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Abstract

This thesis analyses and presents the methodology for the treatment of blast waves from a vapor

cloud explosion accounting for modeling and data uncertainties. In fact, there is no unified method

for treating blast waves from a vapor cloud explosion. In this thesis, three empirical models, the

TNT equivalent models, the TNO Multi-Energy model and the Baker-Strehlow-Tang model, have

been reviewed and compared.

The blast propagation has been modeled by the Euler equations of gas dynamics which is solved

numerically using by the Godunov scheme. A developed computer program incorporates the ex-

act Riemann solver for evaluating the solution of the local Riemann problem at the cell interface

boundary. It has been demonstrated that the solver can estimate the physical variables of the blast

wave, including the pressure, density, velocity and temperature, at certain distances relative to the

center of the blast source.

With respect to the implementation of the blast solver, the initial conditions of the blast source are

required. The primitive variables such the density, velocity, pressure, temperature could have been

obtained once the combustion process has been completed. However, the maximum overpressure

inside the vapor cloud may also be estimated and assumed to be uniform inside the vapor cloud.

Therefore, the blast wave modeling in this thesis is considered as an intermediate solution between

the simple empirical models and the much more complex computational fluid dynamic models.

The determination of the maximum overpressure inside the vapor cloud as well as the prediction of

the overpressure outside the vapor cloud reflects a large extent stochastically or judgment caused

uncertainties. In this thesis, the integration of the uncertainty aspects into the prediction model

of the blast overpressure has been proposed. In addition, the effect of uncertain parameters to

the calculation of the vulnerable study for the risk assessment was also demonstrated. The imple-

mentation of the procedure in several case studies has indicated that an accurate quantification of

uncertain parameters is also required for a better result.
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Zusammenfassung

Die vorliegende Arbeit analysiert und stellt eine Methodik für ein Verfahren zur Modellierung der

Druckwelle einer Dampfwolken-Explosion (VCE) vor. Dabei werden Modell- und Datenunsicher-

heiten bercksichtigt. Es gibt keine einheitliche Methode zur Berechnung von Druckwellen einer

Dampfwolken-Explosion. In dieser Arbeit wurden drei empirische Modelle, das TNT-Äquivalent-

Modell, das TNO Multi-Energy-Modell und die Baker-Strehlow-Tang Modell, geprüft und ver-

glichen.

Die Druckwelle wurde durch die Euler-Gleichungen der Gasdynamik, numerisch mit Hilfe des Go-

dunov Schema modelliert. Dabei wurde ein Computerprogramm zur exakten Lösung des Riemann-

Problems an den Zellgrenzen entwickelt. Es wurde gezeigt, dass das Programm die physikalischen

Größen Druck, Dichte, Geschwindigkeit und Temperatur der Druckwelle in definierten Abständen

zur Quelle wiedergibt.

Im Hinblick auf die Umsetzung der Lösungsbeziehung für die Explosion sind die Anfangsbedingun-

gen der Explosionsquelle erforderlich. Die grundlegenden Variablen wie Dichte, die Geschwindigkeit,

der Druck und die Temperatur hätte berechnet werden können, wenn der Verbrennungsprozess

abgeschlossen wäre. Jedoch kann der maximale Überdruck im Inneren der Dampfwolke auch

abgeschätzt werden, wobei dieser als einheitlich in der Dampfwolke angenommen wird. Daher

wird die Druckwellenmodellierung in dieser Arbeit als Zwischenlösung zwischen den einfachen em-

pirischen Modellen und den sehr viel komplexeren CFD Modellen angesehen.

Die Bestimmung des maximalen Überdruck im Inneren der Dampfwolke sowie die Vorhersage des

Überdruckes außerhalb der Dampfwolke spiegeln einen großen Teil der stochastisch oder auch inge-

nieurmäßige Abschätzung bedingten Unsicherheiten wider. In dieser Arbeit wurde die Integration

der Unsicherheiten in das Prognosemodell des Explosionsüberdruckes vorgeschlagen. Darüber hin-

aus wurde auch die Wirkung von unsicheren Parameter für die Berechnung des betrachten Falles zur

Bewertung des Risikos gezeigt. Die Anwendung des Verfahrens in mehreren Fallstudien hat gezeigt,

dass eine genaue Quantifizierung von unsicheren Parametern für vertrauenswürdigere Ergebnisse

erforderlich ist.
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Chapter 1

Introduction

1.1 The background, motivation and scope

An explosion is generally a challenging problem, especially for the chemical process industries.

As one of major hazards, an explosion is considered as a complex phenomena involving many

different aspects which may not be covered entirely by currently available knowledge. It is, however,

important to understand the basic situation and mechanism of these phenomena in order to deal

with the potential hazard which may affect human life and the environment.

In general, with respect to the chemical process industries, the assessment of risk, either qual-

itative or quantitative, including the potential of explosion hazards, basically attempts to answer

three typical questions, namely ’What could go wrong?’, ’What consequences can be expected?’ and

’What is the expected frequency?’. A hazard identification and analysis study may answer the ques-

tion number one, while a consequences analysis and probability study which could describe further

the potential outcomes for a particular hazard and its frequency may answer the second and the

third question. Typical important stages in performing the engineering risk analysis, including a

simplified relationship between safety analysis, risk assessment and risk management are depicted

in Fig. 1.1 [1]. As shown in this figure, the risk assessment study can describe important contri-

butions to the overall risk that an establishment or activity poses to the people, the environment

or some other vulnerable part of society. This study is started by a basic step which includes the

determination of hazards. As mentioned in the Murphy’s law states, ”if something can go wrong,

sooner or later it will”. Therefore, any possible hazards which may lead to any potential major

accidents must first be properly defined [2, 3].

Furthermore, the prediction of hazard levels and potential damages to the vulnerable objects

is very important for the safe design of a plant. It is generally known that there are three types

of major industrial hazards, namely fires, explosions and the dispersion of toxic chemicals. These

hazards occur not only at fixed site facilities, such as during the storage or manufacture, but also

during transportation of the materials involved [5]. Fires and explosions, in fact, have been a major

concern in safety for a long time, because when anyone of them or both occur, the consequences

can be very severe [6].
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Figure 1.1. Typical important stages in performing the engineering risk analysis [1, 4]

Typical initiating events leading to the occurrences of these major hazards are the incidental

release of a hazardous material (flammable/toxic) from its inventory or containment. This incident

may be caused by any particular failure mechanism including the collapse or rupture of a tank, a

process vessel or the rupture of the pipeline as well as the leak in a vessel or a hole in a pipeline.

These failures can be followed, in the case of a volatile material, by its vaporization and dispersion

[7]. Basically, any type of release incident, which might be instantaneous or continuous, could

be succeeded by various sequential events depending on circumstances. These sequences may be

related to process conditions of the material inventory or containment, the presence of one or more

safety barriers, and the atmospheric (weather) conditions at the time of the release or other related

factors. Each sequential path following the release may lead to a particular end scenario, which is

known as accidental outcome. These outcomes may range from no or negligible consequence up to

the possible three major accident categories as mentioned above [8, 9].

The three major hazard categories in the chemical process industries may still be broken down

into numerous sub-categories. Each category has specific characteristics which may differ from

one another. Therefore, in order to understand the possible outcome of a certain release incident,

it is quite essential to properly define these sequences, which is typically done by using an event
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tree. At the end, a detailed evaluation of each hazard scenario including the estimation of the

potential risk to the vulnerable objects is required for taking appropriate actions to reduce their

impacts. These impacts may include injury or fatality to the people, severe property damage or

environmental damage. Several comprehensive measures can then be enacted to limit the likelihood

of the accident. In general, these will form one of the bases for the appropriate selection of the

safety integrity level (SIL).

With respect to the potential and the level of damage, explosions is considered to be the most

serious safety problem in comparison to the other types of major hazard (i.e. fires or toxic dis-

persion). Explosion damage may not only affect the site of the explosion itself but also, according

to the circumstances, may extend to much larger off-site surrounding areas. A statistical analysis

to a numbers of accidents in the chemical process industries as reported in [10], has proved that

explosions cause the most severe consequences, followed by fires and toxic dispersions. The same

report has concluded that the probability of the accident decreases as the severity of the accident in

terms of number of fatalities increases. However, for a given probability the number of fatalities for

an explosion is generally higher. Another statistics study has mentioned the the average proportion

of losses caused by explosions is about 67.7% against 30.2% by fires and 2.1% by toxic dispersions

[11, 5]. In addition, according to circumstances, explosions may also lead to a fire and another

secondary explosion. Therefore, an explosion is considered the most dangerous hazards that may

occur in the chemical process industries. It should always be taken into account in the risk assess-

ment study if any condition leading to its occurrence is present. In general, the prevention and

mitigation of possible explosion have became a major priority the design and operation of process

plants or other chemical installations [12, 13].

Perhaps, the most important feature of an explosion is the generation of the blast wave and

damaging overpressure, which is the pressure rise above the ambient which may, at certain level,

cause injury, fatality to the people, asset damage, or event escalation. The blast wave is actually

the mechanical energy of the explosion that rapidly moves into the surrounding air away from the

explosion origin which is the ignition point. The generation of overpressure is considered as the

specific feature associated only to an explosion, which may distinguish it from a fire. The present

study deals mainly with the treatment of the blast overpressure from a vapor cloud explosion. The

work here has primary aimed to propose a methodology for treating the blast wave from a vapor

cloud explosion by developing an efficient modeling for the blast wave propagation. Some important

aspects from the empirical models are taken into account.

Another major challenge for a better prediction of the blast wave overpressure is the integration

of uncertainties into the prediction methods. The use of such analyses, especially for a vapor cloud

explosion is found very minimum. Currently available models do not seem to have applied these

phenomena to the calculation of the blast parameters as well the assessment of vulnerability for risk

studies. The treatment of uncertain parameters is actually essential for the quality and practical

usability of the blast overpressure analysis. Therefore, when performing an analysis, a wide range

of uncertainties will inevitably be introduced during the process.
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1.2 Thesis objectives

A systematic review on the available calculation techniques for the prediction of the blast wave

overpressure from vapor cloud explosions is to be addressed in the earlier stage of this thesis.

A particular attention will be made to the most widely known models by means of empirical

techniques. In addition, the focus of this work will turn to the development of an efficient computer

program for the modeling of the blast wave propagation phenomena. The procedure for integrating

the useful guidelines for estimating the maximum explosion overpressure into the modeling of the

blast wave from an explosion becomes another prime goal of this thesis. At the end, it is expected

that a methodology for incorporating uncertainties into the computational procedure involving the

estimation of the blast overpressure can be proposed. The implementation of the procedure, for

example, on the vulnerability study for the risk assessment is to be presented.

1.3 Thesis overview

The final report of this thesis consists of six chapters and several appendices. The chapters are

further divided into several sections and subsections. Some of the subsections are also broken down

further into several sub-subsections. These classifications have beeen systematically included into

the numbering scheme as shown in the table of contents.

Chapter 1 describes the background, motivation and primary scope of the work carried out in

this thesis. This chapter also covers the main and specific objectives of this thesis.

Chapter 2 presents a literature review of an explosion, in general, and vapor cloud explosions, in

particular. The mechanism of the vapor cloud combustion including the difference between

the detonation and deflagration is mentioned in this chapter. The important characteristics of

the vapor cloud explosion and its typical consequences are presented. As the most important

feature of an explosion, the blast wave phenomenon and its important properties is included

in the discussion.

Chapter 3 presents the systematic review of the prediction methods of the blast wave parame-

ters from vapor cloud explosions. The formulation, procedure of implementation, important

characteristics, advantages and disadvantages of each of the models are described in much

detail. The review also includes some critical points with respect to the use of the model for

the work performed in this thesis.

Chapter 4 describes the modeling of the propagation of the blast wave. The procedure for solving

the Euler equations of gas dynamics numerically, including the determination of the solution

of the Riemann problem while dealing with discontinuity phenomena such as shock waves is

presented in much better structure. The Godunov scheme on which the numerical solutions

of the Euler equations has been based is introduced and implemented. The development of

the blast solver for evaluating the behavior of the blast wave, including the interaction with
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a certain object is included. The application for the one- and two-dimensional case is also

demonstrated.

Chapter 5 describes the methodology for incorporating uncertainties into the prediction of the

explosion and blast wave overpressure as well as into the vulnerability study for the risk

assessment. The background of the mathematical treatment of uncertainty and method for

presenting parameter uncertainty into the model is reviewed. The relevant aspects for the

risk assessment study especially when the uncertainty is to be considered are mentioned.

The illustration examples in several different situations including the application of the blast

solver is also demonstrated.

Chapter 6 provides the conclusions and outlooks including future recommendations regarding the

subject discussed in this thesis.
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Chapter 2

Explosions in the Chemical Process

Industries

2.1 The explosion phenomena

Basically, explosions can be defined in numerous ways. According to [14], an explosion is a sudden

expansion of matter into a much larger volume than it formerly occupied. In [11] an explosion

is defined as a rapid and violent release of energy for which the extent of its violence depends

on the rate at which the energy is released. The rapid release of energy is considered to be the

most essential feature of an explosion. If the energy is released gradually, explosion would not be

expected.

In addition to the energy release rate, the violence of the explosion also depends on the mech-

anism by which the energy is dissipated following the release. There are several mechanisms for

the energy from explosion being dissipated. The most important effect is the generation of blast

leading to a massive over-pressurization. In [15] it is mentioned explicitly that an explosion is a

release of energy that causes a blast. A blast is characterized by a transient change in the gas

density, pressure and velocity of the air surrounding the explosion origin.

Other possible effects of an explosion include, among others, the generation of projectiles (mis-

siles or debris), thermal radiation in case of thermal explosions as well as the inconvenience of

acoustic energy leading to a noise of varying degrees of loudness. Each of them may cause different

consequences to the surroundings which may affect people, environment or other properties. Ac-

cording to circumstances, explosions may directly or indirectly injure people, cause fatality, damage

the structural buildings up to the demolition of the entire facilities or other valuable assets [16, 5].

In this thesis, the treatment of the pressure wave generated from explosions is the main interest.

It has been understood that, in almost all explosion cases, the energy release from explosions would

result in a rapid expansion of the surrounding gas and initiate a rapidly moving pressure wave

carrying out a certain amount of explosion energy. In fact, while performing the safety and risk

analysis, an explosion is always associated with the generation of overpressure that may cause
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damage to the surroundings. Usually, the overpressure is considered to be the main property

of pressure wave for characterizing the explosion effects. In the other words, the generation of

damaging overpressure is quite important to determine whether or not an explosion needs to be

included in a particular risk analysis.

2.2 Explosions in the chemical process industries

In general, explosions are typically distinguished based on the type of energy release. In fact,

the energy source can be anything but has potential to generate violent reaction when initiated.

Typical types of energy released from explosions may include physical, chemical or nuclear energy.

Therefore, explosions may be classified into three different groups as depicted in Fig. 2.1. For

the chemical process industries, explosions associated with the release of nuclear energy may be

considered beyond of the scope of the discussion. In fact, the occurrence of a particular explosion

Explosions

Physical explosions

Chemical explosions

Homogeneous/Uniform 

chemical explosions

Propagating 

chemical explosions

Vapor cloud explosion (VCE)

Confined gas explosion

Dust explosion

Condensed phase explosion

Thermal runaway reaction

Pressure vessel rupture

Boiling liquid expanding 

vapor explosion (BLEVE)

Rapid phase transition (RPT)

Nuclear explosions

(deflagration/detonation)

Figure 2.1. Explosion types with respect to the type of energy release [16, 5]

may not be associated with the release of single type of energy. A combination of both physical

and chemical may also be possible according to the circumstances.

2.2.1 Physical explosions

The release of stored compression energy in a compressed gas which undergoes a sudden loss of

containment is an example of physical explosions. In this case, chemical reactions are not to

be expected. Such a release may lead to a rapid expansion of gas carrying out a large amount of

explosion energy. This event is also known as a pressure vessel rupture explosion. The rupture

of the vessel may occur due to a certain number of failure mechanisms, including mechanical defects,

corrosion, heat exposure (external fire), cycling failure or other similar reasons.
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Another typical example of a physical explosion which is also quite common to occur in the

chemical process industries is the BLEVE, abbreviated from the boiling liquid expanding

vapor explosion. This explosion is in fact a special case of a pressure vessel rupture in the sense

that the pressure vessel that contains a liquefied gas stored underpressure and above its normal

boiling point fails catastrophically due to similar reasons as stated before. The rupture of this

vessel would result in a sudden flashing of the liquid into vapor which would expand rapidly to the

surrounding. Strictly speaking, the BLEVE does not necessarily imply thermal effects. However,

in many cases, the liquefied gas stored in the pressure vessel is typically a flammable material.

Thus, once the pressure vessel fails, the expansion of the flammable vapor is expected. If this

flammable vapor is ignited by a certain ignition source immediately after being release from the

vessel, a fireball would occur following the physical explosion. Therefore, as usually happens, a

BLEVE is also associated with the possibility of a fireball, making this accident to combine both

the mechanical effects due to a gas expansion and thermal effects due to a fire.

Another typical example of a physical explosion as shown in Fig. 2.1 is a rapid phase tran-

sition (RPT). This phenomenon is realized in liquefied natural gas (LNG) incidents in which

LNG vaporizes violently upon coming in contact with water. During such explosions there is no

combustion but rather a huge amount of energy is transferred in the form of heat from the room-

temperature water to the LNG at a temperature difference of about 175 degree Celsius.

2.2.2 Chemical explosions

Chemical explosions are usually associated with the sudden release of chemical energy which is

stored or generated from chemical reactions. These reactions may include rapid combustion process,

decompositions or other rapid exothermic reactions. Chemical explosions can also be distinguished

into two different groups, namely the homogeneous chemical explosions and the propagating

chemical explosions. With respect to the homogeneous chemical explosions, the chemical reac-

tions occur uniformly through space in a reaction mass. These explosions, in some literature, are

also known as uniform chemical explosions. Thermal runaway reactions that occurs when the

heat released by the chemical reaction exceeds the heat removal, is an example of these uniform

chemical explosions.

Meanwhile, the propagating chemical explosions is always associated with chemical reactions

that are initiated in a restricted part of the reaction mass and then spreads outwards. Thus, at a

given later moment, these kinds of reaction would create three different regions. There is a region

which has undergone the reaction (a reacted zone), a region which is not yet affected by the reaction

(an unreacted zone) and, in between these two regions, there is a narrow zone within which the

chemical reaction is taking place and the product of the chemical reaction at a high temperature

is to be found. This interface zone which separates the cold unreacted mass from the hot reaction

products is commonly known as the reaction front.

With respect to the propagation velocity of the reaction front relative to the unreacted mass

immediately ahead the reaction front, the propagating chemical explosions can further be distin-
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2.3. Mechanisms of deflagration and detonation

guished into detonations and deflagrations. In the case of detonations, the reaction front moves

equal to or faster than the speed of sound in the unreacted mass. A typical example of detonation

explosions is a condensed phase explosion involving conventional chemical explosive (e.g. TNT, C4,

RDX, etc). Meanwhile, during deflagrations the reaction front moves at a speed less than the speed

of sound in the unreacted mass. Typical examples of deflagration explosions include the vapor

cloud explosion (VCE), dust explosion, and confined gas explosion.

In the following section, the mechanisms of explosion phenomena in the chemical process in-

dustries following the release of the flammable gases or vaporizing liquid is particularly mentioned

in detail. As mentioned before, the outcomes following the release of the flammable gases or va-

porizing liquid are not necessarily explosion. However, the main interest is the release incident

leading to the formation of the vapor cloud. The different between two combustion modes, namely

deflagration and detonation is firstly discussed.

2.3 Mechanisms of deflagration and detonation

Many chemical process industries frequently deals with an enormous inventory of hazardous sub-

stances, including the flammable gases and vaporizing liquids. Such fuels include non-liquefied

flammable gases (hydrocarbon fuels with one or two carbon atoms e.g., methane, ethylene/ethene,

acetylene/ethyne); liquefied gases under pressure (hydrocarbon fuels with three or four carbon

atoms, e.g., propane, butane); and ordinary flammable liquids that are stored particularly at high

temperatures and pressures (hydrocarbon fuels with five or more carbon atoms, e.g., cyclohexane,

naphtha). With respect to the circumstances, typical consequences that can be expected following

the release of these materials may include fires, explosions or atmospheric toxic dispersions. Figs.

2.2 and 2.3 are two typical diagrams showing the event sequences following the release incident of

the pressurized gases and pressurized liquefied gas (vaporizing liquids).
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Figure 2.2. Accidental sequences following the loss of process containment containing pressurized gases
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Figure 2.3. Accidental sequences following the loss of process containment containing pressurized liquefied
gases/vaporizing liquids. If a proportion of the vapor cloud rains out, a pool of liquid is created.
Therefore, in addition to the specified effects shown in this diagram, the possible of pool fire
may also be added to the specified accidental outcomes.

In both figures, the flammable gases or vaporizing liquids may form a mixture with the sur-

rounding atmospheric air. Such a mixture is known as the gas or vapor cloud. It has been

understood that the formation of the gas or vapor cloud takes some time after the release incident

and no immediate ignition is possible. If this gas or vapor cloud is explosive and subsequently

ignited by a certain energetic ignition source that is able to initiate a rapid combustion reaction,

explosion hazards may be expected. This means, in order to the explosion to occur, the formation

of the gas or vapor cloud which is explosive is quite essential.

The determination whether or not a gas or vapor cloud is being explosive depends on the

composition of the flammable material (fuel) in the cloud. This condition is known as the ”ex-

plosion limits” or ”flammability limits”. The gas or vapor cloud is considered flammable if the

concentration of the fuel in the cloud must be between the lower flammability limit (LFL) and

the upper flammability limit (UFL). Fig. 2.4 illustrates the condition for the gas or vapor cloud

being explosive. Some typical ranges of explosion limits for some hydrocarbon-air mixtures as well

as hydrogen-air mixture in terms of the percentage volumetric amount of the fuel per volumetric

amount of air at STP is depicted Fig. 2.5.

In the chemical process industries, the explosion of the explosive/flammable gas or vapor cloud

is famously known as vapor cloud explosions (VCEs). The accident history has concluded that

VCEs are the major threat and the most dangerous hazard which may occur following the release

incident of the flammable gases or vaporizing liquid. However, it has been well understood that the

combustion of the flammable gas or vapor cloud would not necessarily give rise to the vapor cloud

explosion. The combustion of the flammable gas or vapor cloud is basically only a deflagration and
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Figure 2.4. Composition of the fuel in the cloud must be within the boundaries of the explosion limits in
order to get explosive. Otherwise, explosion would hardly to occur.
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Figure 2.5. Typical ranges of explosion limits for some hydrocarbon/hydrogen-air mixtures at 1 atm and
250C

not an explosion. As mentioned before, explosions are always associated with the generation of

damaging pressure wave. As for deflagration, no damaging overpressure would be expected. Thus,

in the following the mechanism of deflagration that could generate damaging overpressure and its

difference from detonation is described.

2.3.1 The premixed combustion

Deflagration and detonation ate two typical combustion modes. A combustion itself is defined as

a process of heat release in exothermal reactions accompanied by the mass and heat transfer. A

premixed combustion in sense that the fuel and oxidizer are essentially mixed prior to ignition

is the most relevant mechanism for the explosion. In addition, the premixed combustion is also

practically importance in engines or modern gas turbine [17].

The basic mechanism of premixed combustion is characterized by the propagation of the reaction

front separating the unburned mixture from the fully burned mixture. The most distinctive feature

of this kind of combustion is its ability to form a self-sustained reaction wave propagating with a
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well-defined speed, which is either larger or much less than the speed of sound. Another remarkable

property of a premixed combustion is the dependence of the chemical reaction rate on temperature,

which is expressed by the Arrhenius law for the reaction rate [17]:

k = A · exp

[
− Ea
RT

]
(2.1)

where A is the pre-exponential factor, Ea is the apparent activation energy, R is the universal molar

gas constant, valued 8.3143 J/mol/K and T is the absolute temperature. The activation energy of

many reactions is typically large, so that the reaction rate at the room temperature may be taken

as zero. In contrast, the increase of fuel temperature by factor of 2 or 3 may lead to an increase

of the reaction rate by many orders of magnitude. In the case of a strongly exothermic reaction

when a considerable energy release is involved, relatively slight increase of the temperature at some

region ignites the reaction, which eventually extends over the whole gas [17, 18, 19].

Deflagration and detonation are two different regimes of premixed combustions. In both cases,

there is a process in which the reaction front or the flame propagates spatially through the re-

action mass. Basically, the main difference between deflagration and detonation depends on the

propagation velocity of this reaction front relative to the unreacted mass immediately ahead the

reaction front. The propagation velocity of the flame front relative to the unburned mass immedi-

ately ahead the flame is also known as the burning velocity. Another parameter to mention the

propagation velocity of the flame is the flame speed. Both quantities are not similar but, in fact,

are related each other. The flame speed is defined as propagation velocity of the flame relative

to a stationary observer, such as the ground or another fixed frame [20]. The distinction between

these two parameters can be described by mentioning the combustion process inside a tube that is

open at one end and closed at the other as depicted in Fig. 2.6.
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Figure 2.6. Illustration of the combustion process in a tube which is open at one end and closed at the
other. (a) the ignition takes place at the open end, while (b) the ignition takes place at the
closed end.

In this figure, both tubes are filled with the same flammable mixture of fuel and oxidizer. The
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combustion is initiated once this mixture is ignited by a certain energetic ignition source. In the case

that the ignition takes place at the open end, the flame propagates into the stagnant (stationary)

unburned mixture. At this situation, the flame propagates at its burning velocity which normally

takes place in a laminar region. Thus, this velocity is also called the laminar burning velocity,

here denoted by SL. If the velocity of the unburned mixture is denoted by uu, in this particular

case, uu = 0. In fact, the flame speed is actually the sum of the burning velocity and the velocity

of the unburned mixture. If the flame speed is denoted by SF , thus

SF = SL + uu (2.2)

Therefore, for this first case, the flame speed SF is considered similar to the laminar burning velocity

SL. The combustion product directly vent through the open end.

However, if the ignition takes place at the closed end, the combustion products would expand

due the heat release from the reaction. This causes the unburned mixture to move at a velocity of

uu � 0. This means, this expansion creates a particular flow field in the the unburned mixture.

Basically, the flame front itself would still propagates at its laminar burning velocity (SL) relative

to the unburned mixture immediately ahead the flame. However, the flame speed (SF ) is no longer

equal to this laminar burning velocity but determined by Eq. 2.2.

In fact, the flame speed SF is found to be proportional to the laminar burning velocity SL. Such

proportionality is represented by the expansion ratio defined as the ratio of the mass density ratio

of the unburned mixture, denoted by ρu and the mass density of the burned mixture, denoted by

ρb. This expansion ratio, denoted by αexp, is given by the following equation:

αexp =
ρu
ρb

=
Vb
Vu

(2.3)

During an adiabatic combustion process of a stoichiometric hydrocarbon-air mixture, for example,

the gas combustion products typically expand up to 8 times its initial volume. This means, αexp = 8

[20, 21]. Taking into account this expansion ratio, the flame speed relates to the laminar burning

velocity according to the following equation:

SF = αexp ·SL (2.4)

This means that the velocity of the unburned mixture is given by the following equation:

uu = (αe − 1) ·SL (2.5)

2.3.2 Deflagration phenomena

Deflagration is a strongly subsonic combustion process in which the reaction front propagates at

a speed less than the speed of sound in the unreacted mass immediately ahead the flame. In

fact, the propagation of the flame during a deflagration is governed only by the ordinary transport
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phenomena such as thermal heat conduction and molecular diffusion of heat and species. These

ordinary transport processes are basically slow process making the flame to propagate also slow to

the unburned mass ahead the flame.

The basic mechanism of deflagration can be described as follows. Suppose that a mixture of fuel

and oxidizer has been formed, for example, the mixture of a flammable gas or vaporizing liquid with

the atmospheric air (gas or vapor cloud) and it is explosive. If this mixture is ignited by a spark

with an energy content of the order of as little as 1 mJ, before the cloud being diluted below its lower

flammability limit (LFL), a deflagrative combustion will be initiated. In this case, a thin flame

starts to propagate through the unburned mixture away from the ignition point. The products

of this combustion reaction have larger temperature. The thermal conduction will transports the

thermal energy from these hot combustion products (burned gas) to the cold unburned mixture.

Fig. 2.7 shows the distribution of temperature across the reaction front during such a deflagration

process. As a result of such transport process, the temperature of the unburned mixture close to

Figure 2.7. Distribution of the temperature during a deflagration of a flammable mixture [22]

the burned gas increases which causes the reaction in this zone to go faster until another portion

of this cold unburned mixture is burned followed by the release of more energy. Again, this energy

will be is transported by means of the thermal conduction process to the next layer of the cold

unburned mixture resulting in the propagation of the reaction front. The reaction front is also

known as the flame. This propagation process continues to make the flame survive so long until the

whole part of the cold unburned mixture is burned. The thickness of the flame depends on thermal

diffusivity and burning velocity. For stoichiometric fuel-air mixtures, the flame thickness is in the

order of millimeter only. For example, in [23] the flame thickness of a stoichiometric methane-air

flame at 1.0 atm is estimated only 0.175 mm.

Basically, the ordinary transport mechanisms such as the thermal conduction and molecular

diffusion is a considerable low speed process. This is the main reason of why the flame advances

into the cold unburned mixture at a slow burning velocity that normally takes place at a laminar

region and significantly smaller than the speed of sound in the same medium. In some literature,
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such deflagration phenomena is also known more specifically as a slow deflagration in order to

distinguish it with a fast deflagration process which is going to discussed in the next section.

In fact, the laminar burning velocity of a certain fuel-air mixture is considered as a fundamen-

tal parameter whose value reflects the reactivity of such a mixture. For typical hydrocarbon-air

mixture, such as methane-air or propane-air, the laminar burning velocities under atmospheric

conditions are normally less than 1 m/s. However, for some fuels like acetylene and hydrogen, the

laminar burning velocities of their mixtures with air under atmospheric conditions are significantly

more than 1 m/s and higher than those of normal hydrocarbon air-mixtures. This means that

hydrogen or acetylene is more reactive than normal hydrocarbon fuels. Furthermore, Table 2.1 fur-

ther shows some more information of the basic combustion properties of some frequently handled

gases or vaporizing liquids in the chemical process industries. These properties are valid if these

fuels are mixed with air under atmospheric conditions.

Table 2.1. Basic combustion properties of some gases or vaporizing liquids in air under atmospheric condi-
tions [22, 24]

Flammability Flash Autoignition Laminar Burning
Substances Chemical limits Point Temperature Velocity, SL

formula [vol. %] [◦C] [◦C] [m/s]

Methane CH4 5.0-15.0 - 595 0.448
Ethane C2H6 3.0-15.5 - 515 0.476
Propane C3H8 2.1-9.5 - 470 0.464
Ethylene C2H4 2.7-34 - 425 0.735
Propylene C3H6 2.0-11.7 - 455 0.512
Hydrogen H2 4.0-75.6 - 560 3.250
Acetone (CH3)2CO 2.5-13.0 -19 540 0.444
Diethyl ether (C2H5)2O 1.7-36 -20 170 0.486
Acetylene C2H2 1.5-100 - 305 1.550
Ethanol C2H5OH 3.5-15 12 425 -
Toluene C7H8 1.2-7.0 - 535 -
Cyclohexane C6H12 1.2-8.3 -18 260 -
Hexane C6H14 1.2-7.4 -15 240 -
Xylene C8H10 1.0-7.6 30 465 -

According to [21, 25], if the reaction front propagates only at its laminar burning velocity, the

flame speed is predicted only in the range 3.5 - 25 m/s. In general, with such low flame speeds, the

generated overpressures will not be significant because the pressure build-up during deflagration

processes depends strongly on the flame speed. Fig. 2.8 shows the graphical relationship between

the generated flame speed and the generated overpressure. According to this figure, an overpressure

in the order of hundred Pascals may still be expected from a slow deflagration. However, this is

quite low to cause any danger or damage to the environment. For the risk analysis, such a low

overpressure could simply be ignored. Therefore, slow deflagration is basically not to be defined as

an explosion, but only as a fire. This kind of fire is also known as a vapor cloud fire or a flash fire.

The main hazard typically dealing with a fire event is a thermal radiation or a direct flame contact.
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flame speed ( m/s )

Figure 4.1. Overpressure as a function of flame speed for three geometries. The relationships
are based on calculations by use of a self-similar solution (Kuhl et al. 1973).

4.1. OVERVIEW OF EXPERIMENTAL RESEARCH

At first glance, the science of vapor cloud explosions as reported in the literature
seems rather confusing. In the past, ostensibly similar incidents produced extremely
different blast effects. The reasons for these disparities were not understood at the
time. Consequently, experimental research on vapor cloud explosions was directed
toward learning the conditions and mechanisms by which slow, laminar, premixed
combustion develops into a fast, explosive, and blast-generating process. Treating
experimental research chronologically is, therefore, a far from systematic approach
and would tend to confuse rather than clarify.

Because the major causes of blast generation in vapor cloud explosions are
reasonably well understood today, we can approach the overview of experimental
research more systematically by treating and interpreting the experiments in groups
of roughly similar arrangements. Furthermore, some attention is given to experimen-
tal research into the conditions necessary for direct initiation of a detonation of a
vapor cloud and the conditions necessary to sustain such a detonation.

This section is arranged as follows: First, premixed combustion is discussed
based on the experiments performed under controlled conditions. To establish these
conditions the experiments were conducted in explosion vessels, balloons, plastic
bags, and soap bubbles. Second, some experiments under uncontrolled conditions
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Figure 2.8. Overpressure as a function of flame speed for three different geometries. The relationships are
based on calculations by use of a self-similar solution [22]

As mentioned previously, the generation of damaging overpressure is the basic feature to de-

termine whether the combustion of flammable cloud is classified to be a fire or an explosion. The

damaging overpressure from a deflagration will be expected if there is a mechanism for the genera-

tion of high flame speed. In the other word, during a deflagration process, the flame speed should

be accelerated while propagates through the flammable cloud. This condition is basically influenced

by the degree of confinement and congestion. This means that if a flammable cloud is ignited in a

partially confined region with a certain level of congestion (obstacles), the flame front will be accel-

erated through its pathway in the flammable cloud. The burning velocity which is initially laminar

may transit to the turbulent burning velocity and subsequently generate high flame speed. In this

case, one can say that a slow deflagration has been transformed into a fast deflagration with a

high potential to generate a damaging overpressure. This kind of fast or turbulent deflagration is

no longer defined as a fire, but can now be considered as an explosion.

This means, with respect to the condition of confinement or congestion, a slow deflagration

can be defined as a deflagration that takes place in a completely unconfined and uncongested

region with no obstacles or obstructions present in the vicinity and this is actually a flash fire.

Several experimental and theoretical studies, as reported in [26, 27, 28], have proved that damaging

overpressure will not be expected if the deflagration of the flammable cloud is ignited in fully open

environment.

Furthermore, the acceleration of the deflagration flame is basically associated with the wrinkling

of the flame front. Such a condition may be initiated by either the intrinsic instability of the

flame front or the external flow structure. The intrinsic instability of the flame front is actually

a hydrodynamic instability which inherently occurs during the combustion process. This is

also known as the Darrieus-Landau instability, named after G. Darrieus and Lev Landau, two

16



2.3. Mechanisms of deflagration and detonation

prominent physicists who have separately discovered this phenomenon [29, 30]. Basically, the main

reason for this instability to occur is a thermal expansion across the flame front resulting from the

coupling between flame and flow-field dynamics associated with the chemical heat release. If the

deflagration of flammable cloud occurs in a completely unconfined and uncongested region, this

hydrodynamic instability is, perhaps, being the only factor that causes the wrinkling of the flame

front. In this particular case, the wrinkling of the flame front will not generate high flame speed

since the effective burning velocity is expected not to be much higher than its laminar burning

velocity. There will be no pressure build-up to be expected from this condition. Therefore, in this

thesis, the wrinkling of the flame front due to the hydrodynamic instability will not be discussed

at all. A little more detail study on this subject can be obtained further in some references, such

as in [31].

The other mechanism that causes the wrinkling of the flame front leading to a high flame speed

during deflagration is the generation of the turbulence flow field ahead the flame front. In general,

there are two typical scenarios for which the turbulent flow field ahead the flame front can be

generated [22]:

a. Turbulent flow field ahead the flame front can be generated if the flammable fuel is violently

released, for instance a jet release or a catastrophic rupture of a vessel resulting in an explosively

dispersed cloud. However, fast deflagration due to a jet release will not produce a significant

flame speed and no damaging overpressures is expected. In [21], the maximum overpressures

in jet combustions and explosively dispersed clouds observed experimentally are typically lower

than 100 mbar. These overpressures are generally too low to create a serious danger to the

environment.

b. Turbulent flow field ahead the flame front can also be generated by the interaction of the

expansion flow ahead of the flame front with the boundaries. These boundaries are specified as

either spatial configurations of obstacles or partial confinement of sufficient extent, whether or

not obstructions were present.

In various chemical process plants or refineries, the second scenario is perhaps the most impor-

tant mechanism because typical local areas in such places containing dense concentration of process

equipments or other various obstacles such as pipework, process vessels, walls, etc. In the other

word, the presence of confinement or obstacles may act as turbulent flow initiator once deflagration

of the flammable vapor cloud is initiated in the area with such boundaries. The turbulent combus-

tion in which the flame speed is accelerated will generate a damaging overpressure. The generation

of turbulent flow field ahead the flame front due to the presence of obstacles in the area in which

the flammable vapor cloud is engulfed can be illustrated by Fig. 2.9. In this figure, a turbulent

flow field is generated due to repeated obstacles in a channel containing a flammable cloud. As

the flame front expands toward the obstacles, the flow field is created due the expansion of the

combustion product. Thus, due to the presence of obstacles , this flow field becomes turbulent

which is generated around and behind the obstacles. The flame front, which is initially laminar,
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Figure 2.9. The generation of the turbulent flow field ahead of the flame front inside a channel with repeated
obstacles [20]

encounters this turbulent flow field producing a turbulent flame. As a result, the flame consumes

more of the unburned cloud per unit time and volume. The combustion process is intensified ans

the expansion of combustion product becomes stronger. This process continuously enhances the

flow turbulence and accelerates the flame. A positive feedback loop which is called Schelkchkin

mechanism, as shown in Fig. 2.10 represents this flame acceleration mechanism.
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Figure 2.10. Positive feedback loop causing the acceleration of the flame speed due to the presence of the
turbulent flow field ahead the flame front [20]

The flame front which encounters the turbulent flow while propagating away from the initial

ignition point can be accelerated up to hundreds or thousand meters per second depending on the

level of congestion. This condition can have a great potential to cause a significant damage to the

surroundings [32, 33, 34]. It is important to mention that, if deflagrations occur in a confined but

uncongested region, the flow field ahead the flame front may not be disturbed and the turbulence

phenomena may not be encountered. Therefore, the flame will not be accelerated. However, in a

confined region, the high flame speed may still be expected because the generation of overpressure

does not depend on the generated flame speed.

2.3.3 Detonation phenomena

In contrast to a deflagration mode, a detonation is characterized by a supersonic combustion wave

in which the flame front propagates at a speed equal or greater than the speed of sound relative

to the unburned material immediately ahead the flame. The heat release from the reaction rapidly

expands the combustion products and creates a shock wave. In this case, the propagation of the

flame is no longer governed by the ordinary transport phenomena, but driven by the generated

shock wave which compresses and heats the unburned material causing it to auto ignite and release
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energy to sustain this compression wave. Both shock and combustion wave (reaction front) are,

in fact, coincident or coupled together and propagating at the same speed. This means that a

detonation is a self-sustaining process. Once this reaction has been initiated, it will continue to

propagate at the same speed to its completion even through an unconfined or uncongested geometry

[35].

Basically, detonation is a typical mode of combustion involving chemical explosives. A chemical

explosive is a material which is normally in a state of metastable equilibrium, but which is capable

of violent exothermic reaction [36]. A detonation of chemical explosive involves the rapid oxidation

of the fuel element (hydrogen and carbon atoms) forming a part of explosive compound resulting

in a sudden release of energy over a very short period of time, typically in the order of a few

microseconds. The oxygen needed for this reaction is contained within the compound so that

air is not necessary for the reaction to occur. During this process, the explosive breaks down

and the component elements carbon and hydrogen react with the available oxygen. Basically, the

propagation speed of the flame for such a reaction is supersonic and significantly greater than the

burning velocity of a flammable fuel-air mixture in atmospheric air [37, 38, 39]. Since chemical

explosives usually in the liquid and the solid phase, the detonation involving these materials are

classified as condensed phase explosions.

Typical chemical explosives include conventional high and low explosive compounds as well

as some other energetic substances. They have a general chemical formula CxHyNwOz and are

distinguished on the basis of their sensitivities and uses. Conventional high explosives, such as

TNT, PETN, nitroglycerin (liquid), HMX or RDX, are the most sensitive materials. A detonation

involving these materials is extremely a rapid event in which the energy would be released in a very

short period of time. In contrast, low chemical explosives as well as other energetic substances,

such as ammonium nitrate or sodium chlorate, are usually less sensitive materials but still have

sufficient energy to decompose exothermally or to detonate. A detonation involving these materials

would release the energy over a longer period of time, but still much shorter than the release energy

rate of fast deflagration of a flammable cloud of hydrocarbon-air. Thus, a detonation involving low

chemical explosives is considered less violent compared to a detonation of high chemical explosives

[32, 40].

Furthermore, a detonation of a high chemical explosive can generate a flame speed up to 10

km/s leading to the generation of an extremely high overpressure. It is important to mention

that the generation of such high overpressures does not require the presence of confinement or

obstacles. In a very extreme condition, the explosion pressure may exceed 100 kbar, and may cause

a completely catastrophic destruction over a large distance from the origin of the explosion [16].

For some common conventional high explosives, their basic detonation properties, such as the heat

of detonation and detonation velocity, are shown in Table 2.2.

Furthermore, detonations may occur to the flammable cloud of fuel-air as well. As mentioned

in the previous section, the basic combustion mode for a flammable cloud is deflagration, either

the combustion takes place in the open environment or the area with obstacles or obstructions.
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Table 2.2. Basic detonation properties of some common conventional high explosives [41, 42]

Explosive Empirical/chemical Density, ρ Average heat of Detonation velocity, D
formula [g/cm3] detonation, ∆HD [kJ/kg] [m/s]

TNT C7H5N3O6 1.60 4650 6800
RDX C3H6N6O6 1.77 5370 7320
HMX C4H8N8O8 1.89 5680 9110
Tetryl C7H5N5O3 1.62 4510 7550
PETN C5H8N4O12 1.76 6090 8260
CompB (59.5% RDX + 39.5% TNT) 1.72 5210 7990
ANFO (Ammonium Nitrate/Fuel Oil) 0.80 3720 4500

The flame can, however, be accelerated while propagates through the flammable cloud if the cloud

engulfs the area with a certain degree of confinement or congestion. If the level of turbulence in the

flow field ahead the flame is extremely high, the generated flame may extremely be accelerated caus-

ing the deflagration to transit to detonation. Such condition is also known as DDT (Deflagration

to Detonation Transition). Thus, once detonation has occurred, turbulence is no longer neces-

sary to maintain the propagating reaction since, detonation flame is able to propagate further even

in unconfined or uncongested region [20, 22].

However, the DDT mechanism does not occur easily. Basically, an important requirement to

achieve DDT is that the flammable part of the vapor cloud must be homogeneously mixed which are

normally produced at laboratory scale, where the containers have somewhat restricted dimensions

to ensure uniformity of temperature during heating. In reality, it is quite difficult to obtain such

homogeneous mixtures since in the vapor cloud occupying an appreciable volume it is practically

not possible to achieve uniformity of temperature. Under normal circumstances, a homogeneous

vapor cloud rarely occurs. That means DDT may occur under a certain extreme condition only.

Several experimental works have been dedicated to the DDT phenomena, especially in those

very reactive mixtures, such as near-stoichiometric acetylene-air, hydrogen-air or fuels with oxygen-

enriched atmospheres [20]. In [43], an experiment of DTT involving fuel-air mixtures with moderate

reactivity was reported. In this particular experiment, the deflagration of a propane-air mixture

was initiated by a weak ignition source. The experimental study was performed in a large scale

50m3 obstructed tube of a diameter of 2.5m and a length of 10m with one end closed and one open

to the atmosphere. The result showed that the combustion can accelerate to a detonation in less

than 10m, if sufficient confinement and obstructions are present.

In addition to the DDT condition, detonations of the flammable cloud of fuel-air mixture may

also be possible due to a direct initiation of detonation by a considerably strong ignition source. This

event is also known as vapor cloud detonation. Detonation of normal hydrocarbon-air mixtures,

such as methane-air or propane-air, requires an initiation energy to the order of 106 Joules or more,

which is comparable to the level of energy generated by a high explosive charge. As a comparison,

the deflagration of these mixtures normally requires an ignition energy of approximately 10−4

Joules only. That means, under normal circumstances, a direct detonation is highly unlikely. The

minimum ignition energy for moderate and high reactive fuels is typically much lower than that for
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low reactive fuels. Table 2.3 illustrates the minimum ignition energy for deflagration and detonation

for some typical hydrocarbon-air mixtures [22].

Table 2.3. Comparison of the minimum ignition energy (MIE) for a deflagration and detonation [22]

Gas mixture MIE for a deflagration in Joules MIE for a detonation in Joules

Methane-Air 0.28 ×10−3 0.23 ×109

Propane-Air 0.25 ×10−3 0.25 ×107

Acetylene-Air 0.7 ×10−5 0.13 ×103

If a stoichiometric hydrocarbon-air mixture is detonated, the generation of detonation flame

speed would be in the range of 1500-3000 m/s, which is much higher than the flame speed generated

if the same material is burned in a deflagrative mode. Table 2.4 shows some typical values for

detonation velocities of flammable hydrocarbon gases in air given by Stull [44]. Such high flame

speed would create shock waves with overpressures in the range of 15-20 bar [16, 45].

Table 2.4. Detonation velocities of some flammable gases in air [44]

Gas Velocity [m/s]

Methane 1540

Propane 1730

Ethyne (Acetylene) 1870

Hydrogen 3400

Finally, as a summary, Fig. 2.11 shows a general event tree following the formation of the

vapor cloud due to the accidental release of the flammable gas or vaporizing liquid. In this case, all

possible accidental outcomes according to the discussion in this section are presented. The possible

blast wave effects are expected if the flammable cloud is ignited and the combustion process is

enhanced in sense that the generated flame is accelerated while propagates through the flammable

cloud. In the absence of the flame acceleration mechanism, the flammable cloud will burn only

as a fire without generating damaging overpressure. In case that the flammable cloud is directly

ignited by a strong ignition source or there is a transition from deflagration to detonation, a vapor

cloud detonation may be expected. However, the latter event does rarely occur under normal

circumstances.

2.3.4 Vapor cloud explosions in history

As stated earlier, the vapor cloud explosion is considered the most devastating and destructive

event that may happen in typical chemical process and production plants. Since 1970s, when

several devastating vapor cloud explosions occurred and caused significant damage to structures

or building and injury or even fatality to people, a considerable degree of attention and research
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Figure 2.11. A general event tree that shows typical accidental outcomes which may occur after the release
of the flammable gas or vaporizing liquid into the atmosphere subsequently followed by the
formation of the flammable gas or vapor cloud (modified from [22])

effort has been focused on this subject [32]. In [46], a summary of over 200 vapor cloud explosions

until the early 1990s is reported. According to this report, vapor cloud explosion hazards, although

infrequent, represents a large share of the overall loss severity. Of the 10 largest property losses

in the process industries, seven are due to vapor cloud explosions. A compilation of statistical

data shows that vapor cloud explosion accidents do not only occur in the fixed industrial plant

but also in transportation. In [20] is described that of the 100 largest losses that occurred in the

hydrocarbon process industries for the period 1957-1986 vapor cloud explosions were the highest

single cause of loss and were responsible for approximately 42% of the losses. Apart from these

reports, there were many other vapor cloud explosions that occurred elsewhere in the world. Some

accidents have been particularly influential in the development of major hazards controls around

the world. In what follows, some notable past accidents are presented.

Flixborough, UK, 1974

Perhaps, best known accident occurred in June 1974, when the Nypro plant at Flixborough, UK

exploded with a devastating results. The cause of the explosion was an uncontrolled release of about

30 tons of cyclohexane due to the failure of a pipe. A few minutes after the leakage started, the

cyclohexane cloud ignited and a violent explosion occurred. The fires burned for over a week. This

explosion is estimated to be equivalent to some 16 tons of TNT. 28 people were killed and 36 were

injured on site. Outside the plant, 53 persons were reported injured and 1821 houses as well as 167

shops suffered damage. This accident was not, however, the first major vapor cloud explosion. Two

major explosions with destructive of human life had occurred earlier in Ludwigshafen, Germany in

1943 and 1948. Both accidents resulted respectively in 57 and 207 fatalities [11, 20, 47].
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2.3. Mechanisms of deflagration and detonation

Beek, the Netherlands, 1975

A further serious vapor cloud explosion incident occurred in a naphtha cracker installation located

at Beek in The Netherlands in November 1975. The explosion due to an escape of propylene,

apparently from brittle fracture of a feed drum on a depropanizer, gave rise to a vapor cloud

explosion which resulted in 14 fatalities. This accident destroyed the installation, resulted in severe

damage in the direct surroundings of the installation and window breakage up to 4.5 km from the

installation [11, 48].

Piper Alpha, North Sea, 1988

Another remarkable accident was the explosion and fire at the Piper Alpha offshore platform in July

1988. Piper Alpha is later known as the ”Flixborough accident” of the off-shore industry. At Piper

Alpha a rather small gas explosion in a compressor module caused fires which subsequently resulted

in a rupture of the riser. The main part of the platform burned down. At the time of the disaster

226 people were on the platform; 167 died leaving 59 survivors. From this incident it can be learned

that a gas explosion can easily result in domino effects and loss of control. Installations should be

designed to avoid such domino effects. Until now, Piper Alpha remains the largest offshore loss in

history [20, 49].

BP Texas, USA, 2005

On March 23, 2005, a series of explosions and fires at BP Texas City refinery killed 15 people and

injured 170. The Texas City refinery is BPs largest oil refinery with an ability to produce about

11 million gallons of gasoline per day. The incident occurred in the isomerization unit (ISOM)

during the starting up when a raffinate splitter tower was overfilled and overheated. The ISOM

converts low-octane blending feeds into higher-octane components for blending to unleaded regular

gasoline. When liquid subsequently filled the overhead line, the relief valves opened. Hydrocarbon

flowed to the blowdown drum and stack and overwhelmed it, resulting in liquids carrying over out

of the top of the stack, flowing down the stack, accumulating on the ground. A vapor cloud was

formed and ignited by a contractor’s pickup truck as the engine was left running causing a vapor

cloud explosion. All of the fatalities occurred in or near office trailers located close to the blowdown

drum. Houses were damaged as far away as three-quarters of a mile from the refinery [50].

Buncefield, UK, 2005

Most recently, a vapor cloud explosion is believed to have occurred at Buncefield Oil Storage Depot,

Hemel Hempstead, Hertfordshire, UK, in November 2005. The explosion generated significant

blast pressures in the surroundings. The damage caused by this explosion resulted in further

loss of containment and the subsequent fires involved a number of fuel storage tanks on the site.

Fortunately, there were no fatalities, but 43 people were injured and widespread damage occurred

to both commercial and residential properties in the vicinity.
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Figure 2.12. A view of the BP Texas city refinery after the explosion took place on 23rd March 2005 [51]

Figure 2.13. A dramatic picture of the early stage of the Buncefiled smoke plume [52]
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The explosion was a consequence of the spillage of 300 tons of unleaded winter-grade gasoline

at 150C following the overfilling of one of the storage tanks on the site. Winter gasoline is approx-

imately composed by 10%C4, 17%C5, 16%C6, and 57%C10 by weight [53, 54]. The overfilling of a

tank led to fuel starting to overflow. The protection system which should have shut off the supply

did not operate and continued pumping. This led to the fuel cascading down the side of the tank

leading to the rapid formation of a rich fuel/air mixture that collected in the bund. A large vapor

cloud was formed which found an ignition source resulting in a violent explosion. This was followed

by the further explosions and a large fire that engulfed over 20 storage tanks.

In fact, Buncefield is not the first incident where overfilling of a gasoline storage tank has resulted

in a drifting vapor cloud and vapor cloud explosion. Other similar accidents which significant

impacts were [55]:

• Newark, New Jersey, 1983: Overfilling of a storage tank resulted in a spillage of up to 265 ton

of gasoline into a bund. A vapor cloud 450 m to 600 m long and 60-90 m wide was formed.

The explosion caused significant damage on site, including damage to storage tanks in the

order of hundred of meters from the point of release, and glass breakage out to a distance of

5.6 km

• Naples, Italy, 1985: Overfilling of a gasoline storage tank resulted in a spillage of about 700

ton into a bunded area. The explosion resulted in serious damage to structures within 100 m

and glass breakage out to km

• Saint Herblain, France, 1991: A release of gasoline from a section of pipe inside a bund

produced a vapor cloud. Ignition of the vapor cloud then caused extensive damage

• Sri Racha, Laem Chabang, Thailand, 1999: Overfilling of a gasoline storage tank resulted in

an explosion causing damage to nearby buildings.

2.4 Explosion blast phenomena

As mentioned above, the formation of the pressure wave which moves rapidly from the center of

an explosion is the main interest of this thesis. For many chemical process and production plants,

much of the damage from an explosion is done by this moving pressure wave because this wave

may carry some or all release energy from the explosion. It is important to mention that, in the

detonation of chemical explosives, almost one hundred percent of the energy release is converted

into the blast energy. This conversion is, in fact, not completely efficient because some part of

them may go to other types of energy such as thermal radiations [56]. For the deflagration of

hydrocarbon-air mixture under atmospheric conditions, the maximum theoretical conversion for

the blast energy (the expansion of the combustion products), is approximately 40%. In practice,

it is however much lower [57, 21]. Therefore, a proper knowledge and a better understanding of

the characteristics and dynamics of the pressure wave from an explosion is extremely important in

order to ensure the safe design of process installations as well as to protect the surrounding areas

from any possible undesired impact [16, 58].
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Fundamentally, the explosion pressure wave is a highly transient parameter which rises and falls

during the course of the explosion [59]. Generally speaking, the pressure wave propagating in air

which is set in motion due to a sudden release of energy during an explosion is commonly known as

a blast wave [14, 60]. Both chemical and physical explosions which are associated with the rapid

expansion of gas may give rise to a blast. As introduced before, this expansion may come from a

compressed gas that undergoes a sudden loss of containment or a high-temperature expansion of

gas combustion products resulting from a rapid combustion process.

The magnitude and shape of the blast wave mainly depends on the nature of the energy release

and on the distance of the object from the center of an explosion. The physical properties of an

explosion source will determine the characteristics of the blast wave. Fig. 2.14 illustrates three

general shapes of the explosion blast waves as a function of time evaluated at a fixed location some

distance to the center of explosion and the pressure is above ambient. In this figure, the propagating

blast wave can be in the form of (i) a shock wave followed by a rarefaction wave, (ii) a shock wave

followed by a sonic compression wave and a rarefaction wave, or (iii) a sonic compression wave

followed by a rarefaction wave.

t t t

p p p

(a)
(c)

(a)

(b)
(c) (b) (c)

(i) (ii) (iii)

Figure 2.14. Illustration of three general shapes of the explosion blast wave as a function of time evaluated
at a fixed location some distance to the center of explosion and the pressure is above ambient.
(a) shock wave, (b) sonic compression wave and (c) rarefaction wave. This figure is modified
from [20]

It can be seen that, before the arrival of the blast wave at the location under consideration, the

pressure in the system is still at normal pressure (ambient). For the blast wave in category (i), the

pressure increases or jumps up instantaneously to its maximum value due to a strong supersonic

compression wave. This fully developed compression blast wave of large amplitude is called a

shock wave or a shock front. This shock wave propagates at supersonic velocity relative to the

gas immediately ahead the shock front across with the mass density, particle velocity and pressure

of the gas change drastically. In general, the blast front is defined as the leading edge of the blast

wave as it moves into undisturbed ambient air. The thickness of a shock front is of the order of the

mean free path and may be treated as a discontinuity [20]. Since the shock wave may propagate at

a velocity of more than ten times the speed of sound, it can surely displace the medium by creating

a destructive wind [45]. In fact, the speed of sound basically limits the velocity with which the

liberated energy release from the combustion reaction can be transported in the form of pressure

waves away into the surrounding area. The sound waves itself propagate at a velocity of about 331
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m/s at 00C in dry air (near 0% humidity) and without displacement of the medium. The blast

wave of this first category is typically associated with detonations of chemical explosive (condensed

phase explosions) or bursting of a pressure vessel containing a compressed/pressurized gas (physical

explosions).

Meanwhile, the blast wave in category (iii) is typically associated with a deflagration of the

flammable cloud. If the flammable cloud is ignited in the open environment, the pressure increases

gradually and smoothly to reach its maximum value without having an extreme sudden shock

front. It takes much longer time until reaching the peak value which is definitely much lower

than that of the blast wave from a detonation. The blast front propagates only at sonic velocity

relative to the undisturbed gas ahead the blast wave. It is important to mention here that the

deflagration combustion wave propagates at subsonic velocity relative to the unburned mixture

immediately ahead the flame. The illustration of the blast wave formation from both detonation

and deflagration mechanism is depicted in Fig. 2.15.

Figure 2.15. Illustration of the flame propagation mechanism and the generation of pressure wave during
detonation and deflagration of the flammable cloud. For both cases, the combustion reaction
is initiated to the far away left [16].

In the case that the deflagration flame is accelerated while it propagates through the flammable

cloud, the combustion process will be intensified which produces high burning velocity thus high

flame speed. As a result, the pressure front moves much faster with a high pressure amplitude. This

means, if the such flame acceleration mechanism occurs, the blast wave could be initially in the

form of category (iii), but then it can be shocking up and end as category (i) while it continues to

propagate away from the center of explosion (blast origin). As mentioned in the previous chapter,

the deflagration in the chemical process industries typically occurs in the congested area causing

the flame to accelerate and transit to turbulent combustion with high burning velocity and high

flame speed.
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Fig. 2.16 shows in much detail the typical form of an explosion blast wave with a sudden shock

front as a function of distance to the blast origin at a certain fixed time. If standing at a fixed

Blast
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Pressure, 

p(x)

Distance from the blast origin, x

Shock front

peak pressure

ambient pressure

Direction of wave 

propagation

pa

po

Figure 2.16. A typical form of an explosion blast wave with a sudden shock front at a fixed time. In
this figure, the development of pressure amplitude as a function of distance to the center of
explosion (i.e. blast origin) is shown [16]

location some distance from the center of explosion (the blast origin), the typical shape of a blast

wave with a sudden shock front as a function of time is shown in Fig. 2.17. Meanwhile, Fig.

2.18 shows the typical blast wave from deflagration as a function of time at a fixed location some

distance from the center of explosion. The center of explosion is assumed as the origin of the blast

wave. In those figures, pa represents the ambient pressure for which the atmospheric pressure
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Figure 2.17. A typical form of the blast wave with a sudden shock front at a fixed location some distance
from the center of explosion (the blast origin) [16]

is mostly assumed, and po is the absolute peak pressure that is reached by the blast wave. In

Figs. 2.16 and 2.17, po is the absolute peak pressure at the shock front. The difference between

the absolute peak pressure and the ambient pressure is called the peak overpressure, denoted by

∆po. Thus,

∆po = po − pa (2.6)
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Figure 2.18. A typical blast wave without having a shock front at a fixed location some distance from the
blast origin, modified from [61]

Furthermore, as shown in Fig. 2.16, there exists a small but finite time, ta, before the shock

front travels from the center of explosion to the location under consideration. This particular time is

called the arrival time at which the peak shock overpressure ∆po can be observed. Soon afterward,

the pressure amplitude decreases gradually to reach the ambient pressure at time t = ta + td. The

variable td is called the positive phase duration, which is defined as the period under which the

blast pressure above the ambient.

Thus, as the blast wave expands continuously outward its origin, the pressure amplitude falls

below ambient and eventually reach its minimum point. The minimum reached point under ambient

is called the absolute peak negative pressure, denoted by pn. The difference between the

absolute peak negative pressure and the ambient pressure is called the peak underpressure,

denoted by ∆pn. The period under which the blast pressure below ambient is called the negative

phase duration, denoted by tn. The blast wind then reverses its direction and flows toward the

blast origin as required to conserve mass. Eventually, the pressure amplitude is settling back to

ambient as the blast wave passes by.

The assessment of damage from explosions is typically associated with the positive period of the

blast wave. According to the circumstances, potential damaging during the negative phase should

also be taken into account. However, for the chemical process industries, the negative period of the

blast wave is less important and not to be discussed in this thesis. Most probably, the underpressure

period would be considered important while analyzing the damage from a nuclear explosion, because

during such an explosion the blast wave could have an extremely high overpressure with a really

sharp shock front.

With respect to the analysis of risk from an explosion, in addition to the peak overpressure

(∆po) and the positive phase duration (td), the so-called positive impulse, denoted by ip, is

also used quite often particularly for assessing the possible damage to structural buildings. This

parameter is defined as the area under the pressure-time curve during the positive period (the

overpressure period) and describes the change of momentum during this positive phase having a

dimension of pressure-time product. Therefore, the positive impulse is the integral of pressure as a
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function of time during the positive phase duration as given by the following equation:

ip =

∫ ta+td

ta

p(t)dt (2.7)

Here, p(t) is the function of pressure-time history during the positive phase and t is time. In

fact, there are several equations which can be used to describe the pressure-time history during

the positive phase duration. A widely used one is the modified Friedlander wave equation which

assumes the ideal blast wave, as shown in Fig. 2.17. In this case, the decay of pressure after reaching

the peak overpressure is approximated exponentially. The modified Friedlander wave equation is

based on the Sedov-Taylor blast wave self-similar solution and expressed as follows [37, 62]:

p(t) = pa + ∆po

[
1−

(
t

td

)]
exp

(
−βt
td

)
(2.8)

where β is a wave form parameter that describes the rate at which the pressure decreases after

reaching its peak value. In [63], an approximation of the pressure-time profile during the positive

phase to a triangular shape is introduced. Thus, the pressure-time history for both types of blast

wave can be illustrated by Fig. 2.19. Using this approximation, the positive impulse is simply given

po

time

Pressure, 

p(t)

ta

positive impulse, ipΔpo

t

pa

td

po

time

positive impulse, ip

Δpo

t

pa

td

Strong blast wave 

(with a shock front)

Smooth blast wave 

(without a shock front)

Figure 2.19. Approximation to the positive impulse of blast waves by means of a triangular shape

by:

ip ≈
∆po · td

2
(2.9)
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Chapter 3

Estimation of the Blast Wave

Parameters by means of Empirical

Techniques

The prediction of the blast wave properties either for detonation or deflagration blast wave is

extremely important for safety considerations of process plants. With respect to the chemical

process facilities including the transportation process, the vapor cloud explosion becomes a concern

because, when occurred, it has a potential to generate damaging levels of overpressure and causes

human injury, death, or event escalation. The state-of-the-art for the prediction of overpressures

resulting from a vapor cloud explosion falls generally into two broad categories of models, namely

simplified empirical models and the advanced computational fluid dynamics (CFD)

models.

CFD models actually calculate the overpressure field by solving the Navier-Stokes equations

numerically and incorporating different sub-models to account for turbulence and combustion re-

actions. Results are often strongly dependent on the location and strength of the ignition point,

the location and composition of the flammable cloud throughout its volume, and the location and

configuration of any obstacles or obstructions within the cloud. The time required for calculating

the overpressure resulting from a single ignition point; a single cloud geometry or location can be

significant. Given the number of combinations of ignition points and cloud geometries (e.g., changes

in wind direction or wind speed) that can influence a given flammable release, it is generally pro-

hibitive to use CFD models for the risk assessment or building siting purposes [64]. Therefore, the

empirical models are still very popular for the consequence analysis.

In fact, regardless of which models being used for solving a particular problem, the prediction

results are quite important for assessing the type and level of damage from an explosion to the

vulnerable objects. As stated before, these objects of interest may include people, structures and

the environment. As the blast wave propagates away from its origin, the most important parameters

include the peak side-on overpressure (∆po), positive phase duration (td) and positive
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impulse (ip). In this chapter, however, the procedure for the prediction of blast parameters by

means of the empirical techniques are further described.

In general, the empirical models are considered the most simplified tool for predicting the

properties of the explosion blast wave. These models can be implemented to the blast wave from

both detonation or deflagration. The empirical technique is essentially based on the analysis of

corresponding experimental data or has been developed from the numerical analysis of physical

parameters relationships. Therefore, the use of these models are generally simple, easy to be imple-

mented and enable one to carry out fast calculations. However, according to the circumstances, it

is quite common to add several conservative assumptions and simplifications in order to use these

model.

With respect to the prediction of the blast overpressure of a vapor cloud explosion, three

empirical models are still quite famous in use. These three models are classified into two general

groups. One model is based on the characteristic of the TNT charge blast, which is commonly

known as the TNT equivalent model, and two other models are based on the characteristics

of the fuel-air charge blast. These two models are TNO Multi-Energy model and the Baker-

Strehlow-Tang model.

The TNT equivalent model is generally good for the prediction of the parameters from det-

onation blasts, such as the detonation of chemical explosives and other similar cases. However,

to a certain extent, this model has also been implemented for non detonative blasts (deflagrative

blasts). The vapor cloud explosion has also been predicted using this model. However, for the latter

case, the user must be very careful because there are some conservative assumptions which must

be taken into consideration and these may lead to significant simplifications of the analysis giving

inaccurate prediction outcomes. In a short sentence, the TNT equivalent model is very limited to

a particular range of application only. At the beginning of this chapter, the procedure for the use

of this model is discussed in much detail.

Meanwhile, the models based on the characteristics of the fuel-air charge blast has been explicitly

dedicated for the prediction of the parameters from the deflagration blast waves. Both the TNO

Multi-Energy and Baker-Strehlow-Tang models are very popular to the prediction of the blast wave

from a vapor cloud explosion. The second part of this chapter is designed to describe the procedure

for the use of these two models in detail.

3.1 The TNT equivalent model

3.1.1 The TNT equivalent concept

The TNT equivalent method was developed based on the analysis of the blast data from the

TNT (Trinitrotoluene) charge detonation. This model is, in fact, the most widely known classi-

cal empirical model for the prediction of the blast wave parameter. Historically, TNT or 2,4,6-

Trinitrotoluene (see Fig. 3.1) with the chemical formula C7H5N3O6 is one of the first explosives

to be widely and reliably manufactured. It was firstly prepared in 1863 by Wilbrand while its
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isomer was firstly discovered in 1870 by Beilstein and Kuhlberg. Later, a pure TNT was prepared

by Hepp in 1880 and its structure determined by Claus and Becker in 1883. It was not until 1891

after Hauserman manufactured this material in industrial quantities [42]. Since then TNT has

been required for high explosive shell fillings [65]. It can be loaded into shells by casting as well

as pressing. This material can be cast easily as a sphere or hemisphere, and reliably detonated,

without containment [66]. TNT is later recognized as the most important blasting charge either as

commercial explosives or for military purposes.

Figure 3.1. 2,4,6-Trinitrotoluene (TNT) with the chemical formula C7H5N3O6

Due to its frequently use, there is a large amount of the blast data from the detonation of the

TNT in comparison to the other chemical explosives. This situation has made the TNT to be used

as a standard reference for explosion blast analysis [67, 68]. A model was developed based on this

data in order to predict the blast effects from other explosive material. This model is later called the

TNT equivalent model. In fact, this model uses a conservative assumption that the characteristics

of blast waves from explosion of different types of explosive materials are basically comparable to

the blast wave generated from the TNT charge detonation. In the other word, there is an attempt

to equate the blast wave effects generated from different types of explosive materials with those

produced by an equivalent mass of TNT charge [69, 70].

It is, however, quite important to mention that the TNT blast is a detonation blast and not

a deflagration. The detonation typically produces a high overpressure blast wave due to the gen-

eration of a shock. Therefore, the TNT equivalent model is practically good for the prediction

of the properties of detonation blast wave only. It is generally recommended that the blast wave

generated from other types of conventional chemical explosives are to be directly estimated by this

model. During its later development, the blast waves from the direct detonations of the flammable

gas or vapor cloud as well as the bursting of pressure vessel, which probably have the similar blast

wave behavior to the TNT charge, may also be predicted by this model.

Due its simplicity, the application of the TNT equivalent model was then extended to the

non-detonative blast case. The blast parameters from the deflagration of the flammable gas or

vapor cloud, or the vapor cloud explosion has also been predicted using this model. However,

the use of the TNT equivalent model for this particular case is considered a very conservative

approach because the physical properties of deflagration wave are significantly different from those

of detonation wave. Therefore, some conservative assumptions should be made while using this

model for the vapor cloud explosion analysis.
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3.1.2 Important procedures

3.1.2.1 Determination of the TNT equivalent mass

Perhaps, the most important procedure for the TNT equivalent model is only to determine the

TNT equivalent mass for the explosive material under consideration. This feature has made this

model quite simple and generally easy. The TNT equivalent mass, which is here denoted by WT ,

is defined as the mass of the TNT charge that would give rise to the same blast effect as the given

mass of the explosive material under consideration [39]. The general formula to determine this

quantity is given by the following equation [32]:

WT = EF×We (3.1)

Here, We is the given mass of the explosive material under consideration in kg and EF is the

dimensionless TNT mass equivalent factor. The procedure for the determination of the explosive

mass of the material is given as follows:

• For the chemical explosive, We is taken as the whole mass of the material without any

restriction. In this case, the whole mass of the material basically contributes to the generation

of the blast wave.

• For the flammable gas or vapor cloud, We is actually the mass of the flammable material

within the explosion limits, which is also called the flammable mass. As mentioned before,

if the concentration of the flammable material in the vapor cloud above the upper limit or

below the lower limit, the vapor cloud is not explosive. Therefore, the result of the dispersion

analysis is required for this particular case [57]. However, for the worst case scenario and, if

no dispersion analysis is made, it could still be assumed that the total amount of flammable

material released from the inventory contributes to the generation of the blast.

The TNT mass equivalent factor (EF) is determined by another two important variables, namely

(1) the ratio of the explosion energy of the material relative of the explosion energy of the TNT

charge, denoted by αe and (2) the explosion efficiency as the portion of the explosion energy of

the explosive material under consideration being converted to generate the blast wave (the blast

energy), denoted by η. Thus, EF is expressed by the following equation:

EF = η × αe (3.2)

The procedures for the determination of these two variables (αe and η) are mentioned in the

following:

• For the chemical explosive other than the TNT charge,

– The explosion energy of the material is the heat of detonation of the chemical explosive,
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denoted by ∆Hd,ex. Thus, αe is given by:

αe =
∆Hd,ex

∆Hd,TNT
(3.3)

The heat of detonation of TNT charge (corresponding also to the explosion energy of

the TNT) itself typically between 4190 kJ/kg and 4650 kJ/kg as indicated in [21, 32].

While calculated from Table 2.2, Typical values of αe for several common chemical

explosives is shown in Table 3.1 assuming that the explosion energy of TNT is 4650

kJ/kg.

Table 3.1. The ratio of the explosion energy of several common chemical explosives (αe)

Chemical explosives αe Chemical explosives αe

RDX 1.154 2,4 Dinitrotoluene 0.77
HMX 1.221 Ammonium nitrate 0.56
Nitroglycerin 1.481 Cyclohexanone peroxide 0.19
PETN 1.309 Sodium chlorate 0.15
Pentolite 1.129

– It is quite common to take a conservative assumption that the whole explosion energy of

any chemical explosive is converted to generate of blast wave. This means, by default,

the explosion efficiency of any chemical explosive is always equal to unity (η = 1).

This assumption is conservative and, however, not always true, because the detonation

process itself may not be completely efficient. In reality, the entire energy set free by

the detonation would not be completely converted into the generation of blast waves.

Some fraction of this energy may be released in other non blast wave forms, such as

thermal radiation [56, 68].

– Finally, the TNT equivalent mass for any chemical explosive is given by the following

equation:

WT =
∆Hd,ex

∆Hd,TNT
×We,ex (3.4)

where We,ex is the given mass of the explosive material in kg.

• For the flammable gas or vapor cloud

– It is assumed that the heat of combustion of the flammable fuel (gas or vaporizing liquid)

in the gas or vapor cloud, denoted by ∆Hc,f, is the explosion energy of the flammable

gas or vapor cloud. Thus, αe is given by:

αe =
∆Hc,f

∆Hd,TNT
(3.5)
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Table 3.2 shows typical values of the heat of combustion of several common hydrocarbon

fuel-air mixtures.

Table 3.2. Heat of combustion of several hydrocarbon fuel-air mixtures [71]

Fuel Heat of combustion Fuel Heat of combustion
[kJ/kg] [kJ/kg]

Methane 50030 n-Pentane 44980
Ethane 47490 n-Hexane 44750
Propane 46360 Propene 45790
Ethene 47170 Propylene 45790
n-Butane 45720 Acetylene 48220
n-Heptane 44560 Hydrogen 130800

– The ratio of the explosion energy of the flammable gas or vapor cloud which is the heat

release from the combustion reaction being converted to the generation of the blast

wave is typically much lower than 1 (η � 1). For instance, the maximum theoretical

explosion efficiency of the flammable cloud of hydrocarbon-air mixture under atmo-

spheric conditions is approximately 40%, although in practice it is always much lower

[57]. In fact, the explosion efficiency for the flammable gas or vapor cloud is difficult to

be determined and remains one of uncertain parameters. However, according to expe-

riences, this value is most estimated varying between 1% to 15% [33]. The true value

for a specific case is unknown and not calculable. During the analysis using the TNT

equivalent model, this value must be provided by the user. There are several references

providing typical values of the explosion efficiency for different conditions of the vapor

cloud in the chemical process industries [11, 21, 72]. These values are summarized in

Table 3.3

– Finally, the TNT equivalent mass for the flammable gas or vapor cloud is given by the

following equation:

WT = η ×
∆Hc,f

∆Hd,TNT
×We,f (3.6)

where We,f is the estimated flammable mass of the vapor cloud in kg.

3.1.2.2 TNT blast curves

Once the TNT equivalent mass (WT ) has been determined, the next procedure is read the blast

parameters of interest from a TNT blast curve. Typically, the TNT blast curve is a 2D plot

relating the blast parameters with the stand-off distance relative to the center of the explosion (the

origin of the blast wave). In literature, there are available several TNT blast curves for different

circumstances. Most of them were compiled from the analysis of TNT blast data (experimental
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Table 3.3. Typical explosion efficiencies for modeling vapor cloud or gas explosions and their conditions

Method Scenario/Remarks η(%)

Source: Lees [11] and CCPS/AIChE [22]

Brasie and Simpson - Near fied 2.0

- Far field 5.0

Advisory Committee on - Typical value for predictive

Major Hazards (ACMH) purposes 3.0

Exxon - Open terrain 3.0

- Partially confined and

obstructed terrain 10.0

Eichler and Napadensky - Symmetric cloud (max) 2.0

- Asymmetric cloud (max) up to 40.0

Prugh - Mass of vapor cloud = 100 kg 2.0

- Mass of vapor cloud = 106 kg up to 70.0

British Gas - Mass in obstructed region only 20.0

(Investigation by Harris and Wickens)

Health Safety Executive UK - Low reactivity (e.g. methane) 3.0

- Medium reactivity (e.g. propene oxide) 6.0

- Very reactive gases (e.g. ethene oxide) 10.0

Factory Mutual - Low reactive materials 5.0

Research Corporation - Moderately reactive materials 10.0

- Highly reactive materials 15.0

Industrial Risk Insurers 2.0

Source: TNO [21] and Van den Berg et al. [72]

First version CPR-14E - Upper limit for predictive purpose 10.0

Lannoy et al. Statistical analysis over 23 accidents:

- Median observed value 3.0

- Mean value (covering 60% cases) 4.0

French Authority Safety Rule - Recommendation for safety purpose 10.0

French Chemical Industry - Recommendation for safety purpose 4.0

result or similar sources). Some models have been developed by solving mathematical relationships

of physical parameters involved. The latter technique is sometimes called the semi-empirical blast

curve. In the following, four models for the TNT blast curve, which are typically found and have

been recognized widely, are presented.

One of the first attempts to develop the TNT blast curve was based on the numerical calculation

by a US nuclear physicist Harold L. Brode [73, 74]. He developed a semi-empirical correlation model
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for the TNT blast. The Brode’s equations are a set of equations for the prediction of the peak

overpressure of the TNT spherical blast as a function of stand-off distance to the blast origin. The

stand-off distance to the center of the explosion is given in terms of the scaled quantity governed by

so-called the Hopkinson’s scaling law. This variable is called the scaled distance and denoted

by z and based on the cube root of the mass of the TNT or, in general, the TNT equivalent mass.

Thus,

z =
R

3
√
WT

(3.7)

Here, R is the stand-off distance of the object of interest relative to the blast origin in m and WT

is the TNT equivalent mass in kg. Thus, the scaled distance z has a dimension m/kg1/3.

Brode’s equations are made up of two equations for two different zones distinguished with

respect to the blast overpressure. The expression of the Brode’s equations are:

∆po(z) =


0.1567

z3
+ 1 for ∆po > 10 bar (near field)

0.269

z
+

0.119

z2
+

0.137

z3
− 0.019 for 0.1 < ∆po < 10 bar (far field)

(3.8)

Unfortunately, Brode’s equations are not available for the other important blast parameters,

such as positive impulse or positive phase duration. In addition, there is no equation if the blast

overpressure falls beyond the range mentioned above. Therefore, the prediction of the blast over-

pressure beyond the given range is hard to do and generally not recommended.

Another widely accepted TNT blast curve is the one developed by Charlie Kingery and Gerry

Bulmash. These two researchers had collected the experimental data from literally hundreds of

references on TNT detonation as mentioned on their 1984 report [11, 75]. These data were then

analyzed and compiled in order to develop correlations for the several important blast parameters.

The correlations for the blast parameters which are the fits to the experimental data, according

to Kingery and Bulmash, can be made in the form of 8th-order and 11th-order polynomial equations

presenting the relation of the blast parameter as a function of the stand-off distance to the blast

origin. This distance is given again in terms of its scaled quantity according to the Hopkinson’s

law. The 8th-order polynomial equations are the model for the TNT spherical blast, while the

11th-order equations are for the hemispherical blast model. The blast parameters to be predicted

by this model include the peak side-on overpressure (∆po), positive impulse (ip), arrival time (ta)

and positive phase duration (ip).

In general, for a particular parameter represented by φ(z), the Kingery-Bulmash equations are

expressed by the following equation:

log φ(z) =
n∑
i=0

ci ·U(z)i (3.9)
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Here, φ(z) is the blast wave parameter function of interest, c is a correlation constant and n is the

polynomial order. The intermediate function U(z) is determined by the following formula:

U(z) = a+ b · log(z) (3.10)

where a and b are another correlation constants. All constants of the equations can be found

further in Appendix A. The Kingery and Bulmash equations are unfortunately valid only for a

limited range of the Hopkinson’s scaled distance. For a spherical model, this model is to be used

only for 0.0531 ≤ z ≤ 40, while for the hemispherical model, this model is considered valid within

the range of 0.0674 ≤ z ≤ 40. The use of these models beyond these given ranges are generally not

recommended.

Another semi-empirical model for the TNT blast curve has also been developed by Josef Hen-

rych [62]. He proposed a set of equations for a TNT spherical blast. This model is able to predict

the peak side-on overpressure for three different zones, namely near, middle and far zone, specified

by the range of the Hopkinson’s scaled distance (z). The Henrych’s equations are written as follows:

∆po(z) =



14.072

z
+

5.540

z2
− 0.357

z3
+

0.00625

z4
for 0.05 < z ≤ 0.3

6.194

z
− 0.326

z2
+

2.132

z3
for 0.3 < z ≤ 1

0.662

z
+

4.05

z2
+

3.288

z3
for 1 < z < 10

(3.11)

Here, the peak side-on overpressure ∆po(z) is in bar. The use of this model is also limited by the

range of the scaled distance. No equation was defined for the estimation of the peak overpressure

beyond the given range.

Another TNT blast model which is considered more flexible and can be applicable for any range

of scaled distance is the one from Kinney and Graham. The two researchers had developed a

set of equations for the prediction of the TNT spherical blast parameters which are the fits to the

experimental data. These equations are able to predict the peak side-on overpressure (∆po), positive

impulse (ip) and positive phase duration (td) [76]. Unlike the other three model mentioned above,

the presentation of the blast parameters in this model are given in terms of their scaled quantities

for the peak side-on overpressure and the positive phase duration. Meanwhile, the positive impulse

remains unscaled.

The scaling of the peak overpressure, here denoted by ∆ps, is not based on the cube root of

the explosive mass, but only the ratio of the peak (side-on) overpressure relative to the absolute

ambient pressure. Thus,

∆ps =
∆po
pa

(3.12)
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Here, pa is the absolute ambient pressure whose the atmospheric pressure is usually taken into

account. ∆ps is a dimensionless parameter.

Meanwhile, the scaling of the positive phase duration, here denoted by τd is based on the

cube-root of the TNT equivalent mass according to the Hopkinson’s scaling law. Thus,

τd =
td

3
√
WT

(3.13)

which means that the scaled positive phase duration is not a unitless variable but has a dimension

s/kg1/3.

The expression of the Kinney-Graham equations of the TNT spherical blast parameters are

written as in the following [77]:

∆ps(z) =
808

[
1 +

(
z

4.50

)2]√[
1 +

(
z

0.048

)2] [
1 +

(
z

0.32

)2] [
1 +

(
z

1.35

)2] (3.14)

ip(z) =
0.067

√
1 +

(
z

0.23

)4
z2

√
1 +

(
z

1.55

)3 (3.15)

τd(z) =
980

[
1 +

(
z

0.54

)10
]

[
1 +

(
z

0.02

)3] [
1 +

(
z

0.74

)6]√[
1 +

(
z

6.9

)2] (3.16)

In some other cases, a TNT blast curve for the positive impulse may also be found. This

parameter may be presented in its original form or in its scaled form. In the case of the positive

impulse is estimated using the TNT equivalent model by reading the appropriate TNT blast curve

and it is given in its scaled form, the Hopkinson’s scaling law is also applicable in this case. The

expression of the Hopkinson’s scaled positive impulse, denoted by is, is written as follows:

is =
ip

3
√
WT

∆po · td (3.17)

This parameter is not a unitless variable but has a dimension N2s2/(m4kg1/3). However, according

to the previous chapter, the positive impulse may also estimated from the peak overpressure and the

positive phase duration using the triangle rule approach. Therefore, once the latter two variables

have been determined, the positive impulse can be estimated accordingly.

Fig. 3.2 shows the TNT blast curves which are generated by employing the four equations

presented above. In this figure, only the relation of the peak side-on overpressure ∆po (bar) as a

function of the scaled distance (z) for a TNT spherical blast is presented. As seen in this figure,
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Figure 3.2. Representation of the TNT blast curves according to the Brode, Kingery-Bulmash, Kinney-
Graham and Henrych correlation models. In this figure, only the peak side-on overpressure
(∆po, bar) of the TNT spherical blast model as a function of the Hopkinson’s scaled distance
(z, m/kg1/3) is shown. If necessary, the atmospheric pressure of 1 atm is assumed

Brode’s equations estimate that the peak side-on overpressure of a spherical blast is much higher

for the scaled distance approximately smaller 0.7. For a scaled distance higher than 0.7 up to

10, these four models give almost the same prediction result. However, as introduced above, it is

found to be more convenient to use the Kinney-Graham equations due to its unrestricted scaled

distance range application. For the computer application in this thesis, unless indicated otherwise,

the Kinney-Graham equations are applied for the prediction of the blast parameters if the TNT

equivalent model is to be implemented.

3.1.2.3 Important consideration for the application of the TNT equivalent model for the blast

analysis of vapor cloud explosions

As mentioned above, the vapor cloud explosion blast may also be predicted using the TNT equiv-

alent models. However, the prediction result form this model is considered very conservative espe-

cially in the near field. The shape of the blast and the magnitude of the overpressure from a vapor

cloud explosion are basically not the same to those from the TNT charge or other chemical explo-

sive materials. Some conservative assumptions, such as the selection of the explosion efficiency and
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the procedure for the determination of the quantity of flammable mass in the vapor cloud could,

could be proposed in order to make the TNT equivalent model being useful for analyzing the vapor

cloud explosion blast.

Another important point which must also be considered is that the vapor clouds are most likely

exploded near to the surface of earth or not too far from the ground. Therefore, the blasts from

vapor cloud explosions should always be modeled as hemispherical blasts instead of spherical blasts.

The effect of ground surface reflection to the blast prediction must be taken into account. Once

the TNT equivalent mass for the flammable mass in the vapor cloud has been determined, this

flammable mass should be assumed in its hemispherical volume. The blast parameters of interest

are to be read from the TNT blast curve. However, the relevant blast curve for the vapor cloud

explosion should be the blast curve representing the TNT hemispherical blast. If the blast curve of

the TNT is given for the spherical blast, some important modifications should be made. In order

to deal with this problem, Smith and Hetherington [56] suggest that the modification should be

made to the explosive mass, which means the flammable mass of the vapor cloud. A reflection

factor, denoted here by k, is used to account for the ground reflection giving the initial given mass

which is previously assumed as hemispherical mass being a spherical one. The reflection factor of

2 is typically assumed for a perfect reflection [11]. The reflection factor is to be multiplied to the

flammable mass of the vapor cloud. Therefore, once the TNT equivalent mass has been determined,

the calculation of the scaled distance according to Eq. (3.7) should use the modified equivalent

mass. The bigger the explosive mass, the smaller the scaled distance (z) giving the higher the

overpressure which should normally be expected for a hemispherical explosive mass.

In [78], another procedure is mentioned. The modification should be made to the final prediction

of the blast parameters. For example, for the blast overpressure, the hemispherical effect would

make this parameter to be multiplied with the corresponding reflection factor. Such modification

is found simple since no modification to the explosive mass should be in the calculation process.

While using this procedure, the expression for the Kinney and Graham equations model will get

a little change. It is only by inserting additional factor k into the the equation to account for the

hemispherical blast wave. Thus, the blast overpressure for the vapor cloud with a scaled distance

z from the initial blast point accounting for the initial hemispherical mass is given by the following

equation:

∆ps(z) =
k · 808

[
1 +

(
z

4.50

)2]√[
1 +

(
z

0.048

)2] [
1 +

(
z

0.32

)2] [
1 +

(
z

1.35

)2] (3.18)

Again, the reflected factor of 2 may also be assumed for a perfect reflection. In practice, a factor

is often lower than this value due to the fact that the energy released in the explosion is not only

dissipated in the production of blast, but also leaving the system as thermal losses and etc [57]. In

[79], the factor of 1.6 is used in order to normalize the initial blast curve from Marshall which has

been used since many years as indicated [22].
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3.2 The TNO Multi-Energy model

3.2.1 Critical points with regard to the TNT equivalent model for the vapor cloud

explosion analysis

In fact, according to [80], the maximum overpressure in a vapor cloud explosion is a complicated

function of different factors. These factors are actually the initial and boundary conditions of the

vapor cloud explosion. The initial conditions are specified as follows:

• The fuel type in the gas or vapor cloud represented by the reactivity of the fuel involved. The

more reactive the material, the higher the overpressure.

• The initiation of the vapor cloud explosion with respect to the location and the strength of

the ignition source.

Meanwhile, the boundary conditions are as follows:

• The degree of the confinement which determines the possible dimension of the flame expan-

sion following the ignition.

• The obstacle configuration which determines the density of obstacle, the size of the obstacles

and the area or volume blockage ratio which reduces the free volume to which the vapor cloud

may expand.

• The scale in sense that the higher the overpressure in the experiments as the scale increases.

Unfortunately, none of these factors is taken into account while using the TNT equivalent model,

except probably for the fuel reactivity which is used for the estimation of the explosion efficiency.

The TNT equivalent model takes into account only the whole mass of the explosive material and

assumes the explosion efficiency for the determination of any blast parameter. No other factor is

taken into consideration. It is absolutely acceptable since for the detonation mode to which the

TNT equivalent model is addressed does not consider whether or not the confinement or congestion

is present in the vicinity. Therefore, the TNT equivalent model is recommended for high explosive

materials.

The consideration whether the blast wave is a detonation or a deflagration blast is ignored in

the TNT equivalent model. The deflagration blast must also be assumed to have similar behaviors

as the detonation blast if this model is implemented. This assumption is unfortunately not true.

The vapor cloud explosion remains a deflagration process for which the flame is accelerated. It will

not be a detonation except for the reason mentioned previously in the past chapter. Detonation

of the flammable vapor cloud would probably occur if there is a transition from deflagration due

to a very extreme flame acceleration or if there is a direct initiation of detonation by a extremely

strong ignition source. Neither of these processes would occur in normal circumstances.

In fact, the main problem which may arise while using the TNT equivalent model for the vapor

cloud explosion is the over-estimation of the blast overpressure in the near field. With respect to

the physics of a detonation, this combustion mode generates an initially intense blast wave with
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a strong shock front close to the blast center, across which there will be large changes of entropy.

Consequently, less energy is available as the blast expands to lower overpressure at some distance

from the blast origin. In contrast, deflagration produces smooth blast waves, a longer positive

phase duration resulting in a larger positive impulse and with initially smaller changes of entropy.

Thus, there will be more energy available as the blast propagates at greater distances. It means

that although the detonation of a TNT charge and the rapid combustion of a flammable gas or

vapor cloud may release the same amount of energy, the shape of the blast wave produces by a

deflagration does not necessary resemble that from a detonation. Therefore, by default, the TNT

equivalent model tends to over-estimate near field overpressure from vapor cloud explosions. Van

den Berg et al. [72] has recommended that the TNT equivalent model should only be used for the

assessment of blast effects at the far-field where the peak overpressure level is less than 30 kPa. In

this case, the distinction between detonation and deflagration blasts quite smaller in comparison

to those at the near field. A deflagration blast wave can then be assumed to be closely resemble

the blast effect from a TNT detonation. In the other words, the shape of blast wave is assumed to

be nearly independent of its source at far field [81, 82].

Although there are several critical points to the TNT equivalent model, including also the

determination of the explosion efficiency η, which is unfortunately highly empirical and uncertain,

this model remains widely used until now. However, for a better and satisfied result especially

for the vapor cloud explosion, the following two models, the TNO Multi-Energy and the Baker-

Strehlow-Tang model, should be taken into account. In this section, the TNO Multi-Energy is

presented.

3.2.2 The Multi-Energy concept

The TNO Multi-Energy model is another widely used empirical model which uses the blast

curve for the estimation of the properties of vapor explosion explosion blast waves. In general, this

model is based on the fact that the vapor cloud explosion is not a detonation with an extremely

high overpressure, but also remains only a deflagration which may give rise to a certain level of

overpressure typically lower than the detonation overpressure but still sufficient to cause certain

dangers to the vulnerable objects in the surroundings (e.g., people or building). The generation

of blast overpressure in the vapor cloud explosion definitely depends on several conditions and

circumstances with respect to the location or area in which the vapor cloud engulfs.

As mentioned in the previous chapter, the generation of blast overpressure in the vapor cloud

explosion extremely depends on whether the propagation flame speed during the deflagration of

the vapor cloud is accelerated or not. This mechanism is determined by the existence of process

boundaries which is engulfed by the flammable gas or vapor cloud. The combustion of the flammable

vapor cloud in the fully open areas (unconfined) would produce a lower overpressure or even none

at all. As stated before, the unconfined part tends to burn out slowly as a fire without generating

overpressure. This outcome is usually called a flash fire.

Basically, the TNO Multi-Energy model is implemented to estimate the blast overpressure from
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a vapor cloud explosion. This model can also be named an ”equivalent” model for any vapor

cloud explosion. It takes into account the influence of process boundaries, including the degree of

confinement, the level of congestion and the characteristics of the fuel in the vapor cloud, for the

determination of the blast parameters. Therefore, the TNO Multi-Energy model is more realistic

than the TNT equivalent model, especially when dealing with the blast wave from deflagrations.

Historically, the TNO Multi-Energy model is a revised version of the initial TNO blast model as

described in [83, 84]. TNO is the Netherlands organization for applied scientific research (in Dutch,

Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek). The development of

this model is described, among others, in [72, 85, 86]. The procedure for its implementation is

mentioned in much detail in the revised version of the TNO Yellow Book [21]. In recent years,

there are some considerable improvements to the procedure of this model as indicated in [87, 88].

The TNO Multi-Energy model is essentially based on the concept of the Multi-Energy. Ini-

tially, the TNO blast model had assumed that the whole flammable gas or vapor cloud contributes

to the blast wave and to the generation of blast overpressures. At a glance, this assumption does

not have any difference from the basic assumption of the TNT equivalent model. In this sense, the

two models have considered a single explosion and take into account the total mass of the explosive

material. However, as mentioned above, in the case of vapor cloud explosion the unconfined part

of the flammable gas or vapor cloud would not make a serious contribution to the generation of

blast overpressure.

Later on, the initial concept of TNO blast model is revised and replaced by the Multi-Energy

concept. According to this new concept, the violence of a vapor cloud explosion depends on

the size and the initial strength of the portion of the flammable gas or vapor clouds which are

partially confined or congested by the process boundaries. This means that the Multi-Energy

concept assumes that the blast overpressure would develop only in those parts of the flammable

gas or vapor cloud that are located in partially confined or congested areas. Therefore, the portion

of the flammable gas or vapor cloud which is confined and congested is also called the blast source.

If the flammable gas or vapor cloud which is confined but expands within the unobstructed area

which does not include any kind of obstacles, the initial blast strength of the vapor cloud once

it is ignited would be quite low. However, if such flammable gas or vapor cloud expands within

the area with high density of obstacles, such as process equipments, walls, and buildings, a higher

initial blast strength should be assigned, because the cloud could expands only into the free space

in between obstacles causing the expansion flow following the ignition to be intensified.

3.2.3 Important procedures

Like the TNT equivalent model, the TNO Multi-Energy model also determines the blast parameters

of interest using the blast curves that relate the blast parameter as a function of distance from the

explosion origin. It is important to mention that the explosion of the vapor cloud is based on a

ground explosion of hemispherical vapor cloud as shown in Fig. 3.3. ∆po,max is assumed to be

the maximum overpressure that can be attained in the vapor cloud. For the analysis for the vapor
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cloud explosion, it is typically assumed that this value is constant along the radius of the vapor

cloud. Therefore, the generation of the family of blast curves usually assumes different flame speeds

which are specified to be constant during the explosion.

Pressure

Distance from the center of 

the explosionHemipsherical 

vapor cloud

Center of 

vapor cloud
Blast wave

Δpo,max

Figure 3.3. The idealized hemispherical vapor cloud as the basis for the TNO Multi-Energy model [89]

The TNO Multi-Energy model consists of a family of blast curve for peak overpressure, positive

phase duration and dynamic pressure versus distance. Figs. 3.4 and 3.5 show two sets of the TNO

Multi-Energy blast curve family for the first two parameters. As mentioned earlier, these curves

provide the scaled peak side-on overpressure and scaled positive phase duration as a function of

scaled distance of the object of interest relative to the initial point of explosion (blast origin). Unlike

the TNT blast curves, the scaling of the blast parameters, except for the peak side-on overpressure

(∆po), is not based on the Hopkinson’s blast scaling law, but refers to the so-called Sach’s blast

scaling law instead.

The use of the Sach’s blast scaling law would make all blast parameters to be scaled fully non-

dimensionally. For this purpose, other important parameters for characterizing the explosion blast,

such as the volumetric explosion energy of the flammable gas or vapor cloud, denoted by Ec; the

ambient pressure, denoted by pa; as well as the speed of sound at the ambient condition, denoted

by a0 must be taken into account. Since the energy of explosion is also taken into consideration,

the Sach’s scaled parameters are also known as the combustion energy-scaled parameters in some

literatures.

The expressions of the Sach’s scaling law for the blast parameters involved in the TNO Multi-

Energy blast curves are as follows:

• Sach’s scaled distance or the combustion energy-scaled distance, denoted by R

R = R 3

√
pa
Ec

(3.19)
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Figure 3.4. The Multi-Energy blast curve for the scaled peak side-on overpressure as a function of the Sach’s
scaled distance [87]

• Sach’s scaled positive phase duration, denoted by τd

τd = td × a0
3

√
pa
Ec

(3.20)

where R is the stand-off distance of the object of interest to the blast origin in m. Variables Ec, pa

and a0 are given in J, Pa and m/s respectively. Therefore, both R and τd are unitless parameters.

Meanwhile, the scaled peak side-on overpressure is presented in a similar manner to Eq. (3.12).

In order to distinguish it from the Hopkinson’s scaled overpressure, the scaled peak overpressure

for the TNO Multi-Energy blast curve is denoted by ∆ps and defined by the following equation:

∆ps =
∆po
pa

(3.21)

The family of the TNO Multi-Energy blast curves consists of 10 different curves parameterized by

the initial strength of the blast source. This initial strength (1-10) must be selected according to

the circumstances. The higher the number, the stronger the blast source. A strong blast which

corresponds to a shock wave is represented by solid lines level number 10. While, low-strength blast

waves are indicated by dashed lines that may steepen into strong wave curve in the far field.

In addition to the selection of the blast strength, the volumetric explosion energy of the vapor

cloud (Ec) must also be determined, as written in Eq. (3.19) before the prediction of the blast
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Figure 3.5. The Multi-Energy blast curve for the scaled positive phase duration as a function of the Sach’s
scaled distance [16]

parameter of interest is performed. In the following, the key procedure for the determination of

these important two variables, i.e. the size of the blast source in terms of the volume of the vapor

cloud in the obstructed region to determine the volumetric explosion energy of vapor cloud; and

the initial strength of the blast source, is presented.

3.2.3.1 Determination of the size of the blast source

The procedure for the determination of the size of the blast source is generally done in the following

two main steps:

1. The total volume of the flammable gas or vapor cloud is estimated initially by considering

the quantity of flammable material (the flammable mass) in the vapor cloud assuming that

no obstruction or congestion is present in the vicinity. This variable is denoted by Vc. It is

assumed that the vapor cloud is filled with the fuel-air charge mixture homogeneously at its

stoichiometric concentration. Thus, the total volume of the flammable gas or vapor cloud is

determined by the following equation:

Vc =
We,f

ρf × cs
(3.22)

where We,f is the flammable mass of the vapor cloud in kg, ρf is the vapor density of the

flammable fuel in the gas or vapor cloud in kg/m3 and cs is the stoichiometric concentration

of the flammable fuel in the gas or vapor cloud in % volume. The total volume of the cloud

Vc is given in m3. Typical stoichiometric concentration of some common hydrocarbon fuel-

air mixture at atmospheric condition can be found in Table 3.4. Actually, if the dispersion

analysis is performed, the total volume of the vapor cloud can be estimated by taking into

account only the cloud within the explosion limits and the flammable mass is also limited

into these limits. In case of pool evaporation one could multiply the evaporation rate by a
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Table 3.4. Stoichiometric concentrations and volumetric heat of combustions for common hydrocarbons
and hydrogen assuming that the fuels are homogeneously and stoichiometrically mixed with air
at atmospheric conditions [21]

Gas or vapor Stoichiometric Volumetric heat of
concentration, cs vol.% combustion, ∆Hc,vol MJ/m3

Methane 9.5 3.23
Ethane 5.6 3.39
Propane 4.0 3.46
Ethene 6.5 3.64
Butane 3.1 3.48
Propene 4.4 3.59
Cyclohexane 2.3 3.85
Hydrogen 29.5 3.01

certain time period to come up with a mass quantity. However, as mentioned before, for the

worst case scenario and safe approach it could be assumed that the flammable mass is the

whole released mass from the inventory and the total volume is estimated from this mass.

2. Once the total volume of the flammable gas or vapor cloud has been estimated, the free

volume in the obstructed region, denoted by Vr, is to be determined. In order to obtain this

free volume, the total volume of the available obstacles in the obstructed region is deducted

from the total volume of the obstructed region itself. If the total volume of the obstructed

region is Vor and the total volume of the obstacles is Vob, thus Vr = Vor − Vob. Furthermore,

the total volume of the flammable gas or vapor cloud is to be compared with the free volume

in the obstructed region. If the volume of the flammable gas or vapor cloud (Vc) is larger than

the free volume of the obstructed region (Vr), a high initial blast strength would be assigned

to the portion of the flammable gas or vapor cloud with the size equal to the free volume of

the obstructed region, while a low initial blast strength would be assigned to the remaining

cloud. On the contrary, if Vc is smaller than Vr, the whole portion of the flammable gas or

vapor cloud would be assigned with a certain high initial blast strength and the remaining

free space of the obstructed region would not be taken into account.

In order to determine whether a particular obstacle belongs to an obstructed region or not, two

empirical conditions were proposed as indicated in [85, 21]. These two conditions which must be

satisfied by an obstacle to be included into an obstructed region are:

1. The distance of the outer boundary of the obstructed region and the outer boundary of the

new obstacle is smaller than 25 meters.

2. The distance from the center of a new obstacle to the center of the previous considered

obstacle is smaller than 10 times of d1 or 1.5 times of d2. Both d1 and d2 are defined as

follows:

• d1 is the smallest dimension oriented in a plane perpendicular to the direction of the

flame propagation.
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• d2 is the dimension of the obstacle parallel to the direction of the flame propagation.

Since typical structures in a potentially hazardous area like an industrial site may be considered

as being composed of basic geometrical shapes, such cylinder with length lc and diameter dc; boxes

with dimensions b1, b2 and b3; or sphere with diameter ds, the variable d1 could be lc or dc if the

new obstacle is a cylinder; or the smallest between b1, b2 or b3 if it is a box; or ds if it is a sphere.

An obstructed region itself would be defined as a box that contains all satisfied obstacles in the

region. The volume of the obstructed region to be considered is its free volume, denoted by Vr,

which is defined as the volume of the box after excluding the space occupied by the obstacles. If

necessary, multiple boxes could also be introduced according to the circumstances.

Once an appropriate volume of the flammable gas or vapor cloud has been determined, it is then

assumed that the flammable gas or vapor cloud is in its stochiometrically hemispherical volume.

Thus, the initial radius of this hemispherical flammable gas or vapor cloud, denoted by R0, is given

by the following equation:

R0 =
3

√
3Vc
2π

(3.23)

From here, the volumetric explosion energy of the blast source (Ec) can be calculated by multiplying

the volume of hemispherical gas or vapor cloud (Vc) with the volumetric heat of combustion of the

fuel (∆Hc,vol, see Table 3.4). Thus,

Ec = Vc ×∆Hc,vol (3.24)

In fact, the volumetric heat of combustion of the fuel which is stoichiometrically mixed with air is

calculated from the specific heat of combustion of the fuel (∆Hc), the density of the fuel (ρf ) and

the stoichiometric concentration of the fuel in air (cs) as given by the following equation:

∆Hc,vol = ∆Hc × ρf × cs (3.25)

where ∆Hc is given in J/kg, ρf in kg/m3, cs in % volume and ∆Hc,vol in J/m3.

3.2.3.2 Determination of the initial strength of the blast source

The safe and most conservative estimate for the initial strength of the blast source which cor-

responds to the flammable gas or vapor cloud in the obstructed region leading to the possible

generation of a shock wave can be made by assuming the maximum strength of 10. According to

Figs. 3.4 and 3.5, for the peak side-on overpressure below about 0.5 bar, no significant difference

is shown for source strengths ranging from 7 to 10 [22]. The curves for blast source strengths of 7

to 9 may steepen into a blast strength 10 at the Sach’s scaled distance of approximately 1, while

for blast strength 6 at the Sach’s scaled distance of approximately 2. The blast resulting from

the unobstructed parts of the flammable gas or vapor cloud can be modeled by assuming a low
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initial strength. For example, for extended and quiescent parts, the minimum strength of 1 may

be assumed, and for more non-quiescent parts, which are in low intensity turbulent motion, for

instance due to the momentum of a fuel release, a blast strength of 3 can be assigned.

In fact, there is a qualitative procedure for the determination of the initial blast strength of the

vapor cloud. As mentioned earlier in this section, there are several factors which must be taken

into account for the generation of the explosion overpressures. This particular procedure attempts

to develop a relationship between these parameters qualitatively. Therefore, each factor is to be

divided into several categories covering typical situations for the vapor cloud explosion. In this

case, there are three factors to be taken into account, namely the flame expansion type represented

the degree of confinement; the reactivity of the fuel represented the type of the fuel in the material;

and the obstacle density represented the configuration of the obstacles in the obstructed region.

The categorization of these factors are mentioned as follows:

(i) Dimension of the flame expansion, which can be in 1-D, 2-D and 3-D expansion.

The degree of confinement of the flammable gas or vapor cloud determines the number of

dimension in which the flame may expand. This is not the dimension of the vapor cloud or

the region engulfed by the vapor cloud [16].

• 3-D expansion means that there is a free flame expansion in an unconfined volume.

The flame is free to expand spherically or hemispherically from a point ignition. The

overall flame surface increases with the square of the distance from the point of the

ignition source. According to the circumstances, the flame acceleration and the level

overpressure are relatively the lowest one.

• 2-D expansion means that there is a cylindrical flame between two plates, the overall

flame surface area is proportional to the distance from the ignition point. Consequently,

deformation of the flame surface will have a stronger effect and generates higher over-

pressures.

• 1-D expansion is used for examples for planar flames propagating in pipes. In this case,

the projected flame surface area is constant. This configuration is however rarely en-

countered in actual plants. According to [87], in many realistic situations the expansion

of the flame during vapor cloud explosion is typically in 2D or 3D only.

The classification of the effect of the confinement to the flame expansion is further shown in

Table. 3.5

(ii) The reactivity of the fuel in the flammable gas or vapor cloud

The fuel reactivity is a term used to describe the propensity of a flame to accelerate in a vapor

cloud explosion for a given fuel. The reactivity of the materials is divided into three categories,

namely low, medium, and high reactivity. It is generally accepted that materials having

a laminar or fundamental burning velocity greater than 0.75 m/s are considered high reactive
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Table 3.5. Effect of confinement to the flame expansion [16]

Flame expansion Description Geometry

3-D Unconfined volume, almost completely

free expansion

2-D Platform carrying process equipment;

space beneath cars;

open-sided multistory buildings

1-D Tunnel, corridors, or sewage systems

materials, while those having a laminar burning velocity below 0.4 m/s are considered low

reactive materials. Other materials which do not meet this criterion are considered medium

reactive materials.

In accordance with the TNO recommendations [90], methane and carbon monoxide are the

only materials regarded as low reactive materials. While, hydrogen, acetylene, ethylene,

ethylene oxide, and propylene oxide are typical examples of highly reactive materials. The

classification of a flammable fuel consisting of more than one fuel (mixture) should be based

on the concentration of each fuel. Thus, the reactivity of the mixed fuel can be is considered

to be the same to the reactivity of the fuel with a highest composition in a conservative

approach.

(iii) The obstacle density

The level of obstruction is represented by the obstacles density in the obstructed area en-

gulfed by the flammable gas or vapor cloud. The classification of the obstacle density is low,

medium and high density. Basically, this classification is based on the area blockage ratio

and pitch. The area blockage ratio is defined as the ratio of the area blocked by obstacles to

the total cross-section area. The pitch is defined as the distance between successive obstacles

or obstacle rows. Low obstacle density was defined as having an area blockage ratio of less

than 10%, while high obstacle density provides an area blockage ratio of 40% or greater, and

everything else is considered medium [91]. This classification is further illustrated in Table

3.6.

The combination of each category is realized in a matrix shown in Table 3.7. This is the matrix

to be used for the selection of the initial blast strength of the vapor cloud explosion qualitatively.

It is important to mention that the intervention of the user for the selection of these strengths is

still required similar to the selection of the explosion efficiency in the TNT equivalent model.

Recently, an attempt to develop a quantitative procedure for the selection of the initial strength
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Table 3.6. Classification of the obstacle density [16]

Type Obstacle Area Pitch for Obstacle Geometry

Blockage Ratio per Plane Layers

Low Less than 10% One or two layers of

obstacles

Medium Between 10% and 40% Two or three layers of

obstacles

High Greater than 40% Three or more fairly

closely spaced obstacles

layers

Table 3.7. Matrix for the qualitative of the initial blast strength of the flammable gas or vapor cloud for the
use of the TNO Multi-Energy blast curve [92]

Obstacle density

Dimension Reactivity High Medium Low

High 10 10 10

1-D Expansion Medium 9-10 9 7-8

Low 9-10 7-8 4-5

High 9 7-8 6

2-D Expansion Medium 7-8 6-7 2-3

Low 6 5-6 1-2

High 6 3 1

3-D Expansion Medium 3-4 2 1

Low 3 2 1

of the blast source, especially for a realistic situation has been made [87, 80]. This new guideline

aims to develop a set of correlations for the determination of the maximum explosion overpressures

of the vapor cloud which is denoted by ∆po,max in Fig. 3.3. With respect to the TNO Multi-Energy

blast curve, ∆po,max is the overpressure for any scaled distance equal or smaller than R0 (see Fig.

3.4 and 3.5). Therefore, once ∆po,max has been determined, it is then possible to determine which

the blast strength level has to follow while using the TNO blast curve family. It is important to

mention that ∆po,max is considered to be constant during the explosion or until the combustion of

the vapor cloud is complete.

As mentioned above, ∆po,max depends on several parameters which could still be broken down

into several categories. In addition to the three parameters above, the strength and location of

the ignition source and the size of the obstacles are also taken into account. However, some of

them were treated quantitatively. The obstacle density and fuel type in the vapor cloud, which

were previously treated qualitatively, are now treated quantitatively by introducing new variables.
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The volume blockage ratio (VBR) was used instead of the area blockage ratio (ABR). The degree

of confinement remains treated qualitatively as well as the strength of the ignition source. The

remaining factors are to be treated quantitatively. Table 3.8 shows the treatment of the parameters

for the determination of the correlation for the maximum explosion overpressure in the vapor cloud.

Table 3.8. Parameters for the determination of the correlation for the maximum explosion overpressure of
the vapor cloud [87]

Approach Parameter

Qualitative Strength of ignition source a. Low energy

b. High energy

Degree of confinement a. 3-D flame expansion

(Dimension of flame expansion) b. 2-D flame expansion

c. 1-D flame expansion

Quantitative Obstacle density Volume blockage ratio

(Level of congestion) Notation: VBR -

Fuel type in the cloud Laminar burning velocity

(fuel reactivity) Notation: SL m/s

Location of the ignition Length of the flame path

in the vapor cloud Notation: Lp m

Obstacle size Typical average diameter

(scale of experiment) Notation: D m

According to [80], the determination of the correlation for the maximum explosion overpressure

was based on the dataset from MERGE (Modeling and Experiment Research into Gas Explosions)

experiments. The data available for low energy ignition (spark) in explosion experiment with

obstacles without confinement (3-D) and between parallel planes (2-D) were used for the evaluation.

It was found that the four quantitative variables in Table 3.8 are related to the maximum explosion

overpressure (∆po,max) for 2-D and 3-D flame expansion according to the following equation:

∆po,max = a ·
[

VBR ·Lp
D

]b
·ScL ·Dd (3.26)

where ∆po,max is given in bar. It is important to mention that D is the typical average obstacle

diameter for the whole obstructed region. This parameter is also proportional to the scale of the

experiment; Lp accounts for the location of ignition or the maximum distance covered by the flame.

Constants a, b, c and d for these correlations can be found further in Table 3.9.
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Table 3.9. Constants for Eq. (3.26)

Conditions a b c d

No confinement (open, 3-D) 0.84 2.75 2.7 0.7

Confinement between parallel plates (2-D) 3.38 2.25 2.7 0.7

3.2.3.3 Fitted equations of the TNO Multi-Energy blast curve family

In the following the equations that fit the TNO Multi-Energy blast curve family for the overpressure

as given in [21] are presented. These equations could predict the blast overpressure at any distance

from the initial blast source especially for the computer application. For each level of the initial

blast strength in the TNO Multi-Energy blast curve family, the fitted equation is generally given

by the following expression:

y = a ·xb + 10−b · log x−c (3.27)

where y is the vertical axis of the blast curve representing the scaled overpressure ∆ps and x is the

horizontal axis of the curve representing the energy (Sach’s) scaled distance (R). These equations

are combined from the fitted equations given in [93] and the proposed equations given in [94].

The coefficients required for Eq. (3.27) for different blast strength level and different ranges of

x are given in Appendix B. The range of x-axis starts from about 0.23 corresponding to R. The

value of ∆ps for any R < 0.233 is to be determined by Eq. (3.26). The maximum range of x is

100 as indicated in the original curve. It is, therefore, not recommended to use these equations for

the scaled distance (R) greater than 100. Fig. 3.6 shows the TNO Multi-Energy blast curve family

generated with these equations.

Figure 3.6. The TNO Multi-Energy blast curve family for the scaled overpressure generated with Eq. (3.27)
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3.3 The Baker-Strehlow-Tang model

3.3.1 The basic concept of the Baker-Strehlow-Tang

The Baker-Strehlow-Tang model is another empirical model which also uses the blast curve for

the estimation of the properties of explosion blast waves. This model is actually an extended

blast model developed from the Strehlow approach which selects blast curves based on flame speed

[91]. The original work of Strehlow et.al [95] had experienced several considerable improvement

as mentioned in [69, 88]. Basically, the Baker-Strehlow-Tang model has similarities to the TNO

Multi-Energy model as both of them are based on the premise that a vapor cloud explosion can

occur only within that portion of a flammable gas or vapor cloud that is congested or partially

confined. This means that both models recognize the effect of the obstacles and confinement to the

flame expansion flow field resulting in higher intensities of a vapor cloud explosion.

Unlike the TNO Multi-Energy blast curve, the Baker-Strehlow-Tang blast curve family is pa-

rameterized by the flame speed in terms of its Mach number. The blast curve family for the peak

overpressure, positive impulse and the arrival time are shown in Figs. 3.8 - 3.10. These curves

were derived from detailed numerical simulations of idealized free-air (spherical) explosion scenario

with a fuel-air charge at stoichiometric concentration filling the sphere as shown in Fig. 3.7. The
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vapor cloud
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Figure 3.7. The idealized spherical vapor cloud as the basis for the Baker-Strehlow-Tang model [89]

procedure for the determination of the cloud sizes including the treatment of the obstructed regions

in order to obtain the volumetric explosion energy of the vapor cloud is, however, still similar to

the TNO Multi-Energy model. The blast parameters are also presented in their scaled forms and

the Sach’s scaling law is also still in use. Sach’s scaled parameters for the positive impulse and the

time arrival are are non-dimensionalized variables and given by the following equation:
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• Sach’s scaled positive impulse:

is = ip ×
a0

pa
× 3

√
pa
Ec

(3.28)

• Sach’s scaled arrival time:

τa = ta × a0
3

√
pa
Ec

(3.29)

w h e re pm a x is the maximum pre s s u re at the flame
f ront. Although the above equation was derived fro m
acoustic theory [15], comparison with experimental
m e a s u rements shows that it is valid for a wide range
of flame speeds [16]. The pro c e d u re employed was to
d e t e rmine the maximum overpre s s u re for a range of
Mw values of by numerical calculations. Then, Mf w a s
calculated for a given pm a x using equation (3). The
p revious Baker- S t rehlow curves were labeled by Mw
while the new Baker- S t re h l o w - Tang curves are
labeled by Mf. Table 1 presents the re l a t i o n s h i p s
among Mw, Mf and the scaled value of pmax.

P R E S E N TATION OF THE BA K E R - S T R E H L OW- TANG CURV E S
The families of blast curves for the positive and

negative overpre s s u re, positive and negative impulse,
arrival time of the shock front and the maximum parti-
cle velocity versus distance for a spectrum of flame
Mach numbers are presented in Figures 1 - 6. The
blast curves for negative phase parameters are includ-
ed in this presentation due to the importance of nega-
tive phase blast loading on structure response. A brief
discussion of the blast curves characteristics in diff e r-
ent flame speed regimes is presented in the following
sections:

Detonation and Fast Deflagrations
As can be seen from Figures 1 and 2, the overpre s-

s u re versus distance curves merge into a single curve

for various flame speeds in the supersonic regime for
locations outside the vapor cloud. The overpre s s u re s
inside the vapor cloud are nearly uniform and the
p re s s u re increases with the flame speed for positive
o v e r p re s s u re. As can be seen by comparing Figures 1
and 2 the negative overpre s s u re (absolute value)
never exceeds the positive overpre s s u re for superson-
ic flames. This generalization does not hold true for
subsonic flames.

The impulse versus distance curves for the super-
sonic regime also merge outside the cloud, as shown
in Figures 3 and 4. The highest flame speed (detona-
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TABLE 1. Mf and Mw Relations

Mw Mf Pmax

0.037 0.07 0.010

0.074 0.12 0.028

0.125 0.19 0.070

0.250 0.35 0.218

0.500 0.70 0.680

0.750 1.00 1.240

1.000 1.40 2.000

FIGURE 1. Positive Overpressure vs. Distance for Various
Flame Speeds

FIGURE 2. Negative Overpressure vs. Distance for Various
Flame Speeds

FIGURE 4. Negative Impulse vs. Distance for Various
Flame Speeds

FIGURE 3. Positive Impulse vs. Distance for Various Flame
Speeds

Figure 3.8. Scaled peak side-on overpressure as a function of the Sach’s scaled distance for different flame
speeds in terms of its Eulerian Mach number (Mf ) [69]

w h e re pm a x is the maximum pre s s u re at the flame
f ront. Although the above equation was derived fro m
acoustic theory [15], comparison with experimental
m e a s u rements shows that it is valid for a wide range
of flame speeds [16]. The pro c e d u re employed was to
d e t e rmine the maximum overpre s s u re for a range of
Mw values of by numerical calculations. Then, Mf w a s
calculated for a given pm a x using equation (3). The
p revious Baker- S t rehlow curves were labeled by Mw
while the new Baker- S t re h l o w - Tang curves are
labeled by Mf. Table 1 presents the re l a t i o n s h i p s
among Mw, Mf and the scaled value of pmax.

P R E S E N TATION OF THE BA K E R - S T R E H L OW- TANG CURV E S
The families of blast curves for the positive and

negative overpre s s u re, positive and negative impulse,
arrival time of the shock front and the maximum parti-
cle velocity versus distance for a spectrum of flame
Mach numbers are presented in Figures 1 - 6. The
blast curves for negative phase parameters are includ-
ed in this presentation due to the importance of nega-
tive phase blast loading on structure response. A brief
discussion of the blast curves characteristics in diff e r-
ent flame speed regimes is presented in the following
sections:

Detonation and Fast Deflagrations
As can be seen from Figures 1 and 2, the overpre s-

s u re versus distance curves merge into a single curve

for various flame speeds in the supersonic regime for
locations outside the vapor cloud. The overpre s s u re s
inside the vapor cloud are nearly uniform and the
p re s s u re increases with the flame speed for positive
o v e r p re s s u re. As can be seen by comparing Figures 1
and 2 the negative overpre s s u re (absolute value)
never exceeds the positive overpre s s u re for superson-
ic flames. This generalization does not hold true for
subsonic flames.

The impulse versus distance curves for the super-
sonic regime also merge outside the cloud, as shown
in Figures 3 and 4. The highest flame speed (detona-
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TABLE 1. Mf and Mw Relations

Mw Mf Pmax

0.037 0.07 0.010

0.074 0.12 0.028

0.125 0.19 0.070

0.250 0.35 0.218

0.500 0.70 0.680

0.750 1.00 1.240

1.000 1.40 2.000

FIGURE 1. Positive Overpressure vs. Distance for Various
Flame Speeds

FIGURE 2. Negative Overpressure vs. Distance for Various
Flame Speeds

FIGURE 4. Negative Impulse vs. Distance for Various
Flame Speeds

FIGURE 3. Positive Impulse vs. Distance for Various Flame
Speeds

Figure 3.9. Sach’s scaled positive impulse as a function of the Sach’s scaled distance for different flame
speeds in terms of its Eulerian Mach number (Mf ) [69]
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tion with Mf = 5.2) generated the lowest positive
impulse inside the cloud. The negative impulse versus
distance curves for various flame speeds in the super-
sonic regime merge at all distances. The magnitude of
the negative impulse is comparable with that of the
positive impulse for locations outside the combustion
zone (about R/(EPo)1/3 > 0.4). 

Good agreement between numerical calculations
and experimental measurements was achieved for the
detonation mode [ 9,14], as expected. In the detona-
tion experiments, a strong ignition at the cloud center
was applied which resulted in a detonation involving
the entire cloud. In the numerical calculations, con-
stant flame propagation at the maximum flame speed
is assumed, which provides a good simulation of the
detonation experiments. 

Although the detonation combustion mode, which
p roduces the most severe damage, is extre m e l y
unlikely to occur, fast deflagrations of the cloud can
result from flame acceleration under confined and
congested conditions in industrial environments. A
comparison was made between the EMERGE experi-
mental data and the Baker- S t re h l o w - Tang blast pre s-
s u res in the supersonic deflagration regime [14]. The
decay of the experimental blast pre s s u res is much
faster than the calculations in this regime. This may be

explained by the fact that a constant flame speed at
the maximum value was used in the calculations,
w h e reas in the experiments a large portion of the
cloud burned at very low velocities before the flame
accelerated to the maximum speed. There f o re, the
fraction of the source energy released at a rate suff i-
ciently high to support the shock wave is much less in
the experiments than in the calculations. This arg u-
ment is supported by the fact that the deviation of
experimental data from the calculated blast curve is
more pronounced for less reactive mixtures, for which
flame acceleration is slower than with more re a c t i v e
fuels.

Sonic Deflagrations
For a VCE with a flame Mach number close to

unity, the overpre s s u recurves merge into a single
curve outside the vapor cloud, the magnitude of
which is only marginally below the supersonic curve
(see Figure 1). This can be explained by the shock
f o rmation due to a piston moving at subsonic speed.
In fact, the blast waves produced by sonic flames
have the features of a shock wave that decays faster
than the acoustic waves generated by subsonic
flames. The comparison of the blast curves with
experimental data in the sonic regime is similar to that
in supersonic regime. The decay of the experimental
p re s s u res is also much faster than the calculations in
this regime.

Subsonic Deflagrations
Unlike the blast waves generated by supersonic

and sonic flames the pre s s u re versus distance curves
p roduced by slow subsonic flames do not merge. The
flame propagation speed has a significant influence
on the blast parameters both inside and outside the
s o u rce volume. The fact that the blast curves for vari-
ous flame speeds are nearly parallel indicates that the
blast waves produced by slow subsonic flames (Mf
less than 0.7 or Mw less than 0.5) follow the acoustic
decay law and the decay rate is not influenced by the
flame speed. 

Good agreement was found between the numerical
results, analytical solution by acoustic theory, and
experimental data in the subsonic regime. According
to the acoustic solution, the overpre s s u re is inversely
p roportional to the distance. Thus, the inverse-radius
law, can be used to extend the blast curves to far dis-
tances. 

C O N C L U S I O N S
A newly developed set of VCE blast curves pro-

vides an improved re p resentation of blast parameters
in both the positive and negative phases. Labeling of
the curves has been modifed to allow direct use of
empirical flame speed data to select a blast curve. Val-
idation against VCE experiments has shown good
a g reement in the supersonic and subsonic re g i m e s ,
and conservative predictions in the sonic deflagration
regime.

FIGURE 5. Arrival Time vs. Distance for Various Flame
Speeds

FIGURE 6. Maximum Particle Velocity vs. Distance for
Various Flame Speeds

Figure 3.10. Sach’s scaled arrival time as a function of the Sach’s scaled distance for different flame speeds
in terms of its Eulerian Mach number (Mf ) [69]

3.3.2 The important procedures

3.3.2.1 Determination of the flame Mach number

Similar to the TNO Multi-Energy model, there is a qualitative method for the determination of

the flame speed which is realized in a matrix combining three different factors that influence the

generation of the maximum explosion overpressure of the vapor cloud. As mentioned in [96], the

combination of the flame expansion geometry, the obstacles density and the reactivity of the fuel

determines also the flame propagation speed of the deflagration of the flammable vapor cloud. The

categorization of the parameters are similar to the TNO Multi-Energy model. The matrix for the

selection of the flame speed is shown in Table 3.10. In this case, the flame speeds are given in terms

of their Lagrangian Mach number (Mw), which is the velocity of heat addition in the numerical

calculation in a Lagrangian coordinate system (moving system).

Table 3.10. Matrix for the qualitative selection of the flame speed in terms of the Lagrangian Mach number
(Mw) for the use of the Baker-Strehlow-Tang blast curve family [16, 88]

Obstacle Density

Dimension Reactivity High Medium Low

High DDT DDT 0.59
2-D Expansion Medium 1.6 0.66 0.47

Low 0.66 0.47 0.079

High DDT DDT 0.47
2.5-D Expansion Medium 1.0 0.55 0.29

Low 0.50 0.35 0.053

High DDT DDT 0.36
3-D Expansion Medium 0.50 0.44 0.11

Low 0.34 0.23 0.026

Note: Mw = 5.2 is assumed for DDT

In Table 3.10, a new flame expansion dimension labeled by 2.5-D is included. This new di-
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mension is associated with the situation in the confinement which is not totally 3-D or 2-D. For

instance, the confinement is made up of either a frangile panel or by a nearly solid confining plane.

Typical example for this dimension is the pipe rack where the pipe are almost touching. The Mach

numbers for the 2.5-D expansion are simply obtained by taking an arithmetic average between the

corresponding 2-D and 3-D expansion Mach number for the same obstacles and fuel reactivity [88].

The 1-D expansion type is not to be used any longer in the new Baker-Strehlow-Tang model

because the maximum flame speed achieved in true 1-D expansion conditions (i.e., a pipe) is a

function of the length-to-diameter ratio of the pipe in addition to pipe geometry, fuel reactivity,

and congestion level. Many fuels are able to undergo a DDT in a 1-D expansion geometry if the

combination of length-to-diameter ratio and obstacle density are sufficiently high [88].

Recently, the Baker-Strehlow-Tang blast curve family have been updated was reported in [69].

The new blast curve is parameterized by the Eulerian Mach number, denoted by Mf , instead

of the Lagrangian Mach number (Mw). The Eulerian Mach number (Mf ) represents the flame

speed measured in the experiments relative to a fixed observer (Eulerian coordinate system). The

relationship between the Lagrangian and Eulerian Mach number is generally given by the following

equation:

Mf = 3

√
ρu
ρb
×Mw (3.30)

where ρu and ρb are the density of the gas ahead (unburnt) and behind (burnt) of the flame. This

relation is invalid if the Mf value approaches unity.

Furthermore, for supersonic flames, Mf = Mw. Meanwhile, for the near sonic flames, the rela-

tionship between Mw and Mf was established by using the approximate equation for the apparent

flame Mach number and the overpressure at the flame front. Assuming an expansion ratio of 7

for stoichiometric mixtures of commonly used hydrocarbon-air mixtures and a specific heat ratio

of 1.40 (ambient air), the equation for the determination of the Eulerian Mach number (Mf ) is

derived from the acoustic theory as given by the following equation:

po,max − pa
pa

=
∆po,max

pa
= 2.4×

M2
f

1 +Mf
(3.31)

where po,max is the absolute maximum explosion pressure of the vapor cloud at the flame front, while

∆po,max is the maximum explosion overpressure at the same position. pa is the ambient pressure for

which the atmospheric pressure is typically assumed. Therefore, in order to convert Mw to Mf in

this case, the maximum explosion overpressure for a range of values of Mw is first determined and

Mf is then calculated from Eq. (3.31). Table 3.11 presents the relationship between the Lagrangian

Mach number, the Eulerian Mach number and the maximum explosion overpressure.

An attempt to develop a quantitative method for the estimation of flame speed in terms of the

Eulerian Mach number has been proposed in [64]. This method is actually related with the set

of correlations for the determination of the maximum explosion overpressure of the vapor cloud
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Table 3.11. The relationship between the Lagrangian Mach number, the Eulerian Mach number and the
maximum explosion overpressure [69]

Lagrangian Mach number Eulerian Mach number Maximum overpressure

Mw Mf Pmax (bar)

0.035 0.07 0.010

0.074 0.12 0.028

0.125 0.19 0.070

0.250 0.35 0.218

0.500 0.70 0.680

0.750 1.00 1.240

1.000 1.40 2.000

2.000 2.00 5.000

developed for the selection of the initial blast strength of the TNO Multi-Energy model (see Eq.

(3.26)). Combining this equation to Eq. (3.31), the Eulerian Mach number (Mf > 0) can now be

estimated by solving the following equation:

M2
f

1 +Mf
=

a

2.4 · pa
× VBR ·Lp

D

b

·ScL ·Dd (3.32)

where VBR, Lp, SL and D are the same variables as defined previously in Eq. (3.26). Table 3.9

is also applicable for selecting appropriate constants a, b, c and d for two typical problems of vapor

cloud explosions in the process industries.

3.3.2.2 Fitted equations for the Baker-Strehlow-Tang blast curve family

In the following the equations that fit the Baker-Strehlow-Tang blast curve family for the determi-

nation of the blast overpressure are presented. In fact, these equations are actually useful for the

computer application. For each level of the flame speed, the Baker-Strehlow-Tang blast curve can

be approximated by the following expression:

y = a+ y1 + y2 (3.33)

where:

log y1 = b · (log x)6 + c · (log x)5 + d · (log x)4 + e · (log x)3 + f · (log x)2 + g · (log x) + h

log y2 = p · (log x) + q

where y is the vertical axis of the blast curve representing the scaled overpressure ∆ps and x is

the horizontal axis of the curve representing the energy (Sach’s) scaled distance (R). All required

coefficients of Eq. (3.33) for different defined flame speeds and different ranges of x can further

be found in Appendix B of this thesis. This main source of information for these correlation is

actually extracted from the technical documentation of the DNV PHAST software package version
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Figure 3.11. The Baker-Strehlow-Tang blast curve family for the scaled overpressure generated with Eq.
(3.33)

6.7 [97]. Thus, Fig. 3.11 shows the Baker-Strehlow-Tang blast curve for the scaled overpressure if

Eq. (3.33) is implemented.
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Chapter 4

Modeling of the Propagation of the

Blast Waves

4.1 Governing equations of the blast wave propagation

During explosion processes involving various explosive materials as well as the rapid combustion

of the flammable vapor cloud, especially if occuring in the congested region, complex motions of

the gas behind the shock wave would arise. This phenomenon has been introduced previously as

the blast propagation phenomenon. In fact, blast wave propagations can be studied experimentally

by means of models or theoretically by means of the investigation of mathematical problems using

equations of gas dynamics. These equations deal with compressible inviscid flows. In this chapter

the fundamental theoretical approach for studying this phenomenon is considered.

Generally, the flows of fluids are governed by the conservation laws of physics. These laws

provide the structures of fluid mechanics and involve three fundamental physical quantities which

are neither created nor destroyed, but are only redistributed or, excepting mass, converted from

one form to another. The three quantities are [98]:

• the mass of fluid which is conserved

• the rate of change of momentum which equals the sum of the forces on a fluid particle and is

described by Newton’s second law, and

• the rate of change of energy which is equal to the sum of the rate of heat addition and to the

rate of work done on a fluid particle. This particular quantity is described by the first law of

thermodynamics.

The mathematical statement of the conservation laws is a set of time-dependent nonlinear partial

differential equations which is called the Navier-Stokes equations. The equations were formu-

lated independently by the French physicist C.L.M.H. Navier (1785- 1836) in 1822 and the British

mathematician and physicist G.G. Stokes (1819-1903) in 1845 [99]. Basically, the Navier-Stokes

equations could describe the full range of fluid dynamics including compressible or incompressible

flows, viscous or non-viscous flows, laminar or turbulent flows and other related phenomena.

62



4.1. Governing equations of the blast wave propagation

Gas dynamics theory itself deals with compressible flows, which means that the effects of body

forces, viscous stresses and heat flux are neglected. Thus, the original Navier-Stokes equations are

modified by dropping the fluid viscosity and heat flux terms and reduced to the so-called Euler

equations. This modification leads to a hyperbolic non-linear equations system which admits

discontinuous solutions, such as shock waves and contact discontinuities. The original Navier-Stokes

equations themselves actually involve second-order derivatives making the equations parabolic and

having smooth solutions for all times. The procedures for solving the Euler equations are treated

in this chapter.

In order to solve the Euler equations, it is important first to understand that there are two

sets of variables to be chosen to describe the fluid flow under consideration. These are either the

primitive variables or the conserved variables. In general, for a multi-dimensional case of

Euler equations in Cartesian coordinate system, there are four independent variables, namely three

spatial coordinates (x, y, z directions) and one temporal (t). The primitive variables are actually

five dependent variables which are the functions of all four independent variables. These variables

are the mass density, denoted by ρ(x, y, z, t)); pressure p(x, y, z, t) and three components of

the particle velocities for each spatial directions. These velocities components are u(x, y, z, t)

for x-direction, v(x, y, z, t) for y direction and w(x, y, z, t) for z direction. They can further be

represented only by a single vector u = [u, v, w]T .

Meanwhile, the conserved variables represent the conserved mass, conserved momentum

and conserved energy. Each variable is respectively represented by ρ, ρu and E. The variable E

itself is actually the total energy per unit volume which may be broken down into the internal

and kinetic energy per unit volume. In fact, as mentioned later, both primitive and conserved

variables are related to each other by simple algebraic equations.

4.1.1 The general expression of the Euler equations system

Suppose that φ(x, y, z, t) is a scalar field function. The rate of change φ with time by an observer

moving with the fluid velocity u = (u, v, w) can be expressed by

Dφ

Dt
=
∂φ

∂t
+ u · ∇φ (4.1)

This term is called the substantial derivative or material derivative. The first term on the right

hand side denotes the partial derivative of φ with respect to time and represents the local rate of

change of φ with time. Meanwhile, the second term represents the convective rate of change.

Furthermore, if the integration of φ over a control volume V enclosed by a piece-wise smooth

boundary surface A that moves with the material under consideration is denoted with Ψ and

expressed by the following equation

Ψ(t) =

∫∫∫
V

φ(x, y, z, t) dV (4.2)
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Then, the substantial derivative of Ψ(t) can be written as follows:

DΨ

Dt
=

∫∫∫
V

∂φ

∂t
dV +

∫∫
A

(n ·φu) dA (4.3)

where n = (n1, n2, n3) is the outward pointing unit vector normal to the surface A. If the variable φ

in Eq. (4.3) respectively replaced with the conserved variables of the Euler equations, the integral

form of the multi-dimensional time-dependent Euler equations for an arbitrary control volume

V is generally written as follows:∫∫∫
V

∂ρ

∂t
dV +

∫∫
A

n · (ρu) dA = 0 (4.4)

∫∫∫
V

∂

∂t
(ρu) dV +

∫∫
A

[u(n · ρu) + pn] dA = 0 (4.5)

∫∫∫
V

∂E

∂t
dV +

∫∫
A

n · [E + p]u dA = 0 (4.6)

Furthermore, if V is a fixed control volume independent of time t, the first term on the right hand

side of Eq. (4.3) can also be modified as follows:∫∫∫
V

∂φ

∂t
dV =

d

dt

∫∫∫
V

φ dV (4.7)

Thus, modifying Eqs. (4.4)-(4.6) with Eq. (4.7) for each right hand side term, the multi-dimensional

Euler equations can also be written as follows:

d

dt

∫∫∫
V

ρ dV +

∫∫
A

n · (ρu) dA = 0 (4.8)

d

dt

∫∫∫
V

(ρu) dV +

∫∫
A

[u(n · ρu) + pn] dA = 0 (4.9)

d

dt

∫∫∫
V

E dV +

∫∫
A

n · [E + p]u dA = 0 (4.10)

where ρ is the mass density in kg/m3, u is the particle velocity in m/s, p is the pressure in Pa, and

E is the total energy per unit volume in J/m3. As mentioned above, E is actually defined as the

sum of the internal energy per unit volume, denoted by ρe and the kinetic energy per unit volume,

expressed by 1
2ρ|u|

2. Thus,

E = ρ

(
e+

1

2
|u|2

)
(4.11)
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where

1

2
|u|2 =

1

2
|u ·u| (4.12)

The variables e and 1
2 |u|

2 are the specific internal and kinetic energy given in J/kg.

4.1.2 The Euler equations system in the differential form

The integral form of the Euler equations system as given in Eqs. (4.4)-(4.6) can be transformed

into the differential forms. In this particular case, the surface integral in those equations should be

transformed to a volumetric integral form by applying Gauss’s theorem. This theorem states that

for any differentiable vector field Φ = (φ1, φ2, φ3) and a volume V with smooth bounding surface

A the following identity holds∫∫
A

(n ·Φ) dA =

∫∫∫
V

∇ ·Φ dV (4.13)

Therefore, when Gauss’s theorem is applied to the second term of all Eqs. (4.4)-(4.6), the differential

form of the multi-dimensional time-dependent Euler equations system will be obtained. This system

of equations is now expressed as follows:

∂ρ

∂t
+∇ · (ρu) = 0 (4.14)

∂

∂t
(ρu) +∇ · (ρu⊗ u + pI) = 0 (4.15)

∂E

∂t
+∇ · ([E + p]u) = 0 (4.16)

Here ∇ is the nabla operator representing the gradient column vector and u ⊗ u is the tensor

product of particle velocity. I is the identity unit tensor which is defined as follows:

I =

 1 0 0

0 1 0

0 0 1


As mentioned before, the Euler equations are the reduced form of the Navier-Stokes equations

which express the conservation laws of physics. Eq. (4.14) expresses continuity or mass con-

servation equation. The first term on the left-hand side of the equation describes the rate of the

density change with time, while the second term describes the net flow of mass out of the element

across its boundaries, also known as the convective term.

Eq. (4.15) is the momentum conservation equation. Basically, the conservation of mo-

mentum states that momentum changes are due to one of three factors, namely: redistribution,

conversion of momentum to or from energy, and forces. In a multi-dimensional coordinates sys-

tem, such as Cartesian coordinates, this equation comprises further three sub-equations because
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the tensor product u ⊗ u, where u = [u, v, w]T , is written in its complete form by the following

equation:

u⊗ u =

 u2 uv uw

uv v2 vw

uw vw w2


Meanwhile, Eq. (4.16) is the expression of the energy conservation equation, which represents

the energy balance based on the first law of thermodynamics.

Furthermore, Eqs. (4.14) - (4.16) can be expressed more comfortably in an alternative compact

divergence form as the following:

∂Q

∂t
+∇ ·H = 0 (4.17)

where Q is called the column vector of the conserved variables, given by:

Q = [ρ, ρu, ρv, ρw,E]T (4.18)

and H is the tensor of fluxes of the conserved variables in the x, y and z directions, written as

follows:

H =

 ρu ρu2 + p ρuv ρuw (E + p)u

ρv ρuv ρv2 + p ρvw (E + p)v

ρw ρuw ρvw ρw2 + p (E + p)w

 (4.19)

The tensor H can also be alternatively replaced by defining three column vectors of fluxes of

the conserved variables (conserved fluxes). Each column vector is regarded as a function of the

conserved variables vector Q. For Cartesian coordinates, they are denoted by F(Q), G(Q) and

H(Q) for x, y and z directions respectively. The expressions of the three column vector of the

conserved fluxes are given as follows:

F(Q) = [ρu, ρu2 + p, ρuv, ρuw, (E + p)u]T (4.20)

G(Q) = [ρv, ρuv, ρv2 + p, ρvw, (E + p)v]T (4.21)

H(Q) = [ρw, ρuw, ρvw, ρw2 + p, (E + p)w]T (4.22)

Therefore, the differential form of the multi-dimensional time-dependent Euler equations may also

be written as follows:

∂

∂t
Q +

∂

∂x
F(Q) +

∂

∂y
G(Q) +

∂

∂z
H(Q) = 0 (4.23)

In this case, no source term is present, i.e. S(Q) = 0. Thus, Eq. (4.17) is a homogeneous system

of equations. If the source terms are taken into account, this equation is no longer a homogeneous
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equations system. In fact, the source terms can be split into two parts: geometrical source terms

which arise in the case of non-Cartesian coordinates, and physical source terms such as radiative

heating and cooling, gravitation, etc. The inhomogeneous system of the multi-dimensional time-

dependent Euler equations is then expressed generally in a compact form as follows:

∂Q

∂t
+∇ ·H = S(Q) (4.24)

Usually, S(Q) is a prescribed algebraic function of the flow variables and usually does not involve

derivatives of these variables, although at certain circumstances, there are some exceptions.

As mentioned before, depending on the interest of the analysis, the fluid flow under consideration

can be described by means of their conserved variables or primitive variables. The primitive

variables are represented by the column vector W. For Cartesian coordinates, this vector is:

W = [ρ, u, v, w, p]T (4.25)

Analytical solutions of the Euler equations are available only for some simple cases, such as the

Sod’s shock tube problem. In much more complex circumstances, numerical schemes for solving

the equations need to be developed [100]. The numerical solutions of the Euler equations can be

developed using several schemes of the finite volume method. In this thesis, the Godunov scheme

which has first-order accuracy is applied. In order to implement the Godunov scheme, the initial

value problem of the Euler equations, which is commonly known as the Riemann problem is

required. As shown later in this thesis, the Godunov scheme implements the exact Riemann solver

for solving numerical fluxes at cell interface boundaries.

4.1.3 Thermodynamic considerations

In all cases of the Euler equations, the number of unknown variables exceeds the number of equations

by one. This means that the Euler equations only are insufficient to completely described the

physical process involved [101]. A closure condition or an additional equation is required in order

to guarantee a solution for all unknown variables. This condition is provided by an appropriate

thermodynamic equation of state relating two or more basic quantities within the medium.

In the previous discussion, some basic quantities have been introduced. These include the mass

density ρ, pressure p and specific internal energy e. In this section, the relation of these quantities

with other basic quantities, such as temperature, denoted by T , and the specific entropy, denoted

by s are shown.

4.1.3.1 Equation of state of ideal gases

The system of gas which is considered throughout this thesis is assumed to be in its local chemical

and thermodynamic equilibrium. This gas can be completely described by two basic variables,

namely pressure p and specific volume v. The latter variable is actually the reciprocal of the mass
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density as v = 1/ρ. The state function of this gas can be described by a curve in the p − v

plane, each characterized by a variable temperature T . Therefore, such a system is also known as

p − v − T system [101, 102]. The best way to relate these basic variables is through the so-called

thermodynamic equation of state, where T = T (p, v) = T (p, ρ), or p = p(T, v) = p(T, ρ). For

thermally ideal gases, the corresponding thermal equation of state is expressed as follows:

p = ρRT (4.26)

where the pressure p is in Pa, and the temperature T in K. The constant R is called the specific

gas constant given in J/kg/K which depends on the specific type of the gas under consideration.

This equation of state can further be modified as the following:

p =
n ·Mw

V
RT, (4.27)

since

ρ =
m

V
=
n ·Mw

V

where m is the mass of the gas in kg, V the volume of the gas system in m3, n the amount of gas

in volume V in kilomoles (kmol), and Mw the molecular weight of the gas in kg/kmol.

The multiplication of the specific gas constant and molecular weight gives the universal gas

constant, denoted by R, thus

R = R ·Mw (4.28)

This variable, as introduced shortly in Chapter 2, has the value of 8.134 J/mol/K valid for any

kind of gas. Using this equation, the equation of state as given in Eq. (4.27) is expressed generally

as:

p ·V = n ·R ·T (4.29)

The specific internal energy (e) plays an important role in the First Law of Thermodyna-

mics. In general, for a non-adiabatic system the change of specific internal energy (de) in a process

is given by the following equation:

∆e = ∆Q−∆W

= ∆Q− p ·∆V (4.30)

where ∆Q is the heat transferred to the system and ∆W is the work done by the system. The sign

may be change if the condition changes. Meanwhile, the relation of the specific internal energy (e)

with the two previous basic variables, pressure p and specific volume v is also given by the so-called
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4.1. Governing equations of the blast wave propagation

specific enthalpy. This variable is denoted by h and defined by the following equation:

h = e+ p · v = e+
p

ρ
(4.31)

With the addition of the specific kinetic energy 1
2 |u|

2 into Eq. (4.31), the so-called total enthalpy

is obtained. This variable is denoted by H and written as follows:

H = h+
1

2
|u|2 = e+

p

ρ
+

1

2
|u|2 =

E + p

ρ
(4.32)

where both h and H are given in J/kg.

Furthermore, the system’s entropy is involved in the Second Law of Thermodynamics.

The entropy measures the disorder in the system, and indicates the degree to which the internal

energy is available for doing useful work. The greater the entropy, the less available the energy.

The specific entropy, s is defined by the following relation:

Tds = de+ pdv (4.33)

In order to fully describe the physical process involved in the phenomenon of blast wave propa-

gation, several other variables are also considered important quantities. These include the specific

heat capacities, denoted by c, the speed of sound in the gas a, specific heat ratio, denoted

by γ and Mach number denoted by M.

The specific heat capacity is defined as the ratio between the heat added to the system dQ

and the change of temperature dT , meaning that c = dQ/dT . Two specific heat capacities are

distinguished; the specific heat capacity at constant pressure, denoted by cp and the specific

heat capacity at constant volume, denoted by cv. Considering that a process is at a constant

pressure, Eq. (4.30) may be written as:

dQ = de+ pdv = de+ d(pv) = d(e+ pv) = dh (4.34)

which means that the specific heat capacity at constant pressure cp is defined as:

cp =

(
∂h

∂T

)
p

or cp = T

(
∂s

∂T

)
p

(4.35)

Meanwhile, for a process at a constant volume, Eq. (4.30) becomes:

dQ = de+ pdv = de (4.36)

which means that the specific heat capacity at constant volume cv is defined as:

cv =

(
∂e

∂T

)
v

or cv = T

(
∂s

∂T

)
v

(4.37)
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Furthermore, there exists a general expression to relate both specific heat capacities:

cp = cv +
α2Tv

β
(4.38)

where α is the volume expansivity (expansion coefficient) in ◦C−1 and β the isothermal compressi-

bility in m2/N. Both of them are respectively defined as follows:

α =
1

v

(
∂v

∂T

)
p

and β = −1

v

(
∂v

∂p

)
T

(4.39)

In addition, the ratio of these specific heat capacities, denoted by γ, is defined as:

γ =
cp
cv

(4.40)

which means that γ is dimensionless quantity, while both specific heat capacities cp and cv, in SI

units, are given in J/kg/K.

Furthermore, there is another equation of state which relates the specific entropy s with the

pressure p and mass density ρ. For thermally ideal gases, this equation of state is given by:

s = cv ln

(
p

ργ

)
+ C = cv ln p− cp ln ρ+ C (4.41)

In this case, the exact value of the additive constant C is usually unobtainable. Under normal

circumstances, this constant is considered not important because we only deal with entropy differ-

ences.

Another important variable is the speed of sound in gas denoted by a. When the gas treated

in this problem is assumed to be an ideal gas, this variable may be expressed as [103]

a2 =
γ p

ρ
= γRT (4.42)

In SI units, the variable a is given in m/s. For certain purposes, the Mach number, denoted

by M , is also necessary. This variable is defined as a ratio between the absolute value of the gas

particle velocity |u| and the speed of sound in the gas a. Thus,

M =
|u|
a

(4.43)

which means that the Mach number M is a dimensionless quantity. Supersonic waves or flows have

M > 1, which is true for detonations or shock waves. Subsonic waves or flows have M < 1, which

is true for most deflagration flames.
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4.1. Governing equations of the blast wave propagation

4.1.3.2 Thermodynamic considerations for a polytropic gas

In this thesis, the modeling of the blast wave propagation in air assumes that air behaves as an

ideal gas with a constant ratio of specific heat capacity (γ = C). In fact, for a thermally ideal gas,

Eq. (4.26) is the equation of state which relates the temperature T to the pressure p and the mass

density ρ. Thus, when the thermally ideal gas is assumed, it follows that the internal energy e is a

function of temperature alone, which means that e = e(T ). In this case, the internal energy e can

simply be proportional to the temperature T according to the following equation:

e = cv ·T (4.44)

and when the specific heat capacity at constant volume cv is assumed to be a constant, one speaks

of a calorically ideal gas or polytropic gas. For this kind of gas, the specific heat capacity at

constant pressure cp is also a constant, so that Eq. (4.35) yields,

h = cp ·T (4.45)

which means that the specific enthalpy h is also proportional to the temperature. Since both the

specific heat capacities are constants, the specific heat capacity ratio γ according to Eq. 4.40) is

also a constant and also known as the polytropic index. This is among the basic features of the

polytropic gas.

Furthermore, the volume expansivity α and the isothermal compressibility β for the ideal gas

according to Eq. (4.39) are respectively given by:

α =
1

v

(
∂v

∂T

)
p

=
1

T
and β = −1

v

(
∂v

∂p

)
T

=
1

p
(4.46)

This means, according to Eq. (4.38), the relationship between both specific heat capacities and the

gas constant can be established as given by the following equation:

cp = cv +R (4.47)

By applying Eq. (4.40) to Eq. (4.47), both specific heat capacities can be expressed as follows:

cp =
γR

γ − 1
and cv =

R

γ − 1
(4.48)

The values of cv, cp and γ can be predicted by the law of equipartition of energy in the kinetic

molecular theory of gases. According to this theory, both specific heat capacities cv and cp as well

as the ratio γ can be calculated by the following equation:

cv =
αf
2
R, cp =

(
1 +

αf
2

)
R and γ =

αf + 2

αf
(4.49)
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where αf is the number of active degrees of freedom. For example, ideal monoatomic gases typically

have three degrees of freedom (αf = 3) contributed only from the translational motion. By the

equipartition principle the total energy of the molecule is equally distributed among the degrees of

freedom. Thus, cv = 3
2R while cp = 5

2R and the specific heat ratio γ = 1.67.

For diatomic molecules, two rotational degrees of freedom are added, corresponding to the

rotation about two perpendicular axes through the center of the molecule. Therefore, αf = 5, the

specific heat capacities and its ratio are respectively given by cv = 5
2R, cp = 7

2R and γ = 1.40. In

general, polyatomic molecules have 3 translational, 3 rotational degrees of freedom and a certain

number of vibrational modes. Typically, the specific heat ratio γ for these molecules are predicted

around 1.33.

Finally, by applying both Eqs. (4.26) and (4.48) to Eq. (4.44), the specific internal energy e

can now be expressed as

e =
pv

γ − 1
=

p

ρ(γ − 1)
(4.50)

and the total energy per unit volume E according to Eq. (4.11) can be written as follows:

E =
p

γ − 1
+

1

2
ρ|u|2 (4.51)

4.2 The Riemann Problem for the Euler equations

4.2.1 Introduction to the Riemann problem and the exact Riemann solver

The Riemann problem has played a central role both in the theoretical analysis of systems of

hyperbolic conservation laws and in the development and implementation of practical numerical

solutions for such systems. It is a fundamental tool for studying the interaction between waves.

In the context of solving the Euler equations, the Riemann problem is the initial value problem

(IVP) under a very particular initial condition which consists in a jump in the variables between

two states, with a uniform distribution on the left of the discontinuity and another still uniform

but possibly different distribution on the right, to infinity. In this thesis, as shown later, both

distribution of both initial data states are assumed uniform distributions.

In general, the solution of the Riemann problem is computed by what is called the Riemann

solver. In what follows, the procedure for developing an exact Riemann solver for the one-

dimensional time-dependent Euler equations of gas dynamics assuming that the gas is ideal is

presented. However, it is only the most important points to be mentioned here. The full detailed

procedure which may include also other type of Riemann solvers can be found in some recommended

references and publications, such as [101], [104], [105] and [106].

The Riemann problem for the one-dimensional time-dependent Euler equations of gas dynamics
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is actually the following initial value problem:

PDEs:
∂

∂t
Q(x, t) +

∂

∂x
F (Q(x, t)) = 0 (4.52)

ICs: Q(x, 0) = Q0(x) =

{
QL, if x < 0

QR, if x > 0
(4.53)

where Q is the vector of the conserved variables and F (Q) is the vector of the conserved fluxes.

Therefore, expanding both vectors with all their components as mentioned in the previous section,

the partial differential equations for the Riemann problem of the one-dimensional time-dependent

Euler equations are completely written as follows:

PDEs:
∂

∂t

 ρ

ρu

E


︸ ︷︷ ︸

Q(x,t)

+
∂

∂x

 ρu

ρu2 + p

(E + p)u


︸ ︷︷ ︸

F(Q(x,t))

= 0

According to this equation, the motion of the gas is assumed to have a non-zero velocity in the

x-direction only. Therefore, the domain of interest in the x− t plane is a set of points (x, t) where

−∞ < x < ∞ and t > 0. As written in Eq. (4.53), the initial discontinuity of the Riemann

problem is located at x = 0 separating two initial constant data states which are denoted by QL

and QR. Both subscripts L and R indicate the data states to the left and the right with respect to

the position of the initial discontinuity (x = 0).

The solution of the Riemann problem with two initial constant data states QL and QR is

generally written as RP(QL,QR). It is a self-similar solution in sense that if u(x, t) is a solution of

this problem, then u(αx, αt) is also the solution, whatever α. The concept of self-similar solution

actually means that the solution only depends on x/t and is therefore constant on the half-lines

which cross (0, 0) [107].

As introduced before, the Euler equations are to be solved numerically using the Godunov

scheme. In order to develop the scheme, the Riemann problem is required. In this thesis, the

Riemann problem is solved in terms of the physical primitive variables represented by the column

vector W instead of the the vector of conserved variables represented by the column vector Q. The

initial conditions of the Riemann problem should also be expressed in terms of the column vector

of the physical primitive variables. This expression is written as follows:

ICs: W(x, 0) = W0(x) =

{
WL = [ρL, uL, pL]T, if x < 0

WR = [ρR, uR, pR]T, if x > 0
(4.54)

Physically, the Riemann problem for the one-dimensional time-dependent Euler equations of

gas dynamic is a slight generalization of the solution of the shock tube problem in the sense
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that two gases under two different conditions fill in two regions of the tube separating by a thin

diaphragm some where in the middle of the tube. Fig. 4.1 illustrates the shock tube problem with

a length L. In this figure, the axial position of the initial discontinuity, i.e. the axial position of

the thin diaphragm, is at x = x0. The main interest is to determine the gas state in terms of either

physical primitive or conserved variables for any point (x, t) where t > 0.

thin diaphragm

x

ρR , uR , pR ρL , uL , pL 

x0

t = 0

Left (L) Right (R)

0 L

Figure 4.1. Illustration of the initial configuration of the shock tube problem. The Riemann problem of the
one-dimensional time-dependent Euler equations of gas dynamics is the generalization of this
particular problem. A thin diaphragm in the middle of the tube acts as a boundary separating
the two gases under two different conditions in terms of mass density, velocity and pressure.

The main interest of this problem is to determine the state variables of the gas inside the tube

once the thin diaphragm is removed. It is important to mention that the state variables of the gas

are represented by the physical primitive variables. It has been understood that the removal or

rupture of the thin diaphragm at x = x0 at time t = 0 will initiate a process to naturally equalize

the pressure. This generates a nearly centered wave system which typically consists of two non-

linear waves and a contact discontinuity. Depending on the initial constant data states of the

gas occupying the tube, i.e. QL and QR or WL and WR, the two non-linear waves can be either the

shock wave (compression wave), the rarefaction wave (expansion wave), or a combination

of both of them.

In general, the contact discontinuity and shock wave are two types of singularities which can

propagate through the gas. In the case of the contact discontinuity, the pressure p and particle

velocity u remain continuous across this wave, but the mass density ρ as well as other quantities

depending on it, e.g, the specific internal energy e, are discontinuous (jump) across this wave. In

contrast, for the shock wave, all those quantities are discontinuous (jump) across the shock front.

The jump in value across the shock front is governed by the Rankine-Hugoniot conditions

relating the gas state ahead and behind the shock front. Meanwhile, in the case of the rarefaction

(expansion) wave, smooth (continuous) solutions for all physical variables involved are expected

across the wave because the expansion from a high-density to a low-density material does not take

place instantaneously [101, 106].

4.2.2 Hyperbolic properties of the Euler equations of gas dynamics

The conservative formulation of the one-dimensional time-dependent Euler equations is expressed

according to Eq. (4.52). This formulation can also be expressed in a slightly different form by
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modifying the spatial partial derivative of the equation in the way written below:

∂

∂t
Q(x, t) + A

∂

∂x
Q(x, t) = 0 (4.55)

Thus, a preposition factor A is introduced here. This factor represents the first derivative of the

conserved fluxes with respect to the conserved variables. This means that:

A =
∂F(Q)

∂Q
(4.56)

By taking into account all physical variables defined in the previous discussion and assuming that

the gas treated in this case is the ideal gas with a constant ratio of specific heats (γ = constant),

A would form a 3× 3 Jacobian matrix expressed as follows:

A =

 0 1 0

1/2(γ − 3)u2 (3− γ)u γ − 1

1/2(γ − 1)u3 − uH H − (γ − 1)u2 γu

 (4.57)

As mentioned before, H is the total enthalpy according to Eq. (4.32). Furthermore, it can be

shown that the matrix A is diagonalizable having three real eigenvalues:

λ1 = u− a, λ2 = u, λ3 = u+ a, (4.58)

which correspond to the following three eigenvectors:

K(1) =

 1

u− a
H − au

 , K(2) =

 1

u

1/2 u2

 , K(3) =

 1

u+ a

H + au

 (4.59)

Here a is the speed of sound in the gas formulated by Eq. (4.42). Since, the Jacobian matrix A is

in fact not a constant and shown to be diagonalizable with three real eigenvalues, Eq. (4.52) is a

hyperbolic equation system. For solving this equations, it is important to know that the solution

waves which typically consists of two non-linear waves and a contact discontinuity are characterized

by the three eigenvalues given above.

4.2.3 Basis structure of the Riemann waves

In order to understand the basic structure of the Riemann waves, the shock tube problem illustrated

by Fig. 4.1 is here considered. The initial conditions is given in terms of primitive variables accord-

ing to Eq. (4.54). If considered that pL > pR, the structure of the waves generated immediately

after the removal of the thin diaphragm at time t = 0 can be illustrated by Fig. 4.2.

As shown in this figure, the generated wave structures in the tube separate the gas, from left

to right, into five different states. The gas from the left of the diaphragm (at high pressure)
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x

t > 0

expansion 
wave

contact 
discontinuity

shock 
wave

[E]

[1] [2]

thin diaphragm

x

ρR , uR , pR ρL , uL , pL t = 0

Left (L) Right (R)

[L] [R]
ρL , uL , pL ρR , uR , pR 

x0

Figure 4.2. The generated wave structure after the removal of the thin diaphragm at time t = 0 for the
shock tube problem illustrated in Fig. 4.1 if the initial condition is governed by Eq. (4.54) in
the sense that pL > pR.

expands through a rarefaction wave and flows into the right region, pushing the gas of this part.

The rarefaction is a continuous process and takes place inside a well-defined region (the expansion

fan) that propagates to the left (region [E]) for which the width of the expansion fan grows in

time. The compression of the low-pressure gas generates a shock wave propagating to the right.

The expanded gas (region ’[1]’) is separated from the compressed gas (region ’[2]’) by a contact

discontinuity, which can be regarded as a fictitious membrane traveling to the right at constant

speed.

In fact, there are four possible configurations of the Riemann wave solutions depending on the

initial condition of the Riemann problem. These configurations, as shown in x− t plane in Fig. 4.3,

represent the general solution of the Riemann problem. The rarefaction wave is usually represented

by a pair of rays, while the shock wave is depicted by a single, solid line. The middle wave is always

a contact surface discontinuity wave and indicated by a dash line.

For the particular shock tube problem as illustrated by Fig. 4.2, the structure of the Riemann

waves in x−t plane is similar to case (a) in Fig. 4.3. The Riemann problem is actually to determine

the gas state in all generated regions after the removal of the thin diaphragm. As mentioned before,

with respect to the Godunov scheme later, the state of the gas is characterized by the physical

primitive variables, represented by the column vector of W = [ρ, u, p]T. The complete structure of

the Riemann wave solution for the shock tube problem in Fig. 4.2 is depicted in Fig. 4.4.

The left and right state in Fig. 4.4, represented by WL and WR respectively, are actually the

given initial condition of the shock tube problem. For the general Riemann problem, this condition

remain the same. Therefore, the other remaining states are now to be determined. In what follows,

the procedure for determining these remaining unknown states is particularly presented.

The region in between two non-linear waves, as indicated by (’[1]’) and (’[2]’) in Fig. 4.2, is also

known as the star region. Therefore, an additional subscript (∗) is added to any state variables

of the gas falling into this region. In general, this region can be divided into two sub-regions

which are always separated by a contact discontinuity wave. The sub-region to the left side of
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x x

x x

t t

t t

case (a)

right shock

right shock

contact disc.

contact disc. contact disc.

contact disc.
left rarefaction

left rarefaction

left shock right rarefaction

right rarefaction

left shock

0

case (b)

case (c) case (d)

0

0 0

Figure 4.3. Possible Riemann waves configurations as the solution of the Riemann problem for the one-
dimensional problem. Case:
(a) left rarefaction wave, contact discontinuity wave, right shock wave.
(b) left shock wave, contact discontinuity wave, right rarefaction wave.
(c) left rarefaction wave, contact discontinuity wave, right rarefaction wave.
(d) left shock wave, contact discontinuity wave, right shock wave.

the contact discontinuity is called the star left region specifically denoted by additional subscript

(∗L), while the other sub-region to the right side is called the star right region specifically denoted

by additional subscript (∗R). Meanwhile, the state variables of the gas in the expansion wave (’E’)

which are also not yet known are denoted by the additional subscript F (Expansion fan).

In order to determine the state variables of the gas in the star region, it is important to remember

again that both pressure and particle velocity remain constant across the contact discontinuity wave

which means that:

p*L = p*R = p∗

u*L = u*R = u∗ (4.60)

However, mass densities of the gas across of this contact wave are jump discontinuously. This

means that,

ρ*L 6= ρ*R (4.61)

This causes any variable that depends on the mass density, such as the specific internal energy

(e), temperature (T ), speed of sound (a) as well as specific entropy (s) to be discontinuous (jump)

across this contact discontinuity wave. Therefore, the procedure for determining the state variables

of the gas in the star region is developed based on the constancy of both pressure and particle

velocity across the contact discontinuity wave.

The general procedure mentioned in the following takes is valid for both star regions (left and
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Figure 4.4. A complete structure of the Riemann wave solution for the shock tube problem initially illustrated
by Fig 4.1 with the initial conditions given by Eq. (4.54) in the sense that pL > pR. The situation
inside the tube is depicted in Fig. 4.2. In this figure, it is shown also the head and tail of the
rarefaction wave.

right). Therefore, it is introduced a temporary new rule. A new subscript ’0’ is used first to indicate

the state variables which are given which means to any state variables ahead or behind the star

region. Meanwhile, both subscripts (*L) and (*R) are temporarily simplified to subscript (∗) only.

Thus, the procedure for determining the mass densities of the gas in the two sub-star regions are

as follows:

1. If the star region and the region behind or ahead of it (the given or known region) is connected

by a shock wave, the jump in mass density across the shock wave is governed by the

Rankine-Hugoniot conditions. According to this condition, the mass density behind the

shock wave (ρ∗) is related to the mass density ahead the shock wave (ρ0) as the function

of the ratio of the pressure behind the shock wave (p∗) and ahead of the shock wave (p0).

Assuming that the gas treated in this case is ideal with a constant ratio of specific heats (γ =

constant, polytropic gas), the expression of the ratio of the mass density behind and ahead

the shock wave is given by the following equation [35, 101]:

ρ∗
ρ0

=

(
γ − 1

γ + 1

)
+

(
p∗
p0

)
(
γ − 1

γ + 1

)(
p∗
p0

)
+ 1

(4.62)

2. If the star region is connected to the region behind or ahead of it by a rarefaction wave, the
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4.2. The Riemann Problem for the Euler equations

mass density of the star region is solved by means of the Poisson adiabatic equation (isentropic

expansion process). In general, the Poisson adiabatic equation is written as follows [101]:

p = Cργ (4.63)

where C is a constant. The rarefaction wave is always moving toward the given region.

Therefore, for both regions behind and ahead the rarefaction wave, the expression of the

Poisson adiabatic equation is expressed as follows:

p∗ = Cργ∗ , for the region behind the rarefaction wave (4.64)

p0 = Cργ0 , for the region ahead the rarefaction wave (4.65)

Manipulating both Eqs. (4.65) and (4.64), the ratio between the mass density behind and

ahead the rarefaction wave can be determined by the following equation [101]:

ρ∗
ρ0

=

(
p∗
p0

)1/γ

(4.66)

According to both Eqs. (4.62) and (4.66), the ratio of the mass density behind and ahead the

non-linear wave is actually parameterized only by the ratio of both pressures behind and ahead

the respected wave (p∗ and p0). Therefore, in the case of ideal gas with a constant ratio of specific

heats, the mass density of the star region for all cases can be written in an alternative compact

form as follows:

ρ∗

(
γ,
p∗
p0

)
=


ρ0

[
γ−1
γ+1 + p∗

p0

γ−1
γ+1 ·

p∗
p0

+ 1

]
, if p∗

p0
≥ 1, (across a shock wave)

ρ0

(
p∗
p0

)1/γ
, if 0 < p∗

p0
< 1, (across a rarefaction wave)

(4.67)

The implementation of Eq. (4.67) implies that the pressure in the star region (p∗) should be

defined first. In fact, this variable can be determined by solving the following algebraic equation:

f(p∗,WL,WR) ≡ fL(p∗,WL) + fR(p∗,WR) + ∆u = 0 (4.68)

where ∆u = uR − uL.

Both functions fL(p∗,WL) and fR(p∗,WR) are defined by the following equations:

fL(p∗,WL) = aL · vw
(
γ,
p∗
pL

)
, and fR(p∗,WR) = aR · vw

(
γ,
p∗
pR

)
(4.69)

where aL and aL are the speed of sound in respective gas which, according to Eq. (4.42), are
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calculated by the following formula:

aL =

√
γ
pL

ρL
and aR =

√
γ
pR

ρR
(4.70)

Meanwhile, both functions vw
(
γ, p∗pL

)
and vw

(
γ, p∗pR

)
are again determined from either the Rankine-

Hugoniot condition in case of shock or the Poisson adiabatic equation in case of rarefaction. In

general, function vw
(
γ, p∗p0

)
is given by the following equation:

vw

(
γ,
p∗
p0

)
=



p∗
p0
− 1√

γ
(
p∗
p0

γ+1
2 + γ−1

2

) , if p∗
p0
≥ 1, (shock wave)

2
γ−1

(
p∗
p0

γ−1
2γ − 1

)
, if 0 < p∗

p0
< 1, (rarefaction wave)

(4.71)

Furthermore, the solution of the ordinary algebraic Eq. (4.68) is obtained by applying the

Newton-Raphson iteration rule. This procedure is written in general as follows:

p∗,(i) = p∗,(i−1) −
f(p∗,(i−1),WL,WR)

f ′(p∗,(i−1),WL,WR)
(4.72)

where p∗,(i) is the i-th iterate (i = 1, 2, 3, ...). This iteration is stopped whenever:

|p∗,(i) − p∗,(i−1)|
1
2

[
p∗,(i) + p∗,(i−1)

] (4.73)

is less than a prescribed small tolerance, typically 10−6. Once this condition has been fulfilled,

the value of p∗ is obtained. In order to execute the Newton-Raphson iteration procedure, the first

derivative of Eq. (4.68) is required. It is given by the following equation:

f ′(p∗,WL,WR) = aL ·
d

dp∗

[
vw

(
γ,
p∗
pL

)]
+ aR ·

d

dp∗

[
vw

(
γ,
p∗
pR

)]
(4.74)

Meanwhile, the first derivative of Eq. (4.71) with respect to the pressure p∗ is given by

d

dp∗

[
vw

(
γ,
p∗
p0

)]
=



1

p0

√
γ(Ap∗ +B)

[
1− A

2

(
p∗ − p0

Ap∗ +B

)]
, if p∗

p0
> 1

1

γp0

(
p∗
p0

)− γ+1
2γ

, if 0 < p∗
p0
≤ 1

(4.75)

with

A =
γ + 1

2p∗
and B =

γ − 1

2
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In addition, it is important to mention that the Newton-Raphson procedure requires an initial

value of p∗ for running the iteration. This means that, for the very first iteration (i = 1), the value

of p∗,(0) must be made available. As recommended in [101], the initial guess value of the pressure

in the star region can be obtained directly from a linearized relation of given primitive variables

(initial conditions). Such linearized relation is expressed by the following equation:

ppv =
1

2
(pR + pL)− 1

8
(uR − uL)(ρR + ρL)(aR + aL) (4.76)

And, the initial guess value of p∗,(0) is obtained from the condition that:

p∗,(0) = max(tolerance, ppv) (4.77)

Once the initial guess value of p∗ has been obtained, the iterative Newton-Raphson procedure can

be executed to determine the desired value of the star region pressure (p∗). Up to this point, the

pressure and mass density of the star region have been determined. The particle velocity (u∗) in

this region is determined by solving the following simple algebraic equation:

u∗ =
1

2
[uL + uR + fR(p∗,WR)− fL(p∗,WL)] (4.78)

4.2.4 Sampling procedure

In the following, the procedure for determining the state of the gas at any point within the domain

of interest is described. In [101], this procedure is called the sampling procedure in which the exact

solution of the Riemann problem serves as a basis of the calculation. Suppose that the physical

domain of the shock tube problem is x := [0, L], this procedure will determine the state of the gas

at any point (x, t) where t > 0. The initial discontinuity is located at x = x0 = L/2.

In order to guarantee self-similarity within the problem, the axial position of this initial dis-

continuity should be transformed to x′ = 0, where x′ represents the axial position in the Riemann

problem coordinate system. Such transformation is illustrated by Fig. 4.5 and governed by the

following equation:

x′ = x− L

2
(4.79)

As mentioned before, the middle wave (wave-2 ) is always a contact discontinuity wave. While,

wave-1 and wave-3 are the two possible non-linear waves, which may be either shock waves or

rarefaction waves or both may be a shock and a rarefaction wave. As shown in Fig. 4.5, velocities

of each wave system are denoted by s1, s2 and s3. s2 is the velocity of the middle wave. If the

speed required to reach point x′ at time t on the Riemann problem coordinate system is given by:

s′(x′, t) =
x′

t
=
x− L

2

t
(4.80)
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Figure 4.5. Transformation of the shock tube and Riemann problem coordinate system as a basis for the
sampling procedure.

the state of the gas at any sample point (x, t) in terms of primitive variables which is represented

by the column vector W(x, t) is determined by comparing the speed s′(x′, t) to the speeds of the

Riemann wave.

Since the speed of the middle wave (wave-2 ), as described previously, is always u∗, the compari-

son of s′(x′, t) to u∗ will determine whether the sample point (x, t) is positioned to the left or to the

right of the contact discontinuity. This condition is specified by the following decision procedure

as illustrated by Fig. 4.6:

• if the speed s′(x′, t) = x′

t < u∗, the sample point (x, t) is located left of the contact disconti-

nuity, or

• if the speed s′(x′, t) = x′

t > u∗, the sample point (x, t) lies right of the contact discontinuity.

Furthermore, for each condition, there are two possible wave configurations with respect to the

type of non-linear wave which can be illustrated by Fig. 4.7. With respect to the initial conditions

of the Riemann problem, the type of left and right non-linear wave is determined by the ratio of

the pressures in the star region (p∗) and the pressure in the known region (pL or pR).

As indicated by Fig. 4.7, for each condition, the primitive variables of the gas at a sample point

(x, t) can be easily determined by comparing the speed of the sample point s′(x′, t) to the speed of

the non-linear wave. Prior to describe the complete procedure for determining the entire solution

of the Riemann problem, it is necessary to mention that if the non-linear wave is a rarefaction

wave, the speed of the head and the tail of the rarefaction wave must be taken into account. This

means that the sample point may be located inside the expansion region (indicated by the green

area in Fig. 4.7). In this case, the determination of the primitive variables at that sample point

requires a special procedure as mentioned in [101]. Finally, the complete procedure for determining

the primitive variables at any sample point (x, t), where xL < x < xR and the initial discontinuity

is at x = x0, is summarized as follows:

I. Right wave,

which means that the sample point (x, t) lies right of the contact wave.

The condition is: s′(x′, t) =
x′

t
=
x− x0

t
> u∗
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The sample point (x,t) is 
parameterized by the speed, 

s’(x’,t) = x’/t = (x-x0)/t
where x' represents RP 

coordinate system

s'(x’,t) < u*

Sample point (x,t) 
lies left of the contact wave.

Determination of W(x,t), 
where xL < x < xR and t > 0.
The initial discontinuity is 

located at x = x0

Yes

Sample point (x,t) 
is at the contact surface 

discontinuity

s'(x’,t) > u*

No

Yes

No

Sample point (x,t) 
lies right of the contact wave.

Figure 4.6. Procedure for determining the primitive variables at the sample point (x, t) where xL < x < xR
and t > 0 and the initial discontinuity is located at x = x0.

• if p∗ > pR, the right wave is a shock wave.

Calculation of the shock wave velocity, denoted by sR:

sR = uR + aR ·
√
γ + 1

2γ

p∗
pR

+
γ − 1

2γ
(4.81)

where

aR =

√
γ
pR

ρR

Thus, W(x, t) is:

[ρ, u, p]T(x, t) =

{
WR = [ρR, uR, pR]T , for s′(x′, t) > sR

W*R = [ρ*R, u∗, p∗]
T , for u∗ < s′(x′, t) < sR

(4.82)

• if p∗ ≤ pR, the right wave is a rarefaction wave.

Calculation of the speed of the head and tail of the rarefaction wave:

sHR = uR + aR, and sTR = u∗ + a*R (4.83)

where

a*R =

√
γ
p∗
ρ*R
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Figure 4.7. Illustration of four possible wave configurations for the evaluation of the sample point (x, t).
Case (a) and (b) are for the right wave, while case (c) and (d) are for the left wave. Subscripts
H and T indicates the head and tail of the rarefaction wave.

Thus, W(x, t) is:

[ρ, u, p]T(x, t) =


WR = [ρR, uR, pR]T , for s′(x′, t) ≥ sHR

WFR = [ρFR(x, t), uFR(x, t), pFR(x, t)]T , for sTR < s′(x′, t) < sHR

W*R = [ρ*R, u∗, p∗]
T , for u∗ < s′(x′, t) ≤ sTR

(4.84)

where the solution inside the rarefaction wave is:

ρFR(x, t) = ρR

[
2

γ + 1
− γ − 1

(γ + 1)aR
(uR −

x′

t
)

] 2
γ−1

(4.85)

uFR(x, t) =
2

γ + 1

[
−aR +

γ − 1

2
uR +

x′

t

]
(4.86)

pFR(x, t) = pR

[
2

γ + 1
− γ − 1

(γ + 1)aR
(uR −

x′

t
)

] 2γ
γ−1

(4.87)

II. Left wave,

which means that the sample point (x, t) lies left of the contact wave.

The condition is: s′(x′, t) =
x′

t
=
x− x0

t
< u∗

• if p∗ > pL, the left wave is a shock wave.
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4.2. The Riemann Problem for the Euler equations

Calculation of the shock wave velocity, denoted by sL:

sL = uL − aL ·
√
γ + 1

2γ

p∗
pL

+
γ − 1

2γ
(4.88)

where

aL =

√
γ
pL

ρL

Thus, W(x, t) is:

[ρ, u, p]T(x, t) =

{
WL = [ρL, uL, pL]T , for s′(x′, t) < sL

W*L = [ρ*L, u∗, p∗]
T , for sL < s′(x′, t) < u∗

(4.89)

• if p∗ ≤ pL, the left wave is a rarefaction wave.

Calculation of the speed of the head and tail of the rarefaction wave:

sHL = uL − aL and sTL = u∗ − a*L (4.90)

where

a*L =

√
γ
p∗
ρ*L

Thus, W(x, t) is:

[ρ, u, p]T(x, t) =


WL = [ρL, uL, pL]T , for s′(x′, t) ≤ sHL

WFL = [ρFL(x, t), uFL(x, t), pFL(x, t)]T , for sHL < s′(x′, t) < sTL

W*L = [(ρ*L, u∗, p∗]
T , for sTL ≤ s′(x′, t) < u∗

(4.91)

where the solution inside the rarefaction wave is:

ρFL(x, t) = ρL

[
2

γ + 1
+

γ − 1

(γ + 1)aL
(uL −

x′

t
)

] 2
γ−1

(4.92)

uFL(x, t) =
2

γ + 1

[
aL +

γ − 1

2
uL +

x′

t

]
(4.93)

pFL(x, t) = pL

[
2

γ + 1
+

γ − 1

(γ + 1)aL
(uL −

x′

t
)

] 2γ
γ−1

(4.94)
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The complete procedures for determining the exact solution to the Riemann problem for the one-

dimensional Euler equations, or also known as the exact Riemann solver has been implemented in a

MATLAB R© program. This programming language was chosen because it is a scientific computing

language which supports a comprehensive environment for numerical simulation with integrated

visualization, powerful scripting framework and fast algorithms implementation. Several references,

such as [108, 109, 110] contain a comprehensive practical guide for using this programming language

for various problems of science and engineering, including fluid dynamics problems.

4.2.5 Important remarks to solve the multi-dimensional Riemann problem using the

exact Riemann solver

When solving numerically the two or three dimensional Euler equations of gas dynamics by the

upwind method, as mentioned later in the next section (numerical solution using the Godunov

scheme), the solution of splitting Riemann problems are required. For a three dimensional Euler

equations, the corresponding x-splitting Riemann problem is the following initial value problem:

PDEs:
∂

∂t
Q(x, y, z, t) +

∂

∂x
F (Q(x, y, z, t)) = 0 (4.95)

ICs: Q(x, y, z, 0) = Q0(x, y, z) =

{
QL, if x < 0

QR, if x > 0

where

Q =


ρ

ρu

ρv

ρw

E

 , F(Q) =


ρu

ρu2 + p

ρuv

ρuw

(E + p)u

 (4.96)

and the total energy E is now given by the following equation:

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
(4.97)

As mentioned before, the Riemann problem is to be solved in terms of primitive physical vari-

ables which requires also the primitive variables as the main input. This means that the conserved

variables should be transformed into their primitive variables before the Riemann solver is used.

The structure of the similarity solution of the x-splitting Riemann problem is generally depicted in

Fig. 4.8. Both pressure and normal velocity u remain constant in the star region, across the middle

wave. The most important point deals with the determination of the tangential velocity component

v and w. According to the properties and characteristics of the Riemann wave, these tangential

velocities remain constant across the non-linear wave irrespective of their type. This means, for
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Figure 4.8. Structure of the solution of the three-dimensional split Riemann problem in x−direction

example, the tangential velocity vector at the cell interface boundary in Fig. 4.8 is given by:

Ut = [0, vL, wL] (4.98)

Therefore, the solution of the splitting Riemann problem of three dimensional case is funda-

mentally similar to the procedure for solving the one-dimensional case, except for the treatment of

the tangential velocity vector. Such simple behavior of the tangential velocity vector is sometimes

incorrectly modeled by some approximate Riemann solvers [101]. Thus, the numerical method for

the one or multi-dimensional case of the Euler equations of gas dynamics by means of the Godunov

scheme, as shown in a later section, implements the exact Riemann solver. The general computa-

tional flow for the determination of the solution of the Riemann problem using the exact Riemann

solver is given in Appendix C

4.2.6 Testing the exact Riemann solver: The benchmark solution of Sod’s shock tube

problem

In what follows, the benchmark solution of the well-known Sod’s shock tube problem is presented.

This particular problem is to be solved using the procedure previously presented, that is by means

of the exact Riemann solver. In fact, Sod’s shock tube problem is a special case of the shock

tube problem, which is named after Gary A. Sod who first introduced this problem in 1978

[111]. For many numerical analyses of gas and other fluid dynamics problems, Sod’s shock tube

problem is considered as a benchmark and also as a standard reference to test the ability of various

algorithms for solving fluid dynamics problems, especially when the phenomena of shock waves are

encountered. The main reason is that the analytical solution of Sod’s shock tube problem is widely

known.
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The initial configuration of Sod’s shock tube problem is similar to Fig. 4.1. In this particular

problem, the gases occupying the region to the left and to the right of the diaphragm are initially

assumed at rest. This means that the initial velocity is set to zero along the tube domain (uL = uR =

0). The other initial quantities such as pressures and mass densities are not zero and discontinuous

across the diaphragm. The left region to the diaphragm is occupied by a high pressure and high

density gas, and the right hand region by a low pressure and low density gas. For the following test,

it is assumed that the tube has a physical domain of x = [0, 20] m. The thin diaphragm is located

right in the middle of the tube at x = 10.0 m. This diaphragm then separates the following two

initial constant data states which is considered as the initial condition of the Riemann problem:

W(x, 0) = W0(x) =

{
WL = [ρL, uL, pL]T = [1.0, 0.0, 1.0× 105], if x < 10.0 m

WR = [ρR, uR, pR]T = [0.125, 0.0, 0.1× 105], if x > 10.0 m
(4.99)

Here ρ, u and p are the primitive variables respectively given in kg/m3, m/s and Pa. Fig. 4.9

illustrates again the initial configuration of Sod’s shock tube problem.

thin diaphragm

x0 = 10.0 x (m)

𝜌L = 1.0 kg/m3

uL = 0.0 m/s
pL = 1.0 x 105 Pa

xR = 20.0xL = 0.0

𝜌R = 0.125 kg/m3

uR = 0.0 m/s
pR = 0.1 x 105 Pa

Figure 4.9. Initial configuration of Sod’s shock tube problem

The gas occupying the tube is assumed to be air which is treated as an ideal gas with a constant

ratio of specific heats (polytropic gas). For this particular case, γ = 1.40 has been assumed.

Table 4.1 shows other important thermodynamic variables which are also required actually for

determining the solutions of Sod’s shock tube problem other than the primitive variables using the

exact Riemann solver.

Table 4.1. Important thermodynamic variables of air for solving the Euler equations

Variables Equation Numeric value Unit

Molecular weight, Mw,air - 28.94 kg/kmol

Specific gas constant, Rair Eq. (4.28) 287.28 J/kg/K

Specific heat at constant pressure, cp,air Eq. (4.48) 1.005 ×103 J/kg/K

Specific heat at constant volume, cv,air Eq. (4.48) 0.718 ×103 J/kg/K

By using the Newton-Raphson iteration method, the pressure and particle velocity around

the middle of the tube after the removal of the diaphragm (i.e. variables in the star region)

are p∗ = 0.3031 bar and u∗ = 293.29 m/s respectively. The mass densities in this region are
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ρ∗L = 0.4263 kg/m3 for the left of the contact wave and ρ∗R = 0.2656 kg/m3 for the right of the

contact wave.

The primitive variables, including the specific internal energy at 3000 equally spatial points

throughout the tube at time t = 0.015 seconds after the break of the diaphragm are depicted in

Fig. 4.10. From these figures, it can be seen that the benchmark solutions of Sod’s shock tube

problem consists of a left rarefaction wave, contact wave and right shock wave which agree with the

data and plots published in [101, 112]. The exact Riemann solver which was developed for solving

the Riemann problem in this thesis is now used for developing the numerical solutions of the Euler

equations of gas dynamics.

4.3 Numerical solutions of the Euler equations using the finite volume

method: The Godunov scheme

As mentioned in the previous section, the exact analytical solutions of the Euler equations are

available only for some simple cases, such as Sod’s shock tube problem. In much more complex

circumstances, a numerical scheme for solving the equations needs to be developed [100]. Since

the Euler equations of gas dynamics admit discontinuous solutions, these equations are good to be

solved using finite volume techniques. The underlying philosophy is to solve conservation laws over

volumes, while dealing with essentially discontinuous variables. In this case, the more fundamental

integral form involving integrals over control volumes and their boundaries is required. Using this

technique, the continuous and discontinuous profiles can be treated in the same way, without a

need for particular treatments for the shocks or contact discontinuities. In addition, a continuous

flow can also be considered as a particular case of a discontinuous flow.

With respect to the finite volume techniques, the discretized domains are naturally defined

as computational cells. In [113], several finite volume schemes which can be applied for solving

the Euler equations are discussed. In this thesis, the Godunov scheme is used. As mentioned

previously, the Riemann problem is the key ingredient of developing the numerical solution of

the Euler equations using the Godunov scheme. The Riemann problem is solved in terms of the

exact Riemann solver. It is necessary to mention that the Godunov numerical scheme which is

implemented with exact Riemann solver provides only first-order accuracy.

Basically, the Godunov scheme is an upwind numerical method. In this context, as mentioned

before, the exact Riemann solver is employed for computing numerical fluxes of mass, momentum,

and energy at the cell interface between two neighboring computational cells. This computation

is performed for the entire computational domain [106] at every time level. An efficient numerical

scheme for solving the one-dimensional Euler equations serves as the basis for developing the mod-

eling of the multi-dimensional cases. In this thesis, the development of the numerical modeling for

the one-dimensional case is presented in much detail. Important steps for the numerical simulation

are discussed. In later section, important consideration for solving the two as well as the three

dimensional cases are also described.
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4.3. Numerical solutions of the Euler equations using the finite volume method: The Godunov scheme

4.3.1 The initial boundary value problem of the one-dimensional Euler equations

In this section, the problem of interest is to develop a procedure for solving of the following initial

boundary value problem of the one-dimensional time-dependent Euler equations of gas dynamics

numerically. Again, these equations are written in general as follows:

PDEs:
∂

∂t
Q(x, t) +

∂

∂x
F(Q(x, t)) = 0 (4.100)

with the following initial conditions:

ICs: Q(x, 0) = Q(0)(x)

and the boundary conditions:

BCs: Q(0, t) = QL(t), and Q(L, t) = QR(t)

where Q is the column vector of conserved variables; F(Q) is the column vector of conserved

fluxes; Q(0)(x) is the piecewise constant distribution of initial data at time t = 0 which can also be

calculated from the primitive variables in case the initial conditions are given in those variables.

[0, L] is the spatial boundary conditions and computational domain. The state of the gas at

these boundaries are assumed to be represented by QL(t) and QR(t) [101, 114]. The condition

of the boundary may be specified as a reflective or transmissive type based on the problem under

consideration.

4.3.2 The discretization of the spatial and temporal domain

Unlike in the classical finite difference method, the discretization of the spatial domain in the finite

volume technique is done in terms of computational cells. Fig. 4.11 illustrates a discretized

x− t mesh configuration if the length of the spatial domain is L. There is a uniform spatial mesh

for which the spatial domain is discretized into M computational cells. Each computational cell,

denoted by Ii = [xi− 1
2
, xi+ 1

2
], where i = 1, 2, 3, ...,M is the cell index, has a regular size of cell

(width) ∆x = L/M.

The computational cell Ii is bounded by faces i− 1
2 and i+ 1

2 which are positioned at:

xi− 1
2

= (i− 1) ·∆x, xi+ 1
2

= i ·∆x (4.101)

and, the center of the cell Ii is located at:

xi = (i− 1

2
) ·∆x (4.102)

For this particular case, the left space boundary is at x 1
2

= 0, while the right one is located at

xM+ 1
2

= L.

91



Chapter 4. Modeling of the Propagation of the Blast Waves

1 2 i-1 i i+1 M

xi-1 xi xi+1
xi-1/2 xi+1/2

x1 x2 xM
x1/2 xM+1/2
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t

cell index

t1

tn

tn+1

tmax

Δx

Δt
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. 

.
. 

. 
.

Figure 4.11. Discretized one-dimensional domain which is presented in x − t plane. In actual simulation,
the one-dimensional computational cell is represented only by a line for which the interface
between two computational cells is represented only by a point.

Meanwhile, the discretization of the temporal domain is, in fact, not uniform. The computa-

tional time step, denoted by ∆t is determined by the following equation:

∆t =
Ccfl ·∆x
snmax

(4.103)

The subscript n denotes the time level. The coefficient Ccfl is called a Courant-Frederich-Lewy

number which must satisfies the following condition,

0 < Ccfl < 1 (4.104)

The variable snmax is the maximum wave speed present throughout the spatial domain during time

level n.

4.3.3 The discretization of the Euler equations

The conservative form of the Euler equations is particularly important when dealing with the

problem admitting shocks or other discontinuities in the solution [101, 114]. Fig. 4.12 shows the

discretization of the spatial domain [0, L] for a time step [tn, tn+1].

The development of the numerical scheme for Eq. (4.100) begins with the integration of the

equation for a specific control volume Vi = Ii × [tn, tn+1] = [xi− 1
2
, xi+ 1

2
] × [tn, tn+1] in the domain
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1 2 i-1 i i+1 M

xi-1 xi xi+1
xi-1/2 xi+1/2

x1 x2 xM
x1/2 xM+1/2
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cell index

tn
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Δt
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. . . . . .

0

cell interface 
boundary

Figure 4.12. Discretization of the one-dimensional spatial domain in x− t plane for a single time step

of interest. Firstly, Eq. (4.100) is integrated with respect to the space over Ii as follows:

x
i+1

2∫
x
i− 1

2

∂

∂t
Q(x, t) dx = −

x
i+1

2∫
x
i− 1

2

∂

∂x
F(Q(x, t))dx (4.105)

The Gauss theorem can be applied to the left hand side of this equation, thus

x
i+1

2∫
x
i− 1

2

∂

∂t
Q(x, t) dx =

d

dt

x
i+1

2∫
x
i− 1

2

Q(x, t) dx (4.106)

While, the right hand side is expanding according to the following rule:

x
i+1

2∫
x
i− 1

2

∂

∂x
F(Q(x, t))dx = F(Q(xi− 1

2
, t))− F(Q(xi+ 1

2
, t)) (4.107)

This will modify Eq. (4.105) to give:

d

dt

x
i+1

2∫
x
i− 1

2

Q(x, t) dx = F(Q(xi− 1
2
, t))− F(Q(xi+ 1

2
, t)) (4.108)

Thus, Eq. (4.108) is further integrated with respect to the time between tn and tn+1, with

tn < tn+1 as written as follows:

x
i+1

2∫
x
i− 1

2

Q(x, tn+1) dx−

x
i+1

2∫
x
i− 1

2

Q(x, tn) dx =

tn+1∫
tn

F(Q(xi− 1
2
, t)) dt−

tn+1∫
tn

F(Q(xi+ 1
2
, t)) dt (4.109)

This last form is in fact the basic integral formulation for developing the numerical scheme of the

one-dimensional time dependent Euler equations using the finite volume technique.
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With respect to the Godunov scheme, two new quantities are introduced to Eq. (4.109). First,

the Godunov scheme assumes a piece-wise constant distribution of the data as illustrated by Fig.

4.13 which is realized by defining the cell average of the conserved variables assigned to each

1 i-1 i i+1 M. . . . . .cell index

xi-1 xi xi+1xi-1/2 xi+1/2
xL0

Δx

Q
n

Q
n
i

Q
n
M

Q
n
i+1

Q
n
i-1

Q
n
1

Figure 4.13. Illustration of a piecewise constant distribution of the data Q at time level n

computational cells. Thus,

Qn
i =

1

∆x

x
i+1

2∫
x
i− 1

2

Q(x, tn) dx (4.110)

Second, in order to determine the evolution of the solution to the next time level, the time

average of the conserved fluxes at cell interface boundaries is introduced. This quantity is generally

defined by the following equation:

Fi± 1
2

=
1

∆t

tn+1∫
tn

F(Q(xi± 1
2
, t)) dt (4.111)

Furthermore, Eq. (4.109) is to be modified by dividing all terms with ∆x and manipulating the

right hand side in order to obtain the following expression:

1

∆x

x
i+1

2∫
x
i− 1

2

Q(x, tn+1) dx =
1

∆x

x
i+1

2∫
x
i− 1

2

Q(x, tn) dx

+
∆t

∆x

 1

∆t

tn+1∫
tn

F(Q(xi− 1
2
, t)) dt− 1

∆t

tn+1∫
tn

F(Q(xi+ 1
2
, t)) dt

 (4.112)

Thus, applying the two new quantities introduced above, the Godunov numerical scheme of the
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4.3. Numerical solutions of the Euler equations using the finite volume method: The Godunov scheme

one dimensional time-dependent Euler equations is written as follows:

Qn+1
i = Qn

i +
∆t

∆x

[
Fi− 1

2
− Fi+ 1

2

]
(4.113)

This equation indicates that the solution of Qn+1
i is determined by the conserved variables Qn

i and

the net flux through a cell Ii where Fi− 1
2

represents the conserved fluxes entering the cell through

cell interface i− 1
2 and Fi+ 1

2
represents the conserved fluxes leaving the cell through cell interface

i+ 1
2 as depicted in Fig. 4.14. Therefore, it is important to mention the procedure for determining

the numerical conserved fluxes at the cell interface boundaries. This procedure is discussed in the

next section.

Vi=[xi-1/2, xi+1/2]x[tn, tn+1]

tn+1

tn

xixi-1/2 xi+1/2

Δx

Δt

Control volume, Vi

Q
n+1

i

Q
n
i

F
n
i-1/2 F

n
i+1/2

x

Figure 4.14. The evolution of the solution of the conserved variables for the cell Ii from the time level n
to the time level n+ 1 using the Godunov numerical scheme.

4.3.4 Determination of the numerical fluxes at the cell interface boundaries: the local

Riemann problem

In the context of the Godunov numerical scheme, the numerical fluxes of conserved variables at the

cell interface boundaries are determined by the exact Riemann solver. According to Eq. (4.20), the

fluxes of conserved variables at the cell interface boundaries for the one-dimensional time-dependent

Euler equations are represented by the following column vector:

Fi± 1
2

= [ρu, ρu2 + p, (E + p)u]T
i± 1

2

(4.114)

In this case, the solutions for the primitive variables (ρ, u and p) at each cell interface are evaluated

by solving the local Riemann problem at the interfaces boundaries.

The information to solve the local Riemann problem is provided by the data of each pair of

cells within the computational domain. Thus, the local Riemann problem at the cell interfaces

i− 1
2 and i+ 1

2 for a given time level n, as depicted in Fig. 4.15, is denoted by RP(Qi−1,Qi) and

RP(Qi,Qi+1) respectively. The solution of the Riemann problem RP(Qi−1,Qi) is the solution of
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cell interface 
boundarycell interface 
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x

Figure 4.15. The local Riemann problem at the cell interfaces i− 1
2 and i+ 1

2 in x− t plane.

the following initial value problem:

PDEs:
∂

∂t
Q +

∂

∂x
F(Q) = 0 (4.115)

with the following initial conditions in terms of the primitive variables:

ICs: W(x, tn) = Wn
i =

{
Wi−1, x < 0

Wi, x > 0

In this equation, variable x represents the axial position in the local Riemann problem coordinate

system. This means that the axial position of the cell interface xi− 1
2

from the initial physical

domain is transformed into x = 0 in the local Riemann problem coordinate system.

For the Godunov scheme, the sampling procedure is performed at the cell interface only for

the special value of s′(x′/t) = 0. Refer to the previous section about the algorithm for the exact

Riemann solver, if s′(x′/t) < u∗ the sample point was located left of the contact wave. For the

Godunov scheme, this condition is analogous to u∗ > 0 for which the cell interface boundary is

now regarded as the sample point. Similarly, u∗ > 0 indicates that the sample point is located

right of the contact wave. For RP(Qi−1,Qi), u∗ is the particle velocity in the star region which

is obtained after calculating the star region pressure (p∗) around the cell interface boundary i− 1
2

using the Newton-Raphson iteration method considering two initial constant data states Wi−1 and

Wi. With respect to this condition, there are five different cases to evaluate the solution of Wi± 1
2

as shown in Fig. 4.16.

In order to solve the exact Riemann problem for the whole computational domain, the following

considerations need to be taken into account:

• The computational time step ∆t is determined according to Eq. (4.103). As mentioned

previously, snmax is the maximum wave speed present throughout the computational domain

at time level n. This means that no wave present in the solution of all local Riemann problems

travels more than a distance ∆x in time step ∆t. This value is usually taken from the

result of the local Riemann problem at the cell interface boundary. For the time-dependent
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Figure 4.16. Determination of the solution of the local Riemann problem in terms of primitive variables
(W) at the cell interface boundary. The condition is parameterized by the particle velocity in
the star region u∗. The result is required for evaluating the numerical fluxes for the Godunov
scheme.

Euler equations, a popular estimation of snmax, which may be extended to multidimensional

problems, is given by the following equation:

snmax = max
i
{|uni |+ ani } (4.116)

where uni and ani are the normal velocity and the speed of sound at the cell Ii at time level n. In

addition, the Ccfl controls the stability and efficiency of the computation. In [101], Ccfl = 0.9

is practically recommended. A more conservative choice may be advisable, especially if there

are uncertainties in the estimation of snmax.

• Fig. 4.12 shows the discretization of the spatial domain [0, L] into M uniform computational

cells of length ∆x. According to the Godunov scheme Eq. (4.113), numerical fluxes F 1
2

and

FM+ 1
2

are required. However, in order to obtain these numerical fluxes, the constant data

states for cells I0, denoted and IM+1 are additionally defined. Both cells are called fictitious

cells. Therefore, numerical flux F 1
2

is calculated after W 1
2

is obtained as the solution of

the local Riemann problem RP(Q0,Q1). Similarly, numerical flux FM+ 1
2

is calculated after

WM+ 1
2

is obtained as the solution of the local Riemann problem RP(QM ,QM+1). The

addition of fictitious cells into the physical domain [0, L] is depicted in Fig. 4.17.

With respect to the boundary conditions, the attachment of fictitious cells to each boundary

cell slightly increases the total number of the computational cells but, as a compensation, all the

cell interface boundary are now internal and can be treated uniformly to simplify the computation.
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Figure 4.17. Fictitious cells outside the computational domain for the one-dimensional case.

The data for the fictitious cell can be defined independently adapted to the boundary condition of

the problem without changing the state of other given variables.

When the boundary physically consists of a fixed, reflective impermeable wall, the physical

situation for each computational time step is correctly modeled by the state of the fictitious cells

QFC which is defined from the known state of the boundary cell QBC such that: ρ

ρu

E


i=FC

=

 ρ

−ρu
E


i=BC

, where BC = {1,M}, FC = {0,M + 1} (4.117)

Meanwhile, transmissive, or transparent boundaries attempt to numerically reproduce boundaries

that allow the physical passage of waves without any effect of them. Thus, the state of the fictitious

cell QFC is defined as follows: ρ

ρu

E


n

i=FC

=

 ρ

ρu

E


n

i=BC

, where BC = {1,M}, FC = {0,M + 1} (4.118)

The transmissive boundary is also known as open-end boundary condition or non-reflecting boun-

dary condition.

4.3.5 Numerical solutions of the non-homogeneous equations: the integration of the

source terms

So far, the homogeneous Euler equations of gas dynamics have been solved numerically. The

numerical scheme for such equations has been developed using the Godunov scheme for which the

exact Riemann solver is implemented. As mentioned in Section 4.1, if the source term is taken into

account, the Euler equations of gas dynamics is no longer homogeneous. The procedure for solving

the inhomogeneous Euler equations are the main interest in the following discussion.

While considering the one-dimensional case, the inhomogeneous Euler equations of gas dynamics
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is written in general as follows:

∂

∂t
Q +

∂

∂x
F(Q) = S(Q) (4.119)

where S(Q) is the source or forcing term. The vector S(Q) can be split into two parts, namely

geometrical source terms which arise in the case of non-Cartesian coordinates, and physical source

terms, such as radiative heating, cooling and gravitation, etc. Usually, S(Q) is a prescribed algebraic

function of the flow variables and does not involve derivatives of these, but there are some exceptions

which are not discussed here.

Inhomogeneous Euler equations of gas dynamics arise naturally in many problems of practical

interest. A whole class of inhomogeneous systems are derived when reducing the spatial dimen-

sionality of multidimensional problems. For example, under the assumption of spherically or cylin-

drically symmetric flow, the two or three dimensional Euler equations become a one-dimensional

system with the presence of geometrical source term.

In order to solve Eq. (4.119), the splitting method is used. It means that the homogeneous

part of the equations and the source term integration are solved separately and one after another.

Thus, Eq. (4.119) can be splitted in two equations as follows:

∂

∂t
Q +

∂

∂x
F(Q) = 0 (4.120)

∂

∂t
Q− S(Q) = 0 (4.121)

As mentioned previously, Eq. (4.120) is solved using the Godunov numerical scheme. Eq. (4.121)

governs only the source term and is a system of ordinary differential equations. This equation can

be solved using various numerical scheme. Considering the same control volume Ii and a time step

[tn, tn+1] from the previous numerical discretization of the Godunov scheme procedure, the integral

form of Eq. (4.121) is written as follows:

x
i+1

2∫
x
i− 1

2

[
Q(x, tn+1)−Q(x, tn)

]
dx =

x
i+1

2∫
x
i− 1

2

tn+1∫
tn

S(Q(x, t)) dx dt (4.122)

Dividing all terms by ∆x, the general form for solving the source term numerically is:

1

∆x


x
i+1

2∫
x
i− 1

2

Q(x, tn+1) dx−

x
i+1

2∫
x
i− 1

2

Q(x, tn) dx

 =
1

∆x

x
i+1

2∫
x
i− 1

2

tn+1∫
tn

S(Q(x, t)) dt (4.123)

Various numerical methods are possible for solving this equation depending on the way the integral

is evaluated. In this thesis, the Backward Euler method which is first order accurate is used.

Therefore, the complete numerical scheme for the one-dimensional heterogeneous Euler equations
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is written as follows:

Qn+1
i = Qn

i + ∆t ·S(Qn+1
i ) (4.124)

where

Sn+1
i ≈ 1

∆x

1

∆t

x
i+1

2∫
x
i− 1

2

tn+1∫
tn

S(Q(x, t)) dt (4.125)

4.3.6 The procedure for solving the multi-dimensional time-dependent Euler equa-

tions of gas dynamics

For solving the multidimensional problem of Euler equations of gas dynamics, the unsplit finite

volume Godunov scheme has been implemented in this thesis. It is important to mention that

the local Riemann problem at each computational cell interface is solved using the exact Riemann

solver which may be treated as a split Riemann problem for each direction. The main advantage of

using the unsplit Godunov scheme is that the solution can be obtained in a single computational

time step because all flux contributions are simultaneously taken into account at the same time.

In the following, the procedure for the two-dimensional problem in Cartesian coordinates system

is presented. This procedure can be extended to the three dimensional case without changing their

fundamental steps. As mentioned earlier in this chapter, the homogeneous time-dependent two-

dimensional Euler equations is written in general as follows:

d

dt
Q +

d

dx
F(Q) +

d

dy
G(Q) = 0 (4.126)

In order to solve this equation, it is assumed that the boundaries of the computational domain

are aligned with the coordinate directions x and y. In this thesis, the two dimensional problem is

solved using the structured mesh for which the computational cell Ii,j has a dimension of ∆x×∆y as

depicted in Fig. 4.18. Indexes i and j represents the computational cell index in x- and y-direction

within the computational domain. The cell-averaged conserved variables (Qi,j) is assigned to the

center of the cell. At each cell interface, the numerical conserved fluxes are to be determined by

solving the local Riemann problem.

Furthermore, the cell-averaged conserved variables (Qi,j) in cell Ii,j at time level n is updated

to time level n + 1 by a single step implementing the Godunov scheme as given by the following

equation:

Qn+1
i,j = Qn

i,j +
∆t

∆x

[
Fi− 1

2
,j − Fi+ 1

2
,j

]
+

∆t

∆x

[
Gi,j− 1

2
−Gi,j+ 1

2

]
(4.127)

where the computational time step (∆t) is computed using Eq. 4.103 for which the CFL condition

and the maximum wave speed at the whole cell interfaces are taken into account. As mentioned
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Figure 4.18. Finite volume discretization of Cartesian domain (two dimensional case). A computational cell
Ii,j has four interfaces with the corresponding neighboring cells at which the numerical fluxes
are to be determined by solving the local Riemann solver.

before, the maximum wave speed is computed from the result of the local Riemann problem at the

cell interface boundary. It is the normal velocity to be taken into account. Thus,

snmax = max
k

{
|unn,k|+ ank

}
(4.128)

where k represents the index of the cell interface boundary.

With respect to the boundary conditions and the state of fictitious cells, it is important to

mention that, for a two dimensional case especially in Cartesian domain, there will be four boundary

conditions to be treated in order to update the state of the gas in the fictitious cells. In this

thesis, these boundaries are labeled by the north (BCN), east (BCE), south (BCS) and west (BCW)

boundary. There will be no special treatment for updating the state of the fictitious cell while

dealing with the transmissive boundary because the state of fictitious cells simply equal to the

state of the corresponding boundary. However, for the reflective boundary, it is important to check

the direction of the normal particle velocity, since the state component involving the normal velocity

should be corrected with the corresponding boundary condition. Finally, the general flow chart for

numerical computation of the Euler equations of gas dynamics using the Godunov scheme is shown

in Fig. 4.19.
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- Populate the initial conditions of the cell-averaged 
primitive and conserved variable for 

the entire computational cells including the fictititous cells 
which may be assumed to be similar to the boundary cells

t < final time

- Update the cell-averaged conserved variables 
- Incorporate the effect of source terms, if any

- Update the fictitious cells with 
the relevant boundary states

- Update the cell-averaged primitive variables

Visualization of the 
the simulation 

result and analysis

End

Call the solvers:
- Exact riemann solver

- Euler equations solver
- Variable conversion function

Define the computational time 
and CFL condition

- Compute the cell interface primitive 
variables by solving the local Riemann 

problem at each interface and direction. 
- Update the cell interface conserved fluxes

Calculate the time step by considering the 
CFL condition and the maximum 

characteristic speed for the entire cell 
interfaces 

Figure 4.19. General flow chart for the numerical simulation of the Euler equations of gas dynamics which
is used in this thesis. The evolution of the states is solved using the upwind Godunov scheme
which implements the exact Riemann solver to determine the solution of the local Riemann
problem at the cell interface. The individual processes in the flow chart are not shown in detail.
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4.4 Implementation of the solver for simulating the blast wave propa-

gation

4.4.1 One-dimensional case in Cartesian coordinates system: The shock tube problem

4.4.1.1 Sod’s shock tube problem

In this section, the numerical solutions of several shock tube problems using the Godunov scheme

solver are demonstrated. With respect to Sod’s shock tube problem, their numerical solutions

are to be compared with the benchmark solutions as presented previously in section 4.2.6. The

benchmark of Sod’s shock tube problem consists of a left rarefaction wave, contact wave and right

shock wave. The spatial domain of the problem remains unchanged. And, similar to the previous

case, it is assumed that the tube is filled with air which is treated as an ideal gas with a constant

ratio of specific heat. The other input parameters and conditions are also unchanged including that

tube length is 20 m and the initial discontinuity is located at x = 10 m. Thus, the initial conditions

of the problem is also similar to Eq. (4.99).

The numerical simulation for this particular problem has been performed using a structured

(uniform) mesh with 400 computational cells. Both boundary conditions of the tube were assumed

to be transmissive boundaries, which means no reflection at the spatial boundary is considered.

As recommended previously, the CFL coefficient of 0.9 was taken into account. The numerical

solutions at a time t = 0.015 s after the break of the diaphragm were evaluated. These solutions

were presented in Figs. 4.20. In this figure, both the exact and numerical solutions of all primitive

variables for Sod’s shock tube problem are shown. In addition, the temperature development

along the tube up to the time under consideration is also shown. This figure has shown that

the numerical solutions implementing the Godunov scheme with the exact Riemann solver agree

with their respective exact solutions. It can also be seen that the numerical solutions has smeared

somehow at the shock and contact discontinuity point, as well as at the head and tail of the

rarefaction wave. Such spreading of shock waves may seem unsatisfactory, but it is actually quite

typical for numerical solutions using the first order scheme. In fact, as mentioned in some literatures,

implementing other types of first order upwind method would spread a shock wave even more than

the Godunov scheme [101]. Therefore, the Godunov scheme has been chosen in this thesis for

solving the Euler equations of gas dynamics numerically.

4.4.1.2 Testing some other recommended wave propagation problem in tube

As suggested in [101], four other examples of tube problems may also be used for testing the

performance of the numerical computer code which has been developed. These four problems are

different to Sod’s shock tube problem which can be seen from their respective initial conditions.

In fact, the aim of these tests is to further check the ability of the developed computer code to

solve problem with different wave characteristics. Similar to Sod’s shock tube problem, numerical

solutions of these additional problems are also to be compared with their known benchmark (exact)
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solutions.

Table 4.2 shows initial conditions of these four additional tube problems [101]. For all cases,

both the left and right spatial boundary of the tube are assumed to be transmissive boundary, thus

no reflection wave is to be simulated.

Table 4.2. Initial conditions of additional tube problems for testing the performance of the numerical Go-
dunov solver. All primitive variables given in terms of its non-dimensional quantities [101]

Case Left to the diaphragm Right to the diaphragm Computational time

ρL uL pL ρR uR pR (units)

T1 1.0 -2.0 0.4 1.0 2.0 0.4 0.15

T2 1.0 0.0 1000.0 1.0 0.0 0.01 0.012

T3 1.0 0.0 0.01 1.0 0.0 100.0 0.035

T4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.035

In order to perform the numerical simulation of these problems, the spatial domain has been

divided into 300 uniform computational cells. It is assumed that x = [0.0, 1.0] for which the initial

discontinuity is positioned at the middle of the tube, i.e. at x = 0.5. The gas filling the tube is

air to be treated as an ideal gas with a constant ratio of specific heats (a polytropic gas with a

constant γ). In this case, a polytropic index γ = 1.40 has been assumed for all cases.

The numerical simulation results for all cases are shown in Figs. 4.21 to 4.24. The respective

exact solutions of each problem are also shown in the same figure. In general, it can be seen once

again that both numerical and exact solutions are in good agreement with their respective exact

solutions. Table 4.3 gives a short summary of the numerical simulations. Important parameters for

the star region once the diaphragm is broken as well as the characteristics of the wave solutions are

given. Upon completing these simulations, it can be concluded that the Godunov scheme which is

implemented with the exact Riemann solver is reliable enough for simulating the motions of the gas

in different conditions. The implementation of the developed computer code based on this scheme

has shown the ability of the scheme to accurately predict the location and physical parameters

of each wave at different conditions. Actually, these are the features particularly important for

modeling the blast wave propagation.

Table 4.3. Short summary of numerical solutions of additional tube problems and their wave solution char-
acteristics

Case Star region variables Wave pattern

p∗ u∗ ρ*L ρ*R characteristics

T1 0.00189 0.0000 0.02185 0.02185 Two strong expansion waves

T2 460.894 19.597 0.57506 5.99924 Left expansion, contact, right shock

T3 46.0950 -6.1870 5.92514 0.57562 Left shock, contact, right expansion

T4 1691.64 8.6898 14.2824 31.0426 Two shock waves
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4.4.2 One-dimensional case in spherical coordinates system: The spherically symmet-

ric wave motion

Spherically symmetric wave motion arises not only in the theory of explosion wave in air but

also in water or other media. In these particular situations, a multidimensional Euler equation in

spherical coordinates can be reduced essentially to a one dimensional Euler equations by considering

the presence of a geometric source term (represented by vector S(Q)). This source term is actually

to account for the second and third spatial dimensions. Therefore, in general, a symmetric wave

motion is governed by the following equations:

∂

∂t
Q +

∂

∂r
F(Q) = S(Q) (4.129)

where:

Q =

 ρ

ρu

E

 , F(Q) =

 ρu

ρu2 + p

(E + p)u

 , S(Q) = −α
r

 ρu

ρu2

(E + p)u

 (4.130)

It is important to mention here that the column vector S(Q) represents only the geometric source

term which means no physical source term is to be considered. α is the coefficient for updating the

spatial dimension, in the sense that if the coefficient α = 0, Eq. (4.129) describes a one-dimensional

flow in plane geometry. Thus, it is similar to the governing equations of the wave motions in the

tube, or one-dimensional in Cartesian coordinates system. Furthermore, if the coefficient α = 1,

Eq. (4.129) governs a cylindrically symmetric wave motion which is considered a two-dimensional

symmetric flow. Meanwhile, if the coefficient α = 2, Eq. (4.129) solves a spherically symmetric

wave motion which is considered a three-dimensional symmetric flow.

Fig. 4.25 illustrates the initial configuration (condition) for a spherically symmetric blast wave

motion. The domain of interest in r − t plane is any set point of (r, t) where 0 ≤ r ≤ L and t > 0.

In this case, a sphere with a radius of r0 is considered as a blast source, which means that it is

the driven section of the gas motion. Since the spatial boundary of this sphere at r = r0 just a

fictitious membrane separating two different gases with two different conditions (inside and outside

the sphere), this sphere can also be considered as a fictitious balloon. Therefore, the fictitious

membrane in this problem plays the same role of the diaphragm in the case of Sod’s shock or other

previous tube problems. As the source of the blast, the balloon has extreme initial conditions with

respect to its surrounding gas. These conditions may be characterized in terms of high density,

high pressure, or high temperature. It can also be assumed that the gas either inside or outside the

balloon is initially at its rest or defined by a certain velocity to a particular direction with respect

to r.

In what follows, the modeling of such spherical blast wave propagation implementing the Go-

dunov numerical scheme previously presented is demonstrated. In this case, the fictitious sphere

is filled with a high density air, and its surrounding (outside of the sphere) is considered a normal

atmospheric air. Both gas systems are treated as ideal gases with a constant γ of = 1.40. The
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r (m)r00

fictitious 

balloon 

air

L

membrane

blast wave

Figure 4.25. Initial configuration for a spherically symmetric wave motion. The fictitious balloon with a
radius of r0 is considered as the source of blast (driven section).

radius of the sphere is 1 m. The initial pressure of the gas inside the sphere is 10 bar (gauge,

overpressure). The gas is initially at its rest everywhere (u = 0). Therefore, the initial conditions

for this spherically symmetric blast wave propagation are given by the following equations,

Q(r, 0) = Q0(r) = [ρ, u, p]T =

{ [
1.86, 0.0, 1× 106

]T
, for r < r0[

1.204, 0.0, 1.01325× 105
]T
, for r > r0

(4.131)

In this case, ρ, u and p are given in kg/m3, m/s and Pa respectively. Other necessary information

related to the thermodynamics of air can be obtained from Table 4.1.

The numerical modeling was performed based on Eq. (4.129) with α = 2. This simulation will

evaluate basic variables including density, particle velocity, pressure and temperature of the gas

at various distances relative to the center of the sphere at different times after the burst of the

fictitious membrane. With respect to the initial conditions of Eq. (4.131), it is fully understood

that the shock wave would travel outwards and a rarefaction wave would travel inwards the sphere.

The numerical simulation results for this particular problem are depicted in Fig. 4.26. It can be

seen that there is reflection due to the rarefaction (expansion) wave which travels inside the sphere

towards its centre. The magnitude of the shock wave which travel outwards decreases with respect

to the distance relative to the center of the source. After 10 ms, the blast wave overpressure of

about 0.175 bar is estimated at the distance of about 5 m from the blast source. A complete result

of blast overpressure (bar) versus distance is shown in Fig. 4.27.
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Figure 4.27. Blast overpressures (bar) with respect to the distance relative to the outer boundary of the
spherical source for the test problem under consideration

4.4.3 Two-dimensional cases in Cartesian coordinates system

4.4.3.1 Test case I

In what follows, the treatment of the two dimensional Euler equations in a Cartesian coordinate

system is demonstrated. In general, this problem is governed by Eq. (4.126). First, the following

example is considered. In this case, the blast wave propagation in a square domain of [0, 1]× [0, 1] is

simulated and evaluated. Initially, this spatial domain is virtually divided into four uniform regions.

Each region is characterized by different properties of the gas. In this case, different conditions of

gas are defined and they are treated as ideal gases with a constant γ of 1.40. Furthermore, the

initial conditions of the problem under consideration describing the properties of the gas in each

region and expressed in terms of their non-dimensional values are as follows:

(ρ, u, v, p)(x, y, 0) =


(0.8, 0.1, 0.0, 0.4), if x < 0.5 and y < 0.5

(0.5313, 0.1, 0.7276, 0.4), if x > 0.5 and y < 0.5

(0.5313, 0.8276, 0.0, 0.4), if x < 0.5 and y > 0.5

(1.0, 0.1, 0.0, 1.0), if x > 0.5 and y > 0.5

(4.132)

Fig. 4.28 illustrates these conditions in x − y plane. For this particular simulation, all spatial

boundaries are assumed the transmissive.

In order to perform the simulation, a structured mesh of 40000 cells (200× 200) computational
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cells was generated. A CFL condition of 0.5 was chosen. Figs. 4.29-4.31 show the results of this

simulation. In this case, the development of pressure and density at various computational times is

shown. It can be seen that the shock wave moves from the top right of the domain to the top left

as well as from the top right to the bottom right. Meanwhile, a contact discontinuity wave moves

from the top left to the bottom left as well as from the bottom right to the bottom left. In general,

these results are in good agreement with a similar test described in [115].

4.4.3.2 Test case II

In the second case, the blast wave propagation in a square domain in which the blast source is

localized at a certain position within the domain is treated. It is assumed that the spatial domain

under consideration is a square domain with dimension of 10 × 10 m. This domain is realized in

the x− y plane for which x := [0, 10] m and y := [0, 10] m. The source of the blast is identified as a

circular region with initial radius of 1 m centered at (x, y) = (1, 1). This source is a high pressure

and high density gas separated from the outside surrounding gases by a fictitious membrane at the

initial time of the simulation. The surrounding gas is assumed to be a normal atmospheric air.

Furthermore, the initial condition of this particular problem is given as follows:

(ρ, u, v, p)(x, y, 0) =


(1.68, 0, 0, 10× 105), for a circular source

centered at (x, y) = (1, 1)

(1.20, 0, 0, 1.01× 105), otherwise

(4.133)

In this case, variables ρ, u, v and p are given in kg/m3, m/s, m/s and Pa. These conditions are

illustrated in Fig. 4.32.

It is assumed that both the gas localized inside the source and the surrounding gas are air to

be treated as ideal gases with a constant γ of 1.40. In addition, no physical boundary within the

domain under consideration is defined. This means that all four spatial boundaries are assumed to

be transmissive. Further propagation of the blast wave outside the computational domain is not

considered.

In order to perform the simulation, the spatial domain is discretized into 90000 uniform cells

(300 × 300). To ensure the stability of the computation, a CFL condition of 0.5 has been chosen.

The computation was run up to 12 ms. The results of this simulation are shown in Figs. 4.33 - 4.35.

The pressure and temperature at any point within the domain for various computational times are

shown. The shock wave moves outwards the source symmetrically for which the magnitude of blast

overpressure decreases by time. It is shown that, at t = 6 ms, the shock wave has reached at a

distance of about 6 m from the center of blast source with a temperature estimated in the range

of of 250− 3000C.
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Chapter 5

Uncertainties and the Calculation of the

Blast Overpressure and Explosion Risk

5.1 Mathematical treatment of uncertainties

5.1.1 Introduction

Data uncertainties are present in any engineering calculation. Their impact may be particularly

important if they concern the safety aspects of industrial installations. There are many definitions

of uncertainty. Perhaps the simplest and most complete is that ”Uncertainty is a general concept

that reflects our lack or sureness about something or someone, ranging from just short of complete

sureness to an almost complete lack of conviction about an outcome [116].

In order to help understand the concept of uncertainty, and to be able to treat uncertainties in

a structured manner, many attempts have been made to characterize classes of uncertainty and the

underlying source of uncertainty [117]. At a fundamental level, two major groups of uncertainty are

recognized in the literature. On the one hand there is the aleatory, or stochastic uncertainty

which arises because of natural, unpredictable variation in the performance of the system under

study. This type of uncertainty cannot be reduced. The knowledge of experts cannot reduce this

uncertainty although their knowledge may be useful in quantifying this uncertainty. The second

group is the epistemic or knowledge uncertainty which arises due to a lack of knowledge about

fundamental phenomena or the behavior of the system that is conceptually resolvable. Therefore,

this uncertainty could, in principle, be removed by further research.

In general, the discussion mentioned in this chapter mainly deals with the treatment of the

epistemic uncertainty. With respect to this type of uncertainty, the following three classes can be

further distinguished [118]:

• Parameter uncertainty

It is introduced when the values of the parameters used in the models are not accurately

known. It is often dealt with by assigning probability distributions to the uncertain parame-

ters, representing the analyst’s knowledge about them.
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• Model uncertainty

This uncertainty arises from the fact that any model, conceptual or mathematical, will in-

evitably be a simplification of the reality which the model is designed to represent.

• Completeness uncertainty

This uncertainty originates from the fact that not all contributions to risk are addressed in

the risk analysis models. For example, it will not be feasible to cover all possible initiating

events in a quantitative risk analysis.

Knowing the sources of uncertainty involved in the analysis plays an important role in the overall

handling of uncertainty. Different kinds of uncertainty call for different methods of treatment. If

one knows why there are uncertainties and what kinds of uncertainty are involved, one has a better

chance of finding the right methods for reducing them. Furthermore, the present treatment is about

parameter uncertainties. Their impact on the calculation of the explosion risk is to be presented.

This does not, of course, imply that the modeling or completeness uncertainties should not be

addressed in this context.

Basically, not accounting for uncertainties in engineering calculations may lead to errors. At

the level of study results without indication of uncertainties may be the cause of wrong conclusions.

Uncertainties have to be propagated through the entire calculation and hence be reflected in the

final result. At the end, some advantages arising from taking into account parameter uncertainties

are as follows [119]:

(a). The information base becomes broader

(b). If the input data for treating a problem differ in quality, they are correctly combined. Their

differing contents of information is reflected in the final result of the calculation

(c). The meaning of safety factors becomes evident; safety reserves are shown

(d). The credibility of results increases

(e). Indications are obtained as to the areas where models and data have to be refined

5.1.2 Methods of representing and evaluating the uncertainty

By far, the most common approach used to represent parameter uncertainties is to use the proba-

bility distributions. Some uncertain parameters involved in engineering calculations are normally

treated as unknown fixed quantities. In order to account for uncertainties a different statistical

viewpoint is taken. The quantities are no longer considered to be fixed but their behavior is as-

sumed to be random due to one or several of the causes of uncertainty mentioned above. Random

variables are treated by probability distributions, whose parameters are estimated on the basis of

experimental results or, in default of these, occasionally fixed by an expert.

According to the circumstance of input data availability, several probability distributions are

quite common to represent the stochastic behavior of technical parameters, among others: normal,

uniform, log-normal, truncated normal, Weibull, inverse Gauss, log-logistic, Gamma or
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inverse Gamma [120, 121]. If several probability distributions were to be considered the data

would be fitted with each of them using, for example, the minimal value of the squared differences

between measured and fitted values as the criterion for the choice of the most adequate distribution

[122].

5.1.3 Techniques for the propagation and evaluation of uncertainty

There are various methods for performing uncertainty analysis. The method chosen for the im-

plementation of uncertainty in the calculation of the explosion risk in this chapter is the standard

Monte Carlo simulation method. This method is also known as the basic Monte Carlo method to

distinguish it from the various modified Monte Carlo methods which have been developed to reduce

the computational expense. These efficiency improvements, which are known as variance reduc-

tion techniques, include among others the importance sampling method and the Latin Hypercube

sampling method.

The procedure for the standard Monte Carlo method for the treatment of uncertainty involves

in general three steps:

1. The generation of a value for each uncertain parameter by randomly sampling the known or

assumed probability density function

2. The propagation of the uncertain variables through the model function as schematically shown

in Fig. 5.1.

3. The simulation process is repeated M times by generating a new set of random quantities as

under 1.

G = function (f1, f2, f3)

Model

Variable 1
Variable 2 Variable 3

fG

Distribution of the result

f1 f2 f3

Figure 5.1. Propagation of uncertainty parameters through a model. The parameter uncertainty is specified
as the probability density function [117]

4. The statistical analysis of the output data set to define the distribution of the output. The

evaluation of the uncertainties impact to the output can be represented by presenting the
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statistical parameters of the final results. These may include an expected value with some

upper and lower bound, an expected value and both upper and lower centiles of the underlying

distribution.

5.2 Relevant aspects for the risk assessment

5.2.1 Event trees for representing typical events following the release incident

In this section, the procedure to account for parameter uncertainties in the estimation of the risk,

especially the risk from an explosion is presented. The determination of risk in the chemical process

industries, especially to the people, also known as the individual risk, depends on the type of the

accident which is encountered.

As mentioned earlier in this thesis, undesired accidents in the chemical process industries are

typically initiated by certain release incidents and followed by several sequences leading to the a

particular outcome. These sequences are usually represented by an event tree showing possible

outcomes following a certain release incident. In general two general types of release incidents

can be distinguished, namely the instantaneous release, such as the catastrophic rupture of the

vessel or the complete rupture of the pipeline, or the continuous release, such as the leak from the

vessel or the pipeline, the discharge through a relief valve or rupture disk. There are many types

of accidental outcomes possible from each type of release incident, which may include the groups

of fire, explosion or atmospheric toxic dispersion. However, in this thesis, the estimation of risk

focuses only on the effect from an explosion. A typical impact to be considered is the explosion

overpressure which can be estimated using both empirical models or the computational models of

gas dynamics, as explained above.

Typical event trees following the release of a pressurized flammable gas or vaporizing liquid

for the instantaneous and continuous event are shown in Figs. 5.2 and 5.3. Meanwhile, the event

tree for the release of a flammable liquid is depicted in Fig. 5.4. Accidental outcomes with blue

color are relevant only for the two-phase release. If a proportion of the cloud rains out, a pool of

liquid may be created. In addition to the specified effects in the event tree, a pool fire may also be

possible. If appropriate, this event should be added to the event tree.

The branches in the event tree actually indicate the possibility of a particular event to occur to

which a conditional probability for its occurrence may be attached. frel represents the frequency of

the release incident usually given its expected annual frequency. This data can be taken from many

available accidental databases. Table 5.1 shows some typical values of release incident frequencies

taken from several references.

In addition, some other databases may give different values which may be relevant for a specific

problem under consideration. For example, the frequencies of loss of containment for pipeline failure

with different sizes of diameter according to HSE is lying between 4× 10−8 and 1× 10−6 per m per

year [124]. While, according to purple book they are lying between 3 × 10−8 and 5 × 10−6 per m

per year [125].
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Initiating event

Release of a pressurized 
gas or vaporizing liquid (2-

phase)

Immediate 
ignition

Delayed 
ignition

Fireball/BLEVE 
occurs

Condition for Vapor 
Cloud Explosion

Yes

pFB

Yes

pim Yes
pVCE

No (+ imm.pool fire)

1 - pFB

No
Instantaneous release 1 - pVCE = pFF

frel

Yes

pVCE

Yes

pdim

No No

1 - pim 1 - pVCE = pFF

No

1 - pdim

Flash Fire                           
(+  late pool fire)

No consequences,       
except toxic impact

Accidental Outcome / 
Consequences

Fireball/ BLEVE              
(+ imm.pool fire)

Accidental sequences

Gas/Vapor Cloud 
Explosion

Flash Fire                           
(+ imm.pool fire)

Gas/Vapor Cloud 
Explosion

Figure 5.2. Event tree for an instantaneous release of a pressurized gas or vaporizing liquid

Initiating event

Release of a pressurized 
gas or vaporizing liquid (2-

phase)

Immediate 
ignition

Delayed 
ignition

Condition for Vapor 
Cloud Explosion

Yes

pim

Continuous release Yes

frel pVCE

Yes

pdim

No No

1 - pim 1 - pVCE = pFF

No

1 - pdim

Flash Fire                           
(+  late pool fire)

No consequences,       
except toxic impact

Gas/Vapor Cloud 
Explosion

Accidental sequences

Accidental Outcome / 
Consequences

Jet fire                              
(+ imm.pool fire)

Figure 5.3. Event tree for a continuous release of a pressurized gas or vaporizing liquid

Since the released material could be immediately ignited by a certain ignition source soon after

the release or at some moment after the release incident, pim and pdim are used to represent the

probability of these two ignition sequential types. There are few data from which the probability

of immediate ignition can be estimated. Hence for the purpose of the risk analysis it is quite

common to propose a number of simplification. Table 5.2 shows typical values of the immediate

ignition probability for stationary installations recommended by the Bevi Risk Assessment manual

[123]. The probability of immediate ignition for the liquid release is in between 0.01 and 0.065 as
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Initiating event

Release of a flammable 
liquid

Immediate 
ignition

Delayed 
ignition

Condition for Vapor 
Cloud Explosion

Yes

pim

Liquid release
frel Yes

pVCE

Yes

pdim

No No

1 - pim 1 - pVCE = pFF

No

1 - pdim

The late/delayed ignition events are only possible if the liquid material is volatile 
and/or the formation of the vapor cloud is possible

No consequences,  
unless toxic

Event precursors

Outcome / 
Consequences

Pool Fire

Vapor Cloud Explosion

Flash Fire                           
(+ Late pool fire)

Figure 5.4. Event tree for a flammable liquid release

mentioned from the same source. The delayed ignition is usually assumed to be the complementary

of the immediate ignition given that the toxic dispersion is not taken into account.

Furthermore, as mentioned in the previous chapter, the outcome of delayed ignition could be an

explosion only if the released material, particularly gas or vapor, has formed a flammable mixture

with the atmospheric air (gas or vapor cloud). However, if the condition to the vapor cloud explosion

is not possible, the flash fire may be the outcome of the ignition of the vapor cloud. The frequencies

that these two events would occur giving the vapor cloud is ignited are represented by FVCE and

FFF. In the Bevi Risk Assessment manual, a default value of 0.4 is used.

In what follows, the treatment of parameter uncertainty is limited by two primary criteria.

Firstly, there was a release of flammable gas or vaporizing liquid, and secondly, the ignition took

place at some moment after the release. Therefore, vapor clouds that were not ignited or accidents

where the ignition took place at the same time as the release are excluded from the analysis. The

outcome to be considered is only the vapor cloud explosion which results in a certain degree of

overpressure. Taking into account all probabilities or frequency of the occurrence of a particular

accidental outcome, the probability that a vapor cloud explosion will occur following a particular

type of release incident is given by:

pVCE = (1− pim)× pdim × pVCE (5.1)

and, by inclusion of the frequency of the release incident, the frequency of the vapor cloud explosion

is given by:

fVCE = frel × pVCE (5.2)
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Table 5.1. Some statistical data of the release incident frequency

Failure description/scenario frequency (yr−1) Source

Pressurized storage tanks for gases and liquefied pressurized gases

- Aboveground (inst. release of entire contents) 5 × 10−7 [123]

- Underground (inst. release of entire contents) 5 × 10−7 [123]

Gas containers

- Instantaneous release of entire contents 5 × 10−6 [123]

Failure of pipelines

- Rupture in the pipeline (average) 4.6 × 10−7 [123]

- Leak with an effective diameter up to 50 mm (average) 2.5 × 10−6 [123]

Reactor & process vessels

- Instantaneous release of entire contents 5 × 10−6 [123]

Pressurized tank (catastrophic failure) 3 × 10−6 [11]

Cold storage tank (catastrophic failure) 5 × 10−6 [11]

Ammonia storage 6 × 10−4 [11]

Atmospheric tank 3 × 10−5 [11]

Loss of containment according to HSE

- Catastrophic tank failure 5 × 10−6 [124]

- Major tank failure 1 × 10−4 [124]

- Minor tank failure 2.5 × 10−3 [124]

- Pump 3.5 × 10−5 [124]

Loss of containment according to Purple book

- Atmospheric tank (instantaneous release of entire contents) 5 × 10−6 [125]

- Pump, catastrophic failure 1 × 10−4 [125]

- Pump, leak with an effective diameter up to 50 mm 5 × 10−4 [125]

Overfilling of the tank per tank per year

- Average value from the Lastfire report 4 × 10−4 [124]

- Average value from Chevron 5.74 × 10−3 [124]

However, when no information about the release incident is provided and other event tree paths

are not to be considered giving that only the vapor cloud which has formed following the release

is to be taken into account, the empirical investigation can be used for developing an event tree.

In this case, the event tree is dealing only with the vapor cloud, the ignition and the accidental

outcome. As mentioned before, the outcome of the ignition of the vapor cloud is either a vapor

cloud explosion or a flash fire.

In what follows, the statistical study as reported in [126] is presented. The study has been

focused on the accidental release of a combustible gas or vaporizing liquid leading to the formation

of the flammable gas or vapor cloud. In the summary of the study, it was mentioned that a slightly

more than 60% of the vapor cloud were ignited within 100 m from the initial release point. In

[127, 128], the probability of 61% was chosen. In addition, only 20% of the cases did the cloud drift

more than 1 km before ignition took place.
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Table 5.2. Example of the database for the immediate ignition probability for stationary installations [123]

Description Probability of

immediate ignition, pim

Low reactive materials

- release mass: < 1000 kg 0.02

- release mass: 1000− 10000 kg 0.04

- release mass: > 10000 kg 0.09

Medium and high reactive materials

- release mass < 1000 kg 0.2

- release mass 1000− 10000 kg 0.5

- release mass > 10000 kg 0.7

Another statistical conclusion was dealing with the probability of whether a vapor cloud explo-

sion or a fire would occur once the vapor cloud is ignited. Regardless of the surroundings, in nearly

60% of the outcome of the ignition of the vapor cloud were the vapor cloud explosion that produces

a significant overpressure. This means that it is about 40% of the cases resulting in a fire without

giving rise to the overpressure. Therefore, an event tree can also be created relevant to result of

statistical analysis as depicted in Fig. 5.5. With respect to this figure, the probability of a vapor

Initiating event
Conditional probability 

of either fire or 
explosion

Accidental outcomes

Total 
conditional 

Probability of 
outcomes

0.02
x > 1000 m

0.60

Flammable vapor cloud 0.61
0 < x ≤ 100 m

0.40

0.98
0 < x ≤	1000 m

0.60

0.39
100 < x ≤ 1000 m

0.40

x = distance of the ignition location relative to the initial release point.

Vapor Cloud Explosion

Fire

No outcome is specified

Vapor Cloud Explosion

Fire

Probability of the vapor cloud being 
ignited with respect to the ignition 

location relative to the initial release 
point

0.153

0.020

0.359

0.239

0.229

Figure 5.5. Event tree showing the probability of the ignition of the vapor cloud according to the result of
a statistical analysis as reported in [126]

cloud explosion pVCE is about 58.8% which means that the vapor cloud explosion is slightly more

likely than the flash fire if the vapor cloud is ignited. The probability of the vapor cloud explosion

if the vapor cloud is ignited at the distance up to 100 m and between 100 m and 1 km is also in

general always greater than that of the flash fire.
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5.2.2 Vulnerability models for assessing the damage of the blast wave

The primary effect of the explosion to be taken into account is the blast overpressure. As mentioned

earlier in this thesis, there are, at least, three most important and dangerous blast parameters which

are chiefly responsible for damage to either human beings, structures and environmental elements.

These are namely the the peak side-on overpressure (∆po), positive phase duration (td)

and positive impulse (ip). The positive impulse itself basically depends on the peak overpressure

and positive phase duration [93]. Many researchers, however, consider that the estimation of the

overpressure only is generally sufficient to estimate the damage caused by the blast wave [16, 61].

The use of pressure-impulse diagram for assessing the damage is typically formidable because of

the lack of data and the theoretical difficulties [129].

In what follows, the vulnerability models for assessing the damage of the explosion blast wave

is particularly based on the level of the blast overpressure. Table 5.3 provides the typical scales of

damage and related physical effects to people or structural building caused by different levels of

blast peak overpressures.

5.2.2.1 The probit function and damage probability

For the purpose of assessing effects of blast waves on humans, consequences may also be expressed

as conditional probability of death or injury. If property, such as structures and buildings, is the

object of the study the consequences are partial or total destruction. In hazard assessment, the

area of study dealing with the assessment of accidents affecting the vulnerable objects is also known

as vulnerability analyses.

Basically, the damage aspects addressed by vulnerability models use a statistical method, which

is called dose-response relationship. This relationship is commonly expressed in terms of probit

(probability unit) equations. The probit method reflects a generalized relationship for any variable

that has a probabilistic outcome that can be defined by a normal or log-normal distribution [11].

In fact, many probit functions have been developed for a wide range of vulnerability situations,

including the blast overpressure, thermal radiation, or toxic exposure.

The relation between the response and hazard dose for a single exposure is typically represented

with the probit function as a straight-line as given by the following equation [133]:

Y = k1 + k2 · lnV (5.3)

where Y is the probit variable and V is the hazard dose representing the causative factor. Here,

k1 and k2 are constants whose values are determined for any specific event. The hazard dose V is

applied to any type of exposure, including the typical hazard from three major accidents, namely

the blast overpressure, thermal radiation intensity and toxic dose.

The probit variable Y is related to a certain intensity of damage in terms of the damage

probability, denoted by Pd, by means of a normal or log-normal distribution. In most cases, the

damage probability by means of a normal distribution is commonly used. In this case, Pd is given
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Table 5.3. Typical scales of damage caused by different levels of blast peak overpressures, summarized from
[59, 130, 131, 132]

Damage levels & typical effects

Minor damage: ∆po ≤ 7.0 kPa

- Building performs function and is still reusable following an explosion.

- Only minor repairs are needed. Very little risk to occupants because of building damage.

Overpressure: 0.3 kPa - Loud noise

1.0 kPa - Threshold for breakage of glass

2.0 kPa - ”Safe distance” (probability 0.95 of no serious damage below this value

3.0 kPa - Limited minor structural damage

4.0 kPa - 90% window breakage. Damage to cladding. Minor structural damage

7.0 kPa - Glass fragment fly with enough force to injure

Moderate damage: 7.0 kPa < ∆po ≤ 14.0 kPa

- Possible deformation of structural members. Building may be reusable with repair

- Possibly some debris formed. Personnel injury from debris is likely.

Overpressure: 9.0 kPa - Steel frame of clad building distorted

10.0 kPa - Limit of overpressures accepted by the KAS Germany for the people

- 50% damage of atmospheric tank

14.0 kPa - Houses uninhabitable but not totally irreparable

- Cement block buildings flattened

Major damage: 14.0 kPa < ∆po ≤ 21.0 kPa

- Possible failure of isolated structural members. Partial building is likely collapse

- Building cannot be reused and must be replaced. Possible serious injury or fatality of some occupants.

Overpressure: 16.0 kPa - Lower limit of serious structural damage

17.0 kPa - 50% desctruction of brickwork of houses

21.0 kPa - Reinforced structures will distort.

- 20% chance of fatality inside a building

Catastrophic damage: ∆po > 21.0 kPa

- Complete collapse of structure.

- Probable serious injury or fatality of all occupants.

Overpressure: 27.0 kPa - rupture of oil storage tanks

- Cladding of light industrial buildings ruptures

35.0 kPa - On-set of severe structural damage. Nearly complete destruction of houses

- 15% chance of fatality outdoors, 50% chance indoors

70.0 kPa - Almost complete demolition of all ordinary structures

- Almost 100% chance of fatality indoors

by the following equation [33]:

Pd =
1√
2π

∫ Y−5

−∞
exp

(
−x

2

2

)
dx (5.4)

Pd is the impact probability of the hazard effect to the vulnerable object. Fundamentally, this
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equation is the cumulative distribution function of the normal distribution.

The probit variable Y has a mean value of 5.0 and a standard deviation of 1.0. Once the probit

variable is known, the probability of a certain effect can be estimated. Eq. (5.4) can be solved

analytically or numerically. However, for the sake of simplicity, it is also possible to solve Eq. (5.4)

using the following approach [123]:

Pd = 0.5

[
1 + erf

(
|Y − 5|√

2

)]
(5.5)

Here, erf is the error function generally defined as follows:

erf(x) =
2√
x

x∫
0

exp
(
−t2
)
dt (5.6)

Applying either Eq. (5.4) or (5.5), it is understood that a probit value Y of 5 corresponds a

damage probability of 50%, which means that 50% of the receptors will suffer the specified level of

damage. Fig. 5.6 shows the conversion of probit variable (Y ) to the damage probability percentage

(Pd) graphically.

5.2.2.2 Models for the probit function for the effect of the blast overpressure to the people

In analyzing the consequences of blast wave from explosions on people the probit model is used.

In terms of the potential impacts on people there are direct and indirect effects from the explosion

blast wave [63]. These include:

• Direct effects: injury and death from pressure change that affects internal organs, such as the

rupture of eardrums and lung damage

• Indirect effects, include impact of fragments and debris generated by the blast, bodily dis-

placement causing impact of body parts or whole body on nearby structures, building or

structural collapse, in the case of people inside structures

With respect to the blast wave overpressure, the direct effect of pressure change to the human

lung is particularly important. This is because the lungs are known to be very susceptible to the

blast overpressure resulting in lung haemorrhage. Haemorrhage may lead to death within minutes

due to the obstruction of the airways by fluid.

A commonly used probit model for fatality as a result of lung damage and death due to di-

rect effect of blast overpressure was the one developed by Eisenberg [11, 134]. According to his

model, the probit variable Y is related to the blast wave overpressure in term of the peak side-on

overpressure (∆po, Pa) by the following relation:

Y = −77.1 + 6.91 · ln ∆po (5.7)
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Figure 5.6. Relationship between the damage probability Pd (%) and the probit variable Y

Meanwhile, the probit variable for the injury related to the eardrum ruptures due to the blast wave

overpressure (∆po, Pa) is given by [63]:

Y = −12.6 + 1.524 · ln ∆po (5.8)

Fig. 5.7 shows the probability of lung damage and death as well as the ear drum rupture due to

several level of blast wave overpressure. According to this figure, a relatively high blast overpressure

(greater than 1 bar) is required to produce fatality with respect to the lung damage (haemorrhage)

or at least 50% injury with respect to the rupture of eardrums.

With respect to the calculation of the individual risk due to blast overpressure, the probit

equation for the lung damage and death is further considered. Therefore, once the blast overpressure

at a certain stand-off distance from the initial release point has been predicted and the probit

variable Y has been determined using Eq. (5.7), the probability of death due to the blast can be

estimated using Eq. (5.5). Thus, the individual risk to due the blast overpressure at a certain

distance (x) from the initial release point is calculated in general by the following equation:

IRexp(x) = fVCE × Pd(x) (5.9)

where IRexp is given in yr−1. The probability of the vapor cloud explosion can be estimated, for

example, by Eq. (5.1) assuming that the event tree for the release incident is relevant for the

problem under consideration.

134



5.3. Methodology for accounting uncertainties for the calculation of the explosion risk

Figure 5.7. The probability of the lung damage and the ear drum rupture due to the explosion blast wave
overpressure.

5.3 Methodology for accounting uncertainties for the calculation of the

explosion risk

5.3.1 Important aspects to the determination of the blast overpressure

As explained in detail in Chapter 3, the determination of the blast overpressure is influenced by

several factors, including the fuel reactivity, the initiation of the vapor cloud explosion, the con-

finement and congestion level in the area engulfed by the vapor cloud. However, the consideration

for the use of these factors is particularly determined by the model to be used for the prediction of

the blast overpressure. Furthermore, in the same chapter, the blast overpressure is estimated only

using the empirical models. These are the most easiest, and perhaps, the most efficient method for

solving such problem. For example, the TNT equivalent model does not take any of these factors

into account, except probably for the fuel reactivity in order to estimate the explosion efficiency

which can also not be determined exactly. The TNO Multi-Energy takes into account all these

factors, even thought not all of them are treated quantitatively. The same situation may also be

applicable for the Baker-Strehlow-Tang method.

With respect to the TNT equivalent model, the blast overpressure is predicted by taking into

account only the mass of explosive material and estimating the explosion efficiency of the material

involved. For the vapor cloud explosion, the mass of explosive material is the flammable mass of

the vapor cloud which should be calculated from the dispersion analysis. This is the mass between
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the lower and upper flammability limit. However, for the worst case scenario and conservative

assumption, the maximum flammable mass in vapor cloud is the maximum mass which was released

from the source. Meanwhile, the explosion efficiency is to be estimated according to the problem

under consideration.

With respect to the TNO Multi-Energy and the Baker-Strehlow-Tang model, the most impor-

tant steps are to determine the volume of flammable vapor cloud which is confined and congested

(cloud size) and to estimate the initial blast strength, in the case of the TNO Multi-Energy model,

or the initial flame speed, in the case of Baker-Strehlow-Tang model. In worst case scenario, it

can be assumed that the maximum volume of the flammable vapor cloud is calculated from the

maximum flammable mass of the vapor cloud considering that the flammable fuel is its stoichio-

metric concentration in the vapor cloud. Eq. (3.22) is then used to estimate the total volume of the

flammable vapor cloud giving that no obstacles is present. The initial blast strength can be esti-

mated quantitatively using Eq. (3.26) by considering four other parameters. Meanwhile, the flame

speed in terms of the Eulerian Mach number is estimated from Eq. (3.31) after the determination

of the maximum overpressure of the vapor cloud using Eq. (3.26)

5.3.2 Important aspects with regard to the probability distribution of the uncertain

parameters

As mentioned before, for the uncertainty analysis, any parameter, which is uncertain, is not to be

considered as a fixed quantity, but represented as a random variable following a certain probability

distribution. Typical types of the distribution will depend on the availability of data which could

be available in different conditions. There could be several values available, only two values or even

only a single value with some other generic statement. For each situation, different probability

distributions could be assigned for which the consideration for the selection of the appropriate

distribution lies on several criteria as described before.

In the case that only two values is available without having any other information and both of

them having similar probability, the uniform or rectangular probability distribution can be assumed

for generating random variable of this parameter. The probability density function for the uniform

distribution, as shown Fig. 5.8, is given by the following equation:

f(x) =


1

b− a
for a ≤ x ≤ b

0 otherwise
(5.10)

for which the random quantity of the corresponding variable is given by:

X = a+ (b− a)× Zp (5.11)

where Zp is the pseudo-random number to be generated from standard uniform distribution on

the open interval [0, 1]. In this thesis, the pseudo-random number is generated using a MATLAB

program.
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a b

f(x)

x

Figure 5.8. Probability density function of the uniform distribution

If the random variable of the uncertain parameter is to be described using the normal distri-

bution, the probability density function of this distribution, as shown in Fig. 5.9, is given by the

following equation:

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
, −∞ < x <∞, −∞ < µ <∞, σ > 0 (5.12)

where µ and σ are the mean and standard deviation of the distribution. The random variable

following this distribution is given by:

X = µ+
[√
−2 lnZp,1 × cos(2π ·Zp,2)× σ

]
(5.13)

where Zp,1 and Zp,2 are two independent random number to be generated at the same time.

μ

f(x)

x

Figure 5.9. Probability density function of the normal distribution

For the log-normal distribution, its probability density function, as shown in Fig. 5.10, is given

by:

f(x) =
1

xσ
√

2π
exp

[
− ln

(
x− µ

2σ

)2
]
, x > 0 (5.14)

where µ is the mean value of the logarithms of the variable xm and s is the corresponding standard

deviation. The random variable of the parameter following this distribution is given by:

X = exp
(
µ+

[√
−2 lnZp,1 × cos(2π ·Zp,2)× σ

])
(5.15)
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μ

f(x)

x

Figure 5.10. Probability density function of the log-normal distribution

5.4 Illustration example for the implementation of the procedure

5.4.1 The vulnerability study for the risk assessment

In what follows, the implementation of the aforementioned procedure for incorporating parameter

uncertainties to determine the damage level of blast to the vulnerable objects are shown. There

are two cases being considered. The first case is treated in this section, while the second case is

explained in the next section.

In the first case, it is assumed that a liquefied propane incidentally released from the pressurized

storage tank. Following the release, the flammable vapor cloud was formed due to the vaporization

of the material into the atmosphere. The flammable mass was estimated to be about 42000 kg.

The other properties of the material required for this calculation are listed in Table 5.4.

Table 5.4. Material properties and other required data for testing the procedure

Parameter Symbol Given value Unit

Material Liquefied propane

- Lower explosion limit LEL 2 % vol

- Upper explosion limit UEL 9.5 % vol

- Stoichiometric concentration cst 4.1 % vol

- Vapor density ρ 1.86 kg/m3

- Flammable mass of the vapor cloud We,f 42000 kg

- Explosion energy ∆Hc 46320 kJ/kg

With respect to the calculation of the blast overpressure, the TNT equivalent model was used.

The blast overpressure at a certain distance from the blast origin was estimated by using the Kinney

and Graham equations. The vapor cloud was exploded close to the ground with an efficiency of 3%.

The reflection factor of 2.0 accounting for the hemipsherical blast was assumed. The probit model

for the explosion effect due to blast overpressure used the Eisenberg model for the lung damage.

The release frequency was 3.0× 10−5 per year.

Although the explosion efficiency is also uncertain parameter, in the following analysis, this

variable is not subject to uncertainty. This is only the location of ignition point to be treated as

uncertain parameter. In order to do so, the calculation area was divided into two sub-regions, that
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5.4. Illustration example for the implementation of the procedure

are between 0-100 m and 100-1000m relative to the initial release point according to the event tree

in Fig. 5.5. This is because the probabilities of the vapor cloud being ignited in these two sub-

regions are already specified. According to Fig. 5.5, the explosion probability is given by following

equation:

pV CE(x) =


fV CE,1 = 0.359, if 0 < x ≤ 100

fV CE,2 = 0.229, if 100 < x ≤ 1000

0.0, if x > 1000

(5.16)

Furthermore, the wind direction to which the vapor cloud would disperse was also taken into

account. Since no exact information of wind distribution, it is assumed that the vapor cloud

disperses uniformly to any direction as illustrated by Fig. 5.11. This means the wind distribution

is not stochastic and also not subject to uncertainty. The calculation of risk should be made in all

direction for which the result would shares the same probability.

initial release point

Wind rose

centerline of wind rose

N

E

S

W

Δθ

Δθ

Δθ

Figure 5.11. Illustration of the wind distribution if no prior information is given. It is assumed that the wind
is distributed uniformly to all directions.

According to Fig. 5.11, the sector angle between the centerline of two neighboring wind roses

are similar to the sector angle of the wind rose itself. In this figure, the angle of a wind rose is

denoted by ∆θ. The center of wind contour is assumed to be the initial release point. If N is

the total number of wind roses, the angle of a wind rose or the angle between centerline of two

neighboring wind roses is given by the following equation:

∆θ =
3600

N
(5.17)

In addition, the vapor cloud is assumed to be ignited only by a single ignition source which can

be located anywhere within the calculation area. In order to analyze the uncertainty effect of the

ignition location to the calculation result, the distance of the ignition source to the release point is

assumed to be uniformly distributed in two sub-regions as defined before. Therefore, this ignition

point is represented by two sharing sources, one located in the region between 0-100 m and the
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other one in between 100-1000 m. As a consequence, a particular object (vulnerable object), e.g.

people, seems to receive particular hazard (either from a fire or an explosion) from two possible

sources. This situation can be illustrated in Fig. 5.12.

0 100 1000 x

α

x0

r1

r2

Initial 

release

point

Ignition 

point, I1

Vulnerable 

object

0 <  x ≤ 100 m

100 <  x ≤ 1000 m

x1

x2

Ignition 

point, I2

Figure 5.12. The calculation area for the estimation of explosion risk using probabilistic approach for a
single step of Monte Carlo simulation from M trials. In this figure the ignition point (featured
by blue circles) are located at x1 m and x2 m from the release point. The vulnerable object
is located at x0 from the same point. This is only for a single wind direction from N times
calculation after performing M times Monte Carlo trial.

In this figure, the distance of the vulnerable object (e.g. people) to the initial release point is

denoted by x0. Meanwhile, the distance to the share ignition points are denoted by x1 and x2.

The angle between the centerline of the wind rose in which the ignition points are located and the

centerline in which the vulnerable object is located is denoted by α. In this case, α = 0 means that

the vulnerable object and both share ignition points are located at the same centerline.

Thus, the distance of a share ignition point to a vulnerable object of reference is described by

the law of cosines as follows:

ri =
√
x2

0 + x2
i − 2 ·x0 ·xi · cosα, where i = 1, 2 (5.18)

By treating the location of the ignition source as uncertain parameter following a certain probability

distribution, the stand-off distance of the vulnerable object relative to the blast origin will also

distributed. This condition will affect the determination of the blast overpressure which is faced by

the object. For the TNT equivalent model, it is important to mention also that the flammable mass

of the material with respect to the location of the ignition point is always the same and treated

to be a constant value until the end of simulation. Otherwise, the TNT equivalent should also be

treated as uncertain parameter.

As mentioned before, the propagation of the ignition location uncertainty into the calculation

of explosion risk based on the magnitude of the blast overpressure was performed by means of

the Monte-Carlo simulation. In this case, the generation of the random variable representing the

distance of the share ignition points was made using the MATLAB software. A set of 20000 random

positions for each subregion of the calculation area was generated. In addition, 100 wind sectors
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Table 5.5. Distribution of the location of the ignition points

Distribution Given

Parameter Symbol type interval Unit

Position of the ignition point x1 Uniform distribution [0, 100] m

x2 Uniform distribution [100, 1000] m

were also taken into account. Table 5.5 summarizes the input for the uncertainty analysis.

Fig. 5.13 shows the calculation result if the share ignition points were assumed to be located at

the center of each sub region as the representative location. No other consideration is taken into

account. In general, it can be concluded that the individual risk are higher up to about 700 m from

the initial release point and seems to be very conservative.

Figure 5.13. The calculation of the individual risk based on the explosion blast overpressure versus stand-off
distance relative to the initial release point using conservative method. The first peak: ignition
location 1 about 55 m from the source, and the second peak: ignition location 2 about 550
m from the source

Meanwhile, Fig. 5.14 shows the simulation result if the location of the ignition was subject

to uncertainty and the vapor cloud was distributed uniformly to all direction. The profile of

individual risk due to the blast overpressure is significantly improved. If assumed that the risk

acceptance criteria of maximum 1 × 10−6 per year, the safe distance with respect to the effect of

blast overpressure is about 180 m to the location of liquefied propane tank.
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Figure 5.14. The calculation of the individual risk based on the explosion blast overpressure versus stand-off
distance relative to the initial release point using Monte-Carlo method for which the location
of ignition is subject to uncertainty.

5.4.2 The determination of the maximum explosion and blast wave overpressure

The second example has been intended to demonstrate the incorporation of parameter uncertainties

to the determination of the maximum explosion overpressure of the vapor cloud and its influence

to the simulation of blast wave propagation. For this particular example, a heat exchanger unit as

shown in both Figs. 5.15 and 5.16 is taken into account. The initial configuration of this problem

has been taken from [80].

There is no complete scheme to be presented in this example. In fact, the main layout as shown

in both figures are sufficient to perform the calculation. According to this layout, the heat exchanger

unit consists of obstacles (vessels, pipes and other supports) oriented in all three dimensions. A

qualitative approach for this case has concluded that this unit is situated in open air, thus it can

be further considered a 3D configuration for the determination of the explosion overpressure. A

low ignition energy type is also assumed. The flammable material to be considered in this example

is propane with a laminar burning velocity (SL) of 0.45 m/s.

As explained in Chapter 3, the appropriate empirical correlation for the determination of the

maximum explosion overpressure in the vapor cloud in 3D-flame expansion case is given by the

following equation:

∆po,max = 0.84×
[

VBR ·Lp
D

]2.75

× S2.7
L ×D0.7 (5.19)

142



5.4. Illustration example for the implementation of the procedure

Figure 5.15. Impression of large process vessel in the heat exchanger unit.

Figure 5.16. Impression of connecting pipework in the heat exchanger unit.
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In order to determine ∆po,max, detailed dimensions for the vessels and pipework, such as diameter,

length and volume are required. This information can be obtained from Tables 5.6 and 5.7. A few

small obstacles and the supports, which can be ignored, are not included in these Tables.

Table 5.6. Dimension of large process vessels and major supports in the heat exchanger unit

Vessel no. 1 2 3 4 5 6 7 S1-3 S4

Diameter (m) 1.6 1.5 1.3 1.5 1.4 1.4 1.3 0.3 × 0.3 0.4 × 0.4

Length (m) 8.3 7.8 5.6 8.5 5.6 5.6 4.1 3.0 3.0

Volume (m3) 16.7 13.8 7.4 14.8 8.6 8.6 5.4 0.27 1.68

Table 5.7. Dimension of connecting pipes in the heat exchanger unit

Pipe no. 1 2 3 4 5 6 7 8 9 10

Diameter (m) 0.61 0.32 0.51 0.27 0.46 0.46 0.51 0.27 0.32 0.32

Length (m) 25.6 26.1 20.2 27.2 13.2 7.2 12.6 14.6 22.6 14.9

Volume (m3) 7.48 2.15 4.14 1.58 2.16 1.15 2.55 0.86 1.86 1.23

Thus, the average obstacle diameter (D) is determined by the following procedure:

• By using the standard averaging procedure for which the obstacle diameter is the average

diameter of the all the cylinders which include vessels and pipes. Thus, according to data in

Table 5.6 and 5.7, D1 = 0.60 m

• By taking into account the average specific surface, which is the ratio of area to volume.

Using this method, the obstacle diameter is obtained to be D2 = 0.43 m

The obstructed region is assumed to be a box with a dimension of 12 × 10 × 7.5 representing

the length, width and height of the box. Therefore, the volume of the obstructed region is about

900 m3. When the major process vessel only to be considered as the obstructed area, the minimum

obstructed volume is estimated to be 510 m3.

Meanwhile, with respect to the flame path length, the maximum extension of the obstructed

area under consideration, which is the length of the box, is assumed to be the longest distance

for the flame travel. While, the minimum distance covered by the flame is the width of the box.

The volume blockage ratio (VBR) is estimated by two different values. The maximum VBR is the

ratio between the maximum volume of the whole obstacles against the minimum volume of the

obstructed region. This is about 0.20. While, the minimum value of VBR is the ratio between the

maximum volume of the whole obstacle against the maximum volume of the obstructed region.

This ratio is estimated 0.11.

Furthermore, it is assumed that all parameters involved in Eq. (5.19), except the laminar flame

speed of the propane, are subject to uncertainty. The relevant probability distributions for these

uncertain parameters are specified in Table 5.8.
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Table 5.8. Specification of uncertain parameters for the determination of the maximum explosion over-
pressure in the heat exchanger unit

Uncertain Distribution Given

parameter Symbol type interval Unit

Volume blockage ratio VBR Uniform distribution [0.11, 0.20] -

Flame path length Lp Uniform distribution [10, 12] m

Obstacle diameter D Uniform distribution [0.43, 0.60] m

Applying the Monte-Carlo procedure with 20000 independent trials, the probability distribution

of the maximum explosion overpressure in the heat exchanger unit is depicted in Fig. 5.17. The

log-normal distribution is found to fit this data well. The relevant statistical parameters for the

distribution of the maximum explosion overpressure is given in Table 5.9.

According to the initial correlation in [80], a combination of several given conditions in the heat

exchanger unit would give the maximum explosion overpressure between 0.6 up to 3.7 bar. The

minimum value corresponds to D = 0.60 m, V BR = 0.11 and Lp = 12 m, while the maximum value

corresponds to D = 0.43 m, V BR = 0.20 and Lp = 10 m. However, using this old methodology,

it is difficult to determine its expected value. This old methodology is not able to present this

value. This leads to the conclusion that the uncertainty analysis has capability of presenting more

representative information.

Figure 5.17. The maximum explosion overpressure of the propane cloud in the heat exchanger unit if the
parameter of volume blockage ratio, flame path length and obstacles density are subject to
uncertainty.

If the blast overpressure at a particular stand-off distance relative to the center of explosion is
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Table 5.9. Statistical parameters for the maximum explosion overpressure (bar)

Distribution Parameter Value

Log-normal distribution Mean 0.468

Standard deviation 0.527

Summary Expected value 1.835

Variance 1.081

Maximum value 5.547

95% centile 3.601

5% centile 0.659

Minimum value 0.377

estimated using the TNO Multi-Energy model, some additional information is still required. This is

provided in Table 5.10. According to the result in Table 5.9, the initial strength of the blast source

would lie between the level number 6 (max. 50 kPa/0.5 bar) and number 9 (max. 500 kPa/5 bar).

A stoichiometric propane vapor cloud filling the remaining free volume in the obstructed region is

assumed. It is important to mention that the vapor cloud is assumed to be hemispherical. For

anticipating the worst scenario, the maximum free volume of 0.89 × 900 = 801 m3 was taken into

account.

Table 5.10. Data for the estimation of blast overpressure outside the propane vapor cloud

Parameter Symbol Given value Unit

Volume of the propane cloud V c 801 m3

Volumetric heat of combustion ∆Hc,vol 3.46 MJ/m3

Radius of the vapor cloud R0 7.25 m

Volumetric explosion energy Ec 2.77×103 MJ

The estimated blast overpressure at various stand-off distances from the center of the vapor

cloud according to the TNO Multi-Energy model is shown Table 5.11. In practice, according to this

result, the safe distance with respect to the regulation in Germany defined by KAS (Kommission

für Anlagensicherheit) is about 100 meters from the center of explosion.

Furthermore, apart from the TNO Multi-Energy model calculation above, the simulation of the

blast wave propagation for a vapor cloud explosion in the heat exchanger unit using the procedure

which has been developed in Chapter 4 is demonstrated. In this case, the expected value from Table

5.9 serves as the basis for determining the initial conditions for the simulation. It is still assumed

that there is a hemispherical vapor cloud as the source of the blast wave. The center of this vapor

cloud is also the center of the blast source. It is identified as a circular region centered at a local

coordinate [0, 0] (see Fig. 5.18 for time t = 0). The spatial boundaries of the obstructed region are

considered transmissive boundaries, which means no physical boundaries are present in the vicinity.

The computational domain of interest is x − y plane where 0 < x < 50 m and 0 < y < 50 m. A
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5.4. Illustration example for the implementation of the procedure

Table 5.11. Estimated overpressure (bar) at various stand-off distances from the center of the vapor cloud

Stand-off distance (m)

Reference maximum 10 25 50 75 100

overpressure of the vapor cloud Scaled distance (-)

(∆po,max, bar) R = 0.33 R = 0.83 R = 1.66 R = 2.49 R = 3.32

0.377 (Minimum value) 0.377 0.271 0.129 0.083 0.061

0.659 (5% centile) 0.659 0.434 0.185 0.112 0.080

1.835 (Expected value) 1.835 0.693 0.213 0.115 0.080

3.601 (95% centile) 3.601 0.716 0.213 0.115 0.080

5.547 (Maximum value) 5.131 0.716 0.213 0.115 0.080

uniform computational mesh of 50000 cells (250 × 250 at each direction) was generated. A CFL

condition of 0.5 is assumed.

Results of this simulation for times t = 20, 40 and 80 ms are also shown in Fig. 5.18. It can

be seen that the shock wave with a magnitude of 0.65 bar (overpressure) is estimated to reach the

distance of about 15 m at time t = 20 ms. This front moves up to a distance of 25 m with an

overpressure of around 0.60 bar after 40 ms. Unlike the TNO Multi-Energy calculation result, a

simulation of the blast wave propagation gives not only the magnitude and the duration of blast

overpressure, but also a possibility to evaluate and calculate the interaction of theblast wave with

obstacles while it propagates away from its source.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

An explosion is one of the most challenging problems in the chemical process industries. As a major

hazard, an explosion is in fact a very complex phenomena. Many parameters have been identified

to describe and quantify an explosion. The most important feature of an explosion is the generation

of damaging blast overpressure. An ability to have a better prediction of this particular parameter

and to develop a methodology for dealing with the interaction of the blast wave with the object

in an efficient way has been the one of the goal of this work. In addition, the development of the

procedure for incorporating the uncertainties into the prediction method of the blast overpressure

and the vulnerability study of the risk assessment is another prime goal of this thesis.

In the industrial application, the prediction of the blast overpressure has been done mostly by

employing available empirical techniques. Particular attention has been paid to the three classical

models, namely the TNT equivalent model, the TNO Multi-Energy model and the Baker-Strehlow-

Tang model. A systematic review to these models has been presented. The TNT equivalent model

is based on the TNT detonation charge, thus it can be a good choice for predicting the properties

of the detonation wave. Meanwhile, the other two models have been based on the explosive gas

or vapor cloud, thus it is the best practical choice for analyzing the overpressure from vapor cloud

explosions.

The numerical scheme for the Euler equations of gas dynamics which is intended to simulate the

propagation of the blast wave has been developed using the Godunov method. The implementation

of the procedure for the one- and two-dimensional problem demonstrated that the solver has a

capability of estimating the properties and behavior of the blast wave at certain distances relative

to the center of the blast source. This feature is particularly important, especially for anticipating

the interaction between the blast wave and a particular object in the surroundings. The initial

conditions for the Euler equations could have been obtained from the result of the combustion

analysis of the vapor cloud. However, the primitive variables such as the density, velocity, pressure,

specific energy and temperature are estimated. The maximum overpressure inside the vapor cloud is

calculated from the correlation for the application of the TNO Multi-Energy model. This quantity
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is assumed constant inside the cloud. By modifying the mechanism for the determination of the

initial conditions, the modeling of the blast wave in this thesis can be considered as an intermediate

solution between the simple empirical models and the much more complex computational fluid

dynamics models.

The treatment of uncertainties has also been taken into consideration of this thesis. In fact,

the parameter uncertainty could be problematic to be quantified. In this thesis, the methodology

for choosing the probability distribution and the relevant statistical parameters for the uncertainty

analysis were presented. The propagation of the uncertain parameter into the calculation model

was performed by a standard Monte Carlo simulation. The sampling procedure aimed to generate

a sufficient numbers of random variable representing the stochastic properties of the parameter

under consideration. The procedure can be applied in different situations as illustrated by several

case studies. The decision and degree of satisfaction of the uncertainty simulation will depend on

how accurate the parameter quantification.

6.2 Outlook and recommendations

The procedure for incorporating the effect of uncertain parameters into the prediction of the blast

overpressure and the vulnerability study of risk assessment has been proposed in this thesis. How-

ever, the analysis would be much better if the dispersion analysis is also performed. Thus, the best

estimate of the dimension of the vapor cloud including the quantity of the flammable mass can be

obtained. Several commercial software, such as DNV PHAST or ALOHA, has capability of pro-

viding such information in much detail. In the future, the simulation results from such a software

can be integrated with the procedure for accounting the effect of uncertainty. With respect to the

explosion modeling, some commercial softwares, such as PHAST, provide the blast overpressure as

a fixed value based on a certain location of ignition. This location is often specified by the user,

for example, at the cloud edge at which the lower flammability limit has been reached. There has

been no model for integrating the stochastic position of the ignition location.

With respect to the uncertainty analysis itself, the sampling procedure was based on a standard

Monte Carlo sampling. Recently, many advanced techniques have been made available with the

main purpose to reduce the computational cost. These techniques could be integrated to the

procedure mentioned above in order to improve the outcome.

With respect to the determination of the maximum overpressure in the vapor cloud while using

the empirical models, since no correlations available for some categories which are not yet covered

by current sets of correlation, some efforts are necessary to be made. These correlations can be

obtained experimentally for different situations.
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Appendix A: Kingery-Bulmash Model

The Kingery-Bulmash equations can be used to predict the parameters of the blast wave parameters

from a TNT charge detonation. Therefore, this equation can also be implemented for the TNT

equivalent method giving that the TNT equivalent mass and explosion efficiency are given. IN

general, for a given parameter φ representing the blast parameter of interest, the following relation

is given by Kingery and Bulmash:

U = a+ b log z (A.1)

where z is the Hopkinson’s scaled distance. The function φ is expressed in the 8th and 11th order

of polynomial equations which are written in general as follows:

log φ =

n∑
i=0

ci ·U i (A.2)

The constant values of a, b and c for both the free air and surface explosion are listed the

following Tables A.1 and A.2.
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Table A.1. Constants used in Kingery-Bulmash polynomial equations for a free air burst [11]

Range Parameter

constant ∆po [kPa] ip [kPa.ms] td [ms] ta [ms]

1 0.0531 ≤ z ≤ 40 0.0531 ≤ z ≤ 0.792 0.147 ≤ z ≤ 0.888 0.0531 ≤ z ≤ 40
2 - 0.792 ≤ z ≤ 40 0.888 ≤ z ≤ 2.28 -
3 - - 2.88 ≤ z ≤ 40 -

1 a -0.214 362 789 151 2.347 239 213 54 2.263 672 684 96 -0.253 273 111 999
2 - -1.753 056 603 15 -1.333 612 067 14 -
3 - - -3.130 058 053 46 -

1 b 1.350 342 499 93 3.242 990 664 75 5.115 885 543 05 1.374 070 437 77
2 - 2.306 292 318 03 9.299 628 861 1 -
3 - - 3.152 472 536 4 -

1 c0 2.611 368 669 2.388 305 167 57 -0.686 608 550 419 0.072 070 778 763 7
2 - 1.551 972 271 15 0.230 318 410 78 -
3 - - 0.621 036 276 475 -

1 c1 -1.690 128 013 9 -0.443 749 377 691 -0.164 953 518 069 1.364 568 712 14
2 - 0.404 632 920 88 -0.029 794 426 896 9 -
3 - - 0.096 703 199 555 2 -

1 c2 0.008 049 735 919 51 0.168 825 414 684 0.127 788 499 497 -0.057 003 569 278 4
2 - 0.014 272 194 608 2 0.030 632 954 294 1 -
3 - - -0.008 013 020 596 67 -

1 c3 0.336 743 114 941 0.034 813 803 030 8 0.002 91 430 135 946 -0.182 832 224 796
2 - 0.009 123 663 166 17 0.018 340 557 407 4 -
3 - - 0.004 827 057 797 32 -

1 c4 -0.005 162 263 513 34 -0.010 435 192 824 0.001 879 574 492 27 0.011 885 143 601 4
2 - -0.000 675 068 140 4 -0.017 396 466 628 6 -
3 - - 0.001 875 872 722 87 -

1 c5 -0.080 922 861 988 8 - 0.017 341 396 254 3 0.043 264 868 762 7
2 - -0.008 008 637 189 01 -0.001 063 219 635 76 -
3 - - 0.002 467 385 093 21 -

1 c6 -0.004 785 072 667 47 - 0.002 697 397 580 43 -0.000 799 736 783 4
2 - 0.003 148 195 159 31 0.005 620 600 312 8 -
3 - - -0.000 841 116 668 -

1 c7 0.007 930 304 722 42 - -0.003 619 765 027 98 -0.004 360 735 550 33
2 - 0.001 520 447 833 82 0.000 161 821 749 9 -
3 - - 0.000 619 329 105 2 -

1 c8 0.000 768 446 973 5 - -0.001 009 265 779 34 -
2 - 0.000 747 026 589 9 -0.000 686 018 894 4 -
3 - - - -
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Table A.2. Constants used in Kingery-Bulmash polynomial equations for a surface air burst [11]

Range Parameter

constant ∆po [kPa] ip [kPa.ms] td [ms] ta [ms]

1 0.0674 ≤ z ≤ 40 0.0674 ≤ z ≤ 0.955 0.178 ≤ z ≤ 1.01 0.0674 ≤ z ≤ 40
2 - 0.955 ≤ z ≤ 40 1.01 ≤ z ≤ 2.78 -
3 - - 2.78 ≤ z ≤ 40 -

1 a -0.214 362 789 151 2.067 619 087 21 1.929 461 540 68 0.202 425 716 178
2 - -1.947 088 467 47 -2.124 925 252 16 -
3 - - -3.536 262 180 91 -

1 b 1.350 342 499 93 3.072 032 966 6 5.250 991 939 25 1.377 842 236 35
2 - 2.406 977 454 06 9.299 628 861 1 -
3 - - 3.463 497 455 71 -

1 c0 2.780 769 165 77 2.524 556 209 25 -0.614 227 603 559 0.059 163 428 804 6
2 - 1.672 816 458 63 0.315 409 245 784 -
3 - - 0.686 906 642 409 -

1 c1 -1.695 898 874 1 -0.502 992 763 686 0.130 143 717 675 1.357 064 962 58
2 - 0.384 519 026 965 -0.029 794 426 897 6 -
3 - - 0.093 303 530 400 9 -

1 c2 -0.154 159 376 846 0.171 335 645 235 0.134 872 511 954 0.052 492 798 645
2 - -0.026 081 670 630 1 0.030 632 954 288 -
3 - - -0.000 584 942 088 3 -

1 c3 0.514 060 730 593 0.045 017 696 305 1 0.039 157 427 690 6 -0.196 563 954 086
2 - 0.005 957 987 538 22 0.018 340 557 408 6 -
3 - - -0.002 268 849 950 13 -

1 c4 0.098 853 436 527 4 -0.011 869 462 640 2 -0.004 759 336 647 02 -0.060 177 005 228 8
2 - 0.014 544 526 107 -0.017 369 466 621 1 -
3 - - -0.002 959 085 915 05 -

1 c5 -0.293 912 623 038 - -0.004 281 445 980 08 0.069 636 027 089 1
2 - -0.006 632 893 347 34 0.001 063 219 636 33 -
3 - - 0.001 480 298 689 29 -

1 c6 -0.026 811 234 501 9 - - 0.021 529 749 009 2
2 - -0.002 841 893 272 04 0.005 620 600 309 77 -
3 - - - -

1 c7 0.109 097 469 421 - - -0.016 165 893 078 5
2 - 0.001 364 481 622 7 0.000 161 821 749 9 -
3 - - - -

1 c8 0.001 628 467 563 11 - - -0.002 325 319 702 94
2 - 0.000 747 026 589 9 -0.000 686 018 894 4 -
3 - - - -

1 c9 -0.021 463 103 024 2 - - 0.001 477 520 675 24
2 - 0.000 747 026 589 9 - -
3 - - - -

1 c10 0.000 145 672 338 2 - - -
2 - 0.000 747 026 589 9 - -
3 - - - -

1 c11 0.001 678 477 522 66 - - -
2 - 0.000 747 026 589 9 - -
3 - - - -
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Appendix B: Constants for the equations

of the Blast curves

B.1 Constants for the fitted equations for the TNO Multi-Energy blast

curve family

Table B.1. Coefficients for Eq. (3.27)

Blast strength Range a b c d

Level 1 0.23 ≤ x < 0.53 1.00E-2 - - -

x > 0.53 6.23E-3 -0.95 - -

Level 2 0.23 ≤ x < 0.60 1.00E-2 - - -

x > 0.60 1.22E-2 -0.98 - -

Level 3 0.23 ≤ x < 0.60 5.00E-2 - - -

x > 0.60 3.05E-2 -0.97 - -

Level 4 0.23 ≤ x < 0.55 1.00E-1 - - -

x > 0.55 6.20E-2 -0.97 - -

Level 5 0.23 ≤ x < 0.55 2.00E-1 - - -

x > 0.55 1.10E-1 -0.99 - -

Level 6 0.23 ≤ x < 0.56 5.00E-1 - - -

0.56 ≤ x ≤ 3.50 3.00E-1 -1.10 - -

x > 3.50 0 - 1.1188 0.5120

Level 7 0.23 ≤ x < 0.50 1.00E+0 - - -

0.50 ≤ x ≤ 1.0 4.60E-1 -1.20 - -

1.00 ≤ x ≤ 2.50 - - 1.5236 0.3372

x > 2.50 - - 1.1188 0.5120

Level 8 0.23 ≤ x < 0.50 2.00E+0 - - -

0.50 ≤ x ≤ 0.60 4.67E-1 -2.08 - -

0.60 ≤ x ≤ 1.0 - - 2.3721 0.3372

1.00 ≤ x ≤ 2.50 - - 1.5236 0.3372

x > 2.50 - - 1.1188 0.5120

Level 9 0.23 ≤ x < 0.35 5.00E+0 - - -

0.35 ≤ x ≤ 1.00 - - 2.3721 0.3372

1.00 ≤ x ≤ 2.50 - - 1.5236 0.3372

x > 2.50 - - 1.1188 0.5120

Level 10 0.23 ≤ x < 1.00 - - 2.3721 0.3372

1.00 ≤ x ≤ 2.50 - - 1.5236 0.3372

x > 2.50 - - 1.1188 0.5120
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B.2 Constants for the fitted equations for the Baker-Strehlow-Tang

blast curve family
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Appendix C: Computational flow for

solving the Euler equations of gas

dynamics

C.1 The Exact Riemann Solver Module

Module

Exact Riemann 

Solver

Sub module 1 :

Determination of the primitive 

variables

 of the star region

Sub module 4:

Determination of the primitive 

variable at the cell interface 

boundary
(taking into account the sampling point at 

the interface is zero)

Sub module 2:

The Newton-Raphson procedure 

solving the pressure and particle 

velocity in the star region

Sub module 3:

for the determination of the gas 

density in the star region considering 

the Rankine-Hugoniot and 

Poisson adiabatic condition for the 

non-linear wave 

Sub module 1

MAIN MODULE

REQUIRED SUB-MODULES

SUPPORTING SUB-MODULES

Sub module 5:

Determination of the complete 

structure of the Riemann wave at the 

point or face under consideration
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Appendix C

C.2 The Euler Equations Solver Module

Module

Euler Equations 

Solver

MAIN MODULE

Sub module 1 :

Handling the arithmetic 

relationship of the variables
(Primitives variables, conserved variables 

and fluxes)

REQUIRED MODULE and

SUB-MODULES

Sub module 2 :

The Godunov numerical scheme 
(the evolution of the conserved variables 

with respect to time)

Sub module 3 :

Updating the conserved 

variables with the presence of 

the source terms 

Sub module 4 :

Updating the boundary 

conditions and the 

corresponding fictitious cells 

Module :

The Exact Riemann Solver
(for solving the primitive variables at the cell 

interface boundaries)
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