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Abstract

Belowground biodiversity distribution does not necessarily reflect aboveground biodiver-
sity patterns, but maps of soil biodiversity remain scarce because of limited data availability.
Earthworms belong to the most thoroughly studied soil organisms and—in their role as
ecosystem engineers—have a significant impact on ecosystem functioning. We used species
distribution modeling (SDMs) and available data sets to map the spatial distribution of
commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta)
across Europe under current and future climate conditions. First, we predicted potential
species distributions with commonly used models (i.e., MaxEnt and Biomod) and esti-
mated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we
determined how much the different types of protected areas covered predicted earthworm
richness and species ranges (i.e., distributions) by estimating the respective proportion of
the range area. Earthworm species richness was high in central western Europe and low
in northeastern Europe. This pattern was mainly associated with annual mean temperature
and precipitation seasonality, but the importance of predictor variables to species occur-
rences varied among species. The geographical ranges of the majority of the earthworm
species were predicted to shift to eastern Europe and partly decrease under future climate
scenarios. Predicted current and future ranges were only poorly covered by protected areas,
such as national parks. More than 80% of future earthworm ranges were on average not
protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of
considering especially vulnerable earthworm species, as well as other soil organisms, in the
design of nature conservation measures.
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Efectos del clima sobre la distribución y conservación de la lombriz de tierra europea
Resumen: La distribución de la biodiversidad del subsuelo no refleja necesariamente los
patrones de biodiversidad, pero los mapas de la biodiversidad del suelo aún son escasos
debido a la disponibilidad limitada de datos. Las lombrices son uno de los organismos
del suelo más estudiados a detalle—en su papel de ingenieros del ecosistema—y tienen
un impacto significativo sobre el funcionamiento de ecosistema. Usamos modelos de dis-
tribución de especies (MDE) y conjuntos de datos disponibles para mapear la distribución
espacial de las especies (Annelida, Oligochaeta) de lombrices más observadas (es decir,
registradas con frecuencia) en toda Europa bajo el clima actual y el futuro. Primero pronos-
ticamos la distribución potencial de las especies con modelos de uso común (MaxEnt y
Biomod) y estimamos la riqueza total de especies (número de especies en una cuadrícula
de 5 × 5 km). Después determinamos cuánto pronosticaban los diferentes tipos de áreas
protegidas contempladas la riqueza de lombrices y la distribución de las especies mediante
la estimación de la proporción respectiva del rango del área. La riqueza de especies fue alta
en el occidente central y baja en el noreste de Europa. Este patrón estuvo asociado prin-
cipalmente con la temperatura media anual y la estacionalidad de la precipitación, aunque
la importancia de las variables de pronóstico para la presencia de la especie varió entre
especies. Se pronosticó que la distribución geográfica de la mayoría de las especies cam-
biaría al este de Europa y disminuiría parcialmente bajo los escenarios climáticos futuros.
El pronóstico de la distribución actual y futura contaba con una cobertura deficiente de
las áreas protegidas, como los parques nacionales. En promedio, más del 80% de la dis-
tribución futura de las lombrices no estaba protegido (promedio [SD] = 82.6% [0.04]).
En general, nuestros resultados destacan la urgencia por considerar a las especies vulner-
ables de lombrices, así como a otros organismos del suelo, en el diseño de las medidas de
conservación.

PALABRAS CLAVE

área protegida, biodiversidad del suelo, cambio climático, futuro, Lumbricidae, MDE, modelo, vulnerabilidad

INTRODUCTION

Soil harbors an important portion of the world’s biodiversity,
including organisms of various sizes (Bardgett & van der Putten,
2014; Decaëns et al., 2006; FAO et al., 2020; Guerra et al., 2020).
This multidimensionality drives many ecosystem functions (e.g.,
bioturbation, soil respiration, aggregate stability) that are key for
the sustainability of terrestrial ecosystems (Bardgett & van der
Putten, 2014; Eisenhauer et al., 2020; FAO et al., 2020). Nev-
ertheless, the distribution and main drivers of most soil taxa
are relatively unknown when compared with other biodiversity
groups, such as vertebrates, birds, or plants (Phillips et al., 2017),
and information about the effects and coverage of nature con-
servation areas in relation to soil biodiversity is scarce (Cameron
et al., 2018; Ciobanu et al., 2019; Guerra et al., 2020; Zeiss et al.,
2022). Attempts to map soil biodiversity have shown that its
complex spatial patterns do not resemble those of aboveground
organisms (Cameron et al., 2019; Guerra et al., 2022; Mathieu
& Davies, 2014). As a result, protecting aboveground species
does not necessarily provide protection to belowground organ-
isms (Zeiss et al., 2022). Recent large-scale studies describe the
main drivers of large taxonomic groups distributions (e.g., earth-

worms, nematodes, fungi, bacteria) (Delgado-Baquerizo et al.,
2018; Köninger et al., 2023; Phillips et al., 2019; Tedersoo et al.,
2014; van den Hoogen et al., 2019) and highlight the effects of
climate (in particular temperature and precipitation). Regional
and local-scale studies confirm the generality of these main
drivers of distribution (Orgiazzi et al., 2016; Desie et al., 2020).

Soil biodiversity mapping is mostly done for single taxonomic
groups (e.g., fungi and nematodes) (Tedersoo et al., 2014; van
den Hoogen et al., 2019) and functional clusters (e.g., bacteria)
(Delgado-Baquerizo et al., 2018) but not at the species level or
systematically within each taxonomic group. Beyond the bio-
geographical interest, species-level information allows for more
effective conservation actions and the evaluation of the conser-
vation status and threats (Phillips et al., 2017; Rodrigues et al.,
2006). From all soil animal groups, earthworms are one of the
best surveyed invertebrates in Europe (Phillips et al., 2017),
with abundant species-level data available across several regions
(for example, Edaphobase.org, 2021; GBIF.org, 2021). Because
earthworms create biogenic structures and environmental con-
ditions that are suitable for other soil organisms, they are
considered ecosystem engineers (Lavelle, 2011; Le Bayon et al.,
2017). In agroecosystems, for example, earthworms strongly
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affect crop yield, plant growth (i.e., aboveground biomass), and
other plant traits (Bardgett & van der Putten, 2014; Cunha et al.,
2016; Eisenhauer et al., 2019; Kooch & Jalilvand, 2008; van
Groenigen et al., 2014). As for most soil taxa, data availability
of most earthworm species is often limited (e.g. German earth-
worms; Lehmitz et al., 2016), something that can be overcome,
to some extent, through systematic standardization of all avail-
able information (e.g., GBIF.org, 2021; Jetz et al., 2019) and
ecological modeling, such as with species distribution models
(SDMs) (Navarro et al., 2017).

We tackled the aforementioned knowledge gaps by investi-
gating the distribution (as potential species’ geographical range)
under climate change of the commonly observed European
earthworm species. We focused on commonly observed species,
that is species with a sufficient number of occurrences, to
avoid model overfitting. Europe is especially interesting because
of comparable previous studies in which richness values were
extrapolated instead of single-species models being built (Rut-
gers et al., 2016); its broad range of environmental conditions
(e.g., mean annual temperatures from −14 to 21◦C and eleva-
tion between from−102 to 4454 m asl [Supporting Information
Appendix S1]); and the availability of environmental and species
occurrence datasets. To properly assess potential changes in
the conservation status of each earthworm species, we also
assessed their distribution across multiple future scenarios of
climate change (Pörtner & Roberts, 2022) and examined their
distribution overlap with current protected areas. Based on
the protection coverage and future predictions, we also iden-
tified species whose ranges only sparsely overlap with current
protected areas and that are strongly affected by climatic factors.

METHODS

Our methodology included 4 steps (Figure 1): building the
species distribution database; importing and harmonizing envi-
ronmental data; calibrating distribution models to select the
main predictors; and predicting the potential distribution of a
set of well-documented European earthworm species with an
SDM. We used a uniform grid system for Europe that covered
the 27 member states of the European Union and Great Britain.
Models were built at a resolution of ∼2 km and predicted at
a ∼5-km resolution, a trade-off that allowed optimization of
computational power and time (one-fourth of time compared
with ∼1-km resolution) but maintained sufficient fine spatial
resolution to identify regional environmental drivers and suf-
ficient numbers of species records. All analyses were performed
in R 4.2.0 (R Core Team, 2020) and RStudio 2022.02.3 (RStudio
Team, 2020), unless otherwise indicated.

Species occurrence data

We collected occurrence data of earthworm species from the
Global Biodiversity Information Facility (GBIF) (GBIF.org,
2022), Edaphobase (2021), and other available large datasets
(Phillips et al., 2021) (details in Supporting Information Appen-

dices S2 and S3). Data sets are available at the iDiv data
repository (https://doi.org/10.25829/idiv.3524-gqvs4z). The
GBIF records provided by iNaturalist were not considered
in the final dataset because species’ identification has proven
unreliable (Di Cecco et al., 2021; McMullin & Allen, 2022)
(Supporting Information Appendix S3). In addition to the
3 data sets, we used 2 unpublished datasets from European
researchers, Jérome Mathieu and Carlos A. Guerra (detailed
description in Supporting Information Appendix S3, data avail-
able on request). All species names were harmonized by
taxonomic expert knowledge (Maria J.I. Briones) and based on
previous standardization (Phillips et al., 2019).

After data collection, only records collected from 1970 to
March 2022 were retained to estimate recent rather than past
species occurrence patterns. The R package CoordinateCleaner
was used to exclude data with common spatial and temporal
errors (Zizka et al., 2019). We accounted for country capitals,
country centroids, equal numbers for latitude and longitude,
GBIF headquarters, plain zeros, and default sea areas. We manu-
ally checked whether the exclusion of a record was appropriate.
Most of the flagged records were duplicates (i.e., Edaphobase
data in GBIF) or were missing coordinates. We excluded records
from GBIF with coordinate uncertainty of>1 km, that were not
observational (i.e., but including records of living specimens,
human observations, or preserved specimens); that were based
on <1 observation; and that described taxonomic levels higher
than species. The combined data set contained 98,732 occur-
rence records of 142 unique earthworm species collected across
45 European countries (Supporting Information Appendices S2
& S4, Figure 1).

The GBIF provided most of the records (54,883 records of
69 species) followed by Mathieu et al. 2022 (25,592 records,
77 species) and Edaphobase (13,054 records, 53 species). The
occurrence records were spatially thinned to adjust for sam-
pling bias caused by varying sampling density and resolution
(e.g., Kramer-Schadt et al., 2013; Steen et al., 2021). Spatial thin-
ning was done by transferring the records into a ∼2 × 2 km grid
system in WGS84 (Hijmans, Bivand et al., 2022) and back trans-
forming the grid into point data. After spatial thinning, our final
dataset contained 26,389 records of 127 earthworm species.

To avoid overfitting and increase the robustness of the mod-
els, we focused on the 41 species that were observed in at least
10 grid cells. We generated background data for the focal species
(i.e., number of records ≥10) with the R package biomod2
(Thuiller et al., 2016) by randomly sampling 10,000 grid cells
within the spatial extent of the environment for each species
(Barbet-Massin et al., 2012). Such a procedure has been used
widely with presence-only data sets because it allows imple-
mentation of all modeling algorithms available in the biomod2
package.

Environmental data

Earthworm distributions are driven by multiple factors, includ-
ing soil moisture, climate, chemical and physical soil properties,
and topographic factors (Desie et al., 2020; Mathieu et al.,
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FIGURE 1 Workflow of study of earthworm distribution and protection in Europe under current and future climatic conditions (small squares, predictor
variables [sources in Table 1]; n, number of occurrences at 4-km2 resolution per species). MaxEnt models identify the 10 most important drivers of species
distribution, and species distribution models (SDMs) in biomod2 predict current and future distributions based on the most important 10 drivers only. Step 4 does
not show the evaluation of the effect of future precipitation and temperature, which resulted in 3 additional datasets for each species and climate scenario (i.e., 45
future models per species).

2022b; Mueller et al., 2016; Phillips et al., 2019; Singh et al.,
2019). Soil moisture is related to the availability of water through
precipitation and can be expressed as aridity (proportion of
precipitation to evapotranspiration). Chemical and physical soil
properties encompass variables such as pH, base cations, heavy
metal concentrations, soil texture, and amount of organic mat-
ter, a food resource for earthworms. Topographic factors drive
the large-scale distribution of many organisms, including earth-
worms (Phillips et al., 2019). We included distance to the coast
in addition to commonly used predictors of earthworm distri-
butions because only a few earthworm species are tolerant of
high salinity and can thus exist near the sea (e.g., Eisenia fetida;
Owojori et al., 2008).

We considered 4 groups of environmental descriptors: cli-
matic, land-use, topographic, and edaphic factors (n = 29)
(Table 1). Given that most of the data on earthworm occur-
rences were collected around 2007 (mean = 2004, median
= 2007), we used the CORINE Land Cover dataset from
2012 as a land-cover baseline. While other land-cover datasets
exist (Buchhorn et al., 2020; Ellis et al., 2013; ESDAC, 2020),

we used CORINE given its spatial and coverage accuracy
(Aune-Lundberg & Strand, 2021; Caetano et al., 2006; Euro-
pean Environmental Agency, 2019; Torma & Harma. 2004).
Environmental variables were harmonized when necessary
(Supporting Information Appendix S1). All environmental data
were reprojected or resampled onto a 2- and 5-km grid sys-
tems and standardized by dividing mean-centered values by their
respective standard deviations. We used ArcGIS 10.7.1 (Baj-
jali, 2018) to reproject variables into WGS84, if necessary, but
merged them into one table in R to avoid conflicts with missing
data. Areas with ≥1 missing value in environmental variables
were excluded.

Model calibration

We used the R package usdm (Naimi, 2017) to check for cor-
relation and collinearity between variables. Variables with r>0.8
(correlation coefficient of Pearson) and variable inflation fac-
tor (VIF) ≥10 were excluded from further analyses (n = 4)
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TABLE 1 Environmental predictors used for species distribution modeling (SDM) of European earthworm species.a

Category Abbreviation Description Unit

Time

scale Reference

Climate Aridityb aridity index Value 1981–2010 Karger et al. (2017)

Climate MAP annual precipitation (bioclim 12) mm year−1 1981–2010 Karger et al. (2017)

Climate MAP_Seasc precipitation seasonality (coefficient of
variation) (bioclim 15)

kg m−2 1981–2010 Karger et al. (2017)

Climate MATc annual mean temperature (bioclim 1) ◦C *10 1981–2010 Karger et al. (2017)

Climate MAT_Seasb temperature seasonality (standard deviation)
(bioclim 4)

◦C *10 1981–2010 Karger et al. (2017)

Climate Snowb number of days with snow cover, based on
gap-filled fractional snow cover (GFSC)

% + 100 2018–2021 Copernicusd

LandCover Agriculturec proportion of area covered by agricultural
land based on CORINE land cover (CLC)
2012: class 2 except 231 (pasture)

Proportion 2012 Copernicusd

LandCover Dist_Urban distance to urban areas based on CLC 2012:
class 1 except 122 (roads) and 131 (mineral
extraction)

m 2012 Copernicusd

LandCover Forest_Coni proportion of area covered by coniferous
forests based on CLC 2012: class 312 and
334 (burnt)

Proportion 2012 Copernicusd

LandCover Forest_Deci proportion of area covered by deciduous
forests based on CLC 2012: class 311 and
313 (mixed)

Proportion 2012 Copernicusd

LandCover NDVI normalized difference vegetation index Value 1999–2019 Copernicus Service
Information 2022

LandCover Pastures proportion of area covered by pastures based
on CLC 2012: class 231 (pasture) and
321(natural grassland) and 333 (sparsely
open vegetation)

Proportion 2012 Copernicusd

LandCover Pop_Densc UN WPP-adjusted population density number of
people/km2

2000–2020 Doxsey-Whitfield et al.
(2015)

LandCover Shrubland proportion of area covered by shrubland
based on CLC 2012: class 32 except 321
(natural grassland)

Proportion 2012 Copernicusd

Location Aspect GISCO aspect (i.e., direction of slope) Value 2000 Copernicusd

Location Dist_Coastc distance from the coast based on EU-Hydro
- River Network Database: class 52
(marine water)

m 2006–2012 Copernicusd

Location Dist_River distance from rivers based on
EU-Hydro-River Network Database: class
51 (inland water)

m 2006–2012 Copernicusd

Location Elevc elevation based on European digital elevation
model

m 2000 Copernicusd

Location Slope Slope Value 2000 Copernicusd

Soil CECc cation exchange capacity cmol kg−1 2012 Ballabio et al. (2019)

Soil Clay+Siltc content of clay (%) + silt (%) (i.e., fine soil
texture)

% 2009 Ballabio, Panagos, and
Monatanarella
(2016)

Soil Cu copper distribution in top soils Cu mg kg−1 2009 Ballabio et al. (2018) &
Panagos et al. (2018)

Soil Hg Hg distribution Hg microg kg−1 2009 Ballabio et al. (2021) &
Panagos et al. (2021)

(Continues)
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TABLE 1 (Continued)

Category Abbreviation Description Unit

Time

scale Reference

Soil Moisture soil moisture index (SMI) (i.e., averaged daily
moisture conditions based on hydrological
rainfall-runoff model LISFLOOD)

Value 1995–2021 Cammalleri et al.
(2017)

Soil N nitrogen content N g kg−1 2012 Ballabio et al. (2019)

Soil Pc phosphorus content P mg kg−1 2012 Ballabio et al. (2019)

Soil pHc pH in water (H2O) ph in H2O 2012 Ballabio et al. 2019

Soil SOC soil organic carbon t ha−1/ kg m−2 1990–2019 FAO 2002; Global Soil
Organic Carbon
Map-GSOCmap 1.6

Soil SoilTb soil annual temperature (0–5 cm) Degree Celsius 1979–2020 Lembrechts et al.
(2021) (preprint)

aDetailed information is in Appendix S1.
bPredictors excluded based on Pearson correlation coefficient and variable inflation factor.
cOne of the 10 most important drivers of the investigated, highly recorded earthworm species.
dCopernicus: European Union, Copernicus Land Monitoring Service 2018, European Environment Agency.

(Dormann et al., 2013) (Supporting Information Appendix S5).
To avoid overfitting (Vaughan & Ormerod, 2005), we identi-
fied the 10 most important predictors for the focal earthworm
species (i.e., species recorded in ≥10 grid cells) from the 25 least
correlated predictors. We used the MaxEnt algorithm (dismo
package in R [Hijmans, Phillips et al., 2022]) to model each of
the 41 species present in more than or exactly 10 grid cells (∼2×
2 km). The MaxEnt algorithm offered a good trade-off between
computational time and performance (Elith et al., 2006; Her-
nandez et al., 2006; Valavi et al., 2021). We allowed models to be
tuned individually and used the same pseudo-absence dataset as
for model fitting (see below). To identify the top 10 variables
determining earthworm distribution, permutation importance
was calculated by permuting the values of each predictor and
comparing the resulting reduction in training area under curve
(AUC) values (Hijmans, Phillips et al., 2022). A large reduction
in AUC (i.e., high permutation importance) indicates that the
model is strongly influenced by that predictor. For species with
n ≥ 100 occurrences (19 of the 41 focal species), we selected
the 10 variables with the highest median permutation impor-
tance. Accordingly, the 10 predictor variables used in the SDMs
were annual mean temperature, precipitation seasonality, dis-
tance to coast, proportion of area covered by agriculture, soil
pH, phosphorus content, cation exchange capacity, elevation,
clay + silt content, and human population density (Supporting
Information Appendices S6 and S7a). We used the same crite-
rion to identify the most important predictors for species with
10 ≤ n < 100 records, even though we did not predict their
distributions (Supporting Information Appendices S6–S8).

Model fitting

The biomod2 package (Thuiller et al., 2016) is one of the most
commonly used and easily applicable tools to model species
distributions with the ensemble approach (Hao et al., 2019).

We modeled the 19 earthworm species with ≥100 records to
avoid overfitting (see Appendix S9 for sensitivity to number
of records) and used the 10 algorithms available in biomod2
3.5-1 with tailored parameter settings to create ensemble mod-
els (Table 2) (Marmion et al., 2009; Valavi et al., 2021) (details
in Supporting Information Appendix S10). We used commit-
tee averaging scores of the predictions, 10-fold cross-validation
(80:20%), and the true skill statistic (TSS) (Allouche et al., 2006)
to improve model performance during ensemble building. The
committee averaging score is the average of the binary pre-
dictions of the individual models; it yields a prediction and a
measure of uncertainty. If the prediction is close to 0 or 1, then
all models agree to predict 0 and 1, respectively, whereas if the
prediction is around 0.5, then half the models predict 1 and
the other half 0 (Thuiller et al., 2016). During individual model
building, we gave less weight to older species observations
because they do not necessarily correspond to current species’
occurrences. Unweighted and weighted models have a similarly
good performance (Barbet-Massin et al., 2012). We assigned the
weight of observations from 0.2 (sampling years 1970–1979) to
0.6 (2010–2019) and 0.7 (2020–2022). For model evaluation, we
extracted Cohen’s kappa (Allouche et al., 2006), the area under
the receiver operating characteristic curve (AUCROC), and TSS
(all available as biomod2 output).

To identify the main environmental drivers of earthworm
distributions, we estimated the relative variable importance.
The function biomod2::get_variables_importance shuffles each
environmental variable and computes the Pearson correlation
coefficient of the reference predictions with the shuffled pre-
dictions (Thuiller et al., 2016). High variable importance values
indicate a large influence of that variable on the model. In
addition, we built simple linear regression models to estimate
the influence of the 10 most important predictors on species
richness and extracted t values from each variable. The higher
the t value, the more important a given variable was for pre-
dicting earthworm species richness (i.e., number of species per

 15231739, 2024, 2, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14187 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.zotero.org/google-docs/?aXbo5a


CONSERVATION BIOLOGY 7 of 18

TABLE 2 Overview protocol for reporting the performed species distribution models according to Zurell et al. (2020) for European earthworm species.a.

Element Value

Model objective mapping and interpolation

Target output maps of relative probability of presence, and of overall species richness

Focal taxon earthworms (Annelida, Oligochaeta)

Location Europe

Scale of analysis

Spatial extent 10◦W, 31◦E, 36◦N, 70◦N (xmin, xmax, ymin, ymax)

Spatial resolution ∼5 × 5 km

Temporal extent 2015 (data sets from different time periods between 2001–2021) and 2055
(future climate 2041–2070)

Temporal resolution 1 year

Boundary political

Biodiversity data

Observation type citizen science, field survey, standardized monitoring data

Response data type point occurrence, presence only

Predictors

Predictor types climatic, edaphic, habitat, topographic

Hypotheses (see “Introduction”)

Model assumptions species-environment equilibrium or pseudo-equilibrium; no observation
bias issues; independence of species observations; availability of all
important predictors; predictors free of error; niche stability, constancy,
and niche conservatism; no other extrapolation problems

Algorithms

Modeling techniques MaxEnt; BioMod

Model averaging For species with at least 100 records (i.e., present in at least 100 2 × 2 km
grid cells), we performed BioMod ensemble modeling with all 10
available algorithms to estimate average probability of presence (true
skill statistic [TSS] as evaluation criteria).

Model workflow Prior to model building, we standardized all predictor variables and used
variance inflation (VIF) analysis and Pearson correlation coefficient to
avoid highly correlated variables. We included only the 10 most
important (MaxEnt preanalysis) and weakly correlated (VIF ≤ 10,
Pearson correlation ≤ 0.8) variables.

Model fitting Model fitting was done automatically as much as possible. In addition, we
generated individual background data for the models to increase their
performances. Predictive model performance was assessed by TSS, area
under the curve receiver operating characteristic, and kappa.

Software R 4.2.0 (R Core Team 2016), RStudio 2022.02.3 (RStudio Team, 2020),
ArcGIS 10.7.1 (Bajjali, 2018)

Code availability code available from https://doi.org/10.25829/idiv.3524-gqvs4z; updates
will be published on GitHub
(https://github.com/JeMaNd-r/SoilBiodiversity)

Data availability input data available from https://doi.org/10.25829/idiv.3524-gqvs4z.

aFull protocol with modeling details in Supporting Information Appendix S10.

5-km grid cell). All code used for data cleaning and analyses
is available from the iDiv data repository (https://doi.org/10.
25829/idiv.3524-gqvs4z). Updates will be published on GitHub
(https://github.com/JeMaNd-r/SoilBiodiversity).

Projections

For the 19 commonly observed earthworm species, we pre-
dicted and mapped the best-performing models (i.e., the one
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TABLE 3 Climate projection scenarios according to Pörtner and Roberts (2022).

Shared socioeconomic

pathway Explanation

Representative

concentration pathway Additional radiative forcing

SSP1 sustainability RCP 2.6 2.6 watt/m2

SSP3 regional rivalry RCP 7.0 7.0 watt/m2 (middle to upper range of the
bandwidth of all scenarios)

SSP5 fossil-fuel
development

RCP 8.5 8.5 watt/m2 (upper edge in the range of
scenarios described in the literature)

with highest TSS) in R (Hijmans et al., 2022; Wickham
et al., 2021). Maps are accessible through an R shiny app
on GitHub (https://github.com/JeMaNd-r/Shiny-earthworm-
distribution). We summed the discrete presence-absence pre-
dictions, which were derived from probability maps and a
model-specific probability threshold that yielded the highest
TSS, to get the number of species per grid cell (i.e., species
richness). All maps were cropped to the area in which pre-
diction uncertainty, averaged across the 19 SDMs, was less
than 0.1 (=mean and median uncertainty); thereby, we excluded
areas of large disagreement in predictions. Uncertainty was esti-
mated as the coefficient of variation between the individual
biomod2 algorithm projections of each ensemble model under
current climatic conditions and varied among species (Sup-
porting Information Appendices S11 & S12). The resulting
investigated area spanned 4.3 million km2 (i.e., 172,828 grid cells
of 5 × 5 km). In addition, we used biomod2 (Thuiller et al.,
2016) to estimate the area of potential extrapolation, given as the
number of predictors per grid cell with values beyond the range
of the training data. Extrapolation areas were mainly defined by
one predictor being beyond the range and located at the coastal
line and in Sweden or Finland; the latter matched well with the
excluded high-uncertainty areas (Appendix S12).

We projected the future distribution and species richness
of earthworms by using current land cover, topographic and
soil variables, and future climate variables. We used future cli-
mate variables only because we were interested in the potential
climate change effect rather than interactive effects between
land cover and soil variables under future scenarios. In addi-
tion, many of the variables selected were not available or were
difficult to predict (e.g., pH and other soil properties). Land-
cover maps for 2050 were available, but were not yet in the
CORINE Land Cover dataset that we used for accuracy reasons.
We, therefore, did not predict potential future distributions
but only potential shifts in species’ distribution caused by cli-
matic changes. Future predictions of mean annual temperature
(T) and seasonality of precipitation (P) were downloaded from
CHELSA 1.2 (Karger et al., 2017) for all available Intergovern-
mental Panel on Climate Change (IPCC) scenarios (n = 3*5) for
the time period 2041–2070.

We considered 3 shared socioeconomic pathways: SSP1 (with
the representative concentration pathway [RCP] 2.6), sustain-
ability; SSP3 (RCP 7.0), regional rivalry; and SSP5 (RCP 8.5),
fossil-fueled development (Pörtner & Roberts, 2022) (Table 3).
Regarding the Earth system models, we considered 5: GFDL-

ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and
UKESM1-0-LL (Karger et al., 2017). Each SSP was com-
bined with each Earth system model, resulting in a total of
15 IPCC scenarios. We centralized the future climate variables
based on the scaling parameters of the current ones (e.g., mean
and SD).

Temperature and precipitation are interconnected; but for
modeling purposes, we tried to identify their individual effects
on species distribution and vulnerability. We, therefore, pre-
dicted future earthworm distributions based on 3 adapted
environmental data sets: future climate variables T and P, future
T and current P, and current T and future P. This resulted
in 45 future climate projections per species (i.e., 45 environ-
mental datasets used for future projection of the fitted species’
SDM). We performed one analysis of variance (lm function)
that included the 10 environmental predictors to compare the
3 future projections of each scenario (factorial, T, P, TP) and to
evaluate potential climate effects on the predicted species rich-
ness averaged across the 15 IPCC scenarios. To compare the
effects of temperature and precipitation, we used the emmeans
function from the corresponding package (Lenth et al., 2022)
and calculated their estimated marginal means. Results are based
on the TP scenario only and represent average predictions
for each SSP across Earth system models unless otherwise
indicated.

Protection status

We used protected area networks available in the World
Database of Protected Areas (UNEP–WCMC & IUCN, 2021)
to estimate the area currently under protection. The 7 Interna-
tional Union for the Conservation of Nature (IUCN) categories
of protected areas were Ia, strict nature reserve; Ib, wilderness
area; II, national park; III, natural monument or feature; IV,
habitat or species management area; V, protected landscape or
seascape; and VI, protected area with sustainable use of natu-
ral resources (Dudley, 2008). We then calculated the area of the
predicted binary range per species covered by protected areas
differentiated into the IUCN categories (Dudley, 2008) in cur-
rent and future climate predictions. We found that 15.8% of the
investigated European area (683,577 km2) is currently protected
under one of the 7 protection systems. Category V covered
approximately 11% of the area; other categories covered less
than 5% in total.
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RESULTS

The 41 species occurring in more than 10 grid cells only occu-
pied 503 grid cells on average (SD 1016.5). Eiseniella tetraedra (n
= 4,611), Aporrectodea caliginosa (n = 2,849), and A. rosea (n =

2,205) occupied the most 2 × 2 km cells. For the 19 species
with more than 100 occurrences, the median number of occu-
pied grid cells was 776 (mean [SD] = 1,149 [1,190]) and the
minimum was 109 (Dendrobaena illyrica). The SDMs for the 19
highly recorded species under the current climate showed gen-
erally good performance (mean Kappa = 0.53 [0.12], AUC =

0.93 [0.04], TSS = 0.70 [0.13]).

Distribution of highly recorded European
earthworms

The 19 focal earthworm species had broad potential distribu-
tion ranges across Europe (median [SD] = 2.1 million km2

[880,943]) (Figure 2, Supporting Information Appendices S13
& S14). The species predicted to have the widest distribution
were Lumbricus terrestris (3,4 million km2) (Figure 2c), Dendro-

drilus rubidus (3,2 million km2), and L. castaneus (3,15 million
km2). In contrast, D. illyrica showed the smallest potential dis-
tribution range (8,125 km2); it was restricted to an area close to
the Tatra Mountains in Slovakia (Figure 2d). While most species
were predicted to occur in western Central Europe, a few of
the modeled species showed scattered occurrences in the Baltic
states, Norway, and Portugal (e.g., D. rubidus, D. octaedra, and E.

fetida). This was also reflected in earthworm species richness.
Richness of the focal earthworm species (i.e., number of species
in 5 × 5 km) was highest on the British Isles, 18 species per 25
km2, and the lowest in eastern and northern Europe (Figure 2a).
Nineteen species did not co-occur. On average, 3–5 species co-
occurred within the 5 × 5 km grid cells (mean = 5.2 [5.54],
median = 3), whereas areas with predicted high species richness
covered nearly one-fourth of the European area (23.7% of the
projected area with richness ≥10 and 10.1% with richness ≥ 15).

Environmental drivers

Although our preanalysis showed that all 10 variables were
highly influential for determining earthworm species occur-
rence, the climatic variables annual mean temperature and
seasonality of precipitation were the most strongly related to the
predicted distributions (absolute t > 240, adjusted R2

= 0.73,
p < 0.001; mean [SD] importance > 0.15 [0.11]) (Figure 2b).
Other variables, such as area covered by agricultural land,
clay + silt content, and phosphorus content, were similarly
strongly correlated to earthworm species richness (absolute
t > 200, p < 0.001). In contrast, cation exchange capacity, ele-
vation, and soil pH had less importance for richness (absolute
t < 70, p < 0.001) and single species distributions (mean impor-
tance < 0.09 [0.02–1.08]) (Appendix S6-S8). Individual species
showed mixed variable importance; sometimes importance was

evenly distributed among environmental factors (e.g., D. attemsi

or E. fetida) (Supporting Information Appendix S8b).
When comparing species with high numbers of records

(n ≥ 100) and those with only a few records (10 ≤n <100),
the same factors strongly determined distribution of the less
widely recorded species (i.e., same top 10 variables) (Support-
ing Information Appendix S7). For 7 of these 22 species (e.g.
Satchellius madeirensis and A. molleri), climatic factors made up
more than 50% of the variable importance. Sensitivity analy-
sis of future climate scenarios revealed a significant effect of
climate scenario (P, T, TP) on the predicted future earthworm
species richness (adjusted R2

= 0.711, p < 0.001, F = 1548).
Temperature showed, on average, slightly higher species rich-
ness values than precipitation seasonality (estimated marginal
means [SE]: P = 5.2, T = 5.5, TP = 5.6 [0.005]).

Future predictions of highly recorded European
earthworms

Under the future SSPs, species ranges appeared to shift from
western Europe toward the east (i.e., losses in the west, gains
in the east) (Figure 3, Supporting Information Appendix S14),
which was also reflected in changes in local species richness.
This result was confirmed across all future scenarios tested
(Figure 3a), even though changes in richness appeared slightly
less severe under more sustainable SSPs (i.e., SSP1 and SSP3)
(Figure 3b). In large parts of the investigated areas, all 3 SSPs
predicted similar changes in species richness: gain or loss of
species was predicted across all 3 SSPs in 45.7 and 24.1%
of the investigated areas, respectively. In only 7.1% of the
area covered in this study (308,675 km2), scenarios showed
mixed predictions (i.e., some showed losses and others gains).
At the western coast of southern France and south of the
Alps, SSP5 showed larger decreases in species richness, while
fewer parts of Europe remained unchanged (SSP1 20.7% of
whole investigated area remain unchanged, SSP3 11.7%, SSP5
8.2%). Especially along the coast of the Baltic Sea, SSP3
and SSP5 showed positive changes in species richness (SSP1
increase in richness in 52.3% of the area, SSP3 57.3%, SSP5
56.8%). All potentially occurring species (mean = 2.27, max-
imum = 9 species) were predicted to be lost under future
conditions in 1.8% of the study area (78,200 km2). These scat-
tered areas were mainly in southeastern Europe, the Pyrenees,
north of Spain, and Italy. Overall, the potential earthworm
species ranges declined in half of the species by up to 54%;
9 species showed comparably strong increases in range size
(absolute mean [SD] = 18.9% [0.187]) (Figure 3c, Supporting
Information Appendix S13). Proportional range change var-
ied across species and tended to be more pronounced in less
widely distributed species (Supporting Information Appendix
S13). Accordingly, A. caliginosa, A. longa, and D. attemsi showed
the strongest decreases in their distribution ranges and lit-
tle range expansion (mean > 35%) (Figure 3c; Supporting
Information Appendices S13 & S14). In contrast, ranges of
broadly distributed species, such as D. rubidus, L. castaneus, L.
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10 of 18 Zeiss ET AL.

FIGURE 2 (a) Spatial distribution of the predicted overall European earthworm species richness (i.e., number of species, maximum 19) when the probability of
species’ presence is higher than the species-specific threshold with maximum true skill statistic value (dark gray, 0 species; light gray, no predictions made because of
lack of environmental data and model uncertainty), (b) importance of the 10 variables used to predict earthworm presence for each species distribution model
(points, average importance for specific species across 10 replicates [values outside 1.5 times the interquartile range above and below the upper and lower quartile,
respectively]; variables ordered by mean importance values across all species and replicates; horizontal lines, range of values excluding potential outliers), (c) spatial
distribution of the species with the largest (i.e., most predicted occupied grid cells) geographic range, (d) spatial distribution of the species with the smallest
geographic range (i.e., fewest grid cells), and (e) uncertainty in predicted earthworm distributions (coefficient of variation averaged across species-specific biomod2
models).

rubellus, and L. terrestris, were predicted to change only slightly
(mean < 0.15).

Species vulnerability under nature conservation
categories

The average species richness was the highest in protected areas
belonging to IUCN category IV and V, both of which rep-
resent less strict protection levels (mean [SD] = 9.4 and 9.6
[5.90 and 5.16], respectively), and the lowest in Ia and Ib areas

(mean = 2.72 and 2.43 [3.5]) (Figure 4a). Unprotected areas
showed on average 6–7 earthworm species per 25 km2 (mean
= 6.7 [5.96]) and covered 81.6% of the species range (0.04).
The predicted individual species ranges were covered between
14.8% (E. fetida: 306,180 km2) and 31% (D. illyrica 2,520 km2)
under one of the 7 protection systems (mean = 18.4% [0.04]
(Figure 4c; Supporting Information Appendix S13). Similar to
species richness, most of the protected ranges fell into IUCN
category IV or V (mean > 50,000 km2, 2.7 and 14.4% [0.01
and 0.04], respectively) (Figure 4c), whereas categories Ia and Ib
covered only a very small percentage of the predicted species
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FIGURE 3 (a) Agreement across the 3 shared socioeconomic pathway (SSP) scenarios of climate change (predictions, mean predictions across 5 Earth system
models; gain, areas where gain of species richness is predicted in 3, 2, and 1 of the scenarios; loss, areas where loss of species richness is predicted; mixed, areas
where different scenarios predict gain and loss), (b) change in number of species gained (blue, > 0) and lost (red, < 0) for each of the 3 SSPs (SSP1, most sustainable
scenario; SSP5, fossil-fueled development; dark gray, areas excluded based on uncertainty > 0.1), and (c) change in range size per species ordered according to size of
current distribution range (bars, proportion of area changes; error bars, SD across future scenarios; points, range sizes under current and future climate conditions;
genus abbreviations: Ap., Aporrectodea; Al., Allolobophora; Ad., Allolobophoridella; D., Dendrobaena; Dd., Dendrodrilus; E., Eisenia; El., Eiseniella; L., Lumbricus; O., Octolasion;
S.Satchellius).

ranges (0.1–0.3% and 0–0.8%, mean < 0.1% [0.001 and 0.002],
respectively).

Under future climate conditions, the average species richness
was predicted to slightly increase in all protected ecosystems,
except in VI areas (mean=−0.3 [2.4]) (Figure 4b). Species rich-
ness increases were largest in Ia, Ib, and IV areas (mean =−1.4,
0.7, and 0.8 [1.9, 1.1, and 2.1], respectively). The predicted range
area under protection changed by an average of 11% (0.23)
across IUCN categories and species (minimum=−100%, max-

imum = 16.5%) (Figure 4d, Supporting Information Appendix
S13). Distribution ranges within IUCN category III and VI were
predicted to have the greatest declines (mean = 15% [0.25 and
0.22], respectively), whereas range areas covered by category Ib
and IV were predicted to increase (mean = 1.1 and 94.2% [0.4
and 3.8], respectively) (Figure 4d). In unprotected areas, species
ranges decreased by 12% (0.24) on average. We found mostly
agreement across SSPs with very similar patterns for the pre-
dicted changes in species richness (Figure 4c) and species ranges
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12 of 18 Zeiss ET AL.

FIGURE 4 Status of protection of the 19 most-widespread European earthworm species under (a, b) current and (c, d) future climate conditions. (a) Average
earthworm species richness in each protected area network in Europe (IUCN categories) under current climate conditions (white, unprotected areas; black dots,
mean richness, error bars are standard deviations), (b) area of earthworm species ranges covered by protected area networks (unprotected area not shown; colors
correspond to those in [a]), (c) change in species richness under the 3 shared socioeconomic pathway (SSP) scenarios (predictions, mean predictions across 5 Earth
system models; columns [Ia-VI], protection categories; blue, average gain of species [i.e., number of species > 0]; red, average loss of species), and (d) change in
protected range area under 3 SSP scenarios (+5%, future increase of 5% of the species’ range size currently covered by a protected area network; dark blue, change
in coverage > 100% depicted as 110%; gray, species that did not occur in certain protected area categories; bars within each cell, SSPs; genus abbreviations in legend
of Figure 3).

across protected and unprotected areas (Figure 4d). Changes in
protected areas under the more sustainable SSP1 were less pro-
nounced than under SSP3 and SSP5 (absolute mean= 20.8% vs.
33.6 and 37.3% [0.6, 1.4 and 1.5], respectively). For example, D.

illyrica showed the more dramatic changes under SSP3 and SSP5
(mean = −99% [< 0.01]) than under SSP1 (−88% [0.06]).

DISCUSSION

In Europe, earthworm occurrence is an important indicator of
ecosystems in good condition (Bardgett & van der Putten, 2014;
Blouin et al., 2013; Cunha et al., 2016; Kooch & Jalilvand, 2008),
but information on their conservation status is scarce (Cameron
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et al., 2018; Ciobanu et al., 2019; Guerra et al., 2020; Zeiss
et al., 2022). We assessed drivers of 41 European earthworm
species and predicted the current and future distributions of 19
highly recorded species. Soil pH, phosphorus, and temperature
were identified previously as strong drivers of earthworm dis-
tribution (Köninger et al., 2023; Phillips et al., 2019; Ruiz et al.,
2021); however, we found precipitation seasonality, agricultural
land area, and soil texture similarly or even more important
for predicting patterns of earthworm distribution and richness
(Figure 2b, Supporting Information Appendices S6–S8). The
majority of the species occurred in the west of central Europe
(i.e., the British Isles, Germany, the Netherlands, and Belgium)
(Figure 2a).

While the maximum number of earthworm species per site in
previous studies was 6 (Fourcade & Vercauteren, 2022; Phillips
et al., 2019), 7 (Rutgers et al., 2016), or 8 (Decaëns, 2010),
our models predicted up to 18 species that can co-occur in
several European regions (140,925 km2 with 18 species). Pre-
vious richness values were extrapolated based on local species
richness, rather than by summing single species distributions,
meaning that higher species numbers will be predicted for larger
spatial scales where heterogeneity within regions or landscapes
is known to promote earthworm diversity (Decaëns, 2010; Le
Provost et al., 2021).

In addition, we used a more comprehensive dataset compared
with previous mapping attempts and were able to fill data gaps
in northern Europe, Portugal, Ukraine, Belgium, Great Britain,
and Germany (Phillips et al., 2019; Rutgers et al., 2016). The
areas showing high earthworm diversity also matched the areas
identified to have the highest soil biodiversity in Europe (Aksoy
et al., 2017). Thus, higher soil biodiversity was predicted in Ire-
land and southern England, south of the Alps, and along the
coast of northern Germany and the Netherlands, whereas large
parts of Italy and Spain showed lower potential (Aksoy et al.,
2017). This pattern is in line with our findings (Figure 2a); how-
ever, the absolute species number has to be interpreted with
caution due to the exclusion of earthworm species with low
occurrence records and the selected spatial scale (i.e., regional
at 5 × 5 km).

Our models predicted potential declines in species richness
under future climatic conditions especially in western Europe
and shifts in distribution ranges to the central east (Figure 3).
While we did not predict potential future distributions, we esti-
mated potential shifts in species’ distribution caused by climatic
changes. These shifts were mainly explained by changes in the
mean annual temperature (estimated marginal means [SE] = 5.5
[0.005], variable importance t = 248.3). Changes under more
sustainable SSPs were less dramatic than under the scenario
with the highest radiative forcing (i.e., SSP5). However, areas
with low variations in species richness can also be explained
by shifts in species distributions leading to substitutions (i.e.,
one species moves into regions where another species becomes
absent) (Supporting Information Appendix S14).

In line with previous findings on earthworms (Fourcade &
Vercauteren, 2022; Singh et al., 2019) and vertebrates, such
as mammals (Levinsky et al., 2007) and birds (Virkkala &
Lehikoinen, 2017), earthworm distribution patterns are likely

to change within the next decades, leading to unpredictable
consequences for ecosystem functioning. Due to their role in
multiple ecosystem services (Blouin et al., 2013), earthworm
range shifts could also result in alterations in the distribution of
mutually related taxa, such as plant species hosting specific soil
taxa (Eisenhauer et al., 2019). Although newly developed habi-
tats could be recolonized by resilient earthworm populations,
their low dispersal capabilities (Chatelain & Mathieu, 2017) and
their strong dependence on migration corridors (Dupont et al.,
2015, 2017) strongly limit their successful establishment into
future habitats. It is, therefore, important to expand and apply
knowledge on practices to mitigate climate change effects on
earthworms and ecosystems in general, for example with con-
tinuous plant cover and subordinate plants that maintain high
food quality for earthworms (Mariotte et al., 2016; Singh et al.,
2019).

Most focal earthworm species were predicted to be widely
spread across Europe (Figure 2, Appendix S14); however,
we identified several endemically distributed species (Support-
ing Information Appendix S14), for example, D. illyrica was
restricted to the Tatra Mountains in Slovakia. We also found S.

mammalis was restricted to southern areas of the British Isles
and to isolated areas in Romania, Bulgaria, Italy, France, and
Spain (Supporting Information Appendix S14). L. festivus fol-
lowed similar patterns as S. mammalis but extended toward the
northeast. However, neither species showed occurrence data in
Romania or Bulgaria. These distribution patterns indicate that
suitable areas for S. mammalis and L. festivus in southeastern
Europe could not be colonized due to geographical barriers,
although more research is needed to confirm this due to scarcity
of data in these regions. Our results suggest that S. mammalis

and L. festivus in Romania, Bulgaria, Italy, and Spain are likely
to disappear under future climatic conditions. In addition, the
distribution of one-third of the less widely recorded species
(10 ≤ n <100) was mainly explained by climatic factors (i.e.,
summed permutation importance>50%) (Supporting Informa-
tion Appendix S8), highlighting the vulnerability of earthworms
to climate change (Singh et al., 2019). This finding is consis-
tent with endemic species facing higher extinction risks because
of their vulnerability to habitat changes (Urban, 2015). The
existence of vulnerable earthworm species makes their protec-
tion especially important to avoid species losses and maintain
regional soil biodiversity.

Our results show that the protection of earthworm species
under current protected areas is clearly insufficient. Predicted
species richness was lower for the more strictly protected
areas (i.e., IUCN categories Ia and Ib) compared with unpro-
tected sites; however, the highest richness was predicted in
areas belonging to categories IV and V. This confirms previ-
ous findings on negligible effects of conservation areas on soil
organisms (Ciobanu et al., 2019; Zeiss et al., 2022). Under future
global change scenarios, regional species richness will increase in
most of the protected areas, with larger increases in category Ia
and Ib areas (Figure 4b). Looking at species level, earthworm
species ranges were most likely to be protected by < 20% in
at least one of the 7 protection categories (Ia–VI). The major-
ity of these protected range areas belonged to conservation

 15231739, 2024, 2, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14187 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 18 Zeiss ET AL.

networks with less strict protection (i.e., IUCN categories IV
and V).

We recognize that our distribution predictions represent
earthworm fundamental niches rather than the actual geo-
graphic area they occupy (i.e., realized niche [Soberon &
Peterson, 2005]). In addition, predicted species ranges cov-
ered by protected area networks do not reflect the real species’
protection status. However, knowledge about species ranges
is essential to evaluate species vulnerability under the IUCN
framework. Even if models show lower accuracy in predicting
the suitability of individual grid cells and fundamental niches,
they are very useful surrogates for species’ range size (Júnior
& Nóbrega, 2018) and can be used to design protection mea-
sures. In this context, we found that distribution ranges declined
for nearly half of the 19 most highly recorded earthworm
species under future climate conditions with certain range shifts
into protected areas (Figure 4d). Most protected areas showed
increases in species richness and occurrence, indicating that cur-
rent conservation measures could be sufficient in the near future
as long as they specifically target earthworms (Zeiss et al., 2022;
Guerra et al., 2022).

The European Green Deal set the ambitious goal of pro-
tecting at least 30% of the land and sea area by 2050. Such
quantitative targets are only effective for nature conserva-
tion if cryptic, less charismatic, but functionally significant
species—including those residing in the soil—are considered
when designing and managing protected areas. Protected area
networks are the main tool in conservation to maintain above-
ground species, habitats, and ecosystems worldwide (Coetzee
et al., 2014), but they do not guarantee real protection of all
species and habitats (Gaston et al., 2006; Leverington et al.,
2010; Barnes et al., 2018). To reach conservation goals, their
design and management have to meet individual species and
ecosystem needs and to consider future impacts of global
change (Gaston et al., 2006; Leverington et al., 2010). Earth-
worms and many other soil-dwelling organisms are currently
underprotected and are not explicitly targeted in nature con-
servation policies and regulations (Köninger et al., 2022; Zeiss
et al., 2022). One solution could be to expand species-specific
targets in protected areas (Loiseau et al. 2020) that can help
guarantee their protection and protection of their habitats,
as well as other soil taxa. Soil biodiversity data has become
increasingly available over the past decades, and existing datasets
already provide valuable information (cf. Cardoso et al., 2011)
that can be used to identify drivers of species distribution and
climate change responses so that more effective actions for soil
invertebrate conservation can be taken.

Still, our aim was not to provide a comprehensive and com-
plete spatial representation of European earthworm species
richness, but to use readily available data to identify areas that
are potentially at risk of losing earthworm species and in urgent
need of protection and to highlight research needs. The limited
number of occurrence records and the lack of true absence data
for most species (i.e., repeated observations of species not being
present in a location) adds uncertainty to our predictions of
species occurrences and species richness distribution (Figure 2a,
Supporting Information Appendices S12 & S13) (Hernandez

et al., 2006). Furthermore, we did not test for spatial auto-
correlation because this may remove environmental variables
that correlate with (or drive) species distributions. The effects
of spatial autocorrelation may decrease transferability of the
predictions into new areas and environments (Segurado et al.,
2006). We, therefore, excluded areas with high uncertainty val-
ues that likely represent environmental conditions not covered
by species data sampling locations.

Although the identified drivers of and predicted distributions
for the targeted species aligned with the relevant literature (Rut-
gers et al., 2016; Phillips et al., 2019; Köninger et al., 2023),
evaluating the resulting potential distributions is more chal-
lenging and more prone to bias due to major geographic and
taxonomic gaps (Guerra et al., 2020). More targeted and stan-
dardized sampling is needed especially in central and southern
of Spain, southern of Portugal, Italy, and eastern European
countries (Supporting Information Appendices S12 & S13)
(Guerra et al., 2020). For example, the potential distribution
of D. attemsi was likely underestimated, possibly due to confu-
sions with D. octaedra, which can be overcome by implementing
harmonized sampling protocols and expert training in taxon-
omy (FAO et al., 2020; Guerra et al., 2021; Mathieu et al.,
2022a). This possibly applies to other species across several
areas in Europe. Moreover, our 19 focal species did not include
several endemic species because of the low number of observa-
tions. They require a different, tailored modeling approach that
allows overcoming such data limitations and an assessment at
smaller spatial scales (Lomba et al., 2010; Breiner et al., 2015).
Complementary, large-scale soil monitoring frameworks such
as SoilBON (Guerra et al., 2021) or targeted data gathering,
such as for EUdaphobase COST Action, are needed to verify
and expand soil biological data, draw more robust conclusions,
and take actions to limit or enhance dispersal mechanisms of
earthworms among others.

We found that the most commonly observed earthworm
species are broadly distributed throughout western and central
Europe but there are still data gaps in northern, southern, and
eastern Europe. At the regional scale, we found higher values of
potential species richness than previously predicted at the local
scale, with a maximum of 18 species co-occurring in 5-km grid
cells. Under future climate conditions, potential species rich-
ness and individual species geographical distribution showed a
shift from the west to the central east of Europe. Predicted iso-
lated range areas of species with the most restricted distributions
tended to be more vulnerable to climate change because their
potential ranges are likely to shrink under future climate con-
ditions. The existence of these vulnerable earthworm species
underlines the urgency of protecting not only current above-
ground species ranges, but also belowground organisms and
their potential future distribution ranges, including those areas
that could provide stable refugia.
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