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Abstract: Hydrogels were prepared by Steglich esterification and by crosslinking pre-synthesized
poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG) using different-
chain-length-based disuccinyl PEG. PSA and PSA-g-mPEG were investigated for polymer degradation
as a function of time at different temperatures. PSA-g-mPEG hydrogels were then evaluated for
their most crucial properties of swelling that rendered them suitable for many pharmaceutical and
biomedical applications. Hydrogels were also examined for their Sol-Gel content in order to investi-
gate the degree of cross-linking. Physical structural parameters of the hydrogels were theoretically
estimated using the modified Flory–Rehner theory to obtain approximate values of polymer volume
fraction, the molecular weight between two crosslinks, and the mesh size of the hydrogels. X-ray
diffraction was conducted to detect the presence or absence of crystalline regions in the hydrogels.
PSA-g-mPEG hydrogels were then extensively examined for higher and lower molecular weight
solute release through analysis by fluorescence spectroscopy. Finally, the cytotoxicity of the hydrogels
was also investigated using a resazurin reduction assay. Experimental results show that PSA-g-mPEG
provides an option as a biocompatible polymer to be used for pharmaceutical applications.

Keywords: poly(sorbitol adipate); PSA-g-mPEG; PEG; enzymatic polymerization; Steglich esterifica-
tion; hydrogels; polymer networks; swelling; solute release; drug delivery

1. Introduction

In the last few decades, biodegradable polymers have been proven crucial in the sig-
nificant development and advancement of various drug delivery systems [1,2]. Controlled
drug delivery, vaccines, nucleic acids, proteins, anticancer medications, tissue engineering,
and regenerative medicine are areas where recent advancements have been made [3–8].
Biodegradable polymers act as temporal materials that break down into less complex
elements, removing the dangers of long-term foreign material presence. Through enzy-
matic or non-enzymatic mechanisms, they break down into biocompatible and harmless
byproducts [9]. Biodegradable natural polymers have been used in medicine for a long time.
Investigations into synthetic biodegradable polymers date back to the 1960s and 1970s,
when polyesters like poly(glycolic acid), poly(D,L-lactic acid) (PLA), and poly(D,L-lactic-
co-glycolic acid) (PLGA) were developed for use as biodegradable materials for various
biomedical purposes [6,10]. Since then, PLA and PLGA have been used for various drug
delivery purposes; however, researchers also report various shortcomings related to PLA
and PLGA. These include complex release and degradation patterns [11–13], self-catalyzed
polymer degradation [13,14], and the development of microenvironments with an acidic
nature. According to research, extremely low pH readings, frequently less than 2, have
been recorded under in vivo and in vitro conditions [15–17]. Another disadvantage that
these aliphatic polyesters have is their lack of free functional groups that can be used to
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link with various polymers or drugs [18–20]. This lack confines them to be modulated for
enhanced or desired material characteristics [21].

Enzymatic polymerization provides us with one of the alternatives to the above-
mentioned polymers that utilizes green chemistry to synthesize functional polyesters in
which enzymes are being used as biocatalysts [22–26]. The enzymes enable us to produce
aliphatic polyesters without exposure to metal-based catalysts that carry toxicity risk in
a conventional polymerization process [22]. Additionally, even when several monomers
bearing OH groups (more than two) are utilized, enzymes enable the selective synthesis
of linear polymers with minimal branching [24,27]. Therefore, enzymatic polymerization
can enable us to produce polyesters with multiple free functionalities. This gives us the
advantage of overcoming the usage of standard protection/deprotection chemistry, which
is generally used for the conventional synthesis of functional aliphatic polyester [28,29].

The Kressler group, Maeder group, and a few other groups have been working on
enzymatically polymerized aliphatic polyester, poly(glycerol adipate) (PGA), to develop
numerous drug delivery systems, such as nanoparticles [30–32], micelles [33], and micropar-
ticles [34] and as polymer-drug conjugates [17]. Steiner et al. developed a microparticulate
drug delivery system using poly(glycerol adipate) as the base, and by grafting it with acyl
side chains. The system was employed for releasing a model drug, dibenzoyl thiamine, and
a sustained drug delivery profile was observed. This drug release pattern was attributed
primarily to the modification involving fatty acids that is enabled by the single pendant
functionality of poly(glycerol adipate) [34]. Wersig et al. prepared poly(glycerol adipate)-
based nanoparticles by utilizing its free functionality and conjugating it with the drug to
achieve the controlled delivery of an anti-inflammatory drug, indomethacin [17].

Over the years, hydrogels have also proved to be a versatile drug delivery system,
mainly because of their strong affinity towards water and their elastic nature that mimics
natural tissues. This property of hydrogels to attract water largely depends on the chem-
ical functional groups that are present in the polymer backbones, e.g., hydroxyl groups,
carboxyl groups, amide groups, etc. [35,36]. Over the course of research, hydrogels uti-
lizing PLA [37], PLGA [38], and poly(glycerol sebacate) (PGS) [39] have been formulated
to serve a wide array of pharmaceutical and biomedical purposes. Unfortunately, these
polymers are encumbered by the limitations outlined earlier. Furthermore, enzymatically
synthesized poly(glycerol adipate), used previously in drug delivery systems, comprises a
single pendant hydroxyl group in each of its monomeric units, imparting an amphiphilic
nature [19] but lacking water solubility [40].

Ongoing research has been aimed at synthesizing poly(sorbitol adipate) (PSA), which
distinguishes itself from poly(glycerol adipate) by incorporating four pendant functionali-
ties within each monomeric unit, rendering it water-soluble in character and providing more
choice to modulate the material characteristics. More importantly, this work is pioneering
the use of enzymatically synthesized aliphatic polyesters to fabricate crosslinked polymeric
hydrogels. Utilizing the multiple pendant functionalities of PSA, it has been copolymerized
with PEG to enhance its swelling and diffusion properties, and later crosslinked to form
hydrogels via Steglich esterification [24]. This work is also aiming here to investigate
PSA-based hydrogels through the equilibrium swelling theory by Flory–Rehner for the esti-
mation of its different physico-chemical parameters that can lead us to gain insights about
its network topology and how it behaves by changing the chain lengths of crosslinkers.
These hydrogels are subsequently employed for evaluating model biological (BSA-TMR) re-
lease with high molecular weight model molecule and model dye (DY-781, lower molecular
weight model molecule) release behavior, with an emphasis on the post-release dynamics
of these delivered molecules for the first time.

2. Results and Discussion
2.1. Polymers and PSA-g-mPEG Hydrogel Syntheses

Linear polyester of poly(sorbitol adipate) was successfully synthesized through a
polycondensation process driven by enzymatic catalysis (CAL-B) between sorbitol and



Gels 2024, 10, 17 3 of 24

divinyl adipate [24]. The linearity of the polymer is attained due to the highly reactive
nature of the enzymes that react specifically and selectively with the primary functional
groups rather than secondary functional groups [41]. This regioselective nature of enzymes
enables the formed polymer to be utilized later on for crucial modifications. In this case, it
leaves secondary hydroxyl groups to be used for further modifications. The regioselectivity
of these enzymatically catalyzed reactions is attained by conducting polymer synthesis at
lower temperatures rather than at higher temperatures. Synthesizing a polymer at a lower
temperature leads to a linear polymer, while polymer synthesis at a higher temperature
results in a branched polymer as well as a polymer with high molar mass [40,42]. Sorbitol
was used in this polymer synthesis due to the fact that two of the primary hydroxyl groups
are consumed during enzymatic polymerization, but its four secondary hydroxyl groups
remain free for further modulation. These secondary hydroxyl groups were thus utilized for
the modification of PSA by grafting with poly(ethylene glycol) (PEG) to enhance its water
solubility [43]. PEG was selected due to the reason that it is a biocompatible polymer with
better safety and a tunable profile. It is also widely used in the pharmaceutical industry
for various purposes, e.g., drug delivery systems, solubility enhancers, stabilizers, etc. [44].
One of the many important purposes for its use inside the pharmaceutical industry is to
graft it to biodegradable polymers and enhance the half-life of various drugs [43,44]. In
addition to its benefits, PEG has been documented to trigger antibody formation within the
human body, which may diminish the therapeutic effectiveness of the drugs [45,46].

2.2. Stability and Degradation Study of PSA and PSA-g-mPEG

Enzymatically based aliphatic polyesters have been reported as biodegradable, which
means they break down to their initial monomeric products after degradation [47,48].
Studies suggest that post-polymerization modification can lead to a decrease in polymer
degradation, which may be a result of an increase in the steric hindrance of the polymer [49].
We have also conducted a similar kind of study, in which polymers were exposed to two
different types of temperatures to check their stability and degradation before (PSA) and
after modification (PSA-g-mPEG).

The stability study suggests, through gel permeation chromatography (GPC) mea-
surements, that no change was observed in the average molar mass (Mn) before and after
modifications when polymers were kept at 4 ◦C. In contrast to 4 ◦C, a decrease in molar
mass was observed when these polymers were kept at 40 ◦C and 75% RH. As we can see in
Figure 1a, the PSA initial molar mass was 11,000 g·mol−1 on day 0, but with the passage of
time, it gradually decreased. It was reduced to 8400 g·mol−1 on day 28, while on day 84, it
degraded to 4800 g·mol−1. A similar trend was observed with the PSA-g-mPEG (Figure 1b).
On day 0, the molar mass of PSA-g-mPEG was 16,000 g·mol−1, which reduced slightly to
15,000 g·mol−1 on day 30, while it decreased to 11,800 g·mol−1 on day 84.

In both polymers (PSA and PSA-g-mPEG), the degradation of the polymer was ob-
served at high temperature (40 ◦C) as compared to lower temperature (4 ◦C), which happens
to be the result of hydrolysis [50–52]. The hydrolysis of ester bonds can be the result of
high temperatures and humid conditions provided to the polymers. A degradation of the
poly(glycerol adipate) (PGA), which is also a sugar alcohol-based polyester, has also been
reported when it was exposed to similar environmental conditions [50]. It is also pertinent
to mention here that PSA degrades more as compared to PSA-g-mPEG. If we compare the
degradation of PSA and PSA-g-mPEG at day 84 (Figure 1c), PSA degraded to 43% of its
initial molar mass, while PSA-g-mPEG degraded to 73% of its initial molar mass. This
also justifies the fact that the modification of the polymer increases the steric hindrance
of the cleavable ester bonds present in our polymer, which delays the degradation of the
PSA-g-mPEG as compared to PSA [50–52]. A similar trend was also reported by Swainson
et al. when they exposed poly(glycerol adipate) (PGA) and poly(glycerol adipate) modified
with PEG (PGA-PEG) to enzymatic degradation. They found that PGA-PEG was more
stable regarding the degradation effect as compared to PGA only, hence PEG providing the
increase in the steric hindrance of the polymer [48]. Another potential scenario involves



Gels 2024, 10, 17 4 of 24

PEG acting as a polymer that can adhere to water due to its hygroscopic properties [53],
thereby potentially reducing the amount of water accessible for hydrolysis and delaying
the degradation process.
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2.3. Sol-Gel Fraction of PSA-g-mPEG Hydrogels

PSA-g-mPEG was then crosslinked through bifunctional PEG to form hydrogels using
the Steglich esterification reaction. Three different types of crosslinkers were synthesized by
using different chain lengths of PEG, i.e., PEG-400, PEG-1000, and PEG-2000. Crosslinker
synthesis was achieved by esterifying hydroxyl groups of PEG and replacing them with car-
boxyl groups on both sides of PEG, making it a bifunctional crosslinking agent (Scheme 1).
First of all, hydrogels were analyzed to identify crosslinked as well as uncrosslinked poly-
mers/reactants during the reaction. This property can also tell us about the efficiency of the
Steglich esterification reaction when it is used to form a crosslinked polymer network. So, to
assess the amount of reactants consumed during the hydrogel formation, the sol-gel fraction
of all the hydrogels was calculated. It can be revealed from Figure 2 that the gel percentage
attained for the hydrogels crosslinked with PEG-400 was 82%; hydrogels crosslinked with
PEG-1000 attained 77%, while the hydrogels crosslinked with PEG-2000 attained 66%. The
sol% of all the mentioned hydrogels was attained as vice versa. According to Chen et al., an
increase in crosslinking precursors can lead to an increase in grafting sites of the polymer
network and cross-link density, which will eventually end up in a high-gel fraction [54]. In
our case, the gel percentage is related to the chain length of the PEG. As the chain length
of PEG-based crosslinkers is increased from PEG-400 to PEG-2000, the gel percentage is
decreased. We can also explain our results in a way in which Steglich esterification proves
to be more efficient when a lower chain length of PEG as a crosslinker is used as compared
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to the higher chain length of PEG. It is assumed that the probability of effective collision in
a chemical reaction is decreased with the increase in chain length of PEG due to the high
molar mass of PEG having a low enough degree of freedom to be mobile enough and react
with the other chemical species [55].
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2.4. Swelling Studies of PSA-g-mPEG Hydrogels

Swelling is an important phenomenon of hydrogels which renders them soft and
elastic in nature, similar to natural tissues [56]. After coming into contact with the thermo-
dynamically compatible solvent, the transition occurs from a glassy or partially rubbery
state to a relaxed rubbery state. Hence, swelling can be described as a property of the
polymer network that evolves due to the elasticity of the polymer chains, resulting from
the interaction with a thermodynamically compatible solvent [57].

Due to this unique property, hydrogels have been studied in different biomedical
applications [58]. The current experiment has been conducted to show the dynamic swelling
as well as equilibrium swelling of our hydrogels. The swelling index demonstrates that
the swelling of the hydrogels was dependent upon the varying chain length of the PEG-
based crosslinkers (Figure 3). PEG-dependent swelling ratios have also been reported by
various authors, illustrating that an increase in the molecular weight of the PEG leads
to an increase in the molecular weight of the macromer. They further outline that an
increase in the swelling of the system can not only be attributed to the enhancement in
the overall hydrophilicity of the hydrogel system, but also to a decrease in crosslinking
density [59–61]. In our case, the maximum swelling degree was observed in the hydrogels
with a PEG-2000-based crosslinker, while the least swelling happened in the hydrogels
with a PEG-400-based crosslinker. Equilibrium swelling for hydrogel samples crosslinked
with all types of crosslinking agents was achieved within 4 h of the study.

2.5. Temperature-Dependent Swelling Behavior of PSA-g-mPEG Hydrogels

The swelling of hydrogels was also investigated at different temperatures (22 ◦C, 37 ◦C,
50 ◦C, and 75 ◦C) to understand the effect of an increase in temperature over its swelling
capability. It was revealed that the swelling ratio decreases with the increase in tempera-
ture [62–64]. Figure 4 shows that the swelling ratio, for all types of hydrogels crosslinked
with different molar masses of PEG-based crosslinkers, decreased as the temperature was
increased from 22 ◦C to 75 ◦C. The swelling ratio of hydrogels crosslinked with PEG-400
shrank from 3.84 at 22 ◦C to 1.32 at 75 ◦C, hydrogels crosslinked with PEG-1000 shrank
from 6.73 at 22 ◦C to 4.60 at 75 ◦C, and hydrogels crosslinked with PEG-2000 shrank from
11.81 at 22 ◦C to 9.08 at 75 ◦C.
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Such a behavior type has been explained as a PEG-based property [63–65]. Literature
data further reveal that hydrogen bonding plays an important role in performing that
behavior by forming hydrates when water comes into contact with PEG-based hydrogels.
It is thus obvious that temperature would have a significant impact on the hydrogen bond
formation between the PEG’s oxygen atom and the water’s hydrogen atom. Hence, such
bonding is susceptible to breaking as the temperature rises, while interactions between
hydrophobic molecules are strengthened [64,66–68].

2.6. Physical Structural Parameters of PSA-g-mPEG Hydrogels

The performance of hydrogels in a given application and their convenience as biomate-
rials relies heavily on their structural parameters. The most important of these parameters
are v2,s, Mc, and ξ. v2,s relates to the polymer volume fraction of the hydrogels in a swollen
state, which illustrates the capability of the hydrogel system to absorb solvent. It is de-
termined by calculating the volume ratio of the dry polymer gel to the swollen gel. This
property is also related to the reciprocal of the swollen gel ratio, and thus can be connected
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to the density of dry polymer gel, the density of the solvent, and the ratio of the swollen
gel mass, as described in Equation (3).

Mc outlines the degree of crosslinking of the hydrogel structure by estimating the
molecular weight of the polymeric chain between two adjacent crosslinking points. It also
gives us an idea about the crosslinking density of the hydrogel and how will it behave after
interactions with the thermodynamically compatible solvent [69].

Macromolecular chains achieve their optimum configuration in the solvated state
when they are cross-linked and swollen in a thermodynamically compatible solvent. This
can be characterized by a correlation length, which measures how far apart crosslinks are
on average from one another and indicates how the network affects solute diffusion. This
distance is also referred to as mesh size, in which length is correlated to the diffusion of the
solute. It can be challenging to experimentally determine this parameter and may require
methods like light scattering [70,71] or in-depth microscopic examinations [72]. It can, how-
ever, be correlated to the theoretical estimation of molecular weight between two crosslinks
(Mc) and polymer volume fraction (v2,s). With the help of mesh size estimation, hydrogels
can be classified as non-porous, microporous, and macroporous. This classification can also
be used to understand and define the phenomena of degradation, solute diffusion, and
mechanical toughness of the respective hydrogels. Various factors like crosslinking degree,
monomer chemistry, and stimuli including pH, temperature, etc., can affect the mesh size
of the hydrogel [73,74].

The elucidation of these interrelated hydrogel structural parameters can be made
theoretically with the help of the equilibrium swelling theory [75] and rubber elasticity
theory [76]. It is worth mentioning here that these values can only be reported as average
values due to the randomness of the polymerization process. We have calculated and
explained these values with the help of the equilibrium swelling theory. It can be deducted
from Table 1 and Figure 5a that as the swelling ratio (Q) increases with the increase in
PEG-based crosslinker chain length, the polymer volume fraction (v2,s) decreases, justifying
the fact that polymer volume fraction (v2,s) is inversely proportional to the swelling degree
(Q) [71]. It was observed and reported by Waters et al. that using PEG macromonomers
with higher molecular weight result in hydrogels with lower polymer volume fraction.
This is due to the fact that PEG macromonomers with higher molecular weight lead to the
formation of hydrogel networks with fewer cross-linking points per unit volume, resulting
in weaker and less durable hydrogels [77].

Table 1. Degree of swelling (Q), polymer volume fraction (v2,s), molecular weight between
two crosslinks (Mc), and mesh size (ξ) of hydrogel samples.

Hydrogels Q v2,s
¯
Mc(g·mol−1) ξ(Å)

Hydrogels crosslinked with PEG-400 3.81 0.174 1941 15
Hydrogels crosslinked with PEG-1000 6.74 0.109 3869 26
Hydrogels crosslinked with PEG-2000 11.80 0.068 5772 38

The molecular weight between two crosslinks (Mc) of the hydrogels increased as
the chain length of the PEG-based crosslinker increased, as shown in Figure 5b. This
increase in the average molecular weight between two crosslinks of the hydrogels can be
attributed to the chain length of the crosslinker, which increases from PEG-400 to PEG-2000.
A similar trend in results was also reported by Troung et al. when they synthesized various
chain lengths (from 1000 g·mol−1 to 20,000 g·mol−1) of PEG-based hydrogels through click
chemistry [59].
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The swelling ratio of a crosslinked polymer network demonstrates the thermodynamic
expansion of the network, and the Flory–Rehner equation links this expansion to the
network’s particular characteristics and structure [78]. Taking advantage of these findings,
Canal and Peppas discovered that the average distance between crosslinks (expressed in
angstroms), known as mesh size (ξ), can be determined using Mc [71]. It can be concluded
from Figure 5c that the chain length of the crosslinkers utilized in the system is again
a crucial factor in influencing the mesh size of our hydrogel system. Figure 5c shows
that the hydrogel’s mesh size grows as the PEG-based crosslinker’s chain lengths are
increased. These calculated values of mesh size or correlation length can also be somehow
correlated to the length of the PEG-based spacers. As evident from previous studies, one
unit of a short chain of PEG can be correlated to the length of 1.5 Å under a fully stretched
helical structure [79]. Taking these calculations into account, if we look into the length
of our PEG spacers, they make up 14 Å, 34 Å, and 67 Å for PEG-400, PEG-1000, and
PEG-2000, respectively, under a fully stretched helical structure. We can thus deduce that
the calculated lengths of 15 Å, 27 Å, and 38 Å of PEG-spacers can be correlated to the
theoretical values of PEG-400, PEG-1000, and PEG-2000, respectively. As discussed earlier,
these are the estimated values and are calculated on the assumption of a Flory-derived
model. Here, measured values for the PEG-400 and PEG-1000 spacer correlate well with the
theoretically calculated values, but the correlation length value for the PEG-2000 deviates a
bit from the theoretical calculated value. Therefore, one can say that there is still room for
improvement and the establishment of a more sophisticated model for the calculation of
mesh size and other physical parameters of crosslinked polymeric networks in the case of
copolymer-derived networks. On the other hand, these varying chain lengths of PEG-based
spacers provide us with a basis for the modulation of mesh size as it varies, and thus can
help in the diffusion of molecules from polymer networks. We can also comprehend the
evidence that the relationship between the crosslinker’s chain length and mesh size can
prove to be a vital factor in creating hydrogel systems with particular features to meet
unique needs and requirements.

2.7. X-ray Diffraction

To discover the amorphous and crystalline characteristics of the hydrogel samples as
well as the reactants responsible for the material’s crystallinity, X-ray diffraction measure-
ments were performed on the samples. We can deduct from Figures 6 and S8 that the neat
polymer backbone (PSA-g-mPEG) and PEG-400-based crosslinker are completely amor-
phous in the spectra, while samples with PEG-1000-based and PEG-2000-based crosslinkers
show significant crystalline peaks. The same reflections were also observed for neat PEG-
1000 and PEG-2000. These correspond to the (120) and (032) Miller planes of monoclinic
PEG, which are represented by the two characteristic peaks at q = 1.36 Å−1 and q = 1.66 Å−1,
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respectively. The unit cell is made up of PEG chains arranged in a 72-helix structure, with
seven repeating units in two turns [80]. Thus, we can conclude from the reactants/products
data, as well as previous works in the literature, that the crystalline nature of our hydrogel
samples is being induced by the PEG-based crosslinkers. These results are consistent
with our previous findings investigated through differential scanning calorimetry results
published elsewhere [24].
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2.8. Loading and Release Experiment of BSA-TMR and DY-781 from PSA-g-mPEG Hydrogels

The loading of different molecules inside the hydrogels can be achieved by
two different procedures. The first one is post-loading, which involves the movement
of drug/protein/dye molecules from the outside (solvent solution) to the inside of already
formed hydrogels, with diffusion being the major driving force. The second loading proce-
dure is named in situ loading, and involves the mixing of drug/protein/dye molecules
along with hydrogel precursors before its formation [69,81,82]. We adopted the post-loading
method, so that clean hydrogels without unwanted polymer traces can be used. To assess
the loading and release of lower and higher molecular weight molecules from hydrogel
matrices, we used two different model molecules. The lower molecular weight molecule
used was DY-781, a fluorescent dye with a molecular weight of 781 g·mol−1, while the
higher molecular weight molecule used was BSA-TMR (a model protein, bovine serum
albumin conjugated with a dye, i.e., tetramethyl-rhodamine), with a molecular weight
of 66,000 g·mol−1. Loaded BSA-TMR and DY-781 were analyzed using the fluorescence
spectrometer. In both DY-781 and BSA-TMR, loading was directly related to the swelling of
the hydrogel samples. Hydrogels with the maximum swelling (PSA-g-mPEG crosslinked
with PEG-2000-based crosslinker) attained the highest loading, while the hydrogel sample
with the lowest swelling index (PSA-g-mPEG crosslinked with PEG-400-based crosslinker)
achieved the lowest loading (Figure 7 for loading and Figure 8 for swelling). Thus, the
loading of protein/dye molecules was directly related to the varying molar mass of the
PEG crosslinker. Furthermore, the theoretically estimated mesh size, as shown in Figure 5c,
also gives an idea that the diffusion of molecules through the hydrogels can be correlated to
the mesh size of the chain length of the PEG-based crosslinker. Considering the estimated
mesh size of the hydrogels and the loaded quantity of molecules as delineated in Figure 7,
it is inferred that small-sized molecules are being loaded to a greater extent than large-sized
molecules. This may be attributable to the fact that the mesh size of the hydrogels is larger
than the small-sized molecules, whereas in the case of BSA, the mesh size of the hydrogels
somehow matches the hydrodynamic radii of BSA: 34 Å [61].
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The in vitro release study of DY-781 (Figure 9) and BSA-TMR (Figure 10) from hy-
drogels was performed at 37 ◦C in PBS pH 7.4. Before the release study of BSA-TMR,
a fluorescence investigation of a blank hydrogel sample (degraded/solution form) and
hydrogel sample (degraded/solution form) along with BSA-TMR was carried out to un-
derstand the interaction between hydrogel and BSA-TMR. The fluorescence spectrum was
recorded within the range of tetramethyl rhodamine (TMR), with an excitation at 535 nm
and an emission at 576 nm. The fluorescence spectrum (Supplementary Materials Figure S9)
clearly shows that there was no interaction recorded between hydrogel and BSA-TMR and
the spectrum only shows the TMR peak within the applied fluorescence range. Release data
of DY-781 demonstrate (Figure 9) that 40% of the DY-781 was released from all hydrogel
matrices after 4 h of release study, which can be attributed to the equilibrium swelling of
hydrogel samples. The hydrogel swelling index (Figure 3) can be correlated to its release
data as maximum swelling (equilibrium swelling) of the hydrogels occurred after 4 h.
Witnessing the same pattern as for swelling, it can be seen that the largest amount of DY-781
was released from the hydrogel matrices in the same period of time. The majority of DY-781
was released after 24 h of study (Figure 9d), in which hydrogels crosslinked with PEG-400
showed a 75% release and hydrogels crosslinked with PEG-1000 showed 69%, whereas
hydrogels crosslinked with PEG-2000 showed 67% release. A 100% DY-781 release was
recorded after one week of the study.
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crosslinker demonstrated 67% release, whereas hydrogels crosslinked with PEG-2000 
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Figure 10. BSA (BSA-TMR) cumulative release (%) in PBS with pH 7.4 + 0.2% NaN3 at 37 ◦C: (a) from
hydrogels crosslinked with PEG-400 for 336 h (14 d), (b) from hydrogels crosslinked with PEG-1000
for 336 h (14 d), (c) from hydrogels crosslinked with PEG-2000 for 336 h (14 d), and (d) initial release
period from all hydrogel samples for 24 h.
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The release study of BSA-TMR shows an almost similar pattern of release to that of
DY-781, in that its release from hydrogel matrices continued for almost 14 days, and showed
a 100% release on the 14th day (Figure 10). Again, the highest percentage of release can be
attributed to the swelling pattern of the hydrogels. After 4 h of release study, hydrogels
with a PEG-400-based crosslinker released 68% BSA-TMR and PEG-1000-based crosslinked
hydrogels released 59% BSA-TMR, while PEG-2000-based crosslinked hydrogels released
46% BSA-TMR. After 24 h of BSA-TMR release (Figure 10d), hydrogels crosslinked with
PEG-400 demonstrated 78% release and hydrogels with a PEG-1000-based crosslinker
demonstrated 67% release, whereas hydrogels crosslinked with PEG-2000 showed 61%
release. The release of BSA-TMR continued for 14 days.

BSA-TMR and DY-781 release from different types of hydrogels crosslinked with
the different chain lengths of PEG crosslinkers cannot be compared with each other as
there was a difference in the loaded amount in both cases. In addition, if we look into
BSA-TMR and DY-781 release individually, there was a difference in the loaded amount of
the protein/dye molecules for all hydrogels crosslinked with varying molar mass of PEG.
We can still deduce that molecular release from these hydrogel matrices is connected to
the swelling of the hydrogels that occurs due to the interaction between water molecules
and polymer chains. This interaction firstly leads to the diffusion of the water molecules
inside the polymer hydrogels, which initially loosens up the polymer chains and ends up in
the expansion of the hydrogel systems due to the relaxation of the polymer chains [83,84],
leading to the increase in the mesh size and desorption of the model molecule. Our current
data show that swelling plays a major part in molecular release, as most of the molecular
release is achieved within 24 h. We further assume that this swelling-controlled release
mechanism may simultaneously be followed by a chemically controlled mechanism due to
the fact that our polymer precursors consist of vinyl end groups which may interact with
the amines present in the protein/dye molecules. This interaction can lead to Aza–Michael
addition under mild reaction conditions without the presence of any catalyst, which was
also reported by Razan et al. [85]. Thus, some of the protein/dye molecular release may be
attributed to the chemically controlled release mechanism in which molecules may release
after hydrolytic degradation of the hydrogels as they swell after coming into contact with
the water. Such a type of release mechanism can be termed a reaction diffusion-controlled
mechanism in which both diffusion and chemical reaction take place [69]. For this reason,
the fast release of molecules through the hydrogel pores was first experienced, followed
by slow release later on. Adding to this assumption, we previously conducted proton
double quantum NMR studies on our hydrogel system, which proves that our PSA-g-mPEG
hydrogel stands inhomogeneously due to the grafting of PEG side chains that can act as
dangling chains. These NMR studies also tell us about the two components present in our
hydrogels; one is densely crosslinked regions with more crosslinking junctions, while the
second is loosely crosslinked regions with lesser crosslinking junctions. This may lead to
the trapping of molecules in these densely crosslinked points, which may take some time
to diffuse outside [24]. Considering the pharmaceutical perspective, the release patterns
observed with BSA-TMR and DY-781 offer promising prospects for the potential dermal
and oral applications of these hydrogel matrices. These applications may involve the need
for immediate drug release during the initial phase, ensuring an immediate therapeutic
effect followed by a delayed release in the later stages of drug delivery, maintaining a
consistent therapeutic concentration over time and prolonging the efficacy of the treatment.

2.9. Cytotoxicity of PSA-g-mPEG Hydrogels

Material biocompatibility is vital for in vivo applications [86], while cytotoxicity can
provide important insights about material biocompatibility [87]. To investigate the cytotox-
icity of our hydrogels (degraded solution form), an in vitro resazurin assay was conducted
in which the reduction of non-fluorescent blue resazurin to fluorescent red resorufin within
living cellular mitochondria was measured. The comparative analysis of fluorescence
intensity between treated and untreated cells enabled an assessment of cellular viability
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after its interaction with our hydrogels. This assay was carried out on two different cell
lines, normal human dermal fibroblasts (NHDF) and mouse embryonic fibroblasts (3T3), to
measure the cytotoxic traits of our hydrogels without loaded protein/dye.

Figures 11 and 12 depict percentage cell viabilities for the 3T3 cell line and NHDF
cell line, respectively, of different hydrogel samples at various concentrations after its
incubation for 4 h and 96 h. We can evaluate from the results that both types of cell
lines exhibit a high percentage of cell viability for all hydrogel samples against different
concentrations. It can also be indicated that a cell viability of above 100% was observed
across most of the hydrogel samples after 96 h. This can be interpreted as our hydrogel
samples indicating the enhancement of cell metabolism and proliferation. Also, few of
the prior research studies indicate that sorbitol has been reported as a factor that might
play an important role in cell metabolism and growth in in vitro cell compatibility studies.
Mei et al. conducted the same type of study by culturing 3T3 cell lines with polyesters.
After 24 h of cell culture study, they analyzed sorbitol-containing polyesters and found
that they can show cell proliferation, concluding that sorbitol-containing compounds can
prove to be promising candidates in the research and development of biomaterials [88]. In
another investigation, conducted on human skin fibroblasts, Turner and Biermann came
to the conclusion that sorbitol can proliferate similarly to glucose [89]. Keeping in view
our obtained results of cytotoxicity as well as previous results from the literature, we may
deduce that our product may prove to be biocompatible in conducting in vivo experiments
and for the development of biomaterials.
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types of hydrogels for (a) 4 h and (b) 96 h. The measurement was performed using a fluorescence-
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3. Conclusions

Enzymatic polymerization was employed for the synthesis of green aliphatic polyesters
with various advantages. Sorbitol was used instead of glycerol (having been used by our
research group previously) because of its multi-hydroxyl pendant functionalities. These
multiple pendant functionalities make sorbitol more versatile to be modulated later for
multiple purposes. Utilizing this advantage, it was first copolymerized with PEG to make it
more water-soluble, followed by crosslinking to synthesize a hydrophilic polymer network.
Both PSA and PSA-g-mPEG hydrogels were first investigated for stability studies and it was
found that PSA-g-mPEG degrades slowly as compared to PSA, due to the steric hindrance
provided by PEG to the PSA backbone. The swelling properties of PSA-g-mPEG hydrogels
revealed that the swelling ratio is directly proportional to the chain length of the PEG-based
crosslinkers from PEG-400 to PEG-2000. Temperature-based swelling properties revealed
that the swelling ratio of the hydrogels decreases due to the breakage of hydrogen bonding
as the temperature rises from RT to 75 ◦C. The sol-gel fraction of the hydrogels tells us
that the crosslinking efficiency of the reaction is inversely proportional to the chain length
of the PEG-based crosslinkers. The determination of the physical structural parameters
explains that they are also dependent upon the chain length of the PEG-based crosslinkers.
Solute-loading studies confirm that the hydrogel with the most swelling ratio has the
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highest efficiency in taking up solute, with up to 30% of dye and 10% of BSA-TMR with
PEG-2000 through the diffusion mechanism. Solute release from the hydrogels was fast
during the initial phase, while it became delayed in the later phase. Cytotoxicity studies
revealed the biocompatibility of the polymers and thus can be exploited for in vivo studies
against measured concentrations. We can thus assume that our hydrogel system can prove
to be a potential candidate for various biomedical and pharmaceutical applications while
considering the versatile nature of our polymer, its physicochemical and solute release
properties, and biocompatibility.

4. Materials and Methods
4.1. Materials

CAL-B (Novozyme 435), which is a lipase derived from Candida Antarctica type B
and immobilized on acrylic resin, was purchased from Sigma Aldrich, St. Louis, MO,
USA. Prior to its use, it was first vacuum-dried over phosphorous pentoxide for 24 h.
Sorbitol (98%) and divinyl adipate (96%) were purchased from Sigma Aldrich (Stein-
heim, Germany) and TCI GmbH (Eschborn, Germany), respectively. Phosphorous pen-
toxide (≥99%), 4-(dimethylamino)pyridine (DMAP), anhydrous N,N-dimethylformamide
(DMF, 99.8%), anhydrous tetrahydrofuran (THF, 99.9%), acetonitrile (anhydrous, 99.8%),
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl), dialysis mem-
branes with 1000 g·mol−1 molecular weight cut off (MWCO), and 10,000 g·mol−1 MWCO
(Spectra/Por®, made from regenerated cellulose) were purchased from Carl Roth, Karl-
sruhe, Germany. α,ω-bis-hydroxy poly(ethylene glycol)n (where n = 9, 23, and 45) and α-
methoxy,ω-hydroxy poly(ethylene glycol)n (where n = 12) (mPEG 550) were purchased
from Alfa Aesar, Kandel, Germany. DY-781 Amine (molecular weight: 781 g·mol−1)
and DY-784 NHS-ester (molecular weight: 1188 g·mol−1) were purchased from Dyomics
GmbH (Jena, Germany), while BSA-TMR was purchased from Thermo Fisher Scientific Inc.
(Waltham, MA, USA).

4.2. Polymers and Hydrogel Syntheses

Prior to the formation of polymer networks, poly(sorbitol adipate) was synthesized
via enzymatic polymerization, as described earlier in Rashid et al., 2021 [24]. Briefly,
50 mL of anhydrous acetonitrile was added to a three-necked round bottom flask with the
equimolar amount of sorbitol (10.0 g, 54.9 mmol) and divinyl adipate (10.88 g,
54.9 mmol), whose central neck was connected to a mechanical stirrer while one of the side
necks was connected to a reflux condenser with a calcium chloride drying tube. The round
bottomed flask was placed in an oil bath. The purpose of the drying tube was to absorb
atmospheric moisture while allowing the venting of acetaldehyde, a side product of this
reaction. The solution was stirred for half an hour so that the temperature of the reaction
flask was equilibrated to 50 ◦C. Lipase [Novozyme 435, 2.1 g (10% w/w of total mass of
PSA and DVA)] was then added to the solution, which initiated the reaction. After 92 h,
the reaction was stopped and the mixture diluted with DMF. Enzyme beads were removed
through filtration with Whatmann® filter paper. The filtrate was then transferred to a
dialysis membrane of 1K MWCO and dialysis of the polymer was performed with water as
the dialysis medium. Water was exchanged thrice per day for 7 days to remove oligomers
of the product. The final product was achieved through freeze drying of the dialyzed
polymer. The product’s purity was verified using 13C NMR (Figure S2) and 1H NMR spec-
troscopy (Supplementary Materials Figure S1a). 1H NMR (400 MHz, DMSO-d6) δ (ppm):
4.95–4.58 (m, 2H), 4.57–4.33 (m, 2H), 4.28–3.86 (m, 2H), 3.82–3.72 (m, 2H), 3.61–3.34 (m, 2H),
2.38–2.18 (m, 4H), and 1.61–1.41 (m, 4H).

To achieve a higher swellability of the hydrogels, PSA was grafted to poly(ethylene
glycol) (PEG). For the grafting of PSA to PEG, mPEG 550 was modified by acylation
with succinic anhydride via a procedure described elsewhere [24,90] to obtain monofunc-
tional PEG (Supplementary Materials Figure S4). 1H-NMR ((400 MHz, CDCl3) δ (ppm):
4.25–4.21 (m, 2H), 3.68–3.51 (m, 50H), 3.35 (s, 3H), 2.67–2.56 (m, 4H)). PSA was then
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grafted to PEG through the Steglich esterification reaction mentioned elsewhere [24], where
monosuccinyl methoxy PEG reacted with PSA to produce PSA-g-mPEG. It is important
to mention here that the polymer batch used for the stability study was different from the
batch used for the synthesis of hydrogels. The average molar mass (Mn) of PSA used in
the stability study was 11,000 g·mol−1, while the Mn of PSA used for the preparation of
hydrogels was 7500 g·mol−1. Similarly, the Mn of PSA-g-mPEG utilized for the stability
study was 16,000 g·mol−1, while the Mn of PSA-g-mPEG utilized for the preparation of
hydrogels was 17,250 g·mol−1 (Supplementary Materials Figures S3 and S1b (13C NMR)
(1H NMR)). 1H NMR ((400 MHz, DMSO-d6) δ (ppm) (Figure S1b)): 4.95–4.58 (m, 2H),
4.57–4.33 (m, 2H), 4.16–4.08 (m, 2H), 4.28–3.86 (m, 3H), 3.82–3.72 (m, 2H), 3.56–3.45 (m,
50H), 3.23 (s, 3H), 2.61–2.52 (m, 4H), 3.61–3.34 (m, 2H), 2.38–2.18 (m, 4H), 1.61–1.41 (m, 4H).

The next step was to crosslink the PSA-g-mPEG polymer through a bifunctional PEG,
which took place by first synthesizing bifunctional PEG. The PEG of three different molar
masses (PEG-400, PEG-1000, and PEG-2000) was acylated on both sides with succinic
anhydride through a procedure described elsewhere [24,90,91]. In the last step, hydrogels
were formed by esterifying secondary hydroxyl groups from PSA-g-mPEG and terminal
carboxyl groups from bifunctional PEG (Supplementary Materials Figures S5–S7). 1H
NMR ((400 MHz, CDCl3) δ (ppm): 4.28–4.20 (m, 4H), 3.73–3.57 ((m, 34H (bifunctional
PEG 400); 92H (bifunctional PEG 1000); 180H (bifunctional PEG 2000)), 2.68–2.58 (m, 8H).
Steglich esterification took place by using EDC·HCl and DMAP. In a typical procedure,
PSA-g-mPEG (1.00 g, 13.7 mmol) was taken and dissolved at 37 ◦C in DMF (w.r.t 22% w/v
of the combined weight of PSA-g-mPEG plus crosslinker). This was subsequently followed
by the addition of DMAP (0.34 g, 2.72 mmol) and EDC·HCl (4.72 g, 27.38 mmol) in a vial.
Three different bifunctional crosslinkers were added to three different solutions and were
kept overnight at 37 ◦C without stirring. Then, 35 mol% of crosslinkers was added to the
solution, which was calculated with respect to the free hydroxyl groups present on the
PSA-g-mPEG backbone. Hydrogels were then formed and cut into cylindrical discs. The
purification of the hydrogels was carried out by washing the gel discs in double-distilled
water for 7 days while replacing the washing medium thrice per day. Impurities were
washed out and swollen gel discs were dried in a drying oven at 37 ◦C. The synthesis
scheme for the hydrogels is given below as Scheme 1.

4.3. Polymer Degradation/Stability Study

Polymers were exposed to 2 different types of temperatures. One part was placed
at 4 ◦C in a fridge, while the second part was placed at 40 ◦C with a relative humidity
(RH) of 75% to check its degradation and stability. For this purpose, 5 mg of the poly-
mer was taken at each time point and samples were kept in the fridge and Heraeus B
6760 climate chamber (Thermo Fisher Scientific Inc., Waltham, MA, USA). At various time
points (days), samples were taken and measured through gel permeation chromatography
(GPC). For GPC measurement, samples were analyzed at room temperature by using
Viscotek GPCmax VE 2002. Briefly, 5 mg/mL of sample was taken and dissolved in DMF
(along with 0.01 M LiBr). For calibration of the instrument, poly(methyl methacrylate) was
used while a 1 mL.min−1 flow rate of eluent was adopted for the measurement. Samples
were finally analyzed by a determination of the average molar mass (Mn).

4.4. Sol-Gel Fraction of PSA-g-mPEG Hydrogels

Sol-gel fraction investigation was performed to learn about the crosslinked and un-
crosslinked portions of hydrogels. For that, hydrogel samples after synthesis containing
uncrosslinked polymers, catalysts, and solvent were immersed in double-distilled water.
Water was replaced 3 times per day for an interval of one week, to remove the uncrosslinked
portions of the hydrogels. It is pertinent to mention here that all the reactants involved in
the preparation of the hydrogels were soluble in water. Finally, hydrogels were dried and
weighed. The sol-gel fraction of hydrogels was calculated with the help of the following
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equations, where W0 refers to the initial weight of hydrogel precursors before the reaction,
while W1 refers to the final weight of dried clean hydrogels after washing [92,93].

Gel fraction (wt.%) =
W0 − W1

W0
× 100 (1)

Sol fraction (wt.%) = 100 − Gel fraction, (2)

4.5. Swelling Studies

The swelling study of the hydrogel matrices was initiated by immersing hydrogels
in water. Hydrogels were first weighed in a dry state, followed by taking the weight of
the swollen discs at regular time intervals for 24 h at room temperature (22 ◦C) until they
reached their equilibrium swelling state. For weighing the hydrogels, they were taken out
of the solvent every time. Surface water was removed by rolling over the blotting paper.
Dynamic and equilibrium swelling degrees were calculated by taking into account the initial
dry weight and swollen weights of hydrogels at different time intervals [59]. Moreover,
equilibrium swelling degrees for all samples were also calculated at room temperature,
37 ◦C, 50 ◦C, and 75 ◦C to evaluate and investigate the effect of increasing temperature on
our hydrogel as general physicochemical characteristics of this polymeric system.

The swelling degree was determined using Equation (3), where mt refers to the swollen
hydrogels, while mo refers to the dried hydrogel discs.

Q =
mt − mo

mo
, (3)

4.6. Structural Parameters of the PSA-g-mPEG Hydrogels

Swelling measurements were then utilized to calculate various physical parameters
related to the polymeric structure of the hydrogel system. One of these important physical
parameters is Mc, the molecular weight between two crosslinks which allows for determin-
ing the degree of crosslinking between the polymeric chains. Mc can be calculated through
modified Flory–Rehner’s theory by using Equation (4) [59,94].

1
Mc

=
2

Mn
−

ν1
V1

[
ln(1 − ν2) + ν2,s + χ1ν2

2,s

]
[
(ν2,s)

1
3 −

(
2
φ

)
ν2,s

] (4)

Here, Mn represents the polymer’s average molecular weight prior to the crosslinking,
i.e., for PSA-g-mPEG (17,500 g·mol−1), ν1 is the specific volume of the polymer, V1 is
the molar volume of the solvent, φ is the functionality of the crosslinker, i.e., 2, χ1 is the
polymer-solvent interaction parameter also known as the Flory–Huggins parameter or
chi parameter, and ν2 is the polymer volume fraction in the swollen state. To solve this
equation, the polymer solvent interaction parameter (χ1) of PEG was taken, which was
0.426. We made this assumption based on the fact that the molecular weight of the PEG in
our hydrogel system was larger compared to the PSA and the swelling properties of our
hydrogel system were driven by PEG. A similar type of assumption has also been reported
elsewhere [61]. The specific volume of the polymer, ν1, was determined by calculating the
density of the polymer hydrogels. The molar volume of the solvent (V1) is 18.1 mL/mol.
The polymer volume fraction tells us about the efficiency of our hydrogel systems to absorb
water. It is calculated by taking the volume ratio of the dry hydrogels to the swollen
hydrogels, which can be related to the degree of swelling as well as to the densities of the
hydrogels and solvent. It can be calculated [59] by using the following Equation (5).

ν2,s =
ρs

Qρp + ρs
(5)
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Here, ρs is the density of the solvent, while ρp is the density of the dry hydrogel and
Q is the degree of swelling.

Once Mc is calculated, it is easy to determine the mesh size or correlation length of the
respective hydrogels. The correlation length (ξ) is a common structural parameter used to
describe the size of the pores of the hydrogels. It represents the linear distance between
two neighboring crosslinks and can be calculated [69,73] through the value of

ξ = v2,s
−1/3

(
r02

)1/2
(6)

where υ2,s is the polymer volume fraction of the hydrogels, while r02 is the end-to-end
distance between two adjacent crosslinking points and can be determined as(

r02
)1/2

= l(CnN)1/2 (7)

Here, l is the bond length, which was assumed to be the average bond length of one
PSA repeating unit, i.e., 1.51 Å. Cn is the Flory characteristics ratio that tells us about the
flexibility or rigidity of the polymer chain [78]. Since the Flory characteristics ratio of PSA
has not been determined to date, we are assuming here the Cn of a polyamide, Nylon 6,6
(6.1) [95], whose one repeating unit has almost the same length as of PSA, while N, the
number of links per chain, can be determined as

N =
2Mc

Mr
(8)

where Mc refers to the molar mass between the two crosslinks, while Mr is the molar mass
of one repeating unit of the polymer chain. Here, we assumed the molar mass of one
repeating unit of PSA-g-mPEG, i.e., 640 g·mol−1.

4.7. X-ray Diffraction (XRD) of PSA-g-mPEG Hydrogels

Wide-angle X-ray scattering (WAXS) measurements were performed with an Incoatec
IµS (Geesthacht, Germany) equipped with a microfocus source and a monochromator
for Cu Kα radiation (λ = 0.154 nm). The 2D scattering patterns were recorded using a
Vantec 500 2D detector (Bruker, AXS, Karlsruhe, Germany). The samples were kept in glass
capillaries of 1 mm diameter (manufactured by Hilgenberg, GmbH, Malsfeld, Germany),
while network samples were measured in transmission mode with 1 mm thickness. The
exposure time was 3 min. The distance between the sample and detector was 9.85 cm for
wide-angle scattering experiments.

4.8. Loading Study of the BSA-TMR and DY-781 into Hydrogel Matrices

In order to assess the release patterns of lower and higher molecular weight molecules
from hydrogel matrices, DY-781 as a lower molecular weight molecule (molecular weight:
781 g·mol−1) and model protein bovine serum albumin conjugated with tetramethyl
rhodamine (BSA-TMR) (molecular weight: 66,000 g·mol−1) as a high molecular weight
molecule were loaded into hydrogels as follows. In detail, BSA-TMR solution was prepared
by dissolving 100 µg of BSA-TMR in 1 mL phosphate-buffered saline with pH 7.4 at a con-
centration of 0.1 mg/mL (PBS), while DY-781 was prepared by dissolving 10 µg of DY-781
in 1 mL phosphate-buffered saline (PBS) with pH 7.4 at a concentration of 0.01 mg/mL.
Different dried hydrogel samples with a diameter of 3 mm (PSA-g-mPEG crosslinked
with disuccinyl PEG-400, PSA-g-mPEG crosslinked with disuccinyl PEG-1000, and PSA-
g-mPEG crosslinked with disuccinyl PEG-2000) were then placed in these solutions for
48 h. Hydrogels were allowed to swell so that BSA-TMR and DY-781 could diffuse inside
hydrogel samples. After 48 h, hydrogels were then subjected to freeze drying in order to
obtain dried hydrogel samples. The loading efficiency was calculated, keeping in view the
concentration of the initially prepared solutions and loaded concentration inside hydrogels
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measured through fluorescence spectroscopy by using a FluoroMax-4 spectrofluorometer
(Details Section 4.9). Additionally, DY-784 was also loaded through the same method
as described before for an illustration of dye-loaded hydrogels. The Maestro™ imaging
system (Cambridge Research & Instrumentation Inc., Hopkinton, MA, USA) was used to
capture fluorescence images by using a near-infrared filter set. A filter set designed for
near-infrared (NIR) wavelengths, including a 710 nm to 760 nm excitation filter and an
800 nm long-pass emission filter, was employed to capture the DY-784 signal. Image cubes
were systematically acquired in 10 nm increments spanning the range of 780 to 950 nm.
The analysis of these images was conducted using Maestro™ software (Version 2.10.0).
The exposure time was automatically optimized, and the software correlated the total
fluorescence signal to the corresponding value.

4.9. Release Study of the BSA-TMR and DY-781

BSA-TMR- and DY-781 -loaded hydrogel samples were then subjected to a release
study in order to evaluate their release from these hydrogel matrices. For this purpose,
dried hydrogel samples were taken and placed in glass vials with conserved PBS pH 7.4
as the release medium. Glass vials were placed in a shaking water bath at 60 rpm and
37 ◦C temperature. The water bath was protected from the sunlight. Then, 500 µL of
aliquots were taken at different time intervals and were replaced with the same volume of
fresh PBS in order to maintain the sink conditions of the release media. BSA-TMR and DY-
781 aliquots were then analyzed through fluorescence spectroscopy by using a FluoroMax-4
spectrofluorometer (HORIBA Jobin Yvon GmbH, Bensheim, Germany). The detection of
the DY-781 signal involved a single-point acquisition with an excitation wavelength of
784 nm and an emission wavelength of 796 nm, while for BSA-TMR the excitation wave-
length was 535 nm and the emission length was 576 nm. Measurements were conducted
in a 10 mm quartz cuvette, and the data obtained were analyzed using FluorEssence™
software (HORIBA Jobin Yvon GmbH, Version 3.8.0.60). The final calculation of the release
data was performed by constructing a calibration curve of BSA-TMR and DY-781. The
experiment was performed in triplicate.

4.10. Cytotoxicity Study of PSA-g-mPEG Hydrogels

In vitro cell toxicity studies were performed for all three hydrogel samples: PSA-g-
mPEG crosslinked with disuccinyl PEG-400, PSA-g-mPEG crosslinked with disuccinyl
PEG-1000, and PSA-g-mPEG crosslinked with disuccinyl PEG-2000. Hydrogels were
exposed to 37 ◦C for a longer period of time until they degraded to solution form in PBS.
Two different cell lines were used. The first was the 3T3 cell line, which is a murine
embryonic fibroblast cell line originally isolated from kidney tissue, while the second cell
line used was NHDF, which is a normal human dermal fibroblast cell line originally isolated
from a human foreskin sample.

Seeding of the cells took place in 96 well plates (TPP® tissue culture test plate flat
bottom, TPP Techno Plastic Products AG, Trasadingen, Switzerland). These cells were
grown in an incubator (Heraeus HeraCell CO2 incubator, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) in 100 µL culture media at 37 ◦C and 5% CO2 overnight. In the case
of the NHDF cell line, the culture medium used for the cultivation of the cells consisted
of Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich GmbH, Taufkirchen, Ger-
many), 10% (v/v) fetal bovine serum (FBS, Sigma-Aldrich GmbH, Taufkirchen, Germany)
and 1% penicillin/streptomycin solution (Sigma-Aldrich GmbH, Taufkirchen, Germany).
Then, 4 mM sodium pyruvate was added in addition for the culture medium in case of
the 3T3 cell line. Column 1 of the well plate was left blank without any seeding of cells
to obtain the background signal. Column 2 was considered as a negative control, as cells
were left untreated to obtain 100% vitality, while column 3 was made the positive control
by treating cells with 0.05% (v/v) Triton® X-100 solution to obtain 0% vitality (or 100% cell
death). In the remaining columns of the well plates, hydrogel solutions were added to the
cells and incubated for 4 h, 24 h, and 96 h.
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A Resazurin assay was used to determine the viability in % by the metabolic activity of
the cells. Briefly, 20 µL of Resazurin solution (440 µM) was added to the well plate, followed
by its incubation for 2 h. The well plate was then placed in a multi-mode cell imaging
reader (Cytation™ 5 cell imaging reader, BioTek Instruments Inc., Winooski, VT, USA).
Using a filter set with an excitation wavelength of 531 nm and an emission wavelength
of 593 nm, fluorescence intensities were recorded. The final cell viability percentage was
then determined by taking into account the negative control after subtracting the blank
(background signal).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels10010017/s1, Figure S1: 1H NMR spectra of (a) PSA
and (b) PSA-g-mPEG measured at 27 ◦C using DMSO-d6 as solvent. Figure S2: 13C NMR spectrum of
poly(sorbitol adipate) measured at 27 ◦C using DMSO-d6 as solvent. Figure S3: 13C NMR spectrum
of PSA-g-mPEG measured at 27 ◦C using DMSO-d6 as solvent. Scheme S1: Synthesis scheme of
mPEG-Suc. Figure S4: 1H NMR spectrum of mPEG-Suc measured at 27 ◦C using CDCl3 as solvent.
Scheme S2: Synthesis scheme of Suc-PEGn-Suc. Figure S5: 1H NMR spectrum of disuccinyl PEG-
400 (Suc-PEG9-Suc) measured at 27 ◦C using CDCl3 as solvent. Figure S6: 1H NMR spectrum of
disuccinyl PEG-1000 (Suc-PEG23-Suc) measured at 27 ◦C using CDCl3 as solvent. Figure S7: 1H
NMR spectrum of disuccinyl PEG-2000 (Suc-PEG45-Suc) measured at 27 ◦C using CDCl3 as solvent.
Figure S8: X-ray diffraction scattering patterns of (a) PSA-g-mPEG, (b) Disuccinyl PEG-400, (c) PSA-g-
mPEG hydrogels crosslinked with PEG-400, (d) Disuccinyl PEG-1000, (e) PSA-g-mPEG hydrogels
crosslinked with PEG-1000, (f) Disuccinyl PEG-2000, and (g) PSA-g-mPEG hydrogels crosslinked with
PEG-2000. Figure S9: Fluorescence spectra of BSA-TMR along with hydrogel’s degraded sample and
degraded hydrogel without BSA-TMR measured via fluorescence spectrometer within wavelength
range of excitation (535 nm) and emission (576 nm) to evaluate interaction between both or any
background signal.
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