Die Entwicklung nachhaltiger Synthesemethoden zur atomökonomischen Transformation von 1-Vinylpropargylalkoholen mit Übergangsmetallkomplexen redoxaktiver Liganden als Katalysatoren.

Dissertation

zur Erlangung des akademischen Grades

Promotionskolloquium am:

doctor rerum naturalium (Dr. rer. nat.)

von	Diplom-Ingenieurin Nora Thies			
geb. am	03.06.1986	in	Haldensleben	
genehmigt durch d der Otto-von-Guer	lie Fakultät fü icke-Universi	ir Verfahrens- un tät Magdeburg	nd Systemtechnik	
Promotionskommi	ssion:	Prof. Dr. Helmut	Weiß (Vorsitz)	
		PD Dr. Edgar Haak (Gutachter)		
		Prof. Dr. Ernst R	. F. Gesing (Gutachter)	
		Prof. Dr. Dieter S	Schinzer (Gutachter)	
eingereicht am:		29.04.2014	L	

24.06.2014

Die vorliegende Arbeit wurde unter Anleitung von Jun.-Prof. Dr. Edgar Haak am Chemischen Institut der Otto-von-Guericke-Universität Magdeburg im Zeitraum von Januar 2011 bis April 2014 angefertigt.

Veröffentlichungen

09/2013 Begutachteter Posterbeitrag, GDCh-Wissenschaftsforum Chemie 2013, Darmstadt

09/2013 Ruthenium-Catalyzed Synthesis of Substituted Pyrroles Directly from 1-Vinyl Propargyl Alcohols and Amines, N. Thies, M. Gerlach, E. Haak, Eur. J. Org. Chem., 2013, 32, S. 7354-7365.

04/2012 *Ruthenium-Catalyzed Functionalization of Pyrroles and Indoles with Propargyl Alcohols*, N. Thies, C. G. Hrib, E. Haak, Chem. Eur. J., 2012, 18, S. 6302-6308.

Stipendien

07/2013 – 12/2013 Stipendium d.Vereins "Kompetenznetz Verfahrenstechnik Pro3"

01/2011 – 06/2013 Graduiertenstipendium des Landes Sachsen-Anhalt

"Der Zufall begünstigt nur einen vorbereiteten Geist"

Louis Pasteur (1822 – 1895)

Zusammenfassung:

Zu Beginn werden die erfolgreichen Synthesen acht innovativer Übergangsmetallkatalysatoren redox-gekoppelter Liganden vorgestellt, indem die einzelnen Schritte des rationalen Designs chronologisch vorgestellt werden.

Zur Demonstration des beachtlichen Potentials der Ruthenium-Cyclopentadienonkomplexe zur Katalyse neuartiger und effizienter Transformationen wird im zweiten Teil eine sehr selektive und atomökonomische Methode zur Darstellung und Funktionalisierung von Pyrrolen und Indolen mit 1-Vinylpropargylalkoholen vorgestellt. Die Erweiterung der Kaskade aus Allylierung und Cyclisierung um eine [4+2]-Cycloaddition bzw. eine [3,3]-sigmatrope Umlagerung gelingt unter Verwendung höher ungesättigter Substrate und wird im Anschluss präsentiert. Zur Anwendung des entwickelten Verfahrens im Rahmen einer Naturstoffsynthese werden einige Retrosynthesestrategien zur Darstellung des cyctotoxischen Schwammalkaloids Herbindol A vorgestellt. Diese enthalten als Schlüsselschritt die rutheniumkatalysierte Indolbildung und tragen zur erheblichen Verkürzung bisheriger, literaturbekannter Synthesen bei.

Im dritten Teil folgt zunächst ein umfangreiches Katalysatorscreening zur Optimierung der Darstellung von [3]Dendralenen, wobei charakteristische Eigenschaften der neu generierten Ruthenium-Komplexe demonstriert werden. Abschließend wird eine sequentielle Domino-Kaskade aus Allylierung, Cyclisierung und dientransmissiver Diels-Alder Reaktion präsentiert. In dieser beeindruckenden Synthese werden innerhalb einer einzigen Reaktion hochkomplexe Strukturen mit acht neuen Stereozentren generiert, wobei von den möglichen 32 Stereoisomeren jeweils maximal vier diastereomere Addukte detektiert werden.

Schlagwörter:

Atomökonomie, Nachhaltigkeit, Green Chemistry, Homogene Katalyse, Ruthenium, sequentielle Domino-Prozesse, Vinylpropargylalkohol, Pyrrolsynthese, Indolsynthese, dientransmissiv, [3]Dendralen, Herbindol A

Abstract

The first chapter presents the rational design of eight innovative transition-metal catalysts of redox-coupled dienone ligands. Systematical variation of the substituents, modification of the polar group and exchange of the metal leads to different complexes.

The second chapter considered an atom-economic, ruthenium- catalyzed method to generate and functionalize pyrroles and indoles with 1-vinyl propargyl alcohols with water as the only waste product. The allylation/cycloisomerization sequence can be extended by an additional [4+2]-cycloaddition or a [3,3]-rearrangement by using further unsaturated compounds. For demonstrating the method in a natural product synthesis, several strategies leading to the sponge alkaloid Herbindol A are presented, containing the ruthenium-catalyzed key step.

The third chapter contains a screening of the new complexes to present their characteristic properties and to optimize the formation of [3]dendralenes. In the end an awesome one-pot cascade process is presented. The domino-sequence generates eight new stereogenic centers in one single step with only four diastereomeric adducts to detect at most.

Keywords:

Atom economy, sustainability, green chemistry, homogeneous catalysis, ruthenium, sequential domino reaction, vinyl propargyl alcohol, pyrrole synthesis, indole synthesis, dienstransmissiv, [3]dendralene, Herbindol A

Mein besonderer Dank gilt Herrn Junior-Professor Dr. Edgar Haak für die exzellente Betreuung. Seine stete Unterstützung, seine spontane Erreichbarkeit, die zahlreichen inspirierenden Gespräche, der mir gewährte Freiraum und sein Engagement bei der Durchführung der Doktorandenseminare und Arbeitsbesprechungen haben dazu beigetragen, dass ich stets eine große Freude an meiner Forschungsarbeit hatte.

Herrn Professor Dr. Dieter Schinzer möchte ich insbesondere für die Übernahme des Zweitgutachtens danken.

Ich bedanke mich bei Herrn Professor Dr. Ernst R. F. Gesing für die Motivation, den Optimismus sowie die mit seiner Person verbundene Möglichkeit zur Rückkopplung zwischen universitärer Forschung und ihrem industriellen Pendant.

Ich möchte mich bei Herrn Dr. Mario Walter bedanken. In der gesamten Zeit war er meine wichtigste Bezugsperson. Ich danke ihm für die Austauschmöglichkeiten, die chemischen Diskussionsrunden, die Motivations-Feierabend-Biere an der Elbe, die immer randvolle und frisch aufgebrühte pinke Kaffeekanne, die Unterstützung während der gesamten Zeit und das sehr beeindruckende, zügige und detaillierte Korrekturlesen dieser Arbeit.

Auch bei Herrn Martin Hünecke, Herrn Jörg Hünecke und Frau Dr. med. Katharina Lohfink möchte ich mich für das Interesse an dieser Arbeit und der damit verbundenen Aktivität als Korrekturleser bedanken. Herrn Martin Hünecke danke ich außerdem für die Hilfe bei der Formatierung und beim Managen der anfallenden Herausforderungen des täglichen Lebens, was mir die Möglichkeit bot, mich sehr intensiv mit dem Schreiben zu beschäftigen.

Frau Dr. Liane Hilfert, Frau Sabine Kühnel und Frau Ines Sauer danke ich für die Aufnahme der NMR- und IR-Spektren. Frau Dr. Sabine Busse danke ich für die Anfertigung der MS- und HRMS-Spektren. Außerdem bedanke ich mich bei ihnen für die stete Hilfsbereitschaft und die allzeit freundliche Atmosphäre.

Ich bedanke mich für das Graduiertenstipendium des Landes Sachsen-Anhalt und für das Stipendium des Vereins "Kompetenznetz Verfahrenstechnik Pro3".

Ich möchte mich bei allen aktuellen und ehemaligen Mitarbeitern und Mitarbeiterinnen des chemischen Instituts für die angenehme Zusammenarbeit bedanken. Mein spezieller Dank gilt hierbei Frau Dr. Alexandra Lieb für den "Jeux fix", Frau Susan Muschalle für den "Dia Fijado", Herrn Martin Gerlach für den sehr guten Forschungsbeitrag zu den Pyrrolen, Frau Uta Jeutes für die Unterstützung während der gesamten Zeit, dem Arbeitskreis der Technischen Chemie für die vielen Grillabende und dem Arbeitskreis von Herrn Junior-Professor Dr. Edgar Haak, unter anderem Frau Stefanie Berger, für die gemeinsame Zeit.

Meinen Freunden danke ich für die tollste Zeit überhaupt. Ich danke vor allem Holger Dietrich für mein erstes Snowboard und den ersten Skiurlaub, Mario Walter für den Sportbootführerschein und das Windsurfen in Hooksiel, Katrin Holz für das Windsurfen am Barleber See und in Bork Havn, Dr. Wolfgang Kopplin danke ich für die Kanukurse auf der Elbe und den tollen Langlaufskikurs in Venaby, Katja Siebert und Eva Schulze für die Sommerurlaube in Kuşadası und in Serres, Paulus Grabbs für die Sparringeinheiten, meinen Boxmädels für die legendären Abende, Christoph Wlcek für die vielen Joggingstunden an der Elbe, Anja Franke für das Wakeboarden, Torben Wegener für die zuverlässige Wochenendplanung und Martin Hünecke für das gemeinsame Interesse an allem.

Und nicht zuletzt bin ich meiner Familie zu großem Dank verpflichtet. Meinem Papa, meiner Mama, Siggie, Martin, meiner Oma, meinem Opa und meinem Bruder Norbert danke ich sehr für ihre immerwährende Unterstützung jedweder Art. Ich danke ihnen, dass sie immer an mich geglaubt haben.

Inhaltsverzeichnis

1. Einleitung	1
2. Experimentelle Ergebnisse	3
2.1 Katalysatoren und Liganden	3
2.1.1 Einführung	
(a) Metall-Ligand-Bifunktionalität	3
(b) Ruthenium-Cumulenyliden-Komplexe	3
2.1.2 Stand der Forschung im Arbeitskreis	7
2.1.3 Aufgabenstellung	10
2.1.4 Ergebnisse	
(a) Übersicht neu generierter Komplexe	11
(b) Substitution am C7-Atom	11
(c) Variation der Seitenketten des Ligandensystems	13
(d) Variation des Zentralatoms	15
(e) Variation der polaren Gruppe des Dienon-Liganden	15
2.1.5 Zusammenfassung	
2.1.6 Ausblick	
2.2 Pyrrole und Indole	
2.2.1 Einführung	
(a) Anwendungen von Pyrrolen und Indolen	
(b) Synthesemöglichkeiten	21
2.2.2 Stand der Forschung im Arbeitskreis	23
2.2.3 Aufgabenstellung	
2.2.4 Ergebnisse	
(a) Optimierung der Reaktionsbedingungen	
(b) Untersuchungen zur Anwendungsbreite der Indolbildung	
(c) Untersuchungen zur Anwendungsbreite der Pyrrolbildung	
(d) Anwendung in der Naturstoffsynthese	
2.2.5 Zusammenfassung	
2.2.6 Ausblick	
2.3 Dione	47
2.3.1 Einführung	47

Dientransmissive Diels-Alder Reaktion von Dendralenen	47
2.3.2 Stand der Forschung im Arbeitskreis	49
2.3.3 Aufgabenstellung	51
2.3.4 Ergebnisse	52
(a) Katalysatorscreening zur Optimierung der [3]Dendralen-Bildung	
(b) Dientransmissive Diels-Alder Reaktionen	57
2.3.5 Ausblick und Zusammenfassung	63
3. Zusammenfassung und Ausblick	65
4. Experimenteller Teil	67
4.1 Allgemeines	67
4.2 Experimentelle Daten zum Kapitel "Katalysatoren und Liganden"	69
4.3 Experimentelle Daten zum Kapitel "Pyrrole und Indole"	80
4.3.1 Synthesen der 1-Vinylpropargylalkohole	80
4.3.2 Synthesen der Indole, Enine, Pyrrole und Isoindole	87
(a) Allgemeine Vorschrift	87
(b) Synthesen der Indole	87
(c) Synthesen der Enine	96
(d) Synthesen der Pyrrole	101
(e) Synthesen der Isoindole	130
4.3.3 Synthesen zum Herbindol A	
4.4 Experimentelle Daten zum Kapitel "Dione"	
4.4.1 Synthesen zur Optimierung der [3]Dendralen-Bildung	140
(a) Allgemeine Vorschrift	140
(b) Synthesen	140
4.4.2 Synthesen zur DTDA-Reaktion	151
(a) Allgemeine Vorschrift	151
(b) Synthesen	
5. Literaturverzeichnis	
6. Abbildungsverzeichnis	
7. Schemenverzeichnis	170
8. Tabellenverzeichnis	
9. Lebenslauf	

Abkürzungsverzeichnis

Abb.	Abbildung				
abs.	absolut				
AcOH	Essigsäure				
Ac ₂ O	Essigsäureanhydrid				
äq	äquatorial				
Ar	Aryl				
ax	axial				
Bn	Benzyl				
Bsp.	Beispiel				
bspw.	beispielsweise				
°C	Grad Celsius				
calcd.	calculated				
COSY	Correlation spectroscopy				
Ср	Cyclopentadienyl				
CPD	Cyclopentadienon				
CSA	Camphersulfonsäure				
DA	Diels-Alder				
DBU	1,8-Diazabicyclo[5.4.0]undec-7-en				
DCM	Dichlormethan				
de	diastereomeric excess				
DEPT	Distortionless Enhancement by Polarization Transfer				
dig	digonal				
DMAD	Dimethylacetylendicarboxylat				
DNA	Desoxyribonukleinsäure				
DTDA	Dientransmissive Diels-Alder				
dr	diastereomeric ratio				
\mathbf{E}^+	Elektrophil				
EE	Essigsäureethylester				
EI	Electron Ionization				
Et	Ethyl				
et al.	et alii / et aliae / et alia				
Et ₂ O	Ether				
EtOH	Ethanol				
eq	Äquivalent				
evt.	eventuell				
FS	Feststoff				
ges.	gesättigt				
h	Stunde				
HMBC	Heteronuclear multiple bond correlation spectroskopy				
HRMS	Hochauflösende Massenspektrometrie				
HSQC	Heteronuclear single-quantum correlation spectroskopy				
HV	Hochvakuum				
IR	Infrarotspektroskopie				
IUPAC	International Union of Pure and Applied Chemistry				
Kat.	Katalysator				

kat.	katalytisch			
L	Ligand			
LB	Lewis-Base			
LDA	Lithiumdiisopropylamid			
LS	Lewis-Säure			
Μ	Metall			
[M]	Metall-Komplex			
Me	Methyl			
MeCN	Acetonitril			
MeI	Methyliodid			
MeOH	Methanol			
min	Minute			
MM2	Molecular Mechanics Version 2			
mol-%	Molprozent			
MS	Massenspektrometrie			
MSA	Maleinsäureanhydrid			
NBS	N-Bromsuccinimid			
nBuLi	<i>n</i> -Butyllithium			
NMR	Nuclear Magnetic Resonance			
NOE	Nuclear Overhauser effect			
NOESY	Nuclear Overhauser effect spectroscopy			
NPM	N-Phenylmaleinimid			
Nr.	Nummer			
Nu	Nukleophil			
0	ortho			
р	para			
Р	Pentan			
ppm	Parts per million			
Ph	Phenyl			
R	Rest			
RCM	Ring Closing Metathesis			
RT	Raumtemperatur			
Т	Temperatur			
Tab.	Tabelle			
TBD	Triazabicyclodecene			
tBuOH	Tert-Butanol			
TEA	Triethylamin			
tet	tetrahedral			
TFA	Trifluoressigsäure			
THF	Tetrahydrofuran			
TMS	Trimethylsilan			
Ts	Tosyl			
Vol-%	Volumenprozent			
η ⁿ	Haptizität			

1. Einleitung

Bereits der große Chemiker Louis Pasteur erklärte, dass nur das geschulte Auge eines Forschers aus einem Zufall eine verwertbare Idee werden lassen kann. So gelang es dem schottischen Bakteriologen Alexander Fleming 1928 durch sein wachsames Auge und seine Offenheit für Unerwartetes einen Meilenstein in der Medizin zu setzen. Ähnlich wie bei zahlreichen Bakteriologen zuvor, war damals ein Schimmelpilz in eine seiner Bakterienkulturen geraten. Anstatt die Probe zu entsorgen, konnte er nach zeitintensiven Untersuchungen belegen, dass diese Schimmelpilze in der Lage sind, Staphylokokken abzutöten. Seine Entdeckung wurde anfangs kaum beachtet und die ersten Veröffentlichungen lediglich belächelt. Einer Forschungsgruppe aus Oxford gelang es schließlich 10 Jahre später den von Fleming entdeckten Wirkstoff zu isolieren. 1941 konnte daraufhin bereits der erste Patient durch die Behandlung mit Penicillin geheilt werden und ab 1944 begann die großtechnische Herstellung. Fleming wurde für seine Entdeckung letztendlich geadelt und erhielt 1945 zusammen mit Sir Howard Florey und Ernst B. Chain den Nobelpreis für Medizin.¹ Doch nicht nur in der Medizin, sondern auch in der Technik gab es derartige Entdeckungen. Der US-amerikanische Ingenieur Percy Spencer entwickelte 1946 den Mikrowellenherd, nachdem er den Zusammenhang zwischen der in seiner Tasche geschmolzenen Tafel Schokolade und der hochfrequenten Strahlung in seiner Umgebung erkannte.² Charles Goodyear forschte viele Jahre an einer Möglichkeit, Gummi bzw. Kautschuk widerstandsfähiger zu machen. Der Durchbruch gelang ihm 1839 durch die scharfsinnige Deutung eines Zufalls, als er die Mischung aus Kautschuk, Blei und Schwefel auf der Hitzeplatte seines Labortisches schlichtweg vergaß.³ Er hatte den Prozess der Vulkanisation von Kautschuk entdeckt. All das zeigt, wie wichtig es in der Forschung ist, das Augenmerk auf unscheinbare und vor allem unbekannte Dinge zu legen. Die fundamentalen Aufgaben von Wissenschaft und Forschung bestehen darin, Erkenntnisse zu sammeln, Zusammenhänge aufzudecken und Anwendungen zu finden. Einen besonderen Stellenwert nimmt hierbei die naturwissenschaftliche Grundlagenforschung ein. Sie ist die Quelle für Innovation und eine auf Nachhaltigkeit zielende Entwicklung.

Es war Hans Carl von Carlowitz, der 1713 in seinem Werk "Sylvicultura Oeconomica" erstmals das Prinzip der Nachhaltigkeit formulierte. Als Zweitältester von insgesamt 16 Kindern wusste er schon damals, dass es wichtig ist *"eine sothane Conservation und Anbau des Holzes anzustellen, dass es eine continuierliche, beständige und nachhaltende Nutzung gebe."*⁴ So hat sich die Nachhaltigkeit von einem Leitsatz der Forstwirtschaft zu einem Prinzip des 21. Jahrhunderts entwickelt und umfasst eine Strategie, in der die Nutzungseffizienz von Ressourcen bei gleichzeitiger Entlastung der Umwelt gesteigert werden sollen. Sie gilt als fundamentaler Gegenstand moderner organischer Synthesechemie und stellt den Grundgedanken der Forschungen unseres Arbeitskreises dar. Unser Schwerpunkt liegt auf der Entwicklung atomökonomischer, schutzgruppenfreier Synthesen

komplexer Natur- und Wirkstoffstrukturen aus wohlfeilen Edukten und gehört damit dem Forschungszweig der "grünen Chemie" an.^{5–11} Diese verfolgt spezielle Prinzipien, wie die Vermeidung von Abfällen, aber auch die Entwicklung atomökonomischer, effizienter und verkürzter Synthesewege. Hierbei steht vor allem die Verwendung von Katalysatoren anstelle stöchiometrischer Reagenzien im Vordergrund.^{12–16}

Eine Vielzahl der hierzu anwendbaren Reaktionen basiert auf Übergangsmetall-katalysierten Prozessen.^{13,17,18} Übergangsmetalle sind in der Lage, die Reaktivität funktioneller Gruppen drastisch zu verändern, sobald sie an diese koordinieren. So ist es denkbar, stabile Verbindungen zu aktivieren, hochreaktive Verbindungen zu stabilisieren, übliche Reaktionsmuster umzukehren und Reaktionsbedingungen zu mildern. Vor allem die späten Übergangsmetalle sind für ihre außergewöhnlich gute Chemoselektivität bekannt, welche die Notwendigkeit des zeit- und geldaufwendigen Schützens und Entschützens funktioneller Gruppen vermeidet. Insbesondere für Rutheniumkomplexe sind dahingehend vielfältig nutzbare Wechselwirkungen mit ungesättigten Substraten beschrieben worden.^{16,19–22}

Die vorliegende Arbeit umfasst zum einen die Synthese neuartiger Übergangsmetallkomplexe und zum anderen die produktorientierte Katalyseforschung, wobei die Aufklärung der Reaktionsmechanismen stets im Vordergrund steht.

Im nachfolgenden Kapitel werden die gewonnenen Ergebnisse im Detail vorgestellt. Aus Gründen des Verständnisses und der Übersichtlichkeit erfolgt an dieser Stelle eine Unterteilung in drei Bereiche, von denen jeder für sich ein abgeschlossenes Bild vermittelt. Die Eingliederung in das Gesamtkonzept bleibt jedoch stets gewahrt.

2. Experimentelle Ergebnisse

2.1 Katalysatoren und Liganden

2.1.1 Einführung

Im Fokus des ersten Abschnitts stehen die Entwicklung und die Synthese neuartiger Übergangsmetallkomplexe redox-gekoppelter Liganden.

(a) Metall-Ligand-Bifunktionalität

Inspiriert von der Natur lehnt das Konzept der bifunktionellen Katalyse an die mechanistische Vorgehensweise der Enzyme an. Diese sind mit einer charakteristischen, genau definierten Sequenz aus Aminosäuren aufgebaut, die wiederum jeweils aus einer basischen und einer sauren Gruppe zusammengesetzt sind. In einer Reaktion zwischen einem Elektrophil und einem Nukleophil gibt es prinzipiell verschiedene Aktivierungsmöglichkeiten. Während mit einer Säure ein Elektrophil und mit einer Base ein Nukleophil aktiviert werden kann, kann eine Aminosäure mit den zwei Funktionalitäten eine doppelte Aktivierung und darüber hinaus eine räumliche Annäherung erreichen. Genau dieses Konzept wird im Rahmen der bifunktionellen Katalyse verfolgt und ist speziell bei der Wasserstofftransferkatalyse ein bekanntes und etabliertes Konzept.²³ Da ein Enzym aus bis zu 30.000²⁴ Aminosäuren aufgebaut sein kann, stellt es bezüglich der Effizienz und Selektivität eine Idealform dar. Die Herausforderung der bifunktionellen Katalyse besteht darin, die katalytischen Fähigkeiten eines Enzyms in einem sehr kleinen Molekül zu realisieren, um die Durchführung verschiedener synthetischer Schritte in einer einzigen Transformation zu ermöglichen (**Schema 1**).

Schema 1 Funktionsweise eines bifunktionellen Katalysators.

(b) Ruthenium-Cumulenyliden-Komplexe

Ungesättigte Carbene der allgemeinen Form: $C(=C)_n=CH_2$ werden auf Grund des kaskadenartigen Auftretens von Doppelbindungen Cumulenylidene genannt. Carbene sind

extrem reaktiv und können an Übergangsmetallen als Metallacumulen-Komplexe der allgemeinen Form $[M](=C)_n R_1 R_2$ stabilisiert werden. Die Elektronendichten an den Kohlenstoffen der kumulierten Kette alternieren ab dem Vinyliden-Liganden (**Abb. 1**).

$$[M] \stackrel{\delta^{+}}{=} \stackrel{C}{=} \stackrel{C}{=} \stackrel{\delta^{+}}{=} \stackrel{C}{=} \stackrel{\delta^{+}}{=} \stackrel{C}{=} \stackrel{\delta^{+}}{=} \stackrel{\delta^$$

Abb. 1 Cumulenyliden–Liganden; A: Carben (n=1),B: Vinyliden (n=2), C: Allenyliden (n=3).

Vinyliden- und Allenylidenkomplexe stellen interessante reaktive Zwischenstufen in vielerlei Reaktionen dar.^{19,20,25} Neben der Addition von Elektrophilen an Alkinyl-Komplexe (**a**) ist die direkte Aktivierung terminaler Alkine über einen η^2 -Alkin-Komplex die wichtigste Darstellungsform der Vinyliden-Komplexe. So kann sich das Alkin zunächst oxidativ an das Metall addieren, um dann durch einen 1,3-H-Shift oder durch einen basenkatalysierten Protonentransfer zum Vinyliden-Komplex umzulagern (**b**). Weiterhin ist der direkte 1,2-H-Shift mit konzertierter Umlagerung möglich (**c**). Die bekannteste Bildung von Allenylidenkomplexen stellt die nachfolgende Wasserabspaltung aus Hydroxymethylvinylidenliganden dar (**d**) (Schema 2).²⁶

Schema 2 Postulierte Mechanismen zur Darstellung von Vinyliden- und Allenylidenkomplexen.²⁶

Nukleophile können an Cumulenyliden-Komplexe sowohl inter- als auch intramolekular am α -Kohlenstoffatom addiert werden, wobei sich jeweils ein Carben-Komplex bildet (Schema 3).^{19,20}

Schema 3 (e) Intermolekulare - und (f) intramolekulare Addition von Nukleophilen an Vinyliden-Liganden.²⁶

Der Allenyliden-Komplex weist zudem ein weiteres positiviertes Reaktionszentrum in der γ -Position auf. Die Addition von Nukleophilen an diese Position führt zu einem Vinyliden-Komplex **D**. Eine nukleophile Addition in α -Position ergibt einen Vinylcarben-Komplex **E** (Schema 4).

Schema 4 Reaktivität der Allenyliden-Liganden.²⁶

Metallallenyliden- und Metallvinylidenintermediate sind wesentliche Bestandteile aktueller Forschungsarbeiten und von zunehmender Bedeutung.^{16,20} Speziell für Ruthenium(II)-Komplexe sind vielseitige Wechselwirkungen mit Alkinen und Propargylalkoholen beschrieben worden.²¹ Es wird angenommen, dass die initial gebildete, kationische und koordinativ ungesättigte Metallspezies zur π -Komplexierung des Substrats führt, der sich im Fall terminaler Alkine eine Umlagerung zum Vinyliden-Komplex anschließt. Handelt es sich bei dem Alkin um einen terminalen Propargylalkohol, so kann aus der gebildeten Vinyliden-Spezies unter Wasserabspaltung ein Allenyliden-Komplex generiert werden. Für die initiale Alkin-Aktivierung ist eine ausreichend hohe Elektrophilie des Komplexes essentiell. Die geringe Toleranz gegenüber starken Donoren und Basen bedingt allerdings die Einschränkung der über kationische Allenyliden- oder Vinyliden-Spezies verlaufenden Prozesse. Somit ist über Transformationen mit stickstoffhaltigen Substraten bisher kaum berichtet worden. Die aus der Wasserstoff-Transfer-Katalyse bekannten Ruthenium(0)-Cyclopentadienon-Komplexe können dahingehend einen bedeutenden Fortschritt darstellen. Der Shvo-Komplex { $[Ph_4(\eta^5-C_4CO)]_2H$ }Ru₂(CO)₄(μ -H)^{27,28,29} 1 gilt als der bedeutendste Katalysator dieses Typs. Seine katalytische Aktivität ist hauptsächlich durch die Tatsache begründet, dass er in Lösung unter thermischen Bedingungen in seine zwei monomeren Ruthenium-Spezies 1a und 1b dissoziieren kann (Schema 5 g). So katalysiert er beispielsweise die Oxidation von Alkoholen ohne Wasserstoffakzeptor. Die Koordinierung des Alkohols am Dienon-Liganden der 16-Elektronen-Soezies 1a führt zur Erhöhung der Elektrophilie des Rutheniums, sodass die Dehydratisierung des Alkohols zur Bildung der entsprechenden Ruthenium(II)-Spezies führt (Schema 5 h). Die Redoxkopplung ermöglicht einen einfachen Wechsel des Metall-Oxidationszustandes.³⁰

Schema 5 (g) Thermische Aktivierung des Shvo Katalysators 1 in die Monomere 1a und 1b.²⁸
(h) Wasserstofftransfer mit Ruthenium-Cyclopentadienon-Komplexen.²⁹

2.1.2 Stand der Forschung im Arbeitskreis

Der Forschungsschwerpunkt unseres Arbeitskreises liegt auf der Entwicklung neuer Übergangsmetall-katalysierter Transformationen, die atomökonomische Zugänge zu komplexen, biologisch relevanten Substanzklassen eröffnen. Ein auf mechanistischen Untersuchungen basierendes rationales Katalysator- und Verfahrensdesign sowie sequentiell katalysierte Domino-Prozesse sind dabei von wesentlicher Bedeutung. Als Katalysatoren dienen Übergangsmetallkomplexe redox-gekoppelter Ligandensysteme, vorrangig funktionalisierte Ruthenium-Cyclopentadienon-Derivate (**Schema 6**).^{5–11}

Schema 6 Übergangsmetallkomplexe redoxgekoppelter Ligandensysteme.

Die basische Koordinationsstelle des Dienon-Liganden ermöglicht die Selektion des Substrats. Durch die Redoxkopplung werden die Einstellung der Elektrophilie des Metallzentrums, intramolekulare Umprotonierungen, Substratkoordinationen und die Ausbildung neutraler, koordinativ ungesättigter Spezies ermöglicht. Die Reversibilität des formalen Wechsels der Metalloxidationsstufe von Ruthenium(0) auf Ruthenium(II) ist für die Bildung der neutralen Vinyliden- oder Allenyliden-Spezies notwendig. Über die Substituenten des Ligandensystems können elektronische, sterische und stereochemische Aspekte der Komplexe justiert werden. Darüber hinaus kann durch die mögliche Dreipunktkoordination von Allyl- oder Propargylalkoholen (F) eine hohe Chemoselektivität erreicht werden. Prinzipiell sind die α -, β - und γ - Kohlenstoffatome eines Propargylfragments selektiv aktivierbar. Als zentrale Intermediate der Katalysezyklen treten π -Komplexe **F**, Alkenyl-Komplexe G, Alkinyl-Komplexe H, Vinyliden-Komplexe I und Allenylidenspezies J und K auf. Dabei können die Substrataktivierung und die Lage der Gleichgewichte zwischen den zentralen Intermediaten über die Substituenten des Ligandensystems und über die Reaktionsbedingungen dirigiert werden (Schema 7).

Schema 7 Substrataktivierung und Gleichgewichte zwischen zentralen Katalyseintermediaten.³¹

Durch Variationen der Substituenten des Dienonfragments konnte ein breites Spektrum unterschiedlich substituierter Cyclopentadienon-Komplexe generiert werden. Dazu gehören die rein Akzeptor-substituierten Ruthenium-Katalysatoren 2^{32} und die mit stickstoffhaltigen Elektronendonoren in 3,4-Position substituierten Komplexe 3 bis 9. Die Komplexe 4 und 5 enthalten weitere Akzeptoren in Position 1. Komplexe des Typs 5 bilden zusätzlich eine Wasserstoffbrücke aus. Iminiumkatalysatoren der Klasse 6 ermöglichen Synthesen ohne einen sauren Komplex-Aktivator und die labil metallkoordinierenden Seitenarme der Serie 7 bis 9 bieten die Option, den Katalysator zu immobilisieren. Von einigen Derivaten aus den Komplexserien sind parallel dazu die entsprechenden Eisenkomplexe 10 synthetisiert worden (Abb. 2).¹⁰

Abb. 2 Im Arbeitskreis etablierte Akzeptor- und Donor-substituierte Katalysatoren.

Die etablierten Cyclopentadienon-Übergangsmetallkomplexe katalysieren eine Vielzahl von Reaktionen. Dazu gehören Hydrierungen, Wasserstoff-Transferreaktionen, Oxidationen, Isomerisierungen, Hydroaminierungen und die Aktivierung von Carboxylgruppen.^{5–11} Für die potentielle Anwendung im Bereich der sequenziellen Katalyse bietet dies eine Grundlage für Anwendungsmöglichkeiten. Die Kombination eine Vielzahl von unabhängiger Folgereaktionen im Sinne von Tandem- bzw. Domino-Reaktionen wird darüber hinaus durch die bisher beobachteten, hohen Gruppentoleranzen und Chemoselektivitäten der katalytischen Reaktionen ermöglicht. Im Vordergrund stehen dabei schnelle, effiziente und im Hinblick auf ökologische Aspekte optimierte Synthesen komplexer Strukturen aus wohlfeilen Ausgangsmaterialien. Dabei liegt der Fokus liegt auf atomökonomischen und stereoselektiven Synthesen komplexer Naturstoffe und Naturstoffanaloga.

2.1.3 Aufgabenstellung

Ziel ist es neue Übergangsmetallkomplexe redox-gekoppelter Cyclopentadienon-Ligandensysteme zu generieren. Dazu sollen die Substituenten am Ligandensystem systematisch variiert und das Donoratom substituiert werden. Abschließend soll die Übertragbarkeit der im Arbeitskreis etablierten Ligandensysteme auf andere Metalle getestet werden.

2.1.4 Ergebnisse

(a) Übersicht neu generierter Komplexe

Durch gezielte Modifikation des Ligandensystems, Austausch des Donoratoms und Variation des Zentralatoms sind die in Abb. 3 dargestellten neuen Übergangsmetallkomplexe generiert worden.

Abb. 3 Neue Übergangsmetallkomplexe 11 bis 17.

(b) Substitution am C7-Atom

Die Röntgenkristallstruktur des im Arbeitskreis etablierten Katalysators **3a** verdeutlicht die asymmetrische Koordination des Metalls näher am C2 als am C5. Im Vergleich der Bindungslängen der metallgebundenen Kohlenstoffatome im Ringinneren ist der Abstand von C2 zu C3 der längste und im Vergleich der Bindungslängen der CPD^a-Kohlenstoffatome zum Ruthenium ist der C2-Ru-Abstand der kürzeste und der C4-Ru-Abstand der längste. Dadurch wird das C7-Atom endo in Richtung des Metalls gedreht (**Abb. 4**). Die Einführung eines Substituenten an dieser Position könnte die Faltung des Rückgrates am Liganden verstärken und die Umgebung des Metallzentrums somit stärker beeinflussen. Unter Verwendung eines enantiomerenreinen, C2-symmetrischen Liganden könnte darüber hinaus eine asymmetrische Induktion ermöglicht werden.

^a Cyclopentadienon

Abb. 4 Röntgenkristallstruktur von 3a.⁷

Die Liganden **11aL** und **11bL** werden durch die Folge aus nukleophiler Addition von Propan-1,2-diamin an Benzaldehyd, Reduktion mit NaBH₄ und Kondensation mit den Trionen **19a** bzw. **19b**^{33,34} dargestellt (**Schema 8**).

Schema 8 Darstellung der Katalysatoren 11a und 11b.

Der dissoziative Ligandenaustausch von **11aL** mit $Ru_3(CO)_{12}$ führt zur Bildung des Diastereomerengemisches **11a**, dessen Verhältnis von 1:0.15 darauf schließen lässt, dass die Faltung des Rückgrates am Liganden **11aL** durch die Einführung der Methylgruppe am C7 erfolgreich verstärkt wird. Das Ruthenium addiert bevorzugt von der sterisch weniger abgeschirmten Seite. Die Kristallisation des Komplexes, als eindeutiger Beweis dieser These, gelang jedoch bis zum Ende dieser Arbeit nicht.

Der Ligand **11bL** wird als Regioisomerengemisch in einem Verhältnis von 3:1 erhalten und auf Grund der geringen Stabilität auf Kieselgel ohne säulenchromatographische Trennung als Gemisch mit $Ru_3(CO)_{12}$ umgesetzt. **11b** wird als komplexes Isomerengemisch erhalten, an Hand dessen keine weitere Aussage über die Auswirkung der Methylgruppe in Position 7 getroffen werden kann. Eine Trennung ist auch hier auf Grund der Labilität auf Kieselgel nicht möglich (**Schema 8**).

(c) Variation der Seitenketten des Ligandensystems

Die Komplexe 12 und 13 sind in Position 1 mit zusätzlichen Akzeptoren versehen, die die Elektonendichte im Liganden herabsetzen und die Elektrophilie des Rutheniums erhöhen sollen. Der Komplex 12 kann darüber hinaus bereits in der Ruthenium(0)-Form eine Wasserstoffbrücke zwischen dem Amid-Substituenten und der basischen Koordinationsstelle ausbilden und somit zusätzlich stabilisierend wirken (Schema 9). Da der Einsatz korrespondierender Alkyl-, Silylpropargylether und Propargylacetate im Arbeitskreis bisher zu keiner Umsetzung führte, ist es denkbar, dass die initiale Substratkoordination im chelatisierenden Komplex F über eine Wasserstoffbrücke für die Transformationen essentiell (**Schema 7**).⁷ Diese ist wird im Komplex 12` vermutlich durch die Wasserstoffbrückenbindung des Amids eingeschränkt. Als zweite stabilisierende Konformation des Komplexes 12 ist die Struktur 12`` denkbar (Schema 9). Durch Rotation des Amid-Substituenten kann die nach oxidativer Addition eines protischen Nukleophils ausgebildete Ruthenium(II)-Spezies ebenfalls durch eine Wasserstoffbrücke stabilisiert werden. Ähnliche Komplexe der Serie 5 sind innerhalb des Arbeitskreises bereits im geringen Maß untersucht worden und zeigen eine im Vergleich zu den Komplexen 2 bis 4 geringere Aktivität (Abb. 2).¹⁰ Vermutlich wird die Redoxkopplung durch die Stabilisierung der Ruthenium(II)-Form in 12^{**} verringert, so dass der Komplex in dieser Form hauptsächlich als Lewis-Säure fungiert.

Schema 9 Wasserstoffbrückenbindung des Komplexes 12.

Die polare Seitenkette des Komplexes **13** ist möglicherweise zur Präkoordination des eintretenden Nukleophils befähigt. Denkbar wäre außerdem die Stabilisierung der Ruthenium(II)-Form **13**`` durch die Bildung einer Wasserstoffbrückenbindung nach oxidativer Addition eines protischen Nukleophils. Darüber hinaus könnte das Metallzentrum in der Ruthenium(0)-Form **13**` möglicherweise über die polare Seitenkette koordiniert werden (**Schema 10**).

Schema 10 Metallkoordination und Wasserstoffbrückenbindung des Komplexes 13.

Der Katalysator 12 wird analog zu dem bereits im Arbeitskreis etablierten Komplex 5b dargestellt.¹⁰ Der Komplex 13 ist in einer Folge aus Claisen-Kondensation von

1-Phenylpropan-2-on mit Diethyloxalat, Kondensationsreaktion mit N,N`-Dimethylethan-1,2diamin und dissoziativen Ligandenaustausch mit Ru₃(CO)₁₂ zugänglich (**Schema 11**).

Schema 11 Bildung des Katalysators 13.

Im Vergleich zu **12** sind die Komplexe **14a** und **14b** elektronenreicher. Dennoch ist von ihnen eine höhere Aktivität zu erwarten, da hier die basische Koordinationsstelle nicht durch eine Wasserstoffbrücke blockiert ist und die initiale Substratkoordination in **F** (**Schema 7**) somit möglich sein sollte. **14b** wurde im Arbeitskreis durch die Folge einer Kondensationsreaktion des Trions **19a** mit N,N`-Dimethylethan-1,2-diamin, einer Michael-Addition mit N-Phenylmaleinimid (NPM) und abschließender Reaktion mit Ru₃(CO)₁₂ synthetisiert (**Schema 12**).

Schema 12 Darstellung der Komplexe 14a und 14b^b.

Neben der axialen Chiralität weist der Komplex **14b** ein zusätzliches Stereozentrum im Ligandenarm auf. Um die Synthese eines enantiomerenreinen Komplexes zu ermöglichen, wurde der Komplex **14a** analog zu **14b** unter Verwendung des C2-symmetrischen, chiralen Diamins **20** synthetisiert. Eine asymmetrische Induktion durch die Stereozentren des Tetrahydropyrazins ist angesichts der Entfernung zwischen dem Chiralitats- und dem dem Reaktionszentrum vermutlich eher nicht zu erwarten. Denkbar wäre jedoch eine mögliche Trennbarkeit der Diastereomeren des Liganden und des axial-chiralen Komplexes. Somit könnte das Reaktionszentrum asymmetrisch flankiert werden. Auf Grund der möglichen Koordination des Metallzentrums und der Präkoordination des eintretenden Nukleophils durch die polare Gruppe des Liganden könnte darüber hinaus eine weitere asymmetrische

^b Arbeitskreisintern synthetisiert

Induktion erfolgen. Die Trennung der Diastereomeren konnte jedoch bis zum Ende dieser Arbeit nicht erfolgreich abgeschlossen werden.

(d) Variation des Zentralatoms

Die Variation des Zentralatoms der im Arbeitskreis etablierten Ruthenium-Komplexe 2 bis 9 konnte im Arbeitskreis bislang nur mit Fe2(CO)9 erfolgen (Abb. 2). Weitere zeit- und arbeitsintensive Modifikationen mit den Metallen Rhodium, Iridium, Molybdän und Wolfram führten bisher jedoch zu keinem Erfolg. Für die Untersuchung weiterer Variationsmöglichkeiten wurden $Co_2(CO)_8$ und $Os_3(CO)_{12}$ unter verschiedenen thermischen und photochemischen Bedingungen mit dem Liganden 3aL umgesetzt. Während es mit Co₂(CO)₈ zu keiner Reaktion kam, konnte mit Os₃(CO)₁₂ schließlich der Komplex 15 nach 9h bei 145°C mit einer Ausbeute von 12% erfolgreich dargestellt werden (Schema 13).

Schema 13 Darstellung des Osmium-Komplexes 15.

Der Ligand des Komplexes 15 erscheint, im Gegensatz zu dem von 3a, im Spektrum asymmetrisch. Wegen der hohen Kosten des $Os_3(CO)_{12}$ und der geringen Ausbeute des Komplexes 15 wurden dessen katalytische Eigenschaften im Rahmen der Arbeit nicht getestet.

(e) Variation der polaren Gruppe des Dienon-Liganden

Der Komplex 16 wird durch die Ethylierung der basischen Koordinationsstelle des Komplexes 3a generiert (Abb. 5). Zwar wird dadurch die Elektrophilie des Metallzentrums erhöht, doch werden zugleich die primäre Substratkoordination in F (Schema 7) und die Fähigkeit zur Präkoordination des Nukleophils stark beeinträchtigt. Weiterhin ist vermutlich die elektronische Kopplung zwischen Ligand und Metall herabgesetzt, wodurch die Fähigkeit des formalen Wechsels der Metalloxidationsstufe von Ruthenium(II) auf Ruthenium(0) verringert wird. Somit kann angenommen werden, dass die Aktivität des Komplexes in Form von Ruthenium(II) als Lewis-Säure fixiert ist. Eine Gegenüberstellung der Komplexe 3a und 16 in weiteren Untersuchungen könnte nähere Einblicke in die mechanistischen Abläufe der Transformationen ermöglichen, vorhandene Kenntnisse fundieren und somit zur Aufklärung der Reaktionsmechanismen beitragen.

Abb. 5 Ethylierung von 3a zur Darstellung des Komplexes 16.

Für die Darstellung des Komplexes 17 wird zunächst der entsprechende Ligand 17L synthetisiert, indem die Carbonylgruppe des Dienon-Liganden **3aL** durch eine NH₂-Gruppe ersetzt wird. Die Herausforderung hierbei besteht darin, eine geeignete NH2-Quelle für die Substitution zu finden. Der direkte Einsatz von Ammoniak und verschieden Ammoniumsalzen führt zu keinem Erfolg. Durch Ethylierung der Carbonylgruppe des Liganden 3aL und die anschließende Umsetzung mit Formamid bzw. Formamidin-Acetat hingegen kann der Ligand **17L** erfolgreich isoliert werden. Eine zusätzliche Ausbeutesteigerung wird dabei unter Zusatz von TEA erreicht (Tabelle 1).

Tabelle 1 Bildung des Liganden 17L

$\begin{array}{c c} & Ph \\ N \\ N \\ N \\ Ph \end{array} \xrightarrow{Ph} O \end{array} \xrightarrow{1.) Et_3O^*BF_4} O \xrightarrow{Ph} $						
Nr.	$\begin{array}{c c} & & 21 \\ & \oplus & \mathbf{NH}_2 & \mathbf{O} \ominus \\ & & \parallel & & \\ & H_2 \mathbf{N} & \mathbf{O} \end{array}$	O H₂N IJ	TEA	Ausbeute 1 7L [%]		
1	-	4eq	-	25%		
2	-	4eq	2eq	63%		
3	-	-	2eq	-		
4	4eq	-	5.5eq	35%		

Die Ethylierung³⁵ der Carbonylgruppe des Ligandes **3aL** mit Et_3O*BF_4 führt zu der Bildung des instabilen Derivats **3aL**^{*}, das vermutlich nukleophil von dem jeweiligen Amid/-in angegriffen wird. Die anschließende Eliminierung von Ethanol führt zu der Bildung des Intermediats **23**, woraufhin durch eine Folge aus Addition und Eliminierung der Ligand **17L** generiert wird. Die Zugabe von TEA sorgt vermutlich dafür, dass die Ethoxy-Gruppe in **22**^{*} als Ethanolat-Anion eliminiert wird, was die Reaktionsgeschwindigkeit der nachfolgenden Sequenz und damit die Ausbeute von **17L** erhöht (**Schema 14**).

Schema 14 Bildung des Liganden 17L.

Der Komplex 17 wird schließlich, analog zu der Darstellung der Komplexe 11 bis 14, durch den dissoziativen Ligandenaustausch mit $Ru_3(CO)_{12}$ gewonnen. Auch hier befindet sich das Gleichgewicht auf der Seite der Ruthenium(II)-Spezies, was die Aktivität in Form einer Lewis-Säure vermutlich erhöht. Eine Beeinflussung der Gleichgewichtslage mit Hilfe saurer oder basischer Co-Katalysatoren ist denkbar. So könnte bspw. die Zugabe eines sauren Additivs, wie TFA oder BF₃*Et₂O, das Gleichgewicht gänzlich auf die Seite der Ruthenium(II)-Spezies 17[°] verschieben, wohingegen bei Verwendung eines basischen Additivs, wie DBU, ein gegenläufiger Effekt hin zum Ruthenium(0)-Komplex erzielt werden würde.

Abb. 6 NH₂-Katalysator 17.

Die Akzeptoreigenschaften der Koordinationsstelle des aza-analogen Dienon-Liganden sind entsprechend geschwächt, was zur Folge hat, dass die Fähigkeit zur initialen Substratkoordination in **F** (**Schema 7**) herabgesetzt ist. Stattdessen könnte die Amin-Funktion als Wasserstoffbrücken-Donor fungieren und somit die Transformation von Propargylketonen ermöglichen. Entsprechende Untersuchungen mit dem Komplex **17** könnten somit ein breites Spektum neuer Transformationsmöglichkeiten eröffnen.

2.1.5 Zusammenfassung

Die systematische Modifikation der im Arbeitskreis etablierten Ruthenium-Cyclopentadienon-Komplexe konnte erfolgreich umgesetzt werden. Durch die Variation der Substituenten des Dienon-Liganden, Austausch des Zentralatoms und die Veränderung der polaren Gruppe des Liganden wurden dabei acht neuartige Übergangsmetallkomplexe synthetisiert.

Es wurden die Komplexe **11a** und **11b** synthetisiert, um die Faltung des Rückgrates am Liganden zu verstärken, damit die Umgebung des Metallzentrums zu beeinflussen und möglicherweise einen Zugang zur asymmetrischen Induktion zu erzeugen. Dafür wurden die im Arbeitskreis etablierten Komplexe **3a** und **3b** am C7-Atom substituiert. Das Diastereomerenverhältnis von **11a** deutet auf eine erfolgreiche Verstärkung der Faltung hin. Die Kristallisation der Komplexe, zur Durchführung einer Röntgenstrukturanalyse, gelang jedoch bis zum Ende dieser Arbeit nicht.

Weiterhin konnten die Akzeptor-substituierten Komplexe 12 und 13 generiert werden, die durch ihre polaren Seitenketten vermutlich in der Lage sind, die jeweilige Ruthenium(0)bzw. Ruthenium(II)-Form durch Ausbildung von Wasserstoffbrückenbindungen bzw. koordinierende Effekte zum Metallzentrum zu stabilisieren. Speziell im Ruthenium(0)-Komplex 12` wirkt sich die Wasserstoffbrückenbindung dabei möglicherweise negativ auf die Präkoordination des eintretenden Nukleophils und auf die initiale Substratkoordination in **F** (Schema 7) aus. Die Stabilisierung der Ruthenium(II)-Form könnte in beiden Komplexen insgesamt zu einer verstärkten Aktivität als LS führen.

Mit der Synthese des Komplexes **14a** gelang die Darstellung eines axial chiralen Derivats mit einem zusätzlichen Stereozentrum im Ligandenarm und definierten Stereozentren im Tetrahydropyrazin-Fragment. Die Trennung der Diastereomere und damit die Darstellung des enantiomerenreinen Komplexes konnten jedoch bis zum Ende dieser Arbeit nicht erfolgreich abgeschlossen werden.

Die Variation des Zentralatoms der im Arbeitskreis etablierten Ruthenium-Komplexe gelang durch Umsetzung des Liganden 3aL mit $Os_3(CO)_{12}$ und führte zur Darstellung des Komplexes 15.

Der Ruthenium(II)-Komplex **16** wurde durch die Ethylierung der basischen Koordinationsstelle von **3a** generiert. Neben der erhöhten Elektrophilie am Metallzentrum sind vor allem Veränderungen im Bereich der koordinativen Fähigkeiten zu vermuten. Den interessantesten Aspekt für mechanistische Untersuchungen stellt jedoch die eingeschränkte elektronische Kopplung zwischen Ligand und Metall dar.

Für die Synthese des Komplexes **17** wurde zunächst der entsprechende Ligand **17L** durch die Substitution der Carbonylgruppe von **3aL** dargestellt und anschließend analog zu der Darstellung von **11** bis **14** durch den dissoziativen Liagandenaustausch mit $Ru_3(CO)_{12}$ umgesetzt. Die interessante Möglichkeit der gezielten Einstellung des Gleichgewichtes zwischen der Ruthenium(0)- und der Ruthenium(II)-Form durch den Einsatz saurer oder basischer Additive schafft die Voraussetzung für einen vielseitigen und flexiblen Einsatz des Komplexes **17** in zukünftigen Transformationen. Die Fähigkeit der neuartigen polaren Gruppe des Liganden als Wasserstoffbrücken-Donor zu fungieren, könnte eine gänzlich neue Aktivität des Komplexes hervorrufen.

2.1.6 Ausblick

Ein umfassendes Screening der neuen Katalysatoren könnte plausible Zusammenhänge zwischen elektronischen Gegebenheiten am Ligandensystem und dem Katalyseverhalten der Metallkomplexe aufdecken. Der Einfluss elektronischer, sterischer und koordinativer Substituenteneffekte auf Reaktivität und Selektivität sollte dabei weiter systematisch untersucht werden. Möglicherweise können somit bereits bestehende Reaktionen optimiert bzw. neue gefunden werden.

Röntgenkristallstrukturen von **11a** und **11b** würden zu einer genaueren Aussage bezüglich der Konformation befähigen, konnten aber im zeitlichen Rahmen der vorgestellten Arbeiten nicht gewonnen werden. Durch systematische Variation des C7-Substituenten könnten Potenzial und Ausmaß der Einführung asymmetrischer Induktion mit Hilfe des Tetrahydropyrazin-Fragmentes abgeschätzt werden. Polare Liganden an der C7-Position könnten zudem zur Koordination des Metallzentrums führen.

Die Untersuchung der Einflüsse der Akzeptor-Liganden in **12** und **13** auf die elektronischen Gegebenheiten im Komplex sowohl durch die Ausbildung von Wasserstoffbrückenbindungen als auch durch koordinierende Effekte zum Metallatom stellt eine interessante Ergänzung dar.

Die Entwicklung asymmetrisch katalysierter Prozesse soll zukünftig zur Etablierung der Verfahren im Rahmen der Natur- und Wirkstoffsynthese führen. Für die Synthese enantiomerenreiner Komplexe könnten die entsprechenden Liganden durch chromatographische Trennungen an chiralen Säulen oder analog zur Darstellung des Liganden 14L, durch die Einführung C2-symmetrischer chiraler Edukte, enantiomerenrein dargestellt werden. Die nach dem dissoziativen Ligandenaustausch mit Ru₃(CO)₁₂ trennbaren Diastereomerengemische könnten zu einer asymmetrischen Induktion in den Transformationen führen.

Es konnte bereits im Arbeitskreis gezeigt werden, dass die untersuchten Transformationen mit Ruthenium(II)-Komplexen, wie bspw. $[CpRuCl(PPh_3)_2]$ und $[RuCl_2(PPh_3)_3]$ nicht katalysiert werden.^{5,7} Der direkte Vergleich der Transformationen mit dem Ruthenium(II)-Komplex **16** und dem Ruthenium(0)-Komplex **3a** könnte weitere wichtige Erkenntnisse über die Notwendigkeit der Redoxkopplung für die entwickelten Verfahren und speziell für die mögliche intermediäre Ausbildung der Allenyliden- und Vinylidenkomplexe **I** bis **K** (**Schema 7**) liefern.

Die im Arbeitskreis etablierten Cyclopentadienon-Ruthenium-Komplexe katalysieren eine Vielzahl von Reaktionen.^{5–11} Der neuartige Komplex **17** könnte dieses breite Spektrum auf Grund der polaren Donorgruppe am Liganden zusätzlich erweitern. Erste Untersuchungen sollten diesbezüglich mit Propargyl- und Allylketonen durchgeführt werden. Allgemein eröffnet dieser Komplex möglicherweise ein neues Gebiet der produktorientierten Anwendung.

2.2 Pyrrole und Indole

2.2.1 Einführung

In Abschnitt 2.2 werden Untersuchungen verschiedener rutheniumkatalysierter Transformationen von 1-Vinylpropargylalkoholen mit ungeschützten Aminen und Pyrrolen vorgestellt. Die mechanistisch unterschiedlichen Reaktionen werden von dem redox-Ruthenium-Cyclopentadienonkomplex 3a katalysiert und führen gekoppelten zu hochsubstituierten Pyrrolen und Indolen. Die selektiven Transformationen dieser leicht zugänglichen Edukte eröffnen einen atomökonomischen Zugang zu komplexen, biologisch relevanten Substanzklassen und finden in der Natur- und Wirkstoffsynthese Anwendung.

(a) Anwendungen von Pyrrolen und Indolen

In der modernen Forschung stellen die Pyrrol- und Indolkerne wichtige heteroaromatische Systeme dar, die in den Bereichen der Polymerchemie, Medizin, Farbstoffchemie, Kunststofftechnik, Parfümerie, Lebensmittelchemie^c, Agrochemie und der Naturstoffchemie vielfach zur Anwendung kommen.^{36,37} In der Polymerforschung ist das in **Abb. 7** dargestellte Polypyrrol wichtiger Vertreter aktueller Forschungsarbeiten und wird auf Grund seiner sehr guten Leitfähigkeit in der Werkstofftechnik zum Abschirmen elektromagnetischer Strahlung sowie als Kondensator bei extremen Temperaturbedingungen genutzt. Auch in der Sensortechnik, Solarzellentechnik und Mikrobiologie findet es Anwendung.³⁸

Abb. 7: Polypyrrol.

In der Medizin finden zahlreiche Alkaloide vor allem wegen ihrer starken physiologischen Wirkungen Anwendung. Indol-Alkaloide sind neben den Isochinolin-Alkaloiden die größte Alkaloidgruppe. Derzeit sind etwa 2000 Indol-Alkaloide bekannt.³⁹ Cycloprodigiosin⁴⁰, ein Pyrrolalkaloid der Prodigiosin-Familie⁴¹, wird als therapeutisches Medikament bei Leukämie, als Immunsuppressor und als Apoptose-Inhibitor eingesetzt.⁴² Yohimbin³⁹, ein Indolalkaloid, wird als α2-Adrenozeptorenblocker, Sympathikolytikum, Antihypertonikum sowie als Aphrodisiakum verwendet. Indometacin und Ketorolac sind Wirkstoffe aus der Gruppe der nicht-steroidalen Entzündungshemmer mit schmerzlindernden, fiebersenkenden und entzündungshemmenden Eigenschaften. Die Effekte beruhen auf der Hemmung der 4',6-Diamidin-2-phenylindol **Biosynthese** der Prostaglandine. (DAPI) ist ein

^c Nahrungsergänzungsmittel, Geschmacksverstärker

Fluoreszenzfarbstoff, der in der Fluoreszenzmikroskopie zur Markierung von DNA eingesetzt wird (**Abb. 8**).⁴³

Abb. 8 Beispiele medizinisch bedeutsamer Pyrrol- und Indolderivate.

(b) Synthesemöglichkeiten

Die Entwicklung neuer und verbesserter Synthese-Methoden der Pyrrole und ihrer benzannelierten Indol-Analoga ist wegen der breiten Anwendungsmöglichkeiten von großer Bedeutung. Neben den klassischen Synthesemethoden, wie der Paal-Knorr-Pyrrolsynthese und der Fischer-Indolsynthese, bieten die modernen katalytischen Synthesemethoden effiziente Alternativen zur Darstellung von Pyrrolen und Indolen, mit denen hohe Selektivitäten erzielt werden können. Diese beinhalten unter anderem Carbonylierungen⁴⁴, Kreuzkupplungen³⁶, C-H-Aktivierungen^{43,45}, Umlagerungen von Diazo-Verbindungen⁴⁶, Redoxisomerisierungen⁴⁷⁻⁵², Cycloisomerisierungs-Prozesse^{47-49,53} oder die "borrowinghydrogen"-Methode^{54,55}. So beschreibt bspw. Larock die Pd-katalysierte Kreuzkupplung von o-Halogenanilinen mit internen Alkinen (i).³⁶ Saito et al. nutzen die "hydrogen-borrowing"-Methode zur Darstellung 2,3,5-trisubstituierter Pyrrole durch die Umsetzung von Aminoalkoholen mit Ketonen (j).⁵⁵ Die Arbeitsgruppe von Lei entwickelte die silberkatalysierte Synthese von Pyrrolen durch Cycloaddition terminaler Alkine mit Isocyaniden (k) (Schema 15).⁴⁷

Schema 15 (i) Larock-Indol-Synthese³⁶, (j) Pyrrolsynthese nach Saito⁵⁵ (k) Lei`s Indolsynthese.⁴⁷

Auch die selektive katalytische Funktionalisierung von bestehenden Pyrrol- und Indolgerüsten führt auf interessanten Wegen zur Synthese wichtiger Alkaloid-Klassen. So entwickelten Trost et al. eine Tandem-Ru/In-katalysierte Methode zur Darstellung von β -heteroarylierten Ketonen durch die Redoxisomerisierung interner, sekundärer Propargylalkohole.⁵¹ Nishibayashi et al. zeigten eine vergleichbare Transformation über einen Phosphorverbrückten Dirutheniumkomplex sowie ein durch Thiolat-verbrückte Dirutheniumkomplexe katalysiertes Verfahren zur Propargylierung verschiedener Heteroaromaten mit terminalen, sekundären Propargylalkohole.^{52,56}

2.2.2 Stand der Forschung im Arbeitskreis

Arbeitskreisintern wurden bereits verschiedene rutheniumkatalysierte Transformationen von Propargylalkoholen mit Pyrrolen, Indolen und Aminen untersucht. Die mechanistisch unterschiedlichen Reaktionen werden von dem redox-gekoppelten Ruthenium-Cyclopentadienonkomplex **3a** katalysiert und führen zu hochsubstituierten Pyrrolen und Indolen, wobei der jeweilige Reaktionspfad über die Wahl der Substituenten am Propargylalkohol determiniert werden kann (**Schema 16**).

Schema 16 Funktionalisierung von Pyrrolen / Indolen mit Propargylalkoholen.

Die rutheniumkatalysierte Umsetzung sekundärer, terminaler Propargylalkohole führt mit Pyrrolen über einen Redoxisomerisierungsprozess zu der Bildung von Pyrrolylpropanonen und mit Indolen zu der Bildung von Indolylpropanonen (**Schema 16**, **l** und **m**). Bei Verwendung tertiärer, terminaler Propargylalkohole werden Pyrrole und Indole propargyliert (**Schema 16**, **n** und **o**).⁷

Schema 17 Rutheniumkatalysierte Pyrrol- und Indolbildung.

Neben den Untersuchungen zur Funktionalisierung von Pyrrolen und Indolen wurden erste Versuche zur Darstellung selbiger durch rutheniumkatalysierte Transformationen des 1-Vinylpropargylalkohols **24a** mit Pyrrol sowie den ungeschützten Aminen Anilin und Benzylamin durchgeführt. Dabei wurden das Indol **25a** als Hauptprodukt und die Pyrrole **26** in Spuren detektiert (**Schema 17**).⁷

2.2.3 Aufgabenstellung

Ziel ist es, unter Verwendung des im Arbeitskreis etablierten Katalysators **3a**, Studien zur Anwendungsbreite und Optimierungen der rutheniumkatalysierten Darstellung von Indolen und Pyrrolen durchzuführen. Die gezielte Variation der Substrate hinsichtlich mechanistischer Aspekte soll zur Aufklärung der Katalysezyklen dienen. Das Potential der entwickelten, katalytischen Methoden soll abschließend im Rahmen einer Natur- oder Wirkstoffsynthese demonstriert werden.
2.2.4 Ergebnisse

(a) Optimierung der Reaktionsbedingungen

An Hand der rutheniumkatalysierten Umsetzung zum 4,5-Dimethyl-1H-indol 25a wurden zunächst die Reaktionsbedingungen optimiert. Hierfür wurde ein umfangreiches Screening mit verschiedenen Lewis- und Brønsted-Säuren als Co-Katalysatoren, Temperaturen und Lösemitteln durchgeführt (Tabelle 2). Die besten Ergebnisse sind mit den protischen Additiven TFA, Zimtsäure und Oxalsäure bzw. den Säuren BF3*Et2O und HBF4*Et2O zu beobachten. Vermutlich erhöht der jeweilige Co-Katalysator durch Koordination an der Carbonylgruppe des Liganden die Elektrophilie des Rutheniumzentrums. Zitronensäure, Essigsäure, p-Toluolsulfonsäure, Camphersäure und Camphersulfonsäure (CSA) führen hingegen zu einer im Vergleich schlechteren Produktausbeute, was auf die verstärkte Bildung von Nebenprodukten zurückzuführen sein könnte. Perchlorsäure ist als Additiv gänzlich ungeeignet und führt zur vollständigen Zersetzung der Edukte. Die Variation des Lösemittels ist nur in engen Grenzen möglich. Während in aprotisch, unpolaren Lösemitteln ein guter Umsatz beobachtet wird, nimmt die Katalysatoraktivität mit steigender Polarität des Lösemittels in der Reihenfolge Toluol > THF > MeCN / 1.4-Dioxan > tBuOH ab. Die Reaktion läuft bereits in schwach polaren Halogenalkanen nicht mehr ab (Tabelle 2, Eintrag 24). Mischungen aus Toluol und THF sind bis zu einem THF-Anteil von 40 Vol-% nutzbar (Tabelle 2, Eintrag 20). Die Variation der Temperatur erbrachte keine weitere Effektivitätssteigerung. Die Ausbeute nimmt proportional zur Temperatur ab und kommt bei RT schließlich ganz zum Erliegen. Die Reaktionsführung in Xylol bei 145°C führte zu einer vollständigen Zersetzung der Edukte. Der beste Umsatz wird mit TFA in Toluol bei 100°C erzielt. Diese Bedingungen wurden im Folgenden als Standard festgelegt.

Tabelle 2 Additive und Reaktionsbedingungen

Nr.	Additiv	Reaktionsbedingung	Ausbeute 25a [%]
1	TFA	Toluol, 100°C	96
2	Oxalsäure	Toluol, 100°C	82
3	Zimtsäure	Toluol, 100°C	58
4	CSA	Toluol, 100°C	32
5	Camphersäure	Toluol, 100°C	29
6	pTsOH	Toluol, 100°C	27
7	AcOH	Toluol, 100°C	12
8	Zitronensäure	Toluol, 100°C	10
9	HClO ₄	Toluol, 100°C	<1
11	HBF ₄ *Et ₂ O	Toluol, 100°C	65
12	BF ₃ *Et ₂ O	Toluol, 100°C	73
13	In(OTf) ₃	Toluol, 100°C	<1
14	Sc(OTf) ₃	Toluol, 100°C	<1
15	Yb(OTf) ₃	Toluol, 100°C	<1
16	TFA	Toluol, 60°C	20
17	TFA	Toluol, 25°C	<1
18	TFA	Toluol, 25°C	<1 ^[a]
19	TFA	Xylol, 145°C	<1
20	TFA	Toluol / THF, 60°C	75
21	TFA	Toluol / MeCN, 80°C	50
22	TFA	Toluol / 1.4-Dioxan, 100°C	50
23	TFA	Toluol / t-BuOH, 80°C	40
24	TFA	(CH ₂ Cl) ₂ , 80°C	<1
25	TFA	THF, 65°C	<1

[a] Reaktionszeit 72h, Katalysator **4a**.

(b) Untersuchungen zur Anwendungsbreite der Indolbildung

Hinsichtlich der Untersuchungen zur Anwendungsbreite der rutheniumkatalysierten Indolsynthese wurden Transformationen verschieden substituierter, terminaler 1-Vinylpropargylalkohole mit 1-*H*-Pyrrol und N-substituierten Pyrrolen analysiert. Die Ergebnisse in Tabelle 3 zeigen, dass die entwickelten Transformationen zur Bildung hochfunktionalisierter 4-Methyl-Indole **25** in guten bis sehr guten Ausbeuten führen (Tabelle 3, Einträge 1 bis 6). Wird *N*-Methylpyrrol als Nukleophil eingesetzt, so werden

vereinzelt die regioisomeren 7-Methylindole **27** gebildet (Tabelle 3, Einträge 8 und 9). Der sterische Anspruch der Methylgruppe am Pyrrol führt vermutlich zu einer Verlangsamung des initialen Allylsubstitutionsschritts, wodurch der entsprechende Angriff partiell über die Position 3 im Pyrrol stattfinden kann. Das elektronenarme *N*-Phenylpyrrol verhält sich vollständig unreaktiv.

Nr.	Pyrrol	R_1	\mathbf{R}_2	R ₃	24	Ausbeute 25 [%]	Ausbeute 27 [%]
1	1-H-Pyrrol	Me	Η	Н	24a	96 (25a) ^[b]	<1
2	1-H-Pyrrol	Me	Η	Ph	24b	58 (25b)	<1
3	1-H-Pyrrol	Me	-	(CH ₂) ₄ -	24c	35 (25c)	<1
4	1-H-Pyrrol	Me	-	(CH ₂) ₃ -	24d	44/87 ^[a] (25d)	<1
5	1-H-Pyrrol	p-NO ₂ -Ph	Н	p-Toluol	24e	83 (25e)	<1
6	1-H-Pyrrol	Et	Н	Me	24f	60 (25f)	<1
7	1-Me-H-Pyrrol	Me	Н	Н	24a	45 (25g)	<1
8	1-Me-H-Pyrrol	Me	Н	Ph	24b	68 (25h)	21 (27h)
9	1-Me-H-Pyrrol	Et	Н	Me	24f	16 (25i)	5 (27i)
10	1-Ph-H-Pyrrol	Me	Η	Н	24a	<1 ^[b]	<1

Tabelle 3 Ruthenium katalysierte Indolbildung

[a] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen; [b] Arbeitskreisinternes Ergebnis.

Analoge Umsetzungen mit dem biallylischen Alkohol 24g führen in sehr guten Ausbeuten zu den entsprechenden Indolen (Tabelle 4). Die Umsetzung sehr elektronenarmer und sterisch anspruchsvoller, N-substituierter Pyrrole führt, auf Grund der erhöhten Reaktivität des Alkohols 24g, zu einer ebenfalls sehr guten Ausbeute. Die Bildung entsprechender Regioisomere nicht wird beobachtet, was vermutlich auf eine erhöhte Reaktionsgeschwindigkeit des stark elektrophilen Alkohols zurückzuführen ist. Die Styrylgruppe in Position 5 der Indole 28 eignet sich hervorragend für Folgetransformationen, wie bspw. [3+2]-Cyclodimerisierung⁵⁷ und Photocyclisierung⁵⁸ oder auch die im Ausblick (Kap. 2.2.6) näher erläuterten Möglichkeiten der 1,5-H-Verschiebung sowie diverse Cycloadditionen.

	Ph OH Ph 24g	Pyrrol 3a (2mol-%) TFA (2mol-%) Toluol, 100°C, 4h N R Ph R Ph	Ph 29 Ph
Nr.	Pyrrol	Ausbeute 28 [%]	Ausbeute 29 [%]
1	1-H-Pyrrol	94 ^[a] (28a)	<1
2	1-Ph-H-Pyrrol	96 ^[a] (28b)	<1
3	1-pCl-Ph-H-Pyrrol	92 ^[a] (28c)	<1

Tabelle 4 Indolbildung aus biallylischen Alkoholen

[a] Analytisch bestimmte Ausbeute.

Werden interne, tertiäre 1-Vinylpropargylalkohole mit Pyrrolen umgesetzt, so kommt es zur rutheniumkatalysierten Allylierung der Nukleophile und somit zur Bildung der entsprechenden (Z)-Enine (Tabelle 5). Die Cyclisierung zum Indol konnte in keinem Fall beobachtet werden, was auf die zwingende Notwendigkeit eines terminalen Protons für den Cyclisierungsschritt hinweist.

Tabelle 5 Rutheniumkatalysierte Allylierung

Nr.	Pyrrol	R_1	R ₂	R ₃	24	Ausbeute 30 [%]
1	1-H-Pyrrol	Me	Ph	Ph	24h	81 ((Z)- 30a)
2	1-H-Pyrrol	Me	Ph	Me	24i	51 ((Z)- 30b)
3	1-H-Pyrrol	Me	Ph	Hex	24j	97 ((Z)- 30c)
4	1-H-Pyrrol	Me	Ph	TMS	24k	77 ((Z)- 30d)
5	1-Methyl-H-Pyrrol	Me	Ph	Ph	24h	60 ((Z)- 30e)
6	1-(2-Aminophenyl)pyrrol	Me	Ph	Me	24i	40 ((Z)- 30f)
7	1-(2-Aminophenyl)pyrrol	Me	Ph	Ph	24h	44 ((Z)- 30g)

Um zu zeigen, dass eine spontane Cyclisierung terminaler (Z)-Enine **30** in Abwesenheit des Katalysators oder des Co-Katalysators auszuschließen ist, wurde die in **Schema 18**

dargestellte Testreaktion durchgeführt. Nach der Entschützung des internen (Z)-Enins **30d** kann **30d**` quantitativ isoliert werden. Eine spontane Cyclisierung findet nicht statt. Jedoch kann das terminale Enin **30d**` rutheniumkatalysiert zum Indol **25b** cyclisiert werden (**Schema 18**).

Schema 18 Rutheniumkatalysierte Enincyclisierung.⁷

Die rutheniumkatalysierte Umsetzung des terminalen Ethinylcyclohexanols in Abwesenheit eines geeigneten Nukleophils führt zu einer Mischung aus dem konjugierten Enin **31** und dem CO-verkürzten Alken **32**, was die Bildung eines intermediären Allenylidenkomplexes vermuten lässt (**Schema 19**).^{59,60}

Schema 19 Rutheniumkatalysierte Transformation tertiärer Propargylalkohole in Abwesenheit eines geeigneten Nukleophils.⁷

Unter Berücksichtigung bisheriger, arbeitskreisinterner Untersuchungen^{6,8} wurde der in Schema 20 dargestellte Mechanismus zur Indolbildung postuliert. Demnach kommt es zunächst zu der Bildung einer chelatisierenden Substratkoordination in L. Dieser Schritt ist für die initiale Transformation entscheidend und gelingt nur bei Vorhandensein einer basischen Koordinationsstelle am elektronisch gekoppelten Liganden im Komplex. Die Komplexe 2a und 16 weisen entsprechend schwächere Akzeptoreigenschaften bezüglich der Bildung von Wasserstoffbrückenbindungen auf und verhalten sich unreaktiv.⁵ Die arbeitskreisintern durchgeführte, rutheniumkatalysierte Umsetzung von 1-Ethinylcyclohex-1en **31** mit Pyrrol führt zu keiner Reaktion.⁵ Daher kann ein potentieller Reaktionsweg über die initiale Bildung konjugierter Enine ausgeschlossen werden. Durch den Angriff des Nukleophils am chelatisierten 1-Vinylpropargylalkohol im π -Komplex L kommt es zur Wasserabspaltung sowie zu der Bildung des π -Komplexes M1, aus dem die sterisch weniger gehinderten (Z)-Enine 30 hervorgehen. Interne Substrate werden unter den Standardbedingugen (Tabelle 2) nicht weiter umgesetzt. Ähnliche, rutheniumkatalysierte Transformationen von Allylalkoholen und entsprechende goldkatalysierte Umsetzungen von 3-Silvloxy-1,4-eninen sind bekannt.^{22,61}

Das Ergebnis in Schema 19 weist darauf hin, dass im Fall der Umsetzung terminaler 1-Vinylpropargylalkohole ein internes Gleichgewicht zwischen dem π -Komplex L und dem

Allenylidenkomplex L` denkbar wäre. Der Angriff des Nukleophils würde demnach direkt zur Bildung des Alkinyl-Komplexes N1 führen. Dieser befindet sich im internen Gleichgewicht mit dem π -Komplex M1 und dem Vinyliden-Komplex O1. Von ähnlichen Gleichgewichten wurde bereits berichtet.^{19,20,60} Die folgende Cyclisierung könnte durch intramolekulare Protonierung der Dreifachbindung aus dem π -Komplex M1 oder aus dem Alkenyl-Komplex N1 hervorgehen. Letzteres erscheint wahrscheinlicher, da die Cyclisierung bei Transformationen interner Substrate nicht beobachtet wurde. Es kommt zur Bildung des Alkenyl-Komplexes P1. Eine Folge aus formaler 1,5-H-Verschiebung und reduktiver Eliminierung des Produktes aus dem Komplex Q1 führt zur Regeneration der aktiven Katalysator-Spezies. Die Verwendung eines sauren Additivs ist nicht zwingend notwendig, führt jedoch zur Beschleunigung der Reaktion und damit zu einer verbesserten Produktausbeute. Vermutlich wird durch die Protonierung der Carbonylgruppe des Liganden die Elektrophilie des Ruthenium-Zentrums erhöht. Zusätzlich wird der Dehydratisierungs-Schritt begünstigt.⁷

Schema 20 Postulierter Mechanismus zur Bildung der Enine 30a-e Indole 25.

(c) Untersuchungen zur Anwendungsbreite der Pyrrolbildung

In früheren Untersuchungen im Arbeitskreis wurde 3-Methylpent-1-en-4-in-3-ol **24a** jeweils mit Benzylamin und Anilin umgesetzt, wobei die Pyrrole **26** nur in Spuren zugänglich waren. Anilin reagierte bei 100°C kaum, wohingegen die Reaktion mit dem nukleophileren Benzylamin hauptsächlich über die Markovnikov-Addition zur Bildung des korrespondierenden Imins führte (**Schema 21**).

Schema 21 Umsetzung von 24a mit Anilin oder Benzylamin.

Für die Optimierung und die Untersuchungen zur Anwendungsbreite der rutheniumkatalysierten Pyrrolbildung wurden die allgemeinen Reaktionsbedingungen der Tabelle 2 entnommen und die Substitutionsmuster am Amin und am 1-Vinylpropargylalkohol variiert (Tabelle 6). Um die geringe Nukleophilie des Anilins zu kompensieren, wurden entsprechende Derivate mit einer zweiten, labil koordinierenden Donorfunktion umgesetzt (Tabelle 6, Einträge 3 bis 7). Diese führen vermutlich zu einer entropisch günstigen Präkoordination am Katalysatorkomplex und initialisieren die Allylsubstitution am Vinylpropargylalkohol, wodurch die Pyrrole in höheren Ausbeuten erhalten werden. Auch der Einsatz höherer Temperaturen unter Mikrowellenbedingungen führt zu einer deutlichen Ausbeutesteigerung. Beim Einsatz des der Doppelbindung phenylierten an 1-Vinylpropargylalkohols 24b ist im Vergleich zu der Umsetzung mit 24a ein leichter Zuwachs zu erkennen, was vermutlich auf die erhöhte Reaktionsgeschwindigkeit der initialen Allylsubstitution in benzylischer Position zurückzuführen ist (Tabelle 6, vgl. Einträge 1 und 8 bzw. 6 und 9). Bezüglich der Position der zweiten, labil koordinierenden Donorfunktion lässt sich die Steigerung der Ausbeute in der Reihenfolge Anilin - Pyrrolylanilinbeobachten (Tabelle 6, Einträge 8 bis 12). Dieser Vergleich zeigt, dass die Reaktivität der Amine mehr von koordinativen, als von elektronischen Gegebenheiten abhängt.

<u>**Tabelle 6**</u> Rutheniumkatalysierte Pyrrolbildung

[a] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen; [b] Reaktionszeit: 48h; [c] Das Amin wurde in situ aus RNH₃Cl und TEA generiert. [d] Racemisierung während der Reaktion.
[e] Arbeitskreisinternes Ergebnis.

Stark verbesserte Ausbeuten sind bei analogen Transformationen biallylischer Alkohole zu beobachten, was auf die im Vergleich höhere Elektrophilie zurückzuführen ist. Die starre Konformation des Alkohols **24m** erweist sich als zusätzlich vorteilhaft (Tabelle 7). Anilin und Benzylamin reagieren bereits ohne die Substitution mit zusätzlichen Donorfunktionen in sehr guten Ausbeuten. Bezüglich des Substitutionsmusters am Anilin lässt sich eine leichte Ausbeutesteigerung in der Reigenfolge *o*-OMe- < o-OH- < o-Br- < o-NO₂- < o-H-Anilin beobachten (Tabelle 7, Einträge 2 bis 6). Auch hier eignet sich die Styrylgruppe in Position 2 der Pyrrole **33** für mögliche Folgetransformationen, die im Ausblick (**Kap. 2.2.6**) näher erläutert werden.

		Ph R ₁ R ₂ 24g,m	RNH₂ 3a (2mol-%) TFA (2mol-%) Toluol, 100°C, 4	R_2 A_1 A_1 Ph R	Ph 33	
Nr.		RNH ₂	R ₁	R ₂	24	Ausbeute 33 [%]
1		$\mathbf{x} = \mathbf{H}$	-(CI	H ₂) ₄ -	24m	74 (33a) ^[c]
2	NH ₂	$\mathbf{x} = \mathbf{H}$	Н	Н	24g	68 (33b)
3		$\mathbf{x} = o$ -NO ₂	Н	Н	24g	56 (33c)
4	×	$\mathbf{x} = o$ -Br	Н	Н	24g	51 (33d)
5		$\mathbf{x} = o$ -OH	Н	Н	24g	50 (33e)
6		x = <i>o</i> -OMe	Н	Н	24g	42 (33f)
7		$x = o, p-Br / o-CO_2Me$	Н	Н	24g	16 (33g)
8	R	R = H	-(CI	H ₂) ₄ -	24m	60 (33h) ^[a]
9	NH ₂	$\mathbf{R} = \mathbf{H}$	Н	Н	24g	58 (33i) ^[a]
10		$\mathbf{R} = (S)$ -CO ₂ Me	Н	Н	24g	58 (33j) ^[b,d]
11		R = Bn	-(CI	H ₂) ₄ -	24m	74 (33k) ^[c]
12		$\mathbf{R} = \mathbf{B}\mathbf{n}$	Н	Н	24g	65 (33l)
13		R = 3-Pyridin	Н	Н	24g	79 (33m)
14	$H_2N \longrightarrow R$	R = 2-Pyridin	Н	Н	24g	56 (33n)
15		R = Ethan-1-ol	Н	Н	24g	60 (330)
16		$R = (CH_2)_2 Ph$	Н	Н	24g	61 (33p)
17		R = Furan-2-ylmethan	Н	Н	24g	59 (33 q)
18		$R = \int_{a}^{CO_2Me}$	Н	Н	24g	55 (33r) ^[b,d]
19		R = Tetrahydrofuran-2- ylmethyl	Н	Н	24g	54 (33 s)
20		$\mathbf{R} = \mathbf{Allyl}$	Н	Н	24g	51 (33t)
21		R = But-3-en	Н	Н	24g	53 (33u)
22		$R = CH(Ph)_2$	Η	Н	24g	43 (33v)
23		R =	Н	Н	24g	38 (33f)
		₩				

Ph

Tabelle 7 Pyrrolbildung aus biallylischen Alkoholen

[a] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen; [b] Das Amin wurde in situ aus RNH₃Cl und TEA generiert. [c] Arbeitskreisinternes Ergebnis. [d] Racemisierung während der Reaktion.

In Abwesenheit des Co-Katalysators TFA ist die Pyrrolbildung in geringeren Ausbeuten zu beobachten, wohingegen sie in Abwesenheit des Ruthenium-Katalysators 3a gänzlich ausbleibt. Eine Ausnahme bildet die Umsetzung von Anilin mit dem biallylischen Alkohol **24g** unter sauren Bedingungen. Hier ist, neben der Pyrrolbildung in verminderter Ausbeute, die Bildung der *ortho-* und *para-*allylierten Aniline **34a** und **34b** zu beobachten, die in Anwesenheit des Katalysators nicht detektiert werden (**Schema 22**).

Der postulierte Mechanismus zur Pyrrolbildung verläuft analog zu dem der Indolbildung und ist in **Schema 23** dargestellt. Durch den Angriff des primären Amins am π -Komplex **L** kommt es zur Wasserabspaltung und zur Bildung des π -Komplexes **M2**, aus dem im Fall interner Substrate die sterisch weniger gehinderten (*Z*)-Enine **30f** und **30g** hervorgehen. Bei der Tranformation terminaler 1-Vinylpropargylalkohole könnte der Angriff des Amins am Allenylidenkomplex **L**` erfolgen und direkt zur Bildung des Alkinyl-Komplexes **N2** führen. Dieser befindet sich wiederum mit dem π -Komplex **M2** und dem Vinyliden-Komplex **O2** im internen Gleichgewicht. Die Folge aus Cyclisierung (**P2**), formaler 1,5-H-Verschiebung und reduktiver Eliminierung (**Q2**) würde demnach zur Freisetzung der aktiven Katalysatorspezies und der entsprechenden Pyrrole **26** und **33** führen. Auch hier ist das saure Additiv nicht zwingend notwendig, trägt aber zur Beschleunigung der Reaktion und damit zur Ausbeutesteigerung bei.⁷

Schema 23 Postulierter Mechanismus zur Bildung der Enine 30 f,g und der Pyrrole 26 und 33.

Durch die rutheniumkatalysierte Transformation sekundärer Allylamine ist die Erweiterung der Allylierungs/Cyclisierungs-Sequenz um eine [3,3]-sigmatrope Umlagerung und damit die Funktionalisierung der Methylgruppe in Position 2 möglich (Tabelle 8). Diese Sequenz ist limitiert auf die Umsetzung basischer, sekundärer Allylamine. Die aus primären Allylaminen gebildeten Pyrrole lagern nicht um (Tabelle 7, 33t). Die Pyrrolbildung aus *N*-Allylanilinen wird nicht beobachtet.

[a] Arbeitskreisinternes Ergebnis.

Im Fall der Umsetzung von Benzylallylamin mit dem biallylischen Alkohol **24g** kommt es neben der Cyclisierung zum Pyrrol **36c** zu einer [4+2]-Cycloaddition zum Tetrahydroindol **37a** (Tabelle 9). Die entsprechende Umsetzung des weniger nukleophilen Phenylallylamins führt sogar ausschließlich zur Bildung des Tetrahydroindols **37b**. Demnach tritt hier die [4+2]-Cycloaddition nach der initialen Allylsubstitution schneller ein, als die Cycloisomerisierung. Im Fall des cyclischen Alkohols **24m** wird, bedingt durch die sterischen Gegebenheiten, nur die Bildung des Pyrrols beobachtet.

<u>**Tabelle 9**</u> Allylierung/Cyclisierung/Umlagerung bzw. Allylierung/Cycloaddition biallylischer Alkohole mit Allylaminen

Die Bildung vergleichbarer Cycloadditionsprodukte wird bei der Umsetzung sekundärer Propargylamine beobachtet. Die rutheniumkatalysierte Transformation von *N*-Phenylpropargylamin führt wegen der geringeren Nukleophilie ausschließlich zur Bildung des Diels-Alder-Produktes **38a**. Die entsprechende Umsetzung von *N*-Benzylpropargylamin führt über die Sequenz aus Allylierung, Cyclisierung und Propargylsubstitution zur Bildung des Pyrrols **33l** und des tertiären *N*,*N*-Dibenzylpropargylamins^d (*Tabelle 10*). Mit dem sterisch anspruchsvollen 1-Ethinylcyclohexan-1-amin wird einzig das Tetrahydroindol **38b** gebildet (**Schema 24**).

^d Rohspektrum: Pyrrol **331** : Dibenzylpropargylamin = 1 : 2.5

38b (44%), einziges ds Schema 24 Allylierungs/Cyclisierungs-Sequenz mit Propargylaminen

24g

Die Kopplungskonstanten der Produkte 37 und 38 weisen darauf hin, dass die syn-Cycloaddition von der weniger gehinderten Seite stattfindet, wobei das endo-Isomer als Hauptprodukt gebildet wird. Für die Zuordnungen wurden die korrespondierenden Dihedral-H-C-C-H-Winkel aus den energetisch minimalisierten MM2-Kraftfeld-Modellen generiert und durch NOESY-Experimente bestätigt.

Die postulierten Mechanismen zur Transformation von Allyl- und Propargylaminen sind in Schema 25 dargestellt. Die Transformation sekundärer Allylamine führt, ausgehend von dem zwitterionischen Komplex U, nach einer [3,3]-sigmatropen Umlagerung zur reduktiven Eliminierung der Pyrrole 35 und 36. Die Transformationen von N-Benzylpropargylamin führen, ausgehend vom zwitterionischen Komplex U``, über die Sequenz aus Propagrylsubstitution, 1,5-H-Shift und reduktiver Eliminierung zur Bildung des Pyrrols 331. Der Enin-Komplex R``, der aus dem Alkohol 24g und sekundären Allyl- oder Propargylaminen entstanden ist, bildet stattdessen die korrespondierenden Diels-Alder-Produkte 37 und 38.

Schema 25 Postulierter Mechanismus zur Transformation von Dibenzyl-, Allyl- und Propargylaminen.

(d) Anwendung in der Naturstoffsynthese

Die vorgestellten rutheniumkatalysierten Transformationen ermöglichen die Darstellung von vollständig funktionalisierten Indolen und Pyrrolen aus einfachen und wohlfeilen Edukten. Ziel ist es, dieses Verfahren in Synthesen von Naturstoffen und deren Analoga einzusetzen. Die Darstellung des Indols **25d** gelingt, speziell unter Mikrowellenbedingungen, in einer guten Ausbeute (**Schema 26**). Diese Reaktion soll als Modellreaktion dienen und den Schlüsselschritt in der Totalsynthese des cytotoxischen Schwammalkaloids Herbindol A und diverser Analoga bilden (**Abb. 9**).

Schema 26 Darstellung eines Herbindol A-Analogons.^e

Herbindole⁶⁵ leiten sich strukturell von den bisher intensiver untersuchten Trikentrinen⁶⁵ ab. Es handelt sich hierbei um eine Serie von strukturell ähnlichen, polyalkylierten Cyclopent[g]indolen, welche aus dem westaustralischen Schwamm *Axinella sp.* isoliert wurden. Sie weisen eine Zytotoxizität gegenüber KB^f Zellen auf und sind gegenüber allgemeinen Fischantifeedanten^g aktiv, wohingegen Trikentrine eine wachstumsinhibierende Aktivität gegen das *Gram*-positive Bakterium *Bacillus subtilus* aufweisen (**Abb. 9**).⁶⁶

Abb. 9 Struktur verschiedener Herbindole und Trikentrine.

Seit Capon et al. 1986 diese Gruppe neuer Indolalkaloide zum ersten Mal isoliert haben, besteht ein andauerndes Interesse an deren Totalsynthese. 1992 entwickelten Natsume⁶⁶ et al. eine 16-stufige Synthese von (+)-Herbindol A, ausgehend von (*S*,*E*)-3-Bromacrylat. Im Jahre 2007 wurde durch Kerr⁶⁷ et al. von einer 18-stufigen racemischen Synthese, ausgehend von 4-Amino-3-(2,2-dimethoxy-ethyl)phenol, berichtet. 2009 publizierten Buszek⁶⁸ et al. schließlich eine 9-stufige racemische Synthese, ausgehend von 3,4-Dimethylanilin.

^e [a] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen

^f Die Linie KB ist als eine Unterzelle der universellen keratinbildendenen Krebszelllinie HeLa bekannt.

^g Antifeedant: Substanz, die einen Schaderreger vom Fraß abhält, aber nicht direkt tötet

Auf Grundlage der Modellreaktion (**Schema 26**) wurden verschiedene, geeignete Cyclisierungsprecursoren dargestellt und entsprechende Retrosynthesen zur Darstellung von Herbindol A entwickelt.

In Schema 27 wird zunächst eine 9-stufige Totalsynthese von (\pm) -Herbindol A vorgestellt. Demnach könnte mittels Rutheniumkatalyse das Indol **39** hergestellt werden, welches in einer Folge aus Schützung, Dihydroxilierung, Diolspaltung und Reduktion zum (\pm) -Herbindol A führen könnte. Ausgehend von 3-Butin-2-on ist der 1-Vinylpropargylalkohol **40** nach einer Diels-Alder-Reaktion und anschließender Acetylidaddition in zwei Stufen zugänglich. Die darauffolgende rutheniumkatalysierte Cyclisierung zum Indol **39** bleibt jedoch aus, was auf den sterischen Anspruch des Bicyclus zurückzuführen ist.

Schema 27 Retrosynthese von (±)-Herbindol A in 9 Stufen.

Variationen der Reaktionsbedingungen, Katalysatoren und Co-Katalysatoren führen zu keiner Verbesserung. Bei 145°C wird 3-Butin-2-on schließlich eliminiert und reagiert mit Bicyclo[2.2.1]hepta-2,5-dien im Sinne einer Homo-Diels-Alder Reaktion zum Keton **42** (**Schema 28**). Diese [2+2+2]-Cycloaddition ist bisher nur unter dem katalytischen Einfluss von Cobalt oder Nickel bekannt.⁶⁹

Schema 28 Homo-Diels-Alder Reaktion.

Die Retrosynthese in **Schema 29** zeigt eine 10-stufige Synthese von (±)-Herbindol A. Ausgehend von 3-Butin-2-on ist der 1-Vinylpropargylalkohol **43** durch Bromierung der Dreifachbindung und anschließende Acetylidaddition erhältlich. Die untersuchte rutheniumkatalysierte Transformation könnte durch Umsetzung von **43** mit Pyrrol zum Indol **42** führen. Dieses sollte dann, über eine Arin-Zwischenstufe, mittels Diels-Alder Reaktion in das Indols **39** überführbar sein.⁷⁰ Die rutheniumkatalysierte Umsetzung von **43** mit Pyrrol führt unter Standardbedingungen^h jedoch zur Zersetzung des Edukts. Weitere Optimierungsversuche konnten im zeitlichen Rahmen dieser Arbeit nicht durchgeführt werden.

^h **3a** (2mol-%), TFA (2mol-%), Toluol, 100°C, 5h

Schema 29 Retrosynthese (±)-Herbindol A in 10 Stufen.

Die Retrosynthese in **Schema 30** zeigt letztendlich eine 7-stufige Synthese von (\pm) -Herbindol A. Ausgehend von 1,3,5-Trimethylcyclohexa-1,4-dien liefert die Sequenz aus Dihydroxylierung, Hydrierung, Diolspaltung, Aldolkondensation und Acetylidaddition den Cyclisierungsprecursor **47**.

Schema 30 Retrosynthese von (±)-Herbindol A in 7 Stufen.

1,3,5-Trimethylcyclohexa-1,4-dien - leicht durch die Birch Reduktion aus dem günstigen Mesitylen darstellbar⁷¹ - wird mit OsO₄ in einer Ausbeute von 73% zum Diol **48** dihydoxyliert und anschließend mittels palladiumkatalysierter Hydrierung reduziert. Das vicinale Diol **45** wird dann in einer quasi heterogen katalysierten Reaktion mit immobilisiertem *Natriumperiodat* auf *Kieselgel* quantitativ zum Ketoaldehyd **49** gespalten.⁷² Dieser ist stark oxidationsempfindlich und reagiert bereits an der Luft zur entsprechenden Säure **50**. Mittels TBDⁱ-katalysierter, intramolekularer 5-(enolexo)-exo-trig Aldol-Reaktion kann im Anschluss das β-Hydroxyketon **51** erhalten werden (**Schema 31**).⁷³

Eine vollständige Charakterisierung von **51** und die Durchführung der abschließenden Untersuchungen waren im zeitlichen Rahmen dieser Arbeit nicht mehr möglich. Vermutlich könnte **51** durch eine Eliminierungsreaktion mit para-Toluolsulfonsäure in guter Ausbeute zur Bildung von **46** führen. Analog zu der Darstellung der 1-Vinylpropargylalkohole **24** könnte daraufhin der Cyclisierungsprecursor **47** mit Ethinylmagnesiumbromid synthetisiert werden. Die finale Darstellung von (\pm)-Herbindol A würde abschließend rutheniumkatalysiert in der Transformation von **47** mit Pyrrol unter Standardbedingungen^j zum Erfolg führen.

ⁱ 1,5,7-Triazabicyclo-[4.4.0]dec-5-en

^j **3a** (2mol-%), TFA (2mol-%), Toluol, 100°C, 5h

2.2.5 Zusammenfassung

Die außergewöhnliche Fähigkeit der Ruthenium-Cyclopentadienonkomplexe zur Katalyse neuartiger und effizienter Umwandlungen hat die Entwicklung wertvoller Synthesemethoden ermöglicht. So konnte gezeigt werden, dass Indole durch eine Allylierungs/Cyclisierungs-Reaktion von Pyrrolen mit terminalen, tertiären 1-Vinylpropargylalkoholen einfach generiert werden können. Durch den analogen Mechanismus mit primären und sekundären Aminen gelingt darüber hinaus die Darstellung funktionalisierter Pyrrole.

Zu Beginn wurden die Reaktionsbedingungen in einem umfangreichen Screening verschiedener Additive, Temperaturen und Lösemittel festgelegt. Daraufhin folgten die Untersuchungen zur Indol- und Pyrrolbildung. Durch systematische Variationen der Substitutionsmuster der 1- Vinylpropargylalkohole und der entsprechenden Nukleophile wurden essentielle Erkenntnisse zur Aufklärung der Reaktionsmechanismen zusammengetragen. Die Funktionalisierungen der Pyrrole in Position 2 erfolgten durch die der Allylierungs/Cyclisierungs-Sequenz. Durch den Erweiterung Anschluss einer [3,3]-sigmatropen Umlagerung gelingt die Funktionalisierung der Methylgruppe in Position 2 und durch eine [4+2]-Cycloaddition können strukturell interessante Tetrahydroindole dargestellt werden.

Für die abschließende Demonstration der entwickelten Methode im Rahmen einer Naturstoffsynthese wurden verschiedene Retrosynthesestrategien zur Darstellung von Herbindol A vorgestellt und bearbeitet. Der erfolgversprechendste Syntheseweg in **Schema 30** konnte in den wesentlichen Zügen umgesetzt werden. Die letzten beiden Schritte zur Darstellung des Cyclisierungsprecursors werden aktuell im Arbeitskreis optimiert.

2.2.6 Ausblick

Die in diesem Kapitel vorgestellten Ergebnisse bieten Potenzial für Erweiterungen hinsichtlich Selektivität und Folgereaktionen. Eine Auswahl dieser sowie einige mögliche, alternative Synthesewege werden im Folgenden dargelegt.

Synthese von Herbindol A

Die asymmetrische Reaktionsführung zur enantiomerenreinen Darstellung von Herbindol-A ist Teil eines aktuellen Projekts im Arbeitskreis. Durch die Sharpless-Dihydroxylierung ist die diastereoselektive Darstellung des 1,2-Diols **48**` aus dem prochiralen 1,3,5-Trimethylcyclohexa-1,4-dien mit 88% de in einer Ausbeute von 36% möglich.⁷⁴ Die heterogen katalysierte Hydrierung mit einem Platinmetall könnte daraufhin zur Darstellung des enantiomerenreinen Diols 45` führen und das Stereozentrum der zweiten Methylgruppe generieren. Die Folge aus Aldolkondensation und Acetylidaddition würde zur Darstellung des (R,S)-Alkohols 47° führen, der als Cyclisierungsprecursor für die rutheniumkatalysierte Darstellung von (-)-Herbindol A dient (Schema 32).

Schema 32 Retrosynthese von (-)-Herbindol A.

Weitere mögliche Wege zur Darstellung des Cyclisierungsprecursors 47 sind in Schema 33 zusammengefasst. Ausgehend von 3-Methylcyclopent-2-en-1-on liefert die Folge aus Methylierung, Reduktion und Shapiro-Reaktion mit Essigsäureanhydrid als Elektrophil den Cyclisierungsprecursor 47 (Schema 33, p). Der letzte Schritt ist nicht literaturbekannt und bedingt eine intensivere Bearbeitung, die im zeitlichen Rahmen dieser Arbeit nicht erfolgen konnte. Da die Darstellung von (\pm) -Herbindol A somit in 5 Stufen realisierbar wäre, stellt diese Route eine effiziente Alternative zu dem in Schema 30 beschriebenen Weg dar.

Schema 33 Retrosynthese des Cyclisierungsprecursors 47.

Stabilisierung oder Aktivierung Neben der existierender 1,3-Dipole kann ein elektronenreiches Metallfragment auch ein 1,3-dipolares Verhalten in organischen Verbindungen induzieren (Schema 34). Diese Tatsache wird im zweiten möglichen Syntheseweg in (q) ausgenutzt (Schema 33). Ausgehend von Pentan-2,4-diol ist 2,4-Diiodpentan in einer Ausbeute von 74%⁷⁵ darstellbar. Es wäre nun denkbar, über die Abstraktion der Iod-Atome - möglicherweise durch die Zugabe von Zink(0) - eine zwitterionische Struktur zu induzieren. Diese könnte im Sinne einer 1,3-dipolaren Cycloaddition mit 3-Butin-2-on reagieren. Die genauen Zwischenschritte sind nicht literaturbekannt und erfordern eine intensive Bearbeitung und möglicherweise eine anfänglich explorative Reaktionsführung. Diesbezügliche Untersuchungen waren im zeitlichen Rahmen dieser Arbeit nicht durchführbar.

Schema 34 Metallinduzierte 1,3-Dipolare Cycloaddition.¹⁸

Weitere Dominotransformationen

Unter Verwendung des allylierten 1-Vinylpropargylalkohols **24n** werden die 2-Allylpyrrole **26r** und **26s** sowie das 5-Allyl-Indol **25j** über die bekannte Allylierungs/Cyclisierungs-Sequenz in sehr guten Ausbeuten gebildet (**Schema 35**).

Schema 35 Rutheniumkatalysierte Darstellung allylierter Pyrrole und Indole.

Denkbar wäre die Erweiterung dieser Allylierungs/Cyclisierungs-Sequenz um eine photoinduzierte Folge aus 1,3-H-Verschiebung und [3,3]-sigmatroper Umlagerung (**Schema 36**). Untersuchungen bezüglich der Reaktionsbedingungen und geeigneter Hilfsreagentien sind Teil eines aktuellen Projekts im Arbeitskreis.

Schema 36 Postulierte Dominotransformationen von Allyl-Vinylalkoholen.

In Anwesenheit eines Dienophils erfolgt die rutheniumkatalysierte Pyrrolbildung in geringerer Ausbeute. Das Hauptprodukt stellt das 1,4-Additionsprodukt des Amins mit dem Dienophil dar (**Schema 37**).

1-Vinylpropargylalkohole mit Dienophilen.

Denkbar wäre jedoch die Erweiterung der Allylierungs/Cyclisierungs-Sequenz der Pyrrolbildung um eine 1,5-H-Verschiebung und eine [4+2]-Cycloaddition im Beisein eines geeigneten Dienophils. Die somit realisierbare Funktionalisierung der Methylgruppe in Position 2 im Pyrrol würde zur Darstellung von Tetrahydroindolen führen (**Schema 38**).

Schema 38 Dominosequenz zur Darstellung von Tetrahydroindolen.

Auch dies ist ein aktuelles Thema im Arbeitskreis. Die Untersuchungen hinsichtlich der postulierten Funktionalisierungen erfolgen mit unterschiedlich substituierten Substraten, verschiedenen Dienophilen verschiedenen und Reaktionsbedingungen. Die Gesamttransformation des Propargylalkohols über Allylierung, Cyclisierung, 1,5-H-Verschiebung und Cycloaddition soll schließlich als Dominosequenz etabliert werden. Die über die Umsetzung biallylischer 1-Vinylpropargylalkohole mit sekundären Allylaminen gebildeten Pyrrole 36 (Tabelle 9) könnten über eine mögliche Ringschlussmetathese zu Dihydroindolen umgesetzt werden (Schema 39).

Schema 39 Sequentiell katalysierte Dominoreaktion zur Darstellung von Dihydroindolen.

Die einfache Synthese von cyclischen und makrocyclischen Verbindungen durch Ringschlussmetathese ist mit Rutheniumvinylidenkomplexen inzwischen weit entwickelt. Daher wäre perspektivisch die Durchführung der Gesamttransformation mit nur einer einzigen Rutheniumquelle denkbar.²⁰ Es sollte jedoch zunächst der Metatheseschritt als solcher sowie die gesamte Reaktionssequenz systematisch untersucht werden. Hierzu werden entsprechende Modellsubstrate unter Verwendung verschiedener literaturbekannter Metathesekatalysatoren umgesetzt.

2.3 Dione

2.3.1 Einführung

Der dritte und letzte Abschnitt des Ergebnisteils behandelt eine selektive und atomökonomische, rutheniumkatalysierte Methode zur Darstellung von Spirocyclopentenen, an Hand derer Aktivitäts-, Selektivitäts- und Reaktivitätsstudien mit den im **Kapitel 2.1** vorgestellten Katalysatoren durchgeführt wurden. Die diastereoselektive Funktionalisierung über die [3]Dendralen-Struktureinheit der Spirocyclopentene erfolgte durch die Erweiterung der Allylierungs/Cyclisierungssequenz um eine dientransmissive Diels-Alder Reaktion zur Bildung komplexer Dekalinstrukturen.

Dientransmissive Diels-Alder Reaktion von Dendralenen

Man unterscheidet drei Arten von Konjugationen: lineare -, cyclische - und Kreuzkonjugation. Laut Definition liegt eine Kreuzkonjugation dann vor, wenn zwei π -Elektronensysteme mit einem weiteren wechselwirken, ohne dabei linear konjugiert zu sein bzw. ohne direkte Wechselwirkung aller π -Untereinheiten.⁷⁶ Acyclisch kreuzkonjugierte Verbindungen werden als Dendralene bezeichnet (**Abb. 10**).

Abb. 10 Allgemeine Struktur von [n]Dendralenen.

Frühere Darstellungsmöglichkeiten der [n]Dendralene beschränkten sich auf die klassischen Methoden der Olefinsynthese, wie die β-Eliminierung geeigneter Halogenide, Acetatpyrolyse, Hofmann-Eliminierung und pericyclische Reaktionen. Wegen der meist drastischen Bedingungen erweisen sich die Synthesen substituierter Derivate jedoch als schwierig, was den präparativen Nutzen stark eingrenzt.⁷⁷ Als modernere Synthesewege zählen u.a. die rhodiumkatalysierte Cycloisomerisierung substituierter Allenine von Brummond et al. (**r**)⁷⁸ oder die rutheniumkatalysierte intramolekulare Eninmetathese von Chang et al. (**s**) (Schema 40)⁷⁹.

Schema 40 Darstellung von [3]Dendralenen.^{78,79}

Die Entwicklung neuer Methoden zur Synthese von Dendralenen ist vor allem wegen deren enormen Funktionalisierungsmöglichkeiten von steigendem Interesse. Besonders im Rahmen der "Tandem-Diels-Alder Reaktionen" sind die Dendralene von überragender Bedeutung, da sie in der Lage sind, dientransmissive Diels-Alder Reaktionen (DTDA-Reaktionen) einzugehen.^{80–82} Der Begriff "dientransmissiv" wurde erstmals 1983 von Tsuge et al. geprägt und beschreibt die Reaktion kreuzkonjugierter Triene, in denen die Dien-Funktionalität während der Reaktion an einen neuen Ort transmittiert wird. Aus atomökonomischer^{15,14} und stufenökonomischer⁸³ Sicht gehört die DTDA-Reaktion zu den effizientesten aller sequenziellen^k Transformationen.^{80–82}

Die DTDA-Reaktion findet vor allem in der Naturstoffsynthese, wie bspw. bei der Darstellung von Terpenen, Anwendung. So führt die LS-katalysierte DA-Reaktion des homoallylischen, kreuzkonjugierten Trienols 53 mit N-Methylmaleinimid zur Bildung des Monoaddukts 54, dessen neues Diensystem über eine zweite intramolekulare DA-Reaktion den tricyclischen Vinigrol-Precursor 55 hervorbringt (Schema 41).⁸⁵

Schema 41 Darstellung des Vinigrol-Precursors mittels DTDA-Reaktion.

^k Unter einer *sequentiellen Reaktion* versteht man mindestens zwei nacheinander ablaufende Transformationen, in denen unter Bindungsbildung oder -bruch die jeweils nachfolgende Reaktion an der im vorhergehenden Schritt gebildeten Funktionalität erfolgt. Die Addition der Reagenzien erfolgt dabei in definierter Reihenfolge, so dass die Zugabe des zweiten Reagenz erst nach dem Abschluss der ersten Reaktion erfolgt. *Dominoreaktionen*, die ebenso als *Tandem*- oder *Kaskadenreaktionen* bekannt sind, gehören ebenfalls zu den *sequentiellen Reaktionen*. Hier wird die funktionelle Gruppe für den zweiten Schritt im ersten Schritt generiert, ohne dass dabei eine Zwischenstufe isoliert werden kann.⁸⁴

2.3.2 Stand der Forschung im Arbeitskreis

Arbeitskreisintern konnte gezeigt werden, dass Komplexe des Typs **3** die anti-Markovnikov-Addition von Carbonsäuren an Propargylalkohole katalysieren und selektiv zur Bildung von (*E*)-Hydroxyenolestern führen. Entsprechende Umsetzungen mit vinylogen Carboxylationen, wie 1,3-Dicarbonylverbindungen, führen zur Bildung von Pyranen (**Schema 42**).

Schema 42 Rutheniumkatalysierte Addition von CH-aciden Verbindungen an Propargylalkohole.

Weiterhin wurden verschiedene Transformationen von 1-Vinylpropargylalkoholen mit 1,3-Dicarbonylverbindungen untersucht. Die mechanistisch unterschiedlichen Allylierungs-/Cyclisierungs-Sequenzen werden von den redox-gekoppelten Ruthenium-Cyclopentadienonkomplexen 3a und 3b katalysiert und führen zur Bildung von verschiedenen Produkten. Hierbei kann der jeweilige Reaktionspfad über die Wahl der Substituenten am Propargylalkohol determiniert werden. Die rutheniumkatalysierte Umsetzung sekundärer, terminaler 1-Vinylpropargylalkohole mit 1,3-Dicarbonylverbindungen führt zur Bildung von Spirocyclohexanonen (Schema 43, t), wohingegen sekundäre. interne 1-Vinylpropargylalkohole Dihydropyrane als Hauptprodukt bilden (Schema 43, u).

Schema 43 Rutheniumkatalysierte Addition von 1,3-Dicarbonylverbindungen an terminale Propargylalkohole.⁶

Tertiäre, interne 1-Vinylpropargylalkohole bilden Dihydrofurane (**Schema 43**, **v**) und tertiäre, terminale Substrate führen zur Bildung von Spirocyclopentenen als Hauptprodukt (**Schema 43**, **w**), wobei nahezu quantitative Ausbeuten mit dem cyclischen, biallylischen 1-Vinylpropargylalkohol **24m** erreicht werden (**Schema 44**).^{8,6}

94% mit 1,3-Cyclopentandion **56a** 97% mit 1,3-Cyclohexandion **56b** 93% mit 4-Hydroxycumarin **56c**

Schema 44 Spirocyclopenten-Bildung mit 24m.⁶

2.3.3 Aufgabenstellung

Ziel ist es, Studien zur rutheniumkatalysierten Allylierungs-Cyclisierungssequenz von cyclischen 1,3-Dionen mit dem acyclischen, biallylischen 1-Vinylpropargylalkohol **24g** durchzuführen. Dabei sollen Variationen hinsichtlich der eingesetzten Katalysatoren, Co-Katalysatoren und Reaktionsbedingungen zur Optimierung der Darstellung des Spirocyclopentens führen. Abschließend soll der potentielle Zugang zu dientransmissiven Diels-Alder Reaktionskaskaden über die [3]Dendralen-Struktureinheit der Spirocyclopentene untersucht werden. Hierbei sollen die Anwendungsbreite und Selektivität der Methode unter Verwendung verschiedener Substrate und Dienophile näher beleuchtet werden.

2.3.4 Ergebnisse

(a) Katalysatorscreening zur Optimierung der [3]Dendralen-Bildung

Zunächst wurden die Transformationen des acyclischen, biallylischen 1-Vinylpropargylalkohols 24g mit den 1,3-Dionen 56a-c unter Verwendung der im Kapitel 2.1 vorgestellten Katalysatoren untersucht (Tabelle 12 und Tabelle 12). Bei den entsprechenden Umsetzungen mit Cyclohexan-1,3-dion 56a werden dabei neben dem Spirocyclopenten 57a die Cyclisierungsprodukte 58a bis 63a detektiert. Deren Verhältnisse können durch die Wahl des Katalysators, des Additives und der Reaktionsbedingungen beeinflusst werden (Tabelle 12, Einträge 1-21). Der Katalysator 3a zeigt ohne den Einsatz eines Additivs in der Transformation von 24g mit 56a eine sehr geringe Selektivität. Das gewünschte Spirocyclopenten 57a kann nur in geringer Ausbeute isoliert werden (Tabelle 12, Eintrag 1). Bei dem Hauptprodukt 62a handelt es sich um ein Cyclisierungsprodukt, das auch ohne den Katalysator, unter Verwendung von zweizähnigen Lewis-Säuren, gebildet wird. Der Einsatz des Katalysators 3a führt jedoch zu einer im Vergleich höheren Ausbeute (Tabelle 12). Eine deutliche Ausbeutesteigerung von 57a wird bei dem Einsatz von TFA als Additiv beobachtet, wobei die Hälfte des entstandenen Produkts 57a zu 58a dimerisieren (Tabelle 12, Eintrag 2). Vermutlich wird durch die Protonierung der Carbonylgruppe des Liganden die Elektrophilie des Rutheniumzentrums erhöht. Dies wiederum bedingt eine verstärkte Aktivierung der Dreifachbindung, wodurch keine Cyclisierung zum Produkt 59a mehr beobachtet wird. Der Einsatz höherer Temperaturen unter Mikrowellenbedingungen führt zu einer weiteren Ausbeutesteigerung des Spirocyclopentenens 57a, wobei nahezu keine Nebenprodukte gebildet werden. Das Ausbleiben des Dimerisierungsproduktes 58a lässt sich zum einen auf die stark verkürzte Reaktionszeit und zum anderen auf eine durch die hohe Temperatur begünstigte Retro-Diels-Alder Reaktion zurückführen (Tabelle 12, Eintrag 3).

Analog zu dem Mechanismus der Indol- und Pyrrolbildung (**Kap. 2.2, Schema 6** und **Schema 9**)^{5,7} kommt es vermutlich zunächst durch Chelatisierung des 1-Vinylpropargylalkohols **24g** am Katalysator zu der Bildung des π -Alkin-Komplexes **R**, der sich im Gleichgewicht mit dem Alkin-Komplex **S**, dem Vinyliden-Komplex **T** und dem Allenyliden-Komplex **U** befindet.^{16,19–21,60} Durch den nukleophilen Angriff des 1,3-Dions am π -Alkin-Komplexe **W** und **W**` bzw. am Allenyliden-Komplex **U** kommt es zur Bildung der π -Alkin-Komplexe **W** und **W**` bzw. des Alkin-Komplexes **V**. Eine darauffolgende 5-(enolexo)-exo-dig-Cyclisierung würde die Bildung von **59** und eine 6-(enolexo)-endo-trig-Cyclisierug die von **60** und **61** einleiten. Ausgehend vom Komplex **W**` könnte das Cyclisierungsprodukt **62** durch eine 5-exo-dig-Cyclisierung gebildet werden (**Schema 45**).⁶

Schema 45 Postulierter Mechanismus zur Bildung der Cyclisierungsprodukte 57, 59a, 60a, 61a, 62a und 63a.

Die chelatisierende Substratkoordination in **R** ist für die initiale Transformation entscheidend und bedingt die basische Koordinationsseite des elektronisch gekoppelten Liganden im Komplex. Die Komplexe **16** und **17** weisen schwächere Wasserstoffbrückenakzeptoreigenschaften auf und verhalten sich dementsprechend weniger reaktiv. Der Katalysator **16** ist durch die Ethylgruppe am Zentralatom kaum in der Lage, den Komplex **R** mesomer durch die Bildung der Komplexe **S**, **T** und **U** zu stabilisieren, was die 5-(enolexo)-exo-dig-Cyclisierung zu **57a** zurückdrängt und die Bildung der Cyclisierungsprodukte **60a** und **62a** fördert. Denkbar wäre sogar, dass die Bildung des geringen Anteils von **57a** lediglich auf die Hydrolyse eines kleinen Teils des Katalysators zum Komplex **3a** zurückzuführen ist. Unter Mikrowellenbedingungen ist ein Anstieg der Ausbeute von **57a** zu beobachten, was mit der durch die hohe Temperatur verbesserten Reaktionsgeschwindigkeit und der dadurch ausbleibenden Bildung von **W**` begründet werden kann. Die Ursache für die verstärkte Bildung der Cyclisierungsprodukte **59a** und **60a** unter Mikrowellenbedingungen bei Verwendung von **17** ist bisher nicht eindeutig geklärt. Möglicherweise sind die strukturellen Unterschiede gegenüber den anderen Katalysatoren ausschlaggebend.

Tabelle 11 Rutheniumkatalysierte Transformationen von 24g mit 56a und 56b.

1,3-Dion	Nr.	Kat.	Additiv	Ausbeute ^[a] [%]							
56				57	58 ^[d]	59a (dr)	60a ^[d]	61a	62a	63a	64b (dr)
	1	3a	-	17 (57a)	-	15(3:2)	-	•	40	18	-
	2		TFA	40 (57a)	39(58a)	-	4	-	6	-	-
	3 ^[b]		TFA	89 (57a)	-	<3	-	-	-	-	-
	4	17	-	20 (57a)	25(58a)	-	15	-	18	-	-
	5 ^[b]		-	-	-	30(3:2)	56	-	-	-	-
	6		DBU	34 (57a)	17(58a)	-	-	-	9	-	-
	7	16	-	14 (57a)	-	-	53	-	26	-	-
	8 ^[b]		-	31 (57a)	-	25(3:2)	35	-	-	-	-
O L	9	14a	TFA	91 (57a)	-	-	-	-	-	-	-
	10 ^[c]		TFA	15 (57a)	-	34(3:2)	42	-	-	-	-
~~~o	11		MgBr ₂ *Et ₂ O	21 ( <b>57a</b> )	-	12(3:2)	-	-	52	-	-
<b>5</b> 6a	12		Ti(O ⁱ Pr) ₄	36 ( <b>57a</b> )	-	-	-	-	49	-	-
	13	13	TFA	65 ( <b>57a</b> )	19( <b>58a</b> )	-	-	-	5	-	-
	14		MgBr ₂ *Et ₂ O	56 ( <b>57a</b> )	18( <b>58a</b> )	-	-	-	19	-	-
	15		Ti(O ⁱ Pr) ₄	59 ( <b>57a</b> )	11( <b>58a</b> )	-	-	-	20	-	-
	16	4a	TFA	55 ( <b>57a</b> )	-	17(3:2)	-	22	-	-	-
	17		MgBr ₂ *Et ₂ O	53 ( <b>57a</b> )	22( <b>58a</b> )	-	-	-	19	-	-
	18		Ti(O ⁱ Pr) ₄	49 ( <b>57a</b> )	<3( <b>58a</b> )	-	-	-	36	-	-
	19	12	TFA	21 ( <b>57a</b> )	-	67(3:2)	-	-	-	-	-
	20		MgBr ₂ *Et ₂ O	25 ( <b>57a</b> )	-	22(3:2)	-	-	44	-	-
	21		Ti(O ⁱ Pr) ₄	33 ( <b>57a</b> )	-	17(3:2)	-	-	34	-	-
ſ	22	<b>3</b> a	TFA	54 ( <b>57b</b> )	-	-	-	-	-	-	36 (4:1)
$\left\langle \right\rangle$	23	17	-	56 ( <b>57b</b> )	27( <b>58b</b> )		-		-	-	9(4:1)
0 56b	24		DBU	66 ( <b>57b</b> )	19( <b>58b</b> )	-	-	-	-	-	9(4:1)

[a] Ausbeuten beziehen sich auf die Verhältnisse der Produkte im Rohspektrum bezogen auf **24g**; [b] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen; [c] 10mol-% TFA; [d] nur ein ds.

Die entsprechende Transformation mit dem Katalysator 14a und TFA führt sehr selektiv zu einer hervorragenden Ausbeute des Spirocyclopentens 57a (Tabelle 12, Eintrag 9). Im Vergleich zu dem Katalysator 3a ist der Ligand elektronenreich, was möglicherweise die Bildung des Vinyliden-Komplexes T begünstigt (Schema 45). Denkbar wäre außerdem eine schwache intermediäre Komplexierung des Carbonylsauerstoffatoms der NPM-Seitenkette am Ruthenium (Schema 45). Durch den Einsatz der 5-fachen Menge an TFA kommt es vermutlich zu einer starken Aktivierung des Dien-Systems, was zu der Bildung der Produkte 59a und 60a in relativ hoher Ausbeute führt (Tabelle 12, Eintrag 10). Die Transformation mit dem Katalysator 13 und TFA ergibt 57a ebenfalls in einer sehr guten Ausbeute, wobei erneut die Bildung des Dimerisierungsproduktes 58a beobachtet werden kann. Wahrscheinlich ist die Seitenkette des Liganden – ähnlich wie die des Katalysators 14a – zu einer schwachen Komplexierung des Ruthenium-Atoms befähigt. Bei der Umsetzung mit dem Katalysator 4a und TFA wird, neben der Bildung von 57a in guter Ausbeute, die Bildung der Cyclisierungsprodukte 59a und 61a beobachtet. Letzteres mit hoher Wahrscheinlichkeit über den Allenylidenkomplex U (Schema 45). Beim Einsatz von 12 stellt 57a nur die Nebenkomponente dar, Hauptprodukt ist in diesem Fall 59a (Tabelle 12, Eintrag 19). Vermutlich wird die Carbonylgruppe des Liganden über eine Wasserstoffbrückenbindung mit der Amid-Seitenkette fixiert, was die initiale Substratkoordination in **R** (Schema 45) beeinträchtigt. Die bevorzugete 5-exo-trig-Cyclisierung kann wohlmöglich mit der geringeren Aktivierung der Dreifachbindung begründet werden. Der Einsatz der zweizähnigen Lewis-Säuren MgBr₂*Et₂O und Ti(O¹Pr)₄ führt generell zu einer verstärkten Bildung des Cyclisierungsproduktes 62a, was auch ohne den Einsatz des Katalysators beobachtet werden kann (Tabelle 11).

Bei den rutheniumkatalysierten Transformationen von Cyclopentan-1,3-dion **56b** mit **24g** werden neben **57b** die Produkte **58b** und **64b** detektiert, wobei letzteres unabhängig vom Katalysator gebildet wird (**Tabelle 11**). Nach der Allylierung des Dions steht die 5-(enolexo)exo-dig-Cyclisierung zur Bildung des Spirocyclopentens **57b** in Konkurrenz zu einer zweiten Allylierung, die zur Bildung des Dimerisierungsproduktes **64b** führt. Bei der Umsetzung mit dem Katalysator **3a** und TFA entstehen **57b** und **64b** im Verhältnis 3:2. Bei der entsprechenden Reaktion mit **17** wird die Cyclisierung zu **57b** stark beschleunigt. Möglicherweise lässt sich dies mit einer stärkeren Aktivierung der Dreifachbindung begründen. Zusätzlich wird die Bildung des Dimerisierungsproduktes **58b** beobachtet (**Tabelle 11**, Einträge 22 bis 24).

Die Transformation von 24g mit 4-Hydroxycumarin 56c und dem Katalysator 3a führt zur Bildung des Spirocyclopentens 57c in relativ guter Ausbeute, wobei ein kleiner Teil zu 58c dimerisiert. Ungefähr ein Drittel des Primärproduktes 57c wird über eine Umlagerung zu dem strukturell interessanten Cyclopenta[c]pyran 65c transformiert. Dieser Anteil lässt sich durch die zugegebene Menge TFA beeinflussen. Bei 2mol-% TFA lagert bereits mehr als die Hälfte des gebildeten Spirocyclopentens 57c um und bei 10% TFA entsteht 65c zu 86% (Tabelle 12, Einträge 1 bis 3). Die entsprechende Transformation mit dem Katalysator 17 führt bereits ohne die Zugabe eines Additivs zur Umlagerung von mehr als der Hälfte des gebildeten 57c. Unter Zugabe von DBU lagert nur noch ein Viertel zu 65c um und die Hälfte von 57c dimerisiert zu 58c (Tabelle 12, Einträge 4 bis 6).



#### Tabelle 12 Rutheniumkatalysierte Transformationen von 24g mit 56c.

[a] Ausbeuten beziehen sich auf die Verhältnisse der Produkte im Rohspektrum bezogen auf **24g**; [b] 10mol-% TFA.

Möglicherweise wird die Umlagerung zum Cyclopenta[c]pyran **65c** durch eine kationische Fragmentierung eingeleitet. Wahrscheinlicher erscheint jedoch eine durch den Rutheniumkomplex katalysierte Fragmentierung zum Carbenkomplex **Y**. Demnach würde die Wasserstoffbrückenbindung zwischen der Carbonylgruppe von **57c** und dem Liganden einen Elektronenzug verursachen. Zugleich könnte das Rutheniumatom über die Bindung zur exocyclischen Doppelbindung des Spirocyclopentens elektronenschiebend wirken, was die Fragmentierung induziert. Eine Folge aus Umlagerung, Enolisierung, 6-exo-trig-Cyclisierung und reduktiver Eliminierung würde abschließend zur Freisetzung des Produktes **65c** führen (**Schema 46**).



Schema 46 Postulierter Mechanismus zur Bildung von 65c am Bsp. der Transformation mit 3a.

In Abwesenheit des Katalysators führen die Transformationen von **24g** mit den 1,3-Dionen **56a-c** und TFA hauptsächlich zu der Bildung des Allylierungsprodukts **63**. In Gegenwart der zweizähnigen Lewis-Säuren MgBr₂*Et₂O und Ti(OⁱPr)₄ entsteht zusätzlich das Cyclisierungsprodukt **62a**. Cyclopentan-1,3-dion **56b** wird zu einem relativ hohen Anteil doppelt allyliert, was die Dimerisierung zum Produkt **64b** zur Folge hat (**Tabelle 13**).





[a] Ausbeuten beziehen sich auf die Verhältnisse der Produkte im Rohspektrum bezogen auf 24g;[b] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen.

# (b) Dientransmissive Diels-Alder Reaktionen

Die über die rutheniumkatalysierte Allylierungs/Cyclisierungssequenz synthetisierten Spirocyclopentene 57a-c werden speziell mit den Katalysatoren 3a, 13 und 14a sowie einer katalytischen Menge TFA in sehr guten Ausbeuten erhalten (Tabelle 12, Tabelle 12). Um den Zugang zu dientransmissiven Diels-Alder Reaktionskaskaden über die [3]Dendralen-Struktureinheit der Spirocyclopentene 57 zu untersuchen, wurde der biallylische 1-Vinylpropargylalkohol 24g mit den 1,3-Dionen 56a-c und Dienophil dem N-Phenylmaleinimid (NPM) 66a unter verschiedenen Reaktionsbedingungen umgesetzt. Dieser Mehrkomponenten-Kaskadenprozess führt zur Bildung der Produkte 67 bis 69, wobei die Produktverhältnisse selektiv durch die Wahl der Reaktionsbedingungen gesteuert werden können (Tabelle 14).

Die Reaktionen von **56a** und **56b** führen unter Standardbedingungen¹ über die gewünschte DTDA-Reaktion zur Bildung der Dekalinsysteme **67a** und **67b** in guten Ausbeuten. Obwohl die Cyclisierung des allylierten Intermediats in **V** (**Schema 45**) zum Spirocyclopenten **57** schneller verläuft als die konkurrierende DA-Reaktion, werden partiell die Produkte **68a** und **68b** detektiert. Deren Ausbeuten hängen dabei von der Wahl der Reaktionsbedingungen ab. So führen die Verdopplung der Moläquivalente von NPM zu einem Anstieg und die entsprechende Reduktion zu einem Abfall der Ausbeute von **68a** (Tabelle 14, Einträge 2 bis 3). Bei dem Einsatz höherer Temperaturen unter Mikrowellenbedingungen oder bei sequentieller Reaktionsführung wird die Bildung von **68a** schließlich gar nicht mehr und die von **68b** nur noch in Spuren beobachtet (Tabelle 14, Einträge 4 bis 9 und 11). Das DTDA-Produkt **67a** wird unter Mikrowellenbedingungen in einer Ausbeute von bis zu 29% gebildet. Zusätzlich kann das Cyclisierungsprodukt **59a** detektiert werden, dessen Bildung jedoch durch die Erweiterung der Reaktionsführung reagiert das Dienophil schließlich selektiv zu **67a** und **67b**. Die Ausbeuten betragen hierbei 42% bzw. 27% (Tabelle 14, Einträge 4,11).

Analog ergibt die Reaktion mit dem 4-Hydroxycumarin **56c** das gewünschte **67c** in bis zu 23% Ausbeute. Daneben kommt es durch eine DA-Reaktion von NPM mit dem Umlagerungsprodukt **65c** zur Bildung von **69**, dessen Ausbeute durch eine sequentielle Reaktionsführung beeinflusst werden kann. Je länger die Zugabe von NPM verzögert wird, desto höher ist die Ausbeute von **69** (Tabelle 14, Einträge 14 bis 16). Die partielle Bildung von **68c** kann durch das Herabsetzen der Moläquivalente von NPM reduziert und durch eine sequenzielle Reaktionsführung eliminiert werden (Tabelle 14, Einträge 12 bis 16). Bei dem Einsatz höherer Temperaturen unter Mikrowellenbedingungen kommt es ausschließlich zu der Bildung der DA-Produkte **68c** und **69**. Vermutlich bedingt der erhöhte Beitrag an Reaktionsenergie die sofortige Umlagerung des intermediär entstehenden Spirocyclopentens **57c**, was eine potentielle DTDA-Reaktion ausschließt.

¹**3a** (2mol-%), TFA (2mol-%), Toluol, 100°C, 5h

#### Tabelle 14 DTDA-Reaktion mit NPM 66a



[a] Ausbeuten beziehen sich auf die Verhältnisse der Produkte im Rohspektrum bezogen auf **66a**; [b] Zugabe **66a** nach 120min; [c] In Toluol, unter Mikrowellenbedingungen; [d] Zugabe **66a** nach 60min; [e] Zugabe **66a** nach 30min; [f] ein Hauptisomer, ein Nebenisomer; [g] zwei Hauptisomere, zwei Nebenisomere; [h] zwei Hauptisomere, ein Nebenisomer.

Schema 47 zeigt den Verlauf der DTDA-Sequenz. Durch Addition des Dienophils an die [3]Dendralen-Struktureinheit von 57 kommt es in situ zur Bildung des neuen Diensystems 70. Dieses ist zu einer zweiten DA-Reaktion befähigt, die zur Bildung der Dekalinstruktur in 67 führt. Die beobachteten Nebenprodukte 68 und 69 ergeben sich aus den Cycloadditionen der Intermediate 63 bzw. 65.



Schema 47 DTDA-Reaktionsverlauf zur Darstellung des Dekalinsystems 67.

Das Triensystem der [3]Dendralene bietet grundsätzlich zwei verschiedene Möglichkeiten der Beteiligung an den Diels-Alder-Prozessen, wobei sich speziell bei unsymmetrisch substituierten [3]Dendralenen das Problem der Selektivität der Addition ergibt. Die Trien-Struktureinheit in **57** bietet vollständige Positionsselektivität, da nur die s-*cis*-Dieneinheit zu einer Diels-Alder Reaktion befähigt ist.

Die Umsetzung von 24g mit den 1,3-Dionen 56a bzw. 56b und NPM führt in einer Sequenz aus vier Reaktionsschritten zur Generierung von acht neuen Stereozentren. Von den möglichen 32 Stereoisomeren werden dabei jeweils nur drei diastereomere Bisaddukte detektiert, wobei die Selektivität durch die Veränderung der Reaktionsbedingungen sogar beeinflusst werden kann. So führt die Zunahme der eingesetzten Moläquivalente des Dienophils NPM oder ein sequentieller Reaktionsverlauf zur Steigerung der Selektivität, so dass nur noch ein Haupt- und zwei Nebenisomere detektiert werden. Auch unter Mikrowellenbedingungen kann eine vergleichbare Selektivität durch die Temperaturerhöhung von 200°C auf 260°C, bzw. die Erweiterung der Reaktionszeit von 5 auf 30min erzielt werden. Die Monoaddukte 70 können in keinem Fall detektiert werden. Vermutlich verhält sich deren fixierte s-cis-Konformation gegenüber dem Trien-System des Startmaterials reaktiver, wodurch die zweite DA-Reaktion signifikant schneller abläuft (Tabelle 14). Die Kopplungskonstanten der Hauptisomere 67a und 67b weisen darauf hin, dass der erste Angriff des Dienophils am Cyclo[3]dendralen 57 entgegen der zum Spirozentrum benachbarten Phenylgruppe erfolgt und der zweite Angriff von der anti-Seite des cyclischen Monoaddukts jeweils endo stattfindet. Für die Zuordnungen wurden die korrespondierenden Dihedral-H-C-C-H-Winkel aus den energetisch minimalisierten MM2-Kraftfeld-Modellen generiert und durch NOESY-Experimente bestätigt (Schema 48).


Schema 48 Stereoselektivität der DTDA-Sequenz zur Darstellung des Hauptisomers 67a (energetisch minimalisierte MM2-Kraftfeld-Modelle)

Für die Bildung der beiden Nebenisomere scheint es am wahrscheinlichsten, dass zum einen der zweite Angriff von der syn-Seite des Monoaddukts erfolgt und zum anderen der Angriff des Dienophils auf der gleichen Seite der zum Spirozentrum benachbarten Phenylgruppe mit darauffolgender anti-Addition stattfindet. Dabei wird von der jeweiligen endo-Addition ausgegangen. Die Umsetzung mit 4-Hydroxycumarin **56c** und NPM führt, über die Bildung des Diastereomerengemisches **57c** (dr = 5:2), zu einer Mischung aus vier diastereomeren Bisaddukten **67c** (Tabelle 14, Einträge 12 bis 16). Dabei entstehen das Hauptisomer und eines der Nebenisomere vermutlich durch den ersten Angriff des Dienophils entgegen der Phenylgruppe mit darauffolgendem zweitem Angriff von der anti-Seite des Monoaddukts. Die beiden weiteren Nebenisomere entstehen scheinbar durch den Angriff syn zur Phenylgruppe mit darauffolgendem anti-Angriff.

Die beste Ausbeute für das DTDA-Produkt **67a** wird unter Standardbedingungen^m bei sequentieller Reaktionsführung und Einsatz einer äquimolaren Menge des Dienophils erhalten (Tabelle 14, Eintrag 4). Um die Anwendungsbreite und die Selektivität der Methode unter Verwendung verschiedener Dienophile zu untersuchen, ist die entsprechende DTDA-Sequenz mit *p*-Benzochinon, Maleinsäureanhydrid (MSA), Dimethylacetylendicarboxylat (DMAD) und Diethylfumarat durchgeführt worden (**Tabelle 15**). Dies führt jeweils zu einer Mischung aus 2 (von 32 möglichen) diastereomeren Bisaddukten **67d-f**. Vermutlich verläuft dabei die Bildung der Hauptisomere analog zu der desjenigen in **67a**, indem beide Diels-Alder Reaktionen mit einer endo-Selektivität ablaufen und sich die Dienophile jeweils von der sterisch weniger gehinderten Seite annähern (vgl. **Schema 48**). Das Bisaddukt **67f** ist stark oxidationsempfindlich und oxidiert an der Luft zu dem Produkt **71**.

^m **3a** (2mol-%), TFA (2mol-%), Toluol, 100°C, 5h



#### Tabelle 15 DTDA-Reaktionen verschiedener Dienophile

[a] Ausbeuten beziehen sich auf die Verhältnisse der Produkte im Rohsprektrum bezogen auf 66b-e; [b] Zugabe 66 nach 120min; [c] Reaktionsbedingungen: Bei 200°C für 5min unter Mikrowellenbedingungen;
[d] ein Hauptisomer, ein Nebenisomer; [e] zwei Hauptisomere; [f] Oxidiert an der Luft zu 71f;
[g] Produktgemisch, 11% 72fⁿ.

Benzochinon und MSA sind die elektronenärmsten und sterisch am wenigsten abgeschirmten Dienophile, wobei Benzochinon darüber hinaus von zwei Seiten angegriffen werden kann. Sie führen zu der Bildung der Bisaddukte zu 85% bzw. 75% (Tabelle 15, Einträge 1 und 2). Die Transformation von DMAD erfolgt in geringerer Ausbeute, da die Dreifachbindung durch den sterischen Anspruch der frei drehbaren Estersubstituenten abgeschirmt wird. Zusätzlich führt die elektrophile Addition von Cyclohexan-1,3-dion an DMAD zur Bildung des Dimethyl 2-((3-oxocyclohex-1-en-1-yl)oxy)fumarat Nebenproduktes 72f (Tabelle 15. Eintrag 3). Diese Abschirmung ist im Fall der Umsetzung von Diethylfumarat durch die trans-Stellung der Substituenten noch stärker ausgeprägt. Dadurch verläuft die erste Cycloaddition signifikant schneller als die zweite, wodurch das Monoaddukt 70 isoliert werden kann. Dies könnte möglicherweise den Zugang zur selektiven Einführung unterschiedlicher Dienophile innerhalb der DTDA-Sequenz eröffnen.

ⁿ Dimethyl 2-((3-oxocyclohex-1-en-1-yl)oxy)fumarat (siehe Exp.Teil)

## 2.3.5 Ausblick und Zusammenfassung

Zunächst wurde die Darstellung der Cyclo[3]dendralene 57 durch ein umfangreiches Katalysatorscreening optimiert. Dabei konnten interessante, charakteristische Eigenschaften der Komplexe demonstriert werden, die in aktuellen Projekten im Arbeitskreis näher untersucht werden. So führt die Umsetzung des biallylischen 1-Vinylpropargylalkohols 24g mit den cyclischen 1,3-Dionen 56 zu einem komplexen Produktgemisch, das gezielt durch die eingesetzten Katalysatoren, Additive und Reaktionsbedingungen beeinflusst werden kann. Die Komplexe 16 und 17 katalysieren verstärkt die 6-enol-exo-endo-trig-Cyclisierung, 12 führt hauptsächlich zur 5-exo-trig-Cyclisierung und der Einsatz des Komplexes 14a bringt selektiv das Produkt der 5-(enolexo)-exo-dig-Cyclisierung hervor. Beobachtet wurde außerdem die Dimerisierung der Cyclo[3]dendralene 57, die vermutlich durch die Komplexe 3a, 4a, 16 und 17 katalysiert wird. Diese Studie könnte durch den Einsatz bereits im Arbeitskreis etablierter Katalysatoren erweitert werden. Mögliche Einflüsse elektronischer, sterischer und koordinativer Substitutenteneffekte auf Reaktivität und Selektivität könnten somit systematisch untersucht werden. Durch entsprechende stöchiometrische Umsetzungen könnten die metallorganischen Intermediate der Katalysezyklen isoliert, charakterisiert und zur Aufklärung der Reaktionsmechanismen genutzt werden.

Im Anschluss wurde die Funktionalisierung von 57 über die dientransmissive Diels-Alder Reaktionen unter dem Aspekt der Diastereoselektivität untersucht. So führt die Umsetzung des biallylischen 1-Vinylpropargylalkohols 24g mit den 1,3-Dionen 56 und den Dienophilen 66 in einer Domino-Sequenz aus Allylierung, Cyclisierung und DTDA-Reaktion zur Generierung 8 neuer Stereozentren. Von den möglichen 32 Stereoisomeren werden dabei diastereomere Bisaddukte detektiert. In Anbetracht maximal vier der vielen Variationsmöglichkeiten bezüglich der Substitutionsmuster der [3]Dendralene und der Dienophile, ergibt sich somit eine beeindruckende Zahl präparativer Möglichkeiten und Anwendungen in der Naturstoffsynthese. So führt bspw. die Umsetzung in Gegenwart von Diethylfumarat 66e selektiv zur Bildung des Monocycloadditionsproduktes 70g. Der Einsatz weiterer Dienophile mit vergleichbar geringer Reaktivität könnte ebenfalls zum Erhalt entsprechender Monoaddukte führen. Dazu wäre möglicherweise der Einsatz von Acrylaten, Methacrylaten oder Ethylvinylketonen denkbar. In sequentiellen Reaktionen könnte diese Monocycloaddition durch die Zugabe weiterer Dienophile zur Bildung unterschiedlich substituierter Bisaddukte führen. Für die Funktionalisierung der Bisaddukte bietet sich eine Reihe weitere Transformationsmöglichkeiten an. So könnte 67d mit Cyclopentadien über eine weitere [4+2]-Cycloaddition zum Aufbau oktacyclischer Gerüst-Strukturen genutzt werden.

Unter Mikrowellenbedingungen verlaufen die Transformationen generell mit stark verkürzten Reaktionszeiten bei gleichzeitig deutlicher Ausbeute- und Selektivitätssteigerung. So wurde unter Mikrowellenbedingungen bei 260°C ein besseres Diastereomerenverhältnis für das Bisaddukt **67a** erhalten als unter Standardbedingungen (Tabelle 14, Eintrag 7). Weitere Variationen der Reaktionsbedingungen, der eingesetzten Katalysatoren und der Additive könnten zur fortlaufenden Verbesserung der Diastereoselektivität führen. Im Hinblick auf die geplanten Arbeiten, insbesondere die zu entwickelnden Dominoprozesse, sind weitere Untersuchungen unter Mikrowellenbedingungen von großer Bedeutung. Dabei soll der

Einfluss erhöhter Energieeinträge auf den Ablauf der Katalysezyklen insbesondere unter verschiedenen Reaktionsbedingungen systematisch untersucht werden.

# 3. Zusammenfassung und Ausblick

In Kapitel 2.1 wird eine systematische Variation der im Arbeitskreis etablierten Ruthenium-Cyclopentadienon-Komplexe vorgestellt, durch die acht neuartige Katalysatoren generiert wurden. Dabei konnten - durch die Substitution des Dienon-Fragments - koordinierende Effekte polarer Seitenarme zum Metallzentrum und neue Wasserstoffbrückenbindungen im Liganden induziert werden. Die Variation des Zentralatoms führte erstmals zu der erfolgreichen Synthese eines Osmium-Cyclopentadienon-Komplexes, der neue Transformationsmöglichkeiten aufdecken könnte. Durch die Ethylierung der basischen Koordinationsstelle des Komplexes wurde die elektronische Kopplung zwischen Ligand und Metall eingeschränkt. Der dadurch erhaltene Ruthenium(II)-Komplex könnte in einem direkten Vergleich der Transformationen mit den etablierten Ruthenium(0)-Komplexen wichtige Erkenntnisse über die Notwendigkeit der Redoxkopplung für die entwickelten Verfahren liefern. Die weitere Modifikation der polaren Gruppe des Liganden erfolgte durch die Substitution gegen eine NH2-Gruppe. Auf Grund der Wasserstoff-Donorfähigkeit dieser innovativen Funktionalität ist eine neue Chemoselektivität dieses Komplexes zu erwarten. So könnten anstelle der Propargylalkohole ungesättigte Derivate mit Keto-Gruppen koordiniert werden. Mögliche Transformationen geeigneter Allyl- und Propargylketone bzw. -aldehyde könnten das breite Spektrum der im Arbeitskreis etablierten Transformationen ^{5–11} erweitern. Für den potentiellen Einsatz im Bereich der sequenziellen Katalyse bietet dies eine Grundlage für die Erweiterung der Anwendungsmöglichkeiten. Im Hinblick auf die Etablierung der Verfahren im Rahmen der Natur- und Wirkstoffsynthese ist die Entwicklung asymmetrisch katalysierter geplant. Diesbezüglich wurde unter Prozesse Verwendung eines C2-symmetrischen, chiralen Diamins ein axial chiraler Komplex mit einem zusätzlichen Stereozentrum im Ligandenarm synthetisert. Die abschließende Trennung der Diastereomeren würde das entsprechende enantiomerenreine Derivat hervorbringen und könnte somit zur Untersuchung der Induktionsfähigkeit der Komplexe innerhalb der entwickelten Verfahren genutzt werden.

Das beachtliche Potential der Ruthenium-Cyclopentadienonkomplexe zur Katalyse neuartiger effizienter Transformationen hat bereits zu der Entwicklung wertvoller und Synthesemethoden geführt.^{5–11} Unter Verwendung des im Arbeitskreis etablierten Katalysators 3a wurde eine selektive und atomökonomische Methode zur Darstellung und Funktionalisierung von Pyrrolen und Indolen mit 1-Vinylpropargylalkoholen entwickelt, die in Kapitel 2.2 vorgestellt wird. Terminale 1-Vinyl-Propargylalkohole werden über eine Kaskade aus Allylierung und Cyclisierung umgesetzt und bilden im Beisein ungeschützter binukleophiler Amine und Pyrrole Cycloadditionsprodukte. Interne 1-Vinyl-Propargylalkohole führen zu der Allylierung der eingesetzten Nukleophile. Unter konnten Verwendung höher ungesättigter Komponenten die entwickelten rutheniumkatalysierten Transformationen um Cycloadditionen oder Umlagerungen erweitert

werden. Dabei wird nur ein einziger Katalysator benötigt und Wasser als einziges Abfallprodukt gebildet. Um das Potential der entwickelten katalytischen Methoden im Rahmen einer Naturstoffsynthese zu demonstrieren, wurden verschiedene Retrosynthesen zur Darstellung des cyctotoxischen Schwammalkaloids Herbindol A entwickelt, die als Schlüsselschritt die rutheniumkatalysierte Indolbildung beinhalten. Als ganz besonders erfolgversprechend erweist sich dabei der Syntheseweg in Schema 30, in dem die wesentlichen Schritte ausgearbeitet und optimiert wurden.

In **Kapitel 2.3** wird die Darstellung eines [3]Dendralens durch ein umfangreiches Katalysatorscreening - mit den neu generierten Komplexen - optimiert. Die postulierten charakteristischen Eigenschaften der Komplexe werden in aktuellen Projekten im Arbeitskreis untersucht. Schlussendlich erfolgt die Demonstration einer Methode, mit der es gelingt aus wohlfeilen und leicht zugänglichen Edukten innerhalb einer einzigen Reaktion komplexe Produkte darzustellen. Die entwickelte Domino-Sequenz aus Allylierung, Cyclisierung und dientransmissiver Diels-Alder Reaktion führt zur Darstellung beeindruckender Strukturen mit acht neuen Stereozentren, wobei von den möglichen 32 Stereoisomeren jeweils maximal vier diastereomere Addukte detektiert wurden. Diese hochkomplexen Strukturen werden derzeit auf biologische Aktivität gescreent.

Die Untersuchungen zu den Reaktionsmechanismen, der Anwendungsbreite, der Entwicklungen sequenziell katalysierter Prozesse und der asymmetrisch katalysierten Anwendungen durch Verwendung axial chiraler Vertreter sind weiterhin Gegenstände aktueller Forschungsprojekte im Arbeitskreis. Neben dem weiterführenden Screening der neu generierten Komplexe werden bereits im Arbeitskreis etablierte Katalysatoren in den neu entwickelten Synthesemethoden getestet. Mögliche Einflüsse elektronischer, sterischer und koordinativer Substitutenteneffekte auf Reaktivität und Selektivität werden somit systematisch untersucht. Durch entsprechende stöchiometrische Umsetzungen könnten die metallorganischen Intermediate der Katalysezyklen isoliert, charakterisiert und zur Erweiterung des mechanistischen Verständnisses genutzt werden. Weitere Variationen der Reaktionsbedingungen, der eingesetzten Katalysatoren und der Additive könnten zur fortlaufenden Verbesserung der Diastereoselektivität führen. Im Hinblick auf die geplanten Arbeiten, insbesondere die zu entwickelnden Dominoprozesse, sind weitere Untersuchungen unter Mikrowellenbedingungen von großer Bedeutung. Dabei sollte der Einfluss erhöhter Energieeinträge auf den Ablauf der Katalysezyklen insbesondere unter verschiedenen Reaktionsbedingungen systematisch untersucht werden.

Die vorgestellten Ergebnisse sowie die aufgezeigten Möglichkeiten für weiterführende Untersuchungen zeigen die herausragende Fähigkeit der Ruthenium-Cyclopentadienonkomplexe bei der Katalyse neuartiger und effizienter Transformationen wohlfeiler und leicht zugänglicher Edukte. Sie lassen darüber hinaus erahnen, welches beachtliche, synthetische Potential hier noch verborgen liegt und gereichen somit zur Motivation, eben dieses durch kontinuierliche Erforschung weiter offenzulegen.

# 4. Experimenteller Teil

## **4.1 Allgemeines**

#### Analytische Methoden

Die ¹H- und ¹³C-NMR-Spektren wurden mit den Geräten Bruker DPX 400, Bruker AVANCE III und Bruker AVANCE 600 aufgenommen. Die Proben wurden in CDCl₃ oder MeOD gelöst und sind jeweils gegen internes CHCl₃ standardisiert (7.26 ppm bzw. 77.01 ppm). Die chemischen Verschiebungen ( $\delta$ ) sind in ppm, die Kopplungskonstanten (J) in Hertz (Hz) angegeben. Die Signalmultiplizitäten wurden wie folgt abgekürzt: s= Singulett, d= Duplett, t= Triplett, q= Quartett, quint= Quintett, m= Multiplett, br= breites Signal.

Zur Strukturaufklärung dienten DEPT-, HSQC-, HMBC-, COSY- und NOESY-Messungen. Massenspektren wurden mit einem Finnigan SSQ 7000 - Massenspektrometer, hochauflösende MS-Spektren (HRMS) mit einem Finnigan MAT 95 – Massenspektrometer aufgenommen. Es kam jeweils das Elektronenstoßionisationsverfahren zum Einsatz.

IR-Spektren wurden mit einem Perkin-Elmer FT- IR- 2000 – Spektrometer gemessen. Feste Proben wurden als KBr-Presslinge und Flüssigkeiten als dünner Film auf KBr- Scheiben analysiert. Die Lage der Absorptionsbanden ist in Wellenzahlen v  $[cm^{-1}]$  angegeben. Die relative Intensität der Bande ist wie folgt abgekürzt: s= stark, m= mittel, w= schwach.

#### **Chromatographie**

Für die Dünnschichtchromatographie dienten DC-Fertigfolien POLYGRAM SIL G/UV₂₅₄ mit Fluoreszenzindikator der Firma Macherey&Nagel. Zur Bestrahlung wurde UV-Licht (254nm) und zum Anfärben Vanillin-Reagenz verwendet. Säulenchromatographische Trennungen wurden mit Kieselgel 60 der Firma Fluka (Korngröße 0.004 – 0.0063 mm) durchgeführt. Die angegebenen Lösungsmittelgemische wurden unter leichtem Überdruck verwendet.

#### Arbeitstechniken und Reagenzien / Lösungsmittel

Reaktionen mit luft- bzw. feuchtigkeitsempfindlichen Substanzen wurden, sofern nicht anders vermerkt, unter Argonatmosphäre durchgeführt. Die Reaktionsgefäße wurden im Vorfeld am Ölpumpenvakuum mit zusätzlichem Ausheizen evakuiert. Organische Extrakte wurden über wasserfreiem Magnesiumsulfat getrocknet. Erworbene Feinchemikalien wurden in der Regel ohne vorherige Reinigung eingesetzt. In Reaktionen wurden entweder kommerziell erworbene, absolute Lösungsmittel (mindestens Reagent Grade) oder im Vorfeld getrocknete Solventien benutzt. Diethylether, Tetrahydrofuran und Toluol wurden über Natrium/ Benzophenon, Dichlormethan und 1,2-Dichlorethan über Calciumhydrid getrocknet.

#### Versuchsbeschreibung und analytische Daten

Die Reihenfolge der beschriebenen Versuche orientiert sich an der Chronologie der **Kapitel 2.1** bis **2.3**. Die Benennung der Verbindungen erfolgte nach der ChemDraw-Nomenklatur. Die Nummerierung der Kohlen- bzw. Wasserstoffe wurde zum Zweck der Systematisierung abweichend vorgenommen. Die Signale der spektroskopischen Messungen wurden, soweit eindeutig möglich, zugeordnet.

## 4.2 Experimentelle Daten zum Kapitel "Katalysatoren und Liganden"

1,4-Dibenzyl-2-methyl-5,7-diphenyl-1,2,3,4-tetrahydro-6H-cyclopenta[b]pyrazin-6-on (**11aL**)



4-Hydroxy-2,5-diphenylcyclopent-4-en-1,3-dion **19a**³⁴ (200mg, 0.75mmol) wird unter Argon in MeOH gelöst vorgelegt, mit *N*,*N*`-Dibenzylpropan-1,2-diamin (208mg, 0.83mmol) versetzt, 2h bei 60°C gerührt, auf RT abgekühlt und eingedampft. Es wird stark in Et₂O gerührt und filtriert. Der Filterkuchen wird in DCM gelöst, eingedampft, im HV getrocknet und mittels MPLC (DCM, 1/2% MeOH) gereinigt. **11aL** (128mg, 0.26mmol, 71% d.Th) wird als violetter Schaum isoliert.

 $(C_{34}H_{30}N_2O)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.20$  (d, J = 6.5 Hz, 3 H, H8), 2.78 (dd, J = 12.2, 3.2 Hz, 1 H, H7a), 3.13-3.20 (m, 1 H, H6), 3.25 (dd, J = 12.2, 4.0 Hz, 1 H, H7b), 3.83 (d, J = 15.6 Hz, 1 H, Bn), 4.13 (d, J = 15.3 Hz, 1 H, Bn), 4.41 (d, J = 15.3 Hz, 1 H, Bn), 4.64 (d, J = 15.6 Hz, 1 H, Bn), 7.00-7.04 (m, 6 H, Ph), 7.08-7.23 ppm (m, 14 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 16.3$  (CH₃, C8), 50.2 (CH, C6), 52.1 (CH₂, C7/Bn), 53.4 (CH₂, C7/Bn), 55.6 (CH₂, C7/Bn), 98.7 (C, C2/C4), 99.2 (C, C2/C4), 125.7 (2CH, Ph), 126.4 (2CH, Ph), 127.3 (2CH, Ph), 127.4 (2CH, Ph), 127.5 (CH, Ph), 127.5 (CH, Ph), 127.7 (2CH, Ph), 128.5 (2CH, Ph), 128.6 (2CH, Ph), 130.9 (4CH, Ph), 133.7 (C, Ph), 133.8 (C, Ph), 136.0 (C, Ph), 136.5 (C, Ph), 149.8 (C, C1/C5), 149.8 (C, C1/C5), 195.5 ppm (C, C3); IR: v = 3435 (w), 3055 (w), 3027 (w), 2970 (w), 2925 (w). 2861 (w), 1948 (w), 1877 (w), 1808 (w), 1606 (s), 1589 (s), 1429 (s), 1429 (s), 1352 (m), 1317 (s), 1259 (m), 1164 (m), 1028 (w), 935 (w), 771 (w), 731 (m), 698 (s), 653 cm⁻¹ (w); MS (EI): m/z (%) = 482 [M⁺] (100), 391 (80), 363 (17), 30 (20), 149 (32), 125 (24), 111 (39), 105 (40); HRMS: m/z calcd for  $C_{34}H_{30}N_2O$ : 482.2358 [ $M^+$ ]; found: 482.2357.

#### C7-substituierter Katalysator (11a)



**11aL** (100mg, 0.21mmol) und Ru₃(CO)₁₂ (62mg, 0.09mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit abs. Toluol (4ml/mmol) versetzt, 7.5h bei 100°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC (DCM, 1/2% MeOH) gereinigt. **11b** (123mg, 0.18mmol, 89% d.Th.) wird als ockerfarbiger Schaum isoliert.

 $(C_{37}H_{30}N_2O_4Ru)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.89$  (d, J = 6.6 Hz, 3 H, H8), 1.03 (d, J = 6.6 Hz, 3 H, H8[°]), (2.13 (d, J = 11.4 Hz, 1 H, H7a), 2.57 (d, J = 14.1 Hz, 1 H, Bn), 2.73 (dd, J = 11.5, 1.3 Hz, 1 H, *H7b*), 2.81 (d, J = 6.6 Hz, 1 H, *H6*), 3.07 (d, J = 13.8 Hz, 1 H, *Bn*), 3.8 (d, J = 13.8 Hz, 1 H, Bn), 4.07 (d, J = 14.1 Hz, 1 H, Bn) 6.98 (d, J = 5.7 Hz, 2 H, Ph), 7.03 (t, J = 7.5 Hz, 4 H, Ph), 7.07-7.17 (m, 6 H, Ph), 7.21-7-30 (m, 4 H, Ph), 7.47 ppm (t, J = 7.8 Hz, 4 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 19.1 (CH₃, *C*8), 49.6 (CH, *C*6), 49.6 (CH₂, C7/Bn), 57.5 (CH₂, C7/Bn), 61.3 (CH₂, C7/Bn), 67.6 (C, C2/C4), 71.4 (C, C2/C4), 116.2 (C, C1/C5), 116.9 (C, C1/C5), 127.6 (CH, Ph), 127.8 (2CH, Ph), 128.0 (2CH, Ph), 128.1 (CH, Ph), 128.3 (2CH, Ph), 128.4 (2CH, Ph), 128.4 (2CH, Ph), 128.6 (2CH, Ph), 128.7 (2CH, Ph), 128.9 (CH, Ph), 131.4 (C, Ph), 132.1 (C, Ph), 132.5 (CH, Ph), 132.6 (2CH, Ph), 135.4 (C, *Ph*), 135.5 (C, *Ph*), 172.8 (C, *C3*), 195.8 ppm (C, *CO*); IR: *v* = 3059 (w), 3029 (w), 2975 (w), 2928 (w), 2055 (s), 1982 (s), 1974 (s), 1743 (w), 1641 (m), 1509 (m), 1495 (m), 1441 (m), 1340 (w), 1303 (w), 1207 (w), 1192 (w), 744 (w), 724 (m), 696 (m), 585 (w), 558 (w), 518 (w), 490 cm⁻¹ (w); MS (EI): m/z (%) = 667 [M⁺] (16=), 639 (17), 611 (88), 583 (100), 565 (24), 512 (22); HRMS: m/z calcd for C₃₇H₃₀N₂O₄Ru: 667.1243 [ $M^+$ ]; found: 667.1250. Das Isomerenverhältnis von 1:0.15 wurde durch Integration der peaks bei 0.89 und 1.03 ppm im ¹H NMR-Spektrum bestimmt.

1,4-Dibenzyl-2,7-dimethyl-1,2,3,4-tetrahydro-6*H*-cyclopenta[b]pyrazin-6-on (11bL)



4-Hydroxy-5-methylcyclopent-4-en-1,3-dion **19b** (50mg, 0.34mmol) wird unter Argon in MeOH gelöst vorgelegt, mit N,N`-Dibenzylpropan-1,2-diamin (95mg, 0.38mmol) versetzt, 2h bei 80°C gerührt, auf RT abgekühlt, am HV getrocknet und ohne weiteren Reinigungsschritt umgesetzt. Die Charakterisierung des Diastereomerengemisches **11bL** erfolgte am Rohspektrum, wobei für die 2 Diastereomere folgende charakteristische Signale detektiert wurden:

Hauptisomer:  $(C_{23}H_{24}N_2O)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.09$  (d, J = 6.5 Hz, 3 H, H8), 1.69 (s, 3 H, H9), 2.81 (dd, J = 12.1, 3.6 Hz, 1 H, H7a), 3.19-3.23 (m, 1 H, H6), 3.33 (dd, J = 12.2, 3.9 Hz, 1 H, H7b), 3.36 (s, 1 H, H2), 4.16 (d, J = 15.0 Hz, 1 H, Bn), 4.18 (d, J = 16.0 Hz, 1 H, Bn), 4.31 (d, J = 15.1 Hz, 1 H, Bn), 4.92 (d, J = 16.0 Hz, 1 H, Bn), 7.19-7.28 ppm (m, 10 H, Ph); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 9.0$  (CH₃, C9), 16.2 (CH₃, C8), 51.5 (CH, C6), 51.9 (CH₂), 52.5 (CH₂), 55.9 (CH₂), 78.9 (CH, C2), 126.9 (2CH, Ph), 127.9 (CH, Ph), 128.0 (2CH, Ph), 128.7 (2CH, Ph), 128.7 (2CH, Ph), 128.8 (CH, Ph), 135.2 (C, Ph), 137.8 (C, Ph), 146.3 (C, C5), 158.2 (C, C1), 198.7 ppm (C, C3).

Nebenisomer:  $(C_{23}H_{24}N_2O)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.17$  (d, J = 6.4 Hz, 3 H, H8`), 1.73 (s, 3 H, H9`), 3.10-3.14 (m, 1 H, H6`), 5.10 (d, J = 16.0, 1 H, Bn`), 7.19-7.28 ppm (m, 10 H, Ph`).

Das Isomerenverhältnis von 3:1 wurde durch Integration der peaks bei 1.09 und 1.17 ppm im ¹H NMR-Spektrum bestimmt.

C7-substituierter Katalysator (11b)



**11bL** (100mg, 0.29mmol) und  $Ru_3(CO)_{12}$  (62mg, 0.09mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit abs. Toluol (4ml/mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt und eingedampft. Die Charakterisierung des Diastereomerengemisches **11b** erfolgte am Rohspektrum, wobei für die 4 Diastereomere folgende charakteristische Signale detektiert wurden:

 $(C_{27}H_{27}N_2O_4Ru)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.66$  (d, J = 6.7 Hz, 3 H, *H8*[°]), 0.82 (d, J = 6.7 Hz, 3 H, *H8*), 0.94 (d, J = 6.3 Hz, 3 H, *H8*[°]), 1.17 (d, J = 6.3 Hz, 3 H, *H8*[°]), 1.67 (s, 3 H, *H9*[°]), 1.74 (s, 3 H, *H9*[°]), 1.94 (s, 3 H, *H9*), 2.03 (s, 3 H, *H9*[°]), 2.60 (dd, J = 11.9, 1.6 Hz, 1 H, *H7a*), 2.76 (dd, J = 11.2, 1.9 Hz, 1 H, *H7b*), 2.87 (d, J = 13.6 Hz), 2.97 (d, J = 13.3 Hz), 3.23 (d, J = 14.0 Hz), 3.48 (d, J = 14.8 Hz), 3.91 (d, J = 13.3 Hz), 3.95 (d, J = 14.1 Hz), 4.14 (d, J = 15.9 Hz), 4.23 (s), 4.3 (d, J = 14.8 Hz), 5.10 ppm (d, J = 16.6 Hz); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 9.0$  (CH₃, *C9*[°]), 9.1 (CH₃, *C9*[°]), 9.9 (CH₃, *C9*), 10.3 (CH₃, *C9*[°]), 18.3 (CH₃, *C8*[°]), 18.5 (CH₃, *C8*[°]), 19.2 (CH₃, *C8*[°]), 20.1 (CH₃, *C8*), 39.7 (CH₂), 49.1 (CH₂), 49.7 (CH₂), 50.6 (CH₂°), 51.1 (CH₃, *C6*[°]), 51.7 (CH₂°), 52.3 (CH₃, *C6*), 52.7 (CH₂), 61.2 (C, C4), 61.2 (CH₃°), 56.0 (CH₂°), 56.8 (CH₂), 57.1 (CH₂°), 58.0 (CH₂°), 59.5 (CH₂), 61.2 (C, C4), 61.2 (CH₂°), 62.3 (CH, *C2*), 62.3 (CH, *C2*[°]), 62.5 (C, *C4*[°]), 106.7 (C), 108.8 (C), 134.4 (C), 135.1 (C), 136.2 (C), 136.3 (C), 137.0 (C), 137.4 (C), 137.5 (C), 138.0 (C), 139.9 (C), 168.7 (C), 170.8 (C), 172.3 (C), 195.9 (C), 195.8 (C), 196.2 (C), 199.6 (C), 201.3 ppm (C). Das Isomerenverhältnis von 1:0.6:0.3:0.3 wurde durch Integration der peaks bei 0.66, 0.82, 0.94 und 1.17ppm im ¹H NMR-Spektrum bestimmt.

1,4,7-Trimethyl-N-(naphthalen-1-yl)-6-oxo-2,3,4,6-tetrahydro-1H-cyclopenta[b]pyrazin-5carboxamid (**12L**)



4-Hydroxy-5-methylcyclopent-4-en-1,3-dion **19a** (100mg, 0.71mmol) wird unter Argon in MeOH (4ml/mmol) gelöst vorgelegt, mit N,N-Dimethylethylendiamin (85%) (63mg, 0.71mmol) versetzt, 2h bei 80°C gerührt, auf RT abgekühlt, eingedampft und am HV getrocknet. Der Rückstand wird unter Argon in DCM (abs) gelöst vorgelegt, mit Naphthylisocyanat (135mg, 0.70mmol) und Dimethylaminopyridin (2mol-%) versetzt, 12h bei RT gerührt, eingedampft und mittels MPLC (DCM, 1% MeOH) gereinigt. **12L** (238.3mg, 0.72mmol, 90% d.Th.) wird als braunes Pulver (in Lösung rot) isoliert.

 $(C_{21}H_{21}N_3O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.99$  (s, 3 H, *H10*), 3.19 (s, 3 H, *H6*), 3.24 (t, J = 5.3 Hz, 2 H, *H7*), 3.49 (t, J = 6.2 Hz, 2 H, *H8*), 3.64 (s, 3 H, *H9*), 7.43 (t, J = 8.0 Hz, 1 H, *Naphtyl*), 7.46 (t, J = 1.1 Hz, 1 H, *Naphtyl*), 7.53-7.58 (m, 2 H, *Naphtyl*), 7.81 (d, J = 1.9 Hz, 1 H, *Naphtyl*), 8.29 (dd, J = 7.5, 1.0, Hz, 1 H, *Naphtyl*), 8.34 (d, J = 8.5 Hz, 1 H, *Naphtyl*), 11.12 ppm (s, 1 H, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 7.9$  (CH₃, *C10*), 40.6 (CH₃, *C6*), 45.4 (CH₃, *C9*), 48.7 (CH₂, *C7*), 50.4 (CH₂, *C8*), 89.6 (C, *C2/C4*), 99.0 (C, *C2/C4*), 117.5 (CH, *Naphthyl*), 121.6 (CH, *Naphthyl*), 122.8 (CH, *Naphthyl*), 125.5 (CH, *Naphthyl*), 125.8 (CH, *Naphthyl*), 125.9 (CH, *Naphthyl*), 126.4 (C, *Naphthyl*), 128.3 (CH, *Naphthyl*), 134.1 (C, *Naphthyl*), 134.9 (C, *Naphthyl*), 148.2 (C, *C5*), 161.6 (C, *C1*), 162.8 (C, *C11*), 197.1 ppm (C, *C3*).

Amid-substituierter Katalysator (12)



**12L** (155.6mg, 0.47mmol) und  $Ru_3(CO)_{12}$  (100mg, 0.156mmol) werden vorgelegt, 10min im HV getrocknet, in abs. Toluol (4ml/mmol) gelöst, 2h bei 100°C gerührt, mit einem Tropfen Dichlorethan versetzt, weitere 6h bei 100°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC (DCM, 1% MeOH) gereinigt. **12** (98.9mg, 0.19mmol, 65% d.Th.) wird als ockerfarbener FS isoliert. (Dichlorethan dient zur Verbesserung der Löslichkeit)

 $(C_{24}H_{21}N_3O_5Ru)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.23$  (s, 3 H, *H10*), 2.66 (td, J = 11.2, 2.9 Hz, 1 H, *NCH*₂), 2.81 (s, 3 H, *H6*), 2.96 (dt, J = 13.3, 3.0 Hz, 1 H, *NCH*₂), 3.07 (s, 3 H, *H9*), 3.11 (dt, J = 11.8, 3.04 Hz, 1 H, *NCH*₂), 3.45 (td, J = 10.2, 2.4 Hz, 1 H, *NCH*₂), 7.47 (q, J = 9.0, 3.8 Hz, 2 H, *Naphtyl*), 7.55 (t, J = 3.7 Hz, 1 H, *Naphtyl*), 7.61 (d, J = 8.2 Hz, 1 H, *Naphtyl*), 7.83 (d, J = 7. Hz, 1 H, *Naphtyl*), 8.25 (d, J = 8.5 Hz, 1 H, *Naphtyl*), 8.37 (d, J = 8.4

Hz, 1 H, *Naphtyl*), 12.18 ppm (s, 1 H, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.4$  (CH₃, *C10*), 41.6 (CH₃, *C6*), 48.7 (CH₂, *C7/C8*), 48.8 (CH₂, *C7/C8*), 50.5 (CH₃, *C9*), 55.4 (C, *C2/C4*), 63.3 (C, *C2/C4*), 118.4 (CH, *Naphtyl*), 121.3 (CH, *Naphtyl*), 122.0 (C, *C5*), 124.2 (CH, *Naphtyl*), 125.7 (CH, *Naphtyl*), 125.8 (CH, *Naphtyl*), 126.1 (C, *Naphtyl*), 126.3 (CH, *Naphtyl*), 128.4 (CH, *Naphtyl*), 133.8 (C, *Naphtyl*), 134.0 (C, *Naphtyl*), 164.9 (C), 170.4 (C), 194.4 ppm (C, *CO*).

Ethyl-2-(1,4-dimethyl-6-oxo-7-phenyl-2,3,4,6-tetrahydro-1H-cyclopenta[b]pyrazin-5-yl)-2-

oxoacetat (13L)



**19c**⁸⁶(1g, 3.62mmol) wird unter Argon in MeOH gelöst vorgelegt, und tropfenweise mit N,N-Dimethylethylendiamin (85%) (413mg, 3.98mmol) versetzt (evtl. Eisbad – exotherme Reaktion), 2h bei 60°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC (DCM, 2% MeOH) gereinigt. **13L** (483mg, 0.89mmol, 40% d.Th.) wird als roter Schaum isoliert. (**19c** gelöst in MeOH: ergibt eine hellrote Lösung, bei Zugabe des Amins: Rauchbildung, Trübfärbung und Übergang in tiefrote klare Lösung)

 $(C_{19}H_{20}N_2O_4)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.30$  (t, J = 7.2 Hz, 3 H, *OEt*), 2.65 (s, 3 H, *H6*), 3.27 (t, J = 6.2 Hz, 2 H, *H7*), 3.61 (t, J = 6.1 Hz, 2 H, *H8*), 3.68 (s, 3 H, *H9*), 4.29 (q, J = 7.2, 2 H, *OEt*), 7.16-7.19 (m, 3 H, *Ph*), 7.24-7.28 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.0$  (CH₃, *OEt*), 41.5 (CH₃, *C6*), 45.5 (CH₃, *C9*), 48.1 (CH₂, *C7*), 50.5 (CH₂, *C8*), 61.1 (CH₂, *OEt*), 94.6 (C, *C4*), 106.8 (C, *C2*), 126.9 (CH, *Ph*), 127.5 (2CH, *Ph*), 130.9 (2CH, *Ph*), 131.5 (C, *Ph*), 148.2 (C), 164.3 (C), 167.4 (C), 176.8 (C), 191.3 ppm (C); IR: v = 3459 (w), 2998 (w), 2929 (w), 2876 (w), 1728 (m), 1665 (m), 1614 (s), 1594 (s), 1570 (s), 1499 (m), 1457 (m), 1413 (m), 1368 (m), 1290 (m), 1241 (m), 1209 (m), 1134 (m), 1116 (m), 1077 (w), 1058 (w), 1030 (m), 1023 (m), 943 (m), 840 (w), 814 (w), 750 (s), 701 (m), 677 (m), 666 cm⁻¹ (m); MS (EI): m/z (%) = 340 [M⁺] (12), 267 (100); HRMS: m/z calcd for  $C_{19}H_{20}N_2O_4$ : 340.3731 [ $M^+$ ]; found: 340.1421.

Katalysator 13



**13L** (340mg, 1mmol) und  $Ru_3(CO)_{12}$  (213mg, 0.33mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit abs. Toluol (4ml/mmol) versetzt (**13L** sehr schlecht löslich), 5h bei 100°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC gereinigt. **13** (87mg,

0.16mmol, 16% d.Th.) wird als roter FS isoliert. [MPLC: (DCM, 1% MeOH): **13** kommt sehr lange als gelbe Lösung, **13L** kann danach mit (DCM, 2% MeOH) von der Säule "gespült" werden.]

 $(C_{22}H_{20}N_2O_7Ru)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.23$  (t, J = 7.2 Hz, 3 H, *OEt*), 2.10 (s, 3 H, *H6*), 2.55-2.61 (m, 1 H, *H7a*), 2.69-2.74 (m, 1 H, *H7b*), 2.76 (s, 3 H, *H9*), 3.22-3.27 (m, 1 H, *H8a*), 3.38-3.44 (m, 1 H, *H8b*), 4.16-4.26 (m, 2 H, *OEt*), 7.26-7.31 ppm (m, 5 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 13.8$  (CH₃, *OEt*), 41.9 (CH₃, *C6*), 46.7 (CH₃, *C9*), 48.9 (CH₂, *C7*), 50.3 (CH₂, *C8*), 56.6 (C, *C4*), 62.1 (CH₂, *OEt*), 72.5 (C, *C2*), 107.9 (C, *C5*), 123.4 (C, *C1*), 128.2 (CH, *Ph*), 128.7 (2CH, *Ph*), 130.9 (C, *Ph*), 132.6 (2CH, *Ph*), 164.4 (C, *C11*), 170.5 (C, *C3*), 189.9 (C, *C10*), 201.3 ppm (C, *CO*); IR: v = 3435 (m), 3056 (w), 2958 (w), 2929 (m), 2861 (w), 2245 (w), 2071 (s), 2015 (s), 1736 (m), 1647 (m), 1563 (m), 1497 (s), 1443 (m), 1412 (m), 1380 (m), 1361 (m), 1329 (m), 1272 (m), 1117 (m), 1030 (m), 1018 (m), 935 (m), 911 (m), 856 (s), 844 (w), 734 (m), 697 (m), 567 (m), 517 (m), 492 cm⁻¹ (m); MS (EI): *Fragmentierung zu stark, Messung des Molekülions nicht möglich.* 

1-Phenyl-3-((4aR,8aR)-3,4,9-trimethyl-2-oxo-4,4a,5,6,7,8,8a,9-octahydro-2*H*-cyclopenta[b]quinoxalin-1-yl)pyrrolidin-2,5-dion (**14aL**)



(1*R*,2*R*)-*N*,*N*[•]-Dimethyl-1,2-cyclohexandiamin (81mg, 0.57mmol) wird in MeOH gelöst vorgelegt, mit 4-Hydroxy-5-methylcyclopent-4-en-1,3-dion **19a** (75mmg, 0.63mmol) versetzt, 2h bei 60°C gerührt, auf RT abgekühlt, eingedampft und am HV getrocknet. Der blutrote halbkristalline FS wird ohne weiteren Reinigungsschritt umgesetzt, wobei eine Reinheit von 100% und eine quantitative Ausbeute angenommen werden. Der FS (100mg, 0.43mmol) wird in DCM (abs.) gelöst vorgelegt, mit *N*-Phenylmaleinimid (90mg, 0.52mmol) versetzt, 12h bei RT gerührt, eingedampft und mittels Säulenfiltration (DCM) gereiningt. **14aL** (140mg, 0.34mmol, 80% d.Th.) wird als Gemisch von 2 Isomeren (1:1) in Form eines roten Schaums erhalten.

 $(C_{24}H_{27}N_3O_3)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.24-1.34$  (m, 8 H,  $CH_2+CH_2$ `), 1.81 (s, 3 H, H6/H6`), 1.81 (s, 3 H, H6/H6`), 1.83-1.87 (m, 4 H,  $CH_2+CH_2$ `), 2.17-2.25 (m, 4 H,  $CH_2+CH_2$ `), 2.91-2.96 (m, 2 H, H8/H8`), 2.97 (d, J = 7.9 Hz, 2 H, H8/H8`), 3.02 (s, 6 H,  $NCH_3/NCH_3$ `), 3.03 (s, 3 H,  $NCH_3/NCH_3$ `), 3.14 (s, 3 H,  $NCH_3/NCH_3$ `), 3.91 (d, J = 9.4, 5.9 Hz, 1 H, H7/H7`), 3.97 (dd, J = 8.0, 6.9 Hz, 1 H, H7/H7`), 7.34-7.43 (m, 6 H, Ph+Ph`), 7.44-7.46 ppm (m, 4 H, Ph+Ph`); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 8.0$  (CH₃, *C6*), 8.13 (CH₃, *C6*`), 24.0 (2CH₂), 24.1 (CH₂), 24.1 (CH₂), 28.6 (2CH₂), 28.9 (CH₂), 29.0 (CH₂), 34.9 (2CH, *C7 und C7*`), 36.7 (CH₂, *C8/C8*`), 36.9 (CH₃,  $NCH_3/NCH_3$ `), 37.5 (CH₃,  $NCH_3/NCH_3$ `), 37.5 (CH₃,  $NCH_3/NCH_3$ `), 37.9 (CH₂, *C8/C8*`), 61.0 (CH, *NCH/NCH*`), 61.2 (CH, *NCH/NCH*`), 62.1 (CH, *NCH/NCH*`), 62.2 (CH, *NCH/NCH*`), 91.0 (C, *C4*), 91.3 (C, *C4*`), 93.0 (C, *C2*), 93.2 (C, *C2*`), 126.8 (2CH, *Ph/Ph*`),

126.9 (2CH, *Ph/Ph*[`]), 128.2 (CH, *Ph/Ph*[`]), 128.2 (CH, *Ph/Ph*[`]), 128.8 (2CH, *Ph/Ph*[`]), 128.9 (2CH, *Ph/Ph*[`]), 132.7 (2C, *Ph*), 151.3 (C, *C5*), 151.4 (C, *C5*[`]), 154.3 (C, *C1*), 154.4 (C, *C1*[`]), 175.7 (C), 176.0 (C[`]), 178.7 (C), 178.8 (C[`]), 197.9 (C, *C3*), 198.1 ppm (C, *C3*[`]); IR: v = 3304 (m), 2933 (m), 2861 (m), 2799 (m), 1774 (w), 1707 (s), 1637 (s), 1548 (s), 1497 (s), 1442 (s), 132 (s), 1313 (s), 1250 (m), 1177 (m), 1079 (m), 1029 (m), 903 (w), 839 (w), 756 (m), 694 cm⁻¹ (m); MS (EI): m/z (%) = 405 [M⁺] (100), 390 (50), 379 (75), 286 (38), 271 (40), 258 (46), 245 (93), 231 (87), 217 (35), 203 (27), 189 (16), 175 (22), 127 (44), 93 (30); HRMS: m/z calcd for C₂₄H₂₇N₃O₃: 405.2047 [M⁺]; found: 405.2047.

Succinimid-substituierter Katalysator (14a)



**14aL** (140mg, 0.34mmol) und Ru₃(CO)₁₂ (74mg, 0.11mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit abs. Toluol (4ml/mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC (DCM,  $^{1}/_{2}$ % MeOH) gereinigt. **14a** (140mg, 0.34mmol, 80% d.Th.) wird als Gemisch von 4 Isomeren in Form eines gelben Schaums erhalten.

 $(C_{27}H_{27}N_3O_6Ru)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.12-1.28$  (m, 8 H, CH₂), 1.75-1.80 (m, 4 H, CH₂), 1.98 (s, 3 H, H6), 1.99 (s, 3 H, H6), 2.02 (m, 6 H, H6), 2.15-2.25 (m, 4 H, CH₂), 2.44 (s, 3 H, NCH₃), 2.46 (s, 3 H, NCH₃), 2.59 (s, 3 H, NCH₃), 2.62 (s, 6 H, NCH₃), 2.63 (s, 3 H, NCH₃), 2.74 (s, 3 H, NCH₃), 2.76 (s, 3 H, NCH₃), 2.83-2.95 (m, 3 H, H8), 3.03-3.13 (m, 3 H, H8), 3.18-3.28 (m, 3 H, H8), 3.36 (dd, J = 9.5, 4.9 Hz, 1 H, H7), 3.60 (dd, J = 9.5, 5.4 Hz, 1 H, H7), 3.79 (dd, J = 9.5, 5.9 Hz, 1 H, H7), 3.95 (dd, J = 9.5, 5.9 Hz, 1 H, H7), 7.24-7.30 (m, 11 H, Ph), 7.34-7.38 ppm (m, 9 H, Ph);  13 C NMR (100 MHz, CDCl₃):  $\delta$  = 11.3 (CH₃, C6), 11.4 (CH₃, C6), 11.7 (CH₃, C6), 12.1 (CH₃, C6), 23.8 (CH₂), 23.9 (CH₂), 24.0 (CH₂), 24.1 (CH₂), 24.2 (CH₂), 24.3 (CH₂), 24.3 (CH₂), 24.5 (CH₂), 28.1 (CH₂), 28.2 (2CH₂), 28.3 (CH₂), 28.6 (CH₂), 28.7 (CH₂), 28.8 (CH₂), 29.0 (CH₂), 35.1 (CH₃, NCH₃ oder CH, C7), 35.7 (CH₃, NCH₃ oder CH, C7), 35.9 (CH₂, C8), 36.0 (CH₃, NCH₃ oder CH, C7), 36.5 (CH₂, C8), 36.8 (CH₃, NCH₃ oder CH, C7), 37.0 (CH₃, NCH₃ oder CH, C7), 37.3 (CH₃, NCH₃ oder CH, C7), 37.3 (CH₃, NCH₃ oder CH, C7), 37.4 (CH₃, NCH₃ oder CH, C7), 37.8 (CH₃, NCH₃ oder CH, C7), 38.6 (CH₂, C8), 38.7 (CH₂, C8), 41.5 (CH₃, NCH₃ oder CH, C7), 58.0 (CH, NCH), 58.1 (CH, NCH), 59.9 (CH, NCH), 60.3 (2CH, NCH), 60.5 (CH, NCH), 60.9 (CH, NCH), 61.1 (C, C2/C4), 61.5 (C, C2/C4), 62.1 (C, C2/C4), 62.2 (C, C2/C4), 62.5 (C, C2/C4), 62.5 (C, C2/C4), 63.4 (CH, NCH), 63.9 (CH, NCH), 65.4 (C, C2/C4), 66.0 (C, C2/C4), 99.9 (C, C1/C5), 107.4 (C, C1/C5), 108.7 (C, C1/C5), 110.4 (C, C1/C5), 124.0 (C, C1/C5), 124.8 (C, C1/C5), 125.1 (C, C1/C5), 126.5 (C, C1/C5), 126.7 (CH, Ph), 126.8 (CH, Ph), 126.9 (CH, Ph), 128.3 (CH, Ph), 128.4 (CH, Ph), 128.4 (CH, Ph), 128.9 (CH, Ph), 128.9 (CH, Ph), 129.0 (CH, Ph), 132.2 (C, Ph), 132.3 (C, Ph), 132.6 (C, Ph), 132.6 (C, Ph), 169.7 (C, C3), 170.3 (C, C3), 171.3 (C, C3), 171.6 (C, C3), 174.5 (C, C9/C10), 174.8 (C, C9/C10), 174.8 (C, C9/C10),

174.9 (C, *C9/C10*), 176.0 (C, *C9/C10*), 176.6 (C, *C9/C10*), 176.6 (C, *C9/C10*), 176.7 (C, *C9/C10*), 195.2 (C, *CO*), 195.9 (C, *CO*), 196.2 (C, *CO*), 201.2 ppm (C, *CO*); IR:  $\nu = 3722$  (w), 2934 (m), 2863 (m), 2053 (m), 2019 (m), 1964 (s), 1779 (w), 1709 (s), 1619 (m), 1598 (m), 1498 (s), 1450 (m), 1413 (m), 1369 (s), 1312 (m), 1292 (m), 1179 (s), 1118 (m), 1080 (m), 1041 (m), 1000 (m), 907 (m), 758 (m), 724 (m), 694 (m), 679 cm⁻¹ (m).

Osmium-Katalysator (15)



 $3aL^{15}$  (50mg, 0.16mmol) und  $Os_3(CO)_{12}$  (47.8 mg, 0.054mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit Xylol (4ml/mmol) versetzt, 9h bei 145°C gerührt, auf RT abgekühlt, eingedampft und mittels Säulenfiltration (DCM, 2% MeOH) gereinigt. **15e** (11.5mg, 0.02mmol, 12% d.Th.) wird als ockerfarbener FS erhalten.

 $(C_{24}H_{20}N_2O_4O_s)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.39$  (s, 3 H, *H6/H9*), 2.40 (s, 3 H, *H6/H9*), 3.13 (t, J = 5.6 Hz, 2 H, *H7*), 3.29 (t, J = 5.4 Hz, 2 H, *H8*), 7.26-7.31 (m, 4 H, *Ph*), 7.32-7.34 (m, 4 H, *Ph*), 8.03-8.04 ppm (m, 2 H, *Ph*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 40.6$  (CH₃, *H6/H9*), 43.2 (CH₃, *H6/H9*), 46.1 (CH₂, *H7/H8*), 47.9 (CH₂, *H7/H8*), 98.1 (C), 124.1 (C), 127.9 (2CH), 128.1 (2CH), 128.2 (2CH), 128.5 (C), 131.2 (2CH), 131.9 (CH), 132.4 (C), 132.8 (CH), 137.0 (C), 148.1 (C), 151.8 (C), 163.4 (C, *CO*); MS (EI): *m/z* (%) = 591 [M⁺] (24), 563 [M⁺- CO] (17), 535 [M⁺- 2CO] (100), 507 [M⁺- 3CO] (21), 480(16) 33 13), 405 (12); HRMS: *m/z* calcd for C₂₄H₂₀N₂O₄Os: 590.1009 [¹⁹⁰Os], 592.1037 [¹⁹²Os] [*M*⁺]; found: 590.1008 [¹⁹⁰Os], 592.1038 [¹⁹²Os].

Ethylierter Katalysator (16)



 $3a^{16}$  (100mg, 0.20 mmol) wird unter Argon, gelöst in abs. DCM (4ml/mmol) vorgelegt, tropfenweise mit Et₃O*BF₄ (0.2ml, 0.20mmol, 1M in DCM) versetzt und 1h bei RT gerührt.³⁵ Das LM wird am HV eingedampft. Das Produktgemisch wird mittels MPLC getrennt, wobei **16** (84mg, 0.17mmol, 84% d.Th) als hellgelber Schaum isoliert wird.

 $(C_{25}H_{25}N_2O_3Ru \cdot BF_4)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.69$  (t, J = 7.2 Hz, 3 H, OEt), 2.20 (s, 6 H,  $NCH_3$ ), 2.62 (ddd, J = 16.6, 6.6, 3.8 Hz, 2 H,  $NCH_2$ ), 3.29 (q, J = 7.2 Hz, 2 H, OEt), 3.60 (ddd, J = 16.6, 6.6, 3.4 Hz, 2 H,  $NCH_2$ ), 7.40-7.42 (m, 6 H, Ph), 7.57-7.59 ppm (m, 4 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.7$  (CH₃, OEt), 41.6 (2CH₃,  $NCH_3$ ), 49.9 (2CH₂,  $NCH_2$ ),

¹⁵ Siehe Abb.2

¹⁶ Siehe Abb.2

72.0 (CH₂, *OEt*), 76.0 (2C, *C*2), 118.6 (2C, *C*3), 127.1 (2CH, *Ph*), 129.1 (4CH, *Ph*), 129.8 (2C, *Ph*), 132.8 (4CH, *Ph*), 139.7 (C, *C*1), 192.6 ppm (2C, *CO*); IR: v = 3060 (w), 2958 (m), 2928 (m), 2873 (m), 2857 (m), 2086 (s), 2017 (s), 1730 (w), 1673 (w), 1598 (s), 1501 (s), 1482 (s), 1444 (s), 1417 (s), 1365 (s), 1344 (s), 1316 (s), 1279 (s), 1205 (m), 1119 (m), 1050 (s), 1001 (s), 951 (s), 913 (s), 858 (s), 823 (m), 797 (w), 779 (m), 752 (s), 724 (s), 701 cm⁻¹ (s); MS (EI): m/z (%) = 506 (12), 505 (33), 504 (18), 503 [M⁺] (65), 502 (39), 501 (26), 500 (20), 497 (10), 481 (50), 445 (29), 417 (100), 389 (50); HRMS: m/z calcd for C₂₅H₂₅N₂O₃Ru: 503.0909 [ $M^+$ ]; found: 503.0902.

4,7-Dimethyl-2,9-diphenyl-4,5,6,7-tetrahydro-6H-cyclopenta[b]pyrazin-1-imin (17L)



 $3aL^{17}$  (200mg, 0.63 mmol) wird unter Argon in abs. DCM (4ml/mmol) gelöst vorgelegt (violette Lösung), tropfenweise mit Et₃O*BF₄ versetzt, 1h bei RT gerührt (hellgelbe Lösung), mit Formamid (114mg, 2.53mmol) und TEA (128mg, 1.26mmol) versetzt (dunkelblaue Lösung, Farbe kann in einen Braunton übergehen), 15h bei RT gerührt, eingedampft und mittels MPLC (DCM, 3% MeOH) gereinigt, wobei **17L** als grüner Schaum (in Lösung blau) erhalten wird (126mg, 0.40mmol, 63% d.Th.). (Auf der Säule hydrolysiert eine kleine Menge von **17L** zu **3aL**¹⁸, trotzdem muss die Säule lang genug gewählt werden, damit die Trennung vom TEA möglich ist; Et₃O*BF₄ muss als klare Lösung vorliegen und im Argon-Strom über eine Spritze entnommen werden).

 $(C_{21}H_{22}N_3 \cdot BF_4)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.77$  (s, 6 H, *H4*), 3.51 (s, 4 H, *H5*), 6.71 (s, br, 2 H, *NH*₂), 7.16-7.18 (m, 4 H, *Ph*), 7.23-7.25 (m, 2 H, *Ph*), 7.28-7.32 (m, 4 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 41.6$  (2CH₃, *C4*), 49.4 (2CH₂, *C5*), 93.1 (2C, *C2*), 128.2 (2CH, *Ph*), 128.9 (4CH, *Ph*), 129.8 (2CH, *Ph*), 131.4 (4CH, *Ph*), 149.9 (2C, *C3*), 177.9 ppm (C, *C1*); IR: v = 3348 (m), 2871 (w), 1683 (s), 1614 (s), 1505 (m) 1444 (m), 1414 (m), 1389 (m), 1363 (s), 1306 (m), 1245 (m), 1049 (s), 952 (m), 822 (w), 760 (m), 733 (w), 702 cm⁻¹ (m); MS (EI): m/z (%) = 332 (26), 316 (40), 315 [(M-H)⁺] (100), 314 (72), 300 (50), 227 (68), 149 (36), 115 (22), 105 (40), 77 (52), 57 (48); HRMS: m/z calcd for  $C_{21}H_{22}N_3$ : 316.1813 [ $M^+$ ]; found: 316.1810.

¹⁷ Siehe Abb.2

¹⁸ Siehe Abb.2

#### NH₂-Katalysator (17)



**17L** (145mg, 0.46mmol) und Ru₃(CO)₁₂ (98mg, 0.15mmol) werden unter Argon vorgelegt, 10min im HV getrocknet, mit abs. Toluol (4ml/mmol) versetzt (**17L** löst sich erst in der Wärme), 5h bei 100°C gerührt, auf RT abgekühlt, eingedampft und mittels MPLC (DCM, 2% MeOH) vom restlichen Ru₃(CO)₁₂ getrennt. **17** (142mg, 0.30mmol, 95% d.Th.) wird als gelber Schaum isoliert. (Auf der Säule hydrolysiert ein kleiner Teil von **17** zu **3a**¹⁹) ( $C_{23}H_{22}N_3O_2Ru \cdot BF_4$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.19$  (s, 6 H, *H4*), 2.60-2.87 (m, 2 H, *NCH*₂), 3.38-3.45 (m, 2 H, *NCH*₂), 7.32-7.3 (m, 2 H, *Ph*), 7.36-7.40 (m, 4 H, *Ph*), 7.48-7.51 ppm (m, 4 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 41.7$  (CH₃, *C4*), 49.8 (CH₂, *C5*), 68.0 (C, *C2*), 117.8 (C, *C3*), 126.9 (C, *Ph*), 129.9 (CH, *Ph*), 130.1 (CH, *Ph*), 132.5 (CH, *Ph*), 142.8 (C, *C1*), 192.9 ppm (C, *CO*); IR: v = 3467 (w), 3352 (w), 2955 (w), 2922 (w), 2853 (w), 2074 (m), 1996 (m), 1617 (m), 1577 (m), 1495 (m), 1443 (m), 1416 (m), 1364 (m), 1279 (w), 1265 (w), 1200 (w), 1048 (s), 950 (m), 55 (m), 700 cm⁻¹ (m); MS (EI): *m/z* (%) = 475 [M⁺] (6), 445 (7). 417 (14), 316 (10), 149 (24), 111 (32), 9 (50), 71 (60), 57 (100); HRMS: *m/z* calcd for C₂₃H₂₂N₃O₂Ru: 474.0749 [*M*⁺]; found: 474.0745.



Propan-1,2-diamin (980mg, 13.24mmol) wird gelöst in DCM (abs.) vorgelegt, mit Benzaldehyd (4.21g, 39.72mmol) und MgSO₄ (1.91g, 15.89mmol) versetzt, 15h bei RT gerührt, über Celite filtriert, eingedampft und mittels MPLC (DCM) gereinigt. *N*,*N'*-(Propan-1,2-diyl)bis(1-phenylmethanimin) (627mg, 2,50mmol, 19% d.Th.) wird als gelbe Flüssigkeit isoliert, in heißem MeOH (abs.) gelöst vorgelegt, mit NaBH₄ versetzt (Eisbad! - exotherm), 1h bei RT gerührt und eingedampft. Der Rückstand wird in EE gelöst, 3 Mal mit H₂O gewaschen, getrocknet, eingedampft und am HV getrocknet. **18** (411mg, 1.62mmol, 65% d.Th.) wird als gelbe Flüssigkeit erhalten.⁸⁸

¹⁹ Siehe Abb.2

Ethyl-2-(2,4-dihydroxy-1-oxo-3-phenylpenta-2,4-dien-5-yl)-2-oxoacetat (19c)⁸⁶



Natrium (343mg, 14.91mmol) wird bei -5°C in abs. EtOH (5ml) vorgelegt, tropfenweise mit in EtOH gelöstem 1-Phenylpropan-2-on (1g, 7.46mmol) und Diethyloxalat (2.4g, 16.4mmol) versetzt, 30min unter RF gekocht, 30min bei 0°C gerührt und bei 0°C portionsweise mit wässriger H₂SO₄-Lösung (ca. 1:1) versetzt. Es wird Na₂SO₄ abfiltriert, mit EtOH gewaschen, eingedampft und im HV getrocknet. **19c** (1.68g, 5.83mmol, 81% d.Th.) wird als ockerfarbener FS erhalten. (Farbumschlag beim Zutropfen des Ketons und des Oxalats: gelb -> orange -> rot; nachdem bei RF gerührt wurde: blutrot)

 $(C_{15}H_{12}O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.64$  (t, J = 7.1 Hz, 3 H, *OEt*), 4.37 (q, J = 7.2 Hz, 2 H, *OEt*), 7.32-7.41 (m, 3 H, *Ph*), 8.04-8.07 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 13.8$  (CH₃, *OEt*), 63.1 (CH₂, *OEt*), 104.5 (C, *C5*), 120.3 (C, *C3*), 127.9 (C, *Ph*), 18.6 (2CH, *Ph*), 129.0 (2CH, *Ph*), 129.7 (CH, *Ph*), 158.3 (C), 159.8 (C), 162.6 (C), 182.7 (C, *C1*), 198.4 ppm (C, *C6*); IR: v = 3196 (m), 2992 (m), 1951 (w), 1888 (w), 1748 (s), 1726 (s), 1656 (s), 1637 (s), 1495 (m), 1449 (m), 1471 (m), 1379 (s), 1337 (s). 1289 (m), 1240 (s), 1202 (s), 1191 (s), 1111 (m), 1074 (m) 1032 (m), 1002 (m), 929 (m), 861 (m), 814 (m), 797 (m), 780 (m), 623 (m), 603 (m), 467 cm⁻¹ (w); MS (EI): m/z (%) = 288 [M⁺] (88), 215 (100), 185 (19), 178 (94), 158 (40), 14 (30), 131 (31), 118 (40), 102 (18), 91 (56), 77 (24), 69 (36); HRMS: m/z calcd for  $C_{15}H_{12}O_6$ : 288.0632 [ $M^+$ ]; found: 288.0633.

# 4.3 Experimentelle Daten zum Kapitel "Pyrrole und Indole"

## 4.3.1 Synthesen der 1-Vinylpropargylalkohole

3-Methyl-1-phenylpent-1-en-4-in-3-ol (24b)



Trans-4-Phenylbut-3-en-2-on (850mg, 5.81mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24b** (782.4mg, 4.55mmol, 78% d.Th.) wird als gelbe Flüssigkeit erhalten.

 $(C_{12}H_{12}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.68 (s, 3 H, *H*6), 2.64 (s, 1 H, *H*5), 2.97 (s, br, 1 H, *OH*), 6.30 (d, J = 15.9 Hz, 1 H, *H*2), 6.89 (d, J = 15.6 Hz, 1 H, *H1*), 7.25 (d, J = 7.1 Hz, 1 H, *Ph*), 7.32 (t, J = 7.5 Hz, 2 H, *Ph*), 7.40 ppm (d, J = 7.2 Hz, 2 H, *Ph*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$  = 30.6 (CH₃, *C*6), 67.7 (C, *C*3), 72.9 (CH, *C*5), 85.7 (C, *C*4), 126.6 (CH, *Ph*), 127.8 (2CH, *Ph*), 128.2 (2CH, *Ph*), 129.1 (CH, *C*2), 133.2 (CH, *C1*), 136.0 ppm (C, *Ph*); IR: v = 3292 (s), 3084 (s), 3061 (s), 3028 (s), 2984 (s), 2931 (s), 2113 (m), 1952 (m), 1882 (m), 1811 (m), 1705 (s), 1627 (s), 1601 (s), 1578 (s), 1495 (s), 1449 (s), 1367 (s), 1334 (s), 1300 (s), 1273 (s), 1181 (s), 1118 (s), 1071 (s), 1030 (s), 969 (s), 920 (s), 851 (m), 750 (s), 693 (s), 667 (s), 557 (s), 508 cm⁻¹ (s).

2-(Cyclohexen-1-yl)but-3-in-2-ol (24c)



1-Acetylcyclohexen (827mg, 6.67mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24c** (672.2mg, 4.47mmol, 63% d.Th.) wird als gelbe Flüssigkeit erhalten.

 $(C_{10}H_{14}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.43 (dd, J = 3.2, 1.3 Hz, 3 H, *H1*), 1.52 (m, br, 4 H, *CH*₂), 1.94 (s, 2 H, *CH*₂), 2.03 (s, 2 H, *CH*₂), 2.40 (d, 1 H, J = 2.5 Hz, *H4*), 2.84 (s, br, 1 H, *OH*), 5.93 ppm (s, 1 H, *H6*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 21.9 (CH₂), 22.6 (CH₂), 23.5 (CH₂), 25.08 (CH₂), 28.56 (CH₃, *C1*), 69.92 (C, *C2*), 72.08 (CH, *C4*), 87.06 (C, *C3*), 121.29 (CH, *C6*), 139.64 ppm (C, *C5*); IR: v= 3402 (s), 3307 (s), 3050 (m), 2987 (s), 2931 (s), 2859 (s), 2839 (s), 2665 (w), 2110 (w), 1704 (m), 1636 (m), 1448 (s), 1438 (s), 1366 (s), 1271 (m), 1246 (m), 1193 (s), 1140 (s), 1081 (s), 1069 (s), 1030 (m), 956 (m), 910 (s), 873 (m), 846 (m), 828 (m), 803 (m), 733 (m), 643 (s), 584 cm⁻¹ (s).

2-(Cyclopenten-1-yl)but-3-in-2-ol (24d)



1-Acetylcyclopenten (190mg, 1.73mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert, eingedampft und mittels MPLC gereinigt (P/Et₂O = 5:1). **24d** (46.3mg, 0.34mmol, 20% d.Th.) wird als gelbes Öl erhalten.

 $(C_9H_{12}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.61 (s, 3 H, *H1*), 1.91-1.98 (m, 2 H, *CH*₂), 2.10 (s, br, 1 H, *OH*), 2.34-2.38 (m, 2 H, *CH*₂), 2.42-2.48 (m, 2 H, *CH*₂), 2.50 (s, 1 H, *H4*), 5.83 ppm (t, J = 2.1 Hz, 1 H, *H6*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 23.7 (CH₂), 28.8 (CH₃, *C1*), 30.9 (CH₂), 32.3 (CH₂), 67.2 (C, *C2*), 71.4 (CH, *C4*), 86.9 (C, *C3*), 125.9 (CH, *C6*), 147.0 ppm (C, *C5*); IR: v= 3402 (s), 3307 (s), 3060 (m), 2933 (s), 2851 (s), 2113 (m), 1700 (m), 1446 (s), 1367 (s), 1327 (s), 1256 (m), 1139 (s), 1077 (s), 1047 (s), 1017 (m), 953 (m), 923 (s), 893 (m), 836 (m), 800 (m), 649 (s), 578 cm⁻¹ (s).

(E)-3-(4-Nitrophenyl)-1-(p-tolyl)pent-1-en-4-in-3-ol⁸⁷ (24e)



CeCl₃ (830mg, 3.36mmol) wird in THF (abs.) gelöst vorgelegt, 2h bei 0°C gerührt, mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 2h bei 0°C gerührt, tropfenweise mit in THF gelöstem 3-(4-Methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-on (0.15 g, 0.56 mmol) versetzt, weitere 60min bei 0°C gerührt, 5min bei RT gerührt, mit NH₄Cl-Lösung (5%) versetzt, 30min bei RT gerührt, über Celite filtriert und mit EE extrahiert, getrocknet und eingedampft. **24e** (150mg, 0.51mmol, 91.3% d.Th.) wird als gelbes Öl erhalten.

3-Ethylhex-4-en-1-in-3-ol (24f)



Hex-4-en-3-on (764mg, 9.09mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24f** (372mg, 3mmol, 33% d.Th.) wird als rotbraunes Öl erhalten.

 $(C_8H_{12}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 0.92 (t, J = 6.7 Hz, 3 H, *H1*), 1.58-1.64 (m, 1 H, *H2*), 1.66 (d, J = 6.6 Hz, 3 H, *H8*), 1.68-1.74 (m, 1 H, *H2*), 2.50 (s, 1 H, *H5*), 2.77 (s, br, 1 H, *OH*), 5.45 (t, J = 1.3 Hz, 1 H, *H6*), 5.93-5.96 ppm (m, 1 H, *H7*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 8.5 (CH₃, *C1*), 17.1 (CH₃, *C8*), 35.4 (CH₂, *C2*), 71.5 (C, *C3*), 73.4 (CH, *C5*), 85.3 (C, *C4*), 126.3 (CH, *C7*), 133.7 ppm (CH, *C6*); IR : v= 3444 (s), 3308 (s), 2971 (s), 2939 (s), 2880 (s), 2109 (m), 1708 (s), 1459 (s), 1378 (s), 1263 (s), 1168 (s), 1110 (s), 1062 (s), 1005 (s), 967 (s), 921 (s), 793 (m), 651 (s), 586 (m), 560 cm⁻¹ (m).

(1E,4E)-3-Ethinyl-1,5-Diphenylpenta-1,4-dien-3-ol (24g)



Dibenzylidenaceton (1g, 4.3mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24g** (820mg, 3.1mmol, 74% d.Th.) wird als gelbes hoch viskoses Öl erhalten (starke Blasenbildung am HV, kristallisiert nach 12h Lagerungszeit im Kühlschrank).

 $(C_{19}H_{16}O)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.93$  (s, 1 H, *H7*), 6.44 (d, J = 15.9 Hz, 2 H, *H2*), 7.08 (d, J = 15.9 Hz, 2 H, *H1*), 7.32-7.36 (m, 2 H, *Ph*), 7.39-7.43 (m, 4 H, *Ph*), 7.52 ppm (m, 4 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 70.9$  (C, *C3*), 75.7 (CH, *C7*), 83.5 (C, *C6*), 126.7 (4Ch, *Ph*), 127.8 (2CH, *C2 und C4*), 128.4 (4Ch, *Ph*), 129.8 (2CH, *C1/Ph*), 130.6 (2CH, *C1/Ph*), 135.9 ppm (2C, *Ph*); IR:  $\nu = 3285$  (m), 3061 (m), 3028 (m), 2612 (m), 2344 (m), 2100 (w), 1603 (s), 1494 (m), 1453 (m), 1396 (m), 126 (m), 1231 (m), 1176 (m), 1133 (m), 1074 (m), 109 (m), 957 (m), 910 (m), 728 (m), 699 cm⁻¹ (s); MS (EI): *m/z* (%) = 260 [M⁺] (30), 241 (22), 234 (84), 215 (21), 205 (41), 165 (19), 155 (20), 141 (34), 131 (40), 128 (46), 117 (100), 103 (45), 91 (55), 77 (47), 72 (32); HRMS: *m/z* calcd. for C₁₉H₁₆O: 260.1196 [*M*⁺]; found: 260.1194. 3-Methyl-1,5-diphenyl-1-penten-4-in-3-ol (24h)



Phenylacetylen (411.3mg, 4.03mmol) wird in THF abs. (4ml) gelöst vorgelegt, bei -78°C tropfenweise mit n-BuLi (2.69ml, 1.5M) versetzt, 5min bei -78°C gerührt, mit trans-4-Phenylbut-3-en-2-on (589mg, 4.03mmol) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃-Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert, eingedampft und mittels MPLC (DCM) gereinigt. **24h** (435.3mg, 1.75mmol, 44% d.Th) wird als gelbes Öl erhalten.

 $(C_{18}H_{16}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.78 (s, 3 H, *H*6), 2.41 (s, br, 1 H, *OH*), 6.40 (dd, J = 15.8, 1.8, 1 H, *H2*), 6.95 (d, J = 15.9 Hz, 1 H, *H1*), 7.28 (t, J = 7.5 Hz, 1 H, *Ph*), 7.33-7.39 (m, 4 H, *Ph*), 7.45 (d, J = 7.8 Hz, 2 H, *Ph*), 7.48-7.52 ppm (m, 3 H, *Ph*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 30.1 (CH₃, *C*6), 68.5 (C, *C*3), 85.0 (C, *C*5), 91.1 (C, *C*4), 122.5 (C, *Ph*), 126.8 (2CH, *Ph*), 127.9 (CH, *Ph*), 128.3 (2CH, *Ph*), 128.5 (CH, *Ph*), 128.6 (2CH, *Ph*), 129.1 (CH, *C2*), 131.7 (2CH, *Ph*), 133.3 (CH, *C1*), 136.2 ppm (C, *Ph*); IR: v= 3380 (s), 3082 (s), 3059 (s), 3028 (s), 2982 (s), 2929 (s), 2864 (m), 2337 (w), 2231 (w), 2204 (w), 1951 (w), 1881 (w), 1807 (m), 1703 (s), 1598 (s), 1577 (m), 1490 (s), 1448 (s), 1365 (s), 1330 (s), 1300 (s), 1266 (s), 1206 (s), 1175 (s), 1113 (s), 1070 (s), 1027 (s), 1000 (s), 968 (s), 9185 (s), 854 (m), 853 (m), 820 (m), 755 (s), 691 (s), 692 (s), 635 (m), 619 (m), 560 (s), 5247 (s), 505 (m), 487 cm⁻¹ (s).

3-Methyl-1-phenylhex-1-en-4-in-3-ol (24i)



Trans-4-Phenylbut-3-en-2-on (420mg, 2.87mmol) wird in THF abs. (4ml) gelöst vorgelegt, 10min bei 0°C gerührt, tropfenweise mit 1-Propinylmagnesiumbromid (6.32ml, 3.16mmol, 0.5M) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24i** (274mg, 1.47mmol, 49.1% d.Th.) wird als gelbes Öl erhalten.

 $(C_{13}H_{14}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.65 (s, 3 H, *H7*), 1.87 (d, J = 1.6 Hz, 3 H, *H6*), 3.29 (s, br, 1 H, *OH*), 6.32 (d, J=15.8 Hz, 1 H, *H2*), 6.85 (d, J = 15.8 Hz, 1 H, *H1*), 7.21-7.24 (m, 1 H, *Ph*), 7.28-7.32 (m, 2 H, *Ph*), 7.39 ppm (d, J = 8.1 Hz, 2 H, *Ph*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 3.2 (CH₃, *C6*), 30.4 (CH₃, *C7*), 67.6 (C, *C3*), 80.5 (C, *C4*), 81.6 (C, *C5*), 126.6 (2CH, *Ph*), 127.3 (CH, *Ph*), 128.0 (CH, *C2*), 128.2 (2CH, *Ph*), 133.8 (CH, *C1*), 136.2 ppm (C, *Ph*); IR: v= 3370 (s), 3106 (m), 3083 (s), 3060 (s), 3027 (s), 2981 (s), 2920 (s), 2856 (s), 2737 (w), 2246 (m), 2048 (w), 1950 (w), 1880 (w), 1807 (w), 1706 (m), 1651 (m), 1601 (s), 1578

(m), 1497 (s), 1448 (s), 1366 (s), 1334 (s), 1300 (s), 1274 (s), 1235 (s), 1196 (s), 1125 (s), 1071 (s), 1023 (s), 968 (s), 908 (s), 878 (m), 849 (m), 834 (m), 751 (s), 694 (s), 629 (m), 556 (s), 504 cm⁻¹ (s).

3-Methyl-1-phenylundec-1-en-4-in-3-ol (24j)



1-Octin (475mg, 3.92mmol) wird in THF abs. (2ml) gelöst vorgelegt, bei 0°C tropfenweise mit n-BuLi (2.87ml, 1.5M) versetzt, 1h bei RT gerührt und zu einer auf 0°C gekühlten Lösung aus trans-4-Phenylbut-3-en-2-on (573mg, 3.92mmol) in THF (2ml) getropft. Es wird 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert, eingedampft und mittels MPLC (DCM) gereinigt. **24j** (85.6mg, 0.033mmol, 8.6% d.Th.) wird als gelbe Flüssigkeit erhalten.

 $(C_{18}H_{24}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 0.91 (t, J = 6.7 Hz, 3 H, *Hex*), 1.25-1.39 (m, br, 4 H, *Hex*), 1.41-1.47 (m, 2 H, *Hex*), 1.56 (quint, J = 7.2 Hz, 2 H, *Hex*), 1.64 (s, 3 H, *H6*), 2.20 (s, br, 1 H, *OH*), 2.28 (t, J = 7.1 Hz, 2 H, *Hex*), 6.31 (d, J = 5.8 Hz, 1 H, *H2*), 6.86 (d, J = 5.8 Hz, 1 H, *H1*), 7.25 (t, J = 4.8 Hz, 1 H, *Ph*), 7.32 (t, J = 7.7 Hz, 2 H, *Ph*), 7.41 ppm (d, J = 7.2 Hz, 2 H, *Ph*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 14.0 (CH₂, *Hex*), 18.7 (CH₂, *Hex*), 22.5 (CH₂, *Hex*), 28.5 (CH₂, *Hex*), 28.6 (CH₂, *Hex*), 30.7 (CH₃, *C6*), 31.5 (CH₂, *Hex*), 68.2 (C, *C3*), 82.3 (C, *C5*), 85.8 (C, *C4*), 126.7 (2CH, *Ph*), 127.7 (CH, *Ph*), 128.5 (2CH, *Ph*), 128.6 (CH, *C2*), 133.9 (CH, *C1*), 136.4 ppm (C, *Ph*).

3-Methyl-1-phenyl-5-trimethylsilylpent-1-en-4-in-3-ol (24k)



Trans-4-Phenylbut-3-en-2-on (200mg, 1.37mmol) wird in THF abs. (4ml) gelöst vorgelegt, 10min bei 0°C gerührt, tropfenweise mit Lithium(trimethylsilyl)acetylid (3ml, 1.50mmol, 0.5M) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24k** (291.4mg, 1.19mmol, 87.18% d.Th.) wird als oranges Öl erhalten.

 $(C_{15}H_{20}OSi)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 0.24 (d, J = 2.0 Hz, 9 H, *TMS*), 1.68 (s, 3 H, *H6*), 6.32 (d, J = 18.8 Hz, 1 H, *H2*), 6.89 (d, J = 15.8 Hz, 1 H, *H1*), 7.19-7.48 ppm (m, 5 H, *Ph*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = -0.2 (3CH₃, *TMS*), 30.3 (CH₃, *C6*), 67.9 (C, *C3*), 88.8 (C), 107.6 (C), 126.6 (2CH, *Ph*), 127.0 (CH, *Ph*), 128.4 (2CH, *Ph*), 128.7 (CH, *C2*), 133.1 (CH, *C1*), 136.1 ppm (C, *Ph*).

(E)-2-Benzyliden-1-ethinylcyclohexan-1-ol (241)



2-Benzylidencyclohexanon (250mg, 1.34mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24l** (225mg, 1.06mmol, 79% d.Th.) wird als gelbes Öl erhalten.

 $(C_{15}H_{16}O)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$ = 1.46-1.96 (m, 4 H, *CH*₂), 2.6-2.12 (m, 2 H, *CH*₂), 2.41-2.48 (m, 2 H, *CH*₂), 2.65 (s, 1 H, *H*8), 6.93 (s, 1 H, *H*9), 7.23-7.26 (m, 3 H, *Ph*), 7.33-7.37 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$ = 22.8 (CH₂), 26.1 (CH₂), 27.1 (CH₂), 42.3 (CH₂, *C*6), 71.5 (C, *C1*), 73.8 (CH, *C8*), 86.1 (C, *C7*), 122.0 (CH, *C7*), 126.5 (CH, *Ph*), 128.1 (2CH, *Ph*), 128.9 (2CH, *Ph*), 137.4 (C, *Ph*), 142.6 ppm (C, *C2*); IR: *v*= 3444 (m), 3292 (m), 3080 (m), 3057 (m), 3024 (m), 2935 (m), 2860 (m), 2363 (m), 2348 (m), 1672 (m), 1600 (m), 1494 (m), 1445 (m), 1097 (m), 1073 (m), 1030 (m), 920 (m), 757 (m), 705 (m), 698 cm⁻¹ (m); MS (EI): *m*/*z* (%) = 212 [M⁺] (78), 185 (100), 165 (28), 155 (20), 141 (44), 129 (48), 115 (80), 105 (56); HRMS: *m*/*z* calcd. for C₁₅H₁₆O: 212.1201 [*M*⁺]; found: 212.1202.

#### 2,6-Di((E)-benzyliden)-1-ethinylcyclohexan-1-ol (24m)



2,6-Dibenzylidencyclohexanon (250g, 0.91mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (0.5 M in THF, 1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. **24m** (217mg, 0.72mmol, 95% d.Th.) wird als gelbes Öl erhalten (hoch viskos, starke Blasenbildung am HV).

 $(C_{22}H_{20}O)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.58-1.65$  (m, 2 H, *H5*), 2.51 (s, 1 H, *H4*), 2.64-2.71 (m, 2 H, *H3/H5*), 2.74-2.81 (m, 2 H, *H3/H5*), 2.88 (s, 1 H, *OH*), 7.12 (s, 2 H, *H9 und H10*), 7.21-7.26 (m, 6 H, *Ph*), 7.32-7.35 ppm (m, 4 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 25.7$  (2CH₂, *C3 und C5*), 27.5 (CH₂, *C4*), 60.4 (C, *C1*), 75.5 (CH, *C8*), 84.2 (C, *C7*), 122.9 (2CH, *C9 und C10*), 126.6 (2CH, *Ph*), 128.1 (4CH, *Ph*), 128.9 (4CH, *Ph*), 137.4 (2C, *Ph*), 142.5 ppm (2C, *C2 und C6*); IR: v = 3439 (m), 3283 (m), 3059 (m), 3027 (m), 2929 (m), 2861 (m), 1725 (m), 1701 (s), 1668 (m), 1584 (m), 1493 (m), 1448 (m), 1311 (m), 1267 (m), 1262 (m), 1165 (m), 1028 (m), 916 (m), 866 (m), 700 cm⁻¹ (s); MS (EI): m/z (%) = 300.8 [M⁺]

# (6), 299.8 (32), 272.9 (26), 246.9 (86), 208.9 (24), 180.9 (21), 168.9 (44), 157.0 (100), 140.9 (26), 128.9 (42), 114.9 (62); HRMS: m/z calcd. for C₂₂H₂₀O: 300.1514 [ $M^+$ ]; found 300.1512.

3-Ethinyl-1-Phenylhexa-1,5-dien-3-ol (24n)



- (a) Zimtaldehyd (1g, 7.6mmol) wird in THF (abs., 0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (1.2eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃- Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert und eingedampft. 1-Phenylpent-1-en-4-in-3-ol (1g, 6.3mmol, 84% d.Th.) wird als gelbes Öl erhalten.
- (b) PCC (1.4g, 6.6mmol) wird in DCM (abs., 0.5ml/mmol) gelöst vorgelegt, mit NaOAc (11.3mg, 0.13mmol) versetzt, 5 min gerührt, tropfenweise mit in DCM (abs.) gelöstem 1-Phenylpent-1-en-4-in-3-ol (1g, 6.3mmol) versetzt, 2h bei RT gerührt, filtriert (Filterkuchen gründlich mit DCM spülen), eingedampft und mittels MPLC gereinigt (Pentan/DCM 2:1). 1-Phenylpent-1-en-4-in-3-on (280mg, 1.6mmol, 29% d.Th.) wird als gelber FS erhalten.
- (c) 1-Phenylpent-1-en-4-in-3-on (280mg, 1.8mmol) wird in THF (abs., 0.5ml/mmol) gelöst vorgelegt, auf -78°C abgekühlt, tropfenweise mit Allylmagnesiumbromid (1.2eq) versetzt, langsam auf RT erwärmt, mit ges. NH₄Cl- Lösung neutralisiert, mit Et₂O extrahiert, mit H₂O und Brine gewaschen, getrocknet, filtriert und eingedampft. 24n (97mg, 0.45mmol, 29% d.Th.) wird als gelbes Öl erhalten.

 $(C_{14}H_{14}O)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 2.53 (ddt, J = 13.6, 7.8, 1.0 Hz, 1 H,  $H4_a$ ), 2.48 (ddt, J = 13.6, 6.7, 1.3 Hz, 1 H,  $H4_b$ ), 2.59 (s, 1 H, H8), 5.12-5.17 (m, 2 H, H6), 5.84-5.91 (m, 1 H, H5), 6.16 (d, J = 15.6 Hz, 1 H, H2), 6.82 (d, J = 15.9 Hz, 1 H, H1), 7.16-7.18 (m, 1 H, Ph), 7.22-7.25 (m, 2 H, Ph), 7.32-7.22 ppm (m, 2 H, Ph); ¹³C NMR (150 MHz, CDCl₃):  $\delta$  = 47.3 (CH₂, *C4*), 70.2 (C, *C3*), 74.4 (C, *C8*), 84.6 (C, *C7*), 119.9 (CH₂, *C6*), 126.8 (2CH, Ph), 127.9 (CH, *C8*), 128.6 (2CH, Ph), 130.4 (CH, *C1/Ph*), 131.3 (CH, *C5*), 132.3 (CH, *C1/Ph*), 136.1 ppm (C, Ph); IR: v = 3404 (w), 3291 (m), 3080 (w), 3062 (w), 3028 (w), 2980 (w), 2917 (w), 2112 (w), 1952 (w), 1720 (w), 1641 (w), 1601 (w), 1578 (w), 1493 (w), 1448 (w), 1432 (w), 1414 (w), 1283 (m), 1204 (w), 1157 (m), 993 (m), 967 (s), 919 (m), 844 (w), 748 (s), 692 cm⁻¹ (m); MS (EI): m/z (%) = 198 [M+] (24), 179 (88), 171 (21), 165 (100); HRMS: m/z calcd. for  $C_{14}H_{14}O$ : 198.1045 [ $M^+$ ]; found: 198.1045.

## 4.3.2 Synthesen der Indole, Enine, Pyrrole und Isoindole

#### (a) Allgemeine Vorschrift

Der Katalysator (0.02eq) wird unter Argon in Toluol abs. (0.5ml/mmol) gelöst vorgelegt, mit TFA (0.02eq) versetzt, 5min bei RT gerührt, mit dem Propargylalkohol **24** (1eq) und Pyrrol (1eq) bzw. Amin (1eq) versetzt, 5h bei 100°C unter Argon (Standardbedingungen) oder 5min bei 200°C unter Mikrowellen-Bestrahlung (Mikrowellenbedingung) gerührt, eingedampft und am HV getrocknet.

(b) Synthesen der Indole



Nach Vorschrift **4.3.2** (a) wird aus **24a** (100mg, 1.04mmol) und 1-*H*-Pyrrol (70mg, 1.04mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM) **25a** (100mg, 0.69mmol, 96% d.Th.) als gelbes Öl isoliert wird.

 $(C_{10}H_{11}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.47$  (s, 3 H, *CH*₃), 2.58 (s, 3 H, *CH*₃), 6.63 (s, br, 1 H, *H3*), 7.11 (d, J = 8.4 Hz, 1 H, *H2*), 7.16 (s, br, 1 H, *CH*), 7.18 (d, J = 8.4 Hz, 1 H, *CH*), 8.05 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 15.4$  (CH₃), 19.2 (CH₃), 100.7 (CH, *C3*), 108.1 (CH, *C7*), 123.7 (CH, *Ar*), 124.5 (CH, *Ar*), 125.3 (C, *Ar*), 127.4 (C, *Ar*), 128.4 (C, *Ar*), 134.1 (C, *C7a*) ppm; IR: v = 3392 (s), 2922 (s), 2856 (s), 2274 (w), 1991 (w), 1656 (s), 1485 (s), 1451 (s), 1328 (s), 1240 (s), 1153 (s), 1091 (s), 873 (w), 802 (m), 768 (s), 725 (s), 606 (w), 555 (w), 521 cm⁻¹ (w); MS (EI): m/z (%): 145 (100,  $M^+$ ), 144 (78), 130 (95); HRMS: [ $M^+$ ] calcd.: 145.0891, found: 145.0891.

4,5-Dimethyl-7-phenyl-1*H*-indol (25b)



Nach Vorschrift **4.3.2 (a)** wird aus **24b** (100mg, 0.58mmol) und 1-*H*-Pyrrol (39mg, 0.58mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 5:1) **25b** (75mg, 0.34mmol, 58% d.Th.) als gelbes Öl isoliert wird.

 $(C_{16}H_{15}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\mathcal{E}$  2.46 (s, 3 H, *CH*₃), 2.55 (s, 3 H, *CH*₃), 6.63 (t, J = 2.4 Hz, 1 H, *H*3), 7.09 (s, 1 H, *H*2), 7.19 (t, J = 2.4 Hz, 1 H, *Ar*), 7.39 (t, J = 7.0 Hz, 1 H, *Ar*), 7.51 (t, J = 7.5 Hz, 2 H, *Ar*), 7.65 (d, J = 6.8 Hz, 2 H, *Ar*), 8.35 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃):  $\mathcal{E}$  15.4 (CH₃), 19.2 (CH₃), 101.4 (CH, *C*3), 122.8 (C, *Ar*), 123.9 (CH, *Ar*), 124.6 (CH, *Ar*), 127.0 (CH, *Ar*), 127.1 (2CH, *Ar*), 127.1 (C, *Ar*), 128.2 (CH, *Ar*), 128.8 (C, *Ar*), 129.1 (CH, *Ar*), 130.0 (C, *Ar*), 132.0 (C, *Ar*), 139.5 ppm (C, *C7a*); IR: *v*= 3437 (s), 3103 (m), 3026 (s), 2919 (s), 2861 (s), 1709 (m), 1601 (s), 1574 (m), 1487 (s), 1445 (s), 1411 (s), 1389 (s), 1328 (s), 1261 (s), 1181 (m), 1156 (m), 1117 (s), 1091 (s), 1074 (s), 1028 (m), 1000 (m), 940 (m), 909 (m), 879 (m), 779 (m), 762 (s), 722 (s), 703 (s), 635 cm⁻¹ (m); MS (EI): *m/z* (%): 221 (100, *M*⁺), 206 (60). HRMS: [*M*⁺] calcd.: 221.1204, found: 221.1203.

#### 4,5-Dimethyl-6,7,8,9-tetrahydro-1*H*-benzo[g]indol (25c)



Nach Vorschrift **4.3.2 (a)** wird aus **24c** (100mg, 0.67mmol) und 1-*H*-Pyrrol (45mg, 0.67mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/ Et₂O = 5:2) **25c** (208mg, 1.01mmol, 35% d.Th.) als gelbes halbkristallines Öl isoliert wird.

 $(C_{14}H_{17}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.95$ -2.00 (m, 4 H, *CH*₂), 2.34 (s, 3 H, *CH*₃), 2.58 (s, 3 H, *CH*₃), 2.84-2.88 (m, 4 H, *CH*₂), 6.62 (t, J = 2.4 Hz, 1 H, *H*₃), 7.14 (t, J = 2.4 Hz, 1 H, 2), 7.89 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.6$  (CH₃), 16.0 (CH₃), 22.2 (CH₂), 23.8 (CH₂), 24.5 (CH₂), 27.6 (CH₂), 101.4 (CH, *C*₃), 116.9 (C, *C9a*), 122.4 (CH, *Ar*), 124.7 (C, *Ar*), 125.4 (C, *Ar*), 125.6 (C, *Ar*), 129.4 (C, *Ar*), 133.0 ppm (C, *Ar*); IR:  $\nu = 3411$  (s), 2922 (s), 1660 (s), 1613 (s), 1490 (s), 1447 (s), 1406 (s), 1376 (s), 1345 (s), 1309 (s), 1286 (m), 1249 (s), 1172 (m), 1131 (s), 1071 (m), 960 (m), 906 (m), 888 (m), 767 (m), 716 cm⁻¹ (s); MS (EI): m/z (%): 199 (100,  $M^+$ ), 184 (80), 172 (51), 171 (40). HRMS:  $[M^+]$  calcd.: 199.1361.

4,5-Dimethyl-1,6,7,8-tetrahydrocyclopenta[g]indol⁸⁹ (25d)



Nach Vorschrift **4.3.2** (a) wird aus **24d** (75mg, 0.56mmol) und 1-*H*-Pyrrol (37mg, 0.56mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **25d** (46mg, 0.25mmol, 44% d.Th.) als gelber FS isoliert wird. Unter Mikrowellenbedingungen wird ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **25d** (91mg, 0.49mmol, 87% d.Th.) als gelber FS isoliert wird.

 $(C_{13}H_{15}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 2.22 (quint, J = 7.4 Hz, 2 H,  $CH_2$ ), 2.31 (s, 3 H,  $CH_3$ ), 2.49 (s, 3 H,  $CH_3$ ), 3.01 (t, J = 7.3 Hz, 2 H,  $CH_2$ ), 3.06 (t, J = 7.4 Hz, 2 H,  $CH_2$ ), 6.56 (t, J = 2.8 Hz, 1 H, H3), 7.13 (t, J = 2.9 Hz, 1 H, H2), 7.88 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  = 15.4 (CH₃), 15.7 (CH₃), 24.9 (CH₂), 30.2 (CH₂), 32.6 (CH₂), 101.6 (CH, C3), 122.1 (C, C8a), 122.6 (CH, Ar), 123.3 (C, Ar), 125.4 (C, Ar), 127.2 (C, Ar), 130.9 (C, Ar), 138.3 ppm (C, Ar); IR: v = 3479 (m), 3391 (s), 3005 (m), 2922 (s), 2848 (m), 1690 (w), 1625 (m), 1483 (m), 1443 (m), 1398 (m), 1376 (m), 1349 (m), 1300 (m), 1215 (s), 1132 (m), 1111 (m), 1059 (m), 756 (s), 723 (s), 667 cm⁻¹ (m); MS (EI): m/z (%): 185 (100,  $M^+$ ), 170 (67), 168 (42); HRMS: [ $M^+$ ] calcd.: 185.1204, found: 185.1204.

4-Methyl-5-(4-nitrophenyl)-7(p-tolyl)-1*H*-indol (25e)



Nach Vorschrift **4.3.2** (a) wird aus **24e** (100mg, 0.25mmol) und 1-*H*-Pyrrol (17mg, 0.25mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM) **25e** (74mg, 0.21mmol, 85% d.Th.) als gelber FS isoliert wird.

 $(C_{22}H_{18}N_2O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.33$  (s, 3 H, *CH*₃), 2.44 (s, 3 H, *CH*₃), 6.61-6.61 (m, 1 H, *H*2), 7.04 (s, 1 H, *H*6), 7.20 (t, J = 2.7 Hz, 1 H, *H*1), 7.22 (d, J = 7.9 Hz, 2 H, *H*10), 7.44 (d, J = 7.9 Hz, 2 H, *H*9), 7.49 (t, J = 7.9 Hz, 1 H, *Ar*), 7.66 (d, J = 7.6 Hz, 1 H, *Ar*), 8.09-8.11 (m, 1 H, *Ar*), 8.21-8.22 (m, 1 H, *Ar*), 8.45 ppm (s, br, 1 H, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 16.5$  (CH₃, *C*8), 21.2 (CH₃, *C*11), 102.2 (CH, *C*2), 121.2 (CH, *C*6), 123.6

(C), 123.8 (CH), 124.7 (CH), 124.8 (CH), 126.3 (C), 127.9 (2CH, *C9/C10*), 128.7 (CH), 128.8 (CH), 129.9 (2CH, *C9/C10*), 131.1 (C), 132.9 (C), 135.6 (C), 136.1 (CH), 137.3 (C), 144.4 (C), 148.0 ppm (C); IR: v = 3427 (m), 3025 (w), 2919 (m), 2861 (w), 2057 (w), 2026 (w), 1910 (w), 1716 (w), 1599 (w), 1575 (w), 1528 (s), 1489 (m), 1470 (m), 1448 (m), 1409 (m), 1347 (s), 1303 (m), 1276 (m), 1182 (w), 1165 (w), 1114 (m), 1094 (m), 1080 (m), 905 (w), 880 (m), 822 (m), 805 (m), 777 (m), 743 (m), 724 (m), 697 cm⁻¹ (m); MS (EI): m/z (%) = 342 [M⁺] (100), 293 (19), 291 (18), 205 (24), 149 (20); HRMS: m/z calcd. for C₂₂H₁₈N₂O₂: 342.1368 [*M*⁺]; found: 342.1369.

5-Ethyl-4,7-dimethyl-1*H*-indol (25f)



Nach Vorschrift **4.3.2 (a)** wird aus **24f** (100mg, 0.91mmol) und 1-*H*-Pyrrol (61mg, 0.91mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM) **25f** (93mg, 0.54mmol, 60% d.Th.) als bräunlicher FS isoliert wird.

 $(C_{12}H_{15}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$ = 1.25 (t, J = 7.5 Hz, 3 H, H9), 2.47 (s, 3 H,  $CH_3$ ), 2.51 (s, 3 H,  $CH_3$ ), 2.75 (q, J = 7.5 Hz, 2 H, H8), 6.58 (t, J = 2.8 Hz, 1 H, H3), 6.87 (s, 1 H, H2), 7.18 (t, J = 2.8 Hz, 1 H, H6), 7.97 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 14.6 (CH₃), 15.9 (CH₃), 16.4 (CH₃), 26.1 (CH₂), 101.6 (CH, Ar), 117.4 (C, C7), 123.4 (CH, Ar), 124.0 (CH, Ar), 124.2 (C, Ar), 128.1 (C, Ar), 133.1 (C, Ar), 133.6 ppm (C, C7a); IR: v = 3418 (s), 2967 (s), 2922 (s), 2865 (m), 1704 (m), 1520 (m), 1491 (m), 1457 (s), 1391 (m), 1372 (m), 1335 (m), 1299 (m), 1235 (m), 1088 (m), 710 cm⁻¹(m); MS (EI): m/z (%): 173 (20,  $M^+$ ), 159 (97), 158 (100), 144 (62). HRMS: [ $M^+$ ] calcd.: 173.1204, found: 173.1203.

1,4,5-Trimethyl-1*H*-indol (**25**g)



Nach Vorschrift **4.3.2** (a) wird aus **24a** (100mg, 1.04mmol) und N-Methylpyrrol (85mg, 1.04mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (P/  $Et_2O = 20:1$ ) **25g** (73mg, 0.46mmol, 45% d.Th.) als gelber FS isoliert wird.

 $(C_{11}H_{13}N)$ : ¹HNMR (400 MHz, CDCl₃):  $\delta$  = 2.42 (s, 3 H, *CH*₃), 2.50 (s, 3 H, *CH*₃), 3.78 (s, 3 H, *H8*), 6.49 (d, *J* = 3.1 Hz, 1 H, *H3*), 7.03 (d, *J* = 3.1 Hz, 1 H, *H2*), 7.07 (d, *J* = 8.0 Hz, 1 H, *Ar*), 7.11 ppm (d, *J* = 8.1 Hz, 1 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 16.5 (CH₃),

19.1 (CH₃), 32.8 (CH₃), 99.1 (CH), 106.3 (CH), 124.2 (CH), 126.0 (C), 127.7 (C), 128.2 (CH), 129.0 (C), 135.2 ppm (C); IR:  $\nu = 3024$  (m), 2919 (m), 2863 (m), 1698 (m), 1609 (m), 1582 (m), 1514 (m), 1491 (m), 1453 (m), 1419 (m), 1383 (m), 1332 (m), 1282 (m), 1234 (m), 1149 (m), 1089 (m), 961 (w), 909 (m), 790 (m), 762 (m), 731 (m), 664 cm⁻¹ (m); MS (EI): m/z (%): 159 (100,  $M^+$ ), 158 (61), 144 (77); HRMS:  $[M^+]$  calcd.: 159.1048, found: 159.1048.

1,4,5-Trimethyl-7-phenyl-1*H*-indol (25h)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und *N*-Methylpyrrol (47.1mg, 0.58mmol) unter Standardbedingungen ein Isomerengemisch erhalten, aus dem mittels MPLC (P/EE = 10:1) **25h** (95mg, 0.41mmol, 68% d.Th.) und **27h** (30mg, 0.13mmol, 31% d.Th.) als gelbe Öle isoliert werden.

(C₁₇H₁₇N): ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.42$  (s, 3 H, *CH*₃), 2.52 (s, 3 H, *CH*₃), 3.31 (s, 3 H, *H8*), 6.55 (d, J = 3.2 Hz, 1 H, *H3*), 6.90 (s, 1 H, *H6*), 6.95 (d, J = 3.2 Hz, 1 H, *H2*), 7.36-7.45 ppm (m, 5 H, *Ar*); ¹³C NMR (100MHz, CDCl₃)  $\delta = 15.2$  (CH₃), 19.0 (CH₃), 36.7 (CH₃), 99.4 (CH, *C3*), 124.1 (C, *Ar*), 125.8 (C, *Ar*), 126.8 (CH, *Ar*), 126.9 (CH, *Ar*), 126.9 (C, *Ar*), 127.5 (CH, *Ar*), 130.1 (C, *Ar*), 130.2 (CH, *Ar*), 130.4 (CH, *Ar*), 132.4 (C, *Ar*), 140.6 ppm (C, *C7a*); IR: v = 3056 (m), 3024 (m), 2919 (s), 2860 (m), 1714 (m), 1602 (m), 1556 (m), 1526 (m), 1487 (s), 1471 (s), 1446 (s), 1395 (m), 1372 (m), 1317 (m), 1291 (m), 1249 (m), 1201 (m), 1155 (m), 1137 (m), 1093 (m), 1072 (m), 1029 (m), 1002 (m), 984 (m), 909 (m), 868 (m), 838 (m), 767 (m), 730 (m), 703 (s), 644 (m); MS (EI): m/z (%): 235 (100,  $M^+$ ), 220 (42), 73 (40), 61 (36); HRMS: [ $M^+$ ] calcd.: 235.1361, found: 235.1360.

1,6,7-Trimethyl-4-phenyl-1*H*-indol (27h)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und *N*-Methylpyrrol (47.1mg, 0.58mmol) unter Standardbedingungen ein Isomerengemisch erhalten, aus dem mittels MPLC (P/EE = 10:1) **25h** (95mg, 0.41mmol, 68% d.Th.) und **27h** (30mg, 0.13mmol, 31% d.Th.) als gelbe Öle isoliert werden.

 $(C_{17}H_{17}N)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 2.45 (s, 3 H, *CH*₃), 2.71 (s, 3 H, *CH*₃), 4.09 (s, 3 H, *H8*), 6.53 (d, J = 3.2 Hz, 1 H, *H3*), 6.91 (d, J = 3.2 Hz, 1 H, *H2*), 6.98 (s, 1 H, *H5*),

7.31-7.46 ppm (m, 5 H, *Ar*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 14.6 (CH₃), 20.3 (CH₃), 37.8 (CH₃, *C*8), 100.0 (CH, *C*3), 118.6 (C, C7), 122.8 (CH, *Ar*), 126.6 (CH, *Ar*), 128.3 (CH, *Ar*), 128.8 (CH, *Ar*), 130.2 (C, *Ar*), 131.1 (CH, *Ar*), 131.8 (C, *Ar*), 136.4 (C, *Ar*), 140.0 (C, *Ar*), 141.1 ppm (C, *Ar*). MS (EI): *m*/*z* (%): 235 (95, *M*⁺), 220 (30), 61 (100); HRMS: [*M*⁺] calcd.: 235.1361, found: 235.1361.

5-Ethyl-1,4,7-trimethyl-1*H*-indol (25i)



Nach Vorschrift **4.3.2** (a) wird aus **25f** (100mg, 0.91mmol) und *N*-Methylpyrrol (73.6mg, 0.91mmol) unter Standardbedingungen ein Isomerengemisch erhalten, aus dem mittels MPLC (P/EE = 10:1) **25i** (30mg, 0.16mmol, 16% d.Th.) und **27i** (9mg, 0.05mmol, 5% d.Th.) als gelbe Öle isoliert werden.

 $(C_{13}H_{17}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.22$  (t, J = 7.4 Hz, 3 H, *H10*), 2.45 (s, 3 H, *CH*₃), 2.72 (q, J = 7.4 Hz, 2 H, *H9*), 2.74 (s, 3 H, *CH*₃), 4.03 (s, 3 H, *H8*), 6.42 (d, J = 2.8 Hz, 1 H, *H3*), 6.75 (s, 1 H, *H6*), 6.91 ppm (d, J = 2.8 Hz, 1 H, *H2*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.3$  (CH₃), 15.9 (CH₃), 19.4 (CH₃), 25.9 (CH₂), 36.6 (CH₃, *C8*), 99.3 (CH, *C3*), 118.4 (C, *C7*), 124.5 (C, *Ar*), 125.7 (CH, *Ar*), 129.8 (CH, *Ar*), 130.2 (C, *Ar*), 132.5 (C, *Ar*), 133.6 ppm (C, *C7a*); IR: v = 2961 (s), 2928 (s), 2870 (m), 1706 (m), 1523 (m), 1494 (m), 1454 (s), 1398 (m), 1375 (m), 1337 (m), 1297 (m), 1239 (m), 1090 (m), 1033 (m), 712 cm⁻¹ (m); MS (EI): m/z (%): 187 (55,  $M^+$ ), 172 (100), 157 (12); HRMS: [ $M^+$ ] calcd.: 187.1361, found: 187.1361.

6-Ethyl-1,4,7-trimethyl-1*H*-indol (27i)



Nach Vorschrift **4.3.2** (a) wird aus **24f** (100mg, 0.91mmol) und *N*-Methylpyrrol (73.6mg, 0.91mmol) unter Standardbedingungen ein Isomerengemisch erhalten, aus dem mittels MPLC (P/EE = 10:1) **25i** (30mg, 0.16mmol, 16% d.Th.) und **27i** (9mg, 0.05mmol, 5% d.Th.) als gelbe Öle isoliert werden.

(C₁₃H₁₇N): ¹H NMR (400 MHz, CDCl₃):  $\delta$ = 1.23 (t, *J* = 7.4 Hz, 3 H, *H10*), 2.48 (s, 3H, *CH*₃), 2.70 (s, 3 H, *CH*₃), 2.71 (q, *J* = 7.4 Hz, 2 H, *H9*), 4.07 (s, 3 H, *H8*), 6.39 (d, *J* = 3.0 Hz, 1 H, *H3*), 6.74 (s, 1 H, *H5*), 6.88 ppm (d, *J* = 3.0 Hz, 1 H, *H2*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$ = 13.8 (CH₃), 16.0 (CH₃), 18.3 (CH₃), 26.9 (CH₂), 37.7 (CH₃, *C8*), 98.8 (CH, *C3*), 118.1 (C, 92

*C7*), 121.8 (CH, *Ar*), 127.4 (C, *Ar*), 129.6 (C, *Ar*), 130.2 (CH, *Ar*), 135.0 (C, *Ar*), 136.2 ppm (C, *C7a*); IR: v = 2959 (s), 2925 (s), 2870 (m), 1702 (m), 1519 (m), 1498 (m), 1451 (s), 1392 (m), 1377 (m), 1295 (m), 1232 (m), 1090 (m), 1031 (m), 710 cm⁻¹ (m); MS (EI): m/z (%): 187 (58,  $M^+$ ), 172 (100). HRMS:  $[M^+]$  calcd.: 187.1361, found: 187.1361.

5-Allyl-4-methyl-7-phenyl-1*H*-indol (25j)



Nach Vorschrift **4.3.2** (a) wird aus **24q** (47mg, 0.24mmol) und 1-*H*-Pyrrol (16mg, 0.24mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM) **25j** (54mg, 0.21mmol, 92% d.Th.) als gelbes Öl isoliert wird.

 $(C_{18}H_{17}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 2.45 (s, 3 H, H9), 3.47 (d, J = 6.3 Hz, 2 H, H10), 4.95-4.96 (m, 1 H, H12_a), 4.96-4.98 (m, 1 H, H12_b), 5.92-5.99 (m, 1 H, H11), 6.54-6.55 (m, 1 H, H2), 6.98 (s, 1 H, H6), 7.09 (t, J = 2.8 Hz, 1 H, H1), 7.28-7.31 (m, 1 H, Ph), 7.41 (t, J = 7.5 Hz, 2 H, Ph), 7.55 (dd, J = 8.3, 1.2 Hz, 2 H, Ph), 8.26 ppm (s, br, 1 H, NH); ¹³C NMR (150 MHz, CDCl₃):  $\delta$ = 15.1 (CH₃, C9), 37.5 (CH₂, C10), 101.7 (CH, C2), 114.9 (CH₂, C12), 123.1 (C, C7), 123.9 (CH, C1/C6), 124.1 (CH, C1/C6), 127.1 (CH, Ph), 127.2 (C, C3), 128.1 (2CH, Ph), 128.9 (C), 129.0 (C), 129.1 (2CH, Ph), 132.1 (C), 137.8 (CH, C11), 139.4 ppm (C, C8); IR: v = 3429 (w), 3286 (w), 3058 (w), 3025 (w), 2926 (m), 2863 (w), 2053 (m), 1969 (m), 1709 (s), 1598 (m), 1484 (m), 1446 (m), 1412 (m), 1383 (m), 1350 (m), 1236 (m), 1179 (m), 1116 (m), 1076 (m), 1042 (m), 1028 (m), 995 (m), 961 (m), 908 (m), 880 (m), 761 (m), 725 (m), 697 cm⁻¹ (s); MS (EI): m/z (%) = 247 [M⁺] (100), 232 (36), 220 (17), 204 (18); HRMS: m/z calcd. for C₁₈H₁₇N: 247.1360 [ $M^+$ ]; found: 247.1361.

(E)-4-Methyl-7-phenyl-5-styryl-1*H*-indol (**28a**)



Nach Vorschrift **4.3.2 (a)** wird aus **24g** (100mg, 0.38mmol) und 1-*H*-Pyrrol (26mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **28a** (112mg, 0.36mmol, 94% d.Th.) als gelbes Öl isoliert wird.

 $(C_{23}H_{19}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.61$  (s, 3 H, H9), 6.59 (t, J = 2.2 Hz, 1 H, H2), 6.95 (d, J = 16.1 Hz, 1 H, H11), 7.10 (t, J = 2.8 Hz, 1 H, H1), 7.17 (d, J = 7.4 Hz, 1 H, Ph), 7.25 (t, J = 10.5 Hz, 2 H, Ph), 7.33 (t, J = 7.4 Hz, 1 H, Ph), 7.44 (t, J = 7.6 Hz, 2 H, Ph), 7.46-7-48 (m, 3 H, H6 und Ph), 7.52 (d, J = 16.1 Hz, 1 H, H10), 7.58 (d, J = 7.0 Hz, 2 H, Ph), 8.32 ppm (s, br, 1 H, NH); d¹³C NMR (150 MHz, CDCl₃):  $\delta = 15.4$  (CH₃, C9), 102.3 (CH, C2), 120.2 (CH, C6), 123.7 (C, C7), 124.1 (CH, C1), 126.3 (2CH, Ph), 127.0 (CH, Ph), 127.2 (CH, C10/Ph), 127.3 (CH, C10/Ph), 127.5 (C), 127.9 (C), 127.9 (CH, C11), 128.2 (2CH, Ph), 128.6 (2CH, Ph), 128.9 (C), 129.1 (2CH, Ph), 132.9 (C, Ph), 138.2 (C, C8/Ph), 139.1 ppm (C, C8/Ph); IR:  $\nu = 4052$  (w), 3288 (w), 3061 (w), 3029 (w), 2926 (w), 2246 (w), 1952 (w), 1719 (m), 1680 (m), 1603 (m), 1494 (w), 1452 (m), 1272 (w), 1157 (w), 1071 (m), 1027 (m), 908 (m), 756 (m), 730 (m), 697 cm⁻¹ (s); MS (EI): m/z (%) = 309 [M⁺] (100), 294 (39), 157 (20); HRMS: m/z calcd. for  $C_{23}H_{19}N$ : 309.1517 [ $M^+$ ]; found: 309.1517

(E)-4-Methyl-1,7-diphenyl-5-styryl-1*H*-indol (28b)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und *N*-Phenylpyrrol (55mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **28b** (132mg, 0.37mmol, 96% d.Th.) als gelbes Öl isoliert wird.

 $(C_{29}H_{23}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.64$  (s, 3 H, H9), 6.24 (d, J = 1.4 Hz, 1 H, H2), 6.70 (dd, J = 3.1, 1.2 Hz, 1 H, H1), 6.78-6.81 (m, 2 H, H11 und Ph), 6.87-6.98 (m, 4 H, Ph), 7.08-7.14 (m, 2 H, Ph), 7.24-7.31 (m, 5 H, H6 und Ph), 7.4-7.5 (m, 3 H, H10 und Ph), 7.49-7.52 ppm (m, 2 H, Ph); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 15.4$  (CH₃, C9), 102.5 (CH, C1), 110.4 (CH, C2), 119.2 (CH, Ph), 120.4 (CH, C6), 123.1 (CH, Ph), 125.2 (C, C7), 125.5 (CH), 125.7 (CH), 126.0 (CH), 126.0 (CH), 126.3 (CH), 126.3 (CH), 126.8 (CH), 127.0 (CH), 127.2 (CH), 127.8 (C), 128.0 (CH), 128.3 (CH), 128.6 (CH), 129.1 (CH), 129.5 (CH), 130.5 (CH), 130.9 (C), 132.3 (C), 138.2 (C, C8/Ph), 139.2 (C, C8/Ph), 140.2 (C, C8/Ph), 140.7 ppm (C, C8/Ph); IR:  $\nu = 3436$  (m), 3025 (m), 2922 (m), 2855 (w), 1944 (w), 1874 (w), 1801 (w), 1689 (w), 1629 (w), 1598 (s), 1510 (s), 1497 (s), 1471 (m), 1446 (m), 1399 (m), 1343 (m), 1327 (m), 1259 (m), 1148 (m), 1071 (m), 1028 (m), 959 (m), 922 (m), 759 (s), 719 (s), 691 (s), 525 (m), 502 cm⁻¹ (s); MS (EI): m/z (%) = 385 [M⁺] (100), 143 (28), 115 (16); HRMS: m/z calcd. for C₂₉H₂₃N: [M⁺] 358.1830; found: 358.1829.

(E)-1-(4-Chlorophenyl)-4-methyl-7-phenyl-5-styryl-1-*H*-Indol (28c)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 1-(4-Chlorophenyl)pyrrol (68mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **28c** (148mg, 0.35mmol, 92% d.Th.) als gelbes Öl isoliert wird. ( $C_{29}H_{22}ClN$ ): ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.04$  (s, 3 H, *H9*), 6.63 (s, 1 H, *H2*), 6.79 (d, J = 16.1 Hz, 1 H, *H11*), 7.02 (s, 1 H, *H1*), 7.04-7.17 (m, 9 H), 7.21-7.25 (m, 4 H), 7.40 (d, J = 7.3 Hz, 2 H, *Ar*), 7.57 ppm (dd, J = 7.9, 1.1 Hz, 1 H, *Ar*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 10.6$  (CH₃, *C9*), 105.5 (CH, *C2*), 119.8 (C), 121.2 (CH, *C1*), 124.3 (C), 124.5 (CH, *Ar*), 125.7 (2CH, *Ph*), 126.3 (CH), 126.4 (CH), 127.7 (2CH, *Ph*), 128.0 (2CH, *Ph*), 128.2 (CH), 128.5 (2CH, *Ph*), 129.8 (CH), 130.7 (C), 131.1 (CH), 132.7 (C), 133.3 (CH), 134.9 (C), 138.5 (C, *C8/Ph*), 138.6 ppm (C, *C8/Ph*); IR: v = 3060 (w), 3026 (w), 2363 (m), 2342 (m), 1700 (w), 1653 (w), 1597 (m), 1505 (s), 1330 (s), 1093 (w), 1090 (s), 1013 (m), 955 (m), 921 (m), 830 (m), 764 (m), 724 (m), 697 (m), 668 (m), 611 (m), 537 (m), 517 cm⁻¹(m); MS (EI): m/z (%) = 419 [M⁺] (100), 177 (28), 115 (18); HRMS: m/z calcd.for  $C_{29}H_{22}CIN$ : 419.1440 [ $M^+$ ]; found: 419.1440. (c) Synthesen der Enine

(Z)-5-(8-Methyl-6,10-diphenylpent-7-en-9-inyl)-1H-pyrrol (30a)



Nach Vorschrift **4.3.2 (a)** wird aus **24h** (100mg, 0.40mmol) und 1-*H*-Pyrrol (27mg, 0.40mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM) **30a** (101mg, 0.34mmol, 81% d.Th.) als gelbes Öl isoliert wird.

 $(C_{22}H_{19}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.01$  (d, J = 1.3 Hz, 3 H, H11), 5.35 (d, J = 9.9 Hz, 1 H, H6), 5.93 (d, br, J = 2.8 Hz, 1 H, H4), 6.13 (dd, J = 9.9, 1.4 Hz, 1 H, H7), 6.16 (dd, J = 5.8, 2.8 Hz, 1 H, H3), 6.71 (dd, J = 4.0, 2.5 Hz, 1H, H2), 7.19-7.49 (m, 10 H, Ph), 7.97 ppm (s, br, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 23.2$  (CH₃, C11), 46.1 (CH, C6), 88.4 (C, C9/C10), 93.6 (C, C9/C10), 106.2 (CH, C3/C4), 108.3 (CH, C3/C4), 117.1 (CH, C2), 118.8 (C, C8), 123.3 (C), 127.0 (CH), 128.2 (CH), 128.3 (CH), 128.4 (CH), 128.9 (CH), 131.5 (CH), 133.4 (C), 138.0 (CH), 142.1 ppm (C); NOESY (600 MHz, CDCl₃) cross peak: 2.01 / 6.13, Z-Isomer; IR:  $\nu = 3436$  (m), 3081 (m), 3059 (m), 3027 (m), 2957 (m), 2925 (s), 2855 (m), 2202 (w), 1704 (m), 1598 (s), 1572 (m), 1490 (s), 1448 (s), 1375 (m), 1277 (m), 1178 (m), 1157 (m), 1070 (m), 1029 (m), 1002 (m), 967 (m), 909 (s), 882 (m), 843 (w), 756 (s), 732 (s), 699 (s), 648 (m), 586 (w), 520 (m) cm⁻¹. MS (EI): m/z (%): 297 (30,  $M^+$ ), 282 (18), 129 (25), 105 (24), 73 (24), 61 (100); HRMS:  $[M^+]$  calcd.: 297.1517, found: 297.1518.

(*Z*)-5-(8-Methyl-6-phenylhex-7-en-9-inyl)-1*H*-pyrrol (**30b**)



Nach Vorschrift **4.3.2** (a) wird aus **2i** (100mg, 0.54mmol) und 1-*H*-Pyrrol (36mg, 0.54mmol) unter Standardbedingungen ein Rohprodukt (122mg) erhalten, aus dem mittels MPLC (P/EE = 20:1) **30b** (132mg, 0.57mmol, 51% d.Th.) als gelbes Öl isoliert wird. ( $C_{17}H_{17}N$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.91$  (d, J = 1.2 Hz, 3 H, *H12*), 2.04 (s, 3 H, *H11*), 5.25 (d, J = 9.9 Hz, 1 H, *H6*), 5.87 (dd, J = 2.6, 1.6 Hz, 1 H, *H4*), 5.98 (dd, J = 9.9, 1.0 Hz, 1 H, *H7*), 6.16 (dd, J = 5.8, 2.8 Hz, 1 H, *H3*), 6.71 (dd, J = 4.1, 2.5 Hz, 1 H, *H2*), 7.23-7.37 (m, 5 H, *Ph*), 7.96 ppm (s, br, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 4.4$  (CH₃, *C11*), 23.5 (CH₃, *C12*), 45.8 (CH, *C6*), 78.7 (C, *C9/C10*), 89.9 (C, *C9/C10*), 105.9 (CH, *C3/C4*), 108.2 (CH, *C3/C4*), 116.9 (CH, *C2*), 119.3 (C, *C8*), 126.7 (CH), 128.2 (CH), 128.6 (CH), 133.7 (C), 136.4 (CH), 142.3 ppm (C); NOESY (600 MHz, CDCl₃): cross peak: 1.91 /

5.98, Z-Isomer; IR: v = 3429 (s), 3062 (m), 2971 (m), 2949 (m), 2917 (m), 2882 (m), 2852 96
(m), 2232 (w), 1599 (m), 1558 (m), 1489 (m), 1466 (m), 1451 (m), 1434 (m), 1376 (m), 1117 (m), 1092 (m), 1071 (m), 1027 (m), 994 (w), 965 (w), 913 (w), 885 (m), 874 (m), 781 (m), 717 (s), 701 cm⁻¹ (s); MS (EI): m/z (%): 235 (75,  $M^+$ ), 220 (100), 204 (38), 158 (30); HRMS:  $[M^+]$  calcd.: 235.1361, found: 235.1361.

(*Z*)-5-(8-Methyl-6-phenylundec-7-en-9-inyl)-1*H*-pyrrol (**30c**)



Nach Vorschrift **4.3.2** (a) wird aus **24j** (60mg, 0.24mmol) und 1-*H*-Pyrrol (16mg, 0.24mmol) unter Standardbedingungen ein Rohprodukt erhalten, das mittels MPLC (P/EE = 20:1) **30c** (70mg, 0.23mmol, 97 % d.Th.) als gelbes Öl isoliert wird.

 $(C_{22}H_{27}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.80-0.83$  (m, 3 H, *Hex*), 1.18-1.24 (m, 4 H, *Hex*), 1.32-1.39 (m, 2 H, *Hex*), 1.44-1.52 (m, 2 H, *Hex*), 1.80 (s, 3 H, *H11*), 2.29 (t, *J* = 7.0 Hz, 2 H, *Hex*), 5.16 (d, *J* = 9.8 Hz, 1 H, *H6*), 5.76 (s, br, 1 H, *H4*), 5.88 (d, *J* = 9.9 Hz, 1 H, *H7*), 6.05 (dd, *J* = 5.7, 2.9 Hz, 1 H, *H3*), 6.61 (s, br, 1 H, *H2*), 7.09-7.24 (m, 5 H, *Ph*), 7.86 ppm (s, br, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.0$  (CH₃, *Hex*), 19.5 (CH₂, *Hex*), 22.6 (CH₂, *Hex*), 23.5 (CH₃, *C11*), 28.6 (CH₂, *Hex*), 28.8 (CH₂, *Hex*), 31.4 (CH₂, *Hex*), 45.8 (CH, *C3*), 79.6 (C, *C9/C10*), 94.7 (C, *C9/C10*), 105.9 (CH, *C3/C4*), 108.2 (CH, *C3/C4*), 116.9 (CH, *C2*), 119.4 (C, *C7*), 126.7 (CH), 128.2 (CH), 128.6 (CH), 133.8 (C), 136.3 (CH), 142.4 ppm (C); NOESY (600 MHz, CDCl₃): cross peak: 1.80 / 5.88, *Z*-Isomer; IR: v = 3432 (m), 3027 (m), 2955 (s), 2928 (s), 2857 (s), 2212 (w), 1946 (w), 1709 (m), 1493 (m), 1453 (m), 1377 (m), 1355 (m), 1029 (m), 968 (w), 909 (m), 885 (w), 733 (s), 700 (s), 648 cm⁻¹ (w); MS (EI): *m/z* (%): 305 (50, *M*⁺), 290 (62), 234 (89), 220 (100); HRMS: [*M*⁺] calcd.: 305.2143, found: 305.2145.

(Z)-5-(8-Methyl-6-phenyl-5-(trimethylsilyl)pent-7-en-9-inyl)-1H-pyrrol (30d)



Nach Vorschrift **4.3.2** (a) wird aus **24k** (80mg, 0.36mmol) und 1-*H*-Pyrrol (24mg, 0.36mmol) unter Standardbedingungen ein Rohprodukt (102mg) erhalten, aus dem mittels MPLC (P/EE = 10:1; 1% TEA) **30d** (83mg, 0.30mmol, 77% d.Th.) als gelbes Öl isoliert wird. ( $C_{19}H_{23}NSi$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 0.25 (s, 9 H, *TMS*), 1.91 (d, *J* = 1.4 Hz, 3 H, *H11*), 5.28 (d, *J* = 9.9 Hz, 1 H, *H6*), 5.89 (s br, 1 H, *H4*), 6.11 (dd, *J* = 9.9, 1.5 Hz, 1 H, *H7*), 6.15 (s, br, 1 H, *H3*), 6.71 (s, br, 1 H, *H2*), 7.21-7.35 (m, 5 H, *Ph*), 8.00 ppm (s, br, *NH*);

¹³C NMR (100 MHz, CDCl₃): δ = 0.0 (CH₃, *TMS*), 22.9 (CH₃, *C11*), 45.9 (CH, *C6*), 98.6 (C, *C9/C10*), 104.2 (C, *C9/C10*), 105.9 (CH, *C3/C4*), 108.2 (CH, *C3/C4*), 117.0 (CH, *C2*), 118.8 (C, *C8*), 126.8 (CH), 128.2 (CH), 128.6 (CH), 133.5 (C), 139.1 (CH), 142.1 ppm (C); NOESY (600 MHz, CDCl₃): cross peak: 1.91 / 6.11, *Z*-Isomer; IR: v = 3410 (s), 3084 (m), 3062 (m), 3028 (s), 2960 (s), 2928 (s), 2855 (m), 2168 (m), 1705 (s), 1668 (m), 1626 (m), 1603 (m), 1578 (w), 1496 (m), 1449 (s), 1409 (m), 1362 (s), 1330 (m), 1298 (m), 1250 (s), 1226 (m), 1207 (m), 1178 (m), 1119 (m), 1070 (s), 1029 (m), 968 (s), 926 (m), 870 (s), 843 (s), 800 (w), 750 (s), 694 (s), 666 (w), 648 (w), 632 cm⁻¹ (w); MS (EI): *m/z* (%): 293 (68, *M*⁺), 278 (50), 221 (41), 220 (100), 73 (63); HRMS: [*M*⁺] calcd.: 293.1599, found: 293.1599.

(*Z*)-5-(8-Methyl-6-phenylpent-7-en-8-inyl)-1*H*-pyrrol (**30d**`)



**30d** (120mg, 0.43 mmol) wird in MeOH vorgelegt, mit  $K_2CO_3$  (59mg, 0.43mmol) versetzt, 6h bei RT gerührt, filtriert und eingedampft. **30d** (93mg, 0.43mmol, 99% d.Th.) wird als gelbes Öl erhalten.

(C₁₆H₁₅N): ¹H NMR (400 MHz, CDCl₃):  $\delta$ = 1.95 (d, J = 1.2 Hz, 3 H, *H11*), 2.51 (s, 1 H, *H10*), 5.29 (d, J = 10.0 Hz, 1 H, *H6*), 5.91 (s, br, 1 H, *H4*), 6.11 (dd, J = 10.0, 1.2 Hz, 1 H, *H7*), 6.14 (s, br, 1 H, *H3*), 6.72 (s, br, 1 H, *H2*), 7.24-7.38 (m, 5 H, *Ph*), 8.05 ppm (s, br, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$ = 22.9 (CH₃, *C10*), 45.8 (CH, *C6*), 77.2 (CH, *C10*), 82.1 (C, *C9*), 105.9 (CH, *C3/C4*), 108.1 (CH, *C3/C4*), 116.9 (CH, *C2*), 117.6 (C, *C8*), 126.5 (CH), 128.1 (CH), 128.6 (CH), 132.8 (C), 139.5 (CH), 141.9 ppm (C); MS (EI): *m/z* (%): 221 (70,  $M^+$ ), 206 (100), 144 (34); HRMS: [ $M^+$ ] calcd.: 221.1204, found: 221.1204.

(Z)-1-Methyl-5-(8-methyl-6,10-diphenylpent-7-en-9-inyl)-1*H*-pyrrol (**30e**)



Nach Vorschrift **4.3.2** (a) wird aus **24h** (100mg, 0.40mmol) und *N*-Methylpyrrol (33mg, 0.40mmol) unter Standardbedingungen ein Rohprodukt (136mg) erhalten, aus dem mittels MPLC (P/ Et₂O = 10:1) **30e** (74mg, 0.24mmol, 60% d.Th.) als oranges Öl isoliert wird. (C₂₃H₂₁N): ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 2.00 (s, 3 H, *H11*), 3.46 (s, 3 H, *H14*), 5.37 (d, *J* = 10.0 Hz, 1 H, *H6*), 5.99 (s br, 1 H, *H4*), 6.11 (d, *J* = 10.0 Hz, 1 H, *H7*), 6.12 (s br, 1 H, *H3*), 6.59 (s br, 1 H, *H2*), 7.22-7.48 ppm (m, 10 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  = 23.0

(CH₃, *C11*), 34.1 (CH₃, *C14*), 44.7 (CH, *C6*), 88.6 (C, *C9/C10*), 93.6 (C, *C9/C10*), 106.6 (CH, *C3/C4*), 106.9 (CH, *C3/C4*), 117.8 (C, *C8*), 122.0 (CH), 123.5 (C), 126.5 (CH), 127.8 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 131.5 (CH), 133.6 (C), 138.0 (CH), 142.8 ppm (C); NOESY (600 MHz, CDCl₃) cross peak: 2.00 / 6.11, *Z*-Isomer; IR: v = 3081 (m), 3059 (m), 3026 (m), 2923 (m), 2845 (m), 2202 (w), 1703 (m), 1597 (m), 1571 (w), 1490 (s), 1451 (s), 1414 (m), 1376 (m), 1359 (m), 1304 (m), 1178 (w), 1156 (m), 1089 (m), 1070 (m), 1028 (m), 1003 (w), 970 (w), 910 (s), 876 (w), 845 (w), 801 (w), 756 (s), 733 (s), 700 (s), 648 (w), 608 cm⁻¹ (w); MS (EI): *m/z* (%): 311 (10, *M*⁺), 210 (20), 144 (25), 129 (100); HRMS: [*M*⁺] calcd.: 311.1674, found: 311.1673.

(Z)-N-(4-Methyl-2-phenylhex-3-en-5-in-2-yl)-2-(1H-pyrrol-1-yl)anilin (30f)



Nach Vorschrift **4.3.2** (a) wird aus **24i** (80mg, 0.43mmol) und 1-(2-Aminophenyl)pyrrol (68mg, 0.43mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/ Et₂O = 10:1) **30f** (56mg, 0.17mmol, 40% d.Th.) als gelbes Öls isoliert wird. ( $C_{23}H_{22}N_2$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 1.91 (br s, 3 H, *H8*), 2.11 (br s, 3 H, *H7*), 4.28 (br s, 1 H, *NH*), 5.57 (br d, *J* = 9.0 Hz, 1 H, *H2*), 5.64 (br d, *J* = 9.0 Hz, 1 H, *H3*), 6.47 (br s, 2 H, *H16*), 6.81-6.85 (m, 2 H, *H13*, *H12*), 6.98 (br s, 2 H, *H15*), 7.23-7.47 ppm (m, 7 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 4.4 (CH₃, *C7*), 23.3 (CH₃, *C8*), 57.8 (CH, *C2*), 78.5 (C, *C6*), 91.4 (C, *C5*), 109.4 (CH, *C16*), 112.7 (CH, *C10/C12*), 116.7 (CH, *C10/C12*), 120.8 (C, *C4*), 121.7 (CH, *C15*), 126.0 (CH, *Ph*), 126.8 (CH, *Ar*), 127.2 (CH, *Ar*), 127.4 (C, *C14*), 128.7 (CH, *Ph*), 136.4 (CH, *C3*), 142.2 (C), 142.7 ppm (C); NOESY (600 MHz, CDCl₃): cross peak: 1.91 / 5.64, Z-Isomer; Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren; HRMS: *m/z* calcd. for C₂₃H₂₂N₂: 326.1783 [*M*⁺]; found: 326.1783.

(Z)-N-(4-Methyl-2,6-diphenylpent-3-en-5-in-1-yl)-2-(1H-pyrrol-1-yl)anilin (**30g**)



Nach Vorschrift **4.3.2** (a) wird aus **24h** (80mg, 0.32mmol) und 1-(2-Aminophenyl)pyrrol (51mg, 0.32mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **30g** (54mg, 0.14mmol, 44% d.Th.) als gelbes Öl isoliert wird.

 $(C_{28}H_{24}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.01$  (br s, 3 H, *H7*), 4.31 (br s, 1 H, *NH*), 5.61 (br d, J = 8.8 Hz, 1 H, *H2*), 5.76 (br d, J = 9.0 Hz, 1 H, *H3*), 6.42 (br s, 2 H, *H15*), 6.80 (t, J = 7.5 Hz, 1 H, *H11*), 6.87 (d, J = 8.0 Hz, 1 H, *H9*), 6.93 (br s, 2 H, *H14*), 7.20-7.50 ppm (m, 12 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 23.0$  (CH₃, *C7*), 58.2 (CH, *C2*), 88.0 (C, *C5*), 94.9 (C, *C6*), 109.5 (CH, *C15*), 112.7 (CH, *C9*), 116.9 (CH, *C11*), 120.5 (C, *C4*), 121.9 (CH, *C14*), 123.0 (C, *C5*), 126.2 (CH, *Ph*), 127.0 (CH, *Ar*), 127.4 (CH, *Ar*), 127.5 (C, *C13*), 128.3 (CH, *Ph*), 128.4 (CH, *Ar*), 128.8 (CH, *Ph*), 131.5 (CH, *Ph*), 138.2 (CH, *C3*), 142.0 (C), 142.8 ppm (C); NOESY (600 MHz, CDCl₃) cross peak: 2.01 / 5.76, Z-Isomer; Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren; HRMS: *m/z* calcd. for C₂₈H₂₄N₂: 388.1939 [*M*⁺]; found: 388.1939.

# (d) Synthesen der Pyrrole

2,3-Dimethyl-1-phenyl-1*H*-pyrrol (26a)



Nach Vorschrift **4.3.2** (a) wird aus **24a** (100mg, 0.10mmol) und Anilin (97mg, 0.10mmol) unter Mikrowellenbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26a** (34mg, 0.20mmol, 19% d.Th.) als gelbes Öl isoliert wird.

 $(C_{12}H_{13}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.00$  (s, 3 H, *H7*), 2.02 (s, 3 H, *H6*), 5.99 (d, J = 2.8 Hz, 1 H, *H4*), 6.60 (d, J = 2.8 Hz, 1 H, *H5*), 7.15-7.33 ppm (m, 5H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.6$  (CH₃, *C6*), 11.5 (CH₃, *C7*), 109.8 (CH, *C4*), 116.2 (C, *C3*), 119.8 (CH, *C5*), 125.2 (*C*, C2), 125.6 (CH, *C9*), 126.5 (CH, *C11*), 129.0 (CH, *C10*), 140.7 ppm (C, *C8*); HRMS: *m/z* calcd. for C₁₂H₁₃N: 171.1048 [*M*⁺]; found: 171.1048.

2,3-Dimethyl-1-(4-nitrophenyl)-1*H*-pyrrol (**26b**)



Nach Vorschrift **4.3.2** (a) wird aus **24a** (100mg, 0.10mmol) und 4-Nitroanilin (144mg, 0.10mmol) unter Mikrowellenbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26b** (57mg, 0.26mmol, 25%d.Th.) als gelbes Öl isoliert wird.

 $(C_{12}H_{12}N_2O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.02$  (s, 3 H, *H7*), 2.13 (s, 3 H, *H6*), 6.09 (d, J = 2.9 Hz, 1 H, *H4*), 6.67 (d, J = 2.9 Hz, 1 H, *H5*), 7.35 (d, J = 9.1 Hz, 2 H, *H9*), 8.23 ppm (d, J = 9.1 Hz, 2 H, *H10*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.9$  (CH₃, *C6*), 11.4 (CH₃, *C7*), 111.9 (CH, *C4*), 118.6 (C, *C3*), 119.6 (CH, *C5*), 124.8 (CH, *C9/C10*), 124.9 (CH, *C9/C10*), 124.8 (C, *C2*), 145.3 (C, *C8/C11*), 145.9 ppm (C, *C8/C11*); HRMS: *m/z* calcd. for C₁₂H₁₂N₂O₂: 216.0899 [*M*⁺]; found: 216.0898.

Methyl 2-(2,3-dimethyl-1*H*-pyrrol-1-yl)benzoat⁵ (**26c**)



 $(C_{14}H_{15}NO_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.94$  (s, 3 H, *H15*), 2.10 (s, 3 H, *H14*), 3.71 (s, 3 H, *H13*), 6.08 (d, J = 2.4 Hz, 1 H, *H4*), 6.56 (d, J = 2.4 Hz, 1 H, *H5*), 7.32 (dd, J = 8.4, 0.9 Hz, 1 H, *H11*), 7.46 (td, J = 7.8, 1.2 Hz, 1 H, *H9*), 7.58 (td, J = 7.2, 1.8 Hz, 1 H, *H10*), 7.90 pm (dd, J = 7.8, 1.2 Hz, 1 H, *H8*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 10.0$  (CH₃, *C14*), 11.6 (CH₃, *C15*), 52.4 (CH₃, *C13*), 109.9 (CH, *C4*), 115.3 (C, *C3*), 120.2 (CH, *C5*), 126.3 (C, *C2*), 127.7 (CH, *C9/C11*), 129.3 (CH, *C9/C11*), 129.8 (C, *C7*), 130.6 (CH, *C8/C10*), 132.3 (CH, *C8/C10*), 140.1 (C, *C6*), 166.8 ppm (C, *C12*); MS (EI): m/z (%) = 229 [ $M^+$ ] (100), 228 (62), 214 (28), 170 (25), 154 (26); HRMS: m/z calcd. for C₁₄H₁₅NO₂: 229.1103 [ $M^+$ ]; found: 229.1104.

(2-(2,3-Dimethyl-1H-pyrrol-1-yl)phenyl)methanol⁵ (26d)



 $(C_{13}H_{15}NO)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.83$  (s, 3 H, *H14*), 2.01 (s, 3 H, *H13*), 4.32 (s, 2 H, *H12*), 6.02 (d, J = 2.8 Hz, 1 H, *H4*), 6.49 (d, J = 2.8 Hz, 1 H, *H5*), 7.13 (dd, J = 7.6, 1.2 Hz, 1 H, *H11*), 7.29 (td, J = 7.6, 1.6 Hz, 1 H, *H9*), 7.36 (td, J = 7.6, 1.6 Hz, 1 H, *H10*), 7.49 ppm (dd, J = 7.6, 1.2 Hz, 1 H, *H8*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.0$  (CH₃, *C13*), 11.6 (CH₃, *C14*), 61.6 (CH₂, *C12*), 109.9 (CH, *C4*), 115.4 (C, *C3*), 120.2 (CH, *C5*), 126.2 (C, *C2*), 128.3 (CH, *Ar*), 128.5 (CH, *Ar*), 128.6 (CH, *Ar*), 128.7 (CH, *Ar*), 138.7 (C, *C6/C7*), 138.8 ppm (C, *C6/C7*); IR: v = 3366 (s), 3067 (m), 3009 (m), 2925 (s), 2858 (s), 1680 (s), 1606 (s), 1590 (s), 1495 (s), 1458 (s), 1378 (s), 1349 (s), 1314 (m), 1260 (m), 947 (w), 928 (w), 849 (w), 755 (s), 667 (m), 639 cm⁻¹ (m); MS (EI): m/z (%) = 201 [ $M^+$ ]; found: 201.1152.

1-(2-(1*H*-Pyrrol-1-yl)phenyl)-2,3-dimethyl-1*H*-pyrrol (26e)



Nach Vorschrift **4.3.2** (a) wird aus **24a** (100mg, 0.10mmol) und 1-(2-Aminophenyl)pyrrol (164mg, 0.10mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26e** (76mg, 0.32mmol, 31% d.Th.) als gelbes Öl isoliert wird. (Bei einer erhöhten Reaktionszeit von 48h werden 160mg **26e** (65% d.Th.) isoliert.)

 $(C_{16}H_{16}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.68$  (s, 3 H, *H15*), 2.02 (s, 3 H, *H14*), 6.09 (d, J = 2.6 Hz, 1 H, *H4*), 6.19 (t, J = 1.9 Hz, 2 H, *H13*), 6.48 (t, J = 1.9 Hz, 2 H, *H12*), 6.52 (d, 1 H, J = 2.7 Hz, *H5*), 7.35-7.37 (m, 2 H, *Ar*), 7.45-7.47 ppm (m, 2H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 9.1$  (CH₃, *C14*), 11.4 (CH₃, *C15*), 110.0 (CH, *C13*), 110.7 (CH, *C4*), 115.5 (C, *C3*), 119.4 (CH, *C5*), 120.4 (CH, *C12*), 124.9 (CH, *Ar*), 126.3 (C, *C2*), 126.4 (CH, *Ar*), 128.6 (CH, *Ar*), 129.6 (CH, *Ar*), 133.3 (C, *C6*), 137.6 ppm (C, *C11*); IR:  $\delta = 3102$  (m), 3070 (m), 2921 (s), 2860 (s), 1737 (m), 1602 (s), 1587 (m), 1511 (s), 1483 (s), 1387 (m), 1351 (s), 1333 (s), 1265 (m), 1245 (m), 1229 (m), 1180 (s), 1160 (m), 1142 (m), 1125 (m), 1105 (s), 1069 (s), 1044 (m), 1015 (s), 986 (m), 946 (m), 921 (m), 870 (m), 828 (m), 764 (m), 727 (s), 703 (s), 659 (m), 636 cm⁻¹ (s); HRMS: *m/z* calcd. for C₁₆H₁₆N₂: 236.1313 [*M*⁺]; found: 236.1314.

1-(2-(1*H*-Pyrrol-1-yl)phenyl)-3-ethyl-2,5-dimethyl-1*H*-pyrrol (26f)



Nach Vorschrift **4.3.2** (a) wird aus **24f** (100mg, 0.80mmol) und 1-(2-Aminophenyl)pyrrol (127mg, 0.80mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26f** (50mg, 0.19mmol, 18% d.Th.) als gelbes Öl isoliert wird.

 $(C_{18}H_{20}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.12$  (t, J = 7.6 Hz, 3 H, *H16*), 1.74 (s, 3 H, *H14/H17*), 1.83 (s, 3 H, *H14/H17*), 2.37 (q, J = 7.6 Hz, 2 H, *H15*), 5.81 (s, 1 H, *H4*), 6.16 (t, J = 2.1 Hz, 2 H, *H13*), 6.40 (t, J = 2.1 Hz, 2 H, *H12*), 7.32-7.34 (m, 2 H, *Ar*), 7.46-7.48 ppm (m, 2 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 9.8$  (CH₃, *C14*), 12.1 (CH₃, *C17*), 15.7 (CH₃, *C16*), 19.3 (CH₂, *C15*), 106.7 (CH, *C4*), 110.1 (CH, *C13*), 120.3 (CH, *C12*), 121.8 (C, *C3*), 123.9 (C, *C2/C5*), 124.5 (CH, *Ar*), 126.1 (CH, *Ar*), 127.3 (C, *C2/C5*), 129.0 (CH, *Ar*), 131.0 (CH, *Ar*), 138.7 (C, *C6/C11*), 139.2 ppm (C, *C6/C11*); IR:  $\nu = 3104$  (s), 2824 (s), 2854 (s), 1739 (s), 1712 (s), 1605 (s), 1508 (s), 1462 (s), 1377 (s), 1334 (s), 1162 (s), 1107 (s), 1069

(s), 1045 (s), 1015 (s), 967 (s), 922 (s), 887 (m), 861 (m), 760 (s), 726 (s), 704 (s), 635 cm⁻¹ (s); HRMS: m/z calcd. for C₁₈H₂₀N₂: 264.1626 [ $M^+$ ]; found: 264.1626.

2,3-Dimethyl-1,5-diphenyl-1H-pyrrol⁵ (**26g**)



 $(C_{18}H_{17}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.98$  (s, 3 H, *H15*), 2.06 (s, 3 H, *H14*), 6.19 (s, 1 H, *H4*), 6.97-7.27 ppm (m, 10 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.9$  (CH₃, *C14*), 11.3 (CH₃, *C15*), 110.6 (CH, *C4*), 115.6 (C, *C3*), 125.4 (CH, *C9/C13*), 125.5 (C, *C2*), 126.5 (CH, *C9/C13*), 127.6 (CH, *Ph*), 127.9 (CH, *Ph*), 128.4 (CH, *Ph*), 128.9 (CH, *Ph*), 131.7 (C, *C5/C10*), 133.2 (C, *C5/C10*), 139.5 ppm (C, *C6*); IR: v = 3059 (m), 3026 (m), 2925 (s), 2856 (m), 1667 (m), 1599 (s), 1495 (s), 1379 (m), 1369 (m), 1261 (m), 1155 (m), 1073 (m), 1029 (m), 968 (w), 757 (s), 697 cm⁻¹ (s); MS (EI): *m/z* (%) = 247 [*M*⁺] (100), 246 (52), 205 (19), 154 (20), 144 (29), 129 (54), 128 (35), 105 (30); HRMS: *m/z* calcd. for C₁₈H₁₇N: 247.1361 [*M*⁺]; found: 247.1361.

1-(2-(1*H*-Pyrrol-1-yl)phenyl)-2,3-dimethyl-5-phenyl-1*H*-pyrrol (26h)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und 1-(2-Aminophenyl)pyrrol (92mg, 0.58mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26h** (102mg, 0.32mmol, 56% d.Th.) als gelbes Öl isoliert wird.

 $(C_{22}H_{20}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.93$  (s, 3 H, *H15*), 2.13 (s, 3 H, *H14*), 6.13 (t, J = 2.1 Hz, 2 H, *H13*), 6.23 (s, 1 H, *H4*), 6.28 (t, J = 2.1 Hz, 2 H, *H12*), 6.89-6.91 (m, 2 H, *Ar*), 7.07-7.11 (m, 3 H, *Ar*), 7.29-7.44 ppm (m, 4 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.1$  (CH₃, *C14*), 11.4 (CH₃, *C15*), 109.9 (CH, *C13*), 110.8 (CH, *C4*), 114.6 (C, *C3*), 120.2 (CH, *C12*), 124.7 (C, *C2*), 124.9 (CH, *Ar*), 125.6 (CH, *Ar*), 126.3 (CH, *Ar*), 127.1 (CH, *Ph*), 127.7 (CH, *Ph*), 128.9 (CH, *Ar*), 131.2 (CH, *Ar*), 133.9 (C, *C5/Ph*), 134.9 (C, *C5/Ph*), 137.1 (C, *C6/C11*); IR v = 3062 (s), 3028 (s), 2920 (s), 2860 (s), 1706 (m), 1603 (s), 1505 (s), 1478 (s), 1455 (s), 1379 (s), 1368 (s), 1333 (s), 1284 (s), 1264 (s), 1182 (s), 1159 (s), 1107 (s), 1070 (s), 1070 (s), 1045 (s), 1028 (s), 1016 (s), 1000 (s), 966 (s), 946

(s), 921 (s), 909 (s), 871 (m), 794 (s), 760 (s), 726 (s), 696 (s), 649 (s), 635 cm⁻¹ (s); HRMS: m/z calcd. for C₂₂H₂₀N₂: 312.1626 [ $M^+$ ]; found: 312.1626.

1-(3-(1*H*-Pyrrol-1-yl)phenyl)-2,3-dimethyl-5-phenyl-1*H*-pyrrol (26i)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und 1-(3-Aminophenyl)pyrrol (92mg, 0.58mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26i** (78mg, 0.25mmol, 43% d.Th.) als gelbes Öl isoliert wird.

 $(C_{22}H_{20}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.14$  (s, 3 H, *H15*), 2.18 (s, 3 H, *H14*), 6.31 (s, 1 H, *H4*), 6.35 (t, *J* = 2.2 Hz, 2 H, *H13*), 6.98 (t, *J* = 2.2 Hz, 2 H, *H12*), 7.06-7.44 ppm (m, 9 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.7$  (CH₃, *C14*), 11.0 (CH₃, *C15*), 110.6 (CH, *C13*), 110.7 (CH, *C4*), 115.8 (C, *C3*), 118.8 (CH, *C12*), 120.0 (CH, *Ar*), 124.9 (C, *C2*), 125.0 (CH, *Ar*), 125.1 (CH, *Ar*), 125.5 (CH, *Ar*), 127.5 (CH, *Ph*), 127.8 (CH, *Ph*), 129.6 (CH, *Ar*), 132.7 (C, *C5/Ph*), 133.0 (C, *C5/C16*), 140.6 (C, *C6/C10*), 140.8 ppm (C, *C6/C10*); IR v = 3059 (m), 3026 (s), 2921 (s), 2853 (s), 1702 (s), 1604 (s), 1499 (s), 1451 (s), 1379 (s), 1341 (s), 1312 (s), 1258 (s), 1167 (s), 1069 (s), 1029 (s), 966 (m), 928 (m), 873 (m), 799 (m), 752 (m), 726 (s), 698 cm⁻¹ (s); HRMS: *m/z* calcd. for C₂₂H₂₀N₂: 312.1626 [*M*⁺]; found: 312.1627.

1-(4-(1*H*-Pyrrol-1-yl)phenyl)-2,3-dimethyl-5-phenyl-1*H*-pyrrol (26j)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und 1-(4-Aminophenyl)pyrrol (92mg, 0.58mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26j** (60mg, 0.19mmol, 33% d.Th.) als gelbes Öl isoliert wird.

 $(C_{22}H_{20}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.11$  (s, 3 H, *H13*), 2.17 (s, 3 H, *H12*), 6.29 (s, 1 H, *H4*), 6.38 (t, J = 2.2 Hz, 2 H, *H11*), 7.08-7.47 ppm (m, 11 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.6$  (CH₃), 11.0 (CH₃), 109.1 (CH, *C4*), 110.6 (CH, *C11*), 115.6 (C, *C3*), 118.9 (CH, *C10*), 120.1 (CH, *Ar*), 125.0 (C, *C2*), 125.4 (CH, *Ph*), 127.5 (CH, *Ar*), 127.7 (CH, *Ar*), 129.3 (CH, *Ar*), 132.7 (C, *C5/Ph*), 133.0 (C, *C5/Ph*), 136.7 (C, *C6/C9*), 139.1 ppm (C, *C6/C9*); IR v = 3059 (m), 3028 (m), 2922 (s), 2854 (m), 1712 (s), 1602 (s), 1519 (s), 1494 (s), 1450 (s), 1402 (m), 1380 (s), 1327 (s), 1291 (m), 1259 (m), 1181 (m), 1157 (m), 1118 (m), 1071 (s), 1021 (m), 964 (m), 921 (s), 909 (s), 844 (s), 760 (s), 729 (s), 699 cm⁻¹ (s); HRMS: m/z calcd. for  $C_{22}H_{20}N_2$ : 312.1626 [ $M^+$ ]; found: 312.1626.

1-Methyl-2,3-diphenyl-4,5,6,7-tetrahydro-2*H*-isoindol⁵ (**26k**)



 $(C_{21}H_{21}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.88-1.91$  (m, 2 H, *H5/H6*), 1.95-1.98 (m, 2 H, *H5/H6*), 2.18 (s, 3 H, *H8*), 2.71 (t, J = 6.0 Hz, 2 H, *H4/H7*), 2.81 (t, J = 6.0 Hz, 2 H, *H4/H7*), 7.13 (d, J = 7.6, 2 H, *H10*), 7.17 (t, J = 7.4 Hz, 1 H, *H12*), 7.23 (d, J = 7.8 Hz, 2 H, *H14*), 7.26 (t, J = 7.8 Hz, 2 H, *H15*), 7.36 (t, J = 7.4 Hz, 1 H, *H16*), 7.42 ppm (t, J = 7.8 Hz, 2 H, *H11*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 10.8$  (CH₃, *C8*), 21.8 (CH₂, *C5/C6*), 23.2 (CH₂, *C5/C6*), 24.0 (CH₂, *C4/C7*), 24.3 (CH₂, *C4/C7*), 117.0 (C, *C3a/C7a*), 119.0 (C, *C3a/C7a*), 125.1 (CH, *Ph*), 125.3 (C, *C1*), 126.6 (CH, *Ph*), 127.5 (C, *C3*), 127.6 (CH, *Ph*), 128.4 (CH, *Ph*), 128.7 (CH, *Ph*), 129.1 (CH, *Ph*), 133.1 (C, *Ph*), 139.5 ppm (C, *Ph*); IR: v = 3060 (m), 3034 (m), 2923 (s), 2853 (m), 2834 (m), 1689 (m), 1657 (m), 1598 (s), 1523 (m), 1497 (s), 1442 (s), 1427 (m), 1372 (s), 1341 (m), 1329 (m), 1242 (m), 1156 (m), 1075 (m), 1029 (m),

910 (m), 756 (s), 731 (m), 699 (s), 646 cm⁻¹ (m); HRMS: m/z calcd. for C₂₁H₂₁N: 287.1674  $[M^+]$ ; found: 287.1674.

1-Benzhydryl-2,3-dimethyl-1*H*-pyrrol⁵ (**26**)



 $(C_{19}H_{19}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.08$  (s, 6 H, *H11*, *H12*), 5.96 (br s, 1 H, *H4*), 6.20 (s, 1 H, *H6*), 6.43 (br s, 1 H, *H5*), 7.05 (d, *J* = 7.4 Hz, 4 H, *H8*), 7.31 (t, *J* = 7.2, 2 H, *H10*), 7.34 ppm (t, *J* = 7.2, 4 H, *H9*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 9.9$  (CH₃, *C11*), 11.6 (CH₃, *C12*), 64.0 (CH, *C6*), 108.3 (CH, *C4*), 115.4 (C, *C3*), 118.3 (CH, *C5*), 125.7 (C, *C2*), 127.7 (CH, *C10*), 128.5 (CH, *C8/C9*), 128.6 (CH, *C8/C9*), 140.7 ppm (C, *C7*); IR: v = 3088 (w), 3063 (m), 3029 (m), 2991 (m), 2919 (s), 2861 (m), 1705 (w), 1603 (m), 1585 (w), 1528 (w), 1496 (s), 1481 (m), 1450 (s), 1387 (m), 1314 (s), 1279 (w), 1216 (s), 869 (w), 833 (w), 753 (s), 734 (s), 699 (s), 667 cm⁻¹ (m); MS (EI): *m/z* (%) = 261 [*M*⁺] (30), 167 (100), 165 (27), 152 (16); HRMS: *m/z* calcd. for C₁₉H₁₉N: 261.1517 [*M*⁺]; found: 261.1518.

(S)-Methyl 2-(2,3-dimethyl-1*H*-pyrrol-1-yl)propanoat⁵ (**26m**)



 $(C10H_{15}NO_2)$ : 1H NMR (400 MHz, CDCl3):  $\delta = 1.33$  (d, J = 7.3 Hz, 3 H, H10), 1.66 (s, 3 H, H7), 1.74 (s, 3 H, H6), 3.38 (s, 3 H, H11), 4.40 (q, J = 7.3 Hz, 1 H, H8), 5.61 (d, J = 2.9 Hz, 1 H, H4), 6.28 (d, J = 2.9 Hz, 1 H, H5); 13C NMR (100 MHz, CDCl₃):  $\delta = 8.9$  (CH₃, C6), 10.9 (CH₃, C7), 17.4 (CH₃, C10), 52.0 (CH, C8), 53.0 (CH₃, C11), 108.6 (CH, C4), 114.2 (C, C3), 115.2 (CH, C5), 124.2 (C, C2), 171.5 ppm (C, C9); HRMS: m/z calcd. for C₁₀H₁₅NO₂: 181.1103 [ $M^+$ ]; found: 181.1103.

1-Benzyl-2,3-dimethyl-5-phenyl-1*H*-pyrrol⁵ (**26n**)



 $(C_{19}H_{19}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.02$  (s, 3 H, *H16*), 2.08 (s, 3 H, *H15*), 5.08 (s, 2 H, *H6*), 6.10 (s, 1 H, *H4*), 6.92 (d, *J* = 7.5 Hz, 2 H, *Ph*), 7.20-7.29 ppm (m, 8 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.1$  (CH₃, *C15*), 11.3 (CH₃, *C16*), 47.8 (CH₂, *C6*), 109.7 (CH, *C4*), 115.3 (C, *C3*), 125.7 (CH, *Ph*), 126.4 (CH, *Ph*), 126.6 (C, *C2*), 126.9 (CH, *Ph*), 128.3 (CH, *Ph*), 128.5 (CH, *Ph*), 128.7 (CH, *Ph*), 133.3 (C, *C5/Ph*), 133.7 (C, *C5/Ph*), 139.2 ppm (C, *Ph*); IR: *v* = 3059 (m), 3031 (m), 2914 (s), 2862 (s), 1768 (m), 1734 (m), 1649 (m), 1599 (s), 1510 (s), 1495 (s), 1471 (s), 1452 (s), 1395 (s), 1342 (s), 1180 (m), 1158 (m), 1073 (m), 1027 (m), 968 (m), 803 (m), 814 (m), 762 (s), 744 (s), 721 (s), 700 cm⁻¹ (s); MS (EI): *m/z* (%) = 261 [*M*⁺] (83), 170 (100), 128 (7); HRMS: *m/z* calcd. for C₁₉H₁₉N: 261.1517 [*M*⁺]; found: 261.1517.

2-(2,3-Dimethyl-5-phenyl-1*H*-pyrrol-1-yl)pyridin⁵ (**260**)



 $(C_{17}H_{16}N_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.04$  (s, 3 H, *H17*), 2.07 (s, 3 H, *H16*), 6.16 (s, 1 H, *H4*), 6.82 (d, *J* = 7.8 Hz, 1 H, *H11*), 6.93 (d, *J* = 7.4, 2 H, *H13*), 7.00 (t, *J* = 7.2 Hz, 1 H, *H15*), 7.05 (t, *J* = 7.4 Hz, 2 H, *H14*), 7.14 (ddd, *J* = 7.2, 4.8, 1.2 Hz, 1 H, *H9*), 7.51 (td, *J* = 7.8, 1.8 Hz, 1 H, *H10*), 8.51 ppm (dd, *J* = 4.8, 1.8 Hz, 1 H, *H8*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 11.0$  (CH₃, *C16*), 11.3 (CH₃, *C17*), 111.9 (CH, *C4*), 116.5 (C, *C3*), 122.2 (CH, *C9/C11*), 123.3 (CH, *C9/C11*), 125.8 (C, *C2*), 127.8 (2CH, *Ph*), 128.1 (2CH, *Ph*), 129.1 (CH, *Ph*), 132.6 (C, *C5/Ph*), 133.6 (C, *C5/Ph*), 137.8 (CH, *C10*), 149.2 (CH, *C8*), 152.9 ppm (C, *C6*); IR: v = 3059 (m), 3029 (m), 2981 (m), 2926 (m), 1714 (s), 1658 (s), 1635 (s), 1604 (s), 1491 (s), 1470 (s), 1436 (s), 1388 (s), 1359 (s), 1327 (m), 1254 (s), 1182 (m), 1150 (m), 1096 (m), 1073 (m), 1027 (m), 970 (m), 922 (m), 756 (s), 699 (s), 637 cm⁻¹ (m); MS (EI): *m/z* (%) = 248 [*M*⁺] (38), 221 (20), 157 (59), 146 (75), 145 (60), 131 (100); HRMS: *m/z* calcd. for C₁₇H₁₆N₂: 248.1313 [*M*⁺]; found: 248.1315.

2,3-Dimethyl-1-phenethyl-5-phenyl-1*H*-pyrrol⁵ (**26p**)



 $(C_{20}H_{21}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.97$  (s, 3 H, *H17*), 2.08 (s, 3 H, *H16*), 2.65 (t, 2 H, *J* = 8.0 Hz, *H7*), 3.94 (t, 2 H, *J* = 8.0 Hz, *H6*), 5.90 (s, 1 H, *H4*), 6.84 (d, *J* = 7.8 Hz, 2 H, *Ph*), 7.07-7.27 ppm (m, 8 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.1$  (CH₃, *C16*), 11.2 (CH₃, *C17*), 37.7 (CH₂, *C7*), 45.9 (CH₂, *C6*), 109.8 (CH, *C4*), 114.9 (C, *C3*), 125.9 (C, *C2*), 126.4 (CH, *Ph*), 126.6 (CH, *Ph*), 128.3 (CH, *Ph*), 128.5 (CH, *Ph*), 128.6 (CH, *Ph*), 129.0 (CH, *Ph*), 132.5 (C, *C5*/Ph), 134.2 (C, *C5*/Ph), 138.4 ppm (C, *Ph*); IR: v = 3062 (m), 3026 (s), 2919 (s), 2861 (s), 1649 (m), 1603 (s), 1515 (m), 1496 (m), 1453 (s), 1393 (m), 1344 (s), 1229 (m), 1176 (m), 1114 (w), 1072 (w), 1029 (w), 755 (s), 699 cm⁻¹ (s); MS (EI): *m/z* (%) = 275 [*M*⁺] (70), 184 (100), 105 (18); HRMS: *m/z* calcd. for C₂₀H₂₁N: 275.1674 [*M*⁺]; found: 275.1674.

1-(2-(1*H*-Pyrrol-1-yl)benzyl)-2,3-dimethyl-5-phenyl-1*H*-pyrrol (26q)



Nach Vorschrift **4.3.2** (a) wird aus **24b** (100mg, 0.58mmol) und [2-(1*H*-Pyrrol-1-yl)phenyl]methylamin (100mg, 0.58mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26q** (58.4mg, 0.18mmol, 31% d.Th.) als gelbes Öl isoliert wird.

 $(C_{23}H_{22}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.99$  (s, 3 H, *H16*), 2.11 (s, 3 H, *H15*), 4.92 (s, 2 H, *H6*), 6.14 (s, 1 H, *H4*), 6.33 (t, J = 2.1 Hz, 2 H, *H14*), 6.71 (t, J = 2.1 Hz, 2 H, *H13*), 7.24-7.34 ppm (m, 9 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 9.6$  (CH₃, *C15*), 11.0 (CH₃, *C16*), 43.6 (CH₂, *C6*), 109.1 (CH, *C14*), 109.7 (CH, *C4*), 115.2 (C, *C3*), 121.7 (CH, *C13*), 126.2 (C, *C2*), 126.3 (CH, *Ar*), 126.5 (CH, *Ar*), 126.7 (CH, *Ar*), 127.3 (CH, *Ar*), 128.1 (2CH, *Ph*), 128.2 (2CH, *Ph*), 128.3 (CH, *Ar*), 133.1 (C, *C5*/Ph), 133.3 (C, *C5*/Ph), 135.4 (C, *C7*), 138.3 ppm (C, *C12*); IR v = 3101 (m), 3062 (s), 3028 (s), 2921 (s), 2860 (s), 1713 (s), 1639 (s), 1602 (s), 1583 (s), 1500 (s), 1478 (s), 1453 (s), 1396 (s), 1273 (m), 1176 (s), 1158 (s), 1093 (s), 1071 (s), 1044 (m), 1029 (m), 1016 (s), 968 (m), 925 (s), 910 (s), 871 (m), 799 (m),

762 (s), 729 (s), 700 (s), 633 cm⁻¹ (s); HRMS: m/z calcd. for C₂₃H₂₂N₂: 326.1783 [ $M^+$ ]; found: 326.1782.

3-Allyl-1-benzyl-2-methyl-5-phenyl-1*H*-pyrrol (**26r**)



Nach Vorschrift **4.3.2** (a) wird aus **24q** (100mg, 0.51mmol) und Benzylamin (54mg, 0.51mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26r** (105mg, 0.36mmol, 72% d.Th.) als gelbes Öl isoliert wird.

 $(C_{21}H_{21}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.95$  (s, 3 H, *H8*), 3.16 (d, J = 6.4 Hz, 2 H, *H5*), 4.94 (td, J = 14.2, 1.1 Hz, 2 H, *H7*), 5.04 (s, 2 H, *H9*), 5.87-5.97 (m, 1 H, *H6*), 6.06 (s, 1 H, *H2*), 6.86 (d, J = 7.6 Hz, 2 H, *Ph*), 7.15-7.24 ppm (m, 8 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.1$  (CH₃, *C8*), 30.9 (CH₂, *C5*), 47.8 (CH₂, *C9*), 125.6 (2Ch, *Ph*), 126.4 (CH, *Ph*), 126.9 (CH, *Ph*), 128.3 (2CH, *Ph*), 128.5 (2CH, *Ph*), 128.7 (2CH, *Ph*), 133.5 (C, *C4/Ph*), 133.7 (C, *C4/Ph*), 137.3 (C, *Ph*), 138.3 (CH, *C6*), 139.2 ppm (C, *C1*); IR:  $\nu = 3284$  (w), 3061 (w), 3028 (w), 2926 (m), 2259 (w), 2051 (w), 1602 (m), 1495 (w), 1452 (m), 1396 (m), 1350 (m), 1177 (m), 1072 (m), 1028 (m), 958 (m), 910 (m), 756 (m), 728 (m), 697 cm⁻¹ (s); MS (EI): *m/z* (%) = 287 [M⁺] (6), 198 (7), 182 (100), 165 (37), 152 (13), 141 (8), 129 (11), 115 (7), 89 (18), 76 (12); HRMS: *m/z* calcd. for C₂₁H₂₁N: 287.1669 [M⁺]; found: 287.1669.

3-Allyl-2-methyl-1,5-diphenyl-1H-pyrrol (26s)



Nach Vorschrift **4.3.2** (a) wird aus **24q** (100mg, 0.51mmol) und Anilin (47mg, 0.51mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) **26s** (108mg, 0.4mmol, 79% d.Th.) als gelbes Öl isoliert wird.

 $(C_{20}H_{19}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.97$  (s, 3 H, H6), 3.19 (d, J = 6.6 Hz, 2 H, H7), 4.93-4.99 (m, 2 H, H9), 5.83-5.98 (m, 1 H, H8), 6.2 ppm (s, 1 H, H3); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.9$  (CH₃, C6), 31.1 (CH₂, C7), 109.7 (CH, C3), 114.4 (CH₂, C9), 118.4 ppm (C, C4).

(*E*)-4-Benzyliden-3-methyl-1,2-diphenyl-4,5,6,7-tetrahydro-2*H*-isoindol⁵ (**33a**)



 $(C_{28}H_{25}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.73$  (quint., J = 6.0 Hz, 2 H, H6), 2.27 (s, 3 H, H16), 2.68 (t, J = 6.2 Hz, 2 H, H7), 2.73 (t, J = 6.0 Hz, 2 H, H5), 6.62 (s, 1 H, H17), 6.92 (d, J = 7.2 Hz, 2 H, Ph), 7.03-7.26 ppm (m, 13 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.3$  (CH₃, *C16*), 23.4 (CH₂, *C6*), 25.5 (CH₂, *C7*), 29.1 (CH₂, *C5*), 118.8 (C, *C3a/C7a*), 119.6 (C, *C3a/C7a*), 121.0 (CH, *C17*), 125.6 (CH, Ph), 125.7 (CH, Ph), 126.2 (C, *C3*), 127.3 (CH, Ph), 127.7 (CH, Ph), 127.9 (C, *C1*), 128.0 (CH, Ph), 128.8 (CH, Ph), 128.9 (CH, Ph), 129.3 (CH, Ph), 129.4 (CH, Ph), 132.8 (C, *C8*), 135.8 (C, *C4/Ph*), 138.8 (C, *C4/Ph*), 138.9 ppm (C, *C4/Ph*); IR: v = 3057 (m), 3028 (m), 2924 (m), 1663 (m), 1597 (s), 1495 (s), 1448 (s), 1374 (s), 1316 (m), 1266 (m), 1177 (m), 1073 (m), 1028 (m), 910 (m), 761 (m), 731 (s), 698 cm⁻¹ (s); MS (EI): m/z (%) = 375 [ $M^+$ ] (20), 314 (38), 300 (21), 180 (45), 105 (100); HRMS: m/z calcd. for  $C_{28}H_{25}N$ : 375.1987 [ $M^+$ ]; found: 375.1989.





Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Anilin (36mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt (157mg) erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33b** (88mg, 0.26mmol, 68% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{21}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.11$  (s, 3 H, *H*6), 6.60 (s, 1 H, *H*4), 6.78 (d, J = 16.1 Hz,1 H, *H7/H*8), 6.99-7.02 (m, 3 H, *H7/H*8, *Ph*), 7.04-7.62 (m, 4 H, *Ph*), 7.08-7.11 (m, 2 H, *Ph*), 7.22-7.26 (m, 5 H, *Ph*), 7.40 ppm (d, J = 7.5 Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.1$  (CH₃, *C*6), 105.7 (CH, *C*4), 119.7 (C, *C*3), 121.3 (CH), 124.4 (CH), 125.7 (CH, *Ph*), 126.1 (CH), 126.3 (CH), 127.6 (CH), 127.9 (CH, *Ph*), 127.9 (CH, *Ph*), 128.4 (CH, *Ph*), 128.5 (CH, *Ph*), 128.9 (CH, *Ph*), 130.6 (C), 132.9 (C), 134.8 (C), 138.6 (C, *Ph*), 138.9 ppm (C, *Ph*); IR: v = 3056 (m), 3025 (m), 2915 (m), 1722 (w), 1635 (m), 1595 (s), 1497 (s), 1448 (m); 1419 (m); 1375 (m), 1181 (m), 1071 (m), 1028 (m), 951 (m), 767 (m), 756 (s), 694 cm⁻¹ (s); MS (EI): m/z (%) = 335 [ $M^+$ ] (100), 261 (15), 193 (12), 149 (12), 105 (20); HRMS: m/z calcd. for  $C_{25}H_{21}N$ : 335.1674 [ $M^+$ ]; found 335.1675.

(*E*)-2-Methyl-1-(4-nitrophenyl)-5-phenyl-3-styryl-1*H*-pyrrol (**33c**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 4-Nitroanilin (53mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33c** (82mg, 0.22mmol, 56% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{20}N_2O_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.18$  (s, 3 H, *H*6), 6.62 (s, 1 H, *H*4), 6.80 (d, J = 16.1 Hz, 1 H, *H7/H8*), 6.97 (d, J = 6.7 Hz, 2 H, *Ar*), 7.00 (d, J = 16.1 Hz, 1 H, *H7/H8*), 7.07-7.16 (m, 4 H, *Ar*), 7.19 (d, J = 8.9 Hz, 2 H, *Ar*), 7.26 (t, J = 7.5 Hz, 2 H, *Ar*), 7.41 (d, J = 7.5 Hz, 2 H, *Ar*), 8.14 ppm (d, J = 8.9 Hz, 2 H, *H15*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.3$  (CH₃, *C*6), 107.3 (CH, *C*4), 120.5 (CH), 121.0 (C, *C*3), 124.4 (CH, *Ar*), 125.6 (CH), 125.8 (CH, *Ar*), 126.7 (CH), 126.8 (CH), 128.1 (CH, *Ar*), 128.3 (CH, *Ar*), 128.6 (CH, *Ar*), 128.9 (CH, *Ar*), 129.8 (C), 132.2 (C), 134.9 (C), 138.5 (C, *Ph*); 144.5 (C, *C13/C16*), 146.3 ppm (C, *C13/C16*); IR: v = 3070 (w), 3055 (w), 3030 (w), 2924 (w), 1592 (s), 1514 (s), 1498 (s), 1369 (m), 1335 (s), 965 (m), 856 (m), 765 (m), 757 (m), 753 (m), 706 (m), 697 cm⁻¹ (m); MS (EI): m/z (%) = 380 [ $M^+$ ] (100), 334 (8); HRMS: m/z calcd. for  $C_{25}H_{20}N_2O_2$ : 380.1524.

(*E*)-1-(4-Methoxyphenyl)-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33d**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 4-Methoxyanilin (47mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33d** (72mg, 0.2mol, 51% d.Th.) als gelber Schaum isoliert wird.

 $(C_{26}H_{23}NO)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.11$  (s, 3 H, *H6*), 3.72 (s, 3 H, *H18*), 6.59 (s, 1 H, *H4*), 6.77-6.80 (m, 3 H, *H7/H8*, *H15*), 6.99 (d, *J* = 8.8 Hz, 2 H, *H14*), 7.01-7.14 (m, 7 H,

*H7/H8*, *Ar*), 7.24 (t, *J* = 7.6 Hz, 2 H, *Ar*), 7.40 ppm (d, *J* = 7.6 Hz, 2 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 11.0 (CH₃, *C6*), 55.4 (CH₃, *C18*), 105.3 (CH, *C4*), 114.2 (CH, *C15*), 119.4 (C, *C3*), 121.3 (CH), 124.2 (CH), 125.7 (CH, *Ar*), 126.0 (CH), 126.3 (CH), 127.9 (CH, *Ar*), 127.9 (CH, *Ar*), 128.5 (CH, *Ar*), 129.4 (CH, *Ar*), 130.9 (C), 131.7 (C), 132.9 (C), 134.9 (C, *Ar*); 138.7 (C, *Ar*), 158.7 ppm (C, *C16*); IR: v = 3024 (m), 2911 (w), 1633 (m), 1599 (m), 1512 (s), 1448 (m), 1293 (m), 1247 (s), 1182 (m), 1167 (m), 1029 (m), 951 (m), 838 (m), 758 (m), 695 cm⁻¹ (m); MS (EI): *m/z* (%) = 365 [*M*⁺] (100), 350 (8), 288 (6), 215 (6); HRMS: *m/z* calcd. for *C*₂₆*H*₂₃*NO*: 365.1779 [*M*⁺]; found: 365.1778.

(*E*)-2-(2-Methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)phenol (**33e**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 2-Aminophenol (42mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33e** (68mg, 0.20mol, 50% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{21}NO)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.04$  (s, 3 H, *H*6), 5.26 (br s, 1 H, *OH*), 6.67 (s, 1 H, *H4*), 6.78-6.84 (m, 2 H, *Ar*), 6.92-6.99 (m, 3 H, *H7*, *H8*, *Ar*), 7.03-7.16 (m, 6 H, *Ar*), 7.20 (dt, *J* = 8.1, 1.6 Hz, 1 H, *Ar*), 7.26 (t, *J* = 7.6 Hz, 2 H, *Ar*), 7.41 ppm (d, *J* = 7.8 Hz, 2 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.3$  (CH₃, *C*6), 106.3 (CH, *C4*), 116.4 (CH, *C15*), 120.6 (C, *C3*), 120.8 (CH, *C17*), 120.9 (CH), 124.9 (CH), 125.5 (C, *C13*), 125.8 (2CH, *Ph*), 126.5 (CH), 126.6 (CH), 127.3 (2CH, *Ph*), 128.2 (2CH, *Ph*), 128.6 (2CH, *Ph*), 129.5 (CH), 130.1 (CH), 131.1 (C), 132.0 (C), 134.9 (C), 138.4 (C, *Ph*), 152.3 ppm (C, *C14*); IR: v = 3421 (m), 3026 (m), 2991 (m), 2918 (m), 1720 (m), 1636 (m), 1597 (s), 1497 (s), 1447 (s), 1374 (s), 1236 (s), 1203 (s), 1072 (m), 1029 (m), 953 (m), 908 (m), 757 (s), 694 cm⁻¹ (s); HRMS: *m/z* calcd. for  $C_{25}H_{21}NO$ : 351.1623 [*M*⁺]; found 351.1623.

(*E*)-1-(2-Bromophenyl)-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33f**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 2-Bromanilin (66mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33e** (67mg, 0.16mol, 42% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{20}BrN)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.05$  (s, 3 H, *H6*), 6.63 (s, 1 H, *H4*), 6.79 (d, J = 16.1 Hz, 1 H, *H7/H8*), 7.01-7.09 (m, 6 H, *Ar*), 7.10 (t, J = 7.3 Hz, 1 H, *Ar*), 7.14 (dq, J = 7.8, 1.7 Hz, 2 H, *Ar*), 7.21-7.26 (m, 3 H, *Ar*), 7.40 (d, J = 7.3 Hz, 2 H, *Ar*), 7.56 ppm (dd, J = 7.9, 1.1 Hz, 1 H, *H15*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.6$  (CH₃, *C6*), 105.5 (CH, *C4*), 119.8 (C, *C3*), 121.2 (CH), 124.3 (C, *C14*), 124.5 (CH), 125.7 (2CH, *Ph*), 126.3 (CH), 126.4 (CH), 127.7 (2CH, *Ph*), 128.0 (2CH, *Ph*), 128.2 (CH), 128.5 (2CH, *Ph*), 129.8 (CH), 130.7 (C), 131.1 (CH, *C17*), 132.7 (C), 133.3 (CH, *C15*), 134.9 (C), 138.5 (C, *C13/Ph*), 138.6 ppm (C, *C13/Ph*); IR: v = 3056 (m), 3026 (m), 2920 (m), 1635 (m); 1596 (m); 1481 (s), 1447 (m), 1419 (m), 1373 (m), 1073 (m), 1028 (m), 953 (m), 757 (s), 731 (m), 695 cm⁻¹ (s); MS (EI): m/z (%) = 413 [ $M^+$ ] (100), 293 (32), 260 (16), 167 (13), 129 (58), 112 (18); HRMS: m/z calcd. for C₂₅H₂₀BrN: 413.0779 [ $M^+$ ], found: 413.0780.

(*E*)-Methyl-3,5-dibromo-2-(2-methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)benzoate (**33**g)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Methyl-2-amino-3,5dibromobenzoat (118mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33g** (34mg, 0.06mol, 16% d.Th.) als gelber Schaum isoliert wird.  $(C_{27}H_{21}Br_2NO_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.01$  (s, 3 H, *H6*), 3.54 (s, 3 H, *H20*), 6.59 (s, 1 H, *H4*), 6.74 (d, *J* = 16.1 Hz, 1 H, *H7/H8*), 6.98-7.25 (m, 9 H, *H7/H8 und Ph*), 7.37 (d, *J* = 7.4 Hz, 2 H, *Ph*), 7.78 (d, *J* = 2.2 Hz, 1 H, *H15/H17*), 7.87 ppm (d, *J* = 2.2 Hz, 1 H, *H15/H17*). ¹³C NMR (150 MHz, CDCl₃):  $\delta = 10.4$  (CH₃, *C6*), 52.9 (CH₃, *C20*), 106.0 (CH, *C4*), 120.2 (C, *C3*), 121.1 (CH, *C7/C8/Ph*), 122.6 (C, *C14/C16*), 124.5 (CH, *C7/C8/Ph*), 125.7 (CH, *Ph*), 126.3 (CH, *C7/C8/Ph*), 126.7 (CH, *C7/C8/Ph*), 127.3 (C, *C14/C16*), 127.6 (CH, *Ph*), 128.1 (CH, *Ph*), 128.5 (CH, *Ph*), 130.5 (C), 132.3 (C), 132.7 (CH, *C17*), 134.2 (C), 134.8 (C), 136.8 (C, *C13/Ph*), 138.5 (C, *C13/Ph*), 138.7 (CH, *C15*), 163.8 ppm (C, *C19*); MS (EI): m/z (%) = 553  $[C_{27}H_{21}^{81}Br_2NO_2]$  (55), 551  $[C_{27}H_{21}Br_{^{81}}BrNO_2]$  (100), 549  $[M^+]$  (51), 479 (20), 477 (35), 475 (19); HRMS: m/z calcd. for  $C_{27}H_{21}Br_2NO_2$ : 548.9934  $[M^+]$ , found: 548.9934.

#### (E)-3-(11-(13-Benzyliden-12-methyl-10-phenyl-13,14,15,16-tetrahydro-11H-isoindol-2-

yl)ethyl)-1*H*-indol (**33h**)



Nach Vorschrift **4.3.2** (a) wird aus **24m** (100mg, 0.33mmol) und Tryptamin (53mg, 0.33mmol) unter Mikrowellenbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33h** (88mg, 0.30mol, 60% d.Th.) als gelber Schaum isoliert wird.

 $(C_{32}H_{30}N_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 1.69-1-71 (m, 2 H, *H15*), 2.50 (s, 3 H, *H17*), 2.51-2.53 (m, 2 H, *H16*), 2.70 (t, *J* = 5.8 Hz, 2 H, *H14*), 2.86 (t, *J* = 8.3 Hz, 2 H, *H8*), 4.04 (t, *J* = 8.3 Hz, 2 H, *H9*), 6.59 (s, 1 H, *H18*), 6.72 (d, *J* = 2.0 Hz, 1 H, *H2*), 6.91 (d, *J* = 4.0 Hz, 2 H, *Ar*), 7.06-7.09 (m, 1 H, *Ar*), 7.11-7.13 (m, 1 H, *Ar*), 7.15-7.20 (m, 2 H, *Ar*), 7.24-7.30 (m, 5 H, *Ar*), 7.32-7.37 (m, 3 H, *Ar*), 7.78 ppm (br s, 1 H, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 12.9 (CH₃, *C17*), 22.5 (CH₂, *C15*), 25.4 (CH₂, *C16*), 27.3 (CH₂, *C8*), 29.1 (CH₂, *C14*), 44.7 (CH₂, *C9*), 111.0 (CH, *C7*), 114.4 (C, *C3*), 117.9 (C, *C12a/C16a*), 118.5 (CH, *C18/Ar*), 118.6 (C, *C12a/C16a*), 119.3 (CH, *C18/Ar*), 120.2 (CH, *C18/Ar*), 121.7 (CH, *C18/Ar*), 121.9 (CH, *C18/Ar*), 124.1 (C, *C3a*), 125.3 (CH, *C18/Ar*), 126.9 (CH, *C18/Ar*), 127.0 (C), 127.5 (C), 127.8 (CH, *Ph*), 128.4 (CH, *Ph*), 129.2 (CH, *Ph*), 130.4 (CH, *Ph*), 133.2 (C), 136.1 (C), 139.0 (C, *C13/Ph*), 140.7 ppm (C, *C13/Ph*); IR:  $\nu$  = 3418 (s), 3054 (m), 2923 (s), 2854 (m), 1600 (s), 1566 (m), 1488 (m), 1456 (s), 1443 (m), 1420 (m), 1351 (m), 11645 (w), 1095 (m), 1074 (m), 1029 (m), 1011 (m), 909 (m), 740 (s), 700 cm⁻¹ (s); MS (EI): *m/z* (%) = 442 [*M*⁺] (100),

312 (65), 300 (22), 273 (20), 105 (21); HRMS: m/z calcd. for C₂₉H₂₆N₂: 442.2409 [ $M^+$ ], found: 442.2408.

(*E*)-3-(2-(2-Methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)ethyl)-1*H*-indol (**33i**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Tryptamin (62mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33i** (90mg, 0.22mol, 58% d.Th.) als gelber Schaum isoliert wird.

 $(C_{29}H_{26}N_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.28$  (s, 3 H, H6), 2.82 (t, J = 7.9 Hz, 2 H, H14), 4.06 (t, J = 7.9 Hz, 2 H, H13), 6.39 (s, 1 H, H4), 6.69 (d, J = 1.8 Hz, 1 H, H16), 6.71 (d, J = 16.0 Hz, 1 H, H7/H8), 6.93 (t, J = 7.1 Hz, 1 H, Ar), 7.01-7.04 (m, 2 H, H7/H8 und Ar), 7.06-7.10 (m, 2 H, Ar), 7.21-7.34 (m, 8 H, Ar), 7.39 (d, J = 7.5 Hz, 2 H, Ar), 7.82 ppm (br s, 1 H, NH); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.3$  (CH₃, C6), 26.9 (CH₂, C14), 44.9 (CH₂, C13), 105.1 (CH, C4), 111.1 (CH, C18), 112.1 (C, C15), 118.3 (CH), 119.0 (C, C3), 119.3 (CH), 121.5 (CH), 121.8 (CH), 121.9 (CH), 123.5 (CH), 125.6 (CH, Ph), 126.1 (CH), 127.0 (C, C21a), 127.2 (CH), 128.4 (CH, Ph), 128.5 (CH, Ph), 128.9 (C), 129.3 (CH, Ph), 133.6 (C), 134.5 (C), 136.0 (C), 138.8 ppm (C, Ph); IR: v = 3420 (s), 3056 (m), 3027 (m), 2923 (m), 2854 (m), 1719 (m), 1632 (s), 1597 (s), 1456 (s), 1429 (s), 1353 (s), 1165 (m), 1092 (m), 1073 (m), 1029 (m), 1011 (m), 954 (s), 761 (s), 742 (s), 695 cm⁻¹ (s); MS (EI): *m/z* (%) = 402 [*M*⁺] (100), 272 (72), 260 (22), 130 (21); HRMS: *m/z* calcd. for C₂₉H₂₆N₂: 402.2095 [*M*⁺], found: 402.2095.

(E)-Methyl-3-(1H-indol-3-yl)-2-(2-methyl-5-phenyl-3-styryl-1H-pyrrol-1-yl)propanoat (33j)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und L-Tryptophanmethylesterhydrochlorid (83mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33j** (103mg, 0.22mol, 58% d.Th.) als gelber Schaum isoliert wird. Das Amin wird dabei *in situ* mit TEA (1eq) generiert. Eine polarimetrische Analyse und ¹H-NMR Experimente in Anwesenheit chiraler Shiftreagentien (Eu[tfc]₃, 1.1 eq) zeigen, dass **33j** racemisch ist.

 $(C_{31}H_{28}N_2O_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.34$  (s, 3 H, *H15*), 3.13 (dd, J = 15.0, 9.2 Hz, 1 H, *H8a*), 3.58 (dd, J = 15.0, 5.9 Hz, 1 H, *H8b*), 3.74 (s, 3 H, *H26*), 5.05 (dd, J = 9.2, 5.9 Hz, 1 H, *H7*), 6.23 (s, 1 H, *H4*), 6.51 (d, J = 2.3 Hz, 1 H, *H14*), 6.69 (d, J = 16.0 Hz, 1 H, *H16/H17*), 6.80 (d, J = 7.1 Hz, 2 H, *Ph*), 6.81 (t, J = 7.3 Hz, 1 H, *Ar*), 6.91 (d, J = 7.9 Hz, 1 H, *Ar*), 7.01-7.05 (m, 4 H, *Ar*), 7.09 (t, J = 7.4 Hz, 1 H, *Ar*), 7.12 (t, J = 7.3 Hz, 1 H, *Ar*), 7.22 (d, J = 8.1 Hz, 1 H, *Ar*), 7.26 (t, J = 7.7 Hz, 2 H, *Ph*), 7.39 (d, J = 7.6 Hz, 2 H, *Ph*), 7.82 ppm (br s, 1 H, *NH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.2$  (CH₃, *C15*), 27.1 (CH₂, *C8*), 52.7 (CH₃, *C26*), 58.2 (CH, *C7*), 104.9 (CH, *C4*), 110.4 (C, *C9*), 110.9 (CH, *C13*), 117.9 (CH), 126.3 (CH), 127.0 (C, *C9a*), 127.2 (CH), 128.0 (CH, *Ph*), 128.1 (C), 128.5 (CH, *Ph*), 129.4 (CH, *Ph*), 132.7 (C), 135.8 (C), 136.5 (C), 138.6 (C), 171.5 ppm (C, *C6*); IR: v = 3414 (m), 3055 (m), 3025 (m), 2949 (m), 2925 (m), 1738 (s), 1632 (m), 1597 (m), 1455 (s), 1429 (s), 1356 (s), 1727 (m), 1220 (s), 1172 (m), 1093 (m), 1071 (s), 1028 (m), 1010 (m), 986 (m), 954 (m), 792 (m), 762 (s), 742 (s), 695 cm⁻¹ (s); MS (EI): m/z (%) = 460 [ $M^+$ ] (100), 331 (21), 272 (18), 260 (26), 130 (34); HRMS: m/z calcd. for  $C_{3I}H_{28}N_2O_2$ : 460.2146 [ $M^+$ ]; found: 460.2145.

(*E*)-2-Benzyl-4-benzyliden-3-methyl-1-phenyl-4,5,6,7-tetrahydro-2*H*-isoindol⁵ (**33k**)



 $(C_{29}H_{27}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 1.73 (quint., J = 6.0 Hz, 2 H, H6), 2.29 (s, 3 H, H17), 2.59 (t, J = 6.0 Hz, 2 H, H7), 2.72 (t, J = 6.0 Hz, 2 H, H5), 5.03 (s, 2 H, H12), 6.56 (s, 1 H, H18), 6.91 (d, J = 7.2 Hz, 2 H, Ph), 7.17-7.27 ppm (m, 13 H, Ph); ¹³C NMR (150 MHz, CDCl₃):  $\delta$  = 13.1 (CH₃, *C17*), 22.8 (CH₂, *C6*), 25.4 (CH₂, *C7*), 29.2 (CH₂, *C5*), 47.5 (CH₂, *C12*), 118.2 (C, *C3a/C7a*), 118.7 (C, *C3a/C7a*), 120.4 (CH, *C18*), 124.9 (C, *C3*), 125.4 (CH, *Ph*), 125.8 (2CH, *Ph*), 126.8 (CH, *Ph*), 127.0 (CH, *Ph*), 128.1 (CH, *Ph*), 128.2 (C, *C1*), 128.3 (CH, *Ph*), 128.8 (CH, *Ph*), 129.2 (CH, *Ph*), 130.0 (CH, *Ph*), 132.9 (C, *Ph*), 136.1 (C, *C4/Ph*), 139.0 (C, *C4/Ph*), 139.1 ppm (C, *C4/Ph*); HRMS: *m/z* calcd. for C₂₉H₂₇N: 389.2143 [*M*⁺]; found: 389.2143.





Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Benzylamin (37mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33l** (87mg, 0.25mol, 65% d.Th.) als gelber Schaum isoliert wird.

 $(C_{26}H_{23}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.12$  (s, 3 H, *H6*), 5.03 (s, 2 H, *H13*), 6.49 (d, J = 1.7 Hz, 1 H, *H4*), 6.75 (d, J = 16.0 Hz, 1 H, *H8*), 6.87 (d, J = 7.6 Hz, 2 H, *Ph*), 7.02 (dd, J = 16.0, 1.6 Hz, 1 H, *H7*), 7.07-7.14 (m, 1 H, *Ph*), 7.15-7.19 (m, 2 H, *Ph*), 7.20-7.25 (m, 8 H, *Ph*), 7.38 Hz (d, J = 7.7 Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.2$  (CH₃, *C6*), 47.7 (CH₂, *C13*), 104.7 (CH, *C4*), 119.5 (C, *C3*), 121.4 (CH), 123.8 (CH), 125.6 (CH, *Ph*), 125.7 (CH, *Ph*), 126.2 (CH), 127.0 (CH), 127.1 (CH), 128.4 (CH, *Ph*), 128.5 (CH, *Ph*), 128.7 (CH, *Ph*), 128.8 (CH, *Ph*), 129.5 (C), 133.1 (C), 135.3 (C), 138.5 (C, *Ph*), 138.7 ppm (C, *Ph*); IR: v = 3058 (m), 3025 (m), 2912 (m), 1633 (s), 1598 (s), 1495 (s), 1452 (s), 1428 (s), 1350 (s), 1165 (m), 1072 (m), 1028 (m), 952 (s), 756 (s), 728 (s), 693 cm⁻¹ (s); MS (EI): m/z (%) = 349 [ $M^+$ ] (100), 258 (28), 243 (40); HRMS: m/z calcd. for  $C_{26}H_{23}N$ : 349.1831 [ $M^+$ ], found: 349.1830.

(*E*)-3-(2-Methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)pyridin (**33m**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 3-Aminopyridin (36mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33m** (102mg, 0.30mol, 79% d.Th.) als gelbes Öl isoliert wird. ( $C_{24}H_{20}N_2$ ): ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 2.14 (s, 3 H, H6), 6.61 (s, 1 H, H4), 6.80 (d, J = 16.1 Hz, 1 H, H7/H8), 6.96-7.00 (m, 2 H, H7/H8 und Ar), 7.04-7.14 (m, 3 H, Ar), 7.18-7.21 (m, 2 H, Ar), 7.24 (t, J = 7.5 Hz, 2 H, Ar), 7.32 (dt, J = 6.4, 1.6 Hz, 2 H, Ar), 7.40 (d, J = 7.2 Hz, 2 H, Ar), 8.40 (d, J = 2.5 Hz, 1 H, H14), 8.48 (dd, J = 4.8, 1.5 Hz, 1 H, H16); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 11.1 (CH₃, C6), 106.6 (CH, C4), 120.5 (C, C3), 120.8 (CH), 123.6 (CH), 125.2 (CH), 125.8 (2CH, Ph), 126.6 (CH), 126.7 (CH), 128.2 (2CH, Ph), 128.3 (2CH, Ph), 128.6 (2CH, Ph), 129.7 (C), 130.3 (C), 132.2 (C), 135.1 (C, Ar), 138.8 (CH, C18), 138.3 (C, Ar), 148.6 (CH, C14/C16), 149.2 ppm (CH, C14/C16); MS (EI): m/z (%) = 336 [ $M^+$ ] (100), 276 (24), 262 (12), 233 (16); HRMS: m/z calcd. for  $C_{24}H_{20}N_2$ : 336.1626 [ $M^+$ ]; found: 336.1627.

(*E*)-2-(2-Methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)pyridin (**33n**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 2-Aminopyridin (36mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33n** (72mg, 0.21mol, 56% d.Th.) als gelbes Öl isoliert wird.

 $(C_{24}H_{20}N_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.30$  (s, 3 H, *H6*), 6.67 (s, 1 H, *H4*), 6.86 (d, J = 16.2 Hz, 1 H, *H7/H8*), 7.06-7.23 (m, 9 H, *H7/H8 und Ar*), 7.31 (t, J = 7.6 Hz, 2 H, *Ar*), 7.48 (d, J = 7.9 Hz, 2 H, *Ar*), 7.58 (td, J = 7.8, 1.2 Hz, 1 H, *H17*), 8.59 ppm (dd, J = 4.9, 1.8 Hz, 1H, *H15*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.0$  (CH₃, *C6*), 106.6 (CH, *C4*), 120.3 (C, *C3*), 121.0 (CH), 122.4 (CH), 123.1 (CH), 124.7 (CH), 125.7 (2CH, *Ph*), 126.2 (CH), 126.6

(CH), 127.8 (2CH, *Ph*), 128.1 (2CH, *Ph*), 128.5 (2CH, *Ph*), 130.8 (C), 132.9 (C), 134.4 (C), 137.8 (CH, *C17*), 138.5 (C, *Ph*), 149.1 (CH, *C15*), 152.1 ppm (C, *C13*); IR: v = 3052 (m), 3028 (m), 2922 (m), 2854 (m), 1633 (m); 1596 (s), 1585 (s), 1471 (s), 1435 (s), 1376 (m), 1027 (m); 953 (m), 757 (s), 696 cm⁻¹ (s); MS (EI): m/z (%) = 336 [ $M^+$ ] (100), 278 (25); HRMS: m/z calcd. for C₂₄H₂₀N₂ [ $M^+$ ]: 336.1626; found: 336.1626.

(*E*)-2-(2-Methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)ethanol (**330**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 2-Aminoethanol (23mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33o** (70mg, 0.23 mol, 60% d.Th.) als gelber Schaum isoliert wird.

 $(C_{21}H_{21}NO)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 2.21 (br s, 1 H, *OH*), 2.24 (s, 3 H, *H6*), 3.43 (t, J = 6.1 Hz, 2 H, *H14*), 3.90 (t, J = 6.1 Hz, 2 H, *H13*), 6.29 (s, 1 H, *H4*), 6.62 (d, J = 16.0 Hz, 1 H, *H7/H8*), 6.93 (d, J = 16.0 Hz, 1 H, *H7/H8*), 7.01-7.27 (m, 8 H, *Ph*), 7.32 ppm (d, J = 7.2 Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 10.5 (CH₃, *C6*), 45.9 (CH₂, *C13*), 62.0 (CH₂, *C14*), 105.5 (CH, *C4*), 119.2 (C, *C3*), 121.2 (CH), 123.8 (CH), 125.6 (CH, *Ph*), 126.2 (CH), 127.2 (CH), 128.4 (CH, *Ph*), 128.5 (CH, *Ph*), 129.2 (CH, *Ph*), 129.5 (C), 133.4 (C), 134.7 (C), 138.7 ppm (C, *Ph*); IR: v = 3402 (m), 3057 (m), 3026 (m), 2935 (m), 1632 (s), 1598 (s), 1494 (m), 1448 (s), 1429 (m), 1357 (m), 1203 (m), 1167 (m), 1053 (m), 954 (m), 752 (s), 697 cm⁻¹ (s); MS (EI): m/z (%) = 303 [ $M^+$ ] (100), 272 (31), 260 (45), 127 (60), 118 (43), 105 (23); HRMS: m/z calcd. for  $C_{21}H_{21}NO$ : 303.1618 [ $M^+$ ], found: 303.1618.





Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Phenethylamin (47mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt (183mg) erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33p** (85mg, 0.23 mol, 61% d.Th.) als gelber Schaum isoliert wird.

 $(C_{27}H_{25}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.21$  (s, 3 H, *H6*), 2.65 (t, J = 7.9 Hz, 2 H, *H14*), 3.98 (t, J = 7.3 Hz, 2 H, *H13*), 6.35 (s, 1 H, *H4*), 6.68 (d, J = 16.0 Hz, 1 H, *H7/H8*), 6.82 (d, J = 7.4 Hz, 2 H, *Ph*), 6.99 (d, J = 16.0 Hz, 1 H, *H7/H8*), 7.06-7.14 (m, 4 H, *Ph*), 7.21-7.34 (m, 7 H, *Ph*), 7.37 ppm (d, J = 7.7 Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.2$  (CH₃, *C6*), 37.4 (CH₂, *C14*), 45.7 (CH₂, *C13*), 105.2 (CH, *C4*), 119.1 (C, *C3*), 121.5 (CH), 123.6 (CH), 125.6 (CH, *Ph*), 126.1 (CH), 126.5 (CH), 127.2 (CH), 128.4 (CH, *Ph*), 128.5 (CH, Ph), 128.5 (CH, *Ph*), 128.8 (C), 129.2 (CH, *Ph*), 133.6 (C), 134.5 (C), 138.0 (C, *Ph*), 138.8 ppm (C, *Ph*); IR: v = 3058 (m), 3025 (m), 2928 (m), 1633 (m), 1598 (m), 1448 (m), 1429 (m), 1352 (s), 1165 (m), 1072 (m), 1029 (m), 952 (m), 909 (m), 750 (s), 697 cm⁻¹ (s); MS (EI): m/z (%) = 363 [ $M^+$ ] (100), 272 (64); HRMS: m/z calcd. for  $C_{27}H_{25}N$ : 363.1981 [ $M^+$ ], found: 363.1982.

(*E*)-1-(Furan-2-yl-methyl)-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33q**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Furfurylamin (37mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33q** (77mg, 0.22 mol, 59% d.Th.) als gelber Schaum isoliert wird.

 $(C_{24}H_{21}NO)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.30$  (s, 3 H, H6), 4.93 (s, 2 H, H13), 5.89 (d, 1 H, J = 1.3 Hz, H17/H18), 6.22 (d, 1 H, J = 1.4 Hz, H17/H18), 6.43 (s, 1 H, H4), 6.74 (d, J = 16.1 Hz, 1 H, H7/H8), 6.02 (d, J = 16.0 Hz, 1 H, H7/H8), 7.09-7.15 (m, 1 H, H16), 7.23-7.27 (m, 4 H, Ph), 7.30-7.41 ppm (m, 6 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.2$  (CH₃, C6), 41.8 (CH₂, C13), 105.1 (C, C4), 107.2 (CH, C17/C18), 110.3 (CH, C17/C18), 119.4 (C, C3), 121.3 (CH), 123.4 (CH), 125.7 (CH, Ph), 126.2 (CH), 127.2 (CH), 128.4 (CH, Ph), 128.4 (CH, Ph), 129.1 (CH, Ph), 129.6 (C), 133.1 (C), 135.1 (C), 138.7 (C, Ph), 142.1 (CH, C16), 151.3 ppm (C, C14); IR: v = 3057 (m), 3025 (m), 2915 (m), 1633 (s), 1598 (s), 1447 (s), 1428 (s), 1338 (s), 1166 (m), 1146 (m), 1072 (m), 1010 (s), 751 (s), 693 cm⁻¹ (s); MS (EI): m/z (%) = 339 [ $M^+$ ] (46), 258 (54), 243 (100); HRMS: m/z calcd. for C₂₄H₂₁NO: 339.1618 [ $M^+$ ], found: 339.1618.

(*E*)-Methyl-2-(2-methyl-5-phenyl-3-styryl-1*H*-pyrrol-1-yl)propanoat (**33r**)



Nach Vorschrift **4.3.2 (a)** wird aus **24g** (100mg, 0.38mmol) und Methyl-L-alaninathydrochlorid (53mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33r** (73mg, 0.21mol, 55% d.Th.) als gelber Schaum isoliert wird. Das Amin wird dabei *in situ* mit TEA (1eq) generiert. Eine polarimetrische Analyse und ¹H-NMR Experimente in Anwesenheit chiraler Shiftreagentien (Eu[tfc]₃, 1.1 eq) zeigen, dass **33r** racemisch ist.

 $(C_{23}H_{23}NO_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.62$  (d, J = 7.3 Hz, 3 H, H8), 2.32 (s, 3 H, H9), 3.78 (s, 3 H, H20), 5.03 (q, J = 7.3 Hz, 1 H, H7), 6.47 (s, 1 H, H4), 6.81 (d, J = 16.0 Hz, 1 H, H10/H11), 7.08 (d, J = 16.0 Hz, 1 H, H10/H11), 7.20 (t, J = 7.9 Hz, 1 H, Ph), 7.33 (t, J = 7.6 Hz, 2 H, Ph), 7.37-7.40 (m, 1 H, Ph), 7.40-7.44 (m, 4 H, Ph), 7.48 ppm (d, J = 8.1 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.9$  (CH₃, C9), 17.7 (CH₃, C8), 52.7 (CH₃, C20), 53.2 (CH, C7), 105.4 (CH, C4), 120.2 (C, C3), 121.0 (CH), 124.4 (CH), 125.7 (CH, Ph), 126.3 (CH), 127.5 (CH), 128.3 (C), 128.5 (CH, Ph), 128.5 (CH, Ph), 129.4 (CH, Ph), 133.1 (C), 135.3 (C), 138.6 (C, Ph), 171.9 ppm (C, C6); IR: v = 3056 (m), 3025 (m), 2996 (m), 2949 (m), 1742 (s), 1622 (m), 1597 (m), 1489 (m), 1431 (m), 1357 (m), 1297 (m), 1224 (s), 1172 (m), 1123 (m), 1089 (m), 1072 (m), 1028 (m), 953 (s), 910 (m), 761 (s), 695 cm⁻¹ (s); MS (EI): m/z (%) = 345 [ $M^+$ ] (100), 286 (38), 258 (48), 243 (30), 215 (61), 143 (23), 106 (26); HRMS: m/z calcd. for  $C_{23}H_{23}NO_2$ : 345.1729 [ $M^+$ ], found: 345.1729.

(*E*)-2-Methyl-5-phenyl-3-styryl-1-((tetrahydrofuran-2-yl)methyl)-1*H*-pyrrol (**33s**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Tetrahydrofurylamin (39mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt (151mg) erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33s** (76mg, 0.22 mol, 54% d.Th.) als gelber Schaum isoliert wird.

 $(C_{24}H_{25}NO)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 1.28-1.75 (m, 4 H, *H17 und H18*), 2.34 (d, J = 1,2 Hz, 3 H, *H6*), 3.52-3.60 (m, 2 H, *H16*), 3.79-3.83 (m, 1 H, *H14*), 3.92 (d, J = 6.4 Hz, 2 H, *H13*), 6.35 (d, J = 1.4 Hz, 1 H, *H4*), 6.67 (d, J = 16.0 Hz, 1 H, *H8*), 6.98-7.38 ppm (m, 11 H, *H7*, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 10.6 (CH₃, *C6*), 25.2 (CH₂, *C17/C18*), 28.9 (CH₂, *C17/C18*), 47.8 (CH₂, *C13*), 67.8 (CH₂, *C16*), 78.3 (CH, *C14*), 105.5 (CH, *C4*), 119.2 (C, *C3*), 121.5 (CH), 123.5 (CH), 125.6 (CH, *Ph*), 126.1 (CH), 126.9 (CH), 128.3 (CH, *Ph*), 128.4 (CH, *Ph*), 129.3 (CH, *Ph*), 129.7 (C), 133.8 (C), 134.7 (C), 138.8 ppm (C, *Ph*); IR: v = 3058 (m), 3025 (m), 2927 (m), 1632 (m), 1598 (m), 1448 (m), 1429 (m), 1352 (s), 1165 (m), 1027 (m), 1029 (m), 952 (m), 750 (s), 697 cm⁻¹ (s); MS (EI): m/z (%) = 343 [ $M^+$ ] (100), 272 (36), 259 (38), 169 (41); HRMS: m/z calcd. for C₂₄H₂₅NO: 343.1931 [ $M^+$ ]; found: 343.1931.

(*E*)-1-Allyl-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33t**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Allylamin (22mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt (124mg) erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33t** (59mg, 0.20 mol, 51% d.Th.) als gelber Schaum isoliert wird.  $(C_{22}H_{21}N)$ : ¹H NMR (600 MHz, CDCl₃): v = 2.25 (s, 3 H, H6), 4.37-4.38 (m, 2 H, H13), 4.83

(C₂₂H₂₁N): H NMR (600 MHz, CDC₁₃): V = 2.25 (s, 5 H, H6), 4.37-4.38 (m, 2 H, H15), 4.85 (dd, J = 17.1, 0.8 Hz, 1 H, H15a), 5.13 (dd, J = 10.4, 0.9 Hz, 1 H, H15b), 5.82-5.87 (m, 1 H, H14), 6.41 (s, H4), 6.71 (d, J = 16.0 Hz, 1 H, H7/H8), 7.01 (d, J = 16.0 Hz, 1 H, H7/H8), 7.09 (t, J = 7.4 Hz, 1 H, Ph), 7.22-7-25 (m, 3 H, Ph), 7.30 (t, J = 7.6 Hz, 2 H, Ph), 7.34 (d, J = 7.2 Hz, 2 H, Ph), 7.38 ppm (d, J = 7.3 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.0$  (CH₃, C6), 46.5 (CH₂, C13), 104.7 (CH, C4), 116.1 (CH₂, C15), 119.1 (C, C3), 121.4 (CH), 123.6 (CH), 125.6 (2CH, Ph), 126.1 (CH), 127.1 (CH), 128.3 (2CH, Ph), 128.5 (2CH, Ph), 128.7 (2CH, Ph), 129.5 (C), 133.2 (C), 134.5 (CH, C14), 134.9 (C), 138.8 ppm (C, Ph); IR: v = 3057 (m), 3024 (m), 2923 (m), 2853 (m), 1633 (s), 1599 (s), 1447 (m), 1428 (s), 1364 (m), 1350 (s), 1166 (s), 1072 (s), 953 (s), 916 (m), 787 (m); 767 (s), 755 (s), 693 cm⁻¹ (s); MS (EI): m/z (%) = 299 [ $M^+$ ] (100), 243 (41), 215 (16); HRMS: m/z calcd. for C₂₂H₂₁N: 299.1674 [ $M^+$ ] (100), found: 299.1673.

(*E*)-1-(But-3-en-1-yl)-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33u**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und But-3-en-1-amin (27mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **33u** (64mg, 0.20 mol, 53% d.Th.) als gelber Schaum isoliert wird.  $(C_{23}H_{23}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.17$  (q, J = 6.8 Hz, 2 H, H14), 2.30 (s, 3 H, H6),

(C₂₃*H*₂₃*N*): ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.17$  (q, J = 6.8 Hz, 2 H, *H14*), 2.30 (s, 3 H, *H0*), 3.83 (t, J = 6.4 Hz, 2 H, *H13*), 4.87-4.90 (m, 2 H, *H16*), 5.45-5.55 (m, 1 H, *H15*), 6.34 (d, J = 1.7 Hz, 1 H, *H4*), 6.78 (d, J = 16.1 Hz, 1 H, *H8*), 7.00 (dd, J = 16.1, 1.5 Hz, 1 H, *H7*), 7.5-7.09 (m, 1 H, *Ph*), 7.20-7.26 (m, 3 H, *Ph*), 7.30-7.32 (m, 4 H, *Ph*), 7.35 ppm (d, J = 7.9Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.4$  (CH₃, *C6*), 35.2 (CH₂, *C14*), 43.6 (CH₂, *C13*), 105.1 (CH, *C4*), 117.1 (CH₂, *C16*), 119.1 (C, *C3*), 121.4 (CH), 123.6 (CH), 125.6 (2CH, *Ph*), 126.1 (CH), 127.1 (CH), 128.4 (2CH, *Ph*), 128.5 (2CH, *Ph*), 128.8 (C), 129.1 (2CH, *Ph*), 133.6 (C), 134.1 (CH, *C15*), 134.5 (C), 138.8 ppm (C, *Ph*); IR:  $\nu = 3058$  (m), 3027 (m), 2976 (m), 2905 (m), 1631 (s), 1594 (m), 1443 (m), 1428 (m), 1353 (s), 1169 (m), 1073 (m), 1021 (m), 994 (m), 950 (s), 923 (m), 799 (m), 749 (s), 696 cm⁻¹ (s); MS (EI): *m/z* (%) = 313 [*M*⁺] (100), 272 (80); HRMS: *m/z* calcd. for C₂₃H₂₃N: 313.1826 [*M*⁺], found: 313.1825.

(*E*)-1-Benzhydryl-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33v**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Aminodiphenylmethan (71mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 2:1) **33v** (70mg, 0.16 mol, 43% d.Th.) als gelber Schaum isoliert wird. ( $C_{32}H_{27}N$ ): ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 1.82 (d, J = 0.8 Hz, 3 H, H6), 6.55 (s, 1 H, H4), 6.80 (s, 1 H, H13), 6.82 (d, J = 16.0 Hz, 1 H, H8), 7.02 (dd, J = 16.0, 0.6 Hz, 1 H, H7), 7.11-7.22 (m, 5 H, Ph), 7.22-7.31 (m, 13 H, Ph), 7.37 ppm (d, J = 8.0 Hz, 2 H, Ph); ¹³C NMR 124

(100 MHz, CDCl₃):  $\delta = 12.7$  (CH₃, *C*6), 62.5 (CH, *C13*), 105.2 (CH, *C4*), 120.2 (C, *C3*), 121.3 (CH), 123.9 (CH), 125.7 (CH, *Ph*), 126.2 (CH), 127.3 (CH), 127.4 (CH, *Ph*), 128.2 (CH, *C15/C16*), 128.3 (CH, *Ph*), 128.4 (CH, *C15/C16*). 128.5 (CH, *Ph*), 129.4 (CH, *Ph*), 129.9 (C), 133.6 (C), 136.6 (C), 138.7 (C, *Ph*), 139.3 ppm (C, *C14*); IR: v = 3057 (m), 3025 (m), 2920 (m), 1632 (m), 1598 (m), 1494 (m), 1446 (s), 1427 (m), 1352 (m), 1178 (m), 1153 (m), 1071 (m); 1028 (m), 952 (m), 761 (s), 749 (s), 721 (s), 697 (s), 603 cm⁻¹ (m); MS (EI): m/z (%) = 425 [ $M^+$ ] (35), 167 (100); HRMS: m/z calcd. for C₂₃H₂₇N: 425.2143 [ $M^+$ ]; found: 425.2146.

(*E*)-1-(2-(1*H*-Pyrrol-1-yl)benzyl)-2-methyl-5-phenyl-3-styryl-1*H*-pyrrol (**33**w)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und [2(1*H*-Pyrrol-1-yl)phenyl]methylamin (66mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 2:1) **33w** (61mg, 0.15 mol, 38% d.Th.) als gelber Schaum isoliert wird.

 $(C_{30}H_{26}N_2)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.04$  (s, 3 H, H6), 4.81 (s, 2 H, H13), 6.22 (t, J = 1.9 Hz, 2 H, H22), 6.46 (s, 1 H, H4), 6.56 (t, J = 2.0 Hz, 2 H, H21), 6.62-6.64 (m, 1 H, Ar), 6.73 (d, J = 16.1 Hz, 1 H, H7/H8), 6.98 (d, J = 16.1 Hz, 1 H, H7/H8), 7.06-7.09 (m, 2 H, Ar), 7.17-7.23 (m, 9 H, Ar), 7.36 ppm (d, J = 8.2 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 10.1$  (CH₃, C6), 43.8 (CH₂, C13), 105.5 (CH, C4), 109.4 (CH, C22), 119.6 (C, C3), 121.3 (CH, C7/C8/Ar), 121.9 (CH, C21), 123.9 (CH, C7/C8/Ar), 125.7 (CH, Ph), 126.3 (CH, C7/C8/Ar), 126.7 (CH, C7/C8/Ar), 126.9 (CH, C7/C8/Ar), 127.2 (CH, C7/C8/Ar), 127.8 (CH, C7/C8/Ar), 128.4 (CH, Ar), 128.5 (CH, Ar), 128.6 (CH, C7/C8/Ar), 128.7 (CH, Ar), 129.3 (C, Ar), 132.9 (C, Ar), 134.9 (C, Ar), 135.3 (C, Ar), 138.6 (C, C9/C15), 138.6 ppm (C, C9/C15); IR:  $\nu = 3057$  (m), 3025 (m), 2922 (m), 2853 (m), 1633 (m), 1599 (m), 1500 (s), 1479 (m), 1457 (m), 1428 (m), 1349 (m), 1326 (m), 1167 (m), 1092 (m), 1070 (m), 1015 (m), 952 (m), 925 (m), 758 (s), 728 (s), 693 cm⁻¹ (s); MS (EI): m/z (%) = 414 [ $M^+$ ] (100), 258 (24), 243 (23),156 (48); HRMS: m/z calcd. for  $C_{30}H_{26}N_2$ : 414.2095 [ $M^+$ ]; found: 414.2095.



2-((2Z,4E)-3-Ethinyl-1,5-diphenylpenta-2,4-dien-1-yl)anilin (**34a**)

TFA (2mol-%) wird unter Argon in Toluol (abs.) vorgelegt, mit **24g** (100mg, 0.38mmol) und Anilin (36mg, 0.38mmol) versetzt, 5h bei 100°C gerührt, eingedampft. Nach einer MPLC-Reinigung (P:DCM = 1:1) wurden **33a**, **34a** (25mg, 0.08mmol, 20% d.Th.) und **34b** (9mg, 0.03mmol, 7% d.Th.) als gelbe Öle isoliert.

 $(C_{25}H_{21}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 3.35 (s, 1 H, H7), 3.62 (br s, 2 H, NH), 5.39 (d, J = 10.4 Hz, 1 H, H1), 6.44 (d, J = 10.4 Hz, 1 H, H2), 6.62 (d, J = 7.8 Hz, 1 H, H14), 6.70 (t, J = 7.5 Hz, 1 H, H12), 6.73 (d, J = 15.7 Hz, 1 H, H4/H5), 6.94 (d, J = 15.9 Hz, 1 H, H4/H5), 6.98 (d, J = 7.7 Hz, 1 H, H11), 7.02 (t, J = 7.6 Hz, 1 H, H13), 7.16-7.21 (m, 4 H, Ph), 7.23-7.28 (m, 4 H, Ph), 7.34 ppm (d, J = 8.2 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 47.6 (CH, C1), 78.5 (C, C6), 84.7 (CH, C7), 116.5 (CH, C14), 118.8 (CH, C12), 122.6 (C, C3), 126.6 (CH, Ph), 126.8 (CH), 127.2 (C, C10), 127.7 (CH), 127.8 (CH), 128.0 (CH, Ph), 128.1 (CH), 128.6 (CH, Ph), 128.8 (CH, Ph), 129.0 (CH), 131.7 (CH, C2/C5), 136.8 (C, Ph), 141.9 (C, Ph), 142.2 (CH, C2/C5), 144.6 ppm (C, C9).

4-((2Z,4E)-3-Ethinyl-1,5-diphenylpenta-2,4-dien-1-yl)anilin (**34b**)



TFA (2mol-%) wird unter Argon in Toluol (abs.) vorgelegt, mit **24g** (100mg, 0.38mmol) und Anilin (36mg, 0.38mmol) versetzt, 5h bei 100°C gerührt, eingedampft. Nach einer MPLC-Reinigung (P:DCM = 1:1) wurden **33a**, **34a** (25mg, 0.08mmol, 20% d.Th.) und **34b** (9mg, 0.03mmol, 7% d.Th.) als gelbe Öle isoliert.

 $(C_{25}H_{21}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 3.37 (s, 1 H, H7), 3.61 (br s, 2 H, NH), 5.38 (d, J = 10.4 Hz, 1 H, H1), 6.49 (d, J = 10.4 Hz, 1 H, H2), 6.64 (d, J = 8.5 Hz, 2 H, H10), 6.78 (d, J = 15.7 Hz, 1 H, H4/H5), 7.00 (d, J = 15.7 Hz, 1 H, H4/H5), 7.02 (d, J = 8.1 Hz, 2 H, H9), 7.21-7.25 (m, 4 H, Ph), 7.29-7.34 (m, 4 H, Ph), 7.41 ppm (d, J = 7.2 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 50.8 (CH, C1), 78.7 (C, C6), 83.9 (CH, C7), 115.3 (CH, C10), 121.9 (C, C3), 126.4 (CH, C4/Ar), 126.6 (CH, C4/Ar), 127.6 (CH, Ph), 128.3 (CH, C4/Ar), 128.4

# (CH, *Ph*), 128.5 (CH, *C4*/*Ar*), 128.6 (CH, *C4*/*Ar*), 129.2 (CH, *C4*/*Ar*), 131.3 (CH, *C2*/*C5*), 133.1 (C, *Ar*), 136.9 (C, *Ar*), 143.6 (C, *Ar*), 144.3 (CH, *C2*/*C5*), 144.9 ppm (C, *Ar*).

1-Benzyl-2-(but-3-enyl)-3-methyl-1H-pyrrol⁵ (**35a**)



 $(C_{16}H_{19}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 2.05 (td, J = 8.0, 6.8 Hz, 2 H, *H12*), 2.07 (s, 3 H, *H15*), 2.56 (t, J = 8.0 Hz, 2 H, *H11*), 4.91-4.97 (m, 2 H, *H14*), 5.02 (s, 2 H, *H6*), 5.77 (ddt, J = 16.8, 10.4, 6.8 Hz, 1 H, *H13*), 6.00 (d, J = 1.4 Hz, 1 H, *H4*), 6.53 (d, J = 1.8 Hz, 1 H, *H5*), 7.01 (d, J = 7.2 Hz, 2 H, *H8*), 7.24 (t, J = 7.2 Hz, 1 H, *H10*), 7.31 ppm (t, J = 7.2 Hz, 2 H, *H9*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 11.7 (CH₃, *C15*), 24.2 (CH₂, *C11*), 34.4 (CH₂, *C12*), 50.7 (CH₂, *C6*), 108.9 (CH, *C4*), 115.0 (CH₂, *C14*), 115.7 (C, *C3*), 119.8 (CH, *C5*), 126.5 (CH, *C8/C9*), 127.4 (CH, *C10*), 128.8 (CH, *C8/C9*), 128.9 (C, *C2*), 138.2 (CH, *C13*), 139.0 ppm (C, *C7*); IR:  $\nu$  = 3065 (m), 3030 (m), 2924 (s), 2860 (s), 1709 (s), 1693 (s), 1640 (s), 1606 (m), 1496 (s), 1489 (s), 1454 (s), 1414 (s), 1384 (s), 1354 (s), 1337 (s), 1259 (m), 1244 (w), 1207 (m), 1189 (w), 1162 (w), 1076 (w), 1050 (w), 1029 (m), 994 (m), 966 (w), 945 (w), 912 (s), 845 (w), 822 (w), 800 (w), 727 (s), 696 (s), 667 (m), 641 cm⁻¹ (m); MS (EI): *m/z* (%) = 225 [*M*⁺] (20), 185 (20), 184 (100), 91 (90); HRMS: *m/z* calcd. for C₁₆H₁₉N: 225.1517 [*M*⁺]; found: 225.1517.

2-(But-3-enyl)-3-methyl-1-phenethyl-1*H*-pyrrol⁵ (**35b**)



 $(C_{17}H_{21}N)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.08$  (s, 3 H, *H16*), 2.22 (tdt, J = 8.1, 6.7, 1.2 Hz, 2 H, *H13*), 2.61 (t, J = 8.1 Hz, 2 H, *H12*), 3.03 (t, J = 7.8 Hz, 2 H, *H7*), 4.02 (t, J = 7.8 Hz, 2 H, *H6*), 5.03 (ddt, J = 10.2, 1.9, 1.1 Hz, 1 H, *H15a*), 5.08 (dq, J = 17.1, 1.7 Hz, 1 H, *H15b*), 5.88 (ddt, J = 17.1, 10.2, 6.7 Hz, 1 H, *H14*), 5.99 (d, J = 2.7 Hz, 1 H, *H4*), 6.54 (d, J = 2.7 Hz, 1 H, *H5*), 7.18 (d, J = 6.9 Hz, 2 H, *H9*), 7.28 (t, J = 7.3 Hz, 1 H, *H11*), 7.35 ppm (t, J = 7.2 Hz, 2 H, *H10*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 11.4$  (CH₃, *C16*), 23.7 (CH₂, *C12*),

34.3 (CH₂, *C13*), 38.4 (CH₂, *C7*), 48.1 (CH₂, *C6*), 108.5 (CH, *C4*), 114.6 (C, *C3*), 114.8 (CH₂, *C15*), 118.1 (CH, *C5*), 126.4 (CH, *C11*), 128.0 (C, *C2*), 128.5 (CH, *C9/C10*), 128.6 (CH, *C9/C10*), 137.9 (CH, *C14*), 138.4 ppm (C, *C8*); HRMS: *m/z* calcd. for C₁₇H₂₁N: 239.1674 [*M*⁺]; found: 239.1674.

(*E*)-1-Benzyl-2-(but-3-en-1-yl)-5-phenyl-3-styryl-1*H*-pyrrol (**36a**)



Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Benzylallylamin⁶² (56mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **36a** (20mg, 0.05mmol, 13% d.Th.) als gelber Schaum isoliert wird.

 $(C_{29}H_{27}N)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.10$  (q, J = 7.1 Hz, 2 H, H7), 2.63 (tr, J = 7.8 Hz, 2 H, H6), 4.89 (d, J = 10.8 Hz, 1 H, H9a), 4.90 (d, J = 16.3 Hz, 1 H, H9b), 5.7 (s, 2 H, H16), 5.67-5.77 (m, 1 H, H8), 6.49 (s, 1 H, H4), 6.76 (d, J = 16.0 Hz, 1 H, H10/H11), 6.85 (d, J = 7.2 Hz, 2 H, Ph), 7.00 (d, J = 16.0 Hz, 1 H, H10/H11), 7.10-7.31 (m, 11 H, Ph), 7.38 ppm (d, J = 7.5 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 24.5$  (CH₂, C6), 34.9 (CH₂, C7), 47.7 (CH₂, C16), 105.3 (CH, C4), 115.4 (CH₂, C9), 119.7 (C, C3), 121.3 (CH), 123.9 (CH), 125.6 (CH, Ph), 125.7 (CH, Ph), 126.3 (CH), 127.1 (CH), 127.2 (CH), 128.4 (CH), 128.5 (CH, Ph), 128.7 (CH, Ph); IR: v = 3059 (m), 3026 (m), 2924 (s), 2854 (m), 1633 (m), 1598 (m), 1495 (m), 1452 (m), 1353 (m), 1072 (m), 1028 (m), 954 (m), 911 (m), 752 (m), 730 (m), 696 cm⁻¹ (s); HRMS: m/z calcd. for  $C_{29}H_27N$ : 389.2143 [ $M^+$ ]; found: 389.2143.

(*E*)-2-Benzyl-4-benzyliden-3-(but-3-enyl)-1-phenyl-4,5,6,7-tetrahydro-2*H*-isoindol (**36b**)



Nach Vorschrift **4.3.2** (a) wird aus **24m** (100mg, 0.33mmol) und Benzylallylamin⁶² (49mg, 0.33mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **36b** (103mg, 0.24mmol, 72% d.Th.) als gelber Schaum isoliert wird. ( $C_{32}H_{31}N$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.72$  (quint., J = 6.0 Hz, 2 H, H6), 2.19-2.24 (m, 2 H, H18), 2.56 (t, J = 6.1 Hz, 2 H, H7), 2.71 (t, J = 6.0 Hz, 2 H, H5), 2.77 (t, J = 8.2 Hz, 2 H, H17), 4.87-4.95 (m, 2 H, H20), 5.05 (s, 2 H, H12), 5.74 (ddt, J = 17.0, 10.2, 6.6 Hz, 1 H,

*H19*), 6.60 (s, 1 H, *H21*), 6.85 (d, J = 7.0 Hz, 2 H, *Ph*), 7.17-7.27 ppm (m, 13 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 22.9$  (CH₂, *C6*), 25.1 (CH₂, *C7/C17*), 26.2 (CH₂, *C7/C17*), 29.3 (CH₂, *C5*), 32.9 (CH₂, *C18*), 47.4 (CH₂, *C12*), 115.1 (CH₂, *C20*), 118.1 (C, *C3a/C7a*), 119.2 (C, *C3a/C7a*), 119.6 (CH, *C21*), 125.4 (CH, *Ph*), 125.7 (CH, *Ph*), 126.8 (CH, *Ph*), 127.0 (CH, *Ph*), 128.0 (CH, *Ph*), 128.2 (CH, *Ph*), 128.3 (C, *C3*), 128.6 (CH, *Ph*), 128.8 (C, *C1*), 129.3 (CH, *Ph*), 130.0 (CH, *Ph*), 132.8 (C, *Ph*), 135.6 (C, *Ph*), 137.7 (CH, *C19*), 139.0 (C, *C4/Ph*), 139.2 ppm (C, *C4/Ph*); IR: v = 3060 (m), 3027 (m), 2927 (s), 1664 (m), 1640 (m), 1601 (s), 1495 (s), 1452 (s), 1354 (s), 1329 (m), 1265 (m), 1177 (m), 1074 (m), 1029 (m), 1001 (m), 916 (m), 754 (s), 733 (s), 700 cm⁻¹ (s); MS (EI): m/z (%) = 429 [ $M^+$ ] (36), 389 (38), 388 (100), 338 (23), 296 (18); HRMS: m/z calcd. for C₃₂H₃₁N: 429.2457 [ $M^+$ ]; found: 429.2456.

## (e) Synthesen der Isoindole

### 2-Benzyl-7-ethinyl-1,5-diphenyl-2,3,3a,4,5,7a-hexahydro-1*H*-isoindol (37a)



Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit NOE's.

Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Benzylpropargylamin⁶⁴ (56mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **37a** (72mg, 0.18mmol, 47% d.Th.) als gelber Schaum isoliert wird.

 $(C_{29}H_{27}N)$ ; Major ds (cis): ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.51$  (q, J = 12.8 Hz, 1 H,  $H_a4$ ), 2.00 (d, J = 12.8 Hz, 1 H,  $H_{b}4$ ), 2.10 (dd, J = 10.0, 4.5 Hz, 1 H,  $H_{a}3$ ), 2.32 (s, 1 H, H9), 2.57-2.61 (m, 1 H, H3a), 2.85 (t, J = 10.0 Hz, 1 H, H7a), 3.07 (d, J = 13.0 Hz, 1 H,  $H_a I4$ ), 3.42 (br d, J = 12.8 Hz, 1 H, H5), 3.48 (dd, J = 9.9, 7.9 Hz, 1 H,  $H_b$ 3), 3.53 (d, J = 9.9 Hz, 1 H, H1), 3.82 (d, J = 13.0 Hz, 1 H,  $H_{\rm b}14$ ), 6.36 (br s, 1 H, H6), 7.21-7.29 (m, 9 H, Ph), 7.35-7.37 (m, 4 H, *Ph*), 7.59 ppm (d, J = 7.8 Hz, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃): δ= 35.1 (CH, C3a), 37.6 (CH₂, C4), 42.8 (CH, C5), 49.7 (CH, C7a), 57.6 (CH₂, C14), 59.0 (CH₂, C3), 73.5 (CH, C1), 76.9 (CH, C9), 83.3 (C, C8), 120.7 (C, C7), 126.5 (CH, Ph), 126.7 (CH, Ph), 127.3 (CH, Ph), 127.5 (CH, Ph), 127.9 (CH, Ph), 128.1 (CH, Ph), 128.5 (CH, Ph), 128.6 (CH, Ph), 129.2 (CH, Ph), 139.5 (C, Ph), 141.8 (C, Ph), 142.0 (CH, C6), 144.9 ppm (C, *Ph*); H₁H-NOESY (600 MHz, CDCl₃) cross peaks:  $H1 / H_a4$ ,  $H1 / H_a14$ ,  $H_a3 / H_a$  $H_{a}4, H_{a}3 / H_{a}14, H_{b}3 / H_{3}a, H_{b}3 / H_{b}14, H_{3}a / H_{b}4, H_{3}a / H_{5}, H_{3}a / H_{7}a, H_{b}4 / H_{5}, H_{5} / H_{6};$ Correlations by H₁H-COSY, HSQC and HMBC; IR: v = 3060 (m), 3026 (m), 2921 (m), 2853 (m), 2789 (m), 1600 (m), 1492 (m), 1451 (m), 1077 (m), 1027 (m), 909 (m), 887 (m), 759 (s), 699 cm⁻¹ (s); MS (EI): m/z (%) = 389 [M⁺] (80), 311 (100), 298 (22), 209 (40), 178 (17); HRMS: m/z calcd. for  $C_{29}H_{27}N$ : 389.2143 [ $M^+$ ]; found: 389.2141; *Minor ds (trans)*: ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.89$  (br d, J = 12.6 Hz, 1 H,  $H_a4$ ), 2.03 (td, J = 12.6, 7.6 Hz, 1 H,  $H_b4$ ), 2.11-2.21 (m, 1 H, H3a), 2.56 (s, 1 H, H9), 2.56 (t, J = 10.5 Hz, 1 H, H7a), 2.64 (t, J = 9.1 Hz, 1 H,  $H_a3$ , 2.89 (t, J = 8.9 Hz, 1 H,  $H_b3$ ), 3.42 (d, J = 13.5 Hz, 1 H,  $H_a14$ ), 3.76-3.78 (m, 2 H, H1, H5), 3.82 (d, J = 13.5 Hz, 1 H,  $H_{b}14$ ), 6.19 (br s, 1 H, H6), 7.19-7.39(m, 13 H, Ph), 7.59 ppm (d, J = 7.5 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 33.9$ (CH₂, C4), 36.9 (CH, C3a), 41.8 (CH, C5), 51.2 (CH, C7a), 54.6 (CH₂, C3), 57.4 (CH₂, C14), 72.0 (CH, C1), 78.7 (CH, C9), 81.6 (C, C8), 122.2 (C, C7), 126.3 (CH, Ph), 126.5 (CH, Ph), 127.3 (CH, Ph), 127.6 (CH, Ph), 128.0 (CH, Ph), 128.1 (CH, Ph), 128.3 (CH, Ph), 128.4 (CH, *Ph*), 129.5 (CH, *Ph*), 139.5 (CH, *C6*), 140.4 (C, *Ph*), 142.3 (C, *Ph*), 145.4 ppm (C, *Ph*); Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren.



7-Ethinyl-1,2,5-triphenyl-2,3,3a,4,5,7a-hexahydro-1*H*-isoindol (**37b**)

Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit starken NOE's (durchgezogen) und schwachen NOE's (gestrichelt)

Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und Phenylallylamin (52mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **37b** (72mg, 0.18mmol, 50% d.Th.) als gelber Schaum isoliert wird.

 $(C_{28}H_{25}N)$ ; Major ds (cis): ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.72$  (dt, J = 13.2, 10.6 Hz, 1 H,  $H_a4$ ), 2.08 (dt, J = 13.3, 5.0 Hz, 1 H,  $H_b4$ ), 2.67-2.71 (m, 1 H, H3a), 2.73 (s, 1 H, H9), 2.96 (t, J = 7.4 Hz, 1 H, H7a), 3.47 (dd, J = 9.8, 2.1 Hz,  $H_a3$ ), 3.61 (m, 1 H, H5), 3.99 (dd, J = 9.7, 7.4 Hz, 1 H,  $H_b$ 3), 4.80 (d, J = 7.3 Hz, 1 H, H1), 6.46 (br s, 1 H, H6), 6.50 (d, J = 7.6 Hz, 2 H, H15), 6.62 (t, J = 7.5 Hz, 1 H, H17), 7.11 (t, J = 7.6 Hz, 2 H, H16), 7.25-7.37 (m, 8 H, Ph), 7.46 ppm (d, J = 7.8 Hz, 2 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 33.6$  (CH₂, C4), 36.2 (CH, C3a), 42.1 (CH, C5), 51.4 (CH, C7a), 55.0 (CH₂, C3), 68.3 (CH, C1), 77.6 (CH, C9), 83.9 (C, C8), 112.8 (CH, C15), 115.8 (CH, C17), 121.2 (C, C7), 126.6 (CH, Ph), 127.0 (CH, Ph), 127.3 (CH, Ph), 127.4 (CH, Ph), 128.2 (CH, Ph), 128.6 (CH, Ph), 128.7 (CH, Ph), 140.6 (CH, C6), 143.8 (C, Ph), 144.4 (C, Ph), 146.8 ppm (C, Ph); H₁H-NOESY (600 MHz, CDCl₃) cross peaks:  $H1 / H_a4$ ,  $H_a3 / H3a$  (w),  $H_a3 / H_a4$  (w),  $H_a3 / H_b4$ ,  $H_b3 / H3a$ ,  $H_b3 / H7a$  (w),  $H3a / H_b4$ , H3a / H5 (w), H3a / H7a,  $H_b4 / H5$ , H5 / H6; Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren. IR: v = 3059 (m), 3026 (m), 2924 (m), 1598 (s), 1503 (s), 1452 (m), 1343 (m), 1076 (m), 1029 (m), 994 (m), 909 (m), 750 (s), 699 cm⁻¹ (s); MS (EI): m/z (%) = 375 [M⁺] (88), 335 (19), 297 (20), 233 (26), 194 (100), 192 (25), 169 (23), 104 (21); HRMS: *m/z* calcd. for  $C_{28}H_{25}N$ : 375.1981 [ $M^+$ ]; found: 375.1982.



4-Ethinyl-2,3,6-triphenyl-2,3,3a,6-tetrahydro-1*H*-isoindol (**38a**)

Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit starken NOE's (durchgezogen) und schwachen NOE's (gestrichelt)

Nach Vorschrift 4.3.2 (a) wird aus 24g (100mg, 0.38mmol) und Phenylpropargylamin⁶³ (50mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) 38a (85mg, 0.22mmol, 59% d.Th.) als gelber Schaum isoliert wird.  $(C_{28}H_{23}N)$ ; Single ds: ¹H NMR (600 MHz, CDCl₃):  $\delta = 2.72$  (s, 1 H, H9), 3.41 (br t, J = 9.5Hz, 1 H, H3a), 4.07 (br d, J = 10.0 Hz, 1 H, H6), 4.10 (d, J = 12.4 Hz, 1 H,  $H_a I$ ), 4.60 (d, J = 12.4 Hz, 1 H,  $H_b I$ ), 4.65 (d, J = 8.5 Hz, 1 H, H3), 5.62 (br s, 1 H, H7), 6.27 (br s, 1 H, *H5*), 6.57 (d, *J* = 8.6 Hz, 2 H, *H15*), 6.61 (t, *J* = 7.4 Hz, 1 H, *H17*), 7.09 (t, *J* = 7.7 Hz, 2 H, *H16*), 7.16-7.34 (m, 8 H, *Ph*), 7.55 ppm (d, J = 7.9 Hz, 2 H, *H19*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 44.0 (CH, C6), 49.4 (CH, C3a), 54.3 (CH₂, C1), 68.3 (CH, C3), 78.9 (CH, C9), 82.5 (C, C8), 113.4 (CH, C15), 116.5 (CH, C17), 117.5 (C, C4), 119.4 (CH, C7), 126.9 (CH, Ph), 127.3 (CH, Ph), 128.0 (CH, Ph), 128.1 (CH, Ph), 128.3 (CH, Ph), 128.7 (CH, Ph), 128.8 (CH, Ph), 134.6 (C, C7a), 139.8 (CH, C5), 143.3 (C, Ph), 143.5 (C, Ph), 146.8 ppm (C, C14);  $H_1H$ -NOESY (600 MHz, CDCl₃) cross peaks:  $H_a1 / H7$ ,  $H_a1 / H15$ ,  $H_b1 / H3a$ ,  $H_b1 / H7$  (w), *H*_b1 / *H*15, *H*_b1 / *H*19, *H*3 / *H*15, *H*3 / *H*19, *H*3a / *H*6 (w), *H*3a / *H*19, *H*5 / *H*6 (w), *H*5 / *H*11, H6 / H7 (w), H6 / H11, H7 / H11, H9 / H19 (w); Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren; IR: v = 3059 (m), 3028 (m), 2923 (m), 2851 (m), 1696 (s), 1598 (s), 1502 (s), 1469 (s), 1453 (s), 1362 (s), 1252 (m), 1178 (m), 1155 (m), 1075 (m), 1028 (m), 907 (m), 893 (m), 752 (s), 696 cm⁻¹ (s); HRMS: m/z calcd. for  $C_{28}H_{23}N$ : 373.1830 [ $M^+$ ]; found: 373.1830.


4'-Ethynyl-3',6'-diphenyl-2',3',3a',6'-tetrahydrospiro[cyclohexan-1,1'-isoindol] (38b)

Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit starken NOE's (durchgezogen) und schwachen NOE's (gestrichelt)

Nach Vorschrift **4.3.2** (a) wird aus **24g** (100mg, 0.38mmol) und 1-Ethinylcyclohexan-1-amin (47mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **38b** (62mg, 0.17mmol, 44% d.Th.) als gelber Schaum isoliert wird.

 $(C_{27}H_{27}N)$ ; Single ds: ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 1.20-1.83 (m, 10 H, *H14-H18*), 2.38 (s, 1 H, *H9*), 3.34 (tt, *J* = 10.8, 2.6 Hz, 1 H, *H3a*), 4.00 (d, *J* = 10.5 Hz, 1 H, *H3*), 4.10 (br d, *J* = 11.2 Hz, 1 H, *H6*), 5.50 (dt, *J* = 2.5, 1.7 Hz, 1 H, *H7*), 6.15 (td, *J* = 2.5, 1.7 Hz, 1 H, *H5*), 7.19 (d, *J* = 7.9 Hz, 2 H, *Ph*), 7.25-7.36 (m, 6 H, *Ph*), 7.54 ppm (d, *J* = 7.9 Hz, 2 H, *H20*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 22.3 (CH₂), 23.1 (CH₂), 25.6 (CH₂, *C16*), 36.6 (CH₂), 40.5 (CH₂), 44.4 (CH, *C6*), 47.2 (CH, *C3a*), 60.5 (C, *C1*), 65.3 (CH, *C3*), 78.3 (CH, *C9*), 82.1 (C, *C8*), 117.5 (CH, *C7*), 118.2 (C, *C4*), 126.7 (CH, *Ph*), 127.5 (CH, *Ph*), 127.9 (CH, *Ph*), 128.1 (CH, *Ph*), 128.6 (CH, *Ph*), 128.7 (CH, *Ph*), 139.5 (CH, *C5*), 142.4 (C, *Ph*), 144.3 (C, *Ph*), 148.5 ppm (C, *C7a*); H₁H-NOESY (600 MHz, CDCl₃) cross peaks: : *H3* / *Cy* (w), *H3* / *H20*, *H3a* / *Cy* (w), *H3a* / *H6* (w), *H3a* / *H20*, *H5* / *H11*, *H6* / *H7* (w), *H6* / *H11*, *H7* / *Cy*, *H7* / *H11*; Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren; HRMS: *m/z* calcd. for  $C_{27}H_{27}N$ : 365.2143 [*M*⁺]; found: 365.2143.

# 4.3.3 Synthesen zum Herbindol A

2-Bicyclo[2.2.1]hepta-2,5-dien-2-yl-3-butin-2-ol (40)



In anaerober Atmosphäre wird CeCl₃ (275.93mg, 1.27mmol) in THF (abs.) gelöst vorgelegt, bei 0°C mit Ethinylmagnesiumbromid (2.54ml, 1.27mmol, 0.5M) versetzt, 90min bei 0°C gerührt, mit **41** (100mg, 0.75mmol) versetzt, weitere 60min bei 0°C gerührt, mit 10% iger Essigsäure (5ml) gequenscht, mit Et₂O extrahiert, mit ges. NaCl₄- und ges. NaHCO₃-Lösung gewaschen, getrocknet und eingedampft. Das Diastereomerengemisch (ca.1:1.3) **40** (125mg, 0.78mmol, >99% d.Th.) wird als oranges Öl in reiner Form erhalten.

## Hauptisomer:

 $(C_{11}H_{12}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.51 (s, 2 H, *H11*), 1.55 (s, 3 H, *H4*), 1.95-1.97 (m, 1 H, *H1*), 2.41 (s, br, 1 H, *OH*), 3.56 (d, J = 1.29 Hz, 2 H, *H10 und H7*), 6.47 (m, 1 H, *H6*), 6.69-6.70 (m, 1 H, *H8*), 6.81-6.84 ppm (m, 1 H, *H9*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 27.50 (CH₃, *C4*), 49.88 (CH, *C10*), 50.11 (CH, *C7*), 66.91 (C, *C3*), 71.58 (CH₂, *C11*), 73.22 (CH, *C1*), 85.85 (C, *C2*), 135.42 (CH, *C6*), 142.69 (CH, *C9*), 142.76 (CH, *C8*), 160.31 ppm (C, *C5*);

Charakteristische peaks des Nebenisomers:

 $(C_{11}H_{12}O)$ : ¹H-NMR (CDCl₃, 400MHz):  $\delta$ = 1.51 (s, 2 H, *H11'*), 1.55 (s, 3 H, *H4'*), 2.00-2.01 (m, 1 H, *H1'*), 3.56 (d, J = 1.29 Hz, 2 H, *H10' und H7'*), 6.51 (m, 1 H, *H6'*), 6.69-6.70 (m, 1 H, *H8'*), 6.81-6.84 ppm (m, 1 H, *H9'*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$ = 27.73 (CH₃, *C4'*), 49.93 (CH, *C10'*), 50.32 (CH, *C7'*), 73.18 (CH₂, *C11'*), 73.33 (CH, *C1'*), 135.74 (CH, *C6'*), 142.69 (CH, *C9'*), 142.78 (CH, *C8'*), 160.39 ppm (C, *C5'*);

Isomerengemisch:

IR: v=3939.78 (m), 3430.13 (s), 3306.65 (s), 3119.58 (m), 3066.35 (s), 2932.89 (s), 2868.13 (s), 2112.99 (m), 1702.22 (s), 1618.89 (m), 1554.13 (m), 1451.53 (s), 1366.68 (s), 1332.09 (s), 1301.67 (s), 1247.48 (s), 1233.14 (s), 1216.16 (s), 1195.35 (s), 1149.47 (s), 1101.35 (s), 1088.72 (s), 1063.99 (s), 1029.91 (s), 1013.36 (s), 935.81 (s), 912.85 (s), 878.59 (s), 869.38 (s), 826.99 (s), 808.54 (s), 787.40 (m), 772.94 (m), 734.13 (s), 715.01 (s), 646.58 (s), 572.90 (m), 547.87 (m), 528.75 (m), 501.46 (m).

1-(3-Bicyclo[2.2.1]hepta-2,5-dienyl)ethanon (41)



In anaerober Atmosphäre werden jeweils 3-Butin-2-on (500mg, 7.35 mmol) und frisch destilliertes Cyclopentadien (600mg, 8.82mmol) in 2 ml DCM (abs.) gelöst vorgelegt, zusammengegeben, 6h bei RT gerührt und am HV eingedampft. **41** (420mg, 3.13mmol, 43% d.Th.) wird als gelbes Öl in reiner Form erhalten.

 $(C_9H_{10}O)$ : ¹H-NMR (CDCl₃, 400MHz)  $\delta$ = 1.80-1.81 (m, 2 H, *C9*), 1.97 (s, 3 H, *C1*), 3.48-3.49 (m, 1 H, *C5*), 3.68-3.69 (m, 1 H, *C8*), 6.45-6.47 (m, 1 H, *C7*), 6.57-6.58 (m, 1 H, *C6*), 7.39 ppm (d, J = 3.21 Hz, 1 H, *C4*); ¹³C-NMR (CDCl₃, 100MHz):  $\delta$  = 26.06 (CH₃, *C1*), 48.22 (CH, *C8*), 51.55 (CH, *C5*), 73.16 (CH₂, *C9*), 141.67 (CH, *C7*), 143.39 (CH, *C6*), 156.63 (CH, *C4*), 158.03 (C, *C3*), 193.93 ppm (C, *C2*); IR: v = 3418.94 (s), 3065.01 (s), 2965.99 (s), 1714.35 (s), 1660.76 (s), 1585.28 (s), 1552.88 (s), 1423.46 (s), 1360.08 (s), 1318.47 (s), 1292.62 (s), 1238.69 (s), 1165.89 (s), 1045.86 (s), 949.15 (s), 908.79 (s), 868.00 (s), 845,14 (s), 824.70 (s), 805.91 (s), 795.33 (s), 757.44 (s), 715.72 (s), 679.86 (s), 640.59 (s), 600.39 (s), 560.82 (s), 505.95 (m), 486.19 (s), 445.09 (m).

1-(2,3,3a,6a-Tetrahydro-1,2,4-(epimethantriyl)pentalen-4-(1*H*)-yl)ethan-1-on (**42**)



**3a** (7mg, 2mol-%) wird unter Argon in Xylol (0.5ml/mmol) gelöst vorgelegt, mit TFA (0.02eq) versetzt, 5 min bei RT gerührt, mit **40** (100mg, 0.62mmol) und Pyrrol (42mg, 0.62mmol) versetzt, 5h bei 145°C gerührt, auf RT abgekühlt, eingedampft und am HV getroknet. Im Rohspektrum wurden die folgenden charakteristischen peaks von **42** detektiert:  $(C_{11}H_{12}O)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.15$  (s, 3 H, *H8*), 2.71 (d, J = 2.3 Hz, 1 H), 6.02 (d, J = 5.6 Hz, 1 H, *H2*), 6.15 ppm (dd, J = 5.6, 3.0 Hz, 1 H, *H3*); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta = 25.7$  (CH, *C9/C10/C11*), 26.0 (CH, *C9/C10/C11*), 28.4 (CH₃, *C8*), 24.4 (CH, *C9/C10/C11*), 31.6 (CH₂, *C7*), 50.8 (CH, *C6*), 62.6 (CH, *C5*), 71.6 (C, *C4*), 134.3 (CH, *C3*), 136.7 (CH, *C2*), 210.2 ppm (C, *C1*).

(Z)-1,2-Dibrom-3-methylpent-1-en-4-in-3-ol + (Z)-1,2-dibrom-3-(bromomethyl)pent-1-en-4-in-3-ol (43)



Das Produktgemisch **44** (278mg, 1.2mmol) wird in THF abs. (0.5ml/mmol) gelöst vorgelegt, auf 0°C abgekühlt, 10min bei 0°C gerührt, tropfenweise mit Ethinylmagnesiumbromid (1.1eq) versetzt, 12h bei RT gerührt, mit ges. NaHCO₃-Lösung neutralisiert, mit EE extrahiert, getrocknet, filtriert, eingedampft und mittels MPLC gereinigt (P/EE 10:1). Das Produktgemisch (1:1) **43** (164mg) wird als gelbes Öl erhalten.

 $(C_6H_6Br_2O)$  und  $(C_6H_5Br_3O)$ : ¹H NMR (400 MHz, CDCl₃): d = 1.69 (s, 3 H, H4), 2.67 (s, 1 H, H10a), 2.75 (s, 1 H, H10b), 3.73 (s, 2 H, H6 und H12), 7.41 (s, 1 H, H3/H9), 7.51 ppm (s, 1 H, H3/H9); ¹³C NMR (100 MHz, DEPT, CDCl₃): d = 29.6 (CH₃, C4), 40.0 (CH₂, C10), 71.6 (C, C5/C11), 73.7 (C, C5/C11), 74.7 (CH, C6/C12), 75.7 (CH, C6/C12), 80.0 (C, C1/C7), 83.3 (C, C1/C7), 110.5 (CH, C3/C9), 113.6 (CH, C3/C9), 130.7 (C, C2/C8), 136.1 ppm (C, C2/C8).

(Z)-3,4-Dibrombut-3-en-2-on und (Z)-1,3,4-tribromobut-3-en-2-on + (Z)-1,3,4-tribromobut-3-en-2-on⁸⁹ (**44**)



3-Buton-2-on (185mg, 2.7mmol) wird in THF vorgelegt, portionsweise mit NBS (1.45, 8.1mmol) versetzt, 1h unter Rückfluss gekocht, eingedampft und mittels MPLC gereinigt (P/EE 10:1). Die (*Z*)-Isomere⁸⁹ **44** (278mg) werden als Produktgemisch (A:B – 1.3:1) als gelbes Öl erhalten. ( $C_4H_4Br_2O$ ) und ( $C_4H_3Br_3O$ ): ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.46-2.47$  (m, 3 H, *H1*), 4.34 (s, 2 H, *H5*), 8.12 (s, 1 H, *H4*), 8.27 ppm (s, 1 H, *H8*); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta = 27.0$  (CH₃, *C1*), 31.2 (CH₂, *C5*), 126.5 (CH, *C4/C8*), 127.4 (C, *C3/C7*), 128.4 (CH, *C4/C8*), 132.0 (C, *C3/C7*), 184.2 (C, *C6*), 189.6 ppm (C, *C2*).

1,3,5-Trimethylcyclohexan-1,2-diol (45)



Unter starkem Rühren wird Pd/C (870mg, 0.41mmol) in trockenem MeOH in einer H₂-Atmosphäre für 30min bei RT vorhydriert, mit **27** (640mg, 4.1mmol) versetzt und 72h bei RT unter H₂ gerührt. Abschließend wird unter Schutzgas filtriert, gründlich mit DCM (1%MeOH) gewaschen und mittels MPLC (DCM, 1% MeOH) gereinigt. Das Diastereomerengemisch (3:1) **45** (564mg, 3.56mmol, 88% d.Th.) wird als weißer FS isoliert. (Bei einem Überschuss an Pd/C wird ein Teil **45** oxidiert.)

 $(C_9H_{18}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.67-0.77$  (m, *3Isomere*), 0.87 (d, J = 6.4 Hz. 3 H, *H9*), 0.89-0.99 (m, *3Isomere*), 1.01 (d, J = 6.3 Hz, 3 H, *H8*), 1.11 (d, J = 7.2 Hz, 3 H, *H8*`), 1.26 (s, 3 H, *H7*`), 1.26 (s, 3 H, *H7*), 1.57-1.73 (m, *3Isomere*), 1.76-1.93 (m, *3Isomere*), 2.89 (d, J = 9.9 Hz, 1 H, *H1*), 2.97 (d, J = 10.5 Hz, 1 H, *H1*``), 3.01 ppm (d, J = 8.4 Hz, 1 H, *H1*`); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta = 18.8$  (CH₃, *C7*), 21.7 (CH₃), 26.9 (CH/CH₃), 27.7 (CH/CH₃), 34.7 (CH), 42.3 (CH₂, *C4*), 46.7 (CH₂, *C3*), 72.0 (C, *C2*), 80.9 ppm (CH, *C1*).

1,3,5-trimethylcyclohex-4-en-1,2-diol⁷⁴ (48)



 $K_3$ [Fe(CN)₆] (9.8 g, 30 mmol),  $K_2$ CO₃ (4.12 g, 30 mmol) and  $K_2$ OsO₄*2H₂O (34 mg, 0.1 mmol)} werden in dem Lösungsmittelgemisch H₂O/tBuOH (1:1) vorgelegt, 5 min bei RT gerührt, mit Methansulfonamid (0.95 g, 10 mmol) versetzt, auf 10°C abgekühlt, mit 1,3,5-Trimethylcyclohexan-1,4-dien (1.22 g, 10 mmol) versetzt und 16h bei 10°C gerührt. Nach weiteren 30 min Rührzeit bei RT wird Na₂SO₃ (10g) hinzugegeben, weitere 45 min bei RT gerührt und 3 Mal mit Et₂O extrahiert, mit brine gewaschen, getrocknet und eingedampft.⁷⁴ Das Diastereomerengemisch (1:0.04) **48** (733mg, 4.69 mmol, 73% d.Th.) wird als weißer FS isoliert.

 $(C_9H_{16}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 1.03 (d, J = 7.0 Hz, 3 H, *H7*), 1.22 (s, 3 H, *H8*), 1.57 (s, 3 H, *H9*), 1.99-2.13 (m, 3 H, *H1 und H4*), 2.15 (s, br, 1 H, *OH*), 2.88 (s, br, 1 H, *OH*), 2.99 (d, J = 8.7 Hz, 1 H, *H2*), 5.09 ppm (s, 1 H, *H6*); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta$  = 18.5 (CH₃), 22.9 (CH₃), 25.9 (CH₃), 35.2 (CH, *C1*), 43.8 (CH₂, *C4*), 71.4 (C, *C3*), 78.9 (CH, *C2*), 125.6 (CH, *C6*), 129.9 ppm (C, *C5*);

2,4-Dimethyl-6-oxoheptanal⁷² (49)



NaIO₄ (1.4 eq) wird in so wenig H₂O wie nötig bei 70°C gelöst und unter kräftigem Rühren mit Kieselgel versetzt, bis ein feines Pulver entsteht. Das mit NaIO₄ überzogene Kieselgel wird in DCM suspendiert, unter kräftigem Rühren mit dem Isomerengemisch (3:1) **45** (1 eq) versetzt und 1h unter Argon bei RT gerührt. Abschließend wird im Schutzgas filtriert, gründlich mit DCM gewaschen und im HV eingedampft. Das Isomerengemisch (dr verändert sich nicht) **49** wird als farblose Flüssigkeit (quantitativ) erhalten und als Rohprodukt weiter umgesetzt. (**49** ist sehr empfindlich und oxidiert bereits an der Luft zu **50**.)

 $(C_9H_{16}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.83-0.84$  (d, J = 6.7 Hz, 3 H, H9[°]), 0.86 (d, J = 7.0 Hz, 3 H, H9), 0.75-0.95 (m, *2Isomere*), 1.03 (d, J = 7.0 Hz, 3 H, H8), 1.04 (d, J = 7.0 Hz, 3 H, H8), 1.08-1.23 (m, *2Isomere*), 1.46-1.54 (m, *2Isomere*), 1.62-1.69 (m, *2Isomere*), 1.96-2.06 (m, *2Isomere*), 2.02 (3, 3 H, H7[°]), 2.03 (s, 3 H, H7), 2.16-2.38 (m, *2Isomere*), 9.52-9.54 ppm (m, 2 H, *H1 und H1[°]*); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta = 12.7$  (CH₃, C9[°]), 13.6 (CH₃, C9), 18.7 (CH₃, C8[°]), 19.5 (CH₃, C8), 25.9 (CH₂, C7[°]), 26.3 (CH₂, C7), 29.8 (CH, C4), 36.5 (CH₂, C3[°]), 37.2 (CH₂, C3), 43.5 (CH, C2), 50.1 (CH₂, C5), 51.1 (CH₂, C5[°]), 204.8 (CH, C1[°]), 204.9 (CH, C1), 208.2 (C, C6[°]), 208.3 ppm (C, C6).

2,4-Dimethyl-6-oxoheptansäure (50)



Das Isomerengemisch **50** (2.75:1) entsteht durch Oxidation von **49** an der Luft und wird als hellgelbe Flüssigkeit erhalten.

 $(C_9H_{16}O_3)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 0.84 (d, J = 6.6 Hz, 3 H, *H8*[•]), 0.88 (d, J = 6.6 Hz, 3 H, *H8*), 1.13 (d, J = 6.9 Hz, 3 H, *H9*[•]), 1.14 (d, J = 6.9 Hz, 3 H, *H9*), 1.15-1.21 (m, 1 H), 1.26-1.37 (m), 1.51-1.58 (m), 1.60-1.7 (m), 1.99-2.04 (m), 2.07 (s, 3 H, *H7*), 2.11 (s, 3 H, *H7*[•]), 2.19 (d, J = 8.0 Hz, 1 H), 2.22 (d, J = 8.0 Hz, 1 H), 2.3 (d, J = 5.6 Hz, 1 H), 2.34 (d, J = 5.6 Hz, 1 H), 2.43-2.53 ppm (m); ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta$  = 17.8 (CH₃, *C9*), 19.7 (CH₃, *C8*), 27.3 (CH, *C4*), 30.3 (CH₃, *C7*), 37.1 (CH, *C2*), 40.7 (CH₂, *C3*), 51.2 (CH₂, *C5*), 182.1 (C, *C1*), 208.6 ppm (C, *C6*);

1-(2-hydroxy-3,5-dimethylcyclopentyl)ethan-1-on^{90,73} (51)



Das Isomerengemisch **49** (28mg, 0.18mmol) wird in THF (abs.) gelöst vorgelegt, mit TBD (25mg, 0.18mmol) versetzt, 12h bei RT gerührt, mit ges. NH₄Cl-Lösung gequencht, 3 Mal mit Et₂O extrahiert, getrockenet, filtriert und eingedampft. Es wurden 18.6mg eines gelben Öls als Rohprodukt erhalten, in dem folgende charakteristische peaks detektiert wurden:

 $(C_9H_{16}O_2)$ : ¹³C NMR (100 MHz, DEPT, CDCl₃):  $\delta = 17.4$  (CH₃, *C7*), 18.7 (CH₃[•]), 20.6 (CH₃[•]), 21.9 (CH₃, *C6*), 30.0 (CH₃, *C9*[•]), 30.3 (CH₃, *C9*), 32.6 (CH, *C5*), 35.2 (CH[•]), 38.3 (CH₂, *C4*), 38.5 (CH[•]), 40.0 (CH, *C3*), 40.5 (CH₂[•]), 67.9 (CH, *C1*), 68.5 (CH, *C1*[•]), 81.1 (CH, *C2*[•]), 81.9 (CH, *C2*), 210.4 (C), 211.2 (C), 211.7 ppm (C).

# 4.4 Experimentelle Daten zum Kapitel "Dione"

# 4.4.1 Synthesen zur Optimierung der [3]Dendralen-Bildung

(a) Allgemeine Vorschrift

Der Katalysator (0.02eq) wird unter Argon in Toluol abs. (0.5ml/mmol) gelöst vorgelegt, mit dem Additiv (0.02eq) versetzt, 5min bei RT gerührt, mit **24g** (1eq) und dem 1,3-Dion **56** (1eq) versetzt, 5h bei 100°C unter Argon (Standardbedingungen) oder 5min bei 200°C unter Mikrowellen-Bestrahlung (Mikrowellenbedingungen) gerührt, eingedampft und am HV getrocknet.

(b) Synthesen

(E)-10-Methylen-7-phenyl-9-styrylspiro[4.5]dec-8-en-4,6-dion (57a)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclohexan-1,3-dion **56a** (43mg, 0.38mmol) unter Standardbedingungen (**14a**, TFA) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) ein Produktgemisch (17mg) aus **57a** (7mg, 0.02mmol, 5% d.Th) und **62a** (10mg, 0.03mmol, 7% d.Th.) als gelbes Öl isoliert wird. Die Zuordnung erfolgte am Spektrum einer gemischten Fraktion von **57a** (vermutlich instabil auf der Säule) und **62a**.

 $(C_{25}H_{22}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.60-1.68$  (m, 1 H, *CH*₂), 1.71-1.82 (m, 1 H, *CH*₂), 1.88-1.99 (m, 1 H, *CH*₂), 2.22-2.30 (m, 1 H, *CH*₂), 2.63-2.70 (m, 1 H, *CH*₂), 2.80-2.87 (m, 1 H, *CH*₂), 4.40 (d, J = 2.3 Hz, 1 H, *H7*), 4.70 (d, J = 0.7 Hz, 1 H, *H15_a*), 5.49 (s, 1 H, *H15_b*), 6.05-6.06 (m, 1 H, *H8*), 6.79 (dt, J = 16.3, 1.0 Hz, 1 H, *H13/H14*), 6.95 (d, J = 16.3 Hz, 1 H, *H13/H14*), 7.08 (m, 2 H, *Ph*), 7.22-7.26 (m, 6 H, *Ph*), 7.33-7.36 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 16.7$  (CH₂, *C2*), 39.2 (CH₂, *C1/C3*), 39.5 (CH₂, *C1/C3*), 59.6 (CH, *C7*), 81.0 (C, *C5*), 108.3 (CH₂, *C15*), 119.4 (CH, *C8*), 127.53 (2CH, *Ph*), 127.9 (CH), 128.0 (CH), 128.6 (2CH, *Ph*), 128.7 (2CH, *Ph*), 129.3 (2CH, *Ph*), 132.4 (CH, *C13/C14*), 132.7 (CH, *C13/C14*), 137.0 (C), 138.0 (C), 142.1 (C), 150.5 (C), 205.7 (C, *C4/C6*), 207.4 ppm (C, *C4/C6*).



(E)-6-Methylen-9-phenyl-7-styrylspiro[4.4]non-7-en-1,4-dion (57b)

Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclopentan-1,3-dion **56b** (44mg, 0.38mmol) unter Standardbedingungen (**3a**, TFA) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM, 1:1) **57b** (8mg, 0.02mmol, 6%) als gelbes Öl isoliert wird.

 $(C_{24}H_{20}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.90-2.00$  (m, 1 H, *CH*₂), 2.24-2.36 (m, 1 H, *CH*₂), 2.45-2.55 (m, 1 H, *CH*₂), 2.64-2.86 (m, 1 H, *CH*₂), 4.44 (s, 1 H, *H14_a*), 4.57 (d, J = 1.0 Hz, 1 H, *H6*), 5.31 (s, 1 H, *H14_b*), 6.24 (d, J = 1.0 Hz, 1 H, *H7*), 6.73 (d, J = 16.3 Hz, 1 H, *H12/H13*), 6.99 (d, J = 16.1 Hz, 1 H, *H12/H13*), 7.06-7.08 (m, 2 H, *Ph*), 7.16-7.30 (m, 6 H, *Ph*), 7.39 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 36.2$  (CH₂), 36.4 (CH₂), 59.0 (CH, *C6*), 73.6 (C, *C4*), 106.5 (CH₂, *C14*), 119.5 (CH, *C7*), 126.6 (2CH, *Ph*), 128.1 (CH, *Ph*), 128.1 (CH, *Ph*), 128.7 (2CH, *Ph*), 128.7 (2CH, *Ph*), 133.1 (CH, *C12/C13*), 133.7 (CH, *C12/C13*), 136.9 (C), 137.4 (C), 142.3 (C), 151.4 (C), 210.2 (C, *C3/C5*), 213.3 ppm (C, *C3/C5*); IR:  $\nu = 3291$  (w), 3060 (w), 3030 (w), 2924 (m), 2854 (m), 1776 (m), 1687 (s), 1609 (m), 1589 (m), 1494 (w), 1460 (m), 1307 (m), 1242 (m), 1218 (m), 1175 (m), 1147 (m), 965 (w), 99 (m), 754 (m), 731 (m), 698 cm⁻¹ (s); MS (EI): *m/z* (%) = 340 [M⁺] (100), 236 (50), 154 (57), 105 (65), 91 (60); HRMS: *m/z* calcd for C₂₄H₂₀O₂: 340.1458 [*M*⁺]; found: 340.1457.

(E)-2'-Methylen-5'-phenyl-3'-styrylspiro[chroman-3,1'-cyclopentan]-3'-en-2,4-dion (57c)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (200mg, 0.77mmol) und 4-Hydroxycumarin **56c** (124mg, 0.77mmol) unter Standardbedingungen (ohne Additiv) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) das Isomerengemisch **57c** (102mg, 0.25mmol, 32% d.Th.) als hellgelber Schaum isoliert wird.

### Hauptisomer:

 $(C_{28}H_{20}O_3)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 4.61$  (s, 1 H, *H7*), 5.04 (s, 2 H, *H15*), 5.69 (s, 1 H, *H8*), 6.25 (s, 1 H, *H13/H14*), 6.96-7.00 (m, 3 H, *CH*), 7.13-7.14 (m, 1 H, *CH*), 7.26-7.43

(m, 6 H, *Ar*), 7.52-7.54 (m, 3 H, *Ar*), 7.57 (td, J = 8.4, 1.6 Hz, 1 H, *Ar*), 8.09 ppm (dd, J = 7.8, 1.5 Hz, 1 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 60.6 (CH, *C7*), 73.4 (C, *C5*), 109.2 (CH₂, *C15*), 117.5 (CH, *C19*), 118.9 (C, *C3*), 119.1 (CH, *C8*), 124.9 (CH, *C17*), 126.7 (2CH, *Ph*), 127.6 (CH), 128.1 (CH), 128.4 (2CH, *Ph*), 128.5 (2CH, *Ph*), 128.6 (2CH, *Ph*), 128.8 (CH), 131.0 (CH), 133.2 (CH), 136.7 (2C), 137.2 (CH), 142.6 (C), 149.5 (C, *C2/C10*), 154.5 (C, *C2/C10*), 165.7 (C, *C6*), 191.0 ppm (C, *C4*);

Charakteristische peaks des Nebenisomers:

 $(C_{28}H_{20}O_3)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 5.05$  (d, J = 0.9 Hz, 2 H, H15`), 5.32 (d, J = 1.8 Hz, 1 H, H7`), 5.61 (s, 1 H, H8`), 6.40 ppm (s, 1 H, H13`/H14`); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 60.3$  (CH, C7`), 72.4 (C, C5`), 108.4 (CH₂, C15`), 116.9 (CH, C19`), 119.2 (CH, C8`), 124.75 (CH, C17`), 132.3 (CH`), 133.2 (CH`), 136.5 (CH`), 136.8 (C`), 141.6 (C`), 153.8 (C, C2`/C10`), 169.1 (C, C6`), 188.3 ppm (C, C4`).

Isomerengemisch:

IR: v = 1768 (s), 1687 (s), 1609 (m), 1587 (m), 1494 (w), 1479 (w), 1459 (m), 1306 (s), 1242 (m), 1217 (m), 1174 (s), 1147 (s), 1029 (w), 1001 (w), 962 (m), 895 (m), 754 (s), 694 (s), 666 cm⁻¹ (w); MS (EI): m/z (%) = 404 [ $M^+$ ] (18), 284 (100); HRMS: m/z calcd for C₂₈H₂₀O₃: 404.1407 [ $M^+$ ]; found: 404.1407.

(E)-1',6'-Dimethylen-3',4',8'-triphenyl-8b'-styryl-1',3',3a',4',6',8',8a',8b'octahydrodispiro[cyclohexan-1,2'-as-indacen-7',1"-cyclohexan]-2,2",6,6"-tetraon (**58a**)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclohexan-1,3-dion **56a** (44mg, 0.38mmol) unter Standardbedingungen (**3a**, TFA) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, ½% MeOH) **58a** (39mg, 0.06mmol, 28% d.Th.) als gelber Schaum isoliert wird.

 $(C_{50}H_{44}O_4)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 1.18-1.38 (m, 4 H, *CH*₂), 1.51-1.62 (m, 2 H, *CH*₂), 2.05-2.25 (m, 2 H, *CH*₂), 2.30-2.37 (m, 2 H, *CH*₂), 2.42-2.56 (m, 2 H, *CH*₂), 2.94 (dt, J = 12.6, 2.8 Hz, 1 H, *CH*), 3.05 (d, J = 12.9 Hz, 1 H, *CH*), 3.66 (d, J = 12.6 Hz, 1 H, *CH*), 3.87 (s, 1 H, *H6a*), 3.95-3.96 (m, 1 H, *CH*), 3.98 (d, J = 3.1 Hz, 1 H, *CH*), 4.42 (s, 1 H, *H16a*), 4.53 (s, 1 H, *H6b*), 5.46 (s, 1 H, *H16b*), 6.41-6.44 (m, 3 H, *C7 und Ph*), 6.59 (d, J = 16.2 Hz, 1 H, *H14/H15*), 6.72 (d, J = 16.2 Hz, 1 H, *H14/H15*), 6.86-6.9 (m, 4 H, *Ph*), 7.05-7.20 (m, 7 H, *Ph*), 7.26-7.32 (m, 5 H, *Ph*), 7.43-7.45 ppm (m, 2 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$ = 15.8 (CH₂, *C19/C24*), 15.9 (CH₂, *C19/C24*), 40.2 (CH₂), 40.5 (CH₂), 40.7 (CH₂), 40.8 (CH₂), 42.9 (CH), 44.6 (CH), 52.6 (CH), 57.9 (C, *C13*), 59.0 (CH), 60.7 (CH), 78.1 (2C, *C1 und C11*), 105.8 (CH₂, *C16*), 115.2 (CH₂, *C6*), 124.2 (CH, *C7*), 126.3 (3CH, *Ph*), 126.4 (CH,

*Ph*), 126.9 (CH, *Ph*), 127.3 (2CH, *Ph*), 127.6 (CH, *Ph*), 127.6 (CH, *Ph*), 128.2 (CH, *Ph*), 128.5 (7CH, *Ph*), 129.0 (CH, *Ph*), 129.6 (CH, *Ph*), 130.9 (CH, *Ph*), 131.6 (CH, *C14/C15*), 133.2 (CH, *C14/C15*), 134.5 (C), 135.1 (C), 138.0 (C), 141.4 (C), 142.2 (C), 150.3 (C), 154.7 (C), 209.7 (C), 210.9 (C), 211.3 (C), 211.4 ppm (C); IR:  $\nu = 3053$  (w), 3026 (w), 2132 (w), 1650 (m), 1650 (m), 1593 (m). 1447 (m), 1340 (m), 1308 (m), 1283 (m), 1190 (m), 1156 (m), 1099 (m), 1076 (m), 1028 (m), 982 (m), 924 (m), 883 (m), 849 (w), 760 (m), 693 cm⁻¹ (m); MS (EI): m/z (%) = 708 [ $M^+$ ] (100), 662 (45), 647 (71), 617 (32). Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

(E)-1',6'-Dimethylen-3',4',8'-triphenyl-8b'-styryl-1',3',3a',4',6',8',8a',8b'octahydrodispiro[cyclopentan-1,2'-as-indacen-7',1"-cyclopentan]-2,2",5,5"-tetraon (**58b**)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclopentan-1,3-dion **56b** (38mg, 0.38mmol) unter Standardbedingungen (**17**, ohne Additiv) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM, 5:1) **58b** (26mg, 0.04mmol, 10% d.Th.) als gelbes Öl isoliert wird.

 $(C_{48}H_{40}O_4)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.47-1.52$  (m, 1 H, CH₂), 1.55-1.62 (m, 1 H, *CH*₂), 2.21-2.27 (m, 1 H, *CH*₂), 2.33-2.60 (m, 5 H, *CH*₂), 3.06 (dt, J = 12.6, 3.2 Hz, 1 H, *CH*), 3.07 (d, J = 12.8 Hz, 1 H, CH), 3.41 (d, J = 12.8 Hz, 1 H, CH), 3.78 (d, J = 13.0 Hz, 1 H, CH), 3.92-3-93 (m, 1 H, H8), 3.98 (d, J = 0.8 Hz, 1 H, H6a), 4.46 (s, 1 H, H16a), 4.53 (d, J = 0.8 Hz, 1 H, H6b), 5.55 (s, 1 H, H16b), 6.51 (d, J = 7.3 Hz, 1 H, H7), 6.53 (t, J = 3.2 Hz, 1 H, CH), 6.55 (d, J = 16.5 Hz, 1 H, H14/H16), 6.70 (d, J = 16.3 Hz, 1 H, H14/H16), 6.97 (t, J = 7.7 Hz, 2 H, Ph), 7.13-7.18 (m, 3 H, Ph), 7.20-7.23 (m, 2 H, Ph), 7.24-7.28 (m, 5 H, Ph), 7.35-7.37 (m, 3 H, *Ph*), 7.39 (d, J = 7.6 Hz, 2 H, *Ph*), 7.44-7.45 ppm (d, J = 7.4 Hz, 2 H, *Ph*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 36.5$  (CH₂), 36.6 (CH₂), 37.0 (CH₂), 37.1 (CH₂), 42.9 (CH), 44.8 (CH, C8), 52.7 (CH), 58.1 (C, C13), 58.5 (CH), 60.4 (CH), 71.8 (C, C1/C11), 72.6 (C, C1/C11), 106.6 (CH₂, C16), 116.2 (CH₂, C6), 123.9 (CH, C7), 126.3 (2CH, Ph), 126.6 (2CH, Ph), 127.2 (CH, Ph), 127.4 (2CH, Ph), 127.8 (2CH, Ph), 128.5 (2CH, Ph), 128.6 (2CH, Ph), 128.6 (2CH, Ph), 128.7 (CH, Ph), 128.7 (CH, Ph), 129.2 (CH, Ph), 129.7 (CH, Ph), 131.1 (CH, Ph), 132.2 (CH, C14/C15), 132.7 (CH, C14/C15), 133.9 (C), 134.2 (C), 137.7 (C), 140.7 (C), 142.0 (C), 147.7 (C), 152.7 (C), 214.2 (C), 214.6 (C), 214.9 (C), 215.2 ppm (C); IR: v = 1720 (s), 1602 (s), 1494 (w), 1454 (w), 1415 (w), 1246 (m), 1183 (m), 1076 (m), 1030 (m), 970 (m), 911 (w), 793 (w), 747 (m), 699 cm⁻¹ (s); MS (EI): m/z (%) = 680

[M+] (100), 647 (52), 589 (27), 577 (42), 530 (49), 515 (29); HRMS: m/z calcd for C₄₈H₄₀O₄: 680.2932  $[M^+]$ ; found: 680.2921.

(E)-1',6'-Dimethylen-3',4',8'-triphenyl-8b'-styryl-1',3',3a',4',6',8',8a',8b'octahydrodispiro[chroman-3,2'-as-indacen-7',3"-chroman]-2,2",4,4"-tetraon (**58c**)



Nach Vorschrift **4.4.1 (a)** wird aus **24g** (100mg, 0.38mmol) und 4-Hydroxycumarin **56c** (62mg, 0.38mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) ein Produktgemisch (15mg) aus **58c** und **65c** als gelbes Öl isoliert wird. Folgende charakteristische Peaks von **58c** wurden detektiert:

 $(C_{56}H_{40}O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 3.23$  (d, J = 13.1 Hz, 1 H, *CH*), 3.64 (d, J = 12.7 Hz, 1 H, *CH*), 3.99 (s, 1 H, *H6a*), 4.72 (s, 1 H, *H6b*), 4.81 (s, 1 H, *H16a*), 5.67 ppm (s, 1 H, *H16b*); ¹³C NMR (100 MHz, CDCl₃);  $\delta = 42.9$  (CH), 44.9 (CH), 52.8 (CH), 57.9 (C, *C13*), 60.1 (CH), 62.3 (CH), 71.1 (C, *C1/C11*), 72.6 (C, *C1/C11*), 108.3 (CH₂, *C16*), 117.7 (CH₂, *C6*), 131.0 (CH), 131.9 (CH), 132.8 (C), 132.9 (CH), 133.3 (C), 136.9 (CH), 137.1 (C), 137.8 (CH), 140.8 (C), 141.7 (C), 148.3 (2C), 152.6 (C), 154.3 (C), 154.6 (C), 167.8 (2C, *C24 und C32*), 192.5 (C, *C17/C25*), 193.7 ppm (C, *C17/C25*); MS (EI): *m/z* (%) = 808 [M+] (15), 646 (35), 603 (81), 582 (52), 566 (100), 491 (21), 472 (68); HRMS: *m/z* calcd for C₅₆H₄₀O₆: 808.2819 [*M*⁺]; found: 808.2819.

(E)-3-Phenyl-2-(1-phenylpent-1-en-4-in-3-yl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-on (59a)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclohexan-1,3-dion **56a** (44mg, 0.38mmol) unter Standardbedingungen (**17**, ohne Additiv) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM,  $^{1}/_{4}$ % MeOH) das Isomerengemisch (1:1) **59a** (22mg, 0.06mmol, 16% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{22}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.93-2.04$  (m, 4 H,  $CH_2$  und/oder  $CH_2$ ), 2.16-2.58 (m, 8 H,  $CH_2$  und/oder  $CH_2$ ), 2.27 (d, J = 2.4 Hz, 1 H, H14/H14), 2.30 (d, J = 2.5 Hz, 1 H, H14/H14), 3.52-3.56 (m, 1 H, H11/H11), 3.60-3.64 (m, 1 H, H11/H11), 4.28 (d, 144)

J = 4.0 Hz, 1 H, *H7/H7*`), 4.30 (d, J = 3.6 Hz, 1 H, *H7/H7*`), 4.58 (dd, J = 6.1, 3.9 Hz, 1 H, *H8/H8*[`]), 4.65 (t, J = 4.7 Hz, 1 H, *H8/H8*[`]), 5.21 (s, 1 H, *H14/H14*[`]), 5.22 (s, 1 H, *H14/H14*[`]), 5.98 (dd, J = 12.8, 7.4 Hz, 1 H, *H12/H12*[`]), 6.00 (dd, J = 11.1, 5.6 Hz, 1 H, *H12/H12*[`]), 6.65 (d, J = 15.7 Hz, 1 H, *H15/H15*`), 6.80 (d, J = 15.7 Hz, 1 H, *H15/H15*`), 7.02-7.29 ppm (m, 20 H, Ph und Ph`); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 21.7$  (CH₂, Cl), 21.7 (CH₂, Cl^{*}), 23.9 (CH₂, C6), 23.9 (CH₂, C6[`]), 36.8 (CH₂, C2), 36.8 (CH₂, C2[`]), 40.3 (CH, C11 und C11[`]), 47.9 (CH, C7/C7[°]), 48.1 (CH, C7/C7[°]), 73.5 (CH, C14/C14[°]), 74.1 (CH, C14/C14[°]), 79.7 (C, C13/C13`) 79.9 (C, C13/C13`), 93.6 (CH, C8/C8`), 93.7 (CH, C8/C8`), 116.7 (C, C4/C4`), 116.8 (C, C4/C4[`]), 122.6 (CH, C12/C12[`]), 122.7 (CH, C12/C12[`]), 126.4 (2CH, Ph/Ph[`]), 126.5 (2CH, Ph/Ph`), 126.9 (CH, Ph/Ph`), 127.0 (CH, Ph/Ph`), 127.2 (2CH, Ph/Ph`), 127.2 (2CH, Ph/Ph`), 127.8 (CH, Ph/Ph`), 127.9 (CH, Ph/Ph`), 128.1 (CH, Ph/Ph`), 128.6 (2CH, Ph/Ph`), 128.6 (2CH, Ph/Ph`), 128.7 (2CH, Ph/Ph`), 128.7 (2CH, Ph/Ph`), 133.9 (CH, C15/C15`), 134.1 (CH, C15/C15`), 136.2 (C, Ph/Ph`), 136.3 (C, Ph/Ph`), 142.0 (C, Ph/Ph`), 142.1 (C, Ph/Ph`), 176.9 (C, C5/C5`), 177.3 (C, C5/C5`), 194.4 (C, C3/C3`), 194.5 ppm (C,  $C3/C3^{()}$ ; IR: v = 3284 (w), 3059 (w), 3029 (w), 2946 (w), 2366 (w), 2245 (w), 1601 (m), 1494 (w), 1452 (m), 1395 (m), 1229 (m), 1203 (m), 1175 (m), 1137 (m), 1064 (m), 909 (m), 856 (w), 728 (m), 698 cm⁻¹ (s); MS (EI): m/z (%) = 354 [M⁺] (45), 294 (41), 263 (55), 217 (58), 213 (98), 167 (20), 149 (24), 129 (35), 115 (28), 105 (100); HRMS: m/z calcd for  $C_{25}H_{22}O_2$ : 354.1614 [*M*⁺]; found: 354.1615.





Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und Cyclohexan-1,3-dion **56a** (44mg, 0.38mmol) unter Standardbedingungen (**17**, ohne Additiv) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, ¹/₂% MeOH) **60a** (12mg, 0.03mmol, 9% d.Th.) als gelber Schaum isoliert wird.

 $(C_{25}H_{22}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.73$  (quint, J = 6.7 Hz, 2 H, H2), 1.42-1.50 (m, 1 H, *CH*₂), 1.54-1.61 (m, 1 H, *CH*₂), 1.88-2.17 (m, 2 H, *CH*₂), 2.48 (ddt, J = 17.8, 5.5, 1.7 Hz, 1 H, *H10_a*), 2.94 (s, 1 H, *H13*), 3.11 (dddd, J = 18.0, 11.9, 3.9, 2.4 Hz, 1 H, *H10_b*), 3.52 (dd, J = 11.9, 5.5 Hz, 1 H, *H11*), 4.46 (m, 1 H, *H7*), 6.27 (m, 1 H, *H8*), 6.98-6.99 (m, 2 H, *Ph*), 7.00-7.07 (m, 2 H, *Ph*), 7.20-7.25 ppm (m, 6 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.7$  (CH₂, *C2*), 33.7 (CH₂, *C10*), 41.3 (CH₂), 42.7 (CH₂), 48.4 (CH, *C11*), 50.7 (CH, *C7*), 69.4 (C, *C5*), 76.3 (CH, *C13*), 84.2 (C, *C12*), 121.0 (C, *C9*), 127.5 (CH, *Ph*), 127.7 (CH, *Ph*), 128.6 (2CH, *Ph*), 128.8 (2CH, *Ph*), 129.3 (2CH, *Ph*), 136.1 (CH, *C8*), 139.1 (C, *Ph*), 139.4 (C, *Ph*), 210.1 (C, *C4/C6*), 213.8 ppm (C, *C4/C6*); IR: *v* = 3806 (w), 2934 (m), 2241 (m), 2118 (m), 1711 (s), 1599 (m), 1494 (m), 1455 (m), 1377 (s), 1262 (m), 1174 (m), 1076 (m), 1032 (m), 912 (w), 753 (m), 731 (m), 703 cm⁻¹ (m); MS (EI): *m/z* (%) = 354 [M⁺]

(27), 250 (48), 182 (21), 153 (18), 122 (29); HRMS: m/z calcd for C₂₅H₂₂O₂: 354.1614 [ $M^+$ ]; found: 354.1614. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen HSQC- und HMBC-Spektren.

9-Methylen-7,11-diphenylspiro[5.5]undecan-1,5-dion (61a)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (50mg, 0.19mmol) und Cyclohexan-1,3-dion **56a** (22mg, 0.19mmol) unter Standardbedingungen (**4a**, TFA) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM, 5:1) **61a** (5mg, 0.01mmol, 8% d.Th.) als gelbes Öl isoliert wird.

 $(C_{24}H_{24}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.52$  (quint, J = 7.2 Hz, 2 H, H5), 1.67 (t, J = 6.4 Hz, 2 H, H4/H6), 1.75 (t, J = 6.4 Hz, 2 H, H4/H6), 2.29 (dd, J = 12.4, 3.1 Hz, 2 H, H8_{äq}), 3.33 (t, J = 12.6 Hz, 2 H, H8_{ax}), 3.40 (dd, J = 13.7, 2.9 Hz, 2 H, H7), 4.78 (t, J = 1.5 Hz, 2 H, H10), 6.95-7.01 (m, 5 H, Ph), 7.13-7.19 ppm (m, 5 H, Ph); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.5$  (CH₂, C5), 36.2 (2CH₂, C8), 41.5 (CH₂, C4/C6), 43.3 (CH₂, C4/C6), 52.2 (2CH, C7), 71.1 (C, C2), 109.1 (CH₂, C10), 127.4 (2CH, Ph), 128.5 (4CH, Ph), 128.6 (4CH, Ph), 140.4 (2C, Ph), 146.8 (C, C9), 213.0 (C, C1/C3), 213.6 ppm (C, C1/C3).

8-Methylen-7,7-di((E)-styryl)-7,2,1,6-tetrahydrobenzofuran-3(2H)-on (62a)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (50mg, 0.19mmol) und Cyclohexan-1,3-dion **56a** (22mg, 0.19mmol) unter Standardbedingungen (**14a**,  $Ti(O^{i}Pr)_{4}$ ) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **62a** (25mg, 0.07mmol, 36% d.Th.) als gelbes Öl isoliert wird.

 $(C_{25}H_{22}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.04$  (quint, J = 6.3 Hz, 2 H, *H1*), 2.33 (t, J = 6.0 Hz, 2 H, *H6*), 2.51 (t, J = 6.3 Hz, 2 H, *H2*), 4.39 (d, J = 2.9 Hz, 1 H, *H11_a*), 5.07 (d, J = 2.9 Hz, 1 H, *H11_b*), 6.43 (d, J = 16Hz, 2 H, *H12/H13*), 6.50 (d, J = 16Hz, 2H, *H12/H13*), 7.13-7.17 (m, 2H, *Ph*), 7.20-7.17 (m, 4H, *Ph*), 7.32-7.34 ppm (m, 4H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 21.5$  (CH₂, *C1*), 23.5 (CH₂, *C6*), 37.3 (CH₂, *C2*), 56.0 (C, *C7*), 91.7 (CH₂, *C11*), 120.2 (C, *C4*), 126.6 (4CH, *Ph*), 127.5 (2CH), 128.5 (4CH, *Ph*), 129.8 (2CH), 130.5 (2CH), 136.8 (2C, *Ph*), 163.8 (C, *C8*), 173.0 (C, *C5*), 193.4 ppm (C, *C3*); MS (EI): *m/z* (%) =

354  $[M^+]$  (100), 263 (47), 165 (20), 115 (26), 105 (40); HRMS: m/z calcd for C₂₅H₂₂O₂: 354.1614  $[M^+]$ ; found: 354.1614.

2-((2Z,4E)-3-Ethinyl-1,5-diphenylpenta-2,4-dien-1-yl)-3-hydroxycyclohex-2-en-1-on (63a)



**24g** (100mg, 0.38mmol) wird unter Argon in Toluol (abs.) gelöst vorgelegt, mit TFA (2mol%) und Cyclohexan-1,3-dion **56a** (43mg, 0.38mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt und eingedampft. Es wird ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 2:1) **63a** (60mg, 0.17mmol, 44% d.Th.) als gelbes Öl isoliert wird.

 $(C_{25}H_{22}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.40$ -1.51 (m, 2 H, *H5*), 1.70 (t, J = 6.1 Hz, 2 H, *H4/H6*), 1.76 (t, J = 6.0 Hz, 2 H, *H4/H6*), 3.19 (s, 1 H, 1 H, *H13*), 5.60 (d, J = 9.7 Hz, 1 H, *H7*), 6.78 (d, J = 15.7 Hz, 1 H, *H10/H11*), 6.81 (d, J = 9.7 Hz, 1 H, *H8*), 6.85 (d, J = 15.8 Hz, 1 H, *H10/H11*), 6-98-7.18 (m, 8 H, *Ph*), 7.27 (d, J = 7.4 Hz, 2 H, *Ph*), 8.79 ppm (s, br, 1 H, *OH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 20.6$  (CH₂), 22.4 (CH₂), 36.1 (CH₂), 40.3 (CH, C7), 78.6 (C, *C12*), 84.1 (CH, *C13*), 116.7 (C, *C2*), 121.9 (C, *C9*), 125.6 (CH), 126.4 (2CH), 127.2 (2CH), 127.3 (CH), 127.9 (2CH), 128.4 (2CH), 128.7 (CH), 130.4 (CH), 136.9 (C, *Ph*), 142.9 (C, *Ph*), 144.4 (CH), 188.0 (C, *C4*), 192.7 ppm (C, *C3*); IR: v = 4052 (w), 3285 (w), 3061 (w), 3029 (w), 2927 (w), 2109 (w), 1953 (w), 1691 (m), 1609 (m), 1493 (m), 1453 (m), 1375 (m), 1311 (m), 1220 (m), 1177 (m), 1102 (m), 1074 (m), 1029 (m), 963 (m), 908 (m), 754 (m), 728 (m), 697 cm⁻¹ (s). MS (EI): m/z (%) = 354 [M⁺] (92), 311 (55), 294 (39), 283 (38), 265 (39), 255 (40), 243 (54), 228 (41), 217 (73), 201 (88), 170 (100); HRMS: m/z calcd for  $C_{25}H_{22}O_2$ : 354.1615 [ $M^+$ ]; found: 354.1615.

2-((2Z,4E)-3-Ethinyl-1,5-diphenylpenta-2,4-dien-1-yl)-3-hydroxycyclopent-2-en-1-on (63b)



**24g** (50mg, 0.19mmol) wird unter Argon in Toluol (abs.) gelöst vorgelegt, mit TFA (2mol-%) und Cyclopentan-1,3-dion **56b** (19mg, 0.19mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt und eingedampft. Es wird ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 5:1) **63b** (10mg, 0.03mmol, 16% d.Th.) als gelbes Öl isoliert wird.

 $(C_{24}H_{20}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.19-2.24$  (m, 2 H, *CH*₂), 2.43-2.52 (m, 2 H, *CH*₂), 3.37 (s, 1 H, *H12*), 5.23 (d, J = 9.9 Hz, 1 H, *H6*), 6.76 (d, J = 15.8 Hz, 1 H, *H9/H10*), 6.81 (d, J = 10.0 Hz, 1 H, *H7*), 6.97 (d, J = 15.8 Hz, 1 H, *H9/H10*), 7.18-7.44 ppm (m, 10 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 29.9$  (CH₂, *C4/C5*), 30.9 (CH₂, *C4/C5*), 40.3 (CH, *C6*), 77.8 (C, *C11*), 84.2 (CH, *C12*), 117.9 (C, C2), 121.5 (C, C8), 125.4 (CH), 125.8 (CH), 126.0 (2CH), 127.1 (2CH), 127.8 (2CH), 128.1 (2CH), 128.8 (C, *Ph*), 130.0 (CH), 130.4 (CH), 136.5 (C), 141.9 (CH), 196.0 (C, *C3*), 200.9 ppm (C, *C1*).

3-((2Z,4E)-3-Ethinyl-1,5-diphenylpenta-2,4-dien-1-yl)-4-hydroxy-2H-chromen-2-on (63c)



**24g** (50mg, 0.19mmol) wird unter Argon in Toluol (abs.) gelöst vorgelegt, mit TFA (2mol-%) und 4-Hydroxycumarin **56c** (31mg, 0.19mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt und eingedampft. Es wird ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 10:1) **63c** (34mg, 0.08mmol, 45% d.Th.) als gelbes Öl isoliert wird.

 $(C_{28}H_{20}O_3)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 3.36 (s, 1 H, *H16*), 5.72 (d, J = 9.4 Hz, 1 H, *H10*), 6.70 (d, J = 9.3 Hz, 1 H, *H11*), 6.75 (d, J = 15.7, 1 H, *H13/H14*), 6.95 (d, J = 15.7, 1 H, *H13/H14*), 7.8-7.10 (m, 2 H, *Ar*), 7.16-7.35 (m, 9 H, *Ar*), 7.42-7.46 (m, 2 H, *Ar*), 7.34 ppm (d, J = 7.9 Hz, 1 H, *Ar*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 41.9 (CH, *C10*), 78.6 (C, *C15*), 85.6 (CH, *C16*), 107.1 (C, *C2*), 115.7 (C, *C9*), 116.5 (CH, *C5*), 123.1 (CH), 123.9 (CH), 125.3 (C), 126.7 (2CH), 127.2 (2CH), 127.3 (CH), 127.6 (CH), 127.9 (CH), 128.2 (CH), 128.6 (2CH), 129.0 (CH), 129.0 (CH), 132.0 (CH), 132.4 (CH), 133 (C), 137.8 (C), 152.7 (C), 160.0 (C), 162.4 ppm (C); IR:  $\nu$  = 3286 (w), 3062 (w), 3029 (w), 2920 (w), 2094 (w), 1956 (w), 1763 (w), 1688 (m), 1609 (m), 1494 (m), 1454 (m), 1410 (w), 1379 (w), 1307 (m), 1272 (m), 1176 (m), 1077 (m), 1031 (m), 970 (m), 755 (m), 698 cm⁻¹ (s); MS (EI): *m/z* (%) = 404 [M⁺] (7), 330 (10), 313 (21), 300 (18), 284 (26), 262 (34), 249 (100), 241 (12), 512 (11), 210 (16); HRMS: *m/z* calcd for C₂₈H₂₀O₃: 404.1407 [*M*⁺]; found: 404.1407.

(E)-4',7'-Diethinyl-1',3',5'-triphenyl-4'-styryl-1',3',3a',4',5',7a'-hexahydrospiro[cyclopentan-1,2'-inden]-2,5-dion (**64b**)



**24g** (50mg, 0.19mmol) wird unter Argon in Toluol (abs.) gelöst vorgelegt, mit TFA (2mol-%) und Cyclopentan-1,3-dion **56b** (19mg, 0.19mmol) versetzt, 5h bei 100°C gerührt, auf RT abgekühlt und eingedampft. Es wird ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 5:1) das Diastereomerengemisch (4:1) **64b** (23mg, 0.04mmol, 22% d.Th.) als gelbes Öl isoliert wird.

Charakteristische Peaks des Hauptisomers:

 $(C_{43}H_{34}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.30$ -1.60 (m, 1 H, *CH*₂), 1.77-1.96 (m, 1 H, *CH*₂), 2.10-2.18 (m, 2 H, *CH*₂), 2.27 (s, 1 H, *H15*), 2.71 (s, 1 H, *H17*), 2.82 (t, J = 11.6 Hz, 1 H, *H7*), 3.70 (d, J = 12.0 Hz, 1 H, *H6*), 3.80-3.82 (m, 1 H, *H8*), 4.02 (d, J = 10.0, 1 H, *H11*), 4.05 (d, J = 7.1 Hz, 1 H, *H9*), 4.43 (d, J = 15.8 Hz, 1 H, *H18*), 6.14 (dd, J = 4.2, 2.7 Hz, 1 H, *H12*), 6.32-6.35 (m, 2 H, *Ph*), 6.46 (d, J = 15.8 Hz, 1 H, *H19*), 6.98 (d, J = 7.7 Hz, 1 H, *Ph*), 6.88-7.26 ppm (m, 17 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 36.9$  (CH₂), 37.0 (CH₂), 44.1 (CH), 46.2 (C, *C10*), 47.1 (CH), 56.0 (2CH), 56.5 (CH, *C6*), 71.4 (C, *C4*), 75.6 (CH, *C17*), 79.1 (CH, *C15*), 81.6 (C, *C16*), 84.1 (C, *C14*), 121.8 (C, *C13*), 126.0 (2CH, *Ph*), 126.1-132.5 (6CH, *Ph*), 127.7 (2CH, *Ph*), 127.8 (2CH, *Ph*), 128.1 (2CH, *Ph*), 129.3 (2CH, *Ph*), 130.5 (2CH, *Ph*), 136.5 (C, *Ph*), 137.2 (C, *Ph*), 137.6 (C, *Ph*), 137.9 (C, *Ph*), 138.4 (CH, *C12*), 215.2 (C, *C3/C5*), 215.5 ppm (C, *C3/C5*);

Charakteristische Peaks des Nebenisomers:

 $(C_{43}H_{34}O_2)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.30-1.60$  (m, 2 H,  $CH_2$ `), 2.10-2.18 (m, 2 H,  $CH_2$ `), 2.28 (s, 1 H, H15`), 2.64 (s, 1 H, H17`), 3.39 (dd, J = 10.2, 9.0 Hz, 1 H, H7`), 3.52-3.53 (m, 1 H, H8`), 4.08 (d, J = 5.2 Hz, 1 H, H9`), 4.22 (d, J = 8.7 Hz, 1 H, H6`), 5.23 (d, J = 15.6 Hz, 1 H, H18`), 5.99 (d, J = 14.6 Hz, 1 H, H19`), 6.40 (t, J = 2.8 Hz, 1 H, H12`), 6.91-7.52 ppm (m, 20 H, Ph`); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 36.5$  ( $CH_2$ `), 36.7 ( $CH_2$ `), 42.1 (CH`), 49.4 (CH`), 50.3 (C`), 52.4 (CH`), 56.3 (CH`), 58.7 (CH`), 74.3 (C`), 78.6 (C`), 82.5 (C`), 83.1 (C`), 122.7 (C, C13`), 126.1-132.5 (20CH, Ph`), 136.9 (C`), 138.2 (C`), 139.7 (C`), 140.4 (C`), 215.8 (C`), 216.7 ppm (C`);

Isomerengemisch:

IR:  $\nu = 4051$  (w), 3288 (w), 3060 (w), 3028 (w), 2921 (w), 2100 (w), 1948 (w), 1718 (m), 1648 (w), 1609 (m), 1494 (m), 1453 (m), 1415 (w), 1308 (w), 1239 (m), 1203 (m), 1177 (m), 1030 (m), 970 (m), 910 (w), 746 (m), 698 cm⁻¹(s); MS (EI): m/z (%) = 582 (25), 491 (15), 395 (100), 305 (17), 243 (14), 228 (12), 215 (12), 187 (23); HRMS: m/z calcd for C₂₄H₂₀O₂:

582.2554  $[M^+]$ ; found: 582.2553. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

11-Benzyl-2-phenyl-3,11-dihydro-4H-cyclopenta[4,5]pyrano[3,2-c]chromen-4-on (65c)



Nach Vorschrift **4.4.1** (a) wird aus **24g** (100mg, 0.38mmol) und 4-Hydroxycumarin **56c** (62mg, 0.38mmol) unter Standardbedingungen (ohne Additiv) ein Rohprodukt erhalten, aus dem mittels MPLC (P/DCM = 1:1) **65c** (33mg, 0.08mmol, 15% d.Th.) als hellgelber Schaum isoliert wird.

 $(C_{28}H_{20}O_3)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta$  = 3.13 (s, 1 H, *H39a*), 3.14 (d, J = 1.6 Hz, 1 H, *H39b*), 3.86 (ddd, J = 23.4, 2.2, 1.0 Hz, 1 H, *19_a*), 4.00 (dt, J = 23.3, 1.0 Hz, 1 H, *H19_b*), 5.78 (dd, J = 6.9, 1.2 Hz, 1 H, *H14*), 6.53 (s, 1 H, *H41*), 7.09-7.28 (m, 5 H, *Ar*), 7.40-7.43 (m, 2 H, *Ar*), 7.47-7.49 (m, 3 H, *Ar*), 7.57 (dd, J = 7.9, 1.3 Hz, 2 H, *Ar*), 7.87 (dd, J = 7.9, 1.4 Hz, 1 H, *Ar*), 7.96 ppm (dd, J = 7.9, 1.4 Hz, 1 H, *H3/H6*); ¹³C NMR (150 MHz, CDCl₃):  $\delta$  = 41.3 (CH₂, *C19/C39*), 42.8 (CH₂, *C19/C39*), 80.0 (CH, *C14*), 101.4 (C, *C9*), 115.3 (C, *C5*), 116.6 (CH, *C3*), 122.7 (CH, *Ar*), 123.9 (CH, *Ar*), 124.0 (CH, *Ar*), 125.1 (2CH, *Ph*), 16.9 (CH, *Ar*), 127.3 (CH, *Ar*), 135.5 (C), 148.3 (C), 152.6 (C), 156.3 (C, *C10*), 159.9 ppm (C, *C8*); IR: *v* = 3028 (w), 2960 (w), 2925 (w), 2596 (w), 2101 (w), 1713 (m), 1652 (m), 1603 (m), 1563 (m), 1492 (m), 1453 (m), 1408 (w), 1317 (m), 1260 (m), 1214 (w), 1182 (w), 1156 (w), 1093 (m), 1028 (m), 906 (w), 864 (w), 800 (m), 753 (s), 728 (m), 696 cm⁻¹ (m); MS (EI): *m/z* (%) = 404 [M⁺] (17), 402 (34), 315 (18), 313 (28), 301 (18), 264 (100), 167 (18), 162 (63); HRMS: *m/z* calcd for C₂₈H₂₀O₃: 404.1407 [*M*⁺]; found: 404.1407.

# 4.4.2 Synthesen zur DTDA-Reaktion

#### (a) Allgemeine Vorschrift

- (a) Domino-Reaktion: Der Katalysator 3a (0.02eq) wird unter Argon in Toluol abs. (0.5ml/mmol) gelöst vorgelegt, mit TFA (0.02eq) versetzt, 5min bei RT gerührt, mit 24g (1eq), dem 1,3-Dion 56a (1eq) und dem Dienophil (0.5-2eq) versetzt, 5h bei 100°C unter Argon (Standardbedingungen) oder 5min bei 200°C unter Mikrowellenbestrahlung (Mikrowellenbedingungen) gerührt, eingedampft und am HV getrocknet.
- (b) Sequenzielle Reaktion: Der Katalysator **3a** (0.02eq) wird unter Argon in Toluol abs. (0.5ml/mmol) gelöst vorgelegt, mit TFA (0.02eq) versetzt, 5min bei RT gerührt, mit **24g** (1eq) und dem 1,3-Dion **56a** (1eq) versetzt, für x min bei 100°C unter Argon gerührt, mit dem Dienophil (1eq) versetzt, weitere (5h- x min) bei 100°C gerührt, eingedampft und am HV getrocknet.

#### (b) Synthesen

(3a'R,3b'S,4'S,6a'R,9a'S,9b'R,10'S,10a'S)-2',4',8',10'-Tetraphenyl-3b',4',6',6a',9a',9b',10',10a'octahydro-1'H-spiro[cyclohexan-1,5'-pyrrolo[3',4':5,6]indeno[1,7-ef]isoindol]-1',2,3',6,7',9'(2'H,3a'H,8'H)-hexaon (**67a**)





Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit starkesn NOE's (durchgezogen) und schwachen NOE's (gestrichelt)

Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (43mg, 0.38mmol) und NPM **66a** (66mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, 1/2% MeOH) das Isomerengemisch (5:1) **67a** (113mg, 0.16mmol, 42% d.Th.) als hellgelber Schaum isoliert wird.

Hauptisomer:

 $(C_{45}H_{36}N_2O_6)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.44-1.55$  (m, 3 H, H16a, H17a und H18a), 1.56-1.61 (m, 1 H, *H17b*), 2.05 (dd, J = 16.2, 5.9 Hz, 1 H, *H6a*), 2.14 (dt, J = 16.2, 11.2 Hz, 1 H, H6b), 2.27-2.34 (m, 1 H, H16b), 2.52-2.55 (m, 1 H, H18b), 2.92 (ddd, J = 11.0, 8.0, 6.1 Hz, 1 H, H7), 3.03 (dd, J = 9.3, 6.3 Hz, 1 H, H12), 3.09 (dd, J = 8.0, 2.9 Hz, 1 H, H8), 3.34 (dd, J = 9.0, 6.0 Hz, 1 H, H11), 3.45 (dd, J = 13.5, 2.9 Hz, 1 H, H9), 3.57 (dd, J = 13.5, 5.9 Hz, 1 H, *H10*), 3.72-3.74 (m, 1 H, *H3*), 4.53 (d, J = 10.7 Hz, 1 H, *H2*), 7.16-7.17 (m, 2 H, *Ph*), 7.22-7.23 (m, 5 H, *Ph*), 7.28-7.53 ppm (m, 13 H, *Ph*); ¹³C NMR (150 MHz, CDCl₃): δ =17.1 (CH₂, C17), 26.9 (CH₂, C6), 31.3 (CH, C9), 39.8 (CH, C12), 40.0 (CH₂, C16), 40.7 (CH₂, C18), 41.4 (CH, C7), 43.9 (CH, C8), 45.6 (CH, C3), 47.6 (CH, C11), 47.8 (CH, C10), 58.9 (CH, C2), 84.0 (C, C1), 126.4 (2CH, Ph), 126.5 (2CH, Ph), 127.9 (CH, Ph), 128.2 (2CH, Ph), 128.6 (CH, Ph), 128.6 (CH, Ph), 128.8 (CH, Ph), 129.1 (4CH, Ph), 129.2 (2CH, Ph), 129.3 (2CH, Ph), 130.4 (2CH, Ph), 131.6 (C, Ph), 131.6 (C, Ph), 132.5 (C, C5), 135.7 (C, Ph), 135.9 (C, Ph), 141.9 (C, C4), 174.3 (C, C13), 175.4 (C, C14), 176.9 (C, C18), 177.2 (C, *C20*), 208.5 (C, *C15*), 208.9 ppm (C, *C19*); IR: v = 3030 (w), 2957 (m), 2926 (m), 2855 (m), 2374 (w), 2321 (w), 1715 (s), 1598 (m), 1499 (m), 1455 (m), 1381 (m), 1287 (m), 1174 (m), 1078 (m), 1028 (w), 751 (m), 731 (m), 699 cm⁻¹ (m); MS (EI): m/z (%) = 700 [*M*+] (100), 527 (73); HRMS: m/z calcd for C₄₅H₃₆N₂O₆: 700.2569 [M⁺]; found: 700.2568. ¹H¹H-COSY (600 MHz, CDCl3) cross peaks: H2 / H3, H3 / H12, H12 / H11, H11 / H10, H10 / H9, H9 / H8, H8 / H7, H7 / H6; ¹H¹H-NOESY (600 MHz, CDCl3) cross peaks: H2 / H12 (w), H2 / *H16* (w), *H3 / H10*, *H3 / H11*, *H3 / H12*, *H11 / H10*, *H10 / H8* (w), *H9 / H8*, *H7 / H16* (w); TOCSY (600 MHz, CDCl3) cross peaks: *H2 / H3*, *H12 / H11*, *H11 / H10*, *H10 / H9*, *H8 / H7*, *H7 / H6*; Weitere Korrelationen wurden über HCQC- und HMBC-Spektren bestimmt. Charakteristischer Peak des Nebenisomers:

4.20 (d, J = 7.8 Hz, 1 H, *H*2`).

Das Isomerenverhältnis von 3:2:2 wurde dem Rohspektrum durch Integration der Peaks bei 4.20, 4.53 und 4.91 ppm im ¹H NMR-Spektrum bestimmt.

(3a'R,3b'S,4'S,6a'R,9a'S,9b'R,10'S,10a'S)-2',4',8',10'-Tetraphenyl-3b',4',6',6a',9a',9b',10',10a'octahydro-1'H-spiro[cyclopentan-1,5'-pyrrolo[3',4':5,6]indeno[1,7-ef]isoindol]-1',2,3',5,7',9'(2'H,3a'H,8'H)-hexaon (**67b**)



Haupt ds (Energetisch minimalisiertes Model, MM2 Feldverstärkung) mit starken NOE's (durchgezogen) und schwachen NOE's (gestrichelt)

Nach Vorschrift **4.4.2** (a) wird aus **24g** (100mg, 0.38mmol), Cyclopentan-1,3-dion **56b** (43mg, 0.38mmol) und NPM **66a** (132mg, 0.76mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, 1/2% MeOH) das Isomerengemisch **67b** (81mg, 0.12mmol, 30% d.Th.) als gelber FS isoliert wird.

Hauptisomer:

 $(C_{44}H_{34}N_2O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.03-2.08$  (m, 2 H, *H6*), 2.30-2.50 (m, 4 H, *H18 und H19*), 2.80-2.87 (m, 1 H, *H7*), 3.06 (dd, J = 8.0, 2.9 Hz, 1 H, *H8*), 3.12 (dd, J = 9.0, 6.2 Hz, 1 H, *H12*), 3.38 (dd, J = 9.1, 6.1 Hz, 1 H, *H11*), 3.40-3.44 (m, 1 H, *H9*), 3.60 (dd, J = 13.5, 6.1 Hz, 1 H, *H10*), 3.89-3.96 (m, 1 H, *H3*), 4.68 (d, J = 11.1 Hz, 1 H, *H2*), 7.11-7.46 (m, 18 H, *Ph*), 7.62 (d, J = 3.3 Hz, 1 H, *Ph*), 7.63 ppm (d, J = 2.3 Hz, 1 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 25.9$  (CH₂, *C6*), 31.4 (CH, *C9*), 36.8 (CH₂, *C18/C19*), 36.9 (CH₂, *C18/C19*), 39.7 (CH, *C12*), 41.1 (CH, *C7*), 43.4 (CH, *C8*), 43.9 (CH, *C3*), 47.6 (CH, *C11*), 47.8 (CH, *C10*), 59.3 (CH, *C2*), 77.5 (C, *C1*), 126.3 (2CH, *Ph*), 126.5 (2CH, *Ph*), 126.7 (CH, *Ph*), 127.0 (CH, *Ph*), 128.3 (2CH, *Ph*), 128.4 (2CH, *Ph*), 128.7 (2CH, *Ph*), 129.0 (2CH, *Ph*), 129.2 (2CH, *Ph*), 130.3 (CH, *Ph*), 130.6 (C), 130.9 (CH, *Ph*), 131.4 (C), 131.5 (C), 134.6 (C), 135.5 (C), 145.4 (C, *C4*), 174.2 (C, *C14*), 175.3 (C, *C13*), 176.5 (C, *C16*), 177.0 (C, *C15*), 213.7 (C, *C17*), 214.4 ppm (C, *C20*);

Charakteristische Peaks des Nebenisomers:

 $(C_{44}H_{34}N_2O_6)$ : ¹³C NMR (100 MHz, CDCl₃):  $\delta = 24.9$  (CH₂[`]), 34.5 (CH[`]), 36.6 (CH₂[`]), 36.4 (CH₂[`]), 40.2 (CH[`]), 40.5 (CH[`]), 42.7 (CH[`]), 44.8 (CH[`]), 48.0 (CH[`]), 59.7 (CH[`]), 131.4 (C[`]),

131.8 (C`), 133.3 (C`), 135.2 (C`), 137.5 (C`), 144.6 (C, *C4*`), 174.9 (C`), 175.7 (C`), 175.9 (C`), 178.0 (C`), 212.7 (C`), 214.1 ppm (C`); *Isomerengemisch:* 

IR: v = 3450 (w), 3053 (w), 3027 (w), 2922 (w), 2128 (w), 1707 (m), 1650 (m), 1625 (m), 1595 (m), 1494 (w), 1447 (m), 1380 (m), 1340 (m), 1284 (m), 1190 (m), 1157 (m), 1100 (m), 980 (m), 924 (m), 884 (w), 759 (m), 693 cm⁻¹ (m); MS (EI): m/z (%) = 686 [ $M^+$ ] (100), 513 (53); HRMS: m/z calcd for C₄₄H₃₄N₂O₆: 686.2411 [ $M^+$ ]; found: 686.2411. ¹H¹H-COSY (600 MHz, CDCl3) cross peaks: H2 / H3, H3 / H12, H12 / H11, H11 / H10, H10 / H9, H9 / H8, H8 / H7, H7 / H6; ¹H¹H-NOESY (600 MHz, CDCl₃) cross peaks: H2 / H12 (w), H2 / H19 (w), H3 / H10, H3 / H11, H3 / H12, H10 / H8 (w), H9 / H8, H9 / H7, H9 / H11 (w); TOCSY (600 MHz, CDCl₃) cross peaks: H2 / H3, H12 / H11, H11 / H10, H8 / H7, H7 / H6; Weitere Korrelationen wurden über HCQC- und HMBC-Spektren bestimmt.

2',4',8',10'-Tetraphenyl-3b',4',6',6a',9a',9b',10',10a'-octahydro-1'H-spiro[chroman-3,5'pyrrolo[3',4':5,6]indeno[1,7-ef]isoindol]-1',2,3',4,7',9'(2'H,3a'H,8'H)-hexaon (**67c**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), 4-Hydroxycumarin **56c** (62mg, 0.38mmol) und N-Phenylmaleinimid **66a** (66mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM,  $\frac{1}{2}$ % MeOH) das Isomerengemisch **67c** (63mg, 0.08mmol, 22% d.Th.) als oranger FS isoliert wird.

 $(C_{48}H_{34}N_2O_7)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.20$ -2.40 (m, 2 H, *H15*), 3.06-3.13 (m, 2 H, *H6/H16*), 3.13-3.19 (m, 1 H, *H17*), 3.38-3.42 (m, 1 H, *H7*), 3.49-3.56 (m, 1 H, *H9*), 3.56-3.63 (m, 1 H, *H8*), 3.93-3.99 (m, 1 H, *H3*), 4.72 (d, J = 10.8 Hz, 1 H, *H2*), 6.53 (dd, J = 8.3, 0.6 Hz, 1 H, *H57/H57*), 6.56 (dd, J = 8.3, 0.7 Hz, 1 H, *H57/H57*), 6.72-7.61 (m, 44 H, *Ar und Ar*), 7.76 (dd, J = 7.8, 1.6 Hz, 1 H, *CH/CH*), 7.83 ppm (dd, J = 7.8, 1.6 Hz, 1 H, *CH/CH*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 25.9$  (CH₂/CH₂), 26.2 (CH₂/CH₂), 31.4 (CH, *C9*), 35.5 (CH/CH), 39.7 (CH, *C7/C12*), 41.3 (CH, *C7/C12*), 41.3 (CH/CH), 42.7 (CH/CH), 43.7 (CH/CH), 44.6 (CH, *C3*), 45.9 (CH/CH), 45.9 (CH, *C8*), 47.5 (CH/CH), 47.6 (CH/CH), 47.9 (CH/CH), 49.7 (CH/CH), 60.8 (CH, *C2*), 64.4 (CH/CH), 76.1 (2C, *C1 und C1*), 116.8 (CH, *C57/C57*), 117.0 (CH, *C57/C57*), 119.6 (C, *C24/C24*), 119.9 (C, *C24/C24*), 125.0 (CH, *Ph/Ph*), 126.5 (CH, *Ph/Ph*)), 126.5 (CH, *Ph/Ph*), 126.5 (CH, *Ph/Ph*), 126.5 (CH, *Ph/Ph*), 126.5 (CH, *Ph/Ph*)), 126.5

126.6 (CH, *Ph/Ph*[`]), 127.3 (CH, *Ph/Ph*[`]), 127.9 (CH, *Ph/Ph*[`]), 128.0 (CH, *Ph/Ph*[`]), 128.3 (4CH, *Ph/Ph*[`]), 128.4 (2CH, *Ph/Ph*[`]), 128.5 (2CH, *Ph/Ph*[`]), 128.6 (2CH, *Ph/Ph*[`]), 128.7 (2CH, *Ph/Ph*[`]), 128.8 (CH, *Ph/Ph*[`]), 128.8 (2CH, *Ph/Ph*[`]), 129.1 (2CH, *Ph/Ph*[`]), 129.1 (2CH, *Ph/Ph*[`]), 129.2 (4CH, *Ph/Ph*[`]), 129.2 (CH, *Ph/Ph*[`]), 129.3 (CH, *Ph/Ph*[`]), 129.6 (C/C[`]), 130.1 (C/C[`]), 130.3 (2CH, *Ph/Ph*[`]), 131.4 (C/C[`]), 131.5 (C/C[`]), 131.5 (C/C[`]), 131.5 (C/C[`]), 133.2 (C/C[′]), 134.2 (C/C[°]), 135.4 (C/C[°]), 137.0 (CH, *CH/CH*[`]), 137.4 (CH, *CH/CH*[`]), 138.7 (C/C[`]), 144.1 (C, *C4/C4*[`]), 145.0 (C, *C4/C4*[`]), 154.3 (C, *C25/C25*[`]), 154.6 (C, *C25/C25*[`]), 166.9 (C, *C27/C27*[`]), 167.1 (C, *C27/C27*[`]), 174.1 (C/C[°]), 175.4 (C/C[°]), 175.9 (C/C[°]), 176.3 (C/C[°]), 176.4 (C/C[°]), 175.5 (C/C[°]), 177.1 (C/C[°]), 192.1 (C, *C23/C23*[°]), 192.6 ppm (C, *C23/C23*[°]); IR: *v* = 3700 (w), 2930 (m), 2864 (m), 2053 (m), 2019 (m), 1966 (m), 1776 (w), 1709 (s), 1598 (m), 1609 (m), 1457 (m), 1413 (m), 1371 (s), 1310 (m), 1169 (m), 1080 (m), 1041 (m), 952 (w), 908 (w), 757 (m), 727 (m), 694 cm⁻¹ (m); MS (EI): *m/z* (%) = 750 [*M*+] (100), 659 (34), 630 (27), 576 (25), 455 (23); HRMS: *m/z* calcd for C₄₈H₃₄N₂O₇: 750.2361 [*M*⁺]; found: 750.2361. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

Charakteristische Peaks der Nebenisomere:

3.90 (d, J = 9.5 Hz, 1 H, *H*2[`]), 4.20 (d, J = 9.7 Hz, 1 H, *H*2^{``}), 4.99 (d, J = 10.9 Hz, 1 H, *H*2^{```}),

Das Isomerenverhältnis von 2:3:3:4 wurde dem Rohspektrum durch Integration der H2-peaks bei 3.90, 4.20, 4.72 und 4.99 ppm im ¹H NMR-Spektrum bestimmt.

5',12'-Diphenyl-4b',5',7',7a',11a',11b',12',12a'-octahydro-1'H-spiro[cyclohexan-1,6'cyclopenta[gh]tetraphen]-1',2,4',6,8',11'(4a'H)-hexaon (**67d**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und *p*-Benzochinon **66b** (42mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1 bis 1:1) das Isomerengemisch **67d** (31mg, 0.05mmol, 14% d.Th.) als beiges Öl isoliert wird.

# Hauptisomer:

 $(C_{37}H_{30}O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 1.41-1.52 (m, 2 H, H2), 1.62-1.72 (m, 1 H, H15a), 2.16-2.35 (m, 2 H, H1/H3), 2.44-2.59 (m, 3 H, H1/H3 und H15b), 2.93-2.98 (m, 1 H, H9), 3.08-3.17 (m, 2 H, H8 und H16), 3.20-3.29 (m, 3 H, H10 und H12 und H17), 3.65 (dd, J = 13.0, 6.1 Hz, 1 H, H11), 3.76 (d, J = 9.6 Hz, 1 H, H7), 5.92 (dd, J = 10.3, 0.8 Hz, 1 H,

*H24*), 5.99 (dd, J = 10.3, 1.1 Hz, 1 H, *H23*), 6.42 (d, J = 10.3, 1 H, *H19/H20*), 6.50 (d, J = 10.3, 1 H, *H19/H20*), 7.06-7.29 ppm (m, 10 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$ = 16.4 (CH₂, *C2*), 22.5 (CH₂, *C15*), 36.8 (CH, *C12*), 40.3 (CH₂, *C1/C3*), 40.6 (CH₂, *C1/C3*), 42.9 (CH, C11), 48.7 (CH, *C8/C16*), 49.1 (CH, *C8/C16*), 52.1 (CH, *C17*), 53.9 (CH, *C9*), 56.5 (CH, *C10*), 61.7 (CH, *C7*), 82.9 (C, *C5*), 127.5 (CH, *Ph*), 128.0 (CH, *Ph*), 128.2 (CH, *Ph*), 128.5 (CH, *Ph*), 128.6 (2CH, *Ph*), 128.8 (2CH, *Ph*), 128.9 (CH), 129.1 (CH), 132.1 (C, *C13*), 135.7 (C, *C14*), 137.5 (CH, *C19/C20*), 138.9 (CH, *C24*), 140.3 (CH, *C23*), 140.7 (CH, *C19/C20*), 196.9 (C), 197.3 (2C), 197.5 (C), 208.3 (C, *C4*), 209.2 ppm (C, *C6*);

Charakteristische Peaks des Nebenisomers:

 $(C_{37}H_{30}O_6)$ : ¹³C NMR (100 MHz, CDCl₃): 16.9 (CH₂, *C2*[`]), 26.2 (CH₂, *C15*[`]), 32.9 (CH[`]), 40.2 (CH₂[`]), 40.6 (CH₂, *CH*[`]), 43.4 (CH[`]), 46.3 (CH[`]), 48.7 (CH[`]), 48.8 (CH[`]), 54.7 (CH[`]), 59.6 (CH, *C7*[`]), 83.6 (C, *C5*[`]), 131.9 (C[`]), 136.3 (C[`]), 136.9 (C[']), 138.4 (CH[`]), 140.7 (C[']), 140.9 (CH[`]), 141.5 (2CH[`]), 142.7 (C[']), 142.7 (CH[`]), 197.5 (C[']), 198.5 (C[']), 199.0 (C[']), 199.4 (C[']), 208.5 (C, *C6*[']), 208.8 ppm (C, *C4*[']);

Isomerengemisch:

IR: v = 3053 (m), 3027 (m), 2248 (m), 2121 (m), 1650 (s), 1625 (s), 1594 (s), 1447 (m), 1332 (s), 1283 (s), 1259 (s), 1190 (s), 1098 (s), 1076 (s), 1028 (s), 980 (s), 923 (m), 884 (m), 849 (m), 760 (s), 728 (s), 695 cm⁻¹ (m); MS (EI): m/z (%) = 570 [M⁺] (87), 542 (27), 479 (8), 466 (26), 461 (100), 422 (25), 372 (17), 329 (20); HRMS: m/z calcd for C₃₇H₃₀O₆: 570.2037 [M⁺]; found: 570.2037. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

4,10-Diphenyl-3b,4,6,6a,9a,9b,10,10a-octahydro-1H-spiro[acenaphtho[3,4-c:6,7-c']difuran-5,1'-cyclohexan]-1,2',3,6',7,9(3aH)-hexaon (**67e**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Maleinsäureanhydrid **66c** (37mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1 bis 1:1) das Isomerengemisch **67e** (59mg, 0.1mmol, 28% d.Th.) als gelbes, hochviskoses Öl isoliert wird.

 $(C_{33}H_{26}O_8)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.39$ -1.65 (m, 1 H, *H19a*), 1.58-1.65 (m, 1 H, *H19b*), 2.00-2.01 (m, 1 H, *H6a*), 2.27-2.28 (m, 2 H, *H20*), 2.30-2.39 (m, 1 H, *H6b*), 2.57-2.58 (m, 2 H, *H18*), 3.02-3.05 (m, 2 H, *H7 und H8*), 3.06-3.09 (m, 1 H, *H9*), 3.10-3.11 (m, 1 H, *H10*), 3.19-3.22 (m, 1 H, *H11*), 3.30-3.35 (m, 1 H, *H3*), 3.62 (d, J = 9.3 Hz, 1 H, *H2*), 3.69-3.74 (m, 1 H, *H12*), 7.04-7.37 ppm (m, 10 H, *Ph*); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 16.9$ 

(CH₂, *C19*), 25.4 (CH₂, *C6*), 35.8 (CH, *C9*), 40.3 (CH₂, *C18/C20*), 40.5 (CH₂, *C18/C20*), 41.2 (CH, *C7/C8*), 43.7 (CH, *C7/C8*), 45.5 (CH, *C10*), 45.8 (CH, *C11*), 46.7 (CH, *C3*), 49.5 (CH, *C12*), 63.1 (CH, *C2*), 84.8 (C, *C1*), 128.5 (CH, *Ph*), 128.7 (CH, *Ph*), 128.8 (CH, *Ph*), 128.9 (CH, *Ph*), 129.0 (CH, *Ph*), 129.1 (CH, *Ph*), 129.2 (CH, *Ph*), 129.4 (2CH, *Ph*), 129.5 (CH, *Ph*), 132.9 (C, *Ph*), 135.3 (C, *Ph*), 137.1 (C, *C5*), 141.4 (C, *C4*), 168.7 (C), 170.8 (C), 171.0 (C), 171.4 (C), 208.5 (C, *C17*), 209.1 ppm (C, *C21*); IR: v = 3060 (m), 3029 (m), 1774 (s), 1688 (s), 1609 (s), 1588 (m), 1494 (m), 1479 (w), 1459 (m), 1307 (s), 1242 (m), 1218 (m), 1176 (m), 1148 (m), 1030 (w), 1001 (w), 963 (m), 912 (m), 755 (m), 729 (m), 699 cm⁻¹ (s); MS (EI): m/z (%) = 550 [M⁺] (100), 522 (42), 494 (19), 450 (18), 372 (17), 354 (21), 329 (25); HRMS: m/z calcd for C₃₃H₂₆O₈: 550.1622 [ $M^+$ ]; found: 550.1622. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

Tetramethyl-2',6'-dioxo-2,5-diphenyl-2a,5,5a,8-tetrahydro-2H-spiro[acenaphthylen-1,1'cyclohexan]-3,4,6,7-tetracarboxylat (**67f**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Dimethylacetylendicarboxylat **66d** (42mg, 0.38mmol) ein Rohprodukt erhalten, in dem **67f** detektiert wurde. **67f** oxidiert an der Luft zu **71f**. Folgende charakteristische Peaks von **67f** wurden im Rohspektrum detektiert:

 $(C_{37}H_{34}O_{10})$ : ¹³C NMR (100 MHz, CDCl₃):  $\delta = 16.3$  (CH₂, *C19*), 17.2 (CH₂, *C10*), 40.0 (CH₂, *C18/C20*), 40.3 (CH₂, *C18/C20*), 45.0 (CH, *C3/ C6*), 45.6 (CH, *C3/ C6*), 50.9-52.9 (CH/CH₃), 60.7 (CH, *C2*), 81.9 (C, *C1*), 124.9 (CH), 130.7 (C), 132.9 (C), 133.6 (C), 136.0 (C), 137.1 (C), 138.9 (C), 142.1 (C), 165.4 (C), 166.4 (C), 167.4 (C), 168.3 (C), 207.6 (C, *C17/C21*), 209.4 ppm (C, *C17/C21*).

Tetraethyl-2',6'-dioxo-2,5-diphenyl-2a,3,4,5,5a,6,7,8-octahydro-2H-spiro[acenaphthylen-1,1'cyclohexan]-3,4,6,7-tetracarboxylat (**67g**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Diethylfumarat **66e** (66mg, 0.38mmol) ein Rohprodukt erhalten, in dem das Isomerengemisch **67g** detektiert wird.

Charakteristische Peaks des Hauptisomers:

 $(C_{41}H_{46}O_{10})$ : ¹³C NMR (100 MHz, CDCl₃):  $\delta = 13.5$  (2CH₃, *OEt*), 13.6 (2CH₃, *OEt*), 15.8 (CH₂, *C19/C19*[°]), 16.3 (CH₂, *C19/C19*[°]), 23.4 (CH₂, *C6*), 35.7 (CH), 40.1 (CH₂/CH₂[°]), 40.2 (CH₂/CH₂[°]), 40.6 (CH₂/CH₂[°]), 42.9 (CH), 43.0 (CH), 47.8 (CH), 49.8 (CH), 53.5 (CH), 60.3 (CH₂, *OEt*), 60.5 (CH), 61.0 (3CH₂, *OEt/OEt*[°]), 61.4 (CH₂, OEt), 64.7 (CH), 83.4 (C, *C1*), 135.0 (CH), 133.8 (CH), 136.7 (C/C[°]), 136.8 (C/C[°]), 137.3 (C/C[°]), 137.6 (C/C[°]), 138.2 (C/C[°]), 142.9 (C/C[°]), 144.8 (C/C[°]), 154.3 (C/C[°]), 172.3 (C), 173.6 (C), 210.1 (C), 210.4 ppm (C);

Charakteristische Peaks des Nebenisomers:

 $(C_{41}H_{46}O_{10})$ : ¹³C NMR (100 MHz, CDCl₃):  $\delta = 14.2$  (CH₃, *OEt*[`]), 14.3 (CH₃, *OEt*[`]), 14.5 (2CH₃, *OEt*[`]), 15.8 (CH₂, *C19/C19*[`]), 16.3 (CH₂, *C19/C19*[`]), 22.7 (CH₂, *C6*[`]), 31.4 (CH[`]), 40.1 (CH₂/CH₂[·]), 40.2 (CH₂/CH₂[·]), 40.6 (CH₂/CH₂[·]), 42.0 (CH[`]), 42.3 (CH[`]), 45.8 (CH[`]), 47.5 (CH[`]), 49.5 (CH[`]), 60.4 (CH₂[·], *OEt*[`]), 60.7 (CH₂[·], *OEt*), 61.0 (3CH₂, *OEt/OEt*[`]), 62.3 (CH[`]), 83.1 (C, *C1*[`]), 136.7 (C/C[`]), 136.8 (C/C[`]), 137.3 (C/C[`]), 137.6 (C/C[`]), 138.2 (C/C[`]), 142.9 (C/C[`]), 144.8 (C/C[`]), 154.3 (C/C[`]), 172.9 (C[`]), 173.3 (C[`]), 208.6 (C[`]), 209.0 ppm (C[`]); *Isomerengemisch:* 

MS (EI): m/z (%) = 698 [M⁺] (43), 652 (42), 624 (70), 606 (51), 533 (100), 526 (32), 466 (31), 459 (42), 354 (99), 305 (32), 262 (50); HRMS: m/z calcd for C₄₁H₄₆O₁₀: 698.3086 [ $M^+$ ]; found: 698.3085.

5-Ethinyl-4-((2-hydroxy-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-2,7-diphenyl-3a,4,7,7atetrahydro-1H-isoindol-1,3(2H)-dion (**68a**)



Nach Vorschrift **4.4.2** (a) wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (43mg, 0.38mmol) und NPM **66a** (132mg, 0.76mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, 1/2% MeOH) **68a** (38mg, 0.07mmol, 19% d.Th.) als gelber FS isoliert wird.

 $(C_{35}H_{29}NO_4)$ : ¹H NMR (600 MHz, CDCl₃):  $\delta = 1.78-1.83$  (m, 2 H, H1), 2.15.2.17 (m, 2 H, H2), 2.34-2.45 (m, 2 H, H6), 2.59 (s, 1 H, H15), 3.30 (dd, J = 8.2, 4.2 Hz, 1 H, H10), 3.50 (t, J = 7.8 Hz, 1 H, H9), 4.02 (t, J = 6.4 Hz, 1 H, H11), 4.32 (d, J = 11.9 Hz, 1 H, H8), 4.86 (d, J = 11.9 Hz, 1 H, H7), 6.75-6.76 (m, 1 H, H12), 7.06-7.09 (m, 3 H, Ph), 7.14-7.15 (m, 3 H, Ph), 7.19-7.23 (m, 3 H, Ph), 7.26-7.33 (m, 4 H, Ph), 7.34-7.36 (m, 2 H, Ph), 9.34 ppm (s, br, 1 H, OH); ¹³C NMR (150 MHz, CDCl₃):  $\delta = 19.9$  (CH₂, CI), 29.9 (CH₂, C6), 37.5 (CH, C8), 37.8 (CH₂, C2), 40.8 (CH, C7), 43.3 (CH, C10), 43.8 (CH, C11), 47.8 (CH, C9), 80.3 (C, C14), 80.8 (CH, C15), 117.0 (C, C4), 125.9 (CH, Ph), 126.4 (2CH, Ph), 126.6 (C), 127.4 (CH, Ph), 127.5 (2CH, Ph), 128.5 (2CH, Ph), 128.6 (2CH, Ph), 128.6 (2CH, Ph), 128.9 (CH, Ph), 129.1 (2CH, Ph), 131.4 (C), 137.1 (C), 138.4 (CH, C12), 142.1 (C), 172.9 (C, C16/17), 174.1 (C, C16/C17), 179.6 (C, C5), 199.2 ppm (C, C3); IR: v = 3030 (w), 2926 (w), 2282 (w), 2101 (w), 1777 (w), 1711 (s), 1597 (m), 1494 (m), 1455 (w), 1377 (s), 1262 (m), 1174 (m), 1073 (m), 1030 (m), 753 (m), 733 (m), 690 cm⁻¹ (s); MS (EI): m/z (%) = 527 [M⁺] (55), 415 (100), 402 (40), 327 (30); HRMS: m/z calcd for C₃₅H₂₉NO₄: 527.2091 [ $M^+$ ]; found: 527.2092. Die Zuordnung der Signale erfolgte durch kombinierte Analyse mit dem HSQC-Spektrum.

5-Ethinyl-4-((2-hydroxy-5-oxocyclopent-1-en-1-yl)(phenyl)methyl)-2,7-diphenyl-3a,4,7,7atetrahydro-1H-isoindol-1,3(2H)-dion (**68b**)



Nach Vorschrift **4.4.2 (a)** wird aus **24g** (100mg, 0.38mmol), Cyclopentan-1,3-dion **56b** (38mg, 0.38mmol) und NPM **66a** (132mg, 0.76mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, ¹/₂% MeOH) **68b** (24mg, 0.04mmol, 12% d.Th.) als beiges Öl isoliert wird.

 $(C_{34}H_{27}NO_4)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.26-2.27$  (m, 2 H, *CH*₂), 2.50-2.5 (m, 2 H, *CH*₂), 2.62 (s, 1 H, *H14*), 3.35 (dd, J = 8.3, 4.8 Hz, 1 H, *H9*), 3.52 (t, J = 8.0 Hz, 1 H, *H8*), 3.91-4.00 (m, 2 H, *H7 und H10*), 4.70 (d, J = 12.3 Hz, 1 H, *H6*), 6.79-6.81 (m, 1 H, *H11*), 7.07-7.39 ppm (m, 15 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 27.1$  (CH₂), 33.7 (CH₂), 37.7 (CH, *C7*), 39.7 (CH, *C6*), 43.1 (CH, *C9/C10*), 43.3 (CH, *C9/C10*), 47.6 (CH, *C8*), 80.3 (C, *C13*), 80.9 (CH, *C14*), 118.6 (C, *C4*), 125.3 (C, *C12*), 126.4 (CH, *Ph*), 126.6 (2CH, *Ph*), 127.4 (CH, *Ph*), 127.8 (2CH, *Ph*), 128.5 (2CH, *Ph*), 128.6 (2CH, *Ph*), 128.7 (2CH, *Ph*), 128.8 (CH, *Ph*), 128.9 (2CH, *Ph*), 131.2 (C, *Ph*), 137.0 (C, *Ph*), 139.4 (CH, *C11*), 140.5 (C, *Ph*), 127.9 (C, *C15/C16*), 174.3 (C, *C15/C16*), 178.9 (C, *C5*), 200.9 ppm (C, *C3*).

5-Ethynyl-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(phenyl)methyl)-2,7-diphenyl-3a,4,7,7atetrahydro-1H-isoindol-1,3(2H)-dion (**68c**)



Nach Vorschrift **4.4.2** (a) wird aus **24g** (100mg, 0.38mmol), 4-Hydroxcumarin **56c** (62mg, 0.38mmol) und NPM **66a** (132mg, 0.76mmol) unter Standardbedingungen ein Rohprodukt erhalten, aus dem mittels MPLC (DCM, 1/2% MeOH) **68c** (51mg, 0.08mmol, 23% d.Th.) als oranger FS isoliert wird.

 $(C_{38}H_{27}NO_5)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.67$  (s, 1 H, *H44*), 3.45 (dd, J = 8.3, 4.3 Hz, 1 H, *H5*), 3.54 (t, J = 8Hz, 1 H, *H4*), 4.08 (t, J = 5.7 Hz, 1 H, *H6*), 4.33 (dt, J = 12.1, 2.8 Hz, 1 H, *H3*), 5.25 (d, J = 12.1 Hz, 1 H, *H2*), 6.83-6.84 (m, 1 H, *H7*), 7.03-7.45 (m, 18 H), 7.89 (dd, J = 7.9, 1.5 Hz, 1 H, *H22*), 9.80 ppm (s, br, 1 H, *OH*); ¹³C NMR (100 MHz, CDCl₃): 160

δ = 37.2 (CH, C2), 41.1 (CH, C3), 43.3 (CH, C5), 43.9 (CH, C4), 47.6 (CH, C6), 80.2 (C, C43), 81.2 (CH, C44), 107.4 (C, C1), 116.2 (CH, C24), 116.7 (C, C17), 123.9 (CH), 124.2 (CH), 125.8 (C, C8), 126.5 (2CH, Ph), 126.6 (CH), 127.5 (CH), 127.8 (2CH, Ph), 128.5 (2CH, Ph), 128.9 (2CH, Ph), 129.2 (CH), 129.3 (2CH, Ph), 131.0 (C, Ph), 131.9 (CH, Ph), 136.9 (C, Ph), 139.0 (CH, C7), 140.0 (C, Ph), 152.9 (C, C18), 160.8 (C, C14/C16), 161.9 (C, C14/C16), 174.0 (C, C9/C11), 179.8 ppm (C, C9/C11); IR: ν = 3288 (w), 3061 (w), 3030 (w), 2923 (w), 1778 (m), 1687 (s), 1610 (m), 1569 (m), 1494 (m), 1459 (m), 1390 (m), 1307 (m), 1177 (m), 1150 (m), 1099 (m), 1031 (m), 909 (m), 754 (m), 725 (m), 694 cm⁻¹ (m); MS (EI): m/z (%) = 577 [M⁺] (45), 415 (100), 317 (25); HRMS: m/z calcd for C₃₈H₂₇NO₅: 477.1884 [M⁺]; found: 477.1882.

13-Benzyl-2,4-diphenyl-2,2a,5a,13-tetrahydro-3H,6H-2,5bmethanochromeno[3',4':5,6]pyrano[4,3-e]isoindol-3,5,6(4H)-trion (**69c**)



Nach Vorschrift 4.4.2 (b) wird aus 24g (100mg, 0.38mmol), 4-Hydroxcumarin 56c (62mg, 0.38mmol) und NPM 66a (66mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (DCM,  $\frac{1}{2}$ % MeOH) **69c** (42mg, 0.07mmol, 19% d.Th.) als gelber FS isoliert wird.  $(C_{38}H_{27}NO_5)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 1.90$  (d, J = 8.8 Hz, 1 H, H16_a), 2.96 (d, J = 9.2 Hz, 1 H,  $H16_b$ ), 3.17-3.29 (m, 2 H, H19), 3.85 (d, J = 7.7 Hz, 1 H, H21), 4.62 (d, J = 7.8 Hz, 1 H, H20), 4.86-4.90 (m, 1 H, H14), 6.37 (d, J = 2.2 Hz, 1 H, H18), 6.97-6.99 (m, 3 H, Ph), 7.15-7.37 (m, 10 H, Ar), 7.43-7.48 (m, 2 H, Ar), 7.51-7.56 ppm (m, 4 H, Ar); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 38.7$  (CH₂, C19), 47.9 (CH, C20), 51.5 (C, C12), 52.2 (CH, C21), 60.7 (CH₂, C16), 62.9 (C, C17), 76.7 (C, C14), 99.7 (C, C9), 115.4 (C, C5), 116.7 (CH, C3), 123.2 (CH, C1/C6), 124.1 (CH, C1/C6), 126.2 (2CH, Ph), 127.2 (CH, Ar), 127.2 (2CH, Ph), 127.6 (CH, Ar), 128.6 (CH, Ar), 128.7 (2CH, Ph), 128.7 (2CH, Ph), 129.1 (2CH, Ph), 129.3 (2CH, Ph), 130.4 (CH, Ar), 131.5 (C), 132.2 (CH, Ph), 136.0 (C), 138.5 (C), 143.7 (C), 152.8 (C, C4), 164.4 (C, C8/C10), 161.5 (C, C8/C10), 174.9 (C, C22/C24), 175.3 ppm (C, C22/C24); IR: v = 3053 (w), 3027 (w), 2923 (w), 2212 (w), 1709 (m), 1650 (m), 1597 (m), 1494 (w), 1447 (m), 1378 (m), 1340 (m), 1307 (m), 1284 (m), 1184 (m), 1156 (m), 1098 (m), 1074 (m), 1029 (m), 979 (m), 923 (w), 884 (w), 849 (w), 759 (m), 732 (m), 693 cm⁻¹(s); MS (EI): m/z (%) = 577 [M⁺] (14), 486 (10), 457 (15), 404 (35), 386 (12), 339 (10), 312 (100); HRMS: m/z calcd for C₃₈H₂₇NO₅: 477.1884 [ $M^+$ ]; found: 477.1884.

Diethyl-1'-methylen-2,6-dioxo-3',6'-diphenyl-1',3',3a',4',5',6'-hexahydrospiro[cyclohexan-1,2'inden]-4',5'-dicarboxylat (**70g**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Diethylfumarat **66e** (66mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1) das Hauptisomer **70g** (25mg, 0.05mmol, 13% d.Th.) als gelbes Öl isoliert wird.

 $(C_{33}H_{34}O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 0.65$  (t, J = 7.0 Hz, 3 H, *OEt*), 0.65 (t, J = 7.1 Hz, 3H, *OEt*), 1.62-1.71 (m, 2 H, *H2*), 2.23-2.41 (m, 2 H, *H1/H3*), 2.53-2.61 (m, 3 H, *H1/H3* und CH), 3.32-3.41 (m, 3 H, *OEt und CH*), 3.59-3-69 (m, 4 H, *OEt und 2CH*), 3.85-3.90 (m, 1 H, *CH*), 4.54 (s, 1 H, *H15a*), 5.46 (s, 1 H, *H15b*), 6.06-6.08 (m, 1 H, *H12*), 7.06-7.25 ppm (m, 10 H, *Ph*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 13.4$  (CH₃, *OEt*), 13.7 (CH₃, *OEt*), 15.9 (CH₂, *C2*), 40.5 (CH₂, *C1/C3*), 40.9 (CH₂, *C1/C3*), 43.0 (CH), 43.5 (CH), 44.5 (CH), 48.8 (CH), 59.7 (CH), 59.9 (CH₂, *OEt*), 60.3 (CH₂, *OEt*), 77.9 (C, *C5*), 106.6 (CH₂, *C15*), 121.1 (CH, *C12*), 126.2 (CH, *Ph*), 127.5 (CH, *Ph*), 128.3 (2CH, *Ph*), 128.6 (2CH, *Ph*), 128.7 (2CH, *Ph*), 129.4 (2CH, *Ph*), 136.1 (C), 139.6 (2C), 149.0 (C), 171.7 (C, *C16/C17*), 174.0 (C, *C16/C17*), 210.2 (C, *C4/C6*), 210.4 ppm (C, *C4/C6*); MS (EI): *m/z* (%) = 526 [M⁺] (84), 480 (60), 435 (33), 407 (31), 396 (66), 379 (100), 361 (58), 345 (53), 329 (26), 311 (23), 295 (49), 281 (28), 263 (45); HRMS: *m/z* calcd for C₃₃H₃₄O₆: 526.2350 [*M*⁺]; found: 526.2350. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, H,C-HSQC- und H,C-HMBC-Spektren.

Tetramethyl-2',6'-dioxo-2,5-diphenyl-2a,5-dihydro-2H-spiro[acenaphthylen-1,1'cyclohexan]-3,4,6,7-tetracarboxylat (**71f**)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Dimethylacetylendicarboxylat **66d** (42mg, 0.38mmol) ein Rohprodukt

erhalten, aus dem mittels MPLC (P/EE = 10:1 bis 1:1) 39mg eines Produktgemisches aus **71f** (32.5mg, 0.05mmol, 13% d.Th.) und **72f** (5mg, 0.02mmol, 5% d.Th.) als gelbes Öl isoliert werden.

Hauptisomer:

 $(C_{37}H_{32}O_{10})$ : ¹H NMR (400 MHz, CDCl₃):  $\delta$  = 1.46-1.66 (m, 2 H, *H19*), 2.30 (t, J = 6.1 Hz, 2 H, *H18/20*), 2.60 (t, J = 6.1 Hz, 2 H, *H18/20*), 3.67 (s, 3 H, *OMe*), 3.69 (s, 3 H, *OMe*), 3.78 (s, 3 H, *OMe*), 3.81 (s, 3 H, *OMe*), 4.45 (d, J = 12.0 Hz, 1 H, *H2*), 4.79 (dd, J = 12.0, 7.1 Hz, 1 H, *H3*), 5.39 (d, J = 7.0 Hz, 1 H, *H6*), 7.04-7.32 (m, 11 H, *Ph und H10*); ¹³C NMR (100 MHz, CDCl₃):  $\delta$  = 16.2 (CH₂, *C19*), 40.3 (CH₂, *C18/C20*), 40.9 (CH₂, *C18/C220*), 42.9 (CH, *C3*), 44.6 (CH, *C6*), 52.2 (CH₃, *OMe*), 52.5 (CH₃, *OMe*), 53.40 (CH₃, *OMe*), 53.46 (CH₃, *OMe*), 62.8 (CH, *C2*), 79.1 (C, *C1*), 123.7 (2CH, *Ph*), 127.0 (2CH, *Ph*), 127.6 (CH), 128.1 (CH), 128.5 (2CH, *Ph*), 128.9 (2CH, *Ph*), 129.5 (CH), 130.9 (C), 132.9 (C), 134.0 (C), 134.5 (C), 135.1 (C), 140.5 (C), 141.1 (C), 143.7 (C), 147.9 (C), 165.7 (C), 166.2 (C), 167.3 (C), 167.7 (C), 208.1 (C, *C17/C21*), 208.5 ppm (C, *C17/C21*).

Charakteristische Peaks des Nebenisomers:

 $(C_{37}H_{32}O_{10})$ : ¹³C NMR (100 MHz, CDCl₃):  $\delta = 16.7$  (CH₂, *C19*^{\circ}), 40.6 (CH₂, *C18*^{\circ}/C20^{\circ}), 40.7 (CH₂, *C18*^{\circ}/C20^{\circ}), 45.3 (CH, *C3*^{\circ}/C6^{\circ}), 45.9 (CH, *C3*^{\circ}/C6^{\circ}), 51.4 (CH₃, *OMe*^{\circ}), 51.6 (CH₃, *OMe*^{\circ}), 51.7 (CH₃, *OMe*^{\circ}), 52.2 (CH₃, *OMe*^{\circ}), 61.1 (C, C2^{\circ}), 207.8 (C, *C1*^{\circ}/C21^{\circ}), 209.7 ppm (C, *C17*^{\circ}/C21^{\circ}).

### Isomerengemisch:

IR: v = 3654 (w), 2954 (m), 2255 (w), 2110 (w), 1952 (w), 1725 (s), 1618 (m), 1495 (w) 1435 (m), 1326 (m), 1261 (s), 1236 (s), 1166 (s), 1092 (m), 960 (w), 911 (m), 728 (s), 701 cm⁻¹ (s); MS (EI): m/z (%) = 636 [ $M^+$ ] (10), 604 (100), 571 (40), 545 (83), 520 (20), 513 (42); HRMS: m/z calcd for C₃₇H₃₂O₁₀: 636.1990 [ $M^+$ ]; found: 636.1990. Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

Dimethyl-2-((3-oxocyclohex-1-en-1-yl)oxy)fumarat (72f)



Nach Vorschrift **4.4.2 (b)** wird aus **24g** (100mg, 0.38mmol), Cyclohexan-1,3-dion **56a** (62mg, 0.38mmol) und Dimethylacetylendicarboxylat **66d** (42mg, 0.38mmol) ein Rohprodukt erhalten, aus dem mittels MPLC (P/EE = 10:1 bis 1:1) 39mg eines Produktgemisches aus **67f** (32.5mg, 0.05mmol, 13% d.Th.) und **72f** (5mg, 0.02mmol, 5% d.Th.) als gelbes Öl isoliert werden.

 $(C_{12}H_{14}O_6)$ : ¹H NMR (400 MHz, CDCl₃):  $\delta = 2.00$  (t, J = 4.6 Hz, 2 H, *H2*) 2.44-2.52 (m, 2 H, *H3*), 2.71-2.78 (m, 2 H, *H1*), 3.23 (s, 3 H, *OMe*), 3.34 (s, 3 H, *OMe*), 5.15 (s, 1 H, *H8*), 6.61 ppm (s, 1 H, *H5*); ¹³C NMR (100 MHz, CDCl₃):  $\delta = 20.8$  (CH₂, *C2*), 27.7 (CH₂, *C1*), 36.4 (CH₂, *C3*), 51.7 (CH₃, *OMe*), 52.2 (CH₃, *OMe*), 106.3 (CH, *C8*), 117.3 (CH, *C5*), 147.9 (C, *C7*), 162.8 (C, *C9/C10*), 165.1 (C, *C9/C10*), 176.0 (C, *C6*), 199.2 ppm (C, *C4*). Die Zuordnung der Signale erfolgte durch kombinierte Analyse von zweidimensionalen H,H-COSY-, HSQC- und HMBC-Spektren.

### 5. Literaturverzeichnis

- (1) a) Diggins, F. W. E. *British Journal of Biomedical Science*. **1999**, 56 (2), 83–93;
  b) http://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/florey-lecture.htm; zuletzt abgerufen am 23.04.2014.
- (2) Latta, S. L. *Microwave man: Percy Spencer and his sizzling invention;* Enslow Elementary Verlag: Berkeley Heights, NJ, **2014**.
- (3) Goodyear, D. http://www.goodyear-dunlop.com/gd_de/marken/goodyear/goodyear_historie/, zuletzt abgerufen am 23.04.2014
- (4) Carlowitz, H. C. v. *Hamberger*, *J. Sylvicultura oeconomica;* oekom Verlag: München, **2013**.
- (5) Thies, N.; Gerlach, M.; Haak, E. Eur. J. Org. Chem. 2013, 2013 (32), 7354–7365.
- (6) Jonek, A.; Berger, S.; Haak, E. Chem. Eur. J. 2012, 18 (48), 15504–15511.
- (7) Thies, N.; Hrib, C. G.; Haak, E. Chem. Eur. J. 2012, 18 (20), 6302–6308.
- (8) Berger, S.; Haak, E. Tetrahedron Letters. 2010, 51 (50), 6630–6634.
- (9) Haak, E. Eur. J. Org. Chem. 2008, 2008 (5), 788-792.
- (10) Haak, E. Eur. J. Org. Chem. 2007, 2007 (17), 2815–2824.
- (11) Haak, E. Synlett. 2006, 2006 (12), 1847–1848.
- (12) Anastas, P. T. *Handbook of Green Chemistry;* Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, **2010**.
- (13) Beller, M.; Bolm, C. *Transition Metals for Organic Synthesis;* Wiley-VCH Verlag GmbH: Weinheim, Germany, **2004**.
- (14) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34 (3), 259-281.
- (15) Trost, B. M. Angew. Chem, 1995, (107), 285-307.
- (16) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem. 2005, 117 (41), 6788-6825.
- (17) a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103 (1), 169–196; b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101 (7), 2067–2096; c) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100 (8), 2901–2916; d) S. Murahashi, S. G. Davies, eds. Transition Metal Catalysed Reactions, 1999; e) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98 (7), 2599–2660; f) Blaser, H. U.; Baiker, A.; Prins, R. Heterogeneous catalysis and fine chemicals IV: Proceedings of the 4th International Symposium on Heterogeneous Catalysis and Fine Chemicals, Basel, Switzerland, September 8-12, 1996; Elsevier: Amsterdam, New York, 1997; g) Bruneau C.; Dixneuf, P. H. Chem. Commun. 1997, (6), 507–512; h) Lautens, M.; W. K. a. W. T. Chem. Rev. 1996, (96), 42–92; i) Beller, M.; Vol. 108; pp 1–16; j) Ojima, I.; M. T. Z. L. a. R. J. D. Chem. Rev, 1996, (96), 635–662;
- (18) Frühauf, H.-W. Chem. Rev. 1997, (97), 523–596.
- (19) Cadierno, V.; Gimeno, J. Chem. Rev. 2009, 109 (8), 3512-3560.
- (20) Bruneau, C.; Dixneuf, P. H. Angew. Chem. 2006, 118 (14), 2232-2260.
- (21) Cadierno, V.; Gamasa, M.; Gimeno, J. Coord. Chem. Rev. 2004, 248 (15-16), 1627-1657.
- (22) Bruneau, C.; Dixneuf, P. H., Eds. *Topics in Organometallic Chemistry;* Springer Berlin Heidelberg Verlag: Berlin, Heidelberg, **2004**.
- (23) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4 (3), 393.
- (25) a) Bruneau, C.; Dixneuf, P. H. Metal vinylidenes and allenylidenes in catalysis: From reactivity to applications in synthesis; Wiley-VCH: Weinheim, 2008; b) Winter, R. F.; Záliš, S. Coordination Chemistry Reviews. 2004, 248 (15-16), 1565–1583;

- (26) Kopf, H. Carben-, Vinyliden- und Allenyliden-Komplexe des Rutheniums mit Heteroskorpionat-Liganden; Cuvillier Verlag: Göttingen, **2008**.
- (27) a) Casey, C. P.; Guan, H. Organometallics. 2012, 31 (7), 2631–2638; b) Johnson, T. C.; Clarkson, G. J.; Wills, M. Organometallics. 2011, 30 (7), 1859–1868; c) Conley, B. L.; Pennington-Boggio, M. K.; Boz, E.; Williams, T. J. Chem. Rev. 2010, 110 (4), 2294-2312; d) Casey, C. P.; Bikzhanova, G. A.; Guzei, I. A. J. Am. Chem. Soc. 2006, 128 (7), 2286–2293; e) Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35 (3), 237; f) Choi, J. H.; Kim, N.; Shin, Y. J.; Park, J. H.; Park, J. Tetrahedron Lett. 2004, 45 (24), 4607–4610; g) Pàmies, O.; Bäckvall, J.-E. Chem. Rev. 2003, 103 (8), 3247-3262; h) Éll, A. H.; Samec, Joseph S. M.; Brasse, C.; Bäckvall, J.-E. Chem. Commun. 2002 (10), 1144–1145; i) Jung, H. M.; Choi, J. H.; Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J. Organometallics. 2002, 21 (25), 5674-5677; j) Pàmies, O.; Ell, A. H.; Samec, J. S.; Hermanns, N.; Bäckvall, J.-E. Tetrahedron Lett. 2002, 43 (26), 4699-4702; k) Jung, H. M.; Shin, S. T.; Kim, Y. H.; Kim, M.-J.; Park, J. Organometallics. 2001, 20 (16), 3370-3372; 1) Persson, B. A.; Larsson, A. L. E.; Le Ray, M.; Bäckvall, J.-E. J. Am. Chem. Soc. 1999, 121 (8), 1645-1650; m) Larsson, Anna L. E.; Persson, B. A.; Bäckvall, J.-E. Angew. Chem. Int. Ed. Engl. 1997, 36 (11), 1211–1212; n) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Bäckvall, J.-E. Chem. Eur. J. 1996, 2 (12), 1533–1536; o) Almeida, Maria L. S.; Kočovský, P.; Bäckvall, J.-E. J. Org. Chem. 1996, 61 (19), 6587-6590; p) Menashe, N.; Shvo, Y. Organometallics. 1991, 10 (11), 3885-3891; q) Shvo, Y.; Czarkie, D. J. Org. Chem. 1986, 315 (1), C25-C28; r) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108 (23), 7400-7402; s) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics. 1985, 4 (8), 1459–1461; t) Blum, Y.; Shvo, Y.; F. Chodosh, D. Inorg. Chim. Acta. 1985, 97 (2), L25–L26;
- (28) Karvembu, R.; Prabhakaran, R.; Natarajan, K. Coord. Chem. Rev. 2005, 249 (9-10), 911–918.
- (29) Csjernyik, G.; Éll, A. H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. J. Org. Chem. 2002, 67 (5), 1657–1662.
- (30) Thies, N. Diplomarbeit. 2010, Magdeburg.
- (31) Haak, E. http://www.ich.ovgu.de/Lehrst%C3%BChle/Organische+Chemie/AK+Jun_+Prof_+H aak.html, zuletzt abgerufen am 25.04.2014
- (32) Gupta, H. K.; Rampersad, N.; Stradiotto, M.; McGlinchey, M. J. *Organometallics*. **2000**, *19* (2), 184–191.
- (33) Edwards, R. L.; Elsworthy, G. C.; Kale, N. J. Chem. Soc., C. 1967, 405.
- (34) Campbell, A. C.; Maidment, M. S.; Pick, J. H.; Stevenson, Donald F. M. J. Chem. Soc., Perkin Trans. 1. 1985, 1567.
- (35) Gompper, B. R.; Glockner, H. Angew. Chem. Int. Ed. Engl. 1984, (23), 53-54.
- (36) Gribble, G.W. Ed. *Heterocyclic Scaffolds II: Heterocyclic Scaffolds II: Reactions and Applications of Indoles;* Springer Verlag, **2010**.
- (37) Bird, C. W. Ed. Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982-1995, Vol. 2 Five-membered Rings with One Heteroatom and Fused Carbocyclic Derivatives; Elsevier Science Ltd., **1996**.
- (38) Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Chem. Rev. 1997, 97 (1), 207-282.
- (39) Breitmaier, E. Alkaloide: Betäubungsmittel, Halluzinogene und andere Wirkstoffe, Leitstrukturen aus der Natur; Teubner Verlag: Stuttgart, 2002.
- (40) Wassermann, H. H.; Fukuyama, J. M. Tetrahedron Lett. 1984, (25), 1387–1388.
- (41) Fürstner, A. Angew. Chem. 2003, 115 (31), 3706–3728.

- (42) Attardo, G.; Lavallee, J.-F.; Rioux, E.; Tripathy, S.; Doyle, T. W. *Methods for treating cancer*. US 7,709,477 B2.
- (43) Yoshikai, N.; Wei, Y. Asian J. Org. Chem. 2013, 2 (6), 466-478.
- (44) a) Biletzki, T.; Imhof, W. Eur. J. Org. Chem. 2012, n/a; b) Lu, Y.; Arndtsen, B. A. Angew. Chem. 2008, 120 (29), 5510–5513;
- (45) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132 (51), 18326–18339.
- (46) a) Jiang, Y.; Chan, W. C.; Park, C.-M. J. Am. Chem. Soc. 2012, 134 (9), 4104–4107;
  b) Lourdusamy, E.; Yao, L.; Park, C.-M. Angew. Chem. 2010, 122 (43), 8135–8139;
- (47) Gao, M.; He, C.; Chen, H.; Bai, R.; Cheng, B.; Lei, A. Angew. Chem. 2013, 125 (27), 7096–7099.
- (48) Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Angew. Chem. 2013, 125 (27), 7091–7095.
- (49) Zheng, Q.; Hua, R. Tetrahedron Lett. 2010, 51 (34), 4512-4514.
- (50) Pridmore, S. J.; Slatford, P. A.; Daniel, A.; Whittlesey, M. K.; Williams, J. M. *Tetrahedron Lett.* **2007**, *48* (29), 5115–5120.
- (51) Trost, B. M.; Breder, A. Org. Lett. 2011, 13 (3), 398-401.
- (52) Miyake, Y.; Endo, S.; Nomaguchi, Y.; Yuki, M.; Nishibayashi, Y. *Organometallics*. **2008**, *27* (15), 4017–4020.
- (53) a) Zhu, Z.-B.; Kirsch, S. F. Chem. Commun. 2013, 49 (23), 2272; b) Ackermann, L.; Sandmann, R.; Kaspar, L. T. Org. Lett. 2009, 11 (9), 2031–2034; c) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11 (21), 5002–5005; d) Cadierno, V.; Gimeno, J.; Nebra, N. Chem. Eur. J. 2007, 13 (35), 9973–9981; e) Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9 (16), 3181–3184; f) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8 (10), 2151-2153; g) Crawley, M. L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J. F.; Nogle, L.; Dooley, R.; Mahaney, P. E. Org. Lett. 2006, 8 (25), 5837–5840; h) Martín, R.; Rodríguez Rivero, M.; Buchwald, S. L. Angew. Chem. 2006, 118 (42), 7237–7240; i) Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68 (20), 7853–7861; j) Gabriele, B.; Salerno, G.; Fazio, A.; Bossio, M. R. Tetrahedron Lett. 2001, 42 (7), 1339–1341; k) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123 (9), 2074–2075; l) Yudin, A. K. Catalyzed carbon-heteroatom bond formation; Wiley-VCH Verlag: Weinheim, 2011;
- (54) a) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem. 2013, 125 (14), 4104-4107;
  b) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem. 2013, 125 (2), 625–629;
- (55) Iida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. 2013, 15 (7), 1436–1439.
- (56) a) Matsuzawa, H.; Kanao, K.; Miyake, Y.; Nishibayashi, Y. Org. Lett. 2007, 9 (26), 5561–5564; b) Inada, Y.; Yoshikawa, M.; Milton, M. D.; Nishibayashi, Y.; Uemura, S. Eur. J. Org. Chem. 2006, 2006 (4), 881–890; c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Org. Chem. 2004, 69 (10), 3408–3412; d) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124 (40), 11846–11847;
- (57) McNulty, J.; McLeod, D. Synlett. 2011, 2011 (05), 717–721.
- (58) Organic Reactions; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2004.
- (59) a) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125 (31), 9294–9295; b) Cadierno, V., Gamasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571–591;
- (60) Bustelo, E.; Jime´nez-Tenorio, M.; Puerta, M. C.; Valerga P. *Eur. J. Inorg. Chem.* **2001**, 2391–2398.
- (61) Haug, T. T.; Harschneck, T.; Duschek, A.; Lee, C.-U.; Binder, J. T.; Menz, H.; Kirsch, S. F. J. Org. Chem. 2009, 694 (4), 510–514.
- (62) Makino, T.; Itoh, K. J. Org. Chem. 2004, 69 (2), 395–405.

- (63) Cantet, A.-C.; Carreyre, H.; Gesson, J.-P.; Jouannetaud, M.-P.; Renoux, B. J. Org. Chem. 2008, 73 (7), 2875–2878.
- (64) Yoshida, M.; Komatsuzaki, Y.; Ihara, M. Org. Lett. 2008, 10 (10), 2083–2086.
- (65) Silva, L. F.; Craveiro, M. V.; Tébéka, I. R. Tetrahedron. 2010, 66 (22), 3875–3895.
- (66) Muratake, H.; Mikawa, A.; Natsume, M. Tetrahedron Lett. 1992, 33 (32), 4595–4598.
- (67) Jackson, S. K.; Kerr, M. A. J. Org. Chem. 2007, 72 (4), 1405–1411.
- (68) Buszek, K. R.; Brown, N.; Luo, D. Org. Lett. 2009, 11 (1), 201-204.
- (69) Lautens, M.; Tam, W.; Lautens, J.C.; Edwards, L. G. J. Am. Chem. Soc. 1995 (117), 6863–6879.
- (70) Coe, J. W.; Wirtz, M. C.; Bashore, C. G.; Candler, J. Org. Lett. 2004, 6 (10), 1589-1592.
- (71) Rabideau, P. W. Tetrahedron. 1989, 45 (6), 1579–1603.
- (72) Zhong, Y.-L.; Shing, Tony K. M. J. Org. Chem. 1997, 62 (8), 2622–2624.
- (73) Hammar, P.; Ghobril, C.; Antheaume, C.; Wagner, A.; Baati, R.; Himo, F. J. Org. Chem. 2010, 75 (14), 4728–4736.
- (74) Landais, Y.; Zekri, E. Eur. J. Org. Chem. 2002, 4037-4053.
- (75) Gilbert K. Yang and Robert G. Bergman. J. Am. Chem. Soc. 1983 (105), 6045–6052.
- (76) Hutter, W.; Bodenseh, H.-K. J. Mol. Struct. 1993, 291 (2-3), 151–158.
- (77) a) Blomquisatn, A. T.; Joseph, D.; Verdol, A. J. Am. Chem. Soc. 1955, 81–83;
  b) Henning Hopf. Angew. Chem. 1984, (96), 947–958;
- (78) Brummond, K.; Yan, B. Synlett. 2008, 2008 (15), 2303–2308.
- (79) Kang, B.; Kim, D.-h.; Do, Y.; Chang, S. Org. Lett. 2003, 5 (17), 3041–3043.
- (80) Tsuge, O.; Wada, E.; Kanemasa, S. Chem. Lett. 1983, 1525–1528.
- (81) Hopf, H.; Sherburn, M. S. Angew. Chem. 2012, 124 (10), 2346–2389.
- (82) Winkler, J. D. Chem. Rev. 1996, 96 (1), 167–176.
- (83) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41 (1), 40-49.
- (84) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105 (2), 137-170.
- (85) Souweha, M. S.; Enright, G. D.; Fallis, A. G. Org. Lett. 2007, 9 (25), 5163–5166.
- (86) John, J.P.; Swaminathan, S.; Venkataramani, P. S. Org. Synt., Coll. Vol. 5, p.747 (1973); Vol. 47, p.83 (1967). 1973, (5), 747.
- (87) Karupaiyan, K.; Puranik, V.; Deshmukh, A.; Bhawal, B. *Tetrahedron*. **2000**, *56* (43), 8555–8560.
- (88) Jones, M. D.; Mahon, M. F. J. of Org. Chem. 2008, 693 (13), 2377–2382.
- (89) Burreson, B. J.; Moore, R. E.; Roller, P. Tetrahedron Lett. 1975, 16 (7), 473–476.
- (90) Ghobril, C.; Sabot, C.; Mioskowski, C.; Baati, R. *Eur. J. Org. Chem.* **2008**, 2008 (24), 4104–4108.
#### 6. Abbildungsverzeichnis

Abb. 1 Cumulenyliden–Liganden	4
Abb. 2 Im Arbeitskreis etablierte Akzeptor- und Donor-substituierte Katalysatoren	
Abb. 3 Neue Übergangsmetallkomplexe 11-17	11
Abb. 4 Röntgenkristallstruktur von 3a. ⁷	
Abb. 5 Ethylierung von 3a zur Darstellung des Komplexes 16.	15
Abb. 6 NH ₂ -Katalysator 17	17
Abb. 7 Polypyrrol.	
Abb. 8 Beispiele medizinisch bedeutsamer Pyrrol- und Indolderivate	
Abb. 9 Darstellung von Herbindolen und Trikentrinen.	39
Abb. 10 Allgemeine Struktur von [n]Dendralenen	
-	

# 7. Schemenverzeichnis

Schema 1 Funktionsweise eines bifunktionellen Katalysators	3
Schema 2 Postulierte Mechanismen zur Darstellung von Vinyliden- und	
Allenylidenkomplexen. ²⁶	4
Schema 3 (e) Intermolekulare-und (f) intramolekulare Addition von Nukleophilen an	
Vinyliden-Liganden. ²⁶	5
Schema 4 Reaktivität der Allenyliden-Liganden. ²⁶	5
Schema 5 (g) Thermische Aktivierung des Shvo Katalysators 1 in die Monomere 1a und	d 1b. ²⁸
(h) Wasserstofftransfer mit Ruthenium-Cyclopentadienon-Komplexen. ²⁹	6
Schema 6 Übergangsmetallkomplexe redox-gekoppelter Ligandensysteme	7
Schema 7 Substrataktivierung und Gleichgewichte zwischen zentralen	
Katalyseintermediaten. ³¹	8
Schema 8 Darstellung der Katalysatoren 11a und 11b.	12
Schema 9 Wasserstoffbrückenbindung des Komplexes 12.	13
Schema 10 Metallkoordination und Wasserstoffbrückenbindung des Komplexes 13	13
Schema 11 Bildung des Katalysators 13.	14
Schema 12 Darstellung der Komplexe 14a und 14b.	14
Schema 13 Darstellung des Osmium-Komplexes 15.	15
Schema 14 Bildung des Liganden 17L	17
Schema 15 (i) Larock-Indol-Synthese ³⁶ , (j) Pyrrolsynthese nach Saito ⁵⁵ (k) Lei`s	
Indolsynthese. ⁴⁷	22
Schema 16 Funktionalisierung von Pyrrolen / Indolen mit Propargylalkoholen	23
Schema 17 Rutheniumkatalysierte Pyrrol- und Indolbildung.	23
Schema 18 Rutheniumkatalysierte Enincyclisierung. ⁷	29
Schema 19 Rutheniumkatalysierte Transformation tertiärer Propargylalkohole	29
Schema 20 Postulierter Mechanismus zur Bildung der Enine 30a-e Indole 25	30
Schema 21 Umsetzung von 24a mit Anilin oder Benzylamin.	31
Schema 22 Spontane Allylierungs-/Cyclisierungsreaktion.	34
Schema 23 Postulierter Mechanismus zur Bildung der Enine 30f,g	
und der Pyrrole 26 und 33.	35
Schema 24 Allylierungs/Cyclisierungs-Sequenz mit Propargylaminen	37
Schema 25 Postulierter Mechanismus zur Transformation von Dibenzyl-, Allyl- und	
Propargylaminen.	38
Schema 26 Darstellung eines Herbindol A-Analogons	39
Schema 27 Retrosynthese von (±)-Herbindol A in 9 Stufen	40
Schema 28 Homo-Diels-Alder Reaktion.	40
Schema 29 Retrosynthese (±)-Herbindol A in 10 Stufen	41
Schema 30 Retrosynthese von (±)-Herbindol A in 7 Stufen	41
Schema 31 Syntheseweg zur Darstellung von 51	41
Schema 32 Retrosynthese von (-)-Herbindol A.	43
Schema 33 Retrosynthese des Cyclisierungsprecursors 47	43
Schema 34 Metallinduzierte 1,3-Dipolare Cycloaddition. ¹⁸	44
	170

Schema 35 Rutheniumkatalysierte Darstellung allylierter Pyrrole und Indole
Schema 36 Postulierte Dominotransformationen von Allyl-Vinylalkoholen
Schema 37 Rutheniumkatalysierte Transformation biallylischer 1-Vinylpropargyl-
alkohole mit Dienophilen
Schema 38 Dominosequenz zur Darstellung von Tetrahydroindolen
Schema 39 Sequentiell katalysierte Dominoreaktion zur Darstellung von Dihydroindolen 46
Schema 40 Darstellung von [3]Dendralenen. ^{78,79}
Schema 41 Darstellung des Vinigrol-Precursors mittels DTDA-Reaktion
Schema 42 Rutheniumkatalysierte Addition von CH-aciden Verbindungen an
Propargylalkohole
Schema 43 Rutheniumkatalysierte Addition von 1.3-Dicarbonylverbindungen an
terminale Propargylalkohole. ⁶
Schema 44 Spirocyclopenten-Bildung mit 24m. ⁶
Schema 45 Postulierter Mechanismus zur Bildung der Cyclisierungsprodukte
Schema 46 Postulierter Mechanismus zur Bildung von 65c
Schema 47 DTDA-Reaktionsverlauf zur Darstellung des Dekalinsystems 67
Schema 48 Stereoselektivität der DTDA-Sequenz zur Darstellung des Hauptisomers 67a 61

## 8. Tabellenverzeichnis

Tabelle 1 Bildung des Liganden 17L	16
Tabelle 2 Additive und Reaktionsbedingungen	26
Tabelle 3 Ruthenium katalysierte Indolbildung	27
Tabelle 4 Indolbildung aus biallylischen Alkoholen	28
<b>Tabelle 5</b> Rutheniumkatalysierte Allylierung	28
<b>Tabelle 6</b> Rutheniumkatalysierte Pyrrolbildung	32
Tabelle 7 Pyrrolbildung aus biallylischen Alkoholen	33
Tabelle 8 Allylierungs/Cyclisierungs/Umlagerungs-Sequenz	35
Tabelle 9 Allylierung/Cyclisierung/Umlagerung bzw. Allylierung/Cycloaddition	
biallylischer Alkohole mit Allylaminen	36
Tabelle 10 Allylierung/Cyclisierung/Umlagerung bzw. Allylierung/Cycloaddition	
biallylischer Alkohole mit Propargylaminen	37
Tabelle 11 Rutheniumkatalysierte Transformationen von 24g mit 56a und 56b	54
Tabelle 12 Rutheniumkatalysierte Transformationen von 24g mit 56c.	56
Tabelle 13 Transformation von 24g mit 56a-c ohne Katalysator	57
Tabelle 14 DTDA-Reaktion mit NPM 66a	59
Tabelle 15 DTDA-Reaktionen verschiedener Dienophile	62

## 9. Lebenslauf

<u>Persönliche Daten</u>

Name	Nora Thies
Geburtstag	03.06.1986
Geburtsort	Haldensleben
Staatsangehörigkeit	deutsch

#### Schulische und wissenschaftliche Ausbildung

01/2011 - 04/2014	Promotionsstudentin (FVST - ICH - Organische Chemie, JunProf. Dr. E. Haak) Otto-von-Guericke-Universität, 39104 Magdeburg
10/2005 - 09/2010	Diplom-Ingenieurin (Studiengang: Molekulare und Strukturelle Produktgestaltung) Otto-von-Guericke-Universität, 39104 Magdeburg
1996 – 2005	Allgemeine Hochschulreife (Abitur) Freiherr-vom-Stein-Gymnasium, 39356 Weferlingen
1992 – 1995	Grundschule, 39345 Flechtingen