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Abbreviations 

4VA 4-vanylanisole  

AF488 Alexa Fluor 488  

AF647 Alexa Fluor 647  

AP Alkaline phosphatase 

BODIPY Boron-dipyrromethene  

BODIPY C4C9 BODIPY conjugated within a 16 carbon fatty acid chain  

BODIPY FL C16 BODIPY conjugated at the omega end of a 16 carbon fatty acid  

bp Base pairs 

CD36 Cluster of Differentiation 36 

cVA 11-cis-vaccenyl acetate  

Cy3 Cyanine 3  

DAPI 4′,6-Diamidino-2-phenylindole  

Den Dendrites 

dH2O Deionized water 

Dig Digoxigenin 

DMSO Dimethyl sulfoxide 

dNTP Deoxynucleoside-triphosphate 

ectoSNMP Ectodomains of SNMP proteins 

FA Fatty acid 

FIHC Fluorescence immunohistochemistry 

FISH Fluorescence in situ hybridization 

GPCR G-protein coupled receptor 

GR Gustatory receptor 

HEK293 Human embryonic kidney cells 293 

IHC Immunohistochemistry  

IR Ionotropic receptor 

kDa Kilo Dalton 

LSM Laser scanning microscope 

MIP Maximum intensity projection 

Mv Microvilli 

OBP Olfactory binding protein 

ODE Odorant degrading enzyme 

OR Odorant receptor 

ORco Odorant receptor co-receptor 

OSN  Olfactory sensory neuron 

PAGE Polyacrylamide gel electrophoresis 
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PAN Phenylacetonitrile  

PBP Pheromone binding protein 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDE Pheromone degrading enzyme 

PFA Paraformaldehyde 

PR Pheromone receptor 

PVDF Polyvinylidene difluoride 

s.b. Basiconic sensillum 

s.c. Coeloconic sensillum 

s.t. Trichoid sensillum 

SC Support cell 

SDS Sodium dodecyl sulfate 

SEM Scanning electron microscope 

SNMP  Sensory neuron membrane protein 

SNMP1 Sensory neuron membrane protein 1 

SNMP2 Sensory neuron membrane protein 2 

SSO Sulfo-N-succinimidyl oleate  

SSR Single sensillum recording 

TBS Tris buffered saline 

TEM Transmission electron microscope 

TMD Transmembrane domain 

TREx Tetracycline repressor expression system [used in HEK293 cells] 

TREx/S2 SNMP2-expressing TREx cells 

WB Western Blot 

WM-FIHC Whole mount fluorescence immunohistochemistry 

WM-FISH Whole mount fluorescence in situ hybridization 

Z11:16Ald Z11-Hexadecenal  

Z9:14Ald Z9-Tetradecenal  

ΔF/F0 Relative change of fluorescent intensity over time 
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Summary 

Insects are capable of navigating through a complex chemical world with the use of their highly sophisticated 

olfactory system. Odorants are detected via sensilla found on the antennae, which are filled with a sensillum 

lymph and house olfactory sensory neurons (OSNs) and support cells. Both the OSNs and the support cells 

express the proteins required for the efficient detection of odorants, including the sensory neuron membrane 

protein types SNMP1 and SNMP2, which are members of the CD36 protein family. While SNMP1 in moths 

and Drosophila is localized in dendrites of OSNs and was found crucial for the detection of pheromones in 

holometabolous insects, SNMP2 appears to be exclusively expressed in the non-neuronal support cells, 

however, its specific function in olfactory processes is unclear. Before this background, this thesis aimed to 

elucidate the detailed expression topography and subcellular localization of the two SNMP proteins within 

the antenna and to characterize the function of support cell-expressed SNMP2. Using custom-made 

antibodies in immunohistochemistry experiments, the sensillum-specific expression patterns of SNMP1 and 

SNMP2 were analyzed on the adult antennae of the hemimetabolous desert locust Schistocerca gregaria. 

SNMP1 was detected in the somata and dendrites of all OSNs of trichoid sensilla and in subsets of OSNs 

innervating the basiconic sensilla as well as in the support cells of these sensillum types, suggesting a dual 

role for SNMP1. In contrast, the SNMP2 protein was confined to support cells of the basiconic and coeloconic 

sensilla. In accordance with a dual function of SNMP1 in OSNs and support cells and a sole function of SNMP2 

in support cells, immunogold labelling visualized SNMP1 in subsets of OSN dendrites and both SNMP1 and 

SNMP2 in the microvilli of basiconic support cells. To assess whether the adult S. gregaria SNMP expression 

pattern is established early and retained throughout development, the expression topography of SNMP1 and 

SNMP2 was analyzed in the 1st, 3rd and 5th instar nymphs. Similar to adults, SNMP1 was detected in OSNs and 

support cells of the trichoid and basiconic sensilla, while SNMP2 was detected only in the support cells of the 

basiconic and coeloconic sensilla, demonstrating that the SNMP expression topography is already established 

in the first developmental stage and is conserved until adulthood. Finally, given the SNMP2 expression in the 

microvilli membranes of support cells and its membership to the CD36 family of lipid transporters, a proposed 

role of SNMP2 in sensillum lymph clearance processes were analyzed in the moths Heliothis virescens and 

Bombyx mori. In these species, their sex pheromone components are inactivated to long-chain fatty acids 

that need to be eliminated from the sensillum lymph to maintain the proper function of the olfactory unit. 

Using a fluorescent long-chain fatty acid analog, an increased uptake of the analog was observed in an 

SNMP2-expressing cell line, which could be abolished by the CD36 inhibitor SSO. Moreover, experiments with 

the fatty acid analog and the antennae of H. virescens and B. mori showed that SNMP2-expressing support 

cells can take up fatty acids from the sensillum lymph. Furthermore, a reduced support cell uptake was 

observed in B. mori antennae treated with SSO. Additionally, SSO pretreatment of B. mori antennae led to a 

significantly prolonged behavioral response upon sex pheromone exposure. This indicates impaired sensillum 

lymph clearance processes by blocking SNMP2. Altogether, these results suggest an important role for 

support cell expressed SNMP2 in the maintenance of the sensillum lymph, which is crucial for the proper 

response to odorants. 
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Chapter 1. Introduction 

1.1 Relevance of olfaction for insects 

Chemosensation is an ancient sensory modality, which enables animals the accurate and efficient 

evaluation of their complex chemical environment (Hansson and Stensmyr, 2011; Dahanukar et al., 

2005). Most animals rely on the recognition of external chemical stimuli in order to survive and 

thrive in an inherently intricate world (Renou and Anton, 2020). Accordingly, insects have 

developed exceptionally sensitive and precise olfactory systems to detect a wide range of diverse 

airborne chemical compounds, or odorants that can vary in their molecular structures and chemical 

properties (de Bruyne and Baker, 2008). The proper recognition of odorants is often crucial for 

survival and reproduction, and they can stem from various sources including plant volatiles, 

conspecifics or other animals, which give information about potential food sources, hosts, 

oviposition sites, mating partners or even predators and lethal substances (Steele et al., 2023).  

Many insects produce specific chemical cues for intraspecific communication classified as 

pheromones (Schneider, 1992; Karlson and Lüscher, 1959). Pheromones are defined as substances 

that are emitted from one individual to evoke assorted behavioral, physiological, or developmental 

responses in another individual of the same species (Regnier and Law, 1968; Stengl, 2010). The first 

pheromone characterized was Bombykol (10E,12Z-Hexadecadienol), the major component of the 

sex pheromone blend of the silk moth Bombyx mori (Butenandt et al., 1959), an important model 

organism in studying the pheromone communication system in insects (Sakurai et al., 2014). Such 

sex pheromones play important roles in reproductive behaviors and can give information about 

potential mating partners (Gomez-Diaz and Benton, 2013; Stengl, 2010). An integral part of this 

thesis focuses on sex pheromones in moths (Lepidoptera), where females typically release species-

specific compounds in order to attract male mating partners over remarkably vast distances 

(Steinbrecht, 1996). For B. mori males, minute amounts of Bombykol are sufficient to elicit 

immediate searching behavior of the calling female. In addition to Bombykol, a minor component 

of the sex pheromone blend was also discovered, termed Bombykal (10E,12Z-Hexadecadienal), 

which appears to act as a behavioral antagonist in receiving males (Kaissling et al., 1978; Kasang et 

al., 1978).  

Since the discovery of Bombykol, sex pheromones have been identified in numerous Lepidopteran 

species, which are often unsaturated long-chain aliphatic alcohols, aldehydes, and acetates derived 

from long-chain fatty acids and produced in the sex pheromone glands found in the caudal end of 

the abdomen in females (Koutroumpa and Jacquin-Joly, 2014). For instance, the tobacco budworm 

Heliothis virescens analyzed in the framework of this thesis, uses Z11-Hexadecenal (Z11:16Ald) and 



  Introduction 

7 
 

 

Z9-Tetradecenal (Z9:14Ald), as the respective major and minor components of their sex pheromone 

blend (Almaas and Mustaparta, 1990; Baker et al., 2004; Roelofs et al., 1974). This well-studied 

phytophagous pest species is currently named Chloridea virescens (Pogue, 2013) but will be 

referred to as the former name for coherence with earlier work. 

Generally, moth sex pheromones are complex mixtures of multiple components, often comprising 

a major and one or more minor components of defined ratios (Vickers et al., 1991). The correct 

ratio of individual compounds in the female sex pheromone blend is so vital for proper sexual 

communication that slight variations can lead to a complete loss of attraction in males (Vickers et 

al., 1991; Klun et al., 1979; Ramaswamy and Roush, 1986). The biological relevance of male 

attraction only by the right components and ratios is to limit hybridization, i.e. cross-species mating 

between sympatric species, that use overlapping constituents in their sex pheromone blends (Berg 

et al., 2014). For instance, in the two sympatric noctuid moth species Helicoverpa armigera and 

Helicoverpa assulta, the sex pheromone blends both contain Z11:16Ald and Z9-Hexadecenal, but in 

opposite ratios (Xu et al., 2016). That means one substance that is defined as the major component 

in one species is the minor component in the other species and vice versa.  

 

 

Fig. 1 Schematic depiction of a complex insect odor scape. Moth female-emitted pheromones 
are dispersed in a complex chemical environment that are detected by a receiving male individual 
despite the presence of background odors. 

 
 

Pheromones play important roles in the communication and behavior of various other 

holometabolous insect orders, including species of Diptera, Hymenoptera and Coleoptera 

(Symonds and Elgar, 2008). For instance, in the well-studied fruit fly Drosophila melanogaster the 

males release the long-chain 11-cis-vaccenyl acetate (cVA), which initiates sexual receptivity in 

females while evoking a courtship-inhibition behavior in males (Benton, 2022; Ha and Smith, 2006; 

chemical environment
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Kurtovic et al., 2007; Brieger and Butterworth, 1970). Queens of the eusocial western honeybee 

Apis mellifera emanate the so-called queen mandibular pheromone, which induces the division of 

labor in the female worker bees and obstructs the development of their reproductive organs 

(Slessor et al., 2005; Slessor et al., 1988; Jarriault and Mercer, 2012). Certain species of bark beetles, 

such as Ips pini, rely on aggregation pheromones to coordinate the colonization of host trees to 

reach their phloem (Tittiger and Blomquist, 2017). 

While detailed knowledge has accumulated on pheromones in holometabolous insects, 

comparatively little is known about the use and chemical identity of pheromones in 

hemimetabolous insects, like locusts (Orthoptera), which, in addition to moths, were analyzed in 

the framework of this thesis. In phase transitioning locusts, such as species of Locusta and 

Schistocerca, pheromones, along with mechanosensory and other chemosensory cues, are 

implicated in driving the shift from the solitarious to the gregarious state and vice versa, however, 

the exact mechanisms involved in this process remain largely elusive (Uvarov, 1966; Nakano et al., 

2022; Hassanali et al., 2005). Gregarious phase locusts differ from the solitary locusts as they have 

a propensity to aggregate into large destructive swarms made up of millions of individuals that 

travel together, thereby causing devastating losses to the landscape vegetation and agricultural 

crops (Nakano et al., 2022). Recent studies have provided evidence that pheromones are involved 

in swarm-formation processes and may trigger and control behaviors necessary for locust 

aggregation, survival and synchronization under crowded conditions. For instance, the migratory 

locust Locusta migratoria releases the substance 4-vinylanisole (4VA) that is detected by adults and 

younger nymph stages and is proposed to drive aggregation behavior (Guo et al., 2020). 

L. migratoria individuals also produce phenylacetonitrile (PAN), which triggers an aversive response 

in conspecifics (Chang et al., 2023). PAN is implicated to function as an anti-cannibalism signal, as 

PAN released by hoppers prohibits their consumption by conspecifics, thus ensuring their survival 

in large, swarming populations (Chang et al., 2023). PAN is also produced by the gregarious phase 

desert locust Schistocerca gregaria and was initially described as an aggregation pheromone (Torto 

et al., 1994; Torto et al., 1996). Yet, this was disputed in later studies showing that PAN in 

S. gregaria, similar to L. migratoria, is aversive to conspecifics (Seidelmann et al., 2000; Seidelmann 

and Ferenz, 2002). However, in S. gregaria PAN is only released by adult males under crowded 

conditions (Seidelmann et al., 2000), thus indicating male identity and moreover was described to 

function as a courtship-inhibition pheromone that repels rival males from their female mating 

partners (Seidelmann and Ferenz, 2002).  
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1.2 The olfactory system of insects  

1.2.1 General odor recognition 

The detection of odorants, independent of their behavioral significance, is established through the 

bipolar olfactory sensory neurons (OSNs) that transform chemical signals into a train of action 

potentials (Boeckh et al., 1965). OSNs are housed in hair-like cuticular protrusions called sensilla 

that are mainly located on the antenna (Sanes and Hildebrand, 1976a; Zacharuk, 1980). In addition, 

lower numbers of OSNs are located in other insect body appendages, including the palps and 

proboscis (Sanes and Hildebrand, 1976a). However, the antennae are considered the main olfactory 

organs in insects, as they contain the majority of OSNs and are vital for the detection of most 

behaviorally relevant odorants.  

Despite the extreme diversity in the antennal morphology across the different insect orders and 

species, the overall anatomical organization of the peripheral olfactory system remains similar 

(Hansson and Stensmyr, 2011; Elgar et al., 2018), as shown in Figure 2. Different populations of 

OSNs are dispersed along the antenna and are housed in different types of olfactory sensilla. The 

OSNs project their axons into one of the two antennal nerves, which run along the entire span of 

the antenna (Sanes and Hildebrand, 1976b). Ultimately, the axons of the OSNs terminate in the first 

processing center for odor information, the antennal lobes, found laterally in the deutocerebrum 

of the insect brain (Vosshall et al., 2000; Ai and Kanzaki, 2004; Boeckh and Boeckh, 1979). The 

antennal lobes comprise of neuropil subunits called glomeruli, which are individually identifiable 

structures where antennal OSN axons terminate and form synapses with projection neurons, which 

wire the olfactory information to higher brain centers, the mushroom bodies and the lateral horn 

of the protocerebrum (Patel and Rangan, 2021). The overall organization and functions of the 

antennal lobe is conserved across the insect taxa (Hildebrand and Shepherd, 1997; Schachtner et 

al., 2005) and have been intensively studied in holometabolous insects, mostly in D. melanogaster 

and moths (Kvello et al., 2009; Couto et al., 2005). Maps have been established to determine which 

OSN populations innervate distinctive glomeruli, revealing that OSNs of the same responsiveness, 

i.e. populations of the same olfactory receptor identity, converge in the same glomerulus (Couto et 

al., 2005; Silbering et al., 2011; Grabe et al., 2015; Vosshall et al., 2000). 

In moths, which have evolved to sensitively detect sex pheromone components, there is a sexual 

dimorphism in the antennal lobe organization, as male glomeruli can be distinguished into two 

groups: the macroglomerular complex and the ordinary glomeruli (Berg et al., 2014). The ordinary 

glomeruli, found in both males and females, are associated with the detection of general odorants 
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such as plant volatiles (Skiri et al., 2004). Whereas the male-specific macroglomerular complex is 

deemed as the first processing center for pheromone sensitive OSNs in moths such as H. virescens 

and B. mori (Berg et al., 1998; Sakurai et al., 2014). 

 

Noteworthy, in locusts such as S. gregaria and L. migratoria, a different, extremely complex 

innervation of the antennal lobe has been found. In these species, the axons of individual OSNs 

branch out in the antennal lobe and synapse in several small glomeruli, so-called microglomeruli of 

 

Figure 2. Schematic diagram of the organizational structure of the olfactory system in insects. The 

dendrites of the olfactory sensory neurons (OSNs) innervate the sensilla found along the antenna. The 

antenna is composed of the flagellum, which comprise numerous segments, the pedicel and the scape. 

It is attached to the insect head via the antennifer. The axons of the OSNs converge into the antennal 

nerves, which span the length of the antenna and lead to the antennal lobe in the insect brain. The 

axons project into the glomeruli situated in the antennal lobe. Axons from OSNs of the same population 

converge in a specific glomerulus distinct from glomeruli targeted by other OSNs. The OSN axons 

synapse with projection neurons, which lead to higher brain centers, the mushroom bodies and the 

lateral horn.  
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which an extraordinarily large number (up to 1000) can be found (Anton and Hansson, 1996). The 

unique antennal lobe organization and innervation pattern of these hemimetabolous insects was 

described as a possible mechanism to accommodate for their successive growth and increase in 

OSN number after each molt, allowing for more flexibility during development (Bicker and Stern, 

2020).  

1.2.2 Antennal morphology 

All insects possess a pair of bilateral antennae that protrude from their heads and generally consist 

of three main parts (Kaissling, 2014; Schneider, 1964), as depicted in Figure 2. The most proximal 

section is called the scape and is attached to the head via the antennifer (Schneider, 1964). The 

scape is conjoined by the pedicel segment that contains the Johnston’s organ and muscles allowing 

for antennal movement. Finally, the pedicel is attached to the flagellum, which harbors the majority 

of the olfactory sensilla and can be composed of different numbers of segments or annuli 

(Schneider, 1964).  

In some moths, like H. virescens, the around 80 annuli do not branch out and the sensilla are 

distributed on the main, filiform antennal stem (Jorgensen et al., 2007). Whereas in other 

lepidopteran species, such as the silk moths B. mori and Antheraea polyphemus, the flagellum does 

branch out, creating elaborate pectinate antennae (Keil and Steiner, 1990; Keil, 1992; Maida et al., 

2005). These feathery antennae have an increased surface area supposed to help with the sensitive 

detection of volatile chemicals (Jaffar-Bandjee et al., 2020). 

Generally, moth antennae are covered with numerous extremely long sensilla considered as 

evolutionary adaptations to sex pheromone reception (Hansson and Stensmyr, 2011; Kaissling, 

2014). These long sensilla grant an increased surface area of the antenna creating a type of sieve 

to improve the capture of volatile molecules (Baker et al., 2022; Elgar et al., 2018; Su et al., 2019). 

In moths, the detection of sex pheromones is often associated with sexual dimorphism, i.e. the 

antennal structure differs between males and females. For instance, in nuctoid moth species, males 

can have both long and short so-called trichoid sensilla, both of which are sensitive to female sex 

pheromone components (Baker et al., 2004), whereas the female antennae only possess the short 

trichoid sensillum type but they appear to have more sensilla overall (Berg et al., 2014). Such is the 

case for H. virescens males, where the antenna is covered by around 12000 sensilla while in females, 

this number goes up to about 17000 (Almaas and Mustaparta 1991). However, a clear sexual 

dimorphism is not always pronounced in moths. For example, in B. mori, the same sensillum types 

are present on the antenna of both sexes, although they tend to be slightly shorter in females 

(Maida et al., 2005). 
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The morphology of the adult moth antenna, composed of numerous segments and covered by 

thousands of sensilla, bears no resemblance to the rudimentary antenna of the larval stage. In 

H. virescens, it is composed of only three small segments carrying a total of just nine sensilla 

(Zielonka et al., 2016). Since moths are holometabolous insects, their antennae undergo drastic 

changes during metamorphosis, allowing for a complete restructuring of their overall anatomy and 

OSN innervation to accomplish the detection of odorants required in the adult stage. 

The situation is completely different in hemimetabolous insects as from the first instar to the adult 

stage, their antennae do not undergo extreme changes throughout development. The most obvious 

morphological differences are observed in their overall size, as well as segment and sensilla number 

(Ochieng et al., 1998). In gregarious S. gregaria, the first instar nymph antennae possess 11 annuli, 

and are approximately 3 mm in total length (Ochieng et al., 1998). Their antennae grow successively 

with each molt, reaching a length of 14 mm in adults, which possess 24 antennal segments (Ochieng 

et al., 1998). During all stages, the locust antenna exhibits a filiform shape with no sexual 

dimorphism observed (Ochieng et al., 1998; Chapman and Greenwood, 1986). Despite minimal 

morphological differences between juvenile and adult locusts, it is so far unclear if the successive 

development of the locust antenna shows age specific differences on the cellular and molecular 

level. 

 

1.3 Olfactory sensilla on the antenna 

Insect olfaction begins when odorants enter the olfactory sensilla housing the dendrites of OSNs. A 

defining characteristic of olfactory sensilla is that they are covered by multiple pores in their cuticle, 

allowing airborne chemicals to permeate into the sensillum shaft from the outer environment 

(Steinbrecht, 1997; Keil, 1989; Steinbrecht, 1996) as opposed to gustatory sensilla, which are 

equipped with a single pore at the terminal end of the shaft. The number and distribution of the 

pores along olfactory sensilla have been well studied through scanning electron microscopy (SEM) 

conducted among others on Noctuid and Bombycid moth species, as well as on locusts, revealing 

the overall architecture and distribution of the olfactory sensilla along the antenna (Maida et al., 

2005; Wang et al., 2023; Ochieng et al., 1998; Gohl and Krieger, 2006). 

1.3.1 Morphological and functional classes of sensilla 

Olfactory sensilla are morphologically diverse across insects and even on the antenna of a single 

species. Based on their outer morphology, sensilla can be categorized into different types 

(Steinbrecht, 1996). The most abundant olfactory sensilla types in insects are the slender trichoid 
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sensilla, the shorter and more compact basiconic sensilla, and the grooved coeloconic sensilla that 

are often situated in pits on the antennal surface. The number of OSNs which are housed in a 

sensillum varies depending on the sensillum type and insect species. Sensilla trichodea and sensilla 

coeloconica of moths and locusts are typically innervated by two to four OSNs (Keil, 2012; Keil, 

1984; Ochieng et al., 1998). Similarly, the basiconic sensilla of moths are usually innervated by two 

to four OSNs (Shields and Hildebrand, 2001). Whereas in locusts, this sensillum type has been 

described to house 30 to 50 OSNs that exhibit massive dendritic arborization (Ochieng et al., 1998). 

The exceptional variability in structure and OSN number in the olfactory sensilla types in locusts is 

shown exemplarily in Figure 3. In addition to olfactory sensilla, the antenna of most insects also 

possess single-pore sensilla chaetica (not shown), which are involved in mechanosensory and 

gustatory sensory modalities and are usually innervated by three to four sensory neurons. 

 

Figure 3. The different morphological classes of olfactory sensilla found on the antenna of S. gregaria. 
Left: the trichoid sensilla are elongated and exhibit a pointed tip. Middle: the basiconic sensilla are often 
wider and have a blunt end. Right: coeloconic sensilla are positioned in pits on the antennal surface. 
The different sensilla types can be innervated by numerous numbers of OSNs (blue), found beneath the 
base of the sensillum’s shaft.  

 

The morphologically different classes of sensilla can display defined response profiles to odorants 

of specific chemical structures or behavioral relevance (Steinbrecht, 1996; Schmidt and Benton, 

2020). For instance, in moths and flies, the OSNs of coeloconic sensilla have been shown to primarily 

respond to acids, amines and ammonia (Yao et al., 2005; Pophof, 1997; Menuz et al., 2014), while 

those of basiconic sensilla are often associated with the detection of general odorants of various 

chemical classes, such as those emitted by food sources or host plant volatiles (Grabe and Sachse, 

2018). Meanwhile, the OSNs of trichoid sensilla are often tuned to detecting long-chain fatty acid 

derived pheromones as well as host plant volatiles (Grabe and Sachse, 2018; Heinbockel and 

Kaissling, 1996; Stengl, 2010).  

trichoid
basiconic

coeloconic
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The behavioral relevance of sensillum-specific odor profiles is particularly reflected in male moths 

that have an established sex pheromone detection system. In this respect, a single antenna of 

H. virescens males possesses up to 12000 trichoid sensilla containing OSNs tuned to the sex 

pheromone components, Z11-16Ald and Z9-14Ald (Almaas and Mustaparta, 1991). Likewise, the 

antenna of male B. mori is covered with up to 17000 trichoid sensilla, most of which house a pair 

of OSNs sensitively detecting Bombykol and Bombykal (Steinbrecht, 1970; Kaissling et al., 1978). 

However, certain subpopulations of both male and female trichoid sensilla have also been shown 

to detect relevant plant volatiles (Boeckh et al., 1965). 

In the locust S. gregaria, the antenna is most abundantly covered by basiconic sensilla (>2100) 

followed by coeloconic sensilla (>1200), while the least abundant olfactory sensillum type is the 

trichoid sensilla (>400) (Ochieng et al., 1998). In S. gregaria, some trichoid OSNs are indicated to 

respond to pheromone components (Ochieng and Hansson, 1999). While in L. migratoria, the OSNs 

of the basiconic sensillum responds to the pheromone components PAN and 4VA (Guo et al., 2020; 

Chang et al., 2023). This suggests that in locusts, both the trichoid and basiconic sensilla play 

integral roles in the detection of various behaviorally relevant pheromone signals.  

1.3.2 Cellular repertoire and fine structure of sensilla 

The olfactory sensillum is considered as an olfactory unit that consists of the sensillum shaft, the 

OSNs and the support cells (Zacharuk, 1980), which is depicted in a schematic diagram in Figure 4. 

The cell body of OSNs is located beneath the base of the sensillum, which tends to exhibit a compact 

spherical shape with a large nucleus in relation to the perinuclear cytoplasm (Zacharuk, 1980). 

Ciliary dendrites, which protrude out of the apex of the OSN somata into the sensillum lumen, which 

is filled with the so-called sensillum lymph, curl around each other like tendrils (Keil, 1984; Schmidt 

and Benton, 2020).  

Ultrathin cross-sections of moth olfactory sensilla, analyzed through transmission electron 

microscopy (TEM) have revealed that olfactory dendrites have a microtubule framework with a 

classical axoneme arrangement that is quintessential for cilia (Keil, 2012). Although olfactory cilia 

have demonstrated a degree of mobility in openly prepared sensilla (Williams, 1988; Keil, 1993), 

they are considered primary cilia, which lack the central microtubule pair and are generally non-

motile, which is typical for sensory cilia (Kaissling, 1996; Keil, 2012). Despite possessing the basic 

ciliary components, the transport of the molecular elements necessary for olfaction into the 

dendrites appear independent of the cilia-specific intraflagellar transport pathway (Jana et al., 

2021). As these primary cilia are necessary for the recognition of olfactory stimuli and are the sites 

of ligand detection and transduction, for simplicity they will be referred to as dendrites in the 
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upcoming sections. Extending out of the other side of the OSN somata are the axons, which project 

towards the antennal lobe and ultimately synapse in glomeruli. 

So-called support cells, also named auxiliary cells, envelop the OSNs at the base of the sensillum 

and directly border the sensillum lymph (Keil, 1989). Support cells seal off the entire olfactory unit, 

forming an independent compartment and upholding a microenvironment within each sensillum 

(Keil and Steinbrecht, 1983; Keil, 1987; Shanbhag et al., 2000). Morphologically, antennal support 

cells can exhibit varied shapes and sizes in insects. Each sensillum supposedly has three different 

types of support cells that have first been characterized in early TEM studies conducted with moths 

(Steinbrecht et al., 1989). The innermost support cell that completely ensheaths the OSNs is called 

the thecogen cell. In moths, this cell type is characterized by its small, irregularly shaped nucleus, 

thin cell body and less developed endoplasmatic reticulum (Steinbrecht and Gnatzy, 1984; Shields 

and Hildebrand, 2001). The thecogen cell is bordered by the trichogen cell, which in turn is adjoined 

by the tormogen cell. Both of the latter support cell types show great variability in their morphology 

even within the antenna of the same species (Shields and Hildebrand, 2001). They are generally 

characterized by their large, ellipsoidal form and their membrane invaginations on the apical side, 

forming microvilli that border the sensillum lumen (Steinbrecht and Gnatzy, 1984; Keil, 1989). 

Weather the innermost thecogen cell also forms microvilli structures is unclear, but all three 

support cell types have direct contact to the sensillum lymph.  

Differentiating between the support cell types from one another can be difficult without the use of 

high resolution electron microscopy. Genetic tools to distinguish the support cell types are only 

available for D. melanogaster’s tormogen and thecogen cells, but not trichogen cells in adults. The 

tormogen cell can be identified by tagging the ASE5 promotor while the thecogen cell expresses 

the protein nompA (Barolo et al., 2000; Chung et al., 2001), corroborated in a recent study using 

the promotor driven expression of fluorescent proteins in the antenna of D. melanogaster (Prelic 

et al., 2022). However, such genetic markers have not been identified in other insect species such 

as in moths or locusts. Additionally, the number of different support cell types can vary across 

different species. While in moths experimental evidence points to each sensillum containing three 

support cells (Steinbrecht et al., 1989), a subset of sensilla in D. melanogaster have been shown to 

possess four support cells (Shanbhag et al., 2000) while in the locust S. gregaria, up to seven support 

cells have been counted in basiconic sensilla (Ochieng et al., 1998). For this reason, most studies 

simply refer to support cells as a uniformed group and refrain from naming the individual support 

cell types.  
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Figure 4. Schematic depiction of olfactory sensilla and their cellular repertoire. All olfactory sensilla 
possess multiple pores on their cuticle. They are filled with the fluid sensillum lymph and are innervated 
by the ciliated dendrites of the OSNs. At the base of the sensillum are the somata of the OSNs followed 
by their axon projections. The OSN somata are bordered by support cells, that have microvilli-like 
membranes facing the sensillum lumen. The left side depicts the longitudinal view of a sensillum while 
the right side shows a cross-section of the same sensillum at its base. 

 

Aside from surrounding the OSNs and segregating the sensillum, multifunctional roles have been 

reported for the non-neuronal support cells, ranging from the biogenesis of the sensillum to the 

expression of proteins involved in odor detection (Klein, 1987; Kaissling, 2009; Schmidt and Benton, 

2020). Early studies conducted on the antenna of Manduca sexta documented that support cells 

secrete chitin and proteinaceous components necessary for sensillar formation (Sanes and 

Hildebrand, 1976b; Keil, 1997). Moreover, experiments conducted on the D. melanogaster antenna 

showed that support cells play a part in the correct formation of sensillum pores, which are 

necessary for the proper entrance of odorants into the sensillum lumen (Ando et al., 2019). 

Additionally, support cells produce and determine the composition of the sensillum lymph and its 

ionic constituents (Thurm and Küppers, 1980), thereby being crucial for the regulation of the 

sensillum lymph homeostasis that is integral for the proper detection of odorants. In this context, 

it has been speculated that the support cells extract “waste products” such as inactivated odor 
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molecules from the sensillum lymph, which could otherwise interfere with the detection of newer, 

incoming odorants (Vogt and Riddiford, 1981; Pelletier et al., 2023). Generally, support cells appear 

to play a vital purpose in the maintenance of the sensillar unit as a whole, however, the extent of 

their functions remain largely elusive. 

 

1.4 Molecular elements of odor detection 

Odorant detection employs different molecular elements expressed by the OSNs and the support 

cells of olfactory sensilla. Members of different protein families are involved in the detection of 

odorants as well as the transport of odorant molecules across the sensillum lymph and the eventual 

signal termination, as depicted in Figure 5. 

1.4.1 Olfactory receptors  

The recognition of odorants by the OSNs is accomplished by olfactory receptors localized in their 

dendritic membranes. In insects, olfactory receptors encompass different protein families 

(Fleischer et al., 2018; Wicher and Miazzi, 2021). The majority of the olfactory receptors belong to 

the generally large family of odorant receptors (ORs) (Clyne et al., 1999; Gao and Chess, 1999; 

Vosshall et al., 1999; Fleischer et al., 2018) and the smaller family of ionotropic receptors (IRs) that 

are related to the ionotropic glutamate receptors (Yao et al., 2005; Benton et al., 2009). 

Additionally, certain gustatory receptors (GRs) are associated with olfactory detection processes, 

specifically in the recognition of CO2 (Kwon et al., 2007). More recently, other receptor types have 

been implicated in odor detection, including ammonium transporters (Vulpe et al., 2021), as well 

as members of the pickpocket and transient receptor potential protein families (Joseph and 

Carlson, 2015; Kim et al., 2010). 

The largest and best-characterized olfactory receptor family in insects is the divergent OR family, 

which comprise ORs that recognize a broad spectrum of odorants including terpenes, aromatics, 

alcohols, aldehydes, and acetates stemming from a wide range of sources (Fleischer et al., 2018; Ha 

and Smith, 2009). In insects, the OR repertoire varies across different insect species and orders 

(Brand et al., 2018), ranging from only 10 OR genes in head lice (Kirkness et al., 2010), to 60 in the 

fruit fly D. melanogaster (Robertson et al., 2003), to over 300 OR genes in ants (Zhou et al., 2012). 

The OR repertoire of noctuid moths ranges from 40 to 60 ORs (de Fouchier et al., 2017; Poivet et 

al., 2013) while in B. mori this extends to 71 candidate OR genes (Tanaka et al., 2009; Qiu et al., 

2018). The locusts L. migratoria and S. gregaria, on the other hand were shown to express 
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considerably more OR genes with 142 and 119 ORs detected respectively in genomic and 

transcriptomic datasets (Pregitzer et al., 2017; Wang et al., 2015).  

Similar to classical G-protein coupled receptors (GPCRs), ORs are characterized by their seven 

transmembrane domains (TMDs), however, they lack sequence similarity with the GPCRs of the 

vertebrate and nematode OR families (Fleischer et al., 2018). Moreover, insect ORs display an 

inverted membrane topology to GPCRs, with an intracellular N-terminus and an extracellular  

C-terminus (Lundin et al., 2007; Benton et al., 2006; Smart et al., 2008), suggesting an alternative 

signal transduction mechanism for insect ORs compared to G-protein dependent signaling. 

Interestingly, in numerous insect orders including Lepidoptera, Orthoptera, and Diptera, a highly 

conserved member of the OR gene family was discovered, which is expressed in all OR-expressing 

OSN populations and was named as odorant receptor co-receptor (ORco) (Larsson et al., 2004; 

Vosshall and Hansson, 2011). ORco was shown to be necessary for the integration of the ligand-

binding ORs (tuning ORs) into the dendrites of OSNs, as well as the proper detection of cognate 

odorants by the OSNs (Zufall and Domingos, 2018). ORco and a tuning odorant receptor (ORx) 

heteromerize and together form a ligand-gated cation channel (Sato et al., 2008; Wicher et al., 

2008), with the tuning ORx serving as the determinant required for the detection of odorants. First 

structural cryo-electron microscopy investigations of homomeric OR and ORco complexes revealed 

they are composed of four symmetrical subunits, which together form a hydrophobic central 

channel pore capable of widening and becoming hydrophilic, enabling the entrance of hydrated 

cations into the OSN, supporting the notion of an OR-ORco ligand gated ion channel (Butterwick et 

al., 2018; Del Marmol et al., 2021). 

Although many olfactory receptors have shown a high degree of promiscuity in their detection to 

multiple odorants, certain receptors were shown to be much more finely tuned to distinct ligands. 

This is especially the case for ORs tuned to pheromone molecules also termed as pheromone 

receptors (PRs) (Fleischer and Krieger, 2018). The first PRs identified and functionally characterized 

were of the moths H. virescens and B. mori, which are expressed in the pheromone sensitive OSNs 

of the trichoid sensilla (Krieger et al., 2004; Sakurai et al., 2004). The male-specific receptors 

BmorOR1 and BmorOR3 of B. mori were verified to mediate the detection of major (Bombykol) and 

minor (Bombykal) sex pheromone components (Krieger et al., 2005; Nakagawa et al., 2005). 

Likewise, in H. virescens, the receptors HR13 and HR6 mediate specific responses to the sex 

pheromone components Z11:16Ald and Z9:14Ald respectively (Gohl and Krieger, 2006; Grosse-

Wilde et al., 2007). In Lepidopteran species, sequence based analyses revealed that sex pheromone 

receptors are highly conserved, forming a separate, highly related group within the OR family 

(Engsontia et al., 2014; Koenig et al., 2015; Steinwender et al., 2015). 
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Recently, members of the OR family in locusts have also been shown to respond to pheromone 

components, even though they are phylogenetically distinct from the moth PRs. In L. migratoria the 

receptor LmigOR70a, expressed in OSNs of basiconic sensilla, mediates the detection of PAN (Chang 

et al., 2023), while a second receptor type, LmigOR35, was identified as a receptor specific to 4VA 

(Guo et al., 2020). The narrow tuning of pheromone responsive ORs is also reflected in 

D. melanogaster where the male-released pheromone cVA is recognized by trichoid OSNs 

expressing DmelOR67d (Kurtovic et al., 2007). 

Similar to the OR-expressing OSNs responsive to general odorants, ORco is also co-expressed with 

pheromone detecting PRs (Fleischer and Krieger, 2018). In D. melanogaster, the response of OR67d 

expressing OSNs to cVA is abolished in the absence to ORco (Jin et al., 2008). In the noctuid moth 

Spodoptera frugiperda, knock-out of ORco abolished the response of males to the main female sex 

pheromone components, with males being unable to successfully mate with females (Sun et al., 

2023). However, in contrast to the notion of an OR/ORco mediated ionotropic pathway in general 

odor detection and in pheromone detection in D. melanogaster, studies conducted on the moth 

M. sexta have not found any evidence for ORco-dependent ionotropic pheromone transduction 

(Nolte et al., 2013; Nolte et al., 2016). Instead, it was proposed that ORco may act as a pacemaker 

channel that influences the kinetics of the pheromone response, putting forth the concept that 

pheromone evoked signal transduction processes may even rely on a metabotropic pathway in 

moths (Nolte et al., 2016). Noteworthy, in locusts, ORco is expressed in all OSNs of the basiconic 

sensilla (Yang et al., 2012), which house the OSNs expressing the pheromone receptors LmigOR70a 

and LmigOR35 (Chang et al., 2023; Guo et al., 2020). Indeed, in L. migratoria, targeted knock out of 

ORco resulted in severe impairments in the olfactory response to the pheromone PAN (Li et al., 

2016). Although it is unclear what underlying role ORco plays in pheromone signal transduction 

processes in insects, it appears as a necessary element in the molecular machinery of pheromone 

responsive OSNs. In addition to ORco, verified PRs and other putative pheromone detecting ORs 

are co-expressed in OSNs with another protein called sensory neuron membrane protein 1 

(SNMP1), required for a proper response to pheromones, which will be introduced in chapter 1.5. 

1.4.2 Olfactory binding proteins and odorant degrading enzymes  

In addition to the olfactory receptors located in OSN dendrites, sensillum lymph proteins expressed 

and secreted by support cells are necessary for the efficient and sensitive detection of odorants. 

Such proteins play a role in so-called perireceptor events by influencing the transient odorant-

receptor interactions, either before or after odorant binding (Vogt et al., 2020). These are primarily 

members of the odorant binding protein (OBP) and the odorant degrading enzyme (ODE) families. 
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The OBPs are a well-studied and large family of globular proteins secreted into the aqueous 

sensillum lymph in strikingly high concentrations that possess lipophilic binding cavities 

(Steinbrecht, 1996; Steinbrecht et al., 1992; Klein, 1987; Galindo and Smith, 2001). OBPs were first 

discovered in moths but have since been found ubiquitously in other insects, including in flies and 

locusts, with each species expressing multiple OBP genes (Vogt and Riddiford, 1981; Brito et al., 

2016; Jiang et al., 2018; Kim et al., 1998). They exhibit binding affinities to a broad spectrum of 

odorants and are proposed to help the solubilization and transport of the often hydrophobic 

odorant molecules from the sensillum pores towards the dendritic membrane (Vogt and Riddiford, 

1981; Brito et al., 2016; Rihani et al., 2021; Leal, 2013). However, their significance in odor detection 

is being disputed since in some cases, loss of OBPs did not impact the sensitive detection to certain 

odors (Larter et al., 2016; Xiao et al., 2019), suggesting that the role of OBPs might depend on the 

chemical properties of the odorants.  

Within the OBP family, a subset of members are attributed to pheromone detection and are called 

pheromone binding proteins (PBPs). PBPs were first discovered in the Lepidopteran species 

A. polyphemus (Vogt and Riddiford, 1981). High concentrations of PBPs were found in the sensillum 

lymph (Klein, 1987), and were deemed vital for the selective as well as sensitive detection of 

pheromones by their cognate PRs (Leal, 2013; Xu et al., 2005). An interplay of PBPs with distinct 

PRs has been proposed, as demonstrated for the moths H. virescens and A. polyphemus through 

functional experiments with cell lines expressing PRs that were stimulated with combinations of 

different PBP subtypes and pheromone components (Grosse-Wilde et al., 2006; Forstner et al., 

2009). Similarly in D. melanogaster, OBP76a, also referred to as LUSH, is required to trigger the 

response of OR67d-expressing OSNs to the pheromone cVA, with the OSN’s sensitivity considerably 

reduced in LUSH-deficient mutants (Xu et al., 2005; Laughlin et al., 2008; Stowers and Logan, 2008).  

After the odorants trigger responses in OSNs, odorant molecules are supposed to be enzymatically 

inactivated by ODEs to prohibit a recurring reactivation of the receptors by the same ligands (Vogt 

et al., 1985; Chertemps et al., 2012). They thus play an integral part in rapid signal termination, 

which is crucial to sustain a proper olfactory response to repetitive stimuli (Vogt et al., 2020). ODEs 

comprise several classes of enzymes, such as aldehyde oxidases, aldehyde dehydrogenases, 

carboxylesterases, cytochrome P450s and various transferases, which are active towards specific 

functional groups of odorant molecules, such as alcohols, acetates, and aldehydes (Leal, 2013; 

Younus et al., 2014). In the antenna of D. melanogaster, 123 putative ODEs were described, with 

several members discovered per enzyme class (Younus et al., 2014). This is similar for the moth 

B. mori, where 127 antennal ODEs have been identified (Qiu et al., 2018). The high variety of ODEs 

expressed in the antenna are suggested to accommodate for a wide range of odorants and volatile 
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chemicals that may enter the sensillum lymph (Vogt et al., 2020). Yet surprisingly little is known 

about the functional mechanisms of this broad group of proteins in olfactory processes in insects. 

 

Figure 5. Model of sensillum processes in insect odorant detection. Odorants enter the sensillum through 
pores, where they are solubilized in the sensillum lymph by odorant binding proteins (OBPs) and then 
transported to the OSN dendrite membrane. They then bind to the tuning odorant receptor (OR) that is part of 
a heterotetrameric ligand gated ion channel complex together with the odorant receptor co-receptor (ORCO), 
initiating signal transduction. Afterwards, the odorant molecules are inactivated by odorant degrading enzymes 
(ODEs) to prohibit the prolonged or repeated binding to the tuning OR. 

 

The best-characterized ODEs are those of moth pheromone-sensitive sensilla. Indeed, the first ODE 

identified was a male-specific esterase from the moth A. polyphemus, which is found in the 

sensillum lymph of the long trichoid sensilla (Vogt et al., 1985). Initial reports suggested that the 

sensillum esterase degrades the acetate component of the female’s sex pheromone blend (Vogt et 

al., 1987; Vogt et al., 1988), which was later corroborated with kinetic studies of the purified 

enzyme revealing the rapid degradation rate of the added pheromone molecule (Ishida and Leal, 

2005). 

Studies were also conducted on the moth B. mori, where alcohol dehydrogenase was found to 

catalyze Bombykol to Bombykal, which is subsequently inactivated by an aldehyde oxidase to a 

long-chain fatty acid (E10,Z12-Hexadecanoic acid) (Pelletier et al., 2007; Kasang and Weiss, 1974; 

Rybczynski et al., 1990). In the H. virescens two ODEs were identified, aldehyde oxidase and 

aldehyde dehydrogenase, that inactivate the major (Z11:16Ald) and minor (Z9:14Ald) sex 

pheromone components to long-chain fatty acids of the same chain length (Tasayco and Prestwich, 
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1990). The altered moieties of the products assure that the compounds would no longer be able to 

activate the corresponding PRs. However, what remains unclear is how these inactivation products 

are ultimately removed from the sensillum lymph. 

1.5 Sensory neuron membrane proteins 

In addition to the molecular elements described earlier, another protein was uncovered in 

dendrites innervating the pheromone sensitive sensilla of the male moth A. polyphemus, which was 

somewhat arbitrarily called sensory neuron membrane protein or SNMP (Rogers et al., 1997; Vogt 

et al., 2020).  

Soon after its discovery in A. polyphemus, studies conducted on the moth M. sexta have not only 

identified an SNMP ortholog, but revealed that there are two SNMP types in the antenna, SNMP1 

and SNMP2 (Robertson et al., 1999). Later on, both types were identified in more Lepidopteran 

species, such as the moths H. virescens and B. mori (Rogers et al., 2001a). The availability of genomic 

and transcriptomic data from numerous species confirmed that SNMPs are ubiquitously expressed 

across the insect class, found in both holometabolous and hemimetabolous orders including 

Diptera, Hymenoptera, Coleoptera, Hemiptera and Orthoptera (Cassau and Krieger, 2021). More 

recently, a third SNMP type (SNMP3) was reported in the genome of several moth species, however 

in the case of B. mori and H. armigera, it does not appear expressed in the antenna but rather in 

the midgut, indicating a role outside of olfaction (Zhang et al., 2020; Xu et al., 2020).  

Throughout the insect taxa, the antennal SNMP subtypes appear to be highly conserved, with 

SNMP1 orthologs of different species showing a higher sequence identity compared to SNMP2 of 

the same species, as they generally share a sequence similarity of 25-35% (Forstner et al., 2008; 

Zhang et al., 2020; Shan et al., 2020). For instance, HvirSNMP1 of the holometabolous moth 

H. virescens shares a higher sequence identity to SgreSNMP1 of the hemimetabolous locust 

S. gregaria than it does to HvirSNMP2 (Jiang et al., 2016).  

Interestingly, expression of SNMP1 and SNMP2 subtypes have also been identified in organs 

beyond the antenna (Cassau and Krieger, 2021). Although SNMP1 is exclusively expressed in the 

antenna of most species (Zhang et al., 2020; Rogers et al., 1997; Leal et al., 2009; Jiang et al., 2016), 

it has been found in other chemosensory organs such as in the palps of S. gregaria and the moth 

Spodoptera litura (Lemke et al., 2020; Zhang et al., 2015b). In contrast, the SNMP2 type exhibits a 

much broader tissue distribution, found not only in organs associated with chemodetection, such 

as mouthparts and legs, but also in the abdomen, thorax and head (Zhang et al., 2015a; Xu et al., 

2020; Liu et al., 2014; Jiang et al., 2016; Shan et al., 2020; Zhang et al., 2020). This suggests that 
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SNMP2 is involved with divergent functions, in addition to a proposed role in antennal olfactory 

processes. 

 

Figure 6. The membrane topology of CD36 proteins is conserved across the different homologs. CD36 
proteins, such as Mus musculus CD36 and H. virescens SNMP1 and SNMP2 proteins possess two 
transmembrane domains (TMD) with intracellular N- and C-termini. They possess a large ectodomain with 
a hydrophobic internal tunnel-like structure. Predicted 3D structures were taken from the AlphaFold 
Protein Structure Database (EMBL-EBI). Blue colors indicate high model confidence, orange and yellow 
indicate low model confidence. AlphaFoldDB identification numbers: MmusCD36 = Q08857; HvirSNMP1 = 
Q9U1G3; HvirSNMP2 = B2RFN2.  

 

Sequence based analyses have classified the SNMPs as insect-specific members of the large CD36 

(cluster of differentiation 36) gene family, based on the eponymous CD36 protein first found in 

mammals (Rogers et al., 1997; Nichols and Vogt, 2008). Vertebrate CD36 proteins have exhibited 

diverse tissue distribution patterns and functional roles, including as receptors and transporters of 

various lipids and lipoproteins (Pepino et al., 2014; Silverstein and Febbraio, 2009). Typical for 

members of the CD36 family, SNMPs structurally form a protein with two relatively short 

transmembrane spanning domains and a large, ligand-interacting ectodomain (Jiang et al., 2016; 

Gomez-Diaz et al., 2016; Vogt et al., 2020), as shown in Figure 6.  

1.5.1 Expression topography of SNMPs in the antenna 

The analysis of the antennal expression topography and cellular localization of the SNMP types 

using in situ hybridization (ISH) and immunohistochemistry (IHC), as well as promoter driven 

expression of fluorescent proteins, has provided compelling evidence in support of their role in 
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olfaction (Rogers et al., 1997; Benton et al., 2007; Forstner et al., 2008; Blankenburg et al., 2019; 

Shan et al., 2020; Sun et al., 2019; Jiang et al., 2016; Rogers et al., 2001b).  

The first identified SNMP type, ApolSNMP1 was immuno-localized in the dendrites of OSNs that 

extended into the sensillum shaft of male antennae (Rogers et al., 1997) and not long after, was 

also localized in the OSN dendrites of female antennae (Rogers et al., 2001b). Similar results were 

obtained through ISH and IHC experiments conducted with other lepidopteran species, localizing 

the respective SNMP1 orthologs in subsets of OSNs in M. sexta, H. virescens, and Agrotis ipsilon 

(Rogers et al., 2001a; Forstner et al., 2008; Gu et al., 2013). Moreover, the OSN expression of the 

SNMP1 subtype extends to other insect orders, namely the dipteran D. melanogaster, 

hymenopteran Microplitis mediator, and the orthopteran S. gregaria (Benton et al., 2007; Shan et 

al., 2020; Jiang et al., 2016). In fact, in all studied species, antennal SNMP1 appears exclusively 

expressed in neurons with the only exception observed in D. melanogaster, where SNMP1 was also 

detected in the support cells associated with SNMP1-positive OSNs (Benton et al., 2007).  

Overall, SNMP1’s presence in the OSNs provided the first indications that it may play an important 

role in primary odor detection processes. This is further supported by co-localization studies 

conducted on the antennae of D. melanogaster, S. gregaria and H. virescens with SNMP1 and ORco 

(used as a marker for OR-expressing OSNs), revealing that SNMP1 is found in a subset of OR-positive 

neurons (Benton et al., 2007; Jiang et al., 2016; Zielonka et al., 2018). In contrast, co-labelling 

studies with members of the IR receptor family depicted no co-expression with SNMP1 (Shan et al., 

2020).  

In moths, SNMP1 is specifically associated with the detection of pheromones due to its increased 

expression prior to adult eclosion (Rogers et al., 1997; Gu et al., 2013; Liu et al., 2013; Sun et al., 

2019), coinciding with an increase in expression of putative PRs as well as its initial localization in 

pheromone sensitive sensilla of A. polyphemus (Gohl and Krieger, 2006; Rogers et al., 1997). Similar 

results were corroborated in the moth H. virescens through detailed fluorescence 

immunohistochemistry (FIHC) experiments, as SNMP1-positive OSNs were shown to innervate the 

pheromone detecting trichoid sensilla but not the basiconic sensilla (Blankenburg et al., 2019). 

These experiments also detailed the sexual dimorphism in the expression pattern of SNMP1 within 

the antenna, as males possess only a single SNMP1-positive OSN out of the total two to three OSNs 

per trichoid sensillum, while in females, all OSNs of a given sensillum are SNMP1-positive, indicating 

that males and females require SNMP1 in different capacities (Blankenburg et al., 2019). In light of 

its proposed role in pheromone detection, double FISH experiments revealed that all HR13- and 

HR6-expressing OSNs, which detect the cognate pheromone components Z11:16Ald and Z9:14Ald 

respectively, are co-expressed with HvirSNMP1 (Krieger et al., 2002; Pregitzer et al., 2014; Zielonka 
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et al., 2018). Coincidentally, even in the rudimentary larval antenna HvirSNMP1 was shown to be 

co-expressed with HR6-positive OSNs, and indeed, the larvae are capable of detecting the minor 

component Z9:14Ald (Zielonka et al., 2016). Its implied role in pheromone detection has also been 

suggested for D. melanogaster, where DmelSNMP1 is co-expressed in the OR67d-positive OSNs 

housed in trichoid sensilla that react to the pheromone component cVA (Benton et al., 2007; 

Kurtovic et al., 2007).  

However, the proposed role of SNMP1 in locust pheromone detection does not appear to be as 

clear, since there are no co-labelling studies with confirmed pheromone sensitive ORs, such as 

LmigOR70a and LmigOR35 housed in basiconic sensilla (Chang et al., 2023; Guo et al., 2020). In fact, 

the antennal expression topography of SNMP1 has not been elucidated yet for L. migratoria. 

Instead, the expression pattern of SNMP1 was analyzed for the locust S. gregaria via fluorescence 

in situ hybridization (FISH) experiments, revealing that SgreSNMP1 transcripts are found in subsets 

of basiconic OSNs and likely all OSNs of trichoid sensilla (Jiang et al., 2016). Additionally, SgreSNMP1 

was shown co-expressed with 33 out of a total of 83 tested ORs, underlining its importance for 

olfactory processes in the desert locust (Jiang et al., 2016).  

Despite variability in the expression pattern across the different insect species, SNMP1 appears 

absent in coeloconic sensilla (Blankenburg et al., 2019; Jiang et al., 2016). This is in line with results 

showing that OSNs innervating the coeloconic sensilla express IRs, as opposed to ORs (Benton et 

al., 2009; Silbering et al., 2011). 

In contrast to SNMP1, initial FISH analyses conducted on antennal sections of the moths H. virescens 

and A. polyphemus using SNMP2 riboprobes exhibited a specific support cell labelling pattern 

(Forstner et al., 2008). Additionally, a differential expression pattern emerged in co-labelling 

experiments visualizing both SNMP1 and SNMP2, supporting the novel non-neuronal expression of 

the SNMP2 type (Forstner et al., 2008). This expression pattern was substantiated in later 

experiments conducted in other insects, where SNMP2 appears exclusively expressed in antennal 

support cells of A. ipsilon, M. mediator and S. gregaria (Gu et al., 2013; Shan et al., 2020; Jiang et 

al., 2016). These findings contradict the nomenclature of the protein, as the SNMP2 type has not 

been detected in any sensory neurons in the antenna. 

Another key difference of SNMP2 compared to SNMP1 is that SNMP2 appears to be expressed 

much broader along the antenna, having been visualized in most, if not all, support cells of various 

sensilla types with no sex-specific differences noted (Blankenburg et al., 2019; Shan et al., 2020; Gu 

et al., 2013). In fact, co-labelling studies visualizing SNMP2-positive cells alongside neurons have 
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demonstrated that multiple support cells underneath the sensilla express SNMP2, which appear to 

envelop the same OSN clusters (Blankenburg et al., 2019; Forstner et al., 2008; Sun et al., 2019). 

So far, detailed analyses of the SNMP2 protein’s localization are sparse, as FIHC experiments have 

only been performed on the moths A. ipsilon and H. virescens (Gu et al., 2013; Blankenburg et al., 

2019). In the former, immunogold labelling data showed the presence AipsSNMP2 in close 

proximity to the trichoid sensillum shaft (Gu et al., 2013). Alike for H. virescens, FIHC experiments 

detected HvirSNMP2 in the apical most region of the support cells bordering the sensillum’s lumen 

(Blankenburg et al., 2019). These regions of the support cells are distinguished by extensive 

microvilli-like membranes that are in direct contact with the sensillum lymph (Keil, 1989). 

Unfortunately, clear protein distribution of SNMP2 is missing in insects of other orders, thereby 

making it difficult to make general conclusions about SNMP2’s function in insect olfaction.  

However, the differential expression of SNMP1 and SNMP2 in OSNs and support cells, suggests a 

functional specialization of the SNMP types in the antenna. This raises the question, what roles may 

the neuronal and the non-neuronal SNMPs perform in insect olfactory sensilla? 

1.5.2 Function of SNMPs in insect olfaction 

The link between SNMP1 and pheromone detection has been envisioned early on with the 

discovery of ApolSNMP1 in pheromone-responsive sensilla followed by the co-localization of 

HvirSNMP1 and DmelSNMP1 with the respective pheromone receptors (Rogers et al., 1997; Benton 

et al., 2007; Pregitzer et al., 2014; Zielonka et al., 2018). 

This has led to a model in which SNMP1 might operate as an additional co-receptor to the ORx/ORco 

complex by passing signal molecules to the adjacent receptor (Vogt, 2003). In light of this view, 

split-ubiquitin yeast hybridization assays of moth BmorSNMP1 and HarmSNMP1 demonstrated 

protein interactions with the respective pheromone receptors BmorOR1 and HarmOR13 (Xu et al., 

2020; Zhang et al., 2020). Additionally, in vitro and in vivo studies were conducted with 

D. melanogaster, where Förster resonance energy transfer assays using cell culture and fluorescent 

protein fragment complementation assays on the antenna revealed protein-protein interactions of 

DmelSNMP1 with ORs (German et al., 2013; Benton et al., 2007). Overall, these interaction studies 

indicate that SNMP1 orthologs are in close proximity to their respective co-expressed ORs, hinting 

at the formation of heteromeric SNMP1/ORx/ORco complexes. 

First functional studies of SNMP1 validated its relevance in pheromone detection in 

D. melanogaster SNMP1-knock outs, where single sensillum recordings (SSR) of DmelSNMP1-

deficient mutants displayed significantly attenuated responses to cVA in OR67d-OSNs that was 
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restored in DmelSNMP1 neuronal rescues (Benton et al., 2007). Comparable results were obtained 

for SNMP1-null mutants of the nuctoid moth H. armigera, where HarmSNMP1 was described as 

indispensable for the appropriate detection of the long-chain sex pheromone components 

Z11:16Ald and Z9:16Ald (Liu et al., 2020). Additionally, mating behavior observations of 

HarmSNMP1-null mutant males showed lowered attraction to calling females, which ultimately 

resulted in significantly decreased copulation (Liu et al., 2020). Furthermore, in RNA interference 

based experiments knocking down SNMP1 in B. mori, males were hindered in their ability to locate 

pheromone-releasing females (Zhang et al., 2020). 

The importance for SNMP1 in facilitating the detection of fatty acid derived pheromones was 

investigated in calcium imaging experiments of cell lines heterologously expressing H. virescens 

HR13 alone or with HvirSNMP1 (Pregitzer et al., 2014). The presence of HvirSNMP1 increased the 

sensitivity of the cells to the main sex pheromone component by about 1000-fold (Pregitzer et al., 

2014). Furthermore, analysis of the response kinetics of OR67d-OSNs in DmelSNMP1-deficient flies 

uncovered that SNMP1 was not only found to be required for a sensitive pheromone response but 

may also play an important role in the rapid activation and inactivation after the applied pheromone 

stimulus (Li et al., 2014). 

Structure-activity based analysis revealed that SNMP1’s ectodomain was deemed essential for its 

proper function, in contrast to the more dispensable intracellular and transmembrane domains 

(Gomez-Diaz et al., 2016). This was evident in SSR studies of various D. melanogaster mutants 

expressing DmelSNMP1 with single amino acid exchanges along the ectodomain, where a loss of 

pheromone-evoked responsiveness was observed in the trichoid sensilla (Gomez-Diaz et al., 2016). 

In fact, the ectodomain of mammalian CD36 protein was sufficient to show the wide range of ligand 

binding capability to the pheromone molecules cVA, Bombykol and Z11:16Ald, all long-chain 

aliphatic molecules, in surface plasmon resonance assays, thus also demonstrating that different 

members of the CD36 family can interact with similar molecules (Gomez-Diaz et al., 2016). 

To further elucidate the role of the ectodomain for its function, homology based modelling of insect 

SNMPs to mammalian CD36 homolog LIMP-2 was performed (Gomez-Diaz et al., 2016). This 

revealed a putative tunnel spanning through SNMP1’s ectodomain, with an internal diameter wide 

enough to allow the passage of pheromone molecules (Gomez-Diaz et al., 2016). Consequently, 

blocking the tunnel with amino-acid substitutions caused a diminished pheromone-evoked 

response in OSNs (Gomez-Diaz et al., 2016). This establishes a model in which neuronal SNMP1 

allocates the extracellular hydrophobic pheromones via its tunnel-structure from PBPs to the 

ligand-binding site of the cognate pheromone receptors, as demonstrated for the moth H. virescens 

in Figure 7. 



  Introduction 

28 
 

 

 

Figure 7. Proposed role of SNMP1 in pheromone detection as exemplified for the moth H. virescens. 
Pheromone molecules (Z11:16Ald) that enter the sensillum bind to pheromone binding proteins (PBPs) 
that transport the pheromone to the dendritic membrane of a pheromone-responsive OSN. Here, it first 
binds to the sensory neuron membrane protein 1 (SNMP1), which funnels the pheromone molecule to the 
adjacent pheromone receptor (HR13)/ORco complex. After the receptor activation, the pheromone 
molecule is released from the receptor complex and is then inactivated by the pheromone degradation 
enzyme, aldehyde oxidase, which converts Z11:16Ald to a long-chain fatty acid of the same chain length. 

In stark contrast to SNMP1, considerably much less is known about the support cell expressed 

SNMP2. A role in olfactory processes can be deduced by its antennal expression pattern and the 

protein’s cellular localization, the latter of which is only known for moths (Rogers et al., 1997; Gu 

et al., 2013; Blankenburg et al., 2019). Considering that SNMP2 is expressed more broadly than 

SNMP1 and is not found in the OSNs, its contribution to olfaction may be more general compared 

to SNMP1’s specific role in pheromone recognition. Therefore, based on SNMP2’s localization in 

numerous support cells and its homology to CD36 proteins, which include transporters of various 

long chain lipids, an earlier study proposed that it may mediate the removal of lipophilic substances 

out of the sensillum lymph (Forstner et al., 2008). In fact, non-SNMP insect CD36 members have 

been noted to perform similar functions, such as D. melanogaster NinaD and Santa Maria that act 

as fatty acid transporters (Kiefer et al., 2002; Giovannucci and Stephenson, 1999; Wang et al., 2007). 

In support of this concept, SNMP2 is localized at the apex of the support cells, which directly border 

the sensillum lymph (Blankenburg et al., 2019). However, due to the overall lack of functional 

studies conducted on SNMP2, its relevance for olfaction remains to be determined. 
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1.6 Aims of the thesis 

 

Currently, our knowledge on the role of SNMPs in the insect olfactory system is limited. In 

particular, there is lack of comprehensive studies investigating the cellular expression and 

addressing the specific function of the SNMP types. Therefore, this thesis aims to elucidate the 

topographic distribution and subcellular localization of SNMPs in the antenna and assess the 

functional relevance of support cell-expressed SNMP2 in the insect olfactory system. The upcoming 

three chapters consist of three published manuscripts that focus on specific aspects of SNMPs 

expression and olfactory function in different insect species and orders. 

While there are studies on the cellular distribution of SNMP1 and SNMP2 proteins in 

holometabolous insects, little is known about their expression topography in the antenna of 

hemimetabolous species, such as locusts. Therefore, Manuscript 1 focuses on investigating the 

sensillum-specific expression and subcellular localization of the SNMP1 and SNMP2 proteins along 

the antenna of the desert locust S. gregaria.  

As hemimetabolous insects, the general antennal morphology of S. gregaria exhibits little changes 

throughout its development. However, it is unclear whether a sensilla- and cell-type-specific SNMP 

distribution pattern is established in the nymphal stages and whether a pattern established in the 

first nymph stage remains conserved throughout locust development. To address the question, 

Manuscript 2 focuses on the topography of SNMP1 and SNMP2 expression in the antenna of 

different juvenile stages of the desert locusts.  

In moths and flies, OSN-expressed SNMP1 has been demonstrated as a requirement for the efficient 

detection of pheromones. However, currently there are no studies regarding the role of support 

cell-expressed SNMP2 despite its broad expression in the antenna of moths such as H. virescens, a 

model organism which has been extensively studied in the context of pheromone detection. To gain 

first insights into SNMP2 function in support cells, Manuscript 3 focuses on assessing the roles of 

both the SNMP2 protein as well as support cells in pheromone-responsive sensilla of the moths 

H. virescens and B. mori through functional and behavioral assays.  
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Chapter 2. Manuscript 1 
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Supplementary Data for Manuscript 1 

 

ectodomains

Transmembrane
domains

Intracellular domains

SgreSNMP1 1 -----------MQLPVGLAAGGGGVFFMAVVAGWYGMPKLISSQIASGLA 39
..|..|||| |..:..:|:|..|...|.:::::|...:.

SgreSNMP2 1 MLSARVCGCGRRGLWWGLAA-GAALLAVALVLRWAAFPAILTAKIKQAVQ 49

SgreSNMP1 40 LKKGSDIRQMWSNFSDPIDFRVYVLNLTNPEAVHRGEKPIVQEIGPYFYE  89
|..||...:.:.....|:.::||:.|:|||:.|.:|.||::|::|||.||

SgreSNMP2 50 LHDGSPAMERFVQLPQPLLYKVYLFNVTNPDEVEQGAKPVLQQVGPYVYE 99

SgreSNMP1 90 EYKQKVKLRDHKEDDTVSYNNKITWLFNQGKSAPGLTGDELVTLPHPLLL 139
|::::..: ....:.::.|..:.|:.|:..:| |||:.|:..|..:.:::

SgreSNMP2 100 EWRRRRDV-TRMANGSLDYRLETTYHFSPERS-PGLSEDDEFTYLNVVMV    147

SgreSNMP1 140 GLLLTLERDKPGMLALVNKAIPPLFRKPESIFVTAPVRNFLFDGI-VINC    188
|:::.:..|...:|::|...:..|......:|..|..|..|:.|: .::|

SgreSNMP2 148 GIVVQVSEDYSSLLSMVEPVLSELVPGGAQLFQRASARQLLWSGVPTVDC 197

SgreSNMP1 189 TVTDFSAKALCTGLKKE---AKELKREGDNFFFSFFGHKNGTVDAGRLRV    235
.....:...|..|....   |...:.|...:.|||||.|||| .....||

SgreSNMP2 198 RGNLSAVATLACGALPSLLPATVQQTEPGVYVFSFFGFKNGT-SKQWWRV 246

SgreSNMP1 236 KRGIQNIDDLGRVVAFNGEPKMSAW--RGDPCNDLRGTDSTIFPPFRDPK    283
..|::::..||.|::::...::..|  ...|||::||||||:||||..|.

SgreSNMP2 247 DSGVEDVRTLGSVISYDNSSRLKVWSPSNSPCNEIRGTDSTLFPPFITPN 296

SgreSNMP1 284 EPIVAFGPDLCLSLGANWERKAEYMGVPGNRYTAELPDMKGNPEHHCYCP 333
:.|..|..|:|.|:.|.:||:.:..||.|.|:.|....::....:.|.||

SgreSNMP2 297 DTIYIFAHDICRSMHAEYEREQDVSGVHGLRFVASGSLLRRGGPNACTCP 346

SgreSNMP1 334 TEQTCLEKGTLDLSPCAGAPVIATLPHFYLASETYLQTVSGLQPTKENHE 383
:..||..|.:.:..|..||:..:.||||.||..|||...||.|.||.||

SgreSNMP2 347 -DGRCLATGAISVRECFRAPIAVSFPHFYQASPEYLQYAEGLSPNKELHE    395

SgreSNMP1 384 LFMVFESTTGSPMEARKRLQFNMFLHKINKIDLLANVPYALMPLIWVEEG 433
.|:|.|..||:|:...|||||||...:::::..|.||...|.||:|||||

SgreSNMP2 396 TFVVIEPETGTPLVGAKRLQFNMKAVRVSQVPALRNVSDGLFPLLWVEEG 445

SgreSNMP1 434 LALEEKYVSTLRMLFRMQGIMSGVKWTLMAVGMGMAGAGGYLHFKRRKEL    483
:.||||.:|.:|.|:..:..|.||.|.::|||:    |.......|..:.

SgreSNMP2 446 VELEEKQLSQVRALYVARASMGGVAWAVLAVGV----AALLFCAVRLAKA    491

SgreSNMP1 484 VVGPAEPKKVVAGHDTTGHPIRLESSHSRY-------------------- 513
.|........:....|.|..:.:.:..:.|                    

SgreSNMP2 492 RVAERNRSLSLEKGVTAGGKLSVPTLGAAYPESATKRPSPPAAAPAASTA    541

SgreSNMP1 514 ---------- 513

SgreSNMP2 542 PAAPVDATHF    551

Figure S1. Alignment of the amino acid sequences of S. gregaria SNMP1 and SNMP2. Pairwise
sequence alignment were conducted with EMBOSS Needle. Light grey underlined sequences
represent intracellular regions of the proteins while black underlined areas denote predicted
transmembrane domains. The region indicated by the grey background show the extracellular
domains of the proteins used to generate antibodies. The ectodomains of SNMP1 (blue) and
SNMP2 (orange) have a sequence identity of 33.7%.
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A B C

Figure S2. SNMP1 is expressed in a subset of Orco-positive OSNs in basiconic sensilla. In combined
FISH/FIHC, Orco-positive cells were visualized using an antisense-Orco riboprobe (red), whereas
SNMP1-positive cells were detected using anti-SNMP1-ab (green). Nuclei were stained with DAPI
(blue). A red and blue channel. B green and blue channel. C merged depiction of the green and red
channel. In all images, the fluorescent channels were overlaid with the transmitted light channel. Scale
bar = 10 µm.

ORCO riboprobe  anti-SNMP1-ab DAPI

*
* *

*
* *

A B C

anti-SNMP1-ab anti-HRP DAPI

Figure S3. FIHC experiment showing that SNMP1 is expressed in OSNs and the associated
support cells of a trichoid sensillum. The anti-SNMP1-ab labelling is shown in green. Neurons
are labelled with anti-HRP and shown in red while the nuclei are stained with DAPI shown in
blue. A green and red channel. B red and blue channel. C green and blue channel. The encircled
area denotes the SNMP1 positive support cells and the asterisks show the SNMP1-positive
OSNs. Scale bar = 10 µm.
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anti-SNMP1-ab anti-HRP

Figure S4. SNMP1 is expressed in distinct OSNs and support cells of a basiconic sensillum in
S. gregaria. A-C FIHC experiment, showing anti-SNMP1-ab immunoreactive cells in the green
(A, C) and OSNs labelled with anti-HRP in the red (A, B) fluorescence channels; the transmitted
light channel was overlaid to better display the basiconic sensillum (s. b.). The region encircled
denotes the SNMP1-positive support cells; the asterisk marks a SNMP1-expressing OSN within
a basiconic OSN cluster. The arrow indicates dendritic labelling by anti-SNMP1-ab. Scale bar =
10 µm.
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*

*
*

A B C

s. t.

Figure S5. SNMP1 is expressed in support cells and OSNs of a S. gregaria trichoid
sensillum. The SNMP1-positive cells were visualized by Combined FISH and FIHC using
an specific antisense-SNMP1 riboprobe and anti-HRP for labelling of OSN. A Cells
comprising SNMP1 transcripts visualized in the green fluorescent channel. B Labelling of
OSNs (red fluorescent channel). C merged image of the red and green channels. The
encircled areas cells indicated the location of non-neuronal SNMP1-positive support
cells while the asterisks show SNMP1-positive OSNs. In all images, the fluorescent
channels were overlaid with the transmitted light channels. Scale bar = 10 µm.

SNMP1 riboprobe anti-HRP
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Figure S6. Assessment of secondary antibody binding to ultrathin sections of the S. gregaria
antenna. Immunogold labelling experiments were conducted omitting the primary antibody, but
applying the secondary antibody coupled with colloidal gold. A and C Overviews of cross section
through different sensilla. B and D show the region boxed in A and C, respectively, at higher
magnifications. Arrows denote single gold grains indicating negligible background labelling of the
secondary antibody. Scale bars: A = 2 µm; C = 1 µm; B and D = 500 nm.
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Fig. S7 Localization of SNMP1 within dendrites of OSNs an microvilli structures of support cells in a
basiconic sensillum of S. gregaria. Ultrathin section of antenna were used in immunogold-labelling
experiments with anti-SNMP1-ab and assessed by transmission electron microscopy. A Overview
image showing a basiconic sensillum. B Higher magnification of the sensillum shaft. Strong anti-
SNMP1-ab immunoreactivity is associated with membranes of dendritic structures within the sensillum
shaft. C Higher magnifications of an area at the base of the sensillum demonstrating anti-SNMP1-ab
labeling associated with microvilli structures of support cells. Scale bars: A = 2 µm; B and C = 500 nm.
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Chapter 5. Discussion 

In the scope of this thesis, the roles of SNMPs in insect olfaction were assessed with different 

approaches and under various aspects. The investigations revealed a sensillum-type and cell-type 

specific expression of the SNMP1 and SNMP2 proteins as well as their subcellular localization in the 

antenna of adult Schistocerca gregaria and during locust development suggesting specific functions 

of the two SNMP-types in OSNs and support cells of locust sensilla (Manuscript 1 and 

Manuscript 2). Uncovering the localization of SNMP types serves as an important prerequisite for 

targeted functional investigations. Such investigations were conducted for the support cell-

expressed SNMP2 of the moths Heliothis virescens and Bombyx mori in Manuscript 3 and provided 

first evidence that support cells and SNMP2 proteins may be involved in sensillum lymph 

homeostasis through the removal of lipophilic "waste products" such as fatty acids resulting from 

the inactivation of sex pheromones. 

5.1 Expression topography of SNMPs in locusts 

Despite there being comprehensive data regarding the antennal distribution and cell-specific 

expression of the SNMPs in holometabolous insects such as in moths and flies, little is known about 

the localization of the proteins in hemimetabolous insects, such as locusts. Therefore, in 

Manuscript 1, the antennal expression topography and subcellular localization of SNMP1- and 

SNMP2-proteins of adult S. gregaria were comprehensively examined using newly generated SNMP 

type-specific antibodies targeting the ectodomains of the respective proteins. In addition, the 

developmental expression and distribution of the SNMP proteins was addressed by investigating 

the 1st, 3rd and 5th instar nymphs (Manuscript 2). 

5.1.1 SNMP1 expression and function in olfactory sensory neurons 

The SNMP1 expression was first assessed by performing fluorescence immunohistochemistry 

(FIHC) on antennal sections of adult S. gregaria (Manuscript 1). This revealed that the protein is 

found in a considerable number of OSNs and their dendrites of trichoid and basiconic sensilla along 

the antenna. The dendritic labelling of SNMP1 was corroborated through immunogold labelling 

experiments, where the protein was detected in a subset of dendritic structures within the 

basiconic sensillum lumen. Furthermore, in the adult antenna, anti-SNMP1 immune reactivity 

coincided with the labelling of ORco-positive OSNs including their dendrites. These findings are in 

line with previous results visualizing SNMP1 transcripts by fluorescence in situ hybridization (FISH) 

in subsets of OR-expressing OSNs in these sensillum types (Jiang et al., 2016). The SNMP1 protein 

was not detected in OSNs innervating coeloconic sensilla, which in S. gregaria have been noted to 
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express IRs (Guo et al., 2013). Correspondingly, SNMP1 in other insects, such as D. melanogaster 

(Benton et al., 2007) and M. mediator (Shan et al., 2020), was found co-expressed with ORs and not 

with IRs. Thus, the generated results from the locust further validate that the SNMP1 subtype in 

insects is confined to OSNs expressing olfactory receptors of the OR family. 

When further exploring the sensillum-specific distribution using the anti-SNMP1 antibody on 

antennal sections of adult S. gregaria, it was revealed that all OSNs innervating trichoid sensilla 

were positive for SNMP1. Similar results were obtained for Locusta migratoria, suggesting that all 

OSNs in locust trichoid sensilla rely on SNMP1 for the appropriate detection of odorants. Expression 

of the SNMP1 subtype in all OSNs of trichoid sensilla was also reported in some other insects, for 

instance in D. melanogaster (Benton et al., 2007) and in female H. virescens moths (Zielonka et al., 

2018; Blankenburg et al., 2019). Noteworthy, in males of H. virescens, only a single OSN of the 

generally two to three OSNs innervating the trichoid sensillum is positive for SNMP1 (Blankenburg 

et al., 2019), demonstrating that SNMP1 expression is not generally associated with all OSNs of 

trichoid sensilla. In the fly and in moth species, various studies demonstrated that SNMP1-positive 

OSNs of trichoid sensilla sensitively detect pheromones and that SNMP1 is required for proper odor 

sensing (Pregitzer et al., 2014; Liu et al., 2020; Gomez-Diaz et al., 2016; Li et al., 2014). In this regard, 

it is possible that at least some SNMP1-expressing OSNs of locust trichoid sensilla are responsive to 

pheromones. Indeed, early single sensillum recoding (SSR) conducted on S. gregaria trichoid 

sensilla have demonstrated their responsiveness to a putative sex pheromone component (Ochieng 

and Hansson, 1999).  

In contrast to the trichoid sensilla, only subsets of OSNs were labelled by the anti-SNMP1 antibody 

in basiconic sensilla. The same sensillum-specific pattern was also observed in the antenna of the 

migratory locust, L. migratoria, indicating that the SNMP1 expression topography in OSNs is 

conserved across various locust species. These findings also highlight that in locusts, only a fraction 

of the basiconic OSNs appears to rely on SNMP1 for the proper detection of odorants. In support 

of this concept, previous in situ hybridization studies on the S. gregaria antenna have uncovered 

that out of 83 ORs localized to basiconic OSNs, only 30 ORs were co-expressed with SNMP1 in the 

same OSN (Pregitzer et al., 2017; Pregitzer et al., 2019). In addition, SSR recordings of basiconic 

sensilla in L. migratoria revealed responses to a variety of odorants, including plant-derived 

volatiles, nymphal body odors and pheromones, such as the pheromones 4-vinylanisole (4VA) and 

phenylacetonitrile (PAN) (Ochieng and Hansson, 1999; Chen et al., 2022a; Chang et al., 2023). 

Altogether, this demonstrates that in locusts a combination of SNMP1-dependent and SNMP1-

independent OSNs exists in basiconic sensilla both of which are necessary to accommodate for the 

detection of a large spectrum of behaviorally relevant odorants. 
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Considering the expansive expression topography of SNMP1 in populations of trichoid and 

basiconic OSNs and the co-expression with a large number of different ORs, it is conceivable that in 

locusts, SNMP1-positive OSNs may serve a dual purpose. They may contribute to the sensitive 

detection of pheromones and, in addition, to behaviorally relevant general odorants, indicating for 

example food sources or appropriate oviposition sites. In line with this notion, SNMP1 is expressed 

in all trichoid OSNs in S. gregaria (Manuscript 1) with some OSNs indicated to respond to 

pheromone components (Ochieng and Hansson, 1999). While in L. migratoria, where SNMP1 is also 

expressed in all OSNs innervating the trichoid sensillum (Manuscript 1), distinct trichoid OSNs 

express the receptor type OR3, which recognizes various non-pheromone ligands (You et al., 2016). 

Moreover, electrophysiological recordings from trichoid sensilla of L. migratoria demonstrated OSN 

responsiveness to fecal volatiles as opposed to tested putative sex pheromones (Cui et al., 2011). 

A role beyond pheromone detection is also supported from studies on D. melanogaster SNMP1, 

which was shown to be necessary for the detection of the pheromone cVA (Benton et al., 2007; 

Gomez-Diaz et al., 2016) as well as the plant volatile Farnesol (Ronderos et al., 2014) by different 

trichoid OSN populations. However, in locusts, the overall extent of how SNMP1 contributes to the 

detection of pheromonal and non-pheromonal compounds remains largely unknown. 

Since locusts are hemimetabolous insects, their antennae undergo a successive development, with 

little morphological differences observed in the general structure. However, it is unclear if the cell- 

and sensillum-specific SNMP1 expression pattern observed in adult S. gregaria is similar in larval 

stages and remains conserved throughout its development. Therefore, a characterization of the 

SNMP1 expression pattern in the antenna of juvenile stages of S. gregaria was addressed 

(Manuscript 2). 

Firstly, the outer morphology of the antennal sensilla structures of adults, fifth instar nymphs and 

first instar nymphs were assessed, to determine if there are any distinctions between the olfactory 

sensilla of the different stages. The trichoid, basiconic and coeloconic sensilla showed no obvious 

morphological differences throughout their development, indicating that from the first instar stage 

onwards, the defining morphology of the olfactory units does not undergo any major restructuring. 

No development changes in the morphology of the olfactory sensilla were also observed for the 

locust species, Schistocerca americana (Chapman, 2002) and L. migratoria (Chapman and 

Greenwood, 1986), which altogether supports the notion that in locusts, the sensillum shape and 

repertoire is already established in freshly hatched nymphs and remains the same until the adult 

stage. The only notable difference between the developmental stages in locusts is reflected in the 

total number of olfactory sensilla, as the quantity of each olfactory sensillum type increases with 

each molt (Ochieng et al., 1998). 
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Analysis of the antennal distribution of SNMP1 in the 1st, 3rd and 5th instar nymphs in FIHC 

experiments revealed numerous anti-SNMP1 positive OSNs. When assessing the sensillum-specific 

distribution of SNMP1, it became evident that like in the adult antenna, all OSNs innervating the 

trichoid sensilla are SNMP1-positive while no SNMP1-expressing OSNs are housed in the coeloconic 

sensilla. In addition, SNMP1 is expressed in only a subset of basiconic OSNs, corroborating SNMP1-

dependent and SNMP1-indepent olfactory detection mechanisms in the developing antenna for 

this sensillum type.  

Given the proposed co-receptor function of SNMP1 and its requirement for sensitive pheromone 

detection in OSNs of adult insects, it is conceivable that younger locust developmental stages also 

rely on OSN-expressed SNMP1 for the proper detection of behaviorally relevant odors. In this 

regard, analysis of the larval antenna of the moth H. virescens revealed sensilla with OSNs 

responsive to the minor sex pheromone component Z9:14Ald, and found co-expression of SNMP1 

with the receptor HR6 tuned to Z9:14Ald (Zielonka et al., 2016). Moreover, electrophysiological 

recordings of basiconic sensilla on the antenna of L. migratoria nymphs revealed OSN 

responsiveness to PAN mediated by the receptor OR70 (Chang et al., 2023). Another study showed 

that basiconic sensilla of all L. migratoria developmental stages respond to the 4VA detected by 

OR35 (Chen et al., 2022a). However, co-expression of these locust pheromone receptors with 

SNMP1 has not been analyzed. In addition, given SNMP1’s broad expression in numerous OSNs 

along the nymph antenna, it is possible that similar to adults, not all SNMP1-positive OSNs in the 

nymph stages are dedicated to the detection of pheromones.  

5.1.2 SNMP1 and SNMP2 expression in non-neuronal support cells 

A new revelation that emerged in both adult and larval stages (Manuscripts 1 and 2) was that in 

locusts, expression of the SNMP1 subtype was not restricted to OSNs as anti-SNMP1 immune 

reactivity was also detected in support cells. These findings seem to be in contradiction to a 

previous in situ hybridization study, which detected SNMP1 only in OSNs of the S. gregaria antenna 

(Jiang et al., 2016). However, this discrepancy could possibly be explained due to a lack of a 

neuronal counter stain in the in situ hybridzation study, making it difficult to accurately characterize 

the expression in OSNs and non-neuronal support cells. To test if the visualization of SNMP1 in 

support cells was not due to unspecific labelling by the primary antibody, additional control 

experiments were conducted by applying an antisense SgreSNMP1 riboprobe and a neuronal 

marker in a combined in situ hybridization/FIHC experiment (Manuscript 1). The results clearly 

confirmed the expression of SNMP1 in non-neuronal support cells. 
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Similar to its neuronal expression, the SNMP1 expression in support cells showed a sensillum 

specific pattern in S. gregaria adults and nymphs as well as in adult L. migratoria. SNMP1 expression 

in support cells strictly correlated with the presence of SNMP1-positive OSNs in the trichoid and 

basiconic sensilla. In other words, if there were SNMP1 positive OSNs in a sensillum, there were 

also SNMP1 positive support cells. A similar situation was observed in D. melanogaster where 

SNMP1-positive support cells were associated with SNMP1-positive OSNs in trichoid sensilla 

(Benton et al., 2007). Remarkably, in SNMP1-difficient fruit flies, rescue of SNMP1 in OSNs was 

sufficient to reestablish sensitive responsiveness to the pheromone cVA, whereas the rescue of 

SNMP1 in only the support cells did not result in the reinstated sensitive phenotype (Benton et al., 

2007). Altogether, this implies that in flies and locusts, the SNMP1 subtype can play different roles 

in olfaction, depending on its cell-specific expression. This greatly differs to moths, where SNMP1-

expression was shown to be restricted to OSNs of trichoid sensilla, indicating that moth SNMP1 has 

adapted a more specialized role in the olfactory system i. e. in the detection of odorants such as 

sex pheromones (Zhang et al., 2015a; Jiang et al., 2016; Blankenburg et al., 2019; Sun et al., 2019). 

Compared to SNMP1, S. gregaria SNMP2 expression in the antenna of adults was only detected in 

the non-neuronal support cells (Manuscript 1). Additionally, the SNMP2 type expression pattern is 

established early i. e. the first nymphal stage and is retained throughout development 

(Manuscript 2). Immunohistochemistry experiments localized the SNMP2 protein in support cells 

of the two most abundant sensillum types: the basiconic and coeloconic sensilla (Manuscripts 1 

and 2). Although no double labelling experiments were conducted to assess a possible co-

expression of both SNMP subtypes in the same cells of the basiconic sensillum, a previous study in 

S. gregaria demonstrated a differential expression pattern of SNMP1 and SNMP2 through double 

in situ hybridization experiments, indicating that they are expressed in different cells (Jiang et al., 

2016).  

In the immunohistochemistry experiments of this thesis with the SNMP2 specific antibody 

(Manuscripts 1 and 2), no SNMP2 protein was detected in cells housed in trichoid sensilla. However, 

whether this is in fact due to the absence of SNMP2 in support cells of locust trichoid sensilla or 

possibly due to SNMP2 protein levels below the antibody detection limit remains uncertain. In this 

context, it is worth mentioning that the SNMP1 protein appears strikingly abundant in the trichoid 

support cells. It is therefore possible that in the trichoid sensilla, the support cells have replaced 

SNMP2 with SNMP1, where it may fulfil a function similar to SNMP2 of the basiconic and coeloconic 

support cells.  

In accordance with the notion that in support cells SNMP1 and SNMP2 may perform analogous 

functions, both proteins were localized in the microvilli membranes of the support cells in 
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immunogold labelling experiments (Manuscript 1). These microvilli membranes are found on the 

apical most side of the support cells at the direct interface to the sensillum lymph, which are 

considered regions of high transmembrane transport (Steinbrecht and Gnatzy, 1984). A previous 

study conducted on the moth A. ipsilon localized SNMP1 and SNMP2 within the sensillum’s 

structure through immunogold labelling experiments, however, the specific subcellular localization 

of the non-neuronal SNMP2 could not be clarified (Gu et al., 2013). In prior FIHC experiments 

conducted on the antenna of the moth H. virescens, SNMP2 expression was also located on the 

apical pole of support cells facing the sensillum lymph (Blankenburg et al., 2019), indicating a 

conserved function of support cell SNMPs across different insect taxa. Thus, based on the 

subcellular localization of support cell-expressed SNMPs in the microvilli as well as their 

categorization into the CD36 family of lipid receptors and transporters, it has been suggested that 

the proteins might play an important role in the sensillum lymph maintenance processes (Forstner 

et al., 2008). This will be discussed more thoroughly in the upcoming chapter. 

 

 

Figure 8. Depiction of the cell- and sensillum type-specific expression of SNMP1 and SNMP2 in 
the locust S. gregaria. The expression topography of the two SNMP subtypes remains consistent 
throughout the locust’s development, from the first nymph stage until the adult stage. The 
organization of the three different olfactory sensilla (trichoid, basiconic and coeloconic) is shown 
at the top. The upper panel (blue) denotes the expression pattern for SNMP1. The lower panel 
(yellow) denotes the expression for SNMP2. + indicates the presence of the protein in a subset 
of cells. +++ indicates the presence of the protein in all cells. --- indicates no protein detected. 
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hemimetabolous locusts strongly rely on both SNMP types beginning from the first nymphal stage 

onwards. Although SNMP1 in larval antennae of holometabolous H. virescens has been 

documented, the larvae possess a drastically different olfactory system and SNMP expression 

topography compared to adults, as in larvae SNMP1 is expressed in OSNs of the B1, B2 and B3 

sensilla (Zielonka et al., 2016), while in adults, it is expressed in OSNs of the trichoid sensilla 

(Zielonka et al., 2018; Blankenburg et al., 2019). In contrast, the expression patterns of both SNMP 

types in the 1st, 3rd, and 5th instar nymphs of the hemimetabolous S. gregaria matched that of the 

adults very closely (Manuscript 1, Manuscript 2). Whether or not the nymphal stages rely on SNMPs 

in the exact same contexts as the adult locusts is unclear. Perhaps the similarities in the locust SNMP 

expression topography could implicate a certain degree of overlap in the odors to which nymph 

and adult locusts are exposed to, as different developmental stages appear at the same time in the 

same environment (Peng et al., 2020). 

In summary, a unique cell- and sensillum-specific expression pattern attributed to each SNMP 

subtype has emerged in locusts. SNMP1 was found in OSNs and support cells of the trichoid and 

basiconic sensilla, while SNMP2 was found only in the support cells of the basiconic and coeloconic 

sensilla. This is in contrast to the differential tissue expression observed in moths, where SNMP1 

expression is restricted to OSNs of the pheromone sensitive trichoid sensilla, while SNMP2 was 

found in countless support cells of various olfactory sensilla (Forstner et al., 2008; Blankenburg et 

al., 2019). Furthermore, the detailed immunogold labelling of both SgreSNMP1 and SgreSNMP2 in 

the microvilli of the basiconic support cells represent the first clear localization of SNMPs in these 

subcellular structures.  

 

5.2 The roles of SNMP2 and support cells in sensillum lymph 

clearance 

Most of what is known about the functions of insect SNMPs is based on studies that addressed the 

OSN-expressed SNMP1 type. Investigations, mainly carried out on SNMP1 of D. melanogaster and 

a few lepidopteran species, including H. virescens and Helicoverpa armigera, uncovered SNMP1 as 

a crucial olfactory protein contributing to the rapid and sensitive detection to sex pheromones 

(Pregitzer et al., 2014; Li et al., 2014; Gomez-Diaz et al., 2016; Benton et al., 2007). The current data 

suggest a model where SNMP1 in the dendrites of OSNs acts as a co-receptor that takes over 

lipophilic odorants from OBPs and transfers the signal molecules via its large tunnel-like 

ectodomain towards an adjacent ORx/ORco complex (Gomez-Diaz et al., 2016; Benton et al., 2007; 

German et al., 2013). Yet in comparison to the neuronal SNMP1, relatively little is known about the 
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non-neuronal support cell-expressed SNMP2 type, with no functional investigations having been 

conducted to date. Therefore, using moths as a model, since their antenna show a clear differential 

expression of SNMP1 and SNMP2 in OSNs and support cells, respectively, a possible role of SNMP2 

in previously proposed clearance processes, i. e. the elimination of lipophilic “waste products” from 

the sensillum lymph of olfactory sensilla (Forstner et al., 2008), was assessed (Manuscript 3).  

In many moth species, including H. virescens and B. mori, such “waste products” stem from the 

inactivation of aliphatic unsaturated long-chain alcohol or aldehyde sex pheromone components 

into the corresponding long-chain fatty acids, a process that is catalyzed by ODEs in the sensillum 

lymph (Kasang and Weiss, 1974; Rybczynski et al., 1990; Tasayco and Prestwich, 1990; Pelletier et 

al., 2007). The swift inactivation of the pheromone molecules and fast removal of their inactivation 

products out of the sensillum lymph maintains perireceptor events in the olfactory sensilla and 

assures the efficient temporal resolution of OSNs to upcoming stimuli (Vogt and Riddiford, 1981; 

Durand et al., 2011; Pelletier et al., 2023). Although earlier studies have attempted to track 

odorants once they enter the sensillum lymph by using radioactive labelled pheromones, the 

appearance of radioactivity in the distinct cells of a sensillum was not examined and thus, the fate 

of the odorants and their inactivation products remained uncertain (Kasang, 1974; Kanaujia and 

Kaissling, 1985).  

Manuscript 3 approaches the role of moth SNMP2 and support cells in the removal of such “waste 

products” due to its localization in support cell microvilli (Manuscript 1) as well as its membership 

to the CD36 family of lipid transporters (Rogers et al., 1997; Blankenburg et al., 2019). The live cell 

imaging experiments conducted with the HvirSNMP2-expressing cell line demonstrated that 

SNMP2 mediates a rapid and increased uptake of the long-chain fatty acid analog BODIPY FL C16 

into cells in a concentration dependent manner (Manuscript 3). No increase in uptake was observed 

when testing another long-chain fatty acid analog, BODIPY C4C9, indicating a degree of ligand 

specificity for HvirSNMP2. These results indicate that moth SNMP2 resembles the functions of 

mammalian CD36 proteins, which have been noted to drive the cellular uptake of certain long-chain 

fatty acids as well as rapidly facilitate the internalization of lipids (Abumrad et al., 1993; Koonen et 

al., 2005; Drover et al., 2008; Pepino et al., 2014; Glatz and Luiken, 2018; Glatz et al., 2022). 

Correspondingly, NinaD and Santa Maria that represent non-SNMP members of the insect-specific 

CD36 family facilitate the cellular uptake of carotenoids (Giovannucci and Stephenson, 1999; Kiefer 

et al., 2002; Wang et al., 2007). Therefore, the cellular uptake of lipid compounds enabled by 

SNMP2 corresponds to the distinctive function of CD36 family members in the transmembrane 

transport of lipids.  
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In support of a functional similarity, the known CD36 inhibitor SSO led to an abolished uptake of 

BODIPY FL C16 in the HvirSNMP2-expressing cell line (Manuscript 3). In experiments conducted with 

mammalian CD36, the inhibitor SSO was shown to bind to a distinct lysine in the apical part of the 

large ectodomains, which interacts with the carboxyl group of long-chain fatty acids, leading to the 

attenuated CD36-mediated fatty acid uptake (Harmon and Abumrad, 1993; Pepino et al., 2014; 

Kuda et al., 2013). Interestingly, a recent phylogenetic and protein structure analysis revealed that 

the apex of CD36 proteins determines its ligand specificity and interaction, and suggested that 

altering the apical region of the protein can result in the failed binding and transport of lipid ligands 

(Boohar et al., 2023). Although it remains uncertain how SSO affects the function of SNMP2, the 

inhibition experiments have clearly demonstrated that SSO is not only an inhibitor to mammalian 

CD36 but also to the insect-specific SNMP2 proteins.  

How long-chain fatty acids are internalized into cells via SNMP2 is unclear. Members of the CD36 

protein family have been described to take up extracellular fatty acids in different mechanisms. 

One model proposes that mammalian CD36 proteins integrate long-chain fatty acids directly into 

the cell membrane, to facilitate the rapid transport of the fatty acids into the cell via diffusion (Jay 

et al., 2020). Another study suggested that upon binding of a fatty acid ligand onto the CD36 

ectodomain, conformational changes are initiated, allowing the direct entrance of the fatty acids 

into the cell somata via the tunnel in the protein’s ectodomain (Pepino et al., 2014). More recently, 

a study determined fatty acids remain bound to CD36, which are both internalized in vesicles via 

endocytosis (Hao et al., 2020). Thus, multiple pathways have been described for the CD36-mediated 

uptake of lipids.  

Assessing the distribution of SNMP2 in the antennae of the moths H. virescens and B. mori exposed 

its broad expression in the non-neuronal support cells found at the base of the olfactory sensilla. 

Although the primary focus of Manuscript 3 was on assessing the role of SNMP2 in the potential 

clearance of female sex pheromone inactivation products in moths, it is possible that SNMP2’s 

function may extend further, including the clearance of general odorant inactivation products or 

lipophilic compounds that have entered a sensillum accidentally. Moreover, as SNMP2 is expressed 

in support cells of both sexes (Blankenburg et al., 2019; Gu et al., 2013; Sun et al., 2019), it is 

possible that the protein might drive the removal of lipophilic molecules of not just pheromone-

sensitive sensilla but also of sensilla tuned to general odorants in both male and female moths. 

When treating the intact antennae of male H. virescens and B. mori with the long-chain BODIPY FL 

C16-fatty acid analog, it was found that in both species, the support cells previously shown to 

express SNMP2, absorbed the analog. This suggests that the SNMP2 proteins in different moth 

species possess an overlapping, possibly broad ligand spectrum. However, to elucidate the 



  Discussion 

89 
 

 

selectivity of SNMP2s from different species, additional uptake assays with multiple lipophilic 

ligands should be performed. With respect to selectivity, in many cases, individual CD36 family 

members are involved in multifunctional processes and have been noted to possess a broad ligand 

spectrum, ranging from diverse long-chain fatty acids to other lipids of different moieties, which 

are often derived from fatty acids (Silverstein and Febbraio, 2009; Martin et al., 2011; Abumrad and 

Goldberg, 2016; Zhao et al., 2021; Jimenez-Dalmaroni et al., 2009; Chen et al., 2022b). 

 

Overall, the in vivo data presented in Manuscript 3 speak for a function of antennal SNMP2 proteins 

in support cells in the maintenance of the sensillum by removing excess long-chain fatty acids from 

the sensillum lymph into support cells (Figure 9). This likely takes place at the microvilli structures 

at the apical side at the direct border to the sensillum lymph (Keil, 1989; Gnatzy et al., 1984), which 

are commonly noted as sites of high exchange across cell membranes (Houdusse and Titus, 2021; 

Sharkova et al., 2023). Therefore, in addition to secreting proteins and ions (Thurm and Küppers, 

1980), support cells of olfactory sensilla may control the sensillum lymph homeostasis by also 

clearing molecules which could potentially modify the sensillum lymph composition and could 

impair the overall function of the olfactory unit. Such a clearance function might be a general 

property of support cells in chemosensory sensilla as support cells of dye-infiltrated gustatory 

 

Figure 9. Proposed model for SNMP2’s role in mediating the uptake of lipophilic inactivated 
odorants from the sensillum lymph into support cells in moths. The SNMP2 protein, located at 
the apical side of the support cells facing the sensillum lymph, translocates extracellular long-
chain fatty acids, stemming from pheromone inactivation by ODEs, via its ectodomain into the 
support cell somata. The efficient and rapid clearance of such “waste products” from the 
sensillum lymph aids in the maintenance of the sensillum for proper odor detection. 

SNMP2

sensillum 
lymph

support
cell

inactivated
odorants



  Discussion 

90 
 

 

sensilla on the maxillary palps of the cockroach, absorbed the substance and cleared the sensillum 

lymph (Seidl, 1992).  

In the antennal BODIPY FL C16-fatty acid analog uptake assays, the fluorescent signals often 

accumulated in dotted patterns within the support cells of H. virescens and B. mori (Manuscript 3). 

This suggests that in support cells of the olfactory sensilla, lipophilic compounds, which enter the 

cells, could end up in vesicles and subsequently in lipid droplets. Similarly, in mammalian 

adipocytes, CD36-dependent uptake of fatty acids appeared to involve dynamic endocytosis 

activity, leading to the formation of vesicles and lipid droplets (Hao et al., 2020).  

The pretreatment of the antenna with the CD36-inhibtor SSO prior to the fatty acid uptake assay 

resulted in the reduced absorption of BODIPY FL C16 into support cells, comparable to the reduced 

uptake observed in the SSO pretreated HvirSNMP2 cell culture line (Manuscript 3). Remarkably, the 

lumen of the SSO-pretreated sensilla showed strong fluorescent signals compared to the lumen of 

untreated sensilla indicating that the sensillum lymph of SSO-treated sensilla was not cleared of the 

fatty acid analog. These results indicate that an SSO-evoked interference of support cell 

performance can lead to an accumulation of fatty acids in the perireceptor space. However, it 

remains to be investigated whether this is a direct result of SSO binding to the SNMP2 proteins of 

the support cells. 

Given that SSO affected the clearance of the long-chain fatty acid analog, it was conceivable that 

SSO might also affect the clearance of moth sex pheromone inactivation products resulting from 

ODE activity. Consequently, this would lead to their accumulation in the sensillum lymph thus 

affecting the proper function of the olfactory unit and ultimately, the response of sex pheromone-

driven behavior. Therefore, the effect of antennal SSO treatment on pheromone-induced behavior 

in male B. mori was tested (Manuscript 3). B. mori males respond sensitively to female sex 

pheromones by fluttering their wings. This behavior was considerably prolonged by SSO treatment 

of the antenna compared to mock-treated males. The result showed that SSO treatment has a 

profound impact on the sex pheromone response of male B. mori possibly by inhibiting the SNMP2-

mediated clearance of fatty acid sex pheromone inactivation products that could inhibit ODE 

activity. Notably, previous studies showed that hindering any part of ODE activity leads to 

prolonged olfactory responses (Chertemps et al., 2012; Fraichard et al., 2020) and indeed, rapid 

pheromone inactivation plays an important role in the temporal resolution of the sensillum (Vogt 

et al., 1985; Ishida and Leal, 2005), suggesting that overall, the inadequate removal of odorants can 

influence odor-guided behavior. 
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The full extent of SNMP2’s functional mechanism in the antenna is unclear as it might be possible 

that SNMP2 expressed in the moth antenna drives the cellular uptake of fatty acids in tandem with 

other support cell-expressed proteins. While in cell culture experiments, HvirSNMP2 was shown 

capable of transporting fatty acids without any other antennal proteins, it is possible that in support 

cells SNMP2 acts in concert with other proteins. In fact, mammalian members of the CD36 family 

involved in long-chain fatty acid uptake processes interact with so-called fatty acid transport 

proteins and fatty acid binding proteins to facilitate the proper transport of fatty acids across the 

cell membrane (Bonen et al., 1999; Chabowski et al., 2007). However, studies have also shown that 

mammalian CD36 proteins alone are sufficient in mediating the uptake of fatty acids and cellular 

lipid homeostasis (Glatz et al., 2022; Silverstein and Febbraio, 2009). Indeed, the detailed 

mechanisms of CD36-facilitated long-chain fatty acid uptake is still debated (Glatz and Luiken, 

2018). In this regard future investigations on the SNMP2-interactome, by means of co-

immunoprecipitation, co-expression studies or structure-based prediction approaches (Rao et al., 

2014), can give more insights into how sensillum lymph “waste products” are removed. 

The functional studies on moths have provided first functional data regarding SNMP2’s role in 

olfaction and demonstrated that support cells are not only able to secrete substances, but also 

absorb them from the sensillum lymph. It is conceivable that antennal support cells and SNMP2 

orthologs found in different insect orders may also be involved in sensillum lymph clearance 

processes. In support of this notion, the immunogold labelling experiments on the locust antenna 

found SgreSNMP2 localized in the microvilli structures that have extensive contact to the basiconic 

sensillum lumen (Manuscript 1). In addition, SgreSNMP2 was detected in support cells of coeloconic 

sensilla, which, unlike basiconic sensilla, are typically innervated by IR-expressing instead of OR-

expressing OSNs (Guo et al., 2013). This indicates that SNMP2 in the microvilli membrane of support 

cells may be integral for translocating a very broad spectrum of general lipophilic odorants, 

pheromones or their inactivation products out of the sensillum lymph, regardless of the sensillum’s 

molecular equipment.  

Interestingly, in locusts, the SNMP1 subtype was also localized in the microvilli of the support cells. 

Therefore, it plausible that locust SNMP1 in support cells may serve a similar function to SNMP2 

i.e. in the removal of “waste products” such as extracellular lipophilic molecules. Though no such 

role has yet been described for SNMP1 in the olfactory system of insects, in D. melanogaster 

prothoracic gland cells, SNMP1 was identified to drive the uptake of lipids, necessary for the 

synthesis of ecdysone. In fact, knocking down SNMP1 in the prothoracic gland led to a reduced lipid 

droplet content in the cells with lipid storage being rescued when SNMP1 is overexpressed 

(Talamillo et al., 2013). 
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Figure 10. Proposed model of the contribution of the non-neuronal SNMPs in sensillum lymph 
clearance processes in basiconic sensilla of nymph and adult locusts. SgreSNMP1 and 
SgreSNMP2 are localized in the apical microvilli membranes of different support cells bordering 
the basiconic sensillum lumen. The different support cells might possess specific ligand spectra 
according to the SNMP type they express. SNMP1 in support cells could mediate the uptake of 
given inactive odorants (A) detected by SNMP1-positive OSNs. SNMP2 in support cells could 
mediate the uptake of other inactive odorants (C) detected by SNMP1-independent OSNs. Some 
of the inactive “waste products” (B) could be translocated by both SNMP1 and SNMP2 into 
support cells. 

 

Considering that SgreSNMP1 and SgreSNMP2 are found in different populations of support cells in 

the locust antenna (Manuscript 1, Jiang et al., 2016), their ligand spectra might also differ and they 

could remove different substances from the sensillum lymph. In this context, only SNMP1-

expressing support cells were found in trichoid sensilla where all OSNs express SNMP1. Thus, it is 

possible that the non-neuronal SNMP1 in support cells is specifically adapted to the removal of 

inactivated odorants previously detected by ORs in SNMP1 co-expressing OSNs. Similarly, in 

basiconic sensilla, comprising SNMP1-positive and -negative OSN-populations, the SNMP1 and 

SNMP2 in support cells may be adapted to the respective inactivation products of odorants 

detected by SNMP1-coexpressed ORs and non-SNMP1-coexpressed ORs. However, this does not 

exclude the possibility that certain inactivation products might be transported by both SNMP1 and 

SNMP2 in the locust basiconic sensillum. Either way, the presence of both SNMP subtypes in the 

support cells might aid in the efficient and rapid removal of specific substances from the sensillum 

lumen of the basiconic sensilla, as depicted in Figure 10. However, such a model explaining the 
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existence of two different SNMP subtypes in locust support cells must be proven by future 

functional investigations.  

In conclusion, the data presented in this thesis suggest that in insects, non-neuronal SNMPs may 

play an essential role in the uptake of extracellular long-chain fatty acids from the sensillum lymph 

into support cells. The proper function of the SNMP2 proteins in the antenna could be necessary to 

avoid the overstimulation of OSNs by the same odorants. By mediating the removal of long-chain 

fatty acids stemming from inactivation products, SNMP2-positive support cells could facilitate the 

rapid reset of the perireceptor space in preparation for incoming odorants, thus maintaining an 

overall high temporal resolution of the olfactory system.  
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