
DISSERTAT ION

zur Erlangung des akademischen Grades 

angenommen durch die Fakultät für Informatik 
der Otto-von-Guericke-Universität Magdeburg 

von

geb. am            in       

Gutachterinnen/Gutachter 

Magdeburg, den                          

Entity-Centric Machine Learning: Leveraging Entity 
Neighbourhoods for Personalised Predictors

Doktoringenieur (Dr.-Ing.)

M. Sc. Vishnu Mazhuvancherry Unnikrishnan

06.07.1989 Manipal, Indien

Prof. Dr. Myra Spiliopoulou
Prof. Dr. Ruediger Pryss
Prof. Dr. Panagiotis Papapetrou

13.06.2024





Abstract

Recent times have seen an increase in both the rates at which data are generated, as
well as the technology developed to process datasets generated at an ever increasing
pace. However, most machine learning methods still apply a one-size-fits-all approach,
with the models being tailored to be applied out-of-the-box on the entire dataset,
and model complexity focusing on generalising optimally to the patterns without
overfitting. Additionally, it is also worth noting that datasets are not monolithic
- they are often comprised of repeated observations of a smaller set of objects or
‘entities’ over time. These entities have ‘static’ unchanging properties, and act as data
generators to create the ‘dynamic’ data that is observed over time. Many current
methods, however, train models over the dynamic data alone, and do not adequately
exploit the static data for learning. In this work, we study ways in which machine
learning methods can be ‘personalised’ so that the data of each ‘entity’ gets its own
model, which incorporates the similarity of the ‘static’ and ‘dynamic’ parts of the
entity. The benefits of personalisation are obvious for some fields like medicine and
user generated content, and our solutions are designed for the medical domain where
some of the disadvantages of entity-centred datasets express most strongly - each
entity has too little data available for learning, each entity’s data arrives irregularly,
and each entity’s data is generated at a different time than the others. Our approach
towards personalisation is that each entity in the dataset gets it’s own model, and
we combat the sparsity of the data (each individual entity has too little data!) by
augmenting the data of each entity with the data of other entities that are deemed
‘similar’. In our work, we explore three main approaches to training personalised
models for medical datasets.

The first part of this work explores the various ways for dealing with data sparsity,
irregularity, and dealing with timestamps during training of personalised models.
We explore augmenting the dynamic data of of each entity with the dynamic data
of its neighbours as defined by the static data. We investigate the various ways to
train the neighbourhood-augmented model, deal with timestamps, and the effect of
the neighbourhood size. Our findings show that training a model on the combined
dynamic data of a small number of neighbours and preserving timestamps yields the
best results. We extended this method to allow the similarity to be guided using
expert knowledge, and found that grouping users based on medical intuition improves
the quality of the resultant models for several subgroups. A baseline that selects the
neighbourhood of an entity randomly was found to be very competitive, suggesting
that even though the entity-centred models exceeded the global model’s performance
with less data, the neighbourhood computation can be improved.

Our second approaches investigate the degree to which the dynamic data from the
entities can be used to train personalised predictors. Towards this end, we test two
types of approaches, one that summarises the time series so that a similarity function
may be applied that can discover other similar entities, and another that groups users
based on the length of their dynamic data sequences. We saw that summaries of
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the dynamic data helped achieve competitive performance to the global model while
exploiting <10% of the users, and that predictions can be made and personalised
towards users with very short sequences on the basis of other users whose sequences
are longer. Since the notion of similarity is difficult to define, we also propose an
iterative neighbourhood similarity method that discovers the ideal set of users to
learn a personalised model for users with short sequences.

Drawing inspiration from this result, the third part of our work focuses on discovering
the optimal neighbourhood for each entity in a supervised way using validation error
of the personalised models. We propose one method that searches for the optimal
neighbourhood greedily in decreasing order of similarity, and found that the global
model is beaten by ≈ 13% − 15% by a personalised model with our discovered
neighbourhood. An analysis of the neighbourhoods themselves show that there
are ‘celebrity’ users whose data is used by almost all others, and ‘ostracised’ users
whose data contributes negatively to other users. Our second proposed method that
removes the effect of sorting the users by similarity, however, discovers much smaller
neighbourhoods, and also performs worse than the first (although better than the
global model). A full comparison of the neighbourhoods and their relative quality,
however, needs the help of a clinical expert. We consider the entity-neighbourhoods
a part of our output, since it enables further investigations, especially in cases where
the underlying similarity function is not known.
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Zusammenfassung

In jüngster Vergangenheit ist ein bemerkenswerter Anstieg sowohl in der Häufigkeit
der Datenproduktion als auch in der Entwicklung von Technologien zur Verarbeitung
von Datensätzen zu verzeichnen. Trotz dieser Fortschritte verfolgen jedoch die meis-
ten Methoden des maschinellen Lernens nach wie vor einen konservativen Ansatz, der
darauf abzielt, ein Modell auf dem gesamten Datensatz zu trainieren und anzuwenden.
Hier ist der Schwerpunkt, allgemeine Muster zu identifizieren und Overfitting zu
vermeiden. Es ist jedoch wichtig anzumerken, dass Datensätze keine homogenen
Gebilde darstellen; vielmehr bestehen sie oft aus Beobachtungen, welche von einer
begrenzten Anzahl an Entitäten produziert werden. Diese Entitäten verfügen oft
über statische, unveränderliche Eigenschaften und fungieren als Datenquellen für
die Generierung der im Zeitverlauf beobachteten “dynamischen” Daten. Viele ak-
tuelle Methoden zur Vorhersage von dynamischen Daten ignorieren jedoch statische
Eigenschaften der Entitäten beim Training der Modelle. In dieser Studie untersuchen
wir daher Ansätze, wie Methoden des maschinellen Lernens “personalisiert” werden
können, sodass die Daten jeder “Entität” ihr eigenes Modell erhalten. Dabei wird
die Ähnlichkeit der “statischen” und “dynamischen” Teile der Entität berücksichtigt.
Die Vorteile der Personalisierung sind insbesondere in Bereichen wie der Medizin
und für Anwendungen mit nutzererstellten Inhalten offensichtlich. Unsere Lösungen
sind speziell für den medizinischen Bereich konzipiert, in dem einige der Heraus-
forderungen an entitätszentriertes Lernen am deutlichsten zum Ausdruck kommen.
Beispielsweise verfügen viele Entitäten über zu wenige Beobachtungen zum Lernen;
die Daten jeder Entität treffen unregelmäßig ein; und die Daten jeder Entität werden
im Vergleich zu den anderen zu asynchronen Zeitpunkten generiert. Unser Ansatz
zur Personalisierung sieht vor, dass jede Entität im Datensatz ihr eigenes Modell
erhält. Wir adressieren die potenzielle Datenknappheit von Entitäten, indem wir
deren Daten mit den Beobachtungen “ähnlicher” Entitäten ergänzen. In dieser
Arbeit untersuchen wir drei Hauptansätze zum Training personalisierter Modelle für
medizinische Datensätze.

Der erste Teil der Arbeit befasst sich mit verschiedenen Möglichkeiten zur Bewälti-
gung von Datenknappheit und zeitlichen Aspekten beim Training von personalisierten
Modellen. Wir untersuchen die Erweiterung der dynamischen Daten jeder Entität mit
den dynamischen Daten ihrer nächsten Nachbarn, die durch statische Daten definiert
sind. Wir untersuchen die verschiedenen Möglichkeiten zum Trainieren des nach-
barschaftserweiterten Modells, den Umgang mit Zeitstempeln und die Auswirkungen
der Nachbarschaftsgröße. Unsere Ergebnisse zeigen, dass das Training eines Modells
auf den kombinierten dynamischen Daten einer kleinen Anzahl von Nachbarn und
unter Beibehaltung von Zeitstempeln die besten Ergebnisse liefert. Wir haben diese
Methode so erweitert, dass die Ähnlichkeit mit Hilfe von Expertenwissen gesteuert
werden kann, und haben festgestellt, dass die Gruppierung von Nutzern auf der
Grundlage medizinischer Intuition die Qualität der resultierenden Modelle für mehrere
Untergruppen verbessert. Eine Vergleichsmethode, welche die Nachbarschaft einer
Entität zufällig auswählt, erwies sich als sehr konkurrenzfähig. Obwohl die entität-
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szentrierten Modelle die Leistung des globalen Modells mit weniger Daten übertreffen,
deutet dieser Umstand darauf hin, dass die Berechnung der Nachbarschaft verbessert
werden kann.

Der zweite Teil untersucht, inwieweit die dynamischen Daten der Entitäten zum
Training personalisierter Prädiktoren verwendet werden können. Zu diesem Zweck
testen wir zwei Arten von Ansätzen. Einen, der die Zeitreihen zusammenfasst,
sodass eine Ähnlichkeitsfunktion zur Identifikation ähnlicher Entitäten angewendet
werden kann, und einen anderen, der Nutzer auf der Grundlage der Länge ihrer
dynamischen Datenfolgen gruppiert. Es wurde deutlich, dass die Zusammenfassungen
der dynamischen Daten dazu beigetragen haben, eine mit dem globalen Modell
vergleichbare Leistung zu erzielen, wobei <10% der Nutzer verwendet wurden. Des
Weiteren hat sich gezeigt, dass Vorhersagen für Nutzer mit sehr kurzen Sequenzen auf
der Grundlage anderer Nutzer mit längeren Sequenzen gemacht und personalisiert
werden können. Da der Begriff der Ähnlichkeit schwer zu definieren ist, schlagen
wir auch eine iterative Methode der Nachbarschaftsähnlichkeit vor, welche die ideale
Menge von Nutzern entdeckt, um ein personalisiertes Modell für Nutzer mit kurzen
Sequenzen zu lernen.

Ausgehend von diesem Ergebnis konzentriert sich der dritte Teil dieser Arbeit auf
die Entdeckung der optimalen Nachbarschaft für jede Entität auf überwachte Weise
unter Verwendung des Validierungsfehlers der personalisierten Modelle. Wir schlagen
eine Methode vor, die ‘greedy’ nach der optimalen Nachbarschaft in abnehmender
Reihenfolge der Ähnlichkeit sucht, und haben festgestellt, dass das globale Modell
von einem personalisierten Modell mit der von uns entdeckten Nachbarschaft um
≈ 13%−15% geschlagen wird. Eine Analyse der Nachbarschaften selbst zeigt, dass es
“prominente” Nutzer gibt, deren Daten von fast allen anderen genutzt werden, und
“diskriminierte” Nutzer, deren Daten einen negativen Beitrag für andere Nutzer leisten.
Unsere zweite vorgeschlagene Methode, die den Effekt der Sortierung der Nutzer nach
Ähnlichkeit beseitigt, entdeckt jedoch viel kleinere Nachbarschaften und schneidet
auch schlechter ab als die erste (wenn auch besser als das globale Modell). Für einen
vollständigen Vergleich der Nachbarschaften und ihrer relativen Qualität ist jedoch
die Hilfe eines klinischen Experten erforderlich. Wir betrachten die Nachbarschaften
einer Entität als Teil unseres Ergebnisses, da sie weitere Untersuchungen ermöglichen,
insbesondere in Fällen, in denen die zugrunde liegende Ähnlichkeitsfunktion nicht
bekannt ist.
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1. Introduction

Machine learning and artificial intelligence (AI) have touched almost every industry
ranging from self driving cars to automated trading. Advances in storage and
processing capabilities have allowed computers to tackle ever larger datasets, and
support the creation of more and more complex models. However, as the models and
methods become more sophisticated, the basic approach has remained “train the
best possible model from all available data”.

Many datasets, however, contain additional information along with the instances
that reflect innate properties of the instances. For example, reviews of products,
physiological measurements from humans, recordings from multiple sensors etc. (i.e.,
‘entities’) will all have the data as well as additional metadata that are of relevance
to the prediction problem. The most obvious use of such metadata is that multiple
measurements from a ‘product’ or ‘human’ over time give you more information
about the future of that product or person, than of all products / people. Training
models that take such dependencies into account is only recently gaining popularity
[79, 64, 93].

The fact that pursuing of predictive performance alone is insufficient is indicated
by the recent rise in interest towards model explainability. Search interest for
“Explainable AI” (XAI) from Google Trends over the last 10 years is shown in Figure
1.1, where it can be seen that there is a very strong increase in interest for explainable
models from 20181. The trend in scientific publications is broadly similar, with many
conferences introducing separate tracks for XAI.

Figure 1.1.: Search interest for the term “Explainable AI” from Google Trends for
the last 10 years

A recent survey conducted by the Federal Ministry for Economic Affairs and Climate
Action [53] also found that the practitioners from different industries place different
levels of emphasis on explainable models. Respondents from healthcare, finance, and

1Data pulled on 02.01.2024
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manufacturing rated local explainability as the most important, with the majority
of participants from the healthcare industry even suggesting that explainability
should be mandatory. However, XAI focuses primarily on explaining predictions
for individual instances in the data as predicted by a model that was trained on all
available data.

Data sources with longitudinal observations for collections of entities are not un-
common. However, most machine learning approaches do not explicitly model these
entities, choosing rather to use all available data and rely on the larger dataset to
achieve generalisation. It is perhaps unsurprising, however, that the most convincing
argument for explicitly modelling the entities separately comes from the field of
medicine as ‘personalised health’ [65], where it is said that given the significant inter-
individual variability in the area of health, “when estimating symptoms, responses to
medication, or heart-rate profiles, it would be impossible to make useful predictions
without personalization”. Fields like e-commerce and social media also stand to gain
from modelling and personalising towards users of their platforms, but it is necessary
to first call out an important deficiency of the keyword “personalised”, and how this
work uses it in a way that is more narrowly defined than some other works in the
literature.

While the goal of a personalised model in this work aligns with that presented by
McAuley in the book [65]. The book highlights the fact that the idea of personalisation
is not yet mature enough for all researchers to have converged upon the same definition
of what it means. This is clear from the taxonomy they present (see [65], Section 1.7.2)
that even a recommender system that recommends products to a user (because similar
users might have bought another product) arguably makes personalised predictions.
i.e., the system uses the user data, but does not include explicit parameters or a
model towards just that user. This is called contextual personalisation, while our
approach aims to train personalised models by actually training separate models for
each individual (or ‘entity’) in the dataset. This approach is called ‘model-based’
personalisation in [65]. In our work, the phrase ‘personalised model’ refers exclusively
to approaches for model-based personalisation. This is because our methods target
not only generating accurate personalised predictions, but also on delivering a
‘neighbourhood’ for each personalised model. While not discussed [65], we believe
that delivering the neighbourhoods along with personalised models allow for closer
inspection of the models, and also enables further analyses of the neighbourhoods
themselves, which might reveal hitherto unknown relationships between the entities
(or in the case of personalised medicine, patients) that comprise them. We expect that
such approaches are especially relevant for diseases where the underlying similarity
between patients is not yet fully understood.

Although still an open research question, the need for personalised solutions is being
increasingly acknowledged in the world of mobile health (mHealth) apps [96]. mHealth
apps are used by users (who may be diagnosed patients) to help self-manage their
lifestyle, or a variety of diseases. Popular areas where mHealth apps are common
are: apps that promote healthy lifestyles, apps for endocrine and nutritional disease,
apps for psychological and behavioural issues. The use of these apps helps patients
learn about and manage their symptoms[51], while also helping doctors keep track of
their patients remotely, and to be alerted in case interventions are required [98]. The
use of mHealth apps also helps doctors monitor patients outside of a hospital, and
therefore get an increased insight into the dynamic presentation of diseases. This
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point in particular can be valuable for clinicians, since personalised models and a
data-driven understanding of patient similarity might help the clinicians understand
the disease dynamics better.

Towards this goal, we aim to develop personalised modelling methods for datasets
comprising multiple observations from multiple ‘entities’ (primarily patients, but
also sensors, products, weather stations, etc.), where the personalised model of each
entity is chosen so as to:

• maximise predictive quality of the entity-specific model

• deliver a set of entities over whose data the entity specific model should be
trained.

1.1. Challenges in developing personalised predictors

This work focuses on developing personalised predictors assuming a panel-data-like
data source where multiple entities are tracked over time. Although technically
accurate, we do not use the term ‘panel data’ to describe our dataset because in
addition to observing time-changing or ‘dynamic’ properties of each entity over
time, we also additionally assume that each entity is also described by some ‘static’
unchanging properties. To summarise, an entity within the dataset is described in
two modalities, or data spaces: one that is relatively ‘static’ and unchanging (like the
gender and date of birth of a patient), and the other which is ‘dynamic’ (like daily
blood sugar levels, weight, etc.). Although the methods we study are applicable to
datasets from several domains, the focus is on working with medical data because
developing personalised predictors is of high relevance in the field of medicine. In a
medical context, the ‘static’ data might come from a (relatively infrequent) hospital
visit, and the ‘dynamic data’ could be generated by remote monitoring of the patient
using mHealth applications.

Personalised predictors are especially interesting in the field of medicine partly
because the idea of personalised medicines are rooted in ‘biological realities’ like
unique molecular, physiological, environmental and behavioural fingerprints [30], but
also because healthcare data is increasingly digital, and being made accessible to
interdisciplinary researchers. In addition to interventions, therapies and prophylactics
that are tailored to individuals, it is also reasonable to expect that methods that
generate predictions for each individual separately may reveal hitherto unknown
similarities between individuals with similar predictions. This would of great benefit
to healthcare professionals for gaining a deeper understanding of the disease, through
individuals that experience it similarly.

However, the development of personalised predictors involves selecting the best
subsets of data to learn from, and given the heterogeneity of medical data, the
formulation of a similarity function is critical. This has been acknowledged to
be challenging, since the concept of similarity may be context dependent, with
different definitions based on whether goal is to classify, cluster, or detect outliers [94].
Many define similarity for patients using atemporal data with similarity measures
like pearson correlation, cosine similarity, eucliedean distance, etc., while similar
temporal data can be found using methods like DTW [61]. Some works like [39]
also explore combining unstructured data like text clinical notes with demographic
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and temporal data using dimensionlity reduction methods that extract relationships
between the multiple data sources while excluding noise.

This work aims to tackle the question of developing personalised predictors in the
panel-data-like scenario, where multiple ‘entities’ are observed over time. While the
term ‘panel data’ is the closest fit, it is not perfect . The key characteristics of our
data are described below:

• each sequence / time series in the data are generated by one of a collection of
‘entities’. We call this ‘dynamic data’.

• apart from the multivariate information available over time, the entities are
also described by static covariates - we refer to this as ‘static data’. In extreme
cases, different entities may be described by overlapping, but possibly different
feature spaces.

• not every entity is observed for the same length of time,

• the range of variability among the shortest to the longest entity-level sequences
is very large (up to 3 orders of magnitude),

• the time series / sequence of observations generated by each entity are not
regularly spaced within an entity and across entities, and

• not only are all entities not observed over the same length of time, the first
and last dates of entities within the data might be non overlapping.

Several industries create datasets like the one described above, typically wherever
the data is generated by voluntary user interactions with a system - for example,
e-commerce, health, and mobile health usage data. Given that a small proportion
of entities might contribute a disproportionately large part of the dataset, it is
necessary to design methods that accommodate the fact that most entities in the
dataset have too little data. This necessitates that the personalised models of entities
that contribute little data are augmented by the data of other entities that are
similar. Since the majority of this work focuses on personalised predictors in datasets
comprising actual humans interacting with an mHealth application, we will use the
words ‘entities’ and ‘users’ interchangeably.

However, in addition to the personalised models themselves, our methods also deliver
the list of entities that contribute to each model. Apart from making it easier to
service data deletion requests from users, it is also hoped that the neighbourhoods
would themselves help a clinician develop hypotheses on what might make patients
similar, or get a deeper insight into the disease dynamics.

1.2. Research Questions

As described in Section 1.1 above, the main goal of this work is to develop methods
for datasets with multiple observations for entities over time, where each entity is
described by two data spaces - one relatively fixed or ‘static’, and the ‘dynamic’,
which samples more volatile properties of the entity over time. The core question of
our work in this context is:
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How to select the most relevant neighbours of an entity when developing
personalised models?

We break down this question into the following three Research Questions (RQs):

RQ1 To what extent can static data similarity be exploited when training personalised
models? To what extent does expert knowledge contribute towards improving
neighbourhoods?

RQ2 To what extent does similarity in the dynamic domain guide the neighbourhood
selection process?

RQ3 To what extent can the notion of similarity be supervised? To what extent
does a neighbourhood based on supervised similarity improve personalised
predictors?

1.3. Summary of Scientific Contributions
Our main contributions are methods that train personalised models for an entity in an
environment of strongly varying amounts of data per entity. The list of contributions
towards each of the research questions are listed below:

RQ1 How to exploit entity similarity from the ‘static’ domain when training person-
alised models?

– We show that personalised predictors that train on a subset of entities
can outperform global model trained on data of all entities. We also show
that similarity in static data can serve as a guide to the neighbourhood
selection process.

– We show that the neighbourhoods discovered by methods exploiting static
data can be further tuned with expert knowledge (when available) to yield
subgroups with different prediction accuracy. This is demonstrated on
the tinnitus dataset, where the results obtained reinforce the established
knowledge that known subgroups of patients with anomalous behaviours
should not be used to inform each others’ models.

RQ2 How to include data from dynamic / time series domain to guide the neigh-
bourhood selection process?

– We show that the dynamic data can be summarised using hidden markov
models and granger causalities, which can then be used to ‘summarise’
patients as fixed-length vectors. Our results show that these fixed-length
representations can be used to construct neighbourhoods that match the
performance of the global model while relying on a fraction of the total
number of users in the dataset.

– We show that behavioural information from the dynamic space can help
develop personalised models. Users with little data (“short” users) can
be predicted by those that have more ones (“long” users), and also that
as the short users get longer, the personalised models can progressively
incorporate their data to improve the personalised models.
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– Different short users might need different neighbourhoods, but also differ-
ent neighbourhoods of different neighbourhood sizes. These neighbour-
hoods can be incrementally discovered guided by static data similarity.

RQ3 Can the notion of similarity be “learned” in a supervised manner?

– Since both static and dynamic data might be insufficient for discovering
neighbourhoods that improve predictive performance, we show that a
supervised notion of similarity that chooses neighbourhoods maximising
predictive performance can outperform global models, while delivering
personalised models with personalised neighbourhood sizes.

– Our method delivers a small (≈ 10%) but significant improvement to
about 85% of the users.

– The neighbourhood selected by the supervised similarity confers a small
but significant improvement in predictions for most more than 85% of the
users.

– Apart form the improvements in predictive performance, the supervised
similarity also reveals that there is a small set of users who do not
contribute positively to most users’ neighbourhoods. This unexpected
result could serve as a starting point for clinical investigations.

1.4. Outline of the Thesis
The following chapters of this thesis begin with a discussion of some necessary
background to better understand the context in which this work is placed, followed
by three chapters that explore the three research questions listed in Section 1.2.

• Chapter 2 discusses some necessary medical background, followed by an overview
of the main datasets used in this thesis, and then concludes with some definitions
of frequently used terms.

• Chapter 3 is the first part of this thesis, and introduces our main approach to
fitting personalised models in the context of panel-like data where the amount
of data per entity varies strongly. We explore several ways in which personalised
models can be trained and compare the results of each to discover the best
performing one. The results collected from our investigations in Chapter 3
serve as the foundation for the investigations and design decisions of Chapters
4 and 5.

• Chapter 4 discusses the next part of this thesis, where we explore two main
methods to exploit the dynamic data to build patient neighbourhoods - the first
uses HMMs and Granger causalities to summarise the sequences of unequal
lengths, and the degree to which these user summaries can be used to discover
neighbourhoods. The second set of methods explores grouping users on the
basis of the length of their interaction to learn models for users with short
sequences using the data of those who have long ones.

• Chapter 5 builds upon the results of Chapter 4 to propose methods that exploit
the dynamic data as a validation set and discovers a neighbourhood for each
user on the basis of a supervised notion of similarity (≡ reduction in error).
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• Chapter 6 presents a summary of the results from each of our three main
approaches, and discusses several possible avenues for future explorations.

• The appendices in A.1, A.2, and A.3 contain some supporting information for
our experiments from Chapters 3, 4, and 5. The supporting information are
not required reading to understand the core contributions of this thesis. The
appendices are followed by the bibliography.
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2. Underpinnings

Our collaborations with medical experts influenced the design of many of our proposed
solutions, so some of the more salient points of the diseases involved are covered in
the sections below. They include an overview of tinnitus and diabetes, followed by
the concept of the Ecological Momentary Assessments (EMAs). We conclude in 2.3
by formalising some definitions that are used often in this thesis.

2.1. Medical underpinnings
Although not strictly relevant to a technical reader of this manuscript, a rather
detailed overview of tinnitus, its causes, and treatments is provided below. This is
primarily to impress upon the reader the high degree variability in symptom presenta-
tion, causes, and the need for varied (and personalised) therapeutic approaches that
accommodate for the various ways in which tinnitus can be caused and expressed.
The executive summary at the beginning of Section 2.1.1 should highlight the main
takeaways.

2.1.1. Tinnitus and its treatments

• Tinnitus is a psychoacoustic disorder that affects 10-15% of the population,
and about 1-2% claim that tinnitus has a moderate to severe affect on
their quality of life.

• Tinnitus is a complex disorder with many causes ranging from hearing
loss to trauma and infections. The perception of tinnitus is also highly
heterogeneous, and this has hampered the development and testing
treatments.

• Several known treatments exist, but treatments that try to alleviate
symptoms are less effective than those that teach a patient to manage
their symptoms and its effect on their psychological outlook.

• The high degree of variability in symptom presentation, tinnitus distress,
and treatment success suggest that treatments need to be personalised
to the individual case.

• Since tinnitus distress is sometimes independent of (and easier to treat
than) tinnitus loudness, physicians may be more interested in studying
tinnitus distress.

What is tinnitus?: Tinnitus, derived from the Latin word tinnire, meaning “to ring”
is a neuropsychiatric disorder characterised by the phantom perception of sound,
i.e., a perception of sound in the absence of an external stimulus. The perceived
sound my be confined to one or both ears, and the location of the perceived sounds
may also be perceived accordingly, including being described as “inside the head”.
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The nature of the sound is also varied, with patients describing their tinnitus as
ringing, buzzing, hissing, roaring, clicking, etc. [17]. The sound may also be constant
or rhythmic/pulsing, with the latter case being suspected of patients for whom the
tinnitus has an origin in the vasculature [4].

Prevalence, impact, and risk factors: Prevalence of tinnitus is mostly best studied
in the USA and Europe, and studies very in their estimates of tinnitus prevalence,
but most studies estimate the prevaence of tinnitus at 10-15% of the population .
About 1.6% of tinnitus patients rate their tinnitus as ‘very annoying’, with a further
0.5% claiming debilitating effects on quality of life. Tinnitus patients may suffer from
a variety of psychological problems ranging from hyperacousis to insomnia, trouble
concentrating, frustration and depression[55]. The prevalence of tinnitus has been
found to be similar for men and women, with increasing prevalence of troublesome
with increasing age [4][55].

The risk factors associated with tinnitus are also several and varied. Although
hearing loss is the primary risk factor, many patients with hearing loss do not report
tinnitus, and not all patients with tinnitus have hearing loss[4]. An epidemiological
cohort study in ageing identified hearing loss, noise exposure, head injury, depressive
symptoms, arthritis, and use of certain medications as the risk factors[77]. However,
other factors like smoking, alcohol consumption, hypertension, etc. are also listed
as risk factors [4]. A comprehensive list of risk factors is presented in Table 2.1
(reproduced from [4]).

Category Risk Factor / Co-morbidity
Otological (infectious) Otitis media, labyrinthitis, mastoiditis
Otological (neoplastic) Vestibular schwannoma, meningioma
Otological
(labyrinthine)

Sensorineural hearing loss, Ménière’s disease, vestibular
vertigo

Otological (other) Impacted cerumen, otosclerosis, presbyacusis, noise
exposure

Neurological Meningitis, migraine, multiple sclerosis, epilepsy
Traumatic Head or neck injury, loss of consciousness
Orofacial Temporomandibular joint disorder
Cardiovascular Hypertension
Rheumatological Rheumatoid arthritis
Immune-mediated Systemic lupus erythematosus, systemic sclerosis

Endocrine & metabolic Diabetes mellitus, hyperinsulinaemia, hypothyroidism,
hormonal changes during pregnancy

Psychological Anxiety, depression, emotional trauma

Ototoxic medications

Analgesics, antibiotics, antineoplastic drugs, corti-
costeroids, diuretics, immunosuppressive drugs, non-
steroidal anti-inflammatory drugs, steroidal anti-
inflammatory drugs

Table 2.1.: Known tinnitus risk factors and comorbidities, reproduced from [4]

Treatments: When the tinnitus has a known cause such as trauma or infection,
the primary treatment is to treat the cause, but tinnitus is known to sometimes
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persist even after the underlying cause has been treated. Given the wide variation
in presentation and risk factors, and lack of a standard outcome measure have also
affected the quality of evidence for tinnitus treatments and therapies [4].

Once the underlying pathology has been treated, the standard treatments for tinnitus
are patient education[33], sound therapy, counselling, Cognitive Behavioural Therapy
(CBT)[16] and combinations thereof [4]. However, several emerging treatments are also
under investigation: tinnitus maskers and hearing aids [102], brain stimulation[21],
and even surgery or cochlear implants, when applicable[5]. Medications have met
with more limited success, except for dental anaesthetics, which have limited use
because of high risk and limited modes of delivery[4]. A brief description of the main
auditory and psychological treatments is given below:

• Auditory Treatments:

– Hearing aids and cochlear implants: Hearing aids can be used to treat
patients who have tinnitus as well as hearing loss. However, the efficacy of
hearing aids may depend on the tinnitus frequency and on other otological
conditions. [55]. For patients who have profound bilateral sensorineural
hearing loss, cochlear implants have been shown to suppress tinnitus [5].
This also works for cases where the hearing loss is severe but only in one
ear. It is expected that the restoration of input to the central auditory
system is the reason for tinnitus suppression.

– Environmental Sound generators and tinnitus maskers: Environmental
sound generators and maskers are used to create sounds of the sea, rain,
white noise, etc., and the primary purpose is to play a relaxing sound
that masks sound of tinnitus. These devices are designed to fit behind
the ear, and typically allow for the frequency and loudness to be adjusted
to the tinnitus. These features may also be integrated into a hearing aid.
Although popular, such devices are shown to bring only limited benefits
[37].

– Individualised sound stimulation: Personalised sound stimulation follows
three approaches derived from complementary notions of the types of sound
that reduce tinnitus volume. The first is based on the notion that tinnitus
fills in the areas of the audio spectrum that are challenged by hearing loss.
Towards this end, auditory stimulation consisting of music adapted to the
frequencies of hearing loss were played back to the patients along with their
regular counselling sessions. These patients improved more than similar
patients treated with non-personalised noise stimulation[20], but these
results were later refuted by a controlled study[130]. The second approach
creates music that has frequency ranges around the tinnitus frequency
suppressed, and this was shown to achieve tinnitus volume reduction as
well as decreases in activity levels of the auditory cortex[78], but the
sample sizes in the study are small[55]. The third approach suppresses the
tinnitus frequencies but enhances frequencies just above and just below
the tinnitus frequencies, with the goal of renormalising tinnitus related
auditory neuronal synchrony[119]. However, sample sizes are still small.

• Psychological Treatments:

– Counselling and psychoeducation: Since there is no universal reliable
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cure for tinnitus, psychoeducation techniques aim rather to habituate the
patient to the phantom sound. Counselling aims to arm the patient with
information and advice on how to achieve habituation, and how to better
cope with the psychological consequences of tinnitus in patients’ personal,
social and occupational lives. Counselling aims to help individuals de-
mystify their tinnitus, and also helps ensure continued compliance with
other treatment strategies. However estimating the effect of counselling
has been hard [55].

– Tinnitus retraining therapy (TRT): TRT aims to habituate the patient to
tinnitus by teaching the patient to reclassify tinnitus as a neutral stimulus,
while using sound therapy to reduce its intensity. This is based on the
assumption that tinnitus is caused by abnormal neurophysical activity
and connectivity in the auditory and non-auditory central nervous circuits
[43]. However, the efficacy of TRT is disputed [82].

– Cognitive Behavioural Therapy: Rather than treat the tinnitus symptoms,
CBT aims to reduce tinnitus distress by changing the emotional and
behavioural responses to the tinnitus symptoms. CBT involves education,
relaxation training, and exposure, which are then used to modify patients’
responses to symptoms. CBT has been shown to reduce depression and
improve quality of life, even when it did not reduce tinnitus volume [16].

As is clear from the brief summary above, tinnitus is a disease with a high degree
of heterogeneity in both patient presentation as well as treatment success. As a
psychoacoustic disorder, treating the symptom alone is sometimes not sufficient, and
patients stand to benefit from a more personalised approach. The degree of distress
from tinnitus can often be managed even when mitigating the severity of symptoms
may be impossible, therefore, tinnitus distress is used as the variable of prediction
interest rather than tinnitus loudness.

2.1.2. Diabetes

The discussion of diabetes in this work is more cursory, since the disease is much more
well known and the average reader is already familiar with the disease. Although
different from tinnitus in terms of the psychological distress, diabetics are not exempt
from the psychological affect of the disease, since it restricts many facets of peoples
lives, including diet, need for exercise, etc. It is also obvious that personalisation can
also help in this domain, because like the psychological affect of diabetes, people are
also highly individual in the degree to which they maintain good lifestyle habits (diet,
exercise, etc.), and two people may achieve highly similar trajectories in the disease
with totally lifestyles (for example, a severe diabetic who works very hard to keep in
good health, vs a mild diabetic who is more casual in managing his disease). As a
chronic lifelong disease relying primarily on lifestyle changes, technology enabling
monitoring of a patient remotely will help doctors and patients themselves get a
better understanding of the disease. The impact of these technologies can be expected
to increase as the world population ages, increasing the incidence of diabetes, and
the stress that is expected to be added to an already stressed healthcare system.

A summary of the main aspects of the disease, its prevelance, risk factors, and
treatment are summarised below. All information is summarised from the World
Health Organisation (WHO) global report on diabetes[97].
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What is diabetes?: As described by the WHO global report[97], diabetes is a
chronic metabolic disorder characterised by the insufficient production of insulin. It
has two main types, Type 1 and Type 2. Type 1 diabetes occurs in individuals where
the pancreas do not produce enough insulin, and type 2 occurs in people whose body
has developed resistance to insulin in the blood.

Prevalence, impact, and risk factors: It is estimated that around 1 in 10 adults have
diabetes, and the number is expected to continue growing as the world population
ages. The number of diagnosed diabetics has risen from 180 million to more than
420 million from 1980 to 2014. Age standardised prevalence has also doubled, and
the majority of cases are expected to be type 2 diabetics. The prevalence is also
expected to increase with decreasing poverty around the world.

Type 1 diabetes is most common among children and young adults, but no clear
cause is yet known, apart from genetic susceptibility. Type 2 diabetes, on the other
hand, is a lifestyle disease, and has several risk factors - genetics, being overweight
or obese, low levels of physical activity.

With 1.5 million deaths with diabetes as the direct cause in 2012, shorter life
expectancy and disability is a high risk from poor management of diabetes. Even
when not serious enough to cause death, uncontrolled diabetes can damage blood
vessels and nerves, cause loss of vission and kidney function, cause heart attacks,
strokes, and also higher risk of amputations in lower limbs.

Treatments: As a lifelong illness, diabetes care needs to be continuous. Patient edu-
cation on better diet, physical activity and monitoring are the main recommendations.
Medications exist for glucose management (including injecting insuling), cardiovascu-
lar diseases, etc., and periodic examinations to detect vascular and complications in
the nervous system are recommended.

2.2. Mobile Health Solutions & Ecological Momentary
Assessments

2.2.1. mHealth
The Global Observatory for eHealth from the WHO defines mHealth as a “medical
and public health practice supported by mobile devices”[80]. With more than 2.5
billion people worldwide estimated to have a cellphone, the percentage of population
with access to cellphones grows faster than the healthcare services. This proliferation
of devices that provide cheap and convenient access to specialist clinical diagnosis
and treatment advice stresses the potential of mHealth solutions. A recent study [98]
that investigated the clinical value of mHealth for patients has said that although
no clear clinical guidelines on how to use mHealth to add value to care delivery, the
various mHealth apps can be summarised to belong to one of the following categories
based on their value proposition:

• apps that improve accuracy and accuracy of diagnostics

• apps that deliver personalised treatment regimes

• apps that provide behavioural change advice
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• apps that improve access to therapies (like CBT)

Although not very effective at diagnostics [112], mHealth apps for some specific
tasks like screening melanomas have been shown to have up to 80% diagnostic
sensitivity[14]. Apps that are designed to elicit behaviour change have been when to
improve both weight loss and physical activity outcomes[24]. Apps have also helped
type 2 diabetics adhere to treatment protocols better, improving their glycaemic
control[135]. Although not scientifically quantified yet, anecdotal claims of improved
communication between doctor and patients are also a possible additional benefit[98].

The WHO report [80] mentions mHealth apps that support mny more functionalities,
including apps that send out reminders to patients to improve adherence to medication
prescriptions. One such other category of mHealth apps relevant to this work is
those that enable patient monitoring of a patient’s symptoms.

2.2.2. Ecological Momentary Assessments (EMAs)

Mobile crowdsensing is a new paradigm which, analogously to crowdsourcing, gathers
data quickly from a large pool of available human ‘sensors’ (crowdsensing participants).
Within this growing field, mobile crowdsensing for healthcare applications is emerging
as a new way to collect useful healthcare data for research, while also enabling the
patient towards better self management.

The taxonomy presented in [88] lists traditional crowdsensing application as belonging
to one of three categories: participatory sensing, opportunistic sensing, and other
works that present a crowdsensing infrastructure approach without falling into either
category.

Participatory sensing advertises sensing tasks (eg, measure noise levels or temperature
at a particular location) on a crowdsensing platform, and users of the platform may
opt in to provide an answer. The answers from different users need to be combined in
the best possible way, and the best users to accomplish a task must be found under
constraints of time. Users are typically incentivised by monetary rewards, a societal
commitment towards the outcome, etc. [88]. Opportunistic sensing, on the other
hand, eliminates the opt-in nature of the sensing task - the users simply install an
app on their phone, and the app collects the information it needs in the background.
It is clear that the range of tasks that can be accomplished opportunistically are more
limited, i.e., it might be easy to use the microphone on a cellphone to measure noise
levels, but measuring temperature might be impossible due to hardware limitations.
The overarching goals, however, remain the same as participatory sensing, in that
the best user for the task, as well as the best way to combine many responses of
multiple users still remains.

While traditional crowdsensing applications are geared more towards the accom-
plishment of a certain task, it is said that mobile crowd sensing for healthcare is
different [88], since the focus is taken away from the task, and placed on the user
instead. i.e., unlike in traditional crowdsensing where it does not matter which exact
user accomplishes a task, mobile crowdsensing for healthcare is about collecting
patient-specific information. This also has the consequence that crowdsensing for
healthcare benefits from incentivising user longevity and loyalty, while traditional
crowdsensing rewards users’ interaction intensities. Study of user adherence in this
context is not only important, but also challenging [105, 106, 107].
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Ecological Momentary Assessments (EMAs) are an example of mobile crowdsensing
tools that can be used by patients to keep track of symptoms and to better understand
their disease, while allowing clinicians and researchers to gather additional data about
the disease[88]. mHealth apps that use EMAs allow for data to be gathered quickly
and easily, and then compare this data to other users in the “crowd”. Such tools are
valuable in the management and treatment of chronic diseases, since the researchers
gain an additional insight into the data, while the patient is better informed about
self management.

Initially called “experience sampling” [18], EMAs are the more recent keyword that
capture a concept known also as “ambulatory assessments”. Unlike more traditional
forms of assessment, EMAs measure experiencesas the subject goes about their daily
life, making them particularly well suited to studying human perception, emotions,
and cognition. This is because the self-reported data is unlikely to be affected by
biases like retroactive recall, memory decay, and mental reconstruction [25, 104].

It is further reported that using EMAs to measure tinnitus over two [34] or four weeks
[103] were not found to significantly alter the perceived loudness or distress from
experiencing the disease. It is argued in [104] that this is an important prerequisite
to studying tinnitus, since it suggests that using the process of using EMAs neither
alters the symptom severity, nor introduces a systematic measurement bias, as would
be the case if patients using the app for longer would be differently affected than
users using the app for a shorter period of time. Additionally, a majority of the users
acknowledged that EMAs are a good tool for measuring the tinnitus variability in
and across individuals.

EMAs collected through mHealth applications have already helped understand
tinnitus better. It has been found that emotional arousal and valence mediate
tinnitus [85], and that people with high emotional variability (both in term of how
their emotions change in intensity, and how quickly they change from negative to
positive emotions) experience more tinnitus distress [84]. Tinnitus was also shown to
be affected by time of day, with higher levels of distress experienced at night[86].

2.2.3. EMA apps used in this work

In this work, we use several mHealth applications targeted at tinnitus patients (we
use the term patients and users interchangeably, although it is important to note
that not all users of the app may be diagnosed with tinnitus by a physician), and
one app targeted at patients of diabetes. We give a short description of each below,
highlighting only the main points. The full description of the datasets is given in
the following chapters where they are used, since each work may use data pulled
at different points in time, and therefore have more users and/or more data from
existing users.

TrackYourTinnitus

As described in Section 2.2.2, TrackYourTinnitus (TYT) is an mHealth platform
targeted at people suffering from tinnitus. It is necessary to call out that not all
users may have been medically diagnosed with tinnitus, either because their tinnitus
might not be severe enough to warrant seeking medical treatment, or because the
users do not have easy access to medical care for tinnitus (for example, because of
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decreased mobility due to age). We assume that all users of the system do indeed
suffer from tinnitus, and therefore use the words ‘user’ and ‘patient’ interchangeably.
The goal of the system [89] is to make it easier to collect longitudinal datasets for
tinnitus using EMAs from a large number of patients.

TYT is accessible to users through downloading and installing a smartphone appli-
cation. After installing the app, the users go through a registration process where
they fill in some questionnaires that provide some questionnaires that provide a
‘static’ assessment of their symptom severity - i.e., you have symptom severity as
assessed by some clinically validated questionnaires at the beginning of the users’
interactions. Registering for TYT is also possible through a website. However, the
EMA functionality is only available through the app.

The EMAs are collected through a notification generated by the app. Upon receiving
the notification, the user is prompted to answer the EMA questionnaires that collects
the assessment of the momentary severity of tinnitus. Once the user has filled in
the static questionnaires, the user is guided through a setup process where they
provide the time ranges and the days of the week when they are willing to receive
notifications. The user can also set up the maximum number of notifications per day
(up to 12). Once all this information has been collected, the TYT ensures that the
user is prompted at random timepoints (within the predefined allowed periods) to
answer the EMA questionnaire. The randomisation ensures that the assessment is
indeed ‘ecological’, since the patient cannot predict when they will be alerted, and
can therefore not prepare for it (by moving to a quiet space, for example).

The questions that are part of the EMA questionnaire in TYT are listed in Table 2.2
(translated from German, as listed in [47]).

Question Type
Do you perceive tinnitus right now? Binary (Yes/No)
How loud is your tinnitus right now? Slider [0–1]
How distressing is your tinnitus right now? Slider [0–1]
How is your mood right now? Slider [0–1]
How aroused are you right now? Slider [0–1]
How stressed are you right now? Slider [0–1]
How much are you concentrating on things right now? Slider [0–1]
Do you feel unstable at the moment? Binary (Yes/No)

Table 2.2.: The EMA questionnaire used in the TrackYourTinnitus app.

All questions are answered with a slider, except for the first, which is binary with
Yes/No. The app also collects additional information in the form of the ambient noise
level as measured by the built-in device microphone, so that the effect of ambient
noise of tinnitus can be investigated.

An overview of the full TYT platform is shown in 2.1 (image reproduced from [89]).

TinnitusTips

The TinnitusTips app is part of the TinnitusCare mHealth framework, and is an
extension of the TYT app that introduces a psychoeducation module. Similarly to the
TYT app, the TinnitusTips app also collects an initial ‘static’ assessment of symptom
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Figure 2.1.: An overview of the TYT platform (image from [89]), with apps compatible
with 3 mobile operating systems, the website, backend, registration
process (top), and the user interaction flowchart (bottom)

Question Type
Do you perceive the tinnitus right now? Binary (Yes/No)
How loud is your tinnitus right now? Slider (0–100)
How distressed are you by your tinnitus right now? Slider (0–100)
How well do you hear right now? Slider (0–100)
How much are you limited by your hearing right now? Slider (0–100)
How stressed do you feel right now? Slider (0–100)
How exhausted do you feel right now? Slider (0–100)
Are you wearing a hearing aid right now? Binary (Yes/No)

Table 2.3.: The EMA questionnaire used in the TinnitusTips app.

severity at registration time, followed by EMAs collected through notifications.
The static data collected are the Mini-TQ questionnaire [35], the Tinnitus Sample
Case History Questionnaire (TSCHQ) questionnaire [54], and the worst symptom
questionnaire (1 question that asks about the patient’s worst tinnitus-associated
symptom). The EMA questionnaire is shown in Table 2.3.

The psychoeducation module of TinnitusTips is in the form of “tips” that are
presented to the user after submitting an EMA. The tips were structured so that they
defined a goal (falling asleep easier, for example), a specific tip on how to achieve
that goal (listen to music), and additional information on why / how the tip helps to
achieve the goal (because music will mask the tinnitus sounds).

An overview of the TinnitusTips app is shown in Figure 2.2 (image reproduced from
[127]). It was also seen in the study that the psychoeducation module may improve
user adherence, with short-term changes to tinnitus severity measured according to
the Tinnitus Handicap Inventory (THI) questionnaire (which were however not found
to persist).
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Figure 2.2.: An overview of the TinnitusTips platform (image from [127]), with
registration, crowdsensing, and psychoeducation modules.

UNITI mobile

The UNITI Mobile mHealth application was developed as part of the Unification of
Treatments and Interventions for Tinnitus Patients (UNITI) Randomised Controlled
Trial (RCT) [109] , a large multi-center randomised controlled trial that aims to
investigate whether combinations of common tinnitus therapies can be more effective
than individual therapies. Some therapies are delivered in a hospital by a physician,
while the UNITI mobile app is designed partly as an EMA accompaniment to the
trial, as well as an option to deliver Ecological Momentary Interventions (EMIs) [131].
Two types of EMIs were added, one that delivers momentary interventions with sound
stimulation, and another that contains a psychoeducation module. The full scope of
the project is complex, and this work focuses on only the EMA data generated by the
UNITI Mobile app, which is the component shown in the bottom-left of Figure 2.3.
This component of the app is accessible to all users of the platform, while the EMI
components are only available to users whose RCT randomisation allows them to
be exposed to that component. However, all treatments, whether delivered via EMI
or in a clinic, may directly or indirectly affect the patients’ individual perception of
tinnitus, and therefore, their EMAs as well.

Figure 2.3.: An overview of the UNITI platform (image from [131]), with a flow chart
of the user path and data flows.

The EMA component of the UNITI mobile app is the “Tinnitus Diary”, as shown in

18



2.2. Mobile Health Solutions & Ecological Momentary Assessments

the bottom left of 2.3. This component is enabled for all patients who are participating
in the UNITI RCT, and also users who download the app independently from the
Apple and Android app stores. The EMA questionnaire consists of 11 questions: 5
that are about the current moment, 5 that are about the daily experience of tinnitus,
and one free-text column where the user may make addition notes.

The questions in the EMA questionnaire are shown in Table 2.4. The second question
is the EMA for the tinnitus distress for reasons explained in Section 2.1.1 (tinnitus
distress is what treatments try to improve, not symptom severity).

Question Type
How loud is your tinnitus at the mo-
ment?

Slider 0 - 100 (inaudible – very
loud)

How burdensome do you find your
tinnitus at the moment?

Slider 0 - 100 (not burdensome
– very burdensome)

How tense does your jaw feel right
now?

Slider 0 - 100 (not tense at all
- very tense)

How tense does your neck feel right
now?

Slider 0 - 100 (not tense at all
- very tense)

How often have you thought about
tinnitus today?

Slider 0 - 100 (not at all - the
whole day)

To what extent did you feel affected
by your tinnitus today?

Slider 0 - 100 (not at all - very
much)

What was your maximum tinnitus
volume today?

Slider 0 - 100 (inaudible - very
loud)

How much did you move today? Slider 0 - 100 (not at all - very
much)

How stressed did you feel today? Slider 0 - 100 (not at all - very
stressed)

What emotion would you use to de-
scribe today?

Slider 0 - 100 (frown - smile)

Table 2.4.: The EMA questionnaire used in the UNITI mHealth app (TinnitusDiary
compoenent)

TrackYourDiabetes

The TrackYourDiabetes application was developed as an extension to existing mobile
crowdsensing frameworks [87, 52], as part of a pilot study in empowering diabetes
patients in Spain and Bulgaria. The framework is broadly similar to what is shown
in Figure 2.2, with the important differences beting that there are three momentary
assessments questionnaires - the food, random, and end-of-day questionnaires. The
food questionnaire was to be filled after every meal (including a photograph of what
was eaten), the random questionnaire was presented to the user randomly like in
the tinnitus EMA case, and the end-of-day questionnaire was the only questionnaire
that was mandatory to be filled out, like the name suggests, at the end of the day.
This questionnaire asks the user about their daily heabits, food intake, and most
importantly, the degree to which they feel in control of their diabetes. The questions
are shown in Table 2.5. In our work, we “use the feeling of control” variable as the
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Question Answer options / Data type
How often do you have measured your sugar level
today?

Numeric

For how many minutes have you performed phys-
ical activity or sports today?

Numeric

How many bread units have you eaten today? Numeric
Did you have signs of hyper- or hypo- glycemia
today?

No / Don’t know / Hyper-
glycemia / Hypoglycemia /
Both

Did you feel in control of your diabetes today? Slider (0-100)

Table 2.5.: The end-of-day questionnaire in the TrackYourDiabetes App

target variable to stay close to the other mHealth applications’ prediction problems,
and because it was the variable of interest in the pilot study.

Figure 2.4.: An overview of the TrackYourDiabetes platform (image from [126]), with
a flow chart of the user path and data flows.

2.3. Basic terms and definitions
This section gives a quick overview of some terms that are frequently used in the
subsequent sections of this work. Each section introduces them in the context of the
datasets, but the abstract overview provided here should help the reader understand
the motivation a little better.

Entity

All datasets considered in this work contain multiple observations from what we
call ‘entities’. Intuitively the entities can be thought of people, the companies whose
stock market data are tracked, the sensors that are observed, the products that are
being reviewed online, etc. In the subsequent chapters, the word ‘entity’ may be used
interchangeably with ‘users’ or ’products’, depending on the dataset. In our work, we
work primarily under the assumption that not all entities contain equal amounts of
data, and that most entities might lack sufficient data to train personalised predictive
models. This has the consequence that a personalised model for an entity needs to
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be augmented with the data of other entities. Discovering the best set of entities to
learn a personalised entity-level model is the central goal of this work.

More formally, the dataset D is assumed to be made up of a set of entities E =
{e1, . . . eN }, where |E| = N and each entity ei is observed over time.

The term ‘personalised model’ or ‘entity-level’ model for entity ei refers to a model
ξn which is used only to predict the data of entity ei. The output of the personalised
modelling framework is a set of models Ξ trained on the data of all entities in E,
such that Ξ = {x1 . . . xN }.

‘Static’ and ‘Dynamic’ data Each entity ei is described by two vectors Di and Si,
which describe the properties of the entity that do and do not vary over time. Si is a
vector of dimensionality Es, and the size of this vector |Si| = Es is fixed for all entities.
Di = {o1 . . . oTi} is a sequence of timestamped observations generated by the entity
ei, and timestamp(ox) < timestamp(oy)∀x < y. The number of observations from
entity |Di| = ti, and this number may be different for each entity. Each observation
is a d-dimensional vector oi = {x1 . . . xd}.

Intuitively, the set of entities E can be thought of as a set of users / patients /
products, etc. in a dataset, where each entity ei is described in two data spaces, the
‘static’ and ‘dynamic’. In case of a patient, the ‘static’ data are properties of the
patient that do not change over time (for example, genetic factors, family history,
gender, etc.), and the ‘dynamic’ data captures properties that are time-changing
(blood pressure, blood sugar levels, tinnitus distress, etc.) and are more often of
prediction interest.

Figure 2.5 shows a high level overview of how the set of entities E in the dataset
D contains entities ei that can be described in both the static domain Si and the
dynamic domain Di.

Figure 2.5.: An overview of the entities, with the dynamic (left) and static (right)
properties describing each entity ei in the set of all entities E.
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3. Towards RQ1: Personalised predictors
using neighbourhoods on static data

This chapter is based on the outputs from the following papers:
[123] Unnikrishnan, V. et al. “Entity-Level Stream Classification: Exploiting

Entity Similarity to Label the Future Observations Referring to an
Entity”. In: 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA). 2018, pp. 246–255.

[125] Unnikrishnan, Vishnu et al. “Entity-level stream classification: exploiting
entity similarity to label the future observations referring to an entity”.
In: International Journal of Data Science and Analytics 9.1 (2020), pp.
1–15.

This chapter introduces the first of three main conceptual parts investigated as the
three main research questions introduced in Section 1.2, namely:

RQ1 To what extent can entity-similarity be exploited when training personalised
models? To what extent does similarity in static data inform about similarity in
dynamic data?

In order to tackle this research question, it is necessary first to explore how per-
sonalised predictors can be trained, given the type of data described in Section 2.3.
This breaks down RQ1 into two parts - finding the best entities to learn from, and
combining their data effectively.

3.1. Motivation and comparison to related work
As explained in the introduction to this work, the idea of personalised predictors has
found increasing attention in recent times, thanks to increases in data availability
as well as higher interest in interpretable and explainable models [65]. Of the two
approaches toward personalisation described in the book, we follow the approach of
‘model-based personalisation’, where the model is explicitly parametrised with the
entity that it is being personalised to.

An early work that highlights the importance of personalisation in the context of
recommender systems comes from the industry, where [60] discusses the approach
followed by Amazon in developing personalised recommendation models. They liken
personalisation for Amazon with a physical store where each customer has their own
version with different shelves stocked with different products. Although they found
user-based methods intractable because of large dataset sizes and the performance
and computation disadvantage of clustering-based methods in grouping users, they
achieve personalisation by flipping the problem and performing the expensive offline
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computations on the item-item level instead. Throughout the work, there are multiple
references to the fact that data that is intractably large becomes more manageable
when focusing on reasonable subsets - for example, all items bought by a user is
often far smaller than all items in the dataset. The work in [60] shows that even
for very early work in personalisation, it was seen that relatively simple methods
applied locally on well represented knowledge can achieve competitive, and more
importantly for the industry, scalable performance. The authors have subsequently
expanded on their work in [117], where they explore refinements to handle the
fact that Amazon sells more than only books, as was the case in 2003. The work
highlights the importance of learning from the correct data and the fact that methods
that use all users’ data indiscriminately tend to get dominated by a few heavily
active users. The similarity measures they use, however, while acknowledged to be
important, are unfortunately tailored to the properties expected in an e-commerce
dataset. Another important point they highlight is the role of time in datasets where
different users join, interact with, and leave the systems at different points in time.
User preferences are also learnable to different levels from interactions over different
time ranges (for example, a book says more about the person for a longer time
frame than clothes). Further approaches have also investigated personalisation in the
context of recommender systems by explicitly modelling user behaviour as a linear
model of weighted past interactions[76], and as an averaged latent factor model of
item representations [46] respectively. While they are instructive in the fact that
similarity is complex, temporal, and difficult to capture for all users, the training
data (and more importantly, the size of the training data) prohibit using these works
as anything but inspiration.

Closer to our work is the data of [138], which works with web log sequences that have
fixed beginning and end conditions. The data are logs from the game “Wikispeedia”,
where users race to find the shortest path between a source and destination article,
using only in-page Wikipedia links. [138] proposes methods that deal with several
issues that are very relevant to our problem, like:

• capturing different levels of change

• dealing with each entity having its own clock

• the need to explicitly model whether all entities evolve according to the global
clock, or whether each entity is given their own start time

• whether the entities will follow the same path, or progress through the same
stages, and

• if yes, whether they will do so at the same rate

They also show that the personalised modelling approach can fit to data from very
different domains - for example, they include a medical event sequence dataset as
well as web log data (Wikispeedia). In their contextual personalisation approach,
the authors investigate time-evolving event sequences from multiple domains to
extract the evolution of temporal patterns in event sequences. They propose a
dynamic programming framework that discovers the ‘states’ that the sequences
travel through. The states are analogous to Hidden Markov Model (HMM) states,
but the proposed solution constrains the maximum likelihood estimate by limiting
the permitted transitions between the states - once a state Si has been reached,
subsequent observations from the sequence are limited to belong to state Si or higher
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(i.e., for all subsequent states Sj , j ≥ i). While this works for some medical datasets
(patients are unlikely to reach Stage-III cancer after they reach Stage-IV), it is not
our case since diseases like tinnitus have no known ‘states’ that a patient progresses
through, and the states are not ordered to exclude some states once another has
been reached.

The idea of personalisation has also been studied by Ng, et al. in [73], where the
authors refer to the problem of predicting for multiple entities as “heteroscedasticity”.
While the keyword does capture the central point that variances across individual
surgical procedures are different, we would like to call out that it does not sufficiently
distinguish against the case of the variance within the same entity/patient changing
over time. Ng, et al. investigate the case of estimating the surgery duration, where
they propose a way to overcome the drawback of neural networks in dealing with
heteroscedasticity by explicitly parametrising a gamma distribution and a Laplace
distribution. The use of the gamma distribution is motivated by the fact that its
long tail is restricted to positive values, and the Laplace distribution was found to
better fit the domain data.

Another study that is thematically closer is [74]. Ni, et. al. investigate the case of
making personalised recommendations for fitness tracker data, which is closer to
the mHeath scenario, although it is important to note that the availability of data
collected using a sensor is less noisy and more regular than EMAs where a patient
needs to report their subjective experience by filling out a questionnaire. This is also
reflected in the size of their dataset, which has >250,000 workouts, but the authors
also call out the fact that the amount of data available per user is low. Another
similarity is the use of the keywords ‘static’ and ‘temporal’ features, although the
authors use the keyword static feature as the exercise profile that the same user has
exhibited in his past workouts (i.e., the temporal profile one would expect given a
user and workout type, given that same user’s workout history.), along with some
user-specific attributes. The authors find that an LSTM augmented with static and
temporal features is able to better predict personalised recommendations to the user
based on forecasting the short-term temporal data (“take a 5 minute break to keep
your heart rate in the optimal range”).

Another approach to personalisation is the two-tier architecture followed in [6], which
is evaluated in the context of financial time series. In the first step, they identify
the other most relevant time series to learn from, and in the next, exploit the
information from those time series using a multivariate k-Nearest Neighbours (kNN)
regression. The discovery of the most relevant time series that can be exploited to
create predictions for the current time series is discovered through a correlation-based
analysis of the historical data of the past 9 years. The highest correlated stocks
from other companies are chosen by the kNN, and the predictions of the subsequent
kNN is trained on an interval-based transformation of the stock price. They show
although not all stocks are better predicted by the neighbourhood-augmented kNN,
the augmentation process improves the overall accuracy by 50-55% over a custom
error measure that computes the RMSE over N consecutive days (improvement is ∼
30% for MAPE). This workflow can work when the input time series are aligned and
when they are observed regularly over time, but these prerequisites are not met by
the datasets we aim to study in this work. The authors also exploit the additional
information about the S&P500 sector by limiting the kNN step to searching only
among other time series belonging to the same sector. This information might not
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always be available.

Numerous approaches attempt a similar approach to [6] to forecast electricity pricing
[122, 121, 62, 90]. kNN predictors are used to forecast electricity price development
by chopping the electricity demand data into 24-hour chunks, and computing the
similarity of the current day to the most similar historical data. Improvements
have been made by manually handling exceptional days like holidays with dummy
variables, including temperature, cloud cover, etc.

The term ‘subpopulation model’ has also been used to describe personalisation. Liu,
et al. investigate the training of ‘instance-specific’ subpopulation models [61]. They
acknowledge several of the difficulties in training patient-specific models, like the
difficulty of defining similarity based on ‘atemporal patient data’, and the difficulty of
relying on sequence/subsequence similarity measures when some patients may be too
short. Additionally, they also want to avoid the problem that a subpopulation gets so
large that patient-specific variability is lost. Their proposed solution, therefore, trains
a global model on all available data and then trains an additional patient-specific
model that is trained on the residual of the patient data as predicted by the global
model. It is expected that the ‘adaptation model’ trained on the residual captures
the patient-variability as defined against the whole population. Each of the models
is trained separately and the lowest error model is switched in / the predictions are
weighted based on the errors that each model makes for each patient.

Previous work in our group [10] has already investigated entity-level models (what
we call ‘personalised’, in this work), in the context of textual review data in the
“Tools and Home Improvement" category of the Amazon dataset. The degree to
which entity-centric models can predict future arriving labels based purely on the
timestamp and the product ID was investigated using a variety of models. It was
found that even very simplistic entity-specific models like those that predict the next
rating as a simple moving average over the past ratings can achieve an error of 1.3
units, while global models trained on text data from all products were only 11.4%
better. Quite apart from the fact that the predictors can be 11% worse without
reading the text, the simple moving average models took only 0.91% of the time to
execute compared to the global multinomial naive Bayes’ (0m:7s vs. 12m:48s). This
work serves as inspiration for our methods since it suggests that information from
entities and their neighbourhood can capture local trajectories, while global models
might fail because the large number of local trajectories overwhelm each other.

3.2. Personalised models on static data, and incorporating
expert knowledge into them

The following two sections describe our work in developing personalised predictors for
a classification scenario. Although the target attribute is numeric, we assume that
the data collection process involves collecting the full dynamic feature space for an
entity until time t, after which the target variable is no longer available. Intuitively,
this can be thought of as the case where patient data is collected regarding lifestyle,
diet, etc. while wearing a glucose monitor for a week, but you want to train a model
from that data to be able to predict the blood glucose level even after the glucose
monitor is no longer being used. It is expected that estimating the current value of
the target given the current values of the exogenous variables is an easier problem
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than forecasting the exogenous variable at a time t + δ when none of the variables
are known (you don’t have the glucose monitor data, but also do not have the data
regarding patient lifestyle).

3.2.1. RQ1.1: Augmenting data for personalised predictors

In this work, we tackle the main question of how a personalised predictor can be
trained in an environment where the dataset consists of multiple entities, each of
which is tracked over time. Additionally, each of the entities is described in a ‘static’
data space, where relatively unchanging properties of the entity are recorded. To
reiterate the overview already presented in Section 1.1 with an example, each entity
can be thought of as a patient or a user of the apps presented in Section 2.2. Each
entity is therefore described by relatively unchanging properties (like age, gender,
and severity of symptoms at registration time), as well as more dynamic properties
that are of prediction interest. For example, in the case of tinnitus patients, the daily
tinnitus distress is of prediction interest to physicians because the everyday/dynamic
presentation of diseases like tinnitus is not fully understood. Although our proposed
methods will work for many datasets that have panel-data-like properties, we consider
the feature that our methods produce not just a personalised model that is potentially
more accurate, but also the fact that each entity also gets a list of ‘neighbours’ as part
of the useful output. This additional output is expected to help better understand
the model, and to be particularly relevant in the case of medical datasets since it
can enable a physician to perform additional analyses on the properties shared by
those users that are in each others’ neighbourhoods.

In many cases, computing the similarity over the dynamic data is sufficient to discover
the best subset of data to learn a personalised model. However, this does not work
for all datasets, because datasets like mHealth data, and other datasets that reflect
human behaviour (esp. when the behaviour is the voluntary submission of data, like
reviewing a product) have some properties that make computing a similarity over
dynamic data impossible. The main reasons are that the data is irregularly sampled
at the entity level, the submitted data may contain missing values that complicate
the similarity computation, and also the fact that the ‘short’ entities are orders of
magnitude shorter than the ‘long’ entities (the shortest users may have just one day
of data, while the longest will have thousands). Although distance functions like
Dynamic Time Warping (DTW) would be able to compute a distance between very
short sequences and those that are much longer, we have already seen that many
works recommend summarising such sequences in order to handle the difference in
lengths [138].

Since the dynamic data cannot be used to compute the neighbourhood of an entity,
our proposed approach aims to discover the neighbourhood using the static data
Si. Once this neighbourhood defined over the static data has been computed, the
dynamic data of those users can be used to train the personalised model. Several
options for combining the dynamic data of the various neighbours are investigated:
The data can either be pooled to train a single model, or the personalised model
can be treated as an ensemble of entity-level models, where the predictions of each
neighbour’s model (trained on that neighbour’s data alone) are aggregated into the
final prediction. Since each entity has its own start time, the effect of preserving the
timestamps v/s not preserving the timestamp needs to be investigated.

27



3. Discovering entity neighbourhoods for personalised predictors using static data

Formalisation

As has been discussed in Section 2.3, this work assumes a set of entities E in the
dataset, where for each ei ∈ E, we have data in two modalities - static data Si and
dynamic data Di.

The static data is a dimensional vector Si = s1
i . . . s

|Si|
i , and the dynamic data consists

of a sequence of timestamped observations Di = {o1
i . . . oTi

i }. Each entity ei has an
‘entity length’ equal to the number of observations in the dynamic data Di, which
in the above case would be |Di| = Ti. Each observation in the dynamic data of
entity ei has a timestamp associated with its time of arrival in the sequence Di. i.e.,
∀on

i ,∈ Di, n = 1 . . . Ti, the function timestamp(on
i ) returns the time at which the

observation arrived.

As described in Section 3.2, the goal of the supervised learning problem is to learn a
model that is able to label an observation on

i , arriving nth in a sequence given the
past observations until timestamp(on

i ). This is analogous to a situation where an
oracle is available to label a stream until the n− 1th instance. We focus on methods
for numerical labels, and focus on predicting the labels of all arriving observations
after the cutoff where the labels become unavailable.

Discovering the neighbourhood by ‘borrowing’ the similarity from static data:
The first step towards the training of the personalised model is to discover the
neighbourhood for each entity ei. In our work, this is accomplished through kNN
algorithm that operates on the static data of the entity, i.e, the vector Si. The
output of the kNN is an ordered set kNN(ei) = kNN(Si,D) = n1

i . . . nk
i , where

each nj
i ∈ E, j ̸= i, and similarity(Si, Sj) ≥ similarity(Si, Sk),∀k > j. In our work,

we compute kNN using the Euclidean distance (the inverse of which is used as the
similarity).

Training the personalised model: Once the neighbours of an entity have been
identified, the next step is to train the personalised model. Since the output of
kNN(ei) is a set of neighbours n1

i . . . nk
i , the dynamic data of the entity Di is

combined with the dynamic data of each of the neighbours Dn, ∀ni ∈ kNN(ei).

We investigate two ways to combine the data - augmenting the data of similar entities,
and augmenting the models of similar entities to create personalised predictors. Given
the fact that entity-level models are limited to the amount of data available per
entity, we stick to simple models that are not prone to overfitting given limited data.
Therefore, the models are linear regressors trained separately for each entity.

• Model augmentation: The model augmentation approach trains a model
mi for each entity ei ∈ E trained on the dynamic data Di. Given that the
models are linear regressors, the slope and intercept parameters are averaged
to create the final ‘augmented model’ that has the average of the relevant
entity-level tendencies for entities in kNN(ei). Intuitively, this is analogous to
saying “The tendency of the entity-level model is the average of the tendencies
of its neighbours”. The algorithm is presented in Algorithm 3.1.

• Data augmentation: Since it is possible that many entities have too little
data to train reliable models, we also follow another approach to train entity-
level models. In the data augmentation approach, the dynamic data of entity
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Algorithm 3.1 Train an entity-centric model for entity e using model augmentation
1: procedure get_averaged_model(all_models)
2: intercept← 0
3: slope← 0
4: for model ∈ all_models do
5: intercept← intercept + model[intercept]
6: slope← slope + model[slope]
7: intercept← intercept/(k + 1) ▷ k neighbours + 1 entity model
8: slope← slope/(k + 1)
9: return linear_model(intercept, slope) ▷ Create model object with params

10: procedure get_neighbourhood(e, D, k)
11: static_data← e[“static_data”]
12: neighbours← get_kNN(static_data, D)
13: return neighbours

14: procedure train_personalised_model(e, target)
15: dynamic_data← e[“dynamic_data”]
16: entity_model← train_regressor(dynamic_data, target)
17: return entity_model

Require: Entity e, dataset D, target, k (neighbourhood size)
18: all_models← dict() ▷ initialise empty dictionary of models
19: neighbours← GET_NEIGHBOURHOOD(e, D, k)
20: all_models[e]← TRAIN_PERSONALISED_MODEL(e, target)
21: for n ∈ neighbours do
22: nb_model← TRAIN_PERSONALISED_MODEL(n, target)
23: all_models[n]← nb_model

24: personalised_entity_model← GET_AV ERAGED_MODEL(all_models)
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Di as well as the dynamic data of all entities Dni , ∀ni ∈ kNN(ei) is combined
to create a single personalised model mi. An algorithm for the procedure is
presented in Algorithm 3.2

Algorithm 3.2 Train an entity-centric model for entity e using data augmentation
1: procedure get_neighbourhood(e, D, k)
2: static_data← e[“static_data”]
3: neighbours← get_kNN(static_data, D)
4: return neighbours

5: procedure get_combined_data(entity_set)
6: all_data = list()
7: for entity ∈ entity_set do
8: entity_dynamic_data← entity[“dynamic_data′′]
9: all_data.append(entity_dynamic_data)

10: return all_data

Require: Entity e, dataset D, target, k (neighbourhood size)
11: all_models← dict() ▷ initialise empty dictionary of models
12: neighbours← GET_NEIGHBOURHOOD(e, D, k)
13: combined_data← GET_COMBINED_DATA({e} ∪ neibhbours)
14: personalised_models[e]← train_regressor(combined_data, target)

Dealing with time: kNN(ei) delivers a list of entities ni that are similar to ei,
however, each entity in the set ek ∈ ei ∪ kNN(ei) has observations in Dk that have
their own timestamps. There are two options for dealing with time. One is to use the
timestamps as-is, and allow that some entity-level models are informed by the others
whose first observations might be in the future. The other method aligns each entity
to its own ‘local clock’ with local_timestamp(ot

i) = timestamp(ot
i)− timestamp(o1

i ),
where the first observation of each entity arrives at time 0, and all other timestamps
are calculated relative to it.

Choosing the neighbourhood size: The main motivation of our work in training
personalised models is that the training data for the model is chosen to be most
relevant for each entity in the dataset. The optimal neighbourhood size is expected
to be dataset-dependent and needs to be discovered through hyperparameter tuning.
Note that a trade-off exists that very small neighbourhoods are likely to yield
too little data for training reliable models and that as the neighbourhood size k
increases, the model gets less and less personalised. It is expected that a dataset
where personalisation is beneficial will show an error curve that is U-shaped, with a
minimum at the optimal neighbourhood size. It is also important to remember that
while optimising for neighbourhood size, it is assumed that the similarity function
used by the kNN is relying on relevant information only. The inclusion of misleading
or noise features can artificially inflate/deflate similarities and threaten the result.
Careful evaluation is therefore necessary, because of the high number of models
trained.
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3.2.2. RQ1.2: Incorporating expert knowledge into the personalised
modeling process

As explained in Section 3.2.1, our personalised modelling process produces two
outputs - one is a personalised model that is potentially more accurate, and the
other is the neighbourhood of an entity that helped create those more accurate
predictions. Assuming that the neighbourhood size is tuned to best fit the dataset,
the neighbourhoods can serve as a starting point for further analyses, especially for
a physician. For example, various static properties shared by entities that are in
each others’ neighbourhoods can be studied, and further analyses can also attempt
to connect them to the dynamic data that details the presentation of their disease.
This is akin to developing a ‘dynamic’ phenotype of the disease, which can be very
useful for diseases with a psychological component because symptoms can vary
across patients at very different rates. If certain static properties are identified to
be associated with ‘unhealthy’ patterns in the EMA data, those patients can be
prioritised for preventive care. Since the only expert knowledge that we have access
to was for the EMA datasets referring to Tinnitus Symptoms, the methods in this
section are developed primarily with the EMA datasets in mind. However, the main
concept is sufficiently abstract that it can be applied to any dataset where information
like pairwise constraints (used in semi-supervised clustering) is available[91].

The idea of incorporating expert knowledge into clustering has already been thor-
oughly explored by numerous works [91, 110, 132], which discuss the use of must-link
and cannot-link constraints to improve clustering. Other ideas of constraining the
k-Means clustering by enforcing a minimum size for clusters, and also the maximum
distance from cluster centre are presented in [13] and [7]. As explained in the survey
[110], the main ideas for using constraints in clustering come in the form of must-
and cannot- link constraints, distance constraints, and constraints that combine the
two concepts.

The idea of constraining kNN classifiers is also detailed in [99, 142] and numerous
other works, with the main themes being either reducing the dimensionality of the
kNN space [142] or limiting the neighbourhood search in a way that prunes distant
objects, for e.g., by performing an initial clustering and then limiting the kNN search
process to objects within the nearest cluster to the query instance[22]. Apart from
classification accuracy, the pruning is also motivated by the fact that restricting the
search of the lazy kNN classifier to a smaller set of instances comes with performance
improvements, especially for large datasets.

We have established above that the kNN algorithm can be constrained so that two
entities can be excluded from each others neighbourhoods based on expert knowledge.
However, since we apply the kNN on the static data as a way to select the best
subset of dynamic data D for training the personalised model, it is still necessary
to show that static data properties can reflect the development in the dynamic /
EMA data. Fortunately, the idea that EMAs can reflect the disease dynamics is well
studied, and its benefits to better understanding and management of psychological
illnesses is obvious. In the case of suicidal ideation, it is said in [12] that direct
access to the mood of the patient through EMAs eliminates the problem of having
only indirect information about the patient’s daily life, and the variability of the
symptoms everday. Remote monitoring through EMAs adds the further benefit that
many patients that are not admitted become accessible thanks to technology. A pilot
study found that patients who filled an EMA on suicidal ideation may benefit from
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timely mHealth interventions [133]. [12] show that a GMM clustering of patients
according to the variability in their EMAs yields clusters that align with six clinical
domains. A meta-analysis of patient EMA data related to chronic pain also showed
[108] that various ‘functioning measures’ of pain can be estimated from features
derived from EMA data, including patient variability.

Symptom variability would be almost impossible to study without EMAs, since it
would need hospital admission as well as person power to collect data regarding symp-
toms multiple times per day. Results that connect assessments typically conducted in
a hospital with those that can be measured by EMAs (like subdomains, functioning
measures [12, 108]) suggest that expert knowledge about patient presentation in the
hospital data can be used to find groups in the EMA data generated from patients
who belong together, and exclude those that do not.

Formalisation

Since we do not use the kNN in our work as a classification algorithm, we draw
inspiration the must-not link constraints from clustering and apply them so that
our neighbourhood search is restricted to return only those entities that are allowed
to be in each others’ neighbourhoods. This means the kNN does not necessarily
return the k closest entities as defined by the static data, but rather the k closest
entities as per the static data that are not excluded from the current entity’s
neighbourhood by expert knowledge. Intuitively speaking, this can be thought of
as limiting the neighbourhoods of diabetic patients to type 1 and type 2 patients
exclusively, regardless of the degree to which other features are shared. This would
mean that two patients who are dissimilar in the diabetes type but identical in
every other way would still not be placed within each others’ kNN neighbourhoods.
The motivation behind this decision is that when expert knowledge exists that can
inform the predictor that two entities are not expected to follow the same patterns
in the dynamic data, then they are to be excluded from each others’ neighbourhoods
regardless of the degree to which other properties are shared. Therefore, we propose
in this work that we ‘prune’ the kNN-based subset of neighbours 1 . . . k such that a
set of do-not-link constraints C = {ci,j}, where ei, ej ∈ E and i ̸= j are not violated.
A constraint ci,j implies that two entities ei and ej are now allowed to be in each
others’ neighbourhoods. pruned_kNN(ei) = {ni

1 . . . ni
k} where ni

j ∈ E and ci,j ̸∈ C.

Incorporating expert knowledge about anomalous tinnitus patients into
neighbourhood

Our work in [125] is aimed at exploiting the expert knowledge to restrict the neigh-
bourhood discovery process to patients who have clinically consistent presentation.
We focus on the case where a medical expert is able to provide information that
is similar to a must-not-link constraint as commonly defined in semi-supervised
clustering methods.

The main inspiration for this work is the fact that there is evidence that while
tinnitus loudness and distress are correlated for the large part, there is a subset
of ‘anomalous’ tinnitus patients for whom the correlation between loudness and
distress is not consistent with the mean population [36]. About a third of the tinnitus
patients with very high loudness reported only mild to moderate tinnitus distress, in
spite of similar age, gender, or duration of tinnitus. However, some comorbidities
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are associated with a higher degree of distress, like hyperacusis, hearing loss, vertigo,
etc. Patients with lower self-reported depression were found to have lower levels of
distress in spite of high loudness. The fact that there is a complex and multifaceted
relationship between tinnitus loudness and distress that might result in patients with
high distress in spite of low loudness and vice versa is suggestive of the fact that
these patients have an incongruent presentation and need separate assessment [36].

We incorporate this expert knowledge into our system by modifying the kNN algorithm
so that the set of users e ∈ E are split into G groups E = {E1 . . . EG}, where
g=G⋃
g=1

Eg = E, and Ex ∩ Ey = ∅, for all x, y ∈ {1, . . . G}, and x ̸= y.

In order to find the G groups, we use the knowledge that there are patients who
are anomalous in their tinnitus loudness and distress. To create the groups, a data
driven partition of the tinnitus loudness and distress are created by clustering the
self-reported loudness and distress separately. If there are x clusters for loudness
and y clusters for distress, the patient can belong to one of x ∗ y clusters - i.e.,
E = {E1 . . . Ex∗y}

The rest of the framework for building personalised models is essentially unchanged
from that presented in 3.2.1, except for the fact that the kNN is now applied separately
within groups. The algorithm for training the personalised in-group model is shown
in Algorithm 3.3.

3.3. Experiments
We consider 3 datasets from three different domains - one with products receiving
reviews in e-commerce, one from the mHealth domain of patients using TYT (see
Section 2.2) to answer EMA questionnaires over time, and a third with sensors from
a weather station tracked over time. We first exclude all entities that are too short
for learning (exact numbers below), and split the first 60% of each remaining entity’s
data into the training set, and the test into the test.

Air Quality Index - Carbon monoxide daily summary data from the Environmental
Protection Agency The AQI (Air Quality Index) dataset is made publicly available
by the Environmental Protection Agency, and the dataset used in this study is the
yearly carbon monoxide summaries, which contain the daily and the yearly averages
of the carbon monoxide levels at multiple weather stations across the US. As the
time of this writing, the official dataset web page has changed and only allows for
downloading data after filtering for location and sensor type, but a larger version
of the dataset can be found on kaggle at https://www.kaggle.com/datasets/epa/
carbon-monoxide/code1. From the entire dataset, we subset the data from 1990
to 2017. Although not part of the modelling process, the data of 1989 is used to
create aggregations that serve as ‘static features’, with the motivation that long-term
averages capture properties that are more reflective of long term weather at the
location.

In addition to CO levels, the dataset also contains other metrics like PM2.5, PM10,
etc., while we use only the daily CO levels and the additional variables ‘Air Qual-

1Accessed on 14.01.2024
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Algorithm 3.3 Train an entity-centric model for entity e using data augmentation
1: procedure get_groups(E, n_loudness_groups, n_distress_groups)
2: loudness_groups = kMeans(E[“static_data”][“loudness”], n_loudness_clusters)
3: distress_groups = kMeans(E[“static_data”][“distress”], n_distress_clusters)
4: Eg = dict() ▷ Eg stores a mapping from groups to entities within
5: for e ∈ E do
6: eg ← concatenate(loudness_group[e], "_", distress_groups[e])
7: groups_dict[e] ← eg

8: return groups_dict
9: procedure get_pruned_neighbourhood(e, Eg, k)

10: static_data← e[“static_data”]
11: neighbours← get_kNN(static_data, Eg)
12: return neighbours

13: procedure get_combined_data(entity_set)
14: all_data = list()
15: for entity ∈ entity_set do
16: entity_dynamic_data← entity[“dynamic_data′′]
17: all_data.append(entity_dynamic_data)
18: return all_data

19: procedure get_expert_pruned_personalised_model(Entity e, entity
group Ge, target, k)

20: neighbours← GET_PRUNED_NEIGHBOURHOOD(e, Ge, k)
21: combined_data← GET_COMBINED_DATA({e} ∪ neibhbours)
22: personalised_model← train_regressor(combined_data, target)
23: return personalised_model

Require: Set of entities E, target, k, n_loudness_groups, n_distress_groups
24: personalised_models← dict() ▷ initialise empty dictionary of models
25: Eg ← GET_GROUPS(E, n_loudness_groups, n_distress_groups)
26: for e ∈ E do
27: e_model← GET_EXPERT_PRUNED_PERSONALISED_MODEL(e, Eg[e], k)
28: personalised_models[e]← e_model

ity Index’ and ‘Max_Observed_Daily_CO_Value’ as independent variables that
predict the target. The dataset consists of 200 entities (weather stations) with
577482 observations for a period starting 1990 and ending 2017. The target vari-
able ‘mean_CO_value’ is measured in parts per million (ppm) as a daily average,
and has the following properties: mean = 0.742, min = 0.004, max = 8.461, and
standard_deviation = 0.519.

Attribute space for static features S: The most obvious choice for the ‘static’ properties
of the weather stations are their location available under the latitude and longitude.
However, little other information was available that is ‘fixed’. In order to extract
more static properties, we focus instead of extracting features about the weather
station that reflect the long-term trends - towards this purpose, we use the yearly
average CO, the standard deviation in CO measurements, the 1st and 2nd max
values encountered, as well as the 50th percentile and the 90th percentile of CO
measurements. These yearly aggregations are all performed on the data from 1989
(i.e., one year prior to the start of the dynamic data), to prevent data leakage
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regarding the target in the first year of the dataset.

Attribute space for the dynamic data D: For both the daily and yearly AQI datasets,
we removed the observations related to anything other than the carbon monoxide
levels (SO2, NO, NO2, and several other pollutants), since not all weather stations
were equipped with sensors for each pollutant in the dataset. For the CO values, it was
seen that measurements sometimes existed as averages computed over several time
periods (2 hours, 4 hours, 8 hours, etc.). In each case, we kept the daily CO averages
computed over the longest time periods. The dynamic attribute space, therefore,
consists of 3 variables, namely the timestamp, the AQI, and the max_CO_value.

Figure 3.1 shows the number of entities (vertical axis) for a given length in the
dynamic data. While there is an order of magnitude difference in the lengths of the
short to the lengths of the longest entities, the AQI dataset has the lowest skew in
the number of long entities v/s short ones.

Figure 3.1.: AQI Dataset: #Entities (Y-Axis) versus the length of an entity (X-Axis)

mHealth Dataset: Track Your Tinnitus EMA data The mHealth data used in this
study comes from data collected by the Track Your Tinnitus mobile application. As
explained in Section 2.2, the users who download and register the app first answer
some registration questionnaires (which constitute their ‘static’ data), and then
answer the EMA questionnaires when prompted by the application at randomly set
intervals according to user preferences. The EMA questionnaire has 8 variables, of
which the question concerning tinnitus distress is used as the target variable (For all
questions, please see Table 2.2, Section 2.2).

Attribute space for static features S: The attribute space for kNN computation
was done on the registration questionnaires after applying the StandardScaler from
scikit-learn [81]. The scaling ensures that questions with different ranges do not affect
the distance computation. Since the number of features is large, we also attempted
to find the best variables to learn from using a genetic algorithm to find the best
features.

Attribute space for dynamic features D: All questions except the target and the last
question (“Do you feel unstable at the moment”) were used in the dynamic feature
space (see Table 2.2). The feature space consisted of 6 EMA variables, which were
used to predict the target (tinnitus distress).

All users/entities with less than 5 days of data were removed from the dataset, leaving
a total of 516 users. Figure 3.2 shows the number of users (Y-axis) who have a given
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length (X-axis). It can be seen that the number of users who contribute a certain
amount of data reduces strongly with increasing length.

Figure 3.2.: mHealth Dataset: #Entities (Y-Axis) versus the length of an entity
(X-Axis)

Amazon: Tools and Home Improvement This dataset is a subset of the dataset
introduced in [66], focusing only on the product reviews for the category “Tools &
Home Improvement". The full dataset was created by crawling review and Q&A data
for 8 categories on Amazon. In this work, only the The Tools & Home Improvement
category reviews are used (without the Q&A). The reviews contain a star rating (1-5
stars), review text, and the timestamp for when the review was submitted.

For the Amazon dataset, all products with less than 2 reviews were removed. It can
be seen in Figure 3.3 that the distribution of the number of entities (Y-axis) of a given
length (X-axis) is much more heavily skewed than in the other two datasets, with
the 25th, 50th and 100th percentile of entity lengths being 2, 4 and 4770 respectively.
There are 139508 entities (products) in the dataset after filtering, with a mean length
per entity of 12.9. It is to be noted, however, that the reviews are not evenly spaced
throughout time. Many reviews are known to cluster towards the last timestamps,
with also a known trend towards higher star ratings [10].

Figure 3.3.: Amazon Dataset: #Entities (Y-Axis) versus the length of an entity
(X-Axis)

Attribute space for static features S: Since all reviews are technically in the ‘dynamic’
space, the only possible solution to deriving static data would be to have product
descriptions. However, since the dataset contained no product information, we use
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a word embedding model on the text data with the aim to capture ‘products that
are described similarly’. More concretely, we build a paragraph vector model as
described in [56]. The paragraph vector is very well suited to our problem because
it creates fixed-length representations of the paragraphs in the embedded space
from the variable-length sentences. We adapt this method by setting the product
as the paragraph tag, and the concatenated reviews received by the product as the
sentences. Since the paragraph and the text are both embedded into the same space,
the sparsity in the number of reviews some products received does not affect the
quality of the entity (product) embedding. Used this way, the paragraph vector
presents a better performing alternative to bag-of-words models, while the idea of
using the product IDs themselves as the paragraph token allows us to capitalise on
learned representations like word2vec. The kNN of the paragraph token are therefore
used as the way to retrieve similar entities.

Attribute Space for dynamic features D: We follow an approach similar to [10], where
we predict the star rating of the review given nothing other than the timestamp.
While this is unrealistic, the reader is encouraged to remember that the goal of this
work is in assessing how much predictability is lent to the model from knowing the
entity.

Is it the neighbour, or just the increased data?: A kRE baseline The goal of our
method is to study the predictive power gained through exploiting entity similarity.
However, the model is tricky to evaluate, because the addition of an entity in the
neighbourhood (especially when using data augmentation) adds not just information
regarding the entity, but also increases the amount of data available for learning. This
means that additional experiments are necessary to know whether the neighbourhood
or the additional data is what helps improve the model. Towards this end, we propose
a k-Random Entities (kRE) baseline.

The kRE baseline is designed to test the degree to which the performance of the model
improves (or, to be more accurate, changes) because a particular entity was chosen
as a neighbour. If the entity that was chosen was indeed the best entity to learn
from, then the error metrics would improve to a greater degree than if another entity
was chosen. Since the amount of training data available increases along with the
number of entities in the neighbourhood, the kRE baseline chooses the same number
of entities as the kNN model but chooses the entities randomly without replacement.
Running the kRE multiple times and averaging the performance would give a rough
idea about how much information is added to the model without considering entity
similarity. If choosing similar entities is indeed beneficial, then the performance of a
kNN model should exceed that of the kRE model given a fixed k.

3.4. Results and Discussion
This section presents the results for the experiments listed above. We start with the
results towards training a personalised predictor [123], where we investigate data vs.
model augmentation, local entity clocks vs. global clocks, and performance against
our proposed kRE baseline. Finally, we look at the change in predictor performance
as we move temporally away from the training data. We close the section with
the results from [125], where we investigate the degree to which the neighbourhood
discovery process can be informed by expert intuition.
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3.4.1. Training personalised models:

Data vs. Model augmentation: As described in Section 3.2.1, the data vs. model
augmentation experiment compares the personalised model trained on the pooled
data from all entities against the quality of predictions resulting from a personalised
model that has the averages out the parameters of the individual models that are
trained on the data of each of the entity’s neighbours separately.

Figures 3.4, 3.5, and 3.6 show the results for the model-augmented and data-
augmented regressors for the Amazon, AQI, and mHealth datasets respectively.
The charts show the average error of all the entity-level models at predicting the
holdout data of the entity.

For the Amazon and the AQI datasets, it can be seen that the model augmentation
performs clearly worse (the green lines are consistently above the blue), while for the
AQI dataset, the deleterious effect of the model augmentation seems to be lessened
by averaging the model parameters over larger neighbourhoods. It is to be noted,
though, that the charts show neighbourhoods of size up to 50, which is 25% of the
AQI dataset, and only 0.036% of the Amazon dataset. Larger neighbourhoods were
not considered for Amazon partially for runtime reasons, but also because the goal
of the experiment is to discover the best way to train personalised predictors, and
the mHealth use case is not fully reflected in the properties of the Amazon dataset,
where we use only the timestamp of a rating to predict the future observations.

Additionally, the fact that model augmentation produces an upward trending error
for small neighbourhood sizes is possible because both the AQI and Amazon data
have strong dataset-level tendencies, where all Amazon reviews get biased strongly
towards 5 stars at the later timestamps in the data, while the air quality has a general
trend towards improvement. It could be that selecting for larger neighbourhoods is
informing the model about the future trends when using model augmentation, but
averaging entity-level slopes is still too noisy.

Interestingly, the two methods perform quite similarly for the mHealth dataset,
where we notice another result that deviates from the AQI and Amazon datasets. It
can be seen that for the mHealth case, small neighbourhoods seem to improve the
predictions of the personalised model, and an increase in the neighbourhood size
affects the predictive performance of the model negatively. This is indeed suggestive
that the main idea of personalisation has merits for EMA data. The small difference
between data and model-augmentation, unlike in the other two datasets, could be
because there is no dataset-level tendency to high or low values over time. However,
it cannot yet be claimed that the neighbourhood is correct, because the quality of
the neighbourhood is tested against the kRE baseline.

Global vs. local clocks: The global vs. local clocks experiment compares the
performance of the personalised model where all observation timestamps were used
as-is against the model where the data of each entity is assumed to start at its own
‘0’. This experiment will show larger differences in data-augmented settings because
the different entities in a neighbourhood can have very different start times.

Figures 3.7 and 3.8 show the results for the model augmented and data-augmented
regressors for the Amazon, and mHealth datasets respectively. This experiment
is not applicable to the AQI dataset, since almost all entities in that dataset are
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Figure 3.4.: Amazon Dataset: RMSEs (Y-Axis) for models trained with data aug-
mentation (green) v/s model augmentation (blue) for various sizes of
the neighbourhood k (X-axis)

Figure 3.5.: AQI Dataset: RMSEs (Y-Axis) for models trained with data augmen-
tation (green) v/s model augmentation (blue) for various sizes of the
neighbourhood k (X-axis)

Figure 3.6.: mHealth Dataset: RMSEs (Y-Axis) for models trained with data aug-
mentation (green) v/s model augmentation (blue) for various sizes of
the neighbourhood k (X-axis)
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already aligned (i.e., they start in 1990). The difference in lengths is rather due to
the difference in the last observation date.

The results for the Amazon and mHealth datasets show that aligning the entities
to start at 0 has a negative effect on performance. It can be seen that the Amazon
dataset is more negatively affected by the performance hit - this is possibly because
a greater portion of the entities are very short, slopes are much steeper when the
entities are aligned to 0. Short entities that are time aligned at 0 (with observations
temporally adjacent) would have steeper slopes than a regressor trained on the same
observations temporally farther apart. Using a global clock that is shared by all
entities would more likely show this result, especially when more entities tend to
‘begin’ late in the dataset (i.e., the first observation of most entities is late in the
‘global clock’).

Figure 3.7.: Amazon Dataset: RMSEs (Y-Axis) for personalised models trained using
global or local entity-level clocks for increasing sizes of the neighbourhood
k (X-axis)

Figure 3.8.: mHealth Dataset: RMSEs (Y-Axis) for personalised models trained using
global or local entity-level clocks for increasing sizes of the neighbourhood
k (X-axis)

Comparing to the kRE baseline: The baseline model compares the performance of
a kNN-based model against that of another model that selects the same number of
users, but selects them randomly. If the improved performance is from the chosen
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Figure 3.9.: Amazon Dataset: RMSEs (Y-Axis) for kNN (blue) vs. kRE models
(dotted red) trained with data augmentation for various sizes of the
neighbourhood k (X-axis)

Figure 3.10.: AQI Dataset: RMSEs (Y-Axis) for kNN (blue) vs. kRE models (dotted
red) trained with data augmentation for various sizes of the neighbour-
hood k (X-axis)

neighbours as opposed to simply the increased training data size, the personalised
kNN model is expected to outperform the kRE baseline.

The previous results show that the non-time-aligned and data-augmented regressors
outperform the other configurations, thus, the best-performing model was tested
against the kRE baseline. The errors for the randomly selected entities are done
over 30 runs for each neighbourhood size k for the AQI and the mHealth dataset.
However, due to the size of the Amazon dataset and the long time required for
computation, the results for the kRE are baseline are reported over 5 runs. However,
we expect that this does not seriously challenge the validity of the results, since the
mean standard deviations for the errors at the entity-level were 0.00046.

Figures 3.9, 3.10, and 3.11 show the results for the performance achieved by the
data augmented kNN personalised models vs. the kRE baseline for neighbourhood
sizes ranging from k = 0 (model trained with data of entity only) to k = 25, which
includes the data from the 25 nearest neighbours along with the data of the entity for
which the personalised model is being trained. Lower numbers on the y-axis indicate
models with better performance.

The results on the Amazon dataset are surprising (Figure 3.9), since the error has a
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Figure 3.11.: mHealth Dataset: RMSEs (Y-Axis) for kNN (blue) vs. kRE models
(dotted red) trained with data augmentation for various sizes of the
neighbourhood k (X-axis)

sharp drop from using the entity’s data only, to using the data of very few neighbours.
However, it is seen that as the number of neighbours increases, there is an increasing
trend in the error achieved by the kRE model. This is likely due to the fact that
there are a very large number of very short entities (lengths as low as 2), making
the kRE more likely to sample a short entity randomly. The addition of these very
small entities is possibly introducing too much noise in the system. Although the
performance of the kRE model is initially lower (and then trending upwards), the
kNN and kRE models are already approaching each other’s errors by the k = 25.
This suggests that the kNN is indeed picking ‘good’ neighbours, while the kRE isn’t,
but the fact that the kNN errors are higher also suggests that our method of finding
similar entities is not optimal. Exploring the best embedding for the text, however, is
not within the scope of our work. Since evaluating embeddings is acknowledged to be
difficult [72] and since choosing the best embedding model is not a core component
of our workflow, our experiments only assessed the quality of the embeddings by
running manual checks on whether the kNN of some entities were all from similar
categories. A thorough evaluation of this component would surely be critical if our
method is to be used for such a task, however, we leave that for the future, since the
main goal of this task was to discover how personalised models can be trained, and
to what degree personalised models benefit from concentrating only on data relevant
to an entity.

The results for the mHealth dataset (Figure 3.11) are less encouraging. While the
data augmented kNN model shows an interesting trend that small neighbourhoods do
indeed improve performance, the performance of the kNN model is closely matched
by the kRE model, suggesting a problem with the similarity function. The fact that
choosing the neighbours ‘randomly’ vs. based on the static data must mean either
that the static data has no role in discovering useful neighbours, or that the feature
space does not adequately capture the underlying (possibly non-linear) similarity
between patients. However, the results towards of main goal of creating personalised
predictors are still encouraging, since it can be seen that small neighbourhoods do
indeed help the model achieve better performance, and the RMSE rises again with
larger k. This serves as a promising starting point towards investigating better
definitions of similarity.

The results for the AQI dataset (Figure 3.10) do indeed show that the personalised

42



3.4. Results and Discussion

models benefit from the kNN over the kRE. It can be seen, however, that the
improvements from increasing neighbourhood size flatten as k increases. Since all
entities begin at the beginning and the dataset has a general tendency towards better
values, it could be that the incremental benefit from adding entities diminishes after
a certain limit. Extensions can explore whether more complex models would be able
to extract nonlinear patterns from the added neighbours.

Predictions in the near and far future: We take a deeper look at the quality of the
predictions from the kNN models by investigating the development in the quality
of the predictions as one steps further into the future of the entity (and therefore,
temporally more distant than the training data). We do this by comparing the
predictive quality of the personalised models for the first N% of the data vs. the last
N%. We tested for N=10%, N=20% and N=50% of the test data (which is itself 40%
of the total data). Since the trends are similar for all values of N, we report on the
10% case. Predictably, the 50% case shows broadly the same trend but compresses
the variability errors between first-N and last-N to be closer to each other.

If the personalised models are indeed able to exploit entity-level dynamics at the
observation level, then there will be a systematic bias in the error towards one
direction of the mean. If this is the case, it suggests that the kNN models that are
learned at the entity level go ‘out of date’, and need to be updated. The degree to
which the predictions diverge from the overall mean could reveal the frequency of
retraining required to maintain acceptable model quality over time.

If, on the other hand, the entities are ‘stable’ and not experiencing any change, then
the models trained on the training data do not need to be adjusted/retrained to
incorporate new data, and they can be far into the future. In this case, we would
expect that the near and far future predictions would have similar means to the
overall prediction error with no systematic tendency to be above/below the means of
the data-augmented kNN model.

Figures 3.12, 3.13, and 3.14 show the results for the performance achieved by the
data-augmented kNN personalised models for the first 10% v/s the last 10% of the
test data relative to the averages already reported. Lower numbers on the y-axis
indicate models with better performance. The first 10% of the test data is the 10%
of the test data observations that are temporally ‘earliest’.

The Amazon dataset shows a pattern (Figure 3.12) consistent for both the non-
medical datasets - that the predictions in the near future have higher errors than
the predictions in the far future. While this seems interesting and anomalous, it is
probably because of the already reported strong tendency in the dataset towards
higher rating values in the future combined with the fact that many entities are
concentrated towards the end [10]. As k increases, the difference between the near-
and far- future predictions decreases, with both of them approaching the kNN model’s
RMSE.

The AQI dataset also shows the same tendency (Figure 3.13) as the Amazon dataset.
Unlike the Amazon dataset, though, the near- and far- prediction RMSEs cross at
very small neighbourhoods, with the near-future prediction errors increasing and
then stabilising with an increasing k. For the far future, however, the errors continue
to trend downward. Unlike the Amazon dataset, the gap between the near- and far-
future predictions diverge from the error of the data-augmented kNN model. Again,
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Figure 3.12.: Amazon Dataset: RMSEs (Y-Axis) for kNN (dotted black), with mean
RMSE for first 10% of the dataset (green) vs. the last 10% (red) of the
entity data. Values are shown for different sizes of neighbourhood k
(X-Axis)

Figure 3.13.: AQI Dataset: RMSEs (Y-Axis) for kNN (dotted black), with mean
RMSE for first 10% of the dataset (green) vs. the last 10% (red) of the
entity data. Values are shown for different sizes of neighbourhood k
(X-Axis)

for the AQI dataset, we suspect that the increased predictability of the observations
in the far future is due to the existence of a clear trend in the dataset towards lower
CO values that is also reflected in most entities.

In the mHealth dataset, though, we see that predictions in the near future have a
lower error than predictions in the far future (Figure 3.14). This suggests that the
patients in the dataset show a high degree of variability and that learning their disease
patterns at the patient level is beneficial in predicting their near-term development.
Since our goal is to model personalised disease dynamics, this is an encouraging result
because it combines well with the output of the data-augmented kNN performance.

3.4.2. Incorporating expert knowledge into personalised models:

Extensions to the kNN algorithm have already explored the possibility that not
all of the neighbours of an instance will be equally useful, or that some would be
misleading [48]. This idea of finding and excluding ‘false’ neighbours has been used in
[63], where the ‘neighbouring’ days with divergent next-day-demand trajectories are
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Figure 3.14.: mHealth Dataset: RMSEs (Y-Axis) for kNN (dotted black), with mean
RMSE for first 10% of the dataset (green) vs. the last 10% (red) of the
entity data. Values are shown for different sizes of neighbourhood k
(X-Axis)

removed from each other’s neighbourhoods to improve electricity price forecasts. We
explore the degree to which the neighbourhood discovery process can be aligned with
expert knowledge, and how this information can be integrated into the personalised
modelling process. The results in this section are derived from [125].

The expert knowledge available to us for the mHealth dataset is about the ‘anomalous’
sufferers of tinnitus. The anomalous tinnitus patients have discordant relationships
between their tinnitus loudness and distress. Some patients have abnormally high
distress even with lower tinnitus loudness, and others have low distress in spite of very
high tinnitus volume. We wish to integrate this information into the personalised
modelling process using a data-driven partitioning of the users into groups as described
below.

Data-driven discovery of anomalous groups in tinnitus: In order to separate the
patients into groups of ‘concordant’ patients, we propose the use of kMeans as an
unsupervised data-driven way to discover the cut-offs to segment the data into groups.
We run the kMeans with various number of clusters on the tinnitus loudness and
tinnitus distress variables collected at the registration time. The number of clusters
used is decided by the expert.

Figure 3.15 shows the three clusters discovered by the kMeans algorithm. Grouping
the patients by loudness into 3 groups was approved by the expert, with the cut-offs
for low loudness being ≈ up to 40/100, and high loudness at ≈ 70+/100. Please
note that these are not definitions of low, medium and high loudness of tinnitus, it is
simply the cut-offs for splitting patients in our dataset into groups for the purposes
of our investigation.

Figure 3.16 shows the partitioning of the users into 2 groups based on their tinnitus
distress at registration time. The tinnitus distress is defined here as the score of the
TSCHQ questionnaire, which is a sum computed over the questionnaire response and
has a score from 0-24 (higher values are worse). The expert preferred 2 clusters here
both because of there being no clear pattern in where the scores could be split to low
vs. high, and also because fewer clusters would decrease the total number of groups.

Once the clustering process is complete and the groups are created individually
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Figure 3.15.: The 3 loudness clusters as discovered by kMeans. The low, medium and
high loudness patients are shown in black, green, and red respectively.
The number of clusters and the partitioning are verified by an expert.
(vertical jitter added to separately show density when multiple patients
with the same values)

Figure 3.16.: The 2 distress clusters as discovered by kMeans. The number of clusters
and the partitioning are verified by an expert (vertical jitter added to
separately show density when multiple patients with the same values)

for loudness and distress, each patient belongs to exactly one loudness cluster and
one distress cluster. The concordant patient group is all patients who are in the
same loudness cluster as well as distress cluster. Since there are 3 clusters based on
tinnitus loudness, and 2 based on the degree to which the patient is distressed by
tinnitus, each patient can be in one of six groups2: {<low-loudness, low-distress>,
<medium-loudness, low-distress>, <high-loudness, low-distress>, .... <high-loudness,
high-distress>}. The idea is that concordant tinnitus sufferers are those that belong
in the same group, and the way this is operationalised is to limit the kNN to in-group
neighbours only, while building the data-augmented kNN regressor.

The average distress and loudness among the participants in each group are shown
in Table A.1. It can also be seen from Figures 3.15 and 3.16 that the clusters are
not well separated - but since the goal of the clustering process was only to find
data-driven cut-offs, our expert validation is considered sufficient. Please note that
some vertical jitter is added to the plot so that overlapping users with the same
loudness or distress are more clearly visible.

The discordant tinnitus patients are those that are in the <low-loudness, high-
distress> group and those in the <high-loudness, low-distress> group. The smallest
group we discovered has only 35 patients and is one of the discordant groups with
low tinnitus distress in spite of high tinnitus loudness. While medical studies have
found up to a third of patients are discordant [36], we see that only about 16% show
this in the EMA dataset. It is possible that this is due to the fact that tinnitus
sufferers who are not sick enough to need medical treatment still use the app.

Performance of group-restricted personalised models: Figure 3.17 shows the
results for the personalised models that were restricted to selecting from in-group
participants. Since the neighbourhoods are already restricted (non-randomly) to
in-group participants, we do not compare the performances in the six group-level

2each patient is in one of 3 (loudness clusters) x 2 (distress clusters) = 6 groups
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models against a kRE baseline. The results at the group level are plotted alongside
the unrestricted kNN model (dotted back line).

Figure 3.17.: RMSEs for group-restricted kNN personalised models for the six groups.
kNN neighbourhoods are restricted to groups with participants of similar
loudness (L/M/H) and distress (L/H)

It can be seen that restricting the kNN to in-group patients improves performance for
4 out of 6 groups identified by the expert as compared to the unrestricted kNN model
(shown in the figure with a dotted black line). From the two discordant patient types
identified, the <low-loudness, high-distress> patients are easier to predict than the
<high-loudness, low-distress> patients. The discordant group with low distress in
spite of high loudness are seen to be the ones hardest to predict, which suggests that
those that low tinnitus distress in spite of high loudness are all dealing with their
tinnitus in their own different ways, while the group of patients with high distress in
spite of low tinnitus loudness are more similar to each other.

The group level errors also show that the small improvements to most groups gained
from restricting the kNN to within-group patients are cancelled out by the high
error for the <high-loudness, low-distress group>. Overall, however, it is clear that
restricting the kNN is indeed beneficial, and that the neighbourhoods are tunable with
expert information. Eliminating ‘false’ neighbours does indeed improve performance
for 4/6 groups.

3.5. Conclusions

This chapter investigated the main question of how entity-similarity can be exploited
to train personalised models. We proposed two methods, one that trained personalised
models based on the exploiting the ‘static’ data of similar entities to build models
in the ‘dynamic’ space, and another that built upon this idea to incorporate expert
knowledge into the discovered static neighbourhoods.
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3.5.1. RQ1.1: Augmenting with the right data for training a personalised
predictor

Since too little data is available at the entity level, we follow the approach of
augmenting the data of the personalised model with the data of other entities that
are ‘similar’. However, since similar entities cannot be discovered using the time
series or dynamic data, we propose discovering such entities using the static data
(like patient age, gender, etc.) that describes them.

We use the kNN algorithm over the static data of entities to find the best entities to
augment the data of an entity - however, this still leaves some open questions before
the personalised model can be trained:

1. After finding the entities, how to train a personalised model using similar
entities’ data?

We explored two methods to train personalised models based on the data of an
entity, and that of k similar entities. One was to pool all the data from the
k + 1 entities to train a single model. We call this ‘data augmentation’. The
second method avoided pooling the data and focused instead on augmenting
the personalised model for entity e with one model each from each of the k
neighbours. In our simple case of linear regression models (chosen because
many entities have too little data for training), this is analogous to averaging
the model parameters, but the idea is also conceptually similar to using a ‘local
ensemble’ of k models from the neighbours voting along with the model of
entity e itself.

We found that data augmentation performed better than model augmentation,
and that very short entities make the model prone to learning extreme slopes,
especially when the observations are temporally near. Since we would like to
not disadvantage short entities in our workflow (they far outnumber the long
ones), we focus on data augmentation as our preferred method for training
personalised models.

2. How to deal with timestamps at the entity level when each entity has their
first observations at a different timepoint?

We explored training the personalised model with timestamps used as-is without
modification, and also aligning all entities such that they have their own ‘local
clock’ - i.e., the first observation for each entity is at t = 0.

It was seen from our experiments that using the timestamps as-is helped when
training models in an environment where strong dataset-level trends exist. For
the mHealh scenario, which is closer to our intended use case, the difference
was less pronounced.

3. To what extent do neighbourhoods improve performance?

We saw that small neighbourhoods do indeed contribute positively to the
performance of personalised level models. However, when we created our
baseline that tests the relevance of the exact neighbours that were selected
during the training process, we saw that our proposed kRE baseline was very
competitive in performance. The unexpectedly high performance of the kRE
model, as well as the fact that the kRE shows the same tendency towards
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favouring small neighbourhoods suggests to us that further investigation is
necessary in selecting the neighbourhood.

3.5.2. RQ 1.2: Incorporating expert knowledge into the discovered
neighbourhoods

The unexpectedly competitive performance of the kRE baseline model prompted us
to investigate whether the neighbourhood computed by the kNN can be improved
using expert knowledge. Towards this end, we investigated:

1. What is the expert knowledge, and how can it be integrated into our proposed
workflow?

In the mHealth dataset relating to tinnitus, it is known that there is a minority
of users who experience distress that is not concordant with the severity of
their symptoms (either they are too distressed for their symptom severity, or
vice versa). We used clustering with 3- and 2- Means on the self-reported
tinnitus loudness and the tinnitus distress in the static data, and used the
membership of each patient in the loudness and distress clusters to restrict
the kNN to search only among others who are in-group. Out of six total
groups, two were ‘discordant’: the <low-loudness, high-distress> group and
the <high-loudness,low-distress> group.

2. To what extent does the expert input reflect in the personalised modelling
process?

We incorporate expert knowledge about the existence of anomalous tinnitus
patients with either high tinnitus loudness and low distress, or vice versa.
In our experiments, we found that the group-level average performance for
personalised models that were restricted to pick in-group neighbours only
performed better than the unrestricted kNN counterpart for 4/6 groups.

3. How does the performance reflect on the discordant/anomalous tinnitus pa-
tients? We found that the patients who fall into the group with low distress
despite high tinnitus loudness were the hardest to predict out of all six groups.
On the other hand, the group of patients with high distress in spite of low
tinnitus loudness was the best-predicted group, with an error of <0.1 on a
scale of [0,1]. This suggests that the patients capable of dealing with their
tinnitus all have their own personal ways of dealing with it, while those that
are strongly affected by even mild symptoms are more like each other. This
finding was acknowledged to be of value from a medical point of view by the
medical experts.

In short, contrary to what Tolstoy says about marriages, one might argue: “All
unhappy tinnitus patients are alike; each happy tinnitus patient is happy in
their own way”
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This chapter is based on the outputs from the following papers:
[126] Unnikrishnan, Vishnu et al. “Predicting the Health Condition of mHealth

App Users with Large Differences in the Number of Recorded Observations
- Where to Learn from?” In: Discovery Science. Ed. by Annalisa Appice
et al. Cham: Springer International Publishing, 2020, pp. 659–673

[124] Unnikrishnan, V. et al. “Love thy Neighbours: A Framework for Error-
Driven Discovery of Useful Neighbourhoods for One-Step Forecasts on
EMA data”. In: 2021 IEEE 34th International Symposium on Computer-
Based Medical Systems (CBMS). 2021, pp. 295–300.

• The work presented in 4.2.1 exploring HMMs and Granger causalities is
as-yet unpublished.

4.1. Motivation and Comparison to Related Work
In the previous chapter, we explored methods that train personalised predictors based
on neighbourhoods discovered on the static data. However, we saw that our proposed
baseline methods that augments the data of an entity with another randomly selected
entity performs very competitively to our proposed methods. This suggests that
relying solely on the static data is not sufficient for learning personalised models.
Towards this end, we want to explore methods that can also exploit similarities in
the dynamic data while discovering neighbours for training personalised models.

However, we would also like to build upon our previous results and adapt our
modelling process to make it more realistic. It was seen in the previous chapter that
the kRE method that chooses random neighbours has an advantage in the modelling
process when the timestamp of the observations is included in the modelling process
(see Section 3.5). The advantage gained from including the timestamp increases in
datasets where there is a systematic tendency towards higher/lower values as time
progresses (for example, the tendency towards better air quality over time, possibly
due to legislation, and the tendency towards 5 star reviews over time, due to an
increase fake reviews). In order to not give our methods an unfair advantage by
leaking this dataset tendency, we change our personalised modelling problem from
one of predicting the value of a target variable at time t given all other variables at
time t, to predicting the target variable at time t+1 given all the variables (including
the target) at time t. This short term forecast is acknowledged by the expert to be
valuable [134, 19, 116], since it can serve as an early warning system, especially for
psychological issues, for changes in the disease state.
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There are many ways to discover similarities for data in the dynamic domain, the
most obvious of which is simple euclidean distance. While simple, the inapplicability
of this distance measure is well reported [32]. The chief issues are the sensitivity
of euclidean distance to phase and time shifts, scale, and most importantly for our
work, its ability to deal with sequences of unequal lengths.

A popular alternative to euclidean distance is the phase and time shift invariant DTW
[101]. DTW is a dynamic programming algorithm that computes the distance between
two time series after computing an optimal alignment (where the individual time
series are ‘warped’ and/or squished) between them. However, it has the drawback
that the alignment can sometimes cause a so-called ‘pathological warping’[140], where
a small part of one time series is mapped to a very large proportion of the other during
the warping process. Zhang, et. al. [140] solve the problem by limiting the number of
links during the optimisation process, but other works also limit pathological warping
can be avoided by setting various constraints on the alignment path discovered by
the DTW, like using the Sakoe-Chiba band or the Itakura parallelogram[28].

Using historical dynamic data to predict the future development of a sequence of
observations is of great interest for stock market forecasting due to its direct economic
value. Various methods exist that exploit historical data for learning, but the main
idea is to find the most similar sequences in historical data, and once they are
retrieved, combine them to create a forecast of the future.

A dynamic multi-perspective personalised similarity measurement is proposed in
[141], where the time series data is segmented into multiple time windows, and during
similarity computation, greater weight is given to more recent time windows. The
similarities between the segments themselves are computed using Canberra distance
[11] with DTW. Canberra distance is chosen instead of euclidean distance because
of the sensitivity of euclidean distance to ‘singularities’ (i.e., a single anomalous
observation with a large deviation) - this single anomalous data point shifts the
entire distance between two sequences towards higher values. The Canberra distance
is a dimensionless quantity that captures the mean pointwise deviation between two
equi-sized sequences normalised over the absolute magnitude of each of the points
(thereby downweighting the impact of a single outlier). Integrating the Canberra
distance into DTW solves the drawback of Canberra distance being sensitive to time
shifts in the sequences.

Several derivatives of the DTW algorithm exist for dealing with specific problems.
AWarp [70] proposes running DTW on a run-length encoded time series vector
[118] so that the distances between sparse time series can be computed efficiently.
Extensions like Blocked DTW utilise representations that extend the idea of AWarp
so that they can capture (non-zero) value repetition [115] to make the dynamic time
warping faster, more accurate, or to allow approximate distance computations based
on transformations applied to the source time series. These methods also rely on
representing the original time series using different aggregations before feeding them
into the DTW algorithm.

Other methods to compute similarity between time series aim to find transformations
of the time series to allow certain comparisons. [57] encodes the time series as a
summation of kernel functions, and the coefficients for the signal (which are zero
at time points where the kernel are not applicable) are found by a probabilistic
maximum likelihood approach. The idea is that the model is expected to naturally
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denoise the original time series. Methods like [58] uses a bag-of-words approach to
find subsequences in the time series, but focus on long term similarity computation
by representing time series as a histogram of frequencies of patterns (bag of words).
Methods like Piecewise Aggregate Approximation (PAA) [49] chunk the time series
into equisized bins, and replaces the value in each chunk with the mean value in the
bin, and this is extended upon in Symbolic Aggregate Approximation (SAX) [59]
where these means are replaced with letters from an ‘alphabet’ to create words, which
can then be mined with algorithms inspired for language processing. The assumption
is that the long time series can be broken down into several short segments, each of
which can be featurised separately, and then some combination of the segment-level
information can be used to represent the original time series.

The idea of describing time series as the parameters of models that predict them
has also been explored in works like [50, 136, 100, 29]. In [50], the time series are
described as a mixture of Autoregression (AR) models, which is extended in [136]
to Autoregressive-Moving-Average (ARMA) models. The parameters of the models
learned on these time series form the basis of featurising the individual sequences,
which are used for classification tasks - but could conceivably be used for time
series similarity as well. Apart from AR and MA models, the HMM is also used for
representing a time series, where [100] propose a method for matching the states of
different HMMs fit for different time series, and computing a dissimilarity between
those ‘matched’ HMMs. A similar approach is followed in [29], where a separate
HMM is fit on every sequence, and an HMM-distance measure is used to perform
clustering. In our case, the idea of using model parameters to summarise a time series
is a useful one, but we would need to accommodate the fact that our solution needs
to allow for big differences in the lengths of the data - where the smallest sequences
might be too short to train reliable HMMs. Even if the models were trained on the
short sequences, the resulting state spaces might not be comparable, even if some
method created verifiably correct representations.

Studies like [40] have successfully applied HMMs to EMA data, and have found
that subtypes of schizophrenia are captured by the HMM model. They ensure the
learning of subtype-specific individual variability by fixing the transition matrix to
be block-diagonal, where each block is a cluster. Each patient can only transition
between blocks that are specific to their own cluster, so the practical implementation
is straightforward - they train as many HMMs as there are clusters. In the extreme
case of ‘fully personalised’ models, this would be one HMM per input sequence,
with the other extreme being a fully global HMM model where all patients can visit
all states (i.e., patients are not ‘barred’ from visiting some disease states by virtue
of their pre-identified phenotype). More importantly, however, they acknowledge
several problems that are critical to training personalised predictors, especially based
on EMAs: Short sequences at the individual level, large dimensionality, unknown
(and possibly small) number of underlying states, idiosyncrasies in responses, etc.
However, HMMs are shown to be useful in modelling disease subtypes of data
capturing psychological affect [38], and for detecting the best time to sample patient
experience based on phenotype and individual variability[41].

The idea of Granger causality as a way to measure relationships between time series
is a mature one [31], with applications in fields ranging from politics [26] to gene
expression [27]. The utility of Granger causality as a more generic tool is also evident
from the fact that many works use it as a first step to describe the time series properties
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and relationships in facilitating downstream data science tasks. For example, [137] use
Granger causalities to describe the relationships between multivariate time series, and
use the representation to perform a downstream classification task, while [27] solve a
clustering problem for gene data, where they propose extending the current methods
that cluster based only on expression data with more ‘functional’ information, where
the Granger causal relationships between the time series are also considered.

Extensions like [2, 1] enable the use of Granger causalities towards time series sampled
irregularly. This is done through aligning the time series being investigated for
Granger causalities using DTW, and then computing the Granger causal relationships
only on the aligned series. While a promising extension, its applicability to EMA
data is still limited, since ratio of the shortest to the longest series is still too large to
make DTW applicable. However, the idea of limiting the comparisons to comparable
series is still a promising one. For example, previous work in our group [42] has
explored the applicability of Granger causality in determining commonly occurring
relationships in the EMA data of tinnitus. It was found that the irregularity can
be tackled by limiting the analysis to within-day observations, where it was also
seen that some registration-time questionnaires are associated with certain Granger
causal relationships in the EMA data.

4.2. Exploiting dynamic data for neighbourhood selection
The following sections describe the main approaches we explore towards including
the EMA data into the similarity discovery process. We begin in Section 4.2.1 with
two proposed methods to include the EMA data into the neighbourhood discovery
process while training personalised models, while Section 4.2.2 and 4.2.3 explore a
broader definition of similarity at a meta-data level, by exploring whether the users
who contribute a relatively larger portion of the data need different definitions of
similarity compared to those that contribute relatively little.

Please note that the methods and the results proposed in Section 4.2.1 are not
published work, and while it is unconventional to include such ‘failed’ experiments
in the main body of this work, they still contribute towards a convincing argument,
since the metadata-based experiments were only considered once the data itself was
proven to not bring substantial benefits to the neighbourhood discovery process.

4.2.1. RQ2.0 Summarising EMA data to discover similar patients
The idea of including EMA data to contribute towards the personalised modelling
process is a natural next step to our findings in Section 3.5. The previous chapter
explored the degree to which the static data of an entity can help us identify similar
entities when learning personalised models. In this chapter, we explore exploiting
data from the dynamic data towards building personalised predictors.

We explore summarising the time series information using two methods: One that uses
a HMM to learn the underlying disease states, and another that learns the intra-day
Granger causalities in the EMA data. Once these relationships are learned, we can
replace the variable-length EMA time series with their fixed-length representations
that capture the information learned by the modelling process. The following sections
describe how the EMA data is summarised and then used in the neighbourhood
discovery process.
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Figure 4.1.: The process for training personalised models using HMMs to discover
users with similar EMAs

RQ2.0.1 Summarising EMA data using HMMs

As discussed in Section 4.1, the goal of our personalised predictors is changed from
that presented in Section 3.2 to producing personalised models that forecast the
target variable for the next observation given the data from the previous observation.
In this workflow that uses hidden markov models, we propose that the patients move
through some underlying disease ‘states’, and that similar patients are those that
progress through similar disease states.

There are three main components in the workflow:

• Utilising the available data to create the underlying state-space model

• Discovering the neighbours of the user using the state-space model

• Creating the model with the optimal neighbourhood

The first step in the modelling process is to fit an HMM on the EMA data. The
goal of the HMM model output is to have a representation of the underlying states
of the disease, and how they relate to one another through the transition matrix.
Since there is no clear understanding in the medical context regarding disease states
(apart from the already discussed result that there are anomalous tinnitus patients
whose distress is not commensurate with their tinnitus loudness), we are forced to
follow an approach of training an HMM model that is complex enough to capture
variability between patients, while not becoming overly complex. In order to estimate
the correct number of states, it is of course necessary to consider quality measures
like Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
log likelihood, but we also need to consider that a well fit model also needs to capture
representative disease states. In other words, a model that learns states that are
visited only by one or very few patients needs to be penalised.

An overview of the full HMM-based personalised neighbourhood model is shown in
the Figure 4.1. The first step is to decide the logic for holdout validation, where
the choices are between holding out the last x% of each user’s data for validation
vs. holding out the entire data of x% of the users in the holdout set. Each method
has its own disadvantages - for example, holding out x% of the data from each
user will make it impossible to know how good the HMM representing the disease
really is, since a little bit of each user’s data has been fed into the HMM during
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training. Holding out entire sets of users, on the other hand will add the dimension
of complexity that the errors that we report at the end will be computed over users
of different lengths, and the held-out users can be chosen ‘unluckily’ to contain only
users that are short (such users are the majority in the EMA dataset anyway). Since
our goal is personalised models, we will choose to hold out the last observations of
each user for validation, in line with our decisions in Section 3.2.

Training the HMM model: In training the HMM model, we aim to create a map
of the underlying states in the subjective experience of tinnitus. Two main decisions
need to be made for training HMM models on EMA data - the number of states, and
the variables from the EMA questionnaire that are used to train the HMM model.

There is no known ‘correct’ number of underlying states in tinnitus, except the
medical intuition that there are patients whose subjective experience of tinnitus is
anomalous (low distress in spite of high loudness, and vice versa). While it is in
general preferable to train the state space models on the full feature space captured
by the EMA questionnaires in each app, training on a subset of comparable questions
can make a state space model that is transferable between datasets. However, this is
also something that needs empirical validation.

Training personalised models based on the HMM output: Once the HMM model
is trained, it allows us to create a ‘summary’ of each user, where each user can be
represented by the same number of features as there are states in the state space
model. The user is summarised by the percentage of observations emitted from
each hidden state learned by the HMM. i.e., in a four-state model, a user for whom
100% of the (training-data) EMA observations were all emitted form state 1 will be
featurised as <1.0, 0, 0, 0>. It is clear that counts cannot be used since the users
differ in their lengths.

Although the method will fail to distinguish directional information (i.e., two users
who spend 50% of their time in each of two states, but in opposite order), the
intuition behind our proposed method is still that users who spend similar amounts
of time in similar states are more similar than those that do not. Once each user has
been represented as their state-space-occupancy vector, the neighbourhood of each
user can be computed using the k-nearest neighbours algorithm, and the data of
each of the neighbours discovered can be combined to train the personalised model.

Transferring the disease states from UNITI to TYT: Since the experience of
tinnitus is independent of the app that is used to record it, it is also possible to learn
the disease dynamics in one app, and apply the rest of the workflow on the data
of another. In this case, it would make sense to learn the disease dynamics on the
data of the app that has the cleanest, most regular data. In order to investigate
this, we also learn the HMM on the full data of the UNITI app (since it has more
regularly sampled observations for each user), and apply it to decode the sequence
for the TYT dataset. The rest of the workflow is held identical, except that the
full data from the UNITI app is used for training, instead of only the training data.
Transferring the HMM model to another dataset comes with three main benefits:

• overfitting can be avoided,
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• an HMM learned over an older app can be deployed immediately into the
prediction workflow of a younger app that has not yet collected enough data -
this can be useful for future apps to “hit the ground running”, and

• it is possible to learn the HMM model on the app that has ‘cleaner’, more
regular data to decode the possibly irregular, sparse sequences collected from
apps with less clean data.

Formalisation: More formally, we saw in Section 2.3 that for each entity ei ∈ E, the
dynamic data Di consists of a sequence of timestamped observations Di = {o1

i . . . oTi
i }.

Each entity ei has an ‘entity length’ equal to the number of observations in the
dynamic data Di, which in the above case would be |Di| = Ti. Although not
technically correct, let us assume for notational simplicity that that Ti observations
are the length of the dynamic data in the training data of entity ei. Since we are only
learning the relationship between the current observation ot

i and the target variable
in the future observation and xt+1

target ∈ ot+1
i where t ≤ Ti− 1, we can ignore the exact

timestamp at which an observation arrives.

Our goal is to learn an HMM model on the dynamic data Di of each entity ei. The
number of states in the HMM model is chosen to balance metrics like AIC and
Log-likelihood, but also to create a set of states that are sufficiently representative of
the disease dynamics, without getting too specific to individuals (i.e., a state that is
visited only by one or very few individuals is not ‘useful’).

Once the HMM is trained, the model can now be used to describe each user as
user_encoding(ei) = state_visitation_percentage(HMM, Di)). The user encod-
ing converts the variable length sequence Di into a fixed-length representation with
H dimensions, for HMM models with H states. This is done by encoding the data
in sequence Di as a sequence of states 1 . . . H that generated each observation in Di,
and then the value at h ∈ 1 . . . H is the percentage of observations in the sequence
generated from that state. This encoding implicitly accommodates for differences in
length and represents all users in the same number of dimensions as the number of
states in the HMM. Each dimension is bounded by 0 and 1 and the sum of all the
dimensions adds up to 1.

Once the fixed-length representation of each patient is created, this is used as the basis
by personalised model to discover the neighbourhood for each entity ei. This is accom-
plished through the kNN algorithm that operates on the user encoding of the entity.
The output of the kNN is an ordered set kNN(ei) = kNN(user_encoding(ei),D) =
n1

i . . . nk
i , where each nj

i ∈ E, j ̸= i, and similarity(user_encoding(ei), and
user_encoding(ej)) ≥ similarity(user_encoding(ei), user_encoding(ek)), ∀k > j.
In our work, we compute kNN using the euclidean distance (the inverse of which is
used as the similarity).

Once the neighbours of an entity have been identified, the next step is to train the
personalised model. Since the output of kNN(ei) is a set of neighbours n1

i . . . nk
i ,

the dynamic data of the entity Di is combined with the dynamic data of each of the
neighbours Dn,∀ni ∈ kNN(ei). i.e., the personalised model for ei is trained as

train_personalised_model(ei) = train_model(Di ∪ {
nk

i⋃
n1

i

Dni})
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Figure 4.2.: The process for training personalised models using intra-day Granger
causalities to discover users with similar EMAs

RQ 2.0.2 Summarising EMA data using Granger causal relationships

Apart from the HMM model, we turn to another method to compress the time series
information available in the dynamic data of an entity by reusing a previous result
from our workgroup [42]. Given that there is a time-of-day dependence between
tinnitus loudness and distress [86], and given the heterogeneity of tinnitus [9], the
work in [42] builds a model that extracts Granger causal relationships at the patient
level. The work also explores the Granger causal relationships at the individual
level, their likelihoods of appearing in relation to each other, and their connection
to the static data. However, we will work more conservatively and use only the
individual-level Granger causalities since there is a likelihood of compounding the
Type I error.

The general overview of the process is shown in the Figure 4.2. The steps are broadly
similar to those in the HMM workflow, except that the output of the model that learns
the Granger causal relationships is a list of Granger causalities that are expressed in
the EMA of a user. This list (by default, a one-hot-encoded list of Granger causalities
as a binary vector) can directly be ingested to create a user-Granger causality matrix,
over which you can compute a kNN. The rest of the process is similar to the methods
already introduced, the model is trained on the aggregated data of the patient and
their neighbours. The neighbourhood size needs to be tuned, like in all cases.

Discovering Granger Causal Relationships: The GC Discovery component is run
for every patient ei ∈ E. We use a method heavily inspired by [42], except the
important difference that we do not investigate whether GC relationships exist only
within the EMA observations spanning the same day, since that restriction limits
the computation to very few patients.

Inferring GC between variables xA and xB (where xA, xB ∈ Xp) involves train-
ing two models - the unrestricted model UR ,and the restricted model R. The
unrestricted model includes all variables unrestricted_vars = xt

1 . . . xt
n (where

xA ∈ unrestricted_vars) as inputs to predict the future of xB (xt+l
B , where l is

is the number of lag periods. The restricted model R is trained to include all
variables except xA to predict the same lagged variable in the unrestricted case, ie
restricted_vars = {xt

1 . . . xt
n} − {xA}. The models are vector autoregressive models

trained using an OLS estimator. Once the models are trained, we use an F-test to
confirm if the unrestricted model UR is significantly better than the restricted model
R, and if yes, we know that xA Granger causes xB for patient p.

The above procedure is repeated for every pair xA, xB ∈ Xp, A ≠ B to get matrix
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where 1’s indicate the existence of a Granger causal relationship between A and B for
user p. The output of this component is a set of |p| matrices, one for each user. Each
matrix gc_matrix(p) has along the columns the variables that granger cause the vari-
ables in the rows. This means that you can get a vector get_gc_vector(p, gc_target)
where gc_target ∈ xi, i = 1 . . . n

The Neighbourhood Component: This component ingests the |E| user-level ma-
trices generated by the GC discovery component, and aims to convert it into a list of
neighbouring users ordered in decreasing order of similarity to p. The similarity is com-
puted on the basis of a particular variable xgc_target (one row in the matrix), so that we
can find other users who are similar to the current user w.r.t their causal relationships
in the vector get_gc_vector(ei, xgc_target). In order to better capture the interrela-
tionships between the causal relationships that appear together and separately from
each other, we apply the UMAP dimensionality reduction [67] on the list of vectors.
Apart from capturing common relationships among frequently appearing causalities,
it is also expected that the possibility for visualisation of the dimensionality-reduced
causal vectors might help the practitioner choose an appropriate gc_target variable
when computing neighbourhoods. The neighbourhoods themselves are computed
using a simple kNN approach, where the kNN(ei, gc_target, k) are the k nearest
patients as computed over the dimensionality-reduced representations of the patients’
causality vectors on gc_target.

The Personalised Model: Once an appropriate neighbourhood of patients
kNN(ei, gc_target, k) has been identified for a patient ei, the data from all the users
train_data(nk

i ) ∀nk
i ∈ kNN(nk

i , gc_target, k) are concatenated (for all k ∈ 1 . . . k),
and a one-step forecaster is trained on the combined data, where all the variables at
time t are used to forecast the target variable at t+1. In this case, the target variable
is chosen as the distress caused due to tinnitus, since it is of clinical relevance. One
one-step forecast model is built per patient ei, and each of these models can now be
used in the next step to predict the next-day distress given the EMAs of the current
day for each of the ei users in the test data test_data(ei).

4.2.2. RQ2.1 Exploiting user interaction length to discover
neighbourhoods

Section 4.2.1 explores two methods designed to exploit the EMA data in finding
neighbours. However, all the methods proposed so far share the disadvantage that
many users are necessarily excluded from the personalised modelling process, who
contribute too little data for learning. Additionally to the fact that all ‘short’ users
are excluded, there is also the fact that all new users to the system are necessarily
‘short’ when they are in their early stage of interactions with the system.

Our design decisions were mainly guided by the needs towards the TrackYourDiabetes
app defined in Section 2.2, and like described in Section 4.2.1, we focus on the scenario
of forecasting the target variable for the next observation for a user given the previous.
Since the goal of the app is to achieve patient empowerment, the target variable
is chosen to be the “feeling of control" that a patient has over their diabetes. The
EMAs of each user constitute our entity-centric time series with a patient for every
entity ei in the dataset. However, we will split this set of users into two groups based
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on their behaviour in the app - all users who contribute less than an arbitrary cut-off
length are considered “short" users, and those that have time series of length that
exceed this threshold are categorised as “long" users. We will refer to these users
as belonging to Ushort and Ulong respectively, and aim to investigate the following
questions:

• To what extent is the data of users in Ushort predicted by the data of Ulong?
Does a model trained on data of Ulong transfer to Ushort?

• To what extent can the model for Ushort be personalised by adding data of
the short users as they become incrementally available (i.e., as they become
longer)?

Splitting the users into two groups based on length: As already explained, each
user in the dataset belongs either to Ulong or Ushort, depending on whether the length
of their EMA time series exceeds the threshold τlength. while theoretically unbounded,
τlength is designed to be set in a data driven way, since the number of short users will
depend on the maturity of the app, and also the nature of user interactions. Since
the distribution of user interactions follows the power law in most EMA apps, setting
this threshold to a small number should already split the full set of users into two
groups with a relatively large bias towards short users. The sequence of observations
for each user is a mix of categorical and numerical variables, as can be seen in Table
2.5.

Handling idiosyncrasies in categorical data using a TF-IDF inspired approach:
Since the main goal of this work is to create personalised predictors, it is necessary
to handle the fact that different patients respond to different questions with different
tendencies. Using the sklearn ‘StandardScaler’ (applying x−µ

σ ) at the user level can
centre the numerical variables on the user, and redefine the time series where each
person’s observations are reframed as their deviations from their means. For example,
if 2 patients with means [mean(e1) = 10, mean(e2) = 20] and standard deviations
[σ(e1) = 1, σ(e2) = 2] generate the data D1 = [10, 11, 9, 10] and D2 = [20, 22, 18, 20],
then applying the standard scaler to each patient separately results in two time
series D1 = [0, 1,−1, 0], and D2 = [0, 1,−1, 0]. It is clear from this toy example that
the user-level application of the standard scaler can accommodate for differences
in the tendencies between individuals, and capture the relative changes between
them. However, no equivalent is readily available for categorical data. To give an
example analogous to the numerical example above, two patients may report on day
100 that they had no signs of hypoglycemia. However, if one of those patients has
hypoglycemia every day, and the other has signs of hypoglycemia for the first time in
100 days, then these two observations are not equivalent semantically, even though
the data would suggest so.

We handle this issue by preprocessing the categorical data to accommodate for the
fact that some answers are more likely than others. Please note that we need not
to accommodate for the frequency of an answer at the dataset-level, but at the
patient-level (i.e., we need to capture the ‘surprise’ in the fact that a person who
normally answers a question with a “no" has said “yes", even if “yes" is the most
common answer in the dataset). We propose a TF-IDF [92] inspired method to
handle the amount of surprise in a submitted answer by focusing the user’s answer
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as a ‘word’ that appears in the user’s history of answers, which can be seen as a
‘document’. The one-hot encoding of the categorical features results in a binary list
that has the same size as the number of options in the dropdown. After getting
this list, we apply the formula preprocessed_value(term) = fterm−̇log nterm

N . Since
the categorical values are chosen from a dropdown list, the fterm is 1 for the value
selected from the dropdown list, and 0 for all others. The inverse document frequency
component measures the frequency of a word in the user history.

Learning on Ulong to predict Ushort: Given the data of el ∈ Ulong, we learn a model
where for each time point t ∈ 1 . . . t, we learn a linear model to predict the value of
the target variable at the next time point t + 1. The last observation of each user’s
data is excluded from the training dataset, since no known label exists for the target
at the next time point. This model can now be applied to each user es ∈ Ushort,
where the next day’s target value for the data of the user es = x1 . . . xt−1 is predicted.
This serves as a baseline to compare the degree to which the data of long users
predict the data of short ones.

Personalising the Ushort model with incrementally available data: The method
developed above with the model trained on all data from Ulong is not personalised,
so we investigate the degree to which a prediction can be obtained that is specific to
the history of the user us ∈ Ushort. We propose to do this by creating an additional
model that is trained on the user’s past, and delivers predictions along with the
model trained over all long users. This is done by training a kNN regressor that has
been trained only on the accumulated observations of user us. Please note that the
last session is not part of the training data, since the value of the target variable
from the next day is as yet unknown.

Each observation can not be predicted by the user-level kNN regressors that see
patient specific data, and also by the Ulong model trained over the data of all long users.
To combine them to get a single prediction that adjusts its weights as incremental
data becomes available, we propose that we combine the two predictions based on the
accuracy of each of the models (like in [10]) towards the user. i.e., for each user, we
store the prediction errors towards the observations of that user from (a) the Ulong

model, and (b) the user-specific kNN regressor. After each prediction, the errors
are updated, so that the next prediction can be weighted to reflect the accumulated
mean errors from each model. It is of course necessary to weight according to the
inverse of the error, and not the error itself, since higher errors are not desirable. An
overview of the workflow is shown in Figure 4.3.

4.2.3. RQ2.2: Improving the neighbourhoods discovered using user
interaction length

Section 4.2.2 explores fitting personalised models for “short” users (users whose EMA
time series lengths do not meet a cut-off threshold τlength) by using a combination of
personal and global models. The predictions of global models trained over long users
(their time series are longer than τlength) and an incremental kNN regressor over the
short user’s own sequence of observations can be combined weighted by the errors
from each of the models towards the user.
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Figure 4.3.: The process for training personalised models for users in Ushort

In this section, we explore whether each long user Ulong is equally valuable in the
process of training personalised predictors for users in Ushort. In order to find the best
neighbourhood for a user in Ushort, we propose a workflow that discovers the best
neighbourhood by searching through an ordered list of users in Ulong, incrementally
expanding the neighbourhood to include the data from each long user as long as
their ability to predict the data of the short user us ∈ Ushort is not compromised. It
is indeed true that the workflow is wasteful in terms of the number of models trained,
but the reader is encouraged to remember that the amount of data is small and the
models simple. The runtimes of even unoptimised code is expected to be well within
feasible limits. It is also important to consider that while performance benefits are a
nice-to-have, our proposed methods come with two additional advantages:

• our methods deliver, along with personalised models, a personalised neigh-
bourhood. In contrast with previous methods we have looked at, we are
proposing a method that would deliver a personalised neighbourhood with a
personalised neighbourhood size. The accuracy of the model (compared to a
non-personalised one) serves as a good starting point for the physicians when it
comes to trusting the model, while the main benefits might be in the ability to
ask questions like ‘what properties do the similar users share?’. A personalised
neighbourhood size enables additional questions like ‘why are some people
predicted by fewer neighbours than others’. Unfortunately, such questions are
not expected to be answered by non-physicians, and, in cases of diseases like
tinnitus, it might be that they are not yet answerable, since the features that
contribute to certain subtypes in the experience of tinnitus might not yet be
captured in the data (for example, for as-yet-unknown genetic similarities).

• our methods are inherently robust to data removal requirements. i.e., not just
the removal of one person’s data from the database, but also the removal of the
effects of that person’s data on the models. In our case, the complete removal
of one person’s data would be as easy as deleting that person’s model, and a
re-training of every model that uses that person’s data (a simple reverse-lookup
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Code Questionnaire Question
R1 Random Current estimation of blood sugar level
R2 Random Actual measurement of blood sugar level
F1 Food Average blood sugar level before eating
F2 Food Level of hunger

EOD1 End-of-day Frequency of sugar level measurement
EOD2 End-of-day #Minutes of physical activity
EOD3 End-of-day Total bread units consumed
EOD4 End-of-day Signs of hypo- or hyper- glycaemia
EOD6 End-of-day Feeling of control over diabetes

Table 4.1.: A summary of the information captured by the three EMA questionnaires
in the TYD app

in the dictionary) in another person’s neighbourhood without the data that
needs to be removed. Our methods also naturally support tiered access rights -
that some users might consent that their data be used in the neighbourhood
discovery process, and others, not. Out-of-the-box support for such requests is
not trivial in times of strengthening regulatory requirements (like with GDPR).

Definitions Our workflow was developed with the TrackYourDiabetes (TYD) apps
described in Section 2.2.3. Separate versions of the apps were rolled out in Bulgaria
and Spain, and the datasets used by them are the ones that are explored in this
work. Unlike the tinnitus apps, the TYD apps have three EMA questionnaires
that are collected from the users - the food questionnaire asked at meal times, the
‘random’ questionnaire that is asked randomly multiple times a day, an the ‘end-
of-day questionnaire’ that is asked only once, at the end of the day. The different
cadence of the three questionnaires needs to be handled if the information of the
three questionnaires is to be combined. Table 4.1 shows the list of questionnaires
and the information they capture.

We continue with formalising some of the frequently used terms below.

Fn, Rn, and EODn: The food, random and End-of-day questionnaires are referred to
by F , R, and EOD. The n in the subscript denotes the feature from the questionnaire.

Session: A user submission for any questionnaire, captured at some point in time is
a ‘session’.

Ulong, Ushort: Similarly to the convention used in Section 4.2.2, the set of ‘long users’
Ulong is a set of users whose EMA time series exceed threshold length Tlength. All
users who do not exceed this threshold are ‘short users’ in set Ushort.

Baseline Model B: This model is the model built on all the data of all users in
Ulong.

Similarity Measure:The function used to measure the similarity between users
in Ulong and Ushort. The various options available for measuring similarity. Since
user behaviour in EMA apps differs so strongly between users who submit little data
and those that submit more, the medical experts suggest that one option to measure
similarity would be to look at users who are similar in their interaction patterns with
the app (the intuition being that there is some underlying similarity in the disease
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between the short users, that makes them not use the app long). Towards this end,
we explore basing the similarity either on the data of the EMAs submitted, or on
the metadata of the submitted EMAs. In case of the metadata, we use the number
of submitted responses, and in case of the data, we use the data submitted in the
response. In either case, the function we apply is cosine similarity.

Since some questionnaires can be submitted multiple times per day, while the EOD
questionnaire can only be submitted once, we compute the daily average for all
questionnaires that were submitted more than once. Additionally, since cosine
similarity can only be applied over vectors of similar lengths, we need to fix the size
of the vector in one of two ways:

• Choose the data from the first-N days of user interactions: the first N observa-
tions of us ∈ Ushort are compared against the first N observations of ul ∈ Ulong.
This method measures the similarity in the early experience of app usage
between the two users. However, has the disadvantage that the data used for
the user in ul can be very ‘old’.

• Choose the data from the last-N days of user interactions: The last N days of
observations for us ∈ Ushort are compared against the last-N days of ul ∈ Ulong.
Since the data for user us is all recent (ie, they are short, and it is the latest
data you have), you prioritise the similarity for people who are experiencing
the disease similarly in the most recent data for ul.

Personalised neighbourhood PN i = PN(ei): A personalised neighbourhood for
a patient/user ei ∈ Ushort is a set of users PN i ⊆ Ulong such that a quality criterion
C is maximised (in our proposed workflow, this is the RMSE)

We propose two ways to build a personalised neighbourhood:

• Early termination: For each user us ∈ Ushort, the early termination method
discovers a personalised neighbourhood PN(us) = {e1 . . . ek ∈ Ulong} such that
for some similarity function S, S(ei, ej) ≥ S(ei, ek)∀k > j, 1 ≤ i ≤ k − 1. A
model Ω(PN(us)) trained over this neighbourhood is subject to the condition
that the next user added to the neighbourhood increases the error (by a
margin greater than the threshold τerror). In other words, users are added
to the neighbourhood in decreasing order of similarity as long as the error of
the model in predicting us decreases. A threshold τerror is set so that very
small increases in error can be ignored. This is necessary because the early
stages of the neighbourhood can result in volatile changes to the error, and
we expect that very small increases in error might be tolerable in interest of
better generalisation thanks to the additional data of the user. Algorithm 4.1
presents the algorithm.

• Exhaustive search: The previous method searches an ordered list until the first
user is found (in decreasing order of similarity) that increases the prediction
error of the personalised model over the data of short user us ∈ Ushort. Some
degree of tolerance is built into the search progress to avoid local minima, but
the neighbourhood discovery process is highly dependent on the ordering of
users. Given that our earlier results have already shown that a kRE model
can extract roughly as much information as a kNN, we can make our system
less dependent on the ordering by searching the full list of users regardless of
whether the added user increases the error. For example, consider the case
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where 3 users A, B, and C are to be searched when building a personalised
neighbourhood. If the ‘true neighbourhood’ is {A, C}, but the addition of B
after A affects increases the error, then the neighbourhood search stops and
returns only A as neighbour. This problem can be avoided by using exhaustive
search. Exhaustive search has also the additional benefit that the results serve
as a way to validate the results from the early termination - for example, if the
discovered neighbourhoods diverge between early termination and exhaustive
search, then this shows that the similarity function is not ordering users in order
of decresing ‘usefulness’. Algorithm 4.2 presents the algorithm for exhaustive
search.

Algorithm 4.1 Discover a neighbourhood for short user us from Ulong using early
termination.
Require: User us ∈ Ushort, user ul ∈ Ulong, threshold α, similarity function S()

1: user_personalised_models = dict()
2: for us ∈ Ushort do
3: training_data = ∅
4: Sort ni ∈ Ulong|S(us, ni) ≥ S(us, nj)∀i < j
5: training_data = training_data ∪ data(n1) ▷ Start with nearest neighbour
6: Train model Ω(training_data)
7: prev_error = RMSE(Ω, data(us))
8: Ωprev = Ωcurr

9: for i|i ∈ 2 . . . |Ulong| − 1 do
10: training_data = training_data ∪ data(ni)
11: Train model Ωcurr = Ω(training_data)
12: curr_error = RMSE(Ωcurr, data(us))
13: if curr_error ≤ prev_error + α then
14: Ωprev = Ωcurr

15: prev_error = curr_error
16: Remove ni from training_data
17: else
18: break ▷ Stop expanding neighbourhood, return model
19: user_personalised_models[us] = Ωcurr

return user_personalised_models

4.3. Experiments

This section presents the results for the two methods explored under Section 4.2.1,
and subsequently those in Section 4.2.2 and Section 4.2.3. The methods described
in Section 4.2.1 are tested on the TYT and UNITI datasets for tinnitus, while the
methods described in Section 4.2.2 and Section 4.2.3 use the data generated by the
two instances of TYD app, deployed in Spain and Bulgaria respectively. The data
sharing agreement does not allow the data of these apps to be combined, so the
performances are reported separately for each. Theoretically, though, the data of
the two versions of the app can be combined, since they differ only in the language
in the user interface. An additional warning is that the TYT and UNITI dataset
are constantly evolving, and experiements conducted at different times have used
different amounts of data.
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Algorithm 4.2 Discover a neighbourhood for short user us from Ulong using exhaus-
tive search.
Require: User us ∈ Ushort, user ul ∈ Ulong, threshold α, similarity function S()

user_personalised_models = dict()
1: for us ∈ Ushort do
2: training_data = ∅
3: Sort ni ∈ Ulong|S(us, ni) ≥ S(us, nj)∀i < j
4: training_data = training_data ∪ data(n1) ▷ Start with nearest neighbour
5: Train model Ω(training_data)
6: prev_error = RMSE(Ω, data(us))
7: Ωprev = Ωcurr

8: for i|i ∈ 2 . . . |Ulong| − 1 do
9: training_data = training_data ∪ data(ni)

10: Train model Ωcurr = Ω(training_data)
11: curr_error = RMSE(Ωcurr, data(us))
12: if curr_error ≤ prev_error + α then
13: Ωprev = Ωcurr

14: prev_error = curr_error
15: else
16: Remove ni from training_data
17: continue ▷ continue with next user
18: user_personalised_models[us] = Ωcurr

return user_personalised_models

4.3.1. Datasets

Datasets: TYT The TYT dataset used in this study was exported on 22.01.2022,
with data starting 2013.08.13, and containing EMA data until the date of export.
The questions in the EMA questionnaire are already included in 2.2. There are 3269
users in the database before applying filters for minimum length, etc., of which 3161
have disclosed their gender. 2094 of the 3161 users identify as male, and the 1067
users as female. The shortest user in the dataset has contributed (unsurprisingly)
only 1 day of data, while the longest contributes 1721 days of data. The mean
number of days per user is 13.7, but with a standard deviation of 52.9, it is clear
that the average is heavily skewed by the outlier users who contribute a lot of data.
The 25th, 50th and 75th percentile for the user engagement are 1, 2, and 8 days
respectively.

For the TYT dataset, the Granger causal neighbourhood method in 4.2.1 requires a
minimum of 20 days of training data to be included in the analysis. A user needs at
least 32 days of data to be included in the analysis. With minimum of 32 days, a
maximum length of 1721 days, and a standard deviation of 156.79 days, it can be
seen that the distribution of lengths of interactions is very heavily skewed, with the
shortest user contributing approx. 50 times less data than the longest. The data
collected spans from Aug 2013 to January 2022. The variables used in the EMA
questionnaires are listed in Table 2.2. In the case of the TYT EMAs, the questions
q2 to q7 from the EMAs refer to loudness, distress, mood, arousal, stress, and
concentration respectively. The two binary questions q1 and q8 were not included as
part of the analysis. The target variable for the forecast step is set to ‘q3’ (tinnitus
distress), which is the variable of clinical interest.
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Datasets: UNITI For the UNITI dataset, all users who contributed less than 30
days of data were excluded. This left us with 179 patients, and on average 71.6 days of
data per person, with a mininum of 30 days, a maximum of 207 days, and a standard
deviation of 30.6 days. The data spans from Apr. 2021 to Jan. 2022, the data does
not allow for very long time series, although the more uniform interaction patterns
may also be a consequence of closer monitoring of these patients by physicians (the
app has features for the physician to monitor patient state and provide feedback).

Dataset: TYD Bulgaria The methods proposed in Section 4.2.2 used the TYD
dataset from Bulgaria, with N=11 users after eliminating 5 users with less than 3
days of data. Setting the τlength = 30 results in 6 users in Ulong, and 5 users in Ushort.
The figure below shows the number of days of interaction for each of the remaining
11 users (both Ulong and Ushort).

Figure 4.4.: The TYD Bulgaria dataset: Number of days of interaction for each user.
Image reproduced from [126]

Datasets: TYD The methods proposed in Section 4.2.3 use two datasets from the
TYD platform. Both datasets collect the same information from the same app, but
implemented in different languages, since they were targeting a study for Bulgaria
and Spain respectively. The main characteristics of each is dataset are outlied below:

• Bulgaria dataset: A total of 387 EMAs are collected for N=10 users. N=5
users with more than 30 days of data belonging to Ulong. In this group, the
average number of EOD-Questionnaire responses was 63, and avgerage number
of random questionnaire responses was 141.

N=5 users belong to Ushort, with an average of 13 EOD questionnaire responses,
and an average of 57 random questionnaire responses.

• Spain dataset: A total of 650 EMAs were collected for the Spain dataset
from a total of 12 users. Applying a cut-off of τlength = 30 to split the long and
short users yields N=4 users in Ulong and N=8 users in Ushort. The average
number of responses for the EOD questionnaire is 127 for users in Ulong and 18
in Ushort respectively, while the number of responses for the EOD questionnaire
was 362 for Ulong and 129 for Ushort respectively.
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4.3.2. Summarising EMA data using HMMs
The experiments towards the HMM-based method described in Section 4.2.1 involve
three steps:

1. Determining the optimal number of hidden states for the HMM

2. Computing the nearest neighbours of a patient using the trained HMM

3. Fitting kNN models based on the neighbourhoods derived from the representa-
tion in the step above.

Determining the number of hidden states: The first step has various quantitative
and qualitative solution approaches. Model complexity metrics like the AIC, BIC
and log-likelihood can be used to determine the quality of the fitted model. However,
given that the user lengths vary strongly, relying on them alone can give rise to some
negative outcomes.

For example, the small size of the training data available would bias us towards
oversimplified solutions with models that have fewer states than capture the full
patient variability. This risk is exacerbated by the fact that patterns that exist in
the tinnitus variability might appear for short users, making them less learnable. On
the other hand, increasing the number of states beyond a limit would increase the
likelihood of creating states that are occupied by one / few users. In general, we
expect this difference to be visible in the state transition matrix, where states that
are ‘traps’ (all outward transitions are very rare) are undesirable.

Since there is no expert knowledge available on the number of states that capture
the full variability among tinnitus patients, we investigate several values for the
number of hidden states, ranging from 2 to 10. Additionally to monitoring the state
transition matrices, we also monitor the emission matrix to monitor whether there
are states that are very close to each other semantically.

Keeping all the above points in mind, we fit HMM models with states ranging from
2 to 10, and use each of the resultant models in the downstream task of training
personalised models. An HMM which results in very effective personalised models
suggests that the number of states used by it are useful for grouping tinnitus patients.

• AIC, BIC

• nStates, state-values, and transitions

• Discouraging models where many users are single-state users. (despite high
AIC)

Converting the user to a fixed-length representation: Once the HMM model with
H states has been trained, the training data of each patient is used to create a fixed-
length representation of that patient to enable a similarity/distance computation
between them. In our work, we represent the patient using an h-dimensional vector,
where each dimension h ∈ 1 . . .H represents the percentage of the user’s EMA
observations emitted from that state. Using a percentage instead of a counter enables
computing similarities between patients that have different lengths, but has the
disadvantage that the values for some states become round numbers (ie, values
like 10.0%, 12.50%, 25.0%, etc.) for short sequences. Since these round numbers
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can result in zero distances / 100% similarity to other users. In order to apply a
tie-breaker, we add a very small randomly generated number of the order 10−6 to
each state (‘salting’ the vector).

For a patient ei = {o1 . . . o|Di|}, omitting the subscript for the entity i and replacing
it with the order in which the observations arrive. Each observation oi will be
generated by a state s1 . . . sH from the HMM. i.e., decoding the sequence o1 . . . o|Di|
gives a sequence of states that generated each observation. HMM_decode(ei) =
HMM_decode({o1 . . . o|Di|}), where each observation oi is generated from a state
sh

i , where h ∈ 1 . . .H. The HMM representation of a user is computed on the basis
of these states.

HMM_representation(ei) =<
count(sh==1

i )
|Di|

,
count(sh==2

i )
|Di|

. . .
count(sh==H

i )
|Di|

>

,∀i ∈ 1 . . . |Di|. Once each user is represented by the h dimensional vector, we define
the user’s neighbourhood as the the kNN of the user’s HMM-based representation:
i.e., kNN(ei) = kNN(HMM_representation(ei)).

kNN on HMM representation Once the HMM is trained and the neighbourhood
for each user is computed, the personalised model is trained with data augmentation
as already described in Section 3.2.1. To train the personalised model for a user ei,
the data of the user is pooled with the data of the k neighbours of n1

i . . . nk
i , and a

model is trained on the pooled data.

The personalised model trained over the pooled data of the user and its kNN are
compared against the global model that uses all users’ data, and against an N=1
model that is trained on the data of the user alone. Tinnitus distress is used as the
target variable (‘question3’ for TYT and ‘cumberness’ for UNITI).

Transferring the disease states from UNITI to TYT: As we saw in Section 2.2.2,
the questions regarding tinnitus loudness and distress are central to more than one
EMA app. We train our HMMs on the loudness and distress variables shared by
more than one app, and use the HMM trained on the UNITI data to decode the
sequences observed in the TYT dataset. Since the UNITI data does not get exploited
in any way while training the prediction models, we use the full dataset from UNITI
(including what would have been held out as test data) to train the HMM model.
This model decodes the TYT sequences and the rest of the neighbourhood discovery
and prediction workflows are kept identical. We investigate whether the transferred
UNITI HMM is able to match the predictive quality of the neighbourhood computed
by the HMM trained on the TYT data.

4.3.3. Summarising EMA data using Granger causalities
Computing similarity using Granger causal relationship matrices: The first step
of the workflow is the discovery of Granger causal relationships in the EMA data.
Towards this, we train the restricted and unrestricted models to find which variables
Granger cause each other. The result is a matrix of Granger causalities per user. In
our first experiment, we use the entire matrix in computing the user similarity. This
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is done through using the Jaccard similarity score, which translate intuitively to the
percentage of shared Granger causalities between two users. If GC1 and GC2 are
the Granger causalities discovered between 2 users, the Jaccard similarity between
them is computed as |GC1∩GC2|

|GC1∪GC2| .

For the TYT dataset, the Granger causalities were computed over all variables except
q1 and q8, yielding one 6x6 binary matrix per user, with the diagonals fixed to zero,
since a variable cannot Granger cause itself. For the UNITI dataset, all the EMA
variables were chosen, yielding one 10x10 matrix per user. The Granger causalities
are discovered using the implementation in the statsmodels [111] Python package.
The causalities are considered with lags ranging from 1 to 7.

Restricting the similarity to Granger causal relationships towards one variable:
The motivation behind this experiment is to capture whether some relationships
between the variables in the EMA data are more important than others. This was
done by focusing particular rows of the Granger causality matrix derived for each
user, since each row captures all the variables that have a Granger causal effect on a
particular EMA variable. In our experiment, we reduced the dimensionality of this
sparse vector using the UMAP algorithm to 2 dimensions. Although a low number,
we feel this option is justified since the original dimensionality of the vector is not
very high (6 and 5 dimensions for the TYT and UNITI dataset respectively)

For the TYT dataset, the granger causalities were discovered for EMA questions
q2 to q7 as target (q3 granger causes q2, etc.). ‘question3’ (distress) was picked as
the target variable for the forecast component. Intuitively, this may be interpreted
as: the causalities on which the neighbourhood is based is allowed to vary across
q2 - q7, and the ‘usefulness’ of a neighbourhood discovered on a particular causal
relationship is judged on the basis of its predictive power over next day’s tinnitus
distress (q3). ie, if neighbourhoods computed after setting q6 as the granger causality
target result in models with better forecast accuracy, we have reason to suspect that
stress and things that affect it play a more important role in symptom development
than another variable, like loudness.

Similarly, for the UNITI dataset, the granger causalities were computed over the
variables ‘tin day caused’, ‘loudness caused’, ‘tin cumber caused’, ‘tin max caused’,
and ‘cumberness caused’. This reduced set of variables were used because they are
the variables that collect momentary information regarding the tinnitus. The other
variables collect data about tinnitus from the whole day. The forecast target was set
as ‘cumberness’. All experiments involving k-Nearest Neighbours were repeated for
values of k ∈ 1 . . . 50.

Building the personalised model on the neighbourhood: Once the causalities are
discovered, each patient becomes a Granger causality matrix, yielding 179 and 251
matrices for the UNITI and TYT datasets respectively. For each of the definitions of
similarity discussed above, we compute the similarity between the users either as the
jaccard similarity between the (flattened) matrices, or as the (inverse of the) distance
between the reduced dimensional representations of the causalities discovered towards
each EMA variable under consideration. The neighbourhood is computed using the
kNN algorithm and our experiments vary the number of neighbours up to 50. For
each user and each k, the data of the user is augmented with the data of the k
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nearest neighbours and a model is learned on the pooled data. We stick to simple
regression models in our case due to the small data. Tinnitus distress is the target
variable (‘question3’ for TYT and ‘cumberness’ for the UNITI dataset).

4.3.4. User neighbourhoods based on their lengths of interaction

A baseline over all data: The performance of our proposed predictors that learn
only on the data of the long users need to be placed into context over the degree
of performance achievable over the dataset. Towards this end, we build a proof-of-
concept model that follows the traditional approach of training on 75% of all users’
data. The errors of this model are computed over all users, and also separately
towards the users in Ushort and Ulong. Large differences in the prediction errors for
the model towards short / long users indicate that the data of short users are unlikely
to be well predicted by the data of the long users. The end-of-day “feeling in control"
is the target variable.

Transfer a model trained on Ulong to users in Ushort: The transfer-learned predictor
is one of two predictors that are combined in our workflow to create personalised
predictions. The transfer-learned predictor is trained on the complete data of all
users in Ulong. The model is used to predict the data of the users in Ushort, the data
of which have never been exposed to the model. The prediction errors are computed
over the predictions for each submitted EMA questionnaire, but additionally to the
mean prediction errors for all Ushort, it is necessary to also compute the user-level
errors. This will help avoid being biased towards the short users that are longer.
Since the data limitation is extreme, we stick to linear regression models for the
prediction. The “feeling in control" question of the end of day questionnaire is the
target variable, and the model is trained to predict the next day’s feeling in control
given the current day’s EOD questionnaire.

Augmenting the transferred model with a kNN regressor: Since the model trained
over the data of users in Ulong only is making predictions for users that they have
never been trained on, the predictions are augmented by a user-centred predictor
that makes predictions from the earliest possible time point. The predictions of
the Ulong model are therefore augmented by the predictions from a kNN regressor
trained over each user in Ushort. The predictions from the two models are combined
by weighting them with the inverse of the errors that each model achieves over the
predictions for that user. We compare the mean errors achieved by each predictor,
and also the development of the error as more data becomes available for the users
in Ushort.

4.3.5. Improving user neighbourhoods that exploit length of user
interaction

The experiments for the methods described in Section 4.2.3 are carried out separately
for the Spain and Bulgaria TYD datasets, since privacy considerations do not allow
for the mixing of data from the separate locations, although the app and the backend
database are shared. Although this strongly limits the amount of data for learning,
these restrictions are not atypical for medical data.

71



4. Towards RQ2: Exploiting data in dynamic domain to improve neighbourhoods

Similarity function: Since the method explores building a similarity-guided per-
sonalised neighbourhood for each user in Ushort based on discovering the best users
in Ulong to learn from, we begin with an investigation of the similarity measures,
and the number of early interactions we use to measure similarity between pairs of
users in Ushort and Ulong respectively. We explore two definitions of similarity, one
that is based on submitted data, and another, that is based on the length of user
interactions (we call this data and metadata-based similarity). The most suitable
similarity function is used in the further experiments, and in the absence of a clear
difference between the various options, we will prefer measures that use fewer data
points, and result in a larger diversity among patients (since a similarity measure
that yields the same result for everyone is not useful as a ranker). To summarise,
the definition of similarity involves choosing between the following options:

• What to compute similarity on?:

– Data: Similarity is computed on the answers submitted in the EMA
questionnaires, over the time period under consideration. (i.e., people who
answer the EMA questionnaire similarity might experience the disease
similarly).

– Metadata: Similarity is computed on the number of times a user submits
an EMA response over the time period under consideration. (i.,e people
who engage with the mHealth app at different levels of intensity might
experience the disease similarly).

• Over which time period is similarity to be computed?

– First N observations

– Last N observations

• How long is the time period?: The value of N is varied between 5 to 8.

Baseline model: The performance achieved by the proposed methods are measured
against a baseline model that is trained using a classical machine learning approach
of using 75% of all available data for training the model. The end-of-day feeling in
control was used as the target variable for both datasets.

Early Termination v/s Exhaustive Search: The early termination and exhaustive
search methods fit multiple models for each user in Ushort, as they explore the best
set of users in Ulong that predict them. The addition of users from Ulong happens in
decreasing order of the similarity measure chosen in the previous experiment. We
compare the degree to which the early termination models approach the performance
of the exhaustive search model, and also compare the performance of both of these
methods against the baseline described above. In addition to the performance of the
models, we also consider the amount of data used by each of the models to achieve
their performance.

4.4. Results and discussion
The following sections describe the results for the methods presented in Sections
4.2. We begin with the degree to which the EMA data can be summarised using
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HMMs (4.4.1), and Granger causalities (Section 4.4.2) for neighbourhood discovery.
We follow with the methods that consider the length of user interaction instead of
the EMA data itself, with results for the methods from Section 4.2.2 discussed in
Section 4.4.3, and results for the methods from Section 4.2.3 discussed in 4.4.4.

4.4.1. Personalised models on EMA data summarised using HMMs
Number of HMM states: The first step in the workflow is to discover the optimal
number of HMM states. We fix the training and test data for our model to 70%
train and 30% test. i.e., 70% of each user’s data is added to the training set and 30%
belongs to the test set and is not used for learning.

We run experiments that vary the number of states between 2 and 10, and use
the open source hmmlearn package from PyPI repository. We train GaussianHMM
models without restricting the covariance matrix (i.e., covariance_type is set to
‘full’). The minimum sequence length is set to 21, which is a consequence of fixing
the shortest length of a user to 30 days of data, since 70% of 30 days is 21 days.
The HMM is trained on the 2 variables that are most commonly present across all
EMA apps of tinnitus, namely, ‘loudness’ and ’distress’ for TYT, and ’loudness’ and
’cumberness’ for the UNITI app. Both variables capture the same information - the
momentary loudness and distress due to tinnitus.

For each trained HMM model, we have several pieces of information to decide which
model fits the data best. We have the AIC, BIC and log-likelihood values for each of
the HMMs, but we also need to compare these numbers against the state transition
matrix and the values of loudness and distress for each state to make a judgement
call on which model to use. This process is repeated for each dataset.

Figures 4.5 and 4.6 show the plot of the model scores (AIC, BIC, and log likelihoods)
for the TYT and the UNITI datasets respectively. We see that the AIC and BIC
scores show steady decline with increasing number of states, while the log likelihoods
increase. This is expected since the dataset as a whole is still best described by
low number of states, while the explanatory power of the model for patient specific
sequences increases. This result is also backed up by the fact that as the number of
states increase, the number of users with 100% of their data explained by one or few
states increases. Further evidence that the highest AIC model is not useful is shown
in Figures 4.7 and 4.8, where it can be seen that the states capture <low loudness +
low distress> and <high loudness + high distress> states respectively mediated by
transition matrices that make transitions between them unlikely. The results for all
the HMMs trained between 3 and 10 states is provided in Appendix A.2.1. Although
it can be seen that when number of hidden states ≥ 6 there are state-pairs that are
formed with very similar mean loudness and distress. We therefore apply the patient
representation for all HMMs, following the expectation that a ‘useful’ representation
of the disease (number of states that results in low error) is likely to be correct.

Performance of a personalised kNN model: The performance of a model trained
on the pooled data of a user and its kNN is shown in Figures 4.9 and 4.10 for the
TYT and the UNITI datasets respectively. Each line in the chart depicts the quality
of a neighbourhood computed on the basis of a model trained with 2-10 states.
Unfortunately, the lack of variation between the different states shows that the HMM
approach does not work well. The results also do not appear to be dataset-specific.
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Figure 4.5.: The TYT dataset: The AIC, BIC and log likelihoods

Figure 4.6.: The UNITI dataset: The AIC, BIC and log likelihoods

Figure 4.7.: The TYT dataset: State means and transition matrices for HMM with
2 states
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Figure 4.8.: The UNITI dataset: State means and transition matrices for HMM with
2 states

The UNITI dataset is more ‘regular’ than the TYT dataset, but apart from there
being a sharper fall in the errors for the first few neighbours, the exact number
of hidden states in the HMM seems to have little impact on the overall prediction
quality. It does seem, however, that the increased irregularity in the TYT data does
have a detrimental impact on the HMM, since the performance in the UNITI dataset
is marginally better.

While the results are modest, it is important to note, however, that in both datasets,
the personalised model using neighbourhoods beats the performance achieved by
the global model. The performance advantage of the personalised model is small:
≈ 2.9% improvement in RMSE for UNITI and ≈ 9.6% improvement in RMSE for
the TYT dataset. However, it is important to note that these modest performance
improvements come with using just ≈ 6% and ≈ 1.5% of the total users in the
dataset. These results suggest that there is some advantage in using HMMs, but it
is the author’s opinion that the benefits are probably derived more from indirectly
‘leaking’ the average loudness and distress values rather than the HMM learning the
disease dynamics.

The model trained on all available data of the UNITI dataset was also used to decode
the sequences in the TYT dataset prior to the neighbourhood computation. The
performance achieved by the transferred HMM model personalised with the kNN of
each user is as shown in Figure 4.11. Similarly to the results for the model trained
over TYT data, the transferred HMM model does not have a ‘correct’ number of
states for which the error is substantially lower. However, it can also be seen that
the errors are only marginally (≈ 10%) higher.

4.4.2. Personalised models based on EMA data summarised using
Granger causalities

Granger causalities discovered in two datasets: We run the Granger causality
discovery for each patient in the EMA data for the TYT and UNITI datasets, and
Figures 4.12 and 4.13 show the most frequently identified relationships in the two
datasets.

The frequency of causalities observed in the TYT dataset vary within narrower ranges
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Figure 4.9.: The TYT dataset: RMSE (Y-axis) for kNN model trained on HMM-
inferred neighbourhood for different values of k (X-axis)

Figure 4.10.: The UNITI dataset: RMSE (Y-axis) for kNN model trained on HMM-
inferred neighbourhood for different values of k (X-axis)
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Figure 4.11.: Transferring the HMM: RMSE (Y-axis) for kNN model trained for TYT
on HMM-inferred neighbourhood transferred from the UNITI dataset
for different values of k (X-axis)

than those found in the UNITI dataset. This indicates either that the causalities are
the results of Type I error in the TYT dataset to a greater degree than in the UNITI
dataset, or that the UNITI dataset has more complex interactions between variables
due to the fact that the app mixes questions about the whole day with those about
the moment.

Neighbourhoods build on the full similarity matrix: Since each user is represented
as a matrix of Granger causalities within their EMAs, one definition we explore
for similarity is to define the similarity between two users as the jaccard similarity
between the flattened Granger causality matrices. Using this definition for similarity,
we apply the kNN algorithm to discover the kNN for each user, and train a data-
augmented personalised model for 1 ≤ k ≤ 50. The results for the TYT and the
UNITI data are shown in Figure 4.14 and 4.15. The results for the kNN model are
also compared against two baselines - one that is trained on all available data (Global
model), and one that is trained only on the training data for that user (N=1 model).
The average error for the kNN model is shown in blue, with global model shown
with a red dotted line, and the N=1 model shown with the green dotted line.

For the TYT dataset, it can be seen that the N=1 model outperforms the global
model trained over all users, but more importantly, it can be seen that the kNN
model has a small performance advantage over the global model, which gradually
diminishes as the k gets large. While the neighbourhood model is not able to meet
the performance of the N=1 model, the granger causalities appear to be able to find
a better neighbourhood than the global model. While the performance benefit is
not encouraging, it is important to remember that the model with k < 10 is able
to exceed the performance of the global model trained on a lot more data. This is
especially relevant when considering the fact that the neighbourhood of a user is
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Figure 4.12.: The TYT dataset: Percentage of patients with a particular Granger-
causality. (Variables on the Y axis are caused by the variables on the
X axis)
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Figure 4.13.: The TYT dataset: Percentage of patients with a particular Granger-
causality. (Variables on the Y axis are caused by the variables on the
X axis)
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Figure 4.14.: The TYT dataset: Performance achieved by the personalised model for
different sizes of k.

considered a useful output along with a predictive model for that user. The fact that
the neighbourhoods are useful is also suggested by the fact that for large values of k
the performance of the model approximates the performance of global model.

For the UNITI dataset, the relationship between the global and the N=1 model is
reversed, with the global model performing better than the N=1 model. A deeper
analysis of whether this is due to the longer sequences available for the UNITI users
is necessary to understand this results. However, we also observe that the kNN model
comfortably beats the performance of the N=1 for small values of k, and that for
k > 10, the performance of the kNN model exceeds the performance of both models,
although beating the global model by only a small margin. However, it needs to be
noted that this performance comes with a lot less data than the global model uses.
Larger values of k appear to bring no additional benefit, suggesting that smaller
neighbourhoods are sufficient to make personalised predictions.

Since the personal models are worse for UNITI, we investigated whether the average-
user level RMSEs were skewed towards higher values by a few long users with high
prediction error. We see from Figure A.17 in the appendix that this is not the case,
since the boxplot for the user-level errors shows that the global model has lower
errors for more users than the personalised model.

Neighbourhoods based on Granger causalities towards specific variables: Our
first investigation of the commonly occurring Granger causalities in the EMA data
(see Figures 4.12 and 4.13) showed that some causalities appear more frequently than
others. Since a large number of models are fit with multiple lags in the discovery of
Granger causalities between each pair of variables, the likelihood of Type I errors is
quite high. We therefore investigated whether focusing on causalities towards one
specific variable results in better neighbourhoods than including all the variable-pairs
in the computation. To accommodate for the fact that the absence of a commonly
occurring Granger causal relationship also contains valuable information, we reduce
the dimensionality of the binary Granger causality vector to 2, and use this two-
dimensional vector to compute the kNN of the users. The rest of the modelling
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Figure 4.15.: The UNITI dataset: Performance achieved by the personalised model
for different sizes of k.

process is kept as-is, with the target being tinnitus distress: ‘question3’ for the
TYT dataset, and ‘cumberness’ for the UNITI dataset. For the UNITI dataset, we
only investigate the relationships between the five EMAs that capture momentary
information, rather than daily summaries.

Neither dataset showed improvements in the performance of the personalised neigh-
bourhood model upon restricting the neighbourhood computation towards a single
question. Figures A.18 and A.19 show the results for TYT and UNITI dataset
respectively.

The TYT dataset shows an increasing error trend on the restricted neighbourhood
computation as compared to the unrestricted, suggesting that valuable information
is lost when focusing only on casualties towards one particular question. Apart from
not affecting the averages, the decision to focus only on the interactions between
some of the EMA variables also does not appear to affect the spread in the errors,
since the dotted lines showing the 5th and 95th percentile of the errors is not affected
by the gctarget.

4.4.3. Exploiting lengths of user interaction to build personalised
neighbourhoods

Baseline model: The first experiment establishes the degree to which a model
trained over the data of all users predicts the observations of the users in Ushort and
Ulong respectively. The performance (as measured by the MAE) of the global model
over the predictions of the long and short users are shown in Figure 4.16. The fact
that the performance of the global model over the short users and long users is not
too different suggests that the data of the long users can indeed be used to predict
the data of short users (i.e., they are not so different that a model trained on one
cannot be used for the other). However, it is important to remember that these
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Figure 4.16.: The TYD-Bulgaria dataset: Performance of the global model on the
predictions for all users, Ulong (L), Ushort (S) respectively. (Image from
[126]).

Figure 4.17.: The TYD-Bulgaria dataset: Performance of the global model on the
predictions for all users, Ulong (L), Ushort (S) respectively. (Image from
[126]).

errors are not fully reliable, since the amount of holdout data for the short users is
also very small, since we fixed 25% of the data for testing. However, the error for
users in Ushort serve as a lower bound for what errors can be achieved by the model
transferred from Ulong.

Performance of the model transferred from Ulong: The errors in Figure 4.16
establish a lower bound on the errors that are achievable for a model transferred
from Ulong to Ushort. In the case of the transferred model trained on Ulong to predict
for users in Ushort, we train the model on all users with more than 30 days of data.
Figure 4.17 shows a boxplot of the prediction errors for the transferred model.

Using the model transferred from Ulong increases the MAE from 24.76 compared to
17.2 when the data of all users is used. It is to be noted that although this error is
higher, the predictions are now being made for patients that the model was never
trained on. The error measure is also unfortunately biased towards the longer users
in Ushort, since they have more sessions to predict. The boxplot show the errors for
each prediction for each session for all users in Ushort, but we also track the errors of
the transferred model at the user level. The MAE achieved by the model for each
individual user in Ushort is shown by the blue dots in the box plot. We see that the
MAEs range from 21 to 35, and the fact that the mean is 24.76 shows that the longer
users are indeed better predicted by the transferred model than the shorter ones.
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Personalising the transferred model with incrementally available data from Ushort:
In this workflow, we add a kNN regressor over the past history of each user in Ushort,
which makes predictions along with the transferred model from Ulong. While the
transferred model is not personalised, the Ushort model is fully personalised and relies
exclusively on the user’s own past to generate predictions. The training data for
the kNN regressor is the user’s history up until that point, and the target is the
“feeling in control” at the next time point (this means, of course, that the last session
in every user’s sequence is not usable since the value of the target variable is not
known). In our experiments, we set the kNN regressor with k = 2 (the minimum
possible value), so that the smallest number of observations are lost to training, and
the maximum number of predictions are available for evaluation. Please note that
the kNN regressor proposed here works differently to the kNN approach used in the
previous methods discussed in this work. While the previous methods applied the
kNN at the user level to find a list of ‘best users to learn from’, the kNN regressor in
this case is applied at the session level, and the use case is closer to “how did the
user behave the last time their data looked like the current session?”.

For each item in the sequence, a prediction is possible from the Ulong model, as well
as the user’s own kNN regressor. As with any ensemble, several approaches can
be used to combine the two predictions. We propose that the two predictions are
combined using the inverse of the user-level errors accumulated by the two models
on the observations so far. i.e., instead of fixing the weight of Ulong model and the
kNN regressor, we track the performance of each of these predictors at the user
level, and combine the predictions weighted on the inverse of the errors they achieve.
Figure 4.18 shows the results achieved by the transferred Ulong model, the kNN
model, and the model that combines the predictions from each using the weighting
scheme described above. It can be seen that although the user-centric kNN and the
transferred model have similar errors, the kNN workflow has a lower median MAE,
even if it comes at the cost of increased number of large errors. The fact that the
means and the medians of the two models deflect in opposite directions by roughly
the same magnitude suggest that the two models both make large errors, but with
opposite tendency. The error-weighted combination of the two predictors leads to
a more balanced set of predictions (with mean and median MAE ≈ 20), with a
comparable mean MAE to the kNN regressor, while also avoiding the extreme errors
of both models.

In addition to the numbers from the combined weights, we also investigate how the
error of the predictors develop over time for the users in Ushort. Figure 4.19 shows
how the mean MAE over all users develops over time as the sequence length of
the users in Ushort increases. Since we set k = 2 for our kNN regressor, the first
two observations are predicted purely by the linear regressor trained over all Ulong ,
and the mean errors for the subsequent predictions are plotted separately for the
linear regressor (Ulong model), the user centric kNN regressor, and the error-weighted
combination of the two. It can be seen that the weighted combination (green line)
follows closely the development of the kNN regressor centred on the user’s own data.
This suggests that the predictions generated by th user centric regressor get higher
weight (due to lower error). Although the small size of the dataset warns against
generalisations, the downward trend in the kNN regressor’s errors is also encouraging,
since it suggests that the longer users in Ushort are developing in a way that makes
them more predictable given their own data.
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Figure 4.18.: Performance achieved by the transferred Ulong model (basic workflow),
the user-centric kNN regressor, and the model that combines the pre-
dictions of both based on user error. (Image from [126]).

4.4.4. Personalising neighbourhood sizes built on user interaction length

This section discusses the results for the experiments described in Section 4.2.3. We
build upon the results from Section 4.4.3, and investigate whether all users in Ulong

are equally valuable for the users in Ushort when building personalised predictors.
To this end, we use a minimal subset of the dynamic data in order to measure the
similarity between pairs of users in (Ulong, Ushort), and explore the users in Ulong

incrementally in decreasing order of similarity as long as the resultant model achieved
good performance over the user.

To reiterate the list presented in Section 4.3.5, we investigate 3 aspects of the
similarity - whether it is computed on the data or on the number of data points
contributed by the user, whether we use the first N or last N observations from the
user, and how many days of data do we consider for the computation. We do not
increase the N beyond 8 in interest of preserving as much data for model training
as possible. The full results for all options for the Bulgaria dataset are shown in
the appendix under Figure A.20. For the rest of this work, we choose data-based
similarity, computed over the first N=5 days on the data in the EMA responses.
The reasons for these choices are: (a) The plots show that the decisions do not have
a huge impact on the similarities computed by the methods. (b) we preferred the
decisions that caused a larger interquartile range in the boxplots, with the motivation
that a similarity measure that finds everyone highly similar is of no use in ranking,
and (c) the first-N days of all users are directly comparable since they are similarly
mature within the system, while the last N days of different users might come from
very different levels of maturity. A snapshot for the Bulgaria dataset is shown in
Figure 4.20.

Exhaustive Search v/s Early Termination: Comparison with Baseline Our two
proposed methods, the exhaustive search and the early termination are both compared
against the classical machine learning baseline of training on 75% of all available
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Figure 4.19.: Comparing the errors of the transferred Ulong linear regressor, the user
centric kNN regressor, and the error-weighted combination of the two.
(Image from [126])

data from all users. The errors achieved by the models are shown in Table 4.2, for
using the data based similarity measure with N=5. Table A.2 in the appendix shows
the counterpart for metadata-based similarity for N=5. We see that the choice of
similarity value that guides the neighbourhood exploration process does not impact
final model performance strongly.

Dataset Baseline Model
(RMSE)

Exhaustive Search
(RMSE)

Early Termination
(RMSE)

BG 24.300 22.524 23.700
ES 23.165 14.675 14.675

Table 4.2.: TYD Bulgaria (BG) and TYD Spain (ES) datasets: Errors achieved by
the exhaustive search and early termination method compared to the
baseline model. Similarity measure used: First-5 data points

For both Bulgaria and Spain, the exhaustive search method yields personalised
models with better performance than using all available data. This is a remarkable
result, since the models are learning on subsets of already small data to achieve, in
the case of the TYD Bulgaria dataset, comparable results, and in the case of the
TYD Spain dataset, much better performance. The early termination method also
performs comparably to the baseline model for the Bulgaria dataset, and much better
than it for Spain. However, the performance of the model needs to be investigated a
bit further, since both the exhaustive search and the early termination models can
converge on the entire dataset for learning (since it is logical to assume that more
data is better). To investigate the neighbourhoods discovered by the model, we need
to look closer at the results to the user-level models, their errors, and the amount of
data they are trained over.

The user-level analysis of the errors and data used by the baseline (B), Exhaustive
Search (ES), and Early Termination (ET) models are shown in Table 4.3 for the
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Figure 4.20.: Boxplot for computed similarities (Bulgaria dataset): Final choice of
data-based + N=5

similarity based on EMA data (for results for metadata-guided similarity, please see
Table A.3 in the appendix). We see that for 3/5 users in Bularia, and for 7/8 users
in the TYD Spain dataset, the exhaustive search model exceeds the performance
of the baseline model, while using only 57% and 30% of the data respectively. It
can also be seen that the performance difference between the early termination and
exhaustive search models are very close for both datasets. It can be seen that for 3/5
users in Bulgaria, and for 7/8 users in Spain, the early termination method found
the same neighbourhood as the exhaustive search. Coupled with the fact that the
exhaustive search converges on a neighbourhood that is not the entire dataset used
by the baseline model, this suggests that the similarity guided framework does indeed
find suitable neighbours to learn on.

4.5. Conclusions
In Section 3.2, we introduced approaches that exploit the static data of entities to
build neighbourhoods that can be exploited to create personalised predictors. In
Section 4.2 , we explore another approach towards the same goal by exploiting the
dynamic data of the entities. Towards this end, we investigated the approaches
presented in Section 4.2.1, which summarise the data in the dynamic domain using
either HMMs or Granger causalities, while the approaches in Section 4.2.2 and 4.2.3
explore exploiting the length of user interactions to find groups of users that can be
used in the training of personalised predictors.

4.5.1. RQ2.0.1 Exploiting similarity in dynamic data using HMMs:
In this approach (see 4.2.1), we propose training HMMs on the pooled EMA data of
all users to learn the ‘disease dynamics’, and then represent each patient’s dynamic
data as a ‘summary’ as described by the HMM states they visit.

• We trained the HMMs on data from two EMA apps and investigated the states
and transition matrices to find that model quality metrics like AIC and BICs
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Dataset User_ID B
(RMSE)

ES
(RMSE)

ET
(RMSE) |B| |ES| |ET|

BG

1 36.26 24.69 31.58

316

145 100
2 30.07 28.38 28.09 267 216
3 19.38 20.15 20.15 171 171
4 23.24 25.39 25.39 171 171
5 23.47 22.01 22.01 149 149

ES

1 32.14 30.49 30.49

505

89 89
2 42.82 35.93 35.93 89 89
3 30.36 7.11 7.11 89 89
4 23.82 11.3 11.3 84 84
5 18.38 6.78 6.78 280 280
6 23.92 10.81 10.81 195 195
7 21.97 14.52 14.52 195 195
8 11.77 12.23 12.23 195 195

Table 4.3.: User-level RMSEs and training data size for the exhaustive search, early
termination, and baseline models

have difficulties with balancing quality and capturing idiosyncrasies of users.

• We proposed a method to represent EMA sequences of unequal lengths as
fixed-length vectors that summarise the EMA sequences. This is done by
summarising a patient as the percentage of time they spend in each hidden
state.

• Since investigating the model’s parameters did not help find the ‘correct’
number of HMM states for both datasets, we investigated the efficacy of
all the trained HMMs (between 2 and 10 states) in discovering personalised
neighbourhoods - the rationale is that any number of states h that results in
predictive neighbourhoods for the personalised models is capturing underlying
hidden states that accurately represent the disease. However, we found that
the performance of the personalised predictors does not depend on the number
of hidden states h.

• Although the number of states was not found to affect performance too strongly,
in both datasets, the HMM-based neighbourhood resulted in better predictions
than the global models with small neighbourhoods:

– UNITI Dataset: the 10-state summary resulted in the models with the best
performance (RMSE of 13.9), beating the global model (RMSE of 14.4)
by 3.5%. It is, however, the opinion of the author that this representation
is probably overfit. The model with h = 6 shows the sharpest declines in
error with increasing neighbourhoods compared to all other models, and
even with only the data of the 10 nearest neighbours, the model achieves
an RMSE of 13.999 v/s the global model’s 14.403 (2.9% improvement).

– TYT Dataset: Like the UNITI dataset, the charts show that the perfor-
mance of all HMM-based neighbourhoods were comparable, but the TYT
model with 4 states showed the best performance with k = 21, with an
RMSE of 0.17248, compared to the global model error of 0.19145. i.e.,
the performance is 9.9% better than the global model while using the
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data of only 6.6% of the users. Other models (6-state HMM) achieved an
RMSE of 0.173, i.e., a 9.6% improvement using only the data of 5 nearest
neighbours (1.5% of the users!).

• Our investigations towards transferring the knowledge of tinnitus dynamics from
one app into another showed that an HMM trained on the UNITI dataset can
(although to a lesser extent), inform about patient neighbourhoods in the TYT
dataset. Small neighbourhoods exceeded the quality of both the N=1 and the
global model, with larger neighbourhoods adding less related users, increasing
the errors to approach the global model. Even modest neighbourhoods achieved
performances of RMSE = 0.177, an ≈ 7.5% improvement.

• Further investigations are necessary to determine if the HMMs are indeed
a useful part of the workflow. The opinion of a clinician on the states and
their transitions can help fix the number of hidden states, and the further
investigations can also explore the possibility to separate out users that visit
similar states but in different order. The HMM can also be trained on data
preprocessed to capture deviations in symptoms instead of symptom intensity
itself (this method was not explored because this makes the HMM states much
harder to explain).

4.5.2. RQ2.0.2: Exploiting similarity in dynamic data using Granger
causalities:

In this approach (presented in Section 4.2.1), we proposed a method to discover
neighbours for each user by summarising their unequal-length EMA sequences as
a matrix of Granger causal relationships within each sequence. Since the space of
possible Granger causalities in the EMA time series is n(n − 1) for an EMA time
series of dimensionality n, we can represent each variable length sequence with its
fixed-length Granger causality matrix. We explored two methods to use the matrix to
discover neighbourhoods for training personalised predictors, and tested the approach
on the TYT and UNITI datasets.

• The Granger causality methods discovered some causalities occur more fre-
quently than others in the EMA datasets. This is intuitively true, since some
variables preferentially interact with the future values of others.

• Since the output of the Granger causality discoverer is a binary matrix of
the discovered causalities between the variables, we propose computing the
similarity between users using the jaccard coefficient in their ‘flattened’ matrices.
This translates to the similarity between a pair of users being defined as
the percentage of total causalities that they share. For the TYT dataset, a
personalised model built on the kNN of a user as defined by this similarity was
seen to outperform the global model built over all users’ data, but the error of
this model increased to approach the global model for larger values of k. This
suggests that the nearest neighbours are indeed identified correctly, but the
large number of tests for Granger causalities introduces too much noise into the
system. This problem is further exacerbated by the fact that the TYT dataset
has more sparse data. For the UNITI dataset, the error shows a downward and
flattening trend, with even small neighbourhoods exceeding the performance of
the global model by margins similar to the HMM use case. This is also in line
with expectations since the UNITI dataset has more regular data.
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• Combining the results form the two datasets, we see that for more regular
EMA data, Granger causalities may indeed approximate / improve on the
global model with far less data (less than 10 neighbours), while providing
out-of-the-box GDPR-compliance (the effects of data removal are localised to
few users).

• Although the results are shown for various values of k, each user has different
causalities over which neighbourhoods are computed. The neighbourhoods of
a user can serve as a valuable starting point for clinician when assessing the
importance of the symptoms and their relationship with tinnitus distress.

• The idea of restricting the similarity computation towards individual rows
in the Granger causality matrix showed that causalities towards no single
EMA question dominated the others in terms of model performance (i.e.,
relationships toward ‘distress’ were not more important than relationships
toward ‘exhaustion’, for example). This shows that neighbourhoods need
to consider all causalities when assessing similarity. It is possible that more
complex methods that capture (non-linear) relationships in the causality matrix
- especially those that can track the importance of the absence of a commonly
occurring relationship, can extract more information from the EMA data. Our
attempt to use UMAP dimensionality reduction did not succeed.

• More than one method may be simultaneously applied to discover neighbour-
hoods. The use of Granger causality may be applied alongside other methods
(for example, the HMM method above) to find users similar that benefit the
model.

4.5.3. RQ2.1-2.2: Exploiting user interaction length to train personalised
models

The approaches presented in Sections 4.2.2 and 4.2.3 consider learning for users with
very different lengths of interaction. As the problem of ‘short’ users is a common
one in EMA datasets with self-reported questionnaires, models that are able to
make predictions for users that are typically excluded from most machine learning
methods due to insufficient data is a challenge. In order to investigate if predictions
are possible, it is necessary to first examine whether the data of ‘long’ users does
indeed predict short ones, and to what degree these predictions can be augmented
for personalised predictions. Our approach is tested on two TYD datasets, one from
Spain and the other Bulgaria. The two datasets are dissimilar in which type of
diabetes is more common (Type 2 diabetes is more common in the Bulgaria dataset),
and data privacy restrictions do not allow combining the datasets for learning.

Our main findings are summarised below:

• We explored the degree to which the ‘long’ users (that contribute more than
30 days of data) predict the behaviour of ‘short’ users. We see that the model
transferred from long users shows higher error than the baseline model trained
over all users’ data.

• We found that the predictions of the transferred model learned over the long
users can be augmented by a second personalised predictor that sees only
the history of the short user. We build a kNN regressor for each user, and
found that using an error-weighted combination to combine the predictions
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of each model balances out the extreme errors of each model, with the mean
and median prediction errors coming closer. We see therefore that the length
of the user interaction does help increase predictability at the user level, and
that the differences between the long and short users can be bridged using the
error-weighted combination of the two models.

• We did not test for larger values of k since our datasets were too small,
but further work can explore the effect of this approach on other datasets less
constrained by user length. However, our goal of making predictions early in the
user’s history prefers smaller values of k. Future work can also integrate other
sources of data / questionnaires, since our current work has only investigated
the EOD questionnaire.

• Next, we explored the possibility that some long users might be more ‘useful’ in
terms of final prediction quality than others. Towards this end, we propose two
iterative neighbourhood discovery methods that searches the space of available
long users in decreasing order of similarity. We found that the exact definition
of similarity (based on data / user interaction intensity) does not strongly
affect model performance. This suggests that while the incremental neighbour
discovery method does have benefits, the similarity between users itself is not
well captured by the data or the metadata of the user.

• We found that the for a majority of the users (especially in the TYD Spain
dataset), the greedy search of most similar neighbours yields the same user
neighbourhood as the exhaustive search method that does not terminate the
loop on encountering the first user that increases error. This finding is at odds
with the insensitivity of the methods to the exact definition of similarity, and
needs to be replicated in larger datasets. We also see that our early termination
and exhaustive search methods both create models that outperform the baseline
model that is trained on all users’ data, performance gains of 2.5%-36% while
using only 40%-69% of the training data. This fact is to be seen in the context
that the user’s own data is not used to train the models, but only to find the
best neighbours.

• Since the neighbourhood discovery methods work on predicting users that
are not included in the training data, extensions to our method can easily
make it more practical - i.e., the large number of models trained during the
neighbourhood discovery process can be ‘memoised’ so that a newly joining
user can easily poll the existing models for prediction quality without the need
to retrain. However, the overhead needs to be assessed for efficacy since our
datasets are small and the linear models train quickly even on commodity
hardware.

• Like with our other methods that deliver a neighbourhood for each user, the
neighbourhood itself might contain information that enables the physician to
conduct further analyses.

• The proposed methods are not validated on larger datasets. The small size of
the two TYD datasets is the most significant threat to validity. Although the
results have replicated for 2 datasets, they are both small.

The methods proposed in this chapter build upon the results that static data
can be used to discover neighbourhoods to create personalised predictors, but the
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neighbourhoods based on static data are not much better than choosing neighbours
randomly. The methods proposed in this chapter, therefore, attempt to use the
dynamic data in two ways: (a) one that summarises the variable-length sequences
based on their temporal properties, and (b) one that uses interaction length to split
users into two groups, with the aim of creating predictors for the ‘short’ users on the
basis of their ‘long’ counterparts.

Our accumulated results suggest that building personalised predictors on the basis
of neighbourhoods derived from static data and the personalised neighbourhoods
derived from dynamic data both do not adequately capture the complex underlying
similarities required to augment kNN-based personalised models. This is because of
the unreasonable effectiveness of the kRE baseline, the insensitivity of the results to
the number of HMM states and Granger causality targets, and the insensitivity of
the neighbourhood discovery process to the similarity function. In the next chapter,
we consider the logical extension that discovers neighbourhoods iteratively using
models validated over the dynamic data.
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neighbours: Towards a supervised
approach to modelling similarity

This chapter is based on the outputs from the following papers:
[128] Unnikrishnan, Vishnu et al. “A Similarity-Guided Framework for Error-

Driven Discovery of Patient Neighbourhoods in EMA Data”. In: Advances
in Intelligent Data Analysis XXI. Cham: Springer Nature Switzerland,
2023, pp. 459–471

• The work presented in 5.2.2 that removes user ordering from the neigh-
bourhood discovery process is as-yet unpublished work.

5.1. Motivation and comparison to related work

Our proposed methods in Section 4.2 explored various aspects of including the dy-
namic data to help create neighbourhoods. Both the methods exploring summarising
the EMA sequences were unsatisfactory in terms of model performance. Although
they approximated the performance of the global model with a fraction of the data
(<10% of the users), the Granger causality method likely suffers from negative effects
of irregularity in the collected sequences. This can be seen by the increasing error in
the kNN model, as well as the rather uniform distribution of discovered causalities.
The HMM model for EMA summarisation, similarly, has a tendency to be influenced
by the longest users. Both methods show worse performance on the TYT dataset,
suggesting that the more sparse the EMA data becomes, the less reliable the methods
become.

In addition to the two EMA summarisation approaches, we also saw that the iterative
user neighbourhood discovery function was quite insensitive to whether the data or
the metadata of the user was used while discovering its neighbourhood. Intuitively,
this suggests that our similarity function does not adequately capture the true
underlying similarity between the users. Since our results also show that ‘long’ users
alone do not predict ‘short’ users, we explore the possibility of using the dynamic
data from each user as a validation set to discover user similarity.

Towards this end, we propose two methods that discover the optimal neighbourhood
by iteratively expanding the neighbourhood they are trained on as long as the
performance of the personalised model does not deteriorate. It is our hope that the
iterative neighbourhood discovery brings two benefits:

• Our results from Section 4.4.4 show that not just the neighbourhood, the
neighbourhood size can also be personalised. Apart from the obvious benefits
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of personalisation, we also see this as natural for EMA-like datasets since each
additional neighbour brings different amounts of training data to the model.

• The idea of using the performance of the model instead of the user characteris-
tics might help avoid the complexity of similarity computation, and capture
neighbourhoods that accommodate the complex heterogeneous data.

Like for the methods in Section 4.2, we focus on creating predictions for the target
variable at time t + 1 given all other variables at time t. Our proposed methods are
described in 5.2, but we will first begin with a discussion of some related literature.

The main link to algorithms that self-select their learning data comes from semi-
supervised learning and active learning. Active learning and its basics are introduced
in the mature but comprehensive survey of Burr Settles [113]. The main idea behind
active learning is that the learning algorithm itself chooses the data that it is trained
on, with the additional assumption that unlabelled data is plentiful and labelled data
is scarce. Most work focuses on ‘pool based’ active learning scenarios, where there is
a small pool of labelled data L, and the goal of the active learner is to exploit the
labelled data as well as the unlabelled data in order to find the best instances from
the unlabelled pool U that should be added to the labelled pool L. The labelling
process is assumed to be carried out by an ‘omniscient oracle’, which is typically
a human in the loop. The fact that the labelling process involves a human places
strong emphasis on active learning algorithms to request as few labels as possible,
and the goal is to achieve the best performing model for the data in U and L.

Several approaches exist for active learning - some examples are stream based selective
sampling [3], which decides on the fly whether to query the currently processed
instance for a label based on some criterion. If the data is small enough to be stored,
pool based approaches in those explored in [114] typically pick instances to pick
greedily, according to an informativeness measure. The measures can pick instances
based on model uncertainty, based on disagreements between ensemble members, the
amount of change to the model, the drop in the model error, or decrease in model
variance after incorporating the new information. Of all the methods presented in
the survey, our proposed method is closest to expected error reduction, since we use
the validation data of each user as a proxy for how well the model would perform
upon the addition of the next user. However, unlike in most methods discussed in the
literature where algorithms choose their own training data, we do not pick individual
data points, but rather entire sets of EMA data based on the user in question.

More recent interest in active learning focuses on combining active learning methods
with deep learning. According to a survey on the topic [95], the ability of deep
learning to extract features can be combined with active learning’s ability to query
instances iteratively to improve the model. The methods have been successfully
tested in data from domains ranging from image recognition to text classification.
The methods presented in the survey detail how many sampling strategies can be
used in a deep learning context. Since our data is not large enough for deep neural
networks, and since there is no need for a human labeller of instances, we do not
explore this topic further. The interested reader can refer to the book [68] for a
comprehensive overview of the main methods and where they can be applied.

Semi-supervised learning is another body of work to which we relate tangentially.
As explained in the survey [129], semi-supervised methods aim to combine existing
unlabelled data and labeled data in order create better classifiers. From the taxonomy
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presented by Van Engelen & Hoos, the “wrapper” methods are closest to our work,
where out-of-the-box classifiers are applied on the available training data, and are
then iteratively expanded with labels of instances that are predicted with high
confidence by the model. This is analogous to the case where an out of the box linear
model is trained on the data that we expect reduces model error. This is called “self
training”, and although a mature idea [139], continues to find use in more recent
times [120]. The authors warn that self training methods are sensitive to the order
in which training data is added, since the ranking of instances determines the model
itself, and the confidence with which it makes predictions. This warning applies to
our workflow as well, but we hope the impact is slightly lessened by our workflow
selecting the next user to be added, instead of simply the next instance.

Another family of methods of tangential relevance is automatic feature selection
algorithms. Our proposed method is similar to the wrapper based methods discussed
in the survey [23]. The exponential nature of the problem of discovering the ideal
subset of features is obvious, and it is clear that performing neighbourhood selection
also presents an exponential search space of all possible permutations for all users
for all neighbourhood sizes. For example, the branch and bound algorithm suggested
in [71] explores every possible subset, and is clear to not scale well with increase in
features. More recent methods attempt to overcome these limitations by searching for
neighbourhoods using a heuristic to rank possible feature subsets, for example, with
genetic algorithms [45] that are combined with dynamic programming to minimise
fitness evaluations. The closest cousin of our method from the feature selection world
is, however, the sequential feature selector. While forward feature selectors start
with a single feature and add the most useful features greedily, backward sequential
feature selectors start with all features and iteratively eliminate features that detract
from final model performance. Our proposed method is analogous to a forward
sequential feature selector, except that at each stage, new rows of training data are
added to the model (the data of the next most useful user) instead of new columns.

5.2. Towards RQ3: To what extent can the notion of
similarity be supervised?

As explained in Section 5.1, our goal is to derive neighbourhoods for each user in the
dataset without fixing the neighbourhood size, as kNN methods do. Towards this
end, we need to assess the degree to which each additional neighbour contributes to
the model, and stop growing neighbourhoods at the right moment. Therefore, our
main question is:

RQ3 To what extent can the dynamic data of the user be used to assess the quality
of a discovered neighbourhood?

To answer this question, we propose a method with two components:

• An iterative similarity-guided neighbourhood discovery component to create
personalised neighbourhoods using dynamic data for validation.

• An iterative neighbourhood discovery component to create personalised predic-
tors that is insensitive to user ordering.

The first component creates a personalised model for each user by searching through
a list of potential neighbours in decreasing order of similarity. This workflow is very
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similar to that introduced in Section 4.2, except that it does not restrict itself to
finding neighbourhoods for long users only. By generalising this framework to all users,
we build not only personalised predictors, but also deliver the user neighbourhood,
something that we suspect will be valuable for future analyses. Of course, the other
benefits of our workflow like its out-of-the-box support for data privacy and data
removal requests is not to be overlooked.

Since the above method is sensitive to the order in which users are searched for
addition into the neighbourhood, it has a tendency to get stuck in local minima.
Therefore, the second method serves as a baseline against which the performance of
the first can be compared. Since a full exploration of every possible neighbourhood of
every possible size is combinatorially prohibitive, we still need to apply an ordering to
the way users are added into a neighbourhood, but this method, apart from providing
the best neighbourhood, also serves as a way to verify the degree to which guiding
the neighbourhood using similarity results in stable neighbourhoods that can be
trusted by an expert.

5.2.1. Error-driven neighbourhood discovery framework

Figure 5.1 shows an overview of our proposed neighbourhood discovery framework.
The workflow produces the personalised model for each user in the dataset, and this
is done by iteratively adding the next-most-similar user to the training data of the
personalised model, as long as the model performance does not deteriorate. It is clear
that there is a danger of overfitting the models, so we split each user into three parts,
with 49% of the data used for training, 21% for validation, and 30% for testing (i.e.,
the full dataset is split 70:30, into train+val:test, and then the non-test data is split
again by 70:30 to get the train and validation data). It is of course not permitted to
split the data into train and test randomly, so the user-level split is done temporally,
with the first 49% of the data for train, the next 21% for validation, the last part for
testing, etc.

Guiding the neighbourhood selection process and avoiding local minima: As
explained in Section 5.1, it is computationally prohibitive to explore all the possible
neighbourhoods of all possible sizes for each user. In order decrease the number
of neighbourhoods explored, we take over the idea from Section 4.2.3, where the
next-most-similar user is added on the basis of the similarity between the current
user and the candidate user’s observations. In this work, we use the cosine similarity
between the first N observations of the two users.

Recall from Section 4.4.4 that the exact N over which the similarity was computed
did not strongly influence the performance of the model trained for short users - we
understand from this result that it necessary to accept that both the choice of N
and the similarity measure over the EMA data are somewhat arbitrary (although
intuitive) choices. In order to accommodate for the possibility that the next included
user is nevertheless not a ‘useful’ neighbour, we must allow the algorithm to overcome
a poor ordering of the users. In order to achieve this, we ensure that unlike the early
termination method introduced in Section 4.2.3, we follow rather the “exhaustive
search” method, which does not terminate the loop on encountering the first user
that increases model error. This is the first of two decisions in our workflow that is
aimed at decreasing the likelihood of overfitting a neighbourhood to a user.
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Figure 5.1.: The error-driven neighbourhood discovery framework

The second way to ensure that a model doesn’t overfit the neighbourhood to the
user is to allow some tolerance for small changes in error during the neighbourhood
discovery process. This is especially critical when the neighbourhoods are small. For
example, imagine a model trained on the data of the user itself and just one additional
neighbour. The fact that the error increases by a small amount (say 0.01%) for such
small neighbourhoods is highly unlikely to be because the ‘best’ neighbourhood has
already been found, and more likely than not a statistical artefact. In fact, even if the
error increased by a bigger margin, it can be argued that terminating the search so
early can be detrimental to the personalised model’s generalisation ability. Therefore,
we include a tolerance parameter in our loop, which allows neighbourhoods to expand
and the search to continue, as long as the model error does not increase more than
10% from the best-performing neighbourhood discovered so far. Please note that
applying the threshold as a percentage and not a fixed parameter essentially tailors
the threshold to the user, since a user who has an RMSE of 5 will reject models
that increase RMSE by more than 5.5, while a poorly predicted user with an RMSE
of 50 will only reject candidates that increase the error beyond 55. The algorithm
to discover the best neighbourhood for a user from a list of candidates is given in
Section 5.1.

Intuitively, this means that we prioritise including a neighbour and its data over
excluding it, as long as the increase in error does not exceed the tolerance. Please
also note that the tolerance limit is defined against the best validation error seen
so far during the neighbourhood discovery process, and not against the current
validation error. This is necessary since a chain of u users that are a poor choice, but
whose addition consistently increase the error by a margin smaller than the threshold
(for example, by 1% at every step) would gradually draw the user’s model away
good performance (given a long enough chain u). Fixing the tolerance against the
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best performing neighbourhood encountered so far allows for small increases in the
error that increase the amount of training data for (and hopefully the generalisation
capabilities of) the model.

Algorithm 5.1 Error-driven method to discover a neighbourhood for user ucurrent

from list of candidate neighbours Ucandidates

Require: User ucurrent, users Ucandidates, threshold α, similarity function S(),
validation_data(ucurrent)

1: training_data ← data(ucurrent)
2: Train model Ωprev ← Ω(training_data)
3: prev_error ← RMSE(Ω, validataion_data(ucurrent))
4: best_error ← prev_error
5: Sort Ncurrent = ni ∈ Ucandidates|S(us, ni) ≥ S(us, nj)∀i < j
6: for ni ∈ Ncurrent do
7: training_data ← training_data ∪ data(ni)
8: Train model Ωcurr(training_data)
9: current_error ← RMSE(Ω, validation_data(ucurrent))

10: if (currrent_error ≤ prev_error) | (current_error ≤ best_error ∗ (1 + α))
then ▷ Performance is allowed to deteriorate by α ∗ best_error

11: if current_error ≤ best_error then
12: best_error ← current_error
13: prev_error ← current_error
14: Ωprev ← Ωcurr

15: else
16: training_data -= data(ni) ▷ Do not terminate loop, continue search
17: continuereturn Ωcurr

5.2.2. Add-best-neighbour baseline: Removing the effect of user ordering
from neighbourhood discovery

The method described in Section 5.2.1 has the disadvantage that the neighbourhood
discovery process gets ‘locked in’ to a user once it is seen that the user improves
prediction error over the validation data (no matter by how small a margin). To
explain with an example, imagine a user u1, whose ideal neighbours are u3, u4, andu5.
The workflow described in Section 5.2.1 might add u2 to the model since it decreases
the error (which is indeed likely since in the early stages the model has very little
data). The current model that has u1, u2 might show a high error when combined
with u3. i.e., the users u2 and u3 are incompatible, and the fact that u2 was added
first to the model means the model will never converge on the optimal neighbourhood.

To fix this problem, we propose the following baseline method - instead of iteratively
adding each user that decreases the error of the model towards the validation data,
search the entire dataset, and at the end of the loop, add the user that most
improved the model. In the case of the example presented above, the loop searches
models train_model(u1, u2), train_model(u1, u3), . . . train_model(u1, u5), and find
that each has errors error1,1, error1,2, . . . error1,5. If the model with (u1, u4) showed
the best performance, then the current model’s neighbourhood is expanded by one
user to include the data of u4. Since only the user with the best performance is added
at each step, we remove the sensitivity of the method proposed in Section 5.2.1 to
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the ordering of users according to the similarity measure, and hopefully make the
algorithm less likely to get stuck at local minima.

5.3. Experiments

5.3.1. Datasets:

Our proposed approach is tested on TYT and UNITI datasets already used in some
of our previous work (see Sections 4.4.1 and 4.4.2). From both datasets, we exclude
users who contribute less than 30 days of data. The TYT dataset contains data
collected over a much longer time frame (2014 to 2022), and the UNITI dataset has
data collected more intensively, but from a shorter time frame of 1 year. Table A.4
in the appendix shows the statistics for the number of users and their lengths. It can
be seen that after applying the cut-offs, the longest users are 30 times and 9 times
as long as the shortest ones for the TYT and UNITI datasets respectively. The TYT
dataset also contains users that are much longer, since the data is collected over a
much larger time frame. The UNITI users, though more comparable in length, are
shorter since they are limited to a maximum length of 1 year at most.

For TYT, all questions have numerical answers between 0 and 1, and the two binary
questions q1 and q8 are not included in the analysis. The tracked variables are
loudness, distress, mood, arousal, stress, and concentration. The forecast variable is
tinnitus distress (question3). For the UNITI dataset, all answers are on a scale of
1 to 100, and the EMA questionnaire has two parts, the part with the momentary
assessments (4 questions), and the part with daily information. The momentary
questions track tinnitus loudness, distress, tension in the jaw and neck. The daily
questions query the number of times the patient thought about tinnitus, the degree
to which the day was affected by tinnitus, maximum volume, stress, exercise and
general mood.

5.3.2. Analysis of neighbourhoods discovered by the similarity-guided
framework:

Since our approach to fit one model per user in the EMA app is without precedent,
and because the heterogeneity of tinnitus makes it impossible to anticipate the nature
of a ‘correct’ output, the quality of the neighbourhood discovery framework needs
to be judged by the quality of the predictions at the user level. Towards this end,
the prediction quality of the neighbourhoods discovered by the similarity guided
neighbourhood discovery framework is compared to the quality of the predictions
from the global model. The average size of the neighbourhood (number of users),
and the average size of the training data (number of rows of data used to train the
model) are compared against the global model, along with the performance of the
personalised model in predicting the user’s data. The discovered neighbourhoods are
also analysed for the likelihood of users being used to a greater or lesser degree in
the personalised neighbourhoods of other users.

A baseline over all data: Like our other personalised neighbourhood models, we
test the efficacy of our proposed method against a baseline model that has been
trained on 70% of all users’ data. Since the validation set is no longer necessary
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(there is no iterative neighbourhood discovery model to validate), the part of the
sequences that would have been held out for validation of the neighbourhood are
added to the global model training data, giving the model even advantage in terms
of amount of data to learn from. The models are trained to use all the questions
from the current EMA response to predict the value of the target variable (tinnitus
distress) at the next time step. We test the approach on the TYT and the UNITI
EMA datasets.

Analysis of user-level errors: We compare not only the final aggregated errors
of all predictions generated by our proposed workflow compared to the predictions
generated by the global model, but also conduct an analysis to confirm which users
are better predicted by the global model compared to the global model. Since each
user’s data can be predicted by both the global model as well as the personalised
model, we will analyse the degree to which a user is better predicted by the global
model than the personalised model with the discovered neighbourhood.

Analysis of impact of model caching (memoisation): Many dynamic programming
methods use memoisation to precent the repeated invocation of models that will
be invoked more than once in the attempt to solve a problem. In our case of
neighbourhood discovery, we store each intermediate model (whether it proves to
be ‘useful’ in terms of decreasing error or not) in the global cache of trained models
so that a subsequent user who explores the degree to which a previously explored
neighbourhood can avoid re-training a previously explored model, and directly apply
it to the validation data. We check the number of times the memoised model is
invoked, and compare this to the total number of models trained.

5.3.3. Comparing the similarity guided neighbourhood discovery
framework with the unordered neighbour discovery baseline

Since the similarity guided neighbourhood discovery workflow searches the candi-
date users in decreasing order of similarity when training personalised models, the
unordered neighbourhood baseline investigates the degree to which this method is
approximated by a method that is insensitive to the order in which users are explored.
If the similarity function does indeed order the users in decreasing order of ‘utility’,
then the two methods should converge on the same neighbourhood.

We make the following three comparisons for the unordered neighbourhood discovery
baseline:

• The overall performance of the unordered search compared to the global model.

• The user-level errors achieved by the unordered search compared to the user-
level errors achieved by the global model.

• The average size of the discovered neighbourhood from the unordered search.
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5.4. Results and discussion

5.4.1. The similarity-ordered neighbourhood discovery method

Comparing the neighbourhood discovery model against the global baseline: Fig-
ure 5.2 shows the boxplots that compare the performance achieved by the global
baseline trained with all users’ data, compared to the predictions generated by the
neighbourhood discovery framework presented in Section 5.2.1. Each pair of box
plots show the RMSE at the observation level for each observation in the test set,
when predicted by the discovered neighbourhood (left) and global model (right)
respectively. For both datasets, we see that the mean and the median errors from
the discovered neighbourhood are both smaller. It is also to be noted that, the
bottom whiskers are lower in both datasets (there are more predictions made that
have lower error), although it appears that the IQR is indeed larger (i.e., it does still
make large errors). It seems therefore that the neighbourhood discovery is able to
pick up on some idiosyncratic answering patterns (and hence able to make slightly
more very-low-error predictions), but this personalisation does come at the cost of
a possibly larger spread in the errors as well. A user-level analysis is necessary to
understand if this spread comes from a few poorly predicted users, or whether all
users are affected.

Figure 5.2.: Box plots for the performance achieved by the neighbourhood discovery
framework compared to the global baseline trained over all users for the
TYT (left) and UNITI (right) datasets

Table 5.1 shows the overall performance of the global model and the models built on
the discovered neighbourhoods. The difference in mean RMSEs (already shown in
the boxplots as the green triangles) between the global model and the discovered
neighbourhood method are 0.153 vs. 0.136 for the TYT dataset, and 12.767 vs. 10.772
for the UNITI dataset respectively. The overall percentage improvements are not
large, but need to be understood in the context that the personalised neighbourhood
models are trained over less data to achieve a ≈ 13−15% improvement. An analysis of
user neighbourhoods is necessary to confirm whether the personalised neighbourhood
discovery method benefits all users.

User-level error analysis: We have already seen that the mean errors of the neigh-
bourhood discovery framework do indeed improve the overall error. The fact that
the medians are lower already suggests that the benefits are shared across most users.
In order to investigate the results at the user-level, we compute the RMSEs for the
predictions from each model (global and the discovered neighbourhood) for each user
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TYT UNITI
Global model (RMSE) 0.1534 12.767
Discovered neighbourhood (RMSE) 0.1355 10.772
Percentage improvement 12.99% 15.62%

Table 5.1.: The performance of the global model vs. the discovered neighbourhood
on the TYT and UNITI datasets

separately. The user-level error figures for the discovered neighbourhood can then
be compared to the same user’s error when predicted by the global model. In our
results, we found that 188/227 and 199/222 users in the TYT and UNITI datasets
respectively were better predicted by the personalised neighbourhood model. This
result is remarkable, because it shows that 82.8% of the TYT users and 89.6% of
the UNITI users were better predicted by the similarity guided method than the
global model. Although the difference is small, it is clear that our proposed approach
benefits the majority of the users, and the performance gains are not concentrated
on a few users alone.

A Wilcoxon signed-rank test was performed to test if the user-level RMSE from the
global model and the discovered neighbourhood approach were generated by the same
distribution. We found that the null hypothesis can be rejected with p=4.55e-27 and
p=3.15e-35 for the TYT and UNITI datasets respectively.

Although our proposed neighbourhood discovery method benefits the majority of
users, the degree of improvement in predictive power is still rather small. An analysis
of the neighbourhood sizes suggested to us that the neighbourhood discovery method
might serve the purpose of excluding poor neighbours (i.e., most users are useful,
and the method gives better predictions because it identifies those users that need to
be excluded to improve performance). To test this, we plot the adjacency matrices
of the discovered neighbourhoods for each dataset as a ‘heatmap’. The different
users’ neighbourhoods are separated in the Y axis (one row per user), and the X axis
indicates whether a user was used in the neighbourhood of another (indicated by a
1), or not (indicated by a 0). The heatmap shows the 1s as bright spots, and the 0s
as black ones.

Figure 5.3.: Adjacency matrices for neighbourhoods discovered in the TYT (left) and
UNITI (right) datasets respectively.

Figure 5.3 shows the adjacency matrices as heatmaps for the TYT and UNITI
datasets respectively. We see an unexpected result that for both datasets, there is
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a black vertical band in the heatmaps. On the TYT dataset (left side of image),
the black band is at the beginning, and in the UNITI dataset (right side of image),
the black band is thinner, and is on the centre-right of the plot. This suggests to
us that there is a group of ‘ostracised’ users. i.e., these users are rejected by most
other users because they increase the error of their models. The fact that there is no
corresponding horizontal band in these users is very interesting, since it shows that
while most users’ models suffer from the inclusion of these anomalous users, their
models themselves are improved by the inclusion of other viewers’ data.

Although not as clear, there is also a vertical bright band of users that are included
in almost every other user’s neighbourhood. This band can be seen at the centre-
left of the heatmaps of both datasets. This suggests that apart from the users
who contribute negatively to almost all users’ models, there are also very popular
“celebrity” users that improve the models of almost every other user.

Although unexpected and undoubtedly interesting, a full analysis of what makes these
users special is unfortunately out of this work’s scope, since it requires extensive
medical expertise. However, we would like to call out that this is precisely the
type of benefit we stressed when we argued that the user-centred models where
neighbourhoods are delivered along with the models themselves allow one to discover
some previously unknown relationship or property in the users.

Impact of model caching and reuse: Since our iterative neighbour discovery
framework trains a huge number of models, we implemented a chaching mechanism
that is inspired by dynamic programming approaches that saves each trained model
in a dictionary. If another user explores the same neighbourhood for predictive
quality over its own validation data, then the retraining step can be skipped and the
cached model can be reused, saving time. We implemented a counter in our code to
check the number of model training invocations that scored a hit on our cached set.
Unfortunately, we see that for both the UNITI and the TYT dataset, there were
very few cache hits. The TYT dataset trained 51,529 models, out of which only 105
(0.2%) got a cache hit. The number of hits was comparable for UNITI dataset as
well, with 49,284 models trained, with only 177 cache hits (0.3% hit rate). Although
in our case the cache hit rate is very low, it is important to note that even small
increases in the number of users causes an exponential increase in the number of
trained models. It might be that the idea of caching trained models is still useful,
just not in the case of these two datasets. It might be that other datasets with a
diverse set of users who are all similar to a tight knot of users might benefit from
caching the models in similarity-ordered search.

5.4.2. Unordered neighbourhood discovery baseline

Comparison against global baseline Figure 5.4 and 5.5 shows a comparison of
the unordered neighbourhood discovery baseline against the performance of the
global model for the TYT and UNITI datasets respectively. It can be seen that
for both methods, there is almost no performance difference between the global
and discovered neighbourhoods. This suggests that our unordered neighbourhood
discovery method is too greedy, and tends to get stuck in local minima. We see that
for the TYT dataset, the overall RMSE of the neighbourhood discovery method is
only 5.5% better than the global model, and only 0.34% better for the UNITI dataset.
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Figure 5.4.: TYT Dataset: Errors for the global model and unordered neighbourhood
discovery model

Since the performance of the model is so close the global model (and because it is
worse than the similarity guided discovery method), it is reasonable to suspect that
neighbourhoods are overfit for at least some users.

User-level errors comparison: At the user level, we find that the neighbourhoods
discovered by the unordered search method only beat the RMSE from the global
model for ≈ 46% of the users in the TYT dataset, and ≈ 44% of the users in the
UNITI dataset. The boxplots for the user level errors are shown in Figures 5.6
and 5.7. Combined with the results at the overall level, it is clear that the greedy
brute-force neighbourhood search method overfits the user neighbourhood. While the
user-level boxplots show that almost half the users do benefit to some degree from
the personalised neighbourhood, the large increase in the number of worse-predicted
users suggests that the similarity ordered search is less prone to getting stuck in local
minima. This is further backed up by the low numbers for the mean, median, and
max discovered neighbourhood sizes shown in Table 5.2.

# Neighbours TYT UNITI
Mean 11.16 10.99
Median 8 10
Max 49 56

Table 5.2.: Number of neighbours discovered by the unordered search method

Impact of model caching and reuse: An analysis of the number of models trained
and the usefulness of caching reveals that 525,481 models are trained for the TYT
dataset, and 1,019,564 models are trained for the UNITI dataset. This shows a
sharp but predictable increase in the number of tested models before the final
neighbourhoods are ‘frozen’. For the TYT dataset, there were 28,960 instances of
a previously trained models getting reused from the model cache (5.51% hit rate),
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Figure 5.5.: UNITI Dataset: Errors for the global model and unordered neighbour-
hood discovery model

and the for the UNITI dataset it was 53,888 reuses out of 1,019,564 models trained
(5.29%). Since the runtimes for the entire brute-force neighbourhood discovery
workflow was <1hr for the UINTI dataset, the benefit of caching is debatable, even
thought the hit rate on the cache is higher than in the previous case.

5.5. Conclusion
The first two main methods we describe in Sections 3.2 and 4.2 explored training
personalised models for users on the basis of similarity built on static and dynamic
data. Our subsequent work learning models separately for users with short sequences
shows us that the notion of a neighbourhood can be discovered. Since our early
results do not show conclusively that similarity built on either static or dynamic data
fully determine the neighbourhood of a user, in this chapter, we explore methods
that discover this neighbourhood based on trial and error approaches. Section 5.2.1
explores an approach where the computationally intractable problem of searching
every permutation of a user set is simplified by enforcing a similarity-driven search
order. We start with the data of a single user, and then iteratively add the data of
the next-most-similar user, searching through the entire list of users in this order to
keep all users that improve model performance, and discard all users that do not.
Our main findings were:

• We tested our similarity-driven neighbourhood discovery workflow against a
global baseline model trained on the data of all users and saw that our proposed
approach decreases the overall prediction errors by ≈ 13%− 15%.

• We further investigated the extent to which the improvements in prediction
quality is distributed through the set of users, and found that 82.8% - 89.6%
of the users were better predicted by our proposed method compared to the
global baseline model.

• This shows that although the improvement in overall RMSE is not large, the
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Figure 5.6.: TYT Dataset: User-level RMSEs for the global model and unordered
neighbourhood discovery model

benefits are evenly distributed among all users, and not the result of a few long
users dominating the RMSE computation. A Wilcoxon-signed rank test of the
distribution of user-level RMSEs from the global and neighbourhood discovery
models rejected the null hypothesis that the two samples are drawn from the
same distribution by p=4.55e-27 and p=3.15e-35

• We investigated the final neighbourhoods discovered by the model by plotting
the adjacency matrices as a heatmap, and found two emergent patterns:

– There was a small group of users in each dataset that were consistently
rejected from all other users’ neighbourhoods.

– Conversely, there was also a slightly larger group of users in both datasets
that contributed positively to almost all users’ neighbourhoods.

• Since our workflow is extremely wasteful in the number of models trained (the
vast majority of intermediate trained models are discarded), we implemented
a model caching system. However, with hit rates of 0.2% and 0.3% for the
two datasets, we find caching to be of little practical use. This might be a
consequence of the fact that most users have mostly unique similarity-ordered
user lists. Other datasets where a clearer sense of similarity exists might still
benefit from the approach. We also expect that the utility of the cached models
will increase with the number of users (which will cause exponentially more
models to be trained), or if the complexity of training a model increases.

Since our early results suggest that computing the similarity between pairs of users on
the basis of their early interactions is not effective, we compared the performance of
the similarity-driven neighbourhood discovery method with a more powerful baseline
that is less sensitive to the user ordering. This method works by adding the user
that results in the largest decrease to the RMSE at every stage, instead of adding
the next-most-similar user that decreases the error. This was expected to allow the
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Figure 5.7.: UNITI Dataset: User-level RMSEs for the global model and unordered
neighbourhood discovery model

model to overcome its sensitivity to the user ordering, but our experiments revealed
that the performance was worse than for the similarity-guided counterpart. Our
main experimental findings for this method were:

• Even with commodity hardware and training more than 1 million models, the
execution time for the method was <1hr for the larger dataset1.

• Although the overall RMSE was slightly better than the global model, the brute
force neighbourhood discovery method tended to get stuck in local minima,
resulting in better models only for ≈ 45% of the users (compared to global). The
small neighbourhood sizes for the neighbourhoods discovered by the brute force
method suggest that this method is prone to overfitting the neighbourhood.

• The cache hit rate was 5.28% (UNITI) and 5.51% (TYT), but the low overall
execution time makes the case for the caching unconvincing.

150m:57s of runtime on a Core-i7 11th Gen. with 40 GB RAM.
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The primary goal of this thesis was to explore complementary methods to develop
personalised models for datasets that include data in two modalities - static and
dynamic. Towards this end, we investigated three main approaches:

• training personalised models using neighbourhoods built on static data,

• training personalised models using neighbourhoods built on dynamic data, and

• training personalised models using a supervised notion of similarity, for cases
where similarity cannot be reliably measured.

These main approaches form the basis for the three research questions detailed in
Section 1.2. We explore our contributions towards each of the questions in Sections
6.1, 6.2, and 6.3 below.

6.1. Personalised models using similarity based on static data
As explained in Section 1, our main assumption is that our data comprises of various
‘entities’, each of which contributes data in two modalities - one relatively unchanging
and ‘static’, and the other that changes over time, which we call ‘dynamic’. We begin
our investigation by exploring the degree to which similarity in the static space can
be used to create a personalised model. Our two main questions are:

• To what extent can static similarity be exploited to train personalised models?

• To what extent can expert knowledge about the similarity between entities be
incorporated into the modelling process?

6.1.1. RQ1.1 Exploiting Static Similarity to Train Personalised Models

In our personalised modelling approach, we train one model for each entity / user
in the dataset. This presents some challenges that are not uncommon in panel-like
datasets comprising multiple entities, most notably the fact that most entities are
too short. Our work in Section 3.2 explores augmenting the personalised models to
combat the scarcity at the entity level.

Our proposed method discovered the kNN of each user based on their static data,
and explored two ways to combine the data of the discovered neighbours: data
augmentation, where the dynamic data of all neighbours are pooled to create a single
model, and model augmentation, where one model is trained on each neighbour, and
the model parameters are averaged. It was found that data augmentation worked
better for 2/3 datasets, and comparably for the third.

Pooling the data of each neighbour presents one further challenge - dealing with
timestamps effectively. In our experiments, we found that keeping timestamps as-is
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resulted in better models than when each user or entity was aligned to their own
local clocks beginning at 0.

Our approach to pool the data of the k nearest neighbours of each user while
preserving the timestamps assumes that the static data picks good neighbours. We
tested this assumption using a proposed baseline which selects the same number of
neighbours as the kNN, but selects them randomly (we call this the kRE baseline).
This method indirectly measures the degree to which the error drops simply because
we added more data to the model, rather than because the kNN selected good
neighbours to learn from. Unfortunately, we saw that the kRE baseline shows very
similar performance to the kNN model, suggesting that our neighbourhood selection
can be improved. However, quite surprisingly, we saw that both the kNN and the
kRE model benefited from augmenting the model with a small k. It is our suspicion
that this is the result of dataset-level trends leaking into the system because through
the timestamp. We therefore avoid using the timestamp in our future modelling
efforts along with the other independent variables. We suspect that this indirect
leaking of dataset-level tendencies is the reason far-term predictions outperform the
near-term predictions for the AQI and Amazon datasets, where the trends towards
higher / lower values over time very pronounced.

6.1.2. RQ1.2 Improving Neighbourhoods Using Expert Knowledge

After fixing the static-data-based neighbourhood discovery to use data-augmentation,
we explored the degree to which these neighbourhoods can be tweaked to incorporate
expert knowledge. We experimentally validate our solution on the TYT dataset,
where we know of the two anomalous groups of tinnitus sufferers: (a) a group that
suffers from unreasonably high tinnitus distress in spite of relatively low symptom
severity, and (b) a group that suffers unexpectedly low tinnitus distress in spite of
relatively high symptom severity.

By applying the ‘tinnitus questionnaire’ score of the patients in the static data, we
split the patients into 2 distress clusters. The tinnitus volume data was split into
three clusters using a similar approach. Since each patient falls into one of three
loudness clusters and one of two distress clusters, we assign all patients into one of
six groups based on the unique combination of which loudness-distress clusters they
fall into. Of these six groups, low-loudness+high-distress and the high-loudness+low-
distress patients are known to be anomalous. Our proposed method incorporated
this information in to the personalised modelling process by limiting the kNN to
discovering in-group (i.e., ‘concordant’) tinnitus patients only. We see that the
groups all differ in the degree of predictability, and that 4/6 groups are better
predicted than by the unrestricted kNN model, suggesting that including expert
knowledge to exclude discordant users from each others’ neighbourhoods does indeed
improve performance. Additionally, we also found that high-loudness+low-distress
patients are harder to predict than the opposite case of patients who are severely
distressed even by low tinnitus volume. This suggests that excluding patients of high
heterogeneity (and therefore low predictability given each others’ data) is the reason
why the models improve.
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6.2. Leveraging Dynamic Data to Build Entity
Neighbourhoods

Since using the static data did not sufficiently inform the predictors about the
dynamic data, the next step logically is to investigate the extent to which the
dynamic data can be leveraged for the same purpose. Since our earlier results show
that the timestamp can leak information about the entities’ futures, we pivot to a
slightly different learning problem of predicting the short term future of the sequence
given the current observation. Our main approach towards using the dynamic data
to discover user neighbourhoods has two flavours - one that tries to create a summary
of the EMA sequence that can be exploited to measure the similarity between EMA
sequences of unequal length, and another that exploits the differences in the lengths of
the sequences themselves to group users. Our main takeaways for the summarisation
approach are listed below:

• Summarising EMA data with Hidden Markov Models:

– In this approach, we propose summarising the users as “the amount of
time they spend in each hidden state”. We use the percentage of each
sequence generated by a state as a way to handle the different lengths
in the sequences. The summary of each user / patient is used as the
vector over which the kNN is computed when discovering a personalised
neighbourhood.

– For both datasets we tried, inspecting the model’s hidden states and
transition matrices did not present a clear ‘winner’. Model quality metrics
like AIC, BIC and log-likelihood were similarly unhelpful, since they chose
either too few states or too many. Evaluating empirically by measuring
model quality resulting from 2 to 10 states showed no clearly dominant
solution.

– Although the HMM-derived representations improved on the quality of
predictions delivered by the global model by only 2.9% - 9.9%, they did
so with only 1.5% - 6.6% of the total number of users in the dataset. This
suggests that focusing the personalised predictors do indeed work, but
further work needs to rule out that the HMM states are only acting as a
proxy in capturing a user’s average loudness and distress.

– By limiting the HMM model to learning only the interplay between tinnitus
loudness and distress, we allow the model to be transferred between
separate mHealth apps with only partially overlapping questionnaires.
Our experiment on learning the HMM on the more regular UNITI dataset
and transferring the HMM to the TYT dataset resulted in performances
that exceed the global model by 7.5% (instead of 9.9% on the home-grown
representations).

– To summarise, the performance gains from using HMMs to summarise
the EMA sequences and discover their neighbourhoods resulted in modest
performance improvements, but the low sensitivity of the results to the
number of states is a discouraging result. Further investigation is necessary,
especially a deeper analysis of the model with an expert is critical to better
assess the correct number of states, especially since our intermediate results
suggested that ‘clones’ of certain states exist with the same loudness and
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distress, but different covariance matrices that connect them. The need
for capturing users that show rare behaviours needs to be balanced with
creating representations that don’t all trap users into a very small number
of states.

Our second approach towards summarising the EMA sequences drew inspiration
from some work in our own workgroup [42], which discovered different patients
preferentially express different Granger causalities in their EMA data. We therefore
investigated the degree to which this information can be exploited to discover patient
neighbourhoods:

• We found indeed that different patients express different Granger cusalities,
but the process of testing for this in the multivariate EMA sequence is prone
to false positives. This problem is compounded when considering lags > 1. An
analysis of the discovered relationships between the EMA variables showed that
the UNITI dataset (with longer more regular observations) showed stronger
differences in the causalities expressed by the users (even though the type I
error cannot be avoided, this suggests an underlying signal).

• We investigated two ways to use the discovered Granger causality matrix to
discover similar users, one that computes a Jaccard similarity that translates
to “percentage of shared Granger causal relationships expressed between the
users”, and another that focuses the similarity function on only relationships
toward one variable. It was found that causalities toward no single variable
was more important in terms of model performance. The similarity computed
over the full binary Granger causality matrix found better neighbours.

• We see that the performance of the kNN model based on representing users as
the Granger causalities they express was able to match (and slightly exceed)
the quality of the global model. We saw that the UNITI dataset with more
regular observations benefited more, and that while the performance benefit
was not large, matching the performance of the global model was possible with
a tiny fraction of the users (k=10).

Our third approach partitions the users in the EMA datasets into two groups (‘long’
and ‘short’ users) based on the amount of data they contribute. The motivation
behind this method is twofold, one is that predictions are possible for users who
contribute so little data that they would typically be excluded during preprocessing,
and the other is more medically motivated, since it is not clear whether the users
who engage little with the system do so because of some underlying similarity in
the experience of the disease. We explored the degree to which models trained over
users that contribute a lot of data can be transferred to the short users, and the
degree to which the predictions generated by this non-personalised transferred model
can be adapted to the sequences of each short user. As a next step, we explored the
possibility that not all long users might be equally predictive of a short one. The
key takeaways are summarised below:

• The model trained on long users do indeed make predictions (albeit with
slightly higher error) on data of short users. We found through augmenting
the predictions with a kNN regressor focused on the short users’ sequence that
the transferred models could be personalised to the short users.

• Weighting the errors of the transferred model and the short-user-centred model
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on the basis of their past errors over predictions for the user decreased the
number of extreme errors made by each model separately. Our experiments,
however, were restricted to small choices in k, since the sequence for each short
user is already small.

• To further personalise the predictors trained for short users, we investigated the
degree to which the neighbourhood of long users can be personalised towards
each short user - i.e., ‘Do all long users contribute equally towards the predic-
tions for a short one?’. Our approach investigated ‘growing’ a neighbourhood
iteratively based on some similarity measure. We found that not all long users
are equally important in training personalised models for short users, and that
the RMSE gains were 2.5% and 36% for the two datasets we tried, while the
models used only 40% - 60% of the training data. Apart from the fact that
performance improvements come with fewer data, the result also needs to be
placed in the context that the models were not trained on the data of the users
in question at all, only the discovered neighbourhoods, which makes it more
remarkable.

• We explored two neighbourhood discovery methods, one that fully explores all
users in a similarity-ordered list while searching for potential neighbours, and
another that terminates the search process upon encountering the first user
that increases the validation error. We observed that for one dataset, both
methods discovered the same neighbourhood.

• The performance of the models trained using similarity-ordered incremental
exploration of neighbourhoods was surprisingly found to not depend too strongly
on the exact similarity measure. Our choice to base similarity on first v/s most
recent data vs. metadata summaries of interaction intensity did not significantly
change the final model quality (or even most users’ neighbourhoods!). However,
we did find that some long users were more useful than others (they were
included more often in short users’ neighbourhoods). We take this to mean
that we have not found the best measure of similarity between users based
on their EMA data, although for the sake of argument we fix the similarity
measure as dependent on the EMA data of the first five days.

• All the results, however, are derived from datasets too small to be entirely
trustworthy. Replication of these results in other larger datasets is a priority
before these results can be fully trusted.

6.3. Supervised Neighbourhood Selection Based on
Validation Error

The results from the first and second parts of this work showed us that the static data
and the dynamic data do not adequately capture the underlying similarities between
users when building personalised predictors. This is because of the unreasonably
effective kRE baseline, and the lack of a convincing performance gap (despite much
smaller training data), on training personalised models using the neighbourhoods
built on static data as well as summaries of EMA data. We therefore took inspiration
from the last part of our work in RQ2 and generalise our method of neighbourhood
discovery from short users to all users. This effectively turns the question “What can
you learn from an entity’s neighbourhood?” on its head, and makes it “Can you learn
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an entity’s neighbourhood”, which places the emphasis on which neighbourhoods
are useful. We investigated the degree to which an ‘optimal’ neighbourhood can be
learned through iterative exploration using the dynamic data of each user. Our main
takeaways are listed below:

• Our similarity-driven neighbourhood discovery workflow (inspired by the
‘exhaustive search’ method developed for short users) was able to deliver
≈ 13% − 15% improvements in the overall RMSE compared to their global
counterparts.

• We found that the performance gains were not restricted to a few users, and
that 82.8%-89.6% of the users benefited from the personalised neighbourhood
models. A comparison of user-level RMSEs showed that the errors from the
personalised neighbourhood are statistically significantly different from the
RMSE for the same users predicted by the global model, with p=4.55e-27 and
p=3.15e-35 for the TYT and UNITI datasets respectively.

• Plotting the discovered neighbourhoods as a heatmap showed the existence
of ‘celebrity’ and ‘ostracised’ users - users that are included in almost every
other user’s neighbourhoods, and vice versa. More interestingly, we also saw
that the users who were rejected from most other users’ models still benefited
from including the other users in their neighbourhood (i.e., while other users
avoided adding their data, they did not avoid the other users’ data from being
included in their models)1.

• Caching the thousands of intermediate models trained during the neighbourhood
discovery search process brought almost negligible benefit. Only 0.2%-0.3% of
the models were re-used instead of being re-trained from scratch.

• We also proposed a more advanced baseline which removes the effect of ordering
the users by similarity. While this exponentially increases the number of models
trained, the run times were still within reach of commodity hardware. Unfortu-
nately we see that the brute force search makes the discovered neighbourhoods
get stuck in local minima, with only ≈ 45% of the users being better predicted
by the neighbourhood models compared to the global model for both datasets.
Although the cache hit rate was higher for both models, the low run time makes
the case of caching intermediate models less convincing.

The main points highlighted in Sections 6.1 - 6.3 highlight that there are three methods
to discover similar entites while training personalised predictors with EMA-like data:

• The static data that describe these entities can be exploited in the building of
neighbourhoods. The kNN models, while they result in better performance than
the global models trained over much more data, do seem to struggle to beat
the performance of simpler methods that select the same number of entities
(k) randomly. This shows that the static data is a useful tool in finding useful
neighbours to learn from, but it needs to be augmented with more information.

• The dynamic data of the entities can also be leveraged to find the neighbours of
an entity. We see that exploiting machine learning techniques to summarise the
EMA sequences can help match the performance of the global model with quite
small neighbourhoods (<10% of the users). This shows that the dynamic data

1A clinician who works on this dataset summed up the situation succinctly: “There are users that
behave like universal blood donors, and others that behave like universal acceptors”
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also contains valuable information for learning personalised models. However,
like in the case of the static data, the dynamic data alone does not compute
better neighbourhoods.

• Drawing upon the the insight that the choice of similarity measure used during
neighbourhood discovery for short users does not have a big impact on final
model quality, we propose a generalised iterative neighbourhood discovery
framework to find that each user’s personalised model can be trained over
an iteratively expanded neighbourhood using the model quality as a way to
supervise the notion of similarity. While seemingly a trial and error method
like any other, we still believe that the outputs generated by this method are
valuable not just because of better-performing personalised predictors, but also
the fact that each user gets its own neighbourhood. This additional output
(which let us discover that some users are avoided by all others, for example,)
can serve as a starting point for clinical investigations. It is even possible
that the results of such investigations may eventually improve the notion of
similarity in the domain of tinnitus by uncovering hitherto unknown properties
of users.

6.4. Limitations and Threats to Validity
As with most unsolved scientific problems with real-world relevance, the approaches
presented in this work have limitations and threats to validity, since they make various
simplifying assumptions of the world. While we have tried to test the methods against
the more obvious threats, the ones that remain open still are listed below:

• Towards personalised predictors using neighbourhoods derived from static data:

– Only one of three datasets included in the study were EMA datasets,
and the Amazon reviews datasets gave no static data to derive our kNN
models from. More datasets from the EMA domain that have all the
desired properties would be useful to determine the efficacy of our proposed
method in training personalised predictors that are more accurate than
the global model.

– The inclusion of the current timestamp was seen to leak dataset tenden-
cies, giving the k-random entities baseline an unfair advantage. While
internal experiments showed us that dropping the timestamp removes
this disadvantage (and the decision was carried over into our subsequent
works), a full re-run of the experiments would help to systematically show
the impact of this decision on model quality.

– Since we train a large number of models (one per entity), we have limited
the complexity of the model to linear models, to avoid both runtime and
workflow complexity issues (for example, user-level model selection and
hyperparameter tuning).

– The performance can be studied for neighbourhood sizes exceeding 50,
since it is a small proportion of the entire dataset. It could be that the
trends we observe reverse for larger neighbourhood sizes.

– It would be useful to introduce EMA-like datasets from a domain where
the similarity between entities / users is better known. The results on
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such a dataset can help confirm that the neighbourhood models really do
benefit from the computation of neighbourhoods. In our current case, we
are only inferring the existence of a neighbourhood from the result.

– More sophisticated similarity functions can be used that can capture
non-linear relationships between features.

• Towards personalised models using neighbourhoods derived from the dynamic
data:

– The HMM models trained to summarise the EMA sequences were not
validated by an expert. A more thorough investigation of the models is
necessary to know that the summaries of the EMA sequences do indeed
capture disease-relevant differences between users. i.e., A model that
achieves better performance on the basis of an HMM that contains states
that make no sense to a physician is not to be trusted, since our goal is
not only to have good personalised predictors, but use the neighbourhoods
that are output by personalised predictors as well.

– Some properties of EMA data are at odds with HMMs. The irregularity
violates a core HMM assumption of temporally equidistant observations,
and the large differences in length can create an HMM model that is
biased to the long sequences it is trained on.

– Further experiments are necessary to confirm that the HMM-derived
neighbourhoods do indeed bring improvements to the predictive quality
of the personalised models. It might be that the HMMs are only playing
the role of grouping users based on their mean distress. Relatively simple
baselines need to be created to assess the utility of adding a complex
sequence model like HMMs.

– Relatively simple preprocessing steps can have huge semantic impact
on what the HMM is trained on. More experiments are necessary to
determine if sequences that capture patient-level deviations from means
are more effective at grouping similar EMA series compared to the current
implementation, which is more likely to develop a proxy for average patient
loudness and distress.

– We only explore HMMs trained over the tinnitus loudness and distress
dynamics. Including more variables might create models that more accu-
rately group EMA sequences. However, this would make interpreting the
HMM states more difficult.

– The use of Granger causalities to summarise the EMA sequences were prone
to false positives, since every permutation of the 2-variable pairs from the
EMA features was tested with 1 . . . Nlags for Granger causal relationships.
Tightening the confidence level can help reduce the likelihood of false
positives, but when testing for a large number of relationships, it is better
to create a model that is robust to false positives.

– The extracted causalities can be used in a non-binary way, so that re-
lationships with high statistical certainty are given higher weight than
those with lower. The same can also be applied at a dataset level, where
causalities that are discovered in the dataset at rates exceeding the base
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expected rate from type 2 errors alone can be weighted higher, since they
reflect underlying properties shared by a large number of users in the
dataset.

– The current method gives equal weight to the existence of causalities and
their absence. More sophisticated methods can weight the vectors so that
two patients that both do not show a commonly occurring Granger causal
relationship (between loudness and distress, for example) are given higher
similarity.

• Towards personalised models for short users learned on users with long se-
quences:

– The main and largest threat to validity of these methods is the size of the
datasets they are trained on

– The insensitivity of the model to the definition of the similarity measure
suggests that the user neighbourhoods, even when ‘useful’ (resulting in
low RMSE), are still added for the wrong reason. An analysis of the
discovered neighbourhoods is necessary, where a clinician validates the
discovered neighbourhoods and investigates the shared properties of users
in each others’ neighbourhoods.

• Towards a supervised notion of similarity for neighbourhoods:

– The choice of similarity function that guides the neighbourhood selection
process (cosine similarity over first five observations) is somewhat arbitrary.

– The neighbourhoods generated by the supervised neighbour selection
framework have not been analysed by a clinician to assess their medical
relevance.

– To truly assess whether the neighbourhood is useful, one can attempt to
fit more complex models once the neighbourhood has been discovered. A
neighbourhood computed over a well performing neighbourhood selection
model should outperform the performance of the intermediate models.

6.5. Future Work
The collection of methods proposed in this work were developed sequentially, with
the results from previous efforts directing the design of the following methods. The
most promising avenues for further exploration are therefore concentrated on the
most mature part of this work, introduced in Section 5.4. However, we will present
the most promising ways in which the methods presented in each of the chapters
may be extended.

• Building personalised predictors based on static data similarity:

– The similarity function we applied is linear and cannot take complex
interrelationships between entities into account (for example, if a patient
has family history AND ear trauma). Substituting the similarity function
with more sophisticated methods would be low-hanging fruit for an im-
provement that can be made independently of the rest of the workflow.
Promising options are methods derived from graph similarity, where older
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methods [15] can be compared against their more modern counterparts [75]
that train node (patient) embeddings. Another option would be training
autoencoders to develop lower dimensional representations of users, so
that a similarity function can be applied on the dimensionality-reduced
vector [83, 44].

– More complex models can be trained when the data permit it. A full
model selection with hyperparameter tuning at the user level is of course
computationally expensive, but necessary for a full evaluation.

– EMA-like dataset from more domains can be used in the study. Any
dataset with a known reference relationship can be investigated to see if
the proposed workflow discovers neighbourhoods that share that known
relationship.

– Larger datasets would confirm the degree to which the results replicate,
confirming the validity of our workflow. The current workflow could also
be repeated using the logic followed in Chapter 4 onwards. This would
show that the neighbourhood based models still outperform the global
and user-centred models.

• Building personalised predictors based on dynamic data similarity:

– Including larger and / or reference datasets would confirm the degree to
which the proposed methods do indeed capture the underlying similarities
between entities. Datasets with known relationships between entities
(like in the m5 dataset) can help confirm if our neighbourhood discovery
methods truly capture and exploit this known relationship.

– More sophisticated models can be trained on the dynamic data once
the neighbourhood is discovered, if sufficient data is available. Like
in the previous case of the static data, user level model selection and
hyperparameter optimisation can be performed to always extract the most
from the training data. The sensitivity of such a method to overfitting
would be valuable as a result in and of itself.

– The time series summaries can be performed with more sophisticated
methods like irregularity-aware t-LSTMs, and the performance of these
methods can be compared against our simpler methods. T-LSTMs have
already been proved to work for patient subtyping [8].

– The method of using transferred long user models used to create predictions
for short users needs to be validated on larger datasets to ensure the
reliability of the result. A larger dataset would also allow us to investigate
the effect of parameters that were not practically possible to tune over
the small dataset.

• In addition to improvements that can be made to each of the methods above
independently, it is also worth studying if all / some combination of all the
above methods (including HMMs, Granger causalities, as well as static data)
yield better results than relying on one method alone. There is reason to
consider this method wlil be effective, since each method beat the global model,
but not by a large margin. It is perhaps possible that a well crafted similarity
measure that incorporates elements from all three approaches finds better user
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neighbourhoods.

• Discovering the neighbourhoods in a supervised manner:

– The neighbourhoods discovered by the models have not been investigated
for clinical relevance. This would be a top priority for assessing the utility
of our results, since many of of choices are motivated by being easy to inter-
pret. Less focus on interpretability can allow for more complex approaches
that optimise for performance alone using as narrow a neighbourhood as
possible.

– Instead of the current similarity measure, the neighbourhood growth
model could select the next user to add into the neighbourhood based
on the learned representations, like from autoencoders. The effect of this
ordering can be evaluated by how quickly the intermediate models achieve
their final and best performance. Well selected neighbourhoods should
improve models quicker than poorly selected ones. Applying the same
method on benchmark datasets (like from the M5 competition [64]) can
allow the fitting of more complex models.

– The utility of the neighbourhood selection process can be investigated by
fitting more complex models after the neighbourhood selection process
has converged on the ‘best’ neighbourhood. Unlike in the previous cases
where the size of k was fixed, the neighbourhood discovery method stands
to gain the most from this because the amount of training data available
in each user’s neighbourhood can vary more strongly.

– Much more sophisticated analyses are possible on the final as well as the
intermediate neighbourhoods derived during the neighbourhood search
process. The order in which the users are added might contain valuable
information regarding user similarity, and methods like paragraph embed-
dings or association rule mining can discover such patterns in our output.
This part of our output has not been analysed so far.

– As with the other neighbourhoods, clinical validation is key to trusting
our workflow. Apart from the neighbourhoods of the users themselves,
differences between well and poorly predicted users, users with many and
few neighbours, users that are used in many other users’ training data
and those that are not, etc. are all valid questions for a clinician.

– The brute force method that tended to overfit the neighbourhoods can also
be improved to have higher tolerances when neighbourhoods are small, so
that users do not get stuck in local minima.

• The notion of supervised similarity might also be extended to a supervised
metric learning problem[69], where we learn the similarity between patients
based on how useful they prove to be in each others’ neighbourhoods.
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A.1. Appendix for Chapter 3
A.1.1. The six groups of tinnitus patients as derived by expert knowledge
The table below shows the six groups of tinnitus sufferers as derived from kMeans
clustering loudness with k = 3 and distress as the total score of the “Tinnitus
Fragebogen" (i.e., the "Tinnitus Questionnaire" in English) with k = 2. The total
range of the scores is 0-24. The clustering does not find well separated clusters, but
is intended rather as a way to find data-driven cuts in a continuous distribution. The
results were validated by an expert.

Group Group Description N Avg. Distress Avg. Loudness

Group 1 High Distress,
High Loudness 97 18.3 82.2

Group 2 High Distress,
Moderate Loudness 168 17.0 54.4

Group 3 High Distress,
Low Loudness 52 15.7 26.8

Group 4 Low Distress,
High Loudness 35 9.2 77.1

Group 5 Low Distress,
Moderate Loudness 83 8.1 53.0

Group 6 Low Distress,
Low Loudness 81 7.4 28.1

Table A.1.: The six groups of concordant tinnitus sufferers as discovered by running
2-Means on distress, and 3-Means on Loudness
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A.2. Appendix for Chapter 4
A.2.1. HMM state transition matrices
TYT Dataset

The following Figures A.1 - A.8 show the state transition matrices (left image), and
the corresponding means for loudness, distress for the TYT dataset.

Figure A.1.: The TYT dataset: State means and transition matrices for HMM with
3 states

Figure A.2.: The TYT dataset: State means and transition matrices for HMM with
4 states
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Figure A.3.: The TYT dataset: State means and transition matrices for HMM with
5 states

Figure A.4.: The TYT dataset: State means and transition matrices for HMM with
6 states
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Figure A.5.: The TYT dataset: State means and transition matrices for HMM with
7 states

Figure A.6.: The TYT dataset: State means and transition matrices for HMM with
8 states
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Figure A.7.: The TYT dataset: State means and transition matrices for HMM with
9 states

Figure A.8.: The TYT dataset: State means and transition matrices for HMM with
10 states
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UNITI Dataset

The following Figures A.9 - A.16 show the state transition matrices (left image), and
the corresponding means for loudness, distress for the UNITI dataset.

Figure A.9.: The UNITI dataset: State means and transition matrices for HMM with
3 states

Figure A.10.: The UNITI dataset: State means and transition matrices for HMM
with 4 states
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Figure A.11.: The UNITI dataset: State means and transition matrices for HMM
with 5 states

Figure A.12.: The UNITI dataset: State means and transition matrices for HMM
with 6 states
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Figure A.13.: The UNITI dataset: State means and transition matrices for HMM
with 7 states

Figure A.14.: The UNITI dataset: State means and transition matrices for HMM
with 8 states
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Figure A.15.: The UNITI dataset: State means and transition matrices for HMM
with 9 states

Figure A.16.: The UNITI dataset: State means and transition matrices for HMM
with 10 states
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A.2.2. Appendix for Section 4.4.2

Results for Granger causality: User-level RMSEs for global vs local model Figure
A.17 below shows the boxplot of RMSEs achieved at the user level by the global
model versus the personalised (N=1) model that does not use the data of neighbours.

Figure A.17.: The UNITI dataset: Boxplot of user-level RMSEs

Results for Granger causality at the question level: The following two Figures
A.18 and A.19 show the results for building the personalised model neighbourhoods
on Granger causalities targeted at each variable in the momentary assessment.

Figure A.18.: The TYT dataset: Restricting the neighbourhood computation to
causalities towards a single variable
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Figure A.19.: The UNITI dataset: Restricting the neighbourhood computation to
causalities towards a single variable

A.2.3. Appendix for Section 4.4.4
Similarity based on data v/s metadata: The image A.20 below shows the boxplots
for similarities computed for the TYD Spain and Bulgaria datasets. Column on
the left shows the cosine similarities over user vectors that describe the number of
sessions logged in the first N days. The box plot on the left hand side shows the
results for when using the first N days, and the boxplot on the right, for last N days.

Figure A.20.: Boxplots of similarities measured for user pairs in (Ulong, Ushort) for
data v/s metadata, first v/s last observations, for N=5 . . . 8.

Model performance for exhaustive search and early termination based on metadata:
The following table A.2 shows the results achieved by the metadata-based similarity
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measure when used by the exhaustive search and early termination logic. It can be
seen that the exact choice of data v/s metadata makes little difference to the final
performance.

Dataset Baseline Model
(RMSE)

Exhaustive Search
(RMSE)

Early Termination
(RMSE)

BG 24.300 22.972 24.178
ES 23.165 14.016 14.016

Table A.2.: TYD Bulgaria (BG) and TYD Spain (ES) datasets: Errors achieved by
the exhaustive search and early termination method compared to the
baseline model

Detailed neighbourhood information for exhaustive search and early termination
based on metadata: The following table shows the results for the early termination
and exhaustive search for similarity based on metadata (number of user interactions
in first 5 days). The results are very similar those found by the data-based similarity
methods, although some of the user-level neighbourhoods are different.

Dataset User_ID B
(RMSE)

ES
(RMSE)

ET
(RMSE) |B| |ES| |ET|

BG

1 36.26 24.69 31.58

316

145 100
2 30.07 31.04 31.04 265 265
3 19.38 20.15 20.15 171 171
4 23.24 25.39 25.39 171 171
5 23.47 23.47 23.47 316 316

ES

1 32.14 16.07 16.07

505

190 105
2 42.82 35.93 35.93 314 90
3 30.36 7.11 7.11 90 90
4 23.82 11.3 11.3 84 84
5 18.38 6.78 6.78 280 280
6 23.92 11.36 11.36 280 280
7 21.97 14.52 14.52 195 195
8 11.77 12.23 12.23 195 195

Table A.3.: User-level RMSEs and training data size for baseline model, exhaustive
search, early termination using metadata-guided similarity

A.3. Appendix for Chapter 5.3
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TYT UNITI
N 227 222
Min. length 30 30
Max. length 841 263
Avg. length 90 64.8
Std. dev. 104.9 37
Date Start 05.2014 04.2021
Date End 01.2022 04.2022

Table A.4.: Properties of the TYT and UNITI datasets used in Chapter 5.3
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