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DEUTSCHE ZUSAMMENFASSUNG iii

Deutsche Zusammenfassung

Diese Schrift entllt Manuskripte und Nachdrucke aus den Gebieten der Optimierung und
Kombinatorik. Zu Beginn beséitigt sie sich mit den Polyedern des bekannten Problems des
Handlungsreisenden. Zu diesem sind zwei Polyeder assoziiertnfite&ts graphisches bzw.
symmetrisches), deren Véilnis zwei Artikel beleuchten. Zum Einen stellt sich heraus, dass
das graphische Polyeder sich allein geometrisch aus dem symmetrisciienuertgr Zuhilfe-
nahme des Metrischen Kegels. Zum Anderen kann man den Chamber Kaheplexojektion
der Polare der Polyeder elementar charakterisieren.

Weiterhin entilt die Schrift eine Arbeitiber Kanten eines Polyeders zu Graph Labeling
Problemen, sowie eine Arbeit zu Network Design mit nicht-linearen Kosten.

Starker kombinatorisch ausgerichtet sind Arbeitdrer kleine Minoren in Graphen mit
groBem, konstanten Durchschnittsgrad, soaber Edge-Labelings in Graphen ohne kurze
Kreise. Die Beziehungen zur Optimierung werden in der #infing erdutert. Ein Artikel
widmet sich der Brbungszahl von zafligenUberlagerungen gewisser Graphen, mit endlicher,
nach unendlich gehender Faser; ein weiterer deillBerkeit zuglliger logischer Formeln mit
Bedingungen der Form < I fur Intervallel C [0, 1]. Die Arbeit schlie3t mit Resultaten zum
sogenannten Cops-&-Robber Spiel auf Graphen.
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Part 1

Introduction






CHAPTER 1

Optimization and Polyhedra

In 1954, Dantzig, Fulkerson and Johns@#[p54] initiated what is currently the most suc-
cessful practical method for solving large-scale NP-hard discrete optionzproblems. The
idea was to use Dantzig’s Simplex method for Linear Programming to try to solVedtieling
Salesman Problem (TSRgiven a complete grapR,, together with lengths for its edges, find
atour visiting each vertex exactly once (or Hamiltonian cycle) with minimum total cost of its
edges. The approach of Dantzig, Fulkerson and Johnson was ierakiey first decided on a
Linear Programming formulation whose optimal solution would provide a lowantdo the
length of the optimal tour. Due to the exponential size of the formulation, its solwibwld not
be computationally feasible. Hence, only a considerably smaller Lineardmogontaining
a subset of the constraints, would actually be solved by the Simplex methtite $blution
to the LP were found to violate some of the constraints which had been omitteg, ¢bo-
straints would be added to the Linear Program, and thus, an iterativadprecsould generate
successively better lower bounds on the length of the optimal tour.

This iterativecutting plane methots usually combined with branch-and-bound techniques.
The resultingBranch-and-Cuimethod has proved tremendously successful in solving a great
variety of NP-hard combinatorial optimization problems. Even though it is dlsbeaheart
of state-of-the-art Integer Programming solvers, a key to its currexess in solving prob-
lems like the TSP lies in large parts with the understanding of polyhedra assbuwidh the
problems. For problems which are defined combinatorially, like the TSP, gudtsen fruitful
interactions of polyhedral-geometric and combinatorial techniques.

1.1. Understanding the relationship between the Symmetric and Grdpical TSP

The Symmetric Traveling Salesman Polytapéhe convex hull of all characteristic vectors
of edge sets of cycles (i.e., circuits) on the vertexiet= {1, ...,n} (in other words, Hamil-
tonian cycles in the complete graph with vertex Bgl. For the formal definition, denote by
E, the set of all two-element subsetsigf. This is the set of all possible edges of a graph with
vertex setl;,. The Symmetric Traveling Salesman Polytope is then the following set:

Sp 1= Conv{xc | C'is the edge set of a Hamiltonian cycle with vertex\se} c RE»,

Here, for an edge sét, ! is the characteristic vector " with x!' = 1if e € F, and zero
otherwise.

In the mid nineteen-fifties, the first theoretical research about Symmetieling Sales-
man Polytopes appeared in a series of short communications and peEp&sSsd Hel55b,
Hel56, Kuh55, Nor55]. With few exceptions (for examplé-N92, Nor55] for the casen < 5;
[BC9]] for n = 6,7; [CIRIL, CR96, CRO1, ORTO7] for n = 8,9), no complete character-
ization of the facets of,, are known. In fact, since the TSP is NP-hard, there cannot exist a
polynomial time algorithm producing, for everyand every point: € R” \ S,,, a hyperplane
separating: from S,,, unlessP=N P (I have omitted some technical conditions here). Another
noteworthy argument for the complexity of these polytopes is a result of 8fle€tarangarajan
[BS94: For every 0/1-polytopd®, there exists an such thatP is affinely isomorphic to a face
of S,,.
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Since the seminal work of Naddef & RinaldNR91, NR93], a second polyhedron also
has been used: th8raphical Traveling Salesman polyhedroiit is the convex hull of all
characteristic vectors of edge multi-sets of connected (loopless) Eutatitingraphs on the
vertex setV,,. (Recall thatEulerian means that there exists a walk containing all edges.) A
(loopless) multi-graph with vertex si}, has as its edge set a sub-multi-seff By defining,
for any multi-setF of edges ofk,,, its characteristic vectoy” € R~ so thaty!" counts the
number of occurrences efin F, the Graphical Traveling Salesman Polyhedron is formally
defined as

P, = conv{xF \ F is the edge multi-set of a connected Eulerian multi-graph

with vertex setVn} c RE»,

Ever since Naddef & Rinaldi’s papers on the Graphical and SymmetrielingvSalesman
PolyhedraNR91, NR93], P, is considered to be an important tool for investigating the facets
of S,,. Moreover, the Graphical Traveling Salesman Polyhedron is also iooedly more
convenient to work with computationally: In works of Cadr04] and Applegate, Bixby,
Chvatal & Cook JABCCO1], P, is (proposed to be) used algorithmically within Branch-and-
Cut frameworks solving the TSP.

Numerous authors have expressed how close the connection betwaggridal and Sym-
metric Traveling Salesman Polyhedra is. The most basic justification for thimapathe fact
that S, is a face ofP,, — consisting of all points: whose “degree” is two at every vertex —,
but the links are far deeper (sd¢dd02 or [ORTO07] and the references therein).

The connections known before the publication of the short communicattueil[], which
is reprinted as Chapt&rof this thesis, were established combinatorially by comparing Hamil-
tonian cycles with spanning Eulerian multi-graphs. Surprisingly, thoughethganship of the
two polyhedra can be understood entirely geometrically.

Theorem 1.1. P, is the intersection of the positive orthant with the Minkowski suis,cdind
the polarC} of the metric con€,:

Py = (Su+Cp) NRE"
The metric cone consists of alle R¥» which satisfy the triangle inequality
Ay < Oy + Qo

for all pairwise distinct vertices, v, w € V,,. Consequently, its polar is generated as a cone by
the vectors
X{uw} + X{wv} o X{uv}'
While the importance of the triangle inequality was realized already by Naddei-&
naldi [NR91, NR93], the depth of this link has not been noticed for 20 years.

1.2. On the facial structure of Symmetric and Graphical TSP

Although surprising, Theorerh.1 scratches only on the surface of the connection between
Symmetric and Graphical Traveling Salesmen.

As mentioned aboves,, is a face ofP,. This means that every inequality
valid for S,, can be “rotated” to make it valid foP,. By “rotation” we mean
modifying left and right hand sides of an inequality = > « in such a way
that the set of points in the affine hull 6§, which satisfy the inequality with
equation remains the same, yet the hyperplane the inequality defines in
ambient space changes. Technically, this amounts to adding equations vz
for S, toa e x > «. Once the inequality is rotated so that it is valid @y, one may ask which
face of P, is defined by the rotated inequality. Sin6g # P,, there are always several such

{z|a-z=a}
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faces, but even when we aim for inclusion-wise maximal faceB,odlefined by some rotated
version ofa e > «, in general, these are not unique. In the picture above, by properly tilting
the hyperplane defined lye = = o, we can obtain the facds, G; andG,.

Extending results obtained ihe0Y, the manuscriptThe], which forms Chapte# of
this thesis, deals with the following question:

Question 1.2.Given a valid inequality: e z > « for S,,, what is the largest possible dimension
of a face ofP,, defined by a rotated version of that inequality?

It turns out that to answer this question, next to knowing what face, 0 defined by the
inequality, one only needs to look at thén — 1)(n — 2)/2 numbersi,, + Gy — @y, for all
triplesu, v, w of distinct vertices inV,,. More accurately, only the ordering relations between
these numbers are important.

Rotation is a standard tool in Discrete Optimization. The most prominent examplgusrgial
lifting, which is a constrained form of rotation. In the setting of sequential §ftif? is a
polyhedron for which the non-negativity inequality > 0 for a coordinate is valid, defining
anon-empty facé := P N {x | ; = 0}. Then, an inequality valid fof is rotated by adding
scalar multiples of the equatiarn; = 0 to it in such a way that it becomes valid férand the
face defined by the rotated inequality is strictly greater than the faceddfined by it. By
iterating this procedure, one may “sequentially” lift inequalities which are valich smaller
faceS. The face ofP defined by the sequentially lifted inequality may in general depend on
the order in which the coordinatgsare processed. The same procedure works when generic
inequalitiesc e x > ~ are used instead of the non-negativity inequalities.

Sequential lifting or other rotation-based tools are applied manually to fintsfatgoly-
hedra which contain faces which are better understood. Moreovehamisms of this kind are
used computationally in cutting-plane algorithms where some separation prededt works
on a face and then lifts the obtained inequalities.

Naddef & Rinaldi NR91, NR93] proved a theorem saying that, if | Pemeld®®
an inequality defines a facet 6f,, then there is a unique maximal face metric ;‘;;iz‘:?;’;"
of P, which can be obtained by rotating the inequality, and this maximal contained in
obtainable face is a facet ¢%,. Naddef & Rinaldi classified the facets /~ . ™"
of P, into three types — non-negativity facets, degree facets, and the ribst], Ta-facets —
based on properties of the coefficients. While the degree facets andegativity facets are
both small in number and easily understood, the interesting class both ferstemding the
polyhedron and for applications is the huge set of TT-facets. By the¢heust mentioned,
once one knows that the degree facetsPpfare precisely those which contalfy, — also
proved in Naddef & Rinaldi's paper —, this also classifies the facetS,ointo two types:
non-negativity and TT-facets.

In an earlier paper@RT05, ORTO7] we have refined the classification by splitting the
TT-facets ofP,, into two subclasses: NR-facets and non-NR-facets, depending ahevtibe
intersection of the facet with,, is a facet ofS,, (theseP,,-facets are called NR-facets) or a face
of S,, of smaller dimension. Our main result was the fact that the non-NR class ésnpiy.

In terms of rotation, this shows that there are (“TT-type”) valid inequalitesf, which do not
define facets ob,,, but which can be rotated to define facetdf

The answer to Questiah2is formulated using the terminology of polar polyhedra, polyhedral
complexes, and polyhedral subdivisions. A polar polyheds6nof a polyhedronS has the
property that the points df“ are in bijection with the linear inequalities (up to scaling) for
Moreover, a point is contained in a face of dimensiarof S, if, and only if, the correspond-
ing inequality defines a face of dimension at leéist S 4+ 1 — &k of S. In particular, the vertices
of S# are in bijection with the facets &f. A polyhedral complex is a finite set of polyhedra,
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closed under taking faces, such that the intersection of any two polyretire set is a face of
both.

For the reasons explained above, the result3 e[ pertain to the “important” part of the
polar of S,,, namely the part which remains if we delete the vertices corresponding to non
negativity facets. This corresponds to taking only the “TT-type” valid uaditjes for.S,,. This
subset of faces of the polar 6f, is a polyhedral complex, which we denote dy

Now, take a point in4, consider the corresponding valid inequality f§y, and rotate it
in all possible ways yielding inequalities valid fdt,. A certain set of faces oP, can be
defined by the rotated versions of this inequality. We partition the points cewat&i in the
following way: two points are in the same cell of the partition, if, by rotating threesponding
valid inequalities, the two sets of faces@f which can be defined, coincide.

In fact, the partition whose definition | have just outlined, gives a polydlesirbdivision
S of A, i.e., the set of closures of the cells is a polyhedral complex, and evegyofa4 is
a disjoint union of cells. This is true in the general situation when a polyffea face of
another polytopé’. Indeed, in the general situatiafi,is known as thehamber complegf the
canonical projection of the polar @f onto the polar ofS. | call such a polyhedral subdivision
arotation complex.In [The], the following results are established about the rotation complex
in the TSP situation:

(A) The decomposition of4 into cells can be described in an elementary way that does
not refer to rotation; moreover, it does not refer to any Graphicalelieg Salesman
concepts whatsoever. Indeed, to describe the subdivision, for gpumamtained inA,
it suffices to check the order relations of the expressiQRs- a,., — awy, With u, v, w
three distinct vertices i

(A) The rotation complexS is the common refinement of with a projection of a natural
sub-complex of the boundary complex of the metric cone. (The common medinte
of two polyhedral complexes is the set of all intersections of polyhedraeirtviio
complexes, see Fid.1, left, on page28.)

(B) The points inA are inbijection(!) with the “important” part of the polar of,,, and
this bijection maps faces of the polar Bf onto faces of the rotation complex In
other words, the polar a?, can be “flattened” onto the polar 6f,, see Fig4.1, right.

Again, “important” is meant to be understood in the sense that it corresgormdnsidering
TT-type inequalities only. Item (B) is not a consequence of known fduotgitathe chamber
complex (injectivity fails to hold in general). The picture in Fg1, left, on page28§, illustrates
Items (A) and (A). It shows a hypothetical drawing df (solid lines) with two pointsi, a’.
To decide whether these two points, when viewed as valid inequalities, foyield the same
faces of P, when rotated, one has to check the expressiQpns— a.., — a.,. This amounts
to checking if they are contained in the same cone in the picture on the leftqdiogs). Due
to the Theoreni.1 discussed in the previous section, occurrence of the metric cone hare is n
surprise, of course.

The rigorous formulation of the two theorems corresponding to (A), (A9 ) requires a
larger technical apparatus, and is omitted at this point. Germs of Items (ABahed already
been proved inThe0Y, albeit with a considerably more complicated proof.

An outlook on polyhedral STSP/GTSP problems

Earlier versions of methods developed in Chagteere helped resolve two open questions
regarding Symmetric vs. Graphical TSP: The existence of non-NR facetshe complete
description ofPy (together with a computer searclQiRT07]. A number of open problems
remain, which | would like to address here.

0-Node lifting. The polyhedrorP, has the pleasant property that a very simple lifting oper-
ation called0-node lifting[NR91, NR93] preserves the facet defining property. In other words,



1.3. EMBEDDABLE METRICS AND THE LINEAR ARRANGEMENT PROBLEM 7

if an inequality defines a TT-type facet &f,, then duplicating a vertex iff;, and joining the
two twins by an edge with coefficiefityields a facet-defining inequality fd,, ;1. Annoyingly,

to this date, it is not known whether if one starts with an inequality defining afiad& (i.e.,
the inequality also defines a facet ), the facet defined by the 0-node lifted inequality can
be non-NR (meaning, it does not define a face$ pf ).

Conjecture 1.3. There exist NR-facet defining inequalities which, after 0-node lifting, define
non-NR facets.

It is known that when, starting with an NR-facet, 0-node lifting is applied tveit¢he
same vertex, then the resulting facet is NRY93]. Hence, in terms of rotation complexes, an
example as in the conjecture would behave like this: By 0-node lifting, a veftidse polar of
Sy, jumps into the interior of a face &,,; which is a vertex of the rotation complex, and by
0-node lifting again at the same vertex, it jumps to a vertex of the pol&y,.o0f. Consequently
it appears as if the rotation complex theory ought to be able to prove wrong€urel.3.
However, | believe that it is actually true.

Computationally checking millions of NR-facets (with = 10, 11,12, 13) has not un-
earthed such an inequality. The problem with computational methods in seasach an
example is the following. For < 8, none of the 24 TT-type facet classes (i.e., facets modulo
permutation of vertices) oP,, are non-NR. Forn = 9 there is exactly one non-NR facet class
among the 192 TT-type facet classesof(0.52%). Among the (conjectured) 15621 TT-type
facet classes aPyg, there are (conjectured) 243 non-NR facet classes (1.56%). Whitatibe
seems to be increasing with for those values of in which computation can be done in any
significant scale (up t@5), the non-NR facets seem to appear to be statistically scarce. On the
other side, there is the observation that the 0-node lifted facet clasggsaoé also statistically
very scarce in the TT-type facet classesiyf,; (13% forn = 8, 1.23% forn = 9, appears
to be decreasing with). This makes it appear unlikely to hit, “by chance”, an example of a
0-node lifted NR-facet which is also a non-NR facet.

Parsimonious relaxationsln Theoremd.5 (see alsoThe05 ORTO07]), a necessary condi-
tion is given for a certain subgraph of the ridge-graph of GTSP to beemad. | believe that
this condition actually characterizes so-calptsimonious relaxationésee Sectiod.2.4for
the definition).

Recall that the ridge-graph has as its vertices the facets of a polyhedtbriwo facets
being adjacent if their intersection has maximal possible dimension.

Conjecture. Suppose a system of inequalities defining NR-facets has the following tgroper
If the corresponding vertices are deleted from the ridge graph, thery @amnected compo-
nent contains an NR-facet. Then the relaxation given by this system ofliteguhas the
parsimonious property.

The formulation here is not exact, see CahR4for the exact formulation. The conjecture
holds for the known relaxations &f,, consisting of NR-inequalities described i@RTO7]
which fail the parsimonious property.

1.3. Embeddable Metrics and the Linear Arrangement Problem

The study of polyhedra consisting of metrics or semimetrics on some fixed fogite $as
a long tradition in Polyhedral Combinatorics and Convex Geometry; see[B4.§7], for a
starting point. (Asemimetricsatisfies all the requirements of a metric, except the distance of
distinct points may be zero; it is customary in this area to use the term “metrictalsemi-
metrics.) Without additional constraints on the semimetrics, one has the metricvcioicl
we have already encountered above. Often, embeddability constramesgaired: One stud-
ies convex/polyhedral-geometric properties of the set of (semi-)metricecaable in a fixed
normed space, possibly with additional conditions.
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It turns out that these constrained sets of semimetrics are related to combirgtmiza-
tion problems. As a famous example, the set of all semimetrics an@oint set which are

embeddable il (3) with the 1-norm coincides with the cut cone.

In the paper [RST10], which is reprinted as Chaptérof this thesis, we study metrics
which are embeddable in the real line in such a way that every two points &ash some
fixede > 0 apart. These metrics are related to the Linear Arrangement and otharlgyapit
problems.

Let me first note that changing teemounts to a dilation of the set of metrics, so that fixing
¢ := 1is no loss of generality. We call those metri@®-embeddabléa-separated”. Secondly,
the cardinality of the point set will be denoted hy

The following classes of semimetrics, which are closely related tdRteenbeddabld -
separated metrics, have been extensively studied in the literature:

e As indicated above, the cut cone, ClJTcoincides with the set of all semimetrics
which can be embedded into a space with 1-norm, i.e., semiméet(@s a fixedn-
point set) for which there exists an and pointsey, . .., z, € R™ such thati(i, j) =
|lz; — a4, for all pairs of pointsi, j. These semimetrics are customarily referred to
as/;-semimetrics.

e The /y-embeddablesemimetrics, which are defined as in thecase, except that
d(i, j) = ||z; — z;|,. Denote the set of these metrics b/ .

¢ TheR-embeddablsemimetrics, which are the special casé,ef(or /,-) embeddable
semimetrics obtained wheniis fixed tol. The set of these metrics is denotedy’.

In general, the setd/-? and M are not convex, but the convex hull of bath!? and M
is CUT,,. Similarly, the setM ! of R-embeddable 1-separated metrics is not convex (it is the
union ofn!/2 disjoint simplicial cones, see Prop.3), but its convex hull occurs in the context
of graph layout problems.

Connection to Graph Layout problem&iven a graph a layoutis a bijection7: V' —
{1,...,|V(G)|}. Several important combinatorial optimization problems, collectively known
asgraph layout problemszall for a layout minimizing a function of the distande$u) — 7 (v)|,
uwv € E(G) (see the survey[]PS03). In the Linear Arrangement Problem, the objective is
to minimize ), . [7(u) — m(v)|. In the Bandwidth Problem, the objective is to minimize
maxycp |7(u) — 7 (v)|.

Now let d(u,v) for {u,v} C V(G) be an integral variable representing the quantity
|m(u) — w(v)|. It has been observed by several authors that interesting relaxafigmaph
layout problems can be formed by deriving valid linear inequalities thatsdisfied by all fea-
sible symmetric functiond. Some of these inequalities have been used to derive approximation
algorithms for various graph layout problems (eENRS0Q RR05]). Itis thus natural to study
the following permutation metrics polytop¢ALO09]

P, = conv{d: VXV R ’ Ir € S(n) s.t.d(i, j) = |x(i) — 7(j)| Vi, j € v},

whereS(n) stands for the set of all permutationsiof= {1, ...,n}. In[ALO9], itis shown that
P, is of dimension(}) — 1 and that its affine hull is defined by the equatlol); ;- d(4,7) =
("3)):

The connection witlR-embeddable 1-separated metrics lies in the fact that the closure of
the convex hull of these metrics equals the Minkowski su,pfind the cut cone (Prop.6).

Denote the convex hull afZ ! by @, (this is not a polyhedron), and its closure ®y,.

Unbounded edges @p,, and Q,,. From this starting point, in the papetRST10], we
move to study the unbounded edges of the conveR)seProp.5.20 and the polyhedror),,
(Theorems.22). Since®,, = P, + CUT,, (see above), the directions of the unbounded edges
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correspond to cuts, whereas the vertices in which these edges originegspond to permu-
tations. Characterizing, for a given permutation/vertex, the set of cutespmnding to un-
bounded edges originating in the vertex requires combinatorial/geometrgtigattons which
are done with some ease in the cas&gf but, in the case af,,, they are quite subtle. | cannot
restrain myself from pointing the reader to the beautiful connections betgeemetry and
combinatorics in Lemmas.32(“reduction”) and5.34(“induction”), as well as in the examples
of that section.

The resulting relationship between permutations and cuts given by the ineidéaxtreme
rays of CUT, on vertices ofP, is the following: for a permutationr, a cut(U : V \ U)
corresponds to an unbounded edge ending in the veri€xhere is nok < n — 1 such that
eitherU or V' \ U equalst—!({1,...,k — 1, k + 1}).

(The paper[RST10] also contains studies of facets @f,. These were mainly done by
A. Letchford, who also proposed the study of unbounded edg€s, @ndQ,,.)

Outlook. Our work raises some further questions, most prominently the following:
Question 1.4. Do the bounded edges €, have a simple combinatorial interpretation?

The bounded edges 6f,, are of course those d?,.

Generally speaking, bounded edges have received more attention d¢iraloniger broth-
ers. This fact roots in hopes to adopt the simplex algorithm to make use e$ @@ more
“direct” way, without requiring a complete description of the polyhedronnggualities, and
has given rise to a number of conjectures and questions about (lwettees of combinatorial
optimization polyhedra, or even polytopes in general, most famously, e§epto the Hirsch
conjecture. Given that for other classes of unbounded combinatgiiahiaation polyhedra,
no characterization of the extreme rays or even vertex / unboundediraddences is known,
our result might stir hopes that f@t,, the adjacency relation of vertices admits a combinatorial
characterization.

1.4. Virtual Private Network design with non-linear costs

The fourth paper reprinted in this thesis has a somewhat lesser conrteghiaighedra. In
the symmetric Virtual Private Network desiggVPN) problem, vertices want to communicate
with each other. The exact amount of traffic between pairs of vertices isnown in advance,
but for each vertex the cumulative amount of traffic that it may send or receive is bounded
from above by a given numbéy,. The aim is to install minimum cost capacities on the edges
of the graph supportingny possible communication scenario subject to these bounds. The cost
for installing one unit of capacity on an edgés c..

Goyal, Olver and Shepher@PS08H proved that the symmetric Virtual Private Network
Design 6 VPN) problem has the so-calleéake routing propertynamely, that there always exists
an optimal solution to the problem which installs non-zero capacities only ogseaghich do
not contain a cycle. Earlier, Fingerhut, Suri and Turfe$T97 and Gupta, Kleinberg, Kumar,
Rastogi and YenerG@KK T01] had shown that such a tree-shaped solution can be found in
polynomial time. Thuss VPN can be solved in polynomial time.

In the paper FOST1Q which is reprinted as Chapt&; we consider an APX-hard gen-
eralization ofsVPN, where the contribution of each edge to the total cost is proportional to
some non-negative, concave, non-decreasing fungtiofithe capacity reservatiorf does not
depend on the edge and is given by an oracle).

The polyhedral part of that paper is the proof for the fact that thelim@ar version has the
tree routing property, too. For this, we associate polyhedra with instafieeselated problem
(thesCR, see Fig6.1 0on page6b) in such a way that the tree routing property for an instance
can be expressed as a property of the extreme points of the associptieeldpon. We then
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show how the transition from linear to concave amounts to a coordinate-ansawe mapping
of the corresponding polyhedra, which preserves the property @xneme points.

Building on this, we study approximation algorithms for the concave versisvBN. For
a general concave function, using known results on the so-called Shoglee Buy at Bulk
(SSBB) problem, we give &4.92-approximation algorithm. For a more restricted class of
concave functions, by reducing to the so-called Single Source Reniyo(E5RB) problem,
we are able to obtain292-approximation.



CHAPTER 2

Optimization and Combinatorics

2.1. Small Minors in graphs

| would like to motivate the papeFPTW], which forms chapter through its connection
to optimization. Many optimization problems are of the following form. Given a lgr@p
(possibly with costs on vertices or edges) find a subgragh which belongs to a target graph
class, by deleting as few vertices and edges as possible (i.e., by in@nratigst possible cost).

A trivial example is the Maximum Spanning Forest problem: Delete as fewseafgpossible
such that the resulting graph is a disjoint union of trees. Fiorini, JoretPaitbpaoli FIP1Q
considered what they called the “Diamond Hitting Set” problem: Delete as feticee as
possible such that the resulting graph is a disjoint union of cactus graghamnally, a cactus
graph is obtained from a tree by replacing some of the edges with cyclesalg a graph/d
is a disjoint union of cactus graphs if and onlyHf does not contain a diamonid, \ e as a
minor.

To obtain an approximation algorithm for their Diamond Hitting Set problem, Fi@tni
al. used a lemma saying that every graptwith average degree at least three contains, as a
subgraph, a subdivision of a diamond of si2élogn), with n being the number of vertices
in G. Moreover, such a subgraph can be found in polynomial time. This lemmasaftow
a very simpleO(log n) approximation algorithm (for the unweighted problem), one of whose
core ingredients is iteratively finding and deletifdlog n)-sized diamond-subdivisions as long
as there are any.

Their result left the following obvious question. If the target graph diaskefined by for-
bidding another minof instead of the diamond, does there still exi6l(@og n) approximation
algorithm? Since Fiorini et al.’s algorithm relies heavily on the existence afall sliamond-
subdivision given large enough average degree, a necessauglithot sufficient) condition to
successfully apply their techniques would be the existence, in everly grapth large enough
average degree, of & minor supported on a small subgraphtaf

Our manuscriptfFJTW] deals with this problem.

The caseH = K3 asks for a short cycle in a graph. An easy an well-known theorem
states that, if a graph has minimum degree larger than two, then it containseaot\size
O(logn). Alon, Hoory, and Linial AHLO2] extended this to graphs with average degree larger
than two (but see Lemma4 for a different proof; Alon et al. prove considerably more than
this statement).

For generalK; minors, Kostochka and PybeKIP88] proved that, givert,e > 0, every
graph with at least4'*~Dn!*< edges contains &;-subdivision with at most7t* logt)/= ver-
tices. Takings := 1/logn, t = 4, for example, and a conjectured improvement©flogt)/= to
O(**/e), this gives a bound of'? for the average degree.

Ouir first result is the following.

Theorem (Theorem7.50n pager6). Every graph with average degree at ledst ¢ contains
a Ky4-subdivision of siz€&(logn).

There are simple examples of (even planar) graphs with average degreghose only
K,4-minors have siz€(n) (see Fig7.1on pager4). Using an inductive approach, this theorem
can be extended to yield the following.

11
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Theorem (Theorem?7.60n pager7). Every graph with average degree at leasti- ¢ contains
a K; minor supported o (log n) vertices.

Planar graphs.It turns out that, ifG is planar, one can do better than Theorg®m Using
the discharging method (see Lemia6), we could prove the following.

Theorem (Theorem7.190n pageB3). Every planar graph with average degree at ledst ¢
contains a/4-subdivision of siz€(1).

Outlook. While the average degree bound in Theorémis optimal, the one in Theo-
rem?7.6is not (even though it is a big improvement on Kostochka and Pybéf's 1)). Thus,
the most obvious question is the following.

Question 2.1. Is there a sub-exponential functigfisuch that every grapld: with average
degree at leasf(¢) contains ak; minor supported o0 (log n) vertices?

The following, | find somewhat more intriguing. Léft) be the infimum over all numbets
for which the following holds: Every grapti with average degree at leastontains &; minor
(regardless how much of the graph it covers).

Question 2.2. Does every graph with average degree at leAg) + ¢ have aK; minor sup-
ported onO(log n) vertices?

Fort = 4, our theorem proves just that. Foe= 5, we havef(5) = 6, and the question is
open.

2.2. Good edge labelings

Our manuscriptBFT], which is included as Chapt®&in this thesis, deals with a theoretical
problem arising in the context of so-called Wavelength Division Multiplexirapfems. Given
a network, thdRouting and Wavelength Assignment Probéeks for finding routes and associ-
ated wavelengths, such that a set of traffic requests is satisfied, while migrttiz number of
used wavelengthdB[CCPO04. In a recent paper, Bermond, Cosnard, agdeAnes JCBP0Y
establish a relationship with good edge-labelings.

A good edge-labelingf a graphG is a labeling of its edges: F(G) — R such that, for
any ordered pair of distinct verticesandv, there is at most one nondecreasing path fiom
to v. Equivalently:

An edge-labeling is good, if, and only if, every cycle has at least twd tocama.

For simplicity, let us say that a local minimum is an edgghose label is strictly less than the
labels of the two edges incident ¢mn the cycle (this simplification requires to assume, wlog,
that all labels are distinct).

Araujo, Cohen, Giroire, and HaveaCGHO09, ACGH12] have studied good edge-labelings
in more depth. They call a graph with no good edge-labeliag and say that a&ritical
graph is a minimal bad graph, that is, every proper subgraph has aegyedlabeling. It
is easy to see that's and K, 3 are critical. Araujo et al’'SACGH12] paper comprises an
infinite family of critical graphs; results that graphs in some classes altayes a good edge-
labelings (planar graphs with girth at least(€l3, K5 3)-free outerplanar graph$Cs, K 3)-
free sub-cubic graphs); the algorithmic complexity of recognizing baghgrzand a connection
to matching-cuts. (Anatching-cutalso known as “simple cutGra70], is a set of independent
edges which is an edge-cut.)

In fact, all their arguments for proving non-criticality rely on the existerfeaatching-cuts.
One of the central contributions of our pap8HT] is that we move beyond using matching-
cuts.

Araujo et al. also pose a number of problems and conjectures. In partitidg have the
following conjecture, which is one of the two motivations behind our paper.
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Conjecture (Araujo et al. ACGH12]). There is no critical graph with average degree less than
three, with the exception @f3 and K 3.

Araujo et al. ACGH12] prove a weaker version of this conjecture, relying in part on a
theorem by Farley and Proskurowskif84, BFP11] stating that a graph with sufficiently few
edges always has a matching cut. They also use a characterizationeofi@xgraphs with no
matching-cut by BonsmaBon05 BFP11]. From the proofs in Araujo et alACGH12], it
appears that the depths of the arguments increases rapidly as the oppes s approached.

In our paper, we show that there is no critical graph with average dégge than three and
girth at least five. Put differently, we prove Conject8t&in the case when the graph has girth
at least five.

Theorem (Theroem8.2 on paged4). There is no critical graph with average degree less than
three and girth at least five.

The second motivation behind our paper is the fact that no bad graph ivifihagger than
four is known. In particular, the bad graphs in Araujo et al.'s consisnccontain many 4-
cycles. It is quite natural to ask whether there exists a numlserch that every graph with
girth at leasty has a good edge-labeling. As mentioned above, Araujo eA@IGH12] have
shown that with the additional restriction that the graphs be plgna#,6 does the trick.

We prove a structural theorem on critical graphs with girth at least fine@iem8.42).
Roughly speaking, it says that a critical graph with girth at least five@arontain a subgraph
which is a “windmill”. A windmill essentially consists of a number of shortest patieeting
in an “axis”, with the paths originating from vertices of degree two and lggivirtheir interior
only vertices of degree three.

Of this TheorenB.42 the above state TheoreB2is a corollary, which is proved using an
approach inspired by the discharging method from topological grapmtheo

For our proof of TheorerB.42 we define a class of graphs which we call “decent”, which
have the property that they cannot be contained in a critical graph. Mq@rtantly, we give
a quite generagjluing operation which preserves “decency”. Starting from a small family of
basic “decent” graphs, by gluing inductively, this approach allows ubdwdghat certain more
complicated configurations cannot be contained in critical graphs, whacts le the proof of
Theorem8.42

Outlook. | believe that the following question is the most fundamental one concerning
good edge-labelings.

Question. Is there a constang such that every graph with girth at leagthas a good edge-
labeling?

Araujo et al. propose the following conjecture.

Conjecture ([ACGH12]). For everyc < 4, the number of (isomorphism classes of) critical
graphs with average degree at mess finite.

In view of our work on good edge-labelings and girth, | think that the follhgaconjecture,
if true, might be considerably easier to answer in the affirmative.

Conjecture. For everyc < 4, the number of (isomorphism classes of) critical graphs with girth
at least five and average degree at moi finite.
2.3. Coloring random lifts

Let G be a graph, and a positive integer. Ark-lift of GG is a grapkﬁ which is anh-fold
covering ofG in the sense of CW-complexes. Put differently, there is a graph homoimsorph
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¢: G — G which maps the neighborhood of any vertein G one-to-one onto the neighbor-
hood of the vertexp(v) of G. The graph’ is called thebase graptof the lift.

More concretely, we may say that adift of G has vertex seV(G) x [h], with [h] :=
{1,...,h} asusual. The séw} x [h] is called thefiber overv. Fixing an arbitrary orientation
of the edges of~, the edge set of ah-lift is of the following form: There exist permutations
o. of [h], e € E(G), such that for every edgev of G, orientedu — v, the edges between the
fibers{v} x [h] and{u} x [h] are(u, j)(v,ou,(j)), 7 € [h]. Changing the orientation of the
edges in the graph obviously does not change the lift — just replaceafached permutation
by its inverse.

A randomh-lift of GG is a graph drawn uniformly at random from the graphs just described,
which amounts to choosing a permutation, uniformly at random, independentiydry edge
of G.

Amit, Linial, Matousek, and Rozenma®\[MRO01], proposed to study properties of ran-
dom lifts in the limith — oc. Their conference paper sketched results on connectivity, inde-
pendence number, chromatic number, perfect matchings, and expahsemdom lifts, and
was followed by a series of articles containing broader and more detadeltisrAL02, ALO6,
ALMO02, LRO5], and e.g. BL0O6, DLO6, LP10, BCCF06, GJR1(], to name a few.

In [ALMO2] Amit, Linial, and Matosek focused on independence and chromatic numbers
of random lifts of graphs. They asked the following question.

Question 2.3.Is there a zero-one law for the chromatic number of random lifts?

By zero-one law, they mean that the chromatic number of a random lift (oded fiase
graph) is asymptotically almost surelggg for h — oo equal to a fixed number, depending
only on the base graph.

For the base graph i&K,,, Amit et al. prove thatx(@) = O(n/logn) aas (with absolute
constants in th®). The smallest value fat, for which this is not trivial, is» = 5. Amit et al.
ask the following:

Question 2.4.1s the chromatic number of a random lift &f; aas equal to a single number?

It is easy to see that the only two numbers which might occur with positiveapility are
3and 4.

In our paper FT], which is reprinted as Chapt&we give an algorithm which 3-colors
random lifts of K5 \ e, the graph obtained by deleting one edge fréi and prove that it
succeeds aas:

Theorem 2.5(Theorem9.10on pagel14). A random lift of K5 \ e is aas 3-colorable.

The theorem can easily be extended to a larger graph of base graptstiog of a cycle
joined to an independent set.

Shi and Wormald $WO07] proved that the chromatic number of random 4-regular graphs
(with uniform distribution) is three, and random lifts &f; . ; have some similarity to random
d-regular graphs. However, the cycle structure of random lifts is molieatle than that of
uniformly random regular graphs (it is related to the distribution of fixed tgaifi words of
random permutations, which is understodtic94, LP10]), and the Shi-Wormald proof makes
explicit use of the cycle structure. Still, | believe that adapting the Shi-Wornigéaitnm and
proof ought to be possible to settle QuestibA On the other hand, | do not think there is an
answer to the question which is simpler than the corresponding questioniformaly random
4-regular graphs.

2.4. Random 3-SAT with interval constraints

The result of Shi and Wormald®W07] just mentioned uses an ODE-based technique by
Wormald for proving concentration for random proces3#srP5]. In algorithmic settings,
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these variables often observe parameters within an algorithm on a rangjeot, avith the
parameters changing from one iteration to the next.

Another situation to which this method has been successfully applied, is theisdmo
SAT problem. Here, it has been used to analyze algorithms which, givaeifarnly drawn
k-SAT formula onn variables andn = m(n) clauses, attempt to find an assignment of values
to the variablesifiterpretatior) satisfying the formula. Indeed, ODE-based techniques have a
tradition in randomk-SAT beyond Wormald’s method (see, e.GH86, CF90, FS96 Ach00,
ASO00). Historically, at that time, one was not so much interested in algorithms whictesd
aas (forn — o0), because, by invoking a strong theorem of Friedgi99], proving success
with positive probability already allowed to infer aas satisfiability of the formyla. more
recent work, however, algorithms succeeding aas have come into &geis, e.g., CO10,
COF].)

In our manuscriptBT], which forms Chapted0 of this thesis, we deal with a variant of
k-SAT which arises in applications.

Let M be a (usually finite) set§ a set of subsets a¥/, andk a positive integer. For the
signedk-satisfiability problemor signedk-SAT,one is given as input a finite set of variables
X and a formula irsigned conjunctive normal form (CNFJhis means that there is a list of
clauses, each of which is a disjunctionsigned literalsof the formx € Swherex is a variable
in X and the “sign”Sis a set inS. As in classicak-SAT, the question is then whether there
exists a satisfyingnterpretation,i.e., an assignment of values to the variables such that each
of the clauses is satisfied. This setting includes as a special case theatl&#digroblem:
choose forlM the 2-element sef0, 1} andS = {{0}, {1}}.

In caseM is a totally ordered set and the sets the set of all intervals id/, we speak of
Interval SAT oriSAT. In our manuscript, we study the case when= [0, 1].

Our interest in this particular version of signed SAT arises from applicafiocomputa-
tional systems biology. There, iSAT yields a generalization of modeling witheBometworks,
where biological systems are represented by logical formulas with vasiableespond to bi-
ological components like proteins. Reactions are modeled as logical cosditlunoh have to
hold simultaneously, and then transferred into CNF.

Although the model is widely used by practitioners, often, this binary agpranot suf-
ficient to model real life behavior or even accommodate all known data. isalygpituation is
that an experiment yields several “activation levels” of a components,Tdne wants to make
statements of the form: If the quantity of componédnteaches a certain threshold but does not
exceed another, and componéhoccurs in sufficient quantity, then another compor@i in
a certain frame of activation levels. The collection of such rules accuratetiels the global
behavior of the system.

On the theoretical side, signed SAT originated in the area of so-called mluée/bbgic, where
variables can take a (usually finite) number of so-caliath values not justTRUE or FALSE.

The motivation for studying signed formulas was to be able to better covetigakappli-
cations. Most applications and a great deal of the earlier complexity rdsulis onreg-
ular signed SAT, wherel/ is a totally ordered set, and the signs may only be of the form
S={j|j=>itorS ={j]|j <i}. Forregularsigned SAT, random formulas have been
investigated computationally. Maayet al. MBEI98] study uniformly generated random reg-
ular 3-SAT instances, and observe a phase transition similar to that elddarelassical SAT.
Moreover, in BM99a, BMC *07] a bound on the ratiov/» is given, beyond which a random
formula is aas unsatisfiable. To my knowledge, however, ours is theigiosbus analysis of an
algorithm for random signed SAT.

In our paper, we present and analyze an algorithm which solves ojfaandom 3-iSAT
instances with high probability, provided that the ratio between the numbef clauses and
the numbem of variables is at most 2.3. Our algorithm is an adaption of the well-known Unit
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Clause algorithm from classical SAT, where, in an inner loop, 1-claaiseseated if any exist,
and in an outer loop, a variable is chosen freely and assigned some VdliseUnit Clause
approach is enhanced with a “backtracking” subroutine, which is maptetely unlike the one
used in FS94 for classical 3-SAT, see Algorithrd on pagel27.

For the analysis of the outer loop, we use the Wormald’s ODE-method menttiuee,
and the value 2.3 arises from the numerical solution to an initial value probleenafalysis of
the inner loop requires to study the first busy period of a certain stablersgrstem, or, in our
case, more accurately, the total number of individuals in a type of brajphatess.

Discussion. The way | see it, the manuscri@@T] highlights some of the specific problems
of random iSAT. To understand the algorithm, first of all, it is important tdizedhat the bot-
tleneck lies in the rate at which 2-clauses become 1-clauses (by deletinig itbi@se variable
has been set in such a way that the literal is not satisfied) during the the @iner loop. In
the branching process terminology, this amounts to the number of offsgrorgeandividual.

If the corresponding algorithm is analyzed for classical 3-SAT, wixena variable is set
to some value in the inner loop, the probability that a fixed literal containing thishia is not
satisfied by the chosen value,ljs, regardless of the chosen value. In 3-iISAT, this probability
depends on the value. Thus, for choosing a value for a variable in teelowp, there are two
possibilities.

(1) By looking only at the 1-clause, choose the best value possible.
(2) By looking at the 1-clause and all literals in 2- or even 3-clauses icomggthe variable,
choose a value which satisfies a large fraction of them.

Possibility (2) requires to find, for a Poisson random varial¢he expectation of the
random variableX (R), whereX (r) is the (cardinality of the) largest subgétof {1,...,r+1}
such thatly N (e Ix # 0, for random intervaldy, . . ., I,;.1. This expectation, as a function
of the mean of?, then forms one key term in the system of ODESs, with the meaR loéing a
guotient of two parameters.

Asymptotically, forr — oo, deciding only based o, X (r) is optimal. However, for
small values of-, the difference between (1) and (2) can be large, e.g+ fer 1, the mean
for (1) is 111/24, that for (2) is12/3.

In our manuscript, we have decided for the much simpler but also much wossgbil-
ity (1), until we knew how to deal with computing the mean in (2). An alternativeld have
been to use “cheap tricks”: For, say< 3, the computation oE X (r) can be done by hand.
SinceE R < 3 most of the time, this would have recovered a significant part of the g#ipe at
expense of adding some lengthy computations and making the ODE more congplicate

Apart from this central issue, it would also be interesting to find a bounthi®ratio above
which random 3-iSAT formulas are aas not satisfiable. Moreover, mailysis of 2-iISAT (to
which our 3-ISAT algorithm reduces its instances) is quite superficial, anltl be much im-
proved.

2.5. Cops & Robber

The game ofCops and Robbeis played on a connected graph by two players — the cops
and the robber. The cop player has at his dispbgétces (the “cops”), for some integer> 1,
and the robber player has one piece (the “robber”). The pieces widlyal be on vertices of
the graph. We will usually speak informally of “the cops” instead of the “plgyer”, and “the
robber” instead of the “robber player”.

The game begins with the cops positioning themselves (i.e., placing Ahgigces) on
(not necessarily distinct) starting vertices. Next, the robber choosesanting vertex. Now,
starting with the cop player, the two players move their pieces alternately. bopis move,
they decides for each of them whether he stands still or moves to an adjactx. In the
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robber’'s move, he can choose to move to an adjacent vertex, or togfesgame ends when
a cop and the robber are on the same vertex (that is, the cops catchlike)rabthis case the
cops win. The robber wins if he is never caught by the cops, i.e., the gantiewes forever.
Both players have complete information, i.e., they know the graph and the pesitiall the
pieces.

A winning strategyor a player is one by following which the player wins, regardless of the
moves of the other player. It follows from standard arguments in Gamer¥ kigat one of the
two players always has a winning strategy (ef193]).

The key problem in this game is to know how many cops are needed to catbbexr mn
a given graph. For a connected graghthe smallest integéf such that withk cops, the cops
have a winning strategy, is called teep numberof G and is denoted byop(G). The cop
number of a non-connected graph is the maximum cop number of its conmectgenents.

Nowakowski and WinklerljlW83] and Quilliot [Qui78] characterized the class of graphs
with cop number 1. Finding a combinatorial characterization of graphs wiphnconberk
(for £ > 2) is a major open problem in the field, to which Clarke and MacGillivi@W[L1]
have recently made an important contribution. On the other hand, algorithariaatbrizations
of such graphs, which are polynomial in the size of the graph but nét oo exist BI93,
GR95, HMO06]. However, determining the cop number of a graph is a computationally hard
problem FGKO08].

I would like to make the reader aware of the new book by Bonato and Novaki¢BN11]
on Cops & Robber on graphs. The Cops & Robber game belongs to & tdags of search
problems on graphs (cfE[r08])*.

2.5.1. Cops & Robber on non-orientable surfacesBy surface, we mean a closed sur-
face, i.e. a compact two dimensional topological manifold without boundgaoy. any non-
negative integey, we denote byop(g) the supremum over atbp(G), with G ranging over all
graphs embeddable in an orientable surface of genaad we call this the cop number of the
surface. Similarly, we define the cop numlep(g) of a non-orientable surface of gengso
be the supremum over albp(G), with G ranging over all graphs embeddable in this surface.

Aigner and FrommeAF84] proved that the cop number of the sphere is equal to three:
cop(0) = 3. Quilliot [Qui85] gave an inductive argument to the effect that the cop number of
an orientable surface of genyss at most2g + 3. Schioder [Sch0] was able to sharpen this
result tocop(g) < %g + 3. He also proved that the cop number of the double torus is at most 5.

Generalizing the work of Aigner and Fromme, Andredend86] proved that, for any
graphH satisfying a mild connectivity assumption, the class of graphs which do nédiod?
as a minor has cop number bounded by a constant dependifig &ising this, and the well-
known formula for the non-orientable genus of a complete graph, he eltaim upper bound
for the cop number of a non-orientable surface of gepumamely

B5(0) < <L7/2+ \/26‘g+ 1/4j>.

Nowakowski and Sclider NS] use a series of technically challenging arguments to prove
a much stronger boundop(g) < 2¢g + 1.
In our note CFJT], which forms Chaptet 1 of this thesis, we prove the following.

Theorem (Theoremll.1on pagel52). For every positive integey, cop(|g/2]) < cop(g) <
cop(g — 1).

The proof uses of the following tool: I& is a lift of G thencop(G) < cop(G). We
have made considerable effort to use quite sophisticated generalizatibis ¢dol to obtain

1Some of them actually have real applications.
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better bounds for the cop number of orientable surfaces, but webdeuimeovercome a lattice-
geometric question concerning the homology classes of the cycles of fite gra

2.5.2. Cops & Robber and forbidden (induced) subgraphsAs mentioned above, ex-
cluding a minor forces bounded cop number. In our pap&TL0], which is reprinted as
Chapterl2 of this thesis, we studied the corresponding question for the subgraphdurced
subgraph relations. The results we obtained are the following.

Theorem 2.6(Theoreml2.10n pagel56). The class ofi-free graphs has bounded cop num-
ber if, and only if, every connected componentiois a path.

Here, a graph id{-free, if it contains no induced subgraph isomorphicito The cop
number of a graph not containing an induced path of ledgt2 is at most/ — 1 (Prop.12.2).
Similarly, every graph with no induced cycle of length at least 3 has cop number at most
¢ —2(Prop.12.3.

Let us say that a graph i¥-subgraph-freeif it contains no subgraph isomorphic fo.

Theorem 2.7(Theoreml2.4on pagel56). The class off-subgraph-free graphs has bounded
cop number if, and only if, every connected componeii of a tree with at most three leaves.

As an intermediate step towards Theor&2¥, we study how the cop number of a gra@gh
is related to its tree-width, and obtain that the cop number of a graighat most one plus half
its tree-width (Propl2.5.

Purportedly, people fall in two groups depending on whether, whenfttetylearn about
the Cops & Robber game, they identify with the Cops, or with the Robber. | admtt that
| am in the ‘Cops’ group. That may be the reason why | find the proofifiger bounds for
the cop number in Chaptd2 especially appealing. Thus, | would like to point the reader to
cops strategies used in the proofs of Prbp.5 and, particularly, Propl2.2 For the non-
boundedness statements of the two theorems, robber strategies are given

Outlook on Cops & Robber problems

There are several open problems in the area of Cops & Robber. | kel mention my
three favorite ones. The first two are about graphs on surfacef&gihene is directly related to
Theoremll.1(see above):

Question 2.8.1s the cop number of a non-orientable surface of getwequal to that of the
orientable surface of genug’ In other words, is it true that, for every non-negative integer
we havecop(g) = cop(lg/2])?

The second question reflects the fact that the lower bound for the aoperwf an ori-
entable surface of genyss ©(g'"/*), which is far away from thé(g) upper bounds.

Conjecture 2.9. The cop number of orientable surface®(g), whereg is the genus.

Finally, a more structural question. It has been obser2¢@3] that the class ok-copwin
graphs, i.e., the graphs with cop number at migsire closed under taking retracts. (For the
definition of a retract, one assumes that every vertex has a tiny loop attecheA retraction
is then a homomorphism: G — G with 72 = r; we say that(G) is aretract of G.) Thus,
the k-copwin graphs can be characterized by giving a set of forbiddeacts. However, one
graph being a retract of another is a very strong condition (consilyesttbnger than induced
subgraph), so for small values &f this set is likely to be enormous. In fact, it is possible
that the only set, for which proving bounded cop number is feasiblejstertd essentially all
(isomorphism classes of) not-copwingraphs (possibly after applying some simple reduction
operations to discard some redundant ones).

Question 2.10.CanO(1)-copwin graphs be defined by forbidden retracts in a meaningful way?
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CHAPTER 3

The relationship between the GTSP, STSP, and Metric Cone

Abstract. In this short communication, we observe that the Graphicavdling
Salesman Polyhedron is the intersection of the positiveaoitwith the Minkowski
sum of the Symmetric Traveling Salesman Polytope and thar judl the metric
cone. This follows almost trivially from known facts. Theaee two reasons why
we find this observation worth communicating none-the:létss very surprising;
it helps to understand the relationship between these tworitant families of poly-
hedra.

3.1. Introduction

The Symmetric Traveling Salesman Polytap#he convex hull of all characteristic vectors
of edge sets of cycles (i.e., circuits) on the vertexi$et= {1,...,n} (in other words, Hamil-
tonian cycles in the complete graph with vertex Bgl. For the formal definition, denote by
E the set of all two-element subsetsigf. This is the set of all possible edges of a graph with
vertex set/;,. The Symmetric Traveling Salesman Polytope is then the following set:

Sy = conv{xc | C'is the edge set of a Hamiltonian cycle with vertex‘g',e} c R%.

Here, for an edge sdf, x!" is the characteristic vector iR” with x;' = 1if e € F, and
zero otherwise. The importance of the Symmetric Traveling Salesman Polydopsanainly,
but not exclusively, from its use in the solution of the so-called Symmetrieeliray Salesman
Problem, which consists in finding a Hamiltonian cycle of minimum cost.

The Graphical Traveling Salesman Polyhedr@the convex hull of all characteristic vec-
tors of edge multi-sets of connected Eulerian multi-graphs on the verté¥ sét multi-graph
with vertex setl,, has as its edge set a sub-multi-sefhfwhich is to say that our multi-graphs
can have parallel edges but no loops. By defining, for any multFsgftedges of<,, its char-
acteristic vectory’” € R” in such a way that’ counts the number of occurrencesedh F,
the Graphical Traveling Salesman Polyhedron is formally defined as

P, = conV{XF } F'is the edge multi-set of a connected Eulerian multi-graph
with vertex setVn} c RE.

Ever since the seminal work of Naddef & RinaltiR91, NR93] on the two polyhedrab,
is considered to be an important tool for investigating the facefs,oMoreover, in works of
Carr [Car04] and Applegate, Bixby, Chatal & Cook [ABCCO01], P, has been used algorith-
mically in contributing to solution schemes for the Symmetric Traveling SalesmaieRrob

Numerous authors have expressed how close the connection betwagahidal and Sym-
metric Traveling Salesman Polyhedra is. The most basic justification for thisoapmthe
fact thats,, is a face ofP,, — consisting of all pointsc whose “degree” is two at every ver-
tex: Z#u zu = 2 forallu € V,,. However, the connections are far deeper ($¢dDZ or
[ORTO7] and the references therein). In this short communication, we contribeifeltowing
surprising geometric observation to the issue of the relationship betweentttepolyhedra:
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Theorem 3.1. P, is the intersection of the positive orthant with the Minkowski sur$i,cdind
the polarC} of the metric con€),:

(1) P, = (S, +C5)NRY
The metric cone consists of alle R” which satisfy the triangle inequality:
(2) Oy < Ay + Gy

for all pairwise distinct vertices, v, w € V,,. Consequently, its polar is generated as a cone by
the vectors (we abbreviatg®} to y¢)

(3) qu + va _ XUU'

The proof of this theorem is an application of three or four known factsamiques in the
area of Symmetric and Graphical Traveling Salesman polyhedra.

3.2. Proof

We start with showing thaP,, C (S, + C4) N RY. While P, ¢ R¥ holds trivially,

P, C S, + C% follows from an argument ofNR93], which we reproduce here for the sake of
completeness.

Let z € Z¥ be a the characteristic vector of the edge multi-set of a connected Eulerian
multi-graphG with vertex setl,,. We prove by induction on the number of edges of, that
x can be written as a sum of a cycle and a number of vec®réf(m = n, then there is nothing
to prove. Letn > n+1. There exists a vertex of degree at least four i¥. We distinguish two
cases. The easy case occurs whenw is still connected. Here, we latandv be two arbitrary
(possibly identical) neighbors af. By either replacing the edgesy andwv of G with the
new edgeuv, if u # v, or deletinguw andwwv, if u = v, one obtains a connected Eulerian
multi-graphG’ with fewer edges tha@'. The change in the vectaramounts to subtracting the
expressiond): @' = x — (X" + x*' — x"), if u # v, andz’ = x — (x"* 4+ x*?, if u = v. In
the slightly more difficult case when the gragh\ w has at least two connected components,
we can let: andv be two neighbors of in distinct components aff \ w. This makes sure that
the graphG?’ is still connected. We conclude by induction thatand hencer, can be written
as a sum of a cycle and a number of vect@)s (

We now proveP, O (S, + C5) N R%. For this, we show that any inequality which is
facet-defining forP, is valid for (S, + C5) NRE.

We again invoke an argument frollR93]: Naddef & Rinaldi have shownthat the in-
equalities defining facets df, fall into one of two categories: the non-negativity inequalities
z. > 0, with e € FE (or positive scalar multiples thereof), or inequalities whose coefficient
vectors satisfy the triangle inequalit®)( We reproduce the proof of this statement.

First recall that an inequality e + > « is said to bedominatedby another inequality
bex > (5, if the face defined by the first inequality is contained in the face defineithdoy
second inequality.

Suppose that e + > « is not dominated by a non-negativity inequality (it need not be
define a facet, though), and letv, w be three distinct vertices ii,,. Then there exists an
T € Zf defining the edge multi-set of a connected Eulerian multi-gi@pthich has an edge
betweenu andwv, such thats e z = «. If we replace the edgev of G by the two edgesw
andwv, then we obtain a connected Eulerian multi-graph, whose edge multi-setis, giv
terms of its characteristic vector, by := = + x*“* + x“" — x"*. Nowa e 2’ > «, implies
uw + Ay — Gy > 0, .., the triangle inequality.

Ln fact, Proposition 2.2 ofNJR93] states that the facet-defining inequalities oy fall into three classes —
one of which is the class of non-negativity inequalities and the other twoystiistriangle inequality.
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We now conclude the proof of the inclusidh, > (S, + C2) NR¥. Leta e z > « be
an inequality which is facet-defining fdr,. First note that the non-negativity inequalities are
clearly satisfied by the right hand side dj.( Hence, using what we have just discussed, let
us assume that satisfies the triangle inequality. This means th& a member of the metric
coneC,,. Consequently, the inequalitye x > 0 is valid for C5. Further, sinces,, C P,, the
inequalitya e = > « is clearly valid forS,,. Hence the inequality is valid fo%,, + C}.

This concludes the proof of the theorem.

Note that, en passant, we have proved the following. If we defjni be the set of aljy € R”
which satisfya e y > « for every inequalityz e > « defining a facet of?, but not being a
scalar multiple of a non-negativity inequality, then we h&yet C2 C P).
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CHAPTER 4

Facial structure of Symmetric and Graphical Traveling Salesman
polyhedra

Abstract. The Symmetric Traveling Salesman Polytopéor a fixed numben of
cities is a face of the corresponding Graphical Traveling$Saan Polyhedro.
This has been used to study facetsSafising P as a tool. In this paper, we study
the operation of “rotating” (or “lifting”) valid inequalies for .S to obtain a valid
inequalities forP.

As an application, we describe a surprising relationshigvben (a) the parsimo-
nious property of relaxations of the Symmetric TravelindeSman Polytope and
(b) a connectivity property of the ridge graph of the Graphifraveling Salesman
Polyhedron.

4.1. Introduction

Suppose that and P are polyhedra, and th&t is a proper face oP. If aez > «is a
valid inequality forS, it can be “rotated” so that it becomes also valid for By “rotation”
we mean modifying left and right hand sides of the inequality in such a waytlbaset of
points in the affine hull o5 which satisfy the inequality with equation remains the same, yet
the hyperplane the inequality defines in the ambient space changesici#ighthis amounts

{z|a-z=a}

to adding equations valid f&¥ toa e x > «.

Once the inequality is rotated so that it is valid 8y one may ask which
face of P is defined by the rotated inequality. Sinfe#£ P, there are always A
several such faces, but even when we aim for inclusion-wise maximwes faf
P defined by some rotated versionoé x > «, in general, these are not unique
either. In the picture to the right, by properly tilting the hyperplane defined b
a e x = «, We can obtain the inequalitids, F; and F5.

A prominent example is of course sequential lifting, wh&ris a an intersection of faces
defined by non-negativity inequalitieg > 0.

Sequential lifting or other rotation-based tools are applied manually to fintsfateoly-
hedra which contain faces which are better understood. Moreovehamisms of this kind are
used computationally in cutting-plane algorithms where some cutting-planeagiengproce-
dure first works on a face and then lifts the obtained inequalities.

In this paper, we study what rotating inequalities does for the Symmetric lifrg\&ales-
man Polytope5 and the Graphical Traveling Salesman Polyhedroietn > 3 be an integer.
LetV := {1,...,n} andE be the set of all unordered paifs, v} € V, i.e., the set of edges
of the complete graph with vertex sét The two polyhedra are subsets of the spRéeof
vectors indexed by the elements Bf The Symmetric Traveling Salesman Polytapés the
convex hull of all incidence vectors of edge sets of cycles with verte¥ er of tours; or of
Hamilton cycles of the complete gragty,). The Graphical Traveling Salesman Polyhedfon
is the convex hull of all vectors corresponding to connected Eulerian gralghs with vertex
setV. (The precise definitions will be given iB)Yon page28 below.)

Ever since the groundbreaking work of Dantzig, Fulkerson, andsiwhon the compu-
tational solution of the Traveling Salesman Problem (TSP), the facet-steustuhese poly-
topes has received much attention (e.4BCC06, DFJ54, GP85 JRR95, Nad02 Sch03).
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Their combinatorial and linear-algebraic properties have also beearcbsel. For example,
guestions about properties of the graph (e.g., its diameter) have bemssetizFP85 Ris98
RC98, Sie98 STT95, ST9Z.

With few exceptions (for examplé-N92, Nor55] for the caser < 5; [BC91] for n = 6,7,
[CIR91, CR96, CRO]] for n = 8,9), no complete characterization of the facetsSobr P
are known. In fact, since the TSP is NP-hard, there cannot exist aguigl time algorithm
producing, for every: and every point: € R” \ S, a hyperplane separatingfrom S, unless
P=NP. Another noteworthy argument for the complexity of these polytopes is it rels
Billera & SarangarajanBS94: For every 0/1-polytopeP, there exists am such thatP is
affinely isomorphic to a face of.

Since the seminal work of Naddef & RinaldiiR91, NR93] on the Faces of GTSP
Graphical and Symmetric Traveling Salesman polyhedra, it is known that }DMC\ contaned n
S is a face ofP. Moreover, Naddef & Rinaldi proved a theorem saying 17 contained in

nonneg ieq

that, if an inequality defines a facet 6f then there is a unique maX|maI
face of P which can be obtained by rotating the inequality, and this maximal obtamablesface
a facet ofP.

Naddef & Rinaldi classified the facets Bfinto three types — non-negativity facets, degree
facets, and the rest, called TT-facets — based on properties of tHimoas. While the degree
facets and non-negativity facets are both small in number and easilystooierthe interesting
class both for understanding the polyhedron and for applications is tie $at of TT-facets.
By the theorem just mentioned, once one knows that the degree fadetarefprecisely those
which containS — also proved in Naddef & Rinaldi's paper —, this also classifies the facets
of S into two types: non-negativity and TT-facets.

Oswald, Reinelt and Thei©RT05, ORTO7] have refined the classification by splitting the
TT-facets of P into two subclasses: NR-facets and non-NR-facets, depending ahevtibe
intersection of the facet witl§ is a facet ofS (theseP-facets are called NR-facets) or a face
of S of smaller dimension, the main result being the fact that the non-NR class enpiy.
The existence of non-NR-facets has unpleasant consequencderttbioretical research and
practical computational approaches to solving TSP instances. On thetibabside, it is
much easier to prove facet-defining property of inequalitiesHahan for.S. Moreover, P
pleasantly preserves facet-defining property when a certain importarg iperation for facet-
defining inequalities (which replaces vertices by sets of vertices) ismpeeth ForS, this is
not known to be true. On the computational side, in the context of cuttingephethods fols,
certain generic separation algorithms produce inequalities which aredefieirg for P, but
sometimes it is not clear whether these inequalities must be strengthened ifelteydefine
facets ofS. Examples of such separation algorithms include the local cuts method ofgspele
Bixby, Chvatal & Cook [ABCCO01, ABCC03, ABCCO06] (see the discussion irORT07]) or
the path-lifting method of CariGar04].

In terms of rotation, the result irORT05, ORTO7] shows that there are valid inequalities
for S which do not define facets &, but which can be rotated to define facetsfaf The
starting point of the present paper is the question what properties thkgénequalities forS
might have. The results we propose are most easily formulated using thedlgyiof polar
polyhedra. A polar polyhedrof® of a polyhedronsS has the property that the points & are
in bijection with the linear inequalities (up to scaling) f8r Moreover, a point is contained
in a face of dimensiot: of S%, if, and only if, the corresponding inequality defines a face of
dimension at leastim S + 1 — k of S. In particular, the vertices & are in bijection with the
facets ofS. Also recall the concept of a polyhedral complex: a finite set of polsdnedosed
under taking faces, such that the intersection of any two polyhedra irtlieaface of both.

We give results about the “important” part of the polaiSoihamely the part which remains
if we delete the vertices corresponding a non-negativity facets. Thiesmmnds to taking only
the “TT-class” of valid inequalities fof; the details are made precise below (Sectid).
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This subset of faces of the polar 8fis a polyhedral complex, which we denote dy Take
a pointinA, consider the corresponding valid inequality fyrand rotate it in all possible ways
yielding inequalities valid forP. A certain set of faces aP can be defined by the rotated ver-
sions of this inequality. Now we partition the points containedlim the following way: two
points are in the same cell of the partition, if, by rotating the correspondilidyiz@qualities,
the two sets of faces d? which can be defined coincide.

In fact, the partition whose definition we have just outlined, gives a pohghedbdivision
S of A, i.e., the set of closures of the cells is a polyhedral complex, and evegyofa4 is
a disjoint union of cells. This is true in the general situation when a polyffea face of
another polytope”. Indeed,S is known as thehamber compleaf the canonical projection of
the polar of P onto the polar ofS. We call such a polyhedral subdivisiorr@ation complex.
We give the following results about the rotation complex in the TSP situation:

(A) The decomposition of4 into cells can be described in a natural way that does not
refer to rotation; moreover, it does not refer to any Graphical Trageialesman
concepts whatsoever. Indeed, to describe the subdivision, for a¢ooritained in
A, it suffices to check the order relations of the expressiQns— auw — awy, With
u, v, w three distinct vertices ifv. (As customary, we use the abbreviated notation
wv = {u,v}.)

(B) The points inA are inbijection(!) with the “important” part of the polar of (the
definition of polar here is not canonical and will be made precise), andbifleistion
maps faces of the polar @t onto faces of the rotation comple&x In other words, the
polar of P can be “flattened” onto the polar 6f see Fig4.1, right.

Again, “important” is meant to be understood in the sense that it correspondasidering
TT-type inequalities only. ItemB) is not a consequence of known facts about the chamber
complex (injectivity fails to hold in general).

The picture in Fig4.1, left, illustrates Item (A). It shows a hypothetical drawing 4f
(solid lines) with two points:, a’. To decide whether these two points, when viewed as valid
inequalities forS, yield the same faces d? when rotated, one has to check the expressions
auy — Gy — Q- ThiS @amounts to checking if they are containd in the same cone in the picture
(dotted lines). Indeed, ItemA] can be restated as saying that the rotation com§léx the
common refinement ofl with a projection of a natural sub-complex of the boundary complex
of the metric cone. (The common refinement of two polyhedral complexes isethef all
intersections of polyhedra in the two complexes, and the metric cone corfsitsumctions
E — R, satisfying the triangle inequality). The occurrence of the metric cone in thiexio
of the two polyhedre and P is no surprise: It is knownTheld that the metric cone plays a
role in the relationship between the polyhedrand P. One can construd® by gluing together
S and the dual of the metric cone, and then cutting off the waste {del[] for a rigorous
statement). ItemB) addresses the uniqueness question for faces defined by rotatadlities|
addressed above (second paragraph of the introduction). Notghthtbiat having a point-wise
bijection is a stronger statement than saying that the maximal faces obtainabl@atiyn are
unique.

We apply these results to a problem concerning the ridge graph ©he ridge graph has
as its vertices the facets, and two facets are linked by an edge if and ordiriftiersection is a
ridge, i.e., a face of dimensiatim P — 2. The ridge graph is of importance for the problem of
computing a complete system of facet-defining inequalities, when the poinexénethe rays
are given. A common solution here is to search in the ridge graph, i.e., dacetas found, its
neighbors are computed. A problem which may occur is that, for some facetputing the
neighbors is not computationally feasible. Due to the connectivity of the gdgeh, some of
its vertices can be skipped in the search, and still all vertices are reaebedxample, when
the facets of al-dimensional polytope are computed in this way, by Balinski's Theorem, one
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Polar of GTSP
GTSP

@75@

FIGURE 4.1. Left: S as a common refinement gf and 7, a projection of a
sub-complex of the boundary complex of the metric cone; Right: “Flattening”
of parts of the polar of” onto the polar ofS.

may skipd — 1 arbitrarily selected facets. Very often, however, the number of facktsev
neighbors cannot be computed is too large (exponential in the dimensibnk, ®ne would
like to prove connectivity properties of the ridge graph which allow for ehesrtices to be
dead ends in the search.

We prove the following. If a system of NR-facet-defining inequalities satitfie so-called
parsimonious propertydB93, Goe93, the removal of the corresponding vertices from the
ridge graph leaves connected components, each of which containsae@mresponding to an
NR-facet. The proof of this makes use &)(above in an essential way. In deed, by pressing
the boundary ofP “flat” onto a lower dimension, one can use linear algebra arguments, which
cannot be used when the boundary is molded aradimdthe higher dimension.

The statement has been used in a computation proof of the completenessutéade-
scription for the Graphical Traveling Salesman Polyhedrdn the case: = 9 in [ORTO07] in
the scenario sketched above.

This paper is organized as follows. In the second section, we define lsasieconcepts
from polyhedral theory. Sectiof2 provides rigorous formulations of our results. Sec#od
contains the proofs of the results about the rotation complex, while the rebults the ridge
graph are proved in Sectigh4.

4.2. Exposition of results

We refer the reader t&qr 03] and [Zie98] for background material on polyhedra, polarity,
projective transformations, and polyhedral complexes. For a polyhdertet C(P) be the set
of all of its faces. This is a polyhedral complex with underlying pointi3et

Fix an integem > 3. TheSymmetric Traveling Salesman Polytapéefined as the convex
hull in RE of all edge sets of cycles with vertex dét(or Hamiltonian cycles in the complete
graphk,,):

(4) S := conv{x*(©) | C'is the cycle withV’ (C') = V'},
wherex ! denotes the characteristic vector of aBet.e.,x! = 1, if e € F, and0 otherwise.

The second polyhedron which we will consider is defined to be the cdnyiéwf all edge

multi-sets of connected Eulerian multi-graphs on the verteX’set
P := conv{z € ZF |
x defines a connected Eulerian multi-graph with vertexi/sgt

(5)

where we identify sub-multi-sets df with vectors ian (i.e., there arer. copies of edge
present in the multi-graph). This polyhedron was introducedCiRN85] under the name of
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Graphical Traveling Salesman Polyhedrand has since frequently occurred in the literature
on Traveling Salesman Polyhedra. It is particularly important in the studyopigpties, mainly
facets, of Symmetric Traveling Salesman Polytopes (€5pep5 NP0O1, NR91, NR93, NRO7],

see ABCCO06, Nad0Z for further references).

The polyhedronP has been called th&raphical Relaxatiorof .S by Naddef & Rinaldi
[NR91, NR93] who discovered and made use of the fact thais a face of P: While the
latter is a full-dimensional unbounded polyhedrorRifi [CFN85], the former is a polytope of
dimension(g) —n [Nor55], and the inequality | ., z. > n is valid for P and satisfied with
equality only by cycles, thus attesting to the face relation.

4.2.1. Definitions of the polars.We denote byr e y the standard scalar product in Eu-
clidean space.

The set of facets aP containingsS is known. Foru € V, leté,, be the point ifR” which is
1/2 on all edges incident ta and zero otherwise. It is proven i€FN85] that the inequalities
o0, ex > 1,u €V, define facets oP, the so-callediegree facetClearly, S is the intersection
of all the degree facets (because suming all degree inequalities)gjyes > n).

It is customary to write inequalities valid fd? in the forma e > «, and we define the
polars accordingly. Define the linear spdcéo be the set of solutions to thelinear equations
0, ex = 0,u € V. Note that the),, are linearly independendim S = dim L, and the affine
hull of S is a translated copy af. Whenever: is a relative interior point of, the polar ofS
may be defined as the following set:

(6) St :={aeL|(-a)e(z—2)<1VxeS}

(Therelative interiorrelint P of a polyhedronP is the interior (in the topological sense) Bf

in the affine space spanned By in other wordsyelint P = P \ |Jcp F, where the union
runs over all faces aP.) So a pointz € S corresponds to a valid inequalitye = > a e z — 1

of S. Changingz amounts to submitting® to a projective transformation. Although it can be
seen that our results do not depend on the choieg ibimakes things easier to define

2 1 Bo) 2«
0 Z'_n—ll_(n—l)!/ch:X _n—lq;é“’

where the first sum extends over all cycles with verted’seb0z is at the same time the average
of the vertices(”(©) of S and a weighted sum of the left-hand sidesf the equations.

Next, we construct a kind of polar faP. For this, we will use the blocking polyhedron
construction, which is well-known in polyhedral combinatorics. Goem&umepg has been
observed thaf is of so-calledblocking typei.e., it is the Minkowski sum oiRif with the
convex hull of a finite set of points iRY. Thus we define

P :={a€R™|aex>1Vx € P}.

This set is sometimes called thiocking polyhedromf P. Note thatP*  RZ (see EFN85];
this is well-known to be true for the blocking polyhedron of any blocking tppé/hedra).
Other known facts about blocking type polyhedra and their blocking jgalsdincludes the
fact thadP* is also of blocking type. In particular, the extreme rays of hBtand P> are the
positive coordate directions.

Calling P thepolar (polyhedron)f P is justified by that fact that, essentially, it has the
defining properties of a polar polytope. Let us elaborate. For any guypacontainingd as an
interior point, there is a mapping assigning to every face the face of its pmaisting of all
points corresponding to inequalities which are satisfied with equality by altpof¥. This
mapping is an inclusion reversing bijection. In the case of blocking type pdhghand their
blocking polyhedra, something similar holds. The following definitions and lemithanake
this clear. For a facé of P, define itsconjugate faceF® to be the set of points € P~




30 4. FACIAL STRUCTURE OF SYMMETRIC AND GRAPHICAL TRAVELINGSALESMAN POLYHEDRA

satisfyinga e = = 1 for everyz € F. The following lemma will establish that the mapping
F — F° has the properties For brevity, we say that a fAocef P is goodif it is not contained

in a non-negativity faceti.e., a facet defined by. > 0 (these inequalities do define facets
of P [CFN85]). The non-negativity inequalities are valid f&*, and hence”” has (possibly
empty) non-negativity faces, too. As is customary,dbalimensiorf a facef’ of a polyhedron

Q CR™isdim@ — dim F.

Lemma 4.1. The polarP? of P has the following properties.

(@) Leta € R¥\ {0} andd > —1. Thena is a relative interior point of a non-trivial face
of P2 with co-dimensionl + 1 if and only if the inequality: e z > 1 is valid for P
and defines a face of dimensidrmf P.

(b) Let ' C C(P) be the set of intersections of non-negativity facet® ¢with (), P €
N), and similarly " c C(P*) be the set of all intersections of non-negativity faces
of P2, Then conjugation of face® P) \ N — C(P*)\ N, F + F° := {a € P* |
aex = 1Vz € F} defines an inclusion reversing bijection.

(c) A faceF of P is good if and only i is bounded. O

We leave the proof of this lemma to the reader.

Thus we see that blocking polyhedra behave like polar polytopes, eRuapthe non-
negativity faces are set apart.

Since we will construct projective mappings between between parts obthegwlyhedra,
for our results, the realization of the polar as a concrete polyhedros plgyeat role, not just
the properties of its face lattice. Thus, a word is in order why we chosddhkibg polyhedron
“without loss of generality”. Clearly, the most natural definition of a polauid be to intersect
the polar cond(a,a) € R x RF | a e 2 > o Yz € P} with the hyperplane: + 3" a. = 1.
(From the above mentioned fact thatis the Minkowski sum ofRZ with the convex hull of a
finite set of points iR, we see that this hyperplane intersects all extreme rays of the polar cone
except forR («, 0) which does not correspond to a facet/a) However, a moments thought
will convice the reader that the result is projectively isomorphic to the blgggoityhedron.

The pointsy,, defined above are vertices Bf*, more precisely, they are the vertices of the
faceS® of P2,

4.2.2. Definitions of the polyhedral complexesA polyhedral complexs a finite set of
polyhedraC with the properties that (a) if" € C andG is a face ofF, thenF' € C; and (b)
if F,G € C,thenF N G is a face of both?” andG. The polyhedra irC are called the faces
of C, and faces of & having dimensiord (or 1, respectively) are called vertices (or edges,
respectively) ofC. A sub-complexf a polyhedral complek is a polyhedral comple® with
DcCcC.

We consider the set of faces 6f which do not contain a vertex corresponding to a non-
negativity facet ofS (as for P, a non-negativity facet of is one defined by an inequality
z. > 0 for somee € F). In symbols, if N denotes the set of vertices 6f corresponding to a
non-negativity facet of, we deal with the polyhedral complex

(8) A:=dl(N,S*):={FfaceofS* | FNN =0} =di({{z} | z € N},C(5*))

wheredl(N, S#) is a slight abuse of notation: For a polyhedral comgleand a set of faces
D c C, we define theleletion ofD in C to be the polyhedral sub-complex©ftonsisting of all
facesF' € C whose intersection with all faces I is empty, i.e.,

di(D,C):={F €C|VGeD: FNG =0}

4.2.2.1. Tight triangularity. Leta € RE. We say that: is metric! if it satisfies the triangle
inequality, i.€. .y + ayw — v > 0 for all three distinct, v, w. (As is a customary for graphs,

INote that this implies. > 0 for all e.
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we abbreviatg v, w} with v # w to vw.) We follow [NR93] in calling « tight triangular (TT),
if it is metric and for each: € V there existaw such that the triangle inequality is satisfied
with equation:a,,, + a.w — avww = 0. Abusively, we say that a linear inequality is metric, or
TT, if the left hand side vector has the property.
4.2.2.2. Metric cone, TT-fan and flat TT-farA polyhedral complex is a (pointedan if it
contains precisely one vertex, and each face which is not a vertex is emgyointed cone.
Themetric cone(’, consists of al(semi-)metricon V. In our context, a (semi-)metric is
a metric poinid € R”, i.e.,

(9) dvu + duw - de Z 0

holds for all distinctu, v,w € V.

For a polyhedral compleg, we denote byC| := |y F its underlying point setand,
informally, we say that a pointis inC, if = € |C].

We now define th@T-fan7”, which is a sub-fan of the fan of all faces of the metric cone.
Heuristically, the elements df’| are metrics ori/ satisfying the following: for every point
u € V, there exist two other points,w € V such thatu is the “middle point” of the “line
segment” between andw. More accurately, letting, .., denote the face of' defined by
inequality @) the TT-fan is defined as follows:

(10) T = U CFuw) cCO).

ueV v,w#u
T’ is indeed a fan. “TT” stands for “tight triangular”, a term coined by Nefd€l Rinaldi
[NR93] for a point’s property of being ifi7’|. However, we are not aware of any reference to
this fan in the literature. Denote py R” — L the orthogonal projection. We will prove in the
next section (Lemma4.10 that applyingp to 7’ produces a fafl” isomorphic to7”:

(11) T:={p(F)| FeT}.

We call 7 theflat TT-fan
4.2.2.3. Definition of the edge sefs“(a). Leta € S*. For everyu € V, we letE“(a) be
the set of edges on which the slack of the triangle inequaitys(minimized:

(12) E“(a) := {vw €eFE ) u # v, w, and

Ayy + Ay — Gy = min Ayl F Q! — av’w’}~
v w'#u
4.2.2.4. The TT-sub-complex éf*. We Iet(f(P) be the polyhedral complex of all bounded
faces ofP.
We define a sub-compléxof C(P%): B is what remains of the complgX P2) of bounded
faces ofP* after deleting the conjugate face $fin P2, in symbols

B :=dI(SY,C(P)).

It will become clear in the next section (see Remdu®) that the points of the comple® are
precisely the points ifC(P*)| which are tight triangular.

4.2.3. Rotation and statements of the resultsLet C andD be two polyhedral complexes.
D is called asubdivisionof C, if, (a) every face ofD is contained in some face 6f and (b)
every face ot is a union of faces obD.

We now give the rigorous definition of “rotation” and of the rotation compéexputlined
in the introduction. More accurately, we define a “rotation partition[.4ff, which will turn out
to be a polyhedral complex subdividing

A pointa € S corresponds to an inequalitye z > a e z — 1 valid for S. Rotating this
inequality amounts to adding an equation valid $or The left-hand side vectar of such an
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equation is a linear combination of the left-hand side vectors of the equétiens= 1, and the
right-hand side coincides witpe z. Hence, for a fixed, rotating the inequalitgez > aez—1
by ¢ gives the following

(13) (a+q)ex>aez—1+qecz.

Fora € |A], let§(a) € C(P) be the set of faces d? which can be defined by the rotated
version of the inequality correspondingdo More precisely, a sef ¢ R is in §(a) if, and
only if, there exists @ as above, such that the rotated inequalit$) (s valid for P, and F is
the set of points irP satisfying it with equality:F’ = {x € P | (a+q)ex =aez—1+qez}.

Now we define a partitio° of |.A|, by letting two pointsz, b be in the same cell of° if
and only if§(a) = §(b). Moreover, letS be the set of all closures of cells §f:

S:={X|Xes,

where, forX ¢ R™, we denote byX the closure ofX in the topological sense. We cdlthe
rotation complexthe word “complex” is justified by Theorerh2).

Let C and D be two polyhedral complexes. Thwmmon refinemerdf C and D is the
polyhedral complex whose faces are all the intersections of faccamdD: CVD := {FNG |
F € C,G € D}. The common refinemetV D is a subdivision of botld andD.

Theorem 4.2. S is a polyhedral complex. MoreoveX — X and I’ — relint F' are inverse
bijections betwees® andS. The following is true.

(a) The rotation comple® is the common refinement dfand the flat TT-fary".

(b) Two pointsa, b in | A| are in the relative interior of the same face of the rotation
complexS if, and only if, they are in the relative interior of same faceS3f and
E'%(a) = E"(b) forallu € V.

This corresponds to itenf\j) on page27 in the introduction, while the next theorem corre-
sponds to itemg).

Two polyhedral complexeS andD are called combinatorially equivalent, if there exists a
bijection®: C — D, which preserves the inclusion relation of faces, i.eE' if- F’ are two
faces ofC, then®(F') C ®(F”). We say that a mapping: |C| — |D| induces a combinatorial
equivalenceif finduces the polyhedral compl@x and the mapping’ — f(F’) is one-to-one.

In this caseC andD are combinatorially equivalent vigt — f(F').

Theorem 4.3. There is a projective homeomorphism |B| — |A|, such that the mapping
F — 7(F) is a combinatorial equivalence between the polyhedral comlard the rotation
complexs.

Remark 4.4. Let us say that a vertex @?* is a TT-vertex, if, as a point, it is TT in the above
sense, or, equivalently, if the vertex corresponds to a TT-facét.oSimilarly, let us call a
TT-vertex of P an NR-vertex (non-NR-vertex), if the corresponding facePa$ an NR-facet
(non-NR-facet, resp.). Theorem2 and4.3imply that the NR-vertices o’ are in bijection
with the vertices of4 via 7, while the non-NR vertices dP“ are mapped to non-vertex points
by .

4.2.4. Parsimonious property of relaxations and the ridge graph Given a systenBz >
b of linear inequalities which are valid f&¥, one may ask how the minimum value of a linear
functionz — ¢"x changes if either degree inequalities or degree equations are presghgrin
words, whether the following inequality is strict:

(14a) min{CT:U ’ Bxr>b, f,ex > 1Y, x> 0}
<

(14b) min{CT:U ’ Bx>0b, fpex =1, = > 0}
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RE o B T < C(C)
p = p
™
L > A S T
tcommon/\ refinement )

FIGURE 4.2. Mappings and sets

We say that the system of linear inequalities and equatiorisdig),
Bx >0
(15) bpex>1VoeV
x>0

is arelaxation of S. Such a relaxation is said to have tparsimonious propertyGB93] if
equality holds in 14) for all ¢ satisfying the triangle inequality.

GoemansGoe9] raised the question whether all relaxationssafonsisting of inequalities
defining NR-facets of? (in other words, they are facet-defining fé* and for.S) have the
parsimonious property.

The parsimonious property had earlier been proved to be satisfied foglth@tion con-
sisting of all inequalities defining facets &f by Naddef & Rinaldi NR91], in other words:
optimizing an objective function satisfying the triangle inequality aefields the same value
as optimizing ovelS. The parsimonious property has been verified by Goemans and Bertsimas
[GB93] for the relaxation consisting of all non-negativity inequalities> 0, e € E, and all
so-called subtour elimination inequalities. For evenC V' with |U| > 2, the corresponding
subtour elimination inequality

(16) Y w =2
wel
Hu,v}nU|=1

is valid and facet-defining fa$ (whenevem > 5) [GP79a GP791.

To our knowledge, the first example of a relaxatiorSoivhich does not have the parsimo-
nious property is due to Letchford ¢t05]. While the operative inequalities in his relaxation
do not define facets of or of P, in [ORTO05, ORTO07], a relaxation consisting of inequalities
defining facets ofP was derived, which does not have the parsimonious property.

As an application of Theorems2 and4.3, we give a necessary condition for a relaxation
of S consisting of inequalities defining NR-facets®to have the parsimonious property. The
condition is based on connectivity properties of the ridge grapR.ofRecall that theaidge
graph G of P is the graph whose vertex set consists of all facet® afhere two facets are
adjacent if their intersection has dimensitim P — 2, i.e., it is aridge. We will relate a given
relaxation to the induced subgrag@h of the ridge graph of? which is obtained if all vertices
corresponding to the facets defined by inequalitied B) ére deleted.

Theorem 4.5. Suppose3x > b consists of inequalities defining NR-facetsrofIf the relax-
ation (15) of S has the parsimonious property, then every connected compongptedntains
vertices corresponding to NR-facets/of

Thus, we link the optimization view given by the parsimonious property questitm
combinatorial properties of the polyhedral complg¥’), or, more precisely, 08. In the proof,
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Theorem4.3is used to “flatten” the latter complex, which then allows us to use a separating-
hyperplane argument for constructing a path in the ridge graph.

4.3. Proofs for Theorems4.2and 4.3

In Subsectiort.3.1, we will need to discuss some properties of Symmetric and Graphical
Traveling Salesman polyhedra. Most of them are generalizations ofifatte seminal pa-
pers by Naddef & RinaldiNNR91, NR93]. The proof of Theoremd.2 and4.3 then takes up
Subsectiong.3.2and4.3.3

As said before, we assume in the whole sectionithat5, because we require the technical
fact that non-negativity inequalities, > 0, for ane € F, define facets of, which is true if
and only ifn > 5, see GP79a GP794].

4.3.1. Preliminaries onP. Naddef & Rinaldi NR93] proved that every facet &f is con-
tained in precisely: + 1 facets ofP: then degree facets and one additional facet. This fact and
its generalizations are useful for our purposes. For the sake of ceanetes, we will sketch its
proof, and introduce some of the tools for the proofs of our main theortng ¢he way.

First we set up some notations. For a linear subsgace R™, denote byL* := {q €
R™ | gex = 0 Vx € L} the orthogonal complement df. Let D be theV x E-matrix
whose rows are th&), u € V. Recall from Sectiord.2.2.2thatp is the orthogonal projection
from RY onto L = ker D. Note that the orthogonal complemeiit = ker p of L is equal to
im DT = {D7¢ | ¢ € RV}, the space of all linear combinations of the

In the following lemma, we summarize basic facts about tight triangularity. Réoafl
page4.2.1that a face ofP is good, if it is not contained in a non-negativity facet.

Lemma 4.6.

(i) A metric inequality which is valid fof is also valid forP.
(i) An inequality defining a good face &f is metric.
(iii) An inequality defining a good facé' of P is TT if and only if " is not contained in a
degree facet.
(iv) If Fis a good face oP, thenS N F'is also a good face aP.
(v) Letthe TT inequality e z > 1 be valid for P. If it defines a face of co-dimensierof 5,
then it defines a face of co-dimension at most P.
(vi) For everya € R” there is a unique TT representative in the cosset L+ = {a + D¢ |
¢ € RV}. More precisely, we can obtain a uniqu¢a) € RY for whicha — DT \(a) is
TT by letting
a7) Ay(a) :== Hll?Iél (ayy + Gy — Qo)
The mapping\: R” — R" is defined as — (A, (a)) -
Given a vertex: and an edgew not incident tou, a shortcutis a vector |
Suwow = X" — X" — x* € RF. Here, we abbreviatg{*} to x°. Note | \/
that —a e s, 4w = Ay + auw — avw 1S the slack of the corresponding trianglé !
inequality. E

PROOFS FORLEMMA 4.6 (SKETCHES. Please note that there is not a shred of an argu-
ment in the proofs for the statements of Len#in@ which is not present in the\[R93] paper,
only that the arguments are applied to faces instead of facets.

The key ingredient in (a—c) is thehortcut argumenivhich Naddef & Rinaldi pioneered in
[NR93]. Letz € Z represent the edge multi-set of a connected Eulerian multi-gkaplith
vertex setl/. If H is not a cycle, i.e., ifH has a vertex; of degree four or more, then one
can find an edgew such thatu andvw are inH, andH' := H + vw — {vu,uw} is still a
connected Eulerian multi-graph; cf. the picture on the right; iépresents its edge multi-set,
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theny = x + s,.0. This gives (a), the implication=" in (c), and by carefully selecting
the edgevw, (d). Similarly, one can subtract a shortcut fromagrwhich gives (b), the other
direction in (c), and, by taking for each vertexa shortcuts,, ,.,, implies (e).

The proof can be found iNNR93], but we present the basic computation which is used
here and in some other arguments in the present paper a®in Item (f), and supposg=

Z};l p;o; for some real numberg, ..., u,. For every selection of and disjointvw € FE,
the slack of the corresponding triangle inequalitydor ¢ can be computed as follows
(18) (a + Q)vu + (a + Q)uw - (a + Q)vw = Qyy + Ay — Ay + Hy-

Thus,a + ¢ is TT if and only if they,, are equal to the,, in (17). O

The proof of (f) gives the following.

Remark 4.7. If a is as in (f) andy = Z;’L:I w;o; then for everyu € V', = Ay (a) implies
aes,.=0foralle e E"(a).

We now prove the important theorem of Naddef & Rinaldi.

Theorem 4.8([NR93)).

(i) If afacetG of P containsS, thenG is a degree facet.
(i) Let F be a good facet of (i.e., a facet ofS which is a good face oP). There exists a
unique facety of P with F = G N S.

PROOF (a). If G O S, thenG is trivially good, becausé is not contained in a non-
negativity facet. IfG is not equal to a degree facet, then, by Len#rg{c), it is defined by a
TT inequality, which contradicts Lemn#ag(e).

(b). Clearly,G exists becausg is a face ofP. Let G be defined by an inequalityez > a.
Thena is TT by Lemma4.6(c), hence, by Lemma4.6(f), unique in the set + L+ of all left
hand sides of inequalities defining the fageof S. O

4.3.1.1. Related aspects of the polar polyhedmBy passing to the polar, Theorefn8(b)
is equivalent to the following. I& is a vertex ofP* such that the inequality e > 1 defines a
facet (calledF' in Theoremé.8(b)) of S, thena ando,,, u € V, are the vertices of an-simplex
which is a face ofP~.

Remark 4.9. By Lemmad4.1(b) and Lemmat.6(c), the points of the comple® = d1(S?,C(P%))
are precisely the points ij¢(P*)| which are tight triangular.

4.3.2. Descriptions of the rotation complex.We will now prove Theoremd.2. We start
by proving that the two refinements gf = dI(N, S*) defined in (a) and (b) respectively of
Theoremd.2 are identical: the one using the flat TT-fan definedlifh) (and the one using the
setsE"(a) defined in (2).

Let us first verify that the orthogonal projectipmmaps the TT-fan7”| bijectively ontoL.
For this, we define some mappings, basedlon: (

)\U:RE%R: a > ml;l Ayy + oy — Gy,
(19) A:RE S RY: ar (M(a),..., A\(a)7,
9: RFY 5 RE: a— a— D"\ a),

9:RxRE 5 RxRE: (a,a) — (a — 1 e A(a),d(a)).

Note thatJ is essentially the same dexcept that the former takes the “right hand sidehto
account.

Lemma 4.10. The mappingg: |7'| — L and d|, : L — |T’| are inverses of each other.
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(The restriction of a mappingi: X — Y to asetZ C X is denoted byf|;.)

PROOF. By Lemmad.6(vi), every co-set. + L+ of L' contains a unique TT point, namely
¥(a). The co-set also contains a unique poinf.ohamely the orthogonal projectigria) of a
onto . Hence, the two mappings are inverses of each other. O

In view of Lemma4.10, p transports the fafi” into a fan7 := p(7’) in L, the flat TT-fan
defined in Sectior.2 It is a complete fan in its ambient spate (A fan C is completef
|C| is equal to the ambient space.) The next lemma states that the refinemehissefl in
Theoremd.2 are identical. The proof is a direct verification based on the definitioris“¢f)
andd, using Lemmat.10

Lemma 4.11. For two pointsa, b € L, the following are equivalent:
(i) E%(a) = E"(b)forallu eV
(i) a andb are in the relative interior of the same face of the flat TT-fan O

For easy reference, |&1 denote the common refinement.dfand the flat TT-fary. This is
certainly a polyhedral complex, and the previous lemma implies that two points ieltdi&e
interior of a face of4 are in the relative interior of the same facel¥fif, and only if, () holds
and they are in the relative interior of same faceS6f

This shows that items] and p) of Theoremd.2 are just reformulations of each other, one
using the formulation involving the sefs*(-), the other using the common refiniement with
7. Moreover, to establish Theore#n2, it remains to prove that the partition pfl| into open
faces ofD coincides with the partitios°: Once this is established, both the statement about
the closures and relative interiors in Theorér® and items (a) and (b) follow.

To prove that these two partitions coincide, we need to descend deep#ramicoperties
of P. ForX ¢ R™, we denote bwff X the affine hull ofX, i.e., the smallest affine subspace
of R™ containingX. We letdir X denote the “space of directions” i, i.e., the linear space
generated by the poinis— z, z,y € X. Henceaff X = x + dir X holds for everyr € aff X.

If F'is a face ofP, then a shortcut is said to Weasiblefor F, if it is contained in the space
dir F'. We note the following for easy reference.

Lemma 4.12. If F' is a good face of?, then a shortcus,, .., is feasible forF' if and only if
a e 5., = 0 for one (and hence for all) € relint FO.

PrROOF If F'is a good face, then the polarity relations of Lemdnahold betweernt and
F°. The details are left to the reader. O

The following lemma highlights the importance of shortcuts in the relationship bet@ee
andP.

Lemma 4.13. A good faceF’ of P is uniquely determined by

e the set of cycles whose characteristic vectors are containéd pius
e the set of its feasible shortcuts.

PROOF. A face is uniquely determined by the vertices it contains the extreme rays of its
characteristic cone. By the shortcut argument, every verteX isf either itself a cycle, or it
can be constructed from a cycle by successively subtracting feabifiests. As for the rays,
R, x“* is aray ofF if and only if, for anya € relint F°, we haveu,,, = 0 (by Lemma4.6(b)).
By Lemma4.12, this is equivalent to the property that for every~ u, v, boths,, ., ands, .
are feasible shortcuts. O

We can now finish the proof of Theorefi2

PROOF OFTHEOREM4.2(B). Leta € | A|. The inequalities of the forml@) all define
good faces ofP, because: defines a face of not contained in a non-negativity facet 6f
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Moreover, since every inequality of the forrh3) defines the same face 6f Lemma4.13
implies that every member of the s¥fa) of faces ofP defined by inequalities of the formi.)
is uniquely determined by its set of feasible shortcuts.

We claim that the s€§(a) is in bijection with the set of all subsets Bf, where the bijection
is accomplished in the following way: To a subget V, there is a face iff(a) whose set of
feasible shortcuts is precisely

(*) U{SU,e | e € E%a)}.
uel
The faces obtainable in this way are clearly pairwise distinct by what we jugt said (note
that E“(a) # (). We have to construct a corresponding inequality for every satd we have
to show that all faces if(a) can be reached in this way.
For the former issue, faf C V we defineg := 3, ., 6., and consider the inequality

((a)+q)ex>—-1+aez—1e)\a)+qez,

which is of the form 13) becausdl = Dz, and defines a good face &f The set of feasi-
ble shortcuts of this inequality is easily verified to b¢: (Compute the slacks of the triangle
inequalities as in{8) and then use Lemm&a12

To see that every facE in §(a) can be obtained in this way we argue that if there exists
an edgevw such thats,, .., is feasible forF', thenvw € E"(a) and for everye € E"(a) the
shortcuts,, . is feasible forF'. But this is an immediate consequence of Rendarkollowing
Lemma4.6.

This completes the proof of Theorefi2. O

4.3.3. Projective equivalence of the two complexedle now proceed to prove Theo-
rem4.3. We want to define a mappingby letting

1
aez—1
for a € P~. The denominator will be zero, if, and only if,e z > 1 is satisfied by equality for
all 2 € S, in other wordsy (a) is well-defined for alls € P% \ S°.

By Lemma4.6, a pointa in the complexC(P*) of bounded faces oP* defines a good
face ofS, so we haver(a) € | A|, wheneveu ¢ S°. Hence, we have the mapping

(20b) w: |Bl — | Al

In this subsection, we will prove that as given in 20) is a homeomorphism, and show
that it induces a combinatorial equivalence betw#eand the rotation comple¥; i.e., we
prove Theoremt.3. We will explicitly construct the inverse mapping ', which, essentially,
transforms a point into its TT-representative in the sense of Lem6a).

When we write the projective mappingas a linear mapping froR x R — R x L by
homogenizatior,it has the following form:

. (-1 zenDO
=1 v )

wherea replaces the variable, i.eX,0Z (X andY are parts of a formula) is short for— Xy Z.
As a technical intermediate step in the constructionrof, we define a linear mapping
I: R x R¥ — R x RF taking points inR x L to points inR x R¥ by the matrix

-1 zenO
I'_<O id>’

2Recall that a projective mappi®®™ — R can be understood as a linear mapghg R™ — R x R™: If

£ = (11 f12) for linear mappingsfs. ¢, thenll(f°)(x) = %ﬁigg is a projective mapping. This commutes

with concatenation of mappingst(f o g) = II(f) o II(g).

(20a) m(a) := p(a),
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Now we let(v, ¢) := ¥ o I(1,0). Recalling the definition off from (19), in long, this reads
(1) (v.¢): a — (y(a),c(a)) == I(I(1,a)) = (-1+aez—1eX(a), a— D"\ a)).

Clearly, for alla € L, the pointc(a) is TT. If a € S2, i.e., if the inequalityp e z > —1 +
a e z is valid for S, then the inequality:(a) > ~(a) is of the form 3) (cf. the corresponding
statement in the proof of Theorefn2 above). We note the following fact as a lemma for the
sake of easy reference.

Lemma 4.14.1f a € S#, the two inequalitieg e z > —1 + a e z andc(a) e z > ~(a) define
the same face df. O

Finally, we define

1
22 Al = |Bl: a—~ —— c(a).
(22) o: | Al = 18] ) €@
Recall that, ifD’ is a polyhedral complex, a homeomorphigm [C| — |D’| is called
refinement mapf the image ofC under the mappind’ — f(F) is a polyhedral comple®
which is a subdivision oD’. In this case, we say thdtinducesD.

PROOF OFTHEOREM4.3. In the remainder of this section, we will discuss the following
issues:

(@) ¢ is well-defined (i4.3.3.)
(b) ¢is a left-inverse ofr: |B| — |A| (in 4.3.3.9
(c) m: |B] — |A|is onto (in4.3.3.3

Items (b) and (c) imply that
(23) (pOﬂ’:id|B‘ and WO(p:id|A|,

so thatyp is a homeomorphisiA| — |B|.
(d) 7: |B| — |A] is arefinement map inducing the rotation compfegin 4.3.3.9.
From this and (d), Theorerh 3follows. O

4.3.3.1. We show:yp is well-defined.We start by showing that the quotient 22 is well-
defined. The key ingredient here is the fact that we are only considgaiod faces.

Lemma 4.15. For all a € |.A| we havey(a) > 0.

PROOF Assume to the contrary tha{a) = 0. Sincec(a) is metric,c(a) > 0 holds. We
distinguish two cases:(a) = 0 andc(a) > 0. In the first case, the hyperplane defined by
c(a) ez = vy(a) containsS, whileaex > —1+ a e z defines a proper face 6f, a contradiction
to Lemma4.14 On the other hand, i€(a) > 0, then the inequality:(a) e z > ~(a) is a
non-negative linear combination of non-negativity inequalities, and hévwectace defined by
c(a) @ x = v(a) is contained in a non-negativity facet 8f But sincea € |A|, i.e.,a itis
not a relative interior point of a face &f® which contains a vertex af* corresponding to a
non-negativity facet of, the face ofS defined bya e x > —1 + a e z is not contained in a
non-negativity facet of. Thus Lemmat.14yields a contradiction. O

It remains to be shown that the image|&ff undery is really contained in the target space
given in 22): For alla € | A| we havep(a) € |B|. This also follows from Lemmd.14 The
inequalityp(a) e x > 1 is valid for P, and the face it defines is good. Singé&:) is TT, the
conclusion follows from Remar.9.
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4.3.3.2. We show:p is a left-inverse ofr, i.e., for alla € |B| the identityp(7((a)) = a
holds.

Lemma 4.16. For all a € |B| we have(y,c)(7(1,a)) = (1,a). In particular, we have that
¢ o m restricted to|B| is equal to the identity mapping on this set.

PROOF To see this we compute
I(7(1,a)) = I(-1+aezp(a) = (1 —aez—zep(a),pla)) = ((p(a) —a) ez +1,p(a))
Using thata is TT (Remark4.9), we conclude

I(I(7(1,a))) = ((p(a) —a)ez+1—A(pa))el, a).
Sincea is TT, by Lemmad.6(vi), A(p(a)) is a solution tg(a) —a = DTA. Thus, usind = Dz,
it follows that

(p(a) —a)ez+1—Ap(a)) el =(pla) —a)ez+1—D"Ap(a)) ez =1.

From the statement abo(nf? o I) o 7, the statement about the projective mappings
7 follows by a slight generalization of the well-known fact that concatenatioprojective
mappings commutes with homogenization. We omit the computation, and only note that it
makes use of the fact that the two mappings a — a— D" A(a) andhg: a +— aez+ A(a) el
are positive homogeneous (i.&,(na) = nh;(a) for n > 0, ¢ = 1,2, which follows directly
from the definition of)). O

4.3.3.3. We show:p is one-to-one.Since we already know thato 7 = id, surjectivity of
7 is equivalent to injectivity ofp. It is actually easier to prove the following slightly stronger
statement.

Lemma 4.17. Leta,b € L. If there exists am € R, such that(y(a),c(a)) = n(v(b), c(b))
thenn = 1 anda = b. In particular, ¢ is injective.

PROOF Let sucha, b, n be given. We have
0= c(a) — ne(b) = a — D"A\(a) — n[b - DTA(b)] —a—nb— D" [\a) — gA(b)].
Sincea,b € L andDT[\(a) — n\(b)] € L+ we have
(%) a—nb=0=D"Xa)—nD"\(b)
Applying z e 0 to the second equation, we obtain
0=1e)Xa)—nle\(b)
Now we usey(a) = ny(b) and compute

0=~(a)—ny(b)=—-1+aez—1e\a)—n —1+boz—1o/\(b)]
=—1+n+(a—ndb)ez.
Sincez € L+ we have(a — nb) e z = 0, whencen = 1. Now a = b follows from (x). U
4.3.3.4. w induces the rotation complex\Ve are finally ready to prove thatis a refinement
map inducing the rotation complex.
Let C be a polyhedral complex, antt |C| — R* a mapping. We say that induces the

polyhedral complesD, if, for every F' € C, its imagef (F') underf is a polyhedron, and the set
of all these polyhedra is equal 10.

Lemma 4.18. For every facel” of S there exists a unique face(F') of B with p(relint ') C
relint ®(F). Moreover, ifF; # F; are faces ofS, then®(Fy) # ¢(F3).
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PROOF Let F”’ be the face of4 with relint F' C relint . Now, leta € relint F' and
G* be the face of? defined by the inequality(a) e = > 1. Since this inequality defines the
same face o’ as the inequality:(a) @ z > ~(a) which is of the form {3), the set of cycles
whose characteristic vectors areGff* coincides with the set of cycles contained in the face
F'® of S, where the conjugate face is takendrvs. S® (not in P vs. P2), and thus does not
depend on the choice af € relint F/. Moreover, the set of feasible shortcuts @7 is in
bijection with E*(a), u € V, and hence, by Theoret2, depends only o’ not on the choice
of a € relint F. Thus, by Lemmat.13 G7 does not depend on the choicewf relint F.
Hence, with®(F) := (G#)?, we havep(a) € relint ®(F) for all a € relint F.

The injectivity follows from Lemmad.13 because, as we have just argueds relint F’
uniguely determines the set of cycles and shortcuts. O

Lemmad4.18provides us with a mapping: S — B: ®(F) is the unique face oB whose
relative interior containg(a) for somea in the relative interior off". Sincey is surjective by
what we have proved in SubsectiérB.3.2 this immediately implies thab is, too: ForG € B,
letb € relint G, chooser € S with ¢(a) = b and letF be the unique face & containinga as
a relative interior point. Thei@(F') = G.

Hence, we obtain the following.

Lemma 4.19. There is a bijectionb: S — B with ®(F') = ¢(F).

Recall thatboundaryof a polyhedronF' in the relative topology offf F' is OF := F'\
relint F' = | Jc » G Where the union runs over all faces Bf

PROOF What remains to be shown is the final stateméritt’) = o (F'). We already know
that ¢ (relint ') C relint ®(F'), by the definition of®. By the surjectivity ofp, we have, in
fact equality in this relation: For evelye relint ®(F'), there is a such thatp(a) = b, but by
the injectivity of ®, we must have € relint F.

Moreover,p(relint F') = relint ®(F') impliesp(F) C ®(F) by continuity ofy.

Standard Euclidean topology arguments show ¢ghataps the boundar§ F' of F' into the
boundary ofp(F'). (This is most easily seen by noting thatis the inverse of a projective
mapping; see equation23).) The boundary of is the union of its facets, and we can apply
Lemmad4.18to those. In particular, we obtaid(F’) N relint ®(F') = () by the injectivity of
®. Thus, we havé)p(F) C C(relint ®(F)), but p(0F) C ®(F). From this, we conclude
thatp(0F) C 0P(F). Nowrelint F' andrelint (F') have the same dimension, becayss a
homeomorphism; se@3). In such a case, the Borsuk-Ulam theorem states that if a continuous
mappingy maps a topological sphet#’ into another topological spheted(F') of the same
dimension, but leaves out a point, cannot be injective, a contradictionabwsdnhave proved
in Subsectior#.3.3.3 Hencep(JF) = 0®(F), and we conclude(F') = ®(F). O

Remark 4.20. The topological arguments contained in the proof of Len#rikd can be re-
placed by more technical but more elementary ones from linear algebranylcase, they
reflect basic topological facts.

4.4. Proof of Theorem4.5

We will apply Theoren#.3to prove Theorem.5. The following lemma is the link between
parsimonious property and geometry.

Lemma 4.21. Let Bx > 1 be a system of inequalities defining NR-facet®#afuch that the
relaxation(15) has the parsimonious property. dfz > ~ defines a non-NR facet &f, then
¢,y cannot be written in the form

(24)



4.4. PROOF OF THEOREM}.5 41

withb"™ = 3. ¢;b; a non-negative linear combination of rowsof B, 8 =} ¢;, andu, € R
forallv e V.

PROOF Suppose that, v can be written as in24). Then minimizing the cost function

over the relaxation consisting of

¢ all non-negativity inequalities

e all degree equations(f), ez =1,v € V;

e all inequalities in the systeBz > 1.
yields v as the minimum. If the degree equations are relaxed to inequalities, then, by the
parsimonious property ofLf), the minimum is stilly. By Farkas’s Lemma (or LP-duality),
this implies that the inequality e =z > ~ is dominated by non-negativity inequalities, degree
inequalities, and inequalities Bz > 1. This is impossible sincé:, ) defines a non-NR facet
of P and all facets ilBz > 1 are NR. O

We are now ready to prove Theorehb.

PROOF OFTHEOREMA4.5. Leta, e z > 1 be an inequality defining a non-NR facet Bf
which is not in the systenBz > 1. By Lemma4.1, the paths in the ridge graph &f not
touching non-negativity facets are precisely the paths in the 1-skeletBf.ofThe 1-skeleton
or graphof a polyhedral complex is the graphG whose vertices are the vertices@fwith
two vertices ofGG being adjacent if and only if there exists an edg€ abntaining them both.)

Thus, we have to find a path in the graphfof which starts fromu,, ends in an NR-vertex,
and does not use any degree vertices or vertices correspondingstofr®.

By Theorem4.3, we know that there exists a projective homeomorphismB| — |A]
transporting the polyhedral compl#konto the rotation complex. We let:= 71,

Leta := ¢~ !(a,). This point is contained in the relative interior of a unique fatef S*
containing no non-negativity vertex. L&t denote the set of all faces of the rotation complex
D which are contained i, and letBr denote the set of verticésof I’ for which ¢(b)" is a
row of B. We will prove the following:

Claim 4.22. Let I be a face ofA4, and leta be a relative interior point of” which is a vertex
of D such thatp(a)™ is not a row ofB (see Fig4.3). Then there is a path in the 1-skeleton of
Dp starting atz, ending in a vertex of”, and not touching any of the verticesity.

By Theoremd.3 the paths ifDy correspond to paths iB. Moreover, the vertices corre-
sponding to rows ofB are avoided in the path iPx. Thus, we have i3 a path froma to
an NR-vertex not touching any vertices of the parsimonious formulatioichddoncludes the
proof of Theoremd.5. O

PROOF OFCLAIM 4.22 The proof of the claim is by induction alim F'. Fordim F' = 0,
we are done, because theiis a vertex ofF. Letdim ' > 1, and assume the claim holds for
relative interior points’ of facesF’ with dimensiondim F/ < dim F.

If Bp = (), we are done. Otherwise €t := conv Br. This is a non-empty polytope which
is contained inF'. Using Lemma4.21we will show the following:

Claim 4.23. Let ¢ be a vertex o0 which is not a member aBr. Thenc cannot be contained
in Q.

The proof of Claim4.23is technical, and we postpone it till the proof of Cla#®2is
finished. If Claim4.23is true, however, then we we know thats not in(). Letp, = define a
hyperplane separatingfrom @, i.e.,qep < 7 forall ¢ € @, anda e p > w. See Fig4.3for
an illustration. It assumes the faéeis an 8-gon.

By a standard general position argument, we can assume thaiot parallel to any face
with co-dimension at least one M. Hence, there exists an> 0 such that the line segment
a+]0, ¢[-p is contained in the relative interior ofdam F'-dimensional facé& of Dy, of whicha
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FIGURE 4.3. One step of the path

is a vertex. By elementary polytope theory (the edges of a polyhedroreimtdial a fixed vertex
span a cone of the same dimension as the polyhedébmust have a vertex; adjacent taz
with a e p < aq e p. Clearlya; ¢ Bp.

If a1 is in the boundary of”, then the induction hypotheses implies the existence of a path
from a; to a vertex of F' not using any vertex ilBg. If that is not the case, we apply the
argument in the previous paragraph inductively to obtain a paih, . . ., a; in the 1-skeleton
of Drwithaep <ajep <---<ajep <ajrep<--- < a,ep. Since the 1-skeleton
of Dr is finite and the path we are constructingigcreasing, a vertex on the boundaryfof
will eventually be reached.

This concludes the proof of Claith22 O

PROOF OFCLAIM 4.23. Letcbe avertex oDp with ¢ ¢ Br. Assume that € conv By,
i.e., c can be written as a convex combination= Z?Zl tjb; with ¢(b;)" a row of B for all

j =1,..., k. Clearly,c cannot be a vertex af’, so<p—1(c) e r > 1 defines a non-NR facet of
P by Remarkd.4. We compute

c— Z Ay(C)dy =

veV
th (b] - Z Av(bj)dv> - Z )‘U(C) - th)\v(bj) dy.
j veV veV J

Lettingo :=1—3_, Av(c), 75 :=1 =3, Au(b;), andp, := Ay(c) —3_;tjA0(b;), we see that
op(c) = Ztﬂjgo(bj) — Zuvdv
7 v
J

This means that the inequalityp(c) e = > o can be written as a non-negative linear combina-
tion of the inequalitiesp(b;) ez > 1,7 = 1,..., k plus a linear combination of degree vertices
as in @4). Since the former inequality defines a facetfoby Theorem&t.2 and4.3, and the
inequalities forming the non-negative linear combination are taken from gtermyBz > 1,
Lemma4.21yields a contradiction. O
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4.5. Outlook

We conjecture that the necessary condition for parsimonious propertiidor&dm4.5 is
also sufficient.

Conjecture 4.24. If every connected component@#f contains vertices corresponding to NR-
facets ofP, then the relaxatiork g of has the parsimonious property.

The conjecture holds for the known relaxations$afonsisting of NR-inequalities described
in [ORTO7] which fail the parsimonious property.
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CHAPTER 5

On a class of metrics related to graph layout problems

Jointly with
Adam N. Letchford (Lancaster University, GB),
Gerhard Reinelt (Uni Heidelberg),
and Hanna Seitz (Uni Heidelberg)

Abstract. We examine the metrics that arise when a finite set of poisitsedded
in the real line, in such a way that the distance between eaiclofpoints is at least
1. These metrics are closely related to some other known esetrithe literature,
and also to a class of combinatorial optimization probleman as graph layout
problems. We prove several results about the structureesktimetrics. In partic-
ular, it is shown that their convex hull is not closed in gethelVe then show that
certain linear inequalities define facets of the closuréefdonvex hull. Finally, we
characterise the unbounded edges of the convex hull ansl dbiure.

5.1. Introduction

For a given positive integet, let [n] denote{1,...,n}. A metricon [n] is a mapping

d: [n] x [n] — R4 which satisfies the following three conditions:

e d(i,j) =d(j,7) forall {i,j} C [n],

e d(i, k) + d(j,k) > d(i, ) for all ordered triplegs, j, k) C [n],

e d(i,7) =0ifand only ifi = j.
Metrics are a special cases#gmimetricswhich are obtained by dropping ‘and only if’ from the
third condition. There is a huge literature on metrics and semimetrics; seeafopéxDLI7].
The inequalities in the second condition are the well-kntriangle inequalities

In this paper we study the metridon [»] that arise whem points are embedded in the real
line, in such a way that the distance between each pair of points is at Iédste formally, we
require that/ satisfies the following two properties:

e there exist real numbers, ..., r, such thati(i, j) = |r; — r;| for all {i, j} C [n];

e d(i,j) > 1forall {i,j} C [n].
We remark that one could easily replace the valugith some arbitrary constant > 0; the
results in this paper would remain essentially unchanged.

We call the metrics in questiofiR-embeddablé-separated’ metrics. We believe that these
metrics are a natural object of study, and of interest in their own right. &Ve,thowever, two
specific motives for studying them. First, they are closely related to certditkm@vn metrics
that have appeared in the literature. Second, they are also closely telatedmportant class
of combinatorial optimization problems, known gi&aph layout problems

As well as studying the metrics themselves, we also study their convex hulkn# wt
that the convex hull is not always closed, which leads us to study alsdothere of the convex
hull. Among other things, we characterise some of(the- 1)-dimensional faces (i. e., facets)
of the closure, and some of thedimensional faces (i. e., edges) of both the convex hull and its
closure.

The structure of the paper is as follows. In SectioB we review some of the relevant
literature on metrics and graph layout problems. In Sechidh we present various results

45
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CUT,, /;-embeddable semimetrics (cut cone)
HYP,, hypermetrics, se€b)

NEG, negative-type cone, se2q)

ME2  ¢y-embeddable semimetrics

n

ME R-embeddable semimetrics

n

MI R-embeddablé-separated metrics

n

Qn convex hull of /!
Qn closure ofQ,,
P, permutation metrics polytope, se9|

TABLE 1. Sets of matrices

concerned with the structure of the metrics and their convex hull. Next, itioBes.4, we
present some inequalities that define facets of the closure of the coullexrhSection5.5,
we give a combinatorial characterisation of the unbounded edges obtivexchull and of its
closure. Finally, some concluding remarks are given in Se&ién

We close this section with a word on notation. To study convex geometric piegeve
view metrics as points in a vector spdge In our notationS, will be either the vector space
of all symmetric functiongn| x [n] — R or the vector space of all real symmetfic x n)-
matrices whose diagonal entries are zero, and we will switch freely bettiesn. For the
latter, the inner product is defined as usual by

AeB = tl"(ATB) = Z Z Ak,lBk,l'
k=11=1

We understand a metric both as a function and a matrix, and we will switch hetivedwo
concepts without further mentioning.

By S(n) we denote the set of all permutationgwf. We occasionally viev$ (n) as a subset
of R? by identifying the permutatiom with the point(r(1),...,(n))". Furthermore we let
1w = (1,...,n) the identity permutation ir$(n). We omit the index: when no confusion
can arisel is a column vector of appropriate length consisting of ones. Simitaitya vector
whose entries are all zero. If appropriate, we will use a substripd; to identify the length
of the vectors. The symb& denotes an all-zeros matrix not necessarily square, and we also
use it to say “this part of the matrix consists of zeros only."iBywe denote the square matrix
of ordern whose(k, [)-entry is1 if k # [ and0 otherwise. As above we will omit the index
when appropriate. We denote By the complement of the sét.

5.2. Literature Review

In this section, we review some of the relevant literature. We cover relatadrsetrics in
Subsectiorb.2.1and graph layout problems in Subsectm@.2 To facilitate reading we have
summarized all matrix sets discussed in Table

5.2.1. Some related semimetricsThe following four classes of semimetrics pr}, which
are closely related to theR-embeddabld-separated metrics, have been extensively studied in
the literature (sed]JL97] for a detailed survey):
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e The/;-embeddablsemimetrics, i. e., those for which there exist a positive integer
and pointsry, ..., z, € R™ such that(i, j) = |z; — x|, == Y i, |wik — x| for
all {s,j} C [n].

e The />-embeddablesemimetrics, which are defined as in thecase, except that
(i, ) = |wi — 5]y = /gy (win — k)2

e TheR-embeddablsemimetrics, which are the special casé;ef(or /,-) embeddable
semimetrics obtained when = 1.

e The hypermetrics which are semimetrics that satisfy the followihgpermetricin-
equalities Pez61:

(25) 7 bibjd(i,j) <0 (WbeZ: ibi =1).

{i.j3cln] =1

It is known [Ass8( that the set of;-embeddable semimetrics on| is a polyhedral cone in

R(g). In fact, it is nothing but the well-knowcut cone denoted by CUJ. The set of all
hypermetrics orin], called thehypermetric coneand denoted by HYR is also polyhedral
[DGL93].

We will let M 22 andM F denote the set dh- andR-embeddable semimetrics, respectively.
It is known thatM,2 and M.E are not convex (unless is small), and that the convex hull of
ME? andM R is CUT,. Itis also known §ch3§ that a symmetric functiod lies in -2 if and
only if d? (i.e., the symmetric function obtained by squaring each value) lies in thellsd-ca
negative-type coneThe negative-type cone, denoted by NE® the (non-polyhedral) cone
defined by the followingnegative-typénequalities:

n

(26) > bibjd(i,j) <0 (VER":Y b =0).

{i.j}Cln] =1

The structure oft/* and related sets is studied BD92).

In recent years, there has been a stream of papers on so-tefjative-typesemimetrics
(also known ai%—semimetrics)/BLNO?, ALNO8, CGRO08, KV05, KR06, Lee0y. These are
simply semimetrics that lie in NEG They have been used to derive approximation algorithms
for various combinatorial optimisation problems, including the graph layalilpms that we
mention in the next subsection.

The following inclusions are knownd® ¢ ML? ¢ CUT, c HYP, c NEG,. Denot-
ing the set of allR-embeddabld -separated metrics hy/!, we obtain from their definition
M ¢ ME. We will explore the relationship betweed ™, Mt and CUT, further in Sub-
section5.3.1

5.2.2. Graph layout problems. Given a graphG = (V, E), with V' = [n], alayoutis
simply a permutation ofi]. If we view a layoutr € S(n) as a placing of the vertices on points
1,...,n along the real line, the quantityr(i) — m(j)| corresponds to the Euclidean distance
between verticesandj. Several important combinatorial optimization problems, collectively
known aggraph layout problemscall for a layout minimising a function of these distances (see
the survey PPS03). For example, in thélinimum Linear Arrangement Proble(MinLA),
the objective is to minimiz&_y; 1. p [ (i) — 7(j)[. In theBandwidth Problemthe objective
is to minimisemaxy; jyep |7(i) — 7(5)|-

Now, letd(i, j) for {i,j} C [n] be a decision variable, representing the quaritity) —
7(7)|. It has been observed by several authors that interesting relaxafigresph layout prob-
lems can be formed by deriving valid linear inequalities that are satisfied figaalble sym-
metric functionsi. To our knowledge, the first paper of this kind wa¥95], which presented
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the followingstar inequalities:

(27) > d(i, ) = LS|+ 1)%/4].

jes

Here,i € [n] andS C [n] \ {7} is such that every node ifi is adjacent ta.
Apparently independently, Evest al. [ENRSO0Q defined the so-calledpreading metrics
These are metrics that satisfy the followisggreadingnequalities:

(28) Y di.g) = 1S1(1S| +2)/4 (Vi€ [n],¥S C [n]\ {i}).

jes

Note that the spreading inequalities are more general than the star inequbliidsave a
slightly weaker right-hand side whenis odd. Spreading metrics were used ENRS0Q
RRO05] to derive approximation algorithms for various graph layout problems.

In [CHKRO08, FLO7], it was noted that one can get a tighter relaxation of graph layout
problems by requiring the spreading metrics to lie in the negative-type co@g NEhe authors
called the resulting metriocg-spreadingmetrics.

A natural way to derive further valid linear inequalities for graph layoutbfems is to
study the followingoermutation metrics polytope:

(29) P, = conv{d ‘ Ir € S(n) : d(i,j) = |7(i) — n(5)| ¥{i, j} C [n]}.

Surprisingly, this was not done until very recenthl09]. In [AL09], it is shown thatP, is of
dimension(;) — 1 and that its affine hull is defined by the equatlo)), ;1 (, (4, 5) = (™.
It is also shown that the following four classes of inequalities define fadet$ ander mild
conditions:

e pure hypermetriégnequalities, which are simply the hypermetric inequalits) for
whichb € {0, £1}";

e strengthened pure negative-tyipequalities, which are like the negative-type inequal-
ities (26) for whichb € {0, +£1}", except that the right-hand side is increased ffom

e cliqueinequalities, which take the form

(30) > iz ()

{i,7}CS

whereS C [n] satisfie2 < |S| < n;
e strengthened stainequalities, which take the form

(31) (ISI=1)> dlriy— Y d,5) = [(1SI+ D18 - 1)/12]

i€S {i,j}CS
wherer € VandS C V' \ {r} with [S| > 2.

It is pointed out in the same paper that each star inequa@iywith |S| > 2 is dominated by
a clique inequality 30) and a strengthened star inequali®t), Therefore, very few of the star
inequalities define facets @1,.

Finally, we mention that some more valid inequalities were presented recentlggrai@
etal.[CLSG09]. Some of them were proved to define facets ofdoeninantof P,,, though not
of P, itself.

We will establish an interesting connection betwé\d;j“, CUT,, and P,, in Subsection
5.3.2
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5.3. On M and its Convex Hull

5.3.1. OnM ! and related sets.We now studyM ! and its relationship with\/?, P,
and CUT,. We will find it helpful to recall the definition of aut metric

Definition 5.1. For a setU C [n], we letd; be the metric which assigns to two points on
different sides of the bipartitioty, CU of [n] a value ofl and to points on the same side a value
of 0.

We will say that the set/ inducesthe associated cut metric. In other words, if we let
Dy (z) = |z, — ;| for every vectorz € R™ (and identify, as promised, functions and ma-
trices), thend;y = D(xY). With this notation, CUT, is the convex cone with apexin ),
generated by the pointg;, i. e.,

CUT,, := cone{dU ‘ dy is the cut metric fol/' C [n]}

Itis known BM86] that each cut metric defines an extreme ray of GUT
We will also need the following notation. For a given permutatios S(n), let N, be

the set ofr € R" which satisfyz;) < w1 fori =1,...,n — 1. Now let M (7) denote
the set of metricgl for which there exists am € N, with d = D(z). Also, for a givent
and fork = 1,...,n — 1, we emphasize thad(x™ ' (")) is the cut metric induced by the set

U={r"Y1),...,7 1(k)}. (So, for example, ifi = 4 andr = {2,3,1,4}, thenD(x™ ' (2))
is the cut metric induced by the s, 3}.)
We have the following lemma:

Lemma 5.2. M () is a polyhedral cone of dimension— 1 defined by the: — 1 cut metrics
D™ ) Dy (Inm1Dy,

PROOF. Letd* € M(n) and letzy,...,x, be the corresponding points . One can

check that:

n—1

& =3 (@ — 2) DO D),

k=1
From the definition ofA/(7), we havexry,; — xzp > 0fork = 1,...,n — 1. Thus,d* is a
conical combination of the — 1 cut metrics mentioned. This shows thdt() is contained in
the cone mentioned. The reverse direction is similar. O

This enables us to describe the structurdgff:
Proposition 5.3. M is the union of:! /2 polyhedral cones, each of dimension- 1.
We define thentipodalpermutation ofr € S(n) by
7 =(Mn+1)-1-m.

This is the permutation obtained by reversing A swift computation shows thab(r) =
D(n™).

PROOF. From the definitions, we havel? = Uresm) M (). From the above lemma, the
setM () is a polyhedral cone of dimension— 1. Now, note that, for anyt € S(n), we have
M (m) = M(x—). Thus, the union can be taken owel/2 permutations, instead of over all
permutations. O

We note in passing that every cut metric belongs\f¢r) for somer € S(n). This
explains the well-known fact, mentioned in Subsectio.], that the convex hull oM}f is
equal to CUT,.
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FIGURE5.1. The convex s&bs

Now, we adapt these results to the caséff'. We define)M ! (x) similar to M (r): we
denote byM () the set of all metricgl which are of the formD(x) for anz € R™ which
satisfiese ;) + 1 < wpyqyfori=1,...,n - 1.

Note that theD(7) are nothing but the metrics associated with feasible layouts, which by a
result in JALO9] are the extreme points d#,. Note also that the sefg/ ! () are disjoint.

We have the following lemma:

Lemma 5.4. M!(r) is the Minkowski sum of the poift(r) and the coné\/ (r):
M (1) = D(7) + D(Ny).

PROOF This can be proven in the same way as Lent2aThe only difference is that we
decompose* € M!(r) as:
n—1
d* = D(x) + Y _(rirs = ri = DD ),
k=1
and note thaty,; —r, —1>0fork=1,...,n— 1. O

We can now derive an analog of Propositm®:

Proposition 5.5. M is the union of:! /2 disjoint translated polyhedral cones, each of dimen-
sionn — 1.

PROOF. From the definitions, we have/,"" = |J, g, M" (7). From Lemmas.2and

5.4, each setM/!(n) is a translated polyhedral cone of dimension- 1. As in the proof of
Proposition5.3, the union can be taken over only/2 permutations. O

5.3.2. On the convex hull of M and related sets.We now turn our attention to the
convex hull of M*1, which we denote by),,. To give some intuition, we present in Fig.1
drawings of M and Q3 from three different angles. (Of course, the drawing is truncated,
since s is unbounded.) The three co-ordinates repregéht2), d(1,3) andd(2,3). The
three coloured regions represent the three disjoint subset/df mentioned in Proposition
5.5

One can see thaps is a three-dimensional polyhedron, with one bounded facet, six un-
bounded facets, three bounded edges and six unbounded edges.

Forn < 3, @, is closed (and therefore a polyhedron). We will show in Sectdsn
however, that),, is not closed fom > 4. Therefore, we are led to look at the closure(yf,
which we denote by),,.

Our next result shows that there is a close connection between the gaiyh@,,, the
polytopeP,, and the cone CUT:

Proposition 5.6. Q,, is the Minkowski sum a®, and CUT,.
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PROOF We use the same notation as in the previous subsection. By definition, @iety p
in M belongs toM*(r) for somer € S(n). From Lemma5.4, every point inM!(r) is
the sum of the poinD(7) and a point in the cut cone CUT Moreover, the poinD(7) is an
extreme point ofP,. Thus, every point inV/ %! is the sum of an extreme point &, and a
point in CUT,,. SinceQ,, is the closure of the convex hull 8!, it must be contained in the
Minkowski sum of P, and CUT,. The reverse direction is proved similarly, noting that every
cut metric is of the formD(y™ ' (M) for somer € S(n) and some: € [n — 1]. O

This immediately implies the following result:
Corollary 5.7. @, is full-dimensional (i. e., of dimensid})).
We also have the following result:
Proposition 5.8. P, is the unique bounded facet@f,.

PROOF As mentioned in the previous section, all pointdinsatisfy the equation

> ain=("3")

{i.j}Cln]

Moreover, every point in CUT satisfies) _; -y, d(i,j) > 0. Since®,, is the Minkowski
sum of P, and CUT,, it follows that the inequalityy ", 1, d(i,7) > (") is valid for @,
and thatP, is the face of),, exposed by this inequality. Sin¢g, and P, are of dimensior{’,)

and (;) — 1, respectively,, is a facet ofQ,,. It must be the unique bounded facet, since all
extreme points of),, are inP,,. O

In the next section, we will explore the connection betwégpn P, and CUT, in more
detail. To close this section, we make an observation about how the indivieees’ of
MR called theM ' () in the previous subsection, are positioned withig

Proposition 5.9. For anyw € S(n), the setM () is an(n — 1)-dimensional face of),,.

PROOF. By definition,Q,, satisfies all triangle inequalities. Now, without loss of generality,
suppose that is the identity permutation. Every point iW*(r) satisfies all of the following
triangle inequalities at equality:

d(i,7) +d(j,k) > d(i, k) Vi<i<j<k<n).
Moreover, no other point i/ ! does so. Thus)/!(r) is a face ofQ,,. It was shown to be
(n — 1)-dimensional in the previous subsection. O

5.4. Inequalities Defining Facets of),,

In this section, we study linear inequalities that defiaeetsof Q,,, i. e., faces of dimen-
sion (g) — 1. Subsectiorb.4.1presents some general results about such inequalities, whereas
Subsectiorb.4.2lists some specific inequalities.

5.4.1. General results on facet-defining inequalitiesln this subsection, we prove a struc-
tural result about inequalities that define facet€)gf and show how this can be used to con-
struct facets of),, in a mechanical way from facets of eithB; or CUT,,.

We will need the following definition, taken fromAL09]:

Definition 5.10 (Amaral & Letchford, 2009) Leta”'d > 3 be a linear inequality, whewe, d €
R(:). The inequality is said to be ‘canonical’ if:

32 min ;i = 0.
(32) @;«ssqn]z;[%:s J
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By definition, an inequalityx”'d > 0 defines a proper face of CYTif and only if it is
canonical. In ALO9], it is shown that every facet aP, is defined by a canonical inequality.
The following lemma is the analogous result €@y:

Lemma 5.11. Every unbounded facet ¢f, is defined by a canonical inequality.

PROOF. Suppose that the inequality’ d > $ defines an unbounded facet@f,. Since
Q,, is the Minkowski sum ofP,, and CUT,, the inequality must be valid for CU;T Therefore,
the left-hand side of32) must be non-negative. Moreover, since the inequality defines an
unbounded facet, there must be at least one extreme ray of €4tisfyinga” d = 0. Therefore
the left-hand side 0f32) cannot be positive. O

We remind the reader that only onefice@ is bounded (Propositioh.8).
Now, we show how to derive facets 6, from facets ofP,:

Proposition 5.12. Let F' be any facet of?,, and leta”d > /3 be the canonical inequality that
defines it. This inequality defines a facetyf as well.

PrROOF. The fact that the inequality is valid fap,, follows from the fact that),, is the
Minkowski sum of P,, and CUT,. Now, sinceF is a facet ofP,, there exist()) — 1 affinely-
independent vertices @f, that satisfy the inequality at equality. Moreover, since the inequality
is canonical, there exists at least one extreme ray of Cth#t satisfiesy”’ d = 0. Since@,,
is the Minkowski sum ofP, and CUT,, there exist(’;) affinely-independent points i@,, that

satisfy the inequality at equality. Thus, the inequality defines a faagt,of O
Now, we show how to derive facets &, from facets of CUT,:

Proposition 5.13. Leta” d > 0 define a facet of CUJ, arEletB be the minimum af” d over
all d € P,. Then the inequality” d > /3 define a facet of),,.

PROOF. As before, the fact that the inequality d > 3 is valid for Q,, follows from the
fact that@,, is the Minkowski sum ofP, and CUT,. Now, since the inequalitp’d > 0
defines a facet of CU], there exist(g) — 1 linearly-independent extreme rays of ClJihat
satisfya’ d = 0. Moreover, from the definition of, there exists at least one extreme point of
P, that satisfiesy’ d = 8. Since@Q,, is the Minkowski sum ofP,, and CUT,, there exist(’,)
affinely-independent points i9,, that satisfya’ d = 3. Thus, the inequality’ d > /3 defines
a facet ofQ,,. O

5.4.2. Some specific facet-defining inequalitiesSThe results in the previous subsection
enable one to derive a wide variety of facet€pf. In this subsection, we briefly examine some
specific valid inequalities; namely, the inequalities mentioned\L0OP].

First, we deal with the clique and pure hypermetric inequalities:

Proposition 5.14. The clique inequalities30) define facets af),, for all S C [n] with |S| > 2.

PROOF It was shown in ALO9] that the clique inequalities define facetsif whensS' is a
proper subset dh]. In this case, the inequalities are canonical and so, by PropoSiti@they
define facets of),, as well. The cas® = [n] is covered in the proof of Propositidn8. g

Proposition 5.15. All pure hypermetric inequalities define facetsyf.

PROOF It was shown in BM86] that all pure hypermetric inequalities define facets of
CUT,,. ltwas also shown ir4L09] that every pure hypermetric inequality is satisfed at equality
by at least one extreme point 8%,. The result then follows from Propositiénl3 O

As for the strengthened pure negative-type and strengthened staalitieg, it was shown
in [ALO9] that they define facets df, under certain conditions. Since they are canonical, they
define facets of),, under the same conditions. In fact, using the same proof technique used in
[ALO9], one can show the following two results:
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Proposition 5.16. All strengthened pure negative-type inequalities define faceds, of
Proposition 5.17. Strengthened star inequalities define facet@gfif and only if | S| # 4.

We omit the proofs, for the sake of brevity.

5.5. Unbounded Edges of),, and Q,,

5.5.1. Unbounded edges ap,,. We now investigatéiow the polyhedral cones/! (7) =
D(m) + D(N,) as subsets of),,. In Fig. 5.1 it can be seen that in the case= 3, the
three cones are faces @ (recall thatQs is a polyhedron, which means that we can safely
speak of faces). In the following proposition, we show that this is the foasal n, and we
also characterize the extremal half-lines(@f. This will be useful in comparing),, with its
closure: We will characterize the unbounded edges issuing from eatxJor the polyhedron
Q,, = P,+CUT,, in the following subsection.

We are dealing with an unbounded convex set of which we do not knathehit is closed
or not. (In fact, we will show thaf),, is almost never closed). For this purpose, we supply the
following fact for easy reference.

Fact5.18.Fork = 1,...,m let K be a (closed) polyhedral cone with apex Suppose that
the K, are pairwise disjoint and defirte:= [4J;" | K. Letz, y be vectors such that+ R,y

is an extremal subset ebnv(S). It then follows that there exists & € R, and ak such
thatz + \y € Kj forall A > Ag. Sincex + Ry is extremal, this implies that there exists a
A1 € Ry such thate, = x + My andz, + Ry = {z 4+ Ay | A > A1} is an extreme ray of the
polyhedral conés.

Definition 5.19. We say that a permutation and a non-empty séf C [n] areincident, if
U= {r"t1),...,mY(k)}, wherek := |U]|.

Proposition 5.20.

(i) For everym € S(n), each edge of the cone(rw) + D(N,) is an exposed subset of
@n.

(i) The unbounded one dimensional extremal set§gpfare exactly the defining half-
lines. In other words, every half-lin€ + R Y which is an extremal subset ¥, is
of the formD(7) +R. D(xY) forar € S(n) and a sel/ incident tor. In particular,
for every vertexD(r) of @Q,,, the unbounded one-dimensional extremal subsef,of
containingD () are in bijection with the non-empty proper subset&dfincident to
m. Thus there are precisely — 1 of them.

PROOF i. By symmetry it is sufficient to treat the case=+ := (1,...,n)", the identity
permutation. Consider the matrix

01 —1

1 01 IS
1

C:= €S,

¥ 1(1) 1

-1 10

It is easy to see that the minimum over @lle D(x), = € S(n), is attained only int = 2,2~
with the valued. Moreover, for any non-empty proper subgetf [n], we haveC' e D(xY) = 0

if U is incident to: andC e D(xV) > 0 otherwise. Hence, we have thBX:) + D(N,) is
equal to the set of all points i@),, which satisfy the valid inequalit¢’ ¢ X > 0 with equality.
Out of this matrixC' we will now construct a matrixX2’ and a right hand side such that only
some of the subsets incident:ttulfill the inequality with equality. To do so I€t, be a subsets
of [n] incident to:. If, for eachU C [n] incident to: but different fromUj, we increase the
matrix entrieSChax t7.max +1 @NACrax 7+1,max v DY ONE, we obtain an inequality’ ¢ X > 0
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which is valid for@,, and such that the set of all points@f, which are satisfied with equality
is precisely the edge dP(z) + D(N,) generated by the half-ling3(z) + R D(x"0).

ii. That the defining half lines are extremal has just been proviedime converse statement
follows from Fact5.18and the fact that the extreme points@jf are precisely the vertices of
P,,, which are of the fornD(r), for r € S(n). O

5.5.2. Unbounded edges i),,. We have just identified some unbounded edge3,pf=
P,+CUT,, starting at a particular verteR () of this polyhedron. We now set off to char-
acterizeall unbounded edges @,,. Clearly, the unbounded edges are of the fabfr) +
R, D(xY), but not all these half-lines are edges. For a permutatiand a non-empty subset
U C [n], we say thatD(7) + R, D(xY) is the half-linedefined by the pairr, ~U. In this
section, we characterize the pairg'U which have the property that the half-lines they define
are edges. For this, we make the following definition.

Definition 5.21. Let = be a permutation, and |ét be a subset df:]. We say thalU is almost
incidentto r, if there exists & € [n — 1] such that/ = 7~ L([k — 1] U {k + 1}).

We can now state our theorem.

Theorem 5.22. For all n > 3, the unbounded edges @f, are precisely the half-lines defined
by those pairsr,”U, for which neither/ nor CU is almost incident ter.

From Theoren®.22 we have the following consequences.

Corollary 5.23. For n > 4, the number of unbounded edges issuing from a vertéx,of=
P,+C,is2" 1 —n.

Corollary 5.24. For n > 4, the extremal half-lines containing an extreme point)fare a
proper subset of the unbounded edges issuing from the same veflgx of

PROOF We haven — 1 < 21 —nif n > 4. O
Corollary 5.25. The convex s&,, is closed if and only i < 3.

Major parts of the proof of the above stated theorem work in an indu@stddn by reduc-
ing to the case when € {3,4,5,6}. We will present the cases= 3 andn = 4 as examples,
which also helps motivating the definitions we require for the proof.

We will switch to a more “visual” notation of the subsets [ef by identifying a set/
with a “word” of lengthn over{0, 1} having al in the jth position iff j € U — it is just the
row-vector(yV)T.

Example 5.26(Unbounded edges @J;). We deal with the case = 3 “visually” by regarding
Fig. 5.1 There are two edges starting at each vertex. In fact, with some computtitian be
seen that the unbounded edges contaiiiig) are

w(3) e mar() = (143) v
w(d) (] - (14]) o=

M(é) +R+M(§)> - (2 10) +R+(0 10)

is not an edge. This agrees with PropositmAa0, because the sel®0 and110 are incident
to ¢, while 101 and010 are not. Moreover, the sét)l is almost incident ta and010 is its
complement. Thus, TheoreB22is true for the special case when = :. For the other
permutations, the easiest thing to do is to use symmetry. We describe this in thiemaxk.

O O N
O =HOF —=O
=N OFN O

Remark 5.27. For everyo, m € S(n) andU C [n] we have the following.
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(i) Due to symmetry the pair “U defines an edge a@,, if and only if the pairr o o
o~ 1(U) defines an edge @,,.
(i) U isincidenttor if and only if =1 (U) is incident tor o o.
(iii) U is almostincident to a permutatianif and only if o ~1(U) is almost incidentr o o.
(iv) CU is almost incident to a permutatianif and only if U is almost incident tar .

PrRoOF Can be checked using the definitionsrof U andU beeing incident respectively
almost incident ofr. O

We now give the first general result as a step towards the proof afréhes.22

Lemma 5.28.1f 7 € S(n) andU C [n] is almost incidentr, then the half-lineD(7) +
R, D(xY) defined by the pair, U is not an edge of),,.

PrROOF By the above remarks on symmetry, it is sufficient to prove the claim for te id
tical permutation € S(n). Consider & € [n—1], and letr’ := (k, k + 1) be the transposition
exchanging: andk + 1, and letU := [k — 1] U {k + 1}. Then a little computation shows that
D(xY) can be written as a conic combination of vectors defining rays issuing f¢m as
follows:

D(xX") = D(XM) + (D(x') = D(2)).
HenceD(:) + R, D(xY) is not an edge. a
Note that by applying Remark 27, the Lemmab.28implies that ifCU is almost incident
7, then the pairr,”CU does not define an edge ©f, .
Before we proceed, we note the following easy consequence ofd-dudsama.
Lemma 5.29. The following are equivalent:

(i) The half-lineD(2) + R, D(xV) defined by the paigU is an edge of),,.
(i) There exists a matrixD satisfying the following constraints:

(33a) DeD(m)> D eD(2) Vo #a,,

(33b) DeD()>DeD(Y)=0 vU' +U,CU.
(iif) There exists a matrixC' satisfying

(34a) CeD(m) >CeD1) vV #a,1,

(34b) CeD(Y)>0 vU' +U,CU,

(34c) CeD(xY) <o.

Condition B3) is easier to check for individual matrices, but conditiBd)(will be needed
in a proof below.

We move on to the next example which both provides some cases needeel oot of
Theoremb.22and motivates the following definitions.

Let U be a subset dfz] and consider its representation as a word of lemgtiive say that
a maximal sequence of consecutd&in this word is avalley of U. In other words, a valley
is an inclusion wise maximal subsgt/ + j] c CU. Accordingly, a maximal sequence of
consecutivas is called anill. A valley and a hill meet at alope Thus the number of slopes is
the number of occurrences of the pattebh@nd10 in the word, or in other words, the number
of k € [n — 1] with k € U andk + 1 ¢ U or vice versa. If all valleys and hills of a subgétof
[n] consist of only one element (as for examplai01) or, equivalently, ifU has the maximal
possible numben — 1 of slopes, or, equivalently, if/ consists of all odd or all even numbers
in [n], we speak of aalternatingset.
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Lemma 5.30. For every sef{ W1, ..., W, } of non-empty proper subsets [af incident onr,
there is a matrixC' such that the minimurd’ e D(o) over allo € S(n) is attained solely
in 7 and 7, and thatC' e D(x"") > 0 for every non-empty proper subgét of [n] where
equality holds precisely for the sel®; and their complements. This implies tha{r) +
cone{D(x"),..., D(x"")} is a face of the polyhedra,, = P,+CUT,,.

PrRoOF Follows from Propositiors.9. O

Example 5.31(Unbounded edges a@,). We consider the edges ¢f; containingD(:) =
D(27) (this is justified by Remark.27). We distinguish the sets by their number of slopes.
Clearly, a set/ with a single slope is incident either tor to 2, and we have already dealt
with that case in Lemm&.30Q The following sets have two slope8100, 0110, 0010, 1011,
1001, and1101. We only have to considei011, 1001, and1101, because the others are their
complements. The first onép11, is almost incident—, and the last onel101, is almost
incident to:, so we know that the pairs” 1011 andz,~ 1101 do not define edges ap4
by Lemmab.28 For the remaining set with two slope)01, the following matrix satisfies
property @4) with C replaced byC''%! andU by 1001:

0 1-2 1
ot . [ 1 0 3-2
¢ = (—2 30 1>-

2 1

The two alternating sets (i. e., sets with tree slopes)até and0101, which are almost inci-
dent to: and:~ respectively. This concludes the discussiom)af

Having settled some of the cases for small values,ofve give the result by which the
reduction to smallen is performed, which is an important ingredient for settling Theobe22
The following lemma shows that unbounded edgeQ gtan be “lifted” to a larger polyhedron

Qn+k-

Lemma 5.32. LetU, be a non-empty proper subset/af whose word has the forai b for two
(possibly empty) words, b. For anyk > 0 define the subséfy of [n + k] by its word

U,:=al...1lb.
——
k+1

If the pair+,, /U, defines an edge @},,, then the pain,,,;,”'U,. defines an edge @J,, .

Note that the lemma also applies to consecutive zeroes, by exchangingphetiee set by
its complement.

PROOF. LetC € §), be a matrix satisfying condition84) for U := Uy. Fix &k > 1 and let
n’ :=n+ k. We will construct a matrixC’ € §, satisfying 84) for U := Uy,. For a “big” real
numberw > 1 define a matrix,, € §, ; whose entries are zero except for those connegting
andj + 1, for j € [k]:

g€o

B, =
w
¥ w0 w
w 0
We use this matrix to put a heavy weight on the “path” which we “contracty’ dew second
ingredient, let, denote the length of the wordandi, the length of the word (note that, = 0
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andl, = 0 are possible). Then we define

+1 ... +1
B_ = <0k1 o;”) e M((k+1) x1,) and
-1 ... -1

-1 ... -1
B+ = <0k1 0k1> € M((kf + 1) X lb),
+1 ... +1

where0;_; stands for a column df — 1 zeros. Putting these matrices together we obtain an

n' x n/-matrix B:
¥ ¥
B:= | B_ B, |.
¥ ¥

Now it is easy to check that for any € 7[n'| we haveB e D(x') > B e D(1). Moreover
let 7' € w[n/] satisfyB e D(n’) < B e D(1) + 1. By exchangingr’ with 7'~, we can assume
that='(1) < #/(n’). Itis easy to see that suchrathen has the following “coarse structure”

7 ([la]) C [la]
(35) ([N [0 = B]) C [T\ [0 = 1]
()= Vie{la+1,....la+k+1}.

BN

+HE

Thus the matrixB enforces that the “coarse structure” offac 7[n'] minimizing B e D(7')
coincides with.. We now modify the matrixC to take care of the “fine structure”. For this, we
split C into matricesCh; € § , Oz € S)b, Cia2 € M(ly x Ip), Co1 = C], € M(ly x l,), and
vectorsc € Rle, d € R" as follows:

Cn c Ci2
C=\|c¢" 0 d |.
Cor d Cop

Then we define the “stretched” matiix € S), by

011 C ¥ 0 012

c’ o o OT

C:=| ¥ ¥ ¥
0" o o df

Cgl 0 ¥ d C22

where the middle# has dimensiongk — 1) x (k — 1). Finally we letC’ := B + <C, where
e > 0 is small. We show that” satisfies 84).

We first conside”” ¢ D(xV") for non-empty subse®’ C [r’]. Note that, ifl’ contains
{la+1,...,la+k+1},thenforU := U’ \ {l, +1,...,lo +k + 1}, we haveC’ e D(xV") =
C o D(xY). Thus we have®’ ¢ D(xYs) = C o D(x"0) < 0 proving 849 for C’ andUy.
For every othel/” with C" ¢ D(xY") < 0, if w is big enough, then eithéf’ or CU’ contains
{la+1,...,ls+ k+ 1}, and w.l.o.g. we assume thit does. By 84b) applied toC' andU,
we know that this implie§/ = Uy or U = CUy and hencé/’ = U, or CU’ = U,.. Thus, B4b)
holds forC’ andUy,.

Second, we address the permutations. To si8@( let 7’ € S(n) be given which min-
imizesC’ e D(7’"). Again, by replacingr’ by 7'~ if necessary, we assumé(1) < «'(n’)
w.l.o.g. If ¢ is small enough, we know that has the coarse structure displayed36)( This
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implies that we can define a permutatiore S(n) by letting
() if j € [lal,
(7)) =47()=1J if j=1,+1,
m(j—k)+k ifjen]\[la+1]
An easy but lengthy computation (s&&ej09g for the details) shows that

C" e D(r') — C" @ D(1) ZE[COD(W)—i—k.C. (J"l(héxza ¥ )

Py,

(eent s (50 )
=e[CeD(r)—CeD(1,)] >0.

Thus @43 holds. O

Example 5.33. We give an example for the application of Lem&&2 Forn = 5, consider

the half-line defined by the pajr*11001. The setl 1001 can be reduced tt001 by contracting
the hill 1 — 2. To do so we set

011001 P E(
After these preparations we can tackle the proof of the theorem.

OO O0O
H&HOO
NWO—O
HOOJ[l\')O
O%—‘l‘\ﬁ}—‘o
N———
+
R
[
—=—=E o
[ (=
OO O -
OO OH =
SO O——

for a smalle > 0 and a bigv > 1.

PROOF OFTHEOREM5.22 By Remarks.27, we only need to consider = . We distin-
guish the set#/ by their numbers of slopes.

One slopeThis is equivalent td/ or CU being incident ta. We have treated this case in
Lemma5.30

Two slopesThe complete list of all possibilities, up to complements, and how they are
dealt with is summarized in Tab In this table,0 stands for a valley consisting of a single
zero while0 . .. 0 stands for a valley consisting of at least two zeros (the same with hills). The
matrices for the reduced words satisfyirgg{ can be found in the appendix on page The
condition 34) can be verified by some case distinctions.

TABLE 2. List of all sets with two slopes (up to complement)

Word Edge? Why?
Hilll Valley Hill2
1 0 1 no almostincident ta

1 0 1...1 no almostincident te™
1 0...0 1 yes reduce ton = 4, 1001, by Lemma5.32
1 0...0 1...1 yes reduceta =4, 1001, by Lemma5.32
1 no almostincident ta
0 1...1 yes reducetea =5,11011, by Lemma5.32
0...0 1 yes reduce ton = 4, 1001, by Lemma5.32
1...1 yes reducetea =5,11011, by Lemma5.32

T O G S
—_ = =
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Three slopesThis case can be tackled using the same methods we applied in the case above.
Table3 gives the results.

TaBLE 3. List of all sets with three slopes (up to complement)

Word Edge? Why?
Hilll Valleyl Hil2 Valley?2
1 0 1 0 no almostincident ta
1 0 1 0...0 no  almostincident te
1 0 1...1 0 yes reduce ton = 5, 10110, by Lemmab.32
1 0 1...1 0...0 yes reduceta = 5, 10110, by Lemma5.32
1 0...0 0 yes reduce ton = 5, 10010, by Lemma5.32
1 0...0 0...0 yes reduce ta = 5, 10010, by Lemma5.32
1 0...0 1...1 0 yes reduce ton = 5, 10010, by Lemma5.32
1 0...0 1...1 0...0 yes reduceta =5,10110, by Lemma5.32
1...1 0 1 0 no almost incident ta
1...1 0 0...0 no  almostincident te
1...1 0 1...1 0 yes reduce ton = 5, 10110, by Lemma5.32
1...1 0 1...1 0...0 yes reducete = 5, 10110, by Lemmab.32
1...1 0...0 0 yes reduce te = 5, 10010, by Lemma5.32
1...1 0...0 1 0...0 yes reduce ton = 5, 10010, by Lemma5.32
1...1 0...0 1...1 0 yes reduceta = 5, 10010, by Lemmab.32
1...1 0...0 1...1 0...0 yes reduceto =5,10010, by Lemma5.32

s > 4 slopesUsing Lemmab.32 we reduce such a set to an alternating set wistopes
showing that for all these seltsthe pair, U defines an edge @J,,. This is in accordance with
the statement of the theorem because sets which are almost incideaintdave at most three
slopes. The statement for alternating sets is proven by inductionioremmab.34 below.
Note that the starts of the inductions in the proof of that lemmaware’5 andn = 6 for even
or odds respectively.

This concludes the proof of the theorem. O

We now present the inductive construction which we need for the came @fen number
of s > 4 slopes.

Lemma 5.34. For an integern > 5 let U be an alternating subset ¢f]. The pair, U defines
an edge ofy,,.

PROOF We first prove the case whenis odd.

The proof is by induction ovet. For the start of the induction we consider= 5 and offer
the matrixC'"'! € § in Table4 of the appendix satisfying3@). We will need this matrix in
the inductive construction.

Now setE° := C'1%9 and assume that the paip” U~ defines an edge af,, where
U~ is an alternating subset ¢f]. W.l.o.g., we assume thé&f~ = 10...01. There exists a
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matrix £~ € §), for which (33) holds. We will construct a matri¥’ € §, , , satisfying @3) for
U :=010...010.
We extendE ™ to a(n + 2) x (n + 2)-Matrix

. (E 00)
F = o oo |-
o" 00

We do the same witl®, except on the other side:

A 00 0F
E5.— (00 0" |
oo E°

Now we letE := E + E® and check the condition88) on E. These are now easily verified.
For the even case we guarantee the start of induction investigating. We give a matrix
(101010 satisfying B3) in Table4 in the appendix. (Note thdt)1010 is the only set which is
not incident to:, is not almost incident teor :~, cannot be reduced by Lemrba32and is no
complement of sets of any of these three types.) The induction is proved &athe way by
using the matrixz6 .= C101010, O

5.6. Concluding Remarks

TheR-embeddablé-separated metrics are a natural and fascinating class of metrics, which
are also of some practical importance due to their connection with grapht lagahlems. We
have established some fundamental properties of such metrics, and alsedratsudy of their
convex hull and its closure.

There are several possible avenues for future research. Fiestpoid search for new valid
or facet-defining inequalities. Second, one could study the complexity afejparation prob-
lems associated with various families of inequalities, which would be essentia¢ ifvished
to use the inequalities within a cutting-plane algorithm. Third, it would be intere&iikgow
whether theboundededges of the convex hull, or its closure, have a simple combinatorial in-
terpretation.

5.7. Appendix: Table of cases



61

5.7. APPENDIX: TABLE OF CASES

TABLE 4. Matrices certifying unbounded edges@f

Matrix

n Slopes

-1
-3
-7
11
0

-6 -1
2 9
0 5
5 0

-7 11

8
0
2
9
-3

0

8
6
1
-1

010101 0

ClOlOlO .







CHAPTER 6

The VPN problem with concave costs

Jointly with
Samuel Fiorini (U.L.B., Brussels),
Gianpaolo Oriolo (Universit di Roma Tor Vergata, Rome),
and Laura Sarét (Universia di Roma Tor Vergata, Rome)

Abstract. Only recently Goyal, Olver and Shepher¢c. STOC 2008) proved
that the symmetric Virtual Private Network DesigeMPN) problem has the tree
routing property, namely, that there always exists an agitgulution to the problem
whose support is a tree. Combining this with previous resoyt Fingerhut, Suri
and Turner J. Alg, 1997) and Gupta, Kleinberg, Kumar, Rastogi and YeReo¢.
STOC 2001),s VPN can be solved in polynomial time.

In this paper we investigate an APX-hard generalizatioa\@®N, where the contri-
bution of each edge to the total cost is proportional to sooremegative, concave
and non-decreasing function of the capacity reservatiore st\bw that the tree
routing property extends to the new problem, and give a ent$actor approxima-
tion algorithm for it. We also show that the undirected urazajated single-source
minimum concave-cost flow problem has the tree routing ptgpehen the cost
function has some property of symmetry.

6.1. Introduction

All the problems considered in this paper involve a (finite) simple, undirecmuhected
graphG = (V, E) that represents a communication network. The graph comes with a vector
c € Qf describing edge costs, and a vediar ZK pertaining to the traffic departing from or
arriving at each vertex; the exact interpretation depends on the proBleertexv with b, > 0
is referred to as terminal We denote the set of terminals bly. Also, we letB be the sum of
all components ob. Thus,W = {v € V | b, > 0} andB = }_ _ b,.

In the symmetric Virtual Private Network desigsVPN) problem, the vertices want to
communicate with each other. However, the exact amount of traffic betpaienof vertices
is not known in advance. Instead, for each vertgke cumulative amount of traffic that it can
send or receive is bounded from abovethy The aim is to install minimum cost capacities
on the edges of the graph supporting any possible communication scemviaei® the cost for
installing one unit of capacity on edgeequalsc..

A set of traffic demand® = {d,, | {u,v} C W} specifies for each unordered pair of
terminals{u, v} C W the amountl,,, € Q of traffic between: andv. A setD is valid if it
respects the upper bounds on the traffic of the terminals. That is,

Z Auo < by for all terminalsv € W.
ueW

A solution to the instance afVPN defined by the tripléG, b, ¢) consists of a collection of
pathsP containing exactly one—v path P,, in G for each unordered pair, v of terminals,
and a vectory € @f describing the capacity to be installed on each edge. Such a set of paths
P, together with capacity reservationsis called avirtual private network A virtual private
network isfeasibleif all valid sets of traffic demands can be routed without exceeding the
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reserved capacities, in case all traffic between termimalisdv is routed along pati®,,,, that
is,

Yo > Z dw  foralledges € E.
{u,0}CW:e€ Pyy

Given a collection of path® as above, one may compute in polynomial time the capacity
reservationsy, for e € E in order to obtain a feasible virtual private netwo®KK *01,
ILOO6].

Theconcave symmetric Virtual Private Network Des(gis VPN) problem is defined simi-
larly assVPN. The total cost of virtual private networlP(~) is now

(36) D e f(e),

ecE

wheref: [0, B] — Ry is concave, non-decreasing and such tf@) = 0. (We assume we
are given oracle access fpsee Sectiol.1.4below.) An instance ofsVPN s described by a
quadrupleG, b, ¢, f).

In the Concave RoutingCR) problem, one of the terminals is markedrast. We denote
the root byr. For each vertex, the numbeb, describes thedemandat the vertex. We remark
that, by the choice of, there is a demand. > 0 at the root. This is a dummy demand that
does not play any role in the problém

A solution to CR consists of a collectio? of simple r— pathsP,, one path for each
terminalv distinct from the root. We call such a collectiomauting. We denote by:.(P) the
amount of flow routed on the edgeby P. Thus,z(P) = >_,cp\ (r}.ccp, bo- The cost of a
routing is then:

(37) Zce g(ze(P)),

eeE

whereg: [0, B] — R is a concave function such th@t0) = 0. (Once again, we assume that
we are given oracle accessg¢9 An instance ofCRis then defined by a quintupl&-, r, b, ¢, g).

We remark thailCR may be viewed as an undirected uncapacitated single-source minimum
concave-cost flow probleniGPo(.

We are interested in the following restrictions@R. The instances of theon-decreasing
Concave RoutingndCR) problem are those for which is non-decreasing. In this case, we
use the letterf instead ofg whenever possible. The instances of &éxés-symmetric Concave
Routing(sCR) problem are those for which is (axis-)symmetricthat is,g(B — z) = g(x)
for all z € [0, B]. In this case, we use the letterinstead ofg whenever possible. Finally,
the instances of thByramidal Routing PR) problem [GKOS08] are those for whicly(z) =
min{z, B — z} for all € [0, B]. In this case, we use the letieinstead ofy.

The various problems considered here and their relationships are illdsinatgg. 6.1
Notice thatcs VPN, sCRandndCR are all APX-hard because they admit the minimum Steiner
tree problem as a special case.

A feasible solution to one of the problems described abové&reeasolutionf the support of
the capacity vectoy or the union of the paths iR induces a tree ity. To make the terminology
concise, we say that an instance of eitbe/PN or sCR has the tree routing property provided
one of its optimal solution is a tree solution.

Iwe use this convention in order to be consistent with previous publishdd[@&OS08].
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concave

linear /
pyramidal

multiple
sources

FIGURE 6.1. The problems considered in this article. Bold arrows indicate
specialization, dashed arrows indicate equivalence.

6.1.1. Previous work. It was shown by Fingerhut al.[FST97] and later, independently,
by Guptaet al.[GKK T01] thats VPN can be solved in polynomial time if it has the tree routing
property, that is, each instance has an optimal solution that is a tree stl8igrsequently, it
has been discusse@K02] and then conjecturedR04, ILO06] thats VPN has the tree routing
property. This has become known as YHeN tree routing conjectureThe conjecture has first
been proved for the case of cyclé#{S07, GKOSO08], and then in general graph&0S084.

Goyalet al. [GOS084 prove the VPN tree routing conjecture by proving tR& has the
tree routing property. This result was initially proposed as a conjectu@rbgdoni, Kaibel,
Oriolo and Skutella GKOS08], together with a proof that it implies the VPN tree routing
conjecture. Remarkably, Goyat al.[GOS08H also show that two results are equivalent, that
is, sVPN has the tree routing property if and onlyHR has the tree routing property.

6.1.2. Our contribution. First, we show thatsVPN has the tree routing property. Our
proof goes as follows. On the one hand, we build upon the result byl@byd. [GOS084
to show thatsCR has the tree routing property. On the other hand, we show that there is an
equivalence betweers VPN andsCR, so thatcs VPN has the tree routing property too.

Second, we study approximation algorithmsdsiVPN. For generaf, using known results
on the so-called Single Source Buy at BUBSBB) problem [GKPR07, GI106], we give a24.92-
approximation algorithm. For a restricted class of functigndy reducing to the so-called
Single Source Rent or BUysERB) problem EGRS0§, we show that &.92-approximation
algorithm exists.

Third, althoughs CRandndCR both have the tree routing property, we show that this is not
the case for the gener@R problem.

6.1.3. Outline. In Section6.2 we prove our main statementssVPN andsCR have the
tree routing property. The proof uses as a basis an equivalence, ist&ectiont.2.1, between
csVPNandsCR. We show that, whehis a 0-1 vector, solving aos VPN instance G, b, ¢, f)
amounts to solving asCR instance of the formiG, r, b, ¢, h) wherer is one of the terminals
andh is obtained by symmetrizingi. Moreover, thecs VPN instance has an optimal solution
that is a tree solution if and only if the corresponds1@R instance has an optimal solution that
is a tree solution. This allows us to focus only ®8R. By combining one decisive polyhedral
observation with the fact th@R has the tree routing propertPS084, we show thas CR
has the tree routing property, which then implies t®VPN also has the tree routing property.

In Section6.3we give a constant factor approximation algorithmdsiVPN. Our approx-
imation algorithm works by reduction to the Single Source Buy at B8&8B) problem. The
reduction is in two steps. First, we observe in Secdhlthat the approximation algorithm
for SSBB due to Grandoni and Italian@]06], that is a variation of the algorithm of Gupta,

2Such a solution can be obtained in polynomial time by solving a single all-paitestt paths problem.
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Kumar, Rl and RoughgardeiKPRO7], gives an approximation algorithm fad CRwith the
same approximation factor. Then, we show in Sec8dh2how to turn any approximation
algorithm forndCRinto an approximation algorithm fars VPN with the same approximation
factor. Combining both steps, we obtairpapproximation algorithm focsVPN from the
p-approximation algorithm fo6SBB [GI06], wherep = 24.92. Using a subset of the tools
developed, we give a92-approximation algorithm focs VPN when the functiory is to be of
the typef(x) = min{ux, M} for positive constantg and M. Here, we resort to the Single
Source Rent or BuySSRB) problem, for which the best known approximation factor currently
is 2.92 [GKPR0O7, EGRS09.

In Section6.4, we give an instance dER such that no tree solution is optimal, thereby
showing thatCR does not have the tree property.

6.1.4. Fractional problems and value-giving oraclesBefore starting Sectios.2, we
conclude this section by providing necessary extra details.

We define thefractional version of CR (denoted by fraccR) where we allow, for each
terminalv # r, to fractionally split theb, units of flow fromr to v along severat—v paths.
Formally, a fractional routin@ specifies, for each terminal+# r, a setP, of simpler—v paths
and, for each patf® € P,, an amount of flows, (P) € R such thab, = Zpepv By(P). The
cost of a routing is as in Eq3() above, withz.(P) := > {5,(P) | v € W\{r}, P € Py,e €
P}.

It results from the concavity of (see, e.g., Goyadt al. [GOS08h Lemma 2.2]) that there
always exists an optimal solution €@R that is unsplittable, i.e., that routes all flows from the
source to a terminal on a unique path, even when we allow fractional fldlwsrefore, the
frac-CR problem andCR problem are essentially equivalent.

The problem fraaadCRis defined similarly. This last problem is closely related to a known
variant of the Single Source Buy at Bulk problem, see Sedi8rifor details.

Finally, in thecsVPN (resp.CR) problem, we assume that we are given oracle access to
the functionf (resp.g). That is, we are given access to a subroutine that, given a rational
x € [0, B], returns a non-negative rationA{x) (resp.g(x)) whose size is polynomial in the
size ofz. The computation is assumed to take constant time.

6.2. The tree routing property

We show here that boths VPN ands CRhave the tree routing property. We start by proving,
in Section6.2.1, an equivalence between the two problems whéna 0-1 vector. Then, in
Section6.2.2 we prove the tree routing property foCR, and thus also foc s VPN.

6.2.1. Equivalence oftsVPN and sCR instances in the binary case.Here we restrict
ourselves to instances whdrés a 0-1 vector. In this case, the number of terminalB iand,
for any routingP, there are precisely.(P) paths inP using the edge. For f: [0, B] — R
concave and non-decreasing wjtf0) = 0, we define

: : f(z) if 2 < B/2,
(38) h.[O,B]—>R+.mH{f(B_x) if 2 > B2,
Thenh is concave and axis-symmetric and it@6) = 0. The proof of the next lemma builds
upon previous results of Guptt al. [GKK T01], Grandoniet al. [GKOS08] and Goyalet
al. [GOSO08H.

Lemma 6.1. Let (G, b, ¢, f) be acsVPN instance withh € {0,1}", andh as in(38). There
exists a choice of a roat € W such that thes CRinstance(G, r, b, ¢, h) has the same optimum
value as the&esVPNinstance. Moreover, for any such choice of repthe corresponding CR
instance has the tree routing property if and only if t®VPN instance has the tree routing

property.
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PROOF Let (P,~) be a feasible virtual private network fo6, b, c, f), with P = {P,,, |
{u,v} C W}. For each possible roote W, letP, denote the routing consisting of all paths of
P one of whose ends is SoP, := {P,, : v € W\{r}}. Itis known [GKK *01, Theorem 3.2]
[GKOSO08, Lemma 3] that the following holds:

1 .
Ve > 3 %}:len{xe(Pr),B — z¢(Pr)}

Sincef is concave and non-decreasing we have:

Z ce f(e) = Z Ce f(% Z min{x.(P;), B — x@(gﬂ)})
ecE ecE rew
> é Z Ce Z f(min{xe(Pr)a B — xe(Pr)}) = é Z Z Ce h(;pe(’PT))

eckk  reWw reW ecE

Hence, the optimum value for tlees VPN instance(G, b, ¢, f) is at least the optimum value of
the sCR instance(G, r, b, ¢, h) for some choice of root € TW. Note that, if P,) is a tree
solution, thenP, is also a tree solution for any € . It is not difficult to see that, in this
case, the cost of the routirg, is not dependent on the roet It follows that, given a tree
solution to thecsVPNinstance G, b, ¢, f), we can construct a tree solution to $€Rinstance
(G,r,b,c, h) that is not more costly, for any choice of raot

Conversely, take any € W and suppose that we are given a routipgfor somesCR
instance(G, r, b, ¢, h), where this timeP, := {P, | v € W \ {r}}. Following [GOS08H,
we define a collection of path@ = {Qu, | {u,v} C W}, where@®,, is anyu—v path in the
component of the symmetric differenég AP, containingu andwv. Let §. be the minimum
amount of capacity that we must install on each edgethat Q, 9) is a feasible virtual private
network for(G, b, ¢, ). Goyalet al.[GOS08H show that the following holds:

de < min{xze(P;), B — xc(Py)}.
Sincef is non-decreasing, we have

Z ce f(de) < Z ce f(min{ze(Pr), B — ze(Pr)}) = Z ce h(ze(Pr)).

eceE ecF eclR
Hence, the optimum value of tles VPN instance(G, b, ¢, f) is at most the optimum value of
anysCRinstance of the formiG, r, b, ¢, h) for r € W. Again, note that ifP, is a tree solution
to (G,r,b,c,h), then @,0) is a tree solution to thesVPN instance(G, b, ¢, f). Therefore,
given a tree solution to theCR instance(G, r, b, ¢, h), we can construct a tree solution to the
csVPNinstanceG, b, ¢, f), that is not more costly. The statement easily follows. O

6.2.2. Proof of the tree routing property for sCR. In this section, we will show how the
tree routing property fos CR follows from the tree routing property féR.

Theorem 6.2. The tree routing property holds faCR.

Our approach is simple and geometric: We associate polyhedra with inst&€R in
such a way that the tree routing property for an instance can be eggrass property of the
extreme points of the associated polyhedron. We then show how the transitiorihfe pyra-
midal function to an arbitrary concave axis-symmetric functicmmounts to a transformation
of the corresponding polyhedra, which preserves the property @xtneme points.

Recall that, for a se¥ C Rf, the dominantlom Z of Z is defined as follows:

dom Z := {7 € R¥ | there exists some € Z with z < 2/}.

Here, and below, comparisons between vectors are component-wigm @ir, b, andh as
above in the definition 06 CR, a routing? defines a poiny(h, P) € RY by y.(h,P) :=
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h(ze(P)) for all e € E. We define thesCR-polyhedronP; ,.; ) as the dominant of the

convex hull of the pointg(h, P), whereP ranges over all routings. Now, finding a routing
that is minimum w.r.t. some non-negative cost veet@s equivalent to minimizing the linear

functiony — ¢’y over thes CR-polyhedron. We note an easy consequence of this fact.

Lemma 6.3. GivenG, r, b andh, as above the following are equivalent:

(i) For every extreme poing of P55, there exists a tree solutioh such thaty =
y(h,T).
(i) Foreveryc > 0, thesCRinstance(G, r, b, ¢, h) has the tree routing property. O

We say that a mapping: RY — R¥ isconcavef ®(tz+(1—t)y) > t ®(z)+(1—t) (y)
holds for everyt € [0,1] andz,y € RE. Similarly, we say that such a mappingrisn-
decreasingf = < y implies ®(x) < ®(y). The key observation to realizing that the tree
routing property foisCRis a consequence of the tree routing propertyF@ris the following.

Lemma 6.4. Let p denote the pyramidal function, aridbe as above. There exists a non-
decreasing concave functiah: R — R¥ such that®(y(p, P)) = y(h,P) for all routings
P.

PROOF For everye, we defined.(y) := h(y.) whenever, < B/2and®.(y) := h(B/2)
if yo > B/2. The properties are readily verified, since any axis-symmetric conceanatidn
h: [0,B] — R4 is non-decreasing in the intervdl, B/2], andy.(p, P) is always at most
B/2. O

The final ingredient is the following elementary geometric fact.

Lemma 6.5. If ®: R — R¥ is non-decreasing and concave, a¥ids a finite set of points in
Rf, then every extreme point dbm conv ®(Y") is the image unde® of an extreme point of
dom conv Y. In other words,® maps a subset of the extreme pointslefi conv Y onto the
extreme points afom conv ®(Y).

PROOF. Consider an extreme pointof dom conv ®(Y). If some point in®~!(z) is an
extreme point oflom conv Y, then we are done. Otherwise, pick any pajimt Y N®~!(z). By
assumption, there exist extreme poipts. . ., i, € Y'\®!(z) and coefficients\;, ..., A\, > 0
with >~ \; = 1 such thaty > 2?21 Ajy;. Hence, the assumptions @nimply z = ®(y) >
(DN Njyj) = D05, A ®(y;). Becauseb(y;) # = for all j, the pointz is not an extreme
point of dom conv ®(Y), a contradiction. O

Combining the previous two lemmas and this fact we obtain our theorem.

PROOF OFTHEOREM6.2. We give the proof for 0-1 demands first. For this situation,
Goyalet al.[GOS08H have proven the tree routing property for all instanceBRfLemma6.3
implies that for every extreme point df ,.;,) there exists a tree solution defining it. By
Lemmas6.4and6.5 we know that this is also true for the extreme point#gf ., ). Another
application of Lemmd.3yields the result for 0-1 demands.

Now consider ars CR instance(G, r, b, ¢, h) such that is not a 0-1 vector. We define a
new instance(@, 7. b, ¢, h), as follows. For each terminal with b, > 2, we addk := b,
pendant edgesu, .. .,vu; with cost zero to the graph. Then, we let:= 0 andl?uz. := 1 for
i =1,...,k. Finally, we letr be one of the new vertices pending fronexcept ifb, = 1 in
which case we lef = r. Since the new instance has an optimal solution that is a tree solution,
it follows that also the original instance has an optimal solution that is a tregwolu O

Corollary 6.6. The tree routing property holds fars VPN.
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PROOF First, consider ams VPN instance(G, b, ¢, f) with b, € {0,1} for eachv € V.
Here the statement follows from Lemridl and Theoren®.2 The case where some terminals
have demand greater than 1 can be reduced to the previous one by thergaments as in the
proof of Theoren6.2 O

Remark.As pointed out by an anonymous referee, the results of this section stilihoise a
concave functiory. (resp.h.) is associated to each edgef the graph, and allowing different
edges to have different functions associated to them.

6.3. Approximation algorithms

6.3.1. An approximation algorithm for ndCR. Our approximation algorithm fars VPN
is based on an approximation algorithm fadCR. The approximation algorithm fordCR is,
in its turn, related to an approximation algorithm for tBgle Source Buy at BulliSSBB)
problem.

The latter problem is defined as follows: we are given a (finite, simple, ectdid, con-
nected) grapli = (V, E) with edge costs € Qf, where each vertex € V wants to exchange
an amount of flowb,, € Z with a common source vertex In order to support the traffic, we
can install cables on edges. Specifically we can choose amdifterent cables: each cable
ie{l,...,k} providesu(i) € Q4 \ {0} units of capacity at pricg(i) € Q4 \ {0}. For each
ie{l,...,k—1},itis assumed that(:) < u(i + 1) and ZE?) > ZZE)) The latter inequality
is referred to as theconomy of scale principléAn instance ofSSBB is therefore defined by a
quintuple(G, r, b, ¢, K), whereK = {(u(i),p(i)) | i = 1, ..., k} describes the different cable
types.

A solution to SSBB consists of a multiset, of cables to install on each edgee E.
Repetitions are allowed, that is, several cables of the same type can tlednstesome edge.

We point out that there is some confusion in the literature in the definiti®@$BB, because
in some paper$SBB is defined as above, and in some other papersSB®B problem is
defined as the problem we call fractCR. In this paper, when refering t8SBB we always
mean the version with cables. It is a known fact (see, e.g., Gatgth [GKPRO7]) that from
an approximation viewpoint, the two formulations are equivalent up to a fattbrHowever,
we here show how to adapt tBe.92-approximation algorithm fo8SBB described in G106],
in order to obtain an algorithm wittihe sameapproximation ratio fondCR.

Theorem 6.7. There exists 24.92-approximation algorithm fondCR.

PROOF We start with a description of a simple approximation preserving reduction fr
ndCRto SSBB. Let I = (G,r,b,c, f) be an instance oidCR. Consider the instancé =
(G,r,b,c, K) of SSBB obtained by settingd := {(1, (1)), (2, f(2))...,(B, f(B))}. The
capacity of the cables are non-decreasing becfiusaon-decreasing. Singg0) = 0 and f
is concaveg — f(x)/x is non-increasing, and thus the economy of scale principle holds. It is
easy to see that (i) given a solution kghere exists a solution té of the same cost; (ii) from
a solutionk to J one can build, in time polynomial in the sizesioéindk, a solution tal that
does not cost more. In other words, we could run2h®2-approximation algorithm fo8SBB
onJ and obtain &4.92-approximate solution t@.

However, we point out that the size dfis not always bounded by a polynomial in the
size of I, becauseB could be exponentially large. To address this issue, we rely on a key
fact used in the analysis of Grandoni and Italia@(6], which we now describe. Given any
instance(G, 7, b, &, ) of SSBB, they select a subsét;, ..., i} C {1,...,k} of cables with
the following propertiesiy; = 1, iz = k and, for allt € {1,... k" — 2}, cablei;; is the
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smallest such that

(39a) pliggr+1) > aplip)
p(itt1) 1 p(it)
(39b) pliesn) = B ulie)

with o := 3.1207 and g := 2.4764. Then, they find 24.92-approximate solution to th8SBB
instance using only cables in the following subset:

(40) K’ = {(u(i1),p(i1)), - - (u(ir), p(in)) }.

with a running time polynomial in the size 6f, 7, b, ¢, K).

For our purpose, the point is therefore to find a list of cal{éss in @0) satisfying 399
and @9b), with respect to the instancg in time polynomial inlog B. To construct the list of
cablesK’, we leti; := 1. If i; has been found, we search for ffie- 1)th cablei; ; as follows.

Firstly, sincef is increasing, giverp(i;), a binary search i{i; + 1,..., B} finds the
smallest value’ satisfying 899 with ;1 replaced byi’. If no such:’ satisfies 899, we let
i1 := k andk’ := t + 1. If ¢/ does exist, since — f(z)/z is non-increasing, the smallest
possible value fof;; satisfying @9b) in the rang€{i’, ..., B} can be found by binary search.
Again, if noi; | satisfies 89b), we leti; 1 := k andk’ :=t + 1.

Recalling thatu(i;) = i, from (398 and @9b) it follows: iry; > 5 - iy - fliera) >

‘ ' fG) =

Brit 58 f(%lt;rl) > La- B -4;. Therefore the number of selected cable@{®g.s B) =
2

O(log B) and each cable can be found in ti@¢log B). The result follows. O

6.3.2. An approximation algorithm for csVPN. In order to state our approximation al-
gorithm forcs VPN we need two further results from the literature.

First, let(G, b, ¢, f) be an instance of thes VPN problem. Consider a tréE spanning all
the terminals in/’. For each pair of terminalsu, v} C W there is a unique—v path inT.
These paths form a collection of paths that we defdte It is straightforward to compute the
minimum amount of capacity! we have to reserve on each edgef T in order to obtain a
feasible virtual private network fro®”'. We denote:(P?,4T) the cost of this virtual private
network.

For any choice of root € V(T'), one can similarly derive fronT" a tree solution to
the ndCR instance(G, r,b", ¢, ), where we let] := b, for all verticesv # r, andb]. :=
max{b,, 1}>. We denote the resulting routing B/’ and its cost by:(P1). The next lemma is
known [GKK 701, Lemma 2.1], [LO06, Lemma 2.4]. For the sake of completeness, we give
a sketch of its proof .

Lemma 6.8. LetT, PT, ~T and P! (for r € V(T)) be as above. Then, there exists a vertex
of T such thaty! = z.(P!) for all edgese of T'. For that choice of-, we havez(P”,47) =
2(Ph).

PROOF SKETCH Consider an edgeof 7. The removal ot from 7" determines a partition
of the set of terminal$V into two of its subsets, say/; (e) andWs(e). For definiteness, we
assume thatVy(e) and W3 (e) are chosen in such a way that, .y, ) bv < -, ey (e) bo-
Then, the minimum capacity reservatigh for edgee is simply Zvewl(e) b,. By breaking
ties consistently and orienting each edge FE(T') towardsWi(e), we can turnT’ into an

arborescence. Letting denote the root of this arborescence, we hgle= z.(P!) for all
edges of T O

Second, suppose that we are given a soluf®rio an instancéG, r,b", ¢, f) of ndCR.
As observed by Goyadt al.[GOS08H and used in Lemm&.1 above, we can build a feasible

3Recall that in the definition oER, we assume to have a positive (dummy) demand at the root.
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solution(Q, ¢) to the instancéG, b, ¢, f) of cs VPN as follows: for each pair of terminals v,
choose the pat®,,, to be any path irP, AP, from u to v, whereP, and P, respectively denote
the uniquer—u andr—v paths inP,.. DefineQ as the collection formed by all the patfs,,.
As mentioned in the introduction, we may efficiently deduce fronthe minimum capacity
reservatiory such that Q, §) is a feasible virtual private network. LetQ, §) denote the cost
of this virtual private network. We will need the next lemma. We omit its proaflse it is
not difficult (see Goyaét al.[GOS08 for a stronger result):

Lemma 6.9. Let P, Q and be as above. Then, we have< x.(P,) for all edgese of G.
Thusz(Q, 8) < z(P,).

We are now ready to complete the description and analysis of our approxmnadgarithm
for csVPN. The input to the algorithm is asVPN instance(G, b, ¢, f). In the proof below,
we useOPT(.) to denote the cost of an optimal solution to the correspond&PN or ndCR
instance.

Algorithm 1 Approximation algorithm focsVPN

(1) Foreach € V, compute g-approximate solP, to thendCRinstance(G, r,b", ¢, f).
(2) Letr* be such that(P,«) = min,cy 2(Py).

(3) FromP,-, build a solution(Q, ¢) to thecsVPNinstancgG, b, ¢, f) as in Lemmab.9.
(4) Output(Q,9).

Theorem 6.10. Algorithm 1 is ap-approximation algorithm foc s VPN.

PROOF. From Corollary6.6, we know that there exists a tr@esuch thatz(P7,~47) =
OPT(G,b,c, f). By Lemma6.8 min,cy (1) 2(Py) < z(PT,4"). SinceP/ is a solution to
thendCRinstance(G, r,b", ¢, f), it follows min,.cy (1) z(PF) > min,cy OPT(G, 7, 0", c, f).
Let# € V be such thatnin,cyy OPT(G,r,b", ¢, f) = OPT(G, 7 b",c, f). By choice ofr*,
2(Pr) < 2(P;) < pOPT(G,7,b", ¢, f). From Lemmab.9, 2(Q,6) < z(P,+). Putting
everything together, we concludéQ, ) < p OPT(G, b, ¢, f), as desired. O

By Theorem6.7, there exists a-approximation algorithm foc s VPN with p = 24.92.

Notice that Algorithml preserves the functiofi when the approximation algorithm for
ndCRis invoked. In particular, iff belongs to a restricted class of functions whed€CR has a
small approximation factor, our algorithm will have same factor on the qooreting instances.
In particular, if f is defined ag (x) := min{uz, M}, for two positive numberg, M, then the
ndCR instance constructed in Algorithihfrom acsVPN instance is, except for decompos-
ing into paths, just an instance of the so-called Single Source Rent orE8BB]J problem
[GKPRO7, EGRS0§. Hence, our results imply an approximation-preserving reduction from
csVPN—restricted to instances such th&tr) := min{ux, M} for some positive numbers
1 and M— to SSRB. The best known approximation algorithm f88RB known to us is the
one by Gupta et alGKPRO7], which has an approximation factor 92, as was shown by
Eisenbrand, Grandoni, Rothvol3, and &fen EGRS03.

6.4. A remark on general concave funtions

It is known (see, e.g.{MO00]) that the tree routing property is satisfied by eveRy in-
stance such that is non-decreasing, and it follows from our results that this also holdeawhe
g is axis-symmetric. A natural question arises: is the tree routing propertyiestiy allCR
instances?

The example below shows that this is not the case, evefuif < g(B — x), for each
z € [0, B/2], andG is a cycle.
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Example 6.11. Consider an instancg~, r, b, ¢, g) of the CR problem, where7 = (V, E) is a
cycle with vertex set’ := {0,1,2,3,4} and edge set := {{i,i + 1} | ¢« € V} (the sum
is modulob). Letr := 0; letd; := 1fori € V; letc. := M fore = {3,4}, ce := M + ¢
fore = {0,1}, c. := 0 otherwise. Finally, leyy be defined as the linear interpolation of the
following points: g(0) = 0, g(2) = 2, g(3) = 2 + 2¢, g(5) = 0. Itis easy to check that is
concave, non-negative, non-axis-symmetric aqe) < g(B — x), for eache € [0, B/2].
Consider the routing® where the paths frort to i go counterclockwise (that is, have the
edge{0,4} as their first edge) foi = 1, 2, 3, while the path fron to 4 goes clockwise. The
cost of this solution ig2 + €)M + ¢, and it is easy to check that takimgand M respectively
small and big enough, every tree solution costs more.
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Abstract. A fundamental result in structural graph theory states ¢haty graph
with large average degree contains a large complete graghasor. We prove this
result with the extra property that the minor is small witbpect to the order of the
whole graph. More precisely, we describe functighendh such that every graph
with n vertices and average degree at le&¢) contains ai{;-model with at most
h(t) - logn vertices. The logarithmic dependencerois best possible. In general,
we prove thatf(t) < 2~! + ¢. Fort < 4, we determine the least value ft); in
particularf(3) = 2+ e andf(4) = 4 + e. Fort < 4, we establish similar results
for graphs embedded on surfaces, where the size dkthmodel is bounded.

7.1. Introduction

A fundamental result in structural graph theory states that every igutfiz dense graph
contains a large complete graph as a minbfore precisely, there is a minimum functigit )
such that every graph with average degree at |ggstcontains ak’;-minor. Mader Mad67]
first proved thatf(t) < 2!=2, and later proved thaf(t) € O(tlogt) [Mad68]. Kostochka
[Kos82, Kos84 and ThomasonTho84, ThoO1] proved thatf(¢) € ©(ty/logt); see ThoOg]
for a survey of related results.

Here we prove similar results with the extra property thatAheninor is ‘small’. This idea
is evident whert = 3. A graph contains ds-minor if and only if it contains a cycle. Every
graph with average degree at ledstontains a cycle, whereas every graghwith average
degree at leasi contains a cycle of lengtt(log |G|). That is, high average degree forces a
short cycle, which can be thought of as a sniéjtminor.

In general, we measure the size dfaminor via the following definition. AK;-modelin a
graphG consists of connected subgraplis, . . ., B, of G, such thal/ (B;) NV (B;) = @ and
some vertex inB; is adjacent to some vertex 8 for all distincti, j € {1,...,t}. TheB; are
calledbranch setsClearly a graph contains &;-minor if and only if it contains a;-model.
We measure the size offé,-model by the total number of vertices,:_, | B;|. Our main result
states that every sufficiently dense graph contains a small model of a ¢ergeh.

Theorem 7.1. There are functiong and i such that every grapli with average degree at
least f(t) contains akK;-model with at mosk(¢) - log |G| vertices.

For fixed ¢, the logarithmic upper bound in Theoreml is within a constant factor of
optimal, since everys<;-model contains a cycle, and for all> 3 andn > 3d such thatd

e consider simple, finite, undirected grayghsvith vertex sel/(G) and edge seE(G). Let |G| := |V (G)|
and||G|| := |E(G)|. A graphH is aminorof a graphG if H is isomorphic to a graph obtained from a subgraph of
G by contracting edges.

73
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is even, ChandrarCha03 constructed a graph with vertices, average degrdeand girth at
least(log, n) — 1. (Thegirth of a graph is the length of a shortest cycle.)

In this paper we focus on minimising the functignn Theorem7.1and do not calculaté
explicitly. In particular, Theoren7.8 proves Theorend.1with f(t) < 2/=! + ¢ for anye > 0
(where the functiorh also depends on). Note that for Theoren7.1 and all our results, the
proofs can be easily adapted to give polynomial algorithms that compute ttle/sprraodel.

Fort < 4, we determine the least possible valueféf) in Theorem7.1 Thet = 2 case
is trivial—one edge is a small,-minor. To force a smalK';-model, average degre&eis not
enough, since everis-model in a large cycle uses every vertex. On the other hand, we prove
that average degrex-+ ¢ forces a cycle of lengtlv. (log |G|); see Lemm& .4 Fort = 4 we
prove that average degrée- < forces ak4,-model withO, (log |G|) vertices; see Theoreihb.
This result is also best possible. Consider the square of an even@clarhich is a 4-regular
graph illustrated in Figurd.1 If the base cycle igvi,...,va,) thenC3, — {vi,vit1} is
outerplanar for each Since outerplanar graph contain AQ-minor, everyK,-model inC3,
containsy; or v; 41, and thus contains at leastvertices.

FIGURE7.1. C%,

Motivated by Theoren¥.1, we then consider graphs that contdin and K4-models of
bounded size (not just small with respectdd). First, we prove that planar graphs satisfy this
property. In particular, every planar graph with average degreeastdet = contains ais-
model withO(é) vertices (Theoren7.1]). This bound on the average degree is best possible
since a cycle is planar and has average degregimilarly, every planar graph with average
degree at least + ¢ contains ak,-model with O(%) vertices (Theoren7.19. Again, this
bound on the average degree is best possible sifj¢eis planar and has average degree
These results generalise for graphs embedded on other surfaeesdiiis/.21and7.24).

Finally, we mention three other results in the literature that force a model ofmplete
graph of bounded size.

e Kostochka and PybeKP88] proved that for every integérande > 0, everyn-vertex
graph with at least” n'*< edges contains a subdivision &f with at most%?t2 logt
vertices; seeJiall] for recent related results.

Note that Theoren.1can be proved by adapting the proof KH88]. As far as
we can tell, this method does not give a bound better H{ah < 16' + ¢ (ignoring
lower order terms). This bound is inferior to our Theor@r@ which provesf(t) <
2!=1 1 ¢, Also note that the method itKP88] can be adapted to prove the following.

Theorem 7.2. There is a functiorh such that for every integer> 2 and reale > 0,
every graph with average degree at least’ + ¢ contains a subdivision ok, with
at mosth(t, ¢) - log |G| division vertices per edge.
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e Kihn and OsthusOO06] proved that every graph with minimum degree at ldast
and girth at leas27 contains ak;1-subdivision. Every graph with average degree at
least2t contains a subgraph with minimum degree at I¢adthus every graph with
average degree at lea@dtcontains aK;. 1-subdivision or a3-model with at mos26
vertices.

e Krivelevich and SudakovKS09] proved that for all integers’ > s > 2, there
is a constant > 0, such that everyK, ,-free graph with average degreecon-
tains a minor with average degree at least™'/(25=2) Applying the result of Kos-
tochka Kos82 Kos84 and ThomasonTho84] mentioned above, for every inte-
gers > 2 there is a constant such that every graph with average degree at least
¢(ty/Tog t)'~1/(2s=1) contains ak;-minor or aK ;-subgraph, in which case there is
a Ks1-model with2s vertices.

7.2. Definitions and Notations

See Pie0§ for undefined graph-theoretic terminology and notation. For V (G), let
GS] be the subgraph a@F induced bysS. Lete(S) := ||G[S]||. For disjoint setsS, T C V(G),
lete(S,T) be the number of edges betwegmand? in G.

A separatiorin a graphG is a pair of subgraph§G1, G2}, such that? = G, U G2 and
V(G1)\V(G2) # @ andV (G2)\V (G1) # @. Theorderof the separation i§/ (G1)NV (G2)|.
A separation of order 1 corresponds to a cut-verexvhereV(G1) N V(Ga) = {v}. A
separation of order 2 corresponds to a cut-pair, whereV (G1) N V(G2) = {v, w}.

See MTO01] for background on graphs embedded in surfaces. Syebe the orientable
surface obtained from the sphere by addingandles. The&uler genuof Sy, is 2h. LetN, be
the non-orientable surface obtained from the sphere by addingss-caps. Th&uler genus
of N, is c.

An embedded grapmeans a connected graph that is 2-cell embeddBg or N... A plane
graphis a planar graph embedded in the plane. E£@f) denote the set of faces in an embedded
graphG. For afacef € F(G), let|f]| be the length of the facial walk arourfd For a vertex
v of G, let F(G,v) be the multiset of faces incident to where the multiplicity of a fac¢ in
F(G,v) equals the multiplicity ob in the facial walk around’. Thus|F(G,v)| = deg(v).

Euler’'s formula states that?| — | G|| + | F(G)| = 2 — g for a connected grapy embedded
in a surface with Euler genus Note thaty < |G|| — |G| + 1 since|F(G)| > 1. The Euler
genusof a graphG is the minimum Euler genus of a surface in whiglembeds.

We now review some well-known results that will be used implicitly (sB&(5 Sec-
tion 7.3]). If a graphG contains nai4-minor then||G|| < 2|G| — 3, and if |G| > 2 thenG
contains at least two vertices with degree at n2osience, if||G|| > 2|G| — 3 thenG contains
a K4-minor. Similarly, if |G| > 2 and at most one vertex i@ has degree at mo8{ thenG
contains al{4,-minor.

Throughout this paper, logarithms are binary unless stated otherwise.

7.3. SmallK3- and K,-Models

In this section we prove tight bounds on the average degree that tosseall K3- or K-
model. The following lemma is at the heart of many of our results. It is anakgovemma 1.1
in [KP88]

Lemma 7.3. There is a functiorf such that for every two reals > d’ > 2, every graphG with
average degree at leadtcontains a subgraph with average degree at leAstnd diameter at
mostf(d,d') - log |G|.



76 7. SMALL MINORS

PrROOF We may assume that every subgraplGolias average degree strictly less thian
(otherwise, simply consider a minimal subgraph with that property). Let
d 2
=—=>1 Ni= ——— 42
g 7> and f(d,d") logﬂ+
Let v be an arbitrary vertex ofi. Let By(v) be the subgraph off induced by the set of
vertices at distance at mastfrom v. Letk > 1 be the minimum integer such thigg (v)| <
B - |Br_1(v)|. (There exists such &, sinces > 1 andG is finite.) It follows thatg*—! <
|Br—1(v)| < |G|. ThusBy(v) has diameter at mo8k < 2(logs |G| + 1) < f(d,d') - log|G].
We now show thaBy(v) also has average degree at le#ist et
A=V (Bi_1(v)),
B :=V(By(v)) \ V(Bg-1(v)),
C:=V(G)\(AUB) .
If C = @, thenB(v) = G[AU B] = G, and henceB;(v) has average degree at least
d > d'. Thus, we may assume that# @. Lett be the average degree Bf,(v). Thus,

(41) 2(e(A) +e(B) +e(A,B)) =t- (|A] +|B]) .

SinceC' is non-empty(G — A is a proper non-empty subgraph@f By our hypothesis on
G, this subgraph has average degree strictly lessdhtrat is,

(42) 2(e(B) +¢e(C) +¢e(B,C)) <d-(|B|+|C]) .
By (41) and @2) and sincez(A, C) = 0,
2|G| = 2(e(A) +e(B)+e(C)+e(A,B) +e(B, C’))
= t(|A| + |B]) + 2e(C) + 2¢(B, C)
< t(|A[ + |B|) + d(|B| + |C]) — 2¢(B)
< d|G| —d|A| +t(|A] + |B|) .
Thust(|A| + |B|) > d|A| (since2||G|| > d|G]). On the other hand, by the choicefof

Al 1
—_ > —
Al +|B] = B
Hence A
A d
t>d———>—=d |,
|Al+[B| = B
as desired. O

Lemma 7.4. There is a functiory such that for every read > 0, every graphz with average
degree at leas? + ¢ has girth at mosy(¢) - log |G|,

PROOFR By Lemma7.3 G contains a subgrapfi’ with average degree at leasand di-
ameter at mosf (2 + ¢,2) - log|G|. LetT be a breadth-first search treed#. ThusT has
diameter at mos2f(2 + ¢,2) - log|G|. SinceG’ has average degree at leastZ,is not a
tree, and there is an edge= E(G’) \ E(T'). ThusT pluse contains a cycle of length at most
2f(2+¢,2) - log |G| + 1. O

Theorem 7.5. There is a functiork such that for every real > 0, every graphG with average
degree at least + ¢ contains a/;-model with at mosk(¢) - log |G| vertices.

PROOF. By Lemma?7.3, G contains a subgrapti’ with average degree at least- 5 and
diameter at mosf(4+¢,4+ 5)-log |G|. Letv be an arbitrary vertex ai’. LetT be a breadth-
first search tree from in G'. Let k be the depth of". Thusk < f(4 +¢,4+ §5) - log|G].
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Let H := G' — E(T). Since||T|| = |G| — 1, the graphH has average degree at least
2+ 5. By Lemma7.4, H contains a cycl€ of length at mosy(5) - log |G|. We will prove the
theorem withh(e) := g(5) +3f(4 +¢,4+ 5).

Observe that ¢ V(C'), sincev is isolated inH . A vertexw of C' is said to benaximalif,
in the tre€T rooted aty, no other vertex o’ is an ancestor ob.

First, suppose that' contains three maximal verticesy, z. Forw € {z,y,z}, let P,
be the uniques—w path in7. ThenC U P, U P, U P, contains aK4-model with at most
|C| 4+ |Py — x|+ |Py — y| + | P, — 2| < |C| + 3k < h(e) - log |G| vertices. Now assume that
at most two vertices af’ are maximal.

Next, suppose that there is a unique maximal vert@x C. Let i be the distance between
vandz in T. Lety be a neighbour af in C. The vertexy is not maximal, implying there is an
ancestor ofy in C'. SinceT is a breadth-first search tragis at distance at most+ 1 fromv in
T. Howeverxy ¢ E(T), which implies that: is not an ancestor af in 7, a contradiction.

Finally, suppose there are exactly two maximal verticedy in C. If one is closer to
v than the other iff’, sayz is closer thany, then considering a neighbout of = in C that is
distinct fromy again yields a contradiction:’ is not maximal, thug’ has an ancestor i@,
and this ancestor must be However, this cannot be sinee’ ¢ E(T). Hence,x andy are at
the same distance fromin 7.

Let P be anz—y path inC that is not the edgey. Letx’ be the neighbour of in P, and let
y’ be the neighbour of in P. The ancestor of’ in T' must bey, since otherwise there would
be a path iff” betweenz’ andv that avoids both: andy. For the same reason|s the ancestor
of 4/ in T. Thus,z’y andy’x are both edges d¢f, and hence’ # y'. Now, the cycleC plus
these two edges givesra;-model with|C| < ¢(5) - log |G| < h(e) - log |G| vertices. O

7.4. SmallK;-Models
The following theorem establishes our main result (Theoretn

Theorem 7.6. There is a functiorh such that for every integer > 2 and reale > 0, every
graphG with average degree at leagt + ¢ contains ak;-model with at mosk(¢, ¢) - log |G|
vertices.

PrROOF We prove the following slightly stronger statement: Every grépwith average
degree at least + ¢ contains aK;-model with at most(¢, €) - log |G| vertices such that each
branch set of the model contains at least two vertices.

The proof is by induction on. Fort = 2, let h(t,e) := 2. Here we need only assume
average degree at leastt . Some component @ is neither a tree nor a cycle, as otherwise
G would have average degree at mdslt is easily seen that this component contains a path on
4 vertices, yielding &»;-model in which each branch set contains two vertices. This model has
4 < h(t,e) - log |G| vertices, as desired. (Observe th@t > 4, sinceG contains a vertex with
degree at least)

Now assume > 3 and the claim holds for smaller valuestofJsing Lemm&/.3, letG’ be a
subgraph of7 with average degree at le@ét 5 and diameter at mogt(2’ +¢, 2/ +5)-log |G]|.
Leth(t,e) =2+ (t—1)f(2"+e, 2" +5)+h(t—1,5).

Choose an arbitrary edgey of G'. Define thedepthof a vertexw € V(G’) to be the
minimum distance irG’ betweenw and a vertex ifu, v}. Thedepthof an edgery € E(G’)
is the minimum of the depth of and the depth of.

Considering edges @}’ with even depth on one hand, and with odd depth on the other, we
obtain two edge-disjoint spanning subgraph&fSinceG’ has average degree at le2ist- £,
one of these two subgraphs has average degree apleast - Let H be a component of this
subgraph with average degree at lezist' + 7- Observe that every edge &f has the same
depthk in G.
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If £ =0, thenE(H) is precisely the set of edges incidenti@r v (or both). Thus, every
vertex inV(H) \ {u,v} has degree at mo&tin H. HenceH has average degree less than
4 < 271 + £ a contradiction. Therefore > 1.

Now, by induction,[I contains ai;_;-model with at most.(t — 1, ) - log |G'| vertices
such that each of the— 1 branch set$3;, ..., B;_1 has at least two vertices. Thus, edgh
contains an edge dfl. Hence, there is a vertex in B; having deptht in G’. Therefore, there
is a pathP; of lengthk in G’ betweerw; and some vertex iflu, v}. Let P,, be the trivial path
consisting of the edgev. Let

B:=Pu,U |J (Pi-w).
1<i<t—1
The subgrapliB; is connected, contains at least two vertices (hamebndwv), and is vertex
disjoint fromB; forall i € {1,...,t— 1}. Moreover, there is an edge betweBpand eachs;,
and

3
> IBil < By + h(t -1, 1) log|¢]

1<i<t

€
<24 3 IRl h(t-1,]) logll
1<i<t—1

g2+(t—1)k+h(t—1,i)-log\G!

<24 (t— 1)f(2t+5,2t+§) -log |G|+ h(t — 1,%)-log|G\
< h(t,e) - log|G| .
Hence, addind3; to our K;_1-model gives the desirefl;-model ofG. ]

Observe that the obstacle to reducing the lower bound on the average degheorent.6
is the case = 3, which we address in the following result.

Lemma 7.7. There is a functiorh such that for every read > 0, every graphZ with average
degree at least + ¢ contains ak’3-model with at mosk(¢) - log |G| vertices, such that each
branch set contains at least two vertices.

PROOF The proof is by induction o] + ||G||. We may assume that no proper subgraph
of G' has average degree at ledst ¢, since otherwise we are done by induction. This implies
thatG is connected. Note thafr| > 6 sinceG has average degree4.

First, suppose that contains ak, subgraph with vertex set.

Case 1.All edges betweerX andV(G) \ X in G are incident to a common vertexc X:
LetY := X \ {v}. Then

G -Y| =2|G| -12> (4+¢)|G| - 12> (4 +¢)|G-Y] ,

implying thatG — Y also has average degree at lebste, a contradiction.

Case 2. There are two independent edges and vy’ betweenX andV(G) \ X in G,
whereu,v € X: Then{u,u'},{v,v'}, X \ {u, v} is the desired<s-model.

Case 3.Some vertexw € V(G) \ X is adjacent to two vertices, v € X: No vertex inX
has a neighbour i (G) \ (X U {w}), as otherwise Case 2 would apply. Sir¢és connected
and|G| > 6, it follows thatw has a neighboun’ outsideX. Let z,y be the two vertices in
X \ {u,v}. Then{w,w'}, {u, x}, {v,y} is the desired(s-model.

This concludes the case in whichcontains ak, subgraph. Now, assume th@atis K-
free. By Theoreny.5, GG contains akKy,-model By, . .., B, with at mosth(¢) - log |G| vertices.
Without loss of generality,B;| > |Bz| > | B3| > |B4| and|B;| > 2.

Case 1. |Bs| > 2: Then By, Bs, B3 U By is the desiredis-model. Now assume that
B; = {x;} foralli € {2,3,4}.
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Case 2.Somez; is adjacent to some vertex not in B; U Bo U B3 U By: If i = 2 then
{z2,w}, B1, Bs U By is the desired<s-model. Similarly fori € {3,4}.

Case 3.|B;| > 3. Then there are two independent edges inetweenB; and{xz, x3, x4},
sayuzxs andvzs with u, v € By (otherwise, there would be &, subgraph). There is a vertex
w € By \{u,v} adjacent to at least one of v, sayu. LetC' be the vertex set of the component
of G[B1] — {u, w} containingv. Then{u,w}, C U {x3}, {x2, x4} is the desired{s-model.

Case 4. B; = {u,v}. As in the previous cases, there are two independent edg@s in
between{u,v} and{zs, z3, 24}, sayurs andvzs. At least one ofu, v, sayu, is adjacent to
some vertexw outside{u, v, z2, x3, x4}, because&s is connected with at leastvertices, and
none ofzsy, z3, x4 has a neighbour outside:, v, x2, x3, x4 }. Then{u, w}, {v,z3}, {x2, x4} is
the desired{s-model. O

Note that average degree greater tdan required in Lemm&.7 because of the disjoint
union of K5’s. Lemma7.7 enables the following improvement to Theor&rb.

Theorem 7.8. There is a functiorh such that for every integer > 2 and reale > 0, every
graphG with average degree at leagt ! + ¢ contains ak;-model with at mosk(t, €) - log |G|
vertices.

PROOFE As before, we prove the following stronger statement: Every géaplith average
degree at least’~! + ¢ contains ak;-model with at most.(t, €) - log |G| vertices such that
each branch set of the model contains at least two vertices.

The proof is by induction on. Thet = 2 case is handled in the proof of Theorah®.
Lemma7.7 implies thet = 3 case. Now assume> 4 and the claim holds for smaller values
of t. The proof proceeds as in the proof of Theoré We obtain a subgrap@’ of G with
average degree at le@ét * + 5 and diameter at mogt(2~! +-¢, 2/~ + £) -log |G|. Choose an
edgeuwv of G’ and define the depth of edges with respeciitoWe obtain a connected subgraph
H with average degree at lea®t? + 7, such that every edge @f has the same depth If
k = 0, thenE(H) is precisely the set of edges incidenti®r v (or both), implyingH has
average degree less thanc 2t-2 + 7. Now assumé > 1. The remainder of the proof is the
same as that of Theorem®6. O

ThomassenTho83] first observed that high girth (and minimum degree 3) forces a large
complete graph as a minor; sd€q03] for the best known bounds. We now show that high
girth (and minimum degree 3) forcessamall model of a large complete graph.

Theorem 7.9. Let k be a positive integer. L&t be a graph with girth at leas8k + 3 and
minimum degree > 3. Lett be an integer such that{r — 1)’“ > 2t=1 4 1. ThenG contains a
K;-model with at mosk(k, ) - log |G| vertices, for some functiof

PrRoOF Mader Mad98] proved thatG contains a minotd of minimum degree at least
r(r — 1)*, such that each branch set has radius at Rbssee Die05 Lemma 7.2.3]. Let
V(H) = {b1,...,b},and letBy, ..., By be the corresponding branch setginLetr; be
a centre ofB;. For each vertex in B;, let P; , be a path between andv in B; of length at
most2k.

By Theoren7.8, H contains a;-model with at most.(¢)-log | H| vertices. LeCCy, ..., C;
be the corresponding branch sets. Sayasn; vertices. Thus_'_, n; < h(t) - log |H|. We
now construct d&;-model X, ..., X; inG.

Fori € {1,...,t}, letT; be a spanning tree @f;. Each edge;b, of of T; corresponds to
an edgevw of G, for somev in B; andw in B,. Add to X; ther;r;-pathP; , U {vw} U Pp,,.
This path has at mostk + 2 vertices. ThusX; is a connected subgraph 6f with at most
(4k + 2)(n; — 1) vertices (sincé; hasn,; — 1 edges).

For distincti, i’ € {1,...,t} there is an edge betwe&r andC;, in H. This edge corre-
sponds to an edgew of GG, wherewv is in some branch sé§; in C;, andw is in some branch
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setBj in Cy. Add the pathP; , to X;, and add the patF;. ,, to X;». Thusv in X is adjacent
tow in Xj.

HenceX, ..., X; is aK;-model inG with at mosty_!_ | (4k+2)(n; —1) < (4k+2)-h(t)-
log | H| vertices from the first step of the construction, and at nfpstk + 2) vertices from
the second step. Sin¢es bounded by a function of andk, there are at most'(k, r) - log |G|
vertices in total, for some functiot. O

Corollary 7.10. Let k be a positive integer. L&t be a graph with girth at leastk + 3 and
minimum degree at lea8t ThenG contains a/;-model with at mosk (k) - log |G| vertices,
for some functiorh. O

7.5. Planar Graphs

In this section we prove that sufficiently dense planar graphs hgveind K s-models of
bounded size. We start with thé; case.

Theorem 7.11.Lete € (0,4). Every planar graphG with average degree at lea8t+ ¢ has
girth at mostl + [2].

PROOF Let H be a connected component@fwith average degree at least- . Thus
H is not a tree. Say! hasn vertices andn edges. Fix an embedding &f in the plane with-
faces. Let be the minimum length of a facial walk. Thés> 3 and2m > r¢ = (2 +m —n)/,

implying
n—2>m(l-2)>L2+em1-2)>12+e)(n-2)(1-2) .

It follows that? < 2 + %. Sincel is an integer{ < 1 + [g] SinceH is not a tree, every facial
walk contains a cycle. Thuf andG have girth at most + [£]. O

To prove our results fof{,-models in embedded graphs, the notion of visibility will be
useful (and of independent interest). Distinct verticesdw in an embedded graph avisible
if v andw appear on a common face; we sageesw.

Lemma 7.12. Letv be a vertex of a plane graphi, such thatleg(v) > 3, v is not a cut-vertex,
and v is in no cut-pair. Therv and the vertices seen hyinduce a subgraph containing a
K4-minor.

PrROOF We may assume that is connected. Since is not a cut-vertex(z — v is con-
nected. Letf be the face of7 — v that contains in its interior. LetF be the facial walk
around f. Suppose thaf’ is not a simple cycle. Thei’ has a repeated vertax. Say
(a,w,b,...,c,w,d) is a subwalk ofF. Then there is a Jordan cur¢e from v to w, arriv-
ing atw between the edgesa andwb, then leavingw from between the edgesc andwd,
and back taw. ThusC' containsb in its interior anda in its exterior. Hence, w is a cut-pair.
This contradiction proves thdt is a simple cycle. Hence and the vertices seen lyinduce a
subdivided wheel withleg(v) spokes. Sincédeg(v) > 3 this subgraph contains a subdivision
of K4. ]

Recall thatF'(G, v) is the multiset of faces incident to a vertexn an embedded graph
G, where the multiplicity of a fac¢ in F'(G,v) equals the multiplicity ob in the facial walk
aroundf.

Lemma 7.13. Each vertexv in an embedded grapty sees at most Z (IfI — 2) other

] fEF(Gw)
vertices.
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PROOF The vertexv only sees the vertices in the facesitiG,v). Eachf € F(G,v)
contributes at mogtf| — 1 vertices distinct from. Moreover, each neighbour ofis counted
at least twice. Thus sees at mMos}_ ;¢ (|f| — 1) — deg(v) other vertices, which equals

> per(cw 1 —2). O

The 4-regular planar grapfi, has an embedding in the plane, in which each vertex sees
n + 1 other vertices; see Figuigl On the other hand, we now show that every plane graph
with minimum degree 5 has a vertex that sees a bounded number of vertices.

Lemma 7.14. Every plane graphG with minimum degreé has a vertex that sees at mast
other vertices.

PrROOF For each vertex of G, associate a charge of

2 — deg(v) + Z ’JQC‘

fEF(Gw)

By Euler’s formula, the total charge B8G| — 2||G|| + 2|F(G)| = 4. Thus some vertex has
positive charge. That is,

2 Z m>deg) 2.

fEF(Gw)

Now ‘—}l < % Thus% deg(v) > deg(v) — 2, implying deg(v) < 6 anddeg(v) = 5. If some
facial walk containing has length at least, then

4 1
3_2<+>22 Z —>3
3 6 fere \fl

which is a contradiction. Hence each facial walk contalmrhgis length at most If two facial
walks containing have length at leadt, then

3 2
3=2(>+ ) >2 >3
(3 1 feFZ \fl
which is a contradiction. Thus no two facial walks containingach have length at least

Hence all the facial walks containingare triangles, except for one, which has length at most
5. Thuswv sees at most vertices. O

The bound in Lemm&.14is tight since there is a 5-regular planar graph with triangular
and pentagonal faces, where each vertex is incident to exactly otegpeal face (implying
that each vertex sees exactly 7 vertices). The corresponding potyhedcalled thesnub
dodecahedrgrsee FigureZ.2and Wik10].

Lemmas/.12and7.14imply:

Theorem 7.15. Every 3-connected planar graph with minimum degre@®ntains ak;-model
with at most vertices.

Theorem7.15is best possible since it is easily seen that evérymodel in the snub dodec-
ahedron contains at least 8 vertices. Also note that no result like Tinébléholds for planar
graphs with minimum degree 4 since evéty-model in the 4-regular planar gragl, has at
leastn vertices.

We now generalise Lemmal4for graphs with average degree greater than

Lemma 7.16.Lete € (0,2). Every plane grapld: with minimum degree at lea3tand average
degree at least + ¢ has a vertex that sees at modt+ [g} other vertices.
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FIGURE 7.2. The snub dodecahedron.

PROOF For each vertex of (G, associate a charge of
(8+22) — (84 3c) deg(v) + (24 4 65) > ik
fEF(Gw)
By Euler’s formula, the total charge is
(8 +2¢)|G| — (16 + 6¢) ||G|| + (24 + 6¢) | F(G)]
= (84 2¢)|G| — (16 + 6¢) ||G|| + (24 + 6¢) (||G|| — |G| + 2)
=4(2|G|| — (4 +¢)|G|) + 2 (24 + 6¢)
>2(24+6¢) .
Thus some vertex has positive charge. That is,
1
(24 + 6¢) Z 7 > (8 4 3¢) deg(v) — (8 + 2¢) .
fEF(Gw)
That is,
1 (1 1) 1
Z > 5+ — |deg(v) — 5,
fEF(Gw) |f| 3 @ 3

wherea := 6 + 2?4- We have proved thateg(v) and the lengths of the facial walks incident to
v satisfy Lemmar.17below. Thus

> an-nsf§)-1=1+ 8
FEF(G,v)

The result follows from Lemm&.13 O
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Lemma 7.17.Leta > 0. Letd, f1, ..., fq be integers, each at lea3t such that
d
1 1 1 1
—>|-+—]d—= .
Sro(5ra)is

St <01

=1
PROOF We may assume thdf, ..., f; firstly maximise} ", (f; — 2), and secondly max-
imise ), fi We claim thatf; = 3 foralli € {1,...,d} except perhaps one. Suppose on the

contrary thatf; > f > 4 fordistinctj, k € {1,...,d}. Letf! := f;fori e {1,...,d}\{j, k},
fj=fj+1,andf; := fr — 1. Then

d d d 1 d 1
D F=)_fi but 35>+
i=1 i=1 i=1 71 i=1 7"

implying f1, ..., fg do not maximisezj % Thus the claim holds and we may assufne- 3
fori e {1,...,d—1}. Hence

d—1 1 (1 1) 1
et > (et )d—5

Thus £ > 4,implying f; < [§] — 1. Since§ > f; > 3 and sincel > 3,

Then

Hence
{*W > {d—3+%w =d—-3+ {EW
Therefore
g(fi—z) < d-1)(3-2)+ {%1 —3=d-3+ {%W 1< {%W 1
This completes the proof. .

Lemmas7.16and7.12imply:

Theorem 7.18.Lete € (0, 2). Every 3-connected planar gragh with average degree at least
4 + ¢ contains akKs-model with at mos? + (%1 vertices.

We now prove that the 3-connectivity assumption in Theoreb8can be dropped, at the
expense of a slightly weaker bound on the size ofiihemodel.

Theorem 7.19.Lete € (0, 2). Every planar graplG with average degree at leat-c contains
a K4-model with at mosf%} + (%1 vertices. Moreover, this bound is within a constant factor
of optimal.

PrRoOF. If G has at mos® + [%} vertices, then we are done singe > 2n implies G

contains ak4-model, which necessarily has at mast [2] < [2] + [2] vertices.
We now proceed by induction enwith the following hypothesis: Lef be a planar graph
withn > 2 + (%1 vertices andn edges, such that

(43) 2m > (4+¢)(n—2) .

ThenG contains aks-model with at mosf2] + [2] vertices.
This will imply the theorem sinceém > (4 +¢)n > (4 +¢)(n — 2).
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Suppose that < [2] + [2]. Sincen > 2 + 2,
2m > (4+¢e)(n—2)=4n—-8+¢e(n—2) >4n—6 .
Thusm > 2n— 3, implying G contains ak4-model, which has at most < {%1 + [%1 vertices.

Now assume that > [8] + [2] + 1.
Suppose thaleg(v) < 2 for some vertex. ThusG — v satisfies 43) since

2[|G —v|| =2(m —deg(v)) > (4 +e)(n—2)—4> (4 +e)(n—-3) .

Nown — 1 > [2] 4 [2] > 2+ [2]. Thus, by induction( — v and henceZ contains the
desiredKs-minor. Now assume thaleg(v) > 3 for every vertex.

Suppose that? contains a separatiofG,, Go } of order at mos®. Let S := V(G N Ga).
Say each; hasn; vertices andn; edges. Thusi; + ny < n + 2 andmy + ms < m.
Equation 43) is satisfied fotG; or G2, as otherwise

Ad+e)n—=2)<2m<2mi+2ma<(d+e)(n1+n2—4) <(d+¢e)(n—2) .

Without loss of generality(7; satisfies 43). Thus we are done by inductionsfy > 2 + (%1.
Now assume that; < 1 + (%1. Also assume that; < 2n; — 3, as otherwis&y; contains a
K4-model, which has at most; < 1+ [%1 vertices.

Suppose that = {v} for some cut-vertex. Since every vertex id: has degree at least
3, every vertex inGy, exceptv, has degree at leadtin G;. Sincen; > 2, G; contains a
K4-model, which has at most; < 1+ (%} vertices. Now assume théatis 2-connected.

Suppose that = {v,w} for some adjacent cut-pair,w. Thusn; + ns = n + 2 and
m =mj +ms — 1 and

2me =2m+2—-2m; > (4+¢e)(n—2)+2-22n1—3) = (4+¢)(n1+n2—4)—4n; +38
= (4+¢)(ng—4) +eni +38
> (4+e)(n2—4)+2(4+e¢)
— (4+e)(nz-2) .
That is,G> satisfies 43). Also,

et G R o Rt

Hence, by inductiorGs and thusG contains the desire’;-model. Now assume that every
cut-pair of vertices are not adjacent.

Suppose that = {v,w} for some non-adjacent cut-pairw andm; < 2n; — 4: Thus
n1 +n9 =n+2andmq +ms = m and

That is,G> satisfies 43). As proved abovep, > 2 + (%1. Hence, by inductioldr, and thus
contains the desireff,-model. Now assume that for every cut-pajtw we havevw ¢ E(G),
and if {G1, G2} is the corresponding separation with satisfying é3), thenm; = 2n; — 3
andn; <1+ [2].

Fix an embedding of;. By Lemma7.16 there is a vertex in G that sees at most+ [ 2]
other vertices. I is in no cut-pair then by Lemma12and since? is 2-connectedy plus the
vertices seen by induce a subgraph that containga-model, which has at most+ [2] <
[2] + [2] vertices. Now assume thatw is a cut-pair. Thusw ¢ E(G), and if {G, G2} is

€

the corresponding separation, then = 2n; — 3 andn; < 1+ [%1. Sincev, w is a cut-pair,
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there is avw-path P contained inG2, such thatP is contained in a single face ¢f. Every
vertex in P is seen by, andv sees at least 2 vertices@y — w. ThusP has at mosfg] -2
internal vertices. Lefd be the minor ofGG obtained by contracting into the edgevw, and
deleting all the other vertices i@>. Thus H hasn; vertices an®n, — 2 edges. Hencél
contains ak4-minor. The corresponding,-model inG is contained inGy U P, and thus has
atmost(1 + [27]) + ([2] —2) < [2] + [2] vertices.

We now prove the lower bound. Assume that (0, 1] andk := % — 1 is a non-negative
integer. LetH be a cubic plane graph in which the length of every facial walk is at [eéstr
example, the dual of a minimum degreplane triangulation). Sa¥/ hasp vertices. LetG be
the plane graph obtained by replacing each vertegX bfy a triangle, and replacing each edge of
H by 2k vertices, as shown in Figuile3. ThusG has3p vertices with degreg and3kp vertices
with degreel. Thus|G| = 3p+3pk = 3?” and2||G|| = 3p-5+3pk-4 = 4|G|+3p = (4+¢)|G
ThusG has average degrder . Every K -model inG includes a cycle that surrounds a ‘big’
face with more tharbk vertices. Thus every<,-model has more thakk = g — 5 vertices.
Similar constructions are possible for> 1 starting with a 4- or 5-regular planar graph. [J

FIGURE 7.3. Construction ofy.

7.6. Higher Genus Surfaces
We now extend our results from Secti@rb for graphs embedded on other surfaces.

Lemma 7.20. Lete > 0. LetG be a graph with average degree at le@st . Suppose that?
is embedded in a surface with Euler genus at ngodthen some facial walk has length at most
(g + 2)(g + 1). Moreover, this bound is tight up to lower order terms.

PROOF Say(G hasn vertices,m edges, and faces. Let/ be the minimum length of a
facial walk. Thu2m > r¢. By Euler’s formulay, — m +r = 2 — g. Hence

(2+¢e)n <2m
(24+e)2-g)=2+e)(n—m+r)
Sty < S2m)

2\ =73

Summing gives; (rf) < (2 +¢)(g +r — 2). Sincer > 1,

€§§(2+5)(g+r—2): (§+2) <g+r_2) < (§+2> (g+1) .

r r
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Hence some facial walk has length at mp5stt- 2)(g + 1).
Now we prove the lower bound. Assume tlyat= 2h > 2 is a positive even integer, and

that0 < e <1 - 32— Letk := F — 2 lJ. Thusk > 2. Let G be the graph consisting of

2g+1" € eg Il
g cycles of lengthk + 1 with exactly one vertex in common. Thus
2 2 1
2G| =2g9(k+1) =29k +2+c+eg (5 T g) > 29k + 2+ €+ egk

=(24¢)(gk+1)
=(2+9)IG| .
HenceG has average degree at least . As illustrated in Figur€.4(a), G has an embedding

in Sy, (which has Euler genu&h = g) with exactly one face. Thus every facial walkdhas

length2(|G|| = 2¢g(k + 1) > 2g(% — % _ é) > 4(9;1) _9 0

@

FIGURE 7.4. Graphs embedded{h: (a) average degrex+  and one face,
and (b) average degrdet ¢ and every vertex on one face.

Theorem 7.21. There is a functiorm, such that for every reat > 0, every graphG with
average degree at least+ ¢ and Euler genug has girth at mosh(¢) - log(g + 2). Moreover,
for fixede, this bound is within a constant factor of optimal.

PROOF SayG hasn vertices andn edges. We may assume that every proper subgraph of

G has average degree strictly less tRah . This implies thatz has minimum degree at least

2. Fix an embedding ofr with Euler genug;. Let ¢ be the minimum length of a facial walk.

By Euler’s formula, there arer — n + 2 — g faces. Thu2m > (m —n + 2 — g)¢, implying
ln+g—2)>m—2)>12+¢e)(l —2)n. Thusl(n+g—2) > 3(2+¢)(¢ —2)n,
implying £(g — 2) > (5(¢ — 2) — 2)n. First suppose that < 6 + % SinceG has no degree-

1 vertices, every facial walk contains a cycle. Thsas girth at mosé + % which is at
mosth(e) - log(g + 2) for some functior.. Now assume that > 6 + 12, which implies that
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l(g—2) > (5t —2) —2)n > £tn. Thusn < 2(g — 2). By Lemma7.4, the girth ofG is at
mostg(e) -logn < g(e) -log(2(g — 2)), which is at mosh(e) - log(g + 2) for some functiorh.
Now we prove the lower bound. Létbe the integer such thdt— 3 < ¢ < d — 2. Thus
d > 3. For alln > 3d such thatud is even, ChandrarJha03 constructed a grapty with n
vertices, average degrée> 2 + ¢, and girth at leastlog;n) — 1. Now G has Euler genus
g <% —n+1<dn—2 ThusG has girth at leastlog, %) — 1. Sinced < 3 + ¢, the girth
of G is at leasti(¢) - log(g + 2) for some functior. O

We now extend Lemma.16for sufficiently large embedded graphs.

Lemma 7.22. Lete € (0,2). LetG be a graph with minimum degree 3 and average degree
at least4 + . Assume tha€ is embedded in a surface with Euler genyssuch that|G| >
(22 + 6)g. ThenG has a vertew that sees at mot+ [12] other vertices.

PROOF For each vertex of GG, associate a charge of
1

(8+2¢) — (8+ 3¢) deg(v) + (244 6) L + (24 +62) Y Tk
)

] fEF (G
Thus the total charge is
(842¢)|G| — (16 4+ 6¢) ||G|| + (24 + 6¢) g + (24 + 6¢) | F(G)|
= (8+2¢)|G| — (16 +6¢) ||G|| + (24 + 6¢) g + (24 + 6¢) (|G| — |G| — g + 2)
=42||G|| — (44 ¢)|G|) + 2 (24 + 6¢)
>2(24+6¢) .
Thus some vertex has positive charge. That is,

1

(8 + 2¢) — (8 + 3¢) deg(v) +(24+6e)%|+(24+65) 3 >0

JEF(Gy)
Since(24|+G6|E)g <e,
1
(24+68) > 7> (8 + 3¢)(deg(v) — 1) .
fEF(Gw)

That is,

Z ’JIc > <i1’> + ;) (deg(v) — 1) ,
feEF(G,w)

wherea := 6 + 2?4 We have proved thateg(v) and the lengths of the facial walks incident to
v satisfy Lemmar.23below. Thus

2 <|f|—2>4§1_1:2+m

FEF(G.v)
The result follows from Lemma&.13 O

Lemma 7.23. Leta > 0. Letd, f1, ..., f4 be integers, each at lea3f such that
d
1 1 1
- —+—)(d-1) .
; 5~ <3 i 04> (=

d

Then
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PROOF As inthe proof of Lemm&.17 we may assume thg = 3forall j € {3,...,d—
1}. Hence
d—1 1 1 1
—+ = —+—)(d-1).
3 fa ~ (3 " 04) ( )
Thus+ > 921, implying f; < [;27] — 1. Sincez%; > f; > 3 and sincel > 3,

« ad o d « d « «Q
- > = ——1 — >3 ==-1 ——=d-3+ —.
2 7 3(d-1) (d—l)(S )+d—1_ (3 >+d—1 +d—1
Hence

o o «

= > _ = | =d— _

5] a5+ 72| = a-a [ 2
Therefore

Sy s ]zl

=1
This completes the proof. O

We now prove that the assumption that (£) in Lemma7.22is needed. Assume we are

givene € (0, 1] such thak := %—1 is an integer. Henck > 0. Consider the grapfy shown in
Figure7.4(b) with 2¢ vertices of degred and2gk vertices of degreé. Thus|G| = 2¢g(k + 1)

and2||G|| = 10g + 8gk = 2¢g(5 + 4k) = k%(% +5) =04+ ﬁ)\G! = (4+¢)|G|. ThusG
has average degrde}- c. Observe that every vertex lies on a single face. Thus each vertex see
|G| — 1 =22 — 1 other vertices.

A k-noosein an embedded graph is a noncontractible simple closed curve in the surface
that intersectg? in exactlyk vertices. Theacewidthof G is the minimum integek such that

G contains &-noose.

Theorem 7.24.Lete > 0. LetG be a 3-connected graph with average degree at léastz,
such thatG has an embedding in a surface with Euler geguand with facewidth at least
3. ThenG contains aks-model with at mosf (¢) - log(g + 2) vertices, for some functiofi.
Moreover, for fixed, this bound is within a constant factor of optimal.

PROOF If |G| < (% + 6)g then the result follows from Theorem5. Otherwise, by
Lemma7.22some vertex sees at most+ [%1 other vertices. The graghi—v is 2-connected
and has facewidth at lea®t Thus every face ofr — v is a simple cyclefMTO01, Proposition
5.5.11]. In particular, the face @f — v that containg in its interior is bounded by a simple
cycleC. The vertices inC' are precisely the vertices thatsees inG. ThusG[C U {v}] is a
subdivided wheel witkleg(v) > 3 spokes. Hencé&' contains ak4,-model with at mosg + (1?21
vertices, which is at mosf(¢) - log(g + 2) for an appropriate functiof.

Now we prove the lower bound. Létbe the integer such thdt— 5 < ¢ < d — 4. Thus
d > 5. For every integen > 3d such thaind is even, ChandrarCha03 constructed a graph
G with n vertices, average degrée> 4 + ¢, and girth greater thaflog; n) — 1. ThusG has
Euler genugy < %” < dn — 2. Since everyK,-model contains a cycle, eve#y,-model inG

has at leastlog,;n) — 1 vertices. Since: > % andd < 5 + ¢, everyK4s-model inG has at
leastf () - log(g + 2) vertices, for some functiofi. O

For a class of graphs, an edge is ‘light’ if both its endpoints have bouddgree. For
example, WernickeWer04] proved that every planar graph with minimum degfebas an
edgevw such thatdeg(v) + deg(w) < 11; see Bor89, Kot55, IM96, JVO05] for extensions.
For a class of embedded graphs, we say an edge is ‘blind’ if both its erdee a bounded
number of vertices. In a triangulation, a vertex only sees its neighbourghich case the
notions of ‘light’ and ‘blind’ are equivalent. But for non-triangulatiomashlind edge’ theorem
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is qualitatively stronger than a ‘light edge’ theorem. Hence the followinglrésa qualitative
generalisation of the above theorem of Wernicdkéef04] (and of Lemmar.14), and is thus of
independent interest. No such result is possible for minimum degree 4esieneedge irC3,
sees at least vertices.

Proposition 7.25. Let G be a graph with minimum degréeembedded in a surface with Euler
genusy, such that G| > 240¢g. ThenG has an edgew such thaty andw each see at mose
vertices. Moreover, for plane graphs (that is= 0), v andw each see at mogt vertices.

PrRoOOF Consider each vertex Let/, be the maximum length of a facial walk containing
x. Lett, be the number of triangular faces incidentatounless every face incident tois
triangular, in which case let, := deg(x) — 1. Sayx is goodif x sees at most2 vertices,
otherwiser is bad Let

Cp 1= 240 — 120 deg(z) + 240’ 7l +240 > —
fEF(Gx)
be the charge at. By Euler’s formula, the total charge is
240(|G| = |Gl + g + |[F(G)]) = 480 .
Observe that (sincg, > 3 andt, < deg(z) — 1 anddeg(z) > 5

ty deg(x)—t$—1
> <240 —120d 2402+ 24 =
ce <240 0deg(x) + O\G|+ 0<€ 3+ 1 >

24
(44) < 181 — 60 deg(z) + 70 + 20t

(45) <241 — 40deg(z) < 41 .

For each good vertex, equally distribute the charge anto its neighbours. (Bad vertices keep
their charge.) Let!, be the new charge on each vertex Since the total charge is positive,
¢, > 0 for some vertex. If v is good, then all the charge atvas received from its neighbours
during the charge distribution phase, implying some neighhoofrv is good, and we are done.
Now assume that is bad. LetD, be the set of good neighbours @f By (44) and @5), and
sincedeg(w) > 5,

24 41
46) 0<di=cot+ Y d L < 181 60de(v) + 60 + 5D

weD,
We may assume that no two good neighbours afe on a common triangular face.

Claim 7.26. | D, | < deg(v)— %. Moreover, if| D, | = deg(v) — % then some face incident to
is non-triangular, and for every bad neighbauof v, the edgeyw is incident to two triangular
faces.

PROOF First assume that every face incidentt@s triangular. Thus no two consecutive
neighbours ofy are good. HenceDU\ < deglv) o desFl _ geg(v) — L, as claimed. This
also proves that ifD,| = deg(v) — % then some face incident tois non-triangular.

We prove the case in which some face incident te non-triangular by a simple charging
scheme. Ifw is a good neighbour of, then chargeyw by 1. Charge each triangular face
incident tov by 1. Thus the total charge {©,| + 4. If uvw is a triangular face incident ta,
then at least one af andw, sayw, is bad; send the charge é)fatuow to vw. Each good edge
incident tov gets a charge df, and each bad edge incidenttgets a charge of at mo§tfrom
each of its two incident faces. Thus each edge incidenigets a charge of at most 1. Thus the
total charge|D, | + %, is at mostdeg(v), as claimed.

Finally, assume thdiD, | = deg(v) — % Then for every bad neighbour of v, the edge
vw gets a charge of exactly 1, implyingy is incident to two triangular faces. O
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Claim7.26and @6) imply

24 41
7 0 + 20t, + = deg(v) —

259 240 159

?, 10

411,
10

0 < 181 — 60 deg(v) +

Sincet,, < deg(v) — 1 anddeg(v) > 5,

1651 359 240< 144 240

O<—g ~qpdee+7-s-35+7

implying ¢, € {3,4,...,16}. Sincel, > 3,

2451 359
0< T — ﬁdeg(v) y

implying deg(v) € {5,6} andt, € {0,1,...,deg(v) — 1}.

We have proved that finitely many values satigfg)( We now strengthen this inequality in
the case thatD, | = deg(v) — .

Let f be a face of lengtld, incident tov. Letx andy be two distinct neighbours af on
/. Suppose on the contrary thats bad. By Claim7.26 vz is incident to two triangular faces,
one of which isvzy. Thus/,, = 3, and every face incident wis a triangle, which contradicts
the Claim. Hence: is good. Similarlyy is good.

Thus?, > ¢,. By (44),

24 24 24
¢y < 181 — 60deg(x) + 60 + 20t,; <161 — 40deg(z) + 60 < 60 -39 .
Similarly, ¢, < 219 — 39. Hence (assumingD,| = deg(v) — %),
240 c c c
0<c, <181 —60deg(v) + —— +20t, + —— + —2— + Z -
G deg(x) " degly) 2= deg(w)
240 240
240 -39 -39 41
< 181 — 60deg(v) + — + 20t, + — +— Z
G degla)  deg(y) 2o deg(u)
24 4 41
(47) <181 60 deg(v) + 0, 20t, + 2 <£8 - 359> + = (D[ =2) .

Checking all values ofeg(v), t,, and/, that satisfy 46) and @7) proves that
ty + (deg(v) — ty)(by — 2) < 12
(which is tight fordeg(v) = 5 andt,, = 4 and/,, = 10 and|D,,| = 2). Thus
S (] - 2) < 13— 2) + (deg(v) — t)(6, —2) < 12 .
fEF(G )

By Lemma7.13 v sees at mosit2 vertices. Therefore is good, which is a contradiction.
In the case of planar graphs, we define a vertex tgdmlif it sees at most 11 other vertices.
Sinceg = 0, (44) and @5) can be improved to

240

(48) ¢y <180 — 60 deg(x) + 7

+ 20t, < 240 — 40 deg(x) < 40 .

Subsequently46) is improved to

240
(49) 0 <, =180 — 60 deg(v) + 7

v

+ 20t, + 8| Dy



7.7. OPEN PROBLEMS 91

and @7) is improved to

24
(50) 0 < ¢}, <180 — 60 deg(v) + ; 0
Checking all values ofleg(v), t,, and/, that satisfy 49) and 60) proves that, + (deg(v) —
t,) (¢, — 2) < 11. As in the main proof, it follows that is good. O

48
+ 20t, + 2 (z —8) +8(|Dy| —2) .

v

We now prove that the assumption th&f € Q(g) in Proposition7.25is necessary. Let
G be the graph obtained frori3, by adding a perfect matching, as shown embeddesj, iim
Figure7.5 (where there is one handle for each pair of crossing edges). Thik gg&-regular,
but each vertex is on a facial walk of length Thus no vertex sees a bounded number of
vertices.

FIGURE 7.5. (2, plus a perfect matching, embeddedSa.

7.7. Open Problems

The first open problem that arises from this work is to determine the besitpe function
fin Theorem7.L In particular, does average degree at least some polynontifdice a small
K;-model? Even stronger, is there a functignsuch that every grap@¥ with average degree
at leastf (t) + ¢ contains akK;-model withh(t, €) - log |G| vertices, wherg (¢) is the minimum
number such that every graph with average degree at f¢gstontains ak;-minor? We have
answered this question in the affirmative foK 4. The casé¢ = 5 is open. It follows from
Wagner’s characterisation of graphs with A&g-minor that average degree at leédbrces a
K5-minor [Wag37. Theorem7.8proves that average degree at ledst- = forces ak5-model
with at mosth(e) - log n vertices. We conjecture the following improvement:

Conjecture 7.27. There is a functiorh such that for alle > 0, every graphG with average
degree at least + ¢ contains ak’s-model with at mosk(¢) - log |G| vertices.

This degree bound would be best possible: Ggtbe the 6-regulan x 3 triangulated
toroidal grid, as illustrated in Figure.6. Every K5-model inG,, intersects every column (oth-
erwiseKs is planar). Thus everis-model inG,, has at least vertices.

Note that while in this paper we have only studied snigtmodels, the same questions
apply for smallH-models, for arbitrary graph&. This question was studied féf = K, — e
in [FIP1Q. See [Tho06, MT05, Mye03, KP08, KOO05] for results about forcing?-minors.

Acknowledgments. Thanks to Michele Conforti for suggesting to study the relationship
between average degree and small models. Thanks to Paul Seymawggessng the example
following Lemma7.7. Thanks to Alexandr Kostochka for pointing out referen€e88].
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FIGURE 7.6. 6-regulai2 x 3 triangulated toroidal grid




CHAPTER 8

Good edge labelings and graphs with girth at least five

Jointly with
Michel Bode (stud. math. at OvGU, Magdeburg)
and Babak Farzad (Brock University, St. Catharines, ON)

Abstract. A good edge-labeling of a graph [Aip, Cohen, Giroire, Havet, Dis-
crete Appl. Math., forthcoming] is an assignment of numberthe edges such that
for no pair of vertices, there exist two non-decreasing gdihthis paper, we study
edge-labeling on graphs with girth at least 5. In particwar verify, under this
additional hypothesis, a conjecture by Ajaet al. This conjecture states that if the
average degree @f is less thar8 andG is minimal without an edge-labeling, then
G € {Cs, Ky 3}. (For the case when the girth is 4, we give a counterexample.)

8.1. Introduction

All graphs are finite and simple. We refer to Diestelg0€g for most of our graph theory
terminology.

A good edge-labelinfdCBP0Y of a graphG is a labeling of its edges: F(G) — R such
that, for any ordered pair of verticesandwv, there is at most one nondecreasing path fiom
to v. We will mostly use the following characterization of a good edge-labeling;iwihvolves
cycles instead of pairs of paths:

An edge-labeling is good, if, and only if, every cycle has at least twad focama.

Here, by a local minimum we mean an edg@hose label is strictly less than the labels of the
two edges incident te on the cycle (this differs from the definition in the next section because
at this point, unlike later in the paper, for convenience, we assume thabels lare distinct).

Good edge-labelings have first been studied by Bermond, CosndrBéennesJCBP0OY
in the context of so-called Wavelength Division Multiplexing probleBE€CP0g. There,
given a network, the so-called Routing and Wavelength Assignment Pradsks for finding
routes and associated wavelengths, such that a set of traffic repusstisfied, while minimiz-
ing the number of used wavelengths.

Araujo, Cohen, Giroire, and HavesCGHO09, ACGH12] have studied good edge-labelings
in more depth. They call a graph with no good edge-labeliag and say that a&ritical
graph is a minimal bad graph, that is, every proper subgraph has aegigedlabeling. It
is easy to see that's and K 3 are critical. Araujo et al’sACGH12] paper comprises an
infinite family of critical graphs; results that graphs in some classes altiayes a good edge-
labelings (planar graphs with girth at least(6i3, K 3)-free outerplanar graph$C's, Ks 3)-
free sub-cubic graphs); the algorithmic complexity of recognizing baghgrzand a connection
to matching-cuts. (Amatching-cut aka “simple cut” 5Gra70], is a set of independent edges
which is an edge-cut.)

In fact, all their arguments for proving non-criticality rely on the existerfeaatching-cuts.
One of the central contributions of our paper is that we move beyond usighing-cuts.

Araujo et al. also pose a number of problems and conjectures. In partitidg have the
following conjecture, which is one of the two motivations behind our paper.

93
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Conjecture 8.1(Araujo et al. ACGH12]). There is no critical graph with average degree less
than 3, with the exception @f3 and K 3.

Araujo et al. ACGH12] prove a weaker version of this conjecture. They establish the exis-
tence of a matching-cut, relying in part on a theorem by Farley & ProsiskidFP84, BFP11]
stating that a graph with sufficiently few edges always has a matching oey.al$o use a char-
acterization of extremal graphs with no matching-cut by BonsBw05 BFP11. From the
proofs in Araujo et al. ACGH12], it appears that the depths of the arguments increases rapidly
as the upper bountlis approached.

In this paper, we show that there is no critical graph with average dégge¢han three and
girth at least five. Put differently, we prove Conject8cé&in the case when the graph has girth
at least five.

Theorem 8.2. There is no critical graph with average degree less than three and gireat
five.

Moreover, we falsify Conjectur8.1 for the case of girth 4: Fig8.1 shows a graph with
girth 4 and average degré@i < 3 (9 vertices, 13 edges), which does not contain eitfigor
K, 3 as a subgraph. We leave to the reader as an exercise to argue thapthégs no good
edge labeling. It can easily be verified that every proper subgraph baod edge labeling, so
the shown graph is critical. In other words, F&j1 shows a counterexample to Conject8r#
for the case of girth 4.

FIGURE 8.1. Critical graph with girth 4 and average degte8

Another motivation behind our paper is to demonstrate how large girth makeknkab
arguments easiérin Theoren8.42 roughly speaking, we prove that a critical graph with girth
at least five cannot contain a “windmill”. A windmill essentially consists of a nenalf shortest
paths meeting in an “axis”, with the paths originating from vertices of degre@ahs having in
their interior only vertices of degree three. Theor@mis a corollary of Theorend.42 using
an approach inspired by the discharging method from topological graamthve argue that
a hypothetical critical graph with girth at least five and average degsseahan three always
contains a windmill.

For our proof of Theorer.42 we define a class of graphs which we call “decent”, which
have the property that they cannot be contained in a critical graph. Mhmertantly, we give
agluing operation which preserves “decency”. Starting from a small family oiciaecent”
graphs, by gluing inductively, this approach allows us to show that cariane complicated
configurations cannot be contained in critical graphs, which leads todloé @f TheorenB.42

Lindeed, until very recently, no bad graph with girth larger than four kwesvn. In particular, the bad graphs
in Araujo et al.'s construction contain many 4-cycles. This fact had etbiwconjecture, that there exists a finite
numberg such that every graph with girth at leagthas a good edge-labeling; as mentioned above, Araujo et
al. [ACGH12] have shown that with the additional restriction that the graphs be planaottjecture holds true for
g := 6. The conjecture was refuted iMgh12].
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This paper is organized as follows. In the next section, we will discuse swtation as
well as basic facts on good edge-labelings. In Se@i8nwe define windmills, and commence
upon the proof of their non-existence. Sect®d contains the definition of “decent” graphs
and the gluing mechanism. Theor@&#2is stated and proved in Secti8rb, and Theoren8.2
is derived in Sectio.6.

8.2. Basic facts about good edge-labelings

We will heavily rely on the above-mentioned characterization of a good-kdigging using
cycles instead of paths. For this, we use the following definitions.FLée a path or a cycle,
and¢: E(H) — R an edge-labeling off. Let @ be a proper sub-path df (i.e., a path
contained inH which is not equal tad) with at least one edge. For a real numpemwe say
that @) is alocal minimum with valug: in H, if ¢(e) = p for all e € E(Q), and for every
edgec’ € E(H) \ E(Q) sharing a vertex witld) we haveu < ¢(¢).

Distinct minima must necessarily be vertex disjoint. Good edge-labelings carabacter-
ized in terms of local minima of cycles. We leave the verification of the followirgy é&amma
to the reader (or se®pd11]).

Lemma 8.3. An edge-labelingy of a graphd is good, if, and only if, every cyclé in H has
two local minima. O

Obviously, the property of an edge-labeling being good depends ortlyeoorder relation
between the labels of the edges. In particular, scaling (multiplying each ligbalstrictly
positive constant), and translation (adding a constant to each label)tahage whether a
labeling is good or not.

We say that &-vertexis a vertex of degreg; a k~-vertex is a vertex of degree at mdst
and ak"-vertex is a vertex of degree at ledst

Araujo et al. ACGH12] proved the following property of critical graphs.

Lemma 8.4([ACGH12]). A critical graph does not contain a matching-cut.
In particular, the minimum degree of a critical graph is at least two, anuless it is a
triangle Cs, it contains no two adjacent 2-vertices.

For the rest of the sectiorlet G be a critical graph other thafls and K 3. We prove some
basic properties ofr.

Lemma 8.5. LetC be a cycle inG whose every vertex has degree at most three. Then there are
two vertices of” with a common neighbour i — C.

PROOF We proceed by contradiction: 1€t be a shortest cycle whose every vertex has
degree at most three. @ — C’ # (), then it can be easily seen that the set of edges with exactly
one endpoint irC’ forms a matching-cut, contradicting Lemrda. If G — C’ = (), thenG is
a cycle. Since&y # (s, there is a good edge-labeling for this cycle, contradicting the criticality
of G. (]

Lemma 8.6. Let P be a path of length at least oned@whose end vertices have degree two and
internal vertices have degree at most three. Then two verticEshafve a common neighbour
inG — P.

PROOF We proceed by contradiction: Iét’ be a shortest path between two vertices of
degree two with inner vertices of degree three= i P’ # (), then the set of edges with exactly
one endpoint inP’ forms a matching cut; contradicting Lemr8al. If G — P’ = (), thenP’
cannot be a shortest such path. (We note that the proof goes thrabghehgth ofP is 1.) O
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8.3. Windmills

To motivate the definition of windmills, let us take a look at how they will be useden th
proof of Theoren8.2 The proof uses a discharging type argument. We assign “charge® to th
vertices: vertex receives chargé — 2d(v). Note that only 2-vertices have positive charge.
Since the average degree@fis less thars, the total charge of the graph is positive. Now, we
“discharge” 2-vertices. Applying Lemn6, charges are sent from 2-verticesito-vertices
via shortest paths consisting of only 3-vertices. Later on, we will showttiese paths are
internally disjoint. Since no charge is lost during the discharging phaskeifdischarging all
vertices have non-positive charge, then we have a contradiction. \¢owkere may be some
vertices with positive charge. These vertices are the centers of theusésiavhich we refer to
as “windmills.”

In the remainder of this sectiotet GG be a critical graph of girth at least five.

For a tree H and verticesr,y of H, we denote by Hy the unique path between and y
in H. An internally shortest 3-patls a path? = zy...z, with ¢ > 1 andd(z;) = 3 for
j € {1l,...,£— 1}, such that, fole := x¢x;, the pathz; Pz, is a shortest path ity — e. In
particular, the path; Pz, is induced inG. We say thatP starts inzy and ends in:,.

Remark 8.7. By Lemmas8.6, the graph= has no internally shortest 3-path that starts and ends
in 2-vertices.

So for an edgexyzy, a sail with tip 2oz is defined to be an internally shortest 3-path
P = x9x1 ... 24 that starts in a 2-vertex and ends ida&vertex which has minimum length
among all such internally shortest 3-paths.

Remark 8.8. Among the vertices of degreedeg(v) # 3, the ending vertex, of a sail is
among those which have minimum distance fropin G — e. Note that, inG — e, the vertexx,
has larger distance from; thanz,: otherwise we would have a contradiction (either from
having a4 vertex closer tac; or by Lemma8.5).

Definition 8.9. Let £ > 3 be an integer, ang a vertex of degreenax(4,k) or k + 1. A
k-windmill with axisy in G is an induced subgrapH of G, spanned by the union @f sails
beginning ink distinct tips, and each of them endinggnA windmill H is calledcompletan
G, if it is not a proper subgraph of another windmill.

Note that it is possible that two sails of the same windmill start in the same 2-véxiex (
have different tips).

Lemma 8.10. Let P = zox; ...z, and P’ =z . .. xj, be any two sails ir7. Then

(a) if a vertex is adjacent to two vertices Bf then one of the two is the starting vertax

(b) if P and P’ have distinct tips but identical ending, i.e, = x},, then no vertex is adjacent
to two (or more) of the vertices of the path. ..z zpx) _, ... 2.

(c) P and P’ either share the same tip or they are internally disjoint;

PROOF The facts thats has girth at least 5 and th&tis a shortest path from its tipz; to
a4"-vertex easily imply (a). To prove (b), assume otherwise, that is, theresstices adjacent
to two vertices of the pat); = x;...zp_jzz)_,...27. Of all such vertices, lety; be a
vertex whose neighborhood’s intersection with sayz;, is closest tar; on P. If there are
ties, then takev, to be the vertex whose neighborhood’s intersection \Hi‘t,tsayx;, is closest
to 2} on P’. SinceG has girth at least 5, vertex; is well defined. Now recalling thaP
and P’ are shortest paths from their tips tata-vertex, it can be easily seen that must be
a 3-vertex (cf. RemarB.7). By Lemma8.6 and the choice ofv;, two vertices of the path
Qs = x1.. .:ciwlx; ...z, have a common neighbor (one of which mustuag. Notice that
|Q2| < |@Q1], since the girth of7 is at least 5. Choose, for Q> the same way that we chose
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for )1 and we continue the process. Since the lengtlig;sfare decreasing, the process cannot
be repeated forever, so at some point we get a contradiction to Léh@ima
Item (c) follows along the same lines as Item (b). O

Since a windmill contains a unique -vertex, it can only be a subgraph of another windmill
if their axes coincide, and the larger one has at least one more sail. ilhefsawindmill are
pairwise internally disjoint by Lemm@&.10(and the definition of a windmill, by which all tips
have to be distinct). Moreover, there are no edges between vertices sditie sail, except if
one of them is the starting vertex and the other is the axis. Note that evesybetigeen the
axis and the starting vertex of a sail is itself a sail.

8.3.1. Flags.For a fixed complete windmill, we now study vertices that are themselves
outside the windmill, but that have two or more neighbors inside the windmill. Wesaah
a vertex aflag. We need to classify the flags. For this, we make the following notational
convention. Letd be a complete windmill and: an H-flag (i.e., a vertex not inH that has
at least two neighbors i#/). We say thatv hassignature(dy | di,ds,...), if d(w) = do,
and the neighbors afi in H have degreeg;, : = 1,2, ..., listed with multiplicities. We will
conveniently replace sub-lists with an asterix-or examplew has signaturédy | di, *) if it
has degred, and at least one of the neighborswfin H has degred;. Or, similarly,w has
signature(dy | di,ds, ds, %), if w has degred, at least three neighbors i, and these three
are of degrees;, i = 1, 2, 3. We will also replace the degree ofwith a joker:w has signature
(x| dq,da,...), if the neighbors ofv in H have degrees;,i =1,2,....

The concept of signature is only needed to reduce the possible ocesrefflags to a very
small number of cases. It will not be used beyond this section.

Lemma 8.11. Let H be ak-windmill. The graphG has no flag with either of the following
signatures:

(@) (212, %),

(b) (312,2,%)

(©) (x]3,3,%)

(d) (x| 3,47, %)

(€) (312,4%,%)

PROOF Lemma8.4 implies that there is no flag with signatu¢2 | 2,*). Lemma8.6
gives ). Lemma8.1Qb) implies that there are no flags with signatufeg 3, 3, x) and (x |
3,47 x). For(3 ] 2,47, %), letw be the flag and lej the axis of the (complete) windmill, and
the staring vertex of a sail such that~ w ~ y. (We use the symbol~” for the adjacency
relation inGG). Sincew is a 3-vertexgwy is a sail. Adding the vertew to H thus gives a larger
windmill, contradicting the maximality off. O

Lemma 8.12. Let H be a complete windmill with axig and letw be anH-flag of signature
(3 ]2,3,%), so that there arec,v € V(H) withd(z) = 2, d(v) = 3, andz ~ w ~ v. Thenz
andv are not in the same sail of .

PROOF Suppose: andv are on the same sai. Thenz Pv+vw-+wz is a cycle consisting
of 2- and 3-vertices only. By Lemn&b5, there must be a vertexwhich is a common neighbor
of two vertices on the cycle. By Lemn&1(Q(b), one of these two i8. Denote the other by
and note that: is onx Pv, butu # x, v.

Sincev has degree 3; must also have degree 3, becauisés a sail starting inc, andz
having degree different from 3 would contradict the minimality of the distdrara the tip to
the end-vertex (by Rema#k 8). Now consider any sail with tipw. Sincew is of degree 3, it
must contain eithew or z. Butv cannot be contained in such a sail, because otherwise it would
have a non-empty interior intersection withy contradicting Lemma.1Q(c). It follows that
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there is a sail) with tip zw containingz such that
(%) lwz + 2Q| < |wv + vPyl|.

However, the length of is at most the length of Pu + uz + 2@, and the inequality must be
strict, because otherwise the saiPu + uz + zQ) would have a non-empty interior intersection
with the sail@). Thus, it follows that

(x%) |luPy| < |uz 4+ 2Q)|.
Now (x) and =) together imply thafuPy| < 1+ |2Q| < 1+ |vPy|, from which we conclude
|luPy| < |vPyl, a contradiction to the fact thatis betweeny andz. O

The remaining cases are more complex. We start with the following fact.

Lemma 8.13. Letw be anH-flag with signatureg(+ | 2, 3, x), so that there are;,v € V(H)
with d(z) = 2, d(v) = 3, andxz ~ w ~ v. If x andv are not in the same sail d, thenv is
adjacent to the axig of H.

PROOF By Lemma8.11(a), w has degree at lea3t Suppose that is on the sailP’ of H
with starting vertext’, andv £ y. (Note thatr’ # z.)

On one hand, if the degree afis 3, then we have an internally shortest patl*’v + vw +
wz ending in a 2-vertex, contradicting Remak. On the other hand, if the degreewfis 4T,
thenaz’ P'v + vw is a path shorter tha®’, but ends in a vertex not of degr8econtradicting
Remark8.8. d

Lemma 8.14. No flag can have signatur@ | ).

PROOF The case$3 | 2,2), (3 | 41, x) and(3 | 3,3) are dealt with in Lemm&.11

Let us conside(3 | 2,3). By LemmasB8.12and8.13 denoting the flag by, the 2-vertex
by x, the 3-vertex by, and byz’ the starting vertex of the sal?’ containingv, the start and
end vertices of the pat) := 2’/ P'v + vw + wx have degre€. By Lemma8.6, there is a
vertexz which is a common neighbor of two vertices @ By Lemma8.11(c), one of the two
must byw. Denote the other one hy.

If 2 has degred or more, then the length af Qu + uz is shorter than that of’, contra-
dicting Remarl8.8.

If = has degre8, then the length of'Qu + uz 4+ zw + wx is at most the length of”’
(becausé&r has noCs or Cy), contradicting RemarR.8. O

Lemma 8.15. Letw be anH-flag with signaturg4™ | 2, 3, x), so that there arer,v € V(H)
with d(w) = 4%, d(z) = 2, d(v) = 3, andz ~ w ~ v. If z andv are on the same sail dof,
thenv is adjacent to the axig of H.

PrROOF Denote the sail containing bothandv by P. If v is not adjacent to the axig
thenxzPv + vw is a path shorter tha® that ends in a vertex not of degr8econtradicting
Remark8.8. O

We conclude the subsection with the following important consequence afivastigation
of flags. Per se, windmills are subgraphgtbinduced by sails, but the next lemma shows that
in a complete windmill, every edge already belongs to some sail.

Lemma 8.16. All edges of a complete windmill are on sails.

PROOFE To argue by contradiction, consider an edge uv whose vertices are on a wind-
mill, but which is not on a sail. By Lemm@.4, verticesu, andv cannot be both 2-vertices. By
Lemma8.1Q, verticesu andv cannot be both 3-vertices on the same sail. The same lemma,
shows a 3-vertex and the axis cannot be the endpointés dfow let u be a 2-vertex ana
be a 3-vertex. Vertices andv can either be in the same sail or not. The former contradicts
Lemma8.5and LemmaB.10 For the latter case, |1d? be a sail which contains a 3-vertex
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which is adjacent to a 2-vertex on another sail. Let be the 2-vertex of the sai. Then
xPv + vu is an internally shortest path, contradicting Lem&n&0

The only remaining case is when andu, are two 3-vertices on distinct saily, P, of
the windmill. Sayu; € P, andus € P», and that the starting vertex @, is x; (note that
x1 = x9 is possible). Denote b§) := z1 Piu1 + ujus + ug Pxo the path (or cycle) starting
with the tip of one of the two sails, taking the edgeand ending in the tip of the other — the
two starting vertices; of the sails may coincide, in which cagkis a cycle.

By Lemma8.6 (or Lemma8.5if () is a cycle), there must be a vertexwhich is adjacent
to two verticesy;, 12 on Q). The vertexw cannot be the axis as it contradicts Rem@&r& or
entails that there is a triangle. Heneeis a flag.

By Lemma8.11(c), one of they; must be a 2-vertex, the other may be a 2- or a 3-vertex. If,
sayy- is a 3-vertex, then either by LemrBal3or Lemma8.15 y» must be adjacent to the axis
— a contradiction, since the only vertex @hwhich might be adjacent to the axis has degree at
most three, and two neighbors @h the third is the axis (and is not the axis).

Hence, we conclude thgi andy, are both 2-vertices (in particular; # x2). Since, by
what we have just saidy is not adjacent to a third vertex ¢f, by Lemma8.5, there is another
vertexw’ which is adjacent to two 3-vertices @p. But such a vertex would be a flag with
signature(x | 3, 3, *), which is impossible by Lemm&.11(c). (]

8.3.2. The flag graph.We have narrowed down the possible configurations involving flags
of windmills. To summarize the results above, a flag can be adjacent to

e several 2-vertices on the tips of sails,
e and at most one of the following:
— the axis, or
— one 3-vertex which is adjacent to the axis on a sail.

Moreover,

¢ only one flag can be adjacent to the axis,
e every 3-vertex as above can be adjacent to at most one flag (obyiously
e there are no edges except those in the sails of the windmill or incident to ¢ise fla

This structure can be nicely dealt with in an inductive manner (rather tHaimgento a
humongous list of case distinctions). In the remainder of this section, welstw the structure
of flags on windmills can be modelled by a directed graph which wefleallgraph which has
a tree-like structure. The possibility of a flag which is adjacent to the axis dsrglacation.
Such a flag, if existent, is omitted from the construction of the flag graph.

Let W be a complete windmill contained @. A flag which is adjacent to the axis oF
is calledirregular (recall that there can be at most one); the other flags are aeliedar. It
is important to realize that a sail whose tip is adjacent to an irregular flag ingthlat least 3,
because the girth af is at least 5.

The flag graph? = F(W,G) of a windmill W is a directed bipartite graph. One side
of the bipartition of the vertex set df' comprises thdlag-verticeswhich are in one-to-one
correspondence with the regular flagsfof The other side of the bipartition consists of the
sail-verticeswhich are in one-to-one correspondence with the 2-vertices at the tipe séils
of W. We say that a sail-vertex which corresponds to a 2-vertex containedoirsdis is
degeneratea sail-vertex corresponding to a 2-vertex contained in only one sail idlaadie-
degenerateThere are two types of arcs:

2-arc Whenever a regular flag is adjacent to a 2-vertex on the tip of a s&ilof W, we
have an arc from the sail-vertex corresponding’tto the flag-vertex corresponding
to w. Note that, in this case, the sail-vertex is non-degenerate.
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3-arc Whenever a regular flag is adjacent to a 3-vertex in W, then there is an arc
from the flag-vertex corresponding to to the sail-vertex which represents the sail
containingz.

The flag graph may contain anti-parallel arcs: A regular flag might be ewljdo a 2- and a
3-vertex of the same sail.

We note the following observations which follow directly from the constructod the
earlier results of this section (see the summary above).

Lemma 8.17. Let G contain a windmilllV, and letF = F(W, G) be its flag graph.

(a) Degenerate sail-vertices have out-degree 0; non-degeneriteestices have out-degree
at most 1.

(b) Flag-vertices have out-degree at most 1.

(c) Degenerate sail-vertices have in-degree at most 2; non-deggensail-vertices have in-
degree at most 1.

(d) Flag-vertices have in-degree at least 1.

Moreover, the undirected connected componentg' afe in one-to-one correspondence with
the blocks in a block-decomposition Bt In particular, only non-degenerate sail-vertices can
be contained in directed cycles. O

We now show how the flag graph can be constructed inductively froms bbsments and
construction rules.

e Basic element S A single non-degenerate sail-vertex.

e Basic element S A single degenerate sail-vertex.

e Basicelement S A flag-vertex and a sail-vertex with an arc from the sail-vertex to the
flag-vertex.

e Basic element C2A cycle of length 2.

e Basic element C4 A cycle of even length at least 4.

If F'is aflag graph, it can be extended with the following construction rules:

e Construction rule U Start a new connected component (in the undirected sense) by adding
one of the basic elements without connectio#to

e Construction rule A Add a sail-vertex with an outgoing 2-arc linking it to an arbitrary flag-
vertex of F.

e Construction rule B Add a flag-vertex and a sail-vertex, together with a 2- and a 3-arc: the
3-arc goes from the new flag-vertex to an arbitrary sail-verteX,iand the 2-arc goes from
the new sail-vertex to the new flag-vertex.

Lemma 8.18. Let G contain a windmilllW, and letF" = F(W, G) be its flag graph. The#’
can be constructed using the above basic elements and construction rules

PROOF We show that each connected component of the flag graph can beuctes in
an inductive manner as follows. Lét be a connected component of the flag graph. Assume
that C' cannot be obtained in one step by Construction rule W lias a sail vertex with
out-degree 1 and in-degree 0 whose flag neighbour has either aeed®gn-degree at least 2,
then construcC'\ s first and then obtaid’ by applying Construction rule A (notice that by the
definition, the flag neighbour of must be inC'\ s asC' cannot be constructed by Construction
rule U). Otherwise(' has a sail vertex with out-degree 1 and in-degree 0 whose flag neighbour
f has both out-degree and in-degree 1. In this case, construc{s, f} first and then obtain
C by applying Construction rule B. O

In Section8.5, this construction will be used to inductively “glue together” the graph in-
duced by a windmill and its flags. Before we can do that, in the following seatierexplain
the gluing operation.
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8.4. Typed graphs and gluing

Let P be a path and) a local minimum with valug: in P. We sayQ is animinif ; < 0
or () contains no endvertices &f.

Definition 8.19. A typed graph with types is a graph together with a mapping V(G) —
{0,1,2}. In other words, every vertex has one of three possible types: iteaitter a type-0, a
type-1, or a type-2 vertex. The figures in this section show graphs wittyples of the vertices
in square brackets.

A decent labelingf a typed graph is a good edge-labeling with the following properties:
(a) If P is a path between two type-2 vertices, then the length sfat least three, and at least

one of the following two conditions hold:

(a.1) there is an imin o® such that between each endpointfo&nd this imin, there is an

edge with strictly positive label;

(a.2) there are (at least) two imins.
(b) If Pis apath between between a type-1 vettemd a type-2 vertew, then the length oP

is at least two, and

(b.1) there is an imin o® which does not contain.

A typed graph iglecentf it has a decent edge-labeling.

Note that if a pathP satisfies either of the conditions (a.1) or (a.2), theralso satis-
fies (b.1). Moreover, if a typed gragh has no type-2 vertex, then any good edge-labeling of
is also decent.

Fort € {1,2}, a path in a typed graph is callegimple,if the type of every interior vertex
is strictly less thart. We leave it to the reader to convince himself that, in order to verify that
a good edge-labeling is decent, it suffices to check 2-simple paths inn@).-aimple paths
in (b), respectively.

Before we continue discussing typed graphs in general, we discusmkexamples which
we will need in the remainder of the paper: We describe typed graphs efitek cconcrete
decent edge-labelings on them (where they exist). The graphs aedirat#ed graphsvith
the root denoted by — this is owed to the fact that we will later apply them to windmills, with
the root corresponding to the axis of the windmill. Hence, we will discuss multgrigians of
some graphs, with the difference lying only in the location of the root vertex

Example 8.20. Decent labeling of typed paths ending in a type-2 vertest P be a path of
length at least two with root vertex as shown in Fig8.2, and ending in a type-2 vertex.
Denote the vertex adjacent to by x. The rooty is type-0 or type-1; is type-0, and all
remaining vertices o’ are type-1 vertices. TheR is a decent typed graph. Fi§.2 shows

a decent edge-labeling If P has length two, thep(wxz) = —1 and¢(zy) = 3/4. If P has
length at least three, then letwz) = —1, ¢(v,—1v,) = 17/24 and the rest of the edges have
label+1.

_ 3 — 17

we——1 '[0]+/4 ov =y we——1 0 +1 ® .[Jl 0[1]+ /240%:@/
[2] . [1] (2] . v (1]
typed2-path w/ decent labeling typed3*-path w/ decent labeling

FIGURE 8.2. Typed paths with decent edge-labelings

Example 8.21. Decent labeling of typed paths ending in a type-1 vertest P be a path of
length at least three with rogt as shown in Fig8.3. The type of the root vertex is 0 or 1,
and all other vertices have type 1. Thénis a decent typed graph. Fig.2 shows a decent
edge-labeling. The additional edges (dots) have lafiel
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— 17
10 +1 /24 0u,—y

SO g fm

typed path w/ decent labeling

FIGURE 8.3. Typed paths with decent edge-labelings

Example 8.22. Decent labelings of cycles without type-2 verticest C' be a cycle on type-0
and type-1 vertices as shown in FBj4. Let u be a type-0 vertex and all remaining vertices
of C' be type-0 or type-1 vertices. Then is a decent typed graph. Fi§.4 shows decent
edge-labelings. If” has length five, then based on the position of vegtewe present two
different decent labeling for later applications, either of which is a desdge-labeling of the
typed 5-cycleC’ independent of the position gf

AL
17/2 +1 [1] —1
Y U [0] U
17 _ 1
/24 1 7 7 [1]
+1 +1
5-cycles w/ decent labelings 6*-cycle w/ decent labeling

FIGURE 8.4. Typed cycles with decent edge-labelings

Example 8.23.Decent labelings of cycles with one type-2 vertex, paolnsider a typed graph
consisting of a cycle and one extra edge with one end on the cycle as ghntventop part of

Fig. 8.5. The rooty is off the cycle and has type 0 or 1. There is a type 2 vertex on the cycle,
and it is adjacent to two type O vertices. The rest of the vertices have typeelfigure shows

a decent labeling.

Example 8.24.Decent labelings of cycles with one with type-2 vertex, pa@dnsider a typed
graph consisting of a cycle and one extra edge with one end on the cygtlews in the middle
part of Fig.8.5. The rooty is on the cycle, and has type 0 or 1. There is a type-2 vertex on the
cycle, and it is adjacent to two type-0 vertices. The rest of the vertioastlype 1. For given
o, [ satisfying?/s < a < 3/4 < 3, a decent labeling can be constructed, as shown in the figure.

NEW TODO: CHECK!

Example 8.25. Decent labelings of cycles with one with type-2 vertex, part@bnsider a
typed graph consisting of a cycle as shown in the bottom part ofg%g.The rooty is on the

cycle, and has type 0 or 1. There is a type-2 vertex on the cycle, andljaiseat to two type-0
vertices. The rest of the vertices have type 1. For given satisfying2/s < a < 3/4 and

~v < 0, a decent labeling can be constructed, as shown in the figure.

A k-wheel is a typed grapli{ which is the union of a cycle and a center vertex connected
to £ > 2 of the vertices on the cycle, callethchors. The distance on the cycle of any two
anchors must be at least three. Fix an orientation of the cycle. A swcoafsan anchor is
called abogey;the successor of a bogey is calledmectator;all other vertices on the cycle are
calledboobies A path contained in the cycle connecting successive anchors is calégpireent.
The vertices are to have the following types:

e anchors and spectators have type 0;
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[%] +1 [2] 1 [Z]w

0 -1

o Tl +1 o
[1] [0] [1]

Cycle of length at least 5 and edge sticking out
(Ilustration for Example3.23

v ®[1] v ®[1]
g B
—1 —1 —1
o @ o @ o
o [0] o 41
1 1 1 1 1
BUCE I PR NN
2 2
lllustrations for Example.24
<a<3fsa<p)
7wy [0]
U 0] [g] @ .
(0% v 3
[1] (1 Lol

2

lllustration for ExampleB.25
(%3 < a<3f4,v<0)

FIGURE 8.5. Cycles having a type-2 vertex with decent edge-labelings.

e the bogies have type 2;
e the boobies have type 1; and
e the center vertex either type 0 or type 1.

We divide the class of wheels into 3 subclasses: Benign wheels, almositeaéls, and
evil wheels. The first two kinds are decent, while the third is not.

Example 8.26. Decent labelings of benign wheelSonsider a wheel in which the center is a
type-1 vertex but contains at least one pair of consecutive ancharsendistance is at least
four (this is the “benign” segment of the wheel). These typed graphsadiexibenign wheels
Fig. 8.6 shows decent edge-labelings of benign wheels.

Example 8.27. Decent labeling of almost evil wheelSonsider a wheel in which the distance
of every pair of consecutive anchors is exactly three and the centdyjge vertex. These
typed graphs that are only different from evil wheels in the type of tinéeceare calle@lmost
evil wheels Fig. 8.7 shows decent edge-labelings of almost evil wheels.

Example 8.28. Evil wheels are not decent.the distance of every pair of consecutive anchors
in a wheel is exactly three and the center is a type-1 vertex, as shown B.githen wheel is
called arevil wheel.lt can be easily seen that evil wheels have a good edge-labeling. ldgwev
they are not decent.
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[0] (0]
+1 &
(1] S
910 -
(1]
0 +1 0
[0] b (0]
—1 lg benign
B segment
=
S
(2] [0]
A not evil 2-wheel w/ decent labeling Not evil h-wheel w/ decent labeling

FIGURE 8.6. Benign wheels are decent.

Remark 8.29. It can be seen that if a wheel is not evil then exampl@3 and8.26can yield a
decent edge-labeling. In other words, if a wheel is not evil, then it ismtec

8.4.1. Swell subgraphsLemma8.31below is the fundamental motivation behind defin-
ing typed graphs and swell graphs.

Definition 8.30. Let H be a proper subgraph of a gragh We say that is a swell subgraph
of G, if H is typed with at least one type O or type 1 vertex and the following properties:

(a) no type 0O vertex irtH has a neighbor i6: — H,;
(b) every type 1 vertex it{ has at most one neighbor @ — H;
(c) no vertex inG — H has two or more type 1 vertices &f as neighbors.

The shaded area in Fig.9is an example of a swell subgraph.

Lemma 8.31. Let H be a decent typed graph. A critical graph cannot contéiras a swell
subgraph.

In the following lemma, we use the shorthardo to denote a negative number whose
absolute value is larger than all other, “finite”, absolute values.

PROOF OFLEMMA LEM :FUNDAMENTAL. Assume otherwise and I&f be a decent typed
graph, which is a proper subgraph of a critical graph We prove thaiG has a good edge-
labeling. Define the grapf’ by deleting fromG all the type-0 and type-1 vertices &f. Note
that E(H) N E(G’) = 0, by Definition8.19 SinceH has at least one type 0 or type 1 vertex,
G’ has a good edge-labeling.

Note that the edges it/ := F(G) \ (E(H)U E(G")) are incident to type-1 vertices &f.

Now take a decent labeling df and scale it so that all nonzero labels have absolute value at
least2. Also, take a good labeling df’ and scale it so that all labels have absolute value at
most1. We combine these two to form a labeling of the edgeé&:pfvhere the edges A/
receive the label-co. We prove that this forms a good edge-labeling-ofConsider a cycl€’

inG. If E(C) c E(G") or E(C) C E(H), thenC has two local minima.

Otherwise, consider the graghn H. Its connected components are path, at least one of
which must have non-zero length, so lebe such a component. Denote the end-verticeB of

by z,y.



8.4. TYPED GRAPHS AND GLUING 105

[0] ~1 [2]
+ +1
0] +1 [yg] +1/2 [0]
) i)
[2] +1 [0]

Almost evil 2-wheel w/ decent labeling

[0]

[0]

[0]

Almost evil 3-wheel w/ decent labeling Almost evil odd wheel w/ decent labeling

FIGURE 8.7. Almost evil wheels with decent labelings
(0] (2l [0]

o [0]
[0] [0 [0]

2] [2]

[2] [0] [0

Evil 2-wheel Evil 3-wheel

FIGURE 8.8. Evil wheels ar@otdecent.
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FIGURE 8.9. A swell subgraph

Notice that with the above mentioned relabeling, an iminfbis in fact a local minimum
onC.

First, assume that bothandy are of type 2. IfP has at least two imins, then those two are
in fact two local minima inC'. OtherwiseP has an imin such that between each endpoirf of
and this imin, there is an edge with strictly positive label. Moreover, by the gcafitabels in
H, these two labels have value at least 2. Considering the scale of the lal€|sthere is a
local minimum ofC' that belongs td@>’. This local minimum in addition to the imin oR are
two local minima ofC'.

If = has type 2 and has type 1, then the edgeof C' \ P adjacent toy has label—cc.
Moreover, by the definition of a decent labeling, there is an iminPowhich is not incident
to e. By the same argument as above, this imiPiis a local minimum inC'. Hence, we have
two local minima onC.

Finally, if both z andy have type 1, let and f be the edges af' \ P incident tox andy,
respectively. By the definition of a swell subgraptand / cannot be adjacent. Soand f are
local minima ofC' as their labels are oo, O

8.4.2. Gluing. In order to use decent typed graphs in inductive arguments, we have the
following construction which allows to “glue” two decent typed graphs ant@dio a new one.

Definition 8.32. Let G; and G4 be typed graph with types, i = 1,2, let H be an induced
subgraph of botltz; andGs, andV (H) = V(G1) N V(G2). We say that the typed graph
with typesr is the result ofluing G; and G, along H, if V(G) = V(G1) UV (G2), E(G) =
E(G1)UE(Gs),and

7'1(11), if ve V(Gl) \ V(Gg),
7(v) = < 72 (v), if veV(Gy)\V(Gh),
min (i (v), 72(v)), if v € V(G1) NV(Ga).
We wish to have conditions which ensure tha¥if andGy are decent, the@' is, too. As a

motivating example, the reader might want to verify the following fact (whiehde not need
in this paper):

Lemma 8.33. If for all v € V(H) we haver;(v) = 72(v) = 2, and if G; and G5, are decent,
thenG is decent.
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Our aim is to decompose windmills into elementary parts—indeed, all parts wehaged
been discussed in Exampl80-8.24and8.27-8.26 For this, we need a considerably more
powerful gluing mechanism than that of Lem®33 We define the class of “gluable” typed
graphs, which can be glued to each other by 1- and 2-sum operations.

We need to first classify certain special type-2 vertices.

Definition 8.34. For a given quadrupléZ, T, ¢, y) consisting of a typed grapf with typesr,
a decent edge labelingof G, and a root vertey of G we say that a type-2 vertex is locked
if the distancels (w, y) betweenu andy is two, the (unique) patf betweenv andy of length
two has an imin, and the edge incidentton P has label in2/3, 3/4].

We call P thelocking pathof w. If w is not locked, we call itonnectable

Now we are ready to give the complete definition of the gluing operation.

Definition 8.35. We say that a quadruplé7, 7, ¢, y) consisting of a typed graph with typesr,
a decent edge-labelingof (G, and a root vertey of GG is gluablg if the following conditions
hold.

(a) Every pathy, vy, v of length2 originating fromy and containing a type-1 vertex and a
vertexwvy of type 0 or 1 isadmissible:With « := ¢(yv1) andj := ¢(v1v2), we have

2/3 < a0 <3/a<f.

(b) Every 1-simple pathof length at least one between a type-1 vertex @odntains an edge
with value at leas/s.
(c) Not type-2 vertex is adjacent to the raot
(d) Letw be atype-2 vertex id:. If the distancelq(w, y) betweenw andy is two, then every
2-simple pathP betweenw andy except for the locking path af, if it exists, satisfies one
of the following:
(d2.i) P has an imin, and the edge incidentton P has label at leasy; or
(d2.ii) The edge incident tg on P is a local minimum with value if0, 1/2].
If the distancedq(w,y) betweenw andy is at least three, then every 2-simple pdth
betweerw andy satisfies
(d3) The edge incident tgp on P is a local minimum with value if¢/3, 3/4]; and
there is a second imin d? between this edge and.

Before we prove that gluable graphs can be glued to each other, vesvriwe examples
from the beginning of this section.

Example 8.36. The typed graphs with the decent labelings and root-vertiakscribed in the
examples in the previous subsection are all gluable. Checking this amountshameally
going through all theé-simple paths of the graphs. We omit it here.

Let us now prove that gluing really works.

Lemma8.37.Let(G1, 11, ¢1,y) and(Ga, 12, ¢2, y) be gluable, and let: result from gluing,
andGq along{y}. Moreover, foralle € E, letg(e) := ¢1(e),ife € E(G1) andg(e) := ¢a(e),
otherwise. ThelG, 7, ¢, y) is gluable.

The proof is purely mechanical and can be found in the appendix.

Lemma 8.38. Let (G1, 71, ¢1,y1) and (Ge, 12, ¢2,y2) be gluable,w; a connectable type-2
vertex ofG; and wsy a connectable type-2 vertex 6f. Let G be the typed graph resulting
from identifyingy; with y, to y andw, with ws. If G1 and Gy are gluable, andi¢, (y1, w1 ) +
dg, (y2, w2) > 5, then(G, T, ¢, y) is gluable.

2Recall the definition of-simple from pagd .01
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The condition on the distances, which means that identifying y» andw; = wsy cannot
create &’y in GG, is needed because if the labels on two paths satisfy the condition (d2.ii), then
gluing them does not give a good edge-labeling. The proof of Le@8®can be found in the
appendix.

The operation which adds a graph of the kind described in Exagpldiffers from the
above two.

Let (G1, 71, ¢1,y1) be a gluable graph, arig1, u1, v1) a path inG as in Definition8.35a).
Let H be a typed graph with types as described in Examp824 To specify the edge labeling
of H, we leta := ¢1(y1u1) andp := ¢1(ujvy). By Definition 8.35a), these values satisfy
the conditions in Exampl8.24to define the decent edge-labeling of H. The proof of the
following lemma is in the appendix.

Lemma 8.39. The typed grapld:’ resulting from gluingz and H along{y = y1,u = uj,v =
v1} is gluable.

This is the only lemma that can create flags that are locked type-2 verticesolldwing
lemma will give us the option to add sails that connect to these flags, the pradlisgous to
that of LemmaB.39

Let (G, 71, ¢1,y1) be a gluable graph, and;, v, w;) a locking path inG. Let H be a
typed graph with types, as described in Examp&25 To specify the edge labeling éf, we
let o :== ¢1(y1u1) andy := ¢1(uws). By Definition 8.34 these values satisfy the conditions
in Example8.25t0 define the decent edge labelingof H.

Lemma 8.40. The typed grapld’ resulting from gluingz and H along{y = y1,u = uj,w =
wy } is gluable.

8.5. Non-existence of windmills

In this section, we prove the following theorem mentioned in the introduction.

Again, in this sectiond is a critical graph of girth at least five. L&Y be a windmill inG
with axisy andk sails, and denote by}’ be the subgraph off induced byW and all of its
flags, regular or not. We say thlf is theclosureof W. Define types for W as follows:

) - (0) 2, if visaflag,
T(v) =
degq(v) — degyr(v) otherwise.

We will prove the following.

Lemma 8.41. The typed grapiV” with typesr is decent, unless

e it contains an evil wheel, and there is no irregular flag;
e it contains an almost evil wheel, and there is an irregular flag.

We will prove this lemma below. Disregarding the types, from this lemma, we can imme-
diately derive the following main result.

Theorem 8.42.For every windmill’ in G, the closurdV of W contains an induced subgraph
as depicted in Fig8.7, i.e., an (almost or not) evil wheel.

PROOF. This follows from LemmaB.41 by noting thatlV is a swell subgraph ofy, and
invoking Lemma8.31 U

The proof of LemmaB.41is performed in two steps. We first prove that the “regular” part
of H is gluable, and then add the irregular flag, if existent. For thisHldie the subgraph
of GG induced bylV and its regular flags, and define typefor H as in ). We now prove the
following.
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Lemma 8.43. There exists an edge-labelingsuch that(H, , ¢, y) is gluable, unless it con-
tains an evil wheel.

PROOF Suppose thalf does not contain an evil wheel with axisRecall that this implies
that H does not contain an evil wheel as a subgraph.

We proove that is gluable. To do this, we associate to each of the basic elements (as
laid down in LemmaB.18 a gluable graph (one of the examples of the previous section); and
to each of the construction rules, we associate one of the operationsmofias8.378.39 By
induction, this implies that{ is gluable.

Basic element SThis corresponds to a typed path as in ExanR

Basic element S This corresponds to a cycle as in Exam@l22

Basic element S This corresponds to a typed path as in Exang&L

Basic element CZThis corresponds to a cycle i as in Example3.23

Basic element C4This either corresponds to an almost evil wheelinas in Example.27,
or to a benign wheel, as in Exam@Be6 because evil wheels are excluded.

Suppose that the grapti’ represented by a partial flag graph is gluable. We perform
one of the construction rules to obtain an extended new flag grapimd explain how we use
the gluing lemmas to extend’ to a gluable grapltf.

e Construction rule U This corresponds to taking a 1-sum as in Len8r&/. The identifica-
tion takes place at the axes of the components.

e Construction rule A This corresponds to adding a path as in Exangpk®or Example8.25
via the 2-sum operation of Lemn&38or Lemma8.40 respectively. In the first case, the
new sail-vertex from which the arc initiates corresponds to the path; theagldéirtex which
is the target of the arc identifies a flag of H'. This flagw; is identified with the vertexv
of the path. The axig; is identified with the root vertey, of the path. In the second case,
the flag is the type-2 vertex in the bottom part of Fig8.5, with the bottom path connecting
y andw corresponding to the new sail-vertex.

e Construction rule B This corresponds to adding a cycle as in Exangp®via Lemma8.39
The sail-vertex ofF' to which the new vertices are attached, identifies a sail (degenerate or
not) in H. The two edges in this sail (or, on one path of the salil in the case when it is
degenerate) which are closest to the axiorrespond to the two vertically drawn edges in
the middle part of Fig8.5, yu, uv. The new flag-vertex is the type-2 vertex in that picture,
and the new sail-vertex corresponds to the path between the o the type-0 vertex to
the right of the type-2 vertex (the path which does not use the vejtex

O
We point out the following property of the edge-labelingonstructed in this proof.

Remark 8.44. If W has an irregular flagyy, then on every saiP whose tip is adjacent to,
the edge-labeling for H has the labels shown in Fig.3.

In the second step, if necessary, we will need to add the irregular flalg fhis step will
complete the proof of Lemm&.41

PrROOF OFLEMMA 8.41 If no irregular flag exists, this lemma is just a weaker form of
Lemmas8.43 Suppose that an irregular flaglivi exists; denote it byyy. We take the labeling
from Lemma8.43 and extend it to a decent labeliggof 1. To do this, lety, z1, ..., z, be
the neighbors ofuvg in V. We letg(e) := ¢(e) for all e € E(H); ¢(ywoy) := —10; and
¢(w0$j) =4+1,7=1,...,r.

We now verify that the resulting labeling is decent, using the above Re&d#k Since
there exists an irregular flag, by)( we haver(y) = 0. Since, in Definition8.19 we only
need to check 2-simple paths, the only paths we need to check are thdisg siaending

in wg. Consider first paths staring in a type-2 vertexbind ending invy. Such a path enters
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the sails whose tips are incident4g either through the axis or through a vertex adjacent to
the axis. In each of the two cases, the path touches a type-1 verteg ltefeachesvy. By
condition (b.1) of Definitior8.19 and using the fact that the edge with lab€l0 on the path is
an imin, we find that such a path has at least two imins, i.e., it satisfies condit®)n (a
Secondly, consider a pa#? starting inwg and ending in a type-1 vertex. Since neither the
axis nor the vertices adjacent g are type-1 vertices, the edge with label0 is an imin not
incident to the type-1 vertex in which ends, and thus (b.1) is satisfied.
We leave it to the reader to verify thatis in fact a good edge-labeling oF . O

8.6. Proof of Theorem8.2

Let G be a minimum counter example to Theor8t, i.e., G is a critical graph of girth at
least5 and with average degree less ti3arLet deg(v) denote the degree of vertex To every
vertexv assign a charge of— 2 deg(v). The total charge of the graph}s, (6 —2 deg(v)) > 0,
because the average degre&dk less thar. Note that after the assignment of initial charges,
only 2-vertices have positive charge.

Now we discharge the graph according to the following rule:

e For every 2-vertex; and every neighbour of v, if there arek sails with tipuwv, then
u sends% charge (via these sails) to eath-vertex at the end of thedesails.

It can be seen that charges are sent from 2-vertices teertices via paths consisting of
only 3-vertices. Now we show that after the discharging phase, ewstgxvof the graph has
nonpositive charge, a contradiction. Indeedylée a vertex. We consider the following cases.

() vis a 2-vertex. Then it has an initial charge of 2. In the dischargimrggnds a total of
1 unit of charge out via each of the two tips, amdloes not receive any charge in the
discharging phase. Sohas 0 charge after the graph is discharged.

(i) v is a 3-vertex. Them has an initial charge of 0. Moreover,does not gain or lose any
charge in the discharging phase. $Sbas 0 charge after the graph is discharged.

(i) v is a 4-vertex. Themw has an initial charge of2. To become positive, it must receive
charges via at least three incident edges, implying thatthe axis of a windmill. (We
note that this holds true even if two sails share a common tip and both engl iBy
Lemma8.41, such a windmill must contain an evil or almost evil wheel as shown in
Fig. 8.8and Fig.8.7. It can be seen that in both cases, the axis of the windmill is at the
same distance from the 2-vertices of the windmill as one of the flags. Headexwv
receives at mos% via each sail of the wheel. Thus, the charge @fter discharging is
eitheratmost-2 + 3 -1 = —1/20ratmost-2 +2-1/2+ 1 = 0.

(iv) v is a 5-vertex. Them has an initial charge of4. To become positive, it must receive
charges via every incident edge, implying thas the axis of a 5-windmill inz. Again,
similar to the above case, LemmBadlimplies that such a windmill contains an evil or
almost evil wheel in both of which cases, the axis of the windmill is of the santendis
from the 2-vertices of the windmill as one of the flags. Hence, verteceives at most
% via each sail of the wheel. Thus, the chargevddfter discharging is either at most
—4+4-1=00oratmost-4+k- %+ (5—k) x 1 > 0wherek > 2.

(v) vis a6'-vertex. Therv has an initial charge df — 2 deg(v). Sincev receives at most 1
unit of charge via each incident edgehas at most6 — 2 deg(v)) + deg(v) < 0 charge
after the graph is discharged.

8.7. Conclusion

We have seen that imposing a lower bound on the girth facilitates the constrattjood
edge-labelings, or even decent edge-labelings. In this paper, weusad this approach to-
gether with a degree-bound. It seems probable that high girth benefis ayihn problems
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about good edge-labeling. For example, #caet al. ACGH12] conjecture that for every
¢ < 4, the number of (pairwise non-isomorphic) critical graphs with averageegeat most:
is finite. We propose the following weakening of their conjecture.

Conjecture 8.45. For everyc < 4, the number of (pairwise non-isomorphic) critical graphs
with girth at least five and average degree at mostfinite.

This paper settles the case- 3. Forc = 3, but without restriction to the girth, a modifica-
tion of Conjecture8.1proposes itself naturally:

Conjecture 8.46(Araljo-Cohen-Giroire-Havet/modified)There is no critical graph with av-
erage degree less than 3, with the exceptio@'9fK 3, and the graph displayed in Fi§.1

Acknowledgments. We would like to thank the anonymous referees for their thorough
work and insightfull comments.

Appendix: Deferred proofs

PrROOF OFLEMMA 8.37. The conditions of Definitior8.35 are satisfied, since they re-
quire to check paths originating from the root verggxonly. Moreover,¢ is a good edge-
labeling. It remains to show thatis decent.

To verify property (a) of Definitior8.30 let ) be a 2-simple path between two type-2
verticesw; € V(G1) \ V(G2) andwy € V(Gs3) \ V(G1). Let P, := w;Qy and Py := yQuws.

If both Q1 and Q. satisfy (d2.i) then the edges incidentitan neither@, nor @, are part of
the respective imins, and (a.2) of Definiti8B0holds. If Q; satisfies (d2.i) and). satisfies
(d2.ii) then (a.2) of Definitior8.30holds: one of the imins is the imin @p;, the other is the
edge of@Y, incident ony. If both @1 and@- satisfy (d2.ii) then (a.1) holds, the imin there being
the path of length two consisting of the two edgeg)hcident ony. If Q; satisfies (d2.i) and
Q- satisfies (d3), then (a.2) holds fé. If Q; satisfies (d2.ii) and), satisfies (d3), then (a.2)
holds for P. If both Q)1 and@, satisfy (d3), then (a.2) holds fdr.

To verify property (b), let) be a 1-simple path between a type-1 vertexe V(G1) \
V(G4y) and atype-2 vertews € V(G2)\V (G1). Note that the property in (b) of Definitidh 35
holds for@;. If (d2.i) holds for@-, then the imin ofQ- is an imin of P not incident onw; . If
(d2.ii) holds for@-, then the edge incident anin Q5 is an imin of P not incident onw;. If
(d3) holds forQ-, then the imin of)5 closer tows is an imin of P not incident orw . (|

PROOF OFLEMMA 8.38 Denote the vertex af resulting from identifyingy; andy, by v,
and the one resulting from identifying; andw, by w.

Let us first check Definitio.35a—d). Property Definitio®.35a) is satisfied because no
new path of this kind is added. The conditions of DefinittB5b—d) are satisfied, since they
require to check 1- and 2-simple paths originating from the root veyterly: these paths
cannot containv, and are thus contained entirely in eitliey or G.

We have to make sure thétis good, and that it satisfies the conditions (a) and (b) of
Definition 8.30 We may assume w.l.0.g. thét;, (y2, w2) > 3.

We first prove that is good. For this, le€); be a path inG; betweery andwq, and letQ),
be a path inG, betweeny andw,. We have to verify that the cycl€ := Q1 + Q2 has two
local minima.

If (d2.i) holds for@; and (d3) for@., thenC' has two local minima. If (d2.ii) holds faR,
and (d3) forQ-, thenC has two local minima. If botld); and@)- satisfy (d3), therC' has two
local minima.

Secondly, we prove properties (a) and (b) of Definitdo80hold. Note that for both these
properties, we do not need to consider paths containig an interior vertex, because those
are not 2-simple (in the case of (a)) or even 1-simple (for (b)). But thiee us with the same
situation which we have checked in the previous lemma. O
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PROOF OFLEMMA 8.39. We start by proving that is a good edge-labeling. For this,
let C' be a cycle inG containing edges of both(G1) \ E(H) andE(H)\ E(G1). Such a cycle
can be turned into a cyclé’ in G by replacint the path of’ in E(H) \ E(G1) by the single
edgeu,y;. We show that the fact that there are two local minia @2, on C’ implies that
there are two local minima off.

Obviously, if any of the local minima of” contains neither;; nor yy, then it is a local
minimum of C. On the other extreme, if one of the two, sy, contains the edge, v, then
@1 and the pathP_; formed by the two edges with labell in C'\ E(G}) are two distinct local
minima, because-1 < «. Thus, we have to make sure that if any of the local minima'of
contains exactly one of the verticas or 1, then it can be modified to be a local minimum
of C. Firstly, suppos&), has valueu; and containg:; but noty;. If ;1 < —1, then@; is a
local minimum ofC; if uy > —1 thenP_1 is a local minimum ofC; if the two are equal, then
@1 + P_ is a local minimum ofC'. Secondly, suppos@- has valueus and containg;; but

notu;. If uy < 5%, then@, is a local minimum of”; if s > 252 then the pattP formed

by the edge o \ E(G;) with label @ is a local minimum ofC; if the two are equal, then
Q2 + P is alocal minimum ofC.

Next, we have to show that the edge-labelingatisfies the properties (a) and (b) of Defi-
nition 8.19 For propery (a), letv be the type-2 vertex off, letw; be any type-2 vertex a1,
and letP be aw-w;-path inG. On the one hand, i = u; is on P, then by Definitior8.19b.1)
applied toP (w1, u1), @ has one imin not incident on, and the edge af) incident tow is a
second, distinct, imin. On the other handyit= y; is on P, we use (d2.i), (d2.ii), or (d3) of
Definition 8.35for the path)’ := Q(y1, w1 ). Indeed, ifQ)’ satisfies (d2.i) the length ¢§(w, y)
is two (i.e., it contains the edgey), then@ has two imins; ifQ" satisfies (d2.i) the length of
Q(w,y) is at least three, the@ has two imins; ifQ’ satisfies (d2.ii) the length @ (w, y) is
two, then@ has two imins; ifQ’ satisfies (d2.ii) the length @(w, y) is three, ther) has two
imins; if Q’ satisfies (d3) the length 6j(w, y) is two, then@ has two imins; ifQ’ satisfies (d3)
the length ofQ(w, y) is at least three, the® has two imins.

Finally, to check the conditions of Definitidh 35 the only kind of paths which are added
beyond those which were present(h and H are those which result from taking a path
in G1 from y; to u; = wu, and adding the edgew of H. Invoking the condition (b.1) of
Definition 8.30, )1 + uw contains two imins: one o), and the other being the edgey. [




CHAPTER 9

Random lifts

Jointly with
Babak Farzad (Brock University, St. Catharines)

Abstract. Amit, Linial, and Matogek (Random lifts of graphs Ill: independence
and chromatic numbeRandom Struct. Algorithm2001) have raised the following
question: Is the chromatic number of randaHifts of K5 asymptotically (forh —
oo) almost surely (a.a.s.) equal to a single number? In thiepape offer the
following partial result: The chromatic number of a randafndf K \ e is a.a.s.
three.

9.1. Introduction

Let G be a graph, and a positive integer. Ar-lift of G is a graph@ which is anh-fold
covering of( in the topological sense. Equivalently, there is a graph homomorphisﬁ‘lﬁ
G which maps the neighbourhood of any vertein GG one-to-one onto the neighbourhood of
the vertexp(v) of G. The graph’ is called thebase graphof the lift.

More concretely, we may say that arlift of G has vertex seV (G) x [h] (where we let
[h] :=={1,...,h} as usual). The s€w} x [h] is called thefibre overv. Fixing an orientation
of the edges of~, the edge set of ah-lift is of the following form: There exist permutations
o of [h], e € E(G), such that for every two adjacent verticeandv of G, if the edgeuv is
orientedu — v, the edges between the fibrgs} x [h] and{u} x [h] are(u, j)(v, 0w (J)),

j € [h]. Changing the orientation of the edges in the graph does not change tpeoNfijed
that permutations on edges on which the orientation is changed are replattesdr respective
inverses. In this spirit, for an edge’ in G, regardless of its orientation, we denotedyy, the
permutation for which the edges between the fibreq aiej) (v, 0w, (7)) | 7 € [h]}-

By a random h-lift we mean a graph chosen uniformly at random from the graphs just
described, which amounts to choosing a permutation, uniformly at randoependently for
every edge of.

Random lifts of graphs have been proposed in a seminal paper by Amitl, IMasousek,
and RozenmamJLMRO1]. Their paper sketched results on connectivity, independence num-
ber, chromatic number, perfect matchings, and expansion of randonafifisvas followed by
a series of papers containing broader and more detailed results by theusdrather authors
[ALO2, ALO6, ALMO2, LRO5], and e.g. BLO6, DL06], [BCCFO0€).

In [ALMO2] Amit, Linial, and Matosek focused on independence and chromatic numbers
of random lifts of graphs. They asked the following question.

Is there a zero-one law for the chromatic number of random lifts? In particu
lar, is the chromatic number of a random lift 8% a.a.s. (forh — oo) equal
to a single number (which may be either 3 or 4)?

A randomh-lift G of K5 a.a.s. has an odd cycle, whence a.a.s. we Qa@ > 3. More-
over,G a.a.s. does not contain a 5-clique. Brooks’ theorem implies that Q(aﬁs.g 4. So,
a.asy(G) e {3,4}.

In their paper, Amit, Linial, and Matgek [ALMO02 ] conjectured that the chromatic number
of random lifts of any fixed base graph obeys a zero-one law, i.e., iyim@®tically almost

113
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surely equal to a fixed number (depending only on the base graph)e bage when the base
graph isK,, they prove thats((@) = O(n/logn) a.a.s. (the constant in tt notation may
depend neither oh nor onn). Five is the smallest value far, for which this is not trivial.

In this paper, we contribute the following to this problem.

Theorem 9.1. A random lift of K5 \ e is a.a.s. 3-colorable.

9.2. Notation and Terminology

LetG := K3 \ e. Clearly,G is obtained by joining a cycl€' := [z, 22, 23] t0 a stable set
S :={y1,y2}. Here, byjoin we mean that every vertex ¢f is made adjacent to every vertex
of S. From now on( will be a randomh-lift of G. Let G andGg denote the subgraphs 6f
induced by the fibres over the verticeg'oand those over vertices §f respectively. Moreover,
for z € V(G), we denote by, = {2} x [h] the set of vertices off overz. Similarly, for any
setU of vertices ofG andz € V(G), we letU, := U N V.

As anhors d’ceuvrentended to familiarise the reader with the most basic random lift argu-
ments, we serve the following easy lemma.

Lemma 9.2. The grathC is a union of cycles, each of which is divisible by three. A.a.s., the
number of cycles it is at mostog? h.

PROOFE The cycles with lengtts/ of Ge correspond to the cycles with lengthof the
permutationoy, ;, © Ozyzs © Oz4z, . 1he latter is a uniformly distributed random permutation
of [h]. Itis a folklore fact (e.g., lLov07]) that the average number of cycles of a random
permutation offh] is log h + o(1). The statement of the lemma now follows from Markov’s
inequality. O

Lemma9.2allows us to assume that- has at moslog? h cycles. As a matter of fact, this
is the only statement aboGt- which we need.

9.3. The 3-colouring algorithm

Our colouring algorithm is detailed in the box AlgoritiZn We use the colouned, black,
andwhite,where the colour red will have a special significance. We point the readlee fact
that, once Algorithn® has coloured a vertex, the vertex never changes its colour or becomes
uncoloured again. A vertex @F s which is adjacent to precisely one red vertex is caflate
(this is not a colour).

The algorithm works in three phases. In phase |, Stép2)( we destroy the uncoloured
cycles ofG¢ by colouring one vertex per cycle red. By Lemi®&, a.a.s., we colour at most
log? h vertices red in Phase |, i.e., Phase | fails with probabiity).

In Phase I, more accurately in the logp,(the algorithm successively chooses uncoloured
vertices ofG and colours them red. This is done by maintaining ther¥et of pale vertices
(i.e., those vertices af g which are adjacent to precisely one red vertex).

In Phase lll, Stepsh-7), the remaining vertices are coloured in a straight forward way.

The rationale behind the algorithm is as follows.

At any fixed time between Step8)(and 6), consider the connected cogmponentsfi@f
after deleting all red vertices. These are uncoloured paths of diffenegths inG ¢, separated
by red vertices. We call therchunks. These chunks can be thought of as the vertices of a
multi-graph, which we call thehunk-graphwhose edges are the pale verticesi'@: Every
pale vertex has precisely two uncoloured neighbou@('m thus connecting the corresponding
chunks. We refer to such a connection between chunks via a pale esrehunk-edge A
chunk-edge may be a loop, which happens when a pale vertex havertsolbwred neighbours
in the same chunk. Furthermore, there may be parallel chunk-edges imuhle-graph, which
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Algorithm 2 Three-ColouiZ

Phase I:

(1) The algorithms starts with all edgesGh- exposed, but no edge in betwe@a andGg
exposed. G has more thaivg? h cycles fail.

(2) Choose exactly one red vertex in each cyclégt

Phase II:

(3) Expose all edges incident to red vertices. If there exists a vert@y iwhich has two or
more red neighbourgail. Otherwise, letP(0) be the set of pale vertices before the first
iteration.

(4) Fort =1,...,|h'/3]:

(4.1) Letwv be chosen arbitrarily from the st — 1).

(4.2) From the two non-exposed edges incident,texpose one arbitrarily (the other edge
remains unexposed). Letbe the end-vertex iﬁ?c of the exposed edge.

(4.3) Expose the other edge incidenttoand letv’ be the corresponding neighbour:wof
in Gs. If o' € J'Z} P(s), fail. OtherwiseP(t) = P(t — 1) U {v'} \ {v} (this is
now the new set of pale vertices).

(4.4) Colouru red.

Phase lll:

(5) Expose all remaining edges.

(6) Colour every vertex red which is iilg and does not have a red neighbour.

(7) If the graph induced by the non-red vertices is acyclic, colour itdéen white, otherwise
fail.

happens when two pale vertices connect the same pair of chunks. aduaehy, in Ste of
the algorithm, we abort if a vertex has two or more red neighbors, is onbusecsuch vertices
would not correspond to edges of the chunk-graph. Indeed, anthefePhase I, there are
only two kinds of uncolored vertices left: Those making up the chunk grapth those being
colored red in Step.

The chunk-graph is a random multi-graph. At St8p {t has as many vertices as there are
cycles inGe (at mostlog? h by Lemma9.2), and as many edges as there are pale vertices. If the
algorithm does not fail in Ste8], then to every red vertex there are two pale vertices, and they
are all distinct. Hence, at this time, there are twice as many chunk-edge@sith chunks.

When the algorithm proceeds through loep, the number of chunks is increased as we
colour more vertices aff - red. However, the number of pale vertices stays constant, and hence
so does the number of chunk-edges.

The reasoning at this point is a heuristic analogy with the random (simplph gr@del
G(n,m), where a set ofn edges is drawn uniformly at random from the set of all possible
m-sets of edges betweenvertices. For usp is the number of chunks and is the number
of chunk-edges. At SteB), wherem = 2n, we expect the chunk-graph to contain lots of
cycles (including loops and parallel edges), which makes it unlikely thairitbe coloured
with just the two remaining colours. However, whemgrows andn stays constant, a random
graphG(n, m) will be acyclic as soon as1 < n, and we expect the same to be true for the
chunk-graph.

There are complications in making this heuristic analogy work rigorously, arenfost
being that the distribution of the edges in the chunk-graph is not unifotrmbtead depends
on the sizes of the chunks. We will address these issues in the next section
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9.4. Proof of correctness of the 3-colouring algorithm
We prove that a.a.s. Algorithproperly 3-colourg?.
Lemma 9.3. A.a.s., Algorithn® does not fail in Stepdlj, (3), or (4.3).

PROOF Lemma9.2implies that, a.a.s., the algorithm does not fail in StBp (

For Step 8), note that, at this point in the algorithm, the probability that a fixed vertex in
Gg has two or more red neighboursx (log* 1)/»2). Hence, the probability that there exists
such a vertex having two or more red neighbour® {§os* »)/n) = o(1).

For Step 4.3), we see that for each fixedthe probability that’ € Ui;%) P(s)isO(h™"/3).
Thus, the probability that the algorithm fails after at mosterations isO(th~%?). Conse-
quently, the probability that the algorithm fails at Ste}3] before completing := |h'/?]
iterations iso(1). O

Denote byT" the last iteration (value of) of the loop @) which is completed (without
failing). We letR(t),t = 0,1,...,T be the set of vertices which are red aftéerations of the
loop @). In particular,R(0) is the set of vertices coloured red in St&p. Let R* (¢) := R(t) \
R(0). Recall that adding an index to a letter denoting a set refers to taking itsaotiers with
the corresponding fibre, for examplg (¢) refers toV,, N R(¢). Moreover, we use the following
notation to refer to the cardinalities of each of these sets: If a set is dehgtad upper-
case letter (possibly with sub- or superscript or followed by parenshete corresponding
lower-case letter (with the same sub- or superscripts or parenthesesg¢sids cardinality. For
exampler,(t) = |R,(t)|. We have the following.

Lemma 9.4. For eachz € C'andt = 1,..., T, setR;} (¢) is uniformly distributed in the set of
all (r;(t))-element subsets &f. \ R.(0).

PROOF Fix anz € C. In every iteration of the loop4) in which the fibre over: € C'is
selected in Step4(3), when exposing the edge in Step3), the vertex: is selected uniformly
at random from the set of all previously uncoloured verticein In other words, for every
fixed value of R} (¢ — 1), the distribution ofu is uniform. By induction,R;" (¢) is uniformly
distributed. O

Lemma 9.5. In the loop @) of Algorithm2, a.a.s. no two adjacent vertices are coloured red.

PROOF Letx1,z9 € C, and consider the situation aftériterations, i.e., when the algo-
rithm leaves the loop4). By Lemma9.4, at this time, the expected number of edges between
Vz, andV,, both of whose end vertices are red is at most

T T h°/®
@ h—ra©) O<(h—log2h)2> = e

0

Now, it only remains to show that when Step ©f Algorithm 2 is reached, the graph
consisting of the yet uncoloured vertices is a.a.s. acyclic.

Now, suppose that the algorithm has completed Phase Il without failing, edind our-
selves just before Step) Let H denote the chunk graph as we defined in Section 3. Fhus
is a random multi-graph with < r(T) = T + 7(0) = ©(h'/?) vertices andn := p(T") =
2r(0) = O(log” h) edges. In fact, if no two red vertices are adjacent, the first inequality be-
comes an equation, cf. Lemr@ab. The distribution off can be described in terms of random
permutations taking into account the edges which have already beeredxpos the sizes of
the chunks. It appears sensible to guess thafs no cycles. That is in fact correct.
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Sizes of the chunks.The first thing we require to turn this analogy into a rigorous proof is
an upper bound on the sizes of the chunks. We find it convenient teedta question to the
distribution of the gaps betweenpoints drawn uniformly at random from the interyal 1].
There, the probability that two consecutive points enclose a gap ofisi€l — a)™, which
yields an upper bound of, sayklogn)/» for the largest gap, a.a.s. In the following lemmas, we
put this plan into action.

Let n numbersyy, ..., Y, be drawn independently uniformly at random frof], where
N is a function ofn. Let Sj be thek-th order statistics (i.e) < 51 < --- < S5, <1, and
{S1,...,5.} ={Y1,...,Y,}) and setSy := 0 andS,, 1 := N.

We determine the distribution df;; — Sk. This can be done directly, but it can also
easily be derived from the Bapat-Beg theorem, of which the following isaiapcase (see the
appendix for a proof).

Lemma 9.6. Let X1, ..., X,, be points drawn independently uniformly at randonfitinl] and
denote bys; thek-th order statistics. Witt5, := 0 and S;,_ , := 1, for eachk = 0, ..., n, the
distribution ofS; | — 5}, is as follows:P[S} ., — S}, > a] = (1 —a)". O

For the discrete version we obtain the following.
Lemma 9.7. For everya > 0, we have
P[Spi1 — Sp > W] < gm0t O™
(with an absolute constant in th@(-)).

PROOF Let X1,..., X,, be drawn independently uniformly at random fréin1]. We can
assume that th¥'s are theX's multiplied by N and then rounded ug; = [N.X;]. We also
assume that the permutation taking fkis to theS’s is equal to the permutation taking thies
to theSss (this condition makes sense when t¥s coincide). By Lemma&.6, we conclude that

P[Sii1— Sk > 2] < P[Sjy, — S > (2 —2)/N]
= (1= (afn =YN)" < e Y,
O
From this, we conclude the following.

Lemma 9.8. Let ann-subsetR be drawn uniformly at random from all the-subsets ofN],
anda > 0. The probability that there aréaN/n| consecutive numbers not iR is at most
(n + 1)€—a+0(”/N).

PROOF Letb := [aN/n], and letyy,...,Y,, be drawn independently uniformly at random
from [V]. Let A be the event that thE;’s are all distinct,A its complement, and &8 be the
event that there ark consecutive numbers not containing any of #jés. SinceP(B) is a
convex combination P (B|A) andP(B|A), andP(B) < (n+ 1)e~*tO("/N) by Lemma9.7,
this upper bound must also be true for the smaller of the two conditional Ipilities. But,
clearlyP(B|A) < P(B|A). a

We can now prove the upper bound on the sizes of the chunks.
Lemma 9.9. Letw -5 oo arbitrarily slowly. If n is the number of red vertices A at the

completion of Phase Il of the algorithm, a.a.s.fas+ oo, there is no chunk with size larger
than6(w + logn)h/n.

PrROOFE Choose an arbitrary € C. By Lemma9.4, the conditions of Lemma&.8 are
satisfied if we lets := rf (T') andN := |V, \ R,(0)|. The vertices iV, \ R, (0) are numbered
in the following way.
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For each cycle ofz ¢, choose an orientation. The numbers associated to the vertices in the
intersection ol \ R (0) and this cycle are then taken consecutively: starting with the vertex in
V. \ R.(0) which, in positive orientation, is next to th#&0)-vertex of the cycle, and continuing
to number in positive orientation.

If there is a path iGe of length greater thaé(w + log n)h/n not containing a red vertex,
then there is a gap ifV] larger than(w + logn)N/n. (Notice that every third vertex of the
path belongs td/,. The factor 2 comes from the left and right end strips, i.e., the vertices
which are close to th&(0)-vertex on a cycle but which do not have consecutive numbers.) By
Lemma9.8, the probability of this happening is at most

(n + 1) e—w—logn—l-O(n/N) _ nT—H 6—w+0(1) _ 0(1)

O

Bounding the expected number of cycles inH. We now come to the classical first-
moment argument which shows that, a.a.s., our random multi-gkaftas no cycles. For
the remainder of this section, we condition on the event that the algorithrmadoésil before
Step 6), and that no two adjacent vertices have been coloured red (cf. Le®®asd 9.5
respectively).

Lemma 9.10. The probability that the edge setHfcontains a fixed s&t of edges withF'| = ¢

is at most
m\ log?n
o<£!<£) 75% )

ProOF Recall thatn denotes the number of vertices Bf, which is equal to the number
of chunks inG¢. This is equal to the number of red vertices at the end of Phase Il, which
is ©(h'/*). The numbenn of edges ofH is equal to the numbes(T") of pale vertices after
termination of Phase I, which i©(log? h). The edges come in six different types, depending
on which fibreV,, y € S, contains the corresponding pale vertex, and also which fibres contain
the end-vertices of the two non-exposed edges adjacent to the pabe verte

For each edge off, one by one, we draw the two end-vertices one by one. An edge
corresponding to a pale vertexf G connects two fixed vertices df if the two yet unexposed
edges incident to end turn out to be contained in the chunks corresponding to the fixed ertice
of H. Since the sizes of the chunks are a.@§:log’/») by Lemma9.9, and the number of
possible neighbors af is betweerm andh — n — m + O(1) = O(h), the probability that the

. . 2
edge ofH connects the two fixed vertices@(*%,".

From this, the statement of the lemma follows. O

Now we adapt the classical first-moment calculation to prove that thereargctes inH,
and therefore, no cycles in the graph induced on uncoloured vertiGepn(7).

Lemma 9.11. A.a.s.H contains no cycles.
PrROOF By Lemma9.1Q the expected number of cycles of lendgtk 1 is

Y PlC C H] :0((2) i <’Z) 1052?)

C cycle
|C|=¢
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Summing over all possible values §fwe obtain an upper bound for the expected number of
cycles inH: With t := (Clog®n)/,, for a suitable constardt, we have

i (™ log%n
0) "\ ¢ n2¢
(=1

= 14O (1),

O

9.5. Conclusions

The argument for 3-colourability of random lifts &f; \ e in this manuscript can be extended
to a more general class of base graphs. et G}, ; be a graph obtained by joining a stable
setS of sizes to a cycleC of sizek, wherek > 3 ands > 1. Fork = 3 ands = 2 we recover
K5\ e. The proof of Theorer.1extends with hardly any changes to the following.

Theorem 9.12. The chromatic number of a random lift 6¥, , is a.a.s. three.

It is known that the chromatic number of random 4-regular graphs (wittoram distri-
bution) is three $§WO07. Even though random lifts oi(;,; have some similarity to random
d-regular graphs, adapting the methods of the latter to obtain results faymeliits of K ;.
appears to be a challenging task.

Appendix: Distribution of the gaps betweenn points drawn in [0, 1]
As mentioned above, Lemn®@ab6is a special case of the Bapat-Beg theorem. For the sake
of completeness, we give an elementary proof.

PROOF OFLEMMA 9.6. Clearly, min(Xj, ..., X,) has cumulative distribution function
t — 1 — (1 —t)". This settles the easy cases whier 0 or, k = n.
Partitioning®'’_, [0, 1] into n! sets we need to compute

(51) P[Sj11 — Sy < a] =n! / L{o<pr, <-<pr, <1} 1 {pr, <pr,, <pry +a} A"

n

Denoting

n tf
’U(E,t) = /Rg 1{05pr1§"§pre§t} d)\ = E

we have thatq1) is equal to

1 1
(52) / / v(s,k— 1ol —t,n—k—1)ls<i<siadtds =
0o Jo

1 min(1,s+a)
:/U(s,k—l)/ v(l—t,n—k—1)dtds =
0 s

1 1 b1 min(1,s+a) . 1 td
%—1Mn—k—ULAS L (-1 ’
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We evaluate the inner integral

min(1,s+a)
/ (1—t)y" kgt =
min(1,s+a)
:/ (1—t)y" " adt =

B ﬁ(l—s)"ik ifs<l-a
= ﬁ(l_s)n—k_ﬁ(l—a—s)”’k if s>1—a.

Then the integral in§2) (without the factorial factor) becomes

1 /1 Sk*l(l _ S)nfk dS o ]- /1a Sk‘fl(l —a— S)n*k —
n—k: 0 n—k: 0

(k — 1)l(n -k —1)! (k—1)l(n —k —1)!

- - (0—1)+ " 0-(1-a)") =
_ (k — 1)!(7;!— k—1)! (1—(1—a)
Hence, b1) is equal to
n! ! (k=DMn=k=Dt) 4 gy =1 (1—aym

(k—Dl(n—Fk—1)! n!



CHAPTER 10

Random 3-SAT with interval constraints

Jointly with
Kathrin Ballerstein (ETHZ)

Abstract. In signedk-SAT problems, one fixes a séf and a sef of subsets of\/,
and is given a formula consisting of a conjunctiometlauses, each of which is a
disjunction ofk literals. Each literal is of the formx‘ € S”, whereS € S, andx is
one ofn variables.

For Interval-SAT (iSAT),M is an ordered set anslthe set of intervals id/.

We propose an algorithm f@&-iSAT, and analyze it on uniformly random formu-
las. The algorithm follows the Unit Clause paradigm, enlearuy a (very limited)
backtracking option. Using Wormald’s ODE method, we prdw tif m/n < 2.3,
with high probability, our algorithm succeeds in finding @signment of values to
the variables satisfying the formula.

10.1. Introduction

Let M be a (usually finite) sef§ a set of subsets dff, and.X a set of variables. Asigned)
literal is the pair(x,S) € X x S, which we will denote ax € S, and for a positive integer
k, ak-clause(or simply clause) is the disjunctiorv) of at mostk literals. The conjunction
(n) of finitely manyk-clauses is called th&ignedk conjunctive normal formi-CNF). In this
setting the central question is teignedk-satisfiability problemor signedk-SAT, which asks
for a satisfyingnterpretation that is, an assignment of values to the variables such that in each
clause there is at least one litefal S) for which x takes a value i1$.

This setting includes as a special case the classical satisfiability (SATigprobhere, one
chooses forM/ the 2-element sefTRUE, FaLse} andS = {{TRUE}, {FALsE}}. In caselM is
an ordered set (a chain) and the Sat the set of all intervals i/, we speak ofnterval SAT
or iSAT. In our contribution, we sed/ := [0, 1], because this includes all iSAT settings with
finite M. In particular, we consider formulas of the type

t

NV xiels,

i=1 jeJ;
where, foralli = 1,...,t, J;, with | 7;| < 3, is an index set of variables ik, andl ; c [0,1]
are intervals for all and;j. Then, an interpretation of a clausis satisfying if there is a variable
X, taking a value in the intervaI;l. Identifying a satisfying interpretation of the complete 3-
CNF is related to the study of random interval grap8sH88 JSW9(Q. Our notation and
terminology on signed SAT followsJCHS1Q.

Signed SAT problems originated in the area of so-called multi-valued log2d], where
variables can take a (usually finite) number of so-calteth values not justTRUE or FALSE.
Work on signed CNF formulas started in earnest with the worké@fmle and Mang and their
coauthors. We refer the reader to the survey papeiMO0b], and the references therein.

The motivation for studying signed formulas was to extend algorithmic techsidesel-
oped for deductive systems in multi-valued logic to better cover practicdicagipns H91].
Indeed, on the one hand, a number of papers show how combinataidéms can be solved

121
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using signed SAT algorithm®8M99b, BCF01, FP01, BMC *07]; on the other hand, a large
number of heuristic and exact algorithms have been studied Aé¢@3, Bri04] and the ref-
erences therein), and a number of polynomially solvable subclasseqefisBAT have been
identified EIM94, BHMO0Ob, Man00, BHM00a, ABCM04, AM03, CCHS1(. While in the
works of Manya and his collaborators, order-theoretic properties of the grounti/sate ex-
ploited to make conclusions on the complexity of signed SAT, Chepoi eC&IHS10 com-
pletely settle the complexity question in the general case by reverting to comiahptoper-
ties of the set systei§. In particular, they prove that: signédSAT, k£ > 3, is polynomial, if
Nges S # 0 and NP-complete otherwise; signed 2-SAT is polynomial if, and onlg ihas
the Helly property (if no two sets in a subfamily are disjoint, then the subfamilpbasempty
intersection), and NP-complete otherwise.

For the case whef has the Helly property, Chepoi et al. give a non-satisfiability certificate
for signed 2-SAT in the spirit of Aspvall, Plass, and Tarjan’s famousltder classical 2-
SAT [APT79).

Most applications and a great deal of the earlier complexity resB#V00b] focus on
regular signed SAT, wheré\/ is a poset, and the formulas may only involve sets of the form
S={jlj>=i}orS={j|j<i}. RegulariSAT (or just regular SAT) is regular signed SAT
for posetsi/ which are chains.

In particular, for regular iSAT, random formulas have been investighited a heuristic
point of view. Many et al. MBEI98] study uniformly generated random regular 3-iSAT in-
stances, and observe a phase transition similar to that observed in ¢I8gSicd@ee AP04]
and the references therein): (i) the most computationally difficult instatecesto be found
near the threshold, (ii) there is a sharp transition from satisfiable to unshlisfnstances at
the threshold and (iii) the value of the threshold increases as the numbethofdtues consid-
ered increases. Their results are confirmed and extended by fuaherspexploring uniformly
random regular 3-iSAT instanceB199a, BHMOOb, BMC +07].

Further, in BM99a, BMC "07] a bound on the ratia/» is given, beyond which a random
formula is with high probability (whp) unsatisfiable. To our knowledge, h@weours is the
first rigorous analysis of an algorithm for random signed SAT.

Our interest in the particular version of signed SAT arises from applicatiooomputational
systems biology, where iISAT yields a generalization of modeling with Boolesvonles [Kau69],
where biological systems are represented by logical formulas with vasiableesponding to
biological components like proteins. Reactions are modeled as logical corsdittuich have to
hold simultaneously, and then transferred into CNF. The model is widelylspthactitioners
(see e.g.[pow01, KSRL+06, HNTWO09] and the references therein). Often, though, this binary
approach is not sufficient to model real life behavior or even accomtaadi&nown data. Due
to new measurement techniques, a typical situation is that an experimentsgeétsal “activa-
tion levels” of a component. Thus, one wants to make statements of the forne diudmtity
of componentA reaches a certain threshold but does not exceed another, and @arhpon
occurs in sufficient quantity, then another compongns in a certain frame of activation lev-
els. The collection of such rules accurately models the global behavioe sfygtem. We refer
to [Ball2] for details of models and applications.

In this paper we present and analyze an algorithm which solves unifoanyom 3-iSAT
instances with high probability, provided that the ratio between the numbefr clauses and
the numberm of variables is at most 2.3. Our algorithm is an adaption of the well-known Unit
Clause algorithm from classical SATCF86, Ach01], where, in an inner loop, 1-clauses are
treated if any exist, and in an outer loop, a variable is chosen freely aighad some value.
This Unit Clause approach is enhanced with a “repair” subroutine gasimeple backtracking
mechanism). The algorithm i=59q is currently the best known algorithm that succeeds
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with high probability, although other algorithms (e.dKiK[L06 , HS0J)) can be outfitted with a
backtracking routine to provide better results. See a¥01[0] for generalk — oc.

Unlike the algorithms in Ach00, AS00, KKLO6 ], we prove that our algorithm succeeds
with high probability. To obtain a whp result, the “repair” subroutine is eiakercf. e.g.,
[FS94, where the range in which the algorithm succeeds increases dramaticadey/,such a
routine part is added. In the case of iSAT, the repair mechanism needstmbiderably more
subtle than the one iF594 for classical 3-SAT.

In the analysis of the algorithm, we use Wormald’s differential equations rd¢tior95].
ODE methods have been used for the analysis of algorithms for classitaiviBiAgreat suc-
cess CF86, CF90, FS96 Ach00, AS0(Q. In our analysis, we combine the idea of Achlioptas
and Sorkin AS0Q to consider as a time step an iteration of the outer loop, but we use Wormald'’s
theorem YWor99] where they use a Markov-chain based approach. The analysis ofrtee
loop requires to study the first busy period of a certain stable serviensy&ch00, Ach01], or,
in our case, more accurately, the total population size in a type of brangtingss. The value
2.3 arises from the numerical solution to an initial value problem (IVP). Ektenthe results
for k-iSAT for k > 4 is conceptually easy; we briefly discuss it in the conclusions.

The outline of the paper is as follows: In the next section, we preseratigorithm for random
3-iSAT in detail. In Sectior10.3 we prove some facts about uniformly at random chosen sub-
intervals of[0, 1]. In Section10.4we take a brief excursion to random 2-iSAT as our algorithm
for 3-iISAT ultimately relies on solving a 2-iSAT instance. In Sectith5 we compile the
required facts about total population sizes of a kind of branching systbith are then applied

in Sectionl10.6to the study of the inner loop of our algorithm. Finally, in Sectiéh7, we prove

the whp result for our algorithm. We raise some issues for future rdseathe final section.
Several technical arguments have been moved into the appendix.

Throughout the paper, we hide absolute constants in th&kigtation. If the constant depends
on other parameters, we make this clear by adding an index(k.(g), As customary, we use
the abbreviation iid for “independent and identically distributed” and uar‘doiformly at
random”. Whp and wpp are to be understoodrfors oo, with m = m(n) depending om.

10.2. An algorithm for random 3-iSAT

In this section, we describe an algorithm which finds a satisfying interpretiftioe num-
ber of clauses is» = cn with ¢ < 2.3.

10.2.1. The random model; exposureFor our random model, we assume that each 3-
clause consists of three distinct variables. We choose a formula uattieoset of all possible
classical 3-CNF formulas on variables withm 3-clauses, each containing three distinct vari-
ables. Then, we choose an interval for each literal uar from the smmfgef[0, 1]: We select
uar two pointse andy from [0, 1] and determine the interval &s, b] with ¢ = min{x, y} and
b = max{x,y}. In this context, note that due to Scheinerm8cH8§ the endpoints: andy
can be arbitrary reals. In fact, he proves that this strategy is equitalehoosing! endpoints
for [ intervals uar from the finite sdtl, ..., 2/} without repetition as the probability that all
chosen endpoints fror, 1] are distinct isl. For the distribution of a random intervgi, b]
chosen ag = min{x, y} andb = max{x, y} for z,y € [0, 1] uar, we find withu, v € [0, 1]

P([a,b] C [u,v])=2-Pla>u, b<v)=2-(1—u)-v.

As is customary in the context of random SAT, we use the language ob%axy’ literals.
Intuitively, the idea is that the information about each literal is written on a wdnidh lies
face down, until the information is exposed. Clearly, the unexposedpdre formula is uar
conditioned on which literals have been exposed and which have not. fé¢veadhe elegant
description in Achlioptas’ papeAlch01].
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10.2.2. Brief description of the algorithm. The basic framework of our algorithm is the
same as for most algorithms for classitabAT. A formerly unused variable is selected, and a
value is assigned to it. Then, clauses containing the variable are updatbd:literal of the
clause involving the variable is satisfied, the clause is deleted; otherwise théibteeleted
from the clause, leaving a shorter clause. The variable is removed frersethofunused
variables,and declared ased variableThe algorithm fails if, and only if, it creates an empty
clause.

However, to a certain extent, our algorithm is able to repair bad choicesihade. Thus, it
occasionally only assigrientativevalues to variables. As long as it is not certain that a variable
keeps its tentative value, no deletions of clauses or literals from clawspsidiormed. Instead,
we assign colors to the clauses, which code the number of satisfied, fiedatind unexposed
literals they contain. The meaning of the colors will be explained in Talidat at this point
it suffices to know that red clauses correspond to unexposed leslais., clauses with one
unexposed literal and the variables in any other literal of the clause hatadive values which
render the literals false.

As said before, the basic approach is that of the Unit-Clause algorithm.oUtee loop
of the algorithm will maintain the property that there is no 1-clause. In eaddtierof the
outer loop, a variable is selected uar from the set of unused variahlek.aSvariable selected
in the outer loop is referred to asfi@e variable. Theinner loopis initialized by assigning a
tentative value to this free variable, and then repeats as long as theedarauses. In each
iteration of the inner loop, a red clause is selected serdliced:the variable contained in the
clause (thecurrent variableof the iteration) is tentatively set to some value in such a manner
that the serviced red clause becomes true. We refer to the variablesdétethe inner loop as
constrained variables.

If, during a run of the inner loop, a situation is reached in which it is prtgbtiat an empty
clause will be created, it backtracks. This happens when the follofatatity is suffered: The
current variable occurs in another red clause, other than the orieeskrif that happens, there
is al/3 probability that the two intervals occurring in the two red clauses are disjguitgg,
so that creating an empty clause is inevitable.

For this situation, the inner loop maintains a rooted treef decisions it has taken so far.
The nodes of the tree correspond to variables to which tentative valuedban assigned and
those which occur in the unexposed part of red or Bhatauses. The root of the tree is the free
variable with which the run of the inner loop was initialized. The edges quoresto2-clauses.
For every2-clause in which the current variable of an iteration occurs, the unedp@siable is
added as a node and an edge is added connecting the current vaiihlblkésmew node. Doing
SO in every iteration constructs a tree. If the current variable of an iteratiours in two red
clauses, then this implies that a cycle is closedrjrbecause there must exist two paths from
X to the current variable. The trégis in detail defined in the algorithm. If a fatality occurs,
the values of the variables along the paths from the root to the serviced diterehanged so
that all2-clauses along the path are fulfilled and only one red clause remains wisatisied.
Then, all other tentative values are made permanent, and the inner losfaitae with the new
formula, but this time without a free variable in the initialization. We &ddbhse Ithe run of the
inner loop before a repair occurs (or if no repair occurs), arelese llto the run of the inner
loop after a repair has been performed. In Phase Il, no furtheirrispattempted. Instead, if
fatalities occur, the inner loop just moves on (without repair). In Phasealfatality occurs,
there’s the possibility that a repair is not possible. In this case, too, the lmoe just moves
on without repair. In order to be able to refer to these situations in thegqneefindicate these
positions in the code by the pseudo-command “raise a flag”.

After all red clauses have been dealt with in either Phase | or Phase lientative val-
ues are made permanent, and control is returned to the outer loop, whacts smother free
variable, and so on.
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The outer loop terminates, if the number of 2-clauses plus the number ofiSeslarops
below a certain factor’ of the number of unused variables. Then, it deletes an arbitrary literal
from every 3-clause and invokes the exact polynomial algorithm by @ited@l. [CCHS1( to
decide whether the resulting 2-iSAT formula has a satisfying interpretatienwWprove in
Section10.4that this is always the case if the ratio of the number of resulting 2-clausgs ov
the number of unused variables is beléw

The complete algorithm is shown below as AlgoritBr(the outer loop), Algorithna (the
inner loop), and Algorithn® (the repair procedure). Throughout the course of the algorithm,
fori = 0,1,2,3, we denote byY;(¢) the number ofi-clauses, and by (¢) the number of
unused variables, respectively, at the beginning of iteratiofithe outer loop. Moreover, for
an intervall, we denote by

(53) z(I) := argmin,¢; |z — 1/2|

the pointin which is closest td/2. We refer to the variablg; which is selected in iteratiof
of the inner loop as theurrent variableof that iteration.
Below, we will prove the following fact.

Lemma 10.1.A single run of Algorithn (including a possible repair and consequent Phase I1)
produces an empty clause, only if it “raises a flag”.

The performance of the algorithm on random 3-iSAT instances is anailyZattionsl 0.6
and10.7. There, we will prove the following theorem.

Theorem 10.2. Letc := 2.3, and suppose Algorithi@is applied to a uniformly random iSAT
formula onn variables withim 3-clauses. lin < cn, then, whp, Algorithn3 creates no empty
clause, i.e., it finds a satisfying interpretation.

The value2.3 is determined through the numerical solution of an initial value problem. It
corresponds to the point in which the increase in red clauses in each itevatloe inner loop
would become so large that the inner loop will not terminate.

Algorithm 3 UC w/ backtracking (outer loop)

(o-1) Given: 3-CNF-formula; positive constatit
(0-2)t:=0
(0-3) WhiIng(t) + Yg(t) > C/X(t)Z
(0-3.1) Choose a variabbe uar.
(0-3.2) Invokelnner loop(Phase I).
(0-33)t:=t+1
(0-4) In every3-clause, remove one literal at random.
(0-5) Invoke Chepoi et al.’s algorithm (cf. Secti@f.4) for the remaining 2-iISAT formula.

10.2.3. Comparison to algorithms for classical SAT For classical SAT, if a variable
is set to a value, the probability that a random literal containireyaluates to true i§2 —
independent of the value. As will become apparent in the next sections tlaisfrom true for
random interval literals. There, the valye is the single, most likely value to be contained
in a random interval (the probability ig2) and all other values are less likely. Hence, we will
assignl/2 to the variables as long as possible which is for all free variables.

The rationale behind assigning the valjeto free variables is two-fold. Firstly, it makes
the analysis a lot more easy than if one tries to find a maximum cardinality sublgetals
containingx all of whose intervals have pairwise non-empty intersection. Secondligriye
numbers of literals containing, the maximum cardinality of a subset with pairwise intersecting
intervals is asymptotically attained by taking all literals with intervals containindthis is
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Color Meaning

Uncolored All literals in the clause are unexposed.

Black All literals are exposed.

Red The clause has precisely one unexposed literal. The tentative gbhmgsother

variables in the clause make the corresponding literals false. In particokae;
posed 1-clauses are red.

Blue The clause contains precisely one unexposed literal and at leaskpased lit-
eral which evaluates to true for the tentative value of its variable.
Pink The clause is a 3-clause, precisely one of its literals is exposed, iaHidetal

evaluates to false for the tentative value of its variable.
Turquoise The clause is a 3-clause, precisely one of its literals is expasédhis literal
evaluates to true for the tentative value of its variable.

TABLE 1. Semantics of the colors of the clauses.

Theorem 4.7 of Scheinerman’s pap&ch88§). This, in particular, implies that assigning an
interval of values to a variable does asymptotically not lead to a satisfyingietation of the
formula which is not satisfying if assigning the single valye

The situation for constrained variables is similar, but a bit more complicated.cdfor
strained variables, we are free only to choose the value for the vari#hle the intervall for
the literalL = x € | which we wish to satisfy. Unlike to classical SAT, where this does not
change the probability that other random literals contairiage satisfied, depending bnthis
probability may change considerably. Moreover, for two literals contairinipe two events
of both being satisfied simultaneously withare not independent.

However, an adaption of Scheinerman’s argument mentioned aboves #hatyvasymptoti-
cally, the best choice is to take the pointvhich is closest td/2 as we do in our algorithm.

Concerning the backtracking part of the algorithm, we would like to pointtmutlifference
to the approach irHS94. If the (essentially identical) fatality is suffered, a very elegant remedy
is to simply flip the values of all variables with tentative values: if the tentativeevafua
variable isTRUE, make itFALSE, and vice versa. Needless to say, for variable values in a larger
set, there is no obvious choice for the new value of a variable. Thus,riagproach, we
have to choose the variable values in a smart manner, with the single aim tahenfiaality.
Namely, those variables that led to the fatality are assigriéd as described ilRepair Path
(Algorithm 5).

10.2.4. Proof of the “raise a flag”-lemma.

PROOF OFLEMMA 10.1 Assume that Algorithrd does not “raise a flag”.

The only place where a 0-clause can be generated without havingd'aiag” is in the
final step4 of the repair, Algorithmb. Clearly, none of the clauses on the path will become
empty.

Moreover, setting the final variable,., cannot create an empty clause, because of the
conditions in steps (8.1) and (i9.2).

For a 3-clause to become empty, it is hecessary that when the repair igdirolRlgo-
rithm 4, all three of its literals have been exposed (possibly in the same iteratiorgthen
words, it must have been red, blue, or black in step}; a contradiction.

For a 2-clause to become empty, both literals must have been exposedtoera possibly
in the iteration where the repair occurs. Moreover, if it was blue, the valube variable
satisfying one of its literals must change during the repair. In other wdrddpllowing three
scenarios are possible:
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Algorithm 4 Inner loop
(i-1) Given:
¢ In Phase t formula consisting of 2- and 3-clauses only; a (free) varialle
e In Phase Il formula consisting of 1-, 2- and 3-clauses.
(i-2) j:=0
(i-3) Initialize: Expose the occurrencesxf in all clauses.
e In Phase lonly:
(-3.1) Tentatively sexq to 1/2.
(i-3.2) Initialize the graptt := ({Xo},0).
e In Phase llonly:
(i-3.1) Color all 1-clauses red.
(i-4) Expose the intervals associated with Color clauses containing, according to Tabl.
(i-5) ji=75+1
(i-6) If there is no red clause, exit inner loop: Set all variables to thetatem values; remove
satisfied clauses and remove violated literals from their clauses; returteto@op.
(i-7) Select ared claugg; at random; let ; be the unexposed literal @;; expose current
variablex ; of L;
(i-8) Expose all occurrences &f; in colored clauses.
(i-9) If x; is contained in a red clause other ti@n
e In Phase lonly:
(i-9.1) If thereis a red, blue, or black 3-clause: “raise a flag”!
(i-9.2) If the graphG contains a cycle, ox; is in a blue clause: “raise a flag”!
(i-9.3) If x; occurs in three or more red clauses (includ@)y “raise a flag™!
(i-9.4) OtherwisePhase lis completed. Le€ be the unique red clause different
from C; containingx ; in a literalL’ = x; € J’. Repair the unique path
betweerx, andC;; then initiatePhase 1.
e In Phase llonly: “raise a flag™
(i-10) Expose all occurrences ®f in all uncolored clauses.
(i-11) For every uncolored 2-clausg € I vy € J containingx ;, add toG the vertexy and
theedgex; € vy € J betweerx; andy.
(i-12) Tentatively sek; to z(1 ;).
(i-13) Update the colors of all clauses containing
(i-14) Goto step (5).

Algorithm 5 Repair path

(r-1) Given: Set of colored 1-, 2- and 3-clauses; a litéfak x;, € J’; a path of the form
Xo, Xg€JogVXi€lq, X1€IJ1VXa€lg, ..., Xp_1€Ip_1VXg€Ely;

(r-2) Forj =0,...,k—1:
(r-2.1) Setx; (permanently) tee(J ;)

(r-3) Setxy (permanently) ta:(J’)

(r-4) Set all variables from Phase I, except those which have jest bet in (r2) and (r3), to
their tentative values; remove satisfied clauses and remove violated literalsHeir
clauses.

(i) it was black before the repair was invoked
(i) it was red before the repair was invoked, but it contains
(i) it was blue before the repair was invoked, it is of the forme | ; vV X; € | ; for some
1 < j, andx; is one of the variables set in stepyrof Algorithm 5.
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In case (i), if the black 2-clause becomes an empty clause, either it waghesdits final
literal was exposed, a contradiction, or it was blue, which means thaisablea of its variables
lies on the path which is repaired. If the whole clause lies on the path, wealr@asly noted
that it cannot become empty. If only one of its variables is on the path, thensit lbeuan
edge in the tree having one end vertex on the path and the other lying favtlgrfrom the
root than the path. The fact that it is black means that the variable whicht snmnihe path
was the current variable of some earlier iteration j. But then the corresponding literal was
either the selected literdl;, in which case it was satisfied by the tentative value gfor the
if-condition in step (i9) for iterationi held, which is a contradiction (either a repair occurred,
or the algorithm has “raised a flag”).

In case (i), if the 2-clause is on the path, it does not become empty. If it isrtiggie other
red clause”, then it will be satisfied in the initialization of Phase II.

Case (iii), is not possible because of the condition in sté&a2ji- d

10.2.5. Random formulas.The following easy facts (see the discussion at the beginning
of this section) underlies the analysis of the algorithm on random formulas.
Lemma 10.3. If Algorithm 3 is invoked with a uar random 3-iSAT formula, then

(a) at the beginning of each iteration of the outer loop, the current fornautdistributed uar
conditioned on the number of unused variables, 2-clauses, and 3asau

(b) at the beginning of each iteration of the inner loop, the current fornmidistributed uar
conditioned on the number of unused variables, 1-clauses, 2-claBs#auses, and the
colors of the clauses.

(c) at the beginning of Phase Il in the inner loop, the current formula isridisted uar not
only conditioned on the number of unused variables, 1-clauses, 2adad-clauses, the
colors of the clauses, and the listof clauses which are known not to contain and the
list of clauses in which an occurrencexaf has been exposed.

By Lemmal0.3 the history of the random process defined by the outer loop, that is, for
eacht, the state of the formula and all other information relevant to how the algorithim w
proceed, available at the beginning of iteratiois completely determined by

(54) A (t) == (X (1), Ya(t), Ya(t));
in particular it is Markov.

10.3. Computations for random intervals

In this section, we make some computations regarding intervals chosemaihi subin-
tervals of|0, 1] as described before. We refer ®dh88 JSWO( for further background.

We aim to study the event(I) € J, with two random intervald and.J (z is defined
in (53)). We start with the following observation.

Lemma 10.4([Sch88). For = € [0, 1] and for a random interval, we have
Pz € I]| = 2z(1 — z).

In particular, the probability that a random interval contains the padintis 1/2.

The cumulative distribution function af(/) can be written down.
Lemma 10.5. For a random intervall, the random variable:(7) has cumulative distribution
function
0 ift <0
t2, if £ < 1/2
1—(1—¢t)?2, ift>1)
1 ift > 1.

(55) F(t):=
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PROOF Direct computation. O

Let X be a random variable with cumulative distribution functiBras in £5), and define
(56) P:=1-2X(1-X).
Thus, by the previous two lemmas, the probability that, for two random intefvalsl .J we
havez(I) € J, is
EP[z(I)e J|P]))=E(1-P)=1—-EP.
The following computations are straightforward, 4€e8.1

Lemma 10.6.
(@ EP =13/24
(b) E P% = 3/10 O
Lemma 10.7. For two random intervald, J, the following is true.
11
Plz(I = —.
[z(I) € J] = 55
PrROOF Immediate from Lemmat0.4 10.5 and10.6a). O

Remark 10.8. It could be interesting to choose the intervals in a different way rather than
uniformly at random, for instance, to reflect certain realistic structuresveder, the strategy

of choosing intervals does not change the main analysis of the algorithmorijheadaptions

to be made are the previous computations of the probabilities, and thus thenstards need

to be used in the analysis, which can lead to different results.

10.4. 2-iISAT

In this section, we take a brief glance at the situation for random 2-iSAG r@&son is that,
ultimately, our 3-iISAT algorithm reduces the 3-iISAT formula to one with exactly liteoals
per clause, and then invokes the polynomial time algorithm by Chepoi €@H$§1( to find
a solution. We need to make sure that the resulting random 2-iSAT instaratesf@able.

For this, we proceed along the same lines@R92], using Chepoi et al.'s Aspvall-Plass-
Tarjan-type APT79] certificate for the non-satisfiability of signed 2-SAT formulas for set sys
tems satisfying the Helly-property. We describe the certificate now.

For a 2-iSAT formulaF’, define a digrapld- = which contains two vertices labeled ¢ and
x| f, respectively, for every literal € I occurring inF. For every clause € | v x’ € I’ of
F, the digraph& - contains two arcgl f — x’I 't andx’l ' f — x| t. We refer to these arcs as
clause arcsMoreover, for every two literals € | andx € J occurring inF, if | NJ = 0, the
digraphGr contains the two arcsl t — xJ f andxJt — x| f. These arcs we callisjointness
arcs.

For a literalx € I occurring inF’, we refer to the vertex| t as apositivevertex, and to
x| f as anegativevertex. Moreover, we say that these two verticesamaplementof each
other; in other words, the complement of the (positive) vextekis the (negative) vertex! f
and vice versa. Note that arcs originating from negative vertices anseclarcs, while arcs
originating from positive vertices are disjointness arcs.

Chepoi et al. relate the satisfiability &f to the strongly connected componersC() of
Gr.

Proposition 10.9(Aspvall-Plass-Tarjan-type certificat€CHS1(). The formulaF is satisfi-
able if, and only if, no SCC aff» contains a pair of vertices which are complements of each
other.

Remark 10.10. A path inG ¢ of length? contains|//2] or [1/2] disjointness arcs, and no two
of them are incident.
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Chepoi et al. also give an algorithm which determines, in polynomial time, whatfor-
mula F' is satisfiable, and if it is, produces a satisfying interpretation. We referefo plaper
for details.

From Propositiort0.9 we obtain the following corollary.

Corollary 10.11. If F'is not satisfiable, theti » contains a bicycle, i.e., a directed walk
ug = Upga,

with at least one clause arc, and the following properties:

(a) the literals in the vertices,, ..., u, are all distinct;
(b) the literals in the vertices, andu,; occur among the literals in the other vertices;
(c) the clauses in the arcs are all distinct.

PROOF For avertex, we denote its complement by By what we said about the different
types of arcs, on every path fromto v, there is at least one clause arc.

Choose an SCC and take a pair of complementing verticsd v in the SCC such that
the distance from to v in G is minimal. Then, on the shortest pathfrom v to o, no literal
appears twice. Denote lythe literal definingy andv.

Now take a shortest patf) in G form o to v. If there is no literal other thah which
appears twice o U (), thenP U @ is a bicycle starting and ending in On the other hand,
if there is a literalL’ other thanL which appears twice o U @, then the desired bicycle is
constructed by taking the path from v to v, and then the paty until the first vertex whose
literal already occurred earlier. O

Suppose a 2-iSAT formula with variables andn = c¢n clauses is drawn uniformly at
random from the set of all such formulas (with the intervals all0inl]). We estimate the
asymptotic probability that such a formula is satisfiable.

Proposition 10.12. Let¢’ < 3/2. If m < ¢/n then, whp ast — oo, a randomly drawn 2-iSAT
instance is satisfiable.

The proof mimics that of Chtal & Reed CR92] for the classical 2-SAT very closely; we
include it here just to point out where the numBarcomes in.

PROOF Given a fixed bicyclaiy — --- — wuyy1 With r clause arcs, the probability that it

occurs inG g is at most
.
m r—1
ny\ p )
((3))

wherep := 1/3 is the probability that two independently chosen intervals are disjSicit3g.
Hence, the expected number of bicycles wittlause arcs occurring i is at most

. m\ —1_ 2m o2pm \"
n 1(r—1)2<(721)> D l_n—l(r_1)2<n—1> .

Thus, the expected total number of bicycles is at most

2m i o [ 2pm "
r :
n—1 n—1

r=

With m < ¢'n the sum is finite if, and only if¢’ < 3/2 for n — co. Thus, in this case, the
probability that a biycle exists ©.(1). O

Thus, for every < 3/2, whp, a satisfying interpretation can be found by Chepoi et al.'s
algorithm [CCHS1(. We make no attempt at optimizing this bound as we indeed conjecture
that this is the threshold for 2-iSAT.
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10.5. Total population size of our branching system

As is done in classical SAT, the sub-routine eliminating the unit clauses caiewed as
a “discrete time” queue in which customers (i.e., unit clauses) arrive per tiiiehe number
depending on the customer currently serviced, and the single serumsponding to one run
of the inner loop of the algorithm, can process at least one customer perrtim&he number
of iterations of the sub-routine then roughly corresponds to the lengtledfitht) busy period
of the server.

Here, since, we are only interested in the length of the first busy periedgtieue” is
really a branching system, for which we need to know the total number ofichdils which
are born before extinction. Compared to classical SAT, the intervalevepeses several small
challenges which we address in this section.

Let a be a non-negative integer, ait{j), j = 0, 1,2, ..., random variables taking values
in the non-negative integers. We say the following sequence of randoables) () adiscrete
queue:

Q(0) =0

Ql)=a

‘ |a, if Q(j) =0
QU+1) = {Q(j) —1+B@G+1) ifQy)>0

The numbeQ(j + 1) is the number of individuals of the branching system afterjthandi-
vidual has reproduced and died.

Denote byZ the length of the first busy period of the server, that is, the total population
size of the branching process:

Z:=sup{j>0|Q>i)>0 Vi=1,...,5} = inf{j>0]Q()=0}-1.

A straightforward adaption of the branching-process based textligokients for continuous-
time M/G/1-queues gives the following (s#@.8.2.

Lemma 10.13.Suppose th&(j), j = 1,2,..., are iid with meam g and common probability
generating functiory, . The probability generating functiomof Z satisfies

(57a) h(gﬁw) — e

for everyy for which the power serieg, (y) converges and does not vanish. In particular, if
A < 1, we obtain

a
7 EZ = .
(57b) e
Moreover, we have
(57¢) P[Z > a) < 2
Yy
forall @ > 0 andy > 0 withy > g, (v). O

Remark 10.14. Since we are only interested in the first busy period, we make the following
modification to the definition of): If Q(j) = 0 butj > 0, then we let)(j + 1) = 0 (and not
Q(j + 1) = a as above). This makes some inequalities less cumbersome to write down.

10.5.1. Bounding the tail probability for iid binomial B. Let P be a random variable
with values in[0, 1]. We say that a random variable has binomial distribution with random
parameter”, or Bin(m, P), if

PB=k|P=p]= (Z)p’“(l —p)" "



132 10. RANDOM 3-SAT WITH INTERVAL CONSTRAINTS
In our settingn is a (large) integer, anth = m(n) is an integer depending on Define

A= A(n) := . Let P be as in §6), and suppose thdk is Bin(m, 28/n).

Lemma 10.15.1f A(y — 1) < /2 we have

6:(y) < exp(BAw - 1) + 8Ny — 1)?)

PROOF We havee! < 1+ ¢+ t%forall ¢t < 1. For ease of notation, let:= EP = 13/94
andry := E(P?) = 3/10, by Lemmal0.6 Since(y — 1)\2P < 1 with probability one, the
following estimate holds:

) = S B(( (1= 2 =B (X (1ot - 2 )
k=0 k=0
=E(1+(y-1)Z)m) < E(eQ(y_l))‘P) <E(1+2(y— 1)AP +4(y — 1)22*P?)

= 1427(y—1)Ary(y—1)202 < 2 OTINHRETDI _ e (1A (y—1)+- 802 (y-1)?),
as claimed. O

Now suppose thaP(j), j = 1,2,..., are iid random variables distributed &sdefined
in (56), and thatB(j), j = 1,2,..., are ||d random variables distributed B (m, 2P(5)/m).

Lemma 10.16. For everys > 0 there existf > 0 andC' > 1 such that, ifl/2 < 15X <1 —¢,
the following is true.
For all « > Ca, there exists g with 1 < g, (y) < y < 2 such that

(58) 5" b,

yCM*CL -

PROOF. For ease of notation, let := y — 1 andr := 13X, sothatl/z2 < r < 1 —e. If
0 <u < L <1, by Lemmal0.15 we may estimate

95 (y) < exp({3hu + EX%0?),
and thus obtain
P[Z > o] < exp(a(33Au+ g)\2u2) — (a —a)log(u+1)).
Using Lemmal0.6g we write the exponent as

(%) aru+ & 122 ar*u® — (o — a)log(u + 1).

In order to find au minimizing (x), we take the derivative and solve the resulting quadratic
equation

(xx) 5112§2ru +(r+5132r )u—(l—r)+a/a_0
The value ofu which works is the larger one of the two roots:

(1 ) + \/(1 - %r)Q + 412
(xx%) Uy 1= pEVEm — 0(9/a),
5.132
with an absolute constant in tlﬁb(-) (seel0.8.3for the computation). The numerator is greater
than zero if, and only if4 - 132r < gg; which is equivalent te- < 1. Thus, there exists a
C depending only om, such thatu,, > 0 whenevera > Ca. Moreover, by lettingy = 1—’"

in (), we see that, < 1== < 1, as required. Letting = u, in (x), we obtain, fora. > C’a
(%%%%) (5T(ur) + O(l/C))a
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with an absolute constant in tiig-), where

Or(u) = ru+ —g}g; r?u? — log(u + 1)

(seel10.8.3for the computation). We hawg (u,) < 0, because, (0) = 0 and since, by the
choice ofu,, the derivative ob, in the open interval0, u,[ is negative. This also implies that
y > gs(y). Let

6, = max{6,(u,) | /2<r<1—¢} <0,
Finally, increase”, if necessary, to take care of the dependenc@@yic) in (xxx) and o),
and define := —4, /2. This completes the proof of the lemma. O
Lemma 10.17.1f A < (1 —¢) 3, then

a

13
1- 133

(59a) EZ =

and there exist > 0 andC > 1 depending only oa, such that for alle > C'a we have the
upper tail inequality

(59b) P[Z > a] <e %@,

PrROOF Equation 699 is directly from Lemmal0.13

Lemmasl0.13and10.16together imply the tail inequality in the case whgm > 1/2. For
smaller values oA, we just note that increasingincreases the length of the first busy period,
so that the probability foh := 6/13 gives an upper bound for the probability for smaller values
of \. O

10.5.2. Not-independent binomial.The arrivals at the queue in the context of our algo-
rithm are not completely independent. Here we deal with the small amounpehdence.

We now describe what kind d8(j) we allow. The setting is that is a (large) integer, and
thatm = m(n) = ©(n). Letr > 1 and

(60) z =z = 2zp(n) := % logn,

whered is as in Lemmad.0.17 Suppose that/(j), N(j) are random variables satisfying
(61a) n—j<N(j) <n+j forally,

(61b) 0<M(j) <m for all 5,

with probability one, and

(61c) m- < M(j)<m* forallj=1,...,z

with probability at least — O(n~"). Let the B(;) be distributed a8in(M (j), 5;) for all ;.
More accurately, we assume that there is an iid famili?¢f), 7 = 1,2, 3, ..., distributed as®
above, and an independent family of random variablés i), j = 1,2,3,...,i=1,2,3,...

each having uniform distribution df, 1], and that the joint distribution of thB(;) is the same
as for the family of sums

.\ _ P
(62) > 1U(,i) < 53],
TheP(j) andU (j,4) are assumed to be jointly independent, but we make no assumptions about

independence regarding tié(j) and N (j) among themselves or from ti&(;,7) and P(y).
However, we do assume thatthe M (j), and theN () are such that

(63) a+Y B(j)=0(n)
j=1
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holds with probability one.

Lemma 10.18.Let AT = \*(n) := #;) and suppose > Ca. If
(64) )\+ < (1 - 6)%a

then with they andC' from Lemmal0.17, the following holds for large enougit

a a
65a — 0o < EZ <——— 100,
(65a) e (n™") < _1_%A++ (n"™")

and foralla > Ca
(65b) P[Z>a]<e @+ 0(n™).
The proof can be found in the appendi0.8.4

Remark 10.19. There is no danger in assuming< 1 andC > 1, and we will do that from
this point on.

10.6. The inner loop

Here we analyze Algorithrd. Conditioning onX (¢), Ya2(t), andY3(t), we analyze the
changes of the parameteXs Y, andYs during thet + 1st run of the inner loop, and bound the
probability that an empty clause is generated.

From now on,n andm denote the number of variables and clauses, respectively, in the
initial random CNF formula, withn = ¢n for some constant. We assume < 10, to get rid
of some of the lettet in the expressions below. For aay> 0, we say thatz, y2, y3) € R3 is
e-good, if
(66) en <z and %<(1—5)E

x 13’
and that#(t) is e-goodif (X (t), Ya(t), Y3(t)) is e-good.

10.6.1. Setup of the queues for Phases | and IMe now define the queues corresponding
to the Phases | and Il. We will suppress the dependency of the randmasges oZ(¢) in
the notation.

We define the queudd; and@;; for the Phases | and Il, respectively, by modifying Algo-
rithm 4 a little bit. We will then analyze (the original) Algorithdhwith the help of the queues
Qr and @ defined via this modification. The changes we make are the following: replace
step (i) by

(i-7") If there are unused variables left, choose one uar;

and step (i8) by

(i-8') Expose all occurrences of the current variaklein clauses colored
with a color different from red;

moreover, in the modification, we do not initiate a repair (since that would kilbjtreueing
process).

Since, with these modifications, red clauses can contain used variablgmssible to run
out of variables before running out of clauses. It can be easily @diffiat this can only happen
when all clauses are red. Hence, in this situation, the modified algorithm wigqisip the red
clauses one per iteration.

In the Phase-I queu@;, the number of customers arriving in the first time intervgl, is
the number of red clauses generated by setting the free vaxalftentatively) tol/2. Thus,
Ay is distributed aBin(Y(t), x;). For the iterationg = 1,2, 3, ..., we find thatB;(j + 1)
is the number of uncolored 2-clauses which become red, plus the numperko8-clauses
which become red, when setting the current variablgtentatively) toz(l ;). Thus, if we
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denote byY;(j) the number of uncolored 2-clauses plus the number of pink 3-clauses at th
beginning of iterationj, then conditioned ofY;(j), the distribution ofB;(j + 1) is that of

Bin(Y5(j), f((é;r_lj)) where as in the previous section, tRé;j + 1) are iid random variables
distributed asP defined in 66). If we agree on the convention thatBin(0, »/0)-variable is
deterministicallyo, this also holds when the queue runs out of variables.

In the Phase-Il queue, the number of customers arriving in the first timeahtd 7, is the
number of unit-clauses generated at the end of Phase | by setting thaest@their tentative
values. TheBy;(j) are defined analogous to tti& (j).

At this point, note that the conditior68), which is needed for Lemm#&0.18 is satisfied

for both queues.

10.6.2. Bounds for the probabilities of some essential eventBelow, we repeatedly use
the following simple Chernoff-type inequality (e.g. equation (2.11)JhR00]): if U is a
binomially distributed random variable with meanthen

(67) PlU>a]<e™@ fora > 7pu.

Lemma 10.20.Letr > 1,1 < z = z(n) = o(n) an integer,x, y2, y3) e-good for some > 0,
andm™ := max(0,y2 — rzlogn), m™ := ys + rzlog n. For both phases | and Il of the inner
loop, the following is true. If, at the beginning of the phase at stelp, (ihere arex variables,
12 2-Clauses, angs 3-clauses, then the probability that, while dealing with the firgariables
in the phase, the number of 2-clauses leaves the intémval m™|, isO(n™").

PROOF. For the upper bouneh™, the probability that the number of 2-clauses exceeds
m™ is bounded from above by the probability that one in a sequencénafependent random
variables withBin(m, ﬁ)-distributions is greater thanlogn. Here the factor/2 on the
denominator takes care of the= o(n) variables which are used. Farlarge enough, this
probability is at most

zO(( m )(%)Tlog”) — 20(e7"1%8") = O(n™").

rlogn/\ n

For the lower boundr—, the probability can be bounded by the same argument, noting that, if
m~ = 0, the corresponding probability is O. O

Let R denote the event that a repair is invoked during this run of Algorihrivioreover,
denote byZ; and Z;; the length of the first busy period of the Phase | and Phase Il queues,
respectively. Note that they depend Apand A7, respectively. Further le¥/; and M be the
total number of colored clauses which are generated during Phasé”haisé 11, respectively;
let H; and Hy; the event that, in some iteration, in step$8)jthe current variable is found to
be contained in a colored clause (other than the current c@gsand bny2 the probability
thatin Phase | the current variable is found to be contained in at leasbta@d clauses (other
than the current clausg).
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Lemma 10.21. Suppose thav#(t) is 2e-good. With thed := d(e) and C' := C(e) from
Lemmal0.18 andr > 1, the following is true for all large enough (depending a).

(68a) P[A; > rlogn | ()] =O0(n™")
(68b) P(Z > Srlogn | #(t)] = O(n™")
(68c) P[M; > 5000rlogn | ()] =0(n™"
(68d) P[H; | #(t)] = O.(&™)
(68e) PIH;? | A(1)] = 0.(5")
(68f) P[R | #(t)] = O.(1&™)
(689) P[Ar > 20C(r + 1) logn | #(t) & R = O(n™")
(68h) P[Zy > 0% (1 4 1)logn | #(t) & R) = O(n™")
(68i) P[My > W(r +1)logn | 7(t) & R|=0(n"")
(68)) P[Hy | #(t) & R] = O-(5")

PROOF For (689, if 77(t) is 2e-good, then the probability that; > rlogn is bounded from
above by the probability that Bin(m, 2%n)-variable is larger tham log n, which is at most
n~", for n large enough, byg7).

Proof of (68h). We use Lemmad.0.18together with Lemma.0.20to bound the conditional
probability thatZ; > «. If 57(t) is 2e-good, then then™ from Lemmal0.2Q with z := X (¢),
ya := Ya(t), y3 := Y3(t), and thez = z, from (60), is such that@4) is satisfied ifn is large
enough depending an

The requirement for the estimate B50) is thatA; < a¢ := min(e/c, 2-/c). Thus, for the
probabilities conditional o (), we have

P[Z[ Z Ck]
= P[Z] >« ‘ Ar < ag] P[A[ < ag] + P[Z[ >« ‘ A > a()] P[A[ > a()]
< O0(e™%) +0(n~") 4+ P[A; > ag).
With o := %rlog n, using 689 and ©7), the right-hand side i®(n~").

Proof of (68¢). For every iteration, a clause is only colored if the current variable of thetite

is contained in the clause. Hence, the number of clauses colored in thatirsttions is upper

bounded by the sum gfindependenBin(m, %)—variables. Hence, the probability that in the

first j iterations, the number of colored clauses excgeds at most— by (67), provided that
>0 >7. /2j Moreover, we havé/; < m with probability one. Thus, conditioning

ons#(t) (and keeplng in mind tha#(t) is required to b&s-good), the probability that/; is

larger thar®®< r log n is at most

O(e_rm?sc logn) 1 m P[Z; > r2%8Clogn | (1)) = O(n™") + O(mn~"") = O(n™").

Proofs of (68d) and(686€). In the first phase, in thgth iteration, the probability that the current
variablex ; occurs in a colored clause (other than the current cl@yses O( (]g[f ), and the
probability that the number of colored clauses containingother than the current or@) is
two or more isO ((35-)”).

By (68b) and 680, we can bound the probability that this happens in the Hysterations
by OE(@) +0(n™") andOE(l"f; )+ O(n~"), respectively, where the constant in the()
depends only oa.
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Proof of (68f). Clearly, the probability that a repair occurs is at most the probability that, in
some iteration, the current variabte occurs in a colored clause (other than the current one
C;). Thus, the inequality follow fromG8d).

Proof of (689). SinceA;; < Mj, this inequality follows from 8¢ and ©68f), with » replaced
by r + 1, by conditioning onR:
P[M; > %%0C(r + 1) logn | #(t) & R
<P[M; > E’Og—%c(r + 1) logn | #(t)]/ PR | #(t)]
=0t B )y =0(n"").

logZ n

Proof of (68h). We now apply Lemmad40.18and 10.20to the Phase-Il queue. Let :=
500C% (1 4 1). If A(t) is 2e-good, then then*t from Lemmal0.2Q with z := X (t), yo :=
Ya(t), y3 := Y3(t), and thez = z,» from (60), is such that§4) is satisfied ifn is large enough
depending on.

Again, the requirement for the estimate 50 is thatA;; < a, := min(e/c, 2/c). Thus,
for the probabilities conditional os#’(t) & R, we have

P[Z]] Z Oé]
= P[ZH >« ’ A < a& P[A[[ < a& + P[Z[[ >« ’ A > a{)] P[AH > a{)]
<O ) +0(n™"") + P[Ay > d)

With o := %(wl) log n, we haver, = 2%< (r+1) log n, so that, by §8g), the probability
thatA;; > af, is O(n™"). In total, we obtain an upper bound @{» ") for the probability that

Z > 502502 (7’ -+ 1) log n.

Proof of (68i). For every iteration, a clause is only colored if the current variable of thatioe

is contained in the clause. Hence, the number of clauses colored in thg ifiesations is
upper bounded by the sum gfindependenBin(m, ﬁ—variables. (The factor of/2 in the
denominator is to take care of the fact that the number of variables, whitmgtaiith at least

en, might drop belowen during the run of Phase | or Phase Il.) Hence, the probability that
in the firstj iterations, the number of colored variables excegdss at moste=® by (67),
provided thaty > 2% > 7. %j. Moreover, we havé/;; < m with probability one. Thus,
conditioning ons#(t) & R (and keeping in mind that#(t) is 2¢-good), the probability that

My is larger thar%(r + 1) log n is at most

2 ~2
O(e™ ez rHDIoeny |y Pz, > S00°C2 (14 1y logn | H(H)]
=O0(n™") + O(mn %) = O(n™").

Proof of (68)). In the second phase, in thith iteration, the probability that the current variable
X; occurs in a colored clause (other than the current@és O(%). By (68h) and ©8i),

we can bound the probability that this happens in the Hystterations bﬁg(@)JrO(n*’“),
where the constant in th@. () depends only oa. O

10.6.3. Changes of the parameterX (¢), Y2(t), and Y3(t). We now move to study the
differences between successive values of these parameters, atattveth X (¢t + 1) — X (¢).
Denote byF; and Fj; the number of iterations of the inner loop in the first and second phase,
respectively. ClearlyX (t) — X (¢t + 1) = 1 + Fy + Fj;, where the leading accounts for the
free variablex,. Moreover, we havd; < Z; andF;; < Zj, and the inequality can be strict
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for two reasons: in Phase I, a repair can occur, thus terminating the pbé&sreQ; drops to
zero; in both phases a red clause can vanish (i.e. become blaclg)irHeéwever, note that

F=2 with probability 1 — O (1257, and

F/I[R] > Z;1[R] — 1 with probability1 — O.(%%,")

by (680d), (68f) and £86.
Let us abbreviate

(69)

Yo(t
e R wmm 1X@) - %
o 1_ 11?;1;'2((3 B 12X () — 13Ya(t) 12X (t) — 13Ya(t)

Lemma 10.22.1f 77(t) is 2e-good andn large enough depending anthen

(70a) -1 - AY — B(2 | 2(0)| = 05
(70b) AY —B(X(t+1) - X (1) | #(0))| = 0.(2)
and

(70c) P [|X(t +1) — X(t)| > log*n L%”(t)} =O0(n™ 19

PROOF By what we have said above on the relationship betwéed;; and X (¢ + 1) —

X(t), we haveF; = Z;I[R] — Er andF; = Zy — Ej, whereEr and E; are error terms
accounting for red clauses vanishing. We h#&(e&; | (t)), E(E; | #(t)) = Os(ﬁ)
by (68d) and 686 (noting thatE;, E;; < m).

We compute the mean &f; using Lemmal0.18with the m® from Lemmal10.20with
z:= %logn asin @0). Thus, lettingy := rzlogn (the bound from Lemm&0.20, conditional
on Ay and#(t), we have

A A
G <E(Z | A & H#(t)) < — v
12X(t)+= 12X (1) -2
so that )
2
E(Z; | A & #(t)) = 17315’2(15) + Oa(%),
I 510

provided thatd; < z/c, which holds with probability at least-O(n~?2) by (689 by increasing,
if necessaryy beyond26C. SinceZ; = O(n) with probability one, we obtain

Ar 2,
E(Z; | (1)) = E(13Y(t) + O (Ao ny ‘ %”(t))
1- 12X (t)
Ya(t)
E(A[ | (1)) log? n X(®) log? n
T Bho +O(557) = | _ 3% +0:(Z57),
12X (1) 12X (t)

which proves 709. For F;, we obtain
E(F; | A1) = E(Z; | #(t)) — E(Z1 I(R) | #(t)) — E(E | (1))
= 1 - AX + 0.(™2) — 0.(logn) P(R | A1) — mO(n”") — 0.(1%1)

— 1 AX + O (len)

n

and
E(Fy | #(t) & R) < E(Zy) = O:(logn) + O(n™")m,



10.6. THE INNER LOOP 139

from which (70b) follows.
SinceX(t) — X(t+1) < 1+ Zr + Zj, the tail inequality 709 follows immediately

from (68b) and €8H). O
Lemma 10.23. If () is 2e-good, then

(71a) ‘AXng’ )) E(Y3(t+1) — Ya(t) | %(t))‘ = 0.(ken)

and

(71b) P |:‘Yg(t+ 1) = Y3(t)| > log*n %ﬁ(t)} =0(n 19

PROOF Let us denote byX’(j) the number of unused variables afteiterations of the
inner loop, i.e., before; is used, forj; = 0,1,2,.... In every iteration of the inner Ioop,
regardless of whether in Phase | or Phase I, for every uncolo@du3eC, there is avi— ,( 5
probability that the current variable; is found to be contained i€ in step (i-10), or (i-3.3),
respectively, for the zeroth iteration in Phase . If that is the case, teu3e is colored, and
when the inner loop terminates, the clause will no longer be a 3-clause.

If we suppose that, at the beginning of iteratjos: 0,1, 2, ..., before the current variable
X j is treated, there arEg;(j) uncolored 3-clauses arXi’(;j) unused variables, then the number
of 3-clauses which are hit by; is distributed a8in(Y3(j), 3/x'(5)). (We haveX'(j) = X (t)—
jin Phase I, but in Phase Il the value of course depends on how Phvasg:.)

For (71b), we can just use the fact that the number of 3-clauses which are ddddreunded
from above byM; + Mj;, the total number of colored clauses. Thus, 68d and @8i), this
number is at modbg? n with probabilityl — O(n~19) for n large enough depending en

For the conditional expectation estimad g, we compute, conditional ap(t),

E(Ys(t+1) — Ya(t) = B((Ya(t + 1) — Ya(t) I[R]) + E((Ya(t + 1) — Y3(0)) I[R)).
For the left summand, we have
E((Y(t+ 1) — Y3() T[R])
< E(log?nI[R & Y3(t + 1) — Y3(t) < log”n])
+E(mI[R & Ys(t+ 1) — Ys(t) > log®n])
<log’n P[R] + mP[Y3(t + 1) — Y3(t) > log*n] = log®n OE(@) +0(n™?)
= 0-(15m),

by (68f) and (71b).
For the right summand, we have

Zi+1
B((Y3(t + 1) = ¥3(0) (ZG 7)) +0.(%

)7

where, conditioned ol () as defined above, th&(j+1) are distributed aBin (Y5 (), ﬁ),

and theO(-) accounts for the possibility thdf, < Z;, cf. (69). Using 67) and a similar argu-
ment as above, we see that

E<Z]§G(J‘)I[R]> - E(sz 615)) + 0.

Computing the expectation of the sum can be done in the same way as forall&gsic
(e.g. in JAch00, AS0Q, Ach01]). Indeed, using the optional stopping theoreff} (+ 1 is a

4
O%n n)
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stopping time for the history of the queue together with all random procé@sssged; cf. the
proof of the next lemma for the details, where the situation is essentially the saiyieg bit
more complicated), we find that

Zr+1 Zr 1/ -
. 3Y5(4) >
(2 60) ==(X v
‘77
where we agree that/0 = 0. By (71b), Y3(t) — log”n < Y4(j ) < Y3(t) with probability
1—0(n~19), and by 68b) we haveZ; < log®n, implying X (t) —j > $X (), with probability
1 — O(n~19). Thus, we conclude

(3 )
J

‘o 7113y (t) X (t)log®n
= E<I[y3<t>_1og2n SY{0) & X()=j = 3X(0) Z( O X )>>
+0(n™")
Y- log?n Y- log®n
— (1+EZ) <3X3(§t)) +0( gn ) +O(n_7))> - AX?)X?’(S) +0( i )
by (709. This concludes the proof o719. O
Lemma 10.24.1f J#(t) is 2e-good, then
(72a)
) — (X IR Ax B - (34 1) - valo) | (0| = 0% )
and
(72b) P ||Y2(t+1) — Ya(t)| > log®n ff(t)} =0(n™19)

PrROOF The tail inequality is obtained by referring t680 and €8i) again, since very
clause which changes its length has been colored before that camhappe

Let us denote byX’(;) the number of unused variables afjeterations of the inner loop,
i.e., beforex ; is selected. In every iteration of the inner loop, regardless of whethdraneM!
or Phase I, for every uncolored 2-clauSghere is % probability that the current variable
X is found to be contained i@ in step (i6.10), or (i-3.3), respectively, for the zeroth iteration
in Phase I. If that is the case, the 2-clause is colored, and when thelampeterminates, the
clause will no longer be a 2-clause. The same is true for 3-clauses wiwehdecome red in
some previous iteration. Denote the total number of 2-clauses and pinkiSeslavhich are hit
by the current variable in some iteration over the whole run of Algoridhoy Lo .

The analysis of the expectation and taillgf, is almost identical to the analysis done in the
previous lemma for the 3-clauses. Here, too, we have to condition on thesnaintncolored
2-clauses and pink 3-clauses not changing too much. The differetioe meed to control the
number of pink 3-clauses and, after a repair, the number of 3-claesesiing 2-clauses. The
latter two numbers are bounded from aboverbyt + 1) — Y3(t), which is at mostog? n with
probability 1 — O(n~19). Thus, for Ly, we just note that its expectation accounts for the

summand—AXW"’( i in (729,

Now let us denote the number of 3-clauses which become 2-clauses theitwjo phases
of the inner loop byL3_.5, and let us also focus on the case when no repair occurs.
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In this casels_.» behaves similarly td’5(¢ + 1) — Y3(¢), with two differences: The prob-
abilities that a 3-clause is colored pink is different; and the probability in thetlzéteration
differs from the others. Let us first consider the zeroth iteration. Tabability that the tenta-
tive valuel/2 of X, makes a 3-clause pink ig2 by Lemmal0.4 Thus, if there is no repair, this
contribution is distributed aBin(Y3(t), 4 - %).

For the other iterations; = 1,2,3,..., if an uncolored 3-claus€ contains the current
variablex ;, the probability thalC becomes pink in (3) depends on the current interva),
and is distributed a® defined in 66). Indeed, if we denote the number of uncolored 3-clauses

in iteration j by Y3(j) again, then, conditioned ari (j) and X’(;j), the numbeiG(j + 1) of

uncolored 3-clauses which become pink in iteragigmdistributed a8in (Y (5), 31;(7(?)1) ) ie.,
binomial with random parameté?(j + 1). TheP( j) are the iid random variables distributed

asP in (56) defined byz(l ;), in other wordsP( 1) =1-=2z(1 ;)(1 —z(I )).

LetG(1) be distributed aBin(Y3(t), 2X( )) defineD(j+1) :=G(j+1)— % where
we agree that/0 = 0, and denote byZ (j) the history of the process up to iteratigni.e.,
before the variabl& is treated. Theifz1 D(j),¢=1,2,3,...,is amartingale with respect
to #(j),j =0,1,2,...,andZ; + 1 is a stopping time, because deciding whether- 1 < ¢
amounts to checking whethé);(¢) = 0.

To estimate the expectation of the contribution of these, we use the optiongirgtdpe-

orem again; note that the stopping time is finite with probability one, becduse m. We
conclude thakl (ZZIH D(j )) = 0, which means

Zr+1 VA, 1.
. 13Y4(5)
E =E 3 :
<Z G(3)> (Z SX'(j) )
j=1 7=0
Arguing as we have done a number of times in regard of the possible desiafi®i(;j) from
Y (t), we see that the right hand side equals

13Y§() log*
EZ;+1 O (=2~
( 1+ ) 8X (1) + ( )
Getting rid of the conditioning on the event that no repair occurs is done isatime way
as in the previous lemma, and we leave the details to the reader. O

10.6.4. Failure probability. We now bound the probability that an empty clause is gener-
ated by a run of the inner loop, including, possibly, the repair and followetwpnd phase.

Lemma 10.25.If J#(t) is 2e-good, then the probability that Algorithehproduces an empty
clause, iso(1/n).

PrOOF We use Lemmad0.1 Let us first deal with Phase II. The probability that the
algorithm “raises a flag” in Phase Il (3. (logn ) by (68j), conditioned on a repair occurring, so
that by the law of total probability, the probability that the algorithm “raisesg flaPhase I
is at mostO. (log ") by (68f).

For Phase I we need to go through the possible reasons for the algtoithase a flag”.
First of all, by 686, the probability that the current variabte is contained in a colored (red

or not) clause other than the current @ds O. (log ), which takes care of step 6.3).

The probability that a fixed clause contains the current variable of afieation depends
only on the number of variables and the number of unexposed atoms in tise,cénd so it
can always be bounded lgg In order for a 3-clause to become red or blue (or even black), it
must contain the current variable of (at least) two iterations. The probadilityis happening
is O, (log") where we have use@8h). This gives the case of stepgil).
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logn )
n2 /
ylogn
n2

Similarly, for step (i9.2), a 2-clause must have been hit twice by the current variable of an

iteration, the probability of which is again bounded®y(

0

)

In total, the failure probability can be bounded Gy

10.7. The outer loop

At the heart of analysis of the outer loop is the well-known theorem of Wifevahich, in
certain situations, allows to estimate parameters of random processestiynsdiudifferential

equations. Here is the first goal of our analysis.

Lemma 10.26. For everyc € |0, 3], the initial value problem

)

+2y(12z —y
122 —y)

4

—18cx

(

X

dy
dx

(73a)

0

y(1)

has a unique solutiop defined on the intervald

(73b)

!

See Figl0.1for a rough sketch of the direction field3g with ¢ = 2, and a solution to the

IVP. Since

1

)

ultimately, we will solve the IVP7B) numerically for the right value of anyway,

strictly speaking, this lemma is not needed to complete our argument. Howevewd like

to reduce our reliance on numerical computations as much as possible.
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FIGURE 10.1. Direction field and solution for IVF/8)

PROOF OFLEMMA 10.26 To use the known theorems on IVPs, note that the right hand

side of (733, seen as a function ¢f, y), is continuously differentiable of{x,y) | z > 0,y <

12z},

We make the following claims:
(@) For4/s <z < 1, the solution to the IVP never crosses the line 5(1 — x);

(b) for0 < = < 4/5, the solution to the IVP never crosses the line 6z.
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Thus, the solution to the IVP does not approachithe 122, which implies that the solution

extends to the whole intervi, 1].

Letg(z,y) = _18026:?1*219_(53”_@’), the right hand side of the ODE 4. To prove claim ),

it suffices to show that, witly(z) := 6z, whenevel) < x < 4/5, we havej—g < g(z,y(x)).
The computation is easy but tedious and can be found in the appendikQ &8 Similarly,
for claim @), with y(z) := 5(1 — x), for every4/s < z < 1, we havej—g < g(x,y(z)). The
computation is in the appendix, too. O

Lemma 10.27.Letc < 3 andy a solution to(73), and letz( be the infimum over alt > 3¢
for which

(74) 13y(z) < (1 — 3¢)12z

holds. Then there existsra> 0 and a strictly decreasing smooth function [0, 7] — R with
z(0) = 1 andz(7) = xo, such that whp for alt with ¢/n < 7:

(75a) X(t) =nxz(t/n) + o(n)
(75b) Ya(t) = ny(z(t/n)) + o(n)
(75c) Y3(t) = nex(t/n)® + o(n).
Moreover, we have the relationship

dr y(x) 12z —y(x)
(75d) @ r—By@) 122 -13y(2)

PrRoOF For the proof we use Wormald’s well-known theorem, which requires smhep
and computations. Using the notation of Theorem 5. Woi99], let

D= {(@x’yz,yg) €l-¢e,c+ 5[4 ’ (nz, nya, nys) is 25-good}

Cp:=10
B :=log?n
v = 3n"2
A = log® n
n
o log”® n
=

Note that\ > \; + Cyn~y, and\ = o(1), as required in Theorem 5.1 ior99].
Obviously, we hav® < X Y5, Ys < Cyn.

() Equations 700, (72b), and {71b), respectively, show that, {t /n, X (¢)/n, Y2(t)/n,Y3(t)/n) €
D, then, conditioned o (t), the probability thatX' (¢ + 1) — X (¢t) < 3, Ya(t + 1) —
Ya(t) < B, andYs(t + 1) — Y3(¢) < B hold, is at least — .

(i) The first parts of Lemma$0.22 10.24 and10.23 respectively, show that, (f, x, y2, y3) :=
(t/n, X(t)/n, Ya(t)/n, Y3(t)/n) € D,

‘f(t, z,y2,y3) —E(X(t+1) = X (1) | 1)) | <\

g2t x,y2,y3) — B(Ya(t +1) = Ya(t) | ()| < M

93(t, 2,92, y3) — B(Y3(t + 1) = Ya(t) | #(1))| < A1,
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where
- 12y2(t)
f(t,$,y27y3) =—1- 12$(t) _ 13y2(t)
g2(t,x,y2,y3) := ?;f’((tt)) +(—1— f(t,:v,yz,y:a))lszig) + f(t,x,y2,y3)2i?t(§)

93(t, @, y2,y3) := f(t, x’yQ’yP’)giz())t()t).

(iif) There exists an. depending om such thatf, g2, g3 are L-lipschitz continuous o).
Letx, y2, y3 be the solution to the initial value problem
dx

(762) = J(t2(0), 1200, ()
(76b) V2 — galt, (0, 12(0), 13(0)
(760) W — galts0(0),2(0) ()
(764) 2(0) = 1 y2(0) = 0 y3(0) = c.

From Wormald'’s theorem, we conclude that with probability
1- O(nyge_”wﬁ)S) =1-0(2),

n

itis true that, for allt = 0, ..., 0on, we haveX (t) = nz(t/n) + O(An), Ya(t) = ny2(t/n) +
O(An), andYs(t) = nys(t/n) + O(An), whereo = o(n) is the supremum over adlfor which
the solution to 76) can be extended before reaching within a distane@ofrom the boundary
of D, for a large constan®'.

We now need to study the initial value problef6). Let us start with the first equa-

tion (763, which we write as
dx 122 — 19

dt 12z — 13y’
which amounts to

122 — 13y 12y
(77) It =y da:_(l 12x_y2>d;c,
The third inequality
dys  dx3ys
dt — dt z’
is equivalent to
dys _ 3ys
de  z’
which immediately integrates o
ys = ca®,

where the constant before thé is derived from the initial value conditiong(0) = ¢ and
z(0) = 1. Finally, we write the second equation as

dy» _ g3 dw 13ys  dv2yp  ys 13 pdr | 2y2dv

dt  8x dt 8z dt 8 8 dt x dt
from which we obtain

d c odt 13 2
22— z? cx? + ﬂ,
dx 8 dx 8 x
1it should be noted that this is the same relationship betweand y; as in the case of classical 3-SAT
(see Ach01]).
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which, by (77), yields
dyy ¢ 5122 —13ys 13 N 2ys  —18cx* + 2y2(122 — o)
—_— - - — — —CX _—=
de 8 12z —y» 8 x z(12z — y2)

which is an ODE of the functiops in the variabler. In fact, withy,(1) = 0, we recognize the
IVP (73), and thugy = - in the interval on which both are defined.

To summarize, we havg; = c2?, andy, = y as a function ofr is a solution to the
IVP (73), andz as a function of solves the ODE{6g with boundary conditior:(0) = 1.

From Lemmal0.26 we know that the solutiog to (73) can be extended to a solution of
the IVP defined on the full intervaD, 1]. Moreover,‘é—f < 0 wheneverl3y(z) < 12z, so
the derivative ofr is strictly negative provided that > x(. This implies that the solutions,
Y2, y3 to (76) can be extended to the interjal 7|, wherer is the unique number satisfying
z(T) = xp; in particular we have < .

This completes the proof of the lemma. O

We are now ready to prove Theorei).2

PROOF OFTHEOREM 10.2 Lemmal0.27gives the behavior of the parametéfét), Ya(t),
andY3(t) up to an error with high probability for all= 0, ..., 7n. We need to check that

(a) the algorithm terminates beforgrows beyondn,
(b) in this region oft, whp, the algorithm does not produce an empty clause.

For (a), we solve the IVP7@) numerically forc = 2.3. The solution is drawn in Figl0.2
The figure also shows the lin8y = 12z. For this value of, we see that there is an> 0 such
that the solutiory(z) to the IVP (73) satisfiesl3y(x) < 12(1 + 2¢)z for all z > 2¢; w.l.o.g.,
we may assume that< 1/9. Consequently, the, from Lemmal0.27equals3s. Algorithm 3
terminates as soon a5(t) + Y3(t) < ¢ X (¢). Thus, by Lemmd0.27 we have as < 7 such

thatz(s) = 1/3 > x, and that, if we let’ := 23, whp, for thist := [sn]

Ya(t) + Y3(t) = ny(1/3) + ne(Y/3)* + o(n)
<n((1 —25)% -%—}— %) +o(n) < % : %ng dX(t) —o(n),

if n is large enough. Thus, the algorithm terminates before the paraniétersYs(-), Ys(-)
fail to be2e-good.

It follows that Lemmal0.25gives a failure probability 0b(1/») per iteration, so that the
total failure probability iso(1). This proves (b) and completes the proof of Theoddh2 [

10.8. Conclusions and outlook

The presented algorithm and its analysis provide a first systematic appt@aandom
iISAT formulas. In the course of the paper, analytical methods for dealitigiatervals in
CNF formulas have been established, in particular as intervals imply correlztween the
variables when choosing a value. These tools will be useful in the studyhdbm algorithms
for iISAT as well as in approximating a threshold in random 3-iSAT.

We have given an algorithm f@riSAT, for £ = 3, which succeeds with high probability on
instances for whict/» < 2.3. It is conceptually easy to extend the algorithm and the analysis
to generak up to the point where the initial value problem has to be solved kRSAT there
arek — 2 ordinary differential equations to be numerically solved after the tramsftion in
Lemmal0.27 which makes it improbable that a general formula for the maximal ratio can be
derived. Solving the system for small valuesiofwe obtain the results shown in Tatéwe
always rounded down generously).

It is possible to show that, whp, our algorithm fails to produce a satisfyingarggation if
m/n = c wherec is a constant for which the solution to the IVP3 crosses the liné3y = 12x



146 10. RANDOM 3-SAT WITH INTERVAL CONSTRAINTS

N N N NN

P e e e e P e e e

i
{
!
!
{
i
I
!
/
/
!
/
/
/
’
!
/
/
/
/
/
/
s
4
ST e e SN NN
P4

d

NG ™ P S T e e e e e e o e e e e e e e e

N

g T N N

| o e N N N
IR e R N
| e e e TR R N N N Y
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ e e N N N N N

e o 8 8 P
o o o s T T G
Lt ot o o P T
| o o i 2
om0
e T e
e e e e e e e

L
S

FIGURE 10.2. Solution of IVP T3) with bounding curves

k 3 4 5 6 7 8
max.m/n 2.3 3.75 6.25 10.5 185 325

TABLE 2. Performance for different values bf

(the green line in Fid0.2), e.g.,c = 2.4. This is so because then the inner loop rungion)
steps, and thus, whp, the algorithm “raises a flag”. (However, suebudt appears futile, given
the very limited repair routine which we refer to.)

Some further questions will be of interest. Firstly, the proposed algorittmbeamproved
in an obvious way: Whenever a variable is set, choose a value which ifsesatiee maximum
number of literals containing the variable. This, however, requires thdoliogving question
be answered. Lek be a nonnegative real number. Suppose fhal;, I5,... are random
invervals drawn independently uar from the sub-intervalof], and N is a Poisson random
variable with mean\, independent from thé;. What is the expectatiof(\) of the following
random variable?

max{ | | ( Kl ,NLIon () 1 #0}7
JjeEK

Secondly, a bound for the ratio above which random 3-iSAT formulasva@whp not
satisfiable might be interesting and worthwhile to be considered.

Thirdly, there might be a sharp threshold for random 2-iSAT as for icials2-SAT [CR92,
Goe9q. In fact, we conjecture that there is a threshold: at 3/2 (the value from Proposi-
tion 10.19. For this it remains to prove that for> 3/2, a random 2-iSAT formula with/» = ¢
is whp not satisfiable. More generally, it may be of interest whether thitsexf Friedgut (and
Bourgain) Fri99] (see alsool02, Mol03, CD03, CD04, CD09]) can be applied to random
iISAT formulas to prove that a threshold (function) exists#a6AT for k£ > 3.

Fourthly, possibly, a stronger bound for 3-iSAT could be deriveddgpéing the algorithm
of [KKLOG6 ] to the interval case. This would pose two problems: First we do are it¢eragsa
whp result, which is not offered by the algorithm iKKLO6 ], so a backtracking routine would
have to be devised; Secondly, the rule for the value assignment sigtiifficamplicates the
computations for random intervals. In their algorithm a randomly chosdablaris assigned
the value such that most clauses, in which it occurs, are satisfied, i.¢iableas assigned a
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if it mostly occurs not negated, afidtherwise. For intervals this translates to assigning a value
to a variable that is contained in the non-empty intersection of a maximal numbassadiated
intervals. But the analysis of the probability of this maximal number turns owt tteimanding

for general intervals.
As a final question, we would like draw attention to the fact that severatrpalpave
raised questions concerning the existence and location of a threshalanfiom regular 3-

iSAT [BHMO0Ob, BM99a, BMC *07, MBEI98].

We would like to close by thanking the anonymous referees for their véumalke comments!

Appendix: Deferred proofs

10.8.1. Computations for Lemmal0.6 For (a), we compute
1-EP=E(2X(1-X))= /zt(l —t)dF(t)

= / 2t(1 — )0 F (t) dt + 2t(1 — t)’ . +/ 2t(1 — )0 F (t) dt
[0,1/2] t=1/2 11/2,1]

1/2 1 1
= / 2t(1 — t)2t dt + = +/ 2(1 — £)2(1 — t) dt
0 4 1/2
) 1 5 11

81T’ T w

For (b), we compute
E(X?(1-X)?) = /t2(1 —t)2dF (1)

=t2(1 — t)Z( . +/ t2(1 — )20, F(t) dt + / t2(1 — t)?0, F(t) dt
t=1/2 [0,1/2] 1Y/2,1]

= % +/ t2(1 — t)22tdt—|—/ t2(1 —t)%2(1 —t) dt
[0,1/2]

11/2,1]
1 2 3 2
:25+4/0 B — 1) dt
/2 1/2
=% +4 (it“(l —t)? + &t t:0>
_ 1 11 11 1 1y 1,1 2,1y __ 1 22 1 11 15411 _ 13
=5+t tiortos) = stu(+3+5) = 5t5s = 5t5s = 155 = BT
Hence, using (a), we obtain
E(P))=1-21-EP)+4EX?1-X)?=1-H 4+ B-18_ 3
10.8.2. Proof of Lemmal0.13 The proof is taken almost word for word from Grimmett

& Stirzaker [GS0]], Theorem 11.3.17, with some changes due to the discrete arrival- end se
vicing points.

We say that thesonsof a customer Paul are those customers arriving in the time interval in
which Paul is serviced. Paulfamily consists of himself and all of his descendants.

Fix a time intervalj in which the queue is not empty and denoteXbyhe size of the family
of the customer served at that time interval. We have the relation

B(j+1)

X=1+ ) X,
=1

1/2

1
145
(11—t

+t (=)

t=0

whereX; denotes the family size of th&h customer arriving in the time interval
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The important observation now is that the family sizes are iid becaudg(theare iid, and
that theX; are independent d8(j + 1). Consequently, for the common probability generating
functiony of X and theX;, we have

() y(z) =z gy (y(x)).

The length of the first busy period coincides with sum of the family sizes ofi tbestomers
arriving in the first time interval. Thus, we obtain

() h(z) = y(x)*.

Solving ¢) for = and inserting into«x), we obtain

(+4%) h(gty) = v(@)”.

If y(0) =0, thenB = 0, and thush(y) = y“, which coincides with equatiorb{g. Otherwise,
by (xxx), equation $7g holds for ally in the intervally(0), y(1)], and thus for all for which
the power series on both sides of the equality sign converge.
We derive the statement about the mean length of the first busy period feyedifat-
ing (573, and possibly invoking Abel’'s Theorem to evaluate the power serie® gidimt1.
Finally, the statement about the tail probability follows directly from the stahdgponen-
tial moment argument: Iy > g, (y) > 0, then, withz := /g, (y) > 1, we have

_E2? _h(@) oyt gm)°

ze oz (Ygsw)e  yea

as claimed.

10.8.3. Computations for Lemmal0.15 Computations regarding equatiosx{:

3 1
—1%))22.5ar2u — (a— a,)u 1

ar +
ar(u+1)+ 1}%:?5ozr2u(u +1) —(
(1}3%?5 ar2) u? + <ar + 1%%?5 arZ)u - ((1
123 2 123 2 2 _ _ 123 2
ar + Erpar’ | & ar + Frsar —|—4((1 ) a) TR QT

123
2. (132.50”’2)

a—a)=0

ra—a) =0
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We need to be close tg so we take thet” =*“—-";

2
(ar + 132 5047“2) + \/<ar + 132 5ar2> + 4((1 —r)a— a) 1%,)2 =

r o=
123
2- 1325

3 2 3
—(1+ ) + \/(1+ Ber) (- - o) 25
123
2: 1325
3 3 3
(1 + 2o ) + \/(1 + 3% 5r> —Ar 5= +4(1 — 9fa) 53

123
2- 13257

3 3 2 3
—(1+ Z5r) + \/ (1- 25r) +401 - o/e) 5
123
2 3757
2
12 123 4123 4.123
_<1 T5 1327“> - \/(1 - 5'1327') t51% 513 a

2-123
5132

3 2 193

() 4y (1 ) 2

= 2. 1237’ - O(a/a)7
5.132

with an absolute constant in tli& ), because < o andl/2 < r < 1.
Computation regarding equatiomf):

) w,) arut 112;'?’52047*%2 — (@ —a)log(u + 1)

U=Up

«a o
6-122 — (1 —9/a)log(u, + 1)

= ruy + 157Uy
= ru, + gggr u? —log(u, + 1) + O(a/a),

with an absolute constant in tli&-), because:, + 1 < 2.

10.8.4. Proof of Lemmal0.18 Suppose that th8(j) are represented as a sum asag)(
above, and define

mE
o P(j)
B (]) ‘_Z;I[U(]7 )—n (j:z):|
]:
1,2,3 , are iid, so that Lemma0.17is applicable. The same is true

Then theB™ (j), j
j =

for the B~ (j), 1,2,3,. We clearly have, with probability — O(n™"),
B~ (J)SB(])SBW) forallj=1,...,z

Defining two queues)*(;j) based on thé3*(j) and respective lengths of first busy periods
Z*, we obtain, with probability — O(n™™")

() Z-<7Z<Z7,

where we have also used that < z with probabilityl — O(n~") (Lemmal0.17.

Denote byFE the event that«) holds. If (x) does not hold, we still hav& = O(n) by (63),
so that we obtain

EZ=E(Z|E)P(E)+E(Z | E)P(E) <E(Z' | E)P(E)+O(n'™") <E(ZT)+0(n'™").
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For the lower bound, we similarly have
EZ>E(E)Z7)=EZ )-EI(E)Z")

Clearly, E(L(E)Z~) < 2P(E) + B(I(E)Z~ 1[Z~ > z]) = 2 P(E) + mO(n~") = O(n'")
Thus we conclude th& Z > EZ~ — O(n'™").
For the tail estimate, we usét:

P[Z>a|<P[Z>a& Z<Z'+P[Z>a& Z > 77|

<P[Zt>a]|+P[Z>ZT]<e 4+ 0(Mn")
by Lemmal0.17

10.8.5. Computations for Lemmal0.26

For the proof of Claim k). Let g(z,y) := *18‘3‘;1@‘21*2?_(3“/), the right hand side of the

ODE (739. As mentioned in the proof of the lemma, we shg, y(x)) > 6 = %, for
0 <z < 4/5. We compute

(2.(2)) —18czt +2-62(12x — 6x)  —18cx® +2-6(12—6) —18cx? + 72
X = = —

NEY 2(122 — 62) (12— 6) 6
9-16 25-12—9-16

= 3ex? 412 > 922 +12> —9(4/5)2 + 12 =12 —

e<3 25 25
12(25-3-4) 12-13
= T 6
For the proof of Claim §). Let g(x,y) as above. As mentioned in the proof of the lemma,

we showg(z, y(z)) > —5 = % for4/s < z < 1. To show that

—18cx* +2-5(1 — x)(12z — 5(1 — 2))
9z, y(x)) = 2(122 — 5(1 — z))

> =9,
we compute
—18czt +2-5(1 — 2)(122 — 5(1 — z)) + 5z(12z — 5(1 — ))
= —18cz® +10(1 — z)(17z — 5) 4 5x(17z — 5) = —18cz* + (10 — 52)(17x — 5)

= —18cz* — 8522 + 1952 — 50 > —54z* — 8522 + 195z — 50.
c<3
The derivative-21623 —170z-+195 of the last polynomial is strictly decreasing, and evalutating
it at 4/5 gives —216(4/5)% — 170 - 4/5 + 195 ~ —51.592 < 0. Thus, it suffices to check the
inequality—542* — 8522 + 1952 — 50 > 0 for x = 1: —54 — 85 + 195 — 50 = 6 > 0.



CHAPTER 11

Cops & Robber on non-orientable surfaces

Jointly with
Nancy E. Clarke (Acadia University, Wolfville, NS),
Samuel Fiorini (U.L.B., Brussels),
and Gwenal Joret (U.L.B., Brussels)

Abstract. We consider the two-player, complete information game ogp<and
Robber played on undirected, finite, reflexive graphs. A nemd§ cops and one
robber are positioned on vertices and take turns in slidinggaedges. The cops
win if, after a move, a cop and the robber are on the same veftie® minimum
number of cops needed to catch the robber on a graph is chletbp number of
that graph.

Let cop(g) be the supremum over all cop numbers of graphs embeddable in a
closed orientable surface of gengsand likewisecop(g) for non-orientable sur-
faces. It is known (Andreae, 1986) that, for a fixed surfalee,rhaximum over all
cop numbers of graphs embeddable in this surface is finitere Moecisely, Quil-
liot (1985) showed thatop(g) < 2¢ + 3, and Schidder (2001) sharpened this to
cop(g) < 2g + 3. In his paper, Andreae gave the bourih(g) € O(g) with a
weak constant, and posed the question whether a stronged lmaun be obtained.
Nowakowski & Schoder (1997) obtainetbp(g) < 2g + 1.

In this short note, we showop(g) < cop(g — 1), for anyg > 1. As a corollary,
using Schoder’s results, we obtain the following: the maximum cop bemof
graphs embeddable in the projective plane is 3; the maximapmamber of graphs
embeddable in the Klein Bottle is at mostep(3) < 5, andcop(g) < 3¢ + 3/2
for all otheryg.

For an integek > 1, theCops and Robber game withcopsis a pursuit game played on a
reflexive graph, i.e. a graph with a loop at every vertex. There ar@pposing sides, a set bf
cops and a single robber. The cops begin the game by each choosoighadessarily distinct)
vertex to occupy, and then the robber chooses a vertex. The two sidesatternately, where
a move is to slide along an edge or along a loop. The latter is equivalent iogasse the
game played on a loopless graph. There is perfect information, and pseado if any of the
cops and the robber occupy the same vertex at the same time, after a finiterrafmioves.
Graphs on which one cop suffices to win are callegwingraphs. In general, we say that a
graphd is k-copwinif k£ cops can win orz. The minimum number of cops that suffice to win
on G is the cop number of?, denoted:(G). The game has been considered on infinite graphs
but, here, we only consider finite graphs.

Nowakowski & Winkler NW83] and Quilliot [Qui78] have characterized the class of
copwin graphs. The class @fcopwin graphsk. > 1, has been characterized by Clarke
and MacGillivray CM11]. Families of graphs with unbounded cop number have been con-
structed AF84], even families otl-regular graphs, for each> 3 [And84].

By a surface, we mean a closed surface, i.e. a compact two dimensiookldgicgl man-
ifold without boundary. For any non-negative integemwe denote byop(g) the supremum
over allcop(G), with G ranging over all graphs embeddable in an orientable surface of genus
and we call this the cop number of the surface. Similarly, we define the acopen¢op(g) of

151
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a non-orientable surface of geng$o be the supremum over albp(G), with G ranging over
all graphs embeddable in this surface.

Aigner & Fromme AF84] proved that the cop number of the sphere is equal to three;
i.e.cop(0) = 3. Quilliot [Qui85] gave an inductive argument to the effect that the cop number
of an orientable surface of gengiss at mostg + 3. Schibder [Sch0] was able to sharpen this
result tocop(g) < %g + 3. He also proved that the cop number of the double torus is at most 5.

Andreae And86] generalized the work of Aigner & Fromme. He proved that, for any graph
H satisfying a mild connectivity assumption, the class of graphs which do mt&iod? as a
minor has cop number bounded by a constant dependirfg.dgsing this, and the well known
formula for the non-orientable genus of a complete graph, he obtainedoan lipund for the
cop number of a non-orientable surface of gepusamely

Splg) < <L7/2 + \/269 + 1/4j>.

Nowakowski & Schoder NS] use a series of technically challenging arguments to prove a
much stronger boundop(g) < 2g + 1.

In this short note, we prove the following.

Theorem 11.1. For any positive integey, cop(|g/2]) < cop(g) < cop(g — 1).

This immediately improves the best known upper bound for the non-oriergakiizce of
genusg to cop(g) < 2(g — 1) + 3 = 3(g + 1). The following table gives the new and status
quo for the concrete upper bounds.

N/o genus 123 45 6 7
N.&S.[NS§] 3 5 7 9
34187

Here
TABLE 1. Comparison of the new and status quo upper boundsfdy).

We say that aveak covernf H by G is a surjective mapping: V(G) — V(H) which
maps vertex neighborhoods onto vertex neighborhoods; i.e. for eeegx v of GG, we have
p(N(u)) = N(p(w)). (This terminology lends on the classical definition of a “cover” without
weak, where the restriction to the vertex neighborhpodv (u) — N(p(u)) is required to be
a bijection.) Using the same technique as for the inequatityit\ the proof of Theorenil.l,
it is possible to show the following:

Lemma 11.2. If G is a weak cover off, thencop(H) < cop(G).

This is similar in spirit to the seminal result of Berarducci & IngrigiBi93], saying that
if H is a retract ofG, then the same inequality holds. Note, however, that neither of the two
notions generalizes the other. We will not prove Lemtia? the proof is only slightly more
technical than the geometric proof of Theoréfnl

11.1. Proof

Familiarity with the classification of combinatorial surfaces is assumed. Sest@amyard
textbook on topology. We will make use of the standard representationfates as quotients
of polygonal discs with labelled and directed edges. Each label occigses tand the two edges
with the same label are identified according to their orientations. Reading #ie tilthe edges
in counterclockwise (i.epositivg order and adding an exponent whenever the orientation
of the edges is negative (i.e. clockwise) giveswwed of the surface.

For a graphz, let v(G) denote the smallest integgrsuch that? can be embedded in an
orientable surface of genus similarly definey(G) as the smallest integersuch thatG can
be embedded in an non-orientable surface of genwor the proof of Theorem 1, we use the
following well-known fact. (The proof can be found iM[T01]).



11.1. PROOF 153

Lemma 11.3(Folklore). For any graphG, (G) < 2v(G) + 1.

In the proof of the inequalityop(g) < cop(g—1), we make use of the well-known fact that
every manifoldX has a 2-sheeted coveridff — X by an orientable manifold. IX is a non-
orientable surface of genysit is a textbook exercise to see see that the standard construction
yields a surface of genus— 1. This is Lemmall.4 The proof is straightforward (consider
Figure 1), and is thus omitted.

Lemma 11.4. A non-orientable surface of genys$as an orientable surface of gengs- 1 as
a 2-sheeted covering space.

FIGURE 11.1. A figure to accompany Lemma 4.

We are now ready for the proof of our main result.

Proof of Theorem 1. Lemma 3 immediately implies thabp(g) < cop(2g + 1), and hence
cop(g) > cop(lg/2]).

For the proof of the remaining inequalitgp(g) < cop(g— 1), let X be the non-orientable
surface of genug on which a grapitz is embedded. We identify the grapghwith its embed-
ding; i.e. we think of the vertex séf(G) as a set of points ok’ and the edge set &f(G) as a
set of internally disjoint injective curves connecting the respective erites of the edge.

By Lemmall.4 there exists a covering: X’ — X of X by an orientable surfacg’ with
genusg’ := g — 1. Consider the grapti’ whose vertex set i§p~ 1 (V(G))} and whose edge
set consists of the curves obtained by lifting the edgeS.oBy construction(’ is embedded
in the orientable surfac&’ of genusy’.

We now give a strategy fok := cop(g’) cops to win the Cops and Robber game@n
by “simulating” a game or;’ and using any winning strategy fércops on this graph, who
chase an “imaginary” robber. In such a strategy, ktmps first choose their starting vertices
u,...,ur € V(G'). In the strategy foiG, we let the starting vertices Q€u;), ..., p(ux).
Suppose now that, in the game 6f the robber chooses a starting vertexWe choose an
arbitrary starting vertex for an imaginary robber@harbitrarily in the fibrep=! (7).

Throughout the game, the position of each playeGinwill be in the fibrep=!(x) of the
positionx of the corresponding player i@. Moreover, the movements of the players@n
describe curves o, which can be lifted (uniquely, although this is not essential) to curves on
X' forming walks inG’.
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Now, whenever it be the cops’ turn in any game@pthe robber is at a certain verteof
G’, and thek cops are on vertices, . .., v,. The strategy for the cops @i now prescribes
moves for the cops. The corresponding moveS iare then given as images unger

Since we have a winning strategy, after a finite number of moves, the “imggiolaloer”
on G’ will be on the same vertex as a cop(f. Consequently, the same holds @nand thus
the cops have won the game én O

11.2. Conclusion
We conclude with a conjecture.
Conjecture. For a non-negative integef, cop(g) = cop(|g/2]).

One might wonder whether it is possible to improve Theofelnl by taking a different
covering, or possibly a branched covering. This is impossible: It is a kmelvn fact that,
whenevep: X’ — X is a (branched) covering with’ orientable andX non-orientable, then
p lifts to a (branched) covering: X’ — X, whereX is the orientable double cover constructed
in Lemmall.4



CHAPTER 12

Cops & Robber on graphs with forbidden (induced) subgraphs

Jointly with
Gwenal Joret (U.L.B., Brussels)
and Marcin Kamiski (U.L.B., Brussels)

Abstract. The two-player, complete information game of Cops and Rolibe
played on undirected finite graphs. A number of cops and ohbermare posi-

tioned on vertices and take turns in sliding along edges. cops win if, after a

move, a cop and the robber are on the same vertex. The miniraorher of cops

needed to catch the robber on a graph is called the cop nurhtfet@raph.

In this paper, we study the cop number in the classes of gagfiteed by forbidding

one or more graphs as either subgraphs or induced subgtahs.case of a single
forbidden graph we completely characterize (for both retes) the graphs which
force bounded cop number. En passant, we bound the cop numtsems of the

tree-width.

12.1. Introduction

Graphs studied in this paper are finite, undirected, without loops and multigks edVe
use standard notation and terminology; for what is not defined hereefee the reader to
Diestel Die0§.

The game ofCops and Robbeis played on a connected graph by two players — the cops
and the robber. The cop player has at her dispbgaieces (cops), for some integer> 1,
and the robber player has only one piece (the robber). The game ldtinge cop player
placing herk cops on (not necessarily distinct) vertices of the graph. Next, the rqiséger
chooses a vertex for his piece. Now, starting with the cop player, the twerglanove their
pieces alternately. In the cops’ move, she decides for each of hemdmgtker it stands still or
is moved to an adjacent vertex. In the robber’s move, he can choose &annwot to move the
piece. The game ends when a cop and the robber are on the same veaitess {tie cops catch
the robber); in this case the cop player wins. The robber wins if he caaT be caught by the
cops. Both players have complete information, that is, they know the graptha positions of
all the pieces.

The key problem in this game is to know how many cops are needed to catbbexr an
a given graph. For a connected gra@hthe smallest integéet such that withk cops, the cop
player has a winning strategy is called tt@p numberof G and is denoted byop(G). We
follow Berarducci and IntrigilaB193] in defining the cop number of a non-connected graph as
the maximum cop number of its connected components. Nowakowski and WiNk\é3] and
Quilliot [Qui78] characterized the class of graphs with cop number 1. Finding a combaiator
characterization of graphs with cop numlagffor £ > 2) is a major open problem in the field.
On the other hand, algorithmic characterizations of such graphs, wtegboynomial in the
size of the graph but not ih, do exist BI93, GR95, HM06]. However, determining the cop
number of a graph is a computationally hard probl&@IK08]. For literature review we refer
the reader to a recent survey on graph searctiii@§] (see alsolHah07]).

In this paper we study the cop number for different types of graphesdag3ur motivation
is to learn what structural properties of graphs force the cop number bmbnded. (We say
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that the cop number isoundedfor a class of graphs, if there exists a const@rdguch that the
cop number of every graph from the class is at ndigisbtherwise the cop numberismbounded
for this class.) We consider several containment relations and studygheiatber for classes
of graphs with a single forbidden graph with respect to these relations.

Families of graphs with unbounded cop number have been constrédt&d][ For every
fixedd > 3, there even exist families d@fregular graphs with unbounded cop numbfend84].

On the other hand, Aigner and FromnAH84] proved that the cop number of a planar graph
is at most 3. This result has been generalized to the class of graphs witk geSchroeder
[Sch0] proved that the cop number of a graph is boundediday'2 | 4+ 3 (improving an earlier
bound of Quilliot [Qui85]), and conjectured that this bound can be reduceg+a3.

A graph is calledd -minor-free (H-topological minor-freg if it does not contain as a
minor (as a topological minor). Andrea@rjd86] studied classes dff-minor-free graphs and
showed that the cop number offg-minor-free graph (oi<s 3-minor-free graph) is at most
3. Since a planar graph does not hav&'aor K3 3 as a minor this result extends the result
on planar graphs. However, for our purposes the most interestinlj oé&\ndreae And86] is
that for any graph{ the cop number is bounded in the clasgbiminor-free graphs. In other
words, forbidding a minor is enough to bound the cop number.

Andreae And86] also observed that excluding a topological minor does not necessarily
bound the cop number. In fact, it is an easy corollary of his work thatltss of H -topological
minor-free graphs has bounded cop number if and only if the maximumeleffé is at most
3.

Inspired by these results we study other containment relations: sulsgaaghinduced
subgraphs. A graph is calldd-subgraph-fred H-fre€) if it does not containd as a subgraph
(as an induced subgraph). We give necessary and sufficienttiomsdfor the class off -
subgraph-free graphs arfd-free graphs to have bounded cop number. First we present our
results for induced subgraphs.

Theorem 12.1. The class off-free graphs has bounded cop number if and only if every con-
nected component @f is a path.

Let us remark that a single vertex is considered to be a path. The graglsting of a
path on¢ (¢ > 1) vertices is denoted by,. The backward implication of Theorefi?.1is a
consequence of the following proposition.

Proposition 12.2. For every/ > 3, everyP,-free graph has cop number at mdst 2.
Using the same technique, it is in fact possible to show the following stroegaltr

Proposition 12.3. For every/ > 3, every graph with no induced cycle of length at leébts
cop number at mogt— 2.

Notice that it is possible to rephrase the condition of Theofi&l and say that every
connected component &f is a tree with at most two leaves. Here is our resultiesubgraph-
free graphs.

Theorem 12.4. The class ofif-subgraph-free graphs has bounded cop number if and only if
every connected componentkbfis a tree with at most three leaves.

It is easy to see that the cop number of a tree is 1. As an intermediate stepgsoies-
orem12.4 we study how the cop number of a graghis related to its tree-width, which is
denoted bytw(G).

Proposition 12.5. The cop number of a grap®i is at mostw(G)/2 + 1.

This bound is sharp for tree-width up o (This is easy to prove fotw(G) < 3; for
tw(G) = 4 and5, the Petersen graph and the disjoint union of the Petersen grapkisapids
an edge linking them are tight examples, respectively.)
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12.2. Forbidding induced subgraphs

Our goal in this section is to prove Theoret@.1 Notice that a graph whose every con-
nected component is a path, is an induced subgraph of some sufficierglpdtim Hence, the
following proposition proves the backward implication of Theor&Pnl

Proposition 12.2. For every?/ > 3, everyP,-free graph has cop number at mdst 2.
Let us remark that, fof = 1, 2, the cop number of &,-free graph is trivially 1.

PROOF OFPROPOSITION12.2 LetG be aP,-free graph and let us also assume, without
loss of generality, thatr is connected. We will give a winning strategy for 2 cops. Initially
all £ — 2 cops are on the same arbitrary vertex. The strategy is divided into stuedistance
between the cops and the robber is the minimum distance from the robber po &lw® goal
of each stage is to decrease the distance between the cops and the @Quineethe distance is
decreased we begin the next stage. We will show that a stage lasts a finibemaf rounds.

At the beginning of each stage we choosea cop(for this stage) among the pieces which
are at the minimum distance from the robber. All distances in this proof arsurezhafter the
robber’s and before the cops’ move. We route the lead cop and ingtieicither pieces to
follow the lead cop in single file; the cops should form a path of ledgtiR.

If the distance between the cops and the robber is at most one, then theleagy win.
Suppose that the distance between the lead cop on vesss the robber on vertaexis d > 2.

We order the lead cop to travel along the shortest path fedmy and then follow the exact
route the robber took from vertex Notice that since the graph i3-free the distance between
the cops and the robber will decrease after at hiest— 1 moves. Once the distance decreased,
we move to the next stage. O

We mention the following result which can be derived using almost the santegsttas in
Propositionl2.2

Proposition 12.3. For every/ > 3, every graph with no induced cycle of length at leabts
cop number at mogt— 2. O

Before completing the proof of Theoref?.1, we look at bipartite graphs with no long
induced paths. A simple modification of the proof of Propositi@yields a better bound for
the bipartite case. Here is how the cops’ strategy needs to be modified:phétow the lead
cop in such a way that the distance between any two consecutive copd/ési@ave the details
of this proof to the reader.

Proposition 12.4. For every/? > 1, everyP,,-free bipartite graph has cop number at mdst

To prove the forward implication of Theoret?.1, we need to introduce two graph oper-
ations which do not decrease the cop number: clique substitution and eidjgision. Let
N (v) be the the set of neighbors of a vertexA clique substitutiorat a vertexv consists in
replacingv with a clique of siz¢ N (v)| and creating a matching between vertices of the clique
and the vertices oN (v). The graph obtained from a graghby substituting a clique at each
vertex of G will be denoted byG*. More formally, the vertex set @ is|J,({v} x N(v)) and
two vertices(v1, u1) and (v, uz) are adjacent if and only if; = vy, Orv; = ug andu; = vs.

Lemma 12.5. Clique substitution does not decrease the cop number.

PROOF. Let G be a graph. To each vertexc V(G) there corresponds a clique @™,
which we denote by(v). We simultaneously play two games: one@rand another o1 .
We assume that we have a winning strategy for the cop playéffor\We use the same number
of cops inG as inG™.

At the beginning, the cops are placed@n according to the strategy, and the correspond-
ing cops inG are placed in the obvious way: If a cop@" is on a vertex of the clique(v)
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for some vertex € V(G), then the corresponding cop @ is put on vertexo. Then, we put
the robber inG* on an arbitrary vertex of the cliqu&v), wherev is the vertex on which the
robber is inG. For simplicity of presentation, we do not move the cops at afliduring the

first turn. Thus, the robber will move first.

Now, let us consider a robber’'s movedh say from vertex: to vertexv. In G, the robber
is on some vertex ap(u). If u = v, we do not move the robber @*. Next, suppose # v,
and letu’v’ be the (unique) edge betweétu) ando(v), with v’ € ¢(u) andv’ € ¢(v). Ifin
G, the robber is on/, we move it tov’. Otherwise, the robber is on another vertexy¢f.),
and we move it first ta/, then let the cops react to that move, and finally move the robhér to
(unless it has been caught). Once the robber is in its final position, weslebtis move irG; .

We refer to this sequence bfor 2 turns inG™ as astage

Once a stage is finished @™, we translate the moves of the cops back to the gi@ph
Consider a cop it . Letu andv be the vertices ofs such that the cop was in the cliquéu)
at the end of the previous stage and in the cligue) at the end of the current stage. Observe
that, eitheru = v, oruv € E(G). We move the corresponding cop@hfrom « to v (or let it
stay onu if u = v).

This describes our strategy for the copginBy our assumption, the robber will be caught
during some stage i@. At the end of that stage, both a cop and the robber on the dfiuie
for some vertexw € V(G). Hence, when the moves of cops from that stage are translated back
to GG, the corresponding cop i@ will be on the same vertex as the robber. O

Theclawis the complete bipartite graph with sides of size 1 and 3. The operation of clique
substitution will be used to show that the cop number of claw-free grapmbizunded.

Lemma 12.6. The class of claw-free graphs has unbounded cop number.

PROOF. LetG be a class of graphs with unbounded cop numbeigand= {G* | G € G}.
Notice that all graphs ig™ are claw-free. Applying Lemm#2.5 we see that the cop number
of graphs inG* is unbounded. O

The other graph operation needed for the proof of Thedt2rhis edge subdivision. Be-
rarducci and IntrigilaBl193] proved the following lemma.

Lemma 12.7([BI93]). Subdividing all edges of a graph an even number of times does not
decrease the cop number.

This leads to the following result. Recall that thieth of a graph is the length of its shortest
cycle if it has one;+oco otherwise.

Lemma 12.8. For every intege¥ > 3, the class of graphs with girth at leaéhas unbounded
cop number.

PROOF LetG be an arbitrary class of graphs with unbounded cop number. For évery
G, let G’ be a graph with girth at leagtobtained fromG by subdividing all edges sufficiently
often. LetG’ := {G’ | G € G}. Applying Lemmal2.7, we see that the clag has unbounded
cop number. O

Now we are ready to complete the proof of Theork2nl

Theorem 12.1. The class of-free graphs has bounded cop number if and only if every con-
nected component @f is a path.

PROOF The backward implication of the theorem follows from Propositi@®2 Indeed,
notice that if every connected componentfdfis a path, ther{ is a subgraph of the path on
|H| + p — 1 vertices, where is the number of connected componentdhf Hence, the cop
number of anf{-free graph is bounded hyiax{|H |+ p — 3,1}.
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Now we will prove the forward implication of the theorem. LHtbe a graph such that
the class off-free graphs has bounded cop number. SupposeHfhaintains a cycle and let
£ be the length of the longest cycle &f. Clearly, the class of graphs with no induced cycle of
length at most is contained in the class @&f-free graphs. However, by Lemni2.8the class
of graphs with no induced cycle of length at mé&ias unbounded cop number; a contradiction.
Hence,H is a forest.

Now suppose thall contains a vertex of degree at le@stSince H is a forest, it must
contain a claw as an induced subgraph. Clearly, the class of clawraphgjis contained in the
class ofH-free graphs. However, by Lemni2.6the class of claw-free graphs has unbounded
cop number; a contradiction. Hendé,is a forest of maximum degree at most 2, thatdsis a
disjoint union of paths. O

We note that in the second part of the proof (removing cycles) we cowiel lised some
known constructions which show that graphs simultaneously having #@naaitip large girth
and large cop number do exist; see for instance Andsadgd4] and Frankl Fra87].

12.2.1. Some remarks about edge subdivisionk.emmal2.7by Berarducci and Intrigila
[BI193] gives a bound on the cop number of graphs which result by unifornbdisiding all
edges an even number of times. By modifying the proof of Leri&& the following can be
shown.

Lemma 12.9. Subdividing all edges of a graph once does not decrease the copenumb
Combining Lemmad2.7and12.9we obtain the general result.

Corollary 12.10. For every positive integer, subdividing every edge of a graphimes does
not decrease the cop number.

PROOF LetG be a graph. The proof is by induction enThe base case= 1 is given by
Lemmal2.9 For the inductive case, assume> 2. If r is even, then the claim follows from
Lemmal2.7. If r is odd, then by induction subdividing each edge-ofr — 1)/2 times does
not decrease the cop number. Subdividing once every edge of thiénggraph we obtain a
subdivision ofG where each edge has been subdivifted 1) /2 + ((r —1)/2+ 1) = r times,
and its cop number is at least that@hy Lemmal2.9 (]

Berarducci and IntrigilaB193] noted that subdividing edges in a non-uniform manner can
both increase and decrease the cop number. However, for uniftihiviions it is possible to
give an estimate.

Proposition 12.11. Subdividing each edgetimes increases the cop number by at most one.

PROOF(SKETCH). Denote b)ﬁ the graph which results from the graghby subdividing
each edge times. A winning strategy fotop(G) + 1 cops onG is the following. Let an
auxiliary cop pursue the strategy described for the lead cop in the pfdrifoposition12.2
By this we make sure that the robber cannot change his direction or p#ss iniddle of a
subdivided edge except for a finite number of times. The othp(G) cops simulate their
winning strategy foiG on G. O

To further enlighten what happens if edges are subdivided, we peape following con-
struction. LetG be an arbitrary graph with vertices and cop number at least 2. We construct
a graphG by adding paths of length to G: every pair of non-adjacent vertices Gfis joined
by such a path. It is not difficult to see thatp(@) = cop(G). But by subdividing edges of
G, we can obtain a graph resulting froff), by subdividing every edge times. From Proposi-
tion 12.11we know that the cop number of this graph is at nibst

Considering this construction, it seems natural to propose the followingatane, which

implies the conjecture of Meyniel (see Frankt§87]) thatcop(G) is in O(\/|G|).
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Conjecture 12.12. For graphsG obtained by subdividing edges of complete graphswe
havecop(G) in O(y/n).

12.3. Forbidding (not necessarily induced) subgraphs

We now turn our attention to classes of graphs for which we forbid (nmesearily induced)
subgraphs. One key ingredient for the proof of Theol&hdis the fact that families of graphs
with bounded circumference have bounded cop number. Although thedglfellows from
Proposition12.3 in this section we give a better upper bound based on an estimate on the cop
number in terms of the tree-width, which we believe to be of interest in its own.

Let us first briefly recall the definition of the tree-width of a graphtrée decomposition
of a graphG is a pair(T,{W, | x € V(T')}) whereT is atree, andW, | z € V(T')} a family
of subsets o¥/(G) (called “bags”) such that

* Usevirm Wa =V(G);
o for every edgew € E(G), there existy € V (T') with u,v € W, and
o for every vertex: € V(G), the sef{z € V(T') | u € W, } induces a subtree df.

Thewidth of tree decompositio(Z’, {W,, | € V(T)}) ismax{|W,| — 1|z € V(T)}. The
tree-widthtw(G) of G is the minimum width among all tree decompositiong:ofWe refer the
reader to Diestel's booldie0d for an introduction to the theory around tree-width.

Our proof of Propositiod2.5relies on a well-known strategy for the cops and robber game:
guarding a shortest path. Assume tirais a shortestv-path, for two distinct vertices, v of
a graphG, and that a cop is sitting at the beginning on some verteR.ofThe cop’s strategy
consists in moving alon@ in such a way that his distance #ois as close as possible to the
robber’s distance ta. It is easily seen that, after a finite number of initial moves, when it is
the robber’s turn to play, the cop’s distanceutwvill be the same as the robber’s distance:to
when the latter is no more tha#|. This ensures that the robber cannot go on any vertex of
P without being caught. (This strategy has been first used by Aigner aordrie AF84], in
their proof that the cop number of planar graphs is at most 3.)

Proposition 12.5. The cop number of a grap®i is at mostw(G)/2 + 1.

PROOF Let us consider an optimal tree decompositiorGof Since the tree-width of7
equals the maximum tree-width of its connected components, we may assumet \agsoof
generality that7 is connected. For a ba§j C V(G) of the tree decomposition, we denote by
tx the vertex ofl" corresponding toX.

At the beginning, an arbitrary bag C V' (G) of the tree decomposition is selected, and all
its vertices are guarded in the following way: Lettingb-, .. ., b, denote the vertices iR, we
let theith cop (L < i < |k/2]) guard a shortegb; 1 b2;-path inG, and, ifk is odd, we put an
additional cop on vertel,. This ensures that, after a finite number of moves, the robber cannot
go on any vertex i, and hence is confined to (the subgraph corresponding to) somg&’tree
of T'\ tp. (We may assum®& # V (G), as otherwise the robber is trivially caught.)

Let B’ C V(G) be the unique bag of the tree decomposition that is adjacdnindl” with
B'nC # @. Observe thaB N B’ is a cutset of the grap¥. We show that the cops can move
in such a way that the vertices 8fN B’ remains guarded, and after a finite number of moves
all the vertices ofB’ (instead ofB) are guarded.

Consider each cop. Suppose first that the cop sits on a verfgx @’ or guards a shortest
path between two vertices ii \ B’. Then we send him to guard a shortest path between two
unguarded vertices iB’ \ B (or to sit on the last unguarded vertex if there is only one such
vertex). Assume now that the cop sits on a verte®Bof B’ or guards a shortestb;-path with
b; € BN B'andb; € B\ B’. Then the cop first goes 9 (if he is not already there) along
the path he keeps. The he starts guarding an arbihgajrypath, Whe@;, is any unguarded
vertex of B’ \ B. Notice that, while it may take some moves before all the vertices of the path
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are safely guarded, at least the verbgis guarded at every time. Suppose finally that the cop
guards a shortegtb;-path withb;,b; € B N B'. In this case, the cop does not modify his
strategy, and keeps guarding his path.

After a finite number of moves all the vertices B#f are guarded, and the robber did not
have, at any time, the opportunity to go on a verte®in B’ without being caught. Moreover,
the number of necessary cops is at md&t’|/2] < tw(G)/2 + 1, and the robber is reduced
to stay in (the subgraph corresponding to) some tre€ ft 3 which is a proper subtree of
T'. Therefore, by repeating this operation a finite number of times the rokbexrantually be
caught. This completes the proof. O

We remark that the bound given in Propositib2.5is best possible for small values of
the tree-width: For every = 1,2,...,5, there are graphs with tree-widkhand cop number
|k/2] + 1 (this is easily seen fot = 1, 2, 3, and the Petersen graph and the graph which is the
disjoint union of the Petersen graph and a complete graph on 6 verticesdrexamples for
k = 4 and5, respectively). On the other hand, we do not know whether there exéziastant
¢ > 0 and an infinite family of graphs such thatp(G) > ¢ - tw(G) holds for every grapld
in the family.

Let us recall that theircumferencef a graph is the length of its longest cycle if it has one,
+oo otherwise.

Corollary 12.13. The cop number of a graph is less than or equal to half its circumference.

PROOF It is a well-known fact thatw(G) < circum(G) — 1 holds for every graplt,
wherecircum(G) denotes the circumference Gf(see for instance Exercise 12.18 in Diestel's
book [Die0g]). With Proposition12.5 we concludeop(G) < circum(G)/2. O

Theorem 12.4. The class offi-subgraph-free graphs has bounded cop number if and only if
every connected componentiéfis a tree with at most three leaves.

PrOOF We first show that the requirements in the statement of the theorem assagce
Let H be a graph such that the familf of connected graphs not containififyhas bounded
cop number.

First, suppose thatl contains a cycle, and létbe the length of a longest cycle fi. Then
% contains the family of connected graphs with girth at |éastl. However, by Lemmd2.8
the cop number of this family is unbounded. HenBeis a forest.

Second, suppose thaf has a vertex of degree at least 4. This implies tifatontains
all connected graphs with maximum degree 3, but Andréael@4] proved that there exists a
family of 3-regular graphs on which the cop number is unbounded. Héhdgs maximum
degree at most 3.

Third, suppose that there is a treefinwhich has two vertices of degree 3. lledenote the
distance between these two verticeddn Now .% contains the family of all those connected
graphs in which every two vertices of degree 3 or more have distancasaf l¢ 1. Starting
from an arbitrary family of graphs on which the cop number is unbounaléamily with this
property can be constructed by subdividing every egdgraes, as follows from Corollar§2.1Q
Thus, each connected componenfbtontains at most one vertex of degree 3.

We now show that any? meeting the conditions in the theorem yields a family of graphs
with bounded cop number. The proof will be by induction on the number ohected com-
ponents ofH. For a single component, by Propositid®.2 we may assume that a vertex of
degree 3 does in fact exist. We will prove the following claim.

Claim. Let H be a tree with maximum degree 3 which has precisely one verthdegree
3. Denote byr the maximum distance of a vertex from If G does not contairf{, then
cop(G) < 2r.
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Before we prove the claim, let us complete the induction. The start of thetindus
settled. Letl" be a connected component Bf, and assume thabp(G’) < k for every graph
G’ not containingH \ V(T'). Let G be a graph not containing. If G does not contaifT,
we are done by the claim and the remark preceding it. Otherwis&, le¢ a subgraph off
isomorphic tdl". We placgT'| cops on the vertices @’. This corners the robber in a connected
component of& \ V(7"). Noting thatG \ V(T") does not contairff \ V(T'), by induction,
by restricting to the connected component containing the robber, we temtb@ robber in
G \ V(T") using k cops. This bounds the cop number®@fby k + |T'| and concludes the
induction.

Proof of Claim. We prove the claim in the case when each leafiolias distance exactly
r from v. The general case follows easily from this.

By Proposition12.2 we may assume tha&t contains a pathP on 2r vertices, because
otherwise we haveop(G) < 2r. We guard the path by placingcops on every other vertex of
P, and show that what remains @fhas cop number at most Assume tha& \ V' (P) contains
a cycleC of length at leasr + 1. Then, since7 is connected, we can identify a subgraph
isomorphic toH choosingy to be a vertex o’ which has minimum distance to a vertex/i
while two of the three branches of the tree are wound aratiritie other extends t&. Hence,

G \ V(P) contains no such cycle. By invoking Corollat.13for the connected component
of G\ V(P) containing the robber, we see that the cop number §fl’ (P) is at most-. [
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