – ordering tran-
sition in the bulk and at surfaces. That experience has helped me in the present study.

1.3 The structure of the dissertation

This work has the following structure.

2 Model and simulation methods. The chapter describes the models used and provides a
detailed description of the simulation methodology used.

3 Structural analysis: methods and results discussion. The chapter describes a study of
existing and the development of new approaches to the analysis of structures.. A compar-
ison of methods is carried out based on the selected conformations, and the effectiveness
or applicability of a particular method in our work is substantiated.

4 Phase transitions: discussion of results. The chapter is devoted to a discussion of the
results obtained during simulation process..

5 Conclusion. The chapter is dedicated to summary of the findings.

5 Outlook. A short outlook to future projects is given.

Appendix. In the Appendix one can find information that can complement the study, but
it is placed after the main text to avoid distracting the readers’ attention.
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Chapter 2

Model and simulation methods

2.1 Model

A semi-flexible tangent hard spheres (THS) serves as a coarse-grained model represent-
ing real polymers. The THS model used in this work is well established in works devoted to the
study of crystallization in short chain melts [114, 97]. All systems that we consider are char-
acterized by the potential of hard spheres Ub and the stiffness potential Uθ . The interactions
between hard spheres can be represented as

Ub(r) =

∞, r ≤ d,

0, r > d,
(2.1)

where r is the distance between the centers of the two spheres. This interaction does not give
a numerical contribution to the energy, but imposes constraints on the available configuration
space. Bond length l is fixed, l = d. As a result, possible angles between the bonds of neigh-
boring spheres (or beads) θ in the chain cannot exceed 120o. Stiffness potential of the chains
(Fig.2.1):

Uθ (θ) =


−ε, θ ≤ θs,

0, θs < θ < 120o,

∞, 120o ≤ θ ,

(2.2)

The fixed value of cosθs = 0.9 used in this study corresponds to θs ≈ 26o. The ground-
state stiffness energy for systems of Nc chains of length N is defined as Es

min = −Nc(N − 2)ε ,
while the maximum energy equal to Es

max = 0. During the simulation, the size of the box (Lx, Ly

and Lz) and number of chains Nc do not change. The chain length N = 10 is fixed in all systems.
We consider small systems Lx =Ly = 20, Lz = 19 and Lx = Ly = 20, Lz = 20 containing Nc = 720
chains, as well as large systems Lx = Ly = 20, Lz = 39 and Lx = Ly = 20, Lz = 40, containing
Nc = 1440 chains. This ratio provides volume fractions φ of the polymer equal to 0.496 and
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2.1. Model

0.471, respectively (see below). Energies and temperatures are measured in units of well depth
ε = 1, while all lengths are measured in units of solid sphere diameter d = 1.

Figure 2.1: Illustration of stiffness
potential.

Since the goal of our work was to study the phe-
nomenon of crystallization near surfaces, we investi-
gated the following systems: systems with repulsive
(non-penetrating) walls and systems with one attrac-
tive and one repulsive walls as well as systems without
walls (for comparison). Systems without walls with a
volume fraction of φ = 0.471 have already been studied
in works Ref. [114, 97], and the results of these stud-
ies were provided to us by the author T. Shakirov for
comparative analysis. This opens up the opportunity
for us to study systems of the same volume fraction in
the presence of walls, and also compare with the results
of our study for a system of a larger volume fraction
(φ = 0.496) without walls. It should be noted that the predictions indicate that crystallization is
possible at these densities [97].

Systems without walls

We have modeled a system that we use as a comparison system, simulating a polymer
in an unconstrained bulk. Since in small size systems, the finite size effects of the system have
a great impact, we use simulating boxes of two different sizes: with sizes Lx = Ly = 20 and
Lz = 19 (Nc = 720) and Lx = Ly = 20 and Lz = 39 (Nc = 1440). This ratio of the number of
particles and the size of the box provides the volume fraction:

φ =
NNc

LxLyLz

πd3

6
≈ 0.496 (2.3)

Since there are no constraints and the periodic boundary conditions are applied in all
directions, the total energy E is composed only of the stiffness energy Es of the chains:

E = Es =
Nc(N−2)

∑
i=0

U i
θ , (2.4)

where the summation is taken over all angles between bonds in chains. In the text, we will refer
to this system as a system without walls or bulk.

10



Chapter 2. Model and simulation methods

System with two purely repulsive walls

In the case of uniformly repulsive walls, a potential Urep is applied between each bead
and walls:

Urep(z) =

∞, |z| ≥ (Lz −d)/2,

0, |z| < (Lz −d)/2,
(2.5)

where z represents a coordinate of a bead along z axis. In fact, this potential hinders chain units
from passing through the wall and does not contribute numerically to the total energy value.
That is, the contribution to the energy is determined by the same summand (Eq. (2.4)) as in
the case of the unconstrained system. Despite the fact that the energy contributions do not
change, such a potential imposes additional confinements in the configuration space, so centres
of the beads cannot come closer to the surface than their own radius of d/2 (Fig.2.2 (a)). The
box dimensions Lx = Ly = Lz = 20 (Nc = 720) and Lx = Ly = 20 and Lz = 40 (Nc = 1440)
provide the volume fraction φ = 0.471. Thus, two parallel walls are positioned on the planes at
z = ±10 and z = ±20 respectively. Along the x and y axes, the periodic boundary conditions
are implemented.

(a) (b)

Figure 2.2: Illustration of walls potential for repulsive walls Urep (a) and repulsive and
attractive walls Uat1 , Uat2 (b). The walls are indicated in blue. The red region of thickness d/2

is unreachable for the centers of mass of the beads. The orange area represents the area of
attraction. The centers of mass of the green beads are in the region of attraction, therefore,

each of these beads will contribute −ε (for a system with potential Uat1) or −4ε (for a system
with potential Uat2). The ratio between Lz and d is not observed in the figure.

We will refer to these systems in the text as systems with repulsive walls, with potential
Urep, or simply as systems with walls.
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2.1. Model

System with repulsive and attractive walls

We also examine two small systems (Lx = Ly = Lz = 20, Nc = 720) where one wall at
z = −10 is purely repulsive, while the second wall at z = 10 has an attracting potential. In the
first system, we introduce a weak attraction energy −ε for a bead in a wall layer of thickness
d = 0.5 (Fig.2.2 (b)) :

Uat1(z) =


−ε, Lz/2−d ≤ z < (Lz −d)/2,

0, −(Lz −d)/2 < z < Lz/2−d,

∞, |z| ≥ (Lz −d)/2

(2.6)

In the second case, the attraction is four times larger:

Uat2(z) =


−4ε, Lz/2−d ≤ z < (Lz −d)/2,

0, −(Lz −d)/2 < z < Lz/2−d,

∞, |z| ≥ (Lz −d)/2.

(2.7)

Thus, in these two systems, the total energy consists of two contributions, namely the
attraction of beads to the wall Ew and the stiffness potential Es:

E = Es +Ew =
Nc(N−2)

∑
i=1

U i
θ +

NNc

∑
j=1

U j
atk , (2.8)

where Ew is the wall energy, determined by summing over all particles j and U j
atk calculated

by the Eq.(2.6) or the Eq.(2.7) (k = {1,2}). Thus, the maximum energy Emax = 0 can be
realized in configurations where all angles between bonds θ i > 26o and all centers of mass
of all beads are located outside the attracting layer (z j ≤ Lz/2−d). Note that such a microstate
is entropically unfavorable and therefore difficult to achieve. The minimum energy can also
be estimated. Since the thickness of the attracting layer is d/2, it contains no more than one
layer of particles. The surface area Sxy = LxLy = 20 · 20 = 400 consists of the projection area
Sb = π(d/2)2 = π/4) of nw beads, as well as the area of voids Sv: Sxy = Sv + nwSb. For a
rough estimate, let us assume Sv = 0. Then nw = Sxy/Sb ≈ 510. Thus, let nw = 510 particles be
placed in the near-wall layer, and all chains are elongated (θ i < 26o), then for the potential Uat1

the minimum energy is Eat1
min = −ε Nc(N −2)− ε nw = −6270, while for the potential Uat2 the

minimum energy is Eat2
min = −ε Nc(N − 2)− 4ε nw = −7800. We will refer to this system as a

system with weak (or strong) attraction of wall or a system with potential Uat1 (or Uat2).
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Chapter 2. Model and simulation methods

2.2 Stochastic Approximation Monte Carlo (SAMC)

2.2.1 Monte Carlo methods

Monte Carlo (MC) [115–119] simulation in statistical physics uses the computational
power of modern computers to obtain information about the collective behavior of systems
consisting of numerous interacting particles. To characterize the physical properties of a system,
selected observables are measured.

Let A(x) denote an observable dependent on the degrees of freedom of N particles (for-
mally designated as a vector x giving a point in the configuration phase space of the system;
in other words, x is a set of coordinates - a microstate in the configuration space). According
to statistical thermodynamics, in thermal equilibrium at given values of thermodynamic param-
eters such as temperature T , pressure p, etc., the average value of ⟨A⟩ should be computed
as:

⟨A⟩=
∫

dx A(x) ρ(x), (2.9)

where ρ(x) is the probability that the microstate x has been realized in equilibrium. For exam-
ple, for a system of N particles in a volume V at a temperature T in the canonical ensemble, the
probability ρ(x) has the form:

ρ(x) =
1

Z(T )
exp
(
−H (x)

kBT

)
, (2.10)

where kB is the Boltzmann constant, T is temperature, H (x) is the Hamiltonian, which de-
scribes the total energy of the system, and Z(T ) is the partition function:

Z(T ) =
∫

dxexp
(
−H (x)

kBT

)
. (2.11)

Here and in the following we omit the arguments N, V . For ease of notation, summation can
be employed, indicating that as the number of visited states xt becomes sufficiently large (as
n → ∞), the law of large numbers becomes applicable:

lim
n→∞

n

∑
t=1

A(xt) ρ(xt) = ⟨A⟩. (2.12)

The MC procedure involving visiting uniformly distributed random states {xt} is called
simple sampling. However, this method can only be implemented in the simplest systems.
In order for Monte Carlo methods to be applicable to more complex systems, the importance
sampling approach was developed. This broad class of methods involves the non-uniform gen-
eration of microstates in configuration space based on Markov process properties. The classical
example of an algorithm of this kind in the canonical ensemble is the Metropolis algorithm
[120, 121]. The generation of microstates {xt} in this case occurs with probability ρ(x). It has
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2.2. Stochastic Approximation Monte Carlo (SAMC)

been shown that the move from the microstate x0 with energy E0 to a microstate x1 with energy
E1 should be accepted with the probability:

pacc = min
(

1,exp
{
− ∆E

kBT

})
(2.13)

where ∆E = E0 −E1. Then the Eq. (2.12) can be rewritten as

⟨A⟩= 1
n

n

∑
t=1

A(xt). (2.14)

Classical Metropolis MC algorithm allows to calculate the average values of physical
parameters (selected observables). However, this approach does not allow a reasonable accurate
calculation of thermodynamic potentials related to partition function, including entropy and free
energy. For example, in canonical ensemble the free energy F(T ) can be calculated as:

F(T ) =−kBT lnZ(T ).

The developed family of flat-histogram MC methods allows to solve this problem [24].
In these modifications, instead of probability distribution in configuration space, the focus is
on probability distribution of parameters of interest that define a macrostate. In our work, a
good choice of such a parameter is the energy E. This choice is the most common, although
other options are also possible. The main idea of these methods is to produce conformations
uniformly distributed in E space.

Thus, we are talking about a uniform histogram of visiting microstates with the energy
E, H(E), which gives the name to the family of methods: flat-histogram MC. Since the prob-
abilities ρ(E) are unknown in advance, an iterative scheme is used to refine the value of ρ(E)

using the current value of ρ(E). Ultimately, having obtained the correct estimate of ρ(E), Z(T )

can be calculated. In general, this scheme is followed by a wide variety of methods, differing in
the details of the algorithms. Among these methods are Multi-canonical Monte Carlo (MuMC
or MUCA) [122–127], Wang-Landau (WLMC) [128–140] algorithms and SAMC [25, 26, 141–
143, 101, 139], which can be considered as a special type of WLMC algorithms (see below).
An important characteristics of the methods are their convergence and accuracy. For the SAMC
method used in our study, it has been mathematically proven [25, 26] that its convergence to the
true g(E) (see below) occurs at a rate inversely proportional to the simulation time (∝ 1/t).

The main task of flat-histogram MC methods is to find the most accurate density of
states function g(E), which is the number of microstates {x} that implement a macrostate with
a given E. With this g(E) function one can calculate using Laplace transform both the partition
function Z(T ):

Z(T ) = ∑
E

g(E) exp
(
− E

kBT

)
, (2.15)
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Chapter 2. Model and simulation methods

and the average observed values:

⟨A⟩(T ) = 1
Z(T )∑

E
A(E)g(E) exp

(
− E

kBT

)
. (2.16)

In the expressions above we moved from integration to summation, since in practice a finite set
of energies is used for calculations.

A general scheme of the flat-histogram algorithm could be summarized as:

1. Choose an initial estimate of the density of states function g(E) = g0(E). Often g0(E)≡ 1
is used as the initial estimate. The visiting histogram is set to 0 (H(E)≡ 0).

2. Make a trial change of the system configuration from the current state x0 with energy
E = E0 to a trial state x1 with energy E = E1, accept the new state with probability:

pacc = min
(

1,
g(E0)

g(E1)

)
. (2.17)

Thereby, configurations with larger g(E) are visited less frequently than configurations
with smaller g(E). Given the expression Eq.(2.17) (in the case when g(E) is close to
the true one), visits to all macrostates should be uniformly distributed with respect to E,
H(E)≈ const.

Let E ′ be the energy value after trying to make a trial step, namely E ′ = E(x1) if the trial
move is accepted or E ′ = E(x0) if the move is rejected. The conformation is naturally
updated (if a trial move is accepted) and the histogram is updated:

H(E ′)→ H(E ′)+1.

3. If required (depending on the specific flat-histogram algorithm, see below), update the
current estimate of the density of states g(E).

4. Repeat steps 2 and 3 until termination criteria are satisfied.

For the MuMC algorithm the Step 3 is executed only once at the end of the simulation
run. The new estimate of the density of states function g(E) is calculated as

lng(E)→ lng(E)+ lnH(E). (2.18)

The simulation runs are repeated until the multi-canonical histogram H(E) for the run becomes
"flat" (H(E)≈ const), which provides that the shape of g(E) does not change compared to the
previous run.

In Step 3 for WLMC algorithms, the density of states function is replaced at each trial
step according to the expression:
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2.2. Stochastic Approximation Monte Carlo (SAMC)

lng(E)→ lng(E)+ γt ·δ (E,E ′), (2.19)

The δ (E,E ′) is the Kronecker symbol, which means

δ (E,E ′) =

1, E = E ′

0, E ̸= E ′.

The time evolution of the modification factor γt depends on the specific method of the WLMC
algorithms. In particular, for SAMC γt changes with the simulation time t (trial moves counter)
as

γt = min
(

γ0,
t0
t

)
, (2.20)

where γ0 is the pre-selected maximum value of γt , t0 is the parameter. With this choice of γt , the
best functional convergence is achieved. In practice, typical values for γ0 is less than 10−1 [99].
A suitable choice of γ0 ensures visiting of a significant range of the energy space E during the
initial stage of the simulation when t < t0 with γt = γ0. However, excessively small values γ0

hinder the compensation of potential inaccuracies in the initial density of states g0(E) estimate.
Hence, determining an appropriate value γ0 necessitates balancing these opposing factors. The
optimal choice of both parameters γ0 and t0 is an actual problem for researchers nowadays [99].

2.2.2 Implementation details

The computer program (code) for SAMC simulation in this work was written in C lan-
guage and based on a program by T. Shakirov. Statistical analysis and most plotting were done
in R [144]. In this part, we describe the preparation of starting conformations, describe a number
of technical improvements introduced into the program, and also describe the trial movements
used.

Preparation of starting conformations

Initially, for systems without walls and with repulsive walls, the conformations of elon-
gated chains with stacking parallel to the XY planes were prepared "by hands". These ordered
states correspond to the lowest possible energy Emin. Then, using a certain selection of param-
eters γ0, t0, and the initial density of states function g0, conditions were created under which
steps were taken to increase the energy. For example, lng0 (E) =−3E, γ0 ∼ 0.001; t0 ∼ 5 ·106

contribute to the movement of the system from a state of low energy to a region of high energy.
In this way, disordered high-energy conformations were obtained from a completely ordered
system. Next, adjusting the parameters γ0, t0 the systems were sampled at high energies. Then,
starting from these disordered high-energy states, we achieved microstates with smaller ener-
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gies in order to select starting conformations for computer simulations, to accumulate the of
function ln(g). To force systems to evolve toward low-energy configurations, the parameters
γ0, t0 were changed, and restrictions on the allowed maximum energy were introduced. As the
energy decreased, conformations were regularly saved to use them as starting conformations for
accumulating runs. This procedure was done several times to obtain independent configurations
with different energies. Note that the fundamental thing here was the initial “defreezing” of sys-
tems, and conformations for further simulation were preserved only in the reverse, “freezing”,
process. Conformations from systems with repulsive walls have also been used in modeling
systems with attractive walls.

Here we would like to note that chains were also elongated along the walls in the low-
energy conformations obtained during “freezing” process. There is nothing unexpected in this,
since conformations in which the chains are oriented perpendicular to the walls are unfavorable,
since they lose a lot of entropy. However, additional runs were carried out in order to verify
the fundamental possibility of such an organization. To do this, the packing of chains was set
perpendicular to the walls "by hands". The goal was to ensure that the system can evolve from
this state to a disordered state with high energy. Since the trial steps are reversible, in this
case we can assume that returning to the state with chains extended perpendicular to the walls
is fundamentally possible (although very unlikely). During these tests, such evolution turned
out to be possible in a reasonable time only after introducing the additional trial move called
System reorientation (see below). A description of this and other trial steps implemented during
the simulation process is given below.

Technical improvements

The main, but not the only, goal of these technical modifications was to speed up the
process of accumulation of the function ln(g). Considering the size of the systems and the
potentials used, the energy range that needs to be studied for system without walls is [−5760;0]
for smaller, and [−11520;0] for larger system size.

SAMC simulations involve calculations of number of parameters that require significant
computational time. Thus, in order to speed up calculations at such large energy intervals, it
was necessary to modify previously developed procedure [24] as follows.

• At the first stage of work, we started by defining lng0(E) = 3E. This estimate is based
on results of T. Shakirov [114] for the similar systems and is quite rough, but requires
significantly less calculation time compared to lng0(E) = 0 (derived from the commonly
used g0(E) = 1).

• To speed up the sampling process, a parallel computing process was implemented, using
MPI modules. To do this, the entire range of energies was divided into "energy windows",
that is, intervals consisting of approximately ∆Ew ≈ 500 energies (Fig. 2.3). The windows
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2.2. Stochastic Approximation Monte Carlo (SAMC)

are spaced at approximately ∆E i
w ≈ 200 energy increments, so that each window has

multiple overlaps (each energy of the entire range applies to 1-3 windows). In areas of
windows overlapping, data exchanges are provided, due to which, in principle, sampling
of each conformation throughout the entire energy range is possible.

Figure 2.3: Illustration of the division of the energy range into windows

After more than one year of computation, it became evident that despite continual opti-
mization of the code and adjustments in parameters (such as window width), convergence of the
density of states function occurs at an unacceptably slow rate. Despite obtaining an estimate of
the density of states function g(E) that correctly reflected the anticipated trend, continuing cal-
culations at such a slow rate left little hope of obtaining reliable results in the transition region
in a reasonable time. Hence, there arose a necessity to explore additional avenues for enhancing
efficiency of the algorithm.

Modification of the accumulation method 1
In the previous procedure, we updated lng(E) exactly at the energy that we visited. In

other words, we accumulated the function lng(E) in bins with a width of ∆E = 1. Now, we
divide the entire energy range into

[∣∣∣Emax−Emin
∆E

∣∣∣]+ 1 bins of width ∆E = 10. Inside each bin

j =
[∣∣ E

∆E

∣∣] the lng(E) is approximated by a straight line with the slope

tan
(
β j
)
=

lng j+1 − lng j

∆E
.

The square brackets in the definition of j mean taking the integer part of the number (truncate),
lng j is the estimation of value lng in the bin j with ∆E = 10. In further calculations, the angle
β j in each bin j is fixed and does not change (Fig.2.4). Thus, if we visit the energy Ei (note that
we consider Ei < 0), we define the bin j =

[∣∣∣ Ei
∆E

∣∣∣] and update lng j inside the bin j as

lng j → lng j + γt .

Knowing the estimations of the function lng j and slope β j in each bin j, the values of lng(Ei)

can be calculated for each energy Ei:

lng(Ei) = lng j − tan
(
β j
)
· (|Ei|− j∆E) . (2.21)
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Hence, we can say that there is an effective accumulation of

lng(Ek)→ lng(Ek)+ γt/∆E, ∀k : j ·∆E < k < ( j+1) ·∆E. (2.22)

Thus, this modification allows, by visiting one specific energy Ei, to calculate updated values
lng for all energies within the bin j with width ∆E = 10 (Eq. (2.22)), thereby speeding up the
accumulation process.

Figure 2.4: Illustration of the accumulation process (modification 1) when visiting the energy
Ei < 0. The gray vertical lines correspond to the bin of energies with ∆E = 1, while the green

ones are ∆E = 10; the vertical red lines are additives to the functions of lng in the
corresponding bins. The blue solid lines are a linear approximation of lng inside the bin

∆E = 10. The green inclined solid line estimates the new value of lng inside the bin. The scale
of the diagram does not reflect the actual scale.

Modification of the accumulation method 2
At the next stage of the work, the modification proposed above was refined. This in-

volved distributing the additive at the current step, γ = γt into two components γx and γy

(γ = γx + γy), depending on the position of the visited energy Ei relative to the bin limits[∣∣ E
∆E

∣∣] ·∆E and
([∣∣ E

∆E

∣∣]+1
)
·∆E :

lng j → lng j + γx,

lng j+1 → lng j+1 + γy, (2.23)

where
γx = γ

∆E ( j+1)−|Ei|
∆E

,
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γy = γ
|Ei|−∆E j

∆E
, (2.24)

j =
[∣∣∣∣ Ei

∆E

∣∣∣∣] .
Simultaneously, to enhanced accuracy within this modification, it is assumed that the

angles in the current and neighboring energy bins will be updated:

tan
(
β j−1

)
→ tan

(
β j−1

)
− γx

∆E
,

tan
(
β j
)
→ tan

(
β j
)
+

γx − γy

∆E
, (2.25)

tan
(
β j+1

)
→ tan

(
β j+1

)
+

γy

∆E
.

Figure 2.5: Illustration of the accumulation process (modification 2) when visiting the energy
Ei < 0. The gray vertical lines correspond to the bin of energies with ∆E = 1, while the green

ones are ∆E = 10; the vertical red lines are additives to the functions of lng in the
corresponding bins. The blue solid lines are a linear approximation of lng inside the bin

∆E = 10. The green inclined solid line estimates the new value of lng inside the bin. The
dotted inclined green lines illustrate the angle β changes inside the bin j and in adjacent bins

j−1, j+1. The scale of the diagram does not reflect the actual scale.

Using the values lng j and β j, the values of ln(Ei) can be calculated for each energy Ei

(Eq.2.21).
Thus, modification 2, like modification 1, when visiting only one energy Ei, the function

values lng are updated at all energies of the bin j of width ∆E. Modification 2 does this more
accurately.

In total, taking into account all the listed modifications, the calculations took about 3
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years. The calculations were carried out on the computer cluster of the Institute of Physics of
Martin Luther University Halle-Wittenberg. The following partitions were used for calculation:

• intel1 - 49 nodes (2 CPUs, 8 cores each, FDR Infiniband);

• intel2 - 15 nodes (2 CPUs, 8 cores each, FDR Infiniband);

• intel3 - 19 nodes (2 CPUs, 10 cores each, FDR Infiniband);

• intel4 - 24 nodes (2 CPUs, 4 cores each, DDR Infiniband);

• amd1 - 63 nodes (2 CPUs, 8 cores each, QDR Infiniband).

Although the computing speed on the specified partitions is different (the most efficient is intel1,
and the least efficient is amd1), all resources were used as they were loaded by other users.
Trial moves

One Monte Carlo step involves trying to make NMC = (N +8) ·Nc +2 trial steps. Trial
moves are used to change the conformation, thereby contributing to the sampling in the energy
space. This is part of the technical implementation of the method and does not correspond to
the physical transformations in the system. The trial moves (Tab. 2.1) that are used in our work
are listed below.

1. Local displacement or rotation. The bond length is fixed in our model, therefore the lo-
cal displacement of a randomly selected particle within the chain involves rotation around
the axis connecting its neighbors. The end beads of the chain possess greater freedom of
movement, accounting for the fixed bond length. It is worth noting that in conforma-
tions featuring elongated chains, the displacement occurs by very small values, thereby
ensuring a higher acceptance rate at lower energies.

2. Reptation or slithering-snake move [145–147]. This move involves the removal of one
bead from the random end of a randomly selected chain, followed by the addition of a
randomly oriented bead at the opposite end. Acception rate for reptation move is higher
for high-energy conformations. This is due to the tendency, noted in our observations,
for chains to align one after another at low energies in our system. This preference for
alignment can lead to limited space for placing the bead at the end of the chain, and
therefore the rejection of this trial move.

3. Pivot. This is a chain reconstruction process, wherein a non-terminal bead within a ran-
domly selected chain is randomly chosen and is used as a rotation center. Subsequently,
one of the two directions towards the chain end is randomly chosen, and the selected por-
tion of the chain rotates around the selected center. The rotation angles are chosen ran-
domly. Therefore, in this step, only one angle between two successive bonds is changed,
while the conformation of the chain is modified significantly.
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4. Interior bridging. The essence of this step is to reconnect closely spaced beads in a
chain that are not adjecent along the chain. If the internal beads within a randomly se-
lected chain are sufficiently close to each other in space but are not adjacent along the
chain sequence, the beads are rearranged accordingly. Additionally, the beads undergo
slight movements to ensure that the lengths of all bonds in the chain remain equal. The
corresponding transition Jacobians are used to correct a probability bias.

5. End bridging [148, 149]. This is similar to the previous one, but involves the reconnec-
tion of an end bead instead of two internal beads of the chain.

6. Double bridging [150, 151]. This step resembles Interior bridging, but its execution
requires the close proximity in space of the internal beads of two distinct chains. In this
scenario the chains exchange their segments.

7. Reorientation. The Reorientation step entails rotating the entire chain relative to a ran-
domly chosen axis passing through the center of the selected chain at a random angle.
Therefore, this step, without altering the stiffness energy, can modify the energy of the
system solely in the case of a system with an attractive wall. This step remains essential
for altering the configuration of the system.

8. System reorientation. As mentioned previously, this step was introduced additionally to
enable the system to reach and destroy the state wherein the chains are stretched perpen-
dicular to the walls. The implementation of this step resembles the Reorientation step for
a single chain. However, the distinction lies in the fact that the rotation angle and the axis
of rotation, both randomly selected, are applied to the center of each chain in the system.

Local displacement Reptation Pivot End bridging

Interior bridging Double bridging Reorientation

Table 2.1: Illustrations for the trial moves.
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The overall acception rate is ∼ 15% for high energies and ∼ 30% for low energies. Nev-
ertheless, it is important to note that despite the increase in the number of trial steps taken, this
does not guarantee an effective system rebuilding. For example, for low-energy conformations,
local displacement are more likely to be accepted than for high-energy conformations (Tab.
2.2). This is explained by the fact that at low energies the conformations are elongated, and lo-
cal rotation practically does not change the conformation. Significant efforts have been devoted
to the search and development of additional effective trial steps. However, the aforementioned
steps currently constitute the optimal set for addressing the task within the framework of the
model employed.

The percentage of number The ratio of the number

of attempts to execute accepted trial moves

Trial move the trial step Energy trend the total number of attempts

within one MC step of all trial moves

Local
displacement

NNc
NMC

·100% ≈ 56%
low energy 55%

high energy 25%

Reptation 2Nc
NMC

·100% ≈ 11%
low energy 0.003%

high energy 0.01%

Pivot Nc
NMC

·100% ≈ 5%
low energy 0.07%

high energy 0.03%

Interior
bridging

Nc
NMC

·100% ≈ 6%
low energy tends to 0%

high energy ∼ 0.0005%

End bridging 2Nc
NMC

·100% ≈ 11%
low energy from 0.005% to 0.1%

high energy 0.5%

Double
bridging

Nc
NMC

·100% ≈ 6%
low energy tends to 0%

high energy ∼ 0.0005%

Reorientation Nc
NMC

·100% ≈ 6%
low energy 8.5%

high energy 9.5%

System
reorientation

2
NMC

·100% ≈ 0.015%
low energy

0.05%
high energy

Table 2.2: The proportions of attempted trial steps and trial steps accepted, expressed as
percentages.
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Chapter 3

Structural analysis: methods and results
discussion

In general, a crystal means a solid body having a three-dimensional long-range transla-
tional order. The arrangement of atoms in a crystal is characterized by its unit cell containing
one or more atoms in a certain spatial arrangement. The crystal structure of a substance is repro-
duced by periodic translation of the unit cell. In the study, we do not pretend to determine the
exact class of a crystal in a model of polymer melt (THS), since this would represent a separate
in-depth research in the field of crystallography. In addition, in polymer systems, we can only
talk about local translational ordering and the formation of a set of crystallites. However, we
claim to be able to detect the coexistence of various crystal symmetries. Despite the fact that
a significant number of methods for analyzing crystal structures have been developed, this task
is still the cornerstone of computer simulation research. In this chapter, we look at the most
common methods of analysis applied to frequently considered systems such as simple cubic
(sc), body-centered cubic (bcc), faced-centered cubic ( f cc), hexagonal close-packed (hcp), as
well as to our polymer system (THS) and propose new method of analysis that we consider the
most efficient in this study.

The chapter has the following structure.

3.1 Noise evaluation in the system under study. The presence of noise is the fundamental
reason why the application of many known methods of crystal structure analysis becomes
ineffective in our task. In order to compare the effectiveness of various methods of struc-
tural analysis, it is necessary to study dependencies of studied parameters on the noise
magnitude in systems. Knowing the noise magnitude, we can evaluate the suitability of a
particular method.

3.2 Test structures preparation. We describe the procedure for preparing test structures with
the imposition of a found in the section 3.1 noise. These structures are constructed in
such a way that their volume fraction correlates with the polymer volume fraction in THS
systems, which allows for direct comparison. The presence of such structures is necessary
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Chapter 3. Structural analysis: methods and results discussion

for a reliable and objective study of the effectiveness of various methods depending on
noise magnitude.

3.3 Radial distribution function. Calculation of the radial distribution function (RDF) is nec-
essary to estimate the characteristic distances, used in various methods as preset parame-
ters.

3.4 Local bond order parameters. We explore the original local bond order (LBO) parameters,
also known as Steinhardt parameters, as well as several of the most common variations
of this method.

3.5 Noise reduction procedure. Our results discussed in sections 3.1 - 3.4 have shown that the
existing methods of structural analysis are not quite suitable for noisy systems. Therefore,
we have proposed a new modification for calculation of Steinhardt parameters based on a
special procedure for averaging particles coordinates (NRLBO parameters).

3.6 Searching for translation vectors. As an additional step to obtain more information about
structures which appear in our systems, we propose a procedure to reproduce the observed
crystal structure using two base particles and three translation vectors.

3.7 Other methods. We also discuss the application of other methods, namely structure factor
calculation [152], common neighbor analysis (CNA) [105–108], Voronoi cell analysis
[109, 110] and local chain segments alignment analysis [48, 40].

3.1 Noise evaluation in the system under study

Before starting to analyze the crystal structure, it is necessary to pay attention to the
fact that one cannot expect to obtain a perfect crystal lattice without any noise in particles
positions even at T = 0, because the ground state in our model, i.e. the macrostate with the
smallest possible energy Emin, can be realized by many microstates within the framework of the
model used. In the studied systems (THS), noise will be observed (even at T = 0) due to the
width and shape of the stiffness potential. Since the condition for adding the value −1 (in ε

units) is an angle ranging from 0o to 26o (see Eq.(2.2)), then the lowest energy of E = −5760
in small systems (bulk and with repulsive walls) will be realized by any microstate where all
angles between chain bonds equal are between 0o and 26o. Thus, the width and the shape of the
stiffness potential is the cause of noise in the resulting crystal structures. This section describes
the procedure for evaluating noise in our system.

Let us choose a bulk system (Lx = Ly = 20, Lz = 19) with a sufficiently low energy,
so we can consider the structure as a crystal with particles fluctuations in the lattice nodes.
For example, we consider a system with energy E = −5727 (Fig.3.1). For other systems with
sufficiently low energies and systems, estimates give a similar result.
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3.1. Noise evaluation in the system under study

(a)
(b)

(c) (d)

Figure 3.1: A snapshot of the system at energy E=-5727: (a) 3d view. The colors correspond to
different chains; (b), (c), (d) the dots denote the centers of mass of each sphere in the projection

onto the plane XY , Y Z, XZ respectively. Purple points denote the centers of groups (d).

While in the XY and Y Z planes one can notice a variety of patterned structures of parti-
cles (beads) on local scales of several bead diameters (d = 1), in the XZ plane one can clearly
observe formation of groups. The arrangement of projections into groups in this plane is ex-
plained by the elongation of the chains along the y axis (Fig.3.1 (a)). This is a consequence of
the finite size effect of the system. Thus, the centers of these groups are analogous to atoms
of the crystal lattice, and the size of groups characterizes the noise magnitude in a crystal. At
this stage, clustering was carried out using the k-means method [153] (with an input number
of 360 groups) and a method similar to k-means, but the initial approximate size of the groups
(R = 0.8) was specified as the input parameter, not the number of groups. Both methods give
the same result for groups positions. As can be seen from the inserts in Fig.3.2, the distribution
of deviations of points from the centers of groups resembles the Gaussian distribution. One
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Chapter 3. Structural analysis: methods and results discussion

can use quantile-quantile plot (QQ plot) [154] to check the normality of distribution visually.
This is a graphical method that is a probability plot and allows you to compare two proba-
bility distributions by plotting their quantiles against each other. Quantiles are cut points that
divide the range of a probability distribution into continuous intervals of equal probabilities or
similarly divide observations in a sample. The point (x,y) on the graph corresponds to one of
the quantiles of the second distribution (y-coordinate) plotted on the same quantile of the first
distribution (x-coordinate). We use the theoretical normal distribution as the first distribution
(x-coordinate). The second distribution (y-coordinate) is the deviation of the projections of the
centers of mass of particles from the center of the groups on the XZ plane. In a QQ plot, each
observation is displayed as a single point. If the data correspond to the normal distribution, then
the dots should form a straight line (Fig.3.2). Thus, in our case one can talk about the normality
of the distribution. In addition to the ability to visually assess whether the distribution belongs
to the normal distribution, this method allows estimating the median value of the distribution
and the standard deviation. The value on the y axis at x = 0 corresponds to the median. We see
that it is equal to zero; this correctly reflects our construction: we translated the center of each
group to the origin before counting the deviation of the position of the particle of each group
from its center. The tangent of the slope of the approximating lines corresponds to the standard
deviation of the distribution. From the resulting plots we can extract σo =

√
σ2

o ≈ 0.112. This
value characterizes the noise in our system.

(a) (b)

Figure 3.2: Main plots: quantile-quantile plot for deviation from the centers of the groups
along x direction (a) and z direction (b); inserts: deviation from the centers of the groups along

x direction (a) and z direction (b).

Another way to estimate the parameter σo, assuming that the distribution of deviations
of particles from the centers of groups D(x) is normal, is to construct a lnD(x) :
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3.2. Test structures preparation

D(x)∼ exp
{
− (x− x0)

2

2σ2
o

}
lnD(x) = const1 −

(x− x0)
2

2σ2
o

Since we assume that the centers of all groups have already been translated to the origin, then
x0 = 0. When taking the derivative of the distribution with respect to the coordinate, we obtain:

∂ lnD(x)
∂x

=− x
σ2

o

As can be calculated from the coefficients obtained using linear fit (Fig.3.3) σo is for both axes
x and z equal to:

σo ≈ 0.112, (σ2
o ≈ 0.0125). (3.1)

Taking into consideration that this is an estimate for one group along one direction, for
a pair of noisy groups in three-dimensional space we get 2 · 3σ2

o = 6σ2
o ≈ 0.075. We will use

this estimation in the following section of the work.

(a) (b)

Figure 3.3: Noise estimation along x direction (a) and z direction (b).

3.2 Test structures preparation

In order to make sure that methods used are reliable, we perform tests on well-known
hard spheres (HS) crystalline structures: simple cubic (sc), body-centered cubic (bcc), face-
centered cubic ( f cc), hexagonal close-packed (hcp). For these structures primitive lattice vec-
tors are known, by which it is possible to reconstruct the crystal lattice. In order that the results
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Chapter 3. Structural analysis: methods and results discussion

obtained for the test lattices could be compared with the structures of polymer system (THS)
studied in this work, two conditions were taken into account: (a) the minimum distance be-
tween the lattice atoms of the perfect test structures should be equal to the length of the rigid
bond in the polymer model under study, i.e. d = 1; (b) the atomic packing factor (APF) of
the test structures should coincide with the volume fraction of the polymer in the system under
study (APF = φ = 0.496), since this parameter is the same for all the systems under study and
does not change during simulating process.

Since the dependence of various parameters on noise σ is investigated and special at-
tention is paid to the value estimated in the section 3.1 (σo ≈ 0.11), here we also describe
the procedure for introducing noise σ into the test structures taking into account the excluded
volume.

Example

As an example, let us consider the construction of bcc structure. The construction of
other test structures is carried out in full analogy.

Primitive lattice vectors for bcc:

a =−a
2

e1 +
a
2

e2 +
a
2

e3,

b =
a
2

e1 −
a
2

e2 +
a
2

e3, (3.2)

c =
a
2

e1 +
a
2

e2 −
a
2

e3,

where a is the lattice parameter, or the side of the cube, related to the distance d between the
nearest lattice atoms by the relation

a =
2√
3

d. (3.3)

Usually, to calculate the APF one assumes that d = 2r, where r is the radius of a particle.
However, to adjust the APF , we fix d = 1, according to assumption (a) and change the particle
radius r (so, r ̸= d/2). APFbcc is expressed in terms of the volume of a single particle V1, the
number of particles in a primive cell Nbcc and the volume of a unit cell V0:

APFbcc =
V1 ·Nbcc

V0
=

4
3πr3 ·2

a3 . (3.4)

After using the condition Eq.(3.3), and the requirements (a) and (b) above that APFbcc =

φ = 0.496 from Eq. (2.3), one obtains:

r =
(

φ

π
√

3

) 1
3 ≈ 0.45. (3.5)

This value is particularly important in the procedure for introducing a noise to the HS
system.
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3.2. Test structures preparation

Procedure for noise introduction

We assume that the noise along any direction in our system has a Gaussian distribution.
Therefore, we choose orthogonal vectors e1,e2,e3, and we introduce a noise along each of these
directions.

Step 1. In the constructed perfect lattice, each particle acquires a normally distributed Gaussian
displacement

∆x = N (0,σ2) (3.6)

Here we do not control overlaps of particles. In the next steps we need to eliminate
overlaps of particles.

Step 2. We look for a pair of points i0, j0 that are at the minimum distance dmin in the resulting
noisy system.

Step 3. Choose the particle i 0 With a probability of 1% randomly from all particles of the system.
With a probability of 99%, the particle i 0 is randomly selected from i0 and j0. For the
particle i 0, the displacement introduced earlier is replaced by:

∆x1 −→ α∆x+N (0,σ2
1 ) (3.7)

where α is the parameter chosen "by hand" (α ∈ [0;1]). According to the properties of
the normal distribution, the distribution ∆x1 will be distributed normally with a width of
σ if one sets:

σ
2
1 = (1−α

2)σ2. (3.8)

An attempt to change the displacement (Eq. (3.7)) is accepted if the pair distances from
any particles of the system to the particle i 0 taking into account this step are not less than
dmin, otherwise i 0 retains its previous displacement ∆x.

Step 4. If the new displacement ∆x1 is accepted, a new dmin and new particles i0, j0 are searched.

Step 5. Repeat Step 2 - Step 5 until dmin < 2r, where r was evaluated in Eq. (3.5).

Remark 1. After completing the procedure, the resulting structures were checked for the normality of
the distribution of the position of the particles relative to the noiseless positions, similar to
how it was done in the section 3.1. Despite the fact that at the σ > 0.07 the values of the
really observed and required noise (introduced σ ) no longer coincide, it is still possible
to achieve observed noise with a value comparable to the estimate in the systems under
study σo ≈ 0.11). Because of this difference, it is important to underline that later in the
manuscript, using the notation σ , we will mean the actual observed noise in the systems.

Remark 2. Although we actually studied systems with two different polymer volume fractions (φ =

0.471 and φ = 0.496), all test structures will be shown only for polymer volume fraction
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Chapter 3. Structural analysis: methods and results discussion

φ = 0.496. The results of the methods described in this chapter for test structures with a
volume fraction of φ = 0.471 do not differ significantly.

During the study of analysis methods, tests were also carried out for accounting systems
without excluded volume, which corresponds to the limit φ = 0.0. In this case, the noise pro-
cedure stopped at the first step. We do not discuss of this limit, since the HS model is a more
complex case and closer to the model under study (THS). However, here we note that the noise
reduction procedure proposed in the subsection 3.5 works better in this case. Further in the
manuscript, as test structures, we use the HS model for crystals sc, bcc, f cc, hcp, taking into
account the noise described in this section.

3.3 Radial distribution function

Let us start the study of structures by calculating the radial distribution function (RDF).
Let G(r) be the probability density of the presence of a particle at a distance r from a given
particle. Then the probability to find a particle at a distance r from this particle is defined as
G(r)dr. Then the radial distribution function g2(r) is calculated as:

g2(r) =
G(r)dr
4πr2dr

V, (3.9)

where V is the volume of simulation box.

(a) (b)

Figure 3.4: Radial distribution function for different noises for sc (a), bcc (b).
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3.3. Radial distribution function

(a) (b)

Figure 3.5: Radial distribution function for different noises for f cc (a), hcp (b).

As it was established in the section 3.1, the formation of a perfect crystal cannot be
expected in our model polymer system (THS). Noise can contribute to the displacement and
blurring of the radial distribution function. To study the behavior of the g2(r) depending on
noise, the sc, bcc, f cc, hcp structures were selected as test structures. Gaussian noise σ is intro-
duced into the initially perfect crystal lattice in each of the three directions, as it was described
in the section 3.2. The red curves (Fig.3.4, Fig.3.5) correspond to noise magnitude estimated
for THS in the section 3.1, since noise σ ≈ 0.11 is introduced in this case. It can be seen from
the data obtained that the number of peaks on the RDF decreases and the determination of the
symmetry of the structure becomes impossible. The position of the first maxima shifts to the
left on all structures with increasing noise. For small σ values, the maxima of all structures are
located at the point r = 1.0, which corresponds to the method of constructing lattices described
in section 3.2. This value corresponds to the minimum distance between the lattice nodes. With
a sufficiently large σ , the peak corresponds to the minimum possible distance that the particles
can approach, that is, the diameter of hard spheres.

In Fig.3.6 one can see the RDF g2(r) for the bulk system (Lx = Ly = 20, Lz = 19) at
energies E =−2040 and E =−5727, which corresponds to a melt and an ordered (crystalline)
structure respectively. Sharp peaks at r = 1, r = 2 and r = 3 are observed. These maxima
correspond to adjacent beads along a chain in our THS model.

The calculation of the RDF is a necessary step for calculating the Steinhardt parameters.
In general, Steinhardt and co-authors [102] recommend using particles that fall into a sphere of
the cutoff radius Rc = 1.2r0 as the nearest neighbors, where r0 is the position of the first peak
of the g2(r). Such a choice should ensure that all particles in the first coordination sphere are
taken into account. However, since the noise estimation in our system is 6σ2 = 0.075, it was
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decided to use the Rc = 1.3r0. Since r0 = 1 coincides with the diameter of the hard spheres in
THS model below we will write Rc = 1.3.

Figure 3.6: Radial distribution function for the bulk system (Lx = Ly = 20, Lz = 19). The
magenta line corresponds to the chosen cutoff radius Rc = 1.3 when further calculating the

order parameters.

Our experience has shown that this value is optimal for calculating parameters. If we consider
the distributions for THS system (Fig.3.6), one can see that the selected value of the Rc is to the
left of minima. As this value is close to the minima of both THS model (Fig.3.6) and the test
noisy crystalline structures (Fig.3.4, Fig.3.5), this choice is the most optimal, since it is most
likely to capture all particles from the first coordination sphere (Rc = 1.3 magenta in Fig.3.4,
Fig.3.5).

3.4 Local bond order parameters

3.4.1 P. J. Steinhardt, R. Nelson and M. Ronchetti parameters

One of the most discussed problems of simulation of the crystallization process is how
to attribute a particle to a liquid or crystal and also to determine the type of crystal symmetry.
Recently, a widely used method of distinguishing the type of crystal symmetry of particles is
the calculation of the local bond order (LBO) parameters, also known as Steinhardt parameters
[102]. To calculate these parameters, it is not necessary to have a reference structure for com-
parison with the studied one, as is required in, for example, common neighbor analysis [105].
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3.4. Local bond order parameters

Another convenience of using this method is the absence of reference to the coordinate system,
since the calculation of these parameters is based on spherical harmonics.

Local bond order (LBO) parameter of a particle i is defined as:

ql(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|qlm(i)|2, (3.10)

where l is positive integer, qlm - complex vector which is defined as

qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j). (3.11)

Here, Nb(i) is the number of nearest neighbors of the particle i. There is no strict rule for
determining the particles that are considered to be the nearest neighbors. Most studies use the
concept of the cutoff radius Rc (however, different studies use different values), and some use
the Voronoi cell. We prefer to use the concept of the cutoff radius with Rc = 1.3, as discussed
in section 3.3. The functions Ylm(ri j) are the spherical harmonics, ri j is the vector connecting
the particles i and j; m is an integer that runs from m = −l to m = l. Along with ql , the wl

parameters are also often used, which can be computed according to formulas:

wl(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

qlm1(i)qlm2(i)qlm3(i)

(
l
∑

m=−l
|qlm(i)|2

)3/2 , (3.12)

where the summation is carried out by the integers m1, m2, m3 from −l to l, which satisfy the
condition m1 +m2 +m3 = 0. The expression in parentheses is the Wigner 3-j symbol. Since
no significant conclusions can be drawn from the calculation of the parameters wi, the results
for these parameters are presented in the Appendix (Fig.A1). To analyze the structure, the
parameters q4, q6, q8 are most often used, however a more complete table of values for LBO
parameters of perfect crystal lattices (without noise) can be found in the Appendix (Tab.A1).
In this section, we present the results for the parameters of test structures with noise, and also
apply this method to analyze the structures obtained during our simulation of polymer system.

The study of Steinhardt parameters for test structures with the value σ = 0.11 showed
that the structures hcp, f cc, bcc become absolutely indistinguishable (Fig.3.7). This fact does
not allow us to apply parameters for our system.

The study of the dependence of the average parameters on σ showed that the mean
values deviate strongly from the values for perfect crystal lattices (horizontal lines in Fig.3.8,
Fig.3.9) with increasing noise. Starting from σ ≈ 0.08, the average number of nearest neighbors
also becomes indistinguishable for bcc and hcp, f cc and for none of these values corresponds
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to the true number of neighbors.

(a) (b)

Figure 3.7: Maps of LBO parameters q4 −q6, q4 −q8 for noisy test structures (a), (b)
respectively.

(a) (b)

Figure 3.8: Mean values of LBO parameters q4 (a), q6 (b) for bcc (blue), hcp (red), f cc
(green), sc (black) test structures.

Thus, for the noisy HS model, the application of classical Steinhardt bond order pa-
rameters turns out to be meaningless if one needs to distinguish between different crystalline
symmetries. In all non-perfect test systems, where there is a deviation of the positions of par-
ticles (for example, due to thermal fluctuations) from perfect crystal lattice sites, difficulties
arise with determining the crystal structure in simulation. Nevertheless, the potential of the
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3.4. Local bond order parameters

Steinhardt approach is great. Spherical invariants are reasonable functions for describing the
symmetry of particle clusters. A number of works have been devoted to modifications of the
LBO parameters to improve the accuracy of determining the type of structures in the presence
of thermal fluctuations. In next sections, we look at several well-known modifications of this
method.

(a) (b)

Figure 3.9: Mean values of LBO parameters q8 (a), number of nearest neighbors (b) for bcc
(blue), hcp (red), f cc (green), sc (black) test structures.

3.4.2 W. Lechner and C. Dellago parameters

In 2008, W. Lechner and C. Dellago [104] proposed a procedure for averaging Steinhardt
parameters. The authors tested their results on two different systems of soft spheres. In this
study, they propose to average local bond order (ALBO) parameters as follows:

q̄l(i) =

√√√√ 4π

2l +1

l

∑
m=−l

|q̄lm(i)|2, (3.13)

where

q̄lm(i) =
1

Ñb(i)

Ñb(i)

∑
k=1

qlm(k), (3.14)

where qlm(k) is calculated for the neighbor k according to Eq.(3.11), Ñb(i) is the number of
neighbors of the particle i including the particle i itself (Ñb(i) = Nb(i)+1).

To determine the ALBO parameters for particle i, one takes the average of qlm over
both the particle i itself and its nearby environment Nb(i). While ql(i) reveals the structural
intricacies of the first shell around particle i, its averaged counterpart q̄l(i) accounts for the
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influence of the second shell. The effective considering of the second particle shell is critical in
this context.

In the Appendix one can also find the results for the ALBO parameters w̄l (Fig.A2)
calculated using q̄lm:

w̄l(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 q̄lm1(i)q̄lm2(i)q̄lm3(i)

(
l
∑

m=−l
|q̄lm(i)|2

)3/2 , (3.15)

(a) (b)

(c) (d)

Figure 3.10: ALBO parameters q̄4 − q̄6 (a); mean values of ALBO parameters q̄4 (b), q̄6 (c), q̄8
(d) for bcc (blue), hcp (red), f cc (green), sc (black) test structures.
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3.4. Local bond order parameters

Authors [104] conducted their tests on 2 types of soft spheres: with the Lennard-Jones
potential and the Gaussian core model. In contrast, we have calculated these parameters for our
test structures consisting of hard spheres.

From the results obtained (Fig.3.10 and Fig.A3, Fig.A2 in the Appendix) it can be seen
that the average values still vary greatly with the growth of σ , however, averaging definitely
reduces the spread in values. In Fig.3.10 (b) it can be seen that the average values of the
parameter q4 are able to distinguish bcc, f cc, hcp, although it is still unreliable. The average
value for the bcc structure has stabilized and slightly deviates from the undisturbed state, which
was not observed with LBO parameters Fig.3.8 (a). The parameters q6, q8 still do not allow
us to distinguish structures with noise values comparable to those observed in the system under
study (σ ≈ 0.11).

3.4.3 H. Eslami, P. Sedaghat and F. Müller-Plathe parameters

A more advanced method was proposed by H. Eslami et al. [103]. In this paper, using
the example of the Lennard-Jones system, a comparison was made with the parameters of W.
Lechner and C. Dellago [104]. These order parameters examine the ratio of the orientational
orders of the second-shell to the first-shell neighbors of a central particle, so the parameters
change from 0 (disordered structure) to 1 (in all crystal symmetries). Given this essence of
these parameters, we will use the term relative local bond order (RLBO) parameters to refer to
these parameters. The authors note that despite the fact that the parameters in crystal structures
are close to 1, thermal fluctuations reduce the parameters. Moreover, the deviation of RLBO
from 1 is stronger in bcc than, for example, in f cc, due to the large amount of free space and
lower density. At the same time, we do not know of any studies devoted to the study of the
dependence of parameter changes on temperature fluctuations.

To calculate RLBO parameters one should first compute:

q̃l(i) = ql(i) ·ql( j) =
1

Nb(i)
∑

j∈Nb(i)

l

∑
m=−l

q̂lm(i)q̂∗lm( j), (3.16)

where

q̂lm(i) =
qlm(i)( l

∑
m=−l

|qlm(i)|2
)1/2

. (3.17)

After the averaging q̃l(i) over the first coordination shell of neighbors of particle i one computes
the RLBO parameters as:

¯̃ql(i) =
1

Ñb(i)
∑

j∈Ñb(i)

q̃l( j). (3.18)

Despite the fact that these parameters are not intended to distinguish perfect (noiseless)
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crystal structures of different symmetry, since they all equal to 1, it is interesting to investigate
the dependence of these parameters on noise for systems of hard spheres. There is a possibility
that using a combination of parameters q4, q6, q8 will allow distinguishing different types of
structures by the degree of deviation of these parameters from 1.

(a) (b)

(c) (d)

Figure 3.11: RLBO parameters ¯̃q4 − ¯̃q6 (a); mean values of RLBO parameters ¯̃q4 (b), ¯̃q6 (c), ¯̃q8
(d) for bcc (blue), hcp (red), fcc (green), sc (black) test structures.

From the obtained data (Fig.3.11 and Fig.A3 in the Appendix), it can be seen that the
parameter ¯̃q4 still seems to be the most sensitive for distinguishing structures. Depending on
the type of structure, noise magnitude has a different effect on the deviation of parameters from
undisturbed values. Such a broad distribution of values, unfortunately, does not allow using
combinations of parameters q4, q6, q8 to distinguish between different types of structures.
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3.5. Noise reduction procedure

Thus, since the parameters discussed in the section 3.4 do not allow us to reliably dis-
tinguish test structures with a noise value comparable to that estimated in the section 3.1, we
cannot rely on them when analyzing our THS systems. In the next section, another way of using
Steinhardt parameters (Eq.(3.10)) is proposed, the efficiency of the method on test structures is
checked, and the use of the method on the example of the THS system is also demonstrated.

3.5 Noise reduction procedure

As we have established in the previous sections, the methods used for analyzing struc-
tures do not allow us to distinguish satisfactorily different symmetries in the presence of noise.
Therefore, an attempt was made to reduce the influence of noise by averaging the position of
coordinates of particles in space.

We propose the following procedure. Each point on the two-dimensional scheme (Fig.3.12)
represents the projection of the center of mass of a particle on a plane. Let us choose the particle
i for which one will compute Steinhardt order parameters. We draw a sphere of radius Rs = 2
around this particle (Fig.3.12 (a)), which contain Ni +1 particles (Ni neighbors of the particles
i and the particle i itself). Next, select particle j (green triangle in Fig.3.12 (b)) from the list of
neighbors {Ni}. We also draw a sphere of radius Rs = 2 around it, into which N j particles fall
(blue particles in Fig.3.12 (b)). Then we translate particle j together with all its neighbors to
the position of the particle i (Fig.3.12 (c)). We perform the same operation with all the particles
from the list {Ni} (Fig.3.12 (d)).

The next step after moving the points inside the sphere is averaging their positions. To
achieve this, we set the positions of the neighbors of the particle i as the starting position of the
groups r′gr (black dots inside the black sphere in Fig.3.12 (a)). Then we iteratively refine the
present position of the centers of the groups rgr. To do this, we add the position of each of the
moved points (blue in Fig. 3.12 (d)) to each of the existing groups as an gaussian term. To get
the updated coordinates of the groups, it is necessary to weigh the amounts received.

rgr =
1

Zgr
∑
k

rk exp

{
−
(rk − r′gr)

2

2 ·2σ2

}
(3.19)

Zgr = ∑
k

exp

{
−
(rk − r′gr)

2

2 ·2σ2

}
, (3.20)

where rk are positions of the particles relative to the particle i, r′gr are the group positions
at previous iteration step, rgr are the updated group positions, 2σ2 = 0.0242, as defined in
the section 3.1. We repeat this procedure several times until the positions of the groups stop
changing. Thus, we obtained the averaged positions of the neighbors of the initial point i,
which we use now in the following to calculate the Steinhardt parameters (Eq. (3.10)).
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(a) (b)

(c) (d)

Figure 3.12: Two-dimensional coordinate averaging scheme. (a) Analyzed red particle i with
its neighbors in black sphere; (b) triangle particle j from the original sphere and its blue

neighbors; (c) blue sphere is completely translated into the original black one; (d) steps (b)-(c)
are done for all neighbors from the black sphere.

It should be noted that for averaging coordinates, the radius of the sphere (Rs = 2) is set
obviously larger than the cutoff radius for calculating the Steinhardt parameters, which is still
equal to Rc = 1.3. During iterations, the coordinates of the centers of the groups rgr, which are
used as the coordinates of neighbors at the end, may shift. Thus, if the initial point i had an
insufficient or excessive number of points inside the sphere Rc = 1.3, then during the iteration
process this number can be changed, that is, the averaged positions are less sensitive to noise
magnitude around the original particle. Therefore, the choice of Rs =2 provides a more reliable
averaging. The local bond order parameters obtained after the noise reduction procedure will
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be denoted as NRLBO.

(a) (b)

(c) (d)

Figure 3.13: NRLBO parameters q4 −q6 (a); mean values of NRLBO parameters q4 (b), q6
(c), q8 (d for bcc (blue), hcp (red), f cc (green), sc (black) test structures.

As we can see from the results obtained (Fig.3.13), the procedure of averaging coordi-
nates in space makes it possible to make the mean values of all parameters more stable with
increasing noise. At the same time, the spreading of order parameters decreases. On the plane
q4-q6 (Fig.3.13 (a)) it is also clearly seen that after introducing displacements in the lattice coor-
dinates of the order σ = 0.11 the structures are clearly distinguishable. The same figure shows
the division of sc into 3 groups. We found, that the reason for this is the different number of
neighbors. Thus, one can conclude that the combination of three NRLBO parameters q4, q6, q8

allows to distinguish different symmetries, even if there is a sufficiently large noise comparable
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to that observed in our THS system.
Another modification of this method was also tested. Instead of combining the particles

of the black sphere during averaging procedure by translations (Fig.3.13 (a)), the coordinates
of the centers of mass for each of the spheres (black and all blue ones) were superimposed.
Thus, one can say that the displacement of the central red particle is also taken into account,
since its position will be also shifted after superposition of the centers of mass. However,
our experience has shown that this modification does not provide significant improvements.
Initially, the described method can be considered optimal, and it is used in further analysis.

(a) (b)

(c) (d)

Figure 3.14: NRLBO parameters for the bulk system (Lx = Ly = 20, Lz = 19) E =−5727:
q4-q6 (a),q4-q8 (b),q6-q8 (c), neighbors histogram (d)

Since the proposed approach has proven itself well in relation to test structures, we can
apply it to the THS system. To begin with, let us take a system without walls with low energy
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E =−5727 (Fig. 3.1). The obtained NRLBO parameters are shown in Fig.3.14.
From the data obtained, it can be seen that the parameters q4, q6, q8 are clearly divided

into several groups. Two compact clusters are allocated on the plane q6-q8. On the other two
planes, smaller clusters are also noticeable. However, since their size is small and they are lo-
cated close to larger ones, we consider them as parts of larger clusters. It was also found that
most of the particles in two biggest most compact clusters have 12 neighbors, while scattered
points have a predominantly different number of neighbors than 12. Since the predominance
of the correct number of neighbors can be observed on the test structures after the averaging
procedure, then at this stage we can suggest that there is a coexistence of two types of symme-
tries with 12 neighbors in this structure, while a different number of neighbors appears because
of the noise of the sample. Here we make an assumption that these two crystal structures first
appear at higher energies, where they coexist with the disordered phase, which we will also call
Melt. We present an algorithm for isolating co-existing structures at different energies.

Procedure for separating structures

Step 1. At the first stage, we calculated the parameters for the averaged coordinates of a low-
energy system (E =−5727) and divided the particles into two clusters using the k-means
method [153] built into the R environment. Parameters q4, q6, q8 were used as input data
for clustering. At the same time, our experience has shown that additional consideration
of neighbors as input data does not significantly affect the result. The main disadvantage
of this method is a strong dependence on the starting points chosen randomly. To work
around this problem, in addition to the number of clusters (2), the number of program
runs (nstart = 500,1000) is also specified as an external parameter of this method. When
we visually observe the results of the cluster separation on the graphs we found out that
the results are well reproducible for our systems and do not change when restarted. One
can also use other clustering methods (for example, various variations of the k-means
method such as the c-means method [155], or expectation–maximization (EM) cluster-
ing algorithm [156]). Each of these methods has its own advantages and disadvantages,
however, in our work we do not describe and compare clustering algorithms in detail.
We prefer to use k-means method because of its simplicity, but testing other methods has
yielded similar results. After the initial separation of the parameters of the low-energy
structure into two clusters, it is necessary to clarify the positions of the clusters centers in
the space {q4,q6,q8}. To take into account the asymmetry of the clusters, we calculate
the covariance matrix:
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Ĉk =


cov (qk

4, qk
4) cov (qk

4, qk
6) cov (qk

4, qk
8)

cov (qk
6, qk

4) cov (qk
6, qk

6) cov (qk
6, qk

8)

cov (qk
4, qk

8) cov (qk
6, qk

8) cov (qk
8, qk

8)

 , (3.21)

here k = {1,2} is the number of cluster, qk
j - the parameter of a particle related to the

cluster k, j = {4,6,8}. Initially, the mean value of the parameter in the initial cluster
is taken as the center of the cluster, then this value will be refined during the iterative
process. In the iterative process the weight with which each particle i of the structure
enters each cluster k is calculated:

Ω
k
i =

√
det Ĉ−1

k exp


−1

2
(qi,4 − q̄k

4, qi,6 − q̄k
6, qi,8 − q̄k

8) Ĉ−1
k


qi,4 − q̄k

4

qi,6 − q̄k
6

qi,8 − q̄k
8




, (3.22)

where Ĉ−1
k is the inverse matrix of Ĉk; q̄k

j represents the center of cluster k. Then the
particles are reassigned to clusters: each particle i is attributed to the cluster k for which
the weight turned out to be larger. After that, the positions of cluster centers are updated
as:

q̄k
j =

∑
i

qk
i, j Ωk

i

∑
i

Ωk
i

, (3.23)

where j = {4,6,8}; i is the number of particle form the cluster k. The iterative process
ends at the moment when q̄k

j stops to change.

Note: The Ĉk and Ĉ−1
k do not change during the iterative process. In the case of matrix

recalculation, one get nested clusters with close centers.

Thus, at the Step 1, the centers of two crystal structures (q̄k
j, k = {1,2}, j = {4,6,8}) and

covariance matrices (Ĉk, k = {1,2}) for them were obtained. These values are fixed and
do not change in further steps.

Step 2. After two types of particles with different symmetries have been determined for this struc-
ture, we propose that these types are formed at higher energies and coexist with the poly-
mer melt. At this step, our task is to find the values (q̄3

4, q̄3
6, q̄3

8, Ĉ3) corresponding to
the polymer melt. To do this, we choose a high-energy structure, such that only a melt
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is observed. For example, let us take the energy E = −2040. For simplicity, assuming
that there are no crystalline particles in the sample, we find q̄3

4, q̄3
6, q̄3

8 in the sample as the
mean parameters for the entire system:

q̄3
j =

1
N ·Nc

∑
i

qi, j, (3.24)

where N ·Nc is the number of particles in the system (N ·Nc = 7200 in small and N ·Nc =

14400 in large systems, respectively).

Based on these data, we build the covariance matrix (Eq. (3.21)).

Thus, at the Step 2, the center of disordered structure (q̄3
j , j = {4,6,8}) and covariance

matrix (Ĉ3) for it was obtained. These values are fixed and do not change in further step.
One can find results for q̄k

j (k = {1,2,3}) in the Tab. 3.1.

color q̄4 q̄6 q̄8

Crystal 1 black 0.149±0.030 0.491±0.017 0.288±0.028

Crystal 2 red 0.201±0.021 0.556±0.011 0.376±0.020

Melt green 0.223±0.066 0.401±0.082 0.333±0.053

Table 3.1: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system without
walls, Lx = Ly = 20, Lz = 19.

Step 3. Since we know the coordinates in the {q4, q6, q8} space for the three phases and their
covariance matrices, it is now possible to separate the particles in our THS system of
any energy into three types. First of all, we can return to the low-energy structure and
redistribute the particles over the three sets of {q̄4, q̄6, q̄8} found so far, using weights
(Eq.(3.22)) (Fig.3.15). Since the system we have chosen does not have the lowest of
all possible energies (E = −5760), the presence of several isotropic phase particles is
possible.

Remark. To make sure that the sets obtained in the Tab.3.1 for these three clusters do not depend
significantly on the choice of specific structures, additional tests were performed. The
procedure of searching q̄k

j and Ĉk ( j = {4,6,8}, k = {1,2,3}) was repeated for several
sets of low and high energy conformations. The set of conformations obtained during
SAMC can be considered to be statistical independent, since they were taken with a large
time difference (on the order of several months of computer calculations). The values q̄k

j

and Ĉk do not depend significantly on the choice of conformations. The assignment of a
particles to different clusters (Step 3) also does not change significantly.
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Figure 3.15: 3d view of NRLBO parameters for the bulk system at E =−5727,
Lx = Ly = 20,Lz = 19.

(a) (b)

(c)

Figure 3.16: NRLBO parameters distribution for the bulk system at E =−5727,
Lx = Ly = 20, Lz = 19.
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In Fig.3.16, the distributions of the parameters q4, q6, q8 for the system under study are
shown in blue. Black, red and green colors represent the distributions of particles parameters
of the corresponding clusters. The dashed line of the cyan color represents the sum of these
individual contributions. It is obvious that the distribution of parameters for all particles is
actually a set of distributions of particles belonging to individual clusters, since the blue curve
exactly coincides with the cyane dashed line. The shoulder in the black curve at q8 distribution
around q8 ≈ 0.33 for Crystal 1 (Fig.3.16 c) corresponds to the number of neighbors other than
12 (detailed distributions can be seen in the Appendix Fig.A6).

color q̄4 q̄6 q̄8

Crystal 1 black 0.151±0.036 0.504±0.018 0.300±0.038

Crystal 2 red 0.211±0.047 0.552±0.019 0.360±0.031

Melt green 0.225±0.073 0.385±0.071 0.330±0.058

Table 3.2: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system with
repulsive walls, Lx = Ly = Lz = 20

The method was also tested on a system with repulsive walls (Tab.3.2). In these two
studied systems, structures with identical sets of q̄k

j are formed. If we compare the spatial
arrangement of the structures (Tab.3.3 and Tab.3.4), the dominant crystalline phase in both
systems is the Crystal 2 (red). In the system with repulsive walls, the alternation of crystal
phases is observed parallel to the walls, while in a system without walls, alternation occurs in the
planes located at an angle to the planes of the simulation box. The conformations are dominated
by layered crystal phases, with the Crystal 2 dominating near the walls. The observed structures
(Melt, Crystal 1, Crystal 2) found do not exactly define any of the test structures (sc, bcc, f cc,
hcp) (see Tab.3.1 and Tab.A1 in the Appendix). However, taking into account the estimated
spread of the values obtained, it can be seen that the parameters of the Crystal 2 (red structure)
are quiet close to f cc, while the Crystal 1 (black structure) is close in parameters to hcp. The
only significant difference is observed for the parameter q4 of the Crystal 1 and hcp. The
deviation of this parameter from the reference value can indicate the deformation of the hcp

structure. Indeed, when considering the projections of the centers of the particles of the system
on different planes, irregular, deformed hexagons were observed (Fig.3.1(d)). The reason for
the deformation is the connectivity in the chain and the dimensions of the box. So, for example,
if in low energy conformations chains are stretched along the y axis one after the other, then in
the perpendicular plane XZ we see sections of only 360 chains. There are no transformations
which allow to fill rectangle of size Lx ·Lz = 20 ·19 by regular polygon. Note that although in
reality the y direction is not highlighted, the final, small size of the system has a strong influence
on the packing in our case. Nevertheless, the organization of short chains into layers was tested
on a similar system in the work of T. Shakirov [97].
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For other studied THS systems (bulk Lx = Ly = 20, Lz = 39, system with repulsive walls
Lx = Ly = 20, Lz = 40, with attractive wall Uat1 and Uat2 , Lx = Ly = Lz = 20), we found a
separation into similar clusters (see the Appendix, Tab.A2, Tab.A3, Tab.A4, Tab.A5).

Thus, it can be argued that the approaches developed in this work are valid within the
framework of this model.
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E
Crystal 1
(black)

Crystal 2
(red)

Melt
(green)

View

-5727
2803
(39%)

4070
(56%)

327 (5%)

-5104
2449
(34%)

3329
(46%)

1422
(20%)

-4715
1601
(22%)

3194
(44%)

2405
(34%)

-3408
1034
(14%)

1266
(18%)

4900
(68%)

-2040 394 (5%) 113 (2%)
6693
(93%)

Table 3.3: The number of particles (and percentage) related to a clusters for different energies
in the system without walls, Lx = Ly = 20, Lz = 19. The colors in the snapshots correspond to

the colors used to indicate clusters in the space {q4, q6, q8}.
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E
Crystal 1
(black)

Crystal 2
(red)

Melt
(green)

View

-5754
2316
(32%)

4587
(64%)

297 (4%)

-5205
1262
(17%)

4289
(60%)

1649
(23%)

-4740
1626
(23%)

2548
(35%)

3026
(42%)

-3600 282 (4%)
1728
(24%)

5190
(72%)

-2050 237 (3%) 475 (7%)
6488
(90%)

Table 3.4: The number of particles (and percentage) related to a clusters for different energies
in the system with repulsive walls, Lx = Ly = Lz = 20. The colors in the snapshots correspond

to the colors used to indicate clusters in the space {q4, q6, q8}.
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3.6 Searching for translation vectors

After we have learned to distinguish structures, it is interesting to find an answer to the
question: "what do the detected structures look like?". In other words, we asked ourselves
the question of finding translation vectors with which a reconstruction of the crystalline lattice
would be possible. Knowledge of test structures says that for sc, bcc, f cc it is enough to know
three translation vectors to reconstruct the lattice. For hcp, in addition to three translation
vectors, it is necessary to set not a single base point, but two. Since the first base point can
always be placed at the origin, we can say that knowledge of four vectors is required: one vector
(let us call it h) determines the position of the second base particle, and three more vectors, {a,
b, c}, define translation vectors. Note that you can also reconstruct sc, bcc, f cc by specifying
four vectors {a, b, c, h}. The cells formed by these vectors will no longer be elementary cells
of minimal volume. However, searching for the elementary cell is not our goal.

So, we formulate the following problem: find the vectors {a, b, c, h}, with which we
can construct a crystal lattice that we observe in our system. Thus, we expect that all lattice
nodes can be described by the expression:

rlat
i = a ·ni +b ·mi + c · li +h ·αi, (3.25)

where ni,mi, li ∈ Z, αi ∈ {0,1}.
The search for vectors is performed for each particle of the system. For the neighbors of

the selected particle inside a sphere of radius Rs = 2.0 the coordinates are averaged, as described
in 3.5. Further in this part we work with the averaged coordinates of the neighbors and set the

origin of coordinates in the selected particle position..
Let the selected particle has Nb neighbors with position ri. The key assumption in the

procedure is that the vectors of the desired structure can be chosen close to the positions of
the neighbors of the considered particle. Thus, during the procedure we consistently direct the
vectors a, b, c, h from the central, selected particle to its neighbors.

Translation vectors search procedure

Step 1. Select a set of vectors {a, b, c, h} directed from a particle under study to its neighbors.

Step 2. The following conditions must be applied:

1. The vector h must be inside a parallelepiped constructed on the vectors a, b, c.
Mathematically this condition is expressed as follows:

0 ≤ (h ·a)≤ a2,

0 ≤ (h ·b)≤ b2, (3.26)

52



Chapter 3. Structural analysis: methods and results discussion

0 ≤ (h · c)≤ c2.

2. We cannot allow the case when a,b,c form one plane. Therefore, the angles between
these vectors should not be too small, since in this case the search may lead to
degeneration. To fulfill this condition, the following expressions must be fulfilled:

(a · c)
|a| · |c|

≤ 0.9,

(a ·b)
|a| · |b|

≤ 0.9, (3.27)

(b · c)
|b| · |c|

≤ 0.9.

3. Note also that the cell should not be too small: an extremely small cell can form a
lattice in which the nodes will actually fall into the desired positions, however, in
addition to these atoms, there will obviously be extra atoms in the lattice. To avoid
this, we impose a condition on the volume of the cell built on the vectors a,b,c. Let
us estimate the minimum possible cell volume. The distances between real beads in
our system cannot be less than 1, however, taking into account the noise magnitude
and influence of the noise reducing procedure, we assume that the minimum length
of each vector is 0.9. To estimate, let us assume that the cell is elongated so that the
angles between all vectors are 30o. Then

|Vabc|= |(a,b,c)|=
∣∣0.93 sin(30o) cos(60o)

∣∣≥ 0.18225 > 0.18. (3.28)

4. Finally, consider that the vector h must not be a linear combination of the vectors a,
b, c.

Step 3. If all conditions are met for the selected set of vectors, then we proceed to the next stage:
we match the coordinates ri for each of the Nb + 1 particles with an individual set of
integers {ni, mi, li, αi} such that the distance

∣∣ri − rlat
i

∣∣ will be minimal.

To find this correspondence, two systems of equations (for αi = 0 and αi = 1) are solved
for each particle i taking into account Eq. (3.25):


∂

∂ni
(ani +bmi + cli +hαi − ri)

2 = 0
∂

∂mi
(ani +bmi + cli +hαi − ri)

2 = 0
∂

∂ li
(ani +bmi + cli +hαi − ri)

2 = 0.

(3.29)

Then the integers closest to the found real numbers { ni, mi, li} are selected. Of the two
found sets integers {ni, mi, li, αi} with α = {0,1} defining rlat

i , the particle ri corresponds
to that one for which the distance

∣∣rlat
i − ri

∣∣ is minimal.
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Step 4. Now we have a comparison of particles ri with nodes rlat
i built on the vectors {a, b, c, h}

of the lattice and, since there is noise in the systems, we need to refine these vectors. To
do this, we solve 3 systems (for x, y, z components of vectors {a, b, c, h}) of 4 equations,
implying that ni, mi, li, αi are found:



∂

∂ax
∑
i
(ani +bmi + cli +hαi − ri)

2 = 0

∂

∂bx
∑
i
(ani +bmi + cli +hαi − ri)

2 = 0

∂

∂cx
∑
i
(ani +bmi + cli +hαi − ri)

2 = 0

∂

∂hx
∑
i
(ani +bmi + cli +hαi − ri)

2 = 0.

(3.30)

After the vectors are found, we perform a final check of their linear independence.

Step 5. At the next stage, we calculate a function that allows us to estimate how well the lattice
rlat constructed from the selected vectors matches the positions of neighbors ri of the
chosen particle. To do this, a lattice rlat is constructed on the obtained vectors {a, b, c,
h} and Nb +1 nodes of the lattices are selected that are closest to the origin.

Then we consider the function:

F1 =
Nb+1

∑
i, j=1

exp

(
−
(rlat

j − ri)
2

2 · (6 ·σ2)

)
, (3.31)

where coefficient 6 refers to the noise magnitude evaluation in the section 3.1: a multiplier
of 3 should be added to account for three-dimensional space, since the noise magnitude
evaluation was performed in one-dimensional space; an additional multiplier of 2 corre-
sponds to the mutual noise of two groups. The function F1 is constructed in such a way
that, on the one hand, it describes the similarity of the constructed lattice with the existing
one ((rlat

j − ri)
2), and on the other hand, it takes into account the noise magnitude in the

system (parameter σ2).

Alternative ways to construct a function by which we determine the best set of vectors
are based on constructing a correspondence between the environment of the particle under
study ri with lattice nodes, similar to how we do it in Step 3.. After the corresponding
lattice points rlat ′

i are found, we use them to construct the following functions:

F2 =
Nb+1

∑
i=1

exp

(
−
(rlat ′

i − ri)
2

2 · (6 ·σ2)

)
, (3.32)

F3 =
Nb+1

∑
i, j=1

exp

(
−
(rlat ′

j − ri)
2

2 · (6 ·σ2)

)
. (3.33)
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Thus, we consider Nb +1 points of the found lattice: rlat
i are closest to the origin, while

rlat ′
i are closest to the neighbors of the selected particle inside the radius Rs = 2.0. Note

that the maximum possible value of all functions F1, F2, F3 is equal to (Nb +1).

(a) (b)

Figure 3.17: illustration of the action F1, F2, F3

Each of these functions has its own advantages and disadvantages. We prefer to use of
the F1 function because it seems to be more reliable. Indeed, consider the following two-
dimensional illustration (Fig.3.17) as an example. Let the circles in the diagram be the
beads of our system (red - the original particle, blue - its neighbors, Nb = 8), and the
green stars are the nodes of the found lattice constructed by the current set of vectors {a,
b, c, h}. If we use the F1 function, we select the closest Nb + 1 stars {0− 8} to the red
particle (Fig. 3.17 (a)). The {1,6} stars are far away from the particles of the system, so
the summands containing rlat

1 and rlat
6 will give a small contribution to F1. As a result,

F1 for this set {a, b, c, h} is small. That is, this lattice is considered to be not quiet
similar to our system. This correctly reflects the fact that the nodes found in the lattice
{1,6} are redundant. For the same example, F2, F3 would be quite large because the stars
{0,2−5,7−10} are used in the calculation of these parameters, while the points {1,6}
will be ignored. That is, these functions are not sensitive to the presence of extra points.

At the same time, the functions F2, F3 are more sensitive to noise at the sphere boundary.
Let us consider another illustration in Fig.3.17 (b). The calculation of function F1 involves
stars {0− 4,6− 8}. Although this set visually describes the points of the system quite
well, F1 is small for them, due to the loss of summands associated with the {1,5} stars.
F2, F3 would give a more accurate account of the boundary points: the star 5 will be taken
into account, and 1 will be ignored.

Our experience has shown that F1 qualitatively better selects vectors similar to the ob-
served structure, so we will present results for this function. However, we find it nec-
essary to describe the functions F2, F3, since they can give an additional information, or
the calculation of these functions together with additional conditions can give satisfactory
results for other problems.
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At this stage, we save the value of the function F1 (or F2,F3) and the corresponding set of
vectors {a, b, c, h}.

Step 6. Next, we go back to Step 1 and repeat the procedure for a new set. Note that if at any
stage the check reveals violations (for example, some of conditions in the Step 2 are not
fulfilled, or the system of equations has no solution), we automatically proceed to Step 1,
choosing a new set of four vectors {a, b, c, h}. Let us also pay attention to the fact that it
is expected that for a highly noisy structure (or, for example, a melt), there will not be a
single set of vectors satisfying all the requirements described above.

Step 7. After all possible vectors have been checked for the particle under study and F1 has been
calculated for each set, the set of vectors {a, b, c, h} with the maximum F1 is selected
from the data obtained. After that, one can start exploring the next particle.

Remark. Note that this approach does not use additional constraints that guarantee the uniqueness
of the set. For example, for test systems without noise, one value of F1 corresponds
to several sets of vectors. Since our goal was to find a set of vectors that allows us to
reconstruct a structure similar to the observed one, we are satisfied with any of the found
sets. However, of course, this task can be further developed if one set the goal of finding
a unique set. In this case, it is necessary to define additional rules that filter out equivalent
sets among the found ones. One of such rules could be, for example, the requirement to
search only for the right triples of vectors a, b, c. This rule does not specify uniqueness
yet, but it may reduce the number of equivalent vectors.

Knowing the fact that the maximum value of F1 is Fmax
1 = Nb+1, it is possible to assess

how well the found set describes the structure under study. Depending on the conditions of the
problem, one can use some fixed value or a percentage of the maximum possible value of F1 as
a critical value of Fcr

1 . Further, one can assume that if the obtained value is F1 < Fcr
1 , then the

environment of this particle cannot be reconstructed by a crystal lattice. In this case, it can be
attributed to an unordered structure (isotropic state).

Test structures

To make sure that this method works, we have checked it for test structures. To reduce
the number of equivalent sets of vectors in noiseless structures, we chose sets with the smallest
vector lengths. Here we again give as an example the table (Tab.3.5) of the obtained vectors for
bcc, since the vectors for this structure were mentioned in section 3.2.
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Table 3.5: Found vectors for bcc without noise.

It is not difficult to see that linear combinations of the values given in the table can really
give reference values. For example, using the Set 1 of vectors {a1, b1, c1, h1}, we can verify:

are f = h1 −b1;

bre f = h1 −a1; (3.34)

cre f = c1 −a1 −b1;

For the other sets, as well as for other structures, tests can be done in a similar way.
Note that we can use the vector h only with a coefficient of 0 or 1. Thus, we have verified the
suitability of the method for perfect (noiseless) test structures.

We also considered noisy sc, bcc, f cc, hcp structures as a test. Let us illustrate the result
of this method with Fig.3.18 for bcc (the results for sc, f cc, hcp one can find in the Appendix,
Fig.A7, Fig.A8).

In this structure a noise magnitude equal to the noise observed in our THS system is
introduced (σ = 0.11). A point i of the system is considered. The set of vectors {a, b, c, h} is
found for it. The crystal structure is reconstructed from this set using Eq.(3.25).

The initial point i with its nearest neighbors in the cutoff radius Rc = 1.3, is translated to
the origin and depicted by green points (Fig.3.18). The points of the reconstructed structure at
the same radius, are depicted in black in Fig.3.18. The same is done for all points of the noisy
structure. Red crosses indicate the positions of the particles of the perfect structure. It can be
seen from the results that the displacement of the reconstruced structures from the positions of
the perfect structure is smaller than for the original green particles. This is explained by the fact
that the average positions of neighbors are used in the translation vectors search procedure.

To provide the validity of this approach an additional test was performed. For lattices
constructed on {a, b, c, h}, the values of Steinhardt parameters (LBO) were calculated. Fig.3.19
shows that the distributions of the LBO parameters for the reconstructed structures are much
compact compared to the Steinhardt parameters obtained after the noise reduction procedure.
In addition, the obtained values become closer to the parameters for the perfect structures (hor-
izontal and vertical straight lines). The exception is the simple cubic lattice. Points that deviate
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strongly from the perfect lattice values vary greatly in the number of neighbors (>10 instead of
6). We do not apply additional filters on the number of neighbors, since the initial number of
neighbors in our structure is not uniquely defined, however we use these values for analysis, so
the preferred number of neighbors in each structure is clearly visible. Thus, this test also proved
the validity of the approach used.

(a) (b)

(c)

Figure 3.18: Illustration of reconstructing noisy crystal lattice bcc. Green points indicate the
particles of the noisy structure bcc with their nearest neighbors in the cutoff radius Rc = 1.3,
translated to the origin. Black denotes the points of the crystalline structure constructed by

found vectors. Red crosses indicate the positions of the particles of the perfect structure
(without noise).
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(a) (b)

(c)

Figure 3.19: LBO parameters for reconstructed test systems.

System analysis

Finally, tests of the studied structures were performed for our THS system without walls
Lx = Ly = 20, Lz = 19. A set of vectors was found for each particle of the system under study,
the corresponding function F1 was determined, after which the lattice was reconstructed to the
found set and the Steinhardt parameters were calculated. Since we assume the presence of not
only crystal structures in our system, but also an isotropic phase, we will pay attention to the
method of selection of isotropic particles. Firstly, it is possible that there is not a single set of
vectors for a particle that satisfies the conditions described in the vector search procedure (Step
2). If there is no such set for a particle, then it can be considered non-crystalline. The second
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important criterion for particles for which a set of vectors is found is the need to set the critical
value of Fcr

1 , as mentioned above. To determine Fcr
1 for our system, density distributions of F1

for different energies were constructed. From the resulting dependency (Fig. 3.20) it can be
seen that the minimum of distributions where there are both crystalline and molten components
coincides with the intersection point of the high-energy structure (E = −2040), where there is
lack of crystallites, and the low-energy phase (E = −5727) which is almost totally crystalline.
We take this point as critical Fcr

1 = 22.6. Thus, the particles of our system for which F1 < Fcr
1

are considered as a melt.

Figure 3.20: Density of F1 for reconstructed system without walls with Lx = Ly = 20, Lz = 19.
Fcr

q = 22.6 (orange line) is choosen.

Consider a low-energy box (E = −5727). After we have eliminated the melt particles
according to the criterion F1 < Fcr

1 , for the remaining particles we can perform the procedure
of separating the particles into two crystal clusters in the space {q4,q6,q8}, as described in the
section 3.5.

In Fig.3.21 the points q4, q6, q8 (LBO) for the reconstructed structures (blue, cyan) are
plotted on top of the NRLBO parameters for the original structure (black, red). Vertical and
horizontal lines indicate the centers q̄i of the corresponding clusters (numerical values are de-
fined in Tab.3.6). It is clearly seen that the centers of the new clusters are close to the centers of
the "clouds" of the original particles. In addition, it is obvious that clusters of LBO parameters
for the reconstructed structures are more compact than clusters of NRLBO parameters for the
original system (Fig.3.21). In other words, the spread between the points becomes smaller, and
they tend to group more compact. Small and large clusters of the same color differ from each
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other mostly in the number of neighbors. In the process of reconstructing structures, the num-
ber of particles with 12 neighbors has slightly increased (see the Appendix Fig.A9). The fact
that the number of neighbors for the reconstructed structures becomes closer to the expected
(perfect) state was also observed in the test structures.

(a) (b)

(c)

Figure 3.21: LBO parameters for reconstructed system without walls (blue and cyan) cover
NRLBO parameters for the system (black and red). E =−5727, Lx = Ly = 20, Lz = 19.

We also discuss the issue of the stability of the assignment of particles to a particu-
lar cluster. The number of particles which were initially assigned to Crystal 1 and then have
changed their structural type to Crystal 2 in the process of restoring structures is equal to 396,
and 70 particles have changed their type to Melt. From the Crystal 2, 242 particles have
changed their structural type to Crystal 1 and 39 to Melt. The number of particles that were
first defined as a Melt, and then were redefined as Crystal1 is equal to 135, and 273 particles
have changed to Crystal 2. Additional analysis showed that in the initial structure, the particles
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that have changed their cluster in all cases are located mainly on the periphery of the "clouds"
in the space {q4, q6, q8} (see the Appendix, Fig.A9, Fig.A10, Fig.A11). This reflects the fact
that the separation into clusters in our systems occurs along rather sharp boundaries. Due to
the large noise magnitude, points near the border are ambiguously related to one or another
cluster and may be redistributed to other clusters as a result of the reconstructing procedure.
The results of the reconstructing procedure seem to be slightly more reliable, since the points
for these particles are grouped into more compact "clouds" compared to the NRLBO parameter
for original points. However, given that the particles on the periphery of the clusters are subject
to cluster changes, in order to reconstruct crystals in the most reliable way, the value should be
taken as close as possible to the centers of the clusters (Tab.3.6).

color q̄4 q̄6 q̄8

Crystal 1 original black 0.151±0.036 0.504±0.018 0.300±0.038

Crystal 1 reconstructed blue 0.146±0.024 0.493±0.015 0.292±0.040

Crystal 2 original red 0.211±0.047 0.552±0.019 0.360±0.031

Crystal 2 reconstructed cyan 0.199±0.018 0.557±0.012 0.377±0.019

Table 3.6: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system without
walls, Lx = Ly = 20, Lz = 19. We use NRLBO for original system and LBO for reconstructed

system.

The analysis of particles in coordination space also showed that "unstable" particles
(particles that have somehow changed their cluster) are located in areas with ambiguous phase
definitions (see the Appendix, Table A6). For example, if in the original system a green particle
was surrounded by black ones, it will most likely become black itself. Similarly, in systems
where a crystal and a melt coexist, points at the boundary will more likely change their structure
type compared to particles in the middle of a particular structure (crystal or melt). The results
of this chapter will be published in [F3].

3.7 Other methods

3.7.1 Static structure factor

Another way to verify the developed method is to calculate the static structure factor
(or structure factor for short). The main advantage of this parameter is that in addition to
the theoretical calculation given in this chapter, it can be obtained from experimental data by
scattering techniques [157]. Determination of the static structure factor is achieved without
determining the energy associated with scattered photons, electrons, or neutrons. Conversely,
energy-resolved measurements offer insights into the dynamic structure factor. Since for the
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conformation considered in the previous chapters (the system without walls Lx = Ly = 20, Lz =

19) the chains are stretched parallel to the plane XY , we calculate the two-dimensional structural
factor as

S(q) =
1
N ∑

r
exp{i 2π (q · r)}, (3.35)

where q = qye2+qze3 is a wave vector in which the components qy and qz change from 0 to 2.6
in increments of 0.04. A two-dimensional structural factor is computed for each plane parallel
to the z axis, covering a complete range of 2π with increments of 0.01 radians (φ ). Thus, r is the
position of particles in the system, where their simulation coordinates {x, y, z} are recalculated
as r = y′e2+z′e3, where z′ = z, y′ = xsinφ +ycosφ , x′ =−xcosφ +ysinφ , e3 is the unit vector
directed along the z axis, and e1 is the unit vector of the normal to the plane for which the
structural factor is calculated, e2 = [e3 × e1] . Following the calculation of the structural factor
for each of the 629 planes, an averaging process is undertaken over all rotation.

The observed image (Fig.3.22 (a)) reveals distinct peaks alongside numerous indistinct
spots, posing challenges in accurate localization. Interpretation becomes difficult due to the
significant influence of noise, as discussed in previous sections. In addition, the system demon-
strates the coexistence of two types of crystals, which complicates the analysis. Consequently,
signals undergo increased blurring.

To assess how well the reconstructed structures describe the original system, two parti-
cles were chosen from those designated to Crystal 1 and Crystal 2, based on minimal squares
of deviations of q4, q6, q8 from the centers of their respective clusters following the noise reduc-
ing procedure. Subsequently, the vectors {a, b, c, h} determined for these two particles were
found in accordance with the methodology outlined in section 3.6. Then, the structures were
reconstructed these vector within boxes of the size Lx = Ly = 20, Lz = 19, and two-dimensional
structural factors were computed and averaged over all rotation. The images depicting these
reconstructed "perfect" structures are presented in the Appendix (Fig.A12).

The structural factor for these particles exhibits enhanced clarity compared to the images
of the system under investigation. However, it does not manifest as delta functions, akin to the
scenario observed in ideal crystals. This phenomenon arises due to the finite size of the system.
The finite size of the system additionally contributes to the blurring of system’s peaks. Given
that signal intensity diminishes with distance from the picture’s center, a detailed localization
of peaks in the acquired images of reconstructed structures necessitated an analysis of the struc-
tural factor’s magnitude through concentric rings. To implement this procedure, a ring with a
radius of rq and a thickness of dq is considered. The maximum value of S (q) within the ring is
identified, and subsequently, at points where S (q) < w1 ·maxS (q), the value of S (q) is set to
zero. Here, w1 is a predetermined parameter within the range (0,1). Consequently, we can say
that an additional enhancement in image contrast is achieved through this process. Following
this procedure, peak identification becomes more straightforward.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Two-dimentional structure factor for system without walls, E =−5727,
Lx = Ly = 20, Lz = 19: for the whole system (a); for the particles from Crystal 1 (c); for the
particles from Crystal 2 (e); the same structures as (a), (c), (e) with peaks from reconstructed

Crystal 1 (green) and Crystal 2 (cyan) (b), (d), (f)).
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As a verification step, two-dimensional structure factors are separately calculated by consider-
ing particles from only Crystal 1 and only Crystal 2 (Fig. 3.22 (c),(e)). To validate the method,
the peaks defined for the reconstructed structures were applied to these images (Fig. 3.22(b),
(d), (f)). Despite the fact that only a few peaks are clearly visible in the original paintings of
the two-dimensional structural factor, the points based on reconstructed structures are close to
matching with the prominent features in the images of the two-dimensional structural factor for
the investigated systems.

Remark. It is crucial to highlight that the aforementioned method encounters several challenges,
preventing its reliable utilization as a tool for validating the accuracy of the vector search
method.

1. A pronounced noise structure is still present. Despite careful selection of particles to
reconstruct the structure, including checking the NRLBO and LBO parameters and
taking into account the numbers of neighbors for both the original particles (with and
without noise reduction) and for the reconstructed structures, the two-dimensional
structure factor is calculated for the original system in which the structures remain
undetected without resorting to additional noise reduction methods.

2. The finite (and exceedingly small) size of the system.

3. The presence of a crystal mixture.

4. Potentially different domain orientations within the structure are not adequately
taken into account.

5. Despite the partially analytical approach employed for structural factor analysis
(peak search), the task involves numerous parameters that necessitate subjective ad-
justment, such as the ring consideration step, ring thickness dq, and the parameter
w1.

In general, the structural factor, despite its limitations, retains utility as an analysis tool.
The challenges outlined argue for caution in relying solely on this method, however it still serves
as a valuable tool for visualizing structures and establishing connections between theory and
experiment. Through this parameter, it becomes possible, in principle, to collect information
about the suggested structures in the sample (as reconstructed Crystal 1 and Crystal 2) and
facilitate comparisons with experimental observations.

3.7.2 Common neighbor analysis

One of the most common methods of studying structures is the Common Neighbor

Analysis (CNA) [105, 106]. This method of structural analysis, utilizing more complex high-
dimensional signatures to characterize the arrangement of atoms, typically better distinguishes
multiple structures. In contrast to Centrosymmetry Parameter (CSP) [108, 158] and local bond
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order parameters [102], CNA does not directly account for spatial vectors pointing from the
central atom to its neighbors. Instead, the characteristic signature is computed based on the
topology of bonds connecting adjacent atoms. Typically, in this context two atoms are referred
to as neighbors or bonded atoms if they are within a specified cutoff distance from each other.

The original method analyzes pairs of atoms (the so-called root pairs) [105]. Their
nearest neighbors and the connections between them are also considered in the set. The nomen-
clature for describing root pair is introduced as follows. Each set is characterized by a sequence
of four integers. The first integer, either 1 or 2, designates the "type" of the root pair, indicating
whether the atoms comprising the root pair are nearest neighbors or not. The second integer
denotes the count of nearest neighbors shared by the root pair. The third integer signifies the
number of connections between common neighbors. While these three numbers are insufficient
for a unique characterization of the set, a fourth integer is introduced. Its value is arbitrary, pro-
vided it is used sequentially to ensure a distinct correlation between the numbers and the sets.
Then the ratios with which the resulting combinations are included in the cluster are considered.

A slightly more simplified scheme of this analysis is given in the work of A. Stukowski
[107]. In the same article, a variation of this method is proposed, the so-called Adaptive

Common Neighbor Analysis (a−CNA). Another variation of the CNA method was proposed
by P. M. Larsen in 2020 [108]. This modification is known as Interval Common Neighbor

Analysis (i−CNA). Both modifications of a−CNA and i−CNA, unlike the conventional CNA,
do not require a predetermined cutoff distance to choose neighboring particles.

To implement all these methods, we used the OVITO package. At the first stage, we
tested the methods on test structures (perfect and with a noise of 0.11 f cc, bcc, hcp, sc). In
perfect, noiseless structures, all particles were identified, far from the boundaries of the cube
(exactly those that are used for tests in subsequent sections). All modifications of the CNA

method for perfect structures give the same result, which indicates the validity of these meth-
ods for systems without deformations and imperfections, and also opens up opportunities for
analyzing systems with small distortions. The cutoff distance in the classic CNA in a fairly
wide range does not change the results. At the same time, for highly noisy systems, changing
this distance by 0.01 significantly changes the result. The Tab.3.7 shows the results of the CNA

method for the cutoff distance with the best particle recognition (when the number of particles
not assigned to any structure is minimal). Changing the cutoff distance shown in the table in
the case of noisy structures by 0.05 may make all particles in the system unrecognizable.

It can be seen from these results that in the presence of such noise in the system, the use
of any of the variations of the CNA method does not seem reliable in the framework of our task.
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Tech-
nics

Found
type

Structure under study

f cc hcp bcc bulk

noise noise noise Energy

0 0.11 0 0.11 0 0.11 -2040 -5727

CNA

Cutoff distance 1.1-1.4 1.24 1.1-1.4 1.23 1.2-1.59 1.39 1.1-1.59 1.38

f cc 9838 333 0 0 0 0 0 161

hcp 0 0 8892 445 0 0 0 141

bcc 0 0 0 0 7471 801 0 1

unde f ined 2351 11856 2862 11309 3268 9938 7200 6897

a−
CNA

f cc 9803 512 0 0 0 3 0 273

hcp 0 0 8892 595 0 17 0 243

bcc 0 5 0 16 7471 1124 0 88

unde f ined 2351 11667 2862 11143 3268 9595 7200 6595

i−
CNA

f cc 9838 1131 0 0 0 3 0 530

hcp 0 0 8892 1248 0 36 0 487

bcc 0 14 0 35 7471 3043 0 221

unde f ined 2351 11045 2862 10471 3268 8657 7200 5862

Table 3.7: Number of particles detected with CNA, a−CNA, i−CNA in the perfect systems
f cc, hcp, bcc, in the f cc, hcp, bcc with introduced noise 0.11, and for the small systems

without walls (Lx = Ly = 20, Lz = 19) with energies E =−2040 and E =−5727

3.7.3 Voronoi cell analysis

The problem of choosing neighbors has several solutions. In our work, we prefer the
use of a sphere with a fixed cut-off radius due to the simplicity of the implementation of this
method, as well as versatility. However, it is impossible to ignore another popular method - the
construction of Voronoi cells.

All research related to Voronoi cell calculations was carried out using the open source
Voro++ package [109]. The Voronoi cell analysis of test structures ( f cc, hcp, bcc, sc), as the
analysis of all modifications of Steinhardt parameters, involved only particles located far enough
from the boundaries of the cube to avoid a shortage of neighbors at the edges. A simple check
of the number of neighbors for Voronoi cells for test noiseless structures, unambiguously gave
the expected result: sc has 6 neighbors, bcc - 14, f cc and hcp - 12 neighbors.
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(a) (b)

Figure 3.23: Histograms of the number of neighbors for noisy test structures ( f cc, bcc, hcp,
sc), calculated using Voronoi cells (a), and the number of neighbors in a sphere with a cut-off

radius Rc = 1.3 (b).

However, when analyzing test structures with noise σ = 0.11 (Fig.3.23 (a)) it turned out
that the maximum distribution of the numbers of neighbors for f cc, hcp is shifted relative to the
unperturbed state towards more neighbors (from 12 to 14 neighbors). The distribution of the
structure’s neighbors becomes very wide and the structures become completely indistinguish-
able even for sc. The distribution for sc became very wide with a distribution maximum at 15
neighbors, while particles with the correct number of neighbors for this structure (6 neighbors)
were not detected at all. Thus, the distributions of systems with high noise by the number of
neighbors of Voronoi cells in their original form become completely indistinguishable. Using
a fixed cut-off radius, even without an additional averaging procedure, leads to a smaller devi-
ation from the undisturbed values (although such a deviation also does not allow for a reliable
analysis) (Fig.3.23(b)).

Therefore, using the number of neighbors obtained directly from Voronoi cells does not
seem to be the optimal method for our problem. One way to optimize could be to ignore too
small edges and, accordingly, faces. This way of calculations leads to a decrease in the number
of neighbors (our results especially for sc confirm that the number of neighbors calculated by
this method is indeed an overestimate). At the same time, only the correct number of neighbors
does not guarantee a reducing in the effective noise in the system, facilitating further analysis.
Although this method opens up wide scope for improvement and application to scientific pur-
poses, we do not contribute into modifications that improve the method of constructing Voronoi
cells, since the methodology we proposed in section 3.5 is more simple and solves the problems.

Another practically important quantity that Voronoi cell analysis allows us to extract is
the volume of this cell. The inverse volume of a Voronoi cell can be interpreted as the local
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density (Fig. 3.24).

(a) (b)

Figure 3.24: Distributions of volumes of Voronoi cells (solid lines) and inverse volumes of
Voronoi cells (dashed lines) for test structures ( f cc, bcc, hcp, sc) (a) and for the system

without walls (Lx = Ly = 20, Lz = 19) with energy E =−5727 (b). Voronoi cell volume is
normalized to the third power of the smallest possible distance between particles.

It should be noted here that when constructing test structures, we required the same
volume fraction as in the observed system. This is manifested in the fact that the maximum of
the local density distribution (the inverse volume of Voronoi cells) is approximately the same
for all structures (∼ 0.95). Naturally, the Voronoi cells volumes themselves are similarly equal
(∼ 1.05).

At the same time, the local densities can be used to study the local densities profiles
of systems. Fig.3.25(a) shows local density profiles for a system without walls for selected
energies. Note that although the density profiles in these systems are calculated along the z

direction, there is no physical reason for highlighting this direction in systems without walls.
The choice of axis is determined by the choice of specific conformations. The resulting profiles
were calculated for particles in layers of thickness 1 with a step of 0.2. Comparison of these
profiles with a visual representation of conformations from the Tab.3.3 allows us to say that local
densities correctly describe features of the systems. In high energy system where mostly melt is
observed (E =−2040), and low energy system with mainly crystallized polymer (E =−5727),
we see that the local density fluctuates around one average value (∼ 0.95). At the same time,
in systems with intermediate energies ( E = {−5104,−4715,−3804}), conformations where
both melt and crystal are observed. It is clearly seen that the crystalline region has a more dense
structure, while the isotropic part of the system has lower density. However, the average density
in the system, of course, remains constant.
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(a) (b)

Figure 3.25: Local density profile in z direction for the system without walls (Lx = Ly = 20,
Lz = 19) (a); local density profile in z direction for the system without walls (Lx = Ly = 20,

Lz = 19) with energy E =−4715 (green line), the concentration profile in z direction (magenta
line), and the concentration profile in z direction calculated using averaging using the

Epanechnikov kernel (blue line) (b). Voronoi cell volume is normalized to the third power of
the smallest possible distance between particles, the increment along z axis equals 0.2 for all

profiles.

As an alternative way to estimate the local density of structure, one can calculate the par-
ticle concentration conc in the layer: the number of particles in a layer of thickness 1 per unit
area Fig.3.25(b). As an example, consider the configuration of a system without walls, where
both crystalline and molten regions are observed (Lx = Ly = 20, Lz = 19, E = −4715). Since
the calculation of inverse Voronoi cell volume profiles actually averages the density value in the
layer, the curve is quite smooth (the green line in Fig.3.25 (b)). For comparison, concentrations,
calculated with steps of 0.2 (the magenta line) is presented. Despite strong fluctuations, the con-
centration profile behaves similarly to the inverse volume profile of Voronoi cells. Therefore,
there is no fundamental difference in the use of these parameters. It is often convenient for anal-
ysis to use smoothed data that does not have strong fluctuations. Fluctuations can be reduced,
for example, by averaging the function values at neighboring points, increasing the layer thick-
ness or the calculation step. As a more advanced smoothing method, a kernel density estimation

(KDE) [159, 160] can be used. As an example, a KDE with the Epanechnikov kernel [161] is
used:

concKDE(z) =
1

NNc ·h

NNc

∑
i

K
(

z− zi

h

)
; (3.36)

K(u) = KE p(u) =
3
4

max
(
1−u2,0

)
, (3.37)
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where h = 1, and z changes with the increment 0.2.
As we can see, this method makes it possible to smooth out the concentration curve,

preserving information about the structure. In the analysis of various parameters (orientation
order parameter, Steinhardt parameters, concentrations), we give preference to kernel density
estimation of profiles with the Epanechnikov kernel, since tuning the parameters of this method
allows us to obtain results with the desired degree of detailing.

Despite the efficiency of using the inverse volume of the Voronoi cell, preference in the
work is given to the concentration of particles. This choice was made for several reasons:

1. Simplicity and speed of calculation.

2. For a system with walls, the volume of Voronoi cells has a non-obvious interpretation
near the walls.

3. Avoidance of excessive smoothing. Tuning the KDE parameters allows for controlled
smoothing.

Remark. Let us recall that here we are discussing the structure of specifically selected conforma-
tions. Here we are not talking about the stability of the structures found. Since here we
are discussing the bulk system, due to the absence of a dedicated direction for averaging
density profiles over all conformations with a given energy, averaged density profiles do
not provide information about the system. Physical analysis of systems can be found in
the chapter 4.

3.7.4 The local alignment of chain segments analysis

To distinguish particles in a crystal-melt system, a method that actually describes the
local alignment of chain segments is often used. Despite the fact that this parameter describes a
local nematic ordering, in a number of works this method is used to determine crystallites in a
system [40, 48]. In our work, this method also showed good correlation with the results of the
NRLBO method which we have proposed.

The procedure described below is part of the two-step approach used in the work of
P.Kos et al. [48]

Let us consider the bond vi connecting successive beads i and i+1 of a chain. We take
the coordinates of the bond center as the position of the bond. We examine whether the bond
is "aligned" or not. If the bond is "aligned", then we consider both monomers belonging to this
bond to be crystalline. To analyze bonds we use the following algorithm.

1. We draw a sphere of radius Ral = 2.4 around the center of the bond vi and determine
the bonds that fall inside this sphere. Let us consider such bonds as neighboring ones.
The reasonable choice of radius Ral is determined by the position of the second minimum
on the radial distribution function (Fig.3.6). The radius chosen in the work [48] also
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approximately falls on the second minimum of the distribution given in the supplementary
materials to the article [48].

2. Among all these neighboring bonds, we define those that are collinear with the original
bond vi: if the angle θi j between the bond vi and its neighboring bond v j is less than
θcr = 15o, then we consider the bond v j as collinear one.

3. We calculate the ratio of the number of collinear vectors to the total number of neighbor-
ing bonds. If this ratio is greater than 0.4, then the bond vi is considered to be "aligned".

To test the effectiveness of this method, we compared this analysis with the results ob-
tained for a system without walls by NRLBO parameters (Tab.3.8). From the resulting table it
is clear that these two fundamentally different methods not only select approximately the same
number of particles, but the choice of these particles is also highly correlated.

E Nal Ncr Nboth

-5727 6810 6873 6509

-5605 6752 6778 6362

-5104 5664 5732 5368

-4715 4555 4747 4315

-3408 1936 2232 1731

-2040 48 440 3

Table 3.8: Number of particles defined as "aligned" Nal; number of particles defined as crystal
(Crystal 1 or Crystal 2) using Steinhardt parameters after averaging procedure Ncr; number of

particles defined as both "aligned" and crystalline Nboth in the systems without walls
(Lx = Ly = 20, Lz = 19).

For clarity, Fig.3.26 illustrates several systems described in the Tab.3.3. However, here
the need for an integrated approach should be noted, since this parameter selects particles that
not only can claim to be classified as crystalline, but also have only nematic ordering. The
chosen critical angle is of great importance in this matter. Since in our model the stiffness
potential is determined by the characteristic angle θs = 26o, the condition for the critical angle
of this method θcr = 15o is quite strict. This fact, combined with a good correlation of the
results with the analysis of Steinhardt parameters (Tab.3.8), allows us to use local alignment of
segments of chains as a base for cluster analysis of systems.

72



Chapter 3. Structural analysis: methods and results discussion

(a) (b) (b)

Figure 3.26: 3d view of the systems without walls Lx = Ly = 20, Lz = 19 with E =−5104 (a),
E =−4715 (b), E =−3408 (c); black particles are defined as "aligned", and green particles

are not "aligned". Green particles can be considered as molten ones.
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Chapter 4

Phase transitions: discussion of results

The chapter has the following structure.

4.1 Thermodynamic properties. The section describes the results obtained from the accu-
mulation stage of the density of states function g(E), followed by a discussion of the
reliability of these results. Here, the thermodynamic properties of all systems are dis-
cussed.

4.2 Structural analysis of systems. We consistently study structural (morphological) features
of systems discovered during thermodynamic analysis, relying on parameters describing
the geometric characteristics of the structures. We begin by considering the peculiarities
of the behavior of systems near the attractive wall (systems Uat1 , Uat2 , section 4.2.1). Then
we analyze the phase transition region for the bulk system and for system with repulsive
walls, arguing that the observed first order phase transition is an isotropic melt-crystal
transition (section 4.2.2). A more detailed analysis in the first-order transition region is
given, identifying intermediate unstable structures (section 4.2.3). The section ends with
a discussion of the possibility of the phenomenon of prefreezing in systems with walls
(section 4.2.4). For this purpose, an example of repulsive walls and a system with weak
attraction (Uat1) is used.

4.3 Transition analysis findings and predictive insights for various systems: a comprehensive
summary. Here we summarize the results of the analysis and make assumptions about
systems that have not yet achieved sufficient convergence of the density of state function
g(E).

4.1 Thermodynamic properties

Fist of all, it is necessary to pay attention to the following important points.

• The analysis performed in this study is based on the configuration (potential) energy
U . As demonstrated in the work of T. Shakirov et al. [143] the inclusion of kinetic
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components is potentially feasible using the equation:

g(E) ∝ ∑
U
(E −U) f/2−1g(U)Θ(E −U), (4.1)

where E =U +K is the full energy with kinetic energy K, f is the number of degrees of
freedom of the system, and Θ designates the Heaviside step function. However, account-
ing for kinetic energy K within our model is a challenge due to the fixed bond length im-
posing significant constraints on particle velocities. Such calculations are nontrivial and
require taking into account massive transition matrices, and remain beyond the scope of
this study. Thus, everywhere below the symbol E stands for potential energy. Therefore,
all calculated values in this study actually reflect configuration properties. Although this
approach may seem insufficient, it has value because it clarifies the complex relationship
between system configuration and its parameters.

• Since our work examines systems of finite, small size, we can only talk about pseudo-

phase transitions. However, for brevity, we will use phase transition terminology.

• The phase transitions observed in our systems are mainly energetically driven (that is,
determined by the potentials used), however entropy effects also affect the observed pro-
cess.

• The manuscript describes the regions into which the function lng has (or has not) achieved
sufficient convergence. We consider a region to be sufficiently converged if the values
of the energy derivative of the function lng stop changing with time. The control time
periods are 14 days of calculations.

The main result of the SAMC simulation is the accumulated state density function g(E) as
accurately as possible. In microcanonical thermodynamics, the logarithm of this quantity is
directly related to the entropy S(E) through the following relation:

S(E) = kB lng(E). (4.2)

The Boltzmann constant, conventionally denoted as kB, is assumed to be unity (kB = 1) through-
out this study.

The obtained dependencies are illustrated in Fig.4.1, as well as an additional density of
state function g(E) for a system without walls (Lx = Ly = Lz = 20, black curve in Fig.4.1 (a)),
provided by T. Shakirov for comparative analysis. The analysis of this system was documented
in the research conducted by T. Shakirov and W. Paul [97].

Note that Fig.4.1 shows the logarithm of density of states function. The maximum of
the function lng is shifted to zero. For small systems (size of Lx = Ly = Lz = 20 and Lx =

Ly = 20, Lz = 19, Fig. 4.1 (a), (c)) the range of the function lng changes is about 12000
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(∆ lng ∼ 12000 ). Let us recall that density of states function g(E) itself represents the number
of microstates that realize a macrostate with a given energy E. Consequently, a macrostate with
high energies (at maximum lng) can be realized in e12000 by more number of microstates than
macrostates with low energy (at minimum lng). For systems twice the size, this difference is
approximately 2 times larger (Fig. 4.1 (b)).

(a) (b)

(c)

Figure 4.1: Configurational entropy given by Eq.(4.2): (a) bulk (black) and system with
repulsive walls (green) with Lx = Ly = Lz = 20, and bulk (red) with Lx = Ly = 20, Lz = 19; (b)

system with repulsive walls (red) with Lx = Ly = 20, Lz = 40, and bulk (black) with
Lx = Ly = 20, Lz = 39; (c) systems with attractive wall Uat1 (black), Uat2 (red) and with

repulsive walls (green) with Lx = Ly = Lz = 20

Fig.4.1 (c) shows dependencies for systems with the size Lx = Ly = Lz = 20 with dif-
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ferent walls (Uat1 (black), Uat2 (red), repulsive walls (green)). From these dependencies it is
clearly seen that the range of energies visited by the system in systems with an attractive wall is
shifted to the left relative to a system with two repulsive walls. This is due to the fact that there
are always about 400 particles in the layer near the attractive wall. Therefore, the function lng

for a system with a weak wall attraction potential (Uat1) is shifted by about 400 energy units to
the left, and a system with a strong attraction potential (Uat2) is shifted by about 1600 energy
units to the left relative to a system with repulsive walls.

Thus, despite the fact that the density (volume fraction, φ ) of these systems theoretically
allows us to achieve states with energy E = 0 (disordered states where there is not a single
particle near the attractive wall), in practice we have not achieved such states, since they are
entropically unfavorable. For all systems without an attractive wall (Fig.4.1 (a), (b)), the entire
range of available energies is visited.

Although it is possible to renormalize functions for large systems (Fig.4.1 (b)) to match
the energy range of small systems (Fig.4.1 (a)), and the logarithm of the density of states func-
tion holds a clear physical interpretation (Eq.(4.2)), analyzing and comparing the behavior of
systems using the dependencies depicted in Fig.4.1 proves challenging. Much more informa-
tion can be gained from the first derivative of entropy with respect to energy, which gives the
inverse temperature:

T (E) =
(

∂S
∂E

)−1

. (4.3)

Fig.4.2 shows the dependence of the inverse temperature on energy. Despite the exten-
sive calculation time (about 3 years), satisfactory convergence is only achieved in small systems
without walls (black and red curves in Fig.4.2 (a)). In the study [97], the authors demonstrate
that the observed first-order transition is an isotropic melt – crystal transition. The paper also
predicts that an increase in density contributes to crystallization within this model. In the fol-
lowing parts of this chapter, we will provide a justification for the fact that the phase transition
observed in our work (bulk system, red curve in Fig.4.2 (a)) is also an isotropic melt – crystal
transition, which correlates with the prediction [97].

The inset in Fig.4.2 (a) shows a schematic view of a single first-order phase transition.
The shape of the inverse temperature curves for studied systems shown in main part of Fig.4.2
(a) currently suggests the presence of a single isotropic melt – crystal transition loop (see insert
Fig.4.2 (a)). In these systems in transition regions (Tab.4.1) it is possible to draw horizontal
lines, similarly to Maxwell rule, so that the areas between the curve and the horizontal line
above and below the line are equal (see insert in Fig.4.2 (a)). The horizontal straight line corre-
sponds to the inverse temperature (1/Tt), from which the transition temperature Tt is calculated.
Fig.4.2 (a) shows, that the black curve exceeds the red curve, it is concluded that the transition
temperature Tt for the more dense system (red curve) will exceed the transition temperature Tt

for the less dense system (black curve). Additionally, the inclusion of repulsive walls (green
curve) increases the transition temperature Tt compared to a system without walls of equivalent
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density (black curve). Despite the lack of convergence of a system with repulsive walls, which
precludes definitive conclusions regarding the nature and number of transitions, at the moment,
this graph rather indicates a single first order phase transition (isotropic melt – crystal). Al-
though further refinement of the ln(g) is required for this system, this system will be used for
comparative analysis, taking into account that the statements made are preliminary.

(a) (b)

(c) (d)

Figure 4.2: The inverse temperature given by Eq. (4.3): (a) for the bulk and system with
repulsive walls with Lx = Ly = Lz = 20, and bulk with Lx = Ly = 20, Lz = 19; (b) for the

system with repulsive walls with Lx = Ly = 20, Lz = 40, and bulk with Lx = Ly = 20, Lz = 39;
(c) for the system with Uat1 potential (Lx = Ly = Lz = 20); (d) for the system with Uat2

potential (Lx = Ly = Lz = 20). Inserts: possible shape of the curve in the presence of one (a) or
two (c), (d) first-order phase transitions. The horizontal lines correspond to the assumed

inverse phase transition temperatures calculated from Cv(T ).
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Note that the obtained transition loops has the shape of "steps" (the main part of Fig.4.2
(a)). These "steps", observed in systems with different volume fractions (φ = 0.471, φ = 0.496),
presumably indicate the presence of structural transitions not considered in the study Ref.[97].
A comprehensive study of this area will be discussed in detail in the section 4.2.3.

Estimation of the transition temperatures Tt are derived from dependencies of the canon-
ical heat capacity Cv(T ), as determined by the function maxima, instead of Maxwell area rule
(see below). In a system where convergence has been achieved, these two methods would yield
coinciding temperatures.

Structure Volume fraction, φ System size, Lz Energy transition region, Et

Bulk 0.471 20 [−5700;−4000]

Bulk 0.496 19 [−5700;−3100]

Bulk 0.496 39 [−11400;−5700]

Repulsive walls 0.471 20 [−5700;−2900]

Repulsive walls 0.471 40 [−11400;−5700]

Uat1 0.471 20 [−6000;−3200]

Uat2 0.471 20 [−7200;−4500]

Table 4.1: Estimation of the energy range for the phase transition region with Lx = Ly = 20 for
all systems.

Differences between large and small systems of the same density are expected due to
finite size effects that were originally intended to be studied (Fig.4.2 (a), (b)). For large systems
(bulk with Lx = Ly = 20, Lz = 39, and system with repulsive walls with Lx = Ly = 20, Lz = 40
Fig.4.2 (b)), the transition temperature currently appears to be smaller than for similar small
systems (Fig.4.2 (a), red and green curves). The fact that the transition temperature can depend
on the size of the system was shown in the Ref.[97]. However, additional observations of the
change in the inverse temperature versus energy dependence over time showed that these data
still vary greatly in the transition region (Tab.4.1). This indicates that the results are highly
inaccurate. Therefore, we will not focus on big systems (Fig.4.2 (b)).

As for systems with different magnitudes of wall attraction, the results within the tran-
sition region (E ∈ [−6000;−3200] for Uat1 in Fig.4.2 (c) and E ∈ [−7200;−4500] for Uat2 in
Fig.4.2 (d), see Tab.4.1) are not considered trustworthy due to still bad convergence up to now.
Note that despite the fact that for now we tend to identify only one phase transition of the first or-
der (single horizontal line in Fig.4.2 (d)), we cannot reliably exclude the presence of two phase
transitions with temperatures Tt1 and Tt2 located close to each other (the scheme in the insets
of Fig.4.2 (c), (d), see discussions below). We assume that the convergence of the function lng

outside the transition region for these and all other systems has been achieved. It is noteworthy
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that for systems with attractive wall, special points (red arrows) outside the transition region in
the inverse temperature-energy dependency require further study (see section 4.2.1). For Uat1

this point is located at E ≈ −2700, T−1 ≈ 2.2, T ≈ 0.45, while for Uat2 a noticeable change
in the behavior of the inverse temperature occurs at E ≈−2600, T−1 ≈ 0.087, T ≈ 0.92. Spe-
cial points can be inflection points (a continuous transition) or a small loop (a weak first-order
transition). One should take a derivative of the inverse temperature with respect to energy to
accurately characterize these points. If a positive local maximum in the derivative of the inverse
temperature is observed at the indicated location, then the observed transition is the first order.
On the contrary, a negative local maximum indicates a continuous transition. Our experience
has shown that due to noise, these data are not reliable, and in order to describe the system at
these points, the relevant system parameters should be further considered (see section 4.2.1).

Remark. Avoiding confusion when we talk about this phase transition (at E ≈ −2700 for Uat1 ,
and at E ≈ −2600 for Uat2 system), we will use special point terminology, if there are
no additional clarifications. While to describe the broad transition region described in
Tab.4.1, we will talk about phase transition, transition region, first-order phase transition.

In canonical thermodynamics, the primary functions of interest include the average en-
ergy ⟨E⟩(T ) and the heat capacity given by:

Cv(T ) =
⟨E2⟩−⟨E⟩2

kBT 2 . (4.4)

It is important to note that although in the definition we refer to the total energy of the system,
in this context we refer to heat capacity as a similar quantity derived solely from the configura-
tional aspect of energy. This applies similarly to other system parameters.

(a) (b)

Figure 4.3: Canonical heat capacity Cv(T ) : (a) for the bulk and system with repulsive walls
with Lx = Ly = Lz = 20, and bulk with Lx = Ly = 20, Lz = 19; (b) for the system with Uat1

potential
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(a) (b)

Figure 4.4: (a) canonical heat capacity Cv(T ) for the system with Uat2 potential; red vertical
line corresponds to red arrow in Fig.4.2. (d) ⟨E⟩(T ) for all small systems

The results obtained for the heat capacities Cv(T ) make it possible to quite accurately
determine the transition temperatures for small systems without walls (black and red curves in
Fig.4.3 (a)). For these systems, pronounced peaks are observed in the heat capacity graphs,
which indicate a first-order phase transition (in the thermodynamic limit, they would become
delta peak). For a system with a lower volume fraction (φ = 0.471, black curve), the first-
order transition temperature is Tt = 0.326± 0.001, while an increase in the volume fraction
(φ = 0.496, red curve) leads to an increase in the transition temperature Tt = 0.395±0.003. The
red curve shows two closely spaced peaks in Cv(T ), which we attribute to imperfect convergence
of the system. For the transition temperature Tt , we choose a point located in the middle between
these peaks (Tab.4.2).

Structure Volume fraction, φ System size, Lz Expected Tt

Bulk 0.471 20 0.326

Bulk 0.496 19 Tt ∈ [0.392;0.398]≈ 0.395

Bulk 0.496 39 Tt ∈ [0.340;0.391]

Repulsive walls 0.471 20 Tt ∈ [0.346;0.383]

Repulsive walls 0.471 40 Tt ∈ [0.316;0.396]

Uat1 0.471 20 Tt ∈ [0.332;0.381]

Uat2 0.471 20 Tt ∈ [0.316;0.398]

Table 4.2: Expected transition temperatures Tt with Lx = Ly = 20 for all systems.
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In a system with weak wall attraction (Uat1), the temperature dependence of the heat
capacity (Fig.4.3 (b)) currently shows two sharp peaks at Tt1 = 0.378±0.025 and Tt2 = 0.337±
0.025 in the region Tt ∈ [0.332;0.381]. At the moment, we cannot give a reliable analysis of
this region because of insufficient convergence of the density of states function in the transition
region, and because in addition to these large sharp peaks smaller fluctuations in heat capacity
are observed. However, if we assume that on a sufficiently accurate density of states these
observed peaks will become more pronounced, then they should be interpreted as two successive
phase transitions of the first order. The transition temperatures Tt1, Tt2 may slightly change their
values compared to those currently observed. In this case, two scenarios are possible.

• Transitions in the whole system: isotropic melt → nematic → crystal. In this case, one
can expect that when the temperature decreases to the temperature Tt1, orientational order
parameters will change abruptly from the small values to a value close to one (Tt1 = Tn−i

Fig.4.5 (a), (b)). In this point, the number of particles classified as crystalline will not
demonstrate a sharp jump (Fig.4.5 (b)). At temperature Tt2 the number of crystalline
particles will experience a jump (Tt2 = Tcr−n Fig.4.5 (a), (b)). Thus, Tt2 is expected to
coincide with the melting point Tm, for a system of the same size without walls.

• Transitions: isotropic melt → formation of a crystalline layer of finite thickness near
attractive wall → crystallization in the entire system. In this case, we can talk about the
phenomenon of prefreezing (Fig.4.5 (c)). When the temperature decreases to Tt1 (which
have a sence of Tpre f in the chapter 1, Fig.1.2), the orientational order parameters, as well
as the number of crystalline particles in the system, will experience a jump to a certain
(not maximum) value. This will characterize the formation of a crystal layer of a finite
thickness. Then these parameters will gradually increase with decreasing temperature,
which will indicate the growth of the crystalline layer. At temperature Tt2, all order
parameters (including orientational order parameters, see in section 4.2) in the system,
as well as the number of crystalline particles, will experience a sharp jump to a maximum
value or logarithmic growth, as predicted by phenomenological theory [29]. This will
indicate crystallization within the entire system. At the moment we do not dare to predict
the behavior of this dependence in the vicinity of the point Tt2 in this scenario. So, Tt2 has
a meaning of Tm for this system with considered size. Note that it was shown [97] that
the small size of the system contributes to an increase in Tm, which is a consequence of
the ordering of the system through periodic boundary conditions.

The given scenarios and methods of analysis are simplified here. Since at the moment
the density of states function has not been accumulated accurately enough, we cannot carry
out a detailed analysis of this system in the transition region, nor can we guarantee that the
final data will indicate two transitions, and not one (isotropic melt – crystal transition by the
heterogeneous nucleation mechanism).
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(a)
(b) (c)

Figure 4.5: Schemes of two possible scenarios of phase transitions in the case of the presence
of two loops on the graph of the dependence of the inverse temperature on energy (Fig.4.2).

Temperature dependence of the orientational order parameter (a) and the number of
crystallized particles (b) in the scenario of the transition between an isotropic melt - nematic

(Tn−i) and a nematic - crystal (Tcr−n). Temperature dependence of the orientational order
parameter and the number of crystallized particles (c) in the prefreezing scenario: melt -

crystalline layer of finite thickness (Tpre f ) and melting point (Tm). As the temperature
decreases T ∈

[
Tm;Tpre f

]
, the thickness of the crystalline layer increases.

Although it cannot be ruled out that continued accumulation of the lng(E) function
may reveal two phase transitions for systems with attractive wall, we currently expect only
single isotropic melt – crystal phase transition. Refining the regions that exhibit pronounced
variations in the Cv(T ) dependencies is expected to eventually lead to a single noticeable peak.
It is worth noting that although we analyze the available data and provide an estimate of the
current transition region, there is no guarantee that the final peak will necessarily be within the
specified region. For the remaining systems under study (bulk Lx = Ly = 20, Lz = 39, repulsive
walls Lx = Ly = 20, Lz = 20 and Lx = Ly = 20, Lz = 40 and for Uat2), accurate determining the
transition temperature is also currently hardly possible.

Outside the transition region indicated in Tab.4.2 for systems with attractive walls, the
red vertical lines (Fig.4.3 (b), Fig.4.4 (a)) indicate heat capacity peaks corresponding to special
points on the inverse temperature graphs (Fig.4.2 (c), (d)). The positions of these peaks facilitate
the most accurate determination of the corresponding temperatures (T ∗ = 0.457±0.002, E∗ =

−2650± 10 for Uat1 and T ∗ = 0.905± 0.007, E∗ = −2610± 15 for system Uat2). Note that
the corresponding peaks are quite broad rather than sharp. A more detailed discussion of these
points will be given in the section 4.2.1.

The dependence of the average energy on temperature (Eq.(2.16)) illustrates the char-
acteristic downward shift of the curves for systems with an attractive wall. This phenomenon
arises from the predominance of conformations in which approximately 400 particles are lo-
cated in the wall layer (near the attractive wall) in these systems. Consequently, in the system
with potential Uat1 , the dependence ⟨E⟩(T ) (Fig. 4.4 (b)) shows a downward shift of approxi-
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mately 400, while in the system with potential Uat2 , the shift is about 1600 relative to systems
without an attractive wall. This also explains why, for all energy dependencies, the maximum
energy for systems with an attractive wall does not reach E = 0.

For the bulk system (Lx = Ly = 20, Lz = 19, Fig.4.4 (b), the red curve) at energy E ≈
−4500, a small area with a small slope is observed. We attribute this jump to insufficient
convergence, which also results in a doubling of the peak in the heat capacity dependence
(Fig.4.3 (a), the red curve). We expect that as accumulation continues, two closely spaced
jumps will merge into one. Note that for bulk system (Lx = Ly = Lz = 20, Fig.4.4 (b), the black
curve), the transition region represents a sharp jump, while similar regions for all other systems
with walls are more blurred. We expect that with better convergence lng for these systems,
there will be a sharp jump in the case of one transition. If for any system there are two closely
located phase transitions of the first order of transition (see discussion of the insets in Fig.4.2
(c),(d)), then we will see two jumps, clearly separated by a slowly growing part.

We estimate the magnitude of the energy jump ∆⟨E⟩ as the difference between the aver-
age energy value ⟨E⟩ reaching a plateau at low temperatures and the average energy ⟨E⟩ when
the curve reaches smooth saturation at high temperatures. The smallest jump is observed in
the system without walls with Lx = Ly = Lz = 20, φ = 0.471 (Fig.4.4 (b), black curve), where
∆⟨E⟩ ≈ |−5760− (−3560)| = 2200. Conversely, in a system without walls with a larger vol-
ume fraction (Lx = Ly = 20, Lz = 19, φ = 0.496, Fig.4.4 (b), red curve), the jump height is
the highest, with ∆⟨E⟩ ≈ |−5760− (−2760)| = 3000. While jump heights may vary for other
systems, the current values are closer to those of a denser system (for a system with repulsive
walls: ∆⟨E⟩ ≈ |−5760− (−2940)| = 2820; Uat1: ∆⟨E⟩ ≈ |−6150− (−3550)| = 2600; Uat2:
⟨E⟩ ≈ |−7340− (−4440)| = 2670). This suggests that the presence of walls, as well as an
increase in the density of the system, promotes the phase transition.

In our study, we refrain from using the microcanonical heat capacity as its computation
involves the second derivative of entropy:

c(E) =
(

∂T
∂E

)−1

=− 1
T 2

(
∂ 2S
∂E2

)−1

.

Given the significant noise observed in the graphs of the first derivative of entropy, the second
derivative amplifies this effect, making the microcanonical heat capacity unsuitable for analysis.

Additional quantities commonly encountered in statistical physics such as the partition
function Z(T ), the free energy F(T ) = −kBT lnZ(T ), the Boltzmann probabilities p(E,T ) are
not relevant in this context.

4.2 Structural analysis of systems

In this section, we perform a structural analysis to clarify the observed phenomena de-
scribed in the previous section. To describe features near special points, we consider systems
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with attractive potentials Uat1 and Uat2 (section 4.2.1). To analyze the transition region (first-
order transition) for the energy range indicated in the Tab.4.1, we use a system without walls
(bulk) with density (Lx = Ly = 20, Lz = 19, φ = 0.496) and a system with repulsive walls
(Lx = Ly = Lz = 20, φ = 0.471) (section 4.2.2). We assume that in the bulk with the volume frac-
tion φ = 0.496 and with the volume fraction φ = 0.471, structural features remain unchanged.
This statement is confirmed by similar diagrams of the dependence of inverse temperature on
energy (Fig.4.2 (a)). Therefore, for the structural analysis we will use the data obtained from
our simulation for the system without walls (Lx = Ly = 20, Lz = 19, φ = 0.496). In addi-
tion, comparisons will be made with the small system with repulsive walls (Lx = Ly = Lz = 20,
φ = 0.471). Finally, there is a discussion of the possibility of the phenomenon of prefreezing in
systems with repulsive walls and with weak attractive wall Uat1 (section 4.2.4).

4.2.1 Analysis of the transition inside the layer near the attractive wall

Since in this part we intend to explore only special points, here we will consider the en-
ergy regions E ∈ [−3000;−2000] for the systems Uat1 and Uat2 . This range selection facilitates
full exploration of points of interest (E∗ =−2650±10 for Uat1 and E∗ =−2610±15 for system
Uat2) and avoids capturing redundant areas where additional effects may contribute. Since this
effect is observed in our work only in systems with an attractive wall far from the phase transi-
tion region (Tab.4.1), we assumed the formation of a crystalline layer near the attractive wall.
In this case, the use of Steinhardt parameters or local alignment of chain segments analysis is
inappropriate, since in the near-wall layer we inevitably encounter a deficit in the number of
neighboring particles.

The assumption that the transition occurs in a layer near the attractive wall is confirmed
by visualizing the particles in the layer, and then by calculating the corresponding parameters.
Fig.4.6 shows projections of the centers of mass of the beads on the planes XZ, XY for two
randomly selected conformations: on the left (E = −2785, E < E∗), and on the right (E =

−2379, E > E∗) from the special point.
From the projections onto the XZ plane it is clear that near both walls for both selected

conformations the wall layers can be clearly distinguished (black dots between the blue and red
lines in Fig.4.6 (a), (d)). If we consider the projections of particles from these layers onto the
XY plane, we see that near the attractive wall at energies above E∗ (Fig.4.6 (b)) the particles in
the layer are disordered, while for energies below E∗ (Fig.4.6 (e)) ordering appears. Near the
repulsive wall for both conformations, the particles are disordered (Fig.4.6 (c), (f)). Thus, pre-
liminary observation of conformations indicates that there is a transition occurs in the attractive
wall layer at point E∗.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Projections of center of mass of beads for conformations with energy E =−2379
(a-c) and E =−2785 (d-f) for the Uat1 system. (a), (d) projection of all particles onto the plane
XZ. Blue lines indicate walls at Z =±10, red lines at Z =±8.8 indicate the edge of the first

layers near walls. (b), (e) projections of particles from the layer near attractive wall
8.8 < z < 10 onto the plane XY . (c), (f) projections of particles from the layer near repulsive

wall −10 < z <−8.8 onto the plane XY .

To assess the orientational order within a layer, we examine several layers with a thick-
ness of one, which are parallel to the walls at Z = {±9.5, ±8.5, ±7.5}. Centers of particles
from layer l are projected onto the plane Z, after which the following hexagonal parameters are
calculated:

|⟨ψ6⟩|=

∣∣∣∣∣ 1
Nl

Nl

∑
k=1

1
nk

nk

∑
j=1

exp
(
i6αk j

)∣∣∣∣∣, (4.5)

where the αk j are angles between the vectors connecting bead k to its neighbors j and a fixed
axis in this plane, Nl is a number of particles in the layer l, and nk is a number of neighbors
of the particle k. Averaging, indicated by angle brackets, means averaging over particles in the
layer l. In the case of this parameter, we consider particles falling into a cylinder with a height
0.5 and a radius 1.6, outlined around the particle k, as its neighbors. This choice of radius
ensures the selection of particles within the first coordination sphere in the plane under study
(Fig.4.10). The axis of the cylinder is directed perpendicular to the plane under consideration.
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We also consider the average of the absolute value of ψ6, which can be calculated as follows:

⟨|ψ6|⟩=
1
Nl

Nl

∑
k=1

∣∣∣∣∣ 1
nk

nk

∑
j=1

exp
(
i6αk j

)∣∣∣∣∣. (4.6)

(a) (b)

Figure 4.7: The hexagonal parameters ψ6 in the systems with potential Uat1 in planes Z =±9.5
(a) and Z =±8.5 (b). The gray dotted line indicates the temperature E∗ =−2650.

From the data obtained (Fig.4.7) it is clear that near the attractive wall in the first
layer (Z = 9.5, black and red curve in Fig.4.7 (a)) there is a strong increase in both param-
eters (Eq.(4.5), Eq.(4.6)), with decreasing energy and when the energy reaches E∗ (gray line
E∗ = −2650). Parameters in the second layer (Z = 8.5, black and red curves in Fig.4.7 (b))
are much less sensitive to this change in energy. In the third layer (Z = 7.5, see the Appendix,
Fig.A14) parameters do not change when the energy reaches E∗ = −2650. At the same time,
analysis of the parameters near the repulsive wall (blue and green curves) shows that no changes
indicating ordering occur in this energy range.

We do not go into a detailed analysis of these parameters near the walls of the transition
region (for energies less than E = −3000), since we do not have enough data for an accurate
analysis at the moment in this region. However, from the currently available data it can be
concluded that these parameters increase to a value close to 0.8 for both repulsive and attractive
walls in the transition region (see the Appendix, Fig.A14).

For the system with stronger attraction (Uat2 , Fig.4.8), the observed effects are more pro-
nounced. Higher attractive potential promotes the formation of an ordered layer at the attractive
wall at higher temperature (T ∗ = 0.905 for Uat2 instead T ∗ = 0.457 for Uat1 , which corresponds
to E∗ = −2610 and E∗ = −2650, respectively), long before the phase transition in the whole
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system (see Fig.4.2). The second layer (Z = 8.5), as in the case of weak attraction Uat1 , also
gives a weak response in the parameters.

(a) (b)

Figure 4.8: The hexagonal parameters ψ6 in the systems with potential Uat2 in planes Z =±9.5
(a) and Z =±8.5 (b). The gray dotted line indicates the temperature of E∗ =−2610.

Since the parameters described above characterize local orientational order, it is im-
possible to say from these data whether an increase in ψ6 indicates the formation of a two-
dimensional crystal layer or a hexatic (anisotropic fluid) layer. In order to clarify the type of
two-dimensional structure obtained, we considered the orientational correlation function be-
tween particles i, k in the layer near attractive wall [162]:

g6(|r|) = ⟨ψ6(ri)ψ
∗
6 (rk)⟩, (4.7)

where |r| = |ri − rk| is the distance between projection of particles i, k onto the plane Z (i. e.
r = r(x,y)). Angle brackets here denote the statistical average for all pairs of particles with
distance |r| and orientation order parameter ψ6, defined as:

ψ6(rk) =
1
nk

nk

∑
j=1

exp
(
i6αk j

)
. (4.8)

All designations in Eq.(4.8) correspond to those described in Eq.(4.5).
The orientational correlation function g6(|r|) is used to distinguish between a two-

dimensional crystal, a hexatic (anisotropic liquid), and an isotropic liquid. In the case of a
two-dimensional crystal, the orientational correlation function does not depend on the distance
(g6(|r|) ∝ const), demonstrating long-range order. In the case of an anisotropic liquid, quasi-
long range order is observed, described by a power law (g6(|r|) ∝ r−η6 , where η6 is an expo-
nent). An isotropic liquid have a short range order that decreases exponentially with distance
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(g6(|r|) ∝ e−r/µ6 , where µ6 is a constant). To analyze systems with attractive walls, we examine
four energy intervals: (a) E > E∗; (b) E∗ > E > Et (see Et in Tab.4.1); (c) E ∈ Et ; (d) Et > E.

In the region (a) we expect to observe an isotropic melt near both repulsive and attrac-
tive walls, in the region (b) an isotropic melt is expected in the repulsive wall layer, and an
ordered structure in the attractive wall layer (hexatic or two-dimensional crystal), the region (c)
corresponds to a transition in the entire simulation box, and in the region (d) a crystal phase is
expected throughout cell volume.

(a) (b)

Figure 4.9: The orientational correlation function g6(|r|) in the systems with potential Uat1 in
planes Z = 9.5 (attractive wall) (a) and Z =−9.5 (repulsive wall) (b). The magenta line

indicates the first minima of the 2d rdf at |r|= 1.5.

From the data obtained for the system Uat1 it is clear that in the high-energy region
(black curves in Fig.4.9), the maximum values of the orientational correlation function g6(|r|)
are small (∼ 0.2), both near the attractive wall (Fig.4.9 (a)) and near the repulsive wall (Fig.4.9
(b)). Also according to expectations, there is a fast decay for the correlation function g6(|r|)
in this region, as expected for an isotropic fluid. At the same time, the assumption that an
isotropic melt is observed in this region is confirmed by the dependence of the two-dimensional
radial distribution function (2d-RDF) g2d

2 , calculated for the wall layer by analogy with the
three-dimensional case (Eq.(3.9)). At high energies, the 2d-RDF decays rapidly, so that only
the first three peaks are clearly visible (black curves in Fig.4.10). This behavior is typical for
an isotropic melt. Combination of these factors indicate the absence of long-range orientational
order.

The region (b), E∗ > E > Et , is characterized by the highest values of the correlation
function near the attractive wall (the red curve in Fig.4.9 (a)). Such high values indicate the
presence of a two-dimensional crystal. In addition, 2d-RDF shows persistent peaks (the red
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curve in Fig.4.10 (a)). The height of the peaks does not decrease with the distance. Based
on the totality of these data, we can conclude that the observed structure is a two-dimensional
crystal. Thus, the found special point E∗ = −2650± 10, T ∗ = 0.457± 0.004 should be con-
sidered as a phase transition from isotropic state to a two-dimensional crystal. One should take
a derivative of the inverse temperature with respect to energy to accurately characterize these
points. As mentioned in section 4.1, the second derivative of the density of states function over
energy should be used to determine the transition order. However, our experience shows that the
resolving power of our method is not sufficient to determine the transition order. Therefore, we
cannot rule out that the indicated point E∗ (Fig.4.2) is actually a small loop indicating a weak
first order phase transition or inflection point indicating a continuous transition. The depen-
dencies of the ψ6 parameters on temperature, given in the Appendix (Fig.A15), demonstrate a
continuous increase in the parameters at the transition point T ∗. This may indicate a continuous
transition. Thus, we can say that at this scale, our method does not have enough resolution to
reliably determine the type of transition. It is worth noting that studying of crystallization in
2d systems is a non-trivial problem that has not been solved for all two-dimensional systems
[94]. In addition, here we want to make a remark. We recall that in our consideration we take
into account only potential energy. Additional consideration of kinetic energy in conjunction
with number of factors (such as the connectivity in the chain, the relatively high density of the
system, the stiffness of the chains, as well as the small size of the system) can also determine
more complex behavior. For example, we cannot exclude sequence of transitions (isotropic -
hexatic - two-dimensional crystal).

(a) (b)

Figure 4.10: 2d RDF function g2d
2 in the systems with potential Uat1 in planes Z = 9.5

(attractive wall) (a) and Z =−9.5 (repulsive wall) (b). The magenta line indicates the first
minima of the 2d rdf at |r|= 1.5.
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In the same energy range near the repulsive wall, only a small increase in the correlation
function (the red curve in Fig.4.9 (b)), compared with high energies (the black curve in Fig.4.9
(b)), combined with a rapidly decaying g2d

2 (the red curve in Fig.4.10 (b)) indicates an isotropic
melt.

Although convergence in the transition region has not yet been achieved, several impor-
tant points can be noted from the available data for the region (c) E ∈ Et . The dependencies of
the orientational correlation function have a similar shape for the layer near the attractive and
repulsive walls (blue curves in Fig.4.9). The values of these functions are lower for this region
than for higher energies near attractive wall (the red curve in Fig.4.9 (a)). In addition, g2d

2 has
a clearly a damping trend (the blue curves in Fig.4.10). This suggests that the formation of a
crystal in the entire system slightly destroys the crystalline order near the attractive wall. Simi-
lar observations are true for the energy region below the transition ((d) Et > E, green curves in
Fig.4.9, Fig.4.10). However, the results in this area are the least reliable due to the complexity
of sampling process in this region.

Figure 4.11: Profile of the number of particles in a layer with a thickness of one per unit area
for systems Uat1 , Uat2 . Blue lines indicate walls positions.

We also examined the profiles of the ratio of the number of particles in a layer of unit
thickness to the area of the layer under consideration. In fact, the dependence under consider-
ation is a density profile. We averaged the resulting profiles in energy intervals ∆E = 100 to
the left and right of the transition points E∗ in the layer for both systems Uat1 , Uat2 (Fig.4.11).
From the obtained dependencies it is clear that for E > E∗ the density profiles are symmetrical
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for both systems. The decrease in densities near the walls compared to the values in the center
of the cell is explained by the fact that centers of beads cannot approach the wall at a distance
closer than half the diameter of the bead. However, for E < E∗, the density of the ordered layer
near the attractive wall is noticeably higher compared to the values in the cell center. Thus, in
conformations where an isotropic melt and a crystalline layer coexist, the density of the crys-
talline part is higher. For a system with greater attraction (Uat2), this effect is more pronounced.
A similar effect will be demonstrated for the bulk transition in the section 4.2.3.

In addition, we asked whether the ordering of the wall layer is accompanied by the ad-
sorption of chains. In order to answer this question, we calculated the number of monomer
units (beads) in the wall layer Ml , and the number of chains Cl , whose units included into the
wall layer. The ratio of these quantities Ka = Ml/Cl can serve as a characteristic value of chain
adsorption. Let us consider limiting cases for this value, assuming that there are approximately
400 beads (Ml = 400) in a layer with area Lx ∗Ly = 400 . In the case of a perpendicular arrange-
ment of the chains to the wall, in the near-wall layer each monomer unit belongs to a separate
chain and Cl = 400, therefore Ka = 1. In the case of complete adsorption of all chains, Cl = 40,
which leads to Ka = 10. The parameter Ka experiences significant changes only in the transition
region in the whole system (E <−3000). At low energies (E ≈−6000 for Uat1) Ka ∼ 10, while
for high energies near both the repulsive and attractive walls Ka ∼ 5. Similar observations are
made for the system Uat2 .

Thus, we can conclude that the points E∗, which were previously interpreted as spe-
cial points on the dependence of the inverse temperature on energy (Fig.4.2), in fact, repre-
sents isotropic melt – two-dimensional crystal transition, rather than an isotropic melt – hexatic
phase transition near the attractive wall. The argument in favor of this conclusion is the two-
dimensional radial distribution function g2d

2 (Fig.4.10) in combination with the orientational
correlation function g6 (Fig.4.9) which indicate the presence of long-range orientational order.
It was found that this process is not accompanied by chain adsorption. In addition, the density
of the ordered wall layer (Z = 9.5) is higher than the density in the middle of the cell. Similarly,
the density of crystalline domains is higher than the average density in the sample in the region
of the crystallization transition in the bulk (will be shown in the section 4.2.3). However, the
order of transition cannot be unambiguously defined in our system. Moreover, we cannot ex-
clude the presence of two transitions (isotropic melt – hexatic phase – two-dimensional crystal),
instead of one transition (isotropic melt – two–dimensional crystal). Since we are considering
only the configuration part of the energy, which is very noisy, calculating the second derivative
of entropy with respect to energy does not allow us to verify this conclusion. In addition, it is
important to note that accounting for kinetic energy can affect the transition temperature [143].
The connectivity in the chain, the relatively high density of the systems, as well as the small
size of the system also can significantly affect the analysis and the observed results.
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4.2.2 Analysis of the 3d crystallization transition

Introducing the stiffness potential into our model systems results in chain elongation
and increasing of anisotropic steric repulsion between neighboring chains, potentially leading
to Onsager-type orientational ordering. This phenomenon depends on the density and rigidity
of chains, as discussed in the Ref.[163]. To describe an ordering transition, the order parameter
is computed using the Mayer-Saupe tensor:

Sαβ =
Nc

∑
n=1

N−1

∑
i=1

1
2
(
3b̂niα b̂niβ −δαβ

)
, (4.9)

where the b̂niα represents α component of the unit vector along bond i in chain n. The largest
eigenvalue of this tensor, denoted S1(E), serves as an orientational bond order parameter in the
system. The direction associated with the corresponding eigenvector denotes the director of
that order. In addition to this parameter, it is also useful to study the ordering of the vectors
connecting the ends of the chains. To achieve this, we consider a tensor of the following form:

Sre
αβ

=
Nc

∑
n=1

1
2
(
3r̂nα r̂nβ −δαβ

)
, (4.10)

where the r̂nα represents α component of the unit vector along the vector re connecting the ends
of the chain n. The largest eigenvalue of the tensor Eq.(4.10) Sre1 defines the orientational order
parameter for the end-to-end vectors re.

(a) (b)

Figure 4.12: The temperature dependencies of eigenvalues of the orientation ordering tensor
for the bond vectors (a) and for the end-to-end vectors (b).

From the obtained temperature dependencies (Fig.4.12) it is clear that the temperature,
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at which sharp jumps in eigenvalues of Sαβ and Sre
αβ

are observed for a system without walls
(black, red, green curves in Fig.4.12), coincides with the temperature Tt obtained from the
dependence Cv(T ) (red curve in Fig.4.3 (a), Tt = 0.395). Consequently, the first-order transition
in this system is accompanied by an abrupt change in the orientational order parameter. Small
deviation of eigenvalues S1 and Sre1 near the value of 0.6 (black curves in Fig.4.12), as well
as S2,3 and Sre2,3 about −0.3 (red and green curves in Fig.4.12) at Tt ∈ [0.392;0.398] can be
explained in the same way as the doubling of heat capacity peaks: imperfect convergence of
the function ln(g) at the moment. The value S1 at low temperatures (T < Tt) is slightly smaller
than the value Sre1. This discrepancy arises due to slightly larger fluctuations in the orientation
of the bond vectors, while the orientation of the vectors re predominantly reflects the tendency
of chains to elongate.

It is also interesting to compare these graphs with the graphs of a system with repulsive
walls (orange, blue, magenta curves in Fig.4.12). In such a system, when we approach the
transition region from above (T > Tt), there is a slight increase in the parameter S1, Sre1 and
a more pronounced decrease in the parameters S3, Sre3, indicating a corresponding change in
S2, Sre2. Conversely, for a bulk system, as Tt approaches from above, all these parameters
close to zero and when the temperature Tt is reached, a sharp jump in all parameters occurs.
This observation suggests that the presence of repulsive walls promotes ordering. This effect
becomes more noticeable on the energy dependencies (Fig.4.13).

Figure 4.13: The energy dependencies of eigenvalues of the orientation ordering tensor for the
bond vectors.

We attribute the presence of "humps" (E ∈ [−4200;−3800] and E ∈ [−3800;−3000])
in the orange and blue curves to poor sampling of statistics in the transition region. Therefore,
for a system with repulsive walls, we expect a clearer picture with continued data accumulation:
a slight increase in S1, Sre1 and a decrease in S3, Sre3 along with the corresponding change in
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S2, Sre2 as the temperature decreases to Tt . When the transition temperature Tt is reached, we
expect a prominent single jump in the orientation parameters. Although the walls contribute to
increasing the transition temperature, the actual transition temperature is expected to be lower
compared to the bulk system. This phenomenon is explained by the decrease in system density,
as discussed earlier in section 4.1. It is expected that with a further decrease in temperature, the
orientation parameters of both systems will coincide and approach 0.95.

Further validation of chain elongation at low temperatures based on eigenvalues λ
j

1 ,λ
j

3 ,λ
j

3

of the gyration tensor G j
αβ

for the chain j, determined as follows:

G j
αβ

=
N

∑
i=1

(
r j

iα − r j
CMα

)(
r j

iβ − r j
CMβ

)
, (4.11)

where r j
iα represents α component of the particle i within chain j, and r j

CMα
is α component of

the center of mass of the chain j. Considering that the eigenvalues of the tensor are arranged
in descending order λ

j
1 > λ

j
3 > λ

j
3 , in order to analyze the system as a whole, we compute the

mean of the corresponding eigenvalues across all chains within the system and use the following
notation:

R2
g1,2,3 =

1
Nc

Nc

∑
j=1

λ
j

1,2,3. (4.12)

Drawing an analogy with the definition of the square of the gyration radius for a single chain,
and relative shape anisotropy κ2, we apply the following definition:

R2
g = R2

g1 +R2
g2 +R2

g3, (4.13)

κ
2 = 1−3

R2
g1 R2

g2 +R2
g1 R2

g3 +R2
g2 R2

g3(
R2

g1 +R2
g2 +R2

g3

)2 (4.14)

The parameter κ2 reflects both the symmetry and dimensionality inherent in the polymer
conformation. Its range is limited from 0 to 1, reaching a value of one for an fully elongated
linear chain and decreasing to zero for spherical conformations. In the case of flat symmetrical
objects, the relative anisotropy of the shape approaches the value of 0.25 [164].

In Fig. 4.14, the temperature dependencies of the parameters determined by the equa-
tions (4.12), (4.14) are presented. At low temperatures the parameter Rg1 is approximately
equal to 8. Drawing a rough analogy with the moment of inertia of the rod relative to the axis
passing through its center Ir = ml2/12, where l = Nd = 10 with d = 1 (diameter of beads) and
N = 10 (number of beads in the chain), we get an estimate Ir = 8.3 in our case. Consequently,
at low temperatures the square of the gyration radius R2

g is very close to the moment of inertia
of the rod Ir. This observation provides evidence for chain elongation at low temperatures. We
emphasize that this is only a rough estimate for this simple case, while for more complex config-
urations such a comparison is not appropriate. In addition, the chain elongation is evidenced by
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the relative anisotropy of the shape (Fig.4.14(b)), which approaches unity. It is noteworthy that
at high temperatures, the relative shape anisotropy κ2, as well as the values of Rgi (i = 1,2,3),
indicate the absence of spherical symmetry, as expected for short chains with stiffness poten-
tial in our model. The transition between these two temperature regimes occurs abruptly at the
same temperature Tt = 0.395 in the bulk system (black curves in Fig.4.14) . Furthermore, the
anisotropy coefficient κ2 in the system with repulsive walls is slightly larger for T > Tt (red
curve in Fig.4.14 (b)).

This analysis suggests that the phase transition is accompanied by chain ordering and
stretching, without implying additional internal changes, like, for example, coil-globule transi-
tion, as expected due to the potential and length characteristics of the chains.

(a) (b)

Figure 4.14: Temperature dependencies of the mean values of the eigenvalues of the gyration
tensor across chains (a), and the relative shape anisotropy κ2 (b)

To ascertain that the observed transition is an isotropic-crystal transition rather than, for
instance, an isotropic-nematic transition, we will employ the method outlined in the section 3.5
for computing the modified Steinhardt local bond order parameters (NRLBO). Throughout the
simulation, parameters q4, q6 and q8 were computed for each particle as described in section
3.5. Subsequently, the particles within the system were classified into two types of crystals and
melt based on Tab.3.1. After this classification, the positions of the maxima in the distribution
of parameters q4, q6, q8 (e.g. Fig.3.16) for each type of particle were estimated.

The temperature dependencies of the fractions of particles belonging to different types
are presented in Fig.4.15 (a). These dependencies reveal that at the transition temperature Tt , the
ratio of crystalline and amorphous phases undergoes abrupt changes. Since in the temperature
dependencies of both the number of crystalline and orientational order parameters (as well as
local alignment parameters of segments, see the Appendix Fig.A17) we observe a jump from
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the minimum value to the maximum, we can talk about the nucleation scenario (in the case of a
system without walls, homogeneous nucleation).

(a) (b)

(c) (d)

Figure 4.15: The temperature dependency of the proportion of particles assigned to different
structure types based on the NRLBO parameters (a); the energy dependencies of q4 (b), q6 (c),

q8 (d) for the bulk system Lx = Ly = 20, Lz = 19.

Notably, the jumps on the energy dependencies of the parameters q4, q6, and q8 (Fig.4.15
(b), (c), (d)) are somewhat speculative, as these values provide only a rough estimation of the
maxima positions of their distributions. Consequently, in regions where only few particles
belong to a particular phase (e.g., for the melt fraction at T < Tt and for both crystal fractions
at T > Tt), the parameter values are estimated less accurately. However, in regions with a
substantial number of particles, the parameter values correspond to those listed in the Tab.3.1.
We chose the estimate of the maximum position of the distribution as a representative parameter
because of the asymmetry and width of the distributions of parameters q4, q6 and q8, which can
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distort the mean value of these distributions. Alternatively, median values could also be used,
as they are less sensitive to outliers than mean values.

Analysis of the dependence of NRLBO parameters on energy (Fig.4.15) indicates that
a sufficient number of particles of each structure type also helps to decrease fluctuations in
these parameters. However, in regions of high energy (T > Tt) where the number of crystalline
particles is extremely small, the estimation of distribution maxima is subject to significant fluc-
tuations. So, for large number of particles parameters fluctuations are reasonably small.

Figure 4.16: The energy dependency of the proportion of particles assigned to different
structure types based on the Steinhardt parameters for the bulk system Lx = Ly = 20, Lz = 19.

Studying the dependence of particle fractions on energy reveals interesting patterns
(Fig.4.16). While the fraction of the amorphous phase in the transition region (E ∈ [−5700;−3100])
changes monotonically (leading to a corresponding monotonic decrease in the total fraction of
crystalline particles with increasing E), individual crystal types exhibit fluctuations correspond-
ing to "steps" on dependence of the inverse temperature on energy (E ∈ [−4000;−3100]).

In addition, two important observations are noteworthy.

• Firstly, for Crystal 2, parameters q6 and q8 exhibit slight increases in the transition region
with increasing energy (Fig.4.15 (c), (d)), making them somewhat more similar to the f cc

crystal (see Tab.A1 in the Appendix).

• The proportion of particles attributed to Crystal 2 predominates over those of Crystal 1.

We intend to delve deeper into these observations and offer our interpretation of this phe-
nomenon in subsequent analyses in section 4.3.
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Thus, the consistency between the NRLBO parameters and the classification of particles
into classes by the proposed method supports the conclusion that the observed first-order phase
transition, as depicted in the dependencies 1/T (E) and Cv(T ), represents an isotropic melt -
crystal type transition. This finding aligns with the hypotheses proposed by T. Shakirov and
W. Paul in similar systems [97]. Similarly, conclusions can be drawn from the dependencies of
alignment of segments analysis (see the Appendix Fig.A17). At the transition temperature Tt , a
sharp change in the ratio of the number of particles with aligned segments (bonds) is observed.
Taken together, these findings confirm the phenomenon of crystallization. It is worth noting
that due to the complexity of studying long-range translational order in polymers (where chain
connectivity can complicate the process of "uniform" crystallization and lead to the formation
of crystalline domains with different orientations), we focused on local parameters. However,
we are convinced that such consideration in this model is justified.

Additional tests were conducted on this model for systems with different densities.
Specifically, we examined small systems with low energy, comprised of Nc = 90 chains of
length N = 10 in cubic boxes with sides L = {10.0,10.5,10.7}, corresponding to volume frac-
tions φ = {0.471,0.407,0.385}. Instead of providing an exhaustive analysis of these tests, we
highlight the key finding that in all mentioned systems at low energies (temperatures), the orien-
tational order parameters are notably high, even in the dilute system (L = 10.7, φ = 0.385), ex-
ceeding S1 = 0.75 for bond vectors and Sre1 = 0.85 for end-to-end vectors. At the same time, the
NRLBO parameters identify 65%,2.5%,1.5% of crystalline particles, while the alignment pa-
rameters determine 92%,40%,35% for densities φ = {0.471,0.407,0.385}, respectively. This
suggests that at low temperatures for low densities, a nematic phase is established, and an in-
crease in density promotes crystallization, consistent with the predictions of T. Shakirov and
W. Paul [97]. It is important to note that in their work and conclusions, the authors relied on
the calculation of the parameter |ψ6| computed across the entire system, which to some extent
characterizes long-range order. It is also notable that our tests applied noise reduction method-
ology (see section 3.5) to these test systems using the same parameters as in this study, without
adapting to new volume fractions and noise levels in the systems. Despite this simplification,
the proposed method using Steinhardt parameters reliably distinguishes between crystallization
and nematic ordering.

All observations so far have related exclusively to the phase transition evident in the heat
capacity. To clarify the rearrangements occurring in the transition region (E ∈ [−5700;−3100]),
in particular the "steps" observed in the inverse temperature dependence (Fig.4.2 (a)), we per-
formed a cluster analysis based on the alignment parameters.

4.2.3 Analysis of structural changes inside transition region

To study the structural changes that occur during the transition, we use clustering al-
gorithm based on bond alignment parameters. These parameters provide partitions between
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crystal and melt types very close to those obtained from Steinhardt parameters but are less com-
putationally intensive. This approach proves to be an optimal solution for cluster analysis. This
section demonstrates how this approach explains structural changes within the transition region
("steps" in Fig.4.2).

To implement this approach, the particles were initially classified into crystalline and
amorphous phases, as described in section 3.7.4. Subsequently, clusterization was performed
as follows:

• A particle i1 assigned to the desired type (crystal or melt) was selected, and a cluster
number was assigned to it.

• The nearest neighbors of the particle i1 (particles within a radius of (Rc = 1.3) were
examined sequentially.

• Upon encountering a particle of the same type among these neighbors, which has not
yet been assigned to any cluster, it was assigned to the current cluster, and the process
extended to its neighbors.

• This procedure continued until all branches of the neighbors of i1 were explored.

• Subsequently, a transition to the next particle of the same type (crystal or melt), i2, which
is not assigned to any cluster, was executed, and the search for the next cluster ensued.

Figure 4.17: The number of particles assigned to the largest clusters of of crystal and melt
based on the bond alignment parameters for the bulk system Lx = Ly = 20, Lz = 19. The

inverse temperature dependency on energy is supplemented with a gray curve. The vertical
dotted lines correspond to the boundaries of the "steps" on T−1(E).
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After assigning each particle to a specific type and cluster, we select the largest cluster
for each type based on the number of particles. Subsequently, we examine these largest clusters
for both crystal and melt phases. While it is possible to conduct a more detailed cluster analysis
for each specific configuration, our primary focus here is to identify common characteristics
across certain energy ranges.

Figure 4.18: The eigenvalues of the gyration tensor of the largest clusters for crystal and melt
based on the bond alignment parameters for the bulk system Lx = Ly = 20, Lz = 19. The

inverse temperature dependency on energy is supplemented with a gray curve. The vertical
dotted lines correspond to the boundaries of the "steps" on T−1(E).

Based on the inverse temperature dependence on energy, the entire energy range can be
divided into 5 regions.

A The energy range E = [−5760;−5400]. The crystalline phase with a rare inclusion of
molten particles is observed here. The largest molten cluster encountered during the sim-
ulation in this region comprises less than 500 particles, which accounts for less than 7%
of the total number of particles. Conversely, the largest crystal cluster in this region en-
compasses 6835 particles, constituting almost 95% of the total. However, it is technically
challenging to execute effective particles rearrangements in this energy regime. Intro-
ducing additional trial steps may potentially contribute to better rearrangements and the
growth of the crystal cluster.

The eigenvalues of the gyration tensor for the crystal cluster in this region are extremely
high, indicating that the cluster occupies the entire volume provided in the box. It is
noteworthy that R2

g3 is not equal to R2
g1 = R2

g2, which can be attributed to the asymmetry
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of the box (Lx = Ly = 20, Lz = 19). Conversely, all eigenvalues for the molten cluster in
this region are small.

B The energy range E = [−5400;−4820]. In this region, an increase in energy triggers
the formation of a molten cylinder. Consequently, R2

g1 for the melt (the black curve in
Fig.4.18) becomes large, while the other two values, R2

g2 and R2
g3, are still small around

the energy E = −5400. Subsequently, with further energy increasing, one of the dimen-
sions of the gyration ellipsoid expands significantly, eventually leading to closure into a
layer (increase in R2

g2 of the melt, the red curvein Fig.4.18, at the right boundary of the
considered region). Concurrently, the number of particles in the molten cluster continues
to increase steadily. At the same time, a change in Rg1,2,3 in a crystal indicates a change
in the shape of the crystalline part. Since the crystalline part itself is now the whole box
containing a cylindrical pore of the melt, the principal axes of the of this object are no
longer aligned with the axes of the simulation box. This leads to an increase in eigenvalue
Rg1 compared to the previous region.

C The energy range E = [−4820;−4000]. The observation of two clusters (crystal and
melt) forming layers in this region is substantiated by the increasing of parameters R2

g1,
R2

g2 (black, red, orange, blue curves in Fig.4.18), along with the small R2
g3 (green and ma-

genta curves). Additionally, R2
g3 decreases for the crystal (magenta curve) with increasing

energy, while it remains small for the melt (green curve). This observation suggests that
the crystalline particles contribute to a smaller molten cluster as they undergo melting.

D The energy range E = [−4000;−3100]. In the last region inside the transition region, the
presence of a crystal cylinder is indicated by the large R2

g1 and small R2
g2 and R2

g3. The
high eigenvalues of the gyration tensor for the melt cluster suggest its large size in all
directions. The complex shapes of the curves within this region, as well as in a similar
region with an amorphous cylinder (the region B), are associated with the orientation of
the axes of the gyration ellipsoid of this cluster does not coincide with the axes of the
simulating box. In such cases, the eigenvalues of the gyration tensor may exceed the
values typical for the sides of the box.

F The energy range E = [−3100;0]. The prevailing phase here is the isotropic melt phase,
with occasional inclusions of crystalline particles. Here, once again, we observe that the
eigenvalue R2

g3 of the cluster filling the sample (melt, green curve in Fig.4.18) is less than
the other two (R2

g1, R2
g2) due to the asymmetry of the box (Lx = Ly = 20, Lz = 19). Crystal

clusters in this region consist of only a few particles, typically ranging from 1 to 5. It is
noteworthy that in this area, the ratio of cluster sizes undergoes a jump at E = −3100
(Fig.4.17), indicating the exit from the phase transition region (Tab.4.1).

It would be interesting to perform a similar analysis for the system with repulsive walls
(Lx = Ly = Lz = 20). Although the inverse temperature dependence on energy is not precise yet
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due to not accurate convergence lng, rough estimates can still be made to predict changes in
structure in the transition region.

Figure 4.19: The number of particles assigned to the largest clusters of of crystal and melt
based on the bond alignment parameters for the system with repulsive walls

Lx = Ly = Lz = 20. The inverse temperature dependency on energy is supplemented with a
gray curve. The vertical dotted lines correspond to the boundaries of the "steps" on T−1(E).

Figure 4.20: The eigenvalues of the gyration tensor of the largest clusters for crystal and melt
based on the bond alignment parameters for the system with repulsive walls

Lx = Ly = Lz = 20. The inverse temperature dependency on energy is supplemented with a
gray curve. The vertical dotted lines correspond to the boundaries of the "steps" on T−1(E).
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At present, four characteristic regions can be identified for this system.

A The energy range E = [−5760;−5600]. In this narrow low-energy region, the predomi-
nance of a crystal filling the entire simulation box with single inclusions of molten par-
ticles is observed. All eigenvalues of the gyration tensor for the crystal cluster are large,
while for the molten cluster, they are small (Fig.4.20). It is important to note that within
our model, particles are termed "molten" if their bonds are insufficiently ordered. Indeed,
within the framework of our model, the bond angles up to 26o contribute to the lowest
energy, and the alignment criterion is set to an angle of 15o. As a result, the criterion for
particle melting is quite strict.

B The energy range E = [−5600;−5020]. In this region, eigenvalues R2
g1,2 of the gyration

tensor for the crystal cluster are large, while R2
g3 for this cluster is small. It is anticipated

that a molten cylinder with an oval cross-section may occur in this region, as R2
g1 (the

black curve in Fig.4.20) is significantly larger than the other two values, but R2
g2 (the red

curve) increases more rapidly than R2
g3 with increasing energy.

C The energy range E = [−5020;−2950]. In this area, the coexistence of crystalline and
molten flat domains is observed. Upon transitioning to layers, the number of particles
in a crystalline cluster drops by almost half (Fig.4.19). This decreasing is due to the
fact that with the existence of the cylinder in the region B, the wall crystallites remain
connected and belong to the same cluster. However, when a molten layer is formed, the
crystal cluster is divided in two approximately equal-sized parts. As we analyze only the
largest cluster, the size of such a cluster is halved. The eigenvalues for the molten and
crystalline layers confirm the presence of flat domains (with large values of R2

g1 and R2
g2,

and small values of R2
g3 (Fig.4.20). Additionally, the increase in R2

g3 for the melt indicates
an increase in the thickness of the layer.

D The energy range E = [−2950;0]. This region lies outside the phase transition (Tab.4.1).
Here, the entire box is occupied by a melt with a small number of crystalline particles.
Notably, in the extreme cases of low and high energies, all three eigenvalues R2

g1, R2
g2,

R2
g3 of the dominant structure are approximately equal, reflecting the symmetry of the

box (Lx = Ly = Lz = 20).

Thus, when comparing a system without walls and with repulsive walls, a notable dif-
ference lies in the absence of a crystal cylinder in the latter. This disparity arises because the
presence of walls promotes ordering and crystallization near the walls. Consequently, in sys-
tems with walls, as the energy decreases, crystals tend to form specifically in the wall layers.
These structural changes in these two systems resemble the phenomena discussed in studies on
evaporation/condensation transition in finite systems [67–69].

Concluding the discussion on structural changes, we will now consider density (volume
fraction) profiles for specific configurations. As energy averaging is not feasible in a system
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without walls, particularly due to the lack of dedicated directions in the system, we will focus
solely on certain configurations of the system. Specifically, we will examine system configura-
tions that were utilized to demonstrate the analysis methods outlined in the chapter "3 Methods
of structural analysis".

Snapshots of these systems can be found in Tab. 3.3. Fig.4.21 shows the particle densi-
ties depending on the z coordinate for different energies (E = {−2040,−4715,−5104,−5727}).
The blue color represents the particle density for the entire system, calculated in increments of
0.22 along the z axis using smoothing by the Epanechnikov kernel [161], as discussed in the sec-
tion 3.7.3. The black and green curves correspond to the density profiles of crystalline particles
(Crystal 1 or Crystal 2) and melted particles determined by the Steinhardt method.

From the obtained dependencies, it is evident that at the lowest energies (E = −5727,
Fig.4.21(a)), where the crystal is uniformly distributed throughout the volume, the density pro-
file fluctuates around the average density φ = 0.496 (horizontal magenta line). A similar pattern
is observed for high energies outside the transition region (E =−2040, Fig.4.21(d)), where the
sample is a melt with uniform inclusions of crystalline particles. Thus, outside the transition re-
gion, the densities of melt and crystal are equal to the average density of the system (φ = 0.496
in this case). However, a change in the crystal-melt ratios in local regions alters the density
profile. This effect is most pronounced for the energy E =−4715 (Fig.4.21(c)). In this config-
uration, a crystalline layer is observed in the center of the cell (−5 ≤ z ≤ 5), parallel to the z

axis. This crystalline domain coexists with polymer melt domain (−10 ≤ z ≤−5, (5 ≤ z ≤ 10)).
From these dependencies (Fig.4.21(c)), it is evident that in the transition region the local density
of the crystal phase is higher than the average density (the blue line in the center of the cell is
above the magenta line), while the local density of the melt is smaller than the average density
(the blue line at the edges of the cell is below the magenta line). In configurations with energy
E = −5104, at z = 5, the number of crystalline particles is approximately equal to the number
of melt particles, and these densities are almost compensated on average in the layer resulting
in proximity of the blue and magenta lines.

Thus, it can be argued that in the transition region, the crystal has a slightly more dense
structure, while the melt is more dilute compared to equilibrium homogeneous states in which
the densities of the crystal and the melt are equal (φ = 0.496). It is worth noting that this
analysis fully correlates with the results presented in the Voronoi cell analysis for these systems
(Fig.3.25).
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(a) (b)

(c) (d)

Figure 4.21: The density profiles for the bulk system (Lx = Ly = 20, Lz = 19). Magenta line
shows the average density (volume fraction) in the system (φ = 0.496).

4.2.4 Possibility of prefreezing phenomenon

As already mentioned, at the moment we do not have sufficient data to reliably determine
not only the type, but also the number of transitions in systems with walls (we observe changes
in the inverse temperature-energy dependence with time). However, in this section we will
provide additional considerations about what transitions can occur in systems with walls when
convergence is achieved.

Let us consider a zoomed representation of the dependence of heat capacity on temper-
ature for a system with repulsive walls (the green curve at Fig.4.3 (a), Fig.4.22).
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(a) (b)

Figure 4.22: Layer-by-layer dependence of the fraction of crystalline particles on temperature
for the system with repulsive walls with Lx = Ly = Lz = 20 for z < 0 (a), and for z > 0 (b). The

magenta vertical lines correspond to the most prominent heat capacity peaks.

Along with this dependence, let us consider the layer-by-layer dependence of the frac-
tion of crystalline particles on temperature. The crystalline particles here are determined ac-
cording to the criterion of chain segment alignment analysis (see section 3.7.4). The thickness
of all layers is equal to 1, the centers of the layers are shifted in increments of 1 (see legend in
Fig.4.22). The magenta vertical lines correspond to the most pronounced heat capacity peaks.
Fig.4.22 (a) and Fig.4.22 (b) correspond to halves of the box with negative and positive z co-
ordinates. Note that since both walls in this case have the same repulsive potential, there is no
reason for the absence of symmetry between these two pictures. However, we clearly different
dependencies for both halves of the box (red curves jump at different temperatures in Fig.4.22
(a) and Fig.4.22 (b)). This fact once again points to the lack of statistical data. However, here
we would like to emphasize the similarities on these figures: the first four layers near each wall
(red curves) are clearly grouped and a jump in the fraction of crystalline particles occurs in all
red curves simultaneously. This may indicate the phenomenon of prefreezing. The finite size
effects have a significant impact on the ability to observe layer-by-layer crystal growth. Ap-
parently, the size of our cell is not enough to observe this phenomenon. Instead, at the melting
temperature Tm, several central layers will crystallize simultaneously (at the moment we are ob-

107



4.2. Structural analysis of systems

serving this effect, see the gray curves in Fig.4.22). Due to insufficient convergence, we cannot
determine the prefreezing temperature Tpre f as well as melting temperature Tm. We assume that
if the prefreezing phenomenon occurs in this system, then with the subsequent accumulation of
statistics only two peaks in the heat capacity remain, however, we cannot predict the temper-
atures at which these transitions will be observed (they will not necessarily coincide with the
peaks that are visible at the moment).

At the same time, it cannot be ruled out that the size of the box along the x,y direc-
tions is too small to reliably distinguish the formation of a large crystalline droplet (as in the
case of heterogeneous nucleation) from the formation of truly crystalline layers (prefreezing
phenomenon). In other words, in a system with repulsive walls, two difficult to distinguish
scenarios are possible:

• Structural transitions within a single phase transition at Tm (with the observation of a
single loop in dependence of inverse temperature on energy). This scenario is similar to
that observed in a system without walls and is discussed in section 4.2.3. That is, these
four observed layers could be part of a crystalline droplet on the surface (in this case, the
size of the system does not allow us to see the entire droplet). In this case all peaks on
heat capacity will collapse at Tm.

• A prefreezing phenomenon. In this case two transition temperatures and a sequence of
two loops will be observed.

A similar consideration was carried out for the system with an attractive wall Uat1

(Fig.4.23). The main difference between an attractive and a repulsive wall is the formation
of a two-dimensional crystalline layer, as discussed in section 4.2.1 (T ∗ ≈ 0.457). In contrast,
the dependencies for negative and positive z give a more symmetric picture in the transition
region than for the system with repulsive walls (Fig.4.22). Near walls, both attractive and repul-
sive, four layers crystallize simultaneously (red curves in Fig.4.23). Together with the current
shape of the inverse temperature for this system and the heat capacity, we tend to assume that
the phenomenon observed in this system is the prefreezing.

Note that we cannot rule out more complex behavior of the systems, which will require
additional research. Reliable conclusions for all systems with walls require more computational
time and consideration of larger systems.
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(a) (b)

Figure 4.23: Layer-by-layer dependence of the fraction of crystalline particles on temperature
for the system Uat1 Lx = Ly = Lz = 20 for z < 0 (a), and for z > 0 (b). The magenta vertical

lines correspond to the most prominent heat capacity peaks.

4.3 Transition analysis findings and predictive insights for
various systems: a comprehensive summary

The previous sections have provided considerable insight into the behavior of small sys-
tems, both with repulsive walls (Lx = Ly = Lz = 20, φ = 0.471) and without walls ( Lx = Ly =

20, Lz = 19, φ = 0.496), during phase transitions (Tab.4.1, Tab.4.2). Notably, accurate con-
vergence allowed for reasonable precise determination of the first-order transition temperature
Tt = 0.395± 0.003 for the system size of Lx = Ly = 20, Lz = 19 without walls (φ = 0.496).
Comparison with other studies [97] has shown that an increase in density contributes to an in-
crease in the transition temperature (Tt = 0.326±0.001, φ = 0.471). Analysis of orientational
parameters, gyration tensor eigenvalues, NRLBO parameters and chain segments alignment
parameters elucidated the transition characteristics, revealing a concomitant orientation order-
ing and chain stretching alongside translational ordering — a hallmark of an isotropic-crystal
transition.

Further study of the transition region revealed several distinct transitions in systems
without walls: from a stable crystalline state (outside the transition region) throughout the sam-
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ple to the appearance of an isotropic melt cylinder inside the crystal, followed by the coexis-
tence of crystalline and isotropic melt layers, further formation of a crystalline cylinder inside
the isotropic melt leads, eventually to a stable fully molten state (outside the transition region).
In contrast, systems with repulsive walls exhibit similar transitions, excluding the formation of
a crystalline cylinder within the melt due to the ordering effects induced by the walls favor-
ing crystallization at the walls. These structural changes resemble the phenomena discussed in
papers on evaporation/condensation transition in finite systems [67–69]. Indeed, the observed
transitions can be attributed to a multitude of factors inherent to the system under study. Several
key factors include:

• System size: The final size of the system plays a crucial role in determining the observed
transitions. Small systems exhibit distinct behavior compared to larger ones due to finite-
size effects.

• Potentials: The choice of interaction potentials within the system significantly influences
its behavior. Factors such as the strength, range, and functional form of potentials, in-
cluding the chain stiffness potential, dictate the system behavior and stability.

• Chain length and system size correlation: The correlation between chain length and sys-
tem size is another crucial factor. The interplay between the length of polymer chains and
the size of the system can lead to unique structural arrangements and phase behaviors.

By considering these factors, we can better understand the underlying mechanisms driving the
observed transitions and elucidate the complex interplay between system parameters in confined
systems.

Inside the transition region, the number of particles of the Crystal 2 increased with
increasing energy and approached the f cc crystal in terms of parameters q4, q6, q8. This phe-
nomenon can be ascribed to the influence of the system size and shape on crystal structure. In
low-energy regions, where crystallization predominates, the simulation box size significantly
affect crystal formation, prompting crystals to adapt to the box constraints and optimize inter-
actions with the employed potentials. Consequently, inside the transition region, the melt phase
exhibits decreasing density, allowing for the creation of favorable crystal structures within the
available space. This suggests a decreasing impact of the simulation box size on crystal for-
mation process in this phase transition. Moreover, given previous results [30, 72, 165, 166]
demonstrating the coexistence of f cc and hcp structures in hard spheres, coupled with evidence
indicating a slight gain in free energy for f cc structures, it is plausible to assume that the chain
connectivity and stiffness potential in our model further favors f cc crystal structures.

In systems without walls (Lx = Ly = Lz = 20), characterized by lower densities (φ =

0.471) as explored in previous studies [97], we anticipate observing similar structural transitions
accompanied by corresponding changes in eigenvalues of gyration tensor of the largest clusters.
In regions outside the transition, for systems with symmetrical boxes (Lx = Ly = Lz = 20),
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the eigenvalues are expected to exhibit uniformity Rg1 = Rg2 = Rg3 (as in the small system
(Lx = Ly = Lz = 20) with repulsive walls Fig.4.20 A, D). At the same time for asymmetric box
(Lx = Ly = 20, Lz = 39) the interpretation of Rg1,2,3 can be complicated. However, the finite
size effect in such case (bulk, Lx = Ly = 20, Lz = 39) is likely to influence the arrangement
of the cylinders, whether crystalline or molten. We assume that the cylinder axes are directed
along the short axes of the box, which greatly simplifies data analysis. For systems with both
repulsive and attractive walls, we expect a continuation of the tendency for crystallization at the
walls, especially evident in small systems with repulsive walls (Lx = Ly = Lz = 20).

In larger systems with repulsive walls (Lx = Ly = 20, Lz = 40) and bulk (Lx = Ly =

20, Lz = 39), we expect a singular first-order phase transition from an isotropic melt to a crystal.
Nevertheless, we cannot definitely exclude the phenomenon of prefreezing in a system with
repulsive walls. At the same time, for systems with attractive walls, the preliminary observations
of the dependence of inverse temperature on energy (Fig.4.2) and temperature dependencies of
heat capacity (Fig.4.3, Fig.4.4) do not rule out the possibility of the second phase transition
(close to crystallization in bulk), i.e. prefreezing, which would require additional study. It
cannot be excluded that a more accurate convergence of the function lng will show two phase
transition temperatures in the intervals Tt1,2 ∈ [0.337;0.378] for Uat1 , and Tt1,2 ∈ [0.316;0.396]
for Uat2 . One of these transitions may turn out to be prefreezing (Tpre f > Tm), and the other
is complete crystallization in the entire sample at melting point Tm. Another possible scenario
for the implementation of two consecutive transitions is the following: isotropic melt – nematic
– crystal. However, despite the fact that we do not exclude such a scenario, at the moment,
from the available data, we tend to assume that prefreezing scenario will be observed in these
systems. Obtaining more precise insights into these systems would necessitate a significant
increase in computational time, estimated optimistically at approximately 1-2 years. Despite
ongoing efforts to optimize the data accumulation process, progress has been limited, although
progress in technology may expedite these tasks in the future.

In systems with an attractive wall (Uat1 , Uat2 , Lx = Ly = Lz = 20), additional ordering of
the only near-wall layer was revealed at temperatures (T ∗ = 0.457± 0.002 for Uat1 , and T ∗ =

0.905± 0.007 for Uat2) above the crystallization temperature in the bulk (Tt = 0.326± 0.001)
of the same density φ = 0.471. The formation of a two-dimensional crystal near the attractive
wall is confirmed by the characteristic dependence of the two-dimensional radial distribution
function g2d

2 , as well as the orientation correction function g6. An unambiguous determination
of the type (order) of the transition is hardly possible due to the small size of the system and
the resolution of the method. Also we do not rule out a sequence of two very close transitions
(isotropic melt – hexatic – two-dimensional crystal).

Note that we also cannot interpret this phenomenon (transition at T ∗) as prefreezing.
In the case of prefreezing, usually several crystalline layers are formed abruptly (while we ob-
serve only one), and then, with a decreasing temperature, the thickness of the crystallized layer
gradually increases. On contrary, in our case, the second crystalline layer is formed together
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with the third and fourth ones in the region of the phase transition Tt of crystallization in the
bulk (see Fig.4.23 and Appendix Fig.A15). A more strong argument is that the layer of a two-
dimensional crystal formed near the attractive wall changes its structure with decreasing energy
and approaching the transition region in the entire system (Fig.4.9 (a), Fig.4.10 (a)).

Finally, for all systems with walls we cannot exclude the phenomenon of prefreezing
in the transition region indicated in the Tab.4.2. We observe the simultaneous formation of
four crystalline layers near the walls, both in the Uat1 system (Fig.4.23) and in the system with
repulsive walls Fig.4.22). However, this change may be associated with both the phenomenon
of prefreezing and the formation of a nucleus of a critical size in the case of heterogeneous
nucleation. In the first case, we expect a sequence of two first-order transitions. In the second
case, one transition temperature and the presence of structural transitions depending on energy
are expected, as observed in a system without walls and as described in section 4.2.3. Note that
the size of the system plays the crucial role and may not be sufficient to observe the nucleus
(crystalline droplet) near the wall. In this sense, it is easy to confuse then nucleus (crystalline
droplet) with the layer. At the moment, we cannot accurately determine the number and type of
transitions due to the lack of accumulated data. The results of this chapter will be published in
[F4].
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Chapter 5

Conclusion and outlook

The previous two chapters presented the results of the study and development of methods
for analyzing crystal structures in computer simulation (Chapter 3), and the results of computer
simulation (Chapter 4) for melts of semiflexible chain of tangent hard spheres in the bulk and
in thin films between different walls (purely repulsive and with two magnitudes of attraction).

Studying different crystallization scenarios (heterogeneous nucleation or prefreezing)
near a substrate requires the ability to reliably distinguish crystal structures (characterized by
both orientational and translational ordering) from nematic states (characterized only by ori-
entational ordering) and isotropic melt. Since polymer systems are characterized by polycrys-
tallinity, it is not always possible to detect long-range translational ordering, so we focused on
local structural parameters. Our computer simulation studies have shown that the presence of
significant fluctuations in particle positions (for example, due to thermal fluctuations), which
we call noise in the system, makes it ineffective to use a number of modern methods for an-
alyzing crystal structure. These methods include well-known variations of common neighbor
analysis [105–108], the classical method of calculating Steinhardt parameters [102], as well as
modifications of this method [103, 104]. We examined how strongly the average characteristics
of the methods (such as parameter values, the number of neighbors of the particles under study)
deviate from the known values of unnoisy test structures (sc, f cc, bcc, hcp) depending on the
magnitude of Gaussian noise, and also estimated the dispersion of these values. Thus, we have
shown the effectiveness of each of these methods depending on the noise magnitude, which
allows to talk about the scope of application of a particular method.

Among the studied methods, good resolution for our systems was demonstrated by the
local chain segments (bonds) alignment analysis [40, 48]. However, this method is focused on
distinguishing bond alignment (which is essentially close to orientational ordering, but not to
translational one). Thus, this method does not guarantee the distinction of crystalline domains
(combining orientational and translational ordering) from nematics with a high degree of ori-
entational ordering of bond vectors, but lacking translational ordering. Additional studies on
test small model systems (Nc = 90 chains) of different densities have proven that in low-density
systems, where nematic ordering is expected [97], this method also identifies particles with lo-
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cal bond alignment analysis. Thus, this method can only be used to determine crystal structures
in combination with other methods. As a consequence, this method is also unable to distin-
guish between different classes of symmetries. The lack of suitable tools for analyzing crystal
structures in the presence of noise prompted us to develop a method to reduce the effective
noise in the system. This method is based on the Steinhardt parameters, as applied to the aver-
aged coordinates of particles within the second coordination sphere (NRLBO parameters). We
demonstrated on test structures (sc, f cc, bcc, hcp) that this method allows to determine the type
of noisy structure with high accuracy. The results of using this method are in good agreement
with the results of the bond alignment analysis in the studied polymer model systems (THS).

Additionally, a method that makes it possible to reconstruct crystal lattices from the av-
erage positions of particles of a noisy structure was proposed. The structures were constructed
using the three translation vectors and two base points, and they correlate well in Steinhardt
parameters with the original noisy structure under study. This technique is of significant im-
portance, as it enables to establish a relationship between the structures observed in computer
simulations and those observed in real experiments. This can be achieved, for example, by
calculating the structure factor and comparing it with the results of a scattering experiment.

Therefore, the Chapter 3 contains an extensive methodological research. The original
scientific results presented in this part are also of great value and can be widely used in the
analysis of structures in computer simulation of crystallization in different systems.

In the Chapter 4, the results on computer simulations of semiflexible polymers in bulk
and in films conducted using the SAMC method were presented. The analysis demonstrated that
reliable results for systems with walls in the transition region require a greater computational
investment. Concurrently, the simulation of the system without walls (Lx = Ly = 20,Lz = 19)
yielded satisfactory results, enabling the reliable drawing of conclusions about the transition
region.

In a system without walls (Lx = Ly = 20, Lz = 19, φ = 0.496), a single first-order
isotropic melt – crystal phase transition is observed at Tm = 0.395± 0.003, and the scenario
of nucleation and growth occurs. An increase in density contributes to an increase in the
phase transition temperature (from Tm = 0.326± 0.001 at φ = 0.471 to Tm = 0.395± 0.003
at φ = 0.496). Inside the transition region, as energy increases, a structural reorganization is
observed. Namely, in the region of low energies (energies below the energies of the transition
region), a completely crystallized state is observed. As the energy increases, a molten cylinder
is formed, which then develops into a molten layer. The last region inside the transition region
is characterized by the presence of a crystalline cylinder inside an isotropic melt. Finally, when
the energy is higher than the energy of the transition region, the entire sample is completely
melted. It can be considered that such a structural transformation is analogous to the growth of
a nucleus during nucleation. The complex shape of crystalline domains is mainly related to the
finite size of the system and the length and stiffness of the chains. These structural changes in
these two systems resemble the phenomena discussed in studies on evaporation/condensation
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transition in finite systems [67–69].
An analysis of the NRLBO parameters for the system without walls (Lx = Ly = 20, Lz =

19, φ = 0.496), calculated according to the method developed in Chapter 3, showed that the two
types of crystals formed in the system at low energies are close to f cc, hcp crystals, with the
dominance of an f cc-like crystal. However, due to the finite size effect of the system, these
structures are distorted. At the same time, with increasing energy and the formation of molten
domains, the dominant crystal structure ( f cc-like crystal) becomes more similar to f cc in terms
of Steinhardt parameters. This becomes possible due to the redistribution of local density in the
system: the isotropic melt domain has a lower density compared to the average density in the
system. Due to this, the influence of the simulation box size on the crystal is reduced, which
acquires the ability to organize the most advantageous structure ( f cc crystal) with a higher local
density. Thus, our results are in agreement with a number of studies that reveal the dominance
of the f cc structure in hard sphere models [30, 32, 72, 165, 166].

Similar structural transformations inside the transition region are also typical for a sys-
tem with repulsive walls (Lx = Ly = Lz = 20, φ = 0.471). The significant difference in struc-
tural transformations is only in the absence of a region of coexistence of a crystalline cylinder
inside the melt. This feature is caused by the fact that the presence of walls promotes the ori-
entation of chains near the walls. It can be argued that the presence of walls promotes also
crystallization, since the melting point (Tm = 0.365± 0.025) in this system tends to be higher
compared to the transition temperature (Tm = 0.326±0.001) for a system without walls of the
same density (φ = 0.471). Despite the fact that the data in the transition region for a system
with repulsive walls cannot be considered reliable at the moment, we tend to assume that the
observed transition is a single first-order isotropic melt – crystal phase transition according to
the heterogeneous nucleation scenario, since the structural transformations inside the transition
are similar to those in the system without walls. However, it cannot be completely ruled out
that continued accumulation of data in the transition region will not reveal the prefreezing phe-
nomenon. That is, our observations do reveal the abrupt formation of four near-wall crystalline
layers. Nevertheless, since the temperature of this transition cannot be established at this time,
we do not dare to draw a clear conclusion about the presence or absence of prefreezing.

Similarly, larger systems (Lx = Ly = 20, Lz = 39, φ = 0.496 without walls and Lx =

Ly = 20, Lz = 40, φ = 0.471 with repulsive walls) have not achieved sufficient accuracy of the
density of states function lng. This is confirmed by large fluctuations in the dependence of heat
capacity on temperature (see the Appendix Fig.A13). Currently, estimates for the transition
temperature for a bulk system (Tm = 0.366± 0.026, Lx = Ly = 20, Lz = 39, φ = 0.496) are
slightly lower than for a similar smaller system (Tm = 0.395± 0.003, Lx = Ly = 20, Lz = 19,
φ = 0.496). Most likely, this observation reflects the correct trend, since the small size of the
system can promote ordering (and consequently crystallization in this case) through periodic
boundary conditions. This conclusion correlates with the results of the work [97]. At the same
time, for a large system with repulsive walls (Lx = Ly = 20, Lz = 40, φ = 0.471), the estimate
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(Tm = 0.356±0.04) is less accurate and cannot be reliably interpreted.
In a system with a weak wall attractive potential (Uat1 , Lx = Ly = Lz = 20, φ = 0.471)

there is a hint of two closely lying first-order phase transitions (Tt1 = 0.378±0.025 and Tt2 =

0.337± 0.025). We revealed the abrupt formation of four near-wall crystalline layers, which
could indicate the prefreezing phenomena. To confirm this assumption, a more precise estima-
tion of the density of states function is necessary. In case of prefreezing, it will be possible to
determine the temperatures Tpre f (which will be equal to Tt1 in the case of pre-freezing) and
Tm (which will be equal to Tt2) for the given size and density of the system. However, at the
moment, discussions about the transition scenario are speculative. In a system with a strong at-
tractive potential (Uat2 , Lx = Ly = Lz = 20, φ = 0.471), we can only give a rough estimate of the
temperature range over which the first order transition(s) is (are) expected (Tt ∈ [0.316;0.396]).

However, despite the inaccuracy of data inside the transition region for both attractive
systems, an additional transition was discovered, indicating two-dimensional crystallization of
the near-wall layer (T ∗ = 0.457±0.002 for Uat1 , T ∗ = 0.905±0.007 for Uat2). We have found
that the structure of this layer has local ordering, as well as long-range six-fold orientational or-
dering. It should be noted that the obtained temperatures may vary slightly due to the refinement
of the transition region, as the entire energy range is of significance when calculating the heat
capacity. The resolution of the our approach does not allow draw conclusion about the order
of transition in our system. We also cannot rule out the presence of two very close transitions
(isotropic melt - hexatic phase - two-dimensional crystal), instead of one transition (isotropic
melt - two-dimensional crystal).

Thus, despite the rather simplified model used, the technical features of the SAMC
method require more computational time to obtain a detailed picture of all systems under study.
In the dissertation, an analysis of the results obtained so far has been performed. However, it
should be noted that the accumulation of further data may reveal more complex effects.

Based on the results of our work, we can formulate the following outlook for future
studies.

Outlook

Since the scenario of prefreezing in polymer systems has not been sufficiently studied
by computer simulation methods, this area represents a wide field for possible research. As
was shown in this work, the SAMC method is time-consuming and requires significant com-
putational costs, but it provides accurate information about the equilibrium state of systems.
The use of more modern technologies in combination with additional simulation techniques,
such as new sampling techniques [99], or dividing the energy interval into a larger number of
segments computed in parallel, can help reduce computation time. A logical continuation of
this work would be to study systems of larger size (for example, Lx = Ly = 20, Lz = 40) with
attractive walls, since increasing the size of the system contributes to a better understanding
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of processes in the thermodynamic limit. Since studies show that the prefreezing scenario can
also occur in systems with a structured substrate [12, 10], it is interesting to consider how the
(in)commensurability of the substrate pattern and the characteristic size of the polymer chain
monomers (beads) influence the crystallization process.

Finally, to compare the results of simulation and experiment, it is interesting to consider
a slightly more detailed model of a polymer, for example, polyethylene [12], near different walls
(purely repulsive, purely attractive with different attractive potentials, as well as substrates with
different patterns, including those simulating the geometry of graphite).

All such studies can contribute to the understanding of the crystallization process and
complement the existing understanding with the relationship to the microscopic parameters of
the system.
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Appendix

Local bond order parameters

sc bcc f cc hcp

Neighbors 6 14 12 12

q2 0.0 0.0 0.0 0.0

q3 0.0 0.0 0.0 0.076073

q4 0.763763 0.036370 0.190941 0.097222

q5 0.0 0.0 0.0 0.251586

q6 0.353553 0.510688 0.574524 0.484762

q7 0.0 0.0 0.0 0.310815

q8 0.718070 0.429322 0.403915 0.316992

q9 0.0 0.0 0.0 0.137851

q10 0.411425 0.195191 0.012857 0.010169

w2 0.0 0.0 0.0 0.0

w3 0.0 0.0 0.0 0.0

w4 0.159317 0.159317 -0.159317 0.134097

w5 0.0 0.0 0.0 0.0

w6 0.013161 0.013161 -0.013161 -0.012442

w7 0.0 0.0 0.0 0.0

w8 0.058455 0.058455 0.058455 0.051259

w9 0.0 0.0 0.0 0.0

w10 0.090130 -0.090130 -0.090130 -0.079851

Table A1: LBO parameters q2 - q10, w2 - w10 for perfect sc, bcc, f cc, hcp structures.

133



Appendix

LBO parameters

(a) (b)

(c) (d)

(e) (f)

Figure A1: LBO parameters w4 −w6, w4 −w8, w6 −w8 planes (a-c) and mean values of w4,
w6, w8 (d-f) for noisy test structures.
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ALBO parameters

(a) (b)

(c) (d)

(e) (f)

Figure A2: ALBO parameters w̄4 − w̄6, w̄4 − w̄8, w̄6 − w̄8 planes (a-c) and mean values of w̄4,
w̄6, w̄8 (d-f) for noisy test structures.
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ALBO and RLBO parameters

(a) (b)

(c) (d)

Figure A3: Maps of ALBO parameters: q̄4 − q̄8 (a), q̄6 − q̄8 (b); maps of RLBO parameters:
¯̃q4 − ¯̃q8 (c), ¯̃q6 − ¯̃q8 (d) for noisy test structures.
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NRLBO parameters

(a) (b)

Figure A4: Maps of NRLBO parameters q4 −q8 (a), q6 −q8 (b).

(a) (b)

Figure A5: Histogram of neighbors after noise reduction procedure at σ = 0.11 (a) and mean
number of neighbors as function of noise (b) for test structures.

137



Appendix

NRLBO parameters

(a) (b)

(c)

Figure A6: NRLBO parameters distribution for the bulk system E =−5727 , Lx = Ly = 20,
Lz = 19.
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NRLBO parameters

color q̄4 q̄6 q̄8

Crystal 1 black 0.154±0.036 0.495±0.018 0.291±0.030

Crystal 2 red 0.204±0.027 0.553±0.012 0.374±0.021

Melt green 0.217±0.067 0.377±0.067 0.321±0.053

Table A2: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system without
walls, Lx = Ly = 20, Lz = 39

color q̄4 q̄6 q̄8

Crystal 1 black 0.154±0.038 0.500±0.030 0.306±0.037

Crystal 2 red 0.213±0.048 0.548±0.027 0.358±0.032

Melt green 0.215±0.072 0.352±0.070 0.310±0.057

Table A3: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system with
repulsive walls, Lx = Ly = 20, Lz = 40

color q̄4 q̄6 q̄8

Crystal 1 black 0.142±0.036 0.509±0.022 0.319±0.038

Crystal 2 red 0.215±0.050 0.551±0.022 0.357±0.035

Melt green 0.228±0.076 0.383±0.072 0.325±0.059

Table A4: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system with
potential Uat1 , Lx = Ly = 20, Lz = 20

color q̄4 q̄6 q̄8

Crystal 1 black 0.146±0.036 0.507±0.021 0.309±0.037

Crystal 2 red 0.213±0.055 0.551±0.025 0.356±0.035

Melt green 0.225±0.072 0.380±0.072 0.323±0.058

Table A5: Centers of clusters q̄4, q̄6, q̄8 found in the {q4, q6, q8} space in the system with
potential Uat2 , Lx = Ly = 20, Lz = 20
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Searching for translation vectors

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A7: Illustration of reproducing noisy crystal lattice sc (a)-(f) and f cc (g)-(i) (σ = 0.11).
Green points indicate the particles of the noisy structure sc with their nearest neighbors in the

cutoff radius Rc = 1.3, translated to the origin. Black denotes the points of the crystalline
structure reconstructed by found vectors. Red crosses indicate the positions of the particles of
the unnoisy structure. The yellow dots correspond to the points of the reconstructed structure,
for which the number of neighbors corresponds to the number of neighbors in the undisturbed

sc structure (6 neighbors).
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Searching for translation vectors

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A8: Illustration of reproducing noisy crystal lattice hcp (σ = 0.11). Green points
indicate the particles of the noisy structure hcp with their nearest neighbors in the cutoff radius

Rc = 1.3, translated to the origin. Black denotes the points of the crystalline structure
reconstructed by found vectors. Red crosses indicate the positions of the particles of the

unnoisy structure. The yellow dots correspond to the points of the reconstructed structure, for
which the number of neighbors corresponds to the number of neighbors in the undisturbed hcp
structure (12 neighbors). The blue dots correspond to the points of the reconstructed structure

for which the function F1 > 0.9 ·max(F1). From the data obtained, it can be seen that the
scatter of points in the restored structure (black) is much smaller than in the original noisy

structure (green). However, due to the amount of noise, additional clusters of particles (a)-(c)
are formed. Figure (c) shows especially clearly that the following coordination sphere is

involved in the consideration. Additional filters (restrictions on the number of neighbors or the
value of the function F1) can help improve the result (d)-(i).
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Appendix

Reconstruction procedure for the bulk system E =−5727, Lx =

Ly = 20, Lz = 19

(a) (b)

Figure A9: Histogram of neighbors: (a) for reconstructed structures, the assignment to clusters
corresponds to clustering at the noise reduction stage; (b) for reconstructed structures, the

assignment to clusters is done independently (b).
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Appendix

Reconstruction procedure for the bulk system E =−5727, Lx =

Ly = 20, Lz = 19

(b) (c)

Figure A10: 3d view of LBO parameters for reconstructed system; the NRLBO parameters qi
for the initial particles are plotted in black, red (Crystal 1, Crystal 2). (a) large green marks

those points of the black cluster (Crystal 1) for which after reconstructing and independently
repainting, the structural type changed from Crystal 1 to Crystal 2 or Melt. Thus, the black
dots in this figure correspond to the "stable" particles of the Crystal 1 that have not changed

their cluster. Additionally, in this figure, the new values of the green "unstable" particles
assigned to the new clusters after the reconstructing procedure are applied in cyanide color. (b)
similarly, green particles denote "unstable" particles of the Crystal 2, and their updated values

are indicated by the color cyanide.

143



Appendix

Reconstruction procedure for the bulk system E =−5727, Lx =

Ly = 20, Lz = 19

(a) (b) (c)

(d) (e) (f)

Figure A11: Densities of NRLBO parameters (black and red) for initial structure and LBO for
reconstructed system (blue and cyan). For reconstructed structures, the assignment to clusters
corresponds to clustering for initial structure (a-c); for reconstructed structures, the assignment
to clusters is done independently for initial and reconstructed structure (d-f). The figures show
that without repainting of the particles, additional small peaks on reconstructed data (a-c) are

observed in the area of the main maxima of the initials clusters: q4 ≈ 0.18, q6 ≈ 0.55,
q8 ≈ 0.36 (the blue curves in Fig.(a-c)). After recoloring, the distributions become much more

narrow and the "tails" of the side structures in the region of the main peaks are reduced for
both blue and cyan curves (d-f). This overlap of distributions suggests that in the boundary
region, when the parameters are far from the clusters centers, the separation of particles to a

particular cluster is formally possible, but due to the large noise is not reliable.
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Appendix

Reconstruction procedure for the bulk systems, Lx = Ly = 20,
Lz = 19

E
Crystal 1
(black)

Crystal 2
(red)

Melt
(green)

View

-5727
2674
(37%)

4362
(61%)

163 (2%)

-5104
2188
(30%)

3557
(50%)

1454
(20%)

-4715
1418
(20%)

3312
(46%)

2469
(34%)

-3408 809 (11%)
1342
(19%)

5048
(70%)

-2040 89 (1.5%)
107
(1.5%)

7003
(97%)

Table A6: The number of particles (and percentage) related to a clusters for different energies
in the system without walls, Lx = Ly = 20, Lz = 19 after reconstructing procedure. The colors

in the snapshots correspond to the colors used to indicate clusters in the space {q4, q6, q8}.
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Appendix

Structure factor

(a) (b)

(c) (d)

(e) (f)

Figure A12: Two-dimentional structure factor for reconstructed systems: for the mixture of
Crystal 1 and Crystal 2 (a); for the particles from Crystal 1 (c); for the particles from

Crystal 2 (e); the same structures as (a,c,e) with peaks from reconstructed Crystal 1 (green)
and Crystal 2 (cyan) (b,d,f). For this set of pictures components qy, qz vary from -5.2 to 5.2

with increment of 0.04.
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Appendix

Thermodynamic properties of big systems:
repulsive walls with Lx = Ly = 20, Lz = 40 and bulk with Lx = Ly = 20,
Lz = 39

(a) (b)

Figure A13: A canonical heat capacity Cv(T ) (a) and ⟨E⟩(T ) (b) for the system with repulsive
walls with Lx = Ly = 20, Lz = 40, and bulk with Lx = Ly = 20,Lz = 39.
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Appendix

Features of systems with attractive walls

(a) (b)

(c) (d)

(e) (f)

Figure A14: Energy dependencies of parameter ψ6 for a systems with a potential of Uat1 (a,c,e) and
Uat2 (b,d,f) by layers.
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Appendix

Features of systems with attractive walls

(a) (b)

(c) (d)

(e) (f)

Figure A15: Temperature dependencies of parameter ψ6 for a systems with a potential of Uat1
(a,c,e) and Uat2 (b,d,f) by layers.
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Appendix

Results: structure

(a) (b)

(c) (d)

Figure A16: The proportion of particles assigned to different types based on NRLBO
parameters (a), q4 (b), q6 (c), q8 (d) for the bulk system Lx = Ly = 20,Lz = 19.
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Appendix

(a) (b)

(c) (d)

Figure A17: The average cosine angle between the selected bond and their neighboring bonds
(a), (b); the proportion of particles assigned to different types based on chain segments

alignment analysis (c), (d) for the bulk system Lx = Ly = 20,Lz = 19.
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