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Abstract 

The combinatorial optimization, as a scientific paradigm, has a significant influence on the 

increasement of the effectiveness of any logistic decision, with particular emphasis on 

vehicle routing decisions.  Although these decisions have been widely studied, research on 

vehicle routing optimization mostly focused on the empirical application of the solution 

methods (exact or approximate), already established in the scientific literature, or on 

providing new methods for such purposes. However, in both cases, the greatest 

contributions are addressed to the design, improvement and application of optimization 

methods, a priori unknowing, how effective these methods can be, considering the 

complexity feature of the problem in a multivariate context. Therefore, the general 

methodologies to carry out the optimization process for such decisions lack of an 

integrative approach, which allows to check the relevancy degree of the proposed methods. 

To avoid the mentioned inadequacies, a conceptual model and procedure have been 

proposed in this thesis. Both proposals involved the assistance of decision-making in 

vehicle routing optimization. In this sense, the major research contributions are 

summarized in the conception of the optimization process into three stages, the design and 

modification of meta-heuristic algorithms based on Ant Colony Optimization (ACO) and 

the application of some robust statistic techniques in decision-making.    

Finally, the proposed algorithms were successfully applied to a realistic case study: route 

planning for the repair of electrical breakdowns in Cuban territory, set up in the city of 

Santa Clara.    
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1 Introduction 

 

 

Chapter 1 

 

Introduction 
 

1.1 Motivation 

Decision-making, in any practical or theoretical problem, requires of knowledge in order to 

execute effective decision. The effectiveness
1
 is a result of systematic process with defined 

elements that are managed in a sequence of detailed steps. In this sense, decision-making 

based on optimization methods is the most used solution approach to assure the 

effectiveness and therefore, success for the managerial organizations. Cuban companies bet 

for such strategies, essentially for those that allow to optimize limited resources 

[PERFECCIONAMIENTO EMPRESARIAL, 2007]. Furthermore, they are searching the 

proper mathematical and computational tools which support hard decisions, considering 

the current complexities imposed by the competitive managerial environment.  

In Logistics, an important group of these hard decisions are involved and its suitable 

management can represent the main competitive advantage of any enterprise. The decision-

making related with logistic processes can determine either success or failure, in most of 

cases. There exist two types of decisions when logistic is planned: design and optimization, 

being the optimization decisions the harder to figure out in mathematical and 

computational matters. 

The optimization, as a process, consists of finding the best values of the variable for a 

particular criterion or, in other contexts, the best decisions for a particular measure of 

performance [Baker, 2011]. Other well-accepted concept is proposed in Venkataraman 

[2009], where the optimization process is defined as a search of the best objective 

operating within a set of constraints. 

The combinatorial optimization and its solution methods have been one of the most studied 

scientific subjects in Operation Research literature [Costa Salas et al., 2011]. Various 

methodologies have been developed for the optimization process. One of the well-know 

methodologies is showed in Venkataraman [2009] and Yang [2010], who suggest that the 

primary aspects to consider in optimization process are summarized in the following steps:

                                                 
1
 In this thesis the effectiveness (efficacy + efficiency) is measured by two performance indicators: solution 

quality (efficacy) and computation time (efficiency) of the algorithms. 
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1. Define a set of decisions. 

2. Define an objective. 

3. Establish the conditions that constraints must satisfy. 

4. Chose a mathematical model. 

On the other hand, authors such as Abid [2008], Ravindran [2008] y Blumenfeld [2009] 

argue that, the general methodology designed for decision-making in Operation Research 

is appropriate, as a framework, to carry out the optimization processes. In opposition to the 

above methodology, the framework is composed of six steps.  

In both described methodologies, the steps are addressed, essentially, to the formalization 

and construction of optimization models, excluding relevant aspects that can be decisive on 

increasing the effectiveness. Within the main theoretical limitations encountered in the 

methodologies are: 

1. The absence of multivariate learning process capable to associate the complexity 

feature of the decisions with its solution methods. Therefore, the analyzed 

methodologies present a limited proactive approach. 

2. The definition of one or more objectives is strictly related with the mathematical 

construction of the model, without considering that the previous selection of an 

appropriate optimization method can be crucial for the effectiveness in decision- 

making.     

3. The absence of steps capable to check, after the optimization process, how relevant 

(relevancy degree
2
) the proposed optimization methods were, regarding the 

established performance indicators. 

4. Sensitivity analysis in optimization has been addressed as experimental approach, 

without establishing specific methodologies. 

5. The lack of an integrative approach, considering the missing steps mentioned in the 

above limitations and the steps included in currents methodologies.  

Moreover, similar theoretical limitations are evident in one of the most common 

optimization decisions in logistics planning, transportation decisions. The costs associated 

with such decisions are the most significant within the logistic costs [Tseng et al., 2005]. 

The transportation problems involve an important group of decisions, ranging from the 

vehicle selection to the route planning (Vehicle Routing Problem, VRP).  

Vehicle Routing Problems (VRPs) are a great family of problems which have been 

extensively studied by different authors, usually specialists in the areas of Operations 

Research and Logistics. The optimization methods to these combinatorial problems can be 

classified as either exact or approximate, heuristics and metaheuristics are the most used 

algorithmic approach within the last classification. 

                                                 
2
 In this thesis the relevancy degree is expressed proportionally to effectiveness achieved by the proposed 

algorithms, considering the external conditions as well.  
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Several recent researches have shown the effective use of approximate algorithms on real 

large-scale VRPs [Kytöjoki et al., 2007, Sim et al., 2009]. On the other hand, there are 

valuable solutions applying exact algorithms to small dimension VRPs [Archetti et al., 

2007; Iori et al., 2007, Andersen et al., 2011]. However, consequently with the theoretical 

limitations, these studies are only focused on model construction and the empirical test of 

optimization methods for VRP [Li et al., 2007, Belfiore et al., 2009], excluding a previous 

and posterior analysis in the optimization process, which allows to predict relevant solution 

methods according to the complexity of the problems. 

The previous analyses in optimization are only dedicated to determine the complexity class 

P (polynomial bounded) or NP (nondeterministic polynomial bounded) [Choi & Tcha, 

2007, Hashimoto et al., 2006]. In particular, the VRPs belong to NP class, because when 

the problem scale grows; the space search of the problem grows according to non-

polynomial function (exponential, factorial). Thus, this family of problems is among the 

hardest combinatorial problem. 

In the literature, authors such as Jiang et al. [2008], Torresani et al. [2008], Chen et al. 

[2008], Talbi [2009], Jozefowiez et al [2007] suggest to resolve NP combinatorial 

problem, such VRPs, using approximate methods, especially when the problem grows 

dimensionality, due to an increase in the number of nodes (number of customers to visit in 

a graph). This conception shows the univariate approach that present the analysis of 

complexity, ignoring other important features of complexity such as, fleet size, time 

windows, fleet type and others, which can lead to solve the problem using either exact or 

approximate methods. 

Although several algorithmic proposals have been applied for VRPs, using both exact and 

approximate optimization methods, there are some real-life conditions that impose to 

design and modify such approaches in order to carry out an effective decision-making 

process in realistic context. Furthermore, we consider also the statement of the theorem No 

free lunch (Wolpert & Macready, 1997), which suggests that there is no method that 

guarantees to be better than others for any problems. Therefore, this leads to develop new 

solution methods in optimization fields.  

The solution of combinatorial problems in Cuba, particularly the VRPs, presents the same 

above mentioned inadequacies. However, the design and application of optimization 

methods for such problems have not received the same attention as in the international 

context. Decision-making is characterized by an empirical approach, prevailing the 

excessive control in the ineffective planned routes. In this sense, a real-life case study is 

indentified; it is “Route planning to repair electrical breakdowns in power networks”. The 

company involved in this decision-making process needs to deal with two decision 

scenarios (normal weather conditions and after hurricanes), for which the optimization 

methods are unknown.  

The theoretical limitations and the univariate approach in the complexity of VRP, both 

identified in the case study, were the main motivation for this research. 
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1.2 Research goal and Contributions 

The aim of this thesis consists of assisting the optimization process related with Vehicle 

Routing Decisions (VRDs), for such propose a new conceptual model and general 

procedure is presented in order to increase the effectiveness in decision-making. The 

design of general procedure involves the main research contributions, which are 

summarized in the conception and integration of three stages (previous, during, and after 

optimization) for the optimization process in a multivariate context and in the exploration 

of new application of the proposed tools. More specifically, other contributions of this 

thesis belong to the following research topics. 

Knowledge Discovery 

In this research a Knowledge Base (KB) is proposed. It represents a set of real-life solution 

of VRPs, showing in each sample (case) the best experiences in algorithmic approach for 

optimization. Two classifiers (Discriminant Analysis and the decision tree algorithm C4.5) 

are trained on KB, aim to predict relevant categories of optimization methods (exact or 

approximate). A novel methodology for estimating training-set size of KB is applied, 

adapting this methodology from other application context (Cancer classification problems). 

Ant Colony Optimization 

A further contribution of this thesis is a new approach called Multi-type Ant Colony 

System (M-ACS) based on ACO, which falls under the umbrella of the meta-heuristic 

techniques. The algorithm uses multiple artificial ant colonies in order to solve the 

Multiple Traveling Salesman Problem (mTSP), which is the basic formulation of our case 

study; each colony represents a set of possible global solutions. The colonies cooperate 

among them, sharing its experiences through “frequent” pheromone exchange.  

The algorithm performance is compared with the results of the efficient heuristic of Lin- 

Kernighan reported in Dazhi and Dingwei [2007], using benchmark problems form 

literature. Dazhi and Dingwei [2007] proposes the Lin-Kernighan heuristic based on the 

transformation described in Tang et al. [2000], for that reason we defined M-ACS 

according to this transformation as well.  

Computational complexity of M-ACS, as an algorithm family of ACO, is analyzed, 

yielding an overall time complexity of O(n
2
). Finally, a sensitivity analysis is developed 

for all ACO strategies in the research. 

Computational Implementations   

The computational implementations developed in this thesis, specifically VRP Solution 

classifier and ANTRO version 2.0, are the main commercial software proposed for assisting 

the decision-making process described in the case study. Especially in ANTRO versions 2.0 

all realistic complexities of the case study are conceived (unexpected breakdown, priority 

level of the breakdowns, and the probabilistic time for repair).  
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1.3 Outline of the Thesis   

This thesis is structured as follows: 

Chapter 2 provides the reader with main concepts and background information about the 

work presented in the thesis. First, the basic concepts, frameworks and methodologies of 

optimization process are introduced, analyzing the integration characteristics of studied 

approach as well. The Vehicle Routing Problem and its extensions are described in the 

context of combinatorial optimization. Next, we summarized the most used algorithms 

based on the two categories of optimization methods (exact and approximate), making 

special emphasis on the metaheuristic approaches. 

The chapter ends with an important discussion about the main characteristics of decision-

making related with VRPs in Cuba. Some remarkable statistics summarize the types of 

research developed for VRPs solution.  

In Chapter 3 we present the novel conception and integrative approach of optimization 

process based on the proposal of conceptual model. Here the goal of the model, 

potentialities, inputs, its process and outputs are explained. The main part of the chapter is 

dedicated to describe the three stages of the general procedure. The first stage comprises 

the essential aspects of the Knowledge Base construction and the formulation of classifiers 

(Discriminant Analysis and C4.5) for the knowledge discovery process. In the second stage 

some specific algorithms according to are analyzed their “remarks to be applied”. Both 

stages are supported in a computational implementation, which is also described in this 

chapter. The chapter concludes with the third stage called post-optimization, where various 

statistical tests are provided to analyze the relevance of proposed optimization algorithms 

in the earlier stages and the sensitivity of algorithm user-defined parameters.   

The application of general procedure to real-life case study is reported in Chapter 4. We 

use all stages of the procedure to solve a realistic decision-making process entitled “Route 

planning to repair electrical breakdowns in power networks”. Experimental results of the 

proposed algorithms are obtained, using both benchmark datasets from literature and data 

of the real instance. The influence of the user-defined parameters is examined for all 

approximate algorithmic approaches.  

A performance analysis based on the simulation of some problems conforms the last part 

of the chapter. The Global Index of Effectiveness (GIE) is determined applying the stages 

of the general procedure. 

Finally, in Chapter 5, we summarize the main contributions of this thesis and outline 

directions for future research. 

 



 

 

 

 



 

6 

 

2 Optimization theory, vehicle routing 

problem and its solution approaches 

 

Chapter 2 

 

Optimization Theory, Vehicle Routing 

Problem and its solution approaches  

The combinatorial problems, such as VRP and its extensions, have become a widely 

accepted field within applied mathematics. This chapter provides the theoretical support of 

all subjects treated in the thesis.  

We start with the discussion of various concepts of optimization and analyze the current 

methodologies proposed for decision-making in optimization process. Then, we give an 

overview of the fundamental aspects of optimization theory, computational complexity and 

post-optimization analysis. Here, the necessity of integration and proactiveness in the 

optimization process is studied as well.  

In the larger part of this chapter we examine some extensions of the VRP, focusing on 

those which are studied in other chapters of this thesis. In this sense, some particular 

characteristics of VRP are analyzed, especially the dynamicity, which is most related with 

the mathematical formulation of the case study presented in Chapter 4. Subsequently, an 

extensive survey of the optimization methods (both exact and approximate) is developed. 

Metaheuristic algorithms, specially those based on Ant Colony Optimization (ACO) are 

deeply examined, due to its close connection with the main contributions of this research.  

Finally, we end this chapter presenting an overview of the decision-making related with the 

vehicle routing in Cuba. The solution approaches adopted by the Cuban enterprises are 

outlined in descriptive statistic environment, indicating that the optimization methods have 

been poorly treated in decision-making. 

2.1 The optimization process in decision-making 

Many well-known authors have studied the optimization as an essential scientific activity 

in decision-making. One of the most recent definitions of optimization is provided by 

Baker [2011], whom optimization consists of finding the best values of the variable for a 

particular criterion or, in other contexts, the best decisions for a particular measure of 

performance. Undoubtedly, the optimization is in any subject of decision-making 

[Venkataraman, 2009]. In fact, it is considered an idea as old as mankind itself [Ho et al.,
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2007], and every evolution process in nature reveals that it follows optimization [Diwekar, 

2008]. 

In the optimization, an analytical visualization of the decision is usually given before its 

adoption [Hillier & Lieberman, 2010; Joshi & Moudgalya, 2004]. This proves the 

proactive approach that presents the optimization as scientific technique. 

One comprehensive conceptualization is provided by Bartholomew-Biggs [2008], who 

defines the optimization as the seeking values for certain designs or control which 

minimize (or sometimes maximize) an objective function. In Griva et al. [2009] the 

optimization models are considered as the attempt to express, in mathematical terms, the 

goal of solving a problem in the “best” way.  

Mustafi [2007] suggests that in the optimization, as in Operation Research, the main 

features of the problem are examined, data are collected or generated and subsequently 

quantitative analysis are carried out using “appropriate” mathematical methods and 

statistical principles. In this thesis we give more importance to the relevant (appropriate) 

selection of solution methods, it will be deeply addressed in later chapters. 

On the other hand, in Klemeš et al. [2010] the optimization is expressed as a solution of the 

mathematical model. Therefore, the optimization is justly considered as the mathematical 

programming of the given problem. These authors summarize the characteristics of 

optimization problems in the following aspects:  

 Optimization criterion: Minimization or maximization. 

 Presence of constrains: Restricted or unrestricted. 

 Linearity of the functions: Linear or nonlinear. 

 Type of variables: Discrete or continuous. 

The former research propose relevant algorithms considering indistinctly each 

characteristic previously described, which indicates a limited integrative approach in 

decision-making related with algorithm selection. 

In accordance with Rao [2009], the optimization is the act of obtaining the best result 

under given circumstances and for such purposes there is not a single method available for 

solving all optimization problems efficiently. Here, similar characteristics to those of 

Klemeš et al. [2010] are suggested. 

Antoniou & Lu [2007] present other interesting definition, considering the optimization as, 

if it is possible to measure and change what is “god” or “bad”. In addition, the author of 

this thesis consider either the optimization as the process of obtaining the “best”, if it is 

possible to know what is “relevant”, in terms of relating the complexity features of an 

optimization problem with its solution methods.     

The authors consulted in the scientific literature; identify optimization, in most cases as an 

essential action in decision-making, which attempts to find the best solution, or the optimal 

solution to the problem under certain considerations. The fundamental difference between 

research resides in the conception and establishment of methodologies to carrying out the 

optimization process. 
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In reviewing the literature, we find many general methodologies to develop an 

optimization process in decision-making. The common proposal found point out to 

decrease solution time in decision-making [Sodhi & Tang, 2010]. There exist some of 

these methodologies defined into three steps. In Diwekar [2008] a classical example of 

these methodologies is proposed, where the first step consists of understanding the system, 

which is well-known in mathematical terminology as the problem modeling. The second 

step is based on finding a measure of effectiveness, while the third involves degree of 

freedom analysis and applying a proper optimization algorithm to find the solution. Other 

authors such as Venkataraman [2009] and Yang [2010] pose similar methodologies for 

optimization, although much more oriented towards the definition of a set of alternatives 

and compliance of conditions or constraints to which these alternatives are subjected. 

According to Giorgi et al. [2004] optimization process can be implemented following three 

steps, which may be often formalized as follows: 

a) The behavior of a system (in the most general meaning) depends on some variables, 

some of them beyond the control of the decision maker (these are named the “data of 

the problem) and the other ones under his control (these latter are true variables of 

the problem, variables usually described by a vector     . 

b) The various alternative possibilities for the decision maker are described by a set 

    : so one has to choose, in an optimal way, a vector      or more than one 

vector, in case of a problem with several solutions. 

c) Let us consider the case of         . i.e. the case of scalar function. Then the 

choice of vector      is considered an optimal one and    solves the optimization 

problem when it is: 

                            h     [2.1] 

Undoubtedly, the methodologies described are mainly intended to build the optimization 

model, with emphasis on the knowledge of the system based only on the variables involved 

in developing the mathematical model, excluding out of the analysis, another important 

group of variables that describe the complexity of the problem and its relationship with the 

solution algorithms. 

Moreover, Abid [2008], Ravindran [2008], Blumenfeld [2009] y Kandiller [2007] suggest 

that the general methodology followed in Operation Research is fully applicable to develop 

the optimization process. The steps involved in this methodology are described as 

1) Formulate the problem. 

2) Construct a model of the system. 

3) Select a solution technique. 

4) Obtain a solution to the problem. 

5) Establish controls over the system. 

6) Implement the solution. 
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The methodology proposed in Operation Research is more comprehensive that the other 

mentioned (three steps), considering the number of steps involved. However, this 

methodology presents the same inadequacies that the described above, due to the absence 

of a learning process, which makes possible to establish, starting form problem formulation 

(Step 1) or the construction of the model (Step 2), the relevant algorithms for the problem 

solution (linked to Step 4). Another limitation, in the sense of achieving greater global 

effectiveness in decision-making, is referred to the control and implementation of the 

solution. These steps are based solely on performance analysis of the proposed 

optimization method, obviating the relevance that such proposed method presents.  

In research reported by Deb [2004], Belegundu & Chandrupatla [2011] and Ravindran & 

Ravindran [2008] a framework (see Figure 2.1) is defined for solving optimization 

problems. Here, Mustafi [2007] and Hillier & Lieberman [2010] propose similar 

frameworks to the previously mentioned, although, the evaluation and implementation of 

optimization solution are incorporated. The frameworks as the methodologies described 

exclude steps that allow the choice of the optimization method mainly from the need for 

optimization and definition of variables. The design variables, illustrated in the framework 

of the Figure 2.1 are referred to the decision variable of the optimization model; these 

variables are not related with the complexity of the problem. 

 

Figure 2.1: Framework for the optimization process 

Source: Deb [2004] 

The worst mistakes in optimization process are deeply analyzed by Jeżowski & Thullie 

[2009]. These authors argue that the inconsistent problem representation into the 

mathematical model is one of the worst failures in decision-making, disregarding that an 

inadequate solution methods can be as serious as the aforementioned mistake. 

The major weaknesses, considering the analysis of all previous researches, is observed 

before (pre-optimization) and after (post-optimization) the construction of optimization 

Need for optimization 

Choose desing variables 

Formulate constraints 

Formulate objective function   

Set up variable bounds 

Choose an optimization algorithm 

Obtain solution(s) 
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model. For these reasons, in the following sections of this chapter, we propose to examine 

in detail, the main issues in both moments of the optimization process, with particular 

emphasis on the optimization process related with the vehicle routing. 

2.1.1 Computational complexity in optimization problems 

In general, the computational complexity involves two measures of complexity: spacial-

complexity and time-complexity [Boudali et al., 2005]. Recent experimental results, 

reported in some research about complexity theory, have proved that the spacial-

complexity is irrelevant in the complexity analysis, due to the computation capacities of 

the current computers, which are able to admit any large-scale instances of decision 

problem (such optimization problems). For this reason, we will focus only on time-

complexity analysis, with special stress in the VRPs. 

The complexity of any decision problem can be expressed through the total combinations 

in its search space [Wilhelm et al., 2008]. There are two basis categories of decision 

problem: the class P of decision problems that can be solved by a polynomial-time 

algorithm, and the class NP that can be solved by non-deterministic polynomial-time 

algorithm. The time-complexity of any algorithm is measured by a time-complexity 

equation that gives, depending on the instance size, the maximal run-time for the algorithm 

to solve an instance. The size of a problem instance reflects the amount of data to encode 

an instance in a compact form [Stützle, 1998]. An illustrative example of the class P is 

given when the minimum value is searched in a list of   figures. Let   the time to check 

each figure of the list, then, the problem can be solved in the worst-case with time-

complexity expressed into       . 

On the contrary, in the Traveling Salesman Problem (TSP) [Dantzig et al, 1954], simple 

variant of the VRPs [Dantzig & Ramser, 1959], the finding the optimal solution in the 

worst-case of computational complexity can be expressed into             (see Figure 

2.2). The combinations in the search space of this combinatorial problem are determined 

according to a factorial function.  

 

Figure 2.2: Representation of the classical TSP 
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Some authors such as Kim et al. [2009], Wang & Lu [2009], Shanmugam et al. [2010], 

Archetti et al. [2011] and Meihua et al. [2011] argue that VRPs belong to the NP-hard 

category, since we cannot expect an exact algorithm to solve a given instance to optimality 

in polynomially bounded computation time.  

In accordance with the reviewed literature, in this thesis the complexity analysis as the 

main study before optimization is identified. Furthermore, we consider that the complexity 

classes P and NP have been linked with optimization methods, whether exact and 

approximate respectively. A good example of the latter is shown in Gilbert [1992], Mihelič 

& Robič [2005] and Bourgeois et al. [2009], where the complexity categories are directly 

associated with the already established optimization methods. In this sense, Yi & Kumar 

[2007], Ai & Kachitvichyanukul [2009a], Jozefowiez et al. [2008] and Eksioglu et al. 

[2009], suggest that relevant solution of a NP problems is achieved, specifically in the 

VRPs, when the approximate methods (mostly heuristic and meta-heuristics) are used. 

Other studies conducted by Rajan & Mohan [2004] and Dréo [2006] propose that the exact 

methods are most suitable for solving problems of P complexity class. Undoubtedly, in 

both cases (associating exact methods to P problems or approximate methods to NP class) 

a direct association of the complexity category is carried out. The direct association, as a 

decision rule to determine which solution method will be relevant in optimization process, 

may be inaccurate, depending on the problem size. For instance, some non large-scale VRP 

extensions are efficiently solved with exact methods [Ropke & Cordeau, 2009]. Hence, the 

problem size has a significant influence in the relevance of the optimization methods. 

On the other hand, in Cordeau & Laporte [2003, 2007] are reported empirical studies to 

determine, based on instance size (number of cities in the graph) of one VRP extension, 

which specific algorithm, within approximate methods, must be used to obtain the highest 

quality solution. This empirical study is limited to analyze the relevance of the 

optimization methods in a univariate context, excluding other important variables that must 

be considered. Here, Contreras & Fernandez [2012] suggest to take some other variables 

into consideration, although the variables are not directly conceived to analyze the 

relevance of the optimization methods in multivariate context. 

The pre-optimization analysis described in this section is summarized in two fundamental 

aspects: the first is closely linked to the selection of the optimization method according to 

the category of computational complexity, disregarding the real size of the instance. The 

second aspect involves experimental studies that relate the optimization method with the 

true scale of the problem, which is expressed by only one variable (number of nodes or 

size of the graph). The limitations presented by both sides will be studied in the next 

chapter of this research. 

2.1.2 Analysis of post-optimization 

The post-optimality analysis in optimization models has been studied in many research 

[Jan, 2007; Kara, 2011 and Moghaddam & Usher, 2011]. These studies focus mostly on 

the posteriori-influence of the performance indicators in optimization model, considering 

changes in its data inputs, or fixed parameters of the algorithms [Gál & Greenberg, 1997]. 
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The sensitivity of the optimization model parameters has been the most common field of 

research referred to post-optimization in the current issues, mainly conditioned by the 

implementation of algorithms which are pseudo-random nature, such as approximate 

algorithms, with special emphasis on the meta-heuristics. According to Belgacem & Hifi 

[2008], sensitivity analysis of an optimal solution consists of computing the ranges within 

the parameters of an instance of a given problem may vary without altering the optimal 

solution at hand. However, we consider that the sensitivity is also a common way to check 

the reliability of the model, even if their parameters are not completely known, which 

occurs whenever a new optimization algorithm is proposed. 

In the more frequent optimization problems of the Supply Chain (VRPs), the sensitivity 

analysis is a pivotal issue [Gudehus & Kotzab, 2009] and [Chetouane et al., 2012]. The 

VRPs are one of the most studied when analyzing the sensitivity of the parameters 

involved in the optimization algorithms to solve them, usually in the approximate methods. 

However, in the literature are appraised sensitivity studies for both methods (see Table 

2.1), which means that sensitivity analysis is still interesting, even when the algorithms are 

exacts. 

Table 2.1: Some sensibility analyzes in the VRPs 

Exact methods Approximate methods 

Lucas & Chhajed [2004] Reimann et al. [2003] 

Fancis et al. [2006] Stephan [2006] 

Ordóñez et al. [2007] Quadrifoglio & Dessouky [2008] 

Prescott-Gagnon et al. [2009] Karlaftis et al. [2009] 

Rottkemper et al. [2012] Costanza et al. [2011] 

The sensitivity analysis has involved other optimization problems, see Ghosh et al. [2006] 

and Belgacem & Hifi [2008], these research suggest a perturbation analysis for the 

classical problem of the backpack (Knapsack Sharing Problem, KSP), which is other of the 

well-known classic models widely studied in logistic decisions. 

Moreover, in Bakirli et al [2011] is developed a sensitivity analysis for one the problem 

later discussed in this thesis, the classification problems. These authors propose the 

sensitivity analysis of the incremental genetic algorithm parameters such as crossover 

probability, mutation probability, elitism and population size.  

The computational implementations have been developed for sensitivity analysis; these 

have been widely accepted by researchers who study combinatorial optimization. The 

DAKOTA (Design Analysis Kit and Terascale Appplication), developed by Young et al. 

[2004], is one of the commercial software used by the scientific community.  

The duality theory [Murty, 2009], provides important contributions to the post-

optimization analysis. This theory allows to obtain more mathematical-economic 
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information of the primal optimization model [Griva et al., 2009 and Löhne, 2011]. After 

analyzing several recent researches of the theory of duality, we found that this issue has 

received greater attention when exact algorithms are implemented (see Brian [2008]). 

Although many recent research have been addressed to the post-optimization studies, either 

through sensitivity analysis or the theory of duality, the problem of verifying the relevance 

in the optimization methods have been poorly treated. Hence, we argue that such 

verification after the optimization process would make possible to assert or in some cases 

redefine the type of optimization method (exact or approximate).  

2.2 The Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) indicates a generic name given to a large family of 

combinatorial problems related with the delivery (or pick up) of personnel and goods, for 

which is responsible a fleet of vehicles [Golden et al., 2008]. In general, VRPs involve two 

very complex decisions: the fleet size determination and the proper routes that the vehicles 

should follow [Godinho et al., 2008; Costa Salas et al., 2010]. According to José [2009], 

determining the optimal fleet size of vehicles, used to serve a set of customers distributed 

in a graph, is one of the most complex decisions with greater economic impact [Hoff et al., 

2010]. However, Ballou [2004] y Ai & Kachitvichyanukul [2009b] argue that no matter 

how complex the decisions were, the aim is to improve customer service by finding the 

best paths on a road network. 

Many authors, including Torres Gemeil et al. [2003], Golden et al. [2008] and Minis et al. 

[2010], identify the term “Vehicle Routing” as a set of commercial, financial and legal 

relationships, intended to provide aggregate value of place, time and possession to the 

supplier products, according to customer expectations and ensuring significant competitive 

advantages. 

In Garza Ríos [2001], Voudouris et al. [2008] and Wenning [2010] the distribution process 

is recognize as the more complex process that companies have to dealing with, due to the 

diversity of customers and the real-life constraints in the current context. 

The first solution approach (linear programming) for a primitive variant (truck dispatching) 

of VRP was reported in Dantzing & Ramser [1959], specifically the algorithm was 

proposed for the optimum routing of a fleet of gasoline delivery trucks between a bulk 

terminal and a large number of service stations supplied by the terminal. Subsequently, in 

Clarke & Wright [1964] the first really effective algorithm is introduced: the popular 

savings algorithm. Thus, a wide area of research has endured and grown to the present day. 

Basically, the main contribution in the issue can be defined according to two trends, on one 

side, to discover new extensions of VRPs, mostly incorporating features of real-life 

problems, and on the other side, to find novel algorithms for a more efficient problem 

solving. 

In general, the advances in this field are largely due to the technological development 

[Kalcsics & Nickel, 2008], the computing power [Du et al., 2007, Chang et al., 2009], this 

aspect that has reduced the run times of the algorithms [Miguel Andres, 2010]. Moreover, 

the development of GIS (Geographical Information Systems) [Matis, 2008], the 

communication equipments (wireless technology) and Global Positioning Systems (GPS) 
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[Cheung et al., 2008, Larsen et al., 2008], are essential for adequate interaction models and 

algorithms with planners, and at the same time, with the drivers of the vehicles. 

There are a wide range of VRP real-life applications [Mester & Bräysy, 2007; Miguel 

Andres, 2007; Savelsbergh & Song, 2007; Zäpfel & Bögl, 2008; Jotshi et al., 2009; 

Berbeglia et al., 2010; Costa Salas et al., 2012], they are mostly involved in the following 

service systems: 

 Food, raw material and fuel distribution. 

 Urban transportation. 

 Delivery and/or pick up of the correspondence. 

 Emergency services. 

 Cab services. 

 Maintenance or repair services (examined in this thesis as a case study).  

The solution of real-life case studies based on the VRPs benchmark models is not the only 

motivation of the scientific community. These combinatorial problems belong to the 

complexity class of NP-hard [Bianchessi & Righini, 2007]. Hence, the academic 

motivation lies in the impossibility of finding an optimal solution for instance size 

measured by a polynomial time-complexity function. This problem has been recognized as 

one of the seven mathematical problems of this century [Smale, 1998]. 

2.2.1 Main characteristics of the VRPs 

The characteristics of the VRPs have been studied as the most significant subject in 

distribution management. A classical VRP consists of a number of geographically scattered 

customers, each of them requires a specified weight (or volume) of goods to be delivered 

(or picked up). Then, a fleet of identical vehicles dispatched from a single depot is used to 

deliver the required goods and once the delivery routes have been completed, the vehicles 

must return to the depot. Each vehicle can carry a limited weight and only one vehicle is 

allowed to visit each customer. The solution to problem consists of finding a set of delivery 

routes which satisfy the above requirements at minimal total cost. The Figure 2.3 shows a 

typical scenario of the classical VRP. 

C

D

C

C

C

C

C

C

C

C

C

C

C

C

C

Route 1

Route 3

Route 2

 

Figure 2.3: Graphical representation of the classical VRP 
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Based on practical requirements, such as the customer characteristics [Golden et al., 2008], 

number of depots [Ho et al., 2008] and fleet type [Paraskevopoulos et al., 2008], various 

extensions of the basic VRP can be found in literature. According to Fernandez [2006], the 

VRPs present particular characteristics compare with other combinatorial problems (see 

Figure 2.4).   

Others
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window

With time 

window

Customer demand

Deterministic Stochastic

Where demands are located

Nodes Edges

Fleet size

One vehicle Multiple vehicle

Objective(s)
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Figure 2.4: Scheme of the particular characteristics in VRPs 

Moreover, Toth & Vigo [2002], Helbing [2007], Uyar & Technology [2008], Becher 

[2008], Eksioglu et al. [2009] and Xie & Levinson [2011] describe the main characteristics 

of customers, depots and vehicles, which generate some of the well-known variants of the 

VRP, these variants are fully discussed in the next section. 

 Customers: Every customer has a demand (goods or services) that must be satisfied 

by any of the vehicles. Also, an especial condition can be established when a 

customer is visited by more than one vehicle. Customers can be suppliers in some 

cases. Other particular situation occurs when the set of customers demands with 

earliest and latest time deadlines, which is called time windows.  

 Depots: Usually, the route developed by the vehicles start and end in the depot(s), 

rarely times, the vehicles depart or end in other specific node of the graph (e.g. the 

driver house or some customer). A single depot is frequent in the VRPs, even though, 

multiples depots can appear in some variants. When the problem comprises multiple 

deposits could be that each depot has a fleet of vehicles previously assigned. 

The time windows can be either defined in the depot(s). Furthermore, in some cases 

must be considered the time used for loading, unloading or preparing a vehicle 

before that the routes start. 

 Vehicles: The vehicle capacity can be expressed in different way, such as weight 

and/or volume. In general, each vehicle has an associated fixed cost, which is set up 

when the vehicle is used. A variable cost is also defined, usually, is proportional to 

the traveled distance performed by the vehicle. Regularly, each vehicle has a limited 
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time during the schedule. When the vehicles of the fleet have the same or similar 

attributes (e.g. efficiency and capacity) the fleet is called homogeneous, otherwise is 

named heterogeneous. Eventually, the legal regulations impose some restrictions 

related with the maximum time or speed that a vehicle can stay on the road.  

The goal in the VRPs can be summarized as follows: 

 Minimize the total time of transportation. 

 Minimize de total traveled distance. 

 Minimize the sum of the customer lead times. 

 Minimize the fleet size. 

2.2.2 Extensions of the Vehicle Routing Problem 

Several variants of the classical VRP have been proposed in the literature; basically 

extensions of VRP are resulting from the real application contexts. These variations are 

generated by addition of variables and constraints. In this section we will examine the most 

popular extensions of the VRP, concentrating more attention for those with similar 

characteristics to the case study presented in this thesis. 

The traveling salesman problem (TSP), studied in Gutin & Punnen [2002], is probably the 

most widely studied combinatorial optimization problem and has attracted a large number 

of researchers for a long time. Intuitively, it is the problem faced by a salesman who wants 

to find, starting from his home town, a shortest possible trip [Papadakos et al., 2011] 

through a given set of customer cities and to return to its home town. In the original TSP 

model the depot is not clearly defined, since it can be located in any customer position. 

Furthermore, the customers do not have associated time windows constraints [Öncan et al., 

2009]. Most problems in goods distribution are related to the VRP, which is a 

generalization of the TSP [Tatarakis & Minis, 2009; Meisel, 2011]. In the Appendix A.1 

some of the more complex variants of the TSP are described. 

The Multiple Traveling Salesman Problem (mTSP), in spite of being a generalization of 

TSP, has been less studied. In this problem, more than one salesman is allowed to be used 

in order to visit some cities just once [Dazhi & Dingwei, 2007]. Then, the mTSP consists 

of finding tours for all m salesmen, which start and end at the depot. As a result, each 

intermediate node is visited exactly once and the total cost of visiting all nodes is 

minimized [Bektas, 2006]. This extension will be deeply studied in this thesis due to its 

great similarity to our case study [Costa Salas et al, 2012]. 

The Capacitated Vehicle Routing Problem (CVRP) in an extension of the mTSP, where the 

customers have a known demand and are visited by a homogeneous fleet of vehicles with 

limited capacity and initially located at a central depot [Christiansen & Lysgaard, 2007]. 

Contrary to the TSP or mTSP, in CVRP the number of routes is unknown. Here, the 

objective is to minimize total traveled distance, such that each customer is serviced exactly 

once (by a single vehicle) [Sungur et al., 2008] and total load on any vehicle associated 

with a given route does not exceed vehicle capacity [Barreto et al., 2007]. 
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According to Desaulniers et al. [2008], the Vehicle Routing Problem with Time Windows 

(VRPTW) is one of the most studied in the literature. In this variant, both limited capacity 

of the vehicles and time windows for each customer are considered. The time windows is 

defined for each customer and consists of a start time (ready time) and end time (due time), 

within which the customer must be served [Azi et al., 2007]. Time windows can be 

considered hard when the delivery to the customer is developed out of time limits [Hsu et 

al., 2007]. Otherwise, they are considered soft but with a penalty in the objective function 

[Zeng & Wang, 2010]. 

Another variant of the basic VRP formulation is the Vehicle Routing Problem with 

Backhaul (VRPB); see Pereira & Tavares [2008]. This extension considers that after the 

vehicle executes the last delivery, it can visit one or more suppliers, picks up inbound 

products (backhauling) from the suppliers and carries them back to the depot 

[Goetschalckx, 2011]. In some formulation of the VRPB, a time windows or time interval 

is found at each customer/supplier location in order to constraint the time service. Then, 

this extension is called the Vehicle Routing Problem with Time Windows and Backhaul 

(VRPBTW) [Zhong & Cole, 2005]. 

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is a variant of CVRP, in 

which clients require both pickup and delivery [Festa, 2010], this process are performed 

simultaneously. The three well-known types of Pickup and Delivery Problem (PDP) are 

described in Barnhart & Laporte [2007], one is single-commodity PDP, where a single 

type of good is either picked up or delivered at each node of the graph. The second type 

involves the pickup and delivery process of two goods (two-commodity PDP) and the third 

(n-commodity) occurs when each commodity is associated with a single pickup node and a 

single delivery node. 

There exists a small family of problems within VRPs, in Chaovalitwongse et al. [2009] is 

defined as the Stochastic Vehicle Routing Problems (SVRPs). The name is given to this 

group of problems due to the random behavior that one or more variables have [Novoa & 

Storer, 2009]. There are three classical problems belonging to this family: 

1) The Vehicle Routing Problem with Stochastic Demands (VRPSD), in which the 

customers have random demands [Goh & Tan, 2009]. 

2) The Vehicle Routing Problem with Stochastic Customers (VRPSC), where the 

customers appears in the graph according to a probability value [Barnhart & Laporte, 

2007]. 

3) The Vehicle Routing Problem with Stochastic Times (VRPST), which occurs when 

the service time or travel time are random [Cao et al., 2008]. 

Several depots can be established in VRP (e.g. in Ho et al. [2008]), when the vehicles 

depart from multiples depots the problem is denominated the Multiple Deposits Vehicle 

Routing Problem (MDVRP). In Toth & Vigo [2002] is presented a detailed survey of all 

described extensions of the VRP. 

The Dynamic Vehicle Routing Problem (DVRP) is other of the well-known VRP 

generalization [Hanshar & Ombuki-Berman, 2007]. However, we confer a tremendous 

importance due to the similarity of this variant with the case study discussed in this thesis. 

The term DVRP is referred to a wide range of problems where the required information is 
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not given to the decision-maker, but is revealed concurrently with the decision-making 

process [Demazeau et al., 2009]. In Kreowski et al. [2010] the DVRP considering that the 

solution is not a static set of routes is analyzed. On the contrary, the routes should evolve, 

involving the unexpected request (see Figure 2.5).  

 

Figure 2.5: View of DVRP scheme  

Moreover, Larsen et al. [2007] argue the in DVRP not all information relevant to the 

planning of the routes is known by the planner when the routing process begins. Therefore, 

the information can change after the initial routes have been constructed. In Garrido & Riff 

[2010] are described the main discriminat features between the static and dynamic 

extensions of the VRP. Furthermore, a comprehensive study about the solution strategies is 

detailed. 

2.3 Solution approaches for the VRPs 

Due to the academic and practical importance of VRPs, many algorithms for their solution 

have been devised. Undoubtedly, hundreds of papers have been devoted to the algorithmic 

approaches of the several variants of the VRP. The optimization methods to combinatorial 

problems, particularly to VRPs, can be classified as either exact or approximate [Gilbert 

1992; Golden et al., 2008; Scholz, 2011]. The main differences between exact and 

approximate are depicted in Appendix A.2. This comparison is carried out considering the 

most used indicators of performance in the optimization methods: the quality of the 

solutions, the computation time, the flexibility and complexity in implementation.  

2.3.1 Exact algorithms 

The exact approaches to VRP have been well studied since the first solution presented in 

this filed by Dantzig & Ramser [1959]. The basic principle of an exact algorithm is based 

on enumerate the full solution space. Therefore, such algorithms can be infeasible due to a 
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significant growth in the exponential size of the solution space. Despite this success, on 

many extensions of VRPs the performance of exact methods is suitable. 

Several experimental results can be found about exact algorithms in VRPs. Based on these 

results, some decision rules have been proposed related with the VRP instance size. In this 

sense, Toth & Vigo [2002], Francis & Smilowitz [2006] and Barnhart & Laporte [2007] 

consider that the exact methods are efficient when the number of customers is 

approximately below 50 (nodes). However, some other experimental results (see Table 2.2) 

proof the opposite. The main reason of this contradiction is due to the univariate 

conception of the problem size (determined only by the number of nodes in the graph). 

Table 2.2: Suitable results of exact approaches in the VRPs 

Researches Problem size Algorithm(s) Other constraints 

Oppen et al. 

[2010] 
Larger than 100 

Column 

Generation (CG) 

Time windows and random 

variables 

Dumas et al. 

[1991] 
Larger than 100 

Branch-and-

Price (BP) 

Multiple depots, pickup and 

delivery and heterogeneous 

fleet 

Bélanger et al. 

[2006] 
Larger than 250 

Branch-and-

Bound-and-

Price (BPC) 

Time windows and random 

variables 

Calvete et al. 

[2007] 
Larger than 75 

(GP) Goal 

Programming 

Soft time windows and 

multiple objectives 

Ropke & 

Cordeau [2009] 
Less than 100 

Branch-and-Cut-

and-Price (BCP) 

Time windows and pickup 

and delivery 

Righini & 

Salani [2008] 

Between 50 and 

100 

(DP) Dynamic 

Programming 

Time windows, random 

customers and heterogeneous 

fleet 

Baldacci et al. 

[2012] 
Larger than 100 

Column-and-

Cut- Generation 

and Branch-and-

Cut-and-Price 

Limited capacity and time 

windows 

The figures in Table 2.2 show that exact algorithms can be effective when the problem size 

exceeds 50 nodes, which proves that a priori is not trivial to predict, following a unique 

criterion in the problem size, what family of algorithms will be effective to solving VRP.  

This issue will be examined in the next chapters of the present research. 
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As we previously mentioned, the classical way to obtain optimum solutions to the VRPs is 

to evaluate all possible solutions in feasible solution area. However, there are other 

strategies to find guaranteed optimum solutions. In this sense, the well-known Branch and 

Bound (BB), examined in Toth & Vigo [2002], is one of the most studied exact algorithms 

in literature Farahani et al. [2011]. The BB procedure is more efficient that enumerate all 

possibilities in solution space. In BB is only enumerated the possibilities by eliminating 

large classes of solutions using domination or feasibility arguments, straightforward or 

implicit enumeration [Nemhauser & Wolsey, 1998]. In Padberg & Rinaldi [1991] an 

improvement of the BB by adding cut and planes forming the formidable Branch and Cut 

(BC) is proposed. 

On the other hand, when the Column Generation (CG) algorithm, proposed by Vanderbeck 

& Wolsey [1996], is combined with BB, it results into the efficient algorithm called 

Branch and Price (BP) [Christiansen & Lysgaard, 2007]. The BP, according Baldacci et al. 

[2008], is considered the most efficient of exact algorithms in literature, with which the 

present author agrees. 

Several variants of the VRP have been solved using the described exact approaches. In 

Bard et al. [2002] is applied the BC to the VRPTW, while Christiansen & Lysgaard [2007] 

addressed the VRPSD applying BP but based on the Dantzig-Wolfe decomposition. There 

exist other exact strategies to solve VRP based on Lagrangean relaxation [Jing-Quan, 

2009] and Dynamic programming [Righini & Salanil, 2009]. 

A comprehensive survey of exact methods for VRPs can be found in Laporte [1992] and 

more recently in Kallehauge [2008], in which the application of the exact algorithms 

during the last three decades is examined. 

Despite the inefficiency of the exact methods in large-scale VRP instances, see Marinakis 

& Migdalas [2007] and Brito et al. [2009], these algorithms still show suitable results to 

solve combinatorial problems. Especially for the VRPs, exact strategies are widely 

accepted and easily understood by decision-makers.   

2.3.2 Approximate algorithms 

The approximate approaches differ essentially from exact ones as they cannot guarantee to 

find optimal solutions in finite time. But, for optimization problems, they often find high 

quality solutions much faster than exact algorithms and are able to successfully attack large 

instances [Stützle, 1998]. These algorithms have been the most studied in the issue of the 

VRPs [Laporte & Martín, 2007; Chen et al., 2008]. Approximate algorithmic approaches in 

VRP can be classified into four categories: heuristics, metaheuristics, approximation and 

trial and error. In the Appendix A.3 the main algorithms according to each of 

aforementioned category are presented. However, in this section we will focus on the study 

of the heuristics and metaheuristics approaches, as they are the most popular and efficient 

within the approximate category [Dondo & Cerdá, 2007]. 

The heuristics were one of the first solution approaches to VRP. Despite its inefficacy to 

guarantee the optimal solution, the heuristics algorithms can solve large instances of VRP, 

through a limited exploration of solution space in negligible time [Cordeau et al., 2005].   
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In Michalewicz & Fogel [2004] one of the most accepted concept of heuristic is proposed, 

it is defined as a technique (consisting of a rule or a set of rules) which seeks (and 

hopefully finds) good solutions at a reasonable computational cost. 

Various heuristics algorithms have been addressed to VRPs in literature, starting by the 

one proposed by Clarke & Wright [1964], which is named the saving algorithm. Later, 

Mole & Jameson [1976] and Christofides [1979] introduce the famed algorithm well-

known as the insertion heuristic. These heuristics can be classified as constructive 

algorithms which generate solutions from scratch by adding to an initially empty solution 

components in certain order until a solution is complete.  

Another efficient heuristic approaches are examined in Laporte et al. [2000], where the 

two-phase heuristic [Bramel & Simchi-Levi, 1995], cluster-first and route-second 

algorithm [Fisher & Jaikumar, 1981] and the sweep algorithm [Wren, 1971] are analyzed 

in details. Recent experimental results reported in Imran et al. [2009], Yazgi Tütüncü et al. 

[2009] and Na et al. [2011] prove that such approach are still used with great acceptance 

and success. 

The most widely and successfully applied approximate algorithms are local search 

algorithms [Stützle, 1998; Aarts & Lenstra, 2003]. In general, they are iterative 

improvement methods that start from some given solution and try to find a better solution 

[Ibaraki et al., 2008] in an appropriately defined neighborhood [Hemmelmayr et al., 2009] 

of the current solution. In case a better solution is found it replaces the current solution and 

the local search is continued right from this point [Stützle, 1998].  

The solutions in local search are typically obtained by simple procedures called moves. In 

most of cases, they are very effective heuristics (see Kytöjoki et al. [2007]). However, the 

main disadvantage of this algorithm is that it may stop at poor quality local minima. 

Therefore, Gendreau & Potvin [2010], Zapfel et al. [2010] and the present author consider 

that local search should be subordinated to the metaheuristics algorithms in order to obtain 

better results. 

2.3.2.1 Metaheuristics for the VRPs 

The results either theoretical or experimental obtained by applications of metaheuristic 

algorithms are often quite impressive. These solution approaches are effectively superiors 

than classical heuristics [Toth & Vigo, 2002]. Furthermore, they carry out a much more 

intelligent search process compared with other mentioned methods. Several definitions of 

the metaheuristics have been provided by well-known authors in this field. Some of them, 

specifically Osman & Laporte [1996], Dorigo & Stützle [2004], Geiger et al. [2009], 

Zapfel et al. [2010], and Gendreau & Potvin [2010], agree that a metaheuristic can be 

defined as follows: 

A meta-heuristic is an iterative master process that guides and modifies the operations of 

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a 

complete (or incomplete) single solution or a collection of solutions at each iteration. The 

subordinate heuristics may be high (or low) level procedures, or a simple local search, or 

just a construction method. 
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There exist three groups of metaheuristic algorithms to solve the VRPs, the swarm 

algorithms [Marinakis et al., 2010], the evolutionary algorithms [Talbi, 2009] and immune 

algorithms [Hu et al., 2009]. Those framed in swarm intelligence are bio-inspired on the 

behavior of the real animals and insects such as ants [Forestiero et al., 2008; Dressler & 

Akan, 2010], bees [Karaboga & Akay, 2009], termites [Khereddine & Gzara, 2011], birds 

[Marinakis & Marinaki, 2010] and fishes [Ma, 2010]. The individual agents of a swarm 

behave without supervision and each of these agents has a stochastic behavior due to her 

perception in the neighborhood. Local rules, without any relation to the global pattern, and 

interactions between self-organized agents lead to the emergence of collective intelligence 

called swarm intelligence [Karaboga & Akay, 2009]. 

When we examine the swarm algorithms is mandatory, due to its formidable results in 

VRPs, lead us to analyze, the set of algorithms based on the Particle Swarm Optimization 

(PSO) [Kennedy & Eberhart, 1995] and the family of Ant Algorithms (AAs) based on Ant 

Colony Optimization (ACO) [Dorigo & Gambardella, 1997]. Yet, this type of approximate 

algorithms will not further be discussed here. However, both approaches have been studied 

by many researchers, mainly ACO for the static extensions of the VRPs [Chen, 2007a; 

Chen, 2007b; Colorni & Roizzoli, 2007]. Some other applications of ACO for dynamic 

variants can be found in Yi & Kumar [2007] and Runka [2009]. Moreover, successfully 

application of PSO for VRP, in particular for the one extension with time windows, is 

reported in Ai & Kachitvichyanukul [2009a].  

The evolutionary algorithms (studied in Mester et al. [2007]) are inspired in the natural 

evolution process, where the more adapted individuals survive (prevail the best solution) 

while the weakest subject tend to become extinct (solution with poor contribution to the 

objective function). Multiple variants of VRPs have been solved using evolutionary 

approaches, predominantly with the family of Genetic Algorithms (GAs) [Alvarenga et al., 

2007; Hanshar & Ombuki-Berman, 2007; Lau et al., 2010]. Immune algorithms are a new 

computational intelligence paradigm, which take inspiration from the immune system. In 

this area suitable solutions in Hu et al. [2009] and Zhang & Wu [2010] are reported, 

specifically for real-life instances of distribution problems.  

The recent advances in metaheuristics tend to the hybridization [Flisberg, 2009], in most 

cases combining metaheuristics in order to improve the best results achieved for some 

extensions of the VRP [Chen et al., 2010]. On the other side, the hyper-heuristics 

constitute another progress in the field of approximate methods. A hyper-heuristic is a 

high-level algorithm, which generates or chooses a set of low-level heuristics in a common 

framework, to solve the problem at hand [Garrido & Riff, 2010]. To our knowledge, the 

most satisfactory results in hyper-heuristic have been obtained by Garrido & Castro [2009] 

and Garrido & Riff [2010]. 

2.3.2.2 Ant Colony Optimization  

In this section we examine the family of algorithms based on the well-known Ant Colony 

Optimization (ACO). The main reason to study this metaheuristics separately is due to its 

linking with the scientific contributions of this thesis. Contrary to the previous section, 

here ACO is described in detail considering the following elements: the characteristics of 
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the search process, some prominent variants of AAs and the main procedure followed by 

the artificial ants in route construction. 

As we mentioned before, the ACO [Dorigo et al., 1999; Dorigo & Stützle, 2004] belongs 

to the swarm intelligence branch [Bonabeau, 1999]. Equality to swarm intelligence, in 

ACO a model of social insect behavior is applied (ants), which work in a distributed 

manner, without centralized control and self-regulating [Dušan, 2008; Fountas, 2010].  

The ACO metaheuristic is inspired by the behavior of the real ants [Stützle et al., 2010]. In 

general, real ants have developed an efficient way of finding the shortest path from a food 

source to their nest without using visual information [Merz, 2000]. When the ants takes the 

path to a food source, they depose a specific substance called pheromone, which is a 

chemical substance that ants may lay down in varying quantities to mark a path. The ants 

establish communication exchanging information via pheromones [Dorigo et al., 2006]. If 

new ants arrive at a point where they have to decide on one or another path, the ants, in 

most cases, will follow the path where the pheromone intensity is higher. However, the 

insolated ants move essentially at random. Thus, the ants use the environment as a 

communication medium, this way of indirect communication is known in literature as 

stigmergetic. 

The AAs obtain the solution by a probabilistic construction, which is based on the 

representation of the solutions in a graph. Hence, each edge of the graph represents a 

component of the global solution. In probabilistic construction, each artificial ant usually 

selects the move to expand the state taking into account two values: the attractiveness, 

which indicates the apriori desirability of that move and the pheromone trail level, which 

indicates how good the choice in the past has been [Dorigo & Stützle, 2003; Dorigo & 

Stützle, 2010]. In the context of the VRPs, the attractiveness value is computed by some 

heuristic that indicate a measure of desirability related with distance, traveled time or 

vehicle capacity exploitation. 

Stimulated by both the attractive natural inspiration of real ants and the interest to solve 

combinatorial problems (such as VRPs) as efficiently as possible, several variants of AAs 

have been proposed. Some modifications of the first algorithms have lead to new 

remarkable variants of AAs, particularly for those modifications addressed to improve the 

intelligence of the search process and the ability to avoid becoming trapped in local 

optimum [Al-Ani, 2005]. The most studied variants of AAs in literature are listed below.  

 Ant System (AS) [Dorigo et al, 1996]. 

 Ant Colony System (ACS) [Dorigo & Gambardella, 1997]. 

 MAX-MIN Ant System (MMAS) [Stützle & Hoos, 2000]. 

 Rank-Based Ant System (RBAS) [Bullnheimer et al, 1999]. 

 Best-Worst Ant System (BWAS) [Cordón et al, 2000]. 

In Cuba, the algorithms based on ACO have been subject of modification as well. The 

Two-Stage Ant Colony Optimization (TS-ACO) proposed by Gomez et al. [2008] and 

[Puris et al., 2010] is one of the main contribution to this field of swarm intelligence. 

Furthermore, in that sense a contribution of the present author is reported in Costa Salas et 

al. [2012], but this topic will be analyzed in detail in Chapter 4. 
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General Framework of Ant Colony Optimization 

The basic mode to running ACO for any discrete combinatorial problem is described in 

Dorigo & Stützle [2003], Dorigo & Stützle [2004] and Dorigo et al. [2006]. Based on 

above researches, we summarize the main steps of the general framework followed in the 

ACO metaheuristic.   

The ACO algorithms are essentially construction algorithms. Therefore, in every algorithm 

iteration, each ant constructs a solution to the problem by traveling on a construction 

graph. Each edge of the graph, representing the possible steps the ant can make, has 

associated two kinds of information that guide the ant movement: 

 Heuristic information, which measures the heuristic preference of moving from node 

  to node  , of traveling the edge    . It is denoted by    . This information is not 

modified by the ants during the algorithm running. 

 Artificial pheromone trail information, which measures the “learned desirability” of 

the movement and mimics the real pheromone that natural ants deposit. This 

information is modified during the execution of the algorithm depending on the 

solutions found by the ants. It is denoted by    .  

ACO is structured into three main functions (see Procedure 1) [Dorigo & Stützle, 2004; 

Mullen et al., 2009]. AntSolutionsConstruct( ) performs the solution construction process 

as it is previously described. Artificial ants move through adjacent states of a problem 

according to a transition rule, iteratively building solutions. PheromoneUpdate( ) performs 

pheromone trail updates. This may involve updating the pheromone trails once complete 

solutions have been built, or updating after each iteration. 

In addition to pheromone trail reinforcement, ACO also includes pheromone trail 

evaporation. Evaporation of the pheromone trials is included to help ants „forget‟ bad 

solutions that were learned early on in the algorithm run. Implementation could be as 

simple as reducing all pheromone trials by a set amount after each epoch. DeamonActions( 

) is an optional step in the algorithm which involves applying additional updates from a 

global perspective (there exists no natural counterpart). An example could be applying 

additional pheromone reinforcement to the best solution generated (known as offline 

pheromone trail update). 

Procedure 1. The ACO metaheuristic 

ParameterInitialisation 

WHILE termination conditions not met do 

ScheduleActivities 

AntSolutionsConstruct() 

PheromoneUpdate() 

DeamonActions() optional 

END ScheduleActivities 

END WHILE 
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The stop criterion (termination conditions) [Dorigo & Stützle, 2003] in ACO can be 

established as follows:  

 According to the number of iteration. 

 If some pre-defined value of objective function is reached. 

 According to a deadline or pre-defined running time. 

 When a maximum number of evaluation in the objective function is reached. 

Based on the detailed analysis of ACO, we conclude that the algorithms based on Ant 

Colony Optimization consist of three main stages (repeated throughout iterations): Solution 

construct, evaluate the solution and deposition-updating of pheromone. 

ACO with multiple colonies 

Several improvements have been developed in ACO. The approaches of multiple colonies 

in ACO are one of the most efficient according to the literature for VRPs (e.g. for VRPTW 

reported in Gambardella et al. [1999]). In general, this approach is based on the 

cooperation between colonies, which is performed by exchanging information through 

pheromone updating. In the search process performed by each colony, the best experiences 

(best found solutions) are shared with other colonies. The AAs with multiple colonies have 

been addressed to large-scale of VRP [Aljanaby, 2010]. Despite the efficiency of this 

approach, the researches in this area of ACO have been poorly treated, particularly in VRP. 

Just few of them are involved in the application parallel programming, and some multi-

colonies algorithms are used to optimize multiple objectives functions simultaneously. To 

our knowledge, in multiple colonies of AAs, each colony only deals with the components 

(parts of the solution) of the global solution, the colony do not represents a global solution, 

therefore, in the cooperation process the experiences about the components of the solutions 

are exchanging.  

The Multiple Ant Colony System (MACS) introduced by Gambardella et al. [1999] is 

considered the first algorithmic proposal to the VRPs. Here, the MACS is proposed to the 

VRPTW, this algorithm (MACS-VRTW) is organized with a hierarchy of artificial ant 

colonies designed to successively optimize a multiple objective function: the first colony 

minimizes the number of vehicles (ACS-VEI) while the second colony minimizes the 

traveled distances (ACS-TIME). The two colonies evolve in parallel exchanging 

information when a better solution of number of vehicles is found. A similar approach to 

the above is recently reported in Ortega et al. [2009]. Moreover, in Gómez Díaz [2010] is 

examined an ACO multi-colonies for solving the Feature Selection Problem (FSP), the 

novel idea consisted in applying this approach in a context of multiple source of data.   

The approaches based on multiple colonies, according to the present author, can be 

summarized into three strategies: the first is related with parallel programming, in the 

second the multi-objective approach is analyzed and the third the colonies cooperate 

exchanging meta-information (multiple source of data). Finally, according with the revised 

literature in this thesis, some possible variants of multiple colonies have not been treated, 

for example, considering each colony as a set of global solutions (one per each ant) of any 

undertaken VRP. Therefore, the exchanged information represents the acquired experience 



CHAPTER 2. OPTIMIZATION THEORY AND VEHICLE ROUTING PROBLEM 

 

26 

 

of each colony about the construction of the global solution, not about a single component 

of the global solution. 

2.4 The Vehicle Routing Problem in Cuba 

The transportation is considered of one the most important decision in logistics. In general, 

the distribution process implies one of the higher costs in the enterprises and its role in the 

customer service is crucial [Fink & Rothlauf, 2008]. In this sense, Tseng et al. [2005] 

argues that the transportation involves a considerable part of the logistics costs. Hence, the 

necessity to increase the effectiveness in the transportation process, where the VRPs 

constitute the main optimization decision, becomes a pivotal issue. 

The optimization decisions are carried out considering limited resources, for example, 

financial, required time, raw materials, among others. The optimization scenarios can be 

harder in the context of a developing country, such as Cuba. Therefore, the ineffectiveness 

in decision-making is a luxury that such countries cannot afford. For that reason, the 

optimization process, especially the VRPs, should be supported on effective methods, 

which provide to the decision-makers with feasible solutions in reasonable time. 

In Cuba, the transportation processes are carried out under the following characteristics: a 

much diversified fleet of vehicles [Faedo, 1999], the decrease of transport flow in the 

urban sector and the distribution of any load (e.g. goods and raw material for whatever 

industry or service facility). Although some investments have been developed, specifically 

in the railroad sector, the transportation infrastructure (pickup and delivery center, harbors, 

train stations, bus stations, network roads and airports) still requires larger investments, 

which is typical in many countries of the so-called third world. However, in this current 

scenario there exist some high-priority areas, for example, the primary industry, the 

transportation in tourism and the international aviation.  

Moreover, some small investments have been performed to acquire vehicle fleets of high 

technology, which have guaranteed the supply and distribution in important new 

companies [CUBALSE, CIMEX S.A., ABATURITH and the National Union of Electricity 

(NUE)] in the country. On the contrary, the load truck services provided by the main 

company of the country, Truck Center of the Transport Ministry, have decreased 

significantly [Sendas, 2009]. 

The Cuban transportation process is developed almost entirely by petroleum-derived (fuel-

oil or gasoline) [Johannesburgo, 2002]. That is why, the urgent need to use rationally this 

valuable and limited resource, through the proper exploitation of transportation means.   

Transportation decisions in Cuba are made according to two levels of hierarchy 

[Johannesburg, 2002]. The first level involves the macro-economic decision of the 

transportation process, for instance, decisions of national importance (material movement 

of heavy industry, large-scale fuel distribution, passenger movement throughout the all 

country and so forth). The Council of Ministers is in charge of these decisions dealing with 

transportation. In the second level, those transportation decisions that take place in the 

province and its corresponding cities are analyzed. These decisions are made by the local 

authorities of each territory. For both levels of hierarchy, the decision-making is supported 

by the technical advisors of Cuban Transport Ministry. Recently, these technical advisors 
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have examined the main inadequacies in the transportation process [MITRANS, 2008]. 

The most important are listed below. 

1) The transportation routes and vehicle fleet are inefficiently planned; therefore the 

exploitation of fleet load capacity does not exceed the 50% in most cases. 

2) In the urban transportation, there are empty return tours even when the bus stops are 

almost full. 

3) There are unnecessary tours in managerial sector when the neighbor enterprises 

organize trips, one per each one, to other enterprises for some similar paper work. 

4) The distribution supply are disused what bears to a great conglomeration in the 

dispatching centers.  

5) The trip objectives are not achieved in the 40% of the cases, therefore fuel and 

engine recourses are consumed in vain. 

6) The specialized transportation companies do not guarantee an efficient decision-

making processes due to their solutions is mainly based on the experience, 

disregarding the current scientific techniques for such proposes.  

7) Some goods, which were sent from the cities, should be collected in the main 

province warehouse and then should be returned to their origin places in order to be 

consumed.   

8) There exist delays in the proper restoration of the essential services (electric service, 

waste collection and supply of raw material to rebuilding) after natural disaster, such 

as hurricanes.   

Clearly, the mentioned inadequacies are the results of an empirical approach adopted by 

the decision-maker. In particular, the transportation process requires to be organized 

considering the inherent characteristics of the Cuban context, such as huge financial 

limitations, a reduced and heterogeneous fleet of vehicles and the hard environmental 

conditions due to natural disasters.  

Despite these successes, some Cuban researchers have studied the transportation decision, 

devoting the major contributions to the control methodologies in transportation 

management. In this sense, most researches propose some control measure based on the 

well-known technology of Global Positioning System (GPS) [Del Valle, 2006]. In Cuba, 

the GPS technology is used offline, which provokes that route control process has to be 

performed after vehicle returns to the dispatching center. The control process based on the 

offline GPS technology does not allows to developed effective actions in the transportation 

management, only in the traveled route, which in most cases is planned disregarding the 

studied optimization algorithms, it can be checked when the vehicles end their journey.  

Based on an extensive analysis of scientific literature, the present author concludes that 

most important contributions to transportation management (specifically in VRP) in Cuba 

are related with control methodologies (see descriptive analysis in Figure 2.6).  

To date, the application of either exact or approximate algorithms to VRPs seems to be a 

pending task for the Cuban managerial organizations. According to our search, fewer 

solutions are found in this area (see Garza Ríos & Gonzáles Sánchez [2004] and López 
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Milán et al. [2004]), while much more are dedicated to established control measures in 

transportation process (see in MITRANS [1984], UDECAM [1999], Ruiz González 

[1999], CETRA [2001], MITRANS [2005], Resolución 249 de la UDECAM [2005] and 

Del Valle [2006].  

  

Figure 2.6: Descriptive analysis of the main VRP solution approaches in Cuba 

The vehicle routing decisions, as most difficult decision in transportation management, 

should be supported, in most cases, by efficient mathematical and computational 

techniques, which the Cuban managerial organizations have not frequently applied. In this 

sense, the Cuban enterprises require of technical assistance in order to improve their 

performance in decision-making.  

2.5 Summary 

In this chapter, many definitions of optimization have been provided and then some critical 

analyses have been developed. Due to the importance for this research, we have studied the 

main methodologies to carry out the optimization process, identifying their inadequacies, 

both the univariate analysis and the necessity of the integrative approach. Moreover, we 

have examined the computational complexity in the optimization problems, which is 

recognized as the main analysis previous to the optimization process, while the sensitivity 

analysis becomes the fundamental issue in the post-optimization.  

Furthermore, we have presented the main features of one of the most widely studied 

combinatorial problems, the Vehicle Routing Problem. Here, some well-know extensions 

of the VRP have been described. Recent researches have shown that the algorithmic 

approaches for solving the VRPs can be classified as either exact or approximate. 

Therefore, we have discussed the main algorithms for both optimization categories. In 

particular, the metaheuristics algorithms, especially ACO, have been described in the 
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application context of the VRPs. Finally, we have analyzed the VRP solution approaches 

in Cuba, proving that the algorithmic approaches, studied in the present chapter, have not 

been often applied by Cuban decision makers.  
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3 A conception and solution approach for 

assisting the optimization in VRPs 

 

Chapter 3 

 

A conception and solution approach for 

assisting the optimization in VRPs 

A priori it is often not obvious how optimization methods perform when are applied to 

specific Vehicle Routing Problems. That is why, they have to be evaluated and compared 

empirically in most cases. In this chapter a new conception of the optimization process is 

presented based on conceptual model, specifically for the VRPs. We propose this novel 

conception designing the optimization process in VRP according to three medullar and 

integrated moments: decision-making before optimization, during optimization and after to 

the optimization of any VRP. The second part of the chapter is dedicated to establish the 

procedure, which allows to apply the theoretical ideas proposed in the conceptual model 

through some computational implementation.  

Some specific methodologies are also presented in sections of the chapter, in particular, to 

estimate the training-set size (based on Mukherjee et al. [2003]) in the Knowledge Base 

and to analyze the parameter sensitivity of any defined algorithm.   

3.1 Conceptual model for optimization process in VRPs 

The new conception of optimization process, according to the conceptual model (see 

Figure 3.1), is introduced in order to increase the effectiveness in decision-making based 

on an integrative and proactive approach. For such purposes, the conceptual model 

considers to structure the optimization process into three integrated stages (previous, 

during, and after optimization). Furthermore, a learning process is also considered, which 

determines the relevant optimization methods, both exact and approximate, for a given 

Vehicle Routing Problem. The learning process permits to predict these appropriate 

optimization methods based on two conditions: the internal conditions, which define the 

VRP complexity (number of nodes, fleet size, number of objectives, customer demand, 

fleet type and time windows), and the external conditions (decision hierarchy, decision 

scope and available time), which can affect the relevance degree provided by the learning 

process and therefore, they can have a significant influence in the decision-making 

effectiveness. The conceptual model is defined as a theoretical-methodological support to 

the decision-making in VRP optimization. Hence, the graphical representation of the 
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Figure 3.1: Conceptual model for the optimization process in the VRPs
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optimization process is illustrated as classical solution space of an optimization problem, 

where the effectiveness measure is given by three performance indicators: solution quality, 

computation time and the real time in which the decision-making occurs. 

Optimal solution, in our new conception of VRP optimization is reached, when the 

effectiveness takes the higher values according to the performance indicators. The 

trajectory in optimum pursuit starts with the integration of the three stages in the 

optimization. Then, other three derived processes (learning, algorithms proposal and 

validation) allow to guide the search to promising areas of the solution space, where exact 

or approximate optimization methods can be properly applied for the VRPs. Subsequently, 

if the method prediction considers both internal and external conditions, the highest values 

of effectiveness are achieved. Finally, two important premises should be considered when 

the conceptual model is conceived for any variant of VRP, we define these below. 

1) Theoretical knowledge and practical experience in the issue concerned to 

combinatorial optimization problems, specifically VRP and its solutions methods. 

2) For the implementation of the proposed conceptual model, we suggest that the users 

should possess the following resources: 

 Access to the VRP solutions which are reported in literature (mainly for learning 

process). 

 Acceptable computation capability for the algorithm runs and statistical tests. 

 Some VRP solutions require professional equipment, for instance, to establish 

the communication between the driver and dispatching center (e.g. the case 

study analyzed in Chapter 4), or any equipment of Geographical Information 

System (GIS).      

When the optimization process in VRP is conceived according to the proposed conceptual 

model, some significant potentialities are provided to the decision-making. The most 

important can be stated as follows:      

1) Gives a scientific-practical conception of the optimization process related with the 

VRPs, identifying its three required stages, and also considering a proactive approach 

in terms of effective and relevant optimization solutions. 

2) Provides an integrative approach of the VRP decision-making for any managerial 

organization, conceiving the close relationship between the results of its stages 

(previous, during, and after optimization). 

3) Includes a set of scientific tools, such as Mathematical Statistics and Machine 

Learning for Knowledge Discovery and fit test of random variables existing in 

optimization models. Furthermore, involves classical Operation Research (exact 

methods) and Artificial Intelligence algorithms (approximate methods) to solving the 

optimization problems. 

4) Presents flexibility attributes since when the internal and external conditions change, 

all stages results and its derived process can be updated.  
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5) The planning and execution of the optimization process according to the proposed 

conceptual model is in accordance with the current logic followed in VRP decision- 

making. 

6) The conception of VRP optimization process can be extended to other combinatorial 

optimization problems existing in logistics planning.  

To achieve the main objective of the conceptual model in the optimization process the 

following inputs should be defined:  

 List of possible variables which describe the feature of complexity.  

 Expert judgment about inclusion or not of the aforementioned variables in the 

learning process. 

 Domain values of each defined variable in the Knowledge Base (KB). 

 The feature of complexity for any VRP instance (new case to classify). 

 The total available time to carry out the Vehicle Routing Decision. 

 Constant or data values of a given VRP instance. 

 Discriminat characteristics of the specific optimization algorithms (within the exact 

and approximate category). 

 Parameters values of the proposed optimization algorithms. 

The above inputs are involved in the following conceptual model processes: 

 Learning (Knowledge Discovery in VRP solutions). 

 Estimation of the minimum training-set size in KB. 

 Optimization based on those proposed algorithms. 

 Selection of the best algorithm according to the performance indicators. 

 Validation and simulation of the performance in all optimization stages. 

Some of the main outputs after running the previous processes can be defined as follows: 

 Value of the minimum training-set size in KB. 

 Prediction of relevant optimization method for a given VRP instance. 

 The best route, objective function value and the computation time of the proposed 

algorithms. 

 The Global Index of Effectiveness (GIE) achieved after the simulation of 

performance.     

As we mentioned before, the conceptual model introduces a new theoretical conception 

which requires to be implemented experimentally to a given VRP. In this sense, the next 

section of the current chapter presents the practical solution to this issue. A procedure is 

proposed as algorithmic instrumentation of the conceptual model processes.  
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3.2 Procedure for optimization process in the VRPs   

The proposed procedure (see Figure 3.2) is structured into three stages. In the first one, a 

previous optimization analysis is performed, where the main idea is to define algorithmic 

steps that allow the relevant selection of the optimization method (either exact or 

approximate). The second consist of specific algorithm election based on two patterns: the 

remark to be applied of each algorithm and the results of classification, provided by the 

computational implementation developed for such propose in this chapter. Finally, in the 

third stage a comprehensive post-optimization analysis is carried out, which includes 

performance indicator analysis for the relevance validation and sensibility analysis of those 

parameters that can be defined by procedure users. 

Stage I: Pre-optimization in the VRP 

3.2.1 Learning process for the method selection in VRPs 

In this stage, the main variable involved with the VRP complexity will be defined. These 

variables are used in the learning process in order to classify the relevant solution of a 

given VRP instance. Subsequently, a Knowledge Base is designed based on samples of the 

real-life VRP solutions. For classifying the VRP relevant solutions two well-known data 

meaning algorithms are introduced, they are the Discriminant Analysis and the C4.5. Then, 

the minimum training-set of the Knowledge Base is estimated when the solution categories 

(exact or approximate) are obtained by each classifier. Another important result of this 

stage is the computational implementation that includes both classification algorithms in 

the learning process. This implementation is a friendly interface for users who need to 

estimate relevant solution to any VRP instance. 

3.2.1.1 Setting predictive variables in the learning process 

As we mentioned in Chapter 1, some solution approaches indicate that exact methods 

should be used in small-scale VRP instances. On the contrary approximate algorithms 

should be applied to large-scale datasets. In both cases, the instance dimensionality is 

based on the number of nodes defined in the VRP graph, which demonstrated be imprecise 

when some recent researches have been used the exact algorithms with successfully results 

in not small-scale VRP problems (over 100 nodes in the graph). Therefore, the objective of 

this procedure step is to define other representative variables, which describe the problem 

complexity or dimensionality in a multivariate context.     

The set of predictive variables is defined as the result of two decision rules: the first is 

based on an extensive literature review, where those variables suggested by Fernández 

[2006] emerged as the predominant in our experiment. Subsequently, in the second 

decision rule, the resulting variables (see Table 3.1) form literature are analyzed by a work-

team (wt) which determines the final inclusion of predictive variables in the subsequent 

classification experiment. 
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Pre-optimizationPre-optimization
Begin

Develop learning processDevelop learning process

Define predictive variablesDefine predictive variables

Estimate the minimum training-set sizeEstimate the minimum training-set size

Predict using classification toolsPredict using classification tools

Which is the relevant 
optimization method?

Structure the knowledge baseStructure the knowledge base

Select exact algorithm(s)Select exact algorithm(s) Select approximate  algorithm(s)Select approximate  algorithm(s)

During-optimizationDuring-optimization

Describe the remarks of algorithmsDescribe the remarks of algorithms

Develop the classification process 

for algorithm(s) selection

Develop the classification process 

for algorithm(s) selection

Validate and control after optimizationValidate and control after optimization

Validate the relevanceValidate the relevance

Develop sensitivity analysisDevelop sensitivity analysis

End

After-optimizationAfter-optimization

ExactExact ApproximateApproximate

 

Figure 3.2: Procedure for assisting the decision-making in the VRPs 
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Based on our experiences with the work-teams and some other related scientific works in 

this area, the final inclusion of the predictive variables was the result of eight (8) expert 

judgments. The work-team members establish its criterion respect to include or not the 

predictive variables in the learning process. 

Inevitably, when a set of opinions are given by persons, it is necessary to measure the 

achieved consensus in such judgments. In this sense, we introduce the Equation 3.1 which 

determines the Index of Consensus (  ) achieved in the definition of the predictive 

variables.  

       
   
   

      [3.1] 

where     is determined, regarding to the inclusion of each predictive variable  , by the 

ratio (see Table 3.1) between the standard deviation of expert judgments for each variable   
(   ), and the highest possible value of standard deviation (   ) according to the scale 

used in the experiment (see Table 3.2).           

Table 3.1: Expert judgments in the inclusion of predictive variables 

 Work-team (wt)   

Predictive 

variables 
1 2 3 4 5 6 7 8 Average    

Number of 

nodes 
5 5 5 5 5 5 5 5 5.000 100 

Fleet size 4 4 4 4 4 4 4 5 4.125 86.77 

Number of 

objectives 
5 5 5 5 5 5 5 5 5.000 100.00 

Time 

windows 
4 4 4 4 3 4 4 4 3.875 86.77 

Customer 

demand 
5 5 4 5 5 5 5 5 4.875 86.77 

Fleet type 5 5 5 4 5 5 5 5 4.875 86.77 

The criterion for variable inclusion is set on a discrete scale from 1 to 5, where 1 indicates 

the minimum degree of agreement with the inclusion of the analyzed variable, and the 

value 5 indicates otherwise. 

Table 3.2: The highest possible value of standard deviation for the defined scale 

wt size 7 8 9 10 11 12 13 14 15 

    2,673 2,673 2,635 2,635 2,611 2,611 2,594 2,594 2,582 
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From the figures of Table 3.1, it is clearly understandable that all the analyzed variables 

can be included in the learning process, since the Index of Consensus exceed the 85% in all 

predictable variables and the average values of expert judgments exceed the significant 

number of 3.75 in all variables. The acceptance of predictive variables has been the result 

of successfully empirical studies in other Cuban doctoral thesis (see Abreu Ledón [2004]).  

3.2.1.2 Structure of the Knowledge Base  

As we discussed in previous sections, each case
3
 in Knowledge Base (KB) represents a 

real-life solution given to any variant of VRP. The Appendix A.4 shows the formal 

structure of KB, where the optimization methods, predictive variables and the respective 

reference of every case are reported. The optimization methods (exact or approximate) and 

specific algorithms applied to every sample is well proved through mathematical and/or 

statistical test. In most of cases the VRP solution relevance is checked by solution quality 

and computation time as performance indicators. 

To assist the decision-making regarding KB data management, classification quality and 

graphical outputs a computational implementation is developed in this section. The VRP 

solution classifier (see the main interface in the Figure 3.3) is encoded in java and its 

computational requirements are quite reasonable. In the Appendix A.5 the software utilities 

are deeply described. However in this section those utilities related with the data-

information management will be explained in details.  

 

Figure 3.3: Main interface of the software VRP solution classifier 

                                                 
3
 In some sections of this thesis is called sample, includes the classification variable (optimization method) 

and its respective predictive variables. 
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In fact, the first module of VRP solution classifier is closely related with what we 

mentioned above. This module is called Descriptives-Data module (see Figure 3.4), which 

provides the following utilities: 

 Add or delete any sample of the Knowledge Base. 

 Modify any predictive or classification variables of each sample. 

 Descriptive analysis of all variables separately, either continuous as discrete 

variables.  

The KB reported in Appendix A.4 consists of 42 exact VRP solutions and 125 belong to 

the approximate optimization category. Regarding to predictive variables (see predictive 

variable domain in Table 3.3), particularly in the customer demand, 130 cases can be 

defined with deterministic demand, while 37 customer demands are reported stochastic in 

KB.  

 

Figure 3.4: The Descriptives-Data module in VRP solution classifier 

On the other hand, in KB are registered 92 VRP cases where the time windows were 

solved, on the contrary 75 does not considered these constrains. In general, 78 become of 

multiobjective approach, while 89 researches only considered one objective in the VRP 

instance. The fleet type is composed by 100 real-life solution with homogeneous fleet of 

vehicles and 67 otherwise. The number of nodes in the graph and the fleet size is examined 

in all samples of the KB, showing a proper distribution between large, medium and small-

scale of VRP instance.   

In summary, the learning process is based on a Knowledge Base composed by 167 cases, 

which are the result of many important contribution reported in literature. However, a 

priori is difficult to assure that KB size is large enough in order to carry out a proper 

prediction of the optimization method. Therefore, the size of the KB, in particular the 
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training-set size should be verified before any prediction of solution category. In this sense, 

the next section the methodology is examined, which allows estimating the minimum 

training-set size according to the error prediction. 

3.2.1.3 Estimating the minimum training-set size in the KB 

In this section we present a validation process in the Knowledge Base, specifically to 

estimate the adequate size of the training-set. This estimation is unquestionably necessary 

due to its direct influence in the classification quality. The KB is always divided into two 

basic sets: the training-set, which is used to train a given classifier and the validation-set, 

where the classifier predictions are compared with the real values of this mentioned set. 

Then, the classification accuracy is determined based on the above comparison. Intuitively, 

the prediction accuracy depends on the classifier type and the training-set used in the 

learning process.  

As shown before in this stage, we introduce the Discriminant Analysis (DA) and the C4.5 

algorithms to classify the relevant solution of VRP instances. Therefore, the estimation of 

training-set is based on these classifiers, even when they are not described in this section 

(that will take place in the next section). 

The problem of estimating minimum training-set, according to the performance of both 

defined classifiers, is solved based on the methodology reported in Mukherjee et al. [2003]. 

In this methodology (see Appendix A.6), the training-set size is studied as a function of 

classification accuracy by building empirical scaling models called learning curves. The 

proposed methodology applies learning curves to estimate the empirical error rate as a 

function of training-set size for a given classifier and dataset (see Equation 3.2). Usually, 

the learning curves are characterized by inverse power-laws:  

            [3.2] 

where      is the expected error rate given by   samples. The variable   denotes the 

learning rate,     represents the decay rate and the Bayes error   which indicates the 

minimum error rate achievable. 

These learning curves have been developed for other application context, such as several 

cancer classification problems in Bioinformatics field [Mukherjee et al., 2003]. In fact, the 

Support Vector Machine [Vapnik, 1998] is used as the classifier. However, the classifiers 

DA and C4.5 are not found in training-set size estimation, which is considered as a 

practical contribution of this thesis. 

The training-set sizes and all variables described by Equation 3.2 are estimated according 

to the selected methodology (see Appendix A.6). As we mentioned before, the estimation 

uses the DA and C4.5 as the classifiers that are trained with 15, 30, 45, 60, 75, 90, 105, 

120, 150, 180 sample sizes of our KB (see Appendix A.7). The Figure 3.5 shows the 

learning curves obtained by applying both classifiers with the above sample sizes.   
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Figure 3.5: Learning curves obtained with DA and C4.5 classifiers 

From the results achieved in Appendix A.7 and learning curves shown in Figure 3.5, we 

concludes that KB sample size is large enough to conform training-set, which allows an 

accurate learning process. Considering an achievable error rate of 10% at most, the 

minimum training-set required when DA is used should be superior to the 105 cases. 

Furthermore, under the same achievable error rate value and sample sizes, the C4.5 

requires less training-set size (superior to the 60 cases). 

3.2.1.4 Classification tools for predicting solutions in VRP  

The classification process presented in this section is supported by two well applied 

algorithms in data mining, Discriminat Analysis and C4.5. Both algorithms are used to 

predict the relevant solution of a given VRP instance. The prediction is concerned with a 

set of independent variables (predictive variables) which characterize the instance 

complexity. In the Table 3.3 the classification variable are shown and the independent 

variables defined for both classifiers. These variables were selected in previous section, 

although Table 3.3 presents the variables in a classification context including the domain 

values of each one.   

Algorithms election was based on the classification problem size (sample size) and the 

number of classes (two optimization categories in our problem). Furthermore, the proposed 

classification algorithms have been reported as the top 10 algorithms in data mining [Wu et 

al., 2008]. From Artificial Intelligence techniques very efficient algorithms for large-scale 

classification problems are introduced, such as Artificial Neural Networks examined in 

Ripley [2008].  
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Table 3.3: The set of variables defined in classification process 

Variables Type of variable Domain values 

Optimization method (Y) Dependent Exact / Aproximate 

Number of nodes (X1) Independent Discrete-finite  

Time windows (X2) Independent Without / With - time windows  

Fleet size (X3) Independent Discrete-finite  

Fleet type (X4) Independent Homogeneous / Heterogeneous  

Number of objectives (X5) Independent One-objective / Multi-objective 

Customer demand (X6) Independent Deterministic / Stochastic 

Discriminant Analysis  

The Discriminant Analysis (DA) is the most commonly used statistical technique to solve 

classification problem. Here, the objective of the analysis is to provide a tool for predicting 

which optimization method of a new case is most likely to fall into, based on a set of useful 

predictive variables. 

The concept of DA involves forming linear combinations of independent (predictor) 

variables (all of Table 3.3), which becomes the basis for category classifications. The 

linear combination of predictive variables is given by Equation 3.3. Thus, the relevant 

optimization category according to DA can be determine as 

                                      [3.3] 

So, given a set of values for the predictive variables (     ) and its respective weight 

(     ), we can determine the linear combination function of dependent variable ( ) 

capable to discriminate between the optimization categories (exact or approximate 

methods). 

For the Discriminat function, we define three statisticians for the definitive variable 

inclusion (stepwise). The statistician   based on the Wilks´ lambda, the Mahalanobis 

Distance and the minimum  -ratio. These statistical expressions are explained below. 

 Statistician   based on Wilks´ lambda (λ): this statistician can be used as stepwise 

in the multiple regressions, in which a hierarchy inclusion is established for the 

independent variables. The statistical expression of   is defined by  

   
     

   
  

 

 
  

    
  

  
 

  [3.4] 
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where   denotes the total number of cases over all the categories (groups). The value 

  indicates the number of groups, which are two in our experiment (exact and 

approximate), and the term   is given by the number of discriminating variables in 

the experiment.    and      represent the Wilks´ lambda values before and after of 

variable inclusion respectively.  

 Statistician H based on Mahalanobis Distance (MD): In this case, at each step 

those predictive variables are incorporated, which maximize the MD [Mahalanobis, 

1936] between the closest groups. Then, the multivariate distance between    (exact) 

and   (approximate) can be determined as 

   
             

 

 

   

 

   

     
   

    
   
      

   
    

   
  [3.5] 

where    
  is a value of inverse variance-covariance matrix intra-groups. The 

variables    
   

 and     
   

 denote the mean of group   and   in the i-th independent 

variable, while    
   

 and     
   

 represent the either the mean for each respective group 

  and   in the j-th predictive variable. 

 Minimum  -ratio: The variable inclusion is based on the minimum ratio value of   

(see Equation 3.6) for both groups (  and  ). In fact, this statistician consists on 

weighting the Mahalanobis Distance according to the group size,    denotes the size 

of group   and    denotes the size of group  .   

  
               

               
    

  [3.6] 

As can be seen, in this stage the variable inclusion is given by the expert judgment and 

previous statisticians. We consider necessary the inclusion of variables according the 

expert judgment, since they introduce diversity in the classification process. The diversity 

consists on the introduction of predictive variable, which cannot be identified by any 

stepwise process.     

The classifier C4.5  

Classification algorithms expressed as decision tree are widely studied in literature. The 

C4.5 [Quinlan et al., 1993] is a descendant of CLS [Hunt et al., 1966] and ID3 [Quinlan, 

1979]. Furthermore, is identified as one of the most influential that has been widely used in 

the data mining community [Wu et al., 2008]. 

In this research the C4.5 is implemented in order to carry out the classification process. As 

we mentioned before, the previous optimization stage requires of classification algorithms 

that allow predicting relevant solutions according to a set of complexity characteristics. In 

this sense, the C4.5 offers the classification solution in a friendly and much understandable 

way (decision tree). The decision tree can be easily interpreted, although not so trivial to 



CHAPTER 3. NOVEL CONCEPTION AND PROCEDURE 

 

43 

 

construct. In the Pseudocode 3.1 the decision tree construction is described in detail. Then, 

the main equations to compute the tree are given below. 

Pseudocode 3.1: Decision tree construction in the C4.5 classifier 

Inputs of the C4.5 classifier  

 : set of attributes (independent variables) 

 : set of possible values in the domain of attributes  

 : training-set according     

 : root node in the decision tree 

C4.5 [ ,  , ( )] 

If (   ) or all cases in   belongs to the same class Then 

class-node( ) = class-majority( )  

Else 

    best-attribute( ) [see Equation 3.7] 

     

For each   in    

   create-node(  ,  ) 

Branch( ) = Branch( ) +   

                              

      C4.5 [  ,   – {  },  ] 

Return   

The best-attribute is determined according to Equation 3.7, which is called the GainRatio 

measure (  ).  

       
       

  
    
   

     
    
   

 
   

 
[3.7] 

where        denotes de GainRatio of attribute “  ”. The Gain of attribute “  ” is 

defined as        . Here,    represents the number of cases belonging to the class “ ”, 

which has “ ” possible values, and   the sample size of the training-set. 

The Gain of one particular attribute “  ” is given by the Equation 3.8, which is based on 

the expected reduction in entropy generated by the attributes. More precisely, the 

information gain,         of an attribute A, relative to a collection of cases  , is defined as 

                    
    

   
           

             [3.8] 

where           is the set of all possible values for attribute  , and   , is the subset of   

for which attribute   has value  . The first term in Equation 3.8 is called the entropy of the 

original collection  . It can be computed as 
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        [3.9] 

where    is the proportion of   belonging to class “ ”. Note that the logarithm is still 

base 2 because entropy is a measure of the expected encoding length measured in bits. 

Note also that if the target attribute can take on   possible values, the entropy can be as 

large as      . 

Computational implementation of proposed classifiers 

As can be seen, in the current stage (previous optimization) two efficient classifiers have 

been introduced: Discriminat Analysis and C4.5. The classifiers are implemented in the 

Classification module of the VRP solution classifier. Classification results in the 

mentioned computational module (see Figure 3.6) are shown in both analytical (see text 

box underlined in red) and graphical (decision tree) form.  

 

Figure 3.6: View of the Classification module in VRP solution classifier 

The definitive classification result in both forms is taken from the most accurate classifier. 

This, intuitively, means that internally the computational implementation has encoded the 

described classifiers. However, the displayed results are obtained by the classifier with best 

classification quality (see Figure 3.7). Therefore, the value of classification quality 

displayed in module (see text box underlined in blue) becomes the best result achieved by 

classifiers. 
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Figure 3.7: The classification quality in VRP solution classifier 

The classification quality is estimated according to the cross-validation method (see Figure 

3.7). Its mathematical expressions and the method steps are described as follows: 

1) Split the Knowledge Base into approximately “k” folds. 

2) Select randomly one of the k-th folds and then use it as validation-set. The remaining 

folds are used as training-set. 

3) Compute the prediction errors (  ) according to Equation 3.10, for all k-th 

randomly, selected as validation-set in the former step. 

             [3.10] 

4) Determine the average of prediction errors between all defined k-th folds and finally 

compute the classification quality (  ) based on the Equation 3.11. 

                   [3.11] 

In summary, the first stage of the proposed procedure allows to predict the appropriate 

optimization method, whether as exact or approximate, according to the main 

characteristics of the previously defined complexity in VRPs. The creation of KB is 

essential in this stage, facilitating the training of two classifiers for an efficient prediction 

of optimization method.  
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Stage II: During-optimization in the VRP 

3.2.2 Optimization methods in the VRPs 

In this stage the main algorithms within the categories (exact and approximate) of 

optimization methods for the VRPs are described and analyzed. The aim in this procedure 

stage consists on supporting the decision-making related with the selection of the specific 

algorithms for the optimization process. As we mentioned before, it is quite difficult the a 

priori selection of a specific algorithm for solving the VRP variants. Hundreds of 

researches have been addressed to prove the individual efficiency of the algorithms to 

solve VRP variants. For such reasons, is either difficult to establish accurately the most 

efficient algorithm for each given variant of VRPs. However, some decision rule can be 

defined, with acceptable precision, in order to guide the decision-making for such 

purposes. In this sense, the current stage suggests supporting the described issue according 

to two approaches, the remarks to be applied a particular algorithm and the algorithm 

classification results. We analyze both approaches in the present stage, first describing the 

algorithms and its remarks to be applied within each optimization category (exact and 

approximate), and then, another classification process is proposed, but in case the 

dependent variable denoted the specific algorithms. 

3.2.2.1 Selecting exact algorithms for VRPs  

In this section we present the description of some well-know exact algorithms to the VRPs, 

as well as the main remarks to be applied such algorithms. After the prediction of 

optimization method is necessary to choose the proper algorithm(s) within each category of 

the optimization methods. Therefore, we analyze some algorithms (see Table 3.4) 

belonging to the exact category, describing how they can be applied to VRPs and some 

discriminant characteristics that support the selection of algorithm(s). 

Table 3.4: Some exact algorithms for the VRPs 

Linear Integer Programming (LIP) 

Algorithm description Remarks to be applied 

 Decision variables mostly represent 

binary values, where 1 denotes that the 

arcs are included in the route a value 0 

otherwise 

 One objective function is established 

in order to visit all nodes with 

minimum traveled distance 

 In general can be used to modeling the 

most of VRP variants (TSP, CVRP, 

VRPTW, among others) 

 Linearity in the model functions: 

objective functions and constrains 

 Determinism in the components of 

the problem 

 Is difficult to apply to dynamic 

variants of VRPs 

 



CHAPTER 3. NOVEL CONCEPTION AND PROCEDURE 

 

47 

 

Dynamic Programming (DP) 

 Solve the VRP variants by a sequence 

of decisions using dummy resources 

 The algorithm assigns states to each 

vertex and each state includes a 

resource consumption 

 The algorithm repeatedly extends each 

state to generate new states. 

 The states generation must consider 

the constraints of the studied VRP 

variant. 

 

 The Optimality principle: For any 

subsequence of the optimal sequence 

in the global problem should be either 

optimal in its associated sub-problem 

 Is mostly used when the fleet size is 

fixed 

 Its efficiency depends on the 

reduction in the state number  

As we explained in Chapter 2, the first exact approaches are based on the enumeration of 

the full solution space. However, in order to increase efficiency, all modern exact methods 

use pruning rules to discard parts of the search space in which the (optimal) solution 

cannot be found. These approaches are doing an implicit enumeration of the search space. 

In the Table 3.5 we present a good example of this, the well-know Branch and Bound (BB) 

algorithm. 

Table 3.5: The most used exact algorithm for VRP extensions 

Branch and Bound (BB) 

Algorithm description Remarks to be applied 

 The algorithm deals with the solution 

space as a tree, where the search is 

doing by branching 

 In the branching process the 

optimality of each branch is 

analyzed, bounding those where the 

optimality is unreachable  

 For some variant of VRPs with hard 

constraints, are required relaxation  

functions  

 The defined tree must contain as levels 

as possible routes 

 Sometimes it is difficult to establish the 

lower bound: Initial solution 

 Also sometime it is difficult to 

determine the upper bound: feasible 

and optimal solutions 

Certainly, more than one exact algorithm can be applied to a given VRP variant. In fact, 

there are some cases where it is difficult to discriminate within the exact optimization 

category. That is why, the application of more than one algorithm, when the conditions 

permit, results much suitable.  
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3.2.2.2 Selecting approximate algorithms for VRPs  

Similarly to the above mentioned, in this section we describe the main approximate 

algorithms used in VRPs. Here, three subcategories within approximate method are 

analyzed separately: the classical heuristics, metaheuristics, and error and trials 

techniques. We start with the description and remarks to be applied of heuristics (see Table 

3.6). 

Table 3.6: The classical heuristic algorithms in VRPs 

Clarke and Wright Saving algorithm 

Algorithm description Remarks to be applied 

 It is based in the successive subtour 

combination according to a saving 

function  

 The algorithm consists on a constructive 

heuristic in which the solution are 

computed and stored considering the 

shortest distances between all pairs of 

demand points 

 The performance succeed better 

when the number of routes is 

minimum   

 Can takes considerable time 

depending of the computation of 

maximum saving value (complexity 

of saving function)  

Nearest Neighbor (NN) 

 Consists of the successive insertion of 

the nearest customers 

 The tours, then, are constructed 

choosing one after the other the 

customer 

 This procedure is iterated until all the 

customers have been served 

 Sometimes the modeling of 

closeness is not easy to define 

 Can be encoded in a few lines 

 Mostly, at the end of the 

construction process long arcs have 

to be added to the tour  

Local Search (LS) 

 It is based on the iterative exploration of 

neighborhoods of solutions, trying to 

improve the current solution by local 

changes 

 The type of local changes that may be 

applied to a solution is defined by a 

neighborhood structure 

 Requires of a good initial solution 

 Its performance depends of an 

appropriate neighborhood structure 

 The obtained solutions are -by 

definition- only local optima  

As can be seen in Chapter 2, the common disadvantage of heuristics algorithms is that they 

cannot escape from local optima. In this sense, metaheuristic algorithms have been 

proposed in order to guide the described heuristics towards better global solutions. Here, 

we start with the most popular bioinspired metaheuristics, according to the present author 
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(see Table 3.7). However, we defined some other that can be predicted as a proper 

algorithm by the classification process described in the next section. 

Table 3.7: Prediction analysis of some bioinspired metaheuristics 

 Genetic Algorithms (GA) 

Algorithm description Remarks to be applied 

 Generate initial population of solutions 

(chromosomes)    

 Modify the random solutions through 

evolutionary operators: the selection, 

crossover and mutation  

 Define fitness to rank the solutions 

 Repeat the generation runs till a stop 

criterion is reached  

 In some combinatorial problems it is 

necessary to define a particular 

representation of the solution into 

chromosome (e.g. PMX crossover 

operator in VRP)   

 The algorithm performance depends 

largely on how good (solution 

quality) were the solution in the 

initial population 

 The fitness is not trivial to define in 

some cases (e.g. in multi-objective 

approach)    

Ant Colony Optimization (ACO) 

 In general, the solutions are constructed 

probabilistically preferring to use 

solution components with a high 

pheromone trail and a promising 

heuristic information  

 The pheromone trails are associated 

components (e.g. the arcs connecting 

the cities in VRPs) 

 In most of algorithms of ACO the 

pheromone is locally and globally 

updated 

 

 The algorithm performance can be 

improved when the initial 

pheromone value is not obtained by 

random generation (e.g. using the 

NN heuristic)   

 Sometime, the pheromone updating 

mechanism lead to a easy solution 

trap into local optimum (mainly the 

multi-colonies approach can avoid 

this)    

 In most of ACO´s variants, the 

erroneous definition of the 

parameters reduces significantly the 

algorithm effectiveness    

Another efficient group of metaheuristics classified as the trajectory methods is analyzed in 

this section. This group involves the efficient Tabu Search (see Table 3.8) and the 

Simulated Annealing [José, 2009; Lin et al., 2009]. The important distinction of these 

metaheuristics compared with those from the Table 3.7, is whether they follow one single 

search trajectory corresponding to a closed walk on the neighborhood graph or large jumps 

in the neighborhood graph are allowed.    

 



CHAPTER 3. NOVEL CONCEPTION AND PROCEDURE 

 

50 

 

Table 3.8: Analysis of Tabu Search in algorithm selection  

Tabu Search (TS) 

Algorithm description Remarks to be applied 

 Is based on the systematic use of a 

memory to guide the search process 

 Typically uses an aggressive local 

search that in each step tries to make the 

best possible move from current to a 

neighboring solution next  

 A solution that has been recently visited 

is included in a tabu list and therefore 

will not be considered as a candidate for 

the next solution to visit 

 The strategy of neighborhood 

search depends on the VRP variant, 

in some cases it is difficult to define  

 The maintenance of the tabu list 

and the searching within the list is 

often too time consuming to be 

practical 

 The tabu conditions may be too 

restrictive and they may forbid 

moving to attractive, unvisited 

solutions 

 

Finally, we show some remarks related with other widely used techniques in practical 

application context of VRPs, the Simulation Models (see Table 3.9). The simulation 

techniques are mostly used when the set of possible solution alternatives is considerably 

small, due to the significant resources (financial and humans) engaged in each possible 

solution. Therefore, the solution space should be reduced by mean of other techniques 

before using simulation. When the solution space is reduced, some promising areas are 

eliminated, therefore, the optimum value is difficult to achieve. 

Table 3.9: Some remarks of the Simulation Models  

Simulation techniques 

Technique description Remarks to be applied 

 Consist of the real-world imitation 

process over artificial systems  

 Mostly, each alternative solution 

implies a simulation scenario 

 The model boundaries have to be 

defined in the artificial systems  

 The similarity between the real system 

and the simulation model should be 

proved 

 Simulations of large system are 

limited by this sequentiality, since a 

modest number of events can be 

simulated 

 Solutions require of substantial 

humans and computational 

recourses  

 Can solve real problems where the 

analytical solutions have not been 

found yet 

 Can be used for those problems 

where the solution based on real 

experimentation is quite expensive 
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In the previous two sections many well-know algorithms belonging to the optimization 

categories studied in this thesis were described. However, others have not been analyzed in 

the context of “algorithm selection” developed in this stage. Despite this fact, we introduce 

in the next section a learning process, in which the new classification variable is expressed 

by the most specific algorithms of both optimization categories (exact and approximate). 

3.2.2.3 Learning for supporting the selection of algorithms  

To date, finding the best algorithm for any VRP instances is often a difficult task to carry 

out. If we search an accurate prediction of the best algorithm for a given VRP dataset, the 

performance values of all the existing algorithms should compared on an exhaustive 

statistical experiment. However, some good experiences can be adopted to guide such 

decision-making considering a reasonable accuracy value. In this sense, we propose to 

assist the decision-making developing a learning process, which considers the same 

independent variables described in Table 3.3. The main difference regarding the previous 

learning process lies in the classification variable (dependent variable). In this case, the 

dependent variable denotes the algorithm with best performance, which means adding to 

each case of Knowledge Base its corresponding algorithm.  

The prediction process of “proper algorithm” is implemented in the Classification module 

of the VRP solution classifier (see the classification result in Figure 3.8). Consistently, with 

its category of optimization method (exact or approximate), the “proper algorithm” is 

predicted for any new case of VRP. 

 

Figure 3.8: Predicting “proper algorithms” in the VRP solution classifier 
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To conclude, during the optimization process it can be selected and then applied many 

algorithms (either exact or approximate). But, determining which presents the best 

performance for a given VRP instance is still a difficult problem to solve. However, 

following the two approaches proposed in this procedure stage (remarks to be applied and 

classification results as the decision rules), the decision-making will be developed much 

more effective. 

Stage III: After-optimization in the VRP 

3.2.3 Validation and control processes in post-optimization 

The post-optimality analyses after solving the combinatorial problems have been widely 

treated in the literature. However, these are mostly addressed to examine the sensitivity for 

those input data defined in the optimization model, and to estimate the proper parameter 

settings of the algorithm applied (control). As we mentioned in Chapter 2, still much work 

has to be invested in analyzing the influence of parameter combinations in the algorithm 

performance, especially in metaheuristics algorithms. In addition, we propose in this stage 

of the procedure an experimental study to check the relevancy degree achieved by the 

proposed algorithms (validation).  

3.2.3.1 Validation of relevance in optimization process 

In this section we study how to measure the relevance achieve by those algorithmic 

approaches proposed in the previous stages. Clearly, some indicators of relevance (see 

Table 3.10) are defined in order to validate if the optimization categories (exact or 

approximate) and its associated algorithms (some of them are analyzed in Stage II) were 

appropriately chosen (with highest relevancy degree) in the two previous stages. 

Undoubtedly, the indicators of relevance include the algorithm performance, excepting the 

complexity in the implementation. Therefore, a relevant solution implies that the solution 

is also effective. Consider this fact; we will later make emphasis in determining the global 

effectiveness (see Chapter 4) after applying all solution approaches. 

To apply the current stage more than one algorithmic proposal from the previous stages is 

required, whether exact or approximate. Otherwise it will be very difficult to validate the 

relevancy degree and therefore, determine the global effectiveness. The possible 

comparisons between optimization categories can be carried out according to the indicators 

of relevance defined in Table 3.10. 

Excepting the complexity in the implementation, the resulting indicators of relevance 

(which coincide with the performance indicators) can be measured on a numerical scale, 

which allows applying statistical tests to perform comparisons between the algorithms. 

The statistical test can be classified either as parametric or nonparametric test. Parametric 

tests require assumptions such as: normality, randomness and homocedasticity. These 

assumptions are proved by classical statisticians [Larson-Hall, 2009], therefore they will 

not be analyzed in this thesis. In the Appendix A.8 the main parametric tests (with its 

corresponding software) that can be used to compare two or more algorithm performances 
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are described, while the Appendix A.9 shows some nonparametric tests also useful to 

compare two or more algorithm performances. 

   Table 3.10: Indicators of relevance in the post-optimality 

 Indicators 

Between 

approximate 

algorithms 

 Computation time 

 Solution quality 

 Complexity in the implementation 

Between exact 

algorithms 

 Computation time 

 Complexity in the implementation 

Between exact 

and approximate 

algorithms  

 Computation time 

 Solution quality 

 Complexity in the implementation 

As a conclusion, the statistical analysis is crucial to determine: which algorithm will solve 

the given VRP instance with higher solution quality or with lower computation time or 

simply proves that there are not significant differences between the algorithms according to 

the performance indicators. 

In addition to the statistical analysis we examine some external conditions which have 

appreciable influence in the relevancy degree and give rise to different decision variants. 

The external conditions can change the relevance course in the decision-making. For 

instance, in most cases, the decisions involved in the VRPs are operative decision 

(hierarchy). Therefore the total available time to develop such decision is quite limited. No 

matter how “relevant” an algorithm were according to the internal conditions, the real 

condition of decision-making demand to apply the algorithms with smaller time (under the 

total available time). So far, only the internal conditions (see conceptual model in Figure 

3.1) have been considered, since such conditions were defined as predictive variables in 

the learning process. Decision-making in post-optimization should consider both internal 

and external conditions. In this sense, we propose to analyze the possible decision variants 

(see Appendix A.10) that may appear when is combined the total available time, as an 

external condition, with all the results of previous stages (considering internal conditions in 

the learning process). 

As can be seen in Appendix A.10, the performance indicators and one of the external 

conditions are involved in various statistical experiments. The first column points out to 

the set of decision variants after obtaining the possible results from two previous stages. 

Then, column 2, 3 and 4 show the possible comparison results using the statistical tests for 

both performance indicators (solution quality and computation time) and one external 

condition (total available time). Finally, in the last column the relevant decision that should 

be made is suggested.  
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3.2.3.2 Sensitivity analysis in the post-optimality 

In this section a methodology to estimate the sensibility of those parameters that can be 

defined in the optimization algorithms is provided. Our methodology (see Figure 3.9) 

establishes a sequence of steps, which use both the parametric and nonparametric test as 

the main inferential statistical techniques. Indistinctly, the sensitivity in the parameters can 

be analyzed defining a precise value or in a range of values. Moreover, the algorithms 

performance indicators constitute the response variable in which the influence of parameter 

variations is examined.   

Begin

End

Allocate parameters to 

factors

Discretization

Establish factor leves

Define the response 

variable(s)

Verify the statistical test 

assumption

Apply nonparametric test Apply parametric test

Which is factor 

domain? 

Are assumption 

satisfied?

No

Continuous Discrete

Yes

· Previous studies in literature

· Empirically

 

Figure 3.9: Methodology followed in the sensitivity analysis  
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The methodology consists of five steps, starting with the allocation of parameters to 

statistical factors. Then, some strategies are defined to operate with both continuous and 

discrete factors. Furthermore, the possible response variable(s) can be designed in the step 

number 3. The assumptions of statistical test are verified in the subsequent step, and finally 

a general framework is given to applying the statistical test (parametric or nonparametric). 

A detailed explanation of the steps is given as follows: 

1) Allocate parameters to the statistical factors: In general, more than one parameter 

is defined when some optimization algorithm, either exact or approximate, is applied 

to the VRP. We consider that each parameter established in the optimization 

algorithms will be considered in the next steps as statistical factor and its influence in 

the response variable(s) should be studied. Then, this factor is divided into the set of 

levels below. 

2) Establish the factor levels: The factors can be expressed in both discrete and 

continuous domain. For the continuous factors it should be implemented a 

discretization procedure (e.g. see in Engle & Gangopadhyay [2010]), due to the time 

consumed in the experiment. On the other side, the discrete levels can be tested 

almost entirely. However, for both type of factor domain previous studied in 

literature should be examined before setting the factors empirically. 

3) Define the response variable(s): Then, having specified the statistical factors and 

their corresponding levels it is necessary to define the response variable(s) in the 

experiment. Concretely, in the application context of the VRP we will study the 

performance indicators as possible response variables. 

4) Verify the statistical test assumptions: Any statistical test requires the satisfaction 

any particular assumptions. Specially, the parametric test based on the Analysis of 

Variance (ANOVA) may not have appropriate type I error when certain assumptions 

are violated. There are three major assumptions that should be satisfied to use 

ANOVA F test: randomness and independence, normality, and homogeneity of 

variance. To prove such assumptions can be used classical test reported in literature 

(e.g. the Runs test, Kolmogorov-Smirnov test and Levene´s test). Therefore we will 

not explain these tests in detail. Eventually, the assumptions are not satisfied, which 

make inappropriate the application of parametric tests. Here, we will consider 

applying the nonparametric test for the sensitivity analysis. 

5) Apply the proper statistical test: After verifying the assumptions it can be applied 

as either parametric or nonparametric test. For both tests the following aspects should 

be defined: 

 Definition of the hypotheses. 

 Select the proper statistician. 

 Establish the critical region.  

 Decide the nonrejection or acceptance of the null hypothesis. 

Finally, the same statistical tests defined in the previous section can be applied to the 

sensitivity analysis, the parametric tests (see Appendix A.8) and the nonparametric 

tests (see Appendix A.9). 
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3.3 Summary 

In this chapter we have introduced a new conception of the optimization process for the 

Vehicle Routing Problems, which is based on the integration of three stages: previous 

optimization, during optimization, and after optimization. The novel conception proposes a 

set of processes (leaning, estimation, optimization, selection, and validation) focused on 

the assurance and increase of the effectiveness in decision-making. In addition, many 

algorithmic approaches are defined in a procedure, which allows implementing the new 

conception provided by the conceptual model. In this sense, we have adopted a 

methodology to estimate the minimum training-set in the learning process, in which the 

relevant optimization category (exact or approximate) is predicted for a given VRP 

instance. The minimum training-set can be used by two proposed classifiers: Discriminat 

Analysis and the C4.5 algorithm. We have described both classifiers, which are also 

encoded in the computational implementation called VRP solution classifier. 

When predicting the optimization category, we have examined some popular algorithms 

from each category. Subsequently, an algorithm selection process is supported by two 

decision rules (remarks for be applied and classification results). Finally, the relevancy 

degree (as measure of effectiveness) of each algorithmic proposal can be validated by 

means of some statistical tests, which are described for the conclusive sensitivity analysis 

in the algorithm parameters.    
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4 Route planning to repair electrical 

breakdowns in power networks 

 

Chapter 4 

 

Route planning to repair electrical 

breakdowns in power networks 

The number of publications is still growing in the field of real-life VRP solutions, mostly, 

when the application contexts involve primary services for the population (e.g. emergency 

service, waste collection and electric service). In this chapter we present a practical 

contribution to this, providing an algorithmic solution to the case study mentioned in 

former chapters. We analyze the process of route planning to repair a set of electrical 

breakdown that appear in Cuban power networks. For such analysis, we propose the entire 

application of the procedure described in Chapter 3. As a result of procedure application, 

we introduce a new algorithm for solving the case study, which is set up in the city of 

Santa Clara. The Multi-type Ant Colony System consists in our approximate algorithmic 

contribution based on ACO. In addition to this contribution, a computational 

implementation (ANTRO version 2.0) is designed for supporting the decision-making in 

the dispatch center.  

This chapter is concerned with two scenarios of decision-making in the cases study: the 

route planning in normal weather conditions and the fleet dispatching to repair electrical 

breakdown after natural disasters, specifically hurricanes. For both scenarios the procedure 

and various statistics techniques are implemented. We end this chapter determining the 

Global Index of Effectiveness (GIE) by means of instance simulation. 

4.1 The case study: background and motivation 

The issue of repair the electrical breakdowns in electricity distribution networks has been 

treated in literature [Tajnsek et al., 2011]. However, the main contributions are addressed 

to develop new technologies in order to make much more efficient the distribution 

networks. Furthermore, in some other the proper size of power network [Wang & Cheng, 

2008] and the system reliability [Borges & Falcão, 2006] are studied. Regarding 

optimization decision, the common researches are focused on minimizing the network size, 

and in particular cases the multi-objective optimization are proposed, where the network 

size and the system reliability are optimized simultaneously [Falaghi, 2009]. 

Inevitably, the power networks can be subject of often breakdowns, which have to be 

repaired as soon as possible. Sometimes, the number of breakdowns reaches impressive
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values, particularly after natural disasters, such as hurricanes. Obviously, to repair such 

breakdowns both human and material resources in order to reestablish so valuable service 

(the electricity) are required. However, facilitating the proper sequence to repair and the 

quick departure of these resources towards the breakdown place could be crucial in the 

decision-making. In general, for repairing the breakdown is disposed of limited fleet of 

vehicles, which transport those specialist and necessary resource to the repair.  

When the repair sequence is planned, interesting constraints can be visualized. For 

instance, not all breakdowns have the same priority. Mostly, it depends on the region 

where the breakdown took place and the voltage level existing in the network line. 

Depending on the breakdown priorities, different repair time can be consumed for the 

repair activities. Another difficult situation occurs when an unexpected breakdown appears 

after dispatching the fleet of vehicle to the repairing process. Interestingly, the planning of 

repair sequence (route planning) in power networks resembles many of the VRP extensions 

described in Chapter 2.  

In Cuba, the route planning to repair electrical breakdown is carried out under harder 

conditions, this is largely due to network distribution type (not underground lines), weather 

conditions and limited resources. The hurricane season comprises six months of the year. 

Hence, on average, the power networks undergo severe damage twice a year.   

As can be seen, the issue described in the case study reveals two attractive characteristics: 

the complexity of VRP extension (multiple variant simultaneously) and the particular 

features of the case study in the Cuban conditions. Therefore, the next sections of this 

chapter will be dedicated to the solution of case study applying the procedure proposed in 

Chapter 3. 

4.2 Experimental results of the procedure application 

In this section we present the experimental results obtained by the procedure application to 

the case study. Basically, we use five instance (moments of route planning) of the case 

study, which represents 5 real moments of decision-making in the dispatching centre of the 

Electric Company (Branch Santa Clara). The five datasets comprise both described 

scenarios in the route planning, during normal weather conditions and after hurricanes. 

Numerical input data used in this section were provided by the main office of the Santa 

Clara dispatching center, which is responsible for the route planning to repair the electrical 

breakdowns in the whole territory of Santa Clara. 

Applying Stage I: Pre-optimization in the case study 

4.2.1 Prediction of the relevant optimization methods  

We start with the main characteristics of the case study instances (see Table 4.1). In 

general, the figures in Table 4.1 show the domain values of the predictive variables, which 

were defined in the classification process. During these moments of route planning, the 

fleet size is ranging between 3 and 7 vehicles. There are two (I-170 and I-220) instances 

belonging to the second scenario (after hurricanes). Furthermore, the fleet is considered 
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homogeneous, since it is composed of identical vehicles with the same capacity of human 

and material resources. The customer demand is defined as stochastic based on the random 

behavior in the repair time.   

Table 4.1: Values of predictive variables in the case study instance 

 Instances 

Predictive variables I-32 I-94 I-142 I-170 I-220 

Number of nodes 31 93 141 169 219 

Fleet size 3 5 5 6 7 

Number of objectives One-objective 

Time windows Without time windows 

Customer demand Stochastic 

Fleet type Homogeneous 

The Appendix A.11 offers a synthesis of the distance matrix between nodes where the 

breakdowns appear. This matrix is classified as symmetric because of the negligible 

increases of distances for reasons of traffic rules, street direction and detours. In addition, a 

breakdown priority level (see the first column of the figure in Appendix A.11) is 

considered for route planning. The three priority level are established according to the 

voltage level, being the electrical breakdowns that occur in 220KV and 33KV lines of the 

first priority level, the second priority level for those which occur in 4KV lines, and the 

third in electrical lines with voltage level under 4KV (more frequent). 

Basic mathematical formulation of the case study  

The route planning to repair the electrical breakdown can be basically formulated as 

Multiple Traveling Salesman Problem (mTSP), due to some appreciable similarities with 

this well-known theoretical variant of the VRPs. The similarities reside in the classical 

dispatching of a homogeneous fleet of vehicles (with the technical staff to repair), to which 

a set of nodes (breakdowns) in the graph is assigned. Similar to the mTSP, the breakdowns 

are once visited by the vehicles and each breakdown can be visited by just one vehicle 

(salesman). The other particular characteristics of the case study (the occurrence of an 

unexpected breakdown and the priority level) will be examined in next sections, 

specifically when the algorithmic approaches are proposed. 

Formally, the mTSP can be defined on a graph        , where   is the set of   nodes 

(vertices) and   is the set of arcs (edges). Let         be a cost (typically distance) 

matrix associated with  . The matrix   is said to be symmetric when        ,          

and asymmetric otherwise. The aim of this discrete combinatorial problem is to find   

routes (one for each salesman), which start and end in a same node (depot or dispatching 



CHAPTER 4. PROCEDURE APPLICATION TO THE CASE STUDY 

 

60 

 

center in the case study). Each salesman has to visit a node once and a node can be visited 

by just one salesman. 

Several integer programming formulation have been proposed for the mTSP in literature, 

the most commonly used one is the assignment-based integer programming formulation 

[Bektas, 2006]. In this mathematical description, the mTSP is usually formulated using an 

assignment-based double-index integer linear programming formulation. The decision 

variable can be defined as follows: 

     
                                 
           

  [4.1] 

The general formulation of assignment-based integer programming of the mTSP can be 

given as follows: 
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The Equation 4.2 describes the fact that the objective of the problem is the minimization of 

the sum of the associated costs (distance) for each arc      . The constraints 4.3 and 4.4 

ensure that exactly   salesmen depart form and return back to node 1 (the dispatching 

center). Expressions 4.5 and 4.6 represent the classical assignment constraints. Finally, 

constraints 4.7 are used to prevent subtour-s (Subtour Elimination Constraints, SECs).   
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Application of the classifiers to the case study instances 

In this section the proposed classifiers are applied (Discriminant Analysis and C4.5), which 

allows to predict the relevant optimization category (exact or approximate) for the case 

study instance. As we mentioned before, we design the VRP solution classifier in order to 

obtain the classification results from both classifier as efficient as possible. The values of 

predictive variables are introduced (see Figure 4.1) in the Descriptives-Data module of the 

designed computational implementation. 

 

Figure 4.1: Introducing predictive variables in the Descriptives-Data module 

As described in Chapter 3, the classification results can be displayed according to the 

analytical value in the textbox interface and following the proper branch in the decision 

tree. The analytical value of classification, see (approximate as the relevant category for 

the instance I-220) in the Figure 4.2, is easily obtained by executing the interface button 

“classify”. However, to understand the classification results in the decision tree one should 

follow the discriminant branch showed in the Appendix A.12.  

A prototypical example of the aforementioned is the classification of the dataset I-220; one 

should follow the proper discriminant order: number of nodes     and finally in the blue 

rectangle is defined the classification result with its corresponding class proportion (see 

Appendix A.12). Also, the other instances (see Table 4.2) are easy to follow throughout the 

branches of the classification tree 

Table 4.2: Classification results of the case study instances 

Instances Classification results 

I-32 Exact method 

I-94 Approximate method 

I-142 Approximate method 

I-170 Approximate method 

I-220 Approximate method 
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Concluding, after introducing the value of predictive variables into Descriptives-Data 

module, the five instances of case study have been classified (see Table 3.2), resulting the 

I-32 as the only one with exact classification value. Therefore, the approximate 

optimization algorithms should be considered in the remaining instances. Therefore, in the 

subsequent sections are selected some algorithms from both optimization categories. 

 

Figure 4.2: Classification result of the instance I-220 

The classification quality values (see Table 4.3) are obtained with the cross-validation 

method. In this case, they are defined as fold sizes 10, 15 and 25 samples. The figures of 

classification quality in Table 4.3 are the percentage result of 10 runs of cross-validation 

method. 

Table 4.3: Classification quality values using the cross-validation method 

 Runs  

Folds 1 2 3 4 5 6 7 8 9 10 Av. 

10 94.01 95.21 94.61 93.41 95.81 92.22 92.81 91.62 91.02 90.42 93.11 

15 94.61 92.81 91.62 93.89 90.04 95.45 91.23 90.64 94.62 93.24 92.82 

25 92.22 93.41 94.61 94.01 95.16 90.02 93.89 90.42 93.42 90.21 92.74 

The average (Av.) values of classification quality are considered “quite accurate”, since in 

all fold sizes average exceeds the 90%. To our knowledge, there is not a benchmark value 

for this classification experiment. However, in most of studied researches, when any 

classifier achieves 90% of classification accurate, is considered an effective classifier.   
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Applying Stage II: During-optimization in the case study 

4.2.2 Selection of relevant exact algorithm to the case study 

In this section we analyze the possible exact algorithm(s), which can be applied to that 

instance of the case study with exact classification (I-32). Considering the instance 

characteristics and then examining the “remarks to applied” of the Branch and Bound 

algorithm, we decide to use this efficient exact algorithm in this case study instance. Other 

important reason to this election is based on the classification result reported in Appendix 

A.13, where the classifiers indicate the Branch and Bound as the relevant algorithms to the 

instance I-32.   

The Branch and Bound (BB) algorithm has been applied to the mTSP [Husban, 1989]. 

There exit several good examples of source code of the BB to implement. Therefore, in 

this chapter we solely present the algorithm description (Pseudocode 4.1) to the case study 

and the computational results.  

The Pseudocode 4.1 shows the steps of the BB considering the priority level of each 

breakdown. For such constraints an array in the distance matrix is proposed, which allows 

as considering the priority level the logical scheduling of the breakdown repair. 

Pseudocode 4.1: The Branch and Bound algorithm to the case study 

Step 1 

Assign in the distance matrix   

                                        

                                          

Initiate       

Determine the upper bound      by a descending order arrangement of      

      
 
            

        

   

   

 

           

Step 2 

Find the link with the largest entry in the updated matrix to branch on       

       
   

            

Step 3 

Split   into   (the set of all solutions including the link (   ), and   , the set of all 

solutions not including (   ) 

Compute the upper bound on    
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Develop the matrix describing    from the matrix describing   by setting       

Step 4 

Develop the matrix describing   by: 

                   

                  

                                                   

Step 5 

Compute      

Begin 

If       Then 

       (where (   ) is a link in the partial solution so far obtained) 

Else 

If       and         Then  

    

          

Go to Step 2 

Else 

If       –    Then  

the matrix describing   has a unique solution 

Else 

If         

Go to Step 6 

End If 

End 

Step 6 

If   contains a single solution or         Then 

backtrack to the smallest subset with         

    

Go to Step 2 

If     Then  

                   

End If 

Despite the multiple commercial software used (CPLEX, GAMS and LINDO) for the VRP 

variants, we implemented the above pseudocode in java programming language. The main 
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reason of the BB implementation resides in the subsequent performance comparison 

between algorithms, which require of homogeneous conditions (all algorithms should be 

implemented in the same programming language). 

4.2.3 Election of approximate algorithm(s) to the case study 

The classification results obtained with the application of the first procedure stage showed 

that approximate algorithm(s) should be applied for most (4 instances) of case study 

instances. In this sense, the present section examines the possible approximate algorithms 

that can be applied to the case study. Clearly, we propose the ACO algorithms for solving 

the instances classified with approximate optimization category. As previous section, the 

election of this specific family of algorithms is based on the “remarks to be applied” such 

algorithms and the result of the classification process (see Appendix A.14). Another 

important fact is the well-known efficiency of the multi-colonies approach in ACO, which 

has been analyzed in Chapter 2. Therefore, in this section we present two algorithms of 

ACO´s family, the classical Ant Colony System (ACS) and a new multi-colony approach 

called Multi-type Ant Colony System (M-ACS).      

4.2.3.1 ACS for solving the case study instances 

To solve the case study, the artificial ants construct solutions by successively choosing 

breakdowns to visit, until each breakdown has been visited. For the selection of a (not yet 

visited) breakdown two aspects are taken into account in the classical ACS: how good was 

the choice of the breakdown before (   , pheromone trails) and how promising is the 

choice of that breakdown (   , measure of desirability). In the original ACS given by 

Dorigo and Gambardella (1997), each ant   moves form present node   to the next node 

  using a pseudorandom rules, which are given by  

  

   
                                

                              

                             
   [4.9] 

         
 

                  

                          
              

              

  [4.10] 

where   is random number uniformly distributed in [0…1],    is user-defined parameter 

(      ), and   is a random variable selected according to the probability given in 

Equation [4.10]. Moreover,       is the set of breakdowns that remain to be visited by the 

ant   positioned in the breakdown  , the parameter   determines the relative importance 

(   ) of pheromone versus measure of desirability (e.g. distance).  

The parameter    determines the relative importance of exploitation versus exploration: 

every time an ant in breakdown   has to choose a breakdown   to move to, it samples a 

random number      . If      then the best edge, according to Equation [4.9], is 
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chosen (exploitation), otherwise an edge is chosen according to Equation [4.10] (biased 

exploration). 

As we mentioned in Table 3.7, often the initial value of pheromone (  ) is often defined as 

a random number uniformly distributed [0…1]. However, in this thesis it is used the 

Nearest Neighbor (NN) heuristic to set up the initial pheromone value. Thus, the initial 

pheromone can be computed as follows: 

   
 

  
 [4.11] 

where    is the total traveled distance, which is achieved by the NN heuristic.  

The pheromone updating of ACS includes the same rules (local and global updating rules) 

given by Dorigo and Gambardella (1997). According to Dorigo and Gambardella (1997), 

local updating rule, see Equation 4.12, is applied to change pheromone level of edges 

while building a solution. 

      
               

        [4.12] 

where   is defined as evaporation coefficient (with          ), thus the trail evaporation 

is given by (  –   ). Moreover, in each iteration of the algorithm, the global updating rule is 

applied to those arcs that conform the best tour of the fist iteration. The rule is described as 

follows: 

      
               

    
 

     
                    [4.13] 

where       is total travel distance of the so far best solution        . 

Subsequently, in the Pseudo-code 4.2, the general procedure of ACS is presented; the 

procedure includes also the global pheromone update mechanism between and a nested 

procedure called the new-ant-solution in the pseudo-code. 

Pseudocode 4.2: The ACS algorithm 

Initialize the parameters  

Obtain the initial solution (   ) using NN heuristic 

        

        

Initiate the pheromone trail 

For each       

              
   

End For 

Do Until End_condiction = True 
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While all ant have built a complete solution 

For each ant   

Build a solution    using (new-ant-solution) 

If        Then 

       

       

End If 

End For 

End While 

Update the global pheromone trail using the Equation [4.13] 

Loop 

The nested procedure called new-ant-solution (see Pseudocode 4.3) details how the ants 

built every component of the problem solution. For better understanding of both 

pseudocodes proposed in ACS, it is necessary to consider the proposed transformation of 

mTSP in to classical TSP. That is to say, we defined the pseudocodes based on the 

transformation reported in Tang et al. [2000]. The transformation is called the adding 

virtual city method. This method suggests adding a virtual city (breakdown in our case 

study) for each salesman (vehicle with technical staff to repair), where infinite cost is 

assigned to virtual-to-virtual distances and zero cost is assigned between virtual cities and 

the other cities. The main reason to apply such transformation resides on the subsequent 

performance comparisons that will take place in this section. We compare the performance 

of the proposed approximate algorithms in this section with some benchmark dataset of 

TSP, in which efficient heuristics algorithms based on the mentioned transformation have 

been applied. 

Pseudocode 4.3: The new-ant-solution algorithm 

Initialize the parameters  

Locate ant   in depot 

Initialize traveled distance:       

While  (Ant   has not completed its solution) 

Compute the desirability:   

       
 

    
 
   
   

     

                  

     

                                        

                                        

                                         

  

Select next node   using expression [4.9] or [4.10] 

Update the local pheromone trail        according to Equation [4.12] 
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Update the tour:           

Update traveled distance:            

End While 

    : Road distance between the breakdown   and the breakdown  . 

   : Repair time consumed by the breakdown  . 

   : Total available time of the vehicles in charge of the breakdown repair. 

   : Priority level of the breakdown   (       ). 

Summing up, the ACS described above can be applied either or as mTSP as TSP using the 

previously mentioned transformation. However, the desirability formula is completely 

addressed to the case study, where the priority level of each electrical breakdown and the 

repair time as well are considered.  

4.2.3.2 M-ACS for solving the case study instances 

The Multi-type Ant Colony System (M-ACS) proposed in this thesis is based on the 

following idea: let be    a set colonies, representing each of them a set of global solutions 

of the problem (mTSP or transformed to TSP). Each colony obtains a set of global 

solutions (each ant of the colony represents a solution to full mTSP) using an Ant Colony 

System (ACS) algorithm and during the route construction the different colonies cooperate, 

sharing experience through “frequent” pheromone exchange. However the different types 

of ants are also involved in a competition process, which is based on the fact that the ants 

are repulsed by the pheromone of ants that belong to other colony (other type of ants). 

Combining both mechanism (collaboration as well as competition), a set of global 

solutions can be reached for all colonies (better exploration process as a main advantage), 

selecting the best solution after the last iteration. It is important to note that the multi-type 

approach differs from the one proposed in Nowé et al. (2004), where each type builds a 

part of the solution and the different parts were disjoint. A typical application is finding a 

set of disjoint paths in a graph. In our M-ACS the pseudo-random-proportional rule either 

considers the experience earned by each colony. The state transition rules are given by  

 

   
                                

           
             

             
   [4.14] 

         
 

                            
 

                             
 

       
              

              

  [4.15] 

where         indicates the average value of pheromone in the edge       taken from the 

other colonies, excluding the pheromone trail of colony   (current colony), after some 

number of iteration ( ). Another parameter defined in the M-ACS is  , which denotes the 
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sensibility of each ant for using its own colony experience (     ) or also the experience 

of the remaining colonies (     ). 

The proposed algorithm (M-ACS) presents significant features of swarm intelligence, 

contrary to the classical ACS, in the M-ACS a set of colonies cooperate in order to provide 

a better solution. The cooperation process, inspired by Nowé et al. (2004), consists on the 

exchange of pheromone trails reached by the ants that belong to each colony. Each colony 

deals with two matrixes of pheromone trails: the first one contains the pheromone trail of 

its own ants, and the second matrix denotes the pheromone trails reached by the ants of 

remaining colonies.  

The frequent pheromone exchange is performed after a number of iteration  , where   is a 

user-defined parameter and can be established dividing the total number of iteration   in 

equal amount or as the user decides. Finally, the frequent pheromone exchange can be 

computed as follows: 

        
                    

    
 [4.16] 

where index   indicates the current colony, which performs the pheromone update, taking 

the average pheromone values of the other colonies, excluding its own pheromone trail. 

Subsequently, in the Pseudocode 4.4, the general procedure of M-ACS is presented; the 

procedure also includes the pheromone exchange mechanism between all colonies and the 

new-ant-solution procedure. 

Pseudocode 4.4: The M-ACS algorithm 

Initialize parameters 

Obtain the initial solution (   ) using NN heuristic 

        

        

Initiate the pheromone trail 

For each       

              
   

EndFor 

Do Until        

If            Then 

Exchange the pheromone between all colonies according to Equation 4.16 

End If 

For each colony   

For each ant   

Build a solution    using (new-ant-solution) (substitute the expressions 

[4.9] and [4.10] by the expressions [4.14] and [4.15] respectively  
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If        Then 

       

       

End If 

End For 

End For 

Update the global pheromone trail using the Equation [4.13] 

            

Loop 

  : Iteration. 

 : Total number of iteration. 

Experimental results of M-ACS using benchmark problems 

Some computational experiences are presented in this section in order to evaluate the 

performance of the new approach previously described. Algorithm runs have been carried 

out on a personal computer equipped with an Intel Pentium processor 1.6 GHz and 1 GB of 

ram memory. The Multi-type ACS has been coded java. 

The M-ACS was tested on six benchmark problems described in TSPLIB [236]. These 

problems have been originally solved with several approaches for the classical TSPs. 

Furthermore, we compare the M-ACS performance, using the mentioned datasets, with 

Lin-Kernighan heuristic reported in Dazhi and Dingwei (2007). The mentioned instances 

range from 124 to 783 cities and the number of the salesman used is 3, 5 and 7 

respectively. The Table 4.4 summarizes the benchmark problem information, where the 

first indicates that last three problems are asymmetric TSPs. Columns 2-3 show the 

problem codes and the scale respectively. The other columns show the function objective 

values of Lin-Kernighan heuristic and the M-ACS (average of 10 runs) for all the salesmen 

used (M). 

Table 4.4: The performance of M-ACS in the benchmark problems 

   M-ACS Lin-Kernighan heuristic 

Type Codes Scale M = 3 M = 5 M = 7 M = 3 M = 5 M = 7 

Symmetric 

bier127 127 95934 87915 80345 95592 87562 80283 

ts225 225 117452 113570 110551 117960 113562 110656 

rat783 783 8668 8626 8534 8708 8650 8597 

Asymmetric 

kro124p 100 33765 32271 30907 33655 32247 30915 

ftv170 171 2482 2341 2263 2498 2368 2272 

rgb443 443 2604 2541 2466 2621 2555 2489 
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The parameter setting for M-ACS is the following:       ,          ,         , 

a small number of ants for each colony, e.g. 10 ants. From a previous statistical study we 

define 3 colonies, and every 10 iterations, 10% of the total number of iteration (100), the 

pheromone exchange is carried out for all benchmark problems reported in Table 4.4. 

Starting from figures of Table 4.4, we obtained significant differences between the results 

achieved by M-ACS and Lin-Kernighan heuristic results. The significant differences were 

ensured by mean of Wilcoxon coefficient as nonparametric statistical test. Furthermore, it 

is important to observe that the Lin-Kernighan heuristic provide better results when the 

problem scale is smaller. Moreover, the practical computational time of the approach that 

we propose has been quite small for 100 iterations. 

Complexity analysis of M-ACS 

The time complexity of ACO algorithms is mainly based on its search strategies, where a 

set of   ants develop a tour construction with complexity       until a number of 

iterations is reached. The pheromone trails are stored in a matrix with       entries (one 

for each edge) as in all ACO strategies [Dorigo and Stützle, 1999]. In M-ACS a set of    

colonies is defined, each colony represents a subgroup of the total number of ants  . In the 

computational analysis this total number of ants is the important parameter and not the 

number of colonies. This is because the pheromone exchange between the colonies, which 

only is performed every 10% of the iterations, takes       as well and therefore does not 

increase the complexity of the standard pheromone updates within each colony. Yielding 

an overall time complexity of      . 

The Lin-Kernighan algorithm has a worst-time computational complexity of       for the 

TSP (or mTSP transformed) [Helsgaun, 2009]. Thus, the worst-time complexity of the 

proposed algorithm proves to be competitive in term of computational time compared with 

the efficient Lin-Kernighan heuristic.  

Treatment of unexpected breakdowns in the route planning 

In all the algorithmic approaches (exact or approximate) described in this chapter, it has 

been examined the particularities of the case study. However, the emergence of an 

unexpected breakdown has not been treated yet. Eventually, some new breakdown of any 

priority level can appear after planning all route of the fleet. Therefore, the unexpected 

breakdown should be feasibility inserted with the minimum cost. 

As we analyzed in Chapter 2, the dynamicity in VRPs becomes one of the most difficult 

extension to be solved in such combinatorial problems. In this section we introduce a 

framework (see Figure 4.3) for supporting the unexpected breakdown insertion, which is 

based on the solution approach described in Runka [2009].  

The proposal consists of two integrated modules (dispatcher and optimizer module), in 

which a sequence of static VRP problems is created. Dispatcher module initializes all the 

data structures, controls the time, handle the occurrence of all breakdowns (pending 

breakdowns of unexpected breakdowns), provide to the Optimizer module the input data 
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and update the routes according to the results of the Optimizer module. On the other hand, 

the Optimizer module is responsible for solving the static problems generated by the other 

module. The static problem solution can be developed with any of the proposed algorithms 

(BB, ACS, and M-ACS). 

 

Figure 4.3: Framework to dispatching the unexpected breakdowns 

In the Pseudocode 4.5 the main actions suggested by the proposed framework are 

explained in details. The pseudocode show the steps that should be followed when some 

unexpected breakdowns occurs.  

Pseudocode 4.5: The insertion procedure for the unexpected breakdowns  

Initialize ()  

         

Locate the vehicles at dispatching center 

                                         

Do until While                        

                              

Create the static problem with the following breakdowns: 

                                  (                      ) 

                                              

                              

Update the route of the vehicles 

Update the PendingBreakdowns 

Loop  

solutions input 

routes breakdowns 

Customers Vehicles 

Dispatcher 

Static 

problems 

Optimizer 
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The software ANTRO version 2.0  

In this section we introduce a computational implementation called ANTRO in its version 

2.0. The software ANTRO (see in Figure 4.4) consists on a useful implementation for 

supporting the route planning process in the repair of electrical breakdowns. This product 

makes possible a flexible interaction between the dispatcher and those case study 

instances. The software has only encoded the approximate algorithms (ACS and M-ACS) 

described in this chapter. As main result of the software application, the route can be 

planned disregarding the unexpected breakdown occurrence, and also the unexpected 

breakdowns can be considered in the route planning process.  

 

Figure 4.4: The application ANTRO version 2.0 

The Appendix A.15 shows a detailed description of all ANTRO utilities: the introduction 

of breakdowns in different list (pending or dynamic
4
), the definition of other input data 

(repair time, breakdown priority level, and parameters for both algorithms and 

geographical coordinate of any unexpected breakdown) and visualization of various results 

(both analytical and graphical). 

In the Appendix A.16 the source code of the ANTRO implementation appears, also 

implemented in java language programming. Moreover, both algorithms have been applied 

to the case study instances described in Table 4.1. After using the ANTRO software, we 

                                                 
4
 The dynamic breakdowns (failures) mean the same as unexpected breakdowns. 
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show the best achieved results by ACS and M-ACS in the Appendix A.17 and Appendix 

A.18 respectively. However, this result will be deeply discussed in the application of the 

third procedure stage (next section), also analyzing the exact results achieved by Branch 

and Bound algorithm in the post-optimization process. 

 Applying Stage III: After-optimization in the case study 

4.2.4 Validation of the solution relevance in the case study 

In this section we measure the achieve relevance after applying the all algorithmic 

approaches described in this chapter. The application of the previous stages suggested the 

implementation of exact algorithms (specifically BB) to I-32 and approximate algorithms 

(ACS and M-ACS) to the remaining instances. Here, is applied the third stage of the 

proposed procedure, which implies the analysis of performance indicators of those 

algorithms designed for the case study. In order to establish the performance comparison 

between the algorithms, both algorithmic proposals (exact and approximate) of this chapter 

have been applied to the five real-life instances.  

In the Table 4.5 the solution quality are depicted according to four (4) strategies, three of 

them are proposed in this chapter (BB, ACS and M-ACS), and the fourth is take from 

dispatching center records, which means the empirical solution (total traveled distance) 

provided by the dispatchers for these instances. The figures obtained by the ACO strategies 

are the average result of ten (10) algorithm runs. 

Table 4.5: Results of the performance indicators applying all solution approaches 

Instances ACS M-ACS Branch and Bound 
Dispatching 

center (DC) 

I-32 45.08 44.76 40.53 61.64 

I-94 100.03 99.02 98.00 114.53 

I-142 88.75 87.03 86.33 103.80 

I-170 141.93 141.88 139.41 172.38 

I-220 177.12 174.84 173.01 201.47 

Based on the previous performance values, we introduce the statistical technique 

application in order to test the significant differences between the proposed algorithms. 

Since some statistical assumptions are not satisfied, we applied the Wilcoxon test (see 

Table 4.6) to compare and rank the solution approach performances. As it can be inferred 

from figures of Table 4.6, in the instance I-32, the solution quality reported by BB is 

significantly superior compared to approximate algorithms. Still, in the other instances the 

performance of BB and ACO algorithms obtained different results (with better 

performance the BB). Interestingly, the M-ACS (our algorithmic proposal) performs 

significantly higher within the approximate optimization category, using all the instances 

in the same statistical experiment. While the solution provided by the dispatching center 
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(the real solution that was implemented) proved to be the worst according to the solution 

quality.     

The computation time is also analyzed in this section. In the case of instance I-32, there are 

no significant differences between BB and approximate algorithms based on ACO. 

However, after running both the exact and approximate approaches for remaining 

instances, evident significant differences have been reported. In particular, the time 

consumed by the BB exceeds the 25 minutes, while the ACO algorithms report a few 

seconds of computation time. On the other side, the dispatching center establishes that 

decision-making in route planning should be developed in 20 minutes at most, which mean 

that the computation times of BB are unsuitable in some instances (excluding the I-32). 

Table 4.6: Performance comparison between all solution approaches 

Instances Comparisons  p-value Null hypothesis 

I-32 
BB vs. ACS  0.020 Rejected (R) 

BB vs. M-ACS 0.035 R 

I-94 
BB vs. ACS  0.051 Accepted (A) 

BB vs. M-ACS 0.061 A 

I-142 
BB vs. ACS  0.055 A 

BB vs. M-ACS 0.063 A 

I-170 
BB vs. ACS  0.055 A 

BB vs. M-ACS 0.062 A 

I-220 
BB vs. ACS  0.042 R 

BB vs. M-ACS 0.058 A 

All M-ACS vs. ACS  0.043 R 

All M-ACS vs. DC 0.044 R 

All BB vs. DC 0.043 R 

Starting from the analysis in the previous performance indicators, we examine the 

relevance degree based on the following statement: 

1) The classification result of the instance I-32 (classifier predicted an exact method) is 

totally coherent with performance results. Here, the decision-making is identified as 

the decision variant number 6 [Vart6] (see Appendix A.10), where there exist 

significant differences between algorithm solution qualities (obviously the BB 

performs better). Furthermore, all computation times consumed by both optimization 

methods (exact and approximate) reached similar and acceptable results according to 

the total available time established by the dispatching center (at most 20 minutes). 

2) The remaining instances, for which approximate algorithms based on ACO have 

been initially applied, due to the classification results of previous stages, the 
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relevance degree is also appreciable. Certainly, the classification results 

(approximate algorithms for all instances) are in accordance with the one indicated 

by the performance values. Even when the BB provides better solution quality in 

these instances, the differences between the algorithm computation times leads to 

avoid exact solution for such instances. Specially, when the time consumed by the 

BB is significantly superior to the total available time established for the decision-

making (see decision variant number 9 in the Appendix A.10).    

3) The solution approaches proposed in this chapter, either exact or approximate, 

provide a considerable improvement to the route planning in the case study. 

Therefore, the dispatching center should adopt the algorithmic proposals derived of 

the procedure application in the route planning. 

4.2.5 Analyzing the sensitivity of algorithm parameters  

In this section we determine the numerical sensibility that can experiment the parameters 

defined in the algorithmic proposal. Specifically, we analyze the sensitivity in the 

approximate algorithms (ACS and M-ACS); since a few studies of sensitivity have been 

reported in real-life case study applying such algorithms based on ACO. Another reason to 

study the sensibility of ACO parameter (applied to our case study) is subsisted in the 

randomness nature presented of these bioinspired algorithms, particularly observed in the 

pseudo random rules for route construction.  

As described in Chapter 3, the sensitivity analysis is developed in this research according 

to the methodology depicted in Figure 3.9. The application results of each step of the 

mentioned methodology are discussed below. 

1) Allocating parameters to the statistical factors: In the ACS algorithm are defined 

at least 5 parameters, however in this section we propose a statistical experiment 

analyzing solely three (3) of them,   ,  , and  . According to Zabala [2005], some 

experimental studies have proved that such parameters have the greatest influence in 

the algorithm performance. On the other side, for the M-ACS, the parameters   ,   , 

and   are defined as statistical factors. Unfortunately, there not exists any precedent 

of sensitivity analysis in M-ACS. Therefore, the parameter designation is totally 

empirical. 

2) Establishing the factor levels: All factors defined in previous step are continuous. 

Therefore we propose the discretization of each one. In the case of ACS we adopted 

the discrete values defined by Zabala [2005], in which the values 0.6, 0.7 and 0.8 to 

  ; 0.1, 0.3 and 0.5 to   are designated. Finally the values 1, 2 and 3 are the levels of 

factor  . Empirically, we designate the following levels for the M-ACS: 5%, 15% 

and 25% to   ; the same levels of    defined in ACS; and the values 1, 2, 3 are 

defined as the levels of factor  .  

3) Defining the response variable(s): In this sensitivity analysis we adopt as response 

variable the algorithm solution quality. The computation time is not analyzed due to 

the obvious similarity in the time consumed after arbitrary changes of algorithm 

parameters.         
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4) Verifying the statistical test assumptions: Before applying the statistical tests 

(parametric or nonparametric, we check some assumption of the parametric tests. We 

start with the normality, which is successfully verified using the Kolmogorov-

Smirnov test (p-value equal to 0.56). Subsequently, the randomness is proven due to 

the significance value (0.68) of Durbin-Watson test. The homogeneity of variance is 

also tested, obtaining 0.71 of Levene significance. Therefore, a parametric statistical 

test (for instance ANOVA) can be applied in the next step.       

5) Applying the proper statistical test: Finally, we introduce the Analysis of Variance 

(ANOVA) to determine the numerical sensibility of the ACO parameters. The results 

of sensitivity analysis in ACS are showed in the Table 4.7, where the significance of 

each factor and its respective interactions are depicted in the last column (p-values). 

While the Figure 4.5 gives a graphical perspective of the factor influence in the 

algorithm solution quality.     

Table 4.7: The ANOVA results to sensitivity analysis in the ACS 

 

The p-values of previous table indicate that    and   have individual influence in the 

solution quality of ACS. The objective function (minimize total traveled distance) 

reach the worst value when such factors are increased (see Figure 4.5). On the other 

hand, the parameter   has a quadratic influence; in particular, the minimum solution 

quality is reached when the factor takes the medium value of its level range.   
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Figure 4.5: Parameter influence in the solution quality using ACS 

The ANOVA results to M-ACS are showed in the Table 4.8, which indicates that 

individual factors [A (  ), B ( ) and C (  )] have not influence in the solution 

quality achieved by the algorithm.  

Table 4.8: The ANOVA results to sensitivity analysis in the M-ACS 

 

Despite the no influence of the individual factor of M-ACS, the factor    presents a 

quadratic influence on the solution quality when the M-ACS is applied to the case 

study. Equally to   in ACS, the minimum solution quality is reached when the factor 

takes the medium value of its level range. 

 

Figure 4.6: Parameter influence in the solution quality using M-ACS 
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4.3 Effectiveness analysis simulating enough set of instances  

The procedure application in former sections has been developed according to five real-life 

instances of the case study. Based on these instances, the relevance degree was 

successfully validated due to in all cases the classification results were in accordance with 

the expected results of performance indicators. However, such results are not considered 

conclusive to really assure if the proposed procedure guarantees a suitable relevance 

degree and therefore effectiveness in decision-making. Considering this fact, we generate, 

and subsequently are analyze, a considerable set of case study instances, which are 

conceived using the numerical simulation of its predictive variables (number of nodes, 

fleet size, number of objectives, customer demand, fleet type and time windows). Clearly, 

we propose to analyze the relevance and effectiveness in the generated instances based on 

the following three steps. 

Generation of case study instances using the simulation: In this step is used the 

numerical simulation to generate each component (expected value of the predictive 

variable) of the case study instance. Due to the few real-life instances our case study (at 

most 20), we studied the probabilistic behavior of all predictive variables in order to know 

the best fit of each variable. After the best probabilistic function is determined for each 

instance component, the instances are created predicting the expected values of every 

probabilistic function. As result of the above, the Table 4.9 shows the probabilistic 

distribution followed by the predictive variables. 

Table 4.9: Result of probabilistic fit test in the predictive variables 

Predictive variables Probabilistic distribution 

Number of nodes Binomial (490,0.35) 

Fleet size Poisson (8.44) 

Breakdowns of first priority (P1) Poisson (9.12) 

Breakdowns of second priority (P2) Geometric (0.04) 

Breakdowns of third priority (P3) Binomial (380,0.29) 

 

In summary, we generate 127 instances based on the probabilistic distribution defined 

above. The main characteristics of the generated instances are depicted in the Table 4.10. 

As can be seen, the instances values are well balanced according to the number of nodes 

and fleet size. Furthermore, in each instance is showed the number of nodes (breakdowns) 

according to the priority level [the first priority (P1), second (P2) and the third priority 

level (P3)], considering either a reasonable balance between both analyzed scenarios, 

during normal weather conditions and after hurricanes). 
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Table 4.10: Main descriptive characteristics of the generated instances 

  
Number of breakdowns 

according to the priority level 
 

Instances Number of nodes P1 P2 P3 Fleet size 

1-20 23-97 77 203 844 100 

21-40 102-193 196 472 2276 180 

41-65 18-97 97 218 995 100 

66-90 26-92 109 252 1050 100 

91-110 251-396 435 861 5480 170 

111-127 252-449 338 777 4998 204 

Description of solution approaches: The solution approaches described in this step 

consist of three possible decision-making situations. In the first one (1), we propose to 

obtain the experimental results (solution quality and computation time) after applying all 

procedure in the above generated instances. The second situation (2) is based on the same 

solution approach (apply all procedure stages) but permuting the classification labels 

(where is defined exact replace with approximate and vice versa). For both former 

situations, are used the approximate algorithms (ACS and M-ACS) and the exact algorithm 

(BB) in cases that the classification process suggests approximate or exact category 

respectively. In the third situation (3), we propose to use the solution approach of the 

dispatching center for all generated instances. Here, we assume that the dispatching center 

carry out the route planning according to Nearest Neighbor heuristic, which either 

considers the priority level. The experimental results of all described solution approaches 

are reported in the Appendix A.19, such results were determined for all generated 

instances.     

Estimation of the Global Index of Effectiveness (   ): As described in Chapter 1, the 

effectiveness is the sum of efficacy and the efficiency. In this thesis we assume the solution 

quality as the efficacy reached by any solution approach, while the efficiency is measured 

by the computation time that consumes such solution approach. Considering the above, we 

introduce the Equation 4.17, which determines the     based on the performance indicator 

results reached for those solution approaches described in the previous step. Finally, the 

    is given by 

                  

        

             

       

 [4.17] 

where       denotes the     of solution approach   respect to the solution approach  . 

The variables      and      represent the reached solution qualities (measure in time 

units), when the solution approaches   and  , respectively, are applied to the instance  .  
Furthermore, the variables      and      indicate the computational time consumed by the 
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solution approach   and  , respectively, when such solution approaches are applied to the 

instance  . The term       denotes the set of instances, in which the solution approaches   

and   have reported significant difference in the solution qualities. While       denotes 

the set of instances, in which the solution approaches   and   have reported significant 

difference in the computation times. The index   and   represent the number of the instance 

(1…127), while the possible combination of     due to the variation of the index   and 

  can be expressed in the set                                               , where   means 

the total of solution approaches (here    ). As a general remark, we have to consider the 

optimization criterion of the case study (minimization), which means that, while much 

negative is the      , the solution approach   provide higher effectiveness in the decision-

making. 

In order to determine the    , various statistical comparisons should be carried out, as well 

as some arithmetic operations. Particularly, the significance values of statistical test are 

reported in Table 4.11. Finally, we evaluate the Equation 4.17 with all performance 

indicators values that have been reported in Appendix A.19, which gives as result the 

figures of Table 4.11.  

Table 4.11: Results of the GIEs applied to the generated instances 

Combinations of     Values    significance    significance 

   -4953.17 0.047 0.001 

   -4821.93 0.000 0.000 

   134.24 0.000 0.001 

Having a closer look at the results in the Table 4.11, one might summarize the following 

conclusions: 

1) The proposed procedure, in particular the classification process, leads to the 

significant increase of effectiveness in decision-making defined in our case study 

(see              ). As can be seem, when the results of classification process 

are changed (exact ↔ approximate) the effectiveness is considerably decreased, 

which indicates that the prediction of the optimization categories (exact or 

approximate) is decisive in the decision-making.   

2) The current solution approach of the dispatching center is considerable ineffective as 

a solution approach (due to the               ). Given essentially, by the 

ignorance of the relevant optimization category that must considered depending of 

predictive variables values, and the poor efficacy of its decision rules for decision-

making. Therefore, the route planning to repair the electrical breakdowns (our case 

study) should be assisted by the algorithmic proposals discussed in this thesis.  
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4.4 Summary 

Several real-life case studies of VRPs can be solved using the algorithmic approaches 

described in this thesis. However, in this chapter we have analyzed the “route planning to 

repair the electrical breakdowns that occur in the power networks”, specifically in the city 

of Santa Clara. In this sense, we have given the fundamental reasons for choosing such 

case study, which are basically sustained in the Cuban particularities, such as limited 

resources and weather conditions.  

In the largest part of the present chapter we have applied the procedure described in 

Chapter 3. Based on five real-life instances of the case study, we have analyzed and 

discussed the main result of the procedure stages. Initially, the classification process 

indicated the relevant optimization categories for all instances, the exact category for the 

instance I-32 and approximate optimization category for the remaining instances. 

Impressively, the prediction of optimization categories has been developed with accuracy 

above 90%.  

Additionally, we have presented some algorithmic approaches according to the 

optimization category. Specifically, the Branch and Bound algorithms to solve exactly the 

case study instances and two approximate algorithms based on ACO. Within the 

approximate category, we have introduced the M-ACS, which showed the best 

performance both, the benchmark problems (compared with the well-know local search 

algorithm of Lin- Kernighan) as well as the case study instances (compared with ACS).  

The experimental results after applying the third procedure stage have shown the relevance 

of algorithmic approaches, which are appropriate in all instances considering the 

performance indicator as well as the total available time to carry out the rote planning. In 

addition, we analyzed the parameter sensitivity in the approximate algorithms, determining 

the parameter influence in the solution quality for both approximate algorithms. Finally, 

we could show that, when the proposed procedure is applied to several datasets, the 

effectiveness is considerably increased. 
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5 Conclusions 

 

 

Chapter 5 

 

Conclusions 

In this chapter we highlight the main contributions of our research and summarize the main 

results. Then, we present some potential avenues for future research.  

5.1 Contributions 

The researches in the field of optimization theory are primarily focused on developing new 

or improved algorithms for selected combinatorial problems. Not much effort has been 

made in gaining insight into the proper selection of algorithmic approaches in order to 

increase the effectiveness in the decision-making. Therefore, in this thesis we have shown 

how one can predict the relevant optimization methods, either as exact or approximate, 

according to the characteristics of the optimization problems.  

The studies in this thesis focused on one of the most studied combinatorial problems: the 

Vehicle Routing Problems. Our contributions to this field cover the development of a new 

conception for the optimization process in the VRPs, the analysis and improvement of 

recently proposed approximate algorithms (specifically in metaheuristics), and the solution 

of real-life VRP considering the hard conditions of decision-making in Cuba. The main 

contributions can be summarized as follows. 

Novel conception of the optimization process in VRP (Chapter 3)   

 We have developed and described a novel conception for the VRP optimization 

process in order to increase the effectiveness in decision-making based on an 

integrative and proactive approach. 

 We have proposed a conceptual model and procedure to illustrate the new conception 

of VRP optimization process which considers three integrated stages: previous, 

during, and after optimization.  

 Based on the conceptual model we could show the main external and internal 

conditions that must be considered when some VRP is solved. Additionally, we have 

shown the specific inputs, processes and outputs involved in the relevant solution of 

the VRPs. 



CHAPTER 5. CONCLUSIONS 

 

84 

 

Knowledge Discovery (Chapter 3) 

 Based on the revised literature and the work-team analysis we have presented a set of 

predictive variable that define the complexity of VRP instances in a multivariate 

context.  

 With our research we have provided a Knowledge Base (KB) with significant size of 

VRP solutions, which made possible to train two classification algorithms: 

Discriminat Analysis and the C4.5.  

 We have determined the minimum training-set size for the used classifiers. The size 

of KB is large enough for achieve a low error rate using both classifiers in the 

classification process. 

Ant Colony Optimization (Chapter 4) 

 We have introduced a new ant colony optimization (ACO) algorithm, called Multi-

type Ant Colony System (M-ACS), which significantly improves the performance of 

other efficient algorithms. Comparisons of our algorithm to classical ACO algorithm 

(ACS) and the well-know local search heuristic of Lin-Kernighan have shown that, 

the M-ACS is currently one the best performing variant for the Multiple Traveling 

Salesman Problem (mTSP). 

 We have analyzed the computational complexity of M-ACS, which proved to be the 

same computational complexity of ACO algorithms. In addition, we have verified 

that the worst-time complexity of M-ACS proves to be competitive in term of 

computational time compared with the efficient Lin-Kernighan heuristic. 

 We have also applied the M-ACS to the case study described in this thesis. The 

formidable results prove the generality of the improvements introduced by M-ACS. 

Computational implementations (Chapter 3 and Chapter 4) 

 We have developed the software VRP solution classifier for predicting relevant 

solutions in the VRPs. Setting the predictive variables of a given VRP instance is 

possible to predict the optimization category with high accuracy and trivial 

computation time.  

 We have implemented useful software, called ANTRO version 2.0. With this 

computational implementation we have provided a great support to the route 

planning to repair electrical breakdowns in Cuban power networks, conceiving all 

realistic complexities (weather conditions, unexpected breakdown, priority level of 

the breakdowns, and the probabilistic time for repair) of decision-making in the 

Cuban context. 
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5.2 Future work 

The primary goals of this thesis have been the algorithmic assistance to the optimization 

process in the VRPs. Our contributions and the observations made in our work also pose a 

number of interesting open questions for the specific research issues attacked in this thesis 

and for the research in the area of optimization theory. More specifically, some future 

research can be developed in the following topics. 

Ant Colony Optimization 

 We have shown that, when applying the M-ACS to benchmark problems and real 

case study of VRPs the effectiveness is increased. However, we strongly believe that 

a proper hybridization with local search algorithm will provide better performance. 

 Another issue deals with the setting of parameters in ACO algorithms. In our 

experience, the parameters given here for the case study performed very well over a 

wide range of instances. However, in other applications adaptive versions which 

dynamically tune the parameters during algorithm execution may increase algorithm 

robustness. 

Classification process 

 Our research has shown that the KB training-set size is large enough for the 

prediction of optimization categories. Despite this fact, the new VRP solutions 

should be followed in order to update the experiences of the relevant solutions in real 

application context of VRP. 

 Current classification results are rather suitable to our case study instances, which 

have been modeling as mTSP. Yet, other classical extensions of the VRP can be used 

to model some real-life case study. Therefore, an important area for research is the 

analysis of classification results when the realistic case studies imply other VRP 

variants. 
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Appendix A.1: Complex variants of the TSP 

VARIANTS PARTICULAR CHARACTERISTICS AUTHORS 

Online Traveling 

Salesman Problem 

(OLTSP) 

The requests for visits to cities arrive 

online while the salesman is traveling 

Ausiello et 

al.[2005] 

Deadline Traveling 

Salesman Problem 

(DLTSP) 

A subset of the vertices is given which 

have deadlines imposed on them 

Böckenhauer & 

Komm [2010] 

 

k-delivery TSP 

The problem is to find a shortest tour for 

the vehicles in which all pegs can be 

transported to their slots without exceeding 

the capacity of the vehicle 

Zhao et al. 

[2009] 

Multiple Traveling 

Salesman Problem 

(mTSP) 

Can be used more than one salesman in the 

Hamiltonian cycle Bektas [2006] 
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Appendix A.2: Exact vs approximate methods  

 Advantages Disadvantages 

E
x
a
ct

 m
et

h
o
d

s 

 Guarantee the optimal solution 

 Sometimes are easy to implement 

 The computational complexity is 

expressed in a non polynomial 

function 

 Considerable computation time in 

the large-scale problems 

 Mostly are not capable to work with 

dynamic variables 

 Low flexibility 

A
p

p
ro

x
im

a
te

 m
et

h
o
d

s  They often find high quality 

solution 

 Are able to successfully attack large 

instances 

 Mostly the computation time is 

small 

 They cannot guarantee to find 

optimal 

 solutions in finite time 

 Require of high computational 

knowledge for be implemented 

 Sometime cannot escape of local 

optima 
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Appendix A.3: List of approximate algorithms   

 Algorithms 

Heuristics 

 Nearest Neighbor (NN) 

 Insertion 

 Saving 

 Tour improvement 

 Sweep 

 Two-phase 

 Local Search Algorithms (LSAs) 

Metaheuristics 

 Ant Colony Optimization (ACO) 

 Evolutionary programming 

 Genetic Algorithms (GAs) 

 Particle Swarm Optimization (PSO) 

 Bee Algorithms (BAs) 

 Fish Algorithms (FAs) 

 Tabu Search (TS) 

 Simulated Annealing (SA) 

 Artificial Immune System (AIS)  

 Artificial Neural Networks (ANN) 

Approximation 

 Continuous approximation [Daganzo, 1984] 

 Metric Steiner Tree  

 MST-based algorithm 

 A simple factor 2 algorithm 

 Metric TSP – Factor 3/2 

Trial and error  Simulation 
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Appendix A.4: Formal structure of the Knowledge Base 

SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 

Customer 

demand (X6) 

A
p

p
ro

x
im

a
te

 

E
x
a
ct

 

N
u

m
b

er
 o

f 

n
o
d

es
 

W
it

h
 t
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e 

w
in

d
o
w

s 

W
it

h
o
u

t 
ti

m
e 

w
in

d
o
w

s 

F
le

et
 s
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e
 

H
o
m

o
g
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eo
u

s 

H
et
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o
g
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eo

u
s 

O
n

e-
o
b
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ct
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e
 

M
u

lt
i-

o
b

je
ct
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e
 

D
et

er
m

in
is
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c
 

S
to

ch
a
st

ic
 

Rizzoli et al. [2007] (ACO) 

x  300 x  100  x x  x  

x  600 x  100  x x  x  

x  500 x  10  x x  x  

Anbuudayasankar et al. [2012] (GA) x  100  x 5 x   x x  

Belenguer et al. [2005] (TS) 

x  94 x  7  x  x  x 

x  114 x  7  x  x  x 

x  122 x  7  x  x  x 

x  124 x  7  x  x  x 

x  148 x  7  x  x  x 

x  116 x  7  x  x  x 

x  123 x  7  x  x  x 

Jung & Karney [2006] (PSO) x  123  x 1 x   x x  

Bräysy [2002] (LS) 

x  100  x 1 x  x  x  

x  200  x 1 x  x  x  

x  400  x 1 x  x  x  
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 

Customer 

demand (X6) 
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S
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Bredstrãm et al. [2004] (BB)  x 55 x  1 x   x x  

Caballero et al. [2007] (TS) x  93  x 5 x   x x  

Chen et al. [2009] (CP)  x 75  x 6 x   x x  

Cordeau & Laporte [2003] (TS) x  144 x  13 x  x   x 

Cornillier et al. [2007] (BB)  x 44  x 24 x  x  x  

Di Pierro et al. [2009] (ET) x  535  x 50 x  x  x  

Donati et al. [2008] (ACO) x  60  x 10  x  x x  

Duman et al. [2007] (LS) x  44  x 4 x  x  x  

Faulin [2003] (SH) x  100  x 7 x  x  x  

Faulin [2011] (LIP)  x 34  x 7 x  x  x  

Ioannou [2001] (LS) x  1943 x  72 x  x  x  

Garcia-Najera [2009] (GA) x  400  x 15 x   x x  

Goetschalckx et al. [2002] (LIP)  x 80  x 10 x   x x  

Hu et al. [2009] (BB)  x 207  x 50 x  x  x  

Pacheco & Delgado [1999] (TS) x  40 x  1  x x  x  
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 
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demand (X6) 

A
p

p
ro

x
im

a
te

 

E
x
a
ct

 

N
u

m
b

er
 o

f 

n
o
d

es
 

W
it

h
 t

im
e 

w
in

d
o
w

s 

W
it

h
o
u

t 
ti

m
e 

w
in

d
o
w

s 

F
le

et
 s

iz
e
 

H
o
m

o
g
en

eo
u

s 

H
et

er
o
g

en
eo

u
s 

O
n

e-
o
b

je
ct

iv
e
 

M
u

lt
i-

o
b

je
ct

iv
e
 

D
et

er
m

in
is

ti
c
 

S
to

ch
a
st

ic
 

Tomalá Pincay [2010] (ACO) x  66 x  4 x  x  x  

Martin el at. [2010] (ACO) and (BB) 

x  106 x  10  x x  x  

  412 x  25  x x  x  

 x 20  x 1  x x  x  

López Pérez &  Badii (2005)  

(GA) and (LIP) 

 x 70 x  1 x  x  x  

x  120 x  1 x  x  x  

Yepes & Medina [2004] x  100 x  20  x  x x  

Jozefowiez et al. [2008] (SA), (TS), 

(GA) and (GP) 

x  150 x  1  x  x x  

x  200 x  20  x  x x  

x  140 x  15  x  x x  

x  400  x 50  x  x x  

 x 50  x 1  x  x x  

x  150 x  15  x  x x  

Kaveh &  Nasr [2011] (LS) x  163  x 10 x  x  x  

Kim et al. [2006] (IH) x  102 x  5  x  x  x 
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 
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type (X4) 

Number of 

objectives (X5) 
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Kim et al. [2006] (IH) 

x  277 x  5  x  x  x 

x  335 x  5  x  x  x 

x  444 x  5  x  x  x 

x  804 x  5  x  x  x 

x  1051 x  5  x  x  x 

x  1351 x  5  x  x  x 

x  1599 x  5  x  x  x 

x  1932 x  5  x  x  x 

x  2100 x  5  x  x  x 

Laporte & Norbert [1980] (CP)  x 20  x 4 x  x  x  

Rathinam et al. [2007] (BB)  x 15  x 3 x  x  x  

Mester et al. [2007] (ET) 

x  50  x 54 x  x  x  

x  75  x 55 x  x  x  

x  100  x 55 x  x  x  

x  150  x 55 x  x  x  
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 

Customer 

demand (X6) 
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Mester et al. [2007] (ET) 
x  385 x  55 x  x  x  

x  417 x  54 x  x  x  

Montalvo et al. [2010] (PSO) x  240 x  - -  x  x  

Norback [1991] (IH) 
x  63  x 7 x  x  x  

x  308  x 24 x  x  x  

Nuortio et al. [2006] (LS) x  82  x 1 x  x  x  

Rodríguez & Zamakola [2000] (LS) x  170 x  25 x  x  x  

Ombuki et al. [2006] (GA) x  100 x  10  x  x x  

Ozfirat et al. [2010] (LIP)  x 41  x 9  x  x x  

Penna et al [2007] (LS) 

x  20  x 1  x x  x  

x  50  x 1  x x  x  

x  75  x 1  x x  x  

x  100  x 1  x x  x  

Polacek et al. [2007] (LS) 
x  293  x 23 x   x x  

x  173  x 20 x   x x  
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 

Customer 

demand (X6) 
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Polacek et al. [2007] (LS) 

x  287  x 21 x   x x  

x  175  x 22 x   x x  

x  283  x 22 x   x x  

x  175  x 21 x   x x  

x  238  x 23 x   x x  

x  136  x 21 x   x x  

x  279  x 22 x   x x  

x  174  x 23 x   x x  

x  278  x 20 x   x x  

x  168  x 23 x   x x  

Saadatseresht et al. [2009] (ET) x  118 x  -  x  x x  

Semet [1994] (TS) x  5000 x  14  x x  x  

Seyedhosseini [2010] (PSO) x  82  x 100 x  x  x  

Shahrzad [2011] (PSO) x  60 x  15 x  x   x 

Suthikarnnarunai [2008] (BB)  x 75  x 12  x x  x  
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SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 
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objectives (X5) 
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Tarantilis & Kiranoudis [2001] (LS) x  299  x 23  x x  x  

Tarantilis & Kiranoudis [2002a)b)] 

(LS) 

x  174  x 12 x  x  x  

x  100  x 13  x x  x  

Tarantilis & Kiranoudis [2007] (LS) x  300  x 27  x x  x  

Tzeng et al. [2007] (BB)  x 48  x 3  x  x x  

Cardoen et al. [2009] (BP) 

 x 20 x  1 x   x x  

 x 25 x  1 x   x x  

 x 30 x  1 x   x x  

 x 35 x  1 x   x x  

 x 40 x  1 x   x x  

 x 45 x  1 x   x x  

 x 50 x  1 x   x x  

 x 55 x  1 x   x x  

 x 60 x  1 x   x x  

 x 65 x  1 x   x x  
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Cardoen et al. [2009] (BP) 

 x 70 x  1 x   x x  

 x 75 x  1 x   x x  

 x 80 x  1 x   x x  

Charfeddine & Montreuil [2010] 

(ACO) 

x  100 x  15  x  x  x 

x  200 x  20  x  x  x 

x  400 x  35  x  x  x 

x  600 x  40  x  x  x 

x  1000 x  50  x  x  x 

Chevrier et al. [2009] (ET) 
x  100 x  10  x  x  x 

x  1000 x  100  x  x  x 

Hsu et al. [2007] (IH) x  71 x  9  x x   x 

Montemanni et al. [2005] 
x  50  x 50 x  x   x 

x  199  x 50 x  x   x 

Rasmussen et al. [2012] (BP) and 

(IH) 

x  150 x  15 x  x  x  

x  107 x  8 x  x  x  
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Rasmussen et al. [2012] (BP) and 

(IH) 

 x 60 x  7 x  x  x  

 x 61 x  6 x  x  x  

 x 20 x  4 x  x  x  

 x 50 x  10 x  x  x  

x  80 x  16 x  x  x  

Sol [1998] (BP)  x 50 x  5 x  x  x  

Solnon et al. [2008] (ACO) and 

(GA) 

x  704  x 84 x  x  x  

x  1260  x 202 x  x  x  

x  1319  x 275 x  x  x  

x  996  x 235 x  x  x  

x  325  x 150 x  x  x  

x  65  x 10 x  x  x  

x  780  x 73 x  x  x  

x  931  x 24 x  x  x  

x  231  x 64 x  x  x  

 

 



APPENDIX A.4 

 

116 

 

SAMPLES 

Dependent 

variable 
Predictive variables 

Method (Y) X1 
Time windows 

(X2) 
X3 

Fleet 

type (X4) 

Number of 

objectives (X5) 

Customer 

demand (X6) 

A
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a
te
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Solnon et al. [2008] (ACO) and 

(GA) 

x  90  x 11 x  x  x  

x  376  x 19 x  x  x  

x  1247  x 328 x  x  x  

x  1037  x 156 x  x  x  

x  519  x 209 x  x  x  

x  459  x 141 x  x  x  

x  875  x 156 x  x  x  

x  273  x 42 x  x  x  

x  264  x 19 x  x  x  

x  219  x 18 x  x  x  

Oppen et al. [2010] (CG)  x 100 x  10 x  x   x 

Dumas et al. [1991] (BP)  x 100  x 5  x x  x  

Bélanger et al. [2006] (BB) and (BP)  x 250 x  25 x  x   x 

Calvete et al. [2007] (GP)  x 75 x  1 x   x x  

Ropke & Cordeau [2009] (BP)  x 100 x  13 x  x  x  
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Appendix A.5: The software VRP solution classifier 

 

Motivation and description: The VRP solution classifier is a computational 

implementation, which provides the reliable prediction of the optimization categories 

(exact or approximate), and its relative specific algorithms for a given VRP instance. The 

software has encoded two accurate classification algorithms: the Discriminat Analysis and 

C4.5. For the training of the classifiers is defined a Knowledge Base in which are included 

valuable solutions of the real-life VRPs. The application has the following utilities: 

1) Add and delete the samples in the KB. 

2) Obtain descriptive statistics of all variables. 

3) Visualization of analytical classification results. 

4) Visualization of classification tree. 

5) Obtain the classification quality using cross-validation  

The software consists of two modules: the Descriptives-Data and the Classification 

module. Both modules with its utilities are described below. 

Descriptives-Data module: This module presents the descriptive statistics associated to 

any variables (predictive or classification variables) of the classification process. It is able 

to show the descriptive analysis both discrete and continuous variables.  
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Command Insert-Remove: Both commands operate directly over the samples in the KB, 

inserting the new case, in which should be defined the values of predictive and dependent 

variables. In case of errors in the data inputs, this command provides the way to eliminate 

any sample. 
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Classification module: In this module is possible to carry out the classification process, 

showing the main results according two visualization forms. The first, displays the 

classification results in an interface text box, while the second presents the classification 

results displaying a decision tree. 
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Command Cross-validation: The estimation of the classification quality is based on the 

cross-validation method. For the proper application of cross-validation is required defining 

the folds size, which is possible to perform in a text box of the module interface. Thus, a 

percentage value of the classification quality is obtained. 
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Appendix A.6: Methodology for minimum training-set size 

1) Subsampling and significance permutation test 

A. Subsampling procedure 

i. Given     samples from class 1(exact category) and     samples from class 2 

(approximate category), the total number of samples is          , where 

    . 

ii. Select 10 training-set sizes              ) over the interval          . 

1. For each training-set size    run the following subsampling procedure 

      times, indexed by         . 

a) Randomly split the dataset into training-set with    samples and a 

validation-set with      samples subject to the requirement that 
   

   
 

   

   
 

where     and     are the number of samples from the class 2 and 1 in the 

training-set. Call the two dataset generated     . 

b) Train the classifiers on each of the training-sets and measure its error rate 

on its corresponding validation-set; call each of these error rates     . 

B. Permutation test 

i. For each subsampled train/validation split     , run the following permutation 

procedure       times indexed by         . 

1. Randomly permute the labels of the samples in the training-set (leave the 

validation-set alone); call the dataset generated       
   . 

2. Train the classifiers on the training-set and measure its error on the validation-

set, call this error rate       
   . 

C. Significance calculation 

1. For each training-set size  , construct an empirical distibution function from the 

error rates of the permuted dataset   
       

 

     
   

  
   

  
            

    , 

where        if     and 0 otherwise. 

2. Given the above empirical distribution function, compute for each     the value  

     
        ; statistical significance with respect to an  -value of   is 

achieved for   , the smallest   for which     . 

2) Learning curve and training-set estimation 

A. Assume the subsampling procedure was run for   different simple sizes  , 

indexed by        ; take th sequence of error rates and compute the following 

quantities for each training-set size      for which the classifier passed the 

significance test (    ): the mean error rate     
 

  
     
  
   , the 25th and 75th 

quantiles of the vector of error rates               

B. Use the above quantities to fit the following learning curve: 

i. Given training-set sizes    and mean error rates     , compute       via the 

following minimization procedure:              
          

  
    subject to  
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       ; designate the values as       as         . The resulting curve 

estimates the error rate as a function of a training-set size 

           
      . 

ii. Repeat the above procedure for the 25th and the 75th quantiles of the vector of 

error rates              . 
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Appendix A.7: Estimation results of minimum training-set size 

Table A. Estimation results for the minimum training-set size classifying with Discriminant Analysis 

Size of 

KB 
Training-set sizes 

Training-set 

which passed the 

significance test 

( -value < 0.05) 

Learning curve function Decision 

215 
15  30  45  60  75  90  

105  120  150  180 
For                                

Dataset is large enough for achieve a low 

error rate (    ), training the classifier 

with at least 105 samples as the training-set  

 

 

 

Table B. Estimation results for the minimum training-set size classifying with C4.5 algorithm 

Size of 

KB 
Training-set sizes 

Training-set 

which passed the 

significance test 

(p-value < 0.05) 

Learning curve function Decision 

215 
15  30  45  60  75  90  

105  120  150  180 
For                                

Dataset is large enough for achieve a low 

error rate (    ), training the classifier 

with at least 60 samples as the training-set  
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Appendix A.8: Parametric statistical test 

t-student (2 samples) 

X ~ N (μx; σ
2

x) 

Y ~ N (μy; σ
2

y) 

 Hypothesis: 

H0: μx  =  μy 

H1: μx  ≠  μy 

 Statistician:  

  
     

    
 
  

 
 
  

 

 Critical region of acceptance: 

      
 
        

 

      : Mean of sample “x” and “y” (mean of the 

performance in the algorithms “x” and “y”). 

  : Standard deviation of both samples. 

     : Sizes of the samples “x” and “y”. 

 

 

Design of experiment (2, 3 and k samples) 

Experiment Commercial software Reference 

One-Way Analysis of 

Variance (ANOVA) 
SPSS Black [2011] 

Two-Way ANOVA SPSS, MINITAB 
Black [2011] and 

Larson-Hall [2009] 

Factorial Analysis STATGRAPHICS Eriksson [2008] 
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Appendix A.9: Nonparametric statistical test 

Mann-Whitney U test (two independent samples) 

 Hypothesis:  

H0: μ1  =  μ2 

 H1: μ1  ≠  μ2 

 Statistician: 

        
         

 
    

 Critical region of acceptance: 

        

  : Rank of the group 1. 

  : Size of the group 1. 

  : Size of the group 2. 

 

Wilcoxon Signed-Rank test (two related samples) 

 Hypothesis: 

H0: Population (algorithm performance) are identical 

H1: Population are not identical 

 Statistician:  

      
       

 
 

 Critical region of acceptance: 

        

 : Number of pairs. 

  : The sum of the ranks with positive difference. 

   : The sum of the ranks with positive difference. 
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Friedman test (k related samples) 

 Hypothesis: 

H0: μ1  =  μ2 = … μk 

H1: Al least one μk differs 

 Statistician:  

  
  

         
   

 

 

   

           

 Critical region of acceptance: 

        
  

 : Size of the groups. 

 : Number of group. 

   : Total of the rank for the group “j”. 
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Appendix A.10: Decision variants in the post-optimization 

Decision variants 
Solution 

quality (SQ) 

Computation 

time (CT) 

Total available 

time 
Relevant decision 

Classification = Exact,  

two exact algorithms [Vart1] 
Equal 

Significant 

differences (SD) 

Significantly 

higher than CT 
Select the exact algorithm with less CT 

Classification = approximate,  two 

approximate algorithms [Vart2] 
(SD) 

No-significant 

differences (NSD) 
NSD respect CT Choose the algorithm with the best SQ 

Same results as above [Vart3] NSD SD NSD respect CT Choose the algorithm with the best CT 

Same results as above [Vart4] SD SD NSD respect CT Choose using the multi-criterion technique  

Classification = Exact, one exact 

and one approximate [Vart5] 
NSD SD NSD respect CT Choose any algorithm 

 Same results as above [Vart6] SD NSD NSD respect CT Choose the exact algorithm 

Same results as above [Vart7] SD NSD SD respect CT Choose the exact algorithm 

Same results as above [Vart8] SD SD NSD respect CT Choose the exact algorithm 

Same results as above [Vart9] SD SD SD respect CT Choose the approximate algorithm 

Classification = approximate,  one 

exact, one approximate [Vart10] 
NSD SD NSD respect CT Choose the approximate algorithm 

Same results as above [Vart11] NSD SD SD respect CT Choose the approximate algorithm 

Same results as above [Vart12] SD NSD NSD respect CT Choose the exact algorithm 

Same results as above [Vart13] SD SD SD respect CT Choose using the multi-criterion technique 
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Appendix A.11: Distance matrix between breakdowns  

 

 



APPENDIX 

 

129 

 

Appendix A.12: Decision tree for classifying the VRPs  

Nodes

Fleet type

Time Windows

≤ 80
> 80

Approximate (114.0/5.0)

Homogenueous Heterogeneous

Exact (32.0)

= No

Exact (2.0)
Objetive

= Yes

= Multiple= One

Demand

Deterministic Stochastic

Vehicles

Approximate (10.0)

Approximate (3.0)

Approximate (3.0)Exact (3.0)

≤13 >13
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Appendix A.13: Exact algorithm prediction to the I-32 case study instance 
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Appendix A.14: Approximate algorithm prediction to the case study instances (e.g. I-142) 
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Appendix A.15: The software ANTRO version 2.0 

 

Motivation and description: The ANTRO version 2.0 is a computational implantation, 

which allows the algorithmic assistance for route planning in the repair of electrical 

breakdown (or failure). This software presents a friendly interface that can be used by the 

dispatchers of Cuban Electric Company. The software provides dispatchers the following 

utilities: 

1) Load and execute different scenarios (case study instances) of decision-making 

related with the case study. 

2) Allocate the vehicles of the fleet to the set of breakdowns, considering the real-life 

conditions described in the case study (e.g. the priority level, stochastic repair time 

and the occurrence of the unexpected breakdowns). 

3) Develop the route planning considering two approximate algorithms, the ACS and 

M-ACS. 

4) Display the results in analytical and graphical format. 

The software utilities and the main interfaces are described below. 

Scenarios menu: In this menu option are selected and then loaded the case study 

instances. Furthermore, the breakdown list, either the pending or dynamic breakdowns can 

be added, deleted or exchanged between both lists. 
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View menu: Here, some options can be deployed to visualize the algorithm results, either 

from analytical or graphical perspective. Both results are summarized and printed in a pdf 

document. 

Visualization of the distance matrix: 
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General information of one case study instance: 

 

 

 

 

Graphical representation of the breakdowns: 
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Graphical representation of the route planning: 

 

Report of the route planning results: 
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Run menu: In this menu can be defined two types of algorithm runs: the “Run 

Simulation”, which is used when the dynamic breakdown exits in any lists (pending or 

dynamic), and the “Run Real Time”, executed when the dynamic breakdowns are defined 

introducing its geographical coordinates.   

 

Algorithms menu: The users can define which approximate algorithm, either ACS or M-

ACS, they want to apply for a given case study instance.  
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Parameters menu: In this menu are introduced the parameters of both approximate 

algorithms, depending of which has been selected in previous menu (Algorithms menu). 

Furthermore, the user can define the input data related with case study instance, for 

instance, the breakdown priority level and repair time.   

Interface of the ACS parameters: 

 

Interface of the ACS parameters: 
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Priority level interface:  

 

 

 

Repair time interface: 
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Appendix A.16: Java source code of the ANTRO version 2.0  

public Main(int numberAverias, File averiasFile, 

            File weightFile) { 

        this.averias = new Averia[numberAverias + 1]; 

        this.readAverias(averiasFile.getAbsolutePath()); 

        this.matrixWeight = new int[numberAverias + 1][numberAverias + 1]; 

        this.readDataFile(weightFile.getAbsolutePath()); 

    } 

 

private void readAverias(String filePath) { 

        try { 

            BufferedReader in = new BufferedReader(new FileReader(filePath)); 

            String[] tok = null; 

            String line = null; 

            int numberLine = 1; 

            Averia a = new Averia(0, 0, 0, 0); 

            this.averias[0] = a; 

            while ((line = in.readLine()) != null) { 

                tok = line.split("[ \t]+"); 

                int x = Integer.parseInt(tok[0]); 

                int y = Integer.parseInt(tok[1]); 

                int t = Integer.parseInt(tok[2]); 

                a = new Averia(x, y, t, numberLine); 

                this.averias[numberLine++] = a; 

            } 

            in.close(); 

        } catch (IOException ex) { 

            System.err.println(ex.getMessage()); 

        } 

    } 

 

public int[][] subMatrixWeight(int[] subTour) { 

        int[][] subMatrixWeight = 

                new int[subTour.length][subTour.length]; 

        Arrays.sort(subTour); 

        for (int i = 0; i < subTour.length; i++) { 

            for (int j = i + 1; j < subTour.length; j++) { 

                subMatrixWeight[j][i] = subMatrixWeight[i][j] =  

                        this.matrixWeight[subTour[i]][subTour[j]]; 

            } 

        } 

        return subMatrixWeight; 

    } 
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public void addNode(int n, int t) { 

        int[] temp = new int[this.array.length + 1]; 

        System.arraycopy(this.array, 0, temp, 0, this.array.length); 

        temp[temp.length - 1] = n; 

        this.array = temp.clone(); 

        temp = new int[this.times.length + 1]; 

        System.arraycopy(this.times, 0, temp, 0, this.times.length); 

        temp[temp.length - 1] = t; 

        this.times = temp.clone(); 

    } 

} 

 

private int generateTimeRaparation() { 

        int time = 0; 

        switch (getType()) { 

            case 1: { 

                time = 45 + Math.abs(new Random().nextInt() % 15);  // entre 45 y 60 min 

                break; 

            } 

            case 2: { 

                time = 20 + Math.abs(new Random().nextInt() % 15);  // entre 20 y 35 min 

                break; 

            } 

            case 3: { 

                time = 10 + Math.abs(new Random().nextInt() % 10);  // entre 10 y 20 min 

                break; 

            } 

        } 

        return time; 

} 
 
public int[] tipoAveria(int[] subTour) { 

        Arrays.sort(subTour); 

        int[] types = new int[subTour.length]; 

        for (int i = 0; i < types.length; i++) { 

            types[i] = this.averias[subTour[i]].getType(); 

        } 

        return types; 

    } 
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public static void main(String[] args) { 

        Main m = new Main(Integer.parseInt(args[0]), new File(args[1]), 

                new File(args[2])); 

        Cluster[] c = m.asignar(Integer.parseInt(args[3]), Integer.parseInt(args[4])); 

        Environment env; 

        AcsTsp a; 

        int totalCoste = 0; 

        int totalTime = 0; 

        for (int i = 0; i < c.length; i++) { 

            totalTime = 0; 

            System.out.println("VehÃculo: " + (i + 1)); 

            System.out.println("Cantidad de averÃas a reparar: " 

                    + (c[i].array.length - 1)); 

            System.out.print("AverÃas a reparar: "); 

            for (int j = 1; j < c[i].array.length; j++) { 

                System.out.print(c[i].array[j] + " "); 

            } 

            System.out.println(""); 

            env = new Environment(c[i].array, m.tipoAveria(c[i].array), 

                    m.subMatrixWeight(c[i].array), Double.parseDouble(args[5])); 

            a = new AcsTsp(env, Integer.parseInt(args[6]), Long.parseLong(args[7]), 

                    Double.parseDouble(args[8]), Integer.parseInt(args[9])); 

            a.printGlobalSolution(); 

            System.out.print("Taza del tiempo (min): "); 

            for (int j = 0; j < c[i].times.length; j++) { 

                totalTime += c[i].times[j]; 

                System.out.print(c[i].times[j] + " "); 

            } 

            System.out.println(""); 

            System.out.println("Tiempo total de las reparaciones (min): " + totalTime); 

            totalCoste += a.getBestGlobalSolution().coste; 

            System.out.println(""); 

//            Object[] obj = a.executeAcs(); 

//            a.printGlobalSolution(); 

//            System.out.println("Number Estages: " + ((Integer) obj[1]).intValue()); 

//            System.out.println("Time (sec): " + ((Long) obj[0]).longValue() / 1000); 

//            System.out.println(""); 

//            totalCoste += ((Double) obj[2]).doubleValue(); 

        } 

        System.out.println("Costo total: " + totalCoste); 

        System.out.println(""); 

//        System.out.println("Average coste: " + (int) totalCoste / c.length); 

    } 
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Appendix A.17: ACS solution report to case study instances 

Result report: I-32 

Number vehicles: 3 

Number orders: 31 

Total cost: 44.90593478261439 

Cost for route: 

Route 1: 11.870060551282766 

Route 2: 21.30090415900707 

Route 3: 11.734970072324549 

Best configuration of routes: 

Route 1: DEPOT -> Order 26 -> Order 24 -> Order 20 -> Order 31 -> Order 23 -> Order 

29 -> Order 30 -> Order 6 -> Order 22 -> Order 2 -> Order 5 -> DEPOT 

Route 2: DEPOT -> Order 4 -> Order 7 -> Order 12 -> Order 9 -> Order 13 -> Order 16 

-> Order 27 -> Order 28 -> Order 18 -> Order 17 -> DEPOT 

Route 3: DEPOT -> Order 14 -> Order 1 -> Order 25 -> Order 3 -> Order 15 -> Order 8 

-> Order 21 -> Order 19 -> Order 11 -> Order 10 -> DEPOT 

Best iteration: 12 
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Result report: I-94 

Number vehicles: 5  

Number orders: 93 

Total cost: 97.83174556362388  

Cost for route:  

Route 1: 14.56697576733946  

Route 2: 14.954278651363264  

Route 3: 11.265440048769786  

Route 4: 45.360074124048154  

Route 5: 11.684976972103195  

Best configuration of routes:  

Route 1: DEPOT -> Order 40 -> Order 46 -> Order 36 -> Order 41 -> Order 52 -> Order 

24 -> Order 30 -> Order 31 -> Order 83 -> Order 1 -> Order 21 -> Order 67 -> Order 5 -

> Order 49 -> Order 39 -> Order 66 -> Order 64 -> Order 86 -> Order 14 -> DEPOT  

Route 2: DEPOT -> Order 25 -> Order 54 -> Order 23 -> Order 32 -> Order 51 -> Order 

11 -> Order 6 -> Order 87 -> Order 72 -> Order 8 -> Order 63 -> Order 10 -> Order 94 -

> Order 18 -> Order 53 -> Order 73 -> Order 44 -> Order 58 -> Order 85 -> DEPOT  

Route 3: DEPOT -> Order 93 -> Order 75 -> Order 81 -> Order 13 -> Order 38 -> Order 

68 -> Order 19 -> Order 34 -> Order 3 -> Order 60 -> Order 79 -> Order 2 -> Order 4 -> 

Order 42 -> Order 65 -> Order 77 -> Order 37 -> Order 28 -> Order 57 -> DEPOT  

Route 4: DEPOT -> Order 82 -> Order 91 -> Order 33 -> Order 90 -> Order 89 -> Order 

88 -> Order 80 -> Order 92 -> Order 16 ->Order 17 -> Order 27 -> Order 26 -> Order 

78 -> Order 15 -> Order 56 -> Order 45 -> Order 9 -> Order 12 -> Order 69 -> DEPOT  

Route 5: DEPOT -> Order 76 -> Order 47 -> Order 70 -> Order 48 -> Order 71 -> Order 

35 -> Order 62 -> Order 22 -> Order 29 -> Order 74 -> Order 59 -> Order 61 -> Order 

55 -> Order 43 -> Order 20 -> Order 50 -> Order 7 -> Order 84 -> DEPOT  

Best iteration: 35 
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Result report: I-142   

Number vehicles: 5  

Number orders: 141  

Total cost: 88.31436514005219  

Cost for route:  

Route 1: 17.002615263116102  

Route 2: 25.403389271203395  

Route 3: 14.508517911315632  

Route 4: 16.06196862961225  

Route 5: 15.337874064804812  

Best configuration of routes:  

Route 1: DEPOT -> Order 26 -> Order 68 -> Order 46 -> Order 24 -> Order 82 -> Order 

106 -> Order 137 -> Order 20 -> Order 122 -> Order 25 -> Order 44 -> Order 90 -> 

Order 45 -> Order 49 -> Order 74 -> Order 131 -> Order 23 -> Order 139 -> Order 134 

->Order 29 -> Order 72 -> Order 51 -> Order 79 -> Order 57 -> Order 83 -> Order 19 -> 

Order 67 -> Order 70 -> Order 109 -> DEPOT  

Route 2: DEPOT -> Order 116 -> Order 65 -> Order 12 -> Order 89 -> Order 21 -> 

Order 111 -> Order 84 -> Order 123 -> Order 98 -> Order 53 -> Order 63 -> Order 121 

-> Order 97 -> Order 133 -> Order 135 -> Order 42 -> Order 102 -> Order 120 -> Order 

114 ->Order 80 -> Order 16 -> Order 28 -> Order 27 -> Order 37 -> Order 35 -> Order 

18 -> Order 17 -> Order 92 -> DEPOT  

Route 3: DEPOT -> Order 138 -> Order 85 -> Order 107 -> Order 47 -> Order 95 -> 

Order 104 -> Order 33 -> Order 32 -> Order 141-> Order 41 -> Order 52 -> Order 1 -> 

Order 14 -> Order 87 -> Order 127 -> Order 43 -> Order 36 -> Order 75 -> Order 62 -> 

Order 48 -> Order 129 -> Order 4 -> Order 71 -> Order 9 -> Order 34 -> Order 96 -> 

Order 100 -> Order 88 -> DEPOT  

Route 4: DEPOT -> Order 66 -> Order 55 -> Order 99 -> Order 61 -> Order 140 -> 

Order 76 -> Order 60 -> Order 54 -> Order 50 -> Order 30 -> Order 118 -> Order 38 -> 

Order 73 -> Order 125 -> Order 6 -> Order 136 -> Order 22 -> Order 2 -> Order 101 -> 

Order 105 -> Order 69 -> Order 126 -> Order 103 -> Order 128 -> Order 113 -> Order 

40 -> Order 3 -> Order 31 -> DEPOT  

Route 5: DEPOT -> Order 117 -> Order 7 -> Order 93 -> Order 39 -> Order 11 -> Order 

94 -> Order 59 -> Order 86 -> Order 81 -> Order 10 -> Order 77 -> Order 91 -> Order 

13 -> Order 132 -> Order 78 -> Order 112 -> Order 115 -> Order 110 -> Order 15 -> 

Order 8 -> Order 64 -> Order 124 -> Order 58 -> Order 130 -> Order 56 -> Order 119 -

> Order 5 -> Order 108 -> DEPOT  

Best iteration: 40 

 

 

 



APPENDIX A.17 

 

145 

 

Result report: I-170  

Number vehicles: 6  

Number orders: 169  

Total cost: 136.7595665804056  

Cost for route:  

Route 1: 16.86195563800663  

Route 2: 13.936000596951263  

Route 3: 13.008844143597363  

Route 4: 14.209577080091142  

Route 5: 61.58067953647952  

Route 6: 17.16250958527964  

Best configuration of routes:  

Route 1: DEPOT -> Order 130 -> Order 25 -> Order 67 -> Order 64 -> Order 11 -> 

Order 3 -> Order 135 -> Order 121 -> Order 14 -> Order 97 -> Order 62 -> Order 120 -

> Order 155 -> Order 125 -> Order 163 -> Order 127 -> Order 41 -> Order 101 -> Order 

139 -> Order 18 -> Order 66 -> Order 69 -> Order 88 -> Order 28 -> Order 55 -> Order 

118 -> Order 4 -> Order 39 -> Order 2 -> DEPOT  

Route 2: DEPOT -> Order 157 -> Order 23 -> Order 81 -> Order 105 -> Order 47 -> 

Order 131 -> Order 102 -> Order 68 -> Order 122 -> Order 56 -> Order 156 -> Order 20 

-> Order 110 -> Order 82 -> Order 145 -> Order 83 -> Order 52 -> Order 96 -> Order 

57 -> Order 78 -> Order 7 -> Order 63 -> Order 50 -> Order 71 -> Order 126 -> Order 

149 -> Order 136 -> Order 112 -> DEPOT  

Route 3: DEPOT -> Order 151 -> Order 114 -> Order 152 -> Order 111 -> Order 79 -> 

Order 93 -> Order 58 -> Order 85 -> Order 167 -> Order 10 -> Order 38 -> Order 119 -

> Order 113 -> Order 45 -> Order 53 -> Order 132 -> Order 75 -> Order 148 -> Order 

59 - > Order 61 -> Order 74 -> Order 35 -> Order 42 -> Order 153 -> Order 143 -> 

Order 65 -> Order 54 -> Order 115 -> DEPOT  

Route 4: DEPOT -> Order 154 -> Order 86 -> Order 13 -> Order 51 -> Order 129 -> 

Order 19 -> Order 89 -> Order 43 -> Order 24 -> Order 30 -> Order 107 -> Order 44 -> 

Order 48 -> Order 73 -> Order 123 -> Order 22 -> Order 29 -> Order 117 -> Order 146 

-> Order 37 -> Order 72 -> Order 169 -> Order 5 -> Order 128 -> Order 21 -> Order 1 -

> Order 100 -> Order 104 -> DEPOT  

Route 5: DEPOT -> Order 140 -> Order 116 -> Order 6 -> Order 92 -> Order 144 -> 

Order 138 -> Order 109 -> Order 77 -> Order 90-> Order 76 -> Order 162 -> Order 9 -> 

Order 159 -> Order 80 -> Order 158 -> Order 15 -> Order 160 -> Order 17 -> Order 26 

-> Order 27 -> Order 36 -> Order 34 -> Order 16 -> Order 161 -> Order 164 -> Order 

166 -> Order 103 -> Order 49 -> DEPOT  

Route 6: DEPOT -> Order 150 -> Order 91 -> Order 141 -> Order 95 -> Order 134 -> 

Order 99 -> Order 137 -> Order 33 -> Order 108 -> Order 87 -> Order 12 -> Order 124 

-> Order 8 -> Order 70 -> Order 106 -> Order 94 -> Order 46 -> Order 84 -> Order 32 -

> Order 133 -> Order 165 -> Order 147 -> Order 40 -> Order 60 -> Order 142 -> Order 

98 -> Order 31 -> Order 168 -> DEPOT  

Best iteration: 22 
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Result report: I-220  

Number vehicles: 7  

Number orders: 219  

Total cost: 178.884106342438  

Cost for route:  

Route 1: 78.5415306545839  

Route 2: 26.600217082300006  

Route 3: 15.326222044059806  

Route 4: 11.637771377938  

Route 5: 15.752672788617295  

Route 6: 14.37225672003841  

Route 7: 16.65343567490061  

Best configuration of routes:  

Route 1: DEPOT -> Order 138 -> Order 161 -> Order 75 -> Order 36 -> Order 43 -> 

Order 66 -> Order 151 -> Order 184 -> Order 189 -> Order 99 -> Order 61 -> Order 150 

-> Order 41 -> Order 141 -> Order 85 -> Order 33 -> Order 199 -> Order 104 -> Order 

205 -> Order 212 -> Order 174 -> Order 196 -> Order 188 -> Order 172 -> Order 200 -> 

Order 169 -> Order 179 -> Order 17 -> Order 45 -> Order 25 -> Order 31 -> Order 137 

-> DEPOT  

Route 2: DEPOT -> Order 181 -> Order 195 -> Order 159 -> Order 91 -> Order 10 -> 

Order 170 -> Order 175 -> Order 94 -> Order 185 -> Order 59 -> Order 86 -> Order 81 

-> Order 167 -> Order 147 -> Order 19 -> Order 37 -> Order 35 -> Order 28 -> Order 

27 -> Order 168 -> Order 18 -> Order 186 -> Order 16 -> Order 166 -> Order 67 -> 

Order 70 -> Order 202 -> Order 80 -> Order 11 -> Order 108 -> Order 176 -> Order 1 -

> DEPOT  

Route 3: DEPOT -> Order 127 -> Order 162 -> Order 87 -> Order 62 -> Order 55 -> 

Order 140 -> Order 76 -> Order 60 -> Order 54 - > Order 156 -> Order 50 -> Order 155 

-> Order 173 -> Order 32 -> Order 198 -> Order 47 -> Order 95 -> Order 107 -> Order 

197 -> Order 190 -> Order 201 -> Order 209 -> Order 71 -> Order 152 -> Order 112 -> 

Order 114 -> Order 120 -> Order 39 -> Order 77 -> Order 48 -> Order 46 -> DEPOT  

Route 4: DEPOT -> Order 26 -> Order 68 -> Order 204 -> Order 65 -> Order 116 -> 

Order 12 -> Order 102 -> Order 97 -> Order 163 -> Order 133 -> Order 171 -> Order 53 

-> Order 178 -> Order 121 -> Order 63 -> Order 98 -> Order 153 -> Order 83 -> Order 

89 -> Order 111 -> Order 21 -> Order 57 -> Order 124 -> Order 72 -> Order 29 -> 

Order 56 -> Order 119 -> Order 5 -> Order 216 -> Order 219 -> Order 90 -> DEPOT  

Route 5: DEPOT -> Order 106 -> Order 165 -> Order 24 -> Order 82 -> Order 20 -> 

Order 208 -> Order 122 -> Order 215 -> Order 49 -> Order 74 -> Order 131 -> Order 

203 -> Order 23 -> Order 213 -> Order 214 -> Order 38 -> Order 73 -> Order 177 -> 

Order 125 -> Order 6 -> Order 206 -> Order 136 -> Order 22 -> Order 2 -> Order 191 -

> Order 139 -> Order 183 -> Order 180 -> Order 40 -> Order 3 -> Order 14 -> DEPOT  

Route 6: DEPOT -> Order 207 -> Order 145 -> Order 109 -> Order 88 -> Order 92 -> 

Order 149 -> Order 96 -> Order 142 -> Order 100 -> Order 158 -> Order 34 -> Order 9 

-> Order 210 -> Order 132 -> Order 211 -> Order 13 -> Order 78 -> Order 146 -> Order 

110 -> Order 115 -> Order 160 -> Order 15 -> Order 194 -> Order 64 -> Order 8 -> 



APPENDIX A.17 

 

147 

 

Order 135 -> Order 42 -> Order 217 -> Order 218 -> Order 44 -> Order 52 -> DEPOT  

Route 7: DEPOT -> Order 93 -> Order 7 -> Order 148 -> Order 117 -> Order 4 -> Order 

129 -> Order 143 -> Order 164 -> Order 79 - > Order 58 -> Order 157 -> Order 144 -> 

Order 134 -> Order 154 -> Order 118 -> Order 30 -> Order 126 -> Order 103 -> Order 

69 -> Order 130 -> Order 105 -> Order 128 -> Order 101 -> Order 84 -> Order 123 -> 

Order 192 -> Order 193 -> Order 113 -> Order 187 - > Order 182 -> Order 51 -> 

DEPOT  

Best iteration: 77 
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Appendix A.18: M-ACS solution report  

Result report: I-32 

Number vehicles: 3  

Number orders: 31  

Total cost: 44.74051120458302  

Cost for route:  

Route 1: 13.128259266422468  

Route 2: 9.721328195331118  

Route 3: 21.89092374282944  

Best configuration of routes:  

Route 1: DEPOT -> Order 26 -> Order 14 -> Order 1 -> Order 25 -> Order 23 -> Order 

22 -> Order 2 -> Order 6 -> Order 21 -> Order 19 -> Order 9 -> DEPOT  

Route 2: DEPOT -> Order 12 -> Order 24 -> Order 20 -> Order 31 -> Order 5 -> Order 

3 -> Order 29 -> Order 30 -> Order 8 -> Order 15 -> DEPOT  

Route 3: DEPOT -> Order 4 -> Order 7 -> Order 13 -> Order 11 -> Order 10 -> Order 

16 -> Order 27 -> Order 28 -> Order 18 -> Order 17 -> DEPOT  

Best colony: 3  

Best iteration: 32 
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Result report: I-94  

Number vehicles: 5  

Number orders: 94  

Total cost: 98.32460649703218  

Cost for route:  

Route 1: 45.933386715860266  

Route 2: 11.878467246673036  

Route 3: 10.7069226176238  

Route 4: 14.725292287945845  

Route 5: 15.080537628929218  

Best configuration of routes:  

Route 1: DEPOT -> Order 82 -> Order 93 -> Order 91 -> Order 89 -> Order 90 -> Order 

33 -> Order 88 -> Order 80 -> Order 92 -> Order 16 -> Order 17 -> Order 26 -> Order 

27 -> Order 78 -> Order 15 -> Order 53 -> Order 56 -> Order 18 -> Order 64 -> DEPOT  

Route 2: DEPOT -> Order 75 -> Order 36 -> Order 76 -> Order 70 -> Order 41 -> Order 

48 -> Order 19 -> Order 30 -> Order 31 -> Order 22 -> Order 42 -> Order 28 -> Order 

58 -> Order 65 -> Order 77 -> Order 73 -> Order 49 -> Order 39 -> Order 86 -> DEPOT  

Route 3: DEPOT -> Order 25 -> Order 54 -> Order 23 -> Order 32 -> Order 13 -> Order 

38 -> Order 68 -> Order 79 -> Order 2 -> Order 4 -> Order 55 -> Order 61 -> Order 43 -

> Order 20 -> Order 44 -> Order 37 -> Order 50 -> Order 7 -> Order 84 -> DEPOT  

Route 4: DEPOT -> Order 40 -> Order 46 -> Order 47 -> Order 81 -> Order 52 -> Order 

71 -> Order 24 -> Order 35 -> Order 62 -> Order 29 -> Order 74 -> Order 59 -> Order 5 

-> Order 21 -> Order 67 -> Order 1 -> Order 83 -> Order 66 -> Order 14 -> DEPOT  

Route 5: DEPOT -> Order 51 -> Order 34 -> Order 3 -> Order 87 -> Order 72 -> Order 

6 -> Order 11 -> Order 57 -> Order 8 -> Order 63 -> Order 10 -> Order 94 -> Order 45 -

> Order 9 -> Order 12 -> Order 69 -> Order 60 -> Order 85 -> DEPOT  

Best colony: 1  

Best iteration: 26 
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Result report: I-142  

Number vehicles: 5  

Number orders: 141  

Total cost: 88.47567226745277  

Cost for route:  

Route 1: 13.079007043369128  

Route 2: 28.371701921439282  

Route 3: 17.255233900955773  

Route 4: 14.6505224788158  

Route 5: 15.119206922872806  

Best configuration of routes:  

Route 1: DEPOT -> Order 26 -> Order 68 -> Order 46 -> Order 127 -> Order 14 -> 

Order 52 -> Order 1 -> Order 137 -> Order 20 -> Order 122 -> Order 25 -> Order 45 -> 

Order 49 -> Order 44 -> Order 90 -> Order 31 -> Order 108 -> Order 139 -> Order 23 -

> Order 131 -> Order 74 -> Order 119 -> Order 5 -> Order 40 -> Order 3 -> Order 113 -

> Order 72 -> Order 134 -> Order 56 -> DEPOT  

Route 2: DEPOT -> Order 116 -> Order 65 -> Order 12 -> Order 117 -> Order 7 -> 

Order 93 -> Order 39 -> Order 11 -> Order 94 -> Order 59 -> Order 86 -> Order 81 -> 

Order 10 -> Order 80 -> Order 16 -> Order 28 -> Order 27 -> Order 37 -> Order 35 -> 

Order 18 - > Order 17 -> Order 67 -> Order 70 -> Order 19 -> Order 121 -> Order 97 -> 

Order 133 -> Order 42 -> DEPOT  

Route 3: DEPOT -> Order 138 -> Order 61 -> Order 140 -> Order 76 -> Order 60 -> 

Order 54 -> Order 50 -> Order 41 -> Order 32 -> Order 85 -> Order 33 -> Order 107 -> 

Order 104 -> Order 95 -> Order 47 -> Order 141 -> Order 129 -> Order 4 -> Order 48 -

> Order 106 -> Order 82 -> Order 24 -> Order 71 -> Order 110 -> Order 115 -> Order 

112 -> Order 102 -> Order 15 -> DEPOT  

Route 4: DEPOT -> Order 66 -> Order 99 -> Order 62 -> Order 55 -> Order 75 -> Order 

36 -> Order 43 -> Order 87 -> Order 30 -> Order 118 -> Order 38 -> Order 73 -> Order 

125 -> Order 6 -> Order 136 -> Order 22 -> Order 2 -> Order 101 -> Order 105 -> 

Order 128 -> Order 126 -> Order 103 -> Order 69 -> Order 130 -> Order 79 -> Order 

124 -> Order 51 -> Order 29 -> DEPOT  

Route 5: DEPOT -> Order 34 -> Order 109 -> Order 88 -> Order 92 -> Order 100 -> 

Order 96 -> Order 9 -> Order 132 -> Order 78 -> Order 91 -> Order 77 -> Order 120 -> 

Order 114 -> Order 53 -> Order 63 -> Order 98 -> Order 84 -> Order 123 -> Order 89 -

> Order 21 -> Order 111 -> Order 83 -> Order 57 -> Order 58 -> Order 64 -> Order 8 -> 

Order 135 -> Order 13 -> DEPOT  

Best colony: 1  

Best iteration: 41 
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Result report: I-170  

Number vehicles: 6  

Number orders: 169  

Total cost: 141.63212823401994  

Cost for route:  

Route 1: 11.929748042458288  

Route 2: 14.001534878846725  

Route 3: 12.14974979143773  

Route 4: 66.01821913860176  

Route 5: 12.110782744147258  

Route 6: 25.422093638528196  

Best configuration of routes:  

Route 1: DEPOT -> Order 157 -> Order 23 -> Order 81 -> Order 45 -> Order 53 -> 

Order 59 -> Order 75 -> Order 148 -> Order 60 -> Order 98 -> Order 142 -> Order 147 

-> Order 165 -> Order 133 -> Order 106 -> Order 94 -> Order 46 -> Order 84 -> Order 

32 -> Order 31 -> Order 103 -> Order 40 -> Order 49 -> Order 132 -> Order 54 -> 

Order 61 -> Order 65 -> Order 143 -> Order 35 -> DEPOT  

Route 2: DEPOT -> Order 154 -> Order 86 -> Order 13 -> Order 51 -> Order 89 -> 

Order 43 -> Order 24 -> Order 107 -> Order 131 - > Order 102 -> Order 68 -> Order 

122 -> Order 97 -> Order 62 -> Order 120 -> Order 155 -> Order 125 -> Order 96 -> 

Order 145 -> Order 82 -> Order 88 -> Order 110 -> Order 78 -> Order 63 -> Order 7 -> 

Order 14 -> Order 112 -> Order 3 -> DEPOT  

Route 3: DEPOT -> Order 150 -> Order 134 -> Order 95 -> Order 87 -> Order 108 -> 

Order 137 -> Order 33 -> Order 12 -> Order 9 - > Order 162 -> Order 76 -> Order 113 -

> Order 119 -> Order 101 -> Order 41 -> Order 127 -> Order 163 -> Order 52 -> Order 

83 -> Order 20 -> Order 56 -> Order 156 -> Order 57 -> Order 50 -> Order 71 -> Order 

28 -> Order 121 -> Order 19 -> DEPOT  

Route 4: DEPOT -> Order 140 -> Order 116 -> Order 6 -> Order 92 -> Order 151 -> 

Order 114 -> Order 152 -> Order 111 -> Order 138 -> Order 109 -> Order 144 -> Order 

70 -> Order 8 -> Order 124 -> Order 77 -> Order 90 -> Order 17 -> Order 160 -> Order 

26 -> Order 27 -> Order 36 -> Order 34 -> Order 16 -> Order 161 -> Order 164 -> 

Order 166 -> Order 105 -> Order 42 -> DEPOT  

Route 5: DEPOT -> Order 130 -> Order 25 -> Order 67 -> Order 64 -> Order 11 -> 

Order 115 -> Order 47 -> Order 168 -> Order 30 - > Order 44 -> Order 48 -> Order 73 -

> Order 123 -> Order 22 -> Order 29 -> Order 146 -> Order 37 -> Order 117 -> Order 

149 -> Order 136 -> Order 126 -> Order 55 -> Order 118 -> Order 4 -> Order 39 -> 

Order 2 -> Order 135 -> Order 74 -> DEPOT  

Route 6: DEPOT -> Order 91 -> Order 141 -> Order 99 -> Order 93 -> Order 79 -> 

Order 10 -> Order 38 -> Order 167 -> Order 58 -> Order 85 -> Order 80 -> Order 159 -

> Order 15 -> Order 158 -> Order 139 -> Order 18 -> Order 66 -> Order 69 -> Order 21 

-> Order 128 -> Order 1 -> Order 5 -> Order 100 -> Order 104 -> Order 169 -> Order 

72 -> Order 129 -> Order 153 -> DEPOT  

Best colony: 1  

Best iteration: 86 
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Result report: I-220  

Number vehicles: 7  

Number orders: 219  

Total cost: 173.81348675379405  

Cost for route:  

Route 1: 14.220729292899858  

Route 2: 14.614079579376686  

Route 3: 75.95005069171887  

Route 4: 16.16749974062923  

Route 5: 15.229121763906116  

Route 6: 13.677867642857267  

Route 7: 23.954138042406086  

Best configuration of routes:  

Route 1: DEPOT -> Order 138 -> Order 161 -> Order 75 -> Order 36 -> Order 43 -> 

Order 66 -> Order 151 -> Order 184 -> Order 157 -> Order 134 -> Order 56 -> Order 29 

-> Order 72 -> Order 79 -> Order 58 -> Order 164 -> Order 21 -> Order 111 -> Order 

83 -> Order 153 -> Order 89 -> Order 57 -> Order 130 -> Order 69 -> Order 126 -> 

Order 103 -> Order 154 -> Order 118 -> Order 124 -> Order 51 -> Order 64 -> Order 

135 -> DEPOT  

Route 2: DEPOT -> Order 181 -> Order 93 -> Order 195 -> Order 159 -> Order 115 -> 

Order 110 -> Order 146 -> Order 91 -> Order 10 -> Order 170 -> Order 175 -> Order 94 

-> Order 185 -> Order 59 -> Order 86 -> Order 81 -> Order 167 -> Order 147 -> Order 

19 - > Order 97 -> Order 102 -> Order 163 -> Order 133 -> Order 171 -> Order 53 -> 

Order 178 -> Order 121 -> Order 63 -> Order 123 -> Order 84 -> Order 98 -> Order 105 

-> DEPOT  

Route 3: DEPOT -> Order 127 -> Order 162 -> Order 87 -> Order 62 -> Order 55 -> 

Order 189 -> Order 61 -> Order 41 -> Order 141 -> Order 173 -> Order 32 -> Order 198 

-> Order 33 -> Order 85 -> Order 107 -> Order 197 -> Order 47 -> Order 95 -> Order 

199 -> Order 104 -> Order 212 -> Order 205 -> Order 174 -> Order 196 -> Order 188 -> 

Order 172 -> Order 200 -> Order 169 -> Order 179 - > Order 17 -> Order 18 -> DEPOT  

Route 4: DEPOT -> Order 26 -> Order 68 -> Order 204 -> Order 65 -> Order 116 -> 

Order 12 -> Order 215 -> Order 49 -> Order 74 - > Order 131 -> Order 203 -> Order 23 

-> Order 213 -> Order 214 -> Order 38 -> Order 73 -> Order 128 -> Order 125 -> Order 

101 -> Order 6 -> Order 206 -> Order 136 -> Order 22 -> Order 2 -> Order 191 -> 

Order 177 -> Order 30 -> Order 144 -> Order 139 -> Order 183 -> Order 180 -> 

DEPOT  

Route 5: DEPOT -> Order 190 -> Order 201 -> Order 60 -> Order 76 -> Order 140 -> 

Order 99 -> Order 150 -> Order 155 -> Order 50 -> Order 156 -> Order 54 -> Order 46 

-> Order 1 -> Order 52 -> Order 44 -> Order 90 -> Order 137 -> Order 182 -> Order 48 

-> Order 4 -> Order 129 -> Order 143 -> Order 117 -> Order 148 -> Order 7 -> Order 

152 -> Order 112 -> Order 114 -> Order 120 -> Order 39 -> Order 42 -> DEPOT  

Route 6: DEPOT -> Order 106 -> Order 165 -> Order 24 -> Order 82 -> Order 20 -> 

Order 208 -> Order 122 -> Order 176 -> Order 216 -> Order 108 -> Order 219 -> Order 

31 -> Order 25 -> Order 218 -> Order 217 -> Order 45 -> Order 119 -> Order 5 -> 

Order 40 - > Order 3 -> Order 187 -> Order 113 -> Order 192 -> Order 193 -> Order 15 
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-> Order 194 -> Order 160 -> Order 78 -> Order 77 -> Order 11 -> Order 8 -> DEPOT  

Route 7: DEPOT -> Order 207 -> Order 145 -> Order 109 -> Order 88 -> Order 92 -> 

Order 149 -> Order 96 -> Order 100 -> Order 142 -> Order 158 -> Order 34 -> Order 9 

-> Order 71 -> Order 209 -> Order 210 -> Order 132 -> Order 211 -> Order 13 -> Order 

37 - > Order 35 -> Order 28 -> Order 27 -> Order 168 -> Order 186 -> Order 16 -> 

Order 166 -> Order 70 -> Order 67 -> Order 80 -> Order 202 -> Order 14 -> DEPOT  

Best colony: 2  

Best iteration: 90 
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Appendix A.19: Results of the possible solution approaches in the effectiveness analysis 
IN

S
T

A
N

C
E

S
 SOLUTION APPROACH-I SOLUTION APPROACH-II 

SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

1 E BB 144.21 0.52 A ACO 156.24 0.10 171.80 0.40 

2 E BB 150.32 0.48 A ACO 162.44 0.05 187.93 0.02 

3 E BB 119.67 0.45 A ACO 146.65 0.03 156.06 0.01 

4 E BB 117.33 0.46 A ACO 132.70 0.03 153.67 0.01 

5 E BB 121.15 0.51 A ACO 148.58 0.08 157.95 0.03 

6 E BB 93.56 0.38 A ACO 110.34 0.02 145.15 0.01 

7 E BB 124.90 0.50 A ACO 139.43 0.05 154.59 0.03 

8 E BB 94.15 0.37 A ACO 111.22 0.02 142.82 0.01 

9 E BB 151.19 0.48 A ACO 163.22 0.07 180.21 0.04 

10 E BB 109.17 0.41 A ACO 128.62 0.02 141.40 0.01 

11 E BB 293.83 1.02 A ACO 214.33 0.17 222.96 0.05 

12 A ACO 255.43 0.35 E BB 253.67 21.23 278.47 0.15 

13 E BB 191.23 6.73 A ACO 204.48 0.12 220.91 0.08 

14 E BB 222.15 18.90 A ACO 230.60 0.25 245.03 0.11 

15 A ACO 248.53 0.42 E BB 245.32 28.14 256.90 0.26 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

16 E BB 229.67 15.43 A ACO 241.38 0.18 267.14 0.11 

17 A ACO 216.56 0.10 E BB 212.11 12.34 220.23 0.18 

18 E BB 240.43 21.11 A ACO 249.89 0.25 268.83 0.20 

19 A ACO 252.85 0.42 E BB 248.18 28.45 271.34 0.41 

20 E BB 211.34 17.51 A ACO 224.77 0.20 245.67 0.21 

21 A ACO 312.19 0.53 E BB 308.01 34.21 336.91 0.51 

22 A ACO 302.83 0.68 E BB 293.16 36.18 334.56 0.60 

23 A ACO 334.27 0.43 E BB 229.01 33.49 357.60 0.43 

24 A ACO 335.44 0.82 E BB 321.94 38.31 361.74 0.81 

25 A ACO 326.08 0.52 E BB 315.13 34.18 351.58 0.50 

26 A ACO 303.01 0.45 E BB 293.45 36.17 334.19 0.42 

27 A ACO 352.98 1.03 E BB 350.03 40.41 372.57 0.54 

28 A ACO 318.05 0.53 E BB 311.15 38.54 348.67 0.48 

29 A ACO 342.22 0.70 E BB 333.76 35.37 367.18 0.62 

30 A ACO 344.40 0.73 E BB 338.42 36.99 368.35 0.63 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

31 A ACO 410.90 1.70 E BB 402.65 41.95 461.30 1.56 

32 A ACO 424.13 1.92 E BB 418.47 43.17 458.13 1.59 

33 A ACO 434.72 2.43 E BB 425.96 44.89 467.06 1.90 

34 A ACO 428.26 4.17 E BB 417.17 46.88 451.34 4.03 

35 A ACO 400.87 1.38 E BB 392.70 38.98 423.11 1.30 

36 A ACO 420.07 1.18 E BB 411.61 41.77 441.08 1.15 

37 A ACO 419.87 1.13 E BB 409.24 40.93 448.84 1.10 

38 A ACO 414.19 1.27 E BB 402.58 41.89 439.63 1.21 

39 A ACO 432.78 1.63 E BB 420.92 44.35 465.26 1.50 

40 A ACO 429.56 1.82 E BB 415.85 45.03 473.10 1.68 

41 E BB 192.32 17.01 A ACO 201.23 0.12 210.98 0.08 

42 E BB 164.59 15.41 A ACO 172.42 0.05 181.21 0.03 

43 E BB 170.31 16.57 A ACO 178.70 0.07 189.81 0.04 

44 A ACO 199.62 0.13 E BB 192.01 26.66 215.35 0.08 

45 A ACO 196.70 0.12 E BB 191.68 26.13 221.61 0.08 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

46 A ACO 220.61 0.17 E BB 208.18 30.56 243.05 0.12 

47 E BB 102.64 0.45 A ACO 116.11 0.02 143.26 0.01 

48 A ACO 205.67 0.12 E BB 201.36 27.95 235.13 0.07 

49 E BB 141.48 16.54 A ACO 153.18 0.03 171.50 0.01 

50 E BB 180.69 17.00 A ACO 197.41 0.08 212.01 0.02 

51 E BB 158.32 1.74 A ACO 164.20 0.03 187.22 0.01 

52 E BB 128.93 0.99 A ACO 140.45 0.02 162.76 0.01 

53 E BB 128.17 1.20 A ACO 132.08 0.02 148.37 0.01 

54 A ACO 212.60 0.20 E BB 210.70 29.35 234.63 0.08 

55 E BB 136.16 1.23 A ACO 138.90 0.03 151.52 0.02 

56 E BB 135.69 1.31 A ACO 142.10 0.03 151.96 0.02 

57 E BB 109.00 1.22 A ACO 121.00 0.02 127.47 0.01 

58 E BB 128.65 0.65 A ACO 133.94 0.02 146.72 0.01 

59 E BB 108.32 0.89 A ACO 122.81 0.02 134.19 0.01 

60 E BB 139.28 0.92 A ACO 147.31 0.02 157.01 0.01 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

61 E BB 188.04 4.56 A ACO 196.70 0.08 201.69 0.01 

62 E BB 145.75 1.54 A ACO 147.62 0.02 148.21 0.01 

63 E BB 118.34 0.95 A ACO 133.00 0.02 161.52 0.01 

64 E BB 138.71 1.24 A ACO 146.35 0.03 171.76 0.01 

65 E BB 152.62 3.25 A ACO 167.18 0.05 183.50 0.01 

66 A ACO 212.23 0.17 E BB 209.36 21.45 234.93 0.07 

67 E BB 145.32 0.82 A ACO 157.62 0.02 165.13 0.01 

68 E BB 163.84 3.75 A ACO 176.66 0.08 188.11 0.03 

69 E BB 137.65 1.34 A ACO 151.12 0.02 153.23 0.01 

70 E BB 154.82 2.71 A ACO 169.32 0.02 176.05 0.01 

71 E BB 98.63 0.82 A ACO 117.07 0.02 142.60 0.01 

72 E BB 171.08 4.01 A ACO 187.25 0.08 201.95 0.02 

73 E BB 148.68 2.59 A ACO 158.02 0.03 181.59 0.01 

74 E BB 128.40 1.34 A ACO 142.94 0.02 152.71 0.01 

75 E BB 122.77 1.21 A ACO 135.53 0.02 135.58 0.01 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

76 E BB 196.61 15.67 A ACO 200.09 0.08 226.58 0.04 

77 E BB 155.35 7.31 A ACO 171.36 0.05 188.52 0.02 

78 E BB 112.66 1.65 A ACO 122.42 0.02 135.78 0.01 

79 E BB 158.52 4.87 A ACO 171.61 0.05 190.97 0.02 

80 E BB 170.24 5.03 A ACO 181.08 0.08 186.69 0.03 

81 E BB 173.05 5.46 A ACO 188.04 0.07 217.09 0.02 

82 E BB 177.41 5.13 A ACO 185.08 0.08 212.52 0.03 

83 A ACO 220.37 0.13 E BB 218.14 26.78 232.22 0.04 

84 E BB 177.20 6.78 A ACO 190.76 0.08 213.66 0.03 

85 E BB 183.11 7.02 A ACO 183.97 0.10 210.54 0.03 

86 E BB 137.79 2.31 A ACO 145.02 0.03 166.45 0.01 

87 E BB 178.73 6.45 A ACO 184.55 0.10 202.29 0.04 

88 E BB 193.15 10.12 A ACO 205.27 0.22 206.36 0.14 

89 E BB 195.61 8.34 A ACO 197.51 0.20 200.72 0.12 

90 E BB 172.44 3.45 A ACO 177.62 0.08 204.05 0.03 
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IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
SOLUTION 

APPROACH-III 

Classification 

results (  ) 

Proposed algorithm 

( ) 

Solution 

quality  

(  ) 

Computation 

time  

(  ) 

                 

91 A ACO 425.18 1.88 E ACO 416.79 67.26 443.03 1.03 

92 A ACO 421.73 1.75 E ACO 419.48 17.25 441.36 0.49 

93 A ACO 527.78 5.25 E ACO 518.95 28.60 533.58 4.41 

94 A ACO 520.01 4.03 E ACO 513.07 171.32 549.53 2.03 

95 A ACO 529.04 3.97 E ACO 522.17 0.07 532.96 2.92 

96 A ACO 538.45 4.23 E ACO 528.49 9.46 547.27 3.73 

97 A ACO 518.47 4.07 E ACO 509.86 42.98 531.38 1.21 

98 A ACO 524.84 3.95 E ACO 516.11 213.32 543.93 1.31 

99 A ACO 512.39 3.62 E ACO 509.43 46.20 531.59 3.01 

100 A ACO 419.52 3.10 E ACO 413.62 173.85 423.40 1.98 

101 A ACO 498.71 3.83 E ACO 488.96 56.68 506.44 3.29 

102 A ACO 616.36 5.57 E ACO 614.89 207.84 630.43 3.39 

103 A ACO 576.13 5.25 E ACO 570.68 138.57 578.17 3.41 

104 A ACO 610.64 6.18 E ACO 606.37 16.04 635.07 5.29 

105 A ACO 598.66 5.93 E ACO 591.32 27.14 627.90 3.07 



APPENDIX A.19 

 

161 

 

 

IN
S

T
A

N
C

E
S

 SOLUTION APPROACH-I SOLUTION APPROACH-II 
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106 A ACO 625.40 6.07 E ACO 623.00 42.21 640.74 4.99 

107 A ACO 608.78 6.13 E ACO 604.40 110.37 615.20 2.44 

108 A ACO 603.34 5.70 E ACO 602.14 113.51 614.02 3.09 

109 A ACO 599.36 5.28 E ACO 591.59 189.23 625.64 1.75 

110 A ACO 593.26 5.35 E ACO 586.35 52.66 619.02 5.26 

111 A ACO 418.32 1.85 E ACO 416.38 163.45 423.02 1.47 

112 A ACO 583.39 5.08 E ACO 576.92 160.74 584.79 1.11 

113 A ACO 603.34 7.30 E ACO 602.70 161.18 624.95 5.60 

114 A ACO 600.25 7.60 E ACO 596.91 180.45 609.98 2.01 

115 A ACO 614.53 8.05 E ACO 605.67 135.79 615.10 2.47 

116 A ACO 596.14 8.30 E ACO 592.20 237.32 622.92 0.28 

117 A ACO 604.96 7.20 E ACO 600.60 297.02 632.83 6.70 

118 A ACO 607.08 7.78 E ACO 604.45 101.59 614.62 3.57 

119 A ACO 612.85 7.18 E ACO 612.55 180.92 624.05 1.49 

120 A ACO 469.07 6.08 E ACO 467.41 198.61 478.54 3.39 
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121 A ACO 604.14 7.57 E ACO 596.50 283.36 607.44 1.38 

122 A ACO 425.94 2.05 E ACO 417.05 32.91 428.20 1.10 

123 A ACO 425.05 1.92 E ACO 425.01 153.99 427.52 1.44 

124 A ACO 432.60 1.87 E ACO 427.64 59.23 440.52 0.27 

125 A ACO 437.96 1.93 E ACO 437.07 52.89 458.77 0.52 

126 A ACO 442.57 2.02 E ACO 440.86 98.36 455.10 0.93 

127 A ACO 450.05 2.18 E ACO 442.80 86.57 455.18 0.44 
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