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Abstract

In this work, we describe a smoothing technique for singular Riemannian metrics,
which almost preserves nonnegative curvature. Combined with results of M. Simon
[27], [28], it gives rise to some geometric applications.

In the first part, we glue two smooth Riemannian manifolds along isometric
boundaries. We show that, provided that the sum of the second fundamental
forms of the boundaries is nonnegative, lower bounds on certain curvatures are
preserved under the gluing operation up to an arbitrary small error term. These
curvatures include the Riemannian curvature operator, Ricci curvature, scalar cur-
vature, isotropic curvature, and bi-curvature.

In the second part, we study the evolution of the curvatures from the first part
under the Ricci flow on compact manifolds. Under the assumption that the scalar
curvature satisfies a bound of the form C/t (where C' > 0 is small), we show
that initial lower bounds on these curvatures do not become too bad on a well
controlled time interval. This result holds for all curvatures from the first part,
except for the Ricci curvature. Combining the first and second part with results
from [27] and [26], we show that manifolds which arise from gluing two manifolds
with nonnegative curvature admit a smooth metric of nonnegative curvature, which
allows a topological classification of such manifolds.

In the third part, we are concerned with metrics of nonnegative Riemannian
curvature on three manifolds, which are possibly singular (discontinuous) at one
point, where the singularity has a certain cone-like structure. Using a gluing con-
struction, we smooth out such singularities while keeping the curvature operator
almost nonnegative. As an application, by combining this with a result from [2§],
we show that a manifold with such a singular metric admits a smooth metric of
nonnegative Ricci curvature.






Zusammenfassung

In der vorliegenden Arbeit beschreiben wir eine Glattungstechnik fiir singulére
Riemannsche Mannigfaltigkeiten, bei der nichtnegative Riemannsche Kriimmung
fast erhalten bleibt. Diese Technik liefert in Kombination mit den Resultaten von
M. Simon [27] [28] einige geometrische Anwendungen.

Im ersten Teil dieser Arbeit kleben wir zwei glatte Riemannsche Mannigfaltig-
keiten entlang isometrischer Rander. Unter der Voraussetzung, dass die Summe
der zweiten Fundamentalformen der Rander nichtnegativ ist, werden dabei un-
tere Schranken bestimmter Kriimmungen bis auf einen beliebig kleinen Fehlerterm
erhalten. Zu diesen Kriimmungen zahlen der Riemannsche Kriimmungsoperator,
Ricci-Kriimmung, skalare Kriimmung, isotropische Kriimmung und Bi-Kriimmung.

Im zweiten Teil untersuchen wir die Evolution dieser Kriimmungen unter dem
Ricci-Fluss. Unter der Annahme, dass die Skalarkriimmung eine Schranke der
Form C/t erfiillt (wobei C' > 0 klein), zeigen wir, dass untere Anfangsschranken
dieser Krimmungen (ausgenommen die Ricci-Kriimmung) auf einem kontrollierten
Zeitintervall nicht zu schlecht werden konnen. Wir kombinieren das mit den Er-
gebnissen aus dem ersten Teil und den Resultaten aus [27] und [26], und zeigen,
dass eine Mannigfaltigkeit, die durch Kleben zweier Mannigfaltigkeiten mit nicht-
negativer Kriimmung entsteht, eine glatte Metrik mit nichtnegativer Kriimmung
besitzt, was eine topologische Klassifikation solcher Mannigfaltigkeiten erlaubt.

Im dritten Teil beschéftigen wir uns mit Metriken mit nichtnegativer Riemann-
scher Kriimmung (in Dimension 3), die in einem Punkt singuldr (nicht stetig) sein
kénnen, wobei die Singularitéit eine gewisse kegeldhnliche Struktur hat. Unter Ver-
wendung der Klebe-Technik aus dem ersten Teil kénnen wir solche Singularitaten
glatten, wahrend wir den Kriimmunsoperator fast nichtnegativ halten. Als An-
wendung, in Kombination mit den Ergebnissen von M. Simon [28], zeigen wir, dass
eine solche Mannigfaltigkeit eine glatte Metrik mit nichtnegativer Ricci Krimmung
besitzt.
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Introduction

The current work is divided into three main parts.

In Chapter 1, we describe a gluing technique for two smooth Riemannian man-
ifolds of curvature > x € R, which have isometric boundaries. Even though the
resulting manifold admits a smooth differentiable structure, one can only expect
the glued metric to be CY across the common boundary. In particular, it makes
no sense to speak of the Riemannian curvature operator of such a metric in the
classical sense. One way of dealing with the non-smoothness is to view the glued
metric as a C? limit of smooth metrics. One of the main results in Chapter 1 is
that, under the assumption that the sum of the second fundamental forms of the
boundaries is nonnegative, there exists such an approximating sequence of smooth
metrics g; whose curvature operators are > k — g;, where ¢; tends to zero (see
Thm. [1.1.2). Analogous results hold for various other curvatures, including Ricci
curvature, scalar curvature, (1- and 2-) isotropic curvature, and bi-curvature. In
the scalar curvature case it suffices to assume that the sum of the mean curvatures
of the boundaries is nonnegative.

A similar problem has been addressed in a number of works in the framework
of Alexandrov spaces, which generalizes the notion of bounded sectional curvature
for abstract metric spaces (we refere to [6] for a detailed discussion). In [21], Yu.
G. Reshetnyak has shown that upper curvature bounds in the sense of Alexandrov
are preserved under gluing, if the glued boundaries are convex. In [19], A. Petrunin
has shown that lower curvature bounds in the sense of Alexandrov are preserved
under gluing. In [I5], N. N. Kosovskii studied the case where the glued spaces are
Riemannian manifolds with sectional curvature > x in the classical sense. Using
an approximating sequence of smooth Riemannian metrics, he has shown that the
resulting space is an Alexandrov space of curvature > x if and only if the sum of
the second fundamental forms of the glued boundaries is nonnegative. The method
of the proofs in Chapter 1 is similar to the one in [15].

Chapter 2 is devoted to almost nonnegative curvature conditions which are pre-
served under the Ricci flow. Ricci flow invariant (weakly) positive curvature con-
ditions have been studied in a number of works, and gave rise to various geometric
applications. In [12], R. Hamilton proved that a compact three-manifold with pos-
itive Ricci curvature is diffeomorphic to a spherical space form, where a crucial
step of the proof was to show that nonnegative Ricci curvature is preserved under
the Ricci flow in dimension three. Similar results were obtained in [13] for four-
manifolds with positive Riemannian curvature operator, where Hamilton proved
that nonnegative curvature operator is preserved under the Ricci flow, and clas-
sified all compact four-manifolds with nonnegative curvature operator. In [8], H.
Chen generalized Hamilton’s results from [I3], showing that 2-nonnegative curva-
ture is preserved under the Ricci flow. In [4], S. Brendle and R. Schoen proved
the Differentiable Sphere Theorem, where the proof strongly relied on the fact that
nonnegative isotropic curvature is preserved under the Ricci flow, which was also
shown independently by H. T. Nguyen [I§].

In [22], T. Richard studied curvature conditions which are invariant under the
Ricci flow, and lie between nonnegative Riemannian curvature operator and non-
negative Ricci curvature (such conditions include nonnegative Riemannian cur-
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vature operator itself, 2-nonnegative curvature operator, and nonnegative 1- and
2-isotropic curvature). One of the results of his work was that the corresponding
almost nonnegative curvature conditions are preserved under the Ricci flow on a
well controlled time interval, provided one has a bound of the form |S(¢)| < C/t
(where C' > 0 is small) on the scalar curvature. In certain cases, the method of the
proof in [22] (which mainly involves Hamilton’s maximum principle for systems)
still can be applied to curvature conditions which do not necessarily imply nonneg-
ative Ricci curvature, such as nonnegative isotropic curvature. We shall verify this
in Chapter 2. As an application, combining results from Chapter 1 and 2 with M.
Simon’s results from [26] and [27], we show that glued manifolds with curvatures
> 0 as in Chapter 1 admit a smooth metric of nonnegative curvature.

In Chapter 3, we are concerned with point singularities of Riemannian metrics.
In [28], M. Simon studied a class of complete non-collapsed three manifolds with
Ricci curvature uniformly bounded from below and controlled geometry at infinity.
He showed that a solution to the Ricci flow of such manifolds exists on a well
controlled time interval, which made it possible to introduce a notion of Ricci flow
for (possibly singular) metric spaces (X, dx) arising as Gromov-Hausdorff limits of
sequences of such manifolds. An important result of [28] is that in particular X
is a manifold (cf. [28] Thm 9.2), which shows that the conjecture of M.Anderson-
J.Cheeger-T.Colding-G.Tian is correct in dimension three. Moreover, if the lower
bounds on the Ricci curvature of the manifolds in the sequence tend to zero, then
X admits a Riemannian metric of nonnegative Ricci curvature, which allows a
topological classification of such spaces in view of the works of W. X. Shi [24] and
R. Hamilton [12].

In the current work, we study Riemannian three manifolds (M, g) such that g
is smooth everywhere except at a point o € M, where g is possibly discontinuous,
and such that, where defined, the curvature operator of g is nonnegative. We show
that, under some additional assumptions on the structure of the singularity, one can
approximate g by a sequence of smooth metrics with almost nonnegative curvature
operators, converging to g in the C” sense on M \ o (see Thm. .

Let us briefly describe the smoothing procedure in Chapter 3. We require that
the singularity of the metric g at o has a certain cone-like structure. Essentially,
we assume that the distance function dist 4(-,0) : M — R arising from the metric g
is continuous at o and smooth on a neighborhood of o (except at o), that its level
sets I'(r) = {dist (-,0) = r} are homeomorphic to the standard sphere S?, and that
the second fundamental form of I'(r) approaches % glr(r) as 7 tends to zero (note
that %glp(r) is just the second fundamental form of I'(r) if ¢ is a standard cone
metric). This enables us to replace a neighborhood of the singularity by a standard
cone with nonnegative curvature operator, using the gluing technique described in
Chapter 1. Even though the standard cone has a singularity at the vertex, due to
its well controlled geometry it can be smoothed out while keeping the curvature
operator nonnegative.

As an application, we consider manifolds (M, g) as above, such that (M, g) is non-
collapsed at infinity (that is, balls of radius one lying outside some neighborhood
of the singular point satisfy a uniform lower volume bound > 0), and such that
the curvature operator of g is bounded at infinity. We show that such manifolds
can be viewed as Gromov-Hausdorff limits of sequences of manifolds with almost
nonnegative curvature operator as in M. Simon’s work [28]. In particular, M admits
a smooth metric of nonnegative Ricci curvature, and hence it can be assigned to a
certain topological class.
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Chapter 1.

Gluing Riemannian manifolds with
curvature operators > k

1.1. Introduction and preliminaries

In [I5], N. N. Kosovskil studied the gluing of two Riemannian manifolds with
sectional curvature > x along isometric boundaries. He showed that the resulting
space has curvature > k in the sense of Alexandrov, if and only if the sum of
the second fundamental forms of the boundaries is nonnegative. In this chapter,
we shall examine a similar setup for smooth Riemannian manifolds with smooth
compact boundaries and curvature operators > k. The method being used in [15]
can be applied with some modifications.

Let us introduce some notations before stating the main result of this chap-
ter. Let (M,g) be a smooth Riemannian manifold with a smooth metric g, and
A*(TM) C TM ® TM be the bundle of two-vectors over M. Given a point p € M
and a basis {e1,...,e,} of T,M, the space A?(T,M) is generated by

{eine;=ei®ej—ej®@e; |1 <i<j<n}
The metric g induces an inner product Z9 on A?(TM), defined by
Z9(ei Nej, e N er) = gikgji — gikgil, (1.1.1)

where g;x = g(e;,er). Note that if the vectors e; are orthonormal with respect
to g, then the two-vectors e; A e; are orthonormal with respect to Z9. Let RY be
the Riemannian curvature tensox@ of g and Rigjkl = R9(e;, ej,ex,e). RY induces a
symmetric bilinear form RY on A*(T'M) via

Rg(ei A\ €5, €x A el) = ngjkl

The Riemannian curvature operator on A%(T'M), which we shall also denote by
RY, is defined by the property

Z9(-, R9-) = RI(,").

By R9 > k € R (or RY > kZ9) we mean that all eigenvalues of RY are at least ,

or equivalently that
RI(a, ) > KT (ar, )

for all o € A%2(TM). We refer to Appendix for a more detailed discussion on
the connection between (4,0)-tensors and linear operators.

Let My and M; be smooth Riemannian manifolds with smooth boundaries I'g
and I'1, and smooth metrics gg and ¢;. Suppose that there exists an isometry

'"We adopt the sign convention RY(X,Y) = V{ V% — V4V + Vi vy
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¢ : (To, golr,) — (T'1,91|r,) of the boundaries. By gluing My and M; along ¢ we
mean identifying points p € I'g and ¢(p) € I'1. The resulting space M = My Uy M,
can be equipped with a smooth differentiable structure, such that My and M,
are smooth submanifolds of M (see Section . Moreover, with respect to this
structure, I' :== I'g =4 I'1 is a smooth hypersurface of M. Let Lo and L; be the
second fundamental forms of I'g C My and I'y C M; with respect to the inward
normals. In view of the above construction, Ly and L; can be regarded as (2,0)-
tensors on 1T, which enables us to consider their sum Lo + L;.

Let us define the metric g on the glued manifold M by ¢g|y, = gi, ¢ = 0,1.
In what follows, we use the notation g =: go Ug g1. Due to the isometry of the
boundaries, g is continuous, but fails to be C%-smooth in general. In this case we
can not speak of the Riemannian curvature operator of g in the classical sense. In
[15], Kosovskii made use of the fact that nevertheless M can be equipped with a
length structure induced by ¢ and instead of bounded sectional curvature in the
classical sense one has the notion of bounded curvature in the sense of Alexandrov
(see [6]). However, there is no analogue of this notion for bounds on the Riemannian
curvature operator. We introduce the following definition:

Definition 1.1.1. Let M be a Riemannian manifold, equipped with a continuous
metric g. We say that the Riemannian curvature operator of g is at least &, if there
ezists a family of C> metrics (9(5y) on M which converge to g uniformly on every
compact subset as § tends to zero and

R(gs)) > (k—£(6))Z(9(s))
holds with €(6) — 0.

In view of the above definitions the main result of this chapter is the following

Theorem 1.1.2. Let My and M; be smooth Riemannian manifolds with (at least
C?2-)smooth metrics gy and g1 and smooth compact boundaries Ty and Ty, respec-
tively. Suppose that there exists an isometry ¢ : I'o — I'1, and let M = Mo Ug My,
and g = goUg g1. Let Lo and Ly be the second fundamental forms of I'o C My and
I'y C My, respectively, and let L := Lo+ Ly on T :=Tg =4 I'1. Suppose that R(go)
and R(g1) are at least k. If L is positive semidefinite, then R(g) > k in the sense

of Definition [1.1.1]

Analogous results hold for manifolds with lower bounds on Ricci curvature, scalar
curvature (in this case it suffices to require only that trgL > 0 on I'), bi-curvature
(the sum of the two smallest eigenvalues of the curvature operator), and isotropic
curvature, respectively.

Plan of the proof of Theorem [1.1.2

We proceed similarly to [15]:

e In Section [1.2] we sum up auxiliary constructions. We introduce a smooth
structure on M relative to which My, M7 and their common boundary I' are
smooth submanifolds. The metric g on M induced by gg and g; is continuous.
By modifying the metric gg near I', we construct a new metric gs on My, such
that the coefficients of the metric g(s) := gs Uy g1 belong to the Sobolev class

W2 The constructions in this section were adopted from [15] (cf. §§ 3-6 )

loc
to the greatest extent.
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e In Section we compare the Riemannian curvature operators of gs and go
on Mj. This section corresponds with § 7 in [15].

e In Sections [I.4] and we estimate the curvature operator of gs, showing
that R(gs) > x — €(d) holds on My, which implies that the weakly defined
curvature operator of the VVZ?)COO metric g(5) satisfies R(g(s)) > & — €(d) a.e.
on M.

e In Section we mollify g(;) and construct a family of smooth metrics as
required in Definition [1.1.1

1.2. Definitions and auxiliary identities

Throughout this section, we use the notation from [15]. Consider two Riemannian
manifolds My, M7 with smooth compact boundaries I'g, I'1, and smooth metrics gg,
g1, such that there exists an isometry ¢ : I'g — I';. First, let us introduce a smooth
structure on M = My Uy My, such that My, M7 C M are smooth submanifolds,
and I'g =4 I'y =: I' C M is a smooth hypersurface with respect to this structure
(cf. [I5], Lemma 3.1). Let us fix a coordinate chart (z!,...,2"!) of I'. The
distance functions dist 4, and dist4, of go and g; are smooth near I' on My and
M, respectively. For a point p € My near I' we put z"(p) = dist 4,(p,I"), and
z'(p) = 2'(p) for i = 1,...,n—1, where p is the point of I satisfying dist 4, (p,I") =
dist 4, (p,p). Note that p is unique, if p is close enough to I We then repeat
this construction on My, putting z"(p) = —dist 4, (p,I') for points p € M; near I'.
The collection of all such coordinate charts (z',...,2"), where (z!,..., 2" 1)
coordinate chart of I', is compatible with the smooth structures of My and M7, and
gives us the smooth structure on M with the desired properties. The coordinates
(x',...,2™) are also known as Fermi coordinates. We refer to Appendix [A] for a
more detailed discussion. Throughout this chapter, all computations will be carried
out in these coordinates, unless noted differently.

is a

Lemma 1.2.1. The metric g = go Ug g1 is continuous. In coordinates defined
above, it has the form

g1 - gin-1 O

(gih<ijen = | h : : (1.2.1)
9n—-1,1 - ZGn-1n-1 0
0 ... 0 1

on a neighborhood of T'.

go O
Proof. In our coordinates, the metrics gg and g; have the form gy = (‘qoo 1) and

g1
0 1
hypersurfaces of T' (see Appendix [A.1]). By assumption we have go = g1 on T,

g1 = , where gg and §; are the restrictions of gg and g; to the equidistant

which shows the continuity of g. O

Notation 1.2.2. We denote the basis vector fields of TM with respect to the co-
ordinate charts (x!,... 2") by 8; = 3?;%‘ for1<i<n-—1and N = a%. Note
that near I' the vector field N is smooth, has unit length, and is orthogonal to the

equidistant hypersurfaces of I' (cf. Appendix [A.1)).
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Lemma 1.2.3 ([15], Lemma 3.1). The metric g1 smoothly extends to a metric g}
on a small neighborhood of T' in My in such a way that in our coordinates gy has
the same form as g in Lemma that is, (g})in = 6in for all1 <i<mn .

Proof. In coordinates defined above the metric g; on Mj is of the same form as in
. Locally in a small enough coordinate neighborhood U of some point of I"
we may smoothly extend (g1)1<i j<n—1 to U N My in such a way that the extended
matrix (¢])1<i j<n—1 is positive definite, and put (g})in = i for 1 < i < n. We
then cover I' by finitely many such neighborhoods and define ¢} near T" using a
subordinate partition of unity. One easily checks that the obtained metric has the
desired property. O

Throughout this chapter, we will use the following

Notation 1.2.4. Given a (2,0) tensor A on T,M, p € M, we denote by A the
corresponding linear endomorphism of T}, M satisfying

A(v,w) = (v, Aw),.

If {e1,...,en} is a basis of T,M and Ae; = Agej, then Ag = Apig", where
Ay = Aleg,e;), and (gkl)lgklgn is the inverse of the matrix (g(ex,er))i<k,i <n-
The operator A is self-adjoint iff the tensor A is symmetric.

Definition, Lemma 1.2.5 (The operator L, cf. [I5], 3.4 and 3.5). Let L be the
sum of the second fundamental forms on I' with respect to the inward normals on
My and My (or the difference of the second fundamental forms with respect to the
common normal N ), and L be the corresponding self-adjoint operator on TT, i.e.
L(-,) = (-,L-)o. On a small neighborhood of T in My, the operator L extends to
T My in such a way that LN =0 and VyL = 0.

Proof. At a point p € I' we may extend L to 7),My by linearity such that LN = 0.
Given ¢ € Mg near I' and X € T; My, we use parallel transportation P along the
integral curves of the vector field N and put LX := P7'LPX. Then clearly the
extended operator satisfies LN = 0. The fact that VyL = 0 is shown in Lemma

D.al O

Note that if the initial operator is positive semidefinite, then so is its extension.
Indeed,
(X,LX)o = (X,P7'LPX)y = (PX,LPX) > 0.

The following C*° functions will be used to modify the metric gg near I':

Definition 1.2.6 (Auxiliary functions f5, Fs and Fs, cf. [I5], 3.3). For small
d >0, we find C™ functions fs, Fs, Fs : [0,00) — R with the following properties:

o F5=F5 and F5 = f5 on [0, 00)

e f5(0)=1,0< fs <1 onl0,6%, and |fs| <& on [6%,00)

o f5<6 on|0,00)

e F5(0) = Fs5(0) =0, |Fs|,|Fs| <8 on [0,00), and fs = Fs = Fs =0 on [, 00).

The existence of such functions fs, Fs, Fs is shown in Appendiz[D, Lemma[D.3
Figure below shows the function fs.
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fo(x)

W

Figure 1.1.: The function f;

Remark 1.2.7. The functions fs, F5, F5 we use here are slightly different from the
ones used in [I5]. Our functions satisfy similar properties as those in [15], and, in
addition, F5 = 0 on [d, 00).

Notation 1.2.8 (Projection operators). For small distances d > 0, we denote by
['(d) the equidistant hypersurfaces of I in (My, go), that is,

I'(d) = {p € My |dist 4y(p,T') = d}.
Furthermore, we define the projection operators
PT . TMy =TT(d) ® TT(d)* — TT(d)

and

PN . TMy=1TT(d) ® TT(d)* — TT(d)*,

where L=1,4,. The coefficients of the corresponding (2,0)-tensors (with respect to
the coordinates chosen above) are

.. .. _ O
pry,. = [ Gidh<ijsn

and (PN)ij = 51,15]“

Definition 1.2.9 (The modified metric gs, [I5], 3.6). Let I denote the identity
operator on T'My. We define the self-adjoint endomorphism Gg by

Gs =1+ 2Fs5(z™)L — 2CF5(a™)PT, (1.2.2)
and the modified inner product (-,-)s on T My by
()6 = (- Gs)o,
i.e. in coordinates we have

9% = g% + 2F5(2™) Lij — 2CFs(a™)(PT),;. (1.2.3)
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The constant C' in the definition of G; is to be chosen later. Note that regardless of
the fact that 2™ may be defined only on a neighborhood {dist ¢4, (-,I') < do} C My,
do > 0, we may nevertheless consider Gy as an operator on My, since Fy and Fj
vanish on [d,00) D [dg, 00) for small enough 0. This also shows that G5 = I off a
d-neighborhood of I in M.

Lemma 1.2.10. G has the following properties:

(1) As 0 tends to zero, G converges to I uniformly on M.

(i7) In our coordinates, (gs)ij has the same form as g (cf. Lemma , that is,
(gs)in = Oin for all 1 <i < mn.

gs on My

(iii) The coefficients of the metric g(5) := { belong to VVZ?)COo

g1 on My

Proof. (i): This is because L and P” are bounded near I', and Fj, Fs — 0 uni-
formly as 6 — 0.

(ii): This follows from (T.2.3)) and the fact that L;, = (PT);, =0 forall 1 <i < n.

(iii): Note that on I' we have gs = go = g1 since F5(0) = F5(0) = 0, so g(s)
is well defined. Clearly, the first derivatives of g(5) are locally Lipschitz off T, since
gs and g1 are at least C2 smooth by assumption. Furthermore, the first derivatives
of gs and g coincide on I', which implies that gs) is C' on M. Indeed, on T' we
have
Ogl; = Okgly = Okgy;

for k = 1,...,n — 1, since gs = go = ¢g1 on I'. At a point of I', using L?j =
—<VgiN, 0j)0 and Lilj = <VéiN, 0;)1 we compute

Gng?j = —QL?]-
and

8ngz'1j = 2Lzlj
Thus, on I' we have

Ongly = Ongly + 2Lij = 2(Lyj — L;) = 2Lj; = Ong},

where we used that F§(0) = f5(0) = 1 and F5(0) = 0 = F5(0). Let p € I'. Since
I' € M is a smooth hypersurface, we may cover I' with coordinate neighborhoods
(U, ), where ¢ : M DU — V C R", such that

o(UNT) =V N R x{0})
©(UN M) =VNR"! xRsg) =1}
o(UNM)=VNR" xRs) =: 1.

Moreover, after choosing U even smaller, we may assume that V is convex, and
Okgfj : Vo — R and 8kgi1j : V1 — R are Lipschitz with constants Cy, C; < co. Let
xz,y € V. If x,y € Vj, then

) )
10:9\0 () — BigY ()| = |Bigi(x) — Digly(y)| < Colz — yl.
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Similarly, if z,y € Vi, then

10,9\ () — 0,9\ ()| = |Bighy(x) — Dighy ()] < Cilz —y].

Suppose that z € Vy and y € V. By construction, the straight line segment
connecting = and y is contained in V, and intersects ¢(UNT) = VN (R" 1 x {0}) =
Vo N V1 in some point z, so that x,z € Vj) and y,z € V1. Using the fact that the
derivatives of g5 and g1 coincide on I', we then compute

091 () — gD ()| = 1019 (@) — gD ()] + 19 (2) — Bigls) ()]
|8igk:l( ) — 8i9kl( ) + 1959 (2) — Digiy ()]
Colz — 2|+ C1]z — ¥

(Co+C1)(Jz — 2| + |z — 9])

(Co+ C)|z —y|.

IN A

Thus, the derivatives of g(s) are locally Lipschitz, and g(5) € Wee,

loc

O]

Definition 1.2.11. Given two endomorphisms Sg, T's of T My which depend on 6,
we say that
85 ~ T5

if Ss|lr = Ts|r and all eigenvalues of S5 — T tend to zero uniformly on compact
subsets of My as § — 0.

For two vector fields X5,Ys on My, we say that Xs ~ Ys if Xs|r = Ys|p and
| Xs — Ysllo = 0 uniformly on compact subsets as 6 — 0.

Note that Ss ~ Ts (X5 ~ Y;) holds iff in local coordinates (Ss);; = (15)i; on I’
and [(Ss)ij — (Ts)ij] = 0 (X =Y{ on T and | X! —Y}| — 0).

Lemma 1.2.12 (Auxiliary identities, cf. [15], Lemma 6.1, 6.2, 6.3). Let
XY € {81, . ,8n_1} C TP(d) C T My

and

N =0, € (TT(d))* ¢ TMy.

The following (approzimate and exact) identities hold:
Gs~I, VxGs=~0, VyG;s=2fs(z")L

VxVnGs = Qf(;(:b'n)VXL (1.2.4)
VNVNGs = 2f5(a")L — 2C fs(z")PT

(VAN,Y)s = (VA X,Y)s
= %(WNX, GsY) + (X, GsVNY) + (X, (VNGs)Y)) (1.2.5)

VAN =0 (1.2.6)
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V&X = V4N ~ VxN + fs(a")LX (1.2.7)

PT(V5Y) =~ PT(VxY). (1.2.8)

Proof. The first identity in ((1.2.4]) follows from the fact that Gs =T on ' = {2" =

0}, since F5(0) = F5(0) = 0, and Lemma |1.2.10] (7).
Let us verify VxGs =~ 0. We have

VxGs =Vx(I+2F5L — 20}_5PT) =VxI+2F;VxL — 20.7'—5VXPT,
since Fs and Fs5 depend only on z". For any &,( € T My we then have
(VeDE = V(I8) = L(VeE) = Ve§ = Vg = 0.

Moreover, VxL and V x PT are locally bounded, so the result follows since Fs, F5 —
0asd —0.
One verifies the remaining identities using similar arguments. Detailed compu-
tations are given in Appendix [D] Lemma [D.3
O

1.3. The Riemannian curvature operator of g;

In this section, we compare the Riemannian curvature operators of gs and gg on
My (ct. §§ 7-8 of [15]).

Let us briefly recall the connection between (4,0)-tensors on a finite dimen-
sional vector space V and the corresponding linear operators on A2V (we refere to
Appendix for a detailed discussion). Any (4,0)-tensor {7Tj;r;} which is anti-
symmetric in 4, j and k, [, respectively, induces a bilinear form 7 on A%V via

T (ei Nej,ex Nep) :=T(ei, ej, ek, er) = Tiju,

where e1,...,e, isabasis of V,and e; Aej =e;®ej —e; ®e;, 1 <@ < j < nis the
induced basis of A2V. The antisymmetries of T ensure that

T(ei ANej,ep N 61) = —'T(ej N e, ep N\ 61) = —7-(61' Nej e\ €k),

that is, 7 is well defined. If in addition Tjji; = Tji;, then the induced bilinear
form 7 is symmetric. For arbitrary a, 8 € A2V, a = ZKJ- ae; N ej = aVe; ® ej,
8= ZKj Biie; Nej = Bie;® e;j (a¥ = —ad" and B = —f37%) one has
1 g
T(a,B) = 1 ijklamﬁkl (1.3.1)

(see Lemma[B.1.1]), where here and in what follows we make use of the summation
convention.

Conversely, any bilinear form 7 on A2V (or the corresponding linear operator)
induces a (4,0)-tensor on V' via

T(es e, ex er) =T (e; Nej,ep Nep) =T9(e; Nej, T(ex Aep)),
where Z9 is the inner product on A%V induced by g,

T9(e; Nej,ex Ner) = gingjt — 9jkGil-
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The such defined tensor has the symmetries Tjjx = —Tjiry = —Tik, and if in
addition the bilinear form is symmetric, then we also have Tjj1 = Tjy;;.
Using the inner product Z9, we may identify linear operators and bilinear forms

on A2V by putting
T9(e; Nej, T(ex Nep)) =T (e Nej, e Nep).

The bilinear form is symmetric iff the operator is self-adjoint. In view of these
identifications, in what follows we will often switch between operators and bilinear
forms on A?(T'M) and (4, 0)-tensors on T'M.

We will also make use of the Kulkarni-Nomizu product on End(7T'M) (see Ap-
pendix for a detailed discussion). The Kulkarni-Nomizu product of two linear
endomorphisms A, B of V is the linear endomorphism A AB : A2V — A%V, which
is defined by

(A AB)(ei Aej) = %(A(ei) AB(ej) + B(e) A Aley)

for basis vectors e; Aej, and extends to A2V by linearity. The factor % ensures that
we have idy A idy = idj2y,. The corresponding bilinear form on A%V is given by

ANB(eiNejepNe) = T9(e;Nej, (AAB)(er Aep))
1
= §(Aikle — Aj By + BixAj — BjrAy),

where A, B are the bilinear forms on V' corresponding with A, B (cf. Notation
[[.2.4). Note that the induced (4,0)-tensor {(A A B)jy} is antisymmetric in i, j
and k, [, respectively. If in addition A and B are symmetric, then we also have the
symmetry (A A B)ijkl = (A A B)kzlij-

Let us now consider the Riemannian curvature operator of gs. For ease of nota-
tion, here and in what follows we shall suppress the index 0 for quantities related to
My. For example, we write (-, -) for (-,-)¢o and R for Ry. Similarly as in Definition
1.2.11] given operators Ss, 75 : A2(T'My) — A%(T'My) which depend on 6§, we say
that S5 = Ts, if Ss|r = Ts|r, and Ss — Ts — 0 uniformly on compact sets as 6 — 0.
Note that this is the case if and only if in local coordinates the coefficients of the
corresponding (4, 0)-tensors satisfy Sfjkl R Ti‘;kl.

The main result of this section is

Proposition 1.3.1. Let Rs = R(gs). Then
Rs ~ R—f2A+ fsB—2fiL +2f2L%+20f5T (1.3.2)

holds on My, where

A = LAL

L = LAPY
£? = L2APVN
7 = PTAPY

(cf. Notationfor the definitions of PT and PV ), and B is a smooth operator
on A?(TMy) which we will define later.

In order to prove this statement, we compute the coefficients of the corresponding

(4,0)-tensor of R locally in coordinates (z!,...,2") from the previous section.
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Lemma 1.3.2. Fori,j,k,l € {1,...,n— 1} we have
Ry ~ Rt — 3 (LA L)iji — 2f5(L A VN )i, (1.3.3)

where VN is the endomorphism X € TM — VxN € TM (recall that N is the unit
vector field orthogonal to the hypersurfaces of My equidistant to I', c¢f. Notation

Tz3)

Proof. We proceed as in [15], Lemma 7.1. Let p € My be a point near I' and
d = dist (z,I') = 2" (p). Let k,l <n — 1. Recall that by Definition we have

I = gk + 2F5(x") Liy — 20 F5 (2™ ) g
Therefore, for 7,5 < n — 1 we have
0igh ~ Oign

and
8;0;9% ~ 9;0;gm,

which implies that the curvature tensors of gs|pq) and glp(q) satisfy
P
Rr4) = Rr(ay-

Using the Gauss theorem and ((1.2.7)), at p we compute

Rl = (RY(0:,0;)0k 0))s
= (Rpa)(8i,0)0k, 01)s — (V§,N, 0)5(Vy, N, 0)s + (V5 N, 0)5(V5,N, 01)5
~ (Rr(a)(0i,05)0k, 01) — ((Vo,; N, Ok) + f5(0i, LOk))({(Vo,N,0r) + f5(0;,LIy))

+(<VajN, Ok) + f5(0;,LOk))((Va,N, 0) + f5(0i, LOy))
= (Rr)(9,05)0%, 1) — (Va,N,0k)(Va;N,01) + (Vo, N, 0k)(Vo,N, )
— 13 ({85, Low) (05, Ldy) — (95, L) (s, L)) )
—f5((05, Log)(Vo, N, dr) — (0, Lok)(Vo, N, 8;)
+(Va, N, 0k)(0;, L) — (Vo, N, ) (0;, Lal)).

Lemma 1.3.3. Fori,j,l € {1,...,n— 1} we have
R = Rij + f5((0i, (Vo,L)0) — (05, (Vo,L))). (1.3.4)
Proof. We proceed as in [15], Lemma 7.3. Let ,5,0 € {1,...,n —1}. By definition
of the Riemannian curvature tensor we have
(R(Di,07)0n, )5

= (V},V3,N,0)s5 — (V3,V5.N,0)s (1.3.5)

= 0i(Vy;N,0)s5 — 0i(V5,N,d)s — (V5,N, V)5 + (V). N, V5,005
1) For the first two terms on the right hand side we compute using ((1.2.5)

0;(V3,N, 815 — 0:(V). N, 1)

1
= §3j(<VN3i, G;50;) + (0, G5V NOL) + (05, (VNGs)L))

1
— §8¢(<VN8]', G581> + <8j, G(;VN61> + <8j, (VNG5)61>).
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After termwise differentiation we get three different types of terms:

a) Terms in which Gy is not differentiated: Since Gs ~ I, their sum is
~ 9;(Va,N, ;) — 0i(Va; N, ).

b) Terms in which Gy is differentiated with respect to 0; or 9;: Since 1 <i <n-—1,
these terms are =~ 0 by (|1.2.4)).

¢) Terms which involve mixed derivatives of G with respect to both 9; and N: In
view of ([1.2.4)), their sum is

%

f5((Vo,0i, L) + (8i, (Vo,L)A1) + (95, L(V,01))
—(V,0;,L0y) — (95, (Va,L)81) — (05, L(Vy,0)))
f5((9:, (Va, L)) + (9, L(Vo,81)) — (95, (Va, L)) — (95, L(Va,01))),

where we used that 0; and 0; commute. Combining a), b) and c) gives us

0;(VH,N, 0i)s — (V) N, 9))s
~ 0;(VoN,8) — (Yo, N, d) (1.3.6)
+  f5((0s, (Vo,L)8;) + (85, L(V,8)) — (95, (Va, L)) — (95, L(Vy,d))).

2) Let us now consider the last two terms on the right hand side of (1.3.5]). Using
the fact that <VgiN, N)s =0, we have

(V3,N,V5,01)5 = (V3,N,PT(V5,.0))s.

Therefore, in view of (1.2.7)) and ([1.2.8)

—(V5,N, V.05 + (V§,N, V5,05

—(V5,N,PT(V),0))5 + (V5,N,PT(V,0))s

—((Va,N,PT(V5,0)) + f5(L;, T(Va ar))) (1.3.7)
(¢ (

—(

Q

+((Vo,N,PT(Vy,0) + f5(L0;, PT(V5,0)))
Vo,N,Vo,0) + (Vo,N,V,0) + f5((Lj, Vo,01) — (Ld;, Vo, 1)),

Q

where in the last line we used (Vy,N,N) = 0 and (L9J;,N) = (0;,LN) = 0
Combining ([1.3.6)) and (|1.3.7)) we obtain the desired result. O

Lemma 1.3.4. For j,l € {1,...,n — 1} we have

annl ~ annl - 2f(§(L A PN)njnl + 2f(52(L2 A PN)njnl + 2Cf§(PT A PN)njnl

—f5((L9;, Vo,N) + (Vo,N,L;)).
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Proof. We proceed as in [15], Lemma 7.2. Using Lemma [1.2.12] we compute

R = (R°(N,9;)N,d))s
= (V3 \Vivi\’/ )5 — (VNVY,N, )
=0
= —N(V).N,0)s+ (V5 N, Vi)

(1.2.5),(1.2.7)
=~ —N[ ((VNaj, G581> <8j, Gg(VN81)> + <8j, (VNG5)81>)}
+<VN8] + f5Laja VNal + f5L8l>
(1.2.4)
~ (R(N,8;)N,0y) — f5(0;, L)) + f(?(Laj,Laﬁ + Cf5(0;,00)

— f5((Ldj, Vo, N) + (Vo, N, L3})).

We are now ready to prove Proposition [1.3.1
Proof of Proposition[1.3.1. We define the (4,0)-tensor B by

B = —2(LAVN);,
+(9i, (Vo L)01) Ok, N) —
(0, (Vo; L) Ok ) (01, N)
+(0%k, (Vo L) y)( 9, N) —
—(Ok, (Vo,L)0; )

(95, (Va,L)

+ (0}, (Vo,L)Ox) (01, N
(ar, ( )0,

+ (0 ( )0i

Observe that the tensor B satisfies Bjjr = —Bjiri = —Bijir and By = Byyij, thus
inducing a symmetric bilinear form B on A?(TM) via B(e; Aej,ex Aey) = Byjp (see
the discussion in the beginning of this section). The desired equation

Rs ~ R— fELAL+ f5B
“2fiL APY 42212 APY 4 20 £PT APV (1.3.8)

follows in view of Lemmas - Indeed, note that since the operators on
the right hand side (i.e. their corresponding (4,0)-tensors) have the same sym-
metries as the curvature operator, it suffices to evaluate for (05,05, 0k, 01),
(03, 0j,0n,0;), and (Op, 0j,0n, 0;), where 1 < 4,5, k, 1 <n—1.

Case 1)
Let 4,7,k,l <n — 1. In this case

LAPY) = LEAPY )0 = (PTAPY) 0 =0
and Bjji = —2(L A VN)ijw. Thus, (1.3.8) follows by Lemma m

Case 2)
Let 4,5, < n —1 and kK = n. Recall that L;, = 0 for all ¢ and (PN)m = 0 for
7 < n — 1. Therefore we have

(L AN L)ijnl = (L AN PN)ijnl = (L2 A\ PN)Z'jnl = (PT A PN)ijnl =0.
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Moreover, (VN ), = (0;, VNN) =0 = (N,Vy N) = (VN),;, and therefore
Bijnl = <827 (vajL)al> - <aj’ (V@L)@Q,
and ((1.3.8) follows by Lemma [1.3.3|

Case 3)
Let j,l <n—1and i =k =n. Clearly, (L AL)pjn = 0. As in case 2) we have
(LAVN)pjn =0, and thus

Bujni = (N,(Vao,L)0)) — (0;, (VNL)O) + (N, (Va,L)0;) — (01, (VNL)O))

J

= (N, (Vo,1)8)) + (N, (V5,1)9;),

J

where we used that VyL = 0 (cf. Lemma [1.2.5). Using the fact that L is self-
adjoint and LN = 0 we compute

(N, (Vo,L)0y) = (N,Vo, (L)) — (N,L(Vy,0))
= 0j(N,L0;) — (Vy,N,L0)
= —(Vg,N,Ly),
which gives us
Byjni = —((Vo; N, L)) + (Vo,N,L0y)).
Thus, in this case follows by Lemma and we are done.

1.4. The Riemannian curvature operator of ¢}

In this section, we prove an auxiliary result which we will need in the next section.
Recall that ¢} is the extension of g' on a small neighborhood of T' in My, as
introduced in Lemma We compare the Riemannian curvature operators on
I with respect to the metrics g and ¢} (cf. [15], § 9).

We define the self-adjoint operator G; on T My by (-, G1-) = (-, )].

Proposition 1.4.1. Let R} be the Riemannian curvature operator of gy on M.
On I we have

Ry=R—-A+B+2L% - V4G, (1.4.1)

where A, B and L* are as in Theorem and V4G = (V3G1) APY. In
particular, since Ry = R4 holds on T independently of the extension g}, and R1 > K
by assumption, we have

R—A+B+2L% -~ V3G > kT (1.4.2)
onT.

Proof. We proceed as in [I5], Lemma 9.1. We show that G satisfies similar equal-
ities on I' as G4 in Lemma up to the VyVyG; term (see Lemma m
below). We may then repeat the computations from the previous section, where
the only difference occurs due to the VNV Gy term. (]
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Lemma 1.4.2. Let XY € {01,...,0n,-1}, and N = 0,. On T, the following
identities are true:

G =1 (1.4.3)
VxGi; =0 (1.4.4)
VNG = 2L (1.4.5)
VxVnG; =2VxL (1.4.6)
VYN =0 (1.4.7)
VMY N =VxN +LX (1.4.8)
PT(VYyY) = PT(VxY) (1.4.9)

Proof. By construction g = g1 on I', and by assumption g1 = go on I', which shows

(1.4.3)). The identity ([1.4.4)) follows from (|1.4.3]).
Let us show ([1.4.5). We have

(X,(VNG1)Y) = (X,VN(G1Y)) — (X,G1(VNY))
LI N(X,GY) — (VN X,Y) — (X, VyY)
N(X,Y), — (VNX,Y) — (X, VYY)
(VENX, Y+ (X, VY )] — (VN X, Y) — (X, VNY)
2Lo(X,Y) — 2L1(X,Y)
= (X,2LY), (1.4.10)

where we used that in our coordinates the second fundamental forms of I" in (M, g)
and (Mo, g}) with respect to N are —(X,VxNY) and (X, VI V)] (cf. Lemma
1.2.10)). By a similar computation we have

(N, (VNG)Y) X' N(N,GiY) - (VyN,Y) — (N, VyY)
= 0=(N,2LY). (1.4.11)

Furthermore, G{ N = N implies

(VNG1)N = VN (G{N) — G{(VyN) = 0 = 2LN. (1.4.12)

Equation follows from (1.4.10]), (1.4.11]), (1.4.12)), and the fact that V Gy
is self-adjoint.

Equation is a consequence of .

Equation follows by a similar computation as V‘;VN =0, see Lemma
equation , since by construction we have (g})in = i, for all 1 < i < n (see

Lemma |1.2.3)).

Let us verify (1.4.8). Using the Koszul formula, similarly as in Lemma
(D.4)), one checks that

1
(VN X, Y)) = 5 (VN X, G1Y) + (X, G1(VNY) + (X, (VNG1)Y)).
Since G; =1 and VyG; = 2L on I', this implies

(VINX,Y) = (VXN,Y) + (X,LY) (1.4.13)
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on I'. Moreover, using the fact that the vector fields X and N commute, the
identity V1’§VN =0=VxyN, and LN = 0, one checks that

(VENX,N)| = 0= (VxN,N) + (X,LN). (1.4.14)

We then obtain ((1.4.8]) by combining ((1.4.13]) and (|1.4.14)).
Finally, one verifies (1.4.9) using g}, = i for 1 < i < n similarly as in Lemma

equation .

U
1.5. Estimating Rs on M
The goal of this section is to show that Rs > (k — £(6))Zs holds on Mj.
Lemma 1.5.1 (cf. [I5], Lemma 9.2). We have
1
R—fiA+ fsB > (v—c(0)T +2f5(=L+ Vi G1), (1.5.1)

where £(8) tends to zero as 6 — 0.

Proof. Since T' is compact, it suffices to show that
1
R(Oé, a) _f(?A(O[’ Oé)-f-f(;B(Oé, Oé) > I{I(Oﬁ Oé)+2f5 (_[’2+§v?\/gl) (aa O[)-&((;)I(O[, Oé)

holds on a small neighborhood U of a point p € I" for every two-vector « on U,
where €(0) does not depend on «a. Let us fix a coordinate neighborhood (U, ¢) of
p € I', where

o= (z',...,2"):UcCcM—VCR"

is as in Section 2. Using this coordinate chart, we identify U C M and o(U) C R™,
and regard all quantities in the above inequality as functions V' — R. W.l.o.g. we
may assume that o has fixed coefficients satisfying > ].:1(04” )2 =1.

We proceed as in Lemma 9.2 of [I5]. Off a -neighborhood of I we have f5(z™) =
0, so the inequality holds without an error term. On I' = {z" = 0} we have

fs(2™) =1, and the inequality follows from (|1.4.2)).

Let us now fix a point 2 = (z!,...,2" 1) € UNT and look at the inequality on

the line segment {(&,z") : 2™ € [0,4]}. Let
1
Q - —/-:2 + §V?Vg1

For 2" € [0, 6%] we have fs5(2") € [0,1] (cf. Definition[1.2.6). Suppose for a moment
that the quantities R(o, ), A(a, @), B(a, ) and Q(«, ) do not depend z". Then
the inequality

Rla,a) — fEA(o, @) + fsB(a, a) > kI(a, ) + 4f5Q(a, ) (1.5.2)

would hold without an error term. This is because it holds for f5 = 0 and fs =1,
and the function

0,1 - R
y = R(a,a)—yQA(a,a)+yB(a,a)
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is concave (note that L > 0 implies A = L AL > 0, see Lemma [B.3.3). Now
R(a,a), A(a,a), B(a,a) and Q(a, ) do depend on z™, but they are smooth on
My and hence almost constant for small 2™. Indeed, one has for instance

A A 1 . N ij
R(a,a)(#,s) = R, ) (2, 1) = Z‘Rijkl(xa s) — Riju(2,1)||a TaM|
< de(n) sup (| Rijwllor oy

i7]7k7l

for all s,t € [0, 8], where the right hand side tends to zero since the C'-norm of the
coordinate functions is bounded if we choose U small enough. Therefore (|1.5.2))
holds up to a small error term £(§) on the right hand side for 2™ € [0, §2].

For z" € [62, 8] we have |f5(z")| < §. A,B,Z and Q are uniformly bounded near
I', therefore holds for all z™ € [0,0] if we choose ¢ sufficiently small and
subtract another €(d) on the right hand side.

O

Proposition 1.5.2 (cf. [15], Lemma 10.1). If the constant C' in the definition of
gs is chosen large enough, then for small § > 0

Rs > (li - 6(5))15,
where £(6) — 0 as § tends to zero.

Proof. Since gs — g uniformly, it suffices to show that Rs > (/1 — 5(6))1. From
Proposition and Lemma [1.5.1| we get

Rs R — fRA+ fsB — 2fiL 4+ 2f2L2 + 2C f5T
1 ~
> KT +2f5(—L2 + 5VRG + CL) = 2f3L +23L° — e(8)T.

Q

By definition of the operators £2, V?\,gl, 7 (see Proposition i we have
1 A 1
— L2+ 5%91 +CT=(-L*+ 5v?vc;q +cPTy APV, (1.5.3)

Note that the operators L? and V% Gy vanish on TT(d)*. Moreover, these opera-
tors are uniformly bounded near I'. Therefore, the expression in parentheses on the
right hand side of becomes nonnegative, if we choose the constant C' large
enough. Then PY > 0 implies that the right hand side of is nonnegative
(cf. Lemma . Moreover, —£? + %v%vgl + C7Z is uniformly bounded near T,
and fs > —J by construction. Thus

1 N
2f5(—L%+ 5v?vgl +CI) > —&(6)T.

The operator £ = LAPY is nonnegative and uniformly bounded near I', and fs <6
by construction. This gives us —2f{L£ > —e(8)Z. Obviously, f2£% = fZL* A PV is
nonnegative, and we are done.

O

. . 2,00
Corollary 1.5.3. The weakly defined Riemannian curvature operator of the W~ -

metric gy on M (recall that gs)\m, = g5 and g(s)lm, = g1, cf. Lemma|1.2.10
satisfies

R(9¢5)) =2 £ —€(d) a.e. on M (1.5.4)

(everywhere except on T').
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Proof. In local coordinates the Riemannian curvature tensor of some metric h is
given by

R(h)ijkl = ajf)khil + @&hjk — 8j81hik — 8i8khjl + (hil eOhe 8h)ijkl, (1.5.5)

where e means contracting tensors using the metric. Since the second derivatives
enter (1.5.5) linearly, R(g(;)) can be defined on M in the weak sense. R(g(s5)) >
k — () a.e. follows from Proposition and the assumption R(g1) > & .

O

1.6. Mollifying g5

By mollifying g(s) we construct a family of smooth metrics with properties as
required in Definition [1.1.1

Proposition 1.6.1. There exists a family of smooth metrics g(s) such that
96 — 9

as 0 — 0 uniformly on compact subsets of M, and such that

Rs) = (5 — &(6))L5),
where £(6) — 0 as § — 0.

Proof. Let us fix a small § > 0. Let Us, s € N, be a locally finite open cover of
M, such that Us CC U! for some coordinate neighborhood U.. In what follows, we
identify the coordinate neighborhoods U/ with the corresponding neighborhoods in
R™. Since I is compact, we may assume w.l.o.g. that U.NT = () for s > N for some
N € N. We denote the coordinate functions of g(5) on Ug by (gf(s))ij. After choosing
U! even smaller if necessary, we may also assume that H(g(sé))ijncl(UQ <K <o
for all s < N. For s < N and z € Ug let

(gf’l;)ij(l’) = (on * (9(5))i3) (z) = /||<1 p(2)(g(s))ij(x — hz)dz, (1.6.1)

where p € C3°(R™) satisfies supp p C B1(0) and [p, p = 1, and h is small enough
so that for all s < N the point  — hz lies in U] for all z € B;1(0). Observe that
gf(’s}; is a well defined metric on U which converges to g5 |u, in the C'-sense. Let
(ns) be a partition of unity on M such that suppns C Uy for all s. For h as above
we then define a smooth metric g&) on M by

9?5) = Z 7759(8[5? + Z Ns9(5)- (1.6.2)
s<N s>N

Let us now calculate the Riemannian curvature tensor R(g&)) using the formula
(1.5.5)). The terms which do not involve any derivatives of the unity functions 7,
give us just the mollified Riemannian curvature tensor (R(g((;)))h up to a small

error term (4, h) 30 0, constructed in the same way as g&) in (1.6.1) and (|1.6.2)).
Indeed, we have

589?5) +oe (9?5))_1 d 89?5) o 39?5)
h _
= (99g9)" + -+ (g(5)) ™" * Ogs) * D9l
= (339(5))h ++ ((95)) " @ gy @ 39(5))h +e(d, h),
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where we used that both (g&))_1 . ag&) . 89?5) and ((9(5))_1 ® Jg(5) ® 89(5))h are
C° close to (9(5))_1 ® Jg(5) ® Jg(s) since g(hé) — gs in the C! sense for any fixed 6 as
h — 0.

The other terms vanish uniformly on M as h tends to zero. We shall verify this
exemplary for the terms involving second derivatives of the unity functions. After
fixing a coordinate chart (U, ¢) we compute

| > 050kns(gi5)a+ Y ;0kms(gs))ul

s<N s>N
= | Z 9; akns )it + Z 0 Okns (9(5)>zl - 6) zl Z 0j akns 11’
s<N s<N s>N
< [0;0k( Zﬁs g+ Y19 Ons|1(g¢; )zl — (9(s))al
s<N

=1

< N(s max H77ch2(Us))( max == max H(g(s’})l)u—(9(5))11\|CO(US))

=1,..,.N s=1,...,Nil=1,....m
h—0
— 0.

All in all we have

|(R(g{5)))izmt — (R(gs)))" )izl < (8, 1),
where €(0, h) "290 for every fixed 0, which implies that

R(g(5) = (R(gis))" — €6, W) Z(g(s)); (1.6.3)
where £(d, h) "300 for every fixed §. Moreover, Corollary implies

(R(gs))" = (k= €(8))(Z(g(5))". (1.6.4)

Indeed, for any two-vector av = >, _, a9; A 9; on Uy (w.l.o.g. with fixed coeffi-

cients) we compute using (1.3.1))

Rl @) = [ p<z>§<R<g(5)>>;jk,<x ~ h2)allatdz

(T54) »
/<; —e(0 |<1 (95)))ijm(x — hz)a”akldz

= (/-f - 5(5))( (9(5)))” ( )N, ).
Combining (|1.6.3)) and ( we arrive at
73(9?5)) > (1 —2(8))(Z(9())" = €(6, I (g(s))
> (5 —e(0)(1£e(9)Z(gf5) — &0, h)(1 + £(8))Z(g(s))

where we used the fact that for every fixed § both (Z(g(s)))"” and 7 (g&)) approach
Z(9g(5)) as h tends to zero (£ referes to the cases x > 0,x < 0, respectively). Since
£(0,h) — 0 as h — 0 for every fixed §, we may choose h small enough such that
£(d,h) < e(6), thereby obtaining

Rg(s) = (& — (|5l + 3)e(8)) Z(g(s))

and the desired result follows with g5 = g&) and £(0) = (|| + 3)e(9). O
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Remark 1.6.2. From the fact that g5 — g in the C° sense on M, and gy = g off
a compact neighborhood K D I it follows that g(;) — g uniformly on M.

The following lemma will be useful for an application in Section [2.4

Lemma 1.6.3 (Further properties of g(s)). Let (Mo, go), (M1,91), M = MoUg My,
g =90Ue g1, and g(s) be as above. The following statements are true:

(i) If (Mo, dist 4)) and (My,dist4,) are complete (as length-metric spaces), then
(M, g(s)) is a complete manifold for small enough § > 0.

(i) If supypy, [R(gi)lg; < o0, i = 0,1, then

sup |R(gs)s < oo,
M

for all § > 0, where | - |5 denotes the norm induced by gs)-

(iii) We have [T'(g(s5,)) — T'(gs))lg < ¢ for all 50,0 > 0, where I'(g(s)) refers to the
Christoffel symbols of gy, and c = c(go,91) does not depend on 9, 9.

Proof. (i): To show that (M, g¢;) is complete, by the Hopf-Rinow theorem it suf-
fices to verify that any closed bounded subset A C (M, dist 7 5)) is compact. Since
g5y — g uniformly on M (see the above remark), any such set A is bounded with
respect to dist 4. Moreover, since the topologies induced by dist 4 and dist g, co-
incide with the initial topology of M, the set A is a closed subset of (M, dist ).
Since by assumption (Mp, dist ¢,) and (M, dist 4, ) are complete, from construction
of M = My Ug My and g = go Uy g1 it follows that (A, dist 4) is a complete metric
space. A generalized version of the Hopf-Rinow theorem for length-metric spaces
(see [10], [2]) says that any closed bounded subset of a complete locally compact
length-metric space is compact, so A is compact in (M, dist ;) (note that M is lo-
cally compact since it is a manifold). Using the fact that the topologies of (M, dist 4)
and (M, dist g, ) coincide, we conclude that A is compact in (M, dist g, ).

(ii): This follows from the fact that by construction the metrics g5 are smooth
and coincide with gg Ug g1 off a compact neighborhood K DT

(iii): Since g5y — ¢ uniformly on M, and off a neighborhood of I" the metrics
g(s) coincide with g for small enough § > 0, it suffices to check that for any p € T’
there exists a coordinate neighborhood of U 3 p such that on U the first derivatives
of (g(s))ij are bounded independently of 6. Let (U, ) be a coordinate neighborhood
of p> T, where ¢ = (x!,...,2") are Fermi coordinates constructed in Section
Recall that the metric g(5) was constructed by mollifying the VVZ?JCOO metric g5) near

I', defined by
gs on My
96 =

g1 on M’

where
gs = go + 2F5L =+ QC./—"(;Q.

In coordinates ¢, the derivatives of g5 (on U N M) are given by

O0k(95)ij = Ok(9ij + 2F5Lij + 2CFs3i5)
= OkGij — OknfsO0ngij — F5010ngij + 2C0knFsgij + 2C F50kG11,
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where we used L;; = —%&Lqij. Since the functions fs, Fs and Fs are uniformly
bounded independently of §, this gives us

10k (9(5))ij| < c( sup |gijlc2wnm)s SUp  19ijlcrwnan))
1<i,j<n 1<i,j<

on U, where the right hand side is finite if we choose U small enough. Since the
mollifying procedure in Section does not affect the uniform boundedness of the
first derivatives, we also have |0k (g(s))i;| < con U for all § > 0, where c is as above,
and we are done.

O]

1.7. Similar results for other curvature operators

As mentioned in the introduction, analogous results hold for manifolds with lower
bounds on Ricci curvature, scalar curvature, isotropic curvature, and bi-curvature,
respectively.

1.7.1. Manifolds with Ricci curvature > &

Theorem 1.7.1. Let M = MgUd)Ml, g = 90Uy91, ="y =¢ Iy, and L = Lo+ 14
be as in Theorem[1.1.9. Suppose that Ric(go) and Ric(g1) are at least k. If L is
positive semidefinite, then Ric(g) > k (in a similar sense as in Definition [1.1.1]).

Proof. Given a symmetric bilinear form 7 on A?(TM) and a metric h, we denote
RlCh(T) = hle('7 8]7 *y al):

where T'(0;,0;,0k,01) = T (0; A 0j,0, N\ O;). The strategy of the proof is similar as

in the proof of Theorem We show

(a) The curvature operator of the modified metric gs on My satisfies Ricg, (Rs) >
(k —€(6))gs, £(6) — 0 (this corresponds to Proposition [1.5.2).

(b) By mollifying g(s5), we construct a family of smooth metrics which approxi-
mate ¢ in the CY sense and have Ricci curvature at least x — £(6).

(a): As in the previous sections, when working on My, we write g rather than
go to simplify the notation. Here we may simplify the argument of the previous
sections. Recall that we identify endomorphisms and bilinear forms on T'Mj in the
sense of Notation In view of this identification, we have g = idrpg,. Since
gs =~ g on My, it suffices to show that

Ricg, (Rs) > (k — £(6))idras,-

By (1.3.2) we have
Ricg,(Rs) > Ricgs(R) — f5Ricg, (A) + fsRicy, (B)
—  2ffRicg, (L) + 2fFRicy, (L?) + 20 f5Ricy, (T) — £(6)idras,
(here and in what follows, we suppress constants in the €(d) term). Since |f5| <1
and gs — ¢ uniformly, we may replace Ricg, by Ric, everywhere except in the f;
term, i.e. we have
Ricy (Rs) > Ricy(R) — fZRicy(A) + fsRic,(B) (1.7.1)
— 2ffRicy, (L) + 2fFRic,(L2) + 20 fsRicy(Z) — (8)idras, -
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Recall that Z = PT A PN (cf. Notation . We compute

(Ricy(PT A PN)) = S/ (PEPY — PREY + PYPE — PYP)
_ %(trg(PN)PjYI; + tr,(PT)PY)
= P+ - 1E), (1.7.2)
which implies
Ricy(Z) > %(PT + PN = %idTMO (1.7.3)

(the case n = 1 is trivial, since in this case R(g) = 0). Using and the
assumption Ricg(R) > « in (L.7.1]), we obtain the estimate
Ricy (Rs) > (k —e(0))idras, — fiRicy(A) + fsRic,(B)
—  2f§Ricg, (L) + 25 Ricg(L?) + Cfsidra,
= (k—e(6))idram, — 2f5Ricg, (L) (1.7.4)
f5(—fsRicg(A) + Ricy(B) + 2fsRicy(£?) + Cidra,)-

_|_

The operators A, B and £2 are smooth and hence uniformly bounded on a neigh-
borhood of T" in Mj. Therefore, the term in parenthesis in ((1.7.4]) is nonnegative
for large enough fixed C' and bounded from aboveﬂ Since f5 > —4, the last line of

(1.7.4) is > —e(9)idras,, and we arrive at
Ricg, (Rs) > (k — €(8))idras, — 2f5Ricg, (L). (1.7.5)

We now compute the f5 term in (1.7.5)). Let us fix a point p € My near I'. Let
I'(p) be the equidistant hypersurface of I' containing p. We choose an orthonormal
(w.r.t. g) basis eq,...,e,—1 of TpI'(p) such that (L(p))i<i j<n—1 is diagonal. Then
{e1,...,en—1,N} is an orthonormal basis of T,M and (L(p))i<ij<n is diagonal.
By construction this implies that (g5(p))i1<ij<n is diagonal, so gs(p)j = wdji,
where p; > 0 since g5 is positive definite, and p, = 1. Moreover, we still have
(PN )ij = 0indjn in these coordinates. Therefore, given a vector £ € T,M, using
Ly, =0for k=1,...,n we compute

n

. . . 1 4
(Ricg; (£))(6,€) = g3 (LAPY)yugich =" LA P )aniek
=1

I- 1 A
) > E(Li’fpl]lv — L Py + Py Ly — P Li)g'¢”
=1

11

B SO |
= 5@“575)4‘5(5) ;MLZZZO

since L > 0 by assumption. Using the fact that f§ does not exceed §, and that
Ricgs (L) is uniformly bounded near I', we obtain the estimate

—QfSRngé (,C) > —E((S)idTMO .

2 Note that at this point we simplified the argument of Section Ricy(PT APY) is estimated
from below by the positive definite operator %idTMO, hence the A, B and £? terms are absorbed

by Cidra,. When considering the full curvature tensor, the corresponding operator CPTAPY
has nontrivial kernel, which is why the concavity argument of Lemma was necessary.
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(b): Let us fix a 0 > 0. We construct the metrics 9?5) as in Section In view
of (1.6.3) and the fact that 9?5) — g(s) uniformly as h — 0 we have
Ric n (R(g?a))) > Ricgy, (R(g(5)))" — (6, 1)(9(5));

9(5)

where £(0, h) — 0 for every fixed § as h — 0. Given a vector field X on Uy which
has constant coefficients not exceeding 1, on U we compute using (a) and the mean
value theorem

Ricg,, (R(g(5)))"*(2)(X, X)

— /|<1,O(Z)(9(5))jl(m)(R(g((s)))fjkl(x — h2) XX Fdz
= /|<1 P(Z)(g(d))jl(m — hz)(R(g@)))fjkl(fE _ hZ)XiXkdz

+ h/l|<1p(Z)D(g(5))jl(gx,hz)Z(R(g(d)))fjkl(l» XX
> (k= (8)) g3 (X, X) = hC(5)

> (k= 22(9)) g5 (X, X),

where &; . = (1 — t)x + thz for some t € [0,1], and C() depends on the bound
of R(g(s)) near I, which is finite for every fixed §. Note that for every fixed J we
may choose h small enough so that hC'(d) < &(d). Since Us NI # () only for finitely
many s, we deduce

Rng(é) (R(g(5)))h Z (H — 26(5))g€%).
Thus

Ricy (Rlgls))) > (v —26(5))g(s) — £(6,h)(9(5))-

Finally, we choose h even smaller such that £(6, h) < €(d) and g5y < (1+ 5(5))9&),
and the result follows with gs5) = g&) and £(9) = 4e(9).
O

1.7.2. Manifolds with scalar curvature > x

The scalar curvature of a C? smooth Riemannian metric g is defined as S(g) =
tryRicy = gikglefjkl. As mentioned in the introduction, in the scalar curvature
case we may weaken the assumption L > 0 on I', requiring only that tr,L > 0 on I,
i.e. the sum of the mean curvatures of I" with respect to gy and g1 is nonnegative.

Theorem 1.7.2. Let M = MyUg My, g = goUpg1, I' =Tg =4 I'1, and L = Lo+ 1L,
be as in Theorem [1.1.3. Suppose that S(go) and S(g1) are at least k. If tryL > 0
on T, then S(g) > k (in a similar sense as in Definition [1.1.1)).

Proof. First, let us assume that tryL > 0 on T. In analogy to LemmalT.2.5] we need
to verify that the extension of L satisfies try L > 0, if so does the initial operator on
. In fact, for x € My near I' we have try(,) L(z) = try;)L(2), where Z is the point
of I nearest to x. Indeed, let x € My be a point near I' such that the extension L
is well defined at x. Recall that for X € T,, My we defined LX = P"'LPX, where
P is the parallel transportation along the integral curves of the normal field N,
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which takes X € T, My to PX € T; M. Let eq,...,e, be an orthonormal basis of
T Mo, and let g;;(x) = (i, €j)g(z) = 6ij and Lij(w) = (L(x)e;, €5)g(z)- We compute

n

t%@L@)::gU@ﬂﬁQ%ZERL@kth@
=1

= Z<P_1L(.%)P€Z’, €i>g(x) = Z<L(£)Pei’ P€i>g(i-)

=1 =1

= Z L(z)(Pe;, Pe;) = trg@)L(:&) (1.7.6)
i=1

since Peq,..., Pe, is an orthonormal basis of T; M.
Given a metric h and a bilinear form 7 € A%(T'M) we denote

Si(T) = W hF T,

where Ty = T(0; A0j, Ok A 0;). As in the Ricci curvature case, the crucial step is
to verify that

Sys(Rs) > k5 — £(6) (1.7.7)

holds on Mj. By (1.3.2]) we have

Sg5 (Rd) > Sg5 (R) - f625’g5 («A) + f6595 (B)
- 2f<§595 (L) + 2f62595 ('62) +2C f55g, (j) —(4)
> S4(R) = f§S4(A) + f554(B)
23S, (L) + 2128y (£2) + 2058, (D) — £(B),  (1.7.8)

where we used that gs — ¢ in the CY sense and the fact that f5 is bounded
independently of § (note that since this is not the case for f§, we can not replace

gs by g in the f§ term). By (1.7.2) we have

~ 1 .
Sy(Z) = igm(szI; +(n — I)Pijlg) =n—-1>0

(the case n = 1 is trivial). Similarly as in the previous section, in view of the
assumption Sy(R) > r and the fact that A, B and £? are bounded near I' and
fs > =9, after choosing C large enough we may estimate (|1.7.8)) from below by

Sga (R5) Z K= 5(5) - 2f(§Sgé (ﬁ) (1'7'9)

Consider the f§ term in the above expression. As in the previous section, at z € M
near I' we may choose local coordinates such that g;; = 6;5, Lij = Xidij, (95)ij =
uféij and PZJJ\] = 0indjn. In these coordinates we have (recall that A\, = Ly, =0
and pu® = 1)

n

o 11
(Sgs (L)) = g gl (L APY) 0 = Z ——(LAPY) 54

ig=1Hi Hj
1~ 11 N N | pN N
= 3 EE(LMPM — LijPyj + By Ljj — Pij Lij)
ij=1Hi Hj
11, &1
Hn 521 H i=1 Hi
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Note that the eigenvalues ,u? — 1 since g5 — ¢ uniformly, and hence try(L) =
n—1 . .
Y1 Ai > 0 implies

n—1
A > (1—2(6)) Mi=>0
? i=1

for small enough §. We then proceed as in the previous section and estimate the
f5 term in from below by —e(d), which gives us the case trgL > 0
on I'. Using and the assumption S(g1) > k, we then construct the required
smooth metric on M by mollifying g(5) = gs Ug g1 as in the previous section.

Let us now study the case where tryL > 0 on I'. In this case we may slightly
modify either one of the initial metrics go or g1 near the boundary, so that tryL
becomes strictly positive, and then repeat the argument above. More precisely,
consider gg near I'. Recall that in local coordinates (x!,...,2") constructed in
Section [I.2] the metric go has the form

(G0 O
oz )

where g is the restriction of g to the equidistant hypersurfaces I'(d), d = dist 4(T', ) =
x". Let dyp > 0 be small enough so that I'(d) is smooth for d < dy. We find a smooth
function ¢ : R>9 — R satisfying

p(0) =1

()0|[do,oo) =1
©'(0) <0

l¢'], 19" < €

- (so(xg)go (1J> |

Note that in view of ¢(0) = 1 we have go|r = go|r = ¢1|r, so that the isometry of
the boundaries is preserved. As in Lemma [1.2.10} at a point p € T" (i.e. 2"(p) = 0)

we compute

with € > 0 small, and put

~ 1 1 1 1
LY = —50n 9 = —§<p’(0)g?j - 590(0)8ng?j = —§<p’(0)g% + LY,

and thus
7 1) 1 / 0 0y __ n ,
trg, (Lo) = g5 (—5@ (0)g;; + Lyj) = —3¥ (0) + trg, Lo > try, Lo,

which gives us trg, Lo +try, L1 > 0, since by assumption try, Lo +trgy, L1 = trgL > 0
on I'. Moreover, by construction the new metric jo is C? close to gy, and thus
their scalar curvatures differ only by an error term e coming from the first two
derivatives of ¢, which we may choose arbitrary small. We then may replace go by
go and proceed as in the tryL > 0 case.

O

Remark: In [I7] P. Miao generalized the positive mass theorem [23] (which says that
an asymptotically flat manifold with nonnegative scalar curvature has nonnegative
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ADM mass), to metrics which fail to be C! across a hypersurface ¥. One of the
essential steps of his proof was to smoothen the metric across ¥ in such a way that
the scalar curvature stays bounded from below by a constant (cf. [17], Proposition
3.1). Theorem provides a slightly better approximation, since in our case the
smooth metrics have scalar curvature > —e¢.

1.7.3. Manifolds with bi-curvature > &

The bi-curvature bi(g) of a C? smooth Riemannian metric g is defined as the sum
of the two smallest eigenvalues of R(g). The condition bi(g) > 0 is also referred to
as ‘2-nonnegative curvature operator’. Note that bi(g) > « holds on M iff

R(g)(e, @) + R(g)(B, ) =
for all a, 3 € A2(T' M) which are orthonormal with respect to g.

Theorem 1.7.3. Let M = MOU¢M1, g9 =g0Us 91, I'="Ty =¢ I'y, and L = Lo+ 14
be as in Theorem|[I.1.9. Suppose that bi(go) and bi(g1) are at least k. If L is positive
semidefinite, then bi(g) > k (in a similar sense as in Definition m

Proof. We proceed as in the previous section and show

(a) The modified metric gs on My satisfies bi(gs) > k — £(d), where £(J) — 0 as
o0 —0.

(b) By mollifying g(5) = g5 Uy g1 we construct smooth metrics which approximate
g in the C° sense and whose bi-curvature is at least x — &(6).

As mentioned above, (a) holds iff
Rs(as, as) + Rs(Bs, Bs) > k — () (1.7.11)

for all as, Bs satistying ||asls, ||Bslls = 1 and (o, Bs)s = 0 (where (-, -)s = Z(gs))-
In what follows, we will call such two vectors gs-orthonormal. Proposition [1.3.]
implies

Rs(as, as) + Rs(Bs, Bs)
= R(as,as) + R(Bs, Bs) — f5 (Alas, as) + A(Bs, Bs)) + f5(Blas, as) + B(Bs, Bs))
— 2f5(L(as, a5) + L(Bs, Bs)) + 215 (L (s, as) + L2(Bs, Bs))
+ 20 f5(Z(as, as) + Z(Bs, Bs)) + (£(8)(as, as) + E(8)(Bs, Bs)).

where £(9) is an operator whose eigenvalues tend to zero uniformly on Mp. Since
gs — go uniformly on My, for small enough § any gs-orthonormal forms as and
Bs are uniformly bounded with respect to go by some fixed constant. Thus, we
can estimate the £(J) terms from below by —e(6). L is positive semidefinite and
bounded near I', and f§ does not exceed d. Therefore, —2 f; (E(oz(;, ag)+L(Bs, 65)) >
—£(6). Finally, the £2 terms are nonnegative, so we arrive at

Rs(as, as) + Rs(Bs, Bs)
> R(as,o5) + R(Bs, Bs) — f35 (Alas, o) + A(Bs, Bs)) + f5(Blas, as) + B(Bs, Bs))
+ Cfs(Z(as,as) +I(Bs, Bs)) — £(6). (1.7.12)
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By applying the Gram-Schmidt process to as and 85 and putting
as

Qs ==
levsllo

and
= Bs—{as,Bs)ods
Bs

185 — (ds, Bs)odsllo

we obtain gg-orthonormal two-vectors ag, B(g satisfying

lés — asllo, 1185 — Bsllo < £(5)

independently of the initial two-vectors ag, 8s. Since fs and all operators on the
right hand side of are uniformly bounded near I', we may replace ag, G5
by as, s and the inequality still holds up to —e(d), that is,
Rs(as, as) + Rs(Bs. Bs)
> R(as,d5) + R(Bs, Bs) — f3 (Alds, as) + A(Bs., Bs)) + f5(B(as, as) + B(Bs, Bs))
+ 20f5(Z(as, 65) + Z(Bs, Bs)) — €(0).

By construction, &5 and 55 are gg-orthonormal on My and g;-orthonormal on I’
(recall that go = g1 on I'). By adopting the argument from Lemma we obtain

Rs(as, as) + Rs(Bs. Bs)
> kAt 2f5[(—L7+ %vﬁvgl +CT) (s, é5) + (—L2 + %v?vgl +CI)(Bs, Bs)]
— €(9).

Since —L? + %V?\,Ql + C7 is positive semidefinite for large enough fixed C' and
uniformly bounded near I" (cf. proof of Lemma [1.5.2), (a) follows.

(b) Let us fix § > 0 and define the mollified metric g(hé) in the same way as in
Section [I.6] Our goal is to show

R(g(s)) (@, @) + Rlg(5)) (8, 8) > r — £(5) (1.7.13)

for all gélé)—orthonormal «, B. The computations in Section were carried out
for two-vectors with constant coefficients, which we no longer can assume for or-
thonormal two-vectors.

Using we obtain
R(g(s)) (@, @) + Rlg(5)) (B, B)
> (R(gs)" (@) + (R(g()))"(8, B) — £(6, ) (ledliZs) + 1811%s))

where £(d, h) — 0 as h — 0 for every fixed §. Since o and 5 have unit length with

respect to g&) and g&) h=30 g(5), we can estimate the last term on the right hand
side from below by —&(6) for small enough h. Thus, (1.7.13)) follows if we show

(R(9(5))" (v, @) + (R(g(6)))" (B, B) > K — () (1.7.14)

for small enough h and all géla)—orthonormal a, 8. Let us fix a point x € M and some
g&) (z)-orthonormal «, B € A?(T,M). Recall that in Section we mollified g(s)
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and R(g(s)) only on a small neighborhood of I which was covered by finitely many
coordinate neighborhoods Uy, ..., Un. Off this neighborhood g coincides with g(s)
and we have

(R(9(5)" (v, @) + (R(g5)))" (8. B) = R(g)(ex, @) + R(9)(B, ) > K

by assumption. Thus, w.l.o.g. we may assume that = ¢ (J,. 5 Us. For such = we
have

(~ls o) (@) (@, @) + (R(ge)" @) (5, B) (1.7.15)
Zns /| _ POEG) il — ha)(oal + 58

where the coefficients refer to the charts (U}, ps). We now extend «, 8 to U, in
such a way that the extensions are g&)—orthonormal: We define two-vectors oy, B
on U/, s=1,...,N, by putting o (y) := o and 87 (y) := 87 (here we only have
to consider the neighborhoods Uy containing z). Using the Gram-Schmidt process
we obtain g&)—orthonormal two-vectors

~ as
Qg = ——
sl
and 3 )
- Bs — <a8a68> h Qg
/85 = ©)
HBS < s, B5>g(6> Hg&)
By the mean value theorem the right hand side of (1.7.15)) equals to
N
D@ [ R g 1) (1.7.16)
s=1 2>

-(Nij( — hz)dfl(:n — hz) + /3’?(:E - hz)ﬁfl(aj — hz))dz
+ ths /| o, P Bl — h)D (AT + BB (€)=
where &7, = (1 —t)x + thz for some t € [0,1]. Now we apply the Gram-Schmidt
process with respect to g to the two-vectors a, and Bs, and construct 9(5)
orthonormal 525, BS. The first sum in (|1.7.16)) is estimated from below by
Zns )| Bl it~ h2)
|z\<1
(&9 (z — h2)d (@ — hz) + B (z — he) B (2 — he))dz
— <(8,h), (1.7.17)

where

S S h 0
e(6,h) < c(n)|(R(g(s))ijnall oo w1 (9s) — 9055l co ) =70

for every fixed 6. Moreover, the integrand in (|1.7.17)) is bounded from below by
k —¢e(6) in view of (a). Finally, the second integrand in (1.7.16|) is bounded by
C(”)H(R(Q(5)))fjkz||Loo(U;)H(Q(a) - g{%))fjHCl(U;),

and thus the second expression in (1.7.16]) tends to zero uniformly as h — 0. For
small enough h inequality (1.7.14) follows with £(§) = 2¢(d), and we are done. [
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1.7.4. Manifolds with isotropic curvature > x

Given a smooth Riemannian manifold (M, g), dim(M) > 4, we consider the com-
plexification of its tangent bundle C ®g T'M and the complex-linear extensions of
the inner product g and the Riemannian curvature tensor R. A complex isotropic
two-plane is spanned by two vectors Z = X +4¢Y and W = U + ¢V, where
X, Y, U,V € TM are orthonormal with respect to g. The isotropic curvature of
such a two-plane P is given by

K(P)=R(Z,W,Z,W).
Using the Bianchi identity
R(X,Y,U,V)+ R(X,V,Y,U)+ R(X,U,V,Y) =0,
one easily verifies
K(P)=R(X,U, X, U)+R(X,V,X,V)+R(Y,U,Y,U)+R(Y,V,Y,V)-2R(X,Y,U, V).

Given an isotropic two-plane P spanned by X + ¢Y and U 4+ iV, one computes
using the Bianchi identity

K(P) = R(a,a) + R(B, B), (1.7.18)

where « = X AU+ V AY and 8= X AV +Y AU. We say that a Riemannian
manifold (M, g) has isotropic curvature > k, if K(P) > x holds for all isotropic
two-planes of (M, g). Furthermore, we say that (M, g) has 1-isotropic (2-isotropic)
curvature > k if (M xR, g@ dr?) (M x R?, g @ dr? @ dr?)) has isotropic curvature
> K, where dr? denotes the standard metric on R.

Theorem 1.7.4. Let M = Mo Uy My, g = goUp g1, I' = T'o =4 I'1, and L =
Lo+ Ly be as in Theorem . Suppose that the isotropic (1-isotropic, 2-isotropic)
curvatures of go and g1 are at least k. If L is positive semidefinite, then the isotropic
(1-isotropic, 2-isotropic) curvatures of g is at least k (in a similar sense as in

Definition m)

Proof. In view of , the proof for the isotropic case is similar as in the
previous section.

For the 1-isotropic case, let us examine the manifold resulting from gluing M; xR
and Ms xR along their boundaries. The boundary of M;, i = 1,2, is given by I'; xR.
If ¢ : I'1 — I's is some isometry of I'1, I'y with respect to g1, g2, then

$:T1 xR — TyxR
(z,s) = (o(x),s)

is an isometry of I'y x R and I's x R with respect to go ® dr?, g1 ® dr?. One easily
verifies that
(My x R) Ug (M x R) = (M1 Ug M) xR
and
(9 ® dr®) | xr = gly, @ dr’.

The inward normal on I'; x R with respect to g; ® dr? is given by (N;,0), where
N; is the inward normal on I'; with respect to g;. The second fundamental forms
of I'; xR are L; ®0, and therefore their sum is positive semidefinite. We repeat the
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constructions from Section and define the modified metric (go @ dr?)s = gs ®dr?
on My xR. Even though I' X R fails to be compact, we may nevertheless proceed as
in the isotropic case, since any operator 7 on M; x R to occur in the proof satisfies
SUD(y s)er xR | T (T, 8)|gdr2 (a,) = SUPger [T (2, 0)|g(2), and therefore is bounded near
I’ x R due to the compactness of I'. Moreover, any finite covering (;, Ui)i=1,..N
of I' gives us a finite covering ((y;,idr),U; X R);=1,. .~ of I' x R. The desired
smooth metric on M x R, which approximates ¢ ® dr? and has isotropic curvature
> K — (), is then given by g5 @ dr?.
The argument in the 2-isotropic case is similar.






Chapter 2.

Preserving lower bounds on curvature
operators under the Ricci flow

2.1. Introduction and preliminaries

In this chapter, we study the evolution of some of the operators from Chapter 1
under the Ricci flow. It is well known (see [12], [13], [8], [5]) that these operators
remain nonnegative (in the Ricci curvature case in dimension 3) under the Ricci
flow, if they are nonnegative at the initial time ¢ = 0. We show that, under the
additional assumption that the scalar curvature of the evolving metric satisfies a
bound of the form |S(t)] < C/t for t > 0, an arbitrary initial lower bound —eg
does not become too negative on a well controlled time interval, which essentially
depends on C' and &g.

A similar result was proved by T. Richard [22], where he considered Ricci flow
invariant cones C, such that C contains the cone of nonnegative operators, and is
contained in in the cone of operators with nonnegative Ricci curvature. He showed
that if the curvature operator R satisfies R + ¢¢Z € C at the initial time ¢ = 0,
then R + kepZ € C on a well controlled time interval. Examples of invariant cones
which fit into this framework include the cone of nonnegative curvature operators,
nonnegative bi-curvature (2-nonnegative operators), and nonnegative 1- and 2-
isotropic curvature. In certain cases, the method of the proof can still be applied
if C is not included in the cone of operators with nonnegative Ricci curvature,
which for instance is the case for nonnegative isotropic curvature. Here, we give an
explicit proof for the Riemannian curvature case and the isotropic curvature case.

First, let us introduce some notation and background material. For a detailed
discussion we refer to [5], [29], or [9]. A one-parameter family of Riemannian
metrics ¢(t), t € [0,7T), on a manifold M is called a solution to the Ricci flow, if

Sa(t) = —2Ric(g(1).

The Riemannian curvature tensor R = R(g(t)) of such a solution satisfies the
evolution equation

OHR(X.Y,ZW) = AR(X,Y,Z,W)+Q(R)(X,Y,Z,W) (2.1.1)

— ) Rice(X, ex)R(ex, Y, Z,W) = > _Ric(Y, ex) R(X, ex, Z, W)
k=1 k=1

— ) Ric(Z,ep)R(X,Y, ex, W) = > _Ric(W, ex)R(X,Y, Z, )
k=1 k=1

for all X, Y, Z, W € TM, where ey,...,e, is a choice of an orthonormal basis (a
definition of Q(R) is given below). In what follows, we work with the corresponding
operator R(g(t)), rather than the (4,0)-tensor R(g(t)).
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Using moving frames, one can simplify the above evolution equation, omitting
the Ric terms (which is known as Uhlenbeck’s trick). The following exposition
is from from S. Brendle’s book [5], Chapter 2. Consider the pullback-bundle E
of TM under the projection m : M x (0,7) — M. The fiber of E over a point
(p,t) € Mx(0,T)is given by E(, ;) = T, M. One extends the Levi-Civita connection
on T'M to a connection on F by defining the covariant time derivative

n
Do X =X — Z}Ric(X, ei)es,
1=

where ey, ..., e, is an orthonormal frame with respect to g(¢). The connection D
is compatible with the metric ¢ in the sense that (D s g)(X,Y) = 0 for all sections
ot

X,Y. Using D 2 instead of %, the evolution equation (2.1.1)) simplifies to
t
DagR:AR—i— Q(R). (2.1.2)
t

Here the operator Q(R) is defined as follows: Let n1,...,nn, N = %(n —1)n be an
orthonormal basis of A*(E, ). Then

Q(R) = 2(R* + R¥),

where
N
R* (e, 8) = D R, na)R(B,m),
a,b=1
and
R7 = R#R,
where
1 N
(R#S)(@.8) = 5 Y (R(1a). S(m)]. @) - ([1a, me], 5)-
a,b=1

(Here we used the notation from [3]: in the expression on the right hand side, we
regard 2-vectors as elements of the Lie algebra so(n), and (-, -) referes to the inner
product on so(n) given by (o, ) = —itr(af).)

The key ingredient when showing that a certain curvature condition is preserved
under the Ricci flow is Hamilton’s maximum principle for systems (cf. [I3] Thm.
4.3, or [29] Thm 9.6.1), which says the following: Let M be a compact manifold,
equipped with a time dependent metric g, and let V' be a vector bundle over M with
a fixed metric h. Furthermore, let A be a time dependent connection on V', which
is compatible with h. The Laplacian on V is formed using the the connection A
and the Levi-Civita connection on T'M. Suppose that a section f € I'(V') satisfies
the PDE

of

S = AF+6(),

where ¢(f) is a smooth vector field on V', which is tangent to the fibers. Let X
be a closed convex subset of V', which is convex in each fiber, and invariant under
parallel translation with respect to A(t) for each fixed ¢. Then a solution of the
above PDE, whose initial value lies in X, remains in X, if the solutions to the ODE

df

o = o)
in each fiber remain in X. The latter is the case if and only if ¢(f) lies in the
tangent cone of X at f for all f € 0X (see Lemma 4.1 of [13]).
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2.2. Riemannian curvature bounded from below

Proposition 2.2.1. Let M be a smooth compact manifold, and g(t), t € [0,T) a
solution to the Ricci flow on M satisfying

e R(g(0)) > —¢o for some g9 >0
e |S(t)| < CJt forallt € (0,T) and some 0 < C < 1.

Then there exists T = T(C,eg,n) > 0 and k = k(C) > 0 such that R(g(t)) > —keg
on [0, min{T, T}).

Proof. Let
e(t) = e1tS +eo(1 + kt),

where 1,k > 0 are some positive constants we specify later in the proof, and let
M=R+e(t)T.

Let S%(A%E) be the bundle of algebraic curvature operators over M x [0,T), and
let
(C20)pty = AT € SHE(N°Ep) | T 2 0} € SE(A*Egy )

for (p,t) € M x [0,T). At t = 0 we have
M(p,0) = R(p,0) +£(0)Z = R(0) + 2o > 0

for all p € M by assumption, so M(p,0) € (C>0)(p,0) for all p € M.
Recall that the evolution equation of the scalar curvature under the Ricci flow

is given by
(9; — A)S = 2|Ric|?.
Thus
(0 — A)e(t) = £18 + 2e1t|Ric|? + keo. (2.2.1)

In view of we then have
(Do =AM = 2(R% 4 R¥) + (1S + 2e1t|Ric|® + keg)Z.  (2.2.2)
Furthermore, observe that
M4 M# = (R+e()I)’ + (R+e(t)T)*
R? +2e(t)R + e(t)*T + R¥ + 2 (t)R#T + £(t)*TH#T
R+ R¥ + 26(t) (R + RH#L) + e(t)*(T + T#I)
= R?+R¥ + 2e(t)Ric Aid + £(t)*Ric(T) Aid
= RZ4+R¥ +2(t)Ric Aid + e(t)?(n — 1), (2.2.3)

where we used that T + T#Z = Ric(T) Aid for all T € S%(A?E) (cf. [3] Lemma
2.1), and Ric(Z) Aid = (n — 1)id Aid = (n — 1)Z. Combining and ([2.2.3)

gives
(Do =M = 2(M*+ M)
— de(t)Ric Aid + (= 2(n — 1)e(t)® + e1S + 2e1t|Ric|® + keo)Z,
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and the corresponding ODE in the fiber is
d
M= 2(M+ M)
— de(®Ric Aid + (= 2(n — 1)e(t)* +e15 + 2e1t|Ric|? + keg)Z.

Suppose that M(p,t) € 9(C>0)(p,1) at t € (0,7). Then (M2 M7)(p,t) € (C>0)(p,t)
by [13]. Thus, in order to show that %< M(p,t) € (C>0)(p,y) it suffices to verify that

N = —4de(t)Ric Aid + (= 2(n — D)e(t)? 4 €18 + 2¢1t|Ric|? + keo)Z

lies in (C>0)(ps) at (p,t). First, observe that the assumption |S| < C/t for t > 0
implies

le(t)] = |e1tS +eo(1 + kt)| < e1C + 269 =: K (2.2.4)
if t < 1/k. Furthermore, M(p,t) > 0 yields
0 < trggM = Ric+e(t)(n —1)id
at (p,t) (see Lemma[B.3.2)), so that in view of we have
Ric > —K(n — 1)id, (2.2.5)
and taking the trace gives
S>—-K(n-1)n

so that we also have

S| < S +2K(n—1)n (2.2.6)
at (p,t). Moreover, (2.2.5)) implies
Ric < (§ 4+ K(n —1)?)id. (2.2.7)

Indeed, since Ric has eigenvalues A\; > —K(n — 1), we have

)\i:iki—Z)\iSS-i-K(n—l)Q.

k=1 ki

Combining (2.2.4) and (2.2.7)) yields
—4e(t)RicAid > —4K(|S|+ K(n —1)?)id Aid
= —4K|S|—4K%*(n —1)%, (2.2.8)

where we suppressed id A id = Z on the right hand side. Using (2.2.8)), (2.2.6) and
([2.2.4) we now estimate A from below by

N > (4K +¢1)|5|
—4K*n—1)> —2(n — 1)K? = 261K (n — 1)n +keo.  (2.2.9)

Recall that K = ¢1C + 2¢g, and C' < i by assumption, so that

—4K +e1 = —4e1C —8gg+¢1
= ¢(1-4C) -8 =0
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for e; = €1(C,ep) = ﬁ%, and the second line on the right hand side of ([2.2.9))
becomes nonnegative if we choose k = k(C, g, n) large enough.

Recall that in the above computation we only assumed ¢t < % Thus, we
have shown that %M(p,t) lies in (C>0)(py) if t < min(7, ). By putting T =
T(C,e0,n) = 1+ we have

M=R+e(t)T>0

on [0,T), which in view of (2.2.4) implies

RZ—é‘lC—Qé‘o:—

on [0,T"), where k = k(C) := % +2. -

2.3. Isotropic curvature bounded from below

As seen in the previous section, a crucial step when showing that a certain curvature
operator K(R) remains bounded from below under the Ricci flow is controlling
the scalar curvature and the operator Ric A id. In T. Richard’s work [22] this
was accomplished by making the assumption that the corresponding cone Cx is
contained in the cone of operators with nonnegative Ricci curvature. In certain
cases, this assumption can be omitted, when lower bounds of an operator K(R)
provide bounds for the scalar curvature and Ric A id. This is the case for the

isotropic curvature, as we show in Lemmas and below.

Lemma 2.3.1. Let R € S%(A*R™), n > 4 be an algebraic curvature operator and
Iso = Iso(R) the map which assigns to an orthonormal four frame e;, ej, ey, e; the
real number

Iso(es, €, ex, €1) = Rikix + Rigar + Rjrjr + Rjiji — 2Rijm,

where Riji = (R(e; Nej), e Nep). For any n > 4 there exists a constant c(n) such
that for any orthonormal basis e1, ..., e, of R"

Z Iso(e;, ej, ex, €1) = c(n)S

ivjvkvl pd
(where the sum is taken over all pairwise distinct indices i, j, k,l € {1,...,n}).
Proof. Let {e1,...,e,} be an orthonormal basis of R™ and R;ji; = R(e;, €5, ek, e;)

and a;j = Ryji; (note that a;; = aji, a;; =0, and S = Z” ajj = Zi# a;j. Using
this notation we have

Iso(e;, e, ex, €1) = az + ay + aji + aj — 2R;ji.
The first Bianchi identity R;jx + Rpiji + Rjka = 0 gives us

Iso(e;i, ej, ex, €1) + Iso(ey, €;, €5, €;) + Iso(ej, ek, e;, €;)
= ik + i + ajk + aj; + ag; + ag + aij + ay + aj; + aq + ag + ag
= 2(aij + aix + ai + aji + aj + ag).
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3 Iso(e;, €5, ek, €;)
= (Iso(ei, €5, ek, €1) + Iso(eg, €, €5, €;) + Iso(ej, e, €, €7))

= 2 (@ij + air, + ay + aji + aj; + ap)

= 2 (“ N 2) S, (2.3.1)

where we used that for each pair i,j € {1,...,n}, ¢ # j there are (";2) - 2! possible
choices of (k,l), k,l € {1,...,n} such that i, j, k, [ are pairwise distinct. The result
follows by putting ¢(n) = 24(";2).

]

Lemma 2.3.2. Let n > 4 and Iso as in Lemma|[2.5.1. Then for any orthonormal
basis ey, ..., e, we have

2Iso(Ric Aid)(eq, €2, e3,€4) = Z (Rikik + Ritit + Rjkjr + Riiji),
(i..k,0)EI(n)

where
I(n) C {(i,4,k, 1)1 < 4,5 <n,1 <kl <4andi,jk,l pd}

1s an index set which does not depend on the particular basis e, ..., €,.

Proof. Recall that the Kulkarni-Nomizu product of two bilinear forms A, B on R"
is the (4,0)-tensor

1
(AN B)ijr = i(Aik:le — AjBy + BixAj — BjrAy) (2.3.2)
(cf. Section of the Appendix). In view of (2.3.2)
1
(RiC AN id)ijkl = i(RiCik(Sjl - RiC]’k(Sil + (5ikRile - 5ijiC¢l),

and therefore (Ric Aid);j;; = %(Ricii + Ricj;) for i # j and (Ric A id);j = 0 for
pairwise distinct ¢, 7, k,1. Thus

Iso(Ric Aid)(e1, e2, €3, €4)

4 n
= Ricy; + Ricoy + Ricsgsg + Ricyy = Z Z Rikik- (2.3.3)
k=1 11=1

Let a;;, = Rji;; as in Lemma In view of ([2.3.3)), we have to show that

4 n
222@% = Z (aik + ai + aji + ajy),

k=1 i=1 (kD)€L ()
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where I(n) C {(i,4,k,0)|1 <i,j <n,1 <k, l <4andijk,lp.d}. Forn=4we
have

4

QZZaik = a2t a3+ aq2 +aq3
k=1 i=1

a13 + a14 + ag3 + asq

a12 + ai4 + as2 + asq
ag1 + a24 + as; + ass

ag1 + a3 + aq1 + a43

+ o+ o+ + o+

a3l + asz + a41 + aq9

(observe that each a;;, ¢ # j appears twice on the right hand side). Similarly, for
n = 5 one checks that

4
2226% = a12 +ais+azs+ass

a13 + a14 + as3 + asq
a23 + a24 + as3 + as4
a21 + a24 + az1 + as4
az1 + a3 + aq1 + a3
a12 + a13 + a42 + a43

a3l + azz + as1 + as2

+ 4+ + + + +

ag1 + aq2 + as1 + as2.

For arbitrary n > 6 the claim follows by induction: Suppose that for some n > 4
there exists I(n) C {(4, , k,1)|i,7,k,l p.d. and 1 < k,[ < 4} such that

4 n
QZZaik’ - Z (air + air + ajk + azi).

k=1 i=1 (i,4,k,1)EI(n)

Then

4 n+42 4 n 4 n42
QZZaik = QZZ% +QZ Z aig
k=1 i=1 k=1 i=1 k=1i=n+1
Z (ai + ay + ajk + (:le)
(4,9,k,1)EI(n)
Ap+1,1 T Ony1,2 + any21 + Api22

An+1,3 T On+t1,.4 + Gnt23 + Gny2.4

On+1,1 T Gn+1,3 + Gnt21 + Gn23

+ o+ + o+

An+1,2 T Ont1,4 + Ont22 + Gny2.4

Z (@i + @i + ajk + aji),
(i, D) €1 (n+2)

where
I(n+2) := I(n)U{(n+1,n+2,1,2), (n+1,n+2,3,4), (n+1,n+2,1,3), (n+1,n+2,2,4)}.

O]
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Lemma 2.3.3. Suppose that Iso(R) > K € R. Then
[Iso(Ric Aid)| < ¢(n)S + ¢(n, K).

Proof. Let {e1,ea,e3,e4} be an orthonormal four frame. We extend this frame to
an orthonormal basis {e1,...,e,}. In view of our assumption, for any pairwise
distinct 7,5, k,l € {1,...,n} we have

K

IN

[Iso(ei, €5, e, e1) + Iso(e;, e;, ex, €1)]

— N =

= 3 [Rikir. + Riit + Rjkji + Rjiji — 2Rij
+  Rjgjk + Rjiji + Rikik + Riit — 2Rl

Ripir + Ria + Rjgjk + Ry,

where we used R;jx = —Rjjr. Thus, using Lemma and the fact that for any
a €R, a > K we have |a| < o+ 2|K]|, we compute

. . 1
[Iso(Ric Aid)(e1, e2, €3, €4)| = 5| > (Rikir + Rait + Rjjr + Riij)|
Zvjvkvlel(n)

1
§| E (Rikik + Ritit + Rjkjr + Rjij)|
1/7]71457161(,”)

IN

1
+ 35l > (Rikik + Riit + Rjkje + Rjijo)|
i,4.k,0 p.d.
(kD ET(m)

1
5 Z (Rikik + Ritit + Rjkj + Rjiji) + c(n, K)

i3,k p.d.

= 2 Z Rigir + c(n, K)
ikl pd.

n—2
= 4 Rk + c(n, K)
)
= ¢(n)S +c(n, K)

IN

and we are done.

O]

Proposition 2.3.4. Let M be a smooth compact manifold, and ¢(t), t € [0,T) a
solution to the Ricci flow on M satisfying

e Iso(R(0)) > —eg for some g > 0

o |S(t) < C/t for allt € (0,T) and some 0 < C < Tz)’ where c¢(n) = 4(”52)
is as in Lemma [2.3.3.

Then there exists T = T(C,eg,n) > 0 and x = x(C,n) > 0 such that
Iso(R(t)) > —keo

on [0, min{T, T}).
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Proof. We proceed as in the proof of Proposition Let
M=R+e(t)I

where €(t) = €1tS + eo(1 + kt).
Let

(Ciso) () = {T € SE(A’E(p)) | Ts0(T (p, 1)) > 0} C S*(A’E(p ).
Obviously Iso(Z) = 4, so in view of our assumptions
Iso(M(0)) = Iso(R(0)) + eolso(Z) > —eg + 4eg > 0,

so that M(p,0) € (Ciso)(p,0) for all p € M. As in the Riemannian curvature case,
we need to check that a solution of the ODE

d
M = 2(M*+ MF)
—4e(t)Ric Aid + (= 2(n — 1)e(t)? + 15 + 2e1t|Ric|® + keo) T =: V(M)

satisfies M(p,t) € (Ciso)(py) for all (p,t) € M x T, that is, if M € I(Crso) (p,1)»
then V(M)(p, 1) lies in the tangent cone of (Ciso)(p,+) at M(p,t). In order to do so,
it suffices to verify that for any orthonormal four frame ey, eg, €3, e4 of Ej, ) such
that Iso(M(p,t))(e1,e2,e3,e4) = 0 we have V(M)(p,t)(e1,e2,e3,e4) > 0 (cf. [5,
Chapter 7). By [5], Proposition 7.4, we have that Iso(M? + M#)(eq, ea, €3, e4) for
any such four frame, so it suffices to show that Iso(N)(e1, €2, e3,€e4) > 0, where

N = —de()Ric Aid + (— 2(n — 1)e(t)® + 15 + 2e1t|Ric|® + keo)Z.  (2.3.4)
As in the proof of Prop. from our assumptions it follows that
le(t)| < e1C+2g0 = K (2.3.5)
for all 0 <t < §. Moreover, if M(p,t) € O(Ciso) (p,1), We have

0 <Iso(M) = Iso(R)+e(t)Iso(Z)
< Iso(R) +4K,

so that
Iso(R) > —4K (2.3.6)
at (p,t). By Lemma this implies that
|Iso(Ric Aid)| < ¢(n)S + ¢(n, K). (2.3.7)
Furthermore, by Lemma and by we have

c(n)S = Z Iso(R)(es, €5, ex, €1) > —c(n, K),
okl p.d.

which gives us

S >|S|—¢c(n,K) (2.3.8)
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at (p,t). (Here and in what follows, by ¢(n, K) we denote all constants depending

on n and K.) Using (2.3.5), (2.3.7) and (2.3.8)) in (2.3.4)), we arrive at
IsoN) > —4K(c(n)|S| +c(n, K)) +4(—2(n — 1)K* + 1|S| — e1c(n, K) + keo)
4(— Kc(n) +e1)[S] + (keo — (1 + &1)c(n, K)). (2.3.9)

Using K = ¢1C + 2¢p we compute

—Ke(n)+e1 = —e1¢(n)C —2¢(n)eg + €1
= (1—1¢(n)C)er — 2¢(n)eo,
2¢c(n)eo

which vanishes for €1 = ¢1(n, g9, C) = =) (recall that C' < 1/¢(n) by assump-
tion). The second expression on the right hand side of becomes nonnegative
for large enough k = k(n, e, C).

In view of the above computations, Iso(M(t)) stays nonnegative as long as ¢t <
T = T(n,eo,C). By definition of M(t) this implies that

2¢(n)eoC

Iso(R(t)) 2 ~4=(t) = ~4K = ~4({—35

+ 250) = —KEQ,

where k = kK(C,n) = 4(12f£?73?0 + 2), and we are done.

2.4. An application for glued manifolds

In this section, we present an application of the results from Chapters 1 and 2 of the
current work and M. Simon’s results from [26] and [27]. These works are concerned
with the evolution of non-smooth Riemannian metrics by the dual Ricci harmonic
heat map flow, which is defined as follows. Given a fixed smooth background metric
h on a smooth manifold M, and an initial metric gg on M, the dual Ricci harmonic
heat map flow (h flow) is the solution to the system

dgij(t) = —2Ric(g(t)) +'V,;V; +'V;V; on M x [0,T] (2.4.1)
g(0) = go,

where V(x,t); = gij(a;,t)gkl(a:,t)(g(t)f’il - hl“il)(x,t). We refer to [26], and [14],
Section 6 for a further discussion of the system . A solution to the h flow
induces a solution to the Ricci flow via g(t) := (¢, ")*g(t), where ¢ : M — M is a
one parameter family of diffeomorphisms solving

Qd(p,t) = Bid(p, )g” (OO — T8 ) (p,t)
¢(0) = idy.

In [26], the following definition was introduced.

Definition 2.4.1. Let M be a complete manifold and g a C° metric, and 1 < § <
oo a given constant. A metric h is said to be a & fair background metric for g, if h
158 C* and there exists a constant ko with

sup [R(h)[n = ko < 00
M

and

1
ghgggcsh on M.
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W.lo.g. one can always assume that the curvature tensor R(h) of a metric h as
in the above definition satisfies sup,, ["V/R(h)|, = k; < oo, where "V/ is the j-th
covariant derivative with respect to h. This is due to the results of Shi [25], see
Remark 1 in [26].

The following existence result was proved in [26].

Theorem 2.4.2 (Theorem 5.2 of [26]). There exists a €(n) with the following
properties. Let gy be a complete metric and h a complete metric which is 1 + @
fair to go. There exists a T = T(n,ko) and a family of metrics g(t), t € (0,T]
in C°(M x (0,T]) which solves h flow fort € (0,T], h is (1 +¢) fair to g(t) for

t € (0,T) and satisfies

lim sup |g(t) — goln =0 and
t—0 ey

cj(n, ]{70, e ,k‘j)

v forallt € (0,T], j €N,

sup |"Vig[? <
M

where Q' is any open set Q' CC , where Q is any open subset on which gq is
continuous.

The following a priori estimates for solutions to the h flow were proved in [27].

Lemma 2.4.3 (Lemma 2.1 of [27]). Let gy be a complete smooth metric on M, and
let h be a 1+ @ fair background metric for gy for which supy, |"Vgoln < co also
holds. Let g(t), t € [0,T] be a solution to the h flow as in Theorem[2.4.4 Then

sup ["Vg(-,t)|n < e(co,n, h) for allt €[0,T), and
M

h
sup |"V2g(-, 1) < cleo,n, h) for allt € [0,T],
M Vit

which implies

C(CO) n, h)

NG (2.4.2)

sup |R(g(t))]y <
M

The main result of [27] is the following

Theorem 2.4.4 (Theorem 1.3 of [27]). Let M™ be a manifold, and g be a complete
locally Lipschitz metric on M satisfying the following properties:

1) There exists a family (“g), o € N, of smooth metrics on M such that
a) R(*g) > =1 foralla >1
b) limg—s00 Sup s |a.g - g‘g =0

c¢) IT(%g) = T'(Pg)|y < co for all a, B > 1, where co < 0o is some constant
which does not depend on «, and I'(*g) refers to the Christoffel symbols

of %g.

2) If M is non-compact, we require that sup,; |R(%g)|y < oo for some sufficiently
large .

Then the solution g(z,t), t € (0,T] to h flow of g exists (for some smooth metric
h, and T = T(n,co,h) > 0) and satisfies R(g(x,t)) > 0 in the usual smooth
Riemannian sense. Furthermore, there exists a constant ¢ = c¢(n,cg,h) such that
supyy [R(g(+,1))]g < § for allt € (0,T7.
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Let us briefly describe the idea of the proof of Theorem given in [27]. In
view of condition 1b there exists a large enough oy € N such that “°¢g is 1 + @
fair to %g for all &« > «ag, where £(n) is as in Theorem We then put h = *g,
and obtain solutions “g(t), t € [0,7T] to h flow of “g for all @ > a9, where T' =
T(n,*°g) > 0 (more precisely, T = T'(n,sup,; [R(*°g)|g)). Using condition Za and
the a priori estimates from Lemma [2.4.3] one shows that these solutions satisfy
R(%g(t)) > —2 for all t € [0,T) (see Lemma 3.1 of [27]) (note that condition Ic
implies |"Vg|, < C(cp) for large enough ag and o > ag). The desired solution to
h flow of gg is then obtained as the limit solution by letting o — oc.

We now give an application of Theorem for manifolds obtained by a gluing
procedure as in the previous chapter.

Theorem 2.4.5. Let (Mo, go), (Mi,g1) be smooth compact Riemannian manifolds
with isometric boundaries I'g =4 I'1 such that the sum of the second fundamental
forms of Ty in My and I'y in M is nonnegative (as in Theorem. Suppose that
T(90), T (g1) > 0, where T is one of the following curvature operators: Riemannian
curvature operator, scalar curvature, isotropic curvature, bi-curvature. Then the
solution g(t), t € (0,T] to h flow of g = go Ug g1 exists on M = Mo Uy My, where
T =T(n,g0,91), and satisfies T (g(t)) > 0 for t € (0,T]. In particular, M admits
a smooth metric of curvature T > 0.

Proof. We prove this statement for the Riemannian curvature operator case, and
the proof for the other cases is similar. We proceed as in the proof of in [27].
Let (g(s))s>0 be the family of approximating metrics for g constructed in Chapter
1. By putting “go := g(1/a), @ € N we obtain a sequence of metrics satisfying the
conditions of Theorem m (see Lemma, where the constant in condition ¢
is ¢o = co(n, go,91)- As in the proof of Theorem we find a large enough ag
such that %gg is 1 + @ fair to g for all & > «ap, where e(n) is as Theorem [2.4.2

Putting h = “gp, we find solutions “g : M x [0,T] to h flow of “gg for all & > ay,
where T' = T'(n,*gg) > 0. In view of Lemma and the fact that “g(t) is
1+ 2¢(n) fair to g, we estimate the scalar curvature of *g(t) by

ot
Vit t
for all t € (0,T], where ¢ = ¢(n,co,h) = ¢(n,go,g91,“°go), and after choosing

T = T(n,go,91,“°go) smaller we have S(“g(t)) < # for t € (0,7]. Thus, the
corresponding solutions to Ricci flow of “gg, given by “G(t) = (¢; 1) “g(t) (see the

S("9(t)) < 2IR(ga(t))lg <

discussion at the beginning of this section) satisfy the conditions of Proposition
which implies that R(*§(t)) > —1 for all t € [0,T] (where  is some fixed

constant). Then the solutions to h flow satisfy R(%g(t)) > —r1

obtain a limit solution by letting o — oo as in the proof of Theorem [2.4.4]

as well, and we

O



Chapter 3.

Smoothing cone-like singularities

3.1. Introduction

This chapter is devoted to smoothing point singularities of Riemannian metrics
while preserving nonnegative curvature up to a small error term.

In Section we present an unpublished result by V.S. Matveev [16], which
says that in dimension three one can smooth out standard cone metrics near the
vertex while preserving nonnegative Riemannian curvature operator.

In Section [3.3] we derive a formula for the curvature operator of metrics modified
on equidistant hypersurfaces of a fixed hypersurface I' (this result is of a rather
technical character).

In Section [3.4] we are concerned with three-dimensional Riemannian manifolds
(M, g) having a cone-like structure near a singular point o of g, and nonnegative
curvature operator (on M \ o). Using the gluing result from Chapter |1} we replace
g by a standard cone metric on a neighborhood of o while keeping the curvature
operator almost nonnegative. We then smooth out the resulting metric near the
vertex using the results from Section In this way, we are able to construct
a sequence of smooth Riemannian metrics g; approximating the initial singular
metric in the C* sense on M \ o, whose curvature operators satisfy R(g;) > —e;,
where ¢; — 0.

In Sections and we prove distance and volume estimates for the sequence
(M, g;), and present an application of M. Simons results [28]. In particular, we show
that M admits a smooth Riemannian metric with nonnegative Ricci curvature, so
that in view of the results of W. X. Shi [24] and R. Hamilton [12], M is diffeomorphic
to R3, 82 x R or S® modulo a group of fixed point free isometries in the standard
metric.

3.2. Smoothing standard cones

A cone Cr over a topological space I is the quotient of the product space I" x [0, 00)
obtained by identifying the points of the fiber I' x {0}, that is, Cr =T" x [0,00)/~,
where (z,t) ~ (z,s) iff t = s = 0. The point o = [(x,0)]~ is called the vertex of
the cone.

Consider the case where T is a C* smooth manifold, & > 0, of dimension n — 1.
Then Cr \ 0 = T x (0,00) is a C*¥ smooth manifold of dimension n, where the
smooth structure is induced by the smooth structure of I' and the standard smooth

structure of (0,00). Note that Cr is not a manifold in general.

Definition 3.2.1 (Euclidean cone). Given a Riemannian metric 5 on ', we denote
by Ye the Riemannian metric on Cr \ o defined by

Fye = 7"2’7 + dr27



48 8. Smoothing cone-like singularities

where dr? is the standard metric on (0,00). We call (Cr,.) the Euclidean cone
over (I',7) with vertex o.

Definition 3.2.2 (Spherical a-cone). Given a > 1, let Crq := (I' x [0, Fa))/~,
where ~ 1is as above, and let vy, be the Riemannian metric on Cr, defined by

Yo = a®sin?(r/a)7y + dr.
We call (Cr,q,7a) the spherical a-cone over (I',7) with vertex o.

If 4 is C' smooth, then the cone metrics v, and 7, are C! smooth on Cr \ o and
Cr. \ o, respectively. For the case [ > 2 it is a well known fact that an Euclidean
(spherical a-) cone over (I',7) has curvature operator > 0 (> 1/a?) in the classical
sense off the vertex, if and only if 4 has curvature operator > 1. We will verify
this for spherical cones using Proposition below (see Example . In what
follows, we will consider cones over C*° smooth manifolds I' with C*° smooth
metrics 7.

With the above definitions, the main result of this section is as follows: Given

a smooth Riemannian two-manifold (I',%) such that I' is homeomorphic to the
standard sphere S? and 7 has curvature > 1, the Euclidean cone over (I',7) admits
a smooth structure D, and a smooth Riemannian metric which coincides with
the cone metric (induced by ¥) off a small neighborhood of the vertex, and has
curvature > 0 (see Proposition .

First we consider the case where I' is a smooth embedded convex hypersurface of
the unit sphere S"~! C R" (convex in the sense that I is the boundary of a convex
subset of S"!). In this special case, the statement is true in any dimension (see
Corollary . In the general case, our proof involves the Alexandrov embedding
theorem, which makes the assumption dim(I') = 2 necessary.

Definition 3.2.3. A subset K C S™! is called convez, if for any p,q € K with
dist gn-1(p, q) < 7 the geodesic from p to q in S"~' (with the standard meric) lies
entirely in K.

Lemma 3.2.4. Let K be a closed convex subset of S"~1 with smooth (n — 2)-dim.
boundary OK. Let
Ck ={tq|lqe K,t >0} CR"

be the Fuclidean cone over K. Then there exists a hyperplane E C R™ such that

e JCx = graph(u), where u : E — R is convex and smooth on E\ 0.

e For any € > 0 there exists a smooth convex function @ : E — R such that
u=u on E\ B(0).

Proof. It is well known that a closed convex subset K C S"~! with smooth (n — 2)-
dim. boundary is either a closed half sphere, the boundary of a half sphere, or it is
contained in an open half sphere of S”~!, in which case K has nonempty interior
(for convenience we give a proof in Lemma|[D.4). If K is a closed half sphere or the
boundary of a half sphere, then clearly the boundary of the Euclidean cone over K
is a hypersurface £ C R™. In this case the claim follows immediately by putting
u,: F— R, u,u=0.

Let us consider the case where K is contained in an open half sphere of "1,
W.lo.g. after rotating K we may assume that

Kc HS" = {z cR"||z| =1,2" > 0},
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and that the point (0,...,0,1) € R™ lies in the interior of K. Given § > 0, consider
the hyperplane H; := {x = (z',...,2") € R"|2" = 6} C R™. Let us show that
the intersection Is := Cx N Hy is a compact convex body in the hyperplane, i.e.
Is C Hj is convex, compact and has nonempty interior. Indeed, since K C S"!
is convex by assumption, the cone Cg is a convex subset of R" (see Lemma .
Therefore Is = Cix N Hy C R™ is convex, since it is an intersection of two convex
sets. We show that the map

T cHS" ! Hs

0
q — qjq
is a homeomorphism and Is = 7y, (K), which implies that I5 is compact and
Iy = THs (K ) # 0, since K C HS™ ! is compact and has nonempty interior by
assumption.
Clearly, mp, is continuous since ¢" # 0 for all ¢ € HS™ !, Suppose that TH,(q) =
7, (G) for ¢,G € HS™ 1. Then

) o .

q*nq = cji"q’
so that L qnq

q’n
Since |¢q| = |q| = 1, this implies ¢" = ¢", so we have ¢ = ¢q. Furthermore, given
g € Hs we have ) X
R
q"/1dl |4l >4l

since ¢" = ¢, where % € HS"!. This shows that mH, is bijective. One easily
checks that the inverse of 7y, is given by

W;I;:Hg — HS"!
i = L
||

which is a continuous map since |G| # 0 for all ¢ € Hs. This shows that 7y, is a
homeomorphism.

Let us now verify that I5 = mg,(K). Let ¢ € Is = Cxk N Hs. Then § = tq, where
ge K c HS" ! and t > 0. Thus

—1/5 -1 1
7TH5(C]) = WHa(tQ) = Mtq =qc K,
so that § € 7y, (K). Conversely, for any ¢ € K we have 7y, (q) = q%q € Cx by
definition of Ck, so that 7g,(¢) € Ck N Hs = Is.

Recall that we assumed that the point (0,1) = (0,...,0,1) lies in the interior
of K, which implies that the point (0,0) lies in the interior of Cx. We identify
r=(2',..., 2" 1,8) = (£,6) € Hs with # € R"!, which allows us to see I as a
subset of R»!. Consider the Minkowski functional of I5

F:Hs;—[0,00)
F(#) = inf{\ > 0|2 € A5}
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(note that in view of the above identification z = (z,d) € Hs, * € A5 means
x = (&,0) = (A\g,0) for some (g,d) € Is). Since I§ C Hy is closed, convex and
(0,6) = Op, € Is, we have that F' is convex and

Is={x=(z,0) € Hs| F(z) <1} (3.2.1)
(see Lemma [D.5)). This implies that the cone Cx is given by
Cx ={z=(2,2") e R"|0F(z) < z"}. (3.2.2)
Let us verify this. From the definitions of Cx and Is it follows that
)
x €Cr \ {0} iff 2" >0 and s I (3.2.3)

(see Lemma [D.6). Let z € Cx. If z = 0 then §F(2) = 0F(0) = 0 = z™. If
x € Ck \ {0} then by (3.2.3) we have z™ # 0 and

) J
so that in view of ([3.2.1])
o . o .
ey () = F(xjf) <1

(where we used that F(tz) = tF (&) for t > 0, c¢f. Lemma [D.5|), which gives us
dF(z) < z™. Conversely, suppose that dF(z) < z™ for some x = (Z,z") € R".
If 2™ = 0, then F(2) = 0 and from definition of F' it follows that there exists a
sequence of positive numbers A;, — 0 such that

( L; 9) el

—

I ) é

for all A\,. Since Is is compact this implies & = 0, so that x = (Z,2") = 0 € Ck.
Suppose that ™ # 0. Then

and (3.2.1)) implies that

J . 5
x—n(x,acn) = (x—n:c, 9) € Is.
By (3.2.3)) we then have x = (z,2") € Ck.

The identity (3.2.2)) shows that Cx is the supergraph of the convex function

u:=0F :R"™ — [0, 00).

Since u is continuous, this implies OCx = graph(u). The assumption that 0K is
a smooth submanifold of S"~! implies that dCxk \ {0} = {tq|q € OK,t > 0} is a
smooth submanifold of R”. Thus u is smooth on R*~!\ {0}. This shows the first
assertion of the lemma.

Let us prove the second assertion. We find a smooth convex non-decreasing
function p : [0,00) — R such that p|jg1/2) = const and pl(; o) = id (see Figure
. Note that such a function satisfies p(y) > y for all y > 0. Recall that we
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p(y)

1 1 y
2
Figure 3.1.: The function p
x"
"""" 0 e Iy
,,,,,,,,,,,,,,,,,,,,,,,,,,,, graph (i)
A graph (u)
0 %

Figure 3.2.: The sets Cx = graph(u) and graph(a)

identify (£,0) € Hs and 2 € R"!, so that F may be considered as a function
R"1 - R. Let F = po F. The function F is convex since F and p are convex
and p is non-decreasing. Moreover, F is smooth since off 0 it is a composition of
smooth functions and F = const near 0.

Let ¢ > 0. We may choose § > 0 small enough such that Iy C B.(0) ¢ R"~ !
This due to the fact that

Is =1, (K) = {ajinfc\x =(z,2") e K}

(where we again identify H; and R"'), and |# < 1 and z" > § > 0 for all
r=(%,2") € K since K = K ¢ HS" !,

In view of we then have F > 1 on R" '\ B.(0) ¢ R" !\ I5. Let & = 0F.
Then @ is smooth, convex, and

(@) = 6(p(F(2))) = 6F (%) = u(2)

on R"~1\ B.(0), since p(y) = y for y > 1. This proves the second assertion and we
are done. ]
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Corollary 3.2.5. Let K C S™ ! and C be as in Lemma and let
Cox = OCx = {tq|q e 0K, ,t >0} CR"

be the Euclidean cone over 0K. Let gc,, be the Riemannian metric on Cok \ 0
arising from the standard metric of R™. There exists a smooth structure D on Cyg
such that

e D is compatible with the smooth structure of Coi \0 arising from the standard
structure of R™

e For any neighborhood U > 0 there exists a smooth metric g on (Cox, D) such
that § = gc,, on Cox \ U and § has curvature operator > 0.

Proof. By Lemma [3.2.4] we have that 0Cx = Cyx is the graph of a convex function
u: E — R, where E is a hyperplane of R” (in particular u is continuous). After
rotating K we may assume that £ = R"~! x {0}. Thus, the projection

. -1
7T|C,9K~CBK — R7

r=(z,u(z) — &

is a homeomorphism, where 7 is the projection R” = R* ! x R — R* ! z =
(,2") — 2. The map 7|c,, induces a smooth structure D on Cyg, which agrees
with the smooth structure of Cyx \ 0. This is due to the fact that 7 : R® — R"~!
is smooth and Cyg \ 0 is a smooth submanifold of R™.

Given a point x € Cyx, we denote by %(m), t=1,...,n—1, the basis of T,.Cyx
induced by the coordinate chart ¢ := 7|c,, : Cox — R™ 1. The coefficients of 9Corc
on Cyi \ 0 with respect to this basis are

¢ o X X
(G0 )50) = 9o (2) (s () 5 () = B3+ (@) Dyu(2).

Let U be a neighborhood of 0 in Cgr. Then 7(U) C R*! contains a ball B.(0),
€ > 0, and by Lemma we find a smooth convex function @ : R"~! — R such
that %@ = u on R"~1\ B.(0). We define the metric § on Cyx by putting

B = (e w) o (@) = by + B, (3.24)

Clearly, g is a smooth metric on (Cyg, D), which coincides with gc,, off U, since

g;’? o (p_l = 51']' + 0;u @jﬂ R SR

is smooth and @ = u off B:(0) C ¢(U).

Let us verify that ¢ has nonnegative curvature. Consider the smooth embedded
hypersurface graph(a) C R™ equipped with the smooth metric induced from R™,
which we denote by gg. Since @ is convex, it follows from the Gauss Theorem that
(graph(), g;) has nonnegative curvature operator. The map

Y= 7T|graph(ﬂ) : graph(ﬂ) - R

is a coordinate chart of graph(@). Let g;bi (x), i = 1,...,n — 1 be the basis of
T, (graph(@)). We show that

J:(Cox,g) — (graph(i),ga)
z=(&,2") = @ op)(z)= (2 (%))
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is an isometry. Clearly, J is a diffeomorphism, since ¢ : Coyx — R™ ! and 1 :
= idgn-1 = poJ toy~l
Furthermore, at = = (&, u(z)) € graph(a) the coefficients of gz (x) with respect to

gzi(x),izl,...,n—l, are

graph(@) — R"~! are homeomorphisms, and v o .J o ™

P P
gZ/J}(a:) = g(sc)(gzl(a:)7 gx](l‘)) = 0;; + 0;u(2)0;u(z). (3.2.5)

Given any smooth function f : graph(@) — R we compute using J o o=t = ¢~}
and YoJ =

o¥ I(fodJop™)

Dl@gmz@f) = =5 lew
O(fo -1 81/;
N %'wuu»:aﬂu(w))(f), (3.2.6)
so that
o¥ v

D) o () = 5= (J(@)).

Combining (3.2.4 and gives
0¥ 0¥
9a(J@) (DI (@) (@), DI (@) 5 (2)
= I @), (@)

by 0T BIAIE)
= 0y + 0;u(2)0; ( )
= (@) o (),

which shows that J is an isometry, and we are done.

), D
(l

O]

Proposition 3.2.6. Let I' be a smooth 2 dim. Riemannian manifold homeomor-
phic to the sphere S%, and let 5 be a smooth Riemannian metric on I of curvature
> 1. Let (Cr,ve) be the Euclidean cone over (I',5) with vertex o as in Definition
[5.2.11 Then there exists a smooth structure Dp on Cr such that

e Dr is compatible with the smooth structure of the product manifold T' X

(0, OO) = CF\O.

e For any open neighborhood U > o there exists a smooth metric 7. on (Cr, Dr)
such that 7e = v on Cr \ U and A, has curvature > 0.

Proof. A result of Pogorelov ([20], §8 Thm. 2), which is a version of Alexandrov’s
embedding theorem (§2 in Section XII of [I]) for regular surfaces, states that a
closed 2-dim. manifold with regular metric of curvature greater than x is isometric
to a regular closed convex surface in the 3-dim. space of constant curvature . In
our case this implies that there exists a closed convex subset K C S with smooth
boundary 0K, such that (I',7) is isometric to (0K, ggr ), where gsx denotes the
smooth Riemannian metric on 0K induced by the standard metric of S3.

Let Copx = 0Cx C R* be the Euclidean cone over 0K as in Corollary and
let gc,, be the smooth Riemannian metric on Cpx \ 0 induced by the standard
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metric of R*. Note that gc, coincides with the cone metric on Cyx \ 0 induced by
gor- Let H be the isometry (I',5) — (0K, gox ). Then the map

H:CF — CaK
(p,t) — tH(p)

is a homeomorphism taking o € Cr to 0 € Cyx, and the restriction

H‘C[‘\O : (CF \ o, ’.Ye) — (CBK \ ngCaK)

is an isometry. By Corollary there exists a smooth structure D on Cgx which
agrees with the smooth structure of Cyx \ 0. By pulling back this structure by
H we obtain a smooth structure Dr on Cr which is compatible with the smooth
structure of Cr \ o. Clearly H : (C,, Dr) — (Cox, D) is a diffeomorphism.

Let U > o be a neighborhood of 0 in Cr. Then V = H(U) C Cyx is a neighbor-
hood of 0 in Cyg, and in view of Corollary we find a smooth nonnegatively
curved metric § on (Cax, D) which coincides with g¢,, off V. Then the pullback
of g under H is a smooth nonnegatively curved metric on Cr which coincides with
e off U.

O

Remark 3.2.7 (Cr as a metric space). Even though the cone metric 7, fails to
be continuous on Cr in general, we can nevertheless define a length metric on Cr
induced by 7, in the same way as for smooth Riemannian metrics. We choose a
basis {v1,v2,v3} of T,Cr and put ve(0)(vs,v;) := 0;; for i,j € {1,2,3}. This way
e is well defined on Cr. For z,y € Cr we put

dist - (x,y) := inf{L,,(c)|c: [a,b] — Cr is a piecewise C' curve from = to y},

where
b
L) = / 1) et -

Note that dist ,, is finite, since for any = (p,s) € Cr the curve ¢ : [0,1] — Cr,
c(t) = (p,ts) connects x to the vertex o and has finite length. Indeed, c(t) =
(¢(t), 7(t)), where ¢ is the constant curve ¢ = p, and 7(t) = ts for ¢t € [0,1]. Then
é(t) = 0 and 7(t)2 = s2. Thus, by definition of . we have

1 1
L%(c):/o \/T(t)2|]é(t)||7(é(t))~|—7‘(t)2dt:/0 sdt = s < oo,

Let us check that in fact dist, (z,0) = s for all z = (p,s) € Cr. In view of the
definition of dist -, the above computation shows that dist . (x,0) < s. To show
the reverse inequality let x = (p, s) € Cr, w.l.o.g. s >0, and let c: [a,b] — Cr be a
piecewise C! curve connecting = and o, where c(a) = z, ¢(b) = 0. Let

b=inf{t > a|c(t) = o} € (a,b).

Clearly L., (c) > L%(c\[a 5)> and c\[a = (¢,7), where ¢ : [a,0] = T and 7 : [a,b] —
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R are piecewise C!, and 7 connects s and 0. Then

B

L, (c; #») = lim c(t o dt
e ( ‘[a,b]) 8.7 ) | ()Hve( ®)

B -
— tim [\ O + 70

B/bJa

8 b
> lim 7'-(t)|dt:/ [7(t)| dt = Leyar(T) > 5
8/bJa a

A detailed discussion on length structures on cones in a more general setting can
be found in [6].

Lemma 3.2.8. Let Cr, 7. and 7 be as in Prop. [3.2.6, Furthermore, let dist ,,
be as in Remark[3.2.7], and dist 5 be the distance function on Cr arising from the
smooth metric 5. Then

dist 5(-,0) > dist -, (-, 0)
on Cr.

Proof. Let © = (p,s) € Cr, w.l.o.g. s > 0. Consider the curve ¢ : [0,1] — Cr,
c(t) = (p,ts) connecting o and x as in Remark Since dist 5(z,0) is the
infimum of the lengths w.r.t. 4 of all piecewise C! curves connecting o and z, it
suffices to show that L;(c) < s = dist -, (x, 0).

Let Cyx = graph(u) and g be as in the proof of Prop. [3.2.6 Recall that by
construction H : (Cr,7) — (Cok,g) is an isometry. Thus, the claim follows if we
show that Li(H oc) < s.

Let H(z) = (9,u(y)) € graph(u). From construction of H it follows that the
curve ¢ := H o c is given by

¢:10,1] — graph(u)
ety = t-(g,u(@) = (g, tu(g)).
Consider &(t) € T (graph(u)). Let ¢ = T|graph(u) : graph(u) — R?, where  is the
projection R* — R3, be the coordinate chart of graph(u) (as in the proof of Cor.

3.2.5). For any (2,u(2)) € graph(u) we have p(2,u(2)) = 2 and ¢*(2,u(%)) = 2%,
1 =1,2,3. Thus, the coefficients of c(t) with respect to this chart are
()" = 60)() = & () = 2 (t57) = i
dt dt
By (3.2.4]) we then have

GO awy = @) ()
= Gij (@) ((e
= (0ij + dsu(m(e(t)) 0ju

c(t))
L (

A -

o~

S~—

SN—

<

e

—

o~

S~—

v —~ \g

:1 —

@

ol
—~
~
~—
—
~—
<
S
<>
<

(637 + salty) 05a(ty)) 'y’
= |3+ (Va(ty),9)*
= 191+ (@9))". (3.27)
Recall that by construction @ = u on R3\ B.(0), € > 0, so that a(tg) = u(tj) for
t > &, where € := ¢/|y|. In particular, for ¢ > £ we have

(@(t))" = (u(th)) = (tu(@))" = u(j).

—



56 3. Smoothing cone-like singularities

Moreover, since V& vanishes near 0 we have (u(t9)) = (Va(tyg),9) = 0 at t = 0.
From the fact that @ is convex it follows that ¢ — wu(ty) is convex, which implies
that ¢ — (u(tg))’ is non-decreasing. Thus

0 < (a(tg)) < u(y)

for all ¢ > 0. Using this and (3.2.7)), we compute
1
L) = [ 10 e
1
~ JON 2
= [ i+ (@)
1
< /0 VI u(3)?

= 1@, uw@)] = [H((p,s))| = s

and we are done.

3.3. Modifying metrics on equidistant hypersurfaces

Let M be a smooth n-dim. manifold, equipped with a smooth Riemannian metric g.
Let I' C M be a smooth hypersurface and pg € I'. On a small enough neighborhood

U > po we introduce Fermi coordinates z = (x!,...,2") above I' (cf. Appendix

A1), such that |z"| = dist4(-,T"). Let I'(d) = {p € U|2"(p) = d} denote the
equidistant hypersurfaces of I'. In our coordinates g has the form

_(9 0

where ¢ is the restriction of g to the equidistant hypersurfaces, that is, g(p) =
9(P)1,r@x1,r@ for p € U with 2"(p) = d. At each point p € U, we have the
decomposition

T,U = T,I'(d) & T,T'(d)™,

where T,T'(d)1¢ is the orthogonal complement of T,I'(d) in T,U with respect to g.
In what follows, we will identify § and (-, PT->9, where PT denotes the projection
TU — TT'(d), so that g may be regarded as a 2-tensor on TU.

Let ¢ : (—a,a) — Rs be a smooth function. We may regard ¢ as a function on
U by putting ¢(p) = ¢(z"(p)). Since ¢ is strictly positive, we may define a new

metric g on U by
- (vg O
g= ( 0 1) . (3.3.1)

The goal of the current section is to compute the curvature operator R(g) of the
modified metric. First, let us introduce some further notations. Let L(g) denote
the second fundamental form of the equidistant hypersurfaces (I'(d), ) in (U, g)
with respect to the normal N = 8%. More precisely, given a point p € U and the
equidistant hypersurface I'(d) containing p (i.e. d = 2™(p)) we have

L(g)(p) € (TpI'(d) x T,I'(d))"
(X,Y) = —(9VxN,Y),
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In our coordinates we have L(g);;(z(p)) = —30ngi;(z(p)). Indeed,

o 0 0 0
B v 9
ox?’ axj) < V% oz’ 8$j>g

k
= 79Fingkj

L(g)(

1
= _§gkl(8ignl + Ongit — 019in)9kj

1
= —5(0ignj + Ongij — Digin)

1
= —5 ng@-j, (3.3.2)

where we used that g,; = const for all j in our coordinates. Observe that
L(g) = (9V()N, )4 can also be regarded as a symmetric 2-tensor on TU, where
L(g)(X,N)=0= L(g)(N,N) for X € TT'(d).

Similarly, we denote by L(g) the second fundamental form of (I'(d), ¢g) in (U, )
with respect to a% (note that a% is also the unit normal of TT(d) with respect to
g in view of ) A similar computation as above shows that L(g);; = —%8,@,7
in our coordinates.

Finally, let PV denote the projection TM — (TT'(d))*. In what follows, we
identify PV and the two-tensor (-, PV -)g,» Which in our coordinates is given by

PZJJV = 0pniOn; (cf. Notation .

Note that since both L(g) and ¢ can be seen as 2-tensors on TT'(d) as well as
2-tensors on TU C T'M, the Kulkarni-Nomizu products (see Section [B.2) L(g) A g
and g A PN may be regarded as sections of A2(TT(d)) as well as of A?>(TU). In
what follows, it will be clear from the context which interpretation is being used.

Proposition 3.3.1. Let g and g be as above, and let R(g) and R(g) be the Rie-
mannian curvature operators of g and g, respectively. We have

_ .1 L
R(G) = ¢R(9) + (L=¢)pLlg) AL(g) + o' Lig) Ng— ()G N g
_9 i \2
+ Wf] A PN 20/ L(g) A PV, (3.3.3)
4
Proof. We denote by 0; = %, 1 = 1,...,n, the coordinate vectors with respect

to the coordinate chart (z!,...,2"). First, let us compute R(g) on A?(TT(d)) =
span{0; A\ 0|1 <i < j <n—1}. By the Gauss theorem we have

R(9)|az(rray) = R(wg) — L(g) A L(g)- (3.3.4)

Since ¢|pg) = const, we have R(pg) = ¢R(§). Moreover, in view of the above

discussion
/ /
L(9)ij = —%371(%0%) = —%Qij — ggij = —%ém‘ +@L(g)ij-
Using this in we get
/ /
R(@)|nzerray = ¢R(G) = (pLlg) = 9) A (Llg) = 2:9) (3:3.5)

= o(R(9)a2@rr(ay + L(g) A L(g))
~*L(g) A L{a) + 04 Llg) A — 1(#)
= YR(9)l(r2rr(ay)

Na Py
>
o

+(1 = @)pL(g) AN L(g) + @' L(g) A g — i(@’)?q NG,
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which is the desired equation on A?(7TT(d)), since the operators g A PV and L(g) A
P! vanish on A2(TT(d)).

In view of the symmetries of the curvature operator, to verify that (3.3.3] - ) holds on
(AQ(TF(d))) it suffices to compute R(§)(0; A0;, O NOy) and R(G)(0; AOp, Ok AOp),
1<14,5,k <n—1. In the first case all operators on the right hand side of
except for R(g) vanish, and we have to check

R(9)(0; N0y, 0k N Op) = ©R(g)(0i A 05, Ok A On). (3.3.6)

Let us fix a point p near I' and choose coordinates 1, ...,x,—1 on I'(d(p)) near p
such that g;;(p) = g(p)(0ilp, 0j|p) = 0i; and 0;g;r(p) =0 for all 1 < 4,5,k <n—1
(note that 0,,¢;; does not necessarily vanish in p). We denote by Rijkl the curvature
tensor of § and by f‘fj the Christoffel symbols of g. We have

Rijia = (9,03, — 0,15, + T5I%; — I%,.T%) g

Recall that in our coordinates gs, = dsp, near p for all s = 1,..., n, and consequently
Orgsn(p) = 0 for all r,s = 1,...,n. This gives us

Rijin = 0;T0 — ;T + Th T — DL, (3.3.7)
and
mn 1 ~nr ~ ~ ~
ik = 59 (0iGkr + OkGir — OrGik)
1. _ _
= 5(8lgkn + akgin - angzk)
1, .
= _5 nYik
1, 1 1, n

Thus, at p we have
. 1, 1 1 n
Ol = =59 939k — ¢50i0ngi = —950j0ngik = ¥l
where we used that ¢ depends only on ™. By an analogous computation we have
O = 0o,

at p. Moreover, the last two terms in (3.3.7]) vanish at p. Indeed, we have
I Zr I+ Ty =0

since f,’;j = 0 for all j, and f‘gk (p) = LpF;-"k (p) = 0 by our choice of coordinates. This

gives us R”kn = goRZ];m, which shows .
Let us now consider R(@ A Oy, O N 6 ) = Rinkn. In this case ) becomes

R(D; A Oy, Ok NOp) = R(Di A\ Oy, Oy ADy)

_9 " 2
+‘p‘g+(‘p)g APN 420/ L(g) A PN (3.3.9)
P
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since L and § vanish on (TT(d))V. Similar as above, in view of I, = 0 for all k
one has

at p. Using (3.3.8) and (3.3.2)) we compute

~ 1 1
ol = 3n(—580/9z'k: - @Qangik)
1 1
= —§<P"gik — ' Ongir. — ‘Piaigik
1
= —§<P”9¢k + 2¢' Lk, + 90, T, (3.3.11)
Moreover, for 1 < r <n — 1 we have
T 1 ~rs ~ ~ ~
nk — 59 (angks + ak:gns + 8sgnk:)
1. N 1
= 5 e nGks = %gTsan(Sogks)
/
%) 1
= g - .rs
2,0k + 59 OnIks
/
= 5%+ T
which gives us
R VNS 4 S R TR RS S
nk*ir T 2()0 k nk 290927‘ @l
(¢')? ¢’ @'
= T Er?/f + EF:LkgiT 2 A
N2
'
. 4; git — ' Lir, — oL, (3.3.12)

where in the last step we used the fact that in our coordinates

1 1
Lit, = (=V9,0n,0k)g = —Ti,0rk = _igmangisgrk = _iangik =TI

Combining (3.3.10)), (3.3.11) and (3.3.12)) gives

- —2p¢" + (¢')?

Rinkn = (PRznkn + 480 ik + @/Lik
_2(PSOH T ‘Pl 2 .
= @Rinkn + 290()(9 A PN)inkn + 2(10/(11 A PN)ink’na

which shows (3.3.9)), and we are done.

As an example, we compute the curvature operator of a spherical a-cone.

Ezample 3.3.2. Consider a spherical a-cone (C,v) = (Crq,7a), @ > 1, with vertex
o over a smooth Riemannian manifold (T',7) (see Definition [3.2.2). We introduce
Fermi coordinates (Z,z™) above the hypersurface I' x {1} = dB](0), where % are
local coordinates on I', and

2" =1—dist(,0):C\o— (17ga,1).
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In this coordinates the metric v has the form

The induced metric on A2(T'C) is y Ay = 4 A4 + 29 A PV, where 4 is the restric-
tion of v to the equidistant hypersurfaces of I" x {1}, in coordinates 4(&,z") =

a® s.1112(1 2%)5(&). Suppose that the curvature operator of 4 is > 1, that is,
R(¥) > A 7. Putting g = 7+ dr? and ¢(2") = a*sin?(1=%") in Proposition

we compute using L(g)(%,2") = $0,7(2) =0 on C\ o

—2¢"¢ + (¢')?

RO) = @RO) = (@) AT+ = =5 A PN
_ n
= a251n2(1 am JR(%)
— aQSiHQ(l_axn)cosQ(l_xn)fy/\’?—i-ZsinQ(l_xn)’y/\PN
2 .. 9 1—a™ _
> a s1n( u )7/\7
— _ e _an
— aQSiHQ(l am )0052(1 L )’_y 7+2sin2(1Tx)7/\PN
1—2z" x"
= a281n4( )’7/\’y+251n( )f’y/\PN
1. .
1
= —=S7AY

An analogous computation shows that R(~y) > a% implies R(y) > 1

3.4. Smoothing cone-like singularities in dimension 3

Let us fix some notation for this section. In what follows, by ‘smooth’ we mean ‘C*®
smooth’, unless noted differently. We are concerned with Riemannian manifolds
(M, g), where g is possibly singular (discontinuous) at a fixed point 0 € M, and
smooth on M \ 0. We wish to introduce a distance function dist ; induced by g on
M in a similar way as for smooth Riemannian metrics. In order to do so, we put

dist 4(p, ¢) = inf{Ly(c) | ¢ is a piecewise C! curve connecting p and ¢},

and dist 4(0,0) := 0, where L,(c) is the length of ¢ with respect to g, which is
defined as follows: For a piecewise C! curve ¢ : [a,b] — M \ o we put L,(c) =

f [¢()]lg(ct))dt. Furthermore, if c(to) = o for some ty € [a, b], we define

toa
0= [ 1e@lenat = T [ W0l + i / o

(note that in the definition of dist 4 it suffices to consider piecewise C! curves which
pass through o not more than once).

Observe that, in general, we cannot expect dist 4(-,-) to be finite since g is pos-
sibly singular at o. In what follows, we shall assume that M is connected and
dist 4(-,0) : M — R is continuous at o. Using the assumption that g is smooth
on M \ o, one verifies that in this case disty : M x M — R is a continuous (in
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particular finite) metric, and the topology induced by dist ; coincides with that of

M (see Lemma |C.2.4)).
We denote by By the metric balls

B :={p e M |dist 4(p,0) < r}

centered at 0. We will also assume that there exists a small neighborhood U > o
such that dist 4(-,0) is smooth on U \ o, and V(dist 4(-,0)) # 0 on U \ o (where
V = V9). This ensures that the level sets of dist 4(-, 0), which we denote by

Ly(r) :={p e M|dist 4(p,0) =r} = 0B,

are smooth hypersurfaces of M for all 0 < r < ry for a small enough 79 > 0 (note
that this is the case if g is smooth on M and rg is less than the injectivity radius
of 0). This notation is slightly different as compared to the previous section, where
we denoted by I'(d) the equidistant hypersurfaces of a fixed hypersurface I'.

For each 0 < r < g, the vector field —V(dist 4(-,0))|r,(r) is the unit normal
field on I'y(r) pointing inside BY (see Lemma . Similarly as in the previ-
ous section, we denote by g the restriction of g to the hypersurfaces I'y(r), that

is, 9(p) = g®)|1,r,(r)xT,r,() at & point p € Ty(r). We denote by L(g,T4(r))
the second fundamental form of (I'y(r),§) in (M, g) with respect to the normal
—V(dist 4(+,0))|r, (). We also regard g and L(g,I'y(r)) as tensors on T'M after
extending them by 0 in normal direction.

In view of these notations, the main result of this chapter reads as follows:

Theorem 3.4.1. Consider a 3-dim. connected Riemannian manifold (M, Dy, g)
(where Dyr denotes the smooth structure of M ) which satisfies the following con-
ditions:

1) g is smooth on M \ o (and possibly singular at o).

2) ) dist 4(-,0) is continuous at o

b) There exists a neighborhood U of o such that dist 4(-,0) is smooth on
U\ o, and V(dist 4(-,0)) # 0.

3) There exists a ro > 0 such that
a) Ty(ro) is homeomorphic to the sphere S*

b) for all 0 < 6 < 1o the second fundamental form of T'4(8) with respect to
the itnward normal satisfies

(1—¢(6))g <6 L(g,Ty(9)) < (1+£(9))g,
where £(5) /6% — 0 as § — 0.
4) R(g) >0 on M\ o.

Then there exists a family of metrics {gitien and smooth structures {D;};en on M
such that

e D; is compatible with Dyr on M\ o, and (M, D;) is diffeomorphic to (M, D)
for alli e N

e g; is C? smooth on (M, D;) and C* smooth on M \ BY

ro/i
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e g, — g off o in the C™ sense as i — oo
e R(g;) > —¢i, where e; — 0 as i — o0.

Remark 3.4.2. Condition 8 may be interpreted to the effect that the singular metric
in some sense becomes cone-like near o. Indeed, consider a standard cone S™~! x
[0,00) = R™ with vertex 0, equipped with the metric v = 25 @ dr?, where 7 is
a smooth Riemannian metric on S"~! and dr? is the standard metric on [0, c0).
Then I'y(r) = rS"! for all r > 0, and at a point (z,7) € S"! x (0,00) the
second fundamental form of I',(r) with respect to the inward normal is given by
L(y,Ty(r)(z,7) = r7(z) = 1 (r?*7(2)) = Wlr, () (2, 7).

Proof of Theorem [3.4.1. The proof breaks up into the following steps:

Step 1: We consider the rescaled metric g5 = 6%9 on M. On B{?, we replace gs by
the Euclidean cone metric 75 = r2gs + dr?, where gs is the restriction of g
to [y := Ty, (1).

Step 2: By modifying the metrics 75 on Bf‘s and gs on M \ B}’ near ['s we con-
struct metrics 45 and gs such that the new metrics meet the requirements of
Theorem [1.1.2)

Step 3: We show that the sum of the second fundamental forms of 45 and gs is

nonnegative on I';.
Step 4: We show that the curvature operators of 45 and gs are almost nonnegative.

Step 5: Using constructions from Section [3.2] we introduce a new smooth structure
Ds on M which is compatible with Dy; on M \ o, and find a smooth metric
%gsm) on B{’, which coincides with 5 off a small neighborhood of 0. The
curvature stays almost nonnegative. In this step the assumption dim(M) = 3

is necessary, since here we use Proposition (3.2.6

Step 6: We apply Theorem to (Bi}‘s,vgsm)) and (M \ B{’,gs), and find a C?
)

smooth (w.r.t. Ds) metric g((ssm) which coincides with 'y(gsm and §s, respec-

tively, off a small neighborhood of T's, and has almost nonnegative curvature.

Step 7: By scaling back gésm) we construct the sequence g; with the desired properties.
Step 1: First, observe that for small enough 79 > 0 we can cover By, \ o with a
set of Fermi coordinates over I'y(¢), for any 0 < § < r9. Roughly speaking, this is
because on a small neighborhood U > o the integral curves of —V/(dist 4(-,0)) are
unique unit speed geodesics connecting points of Bf \ o to hypersurfaces I'y(6), so
for small enough 79 the ball By, enjoys similar properties as a geodesic ball in a
smooth Riemannian manifold (we refer to Section of the appendix for a detailed
discussion, see Lemma Remark . In particular, in view of Condition
3a this implies that the equidistant hypersurfaces I'y(6) are homeomorphic to S?
forall 0 < 6 < ry.

In what follows we assume w.l.o.g. 79 = 1 and €(d) < 1 (after rescaling the
metric g). Let gs = 5%9 be the rescaled metric on M, and Iy := Ty, (1) = Ty(d).
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Let us fix a small § > 0. We introduce Fermi coordinates (#,z") above T's such
that & = («',...,2" 1) is a coordinate chart of T's, and

") dist ¢, (p,Ts) ifpe B \o
x"(p) = _ .
—dist g, (p,Ts) ifpe Bf% \ BY

Note that the charts (x!,...,2") do depend on &, but we shall omit the index §
to simplify the notation. Our coordinates are well defined for —1/6 +1 < 2™ < 1.
In view of dist g, (-,0) = 1 — 2™ we have that (Z,1 — ) is a coordinate chart of the

equidistant hypersurface I'y;(r) for any fixed 0 < r < 1/6.
o)
Dzt
view of our choice of coordinates 0,, is the inward normal on the hypersurfaces
Ly (r) in (B#,gs), 0 < r < 1/6. In particular, 8, is the inward normal on I's in

(B{’,gs). Since g5 = 529, the inward normal on I'y(8) = I'y;(1) in (B, g) is given

As before, we use the notation =0;,1=1,...,n for coordinate vectors. In

by %871. Thus the second fundamental form of T's satisfies

L(gs.T5) = 519 T5) = 51(9,T, ()

and Condition 3b reads

(1—¢(0))gs < L(gs,Ts) < (1 +£(6))3s, (3.4.1)

where gs := gs|p , denotes the restriction of gs to Ts.
We now replace gs on B{’ by an Euclidean cone metric. Observe that in our

~(gs(x) 0
gs(x) = < 50 1) :

where g5(z) is the restriction of gs to the equidistant hypersurfaces I'g, (dist ¢, (z, 0)).

coordinates gs has the form

We introduce a new metric 75 on B’ by putting

vs(z) = <(1 =55 (E) 0)

0 1

for 0 < 2™ < 1. Since by definition gs = gs|¢ ,» the metrics 75 and g5 coincide on Ts.
Moreover, since we modified gs only in ‘tangential’ direction, the distance functions
dist g, (+,0) and dist ,, (-, 0) coincide, so that BY® = B and I, (r) = Ty, (r) for all
0 <r <1 (in particular I'y = T'y,(1) = I, (1)). Finally, 9,, is the inward normal of
I, (r) in (B (0),7s) for all 0 < r < 1, and the second fundamental form of T, (r)
in (B (0),7s) with respect to 9, is given by

L5, Ty ()1 = 1) = =2 0ulon 1y (1~ ") 55()) = ras(2)

in our coordinates (cf. lemmas|A.2.1| and [A.3.1] of the Appendix).

Let us compute the sum of the second fundamental forms of s and gs on L.
Let L™ (vs,Ts) be the second fundamental form of T's in (B]°,~s) with respect to
the inward normal N* = 9, and let L~ (gs,s) be the second fundamental form
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Figure 3.3.: Replacing gs by the cone metric v5 on B{"S

of T's in M \ B{® with respect to the inward normal N~ = —9,,. Using (3.4.1)) we
compute
L+(’75a f(S) + L_(g5> fé)
1 o
=5 0nlen=0((1 = 2")?gs) + L™ (95, Ts)
s + L_(ga, T';)

> ( ] L7 (g5, Ts5) + L™ (95, T5)

= ((25) (95, T5) + L"(95,T5) + L™ (g5, T5)
=0

> —(6)gs-

In the next step we modify s and g; near ['s, so that the sum of the second
fundamental forms becomes nonnegative, which is a crucial condition of Theorem
.1.2)
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Step 2: Let ¢ :[0,1) — R and ¢ : (—o0,0] — R be smooth functions such that
o ¢(0) =1—4e(6) =(0)

e ©(0) = —2¢(0) and —2¢(6) < ¢’ <0 and ¢’ =0 on [1,1)

o |¢"| <8(9)
. $/(0) =0
ey=1lon(—3+1,-3+1)

(see Figure below). We will impose further conditions for ¢ later in the proof.
Note that the first two conditions imply that 1 — 5¢(d) < ¢ < 1 —4e(d). A
function ¢ with the required properties can be constructed as follows: We find
a nondecreasing function @ : [0,3] — R such that ¢(0) = —2¢(8), 3(3) = 0,
and @ < 8, F'(0) = 0 = ¢(3). We then extend ¢ to [0,1) by zero, and put
o(x) =1—4e(d) + [ @(t)dt.

1 |
1-4 ¢ (8)]
@
1-5 ¢ (6)4
l 1 x”
2
14
Fl
1-4 £(5)
2‘ 1 x"
__+1 = -
36+1 3(5+1

Figure 3.4.: The functions ¢ und

We replace 75 on B{® and gs on M \ B{ by

- e —am)gs(2) 0
V() = ( 0 ' 1)
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14
VRS
<
—~
8
\5
N}

) 0 -
5(2) 1) onBi%\Bf‘s, Js = gs onM\ij(S

(see Figure 3.5/ below). The isometry of the boundaries is preserved due to ¢(0) =
¥(0). As in Step 1, the distance functions of the new metrics coincide with
dist g, (-, 0) (cf. Lemma |A.2.1)).

>
w
S i
>
N | —

Figure 3.5.: Modified metrics gs and s

Step 3: Let us check that the sum of the second fundamental forms of the new
metrics on I'; becomes nonnegative. Similar as in Step 1, let LT (55,[s) be the
second fundamental form of I'y, (1) in (B{®,7s) with respect to the inward normal
NT = 9,, and let L™ (5,Ts) be the second fundamental form of I's in M \ B

with respect to the inward normal N~ = —0d,,. We compute
+(x . T 1 n n\2 -
L™(%5,Ls) = —50nlenzo(p(2")(1 —2")"g5)
1 _ _
= —5#(0)g5 + #(0)gs (3.4.2)
and
_ . = 1 n A
L7(gs:Ts) = S0nlan=o(t(2")5(w))

= w(o)%an\xnzoga(ﬂﬂ)
= ¥(0)L ™ (g5,T5) = =¥ (0)L™ (g5, Ts). (3.4.3)

In view of (3.4.2), (3.4.3), (3.4.1) and the properties of ¢ and v, the sum of the
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second fundamental forms is
L (%, Ts) + L™ (g5, Ts)
= 58O +9(0)g5 — $(O0)L* (95, T5)
£(0)gs + (1 — 42(8)) (gs — L™ (95, T5))
£(6)gs — (1 —42(0))(8)gs
4¢(8)%gs > 0. (3.4.4)

vl

Step 4: In the next step we show that the curvature operators of 45 and g5 are
almost nonnegative.

a) Curvature operator of 5 on B{° \ o:
By the Gauss theorem we have

R(vs)(x) = (1 — 2")*(R(gs) () — 75(&) A Gs(2)).

Moreover, R(gs) = 5%7%(9) > 0 by Condition 4, so in view of the Gauss theorem

and (341)

R(3s) = R(95)|a2¢rry) + L(96,T5) A L(gs, Ts)
> (1 —2¢(5))gs A gs- (3.4.5)
Thus
R(vs)(x) > —2e(8)(1 —a™)?gs() A gs(2). (3.4.6)
By putting g = vs und § = (1 — 2™)2g; in Proposition we obtain
R(35) = ¢R(v8) + ol — ) (1 —a")’gs A gs
I | nNd— -
g (1= a™)g5 A gs — 5 (#')(1 = 2")'g5 A gs (3.4.7)
—9," N2
+ 14 90+ (90) (1 —x")2§5 /\PN +2§0/(1 _ l‘n)§§ /\PN

2p
where PZJJV = 0indjn in our coordinates.
Consider the first two lines on the right hand side of the above equation (the
tangential part or the curvature operator). Using (3.4.6) and the fact that 1 —¢ >
4¢(8) by construction, we compute

PR(v5) + (1 — @) (1 — 2G5 A gs
120 = ") g5 A g
1(¢)?

p(L—a")?(=2e(0) + (1 =) + ¢/ (1 —2") — 17(1 —a")%)gs N 3s

> (1 —a")?(—2e(8) + 4e(8) — 2(8) — (8))gs A Gs > —()gs A Gs, (3.4.8)

o' (1—2™)3gs N gs —

Y

where we assumed that w.l.o.g. ¢ > 1-5e(8) > 1, so that —i%(l—x”)Q > —£(9).

Let us consider the last line on the right hand side of . Observe that since
¢(1 —2™)2gs and PV are the restrictions of 75 to Ty, (1 —2™) x TT 4, (1 — 2™) and
(TT 45 (1 — 2™))t x (TT (1 — 2™))*, respectively, we have

o(1 —2™)2gs < s



68 8. Smoothing cone-like singularities

and

PN < 3
which gives us p(1—2™)2gsAPYN < AsA7s = Z(7s) (see Lemma/(B.3.3)). Furthermore,
¢ > —2¢(0) and cp’|[%71) = 0 implies ¢'/(1 — 2™) > —4e(0). Therefore

-9 " N2
' (P"i' ((P) (1 —l’n)2§5/\PN _{_2()0/(1 —x”)g(g/\PN

@
Y/ "2 /
— W(@(l _ xn)2£_]6) /\PN + (1_2%0(()0(1 - xn)2§6) A PN
> 2w 216w
> 4(—82(8) — 42(8))Z(55) = —482(6)Z(75)- (3.4.9)

Combining (3.4.8) and (3.4.9) we obtain
R(35) > —50£(6)Z(Fs).

b) Curvature operator of gs on M \ B{’:
Recall that up to now we only required that 1 is a smooth function on [—% +1,0]
such that ¥(0) = 1 — 4¢(d) = ¢(0) and ¢’'(0) = 0. We now specify some further
properties of 1, namely

e ¢y =1—4¢(6) on [—35 +1,0]

e y=1on[—3+1,—3+]1]

e —10e(0) <y <0

o [p®)| < ¢ 6Fe(8) for all k > 1, in particular || < ¢ 6%¢(6)

where ¢, are constants independent of § (see Figure above). A function with
these properties can be constructed as follows: We find a smooth nondecreasing
cut off function % : [0,1] — [0,1] such that k| 1y = 0 and Az ;) = 1, and put

73 37

W(w) =1 — 4e(5) + 4¢(5) (h(5(1 - m”))).

One easily checks that ¢ has the required properties, where c; = 4||h|cx (o 1))-
As in a), by applying Proposition to gs we obtain

R(s) = ¥R(gs) + (1—w)$L(gs) A Ligs) + V8'Ligs) A s — ~ ()25 A ds

4
— " "2
+ W@; A PN 124/ L(gs) A PV. (3.4.10)
Observe that at a point z = (#,2") € Bf% \ BY (i.e. 1 <1—2a" < %) we have
1
L(gs) = L(gs, g5 (1 — 2")) = 5L(g, g(8(1 —2"))) 2 0 (3.4.11)

in view of Condition 3b (recall that we assumed €(6) < 1), which implies L(gs) A
L(gs) > 0 (see Lemma [B.3.3]).
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Consider the terms ¢’ L(gs) A g5 and 21’ L(gs) A PY on the right hand side of
(3.4.10]). Since v’ vanishes on (—% +1, —% +1JuU (—3—1(S +1,0], it suffices to estimate
these terms on

ng (36) \ B1/(35) = B2/3 \ B

In this set we have

L(gs) = L(gs; Tgs (1 — ™)) = L(gs, Lg; (dist g;(-,0)))
1 .
= gL(gaFg(dlstg(‘uO)))
< %C’g = 6Cgs, (3.4.12)
where C' < oo is the bound of L(g,I'y(dist4(-,0))) on 32/3 \ B1/37 which is finite

since
B{\ o3> pwr L(g,Ty(dist 4(-,0))
is smooth on BY \ 0 and Bg/g \ Blg/g is compact. From we get
U Lgs) A gs > ¥'CO g5 A Gs > —c106%(6) §s A G5 (3.4.13)
and

20'L(gs) A PN > —2¢,06%(8)gs A PN, (3.4.14)

Combining (3.4.10), (3.4.13)), (3.4.14) and R(gs) > 0, and using gs < gs and
PN < g5, as well as ¢ > 1 —4e(6) > £ for small enough § and |¢"| < ¢ §%¢(0), we
arrive at

R(gs) > —c1C6%(8)gs A gs — *0152 (6)%9s A 95
—20%(5)ds A PN — 2c1062 (6)% A PN

> —C6%(8 )wg (¥gs) A (¥gs) — *01 (5) (¢95) (¥3s)
—02525(6)E(¢95)AP 26,0825 );(d}g(;)/\PN

> —11(c1 + ca 4 1)(C + 1)6%(8)ds A Gs
—C5%(8)Z(gs) (3.4.15)

where C' = 11(c1 + co + 1)%(C + 1).

Step 5: Next we smooth out the metric 75 on BY’ near o while preserving the
lower curvature bound —50e(d) (see Step 4a). Our method involves Proposition
so that here the assumption dim(M) = 3 is necessary.

Consider the metric

on B{*. (B%,3s) can be regarded as the unit ball in the Euclidean cone over
(fg,gp(%)g(;) (cf. Definition [3.2.1). Recall that go\ 1) = 0, which implies that
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N[ — o

Figure 3.6.: The Euclidean cone (B{’,7s)

A5 = A5 on ijQ, that is, 45 coincides with 45 on the ‘lower part’ of the cone (see

Figure above).
Observe that the metric (p(%)g(; has curvature > 1. Indeed, by (3.4.5) we have

R(gs) = (1 —2e(6))gs N Gs

which together with ¢ <1 — 4¢(§) gives us

R(p(3)a) = P(3IR(@) > ¢(5)(1 ~2(6)3 A ga
= S 2O A (5))
> [T 3)m) A ((3)m)
> (p(3)3) A (p(3)38) = Z((5)a).

Given an arbitrary small neighborhood U of o, by applying Proposition [3.2.6
to (BY?,7s) we find a smooth structure Ds on BY®, which is compatible with the
smooth structure induced by Dy on B{® \ o, and a smooth (w.r.t. Ds) metric on
BY which coincides with 75 on B’ \ U and has curvature > 0. Since 45 coincides
with 5 on ijz and has curvature > —50¢(0), this gives us a smooth metric %gsm)
on (M, Dy) which coincides with 75 off U and has curvature > —50e(d) (see Figure
below).

Since the structure Dy agrees with Djs on Bf“ \ 0, we may regard Dj as a smooth
structure on the entire manifold M and replace Djy; by Ds. Note that this does
not affect any of the previous constructions on M \ o, i.e. all objects considered
up to now have the same regularity on M \ o w.r.t. Dy as they did w.r.t. Djy.
However, it is important to notice that the distance function of vésm) may no longer
coincide with the distance function of g5, as opposed to the distance functions of all
modified metrics we considered up to now, the reason being that the smooth met-

ric constructed in Proposition does not necessarily coincide with the initial
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(BT, 7,)

(Bfn,j’)o)

smoothed ¥,

N | — A

N | —

Figure 3.7.: The upper figure shows the metric 75 after smoothing near o. The

lower figure shows the smoothed metric 'y(gsm).

metric in normal direction. Note also that (M, Ds) is diffeomorphic to (M, Dys)
for all § > 0 since dim(M) = 3.

Step 6: Let us sum up the constructions up to this point. We introduced a
smooth structure Dy which agrees with the initial smooth structure Dys on M \ o,
a smooth metric gs on (M \ BY, Ds), and a smooth metric y(gsm) on (B{, Ds), such
that
o 5= (gsm) on I's = 9By .
e The sum of the second fundamental forms of gs and 7§8m) on I'; is nonnegative
(see Step 3).

e The curvature operators satisfy
R(gs) > —C8%e(0)L(j5) (see Step 4b)
R(’yésm)) > —506(6)1(7(&8”1)) (see Step 4a and Step 5).
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In what follows, by ‘smooth’ we mean ‘smooth with respect to the structure Dj’,
unless noted differently. By choosing ¢ small enough and applying Theorem [1.1.2
we find a metric g((;sm) on M, such that

o g((ssm) is C? smooth,

° gé‘sm) coincides with gs and ’ygsm), respectively, off a small neighborhood of

Ts, say, U = BY’ 5\ B{* ;. In particular, g((gsm) is C* smooth off U,
o ggsm) is CY close to gs on M \ BY* and 'yésm) on B{’ \ o, respectively, say
~8G5 < g™ — g5 < 835 on M\ BY

and
—oy ) < glem) ) < g lem) oy IS o

e the curvature operator of ggsm) is bounded from below by —100¢&(9).

(see Figure [3.8| below).

Figure 3.8.: The glued metric after smoothing near T's (cf. Figure

Step 7: Finally, let us construct the sequence (M, D;,g;). We choose a sequence
d; — 0 and define g; := 5i2g((;fm), and D; := Ds,, where g((sfm)
the previous step. Let us verify that g; — ¢ in the C'* sense off 0. That is, given
a coordinate neighborhood (U, €) of (M, Dys) such that U is a compact subset of
M \ o, we show that |*(gi)u — ’5gkl|]0k(£(U)) — 0 as i — oo for all k£ > 0, where

€(g:)1 and &gy are coordinate functions of g; and g with respect to €. Note that

and Ds, are as in

this makes sense, since D; is compatible with Dj; on M \ 0, and thus any coordinate
chart (U,€&) € Dy, U o lies in D; for all i > 1.

Let U be such a coordinate neighborhood. Then U C M \ B 5, for large enough
i. From construction g; coincides with g on M\ BY, so that w.l.o.g. we may assume

that U C By \ Bgéi = Bf%i \ Bgé". In this set we have 5%91- = g(‘,sm) = gs,- Let

k3
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us return to the construction of gs (see Step 2). Recall that we introduced Fermi
coordinates x = (#,2") above I's = Iy, (1) = 0B, where 2" = 1 — dist 4, (-,0) =
— 1dist (-, 0), and defined

35(a) = (w )35 2)

where g5(p) is the restriction of gs(p) to T,y () x T,T'y, (1) for p with dist 45 (p, 0) =
r. (Note that here we use the subscript ¢ for the cut-off functions 1 constructed
in Step 4b.) Thus, in coordinate-free notation

= s(1 — dlst 4(+0))3s + g5 = Us(dist 4(-,0))gs + g5 » (3.4.16)

where 15 : [0,1] = R, ¥5(t) = 1s(1 — t/§), and (9¥)ij = 6indjn in our coordinates.
Putting 0 = 1;51,, on U we have

9—9i = 6795 —0;3s,
= 07 (ds, +g5) &7 (Yi(dist 4+, 0))gs; + 93,
(1 — l/JZ (dist 4 )(5295
= ( 1/12 (dist 4 )

Thus, in order to show that g; — ¢ in the C*°-sense on U it suffices to verify that
¥; — 1, and that all derivatives of 1; tend to zero uniformly as i — oco. In view of
the properties of 15 (see Step 4b) we have
~ t .
[%i(t) = 1] = lobs, (1 = =) — 1] < 4e(63) =0
(2
and 1 ’
. .
phos (1= )l < cre(@) 50

7(k) _
9001 = G-
and we are done.

Let us show that the metrics ¢g; have almost nonnegative curvature operator.
Since g; = g on M \ BY and R(g) > 0 by assumption, it suffices to estimate R(g;)
on B{. Recall that the curvature operator of g((;sm)

—1002(4) (see Step 6). Thus, on Bf we compute

is bounded from below by

Rig) = R(62g5™) = 62R(g5™) > ~100(8:)82g5™ A gi™

—100

5 sm sm
552 ) (539§i A (5?9§i )= —eigi A gi = —eiZ(g0),

where ; := 100e(5;)/62 — 0 as i — oo in view of Condition 3.
This concludes the proof of Theorem [3.4.1 O

Remark 3.4.3. Observe that the fact that g; — ¢ uniformly on compact subsets
and g; = g on M\ BY implies that g; — ¢ uniformly on M\ V for any neighborhood
V' 3 0. More precisely, given a neighborhood V' 3 o, for any § > 0 there exists a
N = N(V,§) such that on M \ V

—09<gi—g<dyg
for all i > N(«). Note that for small ¢ this also implies

—209; < gi — g9 < 26 g;.
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3.5. Distance and volume estimates for g;

In this section, we discuss some further properties of the sequence (M,g;) con-
structed in Theorem We will use the results from this section for an appli-
cation of Theorem involving M. Simon’s results from [28]. In particular, we
show that (M;,dist 4,,0) — (M, dist 4) in the pointed Gromov-Hausdorff sense, and
that the manifolds (M;, g;) are non-collapsed, that is, if unit balls in (M, g) satisfy
a uniform lower volume bound > 0, then so do unit balls in (M, g;), independently
of i. Note that this is not necessarily the case for an arbitrary sequence (g;) con-
verging to g in the CY (or even C*) sense off o € M, since the balls B{’(0) could
become very ‘small’ compared to Bf(0). Nevertheless, this does not happen for
our sequence, mainly for the reason that in view of our particular construction the
distance functions dist 4, (-, 0) are well-controlled near o.

Lemma 3.5.1. Let M, g, (gi)ien be as in Theorem|3.4.1. Then for all p € By, we
have
dist ¢, (p, 0) < dist 4(p, 0) + &,

where €; — 0 as i — oo . In particular this implies that for all 0 < a < rq

BY c BY%

a+é;”

Proof. As in the proof of Theorem [3.4.1] w.l.o.g. we assume that 7o = 1. We show

that for all > 0 and p € Bf%

dist g (p,0) < dist g4, (p, 0) + 3. (3.5.1)
S
Since by construction g; = 67 g(fm) on B = Bf%_, this implies

dist ¢, (p, 0) = d;dist 4o (p,0) < d;(dist 45 (p,0) + 3) = dist 4(p, 0) + 39;
5 ¢

for all p € BY.
From Lemma and by construction of ’yésm) (see Step 5 in the proof of

Theorem ) we know that for all ¢ € Bi%

: (3.5.2)

| =

dist ggsm)(q, 0) < dist 5,(g,0) = dist 4;(g,0) <

so that (3.5.1)) holds on Bi%. Let p € Bi]% \ Bf%. In view of (3.5.2)), given any

q € Tgy(3) = OB

1/2 We have

. . . . 1
dist (sm) (p,0) < dist m) (p, q) +dist sm)(g,0) < dist m)(p,q) + 5.
9s 9s 9s 9s 2

Since by definition dist e (p, Fgé(%)) = inf{dist ) (p,q)|q € Fgé(%)}, this im-
5 S
plies

. . 1 1
dist g (p,0) < dist g (p, Fgé(i)) +3 (3.5.3)

Let gs U 75 denote the metric on Bf%, given by

ds on By \ Bf

gsUs = _
ys on B}’
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where gs and 45 are the metrics constructed in Step 2 of the proof of Theorem
[B.41] Consider the curve

1
c: I=[z"(p), 5] — Bf% \ Bl/2
c(t) = a7'(@(p).t).
Then c(z"(p)) = p, c(%) =q € Fgé(%), and ¢(t) = 8%‘0@) for all t € I, so that
lléllgsuss = 1 and ||¢]lg; = 1 . Recall that by construction g((ssm) coincides with

Js U s on Bg‘55 \ Bi% off a small neighborhood U of I's = 9B, and g((ssm) and

gs U s are CO close on U (cf. the construction in Step 6 in the proof of Theorem

. Therefore the length of ¢ with respect to ggsm) satisfies

L = [ IOl o

) 1
< /Ilc(t)\lgguw(t))de
I
1, 1
= 5 — X (p) + 5

= dist g, (p,Ts) +1
< dist g, (p, 0) + dist 4, (0, T's) +
= dist 4(p,0) + (3.5.4)
where we used that by construction of the Fermi coordinates x = (Z, z™) we have
—z"(p) = dist 4;(p,['5). By definition dist ) (p,I‘%(%)) is the infimum of the
6
(sm)

lengths With respect to g5~ of all piecewise C' curves connecting p and I‘gé(%).

Thus, ) follows from combining (3.5.3)) and (3.5.4] -

O]

Lemma 3.5.2. Let everything be as above. For any o > 0, a < min{rg, 1} there
exists a N = N(«) such that for alli > N and p € M

|dist 4(p, 0) — dist ¢, (p, 0)| < adist 4(p,0) + .

Proof. Observe that since g; — ¢ uniformly on M \ B, we find N = N(a) such
that || - [lg < (L+a)l[ - llg, and || [lg, < (1 +a)|| - [lg on M\ Bg for i > N (see
Remark [3.4.3). Thus, for any piecewise C* curve c : [a,b] — M \ BY we have

Ly(e) < (L )Ly () and Ly, (c) < (1+a)Ly(c) (3.5.5)

b
JAECI
1+a/|r Mowetend

< (I+a)Ly(c),

for i > N. Indeed,

Lg(c)

IN

and the second estimate follows by a similar computation.
First consider the case where p € M \ BY. For any fixed i > N by definition of
dist 4, we find a piecewise C! curve c: [0,1] — M connecting p and o such that

Ly, (c) < dist g, (p, 0) + a.
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Let to = inf{t > 0|c(t) € BE} and ¢1 := c|jg4,). Then q := c(to) € dB]. Let
c2 : [to, 2] = M be a piecewise C'! curve connecting ¢ and o such that
Ly(c2) < dist 4(q,0) + a < 2a.
We denote by ¢ + ¢o the concatenation of ¢; and ¢, that is
cg+c:[0,2] - M
c1(t) iftel0,t
s Ja® [0, t0]

Cz(t) ift e [to, 2]

Since ¢; + ¢3 is a piecewise C'! curve connecting p and o we have
dist y(p,0) < Lg(c1 +c2) = Lg(er) + Lg(ca)

< Lg(cr) + 20 (3.5.6)

Furthermore, since by construction c¢;([0,t]) € M \ B, by we have

Lye) < (1+a)lg(c)

= (I+a)Ly(clpg)) < (1 +a)ly(c)

for ¢ > N. Using this in we obtain

dist y(p,0) < (14 a)Lg(c)+ 2
< (14 a)(dist g (p,0) + @) + 2
< (14 a)dist g, (p,0) + 4a,
where we used o < 1. This implies

dist 4(p, 0) — dist 4, (p, 0) < adist ¢, (p, 0) + 4o (3.5.7)
forpe M\ By and i > N.

Let us show an analogous estimate for dist 4, (p, 0) — dist 4(p, 0). We find a piece-
wise C! curve ¢: [0,1] — M such that

Lg(¢) < dist 4(p,0) + a.

Similar as above, we consider the restriction ¢ := ¢| [0,70] where tg is defined similarly
to to, such that & ([0, %o]) € M\ BY and § := & (tg) € OB%. We then find a piecewise
C' curve ¢ connecting ¢ and o such that
Ly, (&) < dist 4,(q, 0) + a,
which gives us
dist gi (p, O) < ng' (51 + 52) = ng‘ (51) =+ Lgi (62)
< Lg,(¢1) +dist 4,(q,0) + a. (3.5.8)

Similar as above, since the image of ¢, is contained in M \ BY, in view of (3.5.5))
we get the estimate

Lgi (61) <

IA
~ o~ o~~~
—_
+
\_/\_/\%/\_/\_/
—
=
[0}
-+
Q
3
S
+
Q
~

IN N

1+ a)dist 4(p, 0) + 2 (3.5.9)
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for i > N. Moreover, since ¢ € 0B% C B}, by Lemma we have

dist 4,(¢,0) < dist ¢(¢,0) + &; < dist 4(G,0) + a =2« (3.5.10)
for i > N, if we choose N even larger. Combining (3.5.8)), (3.5.9) and (3.5.10) we

arrive at

dist 4, (p,0) < (1+ a)disty4(p,0) +2a+2a+a
= (14 a)dist 4(p,0) + b

which gives us

dist ¢, (p, 0) — dist 4(p, 0) < acdist 4(p, 0) + Scv. (3.5.11)
Using this in (3.5.7) yields

dist 4(p, 0) — dist 4, (p, 0) adist ¢, (p, 0) + 4o
a((1 + ) dist 4(p, 0) + 5a) + 4o

2adist 4(p, 0) + 9« (3.5.12)

ININ TN

Combining (3.5.11f) and (3.5.12) gives

|dist 4(p, 0) — dist 4, (p, 0)| < 10 dist 4(p, 0) + 10«

for p € M \ B and i > N(a) as above.
Consider the case where p € B} C Bf,. By Lemma

dist 4, (p, 0) < dist 4(p,0) +&; < 2a
for i > N(«) after choosing N(«) even larger. Then clearly
|dist 4(p, 0) — dist 4,(p, 0)| < 3 < 10acdist 4(p, 0) + 10c.

Replacing a with /10 gives us the desired estimate.
O

Lemma 3.5.3. Let everything be as above. For any o > 0, o < min{rg, 1} there
exists a N = N(«) such that for alli > N and p,q € M

|dist 4 (p, q) — dist 4, (p, q)| < adist 4(p, q) + a.

Proof. The proof is similar as in Lemma [3.5.2] First consider the case where
p,q € M\ BY. We find a piecewise C! curve ¢ : [0,1] — M connecting p and ¢
such that

Lg(c) < dist 4(p, q) + .
We choose N = N(a) such that holds for all i > N. If ¢([0,1]) ¢ M \ B,
then by

Lg,(c) < (1+ a)Ly(c)
(1 +a)(dist4(p, q) + )
(14 a)dist 4(c) + 2

dist g, (p, )

IN AN TN
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for all i > N(«), where we used o < 1, and we have
dist ¢, (p, q) — dist 4(p, q) < adist 4(p, q) + 20

Suppose that ¢([0,1]) N BY # (. Similar as in the proof of Lemma we find
0 <ty < sp < 1 such that

c([0, o)), c([s0,1]) € M\ B,

and
p:=c(ty),q := c(sg) € OBI.

We put c1 := ¢fjg,) and cz := c|[5, 1. Then by (3.5.5) we have
Ly (cr) < (1+a)Ly(cg) for k=1,2

for alli > N as above. Let us fix i > N. We find a piecewise C! curve ¢, connecting
p and ¢ such that

Ly, (ca) dist 4,(p, q) + «
dist 4, (p, 0) + dist 4, (G, 0) +

dist 4(p, 0) + dist 4(g, 0) + 2&; + o < 5ev,

IN N IN

where we applied Lemma to p,G € OBY, C BY,. Since ¢ +cq+c3 is a piecewise
C' curve from p to ¢ we have

Lg;(¢1 4 ca + c2) = Ly, (c1) + Ly, (c2) + Lg; (¢a)
(1+ ) (Lg(cr) + Lyg(c2)) + 5a

dist ¢, (p, )

ININ

(1 + ) Lg(clio,to)ufso,1)) + D
(1+a)Ly(c) + 5o

(1+ a)(dist 4(p, q) + ) + b
(1 + a)dist 4(p, q) + T

IN

VARRVAN

which implies

dist g, (p, q) — dist 4(p, ¢) < adist 4(p, q) + Tax
for i > N(«). By a similar argument one shows that

dist 4(p, q) — dist 4, (p, q) < adist 4, (p, q) + T
for i > N(«a). Combining these two estimates we obtain

dist 4(p, q) — dist ¢, (p, q) adist ¢, (p, q) + Ta

a((1+ a)dist 4(p, q) + Ta) + Ta
< 2adist 4(p, q) + 14

<
<

Thus we have
|dist 4(p, q) — dist ¢, (p, q)| < 20adist 4(p, ¢) + 20« (3.5.13)

for all p,q € M \ B} and i > N(a).
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Next, consider the case where p is an arbitrary point of M and ¢ € BY. Applying
Lemma to ¢ and choosing N («) even larger, if necessary, yields

dist 4,(g,0) < dist 4(q,0) +¢; < dist 4(g,0) + a < 2«
for i > N(«). Then using the triangle inequality and Lemma we compute

|dist 4(p, 0) — dist ¢,(p, 0)| + dist 4(g, 0) + dist 4,(g, 0)
10acdist 4(p, 0) + 10a + 3ax

10acdist 4(p, ¢) + 10acdist 4(q, 0) + 10a + 3c
10acdist 4(p, q) + 23 (3.5.14)

|dist ¢(p, ¢) — dist 4, (p, q)|

IA A

IA A

for all i > N(«a). Combining (3.5.13]) and (3.5.14)) gives
|dist 4(p, q) — dist 4, (p, ¢)| < 30adist 4(p, q) + 30«

for all p,q € M and i > N(a), and we obtain the desired estimate by replacing «
with «/30.
O

Proposition 3.5.4. (M, dist 4,,0) — (M, dist 4, 0) in the pointed Gromov-Hausdorff
sense.

Proof. We show that for given R > 0 and 6 > 0 there exists a N = N(R,0)
such that for all ¢ > N the inclusion (B}, distg,) — (M, dist,) is a d-Hausdorff
approximation of B, in (M, dist ¢), that is

(1) |dist 4(p,q) — dist 4, (p, q)| < 0 for all p,q € BY
(2) B}, C T5(B%) = {p € M |dist 4(p, B%) < 6}.
Let R > 0,6 >0, and p,q € BY;. By Lemma
dist 4(p,0) < (1 + a)dist g, (p,0) + a < (1 +a)R+ o < 2R,

and similarly dist 4(¢,0) < 2R for small enough o = «(R) and ¢ > N(«), where
N(«) is as in Lemma m so we have p,q € BgR. By Lemma m

|dist g(p,q) —dist 4,(p,q)| < adisty(p,g) + o
adist 4(p, 0) + adist 4(q,0) + «

<
< 4aR+a<$é

for small enough a = a(d, R) and i > N(«) as in Lemma which shows (1).
Let us show (2). Given p € B%, by Lemma we have

dist 4, (p,0) < dist 4(p,0) + adist 4(p,0) + «

)
< R4+aR+a< R+ B
for small enough a = (R, ) and i > N(«) as in Lemma This implies that
p € B%M/Q, S Bg}Q(p) N BY% # 0. Choose ¢ € B§;2(p) N BY%. Then by Lemma
after choosing « smaller, if necessary, we have

dist 4(p,q) < (1+a)distg,(p,q) +

< (1+a)g+a<5
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for i > N(«), which implies dist 4(p, B% ) < ¢, and shows (2).
O

Note that for any ball Bf(p) C M \ o the volume vol,(B{(p)) with respect to g
is well defined since by assumption g is continuous on M \ o.

Proposition 3.5.5. Let M, g and g; be as in Theorem[3.].1 Suppose that there
exist R > 0 and vg > 0 such that

volg(BY(p)) = vo

for all balls B (p) C M \ B},(0). Then there exists a vy >0 and N € N such that
volg, (BY'(p)) = v1

forallpe M, 1> N.

Proof. Recall that by construction g; = g on M \ By,(0). As in the proof of Theo-
rem we may assume w.l.o.g. 7o = 1. Consider a ball B (p) C M.

Case 1: OEBQ; (p)

In this case By (p ) Bf;z( 0) D Bf/4( o) for large enough i in view of Lemma

Choose 0 < v < 7. Using the fact that g; = g uniformly on B} / 4(0) \ B(0), for
large enough ¢ we compute

voly (B (p)) > voly, (B, (0) \ BY(0)) > 3voly(BY,4(0)\ BA(0)) = wy) > 0

Case 2: o ¢ Bi%( )
a) Suppose that
B{'(p) € M\ Bg,,, (o),

where 7¢ is as in Theorem such that g; = g for all i on M \ B, (0). Then
Bi'(p) € M\ B, (o),

so that BY'(p) = BY(p). Moreover,
BY'(p) € M\ By (o),

voly, (BY(p)) = voly(BI(p)) = o

by assumption.

b) Suppose that BY(p) N B, (o) # 0.
From Lemma it follows that for small enough o > 0 and i > N(«)

1
dist 4(p, q) < = O[dis‘c a(D,q) + % < 2dist 4, (p, q) + 2«

for all p,q € M. Choose x € B{'(p) N BY

Rtro(0). Then

dist 4(p,0) < dist 4(p, ) + dist 4(x, 0)
< 2dist 4, (p,z) + 200+ R+ 19
<

2420+ R+1r0<3+R+rj=R< o0 (3.5.15)
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for small enough a and i > N(« ) as in Lemma m Moreover, dist ¢,(p,0) > 3

since o ¢ BfZ/Q( ). By Lemma [3.5.3] for small enough o and ¢ > N(«) this implies

1 1/2 o
—(dist,(p.0) — ) >

dist 4(p, 0) > >

1
“l14+a l4a” 4
SO

Bf/s( p) C M\B1/8( 0). (3.5.16)

For all y € Bl/S( p) we have

l14+a)+a<l

OO\»—A

dist 4, (p,y) < (1 + a)dist 4(p,y) + a

which gives us

BY'(p) > BY 5(p)- (3.5.17)
Combining (3.5.16|) and m 3.5.17)) yields
. 1
voly, (BY'(p)) = voly, (BY 5(p)) = 5voly(BY 5(p)) (3.5.18)

for large enough i since g; — g uniformly on M \ B} /8(0). Moreover, by (3.5.15)
and ( we have p € Bg( ) \Bl/4( 0). Since g is continuous on M \ Bl/8( 0),
the function

y — volg (Bi]/g ()

is continuous on M \ 31/4( 0), and we find vy > 0 such that Volg(Blg/g(p)) > 209
for all p € B%( 0) \ By/4(0). In view of (3.5.18)) this gives us voly, (B{*(p)) > vap).
Putting v := min{vg, vy, vap)} we obtain the desired estimate.

3.6. An application of Theorem [3.4.1]

In [28], M. Simon studied a class of smooth complete Riemannian three (two)
manifolds (M, g) which satisfy

(a) Ric(g) > k
(b) volg(B{(x)) > vo >0

(¢) supy [R(g)| < oo

and proved uniform estimates for solutions to Ricci flow of such manifolds, showing
that there exists a time T" = T'(k,vg) > 0 such that solutions (M, g(t)), g(0) = go
exist at least on [0,7"), and satisfy (a), (b) and (c) with constants —K, where
K = K(k,v9) > 0 and V = vy/2. Moreover, the solutions satisfy |R(g;)| < K?/t
on M x (0,T), and |dist g, — dist ¢,| < C(K, |t —s|) on M for all t,s € [0,T"), where
C(K,|t—s|) = 0as |t—s| — 0 (cf. Thm. 1.9 of [28]). This result was the key step
in the proof of the following
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Theorem 3.6.1 (Theorem 1.11 of [28]). Let k € R and vg > 0 be fized. Let
(M;,%go) be a sequence of smooth complete Riemannian three manifolds satisfying
(a), (b) and (c) (with constants k and vy independent of i), and let

(X,dx,z) = lim (M, dist (igg), x;)

1—00

be a pointed Gromov-Hausdorff limit of this sequence. Let (Mi,ig(t))te[oj) be the
solutions to Ricci flow as above. Then (after taking a subsequence if necessary)
there exists a Hamilton limit solution

(N, g(t), )c01) = }EEO(M% ‘g(t), Ti)te(0,1)
satisfying similar estimates as the solutions (Mi,"g(t))te[oyT), and
(1) (N, dist (g(t)),z) = (X,dx, ) in the Gromov-Hausdorff sense ast — 0

(1i) N is diffeomorphic to X. In particular, X is a manifold.

Moreover, from the proof of [28], Theorem 1.11 it follows that there exists a distance
function | on N, such that dist (g(t))) — [ as t — 0 in the C° sense on N, and
(N,1) is isometric to (X, dx).

Furthermore, if the metrics ‘gy have almost nonnegative Ricci curvature, then
the limit solution has nonnegative Ricci curvature for all ¢ € (0,7"). More precisely,
we have

Corollary 3.6.2 (Corollary 1.12 of [28]). Let (M;,%g0), i € N be a sequence of
three manifolds as in Theorem |[3.0.1], satisfying

: 1
Ric(M;, 'go) > .

Let (X,dx) = lim;_(M;,dist (‘gp)) be the Gromov-Hausdorff limit of this se-
quence. Then the solution (N, g(t),)co,r) obtained in Theorem satisfies

Ric(g(t)) = 0

for all t € (0,T), and (X,dx) is diffeomorphic to (N,g(t)). In particular, com-
bining this with the results of W. X. Shi [2]|] and R. Hamilton [12], (X,dx) is
diffeomorphic to R3, S? x R or S3 modulo a group of fized point free isometries in
the standard metric.

Theorem 3.6.3. Let (M,g) and (M;,g9;) = (M, D;,gi), i € N be as in Theorem
3.4.1. Suppose furthermore that (M, dist ;) is complete, and satisfies

(b’) vol(Bi(p),g) > vo for all balls BY(p) C M \ B}(0), where R > 0 is fized

(¢”) suppn B, o) R(9)| < o0

Then the following statements are true:
1) There exists a N € N such that for all i > N the manifolds (M;,g;) are
complete and satisfy conditions (b), (c) above, that is

e vol,, (BY (p)) > v1 for all p € M;, where vi = vi(R,vp) > 0 does not depend
on i
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o supyy, [R(gi)lg; < o0

Furthermore, (M;, dist ¢, 0) — (M, dist 4, 0) in the pointed Gromov-Hausdorff sense.

2) There exists a T =T (R,vg) > 0 such that solutions to Ricci flow (M;, hi(t)),
hi(0) = g; exist at least for t € [0,T), and there exists a Hamilton limit so-
lution (N, h(t))ie(o,r) = limiseo(Ms, hi(t))ic(o,r) satisfying Ric(h(t)) > 0 for all
te (0,7).

3) M s diffeomorphic to (N, h(t)) for all t € (0,T). In particular, M admits
a smooth metric of nonnegative Ricci curvature, and it is diffeomorphic to R3,
S? xR or S modulo a group of fized point free isometries in the standard metric.
Moreover, (M, dist ) is isometric to (N,1), where | is the C° limit as t — 0 of the
distance functions dist ;) of the limit solution (see Thm. .

Proof. 1) By assumption (M,dist,) is a complete metric space, and M is locally
compact since it is a manifold. The generalized Hopf-Rinow Theorem ([10], [2])
implies that any bounded closed subset of M is compact. From Lemma [3.5.3] it
follows that for large enough i any bounded subset of (M;,dist,) is bounded in
(M, dist 4), where ‘large’ does not depend on the particular set. Since for all ¢
the topology of M; coincides with the topology of M, this implies that for large
enough ¢ bounded and closed subsets of (M;, dist 4, ) are compact. From the classical
Hopf-Rinow Theorem it then follows that (M;, g;) is complete.

The fact that the manifolds (M, g;) are non-collapsed is shown in Proposition
Moreover, the metrics g; are smooth and coincide with g off a compact
neighborhood of 0. Therefore condition (¢’) implies that sup,,. [R(g:)|g, < oo for
all ¢ > 1. Finally, the Gromov-Hausdorff convergence is shown in Proposition

In view of 1), assertions 2) and 3) follow by putting (X,dx) = (M,dist,) in

Theorem and Corollary O






Appendix A.
Fermi coordinates

A.1. Construction of Fermi coordinates about a
hypersurface I’

Fermi coordinates above a submanifold of a Riemannian manifold are a generaliza-
tion of normal coordinates about a point. A detailed construction for the general
case of arbitrary codimension can be found in [II]. Here we sum up constructions
from [11] for the case where the submanifold is an embedded hypersurface.

Let M be a smooth n-dim. manifold, equipped with a smooth Riemannian metric
g. Let T be a smooth embedded hypersurface of M. Let TT" denote the normal
bundle of I" in M, i.e.

Tt = {(p,v)|p €T, v € T},

where 7, ﬁFl is the orthogonal compliment (with respect to g) of T;I" C T; M. Note
that I can be regarded as a submanifold of TT'", after identifying I" with the zero
section of 7T .

Let exp™ be the restriction to 7T of the exponential map exp : TM — M. Then
exp maps a neighborhood of T' ¢ TT'! diffeomorphically onto a neighborhood of
I' C M (cf. Lemma 2.3 of [I1]). This fact allows us to define smooth coordinates
(Fermi coordinates) on a small neighborhood U C M of a point py € I" as follows:

Let 2 = (2',...,2"!) be a coordinate chart of ' N U, and let N be a smooth
unit section of 7T+ NTU. For a point U 3 p = exp*(¢N(p)), where p € I'NU and
t € (—e,e), we put

For any p € U, s — exp-(sN(p)), s € [0,2"(p)] (or s € [z"(p),0]) is the unique
shortest geodesic from I' to p (cf. Lemma 2.7 of [I1]), which implies that the
distance function from I' is given by dist 4(-,I') = |2"|. Consider the equidistant
hypersurfaces I'(t) = {p € M |2™(p) = t}. Then at each point p € U we have
T,I'(t) = span{01(p), - - -, On—1(p) }, where 9; :=
from any equidistant hypersurface I'(¢), ¢ # 0 is given by N = ‘g—z‘aﬂ. This is a

consequence of the generalized Gauss lemma (Lemma 2.11 of [I1]), which states
that N = V9dist (-,T") off T.

In view of the above constructions, in Fermi coordinates the metric tensor g has

the form
0
9(p) < 1

where §(p) is the restriction of g(p) to T,I'(z"(p)), given by

9ij(x(p)) = 9(p)(9i(p), 9;(p)),
1<i,j<n-—1.
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P x(p)=(%(p).0
p=exp” (N (p))
FeM B R""'x[0}cR"

Figure A.1.: Fermi coordinates above I

A.2. Modifying the metric on equidistant hypersurfaces

Let (U, (x!,...,2™)) be Fermi coordinates above I' with respect to g as above,

constructed using a coordinate chart # = (2!, ...,2""!) on I'NU and a smooth unit

section N of TT's N TU. Suppose that h is another smooth metric on TU, which
in these coordinates has the form

Recall that for any p € I' N U we have N(p) = 0,(p) from construction, and
therefore

h(B)(N (D), 0:(p)) = h(D)(On (D), 0:(D)) = hni(P) = dni,

which means that N is a smooth unit section of TT1 5.

Lemma A.2.1. Let (z,z") be Fermi coordinates above I' N"U induced by & and N
with respect to h. Then " = x™, and in particular dist (-, I") = dist 4(-,T").

Proof. To verify this it suffices to check that any geodesic v with respect to g
through p € T with initial velocity 4(0) = N(p) is a geodesic with respect to h. In
coordinates (z!,...,2") we compute using h,; = const forall [ =1,...,n

1
hrﬁn = ihkl(anhnl + anhnl - alhnn) =0.

Moreover, §(t) = %(V(t)) implies 4%(t) = &% for i = 1,...,n, and consequently

441 =0. Thus

: d .
"Vt = (G T o) 0k
cnsnh

= 4" MTh, 07)0k =0
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A.3. Second fundamental form of equidistant hypersurfaces

In Fermi coordinates we have a simple expression for the second fundamental forms
of equidistant hypersurfaces.

Let (U, (x!,...,2™)) be Fermi coordinates as above and let h be a smooth metric
on U as in Lemma By Lemma the equidistant hypersurfaces of g
and h coincide, and a% is normal to these hypersurfaces. Denote by I'(p) the
hypersurface, which is equidistant to I' and contains the point p. Let "L(p) €
(T,I(p) ® TpI‘(p))* be the second fundamental form of (I'(p), h) C (U, h) in p with

respect to the normal 9,(p) = %(p). Then we have

Lemma A.3.1. "L;;(z(p)) = —30nhij(z(p)).

Proof. At p we compute

"Lij = —{("V,00,05)n = ="Thihs;
1
= _ihkl(anhil + Oihni — Othni) hij
1
= —50hij,
where we used that h,; = const for alli=1,...,n. U

Remark A.3.2. Note that h and "L can be regarded as a sections of (TM ®TM)*,
after identifying h = h(-, PT-), and "I = "L(PT-, PT.), respectively, where P7 (p) :
T,M — T,I'(p) denotes the projection

n—1
X = X*o,(p) = > X*0r(p).
k=1

In view of these identifications, in Fermi coordinates we have

and

S
" 0 0

Observe that the identification for the second fundamental form is consistent with
the fact that hLij = —<hvaian,aj>h =0ifi=norj=n.






Appendix B.
Tensors and linear operators

B.1. Linear operators and (4, 0)-tensors

Let V be a finite dimensional vector space and 7" a (4,0)-tensor on V. Given a
basis {e1,...,en} of V, we denote by Tiji = T'(ej, €5, ex, €;) the coefficients of T
with respect to this basis. One has the following connection between (4, 0)-tensors
on V and bilinear forms on A%V: Any (4,0)-tensor {7}, } which is antisymmetric
in i, j and k, [, respectively, induces a bilinear form 7 on A?V, which is defined by

T(ei Nej,ep N\ 61) = T(ei, €5, €k, el) = Tijkl

for basis vectors e; A e; = e; ® e; — e ® ¢; and extends to A%V by linearity. Note
that the antisymmetries of 1" ensure that

T(es Nej e Ney) = =T (ej Nejep Nep) = =T (e Nej, e Neg),

i.e. T is well defined. If in addition Tjji; = Tjy;; then the induced bilinear form 7
is symmetric. Furthermore, we have

Lemma B.1.1. Let O"B..E AQV,Hoz = ZK,J' aijei/'\ej =aVe;®e;, B = ZK]- Bie; A\
ej = PBe; ®e; (where ¥ = —a?" and B = —p7"). Then

1 -~
T(a,B) = 1 Lk gRL

Proof. Using the antisymmetries of o/, ¥ and Tijx we compute

T(a,8) = T(ZaijeiAej,Zﬁklek/\el)

i<j k<l
- T
i<j k<l
1 g
= 3 > [Z TmB™ +) Tijklﬁkl}
i<j k<l k<l
1 g
= 3 > al [Z TiirB™ +> Tijklﬁkl}
i<j k<l k>l
1 g
= iﬁkl Z Tijrc”
i<j
1 g
= 7 Lk g,

Conversely, any bilinear form 7 on A2V induces a (4,0)-tensor on V via

T(e,-, €5, €k, 61) = ’T(ez Nej,ep N\ el).
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The such defined tensor satisfies Tj;x = —T)j;11 = —Tjj- If in addition the bilinear
form 7 is symmetric, then we also have Tj;x = Tiy;;.

Let us now consider an inner product g on V. The induced inner product Z9 on
A%V is defined by

T9(e; Nej e Ney) = gingjt — 9jkgil
where g;; = g(e;,e;). Note that 79 may also be seen as the bilinear form coming

from the (0, 4)-tensor {girgji — gjrga}. Using this inner product we may identify
linear operators and bilinear forms on A%V by putting

Ig(ei/\ej,T(ek/\el)) :T(ei/\ej,ek/\el). (B.l.l)

The bilinear form is symmetric iff the operator is self-adjoint.

B.2. Kulkarni-Nomizu product

Definition B.2.1. The Kulkarni-Nomizu product of two linear endomorphisms A,
B of V is the linear endomorphism

AAB: AV = A%V
(AAB)(e; Aej) = %(A(ei) AB(ej) + Bler) A Aley).

The Kulkarni-Nomizu product of two bilinear forms A, B on 'V is the (4,0)-tensor
AN B, defined by

1
(AN B)ij = AN Blej, ej,ep, ) = §(Az'kle — A1 By + BirAji — BjrAq),

where A;j = Alej,ej) and Bij = B(e;, e;).

The factor % ensures that we have idy A idy = idj2y,. Note that the tensor
{(ANA B)yjp} is antisymmetric in 4, j and k, [, respectively. If in addition A and B
are symmetric, then we also have the symmetry (A A B)ijn = (A A B)kij-

Note that Definition [B.2.1] is consistent with the identifications in Section [B.1l
More precisely, we have the following

Lemma B.2.2. Let A, B be the bilinear forms on V which correspond to the
operators A, B, i.e. A(-,-) =g(-,A-) and B(-,-) = g(-,B-). The operator A N B
and the (4,0)-tensor A A B induce the same bilinear form on A%V :

A ANB(e; A €j,er N e) =19 (62' Aej, (AANB)(ex A el)) = (AN B)ijkl (B.?.l)

Proof. A(-,-) = g(-,A-) and B(:,-) = g(-,B-) implies that Ae; = A,r9"%es and
Be, = B,rg"%e, for all basis vectors ey, where g™ is the inverse of the matrix
grs = g(er, es). We compute

79 (ei Aej, (A VAN B)(ek VAN 6[)) = %Ig (ei A ej, A(ek) A B(el) + B(ek) N A(el))
1

= §(Ark9m 19"+ Brg " Ay gP?) I (e A ej,es A eg)
1

= i(Arkgrs plgpq + Brg™® plgpq)(gisgjq - gjsgiq)
1

= §(Az‘kle — AjiBi + BipAji — BjrAi).
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B.3. Inequalities for linear operators

Consider a n-dim. vector space V', equipped with an inner product g, and let A, B
be self-adjoint linear endomorphisms of V' with corresponding symmetric bilinear
forms A, B, and x € R. We will use the following notation

Notation B.3.1. We say that A > x € R, if all eigenvalues of A are at least k, or
equivalently if
A(X, X) > rg(X, X)

for all X € V. We say that A > B, if A — B > 0, or equivalently if
AX,X)-B(X,X)>0
forall X € V.

Lemma B.3.2. Let T be a self-adjoint linear endomorphism of A*V and (Tyjk)
the corresponding (0,4)-tensor on V. If T > 0, then the bilinear form

trf, T := gﬂT(-,ej7 e):VxV =R
is positive semidefinite (where e1, ..., ey is a basis of V' and gi; = g(e;, e;)).

Proof. We identify 7 with the corresponding symmetric bilinear form on A2V in
view of (B.1.1). By assumption 7 (o, ) > 0 for all 2-vectors o € A2V. Let
{e1,...,en} be a basis of V such that g;; = g(e;, e;) = ;. Let X = XFe, € V.
For every 1 < j < n we define the 2-vector a; = XFep A ej € A%V, and compute
rf,T(X, X) = ¢'T(X,e;,X,e1) =Y _ X\ X'T(ey,ej,e1,¢;)
J
= ZXleT(ek Nej e A ej) = ZT(aj,Oéj) > 0.
j J

J

Note that this lemma also holds if we replace tr,T by tr{,T.

Lemma B.3.3. Let A, B be two self-adjoint endomorphisms of V. If A,B > 0,
then A ANB > 0. In particular, if A < C and B > 0, then AANB < CAB.

Proof. Since A is self-adjoint, we find an orthonormal basis {ey,...,e,} of (V,g)
such that A;; = \;0;; with respect to this basis (where A; > 0 by assumption).

Let o =3, , ale; Nej = a'e; ® ej € A?°V. Using Lemma and (B.2.1]) we

compute
1 ij Kl ij .kl ij .kl ij Kkl
(AANB)(a,) = g(Aiklea To — AjpBya o 4+ By Ao o — BjpAgatl ™)
1 y
= §AikleCk”04kl
1 ij il
= iAilea a’ > 0,
where we used o/ = —aJ? and the fact that for every fixed i we have leozij at >0

by assumption. In particular, If A < C and B > 0, then (C — A) AB >0 and

CAB=(C-A)AB+AAB>AAB.






Appendix C.

Length spaces

C.1. Definitions and basic properties

In this section, we sum up some basic properties of length metric spaces. We refer
to Chapter 2 of [6] for a detailed discussion.

Definition C.1.1 (Continuous path). Let X be a topological space. A path in X
s a continuous map v : I — X, defined on an interval I C R, where by ‘interval’
we mean any connected subset of R.

Definition C.1.2 (Length structure, see Section 2.1.1 of [6]). Let X be a topological
space, let A be a subset of all paths in X, and let L be a map A — R>g U {oo}
(length of paths). The pair (A, L) is called a length structure on X, if A and L
have the following properties:

A1) A is closed under restrictions: if v : I — X lies in A, then v|; lies in A for
all J C I.

A2) A is closed under concatenations: if y : [a,b] = X and o : [b,c] — X lie in A,
then y+o : [a,c] = X lies in A, where (7 +0)|jqp =7 and (v +0)|p,q = 0-

A3) A is closed under linear reparameterizations: if v : [a,b] — X lies in A,
and h : [c,d] — [a,b] is a homeomorphism of the form c(t) = A\t + p, then
vyoh:[e,d = X lies in A.

L1) Lengths of paths are additive: L(7v|jap) = L(V]ja,q) + L)) for any c €
[a, b].

L2) The length of a piece of path continuously depends on the piece: for any~y € A
such that L(y) < 0o, the map t — L(¥|(q,0)) is continuous.

L3) The length is invariant under reparameterizations: L(y) = L(vy o h) for any
linear homeomorphism h as in AS.

Lj) The length agrees with the topology of X in the following sense: for any
neighborhood U of a point x € X, the length of paths connecting x with the
compliment of U is separated from zero, that is,

inf{L(vy)|v € A, v(a) =z, v(b) € U} > 0.

Definition, Lemma C.1.3 (Length space, see Section 2.1.2 of [6]). A length
structure (A, L) on a topological space X induces a metric di, on X wvia

dp(z,y) = inf{L(y) |7 :[a,b] = X, v € A, v(a) =z, v(b) = y}
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(note that dy, is not necessarily finite). If a metric space (X,d) admits a length
structure (A, L) such that d = dp, then d is called an intrinsic, or length, metric.
A metric space whose metric is intrinsic is called a length space.

Remark C.1.4. Observe that the topology induced by dp can be only finer than
that of X, that is, any open set in X is open in (X,dr) as well. Indeed, given
an open set U C X and p € U, in view of the property L4 we find a ¢ > 0 such
that L(vy) > e for any path v € A connecting p and U¢. Therefore, by definition
of d;, we have dr(p,q) > ¢ for all ¢ € U¢, which implies B (p) ¢ U (where
Bt (p) = {z € X |dp(2,p) <e)}).

Definition, Lemma C.1.5 (Induced length, see Section 2.3 of [6]). Let (X, d) be
a metric space, and v : [a,b] = X be a path in X. The length of v with respect to
the metric d is defined by

N
La(v) = SHP{Z d(y(ti-1),v(t:)) [N €Nya=tg <t1 <--- <ty =10}
i=1

(note that Lg(y) > d(y(a),v(b)) in view of the triangle inequality). A path ~y is
called rectifiable if Ly(7y) < oo.

A metric d induces a length structure (A,L) on X, where A is the set of all
paths in X parameterized by closed intervals, and L = Lg. Thus, d induces a
length metric dr,, on X.

Proposition C.1.6 (Proposition 2.4.1 of [6]). Let (X,d) be a length space (as in
Definition , and let dr,, be the length metric induced by d (as in Definition

. Then d =dp,.

In view of the above proposition, one has an alternative definition of ‘intrinsic
metric’:

Definition C.1.7. A metric d is intrinsic if and only if for any z,y € X and any
e > 0 there exists a path v in X such that Lqg(y) < d(x,y) + €.

Lemma C.1.8 (Induced length is semi-continuous, Proposition 2.3.4 (iv) of [6]).
If a sequence of rectifiable paths v; in (X,d) converges pointwise to a (continuous)
path v, then

liminf La(7:) > La(7)-

The following theorem is a version of the Arzela-Ascoli Compactness Theorem.

Theorem C.1.9 (Arzela-Ascoli Theorem, Theorem 2.5.14 of [6]). In a compact
metric space, any sequence of curves with uniformly bounded lengths contains a
uniformly converging subsequence.

Lemma C.1.10. Let (X, d) be locally compact metric space, where d is an intrinsic
metric. Then for any p € X there exists a v > 0 such that any x,y € B,(p) can be
connected by a shortest path (that is, a path vy in X satisfying d(z,y) = La(7)).

Proof. Let p € X. Since X is locally compact, we find a 7 > 0 such that Bs,(p)
is compact. Since d is intrinsic, we may choose a sequence of paths ~; : [a,b] — X
from = to y such that L(vy;) N\ d(z,y) (cf. Definition |C.1.7). In particular, the
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lengths of ~; are uniformly bounded. Moreover, the image of ~; is contained in
Bs,.(p) for large enough i (w.l.o.g. for all 7). Indeed, for all ¢ € [a,b] we have

d(p,vi(t)) < d(p,z)+d(z,7(t))
< v+ La(viljo,g)
< 14 Lg(v)
< r+2d(z,y)
< r+42(d(z,p) +d(p,y)) < br.

Therefore, the sequence (;) is a sequence of paths in the compact metric space
(Bs-(p), d| Bs,(p)) With uniformly bounded lengths. In view of the Arzela-Ascoli
Theorem, a subsequence of (7;) (w.l.o.g. the sequence itself) converges to a con-
tinuous path v in Bs,.(p) C X connecting x and . Using semi-continuity of length

(see Lemma |C.1.8)) we conclude

d(z,y) < Lq(v) < liminf Ly(v;) = d(z,y),

which gives us d(z,y) = Lq(7). O

Ezample C.1.11. Let M be a smooth manifold, and g be a smooth Riemannian
metric on M. The class of piecewise C'!' curves in M together with the length
function

b
%w=/WWWw

for v : [a,b] — M is a length structure on M.

C.2. The length metric dist,

Consider a Riemannian manifold (M, g) as in Section that is, M is a smooth

connected manifold, and ¢ is a smooth Riemannian metric on M \ o, which is

possibly singular (discontinuous) at o. We define lengths of piecewise C! curves in

M as follows. For a curve 7 : [a,b] — M whose image is contained in M \ o we put
b -

Lg(v) = [, 17(®) gy dt. If v(to) = o for some to € [a,b], we define

b

b to—a
%mz/Wwwm@ﬁ:nm/ 5O laende + im [ 15Oyt
a a\O J, a\0 to+a

We then introduce a distance function induced by g on M in a similar way as for
smooth Riemannian metrics, that is, we put

dist 4(p, ¢) = inf{L,4(7) | v is a piecewise C* curve in M from p to ¢},

and dist 4(0,0) := 0. (Note that in the definition of dist, it suffices to consider
piecewise C! curves which pass through o not more than once.) For p € M and
r > 0 we denote by BY(p) the set

Bi(p) = {z € M |dist 4(x,p) < r}.

Since g is possibly singular at o, in general one cannot expect dist 4(-,-) to be
finite. However, under some additional assumptions dist ; enjoys similar properties
as distance functions coming from smooth Riemannian metrics.
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Remark C.2.1. Let dist § be the distance function induced by g on M \ 0 (where g
is smooth), that is,

dist o(p, q) = inf{Ly(7) |7y is a piecewise C' curve in M \ o from p to ¢},

where L, is as above. Clearly, the class of piecewise C! curves in M \ o together
with the length function L is a length structure on M \ o (in the sense of Definition
C.1.9).

We denote by B°(p) the open ball of radius r in (M \ o,dist{) centered at
peM\o.

Lemma C.2.2. Let (M,g), Ly, and dist 4 be as above. The class of piecewise C*
curves in M together with the length function Ly is a length structure on M (cf.

Definition . Thus, (M,dist 4) is a length space (cf. Definition .

Proof. We need to verify properties A1 — A3, L1 — L4 from Definition Prop-
erties A1 — A3, L1, and L3 are obvious.

Property L2: Clearly, t + Ly(7|[4,) is continuous at any ¢ such that ~(to) # o.
If y(to) = o, then L(V|[q,¢,]) = limi—t, L(7]a) holds by definition of L.

Property L4: Let p € M and U > p a neighborhood of p in M. Consider the
case where p # 0. We find a geodesic ball (with respect to dist §) BZ’(p) C M \ o
such that BZ°(p) C U and o ¢ BZ°(p) (where the closure is with respect to the
topology of M). Let v : [a,b] — M be a piecewise C'* curve from p to U¢. We then
find a t € (a,b) such that y([a,t]) C BZ°(p) and v(t) € BZ°(p). In particular,
V|{a,y is & piecewise CT curve in M \ o connecting p and ~(t) € dBZ°(p). Thus,

Lg(7) 2 Lg(Yla) = dist g(p, 0BZ°(p)) = € > 0.

Consider the case p = o. Let U be an open neighborhood of o in M, w.l.o.g.
U is compact. We find an open neighborhood V of o such that V C U. Let
7 : [a,b] = M be a piecewise C! curve connecting o and U¢. We finda < tg < t; < b
such that y([to, t1]) C U\ 'V, and y(to) € 8V and ~(t1) € OU. In particular, 7|y, 4]
is a piecewise C'' curve in M \ o connecting compact subsets 9V, 90U C M \ o. Since
OV NoU = (), we have that dist {(0U, V) := € > 0, so

Lg(v) > Lg(Yljt0,61)) = dist 5 (U, V) = € > 0.
O
Lemma C.2.3. For all p € M\ o there exists a neighborhood U in M\ o such that
dist o[y = dist 4[v

Proof. Let p € M \ o. Observe that dist ; < dist j holds on any neighborhood of p
not containing o, since we take the infimum over a larger set.

Let us check that the inverse inequality holds on a neighborhood of p. Let U 3 o
be an open neighborhood of o such that p ¢ U. By Lemma (property L.4)
there exists r > 0 such that Lg(y) > 4r for all piecewise C! curves v connecting
o and U°. After choosing r even smaller, we may assume that B3’ (p) C U¢. We
show that dist, > dist§ on B7°(p). Let z,y € B¥’(p). Choose a sequence of
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piecewise C'! curves ~; : [0,1] — M such that Ly(y;) N\ dist 4(x,y). Suppose that
0 € 7([0,1]) for some i € N. Since z € U, we have that

Lg(vi) = 4r > 2r +r > dist g (v, y) +r > dist g(z,y) + 1.

Thus, o ¢ ~([0,1]) for all i > N, N € N large enough. By definition of dist g
we have that Ly(y;) > dist{(z,y) for all i > N. Since Lgy(y;) N\ dist g(z,y), this
implies dist ¢(z,y) > dist g(z,y). O

Lemma C.2.4. Let M, g, and dist, be as above. Additionally, suppose that
dist 4(-,0) : M — R is continuous at o. Then disty : M x M — R is finite,
continuous, and the topology induced by dist 4 agrees with that of M.

Proof. 1) dist 4 is finite: Since dist 4(-,0) : M — R is continuous by assumption,
we find a neighborhood U > o in M such that dist4(p,0) < 1 for all p € U. By
definition of dist 4 this implies that for any p € U there exists a piecewise C! curve
Ypo from p to o satisfying Ly(vpo) < 2 < 0o. Since M is connected, given z,y € M\o
we find points p,q € U \ o and piecewise C! curves Yaps Vyq in M\ o connecting
x,p and y,q. Since g is smooth on M \ o, these curves have finite lengths. Then
the concatenation of Vap, Ypo, Vg0, and Yyq is a piecewise C'! curve of finite length
from z to y, which implies that dist 4(z,y) < oo.

2) disty : M x M — R is continuous: First, observe that dist 4(-,p) : M — R
is continuous at p for all p € M. Indeed, by assumption dist 4(-,0) is continuous
at o. Moreover, dist,(-,p) is continuous at p for all p € M \ o in view of the
fact that disty : (M \ 0) x (M \ 0) — R is continuous, and Lemma Thus,
given p,q € M, and ¢ > 0, we find open (in M) neighborhoods U, > p and
Uq 2 ¢ such that dist 4(z,p) < € and dist 4(y,q) < € for all z € Uy, y € U,;. Then
|dist 4(x, y) — dist 4(p, ¢)| < 2¢ by the triangle inequality.

3) Let On be the topology of M, and Ogist,, be the topology induced by dist
on M. The fact that dist ; is continuous on M x M implies that Ogis;, C Opr. The
inverse inclusion is due to the fact that (M, dist4) is a length space (see Lemma

C.2.2), and Remark
O

Lemma C.2.5. Let M, g, dist 4 be as in Lemma[C.2.4] above. There exists ar > 0
such that for any point x € By (0) \ o there exists a curve 7 : [a,b] — By (o) from x
to o, such that dist 4(z,0) = Lg(7), and v|ap) is a geodesic in (M \ 0, g|rno)-

Proof. Let d be the length metric on M arising from dist 4, that is,
d(z,y) = inf{Lqist,(7) | 7 : [a,b] = M is a C path from = to y},

where
N
Laist o (7) = sup{) _dist y(y(t;i-1),7(t:)) [N €N, a =19 <t; < --- <ty =}
=1

(cf. Lemma |C.1.5). Furthermore, let d° be the length metric on M \ o arising from
dist §, defined in a similar way (where we take the infimum over lengths Ldistg(’Y)
of CY paths in M \ o). Since dist , and dist j are length metrics, we have d = dist 4

on M and d° = disty on M \ o in view of Lemma By Lemma |C.1.10| there
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exists a 7 > 0 such that any two points z,y € BY(0) = B%(0) can be connected
by a shortest path v w.r.t. d, that is, there exists a C% path in M from z to y
satisfying Laist, (7) = d(, ).

Let us consider such a shortest path v : [a,b] — M connecting z € B{(0) \ 0 and
0. We may assume that v(b) = 0 and o ¢ ~([a, b)) (otherwise we put b = inf{t >
a|~(t) = 0} and consider 7|(,4)). Then 7|, is a geodesic (in the classical sense) in
(M\ o,9la\o)- Indeed, for any t € (a,b) we find a neighborhood U > ~(t) in M \ o,
such that d = d° on U, and § > 0 such that v|;_5,5 C U. Since dist ; = dist g on
U, and the restriction 7|_s44.5) is a shortest path in (M, d), we have that

d°(y(t=08),y(t+9)) = d(v(t —0),v(t+0)) = Laist , (Vlj—s,048) = Laist o (V]jt—6,64+4])

which implies that v|j;_s¢+) i3 a shortest path in (M \ 0,d°). It then follows from
the fact that d° arises from the smooth Riemannian metric g M\os that ’y|[t_57t+5]
is a geodesic in (M \ 0, g|pr\o)-

O

Lemma C.2.6. Let M, g, dist, be as in Lemma [C.2.4 Additionally, suppose
that there exists a neighborhood U of o such that dist 4(-, 0) is smooth on U \ o0 and
V(dist 4(-,0)) # 0 on U \ o. Then there exists a m > 0 such that Bi(0) \ o can be
covered by a set of Fermi coordinates (see Section[A]) above OBY (o).

Proof. Since the topology of M coincides with that induced by dist,, we find
a rg > 0 such that B (o) C U. In view of Lemma after choosing rg
smaller we may assume that for any = € B (0) \ o there exists a shortest curve
7 : [0,7] = Bi(0) from o to x such that 7|, is a unit speed geodesic in BY(0) \ o.

First, let us verify that V(dist4(-,0))|z = §(r). Since dist 4(-,0) is smooth on
U D B(0) and V(dist 4(-,0)) # 0, the level set dB7 (o) is a smooth hypersurface in
M\o. Moreover, for any ¢ € [0, r] the restriction 7|, is a shortest curve connecting
v(t) and 9B (o) (otherwise there would exists a curve o connecting ~(¢) and a
point y € OB} (o) such that Lg(c) < Lg(v|y,,)) = 7 —t, so that dist 4(0, 0B (0)) <
Ly(Yljog +0) <t+(r—t)=r, which is a contradiction). Thus, we have §(r) L,
OB} (0). Furthermore, since the gradient of a function is orthogonal to its level
sets, we have V(dist 4(+,0))|s = A¥(r) for some A € R. We compute

d d .
1 = %‘t:rt—%|t:rd15tg(7(t)ao)
= (V(dist (-, 0))|y(r), ¥(r))g
= A=A

which implies V(dist 4(-, 0))|» = F(r).

A similar argument as above shows that 4(t) = V(dist 4(-,0))|,) for all t € [0,7),
that is, v|(, is the integral curve of V(dist 4(-,0)) with y(r) = z. In particular,
this implies that such a shortest curve connecting o and x € By (o) \ o must be
unique. Moreover, since for any point x € BY (0) \ o there exists a curve 7 from o
to = as above, we have |V(dist 4(-,0))|g =1 on B (0) \ o.

Since = € dBY(0) C U, and V(dist (-,0)) is smooth on U, we may extend ~ to
¥ : 10,7+ 7) = M, 7 > 0, such that 4|, is an integral curve of V(dist 4(-,0))
in M\ o. Since V(dist 4(-,0)) is a unit vector field, the curve 7| ;) is a geodesic
(see Lemma [D.7)). Suppose that the interval (0,7 + 7) is maximal.
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Case 1: 74+ 7 = oo. In this case, 79 € [0, + 7). Then dist 4(5(ro),0) <
Lg(Flj0,r5]) = To, that is, y(ro) € Bf,(0). Since the integral curves of V(dist ¢4(-,0))
are the unique shortest curves connecting o to points of B, \ o (see the argument
above), it follows that dist 4(7(r0),0) = Lg(Fj0,r,]) = 70, 50 7(r0) € OB, (0) .

Case 2: r + 7 < oo. In this case, 4 leaves any compact subset of M \ o. In
particular, there exists a tg € (r,7 + 7) such that 7(t9) ¢ B (0) \ Bf(0). Then
F(to) & B, (0), since ¥([t,r + 7)) C M \ B} (o) for all t € [0,7 + 7). (Indeed,

9 atist o 3(0),0)) = (V(dist o -,0)) 0, 70 = [V (dist g, )] lZ = 1> 0,

so ¢+ dist 4(y(¢), 0) is non-decreasing.) This implies that §(s) € 0By, (o) for some
se(r,r+7).

Thus, we have shown that any z € By (0) \ o can be connected to a point
& € 9B7,(0) by a distance minimizing geodesic in B (0) \ o emanating from Z
with initial velocity —V(dist 4(-,0))|z (namely the geodesic t — §(—t)), where
—V(dist 4(-,0))|5 BY, (o) 15 & smooth unit vector field on 9B}, (0). By construction of

Fermi coordinates this proves the claim.
O

Remark C.2.7. From the above argument it follows that B, (0) \ o can be covered
by a set of Fermi coordinates over 9B (o), for arbitrary 0 < s < 7.






Appendix D.

Technical lemmas

Lemma D.1. Let L be the extended operator from Lemma[l.2.5. Then VL = 0.

Proof. Let ¢ € My be a point near I' and v be the integral curve of N emanating
from p € I" passing through ¢q. Let X be a smooth vector field on a neighborhood
of ¢. Then at ¢ we have

(Vy,L)(X) = Vy,(LX)—-L(Vy,X)
= Vn,(PT'LPX) - P 'LP(Vy,X) =0. (D.1)
Indeed, let P! : TyoyM — T, ;)M denote parallel transportation along 7. Let

g = 7v(t). Recall that given smooth vector fields Y and Z the covariant derivative
of Y at a point ¢ € M in the direction of Z, € T, M is given by

. P tt+hY'Y(t+h) - Yw(t)
Vz, ¥ =l h ’

where v : (t —e,t+¢) = M, y(t) = q is the integral curve of Z passing through g.
Then using the fact that P~'LP : TM — TM is continuous we compute

Vn,(P'LPX) — P7'LP(Vy,X)

~ lim Pl (PT'LPX), 4y — (PT'LPX),
h—0 h
_P'LP lim Ptt+hX'v(t+h) — X0
h—0 h
L PL(PTLPX) e — (PULPX)
h—0 h
i TLPP X — PTLPX
h—0 h
— lim P/ PT'LPX, i) — PTILPX,
h—0 h
i PLPP X — PTILPX
h—0 h '
Moreover,
Pl PT'LPX iy = PLyPi"LPY X n)

PSLP, X 4m)
= PéLPtOPtt+hX7(t+h)
= P_ILPPtt+hX7(t+h)7

and (D.1)) follows. O
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Lemma D.2 (Auxiliary functions fs, Fs, Fs5). There ezist families of C* functions
fs, Fs, F5 :[0,00) = R, § > 0, with the following properties:

o F5=Fs and F§ = f5 on [0,00)

o f5(0)=1,0< f; <1 on[0,6%, and |f5| <& on [62,c0)

o f5<d on0,00)

e F5(0) = F5(0) =0, |Fs|, | Fs| <6 on [0,00), and fs = F5 = Fs =0 on [6,00).

Proof. We choose a smooth cutoff function ¢ : [—1,1] — R such that

-1 on[-1,-1+1]
1. Y = 0 on [_ia %]
1 on[l,1-4]

2. o(—x) = —p(z) for all x € [0, 1] (that is, ¢ is an odd function)

(see Figure below).

Let C := [[¢llc2(j-1,1)- Given 0 < o < ﬁ, we put

Yo —a,a] — R
z

3
— —).
o ool
Then
—a®  on[-a,—a+ ¢
Pa = 0 on [—%, %]
o3 on [a — §,q]
and
e (@) = ®|¢' (%) < @*C
and

|ea ()] = ale"(5)] < aC

r
e
for all x € [—a, al.
Furthermore, we find a smooth cutoff function ¢ : [0,2] — R such that

1. (0) =0 and w‘[Q—iQ] =1
2. ¢/ =1on0,1],and 0 < ¢’ < 1 on [0,2], and ¢” < 0 on [0,2]
(see Figure below), and put

e :[0,20°] — R

T agw(x).

a3



103

Figure D.1.: The functions ¢ and

We construct the function H, : [0,00) — R by ‘pasting together’ the functions
Yo, @31d|[1, —Pa and @al[_a0), (Where we specify T € [§ — 203, a] later in the
proof). More precisely, we put

o () if z € [0, 23]
a? if € 203,203 + 7]

ol —203 —7—3a) ifx €203+ 7+ 20,203 + 7 + 30

[
[
Ho(z) =< —pa(z — 203 —7—a) ifx €[22+ 7,20% + 7+ 20a]
[
[

0 if z € 23 + 7 + 3, 00)

(see Figure below). Note that H,, vanishes on [5a, 00), since 5o > 203 +7+3a.
Moreover, by construction H, is smooth and |H,| < o on [0, 00).

We now put h, = H,. Clearly, h, vanishes on [5a, 00). Moreover, from ¢/, (0) =
1,0 <, <1and |¢),| < Ca? it follows that

e 0 < hy <1on 0,203,

ho = 0 on [2a3, 2],

Ihal < Ca? on [4, o),

where we used that ho =0 on [2a%,20® + 7] and 7 > § — 2. Furthermore, from
P! <0 and |pl| < aC it follows that

h., < Ca

on [0, 00).
Next, define the function H, : [0,00) — R by

H(x) = /O " HL (Dt

Since [Ho| < o and Hql(5q,00) = 0, we have that |Hs| < 5a* on [0, 00). Moreover,
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observe that

%o
He(t)dt
0
203

= VYa(t)dt + 70> + /
0 -
2a3 0

= Vo (t)dt + 10> + / Vo (t)dt
0 -«

- rad— [/Oa @a@)dt—/jag 1/Ja(t)dt], (D-2)

=B

—pa(t)dt + / " palt)dt

—Q

«

where 1
O<Za4—2046§3§044

(here we used that ¢, = a3 on [%a, a) and 1, < o3). Thus, (D.2)) vanishes if we
put 7 = % (note that § — 203 < 7 < @, as required above), which in view of the
definition of H,, implies that H,(z) = 0 if x > Sa. Putting fs=hs , Fs=H., ,

5C 5C

and F5 = H s , one easily checks that these functions have the desired properties.
5C

H \
3 a ‘
(04
\ \ \ |
A | B | C \ |
0 \ \ \ |
\ \ \ |
| | c !l _c |
\ \ \ |
_a3,
\ \ |
20 20°+T1 200+ 1+2 @ \
| \ I 2+ 1+3a
h, \ \ \ \
1 \ | \ \
\ \ \ \
\ | \ \
\ \ \ \
\ | \ \
Coll \ \ \ \
| \ \ |
\ | \ \
0 | | : |
\ \ \ \
i \ | \ \
—Cay \ \ \ \

Figure D.2.: The functions H, and h,. The areas under the function H, in the
upper figure satisfy A+B=C, which illustrates that the integral of H,
vanishes.
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Lemma D.3 (Auxiliary identities, cf. [I5], Lemma 6.1, 6.2, 6.3). Let
X, Y €{01,...,0h—1} CTT(d) C TM,

and
N =0, € (TT(d))* ¢ TMy.

We have

G5 ~ I, VXG(; ~ O, VNG(; ~ 2f5(l‘n)L
VxVnNGs =~ 2fs(2")VxL (D.3)
VNVNGs &~ 2f5(z")L—2Cf5(z")PT

(VAN,Y)s = (VAX,Y)s
= %(<VNX, GsY) 4+ (X,GsVNY) + (X, (VNGy)Y)) (D.4)

VAN =0 (D.5)
VGX = V&N ~ VxN + f5(z")LX (D.6)
PT(V&Y) ~ PT(VxY). (D.7)

Proof. Recall that
Gs =1+ 2FsL — 20 FsPT.

Proof of (D.3)): We have I' = {z™ = 0}, and F5(0) = F5(0) = 0, and thus, G5 =1
on I'. Moreover, Fj5, F5 — 0 uniformly as 6 — 0, which shows Gs ~ I.

Let us verify VxGgs = 0: We have
VxGs = Vx(I+2F5L — 2CFsPT) = VxI + 2F;VxL — 20 FsVxPT
since F5 and Fs depend only on x”. For any &,( € T'My we then have
(VeDE = V(I€) = 1(V¢§) = V& = V£ = 0.

Moreover, V xL and V x PT are locally bounded, so the result follows since Fj, F5 —
0asd— 0.
Let us show VN Gs = 2f5L: Using the product rule we compute

VnGs = VNI +2f5L + 2FsVyL — 20 F5PT — 20 FsV v PT

and the equation follows as above.
VxVnGs =~ 2fsVxL follows by a similar argument.
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Let us show VyVyGs ~ 2f(2™)L — 2C f5(2™)PT. Using VyL = 0, similarly as
above we compute

VNVNGs = 2fiL — 20 fsPT — 20FsV NPT — 2CF;V NPT — 20F;V NV NPT

and the equation follows since Fs(0) = F5(0) = 0, and Fj, F5 — 0 uniformly as
0 —0.

Proof of (D.4): We recall the Koszul formula: Let (M,h) be a Riemannian
manifold, (-,-) = h, V= V", and ¢,¢,7 € TM. Then

(VeG, ) = %(€<C,T> —7(& Q) + 7,6 = (& (¢ 7]) + (7, (€ C1) + (G [T, €D)-

Since X, Y, N € {0, ...,0,} commute pairwise, it follows from the Koszul formula,
that

(VAN.Y)s = (VAX,Y)s
1

= S(N(X,Y)s =Y (N, X)s +X (¥, N)s)
% =
= %N(X,G5Y>

1
= §(<VNX, G5Y> + <X, (VNGg)Y> + <X, G(;(VNY»)
To prove (D.5]), and , recall that in our coordinates we have
g?n = gin + 2f5Lm - 20?§(PT)7,11 = 5m

for all i = 1,...,n. Using this, we compute (D.5)):

1
VAN = V5,00 = T30k = 5(9°) (Onnr + Oy — OrGp) Ok = 0.

Let us show (D.7): In our coordinates, it suffices to verify that 5Ffj R~ Fi-“j for all
1<id,5,k<n-—1. We use (g‘;)k" =0= gk” for 1 <k <n —1, and the fact that
for 1 <4,5,7 <n—1 we have

32'9357» = 0igjr + 2F50;Lj, — QCfaaiPﬁ ~ 0iGjr

and compute

1
T = @) (Oigh + g — Drgly)
1
= Y @0l + 00 — Oraly)
r<n—1

Q

1
Z §9kr(3i§/jr +0;gir — Orgij) =T
<n—

r<n—1

Finally, follows from (D.4)) and G5 ~ I and VyGys =~ 2f5L (see (D.3)). O

Lemma D.4. Let K be a closed convex (in the sense of Deﬁnitionm subset
of S™ with smooth n — 1 dimensional boundary 0K . Then

(i) K is either a closed half sphere, the boundary of a half sphere, or it is con-
tained in some open half sphere of S™.
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(ii) The Euclidean cone over K, given by
Crx ={tq|q € K,t > 0},
is a convex subset of R"t1,

Proof. (i): First, let us show that K is contained in a closed half sphere of S™.
Here we denote by B,(p) a ball (w.r.t. the standard metric of S™) of radius r > 0
in S™ centered at p € S™. The assumption that K is closed and has nonempty
boundary in S™ implies that S™ \ K is an nonempty open subset of S™. Then we
find a maximal ball B,(p) C S™\ K of radius » > 0 (maximal in the sense that
Brie(q) NOK # () for all e > 0 and ¢ € 8™\ K). Then B,(p) N 0K contains at
least two distinct points ¢; # ¢2. Suppose that r < 7. In this case we have that
dist s»(q1,¢q2) < 7, and the shortest geodesic in S™ from ¢; to g2 lies in B,(p) up
to the end points ¢; and go. In particular, this geodesic contains points of S™ \ K,
which a contradicts the assumption that K is convex. So the maximal radius r
must be at least 7. This implies that K is contained in S™ \ B(p), which is a
closed half sphere centered at —p.

Next, we verify that if K contains opposite points (that is, p1,p2 € K, p1 = —p2),
then K must be either a closed half sphere or the boundary of a half sphere. Let
HS™ be a closed half sphere containing K. Suppose there exist opposite points
p1,p2 € K. Since K C HS™, it follows that p1,ps € O(HS™), and consequently
p1,p2 € OK. Let v : [0,71] — O(HS™) be a unit speed geodesic from p; to ps. Since
the boundary 0K C HS™ is smooth at p;, such a geodesic v can be viewed as a
limit of shortest geodesics v; from p; € 0K to pa, where p; # p; for all i. Due
to dist gn(ps, p2) < m and the fact that K is convex we have that the geodesics ;
lie entirely in K, which implies that the limit ~ is also contained in K, since K is
closed by assumption.

Since O(HS™) is the union of all such geodesic v, it follows that (HS") C K.
On the other hand, the only closed convex subsets of S™ for which this is possible
are either closed half spheres or boundaries of half spheres.

Finally, if K does not contain opposite points, then K C HS™ and 0K N9(HS™)
is either empty, in which case K is contained in the open half sphere HS™, or it
containes at most one single point ¢, in which case we obtain an open half sphere
containing K by slightly rotating HS™ in the direction of the outward normal of
O(HS™) at q.

(7i): In the case when K a closed half sphere or the boundary of a half sphere, Cx
is a half space or a hyperplane of R"*1, respectively, and the statement is trivial.
Consider the case where K is contained in some open half sphere of S”, w.l.o.g.

KCcHS"={z= (2" ..., 2"") e §"| 2" > 0}.

The stereographic projection m : HS™ — R™ x {1}, 7(z) = —&r is a homeo-
morphism taking shortest curves in HS™ to straight line segments in R™ x {1}.
Thus, 7 identifies convex subsets of HS™ with convex subsets of R” x {1}. It then
follows that Cx = Cr (k) coincides with the Euclidean cone over a convex subset of
R™ x {1}, which is clearly convex. O

The following lemma is a well known result which also holds in a more general
setting. We give the prove here for the convenience of the reader:
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Lemma D.5 (Minkowski convex functional). Let A be a closed convezr subset of
R™ with non-empty such that 0 € A. Then the Minkowski functional

F:R" — 0,00)
F(z) = if{\>0]|z e A}
satisfies

(i) Fx +y) < F(z)+ F(y) for all z,y € R™

(13) F(tz) =tF(x) forallx e R", t >0

)
)

(tit) F is convex
v) A

(é ~H([o, 1)).

Proof. Note that the condition 0 € A ensures that F is finite. Indeed, we may
choose a § > 0 such that Bs(0) C A. Then for any x € R" we find an € > 0 such
that ex € Bs(0) C A, which implies that « € LA, so that F(z) < 1 < cc.

(7): Let z,y € R™ and € > 0. In view of the definition of F' we find A\, > 0
such that A < F(z)+e and up < F(y) +¢, and x € AA and y € pA. Thus
r+y €N+ pA=(A+p)A,

so that
Flx+y) <A+upu< F(x)+ F(y) + 2,

and the desired inequality follows by letting ¢ — 0.

(ii): Given z € R™ and ¢ > 0, we find A > 0 such that A\ < F(z) + ¢ and
x € AA. Then for any fixed ¢ > 0 we have tx € tAA, so that

F(tz) < th < tF(z) + te.

Letting € — 0 we obtain the desired result.

(7i): Let x,y € R™ and t € [0,1]. Then by (¢) and (ii) we have
F(1-tz+ty) < F((1—-t)z)+ F(ty) = (1 —t)F(z) + tF(y).

(iv): Suppose that z € A. Then = € AA, A = 1, so that F(x) < 1, which shows
A c F~Y([0,1]).

Conversely, suppose that F(z) = A € [0,1]. If F(z) <1, wefinda0 < A <1

such that z € AA, that is, %x € A. Since 0 € A and A is convex, this implies

=(1-X)- O—i—)\ x e A If F(z) =1, thenxe(—i—en)AforallneN where

En \ 1. Then j Sy is a sequence in A, and r = lim,, 7 + T € A since A is closed

by assumptlon
O

Lemma D.6. Let Cir, K C HS" !, THs : HS™ 1 — Hs, I and F be as in the
proof of Lemma|3.2.4. Let x € R™\ {0}. Then

o
r€Ck 1" >0 and —x € ;.
T



109

Proof. Let x =tq € Cxk \ 0, ¢ € K, t > 0 since  # 0. Then z™ = t¢" > 0 since
q € HS" 1. Moreover, |z| =t|q| =t,s0 K > q = 2= ﬁ Since 7, (K) = I5, we

then have
T 1) T 1)

Lsmg(ty=—2 T - %,
T Dy e e

Conversely, let x € R™ such that ™ # 0 and m%x € Is. Then

0 1 9 x
K>y = —z=—
7TH5( nl') %l’| N ’.’L“
Thus
x
x=|z|7— €Ck
|z
by definition of Ck. O

Lemma D.7. Let (M,g) be a smooth Riemannian manifold, and f:Q C M — R
a smooth function satisfying |V f|q = const (where V = V9). Then integral curves
of Vf are geodesics.

Proof. Let v : (—e,e) — Q be an integral curve of Vf, that is, 4(t) = Vf(y(?)).
Given t € (—¢,¢) and X € T, ;)M we compute at (t)

0 = SX((VF,V) = g(VxVL, V) = (VX))

(VorX)(f) + [X, V()

= (Vo X)(f) + X(Vf(f)) =V (X))
=0

= g(VvsX,V[f) =V [(g(Vf X))

= _g(VVfoa X) = _g(v"f.y?X)’

where we used that Vf(f) = g(Vf,Vf) = const.
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