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Abstract

Particulate products play an important role in many industries and applications, for instance phar-
maceuticals, fertilisers, or foods. Compared to the often liquid state of the raw materials, they are
easier to transport, store and post-process. Furthermore,the transformation from liquid to solid
allows for particle formulation, i.e. the production of particles with defined characteristics.

In general, the particles are not uniform, i.e. they possessa distribution in their properties, for
instance size, shape, moisture content, or composition. This distribution also characterises the
quality of the product. Increasing customer requirements give rise to the need to realise pre-
defined, or required, property distributions of the particle in the process.

Widely used processes for the production of dustless, free-flowing powders from liquid raw mate-
rials are crystallisation and spray granulation in fluidised beds.

In fluidised bed spray granulation, which can be run batch-wise as well as in continuous mode, a
solution, suspension or melt is sprayed onto a particle bed which is fluidised by heated air. Due
to evaporation of the liquid in the spray, a particle growth can be observed as the solid in the
spray solidifies on the particle surface. The combination ofheat and mass transfer with particulate
processes renders fluidised bed spray granulation a complexmultiphase process. The realisation
of a desired property distribution therefore necessitatesthe use of process control.

In this thesis a model-based scheme for the feedback controlof particle size distributions as well
as the particle temperature and moisture content in fluidised bed spray granulation is devised. The
focus lies on the control of the particle properties in batchspray granulation and in continuous
spray granulation with external classification by sieves and mills. Depending on the configura-
tion of the external classification, i.e. the parametrisation of the sieves and the mill, a different
dynamic behaviour is obtained: Whereas for some configurations a stable steady-state is attained,
the steady-state is unstable for others. To achieve a steady-state with constant product mass flow
for these cases, the unstable steady-states have to be stabilised by feedback control.

As a basis, mathematical process models for particle formation and heat and mass transfer in
fluidised bed spray granulation are derived. In order to account for the distributed character of the
particle properties the population balance approach is utilised yielding non-linear partial-integro
differential equations for the temporal evolution of the particle size distribution. The models allows
to analyse the dynamic behaviour of the process and build thecore of the model-based feedback
control scheme.

The implementation of feedback control requires information on the state of the process, for in-
stance the particle size distribution. As this knowledge isnot always available through direct
measurements, model-based measurement systems, also known as state observers or estimators,
are designed to reconstruct the particle size distributionfrom other measurements utilising the
mathematical process models. It is demonstrated that the size distribution can be successfully
reconstructed, for instance from measurements of the mean particle diameter.
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Control of the particle size distribution in the batch and the continuous process is achieved by
use of model predictive control: Based on the future evolution of the process calculated by the
mathematical models, an optimal input trajectory is calculated yielding a required size distribution
at the end of the batch and a stabilisation of unstable steady-states in the continuous process with
external classification. Additionally, the particle moisture content and temperature is controlled
by a multiple-input multiple-output controller.

The approach is tested in a first step using ideal measurements, i.e. it is assumed that all infor-
mation required can be measured directly. In a second step this assumption is dropped and the
designed model-based measurement systems and the controllers are combined into a model-based
control scheme for feedback control of the particle properties. It is demonstrated that also this
set-up is able to achieve the required control tasks.

Thus by using mathematical process models, the design of a model-based measurement scheme
and model-based controllers allows to produce particles with pre-defined characteristics in flu-
idised bed spray granulation.
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Zusammenfassung

Partikuläre Produkte sind von großer Bedeutung in vielen Industriezweigen und Anwendungsbe-
reichen, z.B. der pharmazeutischen Industrie, der Landwirtschaft und der Lebensmittelproduktion.
Im Vergleich zu ihren oftmals flüssigen Ausgangsstoffen weisen sie wesentliche Vorteile im Trans-
port, der Lagerung und Weiterverarbeitung auf. Zusätzlichkönnen bei der Umwandlung vom
flüssigen in den festen Aggregatszustand den Partikeln bestimmte Eigenschaften aufgeprägt wer-
den.

Im Allgemeinen sind die entstehenden Partikel jedoch nichtgleichartig, d.h. sie weisen Unter-
schiede in ihren Eigenschaften, z.B. der Größe, der Form, des Feuchtegehaltes oder der Zu-
sammensetzung, auf. Diese Eigenschaftsverteilung der Partikel spiegelt sich auch in der Produkt-
qualität wider, daher führen die stetig steigenden Kundenanforderung zu der Aufgabe partikuläre
Produkte mit vordefinierten Eigenschaftsverteilungen herzustellen.

Für die Herstellung staubfreier, frei fließender Pulver werden oftmals Kristallistionsprozesse oder
die Sprühgranulation in Wirbelschichten eingesetzt.

Bei der Sprühgranulation, die sowohl im Batch-Betrieb als auch in kontinuierlicher Fahrweise
betrieben werden kann, wird eine Lösung, Suspension oder Schmelze auf eine Partikelschüttung
eingedüst, die durch einen beheizten Gasstrom fluidisert wird. Durch Verdampfung der Flüssig-
keit kommt es zur Feststoffabscheidung auf der Partikeloberfläche und eine Größenänderung der
Partikel kann beobachtet werden. Die Kombination aus Stoff- und Wärmeübergang und parti-
kulären Prozessen gestaltet die Sprühgranulation zu einemkomplexen Mehrphasenprozess. Für
das Erreichen von gewünschten Produkteigenschaften ist daher der Einsatz von Prozessregelungen
notwendig.

In dieser Arbeit wird ein modellbasiertes Konzept für die Regelung von Partikelgrößenverteilun-
gen, die Partikelfeuchte und -temperatur in der Wirbelschichtspühgranulation entwickelt. Der
Fokus liegt dabei auf der Batch-Sprühgranulation sowie derkontinuierlichen Sprühgranulation
mit externer Produktklassifikation und Partikelrückführung über einen Sieb-Mahl-Kreislauf. In
Abhängigkeit der Konfiguration der Siebe und der Mühle liegtein unterschiedliches dynamisches
Verhalten des kontinuierlichen Prozesses vor: Während füreinige Konfigurationen ein stabiler sta-
tionärer Zustand erreicht wird, ist der stationäre Zustandfür andere Konfigurationen instabil. Um
auch in diesen Fällen einen stationären Zustand mit konstanten Produktmassenstrom zu erhalten,
ist eine Stabilisierung durch den Einsatz von Prozessregelungen erforderlich.

Als Grundlage fungieren mathematische Prozessmodelle fürdie Partikelprozesse und den Wärme-
und Stoffübergang. Um dem verteilten Charakter der Partikelgröße Rechnung zu tragen, wird ein
populationsdynamischer Ansatz zur Beschreibung der zeitlichen Entwicklung der Partikelgröße
verfolgt. Dieser führt insgesamt auf partielle Integrodifferentialgleichungen zur Beschreibung
des zeitlichen Verhaltens der Partikelgröße, -feuchte und-temperatur. Die abgeleiteten Prozess-
modelle bilden den Kern des modellbasierten Regelungssystems.

Da die Implementierung von Prozessregelungen mitunter Informationen benötigt, die nicht di-
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rekt oder nur sehr aufwendig gemessen werden können, wie z.B. die Partikelgrößenverteilung,
werden in dieser Arbeit modellbasierte Messsysteme, auch bekannt als Zustandsbeobachter oder
Zustandsschätzer, entworfen, die es erlauben, die Größenverteilung aus leichter zugänglichen
Informationen dynamisch zu berechnen. Dies wird unter anderem durch die Rekonstruktion
der Größenverteilung aus der Messung des mittleren Partikeldurchmessers und der Nutzung der
Prozessmodelle demonstriert.

Zur Regelung der Partikelgrößenverteilung wird der Ansatzmodellprädiktiver Regelungen ver-
folgt: Basierend auf einer mit Hilfe des mathematischen Prozessmodells berechneten zukünftigen
Entwicklung des Sprühgranulationsprozesses wird durch die Lösung eines dynamischen Opti-
mierungsproblems der optimale Stellgrößenverlauf ermittelt, der die gewünschte Größenverteilung
am Ende des Batches bzw. die Stabilisierung eines instabilen Arbeitspunktes im kontinuierlichen
Prozess mit Sieb-Mahlkreislauf ermöglicht. Für die Regelung der Partikelfeuchte und -temperatur
werden Mehrgrößenregler eingesetzt, die die interne Verkopplung der Regelgrößen berücksichti-
gen.

Zunächst wird unter der Annahme idealer Messungen, d.h. alle zum Einsatz der Regler benötigten
Größen können direkt gemessen werden, gezeigt, dass die entworfenen Regler in der Lage sind,
die gestellten Ziele zu erreichen. Die Annahme wird dann fallen gelassen und durch Kombi-
nation der modellbasierten Messsysteme mit den entworfenen Reglern wird ein modellbasiertes
Regelungssystem erschaffen, das in der Lage ist, die gestellten Regelungsziele auch unter Vorlage
nicht-idealer Messinformationen, z.B. des mittleren Partikeldurchmessers an Stelle der Größen-
verteilung, zu erreichen.

Durch die Nutzung der mathematischen Prozessmodelle und dem Entwurf von modellbasierten
Messsystemen und Regelungen wird damit ein modellbasiertes Regelungssystem entworfen, dass
die Realisierung von wichtigen gewünschten Partikeleigenschaften in der Wirbelschichtsprühgra-
nulation ermöglicht.
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List of symbols

This thesis draws from a variety of fields of mathematics and engineering. In order to retain
as much standard notation from each field as possible, the symbols used in the main text, and
the appendices, are defined chapter-wise. When a symbol is re-defined in one chapter, it takes
precedence over the definitions in previous chapters. If ambiguity may arise in the use of a symbol
its meaning is re-stated at the point of use.

Chapter 2

Symbol Description Unit

cp specific heat capacity J kg−1 K−1

e property coordinate various
h height m
m mass kg
n number density function depending one andx
q0 normalised number density function m−1

p net production density depending one andx
r radius m
s solid, steady-state
t time s
u velocity m s−1

x spatial coordinate m
A surface area m2

B number flow rate of particles s−1

G particle growth velocity m s−1

H total enthalpy J
Ḣ enthalpy flow rate J s−1

K outlet kinetics s−1

Ṁ mass flow rate kg s−1

N total number of particles
NTU number of transfer units
P total net production of particles s−1

Q̇ heat flow J s−1

S surface of property space
T separation function
V volume m3

X,Y moisture content (kg liquid) (kg dry matter)−1

n outward normal vector
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Symbol Description Unit

α heat transfer coefficient W m−2 K−1

β mass transfer coefficient m s−1

η mass transfer efficiency
θ temperature ◦C
λ parameter
µ total moment of density function depending one andx
ν̇ normalised drying velocity
ξ particle size m
% mass density kg m−3

φ transport flux depending one andx
ψ mean porosity
∆hevap specific evaporation enthalpy J kg−1

Φ total flow of particles s−1

Ω property space

Chapter 3

Symbol Description Unit

e error
k state correction gain
p probability distribution
s chord length m
u input to system, manipulated variable
v bias (noise)
w weights
x state of dynamic system
x̂ estimate ofx
y measured variable
ŷ measurement calculated from ˆx
A, B,C,D matrices of linear state space system
E integral error
K observer gain matrix
M number of measured outputs
N number of states
O observability matrix
P, Q, R covariance matrix
S Cholesky factor
T horizon length s
U number of inputs
V Lyapunov function candidate
X set of sigma points
Y set of transformed sigma points
D finite-dimensional approximation of derivative operator

α design/tuning parameter
η, ω bias (noise)
λ eigenvalue of a matrix
∆t sampling interval s
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Chapter 4

Symbol Description

d disturbance signal
r reference signal
u manipulated variable
y output signal (measured, controlled)
C,P transfer function, matrix
G transfer function matrix
J cost functional
K controller gain
N number of horizons
Q, R weight matrix
T time constant, sampling time
C controller (abstract)
P process (abstract)

κ coupling factor
∆ deviation, increment
Ξ decoupling network

Appendices

Symbol Description Unit

a spectral weights
Ar Archimedes number
Gr Grashof number
Le Lewis number
Nu Nusselt number
Pr Prandtl number
Ra Raleigh number
Re Reynolds number
Sc Schmidt number
Sh Sherwood number

δ diffusion coefficient m2 s−1

η dynamic viscosity kg m−1 s−1

ϑ temperature ◦C
λ thermal conductivity W m−1 K−1

ν kinematic viscosity m2 s−1

ψ spectral nodes
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Symbol Description

0 smallest size considered, initial value
des desired
elu elutriation
evap evaporation
g gas
gp gas – particle
gw gas – wall
mf minimal fluidisation
nf noise-free
nuc nuclei
opt optimum
pw particle – wall
rec recycle
s solid
sample sampling
sat saturation
sus suspension, solution
v vapour
CLD chord-length distribution
E internal property space
M mill
X external property space
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Chapter 1

Introduction

1.1 Motivation and scope of the thesis

Major portions of all industrially processed goods exist inthe form of particulate substances. If
one generalises the term “particle” from the classical sense of grains to, for instance, solutions,
suspensions (solid material in liquid), aerosols (liquid droplets in gas), or gas bubbles in a liquid,
then up to three quarters of all processed goods fall into this category [99].

There are many examples of particulate products in everyday-life: milk powder, milled and roasted
coffee, instant cacao powder, and sugar, to name just a few. Additionally, particulate products play
an important role in other fields: health-care (e.g. in form of an active pharmaceutical ingredient
pressed into a tablet), in agriculture in the form of fertilisers, or in the chemical industry as catalyst
powders.

Particulate goods in the form of powders produced from liquid raw materials do have many ad-
vantages; they are for instance often easier to transport, store, and post-process than in their liquid
form. One illustrative example is milk: In its liquid form ishas to be kept cool at all times to
keep it from spoiling. However, if it is spray-dried, i.e. the water is removed from the emulsion by
drying, it can be stored at room temperature for a long time. The liquid form can easily be restored
at all times by just adding water to the powder.

The product properties can often be characterised by the particle properties, or rather the particle
properties affect the properties of the product. Important particle properties are for instance

• the particle size and form,

• the porosity of the particle,

• the moisture content, and

• the enthalpy (temperature).

The particle size and form determine for instance theflow-ability of a powder: If the particles in
the powder are too small, then cohesive forces between the particles prevent a free flow. This can
be observed by comparison of sugar powder and crystal sugar:Although both products consist
of the same material, sugar powder flows less freely because of the smaller size of the particles.
The size also has great influence onsafety and environmental issues: If a particulate commodity
is produced from toxic material and dust is produced and set free, the danger of inhaling the toxic
substance exists, which may lead to long-term health degradation. On the environmental side, the
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release of a herbicide dust may lead to the decease of essential insects if they consume the very
fine particles. Additionally, very fine powders pose the danger of explosion, if they are dispersed
in a gaseous medium.

Apart from these aspects, the particle size can have an influence on theefficiencyof a product, e.g.
in pharmaceuticals: Here, the aim may be the production of a tablet with a pre-defined dissolution
characteristic of the active ingredient. This characteristic is influenced by the thickness of a coating
layer that is applied to the active ingredient to shield it from the acids, mostly hydrochloric acid,
in the stomach. The efficiency of the active ingredient strongly depends on the quality of the layer:
If it is too thin, the ingredient becomes active before it reaches its desired destination (often the
intestine) – if it is too thick, it may not dissolve at all.

The porosity of the particle also has influence on the productproperties: If the particle is very
porous then it may have a decreasedstorage stability, i.e. the particle may crumble under appli-
cation of forces, for example the weight of other particles.This may lead to a layer of dust-like
particles at the bottom of a storage container. It can also influence the efficiency of product: As
was mentioned above, in pharmaceuticals the aim is to produce a product with a pre-defined dis-
solution characteristic. If the particle is too porous the active ingredient may be released too fast,
leading in a worst case to an overdose, if it is too compact therelease may be too slow, and the
ingredient may have only a very limited effect.

Moisture content and temperature have an influence on the transport and the storage of the product.
If the commodity is too moist it may form very large particlesthat cannot be used any further. One
example is the production of sugar: If the sugar is put into a silo with too high a moisture content
and temperature, it will form – by cooling – a particle with the size of the silo (in the worst
case). To prevent such events a post-processing of the commodity is often necessary, i.e. drying
and cooling. These are two energy-extensive processes withgreat influence on the cost of the
production, i.e. the particle properties can have an influence on theeconomicsof the product.

Additionally, the porosity of the formed particle is influenced by the humidity and the temperature
during the process. This can be seen in Fig. 1.1 where particles with a different final porosity are
produced. Depending on the product specifications, the moisture of the particles and the gas, and
the temperature have to be regulated for the product to comply to the desired specifications.

For the production of particulate substances from liquid starting material (solutions, emulsions,
or suspensions) various processes exist: e.g. crystallisation, granulation, and spray drying. These
can be further specialised depending on the characteristiceffect that is used for the transformation,
for example cooling crystallisation or spray granulation.

Crystallisation and granulation are complex dynamic processes, involving multiple phases (fluid
and solid), heat and mass transfer between these phases, as well as particle formation processes.

One process that is often used in industries, e.g. in pharmaceuticals, foods, and fertilisers, is
fluidised bed spray granulation. It allows for the production of a dustless, free-flowing particles
from liquid raw materials: The suspension (or solution) is sprayed onto particles in the process
chamber and due to drying – the bed is fluidised by hot air – the liquid evaporates. The remaining
solid builds up a new layer of solid material on the particles. A simplified schematics of this
process is shown in Fig. 1.2.

Furthermore, fluidised bed spray granulation can be run in batch as well as continuous mode, and
drying and particle formation processes can be coupled and run simultaneously in one apparatus.
The structure of the apparatuses is simple, and due to the high heat and mass transfer between
the phases induced by the fluidisation, compact plants – compared to other technologies – can be
designed. A detailed presentation of fluidised bed spray granulation is postponed for the moment,
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d e f

g h i

Figure 1.1: Influence of the humidity and the process temperature on the final structure of the
produced particles [55]. From left to right: Increase in humidity; from top to bottom: increase in
process temperature.

Suspension

Air

Air

Gas distributor

Bed

Figure 1.2: Simplified schematic of a fluidised bed spray granulation process. Instead of a suspen-
sion, solutions or melts are also sprayed in many applications.
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but will be given in Chapter 2.

In the practical realisation of particle formation processes the following problem arises: The par-
ticles are not uniform, i.e. they differ in their properties, for instance in size, form, or colour. This
means that the particles in the powder do possess a distribution with respect to their properties,
and therefore the product also possesses a property distribution. Given a product specification then
requires that the distribution lies within the limits posedby the specifications to be accepted by a
customer.

The product specifications can be very strict, for instance in processes with costly raw materials
or where the product is a hazardous good, and are further increasing. The need to guarantee that
the product complies to the specification motivates the use of process controlsystems in particle
processes. Today, practically implemented control systems mostly concentrate on the regulation of
heat and mass transfer (e.g. product moisture and temperature), and integral values (e.g. total mass
of product) or mean values (e.g. mean particle size) of the particles. Although the control schemes
are for most part sufficient for their tasks, they cannot guarantee that the property distribution as
a whole complies to the specifications. This means that in light of the increasing strictness of
product specifications the control schemes have to be improved.

The basis for almost all control scheme design methods is formed by mathematical models that
represent the dynamic behaviour of the processes – in this case of heat and mass transfer and
particle formation.

The problem with these processes is that they aredistributed parameter systems, and have to be
modelled mathematically by non-linear partial differential equations to account for the distributed
character. The mathematical analysis of this class of systems is in general intricate and the design
of a control scheme for a property distribution is thereforea challenging task. The necessity for
a controller to have information on the current state of the process, e.g. the current property
distribution, leads to another challenging task: the measurement of property distributions.

In this thesismodel-based control schemesfor the control of particle size distributions in two
practically relevant fluidised bed spray granulation processes – batch granulation and continuous
granulation with external classification and particle recycle – are devised. The thesis focuses in a
first part on the reconstruction of particle size distributions from process measurements bymodel-
based measurement systems; in a second part the feedback control of particle size distributions,
coupled with heat and mass transfer, bymodel-based controllersis considered.

1.2 Previous works

The topics of this thesis draw from several fields of mathematics and engineering. More precisely:

• Modelling of property-distributed systems

• Modelling of heat and mass transfer in fluidised beds

• Measurement of property distributions

• System theory and control of property-distributed systems

Modelling of property-distributed systems:In principle the modelling of property-distributed sys-
tems, i.e. the description of the dynamic behaviour of the property distribution of particles, can
be carried out on two levels: microscopic and macroscopic. On the microscopic level all particle
formation processes (e.g. interactions of the particles with other particles, or spray droplets) are
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modelled and evaluated for every single particle in the system. For reviews on the state-of-the-art
in microscopic modelling of particle formation processes,see for instance the articles of Iveson et
al. [62] and Deen et al. [28].

In the microscopic modelling community, often discrete element methods (DEM) and Monte-
Carlo methods are used for the description of the dynamic behaviour of the particulate systems, see
for instance [30, 112, 6, 106] for application of discrete element methods, and for the application
of Monte-Carlo methods [132, 76, 86, 153, 98, 135, 29].

Because of the explicit consideration of every single particle in the system, this approach has the
potential to produce very accurate results. However, for the description of real-world problems,
where the number of particles in the system can be extremely large, the actual computation of
the properties for each particle is not feasible. The practical use of microscopic modelling can be
found in the determination of the structure of kinetics of particle formation processes. Here, using
statistical theory, only a small number of particles – compared to an industrial process – has to be
considered.

Macroscopic modelling, on the other side, does not treat every particle separately: Particles with
the same properties, for instance size, are collected in property classes. In the limit, i.e. in-
finitesimal classes, a property distribution is obtained. The modelling then describes the temporal
evolution of a given property distribution under the occurring particle formation processes.

One well-established framework for the macroscopic modelling of property-distributed systems
that is well-suited for the modelling of industrial-scale processes, is thepopulation balance ap-
proach, introduced for problems in statistical mechanics by Hulburt and Katz in the 1960s [60].
To the field of particulate processes it was transported by the work of Randolph and Larson [115]
(with a focus on crystallisation); it was advertised and established in a series of journal publica-
tions by D. Ramkrishna and co-workers. These publications were later turned into a book that is
considered a standard reference [114].

In the literature, many successful applications of population balance modelling to particulate pro-
cesses can be found, for instance in

• crystallisation [77, 63, 85, 57],

• granulation [144, 52, 100, 142, 79],

• drying [140, 108, 107], or

• aerosol processes [9, 67] .

As the focus of this work lies on the application to industrial-scale plants, the macroscopic mod-
elling approach based on population balances will be used todescribe the dynamic behaviour of
the particle property distributions.

Modelling of heat and mass transfer in fluidised beds:Heat and mass transfer are classical topics in
thermal process engineering, and thus extensively investigated. In fluidised bed processes, the heat
and mass transfer is governed by the hydro- and thermodynamics of fluidised beds. They form a
complex topic: The basis of the hydrodynamics is set by the Navier-Stokes equation (conservation
of linear momentum of the fluid and the particles), the basis of thermodynamics is conservation
of total energy in the system. Due to the complexity of these equations, most approaches do
not use them directly, but derive empirical or semi-empirical models for the description of the
hydro- and thermodynamics, see for instance the reference works of Kunii and Levenspiel [75]
and Mörl et al. [100] for an extensive treatment of the hydrodynamics, and for example the works
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of Schlünder and Tsotsas [127], Groenewold and Tsotsas [50], Burgschweiger and Tsotsas [14]
for a presentation of the thermodynamics, or the recently published book seriesModern Drying
Technology[138] for a general treatment of heat and mass transfer in particulate systems.

Measurement of property distributions:In general, the task of measuring property distributions is
multifaceted, and many different measurement principles exist. A recent overview and practical
applications in various fields are given in the book of Merkus[99].

For the case of measuring the particle size distributions direct offline methods, e.g. sieving, and
in-line methods, for example laser-diffraction or focused beam reflectance, or fibre-optical meth-
ods [66, 124, 40] are available. Although these methods become increasingly popular, they suffer
from one important disadvantage: The probes do not measure the size distribution directly, but,
for example, a chord-length distribution. This proves to bea major obstacle in the direct use of
the measurements in process monitoring and control applications and makes the development of
a transformation from the chord-length to the particle sizedistribution necessary. It turns out to
be a difficult problem to which up until now only solutions for specialcases have been found,
see for instance [150, 66, 124, 40] for approaches, results,and limitations (e.g. the influence of
measurement noise).

A model-based approach, that has been in use in other fields ofchemical engineering for several
decades, has in recent years emerged in particle size measurement: model-based measurement
systems, also known as state observers or state estimators.The idea was conceived in the 1960s–
1970s by Kalman [68] and Luenberger [82] and extended in the following decades. Application to
various spatially distributed systems in chemical engineering can be found, see for instance [151,
69, 16, 90, 58, 152, 88] for applications in reaction engineering and fuel cells.

For particulate processes the methods are not yet established, but are gaining interest with the
increase in property-distributed modelling, as evidencedby some recent work in crystallisation
and fluidised bed spray granulation [91, 89, 13, 87].

As model-based measurement schemes can offer many advantages over classical and in-line mea-
surement systems, that will be detailed in Chapter 3, the focus in this thesis will lie on this type of
measurement systems.

Systems theory and control of property-distributed systems: Property-distributed systems are sys-
tems with distributed parameters and are from an systems-theoretic point of view infinite-dimen-
sional. The mathematical theory is in general very complex.This is the main obstacle in the
analysis and development of general control design methodsfor distributed parameter systems.

Over the decades various efforts have been taken to establish a systems theory for infinite-dimen-
sional systems. So far, only the linear case is at a level comparable to finite-dimensional systems,
major contributions are [147, 45, 42, 27, 103, 8, 26]. However, even in the linear case the theory
is mathematically highly involved, drawing from operator theory, and functional analysis.

In the case of nonlinear distributed system the treatment isrestricted in most cases to practically
important process structures, see for instance [23, 128, 21, 22]. Nonetheless, control schemes are
successfully designed for distributed parameter systems,for applications to spatially-distributed
systems see for instance [69, 21, 22, 118, 3, 88, 2].

There are also contributions in the field of property-distributed processes available, for instance

• Kalani and Christofides [67]: nonlinear controller design applied to an aerosol process on
the basis of a reduced model,

• Chiu and Christofides [20]: nonlinear controller applied toa crystallisation process on the
basis of a reduced model.
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• Pottmann et al. [110] design a model-predictive controllerfor a drum granulation system;

• Vollmer and Raisch [141] design a stabilising controller for an unstable crystallisation pro-
cess usingH∞-theory;

• Shi et al. [130] design a model-predictive controller for a batch crystallisation process;

• Dueñas Díez et al. [36] control inventories of a property-distributed process by passivity-
based control.

• Villegas et al. [140] present a distributed control scheme in a batch fluidised bed dryer; and

• Glaser et al. [46] present the design of a model-predictive controller for continuous drum
granulation.

Recently, Palis and Kienle [104, 105] presented results on stabilisation of unstable steady-states
in continuous fluidised bed spray granulation usingH∞-theory and discrepancy-based control, as-
suming that the size distribution of particles can be measured. Apart from this publication, the
control of particle property distributions in fluidised bedspray granulation, especially in combina-
tion with model-based measurement systems, has not received much attention.

Because of the high practical importance of these processes, this thesis aims at closing the gap
by developing a model-based feedback control system for fundamental product properties, for
example the particle size distribution, the particle moisture content, and the particle temperature,
in fluidised bed spray granulation in batch, as well as continuous processes. In addition to the
task of designing suitable feedback controllers, a main focus lies on the reconstruction of particle
property distributions from available plant measurements.

The basic components for all tasks which will form a control system are mathematical process
models that describe the dynamic behaviour of the spray granulation process.

1.3 Outline of the thesis

This thesis consists of four chapters covering the mathematical modelling of fluidised bed spray
granulation processes, the model-based measurement of particle size distributions, and the design
of feedback controllers to achieve desired product properties. In detail:

In Chapter 2 the dynamic process models are derived: Starting with fluidised bed processes and
their characteristics in general, spray granulation processes are presented. The modelling starts
with the consideration of the particles in the process; all process assumptions used in the remainder
of the text are motivated and stated. To describe the dynamicevolution of the particle property,
i.e. the particle size, a population balance approach [114]is used. Afterwards, a mathematical
analysis of the process dynamics for the batch and the continuous process with particle recycle is
presented. The chapter ends with the modelling of heat and mass transfer during spray granulation.

In Chapter 3 various concepts for model-based measurement systems are presented and applied
to the fluidised bed spray granulation processes with the aimof reconstructing the particle size
distribution from limited or noised process measurements.Different concepts are evaluated and
compared with each other.

Model-based feedback controllers for the particle size distributions in the granulation processes
are designed in Chapter 4. Additionally, feedback controllers for the heat and mass transfer are
designed. The feedback controllers and the model-based measurement systems are then linked to
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form the final model-based control scheme. The feedback controllers and the model-based control
scheme are evaluated and the results are discussed.

In Chapter 5, the main results of the thesis are summarised and an outlook to future research is
given.

In the appendices methods and concepts from mathematics, control engineering, and hydro- and
thermodynamics that are needed for certain sub-steps are summarised.
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Chapter 2

Mathematical modelling of fluidised bed
spray granulation processes

As was motivated in the introduction, the aim of this thesis is the control of product properties in
fluidised bed spray granulation processes. The basis for controller design is a dynamic process
model. In principle, the more accurate the process description the more can be said about the
process result. But an overabundance of details may also drastically complicate the controller
design process, so at some point assumptions are made, that will later on simplify the controller
design without sacrificing too much in the accuracy of the process result.

In this chapter, at first a general overview on the principlesand applications of fluidised bed pro-
cesses is given. Afterwards a phenomenological description of spray granulation is presented. In
section three the concepts of population balance modellingare introduced. In the subsequent sec-
tions these concepts are applied to a batch spray granulation and a continuous granulation process
to describe the temporal evolution of the particle propertydistribution. After a discussion of the
general dynamic behaviour of these processes, a dynamic model for the heat and mass transfer
during spray granulation is derived.

2.1 Fluidised bed processes

An apparatus consisting of a process chamber with a distributor plate at its bottom, that can be
passed by a flow of fluid (gas or liquid), is considered. On top of the distributor plate apacked
bed, i.e. particles at rest (also:fixed bed), with mean porosityψ is situated, Fig. 2.1(a).

Now a fluid flow is applied to the apparatus via the distributorplate. If a certain mass flow rate
(corresponding to a fluid velocity) is reached, a loosening of the bed is observed, and the particles
hover and move randomly in the bed. This state is calledfluidised bed(Fig. 2.1(b)); the minimum
velocity necessary to reach it is called minimum fluidisation velocity. An expansion of the bed
height, compared to the initial fixed bed, and a change in porosity can also be observed. Further
increasing the fluid flow yields a further expansion of the bedand an intensive mixing of the
particles in the bed, see Fig. 2.1(c). Macroscopically, theparticles behave like a fluid in this state.
If the fluid flow is further increased, at some point the particles are transported out with the fluid
flow. This state is called pneumatic transport orelutriation of particles; the corresponding fluid
velocity is called elutriation velocity (Fig. 2.1(d)).

The range of existence for a fluidised bed is defined by the two limit velocities: It starts at the
minimum fluidisation velocity and ends at the elutriation velocity [100].
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ug ≤ um f

(a)

um f < ug < uelu

(b)

um f < ug < uelu

(c)

ug ≥ uelu

(d)

Figure 2.1: Different stages of a fluidised bed: (a) fixed bed; (b)–(c) fluidisation; (d) pneumatic
transport (elutriation) [75].

Geldart [44] identified for two parameters, the mass densityand the diameter of the particles in
the bed, four groups (depicted in Fig. 2.2) with different fluidisation behaviour:

• Group C: Particles with a size less then 50µm fall into this group. They are very difficult to
fluidise because of the strong cohesive forces between the particles.

• Group A: Particles in a range of 50 – 200µm and a mass density in a range of 700 –
1400 kgm−3. These are not so difficult to fluidise but a strong expansion of the bed (even at
minimum fluidsation velocity) is experienced. Additionally, hardly controllable gas bubbles
build up in the bed.

• Group B: These particles with a range of 40 – 500µm and a density in between 1400 –
4000 kgm−3 are preferred for fluidised bed applications. Although herealso gas bubbles
build up, the amount depends only on the fluid velocity and caneasily be controlled.

• Group D: Particles with a very large size or with a very high mass density fall into this class.
They are difficult to fluidise by the setup described above (owning to bubble formation), but
can be fluidised quite well in a modified apparatus, the spouted bed.

There are several types of fluidised bed systems, e.g.

• gas-solid fluidised beds, and

• liquid-solid fluidised beds.

In order to use fluidised beds of particles of different sizes, the process chamber is widened at the
top. This yields a reduction of fluid velocity and allows particles up to a certain size to sink back
into the process chamber, thus reducing the amount of elutriated material. This extension of the
process equipment is of great importance if a bed with a very wide range of sizes is to be fluidised,
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Figure 2.2: Classification of particles into four groups depending on their fluidisation behaviour
after Geldart [44].

because as the minimum fluidisation velocity and the elutriation velocity depend on the particle
size it might happen that for some particle sizes the elutriation velocity has already been reached,
whereas for others the minimum velocity has barely been reached.

Fluidised bed processes are widely applied in different areas of chemical and process engineering,
for instance:

• mixing of particulate materials,

• classifying and sorting of particles, or

• drying.

An important application of fluidised bed processes is the production of granules. It is promoted
by the heat and mass transfer in the bed due to the mixing induced by the fluid flow. One way
to realise the production of granules is by spray granulation, which will be presented in the next
section.

2.2 Fluidised bed spray granulation

In fluidised bed spray granulation solid material, for instance in form of a suspension or a solution,
is sprayed onto the particles that are fluidised by a gas flow. For that purpose a nozzle is installed in
the process chamber. Most common configurations are: If the nozzle is installed above the particle
bed (at rest), it is called top-spray configuration. If the nozzle is situated at the bottom of the
process chamber, i.e. the particles are sprayed from below,it is called bottom spray configuration.

In both cases suspension (solution) droplets leave the nozzle and are deposited on the particles.
Due to the external heating of the fluidisation gas flow the liquid in the suspension evaporates, the
solid remains on the particle, see Fig. 2.3 where for two different process times particles taken
from a spray granulation process are shown. Due to the intensive mixing of particles in the bed,
the deposition of solid on a droplet can be considered uniform. Phenomenologically, a layering
growth of the particles and an increase in size is observed. This mechanism is depicted in Fig. 2.4.
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(a) (b) (c)

Figure 2.3: Evolution of a particle during spray granulation: (a) initial particle; (b) final particle;
(c) formed layer.

t = t0 t = t1 t = t2

spraying of suspension

Figure 2.4: Schematic representation of layering growth ofparticles by spray granulation.

If the solid contained in the spray is identical to the material of the particles in the bed, the process
is calledspray granulation. It is used for instance in food industries and in the production of fer-
tilisers (urea melt granulation). If the materials differ, the process is calledcoating. It finds wide
application in pharmaceuticals, for instance in the coating of the active pharmaceutical ingredient
with a protective layer, or in the production of tablets withseveral layers of different active ingre-
dients. The mechanism in both cases, however is the same: A suspension or solution is sprayed
onto some carrier particle, the liquid is evaporated and a new layer is formed.

Other effects that can occur during spray granulation are

• Pre-drying of droplets: When a droplet leaves the nozzle it comes almost instantaneously in
contact with the heated fluidisation gas and evaporation of the liquid starts. If the distance
to the bed is very large or drying is very fast, i.e. the gas flowis very hot and dry, the liquid
will evaporate before the droplet can deposit on a particle in the bed. The droplet will then
form a very small solid particle (a nucleus) on its own. This effect is callednucleation.

• If two particles with not completely dried surfaces collidein the bed, and the viscosity of
the suspension on the surface is sufficiently high, a solid bridge between the particles will
form. In the simplest case two particles will afterwards form a new, larger particle. This
effect is calledagglomeration. A criterion on the occurrence in fluidised bed processes has
been given by Ennis et al. [37].

• An effect opposite to agglomeration occurs if an agglomerate collides with another particle
or the walls of the process chamber. If the kinetic energy of contact cannot be absorbed by
the solid bridges the agglomerate will break. The effect is therefore calledbreakage. The
criteria when a bridge (or even a particle) will break are still investigated in solid process
engineering.

In the following spray granulation, i.e. the layering of particles, will be considered in a two-phase
setting: The solid particles are dispersed in the gas phase.In addition to the layering of particles
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heat and mass transfer over the phase boundaries occurs. In order to simplify the subsequent
modelling, the liquid is not considered as an individual phase but as a part of either the solid phase
(in the form of liquid) or the gas phase (in the form of vapour).

In general the particles in the bed are not uniform; they may differ in their properties, e.g. size,
enthalpy, moisture, porosity or form. Also the spatial position of each particle in the process
chamber will be different. If all particles are considered as individuals of a particle population,
and to each particle values for its properties are assigned that are chosen such that the product
can be characterised easily, then the population possessesadistributionwith respect to the chosen
properties.

The modelling of the change of this property-distribution,and thus the modelling of the process,
can be done by using thepopulation balance framework. The fundamentals will be presented
in the next section before it is applied to two configurationsof fluidised bed spray granulation
processes.

2.3 Fundamentals of population balance modelling

In the following a balance volume, for example, the process chamber of a fluidised bed process,
with a particle population with a total number ofN particles is considered. The change in number
in the system can be modelled as

dN
dt
= Φ(t) + P(t) (2.1)

whereΦ(t) denotes the net flow of particles over the system boundary, and P(t) is the net produc-
tion rate of particles in the system, i.e. summing all sub-processes that create new particles and all
sub-processes that consume particles.

This formulation, however, gives no information on the properties of the particles in the system.
To this end the notion of anumber density functionis introduced: It describes the number of
individuals (particles) that lie in the same infinitesimal property interval [ẽ, ẽ + dẽ]. The total
number of all particles in the system can then be expressed bythe number density function as
follows:

N(t) =
∫

Ω

n(t, ẽ) dẽ. (2.2)

HereΩ is the property-space of the particles, i.e. all possible valuesẽcan attain are included inΩ.
By convention, the number density is non-negative, i.e.n ≥ 0.

Population balance modelling is the description of the temporal evolution of the number density
function (or other functions derived from it, e.g. mass density function). For this, all sub-processes
have to be modelled in terms of the number density function. This concept was first introduced by
Hulbert and Katz [60], and extended by Ramkrishna [114] in the field of particulate processes.

The state of a particle is characterised by its properties. In general, two types of coordinates are
distinguished: external coordinates (the spatial position in the system, maximum of three), and
internal coordinates (particle properties, e.g. the size). In total, these properties span a property
state-space: Usually, during the process the properties ofa particle will change; this corresponds
to a movement in state-space. The modelling then describes the curve the particles trace out over
process time. This idea is depicted in Fig. 2.5 for one external coordinatex and one internal
coordinatee.

If the property state-space is written as the Cartesian product of the state-space of external prop-
ertiesΩX and the state-space of internal propertiesΩE, i.e.Ω = ΩX ×ΩE, the total number can be
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Figure 2.5: Movement of a particle in property state-space.

expressed as:

N(t) =
∫

ΩX

∫

ΩE

n(t, x, e) dedx , x ∈ ΩX, e∈ ΩE . (2.3)

The unit of the number density function is defined by the unitsof the properties:

[n] =
1

∏

i
[ei ]

∏

j
[x j ]

. (2.4)

In the special case of no external coordinates, i.e. dim(x) = 0, corresponding to a well-mixed
system, the following holds:

N(t) = V
∫

ΩE

n(t, e) de, (2.5)

with V = vol(ΩX) being the physical volume of the system.

In order to derive a balance, equation Eq. (2.3) is inserted into Eq. (2.1), yielding:

dN
dt
=

d
dt

∫

ΩX

∫

ΩE

n(t, x, e) dedx = Φ(t) + P(t) . (2.6)

If transport and production densities are introduced in an analogous way, i.e.

Φ(t) = −
∫

SX

∫

SE

〈ϕ(t, x, e), n〉dσe dσx , (2.7)

P(t) =
∫

ΩX

∫

ΩE

p(t, x, e) dedx , (2.8)

then the balance equation can be written as

d
dt

∫

ΩX

∫

ΩE

n(t, x, e) dedx = −
∫

SX

∫

SE

〈ϕ(t, x, e), n〉dσe dσx +

∫

ΩX

∫

ΩE

p(t, x, e) dedx . (2.9)

In the definition of the transport density (transport flux)ϕ, it is accounted for thatΦ only enters or
leaves via the system boundary. Therefore the flux is defined as a surface integral over the system
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boundary of the property state space. In order to account only for fluxes that leave or enter the
system in direction of the outward normal to the boundaryn, the standard Euclidean scalar product
of the flux with this normal is taken. The minus sign is introduced to comply to the convention that
outward-bound fluxes enter the balance equation with a negative sign, and inward-bound fluxes
enter the equation with a positive sign.

In order to further manipulate the balance equation, the surface integral is transformed into a
volume integral by Gauss’ theorem [54], yielding:

d
dt

∫

ΩX

∫

ΩE

n(t, x, e) dedx = −
∫

ΩX

∫

ΩE

div(ϕ(t, x, e)) dedx +
∫

ΩX

∫

ΩE

p(t, x, e) dedx . (2.10)

This equation is called theintegral formulationof the population balance equation.

If the volumes vol(ΩX) and vol(ΩE) are constant over time, differentiation and integration can be
interchanged on the left-hand side of the equation:

∫

ΩX

∫

ΩE

(

∂n
∂t
+ div(ϕ(t, x, e)) + p(t, x, e)

)

dedx = 0 . (2.11)

Observing that the integrals range over the same domain, andtherefore the integrand must vanish
in the interior of the domain, yields the differential orlocal formulationof the population balance
equation:

∂n
∂t
+ div(ϕ(t, x, e)) + p(t, x, e) = 0 . (2.12)

In case that the volumes vol(ΩX) or vol(ΩE) are not constant over time, the local formulation
can be derived by an application of Leibniz’ rule [54] to the integral formulation. The result is a
correction term that accounts for the change in number density due to the change in volume.

The result of this section is a formal balance law for the temporal change of the number density
function n. Open are the expressions for the transport fluxϕ and the production ratep. They
depend on the process to be modelled and therefore no generalexpression can be given. Further
required are initial and boundary conditions, depending onthe modelled process.

Before this concept is applied to two spray granulation processes in the next sections, an additional
notion is introduced: themoment of a distribution. In general, it is difficult to interpret the number
density function. However, there exist integral values of adensity function (a distribution) that are
easier to interpret. These quantities are called moments ofthe distribution. Limiting the scope to
a density function with only one property, thej-th moment is defined by:

µ j(t) =
∫

ΩE

ej n(t, e) de, j ≥ 0 . (2.13)

For certain j a physical interpretation is possible, for instancej = 0 gives the total number of
particles, i.e.µ0(t) = N(t). For higher moments the meaning ofe has to be taken into account.
If, for example,e is the particle size, thenµ1 is equal to the total length of particles (laid out and
measured in a row),µ2 is proportional to the surface area of all particles in the population, andµ3 is
proportional to the total volume of particles. The proportionality factors depend on the geometric
shape of the particles.

On the basis of the population balance equation dynamic equations for the moments can be de-
rived:

dµ j

dt
=

∫

ΩE

ej ∂n
∂t

de (2.14)
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Figure 2.6: Simplified schematics of a batch fluidised bed spray granulation process.

=

∫

ΩE

ej (−div(ϕ) + p) de. (2.15)

If the integral on the right-hand side can be evaluated for a given numberj in such a way that it
depends only on a finite number of lower-order momentsk ≥ j, then a closed moment system
of the population balance equation can be derived which willprovide valuable insight into the
behaviour of the process.

2.4 Modelling of batch spray granulation

In the following a fluidised bed apparatus as depicted in Fig.2.6 is considered: A suspension
or solution is sprayed into the process chamber on a fluidisedparticle bed by a nozzle. The
fluidisation gas is heated, so that the liquid in the suspension evaporates. The remaining solid
builds up new layers on the particles.

Batch processes are widely applied in industries, for instance in pharmaceuticals for the coating of
tablets, or in the production of fertilisers from bio-sludges [100]. From a practical point of view
the property distribution of the formed granules at the end of the batch is of interest.

Particle properties of interest can be the particle size, the particle moisture, and the particle temper-
ature. As was highlighted in the introduction these three properties can have significant influence
on the product characteristics.

In the following population balance modelling of batch spray granulation is performed, i.e. a
balance equation for the number density function of the particles in the process is derived.

Themain assumptionsused in the remainder of this thesis are:

• The number density function does not depend on the spatial position in the process, i.e.
there do not exist spatial gradients, that is the system is well-mixed. Furthermore,the pro-
cess chamber is modelled as a single-compartment vessel. This means that all particles can
receive new solid material, regardless of their position inside the bed. This neglects the typ-
ical division of the process chamber into multiple compartments, for instance a zone where
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particles receive new spray and a zone where only drying occurs. The particle movement
between the compartments is rather complex and still under investigation [79, 56].

• The process parameters are chosen such thatonly layering growth occurs in the process,
i.e. no agglomeration or breakage of particles. Nucleation, however, can occur and will be
handled separately. A criterion on how to choose the processparameters to obtain layering
growth was devised by Ennis et al. [37].

• Only spherical particles are considered, i.e. it is assumed that the initial particles are spheres
and remain spherical at all times. This assumption is justified by many experimental results,
see for instance the catalogue in Mörl et al. [100]. Based on this assumption,only the
characteristic size of a particle – the diameter –ξ is consideredto describe the size of the
particles.

• The formed layer of new material on the particle surface is assumed to be compact.Exper-
imental results show that the formed layer is porous, however, due to the lack of a verified
functional relationship between the process conditions and the resulting porosity, the as-
sumption of compact layers is made. In practical application, this means that the particle
size in the process, where the porous layer is formed, is underestimated by the particle size
in the model.

• It is further assumed that there isno distribution of particles with respect to temperature
θs and moisture content X, i.e. all particles have the same mean temperature and mean
moisture. This assumption can be motivated by the intensivemixing of particles and the
high heat and mass transfer in the bed.

Using these assumptions, the particles can be described by the number density functionn(t, ξ) and
the mean temperatureθs and the mean moistureX. In the following the dynamic equation for
the number density function is derived; the derivation of the mean temperature and the moisture
content is postponed to section 2.8.

During spray granulation, and the formation of new layers ofsolid material on the surface of
the particles, a growth in particle sizeξ can be observed. The growth velocityG can be defined
formally by

G =
dξ
dt
, (2.16)

i.e. the change of particle size with time.

In order to derive an expression for the transport fluxϕ the following reasoning can be used:
Consider a particle at timet with sizeξ. Due to layering growth, it will have at timet1 > t a size
ξ1 > ξ. This can be interpreted as a convective transport of the particle from the infinitesimal class
ξ to the infinitesimal classξ1. The distanceξ1 − ξ depends on the velocityG and the time interval
t1 − t. The transport flux is therefore expressed as

ϕ = Gn. (2.17)

Depending on the structure ofG different effects on a number density function can be observed.
For instance, ifG ∼ ξ larger particles will grow faster than smaller ones. This will yield a broad-
ening of the initial size distribution over process time. The reverse is true ifG ∼ ξ−1; here, the
distribution will become narrower, in the limitt → ∞ a mono-modal number density function
will be obtained. IfG ∼ 1 then no particle size is preferred, i.e. all particles growwith the same
velocity. The shape of the number density function is then preserved; it will only be shifted to
larger sizes over time.
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For the growth of spherical particles in fluidised bed spray granulation processes, Mörl et al. [100]
derived a surface-proportional growth velocity that has been validated by many experimental re-
sults. A generalisation of their idea is the following: If solid is sprayed with a mass flow ratėMsus

on a bed of spherical particles, then the solid is distributed proportionally to some momentµ j of
the size distribution in the bed.

The change in mass of a single particlemp can then be expressed as

dmp

dt
= Ṁsolid

f (ξ)
C j µ j

. (2.18)

Here,Ṁsolid is the mass flow of dry solid, that is sprayed into the system, i.e. the liquid medium is
not considered.C j is a constant factor such thatC jµ j can be interpreted physically. The function
f (ξ) relates the integral quantity expressed by the moment to a single particle of sizeξ, for example
the surface area of a particle.

Then the following can be derived:

%s
π

6
d(ξ3)

dt
= Ṁsolid

f (ξ)
C j µ j

, (2.19)

3ξ2 dξ
dt
=

6Ṁsolid

%sπC j µ j
f (ξ) , (2.20)

dξ
dt
=

2Ṁsolid

%sπC j µ j

f (ξ)

ξ−2
:= G j . (2.21)

In case of j = 2, i.e. a distribution of solid proportional to the surface area of the particles, the
constantC2 = π and the functionf (ξ) = πξ2, yielding the growth law

G2 =
dξ
dt
=

2Ṁsolid

%sπ µ2
, [G2] = m s−1 . (2.22)

as derived by Mörl et al. [100].

The growth velocity is not size-dependent, i.e. all particles in the bed grow with the same velocity.
It is however time-dependent as the total surface areaπµ2 of the particles will change over time.

This derivation yields the following population balance equation for the number density function:

∂n
∂t
+
∂

∂ξ
(G2n) = 0 . (2.23)

In order to solve this equation, initial and boundary conditions have to be formulated. At the
beginning of the processt = 0 the particles in the bed possess the number density function n0(ξ),
therefore the initial condition is:n(0, ξ) = n0(ξ).

A condition has to be posed at the left boundary of the size coordinate, here the flux of particles
entering the size range can be specified:

(G2n)(t, ξ0) = B0(t) , [B0] = s−1 . (2.24)

B0 denotes the number flow of particles having the smallest sizeξ0. This boundary condition can
be used to model the external input of nuclei into the system (a semi-batch configuration) or the
internal production of nuclei by spray drying, see for instance Vreman et al. [142].

From a mathematical point of view, this population balance model is a first-order non-linear partial
differential equation. It is not linear due to the non-linear dependence of the growth velocityG
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on µ2 which depends linearly on the number density functionn. An explicit analytical solution
of this equation is rather difficult, but qualitative results can be obtained as will be shown later in
Section 2.7.

This population balance model is a basic model for the description of batch spray granulation.
As was mentioned before, extensions of the model can be made by consideration of different
compartments in the process chamber, for instance a spray zone and a drying zone. Only in the
spraying zone the particles receive new solid material; in the much larger drying zone the particles
are only mixed and dried. Based on the characteristic residence time in the zones a transport of
particles from one zone into the other occurs [79, 56].

Although compartment models are not easy to parametrise, especially the residence times and
the sizes of the compartments, they allow for a modelling of dispersion effects (a widening) in
the number density function by relatively simple growth laws, for instance surface-proportional
growth. An alternative growth model that can be used to describe certain effects, e.g. dispersion,
can be derived as a convex combination of the growth lawsG j defined above:

G =
∑

j

λ j G j ,
∑

j

λ j = 1 . (2.25)

The constraint on theλ j is necessary in order to have mass conservation in the model.The deter-
mination of the maximum indexj and theλ j has to be done experimentally, a direct relation to
process parameters is still an open problem [56].

2.5 Modelling of continuous spray granulation with particle recycle
In comparison to a batch configuration, a continuous spray granulation offers many advantages:
In batch processes between two batches the plant has to be shut-down, cleaned, and refilled with
starting material. This leads to a discontinuous product flow. In a continuous spray granulation
a continuous production is possible by adding new initial particles or recycling portions of the
product flow. The continuous process attains a steady-state, thus guaranteeing a steady flow of
product with steady properties. This is especially advantageous if large quantities of the product
have to be produced. Additionally, energy and maintenance costs are known to be smaller than for
comparable batch apparatuses.

In the following a continuous spray granulation process as depicted in Fig. 2.7 is considered. The
core of this configuration is a process chamber with a nozzle as in the batch process. The process
chamber is augmented by an outlet tube that is installed in the centre of the gas distributor plate.
During granulation particles will leave the chamber by thistube. This mass flow is then screened
twice: The over-sized particles from the first screen are sent to a mill where they are milled and
then re-fed into the process chamber. The under-sized particles are screened once more. Here, the
over-sized particles are accepted as product, whereas the undersized particles are also re-fed into
the process chamber for further growth.

For population balance modelling of the number density function of particles in the bed, the same
assumptions as in the batch configuration are used. This means that the population balance equa-
tion for the batch process can be used as a basis for the continuous process – it only has to be
augmented by terms accounting for the particle outlet and the re-cycle of particles.

For that purpose the screens and the mill have to be modelled by population balances. Here the
following simplifying assumptions are used:

• No hold-up of particles in the screens and the mill, i.e. theywork quasi-stationary. This
assumption is justified as long as the residence times of particles in the screens and the mill
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Figure 2.7: Schematics of a continuous spray granulation process with external classification and
particle recycle.

are significantly smaller than the residence time of the particles in the process chamber. This
implies that the screens and the mill have to be designed suchthat they can handle the mass
flows of particles swiftly.

• No breakage of particles due to the stress of the screening.

• Constant screening and milling characteristics, i.e. no change in the characteristic behaviour
of the screens and the mill due to ageing or heavy use.

• Mass conservation during milling of particles.

Then the mass flows of particles, expressed as number densityfluxes, can be written as

ṅos(t, ξ) = T(ξ) ṅ , (2.26)

ṅus(t, ξ) = (1− T(ξ)) ṅ , (2.27)

where the subscriptosdenotes the over-sized portion of the particle flow ˙n, and the subscriptus
denotes the under-sized portion.

The functionT(ξ) is called theseparation functionof the screen and determines up to which size
particles are classified as under-sized or over-sized, respectively. In the ideal case all particles
below the characteristic size of the screen are classified asunder-sized, all other sizes are charac-
terised as over-sized. The separation function is in this case described by a Heaviside function.
In reality, however, also some particles with a size lower than the characteristic size are classified
as over-sized and – vice versa – some particles with a size larger than the characteristic size are
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Figure 2.8: Ideal (solid line) and real case (dashed line) ofa separation function of a screen. In
the figure the characteristic value of the screen is denoted by ξ50. Although the value is the same
in both cases the screening results will differ.

classified as under-sized. The amount of particles that are separated erroneously is determined by
the shape of the separation function. This situation is depicted in Fig. 2.8, and leads to an error in
the screening result.

The modelling of the mill is more difficult: In general, the particles having passed the mill possess
a size distribution depending on the characteristics of themill:

ṅmill = Bmill(t) q0,mill (ξ) . (2.28)

In this equationBmill denotes the number flow rate of particles after milling, andq0,mill is a nor-
malised size distribution of the milled particles. The number flow rate of milled particles can be
related to the mass flow rate of particles that are put into themill:

Bmill(t) =
6 Ṁmill (t)

%sπ
∞
∫

ξ0

ξ3 q0,mill (ξ) dξ

. (2.29)

The practical determination ofq0,mill proves to be difficult and depends on many material prop-
erties as well as parameters of the mill (e.g. milling velocity), so that even for one mill different
distributions are obtained for different materials.

If it is assumed that all particles are milled down to one sizeξM, thenq0,mill = δ(ξ − ξM), a Dirac
function, andBmill = Ṁmill/mξmill , wheremξmill is the mass of one milled particle.

The number density flux of particles re-fed into the process chamber consists of the under-sized
particles of the second screen and the milled particles, i.e.

ṅrecycle= (1− T2(ξ))ṅus,1 + ṅmill = (1− T1(ξ))(1− T2(ξ)) ṅout + ṅmill . (2.30)

The population balance equation can then be written as

∂n
∂t
+
∂

∂ξ
(G2n) = −ṅout + ṅrecycle, (2.31)

with an initial conditionn(0, ξ) = n0(ξ), and a boundary condition (G2n)(t, ξ0) = B0(t).
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A still open problem is the determination of the outlet flux ˙nout that leaves the process chamber
by the outlet tube. If it is assumed that no particle size is preferred, then the particle outlet can be
expressed proportional to the number of particles that possess a certain size:

ṅout = K n , (2.32)

whereK determines the amount of outlet flux. From practical considerations, e.g. product mass
flow, hydro- and thermodynamic behaviour, it is desired to have a constant massmbed,re f of parti-
cles in the process chamber. One way to achieve this is given in the article of Heinrich et al. [52]:

K = 1−min

(

1,
mbed,re f

mbed

)

. (2.33)

This outlet kinetics represents a non-linear, switching feedback controller, that allows for an almost
exact control of bed mass fort → ∞.

A different way to control the bed mass can be derived from the moment model of the process:
The third momentµ3 is proportional to the bed mass (via the total volume of particles). A constant
mass requires the time derivative ofµ3 to vanish. From this constraint the following ideal, quasi-
static controller can be derived:

∞
∫

ξ0

ξ3
[

∂n
∂t
+
∂

∂ξ
(G2n)

]

dξ =

∞
∫

ξ0

ξ3
[

−ṅout + ṅrecycle

]

dξ (2.34)

=

∞
∫

ξ0

ξ3 [−ṅout + (1− T1(ξ))(1− T2(ξ))ṅout + ṅmill
]

dξ .(2.35)

Using the assumption that the total mass flow of particles entering the mill is conserved, this
equation can be further simplified:

∞
∫

ξ0

ξ3
[

∂n
∂t
+
∂

∂ξ
(G2n)

]

dξ =

∞
∫

ξ0

ξ3 [−1+ (1− T1(ξ))(1− T2(ξ)) + T1(ξ)
]

ṅout dξ (2.36)

=

∞
∫

ξ0

ξ3 [−T2(ξ)(1− T1(ξ))
]

Kndξ . (2.37)

The left-hand side evaluates to

∞
∫

ξ0

ξ3
[

∂n
∂t
+
∂

∂ξ
(G2n)

]

dξ =
dµ3

dt
− B0 ξ

3
0 − 3

∞
∫

ξ0

ξ2 G2ndξ , (2.38)

making use of partial integration, the posed boundary condition and the assumption that forξ →∞
the number density function tends sufficiently fast to zero.

Posing the condition dµ3/dt = 0, the open-loop controller for the particle outlet can be obtained

K =

B0 ξ
3
0 + 3

∞
∫

ξ0

ξ2 G2ndξ

∞
∫

ξ0

ξ3 [

T2(ξ)(1− T1(ξ))
]

ndξ

. (2.39)
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which is for B0 = 0 the result reported by Radichkov et al. [113]. Although this quasi-static
controller guarantees a constant bed mass for all times, it is more complex than the one proposed
by Heinrich et al. [52]: It requires the knowledge of the sizedistributionn in order to calculate the
value ofK. Furthermore, it is only an open-loop controller due to the missing comparison of the
actual bed mass and the reference value.

As the process is a continuous one it does possess a steady-state. This is calculated in the following
section.

2.6 Derivation of the steady-state distribution in continuous spray
granulation

In this section thesteady-state number density functionis derived before in the next one the dy-
namics of the two process configurations are analysed.

The population balance equation for the number density function n(t, ξ) can be written more ex-
plicitly as:

∂n
∂t
+
∂

∂ξ
(G2n) =

[

(1− T1(ξ))(1− T2(ξ)) − 1
]

Kn+ p(ξ, n) , (2.40)

with the separation functions of the two screensT1 andT2, respectively. The number flow of milled
particles is written asp(ξ, n), e.g. p = Bmill(t) q0,mill (ξ). The boundary condition is formulated as
(G2n)(t, ξ0) = B0(t).

At steady-state the variablesG2, K, B0 andBmill attain constant values:Gs, Ks, B0,s andBmill,s.
Furthermore, the steady-state number density function is denoted byns. Observing that at steady-
state∂n/∂t = 0, the population balance equation at steady-state can be written as

Gs
dns

dξ
=

[

(1− T1(ξ))(1− T2(ξ)) − 1
]

Ksns + ps(ξ, ns) . (2.41)

To simplify the notation in the following calculations the following abbreviation is introduced:

Γ(ξ) =
[

(1− T1(ξ))(1− T2(ξ)) − 1
]

. (2.42)

This yields

Gs
dns

dξ
= Γ(ξ) Ksns + ps(ξ, ns) . (2.43)

From a mathematical point of view, this is an inhomogeneous first-order linear ordinary differential
equation with a variable coefficientΓ(ξ). This type of equation can be solved by a combination of
separation of variables and variation of constants [61].

The homogeneous solutionns,h, i.e. the solution to the equation forps ≡ 0 can be obtained by
separation of variables:

ns,h(ξ) = C exp


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




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
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


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







. (2.44)

The constant of integration can be calculated from the boundary condition, i.e.C = B0,s/Gs. The
homogeneous solution then reads

ns,h(ξ) =
B0,s

Gs
exp












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


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
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Γ(y) dy


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


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







=
B0,s

Gs
exp(F(ξ)) , (2.45)
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where the functionF has been introduced to simplify the notation in the following steps.

Following the theory of linear ordinary differential equations the general solution to the inhomo-
geneous problem can be found by adding one particular solution of the inhomogeneous problem
ns,i to the solution of the homogeneous one, i.e.ns(ξ) = ns,h(ξ)+ ns,i(ξ). To that purposevariation
of constantsis used: Using the ansatzns,i(ξ) = C(ξ) exp(F(ξ)) and inserting into the steady-state
population balance equation yields:

dC
dξ

exp(F(ξ)) +C(ξ)
d
dξ

[

exp(F(ξ))
]

= Γ(ξ)
Ks

Gs
C(ξ) exp(F(ξ)) +

1
Gs

ps(ξ), (2.46)

dC
dξ

exp(F(ξ)) =
1

Gs
ps(ξ) . (2.47)

The last equation is obtained by application of the differentiation rules for parameter integrals to
the functionF(ξ). The unknown functionC(ξ) can then be calculated:

C(ξ) =

ξ
∫

ξ0

exp(−F(z))
1

Gs
ps(z) dz. (2.48)

Here the constant of integration is omitted because only onesolution is needed. The inhomoge-
neous solution then reads:

ns,i(ξ) = exp(F(ξ))




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
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
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

. (2.49)

The steady-state number density function for continuous fluidised bed spray drying with external
classification and particle re-cycle forarbitrary separation and milling functionsT1, T2, andq0,mill

can then be written as

ns(ξ) =
B0,s

Gs
exp(F(ξ)) + exp(F(ξ))























ξ
∫

ξ0

exp(−F(z))
1

Gs
ps(z) dz
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
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



. (2.50)

with

F(•) = Ks

Gs

•
∫

ξ0

Γ(y) dy , Γ(•) = [(1 − T1(•))(1− T2(•)) − 1] . (2.51)

Given the separation functionsT1 andT2, and the milling functionq0,mill the qualitative shape of
the steady-state number density function can be determined. For the general case, this has to be
done numerically due to the evaluation of the integrals, butfor ideal functions the shape of the
steady-state number density function can be constructed quite easily.

For the case of ideal separation functions (withξ1 andξ2 denoting the separation diameters), i.e.

T1(ξ) =

{

0 ξ < ξ1,

1 ξ ≥ ξ1
, T2(ξ) =

{

0 ξ < ξ2,

1 ξ ≥ ξ2
, (2.52)

in connection with the ideal milling functionq0,mill = δ(ξ − ξM), the shape of the steady-state
distribution can be further specified.

An evaluation of the integral defined in functionF(ξ) yields

F(ξ) =

{

0, ξ < ξ2,

−Ks
Gs

(ξ − ξ2), ξ ≥ ξ2
; (2.53)
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Figure 2.9: Qualitative shape of the steady-state number density distribution in continuous flu-
idised bed spray granulation with external classification and particle re-cycle for the case of ideal
screening and milling.

furthermore, using the ideal milling function

ξ
∫

ξ0

exp(−F(z))
1

Gs
ps(z) dz=

{

0, ξ < ξM,

exp(−F(ξM))ps(ξM) 1
Gs
, ξ ≥ ξM

. (2.54)

The steady-state number density function can then be written as a piece-wise function:

ns(ξ) =



















B0,s/Gs, ξ < ξM ,

B0,s/Gs + exp(−F(ξM)) ps(xM)/Gs, ξM ≤ ξ < ξ2 ,

B0,s/Gs exp(F(ξ)) + exp(F(ξ)) exp(−F(ξM)) ps(ξM)/Gs, ξ ≥ ξ2

. (2.55)

The rangeξ < ξM is completely defined by the boundary flow of nuclei; the middle rangeξM ≤
ξ < ξ2 is defined by the superposition of the nuclei flow and the flux ofmilled particles. In
the rangeξ ≥ ξ2 the steady-state number density function is determined by the superposition of
two decaying exponential functions, becauseF(ξ) < 0,∀ξ > ξ2. An example of a steady-state
distribution for the ideal case is shown in Fig. 2.9.

For real, smooth, separation and milling functions a smoothing at the boundaries of the three
ranges will occur. The widths of the ranges are determined bythe choice ofξ0, ξM, and ξ2.
Additionally, the following tendencies can be identified: (a) An increase inB0,s will increase
the magnitude of the number density function; (b) an increase in Gs will yield a decrease in the
magnitude; and (c) an increase inKs will yield a faster decay of the number density function in
the third range (ξ ≥ ξ2).

In order to determine the quantitative shape of the steady-state distribution the values ofB0,s,
Bmill,s, Gs andKs have to be calculated. The only additional information available are the process
parameters, e.g. the mass flow rate of external nuclei, and the reference value for the bed mass
mbed,re f .

The value ofB0,s can be calculated directly from the steady-state mass flow rate of nucleiṀnuc,s:

B0,s =
Ṁnuc,s

π %sξ
3
0

. (2.56)

The calculation ofGs, Ks andBmill,s cannot be carried out in that way due to the occurrence of
these values in the steady-state distribution. They can be calculated as the solution of a nonlinear
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system of equations given by:

0 = Ks −
[

1−min

(

1,
mbed,re f

mbed,s

)]

, mbed,s =
π

6
%s

∞
∫

ξ0

ξ3 ns(ξ) dξ (2.57)

0 = Gs−
[

2Ṁsolid,s

%sπ µ2,s

]

, µ2,s =

∞
∫

ξ0

ξ2 ns(ξ) dξ , (2.58)
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. (2.59)

This non-linear root-finding problem can be solved iteratively, for instance by a Newton-Raphson
algorithm. The number of iterations necessary and the convergence of the algorithm to a solution
depends on the initial guesses forGs, Ks andBmill,s.

In principle, the steady-state number density distribution can be obtained in the way shown in this
section, and will prove a valuable tool in the forthcoming chapters.

In the next section it will be investigated what kind of dynamic behaviour can be expected in
batch spray granulation and continuous spray granulation with external classification and particle
recycle.

2.7 Mathematical analysis of particle dynamics

In this section basic results for the process dynamics of thetwo fluidised batch processes consid-
ered in this thesis are summarised. After a discussion of batch spray granulation the analysis is
devoted to the continuous case.

2.7.1 Batch spray granulation

From a mathematical point of view the population balance equation for the number density func-
tion in a batch spray granulation process

∂n
∂t
+
∂

∂ξ
(G2n) = 0 (2.60)

is a non-linear (quasi-linear) partial integro-differential equation, due to the occurrence of the
sought functionn in the growth rateG2 defined in Eq. (2.22). An initial condition is given by
n(0, ξ) = n0(ξ), and a boundary condition can be formulated as (G2n)(t, ξ0) = B0(t).

A qualitative discussion of the process dynamics can be obtained by an application of themethod
of characteristics. The fundamentals are presented in Appendix C; a straight-forward application
to the initial value problem yields the characteristic system

dt
dθ
= 1, t(0, s) = 0, (2.61)

dξ
dθ
= G2, ξ(0, s) = s, (2.62)

dn
dθ

= 1, n(0, s) = n0(s) . (2.63)
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Figure 2.10: Characteristic curves in the (t − ξ)-plane obtained by the method of characteristics.

The growth velocity is a strictly monotonically decreasingfunctionG2(µ2) ∼ µ−1
2 and will there-

fore in the case ofṀsus, 0 attain a limit fort → ∞: lim
t→∞

G2(µ2(t)) = 0.

The slope of the characteristic curves in the (t − ξ)-plane is given by

dt
dξ
=

1
G2

, (2.64)

i.e. the slope will tend to infinity. The characteristic curves for the batch process are depicted in
Fig. 2.10.

As the local slope is identical for all characteristic curves starting from the initial condition, which
follows from the fact that all sizes are transported with thesame velocityG2, no intersection
of characteristic curves can occur. This means that no shock-formation in the solution is to be
expected. The characteristic curves originating from the boundary condition can be obtained by
re-parametrising the solution domain. They also have a slope of dt/dξ = 1/G2. This means the
characteristic curves are parallel to each other at each point in time and an intersection, i.e. the
formation of a shock is in general not possible. Care has to betaken at the point (t0, ξ0): Here two
characteristics originate, and the values of the initial and the boundary condition at this point have
to be consistent, in order to avoid a shock in the solution. Inthe batch case, i.e.B0(t) = 0, this
requires lim

ξ→ξ0+
n(0, ξ) = 0.

Using the definition of a momentµ j of a number density function (cf. Eq. (2.13)), two important
results can be derived via the dynamic moment equations:

dµ0

dt
= B0(t) , (2.65)

dµ3

dt
= B0(t)ξ

3
0 + 3G2 µ2 (2.66)

= B0(t)ξ
3
0 +

6Ṁsolid

%sπ
. (2.67)

From the first equation follows that in case ofB0 = 0 the total number of particles in the system is
conserved. From the second equation follows that the third moment, which is proportional to the
total mass of particles, is decoupled from all other moments, i.e. the equation describes solely the
change in mass due to solid spray and nuclei feed. This will have important ramifications in the
design of model-based measurement systems and feedback controllers for this process.
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Table 2.1: Process parameters for the continuous spray granulation process

Initial bed mass [kg] mbed 10.0
Reference bed mass [kg] mbed,set 10.0
Mass flow of nuclei [kg s−1] Ṁnuc 5.55× 10−5

Mass flow of solid [kg s−1] Ṁsolid 1.38× 10−2

Solid density [kg m−3] %s 1440.0
Size of nuclei [m] ξ0 0.1× 10−3

Screen size upper screen [m]ξu 0.5× 10−3

Screen size lower screen [m]ξl 0.4× 10−3

Milling diameter [m] ξM 0.35× 10−3

Milling diameter (osc.) [m] ξM 0.2× 10−3

2.7.2 Continuous spray granulation with particle recycle

The continuous process utilises the same growth model as thebatch process, so new dynamic
behaviour can only be introduced by the outlet and the particle re-cycle. The process configuration
of a continuous spray granulation with external classification and particle re-cycle was extensively
investigated by Heinrich et al. [52] and Radichkov et al. [113] concerning the dynamic behaviour.
As was shown in Radichkov et al. the process exhibits different dynamic behaviour depending,
amongst others, on the value of the milling sizeξM: For a certain range a stable steady-state
distribution is attained, but for a large parameter range the system exhibits sustained oscillations
in the number density function.

This qualitative change in behaviour (abifurcation) is exemplified in Fig. 2.11 and Fig. 2.13 (for
the process conditions given in Tab. 2.1), where by a change in the milling diameterξM sustained
oscillations result. Also shown is in Fig. 2.12 and Fig. 2.14that the momentsµ j ( j = 0, 1, 2, 3),
representing total number of particles, total length, total surface area, and total mass also exhibit
the non-linear oscillations.

The explanation for the occurrence of sustained oscillation can be found in the re-cycle of milled
particles: At some times a large number of very small particles with a large specific surface area is
re-fed into the process chamber. As the growth of particles depends on the total surface area, the
growth velocity will decrease dramatically, i.e. at some times almost no growth of particles takes
place. This leads to the situation that the mass flow of over-sized particles from the first screen to
the mill vanishes, i.e. no new particle are re-cycled into the process. As pointed out in Drechsler
et al. [35], the constant re-cycle of milled particles to thescreen is a fundamental condition for a
stable process. With the oscillating flow of particles this condition is not satisfied and an unstable
steady-state behaviour is obtained, that Radichkov et al. [113] later identified as a limit-cycle.

The destabilising effect of re-cycle loops has been reported in other particulatesystems as well,
for instance in crystallisation [141].

The oscillations in the number density function for certainmilling size lead to an undesired os-
cillation in the product mass flow. If a process is to be run at such a milling size because the
corresponding steady-state number density function is required in the process specification, then
feedback controllers have to be applied to stabilise the open-loop unstable steady-state.
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Figure 2.11: Exemplary behaviour of the number density function for a milling sizeξM that yields
a stable steady-state distribution.
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Figure 2.12: Exemplary behaviour of the first four moments, normalised with respect to the initial
valueµ j(0), in case of a stable steady-state.
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Figure 2.13: Exemplary behaviour of the number density function for a milling diameterξM that
yields sustained oscillations.
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Figure 2.14: Exemplary behaviour of the first four moments, normalised with respect to the initial
value µ j(0), in case of a unstable steady-state. Here, also in the moments oscillations can be
observed.
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2.8 Modelling of heat and mass transfer

So far only the number density function, i.e. the size distribution of the particles in the bed has
been considered. As was mentioned in the Introduction, the drying conditions have great influence
on the product characteristics, for example on the storage stability of the produced particles, or the
dissolution characteristic of a pharmaceutical. Additionally, the particle moisture is of importance:
It may determine the structure and taste of product, or the susceptibility of the product to germ
infections which will lead to a spoilage of the product. The danger of spoilage is increased if
the particles are not only moist but also warm, here germs areknown to reproduce exponentially,
i.e. the product (e.g. a food material) can only be used for a very short time before it becomes
hazardous.

The particle temperature is of further importance: It determines the necessary post-processing
of a particulate product, for instance the cooling necessary before the product can be packed
and shipped. Heating is a cost-intensive sub-process, so the total production cost will increase
significantly if the particles are heated unnecessarily. However, it is necessary as the evaporation
is thermally driven, and not enough heating (i.e. not enoughevaporation of liquid) will lead to
agglutination of the bed, transforming the fluidised bed into a fixed bed.

In order to be able to predict and control the temperature andmoisture content of the particles, the
heat and mass transfer during spray granulation have to be modelled.

The drying process, which lies at the core of the spray granulation process, has been theoretically
and experimentally investigated many times, see for instance [51, 1, 14, 145, 108, 140] in varying
detail. One of the most advanced drying models is the one of Burgschweiger and Tsotsas [14],
considering the distributions of the particle number, particle moisture, and particle enthalpy with
respect to the residence time of the particles in the apparatus. Furthermore, the distribution of
these distributions with respect to the spatial position inthe apparatus is considered. Although this
model is known to give excellent results, it is too complex for controller design in the context of
this thesis.

Therefore, in view of the aim to derive a dynamic model for controller design, i.e. to control the
particle moisture and particle temperature, a simplified model is derived. Its main assumption is
that there are no moisture or temperature distributions in the apparatus, i.e. all particles have the
samemean moistureandmean temperature. This assumption can be justified by the strong mixing
in the fluidised bed that will lead to an equalisation of the moisture and temperature distributions.

For the simplified heat and mass transfer model for controller design the following assumptions
are made:

• The system is ideally mixed.

• The formation of bubbles and its influence on the heat and masstransfer is neglected.

• The moisture in the system is not considered as a phase. It is always considered as part of
the solid phase (in its liquid form), or as part of the gas phase (in its vapour form).

• All temperatures are mixing temperatures, i.e. the temperature of the combination of solid
and liquid, and gas and vapour, respectively.

From the balances of the mass of dry solid, the mass of liquid on the solid, the mass of dry gas, the
mass of vapour in the gas, the enthalpy of the particle (i.e. solid and liquid), and the temperature
of the gas (i.e. gas and vapour), dynamic equations for the states of the heat and mass transfer
model are derived.
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Ṁsus, xs, θsus
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Ṁrec, Xrec, θrec
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D Ṁg,in, Yin, θg,in

E ms, mg, X, Y, θs, θg

Q̇gp, Ṁevap

Q̇env

Figure 2.15: Schematics of the heat and mass flows consideredin the heat and mass transfer model.

Starting with the total mass of particlesms, consisting of the mass of dry solidms,dry and the mass
of moisturems,m, i.e. ms = ms,dry +ms,m, themoisture contentof the particles can be defined by
ms,m = Xms,dry, [X] = kgliquid kg−1

s,dry, i.e. ms = ms,dry (1 + X). In an analogous way, a moisture
content of gasY can be introduced, and the mass of gas can be written asmg = mg,dry (1+ Y).

For all calculations, the reference temperature is set toθre f = 0◦C. The evaporation enthalpy, i.e.
the necessary energy to transform a liquid into into vapour at a given pressure without changing
its temperature, is evaluated at this reference. The total enthalpy of the particle and the gas phase
can be written as:

Hs,total = ms,dry (cp,s + cp,l X) θs , (2.68)

Hg,total = mg,dry

(

(cp,g + cp,v Y) θg + Y∆hevap

)

(2.69)

with the temperaturesθs andθg ([θ] = ◦C). The total enthalpy of gas consists of the enthalpy of
dry air at temperatureθg and the evaporation enthalpy atθre f and the enthalpy needed to heat the
vapour up to the temperatureθg.

The state variables derived from these equations are: the mass of dry solidms,dry, the mass of dry
gasmg,dry, the moisture content of solidX, the moisture content of gasY, and the two temperatures
θs andθg for the solid and the gas, respectively.

For the balance volume only the fluidised bed is considered, see Fig. 2.15; external apparatuses
(e.g. screens and mills) are neglected due to the very short residence times of particles and gas
compared to the fluidised bed, i.e. it is assumed that no significant drying occurs in these appara-
tuses.

With the nomenclature introduced in Fig. 2.15 the followingmass balances can be derived:

dms,dry

dt
= xs Ṁsus+ Ṁrec+ Ṁnuc− Ṁs,out , (2.70)

dmg,dry

dt
= Ṁg,in + Ṁnozzle− Ṁg,out , (2.71)

dms,m

dt
= (1− xs) Ṁsus+ Xnuc Ṁrec+ Xrec Ṁnuc− X Ṁs,out− Ṁevap, (2.72)

dmg,v

dt
= Yin Ṁg,in + YnozzleṀnozzle− Y Ṁg,out + Ṁevap. (2.73)

In this equationṀevap denotes the mass flow of evaporated liquid from the particulate to the gas
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phase. Thesolid mass fraction xs determines the mass of solid in the total total mass flowṀsus

of suspension (or solution). In lieu with former derivations, the following equality is defined:
Ṁsolid = xs Ṁsus.

The temporal evolution of the mass of dry solid can be determined directly from the population
balance equation via the third moment of the number density function, i.e.

ms,dry =
π

6
%s

∞
∫

ξ0

ξ3 n(t, ξ) dξ =
π

6
%sµ3 . (2.74)

It can be further assumed that the gas mass flow of the nozzle,Ṁnozzle, is significantly smaller
than the inlet mass flow of gas. Therefore, this mass flow is neglected. Another assumption is
constant hold-up of gas in the apparatus, i.e.Ṁg,in = Ṁg,out. The moisture content of particles in
the re-cycle is assumed to be identical to the moisture content of particles in the bed, i.e.Xrec = X,
due to the small residence time of the particles in the re-cycle loop.

From the mass balances of the liquid and vapour in the solid and the gas phase, dynamic equations
for the moisture content can be derived by an application of the product rule toms,m = ms,dryX and
mg,v = mg,dryY:

dms,m

dt
=

dms,dry

dt
X +

dX
dt

ms,dry , (2.75)

dmv,g

dt
=

dmg,dry

dt
Y +

dY
dt

mg,dry , (2.76)

For the enthalpies the following equations are derived:

dHs,total

dt
= Ḣsus+ Ḣrec+ Ḣnuc− Ḣs,out + Q̇gp− Q̇env,s − Ḣevap, (2.77)

dHg,total

dt
= Ḣg,in + Ḣnozzle− Ḣg,out − Q̇gp+ Q̇env,g + Ḣevap. (2.78)

Here it is assumed that the temperatures of the solid particles will not change due to re-cycle, i.e.
θrec = θs.

By evaluation of the product rule, dynamic equations can be derived for the temperatures of the
solid and the gas:

dHs,total

dt
=

dms,dry

dt
(cp,s+ cp,lX) θs +ms,drycp,l

dX
dt

θs+ms,dry(cp,s + cp,lX)
dθs

dt
, (2.79)

dHg,total

dt
=

dmg,dry

dt
(cp,g + cp,vY) θg +mg,drycp,v

dY
dt
θg +mg,dry(cp,g + cp,vY)

dθg

dt
. (2.80)

The dynamic equations can then be obtained from these results by substitution of the balance
equations for dHs,total/dt and dHg,total/dt, and re-arranging the resulting equation for dθs/dt and
dθg/dt.

In order to be able to solve this system of equations, correlations are needed that link the mass and
enthalpy flows to the balanced quantities.

Heat and mass transfer in fluidised beds is an extensively investigated field, see for instance the
works cited earlier in this section. Due to its complexity, stemming from the coupling of the hydro-
and thermodynamics, no general solution for all process conditions and materials exist. In most
cases empirical or semi-empirical relations are used to describe the heat and mass transport in
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some region of operation. A different approach that is used quite successfully is the modelling of
heat and mass transfer coefficients and relations for a single sphere and then calculating the flows
for the fluidised bed by scaling with the number of particles in the bed [50].

Here, mean quantities of the particle size distribution areused to determine the transfer coeffi-
cients, and it is assumed that the liquid droplet spreads uniformly on the particle surface, i.e. the
particle surface area is also the heat and mass transfer surface area.

In the following, the focus lies on the mass and heat flows, themajor equations for the heat and
mass transfer coefficients are presented in Appendix A.

The mass flow of evaporated liquid can be calculated byṀevap= η (Ysat − Yin) Ṁg,in [107]. Here
η is an efficiency of mass transfer. The saturation moisture contentYsat determines how much
moisture can be taken up by the gas phase. It is the theoretical maximum and depends on the
saturation temperature which has to be computed from Mollier diagrams.

The efficiency is calculated fromη = 1 − exp(−ν̇NTU) (assuming a plug-flow of gas), orη =
NTU ν̇/(1+ NTU) (assuming an ideally mixed gas flow). The value of NTU depends on the mass
transfer coefficientβgp:

NTU =
%g βgp Aparticles

Ṁg,in
(2.81)

with Aparticles being the total surface area of all particles in the bed:Aparticles= πµ2.

During drying two stages can be observed: In the first drying stage the free liquid on the surface
of the particle is evaporated. In the second drying stage theliquid in the interior of the particle
evaporates and the resulting vapour has to be transported tothe surface. This transport is limited
by material-dependent diffusion – in general a slow-down in drying in this stage can be observed.
The change in drying velocity can be modelled by thenormalised drying curvėν and depends
mostly on the particle material. For the first stage of dryingν̇ is constant, and ˙ν = 1. In this thesis
the first drying stage is considered only.

The evaporation enthalpy is calculated byḢevap= Ṁevap

(

cp,vθs+ ∆hevap

)

. The energy needed for
the phase transition of the liquid from its liquid to vaporous state is called the specific evaporation
enthalpy. It can be obtained from tables or empirical relations.

The heat flow between particles and the gasQ̇gp = αgp(θg − θs)Aparticles is modelled as a convec-
tive heat transport, i.e. radiative heat transfer is neglected. A correlation for the calculation ofαgp,
as well as for the heat transfer coefficients for the heat transfer from particles to the wall of the
apparatus,αpw, from the gas to the wall of the apparatus,αgw, and from the wall to the environ-
ment,αwe, are given in Appendix A. These flows are also calculated as convective heat flows. The
required temperature of the wallθw is obtained from a steady-state energy balance, neglectingthe
heat transfer by conduction inside the wall:

θw =
αgw Aw θg + αpw Apwθs + αweAw θenv

αgw Aw + αpw Apw+ αweAw
. (2.82)

In this equationAw denotes the surface area of the wall, andApw = 2π rapphbed the heat trans-
fer surface between the particles in the bed and the wall of the apparatus. The height of the
fluidised bed,hbed, is calculated from the mass of dry particles and the porosity of the bed:
hbed = mbed/(%s (1− ψ) Aapp); rapp denotes the radius of the process chamber andAapp the corre-
sponding cross-sectional area.

The remaining enthalpies are calculated as follows:

Ḣg,in = Ṁg,in (cp,g + cp,vYin) θg,in + Ṁg,in Yin ∆hevap (2.83)
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Ḣg,out = Ṁg,out (cp,g + cp,vY) θg + Ṁg,inY∆hevap (2.84)

Ḣsus = Ṁsus

(

xs cp,s + (1− xs) cp,l

)

θsus (2.85)

Ḣnuc = Ṁnuc(cp,s + cp,lXnuc) θnuc (2.86)

Ḣrec = Ṁrec (cp,s + cp,lXrec) θrec (2.87)

Ḣs,out = Ṁs,out (cp,s + cp,lXout) θs (2.88)

These are the major equations for the dynamic simulation of the moisture contents and tempera-
tures of the gas and the particles in fluidised bed spray granulation. Minor (help) variables needed
for the simulation are listed in the Appendix A or are calculated after Peglow and Cunäus [107].
The most time-consuming part in the evaluation of the dynamic equations is the calculation of the
heat and mass transfer coefficients, and the saturation temperature.

If the heat transfer model is used in a continuous spray granulation process, also a steady-state can
be calculated, for instance by dynamic simulation.

One important observation is that the states of the heat and mass transfer model are influenced
by the population balance equation via the mass of dry particles in the system. The dynamics of
the growth of particles is, however, not influenced by these states. This is reasonable under the
assumptions made as the population balance equation only considers dry particulate material, but
the heat and mass transfer model considers the transition ofliquid to vapour.

Although experimental results suggest that heat and mass transfer, in terms of the drying condi-
tions, have an influence on the formation of the layer, for instance influencing the porosity of the
layer and thereby the particle size, the direct relationship between drying conditions and particle
growth is not well known and subject to investigations. For that reason,it is assumedthat the heat
and mass transfer does not influence the particle growth, i.e. a decoupling of moisture content
and temperature from the particle size is assumed. One way torealise this setup is to run the pro-
cess at different time-scales, i.e. the drying conditions are set such that heat and mass transfer is
significantly faster than particle growth. The assumption will have an important influence on the
controller design.
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Chapter 3

Model-based measurement of particle
property distributions

3.1 Introduction

Many properties of a particulate product can be derived directly from the properties of the particles.
Up to now, in many industrial applications, the measurementof mean or integral values of the
property distributions, for example the mean diameter of particles or the total mass, was deemed
sufficient for process monitoring. But with increasing strictness of product specifications and the
need to guarantee more than just the compliance of a mean or integral value to the specifications,
the interest in additional information on the property distribution in a particulate process increases.
From the knowledge of the particle property distribution, in principle, a complete monitoring of
the process state is possible, and thus the opportunity to influence the process conditions in order
to create a desired product if this information is used in a feedback control scheme.

Most modern control schemes use as much process informationas is available, this includes the
property distribution. The problem that arises in process monitoring and control is that the mea-
surement of the property distribution must be conducted on-line, i.e. while the process is running,
and the measurement result must be made available with as less as possible delay to realise an
effective monitoring and control of the process.

In this section the measurement of the characteristic size of particles in a particulate process,
for instance fluidised bed spray granulation, is considered. The problems arising in this task are
similar to the problems arising in the measurement of other property distributions, e.g. moisture
distributions, or temperature distributions. Hence, the ideas presented in this section and illustrated
for the size of the particles can be applied, after suitable modifications, to the measurement of other
quantities as well.

Methods for measuring the size of particles can be roughly classified into two groups: in-line (or
on-line) methods, and off-line methods:

• off-line methods: In these methods a sample is taken from the process plant andthen trans-
ported to a laboratory for analysis, i.e. there is a significant spatial distance between the
location where the sample is taken and the location where thesample is analysed, also a sig-
nificant time-lag can occur. Additionally, the sample material is not re-fed into the process.

• in-line methods: Here, the sample is taken in the plant and also analysed inside the plant,
i.e. there is no significant spatial distance between the plant and the location of analysis.
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Also, the sample is re-fed into the process after analysis.

Importantoff-line methods for analysis are

• Sieving (screening): The sizes of particles are determinedby applying the particle sample
to a cascade of sieves. The size distribution is then calculated from the mass fraction of
the sample that remains on the different sieves. This method is the traditional way of char-
acterising the size distribution of a particulate system. Due to its standardisation, it is the
reference for all other measurement and analysis techniques [99].

• Image-based methods: Here the sample is dispersed into a thin veil of particles that falls
in front of a camera-system. In discrete time steps picturesof the measurement volume
are taken. The particles on these two-dimensional picturesand their sizes are identified
and calculated by image-processing algorithms. Due to the simplicity in handling and the
wealth and accuracy of the information that is gathered by these measurement systems, they
are becoming increasingly popular in industries for particle characterisation. Examples of
image-based measurement devices are the Camsizer by RetschGmbH (Germany), and the
PICTOS system by Sympatec GmbH (Germany).

Off-line methods have the important advantage that, apart fromparticle changes due to the mea-
surement principle, with one sample as many analyses as needed can be performed. By re-
analysing a sample the influence of random measurement errors on the final result can be decreased
by averaging over the total number of analyses performed on the sample.

But, severe disadvantages can be identified in almost all off-line methods:

• Minimum amount of the sample mass: This can be a critical issue in processes where in total
only a very small amount of product is produced, for instancea highly potent pharmaceutical
ingredient. The removal of a sample for analysis then further decreases the amount of
product.

• Based on the size of the sample the analysis can take a long time, for instance in image-
based methods where the sample has to be dispersed into a thinveil. Taking a large sample
then takes a long time before the sample has been processed completely.

• The measurement devices are often very sensitive to the environmental conditions, e.g. the
optics of the cameras are sensitive to dust. For that reason the devices are situated in external
laboratories. The transport of a sample from the plant to theanalysis introduces a delay.

• In most cases there is no way of direct communication betweenthe measurement device
and the process plant, i.e. analysis results cannot be sent back instantaneously, introducing
another delay.

In total, the transport delays and the time needed for the analysis lead to a significant time-lag
of the measurement result in comparison to the actual process state. This is a major obstacle for
using the results of off-line methods in process monitoring and control.

In order to remedy the disadvantages of off-line methods, in-line measurement and analysis de-
vices have been designed in recent years [99]. Two principles that have become popular in indus-
tries are:

• Focused beam reflectance, laser diffraction: A focused laser beam sent out from the probe
that hits a particle entering the measurement volume is back-scattered. The back-scattered
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light is detected by optical fibres and from the time difference between the out-sent ray and
the back-scattered light a chord length of the particle is calculated, i.e. the time difference
results from the additional path the light travels on the surface of the particle. Further details
on the measurement principle and applications can be found in [124, 66]. A realisation of
this principle can be found in the FBRM-probe manufactured by Malvern Instruments Ltd.
(United Kingdom).

• Spatial filter velocimetry: Here a particle entering the measurement volume falls through an
array of optical fibres that are illuminated by laser light. The particle creates shadows on
the fibres while passing and thus creates pulse signals in each fibre with a frequency pro-
portional to the velocity. One additional fibre is used to detect the time of such a shadowing
event. From this information, i.e. velocity of particle andtime needed to pass an optical
fibre (which has a known diameter), a chord-length of the particle is calculated [40]. This
principle is depicted in Fig. 3.1 and is used for instance in the product series IPP of Parsum
GmbH (Germany).

Fibre-optical array

Isokinetic particle 

Particle trajectory

Laser

Figure 3.1: Depiction of the general idea of particle size detection by shadowing events created by
a particle passing an array of optical fibres (after [40]).

The most important advantages of these in-line probes are that the sample is taken and analysed
inside the process plant and the analysis results are available with almost no time delay apart from
the time necessary for analysis. This renders in-line probes suitable for the implementation of
process monitoring and control schemes.

But, also for this class of measurement devices important limitations can be identified:

• An analysis for one sample cannot be repeated. After a particle has left the measurement
volume it enters the process chamber and there is no possibility to fetch it back for further
analysis.
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• The particles entering the probe must represent statistically the total particle population in
the process in order to obtain reliable results for the size distribution. This is a crucial issue
in processes where segregation of particles takes place. There, depending on the location
where the probe is installed, different distributions are measured, e.g. mainly smaller parti-
cles or mainly larger particles.

• The detected chord-length depends on the orientation of theparticle with which it passes
the optical fibres or is hit by the laser ray. In contrast to image-based off-line methods,
where two-dimensional information can be used to determinea size of the particle, here
only one dimension is available. This effect is important in agglomeration processes where
particles possess a distinct three-dimensional structurethat will give a different chord-length
depending on the orientation.

• A chord-length is detected instead of the particle size, e.g. the particle diameter. This
necessitates a transformation of chord-length information into particle sizes.

By a suitable calibration and placement of the probe in the process, which may require extensive
tests of the in-line probe at the plant and some off-line reference device, most of the disadvantages
can be mitigated. Only the last point, the transformation ofchord-lengths into particle sizes, cannot
be handled in a general way.

The transformation of chord-length information into particle sizes is a complex and still open
problem for general particle shapes; for special cases thatarise quite often in practice solutions
have been found in the last decade, see for instance [124, 150, 66, 40, 87].

The general idea for the transformation approaches will nowbe exemplified for the case of a
spherical particle, following the lines of Wynn [150] and Fischer et al. [40]: A spherical particle
of diameterξ can create chord-lengths in the interval [0, ξ], depending on the location where the
laser ray hits or the portion that creates the shadow on the optical fibres. From a statistical point
of view a function signalising the probability with which a particle of diameterξ is detected by a
chord of sizescan be defined:P(z= s, ξ).

On the basis of this probability a static transformation canbe defined that allows the calculation
of the diameter from the chord-length: The probability of a spherical particle with diameterξ
creating a chords∗ in [0, ξ] can be written as

P(0 < s∗ < s) =
ξ − 2y(s)

ξ
= 1−

√

1−
(

s
ξ

)2

= Q(s) , 0 ≤ s< ξ (3.1)

∆Q(s1, s2) =

√

1−
(

s1

ξ

)2

−

√

1−
(

s2

ξ

)2

, 0 < s1 < s2 < ξ, s∗ ∈ [s1, s2] . (3.2)

The chord-length distribution for mono-disperse particles q(s) can be derived by differentiation of
Q(s) with respect tos:

qCLD(s) =
dQ
ds
=

s

ξ
√

ξ2 − s2
, 0 < s< ξ . (3.3)

The chord-length distribution of an arbitrary sample can beobtained by weighting these results
for all possible particle sizes. The measured chord-lengthdistribution of the sample can then be
written as

qCLD(s) =

∞
∫

0

qreal(ξ) qweight(ξ, s) dξ . (3.4)
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Figure 3.2: Parallel structure of process plant and mathematical process model.

By inversion of this equation with respect toqreal, the particle sizeξ can be determined from the
measured chord-length signalqCLD and the chord-length-dependent weightingqweight. In practical
application the inversion is performed by first discretising the equation and then inverting the
approximate system of nonlinear equations.

In practice one severe problem arises in the inversion: Small changes in the measured data yield
large changes in the calculated size distribution of particles. Mathematically, such problems are
called ill-conditioned problems. This effect becomes more dramatic if the discretisation is re-
fined. As process measurements are inevitably subject to measurement noise, the results from
static inversion may be unreliable. For a detailed discussion of the influence of noise on the
reconstructed size, see for instance [40].

Another source of error is the deviation of particles from the assumed geometric model, for in-
stance if chord-length measurements of non-spherical particles (agglomerates) are reconstructed
using the assumption of spherical particles. In that case nofurther correction of the result can be
performed as the reconstruction is static.

One way to circumvent the solution of the inverse problem, the main source of problem in the
transformation of chord-length measurements to particle sizes, aremodel-based measurement sys-
tems, also known asstate observersor state estimators.

3.2 Fundamentals of model-based measurement systems

The main idea of model-based measurement systems is the use of dynamic mathematical process
models, for instance on the basis of population balance equations, to reconstruct process infor-
mation that is hard to measure directly from measurements more easily obtainable. Under certain
conditions these measurements can be limited or be corrupted by noise.

The concept was first conceived in the works of Luenberger [80, 81, 82], and Kalman [68] for
linear processes. In the following decades the idea was extended to nonlinear processes, see for
instance [136, 71, 53, 11].

The idea behind model-based measurement schemes and the practical implementation is best ex-
plained in two steps: First, consider the structure shown inFig. 3.2, where in parallel to the process
plant a dynamic mathematical model of the process is simulated. The input signalsu to the plant
are also applied to the mathematical model. From the plant, measurementsy are obtained by some
kind of probe: This device relates the state variablesx of the process to the measurement sig-
nals. Using the knowledge of the relation between process states and measurements, measurement
signals for the mathematical model ˆy are calculated from the model states ˆx.

In the absence of any model error and process disturbances, and if the initial state of the process
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Figure 3.3: Principal structure of a model-based measurement system introduced by Luen-
berger [80]. The dashed box indicates the components of a model-based measurement system.

Corrector Process model−y
ey ∆x̂ ŷ

Figure 3.4: Re-interpretation of the state correction as a control-loop for the measurement error.

model is equal to the initial state of the plant, i.e. ˆx0 = x0, the temporal evolution of the states, i.e.
x(t) and x̂(t) will be identical. This means that instead ofx(t) which can only be accessed in form
of the measurementsy, the model state ˆx(t), which is completely known at all times, can be used.

In practical application, however, the initial state of theprocess plantx0 is often not known exactly.
Also errors in the mathematical models, due to e.g. simplification and un-modelled disturbances,
are often inevitable. Using the structure presented in Fig.3.2 will yield erroneous results, i.e.
x(t) , x̂(t), and the model states cannot be used for monitoring or control purposes.

In a second step, in order to account for the differences introduced by deviations in the initial
conditions and uncertainties, Luenberger extended the parallel model by a system that calculates
a correction of the model state ˆx based on the difference in the measurements signalsy and ŷ
(Fig. 3.3). This approach was motivated by the observation that the states of the process model and
the plant cannot be identical if the corresponding measurements do not coincide. The important
point is that the correction of the state is solely calculated from the available plant measurements,
i.e. the error in measurement of the two systems drives the state x̂(t).

If the process plant and the measurements taken therefrom fulfil certain criteria, which will be
presented in detail in the next subsection, and the corrector is suitably designed, then the model
state x̂(t) will tend to the state of the process plantx(t) despite of uncertainties, model errors,
and process disturbances. This result can be stressed by redrawing the correction loop, as done
in Fig. 3.4: If the errorey does not vanish, then a non-vanishing correction of the model state
is calculated. This can be seen as a control-loop for the measurement errorey. In any case the
correction is designed such that for vanishing error no further state correction is performed. The
observer model is then a pure simulation model of the processplant.

Model-based measurement schemes are applied in diverse industrial fields, for instance mechan-
ical systems (robotics), chemical engineering, and biochemical processes (e.g. [151, 69, 16, 154,
58].
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With respect to the measurement of particle size distributions model-based measurement schemes
have one important advantage: From the knowledge of the process model state ˆx all possible mea-
sured quantities can be calculated. If the number density function is part of the model state then
from this information a corresponding chord-length distribution can be calculated as presented in
the last section. Taking this calculated chord-length distribution as part of the measurement signals
ŷ then allows to detect differences in the size distributions by comparison of this datawith chord-
length measurements taken from the process plant. Based on the error in this measurement, the
state, i.e. the number density function, is corrected accordingly. After some time, which depends
on the design of the model-based measurement scheme, the particle size distribution in the process
model will approach the particle size distribution in the process.

In all calculations no inversion of the measurement map, i.e. the transformation of particle sizes
into chord-lengths and vice versa is necessary, which was identified as the foremost problem in
reconstructing particle size distributions from chord-length measurements obtained from in-line
measurement devices. The disadvantages of model-based measurement schemes are that the re-
construction is now a dynamic problem that has to be solved inparallel with the process, and
the need for models of the process and the measurement device. This, however, poses no severe
problem as for many interesting applications mathematicalprocess models are available.

In applications chord-length measurements may not be available at all process sub-steps, for in-
stance due to the still high cost of the equipment, or for safety reasons. But certain integral or mean
values may be available. The task of the model-based measurement system then is to reconstruct
the size distribution from this integral value.

The answer to the question under which circumstances a model-based measurement system can
reconstruct the process plant state from the available measurement information leads to the concept
of observability.

Observability. A dynamical system in state-space representation

dx
dt
= f (x(t), u(t)), (3.5)

y(t) = h(x(t), u(t)), (3.6)

wherex ∈ RN denotes the state of the system,u ∈ RU are the inputs to the system, andy ∈ RM

represent the measurement information, is said to be observable if the statex(t) at a given timet is
completely determined by the knowledge of the inputsu(τ) and the outputsy(τ) over a finite time
segmentt0 < τ ≤ t [149]. For general nonlinear systems this is only true for a certain set of initial
conditionsx0 and inputsu(t). These systems are called locally observable [101].

Practically this definition means, that for a system to be observable all process statesx must have a
unique influence on the measured variables, i.e. a change in the state must be uniquely detectable
in the measured quantity. Furthermore, it must be guaranteed that the errory− ŷ vanishes only if
the process state and the model state are equal, i.e.x− x̂ = 0. Then a correction based on the output
errorey will yield a successful reconstruction of the unmeasurablestatex from the measurement
y in form of x̂.

A formal test for observability is calledobservability analysis. For finite-dimensional, nonlinear
systems the following criterion can be derived using concepts from differential geometry [101]:
Given a mathematical model dx/dt = f (x, u) of the process and a model of the measurement
map y = h(x), calculate successively the Lie derivativesLi

f h = L f (Li−1
f h) with L0

f h = h and
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L f h = (gradxh) f , and construct the observability map
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, i ≥ N . (3.7)

If O can be uniquely (locally) inverted,x = O−1(y, y′, . . . , yi), then the system is (locally) ob-
servable. For infinite-dimensional systems a similar definition, involving operators instead of
functions, can be given.

Unfortunately, even in the finite-dimensional case, this problem is equivalent to the proof of exis-
tence of (locally) unique solutions of systems of nonlinearequations, and as such only answerable
in general for very small systems, i.e.N is a small integer, or for systems with a special structure.

If the process is linear, i.e.f (x, u) = Ax+ Bu andh(x) = Cx, with constant matricesA, B,C of
appropriate dimensions, then the test for observability reduces to the problem of determining the
rank of a matrix, the Kalman criterion for observability:
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. (3.8)

If the rank of this matrix equals the number of states, i.e. rank(O) = N then the linear system is
observable. From the Cayley-Hamilton theorem [149], whichstates that any power of a quadratic
matrix higher than the number of columns in it can be expressed by a linear combination of lower-
order powers, i.e.An+1 = g(A,A2, . . . ,An), it follows that if the matrixO is not invertible, taking
higher-order powers will not be able to change this situation, i.e. the system is unobservable.

In the practical test for observability the matrix productsare not calculated, but an alternative
version of the Kalman criterion introduced by Popov, Belevitch and Hautus [149] is used: Letλ j

be the eigenvalues of the matrixA, i.e. non-trivial solutions ofAvj = λ jv j , then a linear system is
observable if and only if

rank

[

λ j I − A
C

]

= N

is fulfilled for every eigenvaluej = 1, . . . ,N, whereI denotes the identity matrix.

If the elements ofA span many orders of magnitudes then the determination of therank of the
observability matrix, or the exact calculation of the eigenvalues ofA becomes non-trivial and
special numerical methods have to be applied in order to testfor (numerical) observability.

A necessary, always exactly evaluable criterion, is given by structural observability[119, 148, 33].
Here, only structural information of a linear system, i.e. obtained by linearisation of a non-linear
process model in the vicinity of a steady-state, is used to determine observability: Given linear
model

dx
dt
= Ax+ Bu, (3.9)

y = Cx, (3.10)

from the matricesA andC the so-called structural matricesAs andCs are constructed:

Ai j,s =

{

1, Ai j . 0
0, otherwise

, Ci j,s =

{

1, Ci j . 0
0, otherwise

.
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The matrixAs can then be interpreted as the adjacency matrix of a graph with the model states
as its nodes. The matrixCs contains the information which states influence the measurements
directly.

The question of structural observability is then answered using concepts from graph theory; the
main concepts and their connection to the structural matrices are presented in Appendix B.

Structural observability. For structural observabilityAs andCs must meet two criteria: (1)
output-connectedness, that is each state must in some way (either directly or through other states)
have influence on the measurements, and (2)non-contraction. This means that given a measure-
ment the influence of all states on this measurement can be uniquely determined. In mathematical
terms these criteria can be formulated as follows (T denotes a transposition):

the associated graph to (As,Cs) is output-connected, and

s-rank[AT
s,C

T
s ] = N , (3.11)

where the structural rank (s-rank) is defined to be the maximum rank a matrixM with the structure
given byMs can attain:

s-rankMs = max
M∈Ms

rankM . (3.12)

In contrast to the former criteria, these can be checked easily using graph-theoretic algorithms.

Structural observability then means, that there exists at least one system (A, B,C) with the structure
(As, Bs,Cs) that is observable. Although the test does not provide specific information about the
system at hand, it gives the information that the structure itself is not unobservable and therefore
the task of designing a model-based measurement scheme can be undertaken.

The design steps necessary depend on the method used in the measurement scheme, i.e. there are
several possibilities to design appropriate correction terms. Some of them that will later be applied
to spray granulation processes are presented in the next section.

3.3 Design methods for model-based measurement systems

In the field of control engineering model-based measurementsystems are known as and classified
in state observers and state estimators, respectively. Both classes share the same principal idea of
using a mathematical process model to obtain estimates for the unknown plant state from avail-
able measurements. They differ in the formulation of the mathematical process models: Whereas
in a state observer purely deterministic models are used forthe process model and the model of
the measurement device, state estimators are formulated ina stochastic framework. This means
that stochastic influences, for instance measurement noiseor unmodelled process dynamics, are
accounted for explicitly in the design process. In state observers these influences are not consid-
ered explicitly but are handled as general disturbances that are attenuated by the structure of the
observer. In the following the termstate observeris used throughout for state observers and es-
timators if the concepts and explanations are valid for bothclasses of model-based measurement
systems.

Similar to the classification of dynamic systems into finite-dimensional and infinite-dimensional
systems, state observers can be finite- or infinite-dimensional.

Infinite-dimensionalstate observers possess the structure presented in Fig. 3.3, the main difference
is that the process and measurement models are infinite-dimensional functional operators, i.e.
operators that map functions into other functions. The observability analysis of these systems
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is greatly hindered by their distributed character, i.e. inthe general case no specific results can
be obtained. Only in case of special structures, for instance linear infinite-dimensional systems,
evaluable criteria are known, see for instance [27].

The correction, in the general case, is also an infinite-dimensional operator. For the case of non-
linear distributed systems standard design methods are notavailable, and the success and the
performance depends heavily on the process knowledge, experience and creativity of the design
engineer. In the literature some successful applications to nonlinear distributed parameter systems
are known, for instance in chemical reaction engineering [151, 69, 16, 90, 58]. There, for spatially-
distributed systems using discrete measurements of temperatures and concentrations in the spatial
directions, physically motivated corrections are designed. The parametrisation of the dynamics is
performed by considering the temporal evolution of the (spatially-distributed) measurement error
ey. In summary, the design of non-linear infinite-dimensionalobservers is an intricate task, the
success of which depends strongly on the experience of the designer.

Due to the problems in the design of infinite-dimensional observers, commonly finite-dimensional
observers are designed on the basis of a finite-dimensional approximation of the infinite-dimensional
process model. Approximations can be obtained for instanceby discretisation of the partial dif-
ferential balance equations, for instance by application of the methods presented in Appendix D.
Using finite-dimensional approximations on one hand simplifies the design, because standard-
ised tests for observability and design methods can be used,on the other hand the use of finite-
dimensional system instead of infinite-dimensional systems leads to a loss of performance, and in
the worst case to instability of the model-based measurement system, due to the loss of informa-
tion in the approximation step. However, as motivated in Appendix D, this loss and the danger of
instability can be reduced by using a sufficiently accurate approximation.

As mentioned before, in thefinite-dimensionalcase for the test of observability and for the design
of state observers standard methods are available. But, theavailability does not imply that the
actual design is trivial; if the structure of the dynamic process model is arbitrary then difficulties
can arise, for instance in the calculation of the Lie derivatives that are needed for observability
analysis and in many design methods.

3.3.1 Design methods for state observers

In the following important design methods for state observers and state estimators, which will
later be applied to the fluidised bed spray granulation processes and design methods needed for
subsequent derivations are presented. Other important design methods that are not applied to the
task of reconstructing the particle size distribution are only mentioned and references are given.

Luenberger observer for linear systems

The classical Luenberger observer for linear systems [82] uses for a linear time-invariant system

dx
dt
= Ax(t) + Bu(t) , x(0) = x0 , y(t) = Cx(t) (3.13)

the following structure for the state observer

dx̂
dt
= Ax̂(t) + Bu(t) + K(y(t) − ŷ(t)) , x̂(0) = x̂0 , ŷ(t) = Cx̂(t) . (3.14)

In both systems the matricesA, B,C andK are constant. The matrixK denotes the gain of the state
correction. In case of vanishing measurement errorey(t) = y(t)− ŷ(t), the correction vanishes, too.
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In that case the observer model is identical to the process, i.e. the simulation condition is fulfilled.
The task is then to design the gainK such that the error in the states,x − x̂, tends to zero. If the
system is observable, which is assumed in the following, then the rate of decay in error can be
specified arbitrarily by the choice ofK.

One way to obtain a suitable matrixK is the following: Defining the error in the states of the
process and the observer,e= x− x̂, a dynamic equation for the error can be derived:

de
dt
= Ax+ Bu− Ax̂− Bu− K(y− ŷ) , (3.15)

= Ae− K(y− ŷ) , (3.16)
de
dt
= (A− KC) e, e(0) = x0 − x̂0 . (3.17)

From the theory of linear ordinary differential equations follows that the solutione(t) tends to zero
exponentially, if all the eigenvalues of the matrix (A−KC) lie in the open left complex half-plane,
i.e. the real part of all eigenvalues has to be strictly negative. From a control engineering point
of view the gainK is designed by pole placement of the eigenvalues for the state errore. In
general, a high gain will yield a fast decay of the error for perfect measurements, that is, no noise
is present in the measurement signaly. If there is noise, i.e.y(t) = yn f (t) + η(t), whereyn f is
the noise-free signal andη a noise signal, then an error proportional toK is introduced, as can be
seen by substitution into the dynamic equation for the stateerror. The equation is then no longer
homogeneous and the error will not tend to zero, but to a non-zero steady-state. A linear estimator
that is able to cope with measurement noise, the Kalman filter, will be presented later.

For non-linear systems a variety of design methods is available. Due to the peculiarities of non-
linear systems, these are often limited to dynamic systems with a special structure, for instance
normal form observers, high-gain observers, extended Luenberger observers, or sliding-mode ob-
servers. The assumed special structures allow at some pointin the design process to reduce the
calculation of the gain for the non-linear system to the calculation of a gain for a linear error
system, which reduces the effort considerably. However, non-linear transformations have to be
constructed in order to arrive at the linear error system. These can only be calculated if the system
possesses the assumed special structure. If this is not the case, then the transformations cannot be
calculated, i.e. the observers cannot be designed for the system.

In the following a state observation method is presented that does not require a special structure
of the dynamic process model. In addition, it has the virtuesthat it provides an optimal estimate
x̂ of the statex in some sense, and the convergence of the method for general non-linear systems
can be proved.

State observation by on-line minimisation

The idea of obtaining an estimate ˆx of an unmeasurable process statex by solving an on-line
optimisation problem in a deterministic setting was used byZimmer [154] to derive a very elegant
method that is presented in this section.

Given a non-linear dynamic process

dx
dt
= f (x(t), u(t)) , x(0) = x0 , y(t) = h(x(t)) (3.18)

the state and output trajectories can be written formally asx(t; t0, x0) andy(t; t0, x0), i.e. the state at
time t depends on the initial timet0 (to determine how long the process is running), and the initial
state att0 given byx0. The output trajectory can be interpreted in a analogous way.
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The observer model is chosen to be

dx̂
dt
= f (x̂(t), u(t)) , x̂(0) = x̂0 , ŷ(t) = h(x̂(t)) , (3.19)

with the corresponding trajectories ˆx(t; t0, x̂0) andŷ(t; t0, x̂0).

If the process time span is sub-divided into intervals of length T, i.e. [t0, t0 + T], [t0 + T, t0 + 2T],
. . . , that is, into non-overlapping timehorizons, then the following functional over each one of
these horizons can be defined:

N = 1
2

t0+(k+1)T
∫

t0+kT

(ŷ− y)T(ŷ− y) dt , k = 0, 1, . . . . (3.20)

This functional can be interpreted as measuring the square of the distance in the measurement
signalsŷ andy over the horizon. As the measurement signal ˆy over a time horizon depends only
on the initial state of the observer model at the beginning ofthe interval, i.e. ˆx0, and given the
measurementy(t; t0, x0) obtained from the process duringt ∈ [t0+ kT, t0+ (k+ 1)T] the functional
depends on the initial state of the observer model ˆx0 and the measurementsy, i.e. N(x̂0, y), over a
time horizon.

Observability of a dynamic system states that if the error inthe measurementsey vanishes, then the
state of the observer is equal to the unmeasurable process state. In terms of the defined functional
this means that it has to be minimised, i.e. the measurement sequence ˆy has to be chosen such that
ŷ− y vanishes. As was pointed out, the measurement sequence depends on the initial state of the
observer model, so the minimisation problem can be written as

min
x̂0

N(x̂0, y) = min
x̂0

1
2

t0+(k+1)T
∫

t0+kT

(ŷ− y)T(ŷ− y) dt , k = 0, 1, . . . , (3.21)

i.e. the task is to determine the initial condition of the observer model at the beginning of the time
horizon such that the error in measurements is minimised. The optimisation problem is constrained
by the nonlinear observer state equations that have to be fulfilled over the time horizon, i.e. it is a
nonlinear, constrained optimisation problem.

Zimmer [154] then reduced the optimisation problem furtherby using the fact that for ˆx0 to be an
extremal ofN(x̂0, y) the following necessary condition has to be fulfilled:

∂

∂x̂0
N(x̂0, y) = 0 . (3.22)

So, instead of solving the optimisation problem, the value ˆx0 has to be found such that the non-
linear system of algebraic equations∂N/∂x̂0 = 0 is fulfilled, i.e. the nonlinear, constrained opti-
misation problem is reduced to a root-finding problem.

One standard method that can be used to find the roots of non-linear algebraic equations is the
Newton-Raphson method [54]. It is an iterative method that refines a given initial guess of the root
by evaluation of the system of equations and the gradient of the equation. In case of the system
at hand, using the short-cut notationN ′ = ∂N/∂x̂0 (the gradient of the cost functional), and
N ′′ = ∂2N/∂x̂2

0 (the Hessian of the cost functional, and the gradient of the necessary condition),
one step of the iteration can be written as:

x̂+0 = x̂−0 −
[

N ′′(x̂−0 , y)
]−1 [

N ′(x̂−0 , y)
]T
, (3.23)
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wherex̂−0 is the guess for the root, and ˆx+0 is the corrected value based on the information contained
in N ′ andN ′′.
In order to be able to calculate the new estimate ˆx+0 based on the measurement information, the
gradient and the Hessian of the cost functionalN are required. An evaluation for the gradient
yields

N ′(x̂0, y) =

t0+(k+1)T
∫

t0+kT

(ŷ− y)T ∂ŷ
∂x̂0

dt =

t0+(k+1)T
∫

t0+kT

(ŷ− y)T ∂h
∂x

∣

∣

∣

∣

∣

x̂

(

∂x̂
∂x̂0

)

dt . (3.24)

In this equation∂h/∂x denotes the linearisation of the output functionh along the observer state
trajectoryx̂ and∂x̂/∂x̂0 denotes the sensitivity of the state trajectory ˆx with respect to a change in
the initial conditionx̂0.

Taking derivatives with respect to time, a dynamic equationfor the gradient can be derived:

dN ′
dt
= (ŷ− y)T ∂h

∂x

∣

∣

∣

∣

∣

x̂

(

∂x̂
∂x̂0

)

, N ′(t0) = 0T . (3.25)

The initial condition for the gradient can be obtained from the fact that the estimate of the state at
the end of the last observation horizon (which is the initialstate of current horizon) was optimal
with respect to the cost functional.

In a similar way the Hessian ofN can be evaluated:

N ′′(x̂0, y) =

t0+(k+1)T
∫

t0+kT

(

∂ŷ
∂x̂0

)T (

∂ŷ
∂x̂0

)

dt +

t0+(k+1)T
∫

t0+kT

(ŷ− y)T















∂2ŷ

∂x̂2
0















dt (3.26)

≈
t0+(k+1)T

∫

t0+kT

(

∂x̂
∂x̂0

)T
∂h
∂x

∣

∣

∣

∣

∣

T

x̂

∂h
∂x

∣

∣

∣

∣

∣

x̂

(

∂x̂
∂x̂0

)

dt . (3.27)

Here the exact Hessian is approximated only by neglecting higher-order derivatives of the observer
measurements. This approximation is justified if ˆx does not deviate too much fromx over the time
horizon.

The corresponding dynamic equation reads:

dN ′′
dt
=

(

∂x̂
∂x̂0

)T
∂h
∂x

∣

∣

∣

∣

∣

T

x̂

∂h
∂x

∣

∣

∣

∣

∣

x̂

(

∂x̂
∂x̂0

)

, N ′′(t0) = 0 . (3.28)

The required gradient and Hessian of the functionalN can be evaluated if the sensitivity matrix
∂x̂/∂x̂0 is known over the horizon [t0 + kT, t0 + (k + 1)T]. A suitable dynamic equation can be
derived as follows:

d
dt

(

∂x̂
∂x̂0

)

=
∂

∂x̂0

(

∂x̂
∂t

)

=
∂

∂x̂0
( f (x̂(t; t0, x̂0)) =

(

∂ f
∂x̂0

) (

∂x̂
∂x̂0

)

,

(

∂x̂
∂x̂0

)
∣

∣

∣

∣

∣

∣

t0

=

(

∂x̂0

∂x̂0

)

= I . (3.29)

Using these equations an algorithm for state observation byon-line minimisation can be given:
For t ∈ [t0, t0 + T], given the process measurementsy(t):

1. Solve the dynamic equations for ˆx, N ′, N ′′ and
(

∂x̂
∂x̂0

)

, starting from the respective initial

conditions, i.e. ˆx(t0) = x̂0 = x̂−0 , N ′(t0) = 0T, N ′′(t0) = 0, and the identity matrix as initial
condition for the sensitivity equation.
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Figure 3.5: Idea of state observation by on-line minimisation after Zimmer [154].

2. Correct the initial guess ˆx−0 by one iteration of the Newton-Raphson method:

x̂+0 = x̂−0 −
[

N ′′(x̂−0 , y)
]−1 [

N ′(x̂−0 , y)
]T
, (3.30)

3. Re-solve the observer model equation for the initial condition x̂+0 obtaining the corrected
state trajectory ˆx+(t; t0, x̂+0 ).

4. For the next observation horizon, set ˆx−0 = x̂+(T; t0, x̂+0) andt0 = t0 + T. Repeat with step 1.

Using this algorithm a sequence of state corrections is obtained. The idea of the algorithm, and
the resulting observer state trajectories are depicted in Fig. 3.5.

In a practical implementation the initial guess ˆx−0 and the resulting state trajectory ˆx−(t; t0, x̂−0) is
used for process monitoring and control purposes on the timehorizon [t0, t0 + T]. Meanwhile,
the process measurement trajectoryy(t; t0, x0) is recorded. At the end of the time horizon the
presented algorithm is executed yielding the corrected observer state trajectory ˆx+(t; t0, x̂+0 ). The
observer state at ˆx+(t0 + T; t0, x̂+0 ) is then taken as the initial guess ˆx−0 , see step 4 of the algorithm.
This requires that the dynamic equations in the algorithm can be simulated much faster than real-
time as the corrected estimate of ˆx+(t0 + T; t0, x̂+0 ) should be available with as less time delay as
possible to give a reliable estimate of the state of the process plant.

From the formulation of the algorithm it can be derived that one approximation step, i.e. ˆx+(t0 +
T) → x̂+(t0 + 2T) requires the solution of 2N2 + 3N ordinary differential equations, whereN
is the dimension of the statex. This proves to be a high computational burden, especially if
the dimension ofx is large. However, special algorithms are available to reduce the effort in
computation, see for instance Cao et al. [17].

Zimmer [154] proves under quite general conditions that theNewton-Raphson iteration converges
to a new estimate of the observer state, provided that the initial deviation x − x̂ is sufficiently
small. Due to the high convergence order of the Newton-Raphson method (quadratic), a very fast
convergence within a few iterations can be expected.

This idea of calculating estimates for the observer state can be generalised and extended into a
stochastic framework, yieldingstate estimators.
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3.3.2 Design methods for state estimators

In many practical applications the process measurement is biased, i.e. instead of the true valuey
a value ofy + η is measured, whereη denotes the bias. This may be a systematic measurement
error, e.g. a measurement offset, or a time-varying, stochastic quantity, e.g. measurement noise.
Whereas constant offsets can often be identified and eliminated by careful re-calibration of the
measurement device, stochastic influences are harder to compensate: Here often only some infor-
mation on the probability distribution, for instance the mean and the variance, is available. State
estimation algorithms use this available information in the design process to counter the influ-
ence of stochastic processes, e.g. noise or unmodelled process dynamics, on the estimation result.
Because of the fact that these algorithms filter out the stochastic components in the signals, they
are also calledfilters. In order to do so, in addition to the process model and the model of the
measurement device, a model of the stochastic disturbancesis needed in the design process.

In the following important finite-dimensional state estimators (state filters) are presented, starting
with an extension of the concept of state observation by on-line minimisation: the moving-horizon
estimator. Subsequently, an introduction to Bayesian filtering is given, which allows for the de-
sign of state estimators in a purely statistical setting. Afterwards Kalman filtering and Unscented
Kalman filtering are presented (as approximations of Bayesian filters), allowing for state estima-
tion in (non-)linear dynamic systems subject to stochasticdisturbances.

Moving-horizon estimators

Like state observation by on-line minimisation, moving-horizon estimators [123] calculate an es-
timate of the observer state by solving on-line an appropriate optimisation problem. The main
differences to the aforementioned algorithm are that stochastic disturbances on the process and on
the measurements are accounted for explicitly, and that nowthe time horizons can overlap.

The idea of a moving-horizon estimator is motivated as follows: Given a process model

dx
dt
= f (x, u) + ω yk = h(xk) + ηk , (3.31)

wherex is the process state,yk is the measurement atsampling time tk, i.e. measurements are only
taken at discrete points in time, andω andη are additive stochastic influences with not necessarily
known statistics. Assuming that the sampling interval∆t, i.e. the temporal distance between two
measurements, is constant, the process states at timetk, denoted byxk, can be calculated formally
by integrating the state equation for one sampling interval:

xk = xk−1 +

k∆t
∫

(k−1)∆t

f (x(t), uk−1) dt +

k∆t
∫

(k−1)∆t

ω dt (3.32)

= F(xk−1, uk−1) + wk−1 . (3.33)

Using this equation over time a sequence of state and measurement values can be generated:
{(xk, yk)}, k = 0, 1, . . ..

The measurement information can then be used to determine anestimate of the process state:
Given an initial estimate ˆx−0 , the sequence of measurements{y0, . . . , yk} and a model of the process,
find the initial state ˆx+0 and a sequence of process disturbances{w0, . . . ,wk−1} such that a given
functional is minimised, for instance a least-squares criterion:

min
x̂−0 ,{w}

k
∑

l=1

ηT
l R−1ηl +

k−1
∑

l=1

wT
l Q−1wl , (3.34)
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subject to the constraintsηl = yl − h(x̂l ) and x̂l = F(x̂l , ul−1) + wl−1 with x̂0 = x̂−0 . In this
formulation the statistics of the stochastic sequenceswl andηl are incorporated in the functional
by thecovariances RandQ.

The solution of this optimisation problem then gives an optimal estimate of the initial value, ˆx+0 ,
and the process noise sequence{w0, . . . ,wk−1}. Using this data an estimate at timetk can be
generated by solving the dynamic state equation using the optimal initial value and the sequence
of stochastic disturbances.

In this formulation all measurement information up to timetk is used in obtaining an estimate of
the process state ˆxk. The major problem here is that with increasing time the number of optimi-
sation variables increases as for each additional step an additional process disturbance has to be
estimated, so the number of variables in the optimisation problem is unbounded. As time necessary
to solve an optimisation problem depends on the number of optimisation variables, this time will
also increase rendering the approach infeasible for large amounts of measurement information.

In order to circumvent this problem, a moving-horizon strategy is used [123]: Instead of consid-
ering all available measurement information up to timetk only a fixed numbermof past measure-
ments and the measurement available attk are used in the estimation process. This results in an
optimisation problem with a maximum number of optimisationvariables proportional to the num-
ber of measurements considered. The time span [tk−m+1, tk] then is the horizon of the estimation
problem. The cost functional is rewritten, yielding:

min
x̂−k−m+1,{w}

k
∑

l=k−m+1

ηT
l R−1ηl +

k−1
∑

l=k−m+1

wT
l Q−1wl + x̂−,Tk−m+1P−1

k−m+1x̂−k−m+1 . (3.35)

The new term involving the state covarianceP accounts for the confidence in the initial estimate
x̂−k−m+1 at the beginning of the estimation horizon. It incorporatesall information about how the
process evolved from its initial state att0 to the statetk and may be crucial to the performance of
the estimator [116].

If time advances fromtk to tk+1, the first measurement is discarded from the optimisation problem.
Instead, the measurement value attk+1 is added to the formulation and the optimisation problem
is re-solved to obtain an optimal estimate ˆx(k+1)−m+1. This recursive property necessitates that
the optimisation problem is re-solved every time a new measurement becomes available, i.e. the
estimation problem has to be solved on-line in parallel to the process.

Moving-horizon estimation offers two main advantages to state observation by on-line minimisa-
tion: First is the possibility to directly use knowledge on stochastic influences on the process and
the measurements in the estimation algorithm. The second advantage is that additional constraints
on the estimates and the process disturbances can be posed: If it is known before-hand that certain
states can only attain non-negative values, for instance due to physical reasons, this can be formu-
lated explicitly as an inequality constraint in the optimisation problem. However, care has to be
taken in the formulation of constraints to not render the problem infeasible, see for instance Rao
and Rawlings [116].

The type of the optimisation problem depends on the type of the state and measurement equations
and the functional to be minimised. In the most general case,in moving-horizon estimation non-
linear constrained optimisation problems have to be solved. General convergence results for this
class of problems are not available due to the non-linearityand the possibility of multiple local
optima. For special classes of problems, e.g. linear process models and quadratic functionals,
convergence results for the unconstrained and the constrained case are available [123].

Instead of using a deterministic approach and modifying it to incorporate the available knowledge
about the stochastic influences, state estimators and filters can be derived using purely statistical
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arguments and mathematical probability theory. This approach, known asBayesian filtering, is
presented next.

Bayesian filtering

Bayesian filtering is a powerful tool for the design of state estimators for arbitrary non-linear
systems with stochastic influences with arbitrary statistics. It draws heavily from the theory of
conditional probabilities, especially the theorem of Bayes.

In the following a Bayes filter for the non-linear process model

xk = f (xk−1, uk−1, ωk) , yk = h(xk, ηk) , (3.36)

whereω and η are arbitrary stochastic influences, will be derived, following Arulampalam et
al. [7]. The properties of the filter are then shortly discussed.

For this task Bayes’ theorem can be stated as

p(xk|yk) =
p(yk|xk)
p(yk)

× a priori estimate. (3.37)

The notationp(A|B) denotes the conditional probability distribution for an eventA to occur given
the occurrence of eventB. In terms of state estimation, thea posteriori estimate p(xk|yk) denotes
the probability thatxk is the process state given the measurementyk. Analogously,p(yk|xk) denotes
the probability thatyk is the measurement ifxk is the current process state. The probability thatyk

is measured is denoted byp(yk).

Thea priori estimatedenotes the best estimate of the probability ofxk before the measurementyk

becomes available, i.e.
a priori estimate= p(xk|yk−1, yk−2, . . .) , (3.38)

i.e. the best estimate using all available measurement information.

In total the calculation of an a posteriori estimate can be written as

p(xk|yk) =
p(yk|xk)
p(yk)

× p(xk|yk−1, yk−2, . . .) . (3.39)

This equation can be solved if the a priori probability is known.

From mathematical statistics the following is known:

p(xk|yk−1, . . .) =
∫

p(xk, xk−1|yk−1, yk−2, . . .) dxk−1 . (3.40)

The probability on the left-hand side denotes the marginal distribution of the probability on the
right-hand side of the equation.p(xk, xk−1|yk−1, yk−2, . . .) is called the joint probability distribution
of xk andxk−1 conditioned to the measurement datayk−1, yk−2, . . ..

Using the equalityp(A, B|C) = p(A|B,C)p(B|C), the marginal distribution can be written as

p(xk|yk−1, . . .) =
∫

p(xk|xk−1, yk−1, yk−2, . . .) p(xk−1|yk−1, yk−2, . . .) dxk−1 . (3.41)

In order to evaluatep(xk|xk−1, yk−1, yk−2, . . .) no measurement information is needed, as the dy-
namics for the state transition fromxk−1 to xk is known by the state equation, i.e.

p(xk|xk−1, yk−1, yk−2, . . .) = p(xk|xk−1) . (3.42)
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The probability densityp(xk−1|yk−1, yk−2, . . .) is just the a posteriori estimate ofxk−1. The equations
therefore provide a recursion for obtaining a state estimate at timetk given the estimate at timetk−1.

This formal recursive Bayes filter can be decomposed into twosteps: a prediction step, calculating
the a priori estimate ofxk

p(xk|yk−1, . . .) =
∫

p(xk|xk−1, yk−1, yk−2, . . .) p(xk−1|yk−1, yk−2, . . .) dxk−1 (3.43)

and a correction of the a priori estimate given the measurement information attk, i.e. yk:

p(xk|yk) =
p(yk|xk)
p(yk)

× p(xk|yk−1, yk−2, . . .) . (3.44)

In this general form the recursive Bayes filter is an important tool in theoretical reasoning but
it is only of limited practical use. The main problem is the evaluation of the integral, i.e. the
calculation of the marginal distribution. This is in general a multidimensional integral, depending
on the dimension of the state vectorx. The sampling of the probability densities, i.e. the evaluation
of the probability for the occurrence of a specific event, is adifficult task in its own right due to
the possibly arbitrary shape of the probability densities.

In order to apply the concept of Bayesian filtering practically, approximations have to be made. In
most cases assumptions on the type of the state equation (linear, non-linear) or the statistics of the
stochastic disturbances are made. The most commonly known approximations are

• Monte-Carlo filtering, or particle filtering,

• Unscented Kalman filtering,

• Extended Kalman filtering, and

• Kalman filtering.

Monte-Carlo, particle filtering

Monte-Carlo filtering (or particle filtering (PF), bootstrap filtering) [131] is an approximation ap-
proach that gained popularity in recent years with the increasing availability of computational
resources.

Given a dynamic estimator model of a process

x̂k = f (x̂k−1, ωk−1) , x̂0 = x̂+0 , ŷk = h(x̂k, ηk) , (3.45)

whereω andη are stochastic sequences, an a posteriori estimate can be obtained using the follow-
ing procedure:

At k = 0 a fixed numberN of realisations of the initial state ˆx+0 is created using the knowledge
of the a posteriori probability distribution of ˆx+0 : x̂+0,i, (i = 1, . . . ,N). The realisations are called
particles, thus the name particle filtering.

For every time stepk = 1, 2, . . ., a priori estimates are calculated by

x̂−k,i = f (x̂+k−1,i , ωk−1,i) . (3.46)
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Using the knowledge ofh and the statistics ofηk the probabilityp(ŷk|x̂−k,i) can be evaluated. This
is used in the correction step, calledre-sampling, where the a posteriori estimates are chosen such
from the x̂−k,i such that forN→ ∞ the probabilities

p(x̂+k,i |yk) = p(xk|yk) (3.47)

are equal, i.e. the probability density of the estimated state is equal to the probability density
of the (unmeasurable) process state given the measurement information at timetk. All necessary
statistics of the a posteriori estimated state can then be calculated from the set of ˆx+k,i , for example
the mean.

The Monte-Carlo approach to Bayesian filtering is a brute-force method with several disadvan-
tages: The most important is that the calculation is very time-consuming due to the re-sampling
step [7, 131]. Additionally, convergence of the filter is only guaranteed forN → ∞. Its main
advantage is that it is applicable to general non-linear systems with arbitrary stochastic input
sequences. The idea of using special realisations of the state to calculate recursively the state
estimates will be re-used in the Unscented Kalman filter.

The family of Kalman filters uses assumptions about the type of model equations and the stochastic
sequences to make the actual computation of state estimatestractable. Filters based on the idea of
Kalman are estimation algorithms most often found in practical applications.

Kalman filtering of linear systems

Historically, one of the first applications of Bayesian filtering to linear process models subject to
Gaussian random variables was given by Kalman [68]. For thiscase Kalman was able to derive
an analytical, optimal solution to the filtering problem: the Kalman filter (KF). In the following
decades this result was extended to other classes, i.e. non-linear systems, resulting in a family of
filtering algorithms, for instance the Unscented Kalman filter.

Kalman considered the time-discrete linear time-invariant state space model

xk = Axk−1 + Buk−1 + wk−1 , yk = Cxk + ηk , (3.48)

wherew andη are zero-mean, normally distributed, non-correlated random sequences, i.e.

w ∼ N(0,Q), E
{

w(t)ηT(t̃)
}

= 0 ,
η ∼ N(0,R) ,

(3.49)

with constant covariance matricesQ andR.

Let x̂−k be the a priori estimate ofxk and x̂+k the a posteriori estimate using the measurement
information yk. Then the covariances of the a priori estimation errore−k = xk − x̂−k and the a
posteriori estimation errore+k = xk − x̂+k are given by

P−k := E
{

e−k e−k
T
}

, P+k := E
{

e+k e+k
T
}

. (3.50)

Kalman then derived an equation for ˆx+k such that the a posteriori error covariance matrixP+k is
minimised [68], i.e. the squared errorxk − x̂+k is minimised. It turns out to be a linear equation
incorporating the a priori estimate of the state ˆx−k and the measurement informationyk:

x̂+k = x̂−k + Kk

(

yk −Cx̂−k
)

. (3.51)
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The correction gainKk is calculated based on the a priori estimate of the error covariance matrix
P−k and the covariance matrix of the measurement noiseR:

Kk = P−k CT
(

CP−kCT + R
)−1

. (3.52)

Because of the changes in the estimation errorse−k ande+k an update equation for the error covari-
ances is needed [68, 43]:

P−k = AP+k−1AT + Q . (3.53)

Here the knowledge of the statistics of the process noise in form of the covariance matrixQ is
incorporated into the estimator design.

The filtering algorithm can then also be stated in two steps: In the prediction step the a priori
estimate of the state and the error covariance matrix at timetk are calculated using the a posteriori
values at timetk−1:

x̂−k = Ax̂+k−1 + Buk−1 ,

P−k = AP+k−1AT + Q .
(3.54)

Using the measurement informationyk, the correction gain and the corrected, a posteriori values
of the state and error covariance matrix are calculated:

Kk = P−k CT
(

CP−kCT + R
)−1

,

x̂+k = x̂−k + Kk

(

yk −Cx̂−k
)

,

P+k = (I − KkC) P−k .

(3.55)

In many applications the values ofKk andP+k tend within a few iterations to a steady state: The
steady state values only need to be computed once off-line and can then be used in the in-line
application of the estimator. The possibility to compute the gain off-line is of great importance in
the application of the filter algorithm to high-dimensionaldynamic systems.

The algorithm gives a stable state estimator if givenQ andR at each timetk a symmetric, positive
definite solution for the error covariance matrices can be calculated: This requires the system to
be observable and poses some restrictions on the choice of covariance matricesQ andR, see for
instance [68, 43].

Kalman proved that a correction gain calculated in this way provides an optimal estimate of the
state in a linear time-discrete process with Gaussian inputsequences [68]. For other types of
random input sequences the Kalman filter will also provide anestimate but it is not necessarily an
optimum.

Although linear systems are an important class of processes, most processes are non-linear. In this
case the Kalman filter is not able to provide a stable estimation of the process state. But the idea
can be transported to non-linear systems, resulting in theextended Kalman filter(EKF): Here the
non-linear process

xk = f (xk−1, uk−1,wk−1)
yk = h(xk, ηk)

}

(3.56)

is linearised at each timetk at the current statexk. This reduces the non-linear process to a linear
time-varying process to which the Kalman filtering algorithm can be applied: The prediction steps
for the a priori estimates ˆx−k andP−k read

x̂−k = f (x̂k−1, uk−1,wk−1) ,

P−k = AkPk−1AT
k +WkQk−1WT

k .
(3.57)
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The correction step reads

Kk = P−kCT
k

(

CkP−k CT
k + VkRVT

k

)−1
,

x̂k = x̂−k + Kk

(

yk − h(x̂−k , ηk)
)

Pk = (I − KkCk) P−k

(3.58)

The matricesAk, Bk,Ck, Wk andVk are obtained from linearisation of the state equations at the a
priori estimate ˆx−k :

Ak =
∂ f
∂x(x̂−k , uk,wk) ,

Ck =
∂h
∂x(x̂−k ,wk) ,

Wk =
∂ f
∂w(x̂−k , uk,wk) ,

Vk =
∂h
∂η

(x̂−k , ηk) .
(3.59)

In summary the EKF obtains an estimate of the process state ina non-linear system by first ap-
proximating the state distribution by a Gaussian probability distribution and then propagating this
distribution using a linearised model of the process. Due tothe approximations, the estimates
obtained by an EKF are not optimal for the non-linear processbut a first-order approximation. For
strongly non-linear systems, or systems where the dynamicscannot be modelled sufficiently by
the linear approximation, the EKF is known to diverge due to the approximation error. In general,
convergence of the EKF is hard to prove explicitly, i.e. a successful design strongly depends on
the design engineer and an extensive test of a designed algorithm.

One obstacle in the implementation of the EKF algorithm is the evaluation of the matricesAk, Bk,Ck,
Wk andVk: Either the partial derivatives of the functionsf andh with respect to the state and ran-
dom inputs are calculated analytically and are implementedexplicitly in the algorithm or some
kind of numerical linearisation algorithm is used. Whereasthe former possibility is often only
tractable for non-linear systems with a small number of states, the latter approach will introduce
additional errors into the algorithm that will increase thedanger of divergence of the filter.

These disadvantages motivated the design of other non-linear filtering algorithms, for instance
the Unscented Kalman filter, that combines ideas from particle and Kalman filtering to design an
algorithm for non-linear systems.

Unscented Kalman filtering of non-linear systems

The unscented Kalman filter (UKF) is a descendant of the Kalman filter that allows the estimation
of states in non-linear systems from noisy measurements. While the Kalman filter provides an
optimal estimate of the mean and the variance of the states, as motivated in the last section, this
is no longer true for non-linear systems. The extended Kalman filter (EKF) uses a linearisation of
the nonlinear process to calculate the state correction term and can only give a first-order approxi-
mation of the variance of the states. In case of highly non-linear processes, which are only poorly
described by their linearisations, the filter is known to diverge, becoming unusable for process
monitoring and control purposes.

The UKF draws from the idea of particle filtering and uses a technique known asunscented trans-
form introduced by Julier et al. [64] to gain higher-order approximations of the estimates and to
reduce the possibility of divergence of the filter due to non-linear effects.

Using the notation of Julier and Uhlmann [65], given a nonlinear time-invariant dynamic system

dx
dt
= f (x, u) + v , (3.60)

yk = h(xk, uk) + wk , (3.61)
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wherex ∈ RN denotes the state of the system,yk ∈ RM is the measurement at consecutive times
tk, (k ≥ 0), v ∼ N(0,Rv) denotes white process noise with zero mean and spectral density matrix
Rv, and the normally distributed measurement noisew ∼ N(0,Rw) with zero mean and covariance
Rw. It is assumed that the random variablesv andw are uncorrelated.

Due to the influence of the noise termsv andw on the states, these are no longer deterministic
but also random variables with a certain mean and (co)variance. The main idea of the unscented
transform is to propagate the distribution through the process non-linearityf and then calculate an
approximation of the new mean and covariance. This is in contrast to the EKF which approximates
the non-linearity and then propagates the mean and covariance by this approximation.

According to the work of Julier and co-workers [65, 64] a state estimate ˆx of the unknown statex
can be reconstructed by a predictor-corrector approach. Inthe following a special modification of
the UKF that has better numerical properties will be presented: the square-root unscented Kalman
filter (SRUKF) by van der Merwe and Wan [139].

In an initialisation step the observer state ˆx0 is set to the initially guessed value. From this the
matrix square root of the state covariance matrix,S0, is calculated by a Cholesky decomposition:

x̂0 = E{x0}, S0 = cholesky(P0) . (3.62)

Given the positive-definite matrixP0, the Cholesky decomposition calculates the unique lower-
triangular matrixS0 such thatP0 = S0ST

0.

Then for every measurement time stepk = 1, 2, . . . the following predictor-corrector algorithm is
executed to obtain an estimate of the process state:

In theprediction stepa finite number ofsigma points Xk are chosen. These are then transformed
by the nonlinear process model. As in particle filtering, a set of sigma points is selected in the
state space. In contrast to particle filtering, these sigma points are not generated randomly from
the probability distribution but chosen deterministically such that the mean and the variance of
the statistically distributed variables are captured. This allows to drastically reduce the number of
particles necessary in order to obtain reliable estimates:Julier and Uhlmann [65] show that for the
practically important case of Gaussian distributions of the noise sequencesv andwk only 2N + 1
sigma points are needed to capture the probability distribution of the state variables accurately.

A predicted state ˆx−k is calculated from the transformed sigma points as a weighted mean. Also
the new covariance matrix rootS−k is predicted. Afterwards new sigma points are generated to
incorporate the potential process noise and a predicted measurement ˆy−k is calculated from the
measurements generated by these sigma points:

Xk−1 =
[

x̂k−1, ηSk−1 + x̂k−1, −ηSk−1 + x̂k−1
]

(3.63)

Xk|k−1 = f (Xk−1, uk−1) (3.64)

x̂−k =

2N
∑

j=0

w(m)
j X j,k|k−1 (3.65)

S−k = qr

[

√

w(c)
1 (X1:2N,k|k−1 − x̂−k ),

√

Rv

]

(3.66)

S−k = cholupdate
{

S−k ,X0,k|k−1 − x̂−k ,w
(c)
0

}

(3.67)

X∗k|k−1 =
[

x̂−k , ηS
−
k + x̂−k , −ηS−k + x̂−k

]

(3.68)

Yk|k−1 = h(X∗k|k−1) (3.69)

ŷ−k =

2N
∑

j=0

w(m)
j Yj,k|k−1 (3.70)
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In these equations,η =
√

N + λ whereλ = N(α2 − 1), the weightsw(m)
0 = λ/(N + λ), w(c)

0 =

λ/(N + λ) + (1 − α2 + β), andw(m)
j = w(c)

j = 1/(2(N + λ)). All matrix-vector operations in this
algorithm are performed column-wise.

The operatorqr denotes the QR-decomposition of a matrix: A given matrixA is decomposed by
this operation into a orthogonal matrixQ and a upper triangular matrixR, i.e. A = QR. In the
calculation above,S−k denotes this upper triangular matrix.

The operatorcholupdaterealises a efficient update of the Cholesky factorL of a given positive-
definite matrixA = LLT, if it is modified by a rank-1-matrixzzT (z being a column vector), i.e.
A±zzT. In general, it is possible to calculate this modified Cholesky factor by first creatingA from
L, then performing the modification ofA into A± zzT, and then to calculate the modified Cholesky
factor by decomposing the modified matrix. The operatorcholupdateupdates the Cholesky factor
L, givenz, without explicitly calculating the modified matrixA + zzT. Care has to be taken if the
matrixA is down-dated, i.e. the modified matrix is given byA−zzT. In this case it may happen that
the modified matrix is no longer positive-definite and a Cholesky decomposition is not possible.

For the calculation of the correction gainKk at first the covariances from the predicted measure-
ments and the covariance of the transformed sigma points andthe generated measurements are
calculated to incorporate the measurement noise. Using this information the gain is calculated and
the predicted state ˆx−k and the predicted covariance matrix rootS−k are updated using the available
process measurementyk:

S−yk
= qr

[

√

w(c)
1 (Y1:2N,k|k−1 − ŷ−k ),

√

Rn

]

(3.71)

S−yk
= cholupdate

{

Syk ,Y0,k|k−1 − ŷ−k ,w
(c)
0

}

(3.72)

Pxkyk =

2N
∑

j=0

w(c)
j

[

X j,k|k−1 − x̂−k
] [

Yj,k|k−1 − ŷ−k
]T

(3.73)

Kk = (Pxkyk/S
T
yk

)/Syk (3.74)

x̂k = x̂−k + Kk(yk − ŷk) (3.75)

Sk = cholupdate
{

S−k ,KkSyk ,−1
}

(3.76)

In this algorithmα ∈ [10−4, 1) is a design parameter that influences the dynamics of the estimator.
As will be pointed out later the choice ofα is not arbitrary. The parameterβ incorporates some
a priori knowledge about the noise distributions, for Gaussian noiseβ = 2 is found to be opti-
mal [64]. Specific noise models forv andw can be incorporated quite easily by augmenting the
state vector. The covariances of the noise variables need not be constant but can vary in time or
can be state-dependent. The idea of the algorithm is summarised in Fig. 3.6.

The SRUKF has various advantages over the EKF and other estimation algorithms:

• It does not need analytical derivatives of the model equations which are often very difficult
to obtain.

• It also does not require a special structure of the model equations.

• It can be shown that the estimates obtained by the unscented transform are of at least second
order (EKF: first order), and are in case of Gaussian noise at least third order accurate.

• The state covariance matrix is guaranteed to be positive definite, and

• the computational cost of the SRUKF is comparable to that of the EKF.
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Figure 3.6: General idea of the unscented transform as introduced by Julier et al. [64].

In order to design a working state estimator as much a priori knowledge about the process should
be used as possible, for instance to choose a suitable measurement rate it is of great help to know
the dominant time constant of the process. The choice of the initial covariance matrix (which
determines the trust in the initial estimate ˆx0) is crucial to the performance of the estimator. Too
small values lead to small corrections and therefore slow down the convergence of the estimate to
the process state.

The parameterα must be chosen such that the Cholesky down-date of the covariance matrix root
in the correction step is always possible. A measurement interval that is too large for the process
dynamics can lead to a large correction (e.g. in case of very steep gradients in the state during
this time interval) which may result in a down-dated covariance matrix that is no longer positive
definite. In this case the algorithm breaks down. The correctchoice of the parameterα therefore
has to be determined off-line, for instance by estimator simulations using different noise levels and
measurement intervals.

The main computational load of this algorithm lies in the propagation of the sigma points by the
non-linear process, i.e. the solution of (at least) 2N+1 state equations over a measurement interval.
If the state dimension is very high and the measurement interval is short, the simulation step may
violate the condition that the filtering algorithm must be faster than real-time as otherwise the
estimates are only of limited use. However, the propagationof the sigma points can be executed in
parallel because the propagation of one sigma point does notdepend on the other sigma points, i.e.
the calculation can be distributed independently to different computers. This simple observation
can yield a considerable speed-up in computation as was demonstrated in Mangold et al. [89].

A comparison of the different estimation algorithms with respect to the accuracy and the com-
putational effort in a non-linear process is given in Fig. 3.7. It can be seenthere that the effort
increases with the required accuracy starting with the original Kalman filter that on the one hand
is the computationally cheapest but also gives the poorest estimate. At the other end, Monte-Carlo
filters provide most accurate estimates but at the cost of a high computational effort. The EKF
and the UKF lie between these two extrema: The practical choice of the algorithm depends on
the process model, e.g. are analytical expressions for the linearisation available, or are the noise
sequences non-Gaussian, and the experience of the design engineer.

After the presentation of various design methods for state observers and state estimators these are
applied in the next section to the task of calculating an estimate of the particle size distribution in
fluidised bed spray granulation processes.
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Figure 3.7: Comparison of the different state estimators based on Bayesian filtering with respect
to accuracy of the estimate and required computational effort (after Simon [131]).

3.4 Model-based measurement of size distributions

In this section model-based measurement schemes are applied to the batch and continuous flu-
idised bed processes modelled in Chapter 2. The task is to reconstruct the particle size distribution
from noisy or limited measurement information. Before the design of an estimator or observer
is undertaken, the observability of the process with respect to available measurements has to be
checked.

Observability of the processes is motivated by a structuralanalysis of finite-dimensional approxi-
mations of the process models. These can be obtained from thepopulation balance equations for
example by application of one of the discretisation methodspresented in Appendix D.

From a practical point of view, the following measurement classes are of interest:

• total moments: for instance the total mass of particles in the process which is proportional
to µ3;

• normalised moments: in particular ξ50 = µ1/µ0 which denotes an average particle size
obtainable from most in-line particle probes;

• chord length distributions: the main measurement results obtained from in-line probessuch
as FBRM or IPP-70 (Parsum GmbH, Germany);

• (normalised) number density functions: Although this case seems trivial at first, this is not
true, as even the (normalised) number density function may be corrupted by measurement
noise.

These measurement classes are now investigated to find out whether they possess the necessary
properties for structural observability of the processes under consideration, or not.

3.4.1 Structural observability of the spray granulation process

At first the distributed measurements, i.e. number density functions and chord-length distributions,
are tested for structural observability: The notions of output-connectedness and non-contraction
were introduced in Section 3.2 – summarising, a process is structural observable if every state of
the model has a unique influence on the process measurement.
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Trivially, if the number density functionn(t, ξ) can be measured, or its finite-dimensional approx-
imation, then the process model (or its finite-dimensional approximation) is observable, as every
state is measured directly and uniquely.

The chord-length distribution can be written asy = S n= Cn, wherey is the process measurement
(the chord-length distribution in this case) andS is a triangular matrix relating the sizes to all
possible chord-lengths. The matrixS is triangular due to the fact that the maximum chord-length
that can be generated is equal to the particle size, i.e. sizegreater than this cannot be generated.
The important point for structural analysis is that the structural matrixSs = Cs obtained fromS
has a diagonal of ones, i.e. the structural rank ofSs is equal to the number of states, provided
that at least this number of chords are considered. In general, S is a rectangular matrix, with the
number of rows depending on the discretisation gird of the number density function and the chord
lengths, respectively. In most cases the discretisation ofthe chord length is much finer than the
discretisation of the number density function, see for instance Mangold [87]. The diagonal of ones
means that the states of the model are output-connected. Thecondition for non-contraction is also
fulfilled by this result, as the structural matrixSs provides the required structural rank. From this
it is clear that the processes are structurally observable by this measurement.

In the following, structural observability is investigated for two families of scalar measurements:
yk = µk, the kth unnormalised moment of the number density function, and ˜yk = µk/µ0, the
normalised or averagedkth moment.

Using the notation

〈wk, n〉 = wT
k n =

N
∑

i=1

ξk
i n(t, ξi)∆ξi , (3.77)

for the finite-dimensional approximation of the unnormalised kth moment of the number density
function, these measurements can be expressed as

yk = 〈wk, n〉, ỹk =
〈wk, n〉
〈w0, n〉

. (3.78)

The population balance equation is rewritten in the form

dn
dt
= −GDNn+ p(n), (3.79)

G = 2
Ṁsolid

%sπ〈w2, n〉
, (3.80)

where the regular matrixDN ∈ RN×N is a finite dimensional approximation of the derivative
operator∂/∂ξ and p(n) is a the net-production of particles in the process. In caseof the batch
processp(n) = 0 holds for all times.

The structural observability analysis for both processes and both measurement families can be
performed simultaneously:

• Output-connectedness: In case ofyk = 〈wk, n〉 the measurement is linear with respect to the
approximated size distributionn, therefore the structural matrixCs,k (in this case just a row
vector) can be obtained by inspection. As all weightswk,i , 0 it follows Cs,k = [1, . . . , 1],
i.e. all model states have direct influence on the measurement and the process is output-
connected. As this property does not depend on the dynamics of the model, it holds for both
processes.
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In case of ˜yk = 〈wk, n〉/〈w0, n〉 – which is nonlinear inn – at first the linear approximation
has to be obtained:

ỹk ≈
1

〈w0, n〉2
[

wT
k 〈w0, n〉 − 〈wk, n〉wT

0

]

. (3.81)

An evaluation of the scalar products shows that under the assumption thatn is not identically
zero for all times every entry of the row vector is not identically zero. Therefore the struc-
tural matrixC̃s,k has the formC̃s,k = [1, . . . , 1], and output-connectedness for both processes
under this family of measurements follows immediately.

• Non-contraction: From equation (3.80) it can be seen that the growth rateG is non-zero for
all relevant applications.G vanishes only in case of an infinite bed surface which is never
attained in practical application or in case ofṀsolid = 0 which is contradictory to the aim of
the process.

The linearisation of the convective term in equation (3.79)can be obtained by application of
the product rule:

A =
∂

∂n
[−(DNn)G] = −

[

∂

∂n
(DNn)G+ (DNn)

∂G
∂n

]

. (3.82)

A similar computation using the definition of the growth rateyields

∂G
∂n
= −ωTG , (3.83)

where the entries ofω are given byωi = w2,i/〈w2, n〉 , 0.

Using standard results of multivariable calculus this leads to

A = −DN

[

IN − nωT
]

G , (3.84)

whereIN denotes theN × N identity matrix.

From this follows immediately that the structural matrixAs has a diagonal of ones as a result
of the regularity ofDN, in fact – due to the structure ofG – it can be shown by evaluation
of the expression above that there are no zero entries in the structural matrix. The s-rank of
such a square matrix is by definition equal to the number of columnsN.

As both processes contain this convective term and the additional term p(n) of the continuous
process does not eradicate non-zero entries from the structural matrixAs, both processes posses
the property of non-contraction under these measurements.As they are also output-connected they
are both structurally observable.

Two remarks on the validity of the results have to be given: (1) The analysis neither depends on
a certain number of grid nodes used in the discretisation noron a special discretisation scheme as
long as the form (3.79) is obtained. (2) The analysis does notpoint out which measurements are
practically useful as it depends on the sensitivity to changes in the size distribution. This has to
be checked additionally, e.g. in simulations, or can be inferred from the process conditions. For
instance in both processes the third momentµ3, which is proportional to the total mass of particles
in the process, is not a suitable measurement: In case of the batch process it is decoupled from
the dynamics of all other moments, depending only on the amount of sprayed liquid (as shown
in Section 2.7); examples of number density functions that are completely different but give the
same total mass can be generated quite easily. In case of the continuous process the bed mass
is controlled to be constant, i.e. a change in the number density function is not detectable in the
measurement of the third moment.
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In case of the continuous process the structural result can be made more precise: An observability
analysis using the steady-state number density function can be performed: Linearising the process
model gives a high-dimensional linear state space model. Bythe Hautus-Belevitch-Popov criterion
the observability of the process given the measurements canbe checked, giving a result that is valid
for the linear process and also for the non-linear process aslong as the state is in the vicinity of
the steady-state.

3.4.2 Application to batch fluidised bed spray granulation

Infinite-dimensional Luenberger observer

Although the design of infinite-dimensional observers for infinite-dimensional systems is in gen-
eral difficult, for spatially-distributed systems some results are reported in the literature, see for
instance [151, 69, 16, 90, 58] for applications in reaction engineering and separation processes. In
these cases the distributed quantity of interest, e.g. the temperature in a tubular reactor, is mea-
sured at discrete points in the reactor. The state profile between two measurement locations is then
interpolated. The state correction is then motivated by thephysics of the process and calculated
using the interpolated profiles.

The problem in measuring the size distribution is that discrete measurements, i.e. the measurement
of some distinct sizes, is practically not realisable and the approach presented cannot be used.

In the case of a scalar, lumped measurement, e.g. the mean particle sizeξ50, a dynamic infinite-
dimensional equation for the error in the number density function is obtained, the problem being
the calculation of an infinite-dimensional state correction given the scalar measurement.

First, an infinite-dimensional observer for the number density function n(t, ξ) given the scalar,
lumped measurementy = ξ50(t) = µ1(t)/µ0(t) is designed. Afterwards, using the idea introduced
in the first case an observer for the normalised number density functiony = q0(t, ξ) = n(t, ξ)/µ0(t)
is designed. The suitability of the observers is tested in simulations by varying the process condi-
tions.

Case 1: Mean particle size. Given are the population balance equation for the number density
function in the batch fluidised bed spray granulation process

∂n
∂t
= −G

∂n
∂ξ

, (3.85)

and the measurementy = ξ50(t) = µ1(t)/µ0(t). Observing that the total number of particles is
constant in a batch process, the number density function canbe scaled byµ0(t = 0), giving the
normalised number density functionsq0(t, ξ) = n(t, ξ)/µ0(t = 0). The population balance equation
then reads

∂q0

∂t
= −G∗

∂q0

∂ξ
, (3.86)

whereG∗ denotes that the growth rate, evaluated usingq0 andµ0.

The Luenberger observer is set up as

∂q̂0

∂t
= −Ĝ∗

∂q̂0

∂ξ
+ k(ξ, y, ŷ) , (3.87)

with the corresponding measurement ˆy = µ̂1(t)/µ̂0(t), that can also be calculated directly from a
given normalised number density function.
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The initial normalised number density functions of the process and the observer model are rep-
resented byq0(0, ξ) = q0,0 and q̂0(0, ξ) = q̂0,0, respectively. Introducing the state observation
error

e(t, ξ) := q0(t, ξ) − q̂0(t, ξ) (3.88)

the dynamic equation for the error can be written as

∂e
∂t
= −

(

G∗
∂q0

∂ξ
− Ĝ∗

∂q̂0

∂ξ

)

− k(ξ, y, ŷ) , ey(0, ξ) = q0,0 − q̂0,0 . (3.89)

The task of designing the correctionk(ξ, y, ŷ) requires that from the scalar, lumped measurement an
infinite-dimensional state profile correction is calculated. This is not possible in general. However,
under the assumptions listed a suitable correction can be designed:

(A1) The growth rates are sufficiently close to each other, i.e.G∗ ≈ Ĝ∗.

(A2) The (normalised) number density function is mono-modal and can be represented as a Gaus-
sian function, i.e.

q0(t, ξ) ∼ 1
√

2πσ
exp

[

−1
2

(

ξ − ξ50

σ

)2]

, (3.90)

q̂0(t, ξ) ∼ 1
√

2π σ̂
exp















−1
2

(

ξ − ξ̂50

σ̂

)2












, (3.91)

whereξ50, ξ̂50 denote the mean values of the Gaussian functions andσ, σ̂ the variances,
respectively.

(A3) The variances are assumed to be equal, i.e.σ = σ̂.

Assumption (A2) is natural in many practical applications,(A3) can be satisfied by measuring the
initial normalised number density function in a off-line measurement device from which a suitable
value for the variance can be extracted. Assumption (A1) depends on the number density function
n. Given an estimate of the initial normalised number densitydistribution and an estimate of the
total mass of particles in the bed, an estimate of the total number of particles can be calculated
yielding an initial estimate of the growth rate.

Using assumption (A1) the error equation simplifies to

∂e
∂t
= −Ĝ∗

(

∂e
∂ξ

)

− k(ξ, y, ŷ) . (3.92)

In order to derive an equation for the errore that can be interpreted with respect to the dynamic
behaviour, the state correctionk(ξ, y, ŷ) is designed such that

k(ξ, y, ŷ) = αe(t, ξ) = α(q0 − q̂0) , (3.93)

with α being atuning parameter.

Using the definition ofeand assumptions (A2) and (A3) yields

e = q0(t, ξ) − q̂0(t, ξ) (3.94)

= C exp

[

−1
2

(

ξ − ξ50

σ

)2]

−C exp















−1
2

(

ξ − ξ̂50

σ

)2












(3.95)
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≈ C
∂

∂ξ̂50















exp















−1
2

(

ξ − ξ̂50

σ

)2


























∣

∣

∣

∣

∣

∣

∣

ξ̂50(t)=ξ50(t)

(ξ̂50− ξ50) (3.96)

≈
{

C
(

ξ − ξ50

σ2

)

exp

[

−1
2

(

ξ − ξ50

σ

)2]}

(ξ50− ξ̂50) (3.97)

=: ϕ(ξ, y(t))(y− ŷ) =: k(ξ, y, ŷ) × α−1 . (3.98)

where the substitutionC = 1/(
√

2πσ) is used andα is the aforementioned tuning parameter. What
is done in the state correction design is that a global distribution functionϕ(ξ, y(t)) based on the
current measurement is calculated by linearising the errorin the assumed shape around the current
estimated measurement value.

The dynamic equation for the errorecan thus be written approximately as

∂e
∂t
≈ −Ĝ∗

(

∂e
∂ξ

)

− αe, e(0, ξ) = q0,0 − q̂0,0 . (3.99)

The designed observer is functional, if the observation error e is converging toe(t, ξ) = 0. That this
is indeed the case if assumptions (A1)–(A4) are fulfilled will now be motivated: An application
of the method of characteristics to the error equation yields the following system of characteristic
equations:

dt
dθ
= 1 , (3.100)

dξ
dθ
= Ĝ∗ , (3.101)

de
dθ
≈ −αe. (3.102)

Whereas the first two equations give the characteristic curves, the third describes the development
of the error on these curves. From this it is immediately obtained thate ∼ exp(−αt), i.e. the
error decays approximately exponentially on the characteristic curves originating from all possible
valuesξ. The decay can be manipulated by choice of the design parameterα > 0. This means that
over time the observation error tends point-wise to zero, given that the assumptions are satisfied.

This result can be further motivated by considering the evolution of the square of theL2-norm of
the distributed error. It is defined by

E2(t) = ‖e(t, ξ)‖2L2
=

∞
∫

ξ0

e(t, ξ)2 dξ , (3.103)

and measures the total quadratic distance of the error profilee to the zero profile. From the defini-
tion it follows thatE2 ≥ 0 andE2 = 0 if e= 0.

Introducing the functionV(t) = 1/2E2(t) the following result on the evolution ofE2 can be ob-
tained:

dV
dt

=

∞
∫

ξ0

e(t, ξ)
∂e
∂t

dξ =

∞
∫

ξ0

e(t, ξ)

(

−Ĝ∗
∂e
∂ξ

)

dξ − α
∞

∫

ξ0

e(t, ξ)2 dξ (3.104)

=

∞
∫

ξ0

e(t, ξ)

(

−Ĝ∗
∂e
∂ξ

)

dξ − 2αV (3.105)

65



Table 3.1: Process parameters for the batch spray granulation process.

Initial bed mass [kg] mbed 10.0
Mass flow of solid [kg s−1] Ṁsolid 1.38× 10−2

Solid density [kg m−3] %s 1440.0

= −Ĝ∗

2

∞
∫

ξ0

∂e2

∂ξ
dξ − 2αV (3.106)

=
1
2

(

G∗e
)

(t, ξ0) e(t, ξ0) − 2αV (3.107)

= −2αV ≤ 0 . (3.108)

In these calculations the vanishing boundary conditions, i.e. (G∗e)|ξ0
= (G∗n−G∗n̂)|ξ0

= 0, and
the fact that the growth rate is independent of the particle size ξ are used.

From the last line it can be obtained that

V(t) ∼ exp(−2αt) , (3.109)

i.e. theL2-norm of the error decreases exponentially to zero under thestated assumptions. It has
to be noted that for non-zero error profilese(t, ξ) with vanishingL2-norm the convergence result
yields an erroneous result, as here the time derivative of the functionV also vanishes, although
the state observation error does not do so. However, these theoretical limit cases do not appear in
general application and are neglected.

Exponential convergence of the error implies that the designed observer possesses a certain ro-
bustness against modelling errors and stochastic influences, e.g. measurement noise, as these are
smoothed out. Robustness against modelling errors is important because it is likely for a given
batch fluidised bed process to violate assumptions (A1)–(A3). The violation is then counteracted
up to a certain degree by the exponential convergence and limits the error in the estimated state
profile, the number density distribution.

In the following simulation results for two cases are presented, taking into account modelling
errors and parameter uncertainties. For the implementation in the simulation environment Matlab
the infinite-dimensional observer is discretised using a finite volume method (cf. Appendix D).
The process parameters are listed in Tab. 3.1.

Scenario 1. Given the initial profiles shown in Fig. 3.8 for the process and the observer model,
respectively, after a process simulation of 10000 seconds the results shown in Fig. 3.9 are obtained.
A tuning factorα = 0.05 is used which was determined by test simulations.

Compared to a pure parallel simulation of the process model (denoted by “Simulator” in the fig-
ure), i.e. without correction of the state estimate based onthe available measurement information,
the position of the number density function in the process isestimated better. However, a slight
deviation in the magnitude is observed. This leads to a non-vanishing state observation error which
can also be identified in the plot of theL2-norm of the error shown in Fig. 3.10. Additionally, it can
be observed that the error decreases very rapidly in the beginning. This is due to the initially large
deviation of the number density functions which is also present in the normalised number density
functions that are used to calculate the state correction. After this initial phase, which corrects
mainly the position of the estimate, the differences in the magnitudes are corrected. These are,
however, not easily represented bynormalisednumber density functions, thus the convergence
speed is decreased almost to zero. This is also true for the approximation of the growth rate which
is shown in Fig. 3.11.
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Figure 3.8: Initial conditions used in Scenario 1 for the process and the observer model. Be-
sides a deviation in the mean particle size the number density functions are identical. (Infinite-
dimensional Luenberger observer, Case 1, Scenario 1)
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Figure 3.9: Results obtained from the infinite-dimensionalLuenberger observer after 10000 s. It
can be seen that the shape and the position of the number density function are approximated well,
but a deviation in the magnitude is observed. (Infinite-dimensional Luenberger observer, Case 1,
Scenario 1)
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Figure 3.10: Evolution of the normalised state observationerrorE2. After an initial sharp decrease
the error tends to a steady-state value, signalling the error in the observed magnitude of the number
density function. (Infinite-dimensional Luenberger observer, Case 1, Scenario 1)
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Figure 3.11: Observation results for the particle growth rate. Although a non-vanishing error in the
observed number density function remains, the growth rate is estimated almost exactly. (Infinite-
dimensional Luenberger observer, Case 1, Scenario 1)
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Figure 3.12: Results obtained from the infinite-dimensional Luenberger observer in Scenario 2
after 10000 s. Although a constant error in the shape of the correction profile is present, the shape
and the position of the number density function are approximated well. (Infinite-dimensional
Luenberger observer, Case 1, Scenario 2)

As can be seen in Fig. 3.11 even for a simple choice of initial profile error a violation of assumption
(A1) is likely. However, the observer is able to compensate for this error, so that it can be stated
that it is functional for this scenario.

Deviations from the motivated convergence results can be ascribed to the non-linearity of the
process and the resulting non-linearity of the observationerror, as well as the initial violation of
assumption (A1).

Scenario 2. Under the same conditions as in Scenario 1 an initial distribution of the observer
similar to the one shown in Fig. 3.8 is used, but with the modification that the estimated variance
σ̂ is erroneous: ˆσ = 0.9σ, i.e. assumption (A3) is constantly violated. As is shown inFig. 3.12,
the observer is able to compensate for this bias. However, ithas to be pointed out that for large
deviations the observer will not be able to compensate the error and will diverge as the approxi-
mations used in the derivation of the state correction, especially the calculation of the global shape
functionϕ, are no longer valid.

The state observation errorE2 and the approximation of the growth rate are qualitatively similar to
Scenario 1. This means that even for a persistent violation of an assumption the designed observer
is functional.

Scenario 3. In this scenario the observer is tested for parametric uncertainties (α = 0.05). Start-
ing with the initial profiles shown in Fig. 3.8, in the calculation of the growth rate of the observer
an erroneous value for the solid density ˆ%s is used: ˆ%s = 1.1%s. This error influences the growth
rate and by this all states of the observer model.

Even in this case a good approximation of the number density function in the process is cal-
culated by the observer (Fig. 3.13). However, a widening of the estimated distribution and an
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Figure 3.13: Reconstructed number density function for a parametric uncertainty in the infinite-
dimensional Luenberger observer (Infinite-dimensional Luenberger observer, Case 1, Scenario 3,
after 10000 s).

under-estimation of the magnitude can be seen, but the result is still sufficiently useful for process
monitoring purposes.

The state observation error tends to a non-vanishing steady-state error, and the growth rate is also
approximated well. In both cases the temporal evolution is comparable to the ones obtained in
Scenario 1.

Based on these results it can be stated that the designed infinite-dimensional Luenberger state
observer is able to reconstruct a number density function ina batch spray granulation process
given only scalar measurements of the mean diameter of the particles in the process. A further
improvement of the results presented may be obtained by using higher-order approximations of
the error profiles in the derivation of the correction gaink(ξ, y, ŷ).

In-line measurement devices are often able to provide a normalised number density function of
the particles in the process. Using the idea presented here,a corresponding state observer for this
kind of measurement can be designed.

Case 2: Normalised number density function. Given a normalised number density function
y(t, ξ) = q0(t, ξ) a state observer can be designed using assumption (A1), i.e. G ≈ Ĝ. An analogous
derivation of the dynamic error equation yieldsk(ξ, y, ŷ) = −α(y − ŷ) = −αe, giving exponential
convergence of the estimation error. The assumptions made in Case 1 can be relaxed, asq0(t, ξ)
contains all qualitative information on the profile. This also means that the observer is able to
reconstruct the number density functions in a process even if they are not close to each other,
initially.

This result is exemplified by the following scenario: Initially, in the fluidised bed a bi-modal
distribution is present as shown in Fig. 3.14. The observer is only given information on the first
mode on the far left-hand side. This information is not perfect as an error in the magnitude of this
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Figure 3.14: Initial conditions used in Scenario 1 for the process and the observer model. Be-
sides a deviation in the mean particle size the number density functions are identical. (Infinite-
dimensional Luenberger observer, Case 2)

mode is present.

The results obtained from the observer after 10000 seconds of process time are shown in Fig. 3.15.
There it can be seen that the initially unknown mode is reconstructed successfully by the state
observer. A deviation in the magnitudes of both modes is observed, signalling that the observer
is not fully able to compensate the error in the total number of particles in the observer model
µ̂0. It can clearly be seen that the observer structure outperforms the parallel simulator that only
propagates the initially known mode over time, yielding a result that deviates strongly from the
process.

In the plot of the normalised errorE2 shown in Fig. 3.16 it can be seen that a good approximation
is already obtained by the observer after a short time (compared to the total process time). This
time can be further reduced by increasing the tuning factor (design parameter)α in the observer
model. However, care has to be taken if the measurement information is biased by noise. In this
case the noise is amplified by the tuning factor yielding errors in the calculated state correction.

In every case the time necessary to compute the state correction given the measurement is negli-
gible compared to the time constant of the process, as only the shape function has to be evaluated
which is then multiplied by the tuning factor.

State observation by on-line minimisation

In a first case a state observer using the approach of Zimmer [154] is designed for the measurement
of the number density function, i.e.y = n(t, ξ). Although this measurement is trivial with respect
to the reconstruction of the number density function, it allows to evaluate the performance of the
state observer under measurements biased by noise and modeluncertainties. In the following
cases results for the measurements of normalised number density functions and mean particle size

71



2 4 6 8 10 12 14 16

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

12

ξ in [m]

N
um

be
r 

de
ns

ity
 fu

nc
tio

n 
in

 [m
−

1 ]

 

 

System
Observer
Simulator

Figure 3.15: Reconstructed number density function after 10000 s. This example shows the short-
comings of the simulator approach, which only propagates the initially known mode. (Infinite-
dimensional Luenberger observer, Case 2)
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Figure 3.16: Evolution of the state observation error (normalised to its initial value). It can be
seen that the observation error decreases over time, i.e. itis lower than the initial value, signalling
a convergence of the observer state to the process state. In contrast, the error in the simulator
model, i.e. without correction based on measurements, increases, signalling a non-convergence.
(Infinite-dimensional Luenberger observer, Case 2)
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Figure 3.17: Initial conditions used in for the process and the observer model for the test of a state
observer designed after Zimmer [154]. (Zimmer, Case 1)

are presented and discussed. In order to solve the process and observer equations the population
balances are discretised by a pseudo-spectral method (cf. Appendix D), as it allows in this case to
significantly reduce the number of grid nodes necessary to represent the number density functions
sufficiently. As the number of differential equations to be solved in the observer algorithm depends
quadratically on the number of grid nodes, a considerable speed-up compared to traditional finite
volume methods is achieved.

Case 1: Number density function. Choosing an observation horizon ofT = 500 seconds and
the initial conditions for the process and the observer model shown in Fig. 3.17, the process is
simulated for a process time of 10000 seconds. In each observation horizon the process measure-
ment is subjected to additive noise that is normally distributed, i.e.ηi ∼ N(0, 1010), (i = 1, . . .) and
assumed to be constant over the observation horizon. The value of 1010 is chosen based on the
maximum magnitude of the initial number density function.

As is shown in Fig. 3.18, the state observer reconstructs thenumber density function in the process
almost perfectly, i.e. it is able to compensate the random errors introduced in the measurement.

In the evolution of the normalised errorE2, shown in Fig. 3.19 the convergence behaviour of the
algorithm can be identified: After a few iterations the erroris almost decreased to zero owing
to the high convergence speed of the Newton-Raphson algorithm used in calculation of the state
correction.

Similar results are obtained if a parametric error is present in the observer model. For a test an
error of ten percent in the growth velocity is introduced by setting %̂s = 1.1%s. For the same
initial condition it is shown in Fig. 3.20 that the number density function in the process is almost
perfectly reconstructed, too. However, the error is not decreasing as smoothly as in the case of a
perfect observer model, due to the persistent error in growth velocity which leads to a persistent
deviation of the observer state from the process state.
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Figure 3.18: Reconstructed profile by on-line minimisation. The reconstruction is almost per-
fect, indicating that the observer is able to attenuate measurement errors. (Zimmer, Case 1, after
10000 s)
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Figure 3.19: Temporal evolution of state observation error. Owing to the convergence order of the
Newton-Raphson algorithm used in the method the profile is approximated quite well after a few
iterations. The remaining error is due to the time-varying noise influence between two observation
horizons. (Zimmer, Case 1)
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Figure 3.20: Reconstructed profile by on-line minimisation. The reconstruction is almost perfect,
signalling that the observer is able to attenuate, in addition to measurement errors, parametric
uncertainties, i.e. a the algorithm possesses robustness properties. (Zimmer, Case 1, parametric
uncertainty, after 10000 s)
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Figure 3.21: Temporal evolution of state observation error. Due to the error in the growth rate, the
observer state deviates from the process state during each observation horizon. The deviation is
compensated at the end of the horizon leading to the zigzag appearance of the error plot. (Zimmer,
Case 1, parametric uncertainty)
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Figure 3.22: Initial condition used in state observation byon-line minimisation given normalised
number density function measurements. (Zimmer, Case 2)

Case 2: Normalised number density function. Switching to the normalised number density
function as a process measurement, i.e.y = q0(t, ξ), leads to a significant change in the per-
formance of the observation algorithm. As can be seen in Fig.3.23 the algorithm is not able to
provide a reliable estimate of the number density function although the initial deviation is small
(cf. Fig. 3.22). This result does not change when the initialerror is decreased further.

The reason for the inefficiency of the algorithm can be found in the computation of theHessian
N ′′ of the functionalN which is used to calculate the state correction. It turns outthat by re-
moving the quantitative information on the number density function from the measurements, i.e.
normalising the measurement with respect to the total number of particlesµ0, the Hessian becomes
ill-conditioned leading to numerical problems in the calculation of the state correction. Based on
this it has to be concluded that state observation by on-lineminimisation using measurements of
the normalised number density function is not likely to yield a successful model-based measure-
ment system.

Case 3: Mean particle size. The problem pointed out in Case 2 becomes more severe in case of
a lumped, scalar measurement, e.g. the mean particle size. Here the Hessian, due to scaling issues,
is almost identical to a zero matrix, prohibiting the necessary inversion ofN ′′ in the calculation
of the state correction. Although successful applicationsfor this kind of measurement are known
in crystallisation processes [89], in the present formulation it does not yield a working model-
based measurement system. The problem might be remedied by using a different formulation, for
instance the one proposed by Cao et al. [17].

Square-root unscented Kalman filter

In the following simulations results for an SRUKF applied toa batch fluidised bed spray granu-
lation process are presented using themean particle sizeas the available process measurement.
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Figure 3.23: Result of the state observation algorithm using on-line minimisation given the nor-
malised number density function as process measurements. The estimated profile is rather poor
compared to the initial deviation in the observer model, shown in Fig. 3.22. (Zimmer, Case 2, after
10000 s)

Table 3.2: Simulation and design parameters UKF for the batch process.

Number of discretised states N 100
Simulation time interval [s] tend 20000.0
Measurement time interval [s] ∆t 50.0
Variance of measurement [m2] Rn 10−10

Process noise covariance [m−1 s−1] Rv 10−40IN

Design parameter SRUKF α 0.7

For the tests the balance equations were discretised by a finite volume method using 100 equally
spaced grid nodes in the size interval [ξ0, ξmax], where the maximum size was determined by
process simulations. Following the design procedure for unscented Kalman filters this yields a
deterministic choice of 201 sigma points.

Scenario 1. In this scenario normally distributed measurement noise inthe order of ten percent
of the measurement is added to the simulated plant measurement to create a noisy measurement
which is then used in the estimation algorithm. The samplingtime of the estimator is chosen to be
∆t = 60 s. As initial condition a bi-modal distribution was chosen for the plant, where the initial
guess provided for the estimator considers only a mono-modal distribution which is overestimated
in magnitude by thirty percent, see Fig. 3.24. This choice leads to a difference in the growth
velocity of the estimator model that influences all states ofthe model. Other necessary parameters
are listed in Tab. 3.2.

It can be seen in Fig. 3.25 that the estimation of the number density function is quite good. The
known but overestimated mode is reconstructed almost exactly, only a slight deviation in position
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Figure 3.24: Initial condition used for the process and the estimator model. Note that in the
observer model initially only a rough estimate of one of the modes of the bi-model process distri-
bution is known. (UKF, Scenario 1)
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Figure 3.25: Profiles for the number density functions at theend of the process simulation (t =
20000 s). (UKF, Scenario 1)
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Figure 3.26: Evolution of the state observation errorE2: After an initial fast decrease it converges
to a non-zero value. (UKF, Scenario 1)

of the mean and a slightly too large variance can be noticed. The position of the second mode,
which is initially unknown, is estimated with a very small offset, and the magnitude of the peak is
overestimated. The time evolution of the estimation errorE2 is shown in Fig. 3.26. There it can be
seen that the error decreases almost monotonically over time. The error at the end of the simulation
interval can be further decreased by decreasing the time interval of measurements, which yields
more measurements and thus more state corrections.

The rather large deviation in the initial number density functions is chosen to highlight that even
large initial errors can be corrected using this non-linearestimation algorithm. The time neces-
sary to compensate the error depends on the initial deviation, so in practical application the best
possible guess should be used to increase the convergence. It should also be noted that the error
E2 does not converge to zero but to a non-zero steady-state. This is due to the measurement noise
present and the approximation of the non-linear probability distribution of the estimator states in
the calculation of the state correction.

Scenario 2. In practice not all process parameters are known exactly, orerrors might occur in
the setup of the estimator parameters. For application the estimation algorithm therefore has to
possess a certain robustness to parametric errors. In case of the batch granulation process under
noisy measurements this robustness is tested by applying a mass flow rate of suspension that is
ten percent larger than the actually supplied rate. As this parameter is part of the growth rate, this
error affects all states of the estimator.

In Fig. 3.27 it can be seen that even in this case the estimation error decreases. It can also be seen
that at end of the process simulation the error is larger thanin the other scenario. The estimated
profile (Fig. 3.28) also shows a larger deviation in the position and the magnitude of the peaks.
The variance for both modes is also overestimated, but stilla useful estimate of the number density
function is obtained.

The parametric error, if its source is known, can be compensated if it is estimated as well, but in
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Figure 3.27: In case of parametric errors the estimator error also decreases. This decrease is slower
than in the other scenarios and tends to a fixed value. (UKF, Scenario 2)

general there will be no perfect estimator model and a non-zero estimation error has to be accepted.

This result shows that in case of a batch granulation processthe estimator is able to compensate
up to a certain degree parametric errors, but in order to get most precise estimates it is necessary
to supply precise parameter values. By a suitable choice of measurement interval and number
of sigma points (which follows from the number of grid nodes used in the discretisation of the
observer model), a balance between the accuracy of the estimation and the computational load can
be achieved, as motivated in Bück et al. [13]. As was mentioned in the description of the algorithm,
a further speed-up can be achieved by using parallelisationin the sigma point propagation step.

Based on these results it can be stated that the application of the UKF algorithm to batch spray
granulation processes given the mean particle size yields afunctional model-based measurement
system for the number density function.

3.4.3 Application to continuous spray granulation with particle recycle

As was motivated in Chapter 2.7 the continuous process with external classification and particle
recycle does possess different dynamic behaviour depending on the mean diameter of the milled
and recycled particles: Either a stable steady-state distribution is obtained, or a stable limit cy-
cle occurs in the system. The corresponding steady-state number density function is unstable –
small deviations will lead to a drift of the process dynamicstowards a limit cycle, i.e. sustained
oscillations in the number density function.

In case of a stable steady-state and given a perfect process model initial errors in the process and
the observer model are attenuated automatically as the steady-state does not depend on the initial
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Figure 3.28: Reconstructed number density function in the presence of parametric model errors.
The parametric errors are only compensated up to a certain degree. (UKF, Scenario 2,t = 20000 s)
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Table 3.3: Process parameters for the continuous spray granulation process

Initial bed mass [kg] mbed 10.0
Reference bed mass [kg] mbed,set 10.0
Mass flow of nuclei [kg s−1] Ṁnuc 5.55× 10−5

Mass flow of solid [kg s−1] Ṁsolid 1.38× 10−2

Solid density [kg m−3] %s 1440.0
Size of nuclei [m] ξ0 0.1× 10−3

Screen size upper screen [m]ξu 0.5× 10−3

Screen size lower screen [m]ξl 0.4× 10−3

Milling diameter [m] ξM 0.35× 10−3

Milling diameter (osc.) [m] ξM 0.2× 10−3

conditions, i.e. the observer model will converge to the steady-state number density function. The
use of the observer then lies with the compensation of modelling and measurement errors, as will
be demonstrated by the Unscented Kalman filter.

Also presented are results for the application of selected state observation and estimation algo-
rithms to the continuous process with an unstable steady-state behaviour. The availability of infor-
mation on the number density function then provides means tostabilise the unstable steady-state
number density function by feedback control.

Based on the results in the batch fluidised bed spray granulation, the state observation by on-line
minimisation is not applied to the continuous process.

For all simulations the process parameters listed in Tab. 3.3 are used.

Infinite-dimensional Luenberger observer

The idea for calculation of the state correction in batch spray granulation processes is re-used
to design an observer for the continuous spray granulation process. As was done before, the
correction is designed such that the state observation error decreases over time.

Given the measurement of the normalised number density function y = q0(t, ξ), the equation for
the state observation errore= n− n̂ reads

∂e
∂t
= −

(

G
∂n
∂ξ
− Ĝ

∂n̂
∂ξ

)

+ P(n) − P(n̂) − k(ξ, y, ŷ) . (3.110)

The correction term is then designed such thatk(ξ, y, ŷ) ≈ αe with a tuning factorα under the
assumption thatn ≈ n̂.

The problem here lies in the calculation ofe given the measurementy: The measurement con-
tains only qualitative information on the number density function, i.e. the shape, because it is
normalised with respect to the total number of particles. But the error also contains quantitative
information, i.e. the magnitudes:e= µ0y−µ̂0ŷ. This means that the information of the magnitudes
must somehow be obtained. One possible solution is to use thetotal number of particles in the
observer model also as an estimate of the total number of particles in the process:e= µ̂0(y− ŷ). By
this approximation the use of the observer is limited to processes whereµ0 ≈ µ̂0. A fairly accurate
estimate of the total number of particles at the beginning ofthe process can be obtained by taking
a representative sample of the bed material and scaling the normalised number density function,
obtained for instance from an off-line measurement device, by the available information on the
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Figure 3.29: Initial condition of process and observer model. (Infinite-dimensional Luenberger
observer, continuous process)

total amount of bed material. However, over the process timea drift in the quantitative result is
to be expected due to uncertainties in the modelling of the observer, e.g. the characteristic milling
function.

The performance of this setup (forα = 0.025) is presented in Fig. 3.29 – Fig. 3.31: Given the initial
conditions shown in Fig. 3.29 the results at the end of the process time are shown in Fig. 3.30.
There it can be seen that the position of the number density function n is approximated quite
well, however, a large error in the magnitude is present. Taking a look at the normalised number
density functionsq0 in Fig. 3.31 reveals that the normalised number density function is estimated
almost perfectly, i.e. qualitatively the observer works well. The error in the magnitude is therefore
introduced by the sole use of ˆµ0 as a scaling in the calculation of the state correction. Instead of
usingµ̂0, an estimate of the total number of particles can be obtainedin each measurement instant
by additionally measuring the total mass of particles in thefluidised bed:

mbed=
π

6
%s

∞
∫

ξ0

ξ3 µ0(t) q0(t, ξ) dξ , (3.111)

and then using this estimate in the calculation of the state correction. By this modification also
quantitative results on the number density function can be obtained, otherwise the results of the
observer are only qualitative.

The use of a lumped measurement, for instance the mean particle size, to reconstruct the number
density function does not prove to be successful. The main problem again is the determination of
a suitable relation that calculates a distributed state correction based on the scalar measurement.
Whereas in the batch process the knowledge on the principal shape of the number density function
in many industrial application could be used to motivate such a correction, this is not possible in
the unstable continuous case, as here the shape varies significantly and a fixed shape for the state
correction will not be able to calculate a suitable correction.
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Figure 3.30: Reconstructed number density function using the infinite-dimensional state observer
after 10000 s. (Infinite-dimensional Luenberger observer,continuous process)
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Figure 3.31: Reconstructed normalised number density function used to calculate the state correc-
tion. As the profiles are nearly identical the state is not further corrected, although a large error
in the magnitude is present. (Infinite-dimensional Luenberger observer, continuous process, after
10000 s)
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Finite-dimensional steady-state observer

Using the analytically derived steady-state number density function a steady-state observer for the
continuous process can be designed. Restricting the focus on a discretised balance model results in
the design of a linear Luenberger observer or Kalman filter. The observer is designed in a standard
way as a simulator with an additive state correction based onthe difference in the measurements

dn̂
dt
= −GDn̂+ P(n̂) + K(y− ŷ) , (3.112)

wherey = h(n) is the measurement obtained from the (non-linear) plant and ŷ = h(n̂) is the mea-
surement calculated from the non-linear observer model. The state correctionK is calculated using
the linear approximations of the non-linear models in the vicinity of the steady-state solution. The
design problem then reduces to the calculation of the coefficients of the observer gain matrix that
can be achieved by placing the poles of the error equations atspecified positions in the complex
plane. For a sufficiently accurate approximation of the process model by discretisation the num-
ber of states in the observer model is quite high, so an explicit calculation of the coefficients is
cumbersome. Fortunately, in many simulation packages, e.g. Matlab, algorithms are available that
calculate the required coefficients automatically from the specified pole positions.

In the present formulation, the poles where not placed explicitly due to numerical issues. A suit-
able observer gain matrix was determined by considering theLuenberger observer a limit case of
the Kalman filter, i.e. almost vanishing noise influence, andcalculating the gain matrix by solving
an optimisation programme. This is done by available Matlabroutines and the designed linear
observer is applied to the non-linear process.

In the following presentation the results were obtained using the approach to reconstruct the num-
ber density function from the measurement of the mean particle size.

Starting from the initial conditions shown in Fig. 3.32 for amilling diameter that gives sustained
oscillations in the number density function the observer isable to compensate the rather large
initial error as evidenced by Fig. 3.33. In order to show thatthe correction is necessary to obtain
a correct estimate of the number density function in the process, the result of using the parallel
simulator only is also depicted. The evolution of the errorE2 is depicted in Fig. 3.34 and shows
almost monotone convergence towards zero. This result is somewhat surprising, given that only a
linear approximation of the process is used to calculate thestate correction.

Given these results, the question arises whether other estimation algorithms are needed to recon-
struct the number density function from measurements of themean particle diameter. The answer
is positive for the following reasons: The steady-state observer uses a quasi-continuous measure-
ment of the mean particle size, i.e. the sampling interval ofmeasurements is negligible compared
to the dominant time constant of the process, whereas in manypractical application measurements
are taken only at discrete points in time, i.e. a time-discrete sampling is performed. Additionally,
the steady-state observer will be susceptible to model uncertainties and noise influences. It also re-
quires the knowledge of the exact steady-state number density function, an assumption that might
not hold in many applications as there the exact characteristics of the screens and the mill are not
known. Thus it has to be expected that the performance of the steady-state observer will decrease
if it is implemented in a time-discrete setting.

That the performance does indeed decrease is shown in Fig. 3.35 and Fig. 3.36. There the observer
is implemented with a sampling time of∆t = 60 s, i.e. only every minute a new measurement is
made available to the observer algorithm. At each sampling instant the plant measurement is
biased by normally distributed measurement noise in the order of ten percent of the measured
value. As can be seen in the error plot (Fig. 3.35), the normalised errorE2 lies for a significant
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Figure 3.32: Initial condition of the process and the observer model used in the test of the Luen-
berger steady-state observer. (Luenberger steady-state observer)
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Figure 3.33: Number densities in the process and the observer model. Although only a linear
approximation of the process dynamics is used to correct thenumber density function in the ob-
server model based on mean particle size measurements, the estimation of the density function in
the process is almost perfect. (Luenberger steady-state observer, after 5000 s)
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Figure 3.34: Evolution of the state observation error. The observer error decreases almost mono-
tonically over time, whereas the error in the estimate provided by parallel simulation strongly
increases. (Luenberger steady-state observer)

fraction of the process simulation above the initial value of one, i.e. in the integral measure the
quality of the estimate decreases. In Fig. 3.36 it can be seenthat the position of the number
density function is corrected, however, the magnitude is not reconstructed correctly, contributing
to the large error. Nonetheless, the time-discrete observer can be applied if the initial estimate is
close enough to the number density function in the process.

If this is not the case, a non-linear state estimation algorithm such as the Unscented Kalman filter
can give more reliable reconstructions of the number density function as it uses on one hand the
full non-linear process information and on the other hand provides means to counteract stochastic
influences, for instance measurement noise, by offering the possibility to include mathematical
models of the stochastic processes, which results in more appropriate state corrections. In the next
section an unscented Kalman filter is applied to the continuous fluidised bed spray granulation
process with particle recycle.

Unscented Kalman filtering

One of the main advantages of the Unscented Kalman filter is that it does not require specific
information on the structure of the process to be estimated.This means that the algorithm can be
applied without any changes (apart from a change in the design parameterα) to the continuous
process. This also allows to use one estimator implementation for both dynamic regimes, i.e.
stable and oscillatory, as long as there is the possibility to change the milling diameter in the
estimator model.

In Scenarios 1 and 2 the performance of the estimator for the stable regime is evaluated, followed
by an evaluation of the estimator in the oscillatory regime (Scenario 3 and 4). In all cases the
available process measurement is themean particle sizewhich is biased by Gaussian noise. In all
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Figure 3.35: Evolution of the state observation error. In a time-discrete setting the observer error
increases with respect to the initial error, but does not grow without bounds. This signals an error in
the magnitude of the reconstructed number density function. (Luenberger observer, time-discrete)
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Figure 3.36: Number density functions in the plant and the observer model. In contrast to the
quasi-continuous measurement case, a difference in the density functions is present if a time-
discrete setting is used (∆t = 60 s). (Luenberger observer, time-discrete, after 36000 s)
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Table 3.4: Simulation and design parameters UKF.

Number of discretised states N 100
Simulation time interval [s] tend 10000.0
Measurement time interval [s] ∆t 50.0
Measurement time interval (osc.) [s]∆t 10.0
Variance of measurement [m2] Rn 10−10

Process noise covariance [m−1 s−1] Rv 10−40IN

Design parameter SRUKF α 0.6

cases the simulated measurement from the plant model is disturbed in the order of ten percent of
the measured value to create a noisy measurement for the estimator. The estimator parameters are
given in Tab. 3.4.

Scenario 1. In this first scenario only measurement noise is taken into account. As an initial
condition a uniform number density function mass is chosen for the plant. The estimator model
is initialised with a distribution that is off by approximately thirty percent. Similar to the batch
process this large initial error will slow down the convergence but show that even large errors in
the profiles can be corrected. In most practical applications the initial error will be smaller and the
convergence will be achieved much faster.

The measurements used in the estimation algorithm and the estimator measurements (calculated
from the estimated number density function) are depicted inFig. 3.37. It can be observed that after
an initial period the plant and the observer measurements converge to each other, despite the noise
in the measurement signal. This behaviour can be attributedto the inclusion of a noise model in
the estimation algorithm. The plot of the corresponding error E2 (Fig. 3.38) in the number density
functions of the plant and the observer shows damped oscillatory convergence of the error. The
reasons for this are similar to the batch process, but as in that configuration, the estimation is
excellent: The profiles are almost indistinguishable, as isshown in Fig. 3.39.

Scenario 2. In order to test the robustness of the estimator for the continuous process with respect
to parametric errors the mean diameter of the mill that crushes the over-sized particles from the
first screen is set to a two-and-a-half percent larger value in the estimator than in the plant. This
influences the number of particles that is re-cycled to the fluidised bed and by this the growth rate
in the estimator model, and thereby all particles are influenced.

The result for the errorE2 shows that although it still decreases, a higher steady-state error is at-
tained (Fig. 3.40). This can also be seen in the estimated profile that shows errors in the position
and the magnitude (Fig. 3.41). Nonetheless, the estimationresult is quite good and could be used
for process monitoring or control purposes. Additionally,it can be concluded that the milling di-
ameter has a strong influence on the functionality of the estimator. This influence is will be weaker
for smooth milling and separation functions due to the superposition of the characteristic ranges.
However, this is only true as long as the dynamic behaviour ofthe process model used in the es-
timator is similar to the process. If the process and the process model work in different dynamic
regimes, the estimator will not be able to reconstruct the number density function correctly [13].

Scenario 3. In this scenario it is tested how the estimator performs in case of an oscillatory
process behaviour. Therefore a milling parameter is chosenthat leads to sustained oscillations in
the number density function. The same initial condition as in the stable steady-state case is used,
as it provides oscillations with a reasonable amplitude andperiod. The reconstruction also works
for other initial distributions in the process as long as theinitial profile of the estimator is close
enough to this one.
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Figure 3.37: Depiction of the measurements used in the estimation algorithm (with noise) and the
measurement information generated from the estimated number density function. (UKF, Scenario
1)
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Figure 3.38: Evolution of the state observation errorE2 showing a damped oscillatory convergence
of the error to a non-zero steady-state. (UKF, Scenario 1)
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Figure 3.39: Number density functions in the estimator and plant at the end of the process simula-
tion (t = 10000 s). The estimated profile is almost indistinguishablefrom the plant profile. (UKF,
Scenario 1)
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Figure 3.40: Evolution of the state observation errorE2 showing a damped oscillatory convergence
of the error to a non-zero steady-state. Due to the parametric uncertainty in the estimator model
the steady-state error is larger than in Scenario 1. (UKF, Scenario 2)
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Figure 3.41: Number density functions in the estimator and plant at the end of the process simu-
lation. The estimated profile shows a deviation in the position and the magnitude compared to the
plant profile. (UKF, Scenario 2, after 10000 s)

An illustration of the measurement information used in the estimation is given in Fig. 3.42. There
the noise-free process measurement, the measurement information with added noise that is used
in the estimation, and the measurement information calculated from the reconstructed number
density function are depicted.

In order to fulfil the requirements of the estimation algorithm, i.e. the positive-definiteness of the
down-dated matrices constructed in the algorithm (see the remark on the operatorcholupdate), the
measurement time interval has to be decreased. As can be seenin the plot in Fig. 3.43 the error
decreases only very slowly and non-uniformly. The error peaks correspond to the peaks in the
size distribution and are due to the fact that the initial error in the profiles of process and estimator
model introduces an error in the growth rate that leads to a deviation in the (temporal) position
of the peaks. But as is shown in Fig. 3.44, even in a case for which the errorE2 is large, the
estimation of the number density function is quite good, only a slight deviation in the position and
the magnitude can be observed.

The magnitude of the error peaks is decreasing over time, so with a further increase of the number
of measurements (and therefore state corrections) the convergence of the error to zero can be
accelerated. The price that has to be paid for this is the increase in computation time that scales
with the number of measurements. A too short measurement interval may lead to difficulties in use
of the estimator in feedback control schemes that require some time to calculate the appropriate
control inputs to the process.

Scenario 4. To test the robustness of the estimation algorithm an error in the milling diameter of
the estimator model is introduced in such a way that the process and the estimator model still op-
erate in the oscillatory regime (+2.5% of the nominal value). As in Scenario 3, the error decreases
non-uniformly with intermediate increases, but a good estimation of the profile is achieved with
a slight deviation in position and magnitude of the peaks as shown in Fig. 3.45. This means that
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Figure 3.42: Depiction of the measurements used in the estimation algorithm (with noise) and the
measurement information generated from the estimated number density. (UKF, Scenario 3)
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Figure 3.43: Evolution of the normalised state estimation error E2. (UKF, Scenario 3)
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Figure 3.44: Reconstructed number density function. The profile corresponds to the peak in the
E2-plot at approximatelyt = 4300 s. (UKF, Scenario 3)

for a milling diameter (which has great influence on the dynamic behaviour of the process) that
is close to the nominal value, reliable estimates of the number density function can be obtained.
However, if the error in the milling diameter is such that theprocess and the estimator model op-
erate in different dynamic regimes the estimator algorithm is not able tocalculate an estimate of
the number density function in the process [13].

The results presented in this chapter show that for fluidisedbed spray granulation processes model-
based measurement systems can be designed that allow the reconstruction of the number density
function from several classes of measurements. The reconstructed number density function can
then be used for on-line process monitoring and, as will be shown in the next chapter, for feedback
control of the spray granulation process.
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Figure 3.45: Reconstructed number density function in caseof a parametric error in the milling
diameter. (UKF, Scenario 4, after 10000 s)
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Chapter 4

Model-based feedback control of
fluidised bed spray granulation
processes

4.1 Introduction

Whenever the result of a process, in case of a fluidised bed spray granulation process for instance
the particle size distribution or the particle moisture, does not comply to the required specifications
the process conditions have to be modified such that the specifications are fulfilled. The important
tasks are the identification of suitable process inputs,manipulated variables, and the determination
of a relation that modifies the inputs corresponding to the current error in the process with respect
to the specification. The error is hereby determined with thehelp of certain process outputs,
that will later be calledcontrolled variables. They specify the product properties of interest, for
instance the moisture content of a particle.

In an abstract setting any process under consideration can be represented as

y = P ◦ u+ d , (4.1)

wherey denotes the controlled variables, i.e. the product quantities of interest,P is an abstract
representation of the process; the manipulated variables,i.e. external inputs to the process, are
transformed by the process into the controlled variables subject to the output disturbances sub-
sumed ind. The task therefore is to determine a relation that generates a sequence of process
inputsu such that a required resulty is obtained from the processP even if disturbancesd are
present.

One way to modify the manipulated variables such that specified process results are obtained is
the use of control mechanisms. They are in general separatedinto two groups:open-loopcontrol
andfeedback control(also: closed-loop control).

In open-loop control the process inputsu are determined by the control law

u = C ◦ r , (4.2)

whereC is an abstract representation of the open-loop controller,andr is the desired process result
(reference). This setup is depicted in Fig. 4.1.

Ideally, under the assumption thatd = 0 the controllerC could be chosen as the inverse of the
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Figure 4.1: Open-loop control configuration: The inputsu to the process are calculated solely on
the basis of the reference signalr.
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Figure 4.2: Closed-loop control configuration: The inputsu to the process are calculated on the
basis of the deviation between the controlled outputy and the reference signalr. This allows for
the detection of drift in the controlled variables for instance due to disturbances.

process, i.e.C = P−1:
y = P ◦ P−1 ◦ r = r (4.3)

yielding perfect control of the process.

However, in practice the disturbance signald is not equal to zero and thus a control error remains:
y = r + d , r. As the offset in the controlled variable is not detected by the controller, this
configuration may lead to unsatisfying results. Additionally, the processP, and thereforeP−1, is
not known exactly, only a sufficiently accurate approximation is available. This furtherintroduces
errors in the control that are not compensated. Even if the influence of errors can be neglected, the
controllerC may not be realisable practically, depending on the properties of the processP.

In order to remedy these problems the controlled variablesy can be measured and be fed back to
the controller in order to calculate the necessary manipulated inputs. This configuration is depicted
in Fig. 4.2. As can be seen there the input to the controller now is no longer the reference signal
but the errore = r − y, i.e. the manipulated variables are calculated on the basisof the deviation
of the current process state from the desired process state.In an abstract setting (withd = 0):

y = P ◦ C ◦ e. (4.4)

Using this configuration offset in the controlled variables, for instance due to disturbances, is
detected by the controller and the process inputs are modified accordingly, i.e. feedback control
possesses an intrinsic capability of compensating disturbances.

A major assumption in the use of control mechanisms is that the controlled variablesy are directly
measurable in order to be able to implement the control law. If only a subset ofy can be measured
directly and all other information can only be obtained in the form of a measurementz, then the
missing information on the process has to be reconstructed from z, for instance by a model-based
measurement system.

The remaining task is the design of a suitable controllerC, which is in general a dynamic system,
that will yield the desired process result. Based on the prospect of the superior properties of
feedback control, this configuration will be treated almostexclusively in the following.
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The basis for all subsequent steps is a dynamic model of the process. The controller is then
designed using the information on the process and is thus a model-based controller. This term
becomes more explicit if the process model is used directly in the calculation of the manipulated
variables. Implementing the designed controller then leads to a closed control loop.

The main requirements on the control loop are (in descendingorder of importance) [83]:

• Stability: For the concept of stability several definitions exist, which will be discussed sub-
sequently. The general task is to guarantee that finite exogenous signals (e.g. references,
disturbances) only yield finite changes in all internal and external signals, for example the
measured and controlled variables.

• Disturbance attenuation:For disturbance classes of interestd the steady-state erroreshould
vanish, i.e.

lim
t→∞

e(t) = lim
t→∞

r(t) − y(t) = 0 , (4.5)

i.e. there is no persistent error in the control result. Thisrequirement can be fulfilled by a
suitable choice of the controller structure depending on the process structure.

• Dynamics: The transition of the process between two states, for instance the return into
its initial state after the occurrence of a disturbance, should be sufficiently fast without too
much perturbations in the measured and controlled variables.

• Robustness:The three requirements should be fulfilled even if the process model used in the
design of the controller contains errors in comparison withthe real process, for instance due
to unknown process kinetics or the simplification of a complex but accurate process model.

Based on the nature of the reference signal, i.e. constant ortime-varying, two types of control
tasks can be defined: First is stabilisation or disturbance attenuation: There the reference signal is
constant and the controller is required to keep this reference by counteracting disturbances. This
task can often be found in steady-state operation of a plant where the aim is to keep the plant in the
steady-state despite the occurrence of disturbances. The second task is called model-following:
There a reference trajectory is generated by a dynamic process and the task of the controller is
to determine the necessary inputs to the process such that itfollows the reference as closely as
possible. This task has to be performed for instance if the process has to be moved from one
steady-state to another. Here the reference is generated such that the process does not attain states
in between the two steady-states that may violate safety requirements.

The most important requirement for a control loop isstability, especially if the process itself is
unstable. Two established definitions help to make the intuitive concept of stability more precise:
input-output stabilityandstate stability.

Input-output stability. A dynamic processy = P◦ u is called input-output stable if finite input
signalsu only create finite output signalsy, i.e. bounded inputs yield bounded outputs.

This definition, although it is useful for many classes of processes, does not give information on
the stability of internal signals, i.e. signals in the processP that are not measured. Instability in
terms of unbounded, unmeasured signals in the process is notdetected.

The concept of input-output stability is therefore extended to the concept of state stability.

State stability. A process in state space representation is given by

dx
dt
= f (x) , y = h(x) , (4.6)
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with x denoting the state variables of the process. A steady-statesolution of the process is assumed
to bexs. The steady-state solution is called stable in the sense of Lyapunov [101] if there exists
for a givenδ > 0 anε > 0 such that

‖x(0)− xs‖ < δ ⇒ ‖x(t) − xs‖ < ε ∀t . (4.7)

This means that the state remains within a bounded distanceε from the equilibriumxs for all
times provided that the initial distance is smaller than thegiven δ. The equilibrium is called
asymptotically stable if the statex(t) returns to the equilibrium:

lim
t→∞
‖x(t) − xs‖ = 0 . (4.8)

Practically, stability in the sense of Lyapunov can be proved if a functionV with the following
properties:

V ≥ 0 , V = 0⇔ x = xs , (4.9)
dV
dt

≤ 0 ,
dV
dt
= 0⇔ x = xs , (4.10)

called aLyapunov functioncan be found. ThenV can be interpreted as a generalised energy of the
system and the conditioṅV ≤ 0 means that this energy is decreasing over time until the minimum
V = 0 is attained, i.e.x = xs. This means that starting from a statex , xs the equilibriumxs is
reached. The construction of a suitable Lyapunov function for an arbitrary process is non-trivial,
only for certain classes direct approaches are known. Further, the construction of a Lyapunov
function is only a sufficient criterion for the stability of an equilibrium.

For linear time-invariant systems
dx
dt
= Ax, (4.11)

with the trivial equilibriumxs = 0 state stability can be tested by considering the eigenvalues of
the constant matrixA: If all eigenvalues lie inC−, i.e. the real-part of all eigenvalues is negative,
then the system is asymptotically stable. If at least one eigenvalue lies inC+ then the system is
unstable. Eigenvalues with zero real-part require specialtreatment, and the stability depends on
the geometric multiplicity of the eigenvalue [83].

In case that the complete process state is measured, i.e.y = x, the definitions of input-output
stability and state stability are equivalent.

Having determined the stability behaviour of the process the next question to be answered is which
process states can be reached by the available manipulated variables.

State controllability [149]. A system in state-space representation

dx
dt
= f (x, u) , y = h(x) , (4.12)

is calledcompletely controllable, if it can be transferred from any initial statex(t0) into any final
statex(T) by a finite input functionu(t), t ∈ [t0,T] in a finite timeT. If controllability depends on
the initial timet0 the system is calledcontrollable at t0.

Controllability can be tested by methods similar to the testfor observability, i.e. a controllability
map is constructed from the knowledge off (x, u). If this map can be uniquely inverted then the
non-linear state-space system is controllable [101]. The actual computation and inversion of the
controllability map is hindered by the same obstacles as is the computation of the observability
map: Only if special structures can be exploited global results can be obtained.
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In case of linear time-invariant systems

dx
dt
= Ax+ Bu, y = Cx, (4.13)

Kalman provided a simple rank criterion for the test of controllability: If

rank
[

B,AB,A2B, . . . ,An−1B
]

= n , (4.14)

wheren is the state dimension, then the linear time-invariant system is controllable. An evaluation
of this criterion beyondn−1 does not provide further information as all powers ofA starting from
An can be expressed as a linear combination of the lower-order powers by the theorem of Cayleigh
and Hamilton. A criterion that does not require the evaluation of the matrix powers was provided
by Popov, Belevitch and Hautus: If for all eigenvaluesλ of the matrixA the condition

rank [λI − A, B] = n (4.15)

is fulfilled then the system is controllable.

Similar to observability,structural controllabilitycan be defined: A linear system in state-space
representation is structural controllable if

the associated graph to (As, Bs) is input-connected, i.e. every state can be influenced by at
least one manipulated variable, and

s-rank[As, Bs] = n , (4.16)

where the structural rank (s-rank) is again defined to be the maximum rank a matrixM with the
structure given byMs can attain:

s-rankMs = max
M∈Ms

rankM . (4.17)

This criterion also gives just necessary conditions for thecontrollability of the linear system (A, B).

From a practical point of view restrictions in the controllability of a process always have to be
expected due to limitations in the realisation of the manipulated variables. If possible these limi-
tations should be incorporated into the controller design.

In the rest of the chapter, design of feedback controllers for fluidised bed spray granulation pro-
cesses is presented. In the continuous process with particle recycle, the focus lies on the stabilisa-
tion of the unstable steady-state behaviour in the number density function; in the batch process a
controller is designed to guarantee a desired number density function at a given final time. Addi-
tionally controllers are designed to keep the product moisture and temperature within given limits,
i.e. feedback control of the heat and mass transfer during spray granulation is designed.

4.2 Stabilisation of the continuous process with particle recycle

A result of the investigation of the process dynamics of the continuous process with external
screening, milling, and particle recycle in Chapter 2.7 wasthat for certain milling diameters a
stable steady-state number density function was obtained whereas for others sustained oscillations
appeared in the process. A direct consequence, if the numberdensity distribution is used to char-
acterise the product properties, is a variation in the product quality, as well as a variation in the
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product mass flow. For practical application this is undesired: The plant is expected to work in a
steady-state giving a constant product quality at a constant mass flow rate.

If, however, the desired steady-state distribution is unstable then a feedback controller can be
applied to stabilise the unstable steady-state. For the number density function this means that the
occurring oscillations have to be damped out, i.e. the limitcycle has to be eliminated.

As the stability of the continuous process is significantly influenced by the milling diameter, a
controlled variation can be used to damp out the oscillations in the number density function, and
thus establishing a stable steady-state. The mean diameterof the milled particles is therefore
selected as the manipulated variable for the stabilisationtask. The milling diameter can be changed
by increasing or decreasing the rotation velocity of the mill.

From simulation it is obtained that the total surface area ofparticles in the bed is a suitable mea-
sured output to characterise the dynamic process behaviour. As the surface area of all particles
in the bed cannot be measuredin situ it has to be reconstructed from other measurements by a
model-based measurement system.

In the following various feedback controllers for the stabilisation of a given unstable steady-state
number density function of the continuous fluidised bed spray granulation process with particle
recycle are designed. The principal approach is the following:

1. Given the process parameters and a milling diameter the corresponding steady-state number
density function is calculated.

2. The process model is linearised in the vicinity of the steady-state. The dynamics of the
non-linear process are approximated correctly in a sufficiently small region of the state-
space around the (hyperbolic) steady-state as a consequence of the Hartman-Grobmann the-
orem [125].

3. Based on the linear process model a feedback controller isdesigned.

4. The feedback controller is evaluated for different scenarios by application to the non-linear
process.

The first step was already described in Chapter 2.6 and is not repeated here. Therefor the design
proceeds with step 2, the linearisation of the model equations.

4.2.1 Linearisation of the model equations

A non-linear mathematical process model is given in state-space representation

dx
dt
= f (x, u) , y = h(x) , (4.18)

that can be obtained for instance from a first-principles modelling and, like in the present case,
a subsequent finite-dimensional approximation. An equilibrium, a steady-state, of the process
(xs, us) is assumed to be known.

Then the dynamics in the vicinity of the steady-state can be described by the linear approximation
of the process model. Introducing the deviation variables∆x = x−xs and∆u = u−us the following
dynamic equation for∆x can be derived:

d∆x
dt

=
dx
dt
− dxs

dt
(4.19)
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= f (xs + ∆x, us + ∆us) − f (xs, us) (4.20)

≈ f (xs, us) +
∂ f
∂x

∣

∣

∣

∣

∣

xs,us

∆x+
∂ f
∂u

∣

∣

∣

∣

∣

xs,us

∆u− f (xs, us) (4.21)

d∆x
dt

= A∆x+ B∆u , (4.22)

where in the last line the matricesA andB are defined by

A =
∂ f
∂x

∣

∣

∣

∣

∣

xs,us

, B =
∂ f
∂u

∣

∣

∣

∣

∣

xs,us

. (4.23)

Applying the same procedure to the output equationy = h(x) yields

∆y = C∆x , C =
∂h
∂x

∣

∣

∣

∣

∣

xs,us

. (4.24)

In total a linear time-invariant state-space system is obtained:

d∆x
dt
= A∆x+ B∆u , ∆y = C∆x . (4.25)

An equivalent representation of the linearised process model can be obtained by considering the
input-output behaviour only. Using the Laplace transform the input-output behaviour can be writ-
ten as

∆Y(s) = P(s)∆U(s) , (4.26)

where∆Y and∆U are the Laplace transforms of∆y and∆u, respectively, and the initial condition
x(0) = 0 is assumed. The complex variablesdescribes the behaviour of the system in the Laplace
domain. The transfer functionP(s) describes the transformation of the input∆U into the outputs
∆Y. It is given by

P(s) = C (sI − A)−1 B . (4.27)

In practical application the analytical calculation of thepartial derivatives necessary to construct
the matricesA, B andC is complex and time-consuming. Often the partial derivatives are therefore
numerically approximated, for instance by finite differences [133]. The accuracy of the approxi-
mation then depends on the order of the method.

The stability analysis can be performed by investigation ofthe eigenvalues of the matrixA, or
equivalently by investigating the poles ofP(s) = N(s)/D(s), i.e. solutionss∗ of D(s∗) = 0. If there
exists at least one eigenvalue with a positive real part thenthe steady-state is unstable and has to
be stabilised by a feedback controller.

In the following it is assumed that the steady-state number density function is unstable. Feedback
controllers are designed on the basis of the linear process model and are applied to the non-linear
process in order to stabilise the steady-state.

4.2.2 Proportional-integral feedback control

Linear proportional-integral feedback controllers are one of the most applied types of feedback
controllers. The design process is straight-forward and due to its sufficient performance in many
applications it is industrially accepted.

Considering the single-input single-output closed control loop reproduced in Fig. 4.3 the closed-
loop transfer functionfrom the referencer to the controlled outputy, denoted byGry is

Gry(s) = (1+ P(s)C(s))−1 P(s)C(s) , (4.28)

102



Controller Process−r e u

d

y

Figure 4.3: Standard closed-loop control configuration used for the design of proportional-integral
feedback controllers.

whereP is the transfer function of the linear time-invariant plantto be controlled andC(s) is the
transfer function of the controller to be designed. The closed-loop relation between the Laplace
transforms of the reference signalRand the controlled outputY can then be written as

Y(s) = Gry(s)R(s) . (4.29)

The closed-loop stability depends on the location of the poles of the transfer functionGry in the
complex plane. For asymptotic stability, all poles have to lie in the open left half plane. The poles
of Gry can be calculated as the roots of (1+ P(s)C(s))−1 = 0. This equation is also known as the
characteristic equation.

The aim of the controller is thus by a suitable choice of a controller structure and controller pa-
rameters to place the poles of the transfer function at the desired location in the complex plane.
Depending on the choice of the controller structure a different number of poles can be positioned.

The idea of the proportional-integral feedback controlleris to calculate the manipulated variable
U(s) from the control errorE(s) = R(s)−Y(s) by considering two parallel influences: The propor-
tional part calculates the manipulated variable based solely on the current control error whereas
the integral part sums up the total error over a predefined time horizon and calculates the manip-
ulated variable based on this information. The proportional part attributes to the dynamics of the
controller; the integral part attributes to the accuracy ofthe controller as the integral of the error
only vanishes if the error over the time horizon vanishes. Both parts are connected in parallel to
calculate the manipulated variableU from the control errorE.

In standard Laplace transform notation the proportional-integral (PI) feedback controller takes the
following form

C(s) = K

(

1+
1

TN s

)

= K

(

TN s+ 1
TN s

)

. (4.30)

HereK is the controller gain andTN is the integrator time constant, i.e. the PI controller provides
two degrees-of-freedom to influence the position of the closed-loop poles. One important obser-
vation is that the controller only uses the information provided by the controlled outputY. This
type of controller is therefor calledoutput-feedback controller.

For the determination of the controller parametersK andTN various standard methods exist, for
instance loop-shaping in Bode plots or the root-locus method, that is presented briefly in Ap-
pendix E, or by solving an appropriate optimisation problem, for instance the minimisation of the
integral squared control error (ISE)

ISE=

∞
∫

0

e(t)2 dt . (4.31)

These standard calculations can be performed with the help of software packages for instance
the Matlab SISO toolbox. The result is a practical standard controller that – despite its simple
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structure – possesses a robustness against model uncertainties. It also provides in many cases
satisfying disturbance attenuation [83].

4.2.3 LQ-optimal feedback control

Instead of an output-feedback controlleru = k(y) where the manipulated variable is calculated
solely based on the knowledge of the measured (controlled) outputsy, state-feedback controllers
can be utilised. They calculate the manipulated variable based on the knowledge of the whole state
information available at the current process time, i.e.u = k(x), wherex denotes the state of the
system.

Apart from only requiring that the closed-loop system is stable it can be furthermore required that
from all possible solutions that stabilise the system one ischosen such that a given cost functional
is minimised, i.e. an optimal control law is sought.

For linear time-invariant systems in deviation coordinates

d∆x
dt
= A∆x+ B∆u , ∆y = C∆x , (4.32)

a large class of cost functionals can be expressed as quadratic forms in∆x and∆u:

J(∆u) =

T
∫

0

(∆x)T Q (∆x) + (∆u)T R(∆u) dt . (4.33)

over the time horizon [0,T]. The functional only depends on∆u because the evolution of the state
∆x is restricted by the process model that is in turn driven by∆u. The matricesQ andRare weights
that influence the dynamics of the closed-loop system by punishing deviations of the state from
its steady-state value and weighting the use of the manipulated variables. From a technical point
of view the matrixQ must be positive semi-definite, i.e. (∆x)T Q (∆x) ≥ 0, the matrixR must be
positive definite, i.e. (∆u)T R(∆u) > 0.

An optimal control law for the linear process model and the quadratic cost functional, LQ-optimal
control, can be derived analytically for arbitrary horizons [0,T] resulting in a dynamic control law
∆u = −K(t)∆x, whereK is the controller gain matrix, see for instance Anderson andMoore [5].
In case of an infinite time horizonT → ∞ a static proportional controller∆u = −K ∆x can be
derived as

∆u = −(R−1BTP)∆x = −K∆x , (4.34)

whereP is the symmetric, positive-definite solution of the algebraic Riccati equation (ARE):

PA+ ATP− PBR−1BTP+ Q = 0 . (4.35)

The advantage of the static controller is that it can be computed offline once given the matrices
A, B, Q andR, whereas the dynamic controller gain has to be computed on-line.

If the given linear time-invariant system is observable andcontrollable and for the given weighting
matricesQ andR a symmetric, positive-definite solutionP of the algebraic Riccati equation can
be calculated then the control law∆u = −K ∆x yields a stable closed loop system and is optimal
with respect to the cost functional (Eq. (4.33)) [5]. If for agivenQ andR, no solutionP with the
required properties can be found, the weights have to be modified by the control engineer until a
solution can be found.

For the practical implementation the process state∆x has to be known, either directly or by a
model-based measurement system. In order to use the controlled variables∆y in the cost functional
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the weighting matrixQ can be chosen asQ = CTC. The LQ-controller is known to possess a
certain robustness against modelling errors but compared to PI controllers it is reduced as more
system information (in form of the matricesA andB) is used directly in the controller design.

4.2.4 Model predictive control

Although the advantages of linear-quadratic optimal control methods were acknowledged in in-
dustries they were not often applied. The reasons for this can be found in the theory behind the
methods that was considered elaborate, difficulties in formulating practical cost functionals in
the required quadratic form and most important the framework does not provide the possibility
to formulate constraints on the manipulated or controlled variables that are often encountered in
practical application.

Based on the idea of calculating the manipulated variable asthe solution of an optimisation prob-
lem in the 1970s new methods were developed in chemical industries, for instance Dynamic Matrix
Control (DMC) [111] or predictive functional control [121].

All these methods, which were later subsumed under the labelmodel predictive control(MPC),
work after the following general scheme:

1. Based on the current process statex(t0) and a predefined trajectory for the manipulatedu(t)
over a finite time horizon [t0, t0 + T] the evolution of the process state is predicted with
the help of a mathematical process model, i.e. the solutionx(t; t0, x(t0)) over the horizon
[t0, t0 + T] is calculated.

2. A given cost functional is evaluated over the prediction horizon using the predicted state
trajectoryx(t; t0, x(t0)) and the input trajectoryu(t), t ∈ [t0, t0 + T].

3. In an optimisation step the input trajectory is modified such that an optimum of the cost
functional over the prediction horizon is achieved. The optimum input uopt(t) is directly
given as the solution of the optimisation problem.

4. The optimum inputuopt(t) is applied to the process until the next measurement of the process
state becomes available. Then the scheme restarts at step 1.

The main ingredients of model predictive control schemes can be identified from this general
description as

• dynamic process model: for the prediction of the evolution of the process state,

• cost functional: measuring the deviation of the process states from a desired process state,

• optimisation algorithm: calculation of the optimal inputuopt based on the predicted states
and the cost functional.

The main advantages of model predictive control over linear-quadratic optimal control are that
arbitrary dynamic models are possible, i.e. the type and structure of the model is not restricted
to certain classes; the structure of the cost functional is also arbitrary, i.e. it does not have to be
quadratic; the solution of the optimisation algorithm can be performed with respect to constraints,
for instance in the manipulated variable.

The main disadvantage of model predictive control in this general formulation is that often no
offline solution can be obtained, i.e. the optimum input trajectory has to be calculated on-line
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Figure 4.4: Representation of the general idea of model predictive control.

while the process is running. The computational effort stems from two sources: The prediction
of the state over the prediction horizon, i.e. the solution of the dynamic process equations. The
prediction horizon is chosen such that all time-scales in the process are sufficiently resolved. The
second source is the solution of the optimisation problem which is often the crucial part.

In the present formulation the determination of model predictive control schemes necessitates
the calculation of the optimum input trajectoryuopt for all times t ∈ [t0, t0 + T], which poses
an optimisation problem with an infinite number of decision variables. In order to reduce the
computational effort a control horizon shorter or equal to the prediction horizon is chosen and
assumptions on the input trajectory are posed to limit the number of decision variables in the
optimisation.

In almost all practical implementation a time-discrete formulation of the model predictive control
scheme is used: Here, time is discretised by a sampling timeTsample. The prediction horizon and
the control horizon are chosen as integer multiples of the sampling time, for instance a prediction
horizon ofNpTsample, and a control horizon ofNcTsamplewith Nc ≤ Np andNc,Np ∈ N+.
An often used assumption for the input trajectory is that it is piecewise constant over a sampling
interval in the control horizon, i.e.u(t) = uk(t), t ∈ [tk, tk + Tsample]. If time progresses outside
the control horizon, but is within the prediction horizon, then it is assumed thatu(t) = uNc, for all
t ∈ [tk+NcTsample, tk+NpTsample]. Thereby the dimension of the optimisation problem is reduced to
Nc decision variables. This setup is depicted in Fig. 4.4. The calculated optimal input trajectory is
then implemented to the process for exactly one sampling interval before the algorithm is restarted
with the remaining input trajectory as initial guess.

Although in the steps 1–3 of a model predictive control scheme only an open-loop control problem
is solved, i.e. no further information of the plant state is used in the calculation ofuopt, the
complete scheme gives a feedback control system by only applying a portion of the input trajectory
and recalculating the input based on the process measurement available at the next sampling time,
i.e. the control scheme reacts on changes in the process states.
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Formulation for linear time-invariant systems

In the following a linear time-invariant state-space system is considered in a time-discrete set-
ting [15, 146]:

x(k + 1) = Amx(k) + Bmu(k) , y(k) = Cmx(k) . (4.36)

Introducing theincrements

∆x(k) = x(k) − x(k− 1) , (4.37)

∆x(k + 1) = x(k+ 1)− x(k) , (4.38)

∆u(k) = u(k) − u(k − 1) , (4.39)

∆y(k + 1) = y(k + 1)− y(k) , (4.40)

the following system of equations inincremental formcan be derived

∆x(k + 1) = Am∆x(k) + Bm∆u(k) , ∆y(k + 1) = CmAm∆x(k) +CmBm∆u(k) . (4.41)

Solving the output equation fory(k + 1) and rearranging the terms anextended modelcan be
derived:

[

∆x
y

]

(k + 1) =

[

Am 0
CmAm I

] [

∆x
y

]

(k) +

[

Bm

CmBm

]

∆u(k) (4.42)

y(k) =
[

0 I
]

[

∆x
y

]

(k) . (4.43)

Using the incremental model, it can be seen that integratorsfor the controlled (and measured)
outputs are present in the model formulation. In formulating the extended model it has to be
verified that it is observable and controllable, otherwise the following steps cannot be performed.

Introducing a new statezT = [(∆x)T, yT] the augmented state model can be written in standard
form:

z(k + 1) = Ax(k) + B∆u(k) , y(k) = Cz(k) , (4.44)

where the matrices are obtained by simple substitution.

Choosing the prediction and control horizon as integer multiples of the sampling timeTsample, i.e.
Np andNc, respectively, a state sequence and an output sequence can be defined:

z(k|k) = z(k), z(k+ 1|k), z(k + 2|k), . . . , z(k+ Np|k) , (4.45)

y(k|k) = y(k), y(k+ 1|k), y(k + 2|k), . . . , y(k + Np|k) . (4.46)

Here the notationz(k + 1|k) denotes the state at sampling timek+ 1 given the state information at
sampling timek. The notationy(k+ 1|k) is to be interpreted analogously.

The state sequence, i.e. the state prediction based on the knowledge of the state at sampling time
k, can be calculated using the augmented process model:

z(k + 1|k) = Az(k) + B∆u(k) (4.47)

z(k + 2|k) = Az(k + 1|k) + B∆u(k+ 1) (4.48)

= A2z(k|k) + AB∆u(k) + B∆u(k+ 1) (4.49)
...

...

z(k + Np|k) = ANpz(k|k) + ANp−1B∆u(k) + ANp−2B∆u(k+ 1)

+ . . . + ANp−NcB∆u(k+ Nc − 1) . (4.50)
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Similarly, the predicted output sequence can be calculatedusing the output equation of the aug-
mented model:

y(k + 1|k) = CAz(k|k) +CB∆u(k) (4.51)
...

...

y(k+ Np|k) = CANpz(k|k) +CANp−1B∆u(k) +CANp−2B∆u(k+ 1)

+ . . . +CANp−NcB∆u(k+ Nc − 1) . (4.52)

The important point is that both sequences can be calculatedsolely based on the knowledge of
the statez(k|k) and the input sequence∆u(k), . . .∆u(k + Nc − 1). The output sequence over one
prediction horizon can be written more concisely as

Y = Fz(k|k) + Φ∆U , (4.53)

where the vectorsY and∆U as well as the matricesF andΦ are created by stacking the equations
for all sampling times, i.e.

Y =
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
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These results can be used to calculate the optimum input sequence∆U given a cost functional.
The actual solution of the optimisation problem depends on whether constraints are formulated or
not.

Unconstrained linear model predictive control

Suppose that the model equations are linear and the cost functional is quadratic, for instance

J(∆U) = (R− Y)T(R− Y) + (∆U)TW(∆U) , (4.56)

whereW is an input weighting matrix, andRa scaling vector for the reference step trajectory over
the prediction horizon, i.e.r = Rr̄, where ¯r is a unit-step signal. If no further constraints apart from
the dynamic state equation are present then an analytic solution for the optimum input sequence
(∆U)opt for each prediction horizon can be obtained.

In most cases it is required that the optimum input sequence (∆U)opt minimises the cost functional,
i.e.

(∆U)opt = arg min
∆U

J(∆U) . (4.57)

The necessary condition for (∆U)opt to be a minimiser ofJ(∆U) is that the partial derivatives ofJ
with respect to∆U vanish at∆U = (∆U)opt, i.e.

∂J
∂∆U

∣

∣

∣

∣

∣

(∆U)opt

= 0 . (4.58)
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Evaluating the given cost functionalJ(∆U) = (R−Y)T(R−Y)+ (∆U)TW(∆U) and using the output
equationY = Fz(k|k) + Φ∆U yields for the optimum input sequence

(∆U)opt =
(

ΦTΦ +W
)−1
ΦT (R− Fz(k|k)) . (4.59)

This expression can be split up into two parts giving:

(∆U)opt =
(

ΦTΦ +W
)−1
ΦTR−

(

ΦTΦ +W
)−1
ΦTFz(k|k) . (4.60)

Here the second part of the right-hand side of the equation can be interpreted as state feedback,
the first part is a pre-filter that will guarantee a zero steady-state control error. This becomes more
explicit if only (∆u)opt(k), the actually implemented input, is considered. It can be written as

(∆u)opt(k) = Kyr̄ − KMPCz(k|k) , (4.61)

and reveals the classical structure of a state feedback controller with a pre-filter for reference
tracking. The matricesKy andKMPC can be obtained from the complete solution over the pre-

diction horizon by taking the first row of the matrices
(

ΦTΦ +W
)−1
ΦTRand

(

ΦTΦ +W
)−1
ΦTF,

respectively.

It can be shown, see for instance Wang [146], that the optimalsolution to the linear unconstrained
model predictive control problem is equivalent to the LQ-optimal solution over the same finite
time-horizon. The advantage of the MPC formulation lies in the decreased mathematical effort
that is needed to arrive at this results, for instance no Riccati equation has to be solved. How-
ever, special care has to be taken to guarantee the stabilityof the closed-loop system and will be
discussed later.

Constrained linear model predictive control

In many practical applications constraints are present, for instance

• input constraints, e.g.umin ≤ u(k) ≤ umax

• slope constraints, e.g. (∆u)min ≤ ∆u(k) ≤ (∆u)max,

• output constraints, e.g.ymin ≤ y(k) ≤ ymax, or

• bandwidth constraints, e.g.ymin(k) ≤ y ≤ ymax(k).

It is also possible to formulatestate constraints, e.g. z(k) ∈ Z, ∀k , whereZ is a suitably defined
portion of the state space, for instance the region in state space where all states are non-negative.

The constraints are incorporated into the optimisation problem as equality or inequality con-
straints. If the model equations are linear and

• the cost function is quadratic and no constraints are present, then the optimal solution for the
control law can be calculated explicitly offline and is equivalent to linear-quadratic optimal
control;

• the cost functional is quadratic and the constraints are linear in∆U, then the resulting opti-
misation problem is a quadratic programme;

• the cost functional is expressed as the 1-norm, i.e.J(∆U) =
∑Np

k=1 |Jk| and linear constraints
are present, then a linear programme is obtained.
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The linear and the quadratic programme cannot be solved analytically and therefore have to be
solved on-line by iterative optimisation algorithms. Thisraises the question of convergence of
these algorithms and the computational time necessary to calculate the optimal solution. For linear
and quadratic programmes standard numerical algorithms, for instance conjugate gradient method,
interior point method, or the active-set method are available. A quite general treatment of these
methods and their convergence behaviour can be found for instance in Nocedal and Wright [102].

In order to be evaluable, the constraints have to be expressed in terms of the decision variables,
i.e. the input sequence∆U.

Slope constraintsof the form (∆u)min ≤ ∆u(k) ≤ (∆u)max, can be transformed into (∆U)min ≤
∆U ≤ (∆U)max. This inequality can be split up into two equivalent inequalities, i.e. −∆U ≤
−(∆U)min and∆U ≤ (∆U)max. Rearrangement of these equations yields

[

−I
I

]

∆U ≤
[

−(∆U)min

(∆U)max

]

. (4.62)

Input constraintsof the formumin ≤ u(k) ≤ umax can be expressed in terms of∆U by observing
that

u(k) = u(k − 1)+ ∆u(k) = Iu(k − 1)+ I∆u(k) (4.63)

and therefor
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(4.64)
Splitting up this equation as was done for the slope constraints yields the set of linear inequalities

[

−(C1u(k − 1)+C2∆U)
C1u(k − 1)+C2∆U

]

≤
[

−Umin

Umax

]

. (4.65)

Output constraintscan be transformed analogously using the output equation and yield

[

−Φ
Φ

]

∆U ≤
[

−Ymin + Fz(k|k)
Ymin − Fz(k|k)

]

. (4.66)

In general the constraints can be written as

M∆U ≤ N , with M =
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, (4.67)

where the sub-matrices are given by

M1 =

[

−C2

C2

]

, N1 =

[

−Umin +C1u(k − 1)
Umax−C1u(k − 1)

]

(4.68)

M2 =

[

−I
I

]

, N2 =

[

−(∆U)min

(∆U)max

]

(4.69)

M3 =

[

−Φ
Φ

]

, N3 =

[

−Ymin + Fz(k|k)
Ymin − Fz(k|k)

]

(4.70)
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Due to the occurrence ofu(k − 1) andz(k|k) the matricesN1 andN3 have to be updated at every
sampling timek and therefor the optimisation problem requires an on-line solution.

The cost functional can be expressed as

J(∆U) = (R− Y)T(R− Y) + (∆U)TW(∆U) (4.71)

= (R− Fz(k|k))T(R− Fz(k|k)) − 2(∆U)TΦT(R− Fz(k|k))

+(∆U)T(ΦTΦ +W)(∆U) , (4.72)

where the output prediction equationY = Fz(k|k) + Φ∆U has been used. The first term involving
(R− Fz(k|k)) is independent of∆U, so it has not to be considered in the optimisation.

The complete optimisation problem, a quadratic programme,can thus be stated as

min
∆U

J(∆U) = min
∆U

(∆U)T(ΦTΦ +W)(∆U) − 2(∆U)TΦT(R− Fz(k|k)) , (4.73)

subject to M∆U ≤ N(k) . (4.74)

The solution to this quadratic programme gives the requiredcontrol law. Due to the constraints
the resulting controller isnon-linear, i.e. the closed-loop system is a non-linear dynamic system.

The question whether this optimal control law calculated over a finite time horizon stabilises the
closed-loop system is dealt with next.

Stability of the closed-loop system

Stability analysis of model predictive control systems is acomplex task due to possibly non-linear
interaction of the dynamic process model, the cost functional and the presence of (non-)linear
constraints. In the most general formulation, stability analysis of MPC schemes is still an active
field of research.

In the following stability conditions for linear time-invariant time-discrete systems under model
predictive control are presented, summarising the ideas and arguments presented in the works of
Mayne et al. [96] and Chen and Allgöwer [19].

In the case ofunconstrainedMPC with the dynamic model and the cost functional given by

J(∆U) =
Np
∑

k=1

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

, (4.75)

z(k + 1) = Az(k) + B∆u , (4.76)

y(k) = Cz(k) , (4.77)

and the optimal input trajectory over the prediction horizon given by (∆U)opt, three equivalent
ways exist to investigate the stability of the closed loop:

Closed-loop eigenvalues.As was derived, the control law in the unconstrained case canbe ex-
pressed explicitly in terms of the reference signal and a state feedback:

(∆u)opt(k) = −KMPCz(k) + Kyr̄ . (4.78)

Inserting the control law into the dynamic equation yields the closed-loop dynamic equation:

z(k + 1) = (A− BKMPC)z(k) + BKyr̄ . (4.79)
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The time-discrete system is stable if all eigenvalues of (A− BKMPC) satisfy the condition

|λi(A− BKMPC)| < 1 , i = 1, . . . , n , (4.80)

i.e. all n eigenvalues of the closed-loop system have to lie in the interior of the unit circle in the
complex plane. As the controller gainKMPC can be calculated explicitly given the design matrices,
this condition can be checked offline. If the condition is not satisfied, then the design matrices have
to be modified until the eigenvalues all lie in the interior ofthe unit circle.

Infinite prediction horizon. Drawing from the equivalence of the unconstrained MPC solution to
the linear-quadratic optimal control, by choosing a prediction horizon that is large enough, in the
limit Np → ∞, a stable closed-loop system is obtained, provided thatQ is positive definite and
the matrix pair [A,Q1/2] is observable. In a practical computation ofJ(∆U) the requirement of
Np→ ∞ poses the problems that only a finite number of calculations can be carried out in a finite
time; additionally an internal overflow can occur in the summation, for instance if the process is
unstable, rendering the cost functional useless.

Terminal weight. The introduction of a terminal weight into the cost functional to guarantee
closed-loop stability also draws from the similarity of unconstrained linear MPC to LQ-optimal
control.

The terminal weightQ̄ is introduced as

J(∆U) =
Np−1
∑

k=1

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

+ z(Np)TQ̄z(Np) , (4.81)

and is calculated such that the following condition holds:

∞
∑

k=1

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

=

Np−1
∑

k=1

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

+

∞
∑

k=Np

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

(4.82)

=

Np−1
∑

k=1

[

z(k)TQz(k) + (∆u(k))TW(∆u(k))
]

+z(Np)TQ̄z(Np) , (4.83)

i.e. the terminal weight accounts for all cost on the infinitetime horizon [Np,∞) Tsamplethat is not
dealt with explicitly in the cost functional and thus avoiding the problem of time restrictions and
overflow in the computation ofJ(∆U). For the actual computation of̄Q a Lyapunov equation can
be derived, details are given for instance in Mayne et al. [96].

Although all three methods are equivalent, the idea of a terminal weight proves the most useful
in stability analysis ofconstrainedlinear model predictive control. As the controller in general is
no longer linear, due to the presence of constraints, the closed-loop system is non-linear, i.e. for
stability analysis non-linear methods have to be applied.

The general approach is to consider the optimal cost functional, i.e. Jopt = J((∆U)opt), as a
candidate for a Lyapunov function [19, 96]. IfJopt is positive definite, which is satisfied ifQ is
positive definite or [A, Q1/2] is observable, the terminal weight is chosen such thatJ is equivalent
to the infinite-horizon cost, and (∆u)opt(k) satisfies the constraints of the optimisation problem at
k+ 1, thenJopt is non-increasing along the state trajectory of the closed-loop system, i.e.

Jopt(k+ 1)− Jopt(k) ≤ −
[

z(k)TQz(k) + (∆u)T(k)W(∆u)(k)
]

≤ 0 . (4.84)
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Table 4.1: Process parameters for the continuous spray granulation process

Initial bed mass [kg] mbed 10.0
Reference bed mass [kg] mbed,set 10.0
Mass flow of nuclei [kg s−1] Ṁnuc 5.55× 10−5

Mass flow of solid [kg s−1] Ṁsolid 1.38× 10−2

Solid mass fraction [–] xs 1.0
Solid density [kg m−3] %s 1440.0
Size of nuclei [m] ξ0 0.1× 10−3

Screen size upper screen [m]ξu 0.5× 10−3

Screen size lower screen [m]ξl 0.4× 10−3

Milling diameter [m] ξM 0.35× 10−3

Milling diameter (osc.) [m] ξM 0.2× 10−3

The particular terminal weight can be chosen as the stabilising solutionP of the unconstrained
problem on an infinite time horizon, i.e. by LQ-optimal control.

Using this concept, the idea is to choose the prediction horizon large enough that the state is
steered into a portion of state space where all constraints are satisfied and remain satisfied. From
this time forward the stabilisation task is an unconstrained problem and a stabilising solution
exists if the problem is handled as a linear-quadratic optimal control problem for the rest of the
time horizon [96]. An important fact used in this reasoning is that the stability of the closed-
loop system does not depend on the optimality of the found solution but on the feasibility of the
optimisation problem, i.e. whether a solution exists [19].

4.2.5 Feedback control results

In order to stabilise the unstable steady-state number density function in the continuous process
the total surface area of all particles, which is proportional to the second total momentµ2 of the
number density function, is used as the controlled output. As the manipulated variable the milling
diameter is chosen. For the plant model the population balance derived in Chapter 2.5 with ideal
sieves and mill is used. All other process parameters are listed in Tab. 4.1: The milling diameter
ξM = 0.35×10−3 m yields a stable steady-state, the milling diameterξM = 0.2×10−3 m corresponds
to an unstable steady-state where non-linear oscillationsin the number density function can be
observed.

Given the analytic expression for the number density function ns corresponding to the unstable
steady-state with a milling diameterξM,s and a total second momentµ2,s the task of the controller
is to guaranteeµ2→ µ2,s. That this also implies thatn(t, ξ)→ ns(ξ) can be motivated as follows: If
the process states are observable by the measurement ofµ2, a result that was shown to hold at least
structurally, then to each measurement ofµ2 a unique number density function can be assigned.
For µ2,s this is the steady-state number density function, i.e. by convergence ofµ2 to µ2,s the
number density function in the process comes arbitrarily close to the steady-state distribution.

Although the second momentµ2 cannot be measured directly, it is assumed in the following that
is available and the controllers are evaluated for this ideal measurement. Later this assumption is
dropped, andµ2 is obtained by use of a model-based measurement scheme.

In the following simulations the initial condition shown inFig. 4.5 is used. It is chosen such that
the uncontrolled system yields sustained oscillations in the number density function.
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Figure 4.5: Initial condition used in the feedback control simulations. The initial deviation from
the unstable steady-state is chosen such that the linear process model is valid.

PI control

The controller transfer functionC(s) is calculated on the basis of the transfer functionGry derived
from the linearised process model such that the ISE is minimised. The calculation was carried out
using the Matlab SISO toolbox and yields

C(s) = −1.267× 10−8
(

1− 2.3× 103 s
s

)

. (4.85)

This controller is implemented and applied to the non-linear process. In order to calculate the
manipulated variable deviation variables have to be used asthe inputs to the controller; the result
is then a process input expressed as a deviation∆u = ∆ξM . Adding the corresponding steady-state
valueξM,s yields the control input to the non-linear process.

The results of the application are shown in Fig. 4.6 – Fig. 4.9. There it is immediately observed
that the PI controller cannot guaranteeµ2→ µ2,s: The controlled output also oscillates around the
steady-state value, albeit with a slightly reduced amplitude. The plot of the manipulated variable
reveals sustained oscillations. The snapshots of the number density functions taken att1 = 40
minutes,t2 = 80 minutes,t3 = 120 minutes, andt4 = 160 minutes show that the errors are due to
the large deviations in the milling diameter. However, it isalso seen that although the results do
not seem satisfactorily they are at least better than in the uncontrolled case. This is exemplified by
the plot of the errorE2 (Fig. 4.9) that is defined by

E2(t) = ‖n(t, ξ) − ns(ξ)‖2 =


















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
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∫

ξ0

(n(t, ξ) − ns(ξ))
2 dξ























1
2

. (4.86)

There it can clearly be seen that although the normalised error is quite large it is significantly
smaller for most of the time than in the uncontrolled case.
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Figure 4.6: Evolution of the controlled output. It can be seen that it oscillates around the required
steady-state value and does not converge, i.e. the unstablesteady-state number density function is
not stabilised. (PI controller)
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Figure 4.7: Plot of the input to the process calculated by theproportional-integral controller. (PI
controller)
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(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.8: Snapshots of the number density function in the fluidised bed under application of
proportional-integral control. (PI controller)
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Figure 4.9: Plot of the normalised error of the number density distribution in the process with
respect to the desired steady-state distribution. For comparison the open-loop error evolution is
also shown. (PI controller)
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One possibility to improve the controller performance is tovary the controller gain to speed-up
the convergence of the control error to zero. Due to the presence of right-half plane zeros in the
plant transfer function, i.e.s∗ with P(s∗) = 0, this would result in instability of the closed control
loop as the poles move for high gains to the locations of the zeros of the transfer function (cf.
Appendix E), i.e. some poles of the closed loop will cross thestability boundary, a phenomenon
known ashigh-gain instability.

In summary it has to be said that a proportional-integral controller is not able to stabilise un-
stable steady-states of the continuous fluidised bed granulation process. Instead more advanced
output-feedback controller structures, for instanceH∞-controllers [105] or discrepancy-based con-
trollers [104], orstate feedback controllersthat utilise the complete available information on the
process state to calculate the manipulated variables have to be used.

LQ-optimal control

The following linear-quadratic optimal control problem was considered: The cost functional is
given by

J(u) =

∞
∫

0

[

(Cz(t))TQ(Cz(t)) + uT(t)Wu(t)
]

dt , (4.87)

with Q = 1 andW = 108 for scaling of the output magnitude ofµ2 and magnitude of the manipu-
lated variableξM. The state space model derived from the linearisation and a discretisation of the
population balance equation was augmented by an output integrator, yielding the augmented state
space model

dz
dt
= Az(t) + B∆u(t) , y(t) = Cz(t) , (4.88)

wherezandy denote the respective deviation coordinates of the linear model and∆u is the control
increment.

The reason why the model is augmented by an integrator for thecontrolled output is that by the
particular choice of the weighting of the states in the cost functional an output feedback is realised.
The LQ-controller in its basic form calculates the manipulated variable proportional to the state
deviation (measured with respect to zero), i.e there is no integral action that is usually required for
a zero steady-state control error. By augmenting the state model integral action is included into the
LQ-control formulation. The augmented state model is observable and controllable by the chosen
measured output and manipulated output.

From a practical point of view a time-discrete realisation of the controller is of interest, so the
model equation and the cost functional were sampled with a sampling time Tsample yielding a
time-discrete linear dynamic model. The control law

∆u(k) = −Kz(k) (4.89)

was then automatically calculated by thedlqr routine (discrete-time linear-quadratic regulator)
provided by the Matlab simulation environment and then implemented at the non-linear process.

The results of the application are shown in Fig. 4.10 – Fig. 4.13. There it can be seen that the
LQ-controller yieldsµ2 → µ2,s: Initially, the system oscillates around the steady-statevalue but
these oscillations are damped out. The snapshots of the number density function in the non-linear
process (Fig. 4.12), which are taken at exactly the same times points as in the application of
the PI controller, show that the error with respect to the steady-state number density function is
decreasing over time, i.e. the unstable steady-state is stabilised by the linear-quadratic optimal
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Figure 4.10: Evolution of the controlled output. In contrast to the PI controller the oscillations are
damped and the output converges to the reference value. (LQ-controller)
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Figure 4.11: Input trajectory calculated by the linear-quadratic optimal control law and imple-
mented in a time-discrete setting. (LQ-controller)
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(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.12: Snapshots of the number density function in thefluidised bed under application of
LQ-optimal control. (LQ-controller)

controller. This can also be seen in the plot of the errorE2 which decreases over time. The
corresponding input trajectory is shown in Fig. 4.11, compared with the PI controller the input
oscillates faster but with a much smaller amplitude. The error E2 (Fig. 4.13) is also significantly
smaller, converging almost to zero, i.e. the unstable steady-state can be considered as stabilised.

Model predictive control

For the test of the model predictive controller the augmented time-discrete system is used for
controller design. Using the notation introduced in the section on MPC the cost functional is
expressed as

J(∆U) = (R− Y)T(R− Y) + (∆U)TW(∆U) , (4.90)

Table 4.2: Design parameters of model predictive controller.

Number of discretised states N 100
Simulation time interval [s] tend 12000
Sampling time [s] Tsample 60
Prediction horizon Np 30
Control horizon Nc 10
Minimum manipulated variable [m] umin 0.18× 10−3

Maximum manipulated variable [m] umax 0.22× 10−3
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Figure 4.13: Plot of the normalised error of the number density distribution in the process with re-
spect to the desired steady-state distribution. The error converges almost to zero, i.e. a stabilisation
of the unstable steady-state is achieved with sufficient accuracy. (LQ-controller)

with W being a diagonal matrix where all diagonal elements are equal to 108. The observability
and controllability conditions can be proved to hold structurally as well as numerically at the
steady-state. For the calculation of the model predictive controller the prediction horizon and the
sampling time have to be chosen. This was done based on the knowledge of the eigenvalues of the
matrix A: The prediction horizon was chosen corresponding to the eigenvalue that is nearest to the
stability boundary. The control horizon was chosen to be considerably smaller than the prediction
horizon in order to keep the dimension of the optimisation problem small (cf. Tab. 4.2).

In case ofunconstrainedmodel predictive control the optimal control law is calculated as pre-
sented in Eq. (4.59). It is then applied to the non-linear process.

As can be seen in the plot of the controlled variable (Fig. 4.14), the total surface area of all particles
in the bed, the oscillations in the controlled variable are damped out over time, i.e.µ2 → µ2,s.
The corresponding error in the number density function, represented by the integral measureE2

(Fig. 4.15), shows that after an initial increase, the erroris decreased, i.e. a convergence of the
number density function to the required steady-state number density function is achieved. That
the error does not vanish totally is due to the fact that only alinear controller is applied to the non-
linear process and that this controller only generates new inputs at the beginning of every sampling
interval. Errors in the number density function that occur within the sampling interval, where the
input is kept constant, are only partially dealt with so thatat the end of the sampling interval an
increase in the error is possible. However, as can be seen in the snapshots of the number density
functions a satisfying control result is achieved. The corresponding input trajectory is shown in
Fig. 4.16 and shows a behaviour similar to the linear-quadratic control. The closed-loop poles are
shown in Fig. 4.18 where it can be seen that no poles lie outside the stability domain, i.e. the
closed-loop system is stable.
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Figure 4.14: Evolution of the controlled output. For the unconstrained model predictive controller
a damped response similar to LQ-optimal control is obtained. (MPC, unconstrained)
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Figure 4.15: Plot of the normalised errorE2: As it converges to zero, apart from small temporary
increases, the steady-state is stabilised by the feedback controller. (MPC, unconstrained)
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Figure 4.16: Input trajectory calculated by unconstrainedmodel predictive control and imple-
mented in a time-discrete setting. (MPC, unconstrained)
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(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.17: Snapshots of the number density function in thefluidised bed under application of
unconstrained model predictive control. (MPC, unconstrained)
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Figure 4.18: Plot of the locations of the open-loop (uncontrolled) process poles and the closed-
loop (controlled) poles. The stability domain in a time-discrete setting is given by the interior of
the unit circle in the complex plane: All poles of the closed-loop system lie within the stability
domain whereas the open-loop poles do not. (MPC, unconstrained)

As an example ofconstrainedmodel predictive control the following scenario is considered: For
practical reasons the range of milling diameters is limited, i.e. ξM,min ≤ ξM ≤ ξM,max, yielding
an input constraint for the optimisation problem. All otherprocess conditions are identical to the
unconstrained case. Proceeding as described, a quadratic programme with a linear constraint over
the prediction horizon is derived. This programme is solvedon-line by the Matlab’s optimisation
algorithmquadprogthat utilises an active-set strategy [102]. In the formulation of the optimisation
programme a terminal weight is used to guarantee closed-loop stability. It is obtained from the
solution of the corresponding LQ-optimal control problem presented earlier in this section.

Similar to the unconstrained case, the oscillations in the controlled variable are damped out over
time, i.e. µ2 → µ2,s, as shown in (Fig. 4.19). This observation holds also for thestate errorE2

with the limitations highlighted in the unconstrained case(Fig. 4.20).

The corresponding input trajectory is shown in Fig. 4.21; there it can be seen that the manipulated
variable stays within the posed minimum and maximum value, in contrast to the unconstrained
case.

The snapshots of the number density function show that in thebeginning, compared to the uncon-
strained case, a larger error with respect to the required steady-state is present. This is due to the
limitation of the input which becomes active at the beginning of the simulation (cf. Fig. 4.16). If
limitations on the input are posed that are too strict, thereis the possibility that the steady-state
cannot be stabilised. Thus in parallel to the derivation thelinear controller has to be extensively
evaluated at the non-linear model. The computational effort of the optimisation problem was such
that at each sampling time the solution was obtained almost instantaneously, thus no significant
delay was introduced into the control loop by the solution ofthe optimisation problem.
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Figure 4.19: Evolution of the controlled output. For the constrained model predictive controller a
damped response similar to LQ-optimal control is obtained.(MPC, constrained)
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Figure 4.20: Plot of the normalised errorE2: Despite the input constraints, it also converges to
zero, i.e. the steady-state is stabilised by the constrained feedback controller. (MPC, constrained)
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Figure 4.21: Input trajectory calculated by the constrained model predictive controller. The input
constraints are shown to be satisfied for all times. (MPC, constrained)
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(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.22: Snapshots of the number density function in thefluidised bed under application of
constrained model predictive control. (MPC, constrained)
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Based on the results presented here the following can be concluded: Although a proportional-
integral controller is able to reduce the error in the numberdensity distribution with respect to
the uncontrolled case, it is not able to stabilise the unstable steady-state. This can be achieved
by application of linear-quadratic optimal or model predictive control. LQ-control and MPC are
equivalent in the unconstrained case with respect to the dynamics of the closed-loop system. The
advantage of the LQ-controller is that stability of the closed-loop is guaranteed by the design
process. The great disadvantage is that no constraints on inputs or outputs can be posed. Model
predictive control on the other hand allows for the formulation of constraints that are often present
in practical application. But this leads to an optimisationprogramme that has to be solved on-
line in order to obtain the required input trajectory, yielding a non-linear controller. Additionally,
the question of closed-loop stability has to be answered separately. Nonetheless, (linear) model
predictive control is a powerful tool for the stabilisationof unstable steady-state number density
distributions in continuous fluidised bed spray granulation processes with particle re-cycle.

4.3 Feedback control of batch fluidised bed spray granulation

In the previous section the stabilisation of a given unstable steady-state in continuous process
has been considered. In this section the control of another important class is investigated:batch
processes.

In contrast to continuous processes no steady-state can be derived for this task, so the full non-
linear behaviour of the process has to be taken into account.Although it is possible to linearise
the process dynamics in the vicinity of a given state trajectory, the resulting process dynamics are
time-varying and pose a similar complexity.

Using the idea of model predictive control yields, due to thepresence of a non-linear process model
and a possibly non-linear cost functional and constraints,a non-linear optimisation programme
that has to be solved on-line for each sampling interval. Thecalculation of an optimal control
law based on the solution of a non-linear optimisation programme subject to non-linear process
dynamics is callednon-linear model predictive control(NMPC) [4].

Research in NMPC is still active, especially in the fields of stability of the closed-loop system [19],
and existence and uniqueness of the calculated solution. These questions are much harder to an-
swer than in the linear case due to the different solution structure of non-linear processes. Another
important field of research is the development of new, fast optimisation algorithms for the solution
of non-linear programmes. Due to its non-linearity, analytical solution can only be derived in a
small number of cases; in all other cases iterative numerical algorithms have to be applied. In
order to fulfil the practical constraint that the optimal input must be available at real-time poses a
severe requirement on the optimisation algorithms, especially for large-scale systems, i.e. systems
with a large number of decision variables or constraints [31, 32].

The scope of this section is limited to an application of non-linear model predictive control to a
batch fluidised bed spray granulation process. The process is modelled as described in Chapter 2.4,
i.e. a suspension is sprayed onto the fluidised, spherical particles that grow in size (diameter)
according to a surface proportional law.

Given an initial number density function at the beginning ofthe batch, i.e.t = 0, the task is to
provide a desired distribution at the end of process at timet = T under the influence of process
disturbances. Owing to the size-independence of the growthlaw, it can be derived that arbitrary
number density functions cannot be achieved by this process, as the size-independent growth re-
sults in a transition of the initial number density functionto higher particle sizes. However, this
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scenario is of interest, for instance if the initial densityfunction varies from batch to batch. Then
the use of the same process parameters will yield different process results att = T.

The main influence on the growth of particles is exercised by the mass flow rate of of solid in
the spray,xsṀsus, whereṀsus denotes the total mass flow rate of spray andxs is the solid mass
fraction. The suspension or solution is usually stored in large tanks and is pumped to the process
chamber. Due to different effects, for instance partial recrystallisation of the dissolved solid or
inhomogeneities in the mixing of the storage tank, the solidcontent of the spray can vary over
process time, or between batches.

The spraying of suspension with a varying solid content willlead to undesired deviations of the
number density distribution at the end of the process timet = T. For that reason, the solid content
is considered as a process disturbance and the task is to control the total mass flow rate in such a
way that the desired number density distribution is achieved at the end of the process.

If the solid content is measurable and no error in the position of the initial number density function
exists, then the solution to this problem can be given explicitly by

Ṁsus(t) =
Ṁsus,des(t)xs,des(t)

xs(t)
, (4.91)

whereṀsus,des(t)xs,des(t) defines the necessary solid mass flow rate to achieve the number density
function att = T.

However, the disturbance cannot be measured easily, so its deviation from the solid content nec-
essary to reach the desired number density function att = T, xs,des, is assumed to be unknown.
In order to measure the deviation of the number density function n(T, ξ) from the desired number
density functionndes(ξ) the following cost functional, a purely terminal weight, is defined:

J(u) =
1
2

∞
∫

ξ0

[

n(T, ξ) − ndes(ξ)
]2 dξ , (4.92)

which is subject to the population balance equation that describes the temporal evolution of the
number density functionn(t, ξ) under the process inputu = Ṁsus. This input is subject to con-
straints, i.e. a minimum mass flow rateumin of zero and a maximum mass flow rateumax given by
the pump and nozzle used in the plant, i.e.umin ≤ u ≤ umax.

In summary the control task can thus be stated as: Given an initial number density function in the
process, a fixed final timeT and a desired number density function at that time, an input trajectory
is to be calculated such that the defined cost functional is minimised subject to the input constraint
and process disturbance.

Due to the unknown character of the process disturbance overprocess time an open-loop control
will not yield sufficient results. For that reason a non-linear feedback control scheme is applied.
The principal steps are the same as described in Chapter 4.2.4 with one modification: The fixed
time interval [0,T] is divided intoNT horizons of lengthTsample. Starting with the knowledge or
an estimate of the plant state at the beginning of horizonk only the remainingNT − k horizons are
considered in the optimisation programme. This strategy isknown as ashrinking-horizonand is
depicted in Fig. 4.23.

As no further information is available on the process disturbance it is assumed that it remains con-
stant over the remaining time horizon [k,NT ] Tsample. Thus it is tried by the controller to calculate
a one-step optimal control for the remaining process time. This control input is then recalculated
for each sub-interval, given the information on the number density function and requires the use
of a model-based measurement scheme.
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k k+ 1 NTprediction horizonk

prediction horizonk+ 1

Figure 4.23: Illustration of the shrinking horizon strategy in batch non-linear model predictive
control.
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Figure 4.24: Number density functions with and without non-linear model predictive control.
The reference is almost indistinguishable from the result obtained by non-linear model predictive
control. (Batch, NMPC, after 10000 s)

Assuming that the number density function is exactly measurable, the results in Fig. 4.24 –
Fig. 4.26 are obtained: First, starting from a given initialnumber density function, a final dis-
tribution is generated by the population balance model using a constant total mass flow rate and a
constant solid content in the suspension. Then for the test of the NMPC scheme, an error in the
initial position of the number density function is introduced: The solid content is decreased by
ten percent and subjected to stochastic disturbances whichare represented by zero-mean Gaussian
noise. The optimisation programme is solved using an active-set algorithm provided by the Matlab
commandfmincon.

As can be seen in Fig. 4.24, compared to the open-loop case, a much better process result is
achieved, i.e. the use of a non-linear model predictive controller yields an improvement in the
process result. Additionally, as can be seen in Fig. 4.25 theinput constraint is fulfilled for all times.
The calculated input increases gradually towards the end ofthe process as the time available to
compensate for an error is decreasing. This effect depends heavily on the disturbance: If it is too
large, a higher total mass flow rate is needed than can be provided; this may then lead to errors in
the final number density function, if the missing amount of suspension cannot be balanced over
the remaining process horizon.

The total computation time needed to calculate the input trajectory for the remaining process is
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Figure 4.25: Computed optimal control inputs for the batch spray granulation process.
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Figure 4.26: Computation time necessary for the calculation of the optimal process input for the
remaining batch horizon.
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shown in Fig. 4.26. An appropriate choice of sampling time can be derived from this plot: It
has to be chosen such that the optimisation programme can be solved well within the sampling
interval. The maximum time necessary is often given by the computation time necessary for the
whole process horizon, i.e. an appropriate sampling time can determined iteratively, by solving
the optimisation programme for [0,T] and choosingTsamplesuch that the computation time needed
for this optimisation is considerably smaller thanTsample.

4.4 Feedback control of heat and mass transfer

Up to now only the solid phase of the process has been considered with the focus on the size
distribution of the particles. As was motivated in the introduction, other properties, for instance
the moisture content and the temperature also have an important influence on the resulting product
characteristics. The moisture content and the temperatureof the product are determined by the
heat and mass transfer processes, i.e. in order to achieve desired product moisture and temperature
the heat and mass transfer has to be manipulated, for instance by feedback control.

One way to design a control scheme for the heat and mass transfer could be to use model predictive
control. Here, in general it is possible to append the requirements for the states of the heat and
mass transfer model to the cost functional and to extend the set of constraints by the corresponding
dynamic equations. This approach results in a central controller: One model predictive feedback
controller is used for all requirements, i.e. the manipulated inputs for the heat and mass transfer
and the particulate phase are computed by one and the same controller.

Although this approach has some appeal due to its simplicityin extending the feedback control,
it is in case of the heat and mass transfer only of limited use.The reason for this is that the
heat and mass transfer model possesses a much faster dynamics, in the order of seconds, than the
particulate phase, in the order of minutes or hours. Also, the mean residence times of the phases
vary by several magnitudes. A central MPC controller would thus require a very short sampling
time to capture the fast dynamics sufficiently and a long prediction horizon to capture the slow
dynamics of the particulate phase.

The control horizon of the central controller then has to be chosen proportional to the fast sampling
rate; this necessitates a very often re-solution of the optimisation programme to obtain the input
trajectory for all process inputs. Although this is necessary for the states that describe the heat and
mass transfer, the large number of input commands is unnecessary – and may be even unrealisable
– for the particulate phase. The large number of process inputs over the horizon also increases the
complexity of the optimisation programme as each input at a sampling time has to be included as
a (vector-valued) decision variable in the optimisation.

This reasoning leads to the use of two decentralised controllers: For instance a model predictive
controller for the particulate phase as presented in the last section, and another controller for the
heat and mass transfer. Motivated by the differences in the dynamics and the general structure of
the model equations, a time-continuous feedback controller is to be designed where the focus lies
on practical, linear controller structures.

Using the simplified heat and mass transfer model derived in Chapter 2.8, the following manipu-
lated variables are available: the mass flow rate of spray (with a given solid content), the mass flow
rate of fluidisation gas, the mass flow rate of nuclei fed to thesystem, and the inlet temperature of
the gas.

The controlled variables are the mean particle moisture content and the mean temperature of the
particles in the fluidised bed process. It will be assumed that these values are measuredin situ.
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The moisture content and the temperature of the fluidisationgas are uncontrolled.

From a process point of view, the mass flow rate of fluidisationgas and the temperature of the gas
are suitable process inputs. The mass flow rate of suspensionis not suitable as it directly influences
the product mass flow which in many applications is required to be constant. The mass flow of
nuclei is often hard to realise practically, as it has to be produced separately in an external process.

An analysis of the complete process reveals that it is partially decoupled: The states of the dis-
persed phase, i.e. the number density function, do influencethe states used to describe the heat
and mass transfer, i.e. particle moisture content, particle temperature, gas moisture content, and
gas temperature. However, in the process model the heat and mass transfer does not influence the
growth or other particulate processes in the dispersed phase, i.e. the dispersed phase dynamics is
decoupled from the dynamics of heat and mass transfer.

In total, an input-output model for heat and mass transfer can be derived. It is a multiple-input
multiple-output (MIMO) model due to the presence of two manipulated inputs (gas flow rate and
gas temperature) and two outputs to be controlled (particlemoisture content, particle temperature).

As mentioned above, the transition processes of the states of the heat and mass transfer model are
fast. In addition to the open-loop stability of the sub-processes it can be assumed that the heat
and mass transfer is always in the vicinity of a steady-state, i.e. a linearised model can be used to
describe the dynamics sufficiently well.

The linearised model can be represented in Laplace domain by

Y(s) = P(s)U(s) , (4.93)

whereY andU are the Laplace transforms of the process outputs and inputsin deviation variables,
respectively, andP is the transfer function matrix relating the two inputsU1 andU2 to the outputs
Y1 andY2:

[

Y1(s)
Y2(s)

]

=

[

P11(s) P12(s)
P21(s) P22(s)

] [

U1(s)
U2(s)

]

. (4.94)

The step responses of the input-output model for a simultaneous step change in the process inputs
are shown in Fig. 4.27. There the total responses, i.e. the superposition of both input influences
on the individual outputs, are shown. It can be seen that bothoutputs do not attain the required
reference value of one, i.e. the open-loop plant does possess a non-zero steady-state error.

A further analysis shows that a step in the inputU1 also influences the outputY2 and a step in
input U2 has influence on the outputY1, i.e. there is a cross-coupling between the inputs and the
outputs. Furthermore, it can be shown that all four transferfunctions are stable but the use of
feedback control is necessary to attain the required reference values.

In order to devise a control scheme the coupling of the inputsand outputs has to be investigated
further. Generally neglecting the coupling in the design process, i.e. settingP12(s) = 0 and
P21(s) = 0, may lead to unsatisfying closed-loop behaviour or even instability of the closed loop. If
the coupling is only small then the transfer functionsP12 andP21 may be neglected and controllers
designed only forP11 andP22 may yield acceptable control performance.

For the quantification of input-output coupling in MIMO linear time-invariant models different
measures exist: One of them is thecoupling factorκ [84] which is defined as

κ(s) =
P12(s) P21(s)
P11(s) P22(s)

. (4.95)

If the absolute value of this frequency-depending, empirical measure, i.e.|κ(s)|, is considerably
smaller than one, only a small coupling is present and the plant may be controlled by two separate
single-input single-output controllers for the main transfer functionsP11 andP22.
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Figure 4.27: Open-loop plant response for a simultaneous positive step change in the mass flow
rate of gas and the gas inlet temperature.

For a given linearised model the coupling factor is depictedin Fig. 4.28, showing a value much
smaller than one over a very large frequency range, i.e. a controller design neglecting the coupling
may yield an acceptable result.

For the design of the single-input single-output controllers the practically accepted proportional-
integral controller structure is chosen in order to achievea zero steady-state error in the closed
loop.

The question whether a PI controller structure yields a stable closed-loop behaviour can be an-
swered before the actual design by the so calledNiederlinsky index KS I:

KS I =
det(P(s= 0))
∏

i
Pii (s= 0)

. (4.96)

If this index is smaller than zero the use of proportional-integral controllers will yield an unstable
closed-loop process regardless of the tuning of the controller parameters. This means that a new
combination of manipulated variables has to be found that yields a non-negative value. If the value
is positive, then the stability depends on the choice of the controller parameters – the Niederlinsky
index is therefore only a sufficient criterion for general MIMO system. However, in case of2× 2-
systems it is also necessary [25].

A calculation of the index for a given transfer function model shows that the use of PI controllers
will yield a stable closed feedback control loop.

The PI controllers for the transfer functionsP11 andP22 are denoted byC11 andC22, respectively:

Cii (s) = Kp,i

(

TN,i s+ 1

TN,i s

)

, i = 1, 2 . (4.97)

This structure offers two parameters for the design of the closed-loop behaviour, the controller
gain Kp and the integral timeTN. The integral time can for instance to be chosen such that the

132



10
−20

10
−10

10
0

10
10

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

logω in [rad s−1]

|κ
|

Figure 4.28: Plot of the absolute value of the coupling factor κ, an empirical measure for the
coupling of inputs and outputs in multiple-input multiple-output processes.

largest time constant of the plant transfer function is compensated, i.e. the speed of the closed
loop is increased, or to give a sufficiently damped step response of the closed loop.

After fixing the integration time constant, the controller possesses one additional degree of free-
dom: the controller gain. A suitable value can be obtained byuse of the root-locus method (see
Appendix E).

The designed controllers are then used to build up the overall feedback controllerC(s)

C(s) =

[

C11(s) 0
0 C22(s)

]

= Kp + KI
1
s
, (4.98)

with diagonal, constant matricesKp andKI . The resulting controller is thus a diagonal proportional
integral controller, neglecting the internal coupling of the process inputs and outputs.

Applying this controller to the plant transfer functionP(s) yields the closed-loop transfer function

Y(s) =
[

(I + P(s)C(s))−1 P(s)C(s)
]

R(s) (4.99)

For a simultaneous positive step change in both reference values R1 and R2 the step responses
are depicted in Fig. 4.29. The step changes in the reference inputs are scaled to values that are
encountered in practical applications. Whereas the temperature attains the specified reference
value fast and smoothly, initially a large undershoot in thestep response of the moisture content
is observed. This would correspond to a very high drying of particles that are then re-wetted to
achieve the reference particle moisture content. Apart from the fact that over-drying of particles
is economically inefficient, the re-wetting may also have a significant influence onthe consistency
of the product. In a worst case a required structure of the product is destroyed by the over-drying
and re-wetting, rendering the product useless. It can also be observed that the transition process is
rather slow and may be even too slow if the heat and mass transfer is to be controlled in a short-time
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Figure 4.29: Closed-loop response of the process under a diagonal MIMO PI controller, i.e. two
separate single-input single-output controllers, for a simultaneous scaled step change in the refer-
ences.

batch process. Summarising, the designed diagonal proportional-integral controller yields a stable
closed-loop system with a zero steady-state error but the transition dynamics are not sufficient.

The consequence of these observations is that the internal coupling of the manipulated variables
and the controlled outputs should not be neglected in the design process if a satisfying dynamic
behaviour of the closed-loop process is to be achieved.

One approach to improve the performance of the closed-loop is the idea ofdecouplingthe multiple-
input multiple-output plant, i.e. the plant is augmented byadecoupling networkΞ(s) such that the
coupling is compensated:

P(s)Ξ(s) = Λ(s) , (4.100)

whereΛ(s) is a diagonal transfer function matrix. To be more precise,instead of ignoring the
coupling in the controller design, the input-output behaviour is transformed by the decoupling
network in such a way that the new input-output behaviour is equivalent to two decoupled single-
input single-output plants.

If the transfer functions of the decoupled plants are denoted byΛ1 andΛ2, two single-input single-
output controllersC∗i , (i = 1, 2) can be designed separately. Combining these controllersinto a
diagonal controllerC∗ yields for the open-loop:

(P(s)Ξ(s))C∗(s) = P(s)(Ξ(s)C∗(s)) = P(s)C(s) . (4.101)

The new controllerC, combining the diagonal controllerC∗ and the decoupling networkΞ, is a
genuine multiple-input multiple-output controller that accounts for the coupling of the inputs and
outputs of the process plant.

The practical realisation of this idea is often hindered by the following: In order to compensate
the coupling completely, i.e. for all times and input signals, the decoupling network has to be
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a dynamic system itself. In combination with the chosen controller structure for the diagonal
controllerC∗ a multiple-input multiple-output controller may result that is not realisable. For that
reason the decoupling is often limited to the steady-state,i.e. instead of a dynamic networkΞ(s) a
static networkΞ(s= 0) = Ξ0 is used throughout.

If the steady-state gain of the plant is given by

lim
s→∞

P(s) = Ks, (4.102)

a suitable choice for a static decoupling network is

Ξ0 = K−1
s , (4.103)

yielding at steady-states= 0:

P(s= 0)Ξ0 = KsK
−1
s = I = Λ , (4.104)

i.e. a decoupling of the process inputs and outputs is achieved. For all other times and signals,
i.e. s, 0, the compensation of the coupling will not be perfect, decreasing the performance of the
control loop. This has to be accepted if this simple, proportional decoupling network is to be used.

As the decoupling network is only proportional, the resulting multiple-input multiple-output con-
troller C is only a fixed linear combination of the individual controllersC∗i , i.e. a restriction to
standard linear controller structures will yield a MIMO controller that can be practically imple-
mented as a network of standard controllers that are easily available. For example, if the controllers
C∗i are proportional-integral, the MIMO controllerC is also proportional-integral.

For feedback control of the heat and mass transfer the steady-state gainKs is determined for a
given steady-state. The static decoupling network is chosen as the inverse of this matrix, yielding
a steady-state decoupling of the plant and an approximate decoupling otherwise. For the transfer
functionsΛ1 andΛ2 of the decoupled plant, proportional-integral controllers are designed by the
root-locus method, yielding:

C∗1(s) = 120

(

3638s+ 1
3638s

)

, (4.105)

C∗2(s) = 0.36

(

37s+ 1
37s

)

. (4.106)

The parameters of the controllers are determined iteratively, starting with the integral timeTN

chosen to compensate the largest time constant of the transfer function and a unity controller gain.
By iterative refinement of theTN and the controller gain the root-locus is shaped such that the
closed-loop system is stable and a suitable dynamic behaviour is achieved. The diagonal controller
C∗ can be written as

C∗(s) =

[

120 0
0 0.36

]

+

[

0.033 0
0 0.0097

]

1
s
= Kp + KI

1
s
. (4.107)

The resulting multiple-input multiple-output controllerresulting from the combination of this con-
troller with the static decoupling networkΞ0 can be written as:

C(s) = Ξ0 Kp + Ξ0 KI
1
s
, (4.108)

i.e. the structure of the controller is conserved, only the gains of the proportional and the integral
part of the controller are modified by the decoupling network.
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Figure 4.30: Closed-loop response of the process under a MIMO PI controller using a decoupling
network for a simultaneous (scaled) step change in the reference values.

The step response of the closed-loop system for a simultaneous positive increase in the references
is shown in Fig. 4.30: It can be observed that the temperaturereference value is now attained more
slowly. The transition is smooth avoiding temperature peaks that may lead to damages in the struc-
ture of the particles due to thermal stress induced by a rapidheating of the material. A significant
improvement can be observed in the particle moisture content: Using the MIMO controller, no
undershoot or overshoot in the moisture content is present.Additionally, the transition period to
the reference value is shortened significantly.

The design of the above linear controllers assumes that the manipulated variables can attain any
desired value, which is certainly true if the deviation of the process from the steady-state is suffi-
ciently small, i.e. the deviation of the manipulated variables from their corresponding steady-state
values is small. In practice, especially if the controllersare applied in processes that are not close
to a steady-state, the manipulated variables are subject toactuator constraints, i.e. only a limited
range of values for the process inputs can be used or generated.

An application of the linear controllers to the nonlinear heat and mass transfer model, using the
parameters listed in Tab. 4.3, is depicted in Fig. 4.31 and Fig. 4.32. There the manipulated vari-
ables, the mass flow rate of gas and the gas temperature are restricted: The mass flow rate of gas
is limited such that the bed is fluidised, i.e.um f < ug < uelu. The minimum and maximum gas
temperatures are chosen either from practical considerations, for instance the typical power out-
put of an air conditioning device, or safety considerations. The outputs of the controller, i.e. the
inputs to the process, are tested for their compliance to thelimitations, and are clipped if they do
not satisfy the requirements.

Starting with an initially very wet particle and a low particle temperature, obtained from open-
loop steady-state simulation, the required particle moisture is set to a significantly lower value
whereas the particle temperature is required to be higher. The reason for the specification of a
higher particle temperature is given by the thermodynamicsof drying: The maximum amount of
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Table 4.3: Heat and mass transfer model parameters.

Specific heat capacity water vapour [J kg−1 K−1] cp,v 2000
Specific heat capacity liquid water [J kg−1 K−1] cp,l 4200
Specific heat capacity gas (air) [J kg−1 K−1] cp,g 1000
Specific heat capacity solid [J kg−1 K−1] cp,s 1000
Specific evaporation enthalpy of water [J kg−1] ∆hevap 2.5× 106

Solid density [kg m−3] %s 1440
Solid mass fraction suspension [–] xs 0.3
Ambient temperature [◦C] θenv 20.0
Plant pressure [Pa] pplant 101300
Reference particle moisture content [(kg water) (kg solid)−1] Xre f 0.008
Reference particle temperature [◦C] θs,re f 80

liquid that can be absorbed by the fluidisation gas depends onthe temperature of that gas, i.e. at
higher gas temperatures more liquid can be absorbed. Requiring a low particle temperature would
then require a low gas inlet temperature which would in turn decrease the drying potential. Thus
the achievable set of particle moisture contents and temperatures is given by the thermodynamics
of the drying process. In order to test the controllers, reference values are chosen that lie within
the achievable regions.

In Fig. 4.31 the evolution of the particle moisture contentsin the continuous process with external
classification and particle recycle under the two designed controllers are shown: Although the
diagonal controller acts faster than the controller with decoupling network, it undershoots, i.e.
over-dries, the particles and then has to re-wet the material. This is a very slow process as by the
inlet gas only a very limited amount of moisture is additionally applied to the process. This results
in an almost vanishing steady-state error in the particle moisture content. The feedback controller
with decoupling network on the other hand acts more slowly but attains the specified value without
over-drying the material.

The discussion also holds for the particle temperatures (Fig. 4.32): Although the purely diagonal
controller achieves the reference value faster, it does so by overshooting. Depending on the mate-
rial in the process the overshoot may induce thermal stress in the structure that may damage the
product. Accounting for the coupling of the process inputs and outputs a control result without
overshooting is achieved. However, the time necessary to achieve the reference value is increased.
This is also linked to the slower, but more accurate control of the particle moisture content. The
dynamics of the closed-loop system may be increased by a tuning of the controller gains. But due
to the input constraints only a limited improvement may be achieved.

The necessary effort for the design of the two controllers is comparable: In both approaches the
task is to design two single-input single-output controllers for two single-loop control plants for
instance by the root-locus method. The static decoupling network Ξ0 can be determined easily
from the plant model contributing only a small portion to thedesign effort.

Focusing on the particle moisture content as the more interesting particle property, the results
justify the use of a genuine MIMO controller over simple diagonal controllers that neglect the
coupling in the process. If only a fast and accurate control of the particle temperature is needed
then the purely diagonal controller, or even just a single-input single-output controller, is sufficient.

In view of the robustness of the controllers, the purely diagonal PI controller is able to compensate
for model errors in the main transfer functions for which it is designed. Errors in the coupling
terms can only be expected to be compensated partially by feedback as no information on the
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Figure 4.31: Particle moisture content in fluidised bed spray granulation process under two differ-
ent PI controller structures.
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Figure 4.32: Particle temperature in fluidised bed spray granulation using two different PI con-
troller structures.
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Figure 4.33: Combination of a model-predictive controllerand a model-based measurement sys-
tem to obtain an estimate ˆn of the number density functionn in the process which is used to cal-
culate the necessary inputup to the process. The subscriptssdenotes steady-state values needed
for the application of linear controllers to non-linear processes.

effects is directly available to the controller. The MIMO controller accounts up to a certain degree
directly for the coupling in the process and thus an increased robustness with respect to modelling
errors can be achieved.

4.5 Model-based control systems for fluidised bed spray granulation
processes

In the preceding section feedback controllers for the tasksof controlling the number density func-
tions and the heat and mass transfer in fluidised bed spray granulation processes were designed
and tested separately. In this final section both controllers are applied simultaneously to the pro-
cesses. Furthermore, the number density functions in the processes are reconstructed from practi-
cally available process measurements by a model-based measurement scheme. This combination
of model-based measurement and feedback control for the number density function is shown in
Fig. 4.33 and forms together with the controller for the meanparticle moisture and mean temper-
ature a model-based control system for fluidised bed spray granulation processes.

Whereas it is motivated by the structure of the process modelthat the control of the number density
distribution and the heat and mass transfer can be performedalmost separately, an open question
is whether the combination of the model-based measurement system and the feedback controller
yields acceptable results. In general it is difficult to decide whether observers and controllers that
are designed separately yield a stable closed-loop system.If the open-loop dynamics of a process
is given by

dx
dt
= f (x, u) , (4.109)

the error dynamics of a suitably designed model-based measurement system is given by

de
dt
= γ(e, u) , (4.110)

and the designed controller is implemented using the estimate x̂ of the statex, i.e. u = ϕ(x̂), the
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Table 4.4: Process and design parameters for the batch spraygranulation feedback control by
non-linear model predictive control.

Initial bed mass [kg] mbed 10.0
Mass flow of suspension [kg s−1] Ṁsus 1.38× 10−2

Solid density [kg m−3] %s 1440.0
Sampling time [s] Tsample 60

closed-loop dynamics of the model-based control scheme aregiven by

d
dt

[

x
e

]

=

[

f (x, ϕ(x− e))
γ(e, ϕ(x− e))

]

, (4.111)

i.e. a coupled system of non-linear differential equations. General stability results are hard to
obtain. The design of a stable model-based control system therefore relies on process knowledge,
tuning and the experience of the designer.

In the special case that the process dynamics are linear time-invariant, i.e.

dx
dt
= Ax+ Bu, (4.112)

a linear estimator is used with error dynamics given by

de
dt
= (A− LC)e, (4.113)

and a state-feedback controller is given byu = −Kx̂, the closed-loop dynamics are given by

d
dt

[

x
e

]

=

[

A− BK BK
0 A− LC

] [

x
e

]

. (4.114)

From this equation follows that the closed-loop system is stable if and only if the two sub-systems
on the diagonal are stable, i.e. a controllerK is designed that stabilisesA− BK, and an observerL
is designed such that the observation error system is stable. A theoretical justification is given by
theseparation theorem[125].

In the following results of the application of the designed model-based control systems, i.e. feed-
back control of the number density function using a model-based measurement scheme and feed-
back control of the heat and mass transfer are presented.

4.5.1 Batch fluidised bed spray granulation

For feedback control of batch fluidised bed spray granulation a non-linear model predictive con-
troller is coupled with an infinite-dimensional Luenbergerobserver that reconstructs quasi-continu-
ously the number density function from measurements of the mean particle size in the spray gran-
ulation process (Ch. 3.4, pg. 63). For the control of heat andmass transfer the designed multiple-
input multiple-output linear proportional-integral controller using a static decoupling network is
used. The process and design parameters are listed in Tab. 4.4 and Tab. 4.3.

The task is as before to steer the number density function towards a given required density function
at t = T. Additionally, the particles shall have a specified moisture content and temperature at the
end of the batch.
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Figure 4.34: Plot of the number density function at the end ofthe batch process using a model-
based control scheme consisting of an infinite-dimensionalLuenberger observer, a non-linear
model predictive controller for the dispersed phase and a linear MIMO PI controller for heat and
mass transfer.

As is shown in Fig. 4.34 the use of the estimated number density function in the calculation of
the optimal process input trajectory does not yield a severedegradation of the control result: The
desired number density function and the achieved number density function att = T are almost
indistinguishable, although there is an error in the magnitude of the estimated number density
function compared to the number density function in the process att = T as shown in Fig. 4.35.

The control of heat and mass transfer is also not negatively influenced; after a transition period
the particles possess the desired mean moisture content andmean temperature. For reasons of
comparison the gas moisture content and temperature are also shown in Fig. 4.36 and Fig. 4.37.
With varying gas inlet temperature and flow rate the maximum amount of moisture that can be
absorbed by the gas, the saturation moisture contentYsat, also varies.

The calculation time needed for one iteration of the controlsystem is shown in Fig. 4.38: It consists
of the time necessary to calculate an estimate of the number density function in the process, the
solution of the non-linear optimisation programme to obtain the optimal process input and the
calculations of the feedback controller for heat and mass transfer. It can be seen that the time
needed is significantly smaller than the sampling time of thecontrol system, i.e. a faster-than-
real-time implementation is possible. As the main computational effort lies in the solution of
the optimisation programme the sampling time can be increased in order to provide a larger time
margin. This is possible as the particle growth dynamics arerather slow and the estimate of the
number density function and the control of the heat and mass transfer are performed in a quasi-
continuous manner.
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Figure 4.35: Plot of the number density functions in the process and the infinite-dimensional
Luenberger observer at the beginning of the batch and at the end. Apart from a slight deviation in
the magnitude the profiles are almost indistinguishable.
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Figure 4.36: Evolution of the particle and gas moisture content. The required value is achieved
under the constraints posed on the actuated process inputs.
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Figure 4.37: Plot of the particle and gas temperature duringbatch fluidised bed spray granulation.
The desired value of 80◦C is achieved by a moderately higher gas temperature.
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Figure 4.38: Computational time necessary for one cycle of the model-based control system. The
time includes the estimation of the number density functionand the calculation of the process
inputs by a non-linear model-predictive and a linear multiple-input multiple-output controller,
respectively.

143



4.5.2 Continuous fluidised bed spray granulation

For the task of stabilising an unstable steady-state numberdensity function in the continuous
spray granulation process with particle recycle, three controllers are available: linear-quadratic
optimal controller, linear unconstrained model predictive controller, and linear constrained model
predictive controller. From a practical point of view the constrained model predictive controller
is of highest interest as it allows to incorporate explicitly various known process constraints. For
that reason the focus in the test of a model-based control scheme for the stabilisation of unstable
steady-states is laid on that type of controller.

As the controller is designed using a linear approximation of the model dynamics in the vicinity
of a given steady-state number density distribution, feedback control of the non-linear process
can only be successful if the process dynamics are approximately linear, i.e. the process must be
sufficiently close to a steady-state.

In order to practically implement the designed constrainedmodel predictive controller, informa-
tion on the second momentµ2 of the number density function in the process is required to evaluate
the cost functional and to guarantee a zero steady-state error. Furthermore, the knowledge of the
number density function in the process is needed to evaluatethe control law, i.e. to calculate the
necessary milling diameterξM. If the number density function is known, all moments can be
calculated, thus the reconstruction of the number density function from process measurements is
necessary.

In the following it is assumed that themean diameterof all particles in the process is available as
a process measurement at discrete points in timetk = k Tsample: yk = y(tk) = µ1(tk)/µ0(tk). The
measurements are taken with the same sampling time of the MPCalgorithmTsample. The reason
for the choice of a time-discrete measurement is that it allows for a probe-internal averaging of
quasi-continuous measurements and by this for a suppression of noise. The process parameters
and design parameters are the ones reported in Tab. 4.1 (pg. 113), Tab. 4.2 (pg. 119), Tab. 4.3
(pg. 137).

The task therefore is to calculate an estimate of the number density function ˆn of the number
density functionn using the available process measurementsyk and using this information to
calculate the control law and apply it to the non-linear process plant.

As the process has to be already in the vicinity of the steady-state in order to be stabilise by
linear control, a linear time-discrete Luenberger observer is applied to estimate the number density
function in the process from the time-discrete process measurements.

Although the process dynamics and the chosen observer possess a linear structure, the closed-loop
dynamics is not linear, due to the presence of constraints inthe controller calculation. Therefore
the closed loop is non-linear, and the separation theorem does not hold in general, i.e. the stability
of the closed-loop with an arbitrarily designed observer isnot guaranteed in general; this would
only be the case if no constraints are present in the controller formulation.

The initial deviation of the observer estimate from the process has to be such that in the simulation
of the observer equations the process is also approximatelylinear; in that case the observer based
on a linear model is able to correct dynamically the deviation.

In Fig. 4.39 – Fig. 4.42 the results of a test complying to these requirements are shown: There an
initial number density distribution in the observer is chosen such that it deviates by two percent
from the number density distribution in the process. The initial condition in the process is chosen
such that it yields sustained oscillations in the number density function if it is not controlled (cf.
Fig. 4.5).
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Figure 4.39: Evolution of the controlled output using the estimates provided by the time-discrete
Luenberger observer in the calculation of the control law.

In the plot of the controlled output shown in Fig. 4.39 it can be seen that the output converges to
the steady-state reference, i.e. the steady-state is stabilised by the model-based control scheme.
It can be further observed that in comparison to the ideal case, i.e. the direct measurement of the
number density function in the process (cf. Fig. 4.19), the convergence is slower. This is due to the
initial deviation of the observer information from the process, that has to be corrected gradually
with each available measurement. If the observer is sufficiently close to the process a convergence
similar to the ideal case is achieved.

In the plot of the normalised errorE2 in the number density function it can be seen that the con-
troller stabilises the unstable steady state in this integral measure: Apart from temporary increases
which are due to the non-linearity of process, the time-discrete nature of the control inputs and
state observations, the error is bounded, i.e. there is a bounded deviation of the number density
function in the process from the required steady-state distribution.

In the snapshots of the number density function in the process taken at subsequent times (Fig. 4.41),
it can be seen that the deviation is indeed bounded. The time necessary for the number density
function to converge sufficiently close to the steady-state is increased due to the initial erroneous
influence of the estimate provided by the state observer in the controller calculation.

The input trajectory calculated by the model predictive controller is shown in Fig. 4.42: Compared
to the ideal case the input oscillates faster and the input constraints become active more often. This
is also a result of the initial error in the estimate which yields more extreme results.

In summary, it can be stated that this configuration of a constrained model predictive controller
and a linear Luenberger observer is able to stabilise a givenunstable steady-state number density
distribution.

If non-negligible measurement noise is present in the model-based control system, a decrease of
control performance has to be expected. This is due to the influence of noise on the state correction
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Figure 4.40: Plot of the normalised errorE2: Despite the input constraints, it also converges to
zero, i.e. the steady-state is stabilised by the constrained feedback controller.

as there the noise enters directly by the observer gain.

In Fig. 4.43 – Fig. 4.46 it is shown that the performance is indeed decreased: There the process
measurement is subjected to additive zero-mean Gaussian noise before it is processed.

The controlled output now oscillates non-linearly around the reference value, i.e. a bounded non-
zero steady error remains. The initial transition phase dueto the error in the observer is not pro-
longed, however, the sustained influence of the measurementnoise prevents a smooth convergence
to the desired reference.

Same observations can be made in Fig. 4.44: There it can be seen that the integral error measure
does not converge to zero but is stabilised at a non-zero value.

In the number density functions shown in Fig. 4.45 it can be seen that the results are still accept-
able, especially if they are compared with the uncontrolledcase or in case of using a PI input-
output controller.

The effect of the measurement noise can be observed quite good in thecomputed input trajectory:
The error in the estimate introduced by noise is processed inthe prediction and thus accumulated.
Depending on the sign of the error, the accumulation yields control inputs on the boundaries, i.e.
the constraints are active.

This is an unwanted result, from a practical point of view, asoperation of the actuator in its limits
often yields material fatigue and a shortened actuator life-span. One possibility to decrease the
influence of measurement noise is the use of averaging measurement filters that filter out the high-
frequency noise. These can easily be implemented on-site ifnecessary. Another possibility is the
use of a higher measurement sampling rate, which reduces theeffect of an individual noise signal
over the sampling horizon, especially in the case of high-frequency noise.

A third possibility is the use of state estimators that take into account the statistics of the noise to
calculate an estimate, i.e. a filtered estimate is provided.One state estimator that is of particular

146



2 3 4 5 6 7 8

x 10
−4

0

0.5

1

1.5

2

2.5

3
x 10

12

ξ in [m]

N
um

be
r 

de
ns

ity
 fu

nc
tio

n 
[m

−
1 ]

 

 

Reference
controlled
uncontrolled

(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.41: Snapshots of the number density function in thecontinuous spray granulation process
with external classification and particle recycle under application of constrained model predictive
control using a Luenberger observer for the reconstructionof the number density function from
plant measurements of the mean particle diameter of all particles in the bed.
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Figure 4.42: Input trajectory calculated by the mode-basedcontrol scheme using a constrained
model predictive controller and a linear Luenberger observer. The input constraints are satisfied
for all times.
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Figure 4.43: Controlled output by the model-based control system with measurement noise. The
output does not converge to the reference value and a boundedsteady-state error remains.
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Figure 4.44: Plot of the normalised errorE2: The error does not converge to zero but is stabilised
at a not-zero value.
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(a) After 40 minutes.
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(b) After 80 minutes.
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(c) After 120 minutes.
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(d) After 160 minutes.

Figure 4.45: Snapshots of the number density function in thecontinuous process under application
of model predictive control and a Luenberger observer. In this scenario the plant measurement is
subjected to noise.
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Figure 4.46: Input trajectory calculated on the basis of estimates subject to measurement noise.
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interest in the application to non-linear process is the unscented Kalman filter (UKF). As was
shown, it is able to provide reliable estimates in the non-linear process using measurements that
are biased by noise. The practical implementation is hindered by two facts: The sampling time of
the estimator has to be much shorter than the sampling time ofthe controller in order to provide
a reliable estimate. This requires a permanent synchronisation of the measurement and control
sampling times. Additionally, the computational effort to calculate an estimate of the number
density function is significant: In tests up to eighty percent of the controller sampling interval is
spent in the calculation of a state estimate, introducing a significant delay between the time a new
measurement becomes available and the time the input to the process is calculated based on that
state estimate.

For that reason a special implementation of this non-linearestimator is necessary using as much
parallelisation of the algorithm as possible to reduce the computation time. This requires special
hardware which may become a significant part of the total costof the model-based control system.

In all applications of model predictive control in connection with a Luenberger observer the com-
putational time for one control cycle is negligible, i.e. much smaller than one second. Therefore, if
the process operates in the linear region of an unstable steady-state this configuration is preferred,
possibly augmented by a moving-average measurement filter to further decrease the influence of
noise on the estimate of the number density function in the process.

In summary, the combination of a constrained model predictive controller and a linear time-
discrete Luenberger observer into a model-based control system yields acceptable results in the
stabilisation of an unstable steady-state number density function.

As was motivated in the batch control application, the heat and mass transfer can be treated sep-
arately from the control of the dispersed phase. In all cases, the designed controllers are able to
achieve the required values for the particle moisture content and temperature, as long as the refer-
ences can be reached in compliance with the posed input constraints on the mass flow rate of gas
and the gas temperature.

4.5.3 Summary

In this chapter feedback control methods for the stabilisation of unstable steady-state number den-
sity distributions in continuous fluidised bed processes with external classification and particle
recycle were investigated. It was shown that simple input-output control by proportional-integral
controllers does not achieve satisfying results. Thus state feedback control schemes were fur-
ther investigated, namely linear-quadratic optimal control and model predictive control. It was
shown that both schemes yield a stabilisation of unstable steady-states. From a practical point of
view model predictive controllers are advantageous as theyallow the incorporation of process and
actuator constraints in the calculation of the control law.

In addition to the stabilisation an application of feedbackcontrol to a batch process was consid-
ered: Here the task was to achieve a given number density function at the end of the batch despite
unmeasurable disturbances in the composition of the sprayed suspension. It was shown that a
non-linear model predictive control scheme is successful.

Apart from the control of the number density distribution inthe processes it was investigated how
the particle moisture content and temperature, two other important product characteristics, can be
influenced. Here, due to the stable open-loop behaviour and fast dynamics a linear multiple-input
multiple-output controller with a proportional-integralstructure was designed. In order to account
for internal coupling of the process inputs and controlled outputs a decoupling network is designed
that improves the controller performance.
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In a last step the state feedback controllers were combined with state observers that allow to
calculate estimates of the quantities required in the evaluation of the control laws, i.e. the number
density function, from practically available measurements. It was shown that this combination
yields acceptable results for the stabilisation of unstable steady-states in the continuous process as
well as in the batch process.
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Chapter 5

Summary

Particulate products play a major role in many industries, for instance pharmaceuticals, foods or
fertilisers. Many product properties, for example the dissolution characteristic of a pill or the
flowability of a powder, can be directly related to the particle properties.

As the particles in a powder often are not uniform, i.e. they differ in their characteristic properties,
the product also is not uniform. Depending on the field of application, a property distribution is
either undesired or only specific distributions are acceptable.

An important class of processes for the production of solid granular products from liquid raw
materials, for example suspensions, or solutions where thesolid is initially dissolved in a liquid,
is fluidised bed spray granulation. These processes can be run either batch-wise or continuously,
offering a wide-spread use of the process.

Depending on the process configuration, fluidised bed spray granulation processes can exhibit
different dynamic behaviour, for instance in continuous mode unstable steady-states can occur.
This may result in undesired product characteristics or irregular product flow.

A way to influence the dynamics of a process towards a desired behaviour is the use of process con-
trol. For fluidised bed spray granulation three properties are of most importance: the particle size
distribution, the particle moisture content and the particle temperature as they have tremendous
influence on the product properties and the necessary post-processing of the produced granules.

The major aim of this work therefore was to determine a process control strategy that allows
to manipulate the particle properties in fluidised bed spraygranulation towards desired product
properties.

Spray granulation or layering granulation is a complex process involving particle formation as
well as heat and mass transfer between multiple phases. A purposeful influence on the dynamics
can therefore only be devised if a model of the dominant phenomena is available and used for
controller design and implementation. This leads to the task of designing a model-based control
system for the realisation of desired product characteristics in fluidised bed spray granulation
processes, for batch as well as continuous operation.

To that aim in Chapter 2 a mathematical model for the description of the dynamic behaviour of
the particle formation process and heat and mass transfer isderived. In order to account for the
distributed character of the particle properties, especially the particle size, a macroscopic approach
using population balances is used to describe the temporal evolution of the particles with respect
to the property. For the case of particle growth by layering,i.e. the growth of the particles induced
by the solid contained in the sprayed suspension, a growth rate is derived.
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The considerations up to this point allow to describe the evolution of the particle size in a batch flu-
idised bed spray granulation process that is growth-dominated. For the description of a continuous
process the external apparatuses which are required for particle re-cycle also have to be modelled.
Here one specific type of continuous process with external product classification by screening and
recycle of particles with milling of over-sized particles is considered, and a mathematical model
for the particle size distribution of the particles is derived.

In comparison to the batch configuration this process is morecomplex due to the interaction of the
screens, the mill, and the influence of the re-cycled particles on the particle growth in the process.
An investigation of the process dynamics reveals that depending on the parametrisation of the
screens and the mill, which is motivated by the desired product specification, unstable steady-
states can occur. This means that even very small disturbances in the process lead to a loss of the
operation at the desired steady-state and, thereby, to a loss in product quality.

The control task in this case is therefore the stabilisationof unstable steady-states in the continuous
process with external classification and particle recycle.In the batch configuration a strategy to
guarantee a desired product distribution at the end of the batch under process disturbances is to be
derived.

The heat and mass transfer determines the two other product properties under consideration, i.e.
the particle moisture content and the particle temperature. Here process controllers are to be
used to guarantee a mean moisture content at a mean particle temperature. For controller design a
simplified mathematical model based on mass and energy balances for the fluidised bed is derived.

In order to influence a process, information on the current state of the process has to be available.
This can often be gathered by direct measurement of the interesting quantities, for instance the
particle moisture or the particle temperature. In case of the particle size distribution the task
is not simple: Although in-line as well as off-line methods for the characterisation of particles
are available, the successful application is often hindered by technical aspects. In case of in-
line measurement the calculation of the size distribution from the actually measured chord-length
distribution is highly susceptible to measurement noise, possibly introducing large errors into the
calculated result. Off-line methods are often more accurate than theirin situ counterparts but
they require a removal and transport of particles from the process to the measurement device
introducing a large and often unacceptable time delay.

For that reason the use of model-based measurement systems is proposed in Chapter 3. They
allow the reconstruction of not directly measurable quantities from more easily obtained measure-
ment information by use of a mathematical process model. Facilitating an iterative approach, the
estimation of the unmeasurable quantity is corrected on thebasis of the available measurement
information. After a presentation of the fundamentals of model-based measurement systems, sev-
eral different approaches are presented and applied to the task of reconstructing the particle size
distribution from limited process measurements in both configurations.

In simulation tests it was shown that the approach of model-based measuring is able to reconstruct
the particle size distribution from limited measurement data, for instance the mean particle diam-
eter of all particles in the process, to a sufficient degree. The choice of one specific method, and
thereby the obtainable accuracy, is determined by the process configuration and conditions, for
example batch or continuous mode or strong presence of measurement noise. If the continuous
process is in the vicinity of a steady-state then an observerbased on a linearised process model
is able to reconstruct the number density function quite well. If the number density function is to
be reconstructed during start-up of the process, then non-linear observers or estimators have to be
used. The non-linear algorithms can also be used in steady-state operation but due to the higher
computational costs, linear observers should be preferred. These results then allow the use of the
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reconstructed particle size distribution for purposes of process monitoring or control.

The stabilisation of unstable steady-states is consideredin Chapter 4. From the analysis of the
process dynamics is can be derived that the stability strongly depends on the size of the milled
particles that are re-cycled to the process. Therefore the size of milled particles is identified as a
manipulated variable to the process. The controller then modifies temporarily the milling size to
stabilise the unstable steady-state. Using the analytically derived knowledge on the steady-state
number density function with respect to the process parameters, a linearised process model is used
for controller design.

As a characteristic measure for the steady-state the total surface area of all particles in the process
is identified. This quantity cannot be measured directly butcan be calculated easily from the
knowledge of the number density distribution, facilitating the use of a model-based measurement
system in the implementation of the derived control law.

At first an output feedback controller of proportional-integral type, which is heavily used in indus-
tries and is widely accepted, is designed to stabilise a given unstable steady-state. In tests for the
non-linear process it is revealed that the controller does only have limited influence, i.e. the use of
a simple output feedback controller is not able to satisfactorily stabilise unstable steady-states.

This necessitates the application of more advanced controlschemes using the knowledge of the
complete process state and calculating appropriate valuesfor the manipulated variable by state
feedback. Two approaches, the linear-quadratic regulatorand model predictive control, are in-
vestigated. Both methods are able to stabilise the unstablesteady-states satisfactorily. Model
predictive control has an advantage as it allows to explicitly incorporate constraints, for example
in the actuator, in the calculation of the control law, additionally it has its roots in industry lower-
ing the barriers in transporting this non-standard controlapproach to practical implementation. In
summary, the unstable steady-states in the particle size distribution can be stabilised by the linear
controllers derived for the continuous process.

The batch process is inherently non-linear, i.e. no steady-state can be derived and for control
purposes the non-linear dynamic behaviour has to be taken into account. For the control task
of guaranteeing a pre-specified product distribution at theend of the batch under process distur-
bances, for instance the composition of the sprayed suspension, a non-linear model predictive
controller is designed and tested. In all simulations the controller was able to steer a given initial
number density function sufficiently close to the desired final number density function, even when
non-measured process disturbances were present.

Although the scenario seems to be simple, it highlights the strengths and weaknesses of non-
linear model-predictive control especially in view of an application to the continuous process. The
computational effort needed for the on-line solution of the non-linear optimisation programme,
that yields the manipulated variables, is high which may lead to a violation of the constraint that
the optimisation programme must be solved faster than real-time. Additionally, in the continu-
ous process different model-based measurement schemes have to be used whichalso add to the
computational effort.

In both particle formation processes heat and mass transferoccurs, determining the mean particle
moisture content and the mean particle temperature. An analysis shows that the moisture con-
tent and the temperature are coupled, i.e. a change in one property also changes the other. For
controller design it is assumed that the dynamics of heat andmass transfer are much faster in com-
parison to the growth of particles and always close to a steady-state. This motivates the use of a
linearised process model in the design of a controller for the mean moisture content and the mean
temperature of the particles.
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Following, a multiple-input multiple-output controller of proportional-integral type is designed
and tested. In order to increase the performance, an additional approximate decoupling network
is designed that allows for an approximate independent control of the moisture content and the
temperature. An application of this extended controller tothe non-linear processes shows that
indeed a better performance is achieved, i.e. specified set-points are reached without attaining
critical product states, for example by over-heating or over-drying. This performance is however
limited by actuator and hydro- and thermodynamic constraints.

In the end of Chapter 4 all components, i.e. the model-based measurement system, the controllers
for the particle size distribution and the heat and mass transfer, are combined into one model-based
process control scheme for a specific influence on the complete fluidised bed spray granulation
process. It is tested for both configurations and it is shown that the designed scheme is able to
achieve the required specifications.

In summary, in this thesis a model-based control scheme for important particle properties in flu-
idised bed spray granulation is developed. Novel contributions to that purpose are:

• Investigation of model-based approaches to reconstruct distributed particle properties, espe-
cially the particle size distribution, which are difficult to measure directly, from more easily
measurable process data. This leads to an improvement in theon-line control of product
quality, as undesired process states, for instance drift from the coating into the aggregation
regime, can be identified directly during process monitoring from changes in the size dis-
tribution. Furthermore, the model-based measurement systems enable the use of the recon-
structed size distribution in advanced control schemes in order to achieve required product
specifications.

• Design of model-based controllers for batch and continuously operating spray granulation
processes with a focus not only on integral measures of the property distribution, for instance
total mass of product or hold-up, but also on the size distribution of the particles. This allows
to formulate a process result on the basis of a desired size distribution. For feedback control
of the size distribution model-predictive controllers aredesigned, permitting an optimal
solution to the stated control problems, specifically the stabilisation of unsteady steady-
states in continuously operating fluidised bed spray granulation, and control of the final size
distribution in batch spray granulation. An additional virtue of this class of controllers,
appealing to practical implementation, is the explicit consideration of process constraints,
for instance in the manipulated variables.

Additionally, important thermal properties, the mean particle moisture content and mean
temperature, are considered, posing in total a multiple-input multiple-output control prob-
lem to which solutions for this class of process and in this detail are not available.

• Combination of model-based measurement systems and model-predictive controllers into
one model-based control scheme for fluidised bed spray granulation processes. The combi-
nation of the two components is not trivial due to the non-linear behaviour of each of them
which may yield unacceptable results, even instability, iflinked into one control system.
By successfully realising this combination, it is possibleto control the size distribution, the
mean moisture content of the particles, and the mean particle temperature using only prac-
tically available, limited, and biased measurement data. Until now, for fluidised bed spray
granulation such a model-based control scheme has not yet been available.

However, the results presented in this thesis are not the penultimate solution to the task of feedback
control of particulate processes in fluidised beds. The processes in this thesis were investigated
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using several assumptions and restrictions, for instance the process chamber was considered as a
single compartment, a size-independent growth of the particles was assumed – realised by building
up a compact layer of solid – and the possible influence of the drying conditions, i.e. the heat an
mass transfer, on the growth rate was neglected.

The relaxation of these restrictions and assumptions, which will lead to an improvement in the
description of experimental results, can be used as starting points for further research:

• Size-dependent particle growth: In experiments often a widening of the size distribution
is observed. This cannot be represented by the size-independent growth law in the single
compartment apparatus. For the description of the dispersion in the size distribution new
approaches have to be found and to be parametrised in order todescribe this effect. This
necessitates further experimental investigations in order to identify the basic influences, as
well as theoretical studies to derive extended growth laws.

• Extension of the single-compartment description to multiple compartments: In the single-
compartment model the basic assumption is that all particles can be reached by the spray. In
experiments at least two compartments can be identified: a spraying zone, where the parti-
cles receive new solid material from the nozzle, and a dryingzone, where only evaporation
of the sprayed liquid occurs. The division of the process chamber into multiple compart-
ments yields interesting dynamic effects, for instance a widening of the size distribution can
be observed even if a size-independent growth law is used. This widening is related to the
residence times of a particle in the different compartments. The sizes of the compartments
and the residence times of particles depend on the hydrodynamic state of the fluidised bed;
in order to use multiple compartment models these dependencies have to be known. One
way to gain insight is the use of computational fluid dynamics(CFD) and discrete element
methods (DEM) to describe the particle motion inside the different compartments in relation
to the gas flow in the process chamber.

• Investigation of the influence of the drying conditions (theheat and mass transfer) on the
particle growth kinetics, for instance on the porosity of the formed layer. Experimental
results show that heat and mass transfer and particle growthare coupled, i.e. they do not
run on different time-scales and have to be considered in parallel. Until now, a functional
relationship between the drying conditions and the resulting particle size, for instance in
terms of the porosity of the solid layer is not known. For this, experiments have to be
conducted in order to identify the process inputs influencing the characteristics of the formed
layer. Afterwards, from the experimental data, and using theoretical knowledge of heat and
mass transfer, functional relationships can be derived using parameter estimation methods.

• Extension and application of the concepts to other classes of fluidised bed spray granulation
processes, for instance to horizontal fluidised beds or spouted beds. In case of horizontal
fluidised bed the spatial distribution of the particle properties along the process chamber has
to be considered, adding external coordinates to the model formulation, and increasing the
model complexity. Spouted beds are used to fluidise particles of a different Geldart class,
with a different hydrodynamic behaviour and thus, different particle dynamics, and heat and
mass transfer. Both processes are heavily used in industries, and until now operated mainly
by manual control. The introduction of model-based controlschemes will be beneficial in
terms of product quality and plant safety.

These extensions, used to describe the experimentally observed process dynamics, necessitate the
incorporation of the full non-linear behaviour of particleformation and heat and mass transfer into
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the process model. The non-linear model-predictive controller devised for the control of the final
size distribution in the batch process may be extended in an elementary way when the functional
relations are known.

For the continuous fluidised bed process the situation is more complex: The proposed controllers
are only valid in the vicinity of a given steady-state. For tasks such as set-point changes, i.e. the
transition from one steady-state to another, these can onlybe used if the new steady-state also lies
in the vicinity of the steady-state the controller was designed for. By considering the coupling
of heat and mass transfer with the particle growth dynamics,linear controllers may only give
insufficient performance depending on the non-linearity of the coupling. A non-linear controller
could be applied here, incorporating the non-linear process dynamics (and coupling) and thus
guaranteeing a stabilisation of arbitrary unstable steady-states and allowing for the transition of the
process between steady-states that do not lie within the vicinity of each other. However, in order
to use non-linear model predictive control special algorithms for the solution of the optimisation
programmes have to be devised in order to obtain a real-time applicable control law.

If the fully non-linear process is considered, non-linear model-based measurement systems must
be incorporated into the model-based control system. As wasmentioned in the discussion, this
also requires a special implementation to reduce the tremendous computational effort in order to
obtain a real-time applicable scheme.

Furthermore, the concepts presented in this work can be applied to other types of particulate pro-
cesses, for instance aggregation and breakage which are heavily used in industries. The challenge
here lies in the fact that aggregation and breakage are integral effects having completely differ-
ent dynamics. Additionally, profound knowledge on the kinetics of these processes, in terms of
mathematical relations, is rare and even the parametrisation is difficult. In addition to the control
task the process has to be identified, not only in terms of parameters but also in terms of suitable
manipulated variables.

The main results in this thesis are obtained from simulationstudies. Thus, the experimental val-
idation of the designed control systems has to serve as the ultimate test of functionality. There
questions regarding the noise influence on measurements, the effect of process disturbances and
deviations of the plant from the plant model used in the controller design are answered. The
application of the model-based scheme developed in this thesis to the processes is therefore the
next step in research on model-based measurement and control of fluidised bed spray granulation
processes.
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Appendix A

Hydro- and thermodynamics of
fluidised bed processes

In this appendix all hydro- and thermodynamic correlationsneeded for the heat and mass transfer
model of the fluidised bed spray granulation process are listed.

A.1 Hydrodynamic correlations

Theporosityof a fluidised bed depends on the fluidisation gas velocity that has to lie between the
minimum fluidisation gas velcoity and the elutriation velocity. It can be calculated by a correlation
given by Richardson and Zaki [122]:

ψn =
Re0

Reelu
. (A.1)

The exponentn can be calculated by an equation given by Martin [95]

n =
ln(Rem f/Reelu)

lnψm f
. (A.2)

The Reynolds number Re0 is given by

Re0 =
u0 dp

νg
, (A.3)

whereu0, the gas velocity in an empty tube (superficial velocity), can be calculated from

u0 =
Ṁg

%g Abed
. (A.4)

Reh [117] gives an equation for the calculation of the Reynolds number at the point of elutriation

Reelu =

√

4
3

Ar ; (A.5)

the Reynolds number at minimum fluidisation velocity can be calculated from Martin [95]:
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In these two equations the Archimedes number Ar is defined by

Ar =
g d3

p

ν2
g

%p − %g

%g
, (A.7)

that depends only on material properties, with

dp =
6Vbed

Abed
. (A.8)

The porosity at the point of fluidisationψm f lies in the range of [0.4, 0.7], practically. For all
calculations the porosity at minimum fluidisation velocityis assumed to beψm f = 0.4 (packed
bed).

A.2 Heat and mass transfer correlations

A.2.1 Heat and mass transfer between particles and suspension gas

Reference: Gnielinski [48]

Re =
Rem f

ψm f
, (A.9)

Sc =
νg

δw,g
, (A.10)

Shlam = 0.664 Re1/2 Sc1/3 , (A.11)

Shtur =
0.037 Re0.8 Sc

1+ 2.443 Re−0.1 (Sc2/3 − 1)
, (A.12)

Shsphere = 2+
√

Sh2
lam + Sh2

tur , (A.13)

Shps =
[

1+ 1.5(1− ψm f)
]

Shsphere. (A.14)

The dimensionless Sherwood number Sh is defined as

Sh= β
dp

δg
. (A.15)

The dimensionless Nusselt number Nu= αdp/λ can be calculated from the analogy of heat and
mass transfer:

Nu = Sh Le−1/3 , (A.16)

Le =
λg

cg %g δg
, (A.17)

with Le the (dimensionless) Lewis number.

A.2.2 Heat transfer between particles and wall

Reference: Martin [95]

Nupw =
αpw dp

λg
= (1− ψ) Z (1− e−N) (A.18)
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N =
Nupw,max

CK Z
(A.19)

Z =
1
6

%p cp

λg

√

g d3
p (ψ − ψm f)

5(1− ψm f)(1− ψ)
(A.20)

CK = 2.6 (A.21)

Nupw,max = 4

[(

1+
2l
dp

)

ln

(

1+
dp

2l

)

− 1

]

(A.22)

l = 2

(

2
γ
− 1

)

Λ (A.23)

Λ =

√

2π R̃ T

M̃g

λg

P (2cg − R̃/M̃g)
(A.24)

lg

(

1
γ
− 1

)

= 0.6−
(

1000K
Tg

+ 1

)/

CA (A.25)

CA = 2.8 (A.26)

A.2.3 Heat transfer between gas and wall

Reference: Baskakov [10]

Nugw =
αgwdp

λg
=



















0.009 Pr1/3 Ar1/2
(

u
uopt

)0.3
for um f < u0 < uopt

0.009 Pr1/3 Ar1/2 for uopt < u0 < uelu

(A.27)

Reopt =
uopt dp

νg
= 7.5















g d3
p

ν2
g















0.45

(A.28)

Reference: Shi [129]
Nugw =

[

0.005 Reelu + 0.06 Re1/3elu

]

Pr1/3 (A.29)

A.2.4 Heat transfer between wall and environment

Reference: Churchill [24] (perpendicular plate)

Nuwe =
αweLbed

λg
= (0.825+ 0.387[Raf1(Pr)]1/8)2 (A.30)

Ra = Gr Pr=
β∗g g L3

max(Tw − Te)

νg
(A.31)

β∗g =
2

Tw + Te
(A.32)

f1(Pr) =

[

1+

(

0.492
Pr

9/16)]−16/9

(A.33)

The dimensionless numbers Pr (Prandtl number) and Gr (Grashof number) are defined by

Pr =
%cpνg

λ
=
νg

κ
, (A.34)

Gr =
β∗g g L3

max(Tw − Te)

ν2
g

. (A.35)
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A.3 Material properties

In general the material properties are functions of the system pressureP and the temperatureϑ.
In the following the dependency of the specific heat capacities, the thermal conductivity, and the
dynamic viscosity of the gases on the pressure is neglected.Only for the mass density and the
kinematic viscosity temperature and pressure dependencies are taken into account via the ideal
gas law.

The material properties of liquid water are calculated considering the dependency on the temper-
ature only.

The diffusion coefficient of water vapour in airδw,g and the saturation moisture content of airYsat

are calculated as functions of pressure and temperature.

A.3.1 Material properties of dry air

Mean molar mass

Reference: Krauss [72]
M̃g = 28.96 kg kmol−1 (A.36)

Specific gas constant

Reference: Krauss [72]
Rg = 287.22 J kg−1 K−1 (A.37)

Mass density

%g =
PM̃g

R̃Tg
=

P
Rg (273.14K + ϑ)

(A.38)

Unit: kg m−3, [P] = Pa

Specific heat capacity

Reference: Glück [47]

cg = A+ Bϑ +Cϑ2 + Dϑ3 (A.39)

A = +1006.256× 100

B = +2.120536× 10−2

C = +4.180195× 10−4

D = −1.521916× 10−7

Unit: J kg−1 K−1

Range of validity:−20◦C ≤ ϑ ≤ 200◦C;P = 100000 Pa

Maximum error: 0.05%

Thermal conductivity

Reference: Glück [47]

λg = A+ Bϑ +Cϑ2 + Dϑ3 (A.40)

A = +24.52110× 10−3
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B = +7.501414× 10−5

C = −2.593344× 10−8

D = +5.292884× 10−11

Unit: W m−1 K−1

Range of validity:−20◦C ≤ ϑ ≤ 200◦C;P = 100000 Pa

Maximum error: 0.08%

Dynamic viscosity

Reference: Glück [47]

ηg = A+ Bϑ +Cϑ2 + Dϑ3 (A.41)

A = +1.705568× 10−5

B = +4.511012× 10−8

C = −8.766234× 10−12

D = −3.382035× 10−15

Unit: kg m−1 s−1

Range of validity:−20◦C ≤ ϑ ≤ 200◦C;P = 100000 Pa

Maximum error: 0.6%

Kinematic viscosity

νg =
ηg

%g
(A.42)

Unit: m2 s−1

A.3.2 Material properties of water

Mean molar mass

Reference: Wagner et al. [143]
M̃w = 18.0153 kg kmol−1 (A.43)

Specific gas constant

Reference: Wagner et al. [143]
Rw = 461.519 J kg−1 K−1 (A.44)

Mass density

Reference: Glück [47]

%w.l = A+ Bϑ +Cϑ2 (A.45)

A = +1006

B = +0.26

C = −0.0022
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Unit: kg m−3

Range of validity:−20◦C ≤ ϑ ≤ ϑs or 200◦C

Maximum error: 0.16%

Specific heat capacity

Reference: Glück [47]

cw,l = A+ Bϑ +Cϑ2 + Dϑ3 (A.46)

A = +4174.785× 100

B = +1.785308× 10−2

C = −5.097403× 10−4

D = +4.216721× 10−5

Unit: J kg−1 K−1

Range of validity: 10◦C ≤ ϑ ≤ ϑs or 200◦C

Maximum error: 0.043%

Specific evaporation enthalpy

Reference: Glück [47]

∆hv = A+ Bϑ +Cϑ2 (A.47)

A = +2.5× 106

B = −2.0425× 103

C = −3.813× 100

Unit: J kg−1

Range of validity: 10◦C ≤ ϑ ≤ 200◦C

Maximum error: 0.3%

Saturation pressure

Reference: Glück [47]

psat = A exp
(

Bϑsat+Cϑ2
sat+ Dϑ3

sat+ Eϑ4
sat

)

(A.48)

A = +611

B = +7.257× 10−2

C = −2.937× 10−4

D = +9.810× 10−7

E = −1.901× 10−9

Unit: Pa

Range of validity: 0.01◦C ≤ ϑsat ≤ 100◦C
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Maximum error: 0.02%(≡ 7 Pa)

A.3.3 Material properties of water vapour

Mass density

%w,g =
P M̃w

R̃Tg
=

P
Rw (273.14K + ϑ)

(A.49)

Unit: kg m−3

Specific heat capacity

Reference: Glück [47]

cw,g = A+ Bϑ +Cϑ2 + Dϑ3 (A.50)

A = +1.862× 103

B = +2.858485× 10−1

C = +6.148483× 10−4

D = −2.060606× 10−7

Unit: J kg−1 K−1

Range of validity: 25◦C ≤ ϑ ≤ 400◦C; 100 Pa≤ P ≤ 1000 Pa

Maximum error: 0.06%

Thermal conductivity

Reference: Glück [47]

λw,g = A+ Bϑ +Cϑ2 + Dϑ3 (A.51)

A = +0.0170× 100

B = +5.698384× 10−5

C = +1.297172× 10−7

D = −9.131313× 10−11

Unit: W m−1 K−1

Range of validity: 25◦C ≤ ϑ ≤ 400◦C; 100 Pa≤ P ≤ 1000 Pa

Maximum error: 0.14%

Dynamic viscosity

Reference: Glück [47]

ηw,g = A+ Bϑ +Cϑ2 + Dϑ3 (A.52)

A = +9.16× 10−6
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B = +2.781303× 10−8

C = +4.626970× 10−11

D = −5.054545× 10−14

Unit: kg m−1 s−1

Range of validity: 25◦C ≤ ϑ ≤ 400◦C; 100 Pa≤ P ≤ 1000 Pa

Maximum error: 0.19%

Kinematic viscosity

νw,g =
ηw,g

%w,g
(A.53)

Unit: m2 s−1

Prandtl number
Prw,g =

ηw,g cw,g

λw,g
(A.54)

Unit: −

Diffusion coefficient of water vapour in air

Reference: Schirmer [126]

δw,g =
2.252

P

(

ϑ + 273.15K
273.15K

)1.81

(A.55)

Saturation moisture content
Ysat = 0.622

psat

P− psat
. (A.56)

Unit: (kg water) (kg dry air)−1

Saturation temperature The saturation temperature can be derived from an energy balance and
yields a nonlinear system of equations forϑsat andpsat (via Ysat) that has to be solved iteratively.

0 = cp,gϑg,in + Yg,in(cp,vθg,inϑg,in + ∆hevap) − cp,gϑsat+ Ysat(cp,vϑsat+ ∆hevap) . (A.57)

Unit: ◦C
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Appendix B

Elements of graph theory

The structural analysis of dynamic systems, as presented inchapter 3.2, relies on the mathematical
theory of graphs and the investigation of information flows therein.

Graph theory is a complex mathematical field, therefor, in this appendix only concepts of impor-
tance for structural analysis are presented. The most important concept is thedirected graph:

Directed graph [18, 109]. A directed graph (also: digraph),G = [V,E] consists of a finite setV
of vertexes (nodes) and a finite set of directed edgesE. The edges are defined on the nodes of the
graph, i.e.E ⊆ V × V: E = {. . . , (v j , vk), . . .}, wherev j , vk ∈ V. The notation (v j , vk) then means
that there is a directed edge from vertexv j to vertexvk.

Example. The following graphG is given by the set of vertexesV = {u, v,w, x} and the set of
edgesE = {(u, v), (v,w), (w, u), (w, x), (x,w)}:

u w

v x

An important tool for the abstract reasoning about graphs istheadjacency matrix:

Adjacency matrix [18, 109]. Given a directed graphG = [V,E] with V = {v1, . . . , vn}, the
matrix A with elementsai j

ai j =

{

1, (vi , v j) ∈ E
0, otherwise

i, j = 1, . . . , n (B.1)

is called the adjacency matrix of the digraphG.

If ai j = 1, then there exists a direct connection betweenv j andvi , i.e. vi is directly reachable from
v j . If there does not exist a direct connection between two vertexes, but a sequence of directed
edges starting inv j over somevk to vi , thenvi is reachable fromv j .

For the determination whether a vertex is reachable from another one, powerful algorithms exist,
for instance the Moore algorithm [148].

The link to the structural matrices of a dynamic system can then be established as follows: If the
states, the inputs and the outputs are considered as vertexes in a graph, and a value of 1 is assigned
to all the direct connections between these vertexes, the structural matrices of the dynamic system
are constructed. Additionally, the structural matrices are also the adjacency matrices for the graph.
By this construction, all investigations concerning the flow of information, for example output-
reachability, can be performed on the structural matrices.

166



Appendix C

Method of characteristics

The method of characteristics (abbr. MOC) [120, 38] is a method for the analytical solution of first
order partial differential equations. The general idea is to reduce the partial differential equation
to a set of ordinary differential equations by re-parameterisation of the solutiondomain. In many
cases, the set of ordinary differential equations can be solved analytically, and a solution of the
partial differential equation can be obtained. Even if the set of ordinary differential equations
cannot be solved, important qualitative results on the solution can be obtained.

The method of characteristics can be applied to non-linear first order differential equations. It is
not restricted to scalar equations, but can also be applied to systems of first order equations.

In the following, the special case of a quasi-linear scalar first order partial differential equation is
considered. The independent variables aret andξ, and the solutionz(t, ξ) of the following equation
is sought:

a(t, ξ, z)
∂z
∂t
+ b(t, ξ, z)

∂z
∂ξ
= c(t, ξ, z) , z(0, ξ) = ϕ(ξ) . (C.1)

The termquasi-linearrelates to the fact that the partial derivatives ofzenter only linearly into the
equation.

In order to solve this initial value problem, the solution domain described byt and ξ is re-
parameterised by a set of curves, parameterised by two new variablesθ ands: The initial point of
the curve on thex-axis is parameterised bys; the curve itself is parameterised byθ. This idea is
visualised in Fig. C.1.

t

ξ
s

θt(θ)

ξ(θ)

Figure C.1: Re-parameterisation of the solution domain by the method of characteristic.

The solutionz(t, ξ) is now investigated on these curves: On a curvet is a function ofθ, t = t(θ);
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the variableξ is also a function ofθ, i.e. ξ = ξ(θ). The variables is considered as a parameter,
henceforward. With these observations, the solutionz(t(θ), ξ(θ)) can be expressed as a function of
θ solely: z(t(θ), ξ(θ)) = u(θ).

Calculating the change ofzon a curve under variation ofθ yields:

dz
dθ
=
∂z
∂t

dt
dθ
+
∂z
∂ξ

dξ
dθ
. (C.2)

Comparing the coefficients with the partial differential equation yields the following set of ordinary
differential equations:

dt
dθ
= a(t, ξ, u), t(θ0, s) = 0, (C.3)

dξ
dθ
= b(t, ξ, u), ξ(θ0, s) = s, (C.4)

du
dθ

= c(t, ξ, u), u(θ0, s) = ϕ(s). (C.5)

This set of equations is called thecharacteristic systemof the partial differential equations. The
first and the second equation describe the parameterised curve, the characteristic. The third equa-
tion describes the evolution of the solution along this curve.

In order to obtain the solution of the partial differential equation, these equations have to be solved,
to obtain t(θ, s), ξ(θ, s), andu(θ, s). In a last step the parameterisation of the curve has to be
inverted,θ = θ(t, ξ), ands = s(t, ξ), in order to obtain the solutionz(t, ξ). This last step proves
to be a most difficult one as the inversion is not always possible, for instance if two characteristic
curves intersect.

Using the characteristic system many dynamical effects that may occur can be identified, for in-
stance the occurrence of shocks in the solution – this can be attributed to the intersection of two
characteristic curves. Also questions concerning the existence and uniqueness of the solution in
the whole solution domain can be answered. For that reason, the method of characteristics found
wide-spread application in process engineering, for instance in chromatography [120].
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Appendix D

Discretisation of population balance
equations

The dynamic modelling of property-distributed processes on the basis of the population balance
approach [60, 114] yields a partial differential equation for the number density function, and is
therefor, from a system-theoretic point of view, an infinite-dimensional system.

As the analytical solution of partial differential equations is often not possible, numerical methods
have to be applied to obtain an approximation to the solution. Because of the limits of com-
puter technology (especially limited memory), a finite-dimensional approximation of the infinite-
dimensional system (the partial differential equation) is needed.

Approximation methods in use today either consider only integral values (e.g. moments) of the
number density function, or approximate the number densityfunction via discretisation.

The former class of methods is calledmoment methods, and are historically among the first ap-
proximation methods for population balance systems [60]. Here, instead of the number density
function only a small, fixed set of moments are considered. For these dynamic equations are de-
rived (from the balance equation), yielding a small set of ordinary differential equations, that is
then solved numerically.

The two major problems with this approach are: (1) loss of information on the shape of the density
function (this would in general require an infinite number ofmoments); (2) the danger that the set
of moment equations cannot be closed, i.e. the dynamic relations between the moments cannot
be expressed by a finite number of moments. In recent years, new moment methods have been
derived that allow for an approximate closure of the moment equations, for instance QMOM [94]
and DQMOM [93].

Moment methods are used in the solution of problems for whichthe exact form of the number
density function is of less importance, for instance in CFD calculations. Here, only integral val-
ues (e.g. mass of particles) are of importance, and by considering only moments a tremendous
reduction in computational effort is achieved.

For the direct approximation of the number density function, various methods are available, for in-
stance finite-difference methods (FDM), finite-volume methods (FVM) [78], finite element meth-
ods (FEM) [59] and spectral methods (SM) [49, 137].

The general idea of these methods is to discretise the solution domain, and to approximate the
density function at these discrete points (elements, nodes) in the domain. Then dynamic equations
for the approximate values at the nodes are derived and solved. The solution between two nodes
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is obtained by interpolation.

The methods vary in the detail of the discretisation, for instance semi-discrete or fully-discrete
approximations of; also the treatment of the differential and integral operators is different – in
some methods they are approximated directly, in others the approximation is the result of an
optimisation problem. As a result the different numerical methods do have different properties,
and are limited for the most part to special classes of problems.

One of these classes are convection-dominated processes (growth processes), to which the follow-
ing discussion is restricted. For the handling of the population dynamic effects aggregation and
breakage other methods are needed, for instance the Cell Average method [73] or the Fixed Pivot
method [74].

In the following two important discretisation methods for the solution of growth-dominated pop-
ulation balance systems are presented: the finite volume method and a spectral method.

D.1 Finite volume method

The principle ideas of the finite volume method [78] are presented for the following scalar growth-
dominated population balance equation:

∂n
∂t
+
∂(Gn)
∂ξ

= p(t, ξ, n), (Gn)(t, ξ0) = B0(t), n(0, ξ) = ϕ(ξ) . (D.1)

Here, one discretises the property coordinateξ into N sub-intervals, as shown in Fig. D.1. To this
purpose the interval [ξ0,∞) has to be restricted to [ξ0, ξmax].

ξ
ξ0 ξNξ1 ξ2 ξN−1

1 2 Ni − 1

ξi−1

i

ξi

i + 1

ξi+1

ξN = ξmax, ∆ξi = ξi − ξi−1

Figure D.1: Discretisation of the property coordinateξ into N sub-intervals (finite volumes).

Then grid nodes̄ξi (i = 1, . . . ,N) in the interior of the sub-intervals are defined, for instance in
the middle of the interval. The number density functionn(t, ξ) is then expressed at this node as
n(t, ξ̄i) = ni(t). In order to describe the temporal evolution of the value, adynamic (balance)
equation is derived by integrating the population balance equation over a sub-interval:

ξi+1
∫

ξi

∂n
∂t

dξ = −
ξi+1
∫

ξi

∂(Gn)
∂ξ

dξ +

ξi+1
∫

ξi

p(t, ξ, n) dξ . (D.2)

Interchanging differentiation and integration, and evaluating the first integral on the right-hand
side by the Gauss theorem yields:

d
dt

ξi+1
∫

ξi

ndξ = − (Gn)|ξi+1
ξi
+

ξi+1
∫

ξi

p(t, ξ, n) dξ . (D.3)

Using this approach, the total flux (Gn) is conserved by the discretisation, i.e. the discretised
problem will also obey a conservation law if the original problem obeys one (i.e.p ≡ 0). For this
reason the finite volume methods are calledconservative.
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For further evaluation some assumptions on the profile onnandp in the interior of the interval have
to be made, for instance thatn andp are piece-wise constant in the interior, i.e.n(t, ξ) = ni (t, ξ̄i),
p(t, ξ, n) = p(t, ξ̄i , ni) = pi(t) for ξ ∈ [ξi , ξi+1]. Higher order approximations (e.g. linear, quadratic)
are also possible. Use of these assumptions yields the set ofordinary differential equations:

dni

dt
= − 1
∆ξi

(Gini −Gi−1ni−1) + pi , i = 1, . . . ,N . (D.4)

Here the boundary fluxes (Gn)(t, ξi+1) and (Gn)(t, ξi ) are approximated by the so called up-wind
scheme (see Fig. D.2): The fluxes at the boundaries are evaluated by a backward difference us-
ing the values of the number density function at the grid nodes in the interior of the cell, i.e.
(Gn)(t, ξi+1) ≈ (Gn)(t, ξ̄i) and (Gn)(t, ξi) ≈ (Gn)(t, ξ̄i−1).

The corresponding initial valuesni(0) can be obtained from the initial number density function,
i.e. ni(0) = ϕ(ξ̄i). This shift in the indexes necessitates a special treatment of the first equation by

ξi−1 ξi ξi+1 ξi+2

i − 1 i i + 1

ni−1 ni ni+1

Figure D.2: Visualisation of the up-wind-scheme.

the explicit incorporation of the boundary value (Gn)0(t) = B0(t):

dn1

dt
=

1
∆ξ1

(G1n1 − B0(t)) + p1 . (D.5)

In total, the population balance equation is transformed into a set of coupled ordinary differential
equations that can be solved numerically by standard methods.

Although the approximation was derived directly from the population balance equation, its solu-
tion does only in the limitN → ∞ converge to the solution of the original population balance
equation. It can be shown [78] that for finiteN instead of the original equation the following
equation is approximated with greater accuracy:

∂n
∂t
+
∂(Gn)
∂ξ

= ν(N)
∂2n

∂ξ2
+ p(t, ξ, n) , (D.6)

i.e. a convection-diffusion equation is solved. The additional, purely numerical, diffusion term
leads to a smoothing effect in the solution, known asnumerical diffusion. The diffusion coefficient
ν depends on the number of sub-intervals used in the discretisation. In the limit N → ∞ the
coefficient vanishes, i.e. the original problem is recovered.

As a result, by using a finite numberN an approximation error is made. The specific choice ofN
strongly depends on the problem at hand, but generally, an increase ofN will increase the accuracy
but will also increase the computation time as the dimensionof the system of ordinary differential
equations increases. By using specialised higher-order methods, so called flux-limiters [70], the
numerical diffusion can be decreased, but at a higher computational cost.

One class of methods that do not suffer as much from numerical diffusion as finite volume methods
are the so called spectral methods.

171



D.2 Spectral methods

Spectral methods, like finite volume methods, approximate apartial differential equation by a
finite set of ordinary differential equations, when applied to all but one of the coordinates of the
problem. They allow for certain classes of (smooth) problems a stable and more accurate solution
than finite volume methods, also in many cases less grid nodeshave to be used to achieve this
accuracy [49, 137]. This reduces the size of the system of ordinary differential equations, and may
reduce thereby the computational time needed for the solution of the discretised problem.

In the following only the fundamental ideas are presented, details can be found in [49, 41, 137].

Spectral methods are closely linked to the theory of eigenfunctions of differential operators and
are known in analysis since Euler and Fourier. They were firstconsidered in numerical analy-
sis in the 1970s and found wide-spread application, for example in fluid dynamics, or seismic
explorations [49, 41].

Although these methods showed superior performance in manyapplications, interest decreased
in the following years because of several problems: They were less intuitive than the finite dif-
ference, finite volume and finite element schemes available at this time and required more effort
in programming. Additionally, the handling of complex computational geometries and process
non-linearities was difficult.

Since the early 1990s new interest in these methods is shown,as evidenced for example by the
works of Fornberg [41], Trefethen [137], Mantzaris et al. [92], and Dorao and Jakobsen [34].

A basic assumption in spectral methods is that the approximation can be expanded as a series:

n(t, ξ) ≈
N

∑

i=0

ai(t)ψi(ξ) . (D.7)

In this equation, theai(t) are the so calledspectral weightsof thespectral modesψi(ξ).

The functionsψi are chosen once for each problem and are defined on the whole region under
consideration – possibly after appropriate rescaling of the problem. This is the main difference to
finite volume methods where local approximations on some sub-interval are used.

The function set should consist of mutually orthogonal elements: Common choices are Fourier
polynomials, for problems on periodic domains (periodic boundary conditions), or algebraic poly-
nomials such as Chebyshev polynomials, for problems on non-periodic domains. If eigenfunctions
for a given problem are known, then these can also be used to create a spectral method.

The approximation error made in the transition from the infinite dimensional problem to the finite
dimensional problem is strongly influenced by the choice of the set of spectral modes and the
number of modesN used in the approximation.

In order to determine the time-dependent spectral weightsai(t), the integral of the weighted resid-
uals has to vanish:

ξmax
∫

ξ0

%(ξ)

[

∂n
∂t
+
∂(Gn)
∂ξ

− p

]

dξ = 0 . (D.8)

Substitutingn in this equation from Eq. (D.7) yields equations for the spectral weightsai(t), given
the set of spectral modes and the weight function%.

The choice of the weight function% determines the type of spectral method. Choosing% = δ(ξ−ξi)
leads tospectral collocation, i.e. the spectral weightsai(t) are calculated such that the pseudo-
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spectral approximation satisfies the population balance equation at the collocation pointsξi (i =
0, 1, . . . ,N).

The choice of collocation points is not arbitrary but depends on the spectral modesψi . If alge-
braic polynomials are chosen then the collocation points must be distributed over the interval in
a specific way to prevent numerical difficulties, for example Runge’s phenomenon[41], in the ap-
proximation of the solution. For one specific method, the Chebyshev spectral method [137], the
collocation point distribution is shown in Fig. D.3. It can be seen that the distribution of nodes

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ξ

Figure D.3: Grid node distribution in the Chebyshev spectral method. The nodes are placed on
the axis by first distributing them uniformly on the unit (semi-)circle and then projecting them
orthogonally onto the axis. Nodes cluster at the boundariesof the interval yielding a coarser
discretisation in the interior of the domain.

along the axis is not uniform. In fact, the nodes are uniformly placed on the unit circle and then
projected onto the axis yielding a very fine discretisation at the boundaries of the interval.

The specific choice% = δ(ξ−ξi) allows to calculate the values of the number density function at the
grid nodes, i.e.ni(t), directly, without using Eq. (D.7). It is then possible to express differentiation
as a matrix-vector multiplication

∂n
∂ξ

≈ ∂n
∂ξ
= Dξn , (D.9)

nT = [ni(t), . . . , nN(t)] . (D.10)

The information on theψk is incorporated in the entries of the differentiation matrixDξ.

The advantage of spectral methods lies in the accuracy of approximation of derivatives. It can
be shown that the approximation error decays faster thanO(N−m) for every m for sufficiently
smooth functions (Trefethen [137]). This means that for a predefined accuracy considerably less
number of grid nodes is needed, thus reducing the overall number of differential equations to be
simulated. Further details on the derivation of the differentiation matrices (as a limiting case of
finite difference methods) can be found in [137].

Inserting the approximation Eq. (D.9) into the population balance equation then leads to a set of
ordinary differential equations for the spectral weights (resp. the values of the distribution at the
collocation points) that can be solved by standard algorithms for differential equations.

A recent evaluation of the performance of spectral methods applied to the population balance
equations of particulate processes can be found in [12].
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D.3 Convergence of discretisations

The important question whether a discretised system correctly represents the temporal and property-
related behaviour is in general very difficult to answer. However, in the limiting caseN→ ∞ some
statements can be made using the theorem of Lax and Wendroff:

Lax-Wendroff theorem [78]. Consider a sequence of grids indexes byl = 1, 2, . . ., with mesh
parameterskl , hl → 0 asl → ∞. Let ul(x, t) denote the numerical approximation computed with
a consistent and conservative method on thelth grid. Suppose thatul converges to a functionu as
l → ∞ in the 1-norm. Thenu(x, t) is a weak solution of the conservation law.

The two requirements for the application of the theorem are:(1) The problem must be written in
flux-conservative form; (2) the time-stepping method has tobe total-variation-diminishing (TVD),
i.e spurious oscillations have to be damped.

The finite volume method, as well as the spectral method can bewritten in flux-conservative
form [78, 97]. The TVD-property can be guaranteed by the choice of the time-stepping method
used to solve the set of ordinary differential equations, for instance the Euler method and certain
Runge-Kutta methods [78, 134].

The Lax-Wendroff theorem thereby gives a justification of the use of discretised, finite-dimensional
approximations to infinite-dimensional systems in variousapplications, for instance controller de-
sign.
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Appendix E

Root-locus method for feedback
controller design

The root-locus method, devised by W.R. Evans [39], is a descriptive and efficient graphical tool
for the design of feedback controllers for linear time-invariant single-input single-output systems.

The basis for this method is the standard feedback control loop in the Laplace domain [83] with
d = 0, depicted in Fig. E.1. Here, the open-loop transfer function is given byGo(s) = P(s)C(s),
whereP(s) is the transfer function of the process to be controlled, and C(s) is the transfer function
of the controller to be designed. The transfer function of the closed-loop system (from referencer
to controlled variabley) is given by

Gry(s) =
Go(s)

1+Go(s)
=

P(s)C(s)
1+ P(s)C(s)

. (E.1)

The stability and the dynamics of the closed-loop system aredetermined by the complexroots si
of the characteristic polynomial

1+ P(si)C(si) = 0 . (E.2)

The position of thesi will move in the complex plane with variation of the controller parameters.
In order to limit the number of parameters for the design process, often a controller with a fixed
structureC̃(s) is chosen such thatC(s) = kC̃(s). Here,k is an adjustable parameter, e.g.k ∈ [0,∞).
The characteristic equation can then be written as

1+ kP(si)C̃(si) = 1+ kG̃o(si) = 0 . (E.3)

The trace of the roots of the characteristic equation in the complex plane (i.e. the geometric
position) under variation of the parameterk is called theroot-locus; one example is shown in
Fig. E.2.

Controller Process−r e u

d

y

Figure E.1: Standard feedback control loop used in the derivation of the root-locus method.
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Figure E.2: Root-locus plot for an unstable, non-minimum phase open-loop system. Poles are
denoted by×, zeroes by◦. The black lines are the root-loci obtained by variation of the parameter
k from zero to infinity.

Often, the open-loop transfer functionGo can be written as:

Go(s) = kG̃o(s) = k

q
∏

i=1
(s− ni)

n
∏

i=1
(s− pi)

, (E.4)

where theni andpi are the zeroes and the poles of the open-loop transfer function, respectively.

Rearranging the characteristic equation then yields

k
q

∏

i=1

(s− ni) +
n

∏

i=1

(s− pi) = 0 . (E.5)

By inspection, one obtains that fork = 0 the root-locus starts at the poles of the open-loop transfer
function. Fork → ∞ q branches of the root-locus end in the zeroes of the open-looptransfer
function, andn− q branches tend to infinity.

The rest of the root-locus can be constructed from the knowledge of theni and pi by a set of
graphical rules (or by using available software tools, e.g.Matlab). From the root-locus plot the
controller gaink for a desired dynamic behaviour of the closed-loop system can be determined.

The root-locus method is most valuable if the poles and zeroes of the open-loop transfer function
are known. It also allows the design of non-standard controllers by introducing additional poles
and zeroes to shape the root-locus. The newly introduced poles and zeroes are then part of the
designed controller.
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Appendix F

Feedback control of bed mass in
fluidised bed spray granulation

In this appendix a practical feedback controller for a continuous fluidised bed spray granulation
process is designed and experimentally validated.

If a suspension or solution with a mass flow rateṀsusand a solid mass fractionxs is continuously
sprayed into the process chamber and no solid is removed, then the bed mass at timet is given by

mbed(t) = m(t = 0)+

t
∫

0

Ṁsus(τ)xs(τ) dτ , (F.1)

which is monotonically increasing over time.

From practical aspects, e.g. hydro- and thermodynamics, a constant bed mass, or the tracking of
the bed mass to a given reference is preferred. To that purpose an outlet tube is installed into the
bottom of the process chamber.

In order to achieve the desired bed mass, a feedback controller can be applied. The current bed
mass in the process can be determined from pressure drop measurements:

∆p =
mbedg

A
, (F.2)

whereg is the gravitational constant, andA the cross-sectional area of the process chamber.

As manipulated variablethe flow rate of gas that can be supplied into the process chamber via
the outlet tube is used. This gas flow has a classifying effect: If the gas velocity is higher than
the sinking velocity of a particle entering the outlet tube,then the particle is transported back into
the process chamber. If the sinking velocity, which dependson the particle size, is higher then
the particle leaves the process chamber. A variation of the gas flow rate thus leads to a control of
the particle outlet. By coupling of the gas flow rate with the bed mass measurements a feedback
control system can be realised.

For the realisation of constant bed mass in continuous fluidised bed spray granulation process
with external sieving and milling, a practical (linear) feedback controller had to be designed and
implemented.

To that aim, at first the dynamic influence of the gas flow rate onthe bed mass was experimentally
identified. On the basis of this identified model a feedback controller was designed and tested in
simulations as well as experiments.
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Figure F.1: Measured step response and approximation as a first-order time-lag system.

For the identification of a linear transfer function model describing the dynamic influence of the
flow rate on the bed mass, a step-response experiment was performed: Particles with a certain bed
mass were fluidised. The gas flow rate in the outlet tube was held constant until a constant bed
mass was measured. Then the gas flow rate was decreased to a different value in one step. The
development of the bed mass was registered until a new constant value was attained.

To the measured curve, depicted in Fig. F.1, a curve representing the step response of a first-order
time-lag process (PT1) was fitted, and the corresponding coefficients of the transfer function

P(s) =
Kp

T1s+ 1
(F.3)

were determined:Kp = 0.075 kg min l−1 andT1 = 7.15 min. Afterwards, the process was aug-
mented by a measurement filter to limit the influence of measurement noise. The filter is also a
first-order time-lag system withK f = 1 andT f = 1/6 min. The feedback loop is closed with
the filtered measurement signal, i.e. the complete process model then consists of a series of two
first-order time-lag systems.

The controller was designed using the root-locus method (see Appendix E). The controller type
was chosen to be proportional-integral, i.e.

C(s) = K

(

TNs+ 1
TNs

)

. (F.4)

This introduces two parameters into the design process. TheparameterTN can be removed by
choosing it such that it compensates the dominating pole of the plant, or by positioning it left of
the dominating pole. The former choice leads to a strongly damped and slow closed-loop system,
the latter to a damped, oscillatory system. By a suitable choice of K the speed can be influenced,
but care has to be taken with respect to overshooting. One possible choice isK = 80 l kg−1 min−1

andTN = 8 min.

As simulations performed were successful, the feedback controller was implemented in a fluidised
bed spray granulation pilot plant. The controller was implemented in Matlab/Simulink and a
communication link was established via an OPC-interface. This allowed the reading of measured
values from the plant and the writing of set points for the gasflow rates to the mass flow controllers.
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Figure F.2: Experimental results for the feedback control of bed mass in a continuous fluidised bed
spray granulation process. Beside the measured bed mass andthe reference value, the±5%-band
is also depicted.

Here, an important limitation of the controller came into action: Although it is able to remove mass
from the process chamber, it is not able to insert mass directly. That means, if the controller acts
too aggressively and the reference value is under-run, there is no other way than to increase the gas
flow rate until the reference value is reached again by the spraying of suspension. As this is a rather
slow process, the overall performance would be poor. For this reason the parameterTN = 133 min
is chosen much higher thanT1, yielding a non-aggressive control behaviour. Additionally, the
high value ofTN also improves the controller reaction to measurement noiseby smoothing.

The controller was then tested in a long-time experiment on acontinuous fluidised bed spray gran-
ulation process with external sieving, milling and particle recycle. In addition to the measurement
equipment, an in-line probe for the measurement of particlemoisture was installed. This probe
empties its measurement volume by blowing out the particlesby a flow of pressurised air, i.e. an
additional variation in the bed mass measurement is introduced.

The result of the feedback control of bed mass using this setup is shown in Fig. F.2. Although
only a coarse approximation to the dynamic behaviour was used in the controller design, a rather
simple controller structure is used, and the measured variable is subject to severe measurement
noise, the bed mass can be kept in a±5%-band around the reference value for almost all times.
The designed feedback control system can therefore be considered successful.
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