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Abstract

Structural Health Monitoring (SHM) is a new, rapidly developing technology for the mon-
itoring of engineering structures. The main features are permanent and automatic as-
sessment of the structural integrity by built-in devices such that non-destructive testing
becomes an integral part of the structure. Therefore, SHM aims at damage detection and
loads monitoring by intrinsic means of the structure. The tasks can be defined similar to
those of conventional non-destructive testing: damage detection, localisation and further
characterisation. Consequently, this leads in an increased safety and a reduction of the
maintenance costs.
Among different approaches, the use of ultrasonic Lamb waves is an attractive method
for structural health monitoring. Lamb waves are able to propagate over large distances,
thus wide areas of a structure can be monitored. Because Lamb waves sensitively interact
with defects, they offer a chance for defect detection and further characterization. The
use of embedded or surface-attached piezoceramic elements as actuators and sensors for
generation and reception of Lamb waves is an attractive way for designing smart SHM
structures.
To gain a better understanding of the physics of Lamb wave, e.g. interaction, damages,
excitation process, efficient models are needed. Furthermore, in future these models can
be used to develop and optimize an actuator-sensor grid for SHM systems in complex
structures, e.g. airplanes. Therefore, SHM applications call for both efficient and powerful
numerical tools to predict the behavior of Lamb waves. The mesh density required to
obtain good quality solutions has to be rather fine both spatial and temporal. This results
in enormous computational costs (computational time and memory storage requirements)
when ultrasonic wave propagation problems are solved in the time domain. Furthermore,
in future design process one has to deal with complex structures. To resolve the issue of
complex structures the thesis utilize the idea of the isogeometric element concept. The
isogeometric approach utilizes the non-uniform rational B-spline (NURBS) functions of
the geometrical description of the computer aided design (CAD) software. Therefore, no
meshing in the todays common way is needed.
To model the complete SHM structure including actuators and sensors, in this thesis a
three-dimensional isogeometric piezoelectric finite element is developed, tested in several
benchmarks and compared to other numerical higher order approaches with respect to
their ability to model Lamb wave propagation problems. The research results are used to
recommend an optimal discretization scheme. To illustrate the advantage of the new iso-
geometric finite element two SHM specific problems are investigated, namely the dynamic
behavior of a piezoceramic actuator and the material induced continuous mode conversion.
Both problems are studied numerically as well as experimentally.
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Zusammenfassung

Die Idee des Structural Health Monitoring (SHM) besteht darin, Strukturen während
des Betriebs kontinuierlich zu überwachen. Die Vorteile liegen in einer automatisierten,
zerstörungsfreien und permanenten Überwachung der strukturellen Integrität. Schäden
sollen frühzeitig erkannt, lokalisiert und charakterisiert werden. Hierdurch sollen sowohl
die Sicherheit gesteigert als auch die Wartungskosten verringert werden.
Ein vielversprechender Ansatz zur Strukturüberwachung stellt die Nutzung von Lamb-
wellen dar. Lambwellen sind in der Lage, große Distanzen zu überwinden und sind sensitiv
gegenüber Schäden. Dies ermöglicht eine großflächige Überwachung von Strukturen, wie
sie in Flugzeugen vorzufinden sind. Die Nutzung von integrierten oder applizierten Piezok-
eramiken hat sich dabei als besonders vielversprechend herausgestellt, da diese sowohl als
Aktuatoren als auch als Sensoren verwendet werden können.
Für die Untersuchung des physikalischen Verhaltens von Lambwellen, z.B. die Schadensin-
teraktion, oder das Anregungsverhalten von Piezokeramiken, werden effiziente Modelle
benötigt. Zukünftig sollen diese Modelle verwendet werden, um Aktuator-Sensor Net-
zwerke für komplexe Strukturen, wie Flugzeuge, zu entwickeln und zu optimieren. Daher
werden effiziente und genaue numerische Werkzeuge benötigt, um das Verhalten von Lamb-
wellen vorherzusagen. Für die notwendige Lösungsqualität wird eine hohe räumliche und
zeitliche Auflösung benötigt. Aus der Berechnung von Lambwellen im Zeitbereich resul-
tiert daher ein hoher Rechenzeit- und Speicheraufwand.
Da im zukünftigen Entwicklungsprozess komplexe Strukturen berücksichtigt werden
müssen, wird in dieser Arbeit die Idee des isogeometrischen Elementkonzeptes verfolgt.
Isogeometrische finite Elemente nutzten die geometrische Beschreibung mit Hilfe von non-
uniform rational B-spline (NURBS) Funktionen, welche in der CAD Software benutzt wer-
den, als Ansatzfunktionen für die Finite-Elemente-Formulierung. Eine Diskretisierung der
geometrischen Modelle in der heute üblichen Weise wird nicht benötigt. Um die Gesamt-
struktur mit Aktuatoren und Sensoren zu modellieren, wird in dieser Arbeit ein drei-
dimensionales piezoelektrisches isogeometrisches finites Element entwickelt, getestet und
auf seine Fähigkeiten zur Lambwellenberechnung mit anderen finiten Elementen höherer
Ordnung in einem Benchmark verglichen. Die Ergebnisse werden genutzt, um ein opti-
males Diskretisierungsschema vorzugeben. Um die Vorteile des neuen isogeometrischen
Elementes darzustellen, werden zwei SHM spezifische Probleme untersucht. Zum Einen
wird der Einfluss der Eigendynamik des Aktuator studiert und zum Anderen wird die mate-
rialinduzierte kontinuierliche Modenkonversion. Neben den numerischen Untersuchungen
werden auch Messsungen mit Hilfe der Laser-Scanning-Vibrometrie durchgeführt und die
Ergebnisse verglichen.
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1 Introduction

To Columbia, here is Houston; we see your tyre pressure messages and we did
not copy your last message.
After a moment, Husband replied: ”Roger but ...”

In the year 2003 by entering the atmosphere the space shuttle Columbia explodes. Seven
months after the crash the reason of the accident was found. During the start a piece of
insulating foam breaks from the fuel tank and hits the wings leading edge. The impact
caused a hole. Through this hole high temperature plasma could reach the inner structure
and destroyed the shuttle [3].

1.1 Principle of structural health monitoring and its

motivation

The Columbia disaster illustrates that a small leak can sink a great ship. It was known
that the shuttle was hit by a piece of frozen foam. However, an analysis of the impact
zone was not possible and the existence or the size of the damage was not known. This
disaster points out in an appalling way the importance of health monitoring measurements
for safety relevant component parts. In standard applications even the impact event itself
is not observed. Airplanes, bridges and other engineering structures are not monitored
continuously by cameras like a space flight. Therefore, the time of the damaging event is
not thoroughly known.
In maintenance and inspection cycles parts of the structure are checked. Between the
cycles no information about the structure exist. In 2005 the fall of the vertical stabiliser
of Flight TS961 (Airbus A310) occurred just five days after its routine check and the next
major inspection was scheduled for 2006 [143].
To close the inspection gap in the maintenance cycles the idea of an continuous structural
monitoring was born. In the early 1990s first research teams explicitly dealt with the term
structural health monitoring (SHM), although the basic idea can be tracked back to much
earlier works [130]. SHM is defined as “the nondestructive and continuous monitoring
characteristics using an array of sensors related to the fitness of an engineered component
as it operates, so as to diagnose the onset of anomalous structural behaviour. It involves
measuring and evaluating the state properties and relating these to defined performance
parameter” [143].
Figure 1.1 illustrates the basic idea of a SHM system. A SHM application works as “nervous
system” of the structure. If a damage reaches a critical size the monitoring system feels
“pain” and the structure is inspected systematically and repaired if necessary.
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Human nervous system

Structural Health Monitoring (SHM)

Structure

+

Figure 1.1: Basic idea of structural health monitoring (SHM).

Because of the continuous structural inspection the time between scheduled maintenances
can be increased as well as the operating life of the structure. This leads to a reduction of
the running costs. Major research programmes in the field of SHM assume that up to 20%
of current maintance/inspection costs can be saved in civil and military transportation by
the use of integrated on-line damage monitoring systems [139]. Table 1.1 shows exemplarily
that 44% of the inspection time can be reduced by using an online monitoring system, e.g.
by a partial substitution of the flight line inspection or an extension of the time between
scheduled inspections.

Table 1.1: Inspection time effort for a modern fighter aircraft [139].

Inspection type Current inspection
time (% of total)

Estimated potential
for smart systems

Time saved
(% of total)

Flight line 16 0.40 6.4
Scheduled 31 0.45 14.0
Unscheduled 16 0.10 1.6
Service instructions 37 0.60 22.2

100 44.0

1.2 State of the art

The opportunities to use SHM systems are given for several engineering applications. How-
ever, useful monitoring strategies have to be developed, which take the structural as well
as environmental conditions into account. Depending on the SHM application different
physical principles can be utilized. Some strategies are already in use or almost fully
developed. The health and usage monitoring for propulsion systems is highly advanced.
Different in-flight Engine Condition Monitoring (ECM) systems have gradually developed
and are still further improved [18]. Health and usage monitoring has also been successfully
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introduced to the helicopter industry, mainly to monitor vibrations on gears and specifi-
cally gear shafts, which once a crack has emerged have a relatively short crack propagation
life [18].
Kuroishi et al. [79] reported on a guided wave pipe inspection monitoring system intended
for the application to thermal power plants. The use of this system reduces the mainte-
nance cost, because less heat insulation has to be removed. Furthermore, the inspection
can be made until the working process, which also reduces the cost. In civil engineering
SHM systems are already in use. One example is an online monitoring system for the
Tsing Ma bridge in China, which works since the bridges commissioning in May 1997 [23].
However, for every structure which should be monitored a special solution has to be de-
veloped and many open-ended questions still exist. Particularly, for complex light weight
structures, e.g. windturbines and airplanes no SHM system is available, yet. In recent
years quite a lot of scientific work has been done to close the gap between laboratory and
“real world” applications.
Various different standard non-destructive testing and SHM methods are studied by Ciang
et al. [25] for their applicability for the monitoring of windturbines. They conclude that
wind power generation systems are huge and expensive to construct and maintain. There-
fore, the related industries require SHM systems that can provide cost effective maintenance
programmes which deliver accurate detection of faults as early as possible. However, no
distinctive idea to realize such monitoring system is given. In the following, some of the
common approaches for SHM systems are presented.

1.2.1 Strategies of SHM

Several approaches are investigated to realize SHM systems. There are strategies based
on static measurements as strain gages or fibre bragg sensors [70, 94], as well as dynamic
strategies, e.g. modal analysis for structural monitoring [151].
Furthermore, one can distinguish between active and passive systems. Passive systems
“feel” the impact through a structure, “hear” the evolution of a damage (acoustic emission)
or exploit the vibration caused by wind or an engine to monitor a damage [117] . Active
systems use energy, e.g. to excite waves which interact with the damage or stimulate
vibrations. Sensors measure the response of the structure. Damages influence the vibration
or the traveling waves. The difference in the signal between damaged and undamaged
structures could be determined and used as criterion for a defect [113].
Methods which apply structural vibration [46] or modal parameters [151] are another class
of ideas for damage detection. Furthermore, the impedance spectroscopy can be used
to determine the structural health. The electrical impedance of a applied piezoceramic
patch is influenced by stiffness changes in the structure, adhesive layer or the ceramic
itself [7, 90, 107, 114]. Therefore, this measurement strategy has a great potential to
check actuator-sensor networks which deploy piezoceramics. Bhalla et al. investigated the
influence of changes of the adhesive layer to the impedance curve [17].
One favorable active method in thin-walled light-weight structures is based on Lamb waves.
Lamb waves are elastic waves which occur in thin-walled structures and named after Horace
Lamb who has first described these waves in 1917 [81]. Lamb waves exist at least in
two modes for every given frequency and they are also dispersive. They interact with
damages and in recent years a lot of research has been done to understand their properties
[18, 49, 84, 85, 127, 136, 140, 143, 155, 157, 160, 161]. In this thesis primarily thin-walled
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structures are studied. Therefore, the researches on Lamb waves are presented in the next
subsection.

1.2.2 Previous work

Designing SHM systems requires the expertise of a variety of different scientific disciplines,
primarily of engineering sciences like machine construction or electrotechnology, but also
of computer science, mathematics and physics for instance [130]. Detailed investigations
are executed experimentally as well as numerically.
Often experiments measure the complete wave field in a structure to study damage interac-
tion or Lamb wave excitation. Typically laser scanning vibrometers are utilized [88, 140],
because they have a high spatial resolution and need no coupling medium. Moreover, air
coupled ultrasonic measurements [59, 60] or speckle interferometry [82] can be used to scan
wave fields of Lamb waves without a coupling media.
With measurements dispersion curves can be determined using a three-dimensional fast
Fourier transform (FFT) [8]. The results can be used to verify mathematical models
[4, 56, 57, 171]. Many investigations for plates made of isotropic materials have been
done [62, 84–86, 98]. With respect to the development of SHM systems for aeronautic
structures multi-layer composite materials are also in the focus of investigations. In that
case the material properties are very complex [148, 173]. Furthermore, for multi-layer
composite materials different types of damages, such as impact damages [99] or delami-
nations [123, 147, 150], have to be taken into account in comparison to isotropic metal
materials. Moreover, the material is anisotropic, which makes the damage detection very
hard [42, 98, 135, 153]. Effects of Lamb wave reflection [4, 34], damping [122] or mode
conversion [4, 24, 75, 169] in composite plates have been studied. Moreover, Andrews et
al. [6] show the influence of temperature to the group velocity.
Piezoceramic patches are commonly used to excite Lamb waves in structures, but other
methods could be used as well, e.g. Nakano et al. (1991) used a thermal source (laser
beam) to excite Lamb waves [103]. Yan et al. applied the thermal excitation of Lamb
waves to study the leaky Lamb wave phenomenon [172]. However, this method has no
practical importance for SHM applications.
Investigations of different types of thin piezoceramic transducers are made by Giurgiutiu
et al. [49]. Studies regarding the actuator or phased array designs are done by Ostachow-
icz et al. [4, 105, 134]. Moulin et al. work with embedded instead of surface bonded
piezoceramics [102].
The influence of the adhesive layer between the actuator and the plate is studied by Sirohi
et al. [22, 119, 120, 136, 163]. They focused on the so called ”shear lag” effect. The effect
describes a reduction of the transfer of the shear stresses from the actuator to the host
structure caused by the adhesive layer. Ha et al. found that the eigendynamic of thicker
piezoceramics dominantly influences the amplitude of the excited Lamb waves [54, 116].
The influence of debonding is studied by Blackhire et al. [83, 109, 110]. Furthermore,
Huang et al. showed that unsymmetric eigenforms of the piezoeceramic transducer cause
an unsymmtric wavefield amplitude characteristic [64] just as the soldering points used to
contact the piezoceramic actuators [168].
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In addition to the experimental investigations numerical tools for Lamb wave simulation are
in development, e.g. to support the SHM development process. The given brief overview
about the complex properties of Lamb waves shows that there are many requirements to
develop an effective simulation tool, which are:

• Low computational effort regarding a fine spatial and temporal discretization.
• Flexibility in modeling different types of materials as piezoelectric or multi-layer
composites, with linear or non-linear constitutive equations.

• Possibility of modeling complex geometries (damages, airplane fuselage, etc.).
• Possibility to describe delaminations or cracks inside the material.
• Exchangeability of the models between different parts of the structural design process
(static, eigenvalue, SHM design analysis).

Various different tools have been developed for the simulation of Lamb wave propaga-
tion. Analytical methods are advanced from the original solution of Horace Lamb to more
complex material properties, but they are limited in describing complex geometries or
multi-layer materials [49, 158, 160]. The semi-analytical finite element methods (SAFE)
use an analytical approach in direction of the wave propagation and a discrete finite ele-
ment approximation perpendicular to this direction. This offers fast and accurate results
and is often used to calculate dispersion curves. To study complex geometries one has to
couple this method with standard finite elements and an extension to three dimensions is
hardly done [4].
The local interaction simulation approach (LISA) by Lee et al. [84] based on the central
difference scheme or the mass-spring lattice model (MSLM) by Yim et al. [175] are also
confined to non-complex geometries. The MSLM material parameters have no physical
meaning, because in complex structures a local spring stiffness is not measurable.
To break the limitations of the geometrical description several finite element approaches
are investigated. Mostly these approaches are based on utilizing higher order polynomial
shape functions to reduce the computational effort. The so called spectral finite elements
(SEM) is deployed in the time [77, 93, 105] or the frequency domain [168]. Some of these
approaches are based on utilizing higher order shell finite elements to describe thin struc-
tures [77, 93, 105]. However, they have the drawback that multi-layered materials and
complex three-dimensional stress states arising at welded joints or rivets, for example,
cannot be resolved. Moreover, the symmetric Lamb wave mode can not be described by
plate elements, because the elements assume a constant strain state in the thickness direc-
tion of the plate.
Therefore, three-dimensional SEM approaches based on Lagrange polynomials on the
Gauss-Lobatto-Legendre grid have been developed [76, 78, 130]. When higher order fi-
nite element approaches are considered SEM has been used almost exclusively for high
frequency wave propagation problems. Other higher order approaches as p-FEM, which
apply the normalized integrals of the Legendre polynomials [145] or isogeometric finite el-
ements utilize non-uniform rational B-splines (NURBS) [66] have been principally utilized
for static problems including non-linear analyses, plasticity, etc.
To handle the increasing complexity of structures, in recent years the so called isogeo-
metric element concept was developed. This concept closes the gap between computer
aided designs (CAD) and finite element analysis (FEA) [12, 13, 29, 31, 66]. The isoge-
ometric concept uses the functional description of the geometry from the CAD software
(B-splines, NURBS, T-splines, etc.) and reuses them as shape function for the FEA [29].
No discretization process, which approximates the CAD geometry function description
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with other functions, e.g. Lagrange polynomials, is required and, consequently, the ex-
act description of the geometry is not lost. This is an important consideration for shape
optimization schemes. Not only the exchange between finite element software and CAD
software works better, but also the exact CAD geometry is used for the optimization. This
allows an accurate state of the problem instead of a discretized mesh used by standard
finite elements, which leads to better solutions in the optimization process [118]. However,
the performance of this approach has not be applied to Lamb wave based problems, this
includes the development of a piezoelectrical element.

1.3 Objective and outline of the thesis

Because of their numerical properties offering tremendous advantages the application of
isogeometric finite elements will drastically increase in the near future. In order to model
Lamb wave based SHM systems not only displacement finite elements but also multi-
physics ones are required. The monitored structures often have complex geometries and
isogeometric finite elements have shown their capability to model them, e.g. abdominal
aorta models [12] or the NASA aluminum testbed cylinder (ATC) [29]. Furthermore, as
known from other higher order finite element schemes also isogeometric finite elements
are less prone to locking. For polynomial orders p ≥ 4 the locking phenomenon does
not pollute the solution noticeably [43]. Since NURBS based elements hardly suffer from
locking phenomena, adhesive layers as well as thin-walled structures can be modeled us-
ing a three-dimensional approach. However, the behavior of isogeometric finite elements
in the dynamic case is not well studied and understood yet. Only one-dimensional stud-
ies, research on two-dimensional membranes and eigenvalue analysis have been conducted
[31, 124]. So far, isogeometric finite elements have not been investigated regarding their
capability to simulate Lamb wave based problems. Moreover, piezomechanical properties
which allow the modelling of transducers have not be considered until now. Therefore, the
following needs to be address:

• Are isogeometric finite elements an effective numerical tool to model Lamb wave
based problems?

• How is it possible to determine the quality of the solution of Lamb wave propagation
problems?

• What is the influence of the inter-element-continuity to the convergence behavior of
isogeometric finite elements in a transient analysis?

• What are the advantages of isogeometric finite elements compared to other higher
order approaches?

• Are isogeometric finite elements able to describe complex SHM specific problems?

To answer these questions a three-dimensional piezoelectric finite element has to be devel-
oped and tested. Several static and eigendynamic benchmark tests are derived to proof
the reliability of the element. The maximal permissible aspect ratio is to be determined.
This bound on the element distortion can then be used for an effective modelling of thin
layers, e.g. as the adhesive layer between structure and actuator or sensor.
Up to now the isogeometric finite element is only compared with analytical reference solu-
tions or conventional finite elements. In this thesis another approach will be taken. Here,
the NURBS based elements will be compared with two other higher order finite element
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approaches. Their convergence behavior and the quality of the solution are scrutinized.
After studying its numerical properties the isogeometric element is used to investigate two
SHM specific problems. First the effect of resonance on the uncoupled and coupled piezo-
ceramic is studied and compared with experiments. Second the isogeometric approach is
used to model the structure of a twill fabric plate, to show the possibility of modeling
complex structures. This result is used to study the material induced continuous mode
conversion (CMC) in detail.
To answer to the previously stated questions the thesis is structures in the following way:

1. Development of the isogeometric piezoelectric finite element.
2. Testing of the isogeometric piezoelectric finite element using several benchmarks.
3. Comparison of the isogeometric piezoelectric finite element to experimental and nu-

merical results.
4. Application of the isogeometric element to two SHM specific problems.
5. Evaluation of tge pro and contras of isogeometric finite elements with respect to

design SHM systems.

In detail the thesis is divided into five main chapters:

Theoretical background: In the second chapter the basic analytical equations of Lamb
waves are recalled. These equations are later used to calculate reference solutions as well
as the dispersion curves. The properties of the Lamb waves are explained. To be precise,
only guided waves arising in thin-walled structures made of isotropic material ought to be
called Lamb waves. However, in this thesis the term Lamb wave is extended, in compliance
with the commonly accepted usage in the literature, to all guided waves in thin-walled
structures. To excite Lamb waves in structures typically piezoceramic actuators are used.
Therefore, the basic material properties and governing equations of piezoelectricity are
explained. The development of a electromechanical finite element is shown thereafter.
For the development of the isogeometric finite element approach the shape functions are
introduced. Here, the properties of non-uniform rational B-splines (NURBS) are explained
as well.

Development of a new piezomechanical 3D NURBS element: In the third chap-
ter the development of an isogeometric finite element with electromechanical coupling is
shown. The basic FEM equations and the shape functions that have been introduced in
the previous chapter are used. Differences to standard finite elements are shown. Static
and dynamic verification tests are conducted, e.g. the patch test and the modal analysis.
The convergence behaviour is studied as well. As known from this type of element the
geometrical description is exact and thus better compared to isogeometric finite elements.
[29]. Hence, the influence of the geometry description is also studied. Finally the locking
phenomenon is scrutinized in order to guarantee the accuracy of the solution when dealing
with thin-walled structures.

Comparison and evaluation of the NURBS element with alternative approaches
for Lamb wave simulation: In the fourth chapter the isogeometric approach is com-
pared to two different higher order numerical methods for simulating Lamb waves. A two-
dimensional isotropic aluminum plate is modeled and the wave is excited using a point force
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model. An adapted analytical solution is used to compare the convergence properties in
terms of the group velocity of the two basic Lamb wave modes. The isogeometric method
is compared with spectral finite elements based on Lagrange polynomials and p-elements
based on the normalized integrals of the Legendre polynomials. Furthermore, the influence
of the inter-element-continuity to the convergence rate of the isogeometric finite element
is investigated.

Application of the NURBS finite elements to SHM problems: The fifth chapter
is devoted to study two SHM based problems. The chapter first introduces the experi-
mental method which has been used to verify the numerical results. The first SHM based
problem studies the Lamb wave excitation process. It started with the eigendynamic of
of a free piezoceramic disc. The numerical results are compared with the experimental
one. Experimental investigations show that the resonances of the coupled piezoceramic
actuators have a big impact on the excited Lamb wave. Therefore, the parameters, e.g.
adhesive layer, actuator geometry, which influence the resonance are studied. This part of
the research is done numerically deploying the developed isogeometric finite elements.
The second SHM based problem is about the phenomenon of continuous mode conversion
(CMC). Several experiments have shown that in certain CFRP plates a conversion be-
tween the two basic Lamb modes occurs continuously. The phenomenon is described using
experimental data. However, a numerical model is useful to understand the effect and the
reason of CMC. The numerical effort in modeling this phenomenon is very high, caused
by the geometric structure of the composite. Therefore, the NURBS based approach is
used to create a simplified as well as complex model to reduce the numerical effort. The
solutions will be compared with experimental findings.

Conclusion and outlook: In the last chapter the thesis is concluded. The main results
are briefly summarized and a few comments on future work are given.
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2 Theoretical background

2.1 Introduction

The chapter provides an overview of the theoretical background of this thesis. The research
is focused on the simulation of Lamb waves used for SHM applications. As pointed out in
chapter 1 Lamb waves are elastic waves which occur in thin-walled structures. In the first
part of chapter 2 the analytical Lamb wave solution in an isotropic material is developed.
This solution can be used as reference to determine the quality of numerical approaches.
Moreover, frequently used terms like dispersion, Lamb mode, mode conversion etc. are
introduced.
The second part of the chapter deals with piezoelectric materials. Surface bonded piezo-
ceramic patch actuators are a common way to excite Lamb waves. Due to the fact that
the coupling between an electrical field and a mechanical deformation is invertible the
piezoceramics can be used both as actuators and as sensors. The material law is needed
to develop a finite element which includes elastic and piezoelectric properties.
The third part of the chapter provides a short overview of the FEM. Since the analytical
approaches are limited to simple geometries and materials numerical FEM approaches, for
instance, are needed to circumvent the limitation of the analytical Lamb wave solution.
The FEM divides the stated complex problem in several subsections. To obtain an accu-
rate solution of a Lamb wave simulation model a fine spatial and temporal discretization is
required. To minimize the computational effort an alternative mathematical description of
the finite elements is figured out. An isogeometric approach based on NURBS is developed
in the next chapter. Therefore, in the last part of this chapter the B-spline and NURBS
functions are introduced and some of their advantages, e.g. the accuracy of the geometrical
description, are shown. With respect to future applications more complex structures need
to be computed for the design of SHM systems.

2.2 Lamb waves

Lamb waves are a special type of ultrasonic waves. They refer to elastic perturbations
propagating in elastic solid plates (or layers) with free boundaries, for which displace-
ments occur both in the direction of wave propagation and perpendicular to the plane of
the plate [155]. The first mathematical description of this phenomenon has been made
by Horace Lamb in 1917 [81] and later named after him. Lamb waves are of two basic
types, a symmetric and an anti-symmetric one. For each propagation type exists a num-
ber of modes corresponding to the solution of the mathematical model defined by Lamb
[49]. Furthermore, these modes can convert into each other under special conditions, e.g.
reflections at flat bottom holes [169], and they are dispersive. The properties which make
them interesting for SHM applications are their small wavelengths (in higher frequency
range) and only a slight loss of amplitude magnitude (1/

√
r) in relation to the traveled
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distance r [143]. For damage detection they are widely in use [84, 91, 143].
This section illustrates the mathematical theory of Lamb waves. The fundamental equa-
tions are derived. To understand the properties of Lamb waves the analytical statement of
the problem is helpful. Therefore, the derivation of the equations for an isotropic material
in a thin plate starting from the Navier wave equation is shown in the following.

2.2.1 Isotropic 3D wave equation

It is dealt with the problem of wave propagation in a three-dimensional isotropic material.
To describe the point displacement, the solution of the 3D wave equation is needed. For
more details refer to Lai et al. [80]. It is started from the Navier wave equation

(λ+ µ)∇∇ · u+ µ∇2u+ f = ρü , (2.1)

with the Lamé constants λ and µ. For an isotropic material, both are related to the
Youngs modulus Y and the Poissons ratio ν [16]. The vector u is the displacement
u = u(x1, x2, x3, t), ü the acceleration, f is the external load vector, ∇ = grad(..) is the
gradient operator and ρ is the mass density. Using the Helmholtz decomposition, which
separates the displacement in a scalar potential Ψ and a vector potential T

u = ∇Ψ+∇×T , (2.2)

complemented by the uniqueness condition

∇T = 0 , (2.3)

one obtains
∇
(
(λ+ 2µ)∇2Ψ− ρΨ̈

)
+∇×

(
µ∇2T− ρT̈

)
= 0 . (2.4)

The terms in the parentheses must be independently zero to fulfill Equation (2.4) which
leads to

∇2Ψ =
1

c2L
Ψ̈ ,

∇2T =
1

c2T
T̈ .

(2.5)

The constants cT and cL

cT =

√
Y

2ρ(1 + ν)
,

cL =

√
Y (1− ν)

ρ(1 + ν)(1− 2ν)
,

(2.6)

are described as velocity of the transversal and longitudinal wave for an elastic isotropic
solid [155]. With these basic equations the three-dimensional problem of wave propagation
in an isotropic material is solved. With the aid of these concepts it is explained how the
solution of Lambs problem can be derived.
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2.2.2 Derivation of the Lamb wave equations for a plate

Based on the Helmholtz decomposition (see Equation (2.2)) for the 3D wave equation the
solution for Lambs problem is derived. The model is an infinite plate, where the upper
and lower boundaries are stress free. The plates cross section is sketched in Figure 2.1.
It is assumed that applied loads do not depend on the x2-direction. All quantities in
Equations (2.1) - (2.3) become independent from x2, and a two-dimensional problem can
be considered [104]. For more details refer to Lamb [81] and Viktorov [155].

x1

x3
2h

−∞ ∞

Figure 2.1: 2D plate model with coordinates.

In case of a harmonic motion an ansatz of the form

Ψ(x1, x3, t) = g(x3)e
j(kx1−ωt),

T3(x1, x3, t) = h(x3)e
j(kx1−ωt),

(2.7)

is suitable to describe the wave propagation in a plate with the wave number k and the
angular frequency ω = 2πf . The functions g(x3) and h(x3) are chosen as [49]

g(x3) = A1 sin(q̃x3) + A2 cos(q̃x3) ,

h(x3) = B1 sin(p̃x3) + B2 cos(p̃x3) .
(2.8)

The unknowns p̃ and q̃ are abbreviations for

p̃2 =
ω2

c2L
− k2 and q̃2 =

ω2

c2T
− k2 . (2.9)

The variables A1, A2, B1 and B2 are integration constants. Substituting Equation (2.8)
into Equation (2.2) the displacements are

u1 = A2jk cos p̃x3 +B1q̃ cos q̃x3) + (A1jk sin p̃x3 −B2q̃ sin q̃x3) ,

u3 = −(A2p̃ sin p̃x3 +B1jk sin q̃x3) + (A1p̃ cos p̃x3 −B2jk cos p̃x3) .
(2.10)

With the derivatives of the potentials Ψ and H3 with respect to x3 and the Lamé constant
µ, the shear stresses σ31 are given by

σ31 = µ[−A22jkp̃ sin p̃x3 +B1(k
2 − q̃2) sin p̃x3

+A1jkp̃ cos p̃x3 +B2(k
2 − q̃2) cos q̃x3]

(2.11)

and the normal stresses σ33 are given by

σ33 = µ[A2(k
2 − q̃2) cos p̃x3 −B12jkq̃ cos q̃x3

+A1(k
2 − q̃2) sin p̃x3 +B22jq̃ sin q̃x3] .

(2.12)
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Including the boundary conditions (stress free surface)

σ31(x1,−h) = σ31(x1, h) = 0 ,

σ33(x1,−h) = σ33(x1, h) = 0
(2.13)

in Equations (2.11) and (2.12) a system of equations is obtained to calculate the integration
constants A1, A2, B1 and B2. It can be noted that the constants A2 and B1 are independent
from A1 and B2. Since the constants are decoupled the original system of equations can
be split in two, one for each basic type of the waves. In matrix form they can be written
as [

−(k2 − p̃2) cos(q̃h) 2jkp̃ cos(p̃h)
−2jkq̃ sin(q̃h) (k2 − p̃2) sin(p̃h)

] [
A2

B1

]
=

[
0
0

]
(2.14)

and [
−(k2 − p̃2) sin(q̃h) −2jkp sin(p̃h)

2jkq̃ cos(q̃h) (k2 − p̃2) cos(p̃h)

] [
A1

B2

]
=

[
0
0

]
. (2.15)

The system of equations describes a symmetric and an anti-symmetric movement of the
particles with respect to the central plane of the plate. To obtain non trivial solutions for
this system the determinants of the system matrices must vanish, leading to the so called
dispersion relation. The solutions are

tan(p̃h)

tan(q̃h)
+

4p̃q̃k2

(k2 − p̃2)2
= 0 (2.16)

for the symmetric part and
tan(q̃h)

tan(p̃h)
+

(k2 − p̃2)2

4p̃q̃k2
= 0 (2.17)

for the anti-symmetric one, respectively. Normally the influence of changing the product
frequency times thickness is displayed in dispersion curves of the Lamb modes. These curves
show the phase or group velocity in relation to the frequency times thickness product of
the plate. To obtain the results of the dispersion curves the Equations (2.16) and (2.17)
have to be solved. In Figure 2.2A the dispersion curve of the phase velocity

cp =
ω

k
(2.18)

for an aluminum plate is displayed. The material data are given in Table A-1. The
dispersion describes the dependency of the phase or group velocity of a Lamb wave from
the product of frequency times thickness. Between 0 and 4 MHzmm four modes exist,
two symmetric ones (S0, S1) and two anti-symmetric ones (A0, A1). At higher frequencies
the wavelength of the modes becomes shorter. Ultimately the velocities of the different
modes converge to the Rayleigh wave speed [155]. In the dispersion curves the cut off
frequencies of the higher modes (A1, S1) can be seen. The A1-mode exist only for fh
higher than 1.5 MHzmm, analogously the S1 mode for 2.5 MHzmm. For higher frequencies
more modes exist. In SHM applications based on Lamb waves the fh range below the first
cut off frequency is used to simplify the received signals, because only S0- and A0-modes
are present.
The group velocity, shown in Figure 2.2B, is defined as

cg =
∂ω

∂k
. (2.19)
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Figure 2.2: Phase and group velocity dispersion curves for the first two symmetric and
anti-symmetric Lamb modes in an aluminum plate (see Table A-1; hp = 2h).

With the wavelength λ = cp/f and after some transformations the solution of the group
velocity in dependency of the frequency times thickness can be written as [49]

cg = c2p

(
cp − f

∂cp
∂f

)−1

. (2.20)

In experiments the group velocity is measurable via the time-of-flight corresponding to
a defined distance. This information is important to analyse the sensor data by using a
non-continuous signal like a pulse. By measuring the wave length of the Lamb wave modes
the phase velocity can be determined.
Using Equation (2.14) to determine A2 and B1 in Equation (2.10) the displacements u1

and u3 of the symmetric mode can be calculated (see Figure 2.3A)

u1 = −2k2q̃ cos q̃h cos p̃x3 + q̃(k2 − q̃2) cos p̃h cos q̃x3,

u3 = −2jkp̃q̃ cos q̃h sin p̃x3 − jk(k2 − q̃2) cos p̃h sin q̃x3 .
(2.21)

In an analogous way the displacements u1 and u3 of the anti-symmetric mode can be cal-
culated (see Figure 2.3B) using Equation (2.15) to determine A1 and B2 in Equation (2.10)

u1 = −2k2q̃ sin q̃h sin p̃x3 + q̃(k2 − q̃2) sin p̃h sin q̃x3,

u3 = 2jkp̃q̃ sin q̃h cos p̃x3 + jk(k2 − q̃2) sin p̃h cos q̃x3 .
(2.22)
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(A) S0-mode

(B) A0-mode

Figure 2.3: Lamb wave mode shapes.

The corresponding mode shapes (u1, u3) for the S0- and A0-mode are illustrated in Fig-
ures 2.3. The symmetric mode is comparable to a compression wave, whereas the anti-
symmetric mode resembles a flexural wave. The amplitude characteristics of the displace-
ments u1 and u3 over the height are influenced by the mode type and the frequency. The
shape of the displacements u1 and u3 over the plate thickness of the symmetric and the
anti-symmetric mode are shown in Figure 2.4. The x -axis corresponds to the normalized
displacements, whereas the y-axis corresponds to x3. The displacements are normalized uti-
lizing the smallest absolute value of u1(fhp) or u3(fhp), respectively. The frequency times
thickness dependency is not equal for both displacements. The normalized u1-displacement
of the S0-mode has a maximum at the midplane Figure 2.4A. This maximum increases at
higher frequencies. The u3-displacement is zero in the midplane shown in Figure 2.4B.
For the anti-symmetric mode the u3-displacement (see Figure 2.4D) is stronger influenced
by a change of the frequency times thickness than the u1-displacement (see Figure 2.4C).
The non-linear deformation especially for the u1-displacement of the S0-mode underlines
the need to develop a three-dimensional finite element as done in chapter 3. Moreover,
the sensitivity of the modes with different damages at different depths inside structure
could be studied. This knowledge is important, e.g. to identify the useful Lamb mode for
different types of damages if a mono-modal excitation is used for SHM purposes.
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Figure 2.4: Normalized displacments over the thickness of the plate of the S0- and
A0-mode for different frequencies. umin corresponds to the minimal displacement for each
fhp.
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2.3 Lamb wave excitation

When using Lamb waves for structural health monitoring applications one has to be able
to excite them as well as to sense them. Different methods for the actuation of Lamb
waves are possible induced, e.g. by temperature [103], by ultrasonic transducers [144, 155],
applied by magneto restrictive patches [50]. However, a commonly used way is to apply
piezoceramic patches at the surface of the structure [143] and to use them as actuators
and sensors. With piezoelectric strain sensors, strong and clear voltage signals can be
obtained directly from the sensor without the need for intermediate gage bridges, signal
conditioners, and signal amplifiers. These direct sensing properties are especially significant
in dynamics, vibration, and audio applications in which alternating effects occur in rapid
succession thus preventing charge leaking [49]. Figure 2.5 illustrates some standard designs
of piezoceramics. All of them have different advantages and disadvantages, but they use
the piezoelectric effect as physical principle.

(A) Pure piezoceramic (B) Piezoceramic composite

(C) Piezoelectric flexible thin layer [2] (D) Piezoelectric fiber [1]

Figure 2.5: Examples of different types of piezoelectric actuators.

2.3.1 Piezoelectric material

The piezoelectric effect was discovered by the brothers Jacques and Pierre Curie in
1880 [71]. Piezoceramics are active materials which transform mechanical deformation
into electrical energy (direct piezoelectric effect) as well as electrical energy into mechan-
ical deformation (inverse piezoelectric effect). One ceramic can be used both as actuator
and sensor. Therefore, piezoceramics are widely utilized in technical applications, e.g. ul-
trasonic measurements, medical diagnostics, micro pumps, telephones, etc. [58].
Most of the technological applications of piezoelectricity used nowadays are based on fer-
roelectric materials. To gain an understanding of the piezoelectric effect in ferroelectric
materials, the behavior of the material on a microscopic scale has to be considered. Above
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a certain temperature, called Curie temperature (TC), the crystal structure of a ferroelec-
tric material does have a center of symmetry and has therefore no electric dipole moment.
A non-symmetric crystal structure is formed below the material specific Curie temperature
and the crystal presents a natural electric dipole (pyroelectricity) which may be reversed
(ferroelectricity) and also switched in certain allowed directions by the application of a
sufficiently high electric field [111].

EEE E

1. E = 0 2. E = Emax 3. E = 0 4. E = E4

(A) (B) (C) (D) (E)
E

ε

1

2
3

4

Figure 2.6: Polarization reorientation and strain changes under the influence of external
electric field E [95].

Ferroelectric crystals possess regions with uniform polarization called ferroelectric domains.
In one domain the electric dipoles have the same orientation. The interfaces which sep-
arate the domains are called domain walls. Usually, a ferroelectric material consists of
many domains, and all directions of the electric polarization have the same probability of
appearance. The overall net electric dipole in the ferroelectric is zero. The term ”ferro-
electric material” was coined because of an analogy to the term ”ferromagnetic materials”,
in which the remanent magnetization is altered by the application of an external magnetic
field [49]. Typically, the polarization is impressed after the production process. The body
has become permanently piezoelectric and can convert mechanical energy into electrical
energy, and vice versa.
Figure 2.6 schematically shows the polarization process in a multi-domain ferroelectric
piezoceramic. The arrows inside the cells correspond to the polarization direction of a
single domain. The material is initially randomly poled (Figure 2.6 (B)). An electric field
Emax is applied. The polarization in each domain orientates to the direction of applied
electrical field (Figure 2.6 (C)). As the electric field is reduced, the strain decreases mono-
tonically and no depolarization occurs also if the electric field is set to zero (Figure 2.6 (D)).
The material is now poled and has a remanent polarization and remanent strain [111].
Typically the polarization process is done only one time in life of a piezoceramic. After it
small electric fields E4 (Figure 2.6 (D)) are used to activate the piezoceramic. The region
between 3 and 4 in the low voltage range is approximately linear. For further investigations
it is focussed on this region. The mechanical behavior of the material will be assumed to be
linear elastic without dissipation. The laws are valid near the points 3 and 4 in Figure 2.6
(A) [19].
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The most representative materials among the displacive ferroelectrics are the perovskites,
of which BaTiO3 is a prototype. The lattice structure of Barium titanate is depicted in
Figure 2.7. They can be described by the perovskite formula

A2+ bivalent kation (Pb2+, Ba2+, Ca2+, Mg2+, Sr2+),
A2+B4+O2−

3 B4+ tetravalent kation (Ti4+, Zr4+, Sn4+),
O2− bivalent oxygen anion .

Below the Curie temperature (TC ≈ 120◦C [179]) the position of the Ti4+ ion is not
within the plane of symmetry (dashed horizontal lines). The shift defines the direction of
polarization of the single crystal. The application of an electric field moves the Ti4+ ion
which causes a deformation of the crystal.

Ti4+

O2−

Ba2−

x1

x2

x3

Figure 2.7: Cubic unit cell of perovskite structure of ABO3 type, for BaTiO3 [95].

2.3.2 Constitutive equations of piezoelectric material

To model a piezoelectric elastic material in a low voltage range, the linearized piezoelec-
tric constitutive equations are sufficient to describe the coupled electro-mechanical behav-
ior [19, 49].

x1

x3

x2

electrode

Poling direction

b

l

h

Figure 2.8: Coordinate definition of a piezoceramic patch.
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The linearized piezomechanical material law can be written as

ε = SEσ+ dE , (2.23)

D = dTσ+ ϵσE . (2.24)

The parameters σ, ε, E, D, SE, d and ϵσ are the mechanical stresses, the mechani-
cal strains, the electric field, the electrical displacement, the elastic compliance matrix
measured at constant electric field, the piezoelectric coupling matrix and the permittivity
measured at constant mechanical stress, respectively. The mechanical strain is related to
the displacement u as ε = Du, where

D =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2

∂
∂x2

∂
∂x1

0


, (2.25)

is the differential operator. The electric field is defined as the negative gradient of the
electrical potential Φ

E = −gradΦ = −


∂Φ
∂x1

∂Φ
∂x2

∂Φ
∂x3

 . (2.26)

The extension of Hookes Law to piezoelectric coupling between quasistatic mechanical and
electrical variables is represented by the 9 x 9 Van Dyke matrix [58]. Assuming transversal
isotropic material properties and utilizing the coordinate system shown in Figure 2.8 the
constitutive equation can be written as

ε1
ε2
ε3
ε4
ε5
ε6
D1

D2

D3


=



sE11 sE12 sE13 0 0 0 0 0 d31
sE12 sE11 sE13 0 0 0 0 0 d31
sE13 sE13 sE33 0 0 0 0 0 d33
0 0 0 sE44 0 0 0 d15 0
0 0 0 0 sE44 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 ϵσ11 0 0
0 0 0 d15 0 0 0 ϵσ11 0
d31 d31 d33 0 0 0 0 0 ϵσ33


·



σ1

σ2

σ3

σ4

σ5

σ6

E1

E2

E3


(2.27)

with sE66 = 2(sE11 − sE12) as shear modulus belonging to the plane of isotropy. The indices
(..)1, (..)2, (..)3, (..)4, (..)5 and (..)6 match with the x1-, x2-, x3-, x13-, x23- and x12-direction,
respectively.
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(A) Electrical field work in direction of the
polarization
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(B) Electrical field against the direction of
the polarization

Figure 2.9: Deformation of piezoceramics under electrical load (black - undeformed, dot-
ted - deformed).

Using a piezoceramic material as actuator an external electrical field has to be applied,
e.g. parallel to the polarization of the ceramic. With the knowledge of the direction of
polarization, it is possible to predict the occurring deformation. Figure 2.9A illustrates the
deformation caused by applying a positive electrical field. Figure 2.9B shows a shrinking,
because of a negative electrical field. Equation (2.23) allows us to calculate the strain for
both examples. Using the piezoceramic patch as sensor the conversion of mechanical strain
to voltage output can be derived. The charge Q and the voltage VC generated across the
sensor electrodes are related by the capacitance Cp of the sensor as

VC =
Q

Cp

. (2.28)

According to Sirohi et al. [136] a piezoelectric sheet can be treated as a parallel plate
capacitor, with a capacitance given by

Cp =
ϵσ33 · lC · bC

dC
. (2.29)

Whereas ϵσ33 describes the dielectric permittivity in x3-direction, dC the height, lC the
length and bC the width of a cuboid piezoceramic sensor. The electric displacement is
related to the generated charge through the expression

q =

∫
Si

[
D1 D2 D3

]
·

 dS1

dS2

dS3

 (2.30)

where Si are surfaces of the capacitor. Incorporating the assumption that the electrical
field E is zero [22, 136] inside a piezoelectric sensor into equation (2.24) the dielectric
displacement is given as

 D1

D2

D3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 ·


σ1

σ2

σ3

σ4

σ5

σ6

 . (2.31)

The voltage can be calculated using the equations (2.28) - (2.30). It is noted that shear
stress in the 1-2 plane σ6 is not capable of generating any electric response

VC =
Q

Cp

=
dC

eσ33 · lC · bC
·

∫
b

∫
h

D1 dx2 dx3 +

∫
l

∫
h

D2 dx1 dx3 +

∫
l

∫
b

D3 dx1 dx2

 .

(2.32)
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2.4 Finite element method

The finite element method (FEM) is the most widely used method for the simulation of
structural problems in engineering. A distinctive feature of the finite element method
is the division of a given domain into a set of simple subdomains, called finite elements
[125]. For arbitrary problems it is not possible to find functions to describe the solution of
the whole domain. The development of the method started in the 1940’s with Hrenikoff
(1941), Courant (1943), McHenry (1943), Newmark (1949) and others [176]. Until now a
large variety of books and articles are published about this topic, e.g. Bathe [11], Hughes
[65], Reddy [125], Zienkiewicz and Taylor [176–178], etc. These books are mainly focused
on the development of the h-version of the finite elements. The quality of the solution is
increased by using a higher number of elements. Nevertheless, the accuracy can be also
enhanced by increasing the polynomial order of the ansatz function. Szabò, Babǔska and
Düster [43, 145] should be mentioned when talking about the development of the p-version
of the finite elements. In 2005 the term “isogeometric” finite elements was coined [66].
The work was motivated by closing the existing gap between the finite element analysis
(FEA) and the computer aided-design (CAD) in FEA applications [29]. Using a NURBS-
based description of the geometrical model in CAD reduces the effort of the discretization
process [45].
Regardless of the proposed approaches the basic finite element equations are equal. In the
following sections these equations are given.

2.4.1 Variational principle

The dynamic equations of a piezoelectric continuum can be derived using Hamiltons prin-
ciple, which states that the motion of the system in time interval [t1, t2] is such that the
variation of action vanishes, i.e. the motion of the system takes the path of stationary
action [55]

δ

t2∫
t1

(L+W ) dt = 0 , (2.33)

where L represents the Lagrangian, and δW the virtual work of the external forces. The
Hamiltons principle is adapted in a way that the Lagrangian includes the kinetic energy
T as well as the electric enthalpy density function H (electric Gibbs energy [68])

L = T −H . (2.34)

The kinetic energy is well known as

T =
1

2

∫
V

ρu̇T u̇ dV , (2.35)

with the mass density ρ and the velocity field u̇. The electric enthalpy density function H
is usually used to derive the governing equations of the coupled piezoelectric continuum
and for the linear piezoelectric behavior [128]. The potential energy density of a piezo-
electric material includes contributions from the strain energy and from the electrostatic
energy [111]

H =
1

2

∫
V

(εTσ− ETD) dV , (2.36)
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where σ are the mechanical stresses, ε the mechanical strain, E the electrical field and D
the dielectrical displacement. Using the Equations (2.35) and (2.36) the Lagrangian L can
be written as

L =

∫
V

1

2

[
ρu̇T u̇− εTσ− ETD

]
dV . (2.37)

Following Samal et al [128] the work W done by external mechanical f forces and electrical
charges Q at volumes (..)V , surfaces (..)Si

or nodals (..)i is given as

W =

∫
V

uT fV dV +

∫
S1

uT fS1 dS1 −
n∑

i=1

uT
i fi −

∫
S2

ΦQS2 dS2 −
m∑
j=1

ΦjQj , (2.38)

the variables and the electromechanical analogy is illustrated in Table 2.1.

Table 2.1: Electromechanical analogy.

Mechanical variables Electrical variables
Force f Charge Q
Displacement u Electric potential Φ
Stress σ Dielectric displacement D
Strain ε Electric field E

With Hookes law

σ = CEε =
(
SE
)−1

ε (2.39)

and substituting the Equations (2.23), (2.24), (2.37) and (2.38) in Equation (2.33) the
Hamiltons principle is obtained in the following form [95]

0 = −
∫
V

[
ρδuT ü+ δεTCEε− δεTbTE− δETbε− δETϵσE

]
dV

+

∫
V

δuT fV dV +

∫
S1

δuT fS1 dS1 +
n∑

i=1

δuT
i fi −

∫
S2

δΦQS2 dS2 −
m∑
j=1

δΦjQj ,

(2.40)

where ü is the acceleration and b = CEd.

2.4.2 Finite element equations

Based on Equation (2.40) the finite element equations can be derived. When using the
finite element approach a continuous body is approximated with shape functions defined
on a local domain (elements). The shape functions will be discussed in the next section
(see section 2.5). The displacements u(m) and the electrical potential Φ(m) in an element
can be expressed as

u(m)(x) = H(m)
u (x)UN and Φ(x)(m) = H

(m)
ϕ (x)ϕN . (2.41)
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H(m) is an interpolation matrix which includes the shape functions. UN and ϕN are the
displacement vector and the electrical potential of each node, respectively, m is the element
number and x = [x1, x2, x3] is the position vector [176]. The mechanical strain and the
electrical field are defined as ε = Du, where D is the differential operator and E = −∇Φ
(see Section 2.3.2), respectively. With the ansatz shown in Equations (2.41) the element
strain and the element electrical field can be derived directly

ε(m)(x) = DH(m)
u (x)UN = B(m)

u (x)UN ,

E(m)(x) = −∇H
(m)
ϕ (x)ϕN = −B

(m)
ϕ (x)ϕN .

(2.42)

If the approximation of the mechanical displacements (Equation (2.41)) and the strains
(Equation (2.42)) as well as relations for the electrical potential and the electrical field
is substituted in Equation (2.40) the equations for a dynamic piezomechanical model are
obtained as

δUT
N

∫
V

H(m)T
u ρH(m)

u dVÜN + δUT
N

∫
V

B(m)T
u CEB(m)

u dVUN

+δUT
N

∫
V

B(m)T
u bTB

(m)T
ϕ dVϕN + δϕT

N

∫
V

B
(m)T
ϕ bB(m)T

u dVUN

−δϕT
N

∫
V

B
(m)T
ϕ ϵσB

(m)T
ϕ ϕNdV = δUT

N

∫
V

H(m)T
u FV dV + δUT

N

∫
S1

H(m)T
u FS1dS1

+δUT
NH

(m)T
u FP − δϕT

N

∫
S2

H
(m)T
ϕ qdS2 − δϕT

NH
(m)T
ϕ Q . (2.43)

Equation (2.43) is valid for any arbitrary variation of the displacements δUN and the
electrical potential δΦN and thus yields

MuuÜN +KuuUN +KuϕϕN = fext , (2.44a)

KϕuUN −KϕϕϕN = qext . (2.44b)

The abbreviations in common use are [51]:

- the mass matrix Muu = ρ
∫
V

HT
uHudV,

- the mechanical stiffness matrix Kuu =
∫
V

BT
uC

EBudV,

- the direct piezoelectric coupling matrix Kuϕ =
∫
V

BT
ub

TBϕdV,

- the inverse piezoelectric coupling matrix Kϕu =
∫
V

BT
ϕbBudV,

- the dielectric stiffness matrix Kϕϕ = −
∫
V

BT
ϕϵ

σBϕdV,

- external mechanical forces fext =
∫
V

HT
uFV dV +

∫
S1

HT
uFS1dS1 +HT

uFP ,

- the electric charge qext = −
∫
S2

HT
ϕ qdS2 −HT

ϕQ .

(2.45)

The indices uu, ϕϕ and uϕ denote the coupling between displacement - displacement,
electrical potential - electrical potential and displacement - electrical potential, respectively,
and Bu, Bϕ are the strain-displacement matrix and the electric field-electric potential
matrix [51].
The vectors FV , FS1 and FP contains forces applied to a node (P), a surface (S1) and a
volume (V), whereas the vector Q and the scalar q are charges applied to a node and a
surface (S2), respectively.
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2.5 Non-uniform rational B-splines (NURBS)

In this section the basic principles and definitions of NURBS are explained. They are
a widely used tool in computer aided design (CAD). I. J. Schoenberg coined the term
“Spline” in 1946 [132]. The name is based on a drawing instrument which helps to inter-
polate the geometry in a geometrical way. The mathematical description of this instrument
is the basic idea of splines [37]. There are different types, e.g. cubic splines, Bézier splines
and B-splines. In the mathematical subfield of numerical analysis, a B-spline is a spline
function that has minimal support with respect to a given degree, smoothness, and do-
main partition. A fundamental theorem states that every spline function of a given degree,
smoothness, and domain partition can be represented as a linear combination of B-splines
of that same degree and smoothness, and over that same partition [38].
The first published works on NURBS are from Versprille [154] and Tiller [149]. NURBS
are a superset of all non-rational B-splines and non-rational Bèzier curves, surfaces and
volumes. NURBS can be interpreted as projection of a B-spline from Rn+1 in Rn. For
B-splines as well as NURBS a local control of the created polynomial curve is feasible,
which make them attractive for CAD applications.
The NURBS functions are used as shape functions for the proposed finite piezomechan-
ical element. The advantage are the exact description of the geometry and the smooth
continuity over the element boundary [66].

2.5.1 One-dimensional B-spline

A B-spline basis is comprised of piece-wise polynomials joined with prescribed continuity.
To define a B-spline of polynomial order px1 in one dimension one needs to understand the
notion of a knot vector V. A knot vector is a set of coordinates in a parametric space,
written as

V = [β0, β1, β2, .., βr−2, βr−1] with βi ≤ βi+1 , (2.46)

where i is the knot index, i = 0, 1, 2, ..., r − 1, βi is the ith knot, r = ncont + px1 + 1 is
the length of the knot vector and ncont the total number of control points [12]. There are
various ways to define B-spline basis functions, e.g. by blossoming [45, 87], by divided
differences of truncated power functions [33, 132] and by recurrence formulae [32, 36].
For computer implementation the usage of the last possibility is the most useful way and
therefore illustrated.
The first order B-spline basis functions N(β)i,0 of polynomial order p = 0 are

Ni,0(β) =

{
1, β ∈ [βi, βi+1)
0

. (2.47)

The B-spline basis functions Ni,px1
(β) of higher order px1 > 0 are defined as [20]

Ni,px1
(β) =

β − βi

βi+px1
− βi

Ni,px1−1(β) +
βi+px1+1 − β

βi+p+1 − βi+1

Ni+1,px1−1(β) ,
0

0

def
= 0. (2.48)

Figure 2.10 illustrates how higher order B-spline basis functions are created. Two B-spline
basis functions of polynomial order px1 define the (px1 + 1)-B-spline basis function, e.g.
two ”triangles” of N(β)i,1 define one dotted gray B-spline curve N(β)i,2. Basis functions of
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order p have p−1 continuous derivatives at the knots. Repeating a knot j times the number
of continuous derivatives decreases by the same number j. If j is equal to the polynomial
order px1 the B-spline becomes interpolatory (C0-continuous) [112]. Basis functions form a
partition of unity, each one is compactly supported on the interval [βi, βi+px1+1], and they
are point-wise non-negative. Moreover, the sum of all function values at each knot value
β is equal to one

ncont∑
i=1

Ni,px1
(β) = 1 . (2.49)

These properties make these functions attractive for use in analysis [9, 12].
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Figure 2.10: B-Spline basis functionsN(β)i,px1 of different order px1 forV = [0, 1, 2, 3, 4].

2.5.2 Geometric approximation with B-splines

B-spline basis functions are used to describe curves, surfaces or volumes. A B-spline curve
can be represented as

BC(β) =
ncont∑
i=1

Ni,px1
(β)Pi with β0 ≤ β ≤ βncont+p+1 . (2.50)

Where ncont is the number of control points Pi and Ni,px1
(β) the piece-wise polynomial

B-spline basis functions [112].
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Figure 2.11: B-spline curves with different orders. The curve for px1 = 1 is equal to the
control polygon (CP). The continuity between the polynomial curves and the smoothness
increases with rising polynomial order.

It can be seen that control points can be located outside the curve. The shape of the
curve in relation to the control points is influenced by the knot vector and the order of the
polynomial. A reduction of continuity (reducing the order of p, or repeating a knot) shifts
the curve more nearer to the control point. If C0-continuity is reached the control point is
interpolated by the curve.
In Figure 2.11 a so called open B-spline is used. The first and the last control point is
interpolated. Therefore, the knot vector must be developed as

βi = β0, i ≤ p+ 1,

βi+1 − βi ≥ 0, px1 < i < ncont + 1,

βi = βncont+p+1, i ≥ ncont + 1 .

(2.51)

The Figures 2.12C and 2.12D show examples of an open uniform and open non-uniform
B-spline. These types of B-spline are useful for FEM applications. The influence of the
knot vector to the shape of the curve is shown in Figure 2.13. For the sake of completeness,
the uniform and the non-uniform B-splines are plotted in Figure 2.12A - 2.12B.
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(A) Uniform B-spline
V1=[0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
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(B) Non-uniform B-spline
V2=[0, 0.1, 0.3, 0.375, 0.5, 0.625, 0.65, 0.95, 1]
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(C) Open uniform B-spline
V3=[0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1]
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(D) Open non-uniform B-spline
V4=[0, 0, 0, 0.1, 0.8, 0.9, 1, 1, 1]

Figure 2.12: Influence on the basis functions of polynomial order px1 = 2 by the variation
of the entry of the knots in V.
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Figure 2.13: Influence of the entries of the knot vector V1..4 to B-spline curves of poly-
nomial order px1 = 2 utilizing equal control points CP. The B-spline basis functions are
plotted in Figure 2.12.
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2.5.3 Derivatives of a B-spline basis function and B-spline curve

The derivative of an arbitrary basis function is given by [112]

N
′

i,px1
(β) =

px1

βi+px1
− βi

Ni,px1−1(β)−
px1

βi+px1+1 − βi+1

Ni+1,px1−1(β) . (2.52)

In general terms the k-th derivative can be written as

N
(k)
i,px1

(β) = px1

(
N

(k−1)
i,px1−1

βi+px1
− βi

−
N

(k−1)
i+1,px1−1

βi+px1+1 − βi+1

)
. (2.53)

To calculate the derivative of a B-spline curve with respect to β Equation (2.53) can be
inserted in Equation (2.50). The k-th derivative of a B-spline curve is defined as

∂k

∂βk
BC = BC(k)(β) =

ncont∑
i=1

N
(k)
i,px1

(β)Pi . (2.54)

2.5.4 Surface or volume approximations using B-splines

Applying the curve description is not enough for creating a finite element in two or three
dimensions. Thus, surface and volume interpolations are needed. A B-spline surface is
obtained by taking a bidirectional net of control points Pi,j, two knot vectors (with knots
β, γ), and the products of the univariate B-spline functions of polynomial order px1 and
px2 (Ni,px1

, Mj,px2
) [112]. For a B-spline volume the net of control points as well as the knot

vectors are augmented with a third direction. The B-spline surface BS can be generated
using

BS(β, γ) =
ncont∑
i=1

mcont∑
j=1

Ni,px1
(β)Mj,px2

(γ)Pi,j , (2.55)

and the B-spline volume BV given by

BV(β, γ, ζ) =
ncont∑
i=1

mcont∑
j=1

ocont∑
k=1

Ni,px1
(β)Mj,px2

(γ)Ok,px3
(ζ)Pi,j,k . (2.56)

The derivatives of both B-spline surface and volume can be written as

∂u+v

∂βu∂γv
BS(β, γ) =

ncont∑
i=1

mcont∑
j=1

N
(u)
i,px1

(β)M
(v)
j,px2

(γ)Pi,j , (2.57)

and

∂u+v+w

∂βu∂γv∂ζw
BV(β, γ, ζ) =

ncont∑
i=1

mcont∑
j=1

ocont∑
k=1

N
(u)
i,px1

(β)M
(v)
j,px2

(γ)O
(w)
k,px3

(ζ)Pi,j,k . (2.58)

The derivatives of the univariate B-spline functions can be calculated separately for each
knot direction (β, γ, ζ) using Equation (2.53).
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2.5.5 Rational B-spline curves, surfaces and volumes

As mentioned before a NURBS curve can be interpreted as the projection of a B-spline
curve from Rn+1 on a defined surface in Rn, illustrated in Figure 2.14A. NURBS are
projective invariant and if the weights are non-negative the curve lies in the convex hull of
the control polygon. This projection is controlled by weight parameters wi.

(A) Projective transformation of “projective
control point” Pw

i yields control point Pi. The
weight wi is the x3-component of Pw

i

(B) Projective transformation of the B-spline
curve NCw(β) yields NURBS curve NC(β)

Figure 2.14: Example for a creation of a NURBS curve. A NURBS curve in R2 is
constructed by the projective transformation of a B-spline in R3 [29].

Depending on the weights an improved geometry approximation can be achieved, e.g.
exact description of a circle. The NURBS basis functions Ri,px1

of polynomial order px1

are defined via the B-spline basis functions Ni,px1
and weights wi as

Ri,px1
(β) =

Ni,px1
(β)wi

ncont∑
j=1

Nj,px1
(β)wj

. (2.59)

The NURBS curve is given as [29]

NC(β) =
ncont∑
i=1

Ri,px1
(β)Pi . (2.60)

The definition of the derivative of a NURBS curve NC
′
(β) is quite similar to the derivative

of a B-spline curve [112] and can be written as

NC
′
(β) =

ncont∑
i=1

R
′

i,px1
(β)Pi . (2.61)

The derivative of Ri,px1
(β) can be determined utilizing the given as quotient rule [29]

R
′

i,px1
(β) = wi

W (β)N
′
i,px1

(β)−W
′
(β)Ni,px1

W (β)2
, (2.62)
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with

W (β) =
ncont∑
j=1

Nj,px1
(β)wj . (2.63)

Analogous to a B-spline surface and volume a NURBS surface and volume and their
derivatives can be derived. The equations are given in appendix B.

2.5.6 Refinement strategies

In the finite element method refinements of the model are important to reach a converged
solution. Typically two different approaches are used to achieve convergence. The first one
increases the number of degrees-of-freedom by using a finer discritization (h-refinement).
The second one elevates the order of the polynomials (p-refinement). Both refinements
result in a better approximation of the underlying mathematical problem. In isogeometric
analysis a third method, the increase of the continuity between adjacent finite elements
(k -refinement) is described [29, 30, 66]. In this section the algorithms to calculate new
control points and weights are presented. These methods are needed to realize the required
accuracy of the finite element solution. Table 2.2 gives an overview about the implemented
methods.

Table 2.2: Different methods of refinement.

Refinement Method Example

h-refinement increasing the number of control points Figure 2.15A to 2.15B
p-refinement increasing the polynomial order be-

tween two knots
Figure 2.15B to 2.15D

k-refinement increasing the polynomial order and the
continuity between two knots

Figures 2.15A to 2.15C
to 2.15E

In Figures 2.15A and 2.15B a typical h-refinement is performed by inserting an extra
knot (β3 = 0.5). The polynomial order does not change, but the degrees-of-freedom are
increased. The Figures 2.15B and 2.15D illustrate a p-refinement. The polynomial order
increases but only C0-continuity is obtained at the knot boundary shown in Figure 2.15D,
because of the double entry β3 = β4 = 0.5.
The Figures 2.15A, 2.15C and 2.15E show a k -refinement strategy. The order of the
polynomial is elevated and then the knot vector is refined. It must be noted that the
knot vector after the k -refinement has less knots compared to a p-refinement achieving the
same accuracy [13]. This results in a reduction of the degrees-of-freedom, compared to the
other refinement strategies using NURBS as shape functions for finite elements. It must
be noted that the p-refinement and the k-refinement schemes are equal if the strategies are
applied to a single finite element.
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(A) Linear B-spline basis function
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(B) h-refinement
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(C) p-refinement
VKnot = [0, 0, 0, 1, 1, 1]
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(D) p-refinement
VKnot = [0, 0, 0, 0.5, 0.5, 1, 1, 1]
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(E) k -refinement
VKnot = [0, 0, 0, 0.5, 1, 1, 1]

Figure 2.15: Refinement methods of NURBS elements.

The insertion of a knot or the increase of the polynomial order changes the NURBS basis
functions. A set of new control points and weights to obtain an equal geometric approxi-
mation is needed. The knot insertion of an h-refinement and a p-refinement for a NURBS
curve is typically done by converting the given NURBS curve in three dimensions to a
B-spline curve in four dimensions (4D). There the knot insertion (or polynomial order el-
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evation) is performed and the new curve is projected back in the three-dimensional space.
Exemplarily the algorithm is explained in Figure 2.14. If a knot should be inserted the 2D
curve NC(β) must be projected to the 3D curve NCw(β). There the new set of control
points is calculated. Using new weights an identical geometry approximation can be real-
ized with a higher number of control points. Let Pi(

ix1,
ix2,

ix3) be the control points in
3D, then the control points in 4D are wiPi(

ix1,
ix2,

ix3). Thus the new control point Pnew
i

is calculated as follows [26, 118]

Pnew
i =

(1− αh
i )wi−1Pi−1 + αh

i wiPi

wnew
i

, (2.64)

with

αh
i =


1, 1 ≤ i ≤ k− p
β−βi

βi+p−βi
, k− p+ 1 ≤ i ≤ k

0, k + 1 ≤ i ≤ n+ p+ 2 ,

(2.65)

where the knot β lies within the knot span [βk, βk+1] [66]. With the factor αh
i the new

weights wnew
i of the NURBS interpolated geometry are calculated by applying

wnew
i = (1− αh

i )wi−1 + αh
i wi . (2.66)

Following Piegl [112] the new control points can be determined by increasing the polynomial
order in an analogous way. With the factor αp

i

αp
i =

i

px1 + 1
i = 0, ..., px1 + 1 , (2.67)

and the new weights
wnew

i = αp
iwi−1 + (1− αp

i )wi . (2.68)

The new control point Pnew
i can be estimated

Pnew
i =

αp
iwi−1Pi−1 + (1− αp

i )wiPi

wnew
i

. (2.69)

2.6 Summary

In this chapter the analytical solution of Lambs problem has been developed. It must be
noted only waves decoupled from the shear horizontal waves can be called Lamb waves, as
originally described by Lamb [4]. However, in the available literature and in this thesis,
waves in anisotropic composite plates are also named as Lamb waves even with the cou-
pling. The dispersion curves of a specific isotropic material could be determined applying
the mathematical description. However, the analytical approach is limited to simple ge-
ometries. The excitation of the Lamb waves has to be modeled by applying forces. To
investigate and to design real SHM applications one needs actuators and sensors as well as
a mathematical description which allows to model these devices and complex structures.
Therefore, the piezoelectric material has been introduced. The actuators are used to excite
Lamb waves. To model complex geometries as well as the piezoelectric actuator or sensor,
the finite element method was introduced. The basic equations for a dynamic piezoelectric
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finite element have been derived. To develop the element one needs shape functions which
describe the domain of the finite element. In this thesis non-uniform rational B-splines are
used as shape functions. The geometrical description, properties, refinement strategies,
derivatives, etc. have been illustrated.
In the following chapter 3 the introduced general piezoelectric finite element and the
NURBS functions are combined to develop an isogeometric element. This element is tested
with help several benchmarks.
In chapter 4 the group velocity of an aluminum plate obtained by the analytical model is
used as an exact model solution to compare the convergence rate of different higher order
finite element approaches.
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3 Development of a 3D
piezomechanical isogeometric finite
element

3.1 Introduction

In chapter 1 it has been mentioned that the simulation of ultrasonic Lamb wave propaga-
tion is a highly demanding task from a computational point of view. Since high frequencies
are required and thus, the wavelength is rather short in comparison to the spatial dimen-
sions considered, the spatial discretization as well as the temporal one have to be very
fine when FEM procedures are considered. Due to the fact that conventional low order
finite elements quickly reach their limit when dealing with ultrasonic guided waves, an
alternative discretization approach is studied. In this chapter a three-dimensional coupled
electromechanical isogeometric finite element is developed. This element can be used to
model the structure and the piezoceramic actuators and the sensors of a Lamb wave based
SHM system. It is expected that the structures to be monitored are of complex geometry,
e.g. aircraft fuselages, rotor blades of helicopters, etc. For this reason, it is advantageous
to use NURBS as shape functions.
In the first part of the chapter the element formulation is developed. Next, static and
dynamic benchmarks are applied to test the finite element. In the third part the locking
phenomenon is studied. The knowledge gained in this chapter is used in chapter 5.3 to
investigate the adhesive layer to determine a critical limit for the element aspect ratio.

3.2 Isogeometric analysis

The principles to develop a piezoelectric finite element are given in section 2.4.2. For
isogeometric finite elements the geometry is described as in standard finite elements with
a node vector (control points) multiplied by a matrix of interpolation functions (NURBS
basis functions)

x =

nel∑
i=1

mel∑
j=1

oel∑
k=1

R
px1 ,px2 ,px3
i,j,k (β, γ, ζ)P

(m)
i,j,k (3.1)

with P(m) as the element control points and R
px1 ,px2 ,px3
i,j,k as NURBS basis functions which are

defined in appendix B. Here px1 , px2 and px3 are the polynomial orders of the NURBS basis
function in [β, γ, ζ]-direction in knot space. In contrast to standard finite elements the
degrees-of-freedom of NURBS based isogeometric finite elements have no physical meaning.
The displacements of the geometry u and the electric potential ϕ in one element can be
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expressed as [152]

u =
ncont∑
i=1

mcont∑
j=1

ocont∑
k=1

R
px1 ,px2 ,px3
i,j,k (β, γ, ζ)U

(m)
i,j,k (3.2)

and

ϕ =
ncont∑
i=1

mcont∑
j=1

ocont∑
k=1

R
px1 ,px2 ,px3
i,j,k (β, γ, ζ)Φ

(m)
i,j,k . (3.3)

Here U(el) and Φ(el) are the displacements and the electric potential of the element control
points P(el). The results of the simulation are the time the movement of the control points
from which the displacements at the related geometry can be derived. Defining a NURBS
element it is started from

u = H(m)
u U(m) and ϕ = H

(m)
ϕ Φ(m) . (3.4)

The interpolation matrices H(m)
u and H

(m)
ϕ for one element are defined as

H(m)
u =

 N1 0 0 N2 0 0 Nel 0 0
0 N1 0 0 N2 0 · · · 0 Nel 0
0 0 N1 0 0 N2 0 0 Nel

 (3.5)

and

H
(m)
ϕ =

[
N1 N2 · · · Nel

]
. (3.6)

There the abbreviations Ni are defined as follows

N1 = R
px1 ,px2 ,px3
(1,1,1) ,

N2 = R
px1 ,px2 ,px3
(2,1,1) ,

Nk+(l−1)(px1+1)+(m−1)(px1+1)(px2+1) = R
px1 ,px2 ,px3
(k,l,m) with k, l,m = 1, . . . , pxi

+ 1,

Nel = R
px1 ,px2 ,px3
px1+1,px2+1,px3+1,

(3.7)

where el is the number of element control points. As illustrated in section 2.4.2 the NURBS
basis functions R

px1 ,px2 ,px3
i,j,k of order (px1 , px2 , px3) are defined in the parameter knot space

[β, γ, ζ]. For the numerical implementation one has to map the coordinates between the
cartesian and the knot space and from there to the integration domain [21]. Figure 3.1
exemplarily displays the procedure for a two-dimensional example. The element domain
Ωe in the cartesian space is transformed to the parametric knot space Ω

e
. The mapped

parametric domain Ω
e
has to be transformed in the local coordinate space Ω̃e. There the

quadrature is executed on the domain Ω̃e.
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2

Figure 3.1: Mapping between the domains. J−1
1 describes the mapping between the

geometry and the knot coordinates and J−1
2 describes the mapping between the knot space

and the integration domain [29].

The Jacobian J1 is given in Equation (3.8a). The domain integration (volumes, surfaces)
to obtain the system matrices shown in Equations (2.45) utilizes a Gauss ian quadrature
scheme in a local coordinate space [125]. The mapping between the knot space and the
local integration coordinate space is done using the Jacobian J2 given in Equation (3.8b).

J1 =
∂x

∂β
=


∂x1

∂β
∂x1

∂γ
∂x1

∂ζ
∂x2

∂β
∂x2

∂γ
∂x2

∂ζ
∂x3

∂β
∂x3

∂γ
∂x3

∂ζ

 (3.8a)

J2 =
∂β

∂β̃
=


∂β

∂β̃
0 0

0 ∂γ
∂γ̃

0

0 0 ∂ζ

∂ζ̃

 (3.8b)

Using the volume differentials

dV = dx1 dx2 dx3 = detJ1 dβ dζ dγ = detJ1 detJ2 dβ̃ dγ̃ dζ̃ (3.9)

the matrices given in Equations (2.45) can be expressed as

Ã =

1∫
−1

1∫
−1

1∫
−1

Q̃
T

1 T̃Q̃2 det(J1) det(J2)dβ̃ dγ̃ dζ̃ . (3.10)

Here Ã is replaceable by the element matrices Kuu, Kuϕ, Kϕu, Kϕϕ or Muu. The matrices
Q̃1 and Q̃2 denote Hu, Hϕ, Bu or Bϕ. The matrix T̃ correspond to the required material
matrices CE, b, bT , ϵσ or ρ. Equally the surface or line integrals are to be dealt with.
There the Jacobians are reduced to a lower dimension and only a surface or line integral
has to be solved.
A single element which approximates a circular disc is illustrated in Figure 3.2. The control
points can be connected and describe a control polynomial. The displacements and electric
potential of each element are calculated at the control points. This points can be outside
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the geometry. To obtain the displacements and potentials of the real geometry the solution
at the control points has to be inserted in the following relation

xnew =
ncont∑
i=1

mcont∑
j=1

ocont∑
k=1

Rp,q,r
i,j,k (β, γ, ζ)(xi,j,k +Ui,j,k) . (3.11)

Typically the inter-element-continuity and the continuity within an isogeometric finite
element is Cp−1. Therefore, neighbor elements influence each other. A multi-layer material
has no clear boundary and also perpendicular corners could not be described. To solve
this problems so called “patches” are used [66]. Patches have only C0-continuity at the
boundaries and could be understand as p-element which is defined by piecewise NURBS
polynomial. They are helpful to describe the geometry and can be used to model clear
material boundaries, e.g. the layers in a composite plate.

x2 x1

x3

control polynomial

geometry


u1

u2

u3

Φ


Figure 3.2: Piezoelectric finite element using NURBS shape functions.

3.3 Patch test

In this section the so called patch test is utilized [176]. From a mathematical point of view
this test is not a compelling proof of convergence, but it is still advisable to execute this
test. An arbitrary mesh of distorted finite elements is established. An external load is
applied to the model, e.g. to create a constant strain state, which has to be reproduced
exactly. If the specified strain states are calculated exactly, then the convergence of the
element is assured [65]. Figure 3.3 illustrates a two-dimensional example. All three possible
uniform stress states are plotted. For a three-dimensional piezoelectric finite element three
additional stress states as well as two uniform electrical field states have to be applied.
A cube with edge length (l = 1 mm) with a randomly distorted mesh is used to calculate
uniform stress states. To add the uniform strain states the displacements u are prescribed
at the surfaces of the cube.
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Figure 3.3: Two-dimensional patch test.

Table 3.1. shows the applied displacements for the six different stress states. The Youngs
modulus and the Poissons ratio are chosen as Y = 10N/mm2 and ν = 0.3. The element
polynomial order in all directions is pxi

= 2 and 16 elements are applied to mesh the
cuboid.

Table 3.1: Boundary conditions and prescribed displacements ui [mm] at the surfaces of
the cuboid for the different patch tests.

Test x1 = 0 x1 = 1mm x2 = 0 x2 = 1mm x3 = 0 x3 = 1mm

1 u1 = −0.05 u1 = 0.05 u2 = 0 free u3 = 0 free
2 u1 = 0 free u2 = −0.05 u2 = 0.05 u3 = 0 free
3 u1 = 0 free u2 = 0 free u3 = −0.05 u3 = 0.05
4 u2 = −0.025 u2 = 0.025 u1 = −0.025 u1 = 0.025 u3 = 0 free
5 u3 = −0.025 u3 = 0.025 u2 = 0 free u1 = −0.025 u1 = 0.025
6 u1 = 0 free u3 = −0.025 u3 = 0.025 u2 = −0.025 u2 = 0.025

The tests 1-3 in Table 3.1 cause a one-dimensional strain state and 4-6 represent uniform
shear states. Figure 3.4 plots two examples of an uniform stress state.

x2

x3

x1

u1

(A) Uniform one-dimensional stress state

x2

x1

umag

(B) Uniform shear state

Figure 3.4: Examples for the patch test models.
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In Figure 3.4A the u1-displacements for test 1 and in Figure 3.4B the magnitude displace-
ment umag =

√
u2
1 + u2

2 + u2
3 of test 5 are plotted, respectively. The other four patch tests

show similar results.
Table 3.2 shows the mechanical stresses σ of the cuboid for the different patch tests.
The exact solutions for the defined uniform one-dimensional stress states (tests 1-3) are
σii = 1 N/mm2 and for uniform shear stress states (test 4-6) σij = 0.38759 N/mm2.
All patch test solutions, also with different polynomial orders, show a good agreement
with the expected solution, which agrees with the findings from Lipton et al. [92]. The
maximal discrepancy between the expected result and the calculated solution of the figured
examples is 2.875 · 10−14. This is in the range of the computer accuracy.

Table 3.2: Maximal absolute values in [N/mm2] of all stresses (Y = 10 N/mm2, ν = 0.3
and G = 3.87596N/mm2).

Test σ11 σ22 σ33 σ12 σ13 σ23

1 1.0000 3.0 · 10−15 5.1·10−15 11.2 · 10−15 5.8 · 10−15 9.7 · 10−15

2 2.0 · 10−15 1.0000 2.3·10−15 10.3 · 10−15 10.1 · 10−15 0.1 · 10−15

3 4.1 · 10−15 3.7 · 10−15 1.0000 22.3 · 10−15 28.8 · 10−15 8.0 · 10−15

4 1.0 · 10−15 0.8 · 10−15 0.1·10−15 0.38759 0.6 · 10−15 0.5 · 10−15

5 4.1 · 10−15 2.4 · 10−15 3.1·10−15 1.4 · 10−15 0.38759 1.1 · 10−15

6 1.9 · 10−15 2.6 · 10−15 5.7·10−15 0.9 · 10−15 0.8 · 10−15 0.38759

For completeness, Table 3.3 illustrates the boundary condition of the patch test applying
a constant electrical field, and Table 3.4 shows the constant dielectric displacement. In
agreement with the previous patch test analysis the distorted elements are able to describe
a constant electrical field - dielectrical displacement state.

Table 3.3: Boundary conditions and prescribed electrical potential ϕi [V] at the surfaces
of the cuboid for the different patch tests.

Test x1 = 0 x1 = 1mm x2 = 0 x2 = 1mm x3 = 0 x3 = 1mm

1 ϕ1 = 1 ϕ1 = 0 free free free free
2 free free ϕ2 = 1 ϕ2 = 0 free free
3 free free free free ϕ3 = 1 ϕ3 = 0

Table 3.4: Maximal absolute values in [As/m2] of all stresses (ϵ = 1 F/m).

Test D1 D2 D3

1 1 0 0
2 0 1 0
3 0 0 1
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3.4 Influence of the geometrical mapping

The representation of the geometry of a structure is an important quantity that has to be
considered when thinking about finite element models. Although standard isogeometric
finite elements based on quadratic Lagrange polynomials are in theory able to exactly
describe boundaries with an quadratic variation other issues may arise. These elements are
for example not capable to resolve a quadratic displacement field accurately if the geometry
is varying quadratically as well. In this section the behaviour of NURBS elements is studied
with respect to the mentioned phenomenon. Figure 3.5 illustrates the numerical model
setup (l/h = 1/10). A two-dimensional plain-strain model is deployed and discretized
using two finite elements. Only the interior boundary is described by a quadratic function.
As Dirichlet boundary condition a linear displacement field is prescribed at the end of the
beam. These displacements results in a quadratic u2-displacement function with respect
to x1.

u1=0.001·h

u1=0.001·h

x3

x1
h

l

Figure 3.5: Geometrical mapping test with two two-dimensional NURBS elements with
a quadratic element boundary with l/h = 10.

Generally speaking, every quadratic polynomial can be exactly determined using three ar-
bitrary points on this curve. Hence, a linear system of equations has to be solved in order
to compute the unknowns of the polynomial. In this respect the polynomial type does not
have an influence to evaluate this function. The graphs of every representation may be
different in terms of their representation but nonetheless both functions must coincide.
Figure 3.6A shows the results of the undistorted case, where both isogeometric elements are
of rectangular shape. For this example, the curves of the isogeometric and the quadratic
polynomial curve of the normalized u3-displacement coincide. In contrast to the aforemen-
tioned behaviour, Figure 3.6B shows that the displacements calculated by the isogeometric
finite elements do not coincide with the quadratic function. For the sake of visualization,
Figure 3.6C shows the difference between both results in a detailed view.
From the results given, it can be concluded that the geometrically undistorted elements are
able to capture the displacement field accurately, whereas the distorted elements, with the
interior boundary described by a quadratic function are not able to exactly compute the
displacements. If the polynomial degree is increased the displacement field is still incorrect
if p = 3 is used. Only if p = 4 both the quadratic geometry and the quadratic displacement
field are exactly captured.
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Figure 3.6: Results of the geometrical mapping test with two two-dimensional elements
with a quadratic element boundary.

This conclusion agrees with the mathematical description. A general two-dimensional
quadratic displacement function

u = δ1 + δ2x1 + δ3x3 + δ4x1x3 + δ5x
2
1 + δ6x

2
3 (3.12)

is assumed. To approximate the geometry Equation (3.1) given here in matrix form

x1 = H1(β, γ)x1P and x2 = H1(β, γ)x3P (3.13)

is used. Substituting Equation (3.13) into Equation (3.12) results in

u = δ1 + δ2H1(β, γ)x1P + δ3H1(β, γ)x3P +H2
1(β, γ)(δ4x1Px3P + δ5x

2
1P + δ6x

2
3P ) . (3.14)

If a quadratic geometry approximation is assumed H1(β, γ) includes shape functions up to
order p = 2. The highest polynomial order in Equation (3.14) is four. The displacement
interpolation of the finite element can be written as

u = H2(β, γ)uP . (3.15)
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It can be clearly seen that the highest polynomial order is quadratic if H2(β, γ) is chosen
as quadratic NURBS function. The necessary higher order terms to describe the general
displacement function in Equation (3.14) do not exist. Therefore, the elements are not able
to describe the displacement function accurate in all cases. For the undistorted or linear
distorted elements only the constant or linear terms of H1(β, γ) have to be used to describe
the geometry correctly. In that case the quadratic NURBS elements are able to describe
a displacement function exactely, because the highest polynomial order in Equation (3.14)
is equal to the one in H2(β, γ). If the order of the NURBS elements is increased to p = 4
both the quadratic geometry approximation and the quadratic displacement field can be
described, because the highest polynomial order terms in Equation (3.14) and H2(β, γ) are
equal.
It can be seen that quadratic isogeometric finite elements are able to describe a quadratic
geometry exact, but this results in an inability to resolve a quadratic displacement field.
This agrees with standard Lagrange finite elements as shown in [176].

3.5 Numerical examples

Several tests are conducted to check the performance of the NURBS element. The tests
are divided in two types. First it is started with static calculations, e.g. the piezoelectric
bimorph beam. In the next section two different dynamic calculations are performed. The
eigenfrequency solution of the NURBS element is compared with different reference solu-
tions. Moreover, a three-dimensional plate with a conical hole is calculated and compared
with an Abaqus reference solution.

3.5.1 Piezoelectric bimorph beam

The first benchmark test is a piezoelectric bimorph beam (see Figure 3.7) described in
[48, 95, 146, 165]. One side (x1 = 0) of the beam is clamped. The length, width and height
are l = 100mm, b = 5mm and h = 1mm, respectively. Table A-2 shows the material
properties of the homogeneous beam [95].

x2

x1

x3

poling direction
b

l

∆Φ

h

Figure 3.7: Model of a piezoelectric bimorph beam.
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The material properties and the thickness of the top (gray) and the bottom (dark gray)
layer are equal and both plies are polarized in x3-direction but with opposite orientation.
The beam is modeled with two patches. A patch contains a number of NURBS elements
with Cp−1-continuity between the element boundaries inside the patch, where p > 1. Each
patch is defined with a separate knot vector V, and between two patches C0-continuity
exists.
With a constant electrical field in x3-direction, the upper part of the beam shrinks and
the lower part extends. Thus, a constant bending moment is introduced. Using the Euler -
Bernoulli beam theory, the bending moment can be derived as [95]

M =
bh2

4
b31Y , (3.16)

and the displacements are

u3(x1) =
3

2

b31∆Φ

Y h2
x2
1 . (3.17)

Figure 3.8 shows the displacements in u3-direction for three simulations with different iso-
geometric NURBS elements in comparison to the analytical solution calculated by Equa-
tion (3.17). The description (p = 2, 2, 2) denotes the polynomial degree in x1-, x2-, x3-
directions and ”dof” is the number of degrees-of-freedom.
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Figure 3.8: Calculated displacement u3 at (x1, x2 = b/2, x3 = h/2) under constant
external electrical field for ∆Φ = 1V.

Table 3.5 illustrates the relative displacement error of the FEM solution with respect to the
analytical solution of the deflection at the free end of the beam. Each finite element patch is
discretized with one element over the thickness. Three refinement methods (p-refinement,
h-refinement and k-refinement) can be applied to increase the quality of the solution. Only
the h-refinement and the k-refinement are presented here. A k-refinement involves much
fewer degrees-of-freedom than a p-refinement, which increases the polynomial order inside
an element only without influencing the continuity between the elements [30]. Therefore,
the p-refinement is not considered.
It must be noted that the p-refinement and the k-refinement schemes are equal if only
a single element is used. As starting point a model with 180 degrees of freedom and an
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Table 3.5: Relative error of the displacement at x1 = 0.1m.

Model dof = 180 dof = 780 dof = 2376

rel. Error 5.1% 0.582% 0.547%

uniform polynomial order of px1,2,3 = 2 is chosen. The relative error of this solution is
around 5.1%. Increasing the polynomial order to 12 (using a k-refinement scheme [66])
the error is reduced to 0.582%. The number of degrees-of-freedom is 780. The polynomial
order elevation is done only in x1-direction. Using different polynomial orders in different
directions allows a reduction of the degrees-of-freedom without loosing accuracy.
For the h-refinement the elements are divided into smaller ones. The number of degrees-of-
freedom increases, but the polynomial order px1,2,3 = 2 is not changed. A higher number of
degrees-of-freedoms (dof=2376) has to be used to reach the same accuracy in the solution
which has been obtained with the k-refinement. It must be remarked that the effort to
solve the system of equations is less using higher polynomial degrees, but the assembling
of the system matrices requires more effort in relation to the total computational time.
The effort can be reduced by applying efficient quadrature rules (”half-point rule”), which
make higher order NURBS elements more attractive [67]. However, an efficient integration
schema is not in the focus of this thesis and therefore not studied. Different polynomial
degrees for different directions can be used to increase the quality considerably with less
required assembling time, e.q. a mixed polynomial ansatz (px1 = 8, px2 = 2, px3 = 2) with
540 dof results in almost the same accuracy as an equal polynomial ansatz in all directions
(px1 = 8, px2 = 8, px3 = 8) with 5508 dof. The relative error for the mixed polynomial
ansatz is 0.93% and for the equal polynomial ansatz 0.94%, respectively. In simple struc-
tures, this mixed polynomial formulation is easy to implement. It should be guaranteed
that at the coupling surfaces between different parts of a structure equal polynomial de-
grees are used.
It can be seen that the solution improves when increasing the polynomial order and also
with an increasing number of degrees-of-freedom. It is obvious that the numerical solution
never reaches the analytical solution, because the 3D solution does not fulfill the assump-
tions introduced in the Euler -Bernoulli beam theory exactly.
In Table 3.6 the accuracy of the solution is compared with other methods. Five elements
are used to calculate the solution proposed by Marinković et al. [95]. The Abaqus solution
is calculated with fully integrated, quadratic, piezoelectrical elements (C3D20E). To obtain
comparable results the polynomial degree of the NURBS elements are chosen uniform as
p = 2. Table 3.6 conveys that NURBS elements are more accurate for the chosen example
than the Abaqus solution. Abaqus needs 432 degrees-of-freedoms and with isogeometric
elements only 360 degrees-of-freedoms are required to receive the same accuracy. In the
solution given by Gabbert et al. [48] the calculated displacements are smaller, than in the
analytical solution. The accuracy of both elements, Gabbert and isogeometric, is similar.
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Table 3.6: Static deflection in 10−7m of the piezoelectric bimorph beam.

Distance [m] 0.02 0.04 0.06 0.08 0.1

Analytical 0.138 0.522 1.242 2.208 3.450
Sze [146] 0.138 0.522 1.242 2.208 3.450
Gabbert [48] 0.136 0.545 1.229 2.189 3.424
Abaqus 0.150 0.586 1.294 2.277 3.534
Present 0.142 0.560 1.257 2.23 3.479

Sze et al. [146] have used solid-shell elements, which are based on the assumptions of
the Kirchhoff plate theory. The solution of the beam deflection given by Gabbert et
al., Abaqus and the presented isogeometric element does not reach the analytical as
well as the solid-shell solution given by Sze. The reason is, that the three-dimensional
volume elements do not fulfill the Kirchhoff hypothesis used for the calculation of the
analytical solution. This results in a small discrepancy between the three solutions and
the analytical solution. The solid-shell element proposed by Sze fulfills the Kirchhoff
hypothesis. Therefore, the solution obtained with these elements reproduces the analytical
solution exactly. Nevertheless, the tests have shown that the NURBS elements give equal
or better results than conventional volume elements without the need to introduce special
assumptions.

3.5.2 Shape control of an active plate

The second benchmark problem deals with an active composite plate. It illustrates the
combination of an active and a passive structure. An active piezoelectric patch applied to
a structure can be used to reduce the deflection of the plate caused by an external load.

[PZT 0 90 0]s
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∆Φ
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(A) Model of a active simply supported composite
plate (b = l = 254mm h = 1.336mm)
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Figure 3.9: Active multi-layer plate.
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The plate model is shown in Figure 3.9A. The top and the bottom layer of the plate consist
the piezoceramic material PZT G1195. The material parameters are taken from Kioua and
Mirza [74]. The layers in between the top and the bottom layers are made of T300/976.
They are stacked together as a symmetric cross ply laminate [0 , 90 , 0]S. The properties of
both materials are given in Table A-3.
The plate is simply supported at the edges of the central plane of the plate and a constant
pressure of p̃ = 200N/mm2 is applied at the top surface. Each lamina layer is modeled
with three-dimensional finite elements. Each layer is approximated in thickness direction
(x3-direction) with linear shape functions to minimize the numerical effort. Tests have
shown that significant locking phenomena do not occur and a higher polynomial degree
in x3-direction does not improve the solution significantly. In x1- and x2-directions higher
order polynomials are used. For the calculation, the in-plane polynomial degrees are chosen
as px1 = 4 and px2 = 4. Each layer is discretized equally. When applying different electrical
boundary conditions (∆Φ = 0V, ∆Φ = 15V, ∆Φ = 27V) which are proposed by Kioua
and Mirza [74], the deformation of the plate is reduced.
The normalized displacement u3/b is shown in Figure 3.9B. The results are compared
with an Abaqus reference solution, where fully integrated elements with quadratic shape
functions are used to simulate a quarter of the plate (C3D20, C3D20E, dof=191823).
The solid lines denote the isogeometric finite element solution and the crosses describe the
results obtained using Abaqus. Both solutions coincide with solutions given by Marinkovic̀
et al. [96].
Figures 3.10A and 3.10B show the deformed shape of the plate for ∆Φ = 0V and ∆Φ =
27V. Both deformed shapes coincide with the solutions obtained by Abaqus as well as by
Marinkovic̀ [96].

(A) 0 V (B) 27 V

Figure 3.10: Deformed shape (u3(x1/l, x2/b)/b) of a composite plate under a constant
surface load (p̃ = 200N/mm2).

3.5.3 Bimorph ring actuator

The third example is a clamped bimorph ring actuator consisting of two piezoelectric layers.
This type of actuator is used, e.g. to build piezoelectric linear motors [69]. The material
of both layers is PIC-151. The properties are given in Table A-5 and Figure 3.11 shows
the setup.
The height of each layer is h/2 = 0.254mm. Both layers are poled in opposite directions
and an electrical potential difference of ∆Φ = 200V between the top and the bottom
surface is applied. The opposite polarization introduces a bending moment in the same
manner as the bimorph beam presented in section 3.5.1. Due to the symmetry of the
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problem only a quarter of the ring is modelled with NURBS elements as well as with
standard finite elements (C3D20E).

Ro

Ri

∆Φ

Poling
x1, R

x3

h

Figure 3.11: Cross section of the clamped piezoelectric ring-type bending actuator with
clamped outer edge (Ri = 3.1mm, Ro = 9.555mm).

This simplifies the application of the boundary conditions in comparison to any smaller
segment, which could also be used. Results calculated with Abaqus by applying a very
fine mesh (C3D20E, dof=676404) are taken as reference values.

(A) Quarter of the bimorph ring actuator
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Figure 3.12: Bimorph ring actuator ∆Φ = 200V

The deformation of a calculated quarter of the bimorph ring is illustrated in Figure 3.12A.
Figure 3.12B shows the u3-displacements of the ring at the position (x1, x2 = 0, x3 = h/2).
The Abaqus reference solution (crosses) as well as the converged solution calculated with
the new isogeometric NURBS element (solid line) are plotted in Figure 3.12B. Both results
are in a good agreement.
In Figure 3.13 the evolution of the relative error of the maximum u3-displacement with
respect to the degrees-of-freedom is illustrated. The simulations utilizing the isogeometric
piezoelectrical element concept are performed with three different polynomial degree tem-
plates. The polynomial degree is changed only in x1- and x2-direction (px1 = px2 = p). In
x3-direction for all isogeometric NURBS elements a quadratic polynomial (px3 = 2) has
been prescribed.
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Figure 3.13: Convergence of one Abaqus and three NURBS (px1 = px2 = p, px3 = 2)
solutions compared to an Abaqus reference solution.

Increasing the number of degrees-of-freedom results in a decreasing error for both numer-
ical models. As expected, the accuracy increases using higher polynomial degrees. The
convergence rate of the quadratic Abaqus elements and the quadratic NURBS elements
are identical, because an equal polynomial order of the shape functions is used. The con-
vergence rate only depends on the polynomial degree and not on the polynomial type [13].
However, NURBS elements reach a better accuracy of the solution due to the exact approx-
imation of the geometry [73]. This can also be seen in Figure 3.13, where the NURBS curve
(px1,2,3 = 2) and the Abaqus solution have the same convergence rate, but the NURBS
solution is more accurate due to the exact description of the geometry. The solution cal-
culated with isogeometric NURBS elements needs only 50% of the degrees-of-freedom to
obtain the same accuracy as the Abaqus solution.

3.5.4 Piezoelectric circular plate

After verifying the NURBS element in several static tests an eigenvalue problem is solved,
where the eigenfrequencies and the eigenforms of a free-free circular plate are computed
(see Figure 3.14). The plate consists of the piezoceramic material PIC-151 and the material
properties are specified in Table A-5. The diameter and the height of the plate are d =
0.03m and h = 0.001m, respectively.

x3

x1
electrode

Poling direction

x2

Figure 3.14: Coordinate system of a free-free circular piezoelectric plate. The electrical
potential at the bottom electrode is set to zero.

The circular plate is metalized on top and bottom and it is modeled with two different
electrical potential boundary conditions. The first calculation assumes that the electrical
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potential of the whole structure is set to zero (ideal short circuit). In this case no piezoelec-
tric coupling exists and the plate behaves like an elastic plate. With this assumption the
analytical solution of a free-free circular plate, e.g. given by Giurgiutiu [49], can be used to
verify the solution. In the second calculation there is no electrical connection between the
top and the bottom surface. In this case a charge separation takes place which results in a
difference of the electrical potential between the top and the bottom surface. To calculate
the eigenfrequencies of the system a separation ansatz of the form[

Ucont

ϕcont

]
= eiω0t

[
Û

ϕ̂

]
(3.18)

is used and inserted in Equation (2.44a) and (2.44b), which results in(
−ω2

0

[
Muu 0
0 0

]
+

[
Kuu Kuϕ

Kϕu −Kϕϕ

])[
Û

ϕ̂

]
=

[
0
0

]
. (3.19)

From the second equation one receives

ϕ̂ = K−1
ϕϕKϕuÛ . (3.20)

Substituting Equation (3.20) in the first equation of Equation (3.19) the eigenvalue problem
is derived as

(Kuu +KuϕK
−1
ϕϕKϕu − ω2

0Muu)Û = 0 . (3.21)

In the short circuit case the electric potential ϕ̂ is set to zero, which results in

(Kuu − ω2
0Muu)Û = 0 . (3.22)

In Table 3.7 the solutions are illustrated. The short circuit case is presented in columns (1)
to (3) and the open circuit case in columns (4) and (5). Results of the short circuit model
are calculated with three different approaches, the analytical solution (1), the Abaqus
finite element solution (2) and the proposed new isogeometric finite element solution (3).
The open circuit results are calculated with Abaqus finite elements (4) and again with the
new isogeometric finite elements (5). The Abaqus reference solution uses fully integrated,
quadratic elements (C3D20, C3D20E). The NURBS element solution is calculated with the
polynomial order px1 = px2 = 5 in x1- and x2-direction and with px3 = 2 in x3-direction
(see Figure 3.14).
The solutions (1)-(3) of Table 3.7 show a good agreement between the analytical solu-
tion (1) and both numerical solutions (2) and (3). The small discrepancy with the an-
alytical solution results from the assumption of material isotropy, because only in-plane
material properties can be used in this case. Therefore, the transversal isotropic behavior
of the plate is not represented correctly in the analytical solution. Both, the Abaqus and
the isogeometric solution are in a good agreement.
The results (4)-(5) of the first eight eigenfrequencies of the Abaqus (4) and the isogeo-
metric (5) solution also coincide very well. It should be noted that not all eigenfrequencies
are equally influenced by the piezoelectric coupling. Mainly the second and the eighth
eigenmode show a strong influence. The Abaqus as well as the isogeometric solutions
predict the same behavior. Due to the stiffening effect caused by the electromechanical
coupling, the eigenfrequencies of the open circuit case are generally higher compared to
the short circuit case.
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Table 3.7: First eight non zero transversal eigenfrequencies in kHz and mode shapes of a
circular plate (1 - analytical solution, 2 - Abaqus elastic, 3 - NURBS elastic, 4 - Abaqus
piezoelectric, 5 - NURBS piezoelectric).

different models
Number Modeshape

1 2 3 4 5

1 3.13 3.11 3.1 3.17 3.17

2 5.4 5.41 5.41 6.25 6.26

3 7.3 7.2 7.21 7.37 7.34

4 12.23 12.08 12.1 12.91 12.93

5 12.84 12.53 12.56 13.64 13.65

6 19.7 19.04 19.11 19.69 19.74

7 21.02 20.45 20.51 22.79 22.86

8 22.97 22.38 22.44 25.14 25.22

3.6 Influence of locking

In this section the influence of the so called locking effect to the accuracy of the numerical
solution computed with isogeometric finite elements is studied. The focus is on the shear
locking effect. However, material induced locking is not in the scope of the current work.
Geometrical locking is caused if the shape functions are not able to describe the solution
of the model problem adequately. This effect worsens if the elements are distorted. If the
influence of the adhesive layer between actuator and host structure is to be studied, highly
distorted finite elements are useful. Otherwise the required fine discretization (dactuator ≥ 5
mm and hadhesive ≤ 100 µm) would result in numerical costs which are disproportionate
for the considered task.
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F = 107N/m3 · h3

uendl

h

a
x1

x3

Figure 3.15: Two-dimensional aluminum beam model to study the geometrical locking
effect of isogeometric elements (l = 20 mm, a = 2 mm, b = 1 mm).

Higher order finite elements have a better ability to approximate complex displacement
fields. Therefore, the locking effect plays a minor role [14]. Figure 3.15 shows the consulted
problem. A two-dimensional cantilever beam with a point force at the free end is modeled
with isogeometric finite elements of different polynomial order.
The beam length, beam width and the element length are chosen as l = 20 mm, b=1mm
and a = 2 mm. The element and the beam thickness are equal and arbitrary. The
displacement uend is calculated for different aspect ratios a/h, while the element length a
remains constant whereas the thickness h is successively decreased. If the shape functions
can not describe the displacement field exactly higher values of a/h result in an artificial
stiffening effect.
Using the Euler -Bernoulli beam theory the deflection of the free end is given as

u3(x1) =
4Fx3

1

Y bh3
, uend(x1 = l) =

4Fl3

Y bh3
. (3.23)

If the magnitude of the force is F = F̂ · h3 = 107N/m3h3 is chosen

u3(x1) =
4F̂ x3

1

Y b
, (3.24)

the displacement field is independent from the change of the thickness of the beam. All
changes in the calculated displacement field can then be attributed to the geometrical
locking effect. Doing so, the beam deflection at the free end of the aluminum beam (see
Table A-1) is given as u3(l) = 4.57142 · 10−6 m.
Figure 3.16A illustrates the first result for px1 = 2 in x1-direction and a variable polynomial
degree in x3-direction px3 = 1 . . . 5. As illustrated in Equation 3.23 the displacement field
of the problem is of order three in x1-direction. Therefore, the solution gained using the
polynomial degree px1 = 2 tends to be corrupted by geometrical locking for higher aspect
ratios a/h. Higher polynomial degrees in x3-direction lead to a reduction of this effect.
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Figure 3.16: px1 = 2, px3 = 1 . . . 5.

For aspect ratios of a/h > 180 the solution starts to oscillate. The effect is caused by the
drastic increase of the condition number (see Figure 3.16B). The absolute accuracy of the
Matlab is eps = 1.110223024625157e−016. A condition number higher than 1016 means
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Figure 3.17: px1 = 3, px3 = 1 . . . 5.

that the problem is badly stated and no numerical solution can be found. However, the
bound of the condition number to gain an exact solution is much lower [39].
Element distortions for aspect ratios a/h > 180 should be avoided even for higher order
approaches to obtain an acceptable quality of the numerical solution. The results of the
simulations with a polynomial degree px1 = 3 in x1-direction are plotted in Figure 3.17A.
The polynomial degree in x1-direction coincides with the order of the displacement field in
x1. Besides the results for polynomial degree px3 = 1 all solutions do not change until the
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condition number is too high (around a/h > 180 in Figure 3.17B), no locking effect occurs.
However, the linear ansatz over the thickness does not fulfill the exact model displacement
function in this direction, which is of quadratic order.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400

u
is
o
/u

a
n
a
[-
]

a/h

1 2 3 4 5

px3 =

(A) Normalized beam deflection of the free end
(uiso - isogeometric finite element; uana - analytical solu-
tion)

×1016

0

1

2

3

4

0 100 200 300 400

co
n
d
[-
]

a/h

1 2 3 4 5

px3 =

(B) Condition number of the stiffness matrix

Figure 3.18: px1 = 5, px3 = 1 . . . 5.

In Section 4.4 the optimal polynomial degree combination for Lamb wave simulation is
found to be px1 = 5 and px3 = 4. The numerical investigation of adhesive layer influence is
done using this optimal definition of the isogeometric elements. In Figure 3.18A the solu-
tion is plotted. As expected no locking phenomenon occurs. Also the condition numbers
in Figure 3.18B show a similar change in comparison to px1 = 3. Therefore, an element
aspect ratio a/h < 180 guarantees a good accuracy of the solution. However, in the further
work a time-integration schema has to be applied. If so, a high condition number reduces
the overall accuracy of the solution of a dynamic problem. Therefore, an aspect ratio of
a/h < 180 is recommended. Furthermore distorted elements lead to a reduction of the
required explicit time-integration step width which leads to a higher computation time.

3.7 Summary

The developed finite element has been tested by solving several benchmark problems and
a good agreement has been shown with analytical and Abaqus reference solutions. The
coupling between piezoelectric structural elements and passive structures can be easily
implemented by using equal order polynomials in the bonding area between both parts.
The tests have demonstrated that the use of higher order polynomial degrees in isogeo-
metric elements results in a reduction of the required total number of degrees-of-freedom.
Furthermore, it is shown that a better geometrical approximation with isogeometric ele-
ments, e.g. if circular piezoelectric patches are used, results in more accurate solutions in
comparison to standard isoparametric finite elements.
Since real passive and active structures are very complex, e.g. special phased array de-
signs [134], comb-type transducer comprised of multiple piezoelectric elements, which are



54 Development of a 3D piezomechanical isogeometric finite element

piezoelectric fiber composites sandwiched between electrodes [89] or complex electrode
configurations [106], the proposed isogeometric finite elements can lead to a significant
reduction of the required degrees-of-freedom in order to obtain a sufficiently accurate so-
lution. Moreover, in this chapter the influence of locking has been studied. The results
show, that moderately distorted elements a/h < 180 do not influence the quality of the
solution noticeably. Therefore, these three-dimensional isogeometric finite elements are ap-
propriate to analyse thin structures as well as the coupling between actuator and structure
in the presented chapter 5.3. Despite the advantages presented, no conclusion about the
ability to simulate Lamb waves can be made. Therefore, the isogeometric finite element
is compared to two other high order finite element approaches in the next chapter. The
convergence rate of the three numerical finite element approaches to solve a Lamb wave
propagation problem is studied.
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4 Comparison and evaluation of the
NURBS element with alternative
approaches for Lamb wave
simulation

4.1 Introduction

In this chapter the isogeometric elements are used to model Lamb wave propagation prob-
lems. The chapter starts with a three-dimensional problem. A plate with a conical hole is
modelled and the results are used to illustrate the ability of the isogeometric finite elements
to describe the physical behavior of Lamb waves.
Furthermore, the isogeometric elements are compared to two other higher order finite el-
ement approaches based on Lagrange and Legendre polynomials. These three different
approaches are tested utilizing a simple two-dimensional benchmark setup. The reference
solution to evaluate the performance of the higher order schemes is found using an adapted
analytical solution (see section 2.2) [156]. The goal of this chapter is to describe the conver-
gence properties of the three numerical approaches. Thus, it is possible to quantify which
method provides the best performance regarding Lamb wave propagation problems. While
different spatial discretization techniques are tested, the same time integration scheme is
applied to all analysed cases, ensuring a good comparability of the results. Meaning, the
computational times are not directly taken into account, since the considered temporal dis-
cretization technique is not necessarily well suited for each of the analysed finite element
schemes. The number of degrees-of-freedom required, for a certain level of accuracy are
compared. In addition, the number of non-zero elements in the system matrices is exam-
ined, measuring the memory storage requirements of each method. Moreover, the effect of
higher order inter-element-continuity is tested, which is a specific feature of isogeometric
finite elements.
In the last part of this chapter the results gained from the two-dimensional test are used
to model a three-dimensional plate with a conical hole. This model is seen as an example
of a more complex geometry and allows for both reflections at the boundaries of the struc-
ture and a mode conversion at the defect. The more advanced test structure is used to
show that the guideline for an optimal discretization obtained in the previous section can
easily be generalized even to three-dimensional problems involving more complex parts,
like conical holes.
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4.2 A brief overview of the shape functions

The isogeometric elements are compared with two other higher order finite element types.
The section provides a brief summary of the two shape function types, namely the Lagrange
polynomials and the normalized integrals of the Legendre polynomials. For more details
its refer to [40, 130].

4.2.1 Spectral finite element method and Lagrange polynomials

Spectral finite elements are based on a set of Lagrange polynomials utilizing a specific
nodal distribution on the interval [−1,+1]. The (p + 1) one-dimensional basis functions
are formally defined by

NLagrange, p
n (ξ) =

p+1∏
j=1, j ̸=n

ξ − ξj

ξn − ξj
, n = 1, 2, . . . , p+ 1. (4.1)

Therein the nodal distribution is described by ξi with i = 1, . . . , (p+ 1) as

ξi =


−1 if i = 1

ξLo,p−1
0,i−1 if 2 ≤ i < p+ 1
+1 if i = p+ 1

. (4.2)

Determined by the set of roots ξLo,p−1
0,a with a = 1, . . . , (p− 1) of the (p− 1)-order Lobatto

polynomial

Lop−1(ξ) =
1

2pp!

dp+1

dξp+1

[(
ξ2 − 1

)p]
. (4.3)

This nodal distribution, referred to as Gauss-Lobatto-Legendre (GLL) grid, offers in con-
junction with the GLL-quadrature rule the possibility to diagonalize the mass matrix in
an elegant way [76, 130]. This lumping procedure provides significant savings in compu-
tational time if an explicit time integration scheme is used, while much less memory is
required to save the inverted mass matrix.

4.2.2 p-Version of the finite element method and normalized
integrals of the Legendre polynomials

To construct higher order ansatz functions according to the p-version of FEM Szabó and
Babuška have favored a hierarchical basis, meaning that all shape functions of lower order
are included in the set of higher order shape functions. The presentation of those shape
functions follows [43] and [145] closely. Generally speaking, hierarchic shape functions are
based on the normalized integrals of the Legendre polynomials.
Following the approach first established by Szabó and Babuška [145] it is shown how
hierarchic basis functions can be generated up to any desired polynomial degree. The
p-version of the finite element method presented here is based on Legendre polynomials
Ln(x). They satisfy Bonnets recursion formula

Ln+1(x) =
1

(n+ 1)
[(2n+ 1)xLn(x)− nLn−1(x)] , n = 1, 2, 3, . . . − 1 ≤ x ≤ 1 (4.4)
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which is very well suited for a computer implementation. Here n denotes the polynomial
degree. If Equation (4.4) is used to generate the Legendre polynomials, the recursion must
start with the first two polynomials

L0(x) = 1, (4.5)

L1(x) = x. (4.6)

In order to construct shape functions for p-elements the following normalized integrals of
the Legendre polynomials Φn(ξ) (modified Legendre polynomials) are used

Φn(ξ) =

√
2n− 1

2

ξ∫
x=−1

Ln−1(x)dx =
1√

4n− 2
[Ln(ξ)− Ln−2(ξ)] , n = 2, 3, . . . . (4.7)

Thus, the value of the modified Legendre polynomials is equal to zero at the bound-
aries ξ = ∓1. The linear Lagrange polynomials constitute the first two shape functions
NLegendre

1 (ξ) and NLegendre
2 (ξ) as

NLegendre
1 (ξ) = NLagrange, 1

1 (ξ) =
1− ξ

2
, (4.8a)

NLegendre
2 (ξ) = NLagrange, 1

2 (ξ) =
1 + ξ

2
. (4.8b)

They are commonly called nodal modes or nodal shape functions. They can be thought of
as being external, since they are responsible for ensuring C0-continuity between adjacent
elements. Higher order ansatz functions Nn(ξ) of polynomial degree p are generated from
Equation (4.7) in the following way

NLegendre
n (ξ) = Φn−1(ξ), n = 3, 4, . . . , p+ 1. (4.9)

They are also referred to as internal modes or bubble modes, because the corresponding
degrees-of-freedom are not directly related to the internal degrees-of-freedom of adjacent
finite elements

NLegendre
n (∓1) = 0, n = 3, 4, . . . , p+ 1. (4.10)

An important property of the hierarchical set of shape functions, which derives from the
orthogonality of the Legendre polynomials, is the condition

+1∫
−1

dNLegendre
n

dξ

dNLegendre
m

dξ
dξ =

{
1 if n = m,

0 if n ̸= m.
(4.11)

This property results in a sparse structure of the stiffness matrix, which is the reason why
the normalized integrals and not the polynomials themselves are used to construct shape
functions for higher order finite element approaches.

4.2.3 Comparison of the ansatz functions

The plots in Figure 4.1 illustrate the presented shape functions of a one-dimensional
element corresponding to the polynomial degrees 2, 3 and 4. While the Lagrange and
modified Legendre graphs only cover the domain of one element, the NURBS plots involve
two elements in order to show their transition behavior at the element boundary. One
easily notes the higher order of continuity (Cp−1) at the boundary.



58
Comparison and evaluation of the NURBS element with alternative

approaches for Lamb wave simulation

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(A) Lagrange p = 2

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(B) modified Legendre p = 2

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

β

(C) NURBS p = 2

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(D) Lagrange p = 3

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(E) modified Legendre p = 3

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

β

(F) NURBS p = 3

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(G) Lagrange p = 4

-0.4
0

0.4
0.8
1.2

-0.8-0.4 0 0.4 0.8

ξ

(H) modified Legendre p = 4

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

β

(I) NURBS p = 4

Figure 4.1: Comparison of different order of ansatz function sets. The dashed central
line in the figures of the third column concerning the NURBS shape functions, marks the
boundary of two adjacent elements. Observe the higher continuity (Cp−1) between adjacent
isogeometric finite elements, while spectral- and p-element shape functions exhibit only C0-
continuity at their element boundaries.

On the left column, it can be seen that the standard Lagrange polynomials using a GLL
nodal distribution do not exceed the value of +1. For both Lagrange and NURBS elements
this is the reason why no Runge-phenomenon is encountered. The approach based on La-
grange polynomials is commonly referred to as SEM. The modified Legendre polynomials,
constituting the basis for the p-FEM presented, in the middle column of Figure 4.1 are
constructed using a hierarchical basis. Shape functions of lower polynomial degrees are also
present in higher order approaches. This is an attractive feature of this shape functions
set, since the hierarchy of the basis functions has also an immediate consequence on the
structure of the resulting system matrices.
All system matrices corresponding to the polynomial orders 1 to p− 1 are sub-matrices of
the system matrix corresponding to polynomial degree p. The right column displays the
NURBS basis functions, which have higher order continuity between element boundaries
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as can be seen at β = 0.5. In addition, all function values are positive in the element
domain and each graph has at most one local maximum while the sum of all polynomials
at an arbitrary location β is equal to one.
In contrast to the SEM-approach, the degrees-of-freedom of the p-version of FEM and N-
FEM do not describe nodal displacements. Hence, for these two methods a more involved
post-processing is needed to evaluate the mechanical displacement field, for instance. In
Table 4.1 a comparison regarding the properties of the presented one-dimensional shape
function sets is summarized.

Table 4.1: Comparison of the properties of different types of ansatz functions for the
one-dimensional case.

SEM p-FEM N-FEM

Inter-element-continuity C0 C0 Cp−1 or less

Standard element domain [−1, 1] [−1, 1] [0, 0.5] or
[0.5, 1]

Physical interpretation of the
degrees-of-freedom

yes
mechanical
displacements

none
unknowns of shape
function ansatz

none
control point
displacements

Common degrees-of-freedom
of adjacent elements

1 1 p or less

Function values can be negative Yes Yes No

4.3 Model and methodology of the convergence study

4.3.1 Model definition

In order to compute ultrasonic wave propagation efficiently, it is essential to have a guide-
line of how to choose the polynomial degree and/or the mesh density for a given problem.
In the following convergence studies the influence of the discretization on the quality of
the numerical solution is shown.
For this purpose, a two-dimensional plane strain model is considered. The geometry and
the boundary conditions are depicted in Figure 4.2. The length of the aluminum plate is
given as lp = 0.5m, the thickness as h = 2mm. The material properties are summarized in
Table A-1. The length of the plate guarantees that no reflections from the right boundary
are effecting the signals at the points of measurement during the simulation time. Lamb
waves are excited using a pair of concentrated line loads on both, the top and the bottom
surfaces of the plate. In the two-dimensional model these loads are modeled as point forces
acting in the x3-direction. Their time-dependent amplitudes follow a sine burst signal given
in Equation (4.17). This kind of pulse has the advantage that the frequency content is
narrow-banded. The number of cycles within the signal n determines the width of the
excited frequency band around the central frequency f . The higher n, the narrower the
bandwidth becomes. Applying concentrated loads at the top and bottom surfaces allows
us to exploit the advantages of a mono-modal excitation, which means that only a single
mode is present at a time if f · h < 1.5MHzmm (see Figure 2.2B). In order to generate a
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signal containing only the A0-mode both forces have to act in the same direction, meaning
they have to be in-phase. If the two loads are out-of-phase a pure S0-mode is generated.
An excitation frequency of f = 477.5 kHz is chosen because around this frequency value
the dispersion-effect is comparatively low for both modes regarding a plate thickness of
h = 2mm (see Figure 2.2A).

x3

x1

h

la

lp

lb

A B
F1(t)

F2(t)

Figure 4.2: Two-dimensional model with loads and boundary conditions for the conver-
gence study. Two point forces F1(t) = F̂ sinωt sin2

(
ωt
2n

)
and F2(t) = aF1(t) are applied,

with a = 1 for the excitation of a purely symmetric Lamb wave mode (S0) and a = −1
if the anti-symmetric mode (A0) is considered. The dimensions of the aluminium (see
Table A-1) plate are : la = 100mm, lb = 200mm, lp = 500mm, h = 2mm.

At the left boundary (x1=0) of the model symmetric boundary condition are applied in
order to exploit the symmetry of the problem. With this set up the assumptions of the
analytical solution presented in section 2.2 are fulfilled. The convergence behavior of the
numerical results is evaluated with respect to the analytical reference solution [167]. The
time history of the displacement field is saved at the location of the two points A (uA) and
B (uB) at the top surface (Figure 4.2). The first one is located at x1 = la and the second
at x1 = lb.

4.3.2 Methodology to evaluate the quality of the numerical
results

To determine the quality of the finite element solution the time of flight tc of the propa-
gating Lamb wave packet between the points A and B is utilized (Figure 4.3). The time of
flight computed using the finite element method (tcnum,type) is compared to the value given
by the analytical solution (tcana). In order to extract this value from the finite element or
analytical solution, the time signal of the displacement at the regarded point (A or B) is
subjected to an Hilbert transform

HA,B(uA,B(t)) =
1

π

∞∫
−∞

uA,B(τ) ·
1

t− τ
dτ. (4.12)

Using the Hilbert transform HA,B the envelope eA,B of the time displacement history uA,B

can be computed. The time-of-flight is then evaluated by comparing the position of the
centroid of the envelop of the time signal at these two points. The envelop can be computed



Model and methodology of the convergence study 61

deploying the following relation

eA,B(t) =
√

HA,B(uA,B(t))2 + uA,B(t)2 (4.13)

and the coordinate of its centroid is obtained computing the statical moment of the envelop

tA,B =

tend∫
0

eA,B(t) · t dt

tend∫
0

eA,B(t) dt

. (4.14)

The time-of-flight tc between points A and B serves as a measure of the quality of the
numerical results. It can be computed as the difference [41, 164]

tc = tB − tA . (4.15)

This method is quite well suited to determine the convergence behavior of Lamb wave
propagation problems since the dispersion is taken into account. Because the time-of-
flight of the analytical reference (tcana) as well as the time-of-flight of the numerical solution
(tcnum,type) are equally dependent on the dispersion of the Lamb wave packet, no additional
errors are introduced through the method applied to evaluate the computed results.

×10−4
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1
[m
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tc

u1 at point A u1 at point B

Figure 4.3: Time-of-flight as difference of the centroid of two Hilbert envelopes at point
A and B for the S0-mode. Example for the described model (Figure 4.2) for f = 477.5 kHz.

4.3.3 Discretization set up

In order to isolate the influence of the discretization in x1- and x3-direction with respect
to the quality of the results, two different convergence studies are executed.
Firstly, the discretization in the direction of the traveling wave is investigated (see sec-
tion 4.4.1) using a variable number of degrees-of-freedom in x1-direction and a fixed amount
in x3-direction. In our experience it is sufficient to discretize the thickness of the plate
utilizing one finite element with a fixed polynomial degree of px3 = 4 [130]. Thus, the
discretization over the thickness of the plate will not noticeable pollute the computed time
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signal, as the displacement field through the thickness of the plate is well resolved by uti-
lizing a quartic polynomial. To determine the influence of the discretization in x1-direction
the number of finite elements in this direction is varied using a h-refinement for the spectral
and p-elements and a k-refinement [30] for the isogeometric elements. This refinement is
repeated for various polynomial degrees px1 = 2, 3 . . . , 6. To evaluate the quality of the
numerical solution of the different finite element approaches the relative error depending
on the number of “nodes” per wavelength (χ) is computed. For the case of SEM these
“nodes” correspond to actual nodes at known locations. When dealing with N-FEM or
p-FEM they do not represent geometrical nodes. These “nodes” do not retain any physical
meaning (see Table 4.1) and they are only a distinct measure of the mesh density. For a
given model discretized with a regular mesh the value of χ is determined using [41]

χS0,A0 =
degrees-of-freedom

2(px3+1)lp
· λS0,A0 . (4.16)

px3 denotes the polynomial degree in x3-direction, lp stands for the length of the plate and
λS0 or λA0 are the wavelength of the symmetric and anti-symmetric Lamb wave mode,
respectively. The wavelengths of the A0- and S0-mode are taken from the phase velocity
curves (Figure 2.2A) at fhp = 0.955MHzmm. The relative error is determined compar-
ing the numerical to the analytical solution. Secondly, the impact of the discretization in
x3-direction is investigated (see section 4.4.2). In order to quantify the influence of the
discretization over the thickness of the plate, the numerical model is discretized utilizing a
fixed number of elements both in x1- and x3-direction. The discretization in the direction
of the traveling wave is chosen according to the results of the first convergence study such
that it ensures an unaffected evaluation of the computed results. Thus, a discretization
utilizing more than 20 ”nodes” per wavelength and a polynomial degree of px1 = 6 is cho-
sen. The convergence study is performed conducting a p-refinement with px3 = 1, . . . , 8.
To evaluate the quality of the numerical solution of the different finite element approaches
the relative error depending on the polynomial degree px3 is computed.
After determining the optimal discretization parameters of the three presented finite el-
ement approaches these methods are compared with standard linear elements, utilizing
both fully integrated and selectively reduced integrated elements (see section 4.4.3).
The numerical time integration scheme is only adjusted such that the effects of an inaccu-
rate time integration are negligible and thus barely contribute to the numerical errors. In
this context, preliminary studies concerning different time integration schemes have shown
that an explicit fourth order Runge-Kutta type time integration method offers the best
accuracy compared to a central difference or a standard Newmark method. Thus, for our
convergence studies the ode45-solver provided in Matlab is used. Hence, only the quality
of the spatial discretization is evaluated.
The results and conclusion are discussed in detail in the following section where also guide-
lines are derived to estimate the quality of the numerical solution using different higher
order approaches a priori.
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4.4 Results and discussion

4.4.1 Discretization in the direction of the wave propagation
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Figure 4.4: Convergence curve for the A0-mode.
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The Figures 4.4 and C–1 (see Appendix C) display the results of the convergence study
with respect to a varying polynomial degree in global x1-direction.
The Figures 4.4 the findings obtained for the A0- and the Figures C–1 for the S0-mode.
The curves are steady except for small peaks experienced in the convergence curves of
SEM and p-FEM. This behavior can be attributed to local element eigenfrequencies, as
conclusively explained in [130]. All curves converge faster for higher polynomial orders.
It has to be noted that the convergence rate of the N-FEM elements is significantly higher
than for SEM and p-FEM ones. The latter two approaches show a very similar convergence
behavior. Additional studies concerning the convergence rate of C1- and C0-continuous
isogeometric finite elements are conducted in section 4.4.4.
Considering the accuracy of the solution it is observed that the relative error reaches the
same order of magnitude for all three higher order finite element approaches. However,
the p-elements offer the highest absolute accuracy.
Assuming that a relative error threshold of 1% is acceptable from an engineering point of
view all proposed higher order finite element approaches need considerably less than 20
“nodes” per wavelength, typically mentioned in literature [101]. Since the wavelength of
the S0-mode is longer as that of the A0-mode the convergence curves of the anti-symmetric
mode are more relevant when judging the quality of the overall solution. Normally, both
types of Lamb waves are excited if collocated actuators cannot be used. Then the mesh
parameters have to be chosen such that the anti-symmetric mode is resolved.
In Figure 4.5 the number of non-zero elements (nnz) of the system matrices K and M,
for each polynomial degree when reaching the mentioned threshold for the anti-symmetric
mode case, are displayed. All values are normalized with respect to the spectral element
solution for the polynomial degree px1 = 2. The number of non-zero elements serves as a
measure of the memory storage requirements for each method. As can be inferred from the
graphs px1 = 3 is optimal for all spectral, p-version and isogeometric finite elements. Due to
their fast convergence N-FEM elements require the least degrees-of-freedom which results
in a reduced demand of memory to store the system matrices. The storage requirements
of the spectral finite elements and the p-elements do not differ significantly.
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Figure 4.5: Normalized memory storage requirements for the models reaching the relative
error threshold of 1%.



Results and discussion 65

4.4.2 p-Refinement over the thickness of the plate

After the optimal polynomial degree in the direction of the traveling wave has been deter-
mined a second convergence study is conducted in order to determine the optimal poly-
nomial order in thickness direction of the plate. The discretization is set up as described
in section 4.3.3. The results of the simulations are depicted in Figure 4.6. The curves are
steady except for a small overshoot for spectral and isogeometric finite elements.
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Figure 4.6: Convergence study concerning the discretization in thickness direction of the
plate

It can be seen that the convergence rate of the p-version finite elements is for both the
A0- and S0-mode the highest. The SEM and N-FEM have an equal convergence behavior
for the A0-mode. For the S0-mode the isogeomtric finite element shows the lowest rate of
convergence. This behavior agrees with the findings in section 4.4.4. The advantage of
the higher inter-element-continuity to the convergence behavior of the isogeometric finite
element cannot be used because only one element is deployed over the thickness the plate.

Regarding the accuracy all elements reach a similar relative error at px3 = 6. Taking a
tolerance limit of 1% into account the anti-symmetric mode is resolved with a polynomial
order px3 = 3 (Figure 4.6A), while the symmetric mode demands a value of px3 = 2
(Figure 4.6B). Since, the A0-mode is primarily a flexural wave, higher polynomial degrees
are needed to avoid stiffening effects caused by the locking phenomenon, still present in
the model for the lower order approximations.
The combined results taken from Figure 4.4 - 4.6, provide a good foundation to formulate a
guideline about how an appropriate discretization is to be generated. The solution depicted
in Figure 4.6A is dependent on both polynomial degrees used (px1 = 6, px3 = 1, . . . , 8).
The results obtained utilizing px3 = 3 barely meet the relative error threshold. Since the
higher order mixed product terms of the shape functions, depending on both powers m,
n of the one-dimensional ansatz functions [167], influence the accuracy of the computed
results, px3 = 4 is chosen as optimal degree instead of px3 = 3. Additionally, the effects of
locking are kept to a minimum.
Surprisingly, for all tested finite elements a configuration of px1 = 3 and px3 = 4 is a
suitable choice to meet the chosen error criterion for both the A0- and the S0-mode and
minimizing the amount of non-zero elements in the system matrices.
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4.4.3 Comparison of the higher order approaches to
conventional linear finite elements

In this section the results obtained using the proposed higher order finite elements are com-
pared to the results computed deploying conventional linear 4-noded quadrilateral finite
elements. In literature it is widely accepted that 20 nodes per wavelength are sufficient
to obtain good accuracy even for conventional low order finite elements [10, 101]. In the
course of this section this statement is examined and its validity is checked. The relative
error curves obtained utilizing the optimal polynomial degree template for the higher order
approaches (SEM: px1 = 3, px3 = 4; p-FEM: px1 = 3, px3 = 4; N-FEM: px1 = 3, px3 = 4)
are contrasted with the solutions computed deploying conventional fully or selectively re-
duced integrated linear finite elements. The model depicted in Figure 4.2 is discretized
with different types of linear finite elements and the obtained results are scrutinized. Type
one has been labeled “linear undistorted fully integrated”. This is to say that neither
an hourglass control scheme nor linear finite elements having an aspect ratio of higher
than 1.4 are utilized. If the aspect ratio exceeds a value of 1.4 the number of elements
in thickness direction is increased by one. Thus, up to 14 elements over the thickness are
deployed to prevent element distortion (high aspect ratios). The second numerical model
using linear finite elements is termed “linear distorted fully integrated”. This model is
similar to the first one, only that now aspect ratios of 5 or higher are allowed. In this case
a mesh density of 4 linear elements over the thickness is chosen. This corresponds to 5
nodes in thickness direction of the plate, which is identical to the higher order approaches
utilizing px3 = 4. The third model deploying conventional 4-noded quadrilateral elements
is labeled “linear undistorted reduced integrated”. In comparison to the first type the ele-
ment matrices are numerically integrated utilizing a selective reduced integration scheme.
That is to say, that only those terms of the total elastic potential referring to the shear
energy are reduced integrated. This prevents the shear energy from being overestimated.
Due to this numerical trick the stiffness matrix becomes rank-deficient and displacement
modes, needing no energy, can evolve. To avoid these zero energy modes an hourglass con-
trol algorithm based on the artificial stiffness method as proposed in [47] is chosen. The
solutions for this special type of integration are computed using the commercial software
package Abaqus 6.7-2.
The results of the verification process are depicted in Figure 4.7A (A0-mode) and 4.7B
(S0-mode). The convergence curves of the three linear finite element models are steady,
except for a peak for the selectively reduced integrated case. An error-reducing influence
of low aspect ratios as well as linear finite element using a selectively reduced integration
in conjunction with a suitable hourglass control scheme is to be seen in the convergence
characteristics of the anti-symmetric Lamb wave mode.
Since the A0-mode resembles a flexural wave and linear finite elements are prone to shear
locking effects a significant improvement in the relative error can be observed when using
linear finite elements that are either “undistorted” and/or selectively reduced integrated.
Utilizing those approaches the shear energy is not significantly overestimated. Regarding
the convergence curves of the anti-symmetric mode, only undistorted linear finite elements
are able to reach the designated error criterion of 1% (see Figure 4.7A).
Although up to 14 finite elements are deployed over the thickness of the plate the solution
does still suffer from the locking effect and cannot reach an accuracy similar to the higher
order schemes. The error in the case of 20 nodes per wavelength is equal to 3.63% for the



Results and discussion 67

”distorted” linear fully integrated finite elements and 2.24% for the ”undistorted” ones.
Considering the anti-symmetric mode the reduced integration of the shear energy term
pays off and a clear improvement of the results can be seen in Figure 4.7A. The relative
error compared to the fully integrated linear FE-model is drastically reduced to 0.51%.
However, the accuracy of all higher order finite element approaches is still superior. By
using a selectively reduced integrated linear finite element the 1% relative error bound is
reached for round about 14 nodes per wavelength.
Scrutinizing the S0-mode neither a positive influence of low aspect ratios nor of an im-
provement due to selectively reduced integration can be observed. In the contrary the
chosen hourglass control deteriorates the results with less than 17 nodes per wavelength.
The convergence behavior of the symmetric mode is almost equivalent for both fully in-
tegrated linear finite element approaches. For the reduced integrated elements the results
for the symmetric Lamb wave mode in the range of 5-17 nodes per wavelength are even
worse than for fully integrated linear elements. The explanation for this behavior is based
on the default hourglass control Abaqus employs. If different schemes than the artifi-
cial stiffness method proposed in [47] are used, the relative error can be reduced even
further. Preliminary studies have shown that an enhanced hourglass control algorithm
is an appropriate choice. This approach is based on the enhanced assumed strain and
physical hourglass control methods proposed by Belytschko and Bindeman [15]. Then all
three curves corresponding to the finite elements being available in commercial software
packages are virtually coincident. But the difference between a converged solution for 30
nodes per wavelength and the analytical reference solution is not altered significantly. The
relative error in the case of 20 nodes per wavelength of both distorted and undistorted
elements is equal to 1.91%. This behavior was to be expected since the S0-mode is merely
a longitudinal wave which is not significantly influenced by locking effects. The 1% error
boundary is reached at 26 nodes per wavelength in all three cases.
Regardless of the improved accuracy in comparison to the fully integrated finite elements
the convergence rate of the A0- and S0-mode is still low. It is not enough to specify a
certain number of nodes per wavelength, because the discretization over the thickness of
the plate has to be considered as well. Additionally, if conventional low order finite ele-
ments are to be deployed a specification of the numerical integration method as well as the
hourglass control algorithm is required. In general, higher order finite elements are in any
case significantly more accurate than conventional low order approaches.
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Figure 4.7: Comparison of the convergence curves for the proposed higher order finite
element method schemes (px3 = 4) and conventional linear finite elements.

4.4.4 Influence of the inter-element-continuity to the
convergence rate

In this section the influence of the inter-element-continuity on the convergence rate is
investigated. The model setup is equal to the previous studies. The polynomial order
in thickness direction is chosen as px3 = 4. Two different inter-element-continuities in
x1-direction are chosen; C1- and C0-continuity. The C0-continuity corresponds to the
standard finite element inter-element-continuity.
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Figure 4.8: Convergence curve of isogeometric elements with C1-continuity (px3 = 4).

Figure 4.8 shows the result of the convergence test for the C1-continuous isogeometric finite
elements. As reference the convergence curve of the SEM with the optimal polynomial
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degree px1 = 3 is plotted. The convergence rate for the A0- as well as the S0-mode are
lower in comparison to Cp−1-continuous isogeometric elements. They are steady and have
no peaks. The convergence of the isogeometric elements of order px1 = 3 are almost equal
to the reference curve of SEM of the same order. The accuracy of the isogeometric element
in comparison to the SEM elements is lower. For the polynomial degree (px1 = 5) above
the reference solution the accuracy is higher. However, the maximum accuracy is equal for
both the N-FEM and SEM (px1 = 3).
Figure 4.9 illustrates the results of the C0-continuous isogeometric elements. The curves are
steady except the peak for px1 = 3 in the A0-mode curve. This behavior can be attributed
to local element eigenfrequencies and correlate to the peak in the SEM curve [130]. Again
the convergence rate of order px1 = 3 of the A0- and S0-mode is almost similar to the
reference SEM convergence, but the accuracy of the isogeometric finite elements is lower
until they reach the maximum accuracy.
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Figure 4.9: Convergence curve of isogeometric elements with C0-continuity (px3 = 4).

Generally, isogeometric finite elements with a lower inter-element-continuity exhibit wors-
ened convergence compared to a Cp−1-continuous element. The maximums achiev-
able accuracy of lower inter-element-continuity elements is not improved and equal to
Cp−1-continuity elements. Therefore, Cp−1-continuity isogeometric finite elements are to
be preferred when dealing with Lamb wave propagation. This statement agrees with Evans
et al. [44] which said that “a numerical comparison of the classical finite element and k-
refinement methods revealed that the k-method has better approximation properties than
the classical finite element method on a per degree-of-freedom basis, further suggesting that
the k-refinement method is an accurate and robust scheme for approximating solutions to
partial differential equations. These results are consistent with observations made previ-
ously based on discrete Fourier analysis and the numerical solutions of boundary value
problems”.
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4.5 Lamb wave propagation in a three-dimensional

plate

A three-dimensional plate is modeled to study Lamb wave propagation as well as mode
conversion. To this end, a conical hole is introduced to the plate at a distance of lh = 50 mm
from the excitation source. The plate’s thickness is hpl = 2 mm. The diameters of the hole
are dt = 20 mm and db=15 mm at the top and bottom surface. Figure 4.10 illustrates the
geometry of the aluminum plate (material parameters are given in Table A-1).

x1

x2

lh

lp

P2

P1

dtdb

lm

b

Figure 4.10: Three-dimensional aluminum plate with a conical hole (lp =0.07 m,
lm =0.1 m, lh = 0.05 m, dt = 0.025 m, db = 0.02 m, b = 0.2 m and hpl = 2 mm).

The plate is discretized utilizing optimal scheme which has been found in the previous
section (Cp−1-continuous elements: 4.5 “nodes-per-wavelength”, px1 = px2 = 3, px3 = 4).
At the origin of the coordinate system the external loads are modeled as collocated point
forces acting in x3-direction of the plate. Their time-dependent amplitudes follow a sine
burst signal

F (t) = κF̂ sinωt sin2

(
ωt

2nP

)
, (4.17)

where ω = 2πf denotes the central circular frequency. The number of cycles is chosen
as nP = 3, the central frequency as 175 kHz and the force amplitude as F̂ = 10−4 N. To
obtain a pure S0-mode excitation parameter κ is chosen as κ = 1 at the top and κ = −1 the
bottom side, respectively. As reference solution an Abaqus model has been created with 5
million degrees-of-freedom utilizing the linear reduced integrated finite element (C3D8R).
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Figure 4.11: Plot of the bottom surface of a three-dimensional plate with a conical hole
calculated utilizing isogeometric finite elements (px1 = px2 = 3; px3 = 4, ndof ≈ 170000).

Figure 4.11A and 4.11B show the u3-displacement of the bottom surface of the plate at
the time t = 3 · 10−5 s and t = 4 · 10−5 s calculated with isogeometric finite elements. After
the S0-mode mode reaches the conical hole it partially converts into an anti-symmetric A0-
mode. The center of the A0-mode wavefront coincides with the conical hole. After the mode
conversion both modes propagate separately through the plate. The isogeometric and the
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Figure 4.12: Time-amplitude plot at point P1 and P2.

Abaqus solution are able to describe this effect. The comparison of the displacements at
the point P1 and P2 is shown in Figure 4.12. Both points are on the bottom surface. The
curves of the isogeometric and Abaqus reference solution are in very good agreement.
The example illustrates that the new isogeometric finite elements are capable to simulate
Lamb wave based problems. However, a recommendation for an efficient discretization has
to be found and the efficiency of the NURBS element compared to other finite element
approaches has to be studied. Therefore, in the next sections alternative approaches are
presented and a benchmark is conducted.
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4.6 Summary

In this chapter three different higher order finite element schemes have been compared
with respect to their suitability concerning Lamb wave propagation analysis. The accu-
racy which can be achieved deploying these approaches is much improved compared to
conventional lower order finite element methods. Almost no locking effects are to be no-
ticed for polynomial degrees of px3 = 3, 4 over the thickness of the plate. Furthermore,
it can be seen that the number of degrees-of-freedom can be reduced significantly when
higher order schemes are applied.
For all studied finite element approaches the optimal polynomial degree in x1-direction
has been found as px1 = 3. Nonetheless, considering all results it has to be noted that
p-elements promise the best accuracy for a low discretization in x3-direction (px3 ≤ 4).
Spectral and isogeometric elements reach an equal quality of the results for px3 ≥ 5. Iso-
geometric elements offer the highest convergence rates and reach an acceptable accuracy
of less than one percent earlier than the compared methods.
When scrutinizing isogeometric finite elements the order of continuity is another variable
which has also an influence on the accuracy of the solution. The study shows that a
higher order of inter-element-continuity influences the convergence rate in a positive way.
Therefore, it is recommended to use the highest possible inter-element-continuity. So far,
if we neglect the computational time and study the obtained results isogeometric elements
would have to be recommended due to their high convergence rates and therefore the low
need of memory.
For the three-dimensional example the proposed guideline has been applied to a more
complex geometry and it has been found that the results are in good agreement with an
Abaqus reference solution, computed on a very fine grid.
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5 Application of the NURBS finite
elements to SHM problems

5.1 Introduction

In the previous two chapters (3 & 4) the derivation and validation of the isogeometric
piezoelectric finite element has been in the center of attention. The findings of these chap-
ters are now used to study SHM based problems. In this chapter the dynamic behavior
of the piezoceramic actuator is investigated utilizing the developed piezomechanical finite
element.
Piezoceramic transducers, acting as actuators and/or sensors, are attractive for the gener-
ation and the reception of Lamb waves in SHM systems. To gain a deeper insight into the
source mechanisms of Lamb waves, the vibrations of piezoceramic actuators are initially
treated for the free and bonded state. The contributions of the out-of-plane and in-plane
vibrations to the generation of the A0- and S0-mode are experimentally recorded via laser
vibrometry and impedance measurements and theoretically explained by isogeometric fi-
nite element analysis.
SHM systems using Lamb waves require effective means for generating and receiving Lamb
wave modes. The use of embedded or surface attached piezoceramic elements as actuators
and sensors for the generation and the reception of Lamb waves is an attractive way for
designing smart SHM structures [18, 49, 121, 144]. For creating effective SHM systems it is
necessary to understand the generation process of Lamb waves in detail. The multi-modal,
frequency-dependent properties of Lamb waves [155], the complexity of the modal behavior
of piezoceramic elements and the influence of the coupling conditions complicate this task.
The objective of the chapter is to study these effects experimentally as well as numerically.
First, the basic principles of scanning laser vibrometry are introduced. This measurement
method is used for the experimental investigations. Second, the experimentally determined
eigenfrequencies and eigenforms of a free-free piezoelectric disc are compared to simula-
tions. This is directly connected to the contents of section 3.5.4 where the isogeometric
finite element has been compared to other numerical tools. In the third part the influence
of the resonance of the coupled piezoceramic actuator on the excited Lamb wave field is
studied. It is found that the resonance of the actuator has a huge impact on the ampli-
tudes of the Lamb wave modes [54, 64, 116]. In the last part of this chapter the effect of
resonance to the excited modes are investigated experimentally as well as numerically by
varying several parameters.
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5.2 Laser Doppler vibrometry

SHM based systems will use only a low number of measurement points to observe the
structure. To study Lamb wave specific problems, e.g. damage interaction, mode conver-
sion, etc., it is useful to know how the complete wave field behaves within the structure.
Therefore, alternative measurement methods are used to break the limitation of applied
piezoceramic sensors, which are essentially a failure when one is dealing with wave prop-
agation problems and thus interact with the traveling waves. For that reason contact less
methods are widely in use to observe the Lamb wave field, e.g. speckle interferometry
[82], ultrasonics [60] and scanning laser vibrometry [140]. Particularly, the scanning laser
vibrometry has a high spatial resolution and does not need a coupling medium. There-
fore, the method is used for several investigations to understand the physical properties
as attenuation of the wave amplitudes or studies on damage detection, interaction, etc.
[115, 122, 127, 134, 137, 140, 141, 158].
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Beam Splitter

Reference Beam

Test Beam

Reflected Beam

Figure 5.1: Principle of laser doppler vibrometry.

The Laser Doppler vibrometry is based on the Doppler effect [126]. The first systems
for measuring small velocities1 has been described by Yeh in 1964 [174]. If an object
moves with a velocity vobject the frequency of the laser is shifted by the Doppler shift. The
frequency shift ∆fD is determined by a measurement setup, shown in Figure 5.1. The laser
is excited and split in two parts at the first beam splitter. One beam is used as reference
and is routed to the photo detector (red beam). The second laser beam is focused on the
measurement object, where it is reflected and lead to the photo detector. Both the reference
and the measurement beam are superposed. Because the reference beam does not change
the frequency shift of the measurement beam caused by the movement of the object creates
a interferometric pattern. The pattern correlates with the objects movement. Both the
movements towards the laser and away from it generate an equal interferometric pattern.
Therefore, an acousto-optical modulator (bragg cell) is used to shift the original frequency
by fs. The interferometric pattern of this modulated frequency defines the non-movement
of the object. If the object moves towards the laser source the modulated frequency ∆fD is
reduced, vice versa. With this measurement setup it is possible to determine the velocity
of the measurement point as well as its direction.

1In astrophysics the effect is in use for the measurement of high velocities (redshift)
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With Equation (5.1) the velocity of the measured point can be determined

∆fD =
2flaservobject

c
= 2

vobject
λlaser

. (5.1)

The parameters flaser, vobject and c are the frequency of the He-Ne Laser, the velocity of
the reflection point and the light speed.
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Figure 5.2: Principle of 3D laser doppler vibrometry.

The setup with a one-dimensional scanning laser vibrometer can be extended to three di-
mensions. Previous work in that topic has been done by Staszewski et al. [141, 142]. With
three lasers which are not in the same plane (linearly independency) and some geometrical
calculations the components of the velocity in x1-, x2- and x3-direction are measurable.
All three laser scanners work with the same principle as illustrated in Figure 5.1 and Equa-
tion (5.1). Figure 5.2 shows a sketch of the experimental setup. Three laser sources have
to be placed in space with a defined position. With the known distances of all heads to
the measurement object, the angle between the laser and the object can be calculated. All
three laser points must be at the same position, in which the laser measures the velocity in
beam direction. With the information of the beam-object angle the measured velocities vt,
vl and vr of each laser beam can be transformed into the velocities of defined orthogonal
coordinates (v1, v2, v3). For the measurements of all components of the Lamb waves a 3D
scanning laser vibrometer (PSV-400 3D) was used.

5.3 Actuator behavior

5.3.1 Vibration of free-free piezoceramic actuator

The eigenfrequencies of a coupled piezoceramic actuator-structure system influence the
effectiveness of Lamb wave excitation [116]. The vibration of a free-free piezoceramic
discs is measured and compared with an analytical and an isogeometric finite element
solution. The resonance frequency as well as the modeshape is compared. A frequency
range 10 kHz ≤ f ≤ 300 kHz is chosen.
The eigenmodes of a general circular plate can be separated in different types. Tangential
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modes, which are described by Huang et al. [63] are excluded here since they have a
weak appearance. Also the thickness modes are not considered. For piezoceramic plates
with thicknesses less than 2 mm considered here they occur at frequencies higher than
1 MHz [2]. These frequencies are outside the frequency domain where only the A0- and the
S0-mode exist and higher Lamb modes occur. Therefore, the investigation does not take
them into account. Only bending and radial modes are studied in this investigation. If
the piezoceramic is applied to a structure these types of eigenmodes will primarily activate
Lamb waves. Moreover, both mode types exist in the regarded frequency domain where
only the two basic Lamb wave modes arise. Figure 5.3A displays the used coordinate
system and the direction of the polarization of the piezoceramic discs. To measure the
eigenfrequencies a linear chirp signal is generated utilizing the piezoceramic actuator. The
piezoceramic disc is mounted on foam (free) and the response of the structure is measured
at the bottom surface. Figure 5.3B shows an example of a free disc made of PIC-181 with
the wire and the soldering points at the top surface and a diameter d = 10 mm and a
thickness h = 0.5 mm.
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Poling direction

x2

(A) Coordinates of the piezoceramic disc

soldering point

wire

d

piezoceramic disc

(B) Example for a real piezoceramic disc
(d = 10 mm, h = 0.5 mm, PIC-181)

Figure 5.3: Uncoupled piezoceramic disc.

5.3.2 Bending modes of the piezoelectric circular plate

Seven piezoceramic discs are studied with different material properties as well as different
geometries. The material properties of PIC-151 and PIC-181 are given in Table A-5. The
out-of-plane component of the velocity of the bottom surface of each disc is measured after
applying the external broadband signal. Therefore, no wire or soldering point disturb the
laser beam. Table 5.1 shows seven measured bending modes compared with a isogeometric
finite element solutions. The dominant displacements are in x3-direction. It must be noted
that the wire and soldering points which are illustrated in Figure 5.3B have only a low
influence on the eigendynamic of the discs [168]. Therefore, they are not included in the
numerical model. Nevertheless, the results in Table 5.1 show a good agreement (error is
smaller than 10 % with respect to the numerical solution with exception of one result)
between the simulations (S.) and the measurements (M.). The sequence of the mode
appearance as well as the mode shapes are similar.
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Table 5.1: Comparison of measurement (M.) of free piezoceramics with the isogeometric
solution (S.) (1 - PIC-151, d = 10mm, h = 1mm; 2 - PIC-181, d = 10mm, h = 0.5mm;
3 - PIC-181, d = 10mm, h = 2mm; 5 - PIC-181, d = 16mm, h = 1mm; 6 - PIC-181,
d = 16mm, h = 2mm; 7 - PIC-151, d = 40mm, h = 0.5mm)

S. M. 1 [kHz] 2 [kHz] 3 [kHz] 4 [kHz] 5 [kHz] 6 [kHz] 7 [kHz]

M. 28.9 17.7 38.8 59.7 12.9 23.4 -
S. 27.3 16.7 32.4 58.6 12.97 24.7 0.8

M. 58.1 33.2 63.1 109.5 24.3 48.1 1.9
S. 53 32.2 61.4 106.1 24.9 46.4 1.77

M. 63.5 40.1 74.4 123.3 29 55.3 2.05
S. 60.9 38.6 72.1 120.7 29.7 54.1 2.1

M. 106.8 68.1 124 192.1 49.4 90.4 3.7
S. 101.8 66.9 120.6 187.9 51.1 88.6 3.7

M. 117.5 72.5 132.2 199.6 53.2 95.8 4.15
S. 107.3 69.6 125.2 191.3 53.4 91.4 3.9

M. 156.6 103.5 179.7 263.5 74.6 129.8 5.5
S. 147.8 101 175 257.3 76.4 126.1 5.7

M. 192.1 119.6 205.5 295.8 86.5 149 6.9
S. 168.2 115.2 197 276 86.9 140.7 6.6

M. 204.5 128.7 222 - 95.2 161.3 7.6
S. 192.9 126.8 215 301.8 95.5 153.7 7.3

5.3.3 Radial modes of the piezoelectric circular plate

For the comparison of the radial modes with the experimental and the isogeometric results
an analytical solution has been used. The radial eigenfrequencies fj correspond to eigen-
values of the characteristic equation of the analytical solutions. The eigenvalues are only
dependent of the Poissons ratio of the x1-x2-plane ν12. For a Poisons ratio of ν12 = 0.34
the first four eigenvalues z j are given by Giurgiutiu [49] as

z1 = 2.074; z2 = 5.397; z3 = 8.576; z4 = 11.73 .

With the values of zj the eigenfrequencies fj can be directly calculated as

fj =

√
1

SE
11ρ(1− ν2

12)

zj
πdmax

. (5.2)

The experimental identification of the radial modes has been done using 3D scanning laser
vibrometry measurements. An example is shown in Figure 5.4. All three spectra and the
corresponding in-plane mode shape are plotted. The graphs show that the in-plane modes
also produce remarkably high secondary out-of-plane components. It has been observed
that even in out-of-plane spectra measured with a 1D vibrometer radial mode peaks are to
bee observed (see Figure 5.4C). In those cases it is not possible to correlate a fundamental
bending mode shape shown in Table 5.1 (and higher ones too) to the measured peaks.
The isogeometric simulations show that many bending modes coexist around the higher
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resonance frequencies of the first radial mode. This is also validated by the experimental
results. A splitting of the mode types by 1D (out-of-plane) measurements is not possible.
If the in-plane components are observed, the mode shape of an in-plane mode can be seen
(see Figure 5.4D).
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Figure 5.4: 3D measurement of a piezoceramic (d = 10 mm, h = 0.5 mm, PIC-181).

Because, knowing the in-plane spectra are sometimes not enough to identify the radial
eigenfrequencies without a doubt, additional measurements were done. Following Huang
et al. [63] only in-plane and thickness modes cause resonance peaks in the spectrum of elec-
trical impedance. To additionally validate the resonance values, the impedance has been
measured with a network analyser Advantest R3751 A [116]. Table 5.2 illustrates the com-
parison between the calculated frequencies of the first radial mode with the 3D-measured
ones and values obtained with impedance measurements. The 3D laser measurements do
not observe all existent radial eigenfrequencies. However, the analytical as well as the iso-
geometric solution determine all first radial modes correctly. Moreover, as Equation (5.2)
states, a change of the height of the piezoceramic disc has no influence on the resonance
frequencies. Both, the experiments and the isogeometric result show such behavior.



Actuator behavior 79

Table 5.2: Comparison of the experimental data (3D vibrometry and impedance mea-
surements) with the analytic solution of the radial eigenfrequencies.

Diameter
[mm]

Material Height
[mm]

Analytical
[kHz]

Numerical
[kHz]

3D vibrometer
[kHz]

Impedance
[kHz]

10 PIC-151 1 190.77 192.9 195 195
40 PIC-151 0.5 47.693 48.4 - 49
10 PIC-181 0.5 228.32 233.7 222 225
10 PIC-181 1 228.32 233 225 224
10 PIC-181 2 228.32 230.3 224 223

5.3.4 Vibration of the coupled piezoceramic actuator

The design of a piezoceramic patch actuator for structural health monitoring applications
should guarantee a most effective Lamb wave generation. According to Kessler, Su, et al.
[72, 144, 159] the most effective generation of Lamb waves is accomplished, if the actuator
length or diameter d, respectively, is related to the wave length in the following manner

d = λ(n+ 0.5) . (5.3)

λ describes the wavelength of the regarded Lamb wave mode and n is an arbitrary in-
teger (n = 0, 1, 2, . . .). To investigate the resonance effects a CFRP plate with a
[(0/90)f/ + 45/ − 45/(0/90)f ]S layup and a plate thickness of 2mm is examined. Ta-
ble 5.3 shows the first four optimal wavelengths for this CFRP plate. The values are
determined using Equation (5.3) in combination with the measured dispersion curves to
get the frequencies which are corresponded to the wavelengths λ [116]. The experimental
investigation has been done between 0 and 500 kHz. Only one optimal excitation frequency
of the S0-mode and three for the A0-mode are within the considered frequency range.

Table 5.3: Optimal frequencies for Lamb mode generation in a CFRP plate up to 500 kHz
in 0◦-direction.

n λ [m] f of A0 [kHz] f of S0 [kHz]
0 0.0200 40.7 276
1 0.0067 186 > 500
2 0.0040 335 > 500
3 0.0029 480 > 500

Circular shaped piezoceramic actuators with three different heights (0.5 mm, 1 mm, 2 mm)
and a diameter d = 10 mm are glued on the CFRP plate. A linear swept-frequency cosine
signal is used to excite Lamb waves with multiple frequencies. Two measurements are
performed for each piezoceramic. First the surface of the ceramic is scanned to gain the
frequency response of the ceramic. The second measurement measures the CFRP plate.
The measurement has been done avoiding reflections from the edges. By taking the wave
numbers of the A0- and S0- mode it is possible to plot the frequency response spectra
of each mode. Therefore, a 3D FFT is performed on the data of the measured C-scan
of the laser vibrometer to detect the temporal periodicities (frequencies) and the spatial
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periodicities (wave numbers) of the propagating signals [5, 28]. In doing so the separated
frequency amplitude curve can be determined.
If Equation (5.3) holds the A0-mode experiences a first maximum at 40.7 kHz and the S0-
mode at 276 kHz. The experimental results are displayed in Figures 5.5A - 5.5C. The noise
in the S0-mode spectra are caused by the great wavelength and the small displacement in x3-
direction. The different curves from Figure 5.5 show a close relation between the resonances
of the piezoelectric actuators and the spectra of the Lamb wave modes. The frequencies
corresponding to certain values of Lamb wave wavelength for the CFRP plate have been
derived from Equation (5.3) and are given in Table 5.3 for frequencies up to 500 kHz both
for the S0- and A0-mode. Comparing the measured resonance frequencies (Figure 5.5)
with the calculated data from Table 5.3 it can be concluded that Equation (5.3) cannot be
applied for thicker piezoceramic actuators. For example for a frequency of f = 335 kHz a
optimal excitation for the A0-mode should occur. Only the type 1 piezoceramic shows a
maximum.
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Figure 5.5: Spectra for the Lamb wave modes for a CFRP plate and different piezocermic
discs - Type 1 (d = 10 mm, h = 0.5 mm), Type 2 (d = 10 mm, h = 1 mm) and Type 3
(d = 10 mm, h = 2 mm).
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It is evident that the eigenfrequencies of the actuator in connection with the structure
have a major impact on the excited Lamb wave amplitudes. The assumption that an
optimal excitation of Lamb modes occurs if the diameter of the piezoceramic disk is one
half of an integer number of the wavelengths does not hold under any circumstance [116].
Only for thin ceramics it can be confirmed that the lowest eigenfrequency calculated with
Equation (5.3) coincides with the measurements. In all other cases no agreement with
measurements could be observed, meaning that the application of Equation (5.3) to esti-
mate optimal excitation frequencies cannot be recommended.
For SHM systems the application of higher frequencies are preferable due to an improved
resolution and a better ability to detect damages. The resonances play a major role in
the excitation of Lamb waves. For thicker piezoceramics it is the dominant effect which
influences the amplitudes of the excited Lamb waves [54, 97]. This effect can be used to
reduce the input energy of the actuators. The adhesive layer as mentioned before shifts
the position of the resonances. Therefore, a tuning of the optimal frequency should be
applied to receive an optimal excitation.

5.3.5 Influence parameters to the Lamb wave excitation

The experiments of the previous section have shown that the resonances of the coupled
piezoceramic actuator have a dominant influence on the excited Lamb waves. In this
section the parameters which influence the resonance of the actuator-adhesive layer-host
structure system are studied. To investigate the parameters a two-dimensional isogeometric
finite element model is created (see Figure 5.6). Therefore, computationally very costly
three-dimensional simulations can be avoided [162]. Moreover, the findings presented in
chapter 4 are used and the optimal discretization scheme is applied (px1 = 3, px2 = 4,
χA0 > 4) to reduce the numerical effort and to gain a good accuracy.

Actuator (ac)

hpl

lad
had

Plate (pl)

x1

x3 Adhesive layer (ad)

lac
hac

S0-modeA0-mode
lm

Figure 5.6: Two-dimensional symmetric model, used to investigate the influence of the
bonding layer to the Lamb wave excitation (actuator: PIC-181; adhesive layer: paraffin
wax; plate: aluminium, lpl = 0.6m, hpl =2mm); the results are being measured at a point
located at a distance of lm = 50mm from the actuator.

Several parameters are varied to study their influence on the resonance of the actuator and
the A0- and S0-mode spectra. The parameter are:

• the thickness of the adhesive layer,
• the Youngs modulus of the adhesive layer,
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• the thickness of the actuator,
• the length of the actuator and
• the Youngs modulus of the plate.

The geometry of the plate remains the same for all simulations. The non-varied properties
of the model are given in Table 5.4. In all given models the rest of the parameters are
chosen as in the Table 5.4. At the left side of the model (cf. Figure 5.6) symmetric

Table 5.4: Properties of the model in Figure 5.6.

Parameter Length [mm] Height [mm] Material [kHz]

pl 600 2 aluminum (Table A-1)
ac 5 1 PIC-181 (Table A-5)
ad 5 0.05 paraffin wax (Table A-6)

boundary conditions (u1(x1 = 0, x2) = 0) are applied to reduce the numerical effort. The
actuator is made of the piezoelectric material PIC-181 (see Table A-5), the plate consists
of aluminum (see Table A-1) and the adhesive layer is made of paraffin wax (see Table
A-6). The model is defined by the plate thickness hpl, the plate length lpl, the actuator
thickness hac, the actuator length lac, the adhesive layer thickness had and the adhesive
layer length lad.
At the top surface of the piezoceramic actuator a constant electrical potential is applied.
At the bottom surface of the actuator the electrical potential is set to zero. A broad-band
excitation signal (linear chirp)

ϕ (t) = ϕ̂ sin

[
2π

(
f0 +

f1 − f0
t1

t

)
t

]
(5.4)

is used. The start frequency f0 and end frequency f1 are chosen as f0 = 10 kHz and
f1 = 500 kHz. The time is given as t1 = 1/f0. The displacements of the top surface of the
piezoceramic actuator and the displacements of a top (x3 = +hpl/2) and a bottom (x3 =
−hpl/2) node of the plate in a distance lm = 50 mm are calculated. The displacements
of the top surface of the piezoceramic are used to determine the spectrum of the applied
actuator. The displacements of the top and bottom node of the plate are used to separate
the two Lamb modes from each other without performing a 2D FFT. In the end after
applying a FFT to the time-dependent data, three spectra are gained similar to Figure 5.5.
Figures 5.7A-5.7C show the simulated u3-displacement spectra of the two-dimensional
model of the two basic Lamb wave modes and the piezoceramic actuator. The model is
defined as illustrated in Figure 5.6 and Table 5.4 without varied parameter. As illustrated
in the experimental investigation in the previous section there is a dominant coupling
between the actuator eigendynamic and the excited Lamb waves. As in the experiments the
A0-mode is strongly influenced by the low frequency peaks in the piezoceramic spectrum.
This is an indicator for the existence of bending modes in this frequency domain. As
shown in the previous section these eigenmodes have a greater influence on the A0-mode
than on the S0 one. On the other side, the first radial eigenmode at f = 237 kHz has a
strong impact to the symmetric S0-mode which leads to a high peak in the spectrum on
the symmetric mode.
In summary, it can be said that the general properties of the coupled actuator-structure
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system in comparison of the numerical and experimental results can be described by a
simple two-dimensional model.
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Figure 5.7: Spectra of u3-displacement of the two-dimensional model without parameter
variation.

Influence of the adhesive layer

The impact of the adhesive layer to the coupling between an actuator and a structure is
well known for thin piezoceramic patches. If a patch actuator is glued to the surface of
a structure the so called “shear lag” effect can be observed. The “shear lag” is caused
by an adhesive layer of finite thickness between the actuator and the host structure (see
Figure 5.8). The excitation signal from the actuator is transmitted to the structure through
interfacial shear stresses within the bonding layer for the most part [49, 138]. The “shear
lag” causes a reduction of shear strain transfer between the PZT actuator and the host
structure. With a lower shear modulus and a thicker adhesive layer, the “shear lag” effect
becomes more pronounced. As a result, the signal amplitude is reduced significantly if
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the resonance effects play a minor role [53]. Due to this effect the effective length of a
piezoelectric actuator is smaller than the actual length. Consequently, it can be assumed,
that only a fraction of the actual surface of a piezoelectric actuator contributes to the strain
transfer [22]. Thus, correction factors have to be applied in order to account for the “shear
lag” effect. Based on analytical models (e.g. Euler -Bernoulli beam theory) correction
factors for various problems assuming the application of thin piezoceramics (≈ 0.2mm)
only have been derived in [22, 35, 49, 136].

x3

x1

Piezoceramic

Adhesive Layer
Host Structure

Figure 5.8: Schematic representation of the “shear lag” effect

For thicker piezoceramics the resonances of the coupled actuator-structure system play a
more important role and superimpose the “shear lag” effect. Moreover, the assumptions
made by the Euler -Bernoulli beam theory are not fulfilled in the case of thick ceramics
and the correction factors can be overestimated. Therefore, two parameters of the adhesive
layer are varied to study their influence to the first resonance of the S0-mode.
The A0-mode spectrum has no clear first resonance peak caused by the first radial mode
of the piezoceramic. This mode is influenced by the bending modes as well as the radial
modes. Because, both modes are affected differently by a parameter variation the analysis
has been shown that the equal resonance peak of the A0-mode is harder to find for the
variations compared to the S0-mode spectra. Therefore, the movement of the resonance
peak in the A0-mode spectrum caused by the radial mode is hard to determine and no
analysis of this spectrum has been done. However, the changes in the S0-mode spectrum
are caused by the behavior of the piezoceramic actuator. The results gained by the analysis
of the S0-mode spectrum should be applicable to the behavior of the A0-mode spectrum.

Adhesive layer thickness: The adhesive layer thickness had is varied between
10µm. . . 150µm. The change in the first resonance frequency as well as the amplitude of
this excitation frequency are observed for the S0-mode. Figure 5.9A shows the frequency
of the first peak in the S0-mode spectrum as a function of the adhesive layer height. The
frequency decreases for a greater adhesive layer thickness. As illustrated before, for the
experimental model in Figure 5.5 and the numerical model in Figure 5.7, there is a con-
nection between the dynamic behavior of the piezoceramic actuator and the spectra of the
two Lamb wave modes. Because the coupled actuator-structure system becomes softer the
resonance frequencies of the actuator shift to a lower frequencies.
The amplitude of the resonance peak increases (see Figure 5.9B). This disagrees with the
“shear lag” effect, which states that higher thicknesses lead to a reduction in the ampli-
tudes of the excited Lamb wave modes. The amplitude curve is not steady because near the
first radial eigenfrequency other peaks occur. The radial mode is superposed by bending
modes. Both mode types are influenced differently by the adhesive layer height and de-
pending on how similar the resonance frequencies of both mode types are, the amplitudes
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increase or decrease. However, only great changes (20 µm or more) in the adhesive layer
thickness lead to a noticeable change in frequency and amplitude. Therefore, the adhesive
layer thickness could be used in the design process to alter the eigenfrequencies of the
piezoceramic actuator. Small variations caused by the production process are negligible
from the original design.
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Figure 5.9: Influence of the thickness had of the adhesive layer to the frequency and to
the amplitude of the S0-mode.

Adhesive layer stiffness: The adhesive layers Youngs modulus Yad is varied between
0.5 · 109N/m2 . . . 3300 · 109 N/m2. The lower bound correlates to 50% of the Youngs
modulus of paraffin and the upper bound of the Youngs modulus correlates to epoxy,
which is typically used to glue piezoceramics irreversible to structures.
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Figure 5.10: Influence of the Youngs modulus Yad of the adhesive layer to the amplitude
of the S0-mode.
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The influence of the stiffness change in the adhesive layer to the frequency of the first peak
in the S0-mode spectrum is illustrated in Figure 5.10A. For higher Youngs moduli the first
resonance peak shift to higher frequencies. The results show that the Youngs modulus of
different adhesive layers (epoxy or paraffin) does not change the frequency of the first peak
drastically.
Figure 5.10B shows the amplitude of the first peak in the S0-mode spectrum as a function
of the Youngs modulus of the adhesive layer. Higher Youngs moduli cause a reduction
in amplitude. This behavior disagrees with the “shear lag” effect and underline that
for thicker piezoceramics the eigendynamic superimposes the “shear lag” effect [54, 162].
Variations of the material properties of the adhesive layer do not seem to influence the
first resonance frequency drastically. Therefore, changes in the material properties due to
temperature variations and/or variations caused by a variance in the production process
are negligible in the design process.
In summary one can say that the “shear lag” correction factor based on the assumption
of the Euler-Bernoulli beam theory does not work correctly in resonance regions of the
actuator to predict the amplitude losses caused by adhesive layer changes. Therefore, more
detailed analyses are needed.

Influence of the actuator geometry

After studying the influence of the adhesive layer on the Lamb wave excitation the impact
of the actuator geometry is observed. Firstly, the length is studied and secondly the
thickness of the actuator.

Actuator length: The piezoceramic actuator length lac is varied between
2 mm. . . 16 mm. The influence of this variation on the first resonance frequency is
illustrated in Figure 5.11A. There is approximately a 1/d correlation (analytical) between
the length of the actuator and the first peak in the S0-mode spectrum caused by the first
radial eigenfrequency of the piezoceramic actuator. This coincides with the behavior of
the radial eigenfrequencies of the a free circular disc in Equation (5.2).
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Figure 5.11: Influence of the thickness lac of the adhesive layer to the amplitude of the
S0-mode.
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The value of the u3-displacement illustrated in Figure 5.11B first increases and for lengths
lac > 9 mm decreases. This behavior could be explained as a result of superposition of the
first radial and a bending mode. Both modes are differently influenced by extending the
length of the actuator; 1/d for the radial mode and 1/d2 for the bending modes [116]. For
lengths between 7 mm and 10 mm the frequency of a lower order bending mode correlates
with the first radial mode. The optimal diameter calculated with Equation 5.3 optimal
diameter for the actuator does not agree with the results.
That is to say, the changes in the actuator length strongly influence the dynamic behavior.
But also here small changes due to the production process can be neglected.

Actuator thickness: The piezoceramic actuator thickness hac is varied between
0.1mm. . . 3mm. In Figure 5.12A the frequency as a function of the actuator thickness is
plotted. Changes in the thickness has a low influence the resonance frequency (compared
to a change of the length) of the radial eigenmode as Equation (5.2) stated for the free
elastic disc, except the strong decrease between 0.2 mm and 0.6 mm. Experimental and
numerical investigations of the free piezoceramic disc show that the eigenfrequencies for
thicker piezoceramics are higher. In this research the frequency of the first peak of the
S0-mode spectrum is considered. If a bending mode moves near a radial mode, both
modes superpose each other and lead to higher amplitudes. The first peak is shifted to
lower frequency regions.
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Figure 5.12: Influence of the thickness hac of the actuator to the amplitude of the S0-mode.

The amplitudes of the peaks in the S0-mode spectrum are plotted in Figure 5.12B. For
thicker piezoceramics the amplitudes increase. The S0-mode is dominantly excited by
shear stresses. Therefore, a higher bending stiffness due to the greater actuator thickness
leads to a better shear stress transfer into the structure. Moreover, the bending modes are
influenced by the greater bending stiffness. The frequency of the lower order bending modes
shift to higher frequencies. The superposed resonances lead then to higher amplitudes as
one can see in Figure 5.12B.
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Influence of the plate stiffness

In this section the influence of the plate stiffness is investigated. The Youngs modulus
of the plate Ypl is varied between 5 · 109 . . . 2.1 · 1011 N/m2. The density is constant
and chosen as ρalu = 2700 kg/m3. Figure 5.13A shows the frequency of the first peak
of the S0-mode spectrum as a function of the variation of the Youngs modulus. The
frequency changes between 200 kHz and 244 kHz without any noticeable connection to
the change of the plates Youngs modulus. The amplitudes behavior of the first peak of
the S0-mode is plotted in Figure 5.13B. For very low a Youngs modulus the amplitude is
high. In that case the resistance to a deformation of the plate is lower and thus higher
amplitudes are possible. In contrast to the frequency behavior in Figure 5.13A there is
a coupling between the amplitude reduction and the plate stiffness, except for a small
variation between Ypl = 2 . . . 2.5 · 1011 N/m2.

0

50

100

150

200

250

0.5 1 1.5 2 2.5

f
[k
H
z]

Ypl [N/m
2] ×1011

(A) Frequency of the first resonance peak

0

2

4

6

8

0.5 1 1.5 2 2.5

u
3
[m

]

Ypl [N/m
2]

×10−12

×1011

(B) Amplitude of the first resonance peak

Figure 5.13: Influence of the Youngs modulus Ypl of the plate to the amplitude of the
S0-mode.

5.4 Lamb wave in composites (continuous mode

conversion)

Lamb waves occur in minimal two modes and they, as shown in Figure 4.11, can convert
into each other under special conditions. Typically that happens at discrete discontinu-
ities which are non-symmetric with respect to the plates center plane [4, 169]. Figure 5.14
shows an example of mode conversion in a CFRP plate. The anti-symmetric A0-mode
(short wavelength) and the symmetric S0-mode (long wavelength) are excited by a piezo-
ceramic source at the right edge of the figure. The S0-mode travels through a flat bottom
hole and a new converted A0-mode occurs. The original A0-mode has not reached the
discontinuity at the point of time displayed in Figure 5.14. A part of the energy of the S0-
mode is transferred to a A0-mode [4]. It must be noted that the modes can only transform
into other modes which exist at the specific frequency in the dispersion curves [24].
In addition to the well known mode conversion at discontinuities in experimental investi-
gations of Lamb wave propagation in a CFRP plate a continuous mode conversion (CMC)
phenomenon has been discovered [75, 100, 166, 167]. In this chapter the effect of CMC is
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presented. Experimental investigations are shown and B-scans which are one way to iden-
tify the converted modes are illustrated. Moreover, it is tried to give an explanation for the
appearance deploying a numerical analysis using the developed isogeometric finite element.

}}
primary S0-mode

converted A0-mode

primary A0-mode

source

Figure 5.14: Example of mode conversion of a 5 cycle sinus burst for f = 100 kHz at a
flat bottom hole (d = 10 mm, h = 1 mm) in a CFRP plate (1 m×1 m×2.02 mm) measured
by a scanning laser vibrometer in a scanning surface (0.24 m×0.155 m).

The chapter is structured as follows. The experimental setup is shown, the effect of CMC
is illustrated and its properties are explained. The identification of the conversion and
the modes is done using B-scans. After the description of the effect, an experimental and
numerical analysis is done to find an explanation for CMC. To perform the numerical
analysis two isogeometric finite element models are utilized with different levels of detail.
The results are discussed and conclusions are drawn.

5.4.1 Experimental setup

The experimental investigations are performed with help of a 1D (PSV 300) as well as 3D
(PSV 400 3D) scanning laser vibrometer from Polytec. As commented in section 5.2 laser
scanning vibrometry is widely used for the experimental investigation of Lamb waves. Also
in this chapter the scanning laser vibrometry is used to obtain the experimental data.

source of the Lamb waves

3D laser scanning vibrometer

retro-reflective layer

CFRP plate

silicon for damping

Figure 5.15: Experimental setup.
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Figure 5.15 displays the experimental setup. The 3D laser scanning vibrometer scans the
top surface of a CFRP plate (1 m×1 m×2.02 mm), which is positioned on foam. The
stacking sequence of the investigated CFRP plate is given in Table 5.5. The top and the
bottom surface are made of a twill fabric (see Figure 5.21A) and the center layer is made
of a plain fabric (see Figure 5.21B). The average distances between the lasers and the
plate are between 0.62 m and 0.94 m.

Table 5.5: Layer setup of the CFRP plate (1 m×1 m×2.02 mm) [131].

layer orientation [◦] type layer thickness [mm]

1 0/90 twill fabric 0.4
2 +45 UD layer 0.25
3 -45 UD layer 0.25
4 0/90 plain fabric 0.22
5 -45 UD layer 0.25
6 +45 UD layer 0.25
7 0/90 twill fabric 0.4

The Lamb waves are excited using a piezoceramic actuator of 20 mm diameter and a
thickness of h = 1 mm made from the material Marco FPM2022. To allow a reversible
coupling between actuator and plate the piezoceramic source is attached with paraffin at
the center of the bottom surface. The edges are damped by silicon to reduce the amplitude
of reflected waves. The top surface is coated by a retro-reflective layer to enhance the
signal-to-noise-ratio of the measurement signals. As excitation signal a 5 cycle sinus burst
amplified by a NF-HSA-4011-amplifier is fed to the actuator. During the measurement
the sinus burst is repeated for each measurement point and as results one gets a C-scan
similar to Figure 5.14 for a frequency f = 100 kHz.

5.4.2 The description of the phenomenon

Figure 5.16 shows the out-of-plane velocity field of an undamaged CFRP plate for an
excitation frequency of f = 200 kHz. The actuator is applied at the center at the bottom
surface of the plate. The x1-axis of the global coordinate system corresponds to the zero
degree orientation of the CFRP plate. Two primary modes are excited by the piezoceramic
source, the fast S0-mode (long wavelength) and the slower A0-mode (short wavelength).
Due to their different velocities the two modes are clearly separated as shown in Figure 5.16.
The term primary means that both modes are excited directly by the piezoelectric actuator
at the center of the plate. For all presented scans only the out-of-pane displacements are
shown. The in-plane components measured by the 3D laser scanning vibrometer have been
used to facilitate the identification of the S0-mode. However, no additional information is
obtained.
Inside the S0-mode other waves occur. These unexpected new waves are characterized by
plane wave fronts being nearly parallel to each other. The orientation of the wavefront
of the new modes depends on the region where the modes arise. In the bottom left of

2marco Systemanalyse und Entwicklung GmbH, see: http://www.marco.de/E/index.html Oct. 13 2011
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Figure 5.16 the different orientation between two wavefronts is shown. In addition, the
new waves do not occur everywhere in the plate.

actuator

regions without
mode conversionprimary A0-mode

primary S0-modeorientation of the
converted A0-mode

x2

x1

Figure 5.16: Lamb wave propagation in a CFRP plate at f = 200 kHz, excited with a
actuator in the center (300mm×250mm).

At 200 kHz the upper left and the lower right regions do not show new modes. Nevertheless,
these regions change if Lamb waves are excited with another frequency. All investigated
frequencies show that the orientation of the modes remain similar. The effect first takes
place for the presented CFRP plate at 138 kHz and appears at all investigated frequencies
from 138− 350 kHz.
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Figure 5.17: Dispersion curves for the quasi-isotropic CFRP plate in 0◦-direction with
thickness h.
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In the following it is tried to clarify what type of mode arises in the S0-wave field in
Figure 5.16. Figure 5.17 shows the dispersion curves of the presented CFRP plate. The
curves have been calculated with the help of the semi-analytical finite element (SAFE)
method. The SAFE results have been validated with experimental data from the investi-
gated CFRP plate [4].
The dispersion curves of the plate show that for frequencies lower than 205 kHz only
three modes exist, the anti-symmetric A0-, the shear-horizontal SH0- and the symmetric
S0-mode. Above this frequency a fourth mode appears, the A1-mode. At frequencies higher
than 280 kHz the symmetric S1-mode occurs. In Figure 5.16 it can be seen that the anti-
symmetric A0-mode has a shorter wavelength and because of the lower group velocity (see
Figure 5.17B) its wave field is next to the source. The waves inside the S0-mode have wave-
lengths similar to the A0-mode. The C-scan example correlates to the entry 0.4MHzmm
in the dispersion curves (see Figure 5.17). For the presented frequency two higher order
modes can occur. Nevertheless, the phase velocities cp of the A1-, S1- and SH0-mode are
significantly higher in comparison to the A0-mode. Therefore, the wavelength

λ =
cp
f

(5.5)

has to be longer. Because the wavelengths of the new mode are close to the A0-mode it is
assumed that a dominant conversion between the S0- and the A0-mode occurs. However,
the mode conversion does not take place at a specific discontinuity, but continuously while
the S0-mode travels through the plate.

5.4.3 The identification of CMC

In the following section arguments are gathered to identify the converted mode as A0-mode.
Because the A0-mode is slower than the S0-mode, the existence of the anti-symmetric mode
inside the S0-wave field is an evidence for CMC. Six identically produced CFRP plate have
been investigated. All of them show an analogous behavior. Therefore, a random local
damage inside the plate can be excluded as source of this mode conversion.
Figure 5.18A shows a strip of the Lamb wave C-scan taken from a plate. The source is
located at the left side. The primary modes are already separated from each other. In
the space between both primary modes a number of oblique waves can be seen. Using
the center line perpendicular to the wave front of the primary modes the C-scan strip
can be transformed into a B-scan. With the B-scan group velocity of the different Lamb
wave modes can be visualised. The time-amplitude data of each point of the center line
of Figure 5.18A is plotted side by side as illustrated in Figure 5.18B. The heights of the
amplitudes at a specific time and position are visualised by the gray scale. Dark gray
illustrates negative and bright gray positive amplitude values.
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Figure 5.18: Analysis of the new mode at f = 200 kHz.

If a Lamb wave is excited by a burst signal, at least three primary groups of waves travel
through the plate which may separate from each other (A0, SH0, S0). The groups prop-
agate with different velocities. The B-scan displays the movement of these groups by
oblique parallel lines. The inclinations of the lines correspond to the group velocities (see
Figure 5.17B) of the excited modes. The dominant lines with the highest amplitudes cor-
respond to the central frequency of the burst signal. Smaller angles α between the lines
and the x1-axis indicate a higher velocity. Therefore, the upper lines correspond to the
S0-mode, whereas the lower lines belong to the anti-symmetric A0-mode. The shear hori-
zontal mode has very low amplitudes in out-of-plane direction. Therefore, this mode can
not be seen in the B-scan and is not taken into account in the further investigation.
If one starts at the origin of the coordinate system corresponding to the location of the
piezoceramic transducer and draws a line which has the inclination of the A0-mode (taken
from Figure 5.17A), the position of the primary A0-mode in the B-scan can be found. It
must be noted that the A0-mode is highly dispersive. The group velocity of the A0-mode
varies for different frequencies. In reality a mono-frequent excitation is not feasible. De-
pending on the bandwidth of the excitation signal multiple A0-modes are included in one
group. Some of these modes travel faster than the group velocity of the chosen excitation
frequency. However, these faster parts of the group are created inside the original A0-mode
group and have a higher velocity with a lower angle α.
In Figure 5.18B lines between the primary A0- and S0-modes can be seen, which start in
the area corresponding to the S0-mode. An extension of these lines to t = 0 s does not
cut the source (x1 = 0) but the inclination of these lines is equal to the inclination of the
primary A0-mode. This mode has to be created continuously by a mode conversion from
S0- to A0-mode. The B-scans of other frequencies show similar effects [75] .

5.4.4 Experimental and numerical investigation of CMC

Analysis of the problem

After presenting the phenomenon of continuous mode conversion, it is tried to explain its
appearance. The conversion between two modes occurs if a Lamb wave mode encounters
a discontinuity in such way, that parts of the particle movement activate another mode.
Typically mode conversion happens locally at holes, damages, etc.
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Figure 5.19: Example of a mode conversion in a two-dimensional model of an aluminum
plate.

Figure 5.19 shows a two-dimensional example to explain mode conversion at a flat bottom
hole. A symmetric mode is excited at the left edge and travels (see Figure 5.19A) through
the plate. If the symmetric mode reaches the flat bottom hole a mode conversion takes place
(see Figure 5.19B). The symmetric mode in an isotropic material has an approximately
constant in-plane displacement over the thickness of the plate. If the mode travels through
the flat bottom hole the stiffness changes over the height. In the upper part of the plate
the wave is reflected and in the lower part the mode travels further, which causes a bending
(see Figure 5.19B) of the plate. Because the anti-symmetric mode is a bending mode, parts
of the energy of symmetric mode are transferred to the anti-symmetric one and two modes
exist.
In the following part it is tried to explain why CMC takes place in the presented CFRP
plate. Figure 5.20 shows a strip of the Lamb wave C-scan with a length of l = 64mm.
Besides the measured data a photograph of the plate surface is displayed. The texture
of the bottom layer made of twill fabric can be identified. The drawn skew lines are an
extension of the fabrics texture. The distance between two lines is 2 mm. It can be seen
that the wave front of the continuously converted mode corresponds to this direction.

primary S0-modestructure of the
twill layer

primary A0-mode twill layer
influence

x1

x2

actuator

Figure 5.20: Influence of twill fabric to the S0-mode wave front caused by CMC. The
skew lines illustrate the texture caused by the twill fabric, which influence the A0-mode.

The top layer is also made of twill fabric which is displayed in Figure 5.21A. It is assumed
that the texture of the fabric displayed by the skew lines causes the mode conversion. A
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plain fabric layer is also a part of the CFRP plate. The plain fabric also has a texture like
the twill fabric (skew broken lines in Figure 5.21B). However, experimental investigations
have shown that CMC does not take place [75]. Therefore, in the following sections the
Lamb wave propagation in twill fabrics is studied. Experimental and numerical models are
used to facilitate the interpretation.

(A) Twill fabric (B) Plain fabric

Figure 5.21: Fabric types in the CFRP plate and their textures (skew lines)[133].

Twill fabric - experimental investigation

The experiments are conducted utilizing a single layer twill fabric plate (1m×1m×0.3mm).
Because of the plates thickness the measurements are done several times after rotating the
plate. The same results for all measurements have been obtained, which means that
the influence of the bending of the plate caused by its own weight to the results of the
measurements can be neglected. In Figure 5.22A the C-scan for a frequency f = 50 kHz
is plotted. The mode conversion occurs primarily in 0◦-, 90◦-, 180◦- and 270◦-direction.
Perpendicular and parallel to the texture of the twill fabric no mode conversion takes place.
The CMC arises at all measured frequencies f > 20 kHz. In Figure 5.22B the B-scan at
50 kHz in 0◦-direction is plotted. The symmetric mode cannot be seen by displaying the
out-of-plane components of the laser vibrometer measurements. The line corresponding to
the primary S0-mode is plotted by connecting the starting points of the converted mode.
Besides the primary, a converted A0-mode starts inside the S0-mode.
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converted A0-mode

converted A0-mode x1

x2

(A) C-scan with actuator in the center
(100mm×100mm)

x1actuator

t

primary A0-mode

primary
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(B) B-scan

Figure 5.22: Experimental investigation of a one layer twill fabric for f = 50 kHz.
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Twill fabric - numerical investigation

Figure 5.23 shows a part of the twill fabric model. The length and the thickness of the
quadratic twill fabric cell model are defined as lf = 8mm and hpl = 0.3mm. The ho-
mogenized material properties are given in Table A-7 (UD-Layer). The experiments are
performed on a plate consisting of a single twill fabric layer.

x1

x2

x3

0◦-orientation

90◦-orientation
hpl

lf

Figure 5.23: Twill fabric without matrix material (lf = 16mm, hpl = 0.3mm).

To reduce the numerical effort the fibres are approximated as cubes and the matrix material
is included in the parameters of the homogenized material. However, the orientation of
the fibres as well as the texture of the fabric has been included. To excite the Lamb
waves collocated point force at the center of the plate with a time-dependent amplitude
following a sine burst signal (see Equation (4.17)) have been used. The section displayed
in Figure 5.23 is copied several time to reach the plate size of 0.2m×0.2m×0.3mm. The
simulation has been done utilizing the isogeometric finite elements.

converted
A0-mode

converted
A0-mode primary

A0-mode

Figure 5.24: Numerical results of a one layer twill fabric plate (0.2m×0.2m×0.3mm) for
f = 50 kHz and t = 8.5 · 10−6 s.

In Figure 5.24 a result of the simplified numerical twill fabric model for a frequency f =
50 kHz at a time t = 8.5·10−6 s is shown. The phenomenon of continuous mode conversion is
to be observed as well. The main regions where CMC occurs are similar to the experiments
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(black parallel lines). The mode conversion mainly takes place in 0◦-, 90◦-, 180◦- and
270◦-direction. The orientation of the converted mode agrees with the experiments. Hence,
it can be inferred that the model is able to qualitatively capture the physical behaviour of
the twill fabric plate.
After the preliminary analysis of CMC with a simplified model a more detailed isogeometric
model is created. Using a more complex model it is hoped to discover an explanation for
the CMC phenomenon. Figure 5.25 shows a part of the one layer twill fabric plate which
has been analysed in the experiments. Each cell has a width and length a = 2 mm
and the plate thickness is hpl/2 = 0.15 mm (see Figure 5.23). The complete plate has
a dimension of (16 mm×8 mm×0.3 mm). The cell has been modeled with elliptic fibres
inside the matrix material. However, the transition of the fibres between top and bottom
has not been considered. The material properties of the fibres and the matrix are given in
Table A-8.

0◦-orientation

matrix

90◦-orientation

x1

x2

x3

a
a

hpl

Figure 5.25: Part of a twill fabric (see experimental results in Figure 5.22) plate modeled
with isogeometric finite elements (a = 2mm, hpl = 0.3mm).

As illustrated in chapter 2 the in-plane displacement of the symmetric S0-mode in an
isotropic plate is approximately constant over the thickness (see Figure 2.4A for the
isotropic case). It is assumed, that the reason for the mode conversion is, that constant
in-plane displacements with respect to the center plane cause non-symmetric out-of-plane
displacements. To study this assumption a one-dimensional tensile test has been computed
for a small twill fabric strip (16mm×8mm×0.3mm), applying an external uniform dis-
placement u1(x1=0)=0.2 mm. The boundary condition are given as (u1(x1=16 mm)=0,
u2(x2=0)=0, u3(x1=0, x3=0)=0).
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Figure 5.26: Results of a one-dimensional tensile test (16mm×8mm×0.3mm).

Figure 5.26 shows the result of the computation with the detailed isogeometric model. A
constant symmetric displacement is applied to the boundary surface and used to model the
tensile test. As one can see this load causes corrugations inside the plate. A strong in-plane
- bending coupling occurs, because the in-plane stiffness of the plate is non-symmetric with
respect to the center plane. Therefore, the strains caused by an one-dimensional tensile
test are not constant over the thickness. The orientation of the corrugation agrees with
the texture of the twill fabric. In section 5.4.4 it has been explained that a non-symmetric
change of plate stiffness as a flat bottom hole is able to cause mode conversion. In the
twill fabric this non-symmetric stiffness changes exist periodically everywhere in the plate.
Therefore, the mode conversion can occur continuously. If the loads are applied in a
direction parallel and perpendicular to the texture of the twill fabric no corrugations can
be observed [166]. This behavior coincides with the experimental findings, where the
conversion does not occur in 45◦, 135◦, 225◦ and 315◦-direction. In this case the stiffness
of the plate is symmetric with respect to the center plane. A analysis of wave propagation
in the detailed model has not be done until now, due to the high computational effort.

5.4.5 Summary

In this chapter two SHM specific problems have been investigated both experimentally
and numerically. The first problem studies parameters, which mainly influence the Lamb
wave excitation using piezoceramic transducers. The comparison of the numerical eigen-
frequency analysis with the experimental results of a free piezoceramic disc shows that the
impact of both a soldering point and a wire is low and can be neglected. The discrepancy
between the simulation and the experiments is, with the exception of one eigenfrequency,
lower than 10%.
In the next part of the chapter the experiments have been introduced which show that the
resonances of the coupled actuator-structure system have a great impact on the spectra
of the Lamb wave modes. The general properties could be reproduced by the developed
two-dimensional finite element model. Therefore, the two-dimensional isogeometric finite
element model has been used to study the impact of varying several parameters. The
findings gained in chapter 4 have been used to minimize the computational effort.
The variation of the adhesive layer thickness shows that only great thickness changes in-
fluence the position of the first peak in the S0-mode spectrum noticeably. Therefore, this
parameter could be used to adapt the position of the first peak. However, small variation
in the adhesive layer thickness barely influence the position of the peak and thickness vari-
ations during the production process do not have to be taken into account for the design.
The Youngs modulus of the adhesive layer has a low impact on the first peak in the S0-
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mode spectrum as well as to the corresponding amplitude. Small variations of the material
properties of the adhesive layer during the production process or caused by temperature
variations do not change the dynamical behavior of the piezoceramic actuator significantly.
The variation of the actuator length shows that for longer patches the frequency of the first
peak in the S0-mode spectrum decreases. This correlates with the analytical formulation
of the radial eigenfrequency of a circular disc. The corresponding amplitudes increase and
decrease. The bending and the radial mode of the piezoceramic are differently influenced
by changing the length of the actuator. Therefore, for a specific frequency both modes
superimpose. As a result the amplitudes of the excited S0-mode are increased. An optimal
energy efficient actuator design tries to superimpose both resonances.
The variation of the thickness of the actuator shows that the optimal Lamb wave excitation
is not only dependent on the length of the actuator. For greater thicknesses the frequency
of the first maxima of the symmetric mode is reduced. The amplitude of this maximum
increases for a greater thickness. This numerical result agrees with the experimental find-
ings and disagrees with “shear lag” predictions. The resonances of the actuator have a
great impact on the excited Lamb wave mode. This effect covers the “shear lag” effect and
is more dominant in influencing Lamb wave amplitudes than the adapted length proposed
by Giurgiutiu et al. [49].
The variation of the plate Youngs modulus shows that the position of the first peak in the
S0-mode spectrum is dominantly influenced by the piezoceramic source. The amplitudes,
except for soft plates (Ypl < 1011 N/m2), show only small variations.
In summery the design of an optimal shaped piezoceramic actuator (working in resonance)
could be made for a fixed adhesive layer and a given plate material. Small changes in
the adhesive layer, actuator geometry and plate stiffness do not dominantly change the
behavior of the piezoceramic source.
The second SHM specific problem deals with the effect of material induced continuous
mode conversion in a CFRP plate. The effect has been observed first in a multi-layer com-
posite plate, where 50% of the whole plate is made of fabrics. For the investigated CFRP
plate the effect of CMC first occurs around 138 kHz and is identified as mode conversion
from S0- to A0-mode. For this identification the dispersion curves as well as B-scans are
used.
For a better understanding of the CMC effect a pure twill fabric plate is analysed both
experimentally and numerically. In the experiments the conversion arises for all investi-
gated frequencies f > 20 kHz. The orientation of the wavefront of the converted A0-mode
is parallel to the texture of the twill fabric. The new mode occurs only in 0◦-, 90◦-, 180◦-
and 270◦-direction.
The isogeometric elements are a useful tool to model fabric plates. In that case the numeri-
cal effort is reduced. The main behavior of CMC can be described using a simplified model.
A detailed analysis which takes the fibres and the matrix material into account has been
done for the static case. It has been found that an uniform tensile test causes corrugations
in the plate. This shows a strong coupling between the approximately constant in-plane
displacements of the S0-mode and non-symmetric out-of-plane displacements (with respect
to the center plane). This coupling might be the reason for CMC. A dynamic analysis of
the detail model has not be done until now because the computational effort is too high.
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6 Conclusion and outlook

In the thesis an isogeometric piezomechanical finite element for the design of Lamb wave
based SHM applications has been developed, studied and utilized for two SHM based
problems. To model Lamb wave propagation problems a high spatial and temporal dis-
cretization is required. Furthermore, structures which should be monitored have often a
complex geometry. Therefore, an isogeometric approach has been used to guarantee an ex-
act geometrical description. However, a coupled piezomechanical isogeometric element to
model actuators as well as sensors for SHM purposes did not exist, yet. Moreover, the be-
havior of isogeometric finite elements in the dynamic case has not been studied. Thus, the
dynamic behavior regarding ultrasonic guided waves has been scrutinized. Hence, novel re-
sults with respect to transient analysis using isogeometric finite elements have been gained.
The questions stated in the introduction can be answered as follows:
(a) Several benchmarks show that isogeometric finite elements are an effective numerical

tool to model Lamb wave based problems.
(b) The quality of the solution of the isogeometric elements of Lamb wave propagation

problem have been determined using benchmark calculations and comparisons to
other numerical approaches. Furthermore, guidelines have been proposed to estimate
the accuracy a priori for a given polynomial degree.

(c) The inter-element-continuity has a huge impact on the convergence behavior of the
isogeometric finite element.

(d) Isogeometric finite elements with a Cp−1 inter-element-continuity need fewer number
of degrees-of-freedom to solve Lamb wave propagation problems compared to the
spectral finite elements and the p-finite elements.

(e) Isogeometric elements are able to describe SHM specific problems in complex geome-
tries.

6.1 Conclusion

The most important findings of the thesis can be divided in two parts. The results of the
first part are related to the numerical aspects of the developed isogeometric piezomechan-
ical finite element. The second part is related to the application of this finite element to
two SHM based problems, where experimental investigations as well as application of the
new NURBS elements have been used.
The new 3D isogeometric piezoelectric finite elements have been tested by solving several
benchmark tests and a good agreement to analytical, numerical and experimental solutions
has been found. Furthermore, it is shown that a better geometrical approximation with
isogeometric finite elements, e.g. if circular piezoelectric patches are used, results in a
far more accurate solutions in comparison to standard isoparametric finite elements with
a significantly lower number of degrees-of-freedoms (50 % less degrees-of-freedom for the
piezoceramic ring actuator in section 3.5.3). Regarding the complexity of real structures
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the developed isogeometric piezoelectric finite element leads to a reduction in computa-
tional time as well as memory requirements for piezomechanical problems in comparison
to standard low order finite elements. Moreover, it has been shown that isogeometric el-
ements are not prone to shear locking. Moderately distorted elements a/h < 180 do not
influence the quality of the solution noticeably.
Although the advantages of the isogeometric finite elements have been shown in various
publications the quality of Lamb wave simulation and the convergence behavior for this
type of elements were unknown until now. Therefore, in chapter 4 the isogeometric finite
element has been compared to two other higher order finite element schemes with respect
to their suitability concerning Lamb wave propagation analysis. As reference solution the
group velocity of the analytical Lamb wave solution has been used. The relative error of
the three approaches (SEM, p-FEM, N-FEM) has been studied. The developed isogeomet-
ric element offers the highest convergence rate in comparison to the two other approaches.
The maximum accuracy is equal to the other two methods. So far, if the presented mem-
ory criteria (relative error lower than 1 %) is used the isogeometric elements would have
to be recommended due to their high convergence rates and therefore the lowest memory
consumption. Furthermore, if a complex geometry needs to be modeled, isogeometric finite
elements would certainly have an advantage compared to other methods, because no extra
blending-function method is needed [20]. As an optimal polynomial degree for ultrasonic
guided wave propagation it has been found px1 = px2 = 3 and px3 = 4. By utilizing
4.5 “nodes-per-wavelength” the relative error with respect to the group velocity is lower
than 1 %. This optimal discretization has been used to model complex 3D plates as well
as higher order Lamb wave modes [164].
When scrutinizing isogeometric finite elements the order of inter-element-continuity is a
variable which has a strong influence on convergence rate of the solution. The studies
show that a higher order of inter-element-continuity influences the convergence rate of the
isogeometric elements in a positive way. Therefore, it is recommended to use the highest
inter-element-continuity possible Cp−1.
The main findings of the first part,

• isogeometric piezomechanical finite elements are an efficient tool to simulate piezo-
ceramic actuators,

• shear locking has a low impact on isogeometric elements,
• optimal discretization scheme: px1 = px2 = 3 and px3 = 4 with 4.5 “nodes-per-
wavelength” and Cp−1-continuity leads to less than 1% error of the group velocity,

• all physical aspects of Lamb waves (e.g. mode conversion, dispersion) can be mod-
elled,

have been used to investigate two SHM specific problems in the second part of the thesis.
The first problem is related to the excitation process of the Lamb waves. Experimental
findings have shown a coupling between the actuator resonances and the spectra of the
Lamb wave modes [116]. A variation of several parameters, the adhesive layer thickness
and Youngs modulus, the actuator length and thickness, and the Youngs modulus of the
plate, have been conducted. The new isogeometric piezoelectric finite elements have been
used to create a two-dimensional model. With help of this model all parameters have been
varied and their impact on the excitation of the Lamb waves has been studied.
The variation of the adhesive layer thickness shows that this parameter can be used to ad-
just the dynamic properties of the piezoceramic source. However, small variations in the
adhesive layer thickness cause only small changes in the dynamic behavior of the actuator.
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Therefore, it is robust against small variations in the production process.
Higher Youngs moduli cause a reduction in the amplitude. This behavior disagrees with
the “shear lag” effect and underlines that for thicker piezoceramics the eigendynamic su-
perimposes this effect. But variations of the material properties of the adhesive layer do
not seem to influence the first resonance frequency drastically.
The variation of the actuator length shows that for longer patches the frequency decreases.
This correlates with the analytical formulation of the radial eigenfrequency of a disc.
The variation of the thickness of the actuator shows that an optimal Lamb wave excitation
is not only depended on the length of the actuator. For thicker piezoceramic patches the
resonance superimpose the effects of optimal length given by Giurgiutiu [49]. For higher
thicknesses the frequency of the first maximum of the symmetric mode is reduced. The
amplitude of this maximum increases for an increased thickness.
In summery it is to say, that the well known “shear lag” model does not predict all the
observed effects. Moreover, the effects caused by the adhesive layer all small and slight
parameter variations typical for the production process can be neglected. The dynamic
behavior of the piezoceramic is dominantly influenced by their geometry.
The second SHM related problem is the material induced phenomenon of continuous mode
conversion (CMC). The description of this new effect is done with experimental data. It
has been found that the stacking sequence of the CFRP plate leads to CMC. In detail
the twill fabric causes the mode conversion. Therefore, a simple twill fabric has been
modeled utilizing the new isogeometric elements. This model is capable to describe the
experimental findings. A more detailed model including fibres as well as matrix material
shows that a strong in-plane-bending-coupling exists. This strong coupling is an indicator
for the appearance of CMC. However, because of the numerical effort it is not possible to
use this detailed model to calculate Lamb wave propagation, yet.
The thesis has shown that isogeometric finite elements have a great potential in mod-
eling Lamb wave based problems. The three-dimensional piezomechanical ansatz of the
approach gives a flexible tool to model various SHM related problems. Furthermore, the
high convergence rate reduces the numerical effort for high-frequency simulations. More-
over, the consideration of the piezoelectric material properties allows an holistic description
of complete SHM systems including actuators and sensors.

6.2 Outlook

Despite the good results there are several open questions for future work with isogeometric
finite elements for Lamb wave based problems. First of all the isogeometric finite element
has to be tested with several time integration schemes. The used Runge-Kutta algorithm
is not efficient. If a mass lumping technique could be developed a finite difference method
might be a more suitable and numerically efficient approach. Moreover, in future work a
tool has to be developed which facilitates the exchange between CAD tools and the finite
element code. That includes the prevention of highly distorted elements. NURBS can
describe the geometry very efficiently, but for that in the CAD tool the size and distortion
of the patches or (later) elements are arbitrarily [27]. Therefore, CAD tools are needed
which consider the suitability of the geometrical description with respect to a FEM dis-
cretization. For time integration schemes especially for explicit time integration methods
the element size and distortion is very important. The CAD tool should be capable to use



Outlook 103

as little patches as possible to preserve the advantage of the k-refinement, particularly for
Lamb wave simulation.
The numerical integration effort can be reduced by applying efficient quadrature rules,
e.g. the “half-point rule” proposed by Hughes [67]. Furthermore, the impact of the exact
geometrical description of the NURBS to the quality of the solution of Lamb wave propa-
gation problems has to be investigated. If an exact description is not needed the finite cell
method (FCM) shows a high potential for the simulation particulary for cellular materi-
als [108]. However, these simulations have been done only for static and eigenfrequency
analysis. For several problems the comparison between the p-FEM and the B-spline based
FCM are in good agreement [129]. An extension of the results to dynamic analysis has
still to be done. The findings of this thesis show that for NURBS the convergence rate
are drastically higher in comparison to the p-FEM due to the k-refinement. Therefore, the
capability of FCM with a NURBS ansatz for Lamb wave simulations in honeycombs, foam
and fabric material has to be studied [61]. In the current thesis all calculations are done
in the time-domain. The properties of a isogeometric approach in the frequency domain
have not been studied to date as well.
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A Material data

Table A-1: Material data for aluminum.

parameter unit value

Y [109 N/m2] 70
ν [-] 0.3
c1 [m/s] 6197
c2 [m/s] 3121
ρ [kg/m3] 7760

Table A-2: Material data for the bimorph beam [95].

parameter unit PVDF layer

Y [109 N/m2] 2
ν [-] 0.29
b31 [C/m2] -0.046
b32 [C/m2] -0.046
ϵ33 [10−10 F/m] 1.062

Table A-3: Material properties of the active plate [74].

parameter unit PZT G1195 T300/976
layer thickness 0.254mm 0.138mm

SE
11 [10−12 m2/N] 1.587 6.666

SE
22 15.87 111.1

SE
44 41.32 140.8

SE
66 41.32 400.0

ν12 [-] 0.3 0.018
ν23 0.3 0.3
b31 [C/m2] −22.86 -
b32 −22.86 -
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Table A-4: Piezoelectrical material properties with the electric constant ϵ0 = 8.8542·10−12

As/(Vm) [136]

parameter unit PZT-5H

Y [109 N/m2] 174
ν [-] 0.3
d31 [10−10 m/V] -2.74
d33 5.93
ϵT33/ϵ0 3399
ρ [kg/m3] 7760

Table A-5: Piezoelectrical material properties with the electric constant ϵ0 = 8.8542 ·
10−12As/(V m) [2].

parameter unit PIC-151 PIC-181

SE
11 [10−12m2/N] 16.83 11.75

SE
33 19.00 14.11

SE
55 50.96 35.33

SE
12 -5.66 -4.07

SE
13 -7.11 -4.996

SE
44 50.96 35.33

SE
66 44.97 31.64

d31 [10−10m/V] -2.14 -1.08

d33 4.23 2.53

d15 6.1 3.89

ϵT11/ϵ0 [−] 1936 1224

ϵT33/ϵ0 2109 1135

ρ [kg/m3] 7760 7850

Table A-6: Material data for paraffin [170].

parameter unit value

Y [109 N/m2] 1
ν [-] 0.3
ρ [kg/m3] 1100
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Table A-7: Material properties of a carbon fibre reinforced plastic (CFRP) plate [131].

parameter unit twill fabric plain fabric UD-layer

Y11 [109N/m2] 49.6 53.4 127.5
Y22 49.6 53.4 7.9
Y33 6.1 6.4 -
G12 3.56 3.83 5.58
G23 2.67 2.87 2.93
G31 5.58 2.93 -
ν12 [-] 0.03 0.03 -
ν23 0.322 0.319 0.273
ν31 0.034 0.033 -
ρ [kg/m3] 1520 1560 1550

Table A-8: Non-homogenized material parameter of a twill fabric plate [52].

parameter unit T400 EP 6376

Y11 [109 N/m2] 250 3.3
Y22 16.68 -
G12 20.8 -
ν12 [-] 0.24 0.36
ν23 0.3 -
ρ [kg/m3] 1800 1230
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B NURBS surface and volume
description

The NURBS surface can be calculated as

R
px1 ,px2
i,j (β, γ) =

Ni,px1
(β)Mj,px2

(γ)wi,j

ncont∑̂
i=1

mcont∑̂
j=1

Nî,px1
(β)Mĵ,px2

(γ)wî,ĵ

NS(β, γ) =
ncont∑
i=1

mcont∑
j=1

R
px1 ,px2
i,j (β, γ)Pi,j .

(B-1)

The notation is given in section 2.5. The NURBS surface derivative can be calculated
separately for each direction

∂

∂β
Ri,j(β, γ) =

W (β, γ)N
′
i,px1

(β)Mj,px2
(γ)−W

′
(β, γ)Ni,px1

(β)Mj,px2
(γ)

W (β, γ)2
,

W (β, γ) =
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î=1

mcont∑
ĵ=1

Nî,px1
(β)Mĵ,px2

(γ)wî,ĵ ,

W
′
(β, γ) =
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ĵ=1

N
′

î,px1
(β)Mĵ,px2

(γ)wî,ĵ ,

∂

∂β
NS(β, γ) =
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∂

∂β
R

px1 ,px2
i,j (β, γ)Pi,j .

(B-2)

The NURBS volume can be calculated utilize

R
px1 ,px2 ,px3
i,j,k (β, γ, ζ) =

Ni,px1
(β)Mj,px2

(γ)Ok,px3
(ζ)wi,j,k

ncont∑̂
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j=1
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k=1

R
px1 ,px2 ,px3
i,j,k (β, γ, ζ)Pi,j,k ,

(B-3)



108 NURBS surface and volume description

and analogously to Equation (B-2) the NURBS volume derivative in each direction is
computable using

∂

∂β
Ri,j,k(β, γ, ζ) =

[
W (β, γ, ζ)N

′
i,px1

(β)−W
′
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(β)Mĵ,px2

(γ)Ok̂,px3
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∂
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(B-4)
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C Solutions of the convergence study
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Figure C–1: Convergence curve for the S0-mode.
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[52] G. T. Günter. Ökonomischer und ökologischer Leichtbau mit faserverstärkten Poly-
meren. expert-Verlag, ISBN 3-8169-1416-0, 1997.

[53] S. Ha. Modeling Lamb Wave Propagation Induced by Adhesively Bonded PZTs on
Thin Plates. PhD thesis, Stanford University, California, USA, 2009.

[54] S. Ha. Adhesive interface layer effects in PZT-induced Lamb wave propagation.
Smart Materials and Structures, 19:025006, 2010.

[55] G. Hamel. Theoretische Mechanik. Eine einheitliche Einführung in die gesamte
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