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Abstract

The successful navigation in rapidly changing environments heavily relies on focus-
ing on what is important while ignoring the irrelevant. Attention helps us doing this
by supporting the facilitated processing of relevant information, often automatically
and governed by implicit motives. At the same time, changing circumstances leave
us being confronted with the need to adjust our behavior. Such adaptation requires
a redistribution of attentional resources towards a new strategy or goal. Although
neuroimaging evidence could link the anterior prefrontal, specifically the frontopo-
lar cortex (FPC), to exploratory re-weighting of attentional weights, we only have
started to unravel the neurocognitive mechanisms that help us to find a balance be-
tween continuing to do what we know works for us and trying something new. The
series of experiments presented in this dissertation was designed to investigate the
role of FPC in exploratory shifts of attention. In the first experiment, a novel behav-
ioral masking paradigm was designed to test if shifts of feature-based attention can
occur in response to fully invisible stimulus changes in young healthy human par-
ticipants. The second experiment followed up the first experiment using functional
magnetic resonance imaging (fMRI) to study if and how the FPC supports shifts of
visual attention in the absence of visual awareness. The third experiment, again car-
ried out using fMRI, used a novel virtual foraging task to examine FPC’s implication
in so-called patch-leaving behavior, that is, to what extend FPC supports partici-
pants’ decision to initiate behavioral exploration. Combining signal detection theory
and subjective measures of awareness in experiment 1 and 2, we showed that per-
formance on unaware trials was consistent with visual selection being weighted to-
wards repeated orientations of Gabor patches and reallocated in response to a novel
unconsciously processed orientation. This was particularly present in trials in which
the prior feature was strongly weighted and only if the novel feature was invisible.
The fMRI data revealed that the ventral attention network responded to invisible
feature changes whereas activity patterns in FPC conveyed the feature information
of the novel stimulus attentional resources needed to be redirected to. Together these
results foster the notion that FPC, not specifically implicated in the detection of in-
visible stimulus changes, supports shifts of visual attention by representing infor-
mation about alternative goals. Building on these findings, the third experiment
showed that inter-individual differences in the propensity to pursue an either ex-
ploitative or exploratory foraging strategy, indexed by participants’ giving-up times
(GUT), modulated the signal strength in both medial, and lateral FPC time-locked to
the onset of exploratory behavior. Those participants who showed a behavioral bias
towards exploration, showed stronger signaling bilaterally in the medial and lateral
FPC in the moment of exploration. Altogether, the experiments provide important
new insights into FPC’s functioning that extend existing findings by showing that
FPC encodes information of an unconsciously perceived stimulus attention needs to
be directed to as well as that it takes a specific role in exploratory decision-making
by supporting the shifting from an exploitative towards an exploratory mode of cog-
nitive control. At the same time, they highlight that further research benefits from
taking differences in behavioral strategies into account when making predictions
about FPC’s involvement in exploratory decision-making.
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1 General Introduction

1.1 Motivation and structure of this thesis
Often we find ourselves in situations overly rich in perceptual information that is far
beyond what we can effectively process. Thus, to make sense of the environment,
and to be able to execute goal-directed behavior, we need to choose the relevant
information and ignore the irrelevant. Let us picture ourselves on our way back
home during rush hour. Here, safe navigation critically depends on our ability to
detect and monitor signs and traffic lights as well as to observe and respond to the
actions of others, no matter if we walk down the sidewalk, ride our bike, or drive
a car. At the same time, we manage to ignore billboards, the user interface in the
car, and bleeping phones. Similarly, a nurse rushing into a patient’s room following
an emergency call, needs to quickly scan the ill person and read the blinking lights
around the patient’s bed to understand what kind of emergency he is facing and
what kind of actions he needs to take. These examples illustrate that, very often, our
environment bears a high complexity and an overload of information. Attention as
a cognitive function helps us to reduce this informational overload through visual
selection. Put simply, attention as a process of visual selection helps us to focus on
what is currently important and to ignore what is currently less relevant. However,
sudden events in constantly changing environments can render unimportant what
was important a moment ago, while a previously unnoticed or ignored aspect may
take on the highest urgency. To adapt to such situations, attentional selection must
be flexible, allowing a quick redistribution of attentional resources according to
changing circumstances and priorities. While a solid framework exists that describes
the general interplay of different frontoparietal brain regions supporting attentional
control in general as well as attentional reorienting (e.g., Corbetta & Shulman, 2002;
Corbetta et al., 2008), this dissertation is dedicated to examine the scope of the FPC
in the execution of exploratory redistribution of attentional resources. Considered
as the largest higher-order association area in the human brain, uniquely large in
humans compared to other primates (Bludau et al., 2014), this most rostral part of
the prefrontal cortex (PFC) has been consistently linked to shifts of visual attention
(Lepsien & Pollmann, 2002; Pollmann et al., 2000; Weidner et al., 2002), but it is not
well integrated in the most prominent frameworks describing the neural correlates
of visual attention (Corbetta & Shulman, 2002; Corbetta et al., 2008). Key aim of this
dissertation was thus to provide new evidence to promote and further elaborate our
understanding of the FPC’s role in the redistribution of attentional resources.

The remainder of this first chapter briefly outlines central models in cognitive
neuroscience and psychology of visual attention and review empirical findings on
the neural correlates that support attentional control. Here I will also address the
anatomical and functional specificities of the FPC. Lastly, I will dwell briefly on the
usage of fMRI and multi-voxel pattern analysis (MVPA) to analyze neural activity
and close the chapter with an outlook on the experimental work. Together with
Chapter 2, where I detail common methods of experiment 1 and 2, this chapter thus
provides the background for the experimental work reported in Chapters 3 to 5.
Finally, in Chapter 6, I will summarize the results of the experiments and discuss
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their implications.

1.1.1 The cognitive neuroscience of visual attention

As this dissertation exclusively examined attention in the visual domain, the fol-
lowing chapter focuses solely on visual attention. Attention does however extend
to other sensory domains (e.g. Carlson et al., 2018; Lukas et al., 2010; Shomstein &
Yantis, 2004), and basic principles of attention as a cognitive function outlined in the
following section may also apply to attention studied in other sensory domains.

1.1.2 Visual attention as a cognitive process

As illustrated in the beginning of this chapter, our day-to-day life often takes place
in situations with a high load of information so that goal-directed behavior requires
a prioritization of what is important to be processed first. Consistent with this idea,
the biased-competition model (Desimone & Duncan, 1995) assumes that objects in a
visual scene are in a constant competition for access to visual short-term memory of
limited capacity. The competition is thought to be biased by top-down signals (e.g.,
reflecting action goals) that add higher so-called selection weights to behaviorally
relevant objects (e.g., Roelfsema et al., 2002), object features (e.g., Maunsell &
Treue, 2006; Treue & Trujillo, 1999) or locations (e.g., Posner, 1980) to promote
their access to further processing resources. To enable adaptive and goal-directed
behavior in changing environments, the top-down signals representing behavioral
goals (Craighero et al., 2002; Rosenbaum et al., 1991) must interact with sensory
(bottom-up) information about objects in the visual scene to facilitate the selective
perception and further processing of what is relevant given the situation, at the cost
of what is irrelevant (Bundesen, 1990; Wolfe, 1994).

Itti and Koch (2000, 2001) elaborated their saliency model with the aim to explain
visual selection that is driven by differences in the physical strength of low-level
stimulus features. In an early visual, pre-attentive perceptual process, the different
components of a visual scene compete on some feature dimension such as color,
contrast, or spatial orientation, whereby the more salient component wins - e.g.,
the location within a scene that contrasts more strongly - and consequently attracts
our gaze and becomes the object of a now attention-binding perceptual process
("pop-up", Itti & Koch, 2000). However, as outlined above, such a computational
model of attention assuming merely bottom-up factors fails to exhaustively predict
attentional selection (e.g., Betz et al., 2010). Based on our everyday experience, we
know the salience of what is surrounding us is also influenced by the behavioral
relevance we attribute to it. If we are waiting for our best friend at the train station,
we may not know what the friend is currently wearing, but we know that he
has blonde hair. Consequently, we are more likely to notice people passing by
with blonde hair. This illustrates that attentional control can act in line with our
internal objectives supporting goal-directed behavior (e.g., Bourgeois et al., 2016;
Folk et al., 1992; Raymond & O’Brien, 2009). Here the idea is that we maintain
information about what we are looking for, e.g., we know the friend is blonde,
in form of a so-called search template, i.e., a ‘perceptual set’ (Corbetta & Shulman,
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2002), and use this template to bias the processing of incoming visual information.
Whereas acknowledging top-down biases driving attentional selection is essential
to develop a holistic understanding of the mechanisms that determine what we
attend to (Theeuwes, 2010), the dichotomy of a bottom-up versus top-down control
of visual attention appears to be insufficient as more factors such as prior selection
and reward history have been shown to impact visual selection as well (e.g., Awh
et al., 2012; Failing & Theeuwes, 2018). To integrate bottom-up, top-down biases,
as well as influences based on reward history on visual attention, the idea of
priority maps as a unifying concept was introduced (e.g., Bisley & Goldberg, 2010;
Klink et al., 2014; Theeuwes, 2018). Such a map is best understood as a spatially
organized representation of the stimuli within the visual field, where each stimulus
is represented by a combination of internally attributed characteristics (such as the
expected reward, or task- or goal relevance that may be associated with a stimulus),
and external features such as the physical salience (Bisley, et al., 2009; Fecteau &
Munoz, 2006). Consequently, such a representational map allows to distinguish
between stimuli associated with more or less priority and guides shifts of visual
attention accordingly so that the stimulus associated with the highest priority is
selected (Bisley & Goldberg, 2010; Serences & Yantis, 2006). At the same time,
attention itself contributes to the formation of such a priority map by providing
top-down signals representing e.g., goals or expectations that are consequently
integrated in the map. The notion that such priority map is modulated by both
exogenous and endogenous biases is consistent with neuroimaging studies that
show that both types of attentional control are linked to activations a range of
brain regions that all belong to an overlapping frontoparietal network (Corbetta
& Shulman, 2002; Corbetta et al., 2008; Katsuki & Constantinidis, 2012; Katsuki &
Constantinidis, 2014).

So far I have briefly outlined computational accounts of visual attention that as-
sume spatially organized saliency, and later priority maps, guiding visual selection
in the face of limited processing resources. Crucial for goal-directed behavior are
shifts of visual attention. They enable us to respond to sudden changes in the cur-
rent environment as well as to attend to novel information that may be relevant for
achieving a goal. In theory, e.g., the sudden appearance of a highly relevant stimulus
within the visual field changes the configuration of the priority map and attentional
selection is consequently shifted towards that new stimulus. Yet, how does the brain
execute such changes? The remainder of this chapter will deal with the neural corre-
lates assumed to constitute the so-called frontoparietal attention network and point
out their interplay that support shifts of visual attention.

1.1.3 The frontoparietal network of visual attention

One of the most renowned frameworks about the neural foundations of attention
was developed by Corbetta and Shulman in 2002 and later extended in 2008
and distinguishes between two networks orchestrating attentional control (see
Figure 1). The dorsal network of attention comprises parietal regions including
the intraparietal sulcus (IPS) and the superior parietal lobe (SPL). In the frontal
lobe, it is the dorsal part along the precentral sulcus (PCS) that is considered as
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part of the network, including the frontal eye field (FEF). Typical for these regions
are consistent preactivation in various cognitive tasks, e.g., in the expectancy of
the upcoming stimulus at a specific spatial location (Corbetta et al., 2000). Such
preactivations are interpreted as internally generated and maintained signals
reflecting current expectations or relevant behavioral goals. Consistent with the
model of biased competition (Desimone & Duncan, 1995; see above), these internal
representations are thought to be subsequently used as top-down signals, biasing
the processing of the incoming sensory information, e.g., in the primary visual cor-
tex (Corbetta & Shulman, 2002; Corbetta et al., 2008). Considering that both IPS and
FEF possess subregions with retinotopic organization (Silver & Kastner, 2009), both
regions show properties that enable the maintenance of spatially organized priority
maps (section 1.1.2), presumably guiding covert shifts of spatial attention, saccade
planning, as well as visual working memory (Jerde et al., 2012; see Vossel et al., 2014).

The second, ventral network of attention is suggested to predominantly en-
able stimulus-driven (bottom-up) shifts of attention, typically showing activity
in response to relevant but unexpected stimulus onsets (Corbetta et al., 2008). It
comprises the ventral frontal cortex (VFC), that includes parts of middle frontal
gyrus (MFG), the ventral inferior frontal gyrus (IFG), the frontal operculum (OPC),
and the anterior insular cortex (AIC). Posteriorly, the network includes the tem-
poroparietal junction (TPJ) which is composed by the posterior part of the superior
temporal sulcus (STS) as well as the ventral part of the supramarginal gyrus
(SMG) were included (Corbetta et al., 2008). (Although note that different studies
reporting TPJ activations also report differences in the exact spatial location (see
Schurz et al., 2017). During viusal search TPJ, rMFG, and rIFG reportedly show
sustained deactivation, whereas the same regions respond with increased activity
to unattended targets (Shulman et al., 2003). This pattern of results promoted the
hypothesis that the ventral network disrupts the currently maintained selection
in the dorsal network, resulting in a shift of attention to a previously unattended
stimulus (Corbetta et al., 2008).

Whereas the suppression of the ventral network during ongoing search presum-
ably supports the prevention of responses to irrelevant stimuli, relevant targets still
elicit positive responses suggesting that the activity in the ventral network is filtered
by task relevance (Shulman et al., 2007). In particular, for the rTPJ, implicated in
stimulus-driven spatial attentional reorienting (Chang et al., 2013), it was shown
that the degree to which it was deactivated correlated positively with participants’
detection performance in a rapid serial presentation task (RVSP), suggesting that
a stronger filtering in the ventral network promotes a better task performance
(Corbetta et al., 2008; Shulman et al., 2007). Consistent with the idea of a filtering
by task relevance, in the domain of contextual cueing where unattended stimuli can
carry predictive information for the target location, it was shown that TPJ is not
suppressed if distractors are predictive for the the target location. Moreover, the
activity in both TPJ and IFG is positively modulated by the contextual relevance
of the distractors (i.e., in repeated displays in which the spatial configuration of
distractors predicts the target location). Only if the distractors have no predictive
value (novel displays), the FEF inhibits TPJ. These observations suggest that the

4



IFG together with TPJ constitute a network driven by sensory information that
integrates knowledge about the context with steadily incoming sensory information
to provide an attentional control signal to FEF (DiQuattro & Geng, 2011). At the
same time, this shows that FEF, as part of the dorsal, and TPJ, as part of the ventral
attention network, closely interact to allow flexible attentional control that enables
us to pursue a goal but also to adapt to our environment. Using transcranial
magnetic stimulation (TMS) to inhibit the right IPS and TPJ in a spatial cueing task
showed that TPJ inhibition impaired only exogenously cued attentional orienting,
i.e., if the the spatial cue had no predictive value of the upcoming target location
(50% cue validity), whereas the inhibition of the rIPS hampered both exogenous
as well as endogenous orienting of attention, when the spatial cues predicted
the upcoming target location with 67% probability (Chica et al., 2011). Clearly,
this evidence challenges the straightforward attribution of either top-down or
bottom-up processing to one of the two networks. At the same time, and similar to
DiQuattro and Geng (2011), it strongly suggests that both networks interact closely
to promote flexible attentional control. On the functional level this interaction
is possibly supported by the rMFG which shows spontaneous fMRI activity that
correlates with both networks (Fox et al., 2006; He et al., 2007). On the anatomical
level, the link between both attention networks is provided by the middle superior
longitudinal fasciculus (SLF II) connecting the parietal nodes of the ventral with the
frontal nodes of the dorsal network (de Schotten et al., 2011; see Vossel et al., 2014).
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Figure 1: The network model of brain structures underlying attentional control
adopted from Corbetta and Shulman, 2002. The FEF and IPs support the top-down
regulation of visual processing whereas TPJ together with IFG and MFG are thought
to serve stimulus-driven attentional control. Via connections between IPs and TPJ
the current attentional focus is interrupted if novel stimuli outside of the attentional
focus are detected. Suppressions of the stimulus-driven attentional control, on the
other hand, rely on connections between the IPs and TPJ, as well as between the TPJ
and FEF (DiQuattro & Geng, 2011).

Despite evidence demonstrating the role of the FPC in the execution of atten-
tional shifting (Daw et al., 2006; Gramann et al., 2010; Ort et al., 2019; Pollmann,
2001; Pollmann, 2004; Pollmann et al., 2007; Pollmann et al., 2000), the model by
Corbetta and Shulman (2002) does not consider the FPC as part of neither the dorsal
nor the ventral attention network. A reason for this might be the diverse contexts
in which the FPC has been implicated, such as mnemonic function (e.g., Dobbins et
al., 2002), reasoning (e.g., Green et al., 2006), action planning (Dagher et al., 1999),
cognitive branching (Koechlin et al., 1999), or reward-based learning (Herrojo Ruiz
et al., 2021), as well as inconsistent evidence linking FPC to attentional weighting
(Mansouri et al., 2020; Pollmann et al., 2007). These findings promote the idea that
FPC capitalizes a more general role in cognitive control, exceeding the mere redistri-
bution of attentional selection weights. In the remaining chapter I will briefly outline
the anatomical distinctiveness of the FPC and review its putative functional role in
managing attentional resources facilitating cognitive control.

1.1.4 Anatomical features of the FPC

The FPC, also referred to as the frontal pole or BA10, is located at the most ros-
tral part of the prefrontal cortex in the human brain. It is positioned at the supe-
rior frontal gyrus (SFG), occupying the area at the front of the brain, just behind
the forehead. From an evolutionary perspective, it is the neocortical brain region
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that has extended the most in the course of human phylogenesis compared to other
non-human primates (Semendeferi et al., 2001). It comprises Brodmann Area 10,
(BA10) which is determined by its unique cytoarchitecture, distinct from adjacent
prefrontal regions (Brodmann, 1909). The originally described BA10 encompasses
the FPC in its center, which includes the frontomarginal sulcus (FMS) as well as the
rostral SFG, and to some extent also the MFG (see Figure 2), (Bludau et al., 2014).
In Brodmann’s description, BA10 borders ventrally with the orbitofrontal cortex
(OFC, BA11), dorsally with BA9 which contributes to the dorsolateral and medial
prefrontal cortex (dlPFC, mPFC). In caudal direction BA10 adjoins BA46, the middle
frontal area, which roughly corresponds with the dlPFC (Bludau et al., 2014; Brod-
mann, 1909). Later anatomical descriptions of BA10 mostly align with the originally
proposed map (Bludau et al., 2014; von Economo & Koskinas, 1925; Sarkisov et al.,
1949). Given the heterogeneous cytoarchitecture even within the BA10, Öngür and
colleagues (Öngür et al., 2003) proposed a map of greater extent that comprises three
subdivisions of BA10, 10m, 10r, and 10p, where only 10p contains the FPC and 10m
and 10r reach further into the mesial surface of the brain reaching into the most
ventral part of the anterior cingulate gyrus (Bludau et al., 2014; Öngür et al., 2003).
Typically, all neocortical areas comprise six cell layers, the molecular layer (layer I),
the outer granular layer (layer II), the outer pyramidal layer (layer III), the inner
granular layer (layer IV), the inner pyramidal layer (layer V) and the polymorphic
layer (layer VI), (Bludau et al., 2014; Brodmann, 1909; Strotzer, 2009). In the map
of BA10 from Öngür an colleagues, 10p, the frontal pole, is described as having the
most pronounced layer III. This layer contains projecting pyramidal cells (e.g., Ban-
nister, 2005) with short- and long-range connections within and outside of BA10. In
a more recent account of FPC’s anatomical subdivisions, Bludau et al. (2014) pro-
pose an anatomical distinction between a lateral (Fp1) and medial (Fp2) FPC, stem-
ming from a growing body of research stressing a functional divergence between
the medial and lateral FPC. Comparing the cytoarchitecture of these two subregions
revealed similarities in that both areas showed sharp borders between layer I, layer
II, layer III, and layer IV with densely packed cells. At the same time, the lateral FPC
(Fp1) could be distinguished by its higher cell density in the outer pyramidal layer
(III) and it also appeared to have a greater layer II with densely packed cells and a
more pronounced layer IV. Fp2’s lower parts of layer V, in turn, possessed a small
population of pyramid cells that was not found in area Fp1 (Bludau et al., 2014).
In the human FPC pyramidal neurons have a higher number and density of den-
dritic spines compared with neurons in the orbitofrontal cortex (Jacobs et al., 2001),
and pyramidal cells bodies of layer III display a greater horizontal distance between
each other compared to the monkeys’ FPC, suggesting that the human FPC may pos-
sess an enhanced capacity for neural integration crucial for cognition (Tsujimoto et
al., 2011). The spatial expansion of the FPC with its lateral and medial subdivisions
according to Bludau et al. (2014) is shown in Figure 2.

1.1.5 The functional role of FPC in attentional control

As mentioned above, a large and rather heterogeneous body of research has linked
the FPC to different forms of intelligent human behavior. With an anatomical vol-
ume larger compared to other non-human primates (Semendeferi et al., 2001), it
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Figure 2: based on the Harvard-Oxford cortical atlas, the region colored in blue
shows bilaterally the lateral (Fp1, area in red) and medial (Fp2, area in yellow) FPC
(> 65% probability) plotted on an MNI152 standard brain template. Transverse slices
z = -5 to z = 15 encompass the region with the highest probability of containing the
FPC along the vertical axis (Bludau et al., 2014).

likely supports cognitive abilities unique to humans. According to an early ac-
count of FPC’s function, it serves the evaluation of internally generated information
(Christoff & Gabrieli, 2000). A more recent hypothesis focuses on the role of the PFC
in coordinating concurrent goals (Hogeveen et al., 2022; Mansouri et al., 2017). Goal-
directed behavior heavily relies on a constant balance between a tendency to either
exploit or explore as we constantly decide to keep doing what we know works for
us or to take the risk trying something new as it could work even better. Behavioral
exploitation, on the one hand, is thought to be originating from posterior parts of
the prefrontal cortex (Donoso et al., 2014; Koechlin et al., 1999), presumably allo-
cating cognitive resources to an ongoing task. Exploratory tendencies, on the other
hand, are thought to be driven by the FPC that orchestrates the redistribution of
cognitive resources away from the current task whenever alternative goals receive a
higher behavioral relevance (e.g., due to changes in the environment). Importantly,
the successful balancing between exploitative and exploratory urges is crucial for the
adequate execution of natural behaviors such as foraging which directly impacts the
individual’s and species’s survival and fitness (Mansouri et al., 2017).

Weighing between exploitation and exploration. First evidence for FPC’s role in
resolving the exploration-exploitation dilemma was reported in a virtual gambling
task originating from the principles of a casino’s slot-machine (e.g., Daw et al., 2006;
see Jones, 1975). Replications and extensions based on similar n-armed bandit tasks
followed, all together implicating the FPC more generally in such higher-order
executive control processes. In particular, the FPC together with the IPS was found

8



to show increased activity during exploratory gambling choices. The striatum and
ventromedial prefrontal cortex (vmPFC), on the other hand, were linked to exploita-
tive choice behavior (Daw et al., 2006; Laureiro-Martínez et al., 2015). Later, using
TMS right lateral FPC was demonstrated to govern directed but not random explo-
ration in a version of bandit-task that allowed the distinction between both types of
exploration (Zajkowski et al., 2017). This finding was later confirmed by yet another
bandit-task study showing that the relative decision uncertainty is represented in
the right lateral FPC (Fp1) facilitating directed exploration (Tomov et al., 2020).
Further confirmation of the idea that FPC takes a central role in the exploratory
reallocation of cognitive resources is provided by evidence demonstrating that FPC
represents the value of switching to a foregone alternative behavioral choice during
uninstructed decision-making (Boorman et al., 2009). The same study also showed
that switch decisions towards the alternative choice were associated with changes in
the functional connectivity of FPC, and that inter-individual differences in the FPC
signal strength predicted differences in how effectively the behavior was adapted
(Boorman et al., 2009). This suggests that FPC keeps track of the potential value of
not-selected choices and supports the redistribution of attentional resources if an
alternative choice seems favorable.

Important convergent evidence in support of this idea is provided by lesion
studies in apes. Focal FPC lesions impair rapid one-trial learning (Boschin et al.,
2015), but do not generally hamper the performance in a cognitively demanding
task (Mansouri et al., 2015). Intriguingly, control monkeys with an intact FPC
are more easily distracted from exploiting the current task when confronted with
unexpected interruptions by a secondary task or by free rewards. Lesion monkeys’
performance in the primary task during the first trials after revisiting, on the other
hand, is less affected by such unforeseen interruptions. This suggests that the lesion
monkeys show a decreased tendency to explore the potential value of the new
task or reward for the overall performance, which is consistent with the evidence
from human gambling studies that implicate the FPC in exploratory choice making.
Together these findings foster the notion that FPC is involved in the redistribution
of cognitive resources away from the current task or goal towards an alternative
opportunity (Hogeveen et al., 2022; Mansouri et al., 2015; Mansouri et al., 2017).
Such shifting towards a behavioral alternative also requires the assessment of
the value of the currently selected choice. Consistent with this idea, single-cell
recordings in monkeys’ FPC, carried out temporally within between action choices,
that the animals had made, and before learning about the positive outcome related
to their choices, show that FPC tracks the importance of the currently selected action
(Tsujimoto et al., 2011, 2012).

The evidence reviewed above underscores the importance of FPC in serving
the switching away from the currently pursued towards an alternative behavioral
choice. This process certainly entails the shifting of attentional selection weights,
but also requires the monitoring of competing values assigned to each choice. Thus,
FPC’s role appears to be tied to a broader cognitive ability crucial to a whole range
of different behaviors that all entail the management of competing goals and an
according adaptation of the current behavioral strategy (Hogeveen et al., 2022;
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Mansouri et al., 2017).

In contrast to the monkey FPC, the human FPC is comprised by a lateral (Fp1)
and a medial subdivision (Fp2) (see Figure 2 in section 1.1.4), (Bludau et al., 2014).
This anatomical distinction based on the cytoarchitecture is supported by differences
in co-activations of Fp1 and Fp2 as well as in their contribution to different cognitive
function and behaviors (reviewed by Bludau et al., 2014). One hypothesis is that
Fp1 supports directed whereas Fp2 drives random exploration (Mansouri et al., 2017).
Directed exploration is considered to be based on the intent to seek further infor-
mation, i.e., choosing information over immediate reward. Random exploration,
on the other hand, (e.g., restless bandit task, Daw et al., 2006) is thought to rely on
decision noise (Wilson et al., 2014). In favor of the hypothesis that Fp1 supports
directed and Fp2 random exploration, is evidence that causally links the human Fp1
to directed exploration using TMS (Zajkowski et al., 2017) as well as the findings
showing that the monkey FPC, corresponding to the human Fp2 (Carmichael &
Price, 1996), supports the monitoring of the value of the currently selected behavior
choice, and, further, weighs between maintaining it and the random exploration
of alternative options (Mansouri et al., 2017; Tsujimoto, et al., 2010; 2012). Less
consistent with the assumed functional distinction are findings linking the human
right dlPFC but not Fp2 to random exploration (Tomov et al., 2020). Moreover,
lacking a sub-region equivalent to the human Fp1 does not mean that monkeys are
not able to engage in directed exploration, in which case it may be supported by
meso-corticolimbic regions (Costa et al., 2019). Thus, directed exploration neither
seems to be unique to human cognition, nor does it seem to depend on a Fp1-like
structure, at least in monkeys. Moreover, it was shown that random exploration is
linked to increases in neural variability and a loss of choice tuning in the FEF in the
monkey brain (Ebitz et al., 2018) as well as to increased neural variability in motor
related circuits in humans (Tomov et al., 2020). This evidence does not rule out that
Fp2 serves random exploration, but it is less in keeping with the proposed func-
tional distinction between Fp1 and Fp2 serving directed versus random exploration,
respectively. Thus, albeit structural sub-regions with a distinct cytoarchitecture
and differing anatomical as well as functional connections constitute the human
FPC, and consistent evidence implicates Fp1 in directed exploration, the evidence is
rather ambiguous regarding the putative link between Fp2 and random exploration.

Together, the existing body of research underscores the importance of FPC
in serving the shifting away from the currently pursued towards an alternative
behavioral choice. This process not only entails the redistribution of attentional
selection weights, but also requires the monitoring of competing values assigned
to each choice. Thus, FPC’s role seems to be tied to a broader cognitive control
mechanism which is crucial to a whole range of cognitive abilities facilitating
goal-directed behavior that all share the need for managing competing goals and
the according adaptation of the current behavioral strategy (Hogeveen et al., 2022;
Mansouri et al., 2017).
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1.1.6 Thematic focus and experimental framework

In real life, environmental changes that require behavioral adaptation are often
subtle and may sometimes even occur outside of our awareness. This raises the
question if adaptive attentional control necessitates visual awareness? Evidence
has shown that FPC detects violations of implicitly learned co-variations between
visible stimuli (Pollmann & Manginelli, 2009a). However, it is not clear if shifts of
visual attention can occur in response to changes of fully invisible stimuli and if
the redistribution of attentional resources, necessitated by such invisible changes,
are supported by the FPC, similar to its role in shifting attention between feature
dimensions of visible stimuli (Pollmann, 2001; Pollmann et al., 2007; Pollmann
et al., 2006; Pollmann et al., 2000; although see Mansouri et al., 2020). Motivated
by this questions, the first and second experiments were carried out to test if
adaptive attentional control (i.e., exploratory shifts of attentional selection weights)
necessitates visual awareness (experiment 1), and if the FPC supports these shifts
outside of visual awareness (experiment 2). To this end, a novel masking paradigm
is presented in Chapter 3, in which I tested if invisible orientation changes, requiring
shifts of visual attention, lead to behavioral switch costs in response times, indexing
the redistribution of attentional weights towards the novel stimulus orientation. In
Chapter 4, I report fMRI data obtained using the same visual masking paradigm
in a new group of participants that provides novel insights into the role of the FPC
during exploratory shifts of visual attention in response to invisible feature changes.

Although implicated before in the redistribution of attentional selection weights
(e.g., Pollmann, 2004), the reviewed literature in the previous section strongly
suggests that FPC likely plays are broader role in managing cognitive resources in
accordance with forgone behavioral choice options (Boorman et al., 2009; Mansouri
et al., 2017). Consistent with this, decision-making research implicates the FPC
in exploratory choices (e.g., Daw et al., 2006). Yet, economical choice studies are
typically based on bandit-like gambling tasks or other decision-making tasks in
which individuals choose from a predefined set of simultaneously presented choice
options (e.g., Daw et al., 2006). Alternative behavioral options in many day-to-day
decisions are however often encountered serially and cannot directly be compared
to one another (Garrett & Daw, 2020; Kolling et al., 2012). Therefore, in Chapter 5,
I present a third experiment examining FPC’s involvement in supporting switches
from a cognitive control mode of exploitation towards exploration when choice
options are encountered serially. For this purpose, a novel patch foraging paradigm
was designed that required participants to constantly weigh between behavioral
exploitation and exploration. Natural foraging in both humans and animals,
typically involves the question of how long a currently used source of food or
energy resource should continue to be used, with the remaining resources steadily
decreasing, or at what point it is better to leave, seek and explore potential alter-
native sources (Charnov, 1976). Foraging behavior is thus an ideal means to study
the switch from an exploitative towards an exploratory mode of cognitive control
(Cohen et al., 2007). Taken together, the first experimental series focused on FPC’s
role in the redistribution of attentional resources in response to low-level stimulus
changes, examining its independence from visual awareness, whereas the third
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experiment (Chapter 5) served to study FPC’s involvement when a redistribution
of attentional resources occurs in response to self-initiated changes in behavioral
strategies. Importantly, both novel paradigms (visual masking and foraging)
require uninstructed exploratory shifts of attentional resources not guided by task
instruction, but more by situational changes that require a behavioral adaptation for
optimal task performance (Boorman et al., 2009; Konishi et al., 2005; Mansouri et al.,
2015).

Since fMRI was chosen to study FPC function in the second and third experi-
ment, the next sections will briefly outline the principles of this imaging technique
and highlight some caveats that come with using it.

1.1.7 What the fMRI signal can tell us and what not

First introduced in 1992 (Bandettini et al., 1992; Frahm et al., 1992; Kwong et al.,
1992; Ogawa et al., 1992) functional MRI has become one of the most widely used
methods to study various aspects of brain function, including perception, emotion,
memory, and decision-making. It has a relatively high spatial resolution within
millimeters but a rather low temporal resolution in the scale of seconds. It allows
us to study the whole brain while participants perform a task, so that multiple
brain regions can be studied simultaneously and brain activity and behavior can be
directly linked.

The experiments reported in chapter 2 and 3 used the fMRI signal to study the
neural correlates of exploratory shifts of visual attention. Therefore, this chapter will
briefly address the underlying principles of the fMRI signal. I will also give a short
overview on multivariate pattern analysis (MVPA) used in fMRI and discuss the
caveats that come with studying the prefrontal cortex using fMRI and multivariate
decoding technique. This chapter will not provide a full introduction to the fMRI
method itself, but interested readers can find comprehensive introductions to the
topic in the existing literature (e.g., Poldrack et al., 2011).

1.1.8 The BOLD contrast mechanism in fMRI

FMRI constitutes an indirect measure of neural activity, and, it may surprise, the
relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and
the underlying neural firing, that is supposedly reflected in the fMRI signal, is not
yet fully understood. It is important to understand that the fMRI signal does not
pick up the electrical activity of neurons directly, but that it heavily relies on the
metabolic changes following neuronal activity. The ferromagnetic characteristic of
the oxygen carrying molecule hemoglobin, that occurs in red blood cells, changes
depending on its oxygenation. The molecule becomes paramagnetic following
its deoxygenation (Logothetis, 2003). This magnetization increases local inhomo-
geneities of the magnetic field impacting the MR signal. In principle, the MR signal
measures how hydro nuclei move between different energy states. FMRI relies
heavily on the transverse relaxation of these nuclei (T2*) and it is exactly this trans-
verse magnetisation that is reduced by increasing inhomogeneities of the magnetic
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field (e.g., Logothetis & Wandell, 2004). Thus, in response to a relative increase of
the proportion of paramagnetic deoxyhemoglobin directly after neural activity, the
BOLD-signal decreases. However, we typically observe an increase in the cerebral
blood flow (CBF) and an influx of oxygenated blood into the neighboring capillary
system following neural activity. Importantly, the amount of oxygenated blood
coming in is higher than the amount of oxygen that was consumed (Fox & Raichle,
1986; Fox, et al., 1988; see Logothetis & Wandell, 2004). This ’overcompensation’
leads to an increase of diamagnetic blood cells stabilizing the magnetic field and
thereby enhancing the BOLD contrast.

This dynamic stresses the temporally delayed nature of the BOLD signal as well
as that it is not the neural activity itself, but the CBF and the cerebral metabolic
rate of oxygen (CMRO2) that impact the BOLD signal. CBF increases the blood
oxygenation while CMRO2 decreases it, and it is the relative balance of the changes
in CBF and CMRO2 that is crucial for the BOLD signal (see Buxton, 2010). This
circumstance introduces further complications: both CBF and CMRO2 are con-
trolled through neural activity in parallel but not serially and the nature of that
neural activity is not yet fully identified (Buxton, 2010; Logothetis & Wandell, 2004).
Moreover, a significant positive signal change of the BOLD response, that may
occur in response to a stimulus, does not necessarily index an increase in the firing
of the neurons selective for that stimulus (Goense & Logothetis, 2008). Instead,
there is good evidence showing that it is the local field potentials (LFP) but not the
spiking activity that correlate more strongly with the BOLD response (Berens et al.,
2010; Goense & Logothetis, 2008; Logothetis & Wandell, 2004). Both types of neural
activity can but do not have to be correlated with each other. In the later case, it is the
LFPs that remains correlated with the BOLD response but never the spiking activity
(Logothetis et al., 2001; Mathiesen, et al., 1998; Mathiesen et al., 2000). In contrast
to spiking activity, LFPs presumably reflect input signals from rather than output
signals to a specific brain region, mostly driven by synaptic and dendritic activity
rather than axonal action potentials. They emerge from complementary excitatory
and inhibitory neural activity which are tied not only to processing of sensory
signals but also, more importantly, to neuromodulatory processes (Logothetis, 2003;
Logothetis & Wandell, 2004).

This short outline highlights the indirect nature of the BOLD signal. It also shows
that, although we do know which type of neural activity is more likely to be con-
tributing to broader signal changes of the BOLD response, the exact mechanisms
are still debated. Both caveats should find consideration whenever we try to link
empirical results based on the BOLD signal with neural activity and brain function.

1.1.9 Multi-voxel pattern analysis of fMRI data

Almost one decade after the propagation of fMRI as one of the key methods in
cognitive neuroscience (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al.,
1992), in 2001, Haxby and colleagues published a methodological prototype based
on multivariate pattern analysis (MVPA) of fMRI data to study the functional
structure for face and object recognition in the ventral temporal cortex (Haxby et
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al., 2001). Instead of looking for univariate signal changes to map certain sensory
or cognitive abilities to specific brain regions, MVPA allows to decode unique brain
states from specific patterns of activation in an array of brain voxels (Haxby, 2012).
By analyzing the neural responses as an entire ensemble of voxels, the method al-
lows to relate specific activity patterns to specific experimental conditions. Thereby,
it became possible to decode from the multivariate response patterns what kind of
object subjects saw (e.g., Haynes & Rees, 2005; Kamitani & Tong, 2005), whether that
object was animated or not (Kiani et al., 2007; Kriegeskorte et al., 2008), whether that
object was the target of attention (Kamitani & Tong, 2005), or which task subjects
intended to perform next (Haynes et al., 2007). MVPA thus became a powerful
complementary means to analyze fMRI data. In the tradition of functional brain
mapping, cognitive neuroscientists typically have tried to link specific brain regions
to specific cognitive functions. The MVPA opened a new avenue for qualitatively
different questions about how differences in cognitive states are represented in the
brain and how certain brain regions encode information of different qualities (e.g.,
abstract versus sensory).

The first fMRI experiment reported in this thesis (Chapter 4), I carried out to
firstly identify key regions underlying exploratory shifts of visual attention, and,
secondly, to test if these regions also encode the relevant, yet unconscious stimulus
information driving the shifts of attention. To this end, I used the mass-univariate
analyses based on the GLM as well as MVPA to analyse the BOLD signals related to
attention shifts. Thus, I will briefly outline the principles of MVPA and stress some
caveats inherent to the method when used to study brain representations.

Typically, MVPA comprises four steps (Norman et al., 2006): firstly the array
of voxels needs to be determined (i.e., feature selection). This is realized by either
narrowing the analysis down to a region of interest (ROI), or by looking at the entire
brain. In the latter case a searchlight analysis is often used (Kriegeskorte et al., 2006),
where the analysis is carried out in so-called searchlight spheres of a specific size
(e.g., 3 voxel diameter). The classification analysis is consequently performed for the
vector of voxels contained in that sphere, and the procedure is repeated until each
brain voxel has served once as the center of a searchlight sphere. The second step
involves sorting the data so that the patterns of activity across the selected voxels
are assigned to a particular time in the experiment (i.e., pattern assembly). The voxel
patterns are then labeled in accordance with the experimental conditions in which
they were recorded. In the third step (classifier training), parts of the labeled data
are handed over to a multivariate pattern classification algorithm and the algorithm
then learns to link the activity patterns to the experimental conditions resulting
in a mapping function. One type of pattern classification algorithm that is widely
used, are support vector machines (SVM). It is able to learn training examples that
contain information on the basis of which two ore more categories (i.e., features or
stimulus types) can be distinguished. Technically, the SVM classifier determines
a boundary between the categories it is exposed to during training in such a way
that this boundary maximizes the separation (margin) between the categories. The
training examples, usually a subset of the data, are called support vectors. In the
fourth step the classifier is tested whether it can apply the learned mapping function
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to novel data. To do so, a new multi voxel pattern of brain activity is fed to the
algorithm and tested whether it can be assigned correctly to the corresponding
experimental condition (generalization testing), (Norman et al., 2006). For a deeper
understanding of the mathematical foundations of the MVPA approach, the reader
might be referred to e.g., Formisano et al., (2008).

By simultaneously taking into account the measured activity of multiple voxels,
MVPA is able to pick up on combinatorial effects across voxels. Therefore, it often
appears to have a higher sensitivity compared to mass-univariate analyses based
on the GLM (e.g., Davis & Poldrack, 2013), meaning that even in the absence of
statistically significant overall changes in the recorded BOLD signal, classifier
algorithms may be able to decode information from sub-threshold variations in
multi voxel activity patterns (Etzel et al., 2013). One crucial caveat, however, regards
the representational ambiguity inherent to MVPA. Stimuli usually encompass
various features, and likewise, task paradigms may encompass distinct sources of
variation, each corresponding to different stimulus features or cognitive states that
are reflected in the recorded brain activity. A classification algorithm may pick up
on any consistencies in these variations, is thus able to find distinguishable activity
patterns, and would map them successfully to the respective stimulus classes
or task conditions. This then would indicate that the brain area conveying the
informative activity patterns indeed encodes something about the stimuli or task
conditions. However, as long as there are multiple alternative features correlating
with each stimulus class or task condition, successful classification does not tell
what exactly is encoded (Naselaris & Kay, 2015). Thus, on the one hand, MVPA
does provide a powerful tool if the aim is to predict stimuli or cognitive states (e.g.,
does a brain region of interest represent distinguishable information about different
attentional states?). On the other hand, due to the representational ambiguity, the
method is limited in showing how the brain actually represents those stimuli or
cognitive states (e.g., does the nature of brain representations of different attentional
states differ, or how does the early visual cortex represent different visual stimulus
features?).

Summarizing the above, although FMRI fails to assess the exact neuronal mech-
anisms that may underlie the task behavior studied in this thesis, it is well-suited
to measure signal changes which reflect local changes in overall neural activity. Im-
portantly, it enables measuring these changes with a high spatiotemporal resolution
across the entire brain. Combining fMRI with novel forms of multivariate analyses
simultaneously examining local activity patterns of a whole array of voxels (MVPA)
additionally offers new ways to decode cognitive states that are specific to different
experimental conditions. Thus, in combination with its non-invasive nature, fMRI
appears to be an optimal tool to study the functional role of the FPC in the redistri-
bution of attentional resources in healthy human participants.
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2 Common Methods

This chapter covers those parts of the methodology overlapping in experiments 1
and 2 in Chapters 3-4 to avoid repetitive reporting. The methodological aspects spe-
cific to each experiment are detailed in the respective methods section.

2.1 Participants
In all three experiments young healthy adults of both genders took part. They were
either recruited from the pool of psychology students of the Otto-von-Guericke Uni-
versity or from the participant pool of healthy adults of the University Klinik Magde-
burg. Only those volunteers with no report of psychiatric or neurological illness
were included. Handedness was determined by self-report and both left- and right-
handed participants took part in the experiments. All participants reported a normal
or corrected to normal vision. All gave written informed consent consistent with the
protocols approved by the local ethics committee of the Otto-von-Guericke Univer-
sity prior to the experiments.

2.2 The behavioral tasks

2.2.1 Experiment 1 and 2

Parts of the following methods have been published in: Güldener, L., Jüllig, A., Soto, D., &
Pollmann, S. (2021). Feature-Based Attentional Weighting and Re-weighting in the Absence
of Visual Awareness. Frontiers in Human Neuroscience, 15, 610347. and in: Güldener, L.,
Jüllig, A., Soto, D., & Pollmann, S. (2022). Frontopolar activity carries feature information
of novel stimuli during unconscious re-weighting of selective attention. Cortex, 153, 146-
165.

2.2.2 The Masking paradigm

For the main experiment of Chapter 3 and 4 we developed a novel orientation
categorization task based on masked Gabor patches presented in the center of the
screen. Participants had to quickly make a forced-choice response with two custom
buttons, deciding if a vertical or non-vertical grating had been presented. In each
trial, after the categorization response participants rated how well they perceived
the orientation of the masked grating using the four-point perceptual awareness
scale (PAS), (Ramsøy & Overgaard, 2004). As we were particularly interested in
examining differences between unaware and aware trial conditions, we aimed to
achieve a maximum number of trials with unaware 1-ratings respectively aware
3 or 4-ratings. Thus, the luminance contrast was adjusted on every trial after the
participants rated their subjective awareness: the luminance contrast value was
further decreased following trials rated as fully aware (AL4), almost fully aware
(AL3), and residually aware (AL2), and increased if the participant reported being
fully unaware of the orientation (AL1). A trial started with the brief presentation
of a central fixation cross for 500 ms, followed by a blank screen for another 500
ms. Next, the target Gabor occurred at the center of the screen for 33 ms. The mask
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followed immediately for 350 ms. Subjects were trained to give their categorization
response during the next 1500 ms following the onset of the Gabor. Following
this, they had another 2.5 sec to rate the subjective visibility of the Gabor using
a keyboard with four keys. Figure 3 shows an example of a trial sequence. All
trials were separated by inter-trial-intervals (ITI) with varying durations (1.5-3.5
sec) following a logarithmic distribution. All volunteers that passed the calibra-
tion process (see next chapter) completed 10 runs of the main experiment (360 trials).

Figure 3: Example of a trial sequence. The box at the top shows an example of the
repeat condition (left): a vertical target grating in the first trial is followed by another
vertical grating in the second trial. On the right it shows an example for the switch
condition: the left-tilted target grating is followed by a right-tilted grating in the next
trial.
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2.2.3 Threshold determination

Experiment 1 and the consecutive fMRI follow-up study (experiment 2) targeted the
question if and how attentional resource allocation occurs in response to invisible
feature changes. Therefore, it was crucial to determine participants’ perceptual
threshold for the luminance contrast of the experimental stimuli at which stimuli
would still escape visual awareness.

For this purpose each experimental session started with a 1-up:1-down adaptive
staircase procedure (adopted from Jachs et al., 2015) to determine the stimulus’ lu-
minance contrast for the first trial of the main experiment. The task was performed
at the PC in the behavioral experiment (experiment 1). In the fMRI follow-up
participants underwent the staircase procedure inside the scanner.

Gabor patches occurred centrally on the screen for 33 ms directly followed by
a random-dot mask for 350 ms. If participants saw the grating’s orientations they
were to respond by pressing the “2” button, while the “1” button was to be pressed
if they did not see anything at all. In the following main experiment participants
would rate the subjective visibility of the target at the end of each trial using the
four-point perceptual awareness scale (PAS): 1: “did not see anything at all”, 2: “saw
a brief glimpse without seeing the orientation”, 3: “had an almost clear image of the
stimulus”, 4: “saw the stimulus and its orientation” (Ramsøy & Overgaard, 2004).
During initial calibration, participants were thus instructed to give an unaware re-
sponse only if they did not see anything at all which corresponded to the “1” rating
of the PAS. Conversely, they were to give an aware response, corresponding to the re-
maining three points of the PAS whenever a brief glimpse or a more stable percept of
the Gabor grating was experienced. The Gabor’s luminance contrast was increased
following an unaware response and further decreased following an aware response.
Each participant completed 90 trials (30 trials for each of the three orientations) and
the percentage of aware responses was calculated on a trial-by-trial basis. The sub-
jective awareness threshold was reached when the percentage of aware responses
was about 50% over the last ten trials. Then, the final threshold luminance contrast
was defined as the mean luminance contrast across the last ten trials of the stair-
case. If the individual threshold was not reached within the 90 trials, the staircase
was repeated. Next, participants performed one block of training under experimen-
tal conditions consisting of 36 practice trials. Here, the luminance contrast obtained
with the first staircase procedure was used for the contrast value of the training stim-
uli. The practice phase was followed by a second calibration conducted according
to the same protocol as the first staircase procedure. This recalibration provided the
threshold value for the luminance contrast used in the first trial of the main experi-
ment. On later trials, this value was further adjusted. If the grating’s visibility was
rated with a 2, 3 or 4 on the PAS, the contrast value was decreased in the next trial.
If the grating was rated as being invisible (AL1), the contrast value was increased
instead.
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2.3 Neuroimaging - fMRI data acquisition in experiment 2 and 3
To obtain the functional magnetic resonance imaging data (fMRI), all participants
were scanned on a 3 Tesla MAGNETOM Prisma (Siemens). fMRI data was sampled
using a standard head coil and EPI-sequence (TR, 2000 ms; TE, 30 ms; flip angle, 90°;
epi factor, 80; echo time, 0.49 ms; matrix size, 80 × 80; FOV, 240 mm; 36 slices with
interleaved acquisition; 3 mm isotropic voxels; 0.3 mm interslice gap). The first three
dummy scans were excluded prior to analysis. T1-weighted MPRAGE scans (TR,
2500 ms; TE, 2.82 ms; flip angle, 7°; matrix size, 256 x 256; FOV, 256 mm; 192 slices, 1
mm isotropic resolution) were additionally sampled for each participant.
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3 Experiment 1: Feature-based attentional weighting
and re-weighting in the absence of visual awareness

The results of the following behavioral experiment were first published in: Güldener, L.,
Jüllig, A., Soto, D., & Pollmann, S. (2021). Feature-Based Attentional Weighting and
Re-weighting in the Absence of Visual Awareness. Frontiers in Human Neuroscience, 15,
610347.

3.1 Introduction
For survival in an unstable and uncertain world, it is crucial to detect contextual
regularities, but also to adapt quickly when they change. Since such contextual
changes may be complex and occur very rapidly, the question arises as to whether
attention shifts in response to environmental changes are contingent on visual
awareness. Previous studies examined the effect of exogenous invisible cues on
the deployment of external visual selective attention, suggesting that subliminal
spatial cues can capture attention and facilitate task performance at the cued
location (McCormick, 1997; Mulckhuyse et al., 2007; for a review see Mulckhuyse &
Theeuwes, 2010), that the association between a subliminal cue and a visible target
can be learned implicitly (Lambert et al., 1999) and that subliminal stimulus can
even induce cognitive control processes like response inhibition or task-switching
effects (Farooqui & Manly, 2015; Lau & Passingham, 2007; Van Gaal et al., 2008; Van
Gaal et al., 2010). This notion is further supported by evidence from clinical studies
in “blindsight” patients, which indicate that visual cues presented in the patient’s
blind field are still capable of directing spatial attention (Kentridge et al., 1999).

It is, however, less clear whether feature-based attention can be redirected
towards a novel feature (feature-based attentional re-weighting) in response to
changes in unconsciously processed targets: according to Bundesen’s theory of
visual attention (TVA), (Bundesen, 1990), the attentional selection is a mecha-
nism that operates in the service of perceptual categorization, i.e., by aiding the
selection of a potential target item within a distractor display (“filtering”), or the
discrimination of features in single items (selection of categories, “pigeonholing”).
The processing speed for this visual selection depends on both the attentional
weight and the perceptual decision bias. In theory, the attentional weight relies
on the sensory evidence indicating the category a certain stimulus belongs to
(“bottom-up”), and the goal-relevance of that category, i.e. the importance of
attending to a certain stimulus category (“top-down”; Bundesen, 1990). Thus, the
weaker the sensory evidence is, the more the attentional weighting should rely on
the “top-down” mechanism (the importance to attend to this category). Based on
the TVA’s assumption a “top-down” driven attentional bias (i.e., the goal-relevance)
on visual selection is predicted especially for invisible non-consciously processed
visual stimuli because the sensory evidence that could support visual selection in a
bottom-up fashion (i.e., the saliency of the stimulus) is very limited if the stimulus
is only unconsciously perceived. Importantly, evidence is still missing as to whether
such a feature-based selection bias can be elicited for subliminal, unconsciously
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processed stimuli and whether it can be reweighted flexibly in response to feature
changes of the unconsciously processed stimulus.

Later accounts of visual attention criticize the dichotomy of bottom-up vs.
top-down attentional weighting and propose to include a history-driven weighting
of attentional selection (e.g., Awh et al., 2012; Theeuwes, 2018; 2019) to better
incorporate empirical evidence showing that not only can stimulus saliency and
internal goals (volitional control) bias attentional selection but the “history” of
former attention deployments driven by e.g., reward, intertrial priming, or sta-
tistical learning (Awh et al., 2012) can also have an influence. For consciously
perceived visual stimuli, such history-driven attention weighting effects have been
observed in singleton search tasks. For instance, repeated presentation of the
same target-defining dimension leads to response time benefits and associated
activation changes in dimension-specific visual processing areas (Pollmann et
al., 2006) that were interpreted as evidence for an attentional weighting of the
target-defining dimension (Liesefeld et al., 2019; Müller et al., 1995). In contrast,
when the target-defining dimension changes, e.g., when the target was defined by a
singleton color in recent trials and then is defined by a singleton motion direction,
response time costs are observed, as would be expected when attention needs to
be reweighted to the new target-defining dimension. These re-weighting processes
occur incidentally, in the absence of an explicit instruction to attend to the new
target-defining dimension (Müller et al., 2004). Furthermore, a comparable spatial
attention weighting pattern is observed when implicitly learned target-distractor
configurations change in the contextual cueing paradigm (Manginelli & Pollmann,
2009; Pollmann & Manginelli, 2009a). When attention-weighting processes occur
in the absence of explicit task demand and even after changes of implicitly learned
configurations, the next question would be whether attentional re-weighting can
also occur as an adaptive adjustment to unconsciously perceived stimulus changes.

Therefore, this study addressed two key questions. First, we asked whether the
repeated presentation of an invisible target feature can lead to a temporally persist-
ing attentional selection bias. The second question was how flexible this attentional
bias is, i.e., whether a novel invisible target can trigger the re-weighting of visual
attention to the new target feature in the absence of awareness. Peremen et al. (2013)
studied the relation of intertrial feature priming and visual awareness during a let-
ter search task. They reported that the repetition of the target shape speeded visual
search only when the target in the prime display had been consciously perceived.
Yet, it remains unknown whether unconscious re-weighting of visual selection can
occur for simpler orientation stimuli such as Gabor patches (Rajimehr, 2004). We
also considered a different task setting in which the selection task occurred at a fixed
attended location throughout the trials. In all previous studies, attention-weighting
effects were examined in multi-item displays and search tasks for a singleton tar-
get. Our paradigm does not involve spatial shifts of attention but rather a process of
visual selection in which the same spatial location is always attended.
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Specifically, our paradigm involved an orientation discrimination task based on
a central masked bar stimulus. Volunteers were instructed to discriminate whether
the target stimulus was vertical or tilted irrespective of the specific direction of tilt.
They had to make no further distinction between the two tilted orientations. Yet, to
introduce the tilt-based attentional selection bias, we manipulated the likelihood of
the two non-vertical gratings (left vs. right) so that one tilt would occur twice as often
as the other. Consistent with the proportion congruency effect during priming (Blais
et al., 2016; Bodner & Lee, 2014), and feature-based statistical learning (Chetverikov
et al., 2017; Turk-Browne & Scholl, 2009), an increase of the frequency at which a
right or left-tilted grating appeared should result in a high selection weight for the
frequent orientation indicating the importance to attend to this category. This pre-
diction is based on the idea that the relevant feature information (e.g., the spatial
orientation) of the most likely target gets represented in a form of a short-term de-
scription - the attentional template (Desimone & Duncan, 1995), to control the sen-
sory processing so that stimuli matching the description are favored, i.e., are more
readily processed in the visual system. The degree to which a stimulus matches the
attentional template defines its attentional weight. Thus, Gabor patches that fit the
information stored in the template receive a high selection weight, e.g., 1, while mis-
matching Gabor patches (infrequent and vertical) have reduced selection weights as
the whole weight is thought to be a constant value: if the weight increases for one
feature it decreases for another (Duncan & Humphreys, 1989). Now, concerning be-
havior, a switch from the heavily weighted orientation to a target with a vertical or
the infrequent spatial orientation should require a shift of selection weights due to
the mismatch between the sensory input and the attentional template. This shift of
attentional selection weights was expected to lead to slowing stimulus processing
and response initiation eventually resulting in increased response latencies in such
switch trials. The higher the selection bias for the Gabor patch’s orientation in the
preceding trial, the more re-weighting should be necessary to process and respond
to a novel grating in the subsequent trial. Thus, particularly switch trials in which
the prior orientation was the highly frequent tilt should show prolonged response la-
tencies on the behavioral level, given that the increased likelihood of one orientation
over the others was sufficient to induce a prior selection bias (e.g., Chetverikov et
al., 2017; Leber et al., 2009). Importantly, a combination of signal detection theoretic
measures (Stanislaw & Todorov, 1999) and subjective perceptual ratings (Ramsøy
& Overgaard, 2004) was used to assess participants’ awareness of the stimulus to
avoid potential confounds due to criterion biases in reporting (un)awareness, e.g.,
reports of no experience for the knowledge held with low confidence (Soto et al.,
2019; Wiens, 2007). Therefore the unconscious re-weighting of selection hypothesis
was eventually tested by maintaining a clear separation between the measures of
selective attention weighting, inferred by the pattern of response latencies, and the
measures that we used to probe (un)awareness of the stimulus (objective orientation
discrimination task and subjective reports). We predicted decision reaction time (RT)
costs due to a change of the tilt direction. Costs should be highest if the prior orien-
tation was the highly biased tilt, i.e., a switch from the frequent to the infrequent tilt
or a vertical target, and they should occur even if the novel target is non-consciously
perceived.
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3.2 Materials and Methods

3.2.1 Participants

In total 21 native German students (three male) from the University of Magdeburg,
Germany took part in the experiment. All volunteers were between 19 and 34 years
old (M = 24.90 years). They were either monetarily reimbursed (8 euros per hour)
or received course credits for the 2 h of participation. In two sessions an error in the
response collection occurred and the respective participants were removed from the
analysis. Another volunteer interrupted the session at an early stage and was thus
excluded. During data analysis, five other participants were identified to have more
than 40% missing responses during the 1.5 s response deadline (see below) and were
thus excluded from analysis of RT data.

3.2.2 Apparatus and Stimuli

The stimulus display and responses were controlled with the Python toolbox “Psy-
chopy” (Peirce, 2007; Peirce et al., 2019). The stimuli were presented on a 24” Sam-
sung monitor (1920:1080 resolution, 60Hz refresh rate). All participants were placed
50 cm away from the screen. Stimuli were Gabor gratings with an individually cali-
brated contrast (see next section) centrally presented on a grey background subtend-
ing 3.4° visual angle. Its spatial frequency was 3.7° cycles per degree. The patch�s
orientation was either vertical (180°), 165°, 150° or 135° if it was a left-tilted, non-
vertical Gabor patch, and 195°, 210° or 225° if it was a non-vertical patch tilted to the
right. To further reduce the visibility of the Gabor patch we used a circular backward
mask of black and white random dots (3.4° visual angle).

3.2.3 Experimental Task and Procedures

3.2.4 Threshold Determination

A session started with a staircase procedure that is described in detail in the Chap-
ter covering common methods in the section 2.2.1.2. The aim of the calibration was
to calibrate the stimulus’s luminance contrast so that its orientation was rendered
invisible. The final threshold luminance was defined as the mean luminance con-
trast across the last 10 trials of the staircase. Next, participants performed one block
of training under experimental conditions consisting of 36 practice trials. Here the
luminance contrast obtained after the first staircase procedure was used for the con-
trast value of the training stimuli. The practice unit was followed by a second cali-
bration conducted according to the same protocol as the first staircase procedure (see
2.2.1.2). Eventually, this recalibration provided the threshold value for the luminance
contrast used in the main task.

3.2.5 Behavioral Task

In the main experiment, volunteers were asked to perform an orientation catego-
rization task based on masked Gabor patches. The details of this task were already
outlined in 2.2.1.1.
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3.3 Design
To facilitate the occurrence of a tilt-based attentional selection bias, we introduced
uneven proportions of the two non-vertical gratings (left vs. right). Consistent
with feature-based statistical learning (Chetverikov et al., 2017; Turk-Browne &
Scholl, 2009), the relative increase of the frequency at which a right or left-tilted
grating appeared was expected to strongly weight attentional selection for this
orientation. Its higher likelihood should increase the importance of attending to this
feature, resulting in a high selection weight. At the same time, the selection weight
for the other two orientations (vertical and the infrequent tilt) should be reduced
(Bundesen, 1990). Eventually, switches away from the heavily weighted tilt were
expected to result in a significant increase in volunteers’ response times. Therefore,
for a block of 36 trials, we chose 12 vertical targets (⇠33%), and used uneven
proportions of the two tilts, with 18 trials (50%) and six trials (⇠16%), respectively.
This way, each block was either left- (75% of all non-vertical trials were left-tilted) or
right-weighted (75% of all tilt trials were right-tilted). The actual presentation of the
three orientations was randomized within a single block.

The first 11 participants performed 14 blocks in the main experiment (504 trials).
The eighth subject, however, interrupted the session after 12 blocks were completed.
Subjects 12–21 completed 10 blocks (360 trials) as this amount of trials turned out
to be sufficient to obtain enough trials for each awareness level (AL) while avoiding
growing weariness that was reported by subjects completing 14 blocks.

3.4 Statistical Analysis
Sensitivity and response bias measures were calculated using custom-made Python
code (Version 2.7). All statistical analyses were carried out with R (Version 3.5, R
Core Team, 2014). For the Bayes factor (BF) analysis (Rouder et al., 2009), we used
JASP (JASP Team, 2019).

3.4.1 Subjective awareness

To determine the level of subjective awareness (AL) in experiment 1 and 2, the num-
ber of trials for each subjective AL was counted using the trial-by-trial PAS-rating
for each participant.

3.4.2 Discrimination performance

To examine whether the participant’s ability to correctly discriminate between
vertical and non-vertical gratings depended on the level of subjective awareness,
the individual response bias and perceptual sensitivities was determined using
signal detection theory (Macmillan & Creelman, 2004; Stanislaw & Todorov, 1999).
Group-effects were subsequently assessed for each level of subjective awareness
using BFs since it was required to prove the absence of sensitivity (H0), (Dienes &
Mclatchie, 2018; Gallistel, 2009). A BF10 provides moderate evidence for H0 (e.g.,
A’ = 0.5) if it stands between 0 and 0.33, anecdotal evidence if it stands between
1/3 and 1, and evidence for H1 (A’ > 0.5) if it exceeds 1 (Dienes & Mclatchie, 2018),
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with a BF10 between 1 and 3, 3 and 10, 10 and 30, 30 and 100 and >100 providing
anecdotal, moderate, strong, very strong, and extreme evidence, respectively, for H1
(Jeffreys, 1998; Quintana & Williams, 2018).

Under Yes/No-conditions A’ and the criterion location (C) were calculated to
determine perceptual sensitivity and bias: we calculated false-positive rates [FPR =
False alarms/(False Alarms + Correct Rejections)] and hit rates [TPR = Hits/(Hits +
Misses)] defining a hit as the correct report of a non-vertical orientation when the
Gabor’s orientation truly was tilted; false alarms were defined as tilt response for
vertical gratings. We used the following formulas to calculate the non-parametric
response bias and sensitivity (Stanislaw & Todorov, 1999):

C = �(Z(TPR) + Z(FPR))/2

A0 = 0.5 + |sign(TPR � FPR)((TPR � FPR)2 + |TPR � FPR|/(4max(TPR, FPR)�
4 ⇤ TPR ⇤ FPR))|

Values of C around 0 indicate unbiased discrimination performance. A liberal
decision criterion favoring yes-responses (i.e., reporting a non-vertical grating) leads
to values of C < 0, while positive values occur if participants are biased to report a
vertical target. If volunteers possess perfect sensitivity at discriminating the target
orientations, A’ appears to be equal to 1 and it decreases to 0.5 if the sensitivity
diminishes (Stanislaw & Todorov, 1999).

3.4.3 Analysis of RT Data

We used the packages lme4 (Bates et al., 2015) as well as lmerTest to make use of
a linear mixed model (LMM) analysis. As the data was unbalanced due to the
variations in the subjective awareness ratings (PAS) that lead to uneven numbers
of trials across the four levels of visual awareness, LMMs were chosen over custom
repeated measures ANOVAs to analyze the RT (e.g., Avneon & Lamy, 2018). Since
all cases with missing data would be excluded in a repeated-measures ANOVA,
the LMM approach is the better means to make use of all available data in the face
of an unbalanced design (Magezi, 2015). Only RTs of trials with correct responses
entered the analysis after each participant’s individual outliers (mean RTs ± 3 SD)
were removed.

Before assessing the significance of the fixed effects, we determined the random
effect structure of the final model with likelihood ratio tests (i.e., comparisons of
models differing in their random effect structure). Importantly, we did not use
likelihood ratio tests to compare models with differences in their fixed effects as
these were already determined by the design (see below). Once the final model for
analysis was fully defined, we fitted this model with the RT data using a restricted
maximum likelihood estimation (REML) and tested the statistical significance of
the fixed effect predictors with a type III ANOVA with F-statistics as implemented
in the lmer function of the lme4 package (Version 1.1–23), (Bolker et al., 2009; Luke,
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2017; McNeish, 2017; Richardson & Welsh, 1995). The p-values were calculated
using Satterthwaite approximations to degrees of freedom with the anova function
of the package lmerTest (Version 3.1-2), (Kuznetsova et al., 2017). We chose the
ANOVA approach to test the statistical significance of the fixed effects as this
approximation is thought to be producing acceptable Type 1 error rates even for
small samples while the use of model comparisons (likelihood ratio tests) is not
recommended to test fixed effects because they appear to be anti-conservative
(Bolker et al., 2009; Luke, 2017; Pinheiro & Bates, 2000). Post-hoc tests (least squared
means of the contrasts with Bonferroni correction) were performed using the R
package emmeans (Version 1.4.7). Finally, we used the R function r.squaredGLMM
as implemented in the R package MuMin to calculate the marginal R squared
(R2m ) and conditional R squared (R2c) to obtain standardized effect sizes. R2m is
interpreted as the variance explained by the fixed effects of awareness and switch
and R2c gives the variance explained by all fixed and random effects (Johnson, 2014).

The main goal we pursued in the study was the examination of whether a chang-
ing orientation from one trial to another (switch) affected participants’ responses:
we predicted a switch-related slowing of RTs compared to trials in which the
orientation remained unchanged (repeat). Thus, the switch of orientations (switch
vs. repeat) constituted the first fixed effect predictor in the LMM. RTs were also
expected to decrease with increasing visual awareness: the more the participants
saw, and the more confidently they should perform at categorizing the stimulus
orientation, the faster they should be at responding to the grating’s orientation.
Therefore, visual awareness was defined as the second fixed effect predictor of the
basic model. Finally, to make allowance for a possible interaction between the two
fixed effects we included the interaction term of switch and awareness into the final
LMM. Regarding inter-individual baseline differences in response latencies, we also
defined a by-subject random intercept accounting for non-independency of single
subjects’ data. Thus, the basic model was formalized as RT ⇠ switch + awareness +
switch:awareness + (1 | subject).

In this model, however, the full random effect structure still needed to be
determined. Therefore, we next used model comparisons based on likelihood ratio
tests (c2) with the anova function of the lme4 package (Baayen et al., 2008) to assign
the full random effect structure (Barr, 2013) of this basic model. Defining the random
effect structure is important to balance between the type I error rate that inflates
if the random effect structure of an LMM is underspecified (Barr, 2013), and the
model power that suffers if the random effect structure is more complex than the
given data (Matuschek et al., 2017). The method of model comparisons based on
likelihood ratio tests compares to the procedure of a hierarchical regression in which
relevant predictors are added to the regression model and kept if they significantly
improve the model fit (changes in R2). Likelihood ratio tests are deemed to be
appropriate to formally define the random effect structure of an LMM even if the
sample size is small (Baayen et al., 2008; Bolker et al., 2009). Using this method,
we tested the basic model containing only a by-subject intercept against alternative
models containing an additional by-subject random slope for awareness and/or a
by-subject random slope for the switch. The details of this analysis are reported in
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the Appendix A.1. Importantly, we used the likelihood ratio tests only to determine
the random effect structure of the final model that we used to fit the RT data with,
while the significance of the fixed effects (i.e., the hypotheses testing) was assessed
using the type III ANOVA with Satterthwaite approximations to degrees of freedom
(Luke, 2017). Based on the model comparisons we included a by-subject random
slope for awareness to model potential by-subject heteroscedasticity concerning
visual awareness (i.e., allowing uneven variances across the levels of the fixed effect
awareness), (Baayen et al., 2008). Eventually, the final model for significance testing
was defined as RT ⇠ switch + awareness + switch:awareness + (1 + awareness | subject).

The final LMM with the structure outlined above was applied in two RT models:
In the first model (average RT model) we included all possible orientation changes
in the switch condition. In the second model (weighted RT model) the switch con-
dition contained only those switch trials in which we expected the highest RT costs
to occur: the frequency differences between the three orientations were expected
to boost the selection weight for the highly frequent non-vertical orientation (either
left or right). Consequently, re-weighting to the infrequent non-vertical orientation
should be associated with more pronounced switch costs than vice versa. The same
was predicted for changes away from the heavily weighted to the vertical orienta-
tion requiring stronger attentional re-weighting. However, switches away from the
low-frequent tilted orientation to vertical should lead to less prominent RT costs be-
cause the attentional selection weight for this tilted orientation is weaker, facilitating
the shift of attentional resources towards the novel target orientation. Hence, these
trials were not included in the weighted RT model. We separately report the results
for the LMM analyses for the average and the weighted RT model.

3.5 Results

3.5.1 Subjective Awareness

In the majority of trials, participants’ subjective awareness of the to-be-discriminated
orientation was low (AL2, 25.94%), or reported experience was fully absent (AL1,
37.70%). In about 26.80% of all trials, subjects reported an almost clear perception of
the grating (AL3) and its orientation. In only 9.54% of all trials did they clearly see
the grating and its orientation (AL4). Due to the low number of these AL4 trials, we
excluded them from the following analyses. A detailed summary of the number of
trials for switch and repeat trials for each level of subjective awareness is reported
in Appendix A.2. After the experimental session, each volunteer was asked to re-
port whether any differences in the frequencies of the stimulus orientation had been
noticed. The majority of subjects reported that more tilted than vertical orientations
had been presented, but none of the participants noticed the block-wise changing
frequency difference for the tilted orientations (left vs. right).
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3.5.2 Objective Discrimination Ability and Subjective Awareness Concordantly
Diminish

Signal detection analyses revealed that on trials with almost full (AL3) and partial
awareness (AL2) participants’ perceptual sensitivity was significantly above chance.
Bayes-factors provided extreme evidence that sensitivity (A’) was greater than 0.5
in AL3, BF10 > 100, 95% CI (0.733, 0.845), and AL2 trials, BF10 > 100, 95% CI (0.672,
0.750), (Quintana & Williams, 2018). The mean A’ of 0.789 ± 0.026 (SE) in AL3 trials
was 7.6 times more likely to be greater than the mean A’ of 0.711 ± 0.018 in AL2
trials, BF10 AL3 > AL2 = 7.608. On unaware trials (AL1), however, we observed
a mean A’ of 0.516 ± 0.030 that was more likely to be equal to 0.5 with moderate
evidence for the H0, BF10 = 0.317, 95% CI (0.451, 0.582), indicating the absence of
perceptual discriminability of the gratings’ orientation.

In contrast to the perceptual sensitivity analyses, individual response biases
remained unaffected by changes in subjective awareness. In none of the four
ALs did we find clear evidence for a more liberal or more conservative response
criterion to report a non-vertical orientation, than a C around 0. BFs were rather
in favor of the null hypothesis indicating that the mean C of –0.188 ± 0.173 in AL1
trials was more likely not different from zero, yet with only anecdotal evidence
for the H0, BF10 = 0.457, 95% CI (–0.560, 0.188), (Quintana & Williams, 2018). The
same was true for the mean C of –0.073 ± 0.106 in AL2 trials, BF10 = 0.342, 95%
CI (–0.303, 0.157), and for a mean C of 0.089 ± 0.123 in AL3 trials, BF10 = 0.349,
95% CI (–0.179, 0.357). To examine variations in the response criterion location
(C) across the three levels of subjective visual awareness, we made use of LMM
to optimally deal with the unbalanced data set (Magezi, 2015). Since we aimed to
assess the absence of variations in C across the three levels of subjective awareness,
we conducted a Bayesian-based LMM analysis using the R package BayesFactor
to obtain a Bayes factor (BF10) directly proving the null hypothesis (Morey et al.,
2018): first we constructed a null model in which only a by-subject random intercept
was included assuming that variations in C relied on inter-individual differences
only, [C ⇠ 0 + (1 | subject)]. Next, we constructed an alternative model in which
the subjective awareness reports (awareness ratings 1–3) served as a single fixed
effect explaining variance in C in addition to the by-subject random intercept, [C ⇠
awareness + (1 | subject)]. Using the lmBF function, we then calculated BFs for each
model and compared the two models by dividing the BF of the model that included
awareness as a fixed effect by the BF of the null model. The analysis resulted
in an inconclusive BF10 of 0.58 providing weak evidence for the absence of varia-
tion in C across the three levels of subjective awareness (Quintana & Williams, 2018).

Descriptive data of sensitivity and bias measures are reported in Table 1. The
data showed that the performance of at least two subjects was highly biased in
trials rated as fully unaware with a shift in C of +1 SD and –1 SD, respectively. A
graphic illustration of the relation between the objective measures of awareness
and the subjective measure is shown in Figure 4 depicting violin plots of A’ and C
for each level of subjective awareness. In sum, these results show that the ability
to distinguish the two types of orientation (non-vertical vs. vertical) strongly
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Figure 4: Violin plots of group distributions of sensitivity A’ (left) and the criterion
location C (response bias; right) for each level of subjective awareness (perceptual
awareness scale (PAS) ratings AL1–AL3). Left: the agreement of the objective and
subjective measure of visual awareness is indicated by moderate evidence for the
absence of sensitivity on trials rated as subjectively unaware; BF10 < 0.33. Black as-
terisks = BF10 > 100 indicating extreme evidence for A’ being truly > 0.5. Violin plots
use density curves to depict distributions of numeric data. The width corresponds
with the approximate frequency of data points in each region. The lower and upper
limits of each plot are determined by the minimum and maximum values.

depended on the subjective visibility and fully diminished on subjectively unaware
trials. In contrast, there was no clear evidence of a response bias, regardless of the
level of subjective awareness. Importantly the absence of variation in volunteers’
response bias likely suggested that perceptual decision criteria were not dependent
on the awareness reports and that variations in participants’ perceptual sensitivity
regarding the stimulus orientation could thus not be caused by variations in the
response bias.

Table 1: Perceptual sensitivity and response bias

Level of awarness (PAS)

AL1 AL2 AL3

A’ C A’ C A’ C

M 0.515 0.048 0.670 �0.093 0.723 �0.152
SD 0.091 0.438 0.110 0.402 0.135 0.527
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In the signal detection analysis outlined above, we assumed a binary yes/no
task setup. However, as we deployed left and right-tilted gratings next to vertical
ones, subjects were to sort three possible stimulus types into two categories.
Moreover, we presented left- and right-tilted Gabors with varying angles so that
subjects needed to map different stimuli to the same response. Hence, a classifi-
cation scenario may better fit the scenario (Snodgrass et al., 2004). Importantly,
such a setup requires the implementation of two rather than one decision crite-
rion increasing the decision uncertainty, and the proportion of correct responses
(i.e., proportion correct, p(c)) is then used to measure volunteers’ classification
sensitivity (Macmillan & Creelman, 2004, pp. 190–191). Hence, our sensitivity
measure may not be exhaustive of all the information that the subject could hold,
meaning that actual sensitivity on unaware trials could be higher than we measured.

Thus, we additionally calculated p(c) for each level of subjective awareness
(AL1–AL3): p(c) can be defined as the prior probability of a positive stimulus (i.e.,
non-vertical grating) times the conditional probability of a positive response given
a positive stimulus (i.e., a non-vertical response for a non-vertical target) added to
the product of the prior probability of the negative stimulus (i.e., vertical) times the
conditional probability of a negative response given a negative stimulus (Swets,
2014, p. 4). In other words, p(c) is found by using the presentation probability of the
two non-vertical targets as weights for the hit rate and adding this to the product
of the 1-False alarm rate (i.e., correct rejection rate) and the presentation probability
of the vertical target (i.e., p(c) = (8/36)*H + (16/36)*H + (12/36)*(1-F); Macmillan
& Creelman, 2004, p. 89)). Using this formula, we observed a mean p(c) of 54 ±
4.2% (SE) in trials rated as fully unaware. Here the BF was rather inconclusive as to
whether p(c) was different from the 50% chance level with anecdotal evidence for
the H0, BF10 = 0.409, 95% CI (44.9, 63.1), (Quintana & Williams, 2018). In AL2 trials
the mean p(c) on group level was 77.1 ± 2% associated with a BF providing extreme
evidence that p(c) was truly above chance, BF10 > 100, 95% CI (72.6, 81.5). In trials
rated as almost fully aware (AL3) we observed a mean p(c) of 85.4 ± 3.2%. Here
the BF again provided extreme evidence for p(c) to be greater than 50%, BF10 > 100,
95% CI (78.4, 92.4). Violin plots show the observed p(c) as a function of subjective
awareness in Figure 5. For more transparency, we additionally included accuracy
data obtained in the experimental task in Appendix A.3, as well as the average rates
of hits (H), false alarms (FA), correct rejections (CR), and misses (M), and the mean
number of hit, false alarm, miss, correct rejection trials (Appendix A, Table 14 and
15).

Taken together, using p(c) as a measure of volunteers’ perceptual sensitivity did
not change the conclusion that participants’ classification ability was at chance in tri-
als rated as subjectively fully unaware, while they showed considerable classification
sensitivity in trials with residual and almost full subjective awareness. Importantly,
the above measures are representative and exhaustive of the critical target feature
that is relevant for the task (i.e., orientation), (Snodgrass et al., 2004). However,
additional experimentation could be performed employing an even more stringent
detection threshold in which one’s sensitivity to detect the presence of any grating is
null.
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Figure 5: Violin plots show the observed proportions of correct responses (p(c)) as a
function of subjective awareness (AL1–AL3). Black asterisks indicate that testing p(c)
on group level against a theoretical chance level of 0.5 (dotted line) resulted in a BF10
providing extreme evidence for p(c) being greater than 0.5 (BF10 > 100). Violin plots
use density curves to depict distributions of numeric data. The width corresponds
with the approximate frequency of data points in each region. The lower and upper
limits of each plot are determined by the minimum and maximum values.

3.5.3 RT data

We analyzed volunteers’ RT data to test whether the latency of the manual responses
slowed down during (unconscious) changes in the target orientation compared to
repeating target orientations which would suggest a re-weighting of attentional
selection weights. Individual outliers (M ± 3 SD) were removed before the LMM
analysis. We conducted the same LMM analysis for two RT models. Whereas in
the first average RT model, the switch condition comprised all possible orientation
changes, the second weighted RT model included only switch trials in which the
prior target orientation was associated with a high selection weight (i.e., changes
away from the most frequent tilt). Descriptive mean RTs and SEs of both models for
switch vs. repeat trials for each level of awareness are summarized in Table 2.

To begin, we conducted the LMM analysis for the average RT model in which the
mean of the switch condition included all possible switch trials. Visual inspection
of residual plots did not reveal any obvious deviations from homoscedasticity nor
normality. Estimated RTs appeared to be sensitive to changes in the level of visual
awareness indicated by the significant fixed effect of awareness, F(2,11.055) = 9.674,
p = .004. In line with our predictions, the post-hoc tests showed that RTs (averaged
across the conditions switch and repeat) in AL1 trials were 157.6 ± 41.6 ms slower
compared to AL2 trials, t(12.00) = 3.783, p = .008, 95% CI (41.8, 273.5), and 225.6
± 54 ms slower compared to AL3 trials, t(11.87) = 4.177, p = .004, 95% CI (75.2,
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Table 2: RT data

Level of awareness (PAS)

AL1 AL2 AL3

switch repeat switch repeat switch repeat

Average
model
M 1.110 1.068 0.945 0.917 0.889 0.869
SD 0.225 0.231 0.182 0.212 0.130 �0.128

Weighted
model
M 1.177 1.068 0.947 0.917 0.879 0.869
SD 0.242 0.231 0.194 0.212 0.129 0.128

376.1). RTs in AL2 and AL3 trials did not differ significantly, p = .368, 95% CI (–46.0,
182.0). Thus, RTs of the average RT model was indeed sensitive to changes in visual
awareness and decreased with increasing stimulus visibility. There was, however,
no significant main effect of switch, F(1,35) = 3.1709, p = .084, nor a significant
interaction F(2,35) = 0.141, p = .869, showing that RTs appeared to be unaffected by
changing stimulus orientations in this RT model. About 20% of the total variance
was explained by the model’s fixed effects, R2m = 0.199, and 88% by the model’s
fixed and random effects, R2c = 0.884.

Next, we used the same LMM to analyze the weighted RT model in which
the switch condition comprised only switch trials where the prior orientation
was the heavily weighted one. Again, visual inspection of residual plots did not
reveal any obvious deviations from homoscedasticity nor normality. The LMM
analysis showed, also in this model, that estimated RTs increased with decreasing
visual awareness, F(2,10.93) = 10.989, p = .0024. The post-hoc tests with Bonferroni
correction indicated that mean RTs across both switch and repeat trials were on
average about 190.5 ± 45.6 ms significantly slower in AL1 trials compared to AL2,
t(12) = 4.177, p = .004, 95% CI (63.7, 317.3) and on average 263.1 ± 58.7 ms slower
compared to AL3 trials t(11.92) = 4.482, p = .002, 95% CI (99.7, 426.4). Mean RTs
in AL2 and AL3 trials did not differ significantly, p = .300, 95% CI (–40.8, 185.9).
Importantly, now also a switch of the target orientation affected RTs: the analysis
revealed a significant fixed effect predictor switch, F(1,35.00) = 6.030, p = .019. Here
the post-hoc tests suggested that only in unaware trials (AL1) were RTs in response
to a novel orientations on average 109.5 ± 34.5 ms significantly slower compared
to trials in which the orientation was repeated, t(35) = –3.171, p = .003, 95% CI
(–179.7, –39.4). In trials with higher levels of visual awareness, switch costs were not
significant, AL2, p = .403, 95% CI (–99.4, 40.9); AL3, p = .779, 95% CI (–83.1, 62.8).
Yet, there was no significant interaction between the two fixed-effect predictors
awareness and switch, F(2,35.00) = 2.280, p = .117. Together, about 26% of the total
variance was explained by the two fixed effects awareness and switch, R2m = 0.2568,
and about 85% was explained by all fixed and random effects, R2c = 0.8532. RTs for
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Figure 6: Group mean RTs (in seconds) for a switch (blue) and repeat trials (red) as a
function of visual awareness (AL1–AL3); on the left (A) RTs of the weighted switch
model, on the right (B) RTs of the average switch model is shown. Dots and triangles
indicate individual participant data points. Vertical lines show the range of 1 SD ±
the mean. In both reaction time (RT) models post-hoc tests with Bonferroni correc-
tion revealed that RTs speeded up with increasing visual awareness (AL2–AL1: p <
.01, AL3–AL1: p < .01). A significant slowing of RTs in switch compared to repeat
trials was observed only for the weighted model in unconscious trials (AL1); **p <
.01 (Post-hoc tests with Bonferroni correction).

both switch and repeat trials as a function of visual awareness for the weighted and
the exhaustive RT model are plotted in Figure 6 A & B. The LMM solutions for the
fixed and random effects for the two RT models are given in Table 3 A & B.

In sum, the LMM analysis suggests that not only were RTs sensitive to decreas-
ing visual awareness but also changes in the stimulus orientation. However, RT
costs due to such changes were observed only in the weighted RT model which
included only those switch trials in which the novel orientation changed away
from the highly biased orientation (highly frequent tilt) fostering the conclusion
that the prior visual selection bias had boosted behavioral switch costs in response
to a change in the target orientation. As significant switch costs were observed
in unaware trials only, the impact of the prior selection bias boosting behavioral
switch costs during attentional re-selection appeared to be most prominent in the
full absence of visual awareness.

Given that under unconscious conditions we had fewer trials included in the
analysis, outliers could have a stronger effect on the results. Since 3 SD is not a rigid
cutoff for outliers, we, therefore, repeated the analysis with a 2 SD, and 2.5 SD cutoff
but the results did not change in terms of significant fixed effects. Most relevant to
our research question, we found a significant switch effect for the weighted RT data
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Table 3: LMM parameter estimates of RT analysis

Fixed effects Estimate (in seconds) SE t-value p

A) Average
AL1 (inter-
cept)

1.06823 0.05965 17.203 1.62e-10***

AL1-AL2 -0.15035 0.04457 -3.241 0.00452**
AL1-AL3 -0.21491 0.05536 -3.726 0.00254**
Switch (Inter-
cept)

0.04209 0.02766 1.460 0.15309

AL2: Switch-
Repeat)

-0.01465 0.03912 -0.359 0.72144

AL3: Switch-
Repeat

-0.02151 0.03992 -0.539 0.60840

Random effects Variance SD

Subject 0.044852 0.21148
AL1-AL2 0.017186 0.13109
AL1-AL3 0.031373 0.17712
Residual 0.005399 0.07348

B) Weighted
AL1 (inter-
cept)

1.06823 0.06362 16.792 1.19e-10**

AL1-AL2 -0.15035 0.04970 -2.905 0.00896**
AL1-AL3 -0.21338 0.06106 -3.354 0.00451**
Switch (Inter-
cept)

0.10959 0.03316 3.171 0.00315**

AL2: Switch-
Repeat)

-0.08035 0.04690 -1.644 0.10905

AL3: Switch-
Repeat)

-0.09941 0.04786 -2.077 0.05408

Random effects Variance SD

Subject 0.044852 0.21178
AL1-AL2 0.017821 0.13889
AL1-AL3 0.035990 0.18971
Residual 0.007761 0.007761

Note: Significance codes: *** p < .001; ** p < .01; * p < .05. (A) Average RT model: fixed effect predictor
switch includes all types of orientation changes. (B) Weighted RT model: fixed effect predictor switch
comprises only the changes away from the heavily weighted orientation. P-values indicate the dif-
ference between each factor level compared to baseline (intercept). For both models: intercept switch
equals the estimated mean difference of switch trials compared to repeat trials across all three levels
of awareness, intercept AL1 equals the mean of all switch and repeat trials rated as subjectively un-
aware. Random effects AL1-AL2, and AL1-AL3 indicate the amount of variation in the fixed effect
switch between the two AL1 and AL2, and AL1 and AL3, respectivelv.
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Table 4: LMM parameter estimates of analysis of the weighted RT model after removing
those trials preceding a weighted switch in which the stimulus was consciously perceived

Fixed effects Estimate (in seconds) SE t-value p

Weighted
AL1 (inter-
cept)

1.09469 0.07955 13.761 4.01e-10

AL1-AL2 –0.17603 0.07667 –2.296 0.03137*
AL1-AL3 –0.24179 0.07637 –3.166 0.00447**
Switch (Inter-
cept)

0.21353 0.07067 3.022 0.00414**

AL2: Switch-
Repeat)

–0.114745 0.09333 –1.229 0.22556

AL3: Switch-
Repeat

–0.29642 0.09740 –3.043 0.00398**

Random effects Variance SD

Subject 0.05811 0.2411
AL1-AL2 0.02811 0.1677
AL1-AL3 0.02536 0.1592
Residual 0.02416 0.1554

Note: Significance codes: *** p < .001; ** p < .01; * p < .05. P-values indicate the difference between each
factor level compared to baseline (intercept). The intercept of switch type equals the estimated mean
difference of weighted switch trials compared to repeat trials across all three levels of awareness, in-
tercept AL1 equals the mean of all weighted switch and repeat trials rated as subjectively unaware.
Random effects AL1–AL2, and AL1–AL3 indicate the amount of variation in the fixed effect switch
between the two AL1 and AL2, and AL1 and AL3, respectively.

model in AL1 but neither in AL2 nor in AL3 trials for all three cutoffs. We conducted
further control analyses that are reported in the Appendix A.4, in which we matched
the number of trials between AL1, AL2, and AL3 trials by random sampling to
prove that the low amount of AL1 trials could not account for the observed switch
effect, and used the numbers of trials obtained for the weighted switch trials rated
as fully unaware (AL1) to do a Bayesian-based prediction to show that the switch
costs in the weighted RT model were not associated with individual trial numbers.

Finally, to rule out the possibility that inter-trial response priming instead of at-
tentional weighting could account for the observed switch effect, we repeated the
LMM analysis for the weighted switch model after removing all weighted switch
trials preceded by trials in which the orientation had been perceived consciously to
some extent (i.e., AL2, and AL3 “pretarget” trials). This we did because inter-trial
response priming is thought to necessitate awareness of the stimulus in the preced-
ing trial (e.g., Peremen et al., 2013). Using the same LMM we found only a marginal
switch effect, F(1,42.301) = 4.011, p = .051, a significant fixed effect of visual aware-
ness, F(2,14.399) = 17.561, p < .001, and a significant interaction of the two fixed
effects switch and awareness, F(2,42.198) = 4.776, p = .0134. The fixed and random ef-
fect solutions of this analysis are given in Table 4. Importantly, paired comparisons
replicated our previous finding showing that unaware weighted switch trials were
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significantly slower compared to unaware repeat trial, t(33.24) = –2.954, p = .006, 95%
CI (–360.5, –66.4), while there were no differences between switch and repeat trials
for AL2, p = .1157, nor for AL3, p = .230.

3.6 Discussion

3.6.1 Evidence for the unconscious reallocation of visual attention and method-
ological advantages

When volunteers engaged in our discrimination task of masked gratings, RTs were
sensitive to orientation changes. However, significant switch costs were obtained
only if the selection weight for the prior orientation was high (i.e., the highly
frequent tilt) and if the novel orientation was unconsciously perceived. Importantly,
our criteria for lack of awareness were based on the combination of subjective
and objective measures, i.e., no experience reports and no ability to discriminate
the relevant target features in a forced-choice test. To the best of our knowledge,
this, therefore, is the first study investigating the effects of unaware targets on
feature-based attention weighting by using a combination of objective sensitivity
measures and subjective measures of visual (un-)awareness collected during the
experimental task. This is a very important advantage for two reasons: first, to
account for fluctuations of the perceptual threshold before, during, and after the
actual experimental task it is extremely important to use an “online” measure of
visual awareness during the task performance. This way, one ensures that the
stimulus perception and the effect of the stimulus are measured in the same context
(e.g., Avneon & Lamy, 2018). Second, studies that define unconscious processing
only employing subjective awareness measures (e.g., Cheesman & Merikle, 1986)
suffer from the criterion problem that arises when conscious knowledge is held with
low confidence, hence objective measures that can ensure a clear absence of visual
awareness (i.e., if d’ = 0) are critical to studying unconscious information processing,
which would then be pinpointed by information-based analyses of neural measures
(Soto et al., 2019). Yet, to come up with an exhaustive means that measures visual
awareness and unawareness equally well, the joint use of both the objective and
subjective measures seems optimal (e.g., Wiens, 2007).

Taken together, our results indicate that prior feature likelihood differences mod-
ulated attentional weighting by introducing a competitive bias favoring (i.e., increas-
ing the selection weight for) the most likely event (i.e., frequent tilt). Only when the
orientation associated with a high selection weight was present in the prior trial did
attentional re-selection towards a novel target orientation result in behavioral switch
costs. This was indicated by significant RT differences between stay and switch tri-
als in the weighted model. Switch costs due to changing features within a single
feature dimension may be relatively small compared to cross-dimensional switch
costs (see Müller et al., 1995), which could explain why there was no switch effect
in the averaged model in any level of awareness. Thus, the presumably smaller ef-
fect of within-dimensional switches may require a strong prior feature weighting to
emerge.
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3.6.2 Integrating the absence of the effect in visible trials

Remarkably, the behavioral switch costs were observed only in trials reported as
fully unaware, in which subjects had zero sensitivity for the stimulus orientation.
According to Bundesen’s (1990) TVA, the influence on sensory processing given by
an attentional template that contains goal-relevant information (i.e., history-guided)
becomes particularly strong if the sensory evidence of the to-be-processed stimulus
is low. In such a case there is little stimulus information that could form the selec-
tion weight in a “bottom-up” fashion so that knowledge about the importance of
attending to a certain stimulus category (e.g., because this category is more likely
to occur) gains influence on stimulus processing. Hence, one could predict that the
behavioral effect due to attentional weighting and re-weighting should be most pro-
nounced in unaware trials in which decision-making may especially rely on implicit
knowledge (i.e., prior beliefs about likelihoods), (Bohil & Wismer, 2015) maintained
in the form of an attentional template because the weak sensory evidence given by
the unconscious stimulus does not suffice to strongly bias its selection.

3.6.3 Information derived from visible stimuli may drive the response to invisi-
ble targets

Importantly, this conclusion does not imply that the information (i.e., prior beliefs
about likelihoods) upon which the trial history-guided attentional selection is built
is derived from invisible stimuli. Certainly, in our paradigm, a significant amount
of targets were perceived partially and almost fully consciously. Thus, even if the
subjects’ reports suggest that the knowledge about the likelihood differences was
rather implicit, it was likely to be derived from visible stimuli. Still, a shift of atten-
tional selection weights against a prior bias was elicited by an invisible novel target.
This clearly shows that invisible feature changes can indeed trigger a shift of visual
attention.

3.6.4 The importance of feature weighting

Peremen et al. (2013) reported the opposite pattern of results: strong intertrial fea-
ture priming if primes and probes were consciously perceived but no such repetition
effects under masking conditions. However, by using prior likelihood differences of
the three orientations, we introduced a feature weighting that evidently boosted the
switch effect, deliberately chose simple Gabor patches that are known to be read-
ily processed, even if unconsciously (e.g., King et al., 2016; Rajimehr, 2004; see also
Soto et al., 2011), and tested participants in a simple discrimination task in which
the focus of spatial attention was always directed to the relevant location, instead of
using a visual search paradigm. Importantly, the prior attention bias was essential
to induce prior attentional weighting impeding consequent attentional re-weighting
in response to a novel target. In conclusion, this suggests that a prior likelihood
weighting indeed can induce an attentional selection bias for a feature even if the
respective target is invisible and that a novel target can trigger the re-shifting of at-
tentional resources even if the novel stimulus is invisible. Thus, our findings support
the view that attentional selection and consciousness can be dissociated (e.g., Koch
& Tsuchiya, 2007; Lamme, 2003; Van Gaal & Lamme, 2012). They also show that the
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covert reallocation of feature-based attention can be studied by presenting a series of
invisible targets at least if a prior selection bias had been introduced (i.e., likelihood
weighting) to boost the inter-trial facilitation. Therefore, our study puts forward a
parsimonious methodological approach using single-item displays with masked tar-
gets and a discrimination task to examine the effects of attentional feature weighting
in the absence of visual awareness. Importantly, we used volunteers’ discrimina-
tion ability to measure visual consciousness objectively but examined the effects of
visual attention using discrimination response times, thereby guaranteeing a clear
methodological separation between consciousness and attention.

3.6.5 Why intertrial response priming is unlikely explaining the pattern of re-
sults of the RT data

The observed switch effect for the weighted RT model could in theory be explained
by intertrial response priming. That is, the orientation perceived in the recent past
(trial n – 1) could have primed the response to the current target (in trial n) so that re-
sponses speed up following repeated target orientations and slow down once a novel
target is presented. This prediction is in line with our observation and challenges
the attentional weighting account that we proposed to explain the effect. However,
if intertrial response priming was responsible for the effect, one would expect a sig-
nificant slowing of responses following a novel orientation to occur independently
of the feature weighting. In other words, significant switch costs should have been
observed also in the average RT model which was not the case. Intertrial response
priming is contingent on awareness of the “pretarget” stimulus (e.g., Peremen et al.,
2013). Accordingly, the observed switch effect should rely on pretarget AL2 and
AL3 trials but not on fully unconscious pretarget trials if response priming was the
underlying mechanism. To test this account, we reanalyzed the RT data using the
same mixed model approach after removing those switch trials that were preceded
by AL2 and AL3 pretarget trials. Importantly, the switch effect was preserved for
the weighted RT model even when this time only fully unconscious trials preceded
an orientation change. This finding, together with the fact that the switch effect was
missing in the average RT model, makes it rather unlikely that response priming
could alternatively explain the effect we observed.

3.6.6 Conclusions

We demonstrated that unconscious feature changes of invisible targets can induce
attentional re-weighting against a prior attentional selection bias, suggesting that the
shifting of attentional selection weights during the behavioral performance does not
necessitate visual awareness. This finding supports previous studies stressing the
dissociation of attention and visual consciousness (e.g., McCormick, 1997), however,
prior studies predominantly report how unconsciously perceived cues affect shifts
in spatial attention (e.g., Mulckhuyse et al., 2007). To our knowledge, this is the
first study to investigate the effect of unconsciously perceived feature changes on
visual attention. Importantly, the methodological advantage of combining subjective
and objective measures of visual awareness helps to ensure that the target stimuli
were truly unconsciously processed. In the next step, it will be important to shed
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light on the neural underpinnings supporting attentional feature-based re-weighting
in the absence of visual awareness. Here, particularly the role of the frontopolar
cortex (FPC) should be examined as previous findings consistently have linked it to
exploratory attention shifts (for an extensive review see Mansouri et al., 2017), yet
evidence showing that FPC supports attentional reallocation in the full absence of
visual awareness is still missing.
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4 Experiment 2: Frontopolar activity carries feature
information of novel stimuli during unconscious
re-weighting of selective attention

The results of this experiment were first published in: Güldener, L., Jüllig, A., Soto, D., &
Pollmann, S. (2022). Frontopolar activity carries feature information of novel stimuli during
unconscious re-weighting of selective attention. Cortex, 153, 146-165.

4.1 Introduction
The FPC is uniquely large in the human brain and possesses a distinctive cytoar-
chitecture (Petrides et al., 2012; Ramnani & Owen, 2004; Semendeferi et al., 2001).
With its high number of spines and synapses it appears particularly suited for
the integration of information (Jacobs et al., 2001; Ramnani & Owen, 2004). FPC
plays a pivotal role in human cognition, where it ranks at the top of a high-level
executive control system orchestrating our behavior by temporally organizing
top-down strategic processing for goal-directed action (Cohen et al., 2000; Fuster,
2002; Ramnani & Miall, 2004). Only recently, frontopolar function has also been
investigated in non-human primates. Bilateral FPC lesions increased conflict
adaptation in a Wisconsin Card Sorting-like task (WCST), (Grant & Berg, 1948) in
which the animals needed to adapt to frequently changing task rules (Mansouri
et al., 2015). Importantly, FPC lesions did not affect the ability to follow the rule
switches of the WCST, in contrast to frontal lesions posterior to FPC. In a human
fMRI study utilizing a comparable WCST task, FPC activation signaled the presence
of interfering task rules (Konishi et al., 2005). Again, FPC activation was not affected
by rule changes per se, whereas this was observed more posteriorly, in the left
inferior frontal cortex. These data exemplify a pattern that suggests a vital role of
FPC in exploratory shifts of attentional selection, which is further supported by
findings from the literature on decision-making (Beharelle et al., 2015; Boorman et
al., 2009; Daw et al., 2006; Kovach et al., 2012).

In line with this notion, studies in the visual search domain showed that
attention changes between feature dimensions (Pollmann et al., 2000) or, likewise,
between locations (Lepsien & Pollmann, 2002) went along with increased BOLD
signal in the FPC. Importantly, exploratory attention shifts were assumed to be
implicit, namely, to occur without volitional orienting of attention to the new
feature. In line with this assumption, FPC activation was also observed in response
to changes in target-distractor contingencies that were learned implicitly: even
though distractor configurations were not remembered explicitly, the violation of
contingencies between learned target locations and specific distractor configurations
activated FPC (Pollmann & Manginelli, 2009a, 2009b). Yet, the search tasks used
in the above studies employed fully visible stimuli that were consciously seen
and attended to on every trial. Hence it is unclear whether the role of the FPC
in re-weighting of selection biases extends to changes of unconsciously processed
stimuli.
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To tackle this question, we developed a novel visual masking paradigm in
which a Gabor patch was presented centrally followed by a backward mask to
minimize the patch’s visibility. The spatial orientation of the target stimulus
randomly repeated or changed on a trial-by-trial basis and volunteers were obliged
to distinguish between vertical and non-vertical orientations. At the end of each
trial, we asked them to rate the target visibility using an adaptation of the percep-
tual awareness scale (PAS), (Ramsøy & Overgaard, 2004). Prior to this study, we
provided behavioral evidence that attentional re-selection in response to a target
change occurred in the full absence of visual awareness (Güldener et al., 2021).
However, the role of the FPC in supporting this process remained untested. Here
we used functional MRI to address this question using the experimental paradigm
described above.

In line with our previous findings, we expected attentional adaptation to occur
as soon as a given grating possessed the same orientation as the previous one
(one-trial learning), resulting in a selection bias favoring the repeated orientation
(Boschin, et al., 2015). Conversely, this attentional bias should be disrupted and
adjusted as soon as the novel grating’s orientation differed. Such reorienting of
attentional resources in response to an orientation change in these switch trials
was expected to result in RT switch costs on the behavioral level and to increase
the BOLD response in FPC (Pollmann et al., 2000). Consequently, we used the RTs
obtained in the orientation discrimination task as a proxy to measure attentional
reorienting processes. Participants’ perceptual decisions were analyzed by means of
signal detection theoretic measures in combination with visibility ratings to measure
visual (un)awareness and isolate unconscious information processing (Soto et al.,
2019; Wiens, 2007). Visual unawareness was associated here with null perceptual
sensitivity in those trials subjectively rated as unaware. This approach precluded
confounds arising from individual response criterion shifts in reporting subjective
awareness.

Importantly, we manipulated the proportions of the two non-vertical gratings
(left vs. right) presented in a single block by presenting one tilt twice as often
as the other tilt. We hypothesized that the increase of the frequency at which a
certain tilt (i.e., a grating tilted to the left or right) was presented will boost the
attentional selection weight for this tilt, consistent with feature-based statistical
learning (Chetverikov et al., 2017; Turk-Browne & Scholl, 2009). Thus, particularly
switch trials in which the prior orientation was the highly frequent tilt should show
increased behavioral response latencies (e.g., Chetverikov et al., 2017; Leber et al.,
2009).

Critically, we also tested whether the FPC activation pattern carried informa-
tion about the grating’s orientation in the non-conscious trials by using multivariate
pattern analyses. Recent research has shown that consciously processed stimuli in
working memory can be decoded from BOLD activity patterns from regions across
the entire attention network (Corbetta et al., 2008) like the left superior precentral
gyrus (SPG), bilateral SPL (Ester et al., 2015), and representations of task-relevant
feature dimensions can be found in the frontal eye field and left prefrontal cortex
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(lPFC) including FPC (Reeder et al., 2017). Furthermore, unconscious perceptual
contents (i.e., living versus nonliving categories) can be decoded from brain activ-
ity patterns in prefrontal regions (Mei et al., 2022). Here, we tested the role of FPC
in representing the relevant informational content during reorienting of attention
across different states of visual (un)awareness. It has been shown that cortical repre-
sentations of subjectively versus objectively invisible stimuli may differ (Stein et al.,
2021; but see also Mei et al., 2022). Stein and colleagues asked participants to perform
a visual discrimination task distinguishing between masked houses and faces. The
key finding was that the processing of objectively invisible stimuli was restricted to
visual (shape-related) object properties processed in early, lower-level visual areas,
while the processing of subjectively invisible stimuli reached up to more categorical
levels of representation in higher-level category-selective areas. However, this pat-
tern of results may change once the stimulus processing is affected by attentional
modulation (i.e., difference of goal relevance between stimulus types). Here we aim
at testing whether feature representations of objectively unaware stimuli can reach
a more global level of processing extending from occipital cortex up to FPC if the
represented object feature is associated with a higher attentional weight.

4.2 Methods

4.2.1 Participants

Based on the previous behavioral study (Güldener et al., 2021) we recruited in total
25 native German students (11 female) from the University of Magdeburg, Germany.
The volunteers were 20 to 39 years old (M. 24.08 years) and were either monetarily
reimbursed (8 euros per hour) or received course credits for the 2 h of participation.
A total of 8 participants were excluded prior to the main fMRI experiment: 3 par-
ticipants interrupted the session during the calibration or the main experiment and
were thus excluded and 2 other participants were excluded as they reported insuf-
ficient correction of their impaired vision using the MR compatible lenses. Three
participants did not successfully pass the calibration, i.e., even after multiple repe-
titions we were not able to determine a stable threshold of the stimulus’ luminance
contrast. Out of the 17 participants that took part in the fMRI experiment, three
reported a very low number of subjectively invisible trials despite the initial calibra-
tion (less than 5% of all trials); this was insufficient for statistical analysis and they
were thus excluded. Hence, the following report is based on a final sample size of n
= 14.

4.2.2 Apparatus & stimuli

The stimulus display and responses were controlled with PsychoPy (Peirce et al.,
2019). The stimuli were back-projected onto an 18-inch screen placed in the bore of
the magnet behind the participant’s head. The projector’s resolution was 1920 × 1080
pixels with a 60 Hz refresh rate. Participants viewed the screen via a mirror placed
on top of the head coil. Stimuli were Gabor gratings with an individually calibrated
Michelson contrast and a spatial frequency of 3.703 cycles per degree. They were
centrally presented on a grey background and subtended 3.437° visual angle. The
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gratings’ orientation was either vertical (180°), 165°, 150° or 135° if it was a left-tilted,
non-vertical Gabor patch, and 195°, 210° or 225° if it was a non-vertical patch tilted
to the right. To further reduce the visibility of the Gabor patch we used a circular
backward mask of black and white random dots (3.437° visual angle).

4.2.3 Experimental procedure

4.2.4 Threshold determination

All experimental sessions took place in the MR scanner (Siemens Prisma, Erlangen,
Germany) of the Neurology Department of the University of Magdeburg, Germany.
After placing the participant inside the scanner, the session started with a 1-up:1-
down adaptive staircase procedure (adopted from Jachs et al., 2015) to determine the
stimulus� luminance contrast for the first trial of the main experiment. The details
of this procedure are described in Chapter 2., in section 2.2.3.

4.2.5 Main experiment

In the main experiment, volunteers performed the orientation categorization task
based using masked Gabor patches. The paradigm is described in detail in Chapter
2., section in 2.2.2.

4.2.6 Design

Although the categorization task demanded participants only to discriminate
vertical from tilted orientations, irrespective of the specific direction of tilt, we
expected attentional weighting of left versus right tilt, so that attentional resources
would be allocated to discriminating the most recent tilt direction from vertical
based on analogous attention weighting effects observed in visual singleton search
tasks (Müller et al., 1995). This attentional weighting was expected to lead to
reduced response times when the tilt direction repeated (e.g., left following left tilt)
irrespective of the exact orientation of the grating (e.g., 165°, 150°,or 135°) compared
to longer response times if the tilt direction changed.

To boost tilt-based attention weighting, we manipulated the likelihood of the two
non-vertical gratings (left versus right): by increasing the frequency at which left or
right-tilted gratings occurred, the attentional weighting of this orientation should be
enhanced, while it should be reduced for the less frequent orientation (Desimone,
1996; Henson & Rugg, 2003). Thus, tilt-change costs were expected to be higher if
the change occurred from the frequent to the infrequent orientation than vice versa.
Additionally, if attentional weighting towards the frequent tilted orientation is used
to facilitate the discrimination between a vertical and a tilted grating, this should
result in higher tilt-change costs following the switch from the frequent tilt to ver-
tical compared to the change from infrequent tilt to vertical as in the former case
more attentional weight needs to be re-weighted, while in the latter case attentional
reorienting should be relatively easy because the attentional weighting for the tar-
get preceding the orientation change should be only weak. Hence, within a single
run consisting of 36 trials, the stimulus orientation was set to be vertical in 12 trials
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(⇠33%). The two non-vertical orientations, however, occurred in uneven propor-
tions with 18 trials (50%) and six trials (⇠16%), respectively. Thereby we obtained
either left- (75% of all non-vertical trials with a left tilted grating) or right-weighted
(75% of all non-vertical trials with a right-tilted grating) blocks, each containing fre-
quent and infrequent non-vertical orientations in random order.

4.3 Statistical analysis
The exact same procedure as in experiment 1 was carried out to analysis the par-
ticipants’ behavioral performance. It is described in detail in Chapter 3, section 3.4.
Participant’s subjective awareness was again determined based on each individual’s
awareness reports (see chapter 3.4.1.) and individual response biases (criterion lo-
cation C) and sensitivities (A’) were calculated to determine participants’ objective
ability to categorize vertical and non-vertical gratings for each level of subjective
awareness (Stanislaw & Todorov, 1999). All details are reported in section 3.4.2. We
tested these measures on group level with Bayes factor analysis (e.g., C = 0 and A’ =
.5). All statistical analyses were carried out with R (Version 3.5, R Core Team, 2014):
for the Bayes factor (BF) analysis (Rouder et al., 2009) we used the R-package Bayes-
Factor.

4.3.1 Analysis of RT data

Consistent with the first experiment (section 3.4.3), linear mixed model analyses
were conducted to analyze the RT data using packages lme4 (Bates et al., 2014) as
well as lmerTest.

RTs of trials in which incorrect responses had been given were discarded and
each participant’s individual outliers (mean RTs ± 2.5 SD) were removed prior
to the analysis. The model was fitted using a restricted maximum likelihood
estimation and the influence of the fixed effect predictors was tested with a type
III ANOVA as implemented in the lmer and anova function of the lme4 package
(Version 1.1e23). The P-values were obtained using Satterthwaite approximations
to degrees of freedom using the anova function of the package lmerTest (Version
3.1-2), (Kuznetsova et al., 2017). Post-hoc tests (least squared means of the contrasts
with Bonferroni correction) were performed using the R package emmeans (Version
1.4.7). Prior to the statistical assessment of the factors of interest, we defined the full
random effect structure of the mixed model with likelihood ratio tests (Baayen et
al., 2008). The final LMM used for the analysis model was again defined as RT ⇠
switch + awareness + switch:awareness + (1 + awareness + switch | sub) The details of
the model selection were the same as in the first experiment described in detail 3.4.3
and in Appendix A.1).

Again, in the LMM analysis of RT data, the switch condition was defined in
two distinct ways: the first LMM (weighted switch model) included only those trials
in which the highest RT costs were expected to occur: due to the frequency dif-
ferences between the three orientations, attentional weighting was expected to be
boosted for the highly frequent non-vertical orientations (either left or right). Conse-
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quently, re-weighting to the infrequent non-vertical orientation should cause higher
switch costs than vice versa. Similarly, the change away from the heavily weighted
to the vertical orientation should require more pronounced attentional re-weighting.
Changes away from the low-frequent tilted orientation to vertical, on the other hand,
should result in lower switch costs since attentional weighting for this tilted orien-
tation is weaker, facilitating attentional reallocation, and were thus not included in
the weighted dataset. For comparison, we repeated the LMM analysis using a fixed
effect predictor (switch) that, this time, comprised all types of switch trials (average
switch). Results are given separately for the LMM analyses using the weighted switch
and the average switch model.

4.3.2 fMRI analysis

4.3.3 fMRI measurements and pre-processing

All parameters for image acquisition are reported in detail in Section 2.3.

A single scanning session was split into ten runs of 246 sec each. 123 volumes
were sampled. The imaging data was pre-processed and analyzed by means of tools
of the FSL package (Jenkinson et al., 2012). The anatomical scans underwent a non-
brain removal with BET (Brain Extraction tool), (Smith, 2002) in preparation for the
realignment. The functional images were motion-corrected to an image in the middle
of each run with a normalized correlation ratio (MCFLIRT; FMRIB’s Linear Image
Registration Tool), (Jenkinson & Smith, 2001; Jenkinson et al., 2002) and slice time
corrected (temporally aligned to the middle slice of the 3D volume). To ensure the
validity of Gaussian random field theory, the functional data was spatially smoothed
using a Gaussian kernel with a size matching the double of the voxel dimensions
(FWHM = 6 mm). To remove low-frequency drifts (Smith et al., 1999), we temporally
filtered the data using a highpass filter with a cutoff value of 90 sec.

4.3.4 GLM-analysis

For statistical analyses of the functional brain scans, we defined the onsets of the
experimental events as explaining variables (EV) to model the BOLD response by
means of a general linear model. The Gabor onsets of trials in which the orientation
had changed compared to the previous trial (switch) and the Gabor onsets of trials
on which the orientation had remained unchanged (repeat) were modeled for
each awareness level separately (1e3), as well as the onsets of the start fixation,
mask, and categorization response which were also defined as regressors. These
were convolved with a hemodynamic response function (double gamma HRF)
and regressed against the observed fMRI-data. Collinearity was checked for the
modeled time series for each voxel ensuring a variance inflation factor (VIF) smaller
than 5 (Mumford, et al., 2015). Each regressor was paired with a temporal derivative
allowing for temporal flexibility, and motion parameter estimates were added
as nuisance regressors. Serial voxel-wise autocorrelations were controlled with
prewhitening by the FSL tool FILM (Monti, 2011; Woolrich et al., 2001).
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In the first-level analysis, all contrasts of interest were tested for significance un-
der mixed-effect assumptions and contrast images were processed for each partici-
pant (voxelwise Z threshold of 3.1 and a cluster significance threshold of p = .001,
family-wise error (FWE) corrected). These images were consequently used in the
second-level analysis estimating individual mean contrasts for the parameters across
all runs using a fixed-effect model with the same voxelwise and cluster significance
threshold (Z = 3.1, pFWE = .001). In a two-step post-statistical normalization, prior
to group analysis, the functional data was firstly co-registered to the individual,
anatomical scan using boundary-based registration (BBR), and secondly normalized
to the Montreal Neurological Institute standard space (MNI 152 2mm). Thus, sta-
tistical modeling on the subject level was carried out in native space. The statistical
modeling at the group level was performed using FLAME 1 + 2 (FMRIB’s Local
Analysis of Mixed Effects) as implemented in FSL’s FEAT (Version 6.00). Results are
given by means of whole-brain maps of BOLD responses thresholded using clusters
determined by a voxelwise Z threshold of 3.1 and a corrected cluster-forming signif-
icance threshold of pFWE = .001, across the whole brain (Eklund et al., 2016; Worsley,
2001).

4.3.5 MVPA searchlight

Our goal was to test whether the involved regions convey reproducible spatial
patterns of activity that differentiate between the specific orientations in the absence
of awareness. Thus, we made use of MVPA in combination with a searchlight
algorithm (Kriegeskorte et al., 2006) in order to further examine the nature of the
brain signals that we observed in response to invisible orientation changes in the
GLM analysis. Therefore, we carried out searchlight analyses within those brain
regions that had been identified previously in the GLM analysis as to be particularly
responsive to invisible orientation change. To do so, we created binary masks of
these regions and used them as ROI in the consequent searchlight analysis. Note
that GLM results were orthogonal to the decoding analysis as we chose those
clusters as ROIs for the searchlight analysis that showed increased BOLD signal in
response to unaware orientation changes but not to the different orientations per se.
In addition, we conducted a whole-brain searchlight analysis to test whether feature
information is represented in regions beyond those identified in the GLM analysis.

Prior to decoding, the individual fMRI data were motion corrected and
smoothed (FWHM Gaussian kernel = 6 mm) to reduce noise and the impact of
fine-scale signal patterns (Gardumi et al., 2016; Op de Beeck, 2010). Note that the
MVPA analysis was conducted for both smoothed and unsmoothed data. Both
analyses led to comparable results. A rather positive effect of smoothing was
previously reported for MVPA in prefrontal cortex and sensory regions (Hendriks
et al., 2017), thus we report the MVPA-results based on the smoothed fMRI data.
After smoothing, we transformed subjects’ data into MNI standard space and
fitted a standard hemodynamic response function model to estimate the statistical
parameters (scaling parameters, b-values) for each of the experimental conditions,
resulting in one b-map for every run per experimental condition. The resulting
datasets were detrended and z-scored per voxel within each run.
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The searchlight analysis was implemented by extracting the z-scored b-values
from spheres centered on each voxel in the ROI masks. For the accuracy maps, the
classification accuracy (the mean of the proportion of correctly classified targets)
for each sphere was assigned to the sphere’s central voxel. To test the sensitivity
as a function of sphere radius, we carried out the analysis with the radii of 6 and
9mm. If different searchlight radii reveal the same or similar overlapping clusters,
it is more likely that these clusters are indeed not spurious (Etzel et al., 2013). For
classification within a single sphere, we chose a linear support vector machine
to classify the three stimulus orientations (LIBSVM; with fixed regularization
hyperparameter C = -1). We selected this type of classifier as it tends to perform
better or at least equivalent compared to other algorithms on fMRI data, and, due
to its limited complexity, it reduces the probability of over-fitting (Lewis-Peacock
& Norman, 2014; Pereira & Botvinick, 2011). Eventually, an n-fold cross-validation
(leave-one-run-out) was carried out, using the PyMVPA software package (Hanke
et al., 2009); with n as the given number of runs, the training dataset comprised
all unaware trials of the first run (fold) to run n-1, while the unaware trials of run
n constituted the test dataset. Note the total number of runs per subject varied
between four and ten depending on the number of subjectively unaware trials
that were obtained (i.e., in some subjects some runs did not include trials rated as
subjectively unaware). This splitting was repeated until each of the n folds served
once as the test dataset. To test if brain activity on unaware trials conveyed local
information sufficient to discriminate the stimulus orientations, trials with higher
levels of subjective awareness (AL2 & AL3) were omitted in this procedure. Further-
more, all unaware trials were included without differentiating between switch and
no switch trials to maximize the total number of trials serving training and testing
the classifier (26.88% of all trials). Likewise, we included correct as well as incorrect
subjectively unaware trials (AL1) in the MVPA to maximize the chances of decoding.

In a two-step analysis with permutation tests on the subject level and bootstrap-
ping on the group level, we aimed for finding final group-level clusters with decod-
ing accuracies significantly exceeding the chance level (Stelzer et al., 2013). First, per-
mutation tests for each subject (100 permutations) were carried out to assess chance
distributions and to obtain individual chance accuracy maps (Chen et al., 2011; Gol-
land & Fischl, 2003; Stelzer et al., 2013). To do so, we created a random permuta-
tion of the observation order of the orientations (labels) and applied this scheme to
the data set. Next, the cross-validation was performed on the permuted data set,
which was repeated 100 times. This resulted in a sampling distribution of the mean
classification accuracy under the null hypothesis (i.e., no information of orientation
representations present in the multivoxel activity patterns). The significance level (P-
value) was estimated by the fraction of the permutation samples that were greater
than or equal to the classification accuracy from the data without label shuffling.
This “chance” map of decoding accuracies was saved each time for each participant.
Importantly, balanced partitions containing the same number of items per orienta-
tion class were initially created within each subject and each cross-validation fold.
At the group level, we recombined the individual null distribution maps into group
accuracy maps (Stelzer et al., 2013). For this, we randomly drew (with replacement)
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one of the 100 chance accuracy maps of each subject and averaged this selection of 14
chance maps (one for each participant) voxel-wise to one permuted group accuracy
map. Repeating this 105 times with replacement we obtained a distribution of 105

permuted group accuracies. For statistical testing, we next calculated the probability
of the unpermuted mean decoding accuracies across all 14 volunteers in the distribu-
tion of the permuted group accuracies (one-tailed) with a voxel-wise threshold of p
< .001. Cluster P-values were calculated for the unpermuted accuracies that referred
to the probability of observing a particular cluster size or a larger one given the Null
hypothesis, controlling for multiple comparisons using false discovery rate correc-
tion (FDR, p Cluster < .05). Group cluster brain maps containing clusters with above
chance decoding accuracies were saved as well as classification accuracy maps.

4.4 Results

4.4.1 Visual (un-)awareness & RT data

To assess subjective awareness, we calculated the number of trials for each level of
awareness for each participant using the trial-by-trial PAS-rating. In the majority
of trials, participants’ subjective awareness of the to-be-categorized orientation was
low (AL2; 34.71%) or even fully absent (AL1; 24.97%). In 31.1% of all trials, subjects
reported an almost clear perception of the grating and its orientation (AL3) and in
only 9.23% they clearly saw the grating and its orientation (AL4). The mean numbers
of trials for each level of awareness and trial type are summarized in Table 5. As the
number of fully aware trials (AL4) was overall very low with less than 10 trials in
64% of all subjects, we excluded these trials from further analyses.

Table 5: Number of switch and repeat trials

Level of awarness (PAS)

AL1 AL2 AL3 AL4

switch repeat switch repeat switch repeat switch repeat

M 55.9 32.8 75.1 48.14 68.6 41.8 21.6 11.1
SD 21.9 14.2 28.0 16.8 19.2 11.6 17.4 9.3

4.4.2 Discrimination ability depends on subjective awareness

According to the individual reports after the experiment, some participants had
noticed that non-vertical Gabors had occurred more often than the vertical Gabor.
None of the participants, however, noticed a difference in the frequency between
left- and right-tilted orientations. The averaged sensitivity and bias measures for
each level of subjective awareness are reported in Table 6. Participants’ sensitivity to
discriminate between a non-vertical and a vertical grating decreased with vanishing
subjective awareness. On trials with almost full (AL3) and partial awareness (AL2)
participants maintained considerable perceptual sensitivity regarding the Gabor’s
orientation: Bayes-factors provided strong evidence for the mean A’ of .675 ± .056
to be greater than .5 in AL3 trials, BF10 = 12.89, 95% CI (.553, .797) and anecdotal
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evidence for the mean A0 of .585 ± .049 (SE) to be truly greater than .5 in AL2 trials,
BF10 = 1.671, 95% CI (.479, .690). In contrast, in unaware trials (AL1), the mean
A’ was .48 ± .030 with the Bayes factor providing moderate evidence for the H0
suggesting that volunteers’ perceptual discrimination ability was at chance, BF10 =
.178, 95% CI (.414, .545), (Quintana & Williams, 2018). Comparing the sensitivity
between the three awareness levels Bayes factors provided strong evidence that A’
in AL1 trials was truly smaller than the mean A0 in AL2 trials, BF10 (AL1 < AL2)
= 19.957, and extreme evidence that it was smaller than the mean A’ in AL3 trials,
BF10 (AL1 < AL3) > 100. Comparably, there was strong evidence for A’ of AL2 trials
to be smaller than A’ of AL3 trials, BF10 (AL2 < AL3) = 34.336. Violin plots of the
sensitivity distribution of each level of awareness are depicted in Figure 7 a).

We assumed a yes/no discrimination task set up in our paradigm and calculated
A’ as the sensitivity measure. However, given the fact that volunteers were required
to map left and right tilted Gabors with differing angles to the same response (i.e.,
non-vertical), a classification scenario may be more appropriate (Snodgrass et al.,
2004). On the cognitive level, such a scenario demands volunteers to establish two
rather than one decision criteria, thereby increasing the decision uncertainty. The
proportion of correct responses (i.e., proportion correct, p(c)) then serves as the
means to measure perceptual sensitivity (Macmillan & Creelman, 2004, pp. 190-191).
Hence we next calculated p(c) for each level of subjective awareness, where p(c) was
defined by using the presentation probabilities of the two non-vertical targets as
weights for the hit rate and adding this to the product of the 1-false alarm rate (i.e.,
correct rejection rate) and the presentation probability of the vertical target (i.e., p(c)
= (8/36)*H + (16/36)*H + (12/36)*(1-F); Macmillan & Creelman, 2004, p. 89).

In agreement with the results of the sensitivity analysis using A’, we observed
a mean p(c) of .514 ± .042 in AL1 trials with a Bayes factor analysis providing
moderate evidence for p(c) to be equal to chance (50%), BF10 = .310, 95% CI (.423,
.605), (Quintana & Williams, 2018). In AL2 trials the p(c) was .609 ± .060 and the
Bayes factor gave anecdotal evidence that it was truly above the chance level, BF10 =
1.885, 95% CI (.480, .739). In AL3 trials the mean p(c) was .695 ± .272 and the Bayes
factor showed moderate evidence for a p(c) above chance, the BF10 = 6.738, 95% CI
(.538, .852). Group distributions of the p(c) for each level of subjective awareness are
depicted in Figure 7 b).

Finally, we analyzed individual response biases. On unaware trials (AL1) we
observed a negative mean C of .471 ± .187 and the Bayes factor provided only anec-
dotal evidence in favor of a C smaller than zero, BF10 = 1.720, 95% CI(0.821, 0.012),
(Quintana & Williams, 2018), tentatively suggesting that volunteers were biased to
report a non-vertical orientation more often. In trials with residual awareness (AL2)
the mean C of 0.098 ± 0.147 was associated with a Bayes factor providing moderate
evidence for a C truly at zero indicating unbiased responses, BF10 = .328, 95% CI
(0.415, 0.219). Similarly, in almost fully aware trials (AL3) the Bayes Factor for the
mean C of .242 ± .159 provided anecdotal evidence for a C equal to zero, BF10 = .692,
95% CI (0.102, 0.586). Next, we computed a Bayesian mixed model using the sub-
jective measures of awareness (AL1-AL3) as fixed effect predictor and a by-subject
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random intercept to test for variations in C across the three levels of awareness.
The analysis resulted in BF10 = 52.89, providing strong evidence for variations
in C across the levels of subjective awareness. Violin plots showing the distribu-
tions for the criterion location for the three awareness levels are shown in Figure 7 c).

Table 6: Perceptual sensitivity and response bias

Level of awarness (PAS)

AL1 AL2 AL3

A’ C A’ C A’ C

M 0.513 �0.254 0.616 �0.060 0.685 0.0
SD 0.048 0.538 0.128 0.399 0.139 0.422

Figure 7: a) Violin plots shows the sensitivity parameter A’ as a function of subjec-
tive awareness. Black dashed line shows the level of zero sensitivity. Black asterisks
indicate BF10 providing evidence for a mean A’ truly greater than .5. b) Sensitivity
parameter p(c) as a function of subjective awareness. Black dashed line shows the
level of zero sensitivity. Black asterisks indicate Bayes factors providing evidence
for a mean p(c) truly greater than .5. c) Response bias C as a function of subjective
awareness. Black dashed line appears at the level of no response bias. Black asterisk
indicates a Bayes factor providing evidence for a mean C truly smaller than 0. To il-
lustrate distributions of numeric data, violin plots make use of density curves where
the width matches the approximate frequency of data points in each region. The
lower and upper limits of each plot is determined by the distribution’s minimum
and maximum value.

Together, the data show that the ability to distinguish the two types of orienta-
tions (non-vertical versus vertical) strongly depended on subjective visibility. Im-
portantly, we found a concordance of subjective visibility and the objective measure
of awareness: the lower volunteers rated their subjective awareness, the worse their
ability to correctly identify the stimulus orientation, being at random when sub-
jective unawareness was reported. Trials with higher subjective levels of awareness
(AL2-AL3) showed substantial sensitivity above chance level and were thus counted
as aware. However, the variation in the response bias across the three levels of visual
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awareness may suggest that volunteers’ perceptual decision criteria were affected
by their subjective awareness reports and variations in the sensitivity measure (A’)
could potentially be influenced by variations in the response bias. In fact, the low
sensitivity (i.e., A’ or p(c), respectively) in AL1 trials could have resulted from a re-
sponse bias in this condition (Macmillan & Creelman, 2004). Thus, true absence of
perceptual sensitivity in the subjectively unaware trials cannot be fully ascertained.
An analysis of the luminance contrast values (i.e., the physical signal strength) of the
presented Gabor patches can be found in the Appendix B.1.

4.4.3 Reaction times switch costs in response to unaware orientation changes

Critical for the purpose of this study was to examine if there was an effect on
decision RTs in switch trials, i.e., due to changes in the orientation between a
given trial and the previous trial. Descriptive mean RTs and SEs for switch versus
repeat trials for each level of awareness are summarized in Table 7. First, we
analyzed the weighted switch model containing only those trials with the highest
expected switch costs. Visual inspection of residual plots did not reveal any
obvious deviations from homoscedasticity or normality. Here the LMM analy-
sis showed that estimated RTs increased with decreasing visual awareness, F(2,
13.671) = 24.118, p < .001; Post-hoc tests after Bonferroni correction showed that
mean RTs across both switch and repeat trials significantly slowed down about
119.7 ± 35.9 ms in AL1 trials compared to AL2, t(12.5) = 3.335, p = .017, 95% CI
(20.57, 219.0), about 186.5 ± 37.2 ms compared to AL3 trials, t(12.0) = 5.019, p <
.0001, 95% CI (83.24, 290.0). Finally, mean RTs in AL2 trials were on average 66.8
± 22.6 ms slower compared to AL3 trials, t(15.5) = 2.961, p = .028, 95% CI (6.26, 127.0).

More importantly, the orientation change (fixed effect switch) had also impacted
RTs as indicated by the significant interaction between the factors switch and sub-
jective awareness, F(2, 35.999) = 5.406, p = .009. Here the post-hoc tests showed that
in the unaware condition (AL1) RTs in repeat trials were on average 115.35 ± 32.5
ms faster compared to switch trials t(29.4) = -3.570, p = .001, 95% CI (-182.4, -49.6).
In trials with higher levels of visual awareness switch costs were not significant,
AL2, p = .343, 95% CI (-97.7, 35.1); AL3, p = .907, 95% CI (-62.6, 70.2). There was
also a statistical trend for the main effect of the fixed effect predictor switch, which
was, however, not significant, F(1, 13.278) = 3.889, p = .070. In Figure 8 a) RTs for
both switch and repeat trials are plotted as a function of visual awareness for the
weighted switch model. The LMM solutions for the fixed and random effects are
given in Table 8 a).

Next, we calculated the same LMM analysis for the average RT model in which
the mean of the switch condition included all possible switch trials. Residual plots
did not suggest deviations from homoscedasticity or normality. Again, estimated
RTs appeared sensitive to changes in the level of visual awareness indicated by the
significant fixed effect of awareness, F(2, 12.575) = 6.073, p = .014. The post-hoc tests
with Bonferroni correction indicated that RTs in AL1 trials were on average 76.1
± 31.0 ms slower compared to AL2 trials, but this difference was statistically not
significant, (12.1) = 2.454, p = .091, 95% CI (-10.05, 162.0). However, RTs in AL1 trials
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were on average 133.2 ± 40.4 ms slower compared to AL3 trials, t(12.0) = 3.301, p =
.019, 95% CI (21.06.49, 254.0). Finally, mean RTs in AL2 were about 57.1 ± 18.7 ms
slower compared to AL3 trials, t(12.4) = 3.046, p = .029, 95% CI (5.29, 109).

Orientation changes, however, did not significantly impact RTs: There was
no significant main effect of switch, F(1,14.515) = 2.633, p = .126, nor a significant
interaction F(2, 36.00) = .267, p = .767. RTs for both switch and repeat trials as a
function of visual awareness for the average switch model are depicted in Figure 8
b). The LMM solutions for the fixed and random effects for the exhaustive switch
model are given in Table 8 b).

Taken together the LMM analysis showed that RTs were sensitive to decreasing
visual awareness as well as to changes in the stimulus orientation. Yet, orientation
changes impacted RTs only if those switch trials were considered in which the
novel orientation changed away from the highly biased orientation (highly frequent
tilt) suggesting that prior visual selection had boosted behavioral switch costs. RT
data were best described by an interaction of visual awareness and changes in the
stimulus orientation with significant slowing of RTs only in unaware switch trials.

Figure 8: Boxplots depicting RTs in seconds as a function of visual awareness plotted
for switch (blue) and repeat trials (red) in the weighted model (a) in which the switch
factor comprised only those switch trials away from the strongly weighted (frequent
tilt); b) average model in which all switch trials were included; black asterisks =
significant difference between switch and repeat trials, p < .01.

52



Table 7: RT data

Level of awareness (PAS)

AL1 AL2 AL3

switch repeat switch repeat switch repeat

Weighted
model
M 1.152 1.036 0.990 0.959 0.906 0.910
SD 0.185 0.178 0.151 0.162 0.124 0.145

Average
model
M 1.061 1.036 0.986 0.959 0.921 0.910
SD 0.158 0.178 0.125 0.162 0.140 0.145

Note: Values are reported in seconds.
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Table 8: LMM parameter estimates of RT analysis

Fixed effects Estimate (in seconds) SE t-value p

A) Weighted
AL1 (inter-
cept)

1.03669 .04584 22.617 3.91e-12***

AL1-AL2 -.07737 .03883 -1.916 .070276
AL1-AL3 -.12661 .04202 -2.980 .008178**
Switch (Inter-
cept)

.11599 .03249 3.570 .00116**

AL2: Switch-
Repeat)

-.08469 .03746 -2.261 .016213*

AL3: Switch-
Repeat

-.11981 .03746 -3.198 .00288**

Random effects Variance SD

Subject .022751 .15084
AL1-AL2 .012188 .11040
AL1-AL3 .013392 .11572
Residual .004604 .06754

B) Average
AL1 (inter-
cept)

1.036688 .047479 21.835 2.51e-11***

AL1-AL2 -.077365 .033110 -2.337 .0.03326 *
AL1-AL3 -.126607 .041977 -3.016 .0.00924**
Switch (Inter-
cept)

.024623 .018619 1.322 .19467

AL2: Switch-
Repeat)

.002497 .023136 .108 .91464

AL3: Switch-
Repeat)

-.013223 .023136 -.572 .57120

Random effects Variance SD

Subject .027566 .16603
AL1-AL2 .010772 .10379
AL1-AL3 .019427 .13938
Residual .001027 .03205

Note: Significance codes: *** p < .001; ** p < .01; * p < .05. Estimates, (beta values, in seconds), SEs,
t-ratios, and P-values for the fixed effect predictors in the final LMM. a) T- and p-values indicate the
difference of each factor level (and factor level combination) compared to baseline (intercept AL1 for
the fixed effect awareness and switch for the fixed effect switch). The intercept is tested against zero.
The model results based on the fixed effect predictor switch comprising only the changes away from
the heavily weighted orientation are given in a); b) shows the results of the model using the fixed ef-
fect predictor switch including all types of orientation changes.
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4.5 fMRI Results

4.5.1 GLM results - switch-related fronto-parietal activity linked to unaware in-
formation processing

To show brain regions that were particularly sensitive to unawareness, first, both
unaware switch and repeat trials were combined and contrasted against both types
of trials on higher levels of awareness (2 x switch AL1 + 2 x repeat AL1) > (switch AL2
+ repeat AL2 + switch AL3 + repeat AL3). Here we observed three clusters showing
significant signal change in unaware (AL1) compared to almost fully aware trials
(AL3) and in trials with residual awareness (AL2) located in the right lateral FPC, the
right SMG and the right angular gyrus (AG), including the right TPJ (see Figure 9 a)
and Table 9 a)). The respective parameter estimates (b-values) converted to percent-
age change (see Figure 10) indicated an elevated BOLD response in these regions.
The behavioral analysis already showed switch costs to be more pronounced for
unconscious orientation changes compared to consciously perceived changes. Thus,
we next looked for analogous activation increases in the fMRI data and contrasted
unaware switch trials against unaware repeat trials using the interaction contrast
(switch > repeat) AL1 > (switch > repeat) AL3 to test if the difference between switch
and repeat trials differed between AL1 and AL3. It revealed an anterior cluster of
409 voxels located in the frontal lobe spanning parts of the right MFG as well as the
right IFG and reaching posteriorly beyond the right central sulcus to the precentral
gyrus (PCG). We found a second cluster located more posteriorly comprising 398
voxels that extended from the superior division of the right lateral occipital cortex
(LOC) extending anteriorly to the right SPL and, more inferior, to the right AG,
reaching down to the right precuneus (PCC) and cuneal cortex (CC) (see Figure 9 b)
and Table 4 b). The positive percentage change in the signal observed in all but two
participants (see Figure 10) suggested an elevated activation in the unaware switch
condition in these regions.

In sum, right MFG, IFG as well as the right AG were modulated by invisible
target changes. Together these findings suggest that right frontal and parietal re-
gions together serve the detection of unconsciously perceived alterations of a critical
stimulus supporting attentional shifting in a situation that requires the disruption
of rule-based resource allocation and the exploration of new environmental aspects.
Yet, while clusters reaching in the dorsal parts of the right lateral FPC showed an
increased BOLD response in trials in which the target was not perceived consciously,
this region did not respond specifically to invisible target changes.
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Figure 9: Z-score group-level activation maps overlaid on an MNI152 template (Z
> 3.1; pFWE < .001); A) Areas with stronger BOLD signal on unaware compared to
aware trials combined for both, switch and repeat trials; B) Regions with a higher
BOLD-response on unaware switch trials compared to unaware repeat trials tested
via the interaction (switch > repeat) AL1 > (switch > repeat) AL3.
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Table 9: Table of activations

a) 2AL1 > (AL2 + AL3)

# K Z Max Loc Z Max p Structure

1 1090 56,-46, 26 7.19 8.32e-11 rAG, rSMG
(rTPJ)

2 496 38, 42, 26 5.95 3.7e-06 rFPC
3 319 14, 50, 38 5.75 .000191 rFPC

b) (switch AL1 > switch AL3) > (repeat AL1 > repeat AL3)

1 409 44, 6, 38 4.61 .000601 rMFG
2 398 34,-62, 40 6.16 .000719 rLOC, rAG,

rSPL (rTPJ)

Note: K = cluster size in voxels, Z Max Loc = MNI coordinates of the location with the maximal Z-
value, Z Max = maximal Z-value, r = right, structure determined using the Harvard–Oxford Cortical
Structural atlas).

Figure 10: Average parameter estimates (percentage (%) signal change) observed
across all clusters with a significant BOLD response on the left for the contrast 2AL1
> AL2+AL3, and, on the right, for the interaction contrast (switch > repeat) AL1 >
(switch > repeat) AL3.
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4.5.2 Representations of unconsciously perceived target orientations outside the
visual cortex in the right parietal and frontal cortex

We next carried out multivariate searchlight analysis to assess where in the brain
the multivoxel activation patterns carried information about the critical stimulus
even though that stimulus was not perceived consciously. On the one hand we were
interested to assess if areas that were particularly responsive to invisible orientation
changes (i.e., those clusters with an increased BOLD signal for the interaction
contrast (switch > repeat) AL1 > (switch > repeat) AL3 shown in Figure. 9 b)) also
maintained the orientation information. Thus, we performed a searchlight analysis
on these regions of interest (number of non-zero voxels = 807). One the other hand,
we wanted to test where else the feature information of the invisible stimulus was
represented, extending those areas revealed in the GLM analysis, wherefore we also
conducted a whole-brain searchlight analysis (number of non-zero voxels = 221432).
The behavioral task required participants to make two types of responses, i.e., one
for vertical and another one for tilted gratings. Thus, if the switch was between
vertical and tilted, not only was there a change in the orientation but also a change
of the behavioral response. Therefore, we included only left- and right-tilted Gabors
rated as unaware in the multivariate analysis. For the searchlight we chose a 9mm
radius. The same analysis we repeated using a 6 mm searchlight radius which is
reported in the Appendix B.2. The first ROI-based searchlight analysis showed
that parts of those cluster showing an increased BOLD response in the interaction
contrast of the GLM analysis (i.e. (switch > repeat) AL1 > (switch > repeat) AL3,
Figure. 9 b)) also carried informative clusters on the group level with significant
searchlight centers (pCluster< .05) located in the right MFG, right IFJ as well as in
right SPL, AG and right LOC with a mean decoding accuracy of 66.7 ± 1.9%. Figure
11 a) contains dot plots showing the individual decoding accuracies for the 14
subjects. Dot plots showing the decoding accuracies of all clusters that survived the
significance testing by bootstrapping on group level are depicted in Figure 11 b).
Figure 12 a), shows the accuracies of clusters with significant searchlight centers on
group-level mapped on an MNI152 standard brain (red clusters))

Remarkably, the second whole-brain searchlight analysis revealed local in-
formation that discriminated between the two tilted orientations on unaware
switch trials located even more anteriorly in the right lateral FPC (see Figure 12 b),
transverse slices 12 and 16). Next, confirming the ROI-based searchlight, we also
found informative clusters in the right MFG and IFJ. More posteriorly, the analysis
revealed clusters with significant searchlight centers located bilaterally in the TPJ,
precuneus, and intraparietal sulcus (IPS), as well as in visual cortex including
the lingual gyrus, cuneus, LOC, and occipital pole (pCluster < .05). There were
also group clusters with significant searchlight centers (pCluster < .05) in anterior
cingulate gyrus, bilaterally in the temporal pole and orbitofrontal cortex (OFC). The
mean decoding accuracy among all clusters carrying local information informative
about the orientation of the invisible stimulus was 71.5 ± 4%. Figure 11 a) contains
dot plots showing the individual decoding accuracies for the 14 subjects for the
whole-brain searchlight. Dot plots showing the decoding accuracies of all clusters
that survived the significance testing by bootstrapping on group level are depicted
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in Figure 11 b). The brain clusters revealed in the whole-brain searchlight analysis
are depicted in Figure 12 b).

We then assessed whether decoding in frontal and parietal regions depended on
whether the target grating was visible or invisible. Therefore, we repeated the ROI-
based searchlight analysis following the same methodological procedure as outlined
in the method’s section 4.3.5 in the ROI derived from the GLM contrast (Figure 4 b))
comprising the right MFG, right AG and right LOC. This time left- and right-tilted
Gabors of only AL2 and AL3 trials were included in the analysis. Group clusters
with significant searchlight centers (pCluster < .05) were located in the posterior right
middle frontal gyrus (rMFG). For these clusters a mean decoding accuracy of 63.0 ±
2% was observed. However, this analysis did not reveal the maintenance of feature
information in clusters located in the parietal areas that we found when decoding
the orientation of invisible targets (i.e., rAG, SPL, and LOC). Thus, albeit the decod-
ing accuracies, obtained in the searchlight analysis using aware trials only, did not
differ statistically from those obtained in the analysis of AL1 trials, t(49) = - 1.38, p =
.1730, the spatial distribution of clusters with local information discriminating the
target orientations was distinct for invisible versus visible targets. Decoding accura-
cies mapped on a MNI 152 standard brain are depicted in Figure. 12 a, blue clusters).

Taken together, these results show that the orientation could be decoded even
for unconsciously processed gratings. The informative voxel clusters on the group
level were distributed in a network reaching from the frontal to the occipital cortex
including the right lateral, MFG, IFJ, SPL, IPS and TPJ. Most importantly, we
showed that clusters in the prefrontal and parietal cortex were not only modulated
by changes of the unconsciously perceived target’s orientation compared to visible
orientation changes, but also that the activity patterns within these regions carried
information about the stimulus orientation.
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Figure 11: Dot plots of individual decoding accuracies in the searchlight analysis
with a 9 mm SLR (3 voxels). On the left it shows subjects’ decoding accuracies ob-
tained for ROI-base searchlight analysis restricted to those clusters that showed a
significant BOLD signal change in the (switch > repeat) AL1 > (switch > repeat) AL3
contrast (left side). One the right the individual decoding accuracies of the whole-
brain searchlight are depicted. The circles bigger in size show the mean accuracy
across all subjects. The shaded areas show individual accuracies that fall below the
99th percentile of the null distribution computed by the permutation test. B) reports
the mean decoding accuracies calculated of all informative clusters with significant
searchlight centers (pCluster < .05) observed after bootstrapping on the group level
for the ROI-based as well as for the whole-brain searchlight. The algorithm that we
used implements a two-stage procedure using the results of within-subject permuta-
tion analyses, estimates a per feature cluster forming threshold (via bootstrap), and
uses the thresholded bootstrap samples to approximate the distribution of cluster
sizes in group-average accuracy maps under the Null hypothesis (i.e., no informa-
tion present in the multi-voxel patterns). The big circles indicate the mean accuracy
across these clusters. The shaded areas, again, reach the upper bound of the 99th
percentile of the null distribution obtained from the permutations after bootstrap-
ping on the group level.
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Figure 12: Decoding accuracies obtained with a 9 mm searchlight radius of clusters
with significant searchlight centers (green) surviving the thresholded two-steps per-
mutation procedure (pCluster < .05) mapped on a MNI 152 standard brain. A) shows
the resulting clusters of the searchlight analysis restricted to those regions revealed
in the interaction contrast (switch > repeat) AL1 > (switch > repeat) AL3 (see Figure 9
b)). Red clusters are those we obtained in the analysis that included only AL1 tri-
als, while the blue clusters are those, we observed in the analysis using AL2 and
AL3 trials. For only those accuracies above the 99th percentile are shown. B) shows
the results of the whole brain searchlight analysis: decoding accuracies that exceed
the 99th percentile (i.e., 65.7%) of the null distribution are mapped on a MNI 152
standard brain. Red clusters show the areas with a significant signal change in the
univariate interaction contrast of the GLM analysis (see Figure 9 b)).
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4.6 Discussion
In this study we investigated exploratory shifts of attention in the absence of visual
awareness and hypothesized, on the brain level, the right FPC to be crucially
involved. At the behavioral level, we indeed observed that participants’ RTs in the
categorization task were prolonged when the orientation of a central bar stimulus
changed away from the most frequent orientation, while both subjective and
objective measures indicated the absence of conscious perception.

Thus, our participants appeared to have optimized perception by attentional
weighting of the most frequent orientation although the stimuli were not consciously
perceived. This, in turn, caused RT costs when less frequent orientations were pre-
sented. Previously, we had observed left lateral FPC activation when attention was
reweighted following visible target changes. Here, we investigated if the same pat-
tern would be observed for unconsciously processed stimuli. However, FPC was
not more strongly activated in unconscious change trials. Thus, a specific role of
the FPC for attentional modulation of unconsciously perceived stimuli could not be
confirmed. Instead, however, FPC activation represented the stimulus orientation
of unconsciously perceived stimuli. Thus, the FPC would be able to send feedback
to posterior regions such as the TPJ and IPS when target changes occur. Due to the
lack of change-related FPC activation, we have no evidence that such change sig-
naling occurs for unconsciously perceived target changes, but it cannot be ruled out
that such change signals might have been too weak to be observed in the present
experiment, or that they might occur for target dimension changes instead of feature
changes (Pollmann et al., 2000; Weidner et al., 2002) or spatial attentional changes
(Lepsien & Pollmann, 2002) even if these occur unconsciously.

4.6.1 Nodes of the ventral attention network detect invisible stimulus changes

Increased activation during unconsciously perceived switch trials was observed in
the right posterior parietal cortex. This aligns well with many studies showing pos-
terior parietal involvement in conscious attention changes (reviewed by Corbetta et
al., 2008; Wager et al., 2004). Activation along the posterior, descending segment
of the IPS was recently found to be increased for salient distractor stimuli rather
than for equally salient targets (Jamoulle et al., 2021). Thus, posterior IPS activa-
tion was not driven by salience per se, but discriminated between the task-relevant,
attended targets and the task-irrelevant, non-attended distractors. In the present ex-
periment, we find a similar pattern in that this area was more strongly activated by
the non-attended, new orientation than the attended orientation. In both cases, the
underlying function may be a response to stimulus changes that may potentially re-
quire a reallocation of attention. Certainly, the visual search task used by Jamoulle
et al. (2021) and our task differ in many respects. Thus, the hypothesis that both
studies induced the same functional process in posterior IPS needs to be confirmed
by further studies where consciousness is varied within the same paradigm. In ad-
dition, areas that partially define the anatomy of the right TPJ, such as the right
AG as well as the right LOC (Schurz et al., 2017) showed increased activation in re-
sponse to invisible target changes. This observation is consistent with the idea that
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TPJ serves to facilitate attentional weighting of the novel target orientation. We also
found decodable feature information of the invisible stimulus in TPJ suggesting that,
by representing the novel invisible stimulus in the multivoxel activity patterns, TPJ
supports participants’ disengagement of attention (Corbetta et al., 2008) from the
previous orientation to facilitate subsequent attentional weighting of the new orien-
tation. The cortex along the posterior inferior frontal sulcus (including the inferior
frontal junction (IFJ))- consistently activated following attentional switch processes
in the literature (e.g., Derrfuß et al., 2009; Dove et al., 2000) - showed increased activ-
ity following an invisible target change and represented the orientation of the novel
target which supports the idea that the ventral attention network sends a reorienting
signal to the dorsal attention network through MFG (Corbetta et al., 2008; Japee et
al., 2015).

4.6.2 Dissociation between attention and visual awareness

Our findings support the distinction between attention and consciousness: the re-
weighting of attention in response to a change of an unconscious target is in keeping
with the view that attention and consciousness can be dissociated (Koch & Tsuchiya,
2007; Lamme, 2003). Our findings tie in well with other reports, showing visual se-
lection biases can occur in the absence of visual awareness (Kanai et al., 2006; Pan
et al., 2014; Zhang & Fang, 2012; for a review see Mulckhuyse & Theeuwes, 2010)
and are thus in keeping with emerging evidence that higher-order cognitive control
mechanisms can be deployed without conscious awareness (Soto & Silvanto, 2014;
Van Gaal & Lamme, 2012; Van Gaal et al., 2010). Previous studies provided evi-
dence for mid-dlPFC (BA 46) to be responsive during unconscious priming of task
response settings (Lau & Passingham, 2007) and for left lateral FPC to serve implicit
attention guidance for visible items (Pollmann & Manginelli, 2009b), but the activ-
ity was not tested for task-relevant representational content. Frontal involvement in
dorsolateral and anterior PFC has been shown during a visual short-term memory
task for masked stimuli (Dutta et al., 2014), however in this study visual awareness
was defined by means of a subjective measure (items reported as ‘unaware’) while
here we used both objective and subjective measures to establish the lack of visual
awareness. Critically, our multivariate pattern analyses showed that the FPC was
involved in the representation of the task-relevant feature (orientation).

4.6.3 Deconding of masked stimuli

Previous work demonstrated that masked stimulus information (i.e., orientation) is
processed and maintained in the visual cortex (e.g., Haynes & Rees, 2005). Yet, our
classification analysis provides novel evidence that the representation of an uncon-
scious stimulus orientation was maintained across a distributed set of brain areas
in the right lateral FPC, right IFG, right MTL, right parietal and visual cortex. This
pattern of results aligns with recent evidence showing that unconscious perceptual
content can be decoded from activity patterns in a distributed set of brain regions,
including parieto-frontal areas (Mei et al., 2022) and further elaborates on recent evi-
dence showing that the frontoparietal cortex is implicated in the maintenance of con-
scious feature information during visual working memory and search tasks (Ester et
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al., 2015; Lee & Baker, 2016; Reeder et al., 2017). Importantly, our results foster the
notion that unconscious information processing implicates supra-modal areas typ-
ically linked to conscious processing such as the pre-frontal cortex (for reviews see
Soto & Silvanto, 2014; Van Gaal & Lamme, 2012). The present results align with the
view that engagement of prefrontal areas is not restricted to conscious processing.

4.6.4 Switch costs in RTs restricted to unaware trials

A somewhat unexpected result was the absence of significant switch costs in tri-
als in which the target was consciously perceived (AL2-AL3), a pattern that we al-
ready observed in a previous behavioral study (Güldener et al., 2021). The switch
costs observed in unaware trials appear to underline the necessity for attentional
re-weightingeat least under difficult viewing conditions. We assume that attention
modulates contrast gain in our paradigm (e.g., Reynolds & Heeger, 2009). Modu-
lating contrast gain can in turn increase sensitivity (Carrasco, 2006), which would
be particularly helpful for AL1 stimuli. Furthermore, attentional weighting pro-
cesses at high stimulus contrast appear to play a minor role for within-dimension
feature changes (such as the orientation changes in the current experiment) com-
pared to changes between feature dimensions (Müller et al., 1995; Pollmann et al.,
2000). Therefore, contrast gain modulation by attention may have been particularly
present at AL1, explaining the increased response times when a changed orientation
did not fit the attention template, requiring re-weighting of feature attention.

4.6.5 Expectation about the upcoming target driving the decoding?

It is possible that the information about the target orientation decoded from the
MVPs of brain activity may be related to participants’ expectations regarding the tar-
get’s orientation in addition to the actual stimulus orientation. Further studies are
needed to test this hypothesis by using MVPA for decoding participants’ predictions
regarding the incoming perceptual input (e.g., based on the categorization response
given to each stimulus orientation). As we did not specify different responses for
the left versus right tilt, our study was not designed to pinpoint this issue. Note,
however, that, since correct and incorrect responses were used for the MVPA in the
unconscious trials, and volunteers performed at chance (A’ = .5) in these trials, it
is unlikely that the results presented here were driven by categorization responses
or participants’ expectations driving their responses rather than the actual stimulus
orientation.

4.6.6 Caveats of combining objective and subjective measures of visual aware-
ness

Our methodological approach in which we combined subjects’ perceptual sensitivity
as the objective measure of the stimulus visibility with subjects’ awareness ratings
may potentially be criticized because there is only a single distribution of vertical
and tilt responses that we arbitrarily divided into the four levels of subjective aware-
ness. Thus, the sensitivity measure (A’) is biased if the response bias differs across
the levels of subjective visual awareness (AL1-4). The analysis of subjects’ response
bias (C) indeed revealed variations and we therefore cannot rule out that the A’ was
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biased which may have led to an under-estimation of A’ in subjectively unaware
trials (AL1), (Stein et al., 2016). Hence, even if combining subjective and objective
measures to determine the stimulus visibility appears conceptually appealing, we
cannot fully rule out that there is some variance in sensitivity across conditions.

4.6.7 Why neural repetition suppression as the driving mechanism is unlikely

Could other mechanisms than attentional re-weighting explain our results? It might
be argued that a simple repetition effect (Bertelson, 1961, 1963), leading to neural
repetition suppression (Henson & Rugg, 2003), could alternatively explain the ob-
served response facilitation and lower activation in unaware repeat trials compared
to unaware switch trials. In previous work, we have demonstrated modulation of ac-
tivity in visual areas processing color and motion in support of attentional weighting
of the target dimension (Pollmann, 2016). In the present experiment, such a proof is
difficult because stimulus changes occurred between features of the same stimulus
dimension, which are neurophysiologically represented in neural columns within
the same brain areas (Hubel & Wiesel, 1962). However, our central claims, that ori-
entation changes can be processed in invisible stimuli and that orientation was rep-
resented in several brain areas up to FPC are valid both for attentional weighting
and repetition suppression accounts.

4.6.8 Conclusions

Orientation changes in unconsciously perceived stimuli induced both behavioral
and neural effects. Behaviorally, we observed switch-costs that went along with in-
creased activation in the posterior parietal cortex. In addition, the orientation of
invisible targets was represented in a number of brain areas, reaching anteriorly up
to the frontopolar cortex. We conclude that while change-related activation was re-
stricted to the posterior cortex, the information about target feature changes was
available in a network of brain areas including prefrontal cortex.
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5 Experiment 3: Behavioral bias for exploration is as-
sociated with enhanced signaling in the lateral and
medial frontopolar cortex

The results of this experiment were first published as a preprint at psyarxiv: Güldener, L., &
Pollmann, S. (2023). Behavioral bias for exploration is associated with enhanced signaling
in the lateral and medial frontopolar cortex.

5.1 Introduction
In everyday life, we are constantly confronted with the need to observe our own
action strategies and decisions and to readjust them to changing contexts. One
example is to flexibly switch between a state of exploitation, in which we hold on
to the same, known, strategy and exploration, that allows us to turn away from our
previous strategy and examine alternative choices. A central question in cognitive
neuroscience is how the brain balances between these two states for an optimal
behavioral outcome.

Here, we report results from an fMRI study in which we tested 20 human young
adults in a probabilistic foraging task based on the visual search paradigm and
recorded the task-related BOLD-signal. The aim was to identify the neural correlates
supporting exploratory shifts of attention during a visual foraging paradigm and to
link brain activity related to exploration to behavioral parameters indexing rules of
thumbs the participants used to make exploratory foraging decisions (specifically
patch-leaving decisions). During a 60 minute search participants ‘foraged’ in search
displays (i.e., patches) for target items among distractors. They earned a monetary
reward each time they located a target item using an MR-compatible PC-mouse
inside the scanner. Importantly, with each new reward capture, the remaining
reward probability in the current display decreased exponentially. Thus, foraging
became less rewarding the longer participants kept searching in the same display.
To compensate for this, participants could switch by mouse-click to a new display
at any time. Previous neuroimaging studies examining the exploration-exploitation
dilemma typically employed variants of the n-armed bandit gambling task stem-
ming from the principles of a casino’s slot-machine (e.g., Jones, 1975). In the
non-stationary version, the reward probabilities of the arms to be pulled change
unpredictably (i.e., restless bandit; i.e., Daw et al., 2006). Due to this unpredictabil-
ity, this version requires constant balancing between exploitation and exploration.
Similar to this, we introduced random and unpredictable variations of the initial
reward probability. This should prevent participants from using a simple stopping
rule where they always capture a fixed number of rewards, e.g., 5 rewards, and
leave the patch once that number is reached (i.e., the ‘fixed-N’ rule), (e.g., Wilke et
al., 2009). Instead, due to the quick reward depletion, participants in our task were
similarly required to constantly balance their search behavior between exploiting
the current or exploring a new display.

Animals as well as our ancestors who lived as hunter-gatherers would typically
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face foraging environments structured in patches that are allocated in space and
time (e.g., meadows or forest districts differing in their richness of prey at different
locations that vary in their distance within one habitat). Foraging thus becomes
a rather serial stopping-or-switching task entailing temporal traveling costs that
result from roaming in the environment from patch to patch. This characteristic is
not very well captured in bandit-like gambling tasks in which the decision problem
equals a decision between simultaneous choices. Importantly, evidence suggests
that the brain mechanisms that are involved in solving these two types of problems
(serial versus simultaneous) may differ to some extent (Constantino & Daw, 2015;
Kolling et al., 2012; Rushworth et al., 2012). While there is a large body of research
reporting on the neural structures involved in the exploration-exploitation dilemma
in bandit-like tasks, less evidence exists reporting on the functional brain anatomy
supporting exploratory decisions making in patch-foraging tasks. At the same
time, choosing the patch-based serial stopping-or-switching task may increase the
ecological validity facilitating the translation to ethological studies in other species
(Garrett & Daw, 2020; Kolling et al., 2012; Mobbs et al., 2018).

The FPC capitalizes a key role in supporting exploratory shifts of visual attention
(Pollmann, 2016; Pollmann & Manginelli, 2009a; 2009b), presumably by maintain-
ing relevant information about the novel goal attentional resources are redirected
to (Güldener et al., 2022). Importantly, FPC activity is also consistently linked to
exploratory decisions in probabilistic gambling (e.g., Boorman et al., 2009; Daw et
al., 2006; Laureiro-Martínez et al., 2015; Zajkowski et al., 2017). Also subregions
within the parietal cortex such as the TPJ and IPS as well as the dACC, and the in-
sula were reportedly related to attentional exploration during gambling (Addicott
et al., 2014; Blanchard & Gershman, 2018; Chakroun et al., 2020; Daw et al., 2006;
Laureiro-Martínez et al., 2015) Thus, the FPC appears to be a crucially involved in
a neurocognitive circuit containing regions of the ventral and dorsal attention net-
work that allows subjects to explore alternative sources of reward in the environment
by disengaging attentional resources from the current focus (Hogeveen et al., 2022;
Mansouri et al., 2015). Therefore, we expected to observe a spatially similar pattern
of positive BOLD signal changes when our subjects decided to explore a new display.
These decisions obey so-called ‘patch-leaving rules’, behavioral heuristics or rules of
thumb subjects may use to determine the optimal time point for exploring a new
patch (Charnov, 1976; Krebs et al., 1974; Mcnair, 1982; Wilke et al., 2009). We were
particularly interested in the participants’ giving-up times (GUT). They are defined
as the time since the last reward capture and leaving the current patch. The ‘GUT
rule’ states that a patch is left once the time, since the last capture, exceeds a certain
subjective threshold (Mcnair, 1982). Intriguingly, elderlies’ declining tendency to
explore is associated with increased GUTs during foraging (Mata et al., 2013). Thus,
GUTs may serve as an index of behavioral exploitation. Due to the quick depletion of
reward in a given display, subjects with a bias towards longer exploitation indexed
by relatively longer GUTs should yield less monetary earnings. At the same time we
expected a reduced signaling on the brain level during exploration in exploitation-
biased participants. Conversely, stronger positive BOLD-signal changes during ex-
ploration, particularly in FPC, were expected to be found in subjects with higher
behavioral propensity to explore, indexed by short GUTs.
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5.2 Methods

5.2.1 Participants

20 native Germans (8 male) participated in the experiment. All volunteers were be-
tween 19 and 37 years old (M = 26,5 years), right-handed by self-report, had normal
or corrected to normal vision, and no history of mental illness. They all gave writ-
ten consent in accordance with the local ethics committee of the Otto-von-Guericke
University and received the earnings they made in the foraging task as reimburse-
ment. The sample size was calculated using the R library WebPower (Zhang & Yuan,
2018). Assuming an effect size of Cohen’s f = 1.31 (Wolfe, 2013, experiment 5), and
one independent variable with three levels (patch-quality, i.e., initial reward proba-
bility), a minimum of 9 participants was required to be able to detect a true effect of
patch-quality on the participants’ foraging behavior tested in a single-factor repeated
measure ANOVA with a power of 90%.

5.2.2 Apparatus and Stimuli

We used the Python toolbox PsychoPy 3 (Python 3.6) to control the stimulus presen-
tation and response collection (Peirce et al., 2019). In the fMRI scanning sessions the
stimuli were back-projected onto an 18-inch screen placed in the bore of the mag-
net just behind the participant’s head. The projector had a resolution of 1920:1080
pixels with a 60 Hz refresh rate. Viewing of the display was enabled via a mirror
placed on top of the head coil. For navigation participants used a MR-compatible
Fiber Optic Mouse with two standard buttons (left and right; FOM-2B-10B fMRI
Mouse System, Nata Technologies Inc.). The mouse was placed on a 1800dpi Mouse
pad (8.5 x 8.5 inch) that rested on the participant’s upper body roughly above waist
level. The stimuli consisted of geometrical squares or circles of the color blue and
green. Training stimuli were red and yellow. A single stimulus subtended 0.59° vi-
sual angle. One stimulus type (e.g., all blue circles) was randomly assigned as the
target type while the three remaining stimulus types served as distractors. A search
display consistent of 40 target stimuli and 120 distractors. The spatial locations were
randomly assigned on a spatial grid spanning a rectangle field of 12.9° * 14° visual
angle. As the reward indication, we used an image of a 5 Euro Cent subtending 0.70°
visual angle.

5.2.3 Procedure

The experimental task was based on a visual search paradigm. Figure 13 shows a
trial sequence in detail. Participants were required to search for multiple targets ran-
domly located in the search display among distractor stimuli. Since the target object
was defined by color and shape, subjects performed a feature conjunct search. At
the beginning of the experimental session, after the training, they were shown the
target item they had to look out for in the subsequent search (i.e., all blue circles oc-
curring next to blue squares, green circles, and green squares). Participants used a
MR-compatible PC-mouse to search through the display. To obtain a reward, they
merely navigated the mouse point to a target. Once a target had been fixated for 300
ms, the target turned into a reward indicator (i.e., 1 Euro Cent) and then returned to
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its previous appearance. This served as the feedback that the target had been "for-
aged”, and a reward had been received. The participants could then continue the
search for the next target in the display. Each target item could be collected only once
and it was deactivated following its detection so that a second fixation of the very
same target would remain unrewarded. With each collected target item, an addi-
tional number of targets was deactivated too. These targets remained in the display
but would not result in a reward following a fixation. The number of these addi-
tional deactivations was determined by an exponential decay function mimicking a
quickly depleting food source (see upper box in Figure 13). In addition, the entire
spatial configuration of target and distractor locations changed randomly following
a reward capture. This hindered participants from building any kind of search mem-
ory for old target locations and the search became increasingly difficult and quickly
inefficient (Horowitz & Thornton, 2008). To compensate for this, participants could
choose to switch to a new display by pressing the right mouse button at any time
(i.e., patch leaving). The countdown did not pause when volunteers switched to the
next display. The time needed to move to the next patch (i.e., display), known as the
‘travel time’, was set to a minimum of 2 s (central fixation cross for 1 s followed by
a 1 s blank). Because of the time required to save data and calculate the next dis-
play, measured travel time between the last collection in a patch and the appearance
of the next patch averaged approximately 5 s. We did not manipulate travel time
as a dependent variable and kept it short to support exploratory foraging choices
(see Wolfe, 2013). In the control condition the search in the current display ended
automatically after two to four reward earnings. Each new trial had a 25% proba-
bility to end automatically. At the display’s left bottom corner, the participants were
able to constantly track the total number of rewards they had already earned. At the
bottom’s right corner the countdown timer was displayed allowing participants to
track their remaining search time. All participants performed six runs of a 10 minute
search. Between runs they were able to take short breaks.

5.2.4 Design

As we aimed to yield a high number of trials in which volunteers performed
self-initiated patch leaving behavior we introduced the exponential decay of the
reward probability adopted from Lottem et al. (2018). It ensured that the number
of remaining rewards rapidly decreased within a short amount of time. Due to
the time constraint, participants should decide to switch to a new display instead
of wasting time in the current display in which a further reward capture quickly
becomes very unlikely. We also varied the initial reward probabilities by applying
three conditions from high (100% reward probability, i.e., all targets were active),
middle (75%) to low probabilities (50%). The initial reward probability was not cued
and changed randomly from trial to trial creating a foraging environment with an
unpredictable underlying reward structure consistent with the condition of restless
‘n’-armed bandit task (e.g., Daw et al., 2006). We used following decay function
that was used to determine the number of remaining targets after each new reward
capture (Lottem et al., 2018):

P(On = 1|ti) = Aie(-(n-1))/5
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Figure 13: Diagonal sequence represents a trial. At the beginning of a session, the
target object (here a blue circle) was introduced. The beginning of a trial was cued
by a central fixation (1 s) followed by a blank (1 s). Next, the search display (i.e., a
patch) appeared. By navigating the mouse cursor to a target (red square with red
dot at center in lower left), participants yielded a reward capture. Upon such a cap-
ture, the collected target turned into a reward for 500 ms (5 euro-cent image) and
then changed back into its previous appearance. An already collected target would
not turn into a reward again if fixated again. With each reward capture, all items
changed positions randomly. At any time, participants were able to switch to a new
display by button-press. In the control condition, these cancellations occurred auto-
matically after a random number of targets had been captured. The graph in the box
in the figure’s top shows the exponential decay function of the reward probability
for the three patch qualities.

here ti is the ith trial type, i.e., low-, medium-, and high-quality trials. These
trial types had different exponential scaling factors A1 = 0.5, A2 = 0.75, A3 = 1. N
indicates the number of already yielded reward captures (previous target fixations
that resulted in an earning) within a trial. On is the positive outcome of the nth
target fixation (1 for reward). The decaying reward probabilities as a function of
target captures are shown in Figure 13 for all three patch qualities.

We also varied the initial reward probabilities by applying three conditions from
high (100% reward probability, i.e., all targets were active), middle (75%) to low prob-
abilities (50%). The initial reward probability was not cued and changed randomly
from trial to trial creating a foraging environment with an unpredictable underlying
reward structure. Otherwise, in the case of constant and predictable reward proba-
bilities, the most optimal patch-leaving rule would be to capture a fixed number of
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rewards, e.g., 3 rewards, and leave the patch once that number is reached (Wilke et
al., 2009). Now, if this number happens to be rather small due to the quick reward de-
pletion, it is possible that volunteers using this patch-leave rule would leave a given
display even before the automated switches would occur resulting in a decreased
number of control trials.

5.2.5 Data Analysis

5.2.6 Behavioral Data

Custom-written code in Python (version 3.6) was used to analyze participants’ be-
havioral data. The behavioral data obtained in the control condition (automated
search cancellations) were excluded from the behavioral analysis as we were inter-
ested in analyzing the self-initiated patch-leaving behavior. Single factor repeated-
measures ANOVAs with patch quality (i.e., the start reward probability) as the single
repeated-measures factor and two-sided post-hoc t-tests with Tukey HSD correction
for multiple comparisons using the Python package pingouin (Vallat, 2018) were used
to test for differences between the patch qualities. QQ-Plots served for screening
for violations of normality. In case of violations non-parametric alternatives were
used for significance testing. We applied Greenhouse-Geiser corrections in case of
non-sphericity. Linear regressions were used for within-subject analyses using the
linregress function of python’s stats library (Version 1.10.1) In all analyses, the aver-
aged individual medians were used with no outlier correction to report descriptive
statistics as well as for statistical testing.

5.2.7 FMRI Data

Image acquisition All parameters for image acquisition are reported in detail in
Section 2.3.

Pre-processing A single scanning session was split into ten runs of 600 s each and
300 volumes were sampled per run. The imaging data was pre-processed and ana-
lyzed by means of tools of the FSL package (Jenkinson et al., 2012). The anatomical
scans underwent a non-brain removal with BET (Brain Extraction tool), (Smith, 2002)
in preparation for the realignment. The functional images were motion-corrected to
an image in the middle of each run with a normalized correlation ratio (MCFLIRT;
FMRIB’s Linear Image Registration Tool), (Jenkinson & Smith, 2001; Jenkinson et al.,
2002) and slice time corrected (temporally aligned to the middle slice of the 3D vol-
ume). To ensure the validity of Gaussian random field theory, the functional data
was spatially smoothed using a Gaussian kernel with a size matching the double of
the voxel dimensions (FWHM = 6 mm). To remove low-frequency drifts (Smith et
al., 1999), we temporally filtered the data using a highpass filter with a cutoff value
of 90 sec. Prior to the mass-univariate analysis, run 1, 2, and 3 as well as run 4, 5,
and 6 were merged into two epochs 1 and 2 using fslmerge. This was done to ensure
sufficient numbers of experimental and control trials for statistical analysis and was
carried out after motion and slice time correction.
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GLM analysis For statistical analyses of the functional brain scans, we defined the
onsets of the experimental events as explaining variables (EV) to model the BOLD
response by means of a general linear model. To be able to test for BOLD-signal
changes specific to patch-leaving decisions, we added the onsets of the end of search
for patch-leaving and control trials (i.e., the onsets when the current display was
aborted) as the first two regressors to the linear model. To contrast BOLD-signal
changes associated with patch-leaving with search-related activity, the onset of all
target detections that occurred during the search phase of patch-leaving and control
trials were also added to the model. For convolution we used a hemodynamic
response function (double gamma HRF). To all six regressors a temporal derivative
allowing for temporal flexibility was added. Serial voxel-wise autocorrelations were
controlled with prewhitening by the FSL tool FILM (Monti, 2011; Woolrich, et al.,
2001).

In the first-level analysis, all contrasts of interest were tested for significance un-
der mixed-effect assumptions and contrast images were processed for each partic-
ipant (voxelwise Z threshold of 2.3 and a cluster significance threshold of p = .05,
family-wise error (FWE) corrected). Next, the resulting images containing the lower-
level contrast of parameter estimates (COPEs) were used in the second-level analy-
sis estimating individual mean contrasts for the parameters across all runs using a
fixed-effect model with the same voxelwise and cluster significance threshold (Z =
2.3, pFWE = .05). In a two-step post-statistical normalization, prior to group analy-
sis, the functional data was firstly co-registered to the individual, anatomical scan
using boundary-based registration (BBR), and secondly normalized to the Montreal
Neurological Institute standard space (MNI 152 2mm). Thus, statistical modeling
on the subject level was carried out in native space. The statistical modeling at the
group level was performed using FLAME 1+2 (FMRIB’s Local Analysis of Mixed Ef-
fects) as implemented in FSL’s FEAT (Version 6.00). Results are given by means of
whole-brain statistical Z-maps on group-level thresholded at Z > 2.3 and corrected
for multiple comparisons on a cluster level at pFWE < .01 (Worsley, 2001).

5.3 Behavioral results

5.3.1 Participants adapted to changing patch qualities

Figure 14 a) shows dotplots of the number of obtained rewards as a function of patch
quality. The single factor repeated measure ANOVA revealed a main effect of patch
quality, F(2,38) = 220.90, p < .001. As expected, the most rewards were obtained in
the high quality patches with an average of 52 ± 13 cents. Compared to this par-
ticipants earned on average 28 ± 4 cents less in low quality patches, t(18) = -8.185,
pTuckey = .001, and 13 ± 4 cents less in medium quality patches, t(18) = -3.538, pTuckey
= .003. Earnings in low quality patches were also on average 15 ± 3 cents less com-
pared to medium quality patches, t(18) = -4.648, pTuckey = .001. The same pattern of
results we observed for the residence times (i.e, search times spent per display). The
higher the patch quality, the longer the participants spent foraging in it, Friedman
F(1.9,36.1) = 18.811, p < .001, with longest average residence times of 48.364 ± 18.487
s in the high quality patches, followed by 42.623 ± 16.592 s in medium-quality, and
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34.990 ± 18.768 in low-quality patches. Performing post-hoc contrasts with p-value
correction (Tukey) showed that residence times in low-quality patches were signifi-
cantly shorter compared to medium-, and high-quality patches, Nemenyi post-hoc,
p = .019, and p = 001. Residence times as a function of patch quality are shown in Fig-
ure 14 b). Analyzing participants’ residence times showed considerable variations
across subjects. Given the underlying reward structure of the task, spending too
much time searching in the current display instead of switching to a new one should
be detrimental to overall earnings. Residence times averaged across patch types
indeed correlated negatively with the averaged total earnings in Euros (†) demon-
strating that the more participants tended to overexploit the current display, the less
earnings they made in the total search time of 60 minutes, rpearson = -0.653, p = .002
(see Figure 14 c). This confirmed that optimal performance under the given task
depended on a readiness to switch displays quickly.

5.3.2 Reward captures increased residence times incrementally

To test what could have driven participants to extend their residence times, we next
regressed individuals’ residence times on target captures to model participants’ for-
aging strategies (Hutchinson, et al., 2008; Mata et al., 2009; Wilke, 2006). This way we
obtained a slope and intercept for each participant, where the intercept represented
the initial time spent in the current display without a reward detection while the
slope indexed the increase in the residence time with each new reward capture. All
slopes were positive and significantly above zero on group level, mean slope = 3.533
± 0.760, t(19) = 20.252, p < .001, indicating that participants incrementally extended
their stay with each new target detection (see Figure 14 d)).

5.3.3 Prolonged giving-up times negatively impacted search performance

Considerable variation in participants’ GUTs suggested that the participants differed
in their behavioral tendency to either explore or exploit. Similar to the residence
times, GUTs were negatively correlated with the task performance, measured by
monetary earnings, rPearson = -0.676, p = .001, (Figure 15 a)). The GUT can serve as a
rather simple heuristic for participants to time their patch-leaving decisions. Accord-
ing to an optimal GUT rule (Mcnair, 1982), GUTs should be adjusted depending on
patch quality with longer GUTs in patches of higher quality. We, however, observed
the opposite: the average GUTs were 7.927 ± 3.250 s in high-quality patches, 8.531 ±
3.660 s in medium-quality patches, and 9.062 ± 4.025 s in low-quality patches, Fried-
man F(1.9 , 36.1) = 6.083, p = .006 (see Figure 15 b)). Post-hoc contrasts confirmed that
GUTs increased with decreasing patch quality at least between high- and medium-
quality patches, p = .007, [high - low, p = .067, medium-low, p = .691]. Participants
thus appeared to adjust their GUTs but in a non-optimal fashion. Plotting GUTs
against the residence times (Figure 15 c)) also showed that GUTs were positively
correlated with the residence times, rPearson = 0.63, p = .002. This finding, we fol-
lowed up by regressing the GUTs averaged across patch qualities on the averaged
residence times on a trial-by-trial basis within each subject. The resulting intercepts
indexed the minimum GUT individuals accepted and the slopes represented the in-
crement added to the GUT with each second more spent in the given display. We
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observed positive slopes for all participants [t(19) = 5.656, p < .001] suggesting that
the longer participants had already searched in the current display, the more likely
they to invest even more time consistent with a sunk-cost effect (see Figure 15 c)).

5.3.4 Still optimal timing for patch-leaving on group level

Lastly, we analyzed participants’ collection rate, that is, at what speed target
detections occurred. The marginal value theorem (MVT) states that optimal foragers
time their patch-leaving to the moment at which the instantaneous collection rate
(ICR) approximates the average collection rate of the entire environment. The ICRs
as a function of number of reward earnings for the last seven rewards for each
patch quality are depicted in Figure 15 d). They are given by the inverse of the time
that passed between two consecutive target captures. To test the MVT prediction,
we estimated the ICR at the moment of patch leaving by dividing 1 by the GUT
instead (Mcnair, 1982). To obtain individuals’ MCRs, we divided the total number
of rewards received across the entire experimental session by the 60 minutes of
total search time (see Wolfe, 2013). Note that this way the MCR also included the
travel time during which the collection rate equals zero. Consistent with the MVT,
Wilcoxon signed-ranks tests showed that ICRs, i.e., reward earnings per second,
of 0.158 ± 0.1/s (SD) in high-quality patches did not differ statistically from the
average rate of 0.164 ± 0.02/s, Z = 63.0, p = .126. The same was true for medium
quality patches, ICR = 0.152 ± 0.09/s, Z = 70.0, p = .202, and in low-quality patches,
ICR = 0.145 ± 0.09/s, Z = 62.0, p = .114.

In summary, the incremental relationship between individual reward captures
and residence times suggested that single reward events were read as cues indicat-
ing that it was worthwhile to continue searching the current display. Thus, subjects
adapted their foraging to the changing reward probabilities and spent more time
foraging in high-quality patches. Residence times as well as GUTs varied greatly
across subjects implying that they differed in their behavioral tendency to explore.
In contradiction with an optimal GUT rule, the participants tended to prolong their
GUTs with decreasing patch quality and depending on sunk costs. Despite this,
patch departures were still optimally timed according to the MVT.
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Figure 14: The Average (diamonds) number of rewards (a)), and average trial du-
rations (b)) are shown together with subjects’ individual means (small dots) as a
function of patch quality. The number of rewards increased significantly with in-
creasing patch quality. Trial durations indicated the same trend but only low- and
high-quality patches differed significantly. In c) the regression plot shows the rela-
tion between the total earnings in † participants achieved in the entire experiment
and residence times, both averaged across all patch-qualities. The negative correla-
tion showed that participants who decided to explore a new display more quickly
made also more earnings. d) Shows the relationship between the number of obtained
rewards per trial and residence times. Within-subject regressions showed that the
residence time was extended incrementally with each novel reward capture. The
blue line shows the averaged regression line of the within-subject regressions, based
on the mean intercept (residence time) and the mean slope, that is, the amount of
time by which the residence time increased with each new reward capture.
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Figure 15: a) shows the negative correlation between GUTs on the total earnings.
Participants with the longest GUTs made on average the least earnings. b) shows
the average (diamonds) GUTs together with subjects’ individual mean GUTs (small
dots) as a function of patch quality. c) shows the positive relation between residence
times and GUTs indicating a sunk-cost effect. The fitted blue line is the regression
line derived from the mean intercept (minimum GUT) and the mean slope (residence
time) that was obtained from the within-subject regressions. The slope represents the
increment in time added to the GUT with each second more spent in the current dis-
play. d) The instantaneous collection rates (ICR, i.e., reward earnings / s) are plotted
for the seventh last (‘-6’ on the x-axis) up to the time point of patch-leaving for the
three patch types, where the estimated ICR was given by the inverse of participants’
GUTs. Consistent with optimal foraging according to the MVT, the ICRs decreased
as a function of target captures and approximated the mean collection rate (MCR,
dashed black line, shaded area in gray indexes the 95% confidence interval) in all
three patch types.

77



5.4 FMRI results

5.4.1 Positive BOLD-signal changes associated with patch leaving decisions

To test for brain regions particularly responsive to self-initiated switches between
displays (i.e., patch-leaving), we contrasted these trials against those in which the
search in the current display was automatically canceled (patch-leaving - control).
This resulted in a single large cluster with 4853 voxels located in the medial frontal
cortex, spanning bilaterally from the supplementary motor cortex (SMC) over
the precentral to the postcentral gyrus. Left-laterally in the rostral direction the
cluster extended ventrally to the anterior division of the cingulate cortex (dACC).
Dorsally it reached up to the posterior parts of the SFG. Posteriorly, also in the left
hemisphere, it included parts of the anterior division of the SMG. A second small
cluster containing 760 voxel was located in the right temporo-occipital fusiform
cortex (TOFC) reaching ventrally into the right cerebellum. The reverse contrast
(control - patch-leaving) did not yield any significant results. The statistical z-map
mapped on an MNI152 template are shown in Figure 16 a). Voxel locations of
maximum z-values are listed in Table 10 a).

Next, we contrasted the onsets at the moment of patch-leaving against the on-
sets of the target detections of both patch-leaving and control trials to identify brain
areas being more responsive during patch-leaving compared to visual search (patch-
leaving - target detections). The average time between the last target detection and the
moment of patch-leaving was 7.5 s. This relatively large time window between the
onsets of these regressors of interest, and the random temporal variations in their
onsets precluded concerns about collinearity between patch leaving decisions and
those target detections that had preceded the patch-leaving decision in the same
trial. Also the stimulus onset asynchrony (SOA) between two to target detections
was on average about 3 s so that the regressors were sufficiently spaced in time. This
contrast revealed three clusters in the frontal, parietal, and occipital cortex. Located
in the prefrontal cortex, the smallest cluster of the three with 1474 voxels bordered
dorsally into the right lateral FPC. Ventrally, the cluster extended bilaterally along
the paracingulate gyrus (PCG) down to the dACC, i.e., the rostral cingulate zone
(RCZ). More posteriorly another cluster with a size of 1558 voxels was located pre-
dominantly in the left parietal cortex. Its anterior borders resided in the left precen-
tral gyrus (PreCG). From there it spanned posteriorly over AG, to the SMG where
it reached ventrally to the temporo-occipital part of the left middle temporal gyrus
(MTG). Posteriorly from the left SMG, it also extended to the superior division of
the left LOC. In addition, it also included voxels located in the left anterior insular
and the operculum. The largest cluster comprising 3603 voxels spanned parts of the
posterior parietal cortex up to the anterior parts of the occipital cortex. It reached
bilaterally from the precuneus (Pcu) to the cuneus where it extended ventrally to
the lingual gyrus (LG), also in both hemispheres. Neither the inverse contrast (con-
trol - detections) nor the interactions (patch-leaving - detection) - (control - detection) or
(control - detection) - (patch-leaving - detections) yielded significant activation clusters.
The statistical Z-map for patch-leaving - detections mapped on an MNI152 template is
shown in Figure 16 b). Individuals’ parameter estimates retrieved from significant
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activation clusters are reported in Figure 17 a) for both contrasts. Again, the beta
weights indicated on average a positive signal change similar to the beta weights
that resulted from the patch-leaving - control contrast.

Figure 16: FMRI activation maps show clusters of activation with significance on
cluster level p < 0.01, cluster forming threshold z > 2.3, left). a) shows clusters of acti-
vation revealed by the patch-leaving - control contrast. b) Shows activations clusters
that resulted from patch-leaving - detections.
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Figure 17: a) shows the average standardized parameter estimates (PE, big dots,
vertical bars indicating a range of ± SD ) and individual parameters (small dots) that
were derived from voxels showing significant signal changes in the contrasts patch-
leaving - control (left), and patch-leaving - detection (right). b) shows the correlation
plot between the average giving-up times (GUT) and beta estimates of patch leaving
- detection. Participants with longer GUTs showed weaker activations in attention-
related areas in the moment of patch-leaving.
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Table 10: Table of activations observed during patch-leaving

a) patch-leaving - control

# K Z Max Loc Z Max p Structure

1 4853 12, 6, 44 4.5 1.28e-13 bil PreCG
to PCG,
dACC,
lSFG, lSMG

2 760 30,-40,-26 3.32 .0027 TOFC,
rCerebel-
lum

b) patch-leaving - detections

1 4075 -2, -70, 32 4.57 1.06e-09 bil Pcu,
cuneus, LG

2 1598 -44,-16, 20 3.65 < .001 lPreCG,
SMG, AG,
AIC, OPC

3 1474 10, 34, 30 3.76 < .001 rlatFPC,
dACC/RCZ,
PCG

Note: K = cluster size in voxels, Z Max Loc = MNI coordinates of the location with the maximal Z-
value, Z Max = maximal Z-value, bil = bilateral, r = right, l = left, lat= lateral, structure determined
using the Harvard–Oxford Cortical Structural atlas.
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5.4.2 Brain signals of exploration correlate negatively with behavioral giving-up
times

In keeping with our expectations we found activations, time-locked to self-initiated
patch-leaving decisions, in the dACC, in parts of the dorsal (AIC and OPC) as well
as in parts of the ventral attention network (left TPJ). While one cluster extended
with a few voxels to the right lateral FPC (see Figure 16 b), transverse slice z = 16 and
sagittal slice x = 32), the activation in this area during exploratory decision-making
was less pronounced than anticipated. Yet, intriguingly, beta weights derived from
the patch-leaving - detections contrast correlated, as expected, negatively with the
participants’ GUTs, rPearson = -0.539, t(18) = 1.405, one-sided p = .007 (Figure 17
b)). This suggested that those participants with a higher behavioral tendency to
exploit the current display showed weaker signaling in the fronto-parietal attention
network during exploratory decision-making.

We followed this correlation analysis up by calculating a two-sample t-test on
the patch-leaving - detections contrast between those subjects with GUTs below the
median GUT (8.9 s) (short-GUT) and those subjects with GUTs above the median
(long-GUT). Testing short-GUT - long-GUT yielded cluster activations in brain
regions responding more strongly during exploration in the short-GUT group
compared to the long-GUT group. Z-maps of cluster activation of this analysis are
shown in Figure 18. The analysis resulted in three clusters of which the largest
with 2985 voxels was located in the anterior prefrontal cortex with its maximum
z-scores located in the medial FPC. It spanned bilaterally over both the medial and
lateral FPC. Its ventral borders tapped into parts of ACC, while its center mostly
spanned from FPC over the PCG dorsal-posteriorly to the SFG. The second cluster
comprising 1646 voxels was located in the parietal cortex with its center spanning
bilaterally along the IPS. Ventrally it reached into the posterior division of the
cingulate cortex. Dorsally with significant contrast activation were also located in
the right SPL. The third cluster with a size of 902 voxels spanned parts of the left
SMG and AG containing the left TPJ, matching locations previously detected in the
within-subject analysis (see Figure 17 b). The findings are summarized in Table 11.
Calculating the same two-sample t-test on the patch-leaving - control contrast did
not yield any results.

If the SOAs between targets varied significantly between the short- and the
long-GUT group, it is possible that successive BOLD responses for single target
detections could be more or less overlapping. A higher degree of overlap due
to shorter SOAs in the short-GUT group could increase the activity strength in
the moment of patch-leaving, thus confounding the between-group effect. In the
low-quality patches SOAs of long-GUT subjects were on average 6.196 ± 1.002 s and
5.442 ± 1.036 s in short-GUT subjects, with anecdotal evidence comparable SOA
lengths between the two groups, Bayes Factor 10 (BF10) = 0.733. In medium-quality
patches SOAs were on average 4.881 ± 0.509 s in long- and 4.297 ± 0.656 s in
short-GUT subjects with anecdotal evidence for equal SOAs, BF10 = 0.919. Only in
high-quality patches the analysis provided anecdotal evidence for the longer SOAs
in long- [4.383 ± 0.492 s] compared to short-GUT subjects [3.770 ± 0.629 s], BF10 =
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1.239. Given these results, it is rather unlikely that the observed group-difference in
the BOLD signals during patch-leaving was driven by a difference in the degree of
overlap of the BOLD responses building up in the search period.

Figure 18: Z-maps resulting from the follow-up two-sample t-test. The clusters in-
dicated in which regions participants in the short GUT group responded showed
stronger activation during patch leaving than during visual search compared to the
long GUT group of participants. Sagittal slices at the bottom show MNI152 coordi-
nates.
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Table 11: Table of activations resulted from the two-sample between group t-test on patch-
leaving - detections

short-GUT - long-GUT x patch-leaving - detection

# K Z Max Loc Z Max p Structure

1 2985 4, 62, 12 3.55 5.96e-08 bil
medFPC,
latFPC,
PCG, rSFG

2 1646 4,-48, 28 3.26 3.65e-05 bil IPS,
PCC,rSPL

3 902 -54,-44, 42 3.1 0.004 lAG, lSMG
(lTPJ)

Note: K = cluster size in voxels, Z Max Loc = MNI coordinates of the location with the maximal Z-
value, Z Max = maximal Z-value, bil = bilateral, r = right, l = left, lat = lateral, med = medial, structure
determined using the Harvard–Oxford Cortical Structural atlas.

5.5 Discussion
We investigated the neural correlates of exploratory patch-leaving decisions during
foraging in a human. To this end we designed a novel visual search paradigm that
allowed us to study visual foraging behavior of human participants inside the MR
scanner. Of particular interest were the time points in which the participants per-
formed self-initiated switches to a new search display. In line with our predictions,
the analysis of participants’ BOLD signal time-locked to exploratory foraging choices
(patch-leaving) revealed brain clusters with positive signal changes across both the
dorsal and ventral attention networks and reached up to the right lateral FPC, res-
onating with findings from previous bandit-like gambling tasks (e.g., Daw et al.,
2006). Remarkably, the strength of the positive signal change, time-locked to patch-
leaving, within these areas correlated negatively with the participants’ behavioral
exploration bias. A follow-up analysis provided further insights showing that the
BOLD-signal in medial and lateral FPC, SFG, TPJ, and Pcu was more strongly mod-
ulated during patch-leaving in participants with below median GUTs compared to
participants with above median GUTs.

5.5.1 Relating behavioral signs of exploitation to signals of exploration

Our key aim was to identify possible links between participants’ internal rules
guiding patch-leaving decisions and brain activity. In keeping with previous
gambling studies (e.g., Chakroun et al., 2020; Daw et al., 2006; Laureiro-Martínez et
al., 2015), we could show that the right lateral FPC together with dACC and left TPJ
was active when participants made patch-leaving decisions during foraging in a
visual search task. The signal strength in the right lateral FPC reportedly correlates
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positively with attentional control and decision-making during gambling (Daw et
al., 2006; Laureiro-Martínez et al., 2015; Zajkowski et al., 2017) and is known to serve
shifts of visual attention in non-foraging tasks (e.g., Pollmann & Manginelli, 2009a).

Extending this, we provide new evidence that participants who differ in their
readiness to explore, indexed by different giving-up time durations, can also be dis-
tinguished by the degree to which lateral FPC, among other regions of the fronto-
parietal attention network, is active at the moment participants decide to leave the
patch. It was expected that participants with a higher readiness to make exploratory
decisions also showed stronger FPC activations during patch leaving, because this
region is known to be central for exploration, specifically the assessment of the po-
tential value of alternative strategies and for the consequent re-distribution of cog-
nitive resources (Badre et al., 2012; Boorman et al., 2009; Boorman et al., 2011; Ca-
vanagh et al., 2012; Mansouri et al., 2017). Thus, heightened FPC activation may
play a central role in facilitating the decision to leave a current patch. Thus, FPC
may serve as a central hub in redistributing attentional resources by evaluating the
potential benefits of staying versus leaving a patch (Mansouri et al., 2017). It may be
that individuals with stronger FPC activation at the moment of patch-leaving have
enhanced cognitive flexibility, allowing them to quickly weigh competing values of
the current behavioral choice versus foregone alternatives and make more efficient
decisions about exploration. This interpretation finds support from studies in el-
derly who show a decline in cognitive flexibility (e.g., Giller & Beste, 2019) as well
as prolonged GUTs during foraging (Mata et al., 2013). Other functional neuroimag-
ing studies have demonstrated age-related changes in activation patterns within the
prefrontal cortex during working memory and attention tasks, often with less ac-
tivity in elderly compared with young adults (Milham et al., 2002; Reuter-Lorenz,
2002). These age-related changes in brain activity are associated with changes in the
dopaminergic system (Berry et al., 2016) and anatomical changes of the prefrontal
surface area and thickness (Dotson et al., 2016). Similarly, it may be that already
young adults show subtle neurofunctional or even anatomical differences result-
ing in a stronger or weakened activity in the brain network supporting attention
and cognitive control. Clearly, our finding strongly suggests that FPC is involved
in regulating the trade-off between exploitation and exploration. Individuals with
higher FPC activation may have a greater inclination towards exploration, leading to
shorter GUTs times. On the other hand, it may be that participants with prolonged
GUTs merely adopted a suboptimal exploitative foraging strategy which could have
led to a suppression of brain regions related to attentional exploration. By instruct-
ing a specific patch-leaving rule (Wilke et al., 2009), it is possible that their behavior
as well as the signaling in the FPC may change accordingly. More research will be
needed to test these hypotheses. Yet another explanation could be that participants
differ in their sensitivity to prediction errors (Chowdhury et al., 2013): subjects may
differ in how strongly they judge accumulating reward omissions so that its decreas-
ing effect on the value of the current behavioral choice may be more or less strong.
If reward omissions are judged less negatively, the value attributed to the current
behavioral choice (i.e., exploitation) would then remain relatively high, while the as-
sessment of the potential value of alternative choices (in our case exploring a new
display), on the other hand, would be relatively suppressed. This could explain
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later patch-leaving decisions and decrease brain signals of attentional control in the
moment of patch-leaving. It will be highly interesting to focus more on reward omis-
sion during the giving-up time phase and further examine the dopaminergic system
using PET imaging.

5.5.2 Exploratory foraging choices rely on an interplay of different neural corre-
lates

The decision to switch to a new display in our experiment certainly entailed a
computational process in which the value of forgone options (i.e., exploring a new
display), likely represented by the FPC (Boorman et al., 2009; see Mansouri et al.,
2017), must be compared to and contrasted against the value of the current choice,
supposedly represented and updated during performance monitoring executed by
the dACC (e.g., Daw et al., 2006; Ridderinkhof et al., 2004). Consistent with this,
dACC was shown to encode both the average value of the foraging environment
and the costs of foraging (Kolling et al., 2012). The activity we observed in dACC
during patch-leaving decision may also be related to the evaluation of the unre-
warded target fixations preceding the actual patch-leaving that may have led to a
prediction error due to increasing number of omissions of expected rewards in the
giving-up time phase (Rushworth & Behrens, 2008; Silvetti et al., 2011). This notion
is bolstered by evidence showing that neural firing rates in dACC of monkeys ramp
up with the gradually depleting reward up to the point of patch-leaving (Hayden et
al., 2011). Co-activation together with the dACC we also observed in the left AIC
which corresponds with other studies reporting co-activity of these areas arose such
as during conflict or pain processing (Craig, 2009; Medford & Critchley, 2010).

Patch-leaving not only relies on reallocating attentional resources, but also re-
quires disengaging from the existing attentional focus. Thus, in line with our predic-
tions, we also found positive signal changes in the left TPJ: suppressed during visual
search (e.g., Shulman et al., 2003; Shulman et al., 2007), the region is thought to be
as a “circuit breaker” supporting the disengagement of attention from the current
focus of attention, e.g., in response to an unforeseen and surprising event (Corbetta
et al., 2008). Thus, the activity in the left TPJ during patch-leaving decisions may
have served the disengagement from the current display which is in keeping with
the idea that that the ventral attention network sends such reorienting signals to the
dorsal attention network (Corbetta et al., 2008; Japee et al., 2015). Yet the largest clus-
ter that we observed to be active during patch-leaving decisions was bilaterally in
the Pcu extending into the occipital cortex. We did not have particular hypotheses
about Pcu activity during exploratory foraging choices but it may be that the activity
we observed was related to attention shifting. A transient increase of neural activity
in the Pcu time locked with attentional shifting was reported in a study in which
subjects performed a card sorting task (Nagahama et al., 1999). More recently, Li et
al. (2020) showed a decrease in the functional connectivity between the right Pcu
and MFG related to attentional decline in response to acute sleep deprivation.
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5.5.3 Behavioral mechanisms driving patch-leaving decisions

The large variation in GUTs showed that subjects differed in their GUT threshold
with longer GUTs indexing a behavioral bias towards exploitation (e.g., Mata et al.,
2013) which had a negative impact on task performance. Although not optimal, the
participants prolonged their GUTs with decreasing patch quality (see Mcnair, 1982),
and extended them depending on the time they had already invested in the current
display, consistent with a sunk cost effect (Arkes & Ayton, 1999). Such fallacy during
patch-based foraging was reported before (Hutchinson et al., 2008; Redish et al.,
2022; Sweis et al., 2018) and is reflected in the increased propensity of individuals to
keep investing resources into a current endeavor that has already incurred signifi-
cant costs even if that endeavor is unlikely to succeed or was already doomed to fail
in the beginning. Marginal costs and benefits, but not past costs, should drive the
decision-making, which is why the fallacy is maladaptive (Navarro & Fantino, 2005).

At the same time, participants’ behavioral data showed that subjects increased
their residence time in a current display incrementally in response to a new reward
capture. This is consistent with the incremental rule of patch leaving. It assumes
that once a patch is entered, the tendency to stay steadily declines with time. Each
reward encounter, however, increments the current staying tendency, but if the de-
creasing tendency to stay crosses a lower threshold, the current patch is left (e.g.,
Wajnberg et al., 2000). Thus, residence times in poor-quality patches remain short
compared to the time spent in patches of higher quality, consistent with our data.
Moreover, the incremental rule is well suited in environments with an aggregate re-
ward structure in which the reward structure is difficult to assess before entering the
patch (Hutchinson et al., 2008). Such an environment would offer a few really good
patches with very high but rare reward probabilities (i.e., most of the reward accu-
mulates in a few patches). The argument would then be that a random encounter
of a reward in the current patch could be used as a cue indicating that the forager
may have hit one of the few rich patches, and, thus, should stay in it. In contrast,
in a poor patch, the tendency to stay would decrease rapidly until the lower thresh-
old for patch-leaving is met. This would result in longer residence times in high-
compared to low-quality patches as well as to an incremental relationship between
single rewards encounters and residence times consistent with our data. For our par-
ticipants the rule worked well given the near optimal time points of patch-leaving
according to the MVT (see Figure 15 d). Lottem et al. (2018) designed a probabilistic
foraging task from which we copied the underlying reward structure. Intriguingly,
their study also showed that foraging mice behaved in keeping with the incremen-
tal rule. The mice’s tendency to stay also decreased as a function of time and was
incremented again with each reward capture, creating a step-wise trajectory of the
probability to reside in the current patch as a function of residence time similar to
the behavior of our human participants.

5.5.4 Concluding remarks

Tying in with previous studies examining the neural substrates of exploratory
choices in the exploration-exploitation dilemma, FPC along with regions of the
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fronto-parietal attention network were implicated in behavioral exploration tested
in a foraging paradigm. The association between behavioral giving-up times and
frontopolar BOLD signal suggests that the FPC plays a central role in decision-
making during attentional exploration. Individuals with higher FPC activation
at the moment of patch-leaving exhibited shorter giving-up times, implying a
stronger bias towards exploration and more efficient attentional control. The use of
a foraging paradigm may enable comparisons with foraging tasks in other species.

5.5.5 Author contributions

LG, and SP designed the study. LG managed data collection. LG wrote all for-
mal analysis scripts and analyzed the behavioral and fMRI data. LG wrote the
manuscript. SP commented on the final version.

5.5.6 Code and data availability

All relevant code used for the stimulus presentation as well as for data analysis
is available at https://github.com/LGparrot/exploratory-attention-in-visual-
foraging.
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6 Summary and general conclusions

In summary, this dissertation investigated the role of the frontopolar cortex (FPC)
in attentional exploration. To this end, two different behavioral paradigms were
conceived and tested. The main chapters cover one behavioral study (Chapter 3)
and and two neuroimaging experiments, utilizing the BOLD response to elucidate
the role of the FPC during shifts of visual attention in the absence of visual awareness
(Chapter 4) as well as shifts towards an exploratory mode of cognitive control in a
naturalistic foraging task (Chapter 5).

6.1 Summary of the experimental procedure and results
The initial behavioral experiment (experiment 1) introduced a novel feature cate-
gorization task using masked gratings as a means to investigate whether shifts of
attentional resources occur in response to invisible feature changes, independent
of participants’ awareness of the stimulus. The results showed that orientation
changes (switches) slowed down participants’ response in the categorization task if
the switch occurred from the heavily weighted feature (i.e., the spatial orientation
that was most likely to occur) and if the presented grating was not consciously
perceived, consistent with attentional selection weights being re-weighted towards
the novel invisible stimulus. Following up the first behavioral experiment, using
fMRI the second experiment replicated the behavioral switch effect following
invisible feature changes away from weighted spatial orientations in a new group
of healthy young adults. In addition, analysing participants’ BOLD signal revealed
that the switch-costs in response to invisible feature changes were registered in the
right MFG, right AG and SPC (right TPJ) but not in the FPC. Thus, FPC was not
specifically involved in detecting stimulus changes outside of visual awareness.
However, the subsequent searchlight MVPA showed that FPC, together with central
nodes of the frontoparietal attention network, maintained feature information of the
novel stimuli, promoting the notion that FPC takes a role in updating and retaining
relevant information during exploratory shifts of attention independent of visual
awareness.

Whereas the first experiment was conducted to methodologically paved the way
for the second experiment that served to investigate the FPC’s involvement in the re-
distribution of attentional resources necessitated by invisible stimulus changes, the
third experiment aimed to examine the role of the FPC to execute shifts from an ex-
ploitative towards an exploratory state of cognitive control. To this end, we designed
a more ecologically derived visual-search-based foraging task allowing to study how
participants constantly weigh between exploring and exploiting (Cohen et al., 2007).
The key findings were that FPC activity was indeed linked to shifts away from an ex-
ploitative towards an exploratory mode of attention, which has previously only been
found in bandit-like tasks. Moreover, the study provides important novel insights
into how a behavioral idiosyncrasy in a tendency for behavioral exploration modu-
lates the degree to which FPC gets involved during attentional exploration. Specif-
ically, experiment 3 revealed that inter-individual differences in GUTs, indexing an
individual’s propensity to exploit, modulated the signal strength of the FPC time-
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locked to the moment of exploration (i.e, patch-leaving). Individuals with a stronger
behavioral inclination for exploration exhibited greater FPC activation when decid-
ing to move on to a new patch.

6.2 Contributions and implications
Earlier work has consistently linked the FPC to exploratory attentional shifting,
where it was shown to serve attention changes between spatial locations as well
as between feature dimensions (Lepsien & Pollmann, 2002; Pollmann et al., 2000;
Weidner et al., 2002). Tying in with these findings in healthy adults, patients with
anterior prefrontal lesions show a deficit in visual dimension weighting (Pollmann
et al., 2007). During contextual cueing, FPC responds to violations of implicitly
learned contingencies between visible stimuli (Pollmann & Manginelli, 2009a,
2009b) and enables the behavioral adaptation to newly introduced contingencies
(Zinchenko et al., 2018). Based on these findings, experiment 2 tested for the first
time if FPC also supports the re-shifting of attentional selection weights in response
to feature changes of fully invisible stimuli.

6.2.1 FPC activity not specifically linked to the detection of invisible feature
changes

Against our prediction, the results of the second experiment indicated not specific
role of FPC in the detection unconsciously perceived feature changes, but rather sug-
gest that these changes are primarily detected by the ventral attentional network (TPJ
and IFJ). This latter finding integrates well with the idea that the ventral attention
network (see Figure 1, Section 1.2.2) supports the detection of unexpected but rele-
vant or previously unattended but salient stimuli (Corbetta et al., 2008), where par-
ticularly the TPJ is considered to ’break’ the current attentionl focus (e.g., Shulman
et al., 2007). Importantly, we showed that this detection can occur outside of visual
awareness, stressing the dissociation of visual attention and consciousness (Koch &
Tsuchiya, 2007; Lamme, 2003). However, we could not confirm that FPC capital-
izes a specific role in the re-shifting of attentional selection weights in response to
unconsciously perceived stimuli, which was shown before to be the case for visible
changes between feature dimensions or spatial locations (Pollmann et al., 2000; Wei-
dner et al., 2002). At odds with these early findings, but similar to our finding of
no specific FPC involvement, is the observation in lesion monkeys, that the ability
to shift attention between feature dimensions remains intact following focal lesions
of the FPC, whereas lesions within the ACC, dlPFC, or OFC impeded this ability
(Mansouri et al., 2020). Nevertheless, it may be still worthwhile to test if change-
related FPC activation occurs for invisible changes of target dimension (Pollmann
et al., 2000; Weidner et al., 2002) or for changes of spatial locations (Lepsien & Poll-
mann, 2002).

6.2.2 Unconscious feature representation maintained in the FPC

Yet, what do the results of the second experiment tell us about the role of FPC in
the adaptation to a novel yet invisible stimulus? Although clusters conveying the
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information about the unconscious feature information of the novel target were not
very prominent within FPC, transverse slices 12 and 16 in Figure 12 do show that
informative clusters were at least bordering into the dorsal part of the right Fp1 and
yet smaller clusters were also located in the right Fp2 (slices -4 and 0 in Figure 12).
This activity carrying information of the novel invisible stimulus attention needed
to be redirected to, could be the basis of a feedback signal presumably to more pos-
terior regions such as the TPJ and IPS, when target changes occurred, directing the
reallocation of attentional selection weights towards the new orientation. The usage
of methods with a higher temporal resolution, such as EEG, could provide further
insights into the temporal dynamics of the interplay between FPC and the ventral at-
tention network during unconscious shifts of attention. Such interpretation is consis-
tent with the hypothesis that the FPC supports the shifting toward a new behavioral
strategy or an alternative action goal (Hogeveen et al., 2022; Mansouri et al., 2017).
FPC maintaining a representation of action-relevant information about the new stim-
ulus feature is consistent with previous decoding studies showing that FPC conveys
unconscious patterns of brain activity predictive for the upcoming choice partici-
pants were about to make in the absence of significant changes in the overall BOLD
response (Haynes, 2012). This suggests that the configuration of activity patterns in
FPC change in a choice-specific manner, not necessarily related to a net change in
the BOLD signal strength. Likewise, lesions in the FPC disrupt humans’ prospec-
tive memory, effectively eliminating their capacity to retain action plans in memory
for subsequent execution (Burgess et al., 2000). Given this evidence, it may be that
the above chance decoding in FPC that we observed, reflects the maintenance of the
novel action goal, in this case the novel stimulus orientation, requiring an adapta-
tion of the behavioral response. Such conclusion would indeed be in support of the
idea that FPC is essential for a switch away from the currently pursued action to-
wards an alternative action by maintaining a representation of the alternative choice
(Hogeveen et al., 2022; Mansouri et al., 2017).

6.2.3 FPC facilitates serial exploratory choices during foraging

Given the lack of evidence for FPC’s specific involvement in the redistribution of
attentional selection weights, but rather for its support in maintaining a represen-
tation of the novel target attention needs to be redirected to, the third experiment
aimed to test if the FPC capitalizes a more general role in cognitive control by
switching from an exploitative towards an exploratory state of attentional control
(Boorman et al., 2009; Cohen et al., 2007; Mansouri et al., 2015; Mansouri et al., 2017).

Previous work studying the exploration-exploitation dilemma could identify
a network of brain regions including the dACC, FPC, TPJ and IPS linked to ex-
ploratory choices during virtual gambling (e.g., Boorman et al., 2009; Daw et al.,
2006; Laureiro-Martínez et al., 2015; Zajkowski et al., 2017). Tying in with these
reports, in experiment 3, a similar set of brain regions including the FPC was found
to show enhanced signaling timed-locked to exploratory choices. Yet, all studies
mentioned above employed bandit tasks to study the exploration-exploitation
dilemma, while approaches using patch-based foraging tasks in which choice
options are encountered serially but not simultaneously have received only limited
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attention (e.g., Garrett & Daw, 2020; Wolfe, 2013). Thus, experiment 3 provides an
important extension to the existing literature by replicating its findings outside of
the predominant domain of virtual gambling tasks that may lack a high ecological
validity (Mobbs et al., 2018). In addition to this, novel insights in FPC function
for exploratory decision-making are provided by linking participants’ giving-up
times (GUTs) with BOLD signal changes related to exploratory choices during
foraging. Existing reports, again from bandit tasks, show that the FPC signal,
related to exploratory choices, predicts how effectively subjects adapt their behavior
to changing task conditions (e.g., Boorman et al., 2009), and that signal strength in
FPC during exploration positively correlates with subjects’ decision-making per-
formance measured by their yield of total earnings (Laureiro-Martínez et al., 2015).
Consistent with this is the significant positive correlation between participants’
behavioral bias towards exploration (indicated by their GUTs) and the strength of
the BOLD signal change in the right lateral FPC time-locked to exploratory foraging
choices found in the third experiment. Moreover, a significant main effect of group
(short- GUT versus long-GUT subjects) indicated that participants with a higher
behavioral propensity to make exploratory choices showed significantly stronger
activity bilaterally in both Fp1 and Fp2, as well as the IPS and TPJ in the moment
of behavioral exploration. In other words, subjects who were more inclined to keep
exploiting a current patch had weaker positive signal changes in the lateral and
medial FPC, as well as in the ventral attention network time-locked to exploratory
foraging choices. This finding connects well with a very similar observation in
apes showing that FPC lesion monkeys have a decreased tendency to explore the
potential value of an unforeseen novel task or reward (Mansouri et al., 2015). Hence,
the third experiment provides convergent evidence promoting the hypothesis that
FPC capitalizes a central role in the redistribution of cognitive resources away
from the currently pursued strategy or goal towards an alternative opportunity
(Mansouri et al., 2017).

6.2.4 A functional distinction between Fp1 and Fp2?

Evidence exists that promotes a functional distinction between Fp1 (lateral FPC) and
Fp2 (medial FPC) in that Fp1 presumably drives directed whereas Fp2 is thought to
support random exploration (Mansouri et al., 2017; Tomov et al., 2020; Zajkowski et
al., 2017), although Fp1 also was implicated in random exploration before (Daw et
al., 2006). Experiment 3 was not designed to distinguish between the two types of
exploration and it may be rather difficult to tell if participants used one ore the other
strategy. Given that participants timed their patch leaving rather optimally than ran-
domly as indicated by patch-leaving onset times consistent with the predictions of
the MVT, the notion that participants engaged in a more directed than random ex-
ploration is favored (Wilson et al., 2014). Consequently, assuming that participants
engaged in directed exploration would explain why the FPC signal, time-locked to
patch-leaving, was observed in rFp1 but not Fp2 (Zajkowski et al., 2017). However,
signals of exploration in both subregions were modulated by inter-individual dif-
ferences in the behavioral propensity to explore. Directed exploration means that
exploratory choices are made to gain information but not to obtain an immediate
reward. In other words, information is favored over immediate reward (Wilson et
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al., 2014). In our experiment, however, foragers likely made a decision to switch
to the next display to increase the chance of a new reward, driven by the experi-
ence that the search in the current display had become increasingly difficult. Thus,
the exploration may have been driven mostly by the opportunity of an immediate
new reward rather than by information-seeking which would be inconsistent with
directed exploration. Yet, only by switching to a new display participants could po-
tentially learn more about the foraging environment, thus suggesting that reward
and information may have been confounded which makes it more difficult to iden-
tify directed exploration in experiment 3. Therefore it will be important to directly
decouple information and reward to be able to test directed exploration more pre-
cisely (e.g., Wilson et al., 2014).

6.2.5 Further directions

Future research should target a deeper comprehension of the relationship between
participants’ behavioral strategies, particularly the balance between exploration and
exploitation during naturalistic activities like foraging, and brain function. A crucial
emphasis should be placed on investigating the direction of this relationship. As pre-
viously discussed, a crucial question revolves around whether adopting a specific
foraging strategy influences the extent of FPC engagement, or if inter-individual
differences in FPC function, potentially stemming from genetic variations impacting
the catecholamine system (Gershman & Tzovaras, 2018), guide the preference for
exploratory or exploitative behavioral tendencies. Exploring this dynamic relation-
ship could also reveal a continuum along which individuals’ inclinations toward
exploration or exploitation exist. Furthermore, insights from studies focusing on
elderly individuals suggest an age-related decline in exploratory behavior, accom-
panied by increased GUTs during foraging (Mata et al., 2009). This decline coincides
with observed decreases in working memory and attentional control (Milham et
al., 2002; Reuter-Lorenz, 2002), which are linked to compromised PFC function, as
well as changes in PFC surface area and thickness (Dotson et al., 2016). Hence, it
may be worthwhile for forthcoming investigations to explore whether individual
factors such as personality traits and cognitive abilities, which may be associated
with both functional and anatomical differences in the brain, contribute significantly
to an individual’s propensity for exploration or exploitation. Understanding these
interplays could shed light on the mechanisms shaping decision-making strategies
and guide potential interventions for optimizing such strategies.

Understanding the nuanced role of the FPC, alongside its susceptibility to inter-
individual differences, also holds significant potential for shaping clinical research
and practice, particularly in attention-related psychiatric disorders such as the atten-
tion deficit (hyperactivity) disorder (ADHD). Notably, recent research revealed that
individuals with ADHD, engaged in a conventional task-switching paradigm, ex-
hibited both reduced task switching costs and amplified activity changes within the
FPC compared to healthy controls (Li et al., 2023). This resonates with previous stud-
ies in healthy individuals, where FPC signals aligned with exploratory choices were
positively linked to behavioral adaptation to changing task conditions (Boorman et
al., 2009; Laureiro-Martínez et al., 2015). It is also consistent with the outcomes of Ex-
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periment 3, which unveiled that variations in individuals’ propensity to explore cor-
related with differences in FPC signal strength during exploratory decision-making.
Critically, the findings by Li et al. (2023) present a novel perspective on ADHD,
spotlighting the mobilization of cognitive resources in contrast to the traditional em-
phasis on limitations imposed by the condition. This paradigm shift underscores the
potential for further investigations into FPC function to yield innovative strategies
to empower individuals with ADHD to maximize their cognitive abilities.

6.3 Final conclusions
Altogether, the experimental work of this dissertation confirms the current view in
FPC function suggesting that the FPC is involved in a more general role of switching
between an exploitative towards an exploratory mode of cognitive control. While the
FPC does not appear to be specifically tasked with detecting fully invisible changes
in our environment, it does appear to contribute to attentional adaptation by encod-
ing pertinent information about what has unconsciously changed. Beyond mere ex-
ternal changes in the environment necessitating attention shifts, the realization that
a pursued action strategy has become ineffective also calls for adaptive responses.
In this context, the research presented in this thesis underscores the pivotal role of
the FPC in facilitating the transition from exploitation to exploration. Intriguingly, I
could show that a heightened inclination towards exploitative behavioral strategies
correlates with reduced FPC activity during these transitions. This finding highlights
the significance of accounting for inter-individual differences in behavioral inclina-
tions, which can impact the extent of FPC involvement during the shift from ex-
ploitative to exploratory cognitive control. This underscores consequently the need
for hypotheses to be carefully aligned. Behavioral tendencies, as potential modula-
tors of FPC involvement in exploratory attentional control, warrant consideration.
Moreover, it emphasizes the urgency of comprehending the directionality of the re-
lationship between the propensity to explore behaviorally and the signaling of the
FPC during attentional exploration. Such insights not only contribute to the evolving
understanding of the FPC’s multifaceted role but also hold the promise of refining
the treatment strategies for conditions governed by cognitive control dilemmas.
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A Experiment 1: Supplementary material

A.1 Model selection in the LMM analysis of RT data
To determine the final random effect structure of the LMM used to fit the RT data,
we conducted likelihood ratio tests (Crainiceanu & Ruppert, 2004). First, we defined
a model with visual awareness (AL1 - 3) and the change of the stimulus orientation
(switch versus repeat) as the two fixed effects, we additionally added an interaction
term of these two fixed effects and defined a by-subjects random intercept to account
for non-independency of the data in the repeated measure within design, i.e., for
baseline differences in RTs across subjects. This resulted in the following basic
model: RT ⇠ awareness + switch + awareness:switch + (1 | subject). This model was
compared to a second model containing an additional by-subject random slope for
awareness to model differing responses to the main factor awareness since subjects
may cope differently with very low stimulus visibility. This by-subject random
slope model was thus defined as follows: RT ⇠ awareness + switch + awareness:switch
+ (1 + awareness | subject). Finally we defined a third alternative model with a
more complex random effect structure by additionally entering a second by-subject
random slope of switch to model differing response due to changes in the stimulus
orientation (RT ⇠ awareness + switch + awareness:switch + (1 + awareness + switch |
subject)) as well as a model containing a by-subject random slope for switch only
(RT ⇠ awareness + switch + awareness:switch + (1 + switch | subject)).

Making use of the likelihood ratio test as implemented in the anova function
of the R-package lme4 (Bates et al., 2014) showed for the weighted RT data that
the model containing the additional by-subject random slope for awareness sig-
nificantly improved the overall model fit compared to the basic model containing
only a by-subject random intercept, c2 (5, N = 13) = 18.525, p = .002. Next, we
compared the model with a by-subject random slope for awareness with a third
model containing the additional by-subject random slope for switch. Here the
likelihood ratio test suggested that the model with the additional by-subject random
slope for switch did not better fit the RT data than the more parsimonious model
containing the by-subject random slope for awareness only, c2 (4, N = 13) = 1.533, p
= .821. Similarly comparing the model with the by-subject random slope for switch
only with the basic by-subject random intercept model did not improve the overall
fit, c2 (2, N = 13) = 0.061, p = .970. Therefore we selected the model with a by-subject
random intercept and a by-subject random slope for awareness (RT ⇠ awareness
+ switch + awareness:switch + (1 + awareness | subject)) for hypothesis testing. In a
previous study on unconscious response priming that also used a variant of the PAS
(Ramsøy & Overgaard, 2004), a similar mixed model with an identical random effect
structure was defined to analyze the unbalanced RT data (Avneon & Lamy, 2018).

We repeated the procedure outlined above also for the average RT model. Here
the likelihood ratio test similarly showed that a model including a by-awareness
random slope showed a better fit than the basic model with only a by-subject random
intercept, c2 (5, N = 13) = 20.95, p < .001. Again, a model with an additional by-
subject random slope for switch did not improve the overall fit compared to the
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model with only a by-subject random slope for awareness, c2(4, N = 13) = 2.303, p =
.680. The same was true when comparing a model with a by-subject random slope
for switch to the basic by-subject random intercept model, c2 (2, N = 13) = 0.051, p
= .975. Hence also for the average RT model we chose the model with a by-subject
random intercept and a by-subject random slope for awareness for final data fitting.

A.2 Detailed trial information
The median and the range of the number of trials for the average switch, the
weighted switch, and the repeat condition for each level of subjective awareness
(awareness level (AL) 1-3) are reported in the supplementary Table 12. Violin plots
of the group distributions of the number of trials for each condition are depicted
in Figure 19. In total 4.3% of all trials, we obtained for the weighted switch (i.e.,
orientation changes away from the frequent tilt) and 5.6% for the repeat condition
rated as fully unaware (AL1). 7.4% of all trials were weighted switch trials with
residual awareness (AL2) and 12.6% were AL2 repeat trials. 8.5% of the trials
were weighted switch trials rated as almost fully aware (AL3), while 10.9% of all
trials were AL3 repeat trials. The majority of trials were obtained for the average
switch condition with 10.4% of all trials rated as fully unaware, 20.5% with residual
awareness, and 19.8% rated as almost fully aware.

Figure 19: Violin plots show the number of trials for the average switch, the
weighted switch, and the repeat condition as a function of subjective awareness (AL
1-3). Violin plots use density curves to depict distributions of numeric data. The
width corresponds with the approximate frequency of data points in each region.
The lower and upper limits of each plot is determined by the minimum and maxi-
mum value.
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Table 12: Medians and range (R = maximum - minimum) of the number of trials obtained
for the switch and repeat conditions for each level of subjective awareness

AL1 AL2 AL3

Median R Median R Median R

weighted
switch

10 87 39 59 40 78

average
switch

26 201 90 140 83 177

repeat 14 98 59 87 47 107

Note: AL1 = awareness level 1, (i.e. PAS rating = 1), AL2 = awareness level 2, AL3 = awareness level 3.
PAS = perceptual awareness scale used to assess the subjective level of visual awareness.

A.3 Control analyses
The descriptive data clearly showed uneven proportions of trial numbers across
conditions with more trials for the partially aware and almost fully aware switch
and repeat condition. Thus, the means that we calculated based on sometimes
only a few trials for the fully unconscious condition could have been more strongly
affected by outliers and could be less reliable estimates of the true values so that
the observed effect could reflect an artefact elicited by noisy data. To rule out this
possibility, we already stated in the manuscript that we first repeated the analysis
using a 2 SD and 2.5 SD cutoff to see if the results would be preserved with a more
rigid cutoff, which was indeed the case. In addition, we conducted a control analysis
in which we matched the number of trials by randomly sampling from AL2 and AL3
trials the same amount as AL1 trials and used these matched random selections per
subject to repeat the mixed model analysis. The results were the same as before: we
found a significant fixed effect of switch, F(1,33.982) = 4.481, p = .042, and awareness,
F(2, 11.706) = 13.336, p < .001. Yet, paired comparisons again showed only for AL1
trials that RTs in repeat trials were significantly faster compared RTs in switch trials,
t(33.13) = -2.374, p =.024, 95% CI [-187.5 ms, -14.4 ms], but not in AL2, p = .953, nor
in AL2 trials, p = .1753. This observation clearly contradicts the possibility that the
switch effect occurred randomly due to a low number of trials. We also tested the
direct relation between switch costs obtained in the weighted RT model and the
number of trials aiming to prove that the effect did not depend on the number of
trials obtained for individual subjects. Since this analysis required the verification of
the absence of an association, we used a Bayesian based linear mixed model. First,
we constructed a model with a by-subject random intercept only indicating that all
variance in the observed switch costs was explained by interindividual differences
only. The alternative model additionally included the number of trials obtained
for switch trials for each level of awareness as a single fixed effect. Next, using the
R-package BayesFactor and its lmBF function (Morey & Rouder, 2018), we calculated
Bayes factors for each model and divided these two factors to obtain a BF10 that
would favor either the null model or the model that included the number of trials as
a predictor. This analysis resulted in a BF10 = 0.472 with anecdotal evidence rather in
favor of the null model (Quintana & Williams, 2018) which suggests an association
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between the observed switch effect in AL1 trials for the weighted RT model and the
amount of trials available for analysis in this condition was rather unlikely.

Next, we report accuracies as well as the level of subjective awareness of those
trials that preceded an orientation change (i.e., “pretarget” trial information). In to-
tal 8.6% of all preceding trials were rated as subjectively fully unaware in which
participants gave a correct response in the orientation discrimination task. Incor-
rect responses were given in 9.2% of all preceding trials rated as subjectively fully
unaware. In 27.6% of all trials prior to an orientation change in which volunteers re-
ported residual awareness of the stimulus orientation (AL2), correct responses were
given, while in 7.5% of these preceding AL2 trials subjects made incorrect responses.
In 29.4% of trials rated as almost fully aware (AL3) volunteers correctly discrimi-
nated the target orientation prior to a switch. Only 4% of these preceding AL3 trials
were error trials. Finally, 9.7% of the trials were rated as fully aware and correct
answers were given and only in 0.4% of these AL4 trials volunteers gave incorrect
responses. Note that AL4 trials were not included in the analyses due to the very
low number of trials. Table 13 summarizes the mean number of trials for correctly
and incorrectly performed trials preceding an orientation change for each level of
awareness.

Table 13: Number of trials (mean ± standard error of the mean) for correct and error trials
prior to an orientation change for each level of subjective awareness

AL1 AL2 AL3 AL4

correct
23 ±7 76 ±10 81 ±12 27 ±7

error
25 ±10 21 ±2 11 ±3 1 ±0.4

A.4 Accuracies and signal detection analysis data
The ability to correctly discriminate the target orientations (vertical versus non-
vertical) served as the objective measure of visual awareness of the target orientation.
As reported in the manuscript, we chose signal detection theory measures instead
of simple accuracies (1-errors) to analyze volunteers’ task performance in the
orientation discrimination task. This we did because the unbalanced design and the
frequency differences of the three target orientations would have made it difficult
to determine the theoretical chance level for statistical testing of the accuracies on
group level. The theoretical chance level of the sensitivity (A’), however, remains
unaffected by frequency differences and uneven proportions of data across condi-
tions so that the discrimination performance on group level could be readily tested
against chance using this measure. Moreover, accuracies confound the effect of
sensitivity and bias on behavior, while they can be measured separately using signal
detection theory (e.g., Lynn & Barret, 2014). Still, to provide a full picture of the data
here, we report accuracies (1- error rates) for each condition and for the weighted
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and average data set.

Descriptive means of accuracies revealed an increase in task performance with
increasing subjective awareness with only marginal differences between switch and
repeat trials: in fully unconscious trials (AL1) the average switch model, comprising
all switch trials and repeat trials, the mean accuracy was 55.93 ± 24.55% (SD) in
repeat and 53.05 ± 18.97% in switch trials. In trials with residual visual awareness
(AL2) the accuracy was 73.03 ± 13.29% in repeat and 77.10 ± 10.40% in switch trials.
In trials rated as almost fully aware the mean accuracy in repeat trials was 90.39 ±
8.9% and in switch trials 88.56 ± 7.06%.

A similar pattern of behavioral performance was obtained for the weighted
switch model in which the switch condition contained only orientation changes
away from the heavily weighted tilt: the mean accuracy in fully unaware (AL1)
weighted switch trials was 48.04 ± 17.85. For AL2 trials we found a mean accuracy
of 77.97 ± 8.5% in switch trials. Again, highest accuracies were found in almost fully
aware weighted switch trials (AL3) with a mean accuracy of 86.93 ± 7.01%. Note
that the repeat trials in this weighted switch model were the same as in the average
model. Figure 20 a) depicts boxplots of accuracies on group level for average switch
and repeat trials for each level of awareness. Figure 20 b) shows accuracies on group
level for the weighted switch and repeat trials for each level of awareness.

In addition to the accuracy data the average rates of hits (H), false alarms (FA),
correct rejections (CR), and misses (M) for each level of subjective awareness are
reported in Table 14 as well as the mean number of hit, false alarm, miss, correct
rejection trials (Table 15).

Figure 20: Accuracies (1-error rate) for the weighted switch, and the repeat condi-
tion in a), as well as for the average switch condition b) as a function of subjective
awareness (AL 1-3).
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Table 14: Confusion matrix of the signal detection analysis

Response Stimulus

Tilted Gabor AL1 Vertical Gabor AL1

non-vertical H = 0.579 ± 0.066 FA = 0.538 ± 0.066
vertical M = 0.421 ± 0.066 CR = 0.461 ± 0.066

Tilted Gabor AL2 Vertical Gabor AL2

non-vertical H = 0.788 ± 0.029 FA = 0.261 ± 0.040
vertical M = 0.212 ± 0.029 CR = 0.739 ± 0.040

Tilted Gabor AL3 Vertical Gabor AL3

non-vertical H = 0.849 ± 0.037 FA = 0.134 ± 0.038
vertical M = 0.151 ± 0.037 CR = 0.866 ± 0.038

Note: H = Hit rate = hits/(hits + false alarms); FA = False alarm rate = false alarms/(hits + false alarms);
M = Misses rate = misses/(misses + correct rejections); CR = Correct rejection rate = correct rejec-
tions/(misses + correct rejections). The matrix shows the averaged rates (M) and standard errors
(±SE) of hits, false alarms, correct rejections and misses for each level of subjective awareness on
group level.Mean values were obtained by calculating the rates for right- and left-weighted blocks
separately and consequently averaging these rates across all blocks and subjects.

Table 15: Average number of trials (M ± SE) of hits, misses, false alarms, and correct rejec-
tions across left- and right-weighted blocks

H
(correct non-vertical)

M
(incorrect non-vertical)

FA
(incorrect vertical)

CR
(correct vertical)

AL1 26.3 ±8.0 25.8 ±9.6 15.0 ±7.0 13.2 ±5.5

AL2 90.0 ±11.8 24.7 ±4.6 9.9 ±1.4 35.6 ±5.9

AL3 84.9 ±14.3 12.6 ±3.8 4.2 ±1.5 48.8 ±8.1

Note: H = Hit rate = hits/(hits + false alarms); FA = False alarm rate = false alarms/(hits + false alarms);
M = Misses rate = misses/(misses + correct rejections); CR = Correct rejection rate = correct rejec-
tions/(misses + correct rejections).
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B Experiment 2: Supplementary material

B.1 Analysis of low-level stimulus contrasts
When participants performed the task the luminance contrast of the stimulus in
the upcoming trial was manipulated based on the current awareness rating to
obtain a balanced amount of trials for each level of subjective awareness: if the
current stimulus was reported as invisible, the contrast of the following grating was
increased while it was decreased following ratings indicating residual or almost full
visual awareness of the stimulus. On the downside this online manipulation could
have introduced differences in the low-level physical intensities (i.e., luminance
contrasts) of the gratings between the levels of subjective awareness and within
these levels over time. Then this manipulation could mean a confound especially
when the three levels of subjective awareness were compared.

To test this possible confound we again used a linear mixed model (LMM).
The luminance contrast between stimulus and background (0-1) was defined as the
dependent variable and the subjective awareness (AL1-AL3) as well as the number
of Blocks (1-10) served as fixed effects. To allow for possible heteroscedasticity
with respect to levels of the two fixed effect factors, subjective awareness and time
(i.e., number of experimental blocks) we entered by-subject random slopes for
the two. This resulted in a final model defined as luminance ⇠ awareness + block
+ awareness:block + (1 + awareness + block | sub). Residual plots did not suggest
deviations from homoscedasticity or normality. The estimated luminance values
appeared to be affected by changes in the level of visual awareness indicated F(2,
186.03) = 6.547, p = .002. The post-hoc tests with Bonferroni correction indicated that
the mean stimulus contrast of 0.0601 ± 0.0139 in AL1 trials was on average 0.0096 ±
0.003 lower compared to the mean contrast of 0.0697 ± 0.0153 in AL2 trials, t(24.6) =
-3.226, p = .011, 95% CI (-0.0172, -0.00195) and on average -0.02121 ± 0.00318 lower
compared to the mean contrast value of 0.0813 ± 0.0152 in AL3 trials, t(13.3) = -6.677,
p < .0001, 95% CI (-0.0299, -0.01252). Finally, the contrast values in AL2 trials were
on average -0.01162 ± 0.00263 significantly lower than those contrast values of AL3
trials, t(36.9) = -4.422, p < .001, 95% CI (-0.0182, -0.00503). Nor the fixed effect of block
was significant, nor the interaction between the awareness and block, with F(1,13) =
1.558, and F(2,372.32) = 0.106, respectively. Taken together this analysis showed an
increase of the stimulus contrast with increasing visual awareness. However, there
were no significant fluctuations of the contrast values within the three awareness
conditions. Figure 21 shows the contrast values for the three awareness levels as a
function of block (i.e., time).

We are confident that these differences in the luminance contrast between AL1-
AL3 are of no concern with respect to the searchlight analysis since we did not con-
trast between the levels of visual awareness and within these levels the luminance
was constant, i.e., the control analysis showed no evidence for fluctuations over time
meaning that contrast values were stable within the three awareness conditions. Re-
garding our univariate analysis, however, we contrasted awareness levels thereby
comparing trials in which the stimulus intensity varied. Yet, it has been shown that
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an increasing luminance contrast increases the BOLD signal at least in V1 (e.g., Chen
et al., 2021; Goodyear & Menon, 1998). Thus, our findings of increased activity in the
invisible condition as well as the increased BOLD response following invisible tar-
get changes are both difficult to explain with the differences in the physical stimulus
properties because we found higher activity for the lower-contrast stimuli. This ob-
servation is better explained by an attention mechanism rather than by a difference
in the luminance contrast.

Figure 21: Luminance contrast values of the Gabor patch as a function of time for
each of the three levels of awareness (AL1-AL3). Whereas the stimulus contrast re-
mained stable over time, it increased with increasing visual awareness

B.2 Results of the ROI-based searchlight analysis using a 6 mm
searchlight radius (SLR)

To test whether the informative clusters have a similar appearance across dif-
ferent searchlight radii (Etzel et al., 2013), we repeated the multivariate analysis
using a 6 mm SLR in addition to the 9 mm SLR. Again, we used only left-versus
right-tilted Gabors and included only trials in which the target was not perceived
consciously (AL1) for decoding. No other parameters were changed therefore all
methodological details match those reported in the manuscript (see the section
4.3.5). Most importantly also in this analysis we found clusters on the group level
with significant searchlight centers (pCluster < .05) located in the right angular (AG),
the superior parietal gyrus as well as the rLOC. Again, consistent the previous
searchlight analysis we also observed clusters in the rMFG as well as in the right
precentral gyrus. All together the clusters had a mean decoding accuracy of 65.9
± 2.8%. The dot plot showing the decoding accuracies of all clusters that survived
the significance testing by bootstrapping on group level the ROI is shown in Figure
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22 (box on the right). The accuracies mapped on the MNI 152 template brain are
depicted in Figure 22 on the left.

We additionally carried out a whole-brain searchlight analysis using a 6 mm
searchlight radius (number of non-zero voxels = 221432). The results confirmed
those obtained of the previous whole-brain searchlight using a 9 mm sphere diame-
ter reported in the manuscript, showing clusters with significant searchlight centers
(p < .05) at matching locations bilaterally in medial and lateral FPC, MFG, IFJ, TPJ,
precuneus, and IPS, as well as in visual cortex including the lingual gyrus, cuneus,
and occipital pole. Again, we found group clusters with local signals distinguishing
between left- and right-tilted orientations in anterior cingulate gyrus, bilaterally
in the temporal pole and OFC. The mean decoding accuracy across all clusters on
group level with significant searchlight centers was 71.3 ± 3.5%. Figure 23 depicts
the accuracy maps of those clusters surviving the two-step permutation test on
group level for the 6 mm SLR.

Taken together these findings confirm the results of the prior analysis using a
9 mm SLR in that those regions that had shown an increased BOLD response in
response to invisible target changes also represented the orientation information of
the invisible targets. Among these areas were the right FPC and MFG as well as
parietal regions partially comprising the right TPJ, such as the right AG and right
SPL.

Figure 22: Decoding accuracies for the ROI-based searchlight analysis using a 6 mm
radius mapped on a MNI 152 standard brain. Only those clusters with significant
searchlight centers with accuracies exceeding the 99th percentile (49.5%) of the null
distribution are shown with locations in right MFG, PCG, right AG, SPL, and LOC.
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Figure 23: Decoding accuracies obtained in the whole-brain searchlight analysis us-
ing a 6 mm searchlight radius mapped on a MNI 152 standard brain, mostly repli-
cating the findings of the 9mm SLR analysis.(Only clusters with above chance accur-
cacies are shown, 99th percentile = 58.8%).
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