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Abstract
We study stochastic homogenization for convex integral functionals

u �→
∫
D
W (ω, x

ε
,∇u) dx, where u : D ⊂ R

d → R
m,

defined on Sobolev spaces. Assuming only stochastic integrability of the map ω �→
W (ω, 0, ξ), we prove homogenization results under two different sets of assumptions, namely

•1 W satisfies superlinear growth quantified by the stochastic integrability of the Fenchel
conjugateW ∗(·, 0, ξ) and a certainmonotonicity condition that ensures that the functional
does not increase too much by componentwise truncation of u,

•2 W is p-coercive in the sense |ξ |p ≤ W (ω, x, ξ) for some p > d − 1.

Condition •2 directly improves upon earlier results, where p-coercivity with p > d is
assumed and •1 provides an alternative condition under very weak coercivity assumptions
and additional structure conditions on the integrand. We also study the corresponding Euler–
Lagrange equations in the setting of Sobolev-Orlicz spaces. In particular, if W (ω, x, ξ) is
comparable to W (ω, x,−ξ) in a suitable sense, we show that the homogenized integrand is
differentiable.
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1 Introduction

We revisit the problem of stochastic homogenization of vectorial convex integral functionals.
For a boundedLipschitz domain D ⊂ R

d , d ≥ 2,we consider integral functionals of the form

Fε(ω, ·, D) : W 1,1(D)m → [0,+∞], Fε(ω, u, D) =
∫
D
W (ω, x

ε
,∇u(x)) dx, (1.1)

whereW : �×Rd×Rm×d → [0,+∞) is a random integrandwhich is stationary in the spatial
variable and convex in the last variable (see Sect. 2 for the precise setting). Homogenization of
(1.1) (for convex or nonconvex integrands) in terms of �-convergence is a classical problem
in the calculus of variations, see for instance [5, 20] for textbook references. Assuming
qualitative mixing in the form of ergodicity, Dal Maso and Modica proved in [11] that in the
scalar case m = 1 the sequence of functionals (1.1) �-converges almost surely towards a
deterministic and autonomous integral functional

Fhom(·, D) : W 1,1(D) → [0,+∞], Fhom(u, D) =
∫
D
Whom(∇u(x)) dx, (1.2)

provided thatW satisfies standard p-growth, that is, there exist 1 < p <∞ and 0 < c1, c2 <

∞ such that W is p-coercive in the sense that

c1|z|p − c2 ≤ W (ω, x, z) for all z ∈ R
dand a.e. (ω, x) ∈ �× R

d , (1.3)

and satisfies p-growth in the form

W (ω, x, z) ≤ c2(|z|p + 1) for all z ∈ R
dand a.e. (ω, x) ∈ �× R

d . (1.4)

The result was extended to the vectorial (quasiconvex) case in [25]. By now there are many
(classical and more recent) contributions on homogenization where the p-growth conditions
(1.3) and (1.4) are relaxed in various ways: for instance nonstandard (e.g. p(x), (p, q) or
unbounded) growth conditions [5, 15, 20, 28, 35] or degenerate p-growth (that is c1, c2
depend on x and inf c1 = 0 and sup c2 = ∞) [14, 30, 32] (see also [33] for the case p = 1).

In this manuscript, we relax (1.3) and (1.4) in the way that, instead of (1.4), we only
assume that W is locally bounded in the second variable, that is – roughly speaking – we
assume

E[W (·, x, ξ)] < +∞. (1.5)

In the periodic setting, Müller proved in [28], among other things, �-convergence of (1.1)
assuming the stronger boundedness condition

esssupx∈Rd W (x, ξ) < +∞ for all ξ ∈ R
m×d (1.6)

and p-coercivity with p > d , that is,

∃ p > d, c > 0 : c|ξ |p − 1

c
≤ W (x, ξ). (1.7)

This result was significantly extended [2, 15] to cover unbounded integrands and certain
non-convex integrands with convex growth - still assuming (1.7). In the scalar case m = 1,
condition (1.7) can be significantly relaxed to p > 1, see [15, 20]. Note that condition (1.7)
has to two effects: on the one hand it proves compactness of energy-bounded sequences (for
this any p > 1 suffices), but at the same time the Sobolev embedding turns energy-bounded
sequences to compact sequences in L∞, which is crucial for adjusting boundary values of
energy-bounded sequences in absence of the so-called fundamental estimate.
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Here, we propose two ways for relaxing condition (1.7) in the vectorial setting. In par-
ticular, in Theorems 3.1 and 3.3 below, we provide �-convergence results for (1.1) with or
without Dirichlet boundary conditions essentially (the precise statements can be found in
Sect. 3) assuming (1.5) and one of the following two conditions:

(a) a ’mild monotonicity condition’ which requires that for any matrix ξ and any matrix ξ̃

that is obtained from ξ by setting some (or equivalently one of the) rows to zero we have

W (ω, x, ξ̃ ) � W (ω, x, ξ) (1.8)

(seeAssumption (A4) below for the details), togetherwith superlinear growth frombelow

lim|ξ |→∞
W (ω, x, ξ)

|ξ | = +∞

quantified by the stochastic integrability of theFenchel conjugate of ξ �→ W (ω, x, ξ) (see
Assumption (A3)). In particular, we do not assume p-growth from below for some p > 1
and thus improve even previous results in the scalar case (where the ’mild monotonicity
condition’ is always satisfied; seeRemark 2.4 (iii)). Considering for instance the integrand
|ξ |p(ω,x), it becomes clear that the integrability of the conjugate is a very weak condition
as it allows for exponents p arbitrarily close to 1 (see Example 2.5 for details)

(b) p-coercivity (1.3) for some p with p > d − 1. This improves the findings of [28] and
(in parts) of [15], where corresponding statements are proved under the more restrictive
assumption p > d . It also enlarges the range of admissible exponents considered in [20,
Chapter 15], where homogenization results were proven under (p, q)-growth conditions
with q < p∗ (the critical Sobolev exponent associated to p > 1). If p < d − 1, our
method (more precisely, Lemma 4.10) can be generalized to treat convex integrands with
(p, q)-growth with p > 1 and q <

p(d−1)
p−d−1 , while in the case p = d − 1 any q < +∞ is

allowed.

For the proof of our main �-convergence result we follow the strategy laid out in [28]: the
lower bound, which does not require (1.8) or p-coercivity with p > d − 1, is achieved via
truncation of the energy. However, due to the degenerate lower bound, the truncation of the
integrand is not straightforward, but needs to be done carefully (see Lemma 4.5). Once the
energies are suitably truncated, their �-convergence follows via standard arguments using
blow-up and the multi-cell formula. In order to pass to the limit in the truncation parameter,
we show that the multi-cell formula agrees with the single-cell formula given by a corrector
on the probability space (see Lemma 4.7) as this formula passes easily to the limit (see
Lemma 4.8). The new assumption (1.8) or the relaxed p-coercivity enter in the proof of the
upper bound when we try to provide a recovery sequence for affine functions that agree with
the affine function on the boundary. In case (a), that is under (1.8), which is tailor-made for
componentwise truncation, we truncate peaks of the corrector and carefully analyze the error
due to this truncation using the equi-integrability of the energy density of the corrector. In
case (b), assuming p-growth coercivity with p > d − 1, we use a fine choice of cut-off
functions in combination with the compact embedding of W 1,p(S1) ⊂ L∞(S1), where S1
denotes the d−1-dimensional unit sphere, see Lemma 4.10 below. This idea has already been
used for example in [6, 7] in context of div-curl lemmas (generalizing the celebrated results
of Murat and Tatar [29, 34]) and deterministic homogenization, and in [3] in the context of
regularity and stochastic homogenization of non-uniformly elliptic linear equations.

In addition to the �-convergence results of Theorems 3.1 and 3.3, we also consider
homogenization of the Euler–Lagrange system corresponding to the functional (1.1). Let
us emphasize that this task is by no means an easy consequence of the �-convergence result
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and we consider it as a major part of this work. In order to formulate the latter problem in a
convenient sense, i.e., without using merely the abstract notion of subdifferential of convex
functionals, we need to investigate two issues:

• given that the integrand W is differentiable with respect to the last variable, does a
minimizer of the heterogeneous functional u �→ Fε(ω, u, D) + {boundary conditions}
satisfy any PDE?

• is the homogenized integrand Whom differentiable?

For both points, the general growth conditions rule out deriving a PDE or the differentiability
of Whom by differentiating under the integral sign. For homogeneous integrands the Euler–
Lagrange system can be derived using a Young-measure approach (see [8]), while for the
heterogeneous case [4, Theorem 3] provides results in the scalar case under a set of additional
assumptions. In our setting, we rely on convex analysis. The subgradient for convex integral
functionals is well-known on L p-spaces. In order to capture the dependence on the gradient
the standard way is to rely on the chain rule for subdifferentials. However, in general this
only holds when the functional under examination has at least one continuity point. Hence,
working on L p-spaces is not feasible except for the choice p = ∞, which however does not
necessarily coincide with the domain of the functional. As it turns out, the correct framework
are generalized Orlicz spaces (cf. Sect. 2.3). It should be noted that the integrand defining a
generalized Orlicz space has to be even (otherwise the corresponding Luxemburg-norm fails
to be a norm). Since on the one hand we need that the domain of our functional Fε(ω, ·, D) is
contained in some generalized Sobolev-Orlicz space, while on the other hand the domain of
the functional Fε(ω, ·, D) should have interior points on that space, the integrandW (ω, x, ·)
has to be comparable to an even function. For this reason, we are only able to prove the above
two points under the additional assumption that

W (ω, x, ξ) � W (ω, x,−ξ), (1.9)

see Assumption 2 for the detailed formulation. A possible approach to remove this assump-
tion would be a theory of subdifferentials on so-called Orlicz-cones (see [13, Section 2],
where such a theory is initiated in a very special setting). This is however beyond the scope
of this work. Nevertheless, to the best of our knowledge this is the first time that the issue of
global differentiability of Whom and of the convergence of Euler–Lagrange equations (in a
random setting) is settled without any polynomial growth from above; see e.g. [5, Section 23]
for an overview of by now classical homogenization results for non-linear monotone equa-
tions, or the recent textbook [9] for results on periodic homogenization in Orlicz spaces. For
local differentiability results of Whom for unbounded (and non-conex) integrands related to
nonlinear elasticity, we refer to [31]. The corresponding results are stated in Theorem 3.5.

The paper is structured as follows: in Sect. 2 we first recall the basic notions from ergodic
theory and state the properties of generalizedOrlicz spaces that will be used in the paper. Then
we formulate precisely our assumptions. In Sect. 3 we present the main results of the paper,
while we postpone the proofs to Sect. 4. In the appendix we prove a representation result
for the convex envelope of radial functions and a very general measurability result for the
optimal value of Dirichlet problems of integral functionals with jointly measurable integrand.
Moreover, we extend an approximation-in-energy result of [17] for scalar functions to the
vectorial setting. that we need to treat the convergence of Dirichlet problems in the vectorial
setting. While we need the latter result for the convergence of Dirichlet problems, it certainly
is of independent interest.
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2 Preliminaries and notation

2.1 General notation

We fix d ≥ 2. Given a measurable set S ⊂ R
d , we denote by |S| its d-dimensional Lebesgue

measure. For x ∈ R
d we denote by |x | the Euclidean norm and Bρ(x) denotes the open

ball with radius ρ > 0 centered at x . The real-valued m × d-matrices are equipped with
the operator-norm | · | induced from the Euclidean norm on Rd , while we write 〈·, :〉 for the
Euclidean scalar product between twom×d-matrices. Given a function f : T×R

m×d → R,
where T is an arbitrary set,we denote by f ∗ theLegendre-Fenchel conjugate of f with respect
to the last variable, that is,

f ∗(t, η) = sup{〈η, ξ 〉 − f (t, ξ) : ξ ∈ R
m×d}.

For a measurable set with positive measure, we define −
∫
S = 1

|S|
∫
S . We use standard notation

for L p-spaces and Sobolev spaces W 1,p . The Borel σ -algebra on Rd will be denoted by Bd ,
while we use Ld for the σ -algebra of Lebesgue-measurable sets. Throughout the paper, we
use the continuum parameter ε, but statements like ε → 0 stand for an arbitrary sequence
εn → 0. Finally, the letter C stands for a generic positive constant that may change every
time it appears.

2.2 Stationarity and ergodicity

Let � = (�,F,P) be a complete probability space. Here below we recall some definitions
from ergodic theory.

Definition 2.1 (Measure-preserving group action) A measure-preserving additive group
action on (�,F,P) is a family {τz}z∈Rd of measurable mappings τz : �→ � satisfying the
following properties:

(1) (joint measurability) the map (ω, z) �→ τz(ω) is F ⊗ Ld − F-measurable;
(2) (invariance) P(τz F) = P(F), for every F ∈ F and every z ∈ R

d ;
(3) (group property) τ0 = id� and τz1+z2 = τz2 ◦ τz1 for every z1, z2 ∈ R

d .

If, in addition, {τz}z∈Rd satisfies the implication

P(τz F�F) = 0 ∀ z ∈ R
d �⇒ P(F) ∈ {0, 1},

then it is called ergodic.

Remark 2.2 As noted in [20, Lemma 7.1], the joint measurability of the group action implies
that for every set �0 of full probability there exists a subset �1 ⊂ �0 of full probability that
is invariant under τz for a.e. z ∈ R

d . In particular, if f̄ : � → R is a function that satisfies
a given property almost surely, then the stationary extension f : � × R

d → R defined by
f (ω, x) = f̄ (τxω) satisfies the same property almost surely for a.e. x ∈ R

d .

We recall the following version of the ergodic theorem which will be crucial (see [32,
Lemma 4.1]).

Lemma 2.3 Let g ∈ L1(�) and {τz}z∈Rd be a measure-preserving, ergodic group action.
Then for a.e. ω ∈ � and every bounded, measurable set B ⊂ R

d the sequence of functions
x �→ g(τx/εω) converges weakly in L1(B) as ε → 0 to the constant function E[g].
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2.3 Generalized Orlicz spaces

We recall here the framework for generalized Orlicz spaces tailored to our setting. Let
(T , T , μ) be a finite measure space. Given a jointly measurable function ϕ : T × R

m×d →
[0,+∞) satisfying for a.e. t ∈ T the properties

i) ϕ(t, 0) = 0,
(ii) ϕ(t, ·) is convex and even,
(iii) lim|ξ |→+∞ ϕ(t, ξ) = +∞,

we define the generalized Orlicz space Lϕ(T )m×d by

Lϕ(T )m×d =
{
g : T → R

m×d measurable :
∫
T

ϕ(t, βg(t)) dμ < +∞ for some β > 0

}
,

where we identify as usual functions that agree a.e. We equip this space with the Luxemburg
norm

‖g‖ϕ := inf

{
α > 0 :

∫
T

ϕ(t, α−1g(t)) dμ ≤ 1

}
,

which then becomes a Banach space [22, Theorem 2.4]. We further assume the integrability
conditions

sup
|ζ |≤r

ϕ(·, ζ ), sup
|ζ |≤r

ϕ∗(·, ζ ) ∈ L1(T ) for all r > 0, (2.1)

where we recall that ϕ∗(t, ζ ) denotes the Legendre-Fenchel conjugate with respect to the
last variable. Then Lϕ(T )m×d embeds continuously into L1(T )m×d . Indeed, in this case the
Fenchel-Young inequality and the definition of the Luxemburg-norm yield that

r
‖g‖L1(T )

‖g‖ϕ ≤
∫
T

ϕ

(
t,

g(t)

‖g‖ϕ
)

dμ+
∫
T
sup
|ζ |≤r

ϕ∗(t, ζ ) dμ ≤ 1+ ‖ sup
|ζ |≤r

ϕ∗(·, ζ )‖L1(T ) < +∞.

Denoting further by (Lϕ(T )m×d)∗ the dual space, (2.1) allows us to apply [23, Proposition
2.1 and Theorem 2.2] to characterize the dual space as follows: every � ∈ (Lϕ(T )m×d)∗ can
be uniquely written as a sum � = �a + �s , with �a ∈ Lϕ∗(T )m×d (here the ∗ denotes the
Legendre-Fenchel conjugate) and �s ∈ Sϕ(T ), where we set

c0(T ) := {(An)n∈N ⊂ T : An+1 ⊂ An for all n ∈ N, μ

(⋂
n∈N

An

)
= 0},

Sϕ(T ) := {� ∈ (Lϕ(T )m×d)∗ : ∃(An)n∈N ∈ c0(T ) :
�(hχT \An ) = 0 ∀h ∈ Lϕ(T )m×d ∀n ∈ N}. (2.2)

Fur our analysis it will be crucial that (2.1) further implies that for any element � ∈ Sϕ(T )

it holds �|L∞(T )m×d = 0. To see this, note that (2.1) implies that
∫
T ϕ(t, h(t)) dμ < +∞

for all h ∈ L∞(T )m×d . Now let (An)n∈N ∈ A be a sequence as in the above definition for
the element �. Since T has finite measure, it follows that χAn converges in measure to 0. By
linearity, for all n ∈ N we have that

�(h) = �(hχT \An )+ �(hχAn ) = �(hχAn )

and so it suffices to show that hχAn → 0 in Lϕ(T )m×d . Given σ > 0, the sequence
ϕ(·, σhχAn ) also converges in measure to 0 and is uniformly bounded by the integrable

123



New homogenization results for convex integral functionals… Page 7 of 51 32

function ϕ(·, σh). Hence Vitali’s convergence theorem yields

lim
n→+∞

∫
T

ϕ(t, σh(t)χAn (t)) dμ = 0,

so that lim supn→+∞ ‖hχAn‖ϕ ≤ σ−1. Since σ can be made arbitrarily large, we obtain the
claimed convergence to 0.

Finally, we shall make use of the following representation formula for the subdifferential
of convex integral functionals: let f : T ×R

m×d → R be a jointly measurable function that
is convex in its second variable. Assume that g ∈ Lϕ(T )m×d such that that I f (g) ∈ R, where
I f (g) =

∫
T f (t, g(t)) dμ. Then the subdifferential of I f at g is given by

∂ I f (g) =
{
�a ∈ Lϕ∗(T )m×d : �a ∈ ∂ξ f (·, g(·)) a.e.

}

+ {
�s ∈ Sϕ(T ) : �s(h − g) ≤ 0 for all h ∈ dom(I f )

} ;
cf. [23, Theorem 3.1] which can be applied to due (2.1).

2.4 Framework and assumptions

Let D ⊂ R
d be an open, bounded setwith Lipschitz boundary and let (�,F,P) be a complete

probability space equippedwith ameasure-preserving, ergodic group action {τz}z∈Rd . For ε >

0, we consider integral functionals defined on L1(D)m with domain contained inW 1,1(D)m ,
taking the form

Fε(ω, u, D) =
∫
D
W (ω, x

ε
,∇u(x)) dx ∈ [0,+∞]

with the integrand W satisfying the following assumptions:

Assumption 1 There exists a F ⊗ Bm×d -measurable function W : �× R
m×d → [0,+∞)

such that

(A1) W (ω, x, ξ) := W (τxω, ξ) (stationarity and joint measurability);
(A2) for a.e. ω ∈ � the map ξ �→ W (ω, ξ) is convex (thus also ξ �→ W (ω, x, ξ) for a.e.

x ∈ R
d );

(A3) for all r > 0

ω �→ sup
|η|≤r

W (ω, η) ∈ L1(�); (local boundedness)

ω �→ sup
|η|≤r

W ∗(ω, η) ∈ L1(�), (inhomogeneous superlinearity)

where W ∗ denotes the Legendre-Fenchel transform of W with respect to its last vari-
able.

Moreover, W satisfies at least one of the following two conditions (A4) or (A5) below.

(A4) (mild monotoncity) there exists C > 1 and a non-negative function � ∈ L1(�) such
that for a.e. ω ∈ � and all ξ ∈ R

m×d , all ξ̃ ∈ R
m×d with eTj (ξ − ξ̃ ) ∈ {0, eTj ξ} for all

1 ≤ j ≤ m it holds that

W (ω, ξ̃ ) ≤ CW (ω, ξ)+�(ω)
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and thus also

W (ω, x, ξ̃ ) ≤ CW (ω, x, ξ +�(ω, x) for a.e. x ∈ R
d

with �(ω, x) := �(τxω).
(A5) (p > d − 1 coercivity) there exists p > d − 1 such that

W (ω, ξ) ≥ |ξ |p and thus W (ω, x, ξ) ≥ |ξ |p for a.e. x ∈ R
d .

Remark 2.4 (i) Due to Remark 2.2, the above Assumptions are indeed just assumptions
on W . Note that the local suprema in (A3) can be replaced by pointwise integrability
of W (·, ξ) and W ∗(·, ξ) since convex functions on cubes attain their maximum at the
finitely many corners and moreover W ≥ 0, while W ∗ can be bounded from below
by W ∗(ω, ξ) ≥ −W (ω, 0). Another advantage of the definition of W via stationary
extension is that the function W ∗(ω, x, ξ) = W ∗(τxω, ξ) remains F ⊗ Ld ⊗ Bm×d -
measurable due to the completeness of the probability space. Indeed, following verbatim
the proof of [19, Proposition 6.43], one can show that for any jointly measurable function
h : � × R

m×d → R the Fenchel-conjugate with respect to the second variable is still
jointly measurable. However, note that completeness of� is essential for the proof when
one only assumes joint measurability.

(ii) The integrability condition on the conjugate W ∗ in (A3) implies that ξ �→ W (ω, ξ) is
superlinear at infinity. Indeed, by definition we know that for all ξ, η ∈ R

m×d we have

W (ω, ξ)+W ∗(ω, η) ≥ 〈η, ξ 〉.
For ξ �= 0 and C > 0, choosing η = Cξ/|ξ | we deduce that

W (ω, ξ) ≥ C |ξ | − sup
|η|≤C

W ∗(ω, η), (2.3)

so that by the arbitrariness of C we obtain for a.e. ω ∈ �

lim|ξ |→+∞
W (ω, ξ)

|ξ | = +∞.

It will be useful to have a suitable radial lower bound forW . Define �̂ to be the the jointly
measurable function (ω, r) �→ inf |η|=r W (ω, η)1 and consider the convex envelope (in
R
m×d ) of the map ξ �→ �̂(ω, |ξ |). We then know from the above superlinearity (with

x = 0) andLemmaA.1 that�(ω, |ξ |) ≤ W (ω, ξ) for someconvex,monotone, superlinear
function �. Moreover, due to (2.3) with C = 1, without loss of generality the function �

satisfies the lower bound

�(ω, |ξ |) ≥ |ξ | −�(ω). (2.4)

(iii) The monotonicity assumption (A4) is no restriction in the scalar casem = 1 since in this
case it reduces to W (ω, 0) ≤ CW (ω, ξ) +�(ω), which follows from (A3). Moreover,
(A4) is also verified if

�(ω, |ξ |) ≤ W (ω, ξ) ≤ C�(ω, |ξ |)+�(ω) (2.5)

1 It is a Carathéodory-function. Indeed, for a.e. ω ∈ � the convexity and finiteness of W imply continuity
with respect to ξ , which can be used to deduce continuity with respect to r , while measurability with respect
to ω can be shown as follows: for every t > 0 the set {(ω, ξ) ∈ �× {|ξ | = r} : W (ω, ξ) < t} is F ⊗Bm×d -
measurable, so that by the measurable projection theorem the projection onto� is measurable. This projection
is exactly {w ∈ � : inf |ξ |=r W (ω, ξ) < t}.
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for some superlinear function �(ω, ·) : [0,+∞) → [0,+∞). To see this, observe that
the convex envelope of ξ �→ �(ω, |ξ |) is of the form ξ �→ �0(ω, |ξ |) with a monotone,
convex function �0(ω, ·) (see Lemma A.1). Then �0(ω, |ξ |) ≤ �(ω, |ξ |) and due to the
convexity of ξ �→ W (ω, ξ) we have W (ω, ξ) ≤ C�0(ω, |ξ |) + �(ω). Thus (A4) is a
consequence of the following estimate:

W (ω, ξ̃ ) ≤ C�0(ω, |̃ξ |)+�(ω) ≤ C�0(ω, |ξ |)+�(ω) ≤ CW (ω, ξ)+�(ω),

where we used the monotonicity of �0. Finally, (A4) comes also for free ifW is even with
respect to each row of ξ . Indeed, in this case it follows thatW (ω, ξ−) = W (ω, ξ), where
ξ− is any matrix that is made of ξ by multiplying some rows by (−1). Since the matrix
ξ̃ in (A4) is the midpoint of the line connecting ξ and some ξ− as above, by convexity
W (ω, ξ̃ ) ≤ 1

2W (ω, ξ)+ 1
2W (ω, ξ−) = W (ω, ξ).

Example 2.5 Here we give some well-known examples that satisfy Assumptions 1. In what
follows we exploit that for fixed p ∈ (1,+∞) the Fenchel conjugate of the function 1

p |ξ |p is
given by the function 1

q |ξ |q , where q = p/(p− 1) denotes the conjugate exponent to p. We
further assume that the probability space � and the stationary, ergodic group action {τz}z∈Rd

are given.

1) Consider the integrand W (ω, ξ) = 1
p(ω)

|ξ |p(ω) with a random exponent p : � →
(1,+∞). Denoting by q(·) = p(·)

p(·)−1 its conjugate exponent, W satisfies Assumption 1
whenever for all r > 0

1

p(·)r
p(·) ∈ L1(�),

1

q(·)r
q(·) ∈ L1(�),

which is equivalent (recall that exp(p) ≥ p for all p ≥ 1) to the moment generating
functions of p(·) and q(·) being globally finite. In particular, one can construct examples
(e.g. with subgaussian tails and a corresponding decay close to 1) with ess inf ω p(ω) = 1
and ess sup ω p(ω) = +∞ that fall in the framework of our assumptions.

2) Consider the double-phase integrand W (ω, ξ) = |ξ |p + a(ω)|ξ |q with 1 < p < +∞,
1 ≤ q < +∞ and a ∈ L1(�) a non-negative function. Then Assumption 1 is satisfied.
If p = 1 and q > 1, then Assumption 1 holds if in addition a1−q ∈ L1(�). Moreover,
Assumption 1 does not restrict to polynomial growth and is also satisfied for generalized
double-phase integrands of the form W (ω, ξ) = |ξ |p + a(ω) exp(exp(|ξ |q)) with 1 <

p < +∞, 0 < q < +∞ and a ∈ L1(�) a non-negative function (the double exponential
can be replaced by any convex and continuous function).

3) Consider the integrand W (ω, ξ) = 1
p |λ(ω)ξ |p with 1 < p < +∞ and λ : �→ [0,∞].

An elementary computation yields W ∗(ω, η) = 1
q |ξ/λ(ω)|q with q = p/(p − 1).

Hence W satisfies Assumption 1 whenever λp, λ−q ∈ L1(�), which coincides with the
assumption in [32], where it was shown that in general this integrability is necessary to
have a non-degenerate value of the multi-cell formula for this class of integrands (see
[32, Remark 3.2]).

We also study the convergence of the associated Euler–Lagrange equations for Fε(ω, ·, D)

under Dirichlet boundary conditions and external forces. To show that the homogenized
operator is differentiable under the general growth conditions,weneed to impose an additional
structural assumption.
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Assumption 2 In addition toAssumption 1, assume that for a.e.ω ∈ � themap ξ �→ W (ω, ξ)

is differentiable and almost even in the sense that there existsC ≥ 1 such that for all ξ ∈ R
m×d

we have

W (ω,−ξ) ≥ 1

C
W (ω, ξ)−�(ω). (2.6)

The corresponding integrand W (ω, x, ξ) then satisfies the same properties for a.e. x ∈ R
d

with � replaced by �.

Remark 2.6 We need (2.6) to construct a generalized (Sobolev-)Orlicz space associated to
the domain of Fε(ω, ·, D) or of h �→ E[W (·, h)] as follows: the function m(ω, ξ) :=
min{W (ω, ξ),W (ω,−ξ)} is even and jointly measurable. So is its convex envelope
co(m(ω, ξ)) (cf. Remark 2.4 (i)) and finally also the non-negative function

ϕ(ω, ξ) = C max{0, co(m(ω, ξ))−W (ω, 0)}, (2.7)

where C is the constant given in (2.6). Note that

1

C
ϕ(ω, ξ) ≤ co(m(ω, ξ))+W (ω, 0) ≤ m(ω, ξ)+W (ω, 0) ≤ W (ω, ξ)+W (ω, 0),

while (2.6) implies the lower bound

1

C
ϕ(ω, ξ) ≥ co(m(ω, ξ))−W (ω, 0) ≥ 1

C
W (ω, ξ)−W (ω, 0)−�(ω),

which up to increasing � yields the two-sided estimate

W (ω, ξ)−�(ω) ≤ ϕ(ω, ξ) ≤ CW (ω, ξ)+�(ω). (2.8)

Denoting by ϕ∗ the conjugate function of ϕ (with respect to the last variable), we deduce that
for all r > 0

0 ≤ ϕ∗(ω, 0) ≤ sup
|η|≤r

ϕ∗(ω, η) ≤ �(ω)+ sup
|η|≤r

W ∗(ω, η).

In particular, combined with (2.8) and (A3), we find that ϕ̄ satisfies all assumptions stated
in Sect. 2.3 for the choice (T , T , μ) = (�,F,P) (the superlinearity at +∞ follows as
in Remark 2.4 (ii)), so that we can define the generalized Orlciz space Lϕ(�)m×d , which
enjoys all properties stated in Sect. 2.3. On the physical space (D,Ld) with the Lebesgue-
measure instead, due to Remark 2.2 we can consider for a.e. ω ∈ � the (random) function
ϕε(x, ξ) = ϕ(τx/εω, ξ) to define the generalized Orlicz space Lϕε

ω (D)m×d , which satisfies
again all properties stated in Sect. 2.3.

We can further define the corresponding generalized Sobolev-Orlicz space

W 1,ϕε
ω (D)m := {u ∈ W 1,1(D)m : ∇u ∈ Lϕε

ω (D)m×d},
that becomes a Banach space for the norm

‖u‖
W 1,ϕε

ω
= ‖u‖L1(D) + ‖∇u‖ϕε,ω

and which embeds continuously into W 1,1(D)m . We define the space W 1,ϕε

0,ω (D)m as the

subspace with vanishing W 1,1(D)m-trace. Due to the continuous embedding this subspace
is closed. As we will prove, the homogenized integrand Whom appearing in Theorem 3.1
satisfies the deterministic analogue of (2.6). allowing us to define the associated Sobolev-
Orlicz spaces W 1,ϕhom (D)m and W 1,ϕhom

0 (D)m for the homogenized model. We need those
spaces to formulate our results on the Euler–Lagrange equations.
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3 Main results

Note that due to the probabilistic nature our main results are only true for a.e. ω ∈ �. At the
beginning of Sect. 4 we describe precisely which null sets we have to exclude.

We start our presentation of the main results with the �-convergence of the unconstrained
functionals.

Theorem 3.1 Let W satisfy Assumption 1. Then almost surely as ε → 0, the functionals
Fε(ω, ·, D) �-converge in L1(D)m to the functional Fhom : L1(D)m → [0,+∞] defined on
W 1,1(D)m by

Fhom(u) =
∫
D
Whom(∇u(x)) dx ∈ [0,+∞],

where the integrand Whom : Rm×d → [0,+∞) is convex. Moreover, the following is true:

• Suppose W satisfies (A4). Then Whom is superlinear at infinity and there exists C0 < +∞
such that for all ξ ∈ R

m×d and all ξ̃ ∈ R
m×d with eTj (ξ−ξ̃ ) ∈ {0, eTj ξ} for all 1 ≤ j ≤ m

it holds that

Whom (̃ξ ) ≤ C0 (Whom(ξ)+ 1).

• Suppose W satisfies (A5). Then for all ξ ∈ R
m×d

Whom(ξ) ≥ |ξ |p,
where p > d − 1 is the exponent in (A5).

Remark 3.2 For an intrinsic formula defining Whom see Lemma 4.3. It follows a posteriori
from Theorem 3.3 that one can obtain Whom(ξ) by the standard multi-cell formula

Whom(ξ) := lim
t→+∞ inf

{
−
∫

(−t,t)d
W (ω, x, ξ + ∇u) dx : u ∈ W 1,1

0 ((−t, t)d ,Rm)

}
.

Indeed, by the change of variables x �→ x/ε and Theorem 3.3 the above limit equals

min
u∈W 1,1

0 ((−1,1)d ,Rm )

−
∫

(−1,1)d
Whom(ξ + ∇u) dx = Whom(ξ),

where the last equality follows from the convexity of Whom.

Next we discuss the convergence of boundary value problems together with a varying
forcing term added to the functionals. Given g ∈ W 1,∞(Rd ,Rm) and fε ∈ Ld(D)m , we
define the constrained functional

Fε, fε,g(ω, u, D) =

⎧⎪⎨
⎪⎩
Fε(ω, u, D)− ∫

D fε(x) · u(x) dx ifu ∈ g +W 1,1
0 (D)m,

+∞ otherwise onL1(D)m .

(3.1)

Due to the Sobolev embedding the integral involving fε is finite for u ∈ W 1,1(D)m .

Theorem 3.3 Let W satisfy Assumption 1. Assume that g ∈ W 1,∞(Rd)m and that fε ∈
Ld(D)m is such that fε⇀ f in Ld(D)m as ε → 0. Then almost surely, as ε → 0, the func-
tionals u �→ Fε, fε,g(ω, u, D) �-converge in L1(D)m to the deterministic integral functional

Fhom, f ,g : L1(D)m → [0,+∞] defined on g +W 1,1
0 (D)m by

Fhom, f ,g(u) =
∫
D
Whom(∇u(x)) dx −

∫
D

f (x) · u(x) dx ∈ R ∪ {+∞}
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and +∞ otherwise. The integrand Whom is given by Theorem 3.1. Moreover, any sequence
uε such that

lim sup
ε→0

Fε, fε,g(ω, uε, D) < +∞ (3.2)

is weakly relatively compact in W 1,1(D)m and strongly relatively compact in Ld/(d−1)(D)m.
If (A5) is satisfied, the above result is also valid when fε⇀ f in Lq(D)m for some q ≥ 1

with 1
q < 1 − 1

p + 1
d , and sequences uε satisfying (3.2) are weakly relatively compact in

W 1,p(D)m, where p > d − 1 is the exponent in (A5).

Remark 3.4 (i) The condition g ∈ W 1,∞(Rd ,Rm) can be weakened to Lipschitz-continuity
on ∂�. Then one can redefine g on R

d\∂� using Kirszbraun’s extension theorem and
the definition of the functional Fε, fε,g is not affected.

(ii) By the fundamental property of �-convergence, Theorem 3.3 and the boundedness of
Fε, fε,g(ω, g, D) as ε → 0, imply that up to subsequences the minimizers of Fε, fε,g(ω, ·)
converge to minimizers of Fhom, f ,g . In particular, when W is strictly convex in the last
variable, then one can argue verbatim as in [32, Propisition 4.14] to conclude that also
Whom is strictly convex. In this case, the minimizers uε at the ε-level and u0 of the limit
functional are unique and uε → u0 as ε → 0 weakly in W 1,1(D)m and strongly in
Ld/(d−1)(D)m .

Our final result concerns the Euler–Lagrange equations of the functionals Fε, fε,g and
Fhom, f ,g . In particular, we address the differentiability of the function Whom. Here we have
to rely on the stronger Assumption 2 to be able to work in (Sobolev-)Orlicz spaces.

Theorem 3.5 Let W satisfy Assumption 2 and let g, fε and f be as in Theorem 3.3. Then the
following statements hold true.

i) Almost surely there exists a function uε ∈ g +W 1,1
0 (D)m such that

∫
D

∂ξW (ω, x
ε
,∇uε(x))∇φ(x)− fε(x) · φ(x) dx

{
= 0 ifφ ∈ W 1,∞

0 (D)m,

≥ 0 ifφ ∈ W 1,1
0 (D)mandFε(ω, uε + φ, D) < +∞.

The above (in)equality is equivalent to uε minimizing Fε, fε,g(ω, ·, D).
ii) The function Whom is continuously differentiable.
iii) There exists a function u0 ∈ g +W 1,1

0 (D)m such that
∫
D

∂ξWhom(∇u0(x))∇φ(x)− f (x) · φ(x) dx
{
= 0 ifφ ∈ W 1,∞

0 (D)m,

≥ 0 ifφ ∈ W 1,1
0 (D)m and Fhom(u0 + φ) < +∞.

The above (in)equality is equivalent to u0 minimizing Fhom, f ,g.
iv) If there exists s > 1 such that Fε(ω, suε, D) < +∞ respectively Fhom(su0) < +∞,

then∫
D

∂ξW (ω, x
ε
,∇uε(x))∇φ(x)− fε(x) · φ(x) dx = 0 for allφ ∈ W 1,ϕε

0,ω (D)m,
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respectively
∫
D

∂ξWhom(∇u0(x))∇φ(x)− f (x) · φ(x) dx = 0 for allφ ∈ W 1,ϕhom
0 (D)m,

where the spaces W 1,ϕε

0,ω (D)m andW 1,ϕhom
0 (D)m are the Sobolev-Orlicz spaces associated

to W and Whom (cf. Remark 2.6).
v) If W is strictly convex in its last variable, then the solutions uε and u0 are unique and

almost surely, as ε → 0, the random solutions uε = uε(ω) converge to u0 weakly in
W 1,1(D)m and strongly in Ld/(d−1)(D)m.

Remark 3.6 a) Wehave the inclusionsW 1,∞
0 (D)m ⊂ W 1,ϕε

0,ω ∩W 1,ϕhom
0 (D)m and {Fε(ω, ·, D)

< +∞} ⊂ W 1,ϕε
ω (D)m and {Fhom < +∞} ⊂ W 1,ϕhom (D)m . Since the Sobolev-Orlicz

spaces are vector spaces, this yields that the equations in iv) imply equality in i) and iii).
Moreover, the equations in i) and iii) can be extended by approximation toϕ ∈ W 1,1

0 (D)m ,
whose gradient can be approximated weakly∗ in Lϕε

ω (D)m×d or Lϕhom (D)m×d , respec-
tively, where both spaces are are regarded as subspaces of the dual space of L

ϕ∗ε
ε (D)m×d

or Lϕ∗hom (D)m×d , respectively.
b) While the points i) and iii) imply that uε and u0 are distributional solutions of the PDEs
−div(∂ξW (ω, ·

ε
,∇u)) = fε and −div(∂ξW (∇u)) = f respectively, they are no weak

solutions in the corresponding Sobolev-Orlicz space. This problem is strongly related to
the lack of density of smooth functions in Sobolev-Orlicz spaces. As a byproduct of our
proof the solutions that minimize the energy satisfy

∂ξW (ω, ·
ε
,∇uε) ∈ L

ϕ∗ε
ω (D)m×d , ∂ξWhom(∇u0) ∈ Lϕ∗hom (D)m×d ,

so that in the language of [8] they are energy extremals. In particular, theweak formulation
of the PDE would make sense in duality as in iv), but we are not able to prove it.

c) Concerning the integrands in Example 2.5, the condition in iv) is satisfied for p(·)-
Laplacians with essentially bounded exponent or double phase functionalsW (ω, x, ξ) =
|ξ |p + a(ω, x

ε
)|ξ |q with no additional restrictions on the exponents. In a more abstract

form, it suffices to have an estimate of the formW (ω, sξ) ≤ CW (ω, ξ)+�(ω) for some
s > 1. In this case one can use the formula for Whom given in Lemma 4.3 to show that
Whom(sξ) ≤ C(Whom(ξ)+ 1).

4 Proofs

Before we start with the different proofs leading to our main results, let us comment on the
null sets of � that we need to exclude: besides excluding the set of zero measure, where the
properties of W (or W ) in Assumption 1 or 2 fail,

• we will frequently apply the ergodic theorem in the form of Lemma 2.3 to the random
field W (ω, x

ε
, ξ) = W (τ x

ε
ω, ξ). A priori, the null set where convergence may fail could

depend on ξ , so let us explain why this is not the case. Consider an elementω ∈ �, where
the ergodic theorem holds for all rational matrices ξ ∈ Q

m×d . Then for any bounded,
measurable set E ⊂ R

d we have

lim
ε→0

∫
E
W (ω, x

ε
, ξ) dx = E[W (·, ξ)]|E |.
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To extend this property to irrational matrices ξ0, note that the sequence of maps

ξ �→
∫
E
W (ω, x

ε
, ξ) dx

is still convex and by assumption it is bounded on rational matrices. Since we can write
R
m×d as the countable union of cubeswith rational vertices, this implies that the sequence

is locally equibounded and by [19, Theorem 4.36] it is locally equi-Lipschitz. Hence it
converges pointwise for all ξ ∈ R

m×d and the limit is given byE[W (·, ξ)] as this function
is the continuous extension of the limit for rational matrices.

• wewill also applyLemma2.3 to thevariables sup|η|≤r W (ω, x
ε
, η)or sup|ζ |≤r W ∗(ω, x

ε
, ζ ).

These terms only appear in bounds, so that we can tacitly restrict r to positive, rational
numbers. Moreover, we will use Lemma 2.3 also for the map �(ω, x

ε
).

• we further exclude the null sets where Lemma 4.3 fails for rational matrices ξ ∈ Q
m×d or

where Lemma 4.4 forW or the countably many approximationsWk given by Lemma 4.5.
• finally, we apply Lemma 2.3 to the mapsW (ω, x

ε
, ξ+hξ (τx/εω)) for rational ξ ∈ Q

m×d ,
where hξ is given by Lemma 4.3.

If not stated explicitly otherwise, we shall always assume that we have an element ω of the
set of full measure such that the above properties hold.

4.1 Preliminary results: compactness, correctors and themulti-cell formula

We first show how the bound on the conjugate in (A3) yields weak L1-compactness for the
gradients of functions with equibounded energy.

Lemma 4.1 Suppose that W satisfies (A1), (A2) and (A3). Let (uε)ε>0 ⊂ W 1,1(D)m be such
that

sup
ε∈(0,1)

Fε(ω, uε, D) < +∞.

Then, as ε → 0, the gradients ∇uε are relatively weakly compact in L1(D)m×d . If moreover
uε is bounded in L1(D)m, then, up to subsequences, there exists u ∈ W 1,1(D)m such that
uε⇀u weakly in W 1,1(D)m. If W satisfies in addition (A5), the above statement is also true
with L1(D)m×d , L1(D)m and W 1,1(D)m replaced by L p(D)m×d , L p(D)m and W 1,p(D)m,
respectively.

Proof Let A ⊂ D be a measurable set and v ∈ L∞(D)m×d satisfy ‖v‖L∞(D) ≤ 1. For any
r ≥ 1 the Fenchel-Young inequality and the convexity of W in the last variable yield that∫

A
〈∇uε, v〉 dx ≤

∫
A
W (ω, x

ε
, 1
r ∇uε) dx +

∫
A
W ∗(ω, x

ε
, rv) dx

≤ 1

r

∫
A
W (ω, x

ε
,∇uε) dx + r − 1

r

∫
A
W (ω, x

ε
, 0) dx

+
∫
A
sup
|η|≤r

W ∗(ω, x
ε
, η) dx .

Taking the supremum over all such v’s, the nonnegativity of W and the global energy bound
imply that ∫

A
|∇uε| dx ≤ C

r
+

∫
A
W (ω, x

ε
, 0) dx +

∫
A
sup
|η|≤r

W ∗(ω, x
ε
, η) dx . (4.1)
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Note thatW ∗ inherits the stationary ofW and so does the function sup|η|≤r W ∗(·, ·, η). Com-
bining (A3) and Lemma 2.3, the functions in the last two integrals in (4.1) are equiintegrable.
Hence we deduce that

lim|A|→0
sup
|ε|�1

∫
A
|∇uε| dx ≤ C

r
.

Letting r → +∞, it follows that also ∇uε is equiintegrable as ε → 0. Since D has finite
measure, it remains to show that ∇uε is bounded in L1(D)m×d . To see this, choose A = D
and r = 1 in (4.1) and use again Lemma 2.3 to conclude that the functions in the last two
integrals in (4.1) are also equi-bounded in L1(D). The last claim is a standard result for
bounded sequences in W 1,1 with weakly compact gradients.

The claim for W satisfying (A5) is simpler and follows from

sup
ε∈(0,1)

∫
D
|∇uε|p dx ≤ sup

ε∈(0,1)
Fε(ω, uε, D) < +∞

and standard results for Sobolev spaces with exponent p > 1. ��
Next, we adapt the construction of correctors in [15, 20] to the superlinear setting without

any polynomial growth of order p > 1 from below. Define the set

F1
pot := {h ∈ L1(�)d : E[h] = 0 and for a.e. ω ∈ � the function

h(x) := h(τxω) ∈ L1
loc(R

d)d satisfies

∂i h j − ∂ j hi = 0 on R
d for all1 ≤ i, j ≤ d in the sense of distributions}. (4.2)

Even though d �= 3 in general, we refer to the property ∂i h j − ∂ j hi = 0 as being curl-free.
The following result is [32, Lemma 4.11].

Lemma 4.2 The space Fpot is a closed subspace of L1(�)d . Moreover, given h ∈ F1
pot, there

exists a map ϕ : � → W 1,1
loc (Rd) such that ∇ϕ(ω, x) = h(τxω) almost surely as maps

in L1
loc(R

d)d and such that for every bounded set B ⊂ R
d the maps ω �→ ϕ(ω, ·) and

ω �→ ∇ϕ(ω, ·) are measurable from � to L1(B) and to L1(B)d , respectively.

The above result allows us to introduce a corrector by solving a minimization problem on
the probability space as explained in the lemma below.

Lemma 4.3 Suppose W satisfies (A1), (A2) and (A3). Let ξ ∈ R
m×d . Then there exists a

function hξ ∈ (F1
pot)

m such that

Whom(ξ) := E[W (·, ξ + hξ )] = inf
h∈(F1

pot)
m
E[W (·, ξ + h)].

We call φξ : � → W 1,1
loc (Rd)m given by Lemma 4.2 applied to the components of hξ the

corrector associated to the direction ξ . We assume in addition that −
∫
B1

φξ (ω, x) dx = 0.

Then, as ε → 0, almost surely for any bounded, open set A ⊂ R
d it holds that

εφξ (ω, ·/ε)⇀0 in W 1,1(A)m .

The function ξ �→ Whom(ξ) is convex, finite and superlinear at infinity. Moreover, the fol-
lowing is true:

(i) Suppose that W satisfies in addition (A4). Then, there exists C0 < +∞ such that for all
ξ ∈ R

m×d and all ξ̃ ∈ R
m×d with eTj (ξ − ξ̃ ) ∈ {0, eTj ξ} for all 1 ≤ j ≤ m it holds that

Whom (̃ξ ) ≤ C0(Whom(ξ)+ 1).
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(ii) Suppose thatW satisfies in addition (A5). Then for all ξ ∈ R
m×d wehaveWhom(ξ) ≥ |ξ |p

and almost surely, as ε → 0, it holds that εφξ (ω, ·/ε)⇀0 in W 1,p(A)m, where p > d−1
is the exponent in (A5).

Proof The existence of minimizers in the weakly closed set (F1
pot)

m (cf. Lemma 4.2) for

the functional h �→ E[W (·, ξ + h)] follows from the direct method of the calculus of
variations. Indeed, the convexity of W in the last variable turns the functional weakly lower
semicontinuous for the L1(�)-topology, while the relative weak compactness of minimizing
sequences can be shown using (A3) in the form of ω �→ sup|η|≤r W ∗(ω, η) ∈ L1(�) for
all r > 0 as in the proof of Lemma 4.1, replacing the oscillating term x

ε
by 0 and the

physical space by the probability space. Next, note that the constraint −
∫
B1

φξ (ω, x) dx = 0
does not affect the measurability property stated in Lemma 4.2 as this integral term is a
measurable function of ω. We continue by showing the weak convergence to zero, dropping
the dependence on ξ for the moment. For a.e. ω ∈ � we have ∇φ(ω, ·/ε) = h(τ·/εω)

and h ∈ L1(�). Hence the ergodic theorem in the form of Lemma 2.3 implies that for any
bounded set B ⊂ R

d we have

∇φ(ω, ·/ε)⇀E[h] = 0 in L1(B)m×d , (4.3)

where we used that h ∈ (F1
pot)

m for the last equality. We will show that

lim
ε→0

−
∫
B1

εφ(ω, x/ε) dx = 0, (4.4)

which yields the claim by Poincaré’s inequality considering a ball B such that B1 ∪ A ⊂ B.
By a density argument one can show that for r ≥ 1

−
∫
B1

1

r
φ(ω, ry) dy = −

∫
B1

1

r
(φ(ω, ry)− φ(ω, y)) dy

= 1

r
−
∫
B1

∫ r

1
∇φ(ω, t y)y dt dy = 1

r

∫ r

1
−
∫
B1
∇φ(ω, t y)y dy dt .

Byapproximationwith continuous functions one can show that themap t �→ −
∫
B1
∇φ(ω, t y)y dy

is continuous on (0,+∞) and by (4.3) it vanishes at infinity. Hence the right-hand side term
in the above equality vanishes as r →+∞. This yields (4.4).

The function Whom is convex by the convexity of W in the last variable. It is finite since
0 ∈ (F1

pot)
m is admissible in the minimization problem defining Whom, so that due to the

integrability condition (A3)

Whom(ξ) ≤ E[W (·, ξ)] < +∞.

The superlinearity follows from the lower bound in (2.3). Indeed, for any C > 0 we have

C |ξ | = C |E[ξ + hξ ]| ≤ E[C |ξ + hξ |] ≤ E[W (·, ξ + hξ )

+ sup
|η|≤C

W ∗(·, η)] = Whom(ξ)+ E[ sup
|η|≤C

W ∗(·, η)].

By Assumption (A3), the last expectation is finite for any fixed C > 0, so that dividing the
above inequality by |ξ | and letting |ξ | → +∞, we infer that

C ≤ lim inf|ξ |→+∞
Whom(ξ)

|ξ | .

Superlinearity at infinity follows from the arbitrariness of C > 0.
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In order to prove the assertion in (i), fix ξ, ξ̃ ∈ R
m×d as in the statement and let hξ ∈

(F1
pot)

m be such that Whom(ξ) = E[W (·, 0, ξ + hξ )]. We define h̃ξ ∈ (F1
pot)

m via h̃ j
ξ = 0 if

eTj ξ̃ = 0 and h̃ j
ξ = h j

ξ if e
T
j ξ̃ = eTj ξ . Then, applying (A4) pointwise to the twomatrix-valued

functions ξ + hξ and ξ̃ + h̃ξ , we deduce that

Whom (̃ξ ) ≤ E[W (·, 0, ξ̃ + h̃ξ )] ≤ CE[W (·, 0, ξ + hξ )] + E[�] = C0(Whom(ξ)+ 1),

with C0 = max{C,E[�]} < +∞.
The additional statements in (ii) are well-known: the p-growth from below implies that

hξ satisfies in addition hξ ∈ (L p(�;Rd))m and from this we deduce the weak convergence
in W 1,p(A,Rm) for εφξ (ω, ·/ε). The coercivity for Whom follows by E[hξ ] = 0, (A5) and
Jensen’s inequality as

|ξ |p = |E[ξ + hξ ]|p ≤ E[|ξ + hξ |p] ≤ Whom(ξ).

��
As a final result of this section, we state the almost sure existence of the limit in an

asymptotic minimization formula in the physical space described in the following lemma.
The standard proof can be found in Appendix B.

Lemma 4.4 Suppose that W satisfies (A1), (A2) and (A3). For a bounded open set O ⊂ R
d

and ξ ∈ R
m×d , we define

μξ (ω, O) = inf
{
F1(ω, u, O) : u − ξ x ∈ W 1,1

0 (O,Rm)
}

.

There exists a convex function μhom : Rm×d → [0,+∞) and a set �′ ⊂ � with P[�′] = 1
such that the following is true: for every ω ∈ �′ and every cube Q = x + (−η, η)d ⊂ R

d

and ξ ∈ R
m×d it holds that

μhom(ξ) = lim
t→+∞

1

|t Q|μξ (ω, t Q).

4.2 Proof of the 0-liminf inequality by truncation ofW

For the �-liminf inequality, we approximate W from below by integrands with polynomial
growth. This technique was already implemented for functionals satisfying p growth from
below with p > 1, see e.g. [15, 28]. Here, we generalize this method to cover the case of
merely superlinear growth condition as in Assumption 1, where in contrast to the case with p-
growth from below, the approximation only satisfies so-called non-standard or p−q-growth.

Lemma 4.5 Assume that W satisfies (A1), (A2) and (A3). Then there exists an increasing
sequence Wk : � × R

d × R
m×d → [0,+∞) that still satisfies (A1), (A2) and (A3) and in

addition

a) W (ω, x, ξ) = supk∈N Wk(ω, x, ξ) for a.e. x ∈ R
d and all ξ ∈ R

m×d ;
b) Wk(ω, x, ξ) ≤ Ck(1 + |ξ |q) for some 1 < q < 1∗ (not depending on k) and Ck ∈

(0,+∞).

Proof Due to Remark 2.2, it is enough to perform the construction at the level of W , so
that (A1) comes for free. We first define a suitable lower bound for W . Set �̃(ω, ξ) =
co(min{�(ω, |ξ |), q−1|ξ |q}), where co denotes the convex envelope and � is the convex,
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monotone, superlinear function given by Remark 2.4 (ii). Then �̃ is jointly measurable2 and
�̃(ω, ξ) ≤ W (ω, ξ). Next, since W ≥ 0, following the proof of [19, Theorem 6.36] there
exist measurable and bounded functions ai : � → R and bi : � → R

m such that for all
ω ∈ � with W (ω, ·) being convex we have

W (ω, ξ) = sup
i∈N
{ai (ω)+ bi (ω) · ξ}.

We define an approximation of W by setting

W̃k(ω, ξ) = max
i≤k {ai (ω)+ bi (ω) · ξ}. (4.5)

Then W̃k is jointly measurable, increasing in k, convex in ξ and satisfies Wk ↑ W pointwise
in ξ for a typical element ω ∈ � (cf. the beginning of Sect. 4). Finally, we define

Wk(ω, ξ) = max{W̃k(ω, ξ), �̃(ω, ξ)}.
Then Wk is still jointly measurable, convex in ξ (as required in (A2)), increasing in k, and
due to the lower bound �̃(ω, ξ) ≤ W (ω, ξ) it also follows that Wk ↑ W . Moreover, since
the individual functions ai , bi are bounded, we have that

Wk(ω, ξ) ≤ W̃k(ω, ξ)+ |ξ |q ≤ Ck(1+ |ξ |q),
which also implies the upper bound in (A3). Next, we show the bound on the conjugate
function in (A3). To bound it from below, note that by definition of the conjugate

sup
|η|≤r

W ∗
k(·, η) ≥ −Wk(·, 0) ≥ −W (·, 0) ∈ L1(�).

For the upper bound, we will use several times that the convex envelope for finite, convex
functions f : Rm×d → R that are bounded below by an affine function (here zero) can be
characterized by the biconjugate function, i.e., f ∗∗ = co( f ) (cf. [19, Remark 4.93 (iii)]) and
that f ∗∗∗ = f ∗ (see [19, Proposition 4.88]), which in combination yields that

co( f )∗ = f ∗. (4.6)

Since f ≤ g implies f ∗ ≥ g∗, it suffices to show that sup|η|≤r (�̃)∗(·, η) ∈ L1(�).
According to (4.6) and the definition of �̃, we know that

(�̃)∗(ω, η) = sup
ξ∈Rm×d

(〈ξ, η〉 −min{�(ω, ξ), q−1|ξ |q})

= sup
ξ∈Rm×d

max{〈ξ, η〉 − �(ω, 0, ξ), 〈ξ, η〉 − q−1|ξ |q}

= max{�∗(ω, η), ( 1q | · |q)∗(η)} ≤ �∗(ω, η)+ 1
q ′ |η|q

′
,

where q ′ is the conjugate exponent to q . The function η �→ 1
q ′ |η|q

′
is deterministic and

locally bounded, and therefore it suffices to show that sup|η|≤r �∗(ω, η) ∈ L1(�). Recall the
construction of � in Remark 2.4 (ii) as the convex envelope of the radial minimum of W .
According to (4.6) we have that

�∗(ω, η) = sup
ξ∈Rm×d

(
〈ξ, η〉 − inf|z|=|ξ |W (ω, z)

)
= sup

ξ∈Rm×d
sup
|z|=|ξ |

(〈ξ, η〉 −W (ω, z)
)
.

2 Since all functions are real-valued and bounded below by 0, the convex envelope is given by the biconjugate,
which preserves joint measurability as explained in Remark 2.4 (ii).
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Taking the supremum over |η| ≤ r and using the commutativity of suprema, we deduce that

sup
|η|≤r

�∗(ω, η) = sup
ξ∈Rm×d

sup
|z|=|ξ |

sup
|η|≤r

(〈ξ, η〉 −W (ω, z)
) = sup

ξ∈Rm×d
sup
|z|=|ξ |

(
r |ξ | −W (ω, z)

)

= sup
z∈Rm×d

(r |z| −W (ω, z)) = sup
z∈Rm×d

sup
|η|≤r

(〈η, z〉 −W (ω, z))

= sup
|η|≤r

sup
z∈Rm×d

(〈η, z〉 −W (ω, z)) = sup
|η|≤r

W ∗(ω, η),

which concludes the proof of (A3). ��

In the next proposition we state the �-liminf inequality for the truncated energies defined via
the integrand Wk given by the previous lemma. The argument is quite standard. However,
we have not found a compatible version in the literature.

Proposition 4.6 Assume that W satisfies (A1), (A2) and (A3). Let D ⊂ R
d be an bounded,

open set, u ∈ W 1,1(D)m and (uε)ε ⊂ L1(D)m satisfying uε → u in L1(D)m as ε → 0. For
any k ∈ N let μhom,k(ξ) be the function given by Lemma 4.4 applied to the integrand Wk

given by Lemma 4.5. Then
∫
D

μhom,k(∇u(x)) dx ≤ lim inf
ε→0

∫
D
Wk(ω, x

ε
,∇uε(x)) dx .

Proof To reduce notation, we drop the index k, but assume in addition that W satisfies the
bound

W (ω, x, ξ) ≤ C(|ξ |q + 1) (4.7)

for some 1 < q < 1∗ and a.e. x ∈ R
d . Without loss of generality, the limit inferior in the

claim is finite and, passing to a non-relabeled subsequence, it is actually a limit. Following
the classical blow-up method, define the absolutely continuous Radon-measure mε on D by
its action on Borel sets B ⊂ D via

mε(B) =
∫
B
W (ω, x

ε
,∇uε(x)) dx .

By our assumption, the sequence of measures mε is equibounded, so that (up to passing

to a further subsequence) mε
�

⇀m for some nonnegative finite Radon measure m (possibly
depending on ω). Using Lebesgue’s decomposition theorem, we can writem = f̃ (x)Ld +ν,
with ν a nonnegative measure ν that is singular with respect to the Lebesgue measure. Since
D is open, the weak∗ convergence implies that

lim inf
ε→0

Fε(ω, uε, D) = lim inf
ε→0

mε(D) ≥ m(D) ≥
∫
D

f̃ (x) dx .

Hence it suffices to show that f̃ (x0) ≥ μhom(∇u(x0)) for a.e. x0 ∈ D. The Besicovitch
differentiation theorem [19, Theorem 1.153] and Portmanteau’s theorem imply that for a.e.
x0 ∈ D we have

f̃ (x0) = lim
r→0

m(Qr (x0))

rd
≥ lim sup

r→0
lim sup

ε→0

mε(Qr (x0))

rd
≥ lim sup

r→0
lim sup

ε→0

mε(Qr (x0))

rd
.

(4.8)
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Therefore it suffices to show that for a.e. x0 ∈ D we have (along the chosen subsequence in
ε)

lim sup
r→0

lim sup
ε→0

−
∫
Qr (x0)

W (ω, x
ε
,∇uε(x)) dx ≥ μhom(∇u(x0)).

We claim further that

lim sup
η↑1

lim sup
r→0

lim sup
ε→0

−
∫
Qr (x0)

W (ω, x
ε
, η∇uε(x)) dx

≤ lim sup
r→0

lim sup
ε→0

−
∫
Qr (x0)

W (ω, x
ε
,∇uε(x)) dx, (4.9)

so that it suffices to show that

lim sup
η↑1

lim sup
r→0

lim sup
ε→0

−
∫
Qr (x0)

W (ω, x
ε
, η∇uε(x)) dx ≥ μhom(∇u(x0)). (4.10)

To verify (4.9), note that due to the convexity of the map ξ �→ W (ω, y, ξ), for η ∈ (0, 1) it
holds that

W (ω, x
ε
, η∇uε(x)) ≤ ηW (ω, x

ε
,∇uε(x))+ (1− η)W (ω, x

ε
, 0).

Since η ≤ 1, integrating this inequality over Qr (x0) and taking the average, we obtain that

−
∫
Qr (x0)

W (ω, x
ε
, η∇uε(x)) dx ≤

−
∫
Qr (x0)

W (ω, x
ε
,∇uε(x)) dx + (1− η)−

∫
Qr (x0)

W (ω, x
ε
, 0) dx

and thus it suffices to show that the last integral vanishes. As ε → 0, the ergodic theorem
yields that

lim
η↑1 limr→0

lim
ε→0

(1− η)−
∫
Qr (x0)

W (ω, x
ε
, 0) = lim

η↑1(1− η)E[W (·, 0)] = 0.

To show (4.10), we fix x0 to be a Lebesgue point of u and ∇u, and such that (4.8) holds true.
Using the Besicovitch derivation theorem on convex, open sets (see [19, Remark 1.154 (ii)]),
we may impose additionally that

f̃ (x0) = lim
r→0

m(Qr (x0))

rd
. (4.11)

For such x0 we define the linearization of u at x0 by Lu,x0(x) = u(x0)+ ∇u(x0)(x − x0).
In what follows, we drop the dependence on x0 from cubes and tacitly assume that they are

centered at x0. We modify uε close to ∂Qr such that the modification attains the boundary
value Lu,x0 : for 0 < η < 1 we pick a cut-off function ϕη ∈ C∞c (Qr , [0, 1]) such that
ϕη(x) = 1 on Qηr , which can be chosen such that ‖∇ϕη‖∞ ≤ C

(1−η)r . Define then the
function uε,η : D → R

m by

uε,η = ηϕηuε + η(1− ϕη)Lu,x0 .

Since uε,η = ηuε on Qηr , we can estimate the energy of uε,η on Qr by

Fε(ω, uε,η, Qr ) ≤ Fε(ω, ηuε, Qr )+ Fε(ω, uε,η, Qr\Qηr ). (4.12)
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We argue that the last term is asymptotically negligible relative to rd . To reduce notation, we
set Srη = Qr\Qηr . Since uε ∈ W 1,1(D)m due to the global energy bound, the product rule
yields that

∇uε,η = ηϕη∇uε + η(1− ϕη)∇u(x0)+ (1− η)
η∇ϕη ⊗ (uε − Lu,x0)

1− η
,

so that 0 ≤ η, ϕη ≤ 1 and the convexity of ξ �→ W (ω, y, ξ) imply the estimate

Fε(ω, uε,η, Qr\Qηr ) ≤ Fε(ω, uε, Qr\Qηr )+ Fε(ω, Lu,x0 , Qr\Qηr )

+
∫
Qr \Qηr

W

(
ω, x

ε
,
η∇ϕη(x)⊗ (uε(x)− Lu,x0(x))

1− η

)
dx .

(4.13)

We first estimate the last term, using the polynomial bound (4.7). Inserting the uniform bound
on ∇ϕη, we find that

∫
Qr \Qηr

W

(
ω, x

ε
,
η∇ϕη(x)⊗ (uε(x)− Lu,x0(x))

1− η

)
dx

≤ C
∫
Qr \Qηr

(1− η)−2qr−q |uε(x)− Lu,x0(x)|q + 1 dx .

Inserting this estimate into (4.13) and the resulting bound into (4.12), we infer that

1

rd
Fε(ω, uε,η, Qr ) ≤ 1

rd
Fε(ω, ηuε, Qr )

+ 1

rd
Fε(ω, uε, Qr\Qηr )+ 1

rd
Fε(ω, Lu,x0 , Qr\Qηr )

+ C(1− η)−2q−
∫
Qr

∣∣∣∣uε(x)− Lu,x0(x)

r

∣∣∣∣
q

dx + C
1

rd
|Qr\Qηr |. (4.14)

We now let ε → 0. To estimate the left-hand side term from below, note that uε,η = ηLu,x0
on ∂Qr , so that by a change of variables Fε(ω, uε,η, Qr ) ≥ μη∇u(x0)(ω, Qr/ε)ε

d . Thus
Lemma 4.4 implies that

μhom(η∇u(x0)) ≤ lim inf
ε→0

1

rd
Fε(ω, uε,η, Qr ). (4.15)

To treat the right-hand side terms in (4.14), we note that the second term is r−dmε(Qr\Qηr ),
so that we can estimate it using Portmanteau’s theorem and switching to the closure
of Qr\Qηr . For the third term we can apply the ergodic theorem to the integrand
W (ω, x

ε
,∇u(x0)). In order to pass to the limit in the fourth term, we note that uε is bounded

in W 1,1(D)m and hence strongly converging in Lq(D) due to the Sobolev embedding. In
total, we obtain that

μhom(η∇u(x0)) ≤ lim sup
ε→0

1

rd
Fε(ω, ηuε, Qr )+ 1

rd
m(Qr\Qηr )

+ E[W (·,∇u(x0))](1− ηd)

+ C(1− η)−2q−
∫
Qr

∣∣∣∣u(x)− Lu,x0(x)

r

∣∣∣∣
q

dx + C(1− ηd).
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Next, we let r → 0. On the one hand, by (4.8) and (4.11) we have that

lim
r→0

1

rd
m(Qr\Qηr ) = lim

r→0

1

rd
m(Qr )− lim

r→0

ηd

(ηr)d
m(Qηr ) = f̃ (x0)− ηd f̃ (x0).

On the other hand, the L1∗ -differentiability of W 1,1-functions (cf. [18, Theorem 2, p. 230])
implies that

lim
r→0

−
∫
Qr

∣∣∣∣u(x)− Lu,x0(x)

r

∣∣∣∣
q

dx = 0.

Gathering these two pieces of information, we obtain that

μhom(η∇u(x0)) ≤ lim sup
r→0

lim sup
ε→0

1

rd
Fε(ω, ηuε, Qr )

+(1− ηd)
(
f̃ (x0)+ E[W (·,∇u(x0))] + C

)
.

Finally, letting η → 1, the continuity of μhom (which follows from convexity) yields

μhom(∇u(x0)) ≤ lim sup
η→1

lim sup
r→0

lim sup
ε→0

1

rd
Fε(ω, ηuε, Qr ),

which coincides with (4.10) and thus we conclude the proof. ��
We next need to prove that Whom,k = μhom,k because the formula for Whom,k allows us to
pass to the limit in k, while this is not obvious for the multi-cell formula defining μhom,k .

Lemma 4.7 Assume that W satisfies (A1), (A2) and (A3). For k ∈ N let Wk be the integrand
given by Lemma 4.5 and denote by Whom,k andμhom,k the functions given by the Lemmata 4.3
and 4.4, respectively. Then for all ξ ∈ R

m×d it holds that

Whom,k(ξ) = μhom,k(ξ). (4.16)

Proof Here we prove the equality of two deterministic quantities. Therefore we can exclude a
null set depending on any fixed ξ .We drop k from the notation and just assume thatW satisfies
the growth condition W (ω, x, ξ) ≤ C(|ξ |q + 1) for some 1 < q < 1∗ and a.e. x ∈ R

d . Fix
a cube Q ⊂ D. For every ε > 0 and t ∈ (0, 1) consider a function uε,t ∈ W 1,1(D)m with
−
∫
Q uε,t dx = 0 and −

∫
Q ∇uε,t dx = 0, satisfying

1

|Q| Fε(ω, uε,t , Q) = min

{
−
∫
Q
W (ω, x

ε
, tξ + ∇u(x)) dx : −

∫
Q
∇u dx = 0

}
,

where the minimum exists due to convexity and the superlinear growth of W . Since u = 0
is admissible in the above minimization problem and has uniformly bounded energy with
respect to ε → 0, it follows from the superlinear growth of W and the Poincaré inequality
that up to a subsequence (not relabeled) we have uε,t → ut as ε ↓ 0 in L1(Q)m for some
ut ∈ W 1,1(Q)m with −

∫
Q ∇ut dx = 0. Due to Proposition 4.6 with Q = D and Jensen’s

inequality we have that

μhom(tξ) = μhom

(
−
∫
Q
tξ + ∇ut (x) dx

)
≤ −

∫
Q

μhom(tξ + ∇ut (x)) dx

≤ lim inf
ε→0

min

{
−
∫
Q
W (ω, x

ε
, tξ + ∇u(x)) dx : −

∫
Q
∇u dx = 0

}
. (4.17)
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Next, let φξ : � → W 1,1
loc (Rd ,Rm) be the function given by Lemma 4.3. Define the

W 1,1
loc (Rd ,Rm)-valued random field vε,t by

vε,t (x) = tεφξ (ω)( x
ε
)−−

∫
Q
t∇φξ (ω)(

y
ε
)x dy.

Then
∫
Q ∇vt,ε dx = 0 and therefore almost surely

inf

{
−
∫
Q
W (ω, x

ε
, tξ + ∇u(x)) dx : −

∫
Q
∇u dx = 0

}

≤ −
∫
Q
W (ω, x

ε
, tξ + ∇vt,ε(x)) dx

= −
∫
Q
W

(
ω, x

ε
, tξ + thξ (τx/εω)− t−

∫
Q
hξ (τy/εω) dy

)
dx (4.18)

with hξ given by Lemma 4.3. Set H ξ,ε(ω) = −
∫
Q hξ (τy/εω) dy. Due to convexity we have

−
∫
Q
W

(
ω, x

ε
, tξ + thξ (τx/εω)− t H ξ,ε(ω)

)
dx ≤ t−

∫
Q
W

(
ω, x

ε
, ξ + hξ (τx/εω)

)
dx

+ (1− t)−
∫
Q
W

(
ω, x

ε
,− t

1−t H ξ,ε(ω)
)
dx .

The ergodic Theorem 2.3 implies that

lim
ε→0

H ξ,ε(ω) = lim
ε→0

−
∫
Q
hξ (τy/εω) dy = E[hξ ] = 0, (4.19)

lim
ε→0

−
∫
Q
W (ω, x

ε
, ξ + hξ (τx/εω)) dx = E[W (·, ξ + hξ )] = Whom(ξ). (4.20)

Due to (4.19) we may assume for ε > 0 sufficiently small that |H ξ,ε(ω)| ≤ (1 − t)/t .
Inserting the above convexity estimate into (4.18), by the ergodic theorem we find that

μhom(tξ) ≤ Whom(ξ)+ (1− t)E

[
sup
|η|≤1

W (·, η)

]
.

Letting t ↑ 1, we conclude the estimate μhom(ξ) ≤ Whom(ξ) due to the continuity of μhom.
We still need to show the reverse inequality. Here we can closely follow [32, Lemma

4.13]. Lemma B.1 implies that for every ε > 0 there exists a measurable function uξ,ε :
�→ W 1,1

0 (Q/ε)m such

F1(ω, ξ x + uξ,ε(ω), Q/ε)=μξ (ω, Q/ε) := inf{F1(ω, u, Q1/ε) : u ∈ ξ x +W 1,1
0 (Q/ε)m}.

almost surely. However, we switch to a jointly measurable map. From [16, Lemma 16, p.
196] we deduce that there exist F ⊗ Ld -measurable functions vξ,ε : � × Q/ε → R

m and
bξ,ε : �× Q/ε → R

m×d such that vξ,ε(ω, ·) = uξ,ε(ω) and bξ,ε(ω, ·) = ∇uξ,ε(ω) for a.e.
ω ∈ �. In particular, for a.e. ω ∈ � we have vξ,ε(ω, ·) ∈ W 1,1

0 (Q/ε)m and ∇vξ,ε(ω, ·) =
bξ,ε(ω, ·). With a slight abuse of notation, we therefore write bξ,ε = ∇vξ,ε. By Remark 2.2
we can assume that the set of ω, for which these properties hold, is invariant under the group
action τx for almost all x ∈ R

d . Finally, we extend vξ,ε and ∇vξ,ε to � × (Rd\Q/ε) by 0.
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This extension is jointly measurable on �× R
d . We now define hξ,ε ∈ L1(�)m×d by

hξ,ε(ω) = −
∫
Q/ε

∇vξ,ε(τ−yω, y) dy.

Note that hξ,ε is well defined and measurable due to the joint measurability of ∇vξ,ε and
the joint measurability of the group action. To see that it is integrable, we can use Fubini’s
theorem and a change of variables in � to deduce that

∫
�

|ξ + hξ,ε(ω)| dμ ≤ −
∫
Q/ε

∫
�

|ξ + ∇vξ,ε(τ−yω, y)| dμ dy

= −
∫
Q/ε

∫
�

|ξ + ∇vξ,ε(ω, y)| dμ dy

=
∫

�

−
∫
Q/ε

|ξ + ∇vξ,ε(ω, y)| dy dμ

≤ C
∫

�

−
∫
Q/ε

W (ω, y, ξ + ∇vξ,ε(ω, y)) dy dμ+ C,

where we used the superlinearity (2.3) of W for a.e. x ∈ R
d (cf. Remark 2.2). The last

term is finite, since for a.e. ω ∈ � the function ∇vξ,ε(ω, ·) is the gradient of an energy
minimizer on Q/ε. We argue that hξ,ε ∈ (F1

pot)
m . Since for a.e. ω ∈ � the function ∇vξ,ε is

the weak gradient of uξ,ε(ω) ∈ W 1,1
0 (Q/ε)m , it follows from Fubini’s theorem and a change

of variables in � that

∫
�

hξ,ε(ω) dμ =
∫

�

−
∫
Q/ε

∇vξ,ε(ω, y) dy

︸ ︷︷ ︸
=0 almost surely

dμ = 0.

Hence, it suffices to show that all rows of x �→ hξ,ε(τxω) satisfy the curl-free condition of
Definition 4.2. To this end, we derive a suitable formula for the distributional derivative of
this map. Fix θ ∈ C∞c (Rd) and an index 1 ≤ j ≤ d . Since ∇vξ,ε(ω, ·) = 0 on R

d\(Q/ε),
we can write

∫
Rd

hξ,ε(τxω)∂ jθ(x) dx =
∫
Rd

∫
Rd

∇vξ,ε(τx−yω, y)

|Q/ε| ∂ jθ(x) dy dx

=
∫
Rd

∫
Rd

∇vξ,ε(τzω, x − z)

|Q/ε| ∂ jθ(x) dz dx

=
∫
Rd

∫
Rd

∇vξ,ε(τzω, y)

|Q/ε| ∂ jθ(y + z) dy dz.

To infer that hξ,ε ∈ (F1
pot)

m , note that for a.e.ω ∈ � and almost every z ∈ R
d the function

y �→ ∇vξ,ε(τzω, y) is the gradient of the Sobolev function uξ,ε(τzω) ∈ W 1,1
0 (Q/ε)m , so that

the curl-free conditions follow. To finish the proof, we use that hξ,ε ∈ (F1
pot)

m and Jensen’s
inequality in the form
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Whom(ξ) ≤ E[W (·, ξ + hξ,ε)] ≤
∫

�

−
∫
Q/ε

W (ω, ξ + ∇vξ,ε(τ−yω, y)) dy dμ

=
∫

�

−
∫
Q/ε

W (τyω, ξ + ∇vξ,ε(ω, y)) dy dμ =
∫

�

−
∫
Q/ε

W (ω, y, ξ + ∇vξ,ε(ω, y)) dy dμ

= 1

|Q/ε|E[μξ (ω, Q/ε)],

where we used the stationarity of W , and that ∇vξ,ε(ω, ·) = ∇uξ,ε(ω) almost surely in the
last step. Passing to the limit as ε → 0, we obtain from L1-convergence in the subadditive
ergodic theorem (see [24, Theorem 2.3, p. 203]) the missing inequalityWhom(ξ) ≤ μhom(ξ).

��

Next, we show that limk→+∞Whom,k = Whom, so that the �-liminf inequality follows by
truncation.

Lemma 4.8 Assume that W satisfies (A1), (A2) and (A3). For k ∈ N let Wk be the integrand
given by Lemma 4.5 and denote by Whom,k and Whom the functions given by Lemma 4.3
applied to Wk and W, respectively. Then for all ξ ∈ R

m×d it holds that

lim
k→+∞Whom,k(ξ) = Whom(ξ).

Proof Since Wk ≤ W , we clearly have Whom,k(ξ) ≤ Whom. For the reverse inequality, note
that due to monotonicity it suffices to prove the claim up to subsequences. Let hξ,k ∈ (F1

pot)
m

be aminimizer definingWhom,k(ξ) = E[Wk(·, 0, ξ+hξ,k)]. Due to the uniform superlinearity
ofWk (recall themonotonicity in k), we know that (up to a subsequence) hξ,k⇀h̃ ∈ (F1

pot)
m in

L1(�)m×d . Fix h ∈ (F1
pot)

m . Then due to monotone convergence and lower semicontinuity,
for every m ∈ N we have

E[W (·, 0, ξ + h)] = lim
k→+∞E[Wk(·, 0, ξ + h)] ≥ lim

k→+∞E[Wk(·, 0, ξ + hξ,k)]
≥ lim inf

k→+∞ E[Wm(·, 0, ξ + hξ,k)] ≥ E[Wm(·, 0, ξ + h̃)].

Letting m → +∞ yields E[W (·, 0, ξ + h)] ≥ E[W (·, 0, ξ + h̃)]. Hence h̃ is a minimizer
and, as shown above,

Whom(ξ) = E[W (·, 0, ξ + h̃)] ≤ lim
k→+∞E[Wk(·, 0, ξ + hξ,k)] = lim

k→+∞Whom,k(ξ).

��

Now we are in a position to prove the �-liminf inequality for the original functionals.

Proposition 4.9 Assume that W satisfies (A1), (A2) and (A3). Let D ⊂ R
d be a bounded,

open set, u ∈ W 1,1(D)m and let (uε)ε ⊂ L1(D)m be a sequence satisfying uε → u in
L1(D)m as ε → 0. Then

∫
D
Whom(∇u(x)) dx ≤ lim inf

ε→0

∫
D
W (ω, x

ε
,∇uε(x)) dx,

with Whom defined in Lemma 4.3.
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Proof Since Wk ≤ W for all k ∈ N, it follows from the liminf inequality proven in Proposi-
tion 4.6 that

lim inf
ε→0

∫
D
W (ω, x

ε
,∇uε(x)) dx ≥ lim inf

ε→0

∫
D
Wk(ω, x

ε
,∇uε(x)) dx

≥
∫
D

μhom,k(∇u(x)) dx

Lemma4.7=
∫
D
Whom,k(∇u(x)) dx .

Letting k → +∞, the claim follows from Lemma 4.8 and the monotone convergence theo-
rem. ��

4.3 Construction of a recovery sequence

In Proposition 4.9 we proved the �-lim inf inequality assuming only (A1), (A2) and (A3).
In the proof of the �-lim sup inequality, see Proposition 4.11 below, we need to assume
in addition either the mild monotonicity condition (A4) or the coercivity condition (A5).
The main technical part in the proof of Proposition 4.11 is to construct a recovery sequence
for affine functions that satisfy prescribed affine boundary values. In order to attain the
boundary condition, we introduce a cut-off that causes an additional error term. Assuming
the monotonicity condition (A4), we combine the cut-off with a truncation argument to
control the additional error. Without a structure assumption such as (A4), truncation will not
work and we rely on Sobolev embedding instead. Similar arguments were used e.g. in [15,
28] assuming (A5) with p > d , exploiting the compact embedding of W 1,p into L∞. The
improvement from p > d to p > d − 1 comes from suitably chosen cut-off functions in
combination with the compact embedding of W 1,p(S1) ⊂ L∞(S1), where S1 denotes the
d−1-dimensional unit sphere, provided p > d−1. The following lemma encodes the needed
compactness property.

Lemma 4.10 Let N ∈ N and p > d−1. For every ρ > 0 there exists Cρ,N < ∞ (depending
also on d andm) such that the following is true: for any ball BR = BR(x0), any u1, . . . , uN ∈
W 1,p(BR)m and δ ∈ (0, 1

2 ] there exists η ∈ W 1,∞
0 (BR) satisfying

0 ≤ η ≤ 1, η = 1 inB(1−δ)R, ‖∇η‖L∞(BR) ≤ 2

δR
(4.21)

and for all i ∈ {1, . . . , N }

‖∇η ⊗ ui‖L∞(BR) ≤ ρ

δ

(
1

δRd

∫
BR\B(1−δ)R

|∇ui |p dx
) 1

p

+Cρ,N

δR

(
1

δRd

∫
BR\B(1−δ)R

|ui |p dx
) 1

p

. (4.22)

Proof Without loss of generality, we suppose x0 = 0. Set S1 := {x ∈ R
d : |x | = 1}.

Step 1 We prove the statement for u1, . . . , uN ∈ C1(BR)m . For i ∈ {1, . . . , N } and
C := 4N , we set

Ui :=
{
r ∈ [(1− δ)R, R] :

∫
S1
|∇ui (r z)|p dHd−1(z) ≤ C

δ(1− δ)d−1Rd

∫
BR\B(1−δ)R

|∇ui |p dx
}
.

(4.23)
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An elementary application of Fubinis Theorem and the definition of Ui in the form

∫
BR\B(1−δ)R

|∇u(x)|p dx =
∫ R

(1−δ)R
rd−1

∫
S1
|∇u(r z)|p dHd−1(z) dr

≥((1− δ)R)d−1
∫

((1−δ)R,R)\Ui

∫
S1
|∇u(r z)|p dHd−1(z) dr

>
C(δR − |Ui |)

δR

∫
BR\B(1−δ)R

|∇u(x)|p dx

imply |Ui | ≥ (1− 1
C )δR, or equivalently |(1−δR, R)\Ui | ≤ δR

C . An analogous computation
yields that

Vi :=
{
r ∈ [(1− δ)R, R] :

∫
S1
|ui (r z)|p dHd−1(z) ≤ C

δ(1− δ)d−1Rd

∫
BR\B(1−δ)R

|ui |p dx
}

(4.24)

satisfies |Vi | ≥ (1− 1
C )δR, or equivalently |(1− δR, R)\Vi | ≤ δR

C . SettingU :=⋂N
i=1Ui ∩

Vi , from the choice C = 4N we obtain

|U | ≥ δR − 2N

C
δR = δR

2
. (4.25)

Next, we define η ∈ W 1,∞(BR; [0, 1]) by

η(x) = η̃(|x |), where η̃(r) =
⎧⎨
⎩
1 ifr ∈ (0, (1− δ)R),

1

|U |
∫ R

r
χU (s) ds ifr ∈ ((1− δ)R, R).

By definition 0 ≤ η ≤ 1, η = 1 in B(1−δ)R , η ∈ W 1,∞
0 (BR) and for x = r z with r ∈ [0, R]

and z ∈ S1

|∇η(r z)| =
{
0 ifr /∈ U ,
1
|U | ifr ∈ U .

(4.26)

Hence, recalling (4.25), the map η satisfies all the properties in (4.21).
Next, we use p > d − 1 ≥ 1 in the form that the embedding W 1,p(S1)m ⊂ L∞(S1)m is

compact. In particular, for every ρ > 0 there exists Cρ such that for all v ∈ C1(S1)m it holds

sup
S1
|v| ≤ ρ‖Dτ v‖L p(S1) + Cδ‖v‖L p(S1)

where Dτ denotes the tangential derivative (see [26, Lemma 5.1]). Applying the above
estimate to vr ∈ C1(S1)m defined by vr (z) := u(r z) for all z ∈ S1 with u ∈ C1(BR)m ,
we obtain with the chain rule

sup
z∈S1

|u(r z)| ≤ ρr‖∇u(r ·)‖L p(S1) + Cρ‖u(r ·)‖L p(S1). (4.27)
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Hence, for every ρ > 0 there exists Cρ < ∞ such that for all x = r z with r = |x | and
z = x

|x |

|(∇η ⊗ ui )(x)| =|(∇η ⊗ ui )(r z)| ≤ 1

|U | supr∈U
|ui (r z)|

≤ 2

δR
sup
r∈U

(
rρ

(∫
S1
|∇ui (r z)|p dHd−1(z)

) 1
p

+ Cρ

(∫
S1
|ui (r z)|p dHd−1(z)

) 1
p
)

≤ 2

δR
sup
r∈U

(
Rρ

(
2d+1N
δRd

∫
BR\B(1−δ)R

|∇ui |p dx
) 1

p

+ Cρ

(
2d+1N
δRd

∫
BR\B(1−δ)R

|∇ui |p dx
) 1

p
)

,

where we use the definition of U and 1− δ ≥ 1
2 in the last inequality. The claimed estimate

(4.22) follows by redefining the choice of ρ > 0 (depending on N ).
Step 2 Conclusion. Let u1, . . . , uN ∈ W 1,p(BR)m . By standard results, we find (ui, j ) j ⊂

C∞(BR)m such that ui, j → ui in W 1,p(BR)m . By Step 2, for every j ∈ N we find η j ∈
W 1,∞

0 (BR) satisfying

0 ≤ η j ≤ 1, η j = 1 inB(1−δ)R, ‖∇η j‖L∞(BR) ≤ 2

δR
, (4.28)

‖∇η j ⊗ ui, j‖L∞(BR) ≤ ρ

δ

(
1

δRd

∫
BR\B(1−δ)R

|∇ui, j |p dx
) 1

p

+ Cρ,N

δR

(
1

δRd

∫
BR\B(1−δ)R

|ui, j |p dx
) 1

p

. (4.29)

In view of the bounds in (4.28), there exists η ∈ W 1,∞
0 (BR) such that up to subsequences

(not relabeled) η j
�

⇀ η in W 1,∞(BR). Moreover, η also satisfies the bounds in (4.21). Since

∇η j
�

⇀ ∇η weakly∗ in L∞(BR)d and ui, j → ui (strongly) in L p(BR)m , we deduce that
∇η j ⊗ ui, j converges weakly in L p(BR)m×d to ∇η ⊗ ui and by the boundedness of the
right-hand side in (4.29) also weakly∗ in L∞(BR)m×d . Hence the claimed estimate (4.22)
follows from (4.29) and weak∗ lower-semicontinuity of the norm. ��

Now we are in a position to state and prove the �-lim sup inequality.

Proposition 4.11 Let W satisfy Assumption 1. Let D ⊂ R
d be a bounded, open set with

Lipschitz boundary and u ∈ W 1,1(D)m. Then there exists sequence (uε)ε>0 ⊂ W 1,1D)m

such that uε → u in L1(D) and

lim
ε↓0 Fε(ω, uε, D) =

∫
D
Whom(∇u(x)) dx . (4.30)

Proof Step 1. Local recovery sequence for affine functions with rational gradient.
We claim that for any bounded, open set A ⊂ R

d , any affine function u : A→ R
m with

∇u = ξ ∈ Q
m×d and uε = u + εφξ (ω, ·/ε), where φξ is given as in Lemma 4.3, it holds
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that

lim
ε↓0 ‖uε − u‖L1(A) = 0 and lim

ε↓0

∫
A
W (ω, x

ε
,∇uε(x)) dx =

∫
A
Whom(∇u(x)) dx .

(4.31)

Indeed, the convergence uε → u in L1(A)m is a direct consequence of Lemma 4.3, while
the ergodic theorem in the form of Lemma 2.3 yields that

lim
ε↓0 −

∫
A
W (ω, x

ε
,∇uε(x)) dx = lim

ε↓0 −
∫

1
ε
A
W (ω, x, ξ + ∇φξ (ω, x)) dx

= lim
ε↓0 −

∫
1
ε
A
W (ω, x, ξ + hξ (τxω)) dx

= lim
ε↓0 −

∫
1
ε
A
W (τxω, ξ + hξ (τxω)) dx = Whom(ξ) = −

∫
A
Whom(∇u) dx .

Step2.Recovery sequencewith prescribed boundary values for affine functions –Assump-
tion (A4).

Let A ⊂ R
d be a bounded, open set and let u be an affine function with ∇u = ξ ∈ R

m×d .
We claim that there exists a sequence (vε)ε ⊂ W 1,1(A)m satisfying

(vε)ε ⊂ u+W 1,1
0 (A)m, lim

ε↓0

(
‖vε − u‖L1(A)+

∣∣∣∣
∫
A
W (ω, x

ε
,∇vε)−Whom(∇u) dx

∣∣∣∣
)
=0.

(4.32)

Indeed, let (u j ) j be a sequence of affine functions satisfying u j → u in W 1,∞(A)m and
∇u j ∈ Q

m×d for all j ∈ N. In view of Step 1 there exists for every j ∈ N a sequence
(u j,ε)ε ⊂ W 1,1(A)m satisfying u j,ε → u j in L1(A)m as ε ↓ 0 and (4.31). We glue u j,ε

to u at the boundary of A and truncate peaks of u j,ε in A. More precisely, we consider for
ε, δ, s > 0 and j ∈ N the function vε,δ, j,s ∈ W 1,1(A)m given by

vε,δ, j,s := ηTs(u j,ε)+ (1− η)u, (4.33)

where η = ηδ ∈ C1(A; [0, 1]) is a smooth cut-off function satisfying{
η = 0 on{x ∈ A : dist(x, ∂A) < δ}
η = 1 on{x ∈ A : dist(x, ∂A) > 2δ} (4.34)

and Ts(u j,ε) ∈ L∞ ∩W 1,1(A)m is obtained from u j,ε by ’component-wise’ truncation, that
is,

Ts(u j,ε) · ek := max{min{u j,ε · ek, s},−s} fork ∈ {1, . . . ,m}. (4.35)

By the product rule, we obtain for every t ∈ [0, 1)
t∇vε,δ, j,s =t(1− η)∇u + tη∇Ts(u j,ε)+ (1− t)

t

1− t
∇η ⊗ (Ts(u j,ε)− u).

Hence, by convexity of W ,

Fε(ω, tvε,δ, j,s, A) ≤
∫
A
t(1− η)W (ω, x

ε
, ξ) dx + t

∫
A

ηW (ω, x
ε
,∇Ts(u j,ε)) dx

+ (1− t)
∫
A
W (ω, x

ε
,

t

1− t
∇η ⊗ (Ts(u j,ε)− u)) dx .
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Assumption (A3) in combination with the ergodic theorem and the definition of η imply that
for t ∈ [0, 1]
lim sup

δ↓0
lim sup

ε↓0

∫
A
t(1− η)W (ω, x

ε
, ξ) dx ≤ lim

δ→0
|A ∩ {dist(·, ∂A) ≤ 2δ}|E[W (·, ξ)] = 0.

(4.36)

Next, we show that for every t ∈ [0, 1] it holds that

lim sup
δ↓0

lim sup
s↑∞

lim sup
j↑∞

lim sup
ε↓0

t
∫
A

ηW (ω, x
ε
,∇Ts(u j,ε)) dx ≤ |A|Whom(ξ). (4.37)

For this, we start with the decomposition∫
A
tηW (ω, x

ε
,∇Ts(u j,ε)) dx

≤
∫
A∩{|u j,ε |∞<s}

W (ω, x
ε
,∇u j,ε) dx +

∫
A∩{|u j,ε |∞≥s}

W (ω, x
ε
,∇Ts(u j,ε))) dx .

Since W ≥ 0, for all s > 0 we have that

lim sup
j↑∞

lim sup
ε↓0

∫
A∩{|u j,ε |∞<s}

W (ω, x
ε
,∇u j,ε) dx ≤ lim sup

j↑∞
lim sup

ε↓0

∫
A
W (ω, x

ε
,∇u j,ε) dx

= lim sup
j↑∞

|A|Whom(ξ j ) = |A|Whom(ξ),

(4.38)

where we used (4.31) and the continuity of Whom. In order to estimate the term where
truncation is active, we use the definition of Ts in the form

∀k ∈ {1, . . . ,m} : eTk ∇Ts(u j,ε) ∈ {0, eTk ∇u j,ε} a.e.

For s ≥ ‖u‖L∞(D) + 2 and j sufficiently large such that it holds ‖u j − u‖L∞(D) < 1, we
have

{|u j,ε|∞ ≥ s} ⊂ {|u j,ε − u j |∞ ≥ 1}.
Hence, we obtain with help of (A4) and s and j as above that∫

A∩{|u j,ε |∞≥s}
W (ω, x

ε
,∇Ts(u j,ε))) dx

≤ C
∫
A∩{|u j,ε |∞≥s}

(W (ω, x
ε
,∇u j,ε)+�(ω, x

ε
)) dx

≤ C
∫
A∩{|u j,ε−u j |∞≥1}

(W (ω, x
ε
,∇u j,ε)+�(ω, x

ε
)) dx .

We claim that

lim sup
ε↓0

∫
A∩{|u j,ε−u j |∞≥1}

(W (ω, x
ε
,∇u j,ε)+�(ω, x

ε
)) dx = 0, (4.39)

which together with (4.38) yields (4.37). In order to verify (4.39), recall that ∇u j,ε =
ξ j + ∇φξ j (

·
ε
), so that the ergodic theorem in the form of Lemma 2.3 implies that

W (ω, ·
ε
,∇u j,ε)⇀Whom(ξ j ) and �(ω, ·

ε
)⇀E[�] weakly in L1(A) as ε ↓ 0. In par-

ticular, due to the Dunford-Pettis theorem (see e.g. [19, Theorem 2.54]) the sequences
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(W (ω, ·
ε
,∇u j,ε))ε and (�(ω, ·

ε
))ε are equi-integrable and thus (4.39) follows from the

convergence u j,ε → u j in L1(A)m which implies that |A ∩ {|(u j,ε − u j |∞ ≥ 1}| → 0.
It remains to show

lim sup
t↑1

lim sup
δ↓0

lim sup
s↑∞

lim sup
j↑∞

lim sup
ε↓0

(1− t)×
∫
A
W (ω, x

ε
,

t

1− t
∇η ⊗ (Ts(u j,ε)− u)) dx ≤ 0. (4.40)

Using once more the convexity of W , we can bound the integral by∫
A
W (ω, x

ε
,

t

1− t
∇η ⊗ (Ts(u j,ε)− u)) dx ≤

∫
A
W (ω, x

ε
,

2t

1− t
∇η ⊗ (Ts(u j,ε)− u j )) dx

+
∫
A
W (ω, x

ε
,

2t

1− t
∇η ⊗ (u j − u)) dx .

(4.41)

For the last term, recall that u j → u in L∞(A)m . Hence, given s, δ > 0 and t ∈ [0, 1), we
have ∣∣∣∣ 2t

1− t
∇η ⊗ (u j − u)

∣∣∣∣ ≤ 1 on A,

for j large enough and therefore

0 ≤ W (ω, x
ε
,

2t

1− t
∇η ⊗ (u j − u)) ≤ sup

|ζ |≤1
W (ω, x

ε
, ζ ).

Due to Assumption (A3) we can apply the ergodic theorem to the right-hand side map and
deduce that

lim sup
t↑1

lim sup
δ↓0

lim sup
s↑∞

lim sup
j↑∞

lim sup
ε↓0

(1− t)
∫
A
W (ω, x

ε
,

2t

1− t
∇η ⊗ (u j − u)) dx ≤ 0.

(4.42)

To treat the other right-hand side term in (4.41), first recall that u j,ε → u j in L1(A)m . Using
Egorov’s theorem, for every sequence ε → 0 we find a subsequence such that for any η > 0
there exists a measurable set Aη with measure less than η and such that u j,ε → u j uniformly
on A\Aη. Consider j large enough such that ‖u j − u‖L∞(A) < 1 and s ≥ ‖u‖L∞(A) + 2.
Then Tsu j = u j a.e. on A. By construction, for any such s, and δ > 0 and t ∈ [0, 1) there
exist r > 0 such that

sup
ε>0

∣∣∣∣ t

1− t
∇η ⊗ (Ts(u j,ε)− u j )

∣∣∣∣ ≤ r .

Since Ts(u j,ε) also converges uniformly to Ts(u j ) = u j on A\Aη, for ε small enough we
can bound the integrand by

0 ≤ W (ω, x
ε
,

t

1− t
∇η ⊗ (Ts(u j,ε)− u j )) dx ≤ 1Aη sup

|ζ |≤r
W (ω, x

ε
, ζ )+ sup

|ζ |≤1
W (ω, x

ε
, ζ ).

The second right-hand side term can be treated as before, while for the first one the equi-
integrability of x �→ sup|ζ |≤r W (ω, x

ε
, ζ ) (cf. Assumption (A3) and Lemma 2.3) implies

that

lim
η→0

lim sup
ε→0

∫
Aη

sup
|ζ |≤r

W (ω, x
ε
, ζ ) dx = 0.
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Since the limit does not depend on the subsequence we picked for Egorov’s theorem, we
proved that

lim sup
t↑1

lim sup
δ↓0

lim sup
s↑∞

lim sup
j↑∞

lim sup
ε↓0

(1− t)×
∫
A
W (ω, x

ε
,

2t

1− t
∇η ⊗ (Ts(u j,ε − u j )) dx ≤ 0,

so that in combination with (4.42) and (4.41) we indeed obtain (4.40).
Combining (4.36), (4.37) and (4.40) with the definition of vε,δ, j,s , we obtain

lim sup
t↑1

lim sup
δ↓0

lim sup
s↑∞

lim sup
j↑∞

lim sup
ε↓0(

‖tvε,δ, j,s − u‖L1(A) + Fε(ω, tvε,δ, j,s)−
∫
A
Whom(∇u) dx

)
≤ 0.

Passing to a suitable diagonal sequence and using the lim inf-inequality of Proposition 4.9
on the bounded, open set A, we obtain the desired recovery sequence satisfying (4.32).

Step3.Recovery sequencewith prescribed boundary values for affine functions –Assump-
tion (A5).

We show that for bounded, open set A ⊂ R
d , every affine function u with∇u = ξ ∈ R

m×d
there exists a sequence (vε)ε satisfying

(vε)ε ⊂ u+W 1,p
0 (A)m, lim

ε↓0

(
‖vε − u‖L p(A)+

∣∣∣∣
∫
A
W (ω, x

ε
,∇vε)−Whom(∇u) dx

∣∣∣∣
)
=0.

(4.43)

We first consider the casewhen A is a ball. Let B = BR(x0)with R > 0, x0 ∈ R
d ,consider

a sequence u j of affine functions satisfying ∇u j = ξ j ∈ Q
m×d and u j → u in W 1,∞(B)m .

For δ ∈ (0, 1
2 ) and j ∈ N, let η = ηε,δ, j be as in Lemma 4.10 with N = 1 and u1 = εφξ j (

·
ε
).

We set

vε,δ, j := ηε,δ, j (u j + εφξ j (
·
ε
))+ (1− ηε,δ, j )u.

Clearly, we have

lim sup
t↑1

lim sup
δ↓0

lim sup
j↑∞

lim sup
ε↓0

‖tvε,δ, j − u‖L p(B) = 0 (4.44)

and by convexity, we have

Fε(ω, tvε,δ, j , B) ≤
∫
B
t(1− ηε,δ, j )W (ω, x

ε
, ξ) dx + t

∫
B

ηε,δ, jW (ω, x
ε
, ξ j + ∇φξ j (

x
ε
)) dx

+ (1− t)
∫
B
W (ω, x

ε
,

t

1− t
∇ηε,δ, j ⊗ (εφξ j (

x
ε
)+ u j − u)) dx .

Similarly to Step 2, we obtain

lim sup
t↑1

lim sup
δ↓0

lim sup
j↑∞

lim sup
ε↓0

∫
B
t(1− ηε,δ, j )W (ω, x

ε
, ξ) = 0 (4.45)

(see (4.36)) and

lim sup
t↑1

lim sup
δ↓0

lim sup
j↑∞

lim sup
ε↓0

t
∫
B

ηε,δ, jW (ω, x
ε
, ξ j + ∇φξ j (

x
ε
)) dx ≤ |B|Whom(ξ)

=
∫
B
Whom(∇u) dx . (4.46)
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Hence, it remains to estimate the last term in the above bound. By Lemma 4.10, we find for
every ρ > 0 a constant Cρ <∞ depending only on d,m, p and ρ > 0 such that

‖∇ηε,δ, j ⊗ εφξ j (
·
ε
)‖L∞(B) ≤ ρ

δ

(
1

δRd

∫
B
|∇φξ j (

x
ε
)|p dx

) 1
p

+ Cρ

δR

(
1

δRd

∫
B
|εφξ j (

x
ε
)|p dx

) 1
p

.

By Lemma 4.3 the last integral vanishes as ε → 0, while the first right-hand side integral
remains bounded as ε → 0. From the arbitrariness of ρ > 0 we thus infer that

lim sup
ε↓0

‖∇ηε,δ, j ⊗ εφξ j (
·
ε
)‖L∞(B) = 0,

which due to the triangle inequality and (4.21) implies that for all t ∈ [0, 1), δ ∈ (0, 1
2 ] and

j ∈ N it holds

lim sup
ε↓0

∥∥∥∥ t

1− t
∇η ⊗ (εφξ j (

·
ε
)+ u j − u)

∥∥∥∥
L∞(B)

≤ 2

1− t

1

δR
‖u j − u‖L∞(B).

In particular, for all t ∈ (0, 1), δ ∈ (0, 1
2 ] and j sufficiently large (depending on t and δ) we

have

lim sup
ε→0

∫
B
W (ω, x

ε
,

t

1− t
∇ηε,δ, j ⊗ (εφξ j (

x
ε
)+ u j − u)) dx

≤ lim sup
ε→0

∫
B
sup
|ζ |≤1

W (ω, x
ε
, ζ ) dx

= |D|E[ sup
|ζ |≤1

W (·, ζ )],

where we used Assumption (A3) and the ergodic theorem in the form of Lemma 2.3. Thus

lim sup
t↑1

lim sup
δ↓0

lim sup
j↑∞

lim sup
ε↓0

(1− t)×
∫
B
W (ω, x

ε
,

t

1− t
∇ηε,δ, j ⊗ (εφξ j (

x
ε
)+ u j − u)) dx ≤ 0. (4.47)

Combining (4.44), (4.45), (4.46) and (4.47), we obtain a diagonal sequence satisfying (4.43)
in the case A = B.

Next, we remove the restriction on A being a ball and consider a general bounded, open
set A ⊂ R

d and an affine function u with ∇u = ξ ∈ R
m×d . By the Vitali covering theorem,

we find a collection of disjoint balls B( j) ⊂ A, j ∈ N such that |A\ ∪i∈N B(i)| = 0. Hence,
for every ν > 0 there exists N ∈ N such that |A\(∪N

i=1B(i))| < ν. The previous result for

balls ensures that for all i ∈ {1, . . . , N }, we find a sequence (v
(i)
ε )ε ∈ u+W 1,p

0 (B(i))m such
that

lim
ε↓ ‖v

(i)
ε − u‖L p(B(i)) = 0 and lim

ε↓0 F(ω, v(i)
ε , B(i)) =

∫
B(i)

Whom(∇u) dx .
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Setting vε := u+∑N
i=1(v

(i)
ε −u), we have that vε ∈ u+W 1,p

0 (A)m and vε → u in L p(A)m .
Moreover, by the ergodic theorem it holds that

lim sup
ε↓0

F(ω, uε, A) ≤ lim sup
ε↓0

F(ω, uε, A\ ∪N
i=1 B(i))+

N∑
i=1

lim sup
ε↓0

F(ω, uε, B
(i))

= lim sup
ε↓0

∫
A\∪N

i=1B(i)
W (ω, x

ε
, ξ) dx +

N∑
i=1

∫
B(i)

Whom(∇u) dx

≤E[W (·, ξ)] |A\ ∪N
i=1 B(i)| +

∫
A
Whom(∇u) dx,

where we used in the last step Whom ≥ 0. Letting N ↑ +∞, we conclude the proof.
Step 4. The general case.
In this step,wepass from the limsup-inequality for affine functions to the limsup-inequality

for general functions u ∈ W 1,1(D)m . Let us first consider u ∈ W 1,∞(D)m which is piecewise
affine, i.e., there exist finitely many disjoint open sets Ai ⊂ D, i = 1, . . . , K such that
|D\ ∪i Ai | = 0 and u|Ai (x) = ξi x + bi for some ξi ∈ R

m×d and bi ∈ R
m . In view of Step 2

and Step 3, we find for every Ai a sequence (ui,ε)ε ∈ u+W 1,1
0 (Ai )

m satisfying either (4.32)
or (4.43). Since all ui,ε, i = 1, . . . , K coincide with u at the boundary of Ai , we can glue
them together and obtain a recovery sequence for u on D.

The limsup-inequality for general u ∈ W 1,1(D)m follows as in [15, 28]. By the ’locality
of the recovery sequence’ (see [15, Corollary 3.3]), we can assume that D ⊂ R

n is an open
ball. Indeed, for a bounded, open set with Lipschitz boundary D we find a ball B such that
D ⊂⊂ B. Assume that we have a recovery sequence (uε)ε satisfying uε → u in L1(B)m

and Fε(ω, uε, B)→ ∫
B Whom(∇u) dx as ε ↓ 0. Then,

lim
ε↓0 Fε(ω, uε, D) = lim

ε↓0(Fε(ω, uε, B)− Fε(ω, uε, D\B)) ≤ lim
ε↓0 Fε(ω, uε, B)

− lim inf
ε↓0 Fε(ω, uε, D\B)

≤
∫
B
Whom(∇u) dx −

∫
B\D

Whom(∇u) dx =
∫
D
Whom(∇u) dx,

where we used that uε is a recovery sequence on B and the lim inf inequality Proposition 4.9
Hence, it suffices to assume that D ⊂ R

n is an open ball and thus smooth and star-shaped.
Fix u ∈ W 1,1(D)m such that

∫
D Whom(∇u) dx < +∞. Since Whom : Rm×n → [0,+∞) is

convex (cf. Lemma4.3),we can apply [28, Lemma3.6] andfind a sequence (u j ) j of piecewise
affine functions satisfyingu j → u inW 1,1(D)m and

∫
D Whom(∇u j ) dx →

∫
D Whom(∇u) dx

as j → ∞. Hence, by the previous argument, we find (u j,ε)ε with u j,ε → u j in L1(D)m

and Fε(ω, u j,ε, D) → ∫
D Whom(∇u j ) dx and thus

lim
j→∞ lim

ε↓0

(
‖u j,ε − u‖L1(D) +

∣∣∣∣
∫
D
W (ω, x

ε
,∇uε, j )−Whom(∇u) dx

∣∣∣∣
)
= 0.

The claim follows again by a diagonal argument. ��

4.4 Convergence with boundary value problems and external forces

In this section we prove the �-convergence result under Dirichlet boundary conditions and
with external forces, i.e., Theorem 3.3.
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Proof of Theorem 3.3 In a first step we consider the case fε = f = 0. Weak W 1,1-
compactness (or W 1,p-compactness assuming (A5)) of energy bounded sequences follows
from the unconstrained case (cf. Lemma 4.1) and the fact that the Dirichlet boundary con-
dition allows us to apply a Poincaré inequality to deduce L1-boundedness. The �-liminf
inequality is also a consequence of the unconstrained case (cf. Lemma 4.9) since the bound-
ary condition is stable under weak convergence in W 1,1(D)m . Hence it remains to show the
�-limsup inequality, which requires more work. Fix u ∈ W 1,1(D)m such that u = g on ∂D
in the sense of traces and Fhom(u) < +∞.

Let t ∈ (0, 1). Then ut := g + t(u − g) ∈ g +W 1,1
0 (D)m and by convexity we have

Fhom

(
(1+ t)

2t
(ut − g)

)

= Fhom

(
(1+ t)

2
(u − g)

)
= Fhom

(
(1+ t)

2
u + (1− t)

2

(1+ t)

(t − 1)
g

)

≤ (1+ t)

2
Fhom(u)+ (1− t)

2
Fhom

(
(1+ t)

(t − 1)
g

)
< +∞,

and Fhom(ut ) ≤ (1− t)Fhom(g)+ t Fhom(u) < +∞. In particular,

lim
t↑1 Fhom(ut ) ≤ Fhom(u)

and since ut → u in L1(D)m when t ↑ 1 and 1+t
2t > 1, a diagonal argument allows us to

show the �-limsup inequality for functions u such that additionally Fhom(s(u − g)) < +∞
for some s > 1. By Lemma C.1 and the properties of Whom (cf. Lemma 4.3) there exists a
sequence vn ∈ C∞c (D)m such that vn → u − g in W 1,1(D)m and

lim
n→+∞

∫
D
Whom(s∇vn) dx =

∫
D
Whom(s∇(u − g)) dx < +∞. (4.48)

By choosing a suitable subsequence (not relabeled) we can assume in the following that (vn)n
satisfies in addition vn → u − g and ∇vn → ∇v − ∇g a.e. in D. Next, we show

lim
n→+∞

∫
D
Whom(∇(vn + g)) dx =

∫
D
Whom(∇u) dx .

Indeed, by Fatou’s lemma and the non-negativity of Whom, we have

lim inf
n→∞

∫
D
Whom(∇(vn + g)) dx ≥

∫
D
Whom(∇u) dx .

To show the corresponding inequality for the lim sup, we first observe that for all ξ ∈ R
m×d

Whom(ξ + ∇g) = Whom( 1s sξ + (1− 1
s )

s
s−1∇g(x)) ≤ Whom(sξ)+Whom( s

s−1∇g(x)).
(4.49)
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Hence, the desired inequality follows with help of estimate (4.49), Fatous lemma and (4.48):

lim sup
n→∞

∫
D
Whom(∇(vn + g)) dx

≤ − lim inf
n→∞

∫
D
Whom(s∇vn)+Whom( s

s−1∇g(x))−Whom(∇(vn + g)) dx

+ lim
n→∞

∫
D
Whom(s∇vn)+Whom( s

s−1∇g(x)) dx

≤
∫
D
Whom(∇u) dx .

Since g is Lipschitz-continuous, we thus deduce that there exists a sequence un ∈ Lip(D)m

such that un = g on ∂D with un → u in W 1,1(D)m and

lim
n→+∞

∫
D
Whom(∇un) dx =

∫
D
Whom(∇u) dx . (4.50)

Thus, by a further diagonal argument, it suffices to show the upper bound for Lipschitz-
functions u ∈ Lip(D)m with u = g on ∂D. Applying componentwise [17, Proposition 2.9,
Chapter X], we find a sequence un ∈ Lip(D)m and an increasing sequence of open sets
Dn ⊂ D such that |D\Dn | → 0, the function un is piecewise affine on Dn , un = g on ∂D,
un → u uniformly on D, ∇un → ∇u a.e. on D, and

‖∇un‖L∞(D) ≤ ‖∇u‖L∞(D) + o(1). (4.51)

Then un → u in L1(D)m and the dominated convergence theorem and the continuity of
Whom imply that

lim
n→+∞Whom(∇un) dx =

∫
D
Whom(∇u) dx . (4.52)

Since un is piecewise affine in Dn , there exist disjoint open sets D1
n, . . . , D

Nn
n such that

Dn = ∪ j D
j
n and ∇u = ξ

j
n on D j

n . By Step 2 and Step 3 of the proof of Proposition 4.11, we

find for every j ∈ {1, . . . , Nn} a recovery sequence u j
ε,n ∈ un +W 1,1

0 (D j
n )

m satisfying

u j
ε,n → un in L1(D j

n )
m and lim

ε↓0 Fε(ω, u j
ε,n, D

j
n ) =

∫
D j
n

Whom(∇un) dx .

Since u j
ε,n ∈ un +W 1,1

0 (D j
n )

m , we have that uε,n : D → R
m defined by

uε,n(x) =
{
u j

ε,n(x) if x ∈ D j
n

un(x) if x ∈ D\Dn
satisfies uε,n ∈ W 1,1(D)m, uε,n = g on ∂D.

Finally, u j
ε,n being a recovery sequence on D j

n , it holds that uε,n → un in L1(D)m as ε → 0
and

lim sup
ε→0

Fε(ω, uε,n, D) =
Nn∑
j=1

lim
ε→0

Fε(ω, u j
ε,n, D

j
n )+ lim sup

ε→0
Fε(ω, un, D\Dn)

=
∫
Dn

Whom(∇un) dx + lim sup
ε→0

Fε(ω, un, D\Dn). (4.53)
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We estimate the last term as follows: the function ‖∇un‖L∞(D) is uniformly bounded by
(4.51), so that for some r > 0 Assumption (A3) and the ergodic theorem in the form of
Lemma 2.3 imply that

lim sup
ε→0

Fε(ω, un, D\Dn) ≤ lim
ε→0

∫
D\Dn

sup
|ζ |≤r

W (ω, x
ε
, ζ ) dx = |D\Dn |E

[
sup
|ζ |≤r

W (·, 0, ζ )

]
.

Inserting this bound into (4.53), we infer from (4.50) that

lim
n→+∞ lim sup

ε→0
Fε(ω, uε,n, D) ≤

∫
D
Whom(∇u) dx .

Since un → u in L1(D)m , using another diagonal argument we conclude the proof without
external forces.

Next, we consider non-trivial forcing terms fε and f . Here, we only prove the case that
fε, f ∈ Ld(D)m are such that fε⇀ f in Ld(D)m , the refined results if W satisfies (A5)
are simpler and left to the reader. We first show relative compactness of energy bounded
sequence. Due to Hölder’s inequality, the Sobolev embedding in W 1,1(D)m , and Poincaré’s
inequality in W 1,1

0 (D)m , for any admissible u we have that
∫
D
| fε · u| dx ≤ ‖ fε‖Ld (D)‖u‖Ld/(d−1)(D) ≤ C0‖ fε‖Ld (D)‖u‖W 1,1(D)

≤ C0‖ fε‖Ld (D)(‖∇u − ∇g‖L1(D) + ‖g‖W 1,1(D))

≤ C0‖ fε‖Ld (D)‖∇u‖L1(D) + C0‖ fε‖Ld (D)‖g‖W 1,1(D),

which combined with (2.3) for C = C0 supε ‖ fε‖Ld (D) and Remark 2.2 shows that

Fε(ω, u, D)−
∫
D

fε · u dx ≥ 1

2
Fε(ω, u, D)

+ C
∫
D
|∇u| dx −

∫
D

sup
|η|≤C

W ∗(ω, x
ε
, η) dx

︸ ︷︷ ︸
=:aε(ω)

−
∫
D
| fε · u| dx

≥ 1

2
Fε(ω, u, D)− aε(ω)− C‖g‖W 1,1(D). (4.54)

Due to the ergodic theorem the sequence aε(ω) is bounded when ε → 0. Hence bounded-
ness of Fε, fε,g(ω, uε, D) implies that also Fε(ω, uε, D) is bounded, so the weak relative
compactness of uε in W 1,1(D)m is a consequence of the case fε = 0. Moreover, as shown
in [32, Theorem B.1], the weak convergence in W 1,1(D)m implies the strong convergence
in Ld/(d−1)(D)m . Hence along any sequence with equibounded energy and with uε → u in
L1(D)m , the term

∫
D fε · uε dx converges to

∫
D f · u dx . Thus also the �-convergence is a

consequence of the case fε = 0. ��

4.5 Differentiability of the homogenized integrand

In this section we prove that if W satisfies the stronger Assumption 2, then Whom is contin-
uously differentiable. To this end, we rely on convex analysis on generalized Orlicz spaces
(cf. Sect. 2.3 and Remark 2.6). Given ϕ defined by (2.7), let Lϕ(�)m×d be the associated
generalized Orlicz space. Below we prove the announced properties of Whom.
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Proposition 4.12 Let W satisfy Assumption 2. Then Whom is continuously differentiable with
derivative

∂ξWhom(ξ) = E[∂ξW (·, 0, ξ + hξ )],
where hξ is given by Lemma 4.3.

Proof It suffices to show that Whom is differentiable with the claimed derivative. The con-
tinuity of the derivative follows from general convex analysis [19, Theorem 4.65]. Recall
that

Whom(ξ) = min
h∈(F1

pot)
m
G(ξ + h) where G(z) := E[W (·, z)]. (4.55)

We already know that Whom is a real-valued, convex function on R
m×d . In particular, its

subdifferential is always non-empty and Whom is differentiable at ξ ∈ R
m×d if and only if

the subdifferential at ξ contains exactly one element. We aim to express the subdifferential
via a suitable chain rule. To this end, define the set-valued mapping F : Rm×d ⇒ Lϕ(�)m×d
by

F(ξ) =
(
ξ + (F1

pot)
m
)
∩ dom(G).

Due to the estimate ϕ(ω, ·) ≤ CW (ω, ·)+�(ω) (cf. (2.8)), it follows indeed that dom(G) ⊂
Lϕ(�)m×d . Since G is convex, the graph of F defined by gph(F) = {(ξ, h) ∈ R

m×d ×
Lϕ(�)m×d , h ∈ F(ξ)} is a convex subset of Rm×d × Lϕ(�)m×d . Clearly, we can rewrite
the first identity in (4.55) by

Whom(ξ) = min{G(y) : y ∈ F(ξ)}. (4.56)

We aim to use the representation result for subdifferentials of optimal-value functions as in
(4.56) given in [27, Corollary 7.3]. For this it is left to check that G is finite and continuous at
a point in F(ξ) with respect to convergence in Lϕ(�)m×d . We choose the constant function
ξ ∈ F(ξ) and let hn → 0 in Lϕ(�)m×d . Set tn = 1− ‖hn‖ϕ . Then the convexity of W and
of ϕ together with (2.8) and ϕ(·, 0) = 0 yield that for n large enough such that tn ∈ (0, 1)

G(ξ + hn) = E[W (·, ξ + hn)] ≤ tnE[W (·, ξ/tn)] + (1− tn)E[W (·, hn/(1− tn))]
≤ E[W (·, ξ/tn)] + ‖hn‖ϕ E[ϕ(·, hn/‖hn‖ϕ)]︸ ︷︷ ︸

≤1
+‖hn‖ϕE[�]

≤ E[W (·, ξ/tn)] + ‖hn‖ϕ(1+ E[�]).
Hence, ‖hn‖ϕ → 0 as n →∞ yields

lim sup
n→∞

G(ξ + hn) ≤ lim sup
n→∞

E[W (·, ξ/tn)] = G(ξ).

The reverse inequality follows from Fatous’s lemma since hn → 0 also in L1(�)m×d by the
continuous embedding. Now we are in a position to apply [27, Corollary 7.3] to conclude
that

∂Whom(ξ) =⋃
�∈∂G(ξ+hξ )

{
η ∈ R

m×d : 〈η, z − ξ 〉 ≤ �(h − (ξ + hξ )) for all z ∈ R
m×d , h ∈ F(z)

}
,

(4.57)
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where in the above equation �(h−(ξ+hξ )) stands for the duality pairing and hξ ∈ (F1
pot)

m is
a minimizer in (4.55). Our goal is to show that the sets above are all singletons containing the
same element, which then concludes the proof that Whom is differentiable with the claimed
derivative. For this, we first observe that for every z ∈ R

m×d and t ∈ (0, 1), convexity of W
and Assumption (A3) imply

G(z + thξ ) ≤ G

(
tξ + thξ + (1− t)

−tξ + z

1− t

)

≤ tWhom(ξ)+ (1− t)E

[
W

(
·, −tξ + z

1− t

)]
< +∞,

so that z + thξ ∈ dom(G) and thus z + thξ ∈ F(z). Hence, for η ∈ ∂Whom(ξ) we deduce
from (4.57)

〈η, z − ξ 〉 ≤ �(z − ξ + (t − 1)hξ ) = �(z − ξ)+ (t − 1)�(hξ )
t→1→ �(z − ξ).

This holds for all z ∈ R
m×d and therefore

〈η, z〉 = �(z) for all z ∈ R
m×d .

We claim that the above expression does not depend on the element � ∈ ∂G(ξ + hξ ). To this
end, we recall the expression for the subdifferential of G at ξ +hξ in Sect. 2.3: for a function
h ∈ Lϕ(�)m×d we have

∂G(h) = {�a ∈ Lϕ∗(�)m×d : �a(ω) = ∂ξW (ω, h(ω))}
+ {�s ∈ Sϕ(�) : �s(v − h) ≤ 0 for all v ∈ dom(G)}.

In particular, there is only one possibility for the component �a .Moreover, as noted in Sect. 2.3
it holds that �s(z) = 0 for all constant functions z ∈ R

m×d and all �s ∈ Sϕ(�). This in turn
yields that

〈η, z〉 = �a(z) = E[∂ξW (·, ξ + hξ )z]
for all z ∈ R

m×d . Hence ∂Whom(ξ) is a singleton containing the claimed element. ��

4.6 Stochastic homogenization of the Euler–Lagrange equations

In this last section we provide the arguments for our main result on the Euler–Lagrange
equations. The notation relies heavily on the generalized Sobolev-Orlicz spaces introduced
in Remark 2.6 (see also Sect. 2.3).

Proof of Theorem 3.5 i): We start showing existence of minimizers for the problem

min
u∈g+W 1,1

0 (D)m

∫
D
W (ω, x

ε
,∇u(x))− fε(x) · u(x) dx . (4.58)

Recall that in (4.54), for all u ∈ g +W 1,1
0 (D)m we proved the estimate

Fε(ω, u, D)−
∫
D

fε · u dx ≥ 1

2
Fε(ω, u, D)− aε(ω)− C‖g‖W 1,1(D),

where aε(ω) is finite and converging as ε → 0. This implies the compactness of minimizing
sequences since for fixed ε > 0 the weakW 1,1-coercivity of Fε(ω, ·, D) can be proven as in
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Lemma 4.1 and moreover

sup
0<ε<1

(
Fε(ω, g, D)−

∫
D

fε · g〉 dx
)

< +∞ (4.59)

due to the Lipschitz regularity of g and Assumption (A3). Moreover, Fε(ω, ·, D) is weakly
lower semicontinuous due to convexity and strong lower semicontinuity, while the term
involving fε is continuous with respect to weak convergence inW 1,1(D)m due to the Sobolev
embedding. We thus proved the existence of a minimizer. Next, let us show that minimizers
are characterized by

∫
D

∂ξW (ω, x
ε
,∇uε(x))∇φ(x)− fε(x) · φ(x) dx

{
= 0 ifφ ∈ W 1,∞

0 (D)m,

≥ 0 ifφ ∈ W 1,1
0 (D)mandFε(ω, u + φ, D) < +∞,

which proves i). Assume first that uε satisfies the above system. Then, due to convexity of
W , for any φ ∈ W 1,1

0 (D)m with Fε(ω, u + φ, D) < +∞ we have that

Fε, fε,g(ω, u + φ, D)− Fε, fε,g(ω, u, D)

≥ Fε, fε,g(ω, u + φ, D)− Fε, fε,g(ω, u, D)

−
∫
D

∂ξW (ω, x
ε
,∇uε(x))∇φ(x)− fε(x) · φ(x) dx

≥
∫
D
W (ω, x

ε
,∇uε + ∇φ)−W (ω, x

ε
,∇uε)− ∂ξW (ω, x

ε
,∇uε(x))∇φ(x)︸ ︷︷ ︸

≥0

dx ≥ 0,

which shows minimality since Fε and Fε, fε,g have the same domain on g +W 1,1
0 .

For the reverse implication, we omit the dependence on ω to reduce notation. Define the
two proper convex functionals G : W 1,ϕε

0 (D)m → [0,+∞] and F : W 1,ϕε

0 (D)m → R by

G(v) =
∫
D
W ( x

ε
,∇g + ∇v) dx, F(v) = −

∫
D

fε · (v + g) dx .

Note that F is real-valued and continuous since W 1,ϕε

0 (D)m embeds into W 1,1
0 (D)m . More-

over, 0 ∈ dom(G), so that we can apply the sum rule for the subdifferential of G + F [27,
Theorem 6.1] to obtain

∂(G + F)(v) = ∂G(v)+ ∂F(v) = ∂G(v)− fε for all v ∈ dom(G).

To find a suitable formula for the subdifferential of G, we first write G = G0 ◦∇, where the
gradient ∇ : W 1,ϕε

0 (D)m → Lϕε (D)m×d is a bounded linear map, and G0 : Lϕε (D)m×d →
[0,+∞] is defined by

G0(h) =
∫
D
W ( x

ε
,∇g + h) dx .

Arguing as in the proof of Proposition 4.12, the boundedness of ∇g implies that G0 is
finite and continuous in 0. Hence the chain rule for subdifferentials implies that ∂G(u) =
∇∗∂G0(∇u), where ∇∗ denotes the adjoint operator of the gradient map. In particular, for
any v, φ ∈ W 1,ϕε

0 (D)m it holds that ∂G(v)φ = ∂G0(∇v)∇φ, while by the results in Sect. 2.3
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the subdifferential of G0 at a function h ∈ Lϕε (D)m×d is given by

∂G0(h) = {�a ∈ Lϕ∗ε (D)m×d : �a = ∂ξW ( x
ε
,∇g(x)+ h(x))}

+ {�s ∈ Sϕε (D)m×d : �s(φ − h) ≤ 0 for all φ ∈ dom(G0)}.
The function u = g+ v being a solution of the minimization problem (4.58) is equivalent to
the fact that

0 ∈ ∂(G + F)(v) = ∇∗∂G0(∇v)− fε,

which is equivalent to the facts that ∂ξW ( ·
ε
,∇u) ∈ Lϕ∗ε (D)m×d and that there exists �s ∈

Sϕε (D)m×d with �s(· − ∇v) ≤ 0 on dom(G0), which combined satisfy∫
D

∂ξW ( x
ε
,∇u)∇φ − fε · φ dx + �s(∇φ) = 0 for all φ ∈ W 1,ϕε

0 (D)m .

If φ ∈ W 1,ϕε

0 (D)m×d is such that Fε(ω, u + φ, D) < +∞, then ∇v + ∇φ ∈ dom(G0) and
therefore �s(∇φ) ≤ 0, which then yields∫

D
∂ξW ( x

ε
,∇u)∇φ − fε · φ dx ≥ 0. (4.60)

Moreover, as noted in Sect. 2.3 we have that �s(∇φ) = 0 whenever φ ∈ W 1,∞
0 (D)m . This

shows that any minimizer satisfies the system in Theorem 3.5 i).
ii) The fact that Assumption 2 implies Whom ∈ C1 was shown in Proposition 4.12
iii) The proof for the homogenized equation is analogous once one notes thatWhom satisfies

the same assumptions as W on a deterministic level. Indeed, we already know that Whom is
differentiable (Proposition 4.12), while Assumption 2 implies that

Whom(−ξ) = E[W (·,−ξ + h−ξ )] ≥ 1

C
E[W (·, ξ − h−ξ )] − E[�] ≥ 1

C
Whom(ξ)− C,

so that also Whom is almost even, which allows us to define the associated Sobolev-Orlicz
space. Moreover, Assumption (A3) holds sinceWhom is convex, finite and superlinear at+∞
(the last property ensures that W ∗

hom is also convex and finite), while (A4) or (A5) (which
were not needed in the proof of i) anyway) were proven in Lemma 4.3.

iv) Under the additional assumption that suε ∈ dom(Fε(ω, ·, D)) for some s > 1 with
uε = g + v, we know that s(∇v + ∇g) − ∇g ∈ dom(G0). Then for any φ ∈ W 1,ϕε

0 (D)m

and δ > 0, convexity implies that

G0(∇v + δ∇φ) = G0

(
1

s
(s(∇v + ∇g)−∇g)+

(
1− 1

s

)(
−∇g +

(
1− 1

s

)−1
δ∇φ

))

≤ 1

s
G0(s(∇v + ∇g)− ∇g)+

(
1− 1

s

)
G0

(
−∇g +

(
1− 1

s

)−1
δ∇φ

)
.

Since G0 is continuous in −∇g with G0(−∇g) =
∫
D W ( x

ε
, 0) dx , for δ small enough the

right-hand side is finite and we can therefore conclude that �s(δ∇φ) ≤ 0 (�s as in the
subdifferential representation in i)), which yields that �s(∇φ) ≤ 0. Since this also holds for
−ϕ, we conclude that �s(∇φ) = 0 and therefore∫

D
∂ξW ( x

ε
,∇u)∇φ − fε · φ dx = 0 for all φ ∈ W 1,ϕε

0 (D)m .

The proof for the homogenized functional is the same.
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v) The convergence claim in the strict convex case is a consequence of i), iii) and Remark
3.4 (ii). ��
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Appendix A: Convex envelopes of coercive radial functions

Lemma A.1 Let � : [0,+∞) → R be coercive, i.e., its sublevel sets are precompact, and
bounded from below. Then the convex envelope of Rk � ξ �→ L(ξ) := �(|ξ |) is given by the
formula

ξ �→
{
co(�lsc)(|ξ |) if|ξ | ≥ rmax,

�lsc(rmax) if|ξ | < rmax,

where rmax := max{r ∈ [0,+∞) : �lsc(r) = mint∈[0,+∞) �lsc(t)} is the largest minimizer of
the lower semicontinuous envelope �lsc of � and co(�lsc) denotes the convex envelope of the
function �lsc. In particular, it is of the form ξ �→ �̃(|ξ |) for some convex, monotone function
�̃.

Proof First, we observe that L is bounded from below and co(L) is finite, hence continuous.
Therefore, by [19, Remark 4.93] we have co(L) = co(L lsc). The lower semicontinuous
envelope of L is given by L lsc(ξ) = �lsc(|ξ |). By [10, Theorem 3.8] the function �lsc is
still coercive. Moreover, it is also bounded from below. Hence we can assume without loss
of generality that � is already lower semicontinuous. Note that rmax exists due to the lower
semicontinuity and coercivity of �. Define the function �̃ : [0,+∞) → R by

�̃(r) =
{
co(�)(r) ifr ≥ rmax,

�(rmax) ifr < rmax.

We argue that �̃ is monotone and convex. Constant functions being convex, we know that
�(rmax) ≤ co(�)(r) ≤ �(r) for all r ∈ [0,+∞], which implies that �(rmax) = co(�)(rmax).
We next fix r1 < r2 with r1, r2 ∈ [rmax,+∞) and write r1 = trmax + (1 − t)r2 for some
t ∈ [0, 1]. Then by convexity of co(�)

co(�)(r1) ≤ t co(�)(rmax)+ (1− t) co(�)(r2) = t �(rmax)+ (1− t) co(�)(r2)

≤ t co(�)(r2)+ (1− t) co(�)(r2) = co(�)(r2),

which shows the monotonicity of �̃. To prove convexity of �̃, it suffices to consider the case
when r1 ≤ rmax < r2 and t ∈ [0, 1] (the other cases being obvious). Then by themonotonicity
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of �̃ we have that

�̃(tr1 + (1− t)r2) ≤ �̃(trmax + (1− t)r2) = co(�)(trmax + (1− t)r2)

≤ t co(�)(rmax)︸ ︷︷ ︸
=�(rmax)

+(1− t) co(�)(r2) = t �̃(r1)+ (1− t)�̃(r2).

Due to monotonicity and convexity of �̃, the map ξ �→ �̃(|ξ |) is convex on Rk and therefore
co(L)(ξ) ≥ �̃(|ξ |). It remains to show the reverse inequality. To this end, note that for every
unit vector v ∈ R

k the restriction of co(L) to Rv is also convex and satisfies co(L)(rv) ≤
L(rv) = �(r) for all r ∈ [0,+∞). Hence co(L)(rv) ≤ co(�)(r) for all r ∈ [0,+∞]. As v

was arbitrary, we deduce that co(L)(ξ) ≤ co(�)(|ξ |) for all ξ ∈ R
k . However, we need to

improve this bound for |ξ | < rmax. Let ξ ∈ R
k be such that |ξ | < rmax and consider the line

through 0 and ξ , which intersects ∂Brmax in two points ξ1 and ξ2 (take any line if ξ = 0).
Then we can write ξ = tξ1 + (1− t)ξ2 for some t ∈ [0, 1] and hence we conclude the proof
via the estimate

co(L)(ξ) ≤ t co(L)(ξ1)+ (1− t) co(L)(ξ2) ≤ t co(�)(rmax)+ (1− t) co(�)(rmax)

= �(rmax) = �̃(|ξ |). ��

Appendix B: Measurability and convergence of themulti-cell formula

Here we prove a general measurability result that covers our integrandW satisfying Assump-
tion 1.

Lemma B.1 Let W : �×R
d×R

m×d → [0,+∞] beF⊗Ld×Bm×d -measurable, ξ ∈ R
m×d

and O ⊂ R
d be a bounded, open set. If the function

μξ (ω, O) = inf
u∈W 1,1

0 (O)m

∫
O
W (ω, x, ξ + ∇u) dx

is almost surely finite, then it is F-measurable. Moreover, if for almost every ω ∈ � there
exists a minimizer in W 1,1

0 (O)m, then there exists a measurable function u : �→ W 1,1
0 (O)m

such that almost surely

μξ (ω, O) =
∫
O
W (ω, x, ξ +∇u(ω)) dx .

Proof Redefining W (ω, x, ξ) = |ξ |2 on the set of ω, where μξ (ω, O) is not finite (and
when no minimizer exists in the second case), we can assume without loss of generality that
all properties hold for all ω ∈ �. Note that this is possible since the modified integrand
is still jointly measurable due to the completeness of the probability space. We first prove
that the functional (ω, u) �→ ∫

O W (ω, x, ξ +∇u) dx is F ⊗B(W 1,1
0 (O)m)-measurable. By

truncation, we can assume without loss of generality thatW is bounded. IfW is additionally
continuous in the third variable, then the joint measurability is a consequence of Fubini’s the-
orem (which showsmeasurability inω) and continuity of the functional with respect to strong
convergence in W 1,1

0 (O)m . Indeed, joint measurability then holds due to the separability of

W 1,1
0 (O)m , which ensures joint measurability of Carathéodory-functions.
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To remove the continuity assumption on W , we use a Monotone Class Theorem for
functions. To this end consider the classes of functions defined as

C :={h : �× R
d × R

m×d → R, h(ω, x, ξ) = h1(ω)h2(x)g(ξ), h1, h2, g bounded,

h1 F −measurable, h2 Ld −measurable, g continuous},
R :={h : �× R

d × R
m×d → R, h bounded andF ⊗ Ld ⊗ Bm×d −measurable,

such that (ω, u) �→
∫
O
h(ω, x, ξ + ∇u) dx isF ⊗ B(W 1,1

0 (O)m)−measurable}.

Note that if h ∈ C, then h is F ⊗ Ld ⊗ Bm×d -measurable, thus the argument above shows
that C ⊂ R. Moreover, R contains the constant functions, is a vector space of bounded
functions, and is closed under uniformly bounded, increasing limits. Finally, the set C is
closed under multiplication. Thus [12, Chapter I, Theorem 21] ensures that R contains all
bounded functions that are measurable with respect to the σ -algebra generated by C. By
definition of C this σ -algebra coincides with F ⊗ Ld ⊗ Bm×d .

Given the joint measurability of (ω, u) �→ ∫
O W (ω, x, ξ + ∇u) dx , the measurability of

the optimal value functionμξ (·, O) follows from themeasurable projection theorem. Indeed,
for every t ∈ R we know that{

(ω, u) ∈ �×W 1,1
0 (O)m :

∫
O
W (ω, x, ξ + ∇u) dx < t

}
∈ F ⊗ B(W 1,1

0 (O)m). (B.1)

By assumption (�,F,P) is a complete probability space. Since W 1,1
0 (O,Rm) is a com-

plete, separable, metric space, the projection theorem [19, Theorem 1.136] yields the
F-measurability of the projection of (B.1) onto �. Therefore{

ω ∈ � : inf
u∈W 1,1

0 (O)m

∫
O
W (ω, x, ξ + ∇u) dx = μξ (ω, O) < t

}
∈ F,

which proves the F-measurability of μξ (·, A). To show the existence of a measurable selec-
tion of minimizers, define the multi-valued map � : � ⇒ W 1,1

0 (O)m by

�(ω) =
{
u ∈ W 1,1

0 (O)m :
∫
O
W (ω, x, ξ + ∇u) dx = μξ (ω, O)

}
.

By the measurability ofμξ (·, O) and the joint measurability of the functional, we see that the
graph of the thismulti-function isF⊗B(W 1,1

0 (O)m)-measurable. Due to the completeness of

(�,F,P) and the separability and completeness ofW 1,1
0 (O)m , we can now apply Aumann’s

measurable selection theorem [19, Theorem 6.10] and conclude the proof. ��
For reader’s convenience, below we also show the existence of the limit of the multi-cell

formula.

Proof of Lemma 4.4 We apply the subadditive ergodic theorem. According to Lemma B.1 the
function ω �→ μξ (ω, O) is measurable. To show its integrability, we test the affine function
u(x) = ξ x as a candidate in the infimum problem. Since F1 is nonnegative, we obtain

0 ≤ μξ (ω, O) ≤
∫
O
W (ω, x, ξ) dx . (B.2)

Tonelli’s theorem and stationarity of W yield that

E
[
μξ (·, O)

] ≤
∫
O
E[W (·, x, ξ)] dx = E[W (·, ξ)]|O|. (B.3)
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Hence μξ (·, O) ∈ L1(�). By stationarity of W also μξ is τ -stationary in the sense that

μξ (τzω, O) = μξ (ω, O + z) for allω ∈ �. (B.4)

Finally, if (Uj )
n
j=1 ⊂ R

d are bounded open sets with

n⋃
j=1

Uj ⊂ O, Uj ∩Uk = ∅ for all 1 ≤ j < k ≤ n, |O\
n⋃
j=1

Uj | = 0,

and for every 1 ≤ j ≤ n we consider a map v j ∈ ξ x + W 1,1
0 (Uj ,R

m), then the function

v =∑n
j=1 v jχUj belongs to ξ x +W 1,1

0 (O,Rm) and therefore

μξ (ω, O) ≤ F1(ω, v, O) =
n∑
j=1

F1(ω, v j ,Uj ).

Minimizing the right-hand side with respect to the variables v j , we deduce subadditivity in
the form of

μξ (ω, O) ≤
N∑
j=1

μξ (ω,Uj ). (B.5)

By the subadditive ergodic theorem (see [1, Theorem 2.7]), a.s. there exists the a priori
random limit

μ0(ω, ξ) := lim
n→+∞
n∈N

1

|nQ|μξ (ω, nQ) (B.6)

for all cubes of the form Q = z + (−k, k)d with integer vertices k ∈ N and z ∈ Z
d .

The extension to arbitrary sequences t → +∞ and general cubes Q = x + (−η, η)d

with x ∈ R
d and η > 0 follows by approximation as in [32, Lemma 4.3], exploiting that

W (·, ξ) ∈ L1(�), which allows us to apply the additive ergodic theorem in the form of
Lemma 2.3 to the error terms that are due to integrating W (ω, x, ξ) over sets with small
measure (relatively to the scale td ). Similarly, one can prove that μ0 is invariant under every
group action τz , so by ergodicity it is deterministic. We call this value μhom(ξ).

To fix the issue that the exceptional set where convergence fails may depend on ξ , fix
ξ0, ξ ∈ R

m×d . For comparing μξ and μξ0 , we consider cubes of different size. For a cube
Q = x + (−η, η)d and s > 0 set Q(s) = x + (−sη, sη)d and fix δ > 0. There exists a
cut-off function ϕ = ϕδ,t ∈ C∞c (Rd , [0, 1]) such that

ϕ ≡ 1 on t Q, ϕ ≡ 0 on Rd\t Q(1+ δ/2), ‖∇ϕ‖L∞(Rd ) ≤
CQ

δt
.

Given v ∈ ξ x + W 1,1
0 (t Q,Rm), extend it to R

d setting v(x) = ξ x on R
d\t Q and define

ṽ ∈ ξ0x +W 1,1
0 (t Q(1+ δ),Rm) as

ṽ(x) = ϕ(x)v(x)+ (1− ϕ(x))ξ0x .

From the properties of ϕ, we infer that

μξ0(ω, t Q(1+ δ)) ≤ F1(ω, ṽ, t Q(1+ δ)) ≤
∫
t Q

W (ω, x,∇v(x)) dx

+
∫
t Q(1+δ)\t Q

W (ω, x,∇ṽ(x)) dx .
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For x ∈ t Q(1+ δ)\t Q the product rule yields

∇ṽ(x) = 1

2
2∇ϕ(x)⊗ (ξ − ξ0)x + 1

2
ϕ(x)2ξ + 1

2
(1− ϕ(x))2ξ0.

Since 1
2 + 1

2ϕ + 1
2 (1− ϕ) = 1, due to convexity of W in the last variable we can bound the

error term by

∫
t Q(1+δ)\t Q

W (ω, x,∇ṽ(x)) dx ≤
∫
t Q(1+δ)\t Q

W (ω, x, 2∇ϕ(x)⊗ (ξ − ξ0)x) dx

+
∫
t Q(1+δ)\t Q

W (ω, x, 2ξ)+W (ω, x, 2ξ0) dx .

Since |x | ≤ CQ(1+ δ)t on t Q(1+ δ), for δ ≤ 1 we deduce that

|2∇ϕ ⊗ (ξ − ξ0)x | ≤ C |ξ − ξ0|
δ

,

where C is independent of δ and t . We assume from now on that |ξ − ξ0| ≤ δ. Passing to the
infimum over v, we deduce that

μξ0(ω, t Q(1+ δ)) ≤ μξ (ω, t Q)+
∫
t Q(1+δ)\t Q

sup
|η|≤C

W (ω, x, η)+W (ω, x, 2ξ)

+W (ω, x, 2ξ0) dx .

Assume further that ξ0 ∈ Q
m×d and consider ω in the set of full probability such that the

limit of t �→ |t Q|−1μξ0(ω, t Q) at +∞ exists for all rational matrices ξ0 and all cubes. The
additive ergodic Theorem 2.3 applied to the last integral then yields that

μhom(ξ0) ≤ lim inf
t→+∞

1

|t Q|μξ (ω, t Q)

+E
[
sup
|η|≤C

W (·, η)+W (·, 2ξ)+W (·, 2ξ0)
](

1− 1

(1+ δ)d

)
. (B.7)

From an analogous construction with the cubes t Q and t Q(1− δ) we further infer that

μξ (ω, t Q) ≤ μξ0(ω, t Q(1− δ))

+
∫
t Q\t Q(1−δ)

sup
|η|≤C

W (ω, x, η)+W (ω, x, 2ξ)+W (ω, x, 2ξ0) dx,

which again by the ergodic theorem implies that

lim sup
t→+∞

1

|t Q|μξ (ω, t Q) ≤ μhom(ξ0)+ E

[
sup
|η|≤C

W (·, η)+W (·, 2ξ)+W (·, 2ξ0)
]

(
1− (1− δ)d

)
. (B.8)
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Combining the two estimates (B.7) and (B.8) yields

lim sup
t→+∞

1

|t Q|μξ (ω, t Q) ≤ lim inf
t→+∞

1

|t Q|μξ (ω, t Q)

+ E

[
sup
|η|≤r0

W (·, η)+W (·, 2ξ)+W (·, 2ξ0)
]

(
2− (1− δ)d − 1

(1+ δ)d

)
.

Considering a sequence of rational matrices that converges to ξ and then letting δ → 0, we
deduce that

lim sup
t→+∞

1

|t Q|μξ (ω, t Q) ≤ lim inf
t→+∞

1

|t Q|μξ (ω, t Q),

so that the limit exists and hence the convergence holds for a uniform (with respect to ξ and
Q) set of full probability. The convexity of μhom is a consequence of the convexity of the
map ξ �→ μξ (ω, O), which itself follows from the convexity of the map ξ �→ W (ω, x, ξ). ��

Appendix C: Approximation results in the vectorial case

In this section we present an extension of [17, Proposition 2.6, Chapter X] to the vectorial
setting, a result that has already been used in the literature, but the proof in [17] is only
valid for scalar functions. In contrast to the scalar setting, we need to assume in addition
the analogue of (A4) in the homogeneous setting or the lower bound W (·) ≥ | · |p for some
p > d − 1. Let us emphasize that in the literature the result was used under the stronger
assumption p > d .

Lemma C.1 Let W : Rm×d → [0,+∞) be convex and D ⊂ R
d be a bounded, open set with

Lipschitz boundary. Assume that one of the following assumptions holds true:

(1) there exists C < +∞ such that for all ξ ∈ R
m×d and all ξ̃ ∈ R

m×d with eTj (ξ − ξ̃ ) ∈
{0, eTj ξ} for all 1 ≤ j ≤ m it holds that

W (̃ξ ) ≤ C(W (ξ)+ 1). (C.1)

(2) there exists p > d − 1 such that

W (ξ) ≥ |ξ |p for all ξ ∈ R
m×d . (C.2)

Then for any u ∈ W 1,1
0 (D)m there exists a sequence un ∈ C∞c (D)m such that un → u

strongly in W 1,1(D)m and

lim
n→+∞

∫
D
W (∇un(x)) dx =

∫
D
W (∇u(x)) dx .

Proof Under Assumption (C.2) the claim follows from [21, Corollary 2.4], so we focus on
the case (C.1). It suffices to treat the case when∫

D
W (∇u) dx < +∞,

since otherwise the statement reduces to well-known density results in W 1,1
0 . Next, let us

reduce to the case that u ∈ L∞(D)m . Consider for s ! 1 the componentwise truncation Tsu
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at level s (cf. (4.35)). Then Tsu ∈ W 1,1
0 (D)m and Tsu → u in W 1,1(D)m as s → +∞ by

the dominated convergence theorem. Moreover, by the non-negativity of W we have∫
D
W (∇Tsu) dx ≤

∫
D
W (∇u) dx +

∫
{|u|∞≥s}

W (∇Tsu) dx,

where |u|∞ = maxi |ui |. We show that the last integral vanishes as s → +∞, which then
yields

lim sup
s→+∞

∫
D
W (∇Tsu) dx ≤

∫
D
W (∇u) dx .

The reverse inequality for the lim inf follows from Fatou’s lemma since W is lower semi-
continuous and ∇Tsu → ∇u pointwise almost everywhere. For said integral, we use (C.1)
to estimate ∫

{|u|∞≥s}
W (∇Tsu) dx ≤ C

∫
{|u|∞≥s}

W (∇u) dx + C |{|u|∞ ≥ s}|.

The last term vanishes as s → +∞ since |u|∞,W (∇u) ∈ L1(D). Hence by a diagonal
argument it suffices to show the claim for u ∈ L∞(D)m .Moreover, by a routine regularization
by convolution (see [17] or [28, Lemma 3.6]) it suffices to reduce the analysis to functions u
with compact support in D. First extend u to be zero outside D, so that u ∈ W 1,p(Rd)m . For
every x ∈ D we consider a ball Brx (x) ⊂⊂ D, while for x ∈ ∂D the Lipschitz regularity of
∂D implies that (up to anEuclideanmotion) there exists a cylinderCx = Bd−1

r ′x
(0)×(−hx , hx )

with x ∈ Cx and D ∩ Cx = {(y′, yd) ∈ Cx : yd < ψx (y′)} for some Lipschitz-function
ψx : Bd−1

r ′x
(0) → (−hx , hx ). Up to reducing rx ′ , we may assume that

ψx (B
d−1
r ′x

(0)) ⊂⊂ (−hx , hx ). (C.3)

Choose rx < min{r ′x , hx } such that Brx (x) ⊂⊂ Cx and such that the Lipschitz-constant Lx

of ψx satisfies

0 < 2Lxrx ≤ hx + inf
|y′|≤r ′x

ψx (y
′), (C.4)

which is possible due to (C.3). Due to the compactness of D, we find a finite family of above
balls Bi = Brxi (xi ) (1 ≤ i ≤ N ) that cover D. These balls will be fixed throughout the rest
of the proof, so we omit the dependence on the radii rxi or the number N of certain quantities.
For interior points xi ∈ D, we define zi = xi , while for points xi ∈ ∂D we choose zi ∈ R

d

such that in the local coordinates we have zi = (0,−hxi ) (i.e., at the bottom of the local
graph representation). Now let 0 < ρk < 1 be such that limk ρk = 1 and for any 1 ≤ i ≤ N
we define

uk,i (x) = ρku(zi + 1
ρk

(x − zi )).

Since ρk → 1, it holds that uk,i → u in W 1,p(Rd)m as k → +∞. Next, let (φi )
N
i=0 be a

smooth partition of unity subordinated to the cover {Rd\D, (Bi )Ni=1} ofRd (note that wework
on the ‘manifold’ Rd and therefore supp(φi ) is compactly contained in Bi and φ0 vanishes
on D). We then set

uk(x) =
N∑
i=1

φi (x)uk,i (x),
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for which the gradient on D (here φk vanishes) can be expressed as

∇uk =
N∑
i=1

φi∇uk,i +
N∑
i=1
∇φi ⊗ (uk,i − u).

As a convex combination, we still have that uk → u in L1(D)m , while for gradients this
follows from the uniform boundedness of ∇φi . Finally, due to the convexity of W , for any
t ∈ (0, 1) it holds that

∫
D
W (t∇uk) dx ≤

N∑
i=1

∫
D
tφiW (∇uk,i ) dx + (1− t)

∫
D
W

(
N∑
i=1

t

1− t
∇φi ⊗ (uk,i − u)

)
dx . (C.5)

Let us discuss the two right-hand side integrals separately. By a change of variables we have

N∑
i=1

∫
D
tφi (x)W (∇uk,i ) dx = ρd

k t
∫
Rd

N∑
i=1

(χDφi )(zi + ρk(y − zi ))W (∇u(y)) dy.

The functions φi are Lipschitz, so that for zi + ρk(y − zi ) ∈ D we have the estimate

N∑
i=1

φi (zi + ρk(y − zi )) ≤ 1+ C max
1≤i≤N

|zi + ρk(y − zi )− y| ≤ 1+ C(1− ρk)|zi − y|

≤ 1+ C(1− ρk).

Inserting the bound into the previous equality, we deduce that

N∑
i=1

∫
D
tφi (x)W (∇uk,i ) dx ≤ ρd

k (1+ C(1− ρk))

∫
Rd

max
1≤i≤N

χD(zi + ρk(y − zi ))W (∇u(y)) dy.

The pre-factor of the right-hand side integral converges to 1, while for the integrand we can
use the dominated convergence theorem to infer thatmax1≤i≤N χD(zi+ρk(·−zi ))W (∇u) →
χDW (∇u) in L1(Rd) (recall that D is open with |∂D| = 0). Hence we deduce that

lim sup
k→+∞

N∑
i=1

∫
D
tφi (x)W (∇uk,i ) dx ≤

∫
D
W (∇u(y)) dy.

It remains to show that the second integral in (C.5) is negligible. Using the boundedness of
u we find a constant c = ct,D,u such that pointwise on D

W

(
N∑
i=1

t

1− t
∇φi (uk,i − u)

)
≤ sup
|η|≤c

W (η) < +∞

since W is locally bounded by continuity. The dominated convergence theorem yields that

lim
k→+∞(1− t)

∫
D
W

(
N∑
i=1

t

1− t
∇ϕi (uk,i − u)

)
dx = (1− t)|D|W (0).
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In total, starting from (C.5) we deduce the estimate

lim sup
t↑1

lim sup
k→+∞

∫
D
W (t∇uk) dx ≤

∫
D
W (∇u) dx .

Since tuk → tu in W 1,1(D)m , we can use a diagonal argument with respect to k and t to
find a sequence ũk such that ũk → u in W 1,1(D)m and, combined with Fatou’s lemma,

lim
k→+∞

∫
D
W (∇ũk) dx =

∫
D
W (∇u) dx .

Moreover, it holds that supp(̃uk) = supp(uk′) for some k′ ∈ N, so it remains to show that all
uk have compact support in D. Using (C.3) and (C.4), the argument is identical to the one
used in [21, Lemma 3.3] for the case of (C.2), so we omit the straightforward computation.
This concludes the proof. ��
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