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Kurzfassung

Offenchirurgische Operationen werden zumehmend durch minimalinvasive Eingriffe abgelöst.

Eine Vielzahl technischer Verfahren ermöglicht erst die minimalinvasive Chirurgie. Medizini-

sche Bildgebung, telemedizinische Geräte und bildgestützte Navigationssysteme sind Beispiele

für deren Einzug in die medizinische Routine. Für den behandelnden Arzt steigen Zeit und

Aufwand, um die technischen Geräte zu bedienen. Diese Entwicklung verdeutlicht, dass ein

Zuwachs an neuen Geräten, Methoden und Funktionalitäten allein nicht ausreicht, um einen

klinischen Mehrwert zu generieren.

Intelligente Wege zur Integration neuer und bestehender technischer Lösungen stellen wichtige

Anforderungen für den klinischen Ablauf und große Herausforderungen für Medizingeräte-

hersteller dar. Die Kenntnis der Position jedes Objekts zu jedem Zeitpunkt sowie die Identi-

fikation der Objekte sind grundlegende Prämissen für ein ganzheitliches Konzept zur Integra-

tion automatisiert und manuell bewegter sowie stationärer Geräte. Das Ziel einer umfang-

reichen Integration sind Anwendungen, wie Kollisionsvermeidung zwischen Objekten oder

anspruchsvolle Kooperation medizintechnischer Geräte.

Optische und elektromagnetische Navigationssysteme sind gegenwärtig in der interventio-

nellen Therapie etabliert und industriell verfügbar. Sie erreichen die anwendungsbezogen

geforderten Genauigkeiten, können aber das Bestreben einer umfangreichen Integration nicht

unterstützen, da sie für markerbasierte Tools in einem dedizierten Sichtbereich konzipiert sind.

Um die Nachteile bestehender Systeme sowie akademischer Ansätze zur optischen Raumüber-

wachung zu überwinden, fokussiert sich die vorliegende Arbeit auf Technologien zur Funko-

rtung für die Lokalisation und Identifikation von Geräten und Objekten im medizinischen

Umfeld.

Einleitend werden mit Radio Frequency Identification (RFID) und Ultra Wideband (UWB)

zwei vielversprechende Technologiekandidaten betrachtet und hinsichtlich ihrer Eignung un-

tersucht und bewertet. Zentraler Bestandteil der Dissertation ist eine Machbarkeitsstudie

basierend auf UWB, da es die initial formulierten Anforderungen maßgeblich erfüllt. Ein

Prototyp mit industriell verfügbaren UWB Modulen wird eingehend im medizinnahen Um-

feld inspiziert. Mittels Sensorfusionsansatz wird das Sensorsystem mit dem Ziel verbesserter

Dynamikeigenschaften erweitert. Es wird ein 9-Achs-Inertialsensor mit dem UWB System

integriert und mit Hilfe eines modifizierten Kalman Filters fusioniert. Die Inertialsensordaten

adaptieren direkt die Kovarianzmatrix des Filters. Dieser Ansatz führt zu wiederholgenauem

Verhalten im statischen Fall und bildet die Dynamik eines beweglichen Objekts ab. Anhand

von Experimenten im medizinnahen Umfeld wird gezeigt, dass eine UWB-gestützte Lokalisa-

tionslösung mit Sensorfusion die proklamierten Anforderungen erfüllt und ein ganzheitliches

Integrationskonzept ermöglicht.
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Abstract

Open surgery is more frequently replaced by minimally invasive interventions. A wide range of

technical devices render minimally invasive surgical possible. Medical imaging and telemed-

ical devices as well as imaging based navigation systems are popular examples that hold

entrance to medical routine. The attending physician needs an increasing amount of his time

and effort to operate these devices. This trend clearly shows that it needs more than new

methods, functionality and devices to generate additional clinical value.

Smart integration of new and existing technical solutions are important requirements for clin-

ical processes and a big challenge for medical device suppliers. Knowledge of spacio-temporal

information as well as identification of objects are fundamental requirements for a holistic in-

tegration concept of automated and manually moved or stationary devices. Applications like

collision avoidance between objects or challenging coregistered and cooperative collaboration

of medical devices are the goal of an extensive integration.

Nowadays, industrially available optical and electromagnetic navigation systems are well-

established for interventional therapy. They satisfy the required accuracy but cannot con-

tribute to a comprehensive integration approach, since they mostly work with marker-based

tools and a dedicated field of view. To overcome drawbacks of existing systems and academic

approaches for optical surveillance, this thesis focuses on radio location technologies for lo-

calization and identification of devices and objects in a medical environment.

Firstly, two promising technology candidates Radio Frequency Identification (RFID) and Ul-

tra Wideband (UWB) are scrutinized and assessed with regard to their suitability. Central

part of this thesis is a feasibility study based on UWB, since it satisfies the initially formu-

lated requirements superior to RFID. A prototype with industrially available UWB modules

is evaluated in-depth in a medical environment. To improve the dynamic performance of the

prototype an extension using sensor fusion is pursued. A 9-axis-inertial sensor is integrated

with the UWB system and fused by using a modified Kalman Filter approach. The inertial

sensor data directly adapts the filter’s covariance matrix leading to precise behavior in static

cases as well as good dynamics for moving objects. Experiments in a medical environment

have shown that an UWB-based localization with sensor fusion can satisfy the formulated

requirements and is well suited for a holistic integration concept.
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Part I

Introduction





1 Motivation

In recent times, there has been a growing trend in the utilization of advanced technical

equipment and devices in medical interventions (TS03; Gom11) and more and more of the

surgeons‘ time and effort is needed to operate technical devices. This development makes

it clear that it is not enough to only provide more devices, methods and features, but also

smart ways of handling these new tools to seamlessly integrate them into the clinical workflow.

This rising demand can be witnessed in many clinical fields.
”
The modern operating room

requires an increasing number of new surgical instruments, monitoring and imaging devices,

information systems, and communication networks.“ This is the opening statement of the

workshop
”
OR 2020, The Operating Room of the Future“ in 2004 with approximately 100

attendees from different clinical and technical fields (CK05). Five common themes were

identified that relate to all aspects of the operating room of the future, one of which is

”
Interoperability of devices“. One basic prerequisite for integrated behavior or interoperability

of individual technical devices in medical environments is the knowledge of spacial information

of each of the devices at any time it is needed. To enable advantageous applications amid both

actively moving and stationary devices, a localization system with identification information

regarding the localized objects is required. Figure 1.1 visualizes a typical crowded hybrid

operating room comprising a C-arm imaging system, an operating table with led shields,

ceiling mounted lights and displays and several trolleys like an anesthesia cart. In addition to

established medical devices surgical robots could be part of an advanced medical ecosystem in

the interoperable OR. With a spatio-temporal localization framework, it becomes feasible to

enable sophisticated applications like collision avoidance to prevent mobile device collisions,

and co-registered operations involving multiple devices (CLM+07).

Today‘s operating rooms and interventional suites already comprise a large variety of technical

devices starting with a motorized movable patient table, a mobile or fixed imaging system, a

display, carts and trolleys. Additional devices do not only improve the physicians possibilities

e. g. to perform minimally invasive interventions but also add to the complexity of the room

setup. Especially moving devices automatically like robots or the cone-beam system itself lead

to a need for additional safety considerations. Even a setup with comparably few moving

components like shown in figure 1.2 generates the need for ideas on collision avoidance or

cooperative movement between the actively moving devices.
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1 Motivation

Figure 1.1: Typical hybrid operating room setup with ceiling-mounted cone-beam CT system
Artis zee, Siemens patient table, large ceiling mounted display, ceiling supplies
with OR-lights and other devices positioned on movable trolleys. (Inc17)

Figure 1.2: Interventional suite setup with robot-based cone-beam CT system Artis zeego,
Maquet patient table, large ceiling mounted display and leight weight robot po-
sitioned on a movable trolley. (GBMR15)

For today‘s individually used technical devices well-established approaches exist for local-

ization and co-registration with e. g. the imaging system to provide additional information

by combination of the information of two worlds. Some technologies have been used in the

interventional suite or operating room for many years. Two of the most well known and estab-
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lished examples are optical end electromagnetic navigation systems frequently used to track

medical tools like catheters or screws during intervention. Many publications like (RRK+08)

suggest that navigation based tool positioning is superior to freehand targeting. Based on

these outcomes a large variety of products in the field of medical tool tracking has arisen.

In (SRHM+08) three industrially available optical navigation systems are compared regard-

ing localization accuracy. Differences between the three systems are in the sub-millimeter

range and are found to have a negligible effect on the quality of the medical procedure. Two

established products from Medtronic (Med17) and Brainlab (Bra17) providing optical navi-

gation solutions are shown in figures 1.3 and 1.4. The electromagnetic navigation approach

is represented by Stereotaxis’ Niobe system (Ste17) in figure 1.5.

Figure 1.3: Medtronic surgical imaging system comprising an O-arm X-ray system and a
Stealth Station optical navigation system. (eur16)

Figure 1.4: Brainlab Brainsuite iMRI with high-field intraoperable MRI and optical naviga-
tion system. (Mid06)

All of these navigation solutions focus on the tracked medical tool and on the registration

to available image data. They lack the ability to track spatio-temporal information of other
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Figure 1.5: Stereotaxis Niobe EM system combined with Artis zee cone-beam CT system.
(Hea17)

devices in the operating room of the future and thus cannot fully integrate them into one

advanced medical ecosystem.

There are different approaches to overcome this local behavior of industrially available clinical

navigation systems. (LBN08) is provided as an example to realize room supervision in a

medical environment by using 16 cameras on the ceiling and fusing their image outputs to

a voxel representation of the captured scene. Four workstations where set up to control

four cameras each and provide a prereconstruction. A fifth computer combines the partial

reconstructions and performs a collision test. The sheer amount of 16 cameras highlights the

challenges due to line of sight occlusions in a crowded and dynamic environment. To overcome

shadowing artifacts the positioning of the cameras is demanding and does not necessarily lead

to a solution with good coverage. When pursuing a camera based solution it is also crucial to

consider the light conditions in the environment. It could lead to disastrous outcomes if the

supervision system would fail under faint light conditions, which are frequently encountered

in clinical environments to have a high contrast perception of the medical images.

To overcome drawbacks of local navigation solutions or optical surveillance approaches, this

thesis focuses on radio location technology for localization of objects in a medical environment.
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2 Goals and Structure

Topic of this thesis is the prototypal development of a radio location system based on indus-

trially available components, and the evaluation of this system regarding it’s feasibility for

the proposed medical environment. Major requirements for the aspired localization solutions

are:

• Technology decision based on a comprehensive technology evaluation

• Use of industrially available hardware

• Implementation of a suitable localization framework

• Localization accuracy in the low centimeter or sub-centimeter range

• High localization precision in sub-centimeter range in static and dynamic environment

The remainder of this thesis is structured into four parts, each supporting specific aspects of

the goal of this thesis.

Part II - Fundamentals

This part provides a technology study on different aspects of the two scrutinized radio tech-

nologies, RFID and UWB, including the technical background and worldwide regulations.

The state of the art in scientific literature and industrial implementations is given. The eval-

uation of the radio technologies results in a decision of the preferred technology for satisfying

the major requirements of a localization system. Furthermore four well-established ranging

technologies and three popular localization techniques are introduced to give an overview of

the possibilities for radio-based localization systems.

Part III - Radio Location Prototype

The prototype setup based on the chosen radio, ranging and localization technologies is de-

scribed in the beginning of this part. Thereafter, tracking filters are introduced, that are

implemented into the radio location prototype to improve the localization results are intro-

duced. Experiments based on simulations and real measurements in a medical environment

are conducted, evaluated and compared regarding the overall Ultra wideband results and the

tracking filter effectivity.

Part IV - Dynamic Radio Location Prototype

An extension of radio location with additional sensor data is pursued in this part. Several ex-

ternal sensor types are introduced and evaluated regarding their suitability to enhance UWB

localization information. Inertial Measurement Units are found to best fit UWB data and

two industrially available implementations of Inertial Measurement Units are compared based

7



2 Goals and Structure

on performed real measurements experiments. The approach of fusing measurement data of

both sensor types is introduced and evaluated with experiments in a medical environment.

Part V - Summary, Discussion and Outlook

This concluding part provides a summary of the thesis, discusses the developments, experi-

ments and results and gives an outlook to future work or other possibilities in the context of

UWB localization.
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3 Radio Technologies

Radio technology uses electromagnetic waves to propagate information through media. In

contrast to optical technologies, radio propagation uses electromagnetic waves of a different

frequency. Whereas optical waves are in the range of hundreds of gigahertz in the infrared to

hundreds of terahertz in the spectrum of visible light, radio technology uses the spectrum of

radio and microwaves from kilohertz to hundreds of gigahertz. In chapter 1 it is shown, that

optical localization systems have several drawbacks in challenging medical environments. De-

pending on the part of the radio technology spectrum the characteristics of electromagnetic

waves differ in various aspects. That is why localization systems based on radio technology

are used in a wide field of applications. It is also the reason why it is important to iden-

tify the appropriate radio technology for a specific task and environment. In this chapter

two well known radio technologies, that provide industrially available implementations, are

introduced and evaluated for their suitability to provide radio localization in medical envi-

ronment. Radio frequency identification (RFID) is a technology originally used to provide

identification information based on electromagnetic waves where no other technology could

be applied, like for aircrafts (Dob12). It is also applied to overcome the use of optical identi-

fication mechanisms like barcodes or technologies that need contact for identification. RFID

can also provide localization information in addition to identification. In section 3.1 RFID is

introduced. Ultra wideband (UWB) makes use of a broad spectrum of electromagnetic waves

in contrast to a narrowband signals like RFID. One possible application with industrially

available systems with UWB technology is high data rate transfer, but it can also provide

ranging information for localization systems. In section 3.2 UWB is introduced. A conclusion

on the suitability of the introduced radio technologies for localization in medical environment

is given in section 3.3.

3.1 Radio Frequency Identification

RFID is based on the idea of identifying an object using electromagnetic waves to exchange

information. RFID is not one specific technology but a variety of approaches that differ in

the used signal frequency, the power supply of the sensor and the protocol for information

transfer. (DKA07) gives a short introduction to the history of RFID, types of frequencies

and industrial applications. Nevertheless, a link between RFID systems can be found since

every one consists of three mandatory components (Dob12):
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• transponder or tag on the object to be localized

• reader or interrogator that, depending on implementation, is used for reading and writ-

ing

• antennas or coils to send and receive electromagnetic waves and to mediate between

those waves and voltages on wires

The tag and reader both comprise antennas or coils. Figure 3.1 gives an example for RFID

transponders comprising a coil or an antenna as the coupling device.

coupling decive (coil, antenna)

housing

chip

Figure 3.1: Two examples of RFID transponders. The left implementation comprises a coil as
coupling device, whereas the right transponder uses a dipole antenna. Both char-
acteristics have their right to exist dependent on the part of the electromagnetic
spectrum in use.

In figure 3.2 an RFID system consisting of a reader and a tag are displayed. The two-way

communication between both components is shown. By exchanging the ID stored in the tag,

the reader identifies the object to be observed.

Figure 3.2: RFID system comprising a reader unit with antenna and link to a host computer
and a transponder or tag with antenna and integrated circuit (IC) containing
the (unique) identification (ID). Up- and downlink describe a communication
between reader and tag in both directions to exchange the ID or other additional
information. (Dob12)
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Since there is no specific RFID technology, section 3.1.1 focuses on identifying and evaluating

the best suited technology set from the variety of RFID approaches for localization in medical

environment. Section 3.1.2 introduces backscatter coupling for UHF signal frequencies as a

technology for long range RFID systems. Section 3.1.3 sheds a light on RFID localization in

literature and industrially available implementations.

3.1.1 Finding a suitable RFID technology

To find the right RFID characteristics for the goal of localizing objects in medical environment

the used signal frequency is the most important parameter to start with (Fin12). Depending

on the chosen signal frequency a variety of characteristics can be realized for RFID systems.

Figure 3.3 gives an overview of the spectrum of electromagnetic waves used for RFID and

highlights frequency bands that are used for industrially available implementations. It also

structures the available spectrum into the two regions
”
inductive“ and

”
radiative“. These

regions indicate the coupling behavior used by the RFID system.

Figure 3.3: Overview of the used frequency bands and corresponding wavelengths for RFID
systems (Dob12). The spectrum is split into two regions,

”
inductive“ and

”
radi-

ate“, that describe the coupling behavior of the RFID system. Existing RFID
bands are presented with common industrially used bands being highlighted.

The most frequently used frequency bands for industrially available RFID systems have given

these types their commonly used names:

• 125 / 134 kHz low-frequency (LF)

• 13.56 MHz high-frequency (HF)

• 860 - 960 MHz and 2.4 GHz ultra-high-frequency (UHF)

• 5.8 GHz super-high-frequency (SHF)
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The variety in frequencies naturally results in a large variety in wavelengths. By using

equation 3.1 the wavelength of a radio signal can be deduced from frequency f and speed of

light c.

λ =
c

f
(3.1)

This leads to wavelengths in the range of kilometers for LF systems and centimeters for UHF

and SHF systems. Based on (Dob12) systems with a large wavelength compared to antenna

size are typically inductively coupled, whereas systems with a wavelength comparable to

antenna size usually use radiative coupling. The coupling behavior of an RFID system has

a major influence on the range for reader transponder communication. Inductive coupling

takes place in the near-field of the antenna whereas radiative coupling works in far-field

distances. In case of inductive coupling the electromagnetic field strength attenuates as the

cube of distance d (1/d3) or 60 dB in the near-field of the RFID reader antenna. For radiative

coupled RFID systems only the space attenuation or free space path loss in the far-field is of

importance which leads to a field strength decline as the distance d (1/d) or 20 dB. Figure 3.4

provides an example of the near-far field transition for a HF RFID system. It illustrates the

electromagnetic field strength over the distance from the antenna and indicates the region of

the transition from near- to far-field. For other signal frequencies used, the near- to far-field

transition works at a different distance level.
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Magnetic antenna: crossing from near- to far-field

60 dB/decade

20 dB/decade

near-field
far-field

Figure 3.4: Electromagnetic field attenuation over the distance from the antenna for a HF
RFID system. The transition from near- to far-field is highlighted and also de-
scribes the transition from inductive to radiative coupling. Based on (Fin12).

Based on (Fin12) RFID systems can be structured by their range, beginning with close
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coupling systems with a range below 1 cm. They are typically utilized for applications with

a strong safety background but no need for long range. Examples can be found in access

control or payment by contactless chip card. Frequencies in the range of LF and HF are

used to implement close coupling systems. A second range group of RFID systems are

remote coupling systems which work in a range of up to 1m. They also utilize LF and HF

systems with inductive coupling. Typical applications are animal identification or industrial

automation. RFID systems operating in a range over 1m are called long range systems. They

utilize UHF and SHF frequencies and work with radiative coupling in the far field. The most

common working principle for long range systems is backscatter coupling.

Both approaches to classify RFID systems based on their operating range and their used signal

frequency lead to the same result of inductive coupling with LF and HF systems not being

suitable for a localization application in a room supervision scenario in medical environment.

The decision for a signal frequency not only influences the range capabilities of an RFID

system but also defines characteristics like the interaction or penetration of the used signal

impinging on material it comes into contact with. (Dob12) provides the skin depth δ to

describe this penetration. Equation (3.2) elucidates the interaction of frequency f , magnetic

permeability µ, and the electrical conductivity σ to form the skin depth δ.

δ =

√
1

πµσf
(3.2)

Table 3.1 gives an idea of penetration depth for common combinations of signal frequencies

in RFID systems and materials in medical environment.

Table 3.1: Material penetration of RFID signals with different signal frequencies.

material
penetration depth at

125 kHz 13.56MHz 865MHz 2.4GHz

Tap water 8m 2m 4 cm 8mm

Human tissue 1.2m 11 cm 2.7 cm 1.8 cm

Carbon 5.3mm 0.5mm 63µm 38µm

Lead 0.65mm 62µm 7.8µm 4.7µm

Aluminum 0.23mm 22µm 2.8µm 1.7µm

Iron 20µm 1.9µm 0.2µm 0.15µm

It can be seen that low signal frequencies have a huge advantage in material penetration

over high frequencies. This behavior would overcome line-of-sight problems for localization

purposes for some relevant materials like water and human tissue, but lacks in communication

range due to inductive coupling. For common material in medical environment like lead

glass or lead shielding, carbon and iron low signal frequencies do not provide a reasonable

penetration to overcome line-of-sight issues either. UHF signals can only provide penetration

for thin layers of water or tissue but fulfill the range requirements.

To summarize the outcome of finding a suitable RFID technology for localization in medical

environment based on (Dob12):
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• LF and HF uses inductive coupling and therefore does not work for long range commu-

nication. UHF works with radiative coupling, especially backscatter, and provides long

range communication.

• LF and HF tags use coil antennas with more or less turns. UHF tags use dipole-like

antennas

• LF and HF penetrate water and human tissue well. UHF only provides penetration for

centimeter ranges in water and human tissue.

• Neither LF, HF nor UHF are able to penetrate metal in reasonable depths.

• LF, HF and UHF easily penetrate other non conductive material like clothing or medical

cloth.

• LF RFID systems provide low data rates between tag and reader, whereas HF and UHF

manage much higher rates.

For a localization system capable of monitoring a room in medical environment, the range

capability is the most important parameter. Due to the lack in range for inductive coupling

with LF and HF RFID systems the remainder of this chapter focuses on UHF systems with

backscatter coupling. The drawback of not penetrating conductive material like human tissue

and water comparable to lower frequencies have to be accepted and considered as constraints

in localization system design.

3.1.2 Backscatter RFID

Using backscatter radiation for communication is a common principle in radiatively coupled

RFID systems working in far-field. It makes use of the RFID transponder affecting the

electromagnet field emitted by the RFID reader. As learned from figure 3.2 on page 12 the

IC on the tag holds the identity of the object that is tagged with the transponder. This ID

information needs to be transmitted to the reader using the backscatter. Figure 3.5 gives an

overview of power spreading of a radiatively coupled RFID signal and the tag response as a

backscattered wave.

The electromagnetic field emitted by the RFID reader is a continuous wave (CW) signal.

To provide information this signal has to be modulated. Often a resistor is used as a load

in the RFID transponder. By switching it on and off the signal is modulated resulting in a

binary sequence providing the unique ID of the RFID tag and communication information.

The modulated signal is radiated into free space and a proportion of this signal is received

by the reader antenna after being backscattered by the tag. Since the signal provided by

the reader is many times stronger than the received backscattered signal they have to be

differentiated. This is possible due to the fact that by modulating the signal on transponder

side it provides its information in two sidebands slightly higher and lower than the emitted

signal frequency ω. With this in mind the signal can be filtered at the receiving side of the

reader and the two sidebands can be demodulated to get the information of the RFID tag.
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Figure 3.5: Schematic visualization of radiative coupling with a reader antenna transmitting
an electromagnetic field and a tag located in the field. It shows the power density
of the field along the distance from the reader antenna. The RFID transponder
receives the field, manipulates it by modulation and sends it back in a backscatter
manner. (Dob12)

There are different approaches and modulation schemata available in literature and industry

(AWM09) (Kue12). Basic information on modulation and sidebands in backscatter RFID

can be found in (Rem09).

The achievable range and type of signaling is fundamentally influenced by the choice of

power supply for the RFID tag. In general there are three different ways to handle the

electrical supply of the tag. In figure 3.6 the approaches from passive, semipassive to active

are visualized, as well as their power source and signaling.

In the passive and semipassive approaches the information is transmitted by a backscattered

modulated wave received from the RFID reader and affected by the RFID tag. In contrary

to the passive case, where the electronics on the tag are powered by extracting energy from

the reader’s electromagnetic field itself, the semipassive and active tags both have a battery

to power the electronics. Additionally, the active tag provides it’s own modulated signal

and not a backscattered signal from the RFID reader. Passive tags provide the more cost

effective solution when compared to semipassive or active tags. Furthermore they allow for

the best workflow options since they do not need to be charged and thereby add operational

convenience. These arguments make passive tags an idea worth pursuing for localization

systems in a medical environment. On the contrary passive tags need to extract all the

energy needed for tag operation from the RFID reader’s field. (Fin12) gives equation (3.3)

to find a measure for the free space path loss given the range r, the frequency f and the gain
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Figure 3.6: Three ways of powering an RFID tag are visualized. In the passive case the tag is
powered by the electromagnetic field itself and extracts the energy needed for the
electronics from that field. In the semipassive case the energy for the electronics
on the tag are provided by a battery, but for signaling purpose only the field from
the reader is backscattered. The active approach uses a battery to power the
electronics on the tag and also provide the energy for transmitting the signal to
the reader. (Dob12)

of the tag antenna GT and reader antenna GR.

aF = −147.6 + 20 log r + 20 log f − 10 logGT − 10 logGR (3.3)

The free space path loss aF characterizes the proportion between the energy emitted by the

RFID reader and the energy received by the RFID tag. By knowing the power consumption of

the utilized passive RFID tag and the efficiency of the rectifier the achievable communication

range can be estimated. Taking into account an IC with 5µW power consumption and an

efficiency of 10 %, the field needs to provide 50µW at the tag antenna. With an RFID reader

emitting 2W equivalent radiated power (ERP ) or 3.3W equivalent isotropically radiated

power (EIRP ), the free space path loss must not exceed 48.2 dBm. Under the assumption of

a dipole tag antenna with GT = 1.64, an isotropic reader antenna with GR = 1 and a signal

frequency of 865 MHz, the passive UHF RFID system can provide a communication range of

r = 9.1 m. For the same RFID system with a signal frequency of 915 MHz, which is used in the

USA, the communication range shrinks to r = 8.6 m. For the concept of a localization system
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in medical environment these communication distances are sufficient. Therefore, and because

of the greater operational effectiveness discussed previously, we focus on passive RFID tags

for the reminder of this chapter. When trying to use higher frequencies like 2.45 GHz or

5.8 GHz, the available communication range for the given parameters drastically decreases

to r = 3.2 m and r = 1.4 m, respectively. This is a drawback but could be compensated by

using ICs with lower power consumption and a more efficient rectifier.

Another topic to look at is the regulatory point of view in UHF and SHF RFID. The regulatory

environment in the UHF region from 860 − 960 MHz is complex and diverse for different

countries. Figure 3.7 gives an impression of the worldwide regulations in UHF RFID from

860 − 960 MHz in 2006.

Figure 3.7: UHF regulatory map of the world from 2006. Every nation can specify their
own regulatory requirements. On the contrary to that freedom it can be seen
that worldwide frequencies from 865MHz to 954MHz are specified and in many
countries cling to regulations from either Europe or the USA. (Dob12)

It can be seen, that the Federal Communications Commission (FCC) in the USA and the

European Telecommunications Standards Institute (ETSI) provide different regions in the

electromagnetic spectrum to use for UHF. Most other countries align to FCC or ETSI reg-

ulations. The current regulatory status of the UHF RFID spectrum usage can be found in

(GS116). In the current version from November 2016, it provides 81 countries listed with

their respective frequencies, radiated power, communication techniques and the responsi-

ble regulator. For the maximum radiated power mainly two different conventions are used.

Whereas the ETSI uses the effective radiated power (ERP) to describe the radiated power,

the FCC uses the effective isotropic radiated power (EIRP). Both conventions can be used

interchangeably by applying a conversion based on equation (3.4).
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dBm(ERP) = (dBm− 2.15)(EIRP) (3.4)

With the FCC and ETSI allowing 4 W EIRP and 2 W ERP, respectively, and converting EIRP

to ERP the difference comes down to 0.75 dBm or 0.37 W higher maximum radiated power

for the FCC regulation. This generates a need for different hardware to provide a worldwide

functioning localization system based on the 860 − 960 MHz UHF frequency range.

2.4 − 2.45 GHz RFID works in a region of the electromagnetic spectrum that is available

for unlicensed operation almost anywhere in the world. This makes it easy to provide one

solution with one hardware for a worldwide release. On the contrary, this region presents a

high chance of interference, as it is crowded with other users of this spectrum like telephones,

wireless local-area networks or Bluetooth. Taking the lower communication range and the

crowded spectrum prone to interference into account, 2.4 GHz or even 5.8 GHz RFID are

inferior to 860 − 960 MHz RFID systems for the purpose of a localization system in medical

environment.

3.1.3 Available RFID localization systems

The first generated and transmitted continuous wave (CW) radio signal was demonstrated

by Ernst F. W. Alexanderson in 1906 (Lan05). This experiment marks the starting point of

modern radio communication (Lan05). In 1948, (Sto48) presented the paper
”
Communica-

tion by Means of Reflected Power“ which introduces the idea of RFID but also claims that

much effort is needed to enhance this technology for useful applications. It took its time to

improve hardware used for RFID with e. g. the usage of CMOS circuits and EEPROM to

reduce RFID transponder size and price. It was also important to solve regulatory questions

and be able to use the invention of the personal computer (PC) to exploit the full potential

of RFID. Figure A.1 sheds a light on the variety of RFID transponders from printed paper-

thin models to wearables or exemplars with massive housing. With an increasing amount

of industrial application for RFID in the 80s and 90s (Lan05) the idea grew to also be able

to localize the tagged objects instead of just identifying them. One of the few products to

provide RFID localization and not only presence in a certain room or position on a conveyor

belt is NaviFloor by Future-Shape GmbH (Nav17). It uses a landmark-based approach where

RFID transponders are distributed into a special floor with a grid size of 50 cm. WhereNet

by Zebra Technologies is another RFID localization product. It provides industrially usable

transponders with a ranging accuracy of 30 cm (Whe17). The accuracy realized with both

systems is not sufficient for a localization system in medical environment. Over the past

15 years, there has been a growing and still ongoing interest in RFID localization systems

in the scientific community with a broad spectrum of approaches towards the goal of local-

ization. The following paragraphs shed light on different approaches to RFID localization

based on signal strength, signal phase at one and multiple frequencies, coverage region and

fingerprinting, respectively.
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Signal Strength One of the first RFID lcalization systems is SpotON by (HWB00), pub-

lished in 2000. It provides an aggregation approach based on received signal strength (RSS)

for localizing the transponders and realizes an accuracy of up to 1 m3. In 2004 LANDMARC

was introduced by (NLLP04), which provides localization based on RSS by using reference

tags at 308 MHz. The achievable accuracy also lies in the range of 1m with the maximum

error being less than 2 m. In 2009, an extended version of LANDMARC with 3D localization

and passive transponders was introduced by (KA09). It achieves an accuracy in position

estimation of 0.5 m.

Coverage Region A quiet different approach is given by (LCS06) with
”
Ferret“ in 2006.

It provides a mobile tracked reader that, based on the reading of the RFID tag, adjusts a

probability map of where the tag is located. By moving the reader around the map shrinks

to those areas where a tag is likely to be found. The achievable accuracy is given with 1 % of

the readers
”
field of view“. Since you have to move the reader around to get an idea of the

tag’s position, you have to track the RFID reader to make reasonable results. It also takes

some time for the tag location area to shrink.

Reference-based (SBC09) provides the idea of fingerprinting for RFID reader localization

with a great number of reference transponders on the ceiling and a database of reference mea-

surements for certain positions. It uses read results of the reference tags to map it to a reader

position based on the database. The approach achieves a localization accuracy of less than

60 cm. In (CRZ10) and (CR11) present an improved fingerprinting approach by calibrating

reference tags with changing power levels of the RFID reader. In the conducted experiments

they showed an overall accuracy of 15 − 18 cm. PinIt is a reference-based localization ap-

proach by (WK13) that exploits multipath measurements to obtain position estimates. It

provides a beam steering antenna that additionally moves on a line to simulate an antenna

array. The beam steering allows the proposed system to realize an angle of arrival estimation

for the target transponder and the reference tags. Based on that measurements it creates a

multipath-map and compares the paths of the target with the references. With this approach

and a reference tag map of 15 cm spacing an accuracy median of 11.2 cm is achieved. In

(MKV11) and (MKV13) a localization approach based on synthetic aperture produced by

moving the RFID reader is provided. It uses a holographic representation of the tag location

probability. Measurements conducted in an office environment 2D scenario with a synthetic

aperture of 1.2 m and a step size of 2 mm give a localization accuracy of 2 cm in x-direction,

parallel to the aperture, and 7 cm in y-direction, orthogonal to the aperture. With measure-

ments in a different setup using an aperture of 0.8 m and a step size of 4 cm the accuracy for

tag localization remains good in x-direction but decreases to 0.5 m with a standard deviation

of 0.8 m in y-direction.

Signal Phase In 2007, one of the first angle of arrival (AOA) localization schemata, called

direction estimation, was introduced by (ZAK07). It provides a two antenna array which
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exploits the phase-difference-of-arrival (PDoA) of the backscattered signal and computes the

direction or angle of the incoming signal wave. It achieved an angular accuracy of 1.5 −
2 deg standard deviation. Further approaches making use of phase-based measurements are

proposed by (HBE+09), (NMR+10) and (PS11). In 2010, also implementing a phase-based

RFID system, localization results in millimeter range are experimentally shown under ideal

situations by (HWGL+10). In (ACD+11b) and (ACD+11a) a phase-based AOA localization

approach is provided with off-the-shelf RFID reader and transponder hardware in an office

environment. The experiments lead to a mean error in localization accuracy of 0.21 m and

0.10 m respectively.

In (WW10) a simulation on close to ideal noise free phase-based measurements is conducted.

The results provide a best case scenario for phase-based RFID localization with an accuracy

below 2 mm in direct line-of-sight environment. Real measurements where conducted in

(WBW11) in a plastic basin shown in figure 3.8 with nearly ideal conditions in terms of

multi-path propagation, spatial extent of the measurement area and reflective objects.

Figure 3.8: Measurement Environment for RFID localization experiments. (WBW11)

Training datasets are acquired and used in a supported vector regression (SVR) algorithm to

determine the transponders localization. Results are provided in the range of millimeters for

small regions of interest. Further experiments in the same environment in (WMW12) realize

different raster sizes for training datasets and compare signal strength, phase-difference and a

reader-based post-processed phase-difference. The measurements lead to accuracy measures

from 1.0−4.2 mm depending on the training grid size and the conducted measurement paths.

(SVHJ12) presents an approach to overcome the phase measurements’ wavelength ambiguity

by introducing an extended Kalman filter and the Rauch-Tung-Striebel smoother. It includes

position, velocity and the phase offset of the antennas used. Experiments are conducted in a

3 m×3 m anechoic chamber with four antennas and a moving tag at 890 MHz with a root mean

square error of 3.2 cm and 1.5 cm respectively. (SPS+13) provides a phase-of-arrival based

localization approach with a frequency-stepped continuous waveform to overcome multipath
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disturbances. Experimental measurements with eight antennas result in a median error of

3.6 cm and a root mean square deviation (RMSD) of 0.6 m. By additionally applying a

tracking algorithm to account for outliers the precision could be improved to RMSD =

3.8 cm. An extension to this approach that combines phase-of-arrival (PoA) and phase-

difference-of-arrival (PDoA) algorithms is given in (SPS14). The PDoA provides information

on the movement of the RFID transponder. The median error in experimental measurements

in given with 1 cm and the RMSD with 6.4 cm.

Multi-frequency (LZA09) implemented a multifrequency-based phase-difference-of-arrival

approach. It overcomes the ambiguity of phase-based ranging methods by using more than

one signal frequency with a certain separation in the spectrum. In figure 3.9 the achievable

accuracy is shown over the frequency separation for three signal to noise ratio (SNR) levels.

Figure 3.9: Achievable accuracy for range estimation with a multifrequency-based ranging ap-
proach. The figure shows the root mean square error (RMSE) for range estimates
over frequency separation for three signal to noise ratio (SNR) levels. (LZA09)

It can easily be seen that a higher SNR leads to better results. A higher frequency separation

also improves the ranging accuracy. With having the regulatory map 3.7 in mind one can

easily derive that it is possible to achieve a frequency separation of 26 MHz in the USA with

a root mean square error (RMSE) of up to 5 cm. With the regulatory situation in Europe

it is only possible to provide a separation of 3 MHz with a RMSE of roughly 40 cm, which

severely limits the potential of this solution. A slight extension of this approach is given by

(VPJ10), which accounts for the reflection behavior of unknown RFID transponders but also

is in need of high bandwidth to achieve the proposed mean error of 68mm and a maximum

position error of less than 40 cm.

General Some general aspects of RFID localization that apply to many or all provided meth-

ods and algorithms have been investigated over the years. (PC11) discusses the influence of
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interference occurring for simultaneous reading of RFID transponders, one RFID tag being

read by multiple RFID readers or reader to reader interference. They compare different local-

ization algorithms regarding their behavior due to different interference measures and advise

for careful design in systems with high tag population. (FWAM11) shed light on the influ-

ence of multipath propagation for RFID localization approaches. They provide a multipath

channel model and conducted simulations for several phase-based localization approaches

and found that multipath has severe effects on the localization performance when not ac-

counted for. (LAE+11) investigates on the bandwidth dependence of UHF RFID localization

in multipath environments. Experimental Measurements are conducted in a warehouse por-

tal with severe multipath environment. They come to the conclusion that, due to regulatory

restrictions, channels in the ISM bands are not suited for severe multipath channels and sug-

gest to use signals like Ultra Wideband with a larger bandwidth to overcome the multipath

drawbacks.

3.2 Ultra Wideband

In contrast to RFID, where the name relates to the pursued application of identification by

using radio frequency, Ultra Wideband (UWB) describes the signal itself that is used for

this technology. The name directly indicates the bandwidth as the main parameter that

comes into play for the definition. An UWB signal is defined to meet at least one of two

requirements according to the Federal Communications Commission (FCC) (F+02). It has to

have a fractional bandwidth higher than 20 % or an absolute bandwidth larger than 500 MHz.

The absolute bandwidth Babs given in equation (3.5) is defined by the range between upper

and lower frequency of the −10 dB emission points fH and fL respectively. The −10 dB

emission point describes the frequency where the signal strength is 10 dB lower than the

maximum signal strength over the whole used spectrum. This can be visualized given the

power spectral density over occupied frequency in figure 3.10.

Babs = fH − fL (3.5)

The fractional bandwidth Bfrac is given in equation (3.6) and defined as the relation between

absolute bandwidth Babs and center frequency fc of the UWB signal. The center frequency

fc in equation (3.7) is defined as the frequency in the middle of the signals occupied spectrum

given by the upper and lower −10 dB emission points.

Bfrac =
Babs
fc

(3.6)

fc =
fH + fL

2
(3.7)

Substituting (3.5) and (3.7) into equation (3.6) the fractional bandwidth Bfrac can be ex-
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Figure 3.10: Schematic visualization of the power spectral density over frequency for an UWB
signal. The upper and lower −10 dB emission points are indicated at the borders
of the occupied spectrum. (GP09)

pressed as in equation (3.8), dependent only on the upper and lower −10 dB emission points.

Bfrac =
2(fH − fL)

fH + fL
(3.8)

The two requirements to meet the regulations for being an UWB signal by definition result

in a minimum bandwidth only depending on the center frequency of the signal and the given

fractional bandwidth in the lower part of the spectrum and the constant minimum absolute

bandwidth for the upper part of the spectrum. The dependency is visualized in figure 3.11

providing the minimum required absolute bandwidth Babs over center frequency fc.

The high bandwidth used for an UWB signal results in a very short duration of the waveform.

For communication the signals can be used as a continuous wave or a sequence of pulses.

Using a short duration pulsed waveform is called impulse radio (IR) UWB (WS98). The

transmitted pulse is often referred to as a monocycle. Figure 3.12 shows a second derivative

of the Gaussian monocycle described in equation (3.9). Other monocycle shapes based on

Gaussian pulse, Hermite polynomials or wavelet pulses can be found in (RMS98), (GSKP06)

and (BEJH06) respectively.

ω(t) = A

(
1− 4πt2

ζ2

)
exp(−2πt2/ζ2) (3.9)

To realize communication with short pulses used in IR UWB systems a number of those

pulses is transmitted to convey information between UWB modules. One way to provide

meaningful information is utilizing the sequence of polarities of pulses shown in figure 3.13.

Not only can information be encoded in the sequence of IR UWB signals but also each

pulse itself comprises information of the traveled time between UWB modules. This fact

can be exploited for localization purposes where the shortest traveled path of the UWB

signal is deduced from the received signals time at the receiving antenna. Figure 3.14 shows
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Figure 3.11: The UWB bandwidth requirement is defined by two functions that apply for
different parts of the spectrum. Below 2.5 GHz the fractional bandwidth is the
leading requirement. Above 2.5 GHz the minimum bandwidth is given by con-
stant 500 MHz.

Figure 3.12: Amplitude of a second derivative of the Gaussian UWB monocycle over time.
The pictured monocycle has a pulse width of about 0.7 ns. (WS98)

three scenarios of received IR UWB signals for different environmental effects. The first

scenario visualizes one strong UWB signal in a direct line of sight situation where only minor

multipath reflections occur. In this case it is sufficient to match the transmitted waveform

with the one received at the UWB receiving antenna. In real world environment the response

signal is overlayed by multipath reflections as shown in the second scenario. In this Case the

strongest signal not necessarily represents the shortest path. It generates the need to be able

to detect the first occurrence of a waveform independently from its amplitude by matching

received signals with the expected waveform. The third scenario displays a signal additionally
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Figure 3.13: UWB signal consisting of short pulses with a low duty cycle, where T denotes
the signal duration and Tf represents the pulse repetition rate. The polarization
of each single pulse decodes one bit of information. (GP09)

disturbed by severe noise effects. Algorithms to detect the first arriving IR UWB signal can

be found in (HS02), (GS05), (GSM+05) and (YG05) respectively.

Figure 3.14: Examples of received IR UWB signals in three environment scenarios. The
vertical axis provides the signal strength, whereas the horizontal axis indicates
the time. In the first scenario a strong line of sight path is available for the signal
to travel with only little noise and multipath signals. In the second scenario
strong multipath signals occur at the receiving UWB module due to reflections
caused by the environment. In a multipath scenario the direct line of sight
signal is not necessarily the strongest signal received. The third scenario shows a
received signal with strong noise influence and severe multipath signals received.
(LS02)
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3.2.1 UWB regulations

Another important aspect of UWB for localization purpose is the regulatory environment that

significantly prescribes the permitted bandwidth, radiated power and potentially required

mitigation techniques. Similar to the regulatory status for UHF RFID, the regulations for

UWB are defined individually for a number of countries or alliances. Figure 3.15 provides

an overview of the permitted usage of UWB bands between 3.1 and 10.6 GHz for selected

countries. Each band represents 500 MHz of spectrum and is indicated by color whether it

can be used with or without mitigation techniques implemented or is prohibited for UWB

usage.

Figure 3.15: Overview of UWB regulations for selected countries over band group allocations
based on table B.1. Permission to use one of the 14 UWB bands is indicated by
color. Green describes UWB usage without mitigation techniques at −41.3 dBm.
Green with text provides information on the required mitigation techniques to
allow for an UWB usage with −41.3 dBm. Grey bands are restricted by very
low power levels in the range of −53 dBm to −90 dBm dependent on the specific
regulation for each country.

The first to come up with a regulation decision was the US administration FCC in 2002 with

the first Report and Order in the matter of Revision of Part 15 of the Commission’s Rules

Regarding Ultra-Wideband Transmission Systems (F+02). Figure 3.16 visualizes the FCC

UWB mask from 800 MHz to 12 GHz and provides information on the upper limit for the

allowed output power.

The FCC mask provides the most relaxed regulations worldwide with a frequency band

from 3.1 to 10.6 GHz. The radiated power is limited to 41.3 dBm /MHz without any special

mitigation technique required. This regulatory approach provides manufacturers of UWB

systems with 7.5 GHz of continuous spectrum. In 2006 the ECC announced it’s decision on

UWB regulations for the EU. The ECC is part of the European Conference of Postal and
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Figure 3.16: Regulatory mask for indoor UWB devices in the USA with a broad available
frequency spectrum between 3.1 and 10.6 GHz without the need for mitigation
techniques, based on table B.2.

Telecommunications Administrations (CEPT) and comprises 48 radio and telecommunica-

tions regulatory authorities of the CEPT member countries (Rah10). Regarding available

spectrum for UWB systems, the ECC follows a more conservative approach than the FCC.

Figure 3.17 shows the permitted mask for UWB systems in the EU.

It can easily be seen that the spectrum from 3.1 to 4.8 GHz is only available when required

mitigation techniques are implemented. Using those techniques also enlarges the higher

spectrum range by additionally making the band from from 8.5 GHz to 9 GHz available.

To implement a Low Duty Cycle (LDC) as mitigation technique the following requirements

have to be met.

• Ton max = 5 ms

• Toff mean ≥ 38 ms (averaged over 1 second)

•
∑
Toff > 950 ms per second

•
∑
Ton < 18 s per hour

Detect and Avoid (DAA) is described by the ECC to be a technique that continuously detects

other radio systems in the nearby RF environment and assigns the power level of the detected

signal to three zones depending on given signal detection thresholds. The proposed approach

is to react to each zone, e.g. by switching to allowed power emission levels. In depth details

can be found in table B.4.

Regulations in other countries adopt or closely align to the two implementations in the USA

and Europe or modifications of them. Most countries are more strict with their allowed UWB
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Figure 3.17: Regulatory mask for UWB devices in the EU with two graphs indicating the
allowed radiated power levels based on table B.3. The blue graph describes
the UWB mask applicable when no mitigation techniques are implemented. It
provides a continuous spectrum of 2.5 GHz between 6 GHz and 8.5 GHz with
−41.3 dBm allowed. The orange graph indicates the allowed emission levels
when mitigation techniques like Low Duty Cycle (LDC) or Detect and Avoid
(DAA) are implemented. Two separated regions with 1.7 GHz and 3 GHz of
continuous spectrum are available with −41.3 dBm.

masks than the FCC. Mitigation techniques like LDC and DAA are also required in many

countries to be permitted to use UWB systems at full power level. Examples for important

regulations can be found in the annex figures B.1, B.2 and B.3. For manufacturers of UWB

systems it is essential to find a frequency band or a range of bands that are permitted in

all countries they want to use their systems in. From figure 3.15 can be seen that band

#3 with center frequency of 4.488 GHz is available throughout all considered countries. A

wider cross-country region is available from band #9 to #11 providing 1.5 GHz of continuous

spectrum.

3.2.2 Available UWB localization systems

There is a growing interest in Ultra wideband (UWB) to realize accurate and precise local-

ization for more than a decade (GTG+05). (SGK05) presents an UWB localization system

with the focus on low-cost hardware. Experiments were conducted both in a laboratory en-

vironment and within an anechoic chamber. A mean error of 40 cm to 50 cm was achieved

with a standard deviation of 43 cm to 55 cm. In (SRO06) a non-coherent IR-UWB demon-

strator results in ±5 ns accuracy for 95 % of the cases. This leads to a range accuracy of
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about 1.5 m. A two-way ranging approach with a pulse bandwidth of 1.5 GHz and resulting

measurement accuracy of 260 ps or 3.9 cm is given in (FKML10). Fingerprinting approaches

based on RSSI and Channel Impulse Response (CIR) are given in (WWB+10) and (KS10).

They provide position estimation errors of 0.33 m in an are of 1.2 m × 1.6 m and 4 cm in

6 fingerprinting regions of 28 cm × 28 cm respectively. Pietrzyk and von der Grün provide

an UWB localization system with range estimation errors below 3 cm (PG10). (ÇNG+12)

presents a root mean square error (RMSE) of 7.4 cm in 2D for experiments in a 4.3 m2 in-

door environment with a ToA based UWB localization approach. (SPA+14) conducts an

experimental study scrutinizing an industrially available UWB positioning system positioned

in a 60 m2 industrial environment resulting in a 3D mean error and standard deviation of

0.4 m to 1.0 m and 5.4 cm to 8.0 cm, respectively. UWB localization experiments in a retail

environment are presented in (CPMZ16). Measurements in a showroom environment with

two UWB implementations lead to accuracy results of about 15 cm. In (TEW16) a UWB

localization system based on TDoA ranging algorithms is provided and experimentally evalu-

ated. 2D-Positioning results of a mobile robot are claimed to be under 20 cm most of the time.

To overcome the limitations of radio location systems one can fuse different sensor technolo-

gies like inertial sensors providing data on e. g. acceleration or angular velocity. Inertial

sensors are prone to an integration drift over time to realize position and orientation data.

This behavior restricts their usage in time for integrated results or to using the non-integrated

values.

(SSGK08) uses a Kalman Filter to integrate UWB data and data from an inertial measure-

ment unit (IMU). Experiments in a room of 4.8 m × 2.8 m with a moving person result in a

RMSE of 320 mm.

(CCT08) combines an Ubisense UWB system with motion capturing based on inertial sensors.

This results in an error of 140 mm for localizing a moving person for 3 m.

The combination of inertial sensors with a round-trip time (RTT)UWB positioning system

using an extended Kalman Filter is shown by (DANS+10). Experiments in an office resulted

in a RMSE of 100 mm for a rectangular trajectory.

(HDL+09) and (ZLZ+13) provide qualitative graphical results for their tightly coupled ap-

proaches comprising UWB positioning and inertial measurements.

(KHS15) uses 10 UWB receiver and tightly couples them with IMUs. Experiments in an

8 × 6 × 2.5 m indoor environment give 30 mm, 30 mm and 23 mm RMSEs in x, y and z

respectively.

There are several commercially available UWB localization system on the market. One of

the first successful UWB positioning products is from Ubisense (Ubi17). It uses proprietary

active tags that are battery powered and operate in the range of 6.5 to 8 GHz. The system

uses TDoA and AoA algorithms to provide an overall accuracy of 15 cm. A second UWB

localization product is Dart UWB by Zebra which uses a frequency range of 6.35 to 6.75 GHz

and results in an accuracy better than 30 cm (Dar17). The PulsOn family by Time Domain
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(Tim17) provides two implementations of UWB modules. The high-end version leads to range

measurements with an accuracy of about 2 cm and a precision in the same range. The system

uses a frequency range of 3.1 to 5.3 GHz for FCC and 3.1 to 4.8 GHz for ETSI regulations

in the USA and Europe respectively. BeSpoon provides an UWB chip and a corresponding

evaluation kit with ToA or TDoA ranging methods (BeS17). The UWB chip is claimed to

cover the full FCC allowed frequency spectrum. Another UWB chip comes from Decawave

and claims to reach an accuracy of under 10 cm (Dec17). (AMV16) presents an experimental

validation of Decawave UWB modules in LOS and NLOS scenarios. It is very broad spread

in the scientific community and often used as basis for products by various companies. Time

Domain presented an UWB module implementing the Decawave DWM1000 chip in 2015.

Quantitec combines the Decawave UWB module with inertial sensor data in their product

Intranav and claims a ±3 cm accuracy (Qua17). There are several other partners of Decawave

worldwide comprising Idolink in South Korea (Ido17), Redpoint Positioning in USA (Red17),

Sewio in Czech Republic (Sew17) and Woxu in China (Wox17). In (JS16) two Decawave

and Bespoon evaluation kits are compared in different measurement scenarios. Overall the

Decawave UWB system leads to more accurate results in line of sight and non line of sight

environments. The reported standard deviation in line of sight scenario is given with 11 cm

for Bespoon and 5.5 cm for Decawave respectively.

3.3 Radio Technologies - Conclusions

Based on the thorough evaluation of RFID and UWB as two of the most promising radio

technologies in the last two chapters and the desired goals of this thesis from chapter 2, a

decision on the pursued radio type can be made. The combination of the required industrially

available components and the desired localization accuracy to be able to develop beneficial

applications suggests to prefer UWB over RFID. There are several UWB location products in

the market with satisfying accuracy possibilities, whereas there are only few RFID products

for radio location which provide poorer position estimation. Promising accuracies for RFID

systems are only achieved in scientific demonstrators and not easily available for this thesis.

In a collaboration with an RFID localization startup company we tried to look into more

accurate RFID positioning. The pursued goal was promising but unfortunately did not lead

to satisfying results.

Two other requirements are based on the dynamic, harsh and highly reflective medical en-

vironment and the need for line of sight. Both UWB and RFID radio location have an

advantage over optical positioning systems when it comes to line of sight. Radio signals can

penetrate more material than light which results in a robust line of sight for radio signals

where optical light is already deteriorated or blocked. For medical environment it is crucial

to consider the presence of shielded walls as well as numerous large devices in a crowded in-

door environment. In such a highly reflective multipath environment the usage of broadband

UWB systems covering gigahertz of spectrum over narrowband RFID is beneficial. With

those very short UWB pulses it is possible to identify the first recognizable time of arrival

32



3 Radio Technologies

while neglecting signals arriving later due to reflections.

The power consumption including additional workflow improvement with passive components

when there is no need to charge them and the costs of a localization system play a role when

thinking ahead of this thesis. Here RFID, at least with passive transponders, has an advan-

tage over UWB.

The worldwide regulations for bandwidth capacity is another important aspect when thinking

one step ahead of the prototypal evaluation of the technology but looking into the possibility

of developing a product based on this technology. UWB offers two interesting places in the

frequency spectrum where usage is allowed almost all over the world. For UHF RFID it is

needed to use at least two types of transponders since the frequency bands in the USA and

Europe differ to much. The ISM band is already found out to be not applicable founded in

possible interference due to the crowded frequency spectrum

When consolidating all the mentioned aspects, UWB is the option pursued in this thesis

well-founded in its superiority over RFID for most requirements. The upcoming chapters on

ranging and localization technologies will therefore mainly focus on UWB radio location.
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In this chapter four well-established ranging approaches for Ultra Wideband systems are

introduced. In section 4.1 the received signal strength (RSS) is exploited based on the fact

that electromagnetic signal attenuates proportional to the traveled distance. With the time

based technique time of arrival (ToA), introduced in section 4.2, the duration of a signal

traveling from sender to receiver is exploited. In section 4.3 a method using directional

antennas or antenna arrays to estimate the angle of arrival (AoA) of an electromagnetic

signal is described. One further technique to make use of the time of flight of a signal is Time

Difference of Arrival in section 4.4.

4.1 Received Signal Strength

Every emitted radio signal is exposed to attenuation or signal pass loss due to propagation.

This loss in signal strength can be translated into a function of the distance traveled by the

emitted radio signal. When two radio location units, unit1 and unit2, are used in a range

estimation setup the formula given in equation (4.1) represents the received signal strength

P2 at unit2, where P1 is the signal strength at unit1, G1 and G2 give the antenna gain of each

radio location unit in the direction of the signal sent and received respectively,the wavelength

of the radio signal is represented by λ and the distance traveled by the signal is given by d.

P2 = P1G1G2(
λ

4πd
)2 (4.1)

It can easily be seen that the signal power decays with d2 in an ideal environment with free-

space propagation. The given equation represents a very specific path loss for an exemplary

environment. Equation (4.2) introduces a factor n that characterizes the attenuation.

P2 = P1G1G2(
λ

4πd
)n (4.2)

(Rap09) gives the range for n with 1.6 to 1.8 in line of sight (LOS) indoor condition. For out-

door environment the factor ranges from 2 to 6. Other path-loss models like the attenuation

factor model in equation (4.3) are empirically driven.

Pd = Pdo + 20log10(
d

d0
) + αd+ FAF (4.3)
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The attenuation factor model uses a reference distance d0 to describe the path loss Pd for the

actual distance where α is a frequency channel attenuation factor and FAF represents the

floor attenuation factor (LZHH12). With precise on-site adaption for the environment, RSS

can give a good estimate for the range between two radio location units. However, once the

propagation channel differs slightly, severe errors in range estimation can be made due to the

influence of multipath fading or shadowing.

4.2 Time of Arrival

Time of Arrival or Time of Flight (TOF) techniques provide information about the distance

traveled between sender and receiver. They makes use of the fact that an electromagnetic

wave propagates with a constant velocity, the speed of light. Therefore with the given speed

of light and the measured time of flight one can deduce the distance traveled as seen in

equation (4.4).

v =
s

t
, with v = c and s = d → d = c · t (4.4)

The TOA approach does not directly provide the time equivalent for the distance traveled,

but the time of transmission comprising the time of flight between sensor nodes and the time

of signal handling and transfer inside the UWB modules. Figure 4.1 gives an impression on

the composition for ranging.

d

UWB BUWB A

Figure 4.1: Time of Arrival setup with two UWB modules, A and B. UWB A sends a ranging
request that is received by UWB B. In blue are highlighted the HF cable from An-
tenna to the connector on the electronic processing board and the connector and
the electronic board itself. The distance between the UWB modules is described
by d.

There are two types of TOA measurement schemes. The one way time of flight (OW-TOF)

ranging method uses one UWB module as sender and one as receiver. For one way estimation

of the time of flight, precisely synchronized clocks in the sensor nodes are required since one
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nanosecond error in time converts to approximately 30 cm error in distance estimation. The

UWB module that starts the range request sends a timestamp from the point in time in

initializes the message to the receiving UWB node. Equation (4.5) gives an idea of parameters

that influence the measured time.

tOW−TOF = tdistance + tcable + tprocess (4.5)

The goal is to extract the information of tdistance from the measured time tOW−TOF . There-

fore parameters like the duration of the signal traveling from the antenna to the electronics

for processing have to be calibrated or at least estimated based on e.g. the cable length.

Figure 4.2 gives a schematic impression on the signal traveling between UWB modules to

estimate the TOA in the OW-TOF setup.

To

UWB 

module A

UWB 

module B

Tdistance

T1

Free space

Figure 4.2: One way time of flight ranging scheme with sketched signal sequence at both
UWB modules and in free space between the modules. The time consumed inside
the receiving UWB module B is not part of this figure.

The second estimation scheme to compute the TOA between UWB modules is two way

time of flight (TW-TOF) ranging. For this method the signal is not only sent from request

UWB module to receiving module but processed there and sent back to the requesting UWB

node. With this approach the distance between UWB modules is traveled twice. The main

advantage over the OW-TOF approach is that there is no need for precisely synchronized

clocks. Figure 4.3 gives an overview of the TW-TOF technique.

It can easily be derived that the total amount of time needed for a range measurement

increases with TW-TOF. The time to travel the distance between nodes twice is one major

influence on this gain. The resulting total time measured at UWB module A is sketched in

equation (4.6).

tTW−TOF = 2 · tdistance + treply + tcable + tprocess (4.6)

The parameter treply includes the times tcable and tprocess when receiving the signal at UWB
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To

Treply

T1

UWB 

module A

UWB 

module B

Tdistance Tdistance

Free space

Figure 4.3: Two way time of flight ranging scheme with sketched signal sequence at both
UWB modules and in free space between the modules. The time inside UWB
module B to receive, process and transmit the signal again is given by parameter
Treply. The time consumed inside the receiving UWB module A is not part of this
figure.

modul B plus the time for sending the signal back to UWB module A. The information on

treply is sent back to UWB A with the ranging answer to be able to compute the sheer time

of flight for the round-trip.

Assume the received impulse radio UWB signal to be described by the simplified example in

equation (4.7), where τ reflects the time of arrival (TOA), s represents the signal template,

and η is a Gaussian white noise with zero mean and a spectral density of N0/2.

r(t) = s(t− τ) + η(t) (4.7)

A simple correlation algorithm searches for the largest value of correlation between r(t) and

a signal template s(t − τ̂) and results in τ̂ representing the TOA. To visualize the relation

between UWB signal bandwidth and reachable range estimation the Cramer Rao lower bound

(CRLB) can be calculated by equation (4.8) (GP09), where τ̂ is the TOA estimate, SNR is

the signal to noise ratio, and β is the effective signal bandwidth. The achievable ranging

accuracy over the SNR for different bandwidths based on the CRLB is shown in figure 4.4.

√
V ar(τ̂) ≥ 1

2
√

2π
√
SNRβ

(4.8)

It can easily be seen that the available bandwidth as well as the reachable SNR have an

immense influence on the achievable ranging accuracy. For good SNR situations a ranging

accuracy in the low cm up to millimeter range is achievable based on theoretical limits.

TOA or TOF methods are widely used in academic and commercially available UWB pro-

totypes and products. Crucial tasks are the calibration of the system due to time delays
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Figure 4.4: Cramer Rao lower bound for IR UWB Time of Arrival ranging scheme. It provides
the minimum standard deviation over the SNR for three exemplary bandwidths
or pulse widths. (GP09)

for the signal traveling through cables and the signal processing and to distinguish between

the right and first signal representing the shortest path between UWB modules and reflected

multi-path signals.

4.3 Angle of Arrival

Unlike RSS and ToA, Angle of Arrival does not result in a distance measure to represent

ranging, but yields information on the direction of a signal incoming. To realize the angle

information, antenna arrays can be employed that comprise of at least two antenna elements

with known geometric proportions with respect to the array center. For each antenna element

in the array, the time of arrival or the RSS can be estimated. By exploiting the differences

between the used measures at each antenna element the angle of arrival can be calculated.

The basic principle of AoA localization works for RFID the same way as for UWB. (ZZM11)

provides an AoA setup with UHF RFID exploiting the phase of the received waves. (KKL+11)

implemented AoA measurements in a UHF RFID phased array with electronic beam steering

mechanism. Figure 4.3 gives a 2D example for an antenna array with known geometry and

an incoming signal. It can be assumed that the incoming signal resembles a planar wave-front

since the signal source is sufficiently far away.

From figure 4.3 one can easily derive equation (4.9) with l being the spacing between two
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Antenna 1 Antenna 2 Antenna 3

ψ

ll

Figure 4.5: Angle of Arrival for an equidistant antenna array with three antennas and the
spacing l between them. Parameter ψ denotes the angle of arrival of the request
signal. The setup could also comprise more than one antenna on an UWB module
or a two-dimensional array. This depends on the used hardware.

antenna elements, ψ the AoA and c the speed of light.

l = sin(
ψ

c
) (4.9)

The AoA can also be estimated for 3D ranging information with a two dimensional antenna

array as prerequisite. Since two lines in 3D can be skew-whiff and therefore do not necessarily

intersect like two lines in 2D, the corresponding system of equations does not necessarily

have one single solution. With this over-determined system one can try to estimate the

measurement error.

Analogous to ToA, assume the received IR UWB signal to be described by the simplified

example in equation (4.10) for i = 1, . . . , n, where n is the number of antenna elements, τi

reflects the time of arrival (ToA) at the ith antenna element, s represents the signal template,

and ηi is a Gaussian white noise with zero mean and a spectral density of N0/2 at the ith

antenna element.

ri(t) = s(t− τi) + ηi(t) (4.10)

According to (GP09) the CRLB for AOA methods can be calculated with equation (4.11)

and results in figure 4.6.

√
V ar(ψ̂) ≥

√
2c√

2π
√
SNR

√
n(n2 − l)l cosψ

(4.11)
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Figure 4.6: Cramer Rao lower bound for IR UWB Angle of Arrival ranging scheme. It pro-
vides the minimum standard deviation over the SNR for three exemplary band-
widths or pulse widths. (GP09)

The achievable accuracy for AoA techniques is influenced by the available bandwidth and

the reachable SNR. Compared to the ToA approach the theoretically achievable accuracy for

good SNR conditions lies one magnitude below, at only decimeter to centimeter range.

4.4 Time Difference of Arrival

The Time Difference of Arrival (TDoA) approach provides information on the time difference

of signals arriving between one UWB module to be localized and UWB reference nodes. Like

ToA, it also makes use of the fact that the distance between nodes directly corresponds to the

time an electromagnetic signal needs to travel this distance. TDoA requires precisely time

synchronized UWB reference modules like the OW-TOF method from section 4.2. Opposite

to that approach, the mobile UWB module does not need to have a synchronized clock with

the other UWB modules. There are two different approaches of signal flow for TDoA, the

central and peripheral one that are shown in figure 4.7.

To better understand the signaling flow, figure 4.8 clearly shows what information is needed

for the TDoA arrival approach and what information can be discarded.

The total time of flight of the ranging signal is not of interest for this approach. Therefore, an

arbitrary reference time T0 can be chosen. The outcome of interest is given in equation (4.12).
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Ref 1

Ref 2

Ref 3Mobile

(a) Central approach

Ref 2

Ref 3Mobile

Ref 1

(b) Peripheral approach

Figure 4.7: Time Difference of Arrival signaling approaches. With the central approach the
mobile UWB node receives ranging request signals from each UWB reference
module with a corresponding timestamp. The collected data is provided to a
processing station that can also be integrated into the mobile UWB node. For
the peripheral approach the mobile UWB node sends a ranging request that is
received by all UWB reference modules. The measured time of receiving the signal
is send to a processing station.

To

UWB 

mobile 1

UWB 

reference 1
Tdistance,1

T1

UWB 

reference 2

T2

UWB 

reference 3

T3

Tdistance,2

Tdistance,3

Free space

Figure 4.8: Time Difference of Arrival ranging scheme with a peripheral approach and one
mobile UWB node sending the range request to the reference nodes. The reference
UWB nodes need to be precisely synchronized and receive the signal depending
on the distance traveled between each pair of nodes. T0 describes an arbitrary
point in time that is used as reference point.

T1−2 = T1 − T2, T1−3 = T1 − T3 and T2−3 = T2 − T3 (4.12)
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These time differences give information which UWB reference node is located nearer or far-

ther away from the mobile UWB node. A time difference of 0 means that the mobile UWB

node lies directly in the middle between the corresponding two reference modules.

The TDoA ranging scheme, comparable to ToA, is widely used in academic and industrial

implementations. For instance, the global positioning system (GPS) makes use of this ap-

proach with having synchronized satellites in space that provide ranging signals in a central

TDoA approach.
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This chapter comprises three well-known localization techniques for ranging systems like

UWB. They all make use of one or the other ranging result from the methods introduced

in chapter 4. In section 5.1 we shed a light on the angle based triangulation approach.

Trilateration and Multilateration are two well-known localization methods. In literature

trilateration is often associated with absolute range based sensor data, whereas it is spoken

of multilateration when range differences are obtained. This is misleading since the prefixes

”
tri“ and

”
multi“ give an information on the number of available signals for the calculation

and not for the type of range information. In this thesis it will be spoken of trilateration when

three references are given and multilateration when there are at least four reference nodes.

It will be further divided into spherical algorithms based on absolute range measurements

and hyperboloidal algorithms based on range difference measurements. Section 5.2 describes

a spherical trilateration approach in 5.2.1 and a spherical multilateration algorithm in 5.2.2.

One further localization technique that makes use of a hyperboloidal method is introduced

in section 5.3.

5.1 Triangulation

Having a sensor setup that provides angular measurements or estimates often results in the use

of triangulation to realizes meaningful localization information. Triangulation is based on the

idea that by knowing the baseline between two measurement points and the corresponding

angle information from theses points to the point of interest, the position of this point of

interest can be deduced. Figure 5.1 gives an idea on how the triangulation approach works

with two measurement nodes and one node of interest in a 2D environment.

To find a very easy geometric solution for the triangulation method one can define the first

UWB reference node as origin of a coordinate frame. The second reference module is posi-

tioned in a distance of lbase in x-direction. The distance from the reference nodes to the mobile

UWB module can be seen as legs of a triangle. Mathematically they can be represented in

point-slope form as given in equation (5.1).

y − yp = mp · (x− xp),with (xp, yp) denoting one point p on the line (5.1)

We set x1 and y1 to 0 for the first reference node and deduce the slope m from the angle of

arrival ψ1 using equation (5.2).
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Mobile UWB

ψ1

lbase

UWB ref 2UWB ref 1

ψ2

Figure 5.1: Schematic representation of the triangulation method in a 2D scenario with two
UWB reference modules at known distance lbase to each other. From each refer-
ence node the angles ψ1 and ψ2 to the mobile UWB module are known from an
AOA approach. With these three information the position of the mobile UWB
node can be computed.

tanψp = m (5.2)

For the second reference node, x2 is represented by lbase and y2 is 0. Combining these

information results in equation (5.3) for the x-component of the intersection of the lines

where the mobile UWB module is located.

x = − tanψ2 · lbase
tanψ1 − tanψ2

(5.3)

The y-component can easily be deduced from the point-slope equation in (5.1) used for one

of the legs of the triangle. It can be seen that for the 2D case two angular measurements

from two reference nodes are needed. To find a triangulation solution in 3D at least three

reference stations are required. Unlike the 2D case the lines do not always intersect in the

3D case. Due to measurement noise the lines will most likely be skew and therefore do not

allow for one single position solution. To solve for a 3D case, a least squares solution can be

found to solve this overdetermined system of equations.

5.2 Spherical Tri- and Multilateration

Spherical lateration is a mathematical approach to provide position information from range

measurements. In our setup it could take results form RSS or TOA ranging technologies as

input. By using the geometry of circles in 2D or spheres in 3D and the intersections between
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them, the position of an object can be estimated. Figure 5.2 shows a setup of 3D localization

with two spheres intersecting in a circle. The position of the object to be estimated can be

located anywhere on the circle and has to be further specified by more range measurement

inputs resulting in more spheres.

Figure 5.2: Schematic representation of the spherical lateration method in a 3D scenario
with two spheres representing range measurements from two sensors. With these
information the position of the mobile UWB node can be computed to be located
on the highlighted circle that results from the two spheres intersecting.

To find a unique position in 3D, four reference modules are needed. Two spheres intersect in

a circle that intersects with the third sphere in two points. The fourth sphere intersects with

one of these two points. It is also possible that the third sphere and the circle intersection

from the first two spheres only intersect in one point. In this special case, the fourth sphere

only confirms the position estimation.

A system with overall four UWB modules would be under-determined, since only three UWB

modules can be used as references and therefore the last step of finding the proper intersec-

tion of the remaining two candidates can not be provided. This is called trilateration. In

section 5.2.1 a geometric approach for a trilateration situation with three reference nodes is

introduced. Section 5.2.2 points out an algorithm for a well-determined or multilateration

scenario with at least four reference nodes.

5.2.1 Spherical Trilateration

In the under-determined or trilateration scenario two solutions are obtained. To get the valid

position solution, plausibility measures have to be implemented. This can work in the way

that one solution always is outside of the volume of interest. Figure 5.3 shows a 2D setup of

four UWB nodes with three of them used as references and one as localization object.
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Mobile UWB

UWB ref 2UWB ref 1

i

UWB ref 3

j

d

Figure 5.3: Schematic representation of the spherical trilateration method in a 2D scenario
with three UWB reference modules at known positions. The location of the mobile
UWB node can be derived from the ranging information of the reference nodes.
The variables d, i and j give relative distances regarding the first reference nodes
which is situated in the point of origin.

The presented algorithm based on spherical trilateration is not unambiguous. With three

reference modules in a 3D setup it results in two solutions for the location of the mobile UWB

node. We can use the location of the reference nodes for a plausibility check. Assuming ceiling

mounted UWB reference modules, they form a plane that lies approximately in parallel to

the ceiling. One result of the equation lies above and one below this plane. Therefore, the

solution outside the room can be neglected. Three UWB reference nodes (UWB ref 1, 2

and 3) result in three equations for the corresponding spheres, where r denotes the range

from reference node to mobile node and therefore the radius of the sphere, and the distance

variables shown in figure 5.3:

r2
1 = x2 + y2 + z2 (5.4)

r2
2 = (x− d)2 + y2 + z2 (5.5)

r2
3 = (x− i)2 + (y − j)2 + z2 (5.6)

Rearranging (5.4) and (5.5) leads to:

x =
r2

1 − r2
2 + d2

2d
(5.7)
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Some further rearrangement based on (5.4) and (5.6) leds to:

y =
r2

1 − r2
3 + i2 + j2 − 2ix

2j
(5.8)

Using equation (5.4) one can find:

z = ±
√
r2

1 − x2 − y2 (5.9)

The location of the mobile UWB node is represented by the intersection (x, y, z) of the three

spheres.

5.2.2 Spherical Multilateration

The spherical multilateration scenario is defined by the availability of at least four reference

nodes that contribute to localize a mobile UWB node. The introduced approach to solve this

spherical multilateration problem is derived from (SPA+14). With four reference nodes at

known positions, the sphere equations are represented in (5.10) i denotes the index of the

reference node.

(x− xi)2 + (y − yi)2 + (z − zi)2 = r2
i (5.10)

The estimated position of the mobile UWB node is given by (x, y, z), where (xi, yi, zi), i =

{1, 2, 3, 4} represent the reference node positions and ri represents the range from mobile

node to reference node. These four equations can be reformulated to fit into a linear system

of equations represented in (5.11).

Ax = b (5.11)

The reformulation leads to the explicit representation in (5.12) and (5.13).

A = 2


(xn − x1) (yn − y1) (zn − z1)

(xn − x2) (yn − y2) (zn − z2)
...

...
...

(xn − xn−1) (yn − yn−1) (zn − zn−1)

 (5.12)

b =


r2

1 − r2
n − x2

1 − y2
1 + x2

n + y2
n − z2

1 + z2
n

r2
2 − r2

n − x2
2 − y2

2 + x2
n + y2

n − z2
2 + z2

n
...

r2
n−1 − r2

n − x2
n−1 − y2

n−1 + x2
n + y2

n − z2
n−1 + z2

n

 (5.13)

This system of linear equations can be solved by finding the least square solution for x

subject to Ax = b. With equation (5.14) the minimum residual for the provided set of linear
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equations can be found. The corresponding position x represents the least square solution.

min ‖r‖1 = ‖Ax− b‖2 (5.14)

To calculate position x of the mobile UWB module, equation (5.15) can be used.

x = (ATA)−1ATb (5.15)

This approach can be extended to any number of reference modules in a spherical multilat-

eration scenario with this mathematical formulation.

5.3 Hyperboloidal Trilateration

To handle time or range difference results from a sensor system, hyperboloidal lateration

is an appropriate mathematical approach. It is comparable to spherical techniques in a

sense that it combines range measurement results from several sensor inputs and combines

them to calculate a position information. It differs in the underlying information from the

sensors. Whereas spherical approaches make use of absolute range information, hyperboloidal

techniques work with range differences regarding a pair of reference stations and the mobile

module to be located. This results in different geometric forms that represent the position

of the mobile node. Figure 5.4 shows the underlying principle with range differences that

provide a hyperbola in a 2D environment.

Following (Fan90), Hyperboloidal problem formulation can be solved by finding hyperbolas

and intersecting them. Figure 5.5 shows a hyperboloidal solution with three reference nodes in

a 2D scenario. Reference module 1 is placed in the origin of the coordinate frame. Reference

node 2 is positioned along the x-axis. The y-axis is orthogonal to these two modules. Variables

d, i, j represent the position of UWB ref 2 and 3, whereas tk,l represent the hyperbola between

reference node k and l.

With v representing the signal velocity and rk,l the range difference between node k and l,

one can write:

√
x2 + y2 + z2 −

√
(x− d)2 + y2 + z2 = ∆t1,2 ∗ v = r1,2 (5.16)√

x2 + y2 + z2 −
√

(x− i)2 + (y − j)2 + z2 = ∆t1,3 ∗ v = r1,3 (5.17)

Rearranging equation (5.16) and (5.17) one obtains:

r2
1,2 − d2 + 2d ∗ x = 2r1,2

√
x2 + y2 + z2 (5.18)

r2
1,3 − (i2 + j2) + 2i ∗ x+ 2j ∗ y = 2r1,3

√
x2 + y2 + z2 (5.19)
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Figure 5.4: Schematic representation of the hyperboloidal working principle in a 2D scenario
with two UWB reference modules at known positions and two representations of a
mobile module to be localized. The variables t1 and t2 represent times of distance
traveled from reference node to mobile node. This information is only given for a
better understanding and is not directly needed for this approach. With the range
difference information corresponding to ∆t, the position of the mobile UWB node
on a specifically shaped and positioned hyperbola can be computed.

Equation (5.18) and (5.19) represent two hyperboloids in 3D. The intersection of those leads

to a specific curve on a plane. Applying some reformulation as stated in (Fan90) one can

obtain a plane equation (5.20):

y = g ∗ x+ h, where (5.20)

g =
r1,3 ∗ (d/r1,2)− i

j
(5.21)

h =
(i2 + j2)− r2

1,3 + r1,3 ∗ r1,2(1− (d/r1,2)2)

2j
(5.22)

Substituting (5.20) into (5.18) leads to:

z = ±
√
s ∗ x2 + t ∗ x+ u, where (5.23)

s = −(1− (d/r1,2)2 + g2) (5.24)

t = d ∗ (1− (d/r1,2)2)− 2g ∗ h (5.25)

u = r2
1,2/4 ∗ (1− (d/r1,2)2)2 − h2 (5.26)
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Mobile UWB

UWB ref 2UWB ref 1

UWB ref 3
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Figure 5.5: Schematic representation of the hyperboloidal position estimation in a 2D scenario
with three UWB reference nodes at known positions and a mobile node to be
located. With the range difference information of the mobile module between
these three reference modules, the location of the mobile UWB node on the cross
section of the corresponding three hyperbola can be computed. The variables tk,l
represent the hyperbola between reference node k and l. In an ideal 2D scenario
the hyperbola intersect in one single point.

Combining the formulations from equation (5.20) and (5.23) a vector representation of the

mobile node only depending on one unknown variable can be found:

xy
z

 =

 x

g ∗ x+ h

±
√
s ∗ x2 + t ∗ x+ u

 (5.27)

Equation (5.27) represents the intersection curve of two hyperboloids created by reference

modules 1 and 2 and modules 1 and 3 respectively. To achieve a quadratic solution with two

possible positions of the mobile module, a third hyperboloid is needed. This could be achieved

by a combination of reference modules 2 and 3. The intersection of three hyperboloids results

in a set of two possible position solutions, where plausibility checks can help to discard

one of the solutions. Like spherical localization algorithms, hyperboloidal techniques can be

extended to more reference modules and therefore more information to obtain the position

of a mobile node.
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6 Technology Setup

Based on the input from part II, the underlying technologies to build a radio location system

for medical environment are chosen and set up. As already discussed in chapter 3.3 Ultra

wideband is the pursued radio technology since it best meets the defined requirements from

chapter 2. Section 6.1 provides information on how the hardware and signal for the proposed

UWB technology is implemented into the prototype and which ranging technology is used by

this implementation. The utilized localization technology and insights on counter-measures

for known errors are given in chapter 6.2.

6.1 Radio and Ranging Technology Setup

For all conducted experiments, the PulsON 410 (P410) UWB ranging module by Time Do-

main is used as industrially available UWB localization hardware. The P410 development

kit comprises four uniform UWB modules that can be used as anchors and tags. Figure 6.1

shows a P410 UWB board with a broad band antenna attached.

Figure 6.1: P410 UWB board with broad band antenna attached. (Tim17)

It can be seen that the board comprises two SMA antenna ports. It is useful for doing UWB

radar measurements where one antenna sends off the signal and the other one receives the

signal after reflections with the environment. In this work, only one antenna is used per UWB

module since a point to point ranging scheme is pursued. The modules can be powered by a

battery pack or power supply unit and provide some level of protection for the electronics by

a plastic enclosure with polycarbonate cover. The UWB nodes transmit coherent RF signals

compliant with the FCC emission limits. The signals span from 3.1 GHz to 5.3 GHz and a
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maximum power level of −41.3 dBm/MHz which is . To emit the signal a planar elliptical

dipole antenna with an omni-directional transmit and receive pattern is used. The antenna

beam patterns are visualized in detail in figures C.1 and C.2. Figure 6.2 shows the antenna

front and rear view with the respective phase centers that represent the points of localization.

phase center

(a) Front side

phase center

(b) Back side

Figure 6.2: Broadspec UWB antenna with phase center indicated on front and back side of
the antenna. (Tim17)

The system works with a two-way time of flight ranging approach and is calibrated with an

SMA right angle connector to represent the time of flight between phase centers of commu-

nicating UWB modules. For all conducted experiments four P410 UWB modules with the

provided Broadspec antenna and the right angle SMA connectors are used. The transmitted

UWB signal has a 1 n sec waveform show in figure 6.3.

Figure 6.3: Waveform of the 1 n sec signal. (Tim17)

With this provided signal waveform and the used signal detection on the P410 UWB modules,

Time Domain claims a ranging accuracy of 2.1 cm and a precision of 2.3 cm (Tim17).
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6.2 Localization Technology Setup

With the four P410 UWB modules three ranges between one dedicated mobile node and

three UWB anchor nodes can be measured. These ranges are the basis for the localization

technique. For this under-constrained localization setup the spherical trilateration approach

described in chapter 5.2.1 is suitable and therefore pursued. To get reasonable results from

noisy measurement two countermeasures are implemented. Outliers in the UWB raw mea-

surements are discarded using a velocity filter with threshold vmax between two update steps.

If the calculated velocity exceeds the predefined value the measurement is discarded. To over-

come noise effects in the provided raw distance measurements a second measure is pursued.

Figure 6.4 shows an error case that results from too short raw distance information. The

three spheres representing the range measurements do not intersect. Two spheres from a pair

of UWB reference nodes intersect in a circle, but for any combination the third sphere does

not intersect this circle at all.

Mobile UWB

UWB ref 2UWB ref 1

UWB ref 3

Figure 6.4: Schematic representation of the trilateration approach for an erroneous under-
determined scenarios in a 2 D view with three UWB reference modules at known
positions. The raw distance measurements provide distance information that
are shorter than the real distances between UWB modules. In this case, UWB
reference modules 1 and 2 intersect in a circle, represented by two intersection
points (highlighted by orange circles) in this 2 D view. The distance sphere from
UWB reference 3 does not intersect with the circle from ref 1 and 2.

One way is to anticipate wrong measurements when no intersection occurs and to adapt the

ranging results. (KEO09) proposes an approach to account for range measurement errors.

Each raw range measurement can be adapted by a certain additional range to find a suitable

intersection. With the adapted range data the trilateration algorithm can be again executed.

For the experiments conducted a range adaption algorithm to account for range measurement

errors is implemented.
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Raw data results of measurement system are often prone to noise or misreading which result

in outliers. Filter methods are commonly used to improve the results of localization systems.

With the measurement system providing positioning or localization information filters often

are used to keep track on the position over time and therefore are named tracking filters.

This chapter introduces three tracking filter approaches with different complexity beginning

with a Moving Average Filter in section 7.1. Section 7.2 sheds a light on the Particle Filter

approach. The Kalman Filter is described in section 7.3.

7.1 Moving Average Filter

The Moving Average Filter is an approach to compute the mean value over a fixed and

predefined number of the last N measurements. In the case of this UWB localization system

it averages over distance measurements that contribute to the trilateration algorithm. To

obtain the average location estimate at measurement step k equation (7.1) is used.

(x̄k, ȳk, z̄k) =
1

N

N∑
n=0

{(xk−n, yk−n, zk−n)} (7.1)

From an implementation perspective a moving average filter can be obtained by implementing

a circular or ring buffer. This approach is visualized in figure 7.1 with a moving average filter

of size N = 10.

Once the ring-buffer is filled, it always provides the mean value of the last N provided

measurements. For larger N , the precision of the position estimate in a static scenario

improves. Noise in the measurement data is leveled out whereas the inert aspect of the filter

increases with larger N . In a dynamic scenario where the real position of the tracked object

changes the mean position using N values is slow to follow.

7.2 Particle Filter

The Particle Filter is an efficient tool to model non-Gaussian distributions. It can be char-

acterized as a sequential Monte-Carlo Bayesian filter (LC98). It uses a set of particles and
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Figure 7.1: Ring buffer implementation to obtain a moving average filter. The presented ring
buffer provides ten data cells. In the beginning all cells are empty. With incoming
information, the cells are filled one after the other beginning with cell 1. Once all
cells of the ring buffer are filled with information, cells are overwritten starting
with the first one.

the state of the particle where each particle carries a set of information, but with individ-

ual values. In this UWB localization system xk = (x, y, z, x̄, ȳ, z̄) represent the state of the

particles, representing UWB nodes. The triplet (x, y, z) represents the estimated location

whereas (x̄, ȳ, z̄) can be interpreted as movement direction (BKR15). A region of interest is

defined and populated with n = 1000 initial particles that are distributed randomly (BKR15).

Figure 7.2 shows 1000 randomly distributed particles in a given range.

Figure 7.2: Initial Particle distribution with 1000 particles in a range of x from -2000 to
500 mm, y from -1000 to 1000 mm and z from 500 to 1500 mm.

For each particle a likelihood p is calculated which represents the probability of this particle

to represent the mobile UWB node’s real location. To compute the likelihood the multivariate

normal distribution from equation (7.2) is used.
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p =
1√

(2π)3|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)) (7.2)

In equation (7.2),
”
x is the position of the current particle, µ represents the trilaterated

position of the UWB measurement and Σ is the covariance matrix of the distribution, with

|Σ| being its determinant. Based on the calculated likelihood for all n particles a resampling

step is performed“(BKR15). In the resampling step each particle is chosen based on its

likelihood to be a candidate for the real position. It is also possible for a particle to be chosen

more than once, since the resampling phase represents a sampling with replacement. The

closer the particle information is compared to the estimated information, the more likely it

is for this particle to be resampled. This leads to a concentration of particles in the area

of the real position of the mobile UWB node. Figure 7.3 visualizes 1000 particles with the

initial distribution from figure 7.2 after 10 and 100 resampling steps. It can be seen that the

particles are more and more crowded in one area.

(a) after 10 resampling steps

(b) after 100 resampling steps

Figure 7.3: Particle distribution of 1000 particles after 10 and 100 resampling steps in a range
of x from -2000 to 500 mm, y from -1000 to 1000 mm and z from 500 to 1500 mm.
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To account for movement of the mobile UWB node during the resampling step the heading

direction of the newly created particles is set randomly whereas the velocity σv is normally

distributed. If the mobile UWB module moves in between measurement steps, it is likely

that one of the particles represents a movement close to the real performed one. Figure 7.4

shows the area of the concentrated particles in detail. It can be seen that the particles are

spacially distributed in an area of 800 cm3 and 50 cm3 after 10 and 100 resampling steps and

movement predictions respectively. It can be seen that after 100 resampling steps the particle

set comprises more duplicated particles in a more selective area since the results become more

robust.

(a) after 10 resampling steps

(b) after 100 resampling steps

Figure 7.4: Zoom into two particle distributions of 1000 particles after 10 and 100 resampling
steps in a range of x from -1020 to −920 mm, y from -60 to 40 mm and t from
900 to 1000 mm for 10 resampling steps and x from -985 to −960 mm, y from 0
to 40 mm and z from 920 to 970 mm for 100 resampling steps respectively.

The limiting factor for using the particle filter in a dynamic scenario with a large volume of

interest is speed of computation of the likelihood for a large number of particles. On the one

hand, the more particles are used, the more precise and robust the result gets. On the other
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hand this leads the particle filter to be slow. One measure to overcome this drawback is to

dynamically adapt the width of the multivariate normal distribution when a new UWB node

is found or the particle filter is initially started. Figure 7.5 shows three qualitative normal

distributions with different standard deviations σ.

Figure 7.5: Adapted normal distribution with three different standard deviations σ. In the
beginning when the uncertainty is high, the normal distribution with a high stan-
dard deviation is used. This leads to reasonable probability results even when
sparsely distributed particles. After some resampling steps a lower standard devi-
ation is chosen since most particles are in an area close to the real position. This
leads to more precise results since the likelihood is computed more selective.

With this measure being implemented the number of particles can be reduced to an amount

that provides decent speed of the filter. In the beginning of a measurement a large width

is used for the multivariate normal distribution, such that we still find the particles closest

to the real position despite of the sparse particle distribution. After a number of resampling

steps the filter width is reduced. This leads to more selective resampling results. For this

approach a descending function from equation (7.3) can be chosen.

filterWidthi = maxWidth/i, for i = 1 . . . n (7.3)

For the first n measurements the ith filter width is computed from a maximum value divided

by the current count i of the measurements. After n measurements the filter width remains

on a constant value.
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7.3 Kalman Filter

The Kalman Filter is an optimal recursive filter to find efficient and unbiased estimates for

a dynamic system from noisy measurements. In section 7.3.1 the basic formulation of the

Kalman Filter is described. An overview of how parts of the Kalman Filter are modeled

is given in Section 7.3.2. Section 7.3.3 introduces an adaptive covariance variation of the

Kalman Filter.

7.3.1 Basics

The Kalman Filter was derived in 1960 by Rudolf Emil Kalman (Kal60). To find the optimal

least squares solution with a Kalman Filter, normally distributed and zero mean white noise is

presupposed for the measurements and the modeled system. It is also assumed that the state

evolution of the dynamic system is linear. By sequentially using the noisy measurement data,

the state of the linear dynamic system and the associated covariance matrix are estimated.

The standard state-space formulation of a Kalman Filter is represented in a continuous way

in (7.4)

ẋ(t) = F (t)x(t) +B(t)u(t) + w(t), where (7.4)

x(t) is the state vector of interest,

u(t) is a known control input,

w(t) is a zero mean normal distributed process noise vector describing uncertainty in

the evolution of the state,

F (t) is the n× n state model matrix,

B(t) is the n× s input matrix,

s is the number of input signals.

It can be seen that the predicted state is estimated by combining the current state, known

input data and modeled system noise. To describe the influence of measurements on the

state-space, an observation model is incorporated with (7.5)

z(t) = H(t)x(t) + v(t), where (7.5)

z(t) is the observation vector,

x(t) is the state vector,

v(t) is a zero mean normal distributed measurement noise vector describing uncertainty

in the observation,

H(t) is the m× n observation model matrix,

m is the number of states observed,
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The state vector is updated by combining observations applied through the observation model

and the corresponding measurement noise. With a discrete-time set t = t0, t1, · · · , tk, · · · and

the assumption that during each time step the system behaves in a linear way, a discrete-time

formulation can be found in (7.6). For notation purpose it is assumed that every time-step is

of same length so the time argument can be exchanged by an index variable referring to the

sample number. When implementing the Kalman Filter, the length for each time-step can

be estimated and used for calculation.

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1. (7.6)

The process noise w can be rewritten as w˜N(0, Q) to mathematically represent an indepen-

dent white noise with normal probability distribution. The corresponding covariance matrix

of the state is predicted by equation (7.7)

Pk = FkPk−1F
T
k +Qk, where (7.7)

Qk is the process noise covariance matrix,

Pk is the coavariance matrix at time-step k.

Equivalently the observation model can be described for a discrete-time set as (7.8). The

observation model is often reformulated to represent the difference between measurement

and estimated state shown in (7.9).

zk = Hkxk + vk. (7.8)

yk = zk −Hkxk. (7.9)

The measurement noise v can be rewritten as v˜N(0, R) to mathematically represent an

independent normally distributed white noise. The corresponding covariance adaption is

given in (7.12) respectively. To compute the covariance matrix update, the Kalman covariance

innovation S in (7.10) and the Kalman gain K in (7.11) are required.

Sk = HkPk−1H
T
k +R (7.10)

Kk = Pk−1H
T
k S

−1 (7.11)

Pk = (I −KkHk)Pk−1 (7.12)

Figure 7.3.1 shows how the predict and update functions of the Kalman Filter are conducted

in a loop to track the state of an object. It is also possible to not sequentially alternate

between predict and update phase every time. Whenever an observation is available, the

update phase can be conducted. Between two measurements the predict phase can be used

in fixed time-steps to continually estimate the current state of the system.
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Figure 7.6: Kalman Filter loop with predict and update phase alternating.

For modeling a tracking filter based on UWB localization signals no control inputs are modeled

since we have no knowledge of the influence on the state space behavior. There are two options

for the system noise model. Examples how to implement a gaussian distributed system noise

model for different state models and influence parameters are given in section 7.3.2. Another

approach is to discard the system noise level since we have no information on the system noise

which would lead to best guess the values applied. In this potion one has to find another way of

accounting for noise behavior which is provided in section 7.3.3. The resulting representation

for the state estimations without system noise implemented is given in (7.13).

xk = Fkxk−1. (7.13)

The update phase used for a tracking filter based on UWB localization signals can be formu-

lated as (7.14) where the updated system state is computed using the current system state,

the Kalman gain from (7.11) and the reformulated observation model (7.9).

xk = xk−1 +Kkyk (7.14)
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7.3.2 Model

The state space of a UWB module can be modeled with different specifications. An essential

component is the position of the UWB module give by three coordinates x, y, z. A second

and third part of the state model can represent the motion of the UWB module. We consider

three different motion models for the behavior of the UWB modules and therefore three

different state space models:

static model xk = (x, y, z)

constant velocity model xk = (x, y, z, ẋ, ẏ, ż)

constant acceleration model xk = (xk, yk, zk, ẋk, ẏk, żk, ẍk, ÿk, z̈k)

In the static model, the position is assumed to be constant and no motion is used. The

constant velocity and constant acceleration model describe motions with constant velocity

and constant acceleration respectively. For each of the state models the state model matrices

and observation model matrices have to be created. Furthermore, the corresponding zero

mean normal distributed process noise has to be modeled. The 3 × 3 version of the static

state model matrix is given in (7.15). The 6 × 6 version for the constant velocity and the

9× 9 acceleration state model are given in (7.16) and (7.17) respectively.

Fstatic =

1 0 0

0 1 0

0 0 1

 (7.15)

Fconstvel =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(7.16)

Fconstacc =



1 0 0 dt 0 0 dt2

2 0 0

0 1 0 0 dt 0 0 dt2

2 0

0 0 1 0 0 dt 0 0 dt2

2

0 0 0 1 0 0 dt 0 0

0 0 0 0 1 0 0 dt 0

0 0 0 0 0 1 0 0 dt

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


(7.17)

The observation model of a UWB localization system is described by the 3×3 matrix in (7.18)

for the static state model, by a 3 × 6 matrix in (7.19) and a 3 × 9 matrix in (7.20) for the
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constant velocity and acceleration model respectively. The equations show position data as

the output of the UWB measurement system which therefore yields only direct influence to

the position part of the system state but not the velocity and acceleration information.

H(k) =

1 0 0

0 1 0

0 0 1

 (7.18)

H(k) =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (7.19)

H(k) =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 (7.20)

To model the uncertainty in the evolution of the state we can assume different influences

between k − 1 and k. In equation (7.21) and (7.22) for a static state model we compose a

position error and a velocity error respectively. Matrix G applies the unknown influence to

the used state space model.

wstatic,pos = Q = GGTσ2 =

1

1

1

(1 1 1
)σ

2
xsys

σ2
ysys

σ2
zsys

 (7.21)

wstatic,vel = Q = GGTσ2 =

dtdt
dt

(dt dt dt
)σ

2
xsys

σ2
ysys

σ2
zsys

 (7.22)

In equation (7.23) and (7.24) velocity and acceleration noise for a constant velocity state space

model are given. Equation (7.25) gives an example for a combined velocity and acceleration

uncertainty in the state evolution for a constant acceleration state space model.

wconst vel,vel = Q = GGTσ2 =



dt

dt

dt

1

1

1


(
dt dt dt 1 1 1

)


σ2
xsys

σ2
ysys

σ2
zsys

σ2
xsys

σ2
ysys

σ2
zsys


(7.23)
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wconst vel,acc = Q = GGTσ2 =



dt2

2
dt2

2
dt2

2

dt

dt

dt


(
dt2

2
dt2

2
dt2

2 dt dt dt
)


σ2
xsys

σ2
ysys

σ2
zsys

σ2
xsys

σ2
ysys

σ2
zsys


(7.24)

wconst acc,acc = Q = GGTσ2 =



dt2

2
dt2

2
dt2

2

dt

dt

dt

1

1

1



(
dt2

2
dt2

2
dt2

2 dt dt dt 1 1 1
)



σ2
xsys

σ2
ysys

σ2
zsys

σ2
xsys

σ2
ysys

σ2
zsys

σ2
xsys

σ2
ysys

σ2
zsys


(7.25)

To represent the uncertainty for the initial state estimation when the Kalman Filter is per-

formed for the first time, the diagonal values of the covariance matrix of the state are set to

a very high value since the chosen initial position is artificial and arbitrary. An example is

given in (7.26).

P0 =



1000 0 0 0 0 0

0 1000 0 0 0 0

0 0 1000 0 0 0

0 0 0 1000 0 0

0 0 0 0 1000 0

0 0 0 0 0 1000


(7.26)

The measurement noise covariance matrix should represent the uncertainty in the measure-

ment system. For the UWB localization system an uncorrelated error for the directions x, y, z

is assumed.

Rk =

σ
2
xm 0 0

0 σ2
ym 0

0 0 σ2
zm

 (7.27)

The information gained by updating and predicting the system using a Kalman Filter are the

state space xk and the covariance matrix Pk. In every single step of the Kalman Filter they

get innovated based on either predicting the kth state or using an observation to update the

predicted state.
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7.3.3 Bounded Covariance Kalman Filter

During the update phase of the Kalman Filter, an acquired observation from sensor data

provides information on the current system state to calculate a system state update. Every

time the filter gets a set of measurements, it becomes more certain about the state of the filter

that represents the physical parameters of the mobile UWB node. This results in decreasing

values of the of the covariance matrix’ diagonal terms of the system state. In a static situation

every measurement gives the same result except for the randomly distributed measurement

noise leading to ever decreasing diagonal terms of the covariance matrix approaching zero.

In a situation of sudden movement the current state would be weighted so high because of

the low values in the covariance matrix that a new measurement with different position data

would be assumed as false reading measurement or outlier. This effect can be judged as inert

behavior for the Kalman Filter state where it is slow to follow movement in reality after a

static phase.

To overcome this behavior the prediction phase can be utilized and some countermeasures

can be implemented. First, an appropriate state model should be chosen that represents the

process movement best. For the three introduced state models similar observations of an

inert behavior can be made. With a static model the state is anyways expected to stay in a

constant position. With the constant velocity and constant acceleration model the computed

velocity and acceleration in a static case approach zero and therefore the system only slowly

follows a movement in the beginning. Second, the covariance matrix Q of the process noise

can be set to a distinct value trying to limit the state covariance matrix to approach zero,

since it adds up to the current covariance matrix values and increases them in every prediction

step. For processes where static states are more likely, low values for Q can be applied and

when the localized object is more likely to have a dynamic behavior the values for Q can be

set higher. This can be called an offline adaptation of the Kalman Filter to different kinds of

dynamic behaviors in the system to model. Third, die covariance matrix of the Kalman state

can be influenced directly instead of using Q. Implementing a lower bound for the diagonal

terms of the Kalman covariance matrix limits them approaching zero. In equation (7.28) the

covariance matrix with a lower bound ξ is given.

Pk =

≥ ξ . . .

≥ ξ
. . . ≥ ξ

 (7.28)

This approach avoids the indirection of the Kalman covariance matrix values by using the

unknown environment covariance matrix Q of the system noise and directly influences the

points of interest. It also adapts faster to a static phase after motion. When a static phase of

the tracked object occurres directly after a dynamic movement phase the Kalman Filter re-

turns faster to the minimum available diagonal terms and therefore maximum inert behavior.

With a defined environment covariance matrix Q this adaptation takes longer.
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To handle various experiments including simulations and real measurements with divers con-

figurations of the measurement system a suitable software framework is needed. The imple-

mented C++ code of the UWB localization prototype is adapted for every situation using an

xml configuration file. This file defines a bunch of important information to run the local-

ization system in different modes and with different characteristics. First of all, it provides

position information on the UWB infrastructure or anchor modules. Figure 8.1 shows the

structure of anchor position configuration with x-, y- and z-values in mm and the correspond-

ing unique anchor ID to identify the UWB module. The configuration is extendable to any

number of anchor nodes.

Figure 8.1: Configuration of UWB anchor nodes

A second configurable parameter of the UWB localization prototype is the used tracking

filter. Figure 8.2 provides an overview of the three implemented tracking filter types
”
Buffer“,

”
Kalman“ and

”
Particle“ that can be chosen and parametrized using the parameters provided

in the configuration file.

Figure 8.2: Configuration of UWB tracking filters

For the Moving Average Filter the
”
BufferSize“ N can be configured to create a dynamic or

smooth filter behavior. The
”
BufferSize“ can also be set for the Kalman and Particle Filter

approaches to realize combined filter types. To realize Kalman and Particle filters without

ring-buffer influence the
”
BufferSize“ can be set to 1. Using a Moving Average Filter with

N = 1 results in raw UWB positioning data without any filter effect.
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For the Kalman filter four additional parameters can be set to characterize the filter behav-

ior. The
”
KalmanMeasurementError“ indicates the expected error from measurements from

the UWB positioning system in mm whereas the
”
KalmanSystemError“ represents the error

of the environment in mm. The
”
KalmanMinPvalue“ represents the threshold ξ for tuning

the Kalman covariance matrix’ diagonal terms. The lower the threshold the more inert the

filter behavior. The
”
MaxNodeSpeed“ indicates the parameter vmax in m/s introduced in

section 6.2 to check for reasonable results from a trilateration calculation. If the estimated

velocity of the mobile UWB module exceeds the
”
MaxNodeSpeed“ between two consecutive

measurements it is counted as a measurement error and therefore discarded. The constant

velocity model is used as fixed state model for the following experiments.

For the Particle filter another set of four specific parameters can be configured. The
”
Num-

berOfParticles“ indicates the number of particles used for the filter algorithms. The
”
Max-

ParticleSpeed“ provides the standard deviation of the absolute maximum speed of a particle

between measurement steps in m/s. With the direction of each particle this speed defines

the dynamic behavior of the particle set. The
”
FilterWidth“ indicates the shape of the used

multivariate Gaussian distribution after the ramp phase at filter initialization or when a new

UWB module is recognized. The
”
filename“ indicates where the randomly distributed initial

particle set is recorded.

The type of conducted experiments is also configurable in the xml file. Figure 8.3 provides

information on the three different experiment types
”
Real“,

”
SimArt“ and

”
SimReal“.

Figure 8.3: Configuration of UWB experiment type

In
”
Real“ measurement experiments with attached UWB hardware are conducted. The

”
Com-

Port“ indicates the ComPort the UWB system uses for communication with the lab PC.
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”
MeasurementNumberOfIterations“ is the number of trilateration data sets aggregated per

run. This parameter makes it easy to realize experiments of same length. With every con-

ducted real measurement campaign the raw measurements and the filter results are recorded.

”
SimArt“ defines an artificial simulation with configurable noise behavior for distance mea-

surements and position accuracy set in parameters
”
SimulationDistanceNoise“ and

”
Simula-

tionPositionNoise“ respectively. The number of conducted simulated measurements is con-

figured in
”
SimulationNumberOfIterations“. The artificial mobile UWB module is defined

based on the definition of the UWB anchor nodes by ID and x-, y- and z-coordinates in mm.

In
”
SimReal“ formerly recorded measurement data from real measurements can be played

back. This allows to apply different tracking filters with different parametrizations to the

same real measurement. There are two
”
inputdata type“ configurations for only UWB data

and combined UWB and optical reference data. The folder for
”
inputdata“ and the

”
output-

folder“ can also be defined.

In the upcoming sections, the developed UWB localization prototype is scrutinized heavily.

In section 8.1 the Moving Average, Particle and Kalman Filter are compared using the UWB

simulation in a static measurement scenario. In section 8.2 the system setup for experiments

in a medical environment is described. First measurements are conducted in section 8.3 to

get a feeling on the effect of different filter configurations. A comparison of the presented

radio location prototype implemented with the Moving Average, Particle and Kalman Filter

based on real measurements in a medical environment is provided in section 8.4.

8.1 Simulation

To get a first impression on the tracking filter behavior for the implemented Moving Average

Filter, Particle Filter and Kalman Filter, a simulation of a static measurement scenario with

zero mean Gaussian distributed noise is conducted. Figure 8.4 shows unfiltered simulated

raw data and results from an applied Moving Average Filter. Particle and Kalman Filter

results are visualized in figure 8.5.

A qualitative analysis from the graphs shows that raw data results in the highest position

estimation noise, whereas the Kalman filter settles to a state with low deviation after a

starting phase. Particle and Moving Average filter reduce the noise but maintain quite high

amplitudes. To get a more precise understanding of the simulation of the tracking filters the

standard deviation σ in equation (8.1) and the root mean square error RMSE in equation (8.2)

are calculated.

σ =

√√√√∑N
n=0

(
(x̄− xn)2 + (ȳ − yn)2 + (z̄ − zn)2

)
N

(8.1)

RMSE =

√√√√∑N
n=0

(
(x̂− xn)2 + (ŷ − yn)2 + (ẑ − zn)2

)
N

(8.2)
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For the standard deviation the square error for each element of N measurements versus the

mean value of all N measurements is calculated. On the contrary the RMSE uses the square

error between each measurement element and the reference position. Table 8.1 and 8.2 provide

the calculated RMSE and standard deviations for simulated raw measurements and applied

filters.

Table 8.1: Accuracy of simulations with static scenario

x [mm] y [mm] z [mm] 3D [mm]

Raw 30.6 18.8 23.5 43.0
Moving Average 8.7 5.3 7.2 12.4

Particle 13.5 7.6 9.9 18.4
Kalman 6.4 3.2 4.7 8.5

Table 8.2: Precision of simulations with static scenario

x [mm] y [mm] z [mm]

Raw 30.6 18.8 23.5
Moving Average 8.6 5.3 7.1

Particle 13.5 7.6 9.8
Kalman 6.3 3.0 4.7

From the results it can be seen that the standard deviation and RMSE give the same values

for all datasets. This effect means that the mean value of raw and filtered simulations lies

close to the given reference position. Table 8.3 visualizes this result. It is not a surprise since

the mean and reference values in this simulation experiment coincide. This is caused by the

applied zero mean Gaussian distributed noise.

Table 8.3: Absolute position results of simulations with static scenario

x [mm] y [mm] z [mm]

Reference -961.2 -1.5 948.8
Raw -961.2 -0.7 949.0

Moving Average -961.6 -1.4 949.0
Particle -960.3 -0.9 950.1
Kalman -961.5 -0.6 948.7

Overall, all tracking filters improve the simulated raw measurements. The Kalman filter

performs best under applied Gaussian noise in a static scenario. Further investigations are

performed in real measurement experiments.
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8.2 System Setup

The localization prototype is based on four industrially available PulsON 410 UWB modules

by Time Domain (Tim17). Three UWB nodes are set up as ceiling-mounted anchors at

fixed and known positions. The fourth UWB node represents the mobile object of interest

that is localized using the reference nodes. Figure 8.6 shows a simulated setup of a medical

environment. The green spheres represent the ceiling-mounted UWB anchor nodes. Multiple

mobile nodes are shown with blue spheres at the display mount, on the patient table and

on the trolley. The displayed values between the anchor nodes and one mobile node on the

patient table represent range measurements in millimeter.

Figure 8.6: Simulated environment comprising a Siemens cone-beam system, medical table
and medical display mounted on ceiling rails, an anesthesia cart. For localization
purpose the reference is set up with three (green) UWB nodes at known locations
and mobile (blue) UWB nodes are positioned on mobile objects. (BKR15) c©2015
IEEE

For the experiments the UWB prototype is located in an angiography test cabin comprising

an Artis zeego robot-based cone-beam CT system, a large medical display that can be freely

moved on ceiling mounted rails, several cupboards and the systems generator cabinet. Since

the room is used for X-ray tests and experiments it is build of shielded walls and leaded glass.

This results in reflections for radio signals on all surfaces and therefore severe multipath

effects. The mobile UWB node is positioned on the tabletop of the patient table. Figures 8.7

and 8.8 show the UWB anchors in the X-ray test lab.

Sequentially, the range between the mobile node and each anchor is measured. With a full

set of three measurements the location of the mobile UWB node is estimated based on the

localization algorithm from section 5.2.1. With the obtained positioning measurements all

introduced tracking filters are used. Figure 8.9 shows an NDI Optotrak Certus that is used

as reference system with gold standard measurement. This stereo camera system provides a

spatial accuracy of 0.1mm with a resolution of 0.01mm.
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Figure 8.7: System setup for medical environment with two reference UWB anchors mounted
at the ceiling.

Figure 8.8: System setup for medical environment with the third reference UWB anchors
mounted at the ceiling.
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Figure 8.9: Ground truth optical tracking system Optotrak Certus by NDI positioned on a
tripod in the angiography test cabin. (NDI17)

One wired active optical marker of the optical reference system is positioned in proximity

to the phase center of the UWB antenna but not too close to impinge the UWB measure-

ments. To realize both positioning systems working in the same coordinate frame they are

co-registered with the Artis zeego system.
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8.3 Filter Evaluation

This section describes experiments using the NDI Optotrak and the UWB localization system

are conducted and the measurements are recorded respectively. Using the
”
SimReal“ func-

tion of the UWB framework the recorded raw measurements can be replayed with several

configurations of the implemented tracking filters applied. The mobile UWB node and an

Optotrak marker are located on the patient table which is moved in x- and z-direction in

this experiment. The experiment comprises some movements but also static phases between

movements. Figure 8.10 shows measurement results from the optical reference system and

the UWB localization prototype without applied tracking filters.

(a) x, Optotrak (b) z, Optotrak

(c) x, UWB raw (d) z, UWB raw

Figure 8.10: Measured NDI Optotrak and UWB raw position data.

Qualitatively it can be assumed that the UWB measurements provide the same position

information in this scenario as the Optotrak but with higher measurement noise. At the

same time it is can be seen that the accuracy of UWB localization results in x-direction

matches the optical reference measurements better than in z-direction. This effect can be

traced back to the localization approach using a spherical trilateration algorithm and the

positioning of the UWB anchors at the ceiling. In this constellation the z-axis orthogonal to

the anchor plane gives poorer estimation results than x- and y-axis.

For the Moving Average Filter evaluation the buffer size N is configured between 1 and 50,

where 1 means UWB raw measurements given in figure 8.10. Figure 8.11 visualizes Moving

Average Filter results with N = 10 and N = 50.
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(a) x, N = 10 (b) z, N = 10

(c) x, N = 50 (d) z, N = 50

Figure 8.11: Measured UWB position data with Moving Average Filter of buffer size N = 10
and N = 50.

By increasing the ring buffer size smoother estimated filtered position results with less mea-

surement noise can be achieved. The known drawback of inert behavior and therefore bad

estimation results in movement phases due to longer ring buffer cycles does not seem to have

to much of an effect in this scenario.

For the Particle Filter two parameters are configured. The particle speed is configured as

0.5m/s and 1m/s. The filter width defines the width of the Gaussian distribution and is

set as 50 and 500. Figure 8.12 shows particle filtered position data with σv = 0.5m/s and

different filter widths and also variation of the particle speed to σv = 1.0m/s.

It can be seen that the particle speed has no obvious impact in this scenario. It is only impor-

tant for highly dynamic behavior where a slower particle speed cannot represent the UWB

modules movements. The filter width does also not provide qualitatively visible differences

for the position estimation.

The Kalman Filter is varied in the covariance matrix diagonal threshold ξ between 0.1 and

1. Figure 8.13 provides measurement results for different Kalman filter configurations.

The Kalman Filter overshoots at the end of a movement phase the more the smaller the ξ-

value is chosen. It shows that the Kalman Filter relies more on the state than on measurement

data input when ξ is small. The influence on the inertia of the filtered data can clearly be

seen in figure 8.14 for ξ-values from 0.001 up to 10.
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(a) x, σv = 0.5m/s, Σ = 50 (b) z, σv = 0.5m/s, Σ = 50

(c) x, σv = 0.5m/s, Σ = 500 (d) z, σv = 0.5m/s, Σ = 500

(e) x, σv = 1.0m/s, Σ = 500 (f) z, σv = 1.0m/s, Σ = 500

Figure 8.12: Measured UWB position data with Particle Filter with particle speed σv =
0.5m/s and filter width Σ = 50, particle speed σv = 0.5m/s and filter width
Σ = 500 and particle speed σv = 1.0m/s and filter width Σ = 500 respectively.

79



8 Experiments

(a) x, ξ = 0.1 (b) z, ξ = 0.1

(c) x, ξ = 1.0 (d) z, ξ = 1.0

Figure 8.13: Measured UWB position data using Kalman Filter with ξ of 0.1 and 1.0.

(a) Raw data, x (b) Kalman filtered data, x

(c) Raw data, z (d) Kalman filtered data, z

Figure 8.14: Measured UWB x-position data for raw data and Kalman filtered data with
different ξ-values.
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8.4 Filter Comparison

This section is dedicated to positioning performance regarding accuracy and precision of the

UWB localization prototype in static and dynamic measurement scenarios in the proposed

medical system setup. The mobile UWB node including the reference marker is placed on the

tabletop of the patient table. For the static scenario six table positions are used with a long

rest phase after each movement before the actual measurement for this static position starts.

The position error ε between one position result of UWB localization and optical reference

system is calculated from equation (8.3).

ε =
√

(x̂− x)2 + (ŷ − y)2 + (ẑ − z)2 (8.3)

For comparability reasons a root mean square error based on equation (8.2) on page 70 is

used. The estimated position of the reference system is denoted as (x̂, ŷ, ẑ) whereas the

tracking result of the UWB prototype is given with (x, y, z) and the number of measurements

at this position is given with N . Equation (8.4) provides the positioning precision based on

the deviation of the position accuracy ε regarding the mean position error ε̄ for N samples.

σε =

√∑N
n=0(ε̄− εn)2

N
(8.4)

In figure 8.15 localization results for static position 1 are shown.

Figure 8.15:
”
Distribution of the positioning accuracy for raw UWB localization data and

selected filter configurations for position 1. From left to right, for the Moving
Average Filter the sample size N increases from 5 to 100, for the Kalman Filter
the dynamic factor ξ increases from 0.1 to 1.0 and for the Particle Filter the
particle velocity σv and the covariance matrix Σ are varied from 0.5 to 1.0 and
50 to 500 respectively.“(BKR15) c©2015 IEEE
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It can be seen that the positioning error of the UWB prototype compared to the optical

reference system is comparable over all options independent of the applied tracking filter.

Figure 8.16 shows the exemplary position error for raw and one Kalman filtered data set.

Applying a tracking filter has noticeable impact on the precision σε of the localization proto-

type.

Figure 8.16: Error distribution for raw UWB positioning and Kalman filtered data for posi-
tion 1. (BKR15) c©2015 IEEE

Figure 8.17 shows position precision results for position 1. The effect of the filters tuning

factors can easily be seen. Tracking filters tuned to resemble dynamic behavior perform worse

than those tuned to resemble static behavior.

Figure 8.18 provides information on position errors for all six static positions done in this

experiment. The position error ranges from 35 to 42 mm. For the most static tuned Kalman

Filter a higher error can be seen although it was stated that the applied filter does not have

an influence on the accuracy. This is due to the set up of the experiment. With dynamic

factor ξ = 0.1 the long rest phase before starting the measurement is not enough for the very

inert behavior of this filter to swing back to the actual position. A similar overshooting can

be seen in figure 8.14 on page 80 for the Kalman filtered x-values and low values for ξ.

Figure 8.19 shows position precision results for all six static positions. It can be seen that

the Kalman Filter’s inert behavior with ξ = 0.1 also results in decreased precision.
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Figure 8.17:
”
Distribution of the positioning precision for raw UWB localization data and

selected filter configurations for position 1. From left to right, for the Average
filter the sample size N increases from 5 to 100, for the Kalman filter the dy-
namic factor ξ increases from 0.1 to 1.0 and for the Particle Filter the particle
velocity σv and the covariance matrix Σ are varied from 0.5 to 1.0 and 50 to 500
respectively.“(BKR15) c©2015 IEEE

Figure 8.18:
”
Distribution of the positioning accuracy for raw UWB localization data and

selected filter configurations for all positions. From left to right, for the Average
filter the sample size N increases from 5 to 100, for the Kalman filter the dy-
namic factor ξ increases from 0.1 to 1.0 and for the Particle Filter the particle
velocity σv and the covariance matrix Σ are varied from 0.5 to 1.0 and 50 to 500
respectively.“(BKR15) c©2015 IEEE

Moving Average and Kalman Filters outperform raw measurements and Particle Filters for

the conducted evaluation in a static scenario. It can be seen that the parameter tuning of

the tracking filters has great impact on the dynamic behavior and therefore the localization
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Figure 8.19:
”
Distribution of the positioning precision for raw UWB localization data and

selected filter configurations for all positions. From left to right, for the Average
filter the sample size N increases from 5 to 100, for the Kalman filter the dy-
namic factor ξ increases from 0.1 to 1.0 and for the Particle Filter the particle
velocity σv and the covariance matrix Σ are varied from 0.5 to 1.0 and 50 to 500
respectively.“(BKR15) c©2015 IEEE

results. The results for a dynamic scene can be seen in figure 8.20. Exemplary, the Moving

Average Filter with different sizes N is used. It can be seen that there is no overshooting

with the Moving Average Filter in contrast to the Kalman Filter. It can also be derived that

N has an impact on the inert behavior of the filtered results of the positioning system. This

can be explained with the number of measurements used in the ring buffer to estimate to

current position. The speed of position estimates ranges from 33 to 55 ms and therefore 30

and 18 Hz update rate depending on computational performance. With a Moving Average

Filter of size N = 100 this results in 3.3 to 5.5 s until each value in the ring buffer is replaced.

Figure 8.20: UWB localization in a dynamic setup where the Optotrak reference measure-
ments and UWB raw data are given in blue whereas red represents various
tuned Moving Average filters. (BKR15) c©2015 IEEE
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9 Results and Discussion

The developed UWB localization prototype is described in depth and evaluated heavily by

using simulations and real measurements in a medical environment. From the results it is

clear that UWB localization can be used to estimate the position of a mobile UWB module.

With only three UWB anchor nodes in a highly reflective environment it provides reasonable

position results compared to a highly accurate and precise optical reference system. Pro-

cessing the raw UWB data with applied tracking filters outperforms raw position estimation

without filters in the conducted static scenario measurements. Position accuracy for raw and

filtered data result in approximately 35mm. This confirms the fact that filter techniques only

have an influence on the distribution of the error not on the absolute value. Using tracking

filters the position precision is halved from over 7mm in medium tuned cases and reduced

to only 1.4mm using excessively tuned filtering. This improvement in precision goes hand in

hand with a reduction of dynamic behavior for the UWB localization. Since the medical en-

vironment comprises many mobile objects the dynamical behavior of the localization system

is of high importance. To overcome this drawback, further improvements on the localization

system are pursued. In part IV, an extension of the UWB localization system with external

sensor data is presented that aims for the current weak point of dynamic behavior combined

with high precision for position estimation.
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Dynamic Radio Location Prototype





10 External Sensors

To handle the drawbacks of the UWB radio location prototype introduced in part III, a

sensor fusion approach implementing an additional external sensor with a different sensor

technology to support the UWB sensors is pursued. The goal is to overcome the currently

implemented fixed filter tuning that controls the dynamics of position estimation. To realize

precise results in static scenarios but also an instant adaption to movements in a dynamic

environment a second source of information is needed. In 10.1 selected types of external

sensors are introduced and compared. We shed a light on two explicit implementations

of appropriate sensor types in 10.2. In 10.3 the introduced external sensors are compared

and tested for their suitability to extend the UWB localization system by two experimental

studies. A short conclusion on external sensors is given in 10.4.

10.1 Overview

There is a great variety of sensors available that can be utilized to deduce valuable informa-

tion for localization and positioning. The underlying goal is having a complement for the

existing UWB localization system for indoor use in a dynamic, harsh and crowded medi-

cal environment. Therefore the sensor should not exceed the dimensions of an UWB sensor

node. Ideally the external sensor is easily integrable into the existing localization system. In

(BFW97), seven categories of positioning systems are defined:

1. Odometry

2. Inertial Navigation

3. Magnetic Compasses

4. Active Beacons

5. Global Positioning Systems

6. Landmark Navigation

7. Map-Based Positioning

Each category can be composed of different sensor technologies and not all categories are

suitable to complement the UWB localization system. The seven categories can be arranged

in two groups regarding the localization and positioning result they give (BEF+96). The

first two categories, introduced in 10.1.1, are types of relative position measurements or dead
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reckoning. The third to seventh category belong to the absolute or reference-based positioning

systems, described in 10.1.2. In 10.1.3 a short conclusion on external sensors is given.

10.1.1 Dead Reckoning

Dead Reckoning describes the relative position estimation based on incremental motion in-

formation over time regarding a previous position. This approach is very sensitive towards

orientation and speed errors. Every error in the first place cumulates for later results since

the current position is used as previous position in the next position estimation step.

Odometry makes use if direct data from the respective driving technology to estimate po-

sition changes over time. For cars or mobile robots this often is the revolution of wheels

that is measured by encoders. Together with the circumference of the wheel, the distance

traveled is computed. For persons and legged robots the distance traveled is calculated by

the number of steps and the corresponding step length. This only gives information of the

distance traveled and needs to be combined with sensor technologies to deduce the heading

direction to get a relative position. The objects equipped with an UWB localization system

are of very different kinds and do most likely not have active drives. Since we seek a general

external sensor solution to complement UWB localization, Odometry is not suitable.

Inertial Navigation makes use of motion and rotation sensors to calculate the speed and

heading direction of the object to be localized and estimates the relative position from this

information. Compared to Odometry, inertial navigation systems directly measure physical

parameters of the moving object. To deduce relative position data from the quantity to be

measured, the measurements are once or two times integrated.

An accelerometer measures the acceleration that affects itself. An acceleration sensor that is

properly calibrated gives a result of 9.81m/s2 for the upright direction in a static scenario on a

surface. This acceleration value resembles the gravity of Earth. There are exceptions from this

characteristic, for example the eddy current based Ferraris sensors that only measures relative

accelerations between two components. Nevertheless, most common used acceleration sensors

are not independent of the standard acceleration due to gravity since they use a mass-spring

system mounted with one sensitive direction. To be able to realize very small designs, the

acceleration sensors are build as micro-electro-mechanical systems (MEMS). This allows for

miniaturization of the mechanical structures in the dimension of micrometers and to integrate

it on a chip. Figure 10.1 shows a MEMS structure to realize an accelerometer. A macroscopic

gyroscope commonly consists of a spinning wheel that can move freely to any orientation in

its mounting. This instruments are often used as sensors in airplanes, spacecrafts or military

applications. On the on hand they are very precise, on the other hand they are expensive

and have a quiet big design. Like accelerometers, gyroscopes can also be build up as MEMS.

In this configuration they can be understood as an extension of an acceleration sensor. One

90



10 External Sensors

Figure 10.1: Schematic structure of a MEMS accelerometer build up on a substrate (grey).
There is a fixed structure (green) on the substrate and a movable mass held
by springs (red) to provide one degree of freedom. With acceleration applied
to the sensor, the movable mass is displaced. This results in a change of the
capacity between fixed and movable structure. From the measured capacity the
acceleration can be derived. (Dej16)

type of gyroscopes uses two masses that are moveably mounted in perpendicular directions.

In this composition the Coriolis effect is exploited to measure the angular rate. Figure 10.2

gives a schematic view of a MEMS gyroscope with a two mass system.

Figure 10.2: Schematic structure of a MEMS gyroscope. There are several fixed structures
(blue) providing one part of the capacities. Having one mass oscillating in the
direction of its degree of freedom (yellow) and exert a perpendicular force by
an angular rate, the second mass (red) is affected by this force and therefore
displaced. Both masses are moveably mounted using springs (green). With
the inner mass moving, the capacity change can be measured and therefore the
angular rate can be estimated. (Dej16)
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10.1.2 Reference based Systems

Reference based systems give absolute measurement information regarding a specified co-

ordinate frame. Unlike dead reckoning systems, they do not rely on a previous position to

estimate information relative to that. Measurements are directly given in a specific coordinate

frame which is given by the references.

Magnetic Compasses can be used to measure the earth’s magnetic field. Common magne-

tometers use the Hall Effect to estimate the magnetic field. Other implementations use for

example the magneto resistive effect or a fluxgate compass. Figure 10.3 gives an example for

a hall effect magnetometer and its working principle. As a drawback, magnetic compasses

are highly effected by other magnetic fields caused by magnetic materials or electromagnets.

Figure 10.3: Magnetic Compass using the Hall Effect to determine the magnetic field. The
magnetometer comprises a conductive plate (grey) with an electric current to
flow through it. A magnetic field disturbs the flow of the electrons inside the
conductor and applies a Lorentz force which results in a displacement of the
electrical flow perpendicular to the magnetic field and the current flow. This
results in a separation of charge alongside the conductor which can be measured
as a voltage representing the strength of the magnetic filed. (Dej16)

Active Beacon navigation systems can be used implementing several sensor technologies.

The provided UWB system belongs to this group of navigation or localization sensor systems.

The beacons, in this case the UWB modules, actively send a signal to the tracked object and

use this information for the localization. Optical triangulation systems are also counted

as active beacons. Since our localization prototype already comprises one active beacon

technology and alternatives are already discussed in 1 this can be skipped here.
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Global Positioning System or GPS is the state of the art localization system for outdoor

navigation. It comprises 24 satellites as reference stations with time of flight and trilateration

to estimate the position of the receiver. Due to the fact that GPS is most likely not available

in indoor scenarios it cannot be used as extension for this localization prototype.

Landmark Navigation unlike active beacons uses passive information for localization pur-

pose. These landmarks can be specific geometric objects with a distinct shape or additional

information from e.g. bar-codes. Landmarks are placed at fixed and known positions and

have to be easy to identify by the sensor technology used on the object to be tracked. The

position accuracy of the landmarks is a crucial factor on the localization accuracy with this

approach. The amount of landmarks in range of the sensor is also important. The more land-

marks are available in the field of view, the better the positioning result is. On the object

to be tracked a sensor technology to sense the landmarks is needed. Often an optical camera

approach is pursued to either find geometric features or a bar-code.

Map-Based Positioning differs from landmark navigation in the point that no distinct

shapes or objects are used as reference, but features from the whole local environment. Com-

monly used are laser range sensors to build up the map for the current object position. This

information can be compared to a previously stored map which for example can be generated

from a CAD model.

10.1.3 External Sensors - Conclusions

From the introduced seven fields for localization and navigation technologies only two seem

to be of additional value for the UWB localization system. For Odometry wheel revolution

or step length need to be available which is not necessarily given for the objects to be tracked

in medical environment. GPS is not feasible since it is not available in indoor scenarios.

UWB itself being an active beacon based system cannot gain that much additional and non

redundant information from another system of the same kind. In chapter3 different active

beacon technologies are already introduced and UWB found out to be the most promising

one. Map-based positioning needs a map with clear and fixed features to extract. In the

crowded and dynamic medical environment this can not be guaranteed. For landmark based

approaches a sensor, e.g. a camera, is needed on the object to be tracked. This is not a

feasible solution to be integrated with the UWB system where the board can be hid in the

tracked object and only the antenna needs to be electrically visible. Other landmark solutions

with e.g. RFID are radio location technologies exposed to the same environmental influences

like UWB, providing the same type of information, here position, and found out to result in

inferior positioning results.

Due to the possibility to build inertial sensors like accelerometers and gyroscopes in MEMS

technology with small designs and their ability to provide direct information on the movement
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or movement change of the object mounted on, they are a reasonable extension of the UWB

localization system that provides a different type of information to complement the UWB

position information. Magnetic compasses provide a good extension of the possibilities of

inertial navigation systems and can thus be also of interest for the presented localization

prototype.

10.2 Inertial Measurement Units

To experimentally evaluate the proposed sensor fusion approach using accelerometers, gyro-

scopes and magnetometers two different industrially available sensors are implemented. One

of the sensors is a basic implementation that provides acceleration information in 3 dimensions

of freedom (DOF). The other sensor is a state of the art sensor combination that comprises

9 dimensions of freedom with accelerometer, gyroscope, magnetometer and a microcontroller

to postprocess and combine measurements in one chip.

First the simple triaxial acceleration sensor (SMB380) from Bosch Sensortech GmbH is pre-

sented (Bos17). The SMB380 has a small footprint of 3.0× 3.0 mm2 with 0.9 mm height. It

provides 10 bit resolution for acceleration data and different measurement ranges where the

smallest range with ±2 g is the most suitable one for the pursued application. The SMB380

sensor is implemented in the JoyWarrior24F8 by Code Mercenaries Hard- und Software GmbH

that realizes the power supply, input and output communication for the sensor (Cod17). Fig-

ure 10.4 visualized the accelerometer in the used enclosure.

(a) Sensor in enclosure (b) Sensor open

Figure 10.4: 3 DOF Sensor with indicated orientation on enclosure.

The BNO055 by Bosch Sensortech GmbH is claimed as
”
Intelligent 9-axis absolute orientation

sensor“ with 9-axis sensor fusion (Bos17). It has a footprint of 3.8 × 5.2 mm2 with 1.13 mm

height. This is double the size of the SMB380 but still small compared to the P410 UWB

module. The BNO055 provides 14 bit resolution for acceleration data with the smallest range

of ±2 g, 16 bit for the gyroscope with ranges from ±125◦/s to ±2000◦/s and ∼0.3µT for the

magnetometer. For the pursued application the smallest gyroscope measurement range can

94



10 External Sensors

be chosen to get the best resolution since we do not expect high-speed rotations. For the

sensor output several non-fusion and fusion modes can be chosen. To make the most use

of all measured sensor data the NDOF fusion mode that combines all nine dimensions of

freedom is used and results in absolute acceleration and orientation measurements with an

output rate of 100 Hz that already compensates for the gravity of Earth. For the UWB-IMU

fusion approach the BNO055 is implemented in an Xplained Pro wingboard to be compatible

with the Atmel Xplained Pro evaluation board shown in figure D.1 (Atm17). The wingboard

is given in figure 10.5 and provides the powering, input and output communication for the

sensor.

Figure 10.5: 9 DOF Sensor Wingboard Xplained Pro by Atmel. (Atm17)

To protect the electronics from environmental effects a robust housing is build that could also

hold additional wingboards with other functionalities provided. Figure 10.6 shows the whole

9 DOF IMU with housing.

Figure 10.6: 9 DOF Sensor Setup of the electronics in a robust housing.
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10.3 Experiments

To compare the 3 DOF and 9 DOF inertial measurement units, experiments in a static and a

dynamic scene were conducted. The UWB localization system and the IMUs are positioned

in a medical environment comprising a cone-beam CT, a patient table, a ceiling mounted

display, lead shielded walls and several assets. The external sensors are positioned on the

patient table and fixed with tape to the UWB localization system. Figure 10.7 shows the

combined sensor setup on the patient table.

Figure 10.7: Combined sensor setup on patient table in medical environment comprising the
P410 UWB module, both IMUs and an Optotrak optical marker.

For the sensor fusion approach it is of high interest whether the object to be localized is in

motion or not to adapt the Kalman Filter. In equation (10.1) the absolute acceleration is

estimated from the acceleration in x-, y- and z-axis. After that the acceleration of gravity is

subtracted.

aabs =
√
a2
x + a2

y + a2
z − g (10.1)

This simple approach is only valid when the absolute acceleration of the object and the

acceleration of gravity effect in the same direction. Otherwise a vector-based approach as

stated in equation (10.2) would be needed. For this vector-based approach the orientation of

the absolute acceleration is needed.

aabs =
√

(ax − gx)2 + (ay − gy)2 + (az − gz)2 (10.2)
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For the 9 DOF IMU all needed values are measured and available. For the 3 DOF acceleration

only sensor, a high pass filter like a butterworth filter could be applied. In the conducted two

measurement scenarios it can be guaranteed for the absolute acceleration and the acceleration

of gravity to be aligned so we do not need to account for counter measures here.

From the static scenario measurements the quality of the calibration of the sensors and the

noise behavior can be deduced. For the dynamic scene the patient table is moved to six

different heights over a time of approximately 55 seconds with plateau phases of several

seconds at each position. The measurement results from the dynamic scene give information

about the signal response of the IMU. Combining the noise and signal response results of

static and dynamic scenes the signal to noise ratio (SNR) can be derived as a basis for

decision whether the inertial sensor is appropriate to support the UWB localization system

or not.

In figure 10.8 the UWB position data for the static scenario is given for x-, y- and z-axis.

It can be easily seen that in the static scenario the measurements move in a range of ± 3cm

maximum error around the median value for each axis.

(a) x (b) y

(c) z

Figure 10.8: Static measurement campaign to evaluate and compare 3 DOF and 9 DOF IMUs.
Shown are the UWB measurements for approximately 55 seconds of no motion
of the patient table.

Acceleration measurement results for the static campaign are given in figure 10.9. Since the

acceleration data is given as absolute value no negative acceleration values appear. It can

be seen that the 3 DOF acceleration sensor is affected by an approximately ten times higher

mean error than the 9 DOF sensor unit.

A detailed comparison of the behavior in static scenario can be seen in table 10.1. From the

mean acceleration value the quality of the calibration can be deduced. The expected value
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(a) 3 DOF, acceleration (b) 9 DOF, acceleration

Figure 10.9: Absolute acceleration measurement results for 3 DOF and 9 DOF sensor units in
static scenario.

for the static scenario is of course 0m/s2. The 9 DOF sensor units acceleration results are

one magnitude better than the 3 DOF sensor unit. The standard deviation for acceleration

measurement gives information about the noise sensitivity of the sensor. The 9 DOF IMU

gives three times better results than the 3 DOF sensor in this category.

Table 10.1: Statistical evaluation of IMU acceleration measurement in static scenario

ā [m/s2] std [m/s2] var [m2/s4]

3 DOF 0.446 0.0372 1.35 exp−3
9 DOF 0.032 0.0119 1.41 exp−4

Additionally to the measured acceleration data its corresponding derivative with respect to

time, the jerk, is computed. It can be used as a good indicator for motions where acceleration

does not lead to reliable conclusions. Figure 10.10 shows the derived jerk data for the static

scenario. Comparable to the acceleration data, the 9 DOF sensor unit obviously gives better

results than the 3 DOF sensor unit.

(a) 3 DOF, jerk (b) 9 DOF, jerk

Figure 10.10: Absolute derived jerk results for 3 DOF and 9 DOF sensor units in static
scenario.

In table 10.2 jerk data of both IMUs is compared. As for the acceleration, the expected value

for the jerk is 0m/s3. The results again are many times more accurate for the 9 DOF than

3 DOF sensor unit. The standard deviation as indicator for the noise behavior gives three

times better results for the 9 DOF sensor unit. Approximately the same ratio goes for the

jerk mean value as indicator for the calibration of the sensors.
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Table 10.2: Statistical evaluation of IMU jerk measurement in static scenario

j̄ [m/s3] std [m/s3] var [m2/s6]

3 DOF 1.368 0.9126 0.833
9 DOF 0.408 0.2899 0.084

In figure 10.11 the UWB position data for the dynamic scenario is given for x-, y- and z-

axis. Here the data from the 3 DOF run is visualized as representative of a dynamic scene.

The motion profile for the 9 DOF sensor looks similar. For the dynamic scenario the patient

table is only moved up and down which results mainly in a movement in x-direction in the

coordinate frame of the measurement system. Overall the measurements in y- and z-axis

move in a range of ± 3.5 cm maximum error which is comparable to the static measurement

campaign.

(a) x (b) y

(c) z

Figure 10.11: Dynamic measurement campaign to evaluate and compare 3 DOF and 9 DOF
IMUs. Patient table movement with static phases at six different table heights.

Figure 10.12 shows the results for acceleration measurements in the dynamic scenario. For

the 3 DOF sensor unit the static offset from 0m/s2 already seen in the static campaign is

again existent. The mean acceleration value in the static phases for the 9 DOF sensor unit

can be estimated to be ten times smaller compared to the 3 DOF sensor. This observation

is analogous to the static measurement campaign. The peaks of the acceleration when the

table starts moving to the next position can easily be seen. The points of deceleration and

end of motion can not be derived from sheer observation of the chart.

Figure 10.13 shows the corresponding derived jerk results for the dynamic campaign. The

noise in the static phases gives equivalent results compared to the static scenario. The peaks

of the start of a movement phase can easily be recognized. Distinguishing the end of a motion
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(a) 3 DOF, acceleration (b) 9 DOF, acceleration

Figure 10.12: Absolute acceleration measurement results for 3 DOF and 9 DOF sensor units
in dynamic scenario.

phase apparently is not as easy. Overall the 9 DOF sensor unit gives lower amplitude results

which is comparable to the acceleration behavior in figure 10.12.

(a) 3 DOF, jerk (b) 9 DOF, jerk

Figure 10.13: Absolute derived jerk results for 3 DOF and 9 DOF sensor units in dynamic
scenario.

To get a clear measure of how to realize an acceleration or deceleration phase in the motion

of the patient table a new parameter is introduced. The signal to noise ratio (SNR) given in

equation (10.3) provides a ratio of the signal power that holds meaningful information and

the power of unwanted noise that overlays this information.

SNR =
meaningful signal

noise
(10.3)

Meaningful information in the scope of external sensors to support the UWB localization

system is to recognize a motion of the object to be tracked on the basis of acceleration

and jerk data. Therefore it is essential to be able to clearly differentiate between a sensor

measurement resulting from a motion or from noise. Equation (10.4) provides the definition

of the SNR used in this thesis. It is shown with variables for acceleration but is also valid for

jerk data when replacing acceleration for jerk.

SNR =
amotion − āstatic√

σa,static
(10.4)

A meaningful signal is described by the distance between the actual value of acceleration
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or jerk and the mean acceleration value in a static case, the calibration error. This signal

amplitude is compared to the standard deviation of acceleration or jerk in the static case,

which provides a measure for the sensors noise.

To provide the signal to noise ratio for the measurements from the dynamic scenario, we

utilize a combined visualization of motion, acceleration and jerk data received from the UWB

localization system and the 3 DOF sensor unit. Figure 10.14 on page 103 provides information

of the motion phases that should be identified using the external sensor data of the IMUs.

The green and red dashed lines give information about the start and end of a motion phase.

Focusing on the points where a change in motion occurs, the signal amplitudes can be re-

trieved as one component to compute the SNR. Table 10.3 provides the acceleration and jerk

amplitudes from the 3 DOF sensor unit for start and end points of every motion during the

dynamic scenario. The acceleration is 2 to 3 times higher for the start of the patient table

motion compared to the end, whereas for the jerk the ratio is 3 to 7.5 times respectively.

Table 10.3: Statistical evaluation of the meaningful signal in dynamic scenario for 3 DOF
sensor unit

motion ID
motion phase measure 1 2 3 4 5

start (green)
a [m/s2] 1.08 1.19 1.70 1.02 1.12
j [m/s3] 15.37 18.62 38.96 16.32 30.09

end (red)
a [m/s2] 0.51 0.56 0.54 0.54 0.54
j [m/s3] 4.82 4.79 4.98 4.67 4.50

Figure 10.15 on page 104 shows the combined visualization of position, acceleration and jerk

data for the 9 DOF sensor unit. Table 10.4 provides the same observation of acceleration and

jerk measurements for the 9 DOF sensor unit. In this case, the acceleration ratio for start

and end of motion ranges between 2 and 5, whereas the jerk ratio lies between 1.5 and 5.5

respectively.

Table 10.4: Statistical evaluation of the meaningful signal in dynamic scenario for 9 DOF
sensor unit

motion ID
motion phase measure 1 2 3 4 5

start (green)
a [m/s2] 0.25 0.25 0.46 0.20 0.25
j [m/s3] 5.68 6.61 11.65 3.68 5.99

end (red)
a [m/s2] 0.06 0.07 0.09 0.10 0.07
j [m/s3] 1.59 1.99 2.03 2.35 1.28

To compute the signal to noise ratio for acceleration and jerk as well as the 3 DOF and 9 DOF

sensor units, equation (10.4) is used. Utilizing the amplitude values from table 10.3 and 10.4

for amotion and jmotion, the acceleration and jerk mean value as well as the standard deviation

for static measurements from table 10.1 and 10.2, the SNR can be calculated. The results

for the 3 DOF sensor unit are given in table 10.5 and for the 9 DOF sensor unit in table 10.6

respectively.
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For the 3 DOF IMU the SNR lies in the range of 15.34 to 41.19 for the start of a motion and

from 1.8 to 3.96 for the end respectively. When comparing the SNR for acceleration and jerk

it can be seen that the jerk SNR provides better results with higher signal to noise ratio and

therefore more robust information.

Table 10.5: Statistical evaluation of the signal to noise ratio in dynamic scenario for 3 DOF
sensor unit

motion ID
motion phase measure 1 2 3 4 5

start (green)
SNRa 17.19 19.93 33.74 15.41 18.26
SNRj 15.34 18.91 41.19 16.39 31.47

end (red)
SNRa 1.80 2.95 2.66 2.59 2.63
SNRj 3.78 3.74 3.96 3.61 3.43

For the 9 DOF sensor unit the SNR provides results between 11.30 and 38.78 for motion start

and between 2.16 and 6.68 for motion end respectively. Comparable to the 3 DOF evaluation

jerk data SNR gives better results over acceleration SNR.

Table 10.6: Statistical evaluation of the signal to noise ratio in dynamic scenario for 9 DOF
sensor unit

motion ID
motion phase measure 1 2 3 4 5

start (green)
SNRa 17.94 17.93 35.98 14.25 18.66
SNRj 18.19 21.38 38.78 11.30 19.25

end (red)
SNRa 2.16 3.38 4.68 5.40 2.87
SNRj 4.06 5.46 5.59 6.68 3.00

The SNR is our criteria to decide which inertial sensor is more suitable to provide meaningful

information on the motion status to support the UWB localization system. Table 10.7 shows

the mean signal to noise ratios for all combinations of sensor units, measured quantity and

motion phase. In case of the start of the patient table movement, 3 DOF and 9 DOF sensors

give comparable results. For the stop phase of a motion, the 9 DOF sensor unit gives superior

results with a SNR of 34 %− 46 % higher than for the 3 DOF sensor.

Table 10.7: Mean signal to noise ratio in dynamic scenario for 3 DOF and 9 DOF sensor unit
and motion start and end phase.

3 DOF 9 DOF
motion phase acc jerk acc jerk

start 20.91 24.67 20.95 21.78
stop 2.53 3.70 3.70 4.96
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Figure 10.14: Overlay of dynamic position, acceleration and jerk data for the 3 DOF sensor
unit. Green dashed lines depict the starting point of a motion in time. Red
dashed lines represent the ending point of a motion in time.
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Figure 10.15: Overlay of dynamic position, acceleration and jerk data for the 9 DOF sensor
unit. Green dashed lines depict the starting point of a motion in time. Red
dashed lines represent the ending point of a motion in time.
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10.4 Conclusion

The goal of this section was to identify a suitable sensor technology to support the existing

UWB localization system in improving the localization precision in static and dynamic move-

ment scenarios. Therefore it is essential to realize the movement behavior of the object to be

tracked. A selection of external sensors is introduced and compared. With identifying inertial

navigation as an appropriate technology, a specific sensor to be used in combination with the

UWB system has to be determined. With two different sensor units comprising a 3 DOF

acceleration sensor on the one hand and a 9 DOF combination of acceleration, gyroscope and

magnetic sensor on the other hand several experiments in static and dynamic environment

were conducted to find the most appropriate one. For the quality of the sensor units in the

considered frame, a specific signal to noise ratio was introduced. Overall the 9 DOF combined

sensor unit gives superior results in recognizing motion phases in dynamic scenarios and is

therefore used in the following localization prototype.
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There are different approaches to implement the inertial measurements to improve position

estimation of the UWB localization system. The most obvious one is to use acceleration data

in the prediction phase of the Kalman filter to get an improved prediction of the movement

of the UWB modules between update phases. This approach adds IMU measurement data

to improve the pure state model based prediction phase and has no influence on the update

phase of the Kalman Filter that contains processing of the UWB measurements.

In section 7.3.3 potential inert behavior of the Kalman Filter due to adaptation of the fil-

ter parameter ξ is introduced. Low values for ξ result in decreasing diagonal terms of the

Kalman covariance matrix. Additionally, the idea is presented to discard the process noise

covariance matrix Q that increases the Kalman covariance values in an additive way. By

directly providing a lower boundary for the Kalman Filter diagonal terms the dynamics of

the filter can be configured more specifically. The approach presented in this thesis combines

UWB localization measurements with absolute acceleration information of an IMU. UWB

and IMU sensor data are fused using the presented Kalman Filter in a loosely coupled way.

The covariance matrix of the Kalman Filter is dynamically adapted based on the absolute

acceleration information from the IMU. Figure 11.1 shows the UWB and IMU input to the

Kalman Filter.

With the chosen loosely coupled approach there is no need to register UWB and IMU sensor

information unlike tightly coupled systems or approaches using an Extended Kalman Filter.

In the presented approach, calibration of the sensor can be done independently. To tune the

Kalman Filter only the absolute acceleration is used. Therefore, no orientation information is

needed for the acceleration. To neglect the gravity of Earth from acceleration measurements

from a 3 DOF sensor a high pass filter could be used. With a 9 DOF IMU all necessary

information is available to discard the acceleration from gravity. Figure 11.2 provides a

detailed view of the Kalman Filter with its state vector and the covariance matrix. The

update and prediction phase of the filter are shown where UWB positioning information are

input to the update phase as well as the newly introduced tuning phase that uses the absolute

acceleration data as input and directly and solely affects the covariance matrix but not the

state vector.

For the static scenario experiments conducted in section 8 only the constant velocity state

space model with (xk = (xk, yk, zk, ẋk, ẏk, żk)) is utilized. In this chapter the static model with

(xk = (xk, yk, zk)), and the constant acceleration model with (xk = (xk, yk, zk, ẋk, ẏk, żk, ẍk, ÿk, z̈k)),

introduced in section 7.3.2 on page 64, are also scrutinized. The different state space models
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Figure 11.1: Sensor fusion of UWB and IMU using a Kalman Filter. Distance measurements
from three references to the mobile UWB modules are used to trilaterate a
position estimate. The absolute acceleration is derived from IMU measurements
and forwarded as a second input to the Kalman Filter. (BKR17) c©2017 IEEE

Figure 11.2: Zoom into adaptive Kalman Filter visualizing the three phases and the respective
in- and outputs. In the update phase, location data is provided by the UWB
system. In the tune phase, acceleration data is provided by the IMU. Filter
tuning is applied directly before the next update phase. (BKR17) c©2017 IEEE
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do all have their strengths in specific motion scenarios. The static state model assumes no

motion and is therefore suitable for static scenarios. The constant velocity model assumes

a constant velocity and is therefore well suited for scenarios with linear movements. The

constant acceleration model should especially work well during the acceleration phase of a

tracked object.

From section 10.3 it is known that the position and their first two derivatives are not always

enough to detect the start and end of a movement phase in a robust way. Therefore, the

third derivative of the position, the jerk, was introduced as a calculated result from the raw

IMU data. In many movement scenarios the jerk gives better information than velocity and

acceleration. In the medical environment introduced in section 8.2 moving the patient table

results in a noticeable jerk due to released brakes. Based on this knowledge both acceleration

and jerk are applied to the tuning factor ξ. Equation (11.1) shows the experimentally derived

values for acceleration ~a and jerk j. They are based on a thorough calibration of the IMU

for static and dynamic movement scenarios. The lower boundary represents no movement

with only measurement noise present whereas the upper boundary represents a clear dynamic

movement scenario. A quadratic formula without units is used for acceleration and jerk with

ξ = (50~a)2 + 1 and ξ = (3j)2 − 10 respectively whereas the maximum value is use for ξ.

ξ =

0, ~a < 0.058 or j < 1.55

20, ~a > 0.082 or j > 1.82
(11.1)
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The static and dynamic experiments are conducted in the medical environment introduced

in section 8.2 with the same sensor setup on the tabletop of the patient table. The proposed

dynamic radio location prototype gives an update rate of 30 Hz per localization including

covariance adaption based on acceleration and jerk data. Reference measurements are pro-

vided by the Optotrak optical stereo camera system. The xml configuration file of the C++

software framework is extended for the additional features of the Kalman Filter. Figure 12.1

indicates two new attributes of the Kalman Filter and an extended comment region.

Figure 12.1: Extended configuration of Kalman Filter

”
ExtSensor“ indicates whether a 3 DOF, 9 DOF or no external sensor is used. With

”
State-

Model“ the applied state space model can be configured to conduct experiments with three

different state models where velocity and acceleration are assumed to be constant in their

respective models. In 12.1 real measurement experiments with a fixed Kalman Filter in static

and dynamic scenarios are provided. RMSE and standard deviation evaluations are used as

reference UWB localization for the adaptive Covariance Kalman Filter implementation. Sec-

tion 12.2 sheds a light on state space model comparison. It is shown that the assumption from

chapter 8 to prefer the constant velocity over static and constant acceleration state models

holds true for dynamic motion scenarios. In 12.3 the raw and dynamic radio location data

are evaluated against the NDI Optotrak reference system and the fixed Kalman Filter.
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12.1 Fixed Kalman Filter

With two variants of the Kalman Filter static and dynamic measurements are conducted in

the known medical environment. Raw measurements are recorded and
”
SimReal“ is used to

apply an inert and a dynamic Kalman filter fixed to a low and a high value for ξ respectively.

Figure 12.2 presents results of the static measurement campaign with both types of Kalman

Filters applied. The inert Kalman Filter configuration levels out the noise in the UWB

measurements whereas the dynamic Kalman Filter is tightly related to the raw UWB values.

These results match the observations from chapter 8.

Figure 12.2: UWB raw and Kalman filtered data compared against NDI Optotrak Certus
ground truth measurements in a static scene. Filter setup with low and high
value for ξ for static and dynamic filter tuning, respectively. (BKR17) c©2017
IEEE

Table 12.1 shows the standard deviation in x, y and z direction for raw measurements com-

pared to the inert and dynamic Kalman Filter. The dynamically tuned Kalman filter shows

results close to the raw measurements whereas the static configuration provides a smooth

noise behavior.

Table 12.1: Standard deviation of UWB measurements in static scenario (BKR17) c©2017
IEEE

x [mm] y [mm] z [mm]

raw UWB 11.9 12.1 8.0
dynamic Kalman 10.4 10.6 6.9

static Kalman 1.9 3.1 1.5

A dynamic movement scenario is shown in figure 12.3. The Kalman Filter with dynamic filter

setup closely follows UWB raw measurements even with the dynamic behavior whereas the

inert Kalman filter does not adapt to movement changes.

With a closer look at one plateau phase in figure 12.4 it is clear that the dynamic Kalman

Filter does not provide significant reduction of the deviation of positioning results.
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Figure 12.3: UWB raw and Kalman filtered data compared against NDI Optotrak Certus
ground truth measurements in a dynamic scene. Filter setup with low and high
value for ξ for static and dynamic filter tuning, respectively. (BKR17) c©2017
IEEE

Figure 12.4: Detailed view of static phase in dynamic scenario. (BKR17) c©2017 IEEE

Table 12.2 shows the RMSE in x, y and z direction for raw measurements compared to the

inert and dynamic filter setup. The dynamic Kalman Filter is comparable to raw measure-

ments whereas the inert configuration gives high errors in x direction as there was movement

in this axis but good filter effect in the static y and z axes.

Table 12.2: RMSE of UWB measurements in dynamic scenario (BKR17) c©2017 IEEE

x [mm] y [mm] z [mm]

raw UWB 21.9 47.8 17.4
dynamic Kalman 22.3 47.4 16.4

static Kalman 76.2 29.6 12.7
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12.2 State Model Evaluation

In this section the adaptive covariance Kalman Filter is evaluated using the following three

state space models:

static model xk = (x, y, z)

constant velocity model xk = (x, y, z, ẋ, ẏ, ż)

constant acceleration model xk = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)

Figure 12.5 shows filter results for all three state models compared to UWB raw measure-

ments. The static state space model does not reflect the ascending and decending movement

phases very good whereas smoothly levels out nose in the plateau phase. Both velocity and

acceleration state model closely follow the raw UWB values.

Figure 12.5: Influence of state models in dynamic scene. (BKR17) c©2017 IEEE

Figure 12.6 provides a detailed view on the ascending phase of the measured position data.

Position estimation using the static state model is far off during the movement phase. After

the movement starts with a jerk for releasing the brakes of the patient table the movement

can be approximated with constant velocity and no acceleration. Therefore, the covariance

matrix is not adapted based on incoming acceleration or jerk data from the IMU. This leads

to a covariance matrix with low values resulting in the system to believe in the current

state and to weight incoming measurements from the UWB position system very low. When

the movement stops with negative acceleration or a noticeable jerk at around 15 seconds the

system adapts the state estimation heavily based on the incoming UWB measurements. Both

velocity and acceleration state space model closely follow the raw UWB measurements while

they level out measurements noise.

The static state space model does not give good results in constant velocity movement sce-

narios. Therefore, it cannot be used for the dynamic radio location prototype since many

movements in medical environment like rotation of a X-ray C-arm system or lifting of a pa-

tient table can be described as constant velocity movements. The constant acceleration state
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Figure 12.6: Detailed view of state models in ascending phase. (BKR17) c©2017 IEEE

space model gives good results in this experiment. Nevertheless, information on acceleration

are already available from the IMU and therefore redundant. Additionally, there are no mo-

tions in medical environment that resemble a constant acceleration movement. The constant

velocity state space model holds information on the velocity of the tracked object that is

not directly available from UWB or IMU measurements. Whenever the IMU does provide

acceleration data around 0 the constant velocity state space model provides the most likely

current state of the tracked object. This leads to the decision to use the constant velocity

state space model for the dynamic radio location prototype.

12.3 Adaptive Covariance Kalman Filter

To better compare the adaptive covariance Kaliman Filter against the Kalman Filters with

fixed static and dynamic tuning the same movement scenario from section 12.1 is used.

Figure 12.7 provides results for position estimation of dynamic radio location prototype, raw

UWB data and the ground truth reference system in a static scenario.

It can be seen that the adaptive covariance Kalman Filter provides smooth position estimation

comparable to a fixed statically tuned Kalman Filter. In Table 12.3 the standard deviations

of raw UWB measurements and the three filtered localization solutions are compared. The

proposed adaptive covariance Kalman Filter gives comparable results to the static Kalman

Filter and outperforms the dynamically tuned Kalman Filter.

Figure 12.8 shows positioning results from the dynamic movement experiment. The proposed

adaptive covariance Kalman Filter gives comparable results to the Kalman Filter with fixed

dynamic configuration from 12.1.
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Figure 12.7: Adaptive filter setup applied for a static scenario. The reference measurements
are obtained using the optical tracking system NDI Optotrak Certus. (BKR17)
c©2017 IEEE

Table 12.3: Standard deviation of UWB measurements in static scenario (BKR17) c©2017
IEEE

x [mm] y [mm] z [mm]

raw UWB 11.9 12.1 8.0
dynamic Kalman 10.4 10.6 6.9

static Kalman 1.9 3.1 1.5
adaptive Kalman 2.1 3.3 1.5

Figure 12.8: Adaptive filter setup applied for a dynamic scenario. The reference measure-
ments are obtained using the optical tracking system NDI Optotrak Certus.
(BKR17) c©2017 IEEE
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Table 12.4 provides the RMSE of raw UWB positioning data and the three filtered localization

solutions. The proposed adaptive covariance Kalman Filter gives comparable but even slightly

better results than the dynamic Kalman Filter and outperforms the statically tuned Kalman

Filter.

Table 12.4: RMSE of UWB measurements in dynamic scenario (BKR17) c©2017 IEEE

x [mm] y [mm] z [mm]

raw UWB 21.9 47.8 17.4
dynamic Kalman 22.3 47.4 16.4

static Kalman 76.2 29.6 12.7
adaptive Kalman 20.8 47.2 16.1

Figure 12.9 shows a detailed view on the last high plateau phase of the localization experiment.

At the end of the ascending movement phase the adaptive covariance Kalman Filter slowly

starts to smoothen the position estimates since the acceleration and jerk information from

the IMU give very low values and the diagonal elements of the covariance matrix are set to

very low numbers. After a few seconds the measurement noise from the UWB positioning

estimation is already leveled out and the position results are very smooth. With the start of

the next movement phase the adaptive covariance Kalman Filter instantly provides dynamic

behavior to follow the motion.

Figure 12.9: Zoom into plateau phase of dynamic scenario. (BKR17) c©2017 IEEE
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The presented positioning and identification system is based on UWB localization combined

with acceleration information from an IMU. The fused data using a Kalman Filter leads

to very useful localization results in medical environment. The proposed Kalman Filter

loosely couples input data from both UWB system and IMU whereas it expects estimated 3D

position data from the UWB system and absolute acceleration information form the IMU. The

acceleration data is not used is input in the Kalman Filter but directly adapts the diagonal

elements of the state covariance matrix to realize a loosely coupled tuning of the Kalman

Filter without the need to register UWB and IMU measurement systems or to implement

more advanced versions of the Kalman Filter like an Extended Kalman Filter. To fulfill the

second goal from section 2 the dynamic radio location prototype comprises only industrially

available hardware for UWB positioning and inertial sensors. With 30 Hz the system realizes

a reasonable localization rate. Experiments are conducted in an X-ray test lab representing

a medical environment with severe multipath reflections due to leaded glass, thick walls and

numerous technical devices. For comparison an NDI Optotrak optical reference system as well

as static and dynamic non-adapted Kalman Filters are used. The first goal is to find the best

suited state space model to represent the tracked object. With static and dynamic movement

scenarios conducted in the medical environment it could be shown that the constant velocity

state model is best suited for all movement scenarios since the three physical quantities

position, velocity and acceleration are covered by UWB, state model and IMU, respectively.

The conducted experiments show that the adaptive covariance Kalman Filter outperforms

the non-adaptive static and dynamic Kalman Filter versions since it is on par in their strong

scenarios and provides much better precision in the weaker scenario, respectively. Precision

results give (2.1, 3.1, 1.5)mm in x, y and z for the static scenario which are on par with

a Kalman Filter with static state space model applied (BKR17). The proposed adaptive

covariance Kalman Filter gives very food RMSE accuracy results of (20.8, 47.2, 16.1)mm in

x, y and z and therefore slightly improves the raw UWB measurements although the sensor

fusion approach mainly accounts for the precision of the system. It is to mention that the

prototypal localization system only comprises three anchor modules and one mobile node.
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At the beginning of this thesis the major goal of a prototypal development of a radio location

system based on industrially available components, and the evaluation of this system regard-

ing it’s feasibility for the proposed medical environment is given. Five specific objectives

were introduced to precisely define the goal. In the first part of the discussion it is evaluated

whether these objectives are achieved with the proposed work. In a second part the results

of the localization prototype are fit into the current literature provided in 3.2.2.

Technology decision based on a comprehensive technology evaluation In this thesis two of

the most promising radio location technologies RFID and UWB are introduced and evaluated

based on the aspects like accuracy, localization range, sensitivity to multipath, line of sight,

power consumption, industrial availability and worldwide regulations. For the pursued usage

of localization in medical environment UWB was superior to or on par with RFID in most of

the scrutinized aspects. On this basis UWB is used for all prototypal developments in this

thesis.

Use of industrially available hardware Industrial availability is one aspect that supports the

decision for UWB over RFID. For RFID severeal implementations are available and provided

in 3.1.3, but they do not fulfill important requirements for the localization system. For

UWB there are many industrially available implementations mostly based on the Decawave

DWM1000 chip. The UWB modules used in this thesis are the TimeDomain P410 which are

very promising regarding most of the requirements. For the dynamic radio location prototype

industrially available IMUs are evaluated and implemented.

Implementation of a suitable localization framework A good framework is important to

develop, run and evaluate a localization system. It is important to run the localization in a

robust way, configure the system for changing hardware, differently tuned filters and be able

to evaluate those configurations with artificial and real localization data. The localization

framework provided in this thesis accounts for these requirements. In chapter 8 and 12

configurable parameters for the UWB localization system are introduced. Also, the possibility

to log acquired data from UWB, IMU and optical reference systems and reuse it for different

configurations is a big advantage in a system evaluation.

Localization accuracy in the low centimeter or even sub-centimeter range In this thesis a

very basic localization algorithm is implemented based on the availability of only three UWB

reference modules. The applied tracking filters and the additional external sensors mostly

improve the precision of the localization system. The achieved accuracy is within the range

of 1 cm to 5 cm. This result is scraping the demanded accuracy and should be improved in
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future work. The outlook later this chapter provides some ideas for working towards this

goal.

High localization precision in sub-centimeter range in static and dynamic environment This

objective is twofold and expects high precision but also implies robustness in different kinds

of environments. To account for precision tracking filters like Particle and Kalman filter are

implemented and evaluated in static and dynamic movement scenarios. To realize robust

localization in both static and dynamic cases an IMU is integrated into the localization

system and used to directly adapt the developed adaptive Kalman filter. With this approach

precision in the low millimeter range is achieved for static scenarios with no increase in the

localization error in a RMS sense for dynamic scenarios.

There are also some implicit requirements for a localization systems that need to be met.

One example is a reasonable localization rate. The introduced prototype runs at 30 Hz which

is sufficient for most dynamic scenarios. Another implicit prerequisite is the size of the lo-

calization system. Each UWB module consists of a circuit the size of a credit card that can

be used in a housing or can be integrated into the object to be localized. Only the antenna

needs to be
”
visible“. The antennas used in this thesis have a size of (7 × 3) cm. It is possible

to use smaller antennas for the pursued scenarios since the required measurement range is

limited to a few meters. Overall the goal and the formulated and not formulated but implicit

objectives are met.

Several aspects need to be considered when it comes to fit the proposed localization solution

into the current literature. The industrially available P410 UWB modules from Time Domain

outperform most scientific UWB system introduced in 3.2.2 and can also be seen as bench-

mark for commercial UWB systems when it comes to accuracy. To improve the precision of

the localization system, three tracking algorithms have been implemented and evaluated. A

sensor fusion approach was proposed to account for different movement scenarios in medical

environments. In contrast to other fusion approaches, which use the IMU measurements as

input for the prediction phase of a Kalman filter, given in 3.2.2, the proposed solution di-

rectly utilizes the absolute inertial measurements to tune the Kalman covariance matrix and

therefore does not need a calibration between the UWB and IMU components. The achieved

accuracy and precision with only three anchor nodes provides a good starting point for the

evaluation of applications in medical environments.

This thesis proposes a technology evaluation and two prototypal implementations scrutinized

in measurement scenarios conducted in a medical environment comparable to clinical ones.

To get closer to using UWB in clinical applications several workpackages could be taken as

next steps. These steps belong to different fields of research for UWB localization in medical

environment. One field of further work could be the overall accuracy of the localization since

the precision was already significantly improved with the proposed prototype in this thesis.

The accuracy of the adaptive covariance UWB prototype in a RMSE sense is already appro-

priate for a number of applications but needs additional improvements to provide feasibility

for more advanced clinical applications.
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One solution to mitigate the systematic accuracy offset between UWB and ground truth

measurements involves implementing a range model accounting for the measurement bias for

single UWB measurements. Using a linear (MF14) or exponential (GBG+09) function could

be used to approach the range model. (BKR17) Since the presented protoypal implementa-

tion only uses three UWB anchor nodes to realize an under-determined localization scenario

an overall improvement could be pursued by introducing additional UWB nodes. These

additional UWB nodes could be used as anchors or mobile UWB nodes. With additional

anchors more advanced localization algorithms like the on introduced in chapter 5.2.2 could

be applied to estimate the position of mobile UWB modules. This would lead to increased

robustness, precision and accuracy. With the additional UWB nodes used as mobile UWB

nodes a cooperative approach where also ranging information between mobile UWB nodes

are utilized could be beneficial (WCM+11). (DCLW08) and (CGD+12) give some insight on

the necessity to truly understand when and with which UWB node cooperation is useful since

additional measurement inputs could also be detrimental to the localization result. Another

field of future work could be the investigation of suitable clinical applications and a prototypal

evaluation with the currently available or an extended UWB localization prototype. There

are many examples worth investigating. For future prototypes that include more UWB nodes

it would be reasonable to make use of the latest improvements in UWB localization products

that arrived at the market recently, e. g. the P440 module by TimeDomain (Tim17).
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15 Summary

For years, technical devices play a key-role in advancing medical interventions and supporting

physicians in their work. A number of advanced applications that could realize a substantial

benefit are in need for identification and localization of the surrounding medical environment

including stationary and actively moving devices. Among the technical devices in an OR

or interventional suite are imaging systems, patient tables, displays, lead shields and trol-

leys for tools or other functions like contrast agent injectors. A spatio-temporal localization

framework can provide the missing information, Co-registered operations of multiple medical

devices, autonomous movement or basic collision avoidance as a first step could be realized

using this information. In this thesis a dynamic radio location system for precise localization

in medical environment based on a sensor fusion approach using Ultra wideband and inertial

sensor data is presented. An adaptive covariance Kalman Filter is introduced to combine the

available sensor measurements in a way that they individually contribute to the localization

result in different ways.

In part I the need for localization of tools or objects in many medical scenarios is motivated.

Available approaches for specific questions are provided in a state of the art. Based on this

information the goal of this thesis, to develop a suitable radio location system for use in a

medical environment, is derived and specified.

Part II starts with a thorough introduction on two promising radio technologies RFID and

UWB. For each technology the basic principles and important technical aspects are given.

To point out the importance of the possibility of global use of the radio location system,

regulatory aspects are discussed in detail. Furthermore, a study on available scientific and

industrial solutions is given for each technology. A conclusion and a decision for the UWB

technology completes the radio technology section. In a next step four important ranging

technologies are introduced and assessed for their use in an UWB localization system. Three

well-known localization techniques are depicted and evaluated to conclude this part.

Part III starts with the decision and introduction of the utilized P410 UWB hardware by Time

Domain. This implies the utilization of a two-way time of flight ranging approach that pro-

vides absolute ranges between UWB modules. Spherical trilateration, in an under-constrained

setup with three UWB anchors, is used as localization technology for the developed UWB

localization system. Counter-measures to account for common error causes in localization

are described and implemented. In a next step tracking filter approaches are introduced

to improve the precision behavior of the raw UWB localization system. A comprehensive

localization framework is implemented to address artificial simulations, real measurements

122



15 Summary

and the recording and replay of measurement data to apply and test different system and

filter configurations. A Kalman, Particle and Moving Average Filter are implemented and

scrutinized heavily in simulations and real experiments in the medical environment described

in this context. This part concludes with the insight of the UWB localization system being

either appropriate for static behavior or for dynamic scenarios depending on the tuning of the

tracking filter. For precise position estimation in all motion and non motion phases additional

information needs to be involved.

Part IV introduces seven types of sensor technology that provide information based around

positioning and evaluates their suitability to complement UWB localization data. Inertial

sensors and magnetic compasses are the two approaches that are found to be the most ap-

propriate technology candidates. Two explicit implementations of inertial measurement units

are introduced and evaluated in real experiments in the proposed medical environment. As a

conclusion an inertial measurement unit providing 9 degrees of freedom is used to complement

the UWB positioning measurement. The structure of the Kalman Filter is predestined for

sensor fusion. In this thesis an approach to utilize additional sensor input to directly tune

the Kalman covariance matrix is introduced. Experiments are conducted to evaluate three

state models and the Adaptive Covariance Kalman Filter against an optical measurement

system and the previously introduced fixed Kalman Filter approach. Results show that the

presented adaptive localization approach leads to highly precise position estimation results

independent of the motion behavior of the tracked object.

In Part V the thesis is summarized and an overall discussion is given regarding the initial

requirements for a radio location system in medical environments. An outlook for future

possibilities is given to conclude the thesis.
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González, Javier ; Blanco, Jose-Luis ; Galindo, Cipriano ; Galisteo, A Ortiz-de ;

Fernandez-Madrigal, Juan-Antonio ; Moreno, Francisco A. ; Mart́ınez, Jorge L.:

Mobile robot localization based on ultra-wide-band ranging: A particle filter approach.

In: Robotics and autonomous systems 57 (2009), Nr. 5, S. 496–507

Gulhar, Abhinav ; Briese, Danilo ; Mewes, Philip W. ; Rose, Georg: Registration of a

robotic system to a medical imaging system. In: Intelligent Robots and Systems (IROS),

2015 IEEE/RSJ International Conference on IEEE, 2015, S. 3208–3213

Gomes, Paula: Surgical robotics: Reviewing the past, analysing the present, imagining

the future. In: Robotics and Computer-Integrated Manufacturing 27 (2011), Nr. 2, S.

261–266

Gezici, Sinan ; Poor, H V.: Position estimation via ultra-wide-band signals. In: Proceedings

of the IEEE 97 (2009), Nr. 2, S. 386–403

Regulatory status for using RFID in the EPC Gen2 (860 to 960 MHz) band of the UHF

spectrum. http://www.gs1.org/epc-rfid. Version: November 2016

Guvenc, Ismail ; Sahinoglu, Zafer: Threshold-based TOA estimation for impulse radio

UWB systems. In: 2005 IEEE International Conference on Ultra-Wideband IEEE, 2005,

S. 420–425

Gezici, Sinan ; Sahinoglu, Zafer ; Kobayashi, Hisashi ; Poor, H V.: Ultra-wideband

impulse radio systems with multiple pulse types. In: IEEE Journal on Selected Areas in

Communications 24 (2006), Nr. 4, S. 892–898

Gezici, Sinan ; Sahinoglu, Zafer ; Molisch, Andreas F. ; Kobayashi, Hisashi ; Poor,

H V.: A two-step time of arrival estimation algorithm for impulse radio ultra wideband

systems. In: Signal Processing Conference, 2005 13th European IEEE, 2005, S. 1–6

Gezici, Sinan ; Tian, Zhi ; Giannakis, Georgios B. ; Kobayashi, Hisashi ; Molisch,

Andreas F. ; Poor, H V. ; Sahinoglu, Zafer: Localization via ultra-wideband radios:

a look at positioning aspects for future sensor networks. In: Signal Processing Magazine,

IEEE 22 (2005), Nr. 4, S. 70–84

Heidrich, J. ; Brenk, D. ; Essel, J. ; Fischer, G. ; Weigel, R. ; Schwarzer, S.: Local

positioning with passive UHF RFID transponders. In: 2009 IEEE MTT-S International

Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, 2009, S. 1–4

Hol, Jeroen ; Dijkstra, Fred ; Luinge, Henk ; Schön, Thomas u. a.: Tightly coupled

UWB/IMU pose estimation. (2009)

Healthineers, Siemens: AXIOM Artis dFC/dBC Magnetic Navigation. http:

//w5.siemens.com/web/ua/ru/medecine/archive/cardio_angio/dfc_dbc_

128

http://www.gs1.org/epc-rfid
http://w5.siemens.com/web/ua/ru/medecine/archive/cardio_angio/dfc_dbc_magnetic_navigation/pages/dfc_dbc_magnetic_navigation.aspx
http://w5.siemens.com/web/ua/ru/medecine/archive/cardio_angio/dfc_dbc_magnetic_navigation/pages/dfc_dbc_magnetic_navigation.aspx
http://w5.siemens.com/web/ua/ru/medecine/archive/cardio_angio/dfc_dbc_magnetic_navigation/pages/dfc_dbc_magnetic_navigation.aspx
http://w5.siemens.com/web/ua/ru/medecine/archive/cardio_angio/dfc_dbc_magnetic_navigation/pages/dfc_dbc_magnetic_navigation.aspx


BIBLIOGRAPHY

magnetic_navigation/pages/dfc_dbc_magnetic_navigation.aspx. Version: 2017. –

Niobe EM system by Stereotaxis

Homier, Eric A. ; Scholtz, Robert A.: Rapid acquisition of ultra-wideband signals in the

dense multipath channel. In: Ultra Wideband Systems and Technologies, 2002. Digest of

Papers. 2002 IEEE Conference on IEEE, 2002, S. 105–109

Hightower, Jeffrey ; Want, Roy ; Borriello, Gaetano: SpotON: An indoor 3D location

sensing technology based on RF signal strength. In: UW CSE 00-02-02, University of

Washington, Department of Computer Science and Engineering, Seattle, WA 1 (2000)

Hekimian-Williams, Cory ; Grant, Brandon ; Liu, Xiuwen ; Zhang, Zhenghao ; Kumar,

Piyush: Accurate localization of RFID tags using phase difference. In: 2010 IEEE

International Conference on RFID (IEEE RFID 2010) IEEE, 2010, S. 89–96

IDOLINK Co.,Ltd. http://www.ido-link.com/english/main.action. Version: 2017

Inc., Keckler Medical C.: Hybrid Operating Rooms featuring

Siemens Imaging Systems. http://hybridoperatingroom.com/

hybrid-operating-room-designs-layouts-pictures-examples/. Version: March

2017

International, ECMA: Standard ECMA-368 - High Rate Ultra Wideband

PHY and MAC Standard. 3. 2008 https://www.ecma-international.org/

publications-and-standards/standards/ecma-368/
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Wille, Andreas ; Muzalewski, Mathäus ; Winter, Susanne: RFID-basierte Navigation
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Part VI

Appendix





A RFID transponders

a

b

c

d

e

f

g
h

Figure A.1: Various implementations of RFID transponders are available on the market. It
starts with printed tags with different antenna designs in a, b and c. Other
exemplars like d and e are fabricated in plastic material to be more robust.
Massive housing of the RFID antenna can be found in f and g to be able to use
the tags on metallic surfaces. RFID tag f is embedded in a flexible and wearable
wristband.
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B UWB regulations

Table B.1: UWB band group allocation (Int08)

Band
Band ID

Lower Frequency Center Frequency Upper Frequency
Group (MHz) (MHz) (MHz)

1
1 3168 3432 3696
2 3696 3960 4224
3 4224 4488 4752

2
4 4752 5016 5280
5 5280 5544 5808
6 5808 6072 6336

3
7 6336 6600 6864
8 6864 7128 7392
9 7392 7656 7920

4
10 7920 8184 8448
11 8448 8712 8976
12 8976 9240 9504

5
13 9504 9768 10032
14 10032 10296 10560

6
9 7392 7656 7920
10 7920 8184 8448
11 8448 8712 8976

Table B.2: Emission Limits for UWB for indoor applications in the USA. (F+02)

Frequency Band [MHz] Indoor Applications [dBm]

0.009− 960 §15.209

960− 1610 −75.3

1610− 1990 −53.3

1990− 3100 −51.3

3100− 10600 −41.3

10600− 22000 −51.3

22000− 29000 −51.3

Above 29000 −51.3
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B UWB regulations

Table B.3: Emission Limits for UWB in EU with maximum mean EIRP spectral density per
MHz and maximum peak EIRP defined per 50 MHz). (CEP06)

Table B.4: ECC Detect and Avoid mitigation techniques. (CEP06)
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B UWB regulations

Figure B.1: UWB regulatory mask in Japan based on (TEL12)

Figure B.2: UWB regulatory mask in Korea based on (TEL12)
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B UWB regulations

Figure B.3: UWB regulatory mask in China based on (Bin14)
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C UWB Broadspec antenna

Figure C.1: UWB Broadspec antenna azimuth beam pattern. (Tim17)

Figure C.2: UWB Broadspec antenna elevation beam pattern. (Tim17)
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D Inertial Measurement Unit

Figure D.1: Basicboard for 9 DOF Sensor.
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