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DEUTSCHE ZUSAMMENFASSUNG iii

Deutsche Zusammenfassung

Diese Schrift entḧalt Manuskripte und Nachdrucke aus den Gebieten der Optimierung und
Kombinatorik. Zu Beginn beschäftigt sie sich mit den Polyedern des bekannten Problems des
Handlungsreisenden. Zu diesem sind zwei Polyeder assoziiert (bekannt als graphisches bzw.
symmetrisches), deren Verhältnis zwei Artikel beleuchten. Zum Einen stellt sich heraus, dass
das graphische Polyeder sich allein geometrisch aus dem symmetrischen ergibt, unter Zuhilfe-
nahme des Metrischen Kegels. Zum Anderen kann man den Chamber Komplexder Projektion
der Polare der Polyeder elementar charakterisieren.

Weiterhin entḧalt die Schrift eine Arbeiẗuber Kanten eines Polyeders zu Graph Labeling
Problemen, sowie eine Arbeit zu Network Design mit nicht-linearen Kosten.

Sẗarker kombinatorisch ausgerichtet sind Arbeitenüber kleine Minoren in Graphen mit
großem, konstanten Durchschnittsgrad, sowieüber Edge-Labelings in Graphen ohne kurze
Kreise. Die Beziehungen zur Optimierung werden in der Einführung erl̈autert. Ein Artikel
widmet sich der F̈arbungszahl von zufälligenÜberlagerungen gewisser Graphen, mit endlicher,
nach unendlich gehender Faser; ein weiterer der Erfüllbarkeit zuf̈alliger logischer Formeln mit
Bedingungen der Formx ∈ I für IntervalleI ⊂ [0, 1]. Die Arbeit schließt mit Resultaten zum
sogenannten Cops-&-Robber Spiel auf Graphen.
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Part 1

Introduction





CHAPTER 1

Optimization and Polyhedra

In 1954, Dantzig, Fulkerson and Johnson [DFJ54] initiated what is currently the most suc-
cessful practical method for solving large-scale NP-hard discrete optimization problems. The
idea was to use Dantzig’s Simplex method for Linear Programming to try to solve theTraveling
Salesman Problem (TSP):Given a complete graphKn together with lengths for its edges, find
a tour visiting each vertex exactly once (or Hamiltonian cycle) with minimum total cost of its
edges. The approach of Dantzig, Fulkerson and Johnson was iterative. They first decided on a
Linear Programming formulation whose optimal solution would provide a lower bound to the
length of the optimal tour. Due to the exponential size of the formulation, its solution would not
be computationally feasible. Hence, only a considerably smaller Linear Program, containing
a subset of the constraints, would actually be solved by the Simplex method. Ifthe solution
to the LP were found to violate some of the constraints which had been omitted, those con-
straints would be added to the Linear Program, and thus, an iterative procedure would generate
successively better lower bounds on the length of the optimal tour.

This iterativecutting plane methodis usually combined with branch-and-bound techniques.
The resultingBranch-and-Cutmethod has proved tremendously successful in solving a great
variety of NP-hard combinatorial optimization problems. Even though it is also at the heart
of state-of-the-art Integer Programming solvers, a key to its current success in solving prob-
lems like the TSP lies in large parts with the understanding of polyhedra associated with the
problems. For problems which are defined combinatorially, like the TSP, this results in fruitful
interactions of polyhedral-geometric and combinatorial techniques.

1.1. Understanding the relationship between the Symmetric and Graphical TSP

TheSymmetric Traveling Salesman Polytopeis the convex hull of all characteristic vectors
of edge sets of cycles (i.e., circuits) on the vertex setVn := {1, . . . , n} (in other words, Hamil-
tonian cycles in the complete graph with vertex setVn). For the formal definition, denote by
En the set of all two-element subsets ofVn. This is the set of all possible edges of a graph with
vertex setVn. The Symmetric Traveling Salesman Polytope is then the following set:

Sn := conv
{
χC | C is the edge set of a Hamiltonian cycle with vertex setVn

}
⊂ REn .

Here, for an edge setF , χF is the characteristic vector inREn with χF
e = 1 if e ∈ F , and zero

otherwise.
In the mid nineteen-fifties, the first theoretical research about Symmetric Traveling Sales-

man Polytopes appeared in a series of short communications and papers [Hel55a, Hel55b,
Hel56, Kuh55, Nor55]. With few exceptions (for example [FN92, Nor55] for the casen ≤ 5;
[BC91] for n = 6, 7; [CJR91, CR96, CR01, ORT07] for n = 8, 9), no complete character-
ization of the facets ofSn are known. In fact, since the TSP is NP-hard, there cannot exist a
polynomial time algorithm producing, for everyn and every pointx ∈ RE \ Sn, a hyperplane
separatingx from Sn, unlessP=NP (I have omitted some technical conditions here). Another
noteworthy argument for the complexity of these polytopes is a result of Billera & Sarangarajan
[BS96]: For every 0/1-polytopeP , there exists ann such thatP is affinely isomorphic to a face
of Sn.

3



4 1. OPTIMIZATION AND POLYHEDRA

Since the seminal work of Naddef & Rinaldi [NR91, NR93], a second polyhedron also
has been used: theGraphical Traveling Salesman polyhedron.It is the convex hull of all
characteristic vectors of edge multi-sets of connected (loopless) Eulerianmulti-graphs on the
vertex setVn. (Recall thatEulerian means that there exists a walk containing all edges.) A
(loopless) multi-graph with vertex setVn has as its edge set a sub-multi-set ofEn. By defining,
for any multi-setF of edges ofKn, its characteristic vectorχF ∈ REn so thatχF

e counts the
number of occurrences ofe in F , the Graphical Traveling Salesman Polyhedron is formally
defined as

Pn := conv
{
χF
∣∣ F is the edge multi-set of a connected Eulerian multi-graph

with vertex setVn

}
⊂ REn .

Ever since Naddef & Rinaldi’s papers on the Graphical and Symmetric Traveling Salesman
Polyhedra [NR91, NR93], Pn is considered to be an important tool for investigating the facets
of Sn. Moreover, the Graphical Traveling Salesman Polyhedron is also occasionally more
convenient to work with computationally: In works of Carr [Car04] and Applegate, Bixby,
Chvàtal & Cook [ABCC01], Pn is (proposed to be) used algorithmically within Branch-and-
Cut frameworks solving the TSP.

Numerous authors have expressed how close the connection between Graphical and Sym-
metric Traveling Salesman Polyhedra is. The most basic justification for this opinion is the fact
thatSn is a face ofPn — consisting of all pointsx whose “degree” is two at every vertex —,
but the links are far deeper (see [Nad02] or [ORT07] and the references therein).

The connections known before the publication of the short communication [The10], which
is reprinted as Chapter3 of this thesis, were established combinatorially by comparing Hamil-
tonian cycles with spanning Eulerian multi-graphs. Surprisingly, though, the relationship of the
two polyhedra can be understood entirely geometrically.

Theorem 1.1.Pn is the intersection of the positive orthant with the Minkowski sum ofSn and
the polarC△

n of the metric coneCn:

Pn = (Sn + C△
n ) ∩ REn

+

The metric cone consists of alla ∈ REn which satisfy the triangle inequality

auv ≤ auw + awv

for all pairwise distinct verticesu, v, w ∈ Vn. Consequently, its polar is generated as a cone by
the vectors

χ{uw} + χ{wv} − χ{uv}.

While the importance of the triangle inequality was realized already by Naddef &Ri-
naldi [NR91, NR93], the depth of this link has not been noticed for 20 years.

1.2. On the facial structure of Symmetric and Graphical TSP

Although surprising, Theorem1.1scratches only on the surface of the connection between
Symmetric and Graphical Traveling Salesmen.

{x | a · x = α}

F
G2

G1

As mentioned above,Sn is a face ofPn. This means that every inequality
valid for Sn can be “rotated” to make it valid forPn. By “rotation” we mean
modifying left and right hand sides of an inequalitya • x ≥ α in such a way
that the set of points in the affine hull ofSn which satisfy the inequality with
equation remains the same, yet the hyperplane the inequality defines in the
ambient space changes. Technically, this amounts to adding equations valid
for Sn to a • x ≥ α. Once the inequality is rotated so that it is valid forPn, one may ask which
face ofPn is defined by the rotated inequality. SinceSn 6= Pn, there are always several such
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faces, but even when we aim for inclusion-wise maximal faces ofPn defined by some rotated
version ofa • x ≥ α, in general, these are not unique. In the picture above, by properly tilting
the hyperplane defined bya • x = α, we can obtain the facesF , G1 andG2.

Extending results obtained in [The05], the manuscript [The], which forms Chapter4 of
this thesis, deals with the following question:

Question 1.2.Given a valid inequalitya•x ≥ α for Sn, what is the largest possible dimension
of a face ofPn defined by a rotated version of that inequality?

It turns out that to answer this question, next to knowing what face ofSn is defined by the
inequality, one only needs to look at then(n− 1)(n− 2)/2 numbersauw + awv − auv, for all
triplesu, v, w of distinct vertices inVn. More accurately, only the ordering relations between
these numbers are important.

Rotation is a standard tool in Discrete Optimization. The most prominent example is sequential
lifting, which is a constrained form of rotation. In the setting of sequential lifting, P is a
polyhedron for which the non-negativity inequalityxj ≥ 0 for a coordinatej is valid, defining
a non-empty faceS := P ∩ {x | xj = 0}. Then, an inequality valid forS is rotated by adding
scalar multiples of the equationxj = 0 to it in such a way that it becomes valid forP and the
face defined by the rotated inequality is strictly greater than the face ofS defined by it. By
iterating this procedure, one may “sequentially” lift inequalities which are validfor a smaller
faceS. The face ofP defined by the sequentially lifted inequality may in general depend on
the order in which the coordinatesj are processed. The same procedure works when generic
inequalitiesc • x ≥ γ are used instead of the non-negativity inequalities.

Sequential lifting or other rotation-based tools are applied manually to find facets of poly-
hedra which contain faces which are better understood. Moreover, mechanisms of this kind are
used computationally in cutting-plane algorithms where some separation procedure first works
on a face and then lifts the obtained inequalities.

contained in
nonneg ieq

contained in
degree ieq

TT

NR non-NR

metric

Faces of GTSPNaddef & Rinaldi [NR91, NR93] proved a theorem saying that, if
an inequality defines a facet ofSn, then there is a unique maximal face
of Pn which can be obtained by rotating the inequality, and this maximal
obtainable face is a facet ofPn. Naddef & Rinaldi classified the facets
of Pn into three types — non-negativity facets, degree facets, and the rest, called TT-facets —
based on properties of the coefficients. While the degree facets and non-negativity facets are
both small in number and easily understood, the interesting class both for understanding the
polyhedron and for applications is the huge set of TT-facets. By the theorem just mentioned,
once one knows that the degree facets ofPn are precisely those which containSn — also
proved in Naddef & Rinaldi’s paper —, this also classifies the facets ofSn into two types:
non-negativity and TT-facets.

In an earlier paper [ORT05, ORT07] we have refined the classification by splitting the
TT-facets ofPn into two subclasses: NR-facets and non-NR-facets, depending on whether the
intersection of the facet withSn is a facet ofSn (thesePn-facets are called NR-facets) or a face
of Sn of smaller dimension. Our main result was the fact that the non-NR class is notempty.

In terms of rotation, this shows that there are (“TT-type”) valid inequalities forSn which do not
define facets ofSn, but which can be rotated to define facets ofPn.

The answer to Question1.2is formulated using the terminology of polar polyhedra, polyhedral
complexes, and polyhedral subdivisions. A polar polyhedronS△ of a polyhedronS has the
property that the points ofS△ are in bijection with the linear inequalities (up to scaling) forS.
Moreover, a pointa is contained in a face of dimensionk of S△, if, and only if, the correspond-
ing inequality defines a face of dimension at leastdimS+1−k of S. In particular, the vertices
of S△ are in bijection with the facets ofS. A polyhedral complex is a finite set of polyhedra,
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closed under taking faces, such that the intersection of any two polyhedra in the set is a face of
both.

For the reasons explained above, the results in [The] pertain to the “important” part of the
polar of Sn, namely the part which remains if we delete the vertices corresponding to non-
negativity facets. This corresponds to taking only the “TT-type” valid inequalities forSn. This
subset of faces of the polar ofSn is a polyhedral complex, which we denote byA.

Now, take a point inA, consider the corresponding valid inequality forSn, and rotate it
in all possible ways yielding inequalities valid forPn. A certain set of faces ofPn can be
defined by the rotated versions of this inequality. We partition the points contained inA in the
following way: two points are in the same cell of the partition, if, by rotating the corresponding
valid inequalities, the two sets of faces ofPn which can be defined, coincide.

In fact, the partition whose definition I have just outlined, gives a polyhedral subdivision
S of A, i.e., the set of closures of the cells is a polyhedral complex, and every face ofA is
a disjoint union of cells. This is true in the general situation when a polytopeS is a face of
another polytopeP . Indeed, in the general situation,S is known as thechamber complexof the
canonical projection of the polar ofP onto the polar ofS. I call such a polyhedral subdivision
a rotation complex.In [The], the following results are established about the rotation complex
in the TSP situation:

(A) The decomposition ofA into cells can be described in an elementary way that does
not refer to rotation; moreover, it does not refer to any Graphical Traveling Salesman
concepts whatsoever. Indeed, to describe the subdivision, for a point a contained inA,
it suffices to check the order relations of the expressionsauv−auw−awv, with u, v, w
three distinct vertices inV .

(A’) The rotation complexS is the common refinement ofA with a projection of a natural
sub-complex of the boundary complex of the metric cone. (The common refinement
of two polyhedral complexes is the set of all intersections of polyhedra in the two
complexes, see Fig.4.1, left, on page28.)

(B) The points inA are inbijection(!) with the “important” part of the polar ofPn, and
this bijection maps faces of the polar ofPn onto faces of the rotation complexS. In
other words, the polar ofPn can be “flattened” onto the polar ofSn, see Fig.4.1, right.

Again, “important” is meant to be understood in the sense that it corresponds to considering
TT-type inequalities only. Item (B) is not a consequence of known facts about the chamber
complex (injectivity fails to hold in general). The picture in Fig.4.1, left, on page28, illustrates
Items (A) and (A’). It shows a hypothetical drawing ofA (solid lines) with two pointsa, a′.
To decide whether these two points, when viewed as valid inequalities forSn, yield the same
faces ofPn when rotated, one has to check the expressionsauv − auw − awv. This amounts
to checking if they are contained in the same cone in the picture on the left (dotted lines). Due
to the Theorem1.1discussed in the previous section, occurrence of the metric cone here is no
surprise, of course.

The rigorous formulation of the two theorems corresponding to (A), (A’) and (B) requires a
larger technical apparatus, and is omitted at this point. Germs of Items (A) and(B) had already
been proved in [The05], albeit with a considerably more complicated proof.

An outlook on polyhedral STSP/GTSP problems

Earlier versions of methods developed in Chapter4 here helped resolve two open questions
regarding Symmetric vs. Graphical TSP: The existence of non-NR facetsand the complete
description ofP9 (together with a computer search) [ORT07]. A number of open problems
remain, which I would like to address here.

0-Node lifting. The polyhedronPn has the pleasant property that a very simple lifting oper-
ation called0-node lifting[NR91, NR93] preserves the facet defining property. In other words,
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if an inequality defines a TT-type facet ofPn, then duplicating a vertex inVn and joining the
two twins by an edge with coefficient0 yields a facet-defining inequality forPn+1. Annoyingly,
to this date, it is not known whether if one starts with an inequality defining an NR-facet (i.e.,
the inequality also defines a facet ofSn), the facet defined by the 0-node lifted inequality can
be non-NR (meaning, it does not define a facet ofSn+1).

Conjecture 1.3. There exist NR-facet defining inequalities which, after 0-node lifting, define
non-NR facets.

It is known that when, starting with an NR-facet, 0-node lifting is applied twiceat the
same vertex, then the resulting facet is NR [QW93]. Hence, in terms of rotation complexes, an
example as in the conjecture would behave like this: By 0-node lifting, a vertexof the polar of
Sn jumps into the interior of a face ofSn+1 which is a vertex of the rotation complex, and by
0-node lifting again at the same vertex, it jumps to a vertex of the polar ofSn+2. Consequently
it appears as if the rotation complex theory ought to be able to prove wrong Conjecture1.3.
However, I believe that it is actually true.

Computationally checking millions of NR-facets (withn = 10, 11, 12, 13) has not un-
earthed such an inequality. The problem with computational methods in searching such an
example is the following. Forn ≤ 8, none of the 24 TT-type facet classes (i.e., facets modulo
permutation of vertices) ofPn are non-NR. Forn = 9 there is exactly one non-NR facet class
among the 192 TT-type facet classes ofP9 (0.52%). Among the (conjectured) 15621 TT-type
facet classes ofP10, there are (conjectured) 243 non-NR facet classes (1.56%). While theratio
seems to be increasing withn, for those values ofn in which computation can be done in any
significant scale (up to15), the non-NR facets seem to appear to be statistically scarce. On the
other side, there is the observation that the 0-node lifted facet classes ofPn are also statistically
very scarce in the TT-type facet classes ofPn+1 (13% forn = 8, 1.23% forn = 9, appears
to be decreasing withn). This makes it appear unlikely to hit, “by chance”, an example of a
0-node lifted NR-facet which is also a non-NR facet.

Parsimonious relaxations.In Theorem4.5(see also [The05, ORT07]), a necessary condi-
tion is given for a certain subgraph of the ridge-graph of GTSP to be connected. I believe that
this condition actually characterizes so-calledparsimonious relaxations(see Section4.2.4for
the definition).

Recall that the ridge-graph has as its vertices the facets of a polyhedron, with two facets
being adjacent if their intersection has maximal possible dimension.

Conjecture. Suppose a system of inequalities defining NR-facets has the following property:
If the corresponding vertices are deleted from the ridge graph, then every connected compo-
nent contains an NR-facet. Then the relaxation given by this system of inequalities has the
parsimonious property.

The formulation here is not exact, see Conj.4.24for the exact formulation. The conjecture
holds for the known relaxations ofSn consisting of NR-inequalities described in [ORT07]
which fail the parsimonious property.

1.3. Embeddable Metrics and the Linear Arrangement Problem

The study of polyhedra consisting of metrics or semimetrics on some fixed finite space has
a long tradition in Polyhedral Combinatorics and Convex Geometry; see, e.g.[DL97], for a
starting point. (Asemimetricsatisfies all the requirements of a metric, except the distance of
distinct points may be zero; it is customary in this area to use the term “metric” alsofor semi-
metrics.) Without additional constraints on the semimetrics, one has the metric cone, which
we have already encountered above. Often, embeddability constraints are required: One stud-
ies convex/polyhedral-geometric properties of the set of (semi-)metrics embeddable in a fixed
normed space, possibly with additional conditions.
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It turns out that these constrained sets of semimetrics are related to combinatorial optimiza-
tion problems. As a famous example, the set of all semimetrics on ann-point set which are

embeddable inR(
n
2) with the 1-norm coincides with the cut cone.

In the paper [LRST10], which is reprinted as Chapter5 of this thesis, we study metrics
which are embeddable in the real line in such a way that every two points are at least some
fixed ε > 0 apart. These metrics are related to the Linear Arrangement and other graph layout
problems.

Let me first note that changing theε amounts to a dilation of the set of metrics, so that fixing
ε := 1 is no loss of generality. We call those metrics “R-embeddable1-separated”. Secondly,
the cardinality of the point set will be denoted byn.

The following classes of semimetrics, which are closely related to theR-embeddable1-
separated metrics, have been extensively studied in the literature:

• As indicated above, the cut cone, CUTn, coincides with the set of all semimetrics
which can be embedded into a space with 1-norm, i.e., semimetricsd (on a fixedn-
point set) for which there exists anm and pointsx1, . . . , xn ∈ Rm such thatd(i, j) =
‖xi − xj‖1 for all pairs of pointsi, j. These semimetrics are customarily referred to
asℓ1-semimetrics.

• The ℓ2-embeddablesemimetrics, which are defined as in theℓ1 case, except that
d(i, j) = ‖xi − xj‖2. Denote the set of these metrics byML2

n .
• TheR-embeddablesemimetrics, which are the special case ofℓ1- (or ℓ2-) embeddable

semimetrics obtained whenm is fixed to1. The set of these metrics is denoted byMR
n .

In general, the setsML2
n andMR

n are not convex, but the convex hull of bothML2
n andMR

n

is CUTn. Similarly, the setMR1
n of R-embeddable 1-separated metrics is not convex (it is the

union ofn!/2 disjoint simplicial cones, see Prop.5.3), but its convex hull occurs in the context
of graph layout problems.

Connection to Graph Layout problems.Given a graphG a layout is a bijectionπ : V →
{1, . . . , |V (G)|}. Several important combinatorial optimization problems, collectively known
asgraph layout problems,call for a layout minimizing a function of the distances|π(u)− π(v)|,
uv ∈ E(G) (see the survey [DPS02]). In the Linear Arrangement Problem, the objective is
to minimize

∑
uv∈E |π(u) − π(v)|. In the Bandwidth Problem, the objective is to minimize

maxuv∈E |π(u)− π(v)|.
Now let d(u, v) for {u, v} ⊂ V (G) be an integral variable representing the quantity

|π(u) − π(v)|. It has been observed by several authors that interesting relaxationsof graph
layout problems can be formed by deriving valid linear inequalities that are satisfied by all fea-
sible symmetric functionsd. Some of these inequalities have been used to derive approximation
algorithms for various graph layout problems (e.g. [ENRS00, RR05]). It is thus natural to study
the followingpermutation metrics polytope:[AL09]

Pn = conv
{
d : V × V → R

∣∣∣ ∃π ∈ S(n) s.t.d(i, j) = |π(i)− π(j)| ∀i, j ∈ V
}
,

whereS(n) stands for the set of all permutations ofV = {1, . . . , n}. In [AL09], it is shown that
Pn is of dimension

(
n
2

)
−1 and that its affine hull is defined by the equation

∑
{i,j}⊂V d(i, j) =(

n+1
3

)
.

The connection withR-embeddable 1-separated metrics lies in the fact that the closure of
the convex hull of these metrics equals the Minkowski sum ofPn and the cut cone (Prop.5.6).

Denote the convex hull ofMR1
n by Qn (this is not a polyhedron), and its closure byQn.

Unbounded edges ofQn and Qn. From this starting point, in the paper [LRST10], we
move to study the unbounded edges of the convex setQn (Prop.5.20) and the polyhedronQn

(Theorem5.22). SinceQn = Pn + CUTn (see above), the directions of the unbounded edges
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correspond to cuts, whereas the vertices in which these edges originate correspond to permu-
tations. Characterizing, for a given permutation/vertex, the set of cuts corresponding to un-
bounded edges originating in the vertex requires combinatorial/geometric investigations which
are done with some ease in the case ofQn, but, in the case ofQn, they are quite subtle. I cannot
restrain myself from pointing the reader to the beautiful connections between geometry and
combinatorics in Lemmas5.32(“reduction”) and5.34(“induction”), as well as in the examples
of that section.

The resulting relationship between permutations and cuts given by the incidence of extreme
rays of CUTn on vertices ofPn is the following: for a permutationπ, a cut (U : V \ U)
corresponds to an unbounded edge ending in the vertexπ if there is nok ≤ n − 1 such that
eitherU or V \ U equalsπ−1({1, . . . , k − 1, k + 1}).

(The paper [LRST10] also contains studies of facets ofQn. These were mainly done by
A. Letchford, who also proposed the study of unbounded edges ofQn andQn.)

Outlook. Our work raises some further questions, most prominently the following:

Question 1.4.Do the bounded edges ofQn have a simple combinatorial interpretation?

The bounded edges ofQn are of course those ofPn.
Generally speaking, bounded edges have received more attention than their longer broth-

ers. This fact roots in hopes to adopt the simplex algorithm to make use of edges in a more
“direct” way, without requiring a complete description of the polyhedron byinequalities, and
has given rise to a number of conjectures and questions about (bounded) edges of combinatorial
optimization polyhedra, or even polytopes in general, most famously, of course, to the Hirsch
conjecture. Given that for other classes of unbounded combinatorial optimization polyhedra,
no characterization of the extreme rays or even vertex / unbounded edge incidences is known,
our result might stir hopes that forPn, the adjacency relation of vertices admits a combinatorial
characterization.

1.4. Virtual Private Network design with non-linear costs

The fourth paper reprinted in this thesis has a somewhat lesser connectionto polyhedra. In
thesymmetric Virtual Private Network design(sVPN) problem, vertices want to communicate
with each other. The exact amount of traffic between pairs of vertices is not known in advance,
but for each vertexv the cumulative amount of traffic that it may send or receive is bounded
from above by a given numberbv. The aim is to install minimum cost capacities on the edges
of the graph supportinganypossible communication scenario subject to these bounds. The cost
for installing one unit of capacity on an edgee is ce.

Goyal, Olver and Shepherd [GOS08b] proved that the symmetric Virtual Private Network
Design (sVPN) problem has the so-calledtree routing property,namely, that there always exists
an optimal solution to the problem which installs non-zero capacities only on edges which do
not contain a cycle. Earlier, Fingerhut, Suri and Turner [FST97] and Gupta, Kleinberg, Kumar,
Rastogi and Yener [GKK +01] had shown that such a tree-shaped solution can be found in
polynomial time. Thus,sVPN can be solved in polynomial time.

In the paper [FOST10] which is reprinted as Chapter6, we consider an APX-hard gen-
eralization ofsVPN, where the contribution of each edge to the total cost is proportional to
some non-negative, concave, non-decreasing functionf of the capacity reservation (f does not
depend on the edge and is given by an oracle).

The polyhedral part of that paper is the proof for the fact that the non-linear version has the
tree routing property, too. For this, we associate polyhedra with instancesof a related problem
(thesCR, see Fig.6.1 on page65) in such a way that the tree routing property for an instance
can be expressed as a property of the extreme points of the associated polyhedron. We then
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show how the transition from linear to concave amounts to a coordinate-wise concave mapping
of the corresponding polyhedra, which preserves the property of theextreme points.

Building on this, we study approximation algorithms for the concave version ofsVPN. For
a general concave function, using known results on the so-called SingleSource Buy at Bulk
(SSBB) problem, we give a24.92-approximation algorithm. For a more restricted class of
concave functions, by reducing to the so-called Single Source Rent or Buy (SSRB) problem,
we are able to obtain a2.92-approximation.



CHAPTER 2

Optimization and Combinatorics

2.1. Small Minors in graphs

I would like to motivate the paper [FJTW ], which forms chapter7 through its connection
to optimization. Many optimization problems are of the following form. Given a graph G
(possibly with costs on vertices or edges) find a subgraph ofG which belongs to a target graph
class, by deleting as few vertices and edges as possible (i.e., by incurringsmallest possible cost).
A trivial example is the Maximum Spanning Forest problem: Delete as few edges as possible
such that the resulting graph is a disjoint union of trees. Fiorini, Joret, andPietropaoli [FJP10]
considered what they called the “Diamond Hitting Set” problem: Delete as few vertices as
possible such that the resulting graph is a disjoint union of cactus graphs.Informally, a cactus
graph is obtained from a tree by replacing some of the edges with cycles. Formally, a graphH
is a disjoint union of cactus graphs if and only ifH does not contain a diamondK4 \ e as a
minor.

To obtain an approximation algorithm for their Diamond Hitting Set problem, Fioriniet
al. used a lemma saying that every graphG with average degree at least three contains, as a
subgraph, a subdivision of a diamond of sizeO(logn), with n being the number of vertices
in G. Moreover, such a subgraph can be found in polynomial time. This lemma allows for
a very simpleO(logn) approximation algorithm (for the unweighted problem), one of whose
core ingredients is iteratively finding and deletingO(log n)-sized diamond-subdivisions as long
as there are any.

Their result left the following obvious question. If the target graph classis defined by for-
bidding another minorH instead of the diamond, does there still exist aO(logn) approximation
algorithm? Since Fiorini et al.’s algorithm relies heavily on the existence of a small diamond-
subdivision given large enough average degree, a necessary (though not sufficient) condition to
successfully apply their techniques would be the existence, in every graphG with large enough
average degree, of anH minor supported on a small subgraph ofG.

Our manuscript [FJTW ] deals with this problem.
The caseH = K3 asks for a short cycle in a graph. An easy an well-known theorem

states that, if a graph has minimum degree larger than two, then it contains a cycle of size
O(logn). Alon, Hoory, and Linial [AHL02 ] extended this to graphs with average degree larger
than two (but see Lemma7.4 for a different proof; Alon et al. prove considerably more than
this statement).

For generalKt minors, Kostochka and Pyber [KP88] proved that, givent, ε > 0, every
graph with at leastt4t(t−1)n1+ε edges contains aKt-subdivision with at most(7t2 log t)/ε ver-
tices. Takingε := 1/logn, t = 4, for example, and a conjectured improvement of7(t2 log t)/ε to
O(t2/ε), this gives a bound of413 for the average degree.

Our first result is the following.

Theorem (Theorem7.5on page76). Every graph with average degree at least4 + ε contains
aK4-subdivision of sizeO(logn).

There are simple examples of (even planar) graphs with average degreefour whose only
K4-minors have sizeΩ(n) (see Fig.7.1on page74). Using an inductive approach, this theorem
can be extended to yield the following.

11
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Theorem (Theorem7.6on page77). Every graph with average degree at least2t + ε contains
a Kt minor supported onO(logn) vertices.

Planar graphs.It turns out that, ifG is planar, one can do better than Theorem7.5. Using
the discharging method (see Lemma7.16), we could prove the following.

Theorem (Theorem7.19on page83). Every planar graph with average degree at least4 + ε
contains aK4-subdivision of sizeO(1).

Outlook. While the average degree bound in Theorem7.5 is optimal, the one in Theo-
rem7.6 is not (even though it is a big improvement on Kostochka and Pyber’st4t(t−1)). Thus,
the most obvious question is the following.

Question 2.1. Is there a sub-exponential functionf such that every graphG with average
degree at leastf(t) contains aKt minor supported onO(log n) vertices?

The following, I find somewhat more intriguing. Letf(t) be the infimum over all numbersd
for which the following holds: Every graphG with average degree at leastd contains aKt minor
(regardless how much of the graph it covers).

Question 2.2. Does every graph with average degree at leastf(t) + ε have aKt minor sup-
ported onO(log n) vertices?

For t = 4, our theorem proves just that. Fort = 5, we havef(5) = 6, and the question is
open.

2.2. Good edge labelings

Our manuscript [BFT], which is included as Chapter8 in this thesis, deals with a theoretical
problem arising in the context of so-called Wavelength Division Multiplexing problems. Given
a network, theRouting and Wavelength Assignment Problemasks for finding routes and associ-
ated wavelengths, such that a set of traffic requests is satisfied, while minimizing the number of
used wavelengths [BCCP06]. In a recent paper, Bermond, Cosnard, and Pérennes [JCBP09]
establish a relationship with good edge-labelings.

A good edge-labelingof a graphG is a labeling of its edgesφ : E(G) → R such that, for
any ordered pair of distinct verticesu andv, there is at most one nondecreasing path fromu
to v. Equivalently:

An edge-labeling is good, if, and only if, every cycle has at least two local minima.

For simplicity, let us say that a local minimum is an edgee whose label is strictly less than the
labels of the two edges incident toe on the cycle (this simplification requires to assume, wlog,
that all labels are distinct).

Araujo, Cohen, Giroire, and Havet [ACGH09, ACGH12] have studied good edge-labelings
in more depth. They call a graph with no good edge-labelingbad, and say that acritical
graph is a minimal bad graph, that is, every proper subgraph has a goodedge-labeling. It
is easy to see thatC3 andK2,3 are critical. Araujo et al.’s [ACGH12] paper comprises an
infinite family of critical graphs; results that graphs in some classes alwayshave a good edge-
labelings (planar graphs with girth at least 6,(C3,K2,3)-free outerplanar graphs,(C3,K2,3)-
free sub-cubic graphs); the algorithmic complexity of recognizing bad graphs; and a connection
to matching-cuts. (Amatching-cut, also known as “simple cut” [Gra70], is a set of independent
edges which is an edge-cut.)

In fact, all their arguments for proving non-criticality rely on the existence of matching-cuts.
One of the central contributions of our paper [BFT] is that we move beyond using matching-
cuts.

Araujo et al. also pose a number of problems and conjectures. In particular, they have the
following conjecture, which is one of the two motivations behind our paper.
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Conjecture (Araujo et al. [ACGH12]). There is no critical graph with average degree less than
three, with the exception ofC3 andK2,3.

Araujo et al. [ACGH12] prove a weaker version of this conjecture, relying in part on a
theorem by Farley and Proskurowski [FP84, BFP11] stating that a graph with sufficiently few
edges always has a matching cut. They also use a characterization of extremal graphs with no
matching-cut by Bonsma [Bon05, BFP11]. From the proofs in Araujo et al. [ACGH12], it
appears that the depths of the arguments increases rapidly as the upper bound3 is approached.

In our paper, we show that there is no critical graph with average degree less than three and
girth at least five. Put differently, we prove Conjecture8.1 in the case when the graph has girth
at least five.

Theorem (Theroem8.2on page94). There is no critical graph with average degree less than
three and girth at least five.

The second motivation behind our paper is the fact that no bad graph with girth larger than
four is known. In particular, the bad graphs in Araujo et al.’s construction contain many 4-
cycles. It is quite natural to ask whether there exists a numberg such that every graph with
girth at leastg has a good edge-labeling. As mentioned above, Araujo et al. [ACGH12] have
shown that with the additional restriction that the graphs be planar,g := 6 does the trick.

We prove a structural theorem on critical graphs with girth at least five (Theorem8.42).
Roughly speaking, it says that a critical graph with girth at least five cannot contain a subgraph
which is a “windmill”. A windmill essentially consists of a number of shortest pathsmeeting
in an “axis”, with the paths originating from vertices of degree two and having in their interior
only vertices of degree three.

Of this Theorem8.42, the above state Theorem8.2 is a corollary, which is proved using an
approach inspired by the discharging method from topological graph theory.

For our proof of Theorem8.42, we define a class of graphs which we call “decent”, which
have the property that they cannot be contained in a critical graph. Moreimportantly, we give
a quite generalgluing operation which preserves “decency”. Starting from a small family of
basic “decent” graphs, by gluing inductively, this approach allows us to show that certain more
complicated configurations cannot be contained in critical graphs, which leads to the proof of
Theorem8.42.

Outlook. I believe that the following question is the most fundamental one concerning
good edge-labelings.

Question. Is there a constantg such that every graph with girth at leastg has a good edge-
labeling?

Araujo et al. propose the following conjecture.

Conjecture ([ACGH12]). For everyc < 4, the number of (isomorphism classes of) critical
graphs with average degree at mostc is finite.

In view of our work on good edge-labelings and girth, I think that the following conjecture,
if true, might be considerably easier to answer in the affirmative.

Conjecture. For everyc < 4, the number of (isomorphism classes of) critical graphs with girth
at least five and average degree at mostc is finite.

2.3. Coloring random lifts

Let G be a graph, andh a positive integer. Anh-lift of G is a graphG̃ which is anh-fold
covering ofG in the sense of CW-complexes. Put differently, there is a graph homomorphism
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φ : G̃ → G which maps the neighborhood of any vertexv in G̃ one-to-one onto the neighbor-
hood of the vertexφ(v) of G. The graphG is called thebase graphof the lift.

More concretely, we may say that anh-lift of G has vertex setV (G) × [h], with [h] :=
{1, . . . , h} as usual. The set{v} × [h] is called thefiber overv. Fixing an arbitrary orientation
of the edges ofG, the edge set of anh-lift is of the following form: There exist permutations
σe of [h], e ∈ E(G), such that for every edgeuv of G, orientedu → v, the edges between the
fibers{v} × [h] and{u} × [h] are(u, j)(v, σuv(j)), j ∈ [h]. Changing the orientation of the
edges in the graph obviously does not change the lift — just replace eachaffected permutation
by its inverse.

A randomh-lift of G is a graph drawn uniformly at random from the graphs just described,
which amounts to choosing a permutation, uniformly at random, independently for every edge
of G.

Amit, Linial, Matoǔsek, and Rozenman [ALMR01 ], proposed to study properties of ran-
dom lifts in the limith → ∞. Their conference paper sketched results on connectivity, inde-
pendence number, chromatic number, perfect matchings, and expansionof random lifts, and
was followed by a series of articles containing broader and more detailed results [AL02, AL06,
ALM02 , LR05], and e.g. [BL06, DL06, LP10, BCCF06, GJR10], to name a few.

In [ALM02 ] Amit, Linial, and Matoǔsek focused on independence and chromatic numbers
of random lifts of graphs. They asked the following question.

Question 2.3. Is there a zero-one law for the chromatic number of random lifts?

By zero-one law, they mean that the chromatic number of a random lift (of a fixed base
graph) is asymptotically almost surely (aas) for h → ∞ equal to a fixed number, depending
only on the base graph.

For the base graph isKn, Amit et al. prove thatχ(G̃) = Θ(n/ log n) aas (with absolute
constants in theΘ). The smallest value forn, for which this is not trivial, isn = 5. Amit et al.
ask the following:

Question 2.4. Is the chromatic number of a random lift ofK5 aas equal to a single number?

It is easy to see that the only two numbers which might occur with positive probability are
3 and 4.

In our paper [FT], which is reprinted as Chapter9 we give an algorithm which 3-colors
random lifts ofK5 \ e, the graph obtained by deleting one edge fromK5, and prove that it
succeeds aas:

Theorem 2.5(Theorem9.1on page114). A random lift ofK5 \ e is aas 3-colorable.

The theorem can easily be extended to a larger graph of base graphs consisting of a cycle
joined to an independent set.

Shi and Wormald [SW07] proved that the chromatic number of random 4-regular graphs
(with uniform distribution) is three, and random lifts ofKd+1 have some similarity to random
d-regular graphs. However, the cycle structure of random lifts is more delicate than that of
uniformly random regular graphs (it is related to the distribution of fixed points of words of
random permutations, which is understood [Nic94, LP10]), and the Shi-Wormald proof makes
explicit use of the cycle structure. Still, I believe that adapting the Shi-Wormald algorithm and
proof ought to be possible to settle Question2.4. On the other hand, I do not think there is an
answer to the question which is simpler than the corresponding question for uniformly random
4-regular graphs.

2.4. Random 3-SAT with interval constraints

The result of Shi and Wormald [SW07] just mentioned uses an ODE-based technique by
Wormald for proving concentration for random processes [Wor95]. In algorithmic settings,
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these variables often observe parameters within an algorithm on a random object, with the
parameters changing from one iteration to the next.

Another situation to which this method has been successfully applied, is the famous k-
SAT problem. Here, it has been used to analyze algorithms which, given a uniformly drawn
k-SAT formula onn variables andm = m(n) clauses, attempt to find an assignment of values
to the variables (interpretation) satisfying the formula. Indeed, ODE-based techniques have a
tradition in randomk-SAT beyond Wormald’s method (see, e.g. [CF86, CF90, FS96, Ach00,
AS00]). Historically, at that time, one was not so much interested in algorithms which succeed
aas (forn → ∞), because, by invoking a strong theorem of Friedgut’s [Fri99], proving success
with positive probability already allowed to infer aas satisfiability of the formula.(In more
recent work, however, algorithms succeeding aas have come into focusagain, e.g., [CO10,
COF].)

In our manuscript [BT], which forms Chapter10 of this thesis, we deal with a variant of
k-SAT which arises in applications.

Let M be a (usually finite) set,S a set of subsets ofM , andk a positive integer. For the
signedk-satisfiability problem,or signedk-SAT,one is given as input a finite set of variables
X and a formula insigned conjunctive normal form (CNF). This means that there is a list of
clauses, each of which is a disjunction ofsigned literalsof the formx ∈ S wherex is a variable
in X and the “sign”S is a set inS. As in classicalk-SAT, the question is then whether there
exists a satisfyinginterpretation,i.e., an assignment of values to the variables such that each
of the clauses is satisfied. This setting includes as a special case the classical SAT problem:
choose forM the 2-element set{0, 1} andS = {{0}, {1}}.

In caseM is a totally ordered set and the setS is the set of all intervals inM , we speak of
Interval SAT, or iSAT. In our manuscript, we study the case whenM = [0, 1].

Our interest in this particular version of signed SAT arises from applications in computa-
tional systems biology. There, iSAT yields a generalization of modeling with Boolean networks,
where biological systems are represented by logical formulas with variables correspond to bi-
ological components like proteins. Reactions are modeled as logical conditions which have to
hold simultaneously, and then transferred into CNF.

Although the model is widely used by practitioners, often, this binary approach is not suf-
ficient to model real life behavior or even accommodate all known data. A typical situation is
that an experiment yields several “activation levels” of a component. Thus, one wants to make
statements of the form: If the quantity of componentA reaches a certain threshold but does not
exceed another, and componentB occurs in sufficient quantity, then another componentC is in
a certain frame of activation levels. The collection of such rules accuratelymodels the global
behavior of the system.

On the theoretical side, signed SAT originated in the area of so-called multi-valued logic, where
variables can take a (usually finite) number of so-calledtruth values, not justTRUE or FALSE.
The motivation for studying signed formulas was to be able to better cover practical appli-
cations. Most applications and a great deal of the earlier complexity resultsfocus onreg-
ular signed SAT, whereM is a totally ordered set, and the signs may only be of the form
S = {j | j ≥ i} or S = {j | j ≤ i}. For regular signed SAT, random formulas have been
investigated computationally. Manyà et al. [MBEI98 ] study uniformly generated random reg-
ular 3-SAT instances, and observe a phase transition similar to that observed in classical SAT.
Moreover, in [BM99a, BMC+07] a bound on the ratiom/n is given, beyond which a random
formula is aas unsatisfiable. To my knowledge, however, ours is the first rigorous analysis of an
algorithm for random signed SAT.

In our paper, we present and analyze an algorithm which solves uniformly random 3-iSAT
instances with high probability, provided that the ratio between the numberm of clauses and
the numbern of variables is at most 2.3. Our algorithm is an adaption of the well-known Unit
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Clause algorithm from classical SAT, where, in an inner loop, 1-clausesare treated if any exist,
and in an outer loop, a variable is chosen freely and assigned some value.This Unit Clause
approach is enhanced with a “backtracking” subroutine, which is not completely unlike the one
used in [FS96] for classical 3-SAT, see Algorithm5 on page127.

For the analysis of the outer loop, we use the Wormald’s ODE-method mentionedabove,
and the value 2.3 arises from the numerical solution to an initial value problem. The analysis of
the inner loop requires to study the first busy period of a certain stable server system, or, in our
case, more accurately, the total number of individuals in a type of branching process.

Discussion.The way I see it, the manuscript [BT] highlights some of the specific problems
of random iSAT. To understand the algorithm, first of all, it is important to realize that the bot-
tleneck lies in the rate at which 2-clauses become 1-clauses (by deleting literals whose variable
has been set in such a way that the literal is not satisfied) during the run ofthe inner loop. In
the branching process terminology, this amounts to the number of offspring of one individual.

If the corresponding algorithm is analyzed for classical 3-SAT, whenever a variable is set
to some value in the inner loop, the probability that a fixed literal containing this variable is not
satisfied by the chosen value, is1/2, regardless of the chosen value. In 3-iSAT, this probability
depends on the value. Thus, for choosing a value for a variable in the inner loop, there are two
possibilities.

(1) By looking only at the 1-clause, choose the best value possible.
(2) By looking at the 1-clause and all literals in 2- or even 3-clauses containing the variable,

choose a value which satisfies a large fraction of them.

Possibility (2) requires to find, for a Poisson random variableR the expectation of the
random variableX(R), whereX(r) is the (cardinality of the) largest subsetK of {1, . . . , r+1}
such thatI0 ∩

⋂
k∈K Ik 6= ∅, for random intervalsI0, . . . , Ir+1. This expectation, as a function

of the mean ofR, then forms one key term in the system of ODEs, with the mean ofR being a
quotient of two parameters.

Asymptotically, forr → ∞, deciding only based onI0 X(r) is optimal. However, for
small values ofr, the difference between (1) and (2) can be large, e.g., forr = 1, the mean
for (1) is111/24, that for (2) is12/3.

In our manuscript, we have decided for the much simpler but also much worsepossibil-
ity (1), until we knew how to deal with computing the mean in (2). An alternative would have
been to use “cheap tricks”: For, sayr ≤ 3, the computation ofEX(r) can be done by hand.
SinceER < 3 most of the time, this would have recovered a significant part of the gap, atthe
expense of adding some lengthy computations and making the ODE more complicated.

Apart from this central issue, it would also be interesting to find a bound for the ratio above
which random 3-iSAT formulas are aas not satisfiable. Moreover, our analysis of 2-iSAT (to
which our 3-iSAT algorithm reduces its instances) is quite superficial, and could be much im-
proved.

2.5. Cops & Robber

The game ofCops and Robberis played on a connected graph by two players — the cops
and the robber. The cop player has at his disposalk pieces (the “cops”), for some integerk ≥ 1,
and the robber player has one piece (the “robber”). The pieces will always be on vertices of
the graph. We will usually speak informally of “the cops” instead of the “copplayer”, and “the
robber” instead of the “robber player”.

The game begins with the cops positioning themselves (i.e., placing theirk pieces) on
(not necessarily distinct) starting vertices. Next, the robber chooses hisstarting vertex. Now,
starting with the cop player, the two players move their pieces alternately. In thecops’ move,
they decides for each of them whether he stands still or moves to an adjacent vertex. In the
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robber’s move, he can choose to move to an adjacent vertex, or to pass.The game ends when
a cop and the robber are on the same vertex (that is, the cops catch the robber); in this case the
cops win. The robber wins if he is never caught by the cops, i.e., the game continues forever.
Both players have complete information, i.e., they know the graph and the positions of all the
pieces.

A winning strategyfor a player is one by following which the player wins, regardless of the
moves of the other player. It follows from standard arguments in Game Theory that one of the
two players always has a winning strategy (cf. [BI93]).

The key problem in this game is to know how many cops are needed to catch a robber on
a given graph. For a connected graphG, the smallest integerk such that withk cops, the cops
have a winning strategy, is called thecop numberof G and is denoted bycop(G). The cop
number of a non-connected graph is the maximum cop number of its connectedcomponents.

Nowakowski and Winkler [NW83] and Quilliot [Qui78] characterized the class of graphs
with cop number 1. Finding a combinatorial characterization of graphs with cop numberk
(for k ≥ 2) is a major open problem in the field, to which Clarke and MacGillivray [CM11]
have recently made an important contribution. On the other hand, algorithmic characterizations
of such graphs, which are polynomial in the size of the graph but not ink, do exist [BI93,
GR95, HM06]. However, determining the cop number of a graph is a computationally hard
problem [FGK08].

I would like to make the reader aware of the new book by Bonato and Nowakowski [BN11]
on Cops & Robber on graphs. The Cops & Robber game belongs to a larger class of search
problems on graphs (cf. [FT08])1.

2.5.1. Cops & Robber on non-orientable surfaces.By surface, we mean a closed sur-
face, i.e. a compact two dimensional topological manifold without boundary.For any non-
negative integerg, we denote bycop(g) the supremum over allcop(G), withG ranging over all
graphs embeddable in an orientable surface of genusg, and we call this the cop number of the
surface. Similarly, we define the cop number̃cop(g) of a non-orientable surface of genusg to
be the supremum over allcop(G), with G ranging over all graphs embeddable in this surface.

Aigner and Fromme [AF84] proved that the cop number of the sphere is equal to three:
cop(0) = 3. Quilliot [Qui85] gave an inductive argument to the effect that the cop number of
an orientable surface of genusg is at most2g + 3. Schr̈oder [Sch01] was able to sharpen this
result tocop(g) ≤ 3

2g+3. He also proved that the cop number of the double torus is at most 5.
Generalizing the work of Aigner and Fromme, Andreae [And86] proved that, for any

graphH satisfying a mild connectivity assumption, the class of graphs which do not containH
as a minor has cop number bounded by a constant depending onH. Using this, and the well-
known formula for the non-orientable genus of a complete graph, he obtained an upper bound
for the cop number of a non-orientable surface of genusg, namely

c̃op(g) ≤
(⌊7/2 +

√
6g + 1/4⌋
2

)
.

Nowakowski and Schröder [NS] use a series of technically challenging arguments to prove
a much stronger bound:̃cop(g) ≤ 2g + 1.

In our note [CFJT], which forms Chapter11of this thesis, we prove the following.

Theorem (Theorem11.1on page152). For every positive integerg, cop(⌊g/2⌋) ≤ c̃op(g) ≤
cop(g − 1).

The proof uses of the following tool: If̃G is a lift of G then cop(G) ≤ cop(G̃). We
have made considerable effort to use quite sophisticated generalization ofthis tool to obtain

1Some of them actually have real applications.
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better bounds for the cop number of orientable surfaces, but were unable to overcome a lattice-
geometric question concerning the homology classes of the cycles of the graph.

2.5.2. Cops & Robber and forbidden (induced) subgraphs.As mentioned above, ex-
cluding a minor forces bounded cop number. In our paper [JKT10], which is reprinted as
Chapter12 of this thesis, we studied the corresponding question for the subgraph and induced
subgraph relations. The results we obtained are the following.

Theorem 2.6(Theorem12.1on page156). The class ofH-free graphs has bounded cop num-
ber if, and only if, every connected component ofH is a path.

Here, a graph isH-free, if it contains no induced subgraph isomorphic toH. The cop
number of a graph not containing an induced path of lengthℓ ≥ 2 is at mostℓ− 1 (Prop.12.2).
Similarly, every graph with no induced cycle of length at leastℓ ≥ 3 has cop number at most
ℓ− 2 (Prop.12.3).

Let us say that a graph isH-subgraph-free,if it contains no subgraph isomorphic toH.

Theorem 2.7(Theorem12.4on page156). The class ofH-subgraph-free graphs has bounded
cop number if, and only if, every connected component ofH is a tree with at most three leaves.

As an intermediate step towards Theorem12.4, we study how the cop number of a graphG
is related to its tree-width, and obtain that the cop number of a graphG is at most one plus half
its tree-width (Prop.12.5).

Purportedly, people fall in two groups depending on whether, when theyfirst learn about
the Cops & Robber game, they identify with the Cops, or with the Robber. I mustadmit that
I am in the ‘Cops’ group. That may be the reason why I find the proof forupper bounds for
the cop number in Chapter12 especially appealing. Thus, I would like to point the reader to
cops strategies used in the proofs of Prop.12.5, and, particularly, Prop.12.2. For the non-
boundedness statements of the two theorems, robber strategies are given.

Outlook on Cops & Robber problems

There are several open problems in the area of Cops & Robber. I wouldlike to mention my
three favorite ones. The first two are about graphs on surfaces, thefirst one is directly related to
Theorem11.1(see above):

Question 2.8. Is the cop number of a non-orientable surface of genus2g equal to that of the
orientable surface of genusg? In other words, is it true that, for every non-negative integerg,
we have ˜cop(g) = cop(⌊g/2⌋)?

The second question reflects the fact that the lower bound for the cop number of an ori-
entable surface of genusg isΘ(g1/4), which is far away from theO(g) upper bounds.

Conjecture 2.9. The cop number of orientable surfaces iso(g), whereg is the genus.

Finally, a more structural question. It has been observed [BI93] that the class ofk-copwin
graphs, i.e., the graphs with cop number at mostk, are closed under taking retracts. (For the
definition of a retract, one assumes that every vertex has a tiny loop attached to it. A retraction
is then a homomorphismr : G → G with r2 = r; we say thatr(G) is a retract of G.) Thus,
thek-copwin graphs can be characterized by giving a set of forbidden retracts. However, one
graph being a retract of another is a very strong condition (considerably stronger than induced
subgraph), so for small values ofk, this set is likely to be enormous. In fact, it is possible
that the only set, for which proving bounded cop number is feasible, consists of essentially all
(isomorphism classes of) not-copwin-k graphs (possibly after applying some simple reduction
operations to discard some redundant ones).

Question 2.10.CanO(1)-copwin graphs be defined by forbidden retracts in a meaningful way?
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CHAPTER 3

The relationship between the GTSP, STSP, and Metric Cone

Abstract. In this short communication, we observe that the Graphical Traveling
Salesman Polyhedron is the intersection of the positive orthant with the Minkowski
sum of the Symmetric Traveling Salesman Polytope and the polar of the metric
cone. This follows almost trivially from known facts. Thereare two reasons why
we find this observation worth communicating none-the-less: It is very surprising;
it helps to understand the relationship between these two important families of poly-
hedra.

3.1. Introduction

TheSymmetric Traveling Salesman Polytopeis the convex hull of all characteristic vectors
of edge sets of cycles (i.e., circuits) on the vertex setVn := {1, . . . , n} (in other words, Hamil-
tonian cycles in the complete graph with vertex setVn). For the formal definition, denote by
E the set of all two-element subsets ofVn. This is the set of all possible edges of a graph with
vertex setVn. The Symmetric Traveling Salesman Polytope is then the following set:

Sn := conv
{
χC | C is the edge set of a Hamiltonian cycle with vertex setVn

}
⊂ RE .

Here, for an edge setF , χF is the characteristic vector inRE with χF
e = 1 if e ∈ F , and

zero otherwise. The importance of the Symmetric Traveling Salesman Polytope comes mainly,
but not exclusively, from its use in the solution of the so-called Symmetric Traveling Salesman
Problem, which consists in finding a Hamiltonian cycle of minimum cost.

TheGraphical Traveling Salesman Polyhedronis the convex hull of all characteristic vec-
tors of edge multi-sets of connected Eulerian multi-graphs on the vertex setVn. A multi-graph
with vertex setVn has as its edge set a sub-multi-set ofE, which is to say that our multi-graphs
can have parallel edges but no loops. By defining, for any multi-setF of edges ofKn, its char-
acteristic vectorχF ∈ RE in such a way thatχF

e counts the number of occurrences ofe in F ,
the Graphical Traveling Salesman Polyhedron is formally defined as

Pn := conv
{
χF
∣∣ F is the edge multi-set of a connected Eulerian multi-graph

with vertex setVn

}
⊂ RE .

Ever since the seminal work of Naddef & Rinaldi [NR91, NR93] on the two polyhedra,Pn

is considered to be an important tool for investigating the facets ofSn. Moreover, in works of
Carr [Car04] and Applegate, Bixby, Chv̀atal & Cook [ABCC01], Pn has been used algorith-
mically in contributing to solution schemes for the Symmetric Traveling Salesman Problem.

Numerous authors have expressed how close the connection between Graphical and Sym-
metric Traveling Salesman Polyhedra is. The most basic justification for this opinion is the
fact thatSn is a face ofPn — consisting of all pointsx whose “degree” is two at every ver-
tex:

∑
v 6=u xuv = 2 for all u ∈ Vn. However, the connections are far deeper (see [Nad02] or

[ORT07] and the references therein). In this short communication, we contribute the following
surprising geometric observation to the issue of the relationship between these two polyhedra:

21
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Theorem 3.1.Pn is the intersection of the positive orthant with the Minkowski sum ofSn and
the polarC△

n of the metric coneCn:

(1) Pn = (Sn + C△
n ) ∩ RE

+

The metric cone consists of alla ∈ RE which satisfy the triangle inequality:

(2) auv ≤ auw + awv

for all pairwise distinct verticesu, v, w ∈ Vn. Consequently, its polar is generated as a cone by
the vectors (we abbreviateχ{e} to χe)

(3) χuw + χwv − χuv.

The proof of this theorem is an application of three or four known facts ortechniques in the
area of Symmetric and Graphical Traveling Salesman polyhedra.

3.2. Proof

We start with showing thatPn ⊂ (Sn + C△
n ) ∩ RE

+. While Pn ⊂ RE
+ holds trivially,

Pn ⊂ Sn + C△
n follows from an argument of [NR93], which we reproduce here for the sake of

completeness.
Let x ∈ ZE

+ be a the characteristic vector of the edge multi-set of a connected Eulerian
multi-graphG with vertex setVn. We prove by induction on the numberm of edges ofG, that
x can be written as a sum of a cycle and a number of vectors (3). If m = n, then there is nothing
to prove. Letm ≥ n+1. There exists a vertexw of degree at least four inG. We distinguish two
cases. The easy case occurs whenG\w is still connected. Here, we letu andv be two arbitrary
(possibly identical) neighbors ofw. By either replacing the edgesuw andwv of G with the
new edgeuv, if u 6= v, or deletinguw andwv, if u = v, one obtains a connected Eulerian
multi-graphG′ with fewer edges thanG. The change in the vectorx amounts to subtracting the
expression (3): x′ = x− (χuw +χwv −χuv), if u 6= v, andx′ = x− (χuw +χwv, if u = v. In
the slightly more difficult case when the graphG \ w has at least two connected components,
we can letu andv be two neighbors ofw in distinct components ofG\w. This makes sure that
the graphG′ is still connected. We conclude by induction thatx′, and hencex, can be written
as a sum of a cycle and a number of vectors (3).

We now provePn ⊃ (Sn + C△
n ) ∩ RE

+. For this, we show that any inequality which is
facet-defining forPn is valid for (Sn + C△

n ) ∩ RE
+.

We again invoke an argument from [NR93]: Naddef & Rinaldi have shown1 that the in-
equalities defining facets ofPn fall into one of two categories: the non-negativity inequalities
xe ≥ 0, with e ∈ E (or positive scalar multiples thereof), or inequalities whose coefficient
vectors satisfy the triangle inequality (2). We reproduce the proof of this statement.

First recall that an inequalitya • x ≥ α is said to bedominatedby another inequality
b • x ≥ β, if the face defined by the first inequality is contained in the face defined bythe
second inequality.

Suppose thata • x ≥ α is not dominated by a non-negativity inequality (it need not be
define a facet, though), and letu, v, w be three distinct vertices inVn. Then there exists an
x ∈ ZE

+ defining the edge multi-set of a connected Eulerian multi-graphG which has an edge
betweenu andv, such thata • x = α. If we replace the edgeuv of G by the two edgesuw
andwv, then we obtain a connected Eulerian multi-graph, whose edge multi-set is given, in
terms of its characteristic vector, byx′ := x + χuw + χwv − χuv. Now a • x′ ≥ α, implies
auw + awv − auv ≥ 0, i.e., the triangle inequality.

1In fact, Proposition 2.2 of [NR93] states that the facet-defining inequalities forPn fall into three classes —
one of which is the class of non-negativity inequalities and the other two satisfy the triangle inequality.
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We now conclude the proof of the inclusionPn ⊃ (Sn + C△
n ) ∩ RE

+. Let a • x ≥ α be
an inequality which is facet-defining forPn. First note that the non-negativity inequalities are
clearly satisfied by the right hand side of (1). Hence, using what we have just discussed, let
us assume thata satisfies the triangle inequality. This means thata is a member of the metric
coneCn. Consequently, the inequalitya • x ≥ 0 is valid forC△

n . Further, sinceSn ⊂ Pn, the
inequalitya • x ≥ α is clearly valid forSn. Hence the inequality is valid forSn + C△

n .
This concludes the proof of the theorem.

Note that, en passant, we have proved the following. If we defineP ′
n to be the set of ally ∈ RE

which satisfya • y ≥ α for every inequalitya • x ≥ α defining a facet ofPn but not being a
scalar multiple of a non-negativity inequality, then we haveSn + C△

n ⊂ P ′
n.
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CHAPTER 4

Facial structure of Symmetric and Graphical Traveling Salesman
polyhedra

Abstract. The Symmetric Traveling Salesman PolytopeS for a fixed numbern of
cities is a face of the corresponding Graphical Traveling Salesman PolyhedronP .
This has been used to study facets ofS usingP as a tool. In this paper, we study
the operation of “rotating” (or “lifting”) valid inequalities forS to obtain a valid
inequalities forP .
As an application, we describe a surprising relationship between (a) the parsimo-
nious property of relaxations of the Symmetric Traveling Salesman Polytope and
(b) a connectivity property of the ridge graph of the Graphical Traveling Salesman
Polyhedron.

4.1. Introduction

Suppose thatS andP are polyhedra, and thatS is a proper face ofP . If a • x ≥ α is a
valid inequality forS, it can be “rotated” so that it becomes also valid forP . By “rotation”
we mean modifying left and right hand sides of the inequality in such a way thatthe set of
points in the affine hull ofS which satisfy the inequality with equation remains the same, yet
the hyperplane the inequality defines in the ambient space changes. Technically, this amounts
to adding equations valid forS to a • x ≥ α.

{x | a · x = α}

F
G2

G1

Once the inequality is rotated so that it is valid forP , one may ask which
face ofP is defined by the rotated inequality. SinceS 6= P , there are always
several such faces, but even when we aim for inclusion-wise maximal faces of
P defined by some rotated version ofa•x ≥ α, in general, these are not unique
either. In the picture to the right, by properly tilting the hyperplane defined by
a • x = α, we can obtain the inequalitiesF , F1 andF2.

A prominent example is of course sequential lifting, whereS is a an intersection of faces
defined by non-negativity inequalitiesxj ≥ 0.

Sequential lifting or other rotation-based tools are applied manually to find facets of poly-
hedra which contain faces which are better understood. Moreover, mechanisms of this kind are
used computationally in cutting-plane algorithms where some cutting-plane generation proce-
dure first works on a face and then lifts the obtained inequalities.

In this paper, we study what rotating inequalities does for the Symmetric Traveling Sales-
man PolytopeS and the Graphical Traveling Salesman PolyhedronP . Letn ≥ 3 be an integer.
Let V := {1, . . . , n} andE be the set of all unordered pairs{u, v} ∈ V , i.e., the set of edges
of the complete graph with vertex setV . The two polyhedra are subsets of the spaceRE of
vectors indexed by the elements ofE. The Symmetric Traveling Salesman PolytopeS is the
convex hull of all incidence vectors of edge sets of cycles with vertex set V (or of tours; or of
Hamilton cycles of the complete graphKn). The Graphical Traveling Salesman PolyhedronP
is the convex hull of all vectors corresponding to connected Eulerian multi-graphs with vertex
setV . (The precise definitions will be given in (5) on page28below.)

Ever since the groundbreaking work of Dantzig, Fulkerson, and Johnson on the compu-
tational solution of the Traveling Salesman Problem (TSP), the facet-structure of these poly-
topes has received much attention (e.g., [ABCC06, DFJ54, GP85, JRR95, Nad02, Sch03]).

25
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Their combinatorial and linear-algebraic properties have also been researched. For example,
questions about properties of the graph (e.g., its diameter) have been addressed [GP85, Ris98,
RC98, Sie98, STT95, ST92].

With few exceptions (for example [FN92, Nor55] for the casen ≤ 5; [BC91] for n = 6, 7;
[CJR91, CR96, CR01] for n = 8, 9), no complete characterization of the facets ofS or P
are known. In fact, since the TSP is NP-hard, there cannot exist a polynomial time algorithm
producing, for everyn and every pointx ∈ RE \ S, a hyperplane separatingx from S, unless
P=NP . Another noteworthy argument for the complexity of these polytopes is a result of
Billera & Sarangarajan [BS96]: For every 0/1-polytopeP , there exists ann such thatP is
affinely isomorphic to a face ofS.

contained in
nonneg ieq

contained in
degree ieq

TT

NR non-NR

metric

Faces of GTSPSince the seminal work of Naddef & Rinaldi [NR91, NR93] on the
Graphical and Symmetric Traveling Salesman polyhedra, it is known that
S is a face ofP . Moreover, Naddef & Rinaldi proved a theorem saying
that, if an inequality defines a facet ofS, then there is a unique maximal
face ofP which can be obtained by rotating the inequality, and this maximal obtainable faceis
a facet ofP .

Naddef & Rinaldi classified the facets ofP into three types — non-negativity facets, degree
facets, and the rest, called TT-facets — based on properties of the coefficients. While the degree
facets and non-negativity facets are both small in number and easily understood, the interesting
class both for understanding the polyhedron and for applications is the huge set of TT-facets.
By the theorem just mentioned, once one knows that the degree facets ofP are precisely those
which containS — also proved in Naddef & Rinaldi’s paper —, this also classifies the facets
of S into two types: non-negativity and TT-facets.

Oswald, Reinelt and Theis [ORT05, ORT07] have refined the classification by splitting the
TT-facets ofP into two subclasses: NR-facets and non-NR-facets, depending on whether the
intersection of the facet withS is a facet ofS (theseP -facets are called NR-facets) or a face
of S of smaller dimension, the main result being the fact that the non-NR class is notempty.
The existence of non-NR-facets has unpleasant consequences bothfor theoretical research and
practical computational approaches to solving TSP instances. On the theoretical side, it is
much easier to prove facet-defining property of inequalities forP than forS. Moreover,P
pleasantly preserves facet-defining property when a certain important lifting operation for facet-
defining inequalities (which replaces vertices by sets of vertices) is performed. ForS, this is
not known to be true. On the computational side, in the context of cutting-plane methods forS,
certain generic separation algorithms produce inequalities which are facet-defining forP , but
sometimes it is not clear whether these inequalities must be strengthened if they are to define
facets ofS. Examples of such separation algorithms include the local cuts method of Applegate,
Bixby, Chv̀atal & Cook [ABCC01, ABCC03, ABCC06] (see the discussion in [ORT07]) or
the path-lifting method of Carr [Car04].

In terms of rotation, the result in [ORT05, ORT07] shows that there are valid inequalities
for S which do not define facets ofS, but which can be rotated to define facets ofP . The
starting point of the present paper is the question what properties these valid inequalities forS
might have. The results we propose are most easily formulated using the terminology of polar
polyhedra. A polar polyhedronS△ of a polyhedronS has the property that the points ofS△ are
in bijection with the linear inequalities (up to scaling) forS. Moreover, a pointa is contained
in a face of dimensionk of S△, if, and only if, the corresponding inequality defines a face of
dimension at leastdimS+1− k of S. In particular, the vertices ofS△ are in bijection with the
facets ofS. Also recall the concept of a polyhedral complex: a finite set of polyhedra, closed
under taking faces, such that the intersection of any two polyhedra in the set is a face of both.

We give results about the “important” part of the polar ofS, namely the part which remains
if we delete the vertices corresponding a non-negativity facets. This corresponds to taking only
the “TT-class” of valid inequalities forS; the details are made precise below (Section4.2).
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This subset of faces of the polar ofS is a polyhedral complex, which we denote byA. Take
a point inA, consider the corresponding valid inequality forS, and rotate it in all possible ways
yielding inequalities valid forP . A certain set of faces ofP can be defined by the rotated ver-
sions of this inequality. Now we partition the points contained inA in the following way: two
points are in the same cell of the partition, if, by rotating the corresponding valid inequalities,
the two sets of faces ofP which can be defined coincide.

In fact, the partition whose definition we have just outlined, gives a polyhedral subdivision
S of A, i.e., the set of closures of the cells is a polyhedral complex, and every face ofA is
a disjoint union of cells. This is true in the general situation when a polytopeS is a face of
another polytopeP . Indeed,S is known as thechamber complexof the canonical projection of
the polar ofP onto the polar ofS. We call such a polyhedral subdivision arotation complex.
We give the following results about the rotation complex in the TSP situation:

(A) The decomposition ofA into cells can be described in a natural way that does not
refer to rotation; moreover, it does not refer to any Graphical Traveling Salesman
concepts whatsoever. Indeed, to describe the subdivision, for a pointa contained in
A, it suffices to check the order relations of the expressionsauv − auw − awv, with
u, v, w three distinct vertices inV . (As customary, we use the abbreviated notation
uv := {u, v}.)

(B) The points inA are inbijection(!) with the “important” part of the polar ofP (the
definition of polar here is not canonical and will be made precise), and thisbijection
maps faces of the polar ofP onto faces of the rotation complexS. In other words, the
polar ofP can be “flattened” onto the polar ofS, see Fig.4.1, right.

Again, “important” is meant to be understood in the sense that it correspondsto considering
TT-type inequalities only. Item (B) is not a consequence of known facts about the chamber
complex (injectivity fails to hold in general).

The picture in Fig.4.1, left, illustrates Item (A). It shows a hypothetical drawing ofA
(solid lines) with two pointsa, a′. To decide whether these two points, when viewed as valid
inequalities forS, yield the same faces ofP when rotated, one has to check the expressions
auv − auw − awv. This amounts to checking if they are containd in the same cone in the picture
(dotted lines). Indeed, Item (A) can be restated as saying that the rotation complexS is the
common refinement ofA with a projection of a natural sub-complex of the boundary complex
of the metric cone. (The common refinement of two polyhedral complexes is theset of all
intersections of polyhedra in the two complexes, and the metric cone consists of all functions
E → R+ satisfying the triangle inequality). The occurrence of the metric cone in the context
of the two polyhedraS andP is no surprise: It is known [The10] that the metric cone plays a
rôle in the relationship between the polyhedraS andP . One can constructP by gluing together
S and the dual of the metric cone, and then cutting off the waste (see [The10] for a rigorous
statement). Item (B) addresses the uniqueness question for faces defined by rotated inequalities
addressed above (second paragraph of the introduction). Note, though, that having a point-wise
bijection is a stronger statement than saying that the maximal faces obtainable byrotation are
unique.

We apply these results to a problem concerning the ridge graph ofP . The ridge graph has
as its vertices the facets, and two facets are linked by an edge if and only if their intersection is a
ridge, i.e., a face of dimensiondimP − 2. The ridge graph is of importance for the problem of
computing a complete system of facet-defining inequalities, when the points andextreme rays
are given. A common solution here is to search in the ridge graph, i.e., once afacet is found, its
neighbors are computed. A problem which may occur is that, for some facets, computing the
neighbors is not computationally feasible. Due to the connectivity of the ridgegraph, some of
its vertices can be skipped in the search, and still all vertices are reached. For example, when
the facets of ad-dimensional polytope are computed in this way, by Balinski’s Theorem, one
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a

a′

GTSP
π

Polar of
GTSPS

FIGURE 4.1. Left: S as a common refinement ofA andT , a projection of a
sub-complex of the boundary complex of the metric cone; Right: “Flattening”
of parts of the polar ofP onto the polar ofS.

may skipd − 1 arbitrarily selected facets. Very often, however, the number of facets whose
neighbors cannot be computed is too large (exponential in the dimension). Thus, one would
like to prove connectivity properties of the ridge graph which allow for these vertices to be
dead ends in the search.

We prove the following. If a system of NR-facet-defining inequalities satisfies the so-called
parsimonious property [GB93, Goe95], the removal of the corresponding vertices from the
ridge graph leaves connected components, each of which contains a vertex corresponding to an
NR-facet. The proof of this makes use of (B) above in an essential way. In deed, by pressing
the boundary ofP “flat” onto a lower dimension, one can use linear algebra arguments, which
cannot be used when the boundary is molded aroundP in the higher dimension.

The statement has been used in a computation proof of the completeness of anouter de-
scription for the Graphical Traveling Salesman PolyhedronP in the casen = 9 in [ORT07] in
the scenario sketched above.

This paper is organized as follows. In the second section, we define somebasic concepts
from polyhedral theory. Section4.2provides rigorous formulations of our results. Section4.3
contains the proofs of the results about the rotation complex, while the resultsabout the ridge
graph are proved in Section4.4.

4.2. Exposition of results

We refer the reader to [Grü03] and [Zie98] for background material on polyhedra, polarity,
projective transformations, and polyhedral complexes. For a polyhedron P , let C(P ) be the set
of all of its faces. This is a polyhedral complex with underlying point setP .

Fix an integern ≥ 3. TheSymmetric Traveling Salesman Polytopeis defined as the convex
hull in RE of all edge sets of cycles with vertex setV (or Hamiltonian cycles in the complete
graphKn):

(4) S := conv
{
χE(C)

∣∣ C is the cycle withV (C) = V
}
,

whereχF denotes the characteristic vector of a setF , i.e.,χF
e = 1, if e ∈ F , and0 otherwise.

The second polyhedron which we will consider is defined to be the convexhull of all edge
multi-sets of connected Eulerian multi-graphs on the vertex setV :

(5)
P := conv{x ∈ ZE

+ |
x defines a connected Eulerian multi-graph with vertex setV },

where we identify sub-multi-sets ofE with vectors inZE
+ (i.e., there arexe copies of edgee

present in the multi-graph). This polyhedron was introduced in [CFN85] under the name of
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Graphical Traveling Salesman Polyhedronand has since frequently occurred in the literature
on Traveling Salesman Polyhedra. It is particularly important in the study of properties, mainly
facets, of Symmetric Traveling Salesman Polytopes (e.g., [Goe95, NP01, NR91, NR93, NR07],
see [ABCC06, Nad02] for further references).

The polyhedronP has been called theGraphical Relaxationof S by Naddef & Rinaldi
[NR91, NR93] who discovered and made use of the fact thatS is a face ofP : While the
latter is a full-dimensional unbounded polyhedron inRE [CFN85], the former is a polytope of
dimension

(
n
2

)
− n [Nor55], and the inequality

∑
e∈E xe ≥ n is valid forP and satisfied with

equality only by cycles, thus attesting to the face relation.

4.2.1. Definitions of the polars.We denote byx • y the standard scalar product in Eu-
clidean space.

The set of facets ofP containingS is known. Foru ∈ V , let δu be the point inRE which is
1/2 on all edges incident tou and zero otherwise. It is proven in [CFN85] that the inequalities
δu • x ≥ 1, u ∈ V , define facets ofP , the so-calleddegree facets.Clearly,S is the intersection
of all the degree facets (because suming all degree inequalities gives

∑
e xe ≥ n).

It is customary to write inequalities valid forP in the forma • x ≥ α, and we define the
polars accordingly. Define the linear spaceL to be the set of solutions to then linear equations
δu • x = 0, u ∈ V . Note that theδu are linearly independent,dimS = dimL, and the affine
hull of S is a translated copy ofL. Wheneverz is a relative interior point ofS, the polar ofS
may be defined as the following set:

(6) S△ := {a ∈ L | (−a) • (x− z) ≤ 1 ∀x ∈ S}.
(Therelative interior relintP of a polyhedronP is the interior (in the topological sense) ofP
in the affine space spanned byP , in other words,relintP = P \ ⋃F(P F , where the union
runs over all faces ofP .) So a pointa ∈ S△ corresponds to a valid inequalitya • x ≥ a • z − 1
of S. Changingz amounts to submittingS△ to a projective transformation. Although it can be
seen that our results do not depend on the choice ofz, it makes things easier to define

(7) z :=
2

n− 1
1 =

1

(n− 1)!/2

∑

C

χE(C) =
2

n− 1

n∑

u=1

δu,

where the first sum extends over all cycles with vertex setV . Soz is at the same time the average
of the verticesχE(C) of S and a weighted sum of the left-hand sidesδu of the equations.

Next, we construct a kind of polar forP . For this, we will use the blocking polyhedron
construction, which is well-known in polyhedral combinatorics. Goemans [Goe95] has been
observed thatP is of so-calledblocking type, i.e., it is the Minkowski sum ofRE

+ with the
convex hull of a finite set of points inRE

+. Thus we define

P△ := {a ∈ Rm | a • x ≥ 1 ∀x ∈ P}.
This set is sometimes called theblocking polyhedronof P . Note thatP△ ⊂ RE

+ (see [CFN85];
this is well-known to be true for the blocking polyhedron of any blocking typepolyhedra).
Other known facts about blocking type polyhedra and their blocking polyhedra includes the
fact thadP△ is also of blocking type. In particular, the extreme rays of bothP andP△ are the
positive coordate directions.

CallingP△ thepolar (polyhedron)of P is justified by that fact that, essentially, it has the
defining properties of a polar polytope. Let us elaborate. For any polytopeQ containing0 as an
interior point, there is a mapping assigning to every face the face of its polar consisting of all
points corresponding to inequalities which are satisfied with equality by all points ofF . This
mapping is an inclusion reversing bijection. In the case of blocking type polyhedra and their
blocking polyhedra, something similar holds. The following definitions and lemma will make
this clear. For a faceF of P , define itsconjugate faceF♦ to be the set of pointsa ∈ P△
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satisfyinga • x = 1 for everyx ∈ F . The following lemma will establish that the mapping
F 7→ F♦ has the properties For brevity, we say that a faceF of P is goodif it is not contained
in a non-negativity facet,i.e., a facet defined byxe ≥ 0 (these inequalities do define facets
of P [CFN85]). The non-negativity inequalities are valid forP△, and henceP△ has (possibly
empty) non-negativity faces, too. As is customary, theco-dimensionof a faceF of a polyhedron
Q ⊂ Rm is dimQ− dimF .

Lemma 4.1. The polarP△ of P has the following properties.

(a) Leta ∈ RE \ {0} andd ≥ −1. Thena is a relative interior point of a non-trivial face
of P△ with co-dimensiond + 1 if and only if the inequalitya • x ≥ 1 is valid forP
and defines a face of dimensiond of P .

(b) LetN ⊂ C(P ) be the set of intersections of non-negativity facets ofP (with ∅, P ∈
N ), and similarlyN ′ ⊂ C(P△) be the set of all intersections of non-negativity faces
of P△. Then conjugation of facesC(P ) \ N → C(P△) \ N ′, F 7→ F♦ := {a ∈ P△ |
a • x = 1 ∀x ∈ F} defines an inclusion reversing bijection.

(c) A faceF of P is good if and only ifF♦ is bounded. �

We leave the proof of this lemma to the reader.
Thus we see that blocking polyhedra behave like polar polytopes, except that the non-

negativity faces are set apart.
Since we will construct projective mappings between between parts of the polar polyhedra,

for our results, the realization of the polar as a concrete polyhedron plays a great role, not just
the properties of its face lattice. Thus, a word is in order why we chose the blocking polyhedron
“without loss of generality”. Clearly, the most natural definition of a polar would be to intersect
the polar cone{(α, a) ∈ R × RE | a • x ≥ α ∀x ∈ P} with the hyperplaneα +

∑
e ae = 1.

(From the above mentioned fact thatP is the Minkowski sum ofRE
+ with the convex hull of a

finite set of points inRE
+, we see that this hyperplane intersects all extreme rays of the polar cone

except forR+(α, 0) which does not correspond to a facet ofP .) However, a moments thought
will convice the reader that the result is projectively isomorphic to the blocking polyhedron.

The pointsδu defined above are vertices ofP△, more precisely, they are the vertices of the
faceS♦ of P△.

4.2.2. Definitions of the polyhedral complexes.A polyhedral complexis a finite set of
polyhedraC with the properties that (a) ifF ∈ C andG is a face ofF , thenF ∈ C; and (b)
if F,G ∈ C, thenF ∩ G is a face of bothF andG. The polyhedra inC are called the faces
of C, and faces of aC having dimension0 (or 1, respectively) are called vertices (or edges,
respectively) ofC. A sub-complexof a polyhedral complexC is a polyhedral complexD with
D ⊂ C.

We consider the set of faces ofS△ which do not contain a vertex corresponding to a non-
negativity facet ofS (as forP , a non-negativity facet ofS is one defined by an inequality
xe ≥ 0 for somee ∈ E). In symbols, ifN denotes the set of vertices ofS△ corresponding to a
non-negativity facet ofS, we deal with the polyhedral complex

(8) A := dl(N,S△) := {F face ofS△ | F ∩N = ∅} = dl
(
{{x} | x ∈ N}, C(S△)

)

wheredl(N,S△) is a slight abuse of notation: For a polyhedral complexC and a set of faces
D ⊂ C, we define thedeletion ofD in C to be the polyhedral sub-complex ofC consisting of all
facesF ∈ C whose intersection with all faces inD is empty, i.e.,

dl(D, C) :=
{
F ∈ C

∣∣ ∀G ∈ D : F ∩G = ∅
}

4.2.2.1. Tight triangularity. Let a ∈ RE . We say thata is metric,1 if it satisfies the triangle
inequality, i.e.,avu+auw−avw ≥ 0 for all three distinctu, v, w. (As is a customary for graphs,

1Note that this impliesae ≥ 0 for all e.
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we abbreviate{v, w} with v 6= w to vw.) We follow [NR93] in calling a tight triangular (TT),
if it is metric and for eachu ∈ V there existsvw such that the triangle inequality is satisfied
with equation:avu + auw − avw = 0. Abusively, we say that a linear inequality is metric, or
TT, if the left hand side vector has the property.

4.2.2.2. Metric cone, TT-fan and flat TT-fan.A polyhedral complex is a (pointed)fan if it
contains precisely one vertex, and each face which is not a vertex is emptyor a pointed cone.

Themetric cone,C, consists of all(semi-)metricsonV . In our context, a (semi-)metric is
a metric pointd ∈ RE , i.e.,

(9) dvu + duw − dvw ≥ 0

holds for all distinctu, v, w ∈ V .
For a polyhedral complexC, we denote by|C| := ⋃

F∈C F its underlying point set, and,
informally, we say that a pointx is in C, if x ∈ |C|.

We now define theTT-fanT ′, which is a sub-fan of the fan of all faces of the metric cone.
Heuristically, the elements of|T ′| are metrics onV satisfying the following: for every point
u ∈ V , there exist two other pointsv, w ∈ V such thatu is the “middle point” of the “line
segment” betweenv andw. More accurately, lettingFu,vw denote the face ofC defined by
inequality (9) the TT-fan is defined as follows:

(10) T ′ :=
⋂

u∈V

⋃

v,w 6=u

C(Fu,vw) ⊂ C(C).

T ′ is indeed a fan. “TT” stands for “tight triangular”, a term coined by Naddef & Rinaldi
[NR93] for a point’s property of being in|T ′|. However, we are not aware of any reference to
this fan in the literature. Denote byp : RE → L the orthogonal projection. We will prove in the
next section (Lemma4.10) that applyingp to T ′ produces a fanT isomorphic toT ′:

(11) T := {p(F ) | F ∈ T ′}.
We callT theflat TT-fan.

4.2.2.3. Definition of the edge setsEu(a). Let a ∈ S△. For everyu ∈ V , we letEu(a) be
the set of edges on which the slack of the triangle inequality (9) is minimized:

(12) Eu(a) :=
{
vw ∈ E

∣∣∣ u 6= v, w, and

avu + avw − avw = min
v′,w′ 6=u

av′u + auw′ − av′w′

}
.

4.2.2.4. The TT-sub-complex ofP△. We letĈ(P ) be the polyhedral complex of all bounded
faces ofP .

We define a sub-complexB of C(P△): B is what remains of the complex̂C(P△) of bounded
faces ofP△ after deleting the conjugate face ofS in P△, in symbols

B := dl(S♦, Ĉ(P△)).

It will become clear in the next section (see Remark4.9) that the points of the complexB are
precisely the points in|Ĉ(P△)| which are tight triangular.

4.2.3. Rotation and statements of the results.LetC andD be two polyhedral complexes.
D is called asubdivisionof C, if, (a) every face ofD is contained in some face ofC; and (b)
every face ofC is a union of faces ofD.

We now give the rigorous definition of “rotation” and of the rotation complex,as outlined
in the introduction. More accurately, we define a “rotation partition” of|A|, which will turn out
to be a polyhedral complex subdividingA.

A point a ∈ S△ corresponds to an inequalitya • x ≥ a • z − 1 valid for S. Rotating this
inequality amounts to adding an equation valid forS. The left-hand side vectorq of such an
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equation is a linear combination of the left-hand side vectors of the equationsδu•x = 1, and the
right-hand side coincides withq•z. Hence, for a fixedq, rotating the inequalitya•x ≥ a•z−1
by q gives the following

(13) (a+ q) • x ≥ a • z − 1 + q • z.
For a ∈ |A|, let F(a) ∈ C(P ) be the set of faces ofP which can be defined by the rotated

version of the inequality corresponding toa. More precisely, a setF ⊂ RE is in F(a) if, and
only if, there exists aq as above, such that the rotated inequality (13) is valid forP , andF is
the set of points inP satisfying it with equality:F = {x ∈ P | (a+ q)•x = a • z− 1+ q • z}.

Now we define a partitionS◦ of |A|, by letting two pointsa, b be in the same cell ofS◦ if
and only ifF(a) = F(b). Moreover, letS be the set of all closures of cells ofS◦:

S := {X | X ∈ S◦},
where, forX ⊂ Rm, we denote byX the closure ofX in the topological sense. We callS the
rotation complex(the word “complex” is justified by Theorem4.2).

Let C andD be two polyhedral complexes. Thecommon refinementof C andD is the
polyhedral complex whose faces are all the intersections of faces ofC andD: C∨D := {F ∩G |
F ∈ C, G ∈ D}. The common refinementC ∨ D is a subdivision of bothC andD.

Theorem 4.2. S is a polyhedral complex. Moreover,X 7→ X andF 7→ relintF are inverse
bijections betweenS◦ andS. The following is true.

(a) The rotation complexS is the common refinement ofA and the flat TT-fanT .
(b) Two pointsa, b in |A| are in the relative interior of the same face of the rotation

complexS if, and only if, they are in the relative interior of same face ofS△ and
Eu(a) = Eu(b) for all u ∈ V .

This corresponds to item (A) on page27 in the introduction, while the next theorem corre-
sponds to item (B).

Two polyhedral complexesC andD are called combinatorially equivalent, if there exists a
bijectionΦ: C → D, which preserves the inclusion relation of faces, i.e., ifF ⊂ F ′ are two
faces ofC, thenΦ(F ) ⊂ Φ(F ′). We say that a mappingf : |C| → |D| induces a combinatorial
equivalence,if f induces the polyhedral complexD, and the mappingF 7→ f(F ) is one-to-one.
In this case,C andD are combinatorially equivalent viaF 7→ f(F ).

Theorem 4.3. There is a projective homeomorphismπ : |B| → |A|, such that the mapping
F 7→ π(F ) is a combinatorial equivalence between the polyhedral complexB and the rotation
complexS.

Remark 4.4. Let us say that a vertex ofP△ is a TT-vertex, if, as a point, it is TT in the above
sense, or, equivalently, if the vertex corresponds to a TT-facet ofP . Similarly, let us call a
TT-vertex ofP△ an NR-vertex (non-NR-vertex), if the corresponding facet ofP is an NR-facet
(non-NR-facet, resp.). Theorems4.2and4.3 imply that the NR-vertices ofP△ are in bijection
with the vertices ofA via π, while the non-NR vertices ofP△ are mapped to non-vertex points
by π.

4.2.4. Parsimonious property of relaxations and the ridge graph.Given a systemBx ≥
b of linear inequalities which are valid forS, one may ask how the minimum value of a linear
functionx 7→ c⊤x changes if either degree inequalities or degree equations are present, inother
words, whether the following inequality is strict:

min
{
c⊤x

∣∣ Bx ≥ b, δv • x ≥ 1 ∀v, x ≥ 0
}

(14a)

≤
min

{
c⊤x

∣∣ Bx ≥ b, δv • x = 1 ∀v, x ≥ 0
}

(14b)
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We say that the system of linear inequalities and equations in (14a),

(15)

Bx ≥ b

δv • x ≥ 1 ∀v ∈ V

x ≥ 0

is a relaxation ofS. Such a relaxation is said to have theparsimonious property[GB93] if
equality holds in (14) for all c satisfying the triangle inequality.

Goemans [Goe95] raised the question whether all relaxations ofS consisting of inequalities
defining NR-facets ofP (in other words, they are facet-defining forP and forS) have the
parsimonious property.

The parsimonious property had earlier been proved to be satisfied for therelaxation con-
sisting of all inequalities defining facets ofP by Naddef & Rinaldi [NR91], in other words:
optimizing an objective function satisfying the triangle inequality overP yields the same value
as optimizing overS. The parsimonious property has been verified by Goemans and Bertsimas
[GB93] for the relaxation consisting of all non-negativity inequalitiesxe ≥ 0, e ∈ E, and all
so-called subtour elimination inequalities. For everyU ( V with |U | ≥ 2, the corresponding
subtour elimination inequality

(16)
∑

uv∈E
|{u,v}∩U |=1

xuv ≥ 2,

is valid and facet-defining forS (whenevern ≥ 5) [GP79a, GP79b].
To our knowledge, the first example of a relaxation ofS which does not have the parsimo-

nious property is due to Letchford [Let05]. While the operative inequalities in his relaxation
do not define facets ofS or of P , in [ORT05, ORT07], a relaxation consisting of inequalities
defining facets ofP was derived, which does not have the parsimonious property.

As an application of Theorems4.2and4.3, we give a necessary condition for a relaxation
of S consisting of inequalities defining NR-facets ofP to have the parsimonious property. The
condition is based on connectivity properties of the ridge graph ofP . Recall that theridge
graphG of P is the graph whose vertex set consists of all facets ofP where two facets are
adjacent if their intersection has dimensiondimP − 2, i.e., it is aridge. We will relate a given
relaxation to the induced subgraphGB of the ridge graph ofP which is obtained if all vertices
corresponding to the facets defined by inequalities in (15) are deleted.

Theorem 4.5. SupposeBx ≥ b consists of inequalities defining NR-facets ofP . If the relax-
ation (15) ofS has the parsimonious property, then every connected component ofGB contains
vertices corresponding to NR-facets ofP .

Thus, we link the optimization view given by the parsimonious property questionwith
combinatorial properties of the polyhedral complexC(P ), or, more precisely, ofB. In the proof,
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Theorem4.3 is used to “flatten” the latter complex, which then allows us to use a separating-
hyperplane argument for constructing a path in the ridge graph.

4.3. Proofs for Theorems4.2and 4.3

In Subsection4.3.1, we will need to discuss some properties of Symmetric and Graphical
Traveling Salesman polyhedra. Most of them are generalizations of factsin the seminal pa-
pers by Naddef & Rinaldi [NR91, NR93]. The proof of Theorems4.2 and4.3 then takes up
Subsections4.3.2and4.3.3.

As said before, we assume in the whole section thatn ≥ 5, because we require the technical
fact that non-negativity inequalitiesxe ≥ 0, for ane ∈ E, define facets ofS, which is true if
and only ifn ≥ 5, see [GP79a, GP79b].

4.3.1. Preliminaries onP . Naddef & Rinaldi [NR93] proved that every facet ofS is con-
tained in preciselyn+1 facets ofP : then degree facets and one additional facet. This fact and
its generalizations are useful for our purposes. For the sake of completeness, we will sketch its
proof, and introduce some of the tools for the proofs of our main theorems along the way.

First we set up some notations. For a linear subspaceL ⊂ Rm, denote byL⊥ := {q ∈
Rm | q • x = 0 ∀x ∈ L} the orthogonal complement ofL. Let D be theV × E-matrix
whose rows are theδ⊤u, u ∈ V . Recall from Section4.2.2.2thatp is the orthogonal projection
from RE ontoL = kerD. Note that the orthogonal complementL⊥ = ker p of L is equal to
imD⊤ = {D⊤ξ | ξ ∈ RV }, the space of all linear combinations of theδu.

In the following lemma, we summarize basic facts about tight triangularity. Recallfrom
page4.2.1that a face ofP is good, if it is not contained in a non-negativity facet.

Lemma 4.6.
(i) A metric inequality which is valid forS is also valid forP .

(ii) An inequality defining a good face ofP is metric.
(iii) An inequality defining a good faceF of P is TT if and only ifF is not contained in a

degree facet.
(iv) If F is a good face ofP , thenS ∩ F is also a good face ofP .
(v) Let the TT inequalitya • x ≥ 1 be valid forP . If it defines a face of co-dimensionc of S,

then it defines a face of co-dimension at mostc of P .
(vi) For everya ∈ RE there is a unique TT representative in the co-seta+ L⊥ = {a+D⊤ξ |

ξ ∈ RV }. More precisely, we can obtain a uniqueλ(a) ∈ RV for whicha − D⊤λ(a) is
TT by letting

(17) λu(a) := min
v,w 6=u

(avu + auw − avw)

u

vw

The mappingλ : RE → RV is defined asa 7→
(
λu(a)

)
u∈V

.
Given a vertexu and an edgevw not incident tou, a shortcutis a vector

su,vw := χvw − χvu − χuw ∈ RE . Here, we abbreviateχ{e} to χe. Note
that−a • su,vw = avu + auw − avw is the slack of the corresponding triangle
inequality.

PROOFS FORLEMMA 4.6 (SKETCHES). Please note that there is not a shred of an argu-
ment in the proofs for the statements of Lemma4.6, which is not present in the [NR93] paper,
only that the arguments are applied to faces instead of facets.

The key ingredient in (a–c) is theshortcut argumentwhich Naddef & Rinaldi pioneered in
[NR93]. Let x ∈ ZE

+ represent the edge multi-set of a connected Eulerian multi-graphH with
vertex setV . If H is not a cycle, i.e., ifH has a vertexu of degree four or more, then one
can find an edgevw such thatvu andvw are inH, andH ′ := H + vw − {vu, uw} is still a
connected Eulerian multi-graph; cf. the picture on the right. Ify represents its edge multi-set,
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theny = x + su,vw. This gives (a), the implication “⇒” in (c), and by carefully selecting
the edgevw, (d). Similarly, one can subtract a shortcut from anx, which gives (b), the other
direction in (c), and, by taking for each vertexu a shortcutsu,vw, implies (e).

The proof can be found in [NR93], but we present the basic computation which is used
here and in some other arguments in the present paper. Leta as in Item (f), and supposeq =∑n

j=1 µjδj for some real numbersµ1, . . . , µn. For every selection ofu and disjointvw ∈ E,
the slack of the corresponding triangle inequality fora+ q can be computed as follows

(18) (a+ q)vu + (a+ q)uw − (a+ q)vw = avu + auw − avw + µu.

Thus,a+ q is TT if and only if theµu are equal to theλu in (17). �

The proof of (f) gives the following.

Remark 4.7. If a is as in (f) andq =
∑n

j=1 µjδj then for everyu ∈ V µu = λu(a) implies
a • su,e = 0 for all e ∈ Eu(a).

We now prove the important theorem of Naddef & Rinaldi.

Theorem 4.8([NR93]).
(i) If a facetG of P containsS, thenG is a degree facet.

(ii) Let F be a good facet ofS (i.e., a facet ofS which is a good face ofP ). There exists a
unique facetG of P with F = G ∩ S.

PROOF. (a). If G ⊃ S, thenG is trivially good, becauseS is not contained in a non-
negativity facet. IfG is not equal to a degree facet, then, by Lemma4.6(c), it is defined by a
TT inequality, which contradicts Lemma4.6(e).

(b). Clearly,G exists becauseS is a face ofP . LetG be defined by an inequalitya•x ≥ α.
Thena is TT by Lemma4.6(c), hence, by Lemma4.6(f), unique in the seta + L⊥ of all left
hand sides of inequalities defining the facetF of S. �

4.3.1.1. Related aspects of the polar polyhedra.By passing to the polar, Theorem4.8(b)
is equivalent to the following. Ifa is a vertex ofP△ such that the inequalitya • x ≥ 1 defines a
facet (calledF in Theorem4.8(b)) of S, thena andδu, u ∈ V , are the vertices of ann-simplex
which is a face ofP△.

Remark 4.9. By Lemma4.1(b) and Lemma4.6(c), the points of the complexB = dl(S♦, Ĉ(P△))

are precisely the points in|Ĉ(P△)| which are tight triangular.

4.3.2. Descriptions of the rotation complex.We will now prove Theorem4.2. We start
by proving that the two refinements ofA = dl(N,S△) defined in (a) and (b) respectively of
Theorem4.2 are identical: the one using the flat TT-fan defined in (11) and the one using the
setsEu(a) defined in (12).

Let us first verify that the orthogonal projectionp maps the TT-fan|T ′| bijectively ontoL.
For this, we define some mappings, based on (17):

λu : R
E → R : a 7→ min

v,w 6=u
avu + auw − avw,

λ : RE → RV : a 7→ (λ1(a), . . . , λn(a))
⊤,(19)

ϑ : RE → RE : a 7→ a−D⊤λ(a),

ϑ̃ : R× RE → R× RE : (α, a) 7→ (α− 1 • λ(a), ϑ(a)).
Note thatϑ̃ is essentially the same asϑ except that the former takes the “right hand side”α into
account.

Lemma 4.10. The mappingsp : |T ′| → L and ϑL : L → |T ′| are inverses of each other.
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(The restriction of a mappingf : X → Y to a setZ ⊂ X is denoted byfZ .)

PROOF. By Lemma4.6(vi), every co-seta+L⊥ of L⊥ contains a unique TT point, namely
ϑ(a). The co-set also contains a unique point ofL, namely the orthogonal projectionp(a) of a
ontoL. Hence, the two mappings are inverses of each other. �

In view of Lemma4.10, p transports the fanT ′ into a fanT := p(T ′) in L, the flat TT-fan
defined in Section4.2. It is a complete fan in its ambient spaceL. (A fan C is complete,if
|C| is equal to the ambient space.) The next lemma states that the refinements ofA used in
Theorem4.2 are identical. The proof is a direct verification based on the definitions ofEu(·)
andϑ, using Lemma4.10.

Lemma 4.11. For two pointsa, b ∈ L, the following are equivalent:

(i) Eu(a) = Eu(b) for all u ∈ V
(ii) a andb are in the relative interior of the same face of the flat TT-fanT . �

For easy reference, letD denote the common refinement ofA and the flat TT-fanT . This is
certainly a polyhedral complex, and the previous lemma implies that two points in therelative
interior of a face ofA are in the relative interior of the same face ofD, if, and only if, (i) holds
and they are in the relative interior of same face ofS△.

This shows that items (a) and (b) of Theorem4.2are just reformulations of each other, one
using the formulation involving the setsEu(·), the other using the common refiniement with
T . Moreover, to establish Theorem4.2, it remains to prove that the partition of|A| into open
faces ofD coincides with the partitionS◦: Once this is established, both the statement about
the closures and relative interiors in Theorem4.2, and items (a) and (b) follow.

To prove that these two partitions coincide, we need to descend deeper intothe properties
of P . ForX ⊂ Rm, we denote byaffX the affine hull ofX, i.e., the smallest affine subspace
of Rm containingX. We letdirX denote the “space of directions” inX, i.e., the linear space
generated by the pointsy− x, x, y ∈ X. Hence,affX = x+dirX holds for everyx ∈ affX.
If F is a face ofP , then a shortcut is said to befeasiblefor F , if it is contained in the space
dirF . We note the following for easy reference.

Lemma 4.12. If F is a good face ofP , then a shortcutsu,vw is feasible forF if and only if
a • su,vw = 0 for one (and hence for all)a ∈ relintF♦.

PROOF. If F is a good face, then the polarity relations of Lemma4.1hold betweenF and
F♦. The details are left to the reader. �

The following lemma highlights the importance of shortcuts in the relationship between S
andP .

Lemma 4.13. A good faceF of P is uniquely determined by

• the set of cycles whose characteristic vectors are contained inF , plus
• the set of its feasible shortcuts.

PROOF. A face is uniquely determined by the vertices it contains the extreme rays of its
characteristic cone. By the shortcut argument, every vertex ofF is either itself a cycle, or it
can be constructed from a cycle by successively subtracting feasible shortcuts. As for the rays,
R+ χuv is a ray ofF if and only if, for anya ∈ relintF♦, we haveauv = 0 (by Lemma4.6(b)).
By Lemma4.12, this is equivalent to the property that for everyw 6= u, v, bothsu,vw andsv,uw
are feasible shortcuts. �

We can now finish the proof of Theorem4.2.

PROOF OFTHEOREM 4.2(B). Let a ∈ |A|. The inequalities of the form (13) all define
good faces ofP , becausea defines a face ofS not contained in a non-negativity facet ofS.
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Moreover, since every inequality of the form (13) defines the same face ofS, Lemma4.13
implies that every member of the setF(a) of faces ofP defined by inequalities of the form (13)
is uniquely determined by its set of feasible shortcuts.

We claim that the setF(a) is in bijection with the set of all subsets ofV , where the bijection
is accomplished in the following way: To a subsetI ⊂ V , there is a face inF(a) whose set of
feasible shortcuts is precisely

(∗)
⋃

u∈I

{su,e | e ∈ Eu(a)}.

The faces obtainable in this way are clearly pairwise distinct by what we have just said (note
thatEu(a) 6= ∅). We have to construct a corresponding inequality for every setI, and we have
to show that all faces inF(a) can be reached in this way.

For the former issue, forI ⊂ V we defineq :=
∑

u 6∈I δu, and consider the inequality

(ϑ(a) + q) • x ≥ −1 + a • z − 1 • λ(a) + q • z,
which is of the form (13) because1 = Dz, and defines a good face ofP . The set of feasi-
ble shortcuts of this inequality is easily verified to be (∗): Compute the slacks of the triangle
inequalities as in (18) and then use Lemma4.12.

To see that every faceF in F(a) can be obtained in this way we argue that if there exists
an edgevw such thatsu,vw is feasible forF , thenvw ∈ Eu(a) and for everye ∈ Eu(a) the
shortcutsu,e is feasible forF . But this is an immediate consequence of Remark4.7 following
Lemma4.6.

This completes the proof of Theorem4.2. �

4.3.3. Projective equivalence of the two complexes.We now proceed to prove Theo-
rem4.3. We want to define a mappingπ by letting

(20a) π(a) :=
1

a • z − 1
p(a),

for a ∈ P△. The denominator will be zero, if, and only if,a • x ≥ 1 is satisfied by equality for
all x ∈ S, in other words,π(a) is well-defined for alla ∈ P△ \ S♦.

By Lemma4.6, a pointa in the complexĈ(P△) of bounded faces ofP△ defines a good
face ofS, so we haveπ(a) ∈ |A|, whenevera 6∈ S♦. Hence, we have the mapping

(20b) π : |B| → |A|.
In this subsection, we will prove thatπ as given in (20) is a homeomorphism, and show

that it induces a combinatorial equivalence betweenB and the rotation complexS; i.e., we
prove Theorem4.3. We will explicitly construct the inverse mappingπ−1, which, essentially,
transforms a point into its TT-representative in the sense of Lemma4.6(vi).

When we write the projective mappingπ as a linear mapping fromR × RE → R × L by
homogenization,2 it has the following form:

π̃ :=

(
−1 z • @

0 p

)
,

where@ replaces the variable, i.e.,X@Z (X andY are parts of a formula) is short fory 7→ XyZ.
As a technical intermediate step in the construction ofπ−1, we define a linear mapping

I : R× RE → R× RE taking points inR× L to points inR× RE by the matrix

I :=

(
−1 z • @

0 id

)
,

2Recall that a projective mappingRm → Rm can be understood as a linear mappingR× Rm → R× Rm: If
f =

(

f11 f12
f21 f22

)

for linear mappingsfk,ℓ, thenΠ(f0)(x) = f11(1)+f12(x)
f21(1)+f22(x)

is a projective mapping. This commutes

with concatenation of mappings:Π(f ◦ g) = Π(f) ◦Π(g).
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Now we let(γ, c) := ϑ̃ ◦ I(1,@). Recalling the definition of̃ϑ from (19), in long, this reads

(21) (γ, c) : a 7→ (γ(a), c(a)) := ϑ̃(I(1, a)) =
(
−1 + a • z − 1 • λ(a) , a − D⊤λ(a)

)
.

Clearly, for alla ∈ L, the pointc(a) is TT. If a ∈ S△, i.e., if the inequalitya • x ≥ −1 +
a • z is valid forS, then the inequalityc(a) ≥ γ(a) is of the form (13) (cf. the corresponding
statement in the proof of Theorem4.2 above). We note the following fact as a lemma for the
sake of easy reference.

Lemma 4.14. If a ∈ S△, the two inequalitiesa • x ≥ −1 + a • z andc(a) • x ≥ γ(a) define
the same face ofS. �

Finally, we define

(22) ϕ : |A| → |B| : a 7→ 1

γ(a)
c(a).

Recall that, ifD′ is a polyhedral complex, a homeomorphismf : |C| → |D′| is called
refinement map,if the image ofC under the mappingF 7→ f(F ) is a polyhedral complexD
which is a subdivision ofD′. In this case, we say thatf inducesD.

PROOF OFTHEOREM 4.3. In the remainder of this section, we will discuss the following
issues:

(a) ϕ is well-defined (in4.3.3.1)
(b) ϕ is a left-inverse ofπ : |B| → |A| (in 4.3.3.2)
(c) π : |B| → |A| is onto (in4.3.3.3)

Items (b) and (c) imply that

(23) ϕ ◦ π = id|B| and π ◦ ϕ = id|A|,

so thatϕ is a homeomorphism|A| → |B|.
(d) π : |B| → |A| is a refinement map inducing the rotation complexS (in 4.3.3.4).

From this and (d), Theorem4.3follows. �

4.3.3.1. We show:ϕ is well-defined.We start by showing that the quotient in (22) is well-
defined. The key ingredient here is the fact that we are only considering good faces.

Lemma 4.15. For all a ∈ |A| we haveγ(a) > 0.

PROOF. Assume to the contrary thatγ(a) = 0. Sincec(a) is metric,c(a) ≥ 0 holds. We
distinguish two cases:c(a) = 0 andc(a) 
 0. In the first case, the hyperplane defined by
c(a)•x = γ(a) containsS, whilea•x ≥ −1+a•z defines a proper face ofS, a contradiction
to Lemma4.14. On the other hand, ifc(a) 
 0, then the inequalityc(a) • x ≥ γ(a) is a
non-negative linear combination of non-negativity inequalities, and hencethe face defined by
c(a) • x = γ(a) is contained in a non-negativity facet ofP . But sincea ∈ |A|, i.e., a it is
not a relative interior point of a face ofS△ which contains a vertex ofS△ corresponding to a
non-negativity facet ofS, the face ofS defined bya • x ≥ −1 + a • z is not contained in a
non-negativity facet ofS. Thus Lemma4.14yields a contradiction. �

It remains to be shown that the image of|A| underϕ is really contained in the target space
given in (22): For all a ∈ |A| we haveϕ(a) ∈ |B|. This also follows from Lemma4.14: The
inequalityϕ(a) • x ≥ 1 is valid forP , and the face it defines is good. Sinceϕ(a) is TT, the
conclusion follows from Remark4.9.
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4.3.3.2. We show:ϕ is a left-inverse ofπ, i.e., for alla ∈ |B| the identityϕ(π((a)) = a
holds.

Lemma 4.16. For all a ∈ |B| we have(γ, c)(π̃(1, a)) = (1, a). In particular, we have that
ϕ ◦ π restricted to|B| is equal to the identity mapping on this set.

PROOF. To see this we compute

I(π̃(1, a)) = I(−1 + a • z, p(a)) =
(
1− a • z − z • p(a), p(a)

)
=
(
(p(a)− a) • z + 1, p(a)

)

Using thata is TT (Remark4.9), we conclude

ϑ̃(I(π̃(1, a))) =
(
(p(a)− a) • z + 1− λ(p(a)) • 1, a

)
.

Sincea is TT, by Lemma4.6(vi), λ(p(a)) is a solution top(a)−a = D⊤λ. Thus, using1 = Dz,
it follows that

(p(a)− a) • z + 1− λ(p(a)) • 1 = (p(a)− a) • z + 1−D⊤λ(p(a)) • z = 1.

From the statement about(ϑ̃ ◦ I) ◦ π̃, the statement about the projective mappingsϕ ◦
π follows by a slight generalization of the well-known fact that concatenationof projective
mappings commutes with homogenization. We omit the computation, and only note that it
makes use of the fact that the two mappingsh1 : a 7→ a−D⊤λ(a) andh2 : a 7→ a•z+λ(a)•1
are positive homogeneous (i.e.,hi(ηa) = ηhi(a) for η ≥ 0, i = 1, 2, which follows directly
from the definition ofλ). �

4.3.3.3. We show:ϕ is one-to-one.Since we already know thatϕ ◦ π = id, surjectivity of
π is equivalent to injectivity ofϕ. It is actually easier to prove the following slightly stronger
statement.

Lemma 4.17. Let a, b ∈ L. If there exists anη ∈ R+ such that(γ(a), c(a)) = η(γ(b), c(b))
thenη = 1 anda = b. In particular,ϕ is injective.

PROOF. Let sucha, b, η be given. We have

0 = c(a)− ηc(b) = a−D⊤λ(a)− η
[
b−D⊤λ(b)

]
= a− ηb−D⊤

[
λ(a)− ηλ(b)

]
.

Sincea, b ∈ L andD⊤[λ(a)− ηλ(b)] ∈ L⊥ we have

(∗) a− ηb = 0 = D⊤λ(a)− ηD⊤λ(b)

Applying z • @ to the second equation, we obtain

0 = 1 • λ(a)− η 1 • λ(b)
Now we useγ(a) = ηγ(b) and compute

0 = γ(a)− ηγ(b) = −1 + a • z − 1 • λ(a)− η
[
−1 + b • z − 1 • λ(b)

]

= −1 + η + (a− ηb) • z.
Sincez ∈ L⊥ we have(a− ηb) • z = 0, whenceη = 1. Now a = b follows from (∗). �

4.3.3.4.π induces the rotation complex.We are finally ready to prove thatπ is a refinement
map inducing the rotation complex.

Let C be a polyhedral complex, andf : |C| → Rk a mapping. We say thatf induces the
polyhedral complexD, if, for everyF ∈ C, its imagef(F ) underf is a polyhedron, and the set
of all these polyhedra is equal toD.

Lemma 4.18. For every faceF of S there exists a unique faceΦ(F ) of B with ϕ(relintF ) ⊂
relintΦ(F ). Moreover, ifF1 6= F2 are faces ofS, thenΦ(F1) 6= Φ(F2).
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PROOF. Let F ′ be the face ofA with relintF ⊂ relintF ′. Now, let a ∈ relintF and
G# be the face ofP defined by the inequalityϕ(a) • x ≥ 1. Since this inequality defines the
same face ofP as the inequalityc(a) • x ≥ γ(a) which is of the form (13), the set of cycles
whose characteristic vectors are inG# coincides with the set of cycles contained in the face
F ′♦ of S, where the conjugate face is taken inS vs.S△ (not inP vs.P△), and thus does not
depend on the choice ofa ∈ relintF ′. Moreover, the set of feasible shortcuts forG# is in
bijection withEu(a), u ∈ V , and hence, by Theorem4.2, depends only onF not on the choice
of a ∈ relintF . Thus, by Lemma4.13, G# does not depend on the choice ofa ∈ relintF .
Hence, withΦ(F ) := (G#)♦, we haveϕ(a) ∈ relintΦ(F ) for all a ∈ relintF .

The injectivity follows from Lemma4.13because, as we have just argued,a ∈ relintF
uniquely determines the set of cycles and shortcuts. �

Lemma4.18provides us with a mappingΦ: S → B: Φ(F ) is the unique face ofB whose
relative interior containsϕ(a) for somea in the relative interior ofF . Sinceϕ is surjective by
what we have proved in Subsection4.3.3.2, this immediately implies thatΦ is, too: ForG ∈ B,
let b ∈ relintG, choosea ∈ S with ϕ(a) = b and letF be the unique face ofS containinga as
a relative interior point. ThenΦ(F ) = G.

Hence, we obtain the following.

Lemma 4.19. There is a bijectionΦ: S → B with Φ(F ) = ϕ(F ).

Recall thatboundaryof a polyhedronF in the relative topology ofaff F is ∂F := F \
relintF =

⋃
G(F G where the union runs over all faces ofF .

PROOF. What remains to be shown is the final statement:Φ(F ) = ϕ(F ). We already know
thatϕ(relintF ) ⊂ relintΦ(F ), by the definition ofΦ. By the surjectivity ofϕ, we have, in
fact equality in this relation: For everyb ∈ relintΦ(F ), there is aa such thatϕ(a) = b, but by
the injectivity ofΦ, we must havea ∈ relintF .

Moreover,ϕ(relintF ) = relintΦ(F ) impliesϕ(F ) ⊂ Φ(F ) by continuity ofϕ.
Standard Euclidean topology arguments show thatϕ maps the boundary∂F of F into the

boundary ofϕ(F ). (This is most easily seen by noting thatϕ is the inverse of a projective
mapping; see equations (23).) The boundary ofF is the union of its facets, and we can apply
Lemma4.18to those. In particular, we obtainΦ(F ′) ∩ relintΦ(F ) = ∅ by the injectivity of
Φ. Thus, we have∂ϕ(F ) ⊂ ∁(relintΦ(F )), but ϕ(∂F ) ⊂ Φ(F ). From this, we conclude
thatϕ(∂F ) ⊂ ∂Φ(F ). Now relintF andrelintΦ(F ) have the same dimension, becauseϕ is a
homeomorphism; see (23). In such a case, the Borsuk-Ulam theorem states that if a continuous
mappingϕ maps a topological sphere∂F into another topological sphere∂Φ(F ) of the same
dimension, but leaves out a point, cannot be injective, a contradiction to what we have proved
in Subsection4.3.3.3. Hence,ϕ(∂F ) = ∂Φ(F ), and we concludeϕ(F ) = Φ(F ). �

Remark 4.20. The topological arguments contained in the proof of Lemma4.19 can be re-
placed by more technical but more elementary ones from linear algebra. Inany case, they
reflect basic topological facts.

4.4. Proof of Theorem4.5

We will apply Theorem4.3to prove Theorem4.5. The following lemma is the link between
parsimonious property and geometry.

Lemma 4.21. Let Bx ≥ 1 be a system of inequalities defining NR-facets ofP such that the
relaxation(15) has the parsimonious property. Ifc⊤x ≥ γ defines a non-NR facet ofP , then
c, γ cannot be written in the form

(24)
c = b−

∑
v∈V

µvδv

γ = β −
∑

v∈V
µv
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with b⊤ =
∑

j tjbj a non-negative linear combination of rowsbj ofB, β =
∑

j tj , andµv ∈ R

for all v ∈ V .

PROOF. Suppose thatc, γ can be written as in (24). Then minimizing the cost functionc
over the relaxation consisting of

• all non-negativity inequalities
• all degree equations(!)δv • x = 1, v ∈ V ;
• all inequalities in the systemBx ≥ 1.

yields γ as the minimum. If the degree equations are relaxed to inequalities, then, by the
parsimonious property of (15), the minimum is stillγ. By Farkas’s Lemma (or LP-duality),
this implies that the inequalityc • x ≥ γ is dominated by non-negativity inequalities, degree
inequalities, and inequalities inBx ≥ 1. This is impossible since(c, γ) defines a non-NR facet
of P and all facets inBx ≥ 1 are NR. �

We are now ready to prove Theorem4.5.

PROOF OFTHEOREM 4.5. Let a◦ • x ≥ 1 be an inequality defining a non-NR facet ofP
which is not in the systemBx ≥ 1. By Lemma4.1, the paths in the ridge graph ofP not
touching non-negativity facets are precisely the paths in the 1-skeleton ofP△. (The1-skeleton
or graphof a polyhedral complexC is the graphG whose vertices are the vertices ofC, with
two vertices ofG being adjacent if and only if there exists an edge ofC containing them both.)

Thus, we have to find a path in the graph ofP△ which starts froma◦, ends in an NR-vertex,
and does not use any degree vertices or vertices corresponding to rows ofB.

By Theorem4.3, we know that there exists a projective homeomorphismπ : |B| → |A|
transporting the polyhedral complexB onto the rotation complex. We letφ := π−1.

Let a := ϕ−1(a◦). This point is contained in the relative interior of a unique faceF of S△

containing no non-negativity vertex. LetDF denote the set of all faces of the rotation complex
D which are contained inF , and letBF denote the set of verticesb of F for whichϕ(b)⊤ is a
row ofB. We will prove the following:

Claim 4.22. Let F be a face ofA, and leta be a relative interior point ofF which is a vertex
of DF such thatϕ(a)⊤ is not a row ofB (see Fig.4.3). Then there is a path in the 1-skeleton of
DF starting ata, ending in a vertex ofF , and not touching any of the vertices inBF .

By Theorem4.3, the paths inDF correspond to paths inB. Moreover, the vertices corre-
sponding to rows ofB are avoided in the path inDF . Thus, we have inB a path froma to
an NR-vertex not touching any vertices of the parsimonious formulation, which concludes the
proof of Theorem4.5. �

PROOF OFCLAIM 4.22. The proof of the claim is by induction ondimF . FordimF = 0,
we are done, because thena is a vertex ofF . Let dimF ≥ 1, and assume the claim holds for
relative interior pointsa′ of facesF ′ with dimensiondimF ′ < dimF .

If BF = ∅, we are done. Otherwise letQ := convBF . This is a non-empty polytope which
is contained inF . Using Lemma4.21we will show the following:

Claim 4.23. Let c be a vertex ofDF which is not a member ofBF . Thenc cannot be contained
in Q.

The proof of Claim4.23 is technical, and we postpone it till the proof of Claim4.22 is
finished. If Claim4.23is true, however, then we we know thata is not inQ. Let p, π define a
hyperplane separatinga from Q, i.e.,q • p < π for all q ∈ Q, anda • p > π. See Fig.4.3 for
an illustration. It assumes the faceF is an 8-gon.

By a standard general position argument, we can assume thatp is not parallel to any face
with co-dimension at least one inDF . Hence, there exists anε > 0 such that the line segment
a+]0, ε[·p is contained in the relative interior of adimF -dimensional faceG of DF , of whicha
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p
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a1

F

G

Q

FIGURE 4.3. One step of the path

is a vertex. By elementary polytope theory (the edges of a polyhedron incident to a fixed vertex
span a cone of the same dimension as the polyhedron),G must have a vertexa1 adjacent toa
with a • p < a1 • p. Clearlya1 6∈ BF .

If a1 is in the boundary ofF , then the induction hypotheses implies the existence of a path
from a1 to a vertex ofF not using any vertex inBF . If that is not the case, we apply the
argument in the previous paragraph inductively to obtain a patha, a1, . . . , ak in the 1-skeleton
of DF with a • p < a1 • p < · · · < aj • p < aj+1 • p < · · · < ak • p. Since the 1-skeleton
of DF is finite and the path we are constructing isp-increasing, a vertex on the boundary ofF
will eventually be reached.

This concludes the proof of Claim4.22. �

PROOF OFCLAIM 4.23. Let c be a vertex ofDF with c 6∈ BF . Assume thatc ∈ convBF ,
i.e., c can be written as a convex combinationc =

∑k
j=1 tjbj with ϕ(bj)

⊤ a row ofB for all
j = 1, . . . , k. Clearly,c cannot be a vertex ofF , soϕ−1(c) • x ≥ 1 defines a non-NR facet of
P by Remark4.4. We compute

c−
∑

v∈V

λv(c)dv =

∑

j

tj

(
bj −

∑

v∈V

λv(bj)dv

)
−
∑

v∈V


λv(c)−

∑

j

tjλv(bj)


 dv.

Lettingσ := 1−∑v λv(c), τj := 1−∑v λv(bj), andµv := λv(c)−
∑

j tjλv(bj), we see that

σϕ(c) =
∑

j

tjτjϕ(bj)−
∑

v

µvdv

σ =
∑

j

tjτj −
∑

v∈V
µv

This means that the inequalityσϕ(c) • x ≥ σ can be written as a non-negative linear combina-
tion of the inequalitiesϕ(bj) • x ≥ 1, j = 1, . . . , k plus a linear combination of degree vertices
as in (24). Since the former inequality defines a facet ofP by Theorems4.2 and4.3, and the
inequalities forming the non-negative linear combination are taken from the systemBx ≥ 1,
Lemma4.21yields a contradiction. �
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4.5. Outlook

We conjecture that the necessary condition for parsimonious property in Theorem4.5 is
also sufficient.

Conjecture 4.24. If every connected component ofGB contains vertices corresponding to NR-
facets ofP , then the relaxationRB of has the parsimonious property.

The conjecture holds for the known relaxations ofS consisting of NR-inequalities described
in [ORT07] which fail the parsimonious property.
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CHAPTER 5

On a class of metrics related to graph layout problems

Jointly with
Adam N. Letchford (Lancaster University, GB),

Gerhard Reinelt (Uni Heidelberg),
and Hanna Seitz (Uni Heidelberg)

Abstract. We examine the metrics that arise when a finite set of points isembedded
in the real line, in such a way that the distance between each pair of points is at least
1. These metrics are closely related to some other known metrics in the literature,
and also to a class of combinatorial optimization problems known as graph layout
problems. We prove several results about the structure of these metrics. In partic-
ular, it is shown that their convex hull is not closed in general. We then show that
certain linear inequalities define facets of the closure of the convex hull. Finally, we
characterise the unbounded edges of the convex hull and of its closure.

5.1. Introduction

For a given positive integern, let [n] denote{1, . . . , n}. A metric on [n] is a mapping
d : [n]× [n] → R+ which satisfies the following three conditions:

• d(i, j) = d(j, i) for all {i, j} ⊂ [n],
• d(i, k) + d(j, k) ≥ d(i, j) for all ordered triples(i, j, k) ⊂ [n],
• d(i, j) = 0 if and only if i = j.

Metrics are a special case ofsemimetrics, which are obtained by dropping ‘and only if’ from the
third condition. There is a huge literature on metrics and semimetrics; see for example [DL97].
The inequalities in the second condition are the well-knowntriangle inequalities.

In this paper we study the metricsd on [n] that arise whenn points are embedded in the real
line, in such a way that the distance between each pair of points is at least1. More formally, we
require thatd satisfies the following two properties:

• there exist real numbersr1, . . . , rn such thatd(i, j) = |ri − rj | for all {i, j} ⊂ [n];
• d(i, j) ≥ 1 for all {i, j} ⊂ [n].

We remark that one could easily replace the value1 with some arbitrary constantǫ > 0; the
results in this paper would remain essentially unchanged.

We call the metrics in question ‘R-embeddable1-separated’ metrics. We believe that these
metrics are a natural object of study, and of interest in their own right. We have, however, two
specific motives for studying them. First, they are closely related to certain well-known metrics
that have appeared in the literature. Second, they are also closely relatedto an important class
of combinatorial optimization problems, known asgraph layout problems.

As well as studying the metrics themselves, we also study their convex hull. It turns out
that the convex hull is not always closed, which leads us to study also the closure of the convex
hull. Among other things, we characterise some of the(n− 1)-dimensional faces (i. e., facets)
of the closure, and some of the1-dimensional faces (i. e., edges) of both the convex hull and its
closure.

The structure of the paper is as follows. In Section5.2, we review some of the relevant
literature on metrics and graph layout problems. In Section5.3, we present various results
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CUTn ℓ1-embeddable semimetrics (cut cone)

HYPn hypermetrics, see (25)

NEGn negative-type cone, see (26)

ML2
n ℓ2-embeddable semimetrics

MR
n R-embeddable semimetrics

MR1
n R-embeddable1-separated metrics

Qn convex hull ofMR1
n

Qn closure ofQn

Pn permutation metrics polytope, see (29)

TABLE 1. Sets of matrices

concerned with the structure of the metrics and their convex hull. Next, in Section 5.4, we
present some inequalities that define facets of the closure of the convex hull. In Section5.5,
we give a combinatorial characterisation of the unbounded edges of the convex hull and of its
closure. Finally, some concluding remarks are given in Section5.6.

We close this section with a word on notation. To study convex geometric properties, we
view metrics as points in a vector spaceS0n. In our notation,S0n will be either the vector space
of all symmetric functions[n] × [n] → R or the vector space of all real symmetric(n × n)-
matrices whose diagonal entries are zero, and we will switch freely between them. For the
latter, the inner product is defined as usual by

A •B := tr(A⊤B) =
n∑

k=1

n∑

l=1

Ak,lBk,l.

We understand a metric both as a function and a matrix, and we will switch between the two
concepts without further mentioning.

By S(n) we denote the set of all permutations of[n]. We occasionally viewS(n) as a subset
of Rd by identifying the permutationπ with the point(π(1), . . . , π(n))⊤. Furthermore we let
ın := (1, . . . , n) the identity permutation inS(n). We omit the indexn when no confusion
can arise.1 is a column vector of appropriate length consisting of ones. Similarly0 is a vector
whose entries are all zero. If appropriate, we will use a subscript1k, 0k to identify the length
of the vectors. The symbol0 denotes an all-zeros matrix not necessarily square, and we also
use it to say “this part of the matrix consists of zeros only.” By1n we denote the square matrix
of ordern whose(k, l)-entry is1 if k 6= l and0 otherwise. As above we will omit the indexn
when appropriate. We denote by∁U the complement of the setU .

5.2. Literature Review

In this section, we review some of the relevant literature. We cover related semimetrics in
Subsection5.2.1and graph layout problems in Subsection5.2.2. To facilitate reading we have
summarized all matrix sets discussed in Table1.

5.2.1. Some related semimetrics.The following four classes of semimetrics on[n], which
are closely related to theR-embeddable1-separated metrics, have been extensively studied in
the literature (see [DL97] for a detailed survey):
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• Theℓ1-embeddablesemimetrics, i. e., those for which there exist a positive integerm
and pointsx1, . . . , xn ∈ Rm such thatd(i, j) = |xi − xj |1 :=

∑m
k=1 |xik − xjk| for

all {i, j} ⊂ [n].
• The ℓ2-embeddablesemimetrics, which are defined as in theℓ1 case, except that
d(i, j) = |xi − xj |2 :=

√∑m
k=1(xik − xjk)2.

• TheR-embeddablesemimetrics, which are the special case ofℓ1- (or ℓ2-) embeddable
semimetrics obtained whenm = 1.

• The hypermetrics, which are semimetrics that satisfy the followinghypermetricin-
equalities [Dez61]:

(25)
∑

{i,j}⊂[n]

bibjd(i, j) ≤ 0 (∀b ∈ Zn :

n∑

i=1

bi = 1).

It is known [Ass80] that the set ofℓ1-embeddable semimetrics on[n] is a polyhedral cone in

R(
n
2). In fact, it is nothing but the well-knowncut cone, denoted by CUTn. The set of all

hypermetrics on[n], called thehypermetric coneand denoted by HYPn, is also polyhedral
[DGL93].

We will let ML2
n andMR

n denote the set ofℓ2- andR-embeddable semimetrics, respectively.
It is known thatML2

n andMR
n are not convex (unlessn is small), and that the convex hull of

ML2
n andMR

n is CUTn. It is also known [Sch35] that a symmetric functiond lies inML2
n if and

only if d2 (i. e., the symmetric function obtained by squaring each value) lies in the so-called
negative-type cone. The negative-type cone, denoted by NEGn, is the (non-polyhedral) cone
defined by the followingnegative-typeinequalities:

(26)
∑

{i,j}⊂[n]

bibjd(i, j) ≤ 0 (∀b ∈ Rn :
n∑

i=1

bi = 0).

The structure ofMR
n and related sets is studied in [BD92].

In recent years, there has been a stream of papers on so-callednegative-typesemimetrics
(also known asℓ22-semimetrics) [ALN07, ALN08, CGR08, KV05, KR06, Lee05]. These are
simply semimetrics that lie in NEGn. They have been used to derive approximation algorithms
for various combinatorial optimisation problems, including the graph layout problems that we
mention in the next subsection.

The following inclusions are known:MR
n ⊂ ML2

n ⊂ CUTn ⊂ HYPn ⊂ NEGn. Denot-
ing the set of allR-embeddable1-separated metrics byMR1

n , we obtain from their definition
MR1

n ⊂ MR
n . We will explore the relationship betweenMR1

n , MR
n and CUTn further in Sub-

section5.3.1.

5.2.2. Graph layout problems. Given a graphG = (V,E), with V = [n], a layout is
simply a permutation of[n]. If we view a layoutπ ∈ S(n) as a placing of the vertices on points
1, . . . , n along the real line, the quantity|π(i) − π(j)| corresponds to the Euclidean distance
between verticesi andj. Several important combinatorial optimization problems, collectively
known asgraph layout problems, call for a layout minimising a function of these distances (see
the survey [DPS02]). For example, in theMinimum Linear Arrangement Problem(MinLA),
the objective is to minimize

∑
{i,j}∈E |π(i) − π(j)|. In theBandwidth Problem, the objective

is to minimisemax{i,j}∈E |π(i)− π(j)|.
Now, let d(i, j) for {i, j} ⊂ [n] be a decision variable, representing the quantity|π(i) −

π(j)|. It has been observed by several authors that interesting relaxationsof graph layout prob-
lems can be formed by deriving valid linear inequalities that are satisfied by allfeasible sym-
metric functionsd. To our knowledge, the first paper of this kind was [LV95], which presented
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the followingstar inequalities:

(27)
∑

j∈S

d(i, j) ≥ ⌊(|S|+ 1)2/4⌋.

Here,i ∈ [n] andS ⊂ [n] \ {i} is such that every node inS is adjacent toi.
Apparently independently, Evenet al. [ENRS00] defined the so-calledspreading metrics.

These are metrics that satisfy the followingspreadinginequalities:

(28)
∑

j∈S

d(i, j) ≥ |S|(|S|+ 2)/4 (∀i ∈ [n], ∀S ⊆ [n] \ {i}).

Note that the spreading inequalities are more general than the star inequalities, but have a
slightly weaker right-hand side whenn is odd. Spreading metrics were used in [ENRS00,
RR05] to derive approximation algorithms for various graph layout problems.

In [CHKR08, FL07], it was noted that one can get a tighter relaxation of graph layout
problems by requiring the spreading metrics to lie in the negative-type cone NEGn. The authors
called the resulting metricsℓ22-spreadingmetrics.

A natural way to derive further valid linear inequalities for graph layout problems is to
study the followingpermutation metrics polytope:

(29) Pn = conv
{
d
∣∣∣ ∃π ∈ S(n) : d(i, j) = |π(i)− π(j)| ∀{i, j} ⊂ [n]

}
.

Surprisingly, this was not done until very recently [AL09]. In [AL09], it is shown thatPn is of
dimension

(
n
2

)
− 1 and that its affine hull is defined by the equation

∑
{i,j}⊂[n] d(i, j) =

(
n+1
3

)
.

It is also shown that the following four classes of inequalities define facets of Pn under mild
conditions:

• pure hypermetricinequalities, which are simply the hypermetric inequalities (25) for
which b ∈ {0,±1}n;

• strengthened pure negative-typeinequalities, which are like the negative-type inequal-
ities (26) for which b ∈ {0,±1}n, except that the right-hand side is increased from0
to 1

2

∑
i∈[n] |bi|;

• clique inequalities, which take the form

(30)
∑

{i,j}⊂S

d(i, j) ≥
(|S|+ 1

3

)
,

whereS ⊂ [n] satisfies2 ≤ |S| < n;
• strengthened starinequalities, which take the form

(31) (|S| − 1)
∑

i∈S

d(r, i)−
∑

{i,j}⊂S

d(i, j) ≥
⌊
(|S|+ 1)2(|S| − 1)/12

⌋
,

wherer ∈ V andS ⊆ V \ {r} with |S| ≥ 2.

It is pointed out in the same paper that each star inequality (27) with |S| ≥ 2 is dominated by
a clique inequality (30) and a strengthened star inequality (31). Therefore, very few of the star
inequalities define facets ofPn.

Finally, we mention that some more valid inequalities were presented recently by Caprara
et al.[CLSG09]. Some of them were proved to define facets of thedominantof Pn, though not
of Pn itself.

We will establish an interesting connection betweenMR1
n , CUTn andPn in Subsection

5.3.2.
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5.3. OnMR1
n and its Convex Hull

5.3.1. OnMR1
n and related sets.We now studyMR1

n and its relationship withMR
n , Pn

and CUTn. We will find it helpful to recall the definition of acut metric:

Definition 5.1. For a setU ⊂ [n], we let dU be the metric which assigns to two points on
different sides of the bipartitionU, ∁U of [n] a value of1 and to points on the same side a value
of 0.

We will say that the setU inducesthe associated cut metric. In other words, if we let
Dk,l(x) := |xk − xl| for every vectorx ∈ Rn (and identify, as promised, functions and ma-
trices), thendU = D(χU ). With this notation, CUTn is the convex cone with apex0 in S0n
generated by the pointsdU , i. e.,

CUTn := cone
{
dU

∣∣∣ dU is the cut metric forU ⊂ [n]
}
.

It is known [BM86] that each cut metric defines an extreme ray of CUTn.
We will also need the following notation. For a given permutationπ ∈ S(n), let Nπ be

the set ofx ∈ Rn which satisfyxπ(i) ≤ xπ(i+1) for i = 1, . . . , n − 1. Now letM(π) denote
the set of metricsd for which there exists anx ∈ Nπ with d = D(x). Also, for a givenπ
and fork = 1, . . . , n − 1, we emphasize thatD(χπ−1([k])) is the cut metric induced by the set
U = {π−1(1), . . . , π−1(k)}. (So, for example, ifn = 4 andπ = {2, 3, 1, 4}, thenD(χπ−1([2]))
is the cut metric induced by the set{2, 3}.)

We have the following lemma:

Lemma 5.2. M(π) is a polyhedral cone of dimensionn − 1 defined by then − 1 cut metrics
D(χπ−1([1])), . . . , D(χπ−1([n−1])).

PROOF. Let d∗ ∈ M(π) and letx1, . . . , xn be the corresponding points inR. One can
check that:

d∗ =
n−1∑

k=1

(xk+1 − xk)D(χπ−1([k])).

From the definition ofM(π), we havexk+1 − xk ≥ 0 for k = 1, . . . , n − 1. Thus,d∗ is a
conical combination of then− 1 cut metrics mentioned. This shows thatM(π) is contained in
the cone mentioned. The reverse direction is similar. �

This enables us to describe the structure ofMR
n :

Proposition 5.3. MR
n is the union ofn!/2 polyhedral cones, each of dimensionn− 1.

We define theantipodalpermutation ofπ ∈ S(n) by

π− := (n+ 1) · 1− π.

This is the permutation obtained by reversingπ. A swift computation shows thatD(π) =
D(π−).

PROOF. From the definitions, we haveMR
n =

⋃
π∈S(n)M(π). From the above lemma, the

setM(π) is a polyhedral cone of dimensionn− 1. Now, note that, for anyπ ∈ S(n), we have
M(π) = M(π−). Thus, the union can be taken overn!/2 permutations, instead of over all
permutations. �

We note in passing that every cut metric belongs toM(π) for someπ ∈ S(n). This
explains the well-known fact, mentioned in Subsection5.2.1, that the convex hull ofMR

n is
equal to CUTn.
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FIGURE 5.1. The convex setQ3

Now, we adapt these results to the case ofMR1
n . We defineM1(π) similar toM(π): we

denote byM1(π) the set of all metricsd which are of the formD(x) for anx ∈ Rn which
satisfiesxπ(i) + 1 ≤ xπ(i+1) for i = 1, . . . , n− 1.

Note that theD(π) are nothing but the metrics associated with feasible layouts, which by a
result in [AL09] are the extreme points ofPn. Note also that the setsM1(π) are disjoint.

We have the following lemma:

Lemma 5.4. M1(π) is the Minkowski sum of the pointD(π) and the coneM(π):

M1(π) = D(π) +D(Nπ).

PROOF. This can be proven in the same way as Lemma5.2. The only difference is that we
decomposed∗ ∈ M1(π) as:

d∗ = D(π) +
n−1∑

k=1

(rk+1 − rk − 1)D(χπ−1([k])),

and note thatrk+1 − rk − 1 ≥ 0 for k = 1, . . . , n− 1. �

We can now derive an analog of Proposition5.3:

Proposition 5.5.MR1
n is the union ofn!/2 disjoint translated polyhedral cones, each of dimen-

sionn− 1.

PROOF. From the definitions, we haveMR1
n =

⋃
π∈S(n)M

1(π). From Lemmas5.2 and

5.4, each setM1(π) is a translated polyhedral cone of dimensionn − 1. As in the proof of
Proposition5.3, the union can be taken over onlyn!/2 permutations. �

5.3.2. On the convex hull ofMR1
n and related sets.We now turn our attention to the

convex hull ofMR1
n , which we denote byQn. To give some intuition, we present in Fig.5.1

drawings ofMR1
n andQ3 from three different angles. (Of course, the drawing is truncated,

sinceQ3 is unbounded.) The three co-ordinates representd(1, 2), d(1, 3) andd(2, 3). The
three coloured regions represent the three disjoint subsets ofMR1

3 mentioned in Proposition
5.5.

One can see thatQ3 is a three-dimensional polyhedron, with one bounded facet, six un-
bounded facets, three bounded edges and six unbounded edges.

For n ≤ 3, Qn is closed (and therefore a polyhedron). We will show in Section5.5,
however, thatQn is not closed forn ≥ 4. Therefore, we are led to look at the closure ofQn,
which we denote byQn.

Our next result shows that there is a close connection between the polyhedron Qn, the
polytopePn, and the cone CUTn:

Proposition 5.6. Qn is the Minkowski sum ofPn and CUTn.
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PROOF. We use the same notation as in the previous subsection. By definition, every point
in MR1

n belongs toM1(π) for someπ ∈ S(n). From Lemma5.4, every point inM1(π) is
the sum of the pointD(π) and a point in the cut cone CUTn. Moreover, the pointD(π) is an
extreme point ofPn. Thus, every point inMR1

n is the sum of an extreme point ofPn and a
point in CUTn. SinceQn is the closure of the convex hull ofMR1

n , it must be contained in the
Minkowski sum ofPn and CUTn. The reverse direction is proved similarly, noting that every
cut metric is of the formD(χπ−1([k])) for someπ ∈ S(n) and somek ∈ [n− 1]. �

This immediately implies the following result:

Corollary 5.7. Qn is full-dimensional (i. e., of dimension
(
n
2

)
).

We also have the following result:

Proposition 5.8. Pn is the unique bounded facet ofQn.

PROOF. As mentioned in the previous section, all points inPn satisfy the equation
∑

{i,j}⊂[n]

d(i, j) =

(
n+ 1

3

)
.

Moreover, every point in CUTn satisfies
∑

{i,j}⊂[n] d(i, j) > 0. SinceQn is the Minkowski

sum ofPn and CUTn, it follows that the inequality
∑

{i,j}⊂[n] d(i, j) ≥
(
n+1
3

)
is valid forQn

and thatPn is the face ofQn exposed by this inequality. SinceQn andPn are of dimension
(
n
2

)

and
(
n
2

)
− 1, respectively,Pn is a facet ofQn. It must be the unique bounded facet, since all

extreme points ofQn are inPn. �

In the next section, we will explore the connection betweenQn, Pn and CUTn in more
detail. To close this section, we make an observation about how the individual ‘pieces’ of
MR1

n , called theM1(π) in the previous subsection, are positioned withinQn:

Proposition 5.9. For anyπ ∈ S(n), the setM1(π) is an(n− 1)-dimensional face ofQn.

PROOF. By definition,Qn satisfies all triangle inequalities. Now, without loss of generality,
suppose thatπ is the identity permutation. Every point inM1(π) satisfies all of the following
triangle inequalities at equality:

d(i, j) + d(j, k) ≥ d(i, k) (∀1 ≤ i < j < k ≤ n).

Moreover, no other point inMR1
n does so. Thus,M1(π) is a face ofQn. It was shown to be

(n− 1)-dimensional in the previous subsection. �

5.4. Inequalities Defining Facets ofQn

In this section, we study linear inequalities that definefacetsof Qn, i. e., faces of dimen-
sion

(
n
2

)
− 1. Subsection5.4.1presents some general results about such inequalities, whereas

Subsection5.4.2lists some specific inequalities.

5.4.1. General results on facet-defining inequalities.In this subsection, we prove a struc-
tural result about inequalities that define facets ofQn, and show how this can be used to con-
struct facets ofQn in a mechanical way from facets of eitherPn or CUTn.

We will need the following definition, taken from [AL09]:

Definition 5.10(Amaral & Letchford, 2009). LetαTd ≥ β be a linear inequality, whereα, d ∈
R(

n
2). The inequality is said to be ‘canonical’ if:

(32) min
∅6=S⊂[n]

∑

i∈S

∑

[n]\S

αij = 0.
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By definition, an inequalityαTd ≥ 0 defines a proper face of CUTn if and only if it is
canonical. In [AL09], it is shown that every facet ofPn is defined by a canonical inequality.
The following lemma is the analogous result forQn:

Lemma 5.11. Every unbounded facet ofQn is defined by a canonical inequality.

PROOF. Suppose that the inequalityαTd ≥ β defines an unbounded facet ofQn. Since
Qn is the Minkowski sum ofPn and CUTn, the inequality must be valid for CUTn. Therefore,
the left-hand side of (32) must be non-negative. Moreover, since the inequality defines an
unbounded facet, there must be at least one extreme ray of CUTn satisfyingαTd = 0. Therefore
the left-hand side of (32) cannot be positive. �

We remind the reader that only one facet ofQn is bounded (Proposition5.8).
Now, we show how to derive facets ofQn from facets ofPn:

Proposition 5.12. LetF be any facet ofPn, and letαTd ≥ β be the canonical inequality that
defines it. This inequality defines a facet ofQn as well.

PROOF. The fact that the inequality is valid forQn follows from the fact thatQn is the
Minkowski sum ofPn and CUTn. Now, sinceF is a facet ofPn, there exist

(
n
2

)
− 1 affinely-

independent vertices ofPn that satisfy the inequality at equality. Moreover, since the inequality
is canonical, there exists at least one extreme ray of CUTn that satisfiesαTd = 0. SinceQn

is the Minkowski sum ofPn and CUTn, there exist
(
n
2

)
affinely-independent points inQn that

satisfy the inequality at equality. Thus, the inequality defines a facet ofQn. �

Now, we show how to derive facets ofQn from facets of CUTn:

Proposition 5.13. LetαTd ≥ 0 define a facet of CUTn, and letβ be the minimum ofαTd over
all d ∈ Pn. Then the inequalityαTd ≥ β define a facet ofQn.

PROOF. As before, the fact that the inequalityαTd ≥ β is valid forQn follows from the
fact thatQn is the Minkowski sum ofPn and CUTn. Now, since the inequalityαTd ≥ 0
defines a facet of CUTn, there exist

(
n
2

)
− 1 linearly-independent extreme rays of CUTn that

satisfyαTd = 0. Moreover, from the definition ofβ, there exists at least one extreme point of
Pn that satisfiesαTd = β. SinceQn is the Minkowski sum ofPn and CUTn, there exist

(
n
2

)

affinely-independent points inQn that satisfyαTd = β. Thus, the inequalityαTd ≥ β defines
a facet ofQn. �

5.4.2. Some specific facet-defining inequalities.The results in the previous subsection
enable one to derive a wide variety of facets ofQn. In this subsection, we briefly examine some
specific valid inequalities; namely, the inequalities mentioned in [AL09].

First, we deal with the clique and pure hypermetric inequalities:

Proposition 5.14. The clique inequalities (30) define facets ofQn for all S ⊆ [n] with |S| ≥ 2.

PROOF. It was shown in [AL09] that the clique inequalities define facets ofPn whenS is a
proper subset of[n]. In this case, the inequalities are canonical and so, by Proposition5.12, they
define facets ofQn as well. The caseS = [n] is covered in the proof of Proposition5.8. �

Proposition 5.15. All pure hypermetric inequalities define facets ofQn.

PROOF. It was shown in [BM86] that all pure hypermetric inequalities define facets of
CUTn. It was also shown in [AL09] that every pure hypermetric inequality is satisfed at equality
by at least one extreme point ofPn. The result then follows from Proposition5.13. �

As for the strengthened pure negative-type and strengthened star inequalities, it was shown
in [AL09] that they define facets ofPn under certain conditions. Since they are canonical, they
define facets ofQn under the same conditions. In fact, using the same proof technique used in
[AL09], one can show the following two results:
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Proposition 5.16. All strengthened pure negative-type inequalities define facets ofQn.

Proposition 5.17. Strengthened star inequalities define facets ofQn if and only if|S| 6= 4.

We omit the proofs, for the sake of brevity.

5.5. Unbounded Edges ofQn andQn

5.5.1. Unbounded edges ofQn. We now investigatehow the polyhedral conesM1(π) =
D(π) + D(Nπ) as subsets ofQn. In Fig. 5.1, it can be seen that in the casen = 3, the
three cones are faces ofQ3 (recall thatQ3 is a polyhedron, which means that we can safely
speak of faces). In the following proposition, we show that this is the casefor all n, and we
also characterize the extremal half-lines ofQn. This will be useful in comparingQn with its
closure: We will characterize the unbounded edges issuing from each vertex for the polyhedron
Qn = Pn+CUTn in the following subsection.

We are dealing with an unbounded convex set of which we do not know whether it is closed
or not. (In fact, we will show thatQn is almost never closed). For this purpose, we supply the
following fact for easy reference.

Fact 5.18. Fork = 1, . . . ,m let Kk be a (closed) polyhedral cone with apexxk. Suppose that
theKk are pairwise disjoint and defineS :=

⊎m
k=1Kk. Let x, y be vectors such thatx+ R+y

is an extremal subset ofconv(S). It then follows that there exists aλ0 ∈ R+ and ak such
thatx + λy ∈ Kk for all λ ≥ λ0. Sincex + R+y is extremal, this implies that there exists a
λ1 ∈ R+ such thatxk = x+ λ1y andxk +R+y = {x+ λy | λ ≥ λ1} is an extreme ray of the
polyhedral coneKk.

Definition 5.19. We say that a permutationπ and a non-empty setU ( [n] are incident, if
U = {π−1(1), . . . , π−1(k)}, wherek := |U |.
Proposition 5.20.

(i) For everyπ ∈ S(n), each edge of the coneD(π) + D(Nπ) is an exposed subset of
Qn.

(ii) The unbounded one dimensional extremal sets ofQn are exactly the defining half-
lines. In other words, every half-lineX + R+Y which is an extremal subset ofQn is
of the formD(π)+R+D(χU ) for aπ ∈ S(n) and a setU incident toπ. In particular,
for every vertexD(π) of Qn, the unbounded one-dimensional extremal subsets ofQn

containingD(π) are in bijection with the non-empty proper subsets of[n] incident to
π. Thus there are preciselyn− 1 of them.

PROOF. i. By symmetry it is sufficient to treat the caseπ = ı := (1, . . . , n)⊤, the identity
permutation. Consider the matrix

C :=




0 1 −1
1 0 1 0

1
...

1
0 1 0 1

−1 1 0


 ∈ S0n.

It is easy to see that the minimum over allC • D(π), π ∈ S(n), is attained only inπ = ı, ı−

with the value0. Moreover, for any non-empty proper subsetU of [n], we haveC •D(χU ) = 0
if U is incident toı andC • D(χU ) > 0 otherwise. Hence, we have thatD(ı) + D(Nı) is
equal to the set of all points inQn which satisfy the valid inequalityC •X ≥ 0 with equality.
Out of this matrixC we will now construct a matrixC ′ and a right hand side such that only
some of the subsets incident toı fulfill the inequality with equality. To do so letU0 be a subsets
of [n] incident toı. If, for eachU ⊂ [n] incident toı but different fromU0, we increase the
matrix entriesCmaxU,maxU+1 andCmaxU+1,maxU by one, we obtain an inequalityC ′ •X ≥ 0
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which is valid forQn and such that the set of all points ofQn which are satisfied with equality
is precisely the edge ofD(ı) +D(Nı) generated by the half-linesD(ı) + R+D(χU0).

ii . That the defining half lines are extremal has just been proved ini. The converse statement
follows from Fact5.18and the fact that the extreme points ofQn are precisely the vertices of
Pn, which are of the formD(π), for π ∈ S(n). �

5.5.2. Unbounded edges inQn. We have just identified some unbounded edges ofQn =
Pn+CUTn starting at a particular vertexD(π) of this polyhedron. We now set off to char-
acterizeall unbounded edges ofQn. Clearly, the unbounded edges are of the formD(π) +
R+D(χU ), but not all these half-lines are edges. For a permutationπ and a non-empty subset
U ( [n], we say thatD(π) + R+D(χU ) is the half-linedefined by the pairπրU . In this
section, we characterize the pairsπրU which have the property that the half-lines they define
are edges. For this, we make the following definition.

Definition 5.21. Let π be a permutation, and letU be a subset of[n]. We say thatU is almost
incidentto π, if there exists ak ∈ [n− 1] such thatU = π−1([k − 1] ∪ {k + 1}).

We can now state our theorem.

Theorem 5.22.For all n ≥ 3, the unbounded edges ofQn are precisely the half-lines defined
by those pairsπրU , for which neitherU nor ∁U is almost incident toπ.

From Theorem5.22, we have the following consequences.

Corollary 5.23. For n ≥ 4, the number of unbounded edges issuing from a vertex ofQn =
Pn + Cn is 2n−1 − n.

Corollary 5.24. For n ≥ 4, the extremal half-lines containing an extreme point ofQn are a
proper subset of the unbounded edges issuing from the same vertex ofQn.

PROOF. We haven− 1 < 2n−1 − n if n ≥ 4. �

Corollary 5.25. The convex setQn is closed if and only ifn ≤ 3.

Major parts of the proof of the above stated theorem work in an inductive fashion by reduc-
ing to the case whenn ∈ {3, 4, 5, 6}. We will present the casesn = 3 andn = 4 as examples,
which also helps motivating the definitions we require for the proof.

We will switch to a more “visual” notation of the subsets of[n] by identifying a setU
with a “word” of lengthn over{0, 1} having a1 in thejth position iff j ∈ U — it is just the
row-vector(χU )⊤.

Example 5.26(Unbounded edges ofQ3). We deal with the casen = 3 “visually” by regarding
Fig. 5.1. There are two edges starting at each vertex. In fact, with some computation, it can be
seen that the unbounded edges containingD(ı) are

M
(

1
2
3

)
+ R+M

(
1
0
0

)
=
(

0 1 2
1 0 1
2 1 0

)
+ R+

(
0 1 1
1 0 0
1 0 0

)
, and

M
(

1
2
3

)
+ R+M

(
1
1
0

)
=
(

0 1 2
1 0 1
2 1 0

)
+ R+

(
0 0 1
0 0 1
1 1 0

)
; while

M
(

1
2
3

)
+ R+M

(
1
0
1

)
=
(

0 1 2
1 0 1
2 1 0

)
+ R+

(
0 1 0
1 0 1
0 1 0

)

is not an edge. This agrees with Proposition5.20, because the sets100 and110 are incident
to ı, while 101 and010 are not. Moreover, the set101 is almost incident toı and010 is its
complement. Thus, Theorem5.22 is true for the special case whenπ = ı. For the other
permutations, the easiest thing to do is to use symmetry. We describe this in the next remark.

Remark 5.27. For everyσ, π ∈ S(n) andU ⊂ [n] we have the following.
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(i) Due to symmetry the pairπրU defines an edge ofQn if and only if the pairπ ◦ σր
σ−1(U) defines an edge ofQn.

(ii) U is incident toπ if and only if σ−1(U) is incident toπ ◦ σ.
(iii) U is almost incident to a permutationπ if and only ifσ−1(U) is almost incidentπ ◦σ.
(iv) ∁U is almost incident to a permutationπ if and only ifU is almost incident toπ−.

PROOF. Can be checked using the definitions ofπրU andU beeing incident respectively
almost incident ofπ. �

We now give the first general result as a step towards the proof of Theorem5.22.

Lemma 5.28. If π ∈ S(n) and U ⊂ [n] is almost incidentπ, then the half-lineD(π) +
R+D(χU ) defined by the pairπրU is not an edge ofQn.

PROOF. By the above remarks on symmetry, it is sufficient to prove the claim for the iden-
tical permutationı ∈ S(n). Consider ak ∈ [n−1], and letπ′ := 〈k, k + 1〉 be the transposition
exchangingk andk + 1, and letU := [k − 1] ∪ {k + 1}. Then a little computation shows that
D(χU ) can be written as a conic combination of vectors defining rays issuing fromD(ı) as
follows:

D(χU ) = D(χ[k]) +
(
D(π′)−D(ı)

)
.

HenceD(ı) + R+D(χU ) is not an edge. �

Note that by applying Remark5.27, the Lemma5.28implies that if∁U is almost incident
π, then the pairπր∁U does not define an edge ofQn.

Before we proceed, we note the following easy consequence of Farkas’ Lemma.

Lemma 5.29. The following are equivalent:

(i) The half-lineD(ı) + R+D(χU ) defined by the pairıրU is an edge ofQn.
(ii) There exists a matrixD satisfying the following constraints:

D •D(π) > D •D(ı) ∀ π 6= ı, ı−,(33a)

D •D(χU ′

) > D •D(χU ) = 0 ∀ U ′ 6= U, ∁U.(33b)

(iii) There exists a matrixC satisfying

C •D(π) ≥ C •D(ı) ∀ π 6= ı, ı−,(34a)

C •D(χU ′

) ≥ 0 ∀ U ′ 6= U, ∁U,(34b)

C •D(χU ) < 0.(34c)

Condition (33) is easier to check for individual matrices, but condition (34) will be needed
in a proof below.

We move on to the next example which both provides some cases needed for the proof of
Theorem5.22and motivates the following definitions.

Let U be a subset of[n] and consider its representation as a word of lengthn. We say that
a maximal sequence of consecutive0s in this word is avalley of U . In other words, a valley
is an inclusion wise maximal subset[l, l + j] ⊂ ∁U . Accordingly, a maximal sequence of
consecutive1s is called ahill . A valley and a hill meet at aslope. Thus the number of slopes is
the number of occurrences of the patterns01 and10 in the word, or in other words, the number
of k ∈ [n− 1] with k ∈ U andk + 1 6∈ U or vice versa. If all valleys and hills of a subsetU of
[n] consist of only one element (as for example in10101) or, equivalently, ifU has the maximal
possible numbern − 1 of slopes, or, equivalently, ifU consists of all odd or all even numbers
in [n], we speak of analternatingset.
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Lemma 5.30. For every set{W1, . . . ,Wr} of non-empty proper subsets of[n] incident onπ,
there is a matrixC such that the minimumC • D(σ) over all σ ∈ S(n) is attained solely
in π and π−, and thatC • D(χU ′

) ≥ 0 for every non-empty proper subsetU ′ of [n] where
equality holds precisely for the setsWi and their complements. This implies thatD(π) +
cone{D(χW1), . . . , D(χWr)} is a face of the polyhedronQn = Pn+CUTn.

PROOF. Follows from Proposition5.9. �

Example 5.31(Unbounded edges ofQ4). We consider the edges ofQ4 containingD(ı) =
D(ı−) (this is justified by Remark5.27). We distinguish the setsU by their number of slopes.
Clearly, a setU with a single slope is incident either toı or to ı−, and we have already dealt
with that case in Lemma5.30. The following sets have two slopes:0100, 0110, 0010, 1011,
1001, and1101. We only have to consider1011, 1001, and1101, because the others are their
complements. The first one,1011, is almost incidentı−, and the last one,1101, is almost
incident to ı, so we know that the pairsıր 1011 and ıր 1101 do not define edges ofQ4

by Lemma5.28. For the remaining set with two slopes,1001, the following matrix satisfies
property (34) with C replaced byC1001 andU by 1001:

C1001 :=

( 0 1 −2 1
1 0 3 −2

−2 3 0 1
1 −2 1 0

)
.

The two alternating sets (i. e., sets with tree slopes) are1010 and0101, which are almost inci-
dent toı andı− respectively. This concludes the discussion ofQ4.

Having settled some of the cases for small values ofn, we give the result by which the
reduction to smallern is performed, which is an important ingredient for settling Theorem5.22.
The following lemma shows that unbounded edges ofQn can be “lifted” to a larger polyhedron
Qn+k.

Lemma 5.32. LetU0 be a non-empty proper subset of[n] whose word has the forma1b for two
(possibly empty) wordsa, b. For anyk ≥ 0 define the subsetUk of [n+ k] by its word

Uk := a 1 . . . 1︸ ︷︷ ︸
k+1

b.

If the pair ınրU0 defines an edge ofQn, then the pairın+kրUk defines an edge ofQn+k.

Note that the lemma also applies to consecutive zeroes, by exchanging the respective set by
its complement.

PROOF. LetC ∈ S0n be a matrix satisfying conditions (34) for U := U0. Fix k ≥ 1 and let
n′ := n+ k. We will construct a matrixC ′ ∈ S0n′ satisfying (34) for U := Uk. For a “big” real
numberω ≥ 1 define a matrixBω ∈ S0k+1 whose entries are zero except for those connectingj
andj + 1, for j ∈ [k]:

Bω :=




0 ω
ω 0 ω 0

ω
...

ω
0 ω 0 ω

ω 0


.

We use this matrix to put a heavy weight on the “path” which we “contract.” For our second
ingredient, letla denote the length of the worda andlb the length of the wordb (note thatla = 0



5.5. UNBOUNDED EDGES OFQn AND Qn 57

andlb = 0 are possible). Then we define

B− :=

(
+1 ... +1

0k−1 ... 0k−1

−1 ... −1

)
∈ M((k + 1)× la) and

B+ :=

(
−1 ... −1

0k−1 ... 0k−1

+1 ... +1

)
∈ M((k + 1)× lb),

where0k−1 stands for a column ofk − 1 zeros. Putting these matrices together we obtain an
n′ × n′-matrixB:

B :=




0 B⊤

− 0

B− Bω B+

0 B⊤

+ 0


 .

Now it is easy to check that for anyπ′ ∈ π[n′] we haveB •D(π′) ≥ B •D(ı). Moreover
let π′ ∈ π[n′] satisfyB •D(π′) < B •D(ı) + 1. By exchangingπ′ with π′−, we can assume
thatπ′(1) < π′(n′). It is easy to see that such aπ′ then has the following “coarse structure”

(35)

π′([la]) ⊂ [la]

π′([n′] \ [n′ − lb]) ⊂ [n′] \ [n′ − lb]

π′(j) = j ∀ j ∈ {la + 1, . . . , la + k + 1}.

Thus the matrixB enforces that the “coarse structure” of aπ′ ∈ π[n′] minimizingB • D(π′)
coincides withı. We now modify the matrixC to take care of the “fine structure”. For this, we
split C into matricesC11 ∈ S0la , C22 ∈ S0lb , C12 ∈ M(la × lb), C21 = C⊤

12 ∈ M(lb × la), and

vectorsc ∈ Rla , d ∈ Rlb as follows:

C =



C11 c C12

c⊤ 0 d⊤

C21 d C22


 .

Then we define the “stretched” matrix̌C ∈ S0n′ by

Č :=




C11 c 0 0 C12

c⊤ 0 0 0
⊤

0 0 0

0
⊤ 0 0 d⊤

C21 0 0 d C22




where the middle0 has dimensions(k − 1) × (k − 1). Finally we letC ′ := B + εČ, where
ε > 0 is small. We show thatC ′ satisfies (34).

We first considerC ′ • D(χU ′

) for non-empty subsetsU ′ ( [n′]. Note that, ifU ′ contains
{la + 1, . . . , la + k+ 1}, then forU := U ′ \ {la + 1, . . . , la + k+ 1}, we haveC ′ •D(χU ′

) =
C • D(χU ). Thus we haveC ′ • D(χUk) = C • D(χU0) < 0 proving (34c) for C ′ andUk.
For every otherU ′ with C ′ • D(χU ′

) < 0, if ω is big enough, then eitherU ′ or ∁U ′ contains
{la + 1, . . . , la + k + 1}, and w.l.o.g. we assume thatU ′ does. By (34b) applied toC andU ,
we know that this impliesU = U0 or U = ∁U0 and henceU ′ = Uk or ∁U ′ = Uk. Thus, (34b)
holds forC ′ andUk.

Second, we address the permutations. To show (34a), let π′ ∈ S(n) be given which min-
imizesC ′ • D(π′). Again, by replacingπ′ by π′− if necessary, we assumeπ′(1) < π′(n′)
w.l.o.g. If ε is small enough, we know thatπ′ has the coarse structure displayed in (35). This
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implies that we can define a permutationπ ∈ S(n) by letting

π(j) :=





π′(j) if j ∈ [la],

π′(j) = j if j = la + 1,

π′(j − k) + k if j ∈ [n] \ [la + 1].

An easy but lengthy computation (see [Sei09] for the details) shows that

C ′ •D(π′)− C ′ •D(ın′) ≥ ε
[
C •D(π) + k · C •

(
0la×la 1

1 0lb×lb

)

−
(
C •D(ın) + k · C •

(
0la×la 1

1 0lb×lb

)) ]

= ε
[
C •D(π)− C •D(ın)

]
≥ 0.

Thus (34a) holds. �

Example 5.33. We give an example for the application of Lemma5.32. Forn = 5, consider
the half-line defined by the pairıր11001. The set11001 can be reduced to1001 by contracting
the hill 1− 2. To do so we set

C11001 := ε

( 0 0 0 0 0
0 0 1 −2 1
0 1 0 3 −2
0 −2 3 0 1
0 1 −2 1 0

)
+

( 0 ω −1 −1 −1
ω 0 1 1 1

−1 1 0 0 0
−1 1 0 0 0
−1 1 0 0 0

)

for a smallε > 0 and a bigω ≥ 1.

After these preparations we can tackle the proof of the theorem.

PROOF OFTHEOREM 5.22. By Remark5.27, we only need to considerπ = ı. We distin-
guish the setsU by their numbers of slopes.

One slope.This is equivalent toU or ∁U being incident toı. We have treated this case in
Lemma5.30.

Two slopes.The complete list of all possibilities, up to complements, and how they are
dealt with is summarized in Table2. In this table,0 stands for a valley consisting of a single
zero while0 . . . 0 stands for a valley consisting of at least two zeros (the same with hills). The
matrices for the reduced words satisfying (34) can be found in the appendix on page61. The
condition (34) can be verified by some case distinctions.

TABLE 2. List of all sets with two slopes (up to complement)

Word Edge? Why?

Hill 1 Valley Hill 2

1 0 1 no almost incident toı

1 0 1 . . . 1 no almost incident toı−

1 0 . . . 0 1 yes reduce ton = 4, 1001, by Lemma5.32

1 0 . . . 0 1 . . . 1 yes reduce ton = 4, 1001, by Lemma5.32

1 . . . 1 0 1 no almost incident toı

1 . . . 1 0 1 . . . 1 yes reduce ton = 5, 11011, by Lemma5.32

1 . . . 1 0 . . . 0 1 yes reduce ton = 4, 1001, by Lemma5.32

1 . . . 1 0 . . . 0 1 . . . 1 yes reduce ton = 5, 11011, by Lemma5.32



5.5. UNBOUNDED EDGES OFQn AND Qn 59

Three slopes.This case can be tackled using the same methods we applied in the case above.
Table3 gives the results.

TABLE 3. List of all sets with three slopes (up to complement)

Word Edge? Why?

Hill 1 Valley 1 Hill 2 Valley 2

1 0 1 0 no almost incident toı

1 0 1 0 . . . 0 no almost incident toı

1 0 1 . . . 1 0 yes reduce ton = 5, 10110, by Lemma5.32

1 0 1 . . . 1 0 . . . 0 yes reduce ton = 5, 10110, by Lemma5.32

1 0 . . . 0 1 0 yes reduce ton = 5, 10010, by Lemma5.32

1 0 . . . 0 1 0 . . . 0 yes reduce ton = 5, 10010, by Lemma5.32

1 0 . . . 0 1 . . . 1 0 yes reduce ton = 5, 10010, by Lemma5.32

1 0 . . . 0 1 . . . 1 0 . . . 0 yes reduce ton = 5, 10110, by Lemma5.32

1 . . . 1 0 1 0 no almost incident toı

1 . . . 1 0 1 0 . . . 0 no almost incident toı

1 . . . 1 0 1 . . . 1 0 yes reduce ton = 5, 10110, by Lemma5.32

1 . . . 1 0 1 . . . 1 0 . . . 0 yes reduce ton = 5, 10110, by Lemma5.32

1 . . . 1 0 . . . 0 1 0 yes reduce ton = 5, 10010, by Lemma5.32

1 . . . 1 0 . . . 0 1 0 . . . 0 yes reduce ton = 5, 10010, by Lemma5.32

1 . . . 1 0 . . . 0 1 . . . 1 0 yes reduce ton = 5, 10010, by Lemma5.32

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 yes reduce ton = 5, 10010, by Lemma5.32

s ≥ 4 slopes.Using Lemma5.32, we reduce such a set to an alternating set withs slopes
showing that for all these setsU the pairıրU defines an edge ofQn. This is in accordance with
the statement of the theorem because sets which are almost incident toı can have at most three
slopes. The statement for alternating sets is proven by induction onn in Lemma5.34below.
Note that the starts of the inductions in the proof of that lemma aren = 5 andn = 6 for even
or odds respectively.

This concludes the proof of the theorem. �

We now present the inductive construction which we need for the case ofan even number
of s ≥ 4 slopes.

Lemma 5.34. For an integern ≥ 5 letU be an alternating subset of[n]. The pairıրU defines
an edge ofQn.

PROOF. We first prove the case whenn is odd.
The proof is by induction overn. For the start of the induction we considern = 5 and offer

the matrixC10101 ∈ S05 in Table4 of the appendix satisfying (33). We will need this matrix in
the inductive construction.

Now setE5 := C10101 and assume that the pairıրU− defines an edge ofQn where
U− is an alternating subset of[n]. W.l.o.g., we assume thatU− = 10 . . . 01. There exists a
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matrixE− ∈ S0n for which (33) holds. We will construct a matrixE ∈ S0n+2 satisfying (33) for
U := 010 . . . 010.

We extendE− to a(n+ 2)× (n+ 2)-Matrix

Ê :=

(
E−

0 0

0
⊤ 0 0

0
⊤ 0 0

)
.

We do the same withE5, except on the other side:

Ê5 :=

(
0 0 0

⊤

0 0 0
⊤

0 0 E5

)
.

Now we letE := Ê + Ê5 and check the conditions (33) onE. These are now easily verified.
For the even case we guarantee the start of induction investigatingn = 6. We give a matrix

C101010 satisfying (33) in Table4 in the appendix. (Note that101010 is the only set which is
not incident toı, is not almost incident toı or ı−, cannot be reduced by Lemma5.32and is no
complement of sets of any of these three types.) The induction is proved in thesame way by
using the matrixE6 := C101010. �

5.6. Concluding Remarks

TheR-embeddable1-separated metrics are a natural and fascinating class of metrics, which
are also of some practical importance due to their connection with graph layout problems. We
have established some fundamental properties of such metrics, and also initiated a study of their
convex hull and its closure.

There are several possible avenues for future research. First, one could search for new valid
or facet-defining inequalities. Second, one could study the complexity of theseparation prob-
lems associated with various families of inequalities, which would be essential if one wished
to use the inequalities within a cutting-plane algorithm. Third, it would be interestingto know
whether theboundededges of the convex hull, or its closure, have a simple combinatorial in-
terpretation.

5.7. Appendix: Table of cases
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TABLE 4. Matrices certifying unbounded edges ofQn

n Slopes Matrix

4 2 C1001 :=




0 1 −2 1
1 0 3 −2

−2 3 0 1
1 −2 1 0




5 2 C11011 :=




0 8 −6 −1 −1
8 0 2 9 −3

−6 2 0 5 −7
−1 9 5 0 11
−1 −3 −7 11 0




5 3 C10110 :=




0 2 2 1 −3
2 0 0 −2 2

−2 0 0 2 0
1 −2 2 0 1

−3 2 0 1 0




5 3 C10010 :=




0 2 −2 2 −2
2 0 4 −3 1

−2 4 0 1 1
2 −3 1 0 1

−2 1 1 1 0




5 4 C10101 :=




0 0 3 −2 −1
0 0 1 1 −2
3 1 0 1 3

−2 1 1 0 0
−1 −2 3 0 0




6 5 C101010 :=




0 0 1 −1 0 0
0 0 1 1 −2 0
1 1 0 1 3 −2

−1 1 1 0 0 1
0 −2 3 0 0 1
0 0 −2 1 1 0



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The VPN problem with concave costs
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Abstract. Only recently Goyal, Olver and Shepherd (Proc. STOC, 2008) proved
that the symmetric Virtual Private Network Design (sVPN) problem has the tree
routing property, namely, that there always exists an optimal solution to the problem
whose support is a tree. Combining this with previous results by Fingerhut, Suri
and Turner (J. Alg., 1997) and Gupta, Kleinberg, Kumar, Rastogi and Yener (Proc.
STOC, 2001),sVPN can be solved in polynomial time.
In this paper we investigate an APX-hard generalization ofsVPN, where the contri-
bution of each edge to the total cost is proportional to some non-negative, concave
and non-decreasing function of the capacity reservation. We show that the tree
routing property extends to the new problem, and give a constant-factor approxima-
tion algorithm for it. We also show that the undirected uncapacitated single-source
minimum concave-cost flow problem has the tree routing property when the cost
function has some property of symmetry.

6.1. Introduction

All the problems considered in this paper involve a (finite) simple, undirected,connected
graphG = (V,E) that represents a communication network. The graph comes with a vector
c ∈ QE

+ describing edge costs, and a vectorb ∈ ZV
+ pertaining to the traffic departing from or

arriving at each vertex; the exact interpretation depends on the problem. A vertexv with bv > 0
is referred to as aterminal. We denote the set of terminals byW . Also, we letB be the sum of
all components ofb. Thus,W = {v ∈ V | bv > 0} andB =

∑
v∈V bv.

In the symmetric Virtual Private Network design(sVPN) problem, the vertices want to
communicate with each other. However, the exact amount of traffic betweenpairs of vertices
is not known in advance. Instead, for each vertexv the cumulative amount of traffic that it can
send or receive is bounded from above bybv. The aim is to install minimum cost capacities
on the edges of the graph supporting any possible communication scenario,where the cost for
installing one unit of capacity on edgee equalsce.

A set of traffic demandsD = {duv | {u, v} ⊆ W} specifies for each unordered pair of
terminals{u, v} ⊆ W the amountduv ∈ Q+ of traffic betweenu andv. A setD is valid if it
respects the upper bounds on the traffic of the terminals. That is,

∑

u∈W

duv ≤ bv for all terminalsv ∈ W.

A solution to the instance ofsVPN defined by the triple(G, b, c) consists of a collection of
pathsP containing exactly oneu–v pathPuv in G for each unordered pairu, v of terminals,
and a vectorγ ∈ QE

+ describing the capacity to be installed on each edge. Such a set of paths
P, together with capacity reservationsγ, is called avirtual private network. A virtual private
network is feasibleif all valid sets of traffic demands can be routed without exceeding the

63
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reserved capacities, in case all traffic between terminalsu andv is routed along pathPuv, that
is,

γe ≥
∑

{u,v}⊆W :e∈Puv

duv for all edgese ∈ E.

Given a collection of pathsP as above, one may compute in polynomial time the capacity
reservationsγe for e ∈ E in order to obtain a feasible virtual private network [GKK +01,
ILO06 ].

Theconcave symmetric Virtual Private Network Design(csVPN) problem is defined simi-
larly assVPN. The total cost of virtual private network (P,γ) is now

(36)
∑

e∈E

ce f(γe),

wheref : [0, B] → R+ is concave, non-decreasing and such thatf(0) = 0. (We assume we
are given oracle access tof , see Section6.1.4below.) An instance ofcsVPN is described by a
quadruple(G, b, c, f).

In theConcave Routing(CR) problem, one of the terminals is marked asroot. We denote
the root byr. For each vertexv, the numberbv describes thedemandat the vertex. We remark
that, by the choice ofr, there is a demandbr > 0 at the root. This is a dummy demand that
does not play any role in the problem1.

A solution toCR consists of a collectionP of simple r–v pathsPv, one path for each
terminalv distinct from the root. We call such a collection arouting. We denote byxe(P) the
amount of flow routed on the edgee by P. Thus,xe(P) =

∑
v∈W\{r}:e∈Pv

bv. The cost of a
routing is then:

(37)
∑

e∈E

ce g(xe(P)),

whereg : [0, B] → R+ is a concave function such thatg(0) = 0. (Once again, we assume that
we are given oracle access tog.) An instance ofCR is then defined by a quintuple(G, r, b, c, g).
We remark thatCR may be viewed as an undirected uncapacitated single-source minimum
concave-cost flow problem [GP90].

We are interested in the following restrictions ofCR. The instances of thenon-decreasing
Concave Routing(ndCR) problem are those for whichg is non-decreasing. In this case, we
use the letterf instead ofg whenever possible. The instances of theaxis-symmetric Concave
Routing(sCR) problem are those for whichg is (axis-)symmetric, that is,g(B − x) = g(x)
for all x ∈ [0, B]. In this case, we use the letterh instead ofg whenever possible. Finally,
the instances of thePyramidal Routing(PR) problem [GKOS08] are those for whichg(x) =
min{x,B − x} for all x ∈ [0, B]. In this case, we use the letterp instead ofg.

The various problems considered here and their relationships are illustrated in Fig. 6.1.
Notice thatcsVPN, sCR andndCR are all APX-hard because they admit the minimum Steiner
tree problem as a special case.

A feasible solution to one of the problems described above is atree solutionif the support of
the capacity vectorγ or the union of the paths inP induces a tree inG. To make the terminology
concise, we say that an instance of eithercsVPN or sCR has the tree routing property provided
one of its optimal solution is a tree solution.

1We use this convention in order to be consistent with previous published work [GKOS08].
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FIGURE 6.1. The problems considered in this article. Bold arrows indicate
specialization, dashed arrows indicate equivalence.

6.1.1. Previous work. It was shown by Fingerhutet al. [FST97] and later, independently,
by Guptaet al.[GKK +01] thatsVPN can be solved in polynomial time if it has the tree routing
property, that is, each instance has an optimal solution that is a tree solution2. Subsequently, it
has been discussed [GK02] and then conjectured [ER04, ILO06 ] thatsVPN has the tree routing
property. This has become known as theVPN tree routing conjecture. The conjecture has first
been proved for the case of cycles [HKS07, GKOS08], and then in general graphs [GOS08b].

Goyalet al. [GOS08b] prove the VPN tree routing conjecture by proving thatPR has the
tree routing property. This result was initially proposed as a conjecture byGrandoni, Kaibel,
Oriolo and Skutella [GKOS08], together with a proof that it implies the VPN tree routing
conjecture. Remarkably, Goyalet al. [GOS08b] also show that two results are equivalent, that
is,sVPN has the tree routing property if and only ifPR has the tree routing property.

6.1.2. Our contribution. First, we show thatcsVPN has the tree routing property. Our
proof goes as follows. On the one hand, we build upon the result by Goyal et al. [GOS08b]
to show thatsCR has the tree routing property. On the other hand, we show that there is an
equivalence betweencsVPN andsCR, so thatcsVPN has the tree routing property too.

Second, we study approximation algorithms forcsVPN. For generalf , using known results
on the so-called Single Source Buy at Bulk (SSBB) problem [GKPR07, GI06], we give a24.92-
approximation algorithm. For a restricted class of functionsf , by reducing to the so-called
Single Source Rent or Buy (SSRB) problem [EGRS08], we show that a2.92-approximation
algorithm exists.

Third, althoughsCR andndCR both have the tree routing property, we show that this is not
the case for the generalCR problem.

6.1.3. Outline. In Section6.2 we prove our main statements:csVPN andsCR have the
tree routing property. The proof uses as a basis an equivalence, stated in Section6.2.1, between
csVPN andsCR. We show that, whenb is a 0-1 vector, solving ancsVPN instance(G, b, c, f)
amounts to solving ansCR instance of the form(G, r, b, c, h) wherer is one of the terminals
andh is obtained by symmetrizingf . Moreover, thecsVPN instance has an optimal solution
that is a tree solution if and only if the correspondingsCR instance has an optimal solution that
is a tree solution. This allows us to focus only onsCR. By combining one decisive polyhedral
observation with the fact thatPR has the tree routing property [GOS08b], we show thatsCR
has the tree routing property, which then implies thatcsVPN also has the tree routing property.

In Section6.3we give a constant factor approximation algorithm forcsVPN. Our approx-
imation algorithm works by reduction to the Single Source Buy at Bulk (SSBB) problem. The
reduction is in two steps. First, we observe in Section6.3.1that the approximation algorithm
for SSBB due to Grandoni and Italiano [GI06], that is a variation of the algorithm of Gupta,

2Such a solution can be obtained in polynomial time by solving a single all-pair shortest paths problem.
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Kumar, P̀al and Roughgarden [GKPR07], gives an approximation algorithm forndCR with the
same approximation factor. Then, we show in Section6.3.2how to turn any approximation
algorithm forndCR into an approximation algorithm forcsVPN with the same approximation
factor. Combining both steps, we obtain aρ-approximation algorithm forcsVPN from the
ρ-approximation algorithm forSSBB [GI06], whereρ = 24.92. Using a subset of the tools
developed, we give a2.92-approximation algorithm forcsVPN when the functionf is to be of
the typef(x) = min{µx,M} for positive constantsµ andM . Here, we resort to the Single
Source Rent or Buy (SSRB) problem, for which the best known approximation factor currently
is 2.92 [GKPR07, EGRS08].

In Section6.4, we give an instance ofCR such that no tree solution is optimal, thereby
showing thatCR does not have the tree property.

6.1.4. Fractional problems and value-giving oracles.Before starting Section6.2, we
conclude this section by providing necessary extra details.

We define thefractional version ofCR (denoted by frac-CR) where we allow, for each
terminalv 6= r, to fractionally split thebv units of flow fromr to v along severalr–v paths.
Formally, a fractional routingP specifies, for each terminalv 6= r, a setPv of simpler–v paths
and, for each pathP ∈ Pv, an amount of flowβv(P ) ∈ R+ such thatbv =

∑
P∈Pv

βv(P ). The
cost of a routing is as in Eq. (37) above, withxe(P) :=

∑{βv(P ) | v ∈ W \ {r}, P ∈ Pv, e ∈
P}.

It results from the concavity ofg (see, e.g., Goyalet al. [GOS08b, Lemma 2.2]) that there
always exists an optimal solution toCR that is unsplittable, i.e., that routes all flows from the
source to a terminal on a unique path, even when we allow fractional flows.Therefore, the
frac-CR problem andCR problem are essentially equivalent.

The problem frac-ndCR is defined similarly. This last problem is closely related to a known
variant of the Single Source Buy at Bulk problem, see Section6.3.1for details.

Finally, in thecsVPN (resp.CR) problem, we assume that we are given oracle access to
the functionf (resp.g). That is, we are given access to a subroutine that, given a rational
x ∈ [0, B], returns a non-negative rationalf(x) (resp.g(x)) whose size is polynomial in the
size ofx. The computation is assumed to take constant time.

6.2. The tree routing property

We show here that bothcsVPN andsCR have the tree routing property. We start by proving,
in Section6.2.1, an equivalence between the two problems whenb is a 0-1 vector. Then, in
Section6.2.2, we prove the tree routing property forsCR, and thus also forcsVPN.

6.2.1. Equivalence ofcsVPN and sCR instances in the binary case.Here we restrict
ourselves to instances whereb is a 0-1 vector. In this case, the number of terminals isB and,
for any routingP, there are preciselyxe(P) paths inP using the edgee. Forf : [0, B] → R+

concave and non-decreasing withf(0) = 0, we define

(38) h : [0, B] → R+ : x 7→
{

f(x) if x ≤ B/2,
f(B − x) if x > B/2.

Thenh is concave and axis-symmetric and hash(0) = 0. The proof of the next lemma builds
upon previous results of Guptaet al. [GKK +01], Grandoniet al. [GKOS08] and Goyalet
al. [GOS08b].

Lemma 6.1. Let (G, b, c, f) be acsVPN instance withb ∈ {0, 1}V , andh as in (38). There
exists a choice of a rootr ∈ W such that thesCR instance(G, r, b, c, h) has the same optimum
value as thecsVPN instance. Moreover, for any such choice of rootr, the correspondingsCR
instance has the tree routing property if and only if thecsVPN instance has the tree routing
property.
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PROOF. Let (P, γ) be a feasible virtual private network for(G, b, c, f), with P = {Puv |
{u, v} ⊆ W}. For each possible rootr ∈ W , letPr denote the routing consisting of all paths of
P one of whose ends isr. SoPr := {Prv : v ∈ W \{r}}. It is known [GKK +01, Theorem 3.2]
[GKOS08, Lemma 3] that the following holds:

γe ≥
1

B

∑

r∈W

min{xe(Pr), B − xe(Pr)}.

Sincef is concave and non-decreasing we have:
∑

e∈E

ce f(γe) ≥
∑

e∈E

ce f
( 1

B

∑

r∈W

min{xe(Pr), B − xe(Pr)}
)

≥ 1

B

∑

e∈E

ce
∑

r∈W

f(min{xe(Pr), B − xe(Pr)}) =
1

B

∑

r∈W

∑

e∈E

ce h(xe(Pr)).

Hence, the optimum value for thecsVPN instance(G, b, c, f) is at least the optimum value of
thesCR instance(G, r, b, c, h) for some choice of rootr ∈ W . Note that, if (P, γ) is a tree
solution, thenPr is also a tree solution for anyr ∈ W . It is not difficult to see that, in this
case, the cost of the routingPr is not dependent on the rootr. It follows that, given a tree
solution to thecsVPN instance(G, b, c, f), we can construct a tree solution to thesCR instance
(G, r, b, c, h) that is not more costly, for any choice of rootr.

Conversely, take anyr ∈ W and suppose that we are given a routingPr for somesCR
instance(G, r, b, c, h), where this timePr := {Pv | v ∈ W \ {r}}. Following [GOS08b],
we define a collection of pathsQ = {Quv | {u, v} ⊆ W}, whereQuv is anyu–v path in the
component of the symmetric differencePu∆Pv containingu andv. Let δe be the minimum
amount of capacity that we must install on each edgee so that (Q, δ) is a feasible virtual private
network for(G, b, c, f). Goyalet al. [GOS08b] show that the following holds:

δe ≤ min{xe(Pr), B − xe(Pr)}.
Sincef is non-decreasing, we have

∑

e∈E

ce f(δe) ≤
∑

e∈E

ce f(min{xe(Pr), B − xe(Pr)}) =
∑

e∈E

ce h(xe(Pr)).

Hence, the optimum value of thecsVPN instance(G, b, c, f) is at most the optimum value of
anysCR instance of the form(G, r, b, c, h) for r ∈ W . Again, note that ifPr is a tree solution
to (G, r, b, c, h), then (Q, δ) is a tree solution to thecsVPN instance(G, b, c, f). Therefore,
given a tree solution to thesCR instance(G, r, b, c, h), we can construct a tree solution to the
csVPN instance(G, b, c, f), that is not more costly. The statement easily follows. �

6.2.2. Proof of the tree routing property for sCR. In this section, we will show how the
tree routing property forsCR follows from the tree routing property forPR.

Theorem 6.2. The tree routing property holds forsCR.

Our approach is simple and geometric: We associate polyhedra with instancesof sCR in
such a way that the tree routing property for an instance can be expressed as a property of the
extreme points of the associated polyhedron. We then show how the transition from the pyra-
midal function to an arbitrary concave axis-symmetric functionh amounts to a transformation
of the corresponding polyhedra, which preserves the property of theextreme points.

Recall that, for a setZ ⊆ RE
+, the dominantdomZ of Z is defined as follows:

domZ := {z′ ∈ RE | there exists somez ∈ Z with z ≤ z′}.
Here, and below, comparisons between vectors are component-wise. GivenG, r, b, andh as
above in the definition ofsCR, a routingP defines a pointy(h,P) ∈ RE

+ by ye(h,P) :=
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h(xe(P)) for all e ∈ E. We define thesCR-polyhedronP(G,r,b,h) as the dominant of the
convex hull of the pointsy(h,P), whereP ranges over all routings. Now, finding a routing
that is minimum w.r.t. some non-negative cost vectorc is equivalent to minimizing the linear
functiony 7→ cT y over thesCR-polyhedron. We note an easy consequence of this fact.

Lemma 6.3. GivenG, r, b andh, as above the following are equivalent:

(i) For every extreme pointy of P(G,r,b,h), there exists a tree solutionT such thaty =
y(h, T ).

(ii) For everyc ≥ 0, thesCR instance(G, r, b, c, h) has the tree routing property. �

We say that a mappingΦ: RE
+ → RE

+ is concaveif Φ(tx+(1−t)y) ≥ tΦ(x)+(1−t) Φ(y)

holds for everyt ∈ [0, 1] andx, y ∈ RE
+. Similarly, we say that such a mapping isnon-

decreasingif x ≤ y implies Φ(x) ≤ Φ(y). The key observation to realizing that the tree
routing property forsCR is a consequence of the tree routing property forPR is the following.

Lemma 6.4. Let p denote the pyramidal function, andh be as above. There exists a non-
decreasing concave functionΦ: RE

+ → RE
+ such thatΦ(y(p,P)) = y(h,P) for all routings

P.

PROOF. For everye, we defineΦe(y) := h(ye) wheneverye ≤ B/2 andΦe(y) := h(B/2)
if ye ≥ B/2. The properties are readily verified, since any axis-symmetric concave function
h : [0, B] → R+ is non-decreasing in the interval[0, B/2], andye(p,P) is always at most
B/2. �

The final ingredient is the following elementary geometric fact.

Lemma 6.5. If Φ: RE
+ → RE

+ is non-decreasing and concave, andY is a finite set of points in
RE
+, then every extreme point ofdomconvΦ(Y ) is the image underΦ of an extreme point of

domconv Y . In other words,Φ maps a subset of the extreme points ofdomconv Y onto the
extreme points ofdomconvΦ(Y ).

PROOF. Consider an extreme pointz of domconvΦ(Y ). If some point inΦ−1(z) is an
extreme point ofdomconv Y , then we are done. Otherwise, pick any pointy in Y ∩Φ−1(z). By
assumption, there exist extreme pointsy1, . . . , yn ∈ Y \Φ−1(z) and coefficientsλ1, . . . , λn ≥ 0
with

∑
λj = 1 such thaty ≥ ∑n

j=1 λjyj . Hence, the assumptions onΦ imply z = Φ(y) ≥
Φ(
∑n

j=1 λjyj) ≥
∑n

j=1 λjΦ(yj). BecauseΦ(yj) 6= z for all j, the pointz is not an extreme
point ofdomconvΦ(Y ), a contradiction. �

Combining the previous two lemmas and this fact we obtain our theorem.

PROOF OFTHEOREM 6.2. We give the proof for 0-1 demands first. For this situation,
Goyalet al.[GOS08b] have proven the tree routing property for all instances ofPR. Lemma6.3
implies that for every extreme point ofP(G,r,b,p) there exists a tree solution defining it. By
Lemmas6.4and6.5, we know that this is also true for the extreme points ofP(G,r,b,h). Another
application of Lemma6.3yields the result for 0-1 demands.

Now consider ansCR instance(G, r, b, c, h) such thatb is not a 0-1 vector. We define a
new instance(G̃, r̃, b̃, c̃, h), as follows. For each terminalv with bv ≥ 2, we addk := bv
pendant edgesvu1, . . . ,vuk with cost zero to the graph. Then, we letb̃v := 0 andb̃ui

:= 1 for
i = 1, . . . , k. Finally, we letr̃ be one of the new vertices pending fromr except ifbr = 1 in
which case we let̃r = r. Since the new instance has an optimal solution that is a tree solution,
it follows that also the original instance has an optimal solution that is a tree solution. �

Corollary 6.6. The tree routing property holds forcsVPN.
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PROOF. First, consider ancsVPN instance(G, b, c, f) with bv ∈ {0, 1} for eachv ∈ V .
Here the statement follows from Lemma6.1and Theorem6.2. The case where some terminals
have demand greater than 1 can be reduced to the previous one by the samearguments as in the
proof of Theorem6.2. �

Remark.As pointed out by an anonymous referee, the results of this section still holdin case a
concave functionfe (resp.he) is associated to each edgee of the graph, and allowing different
edges to have different functions associated to them.

6.3. Approximation algorithms

6.3.1. An approximation algorithm for ndCR. Our approximation algorithm forcsVPN
is based on an approximation algorithm forndCR. The approximation algorithm forndCR is,
in its turn, related to an approximation algorithm for theSingle Source Buy at Bulk(SSBB)
problem.

The latter problem is defined as follows: we are given a (finite, simple, undirected, con-
nected) graphG = (V,E) with edge costsc ∈ QE

+, where each vertexv ∈ V wants to exchange
an amount of flowbv ∈ Z+ with a common source vertexr. In order to support the traffic, we
can install cables on edges. Specifically we can choose amongk different cables: each cable
i ∈ {1, . . . , k} providesµ(i) ∈ Q+ \ {0} units of capacity at pricep(i) ∈ Q+ \ {0}. For each
i ∈ {1, . . . , k − 1}, it is assumed thatµ(i) < µ(i+ 1) and p(i)

µ(i) ≥
p(i+1)
µ(i+1) . The latter inequality

is referred to as theeconomy of scale principle. An instance ofSSBB is therefore defined by a
quintuple(G, r, b, c,K), whereK = {(µ(i), p(i)) | i = 1, . . . , k} describes the different cable
types.

A solution toSSBB consists of a multisetκe of cables to install on each edgee ∈ E.
Repetitions are allowed, that is, several cables of the same type can be installed on some edge.

We point out that there is some confusion in the literature in the definition ofSSBB, because
in some papersSSBB is defined as above, and in some other papers theSSBB problem is
defined as the problem we call frac-ndCR. In this paper, when refering toSSBB we always
mean the version with cables. It is a known fact (see, e.g., Guptaet al. [GKPR07]) that from
an approximation viewpoint, the two formulations are equivalent up to a factorof 2. However,
we here show how to adapt the24.92-approximation algorithm forSSBB described in [GI06],
in order to obtain an algorithm withthe sameapproximation ratio forndCR.

Theorem 6.7. There exists a24.92-approximation algorithm forndCR.

PROOF. We start with a description of a simple approximation preserving reduction from
ndCR to SSBB. Let I = (G, r, b, c, f) be an instance ofndCR. Consider the instanceJ =
(G, r, b, c,K) of SSBB obtained by settingK := {(1, f(1)), (2, f(2)) . . . , (B, f(B))}. The
capacity of the cables are non-decreasing becausef is non-decreasing. Sincef(0) = 0 andf
is concave,x 7→ f(x)/x is non-increasing, and thus the economy of scale principle holds. It is
easy to see that (i) given a solution toI there exists a solution toJ of the same cost; (ii) from
a solutionκ to J one can build, in time polynomial in the sizes ofI andκ, a solution toI that
does not cost more. In other words, we could run the24.92-approximation algorithm forSSBB
onJ and obtain a24.92-approximate solution toI.

However, we point out that the size ofJ is not always bounded by a polynomial in the
size of I, becauseB could be exponentially large. To address this issue, we rely on a key
fact used in the analysis of Grandoni and Italiano [GI06], which we now describe. Given any
instance(G̃, r̃, b̃, c̃, K̃) of SSBB, they select a subset{i1, . . . , ik′} ⊆ {1, . . . , k} of cables with
the following properties:i1 = 1, ik′ = k and, for allt ∈ {1, . . . , k′ − 2}, cableit+1 is the
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smallest such that

p(it+1 + 1) ≥ αp(it)(39a)
p(it+1)

µ(it+1)
≤ 1

β

p(it)

µ(it)
.(39b)

with α := 3.1207 andβ := 2.4764. Then, they find a24.92-approximate solution to theSSBB
instance using only cables in the following subset:

(40) K̃ ′ := {(µ(i1), p(i1)), . . . , (µ(ik′), p(ik′))}.
with a running time polynomial in the size of(G̃, r̃, b̃, c̃, K̃ ′).

For our purpose, the point is therefore to find a list of cablesK ′ as in (40) satisfying (39a)
and (39b), with respect to the instanceJ , in time polynomial inlogB. To construct the list of
cablesK ′, we leti1 := 1. If it has been found, we search for the(t+1)th cableit+1 as follows.

Firstly, sincef is increasing, givenp(it), a binary search in{it + 1, . . . , B} finds the
smallest valuei′ satisfying (39a) with it+1 replaced byi′. If no suchi′ satisfies (39a), we let
it+1 := k andk′ := t + 1. If i′ does exist, sincex 7→ f(x)/x is non-increasing, the smallest
possible value forit+1 satisfying (39b) in the range{i′, . . . , B} can be found by binary search.
Again, if no it+1 satisfies (39b), we letit+1 := k andk′ := t+ 1.

Recalling thatµ(it) = it, from (39a) and (39b) it follows: it+1 ≥ β · it · f(it+1)
f(it)

≥
β · it · it+1

it+1+1
f(it+1+1)

f(it)
≥ 1

2α · β · it. Therefore the number of selected cables isO(logαβ
2

B) =

O(logB) and each cable can be found in timeO(logB). The result follows. �

6.3.2. An approximation algorithm for csVPN. In order to state our approximation al-
gorithm forcsVPN we need two further results from the literature.

First, let(G, b, c, f) be an instance of thecsVPN problem. Consider a treeT spanning all
the terminals inW . For each pair of terminals{u, v} ⊆ W there is a uniqueu–v path inT .
These paths form a collection of paths that we denotePT . It is straightforward to compute the
minimum amount of capacityγTe we have to reserve on each edgee of T in order to obtain a
feasible virtual private network fromPT . We denotez(PT , γT ) the cost of this virtual private
network.

For any choice of rootr ∈ V (T ), one can similarly derive fromT a tree solution to
the ndCR instance(G, r, br, c, f), where we letbrv := bv for all verticesv 6= r, andbrr :=
max{br, 1}3. We denote the resulting routing byPT

r and its cost byz(PT
r ). The next lemma is

known [GKK +01, Lemma 2.1], [ILO06 , Lemma 2.4]. For the sake of completeness, we give
a sketch of its proof .

Lemma 6.8. LetT , PT , γT andPT
r (for r ∈ V (T )) be as above. Then, there exists a vertexr

of T such thatγTe = xe(PT
r ) for all edgese of T . For that choice ofr, we havez(PT , γT ) =

z(PT
r ).

PROOF SKETCH. Consider an edgee of T . The removal ofe fromT determines a partition
of the set of terminalsW into two of its subsets, sayW1(e) andW2(e). For definiteness, we
assume thatW1(e) andW2(e) are chosen in such a way that

∑
v∈W1(e)

bv ≤ ∑
v∈W2(e)

bv.

Then, the minimum capacity reservationγTe for edgee is simply
∑

v∈W1(e)
bv. By breaking

ties consistently and orienting each edgee ∈ E(T ) towardsW1(e), we can turnT into an
arborescence. Lettingr denote the root of this arborescence, we haveγTe = xe(PT

r ) for all
edgese of T . �

Second, suppose that we are given a solutionPr to an instance(G, r, br, c, f) of ndCR.
As observed by Goyalet al. [GOS08b] and used in Lemma6.1above, we can build a feasible

3Recall that in the definition ofCR, we assume to have a positive (dummy) demand at the root.
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solution(Q, δ) to the instance(G, b, c, f) of csVPN as follows: for each pair of terminalsu, v,
choose the pathQuv to be any path inPu∆Pv fromu to v, wherePu andPv respectively denote
the uniquer–u andr–v paths inPr. DefineQ as the collection formed by all the pathsQuv.
As mentioned in the introduction, we may efficiently deduce fromQ the minimum capacity
reservationδ such that(Q, δ) is a feasible virtual private network. Letz(Q, δ) denote the cost
of this virtual private network. We will need the next lemma. We omit its proof because it is
not difficult (see Goyalet al. [GOS08b] for a stronger result):

Lemma 6.9. LetPr, Q andδ be as above. Then, we haveδe ≤ xe(Pr) for all edgese of G.
Thusz(Q, δ) ≤ z(Pr).

We are now ready to complete the description and analysis of our approximation algorithm
for csVPN. The input to the algorithm is acsVPN instance(G, b, c, f). In the proof below,
we useOPT(.) to denote the cost of an optimal solution to the correspondingcsVPN or ndCR
instance.

Algorithm 1 Approximation algorithm forcsVPN

(1) For eachr ∈ V , compute aρ-approximate sol.Pr to thendCR instance(G, r, br, c, f).
(2) Let r∗ be such thatz(Pr∗) = minr∈V z(Pr).
(3) FromPr∗ , build a solution(Q, δ) to thecsVPN instance(G, b, c, f) as in Lemma6.9.
(4) Output(Q, δ).

Theorem 6.10.Algorithm 1 is aρ-approximation algorithm forcsVPN.

PROOF. From Corollary6.6, we know that there exists a treeT such thatz(PT , γT ) =
OPT(G, b, c, f). By Lemma6.8, minr∈V (T ) z(PT

r ) ≤ z(PT , γT ). SincePT
r is a solution to

thendCR instance(G, r, br, c, f), it follows minr∈V (T ) z(PT
r ) ≥ minr∈V OPT(G, r, br, c, f).

Let r̃ ∈ V be such thatminr∈V OPT(G, r, br, c, f) = OPT(G, r̃, br̃, c, f). By choice ofr∗,
z(Pr∗) ≤ z(Pr̃) ≤ ρOPT(G, r̃, br̃, c, f). From Lemma6.9, z(Q, δ) ≤ z(Pr∗). Putting
everything together, we concludez(Q, δ) ≤ ρOPT(G, b, c, f), as desired. �

By Theorem6.7, there exists aρ-approximation algorithm forcsVPN with ρ = 24.92.

Notice that Algorithm1 preserves the functionf when the approximation algorithm for
ndCR is invoked. In particular, iff belongs to a restricted class of functions wherendCR has a
small approximation factor, our algorithm will have same factor on the corresponding instances.
In particular, iff is defined asf(x) := min{µx,M}, for two positive numbersµ, M , then the
ndCR instance constructed in Algorithm1 from acsVPN instance is, except for decompos-
ing into paths, just an instance of the so-called Single Source Rent or Buy (SSRB) problem
[GKPR07, EGRS08]. Hence, our results imply an approximation-preserving reduction from
csVPN—restricted to instances such thatf(x) := min{µx,M} for some positive numbers
µ andM— to SSRB. The best known approximation algorithm forSSRB known to us is the
one by Gupta et al. [GKPR07], which has an approximation factor of2.92, as was shown by
Eisenbrand, Grandoni, Rothvoß, and Schäfer [EGRS08].

6.4. A remark on general concave funtions

It is known (see, e.g., [KM00 ]) that the tree routing property is satisfied by everyCR in-
stance such thatg is non-decreasing, and it follows from our results that this also holds when
g is axis-symmetric. A natural question arises: is the tree routing property satisfied by allCR
instances?

The example below shows that this is not the case, even ifg(x) ≤ g(B − x), for each
x ∈ [0, B/2], andG is a cycle.
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Example 6.11. Consider an instance(G, r, b, c, g) of theCR problem, whereG = (V,E) is a
cycle with vertex setV := {0, 1, 2, 3, 4} and edge setE := {{i, i + 1} | i ∈ V } (the sum
is modulo5). Let r := 0; let bi := 1 for i ∈ V ; let ce := M for e = {3, 4}, ce := M + ǫ
for e = {0, 1}, ce := 0 otherwise. Finally, letg be defined as the linear interpolation of the
following points: g(0) = 0, g(2) = 2, g(3) = 2 + 2ǫ, g(5) = 0. It is easy to check thatg is
concave, non-negative, non-axis-symmetric andg(x) ≤ g(B − x), for eachx ∈ [0, B/2].

Consider the routingP where the paths from0 to i go counterclockwise (that is, have the
edge{0, 4} as their first edge) fori = 1, 2, 3, while the path from0 to 4 goes clockwise. The
cost of this solution is(2 + ǫ)M + ǫ, and it is easy to check that takingǫ andM respectively
small and big enough, every tree solution costs more.
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Note added in preparation: Following the results in this manuscript, an alternative proof of
the fact that the tree routing property holds forcsVPN has been given [GOS08a]. This proof,
however, does not show that it also holds also forsCR.
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Abstract. A fundamental result in structural graph theory states thatevery graph
with large average degree contains a large complete graph asa minor. We prove this
result with the extra property that the minor is small with respect to the order of the
whole graph. More precisely, we describe functionsf andh such that every graph
with n vertices and average degree at leastf(t) contains aKt-model with at most
h(t) · log n vertices. The logarithmic dependence onn is best possible. In general,
we prove thatf(t) ≤ 2t−1 + ε. For t ≤ 4, we determine the least value off(t); in
particularf(3) = 2 + ε andf(4) = 4 + ε. For t ≤ 4, we establish similar results
for graphs embedded on surfaces, where the size of theKt-model is bounded.

7.1. Introduction

A fundamental result in structural graph theory states that every sufficiently dense graph
contains a large complete graph as a minor1. More precisely, there is a minimum functionf(t)
such that every graph with average degree at leastf(t) contains aKt-minor. Mader [Mad67]
first proved thatf(t) ≤ 2t−2, and later proved thatf(t) ∈ O(t log t) [Mad68]. Kostochka
[Kos82, Kos84] and Thomason [Tho84, Tho01] proved thatf(t) ∈ Θ(t

√
log t); see [Tho06]

for a survey of related results.
Here we prove similar results with the extra property that theKt-minor is ‘small’. This idea

is evident whent = 3. A graph contains aK3-minor if and only if it contains a cycle. Every
graph with average degree at least2 contains a cycle, whereas every graphG with average
degree at least3 contains a cycle of lengthO(log |G|). That is, high average degree forces a
short cycle, which can be thought of as a smallK3-minor.

In general, we measure the size of aKt-minor via the following definition. AKt-model in a
graphG consists oft connected subgraphsB1, . . . , Bt of G, such thatV (Bi)∩V (Bj) = ∅ and
some vertex inBi is adjacent to some vertex inBj for all distincti, j ∈ {1, . . . , t}. TheBi are
calledbranch sets. Clearly a graph contains aKt-minor if and only if it contains aKt-model.
We measure the size of aKt-model by the total number of vertices,

∑t
i=1 |Bi|. Our main result

states that every sufficiently dense graph contains a small model of a complete graph.

Theorem 7.1. There are functionsf andh such that every graphG with average degree at
leastf(t) contains aKt-model with at mosth(t) · log |G| vertices.

For fixed t, the logarithmic upper bound in Theorem7.1 is within a constant factor of
optimal, since everyKt-model contains a cycle, and for alld ≥ 3 andn > 3d such thatnd

1We consider simple, finite, undirected graphsG with vertex setV (G) and edge setE(G). Let |G| := |V (G)|
and‖G‖ := |E(G)|. A graphH is aminor of a graphG if H is isomorphic to a graph obtained from a subgraph of
G by contracting edges.

73
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is even, Chandran [Cha03] constructed a graph withn vertices, average degreed, and girth at
least(logd n)− 1. (Thegirth of a graph is the length of a shortest cycle.)

In this paper we focus on minimising the functionf in Theorem7.1and do not calculateh
explicitly. In particular, Theorem7.8proves Theorem7.1with f(t) ≤ 2t−1 + ε for anyε > 0
(where the functionh also depends onε). Note that for Theorem7.1 and all our results, the
proofs can be easily adapted to give polynomial algorithms that compute the small Kt-model.

For t ≤ 4, we determine the least possible value off(t) in Theorem7.1. Thet = 2 case
is trivial—one edge is a smallK2-minor. To force a smallK3-model, average degree2 is not
enough, since everyK3-model in a large cycle uses every vertex. On the other hand, we prove
that average degree2 + ε forces a cycle of lengthOε(log |G|); see Lemma7.4. For t = 4 we
prove that average degree4+ ε forces aK4-model withOε(log |G|) vertices; see Theorem7.5.
This result is also best possible. Consider the square of an even cycleC2

2n, which is a 4-regular
graph illustrated in Figure7.1. If the base cycle is(v1, . . . , v2n) thenC2

2n − {vi, vi+1} is
outerplanar for eachi. Since outerplanar graph contain noK4-minor, everyK4-model inC2

2n

containsvi or vi+1, and thus contains at leastn vertices.

FIGURE 7.1. C2
24

Motivated by Theorem7.1, we then consider graphs that containK3 andK4-models of
bounded size (not just small with respect to|G|). First, we prove that planar graphs satisfy this
property. In particular, every planar graph with average degree at least2 + ε contains aK3-
model withO(1ε ) vertices (Theorem7.11). This bound on the average degree is best possible
since a cycle is planar and has average degree2. Similarly, every planar graph with average
degree at least4 + ε contains aK4-model withO(1ε ) vertices (Theorem7.19). Again, this
bound on the average degree is best possible sinceC2

2n is planar and has average degree4.
These results generalise for graphs embedded on other surfaces (Theorems7.21and7.24).

Finally, we mention three other results in the literature that force a model of a complete
graph of bounded size.

• Kostochka and Pyber [KP88] proved that for every integert andε > 0, everyn-vertex
graph with at least4t

2
n1+ε edges contains a subdivision ofKt with at most1ε7t

2 log t
vertices; see [Jia11] for recent related results.

Note that Theorem7.1can be proved by adapting the proof in [KP88]. As far as
we can tell, this method does not give a bound better thanf(t) ≤ 16t + ε (ignoring
lower order terms). This bound is inferior to our Theorem7.8, which provesf(t) ≤
2t−1 + ε. Also note that the method in [KP88] can be adapted to prove the following.

Theorem 7.2. There is a functionh such that for every integert ≥ 2 and realε > 0,
every graphG with average degree at least4t

2
+ ε contains a subdivision ofKt with

at mosth(t, ε) · log |G| division vertices per edge.
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• Kühn and Osthus [KO06] proved that every graph with minimum degree at leastt
and girth at least27 contains aKt+1-subdivision. Every graph with average degree at
least2t contains a subgraph with minimum degree at leastt. Thus every graph with
average degree at least2t contains aKt+1-subdivision or aK3-model with at most26
vertices.

• Krivelevich and Sudakov [KS09] proved that for all integerss′ ≥ s ≥ 2, there
is a constantc > 0, such that everyKs,s′-free graph with average degreer con-
tains a minor with average degree at leastcr1+1/(2s−2). Applying the result of Kos-
tochka [Kos82, Kos84] and Thomason [Tho84] mentioned above, for every inte-
ger s ≥ 2 there is a constantc such that every graph with average degree at least
c(t

√
log t)1−1/(2s−1) contains aKt-minor or aKs,s-subgraph, in which case there is

aKs+1-model with2s vertices.

7.2. Definitions and Notations

See [Die05] for undefined graph-theoretic terminology and notation. ForS ⊆ V (G), let
G[S] be the subgraph ofG induced byS. Let e(S) := ‖G[S]‖. For disjoint setsS, T ⊆ V (G),
let e(S, T ) be the number of edges betweenS andT in G.

A separationin a graphG is a pair of subgraphs{G1, G2}, such thatG = G1 ∪ G2 and
V (G1)\V (G2) 6= ∅ andV (G2)\V (G1) 6= ∅. Theorderof the separation is|V (G1)∩V (G2)|.
A separation of order 1 corresponds to a cut-vertexv, whereV (G1) ∩ V (G2) = {v}. A
separation of order 2 corresponds to a cut-pairv, w, whereV (G1) ∩ V (G2) = {v, w}.

See [MT01] for background on graphs embedded in surfaces. LetSh be the orientable
surface obtained from the sphere by addingh handles. TheEuler genusof Sh is 2h. LetNc be
the non-orientable surface obtained from the sphere by addingc cross-caps. TheEuler genus
of Nc is c.

An embedded graphmeans a connected graph that is 2-cell embedded inSh orNc. A plane
graphis a planar graph embedded in the plane. LetF (G) denote the set of faces in an embedded
graphG. For a facef ∈ F (G), let |f | be the length of the facial walk aroundf . For a vertex
v of G, letF (G, v) be the multiset of faces incident tov, where the multiplicity of a facef in
F (G, v) equals the multiplicity ofv in the facial walk aroundf . Thus|F (G, v)| = deg(v).

Euler’s formula states that|G|−‖G‖+ |F (G)| = 2−g for a connected graphG embedded
in a surface with Euler genusg. Note thatg ≤ ‖G‖ − |G| + 1 since|F (G)| ≥ 1. TheEuler
genusof a graphG is the minimum Euler genus of a surface in whichG embeds.

We now review some well-known results that will be used implicitly (see [Die05, Sec-
tion 7.3]). If a graphG contains noK4-minor then‖G‖ ≤ 2|G| − 3, and if |G| ≥ 2 thenG
contains at least two vertices with degree at most2. Hence, if‖G‖ > 2|G| − 3 thenG contains
a K4-minor. Similarly, if |G| ≥ 2 and at most one vertex inG has degree at most2, thenG
contains aK4-minor.

Throughout this paper, logarithms are binary unless stated otherwise.

7.3. SmallK3- andK4-Models

In this section we prove tight bounds on the average degree that forcesa smallK3- or K4-
model. The following lemma is at the heart of many of our results. It is analogous to Lemma 1.1
in [KP88]

Lemma 7.3. There is a functionf such that for every two realsd > d′ ≥ 2, every graphG with
average degree at leastd contains a subgraph with average degree at leastd′ and diameter at
mostf(d, d′) · log |G|.
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PROOF. We may assume that every subgraph ofG has average degree strictly less thand
(otherwise, simply consider a minimal subgraph with that property). Let

β :=
d

d′
> 1 and f(d, d′) :=

2

log β
+ 2 .

Let v be an arbitrary vertex ofG. Let Bk(v) be the subgraph ofG induced by the set of
vertices at distance at mostk from v. Let k ≥ 1 be the minimum integer such that|Bk(v)| <
β · |Bk−1(v)|. (There exists such ak, sinceβ > 1 andG is finite.) It follows thatβk−1 ≤
|Bk−1(v)| ≤ |G|. ThusBk(v) has diameter at most2k ≤ 2(logβ |G|+ 1) ≤ f(d, d′) · log |G|.

We now show thatBk(v) also has average degree at leastd′. Let

A := V (Bk−1(v)),

B := V (Bk(v)) \ V (Bk−1(v)),

C := V (G) \ (A ∪B) .

If C = ∅, thenBk(v) = G[A ∪ B] = G, and henceBk(v) has average degree at least
d ≥ d′. Thus, we may assume thatC 6= ∅. Let t be the average degree ofBk(v). Thus,

(41) 2
(
e(A) + e(B) + e(A,B)

)
= t · (|A|+ |B|) .

SinceC is non-empty,G− A is a proper non-empty subgraph ofG. By our hypothesis on
G, this subgraph has average degree strictly less thand; that is,

(42) 2
(
e(B) + e(C) + e(B,C)

)
< d · (|B|+ |C|) .

By (41) and (42) and sincee(A,C) = 0,

2‖G‖ = 2
(
e(A) + e(B) + e(C) + e(A,B) + e(B,C)

)

= t(|A|+ |B|) + 2e(C) + 2e(B,C)

< t(|A|+ |B|) + d(|B|+ |C|)− 2e(B)

≤ d|G| − d|A|+ t(|A|+ |B|) .

Thust(|A|+ |B|) > d|A| (since2‖G‖ ≥ d |G|). On the other hand, by the choice ofk,

|A|
|A|+ |B| >

1

β
.

Hence

t > d
|A|

|A|+ |B| >
d

β
= d′ ,

as desired. �

Lemma 7.4. There is a functiong such that for every realε > 0, every graphG with average
degree at least2 + ε has girth at mostg(ε) · log |G|,

PROOF. By Lemma7.3, G contains a subgraphG′ with average degree at least2 and di-
ameter at mostf(2 + ε, 2) · log |G|. Let T be a breadth-first search tree inG′. ThusT has
diameter at most2f(2 + ε, 2) · log |G|. SinceG′ has average degree at least 2,G′ is not a
tree, and there is an edgee ∈ E(G′) \ E(T ). ThusT pluse contains a cycle of length at most
2f(2 + ε, 2) · log |G|+ 1. �

Theorem 7.5. There is a functionh such that for every realε > 0, every graphG with average
degree at least4 + ε contains aK4-model with at mosth(ε) · log |G| vertices.

PROOF. By Lemma7.3, G contains a subgraphG′ with average degree at least4 + ε
2 and

diameter at mostf(4+ε, 4+ ε
2) · log |G|. Letv be an arbitrary vertex ofG′. LetT be a breadth-

first search tree fromv in G′. Let k be the depth ofT . Thusk ≤ f(4 + ε, 4 + ε
2) · log |G|.
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Let H := G′ − E(T ). Since‖T‖ = |G| − 1, the graphH has average degree at least
2+ ε

2 . By Lemma7.4, H contains a cycleC of length at mostg( ε2) · log |G|. We will prove the
theorem withh(ε) := g( ε2) + 3f(4 + ε, 4 + ε

2).
Observe thatv /∈ V (C), sincev is isolated inH. A vertexw of C is said to bemaximalif,

in the treeT rooted atv, no other vertex ofC is an ancestor ofw.
First, suppose thatC contains three maximal verticesx, y, z. For w ∈ {x, y, z}, let Pw

be the uniquev–w path inT . ThenC ∪ Px ∪ Py ∪ Pz contains aK4-model with at most
|C|+ |Px − x|+ |Py − y|+ |Pz − z| ≤ |C|+ 3k ≤ h(ε) · log |G| vertices. Now assume that
at most two vertices ofC are maximal.

Next, suppose that there is a unique maximal vertexx in C. Let i be the distance between
v andx in T . Let y be a neighbour ofx in C. The vertexy is not maximal, implying there is an
ancestor ofy in C. SinceT is a breadth-first search tree,y is at distance at mosti+1 from v in
T . However,xy /∈ E(T ), which implies thatx is not an ancestor ofy in T , a contradiction.

Finally, suppose there are exactly two maximal verticesx andy in C. If one is closer to
v than the other inT , sayx is closer thany, then considering a neighbourx′ of x in C that is
distinct fromy again yields a contradiction:x′ is not maximal, thusx′ has an ancestor inC,
and this ancestor must bex. However, this cannot be sincexx′ /∈ E(T ). Hence,x andy are at
the same distance fromv in T .

LetP be anx–y path inC that is not the edgexy. Letx′ be the neighbour ofx in P , and let
y′ be the neighbour ofy in P . The ancestor ofx′ in T must bey, since otherwise there would
be a path inT betweenx′ andv that avoids bothx andy. For the same reason,x is the ancestor
of y′ in T . Thus,x′y andy′x are both edges ofT , and hencex′ 6= y′. Now, the cycleC plus
these two edges gives aK4-model with|C| ≤ g( ε2) · log |G| ≤ h(ε) · log |G| vertices. �

7.4. SmallKt-Models

The following theorem establishes our main result (Theorem7.1).

Theorem 7.6. There is a functionh such that for every integert ≥ 2 and realε > 0, every
graphG with average degree at least2t + ε contains aKt-model with at mosth(t, ε) · log |G|
vertices.

PROOF. We prove the following slightly stronger statement: Every graphG with average
degree at least2t + ε contains aKt-model with at mosth(t, ε) · log |G| vertices such that each
branch set of the model contains at least two vertices.

The proof is by induction ont. For t = 2, let h(t, ε) := 2. Here we need only assume
average degree at least2 + ε. Some component ofG is neither a tree nor a cycle, as otherwise
G would have average degree at most2. It is easily seen that this component contains a path on
4 vertices, yielding aK2-model in which each branch set contains two vertices. This model has
4 ≤ h(t, ε) · log |G| vertices, as desired. (Observe that|G| ≥ 4, sinceG contains a vertex with
degree at least3.)

Now assumet ≥ 3 and the claim holds for smaller values oft. Using Lemma7.3, letG′ be a
subgraph ofG with average degree at least2t+ ε

2 and diameter at mostf(2t+ε, 2t+ ε
2)·log |G|.

Let h(t, ε) := 2 + (t− 1)f(2t + ε, 2t + ε
2) + h(t− 1, ε4).

Choose an arbitrary edgeuv of G′. Define thedepthof a vertexw ∈ V (G′) to be the
minimum distance inG′ betweenw and a vertex in{u, v}. Thedepthof an edgexy ∈ E(G′)
is the minimum of the depth ofx and the depth ofy.

Considering edges ofG′ with even depth on one hand, and with odd depth on the other, we
obtain two edge-disjoint spanning subgraphs ofG′. SinceG′ has average degree at least2t+ ε

2 ,
one of these two subgraphs has average degree at least2t−1 + ε

4 . LetH be a component of this
subgraph with average degree at least2t−1 + ε

4 . Observe that every edge ofH has the same
depthk in G.
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If k = 0, thenE(H) is precisely the set of edges incident tou or v (or both). Thus, every
vertex inV (H) \ {u, v} has degree at most2 in H. HenceH has average degree less than
4 < 2t−1 + ε

4 , a contradiction. Thereforek ≥ 1.
Now, by induction,H contains aKt−1-model with at mosth(t − 1, ε4) · log |G′| vertices

such that each of thet − 1 branch setsB1, . . . , Bt−1 has at least two vertices. Thus, eachBi

contains an edge ofH. Hence, there is a vertexvi in Bi having depthk in G′. Therefore, there
is a pathPi of lengthk in G′ betweenvi and some vertex in{u, v}. LetPuv be the trivial path
consisting of the edgeuv. Let

Bt := Puv ∪
⋃

1≤i≤t−1

(Pi − vi) .

The subgraphBt is connected, contains at least two vertices (namely,u andv), and is vertex
disjoint fromBi for all i ∈ {1, . . . , t− 1}. Moreover, there is an edge betweenBt and eachBi,
and ∑

1≤i≤t

|Bi| ≤ |Bt|+ h(t− 1,
ε

4
) · log |G′|

≤ 2 +
∑

1≤i≤t−1

|Pi − vi|+ h(t− 1,
ε

4
) · log |G|

≤ 2 + (t− 1)k + h(t− 1,
ε

4
) · log |G|

≤ 2 + (t− 1)f(2t + ε, 2t +
ε

2
) · log |G|+ h(t− 1,

ε

4
) · log |G|

≤ h(t, ε) · log |G| .

Hence, addingBt to ourKt−1-model gives the desiredKt-model ofG. �

Observe that the obstacle to reducing the lower bound on the average degree in Theorem7.6
is the caset = 3, which we address in the following result.

Lemma 7.7. There is a functionh such that for every realε > 0, every graphG with average
degree at least4 + ε contains aK3-model with at mosth(ε) · log |G| vertices, such that each
branch set contains at least two vertices.

PROOF. The proof is by induction on|G|+ ‖G‖. We may assume that no proper subgraph
of G has average degree at least4 + ε, since otherwise we are done by induction. This implies
thatG is connected. Note that|G| ≥ 6 sinceG has average degree> 4.

First, suppose thatG contains aK4 subgraph with vertex setX.
Case 1.All edges betweenX andV (G) \X in G are incident to a common vertexv ∈ X:

Let Y := X \ {v}. Then

2‖G− Y ‖ = 2‖G‖ − 12 ≥ (4 + ε)|G| − 12 ≥ (4 + ε)|G− Y | ,

implying thatG− Y also has average degree at least4 + ε, a contradiction.
Case 2. There are two independent edgesuu′ andvv′ betweenX andV (G) \ X in G,

whereu, v ∈ X: Then{u, u′}, {v, v′}, X \ {u, v} is the desiredK3-model.
Case 3.Some vertexw ∈ V (G) \X is adjacent to two verticesu, v ∈ X: No vertex inX

has a neighbour inV (G) \ (X ∪ {w}), as otherwise Case 2 would apply. SinceG is connected
and |G| ≥ 6, it follows thatw has a neighbourw′ outsideX. Let x, y be the two vertices in
X \ {u, v}. Then{w,w′}, {u, x}, {v, y} is the desiredK3-model.

This concludes the case in whichG contains aK4 subgraph. Now, assume thatG is K4-
free. By Theorem7.5, G contains aK4-modelB1, . . . , B4 with at mosth(ε) · log |G| vertices.
Without loss of generality,|B1| ≥ |B2| ≥ |B3| ≥ |B4| and|B1| ≥ 2.

Case 1. |B2| ≥ 2: ThenB1, B2, B3 ∪ B4 is the desiredK3-model. Now assume that
Bi = {xi} for all i ∈ {2, 3, 4}.
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Case 2.Somexi is adjacent to some vertexw not inB1 ∪ B2 ∪ B3 ∪ B4: If i = 2 then
{x2, w}, B1, B3 ∪B4 is the desiredK3-model. Similarly fori ∈ {3, 4}.

Case 3.|B1| ≥ 3. Then there are two independent edges inG betweenB1 and{x2, x3, x4},
sayux2 andvx3 with u, v ∈ B1 (otherwise, there would be aK4 subgraph). There is a vertex
w ∈ B1 \{u, v} adjacent to at least one ofu, v, sayu. LetC be the vertex set of the component
of G[B1]− {u,w} containingv. Then{u,w}, C ∪ {x3}, {x2, x4} is the desiredK3-model.

Case 4. B1 = {u, v}. As in the previous cases, there are two independent edges inG
between{u, v} and{x2, x3, x4}, sayux2 andvx3. At least one ofu, v, sayu, is adjacent to
some vertexw outside{u, v, x2, x3, x4}, becauseG is connected with at least6 vertices, and
none ofx2, x3, x4 has a neighbour outside{u, v, x2, x3, x4}. Then{u,w}, {v, x3}, {x2, x4} is
the desiredK3-model. �

Note that average degree greater than4 is required in Lemma7.7 because of the disjoint
union ofK5’s. Lemma7.7enables the following improvement to Theorem7.6.

Theorem 7.8. There is a functionh such that for every integert ≥ 2 and realε > 0, every
graphG with average degree at least2t−1+ε contains aKt-model with at mosth(t, ε) · log |G|
vertices.

PROOF. As before, we prove the following stronger statement: Every graphG with average
degree at least2t−1 + ε contains aKt-model with at mosth(t, ε) · log |G| vertices such that
each branch set of the model contains at least two vertices.

The proof is by induction ont. The t = 2 case is handled in the proof of Theorem7.6.
Lemma7.7 implies thet = 3 case. Now assumet ≥ 4 and the claim holds for smaller values
of t. The proof proceeds as in the proof of Theorem7.6. We obtain a subgraphG′ of G with
average degree at least2t−1+ ε

2 and diameter at mostf(2t−1+ε, 2t−1+ ε
2) · log |G|. Choose an

edgeuv of G′ and define the depth of edges with respect touv. We obtain a connected subgraph
H with average degree at least2t−2 + ε

4 , such that every edge ofH has the same depthk. If
k = 0, thenE(H) is precisely the set of edges incident tou or v (or both), implyingH has
average degree less than4 < 2t−2 + ε

4 . Now assumek ≥ 1. The remainder of the proof is the
same as that of Theorem7.6. �

Thomassen [Tho83] first observed that high girth (and minimum degree 3) forces a large
complete graph as a minor; see [KO03] for the best known bounds. We now show that high
girth (and minimum degree 3) forces asmall model of a large complete graph.

Theorem 7.9. Let k be a positive integer. LetG be a graph with girth at least8k + 3 and
minimum degreer ≥ 3. Lett be an integer such thatr(r− 1)k ≥ 2t−1 + 1. ThenG contains a
Kt-model with at mosth(k, r) · log |G| vertices, for some functionh.

PROOF. Mader [Mad98] proved thatG contains a minorH of minimum degree at least
r(r − 1)k, such that each branch set has radius at most2k; see [Die05, Lemma 7.2.3]. Let
V (H) = {b1, . . . , b|H|}, and letB1, . . . , B|H| be the corresponding branch sets inG. Let ri be
a centre ofBi. For each vertexv in Bi, let Pi,v be a path betweenri andv in Bi of length at
most2k.

By Theorem7.8,H contains aKt-model with at mosth(t)·log |H| vertices. LetC1, . . . , Ct

be the corresponding branch sets. SayCi hasni vertices. Thus
∑t

i=1 ni ≤ h(t) · log |H|. We
now construct aKt-modelX1, . . . , Xt in G.

For i ∈ {1, . . . , t}, let Ti be a spanning tree ofCi. Each edgebjbℓ of of Ti corresponds to
an edgevw of G, for somev in Bj andw in Bℓ. Add toXi therirj-pathPj,v ∪ {vw} ∪ Pℓ,w.
This path has at most4k + 2 vertices. ThusXi is a connected subgraph ofG with at most
(4k + 2)(ni − 1) vertices (sinceTi hasni − 1 edges).

For distincti, i′ ∈ {1, . . . , t} there is an edge betweenCi andCi′ in H. This edge corre-
sponds to an edgevw of G, wherev is in some branch setBj in Ci, andw is in some branch
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setBj′ in Ci′ . Add the pathPj,v to Xi, and add the pathPj′,w to Xi′ . Thusv in Xi is adjacent
tow in Xj .

HenceX1, . . . , Xt is aKt-model inG with at most
∑t

i=1(4k+2)(ni−1) ≤ (4k+2)·h(t)·
log |H| vertices from the first step of the construction, and at most

(
t
2

)
(4k + 2) vertices from

the second step. Sincet is bounded by a function ofr andk, there are at mosth′(k, r) · log |G|
vertices in total, for some functionh′. �

Corollary 7.10. Let k be a positive integer. LetG be a graph with girth at least8k + 3 and
minimum degree at least3. ThenG contains aKk-model with at mosth(k) · log |G| vertices,
for some functionh. �

7.5. Planar Graphs

In this section we prove that sufficiently dense planar graphs haveK3- andK4-models of
bounded size. We start with theK3 case.

Theorem 7.11. Let ε ∈ (0, 4). Every planar graphG with average degree at least2 + ε has
girth at most1 +

⌈
4
ε

⌉
.

PROOF. Let H be a connected component ofG with average degree at least2 + ε. Thus
H is not a tree. SayH hasn vertices andm edges. Fix an embedding ofH in the plane withr
faces. Letℓ be the minimum length of a facial walk. Thusℓ ≥ 3 and2m ≥ rℓ = (2+m−n)ℓ,
implying

n− 2 ≥ m(1− 2
ℓ ) ≥ 1

2(2 + ε)n(1− 2
ℓ ) >

1
2(2 + ε)(n− 2)(1− 2

ℓ ) .

It follows thatℓ < 2 + 4
ε . Sinceℓ is an integer,ℓ ≤ 1 +

⌈
4
ε

⌉
. SinceH is not a tree, every facial

walk contains a cycle. ThusH andG have girth at most1 +
⌈
4
ε

⌉
. �

To prove our results forK4-models in embedded graphs, the notion of visibility will be
useful (and of independent interest). Distinct verticesv andw in an embedded graph arevisible
if v andw appear on a common face; we sayv seesw.

Lemma 7.12. Letv be a vertex of a plane graphG, such thatdeg(v) ≥ 3, v is not a cut-vertex,
and v is in no cut-pair. Thenv and the vertices seen byv induce a subgraph containing a
K4-minor.

PROOF. We may assume thatG is connected. Sincev is not a cut-vertex,G − v is con-
nected. Letf be the face ofG − v that containsv in its interior. LetF be the facial walk
aroundf . Suppose thatF is not a simple cycle. ThenF has a repeated vertexw. Say
(a, w, b, . . . , c, w, d) is a subwalk ofF . Then there is a Jordan curveC from v to w, arriv-
ing atw between the edgeswa andwb, then leavingw from between the edgeswc andwd,
and back tov. ThusC containsb in its interior anda in its exterior. Hencev, w is a cut-pair.
This contradiction proves thatF is a simple cycle. Hencev and the vertices seen byv induce a
subdivided wheel withdeg(v) spokes. Sincedeg(v) ≥ 3 this subgraph contains a subdivision
of K4. �

Recall thatF (G, v) is the multiset of faces incident to a vertexv in an embedded graph
G, where the multiplicity of a facef in F (G, v) equals the multiplicity ofv in the facial walk
aroundf .

Lemma 7.13. Each vertexv in an embedded graphG sees at most
∑

f∈F (G,v)

(|f | − 2) other

vertices.
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PROOF. The vertexv only sees the vertices in the faces inF (G, v). Eachf ∈ F (G, v)
contributes at most|f | − 1 vertices distinct fromv. Moreover, each neighbour ofv is counted
at least twice. Thusv sees at most

∑
f∈F (G,v)(|f | − 1) − deg(v) other vertices, which equals∑

f∈F (G,v)(|f | − 2). �

The 4-regular planar graphC2
2n has an embedding in the plane, in which each vertex sees

n + 1 other vertices; see Figure7.1. On the other hand, we now show that every plane graph
with minimum degree 5 has a vertex that sees a bounded number of vertices.

Lemma 7.14. Every plane graphG with minimum degree5 has a vertex that sees at most7
other vertices.

PROOF. For each vertexv of G, associate a charge of

2− deg(v) +
∑

f∈F (G,v)

2

|f | .

By Euler’s formula, the total charge is2|G| − 2‖G‖ + 2|F (G)| = 4. Thus some vertexv has
positive charge. That is,

2
∑

f∈F (G,v)

1

|f | > deg(v)− 2 .

Now 1
|f | ≤ 1

3 . Thus 2
3 deg(v) > deg(v) − 2, implying deg(v) < 6 anddeg(v) = 5. If some

facial walk containingv has length at least6, then

3 = 2

(
4

3
+

1

6

)
≥ 2

∑

f∈F (G,v)

1

|f | > 3 ,

which is a contradiction. Hence each facial walk containingv has length at most5. If two facial
walks containingv have length at least4, then

3 = 2

(
3

3
+

2

4

)
≥ 2

∑

f∈F (G,v)

1

|f | > 3 ,

which is a contradiction. Thus no two facial walks containingv each have length at least4.
Hence all the facial walks containingv are triangles, except for one, which has length at most
5. Thusv sees at most7 vertices. �

The bound in Lemma7.14 is tight since there is a 5-regular planar graph with triangular
and pentagonal faces, where each vertex is incident to exactly one pentagonal face (implying
that each vertex sees exactly 7 vertices). The corresponding polyhedron is called thesnub
dodecahedron; see Figure7.2and [Wik10].

Lemmas7.12and7.14imply:

Theorem 7.15.Every 3-connected planar graph with minimum degree5 contains aK4-model
with at most8 vertices.

Theorem7.15is best possible since it is easily seen that everyK4-model in the snub dodec-
ahedron contains at least 8 vertices. Also note that no result like Theorem 7.15holds for planar
graphs with minimum degree 4 since everyK4-model in the 4-regular planar graphC2

2n has at
leastn vertices.

We now generalise Lemma7.14for graphs with average degree greater than4.

Lemma 7.16.Letε ∈ (0, 2). Every plane graphG with minimum degree at least3 and average
degree at least4 + ε has a vertexv that sees at most1 + ⌈8ε⌉ other vertices.
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FIGURE 7.2. The snub dodecahedron.

PROOF. For each vertexv of G, associate a charge of

(8 + 2ε)− (8 + 3ε) deg(v) + (24 + 6ε)
∑

f∈F (G,v)

1

|f | .

By Euler’s formula, the total charge is

(8 + 2ε)|G| − (16 + 6ε) ‖G‖+ (24 + 6ε) |F (G)|
= (8 + 2ε)|G| − (16 + 6ε) ‖G‖+ (24 + 6ε) (‖G‖ − |G|+ 2)

= 4(2‖G‖ − (4 + ε)|G|) + 2 (24 + 6ε)

≥ 2 (24 + 6ε) .

Thus some vertexv has positive charge. That is,

(24 + 6ε)
∑

f∈F (G,v)

1

|f | > (8 + 3ε) deg(v)− (8 + 2ε) .

That is,

∑

f∈F (G,v)

1

|f | >
(
1

3
+

1

α

)
deg(v)− 1

3
,

whereα := 6 + 24
ε . We have proved thatdeg(v) and the lengths of the facial walks incident to

v satisfy Lemma7.17below. Thus

∑

f∈F (G,v)

(|f | − 2) ≤
⌈α
3

⌉
− 1 = 1 +

⌈
8

ε

⌉
.

The result follows from Lemma7.13. �
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Lemma 7.17. Letα > 0. Letd, f1, . . . , fd be integers, each at least3, such that
d∑

i=1

1

fi
>

(
1

3
+

1

α

)
d− 1

3
.

Then
d∑

i=1

(fi − 2) ≤
⌈α
3

⌉
− 1 .

PROOF. We may assume thatf1, . . . , fd firstly maximise
∑

i(fi − 2), and secondly max-
imise

∑
i
1
fi

. We claim thatfi = 3 for all i ∈ {1, . . . , d} except perhaps one. Suppose on the
contrary thatfj ≥ fk ≥ 4 for distinctj, k ∈ {1, . . . , d}. Letf ′

i := fi for i ∈ {1, . . . , d}\{j, k},
f ′
j := fj + 1, andf ′

k := fk − 1. Then

d∑

i=1

f ′
i =

d∑

i=1

fi but
d∑

i=1

1

f ′
i

>
d∑

i=1

1

fi
,

implying f1, . . . , fd do not maximise
∑

j
1
fj

. Thus the claim holds and we may assumefi = 3

for i ∈ {1, . . . , d− 1}. Hence

d− 1

3
+

1

fd
>

(
1

3
+

1

α

)
d− 1

3
.

Thus 1
fd

> d
α , implying fd ≤ ⌈αd ⌉ − 1. Sinceα

d > fd ≥ 3 and sinced ≥ 3,

α

3
=

α

d

(
d

3
− 1

)
+

α

d
≥ 3

(
d

3
− 1

)
+

α

d
= d− 3 +

α

d
.

Hence ⌈α
3

⌉
≥
⌈
d− 3 +

α

d

⌉
= d− 3 +

⌈α
d

⌉
.

Therefore
d∑

i=1

(fi − 2) ≤ (d− 1)(3− 2) +
⌈α
d

⌉
− 3 = d− 3 +

⌈α
d

⌉
− 1 ≤

⌈α
3

⌉
− 1 .

This completes the proof. �

Lemmas7.16and7.12imply:

Theorem 7.18.Letε ∈ (0, 2). Every 3-connected planar graphG with average degree at least
4 + ε contains aK4-model with at most2 +

⌈
8
ε

⌉
vertices.

We now prove that the 3-connectivity assumption in Theorem7.18can be dropped, at the
expense of a slightly weaker bound on the size of theK4-model.

Theorem 7.19.Letε ∈ (0, 2). Every planar graphG with average degree at least4+ε contains
a K4-model with at most⌈8ε⌉ + ⌈2ε⌉ vertices. Moreover, this bound is within a constant factor
of optimal.

PROOF. If G has at most2 + ⌈2ε⌉ vertices, then we are done sincem > 2n impliesG
contains aK4-model, which necessarily has at most2 + ⌈2ε⌉ < ⌈8ε⌉+ ⌈2ε⌉ vertices.

We now proceed by induction onn with the following hypothesis: LetG be a planar graph
with n ≥ 2 + ⌈2ε⌉ vertices andm edges, such that

2m > (4 + ε)(n− 2) .(43)

ThenG contains aK4-model with at most⌈8ε⌉+ ⌈2ε⌉ vertices.
This will imply the theorem since2m ≥ (4 + ε)n > (4 + ε)(n− 2).
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Suppose thatn ≤ ⌈8ε⌉+ ⌈2ε⌉. Sincen ≥ 2 + 2
ε ,

2m > (4 + ε)(n− 2) = 4n− 8 + ε(n− 2) ≥ 4n− 6 .

Thusm > 2n−3, implyingG contains aK4-model, which has at mostn ≤ ⌈8ε⌉+⌈2ε⌉ vertices.
Now assume thatn ≥ ⌈8ε⌉+ ⌈2ε⌉+ 1.

Suppose thatdeg(v) ≤ 2 for some vertexv. ThusG− v satisfies (43) since

2‖G− v‖ = 2(m− deg(v)) > (4 + ε)(n− 2)− 4 > (4 + ε)(n− 3) .

Now n − 1 ≥ ⌈8ε⌉ + ⌈2ε⌉ > 2 + ⌈2ε⌉. Thus, by induction,G − v and henceG contains the
desiredK4-minor. Now assume thatdeg(v) ≥ 3 for every vertexv.

Suppose thatG contains a separation{G1, G2} of order at most2. LetS := V (G1 ∩G2).
Say eachGi hasni vertices andmi edges. Thusn1 + n2 ≤ n + 2 andm1 + m2 ≤ m.
Equation (43) is satisfied forG1 orG2, as otherwise

(4 + ε)(n− 2) < 2m ≤ 2m1 + 2m2 ≤ (4 + ε)(n1 + n2 − 4) ≤ (4 + ε)(n− 2) .

Without loss of generality,G1 satisfies (43). Thus we are done by induction ifn1 ≥ 2 + ⌈2ε⌉.
Now assume thatn1 ≤ 1 + ⌈2ε⌉. Also assume thatm1 ≤ 2n1 − 3, as otherwiseG1 contains a
K4-model, which has at mostn1 ≤ 1 + ⌈2ε⌉ vertices.

Suppose thatS = {v} for some cut-vertexv. Since every vertex inG has degree at least
3, every vertex inG1, exceptv, has degree at least3 in G1. Sincen1 ≥ 2, G1 contains a
K4-model, which has at mostn1 ≤ 1 + ⌈2ε⌉ vertices. Now assume thatG is 2-connected.

Suppose thatS = {v, w} for some adjacent cut-pairv, w. Thusn1 + n2 = n + 2 and
m = m1 +m2 − 1 and

2m2 = 2m+2−2m1 > (4+ε)(n−2)+2−2(2n1−3) = (4+ε)(n1+n2−4)−4n1+8

= (4 + ε)(n2 − 4) + εn1 + 8

≥ (4 + ε)(n2 − 4) + 2(4 + ε)

= (4 + ε)(n2 − 2) .

That is,G2 satisfies (43). Also,

n2 = n− n1 + 2 ≥
(⌈

8

ε

⌉
+

⌈
2

ε

⌉)
+ 1−

(
1 +

⌈
2

ε

⌉)
+ 2 = 2 +

⌈
8

ε

⌉
> 2 +

⌈
2

ε

⌉
.

Hence, by inductionG2 and thusG contains the desiredK4-model. Now assume that every
cut-pair of vertices are not adjacent.

Suppose thatS = {v, w} for some non-adjacent cut-pairv, w andm1 ≤ 2n1 − 4: Thus
n1 + n2 = n+ 2 andm1 +m2 = m and

2m2 = 2m− 2m1 > (4 + ε)(n− 2)− 2(2n1 − 4) = (4 + ε)(n1 + n2 − 4)− 4n1 + 8

= (4 + ε)(n2 − 4) + εn1 + 8

≥ (4 + ε)(n2 − 4) + 2ε+ 8

= (4 + ε)(n2 − 2) .

That is,G2 satisfies (43). As proved above,n2 > 2 + ⌈2ε⌉. Hence, by inductionG2 and thusG
contains the desiredK4-model. Now assume that for every cut-pairv, w we havevw 6∈ E(G),
and if {G1, G2} is the corresponding separation withG1 satisfying (43), thenm1 = 2n1 − 3
andn1 ≤ 1 + ⌈2ε⌉.

Fix an embedding ofG. By Lemma7.16, there is a vertexv in G that sees at most1 +
⌈
8
ε

⌉

other vertices. Ifv is in no cut-pair then by Lemma7.12and sinceG is 2-connected,v plus the
vertices seen byv induce a subgraph that contains aK4-model, which has at most2 +

⌈
8
ε

⌉
≤⌈

8
ε

⌉
+
⌈
2
ε

⌉
vertices. Now assume thatv, w is a cut-pair. Thusvw 6∈ E(G), and if{G1, G2} is

the corresponding separation, thenm1 = 2n1 − 3 andn1 ≤ 1 + ⌈2ε⌉. Sincev, w is a cut-pair,
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there is avw-pathP contained inG2, such thatP is contained in a single face ofG. Every
vertex inP is seen byv, andv sees at least 2 vertices inG1 − w. ThusP has at most

⌈
8
ε

⌉
− 2

internal vertices. LetH be the minor ofG obtained by contractingP into the edgevw, and
deleting all the other vertices inG2. ThusH hasn1 vertices and2n1 − 2 edges. HenceH
contains aK4-minor. The correspondingK4-model inG is contained inG1 ∪ P , and thus has
at most(1 + ⌈2ε⌉) + (⌈8ε⌉ − 2) < ⌈2ε⌉+ ⌈8ε⌉ vertices.

We now prove the lower bound. Assume thatε ∈ (0, 1] andk := 1
ε − 1 is a non-negative

integer. LetH be a cubic plane graph in which the length of every facial walk is at least5 (for
example, the dual of a minimum degree5 plane triangulation). SayH hasp vertices. LetG be
the plane graph obtained by replacing each vertex ofH by a triangle, and replacing each edge of
H by 2k vertices, as shown in Figure7.3. ThusG has3p vertices with degree5 and3kp vertices
with degree4. Thus|G| = 3p+3pk = 3p

ε and2‖G‖ = 3p·5+3pk ·4 = 4|G|+3p = (4+ε)|G|.
ThusG has average degree4+ ε. EveryK4-model inG includes a cycle that surrounds a ‘big’
face with more than5k vertices. Thus everyK4-model has more than5k = 5

ε − 5 vertices.
Similar constructions are possible forε > 1 starting with a 4- or 5-regular planar graph. �

FIGURE 7.3. Construction ofG.

7.6. Higher Genus Surfaces

We now extend our results from Section7.5for graphs embedded on other surfaces.

Lemma 7.20. Letε > 0. LetG be a graph with average degree at least2 + ε. Suppose thatG
is embedded in a surface with Euler genus at mostg. Then some facial walk has length at most
(4ε + 2)(g + 1). Moreover, this bound is tight up to lower order terms.

PROOF. SayG hasn vertices,m edges, andr faces. Letℓ be the minimum length of a
facial walk. Thus2m ≥ rℓ. By Euler’s formula,n−m+ r = 2− g. Hence

(2 + ε)n ≤ 2m

(2 + ε)(2− g) = (2 + ε)(n−m+ r)
ε

2
(rℓ) ≤ ε

2
(2m) .

Summing givesε2(rℓ) ≤ (2 + ε)(g + r − 2). Sincer ≥ 1,

ℓ ≤ 2

εr
(2 + ε) (g + r − 2) =

(
4

ε
+ 2

)(
g

r
+

r − 2

r

)
<

(
4

ε
+ 2

)
(g + 1) .
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Hence some facial walk has length at most(4ε + 2)(g + 1).
Now we prove the lower bound. Assume thatg = 2h ≥ 2 is a positive even integer, and

that0 < ε ≤ 1− 3
2g+1 . Let k :=

⌊
2
ε − 2

εg − 1
g

⌋
. Thusk ≥ 2. LetG be the graph consisting of

g cycles of lengthk + 1 with exactly one vertex in common. Thus

2‖G‖ = 2g(k + 1) = 2gk + 2 + ε+ εg

(
2

ε
− 2

εg
− 1

g

)
≥ 2gk + 2 + ε+ εgk

= (2 + ε)(gk + 1)

= (2 + ε)|G| .

HenceG has average degree at least2 + ε. As illustrated in Figure7.4(a),G has an embedding
in Sh (which has Euler genus2h = g) with exactly one face. Thus every facial walk inG has
length2‖G‖ = 2g(k + 1) > 2g(2ε − 2

εg − 1
g ) ≥

4(g−1)
ε − 2. �

FIGURE 7.4. Graphs embedded inS2: (a) average degree2 + ε and one face,
and (b) average degree4 + ε and every vertex on one face.

Theorem 7.21. There is a functionh, such that for every realε > 0, every graphG with
average degree at least2 + ε and Euler genusg has girth at mosth(ε) · log(g + 2). Moreover,
for fixedε, this bound is within a constant factor of optimal.

PROOF. SayG hasn vertices andm edges. We may assume that every proper subgraph of
G has average degree strictly less than2 + ε. This implies thatG has minimum degree at least
2. Fix an embedding ofG with Euler genusg. Let ℓ be the minimum length of a facial walk.
By Euler’s formula, there arem − n + 2 − g faces. Thus2m ≥ (m − n + 2 − g)ℓ, implying
ℓ(n + g − 2) ≥ m(ℓ − 2) ≥ 1

2(2 + ε)(ℓ − 2)n. Thusℓ(n + g − 2) ≥ 1
2(2 + ε)(ℓ − 2)n,

implying ℓ(g − 2) ≥ ( ε2(ℓ − 2) − 2)n. First suppose thatℓ < 6 + 12
ε . SinceG has no degree-

1 vertices, every facial walk contains a cycle. ThusG has girth at most6 + 12
ε , which is at

mosth(ε) · log(g + 2) for some functionh. Now assume thatℓ ≥ 6 + 12
ε , which implies that
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ℓ(g − 2) ≥ ( ε2(ℓ − 2) − 2)n ≥ ε
3ℓn. Thusn ≤ 3

ε (g − 2). By Lemma7.4, the girth ofG is at
mostg(ε) · log n ≤ g(ε) · log(3ε (g− 2)), which is at mosth(ε) · log(g+2) for some functionh.

Now we prove the lower bound. Letd be the integer such thatd − 3 < ε ≤ d − 2. Thus
d ≥ 3. For alln > 3d such thatnd is even, Chandran [Cha03] constructed a graphG with n
vertices, average degreed ≥ 2 + ε, and girth at least(logd n) − 1. Now G has Euler genus
g ≤ dn

2 − n+ 1 ≤ dn− 2. ThusG has girth at least(logd
g+2
d )− 1. Sinced < 3 + ε, the girth

of G is at leasth(ε) · log(g + 2) for some functionh. �

We now extend Lemma7.16for sufficiently large embedded graphs.

Lemma 7.22. Let ε ∈ (0, 2). LetG be a graph with minimum degree 3 and average degree
at least4 + ε. Assume thatG is embedded in a surface with Euler genusg, such that|G| ≥
(24ε + 6)g. ThenG has a vertexv that sees at most2 + ⌈12ε ⌉ other vertices.

PROOF. For each vertexv of G, associate a charge of

(8 + 2ε)− (8 + 3ε) deg(v) + (24 + 6ε)
g

|G| + (24 + 6ε)
∑

f∈F (G,v)

1

|f | .

Thus the total charge is

(8 + 2ε)|G| − (16 + 6ε) ‖G‖+ (24 + 6ε) g + (24 + 6ε) |F (G)|
= (8 + 2ε)|G| − (16 + 6ε) ‖G‖+ (24 + 6ε) g + (24 + 6ε) (‖G‖ − |G| − g + 2)

= 4(2‖G‖ − (4 + ε)|G|) + 2 (24 + 6ε)

≥ 2 (24 + 6ε) .

Thus some vertexv has positive charge. That is,

(8 + 2ε)− (8 + 3ε) deg(v) + (24 + 6ε)
g

|G| + (24 + 6ε)
∑

f∈F (G,v)

1

|f | > 0 .

Since(24+6ε)g
|G| ≤ ε,

(24 + 6ε)
∑

f∈F (G,v)

1

|f | > (8 + 3ε)(deg(v)− 1) .

That is,
∑

f∈F (G,v)

1

|f | >
(
1

3
+

1

α

)
(deg(v)− 1) ,

whereα := 6 + 24
ε . We have proved thatdeg(v) and the lengths of the facial walks incident to

v satisfy Lemma7.23below. Thus
∑

f∈F (G,v)

(|f | − 2) ≤
⌈α
2

⌉
− 1 = 2 +

⌈
12

ε

⌉
.

The result follows from Lemma7.13. �

Lemma 7.23. Letα > 0. Letd, f1, . . . , fd be integers, each at least3, such that
d∑

i=1

1

fi
>

(
1

3
+

1

α

)
(d− 1) .

Then
d∑

i=1

(fi − 2) ≤
⌈α
2

⌉
− 1 .
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PROOF. As in the proof of Lemma7.17, we may assume thatfj = 3 for all j ∈ {3, . . . , d−
1}. Hence

d− 1

3
+

1

fd
>

(
1

3
+

1

α

)
(d− 1) .

Thus 1
fd

> d−1
α , implying fd ≤ ⌈ α

d−1⌉ − 1. Since α
d−1 > fd ≥ 3 and sinced ≥ 3,

α

2
≥ αd

3(d− 1)
=

(
α

d− 1

)(
d

3
− 1

)
+

α

d− 1
≥ 3

(
d

3
− 1

)
+

α

d− 1
= d− 3 +

α

d− 1
.

Hence ⌈α
2

⌉
≥
⌈
d− 3 +

α

d− 1

⌉
= d− 3 +

⌈
α

d− 1

⌉
.

Therefore
d∑

i=1

(fi − 2) ≤ (d− 1)(3− 2) +

⌈
α

d− 1

⌉
− 3 = d− 3 +

⌈
α

d− 1

⌉
− 1 ≤

⌈α
2

⌉
− 1 .

This completes the proof. �

We now prove that the assumption thatn ∈ Ω(gε ) in Lemma7.22is needed. Assume we are
givenε ∈ (0, 1] such thatk := 1

ε−1 is an integer. Hencek ≥ 0. Consider the graphG shown in
Figure7.4(b) with 2g vertices of degree5 and2gk vertices of degree4. Thus|G| = 2g(k + 1)

and2‖G‖ = 10g + 8gk = 2g(5 + 4k) = |G|
k+1(4k + 5) = (4 + 1

k+1)|G| = (4 + ε)|G|. ThusG
has average degree4+ ε. Observe that every vertex lies on a single face. Thus each vertex sees
|G| − 1 = 2g

ε − 1 other vertices.
A k-noosein an embedded graphG is a noncontractible simple closed curve in the surface

that intersectsG in exactlyk vertices. Thefacewidthof G is the minimum integerk such that
G contains ak-noose.

Theorem 7.24. Let ε > 0. LetG be a 3-connected graph with average degree at least4 + ε,
such thatG has an embedding in a surface with Euler genusg and with facewidth at least
3. ThenG contains aK4-model with at mostf(ε) · log(g + 2) vertices, for some functionf .
Moreover, for fixedε, this bound is within a constant factor of optimal.

PROOF. If |G| ≤ (24ε + 6)g then the result follows from Theorem7.5. Otherwise, by
Lemma7.22some vertexv sees at most2+⌈12ε ⌉ other vertices. The graphG−v is 2-connected
and has facewidth at least2. Thus every face ofG − v is a simple cycle [MT01, Proposition
5.5.11]. In particular, the face ofG − v that containsv in its interior is bounded by a simple
cycleC. The vertices inC are precisely the vertices thatv sees inG. ThusG[C ∪ {v}] is a
subdivided wheel withdeg(v) ≥ 3 spokes. HenceG contains aK4-model with at most2+⌈12ε ⌉
vertices, which is at mostf(ε) · log(g + 2) for an appropriate functionf .

Now we prove the lower bound. Letd be the integer such thatd − 5 < ε ≤ d − 4. Thus
d ≥ 5. For every integern > 3d such thatnd is even, Chandran [Cha03] constructed a graph
G with n vertices, average degreed ≥ 4 + ε, and girth greater than(logd n) − 1. ThusG has
Euler genusg ≤ dn

2 ≤ dn − 2. Since everyK4-model contains a cycle, everyK4-model inG
has at least(logd n) − 1 vertices. Sincen ≥ g+2

d andd < 5 + ε, everyK4-model inG has at
leastf(ε) · log(g + 2) vertices, for some functionf . �

For a class of graphs, an edge is ‘light’ if both its endpoints have boundeddegree. For
example, Wernicke [Wer04] proved that every planar graph with minimum degree5 has an
edgevw such thatdeg(v) + deg(w) ≤ 11; see [Bor89, Kot55, JM96, JV05] for extensions.
For a class of embedded graphs, we say an edge is ‘blind’ if both its endpoints see a bounded
number of vertices. In a triangulation, a vertex only sees its neighbours, inwhich case the
notions of ‘light’ and ‘blind’ are equivalent. But for non-triangulations,a ‘blind edge’ theorem
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is qualitatively stronger than a ‘light edge’ theorem. Hence the following result is a qualitative
generalisation of the above theorem of Wernicke [Wer04] (and of Lemma7.14), and is thus of
independent interest. No such result is possible for minimum degree 4 sinceevery edge inC2

2n

sees at leastn vertices.

Proposition 7.25. LetG be a graph with minimum degree5 embedded in a surface with Euler
genusg, such that|G| ≥ 240g. ThenG has an edgevw such thatv andw each see at most12
vertices. Moreover, for plane graphs (that is,g = 0), v andw each see at most11 vertices.

PROOF. Consider each vertexx. Let ℓx be the maximum length of a facial walk containing
x. Let tx be the number of triangular faces incident tox, unless every face incident tox is
triangular, in which case lettx := deg(x) − 1. Sayx is good if x sees at most12 vertices,
otherwisex is bad. Let

cx := 240− 120 deg(x) + 240
g

|G| + 240
∑

f∈F (G,x)

1

|f |

be the charge atx. By Euler’s formula, the total charge is

240(|G| − ‖G‖+ g + |F (G)|) = 480 .

Observe that (sinceℓx ≥ 3 andtx ≤ deg(x)− 1 anddeg(x) ≥ 5)

cx ≤ 240− 120 deg(x) + 240
g

|G| + 240

(
1

ℓx
+

tx
3

+
deg(x)− tx − 1

4

)

≤ 181− 60 deg(x) +
240

ℓx
+ 20tx(44)

≤ 241− 40 deg(x) ≤ 41 .(45)

For each good vertexx, equally distribute the charge onx to its neighbours. (Bad vertices keep
their charge.) Letc′x be the new charge on each vertexx. Since the total charge is positive,
c′v > 0 for some vertexv. If v is good, then all the charge atv was received from its neighbours
during the charge distribution phase, implying some neighbourw of v is good, and we are done.
Now assume thatv is bad. LetDv be the set of good neighbours ofv. By (44) and (45), and
sincedeg(w) ≥ 5,

0 < c′v = cv +
∑

w∈Dv

cw
deg(w)

≤ 181− 60 deg(v) +
240

ℓv
+ 20tv +

41

5
|Dv| .(46)

We may assume that no two good neighbours ofv are on a common triangular face.

Claim 7.26. |Dv| ≤ deg(v)− tv
2 . Moreover, if|Dv| = deg(v)− tv

2 then some face incident tov
is non-triangular, and for every bad neighbourw of v, the edgevw is incident to two triangular
faces.

PROOF. First assume that every face incident tov is triangular. Thus no two consecutive
neighbours ofv are good. Hence|Dv| ≤ deg(v)

2 < deg(v)+1
2 = deg(v) − tv

2 , as claimed. This
also proves that if|Dv| = deg(v)− tv

2 then some face incident tov is non-triangular.
We prove the case in which some face incident tov is non-triangular by a simple charging

scheme. Ifw is a good neighbour ofv, then chargevw by 1. Charge each triangular face
incident tov by 1

2 . Thus the total charge is|Dv|+ tv
2 . If uvw is a triangular face incident tov,

then at least one ofu andw, sayw, is bad; send the charge of1
2 atuvw to vw. Each good edge

incident tov gets a charge of1, and each bad edge incident tov gets a charge of at most12 from
each of its two incident faces. Thus each edge incident tov gets a charge of at most 1. Thus the
total charge,|Dv|+ tv

2 , is at mostdeg(v), as claimed.
Finally, assume that|Dv| = deg(v) − tv

2 . Then for every bad neighbourw of v, the edge
vw gets a charge of exactly 1, implyingvw is incident to two triangular faces. �
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Claim 7.26and (46) imply

0 < 181− 60 deg(v) +
240

ℓv
+ 20tv +

41

5
deg(v)− 41tv

10

= 181− 259

5
deg(v) +

240

ℓv
+

159

10
tv .

Sincetv ≤ deg(v)− 1 anddeg(v) ≥ 5,

0 <
1651

10
− 359

10
deg(v) +

240

ℓv
≤ −144

10
+

240

ℓv
.

implying ℓv ∈ {3, 4, . . . , 16}. Sinceℓv ≥ 3,

0 <
2451

10
− 359

10
deg(v) ,

implying deg(v) ∈ {5, 6} andtv ∈ {0, 1, . . . , deg(v)− 1}.
We have proved that finitely many values satisfy (46). We now strengthen this inequality in

the case that|Dv| = deg(v)− tv
2 .

Let f be a face of lengthℓv incident tov. Let x andy be two distinct neighbours ofv on
f . Suppose on the contrary thatx is bad. By Claim7.26, vx is incident to two triangular faces,
one of which isvxy. Thusℓv = 3, and every face incident tov is a triangle, which contradicts
the Claim. Hencex is good. Similarlyy is good.

Thusℓx ≥ ℓv. By (44),

cx ≤ 181− 60 deg(x) +
240

ℓv
+ 20tx ≤ 161− 40 deg(x) +

240

ℓv
≤ 240

ℓv
− 39 .

Similarly, cy ≤ 240
ℓv

− 39. Hence (assuming|Dv| = deg(v)− tv
2 ),

0 < c′v ≤ 181− 60 deg(v) +
240

ℓv
+ 20tv +

cx
deg(x)

+
cy

deg(y)
+

∑

w∈Dv\{x,y}

cw
deg(w)

≤ 181− 60 deg(v) +
240

ℓv
+ 20tv +

240
ℓv

− 39

deg(x)
+

240
ℓv

− 39

deg(y)
+

∑

w∈Dv\{x,y}

41

deg(w)

≤ 181− 60 deg(v) +
240

ℓv
+ 20tv + 2

(
48

ℓv
− 39

5

)
+

41

5
(|Dv| − 2) .(47)

Checking all values ofdeg(v), tv andℓv that satisfy (46) and (47) proves that

tv + (deg(v)− tv)(ℓv − 2) ≤ 12

(which is tight fordeg(v) = 5 andtv = 4 andℓv = 10 and|Dv| = 2). Thus
∑

f∈F (G,v)

(|f | − 2) ≤ tv(3− 2) + (deg(v)− tv)(ℓv − 2) ≤ 12 .

By Lemma7.13, v sees at most12 vertices. Thereforev is good, which is a contradiction.
In the case of planar graphs, we define a vertex to begood if it sees at most 11 other vertices.

Sinceg = 0, (44) and (45) can be improved to

cx ≤ 180− 60 deg(x) +
240

ℓx
+ 20tx ≤ 240− 40 deg(x) ≤ 40 .(48)

Subsequently, (46) is improved to

0 < c′v = 180− 60 deg(v) +
240

ℓv
+ 20tv + 8|Dv| ,(49)
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and (47) is improved to

0 < c′v ≤ 180− 60 deg(v) +
240

ℓv
+ 20tv + 2

(
48

ℓv
− 8

)
+ 8(|Dv| − 2) .(50)

Checking all values ofdeg(v), tv andℓv that satisfy (49) and (50) proves thattv + (deg(v) −
tv)(ℓv − 2) ≤ 11. As in the main proof, it follows thatv is good. �

We now prove that the assumption that|G| ∈ Ω(g) in Proposition7.25 is necessary. Let
G be the graph obtained fromC2

2n by adding a perfect matching, as shown embedded inSn in
Figure7.5 (where there is one handle for each pair of crossing edges). This graph is 5-regular,
but each vertex is on a facial walk of lengthn. Thus no vertex sees a bounded number of
vertices.

FIGURE 7.5. C2
24 plus a perfect matching, embedded onS12.

7.7. Open Problems

The first open problem that arises from this work is to determine the best possible function
f in Theorem7.1. In particular, does average degree at least some polynomial int force a small
Kt-model? Even stronger, is there a functionh, such that every graphG with average degree
at leastf(t) + ε contains aKt-model withh(t, ε) · log |G| vertices, wheref(t) is the minimum
number such that every graph with average degree at leastf(t) contains aKt-minor? We have
answered this question in the affirmative fort ≤ 4. The caset = 5 is open. It follows from
Wagner’s characterisation of graphs with noK5-minor that average degree at least6 forces a
K5-minor [Wag37]. Theorem7.8proves that average degree at least16+ ε forces aK5-model
with at mosth(ε) · logn vertices. We conjecture the following improvement:

Conjecture 7.27. There is a functionh such that for allε > 0, every graphG with average
degree at least6 + ε contains aK5-model with at mosth(ε) · log |G| vertices.

This degree bound would be best possible: LetGn be the 6-regularn × 3 triangulated
toroidal grid, as illustrated in Figure7.6. EveryK5-model inGn intersects every column (oth-
erwiseK5 is planar). Thus everyK5-model inGn has at leastn vertices.

Note that while in this paper we have only studied smallKt-models, the same questions
apply for smallH-models, for arbitrary graphsH. This question was studied forH = K4 − e
in [FJP10]. See [Tho06, MT05, Mye03, KP08, KO05] for results about forcingH-minors.

Acknowledgments. Thanks to Michele Conforti for suggesting to study the relationship
between average degree and small models. Thanks to Paul Seymour for suggesting the example
following Lemma7.7. Thanks to Alexandr Kostochka for pointing out reference [KP88].
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FIGURE 7.6. 6-regular12× 3 triangulated toroidal grid



CHAPTER 8

Good edge labelings and graphs with girth at least five

Jointly with
Michel Bode (stud. math. at OvGU, Magdeburg)

and Babak Farzad (Brock University, St. Catharines, ON)

Abstract. A good edge-labeling of a graph [Araújo, Cohen, Giroire, Havet, Dis-
crete Appl. Math., forthcoming] is an assignment of numbersto the edges such that
for no pair of vertices, there exist two non-decreasing paths. In this paper, we study
edge-labeling on graphs with girth at least 5. In particularwe verify, under this
additional hypothesis, a conjecture by Araújo et al. This conjecture states that if the
average degree ofG is less than3 andG is minimal without an edge-labeling, then
G ∈ {C3,K2,3}. (For the case when the girth is 4, we give a counterexample.)

8.1. Introduction

All graphs are finite and simple. We refer to Diestel [Die06] for most of our graph theory
terminology.

A good edge-labeling[JCBP09] of a graphG is a labeling of its edgesφ : E(G) → R such
that, for any ordered pair of verticesu andv, there is at most one nondecreasing path fromu
to v. We will mostly use the following characterization of a good edge-labeling, which involves
cycles instead of pairs of paths:

An edge-labeling is good, if, and only if, every cycle has at least two local minima.

Here, by a local minimum we mean an edgee whose label is strictly less than the labels of the
two edges incident toe on the cycle (this differs from the definition in the next section because
at this point, unlike later in the paper, for convenience, we assume that all labels are distinct).

Good edge-labelings have first been studied by Bermond, Cosnard, and Ṕerennes [JCBP09]
in the context of so-called Wavelength Division Multiplexing problems [BCCP06]. There,
given a network, the so-called Routing and Wavelength Assignment Problem asks for finding
routes and associated wavelengths, such that a set of traffic requestsis satisfied, while minimiz-
ing the number of used wavelengths.

Araujo, Cohen, Giroire, and Havet [ACGH09, ACGH12] have studied good edge-labelings
in more depth. They call a graph with no good edge-labelingbad, and say that acritical
graph is a minimal bad graph, that is, every proper subgraph has a goodedge-labeling. It
is easy to see thatC3 andK2,3 are critical. Araujo et al.’s [ACGH12] paper comprises an
infinite family of critical graphs; results that graphs in some classes alwayshave a good edge-
labelings (planar graphs with girth at least 6,(C3,K2,3)-free outerplanar graphs,(C3,K2,3)-
free sub-cubic graphs); the algorithmic complexity of recognizing bad graphs; and a connection
to matching-cuts. (Amatching-cut, aka “simple cut” [Gra70], is a set of independent edges
which is an edge-cut.)

In fact, all their arguments for proving non-criticality rely on the existence of matching-cuts.
One of the central contributions of our paper is that we move beyond usingmatching-cuts.

Araujo et al. also pose a number of problems and conjectures. In particular, they have the
following conjecture, which is one of the two motivations behind our paper.

93
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Conjecture 8.1(Araujo et al. [ACGH12]). There is no critical graph with average degree less
than 3, with the exception ofC3 andK2,3.

Araujo et al. [ACGH12] prove a weaker version of this conjecture. They establish the exis-
tence of a matching-cut, relying in part on a theorem by Farley & Proskurowski [FP84, BFP11]
stating that a graph with sufficiently few edges always has a matching cut. They also use a char-
acterization of extremal graphs with no matching-cut by Bonsma [Bon05, BFP11]. From the
proofs in Araujo et al. [ACGH12], it appears that the depths of the arguments increases rapidly
as the upper bound3 is approached.

In this paper, we show that there is no critical graph with average degreeless than three and
girth at least five. Put differently, we prove Conjecture8.1 in the case when the graph has girth
at least five.

Theorem 8.2. There is no critical graph with average degree less than three and girth atleast
five.

Moreover, we falsify Conjecture8.1 for the case of girth 4: Fig.8.1 shows a graph with
girth 4 and average degree269 < 3 (9 vertices, 13 edges), which does not contain eitherC3 or
K2,3 as a subgraph. We leave to the reader as an exercise to argue that the graph has no good
edge labeling. It can easily be verified that every proper subgraph has a good edge labeling, so
the shown graph is critical. In other words, Fig.8.1shows a counterexample to Conjecture8.1
for the case of girth 4.

FIGURE 8.1. Critical graph with girth 4 and average degree< 3

Another motivation behind our paper is to demonstrate how large girth makes labeling
arguments easier.1 In Theorem8.42, roughly speaking, we prove that a critical graph with girth
at least five cannot contain a “windmill”. A windmill essentially consists of a number of shortest
paths meeting in an “axis”, with the paths originating from vertices of degree two and having in
their interior only vertices of degree three. Theorem8.2 is a corollary of Theorem8.42: using
an approach inspired by the discharging method from topological graph theory, we argue that
a hypothetical critical graph with girth at least five and average degree less than three always
contains a windmill.

For our proof of Theorem8.42, we define a class of graphs which we call “decent”, which
have the property that they cannot be contained in a critical graph. Moreimportantly, we give
a gluing operation which preserves “decency”. Starting from a small family of basic “decent”
graphs, by gluing inductively, this approach allows us to show that certainmore complicated
configurations cannot be contained in critical graphs, which leads to the proof of Theorem8.42.

1Indeed, until very recently, no bad graph with girth larger than four wasknown. In particular, the bad graphs
in Araujo et al.’s construction contain many 4-cycles. This fact had led us to conjecture, that there exists a finite
numberg such that every graph with girth at leastg has a good edge-labeling; as mentioned above, Araujo et
al. [ACGH12] have shown that with the additional restriction that the graphs be planar theconjecture holds true for
g := 6. The conjecture was refuted in [Meh12].
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This paper is organized as follows. In the next section, we will discuss some notation as
well as basic facts on good edge-labelings. In Section8.3, we define windmills, and commence
upon the proof of their non-existence. Section8.4 contains the definition of “decent” graphs
and the gluing mechanism. Theorem8.42is stated and proved in Section8.5, and Theorem8.2
is derived in Section8.6.

8.2. Basic facts about good edge-labelings

We will heavily rely on the above-mentioned characterization of a good edge-labeling using
cycles instead of paths. For this, we use the following definitions. LetH be a path or a cycle,
andφ : E(H) → R an edge-labeling ofH. Let Q be a proper sub-path ofH (i.e., a path
contained inH which is not equal toH) with at least one edge. For a real numberµ, we say
thatQ is a local minimum with valueµ in H, if φ(e) = µ for all e ∈ E(Q), and for every
edgee′ ∈ E(H) \ E(Q) sharing a vertex withQ we haveµ < φ(e′).

Distinct minima must necessarily be vertex disjoint. Good edge-labelings can becharacter-
ized in terms of local minima of cycles. We leave the verification of the following easy lemma
to the reader (or see [Bod11]).

Lemma 8.3. An edge-labelingφ of a graphG is good, if, and only if, every cycleC in H has
two local minima. �

Obviously, the property of an edge-labeling being good depends only onthe order relation
between the labels of the edges. In particular, scaling (multiplying each labelby a strictly
positive constant), and translation (adding a constant to each label) do not change whether a
labeling is good or not.

We say that ak-vertexis a vertex of degreek; a k−-vertex is a vertex of degree at mostk;
and ak+-vertex is a vertex of degree at leastk.

Araujo et al. [ACGH12] proved the following property of critical graphs.

Lemma 8.4([ACGH12]). A critical graph does not contain a matching-cut.
In particular, the minimum degree of a critical graph is at least two, and, unless it is a

triangleC3, it contains no two adjacent 2-vertices.

For the rest of the section,let G be a critical graph other thanC3 andK2,3. We prove some
basic properties ofG.

Lemma 8.5. LetC be a cycle inG whose every vertex has degree at most three. Then there are
two vertices ofC with a common neighbour inG− C.

PROOF. We proceed by contradiction: letC ′ be a shortest cycle whose every vertex has
degree at most three. IfG−C ′ 6= ∅, then it can be easily seen that the set of edges with exactly
one endpoint inC ′ forms a matching-cut, contradicting Lemma8.4. If G − C ′ = ∅, thenG is
a cycle. SinceG 6= C3, there is a good edge-labeling for this cycle, contradicting the criticality
of G. �

Lemma 8.6. LetP be a path of length at least one inG whose end vertices have degree two and
internal vertices have degree at most three. Then two vertices ofP have a common neighbour
in G− P .

PROOF. We proceed by contradiction: letP ′ be a shortest path between two vertices of
degree two with inner vertices of degree three. IfG−P ′ 6= ∅, then the set of edges with exactly
one endpoint inP ′ forms a matching cut; contradicting Lemma8.4. If G − P ′ = ∅, thenP ′

cannot be a shortest such path. (We note that the proof goes through ifthe length ofP is 1.) �
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8.3. Windmills

To motivate the definition of windmills, let us take a look at how they will be used in the
proof of Theorem8.2. The proof uses a discharging type argument. We assign “charges” to the
vertices: vertexv receives charge6 − 2d(v). Note that only 2-vertices have positive charge.
Since the average degree ofG is less than3, the total charge of the graph is positive. Now, we
“discharge” 2-vertices. Applying Lemma8.6, charges are sent from 2-vertices to4+-vertices
via shortest paths consisting of only 3-vertices. Later on, we will show that these paths are
internally disjoint. Since no charge is lost during the discharging phase, if after discharging all
vertices have non-positive charge, then we have a contradiction. However, there may be some
vertices with positive charge. These vertices are the centers of the structures which we refer to
as “windmills.”
In the remainder of this section,letG be a critical graph of girth at least five.
For a treeH and verticesx, y of H, we denote byxHy the unique path betweenx and y
in H. An internally shortest 3-pathis a pathP = x0 . . . xℓ with ℓ ≥ 1 andd(xj) = 3 for
j ∈ {1, . . . , ℓ − 1}, such that, fore := x0x1, the pathx1Pxℓ is a shortest path inG − e. In
particular, the pathx1Pxℓ is induced inG. We say thatP starts inx0 and ends inxℓ.

Remark 8.7. By Lemma8.6, the graphG has no internally shortest 3-path that starts and ends
in 2-vertices.

So for an edgex0x1, a sail with tip x0x1 is defined to be an internally shortest 3-path
P = x0x1 . . . xℓ that starts in a 2-vertex and ends in a4+-vertex which has minimum lengthℓ
among all such internally shortest 3-paths.

Remark 8.8. Among the verticesv of degreedeg(v) 6= 3, the ending vertexxℓ of a sail is
among those which have minimum distance fromx1 in G−e. Note that, inG−e, the vertexx0
has larger distance fromx1 thanxℓ: otherwise we would have a contradiction (either from
having a4+ vertex closer tox1 or by Lemma8.5).

Definition 8.9. Let k ≥ 3 be an integer, andy a vertex of degreemax(4, k) or k + 1. A
k-windmill with axisy in G is an induced subgraphH of G, spanned by the union ofk sails
beginning ink distinct tips, and each of them ending iny. A windmill H is calledcompletein
G, if it is not a proper subgraph of another windmill.

Note that it is possible that two sails of the same windmill start in the same 2-vertex (but
have different tips).

Lemma 8.10. LetP = x0x1 . . . xℓ andP ′ = x′0x
′
1 . . . x

′
ℓ′ be any two sails inG. Then

(a) if a vertex is adjacent to two vertices ofP , then one of the two is the starting vertexx0;
(b) if P andP ′ have distinct tips but identical ending, i.e.,xℓ = x′ℓ′ , then no vertex is adjacent

to two (or more) of the vertices of the pathx1 . . . xℓ−1xℓx
′
ℓ′−1 . . . x

′
1.

(c) P andP ′ either share the same tip or they are internally disjoint;

PROOF. The facts thatG has girth at least 5 and thatP is a shortest path from its tipx0x1 to
a4+-vertex easily imply (a). To prove (b), assume otherwise, that is, there are vertices adjacent
to two vertices of the pathQ1 = x1 . . . xℓ−1xℓx

′
ℓ′−1 . . . x

′
1. Of all such vertices, letw1 be a

vertex whose neighborhood’s intersection withP , sayxi, is closest tox1 on P . If there are
ties, then takew1 to be the vertex whose neighborhood’s intersection withP ′, sayx′j , is closest
to x′1 on P ′. SinceG has girth at least 5, vertexw1 is well defined. Now recalling thatP
andP ′ are shortest paths from their tips to a4+-vertex, it can be easily seen thatw1 must be
a 3-vertex (cf. Remark8.7). By Lemma8.6 and the choice ofw1, two vertices of the path
Q2 = x1 . . . xiw1x

′
j . . . x

′
1 have a common neighbor (one of which must bew1). Notice that

|Q2| < |Q1|, since the girth orG is at least 5. Choosew2 for Q2 the same way that we chosew1
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for Q1 and we continue the process. Since the lengths ofQi’s are decreasing, the process cannot
be repeated forever, so at some point we get a contradiction to Lemma8.6.

Item (c) follows along the same lines as Item (b). �

Since a windmill contains a unique4+-vertex, it can only be a subgraph of another windmill
if their axes coincide, and the larger one has at least one more sail. The sails of a windmill are
pairwise internally disjoint by Lemma8.10(and the definition of a windmill, by which all tips
have to be distinct). Moreover, there are no edges between vertices of the same sail, except if
one of them is the starting vertex and the other is the axis. Note that every edge between the
axis and the starting vertex of a sail is itself a sail.

8.3.1. Flags.For a fixed complete windmill, we now study vertices that are themselves
outside the windmill, but that have two or more neighbors inside the windmill. We callsuch
a vertex aflag. We need to classify the flags. For this, we make the following notational
convention. LetH be a complete windmill andw anH-flag (i.e., a vertex not inH that has
at least two neighbors inH). We say thatw hassignature(d0 | d1, d2, . . . ), if d(w) = d0,
and the neighbors ofw in H have degreesdi, i = 1, 2, . . . , listed with multiplicities. We will
conveniently replace sub-lists with an asterix∗: For example,w has signature(d0 | d1, ∗) if it
has degreed0 and at least one of the neighbors ofw in H has degreed1. Or, similarly,w has
signature(d0 | d1, d2, d3, ∗), if w has degreed0, at least three neighbors inH, and these three
are of degreesdi, i = 1, 2, 3. We will also replace the degree ofw with a joker:w has signature
(∗ | d1, d2, . . . ), if the neighbors ofw in H have degreesdi, i = 1, 2, . . . .

The concept of signature is only needed to reduce the possible occurences of flags to a very
small number of cases. It will not be used beyond this section.

Lemma 8.11. Let H be ak-windmill. The graphG has no flag with either of the following
signatures:

(a) (2 | 2, ∗),
(b) (3 | 2, 2, ∗)
(c) (∗ | 3, 3, ∗)
(d) (∗ | 3, 4+, ∗)
(e) (3 | 2, 4+, ∗)

PROOF. Lemma8.4 implies that there is no flag with signature(2 | 2, ∗). Lemma8.6
gives (b). Lemma8.10(b) implies that there are no flags with signatures(∗ | 3, 3, ∗) and(∗ |
3, 4+, ∗). For(3 | 2, 4+, ∗), letw be the flag and lety the axis of the (complete) windmill, andx
the staring vertex of a sail such thatx ∼ w ∼ y. (We use the symbol “∼” for the adjacency
relation inG). Sincew is a 3-vertex,xwy is a sail. Adding the vertexw toH thus gives a larger
windmill, contradicting the maximality ofH. �

Lemma 8.12. LetH be a complete windmill with axisy and letw be anH-flag of signature
(3 | 2, 3, ∗), so that there arex, v ∈ V (H) with d(x) = 2, d(v) = 3, andx ∼ w ∼ v. Thenx
andv are not in the same sail ofH.

PROOF. Supposex andv are on the same sailP . ThenxPv+vw+wx is a cycle consisting
of 2- and 3-vertices only. By Lemma8.5, there must be a vertexz which is a common neighbor
of two vertices on the cycle. By Lemma8.10(b), one of these two isw. Denote the other byu
and note thatu is onxPv, butu 6= x, v.

Sincev has degree 3,z must also have degree 3, becauseP is a sail starting inx, andz
having degree different from 3 would contradict the minimality of the distancefrom the tip to
the end-vertex (by Remark8.8). Now consider any sail with tipxw. Sincew is of degree 3, it
must contain eitherv or z. But v cannot be contained in such a sail, because otherwise it would
have a non-empty interior intersection withP , contradicting Lemma8.10(c). It follows that
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there is a sailQ with tip xw containingz such that

(∗) |wz + zQ| < |wv + vPy|.
However, the length ofP is at most the length ofxPu + uz + zQ, and the inequality must be
strict, because otherwise the sailxPu+ uz+ zQ would have a non-empty interior intersection
with the sailQ. Thus, it follows that

(∗∗) |uPy| < |uz + zQ|.
Now (∗) and (∗∗) together imply that|uPy| < 1+ |zQ| < 1+ |vPy|, from which we conclude
|uPy| < |vPy|, a contradiction to the fact thatu is betweenv andx. �

The remaining cases are more complex. We start with the following fact.

Lemma 8.13. Letw be anH-flag with signature(∗ | 2, 3, ∗), so that there arex, v ∈ V (H)
with d(x) = 2, d(v) = 3, andx ∼ w ∼ v. If x andv are not in the same sail ofH, thenv is
adjacent to the axisy ofH.

PROOF. By Lemma8.11(a), w has degree at least3. Suppose thatv is on the sailP ′ of H
with starting vertexx′, andv 6∼ y. (Note thatx′ 6= x.)

On one hand, if the degree ofw is 3, then we have an internally shortest pathx′P ′v+ vw+
wx ending in a 2-vertex, contradicting Remark8.7. On the other hand, if the degree ofw is 4+,
thenx′P ′v + vw is a path shorter thanP ′, but ends in a vertex not of degree3, contradicting
Remark8.8. �

Lemma 8.14. No flag can have signature(3 | ∗).
PROOF. The cases(3 | 2, 2), (3 | 4+, ∗) and(3 | 3, 3) are dealt with in Lemma8.11.
Let us consider(3 | 2, 3). By Lemmas8.12and8.13, denoting the flag byw, the 2-vertex

by x, the 3-vertex byv, and byx′ the starting vertex of the sailP ′ containingv, the start and
end vertices of the pathQ := x′P ′v + vw + wx have degree2. By Lemma8.6, there is a
vertexz which is a common neighbor of two vertices onQ. By Lemma8.11(c), one of the two
must byw. Denote the other one byu.

If z has degree4 or more, then the length ofx′Qu + uz is shorter than that ofP ′, contra-
dicting Remark8.8.

If z has degree3, then the length ofx′Qu + uz + zw + wx is at most the length ofP ′

(becauseG has noC3 orC4), contradicting Remark8.8. �

Lemma 8.15. Letw be anH-flag with signature(4+ | 2, 3, ∗), so that there arex, v ∈ V (H)
with d(w) = 4+, d(x) = 2, d(v) = 3, andx ∼ w ∼ v. If x andv are on the same sail ofH,
thenv is adjacent to the axisy ofH.

PROOF. Denote the sail containing bothx andv by P . If v is not adjacent to the axisy,
thenxPv + vw is a path shorter thanP that ends in a vertex not of degree3, contradicting
Remark8.8. �

We conclude the subsection with the following important consequence of ourinvestigation
of flags. Per se, windmills are subgraphs ofG induced by sails, but the next lemma shows that
in a complete windmill, every edge already belongs to some sail.

Lemma 8.16. All edges of a complete windmill are on sails.

PROOF. To argue by contradiction, consider an edgee = uv whose vertices are on a wind-
mill, but which is not on a sail. By Lemma8.4, verticesu andv cannot be both 2-vertices. By
Lemma8.10, verticesu andv cannot be both 3-vertices on the same sail. The same lemma,
shows a 3-vertex and the axis cannot be the endpoints ofe. Now let u be a 2-vertex andv
be a 3-vertex. Verticesu andv can either be in the same sail or not. The former contradicts
Lemma8.5 and Lemma8.10. For the latter case, letP be a sail which contains a 3-vertexv
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which is adjacent to a 2-vertexu on another sail. Letx be the 2-vertex of the sailP . Then
xPv + vu is an internally shortest path, contradicting Lemma8.10.

The only remaining case is whenu1 andu2 are two 3-vertices on distinct sailsP1, P2, of
the windmill. Sayu1 ∈ P1 andu2 ∈ P2, and that the starting vertex ofPi is xi (note that
x1 = x2 is possible). Denote byQ := x1P1u1 + u1u2 + u2Px2 the path (or cycle) starting
with the tip of one of the two sails, taking the edgee, and ending in the tip of the other – the
two starting verticesxi of the sails may coincide, in which caseQ is a cycle.

By Lemma8.6 (or Lemma8.5 if Q is a cycle), there must be a vertexw which is adjacent
to two verticesy1, y2 on Q. The vertexw cannot be the axis as it contradicts Remark8.8 or
entails that there is a triangle. Hence,w is a flag.

By Lemma8.11(c), one of theyi must be a 2-vertex, the other may be a 2- or a 3-vertex. If,
sayy2 is a 3-vertex, then either by Lemma8.13or Lemma8.15, y2 must be adjacent to the axis
— a contradiction, since the only vertex onQ which might be adjacent to the axis has degree at
most three, and two neighbors onQ, the third is the axis (andw is not the axis).

Hence, we conclude thaty1 andy2 are both 2-vertices (in particular,x1 6= x2). Since, by
what we have just said,w is not adjacent to a third vertex ofQ, by Lemma8.5, there is another
vertexw′ which is adjacent to two 3-vertices onQ. But such a vertex would be a flag with
signature(∗ | 3, 3, ∗), which is impossible by Lemma8.11(c). �

8.3.2. The flag graph.We have narrowed down the possible configurations involving flags
of windmills. To summarize the results above, a flag can be adjacent to

• several 2-vertices on the tips of sails,
• and at most one of the following:

– the axis, or
– one 3-vertex which is adjacent to the axis on a sail.

Moreover,

• only one flag can be adjacent to the axis,
• every 3-vertex as above can be adjacent to at most one flag (obviously),
• there are no edges except those in the sails of the windmill or incident to the flags.

This structure can be nicely dealt with in an inductive manner (rather than delving into a
humongous list of case distinctions). In the remainder of this section, we show how the structure
of flags on windmills can be modelled by a directed graph which we callflag graph, which has
a tree-like structure. The possibility of a flag which is adjacent to the axis is a complication.
Such a flag, if existent, is omitted from the construction of the flag graph.

Let W be a complete windmill contained inG. A flag which is adjacent to the axis ofW
is calledirregular (recall that there can be at most one); the other flags are calledregular. It
is important to realize that a sail whose tip is adjacent to an irregular flag has length at least 3,
because the girth ofG is at least 5.

The flag graphF = F (W,G) of a windmill W is a directed bipartite graph. One side
of the bipartition of the vertex set ofF comprises theflag-vertices,which are in one-to-one
correspondence with the regular flags ofF . The other side of the bipartition consists of the
sail-vertices,which are in one-to-one correspondence with the 2-vertices at the tips ofthe sails
of W . We say that a sail-vertex which corresponds to a 2-vertex contained in two sails is
degenerate;a sail-vertex corresponding to a 2-vertex contained in only one sail is called non-
degenerate.There are two types of arcs:

2-arc Whenever a regular flagw is adjacent to a 2-vertex on the tip of a sailP of W , we
have an arc from the sail-vertex corresponding toP to the flag-vertex corresponding
tow. Note that, in this case, the sail-vertex is non-degenerate.
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3-arc Whenever a regular flagw is adjacent to a 3-vertexx in W , then there is an arc
from the flag-vertex corresponding tow to the sail-vertex which represents the sail
containingx.

The flag graph may contain anti-parallel arcs: A regular flag might be adjacent to a 2- and a
3-vertex of the same sail.

We note the following observations which follow directly from the constructionand the
earlier results of this section (see the summary above).

Lemma 8.17. LetG contain a windmillW , and letF = F (W,G) be its flag graph.

(a) Degenerate sail-vertices have out-degree 0; non-degenerate sail-vertices have out-degree
at most 1.

(b) Flag-vertices have out-degree at most 1.
(c) Degenerate sail-vertices have in-degree at most 2; non-degenerate sail-vertices have in-

degree at most 1.
(d) Flag-vertices have in-degree at least 1.

Moreover, the undirected connected components ofF are in one-to-one correspondence with
the blocks in a block-decomposition ofH. In particular, only non-degenerate sail-vertices can
be contained in directed cycles. �

We now show how the flag graph can be constructed inductively from basic elements and
construction rules.

• Basic element S A single non-degenerate sail-vertex.
• Basic element S− A single degenerate sail-vertex.
• Basic element S+ A flag-vertex and a sail-vertex with an arc from the sail-vertex to the

flag-vertex.
• Basic element C2A cycle of length 2.
• Basic element C4A cycle of even length at least 4.

If F is a flag graph, it can be extended with the following construction rules:

• Construction rule U Start a new connected component (in the undirected sense) by adding
one of the basic elements without connection toF .

• Construction rule A Add a sail-vertex with an outgoing 2-arc linking it to an arbitrary flag-
vertex ofF .

• Construction rule B Add a flag-vertex and a sail-vertex, together with a 2- and a 3-arc: the
3-arc goes from the new flag-vertex to an arbitrary sail-vertex inF , and the 2-arc goes from
the new sail-vertex to the new flag-vertex.

Lemma 8.18. LetG contain a windmillW , and letF = F (W,G) be its flag graph. ThenF
can be constructed using the above basic elements and construction rules.

PROOF. We show that each connected component of the flag graph can be constructed in
an inductive manner as follows. LetC be a connected component of the flag graph. Assume
thatC cannot be obtained in one step by Construction rule U. IfC has a sail vertexs with
out-degree 1 and in-degree 0 whose flag neighbour has either out-degree or in-degree at least 2,
then constructC\s first and then obtainC by applying Construction rule A (notice that by the
definition, the flag neighbour ofs must be inC\s asC cannot be constructed by Construction
rule U). Otherwise,C has a sail vertexs with out-degree 1 and in-degree 0 whose flag neighbour
f has both out-degree and in-degree 1. In this case, constructC − {s, f} first and then obtain
C by applying Construction rule B. �

In Section8.5, this construction will be used to inductively “glue together” the graph in-
duced by a windmill and its flags. Before we can do that, in the following section, we explain
the gluing operation.
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8.4. Typed graphs and gluing

Let P be a path andQ a local minimum with valueµ in P . We sayQ is animin if µ < 0
orQ contains no endvertices ofP .

Definition 8.19. A typed graph with typesτ is a graph together with a mappingτ : V (G) →
{0, 1, 2}. In other words, every vertex has one of three possible types: it can be either a type-0, a
type-1, or a type-2 vertex. The figures in this section show graphs with thetypes of the vertices
in square brackets.

A decent labelingof a typed graph is a good edge-labeling with the following properties:

(a) If P is a path between two type-2 vertices, then the length ofP is at least three, and at least
one of the following two conditions hold:
(a.1) there is an imin onP such that between each endpoint ofP and this imin, there is an

edge with strictly positive label;
(a.2) there are (at least) two imins.

(b) If P is a path between between a type-1 vertexv and a type-2 vertexw, then the length ofP
is at least two, and
(b.1) there is an imin onP which does not containv.

A typed graph isdecentif it has a decent edge-labeling.

Note that if a pathP satisfies either of the conditions (a.1) or (a.2), thenP also satis-
fies (b.1). Moreover, if a typed graphG has no type-2 vertex, then any good edge-labeling ofG
is also decent.

For t ∈ {1, 2}, a path in a typed graph is calledt-simple,if the type of every interior vertex
is strictly less thant. We leave it to the reader to convince himself that, in order to verify that
a good edge-labeling is decent, it suffices to check 2-simple paths in (a), and 1-simple paths
in (b), respectively.

Before we continue discussing typed graphs in general, we discuss several examples which
we will need in the remainder of the paper: We describe typed graphs and define concrete
decent edge-labelings on them (where they exist). The graphs are indeed rooted graphswith
the root denoted byy — this is owed to the fact that we will later apply them to windmills, with
the root corresponding to the axis of the windmill. Hence, we will discuss multiple versions of
some graphs, with the difference lying only in the location of the root vertexy.

Example 8.20. Decent labeling of typed paths ending in a type-2 vertex.Let P be a path of
length at least two with root vertexy as shown in Fig.8.2, and ending in a type-2 vertexw.
Denote the vertex adjacent tow by x. The rooty is type-0 or type-1,x is type-0, and all
remaining vertices ofP are type-1 vertices. ThenP is a decent typed graph. Fig.8.2 shows
a decent edge-labelingφ. If P has length two, thenφ(wx) = −1 andφ(xy) = 3/4. If P has
length at least three, then letφ(wx) = −1, φ(vn−1vn) = 17/24 and the rest of the edges have
label+1.

[2]
[1] [1] [1][0]

[2]
[0]

[1] [1]
w

x v1
w

x
v1=y vn=y

−1 +3/4 −1 +1 +1 +17/24

typed3+-path w/ decent labelingtyped2-path w/ decent labeling

FIGURE 8.2. Typed paths with decent edge-labelings

Example 8.21. Decent labeling of typed paths ending in a type-1 vertex.Let P be a path of
length at least three with rooty as shown in Fig.8.3. The type of the root vertex is 0 or 1,
and all other vertices have type 1. ThenP is a decent typed graph. Fig.8.2 shows a decent
edge-labeling. The additional edges (dots) have label+1.
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[1] [1] [1]
[1]

[1] v1
vn=y

+1

x

−10 17/24

typed path w/ decent labeling

FIGURE 8.3. Typed paths with decent edge-labelings

Example 8.22.Decent labelings of cycles without type-2 vertices.Let C be a cycle on type-0
and type-1 vertices as shown in Fig.8.4. Let u be a type-0 vertex and all remaining vertices
of C be type-0 or type-1 vertices. ThenC is a decent typed graph. Fig.8.4 shows decent
edge-labelings. IfC has length five, then based on the position of vertexy, we present two
different decent labeling for later applications, either of which is a decent edge-labeling of the
typed 5-cycleC independent of the position ofy.

6
+-cycle w/ decent labeling5-cycles w/ decent labelings

[1]

[1] [0]

[1]

[1]

[1]

[1]

[1]

[1] [1]

[1]

[1] [0]

[1]

[0][1]

[1]

[1]

+1

+1

−1

−1

+1

+1

−1

+1 +1

+1

−1

+1

+1

17/24
17/24 17/24

17/2417/24

y

y

y

uu

u u

FIGURE 8.4. Typed cycles with decent edge-labelings

Example 8.23.Decent labelings of cycles with one type-2 vertex, part I.Consider a typed graph
consisting of a cycle and one extra edge with one end on the cycle as shownin the top part of
Fig. 8.5. The rooty is off the cycle and has type 0 or 1. There is a type 2 vertex on the cycle,
and it is adjacent to two type 0 vertices. The rest of the vertices have type 1. The figure shows
a decent labeling.

Example 8.24.Decent labelings of cycles with one with type-2 vertex, part II.Consider a typed
graph consisting of a cycle and one extra edge with one end on the cycle asshown in the middle
part of Fig.8.5. The rooty is on the cycle, and has type 0 or 1. There is a type-2 vertex on the
cycle, and it is adjacent to two type-0 vertices. The rest of the vertices have type 1. For given
α, β satisfying2/3 < α < 3/4 < β, a decent labeling can be constructed, as shown in the figure.

NEW TODO: CHECK!

Example 8.25. Decent labelings of cycles with one with type-2 vertex, part III.Consider a
typed graph consisting of a cycle as shown in the bottom part of Fig.8.5. The rooty is on the
cycle, and has type 0 or 1. There is a type-2 vertex on the cycle, and it is adjacent to two type-0
vertices. The rest of the vertices have type 1. For givenα, γ satisfying2/3 < α < 3/4 and
γ < 0, a decent labeling can be constructed, as shown in the figure.

A k-wheel. is a typed graphH which is the union of a cycle and a center vertex connected
to k ≥ 2 of the vertices on the cycle, calledanchors. The distance on the cycle of any two
anchors must be at least three. Fix an orientation of the cycle. A successor of an anchor is
called abogey;the successor of a bogey is called aspectator;all other vertices on the cycle are
calledboobies.A path contained in the cycle connecting successive anchors is called asegment.
The vertices are to have the following types:

• anchors and spectators have type 0;
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(Illustration for Example8.23)
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FIGURE 8.5. Cycles having a type-2 vertex with decent edge-labelings.

• the bogies have type 2;
• the boobies have type 1; and
• the center vertex either type 0 or type 1.

We divide the class of wheels into 3 subclasses: Benign wheels, almost evilwheels, and
evil wheels. The first two kinds are decent, while the third is not.

Example 8.26. Decent labelings of benign wheels.Consider a wheel in which the center is a
type-1 vertex but contains at least one pair of consecutive anchors whose distance is at least
four (this is the “benign” segment of the wheel). These typed graphs arecalledbenign wheels.
Fig. 8.6shows decent edge-labelings of benign wheels.

Example 8.27.Decent labeling of almost evil wheels.Consider a wheel in which the distance
of every pair of consecutive anchors is exactly three and the center is atype-0 vertex. These
typed graphs that are only different from evil wheels in the type of the center, are calledalmost
evil wheels. Fig. 8.7shows decent edge-labelings of almost evil wheels.

Example 8.28.Evil wheels are not decent.If the distance of every pair of consecutive anchors
in a wheel is exactly three and the center is a type-1 vertex, as shown in Fig.8.8, then wheel is
called anevil wheel.It can be easily seen that evil wheels have a good edge-labeling. However,
they are not decent.
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FIGURE 8.6. Benign wheels are decent.

Remark 8.29. It can be seen that if a wheel is not evil then examples8.27and8.26can yield a
decent edge-labeling. In other words, if a wheel is not evil, then it is decent.

8.4.1. Swell subgraphs.Lemma8.31below is the fundamental motivation behind defin-
ing typed graphs and swell graphs.

Definition 8.30. Let H be a proper subgraph of a graphG. We say thatH is a swell subgraph
ofG, if H is typed with at least one type 0 or type 1 vertex and the following properties:

(a) no type 0 vertex inH has a neighbor inG−H;
(b) every type 1 vertex inH has at most one neighbor inG−H;
(c) no vertex inG−H has two or more type 1 vertices ofH as neighbors.

The shaded area in Fig.8.9 is an example of a swell subgraph.

Lemma 8.31. Let H be a decent typed graph. A critical graph cannot containH as a swell
subgraph.

In the following lemma, we use the shorthand−∞ to denote a negative number whose
absolute value is larger than all other, “finite”, absolute values.

PROOF OFLEMMA LEM :FUNDAMENTAL . Assume otherwise and letH be a decent typed
graph, which is a proper subgraph of a critical graphG. We prove thatG has a good edge-
labeling. Define the graphG′ by deleting fromG all the type-0 and type-1 vertices ofH. Note
thatE(H) ∩ E(G′) = ∅, by Definition8.19. SinceH has at least one type 0 or type 1 vertex,
G′ has a good edge-labeling.

Note that the edges inM := E(G) \ (E(H)∪E(G′)) are incident to type-1 vertices ofH.
Now take a decent labeling ofH and scale it so that all nonzero labels have absolute value at
least2. Also, take a good labeling ofG′ and scale it so that all labels have absolute value at
most1. We combine these two to form a labeling of the edges ofG, where the edges inM
receive the label−∞. We prove that this forms a good edge-labeling ofG. Consider a cycleC
in G. If E(C) ⊂ E(G′) orE(C) ⊂ E(H), thenC has two local minima.

Otherwise, consider the graphC ∩ H. Its connected components are path, at least one of
which must have non-zero length, so letP be such a component. Denote the end-vertices ofP
by x, y.
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FIGURE 8.7. Almost evil wheels with decent labelings
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FIGURE 8.9. A swell subgraph

Notice that with the above mentioned relabeling, an imin onP is in fact a local minimum
onC.

First, assume that bothx andy are of type 2. IfP has at least two imins, then those two are
in fact two local minima inC. OtherwiseP has an imin such that between each endpoint ofP
and this imin, there is an edge with strictly positive label. Moreover, by the scaling of labels in
H, these two labels have value at least 2. Considering the scale of the labels inG′, there is a
local minimum ofC that belongs toG′. This local minimum in addition to the imin onP are
two local minima ofC.

If x has type 2 andy has type 1, then the edgee of C \ P adjacent toy has label−∞.
Moreover, by the definition of a decent labeling, there is an imin onP which is not incident
to e. By the same argument as above, this imin inP is a local minimum inC. Hence, we have
two local minima onC.

Finally, if bothx andy have type 1, lete andf be the edges ofC \ P incident tox andy,
respectively. By the definition of a swell subgraph,e andf cannot be adjacent. Soe andf are
local minima ofC as their labels are−∞, �

8.4.2. Gluing. In order to use decent typed graphs in inductive arguments, we have the
following construction which allows to “glue” two decent typed graphs and obtain a new one.

Definition 8.32. Let G1 andG2 be typed graph with typesτi, i = 1, 2, let H be an induced
subgraph of bothG1 andG2, andV (H) = V (G1) ∩ V (G2). We say that the typed graphG
with typesτ is the result ofgluingG1 andG2 alongH, if V (G) = V (G1) ∪ V (G2), E(G) =
E(G1) ∪ E(G2), and

τ(v) =





τ1(v), if v ∈ V (G1) \ V (G2),

τ2(v), if v ∈ V (G2) \ V (G1),

min(τ1(v), τ2(v)), if v ∈ V (G1) ∩ V (G2).

We wish to have conditions which ensure that ifG1 andG2 are decent, thenG is, too. As a
motivating example, the reader might want to verify the following fact (which we do not need
in this paper):

Lemma 8.33. If for all v ∈ V (H) we haveτ1(v) = τ2(v) = 2, and ifG1 andG2 are decent,
thenG is decent.
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Our aim is to decompose windmills into elementary parts—indeed, all parts we needhave
been discussed in Examples8.20–8.24and8.27–8.26. For this, we need a considerably more
powerful gluing mechanism than that of Lemma8.33. We define the class of “gluable” typed
graphs, which can be glued to each other by 1- and 2-sum operations.

We need to first classify certain special type-2 vertices.

Definition 8.34. For a given quadruple(G, τ, φ, y) consisting of a typed graphG with typesτ ,
a decent edge labelingφ of G, and a root vertexy of G we say that a type-2 vertexw is locked
if the distancedG(w, y) betweenw andy is two, the (unique) pathP betweenw andy of length
two has an imin, and the edge incident toy onP has label in]2/3, 3/4[.

We callP the locking pathof w. If w is not locked, we call itconnectable.

Now we are ready to give the complete definition of the gluing operation.

Definition 8.35. We say that a quadruple(G, τ, φ, y) consisting of a typed graphGwith typesτ ,
a decent edge-labelingφ of G, and a root vertexy of G is gluable, if the following conditions
hold.

(a) Every pathy, v1, v2 of length2 originating fromy and containing a type-1 vertexv1 and a
vertexv2 of type 0 or 1 isadmissible:With α := φ(yv1) andβ := φ(v1v2), we have

2/3 < α ≤ 3/4 < β.

(b) Every 1-simple path2 of length at least one between a type-1 vertex andy contains an edge
with value at least2/3.

(c) Not type-2 vertex is adjacent to the rooty.
(d) Letw be a type-2 vertex inG. If the distancedG(w, y) betweenw andy is two, then every

2-simple pathP betweenw andy except for the locking path ofw, if it exists, satisfies one
of the following:

(d2.i) P has an imin, and the edge incident toy onP has label at least3/4; or
(d2.ii) The edge incident toy onP is a local minimum with value in]0, 1/2].

If the distancedG(w, y) betweenw and y is at least three, then every 2-simple pathP
betweenw andy satisfies

(d3) The edge incident toy onP is a local minimum with value in[2/3, 3/4[; and
there is a second imin ofP between this edge andw.

Before we prove that gluable graphs can be glued to each other, we review the examples
from the beginning of this section.

Example 8.36.The typed graphs with the decent labelings and root-verticesy described in the
examples in the previous subsection are all gluable. Checking this amounts to mechanically
going through all thet-simple paths of the graphs. We omit it here.

Let us now prove that gluing really works.

Lemma 8.37.Let(G1, τ1, φ1, y) and(G2, τ2, φ2, y) be gluable, and letG result from gluingG1

andG2 along{y}. Moreover, for alle ∈ E, letφ(e) := φ1(e), if e ∈ E(G1) andφ(e) := φ2(e),
otherwise. Then(G, τ, φ, y) is gluable.

The proof is purely mechanical and can be found in the appendix.

Lemma 8.38. Let (G1, τ1, φ1, y1) and (G2, τ2, φ2, y2) be gluable,w1 a connectable type-2
vertex ofG1 andw2 a connectable type-2 vertex ofG2. Let G be the typed graph resulting
from identifyingy1 with y2 to y andw1 with w2. If G1 andG2 are gluable, anddG1(y1, w1) +
dG1(y2, w2) ≥ 5, then(G, τ, φ, y) is gluable.

2Recall the definition oft-simple from page101.
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The condition on the distances, which means that identifyingy1 = y2 andw1 = w2 cannot
create aC4 in G, is needed because if the labels on two paths satisfy the condition (d2.ii), then
gluing them does not give a good edge-labeling. The proof of Lemma8.38can be found in the
appendix.

The operation which adds a graph of the kind described in Example8.24differs from the
above two.

Let (G1, τ1, φ1, y1) be a gluable graph, and(y1, u1, v1) a path inG as in Definition8.35(a).
LetH be a typed graph with typesτ , as described in Example8.24. To specify the edge labeling
of H, we letα := φ1(y1u1) andβ := φ1(u1v1). By Definition 8.35(a), these values satisfy
the conditions in Example8.24to define the decent edge-labelingφ2 of H. The proof of the
following lemma is in the appendix.

Lemma 8.39. The typed graphG′ resulting from gluingG andH along{y = y1, u = u1, v =
v1} is gluable.

This is the only lemma that can create flags that are locked type-2 vertices. The following
lemma will give us the option to add sails that connect to these flags, the proof isanalogous to
that of Lemma8.39.

Let (G, τ1, φ1, y1) be a gluable graph, and(y1, u1, w1) a locking path inG. Let H be a
typed graph with typesτ , as described in Example8.25. To specify the edge labeling ofH, we
let α := φ1(y1u1) andγ := φ1(u1w1). By Definition8.34, these values satisfy the conditions
in Example8.25to define the decent edge labelingφ2 of H.

Lemma 8.40. The typed graphG′ resulting from gluingG andH along{y = y1, u = u1, w =
w1} is gluable.

8.5. Non-existence of windmills

In this section, we prove the following theorem mentioned in the introduction.
Again, in this section,G is a critical graph of girth at least five. LetW be a windmill inG

with axis y andk sails, and denote byW be the subgraph ofG induced byW and all of its
flags, regular or not. We say thatW is theclosureof W . Define types̄τ for W as follows:

(∗) τ̄(v) =

{
2, if v is a flag,

degG(v)− degW (v) otherwise.

We will prove the following.

Lemma 8.41. The typed graphW with types̄τ is decent, unless

• it contains an evil wheel, and there is no irregular flag;
• it contains an almost evil wheel, and there is an irregular flag.

We will prove this lemma below. Disregarding the types, from this lemma, we can imme-
diately derive the following main result.

Theorem 8.42.For every windmillW in G, the closureW ofW contains an induced subgraph
as depicted in Fig.8.7, i.e., an (almost or not) evil wheel.

PROOF. This follows from Lemma8.41by noting thatW is a swell subgraph ofG, and
invoking Lemma8.31. �

The proof of Lemma8.41is performed in two steps. We first prove that the “regular” part
of H is gluable, and then add the irregular flag, if existent. For this, letH be the subgraph
of G induced byW and its regular flags, and define typesτ for H as in (∗). We now prove the
following.
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Lemma 8.43. There exists an edge-labelingφ such that(H, τ, φ, y) is gluable, unless it con-
tains an evil wheel.

PROOF. Suppose thatH does not contain an evil wheel with axisy. Recall that this implies
thatH does not contain an evil wheel as a subgraph.

We proove thatH is gluable. To do this, we associate to each of the basic elements (as
laid down in Lemma8.18) a gluable graph (one of the examples of the previous section); and
to each of the construction rules, we associate one of the operations of Lemmas8.37–8.39. By
induction, this implies thatH is gluable.

• Basic element SThis corresponds to a typed path as in Example8.20.
• Basic element S− This corresponds to a cycle as in Example8.22.
• Basic element S+ This corresponds to a typed path as in Example8.21.
• Basic element C2This corresponds to a cycle inH as in Example8.23.
• Basic element C4This either corresponds to an almost evil wheel inH, as in Example8.27,

or to a benign wheel, as in Example8.26, because evil wheels are excluded.
Suppose that the graphH ′ represented by a partial flag graphF ′ is gluable. We perform

one of the construction rules to obtain an extended new flag graphF , and explain how we use
the gluing lemmas to extendH ′ to a gluable graphH.
• Construction rule U This corresponds to taking a 1-sum as in Lemma8.37. The identifica-

tion takes place at the axes of the components.
• Construction rule A This corresponds to adding a path as in Example8.20or Example8.25

via the 2-sum operation of Lemma8.38or Lemma8.40, respectively. In the first case, the
new sail-vertex from which the arc initiates corresponds to the path; the old flag-vertex which
is the target of the arc identifies a flagw1 of H ′. This flagw1 is identified with the vertexw
of the path. The axisy1 is identified with the root vertexy2 of the path. In the second case,
the flag is the type-2 vertexw in the bottom part of Fig.8.5, with the bottom path connecting
y andw corresponding to the new sail-vertex.

• Construction rule B This corresponds to adding a cycle as in Example8.24via Lemma8.39.
The sail-vertex ofF to which the new vertices are attached, identifies a sail (degenerate or
not) in H. The two edges in this sail (or, on one path of the sail in the case when it is
degenerate) which are closest to the axisy correspond to the two vertically drawn edges in
the middle part of Fig.8.5, yu, uv. The new flag-vertex is the type-2 vertex in that picture,
and the new sail-vertex corresponds to the path between the rooty and the type-0 vertex to
the right of the type-2 vertex (the path which does not use the vertexu).

�

We point out the following property of the edge-labelingφ constructed in this proof.

Remark 8.44. If W has an irregular flagw0, then on every sailP whose tip is adjacent tow0,
the edge-labelingφ for H has the labels shown in Fig.8.3.

In the second step, if necessary, we will need to add the irregular flag toH. This step will
complete the proof of Lemma8.41.

PROOF OFLEMMA 8.41. If no irregular flag exists, this lemma is just a weaker form of
Lemma8.43. Suppose that an irregular flag inW exists; denote it byw0. We take the labelingφ
from Lemma8.43, and extend it to a decent labelinḡφ of W . To do this, lety, x1, . . . , xr be
the neighbors ofw0 in W . We let φ̄(e) := φ(e) for all e ∈ E(H); φ̄(yw0) := −10; and
φ̄(w0xj) := +1, j = 1, . . . , r.

We now verify that the resulting labeling is decent, using the above Remark8.44. Since
there exists an irregular flag, by (∗), we haveτ(y) = 0. Since, in Definition8.19, we only
need to check 2-simple paths, the only paths we need to check are those starting or ending
in w0. Consider first paths staring in a type-2 vertex ofH and ending inw0. Such a path enters
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the sails whose tips are incident tow0 either through the axis or through a vertex adjacent to
the axis. In each of the two cases, the path touches a type-1 vertex before it reachesw0. By
condition (b.1) of Definition8.19, and using the fact that the edge with label−10 on the path is
an imin, we find that such a path has at least two imins, i.e., it satisfies condition (a.2).

Secondly, consider a pathP starting inw0 and ending in a type-1 vertex. Since neither the
axis nor the vertices adjacent tow0 are type-1 vertices, the edge with label−10 is an imin not
incident to the type-1 vertex in whichP ends, and thus (b.1) is satisfied.

We leave it to the reader to verify thatφ̄ is in fact a good edge-labeling ofW . �

8.6. Proof of Theorem8.2

Let G be a minimum counter example to Theorem8.2, i.e.,G is a critical graph of girth at
least5 and with average degree less than3. Let deg(v) denote the degree of vertexv. To every
vertexv assign a charge of6−2 deg(v). The total charge of the graph is

∑
v(6−2 deg(v)) > 0,

because the average degree ofG is less than3. Note that after the assignment of initial charges,
only 2-vertices have positive charge.

Now we discharge the graph according to the following rule:

• For every 2-vertexu and every neighbourv of u, if there arek sails with tipuv, then
u sends1k charge (via these sails) to each4+-vertex at the end of thesek sails.

It can be seen that charges are sent from 2-vertices to4+-vertices via paths consisting of
only 3-vertices. Now we show that after the discharging phase, every vertex of the graph has
nonpositive charge, a contradiction. Indeed, letv be a vertex. We consider the following cases.

(i) v is a 2-vertex. Then it has an initial charge of 2. In the discharging,v sends a total of
1 unit of charge out via each of the two tips, andv does not receive any charge in the
discharging phase. Sov has 0 charge after the graph is discharged.

(ii) v is a 3-vertex. Thenv has an initial charge of 0. Moreover,v does not gain or lose any
charge in the discharging phase. Sov has 0 charge after the graph is discharged.

(iii) v is a 4-vertex. Thenv has an initial charge of−2. To become positive, it must receive
charges via at least three incident edges, implying thatv is the axis of a windmill. (We
note that this holds true even if two sails share a common tip and both end inv.) By
Lemma8.41, such a windmill must contain an evil or almost evil wheel as shown in
Fig. 8.8 and Fig.8.7. It can be seen that in both cases, the axis of the windmill is at the
same distance from the 2-vertices of the windmill as one of the flags. Hence,vertexv
receives at most12 via each sail of the wheel. Thus, the charge ofv after discharging is
either at most−2 + 3 · 1

2 = −1/2 or at most−2 + 2 · 1/2 + 1 = 0.
(iv) v is a 5-vertex. Thenv has an initial charge of−4. To become positive, it must receive

charges via every incident edge, implying thatv is the axis of a 5-windmill inG. Again,
similar to the above case, Lemma8.41 implies that such a windmill contains an evil or
almost evil wheel in both of which cases, the axis of the windmill is of the same distance
from the 2-vertices of the windmill as one of the flags. Hence, vertexv receives at most
1
2 via each sail of the wheel. Thus, the charge ofv after discharging is either at most
−4 + 4 · 1 = 0 or at most−4 + k · 1

2 + (5− k)× 1 ≥ 0 wherek ≥ 2.
(v) v is a6+-vertex. Thenv has an initial charge of6− 2 deg(v). Sincev receives at most 1

unit of charge via each incident edge,v has at most(6− 2 deg(v)) + deg(v) ≤ 0 charge
after the graph is discharged.

8.7. Conclusion

We have seen that imposing a lower bound on the girth facilitates the construction of good
edge-labelings, or even decent edge-labelings. In this paper, we have used this approach to-
gether with a degree-bound. It seems probable that high girth benefits other open problems
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about good edge-labeling. For example, Araújo et al. [ACGH12] conjecture that for every
c < 4, the number of (pairwise non-isomorphic) critical graphs with average degree at mostc
is finite. We propose the following weakening of their conjecture.

Conjecture 8.45. For everyc < 4, the number of (pairwise non-isomorphic) critical graphs
with girth at least five and average degree at mostc is finite.

This paper settles the casec = 3. Forc = 3, but without restriction to the girth, a modifica-
tion of Conjecture8.1proposes itself naturally:

Conjecture 8.46(Araújo-Cohen-Giroire-Havet/modified). There is no critical graph with av-
erage degree less than 3, with the exception ofC3, K2,3, and the graph displayed in Fig.8.1.

Acknowledgments. We would like to thank the anonymous referees for their thorough
work and insightfull comments.

Appendix: Deferred proofs

PROOF OFLEMMA 8.37. The conditions of Definition8.35 are satisfied, since they re-
quire to check paths originating from the root vertexy only. Moreover,φ is a good edge-
labeling. It remains to show thatφ is decent.

To verify property (a) of Definition8.30, let Q be a 2-simple path between two type-2
verticesw1 ∈ V (G1) \ V (G2) andw2 ∈ V (G2) \ V (G1). LetP1 := w1Qy andP2 := yQw2.
If both Q1 andQ2 satisfy (d2.i) then the edges incident toy in neitherQ1 norQ2 are part of
the respective imins, and (a.2) of Definition8.30holds. IfQ1 satisfies (d2.i) andQ2 satisfies
(d2.ii) then (a.2) of Definition8.30holds: one of the imins is the imin ofQ1, the other is the
edge ofQ2 incident ony. If bothQ1 andQ2 satisfy (d2.ii) then (a.1) holds, the imin there being
the path of length two consisting of the two edges ofQ incident ony. If Q1 satisfies (d2.i) and
Q2 satisfies (d3), then (a.2) holds forP . If Q1 satisfies (d2.ii) andQ2 satisfies (d3), then (a.2)
holds forP . If bothQ1 andQ2 satisfy (d3), then (a.2) holds forP .

To verify property (b), letQ be a 1-simple path between a type-1 vertexw1 ∈ V (G1) \
V (G2) and a type-2 vertexw2 ∈ V (G2)\V (G1). Note that the property in (b) of Definition8.35
holds forQ1. If (d2.i) holds forQ2, then the imin ofQ2 is an imin ofP not incident onw1. If
(d2.ii) holds forQ2, then the edge incident ony in Q2 is an imin ofP not incident onw1. If
(d3) holds forQ2, then the imin ofQ2 closer tow2 is an imin ofP not incident onw1. �

PROOF OFLEMMA 8.38. Denote the vertex ofG resulting from identifyingy1 andy2 byy,
and the one resulting from identifyingw1 andw2 byw.

Let us first check Definition8.35(a–d). Property Definition8.35(a) is satisfied because no
new path of this kind is added. The conditions of Definition8.35(b–d) are satisfied, since they
require to check 1- and 2-simple paths originating from the root vertexy only: these paths
cannot containw, and are thus contained entirely in eitherG1 orG2.

We have to make sure thatφ is good, and that it satisfies the conditions (a) and (b) of
Definition8.30. We may assume w.l.o.g. thatdG2(y2, w2) ≥ 3.

We first prove thatφ is good. For this, letQ1 be a path inG1 betweeny andw1, and letQ2

be a path inG2 betweeny andw2. We have to verify that the cycleC := Q1 + Q2 has two
local minima.

If (d2.i) holds forQ1 and (d3) forQ2, thenC has two local minima. If (d2.ii) holds forQ1

and (d3) forQ2, thenC has two local minima. If bothQ1 andQ2 satisfy (d3), thenC has two
local minima.

Secondly, we prove properties (a) and (b) of Definition8.30hold. Note that for both these
properties, we do not need to consider paths containingw as an interior vertex, because those
are not 2-simple (in the case of (a)) or even 1-simple (for (b)). But this leaves us with the same
situation which we have checked in the previous lemma. �
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PROOF OFLEMMA 8.39. We start by proving thatφ is a good edge-labeling. For this,
letC be a cycle inG containing edges of bothE(G1)\E(H) andE(H)\E(G1). Such a cycle
can be turned into a cycleC ′ in G1 by replacint the path ofC in E(H) \ E(G1) by the single
edgeu1y1. We show that the fact that there are two local minimaQ1, Q2, onC ′ implies that
there are two local minima onC.

Obviously, if any of the local minima ofC ′ contains neitheru1 nor y1, then it is a local
minimum ofC. On the other extreme, if one of the two, sayQ2, contains the edgeu1y1, then
Q1 and the pathP−1 formed by the two edges with label−1 in C \E(G1) are two distinct local
minima, because−1 < α. Thus, we have to make sure that if any of the local minima ofC ′

contains exactly one of the verticesu1 or y1, then it can be modified to be a local minimum
of C. Firstly, supposeQ1 has valueµ1 and containsu1 but noty1. If µ1 < −1, thenQ1 is a
local minimum ofC; if µ1 > −1 thenP−1 is a local minimum ofC; if the two are equal, then
Q1 + P−1 is a local minimum ofC. Secondly, supposeQ2 has valueµ2 and containsy1 but
notu1. If µ2 <

2/3+α
2 , thenQ2 is a local minimum ofC; if µ2 >

2/3+α
2 , then the pathṖ formed

by the edge ofC \ E(G1) with label
2/3+α

2 is a local minimum ofC; if the two are equal, then
Q2 + Ṗ is a local minimum ofC.

Next, we have to show that the edge-labelingφ satisfies the properties (a) and (b) of Defi-
nition 8.19. For propery (a), letw be the type-2 vertex ofH, letw1 be any type-2 vertex ofG1,
and letP be aw-w1-path inG. On the one hand, ifu = u1 is onP , then by Definition8.19(b.1)
applied toP (w1, u1), Q has one imin not incident onu, and the edge ofQ incident tow is a
second, distinct, imin. On the other hand, ify = y1 is onP , we use (d2.i), (d2.ii), or (d3) of
Definition8.35for the pathQ′ := Q(y1, w1). Indeed, ifQ′ satisfies (d2.i) the length ofQ(w, y)
is two (i.e., it contains the edgeuy), thenQ has two imins; ifQ′ satisfies (d2.i) the length of
Q(w, y) is at least three, thenQ has two imins; ifQ′ satisfies (d2.ii) the length ofQ(w, y) is
two, thenQ has two imins; ifQ′ satisfies (d2.ii) the length ofQ(w, y) is three, thenQ has two
imins; if Q′ satisfies (d3) the length ofQ(w, y) is two, thenQ has two imins; ifQ′ satisfies (d3)
the length ofQ(w, y) is at least three, thenQ has two imins.

Finally, to check the conditions of Definition8.35, the only kind of paths which are added
beyond those which were present inG1 andH are those which result from taking a pathQ1

in G1 from y1 to u1 = u, and adding the edgeuw of H. Invoking the condition (b.1) of
Definition8.30, Q1 + uw contains two imins: one onQ1 and the other being the edgeuw. �



CHAPTER 9

Random lifts

Jointly with
Babak Farzad (Brock University, St. Catharines)

Abstract. Amit, Linial, and Matoǔsek (Random lifts of graphs III: independence
and chromatic number,Random Struct. Algorithms, 2001) have raised the following
question: Is the chromatic number of randomh-lifts of K5 asymptotically (forh →
∞) almost surely (a.a.s.) equal to a single number? In this paper, we offer the
following partial result: The chromatic number of a random lift of K5 \ e is a.a.s.
three.

9.1. Introduction

Let G be a graph, andh a positive integer. Anh-lift of G is a graphG̃ which is anh-fold
covering ofG in the topological sense. Equivalently, there is a graph homomorphismφ : G̃ →
G which maps the neighbourhood of any vertexv in G̃ one-to-one onto the neighbourhood of
the vertexφ(v) of G. The graphG is called thebase graphof the lift.

More concretely, we may say that anh-lift of G has vertex setV (G) × [h] (where we let
[h] := {1, . . . , h} as usual). The set{v} × [h] is called thefibre overv. Fixing an orientation
of the edges ofG, the edge set of anh-lift is of the following form: There exist permutations
σe of [h], e ∈ E(G), such that for every two adjacent verticesu andv of G, if the edgeuv is
orientedu → v, the edges between the fibres{v} × [h] and{u} × [h] are(u, j)(v, σuv(j)),
j ∈ [h]. Changing the orientation of the edges in the graph does not change the lift,provided
that permutations on edges on which the orientation is changed are replacedby their respective
inverses. In this spirit, for an edgeuv in G, regardless of its orientation, we denote byσuv the
permutation for which the edges between the fibres are{(u, j)(v, σuv(j)) | j ∈ [h]}.

By a randomh-lift we mean a graph chosen uniformly at random from the graphs just
described, which amounts to choosing a permutation, uniformly at random, independently for
every edge ofG.

Random lifts of graphs have been proposed in a seminal paper by Amit, Linial, Matoǔsek,
and Rozenman [ALMR01 ]. Their paper sketched results on connectivity, independence num-
ber, chromatic number, perfect matchings, and expansion of random lifts, and was followed by
a series of papers containing broader and more detailed results by the sameand other authors
[AL02, AL06, ALM02 , LR05], and e.g. [BL06, DL06], [BCCF06].

In [ALM02 ] Amit, Linial, and Matoǔsek focused on independence and chromatic numbers
of random lifts of graphs. They asked the following question.

Is there a zero-one law for the chromatic number of random lifts? In particu-
lar, is the chromatic number of a random lift ofK5 a.a.s. (forh → ∞) equal
to a single number (which may be either 3 or 4)?

A randomh-lift G̃ of K5 a.a.s. has an odd cycle, whence a.a.s. we haveχ(G̃) ≥ 3. More-
over,G̃ a.a.s. does not contain a 5-clique. Brooks’ theorem implies that a.a.s.χ(G̃) ≤ 4. So,
a.a.s.χ(G̃) ∈ {3, 4}.

In their paper, Amit, Linial, and Matoǔsek [ALM02 ] conjectured that the chromatic number
of random lifts of any fixed base graph obeys a zero-one law, i.e., it is asymptotically almost
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surely equal to a fixed number (depending only on the base graph). In the case when the base
graph isKn, they prove thatχ(G̃) = Θ(n/ logn) a.a.s. (the constant in theΘ notation may
depend neither onh nor onn). Five is the smallest value forn, for which this is not trivial.

In this paper, we contribute the following to this problem.

Theorem 9.1. A random lift ofK5 \ e is a.a.s. 3-colorable.

9.2. Notation and Terminology

Let G := K5 \ e. Clearly,G is obtained by joining a cycleC := [x1, x2, x3] to a stable set
S := {y1, y2}. Here, byjoin we mean that every vertex ofC is made adjacent to every vertex
of S. From now on,G̃ will be a randomh-lift of G. Let G̃C andG̃S denote the subgraphs of̃G
induced by the fibres over the vertices ofC and those over vertices ofS, respectively. Moreover,
for x ∈ V (G), we denote byVx = {x} × [h] the set of vertices of̃G overx. Similarly, for any
setU of vertices ofG̃ andx ∈ V (G), we letUx := U ∩ Vx.

As anhors d’œuvreintended to familiarise the reader with the most basic random lift argu-
ments, we serve the following easy lemma.

Lemma 9.2. The graphG̃C is a union of cycles, each of which is divisible by three. A.a.s., the
number of cycles iñGC is at mostlog2 h.

PROOF. The cycles with length3ℓ of G̃C correspond to the cycles with lengthℓ of the
permutationσx1x2 ◦ σx2x3 ◦ σx3x1 . The latter is a uniformly distributed random permutation
of [h]. It is a folklore fact (e.g., [Lov07]) that the average number of cycles of a random
permutation of[h] is log h + o(1). The statement of the lemma now follows from Markov’s
inequality. �

Lemma9.2allows us to assume that̃GC has at mostlog2 h cycles. As a matter of fact, this
is the only statement about̃GC which we need.

9.3. The 3-colouring algorithm

Our colouring algorithm is detailed in the box Algorithm2. We use the coloursred, black,
andwhite,where the colour red will have a special significance. We point the reader to the fact
that, once Algorithm2 has coloured a vertex, the vertex never changes its colour or becomes
uncoloured again. A vertex of̃GS which is adjacent to precisely one red vertex is calledpale
(this is not a colour).

The algorithm works in three phases. In phase I, Steps (1–2), we destroy the uncoloured
cycles ofG̃C by colouring one vertex per cycle red. By Lemma9.2, a.a.s., we colour at most
log2 h vertices red in Phase I, i.e., Phase I fails with probabilityo(1).

In Phase II, more accurately in the loop (4), the algorithm successively chooses uncoloured
vertices ofG̃C and colours them red. This is done by maintaining the setP (·) of pale vertices
(i.e., those vertices of̃GS which are adjacent to precisely one red vertex).

In Phase III, Steps (5–7), the remaining vertices are coloured in a straight forward way.
The rationale behind the algorithm is as follows.
At any fixed time between Steps (3) and (5), consider the connected components ofG̃C

after deleting all red vertices. These are uncoloured paths of different lengths inG̃C , separated
by red vertices. We call themchunks. These chunks can be thought of as the vertices of a
multi-graph, which we call thechunk-graph, whose edges are the pale vertices inG̃C : Every
pale vertex has precisely two uncoloured neighbours inG̃C , thus connecting the corresponding
chunks. We refer to such a connection between chunks via a pale vertexas achunk-edge.A
chunk-edge may be a loop, which happens when a pale vertex have both uncoloured neighbours
in the same chunk. Furthermore, there may be parallel chunk-edges in the chunk-graph, which
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Algorithm 2 Three-ColourG̃
Phase I:
(1) The algorithms starts with all edges iñGC exposed, but no edge in betweenG̃C andG̃S

exposed. IfG̃C has more thanlog2 h cycles,fail.
(2) Choose exactly one red vertex in each cycle ofG̃C .

Phase II:
(3) Expose all edges incident to red vertices. If there exists a vertex inG̃S which has two or

more red neighbours,fail. Otherwise, letP (0) be the set of pale vertices before the first
iteration.

(4) Fort = 1, . . . , ⌊h1/3⌋:
(4.1) Letv be chosen arbitrarily from the setP (t− 1).
(4.2) From the two non-exposed edges incident tov, expose one arbitrarily (the other edge

remains unexposed). Letu be the end-vertex iñGC of the exposed edge.
(4.3) Expose the other edge incident tou, and letv′ be the corresponding neighbour ofu

in G̃S . If v′ ∈ ⋃t−1
s=0 P (s), fail. OtherwiseP (t) = P (t− 1) ∪ {v′} \ {v} (this is

now the new set of pale vertices).
(4.4) Colouru red.

Phase III:
(5) Expose all remaining edges.
(6) Colour every vertex red which is iñGS and does not have a red neighbour.
(7) If the graph induced by the non-red vertices is acyclic, colour it black and white, otherwise

fail.

happens when two pale vertices connect the same pair of chunks. The reason why, in Step3 of
the algorithm, we abort if a vertex has two or more red neighbors, is only because such vertices
would not correspond to edges of the chunk-graph. Indeed, at the end of Phase II, there are
only two kinds of uncolored vertices left: Those making up the chunk graph, and those being
colored red in Step6.

The chunk-graph is a random multi-graph. At Step (3), it has as many vertices as there are
cycles inG̃C (at mostlog2 h by Lemma9.2), and as many edges as there are pale vertices. If the
algorithm does not fail in Step (3), then to every red vertex there are two pale vertices, and they
are all distinct. Hence, at this time, there are twice as many chunk-edges as there are chunks.

When the algorithm proceeds through loop (4), the number of chunks is increased as we
colour more vertices of̃GC red. However, the number of pale vertices stays constant, and hence
so does the number of chunk-edges.

The reasoning at this point is a heuristic analogy with the random (simple) graph model
G(n,m), where a set ofm edges is drawn uniformly at random from the set of all possible
m-sets of edges betweenn vertices. For us,n is the number of chunks andm is the number
of chunk-edges. At Step (3), wherem = 2n, we expect the chunk-graph to contain lots of
cycles (including loops and parallel edges), which makes it unlikely that it can be coloured
with just the two remaining colours. However, whenn grows andm stays constant, a random
graphG(n,m) will be acyclic as soon asm ≪ n, and we expect the same to be true for the
chunk-graph.

There are complications in making this heuristic analogy work rigorously, the foremost
being that the distribution of the edges in the chunk-graph is not uniform but instead depends
on the sizes of the chunks. We will address these issues in the next section.
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9.4. Proof of correctness of the 3-colouring algorithm

We prove that a.a.s. Algorithm2 properly 3-colours̃G.

Lemma 9.3. A.a.s., Algorithm2 does not fail in Steps (1), (3), or (4.3).

PROOF. Lemma9.2 implies that, a.a.s., the algorithm does not fail in Step (1).
For Step (3), note that, at this point in the algorithm, the probability that a fixed vertex in

G̃S has two or more red neighbours isO((log4 h)/h2). Hence, the probability that there exists
such a vertex having two or more red neighbours isO((log4 h)/h) = o(1).

For Step (4.3), we see that for each fixedt, the probability thatv′ ∈ ⋃t−1
s=0 P (s) isO(h−2/3).

Thus, the probability that the algorithm fails after at mostt iterations isO(th−2/3). Conse-
quently, the probability that the algorithm fails at Step (4.3) before completingt := ⌊h1/3⌋
iterations iso(1). �

Denote byT the last iteration (value oft) of the loop (4) which is completed (without
failing). We letR(t), t = 0, 1, . . . , T be the set of vertices which are red aftert iterations of the
loop (4). In particular,R(0) is the set of vertices coloured red in Step (2). LetR+(t) := R(t) \
R(0). Recall that adding an index to a letter denoting a set refers to taking its intersection with
the corresponding fibre, for exampleRx(t) refers toVx∩R(t). Moreover, we use the following
notation to refer to the cardinalities of each of these sets: If a set is denotedby an upper-
case letter (possibly with sub- or superscript or followed by parentheses), the corresponding
lower-case letter (with the same sub- or superscripts or parentheses) denotes its cardinality. For
examplerx(t) = |Rx(t)|. We have the following.

Lemma 9.4. For eachx ∈ C andt = 1, . . . , T , setR+
x (t) is uniformly distributed in the set of

all (r+x (t))-element subsets ofVx \Rx(0).

PROOF. Fix anx ∈ C. In every iteration of the loop (4) in which the fibre overx ∈ C is
selected in Step (4.3), when exposing the edge in Step (4.3), the vertexu is selected uniformly
at random from the set of all previously uncoloured vertices inVx. In other words, for every
fixed value ofR+

x (t − 1), the distribution ofu is uniform. By induction,R+
x (t) is uniformly

distributed. �

Lemma 9.5. In the loop (4) of Algorithm2, a.a.s. no two adjacent vertices are coloured red.

PROOF. Let x1, x2 ∈ C, and consider the situation afterT iterations, i.e., when the algo-
rithm leaves the loop (4). By Lemma9.4, at this time, the expected number of edges between
Vx1 andVx2 both of whose end vertices are red is at most

h · T

h− rx1(0)
· T

h− rx2(0)
= O

(
h5/3

(
h− log2 h

)2
)

= o(1).

�

Now, it only remains to show that when Step (7) of Algorithm 2 is reached, the graph
consisting of the yet uncoloured vertices is a.a.s. acyclic.

Now, suppose that the algorithm has completed Phase II without failing, i.e., we find our-
selves just before Step (5). LetH denote the chunk graph as we defined in Section 3. ThusH
is a random multi-graph withn ≤ r(T ) = T + r(0) = Θ(h1/3) vertices andm := p(T ) =
2r(0) = O(log2 h) edges. In fact, if no two red vertices are adjacent, the first inequality be-
comes an equation, cf. Lemma9.5. The distribution ofH can be described in terms of random
permutations taking into account the edges which have already been exposed, and the sizes of
the chunks. It appears sensible to guess thatH has no cycles. That is in fact correct.
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Sizes of the chunks.The first thing we require to turn this analogy into a rigorous proof is
an upper bound on the sizes of the chunks. We find it convenient to reduce the question to the
distribution of the gaps betweenn points drawn uniformly at random from the interval[0, 1].
There, the probability that two consecutive points enclose a gap of sizea is (1 − a)n, which
yields an upper bound of, say,(2h logn)/n for the largest gap, a.a.s. In the following lemmas, we
put this plan into action.

Let n numbersY1, . . . , Yn be drawn independently uniformly at random from[N ], where
N is a function ofn. Let Sk be thek-th order statistics (i.e.,0 ≤ S1 ≤ · · · ≤ Sn ≤ 1, and
{S1, . . . , Sn} = {Y1, . . . , Yn}) and setS0 := 0 andSn+1 := N .

We determine the distribution ofSk+1 − Sk. This can be done directly, but it can also
easily be derived from the Bapat-Beg theorem, of which the following is a special case (see the
appendix for a proof).

Lemma 9.6. LetX1, . . . , Xn be points drawn independently uniformly at random in[0, 1] and
denote byS′

k thek-th order statistics. WithS′
0 := 0 andS′

n+1 := 1, for eachk = 0, . . . , n, the
distribution ofS′

k+1 − S′
k is as follows:P[S′

k+1 − S′
k > a] = (1− a)n. �

For the discrete version we obtain the following.

Lemma 9.7. For everya > 0, we have

P[Sk+1 − Sk > aN
n ] ≤ e−a+O(n/N),

(with an absolute constant in theO(·)).
PROOF. LetX1, . . . , Xn be drawn independently uniformly at random from[0, 1]. We can

assume that theY s are theXs multiplied byN and then rounded up:Yj = ⌈NXj⌉. We also
assume that the permutation taking theXs to theS′s is equal to the permutation taking theY s
to theSs (this condition makes sense when twoY s coincide). By Lemma9.6, we conclude that

P[Sk+1 − Sk > aN
n ] ≤ P[S′

k+1 − S′
k > (aNn − 2)/N ]

= (1− (a/n − 2/N))n ≤ e−a+2n/N .

�

From this, we conclude the following.

Lemma 9.8. Let ann-subsetR be drawn uniformly at random from all then-subsets of[N ],
anda > 0. The probability that there are⌈aN/n⌉ consecutive numbers not inR is at most
(n+ 1)e−a+O(n/N).

PROOF. Letb := ⌈aN/n⌉, and letY1, . . . , Yn be drawn independently uniformly at random
from [N ]. Let A be the event that theYj ’s are all distinct,Ā its complement, and letB be the
event that there areb consecutive numbers not containing any of theYj ’s. SinceP(B) is a
convex combination ofP(B|A) andP(B|Ā), andP(B) ≤ (n+1)e−a+O(n/N) by Lemma9.7,
this upper bound must also be true for the smaller of the two conditional probabilities. But,
clearlyP(B|A) ≤ P(B|Ā). �

We can now prove the upper bound on the sizes of the chunks.

Lemma 9.9. Let ω
h−→ ∞ arbitrarily slowly. If n is the number of red vertices iñGC at the

completion of Phase II of the algorithm, a.a.s. ash → ∞, there is no chunk with size larger
than6(ω + log n)h/n.

PROOF. Choose an arbitraryx ∈ C. By Lemma9.4, the conditions of Lemma9.8 are
satisfied if we letn := r+x (T ) andN := |Vx \Rx(0)|. The vertices inVx \Rx(0) are numbered
in the following way.
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For each cycle of̃GC , choose an orientation. The numbers associated to the vertices in the
intersection ofVx\Rx(0) and this cycle are then taken consecutively: starting with the vertex in
Vx\Rx(0) which, in positive orientation, is next to theR(0)-vertex of the cycle, and continuing
to number in positive orientation.

If there is a path iñGC of length greater than6(ω + logn)h/n not containing a red vertex,
then there is a gap in[N ] larger than(ω + log n)N/n. (Notice that every third vertex of the
path belongs toVx. The factor 2 comes from the left and right end strips, i.e., the vertices
which are close to theR(0)-vertex on a cycle but which do not have consecutive numbers.) By
Lemma9.8, the probability of this happening is at most

(n+ 1) e−ω−log n+O(n/N) = n+1
n e−ω+O(1) = o(1).

�

Bounding the expected number of cycles inH. We now come to the classical first-
moment argument which shows that, a.a.s., our random multi-graphH has no cycles. For
the remainder of this section, we condition on the event that the algorithm doesnot fail before
Step (5), and that no two adjacent vertices have been coloured red (cf. Lemmas9.3 and9.5
respectively).

Lemma 9.10.The probability that the edge set ofH contains a fixed setF of edges with|F | = ℓ
is at most

O

(
ℓ!

(
m

ℓ

)
log2ℓ n

n2ℓ

)
.

PROOF. Recall thatn denotes the number of vertices ofH, which is equal to the number
of chunks inG̃C . This is equal to the number of red vertices at the end of Phase II, which
is Θ(h1/3). The numberm of edges ofH is equal to the numberp(T ) of pale vertices after
termination of Phase II, which isO(log2 h). The edges come in six different types, depending
on which fibreVy, y ∈ S, contains the corresponding pale vertex, and also which fibres contain
the end-vertices of the two non-exposed edges adjacent to the pale vertex.

For each edge ofH, one by one, we draw the two end-vertices one by one. An edge
corresponding to a pale vertexv of G̃ connects two fixed vertices ofH if the two yet unexposed
edges incident tov end turn out to be contained in the chunks corresponding to the fixed vertices
of H. Since the sizes of the chunks are a.a.s.O(h log2 n/n) by Lemma9.9, and the number of
possible neighbors ofv is betweenh andh − n −m + O(1) = Θ(h), the probability that the

edge ofH connects the two fixed vertices isO( log
2 n

n2 .
From this, the statement of the lemma follows. �

Now we adapt the classical first-moment calculation to prove that there are no cycles inH,
and therefore, no cycles in the graph induced on uncoloured vertices inStep (7).

Lemma 9.11. A.a.s.H contains no cycles.

PROOF. By Lemma9.10, the expected number of cycles of lengthℓ ≥ 1 is

∑

C cycle
|C|=ℓ

P[C ⊆ H] = O

((
n

ℓ

)
ℓ!

(
m

ℓ

)
log2ℓ n

n2ℓ

)
.
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Summing over all possible values ofℓ, we obtain an upper bound for the expected number of
cycles inH: With t := (C log2 n)/n for a suitable constantC, we have

m∑

ℓ=1

(
n

ℓ

)
ℓ!

(
m

ℓ

)
log2ℓ n

n2ℓ

≤
m∑

ℓ=1

(
m

ℓ

)
tℓ = −1 + (1 + t)m ≤ −1 + emt =

= −1 + e
(C log4 n)/n = o(1).

�

9.5. Conclusions

The argument for 3-colourability of random lifts ofK5\e in this manuscript can be extended
to a more general class of base graphs. LetG := Gk,s be a graph obtained by joining a stable
setS of sizes to a cycleC of sizek, wherek ≥ 3 ands ≥ 1. Fork = 3 ands = 2 we recover
K5 \ e. The proof of Theorem9.1extends with hardly any changes to the following.

Theorem 9.12.The chromatic number of a random lift ofGk,s is a.a.s. three.

It is known that the chromatic number of random 4-regular graphs (with uniform distri-
bution) is three [SW07]. Even though random lifts ofKd+1 have some similarity to random
d-regular graphs, adapting the methods of the latter to obtain results for random lifts of Kd+1

appears to be a challenging task.

Appendix: Distribution of the gaps betweenn points drawn in [0, 1]

As mentioned above, Lemma9.6 is a special case of the Bapat-Beg theorem. For the sake
of completeness, we give an elementary proof.

PROOF OFLEMMA 9.6. Clearly,min(X1, . . . , Xn) has cumulative distribution function
t 7→ 1− (1− t)n. This settles the easy cases whenk = 0 or, k = n.

Partitioning
⊗n

j=1[0, 1] into n! sets we need to compute

(51) P[S′
k+1 − S′

k ≤ a] = n!

∫

Rn

1{0≤pr1≤···≤prn≤1}1{prk≤prk+1≤prk +a} dλ
n.

Denoting

v(ℓ, t) :=

∫

Rℓ

1{0≤pr1≤···≤prℓ≤t} dλ
n =

tℓ

ℓ!

we have that (51) is equal to

(52)
∫ 1

0

∫ 1

0
v(s, k − 1)v(1− t, n− k − 1)1s≤t≤s+a dt ds =

=

∫ 1

0
v(s, k − 1)

∫ min(1,s+a)

s
v(1− t, n− k − 1) dt ds =

=
1

(k − 1)!(n− k − 1)!

∫ 1

0
sk−1

∫ min(1,s+a)

s
(1− t)n−k−1 dt ds
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We evaluate the inner integral
∫ min(1,s+a)

s
(1− t)n−k−1 dt =

=

∫ min(1,s+a)

s
(1− t)n−k−1 dt =

=

{
1

n−k (1− s)n−k if s ≤ 1− a
1

n−k (1− s)n−k − 1
n−k (1− a− s)n−k if s ≥ 1− a.

Then the integral in (52) (without the factorial factor) becomes

1

n− k

∫ 1

0
sk−1(1− s)n−k ds− 1

n− k

∫ 1−a

0
sk−1(1− a− s)n−k =

= −(k − 1)!(n− k − 1)!

n!
(0− 1) +

(k − 1)!(n− k − 1)!

n!
(0− (1− a)n) =

=
(k − 1)!(n− k − 1)!

n!
(1− (1− a)n).

Hence, (51) is equal to

n!
1

(k − 1)!(n− k − 1)!

(k − 1)!(n− k − 1)!

n!
(1− (1− a)n) = 1− (1− a)n.

�



CHAPTER 10

Random 3-SAT with interval constraints

Jointly with
Kathrin Ballerstein (ETHZ)

Abstract. In signedk-SAT problems, one fixes a setM and a setS of subsets ofM ,
and is given a formula consisting of a conjunction ofm clauses, each of which is a
disjunction ofk literals. Each literal is of the form “x ∈ S”, whereS ∈ S, andx is
one ofn variables.

For Interval-SAT (iSAT),M is an ordered set andS the set of intervals inM .

We propose an algorithm for3-iSAT, and analyze it on uniformly random formu-
las. The algorithm follows the Unit Clause paradigm, enhanced by a (very limited)
backtracking option. Using Wormald’s ODE method, we prove that, ifm/n ≤ 2.3,
with high probability, our algorithm succeeds in finding an assignment of values to
the variables satisfying the formula.

10.1. Introduction

LetM be a (usually finite) set,S a set of subsets ofM , andX a set of variables. A(signed)
literal is the pair(x,S) ∈ X × S, which we will denote asx ∈ S, and for a positive integer
k, a k-clause(or simply clause) is the disjunction (∨) of at mostk literals. The conjunction
(∧) of finitely manyk-clauses is called thesignedk conjunctive normal form (k-CNF). In this
setting the central question is thesignedk-satisfiability problem, or signedk-SAT, which asks
for a satisfyinginterpretation, that is, an assignment of values to the variables such that in each
clause there is at least one literal(x,S) for whichx takes a value inS.

This setting includes as a special case the classical satisfiability (SAT) problem. There, one
chooses forM the 2-element set{TRUE, FALSE} andS = {{TRUE}, {FALSE}}. In caseM is
an ordered set (a chain) and the setS is the set of all intervals inM , we speak ofInterval SAT,
or iSAT. In our contribution, we setM := [0, 1], because this includes all iSAT settings with
finiteM . In particular, we consider formulas of the type

t∧

i=1

∨

j∈Ji

xj ∈ Iij ,

where, for alli = 1, . . . , t, Ji, with |Ji| ≤ 3, is an index set of variables inX, andIij ⊆ [0, 1]
are intervals for alli andj. Then, an interpretation of a clausei is satisfying if there is a variable
xj taking a value in the intervalIij . Identifying a satisfying interpretation of the complete 3-
CNF is related to the study of random interval graphs [Sch88, JSW90]. Our notation and
terminology on signed SAT follows [CCHS10].

Signed SAT problems originated in the area of so-called multi-valued logic [Lu20], where
variables can take a (usually finite) number of so-calledtruth values, not justTRUE or FALSE.
Work on signed CNF formulas started in earnest with the work of Hähnle and Manỳa and their
coauthors. We refer the reader to the survey paper [BHM00b], and the references therein.

The motivation for studying signed formulas was to extend algorithmic techniques devel-
oped for deductive systems in multi-valued logic to better cover practical applications [H9̈1].
Indeed, on the one hand, a number of papers show how combinatorial problems can be solved

121
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using signed SAT algorithms [BM99b, BCF+01, FP01, BMC+07]; on the other hand, a large
number of heuristic and exact algorithms have been studied (see [AM03, Bri04] and the ref-
erences therein), and a number of polynomially solvable subclasses of signed SAT have been
identified [EIM94, BHM00b, Man00, BHM00a, ABCM04, AM03, CCHS10]. While in the
works of Manỳa and his collaborators, order-theoretic properties of the ground setM are ex-
ploited to make conclusions on the complexity of signed SAT, Chepoi et al. [CCHS10] com-
pletely settle the complexity question in the general case by reverting to combinatorial proper-
ties of the set systemS. In particular, they prove that: signedk-SAT, k ≥ 3, is polynomial, if⋂

S∈S S 6= ∅ and NP-complete otherwise; signed 2-SAT is polynomial if, and only if,S has
the Helly property (if no two sets in a subfamily are disjoint, then the subfamily hasnon-empty
intersection), and NP-complete otherwise.

For the case whenS has the Helly property, Chepoi et al. give a non-satisfiability certificate
for signed 2-SAT in the spirit of Aspvall, Plass, and Tarjan’s famous result for classical 2-
SAT [APT79].

Most applications and a great deal of the earlier complexity results [BHM00b] focus on
regular signed SAT, whereM is a poset, and the formulas may only involve sets of the form
S = {j | j ≥ i} or S = {j | j ≤ i}. Regular iSAT (or just regular SAT) is regular signed SAT
for posetsM which are chains.

In particular, for regular iSAT, random formulas have been investigatedfrom a heuristic
point of view. Manỳa et al. [MBEI98 ] study uniformly generated random regular 3-iSAT in-
stances, and observe a phase transition similar to that observed in classical SAT (see [AP04]
and the references therein): (i) the most computationally difficult instancestend to be found
near the threshold, (ii) there is a sharp transition from satisfiable to unsatisfiable instances at
the threshold and (iii) the value of the threshold increases as the number of truth values consid-
ered increases. Their results are confirmed and extended by further papers exploring uniformly
random regular 3-iSAT instances [BM99a, BHM00b, BMC+07].

Further, in [BM99a, BMC+07] a bound on the ratiom/n is given, beyond which a random
formula is with high probability (whp) unsatisfiable. To our knowledge, however, ours is the
first rigorous analysis of an algorithm for random signed SAT.

Our interest in the particular version of signed SAT arises from applications in computational
systems biology, where iSAT yields a generalization of modeling with Boolean networks [Kau69],
where biological systems are represented by logical formulas with variables corresponding to
biological components like proteins. Reactions are modeled as logical conditions which have to
hold simultaneously, and then transferred into CNF. The model is widely usedby practitioners
(see e.g. [Dow01, KSRL+06, HNTW09] and the references therein). Often, though, this binary
approach is not sufficient to model real life behavior or even accommodate all known data. Due
to new measurement techniques, a typical situation is that an experiment yieldsseveral “activa-
tion levels” of a component. Thus, one wants to make statements of the form: If the quantity
of componentA reaches a certain threshold but does not exceed another, and componentB
occurs in sufficient quantity, then another componentC is in a certain frame of activation lev-
els. The collection of such rules accurately models the global behavior of the system. We refer
to [Bal12] for details of models and applications.

In this paper we present and analyze an algorithm which solves uniformly random 3-iSAT
instances with high probability, provided that the ratio between the numberm of clauses and
the numbern of variables is at most 2.3. Our algorithm is an adaption of the well-known Unit
Clause algorithm from classical SAT [CF86, Ach01], where, in an inner loop, 1-clauses are
treated if any exist, and in an outer loop, a variable is chosen freely and assigned some value.
This Unit Clause approach is enhanced with a “repair” subroutine (a very simple backtracking
mechanism). The algorithm in [FS96] is currently the best known algorithm that succeeds
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with high probability, although other algorithms (e.g., [KKL06 , HS03]) can be outfitted with a
backtracking routine to provide better results. See also [CO10] for generalk → ∞.

Unlike the algorithms in [Ach00, AS00, KKL06 ], we prove that our algorithm succeeds
with high probability. To obtain a whp result, the “repair” subroutine is essential, cf. e.g.,
[FS96], where the range in which the algorithm succeeds increases dramatically,once such a
routine part is added. In the case of iSAT, the repair mechanism needs to be considerably more
subtle than the one in [FS96] for classical 3-SAT.

In the analysis of the algorithm, we use Wormald’s differential equations method [Wor95].
ODE methods have been used for the analysis of algorithms for classical SAT with great suc-
cess [CF86, CF90, FS96, Ach00, AS00]. In our analysis, we combine the idea of Achlioptas
and Sorkin [AS00] to consider as a time step an iteration of the outer loop, but we use Wormald’s
theorem [Wor99] where they use a Markov-chain based approach. The analysis of theinner
loop requires to study the first busy period of a certain stable server system [Ach00, Ach01], or,
in our case, more accurately, the total population size in a type of branchingprocess. The value
2.3 arises from the numerical solution to an initial value problem (IVP). Extending the results
for k-iSAT for k ≥ 4 is conceptually easy; we briefly discuss it in the conclusions.

The outline of the paper is as follows: In the next section, we present ouralgorithm for random
3-iSAT in detail. In Section10.3, we prove some facts about uniformly at random chosen sub-
intervals of[0, 1]. In Section10.4we take a brief excursion to random 2-iSAT as our algorithm
for 3-iSAT ultimately relies on solving a 2-iSAT instance. In Section10.5, we compile the
required facts about total population sizes of a kind of branching system,which are then applied
in Section10.6to the study of the inner loop of our algorithm. Finally, in Section10.7, we prove
the whp result for our algorithm. We raise some issues for future research in the final section.
Several technical arguments have been moved into the appendix.

Throughout the paper, we hide absolute constants in the big-O-notation. If the constant depends
on other parameters, we make this clear by adding an index, e.g.,Oε(·). As customary, we use
the abbreviation iid for “independent and identically distributed” and uar for “uniformly at
random”. Whp and wpp are to be understood forn → ∞, with m = m(n) depending onn.

10.2. An algorithm for random 3-iSAT

In this section, we describe an algorithm which finds a satisfying interpretation if the num-
ber of clauses ism = cn with c ≤ 2.3.

10.2.1. The random model; exposure.For our random model, we assume that each 3-
clause consists of three distinct variables. We choose a formula uar fromthe set of all possible
classical 3-CNF formulas onn variables withm 3-clauses, each containing three distinct vari-
ables. Then, we choose an interval for each literal uar from the subintervals of[0, 1]: We select
uar two pointsx andy from [0, 1] and determine the interval as[a, b] with a = min{x, y} and
b = max{x, y}. In this context, note that due to Scheinerman [Sch88] the endpointsx andy
can be arbitrary reals. In fact, he proves that this strategy is equivalent to choosing2l endpoints
for l intervals uar from the finite set{1, . . . , 2l} without repetition as the probability that all
chosen endpoints from[0, 1] are distinct is1. For the distribution of a random interval[a, b]
chosen asa = min{x, y} andb = max{x, y} for x, y ∈ [0, 1] uar, we find withu, v ∈ [0, 1]

P([a, b] ⊆ [u, v]) = 2 ·P(a ≥ u, b ≤ v) = 2 · (1− u) · v.
As is customary in the context of random SAT, we use the language of “exposing” literals.

Intuitively, the idea is that the information about each literal is written on a cardwhich lies
face down, until the information is exposed. Clearly, the unexposed partof the formula is uar
conditioned on which literals have been exposed and which have not. We refer to the elegant
description in Achlioptas’ paper [Ach01].
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10.2.2. Brief description of the algorithm. The basic framework of our algorithm is the
same as for most algorithms for classicalk-SAT. A formerly unused variable is selected, and a
value is assigned to it. Then, clauses containing the variable are updated: ifthe literal of the
clause involving the variable is satisfied, the clause is deleted; otherwise the literal is deleted
from the clause, leaving a shorter clause. The variable is removed from the set ofunused
variables,and declared aused variable.The algorithm fails if, and only if, it creates an empty
clause.

However, to a certain extent, our algorithm is able to repair bad choices it has made. Thus, it
occasionally only assignstentativevalues to variables. As long as it is not certain that a variable
keeps its tentative value, no deletions of clauses or literals from clauses are performed. Instead,
we assign colors to the clauses, which code the number of satisfied, unsatisfied, and unexposed
literals they contain. The meaning of the colors will be explained in Table1 but at this point
it suffices to know that red clauses correspond to unexposed 1-clauses, i.e., clauses with one
unexposed literal and the variables in any other literal of the clause have tentative values which
render the literals false.

As said before, the basic approach is that of the Unit-Clause algorithm. Theouter loop
of the algorithm will maintain the property that there is no 1-clause. In each iteration of the
outer loop, a variable is selected uar from the set of unused variables. Such a variable selected
in the outer loop is referred to as afree variable.The inner loop is initialized by assigning a
tentative value to this free variable, and then repeats as long as there are red clauses. In each
iteration of the inner loop, a red clause is selected andserviced:the variable contained in the
clause (thecurrent variableof the iteration) is tentatively set to some value in such a manner
that the serviced red clause becomes true. We refer to the variables selected in the inner loop as
constrained variables.

If, during a run of the inner loop, a situation is reached in which it is probable that an empty
clause will be created, it backtracks. This happens when the followingfatality is suffered: The
current variable occurs in another red clause, other than the one serviced. If that happens, there
is a1/3 probability that the two intervals occurring in the two red clauses are disjoint [Sch88],
so that creating an empty clause is inevitable.

For this situation, the inner loop maintains a rooted treeG of decisions it has taken so far.
The nodes of the tree correspond to variables to which tentative values have been assigned and
those which occur in the unexposed part of red or blue2-clauses. The root of the tree is the free
variable with which the run of the inner loop was initialized. The edges correspond to2-clauses.
For every2-clause in which the current variable of an iteration occurs, the unexposed variable is
added as a node and an edge is added connecting the current variable with this new node. Doing
so in every iteration constructs a tree. If the current variable of an iteration occurs in two red
clauses, then this implies that a cycle is closed inG, because there must exist two paths from
x0 to the current variable. The treeG is in detail defined in the algorithm. If a fatality occurs,
the values of the variables along the paths from the root to the serviced literal are changed so
that all2-clauses along the path are fulfilled and only one red clause remains which issatisfied.
Then, all other tentative values are made permanent, and the inner loop is restarted with the new
formula, but this time without a free variable in the initialization. We callPhase Ithe run of the
inner loop before a repair occurs (or if no repair occurs), and asPhase IIto the run of the inner
loop after a repair has been performed. In Phase II, no further repair is attempted. Instead, if
fatalities occur, the inner loop just moves on (without repair). In Phase I, ifa fatality occurs,
there’s the possibility that a repair is not possible. In this case, too, the inner loop just moves
on without repair. In order to be able to refer to these situations in the proofs, we indicate these
positions in the code by the pseudo-command “raise a flag”.

After all red clauses have been dealt with in either Phase I or Phase II, the tentative val-
ues are made permanent, and control is returned to the outer loop, which selects another free
variable, and so on.
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The outer loop terminates, if the number of 2-clauses plus the number of 3-clauses drops
below a certain factorc′ of the number of unused variables. Then, it deletes an arbitrary literal
from every 3-clause and invokes the exact polynomial algorithm by Chepoi et al. [CCHS10] to
decide whether the resulting 2-iSAT formula has a satisfying interpretation. We will prove in
Section10.4that this is always the case if the ratio of the number of resulting 2-clauses over
the number of unused variables is below32 .

The complete algorithm is shown below as Algorithm3 (the outer loop), Algorithm4 (the
inner loop), and Algorithm5 (the repair procedure). Throughout the course of the algorithm,
for i = 0, 1, 2, 3, we denote byYi(t) the number ofi-clauses, and byX(t) the number of
unused variables, respectively, at the beginning of iterationt of the outer loop. Moreover, for
an intervalI, we denote by

(53) x̄(I) := argminx∈I |x− 1/2|
the point inI which is closest to1/2. We refer to the variablexj which is selected in iterationj
of the inner loop as thecurrent variableof that iteration.

Below, we will prove the following fact.

Lemma 10.1.A single run of Algorithm4(including a possible repair and consequent Phase II)
produces an empty clause, only if it “raises a flag”.

The performance of the algorithm on random 3-iSAT instances is analyzedin Sections10.6
and10.7. There, we will prove the following theorem.

Theorem 10.2.Let c := 2.3, and suppose Algorithm3 is applied to a uniformly random iSAT
formula onn variables withm 3-clauses. Ifm ≤ cn, then, whp, Algorithm3 creates no empty
clause, i.e., it finds a satisfying interpretation.

The value2.3 is determined through the numerical solution of an initial value problem. It
corresponds to the point in which the increase in red clauses in each iteration of the inner loop
would become so large that the inner loop will not terminate.

Algorithm 3 UC w/ backtracking (outer loop)

(o-1) Given: 3-CNF-formula; positive constantc′.
(o-2) t := 0
(o-3) WhileY2(t) + Y3(t) > c′X(t):

(o-3.1) Choose a variablex uar.
(o-3.2) InvokeInner loop(Phase I).
(o-3.3) t := t+ 1

(o-4) In every3-clause, remove one literal at random.
(o-5) Invoke Chepoi et al.’s algorithm (cf. Section10.4) for the remaining 2-iSAT formula.

10.2.3. Comparison to algorithms for classical SAT.For classical SAT, if a variablex
is set to a value, the probability that a random literal containingx evaluates to true is1/2 —
independent of the value. As will become apparent in the next section, thisis far from true for
random interval literals. There, the value1/2 is the single, most likely value to be contained
in a random interval (the probability is1/2) and all other values are less likely. Hence, we will
assign1/2 to the variables as long as possible which is for all free variables.

The rationale behind assigning the value1/2 to free variables is two-fold. Firstly, it makes
the analysis a lot more easy than if one tries to find a maximum cardinality subset of literals
containingx all of whose intervals have pairwise non-empty intersection. Secondly, for large
numbers of literals containingx, the maximum cardinality of a subset with pairwise intersecting
intervals is asymptotically attained by taking all literals with intervals containing1/2 (this is
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Color Meaning

Uncolored All literals in the clause are unexposed.
Black All literals are exposed.
Red The clause has precisely one unexposed literal. The tentative valuesof any other

variables in the clause make the corresponding literals false. In particular,unex-
posed 1-clauses are red.

Blue The clause contains precisely one unexposed literal and at least one exposed lit-
eral which evaluates to true for the tentative value of its variable.

Pink The clause is a 3-clause, precisely one of its literals is exposed, and this literal
evaluates to false for the tentative value of its variable.

Turquoise The clause is a 3-clause, precisely one of its literals is exposed, and this literal
evaluates to true for the tentative value of its variable.

TABLE 1. Semantics of the colors of the clauses.

Theorem 4.7 of Scheinerman’s paper [Sch88]). This, in particular, implies that assigning an
interval of values to a variable does asymptotically not lead to a satisfying interpretation of the
formula which is not satisfying if assigning the single value1/2.

The situation for constrained variables is similar, but a bit more complicated. Forcon-
strained variables, we are free only to choose the value for the variable within the intervalI for
the literalL = x ∈ I which we wish to satisfy. Unlike to classical SAT, where this does not
change the probability that other random literals containingx are satisfied, depending onI, this
probability may change considerably. Moreover, for two literals containingx, the two events
of both being satisfied simultaneously withL are not independent.

However, an adaption of Scheinerman’s argument mentioned above shows that, asymptoti-
cally, the best choice is to take the pointI which is closest to1/2 as we do in our algorithm.

Concerning the backtracking part of the algorithm, we would like to point outthe difference
to the approach in [FS96]. If the (essentially identical) fatality is suffered, a very elegant remedy
is to simply flip the values of all variables with tentative values: if the tentative value of a
variable isTRUE, make itFALSE, and vice versa. Needless to say, for variable values in a larger
set, there is no obvious choice for the new value of a variable. Thus, in our approach, we
have to choose the variable values in a smart manner, with the single aim to undothe fatality.
Namely, those variables that led to the fatality are assignedx̄(I) as described inRepair Path
(Algorithm 5).

10.2.4. Proof of the “raise a flag”-lemma.

PROOF OFLEMMA 10.1. Assume that Algorithm4 does not “raise a flag”.
The only place where a 0-clause can be generated without having “raised a flag” is in the

final step4 of the repair, Algorithm5. Clearly, none of the clauses on the path will become
empty.

Moreover, setting the final variable,xk, cannot create an empty clause, because of the
conditions in steps (i-9.1) and (i-9.2).

For a 3-clause to become empty, it is necessary that when the repair is invoked in Algo-
rithm 4, all three of its literals have been exposed (possibly in the same iteration). Inother
words, it must have been red, blue, or black in step (i-9.1), a contradiction.

For a 2-clause to become empty, both literals must have been exposed, one of them possibly
in the iteration where the repair occurs. Moreover, if it was blue, the valueof the variable
satisfying one of its literals must change during the repair. In other words,the following three
scenarios are possible:
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Algorithm 4 Inner loop

(i-1) Given:
• In Phase I: formula consisting of 2- and 3-clauses only; a (free) variablex0.
• In Phase II: formula consisting of 1-, 2- and 3-clauses.

(i-2) j := 0
(i-3) Initialize: Expose the occurrences ofx0 in all clauses.

• In Phase Ionly:
(i-3.1) Tentatively setx0 to 1/2.
(i-3.2) Initialize the graphG := ({x0}, ∅).
• In Phase IIonly:
(i-3.1) Color all 1-clauses red.

(i-4) Expose the intervals associated withx0. Color clauses containingx0 according to Tab.1.
(i-5) j := j + 1
(i-6) If there is no red clause, exit inner loop: Set all variables to their tentative values; remove

satisfied clauses and remove violated literals from their clauses; return to outer loop.
(i-7) Select a red clauseCj at random; letLj be the unexposed literal inCj ; expose current

variablexj of Lj
(i-8) Expose all occurrences ofxj in colored clauses.
(i-9) If xj is contained in a red clause other thanCj :

• In Phase Ionly:
(i-9.1) If there is a red, blue, or black 3-clause: “raise a flag”!
(i-9.2) If the graphG contains a cycle, orxj is in a blue clause: “raise a flag”!
(i-9.3) If xj occurs in three or more red clauses (includingCj): “raise a flag”!
(i-9.4) Otherwise:Phase Iis completed. LetC′ be the unique red clause different

from Cj containingxj in a literalL′ = xj ∈ J′. Repair the unique path
betweenx0 andCj ; then initiatePhase II.

• In Phase IIonly: “raise a flag”!
(i-10) Expose all occurrences ofxj in all uncolored clauses.
(i-11) For every uncolored 2-clausexj ∈ I ∨ y ∈ J containingxj , add toG the vertexy and

the edgexj ∈ I ∨ y ∈ J betweenxj andy.
(i-12) Tentatively setxj to x̄(Ij).
(i-13) Update the colors of all clauses containingxj .
(i-14) Goto step (i-5).

Algorithm 5 Repair path

(r-1) Given: Set of colored 1-, 2- and 3-clauses; a literalL′ = xk ∈ J′; a path of the form
x0, x0 ∈ J0 ∨ x1 ∈ I1, x1 ∈ J1 ∨ x2 ∈ I2, . . . , xk−1 ∈ Jk−1 ∨ xk ∈ Ik;

(r-2) Forj = 0, . . . , k − 1:
(r-2.1) Setxj (permanently) tōx(Jj)

(r-3) Setxk (permanently) tōx(J′)
(r-4) Set all variables from Phase I, except those which have just been set in (r-2) and (r-3), to

their tentative values; remove satisfied clauses and remove violated literals from their
clauses.

(i) it was black before the repair was invoked
(ii) it was red before the repair was invoked, but it containsxj

(iii) it was blue before the repair was invoked, it is of the formxi ∈ Ii ∨ xj ∈ Ij for some
i < j, andxi is one of the variables set in step (r-2) of Algorithm 5.
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In case (i), if the black 2-clause becomes an empty clause, either it was redwhen its final
literal was exposed, a contradiction, or it was blue, which means that at least one of its variables
lies on the path which is repaired. If the whole clause lies on the path, we havealready noted
that it cannot become empty. If only one of its variables is on the path, then it must be an
edge in the tree having one end vertex on the path and the other lying furtheraway from the
root than the path. The fact that it is black means that the variable which is not on the path
was the current variable of some earlier iterationi < j. But then the corresponding literal was
either the selected literalLi, in which case it was satisfied by the tentative value ofxi, or the
if-condition in step (i-9) for iterationi held, which is a contradiction (either a repair occurred,
or the algorithm has “raised a flag”).

In case (ii), if the 2-clause is on the path, it does not become empty. If it is theunique other
red clauseC′, then it will be satisfied in the initialization of Phase II.

Case (iii), is not possible because of the condition in step (i-9.2) �

10.2.5. Random formulas.The following easy facts (see the discussion at the beginning
of this section) underlies the analysis of the algorithm on random formulas.

Lemma 10.3. If Algorithm3 is invoked with a uar random 3-iSAT formula, then

(a) at the beginning of each iteration of the outer loop, the current formulais distributed uar
conditioned on the number of unused variables, 2-clauses, and 3-clauses;

(b) at the beginning of each iteration of the inner loop, the current formulais distributed uar
conditioned on the number of unused variables, 1-clauses, 2-clauses, 3-clauses, and the
colors of the clauses.

(c) at the beginning of Phase II in the inner loop, the current formula is distributed uar not
only conditioned on the number of unused variables, 1-clauses, 2-clauses, 3-clauses, the
colors of the clauses, and the listL of clauses which are known not to containx0 and the
list of clauses in which an occurrence ofx0 has been exposed.

By Lemma10.3, the history of the random process defined by the outer loop, that is, for
eacht, the state of the formula and all other information relevant to how the algorithm will
proceed, available at the beginning of iterationt, is completely determined by

(54) H (t) := (X(t), Y2(t), Y3(t));

in particular it is Markov.

10.3. Computations for random intervals

In this section, we make some computations regarding intervals chosen uar from the subin-
tervals of[0, 1] as described before. We refer to [Sch88, JSW90] for further background.

We aim to study the event̄x(I) ∈ J , with two random intervalsI andJ (x̄ is defined
in (53)). We start with the following observation.

Lemma 10.4([Sch88]). For x ∈ [0, 1] and for a random intervalI, we have

P[x ∈ I] = 2x(1− x).

In particular, the probability that a random interval contains the point1/2 is 1/2.

The cumulative distribution function of̄x(I) can be written down.

Lemma 10.5. For a random intervalI, the random variablēx(I) has cumulative distribution
function

(55) F (t) :=





0 if t ≤ 0

t2, if t < 1/2

1− (1− t)2, if t ≥ 1/2

1 if t ≥ 1.
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PROOF. Direct computation. �

LetX be a random variable with cumulative distribution functionF as in (55), and define

(56) P := 1− 2X(1−X).

Thus, by the previous two lemmas, the probability that, for two random intervalsI andJ we
havex̄(I) ∈ J , is

E(P[x̄(I) ∈ J | P ]) = E(1− P ) = 1−EP.

The following computations are straightforward, see10.8.1.

Lemma 10.6.
(a) EP = 13/24
(b) EP 2 = 3/10 �

Lemma 10.7. For two random intervalsI, J , the following is true.

P[x̄(I) ∈ J ] =
11

24
.

PROOF. Immediate from Lemmas10.4, 10.5, and10.6(a). �

Remark 10.8. It could be interesting to choose the intervals in a different way rather than
uniformly at random, for instance, to reflect certain realistic structures. However, the strategy
of choosing intervals does not change the main analysis of the algorithm. Theonly adaptions
to be made are the previous computations of the probabilities, and thus the new constants need
to be used in the analysis, which can lead to different results.

10.4. 2-iSAT

In this section, we take a brief glance at the situation for random 2-iSAT. The reason is that,
ultimately, our 3-iSAT algorithm reduces the 3-iSAT formula to one with exactly twoliterals
per clause, and then invokes the polynomial time algorithm by Chepoi et al. [CCHS10] to find
a solution. We need to make sure that the resulting random 2-iSAT instance is satisfiable.

For this, we proceed along the same lines as [CR92], using Chepoi et al.’s Aspvall-Plass-
Tarjan-type [APT79] certificate for the non-satisfiability of signed 2-SAT formulas for set sys-
tems satisfying the Helly-property. We describe the certificate now.

For a 2-iSAT formulaF , define a digraphGF which contains two vertices labeledxIt and
xIf , respectively, for every literalx ∈ I occurring inF . For every clausex ∈ I ∨ x′ ∈ I ′ of
F , the digraphGF contains two arcsxIf → x′I′t andx′I′f → xIt. We refer to these arcs as
clause arcs. Moreover, for every two literalsx ∈ I andx ∈ J occurring inF , if I∩J = ∅, the
digraphGF contains the two arcsxIt → xJf andxJt → xIf . These arcs we calldisjointness
arcs.

For a literalx ∈ I occurring inF , we refer to the vertexxIt as apositivevertex, and to
xIf as anegativevertex. Moreover, we say that these two vertices arecomplementsof each
other; in other words, the complement of the (positive) vertexxIt is the (negative) vertexxIf
and vice versa. Note that arcs originating from negative vertices are clause arcs, while arcs
originating from positive vertices are disjointness arcs.

Chepoi et al. relate the satisfiability ofF to the strongly connected components (SCCs) of
GF .

Proposition 10.9(Aspvall-Plass-Tarjan-type certificate, [CCHS10]). The formulaF is satisfi-
able if, and only if, no SCC ofGF contains a pair of vertices which are complements of each
other.

Remark 10.10. A path inGF of lengthℓ contains⌊l/2⌋ or ⌈l/2⌉ disjointness arcs, and no two
of them are incident.
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Chepoi et al. also give an algorithm which determines, in polynomial time, whether a for-
mulaF is satisfiable, and if it is, produces a satisfying interpretation. We refer to their paper
for details.

From Proposition10.9, we obtain the following corollary.

Corollary 10.11. If F is not satisfiable, thenGF contains a bicycle, i.e., a directed walk

u0 → · · · → uℓ+1,

with at least one clause arc, and the following properties:

(a) the literals in the verticesu1, . . . , uℓ are all distinct;
(b) the literals in the verticesu0 anduℓ+1 occur among the literals in the other vertices;
(c) the clauses in the arcs are all distinct.

PROOF. For a vertexv, we denote its complement bȳv. By what we said about the different
types of arcs, on every path fromv to v̄, there is at least one clause arc.

Choose an SCC and take a pair of complementing verticesv and v̄ in the SCC such that
the distance fromv to v̄ in GF is minimal. Then, on the shortest pathP from v to v̄, no literal
appears twice. Denote byL the literal definingv andv̄.

Now take a shortest pathQ in GF form v̄ to v. If there is no literal other thanL which
appears twice onP ∪ Q, thenP ∪ Q is a bicycle starting and ending inv. On the other hand,
if there is a literalL′ other thanL which appears twice onP ∪ Q, then the desired bicycle is
constructed by taking the pathP from v to v̄, and then the pathQ until the first vertex whose
literal already occurred earlier. �

Suppose a 2-iSAT formula withn variables andm = cn clauses is drawn uniformly at
random from the set of all such formulas (with the intervals all in[0, 1]). We estimate the
asymptotic probability that such a formula is satisfiable.

Proposition 10.12.Let c′ < 3/2. If m ≤ c′n then, whp asn → ∞, a randomly drawn 2-iSAT
instance is satisfiable.

The proof mimics that of Chv́atal & Reed [CR92] for the classical 2-SAT very closely; we
include it here just to point out where the number3/2 comes in.

PROOF. Given a fixed bicycleu0 → · · · → uℓ+1 with r clause arcs, the probability that it
occurs inGF is at most (

m(
n
2

)
)r

pr−1,

wherep := 1/3 is the probability that two independently chosen intervals are disjoint [Sch88].
Hence, the expected number of bicycles withr clause arcs occurring inGF is at most

nr−1(r − 1)2

(
m(
n
2

)
)r

pr−1 =
2m

n− 1
(r − 1)2

(
2pm

n− 1

)r−1

.

Thus, the expected total number of bicycles is at most

2m

n− 1

∞∑

r=1

r2
(

2pm

n− 1

)r−1

.

With m ≤ c′n the sum is finite if, and only if,c′ < 3/2 for n → ∞. Thus, in this case, the
probability that a biycle exists isOc′(1). �

Thus, for everyc′ < 3/2, whp, a satisfying interpretation can be found by Chepoi et al.’s
algorithm [CCHS10]. We make no attempt at optimizing this bound as we indeed conjecture
that this is the threshold for 2-iSAT.
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10.5. Total population size of our branching system

As is done in classical SAT, the sub-routine eliminating the unit clauses can beviewed as
a “discrete time” queue in which customers (i.e., unit clauses) arrive per time unit, the number
depending on the customer currently serviced, and the single server, corresponding to one run
of the inner loop of the algorithm, can process at least one customer per time unit. The number
of iterations of the sub-routine then roughly corresponds to the length of the (first) busy period
of the server.

Here, since, we are only interested in the length of the first busy period, the “queue” is
really a branching system, for which we need to know the total number of individuals which
are born before extinction. Compared to classical SAT, the interval-version poses several small
challenges which we address in this section.

Let a be a non-negative integer, andB(j), j = 0, 1, 2, . . . , random variables taking values
in the non-negative integers. We say the following sequence of random variablesQ(j) adiscrete
queue:

Q(0) = 0

Q(1) = a

Q(j + 1) =

{
a, if Q(j) = 0

Q(j)− 1 +B(j + 1) if Q(j) > 0

The numberQ(j + 1) is the number of individuals of the branching system after thejth indi-
vidual has reproduced and died.

Denote byZ the length of the first busy period of the server, that is, the total population
size of the branching process:

Z := sup{j ≥ 0 | Q(i) > 0 ∀i = 1, . . . , j} = inf{j > 0 | Q(j) = 0} − 1.

A straightforward adaption of the branching-process based textbook arguments for continuous-
time M/G/1-queues gives the following (see10.8.2).

Lemma 10.13.Suppose theB(j), j = 1, 2, . . . , are iid with meanλB and common probability
generating functiong

B
. The probability generating functionh ofZ satisfies

(57a) h
(

y
g
B
(y)

)
= ya

for everyy for which the power seriesg
B
(y) converges and does not vanish. In particular, if

λB < 1, we obtain

(57b) EZ =
a

1− λB
.

Moreover, we have

(57c) P[Z ≥ α] ≤ g
B
(y)α

yα−a

for all α > 0 andy > 0 with y ≥ g
B
(y). �

Remark 10.14. Since we are only interested in the first busy period, we make the following
modification to the definition ofQ: If Q(j) = 0 but j > 0, then we letQ(j + 1) = 0 (and not
Q(j + 1) = a as above). This makes some inequalities less cumbersome to write down.

10.5.1. Bounding the tail probability for iid binomial B. Let P be a random variable
with values in[0, 1]. We say that a random variableB has binomial distribution with random
parameterP , orBin(m,P ), if

P[B = k | P = p] =

(
m

k

)
pk(1− p)m−k.
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In our settingn is a (large) integer, andm = m(n) is an integer depending onn. Define
λ = λ(n) := m

n . LetP be as in (56), and suppose thatB isBin(m, 2P/n).

Lemma 10.15. If λ(y − 1) ≤ 1/2 we have

g
B
(y) ≤ exp

(
13
12λ(y − 1) + 6

5λ
2(y − 1)2

)

PROOF. We haveet ≤ 1 + t+ t2 for all t ≤ 1. For ease of notation, letτ := EP = 13/24
andτ2 := E(P 2) = 3/10, by Lemma10.6. Since(y − 1)λ2P ≤ 1 with probability one, the
following estimate holds:

g
B
(y) =

m∑

k=0

E

((
m
k

)
pk(1− 2P

n )m−k
)
= E

( m∑

k=0

(
m
k

)
pk(1− 2P

n )m−k

)

= E
(
(1 + (y − 1)2Pn )m

)
≤ E

(
e2(y−1)λP

)
≤ E

(
1 + 2(y − 1)λP + 4(y − 1)2λ2P 2

)

= 1+2τ(y−1)λ+4τ2(y−1)2λ2 ≤ e2τ(y−1)λ+4τ2(y−1)2λ2
= exp

(
13
12λ(y−1)+6

5λ
2(y−1)2

)
,

as claimed. �

Now suppose thatP (j), j = 1, 2, . . . , are iid random variables distributed asP defined
in (56), and thatB(j), j = 1, 2, . . . , are iid random variables distributed asBin(m, 2P (j)/m).

Lemma 10.16.For everyε > 0 there existδ > 0 andC ≥ 1 such that, if1/2 ≤ 13
12λ ≤ 1 − ε,

the following is true.
For all α ≥ Ca, there exists ay with 1 < g

B
(y) < y ≤ 2 such that

(58)
g
B
(y)α

yα−a
≤ e−δα.

PROOF. For ease of notation, letu := y − 1 andr := 13
12λ, so that1/2 ≤ r ≤ 1 − ε. If

0 < u < 1−r
r ≤ 1, by Lemma10.15, we may estimate

g
B
(y) ≤ exp

(
13
12λu+ 6

5λ
2u2
)
,

and thus obtain

P[Z ≥ α] ≤ exp
(
α(1312λu+ 6

5λ
2u2)− (α− a) log(u+ 1)

)
.

Using Lemma10.6, we write the exponent as

(∗) αru+ 6·122

5·132αr
2u2 − (α− a) log(u+ 1).

In order to find au minimizing (∗), we take the derivative and solve the resulting quadratic
equation

(∗∗) 123

5·132 r
2u2 +

(
r + 123

5·132 r
2
)
u− (1− r) + a/α = 0

The value ofu which works is the larger one of the two roots:

(∗∗∗) ur :=
−
(
1 + 123

5·132 r
)
+

√(
1− 123

5·132 r
)2

+ 4·123

5·132

2·123

5·132 r
−O(a/α),

with an absolute constant in theO(·) (see10.8.3for the computation). The numerator is greater
than zero if, and only if,4 · 123

5·132 r < 4·123

5·132 , which is equivalent tor < 1. Thus, there exists a
C depending only onr, such thatur > 0 wheneverα ≥ Ca. Moreover, by lettingu = 1−r

r

in (∗∗), we see thatur < 1−r
r ≤ 1, as required. Lettingu = ur in (∗), we obtain, forα ≥ Ca,

(∗∗∗∗)
(
δr(ur) +O(1/C)

)
α,
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with an absolute constant in theO(·), where

δr(u) = ru+ 6·122

5·132 r
2u2 − log(u+ 1)

(see10.8.3for the computation). We haveδr(ur) < 0, becauseδr(0) = 0 and since, by the
choice ofur, the derivative ofδr in the open interval[0, ur[ is negative. This also implies that
y > g

B
(y). Let

δ∗ := max
{
δr(ur)

∣∣ 1/2 ≤ r ≤ 1− ε
}
< 0,

Finally, increaseC, if necessary, to take care of the dependence onO(1/C) in (∗∗∗) and (∗∗∗∗),
and defineδ := −δ∗/2. This completes the proof of the lemma. �

Lemma 10.17. If λ ≤ (1− ε)1213 , then

EZ =
a

1− 13
12λ

(59a)

and there existδ > 0 andC ≥ 1 depending only onε, such that for allα ≥ Ca we have the
upper tail inequality

P[Z ≥ α] ≤ e−δα.(59b)

PROOF. Equation (59a) is directly from Lemma10.13.
Lemmas10.13and10.16together imply the tail inequality in the case when13

12λ ≥ 1/2. For
smaller values ofλ, we just note that increasingλ increases the length of the first busy period,
so that the probability forλ := 6/13 gives an upper bound for the probability for smaller values
of λ. �

10.5.2. Not-independent binomial.The arrivals at the queue in the context of our algo-
rithm are not completely independent. Here we deal with the small amount of dependence.

We now describe what kind ofB(j) we allow. The setting is thatn is a (large) integer, and
thatm = m(n) = Θ(n). Let r > 1 and

(60) z = zr = zr(n) :=
r
δ log n,

whereδ is as in Lemma10.17. Suppose thatM(j), N(j) are random variables satisfying

n− j ≤ N(j) ≤ n+ j for all j,(61a)

0 ≤ M(j) ≤ m for all j,(61b)

with probability one, and

m− ≤ M(j) ≤ m+ for all j = 1, . . . , z(61c)

with probability at least1−O(n−r). Let theB(j) be distributed asBin(M(j), P
N(j)) for all j.

More accurately, we assume that there is an iid family ofP (j), j = 1, 2, 3, . . . , distributed asP
above, and an independent family of random variablesU(j, i), j = 1, 2, 3, . . . , i = 1, 2, 3, . . .
each having uniform distribution on[0, 1], and that the joint distribution of theB(j) is the same
as for the family of sums

(62)
M(j)∑

i=1

I

[
U(j, i) ≤ P (j)

N(j)

]
.

TheP (j) andU(j, i) are assumed to be jointly independent, but we make no assumptions about
independence regarding theM(j) andN(j) among themselves or from theU(j, i) andP (j).
However, we do assume thata, theM(j), and theN(j) are such that

(63) a+
∞∑

j=1

B(j) = O(n)
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holds with probability one.

Lemma 10.18.Letλ± = λ±(n) := m±

n−(±z) , and supposez ≥ Ca. If

(64) λ+ ≤ (1− ε)1213 ,

then with theδ andC from Lemma10.17, the following holds for large enoughn:
a

1− 13
12λ

−
−O(n1−r) ≤ EZ ≤ a

1− 13
12λ

+
+O(n1−r);(65a)

and for allα ≥ Ca

P[Z ≥ α] ≤ e−δα +O(n−r).(65b)

The proof can be found in the appendix:10.8.4.

Remark 10.19. There is no danger in assumingδ ≤ 1 andC ≥ 1, and we will do that from
this point on.

10.6. The inner loop

Here we analyze Algorithm4. Conditioning onX(t), Y2(t), andY3(t), we analyze the
changes of the parametersX, Y2, andY3 during thet+1st run of the inner loop, and bound the
probability that an empty clause is generated.

From now on,n andm denote the number of variables and clauses, respectively, in the
initial random CNF formula, withm = cn for some constantc. We assumec ≤ 10, to get rid
of some of the letterc in the expressions below. For anyε > 0, we say that(x, y2, y3) ∈ R3 is
ε-good, if

(66) εn < x and
y2
x

< (1− ε)
12

13
,

and thatH (t) is ε-goodif (X(t), Y2(t), Y3(t)) is ε-good.

10.6.1. Setup of the queues for Phases I and II.We now define the queues corresponding
to the Phases I and II. We will suppress the dependency of the random processes onH (t) in
the notation.

We define the queuesQI andQII for the Phases I and II, respectively, by modifying Algo-
rithm 4 a little bit. We will then analyze (the original) Algorithm4 with the help of the queues
QI andQII defined via this modification. The changes we make are the following: replace
step (i-7) by

(i-7’) If there are unused variables left, choose one uar;

and step (i-8) by

(i-8’) Expose all occurrences of the current variablexj in clauses colored
with a color different from red;

moreover, in the modification, we do not initiate a repair (since that would kill thequeueing
process).

Since, with these modifications, red clauses can contain used variables, it ispossible to run
out of variables before running out of clauses. It can be easily verified that this can only happen
when all clauses are red. Hence, in this situation, the modified algorithm will just eat up the red
clauses one per iteration.

In the Phase-I queueQI , the number of customers arriving in the first time interval,AI , is
the number of red clauses generated by setting the free variablex0 (tentatively) to1/2. Thus,
AI is distributed asBin(Y2(t), 1

X(t)). For the iterationsj = 1, 2, 3, . . . , we find thatBI(j + 1)

is the number of uncolored 2-clauses which become red, plus the number ofpink 3-clauses
which become red, when setting the current variablexj (tentatively) tox̄(Ij). Thus, if we
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denote byY ′
2(j) the number of uncolored 2-clauses plus the number of pink 3-clauses at the

beginning of iterationj, then conditioned onY ′
2(j), the distribution ofBI(j + 1) is that of

Bin(Y ′
2(j),

P (j+1)
X(t)−j ), where as in the previous section, theP (j + 1) are iid random variables

distributed asP defined in (56). If we agree on the convention that aBin(0, p/0)-variable is
deterministically0, this also holds when the queue runs out of variables.

In the Phase-II queue, the number of customers arriving in the first time interval,AII , is the
number of unit-clauses generated at the end of Phase I by setting the variables to their tentative
values. TheBII(j) are defined analogous to theBI(j).

At this point, note that the condition (63), which is needed for Lemma10.18, is satisfied
for both queues.

10.6.2. Bounds for the probabilities of some essential events.Below, we repeatedly use
the following simple Chernoff-type inequality (e.g. equation (2.11) in [JŁR00]): if U is a
binomially distributed random variable with meanµ, then

(67) P[U ≥ α] ≤ e−α for α ≥ 7µ.

Lemma 10.20.Let r > 1, 1 ≤ z = z(n) = o(n) an integer,(x, y2, y3) ε-good for someε > 0,
andm− := max(0, y2 − rz log n), m+ := y2 + rz log n. For both phases I and II of the inner
loop, the following is true. If, at the beginning of the phase at step (i-1), there arex variables,
y2 2-clauses, andy3 3-clauses, then the probability that, while dealing with the firstz variables
in the phase, the number of 2-clauses leaves the interval[m−,m+], isO(n−r).

PROOF. For the upper boundm+, the probability that the number of 2-clauses exceeds
m+ is bounded from above by the probability that one in a sequence ofz independent random
variables withBin(m, 3

εn/2)-distributions is greater thanr log n. Here the factor1/2 on the
denominator takes care of thez = o(n) variables which are used. Forn large enough, this
probability is at most

zO
((

m
r logn

)
(
6/ε
n )r logn

)
= zO(e−r logn) = O(n−r).

For the lower boundm−, the probability can be bounded by the same argument, noting that, if
m− = 0, the corresponding probability is 0. �

Let R denote the event that a repair is invoked during this run of Algorithm4. Moreover,
denote byZI andZII the length of the first busy period of the Phase I and Phase II queues,
respectively. Note that they depend onAI andAII , respectively. Further letMI andMII be the
total number of colored clauses which are generated during Phase I andPhase II, respectively;
let HI andHII the event that, in some iteration, in steps (i-8), the current variable is found to
be contained in a colored clause (other than the current clauseCj); and byH≥2

I the probability
that in Phase I the current variable is found to be contained in at least two colored clauses (other
than the current clauseCj).
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Lemma 10.21. Suppose thatH (t) is 2ε-good. With theδ := δ(ε) and C := C(ε) from
Lemma10.18, andr > 1, the following is true for alln large enough (depending onε).

P[AI ≥ r log n | H (t)] = O(n−r)(68a)

P[ZI ≥ C
δ r log n | H (t)] = O(n−r)(68b)

P[MI ≥ 500C
εδ r log n | H (t)] = O(n−r)(68c)

P[HI | H (t)] = Oε(
log2 n

n )(68d)

P[H≥2
I | H (t)] = Oε(

log4 n
n2 )(68e)

P[R | H (t)] = Oε(
log2 n

n )(68f)

P[AII ≥ 500C
εδ (r + 1) log n | H (t) & R] = O(n−r)(68g)

P[ZII ≥ 500C2

εδ (r + 1) log n | H (t) & R] = O(n−r)(68h)

P[MII ≥ 250000C2

ε2δ
(r + 1) log n | H (t) & R] = O(n−r)(68i)

P[HII | H (t) & R] = Oε(
log2 n

n )(68j)

PROOF. For (68a), if H (t) is 2ε-good, then the probability thatAI ≥ r log n is bounded from
above by the probability that aBin(m, 2

2εn)-variable is larger thanr log n, which is at most
n−r, for n large enough, by (67).

Proof of (68b). We use Lemma10.18together with Lemma10.20to bound the conditional
probability thatZI ≥ α. If H (t) is 2ε-good, then them+ from Lemma10.20, with x := X(t),
y2 := Y2(t), y3 := Y3(t), and thez = zr from (60), is such that (64) is satisfied ifn is large
enough depending onε.

The requirement for the estimate in (65b) is thatAI ≤ a0 := min(α/C, zr/C). Thus, for the
probabilities conditional onH (t), we have

P[ZI ≥ α]

= P[ZI ≥ α | AI ≤ a0]P[AI ≤ a0] +P[ZI ≥ α | AI > a0]P[AI > a0]

≤ O(e−δα) +O(n−r) +P[AI > a0].

With α := C
δ r log n, using (68a) and (67), the right-hand side isO(n−r).

Proof of (68c). For every iteration, a clause is only colored if the current variable of the iteration
is contained in the clause. Hence, the number of clauses colored in the firstj iterations is upper
bounded by the sum ofj independentBin(m, 3

εn)-variables. Hence, the probability that in the
first j iterations, the number of colored clauses exceedsjα is at moste−α by (67), provided that
α ≥ 500

ε j ≥ 7 · 3m
εn/2j. Moreover, we haveMI ≤ m with probability one. Thus, conditioning

onH (t) (and keeping in mind thatH (t) is required to be2ε-good), the probability thatMI is
larger than500Cεδ r log n is at most

O(e−r 500C
εδ

logn) +mP[ZI ≥ r 500C
εδ logn | H (t)] = O(n−r) +O(mn−500r) = O(n−r).

Proofs of (68d) and(68e). In the first phase, in thejth iteration, the probability that the current
variablexj occurs in a colored clause (other than the current clauseCj) isO( MI

X(t)−ZI
), and the

probability that the number of colored clauses containingxj (other than the current oneCj) is

two or more isO
((

MI

X(t)−ZI

)2)
.

By (68b) and (68c), we can bound the probability that this happens in the firstZI iterations
byOε(

log2 n
n )+O(n−r) andOε(

log4 n
n2 )+O(n−r), respectively, where the constant in theOε(·)

depends only onε.
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Proof of (68f). Clearly, the probability that a repair occurs is at most the probability that, in
some iteration, the current variablexj occurs in a colored clause (other than the current one
Cj). Thus, the inequality follow from (68d).

Proof of (68g). SinceAII ≤ MI , this inequality follows from (68c) and (68f), with r replaced
by r + 1, by conditioning onR:

P[MI ≥ 500C
εδ (r + 1) log n | H (t) & R]

≤ P[MI ≥ 500C
εδ (r + 1) log n | H (t)]/P[R | H (t)]

= O(n−r−1 n
log2 n

) = O(n−r).

Proof of (68h). We now apply Lemmas10.18and 10.20to the Phase-II queue. Letr′ :=
500C2

εδ (r + 1). If H (t) is 2ε-good, then them+ from Lemma10.20, with x := X(t), y2 :=
Y2(t), y3 := Y3(t), and thez = zr′ from (60), is such that (64) is satisfied ifn is large enough
depending onε.

Again, the requirement for the estimate in (65b) is thatAII ≤ a′0 := min(α/C, zr′/C). Thus,
for the probabilities conditional onH (t) & R, we have

P[ZII ≥ α]

= P[ZII ≥ α | AII ≤ a′0]P[AII ≤ a′0] +P[ZII ≥ α | AII > a′0]P[AII > a′0]

≤ O(e−δα) +O(n−r′) +P[AII > a′0]

With α := 500C2

εδ (r+1) log n, we havea′0 =
500C
εδ (r+1) log n, so that, by (68g), the probability

thatAII > a′0 isO(n−r). In total, we obtain an upper bound ofO(n−r) for the probability that
ZII ≥ 500C2

εδ (r + 1) log n.

Proof of (68i). For every iteration, a clause is only colored if the current variable of the iteration
is contained in the clause. Hence, the number of clauses colored in the firstj iterations is
upper bounded by the sum ofj independentBin(m, 3

εn/2 -variables. (The factor of1/2 in the
denominator is to take care of the fact that the number of variables, while starting with at least
εn, might drop belowεn during the run of Phase I or Phase II.) Hence, the probability that
in the first j iterations, the number of colored variables exceedsjα is at moste−α by (67),
provided thatα ≥ 500

ε j ≥ 7 · 3m
εn/2j. Moreover, we haveMII ≤ m with probability one. Thus,

conditioning onH (t) & R (and keeping in mind thatH (t) is 2ε-good), the probability that
MII is larger than500

2C2

ε2δ
(r + 1) log n is at most

O(e−
5002C2

ε2δ
(r+1) logn) +mP[ZII ≥ 5002C2

ε2δ
(r + 1) log n | H (t)]

= O(n−r) +O(mn−500r) = O(n−r).

Proof of (68j). In the second phase, in thejth iteration, the probability that the current variable
xj occurs in a colored clause (other than the current oneCj) isO( MI

X(t)−ZI
). By (68h) and (68i),

we can bound the probability that this happens in the firstZII iterations byOε(
log2 n

n )+O(n−r),
where the constant in theOε(·) depends only onε. �

10.6.3. Changes of the parametersX(t), Y2(t), and Y3(t). We now move to study the
differences between successive values of these parameters, and westart withX(t+1)−X(t).
Denote byFI andFII the number of iterations of the inner loop in the first and second phase,
respectively. Clearly,X(t) −X(t + 1) = 1 + FI + FII , where the leading1 accounts for the
free variablex0. Moreover, we haveFI ≤ ZI andFII ≤ ZII , and the inequality can be strict
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for two reasons: in Phase I, a repair can occur, thus terminating the phase beforeQI drops to
zero; in both phases a red clause can vanish (i.e. become black) in (i-9). However, note that

(69)
FI = ZI with probability1−Oε(

log2 n
n ), and

FI I[R] ≥ ZI I[R]− 1 with probability1−Oε(
log4 n
n2 )

by (68d), (68f) and (68e).
Let us abbreviate

∆X := −1−
Y2(t)
X(t)

1− 13Y2(t)
12X(t)

= −1− 12Y2(t)

12X(t)− 13Y2(t)
= − 12X(t)− Y2(t)

12X(t)− 13Y2(t)
.

Lemma 10.22. If H (t) is 2ε-good andn large enough depending onε, then
∣∣∣−1−∆X −E

(
ZI

∣∣H (t)
)∣∣∣ = Oε(

log2 n
n )(70a)

∣∣∣∆X −E
(
X(t+ 1)−X(t)

∣∣H (t)
)∣∣∣ = Oε(

log4 n
n )(70b)

and

P

[∣∣X(t+ 1)−X(t)
∣∣ ≥ log2 n

∣∣∣∣H (t)

]
= O(n−10)(70c)

PROOF. By what we have said above on the relationship betweenFI , FII andX(t+ 1) −
X(t), we haveFI = ZI I[R] − EI andFII = ZII − EII , whereEI andEII are error terms

accounting for red clauses vanishing. We haveE(EI | H (t)),E(EII | H (t)) = Oε(
log4 n

n )
by (68d) and (68e) (noting thatEI , EII ≤ m).

We compute the mean ofZI using Lemma10.18with them± from Lemma10.20with
z := r

δ logn as in (60). Thus, lettingv := rz logn (the bound from Lemma10.20), conditional
onAI andH (t), we have

AI

1− 13Y2(t)−v
12X(t)+z

≤ E(ZI | AI & H (t)) ≤ AI

1− 13Y2(t)+v
12X(t)−z

,

so that

E(ZI | AI & H (t)) =
AI

1− 13Y2(t)
12X(t)

+Oε(
AI log

2 n
n ),

provided thatAI ≤ z/C, which holds with probability at least1−O(n−2) by (68a) by increasing,
if necessary,r beyond2δC. SinceZI = O(n) with probability one, we obtain

E(ZI | H (t)) = E

(
AI

1− 13Y2(t)
12X(t)

+Oε(
AI log

2 n
n )

∣∣∣∣H (t)

)

=
E(AI | H (t))

1− 13Y2(t)
12X(t)

+Oε(
log2 n

n ) =

Y2(t)
X(t)

1− 13Y2(t)
12X(t)

+Oε(
log2 n

n ),

which proves (70a). ForFI , we obtain

E(FI | H (t)) = E(ZI | H (t))−E(ZI I(R) | H (t))−E(EI | H (t))

= −1−∆X +Oε(
log2 n

n )−Oε(log n)P(R | H (t))−mO(n−r)−Oε(
log4 n

n )

= −1−∆X +Oε(
log4 n

n )

and
E(FII | H (t) & R) ≤ E(ZII) = Oε(log n) +O(n−r)m,
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from which (70b) follows.
SinceX(t) − X(t + 1) ≤ 1 + ZI + ZII , the tail inequality (70c) follows immediately

from (68b) and (68h). �

Lemma 10.23. If H (t) is 2ε-good, then
∣∣∣∣∣∆X

3Y3(t)

X(t)
−E

(
Y3(t+ 1)− Y3(t)

∣∣H (t)
)
∣∣∣∣∣ = Oε(

log4 n
n )(71a)

and

P

[∣∣Y3(t+ 1)− Y3(t)
∣∣ ≥ log2 n

∣∣∣∣H (t)

]
= O(n−10)(71b)

PROOF. Let us denote byX ′(j) the number of unused variables afterj iterations of the
inner loop, i.e., beforexj is used, forj = 0, 1, 2, . . . . In every iteration of the inner loop,
regardless of whether in Phase I or Phase II, for every uncolored 3-clauseC, there is a 3

X′(j)

probability that the current variablexj is found to be contained inC in step (i-10), or (i-3.3),
respectively, for the zeroth iteration in Phase I. If that is the case, the 3-clause is colored, and
when the inner loop terminates, the clause will no longer be a 3-clause.

If we suppose that, at the beginning of iterationj = 0, 1, 2, . . . , before the current variable
xj is treated, there areY ′

3(j) uncolored 3-clauses andX ′(j) unused variables, then the number
of 3-clauses which are hit byxj is distributed asBin(Y ′

3(j), 3/X
′(j)). (We haveX ′(j) = X(t)−

j in Phase I, but in Phase II the value of course depends on how Phase Iwent.)
For (71b), we can just use the fact that the number of 3-clauses which are colored is bounded

from above byMI + MII , the total number of colored clauses. Thus, by (68c) and (68i), this
number is at mostlog2 n with probability1−O(n−10) for n large enough depending onε.

For the conditional expectation estimate (71a), we compute, conditional onH (t),

E
(
Y3(t+ 1)− Y3(t)

)
= E

(
(Y3(t+ 1)− Y3(t)) I[R]

)
+E

(
(Y3(t+ 1)− Y3(t)) I[R]

)
.

For the left summand, we have

E
(
(Y3(t+ 1)− Y3(t)) I[R]

)

≤ E
(
log2 n I[R & Y3(t+ 1)− Y3(t) ≤ log2 n]

)

+E
(
m I[R & Y3(t+ 1)− Y3(t) ≥ log2 n]

)

≤ log2 n P[R] +mP[Y3(t+ 1)− Y3(t) ≥ log2 n] = log2 n Oε(
log2 n

n ) +O(n−9)

= Oε(
log4 n

n ),

by (68f) and (71b).
For the right summand, we have

E
(
(Y3(t+ 1)− Y3(t)) I[R]

)
= E

(ZI+1∑

j=1

G(j) I[R]

)
+Oε(

log2 n
n ),

where, conditioned onY ′
3(j) as defined above, theG(j+1) are distributed asBin(Y ′

3(j),
3

X(t)−j ),
and theO(·) accounts for the possibility thatFI < ZI , cf. (69). Using (67) and a similar argu-
ment as above, we see that

E

(ZI+1∑

j=1

G(j) I[R]

)
= E

(ZI+1∑

j=1

G(j)

)
+Oε(

log4 n
n ).

Computing the expectation of the sum can be done in the same way as for classical SAT
(e.g. in [Ach00, AS00, Ach01]). Indeed, using the optional stopping theorem (ZI + 1 is a
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stopping time for the history of the queue together with all random processesinvolved; cf. the
proof of the next lemma for the details, where the situation is essentially the same,only a bit
more complicated), we find that

E

(ZI+1∑

j=1

G(j)

)
= E

( ZI∑

j=0

3Y ′
3(j)

X(t)− j

)
,

where we agree that0/0 = 0. By (71b), Y3(t) − log2 n ≤ Y ′
3(j) ≤ Y3(t) with probability

1−O(n−10), and by (68b) we haveZI ≤ log2 n, implyingX(t)−j ≥ 1
2X(t), with probability

1−O(n−10). Thus, we conclude

E

( ZI∑

j=0

3Y ′
3(j)

X(t)− j

)

= E

(
I
[
Y3(t)− log2 n ≤ Y ′

3(j) & X(t)−j ≥ 1
2X(t)

]
·
ZI∑

j=0

(
3Y3(t)

X(t)
+O

(X(t) log2 n

X(t)2

)))

+O(n−7)

=
(
1 +EZI

)(3Y3(t)

X(t)
+O

( log2 n
n

)
+O(n−7))

)
= −∆X

3Y3(t)

X(t)
+O

( log2 n
n

)
,

by (70a). This concludes the proof of (71a). �

Lemma 10.24. If H (t) is 2ε-good, then

∣∣∣∣
3Y3(t)

2X(t)
− (∆X + 1)

13Y3(t)

8X(t)
+ ∆X

2Y2(t)

X(t)
−E

(
Y2(t+ 1)− Y2(t)

∣∣H (t)
)∣∣∣∣ = Oε(

log4 n
n )

(72a)

and

P

[∣∣Y2(t+ 1)− Y2(t)
∣∣ ≥ log2 n

∣∣∣∣H (t)

]
= O(n−10)(72b)

PROOF. The tail inequality is obtained by referring to (68c) and (68i) again, since very
clause which changes its length has been colored before that can happen.

Let us denote byX ′(j) the number of unused variables afterj iterations of the inner loop,
i.e., beforexj is selected. In every iteration of the inner loop, regardless of whether in Phase I
or Phase II, for every uncolored 2-clauseC, there is a 2

X′(j) probability that the current variable
xj is found to be contained inC in step (i-6.10), or (i-3.3), respectively, for the zeroth iteration
in Phase I. If that is the case, the 2-clause is colored, and when the innerloop terminates, the
clause will no longer be a 2-clause. The same is true for 3-clauses which have become red in
some previous iteration. Denote the total number of 2-clauses and pink 3-clauses which are hit
by the current variable in some iteration over the whole run of Algorithm4 byL2×.

The analysis of the expectation and tail ofL2× is almost identical to the analysis done in the
previous lemma for the 3-clauses. Here, too, we have to condition on the number of uncolored
2-clauses and pink 3-clauses not changing too much. The difference isthe need to control the
number of pink 3-clauses and, after a repair, the number of 3-clauses becoming 2-clauses. The
latter two numbers are bounded from above byY3(t+ 1)− Y3(t), which is at mostlog2 n with
probability 1 − O(n−10). Thus, forL2×, we just note that its expectation accounts for the
summand−∆X 2Y2(t)

X(t) in (72a).
Now let us denote the number of 3-clauses which become 2-clauses duringthe two phases

of the inner loop byL3�2, and let us also focus on the case when no repair occurs.
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In this caseL3�2 behaves similarly toY3(t + 1) − Y3(t), with two differences: The prob-
abilities that a 3-clause is colored pink is different; and the probability in the zeroth iteration
differs from the others. Let us first consider the zeroth iteration. The probability that the tenta-
tive value1/2 of x0 makes a 3-clause pink is1/2 by Lemma10.4. Thus, if there is no repair, this
contribution is distributed asBin(Y3(t), 12 · 3

X(t)).
For the other iterations,j = 1, 2, 3, . . . , if an uncolored 3-clauseC contains the current

variablexj , the probability thatC becomes pink in (i-13) depends on the current intervalIj ,
and is distributed asP defined in (56). Indeed, if we denote the number of uncolored 3-clauses
in iterationj by Y ′

3(j) again, then, conditioned onY ′
3(j) andX ′(j), the numberG(j + 1) of

uncolored 3-clauses which become pink in iterationj is distributed asBin(Y ′
3(j),

3P (j+1)
X′(t) ), i.e.,

binomial with random parameterP (j + 1). TheP (j) are the iid random variables distributed
asP in (56) defined bȳx(Ij), in other wordsP (j + 1) = 1− 2x̄(Ij)(1− x̄(Ij)).

LetG(1) be distributed asBin(Y3(t), 3
2X(t)), defineD(j+1) := G(j+1)− 13Y ′

3(j)
8X′(j) , where

we agree that0/0 = 0, and denote byF (j) the history of the process up to iterationj, i.e.,
before the variablexj is treated. Then

∑ℓ
j=1D(j), ℓ = 1, 2, 3, . . . , is a martingale with respect

to F (j), j = 0, 1, 2, . . . , andZI + 1 is a stopping time, because deciding whetherZI + 1 ≤ ℓ
amounts to checking whetherQI(ℓ) = 0.

To estimate the expectation of the contribution of these, we use the optional stopping the-
orem again; note that the stopping time is finite with probability one, becauseZI ≤ m. We

conclude thatE
(∑ZI+1

j=1 D(j)
)
= 0, which means

E

(
ZI+1∑

j=1

G(j)

)
= E

(
ZI∑

j=0

13Y ′
3(j)

8X ′(j)

)
.

Arguing as we have done a number of times in regard of the possible deviations ofY ′(j) from
Y (t), we see that the right hand side equals

(
EZI + 1

)13Y3(t)
8X(t)

+Oε

( log4 n
n

)
.

Getting rid of the conditioning on the event that no repair occurs is done in thesame way
as in the previous lemma, and we leave the details to the reader. �

10.6.4. Failure probability. We now bound the probability that an empty clause is gener-
ated by a run of the inner loop, including, possibly, the repair and followingsecond phase.

Lemma 10.25. If H (t) is 2ε-good, then the probability that Algorithm4 produces an empty
clause, iso(1/n).

PROOF. We use Lemma10.1. Let us first deal with Phase II. The probability that the

algorithm “raises a flag” in Phase II isOε(
log2 n

n ) by (68j), conditioned on a repair occurring, so
that by the law of total probability, the probability that the algorithm “raises a flag” in Phase II
is at mostOε(

log4 n
n2 ), by (68f).

For Phase I, we need to go through the possible reasons for the algorithmto “raise a flag”.
First of all, by (68e), the probability that the current variablexj is contained in a colored (red

or not) clause other than the current oneCj is Oε(
log4 n
n2 ), which takes care of step (i-6.3).

The probability that a fixed clause contains the current variable of a fixediteration depends
only on the number of variables and the number of unexposed atoms in the clause, and so it
can always be bounded by3εn . In order for a 3-clause to become red or blue (or even black), it
must contain the current variable of (at least) two iterations. The probabilityof this happening
is Oε(

logn
n2 ), where we have used (68b). This gives the case of step (i-9.1).
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Similarly, for step (i-9.2), a 2-clause must have been hit twice by the current variable of an
iteration, the probability of which is again bounded byOε(

logn
n2 ).

In total, the failure probability can be bounded byO(polylogn
n2 ) �

10.7. The outer loop

At the heart of analysis of the outer loop is the well-known theorem of Wormald’s which, in
certain situations, allows to estimate parameters of random processes by solutions to differential
equations. Here is the first goal of our analysis.

Lemma 10.26.For everyc ∈ ]0, 3], the initial value problem

dy

dx
=

−18cx4 + 2y(12x− y)

x(12x− y)
(73a)

y(1) = 0(73b)

has a unique solutiony defined on the interval]0, 1].

See Fig10.1for a rough sketch of the direction field (73a) with c = 2, and a solution to the
IVP. Since, ultimately, we will solve the IVP (73) numerically for the right value ofc anyway,
strictly speaking, this lemma is not needed to complete our argument. However, we would like
to reduce our reliance on numerical computations as much as possible.

FIGURE 10.1. Direction field and solution for IVP (73)

PROOF OFLEMMA 10.26. To use the known theorems on IVPs, note that the right hand
side of (73a), seen as a function of(x, y), is continuously differentiable on{(x, y) | x > 0, y <
12x}.

We make the following claims:

(a) For 4/5 ≤ x ≤ 1, the solution to the IVP never crosses the liney = 5(1− x);
(b) for 0 < x ≤ 4/5, the solution to the IVP never crosses the liney = 6x.
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Thus, the solution to the IVP does not approach they = 12x, which implies that the solution
extends to the whole interval]0, 1].

Let g(x, y) := −18cx4+2y(12x−y)
x(12x−y) , the right hand side of the ODE (73a). To prove claim (b),

it suffices to show that, withy(x) := 6x, whenever0 < x ≤ 4/5, we havedy
dx < g(x, y(x)).

The computation is easy but tedious and can be found in the appendix, see10.8.5. Similarly,
for claim (a), with y(x) := 5(1 − x), for every4/5 ≤ x ≤ 1, we havedy

dx < g(x, y(x)). The
computation is in the appendix, too. �

Lemma 10.27. Let c ≤ 3 andy a solution to(73), and letx0 be the infimum over allx ≥ 3ε
for which

(74) 13y(x) < (1− 3ε)12x

holds. Then there exists aτ > 0 and a strictly decreasing smooth functionx : [0, τ ] → R with
x(0) = 1 andx(τ) = x0, such that whp for allt with t/n < τ :

X(t) = nx(t/n) + o(n)(75a)

Y2(t) = n y(x(t/n)) + o(n)(75b)

Y3(t) = n cx(t/n)3 + o(n).(75c)

Moreover, we have the relationship

(75d)
dx

dt
= −1− y(x)

x− 13
12y(x)

= − 12x− y(x)

12x− 13 y(x)

PROOF. For the proof we use Wormald’s well-known theorem, which requires someset up
and computations. Using the notation of Theorem 5.1 in [Wor99], let

D :=
{
(t, x, y2, y3) ∈ ]−ε, c+ ε[ 4

∣∣ (nx, ny2, ny3) is 2ε-good
}

C0 := 10

β := log2 n

γ := 3n−2

λ1 :=
log5 n

n

λ :=
log

7/3 n

n1/3
,

Note thatλ > λ1 + C0nγ, andλ = o(1), as required in Theorem 5.1 in [Wor99].
Obviously, we have0 ≤ X,Y2, Y3 < C0n.

(i) Equations (70c), (72b), and (71b), respectively, show that, if(t/n,X(t)/n, Y2(t)/n, Y3(t)/n) ∈
D, then, conditioned onH (t), the probability thatX(t + 1) − X(t) ≤ β, Y2(t + 1) −
Y2(t) ≤ β, andY3(t+ 1)− Y3(t) ≤ β hold, is at least1− γ.

(ii) The first parts of Lemmas10.22, 10.24, and10.23, respectively, show that, if(t, x, y2, y3) :=
(t/n,X(t)/n, Y2(t)/n, Y3(t)/n) ∈ D,

∣∣∣∣f(t, x, y2, y3)−E
(
X(t+ 1)−X(t)

∣∣H (t)
)∣∣∣∣ ≤ λ1

∣∣∣∣g2(t, x, y2, y3)−E
(
Y2(t+ 1)− Y2(t)

∣∣H (t)
)∣∣∣∣ ≤ λ1

∣∣∣∣g3(t, x, y2, y3)−E
(
Y3(t+ 1)− Y3(t)

∣∣H (t)
)∣∣∣∣ ≤ λ1,



144 10. RANDOM 3-SAT WITH INTERVAL CONSTRAINTS

where

f(t, x, y2, y3) := −1− 12y2(t)

12x(t)− 13y2(t)

g2(t, x, y2, y3) :=
3y3(t)

2x(t)
+ (−1− f(t, x, y2, y3))

13y3(t)

8x(t)
+ f(t, x, y2, y3)

2y2(t)

x(t)

g3(t, x, y2, y3) := f(t, x, y2, y3)
3y3(t)

x(t)
.

(iii) There exists anL depending onε such thatf, g2, g3 areL-lipschitz continuous onD.

Let x, y2, y3 be the solution to the initial value problem

dx

dt
= f(t, x(t), y2(t), y3(t))(76a)

dy2
dt

= g2(t, x(t), y2(t), y3(t))(76b)

dy3
dt

= g3(t, x(t), y2(t), y3(t))(76c)

x(0) = 1 y2(0) = 0 y3(0) = c.(76d)

From Wormald’s theorem, we conclude that with probability

1−O
(
nγ β

λe
−n(λ/β)3

)
= 1−O( 1n),

it is true that, for allt = 0, . . . , σn, we haveX(t) = nx(t/n) + O(λn), Y2(t) = ny2(t/n) +
O(λn), andY3(t) = ny3(t/n)+O(λn), whereσ = σ(n) is the supremum over alls for which
the solution to (76) can be extended before reaching within a distance ofCλ from the boundary
of D, for a large constantC.

We now need to study the initial value problem (76). Let us start with the first equa-
tion (76a), which we write as

dx

dt
= − 12x− y2

12x− 13 y2
,

which amounts to

(77) − dt =
12x− 13 y2
12x− y2

dx =
(
1− 12 y2

12x− y2

)
dx,

The third inequality
dy3
dt

=
dx

dt

3y3
x

,

is equivalent to
dy3
dx

=
3y3
x

,

which immediately integrates to1

y3 = cx3,

where the constant before thex3 is derived from the initial value conditionsy3(0) = c and
x(0) = 1. Finally, we write the second equation as

dy2
dt

= − y3
8x

− dx

dt

13y3
8x

+
dx

dt

2y2
x

= − y3
8x

− 13

8
cx2

dx

dt
+

2y2
x

dx

dt
from which we obtain

dy2
dx

= − c

8
x2

dt

dx
− 13

8
cx2 +

2y2
x

,

1It should be noted that this is the same relationship betweenx and y3 as in the case of classical 3-SAT
(see [Ach01]).
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which, by (77), yields

dy2
dx

=
c

8
x2

12x− 13 y2
12x− y2

− 13

8
cx2 +

2y2
x

=
−18cx4 + 2y2(12x− y2)

x(12x− y2)

which is an ODE of the functiony2 in the variablex. In fact, withy2(1) = 0, we recognize the
IVP (73), and thusy = y2 in the interval on which both are defined.

To summarize, we havey3 = cx3, andy2 = y as a function ofx is a solution to the
IVP (73), andx as a function oft solves the ODE (76a) with boundary conditionx(0) = 1.

From Lemma10.26, we know that the solutiony to (73) can be extended to a solution of
the IVP defined on the full interval]0, 1]. Moreover, dxdt < 0 whenever13y(x) < 12x, so
the derivative ofx is strictly negative provided thatx ≥ x0. This implies that the solutionsx,
y2, y3 to (76) can be extended to the interval[0, τ ], whereτ is the unique number satisfying
x(τ) = x0; in particular we haveσ < τ .

This completes the proof of the lemma. �

We are now ready to prove Theorem10.2.

PROOF OFTHEOREM 10.2. Lemma10.27gives the behavior of the parametersX(t), Y2(t),
andY3(t) up to an error with high probability for allt = 0, . . . , τn. We need to check that

(a) the algorithm terminates beforet grows beyondτn,
(b) in this region oft, whp, the algorithm does not produce an empty clause.

For (a), we solve the IVP (73) numerically forc = 2.3. The solution is drawn in Fig.10.2.
The figure also shows the line13y = 12x. For this value ofc, we see that there is anε > 0 such
that the solutiony(x) to the IVP (73) satisfies13y(x) < 12(1 + 2ε)x for all x > 2ε; w.l.o.g.,
we may assume thatε < 1/9. Consequently, thex0 from Lemma10.27equals3ε. Algorithm 3
terminates as soon asY2(t) + Y3(t) ≤ c′X(t). Thus, by Lemma10.27, we have ans < τ such
thatx(s) = 1/3 > x0, and that, if we letc′ := 50

39 , whp, for thist := ⌈sn⌉

Y2(t) + Y3(t) = ny(1/3) + nc(1/3)3 + o(n)

≤ n
(
(1− 2ε)1213 · 1

3 + c
27

)
+ o(n) ≤ 49

39 · 1
3n ≤ c′X(t)− o(n),

if n is large enough. Thus, the algorithm terminates before the parametersX(·), Y2(·), Y3(·)
fail to be2ε-good.

It follows that Lemma10.25gives a failure probability ofo(1/n) per iteration, so that the
total failure probability iso(1). This proves (b) and completes the proof of Theorem10.2. �

10.8. Conclusions and outlook

The presented algorithm and its analysis provide a first systematic approach to random
iSAT formulas. In the course of the paper, analytical methods for dealing with intervals in
CNF formulas have been established, in particular as intervals imply correlation between the
variables when choosing a value. These tools will be useful in the study ofrandom algorithms
for iSAT as well as in approximating a threshold in random 3-iSAT.

We have given an algorithm fork-iSAT, for k = 3, which succeeds with high probability on
instances for whichm/n ≤ 2.3. It is conceptually easy to extend the algorithm and the analysis
to generalk up to the point where the initial value problem has to be solved. Fork-iSAT there
arek − 2 ordinary differential equations to be numerically solved after the transformation in
Lemma10.27, which makes it improbable that a general formula for the maximal ratio can be
derived. Solving the system for small values ofk, we obtain the results shown in Table2 (we
always rounded down generously).

It is possible to show that, whp, our algorithm fails to produce a satisfying interpretation if
m/n = c wherec is a constant for which the solution to the IVP (73) crosses the line13y = 12x
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FIGURE 10.2. Solution of IVP (73) with bounding curves

k 3 4 5 6 7 8
max.m/n 2.3 3.75 6.25 10.5 18.5 32.5

TABLE 2. Performance for different values ofk

(the green line in Fig10.2), e.g.,c = 2.4. This is so because then the inner loop runs forΩ(n)
steps, and thus, whp, the algorithm “raises a flag”. (However, such a result appears futile, given
the very limited repair routine which we refer to.)

Some further questions will be of interest. Firstly, the proposed algorithm can be improved
in an obvious way: Whenever a variable is set, choose a value which is satisfies the maximum
number of literals containing the variable. This, however, requires that thefollowing question
be answered. Letλ be a nonnegative real number. Suppose thatI0, I1, I2, . . . are random
invervals drawn independently uar from the sub-intervals of[0, 1], andN is a Poisson random
variable with meanλ, independent from theIj . What is the expectationξ(λ) of the following
random variable?

max
{
|K|

∣∣∣ K ⊂ {1, . . . , N}, I0 ∩
⋂

j∈K

Ij 6= ∅
}
?

Secondly, a bound for the ratio above which random 3-iSAT formulas arewpp/whp not
satisfiable might be interesting and worthwhile to be considered.

Thirdly, there might be a sharp threshold for random 2-iSAT as for classical 2-SAT [CR92,
Goe96]. In fact, we conjecture that there is a threshold atc = 3/2 (the value from Proposi-
tion 10.12). For this it remains to prove that forc > 3/2, a random 2-iSAT formula withm/n = c
is whp not satisfiable. More generally, it may be of interest whether the results of Friedgut (and
Bourgain) [Fri99] (see also [Mol02, Mol03, CD03, CD04, CD09]) can be applied to random
iSAT formulas to prove that a threshold (function) exists fork-iSAT for k ≥ 3.

Fourthly, possibly, a stronger bound for 3-iSAT could be derived by adapting the algorithm
of [KKL06 ] to the interval case. This would pose two problems: First we do are interested in a
whp result, which is not offered by the algorithm in [KKL06 ], so a backtracking routine would
have to be devised; Secondly, the rule for the value assignment significantly complicates the
computations for random intervals. In their algorithm a randomly chosen variable is assigned
the value such that most clauses, in which it occurs, are satisfied, i.e., a variable is assigned a1
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if it mostly occurs not negated, and0 otherwise. For intervals this translates to assigning a value
to a variable that is contained in the non-empty intersection of a maximal number ofassociated
intervals. But the analysis of the probability of this maximal number turns out to be demanding
for general intervals.

As a final question, we would like draw attention to the fact that several papers have
raised questions concerning the existence and location of a threshold forrandom regular 3-
iSAT [BHM00b, BM99a, BMC+07, MBEI98 ].

We would like to close by thanking the anonymous referees for their very valuable comments!

Appendix: Deferred proofs

10.8.1. Computations for Lemma10.6. For (a), we compute

1−EP = E(2X(1−X)) =

∫
2t(1− t) dF (t)

=

∫

[0,1/2[
2t(1− t)∂tF (t) dt+ 2t(1− t)

∣∣∣
t=1/2

· 1
2 +

∫

]1/2,1]
2t(1− t)∂tF (t) dt

=

∫ 1/2

0
2t(1− t)2t dt+

1

4
+

∫ 1

1/2
2t(1− t)2(1− t) dt

=
5

48
+

1

4
+

5

48
=

11

24
.

For (b), we compute

E(X2(1−X)2) =

∫
t2(1− t)2 dF (t)

= t2(1− t)2
∣∣∣
t=1/2

· 1
2 +

∫

[0,1/2[
t2(1− t)2∂tF (t) dt+

∫

]1/2,1]
t2(1− t)2∂tF (t) dt

= 1
25

+

∫

[0,1/2[
t2(1− t)22t dt+

∫

]1/2,1]
t2(1− t)22(1− t) dt

= 1
25

+ 4

∫ 1/2

0
t3(1− t)2 dt

= 1
25

+ 4

(
1
4 t

4(1− t)2
∣∣∣
1/2

t=0
+ 1

10 t
5(1− t)

∣∣∣
1/2

t=0
+ 1

60 t
6
∣∣∣
1/2

t=0

)

= 1
25
+4(14

1
26
+ 1

10
1
26
+ 1

60
1
26
) = 1

25
+ 1

26
(1+2

5+
1
15) =

1
25
+ 22

15·26 = 1
25
+ 11

15·25 = 15+11
15·25 = 13

15·24 .

Hence, using (a), we obtain

E(P 2) = 1− 2(1−EP ) + 4EX2(1−X)2 = 1− 11
12 + 13

60 = 18
60 = 3

10 .

10.8.2. Proof of Lemma10.13. The proof is taken almost word for word from Grimmett
& Stirzaker [GS01], Theorem 11.3.17, with some changes due to the discrete arrival- and ser-
vicing points.

We say that thesonsof a customer Paul are those customers arriving in the time interval in
which Paul is serviced. Paul’sfamilyconsists of himself and all of his descendants.

Fix a time intervalj in which the queue is not empty and denote byX the size of the family
of the customer served at that time interval. We have the relation

X = 1 +

B(j+1)∑

i=1

Xi,

whereXi denotes the family size of thei’th customer arriving in the time intervalj.
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The important observation now is that the family sizes are iid because theB(j) are iid, and
that theXi are independent ofB(j +1). Consequently, for the common probability generating
functiony of X and theXi, we have

(∗) y(x) = x g
B
(y(x)).

The length of the first busy period coincides with sum of the family sizes of thea customers
arriving in the first time interval. Thus, we obtain

(∗∗) h(x) = y(x)a.

Solving (∗) for x and inserting into (∗∗), we obtain

(∗∗∗) h
( y(x)
g
B
(y(x))

)
= y(x)a.

If y(0) = 0, thenB = 0, and thush(y) = ya, which coincides with equation (57a). Otherwise,
by (∗∗∗), equation (57a) holds for ally in the interval[y(0), y(1)], and thus for ally for which
the power series on both sides of the equality sign converge.

We derive the statement about the mean length of the first busy period by differentiat-
ing (57a), and possibly invoking Abel’s Theorem to evaluate the power series at the point1.

Finally, the statement about the tail probability follows directly from the standard exponen-
tial moment argument: Ify ≥ g

B
(y) > 0, then, withx := y/g

B
(y) ≥ 1, we have

P[Z ≥ α] = P[xZ ≥ xα] ≤ ExZ

xα
=

h(x)

xα
=

ya

(y/g
B
(y))α

=
g
B
(y)α

yα−a
,

as claimed.

10.8.3. Computations for Lemma10.15. Computations regarding equation (∗∗):

αr + 123

132·5αr
2u− (α− a)

1

u+ 1
= 0

αr(u+ 1) + 123

132·5αr
2u(u+ 1)− (α− a) = 0

(
123

132·5αr
2
)
u2 +

(
αr + 123

132·5αr
2
)
u−

(
(1− r)α− a

)
= 0

u = −

(
αr + 123

132·5αr
2
)
±
√(

αr + 123

132·5αr
2
)2

+ 4
(
(1− r)α− a

)(
123

132·5αr
2
)

2 ·
(

123

132·5αr
2
)
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We need to be close to0, so we take the “±” = “−”:

ur :=
−
(
αr + 123

132·5αr
2
)
+

√(
αr + 123

132·5αr
2
)2

+ 4
(
(1− r)α− a

)
123

132·5αr
2

2 · 123

132·5αr
2

=
−
(
1 + 123

132·5r
)
+

√(
1 + 123

132·5r
)2

+ 4
(
1− r − a/α

)
123

132·5

2 · 123

132·5r

=
−
(
1 + 123

132·5r
)
+

√(
1 + 123

132·5r
)2

− 4r 123

132·5 + 4(1− a/α) 123

132·5

2 · 123

132·5r

=
−
(
1 + 123

132·5r
)
+

√(
1− 123

132·5r
)2

+ 4(1− a/α) 123

132·5

2 · 123

132·5r

=
−
(
1 + 123

5·132 r
)
+

√(
1− 123

5·132 r
)2

+ 4·123

5·132 − 4·123

5·132 · a
α

2·123

5·132 r

=
−
(
1 + 123

5·132 r
)
+

√(
1− 123

5·132 r
)2

+ 4·123

5·132

2·123

5·132 r
−O(a/α),

with an absolute constant in theO(·), becausea ≤ α and1/2 ≤ r ≤ 1.
Computation regarding equation (∗∗∗∗):

(∗) (ur)

α
=

αru+ 122·3·2
132·5 αr2u2 − (α− a) log(u+ 1)

∣∣∣
u:=ur

α

= rur +
6·122

5·132 r
2u2r − (1− a/α) log(ur + 1)

= rur +
6·122

5·132 r
2u2r − log(ur + 1) +O(a/α),

with an absolute constant in theO(·), becauseur + 1 ≤ 2.

10.8.4. Proof of Lemma10.18. Suppose that theB(j) are represented as a sum as in (62)
above, and define

B±(j) :=
m±∑

j=1

I

[
U(j, i) ≤ P (j)

n−(±z)

]
.

Then theB+(j), j = 1, 2, 3, . . . , are iid, so that Lemma10.17is applicable. The same is true
for theB−(j), j = 1, 2, 3, . . . . We clearly have, with probability1−O(n−r),

B−(j) ≤ B(j) ≤ B+(j) for all j = 1, . . . , z.

Defining two queuesQ±(j) based on theB±(j) and respective lengths of first busy periods
Z±, we obtain, with probability1−O(n−r)

(∗) Z− ≤ Z ≤ Z+,

where we have also used thatZ± ≤ z with probability1−O(n−r) (Lemma10.17).
Denote byE the event that (∗) holds. If (∗) does not hold, we still haveZ = O(n) by (63),

so that we obtain

EZ = E(Z | E)P(E)+E(Z | E)P(E) ≤ E(Z+ | E)P(E)+O(n1−r) ≤ E(Z+)+O(n1−r).
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For the lower bound, we similarly have

EZ ≥ E(I(E)Z−) = E(Z−)−E(I(E)Z−)

Clearly,E(I(E)Z−) ≤ zP(E) +E(I(E)Z−
I[Z− > z]) = zP(E) +mO(n−r) = O(n1−r)

Thus we conclude thatEZ ≥ EZ− −O(n1−r).
For the tail estimate, we useZ+:

P[Z ≥ α] ≤ P[Z ≥ α & Z ≤ Z+] +P[Z ≥ α & Z > Z+]

≤ P[Z+ ≥ α] +P[Z > Z+] ≤ e−δα +O(n−r)

by Lemma10.17.

10.8.5. Computations for Lemma10.26.
For the proof of Claim (b). Let g(x, y) := −18cx4+2y(12x−y)

x(12x−y) , the right hand side of the

ODE (73a). As mentioned in the proof of the lemma, we showg(x, y(x)) > 6 = dy
dx , for

0 < x ≤ 4/5. We compute

g(x, y(x)) =
−18cx4 + 2 · 6x(12x− 6x)

x(12x− 6x)
=

−18cx2 + 2 · 6(12− 6)

(12− 6)
=

−18cx2 + 72

6

= −3cx2 + 12 ≥
c≤3

−9x2 + 12 ≥ −9(4/5)2 + 12 = 12− 9 · 16
25

=
25 · 12− 9 · 16

25

=
12(25− 3 · 4)

25
=

12 · 13
25

> 6.

For the proof of Claim (a). Let g(x, y) as above. As mentioned in the proof of the lemma,
we showg(x, y(x)) > −5 = dy

dx , for 4/5 ≤ x ≤ 1. To show that

g(x, y(x)) =
−18cx4 + 2 · 5(1− x)(12x− 5(1− x))

x(12x− 5(1− x))
> −5,

we compute

− 18cx4 + 2 · 5(1− x)(12x− 5(1− x)) + 5x(12x− 5(1− x))

= −18cx4 + 10(1− x)(17x− 5) + 5x(17x− 5) = −18cx4 + (10− 5x)(17x− 5)

= −18cx4 − 85x2 + 195x− 50 ≥
c≤3

−54x4 − 85x2 + 195x− 50.

The derivative−216x3−170x+195 of the last polynomial is strictly decreasing, and evalutating
it at 4/5 gives−216(4/5)3 − 170 · 4/5 + 195 ≈ −51.592 < 0. Thus, it suffices to check the
inequality−54x4 − 85x2 + 195x− 50 > 0 for x = 1: −54− 85 + 195− 50 = 6 > 0.



CHAPTER 11

Cops & Robber on non-orientable surfaces

Jointly with
Nancy E. Clarke (Acadia University, Wolfville, NS),

Samuel Fiorini (U.L.B., Brussels),
and Gwenäel Joret (U.L.B., Brussels)

Abstract. We consider the two-player, complete information game of Cops and
Robber played on undirected, finite, reflexive graphs. A number of cops and one
robber are positioned on vertices and take turns in sliding along edges. The cops
win if, after a move, a cop and the robber are on the same vertex. The minimum
number of cops needed to catch the robber on a graph is called the cop number of
that graph.
Let cop(g) be the supremum over all cop numbers of graphs embeddable in a
closed orientable surface of genusg, and likewisec̃op(g) for non-orientable sur-
faces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over all
cop numbers of graphs embeddable in this surface is finite. More precisely, Quil-
liot (1985) showed thatcop(g) ≤ 2g + 3, and Schr̈oder (2001) sharpened this to
cop(g) ≤ 3

2
g + 3. In his paper, Andreae gave the bound̃cop(g) ∈ O(g) with a

weak constant, and posed the question whether a stronger bound can be obtained.
Nowakowski & Schr̈oder (1997) obtained̃cop(g) ≤ 2g + 1.
In this short note, we show̃cop(g) ≤ cop(g − 1), for anyg ≥ 1. As a corollary,
using Schr̈oder’s results, we obtain the following: the maximum cop number of
graphs embeddable in the projective plane is 3; the maximum cop number of graphs
embeddable in the Klein Bottle is at most 4,̃cop(3) ≤ 5, andc̃op(g) ≤ 3

2
g + 3/2

for all otherg.

For an integerk ≥ 1, theCops and Robber game withk copsis a pursuit game played on a
reflexive graph, i.e. a graph with a loop at every vertex. There are twoopposing sides, a set ofk
cops and a single robber. The cops begin the game by each choosing a (not necessarily distinct)
vertex to occupy, and then the robber chooses a vertex. The two sides move alternately, where
a move is to slide along an edge or along a loop. The latter is equivalent to passing were the
game played on a loopless graph. There is perfect information, and the cops win if any of the
cops and the robber occupy the same vertex at the same time, after a finite number of moves.
Graphs on which one cop suffices to win are calledcopwingraphs. In general, we say that a
graphG is k-copwinif k cops can win onG. The minimum number of cops that suffice to win
onG is the cop number ofG, denotedc(G). The game has been considered on infinite graphs
but, here, we only consider finite graphs.

Nowakowski & Winkler [NW83] and Quilliot [Qui78] have characterized the class of
copwin graphs. The class ofk-copwin graphs,k > 1, has been characterized by Clarke
and MacGillivray [CM11]. Families of graphs with unbounded cop number have been con-
structed [AF84], even families ofd-regular graphs, for eachd ≥ 3 [And84].

By a surface, we mean a closed surface, i.e. a compact two dimensional topological man-
ifold without boundary. For any non-negative integerg, we denote bycop(g) the supremum
over allcop(G), withG ranging over all graphs embeddable in an orientable surface of genusg,
and we call this the cop number of the surface. Similarly, we define the cop numberc̃op(g) of
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a non-orientable surface of genusg to be the supremum over allcop(G), with G ranging over
all graphs embeddable in this surface.

Aigner & Fromme [AF84] proved that the cop number of the sphere is equal to three;
i.e. cop(0) = 3. Quilliot [Qui85] gave an inductive argument to the effect that the cop number
of an orientable surface of genusg is at most2g+3. Schr̈oder [Sch01] was able to sharpen this
result tocop(g) ≤ 3

2g+3. He also proved that the cop number of the double torus is at most 5.
Andreae [And86] generalized the work of Aigner & Fromme. He proved that, for any graph

H satisfying a mild connectivity assumption, the class of graphs which do not containH as a
minor has cop number bounded by a constant depending onH. Using this, and the well known
formula for the non-orientable genus of a complete graph, he obtained an upper bound for the
cop number of a non-orientable surface of genusg, namely

c̃op(g) ≤
(⌊7/2 +

√
6g + 1/4⌋
2

)
.

Nowakowski & Schr̈oder [NS] use a series of technically challenging arguments to prove a
much stronger bound:̃cop(g) ≤ 2g + 1.

In this short note, we prove the following.

Theorem 11.1.For any positive integerg, cop(⌊g/2⌋) ≤ c̃op(g) ≤ cop(g − 1).

This immediately improves the best known upper bound for the non-orientablesurface of
genusg to c̃op(g) ≤ 3

2(g − 1) + 3 = 3
2(g + 1). The following table gives the new and status

quo for the concrete upper bounds.

N/o genus 1 2 3 4 5 6 7
N. & S. [NS] 3 5 7 9 11 13 15
Here 3 4 51 7 9 10 12

TABLE 1. Comparison of the new and status quo upper bounds forc̃op(g).

We say that aweak coverof H by G is a surjective mappingp : V (G) → V (H) which
maps vertex neighborhoods onto vertex neighborhoods; i.e. for everyvertexu of G, we have
p(N(u)) = N(p(u)). (This terminology lends on the classical definition of a “cover” without
weak, where the restriction to the vertex neighborhoodp : N(u) → N(p(u)) is required to be
a bijection.) Using the same technique as for the inequality “≤” in the proof of Theorem11.1,
it is possible to show the following:

Lemma 11.2. If G is a weak cover ofH, thencop(H) ≤ cop(G).

This is similar in spirit to the seminal result of Berarducci & Ingrigila [BI93], saying that
if H is a retract ofG, then the same inequality holds. Note, however, that neither of the two
notions generalizes the other. We will not prove Lemma11.2; the proof is only slightly more
technical than the geometric proof of Theorem11.1.

11.1. Proof

Familiarity with the classification of combinatorial surfaces is assumed. See anystandard
textbook on topology. We will make use of the standard representation of surfaces as quotients
of polygonal discs with labelled and directed edges. Each label occurs twice, and the two edges
with the same label are identified according to their orientations. Reading the labels of the edges
in counterclockwise (i.e.positive) order and adding an exponent−1 whenever the orientation
of the edges is negative (i.e. clockwise) gives theword of the surface.

For a graphG, let γ(G) denote the smallest integerg such thatG can be embedded in an
orientable surface of genusg; similarly defineγ̃(G) as the smallest integerg such thatG can
be embedded in an non-orientable surface of genusg. For the proof of Theorem 1, we use the
following well-known fact. (The proof can be found in [MT01]).
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Lemma 11.3(Folklore). For any graphG, γ̃(G) ≤ 2γ(G) + 1.

In the proof of the inequalitycop(g) ≤ cop(g−1), we make use of the well-known fact that
every manifoldX has a 2-sheeted coveringX ′ → X by an orientable manifold. IfX is a non-
orientable surface of genusg, it is a textbook exercise to see see that the standard construction
yields a surface of genusg − 1. This is Lemma11.4. The proof is straightforward (consider
Figure 1), and is thus omitted.

Lemma 11.4. A non-orientable surface of genusg has an orientable surface of genusg − 1 as
a 2-sheeted covering space.

a1

a1

a2a2

a
1

a
2

a
2

ag
a
g

a
g

FIGURE 11.1. A figure to accompany Lemma 4.

We are now ready for the proof of our main result.

Proof of Theorem 1. Lemma 3 immediately implies thatcop(g) ≤ c̃op(2g + 1), and hence
c̃op(g) ≥ cop(⌊g/2⌋).

For the proof of the remaining inequalitỹcop(g) ≤ cop(g−1), letX be the non-orientable
surface of genusg on which a graphG is embedded. We identify the graphG with its embed-
ding; i.e. we think of the vertex setV (G) as a set of points ofX and the edge set ofE(G) as a
set of internally disjoint injective curves connecting the respective end vertices of the edge.

By Lemma11.4, there exists a coveringp : X ′ → X of X by an orientable surfaceX ′ with
genusg′ := g − 1. Consider the graphG′ whose vertex set is{p−1(V (G))} and whose edge
set consists of the curves obtained by lifting the edges ofG. By construction,G′ is embedded
in the orientable surfaceX ′ of genusg′.

We now give a strategy fork := cop(g′) cops to win the Cops and Robber game onG,
by “simulating” a game onG′ and using any winning strategy fork cops on this graph, who
chase an “imaginary” robber. In such a strategy, thek cops first choose their starting vertices
u1, . . . , uk ∈ V (G′). In the strategy forG, we let the starting vertices bep(u1), . . . , p(uk).
Suppose now that, in the game onG, the robber chooses a starting vertexr. We choose an
arbitrary starting vertex for an imaginary robber onG′ arbitrarily in the fibrep−1(r).

Throughout the game, the position of each player inG′ will be in the fibrep−1(x) of the
positionx of the corresponding player inG. Moreover, the movements of the players onG
describe curves onX, which can be lifted (uniquely, although this is not essential) to curves on
X ′ forming walks inG′.
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Now, whenever it be the cops’ turn in any game onG, the robber is at a certain vertexs of
G′, and thek cops are on verticesv1, . . . , vk. The strategy for the cops onG′ now prescribes
moves for the cops. The corresponding moves inG are then given as images underp.

Since we have a winning strategy, after a finite number of moves, the “imaginary robber”
onG′ will be on the same vertex as a cop inG′. Consequently, the same holds onG, and thus
the cops have won the game onG. �

11.2. Conclusion

We conclude with a conjecture.

Conjecture. For a non-negative integerg, c̃op(g) = cop(⌊g/2⌋).
One might wonder whether it is possible to improve Theorem11.1 by taking a different

covering, or possibly a branched covering. This is impossible: It is a well-known fact that,
wheneverp : X ′ → X is a (branched) covering withX ′ orientable andX non-orientable, then
p lifts to a (branched) covering̃p : X ′ → X̃, whereX̃ is the orientable double cover constructed
in Lemma11.4.



CHAPTER 12

Cops & Robber on graphs with forbidden (induced) subgraphs

Jointly with
Gwenäel Joret (U.L.B., Brussels)

and Marcin Kamínski (U.L.B., Brussels)

Abstract. The two-player, complete information game of Cops and Robber is
played on undirected finite graphs. A number of cops and one robber are posi-
tioned on vertices and take turns in sliding along edges. Thecops win if, after a
move, a cop and the robber are on the same vertex. The minimum number of cops
needed to catch the robber on a graph is called the cop number of that graph.
In this paper, we study the cop number in the classes of graphsdefined by forbidding
one or more graphs as either subgraphs or induced subgraphs.In the case of a single
forbidden graph we completely characterize (for both relations) the graphs which
force bounded cop number. En passant, we bound the cop numberin terms of the
tree-width.

12.1. Introduction

Graphs studied in this paper are finite, undirected, without loops and multiple edges. We
use standard notation and terminology; for what is not defined here, we refer the reader to
Diestel [Die06].

The game ofCops and Robberis played on a connected graph by two players – the cops
and the robber. The cop player has at her disposalk pieces (cops), for some integerk ≥ 1,
and the robber player has only one piece (the robber). The game beginswith the cop player
placing herk cops on (not necessarily distinct) vertices of the graph. Next, the robber player
chooses a vertex for his piece. Now, starting with the cop player, the two players move their
pieces alternately. In the cops’ move, she decides for each of her copswhether it stands still or
is moved to an adjacent vertex. In the robber’s move, he can choose to move or not to move the
piece. The game ends when a cop and the robber are on the same vertex (that is, the cops catch
the robber); in this case the cop player wins. The robber wins if he can never be caught by the
cops. Both players have complete information, that is, they know the graph and the positions of
all the pieces.

The key problem in this game is to know how many cops are needed to catch a robber on
a given graph. For a connected graphG, the smallest integerk such that withk cops, the cop
player has a winning strategy is called thecop numberof G and is denoted bycop(G). We
follow Berarducci and Intrigila [BI93] in defining the cop number of a non-connected graph as
the maximum cop number of its connected components. Nowakowski and Winkler [NW83] and
Quilliot [Qui78] characterized the class of graphs with cop number 1. Finding a combinatorial
characterization of graphs with cop numberk (for k ≥ 2) is a major open problem in the field.
On the other hand, algorithmic characterizations of such graphs, which are polynomial in the
size of the graph but not ink, do exist [BI93, GR95, HM06]. However, determining the cop
number of a graph is a computationally hard problem [FGK08]. For literature review we refer
the reader to a recent survey on graph searching [FT08] (see also [Hah07]).

In this paper we study the cop number for different types of graph classes. Our motivation
is to learn what structural properties of graphs force the cop number to be bounded. (We say
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that the cop number isboundedfor a class of graphs, if there exists a constantC such that the
cop number of every graph from the class is at mostC; otherwise the cop number isunbounded
for this class.) We consider several containment relations and study the cop number for classes
of graphs with a single forbidden graph with respect to these relations.

Families of graphs with unbounded cop number have been constructed [AF84]. For every
fixedd ≥ 3, there even exist families ofd-regular graphs with unbounded cop number [And84].
On the other hand, Aigner and Fromme [AF84] proved that the cop number of a planar graph
is at most 3. This result has been generalized to the class of graphs with genusg; Schroeder
[Sch01] proved that the cop number of a graph is bounded by⌊3g/2⌋+3 (improving an earlier
bound of Quilliot [Qui85]), and conjectured that this bound can be reduced tog + 3.

A graph is calledH-minor-free(H-topological minor-free) if it does not containH as a
minor (as a topological minor). Andreae [And86] studied classes ofH-minor-free graphs and
showed that the cop number of aK5-minor-free graph (orK3,3-minor-free graph) is at most
3. Since a planar graph does not have aK5 or K3,3 as a minor this result extends the result
on planar graphs. However, for our purposes the most interesting result of Andreae [And86] is
that for any graphH the cop number is bounded in the class ofH-minor-free graphs. In other
words, forbidding a minor is enough to bound the cop number.

Andreae [And86] also observed that excluding a topological minor does not necessarily
bound the cop number. In fact, it is an easy corollary of his work that the class ofH-topological
minor-free graphs has bounded cop number if and only if the maximum degree ofH is at most
3.

Inspired by these results we study other containment relations: subgraphs and induced
subgraphs. A graph is calledH-subgraph-free(H-free) if it does not containH as a subgraph
(as an induced subgraph). We give necessary and sufficient conditions for the class ofH-
subgraph-free graphs andH-free graphs to have bounded cop number. First we present our
results for induced subgraphs.

Theorem 12.1.The class ofH-free graphs has bounded cop number if and only if every con-
nected component ofH is a path.

Let us remark that a single vertex is considered to be a path. The graph consisting of a
path onℓ (ℓ ≥ 1) vertices is denoted byPℓ. The backward implication of Theorem12.1 is a
consequence of the following proposition.

Proposition 12.2. For everyℓ ≥ 3, everyPℓ-free graph has cop number at mostℓ− 2.

Using the same technique, it is in fact possible to show the following stronger result.

Proposition 12.3. For everyℓ ≥ 3, every graph with no induced cycle of length at leastℓ has
cop number at mostℓ− 2.

Notice that it is possible to rephrase the condition of Theorem12.1 and say that every
connected component ofH is a tree with at most two leaves. Here is our result forH-subgraph-
free graphs.

Theorem 12.4. The class ofH-subgraph-free graphs has bounded cop number if and only if
every connected component ofH is a tree with at most three leaves.

It is easy to see that the cop number of a tree is 1. As an intermediate step towards The-
orem12.4, we study how the cop number of a graphG is related to its tree-width, which is
denoted bytw(G).

Proposition 12.5. The cop number of a graphG is at mosttw(G)/2 + 1.

This bound is sharp for tree-width up to5. (This is easy to prove fortw(G) ≤ 3; for
tw(G) = 4 and5, the Petersen graph and the disjoint union of the Petersen graph andK6 plus
an edge linking them are tight examples, respectively.)
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12.2. Forbidding induced subgraphs

Our goal in this section is to prove Theorem12.1. Notice that a graph whose every con-
nected component is a path, is an induced subgraph of some sufficiently long path. Hence, the
following proposition proves the backward implication of Theorem12.1.

Proposition 12.2. For everyℓ ≥ 3, everyPℓ-free graph has cop number at mostℓ− 2.

Let us remark that, forℓ = 1, 2, the cop number of aPℓ-free graph is trivially 1.

PROOF OFPROPOSITION12.2. LetG be aPℓ-free graph and let us also assume, without
loss of generality, thatG is connected. We will give a winning strategy forℓ− 2 cops. Initially
all ℓ− 2 cops are on the same arbitrary vertex. The strategy is divided into stages.The distance
between the cops and the robber is the minimum distance from the robber to a cop. The goal
of each stage is to decrease the distance between the cops and the robber. Once the distance is
decreased we begin the next stage. We will show that a stage lasts a finite number of rounds.

At the beginning of each stage we choose alead cop(for this stage) among the pieces which
are at the minimum distance from the robber. All distances in this proof are measured after the
robber’s and before the cops’ move. We route the lead cop and instructthe other pieces to
follow the lead cop in single file; the cops should form a path of lengthℓ− 2.

If the distance between the cops and the robber is at most one, then the cops clearly win.
Suppose that the distance between the lead cop on vertexx and the robber on vertexy is d ≥ 2.
We order the lead cop to travel along the shortest path fromx to y and then follow the exact
route the robber took from vertexy. Notice that since the graph isPℓ-free the distance between
the cops and the robber will decrease after at mostℓ−d−1 moves. Once the distance decreased,
we move to the next stage. �

We mention the following result which can be derived using almost the same strategy as in
Proposition12.2.

Proposition 12.3. For everyℓ ≥ 3, every graph with no induced cycle of length at leastℓ has
cop number at mostℓ− 2. �

Before completing the proof of Theorem12.1, we look at bipartite graphs with no long
induced paths. A simple modification of the proof of Proposition12.2yields a better bound for
the bipartite case. Here is how the cops’ strategy needs to be modified: the cops follow the lead
cop in such a way that the distance between any two consecutive cops is 2.We leave the details
of this proof to the reader.

Proposition 12.4. For everyℓ ≥ 1, everyP2ℓ-free bipartite graph has cop number at mostℓ.

To prove the forward implication of Theorem12.1, we need to introduce two graph oper-
ations which do not decrease the cop number: clique substitution and edge subdivision. Let
N(v) be the the set of neighbors of a vertexv. A clique substitutionat a vertexv consists in
replacingv with a clique of size|N(v)| and creating a matching between vertices of the clique
and the vertices ofN(v). The graph obtained from a graphG by substituting a clique at each
vertex ofG will be denoted byG+. More formally, the vertex set ofG+ is

⋃
v({v}×N(v)) and

two vertices(v1, u1) and(v2, u2) are adjacent if and only ifv1 = v2, or v1 = u2 andu1 = v2.

Lemma 12.5. Clique substitution does not decrease the cop number.

PROOF. Let G be a graph. To each vertexv ∈ V (G) there corresponds a clique inG+,
which we denote byφ(v). We simultaneously play two games: one onG and another onG+.
We assume that we have a winning strategy for the cop player onG+. We use the same number
of cops inG as inG+.

At the beginning, the cops are placed onG+ according to the strategy, and the correspond-
ing cops inG are placed in the obvious way: If a cop inG+ is on a vertex of the cliqueφ(v)
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for some vertexv ∈ V (G), then the corresponding cop inG is put on vertexv. Then, we put
the robber inG+ on an arbitrary vertex of the cliqueφ(v), wherev is the vertex on which the
robber is inG. For simplicity of presentation, we do not move the cops at all inG during the
first turn. Thus, the robber will move first.

Now, let us consider a robber’s move inG, say from vertexu to vertexv. In G+, the robber
is on some vertex ofφ(u). If u = v, we do not move the robber inG+. Next, supposeu 6= v,
and letu′v′ be the (unique) edge betweenφ(u) andφ(v), with u′ ∈ φ(u) andv′ ∈ φ(v). If in
G+, the robber is onu′, we move it tov′. Otherwise, the robber is on another vertex ofφ(u),
and we move it first tou′, then let the cops react to that move, and finally move the robber tov′

(unless it has been caught). Once the robber is in its final position, we let the cops move inG+.
We refer to this sequence of1 or 2 turns inG+ as astage.

Once a stage is finished inG+, we translate the moves of the cops back to the graphG:
Consider a cop inG+. Letu andv be the vertices ofG such that the cop was in the cliqueφ(u)
at the end of the previous stage and in the cliqueφ(v) at the end of the current stage. Observe
that, eitheru = v, or uv ∈ E(G). We move the corresponding cop inG from u to v (or let it
stay onu if u = v).

This describes our strategy for the cops inG. By our assumption, the robber will be caught
during some stage inG+. At the end of that stage, both a cop and the robber on the cliqueφ(v)
for some vertexv ∈ V (G). Hence, when the moves of cops from that stage are translated back
toG, the corresponding cop inG will be on the same vertex as the robber. �

Theclaw is the complete bipartite graph with sides of size 1 and 3. The operation of clique
substitution will be used to show that the cop number of claw-free graphs is unbounded.

Lemma 12.6. The class of claw-free graphs has unbounded cop number.

PROOF. LetG be a class of graphs with unbounded cop number andG+ := {G+ | G ∈ G}.
Notice that all graphs inG+ are claw-free. Applying Lemma12.5, we see that the cop number
of graphs inG+ is unbounded. �

The other graph operation needed for the proof of Theorem12.1is edge subdivision. Be-
rarducci and Intrigila [BI93] proved the following lemma.

Lemma 12.7 ([BI93]). Subdividing all edges of a graph an even number of times does not
decrease the cop number.

This leads to the following result. Recall that thegirth of a graph is the length of its shortest
cycle if it has one,+∞ otherwise.

Lemma 12.8. For every integerℓ ≥ 3, the class of graphs with girth at leastℓ has unbounded
cop number.

PROOF. LetG be an arbitrary class of graphs with unbounded cop number. For everyG ∈
G, letG′ be a graph with girth at leastℓ obtained fromG by subdividing all edges sufficiently
often. LetG′ := {G′ | G ∈ G}. Applying Lemma12.7, we see that the classG′ has unbounded
cop number. �

Now we are ready to complete the proof of Theorem12.1.

Theorem 12.1.The class ofH-free graphs has bounded cop number if and only if every con-
nected component ofH is a path.

PROOF. The backward implication of the theorem follows from Proposition12.2. Indeed,
notice that if every connected component ofH is a path, thenH is a subgraph of the path on
|H| + p − 1 vertices, wherep is the number of connected components ofH. Hence, the cop
number of anH-free graph is bounded bymax{|H|+ p− 3, 1}.
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Now we will prove the forward implication of the theorem. LetH be a graph such that
the class ofH-free graphs has bounded cop number. Suppose thatH contains a cycle and let
ℓ be the length of the longest cycle ofH. Clearly, the class of graphs with no induced cycle of
length at mostℓ is contained in the class ofH-free graphs. However, by Lemma12.8the class
of graphs with no induced cycle of length at mostℓ has unbounded cop number; a contradiction.
Hence,H is a forest.

Now suppose thatH contains a vertex of degree at least3. SinceH is a forest, it must
contain a claw as an induced subgraph. Clearly, the class of claw-free graphs is contained in the
class ofH-free graphs. However, by Lemma12.6the class of claw-free graphs has unbounded
cop number; a contradiction. Hence,H is a forest of maximum degree at most 2, that is,H is a
disjoint union of paths. �

We note that in the second part of the proof (removing cycles) we could have used some
known constructions which show that graphs simultaneously having an arbitrarily large girth
and large cop number do exist; see for instance Andreae [And84] and Frankl [Fra87].

12.2.1. Some remarks about edge subdivisions.Lemma12.7by Berarducci and Intrigila
[BI93] gives a bound on the cop number of graphs which result by uniformly subdividing all
edges an even number of times. By modifying the proof of Lemma12.5, the following can be
shown.

Lemma 12.9. Subdividing all edges of a graph once does not decrease the cop number.

Combining Lemmas12.7and12.9we obtain the general result.

Corollary 12.10. For every positive integerr, subdividing every edge of a graphr times does
not decrease the cop number.

PROOF. LetG be a graph. The proof is by induction onr. The base caser = 1 is given by
Lemma12.9. For the inductive case, assumer ≥ 2. If r is even, then the claim follows from
Lemma12.7. If r is odd, then by induction subdividing each edge ofG (r − 1)/2 times does
not decrease the cop number. Subdividing once every edge of the resulting graph we obtain a
subdivision ofG where each edge has been subdivided(r− 1)/2+ ((r− 1)/2+ 1) = r times,
and its cop number is at least that ofG by Lemma12.9. �

Berarducci and Intrigila [BI93] noted that subdividing edges in a non-uniform manner can
both increase and decrease the cop number. However, for uniform subdivisions it is possible to
give an estimate.

Proposition 12.11.Subdividing each edger times increases the cop number by at most one.

PROOF (SKETCH). Denote byG̃ the graph which results from the graphG by subdividing
each edger times. A winning strategy forcop(G) + 1 cops onG̃ is the following. Let an
auxiliary cop pursue the strategy described for the lead cop in the proof of Proposition12.2.
By this we make sure that the robber cannot change his direction or pass inthe middle of a
subdivided edge except for a finite number of times. The othercop(G) cops simulate their
winning strategy forG on G̃. �

To further enlighten what happens if edges are subdivided, we propose the following con-
struction. LetG be an arbitrary graph withn vertices and cop number at least 2. We construct
a graphĜ by adding paths of lengthn to G: every pair of non-adjacent vertices ofG is joined
by such a path. It is not difficult to see thatcop(Ĝ) = cop(G). But by subdividing edges of
Ĝ, we can obtain a graph resulting fromKn by subdividing every edgen times. From Proposi-
tion 12.11we know that the cop number of this graph is at most2.

Considering this construction, it seems natural to propose the following conjecture, which
implies the conjecture of Meyniel (see Frankl [Fra87]) that cop(G) is in O(

√
|G|).
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Conjecture 12.12. For graphsG obtained by subdividing edges of complete graphsKn we
havecop(G) in O(

√
n).

12.3. Forbidding (not necessarily induced) subgraphs

We now turn our attention to classes of graphs for which we forbid (not necessarily induced)
subgraphs. One key ingredient for the proof of Theorem12.4is the fact that families of graphs
with bounded circumference have bounded cop number. Although this already follows from
Proposition12.3, in this section we give a better upper bound based on an estimate on the cop
number in terms of the tree-width, which we believe to be of interest in its own.

Let us first briefly recall the definition of the tree-width of a graph. Atree decomposition
of a graphG is a pair(T, {Wx | x ∈ V (T )}) whereT is a tree, and{Wx | x ∈ V (T )} a family
of subsets ofV (G) (called “bags”) such that

• ⋃x∈V (T )Wx = V (G);
• for every edgeuv ∈ E(G), there existsx ∈ V (T ) with u, v ∈ Wx, and
• for every vertexu ∈ V (G), the set{x ∈ V (T ) | u ∈ Wx} induces a subtree ofT .

Thewidth of tree decomposition(T, {Wx | x ∈ V (T )}) is max{|Wx| − 1 | x ∈ V (T )}. The
tree-widthtw(G) of G is the minimum width among all tree decompositions ofG. We refer the
reader to Diestel’s book [Die06] for an introduction to the theory around tree-width.

Our proof of Proposition12.5relies on a well-known strategy for the cops and robber game:
guarding a shortest path. Assume thatP is a shortestuv-path, for two distinct verticesu, v of
a graphG, and that a cop is sitting at the beginning on some vertex ofP . The cop’s strategy
consists in moving alongP in such a way that his distance tou is as close as possible to the
robber’s distance tou. It is easily seen that, after a finite number of initial moves, when it is
the robber’s turn to play, the cop’s distance tou will be the same as the robber’s distance tou
when the latter is no more than|P |. This ensures that the robber cannot go on any vertex of
P without being caught. (This strategy has been first used by Aigner and Fromme [AF84], in
their proof that the cop number of planar graphs is at most 3.)

Proposition 12.5. The cop number of a graphG is at mosttw(G)/2 + 1.

PROOF. Let us consider an optimal tree decomposition ofG. Since the tree-width ofG
equals the maximum tree-width of its connected components, we may assume without loss of
generality thatG is connected. For a bagX ⊆ V (G) of the tree decomposition, we denote by
tX the vertex ofT corresponding toX.

At the beginning, an arbitrary bagB ⊆ V (G) of the tree decomposition is selected, and all
its vertices are guarded in the following way: Lettingb1, b2, . . . , bk denote the vertices inB, we
let theith cop (1 ≤ i ≤ ⌊k/2⌋) guard a shortestb2i−1b2i-path inG, and, ifk is odd, we put an
additional cop on vertexbk. This ensures that, after a finite number of moves, the robber cannot
go on any vertex inB, and hence is confined to (the subgraph corresponding to) some treeT ′

of T \ tB. (We may assumeB 6= V (G), as otherwise the robber is trivially caught.)
LetB′ ⊆ V (G) be the unique bag of the tree decomposition that is adjacent toB in T with

B′ ∩ C 6= ∅. Observe thatB ∩B′ is a cutset of the graphG. We show that the cops can move
in such a way that the vertices ofB ∩ B′ remains guarded, and after a finite number of moves
all the vertices ofB′ (instead ofB) are guarded.

Consider each cop. Suppose first that the cop sits on a vertex ofB \B′ or guards a shortest
path between two vertices inB \ B′. Then we send him to guard a shortest path between two
unguarded vertices inB′ \ B (or to sit on the last unguarded vertex if there is only one such
vertex). Assume now that the cop sits on a vertex ofB ∩B′ or guards a shortestbibj-path with
bi ∈ B ∩ B′ andbj ∈ B \ B′. Then the cop first goes tobi (if he is not already there) along
the path he keeps. The he starts guarding an arbitrarybib

′
j′-path, whereb′j′ is any unguarded

vertex ofB′ \ B. Notice that, while it may take some moves before all the vertices of the path
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are safely guarded, at least the vertexbi is guarded at every time. Suppose finally that the cop
guards a shortestbibj-path withbi, bj ∈ B ∩ B′. In this case, the cop does not modify his
strategy, and keeps guarding his path.

After a finite number of moves all the vertices inB′ are guarded, and the robber did not
have, at any time, the opportunity to go on a vertex inB ∩B′ without being caught. Moreover,
the number of necessary cops is at most⌈|B′|/2⌉ ≤ tw(G)/2 + 1, and the robber is reduced
to stay in (the subgraph corresponding to) some tree ofT \ tB′ which is a proper subtree of
T ′. Therefore, by repeating this operation a finite number of times the robber will eventually be
caught. This completes the proof. �

We remark that the bound given in Proposition12.5 is best possible for small values of
the tree-width: For everyk = 1, 2, . . . , 5, there are graphs with tree-widthk and cop number
⌊k/2⌋+ 1 (this is easily seen fork = 1, 2, 3, and the Petersen graph and the graph which is the
disjoint union of the Petersen graph and a complete graph on 6 vertices aresuch examples for
k = 4 and5, respectively). On the other hand, we do not know whether there existsa constant
c > 0 and an infinite family of graphs such thatcop(G) ≥ c · tw(G) holds for every graphG
in the family.

Let us recall that thecircumferenceof a graph is the length of its longest cycle if it has one,
+∞ otherwise.

Corollary 12.13. The cop number of a graph is less than or equal to half its circumference.

PROOF. It is a well-known fact thattw(G) ≤ circum(G) − 1 holds for every graphG,
wherecircum(G) denotes the circumference ofG (see for instance Exercise 12.18 in Diestel’s
book [Die06]). With Proposition12.5, we concludecop(G) ≤ circum(G)/2. �

Theorem 12.4. The class ofH-subgraph-free graphs has bounded cop number if and only if
every connected component ofH is a tree with at most three leaves.

PROOF. We first show that the requirements in the statement of the theorem are necessary.
Let H be a graph such that the familyF of connected graphs not containingH has bounded
cop number.

First, suppose thatH contains a cycle, and letℓ be the length of a longest cycle inH. Then
F contains the family of connected graphs with girth at leastℓ+ 1. However, by Lemma12.8,
the cop number of this family is unbounded. Hence,H is a forest.

Second, suppose thatH has a vertex of degree at least 4. This implies thatF contains
all connected graphs with maximum degree 3, but Andreae [And84] proved that there exists a
family of 3-regular graphs on which the cop number is unbounded. Hence, H has maximum
degree at most 3.

Third, suppose that there is a tree inH which has two vertices of degree 3. Letℓ denote the
distance between these two vertices inH. Now F contains the family of all those connected
graphs in which every two vertices of degree 3 or more have distance at leastℓ + 1. Starting
from an arbitrary family of graphs on which the cop number is unbounded,a family with this
property can be constructed by subdividing every edgeℓ times, as follows from Corollary12.10.
Thus, each connected component ofH contains at most one vertex of degree 3.

We now show that anyH meeting the conditions in the theorem yields a family of graphs
with bounded cop number. The proof will be by induction on the number of connected com-
ponents ofH. For a single component, by Proposition12.2, we may assume that a vertex of
degree 3 does in fact exist. We will prove the following claim.

Claim. Let H be a tree with maximum degree 3 which has precisely one vertexv of degree
3. Denote byr the maximum distance of a vertex fromv. If G does not containH, then
cop(G) ≤ 2r.
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Before we prove the claim, let us complete the induction. The start of the induction is
settled. LetT be a connected component ofH, and assume thatcop(G′) ≤ k for every graph
G′ not containingH \ V (T ). Let G be a graph not containingH. If G does not containT ,
we are done by the claim and the remark preceding it. Otherwise, letT ′ be a subgraph ofG
isomorphic toT . We place|T | cops on the vertices ofT ′. This corners the robber in a connected
component ofG \ V (T ′). Noting thatG \ V (T ′) does not containH \ V (T ), by induction,
by restricting to the connected component containing the robber, we can catch the robber in
G \ V (T ′) usingk cops. This bounds the cop number ofG by k + |T | and concludes the
induction.

Proof of Claim. We prove the claim in the case when each leaf ofH has distance exactly
r from v. The general case follows easily from this.

By Proposition12.2, we may assume thatG contains a pathP on 2r vertices, because
otherwise we havecop(G) ≤ 2r. We guard the path by placingr cops on every other vertex of
P , and show that what remains ofG has cop number at mostr. Assume thatG\V (P ) contains
a cycleC of length at least2r + 1. Then, sinceG is connected, we can identify a subgraph
isomorphic toH choosingv to be a vertex onC which has minimum distance to a vertex inP ,
while two of the three branches of the tree are wound aroundC, the other extends toP . Hence,
G \ V (P ) contains no such cycle. By invoking Corollary12.13for the connected component
of G \ V (P ) containing the robber, we see that the cop number ofG \ V (P ) is at mostr. �
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problems via random facility sampling and core detouring, Proceedings of the XIX Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2008), 2008, pp. 1174–1183.65, 66, 71
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[FJP10] Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli,Hitting diamonds and growing cacti, Integer
programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 6080, Springer,
Berlin, 2010, pp. 191–204. MR 2661098 (2011j:05321)11, 91
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