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Abstract

Data storage space comes almost at no costs today. Accumulating data is there-
fore an ubiquitous task in basically every business organization. However, this
collection process needs to be complemented with sophisticated data analysis
techniques in order to detect patterns inside these data. Such patterns may in-
dicate problems or opportunities. In both cases it is of paramount importance
to detect the formation and development of such patterns early enough in or-
der to take timely countermeasures. To reach a large range of users, such anal-
ysis methods have to be intuitively controllable, must provide instant feedback
and offer suitable visualizations. In this thesis, I propose a framework to visu-
alize and filter the temporal evolution of sets of association rules. I will show
how linguistic terms (represented by fuzzy sets) can be used to quantify a rule’s
history (with respect to certain quantitative measures) and subsequently rank
them to present only the most relevant ones to the user for further assessment.
I will transfer the suggested filtering method to other model types, present the
software platform on which the methods are implemented and provide empir-
ical evaluations on real-world business data.

Zusammenfassung

Die Preise für Speicherplatz fallen stetig, da verwundert es nicht, dass Unter-
nehmen riesige Datenmengen anhäufen und sammeln. Diese immensen Da-
tenmengen müssen jedoch mit geeigneten Methoden analysiert werden, um
für das Unternehmen überlebensnotwendige Muster zu identifizieren. Solche
Muster können Probleme aber auch Chancen darstellen. In jedem Fall ist es
von größter Bedeutung, rechtzeitig diese Muster zu entdecken, um zeitnah re-
agieren zu können. Um breite Nutzerschichten anzusprechen, müssen Ana-
lysemethoden ferner einfach zu bedienen sein, sofort Rückmeldungen liefern
und intuitive Visualisierungen anbieten. Ich schlage in der vorliegenden Arbeit
Methoden zur Visualisierung und Filterung von Assoziationsregeln basierend
auf ihren zeitlichen Änderungen vor. Ich werde lingustische Terme (die durch
Fuzzymengen modelliert werden) verwenden, um die Historien von Regelbe-
wertungsmaßen zu charakterisieren und so eine Ordnung von relevanten Re-
geln zu generieren. Weiterhin werde ich die vorgeschlagenen Methoden auf
weitere Modellarten übertragen, die Software-Plattform vorstellen, die die Ana-
lysemethoden dem Nutzer zugänglich macht und schließlich empirische Aus-
wertungen auf Echtdaten aus Unternehmenskooperationen vorstellen, die die
Wirksamkeit meiner Vorschläge belegen.
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An ounce of prevention

is worth a pound of cure.

Henry de Bracton
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1
Introduction and Motivation

In the year of birth of the author, one megabyte of hard disk memory

came at a cost of around 300 $. By the time of filing this thesis, the price

for one gigabyte has dropped way below the 10-cent mark.1 The unani-

mous conclusion is that the costs for storage space are nowadays virtually

negligible.2

The plummeting prices enabled companies to collect and maintain ev-

ermore growing volumes of data—be it customer details and customer

orders, product life cycle information, quality assessment data, website

activities and much more. However, having a tremendous amount of

cheaply stored data at the one hand, does not imply that answers and

insights can be extracted from this data at little expense, too. Actually, the

situation is often quite the opposite.

Finding relationships, dependencies and regularities—all summarized as

patterns—within data sets is a non-trivial, typically hard and costly task.

But it is these patterns that may lead to observations which in conse-

quence trigger actions to increase profit or to minimize costs.

Identifying different groups in the customer base can be used for individ-

ual advertising. Early detection of fraudulent behavior can to a great deal

prevent financial losses. Tracking down latent product failures allows to

circumvent inevitable full product recalls.

1 Values are taken from [WWW: HDD]. Current prices were confirmed by local advertisements.
2 The current strategy of the business software company SAP is to use non-volatile storage

(such as hard disks or solid-state drives) solely as a backup medium and keep the entire data-
base in memory [WWW: SAP].

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

All the sketched scenarios above embody the same objective, which is

best known in its colloquial phrasing as An ounce of prevention is worth

a pound of cure. That is: Would it have been possible to detect a pattern

earlier? More precisely, subsequent questions that often arise are: How

did these patterns evolve in the past? and How are they going to evolve

in the near future? The first question implies the conjecture whether it

would have been possible to detect a specific pattern earlier, that is, be-

fore a pricey countermeasure had to be taken or a certain customer group

was inexcusably overlooked. The latter question expresses the desirable

request for a predictive model. Both questions stress that the detection

of change is a fundamental concept to be addressed when patterns are to

be inferred from data.

1.1 Knowledge Discovery and Data Mining

The process of gaining new insights from large databases is widely known

as Knowledge Discovery in Databases (KDD).3 A formal definition is, of

course, hard to grasp as the notion is largely abstract in nature. It is con-

sensus that a KDD process consists of several steps, one of which being

Data Mining. Moreover, the process is interactive and sometimes also

considered a cycle (that is, the results will affect the initial requirements

and trigger an adjusted KDD process). The KDD notion was first stated by

[FAYYAD et al. 1996] and almost every thesis related to Data Mining con-

tains this early reference to it. I am not going to depart from this tradition

as it helps to put the scope of this thesis into perspective:

Knowledge Discovery in Databases is the process of identify-

ing valid, novel, potentially useful, and ultimately understand-

able structure in data.

In Figure 1.1 below, I am using a simplified version of the KDD process

since the contributions of this thesis are focused in the Data Mining step

3 The notions Knowledge Discovery in Databases and Data Mining are often used interchange-
ably.
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and the more elaborated version from [FAYYAD et al. 1996] differs in the

other steps.

Figure 1.1: Simplified KDD process. Stages are in bold letters, processes in sans-

serif letters.

Definition of the Goal. The initial step of every KDD process (that is quite

often assumed to be obvious or casually stated) is the definition of the

objective of the whole process. I do not mention this step here just as a

preliminary one: it is actually affecting the entire KDD process! Without

being aware of the exact questions (or at least the type of question) to be

answered by the analysis results, it is hard—if not impossible—to select

the appropriate data mining algorithm.

Preprocessing. This process encompasses the selection and transforma-

tion of the raw input data. It further comprises feature extraction and

feature generation. The actual tasks to be carried out depend on the de-

fined goal and thus on the selected data mining algorithm(s). The major

part of the entire KDD workload is typically spent in this preprocessing

step.
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Data Mining. The data mining step induces the type of patterns that have

been selected when defining the goal and for which the data has been pre-

processed. There is a multitude of different tasks and algorithms which I

do not intend to cover here. For an overview and thorough treatment of

the KDD process refer to [BERTHOLD et al. 2010].

Interpretation and Evaluation. Finally, the patterns found in the data min-

ing step need to be evaluated. Hypotheses have to tested and conjectures

have to be confirmed. Often, the gained insights spark new goals and trig-

ger a new and refined KDD process, thus creating an analysis cycle as in

the widely-used CRISP-DM model4 [CHAPMAN et al. 2000].

1.2 Cross-cutting Concerns

There are at least two aspects in the KDD process that were not yet ad-

dressed explicitly. One is represented in Figure 1.1 influencing the major-

ity of the analysis process: visualization. It is sometimes included into the

data mining step, however, as I will motivate in Section 1.2.1 below, it is

a much more far-reaching aspect as to dismiss it as a fringe aspect. The

second aspect addresses the temporal component of the domain under

analysis. Section 1.2.2 will discuss this issue in more detail as it may be

considered in different stages of the analysis.

1.2.1 Visualization

Visual representations of statistical data have been used for a long time

and proved indispensable for understanding and presenting analysis re-

sults [CHEN et al. 2008]. The rapid progress in computer graphics hard-

ware allowed for the development of interactive user interfaces that allow

for an exploratory approach to the data to be visualized. The idea of us-

ing graphical representations not only for a static view on the data but

4 CRoss Industry Standard Process for Data Mining. Established and promoted by SPSS, NCR
and DaimlerChrysler.
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rather as an intuitive and interactive tool for data analysis was summa-

rized under the notion of Visual Analytics. The term was coined around

2004 and now represents a vivid field of application and research. As for

KDD there is no fixed definition, however, a recent overview publication

on the field ([KEIM et al. 2010]) contains the following definition:

Visual analytics combines automated analysis techniques with

interactive visualizations for an effective understanding, rea-

soning and decision making on the basis of very large and com-

plex datasets.

Moreover, the following goals are also named, and I repeat them here as

they will later help to assess the quality of the proposed visualization tech-

niques.

• Synthesize information and derive insight from massive, dynamic,

ambiguous, and often conflicting data.

• Detect the expected and discover the unexpected.

• Provide timely, defensible, and understandable assessments.

• Communicate these assessments effectively for action.

Visualization is not only about displaying every piece of information that

is available, it is also about carefully selecting those artifacts that shall be

actually shown to the user. I do not have the hubris to claim a perfect

visualization, but a proverb attributed to Antoine de Saint-Exupery nicely

puts the above claim:

Perfection is achieved, not when there is nothing more to add,

but when there is nothing left to take away.

Often, the selection process of what to visualize and what to omit is harder

to tackle than the actual visualization itself (which might be straightfor-

ward). The framework presented in this thesis is no exception: A con-

siderable part is spent on discussing the filtering approach, the results of

which are then visualized in an intuitive fashion.
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1.2.2 Temporal Aspects

Taking temporal information into account is not explicitly specified in the

KDD process but rather intended to be taken care of within each data

mining algorithm. It can be considered a cross-cutting concern that—like

visualization—even pertains to all KDD stages. Most of the collected data

are already time-stamped. Due to its temporal nature, business data re-

flect external influences like management decisions, economic and mar-

ket trends and thus captures the changes a business is interested in. But

change is not necessarily related to problems. Change can also mean an

opportunity (like an evolving group of customers) to a business. There-

fore, (pattern) change detection is a vital task in order to survive and to

compete.

Patterns are not likely to arise out of a sudden. They rather will evolve

slowly over time. If the patterns represent evolving groups of customers

or a changing subset of ordered products, it will take time until these

patterns will become obvious. Conversely, after a problem has been ad-

dressed, it would be naïve to expect the patterns disappear immediately.

Again, an effect of a counteraction will need time to become (in)visible.

Thus, the temporal evolution of such patterns carries valuable—if not

vital—information about the urgency of the underlying problem (or the

effectiveness of the treatment).

However, a fully automatic approach has its limitations. In order to min-

imize response times to problems, data analysis results must be inter-

pretable by technical staff that not necessarily has a statistical background.

In addition, the analysis should be as transparent as possible to compre-

hend all inferences and conclusions that were drawn.

The approach I present in this thesis leverages the use of temporal infor-

mation that is already present in every production database: the time

stamps associated to the objects (tuples) under analysis. This immedi-

ately enables users to apply the presented framework with no change to

the existing system.
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1.3 Topic of this Thesis

This section introduces the main objective of this thesis as well as sketches

of those aspects that I assign a high importance. Briefly put, the topics

covered in Chapters 3 and 4 can be phrased as follows:

This thesis deals with the ② identification and ③ visualization

of ① patterns that exhibit a certain ④ temporal behavior that is

considered ⑤ interesting to the user.

The emphasized and numbered phrases represent aspects that I consider

important and thus are discussed in greater detail below.

① Pattern Types

Although the framework to be presented can be transferred to several pat-

tern types,5 I will introduce the arguments in favor of association rules6

first. The main reason for this decision is the fact that the projects that

sparked the ideas for the framework to be presented dealt with associa-

tion rules in the first place. However, there are several other reasons as to

why association rules were found to be a prominent choice for the frame-

work.

Simplicity. The semantic of an association rule is understood to be a

logic implication that is true in only a certain fraction of cases. Even

though the logic implication is known to be prone to confusion by people

that do not have skills in propositional logic [DURAND-GUERRIER 2003],7

the experience with industrial partners and decision makers shows that

if-then-like patterns are welcomed ways to represent dependences and

5 Principles are suggested in Section 4.5 and examples are given during evaluation in Chapter 6.
6 See Section 2.1 for an introduction.
7 The confusion arises from mainly two causes: First, the fact that an implication with a false

antecedent is generally true (instead of being colloquially “inapplicable”) is often a source of
confusion. Second, laymen often mistake “If not A, then not B” as a logic equivalence of “If
A, then B”.
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relations of a certain domain. The intuitive and little number of param-

eters can also be seen as an appealing property in favor of association

rules: only minimum support and minimum confidence8 are necessary

to fully specify the problem. Both parameters can easily be set and un-

derstood by users that not necessarily have a data mining background be-

cause they directly relate to relevant quantities. Compare it, for example,

with the attribute evaluation measure needed for decision tree induction:

here it is much harder for laymen to understand the difference between,

say, information gain and χ2 measure.

Stability. Projects with industrial partners have shown that there is an-

other property (in addition to simple parameterization) that greatly en-

hances the acceptance of a data analysis technique: predictability. When

studied in more detail, techniques are preferred where a small change

in the input data or parameters (or both) leads to a result that has also

changed just slightly. Counterexamples can, for example, be observed

when inducing decision trees: even when the parameters are fixed, a small

change in the input data (that is, an additional tuple, a changed tuple or

a removed tuple) can lead to a completely different tree. With association

rules induction, however, a change in the initial setting will typically lead

to a few rules to be missing or to be newly created.9 From the user point

of view, rule sets can be refined by tuning parameters, rather than coming

up with possibly dramatically different results. Not having such a type of

recognition can be a deal-breaker when it comes to the decision whether

a new technique shall be introduced in an existing analysis setting.

Derivability. There are, of course, other prominent data mining methods

that are widely accepted in industrial applications. It would be rather re-

strictive for the proposed filtering approach of this thesis if it required the

user to switch entirely to a different type of model (namely association

8 See Section 2.1 for details.
9 It is, of course, possible to craft a data set where a slight change in the parameters leads to

drastic changes in the induced rule set. However, real-world applications have not shown
such effects in practice, whereas the mentioned unstable behavior of decision trees can be
observed quite frequently.
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rules). Companies invest considerable amounts of money into building

in-house data analysis solutions. It would be little appealing to them to

evaluate a newly proposed method if this approach called for a revision

or at least a refinement of their current development. I will argue in Sec-

tion 4.5 how the presented framework can easily be used in a setting with,

for example, decision trees or graphical models, thus greatly increasing

the potential area of application.

Why not just frequent item sets? A look in the recent literature causes the

impression that most effort is spent on improving the induction of so-

called frequent item sets [BORGELT 2005, RÁCZ et al. 2005, BURDICK et al.

2003, SENO and KARYPIS 2001, HAN et al. 2000] which are a pre-stage from

which association rules are generated in a subsequent step. In personal

communications, some researchers even argued that “frequent item sets

contain everything” and therefore “there is little need to bother with as-

sociation rule 7 creation”. I agree with the first phrase, since the item set

{a,b,c} potentially represents the rule set {b → a, c → a, bc → a, a →

b, c → b, ac → b, a → c , b → c , ab → c} and thus can be considered a

condensed representation. And indeed, if a classical market basket analy-

sis reveals the frequent item set {Lime,Cachaça}, the supermarket owner

has all he needs to exploit the pattern. But consider the following pattern:

{EHEC,sprouts}. Since the number EHEC10 cases was rather low (com-

pared to the general population) a frequent item set induction algorithm

would have had to run with an extremely small minimum support in or-

der to generate the above pattern at all. A small minimum support, how-

ever, would lead to a huge number of patterns (out of which we could,

of course, easily select those item sets that contain EHEC, but depending

on the epidemic progression there might be multiple fomites). If we in-

duced association rules, we would find the rule EHEC → sprouts with a

confidence close to 1 much easier. To be clear here: both “approaches”

are capable of finding the described pattern and to induce the above as-

sociation rule we need to set the minimum support to the same low value.

My argument is, that looking for high-confidence rules is much more in-

10 enterohemorrhagic Escherichia coli
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tuitive for a user with little or no background on frequent item set induc-

tion.

② Identification

Any algorithm intended for pattern induction can only serve as a recom-

mendation agent suggesting patterns to the user. It is then the user’s task

to finally identify (and confirm) a pattern. To achieve this goal, (at least)

two aspects need to be addressed. First, it is crucial to provide a respon-

sive user interface. The notion sub-second response time is used to convey

the requirement to get results faster than the average time span the hu-

man brain needs to reply to a stimulus [PLATTNER and ZEIER 2011]. The

prototype used to implement the framework of this thesis meets that re-

quirement.

Second, the user must be enabled to intuitively describe the type of pat-

terns he is interested in (see Interestingness section below). This means

of description must neither be to restrictive nor shall any unintuitive pa-

rameterization be necessary. Fine-tuning these parameters shall create

an impression of revising the result set rather than just create a completely

new one.

③ Visualization

As already mentioned in Section 1.2.1, I am going to apply appropriate

graphical representations in order to visually verify the identified patterns.

In line with the adage a picture is worth a thousand words, the human vi-

sual system is highly capable of assessing and recognizing patterns, pro-

vided we are able to restrict the set of candidate patterns to a size that is

manageable by a single individual.

④ Temporal Behavior

Industrial and business data are usually collected incrementally over a

certain period of time. Customer orders accumulate successively, the lo-
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gistic processes behind the scenes—although more and more being sped

up—take a few days and generate respective data traces. The quality of

products may exhibit flaws after different periods of usage and thus leads

to a constant stream of data. Since all these data are binary footprints

of real-world processes and human behavior (including the behavior of

human-designed devices and products), pretty much every data set that

was (and currently is) being accumulated has time stamps in one or an-

other way.11 Humans are much better in comparing stimuli in relative

terms than in assessing the absolute intensity of a single stimulus [FECH-

NER 1860]: telling the louder of two sound samples is much easier than

determining the volume in decibel directly. The same holds true for effec-

tively all other perceivable physical sizes. Comparing values in temporal

succession can be considered an intrinsic human capability that should

be leveraged when it comes to pattern evolution.

⑤ User Interestingness

I will suggest an approach using linguistic descriptions that allow to de-

scribe the shapes of pattern measure time series in a fuzzy manner. The

user can use fuzzy partitions instead (manually specified or automatically

generated from the data or a combination of both) to denote the vague

class of shapes he is interested in.

1.4 Structure of this Thesis

Chapter 2 introduces and revisits the frameworks and mathematical un-

derpinnings that are necessary for the remainder of the thesis. The visu-

alization method is introduced in Chapter 3 after which the actual frame-

work is presented in Chapter 4. The implementation of the theoretical

concepts is presented in Chapter 5. I apply the proposed methods in

Chapter 6 to several data sets before a conclusion is drawn and outlooks

11 In most database schemas one can find dedicated attributes that represent the time when an
entry was created or modified or both. If not, modern databases collect metadata internally
and chances are that there is a creation time stamp for each entry.
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are given in Chapter 7. In this thesis I use the following policy to decide

which grammatical person to employ in the narration: I will use the first

person singular whenever my own decisions, contributions or opinions

are to be stressed. In all else situations I will use passive or first person

plural.



2
Background

This chapter introduces the concepts needed to follow my arguments and

proposals of this thesis. Section 2.1 introduces frequent item set min-

ing before the connection to relational item sets in Section 2.2 is made.

Cooccurrence graphs are sketched in Section 2.3 as another model type

whose temporal analysis can benefit from the approaches in this thesis.

Elements of fuzzy set theory are outlined in Section 2.4 before I close

the chapter with a brief introduction into evolutionary algorithms in Sec-

tion 2.5

2.1 Elements of Frequent Pattern Induction

The classic approach [AGRAWAL et al. 1993] as well as alternative tech-

niques [ZAKI et al. 1997, BORGELT 2005, HAN et al. 2000] of association

rule inference consists of first finding subsets of items (so-called item

sets) that occur together in more than a predefined fraction (the mini-

mum support) of transactions and then trying to identify a single item

within each item set such that the probability of observing this item given

the remaining items of the item set exceeds some other predefined thresh-

old (the minimum confidence). By transaction we mean a tuple (like a

row of a database table) with exclusively nominal attributes.

13
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2.1.1 Frequent Item Sets

Let U be a finite set of N items, that is, |U | = N . Any subset I ⊆U is called

an item set. Further, we consider a so-called transaction database1 D =

(d1, . . . ,dn) with di ⊆ U , i = 1, . . . ,n. A transaction d ∈ D covers an item

set I iff I ⊆ d . Consequently, we refer to

KD (I ) =
[

I
]

D = {k ∈ {1, . . . ,n} | I ⊆ dk }

as the cover of I with respect to D . The
[

·
]

-notation will later be useful

when we discuss evaluation measures. Since the transactions in D need

not necessarily be disjoint, we cannot collect all covered transactions as

a set. Hence, we collect their unique indices. The following quantities

define two important measures for item sets:

- absolute support: abs-suppD(I ) = |KD (I )| ≥ 0

- relative support: rel-suppD(I ) =
|KD (I )|
|D |

∈ [0,1]

We will omit the index D if the underlying database is clear from the con-

text. Obviously, the absolute support counts the number of transactions

that cover I and therefore can be considered supporting it. In reality,

only those item sets are of interest whose support exceeds a certain (user-

specified) minimum support. The item sets are then called frequent item

sets. Given a minimum absolute support of smin we are interested in the

set

FD (smin) = {I ⊆U | abs-suppD(I ) ≥ smin}.

If the relative support σmin is constrained, we get the following definition

of the set of frequent item sets:

ΦD (σmin) = {I ⊆U | rel-suppD (I ) ≥σmin}

Efficiently inducing the set FD (or ΦD) longtime occupied the scientific

research field of frequent pattern mining.2 An important property used

1 For technical purposes we consider D to be a vector rather than a set.
2 Even though there are still papers being submitted that deal with enhancing frequent item

set induction, there are highly efficient algorithms available [HAN et al. 2000, BORGELT 2005]
such that the research focus changed to post-processing sets of frequent item sets.
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i di

1 {a,b}
2 {a}
3 {b,c}
4 {b,c}
5 {a,b,d}
6 {b,d}
7 {c,d}
8 {c}
9 {a,b,c}

10 {a,b,e}
database D

KD ({a}) = {1,2,5,9,10}, abs-suppD ({a}) = 5
KD ({a,b}) = {1,5,9,10}, abs-suppD ({a,b}) = 4
KD ({a,b,c}) = {9}, abs-suppD ({a,b,c}) = 1

10
⋃

i=1
di =U = {a,b,c,d ,e}

Figure 2.1: Example database with 10 transactions. Cov-

ers and absolute supports for three successively inclusive

transactions are given to show the anti-monotonicity of

the support.

for restricting the search space of item sets is the so-called Apriori prop-

erty of the support.3 This property basically exploits the support’s anti-

monotonicity: The support of an item set cannot increase if further items

are added. Each item of an item set constrains the cover as can be seen

exemplarily in the cover relationship of the two-element item set {a,b}:

∀a,b ∈U : KD ({a,b}) = KD ({a})∩KD ({b})

In other words: enlarging J to I will lower (or at most will not change) the

support:

∀J : I ⊇ J : suppD(I ) ≤ suppD (J)

Figure 2.1 illustrates this relationship. Starting with the item set {a}, fur-

ther items are added and the covers and supports are shown. Finally, ap-

plied to the task of frequent item set induction, we get the insight that no

superset of an infrequent item set (that is, an item set not reaching the

minimum support) can be frequent:

∀smin : ∀J : ∀I ⊇ J : abs-suppD (J) < smin ⇒ abs-suppD (I ) < smin

Algorithms based on extending frequent item sets to find potential larger

frequent item sets can ignore all supersets of an infrequent item set since

its support cannot increase.

3 If neither relative nor absolute is specified, the discussed properties apply to both definitions.
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2.1.2 Association Rules

An association rule ρ = X → Y satisfies X ,Y ⊆U , X ∩Y =; and Y 6= ; and

consists of the antecedent X and consequent Y . For the rest of this work

we will assume that Y contains only one item, that is, Y = {y} and often

replace Y with y ∈U (or another lower-case letter clear from the context).

For an association rule ρ = X → Y and an item x ∈ U the statement x ∈

ρ denotes that the item x is contained in either the rule’s antecedent or

consequent.

The semantic of a rule X → Y is that of an implication: If a randomly

chosen transaction d ∈ D covers the item set X , then it also covers the

item set Y :

d ⊇ X ⇒ d ⊇ Y

The notion of an association rule and its semantics allows us to introduce

more sophisticated evaluation measures. As a prerequisite for their defi-

nition, we need to define the semantics of an item set’s probability. The

probability P(X ) of an item set X ⊆U is chosen to coincide with X ’s rela-

tive support:

∀X ⊆U : PD(X )
Def
= rel-suppD(X ) =

∣

∣

[

X
]∣

∣

|D |

Note, although being a set, the item set X is not an event in the prob-

abilistic sense! The item set X in P(X ) represents a probabilistic event

rather than being that event itself. To actually arrive at a proper event, we

agree on the following assumptions. To constitute a probability measure,

P needs to be declared on a so-called σ-algebra and its argument has to

be (or—as in our case—has to represent) an event [KOLMOGOROV 1933]. If

we assume the index set of all transactions in database D to be the under-

lying universe of discourse (that is, each transaction d ∈ D is considered an

elementary event), then any item set I ⊆U fixes a subset of transactions

by means of its cover
[

I
]

D ⊆ {1, . . . ,n}. This subset is then a proper event

and hence can be assigned a probability which we do so by assuming a

uniform distribution over all transactions. To avoid unnecessary clutter,

we use for an item set X the term P(X ) and P
([

X
])

interchangeably.
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Given the ten transactions in Figure 2.1, the probability of the item set

{b,d} is then calculated as

P({b,d}) =
|{5,6}|

10
=

1

5
,

which is obviously the relative support of {b,d}.

We can easily embed the above-discussed agreements into the parlance

used in binary classification. When association rules are used for mar-

ket basket analysis, then there is usually no restriction on the items that

antecedent and consequent may contain (apart from both being disjoint

and the consequent being non-empty, of course). However, there are use

cases where analysts are interested in special items in the consequent

that are not allowed in the antecedent. Assume that a car manufacturer

records the configuration of each vehicle that leaves the production plant.

If failures are reported to service garages, a dedicated (class) variable in

the record of that particular car is updated. Quality control personnel

can now try to induce a classification model from that data source. If we

focus on a certain error code (break failures, say) we get a binary class

variable. For any binary classifier applied to tuples (also called cases) of

a database D , there are four subsets of D that are of interest to assess the

quality of that classifier:

• Predicted cases by classifier:

– Case predicted to be positive

(that is, belongs to a certain class)

– Case predicted to be negative

(that is, does not belong to a certain class)

• Actual state of the world:

– Case is actually positive

– Case is actually negative

The cardinalities of the intersections of these subsets are used to evalu-

ate the classifier goodness. Since the actual state of the world is hard to
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impossible to assess, the classifier is usually applied to a database where

the actual class assignments are known as kind of a ground truth. In such

a setting, we can consider an association rule X → Y a special type of

binary classifier: if an (previously unseen) input tuple meets the antece-

dent condition(s), the rule predicts the class encoded by the item in the

consequent.4 The below table summarizes the relations between an asso-

ciation rule and a binary classifier.

Notions in both concepts

Binary classifier Association rule

Tuple is classified positive Tuple matches antecedent

Tuple is actually positive Tuple matches consequent

Given a rule X → Y , the antecedent X and consequent Y divide the data-

base D into four disjoint subsets. Figure 2.2 illustrates this. The ideal case,

of course, would be reached when
[

X
]

=
[

Y
]

, that is, when the prediction

by the rule’s antecedent equals the actual state of the world (or the ground

truth for that matter).

[

X
]

∩
[

X
]

[

X
]

[

Y
]

[

X
]

∩
[

Y
]

[

X
]

∩
[

Y
]

[

X
]

∩
[

Y
]

D

Figure 2.2: The rule X → Y

partitions the database D into

four disjoint subsets that are

represented by the white and

three grayish shapes. The rule

evaluation measures discussed

below all make use of the car-

dinalities of these four subsets.

All four subsets are well-known in the field of binary classification as de-

picted in Table 2.1.

4 That is, we only would allow values of the class variable’s domain to represent the consequent
item.
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Actual world state
True False

True
True Positives (TP) False Positives (FP)

Predicted
∣

∣

[

X
]

∩
[

Y
]∣

∣

∣

∣

∣

[

X
]

∩
[

Y
]

∣

∣

∣

world state
False

False Negatives (FN) True Negatives (TN)
∣

∣

∣

[

X
]

∩
[

Y
]

∣

∣

∣

∣

∣

∣

[

X
]

∩
[

Y
]

∣

∣

∣

Table 2.1: Disjoint subsets in binary classification. The cardinalities are used to

derive association rule evaluation measures.

Let us now discuss certain scenarios of Figure 2.2 where the overlap bet-

ween X and Y differs. Figure 2.3 illustrates four constellations which

carry certain meanings with respect to confidence and recall.

We now define and briefly discuss for a given rule ρ = X → Y some of the

above-mentioned rule evaluation measures.5 Be aware of the short-hand

notation agreed upon above: the term P(X ∪Y ) actually translates into

P
(

[

X ∪Y
]

)

which equals P
(

[

X
]

∩
[

Y
]

)

for disjoint X and Y .

Support

rel-suppD (ρ) = P(X ∪Y ) ∈ [0,1]

abs-suppD (ρ) = |KD (X ∪Y )| ∈ IN

We define two support measures in analogy to the support measures for

item sets. A transaction is counted to support a rule if it covers both ante-

cedent and consequent. There are arguments to just consider the antece-

dent X in the above definitions [WWW: BORGELT 2] but I will stick to the

widely used intuition given above.

5 Again, the index D is dropped if the respective database is unambiguous.
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Low Confidence, low Recall

General case where X covers some rele-
vant cases of Y but also a large quantity
of irrelevant cases.

Maximal Confidence, low Recall

In this case all cases covered by X are rel-
evant (that is, are also covered by Y ) and
therefore the confidence is 1. But the car-
dinality of X is small compared to the car-
dinality of Y . That is, only a small frac-
tion of all relevant cases are covered and
hence the recall is low.

Low Confidence, maximal Recall

Here, all relevant cases are covered by X

and the recall is therefore 1. However,
a lot of irrelevant cases are also covered
leading to a low confidence.

High Confidence, high Recall

This is the kind of rules (at least in terms
of confidence and recall) that the user
shall be interested in: almost all relevant
cases and only few irrelevant cases are
covered by X .

Figure 2.3: Different overlapping scenarios for a rule X → Y .
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Confidence (also: Precision)

confD(ρ) = P(Y | X ) =
P(X ∪Y )

P(X ) = TP
TP+FP ∈ [0,1]

Simply put, the confidence represents the probability of the “applicabil-

ity” of the rule. That is, given we observed the antecedent’s items, it states

the probability of also observing the consequent’s items. Most algorithms

for rule induction take a minimum confidence as a parameter (in addi-

tion to the minimum support) and return only rules that exceed that user-

specified value.

Recall (also: Sensitivity, True Positive Rate (TPR))

recallD (ρ) = P(X | Y ) =
P(X ∪Y )

P(Y ) =
TP

TP+FN ∈ [0,1]

The recall denotes the consequent-specific proportions of cases match-

ing the antecedent. A rule with high recall returns (or recalls) most of the

cases that match the consequent. Since this can trivially be achieved by

returning the entire transaction database, it must not be the only applied

measure. However, it can help to balance between highly accurate rules

(high confidence) and “enough” covered cases to be relevant (high recall).

Specificity (also: True Negative Rate (TNR))

specD (ρ) = P(X | Y ) = confD (Y → X )= TN
TN+FP ∈ [0,1]

Using equivalence transformations from binary logic allows to infer from

a rule X → Y its modus tollens Y → X .6 However since an association rule
6 More specifically, the modus tollens is an inference rule that involves in addition to the rule

Y → X the fact Y to infer the conclusion X . The equivalence to X → Y can easily be verified
as follows:

X → Y ≡ X ∨Y ≡ Y ∨X ≡ Y → X

If X and Y are sets, the same argument holds by exchanging ∨ for ∪ and the negation by the
set complement.
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only predicts correctly a certain fraction of cases (see confidence defini-

tion above), the specificity generally is different from the confidence and

hence comprises an own proper rule evaluation measure.

Lift

liftD(ρ) =
P(X ,Y )

P(X )P(Y ) =
confD(ρ)

P(Y ) > 0

The lift is an unbounded measure that compares the joint distribution of

antecedent and consequent P(X ,Y ) with a hypothetical independent dis-

tribution P(X )P(Y ). Note that the lift is therefore a symmetric measure,

that is liftD(X → Y ) = liftD (Y → X ). When substituting the confidence

definition, the lift can also be interpreted as the ratio of the probability

of the consequent given the antecedent (that is, the confidence) and the

(marginal) probability of just the consequent (that is P(Y )).7 In industrial

cooperations, I found the lift definition using the confidence being more

intuitive, however, some confusion was caused when telling that the lift

is also symmetric. Nevertheless, it is a valuable and accepted measure to

assess rule qualities and plays a major role in this thesis.

Given a sequence of temporally ordered time stamps T = (1, . . . , tmax), we

can split a given transaction database D into a sequence of time frames

T (D) = (D1, . . . ,D tmax). For the sake of brevity we omit the D when we refer

to evaluation measures with respect to a certain time frame D t and just

use the t as index. The time series of the absolute support of a rule ρ is

defined as follows:

τabs-supp(ρ) =
(

abs-supp1(ρ), . . . ,abs-supptmax
(ρ)

)

∈ IR|T |

2.2 Relational Item Sets

Very often, the data under analysis comes from a relational data source

such as a database system and therefore we need to define what transac-

7 Of course, by same reasoning one can use the recall definition to find an alike statement for
the lift.
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G P S C

f y n n

f n y y

m n y n

m n n y

transaction
t1 {G = f ,P = y,S = n,C = n}
t2 {G = f ,P = n,S = y,C = y}
t3 {G = m,P = n,S = y,C = n}
t4 {G = m,P = n,S = n,C = y}

⇒

Table 2.2: The table on the left is transformed into a set of transactions by com-

bining the attribute and the respective value to an item.

tions and items are in that parlance. Let us assume the data under analy-

sis is contained in a single database table (which can be achieved always

by joining together all relevant tables). Then this table’s contents need to

be preprocessed in order to be assessed as a transaction database.8 Each

row of the initial table will, obviously, become a transaction, thus result-

ing in all transactions having the same length (that is, the same number

of items). Since different attributes of the original table my have identi-

cal values, we must ensure that they are mapped to unique items. Let us

consider the relational database table in Table 2.2. The four columns G,

P , S and C mean “Gender”, “Pregnant”, “Smoker” and “Cancer”, respec-

tively. The domains of the last three attributes are the same: {y,n}. If we

just combined the values of each row into a transaction, we would end

up with a collective set of items U = { f ,m, y,n}. Technically, we cannot

represent e. g. the first row of Table 2.2 into a proper item set since it

would have to be { f , y,n,n} which is not representable within the classic

set notion as the item n would only be representable once. Even if this

was possible, rules induced from such a transaction database would not

be interpretable. For example, the rule y → n is ambiguous: Which y and

which n are actually referred to?

8 Note the clash of terminology here: The table of a relational database will be transformed
into our transaction database.
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As a solution, we create a new collective set of items U by prefixing each

attribute value with its attribute (and the symbol “=” to increase readabil-

ity). Now, the set U reads:9

U =

{✞

✝

☎

✆G=f ,
✞

✝

☎

✆G=m ,
✞

✝

☎

✆
P=y ,

✞

✝

☎

✆P=n ,
✞

✝

☎

✆
S=y ,

✞

✝

☎

✆S=n ,
✞

✝

☎

✆
C=y ,

✞

✝

☎

✆C=n
}

Obviously, each row of Table 2.2 can now be expressed as a subset of U as

can be seen on the right of the same table.

2.3 Cooccurrence Graphs

In this thesis we are going to deal exclusively with undirected graphs which

we model as a tuple G = (V ,E) with vertices V and edge set E with

E ⊆V ×V \ {(v, v) | v ∈V },

and the constraint

(u, v) ∈ E ⇒ (v,u) ∈ E

to emphasize the undirected character. We will interpret the graphs as

cooccurrence graphs where the edges determine the number of cooccur-

rences (of whatever kind). This is taken into account with an edge weight

function for every edge e = (u, v):

w : E →N0 with w(e) = w(u, v) = w(v,u).

In the figures, this weight is represented as the edge width, thus we use

the notion width and weight interchangeably. Given a subset W ⊆ V , we

can induce a subgraph GW = (W,EW ) with

E ⊇ EW = {(u, v) | u, v ∈W ∧ (u, v) ∈ E}.

In the remainder we will sometimes use such a subset W in the context of

a graph; it is GW that we then refer to. A threshold θ defines the subgraph

Gθ = (V ,Eθ) with

Eθ = {(u, v) | (u, v) ∈ E ∧w(u, v) ≥ θ},

9 The single items are boxed to stress that the tree characters make up one item. I will omit this
box from now onwards.
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that is, as the graph containing only edges with a weight greater or equal

to θ. Both operations can of course be combined, that is, GW,θ represents

the subgraph of G induced by the node set W after having removed all

edges with weight less than θ.

Since we will deal with sequences of graphs, we denote the temporal in-

dex as a superscript. All graphs share the same node set V and differ only

in their edge sets or edge weights or both. Given a sequence G(1), . . . ,G(n)

of graphs, we define the sum of these graphs as follows: GΣ = (V ,EΣ) with

EΣ =

n
⋃

i=1
E (i ) and wΣ(u, v) =

n
∑

i=1
w (i )(u, v).

We use the following set of (sub)graph measures to quantify different as-

pects:

Size size(GW ) = |W |

Completeness comp(GW ) = 2 |EW |

|W |
2
−|W |

Edge Weight wght(GW ) =
∑

e∈EW

w(e)

The size simply represents the number of nodes of the subgraph, whereas

completeness refers to the relative number of edges compared to the max-

imal number. Zero represents an isolated graph (no edges) while a value

of 1 designates a clique. Finally, the edge weight simply returns the sum

of all edge weights without giving any clue about the distribution of these

weights among the edges. Therefore, three additional measures are used:

avg(GW ) calculates the arithmetic mean of all edge weights, med(GW ) re-

turns the median of the weights and dev(GW ) represents the standard de-

viation of the weights. Fig. 2.4 illustrates these intentions with two graphs

of the same size.

2.4 Elements of Fuzzy Set Theory

The introduction chapter emphasized (among others) one key require-

ment of the system under development, namely its simple and intuitive
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G1

G2

Measure G1 G2

size Size 5.0 5.0
comp Completeness 0.7 1.0
wght Total Weight 5082.0 7906.0
avg Average Weight 726.0 790.6
med Median Weight 257.0 770.0
dev Std. Dev. 1191.1 129.3

Figure 2.4: Two graphs with

the same number of nodes. G1

lacks three edges to be complete,

therefore the completeness is

just 0.7, whereas the clique G2

yields 1.0. The rather large dif-

ference between average weight

and median weight for G1 (in

contrast to G2) indicate an im-

balanced edge widths distribu-

tion which is strengthened by

the large standard deviation

value. The two graphs obvi-

ously justify this finding. Note,

that the layout does not have

any influence on the measures

and only acts as a visual cue.

way of parameterization. The techniques offered by the field of Fuzzy

Theory [ZADEH 1965] have proven over the decades to offer a robust and

powerful tool set for building and applying vague and linguistic models. I

am not going to elaborate a historic view of Fuzzy Theory, nor I am intend-

ing to present an exhaustive overview. I rather select only those artifacts

that are necessary for this thesis. For a more thorough treatment of the

topic, see e. g. [KRUSE et al. 2011], from which the below definitions are

taken, unless otherwise stated.

One objective of this thesis is to allow queries like the following to run

against a given rule base:

Show only rules that exhibit a slowly increasing lift and a fast

increasing support.

The crucial point is to handle vague terms like “slowly” and “fast” in an ap-

propriate manner. In general, we have to determine how good the value

of a certain physical quantity matches a given vague notion: Is a tempera-
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ture of 40 ◦C hot? Or: Can a rule’s confidence decline of -2 pp10 per month

still be considered stable?

A physical quantity (like temperature or confidence change rate above)

is modeled as a so-called linguistic variable. Linguistic terms are used to

describe the (typically real-valued) values of the linguistic variables. For

the above examples, we could have the following setting:

Linguistic variable Linguistic terms

Temperature cold, warm, hot

Confidence change rate decreasing, stable, increasing

In classical set theory, each linguistic term would be represented by a sub-

set of the domain of the linguistic variable. Hence, each value then would

either entirely match the linguistic term or not at all. Since it is not in-

tuitive to select a crisp threshold for deciding whether a certain value of

e. g. the confidence change rate is to be considered increasing, fuzzy sets

are used to model degrees of membership to the linguistic terms. They

can be considered a generalization of classical indicator functions to the

unit interval: Each (classical) subset X ⊂Ω can be defined via a so-called

indicator function 1X on Ω that returns 1 for elements in X and 0 else:

1X : Ω→ {0,1} with 1X (ω)=







1 if ω ∈ X

0 if ω ∉ X

We allow the ω∈Ω to have gradual degrees of membership to X by gener-

alizing {0,1} to [0,1]. The new type of set is referred to as a fuzzy set with its

corresponding indicator function being replaced by a membership func-

tion µX :

µX :Ω→ [0,1]

Definition 1 (Fuzzy Set, Set of Fuzzy Sets)

A fuzzy set µ of a reference set Ω is a function from Ω into the unit interval:

µ : Ω→ [0,1]

10 pp stands for percentage point and represents the arithmetic difference of two percentages.
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The set of all fuzzy sets of Ω is denoted by F (Ω):

F (Ω)=
{

µ |µ : Ω→ [0,1]
}

Obviously, we will use fuzzy sets to model linguistic terms. From now on,

we will use both notions interchangeably. Before we present an example,

we need the following two definitions.

Definition 2 (Support of a Fuzzy Set)

Let µ ∈F (Ω) be a fuzzy set over Ω. The support of µ is defined as the subset

of values ω ∈Ω that have positive membership degree with respect to µ:

[µ]>0 = {ω∈Ω |µ(ω)> 0}

Definition 3 (Fuzzy Partition)

A fuzzy partition Π over a reference set Ω is a finite collection (subset) of

fuzzy sets over Ω whose supports’ union equals Ω:

F (Ω)⊇Π(Ω)= {µ1, . . . ,µpΩ
} with

⋃

µ∈Π(Ω)
[µ]>0 =Ω

We explicitly require the latter union condition to make sure that for ev-

ery value of ω ∈Ω there is at least one fuzzy set which assigns to ω a pos-

itive membership degree. We will use the above-mentioned quotation to

illustrate the fuzzy partitioning of the domain of the linguistic variable

lift change rate which we will denote with ∆lift. Change rates are numeric,

that is in this case we get Ω = IR. Let us further use a partition with five

fuzzy sets, that is the linguistic terms are chosen to be as given the the

following table:
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English meaning Linguistic term Fuzzy set modeling the ling. term

fast decreasing fast decr µ(fast decr)
∆lift

slowly decreasing slow decr µ(slow decr)
∆lift

unchanged unch µ(unch)
∆lift

slowly increasing slow incr µ(slow incr)
∆lift

fast increasing fast incr µ(fast incr)
∆lift

Figure 2.5 shows one possible instance of the fuzzy partition Π∆lift. Given

these prerequisites together with a current value of the lift change rate∆lift

of x, we can easily compute its membership degree to the linguistic term

fast incr as

µ(fast incr)
∆lift

(x).

That is, a lift change rate of 1.8 would be considered 80 % fast increasing

and only 20 % slowly increasing. From a formal viewpoint, we would need

a function that maps the linguistic terms of a certain fuzzy partition (like

fast incr from the partition of ∆lift) to the actual fuzzy sets (like µ(fast incr)
∆lift

)

that represent it. I refrain from this mapping as it only would increase the

technical complexity without adding to the understanding. Each fuzzy

set will have a subscript and a superscript: the first denotes the respective

measure whose domain is constrained whereas the latter denotes the lin-

guistic term that the fuzzy set is describing. Therefore, we agree upon the

following informal mapping:

If term is a linguistic term of the fuzzy partition associated with

the domain of a function (measure) m, then the fuzzy setµ(term)
m

represents that linguistic term. If we refer to the change rate∆m

of m, the fuzzy set µ(term)
∆m

shall represent this term.
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−2 −1 0 1 2

1

IR

µ(fast decr)
∆lift

µ(slow decr)
∆lift

µ(unch)
∆lift

µ(slow incr)
∆lift

µ(fast incr)
∆lift

Figure 2.5: Exemplary instance of a fuzzy partition Π∆lift containing fuzzy sets

modeling the linguistic terms of the linguistic variable lift change rate.

Since we consider fuzzy sets a generalization of classical (crisp) sets, we

can also transfer set operations like union, intersection and complement

to the fuzzy framework.

Definition 4 (Fuzzy Union, Fuzzy Intersection, Fuzzy Complement)

Let µA and µB be two fuzzy sets on the same reference set Ω. The fuzzy

union, fuzzy intersection and fuzzy complement are defined as follows:

Fuzzy Union µA∪B (ω)=max
(

µA(ω),µB (ω)
)

Fuzzy Intersection µA∩B (ω)=min
(

µA(ω),µB (ω)
)

Fuzzy Complement µA(ω) = 1−µA(ω)

The above definitions directly carry over to classical sets. For example,

the indicator function of the union of two classical sets A,B ⊆ Ω can be

written as

1A∪B (ω)= max
(

1A(ω),1B (ω)
)

.

The reason why I cover these operations is clearly its disjunctive, conjunc-

tive and negating semantics. Since the generalized set notion allows for

a broader range of modeling freedom, the question arises whether the

three above-mentioned operations could also be generalized. That is:

what are the classes of “and-like”, “or-like” and “not-like” operations (of

which the operations in Definition 4 are instances). The idea is to find

properties that characterize conjunctive, disjunctive and negating func-

tions. The class of so-called triangular norms (short: t-norms) has been
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identified to represent the set of functions qualifying as fuzzy conjunc-

tions. Likewise, triangular conorms (short: t-conorm) characterize the

class of fuzzy disjunctions.

Definition 5 (Triangular Norm, t-Norm)

A binary function ⊤ : [0,1]2 → [0,1] is called a triangular norm, or t-norm

for short, if and only if the following properties hold:

(T1) Commutativity ⊤(x, y) =⊤(y, x)

(T2) Associativity ⊤(x,⊤(y, z)) =⊤(⊤(x, y), z)

(T3) Monotonicity y ≤ z ⇒ ⊤(x, y) ≤⊤(x, z)

(T4) Boundary Condition ⊤(x,1) = x

A t-norm can be considered a conjunction that is generalized from binary

definition space {0,1} × {0,1} to the continuous definition space [0,1] ×

[0,1] where the “corners” (that is, (0,0), (0,1), (1,0) and (1,1)) yield the

same results as the binary conjunction. Since Definition 5 is not unique,

we can define a variety of different t-norms exhibiting different semantics.

The function graphs are depicted in Figure 2.7.

Minimum t-Norm ⊤min = min(x, y)

Algebraic Product ⊤prod = x · y

Łukasiewicz t-Norm ⊤Łuka = max(x + y −1,0)

Drastic Product ⊤−1 =







0 x, y 6= 1

min(x, y) else

The spectrum of t-norms is limited by ⊤drastic as the smallest t-norm and

⊤min being the largest t-norm. The above-mentioned t-conorms are de-

fined in a similar way:

Definition 6 (Triangular Conorm, t-Conorm)

A binary function ⊥ : [0,1]2 → [0,1] is called a triangular conorm, or t-

conorm for short, if and only if the following properties hold:
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(C1) Commutativity ⊥(x, y) =⊥(y, x)

(C2) Associativity ⊥(x,⊥(y, z)) =⊥(⊥(x, y), z)

(C3) Monotonicity y ≤ z ⇒ ⊥(x, y) ≤⊥(x, z)

(C4) Boundary Condition ⊥(x,0) = x

Obviously, (T1)–(T3) directly match (C1)–(C3), whereas (T4) and (C4) dif-

fer in the identity element of the boundary condition. Again, some of the

most prominent t-conorms are given below. Their function graphs are

shown in Figure 2.8.

Maximum t-Conorm ⊥max = max(x, y)

Algebraic Sum ⊥sum = x + y −x y

Łukasiewicz t-Conorm ⊥Łuka = min(x + y,1)

Drastic Sum ⊥−1 =







1 x, y 6= 0

max(x, y) else

A last important operation that needs to be carried over to the fuzzy frame-

work is the negation. Again, we claim that a fuzzy negation (or: fuzzy com-

plement) shall coincide with the binary negation on the boundary, that is

the complement of 0 shall be 1 and vice versa. In between we require

a non-increasing behavior: If the argument decreases, the complement

must not increase. We use the following definition:

Definition 7 (Fuzzy Negation)

A function ∼: [0,1] → [0,1] satisfying the conditions

∼ 0 = 1, ∼ 1 = 0

and

x, y ∈ [0,1] : x ≤ y →∼ x ≥∼ y (that is, ∼ is non-increasing)

is called a negation or complement.

Again, there is a variety of different negations. Four examples are given

below. Their function graphs are shown in Figure 2.6.
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Standard Cosine Sugeno Yager

Figure 2.6: Examples of fuzzy negations.

Figure 2.7: Illustration of four prominent t-norms.

Standard Negation ∼ x = 1−x

Cosine Negation ∼ x = 1
2

(

1+cos(πx)
)

Sugeno Negation ∼λ x = 1−x
1+λx , λ>−1

Yager Negation ∼λ x = (1−xλ)
1
λ

More information on the topics discussed above can be found in [KRUSE

et al. 2011]. If not stated otherwise, I will use the algebraic product, alge-

braic sum and standard negation as default t-norm, t-conorm and fuzzy

negation, respectively. Using the definitions above allows us to compose

Figure 2.8: Illustration of four prominent t-conorms.
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complex propositions and also to compute the membership degrees of

them. We will refer to these propositions as linguistic or fuzzy concepts.

The linguistic statement from the first paragraph of this section is now

representable with the following fuzzy concept ξ:

ξ=
〈

∆lift is slow incr and ∆supp is fast incr
〉 ✞

✝

☎

✆2.1

Generally speaking, we define a fuzzy (or linguistic) concept with the fol-

lowing recursive definition:

Definition 8 (Fuzzy Concept, Linguistic Concept)

Let m : Ω→ IR be a function whose domain is equipped with a fuzzy parti-

tion Πm . Then for all µ ∈Πm the proposition

〈

m is µ
〉

is called a fuzzy concept or linguistic concept. Further, for any fuzzy con-

cepts ξ and ζ the following propositions are fuzzy concepts, too:

〈

ξ and ζ
〉

,
〈

ξ or ζ
〉

and
〈

not ξ
〉

It is obvious that we are going to model the junctors and , or and not

with t-norms, t-conorms and fuzzy negations, respectively. Literal con-

cepts, that is concepts of the form
〈

m is µ
〉

are then assigned a member-

ship degree via the above-agreed implicit term-fuzzy set mapping.

Let us assume the current state of the model shows a lift change rate of x

and a support change rate of y , we can compute the membership of that

state with respect to the fuzzy concept ξ (equation 2.1) as:

ξ(x, y) =⊤prod

(

µ(slow incr)
∆lift

(x),µ(fast incr)
∆supp

(y)
)

2.5 Elements of Evolutionary Algorithms

Evolutionary algorithms are a class of heuristic algorithms that can be

applied to find (or approximate) solutions of optimization problems for
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which there are no efficient deterministic solvers. The principles underly-

ing evolutionary algorithms are borrowed from the evolution theory [DAR-

WIN 1859]. The basic idea is to encode solution candidates (so-called in-

dividuals) in a special—often string-based—representation (the chromo-

some) and randomly initialize a large amount of such individuals, form-

ing a population. Different locations (character positions) of a chromo-

some correspond to different properties of the respective solution candi-

date and thus can be seen as the genes of the corresponding individuals.

The actual values at these locations then define the specific characteristic

of a solution and are the silicon equivalent of alleles. A fitness function as-

signs to each individual a value quantifying the goodness of the encoded

solution. An evolutionary algorithm iterates through multiple epochs in

each of which the following procedures are applied [GOLDBERG 1989]:

1. Mutation and Crossover

Both operations are nature-inspired means to modify and create

new individuals. Mutation randomly alters the alleles of genes of

single individuals whereas during crossover gene segments of two

individuals are exchanged thus mimicking sexual reproduction. The

probability with which both operations occur and the number and

regime in which segments of chromosomes are crossed over are pa-

rameters of the evolutionary algorithm.

2. Selection

At the end of each epoch a new population is created out of the cur-

rent one. There are, again, several strategies that can be applied

here, all of which adhere to the “survival of the fittest”-principle:

only the best individuals (according to the fitness function) are trans-

ferred to the new population. To ensure a constant population size,

new individuals are added based on different strategies. These strate-

gies also represent parameters of the evolutionary algorithm.

First experiments with evolutionary algorithms go back to John Holland

[HOLLAND 1975] in the seventies. The general idea of evolutionary al-

gorithms is to globally explore the solution space in the beginning and



36 CHAPTER 2. BACKGROUND

A B

Figure 2.9: The borders of the two time frame intervals A and B are set such

that the membership to the concept peak is maximal.

then enforce local optimization to find best individuals (encoding near-

optimal solutions). The global exploration is achieved by first randomly

initializing the first population and second in starting with relatively high

mutation and crossover rates. The reduction of those rates in later epochs

together with the selection process ensure that individuals with good fit-

ness accumulate. Further reading is directed to [KRUSE et al. 2011].

I am using the above-mentioned evolutionary principle to find good com-

positions of (time frame) intervals that satisfy certain local constraints to-

gether with high membership degrees of linguistic concepts. This will al-

low to detect temporal composite patterns: A peak, for example, consists

of a period of steep incline (of some measure), immediately followed by a

steep decline (of the same measure). A plateau, however, allows for a vari-

able space in between the two flanks. Figure 2.9 and Figure 2.10 show

two examples. The peak in Figure 2.9 is clearly pronounced, whereas

the shape of the time series in Figure 2.10 may be subject to discussion

whether it can be characterized as a plateau or not. But this is exactly the

key feature of the fuzzy matching approach of this thesis: allow the user

to model generic concepts (such as “fast increasing”, “peak” or “plateau”)

and then gradually fine-tune these concepts according to the data under

analysis and the user’s reasoning.
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A B C

Figure 2.10: The time frame intervals A and C mark the flanks of the concept

plateau with B representing the middle part. In a “clean” instance of a plateau,

B would be less wiggly and more straight. Obviously, this pattern would not get

an utmost high membership degree to the concept, however, it might be pro-

nounced enough to be worth looking at and therefore a means is needed (and

provided in this thesis) to return such patterns.





3
Visualization

This chapter is dedicated to a thorough treatment of how to intuitively

represent patterns and their changes. After sketching the underlying data

structures in Section 3.1, I will discuss the evolution of the glyphs (the

visual entities used to represent the individual patterns) in Section 3.2 be-

fore assembling the ideas into a full model visualization in Section 3.3.

Section 3.4 covers the way the temporal component is addressed. I con-

clude the chapter by comparing my suggestions to other existing tech-

niques in Section 3.5.

3.1 Data Structures

The decision towards association rules as the model type under investi-

gation1 will pose the challenge of not only representing a large set of ar-

tifacts (that is, rules), each having a set of metric properties, but also to

deal with the changes thereof. Figure 3.1 shows the entity relations that

are involved between the model, the contained artifacts and their prop-

erties. Since most properties have a (time) series of values, there is also a

1-to-n relationship between properties and their values.

Let us illustrate this with a little example rule set R containing the follow-

ing rules:

ρ1 = a,b → c , ρ2 = b → d and ρ3 = b,c → e.

1 See Section 1.3 on page 7.

39
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Model Artifact Property Value

Figure 3.1: Entity relationships amongst the model artifacts.

R

ρ1

ρ2

ρ3

Figure 3.2: Exemplary entity relationships amongst the model artifacts.

Figure 3.2 illustrates the involved data: The only model instance is obvi-

ously R. The three rules are depicted as dark gray shapes. Each rule has as-

signed a map of properties. I use the term map here since it matches the

implementation. The keys represent the property names. The values can

be single-valued or list-valued. Single-valued properties comprise the an-

tecedent and consequent, list-values properties obviously represent the

time series of the individual rules evaluation measure values such as sup-

port, confidence, etc.

I will propose a representation for a single artifact (a so-called glyph) of

a single point in time in the next section. The whole model is then repre-

sented naturally as the collection of those glyphs rendered into the same

area. The temporal treatment is discussed in Section 3.4.
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Figure 3.3: Left: good data-to-ink ratio, right: bad data-to-ink ratio.

3.2 Glyph Construction

As illustrated in Figure 3.2, each rule is assigned a collection of property-

values pairs with most values being time series. I will consider here the

visual representation of a single point in time. The data assigned to a

single point in time of a single rule basically contains the rule itself (an-

tecedent and consequent items) and a collection of evaluation measures

values. One guideline I followed for the glyph creation was the claim for

a good data-to-ink ratio as it was suggested by Edward Tufte in [TUFTE

2001]. The idea is to use as little ink (or pixels in terms of screen real es-

tate) to encode all relevant information. Visual clutter shall be avoided

if it carries no additional value (other than being questionably aesthetic).

Figure 3.3 shows an example of bad and good data-to-ink ratio for a bar

chart. It is even possible to encode additional information by reducing

the actual pixel count (or leaving it at least constant) as shown in Fig-

ure 3.4. Even though I did not drive these ideas to the extreme, emphasis

was put on having as little arbitrariness in the graphical representations

as possible.

3.2.1 Encoding Antecedent and Consequent

The overall glyph shape shall be circular. The main reason for that deci-

sion was to make it rotation-invariant and thus avoid a potential source of
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Figure 3.4: While keeping data-to-ink ratio constant or even reducing it, one

can still include information into the chart. The right chart encodes the arith-

metic mean by the little gap on the axes while the standard deviation is rep-

resented by offsetting the respective segment of the axes. Examples adopted

from [TUFTE 2001].

Figure 3.5: Draft of the graphical representa-

tion of a single rule glyph. The outer rim seg-

ments encode the antecedent of the rule. The

inner part will be used for the consequent (if it

consists only of a single item).

arbitrariness. A sketch of a rule glyph is depicted in Figure 3.5. The outer

ring is reserved for encoding the rule’s antecedent as follows: The outer

ring is divided into as many equiangular segments as there are different

items in the database. Each item gets assigned a unique segment (e. g.

by sorting them lexicographically and assigning them counter-clockwise

starting at the rightmost location). If an item is contained in the rule’s

antecedent, its respective segment is filled. Let’s assume our item set con-

tains twelve items (a to l ), then the left glyph of Figure 3.6 shows the item-

to-segment assignment. The middle glyph would then encode the ante-

cedent {a,b,h}. The representation of the consequent could be naturally

implemented by an inner ring using the same rationale as for the antece-

dent. The right glyph in Figure 3.6 would hence represent the rule

a,b,h → f , l .
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Figure 3.6: Left: Item-to-segment assignment. Middle: Encoding the antecedent

{a,b,h}. Right: Possible representation of consequent and encoding the rule

a,b,h → f , l .

There are reasons why I do not use this latter approach to encode the

consequent. First, when the total item set is rather large, it will be hard to

distinguish the outer (antecedent) ring from the inner (consequent) ring.

This becomes especially problematic as I will scale the glyphs according

to certain rule evaluation measures in the next section. Second, in most

real-world applications that I applied the visualization, the induced as-

sociation rules had exactly one item in the consequent.2 Therefore, I as-

sign to each item a color and use the consequent item’s respective color

to fill the interior of the rule glyph. The same principle is applied to the

outer ring for antecedent encoding when the origin of the rules is of the

kind as discussed in Section 2.2. Each element of an attribute’s domain

dom(Ai ) gets assigned a unique color (where colors may be reused across

domains, that is, the color blue can encode a value of different attributes).

Figure 3.7 shows an example of a glyph for such a rule. Let C be the at-

tribute whose domain is the set of possible consequent items. The do-

mains of attributes A, B and D represent the items that may occur in the

antecedent. After assigning each value a unique color, the glyph of the

rule

a1,b2,d3 → c2

is shown in Figure 3.7.

2 See Section 2.2 on page 22 for details.
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Figure 3.7: Final version of rule glyph.

3.2.2 Encoding Rule Evaluation Measures

After having a glyph that encodes a rule’s antecedent and consequent,

we need means for representing the quantitative details of a rule, that is,

the values of its evaluation measures (of a single point in time—I will ad-

dress the visualization of the temporal change of them later). I suggest to

use the following glyph properties to encode the values of rule evaluation

measures:

• x-location of glyph

• y-location of glyph

• size (area) of glyph

• style of the glyph center:

– angle of pie chart in the glyph center

– saturation of solid fill

The first three items should be clear from the discussions so far (and will

be revisited in Section 3.3). The last item can be implemented in two

different ways (depending on the user’s intuition): In both cases the glyph

center is used to encode a rule measure whose value is bounded (e. g. lies

in the unit interval). One option is to let a pie chart occupy the center.

The higher the rule measure value, the larger the pie segment. The top
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Figure 3.8: Two options for the glyph centers: pie chart and saturated color.

row of Figure 3.8 shows a series of glyphs with the pie chart encoding the

values 1/4, 1/3 and 2/3. Another option is to keep the fully filled inner circle

and adjust the saturation of its color (which still denotes the consequent,

remember). The bottom row of Figure 3.8 illustrates this.3

3.2.3 Encoding Overlapping Rules

Up to now, we assumed the rules to cover mutual disjoint sets of database

objects, that is, every entry of the database was described by exactly one

rule antecedent. This can be easily achieved by requesting a fixed set of

attributes for every rule. If the user, however, is interested in general rules

where database entries may be covered by multiple rules (e. g. because

one rule is a specialization of another), we have to cater for this fact by

depicting the mutual overlap.

Consider a population for which we assess the probability of having lung

cancer. Let the cancer probability for a male person be 15%, that is, the

rule

Gender= male → Cancer = y

3 I used gray shades here to make the effect apparent also in a monochrome print of this thesis.
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male female
smoker no smoker smoker no smoker

cancer 60 15 75 10
no cancer 140 285 225 190

Table 3.1: Example database from which two rules (“male→ cancer” and

“male∧ smoker → cancer”) were assessed and depicted in Figure 3.9.

Figure 3.9: Visualizing the overlap of two rules. Since “male∧smoker→ cancer”

is a specialization of “male → cancer”, the set of database cases covered by the

first rule are fully contained in the set of covered cases by the second rule, hence

the 100%-indication to the right. The common set of database cases comprises

40% of the cases covered by the more general rule, hence the smaller indicator to

the left.

has a confidence of 0.15. Let this confidence increase to 30% when the ad-

ditional information that the person is a smoker is known. The respective

rule is

Gender =male∧Smoker = y→ Cancer= y.

Clearly, all persons covered by the antecedent of the second rule are also

covered by the antecedent of the first rule, hence they cover non-disjoint

sets of cases. To depict this, we connect both rule glyphs by a line in

a chart whenever their antecedents covers are not disjoint. Further, we

compare the cardinality of the covers intersection to the support of both

rules. The two ratios between intersection cardinality and the two rule

supports are indicated as a bar chart on that connecting line. The 100%-

mark is located in the middle, whereas the 0%-mark is on the rules’ outer

border. Figure 3.9 depicts the example situation of lung cancer above.

The used numbers of cases are given in Table 3.1 for the sake of complete-

ness.
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3.3 Model Visualization

After having introduced the glyph for a single rule and the mutual over-

lap of two rules, it has to be decided how an entire rule model, that is a

set of association rules, shall be represented. The main problem is to de-

termine the location of each glyph. There are in principle two competing

approaches: Use the values of two rule evaluation measures directly as

the x- and y-location or use some dimension reduction technique to map

a high-dimensional vector of rule evaluation measure values down into

the plane. The latter approach is appealing as it would allow to use more

than just two rule measure values for locating the glyphs. However, the

resulting x- and y-coordinates would have no direct semantic; only the

glyphs’ proximity would carry any information. However, my objective

was to encode as many quantitative information directly so that I am opt-

ing for the first method: using two rule evaluation measures to directly

determine the location of the glyph.

With these ingredients at hand, I recommend the following mapping for

assigning rule evaluation measures to the respective glyph properties:

Glyph property Rule evaluation measure

x-location Recall

y-location Lift

size (area) Support

glyph center Confidence

This mapping has been empirically found to be most intuitive to users.

Rules that cover more database cases are easier to spot due to their larger

size. The confidence as the “correctness ratio” of the rule—either repre-

sented as a pie chart segment or the (de)saturation of the center—is di-

rectly perceivable as a more or less faint appearance. Rules with high lift

will be located above rules having a low lift and finally, rules with a high

recall stretch farther out to the right than rules with small recall.
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Figure 3.10: A rule at three different times. Initially, the rule did not cover any

database case, that is its initial icon is just a point at the origin. As time passes,

the support increased (growing size of the glyph), the recall and lift did alike

(glyph is moving to the upper right-hand corner). The user would be presented

an animation with a smooth transition between the three states.

3.4 Representation of Time

To present the temporal evolution of a rule set (with respect to the evalu-

ation of selected measures), an animation is generated that displays the

current state of the rule set at any given time (frame). Figure 3.10 depicts

this idea with the same rule at three different times. If the consequent

of the depicted rule is a failure class, this rule would be a candidate for

a pattern that needs further investigation: the number of affected data-

base cases (support) increased over time. The same can be stated for the

lift and confidence. The latter means that the problem became more and

more severe since its probability increased.

However, the more data there is under analysis, the more patterns and

thus, rules, can be found. It is not unusual to have several hundreds in-

duced from a database. Clearly, this would clutter the visualization be-

yond recognition. I therefore propose a method of thinning out the num-

ber of rules to be actually displayed in Chapter 4. Figure 3.11 is taken

from a real-world application (and is discussed later in Chapter 6) and il-

lustrates the clutter that occurs when too many rule glyphs are displayed.
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Figure 3.11: Full rule set with 1585 rules from a real-world application (re-

peated and discussed in Section 6.4). It motivates the need for a filtering

method in order to thin out the rule set.
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Figure 3.12: The rule glyph could be loaded with even more information en-

coded into further features such as unequal segment angles, different inner-

to-outer ratios or a combination of both. I refrained from such attempts as it

would unnecessarily clutter the image and not aid the visual perception.

3.5 Related Work

When it comes to multi-dimensional data visualization, several different

well-known approaches come to mind. One of the most prominent be-

ing the Chernoff faces [CHERNOFF 1973] where numbers are mapped to

certain face features (like eye size, face shape, nose angle and size, mouth

position, etc.). Figure 3.13 illustrates an example data set where also the

face location carries information (as it is the case for the rule glyphs in-

troduced above). In some way my proposed glyphs share certain proper-

ties in common: Furthermost the fact that the glyph itself carries a multi-

dimensional set of features (metric as for the evaluation measures and

nominal as for the antecedent and consequent encoding). However, I

tried to find a balance between the density of information pushed into

the glyphs and the ease of readability. Therefore, I did not use different

glyph shapes or other potential means of cramming additional informa-

tion into the glyphs as Figure 3.12 might suggest.

WONG et al.4 propose a three-dimensional association rule visualization

that encodes evaluation measures (support) as well as the items of the

rule itself. As visually appealing this approach may be, the data-to-ink

ratio is weak and furthermost this approach does not comply well with

representing temporal change of the rules’ attributes.

4 See Section A.1.1 on page 141 for more details.
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Figure 3.13: Example data set illustrated using Chernoff faces [OGASAWARA].

YANG5 utilizes parallel coordinates [INSELBERG 1985] to represent the rule

antecedent and consequent. The main reason against a visualization with

parallel coordinates is the difficulty to implement an intuitive temporal

change metaphor. Another reason is the inherent arbitrariness that is

connected to parallel coordinate plots. The order of the axes, for example,

totally governs the visual appearance of the plot. In the above-mentioned

reference, the axes contain items for which there is generally no natural

order. However, the order of them dominates the actual appearance: Dif-

ferent orders may lead to completely different (but semantically equiva-

lent) plots.

HOFMANN et al.6 use mosaic plots to encode rule evaluation measures.

They restrict the rules to those having a common (single-item) conse-

quent; a choice I also use later in the evaluation chapter to restrict the rule

set. In addition, an exhaustive set of antecedents is represented which

clearly is only useful for a small set of rules (for example, after having ap-

5 See Section A.1.2 on page 143 for more details.
6 See Section A.1.3 on page 144 for more details.



52 CHAPTER 3. VISUALIZATION

plied some kind of filtering technique as described in the next chapter).

Indeed, I used similar visualizations in [STEINBRECHER 2006] and [STO-

BER et al. 2009] to present rule evaluation measures of small rule sets.

BRUZZESE and DAVINO7 construct a binary item-to-rule membership ma-

trix augmented with support and confidence values which is then “flat-

tened” by some dimension reduction algorithm. The result of this map-

ping is a two-dimensional map where proximity can be seen as a mea-

sure of item-to-rule containment and also to assess similarities among

the rules themselves. The animation of the contents of such a map (rep-

resenting temporal similarity change) is quite appealing. Of course it re-

quires a dimension reduction technique that delivers similar results when

the input similarity matrix changes slightly (if the generated map would

look completely different given a slightly changed input, the technique

would be inapplicable for animating changes).

BLANCHARD et al.8 devised a three-dimensional glyph encoding several

rule evaluation measures. Even though I opted against three-dimensional

visualizations here, the underlying ideas for designing the glyphs were

similar: simple geometric shapes, easily perceivable quantities (size, open-

ing angles, etc.) and balance between information content and compara-

bility. If there should ever be a need to translate my suggested visualiza-

tions into the third dimension, the glyphs by BLANCHARD et al. should be

considered a starting point.

3.6 Summary and Discussion

In this chapter I introduced a visualization method for association rules

by suggesting a glyph that is capable of encoding a rule’s antecedent and

consequent together with the values of four rule evaluation measures.

The temporal change of these measures is visualized by an animation that

linearly interpolates between two consecutive time frames. Depending

on the choices of the rule evaluation measures the proposed visualiza-

7 See Section A.1.4 on page 145 for more details.
8 See Section A.1.5 on page 147 for more details.
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tion technique is capable of delivering a four-dimensional representation

in two-dimensional space when a still image of one time frame is consid-

ered. When including the time, five dimensions can be displayed in a two-

dimensional animation. The glyphs also encode the antecedent and con-

sequent of the rule which, in theory, adds to the dimensionality but I do

not count them as additional dimensions. They rather add a multinomial

component to the glyph. Choosing the rule evaluation measures wisely al-

lows to provide quite catchy rules of thumb to users that do not necessar-

ily have a statistical background. Using the rule assignment suggestions

given above, a user can identify potential interesting rules by looking for

“large glyphs in the upper right-hand corner of the chart” [STEINBRECHER

2006, STEINBRECHER and KRUSE 2007a, 2008b, KRUSE and STEINBRECHER

2010].

Whenever glyphs are designed the question is how much bias is intro-

duced that may mislead the user [WARD 2002, CHEN et al. 2008]. Ward dis-

tinguishes different types of biases with perception-based bias being the

one that matters most for the presented glyph design. Perception-based

bias addresses the fact that certain graphical features (such as lengths of

bars starting at the same base) are easier to distinguish than for exam-

ple angles (of pie charts). Figure 3.14 illustrates this phenomenon. The

problem with pie charts mainly exists when used with multiple segments.

In the rule glyphs I suggested there will only be two segments at most,

thus reducing the perception bias. Since the general glyph shape is cir-

cular, pie charts fit better and use the space more efficiently. Speaking of

circular shapes always triggers the psychological objection that areas are

harder to compare than, say, lengths [SPENCE and LEWANDOWSKY 1991].

While it is indeed hard to assess the factor by which a given circle is larger

(area-wise) than a reference circle, it is quite easy to determine the rela-

tive sizes, that is, which circle is larger than the other. This already gives

valuable insight which rule might be more or less important. However,

there is room for improvement when the user shall be required to assess

absolute glyph properties.
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Figure 3.14: Example glyphs with different perception bias: Attributes within

and between glyphs are easier to compare with so-called profile glyphs (top

row) [WARD 2002].



4
Linguistic Filtering

This chapter introduces a framework that is used to assess the temporal

characteristics of time series induced by the evaluation measures of asso-

ciation rules. Section 4.1 describes the features that the framework will

possess before Section 4.2 introduces the principal ideas after which they

are translated into specific algorithms in Section 4.3 and Section 4.4. Sec-

tion 4.5 transfers the ideas to other models than association rules after

which the chapter finishes with related works in Section 4.6 and a sum-

mary in Section 4.7.

4.1 Requirements

The last chapter has shown that any glyph-based model visualization will

eventually suffer from a cluttered view, especially when showing an an-

imation of the temporal change of the respective glyph features. One

could use this argument to rule out any glyph approach, however, I found

this method appealing as it, on the one hand, allows to encode a mul-

titude of features in a non-reductive1 way and, on the other hand, was

found intuitive by users (see Section 6.4.6 for details). The objective in

this chapter is to develop a framework that allows to filter sets of associa-

tion rules (and other models as we will see later) based on the temporal

evolution of their respective properties (that is, rule evaluation measure

1 By “non-reductive” I refer to methods that do not employ any means of dimension reduc-
tion such as multi-dimensional scaling (MDS) or principal component analysis (PCA) which
would render the new axes rather meaningless compared to true evaluation measure values.

55
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values). I will discuss three aspects in greater detail, which all are a re-

quirement to a successful application of the filtering approach.

Intuitiveness

Whatever method will be used to filter sets of model artifacts (here: sets

of association rules), it will much likely offer parameters that affect the

results. These parameters shall be intuitive and have a specific mean-

ing that can easily be understood and judged by users that not necessar-

ily have a statistics or data mining background. Further, suggestions for

these parameters should be offered as default settings extracted from the

model under analysis.

This requirement is particularly important as association rules are rather

user-friendly in terms of parameterization (see Section 1.3). Putting on

top of this an over-engineered approach with artificial parameters would

entirely shrink the acceptance and usefulness of the framework.

Instant Feedback

Even with the above-mentioned intuitive parameters, deep insight into

the model structure may only be gained when there is an immediate feed-

back on any parameter change. This will allow ad-hoc changes to acquire

a natural feeling on how the parameters affect the resulting model subset.

Further, it can be foreseen that the learnt parameter-response interaction

of one model allows for a quicker assessment of future models as the user

may anticipate the impact of his changes more easily.

Visual Interaction

The last ingredient to user acceptance next to intuitive parameters and

the instant response to changes is an intuitive interface to actually carry

out these changes and assess the results. A simple user interaction (in

terms of exploration of results and parameter setting) is therefore of para-

mount importance.
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4.2 Filtering Approach

Filtering the rule set for predefined temporal patterns first and foremost

calls for a language or framework in which to define the desired behav-

ior. I decided to use an approach based on fuzzy concepts2 to describe

the temporal properties of the evolution of rule measures. The goal is to

enable the user to specify linguistically what kind of change of the rule

evaluation measures he is interested in. For example, the user may be in-

terested in rules that exhibit a fast increase of the lift as well as a moderate

increase of confidence.

When using the fuzzy approach described below, the user can specify in-

dividually what “moderate” or “fast” means by defining a fuzzy partition

over the change rate domains of the rule evaluation measures of interest.

Since we will be able to compute for every rule of the rule set a member-

ship degree to which extent the respective rule evolution belongs to the

user-specified concept, we can use a threshold to limit the set of resulting

rules that are shown to the user or order all rules by descending member-

ship degree.

The basic idea is to allow the user to define a fuzzy concept that con-

tains linguistic variable assignments over the change rate domains of rule

evaluation measures. Multiple such assignments are combined with well-

known fuzzy connectives (t-norms or t-conorms). That is, the member-

ship degree of any rule X → Y to the example fuzzy description stated

above in the text:

〈

∆lift is fast and ∆conf is moderate
〉

will be evaluated as

⊤

(

µ(fast)
∆lift

(X → Y ),µ(moderate)
∆conf

(X → Y )
)

2 See Section 8 on page 34 for details.
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(a)

(b)

(c)

(d)

Figure 4.1: Time series of the lift of a single rule (by week over one year).

(a) shows the global linear trend, (b) and (c) illustrate local linear trends. (d) de-

notes sliding time frames for local trend estimation.

where ⊤ is a t-norm that represents a fuzzy conjunction. Since we intend

to assign a membership degree of the change of any rule evaluation mea-

sure (represented by the ∆ in the linguistic variable name), we need to

quantify this change rate from the data set.

4.2.1 Local and Global Changes

However, things are not as easy as just sketched. We have to make clear

which time scale we refer to when we mean “fast increasing lift”. Figure 4.1

shows the time series of the lift of a single rule over a period of one year

on a weekly granularity. There is obviously a global trend denoted with (a).

To what degree this increase qualifies as “fast increasing” depends on the

underlying fuzzy partition. If we focus on the calendar weeks (CW) 22–27,

we can see a much steeper slope belonging to a lift increase from about

0.75 to 2.25 (b). Thirdly, towards the end of the series, (c) marks a period

with a lift decline from about 2.6 down to 2.25. The filtering approach

must be able to detect especially these local subtrends in order to be of

any value for a real-world application.
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(a)

(b)

(c)

Figure 4.2: Time series from Figure 4.1 with superimposed (shifted) fuzzy parti-

tion from Figure 4.3.

µ
(early)
time

µ(middle)
time

µ(late)
time

Figure 4.3: The unshifted fuzzy partition of Figure 4.2.

Up to now, the actual location of the recognized pattern did not matter.

However, we might be interested in patterns arising only in certain parts

of the time series. Hence, another notion of locality should be also appli-

cable directly within the fuzzy concept: For example by querying for rules

having “fast decreasing lift early in the year”.

Here, a fuzzy partition on the time axis itself is used to represent linguistic

terms such as “in summer”, “early the year” or “last quarter”. Figure 4.2

shows such a partition overlaid on top of the lift time series from Fig-

ure 4.1. Since the data the rule was extracted from started in CW 9/2009,

the fuzzy partition is shifted to the left. Figure 4.3 show the unshifted

version for better reference. The fuzzy triangular fuzzy sets at both ends

represent the linguistic concepts “early in the year” and “end of the year”.
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The center fuzzy set is chosen to have a constant membership degree sum

of one3 and could be assigned the term “middle of the year”. The addi-

tional term that constraints the temporal location is taken as a normal

fuzzy concept and is connected to the remaining concept via the product

t-norm ⊤prod. Put together, the linguistic concept

“lift is fast decreasing early in the year”

will be evaluated as

ξ=
〈

(

∆lift is fast decr
)

and time is early
〉

,

which is evaluated as

ξ(l , t) =⊤prod

(

µ(fast decr)
∆lift

(l ),µ(early)
time

(t)
)

with l being the (local) lift change value and t being the point in time of

that (local) lift change.4

Semantic Discussion

The question may arise why I opt for the product t-norm to combine the

linguistic concept with the temporal constraint. The idea of constrain-

ing parts of the input stems from band-pass filters [SHENOI 2005] which

are electrical devices that block certain portions of a frequency spectrum

and let pass other regions. The transfer function of such a filter basically

weighs an input signal. Applied to our scenario, for example, the fuzzy

sets µ
(early)
time

could be considered a low-pass filter for the membership de-

grees of concepts evaluated at the respective location of the filter. Apply-

ing the transfer function to the signal is represented by a multiplication

and I therefore opt for the product t-norm.

3 I will later (Chapter 6, page 118) argue that a constant sum of one is not a hard requirement,
however, it is advisable to start out with proper fuzzy partitions.

4 I will suggest shortly, how the point in time is computed and how the local subseries for e. g.
the lift decrease can be identified.
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Global Trends

The global trend of a rule evaluation measure time series is estimated by

a simple and straightforward linear regression: For any rule, the values of

the desired rule evaluation measures are calculated for every time frame

that the data set contains. A simple but quite robust way is the mentioned

regression line that is fitted into the point set. The slope of this line serves

as an indicator of the overall linear trend of the rule measure. Figure 4.1

(a) denotes such a global trend.

Local Trends

For identifying local trends, I employ a sliding-window approach: For

each point in time a time windows of a pre-specified width is used to fit

a linear regression line into the subset of the time series belonging to the

current window. Figure 4.1(d) shows four of such windows, one of which

was used to compute the local slope of the pattern (c). Semantically, we

are approximating the first-order derivative of the actual time series with

this approach which nicely fits into the underlying rationale: Finding lo-

cal changes. When temporal constraints are used (see Figure 4.3), the cen-

ter of the sliding window is used to compute the membership degree. The

sliding-window approach yields another time series from which we cur-

rently use only the maximum and minimum value. These two extrema

are used when computing membership degrees to linguistic terms and

concepts.

4.2.2 Composite Patterns

As motivated in Section 2.5, I also intend to detect so-called composite

patterns, that is, patterns that consist of a temporal succession of local

changes. The most interesting pattern is probably the peak which I use

here to illustrate the detection paradigm. Figure 4.4 is repeated here from

the background chapter. Obviously, the time frames A and B must appear

in a special temporal relation in order to mimic a peak: A has to meet
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A B

Figure 4.4: The borders of the two time frame intervals A and B are set such

that the membership to the concept peak is maximal.

B . When referring to temporal relations, Allen’s temporal algebra is most

widely known [ALLEN 1983]. Figure 4.5 shows all 13 different relations

between two intervals.5 Of course, for our purpose, only the relations

“before” and “meets” (and their counterparts) are relevant as there is no

way to define overlapping intervals inside one time series. In order to find

composite patterns, it is necessary to find intervals (like A and B in the

peak example) that maximize the membership degrees of their respective

linguistic terms and also satisfy the temporal relation.

For a peak we need to find:

• An interval A whose time subseries has large membership degree to

the concept “(confidence) is fast increasing”.6

• An interval B whose time subseries has large membership degree to

the concept “(confidence) is fast decreasing”.

• Intervals A and B that meet each other.

I propose to use an evolutionary algorithm to find good candidates for

the intervals A and B . First, we are satisfied with near-optimal candidates

5 Note, that all but the equality relation can be read in two different ways (stressing X or Y ),
thus resulting in 13 different relations.

6 The example uses a confidence time series.
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Figure 4.5: Allen’s 13 temporal relations. Image taken from [COOK et al. 2009].

and second, we can easily implement the three above-mentioned criteria

into a fitness function. Also, the structure of the individuals is straightfor-

ward: They consist of the borders of the intervals A and B . The fitness

function is e. g. the sum of the membership degrees to both linguistic

concepts, penalized when violating the temporal order. I will discuss a

specific implementation of an evolutionary algorithm with all parameters

and operations later in Section 4.3.

4.2.3 Summary

Before I will rephrase all discussed matter in a clean formal way, let us

recapitulate which elements the linguistic filtering framework contains.

1. Specify a set of linguistic concepts that refer to the (local or global)

temporal changes of rule evaluation measures. These concepts may

also include temporal constraints as well as composite patterns.

2. Provide fuzzy partitions of the domains of the change rate of the

measures from step 1 and the time line.
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3. Evaluate for every rule the membership degrees for the linguistic

concepts from step 1.

4. For every linguistic concept, order the rules according to their mem-

bership degrees such that for a given threshold the set of rules can

easily be determined whose membership degrees exceed this thresh-

old.

The rationale is as follows: Whenever the user changes a fuzzy set of the

fuzzy partition, the rule set visualization that matches the concept being

edited is updated instantly. Therefore, there is an immediate feedback

and the user is able to determine visually, whether the currently edited

fuzzy set (e. g. for the linguistic value “unchanged”) really meets his in-

tentions (e. g. by conceiving that the resulting rules do not change their

vertical position).

4.3 Formal Treatment

This section precisely rephrases the ideas given in the section above and

complements central parts with examples.

We start with the initialization phase of the analysis, that is the rule induc-

tion and time series computation in Section 4.3.1. After that, the actual

membership degree computation is discussed in Section 4.3.2.

4.3.1 Rule Induction and Time Series Computation

We discretize the time span of the underlying database D into T ∈ IN

frames. From these frames we derive the corresponding databases D1 to

DT . From each D t , t ∈ {1, . . . ,T } we induce a set of association rules Rt by

an algorithm A of the user’s choice.7 The collective set of rules R is then

just the union of all the rules of all frames:

R =
⋃

1≤t≤T

Rt =
⋃

1≤t≤T

A (D t ;σmin,cmin)

7 I will use the well-known Apriori algorithm [AGRAWAL et al. 1993] for that purpose.
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For every rule ρ ∈ R we derive a time series τm(ρ) for each evaluation

measure m ∈ M :

∀ρ ∈ R : ∀m ∈ M : τm(ρ) =
(

mD1(ρ), . . . ,mDT (ρ)
)

The pseudocode for these steps are given in Algorithm 1. We first initialize

the rules result set R to the empty set in
✞

✝

☎

✆line 1 and iterate then over all T

time frames in
✞

✝

☎

✆line 2 . Let AT be the attribute in the database that tells for

each case to which time frame it belongs, that is we assume the domain of

AT being {1, . . . ,T }. Any temporal attribute can obviously be transformed

into such a form by means of binning.
✞

✝

☎

✆Line 3 then selects only those

cases that belong to the current time frame t . We then induce rules in
✞

✝

☎

✆line 4 from the respective temporal database D t by means of a previously

chosen rule induction algorithm. The resulting rules are added (unified)

to the result set R in
✞

✝

☎

✆line 5 . The rule evaluation measures discussed in

Section 2.1.2 can all be derived from the antecedent support, consequent

support and (joint) support of a rule. That is, for each rule ρ = X → Y

we need the values P(X ), P(Y ) and P(X ,Y ) for every time frame. This

happens from
✞

✝

☎

✆line 7 –
✞

✝

☎

✆line 14 .

4.3.2 Membership Degree Computation

For each fuzzy concept ξ ∈ Ξ, we can compute the membership degrees

for all rules ρ ∈ R according to the elaborations in Section 2.4 starting on

page 34.

Given a user-specified threshold θ, we can easily restrict a subset of rules

Γ⊆R that meet a given concept ξ to the extent θ:

∀ξ ∈Ξ : Γ(ξ,R,θ) =
{

ρ ∈ R | ξ(ρ)≥ θ
}

⊆ R

Depending on the type of linguistic concepts in ξ, we need to distinguish

between global membership computation (Algorithm 2), local member-

ship computation (Algorithm 3) and the membership with respect to com-

posite patterns (Algorithm 4).
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Input :D,T,σmin,cmin

Output :R

1 R ←;;
2 for t ← 1, . . . ,T do

3 D t ←σ[AT = t ](D);
4 Rt ←Apriori(D t ,σmin,cmin);
5 R ←R ∪Rt ;

6 end

7 for ρ = X → Y ∈ R do

8 for t ← 1, . . . ,T do

9 Determine P (X ), P (Y ) and P (X ,Y ) from D t ;
10 ρ.lhssupp[t ] ←P (X );
11 ρ.rhssupp[t ] ←P (Y );
12 ρ.jointsupp[t ] ← P (X ,Y );

13 end

14 end

15 return R ;
Algorithm 1: Preparation

Global Membership Computation

Algorithm 2 starts with initializing the result map M to the empty set in
✞

✝

☎

✆line 1 . If e. g. the lift change ∆lift is referenced in ξ with the corresponding

linguistic term fast, and if the membership degree of ρ to that linguistic

term is 0.7, then the following mapping would be an element of M :
(

(

∆lift, (fast)
)

7→ 0.7
)

∈M

✞

✝

☎

✆Line 2 iterates over all rule evaluation measures in ξ for which we need

to calculate a mapping. The fuzzy sets representing the linguistic terms

of the measure changes are defined on the change rate domain of these

measures which is IR. The actual trend is estimated by a linear regression

LinReg in
✞

✝

☎

✆line 4 . This algorithm takes a 2×T matrix (
✞

✝

☎

✆line 3 ) as input (the

time frame indices 1,. . . ,T with its corresponding rule measure values).

The slope α of the linear regression is used as the argument for which a

membership degree to the linguistic term is calculated in
✞

✝

☎

✆lines 5 and 6

and put into the map M . With all membership degrees at hand, the over-
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all membership degree to the given concept ξ can then be computed as

given in definition 8 and explanations on page 34.

Input :rule ρ, fuzzy concept ξ that is composed of the linguistic terms
{µ1, . . . ,µn}

Output :map M of membership degrees of ρ to all linguistic terms
referenced in ξ

1 M ←;;
2 foreach rule evaluation measure m referenced in ξ do

3 M ←

(

(1, . . . ,T ),τm(ρ)
)⊤

∈ IR2×T ;

4 (α,β) ← LinReg(M);

5 µ(term)
∆m

← the term referenced for m in ξ;

6 M ←M ∪

(

(

∆m , (term)
)

7→µ(term)
∆m

(α)
)

;

7 end

8 return M ;
Algorithm 2: Global membership computation

Local Membership Computation

Algorithm 3 sketches the procedure for computing local membership de-

grees. The sliding window approach for that8 requires a predefined win-

dow width which we denote by w ∈ IN. That is, we need to compute

T − w + 1 different local slopes (
✞

✝

☎

✆line 3 ). For all T − w + 1 different win-

dows the slopes αi are estimated in
✞

✝

☎

✆lines 4 and 5 .9 In
✞

✝

☎

✆lines 7 and 8 we

keep the minimal and maximal αi since we do not yet know whether

we match against a linguistic term denoting a positive change (such as

fast increasing) or a negative change (such as fast decreasing). Depending on

that nature of the linguistic term, we branch into
✞

✝

☎

✆line 11 or
✞

✝

☎

✆line 13 to add

the new term-membership mapping. As for globals membership degree

computation, the overall membership degree to the given concept ξ can

then be computed as given in definition 8 and explanations on page 34.

8 See Section 4.2.1 on page 61.
9 The proposition ρ.m[i ] be the value of the rule evaluation measure m in time frame i in the

style of
✄

✂

�

✁lines 10–12 of Algorithm 1. The full sequence over all time frames was also noted as
τm (ρ).
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Input :rule ρ, fuzzy concept ξ that is composed of the linguistic terms
{µ1, . . . ,µn}, window width w

Output :map M of membership degrees of ρ to all linguistic terms
referenced in ξ

1 M ←;;
2 foreach rule evaluation measure m referenced in ξ with local context do

3 for i ← 1, . . . ,T −w +1 do

4 M i ←

(

i · · · i +w −1
ρ.m[i ] · · · ρ.m[i +w −1]

)

∈ IR2×w ;

5 (αi ,βi ) ← LinReg(M i );

6 end

7 αmin = min(α1, . . . ,αT−w+1);
8 αmax = max(α1, . . . ,αT−w+1);

9 µ(term)
∆m

← the term referenced for m in ξ;

10 if term denotes positive change then

11 M ←M ∪

(

(

∆m , (term)
)

7→µ(term)
∆m

(αmax)
)

;

12 else

13 M ←M ∪

(

(

∆m , (term)
)

7→µ(term)
∆m

(αmin)
)

;

14 end

15 end

16 return M ;
Algorithm 3: Local membership computation
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Composite Pattern Membership Computation

I will use a real-world example to illustrate the pseudocode for composite

pattern matching. The used pattern will be a peak concept. It will become

clear from the example how other shapes would be implemented. I chose

not to present the pattern matching idea on yet another level of generality

(catering for general patterns) as this would require the introduction of

some sort of abstract grammar to represent the composite patterns and

then their translation into a specific evaluation function.

Figure 4.7 shows the confidence of an association rule on a weekly ba-

sis over a period of one year, that is, T = 52. A peak pattern exhibits an

increasing flank which is met or followed by a decreasing flank. More

precisely, we seek for two intervals [l A ,r A] and [lB ,rB ] of [1,52] where the

linguistic terms confidence is increasing and confidence is decreasing, respec-

tively have a high membership degree (conjuncted via a t-norm).

I will use a genetic algorithm to find good candidates for these intervals.

The borders of the intervals form the chromosome and the nature of the

actual composite pattern will be incorporated into the fitness function.

The fitness function for a peak pattern is shown in Algorithm 4.
✞

✝

☎

✆Line 1

sets the artificial fitness value to be returned if the chromosome is invalid

(e. g. when the intervals overlap). Just in case the interval borders are

in wrong order we can repair this by swapping them which is done in
✞

✝

☎

✆lines 3–5 for interval A and in
✞

✝

☎

✆lines 8–10 for interval B . We require each

interval to be of minimal size 3, that is all shorter intervals are rejected.
✞

✝

☎

✆Lines 12 and 13 take care of this. If the two intervals overlap or have a

too wide gap in between (here: wider than 2) the chromosome is also re-

jected with worst fitness in
✞

✝

☎

✆line 14 . After all validity tests are passed, we

compute the slopes of the linear trends on the intervals.
✞

✝

☎

✆Lines 15 and 16

set the data on which in
✞

✝

☎

✆lines 17 and 18 the linear regression is executed.

The return value of the fitness function in
✞

✝

☎

✆line 19 is the (fuzzy) conjunc-

tion of the two membership degrees corresponding to the linguistic terms

that describe the time series behavior at the peak’s two flanks.
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Let us illustrate such a matching with the time series of Figure 4.7. The ge-

netic algorithm will start with a randomly initialized population of 15 chro-

mosomes. The algorithm will run at most 300 epochs. The fuzzy partition

that is needed to get the membership degrees of the flank slopes is shown

in Figure 4.6. Table 4.1 shows the intervals encoded by the five fittest chro-

mosomes. Clearly, the most pronounced peak ⑤ has by far the highest

fitness. The other peaks can be visually confirmed, too. The algorithm

has returned other (less fit) chromosomes. These, however, consisted of

rather wide intervals and my be avoidable by constraining the interval

width in the fitness function.

Input :time series τm(ρ), chromosome χ= [l A,r A, lB ,rB ]
Output :fitness of χ with respect to τm(ρ)

1 WORST_FITNESS←−∞;
2 if l A > r A then

3 t ← l A;
4 l A ← r A;
5 r A ← t ;

6 end

7 if lB > rB then

8 t ← lB ;
9 lB ← rB ;

10 rB ← t ;

11 end

12 if r A − l A < 2 then return WORST_FITNESS;
13 if rB − lB < 2 then return WORST_FITNESS;
14 if (r A > lB )∨ (lB − r A > 2) then return WORST_FITNESS;

15 M A ←

(

l A · · · r A

τm(ρ)[l A] · · · τm(ρ)[l A]

)

;

16 M B ←

(

lB · · · rB

τm(ρ)[lB ] · · · τm(ρ)[lB ]

)

;

17 (αA ,βA) ← LinReg(M A);
18 (αB ,βB ) ← LinReg(M B );

19 return ⊤

(

µ(incr)
∆conf

(αA),µ(decr)
∆conf

(αB )
)

;

Algorithm 4: Fitness function for composite pattern peak.
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Fitness Chromosome Ref. in Fig. 4.7
0.000873 [17,19], [19,21] ①

0.001371 [13,15], [15,17] ②

0.002891 [39,41], [41,43] ③

0.004617 [26,28], [28,30] ④

0.069894 [44,46], [47,49] ⑤

Table 4.1: Identified peaks

with increasing membership

degrees. The fitness function

is shown in Algorithm 4. The

fuzzy partition on the confi-

dence change rate domain is

depicted in Figure 4.6.

Figure 4.6: Fuzzy partition

used to identify the compos-

ite pattern peak inside the

confidence time series of a

rule depicted in Figure 4.7.

Figure 4.7: Confidence time series of an association rule with several identi-

fiable peaks. The series is used to illustrate the fitness computation of Algo-

rithm 4. The identified peaks are numbered and correspond to the rows of Ta-

ble 4.1.
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4.4 Fuzzy Partition Induction

Up to now, we did assume the fuzzy partitions on the rule evaluation mea-

sures to be given beforehand. Certainly, one can develop an intuition

for appropriate partitions and set these manually according with some

rules of thumb. However, since these fuzzy partitions are data-dependent,

it suggests itself to propose some straightforward heuristic to initialize

them in a reasonable manner.

For estimating a three-term fuzzy partition from the underlying data, I

suggest the following heuristics.

Heuristic for Global Trends

If only linguistic terms with respect to global change trends are used in

the filtering concept, Algorithm 5 can be used to induce in initial fuzzy

partition. It basically looks for the minimum and maximum change rate

and inserts a left-open, a right open and a triangular fuzzy set.
✞

✝

☎

✆Line 1

resets the set of all slopes, then we iterate over all rules in
✞

✝

☎

✆line 2 .
✞

✝

☎

✆Line 3

and
✞

✝

☎

✆line 4 calculate the global trend whereas
✞

✝

☎

✆line 5 adds the new value

to set A.
✞

✝

☎

✆Line 7 declares the left-open fuzzy set that models the linguis-

tic term decreasing by increasing membership degree from zero leftwards

and reaching membership degree 1 at the minimal change rate. Like-

wise
✞

✝

☎

✆line 9 declares the right-open fuzzy set modeling the linguistic term

increasing by increasing membership degree from zero rightwards, reach-

ing 1 at the maximum change rate.
✞

✝

☎

✆Line 8 declares the center fuzzy set

representing the linguistic term unchanged by using a triangular fuzzy set

with center at zero and the ends being the minimal and maximal change

rates.
✞

✝

☎

✆Line 10 finally returns the entire partition.

Heuristics for Local Trends

In case the local trends are referenced inside the linguistic concept, Al-

gorithm 6 proposes a fuzzy partition induction heuristic. Again, we it-

erate over all rules in
✞

✝

☎

✆line 2 but do another nested loop over all time
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Input :measure m, rule set R

Output :Fuzzy partition Π∆m

1 A ←;;
2 for ρ ∈ R do

3 M ←

(

(1, . . . ,T ),τm(ρ)
)⊤

∈ IR2×T ;

4 (α,β) ← LinReg(M);
5 A ← A∪ {α};

6 end

7 µ(decr)
∆m

(x) ←















0 x > 0
x

min(A) min(A) < x ≤ 0

1 x ≤ min(A)

;

8 µ(unch)
∆m

(x) ←















x−min(A)
−min(A) min(A) ≤ x ≤ 0

max(A)−x
max(A) 0 < x ≤ max(A)

0 else

;

9 µ(incr)
∆m

(x) ←















0 x < 0
x

max(A) 0 ≤ x < max(A)

1 x ≥ max(A)

;

10 return
{

µ(decr)
∆m

,µ(unch)
∆m

µ(incr)
∆m

}

;

Algorithm 5: Heuristic for fuzzy partition induction with respect to global
change rates of measure m.
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frame windows of length w in
✞

✝

☎

✆line 4 . This inner loop computes the lo-

cal change rates (see Algorithm 3 for details) and keeps track of them via

Alocal in
✞

✝

☎

✆line 7 . Depending on whether the fuzzy concept references a

positive or negative local change, we add the minimum or maximum of

Alocal to A in
✞

✝

☎

✆lines 9–13 . The remaining four
✞

✝

☎

✆lines 15–18 correspond to

the
✞

✝

☎

✆lines 7–10 of Algorithm 5, that is they set up the three fuzzy sets.

4.5 Application to Other Models

4.5.1 Decision Trees

Decision trees [BREIMAN et al. 1984, QUINLAN 1986] are a widely spread

technique that allows for an intuitive interpretation of the results. The

underlying principle is a recursive partition of the data set based on a

greedy attribute selection. Since every path from the root node to a leaf

node can be read as an association rule, it is possible to use the framework

proposed in this thesis without deviating from the concept of decision

trees. The highlighted branch of the decision tree in Figure 4.8, for exam-

ple, represents the association rule If A = a2 and B = b1, then C = ci for

all values ci of C . Thus, results from applications using decision trees can

easily be transformed to be compatible with the framework presented in

this thesis.

A

C B C

C C

a1
a2

a3

b1 b2

A

B D

C

Figure 4.8: Left: The bold

path of the decision tree cor-

responds to the association

rules A = a2 ∧B = b1 → C = c,

c ∈ dom(C ) tree. Right: Bayes

network. The highlighted sub-

graph represents the association

rules B = b ∧D = d → C = c

for all b ∈ dom(B), d ∈ dom(D)
and c ∈ dom(C ).
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Input :measure m, rule set R , window width w

Output :Fuzzy partition Π∆m

1 A ←;;
2 for ρ ∈ R do

3 Alocal ←;;
4 for i ← 1, . . . ,T −w +1 do

5 M i ←

(

i · · · i +w −1
ρ.m[i ] · · · ρ.m[i +w −1]

)

∈ IR2×w ;

6 (αi ,βi ) ← LinReg(M i );
7 Alocal ← Alocal ∪ {αi };

8 end

9 if m is referenced with respect to positive change then

10 A ← A∪
{

max(Alocal)
}

;
11 else

12 A ← A∪
{

min(Alocal)
}

;
13 end

14 end

15 µ(decr)
∆m

(x) ←















0 x > 0
x

min(A) min(A) < x ≤ 0

1 x ≤ min(A)

;

16 µ(unch)
∆m

(x) ←















x−min(A)
−min(A) min(A) ≤ x ≤ 0

max(A)−x
max(A) 0 < x ≤ max(A)

0 else

;

17 µ(incr)
∆m

(x) ←















0 x < 0
x

max(A) 0 ≤ x < max(A)

1 x ≥ max(A)

;

18 return
{

µ(decr)
∆m

,µ(unch)
∆m

µ(incr)
∆m

}

;

Algorithm 6: Heuristic for fuzzy partition induction with respect to local
change rates of measure m.
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4.5.2 Graphical Models

Graphical models [LAURITZEN and SPIEGELHALTER 1988, PEARL 1988, BOR-

GELT et al. 2009] comprise another data mining method that has attracted

a lot of research effort and led to many successful industrial applications

[GEBHARDT et al. 2003, STEINBRECHER et al. 2008, KRUSE et al. 2010b,

STEINBRECHER and KRUSE 2007b]. One type of graphical models are Bayes

networks. A Bayes network uses an directed, acyclic graph ~G = (U ,~E)

to encode the decomposition of a multidimensional probability distri-

bution. The decomposition induced by the graph consists of a set of

conditional distributions assigned to each node given its direct predeces-

sors (parents). Their product equals the joint probability distribution of

the underlying graphical model. For a directed graphical model with at-

tribute set U = {A1, . . . , An} and network structure ~G = (U ,~E) this quite

general definition can be specialized with the chain rule to

P
(

A1 = a1, . . . , An = an

)

=

n
∏

i=1
P

(

Ai = ai

∣

∣

∣

∧

A j∈parents~G (Ai )
A j = a j

)

.

We refer to the functions P(A | parents(A)) as potentials. More precisely,

for every attribute Ai we are dealing with

qi =
∏

A j∈parents~G (Ai )

∣

∣dom(A j )
∣

∣

different probability distributions over dom(Ai ); one for every combina-

tion of the parent attribute values of Ai . Every such combination is de-

noted as Qi1, . . . ,Qi qi
. As an example consider a Bayes network with three

attributes: A1 represents air conditioning type, A2 engine type and the

class value is determined by A3. For the sake of simplicity we assume

their domains to be binary. The left part of Figure 4.9 depicts the graphi-

cal structure as well as the layout of the three potentials. Since root nodes

cannot have parents, note that Q11 and Q21 represent “empty combina-

tions”, that is marginal distributions P(A1) and P(A2). We summarize the

potentials of an attribute as a potential table as it is sketched in the right of

Figure 4.9. The different combinations of parent attribute values are gath-

ered column-wise, that is every column represents a probability distribu-

tion (as indicated by the shaded column) and therefore sums up to unity.
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A1 A2

A3

P Q11

a12

a11

P Q21

a22

a21

P Q31 Q32 Q33 Q34

a32

a31

Ai Qi 1 · · · Qi j · · · Qi qi

ai 1 θi 11 · · · θi j 1 · · · θi qi 1
...

...
. . .

...
. . .

...
ai k θi 1k · · · θi j k · · · θi qi k

...
...

. . .
...

. . .
...

ai ri
θi 1ri

· · · θi j ri
· · · θi qi ri

Figure 4.9: Left: An example network which induces the layout of the potential

tables. Right: A general potential table. Each column represents a (conditional)

probability distribution.

For the sake of brevity, we will denote the probability of the kth value of Ai

given its parent attributes assume the j th value combination Qi j by θi j k ,

that is

P(Ai = aik | parents~G (Ai ) =Qi j ) = θi j k .

The values of a potential table are the parameters we referred to above

and we now seek for an appropriate visualization. Note that every data-

base entry can be mapped to exactly one table entry θi j k . That is, an at-

tribute and its parents induce a partition of the underlying database: two

database entries are in the same equivalence class if they share the same

attribute values. The main idea is to interpret each equivalence class as

an association rule and use rule evaluation measures to quantify the prop-

erties of the corresponding visual cues.

When one attribute of such a network models a designated class variable,

then together with its parent attributes they can be used to immediately

write the underlying probabilistic parameters as association rules. The

example network in Figure 4.8 in that sense would give rise to the rules of

type If B = bi and D = d j , then C = ck for all values that B , D and C can

assume.
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4.5.3 Cooccurrence Graphs

This section sketches how the linguistic filtering can also be applied to

cooccurrence graphs.10 The objective is to answer questions of the fol-

lowing type (given a sequence of cooccurrence graphs):

“First, what are interesting candidates for subgraphs that it

would be worth looking at over time?”

and

“Second, given a (still intractable large) set of subgraphs, which

graphs become more sparse and less balanced over time?”

Before I turn to the algorithmic part of my approach, we need to negoti-

ate which types of substructures within the graphs are most interesting to

users. I will exploit the edge weights for this purpose. Several measures

are needed to quantify for every subgraph aspects such as size, complete-

ness, edge balance, etc.

If the cooccurrence graphs represent visits of different web pages within

the same online shop portal, then it might be desirable to know whether

customers are able to use the web portal as intended by the owners. Are

there dead ends where users are stuck? What are the “hot spot” sites, that

is, the pages that attract the most users and are visitors able to find the

recently introduced shortcut to related pages? How do the accesses to

the support area of the site change after renewing the navigational aids,

etc.

I explicitly stress that subgraphs that are heavily interconnected with large

edge weights only provide us with a hint that there may be an interesting

visiting pattern. However, we can never conclude transitivity just from

the cooccurrence graph! This is due to the fact that it only represents

binary cooccurrences. Even a fully connected graph does not tell us any-

thing about individual events. The sets of cooccurring events whose car-

10 See Section 2.3 for details.
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Figure 4.10: The temporal evolution of the graph induced by a set of nine nodes.

The number of edges is decreasing with time resulting in an almost isolated

graph. Simultaneously, the edges that are remaining grow more and more un-

balanced, that is, the deviation of the edge weights is increasing. Both time se-

ries of the corresponding measures comp and dev are shown in Figure 4.11 and

Figure 4.12, respectively.

dinality is represented by the edge weights even might be mutually dis-

joint. However, these subgraphs are found to be valuable hints that are

worth being investigated.

Focusing on the before-mentioned type of aspects one can identify highly

connected subgraphs with large edge weights to be one type of substruc-

tures that are most interesting to users. Another type may be single edges

just connecting two nodes or substructures that are highly interconnected

but with a large imbalance in the edge weights. The latter might repre-

sent two active sets of websites (large edge weights) between which users

are able to navigate back and forth (numerous edges in between but with

small weights since not every user is likely to use the offered navigational

freedom).

The last arguments call for measures that on the one hand capture the

mentioned properties of subgraphs and on the other hand allow to build

a fuzzy partition on their domains since we are not going to ask for sub-

graphs with 9 nodes and edges with weights greater than 100 but for large

subgraphs with moderately sized edges.

Candidate Graph Generation

As we are now equipped with measures to assess certain aspects of sub-

graphs that we would like to track over time, the remaining question is

how to determine such candidate graphs? It is clear that a brute-force ap-



80 CHAPTER 4. LINGUISTIC FILTERING

proach (testing all subsets of nodes as potential subgraph node sets) fails

immediately due to runtime problems, even for small node sets. I there-

fore promote the following heuristic: The graphs of all time frames are

added as shown in Section 2.3 to arrive at the sum graph GΣ (or simply

the cooccurrence graph if we ignore the time frames). Next, a threshold θ

is chosen and the components CGΣ
= {C1, . . . ,C j , . . . ,Cm} of GΣ,θ are taken

as the candidate subgraphs. The choice of θ can be entirely left to the user

(e. g. by offering a graphical preview tool that shows the components in-

stantly whenever the user selects a new threshold via a slider) or θ may

be determined in such a way to limit either the number of components

or the (average) size of the components.

Matching Against Linguistic Concepts

Whatever way of determining the granularity of components is chosen,

we are left with a set of mutual disjoint node sets CGΣ
that are used to

create a sequence of subgraphs
〈

G(i )
C j

〉

, i = 1, . . . ,n, j = 1, . . . ,m (one se-

quence for every subgraph induced by the node set) that are evaluated

against the user-specified temporal behavior description. A time series

is generated for every measure referenced in this user description. The

temporal change within this time series is computed and the degree of

membership to the user description is calculated. I will employ a simple

regression approach, that is, we fit a regression line into the time series

and interpret its slope as an indicator of decrease, stability and increase.

The example concept from the motivation of this section is repeated here:

“Completeness is decreasing and std. deviation is increasing”

Translated into a linguistic concept, the user may specify

〈

∆comp is decr and ∆dev is incr
〉

,

which is evaluated to

⊤

(

µ(decr)
∆comp

(C j ),µ(incr)
∆dev

(C j )
)

,
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Figure 4.11: Time series with decreasing trend for the completeness of the edge

weights for the five graphs of the time frames depicted in Fig. 4.10.

where ⊤ represents a t-norm modeling the fuzzy conjunction. Figure 4.10

depicts an example subgraph consisting of 9 nodes. Five time frames are

shown with the respective edge weights. The graph is obviously becoming

less dense with time, that is, the completeness is decreasing. The chart

for this measure is depicted in Figure 4.11. In analogy to this, Figure 4.12

shows the increasing deviation of the edge weights which is attributed

to the emergence of the strong cooccurrence (the sudden appearance in

this case can be explained with time frames that were too large to ap-

propriately cover the short period during which this strong cooccurrence

emerged). If we equipped the change rate domains (that is, domains of

the slopes of the regressions lines of the two time series) with appropriate

fuzzy partitions (as I will do it in the experiments section) we could cal-

culate the membership degree of this node set to the above-mentioned

linguistic concept.

Summarizing, I state the following procedure:

1. Given a sequence G(0), . . . ,G(n) of cooccurrence graphs with their

sum graph being GΣ.
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Figure 4.12: Time series with increasing trend for the standard deviation of the

edge weights for the five graphs of the time frames depicted in Fig. 4.10.

2. Based on an appropriate value θ, we calculate the candidate graph

node sets {C1, . . . ,Cm} which are the vertices of the components of

the graph GΣ,θ.

3. The user provides a set of linguistic concepts that refer to the tem-

poral change of the graph measures.

4. Provide fuzzy partitions for every domain of the change rate of the

measures used in the descriptions of step 3.

5. Evaluate for every graph GC j
the degree of membership to the lin-

guistic concepts of step 3.

6. For every linguistic concept sort the graphs in descending order with

respect to their membership degrees.

4.6 Related Work

My proposed approach leaves the definition of an association rule un-

touched which allows to carry over the linguistic filtering approach to

other model types (such as cooccurrence graphs as shown). However,
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there are also investigations that augment the rule definition itself by tem-

poral validity constraints. ALE and ROSSI11 define time windows within

which the rule is actually valid. This approach is not unlike the work of

LEE et al.12 who modify the rule definition and actually address problems

in stream mining: The support of newly arrived items is necessarily lower

than the support of older item (since they had more time to “gather up”).

The authors use a special support definition to alleviate this effect. How-

ever, in both cases the notion of an association rule is deeply modified.

On the one hand, this allows to address some problems in greater depth.

On the other hand, it renders the straightforward transfer of the proposed

approaches to other model types almost impossible.

AU and CHAN13 actually use a very similar approach to asses the time se-

ries of rule evaluation measures. In their approach, they consider linguis-

tic terms (such as “lift is increasing”) new items and infer yet another rule

set from it. Those meta rules can then be used to detect certain collec-

tive behavior such as “in 20% of those cases where the lift increased, the

confidence did alike”.

Other works deal with in principle the opposite challenge: Given a time

series, which linguistic concepts match against it best? Results from such

approaches are known as temporal linguistic summaries [KACPRZYK and

WILBIK 2010] and can considerably help better understand the underly-

ing process. Subsets of time series are also known as motifs for which lin-

guistic assignments can be induced as well [MOEWES and KRUSE 2009].

4.7 Summary and Discussion

In this chapter I thoroughly covered my contributions to the task of fil-

tering time series against linguistic concepts [STEINBRECHER and KRUSE

2008a, 2009b, 2010, KRUSE et al. 2010a,c]. In this thesis, I am applying

these techniques to time series of evaluation measures of sets of associa-

11 See Section A.2.1 on page 149 for more details.
12 See Section A.2.2 on page 149 for more details.
13 See Section A.2.3 on page 150 for more details.
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tion rules. I will sketch later in the evaluation chapter how the technique

can also be applied to other models’ measure series [STEINBRECHER and

KRUSE 2009c].

In Section 4.1 of this chapter, I claimed three requirements to be met in

order to achieve a positive user acceptance: intuitiveness, instant feed-

back and visual interaction. Intuitiveness has been covered in this chap-

ter: The application of fuzzy concepts to describe linguistically the (lo-

cal and global) temporal behavior of time series enables a straightfor-

ward usage. Further, most of the necessary parameters (such as the fuzzy

partitions representing the linguistic terms) can be suggested automati-

cally from the underlying data. The remaining parameters (like window

widths, population sizes, etc.) are still meaningful and can still be chosen

with common sense. I purposely refrained from introducing methods to

detect higher-order trends inside the time series. That is, no quadratic

or cubic trends can be directly described and detected. The main rea-

son for this decision is the difficulty to model the respective parameters

linguistically. In a linear (global) trend model yt = αt +β+ ǫ, the param-

eter α has an intuitive and commonly known name: slope. This makes

it easy describe and recognize certain values of α as e. g. increasing or

stable. In a quadratic model yt =αt 2+βt +γ+ǫ the dominating shape pa-

rameter α now is much harder to describe in linguistic terms. It certainly

governs the “opening” or “aperture” of the trend function, but it is harder

to come up with a reasonable set of descriptive linguistic terms describ-

ing its shape change rate.14 In addition to that, a quadratic trend—if it is

not too weakly pronounced— can be approximated by two linear trends

just as described with the peak composite pattern above.

The remaining two requirements (instant feedback and visual interaction)

I still owe and I will cover them in the next chapter as they are crucial parts

of the software package that was used to implement the major contribu-

tions of this thesis.

14 The linguistic terms of the change rate (of the shape of a quadratic trend) would, of course,
still be decr, unch and incr. But the notion to whose change rate they refer is more intangible.
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Implementation

In this chapter, I will introduce the user interface and software stack that

was used to evaluate the previously presented ideas. The evaluation re-

sults provided in the next chapter were all created with this software. Most

of the figures in this chapter are screen shots and as such consume con-

siderable amount of space. In order to enhance readability, I placed most

of these figures into Appendix B.

5.1 The Information Miner 2.0 Platform

The Computational Intelligence Group1 led by Prof. Dr. Rudolf Kruse at

the Otto-von-Guericke University Magdeburg is not only known for its

constant output of high-quality research results in the area of data min-

ing. Another major strength is the aim to forge the scientific results into

solutions that are then applied successfully by industrial partners. Over

the past years, a considerable number of data analysis tools and visual-

ization methods have been developed. The Information Miner platform

was introduced as a logical consequence in order to leverage their con-

centrated strengths: data-intensive algorithms have mostly been imple-

mented as C++ command line tools2 whereas the visualization tools are

merely developed in Java.

1 See http://fuzzy.cs.uni-magdeburg.de/wiki/pmwiki.php.
2 See e. g. http://borgelt.net/software.html.
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The first iteration of the Information Miner [RÜGHEIMER and KRUSE 2005]

has been built with an academic focus. I rebuilt the entire application to

form it into an orchestration layer between high-performance data anal-

ysis applications and the visualization components.

Figure 5.1 shows the main window with a simple example analysis flow

loaded. In line with the initial iteration of the Information Miner (and

basically all other data mining suites3) the analysis flow is modeled as

a directed graph. Nodes represent so-called tasks that turn input data

into output data. Edges indicate the data flow and feed the input data

into tasks and output data towards the next task(s). Tasks that are sources

(that is, having no inputs from previous tasks) represent data sources like

CSV files, database connections or data generators. Tasks that are leaves

(that is, having no successor tasks) typically indicate visualization tools

or data serialization mechanisms. The tree view on the left of the main

window contains all available tasks to build powerful analysis flows. I will

sketch those that are relevant for this thesis in the next section.

The Information Miner is available at the workgroup website4 and under

constant development. Currently, it consists of 50k+ lines of code and is

implemented in Java 1.6 (and invoking native executables that ship with

the Java application).

5.2 Real-world Analysis Workflow

Let us now turn to the typical workflow that was used to come up with

most5 of the results of the next chapter. We assume that no preprocessing

has been done so far, that is, we start from scratch with a single database

table that contains all relevant data.6 One dedicated attribute A
(orig)
T

rep-

3 Like KNIME, RapidMiner, WEKA, etc.
4 See workgroup website http://fuzzy.cs.uni-magdeburg.de/wiki/pmwiki.php?

n=Forschung.InformationMiner2.
5 “Most” means that in one case the rule set was small enough to assess it solely with the visu-

alizations from Chapter 3 and no filtering was applied.
6 Obviously, this table was created by joining together the original tables in the database sys-

tem.

http://fuzzy.cs.uni-magdeburg.de/wiki/pmwiki.php?n=Forschung.InformationMiner2
http://fuzzy.cs.uni-magdeburg.de/wiki/pmwiki.php?n=Forschung.InformationMiner2
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Figure 5.1: A demo analysis workflow loaded into Information Miner 2.0.

resents the original time stamp attribute. It will be discretized into suit-

able attribute AT according to which we will subdivide the dataset. The

preprocessing consists of the following steps:

1. Splitting the table according to (the values of) AT

2. Exporting the split tables

3. Induce rules from the exported tables

4. Determine supports of rules for each time frame

5. Filter and visualize the rules

Each of the steps 1–4 will be implemented by a dedicated task which we

are briefly discussing below. Step 5 will be, of course, treated in greater

detail as it represents the applied contributions of this thesis.
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5.2.1 Table Splitting

The task TableSplitterTask will carry out

the step in
✞

✝

☎

✆line 3 of Algorithm 1 on page 66,

that is, create as many database tables D t as

the attribute AT has values. The task has the

following input slots:

Input slot Description Format

schema Table schema description in XML format of the

tables D t to be created. Normally, this schema

will be identical to that of D but by omitting at-

tributes it is simple to create projections.

XML

db JDBC connection to the actual database. POJO

recipe A recipe can contain instructions how to trans-

late values of attributes read from D before they

are written into D t . It is optional and can be

used to induce missing values, discretize metric

attributes or create items out of attribute values

(see Table 2.2 on page 23).

XML

props Property file that contains information on D ,

A
(orig)
T

, AT as well as the respective mappings.

property

file

After this task is executed, the database to which db points to will con-

tain tables corresponding to D t for each time frame that we are interested

in. The output of the task is an ordered list of these time frame values.

This list is serialized and can be loaded later without having to run the

TableSplitterTask again.
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5.2.2 Table Export

The TableExporterTask exports the previ-

ously created database tables D t to into CSV

files for further treatment (here: running the

Apriori algorithm on each of them). The task

has the following input slots:

Input slot Description Format

frm The list of time frame values {1, . . . ,T } (leading to

the respective database tables D t ).

XML

schema Same as for TableSplitterTask. Used here

only to know which attributes to export.

XML

db JDBC connection to the actual database where

to export from.

POJO

props Property file that contains information on

where on disk to store teh CSV files and how to

name them.

property

file

After this task has executed, the contents of all D t are stored as CSV files

on disk.
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5.2.3 Rules Induction

The RulesInducerTask carries out the step

in
✞

✝

☎

✆line 4 of Algorithm 1 on page 66, that is, it

will execute the Apriori algorithm on each of

the temporally sliced tables D t . I use Chris-

tian Borgelt’s freely available Apriori imple-

mentation [WWW: BORGELT 1] which takes

CSV files as inputs: the ones we just exported.

Input slot Description Format

schema Deprecated

app Appearances file which can be used to restrict

the appearances of items in the rules. If there is

a dedicated class attribute in D , the app file can

be used to induce only rules with items relating

to that attribute in the consequent.

ASCII

db Deprecated

frm2csv Contains information which files to run Apriori

on.

XML

props Property file that contains parameters for Apri-

ori such as minimum support and minimum

confidence.

property

file

After this task has executed, there will be an ASCII file for each t ∈ {1, . . . ,T }

containing the association rules that were induced from D t .
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5.2.4 Support Counting

The SupportCounterTask carries out the re-

maining steps of
✞

✝

☎

✆lines 4–15 of Algorithm 1

on page 66. That is, it will load the rules cre-

ated in the previous steps and determine the

antecedent, consequent and joint support for

each rule. This is necessary as some rules

might not have been found in all time frames

but we need their supports in order to get a complete time series of any

needed evaluation measure. The following input slots are required:

Input slot Description Format

db JDBC connection to the actual database where

to query the supports from (via SQL select

count(*) queries).

POJO

tab2rs Contains information which files to load the

rules from.

XML

props Property file that contains information on how

to compose the SQL queries for support count-

ing (date/time format, etc.)

property

file

After the execution of this task, all information is collected to visualize

and filter the rules. The output slot rules stores this information such

that from now onwards, no database access is needed. The complete

chain of tasks needed to preprocess the data in table D is depicted in Fig-

ure 5.2.

5.2.5 Filter and Visualize the Rules

After all necessary information has been collected, the last step is to load

the user frontend containing the actual visualization and filtering tools.

This is done via the RulesViewerTask which is depicted in Figure 5.3. Its

input slots are as follows:
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Figure 5.3: The

RulesViewerTask finally dis-

plays the frontend in which the

filtering and visualization takes

place. The rules input slot con-

tains all necessary information

about the rules under analysis.

Slot concepts loads a preset of

fuzzy partitions while colors is

used to map certain items to colors

in the rule visualization.

Input slot Description Format

colors Can be used to specifiy which color shall be used

to represent the items in the rules’ antecedents

and consequents (see Section 3.2).

XML

concepts Contains presets of fuzzy partitions that can be

used to specify the linguistic terms.

XML

rules The rules and their supports which have been

collected during the preprocessing phase.

XML

Executing this task brings up a collection of windows that contain all rel-

evant user interface elements.

Rules Glyph View

The main component is the rules view which is depicted in Figure B.1. It

depicts the entire set of rules (①)denoting each rule by its glyph as intro-

duced in Chapter 3. To rescale the horizontal axis, vertical axis and glyph

size, the sliders at location ② can be used. To change the actual evalu-

ation measures that are used to locate the glyphs (and determine their

sizes), a drop-down menu at location ③ can be opened. It is depicted in

Figure B.2 and shows the varieties of evaluation measures.
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Finally, the slider at the bottom (④) allows to flick through the different

time frames. The rule glyphs are smoothly animated in order to present a

seamless transition7 between the time frames.

Rules List View

The rules list view as depicted in Figure B.3 enumerates all rules in their

textual form as a scrollable list. Each list item contains a checkbox by

which the rule can be hidden in the rules glyph view. This allows to hide

irrelevant rules from a filtering result which may still contain additional

rules. The button bar at the bottom helps to hide entire selections of rules.

The right part of each list item displays the absolute support, the con-

fidence and the lift of each rule in the current time frame (selected by

slider ④ in Figure B.1).

The rule set depicted in Figure B.1 (and respectively inFigure B.3)8 makes

clear that the number of rules (here: 907) is far too large for “manual” in-

spection. In addition to that, the number of time frames (here: 42) would

make it hard too impossible to assess the trajectories of even a small set

of rules. We will discuss the editors for filter composition below, after we

addressed two other important detail views that are updated anytime the

user clicks a rule.

Rule Details View

Whenever a rule is selected by clicking it, the textual representation of it

is displayed at location ① of the rule details view as shown in Figure B.4.

The time series of the absolute support9, confidence, lift and recall are

given in tabular form (②) below. This allows to precisely lookup values of

a rule that was e. g. found to be peculiar by visual inspection.

7 Note that the actual trajectory of a rule between two time frames has not necessarily to be
linear. However, the number of time frames should be chosen such that consecutive frames
are close enough such that no heavy change in between should be overlooked (here: 1 week
time frame width).

8 We will return to that rule set later in the evaluation chapter in Section 6.4.
9 Support is named “Units” in Figure B.4.
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Rule Time Series View

While the rule details view presents precise numbers for a set of evalu-

ation measures, the rule time series view of Figure B.5 allows to display

any evaluation measure graphically. The top chart (①) shows the time se-

ries of the antecedent support, consequent support and joint support as

a line plot. We can clearly see a pronounced peak around the end of the

year 2011 which we will cover later in the evaluation chapter. The bottom

chart (②) shows a user-selectable measure time series. Again, all mea-

sures from the list in Figure B.2 can be chosen from in the rule measure

drop-down list in location ③. The green line shows the average value of

the series while the two yellow lines mark one standard deviation off the

average value. The gray line sketches the global linear trend fitted into the

time series. The controls in location ③ allow also to show quadratic and

cubic trends, however, I stated in Section 4.7 not to use them for linguistic

filtering.

Filter Concept Editor

The graphical interface discussed up to now only allowed to deal with the

entire rule set. The filter concept editor finally enables the user to com-

pose a linguistic concept10 and match it against the rule set. Figure B.6

shows the filter concept editor where a single concept can be created and

edited at a time. The recursive definition of linguistic concepts in Defini-

tion 8 on page 34 allows for the representation as an expression tree, that

is, a tree structure where the nodes represent the operators and edges de-

note the argument relations. The tree view of Figure B.6 (①) is redrawn in

Figure 5.4 to more clearly show the underlying filter expression.

The actual linguistic concept as I introduced in in Chapter 2 is represented

by the left subtree with root node ⊤prod and reads as follows:

〈

∆lift is incr and ∆conf is incr
〉

10 See Section 2.4 and Section 4.2 for a thorough treatment.
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∧

µ≥ 0.6 supp≥ 0.1

⊤prod

〈

∆lift is incr
〉 〈

∆conf is incr
〉

Figure 5.4: Expres-

sion tree of the linguis-

tic concept shown in

Figure B.6. The bold

nodes yield a crisp

(boolean) result to be

anded to the final de-

cision whether a rule

matches the filter or

not.

As we need a crisp, that is, boolean result in order to decide whether the

glyph of the respective rule shall be drawn, the node µ≥ 0.6 serves kind of

a defuzzifier. Having boolean values at hand, we can further implement

boolean expressions to create a richer set of filter operations. The concept

in Figure 5.4 and Figure B.6 additionally restricts the support of the rules

to a fixed interval. The properties of each node are shown (②) when the

node is selected. Most adjustments take effect immediately, that is, the

concept is constantly evaluated and the rule set is redrawn accordingly.

Fuzzy Partition Editor

As discussed in Chapter 4, the fuzzy partitions that encode the linguistic

terms of the evaluation change rate domains play a central role in the ap-

plicability of the entire approach. Heuristics for initial suggestions were

provided in Section 4.4. The fine-tuning of these partitions (or the com-

plete redesign) can be done via the fuzzy partition editor shown in Fig-

ure B.7. The list ① contains all partition names (supplied by the concepts

input slot into the RulesViewerTaks, see Figure 5.3). Selecting a parti-

tion will display the corresponding fuzzy sets in the area ②. The current

view shows the fuzzy partition of the confidence change rate domain as

it was induced by the heuristics presented in Section 4.4. The square han-

dles at the apexes of each fuzzy set can be dragged with the mouse to



5.3. A SAMPLE WORKFLOW 97

adjust the shape and thus the linguistic meaning of the respective term.

Again, the rule glyphs are updated instantly. Clicking and dragging the

blue outlines of a fuzzy set can be used to move the fuzzy set horizontally.

In order to get an intuition on how a reasonable fuzzy partition should

look like one has to have information about the change rate distributions

of every measure of interest. The histogram in location ③ shows such a

discretized distribution. When the “Histogram” button is clicked, the (lo-

cal or global slopes) of all rules are assigned to twenty equidistant bins.11

The resulting histogram is shown for the global confidence change rates

in ③. To finally induce a fuzzy partition as suggested in Section 4.4 one

uses the control in location ④. Setting e. g. a new 3-set partition will in-

duce a left-open, a right-open and a triangular fuzzy set based on the (lo-

cal or global—depending on the checkbox “Local”) confidence change

rate distribution. The new fuzzy partition will be in effect instantly.

Now that we have briefly sketched over the individual components of

the graphical user interface, I will show how quickly a set of more than

900 rules can be easily filtered. I will focus on the handling and the ac-

tual user experience here. Detailed results with interpretations from real-

world data sets follow in the next chapter.

5.3 A Sample Workflow

Let us now start a sample analysis session. The original database (table)

D (which we will revisit again in the next chapter) contains 11 attributes

and over 4.2 million rows. Each row represents a support request at a big

telecommunications company. The time attribute was discretized into

slices of 42 weeks. Running the workflow from Figure 5.2 will deliver all

needed rules and their respective supports.12

The upper part of Figure 5.5 shows the full rule set of 904 rules in the first

time frame. Clearly, this is no basis for a visual inspection. When looking

11 Actually, 18 equidistant bins as the first and the last one extend to infinity.
12 The rules were induced with Apriori invoked at minimum support 5% and minimum confi-

dence 60%.
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at the animation of the rule’s trajectories across the screen of the 42 time

frames, some rules literally stick out as they develop high lift values and

thus move upwards out of the screen real estate. However, no reliable

assessment is possible. If we would plot the trajectories of each rule as

a straight line of 1 pixel width: the screen would be almost solid black

because there would be 904 lines with 41 segments each.

Let us be interested in rules that exhibit increasing local confidences as

well as globally unchanged lift. As the lift definition is closely related to

the definition of the confidence13 the lift quite often shows a similar be-

havior to the confidence given a (approximately) stable consequent prob-

ability:

conf(X → Y ) = P(Y | X ) ∝
P(Y | X )

P(X )
= lift(X → Y ) with P(X ) constant.

A stable lift together with an increasing confidence then would also make

a statement on the increase of the overall consequent probability. We

first induce the fuzzy partitions for the confidence and lift change rate do-

mains. Figure B.8 and Figure B.9 show the resulting partitions. The reason

for the asymmetric shape of the lift partitions can be seen when looking

at the histograms of the lift change rates in Figure B.10: Most lift change

rates are approximately zero, almost no negative change rate but a lot of

different but larger change rates. The triangular fuzzy set representing

“unchanged” and the left-open fuzzy set representing “decreasing” of Fig-

ure B.9 were adjusted manually in order to have flatter flanks: the fuzzy

partition induction heuristic would yield almost vertical flanks for these

as there are almost no negative change rates (see, again, Figure B.10) and

I require the fuzzy set for “unchanged” to have its maximum at slope 0.

The linguistic concept is easily created node by node; the result is shown

in Figure B.11. The bottom part of the figure shows how to set the local

confidence increase that we are interested in: The drop-down list “Parti-

tion” contains all loaded and manually constructed fuzzy partitions. The

drop-down list “Value” then will be updated with the respective fuzzy sets

corresponding to the linguistic terms. If a local trend is intended to be

13 See page 21.
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referred to (as in this example for the confidence), the checkbox “Local

trend” enables the radio buttons “Minimum” and “Maximum”. We chose

“Maximum” here as we are interested in rules with strong local confidence

increases.

After all tree nodes have been appropriately configured, we can easily fil-

ter the rule set (actually, when changing settings as described in the para-

graph above, the rule set was already updated at every step, which can

also be considered some kind of filtering): This is accomplished by adjust-

ing the threshold of the concept that specifies the minimum membership

degree (to the linguistic concept) that a rule has to have in order to be in

the result set and thus be visible. Figure B.12 shows this slider as the only

property of the “Threshold” node of the concept tree.

Let us compare four different thresholds to illustrate the increasingly re-

strictive filtering. The following table summarizes these steps:

Threshold Figure

0% Figure 5.5 (top)

10% Figure 5.5 (bottom)

50% Figure 5.6 (top)

90% Figure 5.6 (bottom)

The bottom chart of Figure 5.5 shows already a considerable reduction in

the number of rules. Obviously, most of the rules that disappeared had

quite a large support which gives rise to the idea that the most relevant

rules (with respect to our linguistic concept) will have a small support—a

conjecture that will prove valid when raising the membership threshold

further. At a value of 50% there are only 11 rules left. This could already

be a base for an exhaustive evaluation: Assessing all 11 rules manually is

a task that can easily be accomplished without risking to miss important

clues due to emerging inattention. Let us push the threshold further to

the boundary of 90%. We arrive at as few as four remaining rules in the

bottom chart of Figure 5.6. To visually validate the match of the measure

time series to the specified linguistic concept, the time series for confi-

dence and lift of the rule ① are both shown in Figure 5.7: The trend of
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the lift is slightly increasing (more precisely: “slightly” with respect to the

fuzzy partition that we specified—there might be scenarios where such a

global increase from 7.6 to 8.2 could be considered “huge”); the global

trend reference in the linguistic concept mitigates the dip around the

turn of the year. The confidence, however, drops dramatically around

the same time and climbs back up around CW 08/2012. It is this rapid

increase that matched against the local confidence change term.

The entire analysis of this rule set with respect to the single concept can

be accomplished in about three minutes. This allows to check for multi-

ple concepts in little time which can greatly reduce the response time in

case the analysis is done due to quality issues in the underlying domain.

5.4 Summary and Discussion

The (re)implementation of the Information Miner mainly pursued two

objectives. First and foremost to provide empirical evidence that the sci-

entific ideas withstand industrial requirements and use cases. The next

chapter will show results from such projects. The second goal was to

establish a framework for research and rapid prototyping. The frame-

work mainly provides an extensible set of interconnectable tasks that de-

pend on each other and that can interchange data. This minimalistic ap-

proaches allows for a steep learning curve and maximal freedom in imple-

menting the tasks. Academic ideas need to be prototyped very quickly in

order to decide whether the postulated algorithm or principle generates

the planned results. These prototypes can be quickly plugged together

and test-driven in the Information Miner.

The Information Miner was not considered and targeted a competitive

solution to products such as KNIME, RapidMiner or WEKA. The require-

ments in terms of user assistance, training, support and quality control

would clearly exceed the committable staff for development. Therefore,

particular features can be made accessible with the above-mentioned so-

lutions. Essential parts of the rule visualization presented in Chapter 3
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have been implemented as a supplementary package to the KNIME anal-

ysis suite.

The chapter shall be closed with some software metrics and platform spec-

ifications. The Information Miner frontend is written entirely in Java 1.6.

The total number of lines of code is about 53,000 of which approximately

22,000 are related to the visualization and filtering approaches presented

in this thesis. The software is available under http://bit.ly/R79aCB.

http://bit.ly/R79aCB


102 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Top: Full set of 904 rules that need to be filtered as they cannot be as-

sessed manually in an exhaustive manner. Bottom: Using the linguistic concept

in Figure B.11 and Figure B.12 with a threshold of 10% yields already a reduced

set of rules.
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Figure 5.6: Top: Using the linguistic concept in Figure B.11 and Figure B.12

with a threshold of 50% results 11 highly relevant rules. Bottom: Using a thresh-

old of 90%, we are left with only four rules. The confidence and lift time series of

rule ① are shown in Figure 5.7.
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Figure 5.7: Confidence and lift time series of the rule ① from the bottom chart

of Figure 5.6. The rapid dip of the confidence around the turn of the year

amounted for the high membership degree to one term of the linguistic con-

cept “increasing local confidence and stable global lift”. The trend line on the lift

chart at the bottom shows that it clearly contributed to the high membership

degree as the trend can be characterized as mainly unchanged with respect to

the supplied fuzzy partition (see Figure B.9).



6
Evaluation

In this chapter I will apply and evaluate the methods of the framework

that were proposed and introduced in the last chapters. I will start out

with an artificial data set to highlight the applicability of the linguistic

filtering. After that, I will go on with analyzing real-world data sets to

demonstrate the feasibility and practicality of the application.

6.1 Artificial Data Set

I will use an example scenario that goes back to my early work on visual-

izing and refining results of data mining algorithms [STEINBRECHER 2006,

STEINBRECHER and KRUSE 2008b]. This research was carried out at a large

automobile manufacturer and I will apply the linguistic filtering also to

some real-world data later (Section 6.2). For quality control, this man-

ufacturer logs for each vehicle its parts configuration and every service

incident with respective time stamp and failure code. For this artificial

hand-crafted example, five attributes are stored for every car: Time (re-

ferring to the time the respective database entry was assessed), Country

(to which the car is sold), Engine type, Air condition type and the Class

variable. There are five different countries, five air condition types, three

engine types and the class variable is indicating a failure by a Boolean

value (okay vs. fail). The time has four discrete values mimicking four

months where the respective state of cars was assessed. I implemented

the following peculiarity: One special type of air condition fails more of-

ten in two countries. The average failure rate in the other countries is

105
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Figure 6.1: Rule glyph used to visualize the

rules induced from the artificial data set.

Note, that the Class attribute has a reserved

segment on the antecedent ring which will

never be used because the Class is exclu-

sively used as the consequent attribute in

this example.

around 15%. (which was the case in a special real-world example we dealt

with.)1 The failure rates for the two designated countries grow to 30% and

40%, respectively. All given probabilities get added noise with a magni-

tude of ±4%, that is, the failure rates in the “unaffected” countries may

range from 11% to 19%.

Figure 6.2 shows 69 rules at two different time frames (top: first frame,

bottom: last frame). The rules were induced according to the workflow

introduced in Chapter 4 in theory and Section 5.2 as an implementation.

Each rule indicates the above-mentioned class variable in its consequent.

One could argue that this rather small rule set does not need any filtering

at all. However, it should be obvious that a rule set containing several hun-

dreds of rules—as it may happen to be the case in the real example later

on—would be intractable to be assessed manually. The rule glyph assign-

ment is depicted in Figure 6.1. Note that the outer segment belonging

to the attribute Class is never filled: As the Class attributes is only repre-

sented in the consequent, it never occurs in the antecedent. However, a

place must be reserved for it as for general rules any attribute can be in

the consequent. For better evaluation, I color-coded only the attribute-

value combinations that we intent to detect: The assignments Class= fail,

Aircondition=AC1, Country=OM and Country=AEG are drawn in red and

orange whereas all other assignments are drawn in gray.

When filtering against the concept “lift is increasing”, that is,

ξ1 =

〈

∆lift is incr
〉

,

with a threshold of 50%, the two remaining rules in the set are exactly the

above-mentioned rules:
1 Note, that this was a special selection of cars which led to this rather large failure rate.
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Figure 6.2: Rule set of 69 rules induced from the artificial data set. Top: Rule

set at the first time frame. Bottom: Rule set at the last time frame together with

three marked rules that rank highest with respect to the two linguistic concepts

discussed in the text.
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① Aircondition=AC1, Country=OM→ Class= fail

② Aircondition=AC1, Country=AEG→ Class= fail

If we apply the concept “support is increasing and confidence is increas-

ing”, that is,

ξ2 =

〈

∆supp is incr and ∆conf is incr
〉

,

the rules marked ①–③ yield the highest membership degrees. Rules ①

and ② represent the oddity that was intentionally implemented into this

fictitious data set. Rule ③ is a more general rule (only Aircondition in the

antecedent) that has ① and ② as specializations:

③ Aircondition=AC1→ Class= fail

Summary

The previous analysis showed that the proposed methodologies can re-

veal patterns and dependences exhibiting a certain linguistically describ-

able behavior. To be clear: The filtering approach can only act as a hy-

pothesis generator and reduce the number of rules that need to be as-

sessed manually to a size that is feasible. The threshold (of the mini-

mum membership degree of a rule with respect to the linguistic concept)

should be chosen such that e. g. a certain percentage or absolute number

of rules remains. Comparing thresholds across different concepts does

not make sense. The rule ③ would eventually reappear also for concept ξ1

by lowering the threshold. However, it would not appear as early (in the

third place) as for concept ξ2.

The next sections present applications of the visualization and linguistic

filtering approaches in cooperation with industrial partners and provide

empirical evidence of the feasibility of my proposed ideas.
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6.2 Car Manufacturer

The increasing complexity of modern automobiles imposes high demands

on the quality control. With millions of cars sold, a recall due to a de-

sign flaw will cause severe, if not irreparable, damage to the company’s

reputation and must be avoided by all means. The analysis of vehicle

failures reported by service garages is therefore a vital means of quality

control. Association rules have proven to be very appealing for this task.

Since a vehicle manufacturer needs to detect evolving failure patterns

early enough (to fix the problem along with the next inspection instead

of risking a mass recall) the technique must be sensible to small subsets

of cars. Hence, the minimum support parameter for a frequent pattern

induction algorithm will be very small (likely below 0.1%). This in turn

leads to a huge number of rules which in addition to that must be evalu-

ated at different time steps.

The data set under analysis is a real-world set of approximately 300,000 tu-

ples that contain 180 attributes. Since this data set was issued by an indus-

trial partner, I am not allowed to provide confidential information such

as the meaning of the attribute values or the specific interpretation of the

class variable. All I can tell is, that every tuple in the data set represents

a unique car that left the production plant of the vehicle manufacturer.

Since for every car the time of a failure was logged as well, the full set of

tuples can be partitioned into time frames.

I used a preprocessing technique [STEINBRECHER and KRUSE 2008b] based

on Bayesian networks [PEARL 1988] to induce a set of attributes that should

serve as antecedent attributes of the rules to be visualized.2

6.2.1 Analysis 1

For the first analysis, the data set was subdivided into three time frames

(beginning, middle and end of the entire data collection period). It was

possible to identify a small set of meaningful attributes that were used

2 See Section 4.5.2 for details.
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to generate rules whose temporal trajectories were visualized. Figure 6.3

shows a set of 760 rules at three different times. Note, that in this example

the project partner chose the shading of the interior to encode the confi-

dence rather than a pie chart.3 Two scenarios were to be investigated and

were encoded by the following concepts:

1. Lift is decreasing

This pattern could show that some failure pattern is vanishing (e. g.,

because a countermeasure shows to be effective).

2. Confidence is increasing and support is increasing

Such a pattern would correspond to an emerging problem that needs

immediate attention.

6.2.2 Feedback

The analysis actually revealed numerous rules that were interesting to ex-

perts. To simplify the assessment, I superposed the rule locations of the

second and third chart with the first and indicated the motion with ar-

rows. Four rules that showed an interesting behavior and could be as-

signed a meaning by experts are numbered in the figure: Rule 1 and 2 had

a large membership degree to the first concept: They represent a shrink-

ing sets of cars whose confidence is also dropping. More interesting, how-

ever, is the rapidly lessening lift which gave rise to the conjecture that the

cause for the failure had been successfully addressed. Contrary, rules 3

and 4 represent sets of cars with increasing failure rate (confidence is in-

creasing indicated by the darkening of the interior of the icons).

6.2.3 Analysis 2

For the second analysis, the data set was subdivided into five time frames.

Figure 6.5 shows two ways of presenting an untreated rule set to the user.

The left upper chart shows the rule set at the beginning of time (with re-

spect to the underlying data set). The state of the rule set in the middle of

3 See Section 3.2 starting on page 41.
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Figure 6.3: Real-world application of a set of vehicles with a binary class vari-

able: failure and no failure. Only rules indicating a failure are depicted. Two

attributes were used to form the rules (hence two filled regions in the outer ring

of every rule), therefore no overlapping of covered database cases could occur.

The three charts show the rules at the beginning, the middle and the end of the

production period. To assess the motion of the rules, I superposed the final loca-

tions of the rules with the first image and indicated the corresponding rule with

an arrow.
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Figure 6.4: Visualization of an entire rule history over five time points.

the entire time span is depicted in the right upper chart, whereas the final

state at the end of time can be seen in the left lower chart. In this analysis,

for every distinct time step for which data is available, a rule is depicted

just as a circle to not clutter the figure. Consecutive temporal steps are

connected by a straight line (indicating the movement as it would hap-

pen in the animation). Additionally, the last location of a rule is marked

by a small dot, which serves as an arrow head (which would be to small

to recognize as one). An intended trajectory of a single rule can be seen

in Figure 6.4.

As easily can be seen, there is a demand of thinning out the rule set be-

cause it is not practical to assess the full set manually since it produces

an overwhelmingly large number of moving objects even when dealing

with relatively small rule sets.

Example 1

The global evaluation method using Bayesian networks [STEINBRECHER

and KRUSE 2008a] found the attributes RoadType and Temperature (of the

area where the car was last used) to have major impact on the class vari-

able.

For the first analysis, we are interested in rules that exhibit a rather con-

stant lift but become more probable over time (that is, their confidence is

increasing):
〈

∆lift is unch and ∆conf is incr
〉



6.2. CAR MANUFACTURER 113

Figure 6.5: This figure displays the complete temporal evolution of the full set

of association rules which were induced from a Bayesian network (see Sec-

tion 4.5.2). The upper two and the leftmost bottom chart depict the rule set at

three different times of the entire time span of the data set, namely the begin-

ning (up left), the middle (up right) and the end (bottom right). The location of

every rule is determined by its recall and lift value as these combination have

been found more intuitive in that setting. The horizontal line at y = 1 indicates

a lift value of 1 (lift-1 line). A rule located on this line has the property that its

antecedent does not have an effect on the consequent probability. It is fairly ob-

vious that a manual assessment of every single rule will become tedious. The

chart at the bottom right depicts the entire rule’s trajectories over the complete

time span, where every rule is only represented by its outer border. The lines in-

dicate the trajectory of a single rule. The spot at the end of a trajectory marks

the end of the time span, thus serving as a substitute for arrow heads as these

would be irrecognizable in the print. The lines ranging out of the top border

depict rule movements that leave the viewport used for a consistent presenta-

tion. Obviously, none of these representation is of much use unless the number

of rules is considerably reduced.
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Figure 6.6: Filtering a rule set of 95 rules. The left chart depicts the re-

sult of matching the complete rule set against the linguistic concept

〈∆lift is unchanged and ∆conf is incr〉. The threshold was set to 25%. The right

chart shows rules that match the concept
〈

∆supp is incr
〉

at least to a degree of

65%. The trajectory marked with (1) shows a good example of the obvious sup-

port increase since the circle area represents the support.

Figure 6.7: The fuzzy partitions of the domains that

describe the lift change and the confidence change

rates that are referred to in the linguistic concepts.

The fuzzy partitions of the

evaluation measure domains

used in these examples are

depicted in Figure 6.7. The

left chart of Figure 6.6 de-

picts the resulting rule sub-

set. We display all rules

that have a degree of mem-

bership with respect to the

linguistic concept of at least 25%. It can easily be seen when compared to

Figure 6.5 (which depicted the original, unfiltered rule set) that a consid-
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erable reduction was achieved. It can further be stated, that most of the

rules exhibit the properties described by the linguistic concept.4

Of course, a lift increase from 1 to 1.25 (as it happens to be the case of one

rule) can be considered enormous. If so, than this fact has to be reflected

in the fuzzy partition of the respective domain.

Example 2

The right chart of Figure 6.6 depicts the result after matching the rule set

against the concept
〈

∆supp is incr
〉

.

The threshold was set to 65% to shrink the number of results. Rule (1) in-

tuitively shows the support increase by the growing size of the circle. The

trajectories of the other depicted rules are somewhat indistinguishable

but expose the same support-increasing behavior when using the anima-

tion visualization instead of the depicted global trajectories.

Example 3

For the third example, I used another underlying rule set. The antecedent

attributes are exclusively referring to temperature of the area in which the

car was used. The concept to thin out the rule set of 152 rules was the

following:
〈

∆lift is decr and ∆supp is decr
〉

The minimum membership degree was set to 15%. The left chart of Fig-

ure 6.8 displays the result. This example shows that in linguistic concepts

that use more than one criterion one has to select the fuzzy partitions of

the respective evaluations measures carefully. As stated in the caption of

Figure 6.8, the finding of rule (2) can mainly explained by its rather strong

4 The lift (the y-coordinate) does not increase or decrease considerably as can be seen from
the fact that the rules remain around the lift-1 line. However, the figure does not depict the
increase of the confidence which was actually present. The next examples, however, will show
only properties that are fully recognizable in the figure.
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Figure 6.8: The left chart depicts the result of example 3 with the linguistic concept
〈

∆lift is decr and ∆supp is decr
〉

and threshold 15%. The resulting rules match the con-

cept intuitively well, however, one has to admit that the support decrease (note that at

the end of time there were hardly any cars covered as indicated by the tiny circles which

are marked by the ellipse for clarity) governs the concept and the decrease of lift has

not a big influence. This can be seen from the fact that the rule (2) has a non-linear

lift history but is still covered by the concept. The right chart depicts an example where

the concept matching fails due to a non-linearity of the lift history. The trajectory (3) is

intuitively not characterized by an “unchanged lift”.

decrease in support. It outweighs the temporary lift increase such that it

still matches the linguistic concept.

Example 4

The last example is used to provide evidence that non-linearities in the

trajectories may have counterintuitive results. The same rule set as in

example 3 was used and matched against the following concept:

〈

∆lift is unch
〉

The threshold was raised to 90% to just result in two rules as depicted

in the right chart of Figure 6.8. Obviously, rule (3) does not follow the

intuition behind an “unchanged lift”.
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6.3 Second Life Online Community

Another application stems from a cooperation with a company creating

content for the 3D online community Second Life [WWW: SL]. In order

to evaluate whether online content such as buildings mimicking online

stores or museums function as intended, a set of virtual sensors are de-

ployed in that environment. Whenever a player passes by such a sensor

(within a specified vicinity) a visit event is logged. I analyzed such a log

file for 100 sensors that had been logged for six months. The data set

was then discretized into frames of one month length each. A common

representation of such a log file is a so-called cooccurrence graph. The

nodes comprise the sensors whereas the edges represent that the sensors

connected by that edge have been visited by some set of common users

(within a certain time span). Edge weights are used to denote the cardi-

nality of such sets. Figure 6.9 shows the sum graph of the data set, that is,

the cooccurrences of six months among 100 locations.

I will present two analyses of the same data set: The first will apply only

the linguistic filtering whereas the second analysis will discuss how to use

the rule visualization to display changes inside the graph structure.

6.3.1 Analysis 1

This data set contains player contacts at certain locations within a 3D en-

vironment over a time period of six months. The edge weights indicate

some subgraphs that are worth looking closer at. The threshold θ has

been chosen to be 1,000 to induce the candidate node sets.5

I will match two linguistic concepts against these graph candidates: first,

the interest lies on decay, that is, in graphs that show kind of a dissolving

behavior, translating into a decreasing completeness and decreasing total

weight. In the sample data this might indicate locations whose attractive-

ness is diminishing. A second concept that is going to be assessed is that

of an establishing pattern. An increasing average edge weight and devia-

5 See Section 4.5.3 for details.
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tion (of edge weight) might point out a phase of initial apparent random

visiting of multiple locations which accumulates into a strong favored vis-

iting pattern.

Concept 1: Decreasing completeness and decreasing weight

In order to evaluate the membership degrees to the linguistic concept
〈

∆comp is decr and ∆wght is decr
〉

,

we need to declare a fuzzy partition on the change rate domains of the

functions comp and wght. Figure 6.10 displays all used fuzzy partitions.

I am using three fuzzy sets. Note the asymmetric slopes of the borders.

This setup has proven to be useful in this context since “unchanged” has

a more strict semantic to users than the adjectives “decreasing” and “in-

creasing”. I am deliberately departing from this well-known convention

of the area of fuzzy control to use fuzzy partitions with unity membership

degree sum across the entire domain (as it is e. g. the case in Figure 6.7).

This constraint eases the construction of smoothly operating fuzzy con-

trollers but does not contribute to the concept formulation. The respec-

tive values that determine the particular fuzzy partition can be read from

the four different horizontal scales. These values have been selected with

respect to the data set since the quantity that renders a slope to be highly

decreasing or increasing differs, of course, from data set to data set.

If we apply the linguistic concept to the candidate graphs and select the

one with the highest membership degree (ignoring the remaining ones

here for brevity), the subgraph whose history is depicted in the upper row

in Figure 6.11 scores 71%. Most of the high degree can be attributed to

the rapid loss of visits in the last two months. The membership degree

was evaluated via

min
{

µ(decr)
∆comp

(C1), µ(decr)
∆wght

(C1)
}

= min
{

0.71,0.84
}

= 0.71,

with C1 being the set containing the five nodes. Data inspection revealed

a newly set up structure which was heavily frequented shortly after open-

ing, followed by abating excitement.



6.3. SECOND LIFE ONLINE COMMUNITY 119

Figure 6.9: The sum graph of six months of visiting history of players in a 3D environ-

ment. I will match the major components (extracted via a user-specified threshold)

against two linguistic concepts.

Figure 6.10: Fuzzy partitions for the four graph measures used in the two analyses.
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Figure 6.11: The histories of the two subgraphs that scored highest in the two analyses.

The upper row shows a six-month development of five locations that were heavily vis-

ited but declined rather rapidly towards the end. It yielded a membership degree of 71%

to the concept “completeness is decreasing and total weight is decreasing”. The lower

row depicts the best-scoring subgraph of the second experiment resulting in a member-

ship degree of 83% to the concept “average is increasing and deviation is increasing.”

Concept 2: Increasing average and increasing deviation

I follow the same procedure to find the subgraph that scores best on the

concept
〈

∆avg is incr and ∆dev is incr
〉

.

The lower part of Figure 6.11 shows the resulting graph with a score of

min
{

µ(incr)
∆avg

(C2), µ(incr)
∆dev

(C2)
}

=min
{

0.83,0.89
}

= 0.83,

The graph shows an establishing link between two nodes in parallel with

a weakening in the remaining edges thus rendering the graph history be-

coming more unbalanced.

6.3.2 Analysis 2

Even though I have proposed methods to deal with temporal changes

within series of cooccurrence graphs [STEINBRECHER and KRUSE 2010,

2009a], we can extract more information when we induce rules from these

graphs and apply the proposed visualization. This is advantageous be-

cause of the following reasons: A rule of the form “If sensor X was visited,
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sensor Y was also visited in p% of all cases” is more meaningful than just

an edge with an associated weight (which corresponds to the absolute

support). The above rule depicted with our visualization immediately re-

veals how many visitors compared to other rules are covered and how

that number compares to the general visiting activity of a sensor. Fur-

ther, a certain rule set will have a fixed visual representation whereas the

corresponding graph needs to be laid out which can create different im-

pressions based on the layout algorithms. However, coordinates from any

graph representation cannot carry the information of the rule icons.

Figure 6.12 shows the rules induced from the visiting events of the above-

mentioned log file at three different time steps. Rules have been induced

that covered at least 1% of all visits and had a minimum confidence of

1%. Note that this low confidence value is not unusual as we can expect a

meaningful lift value since this is the ratio between confidence and con-

sequent probability. Note also, since a rule represents an edge, the ante-

cedent contains exactly one attribute. Hence, I have omitted the border

of the rule icons.

I discuss the findings based on two subsets of rules. The subset marked

by the ellipse in Figure 6.12 corresponds to a triangle in the original graph.

Note, as the graph is undirected, it is possible that two rules are induced

for a single edge if they match the specified criteria. Hence, a triangle

might be represented by up to six different rules. All rules show a lift in-

crease to the middle of the time period after which it decreased again. Se-

mantically, this corresponds to an upraise and loss of predictability of the

sensors in that subset: A high lift tells that given a visit at one sensor, we

can conclude a more likely visit at the sensor described by the rule con-

sequent. Of course, not necessarily by the same user! An inquiry at the

company confirmed that a certain modification had been undertaken at

the 3D content in the vicinity of these sensors during the middle of the log

period. The rules marked by the rectangle in Figure 6.12 correspond to a

single edge that was heavily visited as can be seen from the rule icon size.

The lift is decreasing, which is not surprising in the underlying 3D setting.

The two sensors were placed along a frequented pathway that more and
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more users were accepting to use. If the general usage increases (and thus

the consequent probability) the lift will decrease, as we observe here.

6.4 European Telecommunications Provider

The last and most recent evaluation was carried out with data obtained

from a cooperation with a large European telecommunications service

provider. This company has a high incentive to address and resolve any

support issues in the shortest time possible. As the product and service

portfolio is developing, so are the key performance indicators (KPIs), met-

rics and attributes that are used for assessment.

The specific cooperation with the company’s research department gave

rise to look into support inquiry data in order to check for conspicuities.

The data set consisted of a collection of support inquiry descriptions col-

lected between July 2011 and May 2012.6 Each support inquiry was de-

scribed with ten descriptive and one time attribute. I subdivided the data

set into time frames of one week each, resulting in 43 time frames. The

workflow introduced in Section 5.2 was applied in order to induce the fi-

nal rule set of 1585 rules. Since there is no dedicated class variable, each

of the ten attributes can occur in the consequent.

The following subsections reiterate the analysis with some of the identi-

fied rules. A conclusive assessment is given at the end of this section. It

turned out that for most concepts there are clusters of rules that exhibit a

very similar temporal behavior. For the sake of brevity, I will illustrate one

representative of each cluster in greater detail. For each rule, I will give

the full time series of the antecedent support, consequent support, joint

support, confidence and lift. Figure 6.13 shows the attribute assignment

6 For reasons of anonymization, the data set was transformed in order not to reveal the true
absolute supports of rules as these may give insight into the company’s business secrets. The
data set was augmented via rescaling the weights of each tuple (that is, basically copying it).
Doing so, obviously preserves the relative frequencies and allows to talk about rule evalua-
tion measures. The only figures where this fact has to be taken into consideration are the
top charts of figures 6.15–6.20. The augmented data set under analysis consisted of some
4.3 million tuples.
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Figure 6.12: Rules induced from a cooccurrence graph at three different time steps. The

two rule sets that are marked by the ellipse and rectangle were identified to correspond

to modified artifacts inside the 3D world: The rule set marked by the ellipse showed a

collective lift increase towards the middle of the logging period and diminished after.

The rules marked by the rectangle exhibit a lift decrease and support increase.
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to the rule glyph for all rules in this analysis. An asterisk (∗) in the rule

description denotes a wildcard, and therefore represents a set of rules.

Figure 6.14 depicts all rules in one image at the first time frame. Clearly,

some filtering is needed in order to inspect the underlying process.

Figure 6.13: Attribute assignment to the rule glyphs.

6.4.1 Concept 1: Local lift is increasing

Checking the rules for increasing local lift is a kind of a standard first task

as it can reveal information about both changing confidence and support.

Two groups of rules are immediately identified when raising the concept

membership threshold:

• OVERALL_FAULT_LABEL=OFL4∧∗→ FAULT_LABEL= FL3

• FAULT_LABEL= FL3∧∗→OVERALL_FAULT_LABEL=OFL4

Both rule types are obviously complementing each other. Figure 6.15

shows the time series for the following specific rule:

FAULT_LABEL= FL3∧R_FLAG=N→OVERALL_FAULT_LABEL=OFL4

The rule’s support time series reveal a drastic drop and increase around

the turn of year: The joint support drops from to almost zero before it

rises again to roughly the initial level. Since the confidence practically

remains constant throughout the year, the huge peak of the lift is its con-

sequence.
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Figure 6.14: Full rule set with 1585 rules in the first time frame.
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Figure 6.15: Time series for rule: FAULT_LABEL=FL3 ∧ R_FLAG=N →

OVERALL_FAULT_LABEL=OFL4.
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6.4.2 Concept 2: Local support and global confidence

are increasing

We just saw that there might be drastic changes in the support, so a deeper

look into such rules might be a good idea. In addition to that, I also con-

strain the confidence to be globally increasing. A stable confidence as in

the section before may not be expressive.

The following group of rules is revealed:

INTERNAL_PRODUCT=P2∧∗→ FINAL_JL=NULL

The time series of one instance of this group are depicted in Figure 6.16.

Again, things change tremendously around the turn of year: The confi-

dence shoots from around 10% up to 100%. Likewise, the joint support

of the rule increases from around 1,500 to values between 17,000 and

20,000.7 We will bear this temporal location “turn of the year” in mind

in order to constrain the following concepts.

6.4.3 Composite Patterns

The two distinguished patterns of the last two concepts (peak pattern in

the lift series of Figure 6.15 and the plateau-like pattern of the confidence

and lift series of Figure 6.16) give rise to check the rule set for similar pat-

terns. I will discuss both with an example each in the following two sub-

sections.

Peak Patterns

Checking for peak patterns follows the descriptions of Section 4.3.2.8 The

population was initialized with 15 random chromosomes each of which

representing the borders of the two flanks of a peak pattern. The genetic

algorithm ran for at most 300 iterations and was run on each time series.

7 Remember, that these absolute values do not reveal the actual numbers for the sake of
anonymization! Nevertheless, the ratio between them is the same.

8 See pages 69 ff.
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Figure 6.16: Time series for rule: INTERNAL_PRODUCT=P2∧C_FLAG=N →

FINAL_JL=NULL.
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Figure 6.17: Time series for rule: INTERNAL_PRODUCT=P9 →

OVERALL_FAULT_LABEL=OFL9. It was identified as the winner time series match-

ing best against the linguistic concept ”confidence peak around turn of year“. The blue

superimposed fuzzy set represents the term “around turn of year”.

I chose to check for peaks in the confidence series since a manual inspec-

tion showed that this measure brought up the most diverse patterns and

motifs and hence would put a higher challenge on the filtering approach.

The average running time of the described composite pattern detection

was around 100 ms.9 Further, the composite pattern was constrained to

be present at the “turn of the year” as motivated in the last section. The

fuzzy set used for this temporal constraint is shown superimposed as the

blue graph in Figure 6.17. The time series in red shows the winner confi-

dence time series for which the linguistic concept “peak around the turn

of year” had the highest membership degree.

9 I refrain from giving more detailed performance measurements here for two reasons: First,
the running time for a single rule’s time series of 100 ms is short enough to be applied to all
rules in the set and still get feedback quick enough. And second, the reported average du-
ration was measured while the application was running in debug mode which lead to larger
variation. Controlled tests would have much likely lead to even better results. However, the
obtained numbers were found to be good enough to focus on pattern investigation rather
than ungrounded optimization.
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Figure 6.18: Time series for rule: FINAL_JL=OK ∧ REGION=R2 →

INTERNAL_PRODUCT=P9. The time series was detected by matching against the

linguistic concept “confidence with ditch”.

Ditch Patterns

Investigating the data set revealed another pattern that arose quite of-

ten: A ditch pattern where after a decreasing flank and some stable part

a steep increase followed (similar to an inverted plateau). In order to

find those patters, I modified the peak membership computation func-

tion10 in the following way: First, the proximity constraint of the two

flanks (line 14) was removed and second, the two fuzzy sets in line 19

were swapped. I did not apply a temporal constraint here as it was not

clear whether the patterns cumulated at a special point in time. The set-

tings of the genetic algorithm were the same as in the peak detection step.

Figure 6.18 shows one of the detected time series. A multitude of rules

with such confidence patterns was identified; one is depicted here as a

representative.

10 See Algorithm 4 on page 70.
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6.4.4 Concept 3: Local support and local lift are increasing

This concept combines elements from the above two analyses (concept 1

and 2). As we will see, we could have also used local lift instead of local

confidence. The following group of rules can be revealed (together with

the group from concept 1 above):

FAULT_LABEL= FL3∧∗→ FINAL_JL= JL1

Figure 6.19 shows one rule of that group. Clearly, the turn of year is again

playing a dominant role here as the articulated drop of confidence and

lift at CW 2/2012 indicates.

6.4.5 Concept 4: Local confidence and global lift

are decreasing

Let us now filter for rules exhibiting decreasing trends in their time series.

Again, with focus on the turn of year. Matching against this concept, the

following single rule can be identified:

INITIAL_JL= JL2∧END_USER_PRODUCT= P2→ FINAL_JL= JL2

Up to CW 3/2012 the rule represents an inclusion (confidence of 100%,

also visible as the antecedent and joint supports are equal). All of a sud-

den, this changes and the rule does not have a meaning any more: Its

support drops to and stays at zero. Figure 6.20 depicts this situation.

6.4.6 Feedback

The findings of the previous filtering runs can be summarized as follows:

There are conspicuous effects visible around the turn of the year: Be it

support, confidence or lift time series, they are likely to change dramat-

ically at this time span. Further, most rules share one attribute in com-

mon: FINAL_JL. I compiled an extensive set of rules (containing the above-

mentioned rules) and handed the findings over to the company’s research

staff. An internal assessment showed that the attribute FINAL_JLwas only
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Figure 6.19: Time series for rule: INTERNAL_PRODUCT=P9 ∧

FAULT_LABEL=FL3→ FINAL_JL= JL1.
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Figure 6.20: Time series for rule: INITIAL_JL= JL2∧END_USER_PRODUCT=P2→

FINAL_JL= JL2. The lift cannot be computed as the support dropped to zero at

CW 5/2012.
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recently removed from the data set as it did not deliver reliable semantics.

My proposed analysis approaches could have accelerated this detection.

In addition to that, the peculiar patterns that occur around the turn of

year are related to changes in business processes. The patterns detected

by my proposed filtering technique could have earlier led to the insight

that these changes need to be complemented by respective adjustments

in the data acquisition and analysis processes.



7
Conclusions and Outlook

This thesis represents my attempt to simplify a particular data analysis

task and reduce the effort to arrive at meaningful results. Section 7.1 sum-

marizes the previous chapters, complements the announcements of the

introductory chapter and highlights my contributions before I close my

elaborations with prospects for further development in Section 7.2.

7.1 Summary and Contributions

The introductory Chapter 1 concretized the data mining setting in which

I embedded by proposed analysis and visualization techniques. I repeat

the quote from page 7 here to help summarize the accomplished tasks:

This thesis dealt with the ② identification and ③ visualization

of ① patterns that exhibit a certain ④ temporal behavior that is

considered ⑤ interesting to the user.

① Pattern Types

The main pattern type was chosen to be association rules for reasons de-

scribed in Section 1.3. I later transferred the proposed concepts to other

models such as decision trees, Bayesian networks and cooccurrence graphs

(see Section 4.5). The applicability was illustrated for cooccurrence graphs

in the evaluation in Chapter 6 (Section 6.3). All model types were theoret-

ically covered in Chapter 2 and Section 4.5.
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② Identification

The notion of identification was assigned two aspects: First, to provide

a graphical user interface (GUI) that enables the user to intuitively in-

teract with the data and patterns and thus to come up with hypotheses

that can yield new insights. Such a software was implemented and in-

troduced in Chapter 5. The presented Information Miner 2.0 not only

was used to scientifically validate the concepts. Parts of it were also used

in real-world industrial settings. Results of the latter were presented in

Chapter 6. The second aspect of identification as I see it, is the intuitive

description of what is considered interesting to the user. I suggested the

linguistic filtering approach using fuzzy concepts in Chapter 4. The the-

oretical ideas were both successfully implemented (Chapter 5) and vali-

dated (Chapter 6).

③ Visualization

Chapter 3 presented glyph visualizations that are capable of encoding

high-dimensional nominal and continuous data with little redundancy.

These glyphs are used to visually represent association rules (and also—

with some restrictions—edges in cooccurrence graphs) and thus provide

a means of displaying entire rule sets to the user. The glyph visualization

was implemented and tested in the above-mentioned Information Miner

2.0 software stack (Chapter 5).

④ Temporal Behavior and ⑤ User Interestingness

Following the motivation from the introductory chapter, I proposed an

approach in Chapter 4 that allows to specify fuzzy descriptions that are

matched against the time series of the rules’ properties in order to filter

out the most relevant rules. The user specifies fuzzy descriptions that are

defined over the domains of interest, here: the domain of change rates

of selected rule evaluation measures. By changing the fuzzy partitions

over these domains the user is able to relax or tighten the strictness of
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his concepts. Since rules can have a membership degree between zero

and one to every concept, the resulting rule set (rules that have a positive

membership degree) can be ordered to focus on rules that match best the

user concept. The software platform (Chapter 5) was used to evaluate and

validate (Chapter 6) these proposals.

7.2 Future Work

This last section collects ideas that might extent the contributions of this

thesis. I also address shortcomings that might limit a data analysis.

7.2.1 Time Frame Discretization

In this thesis I used implicit time stamps from the underlying database

management system that were discretized into equidistant time frames

based on the user’s choice (week-wise or month-wise). Week-wise frames

can lead to quite a large number of frames to animate and analyze which

might become tedious to look at. Further, global trends might lose their

expressiveness over such a large number of frames. In contrast to this, too

few time frames might not reveal subtle changes in the patterns trajecto-

ries. Therefore, it can be beneficial to allow for time frames of different

widths. In [STEINBRECHER and KRUSE 2009a] I sketched a way how that

could look like in the realm of cooccurrence graphs: The data set was

initially subdidived into equidistant subsets of short width. Then, con-

secutive frames were merged if certain structural criteria were met. Some

of the frames were merged, some remained unchanged, thus introduc-

ing differently sized frames that helped to reduce the analysis complexity.

The above-mentioned criteria need to be rephrased in the area of associ-

ation rules in order to come up with similar complexity reductions.
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7.2.2 Seasonal Aspects

When it comes to time series analysis, seasonal changes require special

attention. I did not take them into account here for mainly one reason:

Seasonal aspects need to be treated with respect to a variable (such as a

purchase amount, order numbers and the like). However, when induc-

ing general association rules (that is, without restricting the consequent

to a single (class) attribute), we would need to treat potential seasonal as-

pects for each consequent attribute separately. In no case I had enough

information about such effects for each attribute to be able to cater for

seasonal aspects. However, for analyses where a single class attribute is

fixed for the consequent (see e. g. Section 6.2) such investigations might

increase the explanatory power of the entire analysis.

7.2.3 Address Odd Trajectories

We have seen in Example 3 (Section 6.2.3) that oddly shaped trajecto-

ries such as depicted in the right chart of Figure 6.8 can be misleading

in global trend filtering. Two options arise: If such rapidly changing tra-

jectories are of interest, they must be made available within the filtering

framework. Regression methods will then be too limited, calling for other

assessments that better cover the shape of the trajectories. Or, if such

oddly shaped trajectories are unwanted, they must be filtered out such

that they do not match against trend filters as in the above example.

7.2.4 Explain Similar Rules

The evaluation of Section 6.4 revealed that in some circumstances there

might be groups of similar rules exhibiting a similar temporal behavior.

Similarity with respect to rules means that they share all but one antece-

dent or consequent attribute/item. In such cases it might be very helpful

to replace such a group by just one visual placeholder or to describe the

overall behavior of all these rules in a linguistic manner. This would ac-

tually call for the opposite procedure: Derive linguistic (human-readable
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textual) descriptions from given time series. Such techniques are stud-

ied (e. g. [KACPRZYK and WILBIK 2010]) and could be used to infer fuzzy

concepts that then match against entire sets of rules (namely the above-

mentioned groups that share items and behavior). Another way to deal

with similar rules is to find condensed representations of the item sets

they are extracted from [BÖTTCHER et al. 2005, 2009]. A combined ap-

proach of filtering a rule set that was created from a previously reduces

set of item sets might prove to be an interesting and promising undertak-

ing.





A
Related Work

This appendix summarizes and sketches works from other authors re-

ferred to in the visualization and linguistic filtering chapter. Figures and

verbatim quotations are taken from the respective reference specified in

the section title.

A.1 Rule Visualization

A.1.1 Visualizing Association Rules for Text Mining

[WONG, WHITNEY and THOMAS 1999]

The paper proposes an visualization that displays an item-to-rule relation

which is encoded in a two-dimensional matrix. Each column represents

a rule whereas each row stands for a single item. If an item is present

in the antecedent or consequent of a rule, the respective matrix entry is

colored (with different colors for antecedent and consequent, of course).

The matrix is actually drawn in three-dimensional space in order to place

two rows of bar chart columns next to it, representing the support and

confidence values of the respective rule. Figure A.1 shows a set of 45 rules

that are described on nine items.

The authors used their method to visualize text documents. The item set

consisted of keywords extracted from a corpus and the rules marked the

relation between these words. Clearly, the system is feasible only for a

small number of items and rules. Dealing with hundreds of rules and
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Figure A.1: A set of 45 association rules together with their support and confidence

values. The colors have been inverted in order to increase readability.

items would result in a huge and sparse matrix that would be inconceiv-

able for a human interaction. Depending on the angle of view, it can be

hard to observe all association rule measures assigned to the bar charts.

Comments

One objective of my visualization method was to deliver a representation

that contains as little arbitrariness as possible. In Figure A.1, the items

are ordered alphabetically and the rules are sorted ascendingly by confi-

dence. The latter choice proves to be arbitrary when one is tempted to

encode temporal behavior, that is the change in support or confidence.

The bar charts are likely to change and the order of the rules becomes ran-

dom. In addition, the third dimension is merely used as a workaround to

possible overlapping in the bar charts and does not carry any additional

information about the rules.
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Figure A.2: Visualization of the two asso-

ciation rules db → ce and ab → ce using

Bézier curves to distinguish both lines. The

pi denote the Bézier control points [BAR-

TELS et al. 1998] that are used to create

non-overlapping curves.

A.1.2 Visual Exploration of Frequent Itemsets and Association

Rules [YANG 2005, 2008]

The authors use parallel coordinates [INSELBERG 1985, 2009] to visualize

frequent item sets and association rules. Every coordinate (that is, every

vertical axis) contains all the items that are referred to by the rules. The

items contained in the antecedent and consequent are connected by a

Bézier curve in order to be able to distinguish rules with common items

and thus overlapping straight lines. Figure A.2 shows an example of two

rules. If a taxonomy (that is, a hierarchical structure) of the item set is

available, it can be used to replace the parallel coordinate axes as shown

in Figure A.3.

Figure A.3: Associations rules drawn on the item categories Beers and Foods.

Comments

I rejected to follow an alike approach for association rule visualization.

First and foremost, none of the evaluation measures are represented spa-
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tially1 which in turn disqualifies the approach for a further extension to-

wards temporal change. Second, the order of the parallel axes is arbi-

trary and thus complicates the visual assessment. Lastly, the visualiza-

tion is not capable of displaying a large number of rules properly as the

overlap—even though it might be reduced by using appropriate Bézier

curves—renders this task hard to impossible.

A.1.3 Visualizing Association Rules with Interactive Mosaic Plots

[HOFMANN, SIEBES and WILHELM 2000]

The paper motivates mosaic plots [HARTIGAN and KLEINER 1981] as an

intuitive visualization for association rules. Figure A.4 shows an example

of 8 association rules (actually, 16, if we also count the rules with negated

conclusion). A set of items is chosen to be the pool for antecedent items.

From this pool, all item subsets with nonzero support are created. In the

example, the antecedent pool is
{

heineken,coke,chicken
}

. All 8 possible sub-

sets are created and depicted by a visual indicator formed by stacked bars

at the bottom of Figure A.4. Black represents a present item, which a miss-

ing one. Each antecedent is assigned a vertical bar with the width of it rep-

resenting the relative antecedent support. For each antecedent, an associ-

ation rule is formed that has an additional previously-chosen item (here:

sardines) as its consequent. The confidence of this rule is depicted by fill-

ing the bar up to the respective percentage level. Figure A.4 depicts one

rule with a confidence of almost 100%:
{

heineken,coke,chicken
}

→ sardines.

Comments

The visualization by mosaic plots (or more precise: double decker plots,

to stress the antecedent encoding) resembles the visualization of condi-

tional probabilities used in [STEINBRECHER 2006, STOBER et al. 2009]. It

is an appealing approach for assessing single or few association rules. In-

1 One measure is encoded by color, though.
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Figure A.4: Eight vertical bars each representing an association rule with the antece-

dents set to all subsets of
{

heineken,coke,chicken
}

and the consequent being sardines.

The bar width encodes the antecedent support while the filled area in red denotes the

confidence of the respective rule. The rightmost rule clearly stands out by its extremely

high confidence.

deed, the authors use the plots to check which antecedent items have the

highest impact on the confidence and thus apply their visualization on

only a few rules simultaneously. Therefore, I did not consider an alike

approach for visualizing large sets of association rules.

A.1.4 Visual post-analysis of association rules

[BRUZZESE and DAVINO 2001, 2008]

The authors use multiple correspondence analysis [ROUX and ROUANET

2004] to visualize the dependences encoded between the items of the

rules’ antecedents and consequents. Given the rule set {ρ1, . . . ,ρn} and

the underlying item set {a1, . . . , aN } the starting point is an (n × N + 2)-
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matrix that contains for every rule and item a binary value whether the

item is contained in that particular rule:2



















a1 · · · ai · · · aN s c

ρ1 �a1 ∈ ρ1� · · · �ai ∈ ρ1� · · · �aN ∈ ρ1� supp(ρ1) conf(ρ1)
...

...
...

...
...

...

ρ j �a1 ∈ ρ j � · · · �ai ∈ ρ j � · · · �aN ∈ ρ j � supp(ρ j ) conf(ρ j )
...

...
...

...
...

...

ρn �a1 ∈ ρn� · · · �ai ∈ ρn� · · · �aN ∈ ρn� supp(ρn) conf(ρn)



















Two columns are added to contain the supports and confidences of all

the rules. The multiple correspondence analysis yields a dimension re-

duction which then allows for the visualization of the items or the rules

or both. Figure A.5 shows both items and rules of an example data set

from the well-known UCI Machine Learning Repository [WWW: UCI].3

The circles represent items (with the support being proportional to the

area) whereas gray boxes denote rules. The closer the item circles are, the

larger is the number rules that contain those items in either antecedent or

consequent. Hence, rules that are depicted in close proximity (are likely

to) share more items that rules farther apart.

Comments

One of the requirements I stated in Chapter 3 was to ensure any dimen-

sion used for locating a graphical artifact (such as a circle for an item or

box for a rule) has a strict meaning conveying an exact rule or item mea-

sure. Here instead, the high-dimensional matrix was flattened introduc-

ing axes that are formed of linear combinations of original axes. The x-

and y-coordinate of an artifact alone does not convey much information,

it only allows conclusions based on distances. I therefore do not consider

approaches where any means of dimension reduction is applied.

2 The expression �·� represents the (truth) value of the specified statement.
3 This data set contained 101 rows of 15 boolean attributes.
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Figure A.5: Circles represent items, boxes depict rules. The closer items are, the more

rules contain these items and consequently the closer rules are, the more items they

have in common.

A.1.5 A 2D-3D Visualization Support for Human-centered Rule

Mining

[BLANCHARD, GUILLET and BRIAND 2003]

The authors introduce a three-dimensional glyph-based visualization for

association rules. The underlying idea resembles the widely known Cher-

noff faces [CHERNOFF 1973] where dimensions and proportions of facial

elements (such as eyes size, nose size, eyes distance, etc.) are used to rep-

resent a high-dimensional data set in two-dimensional space.

Figure A.6 (left) shows such a glyph consisting of a sphere on top of a

cone. Several glyph properties (such as sphere size and color, cone size

and color, cone apex angle) can be assigned user-specified rule evalua-
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tion measures. The glyphs of an entire rule set are laid out in the shape of

an arena as can be seen in the main part of Figure A.6.

Figure A.6: Each association rule is depicted as a

glyph consisting of a sphere and an adjacent cone

encoding a multitude of rule evaluation measures.

The rule set is laid out as an arena in which the user

can navigate and explore related sets of rules.

Comments

I do not consider three-dimensional visualizations since the approach

suggested in this thesis already adds one dimension in terms of time. The

user would have to navigate through a changing three-dimensional space

which I reject in order not to overstrain the user. The idea, however, to use

glyphs exposing several properties that get assigned evaluation measures

influenced the proposed methods of this thesis.

A.2 Temporal Aspects of Rules

There are multiple approaches to take the dimension time into account

when inducing or post-processing frequent item sets or association rules.

This section sketches selected approaches that use different ideas to rep-

resent temporal aspects.
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A.2.1 An approach to discovering temporal association rules

[ALE and ROSSI 2000]

This paper merely conveys an elaborated idea for temporal rule induction

rather than a sound and evaluated framework. The authors use the nor-

mal notion of frequent items and assign to each item an interval in which

it is valid. This is done by assigning to each transaction in the database

a time stamp. The validity interval of an item is then defined as the min-

imum and maximum of the union of all timestamps of transactions that

contain the respective item.

A temporal rule is algebraically of the same type as an ordinary associa-

tion rule, just with a validity interval assigned with respect to which the

well-known rule evaluation measures are calculated.

Comments

As we are dealing with constant (or user-specified) time frame widths, it

is not necessary to come up with an adapted Apriori algorithm that takes

into account validity intervals that are connected with any item in the

transaction database. In addition to that, we allow the user to run a rule

induction algorithm at his choice, disburdening him further.

A.2.2 On Mining General Temporal Association Rules in a Pub-

lication Database

[LEE, LIN and CHEN 2001]

The authors address a problem that is a common issue when the trans-

action database is not fixed but rather grows constantly: recent item sets

are less likely to exceed the minimum support than older ones, simply be-

cause they had not much time to occur over and over again. Even though

the authors do not mention the notion stream mining, the problem falls

exactly into this field.
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The paper modifies the original association rule definition by assigning to

it a so-called maximum common exhibition period which is basically an

validity interval not unlike to that of [ALE and ROSSI 2000] sketched above:

it is the smallest interval in which all items of the rule occur in the data-

base. The authors then introduce a modified Apriori algorithm [AGRAWAL

and SRIKANT 1994] that allows to directly generate rules of that type.

Comments

In line with the requirements specified in Chapter 4, I do not intend to

change the algebraic definition of an association rule. Therefore, meth-

ods in that direction are not considered any further.

A.2.3 Mining Changes in Association Rules: A Fuzzy Approach

[AU and CHAN 2005]

Au and Chan use a given set of association rules combined with collec-

tions of time series of rule evaluation measures for each rule to induce

a new set of higher-order rules. These higher-order rules describe (tem-

poral) relationships of the temporal behavior of some of the evaluation

measures. The output of the algorithm might be a rule like the following:

If the change in support in time frame i is fairly decreasing,

then the change in support in time frame i+1 is highly decreas-

ing.

The time series of support and confidence (other measures are not con-

sidered) are split into several equidistant time frames. For each time frame,

the increase or decrease of both measures is assigned a fuzzy member-

ship degree thus forming a new sequence of temporally ordered linguis-

tic terms (the one belonging to the fuzzy set leading to the highest mem-

bership degree in the step before). To induce higher-order rules of the

above-mentioned type, a fuzzy decision tree [JANIKOW 1998] is induced.
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An example is shown in Figure A.7. A path from the root node to a child

node can then be interpreted as a higher-order rule describing the tem-

poral behavior of the original rule set.

Figure A.7: Fuzzy decision tree induced from the temporal behavior of the support of

a single rule. Starting at the root node and continuing to a leaf, one can extract a rule

that describes a part of the support time series of the underlying association rule.

Comments

The underlying principle to assess (parts of) time series with fuzzy sets is

the key concept that also underlies the framework presented in Chapter 4.

However, I pursue a different goal: to simplify the set of association rules

rather than introducing new sets of (fuzzy) rules. Further, inducing a set

of rules from the evaluation measure time series of a single rule provides

only weak means of generalization (if one is not willing to run another

rule induction algorithm on the fuzzy rules expecting general patterns

among the fuzzy rules).





B
Charts and Screenshots
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Figure B.1: Rules view. ①: main part depicting the glyphs of all rules, ②: sliders to

(re)scale the axes, ③: drop-down menu for evaluation measure selection (see Fig-

ure B.2), ④: time slider to flick through all time frames.
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Figure B.2: Set of evaluation measures that can be chosen to determine the location

and size of each rule glyph in the rules view.
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Figure B.3: Rule list view. Contains all rules as a list. Each entry encodes the textual

rule representation as well as visibility indicators and the support, confidence and lift

of the first time frame. The controls at the bottom can be used to (de)select subsets of

rules or to finetune filtering results.
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Figure B.4: Rule details view. ①: textual rule representation, ②: support, confidence,

lift and recall time series of the selected rule.
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Figure B.5: Rule Time Series View. ①: time series of antecedent support, consequent

support and joint support of the selected rule, ②: time series and trend lines of a user-

selectable evaluation measure, ③: list of available evaluation measures and trend line

fittings.
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Figure B.6: Filter concept editor. ①: expression tree of the linguistic concept, ②: proper-

ties of the selected nodes of the linguistic concept.
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Figure B.7: Fuzzy partition editor.①: list of available fuzzy partitions, ②: graphical ed-

itor for the sets of a fuzzy partition, ③: histogram display for change rates, ④: controls

for fuzzy partition induction

Figure B.8: Induced fuzzy partition for the confidence change rate domain with respect

to maximal local changes.
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Figure B.9: Induced fuzzy partition for the lift change rate domain with respect to

global changes. The histogram of all 904 lift slopes is shown in Figure B.10 which ex-

plains the asymmetric shape.

Figure B.10: Histogram of global lift change rates, that is, the histogram of all 904

slopes of the linear trend in each rule’s lift time series.
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Figure B.11: Linguistic concept “confidence is locally increasing and lift is globally un-

changed”.

Figure B.12: Selecting the threshold node allows to adjust the minimum membership

degree above which the rule glyphs are drawn, thus filtering the rule set by hiding all

the other glyphs.
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[STEINBRECHER and KRUSE 2008a] M. Steinbrecher and R. Kruse. Identi-

fying Temporal Trajectories of Association Rules with Fuzzy Descrip-



171

tions. In: Proc. Conf. North American Fuzzy Information Processing

Society (NAFIPS 2008), 2008, pp. 1–6.

[STEINBRECHER and KRUSE 2008b] M. Steinbrecher and R. Kruse. Visu-

alization of Local Dependencies of Possibilistic Network Structures.

Vol. 224 of Studies in Fuzziness and Soft Computing, pp. 93–104. 2008,

Springer Berlin / Heidelberg.

[STEINBRECHER and KRUSE 2009a] M. Steinbrecher and R. Kruse. Assess-

ing the Strength of Structural Changes in Cooccurrence Graphs. In:

B. Mertsching, M. Hund and Z. Aziz, Eds., KI 2009: Advances in Artificial

Intelligence, 32nd Annual German Conference on AI, Paderborn, Ger-

many, Vol. 5803 of Lecture Notes in Computer Science, Lecture Notes

in Artificial Intelligence, pp. 476–483. 2009, Springer Verlag.

[STEINBRECHER and KRUSE 2009b] M. Steinbrecher and R. Kruse. Cluster-

ing Association Rules with Fuzzy Concepts. In: [FINK et al. 2009], 2009,

pp. 197–206.

[STEINBRECHER and KRUSE 2009c] M. Steinbrecher and R. Kruse. Fuzzy

Descriptions to Identify Temporal Substructure Changes of Cooccur-

rence Graphs. In: Proceedings of 2009 IFSA/EUSFLAT, 2009, pp. 1177–

1182.

[STEINBRECHER and KRUSE 2010] M. Steinbrecher and R. Kruse. Visualiz-

ing and fuzzy filtering for discovering temporal trajectories of associ-

ation rules. Journal of Computer and System Sciences, Vol. 76(1):77–87,

2010.

[STEINBRECHER et al. 2008] M. Steinbrecher, F. Rügheimer and R. Kruse.

Computational Intelligence in Automotive Applications, Chapter Ap-

plication of Graphical Models in the Automotive Industry, pp. 79–88.

2008. In: [PROKHOROV 2008].

[STOBER et al. 2009] S. Stober, M. Steinbrecher and A. Nürnberger. A Sur-

vey on the Acceptance of Listening Context Logging for MIR Applica-

tions. In: [BAUMANN et al. 2009], 2009, pp. 45–57.



172

[TUFTE 2001] E. R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, 2nd Edn., 2001.

[WARD 2002] M. O. Ward. A taxonomy of glyph placement strategies

for multidimensional data visualization. Information Visualization,

Vol. 1:194–210, 2002.

[WONG et al. 1999] P. C. Wong, P. Whitney and J. Thomas. Visualizing

Association Rules for Text Mining. IEEE Symposium on Information

Visualization (InfoVis 1999, San Francisco, CA, USA), pp. 120–123, 1999.

[WWW: BORGELT 1] Christian Borgelt: Apriori - Association Rule In-

duction / Frequent Item Set Mining. http://borgelt.net/apriori.

html. Accessed November 2012.

[WWW: BORGELT 2] Christian Borgelt: Support of an Association Rule.

http://borgelt.net/doc/apriori/apriori.html#supprule. Ac-

cessed March 2012.

[WWW: HDD] Cost of Hard Drive Storage Space. http://ns1758.ca/

winch/winchest.html. Accessed September 2012.

[WWW: SAP] SAP Leads Next Wave of Computing With In-Memory In-

novation. http://www.sap.com/press.epx?pressid=13293. Ac-

cessed August 2012.

[WWW: SL] Second Life. http://secondlife.com/. Accessed Septem-

ber 2012.

[WWW: UCI] UCI Machine Learning Repository. http://archive.ics.

uci.edu/ml/. University of California, Irvine, School of Information

and Computer Sciences, Accessed August 2012.

[YANG 2005] L. Yang. Pruning and Visualizing Generalized Association

Rules in Parallel Coordinates. IEEE Transactions on Knowledge and

Data Engineering, Vol. 17:60–70, 2005.

[YANG 2008] L. Yang. Visual Exploration of Frequent Itemsets and Asso-

ciation Rules. In: [SIMOFF et al. 2008], pp. 60–75.

http://borgelt.net/apriori.html
http://borgelt.net/apriori.html
http://borgelt.net/doc/apriori/apriori.html#supprule
http://ns1758.ca/winch/winchest.html
http://ns1758.ca/winch/winchest.html
http://www.sap.com/press.epx?pressid=13293
http://secondlife.com/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/


173

[ZADEH 1965] L. Zadeh. Fuzzy Sets. Information and Control,

Vol. 3(8):338–353, 1965.

[ZAKI et al. 1997] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. New

Algorithms for Fast Discovery of Association Rules. In: D. Hecker-

man, H. Mannila, D. Pregibon, R. Uthurusamy and M. Park, Eds., In

3rd Intl. Conf. on Knowledge Discovery and Data Mining, pp. 283–296.

1997, AAAI Press.





D
Lists

175





List of Figures

1.1 Simplified KDD process . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example database with 10 transactions . . . . . . . . . . . . . 15

2.2 Partition induced by rule X → Y . . . . . . . . . . . . . . . . . 18

2.3 Different antecedent and consequent constellations . . . . . 20

2.4 Two graphs illustrating different evaluation measures . . . . 26

2.5 Exemplary fuzzy partition for lift change rate . . . . . . . . . . 30

2.6 Examples of fuzzy negations . . . . . . . . . . . . . . . . . . . 33

2.7 Illustration of four prominent t-norms. . . . . . . . . . . . . . 33

2.8 Illustration of four prominent t-conorms. . . . . . . . . . . . 33

2.9 Example of a composite pattern: peak . . . . . . . . . . . . . 36

2.10 Example of a composite pattern: plateau . . . . . . . . . . . . 37

3.1 Entity relationships amongst the model artifacts. . . . . . . . 40

3.2 Exemplary entity relationships amongst the model artifacts. 40

3.3 Good and bad data-to-ink ratios. . . . . . . . . . . . . . . . . . 41

3.4 Data-to-ink ratio: Examples . . . . . . . . . . . . . . . . . . . . 42

3.5 Draft of a rule glyph. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Drafts to encode antecedent and consequent. . . . . . . . . . 43

3.7 Final version of rule glyph . . . . . . . . . . . . . . . . . . . . . 44

3.8 Two options for the glyph centers . . . . . . . . . . . . . . . . 45

3.9 Visualizing overlapping rules . . . . . . . . . . . . . . . . . . . 46

3.10 Rule history via animation . . . . . . . . . . . . . . . . . . . . 48

3.11 Full rule set with 1585 rules from a real-world application . . 49

3.12 Discarded rule glyph featues . . . . . . . . . . . . . . . . . . . 50

3.13 Example data set illustrated with Chernoff faces . . . . . . . . 51

177



178 LIST OF FIGURES

3.14 Example glyphs with different perception biases . . . . . . . 54

4.1 Lift time series with global and local trends . . . . . . . . . . 58

4.2 Time series with superimposed fuzzy partition . . . . . . . . 59

4.3 Unshifted fuzzy partition of one year . . . . . . . . . . . . . . 59

4.4 Composite pattern: peak . . . . . . . . . . . . . . . . . . . . . 62

4.5 Allen’s temporal relations . . . . . . . . . . . . . . . . . . . . . 63

4.6 Fuzzy partition used to identify the composite pattern peak . 71

4.7 Confidence time series with several identifiable peaks . . . . 71

4.8 Decision tree and Bayes network for rule induction . . . . . . 74

4.9 Example network and potential table . . . . . . . . . . . . . . 77

4.10 Temporal evolution of an induced graph . . . . . . . . . . . . 79

4.11 Time series with decreasing trend for completeness . . . . . 81

4.12 Time series with increasing trend for standard deviation . . . 82

5.1 A demo analysis workflow loaded into Information Miner 2.0. 87

5.2 Information Miner 2.0 model of the complete preprocess-

ing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 RulesViewerTask . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Expression tree of a linguistic concept . . . . . . . . . . . . . . 96

5.5 Full set of 904 rules and filtered rule set . . . . . . . . . . . . . 102

5.6 Filtered rule sets with different membership thresholds . . . 103

5.7 Confidence and lift time series of a rule . . . . . . . . . . . . . 104

6.1 Rule glyph used to visualize the rules . . . . . . . . . . . . . . 106

6.2 Rule set of 69 rules induced from the artificial data set . . . . 107

6.3 Real-world application of a set of vehicles with binary class . 111

6.4 Visualization of an entire rule history over five time points . 112

6.5 Complete temporal evolution of the full association rule set . 113

6.6 Filtering a rule set of 95 rules . . . . . . . . . . . . . . . . . . . 114

6.7 Fuzzy partitions of the lift change domain . . . . . . . . . . . 114

6.8 Rule trajectories for filtering illustration . . . . . . . . . . . . 116

6.9 Sum graph of six months of player history in a 3D environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.10 Fuzzy partitions for the four graph measures . . . . . . . . . . 119



LIST OF FIGURES 179

6.11 Histories of two subgraphs that scored highest . . . . . . . . 120

6.12 Rules induced from a cooccurrence graph . . . . . . . . . . . 123

6.13 Attribute assignment to the rule glyphs. . . . . . . . . . . . . 124

6.14 Full rule set with 1585 rules in the first time frame. . . . . . . 125

6.15 FL3∧N→OFL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.16 P2∧N→NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.17 P9→OFL9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.18 OK∧R2→P9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.19 P9∧FL3→ JL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.20 JL2∧P2→ JL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Rule visualization of WONG et al. [1999] . . . . . . . . . . . . . 142

A.2 Parallel coordinates visualization of YANG [2008] . . . . . . . 143

A.3 Association rules drawn on two categories . . . . . . . . . . . 143

A.4 Double decker plot of 8 association rules . . . . . . . . . . . . 145

A.5 Item and rule set after MCA . . . . . . . . . . . . . . . . . . . . 147

A.6 3D representation for association rules . . . . . . . . . . . . . 148

A.7 A fuzzy decision tree for one association rule . . . . . . . . . 151

B.1 Rules view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.2 Available set of evaluation measures . . . . . . . . . . . . . . . 155

B.3 Rule list view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.4 Rule details view . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.5 Rule time series view . . . . . . . . . . . . . . . . . . . . . . . . 158

B.6 Filter concept editor . . . . . . . . . . . . . . . . . . . . . . . . 159

B.7 Fuzzy partition editor . . . . . . . . . . . . . . . . . . . . . . . 160

B.8 Induced fuzzy partition for the confidence change rate do-

main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.9 Induced fuzzy partition for the lift change rate domain . . . . 161

B.10 Histogram of global lift change rates . . . . . . . . . . . . . . . 161

B.11 Linguistic concept “confidence is locally increasing and lift

is globally unchanged”. . . . . . . . . . . . . . . . . . . . . . . 162

B.12 Membership threshold adjustment . . . . . . . . . . . . . . . 162





List of Tables

2.1 Disjoint subsets in binary classification. . . . . . . . . . . . . 19

2.2 Table to transactions conversion . . . . . . . . . . . . . . . . . 23

3.1 Example database for overlap example . . . . . . . . . . . . . 46

4.1 Identified peaks with increasing membership degrees . . . . 71

181





List of Algorithms

1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2 Global membership computation . . . . . . . . . . . . . . . . . 67

3 Local membership computation . . . . . . . . . . . . . . . . . . 68

4 Fitness function for composite pattern peak. . . . . . . . . . . 70

5 Heuristic for fuzzy partition induction with respect to global

change rates of measure m. . . . . . . . . . . . . . . . . . . . . . 73

6 Heuristic for fuzzy partition induction with respect to local

change rates of measure m. . . . . . . . . . . . . . . . . . . . . . 75

183





List of Abbreviations

Acronym Meaning

API Application Programming Interface

DBMS Database Management System

CSV Comma-Separated Values

CW Calendar Week

DM Data Mining

JDBC Java Database Connectivity

KDD Knowledge Discovery in Databases

KPI Key Performance Indicator

MDS Multi-Dimensional Scaling

PCA Principal Component Analysis

POJO Plain Old Java Object

SDK Software Development Kit

SQL Structured Query Language

XML Extensible Markup Language

185





E
Index

absolute support, 14

algebra

σ-, 16

Allen’s, 62

algebraic product, 31

algebraic sum, 32

Allen’s algebra, 62

antecedent, 16, 41

anti-monotonicity, 15

Apriori algorithm, 64

association rule, 7, 9, 16, 64

Bayes networks, 76

binary classification, 17

candidate graph, 79

change

global, 58

local, 58

Chernoff faces, 50

chromosome, 35, 69

complement

fuzzy, 30

completeness, 25

composite pattern, 61, 69

concept

fuzzy, 34, 57

linguistic, 34, 80

confidence, 21, 47

conorm

triangular, see t-conorm

consequent, 16, 41

cooccurrence

graph, 117

cooccurrence graph, 24, 78

cover, 14

crossover, 35

data mining, 2, 4

data-to-ink ratio, 41

database

transaction, 14

decision tree, 74

derivability, 8

derivative, 61

drastic product, 31

drastic sum, 32

edge

set, 24

weight, 24, 25, 78

EHEC, 9

187



188

elementary event, 16

evaluation, 4

event, 16

elementary, 16

evolutionary algorithm, 34, 62,

69

false negatives, 18

false positives, 18

filtering

linguistic, 57

fitness function, 35, 63, 70

frequent

item set, 9

item sets, 14

pattern, 13

fuzzy

complement, 30

concept, 34, 57

conjunction, 58

intersection, 30

logic, 26

negation, 32

partition, 28, 57, 72

induction, 72

set, 27

support of, 28

union, 30

global

change, 58

membership, 66

trend, 61, 72

glyph, 41

goal definition, 3

graph

candidate, 79

completeness, 25

cooccurrence, 24, 78, 117

size, 25

sum, 117

weight, 25

graphical model, 76

identification, 10

implication

logical, 7

Information Miner, 85

instant feedback, 56

interestingness, 11

interpretation, 4

intersection

fuzzy, 30

intuitiveness, 56

item, 14

item set, 14

frequent, 9

relational, 22

KNIME, 86, 100

knowledge discovery, 2

lift, 22, 47

linguistic

concept, 34, 80

filtering, 57

term, 27

variable, 27, 57

local

change, 58

membership, 67



189

trend, 61, 72

logic

fuzzy, 26

propositional, 7

membership

degree, 65

global, 66

local, 67

mosaic plot, 144

mutation, 35

negation

fuzzy, 32

norm

triangular, see t-norm

overlapping rules, 45

parallel coordinates, 51

partition

fuzzy, 28, 57, 72

pattern, 1, 7

composite, 61, 69

frequent, 13

peak, 36

plateau, 36

potential, 76

precision, 21

preprocessing, 3

probability distribution, 76

product

algebraic, 31

drastic, 31

RapidMiner, 86, 100

recall, 21, 47

regression, 61, 66, 69

relational item set, 22

relative support, 14

rule

association, 16, 64

induction, 64, 90

overlap, 45

selection, 35

sensitivity, 21

set

edge, 24

fuzzy, 27

σ-algebra, 16

simplicity, 7

size, 25

specificity, 21

stability, 8

subtrend, 58

sum

algebraic, 32

drastic, 32

graph, 117

support, 19, 47

absolute, 14

counting, 91

relative, 14

t-conorm, 31, 57

Łukasiewicz, 32

maximum, 32

t-norm, 31, 57

Łukasiewicz, 31

maximum, 31

table



190

export, 89

splitting, 88

temporal aspects, 6, 10, 48

term

linguistic, 27

time

frames, 22

representation, 48

stamps, 22

time frames, 61

time series, 64

transaction, 14

trend

global, 61, 72

local, 61, 72

sub-, 58

triangular

conorm, see t-conorm

norm, see t-norm

true negative rate, 21

true negatives, 18

true positive rate, 21

true positives, 18

union

fuzzy, 30

universe of discourse, 16

vague, 26

variable

linguistic, 27, 57

vertices, 24

visual analytics, 5

visual interaction, 56

visualization, 4, 10

WEKA, 86, 100



Selbständigkeitserklärung

Ich, Matthias Steinbrecher, erkläre hiermit, dass ich die vorliegende Ar-

beit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der

angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen di-

rekt oder indirekt übernommenen Gedanken sind als solche kenntlich

gemacht.

Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotions-

beraters in Anspruch genommen. Dritte haben von mir weder unmittel-

bar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im

Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher

oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch

noch nicht veröffentlicht.

Potsdam, November 2012 Matthias Steinbrecher




	Abstract
	Selected Publications
	Introduction and Motivation
	Knowledge Discovery and Data Mining
	Cross-cutting Concerns
	Visualization
	Temporal Aspects

	Topic of this Thesis
	Structure of this Thesis

	Background
	Elements of Frequent Pattern Induction
	Frequent Item Sets
	Association Rules

	Relational Item Sets
	Cooccurrence Graphs
	Elements of Fuzzy Set Theory
	Elements of Evolutionary Algorithms

	Visualization
	Data Structures
	Glyph Construction
	Encoding Antecedent and Consequent
	Encoding Rule Evaluation Measures
	Encoding Overlapping Rules

	Model Visualization
	Representation of Time
	Related Work
	Summary and Discussion

	Linguistic Filtering
	Requirements
	Filtering Approach
	Local and Global Changes
	Composite Patterns
	Summary

	Formal Treatment
	Rule Induction and Time Series Computation
	Membership Degree Computation

	Fuzzy Partition Induction
	Application to Other Models
	Decision Trees
	Graphical Models
	Cooccurrence Graphs

	Related Work
	Summary and Discussion

	Implementation
	The Information Miner 2.0 Platform
	Real-world Analysis Workflow
	Table Splitting
	Table Export
	Rules Induction
	Support Counting
	Filter and Visualize the Rules

	A Sample Workflow
	Summary and Discussion

	Evaluation
	Artificial Data Set
	Car Manufacturer
	Analysis 1
	Feedback
	Analysis 2

	Second Life Online Community
	Analysis 1
	Analysis 2

	European Telecommunications Provider
	Concept 1: Local lift is increasing
	Concept 2: Local support and global confidence are increasing
	Composite Patterns
	Concept 3: Local support and local lift are increasing
	Concept 4: Local confidence and global lift are decreasing
	Feedback


	Conclusions and Outlook
	Summary and Contributions
	Future Work
	Time Frame Discretization
	Seasonal Aspects
	Address Odd Trajectories
	Explain Similar Rules


	Related Work
	Rule Visualization
	Temporal Aspects of Rules

	Charts and Screenshots
	Bibliography
	Lists
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms

	Index

