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Zusammenfassung

Die vorliegende Dissertation entwickelt D-optimale Versuchspläne für li-

neare Modelle mit sowohl qualitativen als auch quantitativen Einflussfak-

toren. Zu Beginn wird eine allgemeine Einführung in die Theorie der opti-

malen Versuchsplanung mit den am häufigsten verwendeten Optimalitätskri-

terien gegeben und das damit verbundene Allgemeines Äquivalenztheorem

vorgestellt. Danach wird die Blockbildung als ein lineares Zweifaktormodell

ohne Wechselwirkungen eingeführt, bei dem es keine Wechselwirkung zwis-

chen den Blöcken und den Effekten des quantitativen Regressors gibt. In

Abhängigkeit von den jeweiligen Versuchsbedingungen können zwei Arten

von Blockeffekten, feste oder zufällige, unterschieden werden, die zu unter-

schiedlichen Modelle führen. In diesem Zusammenhang werden zwei Theo-

reme bewiesen, in denen die Optimalität und die wichtige Eigenschaft der

Orthogonalität analysiert wird.

Im Hinblick auf die Zielsetzung dieser Arbeit wird eine Charakterisierung D-

optimaler Pläne für die komplexe Structur ein gemischten zweifaktoriellen

Modells mit gemeinsamem Basiswert gewonnen. Diese Charakterisierung

erlaubt unter wenigen Annahmen die analytische Bestimmung der Gewichte

des optimalen Versuchsplans vermittels konvexer Optimierung. Dabei ist

zu beachten, dass diese optimalen Gewichte zwar vom Verhältnis der Vari-

anzkomponenten zueinander abhängen, aber dass in praktischen Anwendun-

gen die im Grenzübergang optimalen Pläne eine hohe Effizienz aufweisen,

wenn der wert des Varianzverhältnisses gegen Null oder gegen unendlich

strebt.

i





Summary

In the present thesis optimal experimental designs are developed for linear

regression models with both qualitative and quantitative factors of influ-

ence. The exposition starts with a general introduction to optimal design

theory in which the most popular optimality criteria and the corresponding

General Equivalence Theorem are presented. After this brief introduction,

we consider the blocked response surface experiments which can be regarded

as two-factor linear models without interactions. Here as common in the lit-

erature we may assume that there is no interaction between the blocks and

the effects of the quantitative regression factor. Depending on the nature of

the experiment two types of blocking variables, fixed or random, have to be

incorporated which then lead to essentially different models. Subsequently

in this context two theorems are established in which the optimality and

the key property of orthogonality are analyzed.

With respect to the aim of this work we generate a characterization of opti-

mal designs for a more complex structure, a two-factorial mixed model with

a common intercept. This characterization allows under few assumptions

to find the weights of the optimal design analytically by means of convex

optimization. It is worthwhile noting that the optimal weights depend on

the ratio of variance components. However in this context, we show that in

practical applications limiting optimal design shows a high efficiency, when

the variance ratio approaches to zero or infinity.
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Chapter 1

Introduction

In the framework of the statistical experiments the theory of optimal de-

signs has been developed. In general the subject of this theory is that for an

appropriate model, if we want to put emphasis on a special quality of the

parameters estimate, the experimental settings should be chosen according

to certain criteria with statistical sense, that by using a minimum amount

of resources a maximum of information can be obtained. In the literature

on optimal designs, a preeminent author was Kiefer(1959) who presented

the main concepts, such as design measure and a variety of optimality cri-

teria for this branch of experimental designs, Kiefer, in particular gave the

name D-optimality to the criterion introduced by Wald(1943), which is the

most commonly applied design criterion and is defined on the determinant

of the covariance matrix. Kiefer and Wolfowitz(1960) made an essential

contribution known as the first Equivalence Theorem, there they proved

the equivalence between D-optimality and G-optimality and provided tools

to verify the optimality of a given design. The monograph by Silvey (1980)

and the book by Fedorov (1972) and more recently the books by Atkinson

& Donev (1992) and Pukelshein (1993) where the authors made statistical

and formal presentations of the optimal designs, also are recognized.

Very often, for a more realistic analysis of the data, a regression experiment

has to be designed involving both qualitative and quantitative factors of
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1 Introduction

influence, for example, an intra-class regression model with the identical

partial model in each class, see e.g. Searle(1971,p. 355) and Kurotschka

(1984); a blocked response surface design , see e.g. Gilmour and Trinca

(2000); Goos(2002) and Waite et al (2012) or more general, a two-factor

linear model.

The problem of constructing an optimum experimental design for estimat-

ing the vector parameter of a two-factor linear model is more complex than

for single factor models, however the question under what conditions we can

find optimum designs for two-factor models in terms of optimum designs for

their single factor models has been developed; for example, for multi-factor

model with homoscedastic errors Schwabe(1996) presents optimal designs

for a great variety of cases. Regarding these ideas, the aim of the present

work is generating D-optimum designs for multi-factor models in the pres-

ence of random block effects. Of particular interest is the limiting behavior,

when the variance of the random effects gets large and zero. Moreover we

apply essentially analytical methods that involve convex optimization in

continuous set up to models which involve discrete structure, a fact that

has been neglected in the literature with few exceptions.

This thesis is organized as follows: in chapter 2, we present a general in-

troduction to the optimal design of experiments, in particular the classical

optimality criteria and the corresponding General Equivalence Theorem. In

chapters 3 and 4 we deal with D-optimal designs for regression models in

the presence of fixed and random block effects, respectively. We empha-

size that the fixed and random block effects models are essentially different

models, but in the two cases the block effects are considered nuisances pa-

rameters and we give special attention to optimality of orthogonal blocking.

In chapter 5, we consider a two-factorial mixed model with a common inter-

cept in which the factor effects are related by different interaction structure.

Chapter 6 brings about optimal product design, suitable for analysis of the

direct fixed effects as well as of the variances of the random effects. This

thesis is closed with a discussion of the results and an outlook to possible

future work.
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Chapter 2

Optimal Designs in Linear

Regression Models

The main aim of this chapter is to present a general introduction of several

important topics on optimality theory of experimental designs in linear re-

gression models, in particular the classical optimality criteria and an associ-

ated General Equivalence Theorem where the Kiefer-Wolfowitz equivalence

theorem appear as a special case. This theory is based essentially on ana-

lytical methods that involve convex optimization in continuous setup. The

foundation for this introductory chapter on optimal designs are the mono-

graph by Silvey (1980) and Fedorov (1972) also by the books of Pukelsheim

(1993) and Atkinson, Donev and Tobias (2007).

2.1 Classical Linear Regression Models

We consider an experiment where the response Y is a random variable with

distribution of probability P , such that Y is decomposed into the deter-

ministic and known mean response function µ(x,β) plus a random error ε,

thus Y depend on r explanatory variables typically represented by the vec-

3



2 Optimal Designs in Linear Regression Models

tor x> = (x1, . . . , xr) (which it can be usually controlled) and β a vector of

parameters which are constant but unknown to the experimenter; in this ex-

perimental situation Y (x) = µ(x,β)+ε is a linear (homoscedastic) model

whenever the expected value and variance of Y taken the following form

EP(Y (x)) = µ(x,β) = f(x)>β, VarP(Y (x)) = Var(ε) = σ2 (2.1)

respectively, where f = (f1, . . . , fp)
> is a vector of p known, linearly in-

dependent and real valued regression function defined on the experimental

region X which we assume is a compact set in Rr, β = (β1, . . . , βp)
> is a

p-vector of unknown regression parameters for the effects of the explanatory

variables and σ2(> 0) is an unknown scalar parameter.

2.2 Experimental Designs and Information

Matrices

In order to make statistical inference on the unknown parameters β1, . . . , βp

or certain function of them, the experimenter is allowed to select N indepen-

dent observations at the setting of control vectors x1, . . . ,xN chosen from

the experimental region X .

Definition 2.1 An experimental design of size N is a list of experimen-

tal settings x1, . . . ,xN in X , not necessarily all distinct, denoted dN :=

(x1, . . . ,xN).

Typically the experimental design dN is selected according to certain struc-

ture from the experimental region to answer the statistical question of in-

terest. Let YN = (Y1(x1), . . . , YN(xN))> be the vector of observations at

the experimental design dN , where it is assumed that the observations are

4



2 Optimal Designs in Linear Regression Models

independent and that the experimental runs are carried out under homo-

geneous conditions, then in matrix notation the uncorrelated linear model

can be described by

YN = F(dN)β + ε (2.2)

where F(dN) = (f(x1), . . . , f(xN))> is the N × p design matrix for the pa-

rameter β, and ε = (ε1, . . . , εN)> is the N -vector of random error.

Consequently, the expectation vector and covariance matrix of YN become

EP(YN) = F(dN)β, CovP(YN) = CovP(ε) = σ2IN , (2.3)

where IN is the N ×N identity matrix.

With these assumptions, we consider the general case, when the experi-

menter is interested in a linear aspect ψ of β identifiable under dN , that is

a s-vector of linear combinations of the parameter β, defined by

ψ(β) := Lψβ, (2.4)

such that

Lψ = K(F(dN)>F(dN)) for some known matrix K ∈ Rs×p.

On the other hand, in the space of symmetric p × p matrices, Sym(p), the

subsets of nonnegative definite matrices, NND(p), and of positive definite

matrices, PD(p), are key to the sequel. They are defined through quadratic

forms

A ∈ NND(p) ⇐⇒ A ∈ Sym(p) and x>Ax ≥ 0 for all x ∈ Rp

A ∈ PD(p) ⇐⇒ A ∈ Sym(p) and x>Ax > 0 for all 0 6= x ∈ Rp.

Note that PD(p) is a subset of NND(p). In this work, we use the following

characterization: For any n× p matrix X, the matrix X>X ∈ NND(p).
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2 Optimal Designs in Linear Regression Models

Hence, F(dN)>F(dN) is an element of the set of nonnegative definite ma-

trices NND(p), and by the Gauß-Markov theorem the best linear unbiased

estimator for an identifiable linear aspect ψ is given by

ψ̂ = Lψ(F(dN)>F(dN))−F(dN)>YN (2.5)

with

Cov(ψ̂) = σ2Lψ(F(dN)>F(dN))−L>ψ, (2.6)

where for a matrix A we denote by A− an arbitrary generalized inverse of

A, which satisfies AA−A = A.

Thus ψ̂ is invariant to the choice of the generalized inverse of F(dN)>F(dN).

If rank(F(dN)) = p ≤ N , then F(dN)>F(dN) is an element of the interior

of NND(p) the set of positive definite matrices, PD(p), (see Pukelsheim,

2006,p.10) hence F(dN)>F(dN) has its standard inverse (F(dN)>F(dN))−1

for its unique generalized inverse and in particular, we can obtain the best

linear unbiased estimator of the whole parameter vector β given by

β̂ = (F(dN)>F(dN))−1F(dN)>YN (2.7)

with

Cov(β̂) = σ2(F(dN)>F(dN))−1, (2.8)

hence the matrix F(dN)>F(dN), affects both the estimator ψ̂ and its co-

variance matrix and the quality of a selected experimental design dN is

associated with the information provided for the linear combinations of

the parameters because this information is contained in the p × p-matrix

F(dN)>F(dN).

Definition 2.2 For a experimental design dN , the p× p-matrix

1

N
F(dN)>F(dN) =

1

N

N∑
i=1

f(xi)f(xi)
> := Mf (dN)

is called the moment matrix of the experimental design dN .

6



2 Optimal Designs in Linear Regression Models

As basic principles of regression experimental design is the execution of

replicas as well as the randomization of the standard order of the exper-

imental setting when the design is used, a experimental design dN may

contain a number, L with L ≤ N , of distinct experimental control vectors

x1, . . . ,xL with frequencies n1, . . . , nL respectively such that
∑L

l=1 nl = N

and we can consider the set of distinct design points {x1, . . . ,xL} as the set

of all support points of a discrete probability distribution δN on X , which

it defines

δN(x) =


nl
N

if x = xl, l = 1, . . . , L

0 otherwise,

then every experimental design dN has an associated discrete probability

distribution δN , thus the moment matrix Mf (dN) now depends on δN and

it can be written as an expected value

Mf (δN) = EδN

(
f(x)f(x)>

)
=

∫
X

f(x) f(x)>δN(dx)

=
L∑
l=1

δN(xl)f(xl)f(xl)
> = Mf (dN). (2.9)

2.3 Continuous and Exact Designs

The transition of an experimental design dN for finite sample size N to

a discrete probability distribution δN allows the generalization to designs

for infinite sample size with the introduction of design measures, see for

example, Kiefer(1959).

Definition 2.3 δ is a design measure on the compact subset X of Rr if δ

is a probability distribution on the Borel sets of X .

The set of all design measure on X will be denoted by W(BX ).

7



2 Optimal Designs in Linear Regression Models

Mf (δ) =

∫
X

f(x) f(x)>δ(dx); is the moment matrix of the design measure δ.

Now the generalization of the experimental design to design measure, im-

plies that the concept of identifiability has to be generalized too.

Definition 2.4 A linear aspect ψ defined by ψ(β) := Lψβ is identifiable

under δ if there exists a matrix K ∈ Rs×p such that Lψ = KMf (δ).

Definition 2.5 If ψ is identifiable under δ, then the s× s-matrix Cψ(δ) :=

Lψ(Mf (δ))
−L>ψ is called the covariance matrix of ψ corresponding to the

design δ.

We note that in the definition, the covariance matrix is independent of

the special choice of the generalized inverse of the moment matrix Mf (δ),

also for a experimental design dN , the variance-covariance matrix of the

best unbiased estimator of ψ, Cov(ψ) is directly proportional to Cψ(δN),

with proportionality constant 1
N
σ2 where δN is the corresponding associated

design measure.

Definition 2.6 If ψ is identifiable under δ with s×p coefficient matrix Lψ

of full row rank s, then the s× s-matrix

Iψ(Mf (δ)) := Cψ(δ)−1 =
(
Lψ(Mf (δ))

−L>ψ
)−1

is called the information matrix of ψ corresponding to the design δ.

In particular, if Mf (δ) is positive definite, then the whole parameter vector

β is identifiable under δ, and Iβ(Mf (δ)) = (Ip(Mf (δ))
−1Ip)

−1
= Mf (δ), i.e.

the information matrix of β coincide with the non singular moment matrix

of δ.

Let M be, the set of moment matrices, that is

M =

{
Mf (δ) =

∫
X

f(x) f(x)>δ(dx); δ ∈ W(BX )

}
⊂ NND(p)

8



2 Optimal Designs in Linear Regression Models

We note that for δ1 and δ2 in W(BX ) and all t ∈ [0, 1], we have that

tδ1 + (1− t)δ2 ∈ W(BX ).

Hence the set of design measures is a convex set.

As a result, the set M also is convex, indeed due to the linearity of the

integral, it holds

tMf (δ1) + (1− t)Mf (δ2) = Mf (tδ1 + (1− t)δ2) ∈M.

Moreover, if we assume that f is continuous on the compact set X , then M is

a compact set (see Pukelsheim (1993),p.29), and according to Carathéodory’s

theorem (Silvey(1980),p.72) each element Mf (δ) of M can always be ex-

pressed as Mf (ξ), where ξ is a discrete design measure supported on at

most 1
2
p(p + 1) + 1 points; that is, there always exists an approximate

design ξ with a finite support which satisfies

Mf (δ) =

∫
X

f(x) f(x)>δ(dx) =
∑

x∈supp ξ

ξ(x)f(x) f(x)> = Mf (ξ).

This result suggests that it will be sufficient to consider only discrete designs,

i.e. discrete probability distributions on X with a finite support. If the

design ξ is supported at n distinct design points xi ∈ X , it is denoted by

ξ =

 x1 x2 . . . xn

w1 w2 . . . wn

 , (2.10)

where the first line gives the levels of the design points in the support set

and the second line gives the weights associated with each design point.

Since ξ is a discrete design measure,

∫
X
ξ(dx) =

n∑
i=1

ξ(xi) =
n∑
i=1

wi = 1, and 0 ≤ wi ≤ 1, for all i.

If the design weights ξ(xi) = wi are rational for all i = 1, . . . , n, then it will

be possible to find an associated experimental design of size N ≥ p, where

9



2 Optimal Designs in Linear Regression Models

each design point xi is replicated an integer number ri = wiN respectively,

this designs are called exact designs and also are represented as ξN .

On the other hand, if the weights of a design ξ are not all rational, it will

not be possible to find an exact design for any finite N , such design ξ is

called continuous.

The class of all approximate design, that is all discrete design measure(exact

and continuous) on X will be denoted by A. The subclass of A of all design

ξ for which the linear aspect ψ(β) = Lψβ is identifiable is denoted by Aψ,

thus we can write

Mψ = {Mf (ξ); ξ ∈ Aψ} ⊂M.

The following step is to find designs ξ∗ such that the performance of the

estimator ψ̂ is optimum. As a remark, the performance of the designs is typ-

ically valued in terms of the moment matrix of ξ∗ through the information

matrix of ψ, however the moment matrices are not necessarily comparable,

therefore a uniform optimization is not possible in general, but for instance,

in the linear context under discussion, we have that if the responses are

normally distributed, the related 100(1 − α)% Scheffé confidence ellipsoid

for the identifiable linear aspect ψ(β) = Lψβ with rank(Lψ) = s will be

Ŝ(ξN) =

{
ψ ∈ Rs :

(
ψ − ψ̂

)>
Iψ(Mf (ξN))

(
ψ − ψ̂

)
≤ s fs,v,1−α σ̂2

}
for all ξN ∈ Aψ, where σ̂2 is the usual estimator of σ2, i.e. the residual sum

of squares divided by v = N−rankMf (ξN) and fs,v,1−α is the (1−α) quantile

of the F distribution with numerator degrees of freedom s and denominator

degrees of freedom v .

The quality of this confidence ellipsoid depends on the probability distribu-

tion ξN through the information matrix Iψ(Mf (ξN)), because it is as precise

as its volume small is, and the volume of the ellipsoid is inversely propor-

tional to the square root of the determinant of the information matrix.

10



2 Optimal Designs in Linear Regression Models

Therefore, if we want to put emphasis on the quality of the parameter

estimates a natural way or criteria is to find a design ξ which maximizes

the determinant of the information matrix.

2.4 Classical Optimality criteria

Let φ be a real-valued function on the whole set of NND(s). Given ψ(β) =

Lψβ a linear aspect with the coefficient matrix Lψ of full row rank s and a

design ξ ∈ Aψ,. When the function φ is evaluated, with statistical meaning,

in the information matrix Iψ(Mf (ξ)) =
(
LψMf (ξ)

−L>ψ
)−1

, then we have a

design criteria and a design ξ∗ ∈ Aψ is called φ-optimal for ψ if

φ(Iψ(Mf (ξ
∗))) = max

ξ∈Aψ
φ(Iψ(Mf (ξ))). (2.11)

That is, the optimality properties of designs ξ are determined by their mo-

ment matrix Mf (ξ).

Many different criteria can be found in the optimal design literature and

each of these criteria capture particular statistical aspects; in the following

we will present only some of the most important and popular design criteria.

2.5 Dψ-optimality

We start with the determinant criterion for a linear aspect ψ, denoted Dψ-

criterion, where ψ(β) = Lψβ is an identifiable linear aspect with rankLψ =

s ≤ p, this criterion determines the design that maximizes the determinant

of the information matrix Iψ(Mf (ξ)). This corresponds geometrically to

minimize the volume of the confidence ellipsoid for the linear aspect ψ of the

unknown parameter vector β in the linear model (2.1) under the assumption

of normality of errors.

11



2 Optimal Designs in Linear Regression Models

Definition 2.7 A design ξ∗ is called Dψ-optimal or φ0-optimal for ψ if it

maximizes

φ0 (Iψ(Mf (ξ))) = det (Iψ(Mf (ξ))) for all ξ ∈ Aψ,

or equivalently

det
(
LψMf (ξ

∗)−L>ψ
)

= min
ξ∈Aψ

det
(
LψMf (ξ)

−L>ψ
)
.

One of the most distinctive properties of the Dψ-criterion is that the opti-

mal design remains invariant to regular linear transformations of the linear

aspect. Indeed, suppose that an aspect is re-parametrized according to

ψ̃(β) = HLψβ, with H a nonsingular s× s matrix, then provided the iden-

tity

IHψ(Mf (ξ)) =
(
H LψMf (ξ)

−L>ψ H>
)−1

=
(
H (Iψ(Mf (ξ)))

−1 H>
)−1

=
(
H>
)−1 Iψ(Mf (ξ)) H−1,

the maximization of

det IHψ(Mf (ξ)) = det
((

H>
)−1 Iψ(Mf (ξ)) H−1

)
=

det Iψ(Mf (ξ))

det H2
(2.12)

implies that a design Dψ-optimal for the linear aspect ψ(β) = Lψβ, is also

Dψ̃-optimal with ψ̃ = Hψ, because (det H)2 is independent of ξ.

As an illustration of Dψ-optimality, we consider in the following section a

specially important case.

2.6 Ds-optimality

In many situations we are interested in estimating merely a subset of s of

the p parameters of the whole vector β. Hence without loss of generality,

12



2 Optimal Designs in Linear Regression Models

we can assume that the components of f(x) are arranged in such a way that

E(Y ) = f(x)>β = f1(x)>β1 + f2(x)>β2 (2.13)

where the components of β1 are the s parameters of interest. The p − s

elements of β2 are usually treated as nuisance parameter.

If ξ is a design with moment matrixMf (ξ), then the volume of the confidence

ellipsoid for the parameter vector β1 is inversely proportional to the square

root of the determinant of the information matrix of ψ(β) = β1 ∈ Rs given

by

Iβ1
(Mf (ξ)) =

(
LsMf (ξ)

− L>s
)−1

, (2.14)

taking ψ(β) = β1 = Lsβ, where Ls = [Is 0] ∈ Rs×p and Is is the s × s
identity matrix. Therefore the natural criterion is

φ0(Iβ1
(Mf (ξ))) = det

(
Ls{Mf (ξ)}−L>s

)−1
(2.15)

which is called Ds-criterion. To obtain an alternative formula for the defini-

tion of φ0, in this case the information matrix can be partitioned according

to β1 and β2 as

Mf (ξ) =

 M11(ξ) M12(ξ)

M12(ξ)
> M22(ξ)


where

Mij(ξ) =

∫
X

fi(x) fj(x)>ξ(dx), i, j ∈ {1, 2}.

The inverse of the information matrix Iβ1
(Mf (ξ)) is the covariance matrix

for the least squares estimate of β1 that is (Ls{Mf (ξ)}−L>s ), the s × s

upper left submatrix of Mf (ξ)
−, and by rules for inverting partitioned

13



2 Optimal Designs in Linear Regression Models

nonnegative definite symmetric matrices (see e.g.,Fedorov 1972, p.19), we

have that(
Ls{Mf (ξ)}−L>s

)
= {M11(ξ)−M12(ξ)M22(ξ)

−M12(ξ)
>}−1. (2.16)

Hence, a design ξ∗ is called Ds-optimal or φ0-optimal for β1 if Mf (ξ
∗) max-

imizes

φ0(Iβ1
(Mf (ξ))) = det

(
Ls{Mf (ξ)}−L>s

)−1
= det

(
M11(ξ)−M12(ξ)M22(ξ)

−M12(ξ)
>)

On the other hand if ξ is a design for which the moment matrix Mf (ξ) is non-

singular, then by the formula for the determinant of partitioned symmetric

matrices we obtain

det(Mf (ξ)) = det(M22(ξ)) det
(
M11(ξ)−M12(ξ)M22(ξ)

−1M12(ξ)
>) .(2.17)

Hence, in this case, a design ξ∗ is Ds-optimal or φ0-optimal for β1 if Mf (ξ
∗)

maximizes

φ0(Iβ1
(Mf (ξ))) = det

(
LsMf (ξ)

−1L>s
)−1

= det
(
M11(ξ)−M12(ξ)M22(ξ)

−1M12(ξ)
>)

=
det(Mf (ξ))

det(M22(ξ))

on Mβ1
or equivalently

det((Ls{Mf (ξ
∗)}−1L>s )−1) = max

ξ∈Aβ1

{det(Mf (ξ))/det(M22(ξ))}. (2.18)

Now we assume that in the linear model (2.1) there is an explicit constant

term or intercept β0, then we can write (2.13) as follows

E(Y ) = f(x)>β = f1(x)>β1 + β0 (2.19)

14
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As a result, the Ds-optimal design for estimating β1 coincides with the φ0-

optimal design for estimating β, indeed as f2(x) ≡ 1, then M22(ξ) = 1 for

all ξ ∈M and therefore

det (Iβ(Mf (ξ
∗))) = detMf (ξ

∗)

= max
ξ∈A

detMf (ξ)

= max
ξ∈A
{det(Mf (ξ))/det(M22(ξ))}

= det
(
Iβ1

(Mf (ξ
∗))
)

where we use the notation Iβ1
(Mf (ξ)) = (L(p−1)Mf (ξ)

−1L>(p−1))
−1 with

L(p−1) = [I(p−1) 0] for the information matrix of β1.

2.7 Aψ-optimality

Given an estimable linear aspect ψ(β) = Lψβ with coefficient matrix Lψ of

full row rank s. When the components of ψ have a definite physical mean-

ing, then a reasonable option is to definite an optimality criteria directly

attached to the standardized variances of them.

Definition 2.8 A design ξ∗ is called Aψ-optimal or φ1-optimal for ψ if it

maximizes

φ1 (Iψ(Mf (ξ))) =

(
1

p
tr (Iψ(Mf (ξ)))

−1
)−1

for all ξ ∈ Aψ,

or equivalently

tr
(
Lψ{Mf (ξ

∗)}−L>ψ
)

= min
ξ∈Aψ

tr
(
LψMf (ξ)

−L>ψ
)
.

If we prefer to think in terms of variance-covariance matrix rather than

information matrix, then the Aψ-optimality criterion minimizes the trace of

the covariance matrix LψMf (ξ)
−L>ψ , which implies to choose designs ξ that

minimize the expected mean squared deviation of the estimates components

of the linear aspect ψ(β).

15
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2.8 G-optimality

A natural interest for the experimenter, that arises from practical situations,

lies in predicting point-wise the mean value for the response over the experi-

mental region. Thus for a design ξ ∈ Aβ and a particular explanatory vector

x ∈ X , the variance of the point-wise prediction of the response function,

associated with ξ is proportional to the standardized variance function

d(x, ξ) : = f(x)>Mf (ξ)
−1f(x)

= f(x)>(Iβ(Mf (ξ)))
−1f(x)

As d(x, ξ) has a maximum over the experimental region X , because it is a

compact set and on the other hand, holds max{d} = min{−d}, then the

next criterion choose a design to maximize this minimum.

Definition 2.9 A design ξ∗ with moment matrix Mf (ξ
∗), positive defi-

nite, is called G-optimal if and only if maximizes

φG (Iβ(Mf (ξ))) = min
x∈X
{−d(x, ξ)} = min

x∈X
{−f(x)> (Iβ(Mf (ξ)))

−1 f(x)},

or equivalently

max
x∈X

(f(x)>Mf (ξ
∗)−1f(x)) = min

ξ∈Aβ

max
x∈X

(f(x)>Mf (ξ)
−1f(x)).

2.9 Convex Optimization for Linear Regres-

sion Design

The design criterion described in the above section, are only examples of a

general class of functions φ : NNP(s) −→ R , which satisfies the following

three properties,

1. Monotonicity. If 0 ≤M1 ≤M2, then φ(M1) ≤ φ(M2),

16
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here M1 ≤M2 [M1 < M2] denotes that M2−M1 is a nonnegative [positive]

definite matrix. For i = 1, 2 let Mi = Iψ(Mf (ξi)) be, in this case relative

to the criterion φ the design ξ2 for ψ is at least as good as the design ξ1.

2. Concavity. For all M1, M2 ∈ NNP(s) and t ∈ [0, 1], holds

φ(tM1 + (1− t)M2) ≥ tφ(M1) + (1− t)φ(M2)

When φ is strictly concave and finite, the φ-optimal moment matrix is

unique in M. This, however, is the most that we can guarantee. Because

of the possibility that two designs ξ and ξ′ can have the same information

matrix.

3. Differentiability. φ is differentiable, that is the Fréchet directional

derivative of φ(·) at all M1 > 0 in the direction of M2 defined as

Fφ(M1,M2) = lim
t→0+

1

t
[φ{(1− t)M1 + tM2} − φ(M1)]

is linear in its second argument, in other words, it satisfies

Fφ(M1,
∑

aiMi) =
∑

aiFφ(M1,Mi),

where the ai are real numbers such that
∑

i ai = 1; (see, e.g., Silvey(1980,

Appendix 3 ) and Rockafeller (1970, p.241)). With these properties we are

in conditions to establish central theoretical results in the theory of the

optimum design of experiment, for more details the following theorems can

be seen in Silvey(1980),pp.19.
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Theorem 2.10 (cf. Silvey(1980), Theorem 3.7) Let δx be the Dirac

measure supported at x and φ a design criterion differentiable at Mf (ξ
∗).

Then the design ξ∗ is φ-optimal for β if and only if

Fφ(Mf (ξ
∗),Mf (δx)) = Fφ(Mf (ξ

∗), f(x)f(x)>) ≤ 0 for all x ∈ X .

2.10 The Equivalence Theorem

The formulation of the design problem proposed above, in most real appli-

cations is computationally complex; in the practice we can use better the

next theorems which provide tools for the construction and checking the

optimality of a candidate approximate design.

First of all, if the attention is restricted to the full parameter β, we consider

the known in the literature as the Equivalence Theorem.

Theorem 2.11 (cf. Silvey(1980), Theorem 3.9) If there exists a de-

sign with moment matrix positive definite and it is φ-optimal for β, then

the following two statements are equivalent

1. The approximate design ξ∗ is φ-optimal for β,

2. max
x∈X

Fφ(Mf (ξ
∗), f(x)f(x)>) = min

ξ∈A
max
x∈X

Fφ(Mf (ξ), f(x)f(x)>).

As an illustration consider the case where φ is the Dβ-criterion, then the

Fréchet derivative in the direction f(x) f(x)> of this function is given by

Fφ0(Mf (ξ), f(x) f(x)>) = [tr{f(x) f(x)>Mf (ξ)
−1)} − p] det(Mf (ξ))

= [f(x)>Mf (ξ)
−1)f(x)− p] det(Mf (ξ)).

We have by definition 2.9 that an approximate design is G-optimal if

max
x∈X

(f(x)>Mf (ξ
∗)−1f(x)) = min

ξ∈A
max
x∈X

(f(x)>Mf (ξ)
−1f(x)).

18
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Therefore a special case of the Theorems 2.10 and 2.11 is the essential

content of the following well-known and praised first Equivalence Theorem

of Kiefer and Wolfowitz (1960)

Theorem 2.12 ( cf. Kiefer and Wolfowitz (1960)) If the regression

range f(X ) ⊆ Rp and spans Rp, then for a design ξ with moment matrix

M(ξ), positive definite, the following four statements are equivalent

1. the design ξ is Dβ-optimal

2. the design ξ is G-optimal

3. f(x)>Mf (ξ)
−1f(x) ≤ p for all x ∈ X

4. max
x∈X

f(x)>Mf (ξ)
−1f(x) = p.

In case of optimality,

f(xi)
>Mf (ξ)

−1f(xi) = p, ξ(xi) ≤
1

p
, for all xi ∈ Supp(ξ).

Parallel versions of the Equivalence Theorem can be obtained for other

criteria taking its particular form, for example the equivalence theorem for

the A-criterion,

Theorem 2.13 ( cf. Pukelsheim (2006),Theorem 9.7) If the regression

range f(X ) ⊆ Rp and spans Rp, then a design ξ with moment matrix Mf (ξ),

positive definite, is A- or φ1-optimal for β if and only if

f(x)>Mf (ξ)
−2f(x) ≤ tr(Mf (ξ)

−1) for all x ∈ X

In case of optimality, any support point xi of the design ξ ∈ Aβ satisfies

f(xi)
>Mf (ξ)

−2 f(xi) = tr(Mf (ξ)
−1),

ξ(xi) ≤
λmax((Mf (ξ)

−1))

tr(Mf (ξ)−1)
.

Where λmax(B) is the largest eigenvalue of the matrix B.
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2.11 D-optimal Designs for Polynomial

Models

A notable remark is that the Equivalence Theorem of Kiefer & Wolfowitz

can be used for constructing Dβ-optimal designs, β the full parameter vec-

tor, for the p = (q + 1)th order polynomial regression in a single control

variable. The model is

E(Y (x)) = f(x)>β = β0 + β1x+ · · ·+ βqx
q, (2.20)

Var(Y (x)) = Var(ε) = σ2 (2.21)

where the vector valued function f(x) = (1, x, . . . , xq)> ∈ Rq+1, the experi-

mental region is the closed interval [−1, 1] = X in R, β = (β0, . . . , βq)
> is

the full vector of unknown parameters and σ2(> 0) is an unknown scalar

parameter.

In this case, (see, e.g. Fedorov (1972, p. 89) Silvey (1980, p. 42) and

Pukelsheim (2006, p.213)) the Dβ-optimal design is the uniform design on

the support set {x(1), . . . , x(q+1)} of q + 1 solutions of the equation

(1− x2)P ′q(x) = 0, (2.22)

where P ′q(x) is the derivative of the qth order Legendre Polynomial, which

has explicit representation given by the formula

Pq(x) =
1

2q

q∑
k=0

(
q

k

)2

(x− 1)q−k(x+ 1)k.

Because of the first factor of the equation (2.22), two solutions are the

boundary points x(1) = −1 and x(q+1) = 1. When a total of N observations

are taken and N = m ∗ (q + 1), we have that a Dβ-optimal experimental

20



2 Optimal Designs in Linear Regression Models

design can be constructed where each design point x(i), i = 1, . . . q + 1; is

replicated the same number m of times.

For example, when q = 2, the quadratic regression, the design points are

x(1) = −1, x(3) = 1 and the value for which the derivative of P2(x) =
3x2 − 1

2
is zero, that is, x(2) = 0. Thus the corresponding Dβ-optimal design for es-

timating β = (β0, β1, β2)
> is

ξ∗ =

 −1 0 1

1/3 1/3 1/3

 , (2.23)

with moment matrix given by

Mf (ξ
∗) =

∫
[−1,1]

f(x) f(x)>ξ∗(dx)

=
∑

x∈{−1,0,1}

 1

x

x2

( 1 x x2
)

1/3 = 1/3

 3 0 2

0 2 0

2 0 2

 > 0

Now we obtain the standardized variance function of ξ∗ at x ∈ [−1, 1],

d(x, ξ∗) = f(x)>Mf (ξ
∗)−1f(x)

= 3
(

1 x x2
) 1 0 −1

0 1/2 0

−1 0 3/2


 1

x

x2


=

3

4
[4− 6x2(1− x2)] ≤ 3

and we can verify that it has maximum occurring at -1, 0 and 1, the points

of support of the approximate design ξ∗. In Figure 2.1, we can see the curve

of the standardized variance function d(x, ξ∗) for the Dβ-optimal approxi-

mate design in the quadratic regression model.
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2 Optimal Designs in Linear Regression Models

Figure 2.1: Standardized variance function d(x, ξ∗) for the D-optimal de-

sign; quadratic regression
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Table 2.1: Optimal designs for some polynomial regression models

Model Optimality Experimental Optimal

E(Y) criterion region design

β0 + β1x D,G,A [−1, 1] ξ∗ =

{
−1 1

1/2 1/2

}

β0 + β1x+ β2x
2 D,G [−1, 1] ξ∗ =

{
−1 0 1

1/3 1/3 1/3

}

β0 + β1x+ β2x
2 A,Dβ2 [−1, 1] ξ∗ =

{
−1 0 1

1/4 1/2 1/4

}

β0 + β1x+ β2x
2 D(β2−β1) [−1, 1] ξ∗ =

{
−1 0

1/2 1/2

}

β1x+ β2x
2 D,G [0, 1] ξ∗ =

{ √
2− 1 1
√

2/2 1−
√

2/2

}
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Chapter 3

Blocking Response Surface

Experiments

3.1 Introduction

Very often in experimental practice, the usual linear model (2.1) presents a

variant, because, for example, the experimental runs cannot be performed

under the assumption of homogeneous conditions, hence for a more realis-

tic analysis of the data in these cases, the experiment has to be blocked,

that is, it identifies groups or blocks of experimental units within which the

homogeneity of conditions can be assumed. Blocks can be, for example,

days, batches, or test subjects. Thus now the experiment involve a block-

ing variable, qualitative variable, which unlike the quantitative explanatory

variable, is not under the direct control of the experimenter, but it can be

adjusted to a finite number of levels (blocks) and the variation produced by

the different blocks in the experiment is accounted for by including new pa-

rameters called, block effects, in the statistical model (see e.g. Khuri(1992)

and Goos (2002), besides others).

We consider henceforward, the following assumptions:
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1. The effect of the qualitative variable is purely additive, that is, we

have a two-factor linear model without interaction, in our case there

is no interaction between blocks and the experimental quantitative

factors effects.

2. There is an explicit term constant or intercept included in the model,

which depends on the considered problem.

3. The block effects into the model will be treated as nuisance parame-

ters.

4. Depending on the nature of the experiment two types of blocking

variables, fixed or random, can be assumed.

3.2 The block effects model

The expression for a statistical linear model with intercept for a blocked

experiment that consist in b blocks, i = 1, . . . , b with mi observations each

one, can be written as

Yij = β0 + f(xij)
>β + γi + εij, (3.1)

where for j = 1, . . . ,mi; Yij is the response of the jth observation, among

the mi at the block i, of the experimental setting xij, f = (f1, . . . , fq)
> is

a vector of q known regression function defined on some compact subset

X of Rr, β0 is the intercept, β is a q- vector of parameters, that contains

all quantitative factor effects, the term γi denotes the additive i-th block

effect, which ensures the block-to-block variation in the responses and it

assumes that εij, the experimental random errors of the run j on block i,

are independent and identically normal distributed with expected value zero

and variance σ2,

εij ∼ N(0, σ2).

We assume that the block sizes are balanced and fixed, that is the number

of observations per block is constant, i.e. mi ≡ m, also for each block i of
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observations, there is associated an experimental design on X , denoted by

Bi = (xi1, . . . ,xim).

As a remark, the experimental settings xij for each block i need not be all

distinct and the performance does not depend on the order of the obser-

vations within the blocks, hence we can rewrite Bi in terms of its distinct

settings, xi1, . . . ,xiSi together with their respective number mi1, . . . ,miSi of

replications such that
∑Si

s=1mis = m. Thus we have now the exact design

for block i

B(m)
i =

 xi1 xi2 . . . xiSi

mi1 mi2 . . . miSi

 , (3.2)

and we will denote the set of all exact design for block with m observations

by B(m).

Now, we specify the experimental settings for the whole sample of b blocks.

Similar to the experimental design defined for the ordinary linear model in

Chapter 2, a block design B of size b is a set of designs for block B(m)
i ∈

B(m) i = 1, . . . , b not necessarily all distinct.

On the other side, we can regard, for example, that the points xis, for all i =

1, . . . , b; s = 1, . . . , Si; are elements of a set of distinct points, or ”treat-

ments”, say x1, . . . ,xT ; with T > Si, therefore the blocking response surface

experiment can be considered as an incomplete block design. Hence when

a same ”treatment” xt for a determinate t, 1 ≤ t ≤ T ; is assigned to more

than one block, and we can have, for instance, xt = xis = xi′s′ for i 6= i′

and in this case mis is the number of appearances of treatment xt = xis in

block i.

The m observations in each block at B(m)
i can be regarded as a m-variate

response. Thus the vector of observations for block becomes

Yi = (1m,Fi)(β0,β
>)> + 1mγi + εi

= Giθ + 1mγi + εi (3.3)

27



3 Blocking Response Surface Experiments

here 1m is a vector of length m with all entries equal to one, Gi = (1m,Fi)

is the design matrix for block i, which is partitioned into the first column

of ones corresponding to constant intercept and the design matrix

Fi = F(B(m)
i ) = (f(xi1), . . . , f(xi1)︸ ︷︷ ︸

mi1 times

, . . . , f(xiSi), . . . , f(xiSi)︸ ︷︷ ︸
miSi times

)> (3.4)

for the vector parameter β, θ = (β0,β
>)> and εi is the vector of corre-

sponding observational random errors.

Depending on the nature of the experiment two types of blocking variables,

fixed or random, can be considered, which imply different statistical models.

1. When the block effects are regarded as fixed, because there are no

available inter-block information, the distributional assumption is as-

sociated only with the vector of random errors,

∀ i, i′ ∈ {1, . . . , b}

E(εi) = 0m, Cov(εi, εi′) = δii′σ
2Im (3.5)

and the linear identifiability condition γb = −
∑b−1

i=1 γi of the block

effects of the model is imposed, with the advantage that it preserves

the interpretation of the intercept β0 as the overall average response

across the blocks.

Here, δii′ =

{
1 if i = i′

0 if i 6= i′
, which is known as the Kronecker delta.

2. The blocking variable brings random effects to the model (3.3), when

the blocks can be identifiable as random choice from a population of

blocks. Thus now in vector notation the model contains the random

block effects γi together with the vector of random errors εi, where the

random block effects are independently of each other and of the vector

of random errors and they have expected value zero and same variance

σ2
γ, thus the distributional assumptions of the model are given by
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∀ i, i′ ∈ {1, . . . , b}

E(γi) = 0, Cov(γi, γi′) = δii′σ
2
γ, (3.6)

E(εi) = 0m, Cov(εi, εi′) = δii′σ
2Im (3.7)

and Cov(γi, εi′) = 0m. (3.8)

3.3 Designs for Fixed Block Effects Model

The observations of an experiment with a blocking variable, where we as-

sume that the blocks under study are chosen directly by the experimenter,

because they are the only blocks of interest, can be analyzed using fixed

block effects. Hence the estimation of the regression parameter in the fixed

block effects model is a special case of standard analytical technique of

ordinary least squares (OLS) regression.

Let γf = (γf1, . . . , γf(b−1))
> be the (b − 1)-vector of fixed block effects

and the last block effect γfb = −1>(b−1)γf , then the model(3.1) involves an

intercept, a q-vector of quantitative factor effects and b fixed block effects,

thus the vector of observations for block i = 1, . . . , b becomes

Yi = (1m,Fi)(β0,β
>)> + 1mγfi + εi

= Giθ + H(i)γf + εi

=
(
Gi,H(i)

)(
θ>, γ>f

)>
+ ε (3.9)

where

H(i) =
(
H1(i), . . . , H(b−1)(i)

)
,

Hk(i) =


1m if i = k

−1m if i = b

0 otherwise
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If the observations of the whole sample of blocks are summarized as

Y =
(
Y>1 ,Y

>
2 , . . . ,Y

>
b

)>
in matrix notation the f ixed block effects model becomes

Y = Gθ + Hfγf + ε

=
(
G,Hf

)(
θ>, γ>f

)>
+ ε (3.10)

where

G =
(
G>1 , . . . ,G

>
b

)>
=


1m F1

1m F2

...
...

1m Fb

 =
(
1bm, F

)
,

F =
(
F>1 , . . . ,F

>
b

)>
,

Hf =



H(1)

H(2)
...

H(b− 1)

H(b)


=



1m 0m · · · 0m

0m 1m · · · 0m
...

...
. . .

...

0m 0m · · · 1m

−1m −1m · · · −1m


bm×(b−1)

= (Ib−1,−1b−1)
> ⊗ 1m

and

ε =
(
ε>1 , ε

>
2 , . . . , ε

>
b

)>
.

Here we use the subscript f for the effects-type coding of the block effects,

Hf is the design matrix corresponding to the (b-1)-vector γf of the fixed
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block effects and ⊗ denotes the Kronecker product of two matrices or vec-

tors.

It follows that

E(Y) = (G, Hf )(θ
>,γ>f )> = (1bm, F, Hf )(β0, β

>, γ>f )> (3.11)

Cov(Y) = σ2Ibm (3.12)

As a result, when we use fixed block effects, then it requires the estimation

of as many as block effects as we have blocks in our experiment.

On the other hand, if the columns of F are linearly independent of 1bm and

the columns of Hf , then the partitioned matrix (1bm, F, Hf ) is of full

rank 1 + q + b − 1 = q + b, the number of parameters. As a result the

ordinary least squares estimators of the intercept β0 and the quantitative

factor effects β, components of the vector θ and the (b − 1) fixed block

effects γf are given by(
θ̂

γ̂f

)
= ((G, Hf )

>(G, Hf ))
−1(G, Hf )

>Y

=

 G>G G>Hf

H>f G H>f Hf

−1 G>

H>f

Y. (3.13)

Thus the information matrix of
(
θ>,γ>f

)>
coincide with the moment

matrix of the experimental block design B with b exact design for blocks

B(m)
i i = 1, . . . , b.

bmM(B) =

 G>G G>Hf

H>f G H>f Hf

 (3.14)
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where in particular

G>G =
b∑
i=1

G>i Gi

=
b∑
i=1

(1m, Fi)
>(1m, Fi)

=
b∑
i=1

 m 1>mFi

F>i 1m F>i Fi


when we use the following notation

F>i Fi =

Si∑
s=1

misf(xis)f(xis)
> = mF̂i

>
WiF̂i (3.15)

and

F>i 1m =

Si∑
s=1

f(xis)mis = mF̂i

>
Wi1Si (3.16)

where Wi is the diagonal matrix with the proportions mis/m = wis, s =

1, . . . , Si as diagonal entries and the design matrix F̂i is evaluated at the

support experimental settings xi1,xi2 . . . ,xSi . Then this representation can

be also used for approximate design for block, that is where now in B(m)
i

the mis ∈ R,
∑Si

s=1mis = m; mis > 0.

For the construction of D-optimal design for this model (3.12) and since the

fixed block effects γf are not of primary interest, we can use the particular

criterion Ds-optimality, in our case Dθ-optimality, because the interests is

in the effects of the parameter θ only.

Using Dθ-optimality requires maximization of

detIθ(M(B)) =
det(M(B))

det
(
H>f Hf

)
= det (G>G−G>Hf (H

>
f Hf )

−1H>f G)
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3 Blocking Response Surface Experiments

and due to that the block size are fixed, then det (H>f Hf ) is independent of

the experimental setting. Therefore maximizing detIθ(M(B)) is equivalent

to maximizing det(M(B)). Hence, D- and Dθ-optimality designs coincide

in fixed block effects model.

3.4 The Fixed Block Experiments Viewed

as a Two-Factor Model

The linear regression model in the presence of fixed block effects can be

viewed as a two kind factor model without interaction between the factor

effects, indeed the response of the fixed effects model (3.1) at the ith block

can be rewritten as

Yij(i,x
>
ij) = β0 + γfi + f(xij)

>β + εij

= (1{1}(i), . . . , 1{b}(i))(β0 + γf1, . . . , β0 + γfb)
> + f(xij)

>β + εij

= (a(i)>, f(xij)
>)(β0 + γf1, . . . , β0 + γfb, β

>)> + εij

= g(i,x>ij)
> (µ>f , β>)> + εij, (3.17)

where the 1{k}(i) are the indicators function, thus a(i) is a vector of length b

with its ith entry equal to one and all other entries equal to zero, g(i,x>ij)
> =

(a(i)>, f(xij)
>) and µf = (β0 + γf1, . . . , β0 + γfb)

>. Let Xb = {1, . . . , b} be

the index set of blocks and the Cartesian product set Xb × X the induced

new experimental region.

We consider an approximate design B on Xb × X with bm observations,

which can be written as

B(bm)(i,x) = (bm)−1 B(m)
i (x),

Hence the moment matrix of the design B(bm) on Xb × X for the model

( 3.17) is presented in the following form
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Mg(B(bm)) =

∫
Xb×X

g(i,x>)g(i,x>)>B(bm)(d(i,x))

= (bm)−1
b∑
i=1

(∫
X

g(i,x>)g(i,x>)> B(m)
i (dx)

)

= (bm)−1
b∑
i=1

Mg(B(m)
i )

where, for i = 1, . . . , b

Mg(B(m)
i ) =

∫
X

g(i,x>)g(i,x>)> B(m)
i (dx)

Mg(B(m)
i ) =

∫
X

(a(i)>, f(x)>)> (a(i)>, f(x)>)B(m)
i (dx)

=

 a(i)a(i)>
∫
X a(i) f(x)> B(m)

i (dx)∫
X f(x) a(i)> B(m)

i (dx)
∫
X f(x) f(x)> B(m)

i (dx)



= m

 a(i)a(i)> a(i)
∑Si

s=1 f(xis)
>wis

a(i)>
∑Si

s=1 f(xis)wis
∑Si

s=1wisf(xis)f(xis)
>



= m

 a(i)a(i)> a(i) 1>SiWiF̂i

a(i)> F̂i

>
Wi1Si F̂i

>
WiF̂i

 .
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Hence, we have

Mg(B(bm)) = (bm)−1
b∑
i=1

Mg(B(m)
i )

= b−1


b∑
i=1

a(i)a(i)>
b∑
i=1

a(i) 1>SiWiF̂i

b∑
i=1

a(i)> F̂i

>
Wi1Si

b∑
i=1

F̂i

>
WiF̂i



= b−1


1>S1

W1F̂1

Ib
...

1>SbWbF̂b

F̂1

>
W11S1 · · · F̂b

>
Wb1Sb

b∑
i=1

F̂i

>
WiF̂i

 .

The following equation of determinants holds, because Mg(B(bm)) is a par-

titioned positive definite symmetric matrix

det
(
Mg(B(bm))

)
∝ det

(
J22 − J>12 J12

)
where

J>12 = J21 =
b∑
i=1

a(i)> F̂i

>
Wi1Si

=
(
F̂1

>
W11S1 , · · · , F̂b

>
Wb1Sb

)

J22 =
b∑
i=1

F̂i

>
WiF̂i

and by (2.17) we have

det
(
Mg(B(bm))

)
∝ det

(
Iβ(Mg(B(bm)))

)
Hence, D- and Dβ-optimality designs coincide in fixed block effects model,

a known fact in the model without blocks. Thus we have the following
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Lemma 3.1 When the effects of a blocking variable and the block size

are assumed fixed, a given uniform block structure B, which maximizes

det(Iβ(Mg(B))), then also maximizes det(Mg(B)).

But yet the regression parameter θ [β] cannot be estimated independently

of the fixed block effects γf [µf ] in the model. However sometimes we can

avoid this fact when is possible to choose an orthogonal blocking design.

3.5 Orthogonal Blocking

By definition, a design is orthogonally blocked if the columns of the design

matrix G for the regression parameter θ are orthogonal to those of the

design matrix Hf for γ, the (b− 1)-vector of fixed block effects, that is if

G>Hf := 0(q+1)×(b−1)

where 0(q+1)×(b−1) is a (q + 1)× (b− 1) matrix of zeros. Now,

G>Hf =

 1>b ⊗ 1>m

(F>1 , . . . ,F
>
b )

(( Ib−1 −1b−1

)>
⊗ 1m

)

=

 1>b−1 ⊗ 1>m 1>m

(F>1 , . . . ,F
>
b−1) F>b




Ib−1 ⊗ 1m

−1>b−1 ⊗ 1m



=

 1>b−1m− 1>b−1m

(F>1 1m, . . . ,F
>
b−11m)− 1>b−1 ⊗ F>b 1m

 = 0(q+1)×(b−1)

this implies that,

F>i 1m = F>b 1m for all i = 1, . . . , b− 1
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As a result, the condition for orthogonality holds if

(F>1 , . . . ,F
>
b )(1b ⊗ 1m) = bF>i 1m for all i = 1, . . . , b

that is

1

m
F>i 1m =

1

bm
F>1bm for all i = 1, . . . , b

or equivalently, in case of a approximate design for block

1

m
F>i 1m =

1

bm
F>1bm

F̂i

>
Wi1Si =

1

b

b∑
i=1

F̂i

>
Wi1Si

= F̂>W1S∗

where

F̂ = (F̂>1 , . . . , F̂
>
b )>, W =

1

b
diag(W1, . . . ,Wb) and S∗ =

b∑
i=1

Si.

Thus, in an orthogonally blocking design for experiments involving quan-

titative variables, the average columns of all design matrix for block is the

same for all blocks and it is equal to the average columns of the total design

matrix.

Also we have the following remark, if we consider the orthogonal block

design

B = (B(m)
1 , . . . ,B(m)

b ) :=

 x11 · · · xij · · · xbSb

m11 · · · mij · · · mbSb



=

 x1 · · · xl · · · xS∗

m1 · · · ml · · · mS∗

 = E
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with l =
b∑
i=1

Si−1 + j; j = 1, . . . , Si; S0 = 0;

then, the information matrix for β corresponding to B given by

Iβ(Mg(B)) = F̂>WF̂− 1

b

b∑
i=1

F̂>i Wi1Si1
>
Si

WiF̂i

= F̂>WF̂− 1

b

b∑
i=1

F̂>W1S∗1
>
S∗WF̂

= F̂>WF̂− F̂>W1S∗1
>
S∗WF̂

= F(E)>WF(E)−F>(E)W1S∗1
>
S∗WF(E)

= Iβ(M(1,f>)>(E)),

is equal to the information matrix for β corresponding to the population

experimental design E for the linear model without block effects, where

F(E) = (f(x1), . . . , f(xS∗))
>. In other words, a orthogonally blocked design,

conserve the information on the regression parameter β of the linear model

without the presence of fixed block effects. However we cannot ignore the

fixed block effects in the model, because we are inflating in this case the

variance of the experimental error ε, indeed we have that in general

Var(ε|B) = Var
(
Y −Gθ̂ −Hf γ̂f

)
= Var

(
Y −Gθ̂

)
+ Var

(
Hf γ̂f

)
− 2 Cov

(
Y −Gθ̂, Hf γ̂f

)
= Var(ε|E) + Var

(
Hf γ̂f

)
− 2 Cov

(
Hf γ̂f + (ε|B),Hf γ̂f

)
= Var(ε|E) + Var

(
Hf γ̂f

)
− 2 Var

(
Hf γ̂f

)
= Var(ε|E)−HfVar

(
γ̂f
)
H>f
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Hence, unlike of an only block design, in an orthogonally blocked design, no

information on β̂, in the linear model without blocks is lost, and additionally

they will help us in a better interpretation of the results.

Also it can announce (Goos and Vandebroek (2001)) the following

Lemma 3.2 When the effects of a blocking variable are assumed fixed, an

exact design E which is Dβ-optimal and is orthogonally blocked also is

D(µ> β>)>-optimal for a given block structure B.
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Chapter 4

Optimal Designs in the

Presence of Random Block

Effects

In this chapter, we focus on the construction of D-optimal designs of blocked

experiments when their block effects are regarded as random, that is the

blocks can be identifiable as a random sample from a larger population of

blocks, hence is possible to make predictions about future observations, it

assumes also the existence of correlation between the responses measured

within any given block in order to get precise factor effects estimate (see

e.g. Kunert(1994), Cheng (1995), Atkins and Cheng(1999) and Schmelter

and Schwabe (2008) ).

Since this model contains fixed regression effects and random block effects

we have to use the more computationally analytical technique of linear

mixed models as generalized least squares (GLS) estimation of the factor

effects, however in our case the result already known for the D-criterion

and the A-criterion in chapter 1, can be applied (analogously) to the mixed

models information matrix for known covariance-variance matrix. Detailed

descriptions and proves of these generalizations can be found in the paper,

on the optimality of single-group Designs in linear mixed models, by Thomas
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4 Optimal Designs and Random Block Effects

Schmelter(2007).

4.1 The random block effects model

If in a block experiment the block effects are assumed as realizations of

a random qualitative factor , then we have the random block effects, this

situation in the vector notation ( 3.3) has the form:

Yi(i,B(m)
i ) =

(
Yi1(xi1), . . . , Yim(xim)

)>
Yi =

(
1m, Fi

)(
β0,β

>)> + 1mγi + εi

= Giθ + 1mγi + εi

we assume that the random parameter of different block, the random ef-

fects γi, i = 1, . . . , b are normally distributed, with zero means and vari-

ances σ2
γ, independently of each other

(
Cov(γi, γi′) = 0 for i 6= i′

)
and of

the vector of observational errors
(

Cov(γi, εi′) = 0m
)
. The observational

errors are assumed to be homoscedastic and independent
(
Cov(εi, εi′) =

δii′σ
2Im here, δii′ is the Kronecker delta

)
and they also have each one the

normal distribution, such that εi ∼ N
(
0, σ2Im

)
.

It follows that

E
(
Yi

)
=

(
1m, Fi

)(
β0,β

>)> = Giθ (4.1)

Cov
(
Yi

)
= Cov

(
Giθ + 1mγi + εi

)
= Cov

(
1mγi + εi

)
= Cov

(
1mγi

)
+ Cov

(
εi
)

= 1mCov
(
γi
)
1>m + Cov

(
εi
)

= σ2
γ1m1>m + σ2 Im = σ2

(
Im + d1m1>m

)
= σ2 V, (4.2)
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where d = σ2
γ/σ

2 is the variance ratio and V = Im + d1m1>m is a symmetric

nonsingular matrix which is independent on the experimental setting.

4.2 Methods of Estimation

We first consider the case that the fixed effects design matrix for block Gi

is of full column rank, the variance radio d is known, which implies the

knowledge of V, and θ is estimated on the exact design for block B(m)
i ,

with support treatments xis, s = 1, . . . , Si by minimizing the generalized

squared distance of the observed values from the predicted value of the cor-

related linear model:

LGLS

(
θ,Yi

)
=
(
Yi −Giθ

)>
V−1

(
Yi −Giθ

)
−→ min

θ∈Rq+1
(4.3)

The GLS estimator of θ for block i is then

θ̂GLS,i =
(
G>i V−1Gi

)−1
G>i V−1Yi, (4.4)

On the other hand,

G>i V = G>i
(
Im + d1m1>m

)
=

(
1m, Fi

)>(
Im + d

(
1m, Fi

)( 1 0>q

0q 0q×q

)(
1m, Fi

)>)

=
(
1m, Fi

)>
+ d
(
1m, Fi

)>(
1m, Fi

)( 1 0>q

0q 0q×q

)(
1m, Fi

)>

=

(
Iq+1 + d

(
1m, Fi

)>(
1m, Fi

)( 1 0>q

0q 0q×q

))(
1m, Fi

)>
= UiG

>
i
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In the given (q + 1) × (q + 1) regular matrix Ui, the subscript i indicates

the dependence on the experimental setting in the ith block.

With the above, it can be shown that the generalized least squares estimator

for block θ̂GLS,i coincides with the ordinary least squares estimator θ̂OLS,i;

indeed

θ̂GLS,i =
(
G>i V−1Gi

)−1
G>i V−1Yi

=
(
U−1i UiG

>
i V−1Gi

)−1
U−1i UiG

>
i V−1Yi

=
(
U−1i G>i VV−1Gi

)−1
U−1i G>i VV−1Yi

=
(
U−1i G>i Gi

)−1
U−1i G>i Yi

=
(
G>i Gi

)−1
UiU

−1
i G>i Yi

=
(
G>i Gi

)−1
G>i Yi = θ̂OLS,i.

Hence the estimators for block θ̂i do not require the knowledge of the vari-

ance ratio d, however by this fact and because they ignore the information

that can be obtained from the other blocks in the block design, individually,

the estimators for block θ̂i are not the best linear unbiased estimators for

θ.

If the number b of block that should be observed are summarized to

Y =
(
Y>1 , . . . ,Y

>
b

)>
,

in matrix notation the model becomes

Y = Gθ + Zγ + ε (4.5)

where

G =
(
G>1 , . . . ,G

>
b

)>
=

(
1b ⊗ 1m,

(
F>1 , . . . ,F

>
b

)>)
=
(
1bm, F

)
,
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Z = (Ib ⊗ 1m) =


1m 0m · · · 0m

0m 1m · · · 0m
...

...
. . .

...

0m 0m · · · 1m


bm×b

γ = (γ1, . . . , γb)
> ∼ N

(
0, σ2

γIb
)
,

and

ε = (ε>1 , . . . , ε
>
b )> ∼ N

(
0, σ2Ibm

)
.

Here G denotes the design matrix of the explanatory variables for the fixed

regression (or analysis of variance, or analysis of covariance) parameter θ

which is partitioned into the fixed effect design matrix component Gi cor-

responding to the ith level of the blocking variable. The design matrix Z

contain the indicator variables for the random block effects. By indepen-

dence of observations in different blocks of the experiments and properties

of the Kronecker product of matrices, it follows then that the expected value

and covariance matrix of Y are respectively

E
(
Y
)

=
(
1mb,F

)(
β0,β

>)>, (4.6)

Cov
(
Y
)

= Cov
(
Zγ + ε

)
= Z Cov

(
γ
)

Z> + Cov
(
ε
)

= σ2
γ Z Z> + σ2 Ibm

= σ2
γ

(
Ib ⊗ 1m

)(
Ib ⊗ 1m

)>
+ σ2

(
Ib ⊗ Im

)
= σ2(Ib ⊗V). (4.7)

A known variance ratio d implies the knowledge of Ib ⊗ V and provided

that the design matrix G is of full rank, then the population parameter,
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the vector of fixed effects θ = (β0,β
>)>, in the random block effects model

( 4.5) can be estimated on the population basis by the generalized least

squares estimator

θ̂ =
(
G>(Ib ⊗V)−1G

)−1
G>(Ib ⊗V)−1Y (4.8)

obtained by minimizing the generalized squared distance of the observed

values from the predicted value of the correlated linear model:

LGLS

(
θ,Y

)
=
(
Y −Gθ

)>
(Ib ⊗V)−1

(
Y −Gθ

)
−→ min

θ∈Rq+1

The GLS estimator θ̂ is the best linear unbiased estimator for θ and as

remark the GLS-estimation is a distribution free methods.

Note that in the case where all design matrices component for blocks Gi

have full rank q + 1, then individual models can be adjusted uniquely for

block and the generalized least squared estimator θ̂GLS is a matrix weighted

mean of the individually estimated parameter θ̂GLS,i

θ̂GLS =
(
G>(Ib ⊗V)−1G

)−1
G>(Ib ⊗V)−1Y

=

(
b∑
i=1

G>i V−1Gi

)−1 b∑
i=1

G>i V−1Yi

=

(
b∑
i=1

G>i V−1Gi

)−1 b∑
i=1

G>i V−1Gi θ̂GLS,i

under the assumptions given above of d known, G of full rank together

with the normality distributed random effects and the independence of the

observations of different blocks, the Maximum Likelihood Estimation can be

applied for fitting the linear model to the data, that is given the observation

vector Y, the likelihood function

LY : Rq+1 −→ [0,∞),
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such that

LY(θ) =
1

(2πσ2)bm/2(det V)b/2
exp

[
−1

2σ2

(
Y −Gθ

)>
(Ib ⊗V)−1

(
Y −Gθ

)]

is maximized with respect to the parameter θ, thus a maximum likelihood

estimator for θ is a vector θ̂ ∈ Rq+1 with

LY(θ̂) = max
θ∈Rq+1

LY(θ)

the result is that the maximum likelihood estimator and the generalized

least estimator coincide, therefore

θ̂ML =
(
G>(Ib ⊗V)−1G

)−1
G>(Ib ⊗V)−1Y

=

(
b∑
i=1

G>i V−1Gi

)−1 b∑
i=1

G>i V−1Yi

=

(
b∑
i=1

(1m, Fi)
>V−1(1m, Fi)

)−1 b∑
i=1

(1m, Fi)
>V−1Yi, (4.9)

with variance-covariance matrix given by

Cov(θ̂ML) = σ2
(
G>(Ib ⊗V)−1G)−1

= σ2

(
b∑
i=1

(1m, Fi)
>V−1(1m, Fi)

)−1
(4.10)

4.3 Information Matrices and Optimal De-

signs

The information matrix of the unknown fixed model parameter

θ = (β0,β
>)> or moment matrix corresponding to the block design
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B = (B(m)
1 , . . . ,B(m)

b ) will depend on the variance ratio d through the matrix

V, hence we write

M(B, d) = G>(Ib ⊗V)−1G

=
b∑
i=1

G>i V−1Gi

=
b∑
i=1

(1m, Fi)
>V−1(1m, Fi) (4.11)

We use the fact that

V−1 = Im −
d

1 +md
1m1>m, (4.12)

then we have

M(B, d) =
b∑
i=1

G>i Gi −
d

1 +md

b∑
i=1

G>i 1m1>mGi, (4.13)

or partitioning the information matrix according to β0 and β yields,

M(B, d) =
b∑
i=1

(1m, Fi)
>
(

Im −
d

1 +md
1m1>m

)
(1m, Fi)

=
1

1 +md

b∑
i=1

 m 1>mFi

F>i 1m (1 +md)F>i Fi − d F>i 1m1>mFi


But the problem of determining D-optimum designs, selecting b exact de-

sign for blocks of size m, (B(m)
1 , . . . ,B(m)

b ) not necessarily all distinct, for

estimating the fixed, but unknown (q + 1)vector parameter θ is difficult,

because the evaluation of the information matrix is expensive still using

numerical methods.
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Due to for all i = 1, . . . , b

E
(
Yi

)
=

(
1m,Fi

)(
β0,β

>)> (4.14)

Cov
(
Yi

)
= σ2V (4.15)

we can do analysis of estimations of the parameter with only the distinct

designs for blocks among the b ones, for example Atkins and Cheng(1999)

sketched an approach based on the approximate block designs on the m-

dimensional experimental design Xm. In general an approximate block de-

sign, similar to the approximate designs considerate in the chapter 2, can

be written as

ξ =

 ξ
(m)
1 . . . ξ

(m)
L

g1 . . . gL

 , (4.16)

the exact design for blocks , ξ
(m)
l l = 1, . . . , L; that appear in the block de-

sign ξ are called the support of the design, thus Supp(ξ) = {ξ(m)
1 , . . . , ξ

(m)
L },

is a set of L different exact design for blocks among the b ones, additionally

they will be observed under the blocks design ξ with weights or frequencies

g1 . . . gL; respectively, so that | {i : B(m)
i = ξ

(m)
l } |≈ bgl. Since ξ is a mea-

sure, the weights must satisfy the constraints, for all l, 0 ≤ gl ≤ 1, with
L∑
l=1

gl = 1.

The information matrix of θ = (β0,β
>)> or moment matrix corresponding

to the approximate block design ξ on Xm is then,

M(ξ, d) =
L∑
l=1

gl(1m, Fl)
>V−1(1m, Fl). (4.17)

As an alternative way (see Schmelter (2007)), the information contributed

by the observations in the block l can be represented by the moment matrix
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for the corresponding exact design for block

M(ξ
(m)
l , d) = (1m, Fl)

>V−1(1m, Fl)

=
1

1 +md

 m 1>mFl

F>l 1m (1 +md)F>l Fl − d F>l 1m1>mFl


Now similar to the approximate designs for the ordinary linear model, in

a generalized setup, we allow proportions mls/m non rational by means of

the following definition.

Definition 4.1 An approximate design for block l of size m, denoted ξ
(m)
l ,

is a set of distinct experimental setting xl1, . . . ,xlSl ∈ X together with the

corresponding proportions mls/m := wlt ∈ [0, 1], satisfying
∑Sl

s=1mls =

m. We write

ξ
(m)
l =

 xl1 xl2 . . . xlSl

wl1 wl2 . . . wlSl

 . (4.18)

Applying the above definition we obtain that

F>l Fl = m

Sl∑
s=1

wlsf(xls)f(xls)
> = mF̂l

>
WlF̂l (4.19)

and

1>mFl = m

Sl∑
s=1

f(xls)w(ls) = m1>SlWlF̂l (4.20)

where Wl is the diagonal matrix with the proportions mlt/m = wlt, t =

1, . . . , lsl as diagonal entries and the design matrix F̂l is evaluated at the

support experimental settings xl1,xl2 . . . ,xlsl .

Thus the moment matrix of an approximate design for a single block, ξ
(m)
l ,

can be written as
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M(ξ
(m)
l , d)

=
1

1 +md

 1 1>slWlF̂l

F̂l

>
Wl1sl (1 +md)F̂l

>
WlF̂l −md F̂l

>
Wl1sl1

>
sl
WlF̂l

 .

Therefore, the block design ξ can be identified as a probability measure on

the set of approximate designs for block of size m such that ξ has support

equal to the set {ξ(m)
1 , . . . , ξ

(m)
L },

and the information matrix of θ corresponding to the design ξ can be de-

composed as a weighted sum of information matrices for single blocks, Thus

we have

M(ξ, d) =
L∑
l=1

glM(ξ
(m)
l , d)

=
1

1 +md

L∑
l=1

gl

 1 1>slWlF̂l

F̂l

>
Wl1sl (1 +md)F̂l

>
WlF̂l −md F̂l

>
Wl1sl1

>
sl
WlF̂l



gl ∈ [0, 1], with
∑L

l=1 gl = 1.

The information matrix results in a considerable compact notation upon

introducing the vector

$l :=
√

Wl 1Sl

=
(√

wl1,
√
wl2, . . . ,

√
wlSl

)>
, (4.21)

and the matrix

F̃l :=
√

Wl F̂l

=
(√

wl1f(xl1), . . . ,
√
w(lSl)f(xlSl)

)>
(4.22)

The information matrix, thus can be rewritten as
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M(ξ, d)

=
1

1 +md

L∑
l=1

gl

 1 $>l F̃l

F̃l

>
$l (1 +md)F̃l

>
F̃l −md F̃l

>
$l$

>
l F̃l

 . (4.23)

If there is special interest for the parameter of the regression fixed effects

β, then by the properties of partitioned matrices the corresponding partial

information matrix is

Iβ(M(ξ, d)) =
L∑
l=1

gl F̃l

>
F̃l −

md

1 +md

L∑
l=1

gl F̃l

>
$l$

>
l F̃l

− 1

1 +md

L∑
l=1

gl F̃l

>
$l

L∑
l′=1

gl′$
>
l′ F̃l′ (4.24)

and by the formula for evaluate the determinant of partitioned positive def-

inite symmetric matrices, we obtain

detIβ(M(ξ, d)) =
1

1 +md
det(M(ξ, d)). (4.25)

Hence, D- and Dβ-optimal designs go together also in random block effects

as in fixed block effects. So we have shown

Lemma 4.2 When the effects of a blocking variable are assumed random,

an approximate block design ξ on the set of approximate designs for block

is D(β0,β
>)>-optimal if only if it is Dβ-optimal.

4.4 Limiting Models

We consider now in the random block effects model ( 4.5) the limiting of

the partial information matrix of β corresponding to the block design ξ ,
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Iβ(M(ξ, d)), for d −→ 0 and d −→∞, respectively.

For d −→ 0 we obtain that

Iβ(M(ξ, d)) −→
L∑
l=1

glF̃l

>
F̃l −

L∑
l=1

glF̃l

>
$l

L∑
l′=1

gl′$
>
l′ F̃l′ =: Iβ(M(ξ, 0)).

For d −→∞, it is obtained

Iβ(M(ξ, d)) −→
L∑
l=1

glF̃l

>
F̃l −

L∑
l=1

glF̃l

>
$l$

>
l F̃l =: Iβ(M(ξ,∞)).

With the above and (4.24), we obtain the following lemma, which com-

pares Iβ(M(ξ, d)) with a convex combination of the two partial limiting

information matrices related to it

Lemma 4.3 When the effects of a blocking variable are assumed random

and ξ is a block design, then

Iβ(M(ξ, d)) =
1

1 +md
Iβ(M(ξ, 0)) +

md

1 +md
Iβ(M(ξ,∞)).

In particular, given a block design ξ for the random block effects model

( 4.5) where for all l = 1, . . . , L we have the following two facts, first, the

designs for block

ξ
(m)
l =

 xl1 xl2 . . . xlSl

wl1 wl2 . . . wlSl

 . (4.26)

are exact, that is the proportions wls = mls/m are rational numbers for all

s = 1, . . . , Sl; and second, the bgl are integer numbers, then the block design

ξ for the random block effects model will be taken as an exact block design.

We suppose that ξ is an exact block design for the model ( 4.5) where
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bgl = bl, then

L∑
l=1

glF̃l

>
F̃l =

L∑
l=1

bl
b

F̂l

>
WlF̂l

=
L∑
l=1

bl
bm

F>l Fl =
1

bm

b∑
i=1

F>i Fi

and

L∑
l=1

glF̃l

>
$l =

L∑
l=1

bl
b

F̂l

>
Wl1sl

=
L∑
l=1

bl
bm

Fl
>1m =

1

bm

b∑
i=1

Fi
>1m

therefore

Iβ(M(ξ, 0)) =
1

bm

(
b∑
i=1

F>i Fi −
1

bm

b∑
i=1

Fi
>1m

b∑
i′=1

1>mFi′

)

=
1

bm

(
F>F− 1

bm
F>1bm1>bmF

)
which is identical to the partial information matrix Iβ(M(E)) for the un-

correlated fixed effects model without block effects

Y = (1b ⊗ 1m,F)(β0,β
>)> + ε. (4.27)

Also we have that

L∑
l=1

glF̃l

>
$l$

>
l F̃l =

L∑
l=1

bl
b

F̂l

>
Wl1sl1

>
sl
WlF̂l

=
L∑
l=1

bl
bm2

Fl
>1m1>mFl

=
1

bm2

b∑
i=1

Fi
>1m1>mFi
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therefore

Iβ(M(ξ,∞)) =
1

bm

(
b∑
i=1

F>i Fi −
1

m

b∑
i=1

Fi
>1m1>mFi

)

=
1

bm

(
F>F− 1

m
F>(Ib ⊗ 1m)(Ib ⊗ 1m)>F

)

this expression is the same of the partial information matrix Iβ(Mg(B))

for the fixed block effects model ( 3.17), which in matrix notation can be

written as

Y = Aµ+ Fβ + ε

where A = Ib ⊗ 1m and µf = 1bβ0 +
(
γ>f , −1>(b−1)γf

)>
.

Hence this fact show that, when d −→ ∞, the Dβ-optimal design for the

random block effects model is identical with the Dβ-optimal design for the

fixed block effects model, and by Lemmas (3.1) and (4.2) this is true also

for D-optimal designs.

4.5 Optimal and Orthogonal Block Design

In this section, we will see how in a random blocked experiment the estima-

tion of the fixed parameter for the effects of the experimental setting and

the interpretation of the result are simplified when the design are orthogo-

nally blocked (Khuri(1992)).

We have an advantage if the random block effects model ( 4.5)

Y = (1b ⊗ 1m,F)(β0,β
>)> + (Ib ⊗ 1m)γ + ε
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can be rewritten as

Y = 1bmβ0 + Fβ + (Ib ⊗ 1m)γ + ε

= 1bmβ0 +
1

bm
1bm1>bm

(
Ib ⊗ 1m

)
γ + Fβ

+(Ib ⊗ 1m)γ − 1

bm
1bm1>bm

(
Ib ⊗ 1m

)
γ + ε

= 1bm

(
β0 +

1

bm
1>bm
(
Ib ⊗ 1m

)
γ
)

+ Fβ

+
(
Ibm −

1

bm
1bm1>bm

)(
Ib ⊗ 1m

)
γ + ε

= a1bm + Fβ + Z̃γ + ε (4.28)

where

a = β0 +
1

bm
1>bm
(
Ib ⊗ 1m

)
γ. (4.29)

and

Z̃ =
(
Ibm −

1

bm
1bm1>bm

)(
Ib ⊗ 1m

)
(4.30)

It is important to observe that the elements of each column of Z̃ sum 0.

Hence 1>bmZ̃ = 0>b×1 and as by definition, a design is orthogonally blocked if

the column of (1bm F) = G are orthogonal to those of Z̃, that is if(
1bm F

)>
Z̃ = 0(q+1)×b

or equivalently

F>Z̃ = F>
(
Ibm −

1

bm
1bm1>bm

)(
Ib ⊗ 1m

)
(4.31)

= 0q×b (4.32)
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where 0q×b is a q × b matrix of zeros. From this condition we have

F>
(
Ib ⊗ 1m

)
=

1

bm
F>1bm1>bm

(
Ib ⊗ 1m

)
(
F>1 , . . . ,F

>
b

)(
Ib ⊗ 1m

)
=

1

bm
F>m1bm1>b

(
1

m
F>1 1m, . . . ,

1

m
F>b 1m

)
=

( 1

bm
F>1bm, . . . ,

1

bm
F>1bm

)
or equivalently this condition becomes

1

m
F>i 1m =

1

bm
F>1bm; for all i = 1, . . . , b; (4.33)

where Fi is the block fixed effect design matrix component of F correspond-

ing to the ith level of the blocking variable.

In the case of an exact block design ξ for the model ( 4.28), then we can

show that ξ becomes an orthogonally blocked design, when it satisfies the

following condition

glF̃l

>
$l =

L∑
l′=1

gl′F̃l′
>
$l′ ; for all l = 1, . . . , L. (4.34)

Indeed under this condition we have that the

1

bm
F>1bm =

1

bm

b∑
i=1

Fi
>1m

=
L∑
l=1

bl
bm

Fl
>1m =

L∑
l=1

bl
b

F̂l

>
Wl1sl

=
L∑
l=1

glF̃l

>
$l

On the other hand, if l′ ∈ {1, . . . , L}, then

F̃l′
>
$l′ = F̂l′

>
Wl′1s′l

=
1

m
Fl′
>1m =

1

m
F>i 1m i ∈ {1, . . . , b}
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This conditions for orthogonal blocking defined by the equations ( 4.34) can

be replaced in ( 4.24), thus we obtain

Iβ(M(ξ, 0)) =
L∑
l=1

glF̃l

>
F̃l −

L∑
l=1

glF̃l

>
$l

L∑
l′=1

gl′$
>
l′ F̃l′

=
L∑
l=1

glF̃l

>
F̃l −

L∑
l=1

glF̃l

>
$l$

>
l F̃l = Iβ(M(ξ,∞))

therefore by lemma(4.3) Iβ(M(ξ, d)) = Iβ(M(ξ, 0)), thus the information

matrix for an orthogonally blocked design is independent on the variance

ratio d and with help of the Lemma (4.2) we have shown the following

Theorem 4.4 An exact design ξ which is D-optimal for the uncorrelated

linear model ( 4.27) and is orthogonally blocked, is a D-optimal block design

for the random block effects model ( 4.28).

4.6 Example

We consider the uncorrelated quadratic regression model in two explanatory

variables without interactions

Yl = β0 + β1x1l + β2x2l + β11x
2
1l + β22x

2
2l + εl; (x1l, x2l) ∈ [−1, 1]× [−1, 1].

The design ξ which assigns equal weights 1
9

to the four corner points

(±1,±1), to the four center points of the sides (0,±1); (±1, 0) to the center

point (0, 0) of the square experimental region is D-optimum for this model.

If the design ξ is orthogonally blocked as follow

ξ1 =

{
(−1, 0) (0, 1) (1,−1)

1/3 1/3 1/3

}
, ξ2 =

{
(−1,−1) (0, 0) (1, 1)

1/3 1/3 1/3

}
,

ξ3 =

{
(−1, 1) (1, 0) (0,−1)

1/3 1/3 1/3

}
.
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Then by theorem(4.4) ξ is a D-optimal block design for the adequate ran-

dom block effects model with responses

Yij = β0 + β1x1ij + β2x2ij + β11x
2
1ij + β22x

2
2ij + γi + εij,

at the jth run on block i, (i = 1, 2, 3; j = 1, 2, 3) with wights given

by ξ(i, (x1ij, x2ij)) = 1
3
ξi(x1ij, x2ij). Further this orthogonally blocked D-

optimum design do not depend on the variance ratio d.

4.7 Single-Block Design in Random Blocks

Effects Model

In this section we consider a particular orthogonally block designs ξ, for

the linear model in the presence of random block effects ( 4.5). If ξ is

uniform across the blocks , then all b blocks are observed under the same

conditions, that is, the experimental settings are the same for each block,

ξ
(m)
i = ξ

(m)
1 for all i = 1, . . . , b thus the design can be written as

ξ =

(
ξ
(m)
1

1

)
. (4.35)

These class of block designs are called single − block designs and we can

note that the orthogonality condition ( 4.34), with L = 1, is satisfied.

Lemma 4.5 If ξ is a single− block design, then ξ is an orthogonal block

design.

As an illustration we have the following theorem, which without considering

the orthogonality, was proved by Atkins and Cheng (1999),
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Theorem 4.6 (Theorem 2.1.,Atkins and Cheng (1999)) Suppose a D-

optimal approximate design ξ∗ under the uncorrelated model ( 4.27) is sup-

ported on s points x1, . . . ,xs ∈ X . If mξ∗(xt) is an integer for all t =

1 . . . , s, then the single block design ξ =

(
ξ∗

1

)
is D-optimal under the

random block effects model ( 4.5).

The above theorem identifies situations where D-optimal population designs

in the presence of random block effects do not depend on the variance ratio

d and they can be obtained from optimal designs under the uncorrelated

model, but that is because the design so defined are orthogonally blocked.
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Chapter 5

Linear Regression Model in

the Presence of a Partially

Interacting Qualitative Factor

and Random Block Effects

5.1 Introduction

Many regression experiments are designed involving both discrete and con-

tinuous factors of influence, for instance, a experimenter can apply a treat-

ment to randomly selected experimental units, which belong to a finite

number p of group or classes and then compares the group means for some

quantitative response Y . Due to the p groups or classes can be regarded as

levels k of a qualitative factor, such that the rearrangements of the ordering

of the levels, do not affect the performance of the experiment, then a one-

way model with group effects α1, . . . , αp can be considered. Now we assume

a adaptation to the model, where additionally to the quantitative variable

Y there exist a quantitative control variable x, which can be chosen inde-

pendently of the levels of the qualitative factor, and Y is linearly related
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to the variable x. The above describes an intra-class regression model with

the same model in each class, see e.g. Searle(1971,p. 355) and Kurotschka

(1984). However we can see this experiment also as a particular example of

a two-factor linear model.

The problem of constructing optimum experimental design for estimating

the vector parameter of a two-factor linear model is more complicated than

for single factor models, however the question under what conditions it can

find optimum designs for two-factor models in terms of optimum designs for

their single factor models has been developed, for example for multi-factor

model with homoscedastic errors, Schwabe(1996) presents optimal designs

for a great variety of cases, but the optimum design for multi-factor models

involving one blocking random variable, that is in presence of random block

effects has been less studied, because of this fact in this work we focus on

the construction of product designs for a two-factor model given by a one-

way layout partly interacting with covariates and additionally in presence

of random blocks effects.

In connection with the above, in the present chapter we consider a linear

model with three explicit kinds of factors and different interaction struc-

tures.

We start with the introduction of the marginal single models described by

their corresponding marginal response functions.

The first and second marginal models are one-way layout models, where the

qualitative factors are adjusted to a p- and b different levels, but the effects

of each single level k = 1, . . . , p associated to the first marginal model are

assumed fixed while the effects of each single level i = 1, . . . , b associated to

the second marginal model are assumed random, thus

Ykj = αk + εkj, j = 1, . . . , n (5.1)

and

Yij = τi + εij, j = 1, . . . ,m (5.2)

where τi
iid∼ N (0, σ2

τ ) and Cov(τl, εij) = 0.

The third marginal model is the usual regression model with intercept,
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quantitative factors and mean response

µ3(x) = β0 +

q∑
l=1

fl(x)βl = β0 + f(x)>β (5.3)

x ∈ X ⊂ Rr.

5.2 Regression Models with Qualitative Fac-

tor: Common Intercept

When an experiment also includes qualitative factors, the effects between

the quantitative and qualitative factors should be taken into consideration.

This section is devoted to the following particular situation. With the above

first and third marginal models, we consider now a two-factor model, with

lth observation at treatment k given by

Ykl = β0 + f(xkl)
>β(k) + εkl, (5.4)

where k = 1, . . . , p; l = 1, . . . , N ; xkl ∈ X ; β0 ∈ R,
f(x) = (f1(x), . . . , fq(x))>; β(k) = (β1k, . . . , βqk)

> ∈ Rq, εkl
iid∼ N (0, σ2),

hence the parameters β(k) depend on k in some way to be specified, but

f(x) is the same in each group level k and the intercept β0 is common, that

is the quantitative variable x can be choosen independently of k and the

intercept β0 is a invariant factor effects.

In this work, we focus on the construction of designs when the response

depend on a random blocking variable, hence now suppose that the obser-

vations in each group k are blocked into b balanced random blocks of size

m, thus the blocks are nested into each group level and the total of obser-

vations for group is n = b ∗m, then the jth observation at block i in group

k at setting xkij for the explanatory variable takes the form

Ykij = β0 + γki + f(xkij)
>β(k) + εkij (5.5)
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k = 1, . . . , p; i = 1, . . . , b; j = 1, . . . ,m, γki is the i− th random block

effect in treatment k and εkij is the random error, also it is assumed that

∀ i, i′ ∈ {1, . . . , b}, E(εki) = 0m, Cov(εki, εki′) = δii′σ
2Im;

E(γki) = 0, Cov(γki, γki′) = δii′σ
2
γ and Cov(γki, εki′) = 0m.

Here, δii′ is the Kronecker delta.

We denote each block of observations i in group k, similar to the random

block effects model in chapter 4 as

Yki = 1mβ0 + Fkiβ
(k) + 1mγki + εki, (5.6)

where B(m)
(ki) is an exact design of size m associated to the block i in the

group k, that is a set of distinct experimental setting xki1, . . . ,xkiSki ∈ X
together with the corresponding numbers of replications mkis satisfying∑Ski

s=1mkis = m. We write

B(m)
(ki) =

 xki1 xki2 . . . xkiSki

mki1 mki2 . . . mkiSki

 . (5.7)

Also

Fki = diag(1mki1 , . . . ,1mkiSki )(f(xki1), . . . , f(xkiSki))
>

it follows that the expected value is

E (Yki) = 1mβ0 + Fkiβ
(k)

=
(
1m, a1(k)> ⊗ Fki

) (
β0,β

(1)>, . . . ,β(p)>
)>

(5.8)

and the variance-covariance matrix is

Cov (Yki) = σ2Im + σ2
γ1m1>m

= σ2
(
Im + d1m1>m

)
= σ2V (5.9)

where β(k) ∈ Rq, d = σ2
γ/σ

2 is the variance ratio and V = Im + d1m1>m is

a positive definite symmetric matrix.
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5.3 Moment Matrix and Optimal Design

We can do analysis of estimations of the parameter β(k), if we assume that

the block designs are treated equally across the groups and with only the

distinct designs for blocks among the b ones. In general an approximate

block design for group k, can be written as

ξ=

 ξ
(m)
1 . . . ξ

(m)
L

g1 . . . gL

 ∈ Ξ(b), (5.10)

The exact design for blocks , ξ
(m)
l l = 1, . . . , L; that appear in the block

design for group k, ξ, are called the support of the design, additionally they

will be observed with weights or frequencies g1 . . . gL; respectively, so that

| {i : B(m)
i = ξ

(m)
l } |≈ bgl. Since ξ is a measure, the weights must satisfy

the constraints, for all l, 0 ≤ gl ≤ 1, with
L∑
l=1

gl = 1.

Let W(Xp) be the class of designs on the subsets of Xp. We regard now a

product design denoted by η × ξ ∈ W(Xp)× Ξ(b),

then the corresponding moment matrix or information matrix for the full

parameter in the random block effects model (5.6) is given by

M(η × ξ) =

∫
Ξ

(1m, a
>
1 (k)⊗ F)>V−1(1m, a

>
1 (k)⊗ F) d(η × ξ)

Symmetry reasons (Schwabe,(1996, p.23-24)) implies that such product de-

signs can be shown to be optimal if the marginal design η is considered as

the uniform design η∗(k) = 1
p

for all k ∈ Xp, thus we have

M(η∗ × ξ) =

 M11(ξ) 1
p
1p ⊗M12(ξ)

1
p
1>p ⊗M12(ξ)> 1

p
Ip ⊗M22(ξ)


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5 Linear Regression with Qualitative Factor and Random Block Effects

where

M11(ξ) =

∫
1>mV−11m dξ, M12(ξ) =

∫
1>mV−1F dξ

and M22(ξ) =

∫
F>V−1F dξ

As a remark, we can see that the moment matrix of the design ξ

M(ξ) =

 M11(ξ) M12(ξ)

M12(ξ)> M22(ξ)

 . (5.11)

is associated with the mixed model for p = 1

Yi = 1mβ0 + Fiβ + 1mγi + εi (5.12)

then the determinant of M(η∗ × ξ) can be obtained by the rules for parti-

tioned positive definite symmetric matrices and properties of the Kronecker

product as follows,

det (M(η∗ × ξ))

∝
[

det M22(ξ)
]p
· det

(
M11(ξ)−M12(ξ)>M22(ξ)−1M12(ξ)

)
∝
[

det M22(ξ)
]p−1

det
(
M(ξ)

)
Thus we have proved the following

Theorem 5.1 Consider the two-factor mixed model (5.8)-(5.9). The pro

duct design η∗×ξ∗ is D-optimal in the class W(Xp)×Ξ(b) if η∗ is a uniform

design on Xp, and ξ∗ maximizes

det(M(ξ)) det

(∫
F>V−1F dξ

)p−1
.
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Chapter 6

Optimal Design for a Linear

Model with Interacting

Treatment Factor and Random

Block Effects

The model of the previous chapter can be used, for example, in situations

where the treatment effects β(k) in p mutually exclusive groups or classes

are to be compared, the value x of the quantitative factor corresponds to the

doses of the treatment in the group chosen; but additionally the observations

are taken in random blocks within treatment, thus the term β0+γki denotes

the baseline of block i in group k, which are assumed to come from the same

population for all treatment groups.

6.1 Optimal design

We can do analysis of D-optimal estimations of the parameters β(k), accord-

ing to Theorem 5.1, if we assume that the design for blocks B(m)
i are uniform
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6 Interacting Treatment Factor and Random Block Effects

across the groups and further all b blocks within each group are observed

under the same conditions, that is, the experimental settings are the same

for each design for block, B(m)
i = B(m)

1 for all k = 1, . . . , p; i = 1, . . . , b;

then the block designs for group can be written as

ξ(i,x) =
1

b
B(m)
1 (x) (6.1)

or for short,

ξ =

 B(m)
1

1

 . (6.2)

These class of block designs for group are the single− block designs.

Now in this context, let δm be the standardized design for block B(m)
1 /m,

thus

δm =

(
x0 x1 . . . xS

w0 w1 . . . wS

)
(6.3)

where m is the size of the block, xs are the distinct settings and ws =

m1{s+1}/m the respectively weights, with
∑S

s=0ws = 1.

Now, it follows that ξ =

(
δm

1

)
and by ( 4.21),( 4.22) and ( 4.23) we have

$ =
√

W 1S; F̃ =
√

W F̂; F̂ = (f(x0), . . . , f(xS))>

W = diag(w0, w1, . . . , wS)

and

det(M(ξ))

=

(
1

1 +md

)q+1

det

 1 $>F̃

F̃>$ (1 +md)F̃>F̃−md F̃>$$>F̃


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=

(
1

1 +md

)q+1

det
(

(1 +md)F̃>F̃−md F̃>$$>F̃− F̃>$$>F̃
)

=
1

1 +md
det
(
F̃>F̃− F̃>$$>F̃

)

=
1

1 +md
det
(

($, F̃δm)>($, F̃)
)

=
1

1 +md
det
(

(1(S+1), F̂)>W(1(S+1), F̂)
)

(6.4)

Assumption 1. We assume throughout the remainder that x0 = 0 ∈ X ,
S = q and f(0) = 0q,. The class of all single-block designs with these

conditions is denote by Θ1, also we have the following partial result for

ξ ∈ Θ1:

det(M(ξ)) =
1

1 +md

(
det (1(q+1), F̂)

)2
det (W)

=
1

1 +md

(
det F̂60

)2( q∏
s=0

ws

)
(6.5)

since we can write det (1(q+1), F̂) = det F̂ 60, where F̂ 60 = (f(x1), . . . , f(xq))
>.

If we are seeking out a D-optimal design for the model (5.6), then according

to Theorem 5.1 we need to calculate also

M22(ξ) =

∫
F>V−1F dξ

= F̃>F̃− md

1 +md
F̃>$$>F̃

= F̂>WF̂− md

1 +md
(F̂>W1q+1)(1

>
q+1WF̂) (6.6)
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now due to the assumption 1 we can write

F̂>WF̂ = (0q, F̂
>
60 )diag(w0,W̃)(0q, F̂

>
60 )>

= (0q, F̂
>
60 W̃)(0q, F̂

>
0 )> = F̂>60 W̃F̂60, (6.7)

and

F̂>W1q+1 = (0q, F̂
>
60 )diag(w0,W̃) (1,1>q )>

= (0q, F̂
>
60 W̃)(1,1>q )> = F̂>60 W̃1q (6.8)

where W̃ = diag(w1, . . . , wq), then we have that replacing ( 6.7) and ( 6.8)

in ( 6.6) results in

M22(ξ) =

(
F̂>60 W̃F̂60 −

md

1 +md
(F̂>60 W̃1q)(1

>
q W̃F̂ 60)

)

Now we use the fact that for any positive definite matrix A ∈ Rn×n and

vector b ∈ Rn, it holds the following identity

det(A− bb>) = det(A)[1− b>A−1b], (6.9)

then the base of the second factor in the theorem 5.1 can be written in the

form

det (M22(ξ))

= det(F̂>60 W̃F̂ 60)

(
1− md

1 +md
(1>q W̃F̂60)(F̂

>
60 W̃F̂ 60)

−1(F̂>60 W̃1q)

)

∝ (det F̂60)
2

(
q∏
s=1

ws

)
(1 +md−md1>q W̃1q)
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Now the third factor in the former expression can be simplified as

(1 +md−md1>q W̃1q) =

(
1 +md−md

q∑
s=1

ws

)

=

(
1 +md

(
1−

q∑
s=1

ws

))
= (1 +mdw0) .

that is

det (M22(ξ)) ∝ (det F̂60)
2

(
q∏
s=1

ws

)
(1 +mdw0) . (6.10)

Thus as we want to apply the Theorem 5.1, we find that

det(M(ξ)) det (M22(ξ))p−1

∝
(

det F̂60

)2( q∏
s=0

ws

)((
det F̂60

)2( q∏
s=1

ws

)
(1 +mdw0)

)p−1

∝
(

det F̂60

)2p
w0

(
q∏
s=1

ws

)p

(1 +mdw0)
p−1. (6.11)

As a result, the maximization of this product of determinants can be se

parated into two functions respectively, one of the unknown support points

x1, . . . ,xq, and independent of md, and the other of the design weights

w0, . . . , wq, the second function do dependent of md.

We suppose that (w0, w1, . . . , wq) ∈ [0, 1]q+1, then continuous analytical

methods allow finding that the maximum occurs when the proportions are

w∗0 =
1

2(q + 1)

(
1− pq + 1

pmd
+

√(
1− pq + 1

pmd

)2

+
4(q + 1)

pmd

)
,

which is increasing in d, and w∗s =
1− w∗0
q

, s = 1, . . . , q.

Thus we have shown the following
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Theorem 6.1 The product design η∗ × ξ∗ with ξ∗ =

(
δ∗m,d

1

)
in the re-

gression model (5.8)-(5.9) with f(0) = 0 and δ∗m,d supported on 0 and q

points, x∗1, . . . ,x
∗
q, which maximizes det F̂ 60, it is D-optimal in W(Xp)×Θ1

if an only if η∗ is the uniform design on Xp and

w∗0(d) =
1

2(q + 1)

(
1− pq + 1

pmd
+

√(
1− pq + 1

pmd

)2

+
4(q + 1)

pmd

)

and w∗s(d) =
1− w∗0(d)

q
, s = 1, . . . , q, respectively.

.

6.2 Limiting Models

We regard the limiting cases for d −→ 0, and d −→∞.

For d −→ 0, we approach a two-factor model with common intercept and

without block effects:

Ykj = β0 + f(xj)
>β(k) + εkj

k ∈ Xp, xj ∈ X and f(0) = 0q.

Let W(BX ) according to definition 2.3, a product design η∗ × δ∗ with δ∗

supported on 0 and the q points, x∗1, . . . ,x
∗
q, which maximize det F̂ 60, it is

D-optimal inW(Xp)×W(BX ) if and only if η∗ is the uniform design on Xp,
w∗0 =

1

pq + 1
, and w∗s =

p

pq + 1
s = 1, . . . , q respectively.

For d −→ ∞ we obtain w∗s,∞ =
1

q + 1
, for all s = 0, 1, . . . , q thus the

design η∗×ξ∗∞ is identical to the Dβ-optimum design inW(Xp)×Θ1 for the

two-factor model in the presence of fixed block effects: common intercept:

Yki = 1mβ0 + Fiβ
(k) + 1mγki + εki, (6.12)
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εkij
iid∼ N (0, σ2), the fixed block effects satisfy the identifiability condition∑p

k=1

∑b
i=1 γki = 0

6.3 Example

As an example, we will construct a product design which is optimum for a

one-way layout with k = 1, . . . , p levels combined with polynomial regression

in one explanatory variable and measurements at baseline in the presence

of random block effects: Common intercept.

Thus we have the following two-factor mixed model (5.6)

Yki = 1mβ0 + Fiβ
(k) + 1mγki + εki, (6.13)

with single observations:

Ykij = β0 + γki +

q∑
s=1

βskx
s
j + εkij (6.14)

k ∈ Xp, x ∈ X = [0, 1] and f(x) = (x, x2, . . . , xq)>.

Let η∗ be the uniform design on Xp, ξ =

(
δm,d

1

)
∈ Θ1 with

δm,d =

(
0 x1 . . . xq−1 1

w0 w1 . . . wq−1 wq

)

where the distinct settings xs are ordered: x0 = 0 < x1 < · · · < xq ≤ 1.

As we are seeking a D-optimal design and we are in the situation of the

previous section, we can apply Theorem 6.1.

det(M(η∗ × ξ)) ∝
(

det F̂60

)2p
w0

(
q∏
s=1

ws

)p

(1 +mdw0)
p−1
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where

det F̂60 =

∣∣∣∣∣∣∣∣∣∣
x1 . . . xq1
...

. . .
...

xq−1 . . . xqq−1

1 . . . 1

∣∣∣∣∣∣∣∣∣∣
=

(
q−1∏
s=1

xs(1− xs)

)(∏
s<s′

(xs − xs′)

)
.

Then continuous analytical methods show that the maximum is achieved

when the design points x∗1, . . . , x
∗
q−1 are solutions of the equation P

′
q(2x− 1) =

0, where

Pq(2x− 1) = (−1)q
q∑
s=0

(
q

s

)(
q + s

s

)
(−x)s

is the explicit representation of the qth shifted and rescaled Legendre poly-

nomial on the interval [0, 1], thus the support points of δ∗m,d are independent

of m, d and p, and on the other hand, the optimal proportions are

w∗0(d) =
1

2(q + 1)

(
1− pq + 1

pmd
+

√(
1− pq + 1

pmd

)2

+
4(q + 1)

pmd

)
,

and w∗s(d) =
1− w∗0(d)

q
, s = 1, . . . , q respectively.

Remark. For the comparison of p ≥ 2 treatments, but with only q = 1,

that is f(x) = x, optimal designs have been obtained in the model (6.14)

by Schwabe(1996) and Schmelter(2008).

Consider an experimental situation which fits into the underlying model,

where the partly interacting qualitative factor has p = 2 levels and f(x) =

(x, x2)>, x ∈ [0, 1], then we have that a D-optimal design for the full

parameter
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Figure 6.1; D-optimal proportion w∗0(d) for quadratic regression and p=2

is obtained when the single-block design ξ∗ for the random block effects

model is supported on an approximate design given by

δ∗m,d =

(
0 1/2 1

w∗0(d) w∗1(d) w∗2(d)

)
where

w∗0(d) =
1

6

(
1− 5

2md
+

√(
1− 5

2md

)2

+
6

md

)

w∗1(d) = w∗2(2) =
1− w∗0(d)

2
.

The dependence of the D-optimal weight at x = 0 on the variance ratio d

is presented in Figure(6.1), where to cover the whole range of d in a finite

interval we rescale the horizontal axis with the transformation given by
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Figure 6.2; D-efficiencies: η∗ × ξ∗0 ( dashed line) and η∗ × ξ∗∞ (solid line)

for quadratic regression and p=2 groups

d −→ md

1 +md
.

In the design literature, in order to calculate the efficiency of an arbitrary

design η∗×ξ with respected to the optimal design η∗×ξ∗ for the D-criteria,

the D-efficiency of a design η∗ × ξ is defined as

Deff (η
∗ × ξ) =

(
det(M(η∗ × ξ))

det(M(η∗ × ξ∗))

)1/5

where 5 = 1 + pq is the number of model parameters.

In the example under consideration, also we have plotted (in Figure 6.2),

the D-efficiencies, respectively in dependence on md
1+md

, of the limiting opti-
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mal designs, that is when the single block design for group are ξ∗0 and ξ∗∞

support, respectively, on

δ∗m,0 =

(
0 1/2 1

1/5 2/5 2/5

)

and

δ∗m;∞ =

(
0 1/2 1

1/3 1/3 1/3

)

and η∗ is the discrete uniform design on the group levels set {1, . . . , p}
As we can see, the figure shows that, the optimal block design based on

the optimal design for the uncorrelated linear model without blocks effects

is highly efficient for the two-factor mixed model over the whole range of

d with a minimal D-efficiency of 0.9432 when the variance ratio d becomes

large. On the other hand the D-optimum limiting fixed block effects design

has a good performance for the two-factor model with random block for all

d values with a minimal D-efficiency of 0.957248 at d = 0.
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Chapter 7

Discussion and Outlook

In the present thesis we have developed mainly D- optimal designs for a

two-factor linear model, where we have taken into consideration the two

structures, without interactions and partial interactions between the effects

of the qualitative and quantitative explanatory factors. An example of the

first case that is of practical importance is the linear model with a constant

term and additive block effects (we assume that the number of observa-

tions is the same for all blocks). Thus in chapters 3 and 4, using matrix

algebra, we have presented that, if a Dβ-optimal design for estimating the

regression parameter of the usual uncorrelated linear model can be [orthog-

onally] blocked, then it is D-optimal for the underling two-factor linear

model. In the case of a fixed block effects model if the design is orthogo-

nally blocked, then the regression parameter β is estimated independent of

the block effects. In the case of a random block effects model, where we had

to use the more computational technique of the linear mixed effects model

as generalized least estimation, due to intra-block correlation, if the de-

sign is orthogonally blocked, then the regression parameter β is estimated

independent of the ratio of variance components d. A particular class of

orthogonally blocked designs is the class of single-block designs, where all

blocks are observed under the same experimental setting.

With respect to the aim of this work we have presented a characterization of
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7 Discussion and Outlook

D-optimal designs for a more complex structure, a two-factor mixed model

with intercept given by a linear regression model where only the intercept

is invariant of the qualitative fixed factor in the presence of random block

effects. This characterization , under few assumptions, allowed to find ana-

lytically by means of convex optimization the weights of the optimal design.

It is worthwhile noting that the optimal weights depend on the variance ra-

tio. However, in this context if optimal single-block designs are computed

where the linear regression is the polynomial regression in one explanatory

variable, we show that the limiting optimal design are highly efficient, when

the variance ratio value approaches to zero or infinity.

Future work could research the performance of partially interacting models

involving more than one blocking factor using no single- block designs or

generating designs in practical applications for multi-factor models in the

presence of random block effects with different assumptions or experimental

regions.

80



Bibliography

[1] Atkins J.E., Cheng, C.-S.(1999): Optimal regression design in the pres-

ence of random block effects. J. Statist. P lann. Inference, 77: 321-335.

[2] Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007).

Optimum Experimental Designs, with S.A.S. Oxford University Press,

Oxford.

[3] Cheng, C.-S.(1995): Optimal regression design under random block

effects models. Statistica Sinica, 5: 485-497.

[4] Entholzner, M., Benda, N., Schmelter, T. and Schwabe, R.

(2005): A note on designs for estimating population parameters.

Biometrical Letters 42, 25-41.

[5] Fedorov, V.V.,(1972): Theory of Optimal Experiments, Academic

Press, New York.

[6] Gilmour, S. G. and Trinka, L. A. (2000). Some practical advice on

polynomial regression analysis from blocked response surface designs,

Communications in Statistics : Theory and Methods 29, 2157-2180.

[7] Goos, P. (2002): The Optimal Design of Blocked and Split −
Plot Experiments. Springer, New York.

[8] Goos, P., Vandebroek, M.(2001).D-optimal response surface designs in

the presence of random block effects.Comput. Statist. Data Analys. 37,

433-453.

81



Bibliography

[9] Khuri, A.I. (1992). Response surface models with random block effects.

Technometrics, 34, 26-37.

[10] Kiefer, J. (1959). Optimum experimental designs (with discussion).

Journal of theRoyal Statistical Society, Series B, 21, 272-319.

[11] Kiefer, J. (1974). General equivalence theory for optimum designs

(approximate theory). Ann. Statist. 2 849–879.

[12] Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum

problems. Canadian Journal of Mathematics, 12,363-366.

[13] Kunert, J.(1994): Optimality of block designs with variable block sizes

and random block effects. Metrika 41:71-81.

[14] Kurotschka, V. G. (1984). A general approach to optimum design of

experiments with qualitative and quantitative factors. In: J. K. Ghosh

and J. Roy (Eds): Statistics : Applications and New Directions :

Proceedings of the IndianStatistical Institute Golden Jubilee Inter-

national Conference Calcutta 1981, 353-368.

[15] Pukelshein, F. (1993): Optimal Design of Experiments, John Wiley

and Sons, New York.

[16] Rockafeller, R.T. (1970): Convex analysis, Princeton U.P.,Princeton

N.J.

[17] Schmelter, T., (2007): The optimality of single-group designs for cer-

tain mixed models. Metrika 65 ,183-193.

[18] Schmelter, T., Schwabe, R., (2008): On optimal designs in random

intercept models. Tatra Mt. Math. Publ. 39 : 145-153.

[19] Schwabe, R.(1996):Optimum Design for Multi − Factor Models.

Springer, New York.

[20] Searle, S. R.(1971):Linear Models. Wiley, New York.

[21] Silvey, S. D.(1980):Optimum Design. Chapman and Hall, London.

82



Bibliography

[22] Waite, T.W., Woods, D.C. and Waterhouse, T.H. (2012):

Designs for generalized linear models with random block effects.

Southampton, GB, Southampton Statistical Sciences Research Institute,

23pp. (Southampton Statistical Sciences Research Institute Methodology

Working Papers, M12/01).

[23] Wald, A. (1943). On the efficient design of statistical investigations,

Annals of Mathematical Statistics, 14, 134-140.

83


	Introduction
	Optimal Designs in Linear Regression Models
	Classical Linear Regression Models
	Experimental Designs and Information Matrices
	Continuous and Exact Designs
	Classical Optimality criteria
	 D-optimality
	 Ds-optimality
	A-optimality
	G-optimality
	Convex Optimization for Linear Regression Design
	The Equivalence Theorem
	D-optimal Designs for Polynomial  Models 

	Blocking Response Surface Experiments
	Introduction
	The block effects model
	Designs for Fixed Block Effects Model
	 The Fixed Block Experiments Viewed as a Two-Factor Model 
	 Orthogonal Blocking 

	Optimal Designs in the Presence of Random Block Effects
	The random block effects model
	Methods of Estimation
	Information Matrices and Optimal Designs
	Limiting Models 
	Optimal and Orthogonal Block Design
	Example
	Single-Block Design in Random Blocks Effects Model

	Linear Regression Model in the Presence of a Partially Interacting Qualitative Factor and Random Block Effects
	Introduction
	Regression Models with Qualitative Factor: Common Intercept
	Moment Matrix and Optimal Design 

	Optimal Design for a Linear Model with Interacting Treatment Factor and Random Block Effects 
	Optimal design
	Limiting Models
	Example

	Discussion and Outlook

