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Abstract

Particulate products play an important role in many indeistand applications, for instance phar-
maceuticals, fertilisers, or foods. Compared to the ofiguid state of the raw materials, they are
easier to transport, store and post-process. Furtherrti@dransformation from liquid to solid
allows for particle formulation, i.e. the production of peles with defined characteristics.

In general, the particles are not uniform, i.e. they possegsstribution in their properties, for

instance size, shape, moisture content, or compositions diktribution also characterises the
quality of the product. Increasing customer requiremems gse to the need to realise pre-
defined, or required, property distributions of the pagtid the process.

Widely used processes for the production of dustless,ffoséng powders from liquid raw mate-
rials are crystallisation and spray granulation in fluidibeds.

In fluidised bed spray granulation, which can be run batctewas well as in continuous mode, a
solution, suspension or melt is sprayed onto a particle bedhwis fluidised by heated air. Due

to evaporation of the liquid in the spray, a particle growéim de observed as the solid in the
spray solidifies on the particle surface. The combinationealt and mass transfer with particulate
processes renders fluidised bed spray granulation a compl#iphase process. The realisation
of a desired property distribution therefore necessittitesise of process control.

In this thesis a model-based scheme for the feedback cafitpalrticle size distributions as well
as the particle temperature and moisture content in fluddisel spray granulation is devised. The
focus lies on the control of the particle properties in batphay granulation and in continuous
spray granulation with external classification by sieved anills. Depending on the configura-
tion of the external classification, i.e. the parametrisatf the sieves and the mill, aftérent
dynamic behaviour is obtained: Whereas for some configurata stable steady-state is attained,
the steady-state is unstable for others. To achieve a statlywith constant product mass flow
for these cases, the unstable steady-states have to Hiessthby feedback control.

As a basis, mathematical process models for particle foomatnd heat and mass transfer in
fluidised bed spray granulation are derived. In order to aector the distributed character of the
particle properties the population balance approach lisedi yielding non-linear partial-integro

differential equations for the temporal evolution of the platsize distribution. The models allows
to analyse the dynamic behaviour of the process and builddreof the model-based feedback
control scheme.

The implementation of feedback control requires infororatbn the state of the process, for in-
stance the particle size distribution. As this knowledgaas always available through direct

measurements, model-based measurement systems, also &aatate observers or estimators,
are designed to reconstruct the particle size distributiom other measurements utilising the
mathematical process models. It is demonstrated that #eedistribution can be successfully

reconstructed, for instance from measurements of the mediclp diameter.



Control of the particle size distribution in the batch and tilontinuous process is achieved by
use of model predictive control: Based on the future evotutif the process calculated by the
mathematical models, an optimal input trajectory is caltad yielding a required size distribution
at the end of the batch and a stabilisation of unstable stetdgs in the continuous process with
external classification. Additionally, the particle maoist content and temperature is controlled
by a multiple-input multiple-output controller.

The approach is tested in a first step using ideal measurspient it is assumed that all infor-
mation required can be measured directly. In a second siemskumption is dropped and the
designed model-based measurement systems and the eosteskt combined into a model-based
control scheme for feedback control of the particle pragsert It is demonstrated that also this
set-up is able to achieve the required control tasks.

Thus by using mathematical process models, the design ofdelrdbased measurement scheme
and model-based controllers allows to produce particléb piie-defined characteristics in flu-
idised bed spray granulation.



Zusammenfassung

Partikulare Produkte sind von groRer Bedeutung in vielglustriezweigen und Anwendungsbe-
reichen, z.B. der pharmazeutischen Industrie, der Lansletiaft und der Lebensmittelproduktion.
Im Vergleich zu ihren oftmals fliissigen Ausgang&&o weisen sie wesentliche Vorteile im Trans-
port, der Lagerung und Weiterverarbeitung auf. Zusatzkéhnen bei der Umwandlung vom

flissigen in den festen Aggregatszustand den Partikelimragt Eigenschaften aufgepragt wer-
den.

Im Allgemeinen sind die entstehenden Partikel jedoch nipbichartig, d.h. sie weisen Unter-
schiede in ihren Eigenschaften, z.B. der Grol3e, der Form,Faeichtegehaltes oder der Zu-
sammensetzung, auf. Diese Eigenschaftsverteilung déké&tapiegelt sich auch in der Produkt-
qualitat wider, daher fiihren die stetig steigenden Kundfmeerung zu der Aufgabe partikulare
Produkte mit vordefinierten Eigenschaftsverteilungerzingellen.

Fur die Herstellung staubfreier, frei flieRender Pulverdearoftmals Kristallistionsprozesse oder
die Sprihgranulation in Wirbelschichten eingesetzt.

Bei der Spruhgranulation, die sowohl im Batch-Betrieb alshain kontinuierlicher Fahrweise
betrieben werden kann, wird eine Ldsung, Suspension oden8eze auf eine Partikelschittung
eingedust, die durch einen beheizten Gasstrom fluidised. vidurch Verdampfung der Flissig-
keit kommt es zur Festdfabscheidung auf der Partikeloberflache und eine GroRRendrgleer
Partikel kann beobachtet werden. Die Kombination austStmd Warmelbergang und parti-
kularen Prozessen gestaltet die Sprithgranulation zu ekoemplexen Mehrphasenprozess. Fir
das Erreichen von gewlinschten Produkteigenschaftenhist dar Einsatz von Prozessregelungen
notwendig.

In dieser Arbeit wird ein modellbasiertes Konzept fur diggBeng von PartikelgréRenverteilun-
gen, die Partikelfeuchte und -temperatur in der Wirbetsuisptuhgranulation entwickelt. Der
Fokus liegt dabei auf der Batch-Spriihgranulation sowiekatinuierlichen Spriihgranulation
mit externer Produktklassifikation und PartikelrickfiUtguiiber einen Sieb-Mahl-Kreislauf. In
Abhangigkeit der Konfiguration der Siebe und der Mihle lgigtunterschiedliches dynamisches
Verhalten des kontinuierlichen Prozesses vor: Wahrendifige Konfigurationen ein stabiler sta-
tionarer Zustand erreicht wird, ist der stationdre Zusté@inéndere Konfigurationen instabil. Um
auch in diesen Fallen einen stationdren Zustand mit kotestdProduktmassenstrom zu erhalten,
ist eine Stabilisierung durch den Einsatz von Prozesasageh erforderlich.

Als Grundlage fungieren mathematische ProzessmodeltidiPartikelprozesse und den Warme-
und Stdfibergang. Um dem verteilten Charakter der PartikelgrofshReng zu tragen, wird ein
populationsdynamischer Ansatz zur Beschreibung dericteth Entwicklung der Partikelgréfze
verfolgt. Dieser fihrt insgesamt auf partielle Integfetientialgleichungen zur Beschreibung
des zeitlichen Verhaltens der PartikelgréRe, -feuchte-terdperatur. Die abgeleiteten Prozess-
modelle bilden den Kern des modellbasierten Regelungasgst

Da die Implementierung von Prozessregelungen mitunterimdtionen benétigt, die nicht di-



rekt oder nur sehr aufwendig gemessen werden kdnnen, wiedieBPartikelgroRenverteilung,
werden in dieser Arbeit modellbasierte Messsysteme, aakhrimt als Zustandsbeobachter oder
Zustandsschatzer, entworfen, die es erlauben, die Gréfieitung aus leichter zuganglichen
Informationen dynamisch zu berechnen. Dies wird unter mmdedurch die Rekonstruktion
der GrolRenverteilung aus der Messung des mittleren Pladildhmessers und der Nutzung der
Prozessmodelle demonstriert.

Zur Regelung der PartikelgroRenverteilung wird der Ansatdellpradiktiver Regelungen ver-
folgt: Basierend auf einer mit Hilfe des mathematischerz@semodells berechneten zukiinftigen
Entwicklung des Spriihgranulationsprozesses wird durehLdsung eines dynamischen Opti-
mierungsproblems der optimale StellgréRenverlauf eefhitier die gewtinschte GrolRenverteilung
am Ende des Batches bzw. die Stabilisierung eines insteAileeitspunktes im kontinuierlichen
Prozess mit Sieb-Mahlkreislauf erméglicht. Fir die Regglder Partikelfeuchte und -temperatur
werden MehrgroRenregler eingesetzt, die die interne oplkmg der RegelgroRen berlicksichti-
gen.

Zunachst wird unter der Annahme idealer Messungen, ddazath Einsatz der Regler bendtigten
Grol3en kdnnen direkt gemessen werden, gezeigt, dass dieréarien Regler in der Lage sind,
die gestellten Ziele zu erreichen. Die Annahme wird danterfiagelassen und durch Kombi-
nation der modellbasierten Messsysteme mit den entwarf&sglern wird ein modellbasiertes
Regelungssystem ersdten, das in der Lage ist, die gestellten Regelungsziele auten Worlage
nicht-idealer Messinformationen, z.B. des mittleren iRaldurchmessers an Stelle der Groflzen-
verteilung, zu erreichen.

Durch die Nutzung der mathematischen Prozessmodelle umdEaewurf von modellbasierten
Messsystemen und Regelungen wird damit ein modellbasiB#gelungssystem entworfen, dass
die Realisierung von wichtigen gewlinschten Partikeleigkaften in der Wirbelschichtsprihgra-
nulation ermdglicht.
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List of symbols

This thesis draws from a variety of fields of mathematics amgireering. In order to retain
as much standard notation from each field as possible, thbdgnused in the main text, and
the appendices, are defined chapter-wise. When a symboldisfireed in one chapter, it takes
precedence over the definitions in previous chapters. liguitly may arise in the use of a symbol
its meaning is re-stated at the point of use.

Chapter 2

Symbol  Description Unit

Cp specific heat capacity JkpK !

e property coordinate various

h height m

m mass kg

n number density function depending eandx

o normalised number density function “tn
net production density depending eandx
radius m
solid, steady-state
time S
velocity ms?
spatial coordinate m
surface area m?
number flow rate of particles -5
particle growth velocity ms
total enthalpy J
enthalpy flow rate Jd
outlet kinetics st
mass flow rate kgs?

total number of particles

TU number of transfer units
total net production of particles 5
heat flow Jst

surface of property space
separation function
volume m3
Y moisture content (kg liquid) (kg dry matter)*
outward normal vector
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Symbol  Description Unit

@ heat transfer cdgcient wnr2K1
B mass transfer cdicient ms?
n mass transferféciency
% temperature °C
A parameter
u total moment of density function depending @and x
v normalised drying velocity
& particle size m
0 mass density kgm
¢ transport flux depending ore andx
W mean porosity
Aheyap specific evaporation enthalpy JRg
D total flow of particles 3
Q property space
Chapter 3
Symbol Description Unit

error
state correction gain
probability distribution
chord length m
input to system, manipulated variable
bias (noise)
weights
state of dynamic system
estimate ofx
measured variable
measurement calculated fram ~
B,C,D matrices of linear state space system
integral error
observer gain matrix
number of measured outputs
number of states
observability matrix
QR covariance matrix
Cholesky factor
horizon length S
number of inputs
Lyapunov function candidate
set of sigma points
set of transformed sigma points
finite-dimensional approximation of derivative operator

R<EXX<KCHNWITOZZAMPR<¥xs<cwuo =0

a desigrituning parameter

n,w bias (noise)

A eigenvalue of a matrix

At sampling interval s




Chapter 4

Symbol  Description
d disturbance signal
r reference signal
u manipulated variable
y output signal (measured, controlled)
C,P transfer function, matrix
G transfer function matrix
J cost functional
K controller gain
N number of horizons
QR weight matrix
T time constant, sampling time
C controller (abstract)
P process (abstract)
% coupling factor
A deviation, increment
= decoupling network
Appendices
Symbol  Description Unit
a spectral weights
Ar Archimedes number
Gr Grashof number
Le Lewis number
Nu Nusselt number
Pr Prandtl number
Ra Raleigh number
Re Reynolds humber
Sc Schmidt number
Sh Sherwood number
) diffusion codicient nts?t
n dynamic viscosity kgmts?
9 temperature °C
A thermal conductivity wmtK?
v kinematic viscosity rhst
W spectral nodes

Xi



Subscripts

Symbol  Description

0 smallest size considered, initial value
des desired

elu elutriation

evap evaporation

g gas

ap gas — particle

gw gas —wall

mf minimal fluidisation

nf noise-free

nuc nuclei

opt optimum

pw particle — wall

rec recycle

S solid

sample  sampling

sat saturation

sus suspension, solution

% vapour

CLD chord-length distribution
E internal property space
M mill

X external property space

Xii



Chapter 1

Introduction

1.1 Motivation and scope of the thesis

Major portions of all industrially processed goods existhia form of particulate substances. If
one generalises the term “particle” from the classical sarigyrains to, for instance, solutions,
suspensions (solid material in liquid), aerosols (liquidptets in gas), or gas bubbles in a liquid,
then up to three quarters of all processed goods fall intodiiegory [99].

There are many examples of particulate products in everifiaymilk powder, milled and roasted
coffee, instant cacao powder, and sugar, to name just a few.igwllity, particulate products play
an important role in other fields: health-care (e.g. in fofmam active pharmaceutical ingredient
pressed into a tablet), in agriculture in the form of fesslis, or in the chemical industry as catalyst
powders.

Particulate goods in the form of powders produced from tqaiw materials do have many ad-
vantages; they are for instance often easier to transporg, and post-process than in their liquid
form. One illustrative example is milk: In its liquid form isas to be kept cool at all times to
keep it from spoiling. However, if it is spray-dried, i.eettvater is removed from the emulsion by
drying, it can be stored at room temperature for a long tinte ligquid form can easily be restored
at all times by just adding water to the powder.

The product properties can often be characterised by thiglpgoroperties, or rather the particle
properties fect the properties of the product. Important particle prige are for instance

¢ the particle size and form,
¢ the porosity of the particle,
e the moisture content, and

¢ the enthalpy (temperature).

The particle size and form determine for instanceftbe-ability of a powder: If the particles in

the powder are too small, then cohesive forces between ttielpa prevent a free flow. This can
be observed by comparison of sugar powder and crystal sédtnough both products consist
of the same material, sugar powder flows less freely becdube emaller size of the particles.
The size also has great influence safety and environmental issudéa particulate commodity

is produced from toxic material and dust is produced andreet the danger of inhaling the toxic
substance exists, which may lead to long-term health datjcad On the environmental side, the



release of a herbicide dust may lead to the decease of eddantcts if they consume the very
fine particles. Additionally, very fine powders pose the daraf explosion, if they are dispersed
in a gaseous medium.

Apart from these aspects, the particle size can have anm#uen thesfficiencyof a product, e.qg.
in pharmaceuticals: Here, the aim may be the production alblet with a pre-defined dissolution
characteristic of the active ingredient. This charactieris influenced by the thickness of a coating
layer that is applied to the active ingredient to shielddnfirthe acids, mostly hydrochloric acid,
in the stomach. Theficiency of the active ingredient strongly depends on theityuafl the layer:

If it is too thin, the ingredient becomes active before itoless its desired destination (often the
intestine) — if it is too thick, it may not dissolve at all.

The porosity of the particle also has influence on the progumperties: If the particle is very
porous then it may have a decreastorage stabilityi.e. the particle may crumble under appli-
cation of forces, for example the weight of other particl&his may lead to a layer of dust-like
particles at the bottom of a storage container. It can al8oeince the fficiency of product: As
was mentioned above, in pharmaceuticals the aim is to peodyroduct with a pre-defined dis-
solution characteristic. If the particle is too porous théve ingredient may be released too fast,
leading in a worst case to an overdose, if it is too compactdhease may be too slow, and the
ingredient may have only a very limitedfect.

Moisture content and temperature have an influence on thepioat and the storage of the product.
If the commodity is too moist it may form very large partictesit cannot be used any further. One
example is the production of sugar: If the sugar is put intdcavgith too high a moisture content
and temperature, it will form — by cooling — a particle withetkize of the silo (in the worst
case). To prevent such events a post-processing of the cditynijmoften necessary, i.e. drying
and cooling. These are two energy-extensive processesgvatt influence on the cost of the
production, i.e. the particle properties can have an inflaem theeconomic®f the product.

Additionally, the porosity of the formed particle is influmad by the humidity and the temperature
during the process. This can be seen in Eig. 1.1 where peatigith a diferent final porosity are
produced. Depending on the product specifications, thetoreisf the particles and the gas, and
the temperature have to be regulated for the product to gotaphe desired specifications.

For the production of particulate substances from liquadtstg material (solutions, emulsions,
Or suspensions) various processes exist: e.g. crystalhisgranulation, and spray drying. These
can be further specialised depending on the charactesiBtict that is used for the transformation,
for example cooling crystallisation or spray granulation.

Crystallisation and granulation are complex dynamic psses, involving multiple phases (fluid
and solid), heat and mass transfer between these phaseal| as particle formation processes.

One process that is often used in industries, e.g. in phautiaals, foods, and fertilisers, is
fluidised bed spray granulationt allows for the production of a dustless, free-flowingtjues
from liquid raw materials: The suspension (or solution)psaged onto particles in the process
chamber and due to drying — the bed is fluidised by hot air —itjuéd evaporates. The remaining
solid builds up a new layer of solid material on the particlés simplified schematics of this
process is shown in Fig.1.2.

Furthermore, fluidised bed spray granulation can be runtichbas well as continuous mode, and
drying and particle formation processes can be coupled @mdimultaneously in one apparatus.
The structure of the apparatuses is simple, and due to tlehggt and mass transfer between
the phases induced by the fluidisation, compact plants — apgdpto other technologies — can be
designed. A detailed presentation of fluidised bed sprayulation is postponed for the moment,



Figure 1.1: Influence of the humidity and the process tentpexaon the final structure of the

produced particleﬂi&S]. From left to right: Increase in ldity; from top to bottom: increase in
process temperature.
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Figure 1.2: Simplified schematic of a fluidised bed spray gjiation process. Instead of a suspen-
sion, solutions or melts are also sprayed in many applicstio



but will be given in Chapter]2.

In the practical realisation of particle formation proa@sghe following problem arises: The par-
ticles are not uniform, i.e. theyfiier in their properties, for instance in size, form, or coldthis
means that the particles in the powder do possess a digtribwith respect to their properties,
and therefore the product also possesses a property digiribGiven a product specification then
requires that the distribution lies within the limits pod®dthe specifications to be accepted by a
customer.

The product specifications can be very strict, for instamcprocesses with costly raw materials
or where the product is a hazardous good, and are furtherasitrg. The need to guarantee that
the product complies to the specification motivates the figgozess controbystems in particle
processes. Today, practically implemented control systawstly concentrate on the regulation of
heat and mass transfer (e.g. product moisture and tempeyaand integral values (e.g. total mass
of product) or mean values (e.g. mean particle size) of thicfes. Although the control schemes
are for most part dficient for their tasks, they cannot guarantee that the ptpjgéstribution as

a whole complies to the specifications. This means that it lig the increasing strictness of
product specifications the control schemes have to be iredrov

The basis for almost all control scheme design methods mddrby mathematical models that
represent the dynamic behaviour of the processes — in tbis ahheat and mass transfer and
particle formation.

The problem with these processes is that theydistibuted parameter systemand have to be
modelled mathematically by non-linear partiaffdrential equations to account for the distributed
character. The mathematical analysis of this class of sysie in general intricate and the design
of a control scheme for a property distribution is therefarehallenging task. The necessity for
a controller to have information on the current state of thecgss, e.g. the current property
distribution, leads to another challenging task: the me=mmsant of property distributions.

In this thesismodel-based control schemés the control of particle size distributions in two
practically relevant fluidised bed spray granulation psses — batch granulation and continuous
granulation with external classification and particle mey- are devised. The thesis focuses in a
first part on the reconstruction of particle size distribng from process measurementsngdel-
based measurement systetimsa second part the feedback control of particle sizeibigions,
coupled with heat and mass transfer,rbgdel-based controlleris considered.

1.2 Previous works

The topics of this thesis draw from several fields of mathé&sand engineering. More precisely:

¢ Modelling of property-distributed systems
e Modelling of heat and mass transfer in fluidised beds
e Measurement of property distributions

e System theory and control of property-distributed systems

Modelling of property-distributed systenis: principle the modelling of property-distributed sys-
tems, i.e. the description of the dynamic behaviour of ttaperty distribution of particles, can
be carried out on two levels: microscopic and macroscopitti@ microscopic level all particle
formation processes (e.g. interactions of the particldél wther particles, or spray droplets) are



modelled and evaluated for every single particle in theesystFor reviews on the state-of-the-art
in microscopic modelling of particle formation processs=® for instance the articles of lveson et
al. [62] and Deen et al. [28].

In the microscopic modelling community, often discretengdat methods (DEM) and Monte-
Carlo methods are used for the description of the dynamiawietir of the particulate systems, see
for instancel[30, 112, 6, 106] for application of discreteneént methods, and for the application
of Monte-Carlo methods [132, 76,186, 153} 98,1135, 29].

Because of the explicit consideration of every single plrtin the system, this approach has the
potential to produce very accurate results. However, ferdbscription of real-world problems,
where the number of particles in the system can be extreraelye | the actual computation of
the properties for each particle is not feasible. The prattise of microscopic modelling can be
found in the determination of the structure of kinetics atioée formation processes. Here, using
statistical theory, only a small number of particles — coregao an industrial process — has to be
considered.

Macroscopic modelling, on the other side, does not treatyguarticle separately: Particles with
the same properties, for instance size, are collected ipepty classes. In the limit, i.e. in-
finitesimal classes, a property distribution is obtainelde Todelling then describes the temporal
evolution of a given property distribution under the ocmgrparticle formation processes.

One well-established framework for the macroscopic mouglbf property-distributed systems
that is well-suited for the modelling of industrial-scalegesses, is thpopulation balance ap-
proach introduced for problems in statistical mechanics by Hrtllamd Katz in the 1960s [60].
To the field of particulate processes it was transported éybrk of Randolph and Larson [115]
(with a focus on crystallisation); it was advertised andiblshed in a series of journal publica-
tions by D. Ramkrishna and co-workers. These publicatioasevater turned into a book that is
considered a standard reference [114].

In the literature, many successful applications of popattabalance modelling to particulate pro-
cesses can be found, for instance in

crystallisation|[7/7, 63, 8%, 57],

granulation|[144, 52, 100, 142,/79],

drying [140/108, 107], or

aerosol processes [9,67] .

As the focus of this work lies on the application to indudtsieale plants, the macroscopic mod-
elling approach based on population balances will be usel@soribe the dynamic behaviour of
the particle property distributions.

Modelling of heat and mass transfer in fluidised bedsat and mass transfer are classical topics in
thermal process engineering, and thus extensively irgagsil. In fluidised bed processes, the heat
and mass transfer is governed by the hydro- and thermodgsamhifluidised beds. They form a
complex topic: The basis of the hydrodynamics is set by thadt&stokes equation (conservation
of linear momentum of the fluid and the particles), the bagihermodynamics is conservation
of total energy in the system. Due to the complexity of theggadons, most approaches do
not use them directly, but derive empirical or semi-emgliricodels for the description of the
hydro- and thermodynamics, see for instance the referecksvof Kunii and Levenspiel [75]
and Morl et al.|[100] for an extensive treatment of the hygramics, and for example the works



of Schltiinder and Tsotsas [127], Groenewold and Tsotsas Ba0fschweiger and Tsotsas [14]
for a presentation of the thermodynamics, or the recentblighied book serieModern Drying
Technologyf138] for a general treatment of heat and mass transfer ticpkate systems.

Measurement of property distributioni general, the task of measuring property distributions is
multifaceted, and many fierent measurement principles exist. A recent overview aadtigal
applications in various fields are given in the book of Merjaf.

For the case of measuring the particle size distributionsctiidfline methods, e.g. sieving, and
in-line methods, for example lasertaction or focused beam reflectance, or fibre-optical meth-
ods [66/ 124, 40] are available. Although these methodsrhedocreasingly popular, they er
from one important disadvantage: The probes do not meabkarsize distribution directly, but,
for example, a chord-length distribution. This proves taab@ajor obstacle in the direct use of
the measurements in process monitoring and control apiplisaand makes the development of
a transformation from the chord-length to the particle sigribution necessary. It turns out to
be a dificult problem to which up until now only solutions for spectases have been found,
see for instance [150, 66, 124, 40] for approaches, resuit$ imitations (e.g. the influence of
measurement noise).

A model-based approach, that has been in use in other fielctsenfiical engineering for several
decades, has in recent years emerged in particle size reezet: model-based measurement
systems, also known as state observers or state estimatwsdea was conceived in the 1960s—
1970s by Kalman [68] and Luenbergerl[82] and extended indhewing decades. Application to
various spatially distributed systems in chemical engingecan be found, see for instance [151,
69,116, 90, 58, 152, 88] for applications in reaction engimgeand fuel cells.

For particulate processes the methods are not yet estthliflut are gaining interest with the
increase in property-distributed modelling, as evideniogdome recent work in crystallisation
and fluidised bed spray granulation|[91) 89,/13, 87].

As model-based measurement schemes ff@n many advantages over classical and in-line mea-
surement systems, that will be detailed in Chalpter 3, thesfatthis thesis will lie on this type of
measurement systems.

Systems theory and control of property-distributed systdtroperty-distributed systems are sys-
tems with distributed parameters and are from an systeawdtic point of view infinite-dimen-
sional. The mathematical theory is in general very compl&kis is the main obstacle in the
analysis and development of general control design mettoodtistributed parameter systems.

Over the decades variouff@ts have been taken to establish a systems theory for eilniten-
sional systems. So far, only the linear case is at a level aoahpe to finite-dimensional systems,
major contributions are [147, 45,142, 27, 103, &, 26]. Howeseen in the linear case the theory
is mathematically highly involved, drawing from operatbeory, and functional analysis.

In the case of nonlinear distributed system the treatmemsisicted in most cases to practically
important process structures, see for instance [23, 12&211 Nonetheless, control schemes are
successfully designed for distributed parameter systéongpplications to spatially-distributed
systems see for instance [69, 21,122,/118, 3,88, 2].

There are also contributions in the field of property-disttéd processes available, for instance

e Kalani and Christofides [67]: nonlinear controller desigipléed to an aerosol process on
the basis of a reduced model,

e Chiu and Christofides [20]: nonlinear controller appliechtorystallisation process on the
basis of a reduced model.



e Pottmann et al/ [110] design a model-predictive contrdiera drum granulation system;

¢ \olimer and Raisch [141] design a stabilising controller do unstable crystallisation pro-
cess usind..-theory;

e Shi et al.[130] design a model-predictive controller foread crystallisation process;

e Duefias Diez et all_[36] control inventories of a propergtibuted process by passivity-
based control.

¢ Villegas et al.|[140] present a distributed control schema batch fluidised bed dryer; and

e Glaser et al.l[46] present the design of a model-predictorgroller for continuous drum
granulation.

Recently, Palis and Kienle [104, 105] presented resultstaiilsation of unstable steady-states
in continuous fluidised bed spray granulation udihg-theory and discrepancy-based control, as-
suming that the size distribution of particles can be meabuApart from this publication, the
control of particle property distributions in fluidised bggray granulation, especially in combina-
tion with model-based measurement systems, has not reamiveh attention.

Because of the high practical importance of these procesisiesthesis aims at closing the gap
by developing a model-based feedback control system fatdomental product properties, for

example the particle size distribution, the particle moistcontent, and the particle temperature,
in fluidised bed spray granulation in batch, as well as cowtiis processes. In addition to the
task of designing suitable feedback controllers, a mainddies on the reconstruction of particle

property distributions from available plant measurements

The basic components for all tasks which will form a contiygdtem are mathematical process
models that describe the dynamic behaviour of the sprayutaion process.

1.3 Outline of the thesis

This thesis consists of four chapters covering the mathieatahodelling of fluidised bed spray
granulation processes, the model-based measurementtiofegpsize distributions, and the design
of feedback controllers to achieve desired product pragertn detail:

In Chaptef2 the dynamic process models are derived: Siastith fluidised bed processes and
their characteristics in general, spray granulation pses are presented. The modelling starts
with the consideration of the particles in the process;ratpss assumptions used in the remainder
of the text are motivated and stated. To describe the dynawdilution of the particle property,
i.e. the particle size, a population balance approach [ksldfed. Afterwards, a mathematical
analysis of the process dynamics for the batch and the emmtsprocess with particle recycle is
presented. The chapter ends with the modelling of heat asd tremsfer during spray granulation.

In Chaptef_B various concepts for model-based measurensienss are presented and applied
to the fluidised bed spray granulation processes with theadireconstructing the particle size
distribution from limited or noised process measuremebBiisterent concepts are evaluated and
compared with each other.

Model-based feedback controllers for the particle siz&itigions in the granulation processes
are designed in Chapter 4. Additionally, feedback cordrslffor the heat and mass transfer are
designed. The feedback controllers and the model-basedumaent systems are then linked to



form the final model-based control scheme. The feedbackal®rs and the model-based control
scheme are evaluated and the results are discussed.

In Chaptei’b, the main results of the thesis are summarisgédarmutlook to future research is
given.

In the appendices methods and concepts from mathematitspkengineering, and hydro- and
thermodynamics that are needed for certain sub-steps emmatsed.



Chapter 2

Mathematical modelling of fluidised bed
spray granulation processes

As was motivated in the introduction, the aim of this thesithie control of product properties in
fluidised bed spray granulation processes. The basis fdratlen design is a dynamic process
model. In principle, the more accurate the process degmmighe more can be said about the
process result. But an overabundance of details may alstichlly complicate the controller
design process, so at some point assumptions are made,iliHatex on simplify the controller
design without sacrificing too much in the accuracy of thecpss result.

In this chapter, at first a general overview on the princigled applications of fluidised bed pro-
cesses is given. Afterwards a phenomenological desamnigtigpray granulation is presented. In
section three the concepts of population balance moddliagntroduced. In the subsequent sec-
tions these concepts are applied to a batch spray granukatith a continuous granulation process
to describe the temporal evolution of the particle propdiggribution. After a discussion of the
general dynamic behaviour of these processes, a dynamielrfadxdthe heat and mass transfer
during spray granulation is derived.

2.1 Fluidised bed processes

An apparatus consisting of a process chamber with a digbritplate at its bottom, that can be
passed by a flow of fluid (gas or liquid), is considered. On tbfhe distributor plate gpacked
bed i.e. particles at rest (alsfixed bed, with mean porosityy is situated, Fid. 2]1(a).

Now a fluid flow is applied to the apparatus via the distribygtate. If a certain mass flow rate
(corresponding to a fluid velocity) is reached, a loosenifilp® bed is observed, and the particles
hover and move randomly in the bed. This state is cdllédised bedFig.[2.1(b)); the minimum
velocity necessary to reach it is called minimum fluidisatieelocity. An expansion of the bed
height, compared to the initial fixed bed, and a change ingityrean also be observed. Further
increasing the fluid flow yields a further expansion of the bed an intensive mixing of the
particles in the bed, see Fig. 2.1(c). Macroscopicallypduticles behave like a fluid in this state.
If the fluid flow is further increased, at some point the pé&ticare transported out with the fluid
flow. This state is called pneumatic transportetutriation of particles the corresponding fluid
velocity is called elutriation velocity (Fi¢.2.1(d)).

The range of existence for a fluidised bed is defined by the imi Velocities: It starts at the
minimum fluidisation velocity and ends at the elutriatiohoaity [100].
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Figure 2.1: Dfferent stages of a fluidised bed: (a) fixed bed; (b)—(c) fluidisa (d) pneumatic
transport (elutriation) [75].

Geldart [44] identified for two parameters, the mass dersiy the diameter of the particles in
the bed, four groups (depicted in Hig.12.2) witlffdrent fluidisation behaviour:

e Group C Particles with a size less then g fall into this group. They are veryfiiicult to
fluidise because of the strong cohesive forces between tlielgs.

e Group A Particles in a range of 50 — 2@ and a mass density in a range of 700 —
1400 kgnT3. These are not so fiiicult to fluidise but a strong expansion of the bed (even at
minimum fluidsation velocity) is experienced. Additionalhardly controllable gas bubbles
build up in the bed.

e Group B These particles with a range of 40 — »@® and a density in between 1400 —
4000 kg are preferred for fluidised bed applications. Although hes® gas bubbles
build up, the amount depends only on the fluid velocity andezsily be controlled.

e Group D Particles with a very large size or with a very high mass tgffell into this class.
They are dificult to fluidise by the setup described above (owning to ibdMimation), but
can be fluidised quite well in a modified apparatus, the sjpbloéel.

There are several types of fluidised bed systems, e.g.

e gas-solid fluidised beds, and

e liquid-solid fluidised beds.

In order to use fluidised beds of particles offdient sizes, the process chamber is widened at the
top. This yields a reduction of fluid velocity and allows peds up to a certain size to sink back
into the process chamber, thus reducing the amount of aledkimaterial. This extension of the
process equipment is of great importance if a bed with a véilg wange of sizes is to be fluidised,
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Figure 2.2: Classification of particles into four groups eleging on their fluidisation behaviour
after Geldart|[44].

because as the minimum fluidisation velocity and the ehitriavelocity depend on the particle
size it might happen that for some particle sizes the etidriavelocity has already been reached,
whereas for others the minimum velocity has barely beerheshc

Fluidised bed processes are widely applied ifiedent areas of chemical and process engineering,
for instance:

e mixing of particulate materials,
¢ classifying and sorting of particles, or
e drying.

An important application of fluidised bed processes is tlwlpetion of granules. It is promoted
by the heat and mass transfer in the bed due to the mixing éadbyg the fluid flow. One way
to realise the production of granules is by spray granuiatichich will be presented in the next
section.

2.2 Fluidised bed spray granulation

In fluidised bed spray granulation solid material, for ins&in form of a suspension or a solution,
is sprayed onto the patrticles that are fluidised by a gas flontHat purpose a nozzle is installed in
the process chamber. Most common configurations are: Ifdbel@is installed above the particle
bed (at rest), it is called top-spray configuration. If thezie is situated at the bottom of the
process chamber, i.e. the particles are sprayed from bitlisxgalled bottom spray configuration.

In both cases suspension (solution) droplets leave thdsard are deposited on the particles.
Due to the external heating of the fluidisation gas flow theitign the suspension evaporates, the
solid remains on the particle, see Hig.12.3 where for twietknt process times particles taken
from a spray granulation process are shown. Due to the imtensixing of particles in the bed,
the deposition of solid on a droplet can be considered umifdPhenomenologically, a layering
growth of the particles and an increase in size is observbid. miechanism is depicted in Fig. 2.4.
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Figure 2.3: Evolution of a particle during spray granulatiga) initial particle; (b) final particle;
(c) formed layer.
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Figure 2.4: Schematic representation of layering growthasficles by spray granulation.

If the solid contained in the spray is identical to the mailest the particles in the bed, the process
is calledspray granulation It is used for instance in food industries and in the proiducof fer-
tilisers (urea melt granulation). If the materialstdr, the process is callembating It finds wide
application in pharmaceuticals, for instance in the cgatifithe active pharmaceutical ingredient
with a protective layer, or in the production of tablets wst#hveral layers of dierent active ingre-
dients. The mechanism in both cases, however is the samespsion or solution is sprayed
onto some carrier particle, the liquid is evaporated andmalager is formed.

Other dfects that can occur during spray granulation are

e Pre-drying of dropletsWhen a droplet leaves the nozzle it comes almost instaotestyein
contact with the heated fluidisation gas and evaporatiohefitjuid starts. If the distance
to the bed is very large or drying is very fast, i.e. the gas flowery hot and dry, the liquid
will evaporate before the droplet can deposit on a partitiié bed. The droplet will then
form a very small solid particle (a nucleus) on its own. THiget is callechucleation

o If two particles with not completely dried surfaces collitethe bed, and the viscosity of
the suspension on the surface ishgiently high, a solid bridge between the particles will
form. In the simplest case two particles will afterwardsnicst new, larger particle. This
effect is calledagglomeration A criterion on the occurrence in fluidised bed processes has
been given by Ennis et aﬂ37].

e An effect opposite to agglomeration occurs if an agglomeratédesliwith another particle
or the walls of the process chamber. If the kinetic energyootact cannot be absorbed by
the solid bridges the agglomerate will break. Tlikeet is therefore callebreakage The
criteria when a bridge (or even a particle) will break aré Btvestigated in solid process
engineering.

In the following spray granulation, i.e. the layering of fiees, will be considered in a two-phase
setting: The solid particles are dispersed in the gas pHasaldition to the layering of particles
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heat and mass transfer over the phase boundaries occurgddnto simplify the subsequent
modelling, the liquid is not considered as an individualgghbut as a part of either the solid phase
(in the form of liquid) or the gas phase (in the form of vapour)

In general the particles in the bed are not uniform; they m&gdin their properties, e.g. size,
enthalpy, moisture, porosity or form. Also the spatial fosi of each particle in the process
chamber will be dierent. If all particles are considered as individuals of digda population,
and to each particle values for its properties are assigmsdare chosen such that the product
can be characterised easily, then the population possedsstgbution with respect to the chosen
properties.

The modelling of the change of this property-distributiand thus the modelling of the process,
can be done by using thgopulation balance frameworkThe fundamentals will be presented
in the next section before it is applied to two configuratiofidluidised bed spray granulation
processes.

2.3 Fundamentals of population balance modelling

In the following a balance volume, for example, the procdsmber of a fluidised bed process,
with a particle population with a total number Mfparticles is considered. The change in number

in the system can be modelled as

dN

= = O(t) + P(t) (2.1)
where®(t) denotes the net flow of particles over the system boundad/fP&) is the net produc-
tion rate of particles in the system, i.e. summing all subcpsses that create new particles and all

sub-processes that consume patrticles.

This formulation, however, gives no information on the pdiges of the particles in the system.
To this end the notion of aumber density functiors introduced: It describes the number of
individuals (particles) that lie in the same infinitesimabjperty interval €& + dé]. The total
number of all particles in the system can then be expressdatebpumber density function as
follows:

N(t) = f n(t, & dé. (2.2)
Q

HereQ is the property-space of the particles, i.e. all possibleegg can attain are included Q.
By convention, the number density is non-negative,n.e.0.

Population balance modelling is the description of the teralpevolution of the number density
function (or other functions derived from it, e.g. mass dgrfanction). For this, all sub-processes
have to be modelled in terms of the number density functidns Toncept was first introduced by
Hulbert and Katz/[60], and extended by Ramkrishnal[114] enfibld of particulate processes.

The state of a particle is characterised by its propertieggeheral, two types of coordinates are
distinguished: external coordinates (the spatial positiothe system, maximum of three), and
internal coordinates (particle properties, e.g. the sibe)}otal, these properties span a property
state-space: Usually, during the process the propertiagafticle will change; this corresponds
to a movement in state-space. The modelling then desctilgesurve the particles trace out over
process time. This idea is depicted in Hig.]12.5 for one eslecoordinatex and one internal
coordinatee.

If the property state-space is written as the Cartesianyatoof the state-space of external prop-
ertiesQy and the state-space of internal properfirs i.e. Q = Qx x Qg, the total number can be
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Figure 2.5: Movement of a particle in property state-space.

expressed as:

N(t) = ffn(t, X,€)dedx, XxeQyx, e€ Q. (2.3)
Qx Q
The unit of the number density function is defined by the uriithe properties:
1
n=—. 24
= el 110w 24

In the special case of no external coordinates, i.e. xire{ 0, corresponding to a well-mixed
system, the following holds:

N(t) = an(t, e) de, (2.5)
Qe
with V = vol(Qx) being the physical volume of the system.
In order to derive a balance, equation Eq.](2.3) is insentmlkq. [2.1), yielding:

O(ITT _ % f f n(t. x, &) dedx = d(t) + P(t) (2.6)

Qx Qe

If transport and production densities are introduced inraiagous way, i.e.

o) = - (p(t, X, €), 1)y doe doy, (2.7
Pt) = p(t, x, €) dedx, (2.8)
Il

then the balance equation can be written as

%ffn(t, x,e)dedx:—ff(go(t, x,e),n)do-edo-x+ffp(t, X, €) dedx. (2.9)

Qx Qp SX SE Qx Qe

In the definition of the transport density (transport fluxjt is accounted for thab only enters or
leaves via the system boundary. Therefore the flux is definedsarface integral over the system
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boundary of the property state space. In order to accountfonifluxes that leave or enter the
system in direction of the outward normal to the boundarhe standard Euclidean scalar product
of the flux with this normal is taken. The minus sign is introdd to comply to the convention that
outward-bound fluxes enter the balance equation with a ivegsign, and inward-bound fluxes
enter the equation with a positive sign.

In order to further manipulate the balance equation, théaserintegral is transformed into a
volume integral by Gauss’ theorem [54], yielding:

%ffn(t, x,e)dedx:—ffdiv@(t, x,e))dedx+ffp(t, X, €) dedx. (2.10)

Qx Qp Qx Qp Qx Qg
This equation is called thiategral formulationof the population balance equation.

If the volumes volQ2x) and volQg) are constant over time, féérentiation and integration can be
interchanged on the left-hand side of the equation:

f f (% + div(e(t, X, €) + p(t, X, e)) dedx = 0. (2.11)

Qx Qe

Observing that the integrals range over the same domairthanefore the integrand must vanish
in the interior of the domain, yields theftirential orocal formulationof the population balance
equation:

% + div(e(t, x, €) + p(t, . €) = 0. (2.12)

In case that the volumes v6lf) or vol(Qg) are not constant over time, the local formulation
can be derived by an application of Leibniz’ rule![54] to tinéeigral formulation. The result is a
correction term that accounts for the change in number tedse to the change in volume.

The result of this section is a formal balance law for the terapchange of the number density
functionn. Open are the expressions for the transport fiuand the production ratp. They
depend on the process to be modelled and therefore no gexeralssion can be given. Further
required are initial and boundary conditions, dependinthermodelled process.

Before this concept is applied to two spray granulation @sses in the next sections, an additional
notion is introduced: thenoment of a distributionin general, it is diicult to interpret the number
density function. However, there exist integral values déasity function (a distribution) that are
easier to interpret. These quantities are called momerttsedistribution. Limiting the scope to
a density function with only one property, tiigh moment is defined by:

y,-(t):fei n(t,e)de, j>0. (2.13)
Qe

For certainj a physical interpretation is possible, for instarjce 0 gives the total number of
particles, i.e.ug(t) = N(t). For higher moments the meaning e@has to be taken into account.
If, for example,e is the particle size, them; is equal to the total length of particles (laid out and
measured in a row); is proportional to the surface area of all particles in thpypation, and.s is
proportional to the total volume of particles. The propmrtility factors depend on the geometric
shape of the particles.

On the basis of the population balance equation dynamictieqgafor the moments can be de-

rived:

du;j i on

L R ) .

pm e 50 de (2.14)
Qe
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Figure 2.6: Simplified schematics of a batch fluidised bedysgranulation process.

- f el (~div(e) + p) de. (2.15)

Qe

If the integral on the right-hand side can be evaluated favengnumberj in such a way that it
depends only on a finite number of lower-order moménts j, then a closed moment system
of the population balance equation can be derived which prdvide valuable insight into the
behaviour of the process.

2.4 Modelling of batch spray granulation

In the following a fluidised bed apparatus as depicted in [Ei§.is considered: A suspension
or solution is sprayed into the process chamber on a fluidiseticle bed by a nozzle. The
fluidisation gas is heated, so that the liquid in the suspeneivaporates. The remaining solid
builds up new layers on the particles.

Batch processes are widely applied in industries, for msan pharmaceuticals for the coating of
tablets, or in the production of fertilisers from bio-slesg[100]. From a practical point of view
the property distribution of the formed granules at the eftti@ batch is of interest.

Particle properties of interest can be the particle sizep#rticle moisture, and the particle temper-
ature. As was highlighted in the introduction these thremerties can have significant influence
on the product characteristics.

In the following population balance modelling of batch spgaanulation is performed, i.e. a
balance equation for the number density function of theigastin the process is derived.

Themain assumptiongased in the remainder of this thesis are:

e The number density function does not depend on the spatiigroin the processi.e.
there do not exist spatial gradients, that is the system lismiged. Furthermorethe pro-
cess chamber is modelled as a single-compartment velsislmeans that all particles can
receive new solid material, regardless of their positiaida the bed. This neglects the typ-
ical division of the process chamber into multiple compamits, for instance a zone where
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particles receive new spray and a zone where only dryingrec¢Lhe particle movement
between the compartments is rather complex and still umgtestigation|[79, 56].

e The process parameters are chosen suchatfigtlayering growth occurs in the process
i.e. no agglomeration or breakage of particles. Nucleatwmvever, can occur and will be
handled separately. A criterion on how to choose the prgoassmeters to obtain layering
growth was devised by Ennis et al. [37].

¢ Only spherical particles are considerdck. it is assumed that the initial particles are spheres
and remain spherical at all times. This assumption is jestifiy many experimental results,
see for instance the catalogue in Morl et al. [100]. Basedhis assumptionpnly the
characteristic size of a particle — the diametet is consideredo describe the size of the
particles.

e The formed layer of new material on the particle surface suased to be compadExper-
imental results show that the formed layer is porous, howeke to the lack of a verified
functional relationship between the process conditiorss tae resulting porosity, the as-
sumption of compact layers is made. In practical applicattbis means that the particle
size in the process, where the porous layer is formed, israstimated by the particle size
in the model.

e It is further assumed that there i® distribution of particles with respect to temperature
fs and moisture content X.e. all particles have the same mean temperature and mean
moisture. This assumption can be motivated by the intensiving of particles and the
high heat and mass transfer in the bed.

Using these assumptions, the particles can be describdukimuinber density functiom(t, £) and
the mean temperatu@ and the mean moistur¥. In the following the dynamic equation for
the number density function is derived; the derivation & thean temperature and the moisture
content is postponed to sectionl2.8.

During spray granulation, and the formation of new layersalfd material on the surface of
the patrticles, a growth in particle sizecan be observed. The growth veloc®/can be defined
formally by
aé
G=—= 2.16
= (2.16)
i.e. the change of particle size with time.

In order to derive an expression for the transport fluthe following reasoning can be used:
Consider a particle at timewith size&. Due to layering growth, it will have at timig > t a size
& > &. This can be interpreted as a convective transport of thejgafrom the infinitesimal class
£ to the infinitesimal class;. The distancé; — & depends on the velocifg and the time interval
t1 — t. The transport flux is therefore expressed as

¢ =Gn. (2.17)

Depending on the structure & different éfects on a number density function can be observed.
For instance, ifs ~ £ larger particles will grow faster than smaller ones. Thill yield a broad-
ening of the initial size distribution over process time.eTleverse is true iG ~ ¢71; here, the
distribution will become narrower, in the limit - o a mono-modal number density function
will be obtained. IfG ~ 1 then no patrticle size is preferred, i.e. all particles gvaith the same
velocity. The shape of the number density function is thes@rved; it will only be shifted to
larger sizes over time.
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For the growth of spherical particles in fluidised bed spranglation processes, Morl et al. [100]
derived a surface-proportional growth velocity that hasrbealidated by many experimental re-
sults. A generalisation of their idea is the following: Hisids sprayed with a mass flow raMs
on a bed of spherical particles, then the solid is distrithyteportionally to some momept of
the size distribution in the bed.

The change in mass of a single partiolg can then be expressed as
dmp . f(&)
—% = Mgolig =—2= . (2.18)
dt Soll CJ IJJ

Here, Msoiq is the mass flow of dry solid, that is sprayed into the systeenthe liquid medium is
not consideredC; is a constant factor such th@ju; can be interpreted physically. The function
f (&) relates the integral quantity expressed by the momentitaéegarticle of size, for example
the surface area of a particle.

Then the following can be derived:

nd¢® o f©
Os 5 &t solid _Cj u’ (2.19)
20 BMsoiid
¥ < 0anCi 1 f(€), (2.20)
¢ 2Msoia (&) . .
& " ez (2.21)

In case ofj = 2, i.e. a distribution of solid proportional to the surfageaof the particles, the
constanC, = r and the functionf (¢) = 7&?, yielding the growth law

_ % 2Msoiig
dt  osmue

G, , [Go] =mst. (2.22)

as derived by Morl et all [100].

The growth velocity is not size-dependent, i.e. all pagtdh the bed grow with the same velocity.
It is however time-dependent as the total surface aggaf the particles will change over time.

This derivation yields the following population balanceuation for the number density function:

on 0

— + = =0. 2.2

5t G2 =0 (2.23)
In order to solve this equation, initial and boundary capdi have to be formulated. At the
beginning of the proceds= 0 the particles in the bed possess the number density fune{g),

therefore the initial condition i:(0, &) = np(&).
A condition has to be posed at the left boundary of the sizedioate, here the flux of particles
entering the size range can be specified:

(Gan)(t. é0) = Bo(t), [Bo] =s™*. (2.24)

Bo denotes the number flow of particles having the smallest&iz&€his boundary condition can
be used to model the external input of nuclei into the syst&semi-batch configuration) or the
internal production of nuclei by spray drying, see for inst&Vreman et all [142].

From a mathematical point of view, this population balanc&et is a first-order non-linear partial
differential equation. It is not linear due to the non-linearat@lence of the growth veloci
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on u» which depends linearly on the number density functiorAn explicit analytical solution
of this equation is rather flicult, but qualitative results can be obtained as will be shiater in
Sectior 2.V.

This population balance model is a basic model for the detsoni of batch spray granulation.
As was mentioned before, extensions of the model can be madersideration of dferent
compartments in the process chamber, for instance a spreeyazad a drying zone. Only in the
spraying zone the particles receive new solid materiahémbuch larger drying zone the particles
are only mixed and dried. Based on the characteristic resgléme in the zones a transport of
particles from one zone into the other occurs [79, 56].

Although compartment models are not easy to parametrigecidly the residence times and
the sizes of the compartments, they allow for a modellingispersion &ects (a widening) in
the number density function by relatively simple growth $aor instance surface-proportional
growth. An alternative growth model that can be used to desaertain &ects, e.g. dispersion,
can be derived as a convex combination of the growth aydefined above:

Gzz/lej, Z/ljzj.. (2.25)
i i

The constraint on thg; is necessary in order to have mass conservation in the moleldeter-
mination of the maximum index and the; has to be done experimentally, a direct relation to
process parameters is still an open problem [56].

2.5 Modelling of continuous spray granulation with particle recycle

In comparison to a batch configuration, a continuous sprapdation dfers many advantages:

In batch processes between two batches the plant has to bdati, cleaned, and refilled with

starting material. This leads to a discontinuous produgt.flim a continuous spray granulation
a continuous production is possible by adding new initiatipies or recycling portions of the

product flow. The continuous process attains a steady;gtate guaranteeing a steady flow of
product with steady properties. This is especially adwgetas if large quantities of the product
have to be produced. Additionally, energy and maintenansts@re known to be smaller than for
comparable batch apparatuses.

In the following a continuous spray granulation processegsated in Figl 2.l7 is considered. The
core of this configuration is a process chamber with a nozla the batch process. The process
chamber is augmented by an outlet tube that is installedeircémtre of the gas distributor plate.
During granulation particles will leave the chamber by tiise. This mass flow is then screened
twice: The over-sized particles from the first screen are wea mill where they are milled and
then re-fed into the process chamber. The under-sizedclegrire screened once more. Here, the
over-sized particles are accepted as product, whereastfezgized particles are also re-fed into
the process chamber for further growth.

For population balance modelling of the number density fioncof particles in the bed, the same
assumptions as in the batch configuration are used. Thisstieanthe population balance equa-
tion for the batch process can be used as a basis for the gonsirprocess — it only has to be
augmented by terms accounting for the particle outlet aaddkcycle of particles.

For that purpose the screens and the mill have to be modefigebfulation balances. Here the
following simplifying assumptions are used:

e No hold-up of particles in the screens and the mill, i.e. theyk quasi-stationary. This
assumption is justified as long as the residence times dtfearin the screens and the mill
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Figure 2.7: Schematics of a continuous spray granulationgss with external classification and
particle recycle.

are significantly smaller than the residence time of thegestin the process chamber. This
implies that the screens and the mill have to be designedthatkhey can handle the mass
flows of particles swiftly.

¢ No breakage of particles due to the stress of the screening.

e Constant screening and milling characteristics, i.e. rmmgh in the characteristic behaviour
of the screens and the mill due to ageing or heavy use.

e Mass conservation during milling of particles.

Then the mass flows of particles, expressed as number déingitg, can be written as

T(©)n, (2.26)
(1-T()) n, (2.27)

I.’IOS(t’ é‘:)
huS(t’ ‘f)

where the subscripts denotes the over-sized portion of the particle flovand the subscripts
denotes the under-sized portion.

The functionT (¢) is called theseparation functiorof the screen and determines up to which size
particles are classified as under-sized or over-sizedectisply. In the ideal case all particles
below the characteristic size of the screen are classifieth@ar-sized, all other sizes are charac-
terised as over-sized. The separation function is in thée ckescribed by a Heaviside function.
In reality, however, also some particles with a size lowantthe characteristic size are classified
as over-sized and — vice versa — some particles with a sigerléinan the characteristic size are
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Figure 2.8: Ideal (solid line) and real case (dashed lineg séparation function of a screen. In
the figure the characteristic value of the screen is denotegdp Although the value is the same
in both cases the screening results wittei.

classified as under-sized. The amount of particles thategrarated erroneously is determined by
the shape of the separation function. This situation isaegiin Fig[2.8, and leads to an error in
the screening result.

The modelling of the mill is more éicult: In general, the particles having passed the mill pgsse
a size distribution depending on the characteristics oftiltle

Dt = Bmitl (t) do,min (€) - (2.28)

In this equationBy,; denotes the number flow rate of particles after milling, gqglii is a nor-
malised size distribution of the milled particles. The namfiow rate of milled particles can be
related to the mass flow rate of particles that are put intarthie

6 Mmin (1)

. (2.29)
os7 [ €3 aomin(€) dé
o

Bmin(t) =

The practical determination @ mii proves to be diicult and depends on many material prop-
erties as well as parameters of the mill (e.g. milling velgciso that even for one mill éierent
distributions are obtained forfiierent materials.

If it is assumed that all particles are milled down to one gigethendomin = 6(§ — ém), @ Dirac
function, andBmii = Mmii /Mg, wherem,_, is the mass of one milled particle.

The number density flux of particles re-fed into the procéssber consists of the under-sized
particles of the second screen and the milled particles, i.e

Mrecycte = (1 = T2(€))Nus1 + Nmin = (1 = T1(€))(X = T2(£)) Nout + Nimitr - (2.30)

The population balance equation can then be written as

on 0 : .
ot + 8_§(Gzn) = —Nout + Nrecycle; (2.31)

with an initial conditionn(0, &) = ng(£€), and a boundary conditioten)(t, &) = Bo(t).
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A still open problem is the determination of the outlet fluy; that leaves the process chamber
by the outlet tube. If it is assumed that no particle size égred, then the particle outlet can be
expressed proportional to the number of particles thatgsssa certain size:

Pout = K N, (2.32)

whereK determines the amount of outlet flux. From practical consitilens, e.g. product mass
flow, hydro- and thermodynamic behaviour, it is desired teehe constant massyeqret Of parti-
cles in the process chamber. One way to achieve this is givireiarticle of Heinrich et al. [52]:

(2.33)

K=1- min(l, m"edref) .

Moed

This outlet kinetics represents a non-linear, switchirggifiack controller, that allows for an almost
exact control of bed mass for— co.

A different way to control the bed mass can be derived from the miomedel of the process:
The third moment is proportional to the bed mass (via the total volume of plas). A constant
mass requires the time derivativegf to vanish. From this constraint the following ideal, quasi-
static controller can be derived:

G

éo

on, —(Gzn)] o

ot f§3 [_hout+ I.’]recycle] d¢ (2.34)

f £ [four + (L To(E)(L— Tolé))our + ] d .(2.35)
éo

Using the assumption that the total mass flow of particlesrang the mill is conserved, this
equation can be further simplified:

[&|G+mem|e = [ 1 a-T-Ta) + T@) hacs @36
éo éo
- f 2 [T - To@)] Knde. (2.37)
éo
The left-hand side evaluates to
ff —+—(G2 )]df—%—Bo§8—3f§ZGznd§, (2.38)

éo

making use of partial integration, the posed boundary d¢mmdand the assumption that for— oo
the number density function tendsfisciently fast to zero.

Posing the conditiongg/dt = 0, the open-loop controller for the particle outlet can baoted

Bofg + 3f§262nd§
K = — il . (2.39)

[ & [T2(6)(L - Ta(9))] nde¢
éo
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which is for By = 0 the result reported by Radichkov et al. [113]. Althoughs thuasi-static
controller guarantees a constant bed mass for all timespiore complex than the one proposed
by Heinrich et al.|[52]: It requires the knowledge of the gitgtributionnin order to calculate the
value ofK. Furthermore, it is only an open-loop controller due to thissing comparison of the
actual bed mass and the reference value.

As the process is a continuous one it does possess a stasglyTitis is calculated in the following
section.

2.6 Derivation of the steady-state distribution in continwous spray
granulation

In this section thesteady-state nhumber density functigrderived before in the next one the dy-
namics of the two process configurations are analysed.

The population balance equation for the number densitytioma(t, £) can be written more ex-
plicitly as:
on 0

3t * 760G = [(L-TUONL - Tole) ~ 1 Kn+ ple.n), (2.40)

with the separation functions of the two scre@agndT,, respectively. The number flow of milled
particles is written ap(&, n), e.9. p = Bmin(t) do,min(¢). The boundary condition is formulated as
(Gan)(t, o) = Bo(t).

At steady-state the variabl€, K, By and By, attain constant valuesss, Ks, Bg s and By s.
Furthermore, the steady-state number density functioenstd byns. Observing that at steady-
stateon/ot = 0, the population balance equation at steady-state canitieas

Gs g = (1= Ta(@)(A - Ta(e) - 1] Ksns + pu(e.ny). 2.41)
To simplify the notation in the following calculations th@llbwing abbreviation is introduced:
[ =[Q-TuENA - T2) - 1] - (2.42)
This yields
Gs % =T'(¢) Ksns + ps(é,Ns) . (2.43)

From a mathematical point of view, this is an inhomogeneagstdrder linear ordinary dierential
equation with a variable céigcientI'(£). This type of equation can be solved by a combination of
separation of variables and variation of constants [61].

The homogeneous solutior, i.e. the solution to the equation fag = O can be obtained by

separation of variables:
¢

Ks
G—Sff(y) dy] (2.44)
éo

The constant of integration can be calculated from the bagndondition, i.eC = Bgs/Gs. The
homogeneous solution then reads

Nsh(é) = Cexp

Gs

&

B S S B S

) = exp[5 [ro dy] - 2 o). (2.45)
o
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where the functior has been introduced to simplify the notation in the follogvsieps.

Following the theory of linear ordinary filerential equations the general solution to the inhomo-
geneous problem can be found by adding one particular solati the inhomogeneous problem
ns; to the solution of the homogeneous one, Ngé) = nsn(€) + Nsi(£). To that purposeariation

of constantss used: Using the ansatg;(¢) = C(¢) exp(F(£)) and inserting into the steady-state
population balance equation yields:

%expﬂf))+c<§)%[exp(F(f»] - r(g)g—zc:(f) expE () + Gi ps).  (2.46)
dC 1
TOPEE) = 5 P, (2.47)

The last equation is obtained by application of thiedentiation rules for parameter integrals to
the functionF (¢). The unknown functiol©(¢) can then be calculated:

3
c) = f exp(—F(z))Gis pe(?) dz. (2.48)
éo

Here the constant of integration is omitted because onlysohgion is needed. The inhomoge-
neous solution then reads:

£
Nsi(€) = expF(£)) l f eXIO(—F(Z))GiS Ps(2) dZ‘ : (2.49)
o

The steady-state number density function for continuoudified bed spray drying with external
classification and particle re-cycle farbitrary separation and milling function, T2, anddo mil
can then be written as

3
ne(e) = Eéi exp(F (&) + expF(©)) f exp(—F(z))Gis b dz} . (2.50)
éo
with .
Ks
Fo) =& f o) dy, T(e) = [(L = Ta(e))( = Ta(e)) 1] . (2.51)

éo

Given the separation functiof§ and T, and the milling functiorgo mii the qualitative shape of
the steady-state number density function can be determiredthe general case, this has to be
done numerically due to the evaluation of the integrals,fouideal functions the shape of the
steady-state number density function can be constructiéel easily.

For the case of ideal separation functions (Wittandé, denoting the separation diameters), i.e.
0 &<é1, 0 <&
T = , T = , 2.52
16 {1 cep o T {1 e (252)

in connection with the ideal milling functiogomin = 6(¢ — ém), the shape of the steady-state
distribution can be further specified.

An evaluation of the integral defined in functiéi{¢) yields

0, é‘: < §2a

Fe) = { —SE-&). £26

(2.53)
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Figure 2.9: Qualitative shape of the steady-state humbmesitgedistribution in continuous flu-
idised bed spray granulation with external classificatiod particle re-cycle for the case of ideal
screening and milling.

furthermore, using the ideal milling function

3
& <éwm,

1 0,
fexp(—F(z))G—S Ps(2) dz = { eXpEFE)PEWE, 26w (2.54)
o

The steady-state number density function can then be wiidea piece-wise function:

Bo,s/Gs, &<ém,
Ns(é) = § Bo,s/Gs + eXp(=F(ém)) Ps(Xm)/Gs, Em<é<é, . (2.55)
Bo,s/GsexpF (£)) + expF(£)) expF(ém)) Ps(Em)/Cs, &= &2

The rangef < &y is completely defined by the boundary flow of nuclei; the méddingety <

& < & is defined by the superposition of the nuclei flow and the fluxnilfed particles. In
the ranget > &, the steady-state number density function is determinedhé@ystiperposition of
two decaying exponential functions, becalidg) < 0,V¢ > £. An example of a steady-state
distribution for the ideal case is shown in Hig.|2.9.

For real, smooth, separation and milling functions a smagtlat the boundaries of the three
ranges will occur. The widths of the ranges are determinedhbychoice of¢y, ém, andé.
Additionally, the following tendencies can be identifieds) (An increase By s will increase
the magnitude of the number density function; (b) an inaén$ss will yield a decrease in the
magnitude; and (c) an increaseKg will yield a faster decay of the number density function in
the third range{ > &»).

In order to determine the quantitative shape of the stetatg-slistribution the values dgs,
Bmil.s, Gs andKs have to be calculated. The only additional information lan#é are the process
parameters, e.g. the mass flow rate of external nuclei, andeference value for the bed mass
Moedref-

The value ofBg s can be calculated directly from the steady-state mass flm/\orfmucleiMnucs:

M
Bos= ——=. (2.56)
ﬂ'ngo

The calculation ofGs, Ks and By s cannot be carried out in that way due to the occurrence of
these values in the steady-state distribution. They caralogilated as the solution of a nonlinear
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system of equations given by:

0 = Ko [1-min(1 T o= Fos [Enae @5
éo
2|\./lsoi s r
0 =G —[ﬁ] pos= [ Ensere. (2.58)
° S éo
[E3T1(é) Ksns(é) dé
0 = Bmins-— o - (2.59)

[ €3 domin (&) dé
éo

This non-linear root-finding problem can be solved iteetivfor instance by a Newton-Raphson
algorithm. The number of iterations necessary and the cgawee of the algorithm to a solution
depends on the initial guesses @y, Ks and By .

In principle, the steady-state number density distrilbutian be obtained in the way shown in this
section, and will prove a valuable tool in the forthcominggters.

In the next section it will be investigated what kind of dyrnarbehaviour can be expected in
batch spray granulation and continuous spray granulatidmexternal classification and particle
recycle.

2.7 Mathematical analysis of particle dynamics

In this section basic results for the process dynamics ofvtbefluidised batch processes consid-
ered in this thesis are summarised. After a discussion @hbgtray granulation the analysis is
devoted to the continuous case.

2.7.1 Batch spray granulation

From a mathematical point of view the population balanceatiqn for the number density func-
tion in a batch spray granulation process

on 0

—+—(G2n)=0 2.60

5t * 92 G (2.60)
is a non-linear (quasi-linear) partial integrdfdrential equation, due to the occurrence of the
sought functionn in the growth rateG, defined in Eq.[(2.22). An initial condition is given by

n(0, &) = ng(£), and a boundary condition can be formulated@aj(t, &) = Bo(t).

A qualitative discussion of the process dynamics can baraaieby an application of thenethod
of characteristics The fundamentals are presented in Appeidix C; a straagiataird application
to the initial value problem yields the characteristic eyst

dt

% = & t(0,s) = 0, (2.61)
L - c09-=s (2.62)
% = 1, n(0,9) =ny(s). (2.63)
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Figure 2.10: Characteristic curves in the-(£)-plane obtained by the method of characteristics.

The growth velocity is a strictly monotonically decreasfgction Ga(uz) ~ /151 and will there-
fore in the case oMgys# 0 attain a limit fort — oo: tIim Go(uz(t)) = 0.

The slope of the characteristic curves in the £)-plane is given by

d_ 1

& Gy’
i.e. the slope will tend to infinity. The characteristic cesvfor the batch process are depicted in
Fig.[Z.10.

As the local slope is identical for all characteristic curgéarting from the initial condition, which
follows from the fact that all sizes are transported with dane velocityG,, no intersection
of characteristic curves can occur. This means that no sfusokation in the solution is to be
expected. The characteristic curves originating from thenldary condition can be obtained by
re-parametrising the solution domain. They also have aestépt/dé = 1/G,. This means the
characteristic curves are parallel to each other at eadit potime and an intersection, i.e. the
formation of a shock is in general not possible. Care has talen at the pointtg, £y): Here two
characteristics originate, and the values of the initial #re boundary condition at this point have
to be consistent, in order to avoid a shock in the solutionthénbatch case, i.eBy(t) = 0, this
requires lim n(0,¢) = 0.

oo+

(2.64)

Using the definition of a momeni; of a number density function (cf. Eq.(2]13)), two important
results can be derived via the dynamic moment equations:

duo
= - B 2.
2 = B, (2.65)
d
= = BoD& +3Gem (2.66)
6Msoi
:w%+;%. (2.67)
S

From the first equation follows that in caseRy = O the total number of particles in the system is
conserved. From the second equation follows that the thahemt, which is proportional to the
total mass of particles, is decoupled from all other momeérmsthe equation describes solely the
change in mass due to solid spray and nuclei feed. This wik lirmportant ramifications in the
design of model-based measurement systems and feedbaotdleos for this process.
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Table 2.1: Process parameters for the continuous spraylgtemm process

Initial bed mass [kg] Mbed 10.0
Reference bed mass [Kg]  Mpedset 10.0
Mass flow of nuclei [kg3!] My  5.55x10°°
Mass flow of solid [kgs!]  Mggig  1.38x 1072

Solid density [kg m?] 0Os 144Q0
Size of nuclei [m] & 0.1x10°°
Screen size upper screen [m§, 05x 1073
Screen size lower screen [m}4 0.4x10°2
Milling diameter [m] Em 0.35x 1072
Milling diameter (osc.) [m]  &wm 0.2x 102

2.7.2 Continuous spray granulation with particle recycle

The continuous process utilises the same growth model abatoh process, so new dynamic
behaviour can only be introduced by the outlet and the pamcycle. The process configuration
of a continuous spray granulation with external classificeind particle re-cycle was extensively
investigated by Heinrich et al. [62] and Radichkov etlal.JJldoncerning the dynamic behaviour.
As was shown in Radichkov et al. the process exhibiffedint dynamic behaviour depending,
amongst others, on the value of the milling ség: For a certain range a stable steady-state
distribution is attained, but for a large parameter rangestfstem exhibits sustained oscillations
in the number density function.

This qualitative change in behaviour lfidurcation) is exemplified in Figl 2.111 and Fig. 2113 (for
the process conditions given in Tab.J2.1), where by a chamgeeimilling diametek), sustained
oscillations result. Also shown is in Fig. 2]12 and Fig. 2th4t the momentg; (j = 0,1,2,3),
representing total number of particles, total length,Itsteface area, and total mass also exhibit
the non-linear oscillations.

The explanation for the occurrence of sustained oscitlatian be found in the re-cycle of milled
particles: At some times a large number of very small pasielith a large specific surface area is
re-fed into the process chamber. As the growth of partickgsedds on the total surface area, the
growth velocity will decrease dramatically, i.e. at sonmeds almost no growth of particles takes
place. This leads to the situation that the mass flow of oedsparticles from the first screen to
the mill vanishes, i.e. no new particle are re-cycled inphocess. As pointed out in Drechsler
et al. [35], the constant re-cycle of milled particles to fieeeen is a fundamental condition for a
stable process. With the oscillating flow of particles thagdition is not satisfied and an unstable
steady-state behaviour is obtained, that Radichkov et &B][later identified as a limit-cycle.

The destabilising féect of re-cycle loops has been reported in other particggséems as well,
for instance in crystallisation [141].

The oscillations in the number density function for certaiilling size lead to an undesired os-
cillation in the product mass flow. If a process is to be runuwahsa milling size because the
corresponding steady-state number density function igired) in the process specification, then
feedback controllers have to be applied to stabilise the-dpep unstable steady-state.
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Figure 2.11: Exemplary behaviour of the number density fiondor a milling size¢y, that yields
a stable steady-state distribution.
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Figure 2.12: Exemplary behaviour of the first four momentsmmalised with respect to the initial
valueu;(0), in case of a stable steady-state.
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Figure 2.13: Exemplary behaviour of the number density tiondfor a milling diameteiy, that
yields sustained oscillations.
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Figure 2.14: Exemplary behaviour of the first four momentsymalised with respect to the initial
value j(0), in case of a unstable steady-state. Here, also in theemisnoscillations can be
observed.
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2.8 Modelling of heat and mass transfer

So far only the number density function, i.e. the size distion of the particles in the bed has
been considered. As was mentioned in the Introduction, yiagiconditions have great influence
on the product characteristics, for example on the storaipdlity of the produced particles, or the
dissolution characteristic of a pharmaceutical. Addgibn the particle moisture is of importance:
It may determine the structure and taste of product, or teeeptibility of the product to germ

infections which will lead to a spoilage of the product. Thender of spoilage is increased if
the particles are not only moist but also warm, here germ&rae/n to reproduce exponentially,
i.e. the product (e.g. a food material) can only be used foerg 8hort time before it becomes
hazardous.

The particle temperature is of further importance: It deiees the necessary post-processing
of a particulate product, for instance the cooling necgsbafore the product can be packed
and shipped. Heating is a cost-intensive sub-process,estothl production cost will increase
significantly if the particles are heated unnecessarilyweéler, it is necessary as the evaporation
is thermally driven, and not enough heating (i.e. not enoaxgporation of liquid) will lead to
agglutination of the bed, transforming the fluidised bed mfixed bed.

In order to be able to predict and control the temperaturenasidture content of the particles, the
heat and mass transfer during spray granulation have to deltad.

The drying process, which lies at the core of the spray gediaun process, has been theoretically
and experimentally investigated many times, see for imstabl, 1| 14, 145, 108, 140] in varying
detail. One of the most advanced drying models is the one afj€hweiger and Tsotsas [14],
considering the distributions of the particle number, ipertmoisture, and particle enthalpy with
respect to the residence time of the particles in the apmrdturthermore, the distribution of
these distributions with respect to the spatial positiotih@napparatus is considered. Although this
model is known to give excellent results, it is too complexdontroller design in the context of
this thesis.

Therefore, in view of the aim to derive a dynamic model forteolfer design, i.e. to control the
particle moisture and particle temperature, a simplifiediehds derived. Its main assumption is
that there are no moisture or temperature distributionbérapparatus, i.e. all particles have the
samemean moisturandmean temperatureT his assumption can be justified by the strong mixing
in the fluidised bed that will lead to an equalisation of thashwe and temperature distributions.

For the simplified heat and mass transfer model for contrdiésign the following assumptions
are made:

e The system is ideally mixed.
e The formation of bubbles and its influence on the heat and trassfer is neglected.

e The moisture in the system is not considered as a phase. Waysconsidered as part of
the solid phase (in its liquid form), or as part of the gas ph@sits vapour form).

¢ All temperatures are mixing temperatures, i.e. the tentpexaf the combination of solid
and liquid, and gas and vapour, respectively.

From the balances of the mass of dry solid, the mass of liquithe solid, the mass of dry gas, the
mass of vapour in the gas, the enthalpy of the particle (okd and liquid), and the temperature

of the gas (i.e. gas and vapour), dynamic equations for titesbf the heat and mass transfer
model are derived.
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Figure 2.15: Schematics of the heat and mass flows consigetteelheat and mass transfer model.

Starting with the total mass of particles, consisting of the mass of dry solid 4ry and the mass
of moisturemsm, i.e. Ms = Mgqry + Mgm, themoisture contendbf the particles can be defined by
Msm = XMsdry, [X] = KGjiguid kg;},ry, i.e. ms = Mgqry (1 + X). In an analogous way, a moisture
content of gas’ can be introduced, and the mass of gas can be writtem asmg gry (1 + Y).

For all calculations, the reference temperature is sétto= 0°C. The evaporation enthalpy, i.e.
the necessary energy to transform a liquid into into vapoar given pressure without changing
its temperature, is evaluated at this reference. The tathbdpy of the particle and the gas phase
can be written as:

Hstotat = Msdry (Cp,s + Cpy X) s, (2.68)
Hgtotaa = Mgadry ((Cp,g +Cpy Y) Oy + YAhevap) (2.69)

with the temperaturegs anddy ([6] = °C). The total enthalpy of gas consists of the enthalpy of
dry air at temperaturéy and the evaporation enthalpyéés and the enthalpy needed to heat the
vapour up to the temperatufg.

The state variables derived from these equations are: tBe ofalry solidmsgyy, the mass of dry
gasmg qry, the moisture content of solid, the moisture content of g&§ and the two temperatures
6s anddg for the solid and the gas, respectively.

For the balance volume only the fluidised bed is considereel,Fsg[2.1b; external apparatuses
(e.g. screens and mills) are neglected due to the very sbgidemce times of particles and gas
compared to the fluidised bed, i.e. it is assumed that nofiignt drying occurs in these appara-
tuses.

With the nomenclature introduced in Fig. 2.15 the followmgss balances can be derived:

% = %sMsus+ Mrec + Mnuo — Msour. (2.70)
% = Mgin + Mnozzie— Mgour. (2.71)
drgtsm = (1= %) Msus+ XnueMrec + Xrec Mnuc = X Msout — Mevap. (2.72)
% Yin Mgin + YnozzidVnozzle— Y Mg.out + Mevap. (2.73)

In this equatiori\?levap denotes the mass flow of evaporated liquid from the partieulathe gas
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phase. Thesolid mass fraction xdetermines the mass of solid in the total total mass by
of suspension (or solution). In lieu with former derivatiorthe following equality is defined:
Msolid = Xs Msus

The temporal evolution of the mass of dry solid can be detggohidirectly from the population
balance equation via the third moment of the number dengitgtion, i.e.

v/ T
My = 505 [ Endk = Fowia. @74
o

It can be further assumed that the gas mass flow of the nolizlg.ie is significantly smaller
than the inlet mass flow of gas. Therefore, this mass flow i¢entgg. Another assumption is
constant hold-up of gas in the apparatus, I\/%.n = Mg out- The moisture content of particles in
the re-cycle is assumed to be identical to the moisture abofegarticles in the bed, i.6ec = X,
due to the small residence time of the particles in the réedpop.

From the mass balances of the liquid and vapour in the sotidiagas phase, dynamic equations
for the moisture content can be derived by an applicatioh@product rule tongy, = MsgryX and

dms’m dms,dry X dXx

& T Tdt sy (2.75)
dm,g dmg dry dy
& - T o Meew (2.76)
For the enthalpies the following equations are derived:
dH | ) ) . . . . ]
;'Ema = Hsus+ Hrec + Hnuec — Hsout + Qgp — Qenys — Hevap, (2.77)
ng,totaI . . . . . .
—dt = Hg,in + Hnozzle_ Hg,out - Qgp + Qenug + Hevap- (2.78)

Here it is assumed that the temperatures of the solid pestiglll not change due to re-cycle, i.e.
Orec = Os.

By evaluation of the product rule, dynamic equations candsézed for the temperatures of the
solid and the gas:

dH | dm d dx 9
;Ota = ds 2 (Cp.s + CpiX) s + Mg aryCp rrihs Msdry(Cp,s + CpIX) (2.79)
dHgtotat  dMgary

dY 9

dt St dt
The dynamic equations can then be obtained from these sdsylsubstitution of the balance
equations for Hsotai/dt and dHgorar/dt, and re-arranging the resulting equation fég/dit and
ddgy/ct.

In order to be able to solve this system of equations, cdioalsare needed that link the mass and
enthalpy flows to the balanced quantities.

Heat and mass transfer in fluidised beds is an extensivesiigated field, see for instance the
works cited earlier in this section. Due to its complexitgrsming from the coupling of the hydro-
and thermodynamics, no general solution for all processlitons and materials exist. In most
cases empirical or semi-empirical relations are used toriesthe heat and mass transport in
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some region of operation. Affierent approach that is used quite successfully is the niogeif
heat and mass transfer ¢heients and relations for a single sphere and then calcgl#tia flows
for the fluidised bed by scaling with the number of particlethie bed|[50].

Here, mean quantities of the particle size distribution used to determine the transfer ébe
cients, and it is assumed that the liquid droplet spreadenmly on the particle surface, i.e. the
particle surface area is also the heat and mass transfaceuafea.

In the following, the focus lies on the mass and heat flowspnthg@r equations for the heat and
mass transfer cdicients are presented in Appendix A.

The mass flow of evaporated liquid can be calculated?layap =1 (Ysat— Yin) I\'/Ig,in [107]. Here

n is an dficiency of mass transfer. The saturation moisture contggtdetermines how much
moisture can be taken up by the gas phase. It is the thedreteodmum and depends on the
saturation temperature which has to be computed from Mallegrams.

The dficiency is calculated frony = 1 — exp(~vNTU) (assuming a plug-flow of gas), ar =
NTUv/(1+ NTU) (assuming an ideally mixed gas flow). The value of NTUelggs on the mass
transfer co#ficientSgp:

0gBgp Aparticles

NTU = (2.81)

IVlg,in
with Apariicles being the total surface area of all particles in the D& ticies = 2.

During drying two stages can be observed: In the first drytagesthe free liquid on the surface
of the particle is evaporated. In the second drying stagdidhé@l in the interior of the particle
evaporates and the resulting vapour has to be transportee surface. This transport is limited
by material-dependent filision — in general a slow-down in drying in this stage can Isenked.
The change in drying velocity can be modelled by timemalised drying curver and depends
mostly on the particle material. For the first stage of drying constant, and = 1. In this thesis
the first drying stage is considered only.

The evaporation enthalpy is calculated Hfbé(,ap: I\'/Ie\,‘—,\p(cp,\,élS + Ahevap). The energy needed for
the phase transition of the liquid from its liquid to vaposaiate is called the specific evaporation
enthalpy. It can be obtained from tables or empirical reteti

The heat flow between particles and the @88 = agp(0g — 6s)Aparticies is modelled as a convec-
tive heat transport, i.e. radiative heat transfer is negtecA correlation for the calculation afp,

as well as for the heat transfer ¢beients for the heat transfer from particles to the wall of the
apparatusepy, from the gas to the wall of the apparatuag,, and from the wall to the environ-
ment,aye, are given in Appendik/A. These flows are also calculated agemtive heat flows. The
required temperature of the wal}, is obtained from a steady-state energy balance, negletiing
heat transfer by conduction inside the wall:

9 _ agWAweg + apWpres + aWeA\Neenv
w — .

(2.82)

In this equationA,, denotes the surface area of the wall, ag, = 27 rapphpeq the heat trans-
fer surface between the particles in the bed and the wall efafpparatus. The height of the
fluidised bed,hyeq, is calculated from the mass of dry particles and the porasitthe bed:
Noed = Mbed/ (0s (1 — ¥) Aapp); rapp denotes the radius of the process chamber/ypd the corre-
sponding cross-sectional area.

The remaining enthalpies are calculated as follows:

|'.lg,in = I\./lg,in (Cp,g + Cp,inn) Og,in + I\./lg,in Yin Ahevap (2.83)
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Hg’out = I\./Ig’out (Cp’g + Cp’vY) eg + Mg’inYAhevap (2.84)

|'.|sus = I\./lsus(xs Cpst+ (1-xs) Cp,l) Osus (2.85)
Houe = M (Cp.s + Cp1 Xnuc) Onuc (2.86)
|'.|rec = I\./lrec (Cp,s + Cp Xrec) Orec (2.87)
|'.ls;out = Msout (Cp,s + Cp, 1 Xout) bs (2.88)

These are the major equations for the dynamic simulatiohehtoisture contents and tempera-
tures of the gas and the particles in fluidised bed spray taon. Minor (help) variables needed

for the simulation are listed in the AppendiX A or are caltedbafter Peglow and Cunéus [107].
The most time-consuming part in the evaluation of the dyaquations is the calculation of the

heat and mass transfer ¢beients, and the saturation temperature.

If the heat transfer model is used in a continuous spray ¢pion process, also a steady-state can
be calculated, for instance by dynamic simulation.

One important observation is that the states of the heat arg$ tnansfer model are influenced
by the population balance equation via the mass of dry pestio the system. The dynamics of
the growth of particles is, however, not influenced by theates. This is reasonable under the
assumptions made as the population balance equation ambydens dry particulate material, but
the heat and mass transfer model considers the transitiidguaf to vapour.

Although experimental results suggest that heat and magsfér, in terms of the drying condi-
tions, have an influence on the formation of the layer, fotainse influencing the porosity of the
layer and thereby the particle size, the direct relatign&igtween drying conditions and particle
growth is not well known and subject to investigations. Fattreasonit is assumedhat the heat
and mass transfer does not influence the particle growth ai.@ecoupling of moisture content
and temperature from the particle size is assumed. One waglise this setup is to run the pro-
cess at dferent time-scales, i.e. the drying conditions are set sughhteat and mass transfer is
significantly faster than particle growth. The assumptidth vave an important influence on the
controller design.
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Chapter 3

Model-based measurement of particle
property distributions

3.1 Introduction

Many properties of a particulate product can be derivecctirérom the properties of the particles.
Up to now, in many industrial applications, the measurensémhean or integral values of the
property distributions, for example the mean diameter ofiglas or the total mass, was deemed
suficient for process monitoring. But with increasing stricmef product specifications and the
need to guarantee more than just the compliance of a meategrahvalue to the specifications,
the interest in additional information on the property idlgttion in a particulate process increases.
From the knowledge of the particle property distributiom principle, a complete monitoring of
the process state is possible, and thus the opportunitflteeirce the process conditions in order
to create a desired product if this information is used ineglfmck control scheme.

Most modern control schemes use as much process informegi@available, this includes the
property distribution. The problem that arises in processitoring and control is that the mea-
surement of the property distribution must be conductediram-.e. while the process is running,
and the measurement result must be made available with @sidegossible delay to realise an
effective monitoring and control of the process.

In this section the measurement of the characteristic dizgadicles in a particulate process,
for instance fluidised bed spray granulation, is considefiéte problems arising in this task are
similar to the problems arising in the measurement of othepgxty distributions, e.g. moisture
distributions, or temperature distributions. Hence, tleat presented in this section and illustrated
for the size of the particles can be applied, after suitalddifitations, to the measurement of other
guantities as well.

Methods for measuring the size of particles can be roughiysified into two groups: in-line (or
on-line) methods, andfbline methods:

¢ off-line methodsIn these methods a sample is taken from the process plarthendrans-
ported to a laboratory for analysis, i.e. there is a significgpatial distance between the
location where the sample is taken and the location whersahmple is analysed, also a sig-
nificant time-lag can occur. Additionally, the sample miaties not re-fed into the process.

¢ in-line methods Here, the sample is taken in the plant and also analysedeirtke plant,
i.e. there is no significant spatial distance between thet@ad the location of analysis.
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Also, the sample is re-fed into the process after analysis.
Importantoff-line methods for analysis are

e Sieving (screening): The sizes of particles are determinedpplying the particle sample
to a cascade of sieves. The size distribution is then caémlixom the mass fraction of
the sample that remains on thefdient sieves. This method is the traditional way of char-
acterising the size distribution of a particulate systenue b its standardisation, it is the
reference for all other measurement and analysis techsi@%.

e Image-based methods: Here the sample is dispersed into agthiof particles that falls
in front of a camera-system. In discrete time steps pictofehe measurement volume
are taken. The particles on these two-dimensional pictanestheir sizes are identified
and calculated by image-processing algorithms. Due toithpligity in handling and the
wealth and accuracy of the information that is gathered bgghmeasurement systems, they
are becoming increasingly popular in industries for plrteharacterisation. Examples of
image-based measurement devices are the Camsizer by RatdoH (Germany), and the
PICTOS system by Sympatec GmbH (Germany).

Off-line methods have the important advantage that, apart fraricle changes due to the mea-
surement principle, with one sample as many analyses asdemh be performed. By re-
analysing a sample the influence of random measuremens emahe final result can be decreased
by averaging over the total number of analyses performeti@sample.

But, severe disadvantages can be identified in almosfidihe methods:

e Minimum amount of the sample mass: This can be a criticakigsprocesses where in total
only a very small amount of product is produced, for instambaghly potent pharmaceutical
ingredient. The removal of a sample for analysis then furttexreases the amount of
product.

e Based on the size of the sample the analysis can take a loeg fiitminstance in image-
based methods where the sample has to be dispersed intoveithifiaking a large sample
then takes a long time before the sample has been processgdetaly.

e The measurement devices are often very sensitive to theoeamvéntal conditions, e.g. the
optics of the cameras are sensitive to dust. For that reasatelvices are situated in external
laboratories. The transport of a sample from the plant tattedysis introduces a delay.

¢ In most cases there is no way of direct communication betweemeasurement device
and the process plant, i.e. analysis results cannot be aektitistantaneously, introducing
another delay.

In total, the transport delays and the time needed for théysisdead to a significant time-lag
of the measurement result in comparison to the actual psastase. This is a major obstacle for
using the results off&line methods in process monitoring and control.

In order to remedy the disadvantages €flme methods, in-line measurement and analysis de-
vices have been designed in recent years [99]. Two prirgiplat have become popular in indus-
tries are:

e Focused beam reflectance, laseffidiction: A focused laser beam sent out from the probe
that hits a particle entering the measurement volume is-beattered. The back-scattered
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light is detected by optical fibres and from the timé&elience between the out-sent ray and
the back-scattered light a chord length of the particle isutated, i.e. the time dlierence
results from the additional path the light travels on thdame of the particle. Further details
on the measurement principle and applications can be fmu[@,@]. A realisation of
this principle can be found in the FBRM-probe manufacturgdialvern Instruments Ltd.
(United Kingdom).

Spatial filter velocimetryHere a particle entering the measurement volume fallsititr@an
array of optical fibres that are illuminated by laser lighteTparticle creates shadows on
the fibres while passing and thus creates pulse signals inféae with a frequency pro-
portional to the velocity. One additional fibre is used tcegéthe time of such a shadowing
event. From this information, i.e. velocity of particle atishe needed to pass an optical
fibre (which has a known diameter), a chord-length of theiglarts caIcuIated@O]. This
principle is depicted in Fig. 3.1 and is used for instancénegroduct series IPP of Parsum
GmbH (Germany).

Fibre-optical array

Isokinetic particle\

Laser

Particle trajectory

Figure 3.1: Depiction of the general idea of particle sizedion by shadowing events created by
a particle passing an array of optical fibres (ai@ [40]).

The most important advantages of these in-line probes atdltte sample is taken and analysed
inside the process plant and the analysis results are blailath almost no time delay apart from
the time necessary for analysis. This renders in-line @ahatable for the implementation of
process monitoring and control schemes.

But, also for this class of measurement devices importaritdtions can be identified:

e An analysis for one sample cannot be repeated. After a ahas left the measurement
volume it enters the process chamber and there is no pagsibifetch it back for further
analysis.
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e The particles entering the probe must represent statlgtitee total particle population in
the process in order to obtain reliable results for the sigtgildution. This is a crucial issue
in processes where segregation of particles takes placere,Tdepending on the location
where the probe is installed,ftérent distributions are measured, e.g. mainly smallei-part
cles or mainly larger particles.

e The detected chord-length depends on the orientation gbahticle with which it passes
the optical fibres or is hit by the laser ray. In contrast togexdased B-line methods,
where two-dimensional information can be used to deterraiiséze of the particle, here
only one dimension is available. Thiffect is important in agglomeration processes where
particles possess a distinct three-dimensional struttiatewill give a diterent chord-length
depending on the orientation.

e A chord-length is detected instead of the particle size, d¢lg particle diameter. This
necessitates a transformation of chord-length informaitito particle sizes.

By a suitable calibration and placement of the probe in tloegss, which may require extensive
tests of the in-line probe at the plant and sorfidiae reference device, most of the disadvantages
can be mitigated. Only the last point, the transformatiochafrd-lengths into particle sizes, cannot
be handled in a general way.

The transformation of chord-length information into pelgisizes is a complex and still open
problem for general particle shapes; for special casesattisd quite often in practice solutions
have been found in the last decade, see for instance|[12466580, 87].

The general idea for the transformation approaches will bewexemplified for the case of a
spherical particle, following the lines of Wynn [150] andséher et al..[40]: A spherical particle
of diameteré can create chord-lengths in the intervalq]) depending on the location where the
laser ray hits or the portion that creates the shadow on thieabfibres. From a statistical point
of view a function signalising the probability with which anpicle of diametek is detected by a
chord of sizes can be definedP(z = s, &).

On the basis of this probability a static transformation bardefined that allows the calculation
of the diameter from the chord-length: The probability ofpherical particle with diametef
creating a chord* in [0, £] can be written as

2

PO<s <9 = f_sz(S)zl— 1-(?) Q). O<s<¢ 3.1)
s1\? 5\

AQ(s1, ) = \/1_(?) —\/1—(5), O<si<g<é s'els,s]. (3.2

The chord-length distribution for mono-disperse parfigjgs) can be derived by éfierentiation of
Q(s) with respect tcs:

Q__ s
ds ¢ Je2— &
The chord-length distribution of an arbitrary sample carob&ined by weighting these results

for all possible particle sizes. The measured chord-ledgtribution of the sample can then be
written as

deLn(s) = O<s<é. (3.3)

GeLo(s) = f Greal(€) neighé. 9 (3.4)
0
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Figure 3.2: Parallel structure of process plant and mattieahgrocess model.

By inversion of this equation with respectdg.,, the particle siz& can be determined from the
measured chord-length sigr, p and the chord-length-dependent weightipgight In practical
application the inversion is performed by first discretisiine equation and then inverting the
approximate system of nonlinear equations.

In practice one severe problem arises in the inversion: [Sthahges in the measured data yield
large changes in the calculated size distribution of pagicMathematically, such problems are
called ill-conditioned problems. Thidfect becomes more dramatic if the discretisation is re-
fined. As process measurements are inevitably subject teureraent noise, the results from
static inversion may be unreliable. For a detailed disoussif the influence of noise on the
reconstructed size, see for instance [40].

Another source of error is the deviation of particles frora #ssumed geometric model, for in-

stance if chord-length measurements of non-sphericaicfert(agglomerates) are reconstructed
using the assumption of spherical particles. In that cadeimioer correction of the result can be

performed as the reconstruction is static.

One way to circumvent the solution of the inverse problers, ritain source of problem in the
transformation of chord-length measurements to partizkessaranodel-based measurement sys-
tems also known astate observerer state estimators

3.2 Fundamentals of model-based measurement systems

The main idea of model-based measurement systems is thd dyeamic mathematical process
models, for instance on the basis of population balancetiemsa to reconstruct process infor-
mation that is hard to measure directly from measurements esily obtainable. Under certain
conditions these measurements can be limited or be cod gteoise.

The concept was first conceived in the works of Luenbergey 830 82], and Kalman_[68] for
linear processes. In the following decades the idea wasi@atkto nonlinear processes, see for
instancel[136, 71, 53, 11].

The idea behind model-based measurement schemes and ¢tiegbienplementation is best ex-
plained in two steps: First, consider the structure showidri3.2, where in parallel to the process
plant a dynamic mathematical model of the process is simdilathe input signals to the plant

are also applied to the mathematical model. From the plasgsorementgare obtained by some
kind of probe: This device relates the state variablaxf the process to the measurement sig-
nals. Using the knowledge of the relation between processsand measurements, measurement
signals for the mathematical modghre calculated from the model states ~

In the absence of any model error and process disturbanoesf the initial state of the process
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Figure 3.3: Principal structure of a model-based measurersgstem introduced by Luen-
berger [80]. The dashed box indicates the components of a&lbaged measurement system.
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Figure 3.4: Re-interpretation of the state correction asrarol-loop for the measurement error.

model is equal to the initial state of the plant, ixg.= Xg, the temporal evolution of the states, i.e.
x(t) andX{t) will be identical. This means that insteadx§f) which can only be accessed in form
of the measuremenys the model state(f), which is completely known at all times, can be used.

In practical application, however, the initial state of iecess plantg is often not known exactly.
Also errors in the mathematical models, due to e.g. simptifin and un-modelled disturbances,
are often inevitable. Using the structure presented in[E@.will yield erroneous results, i.e.
X(t) # X(t), and the model states cannot be used for monitoring oragoiirposes.

In a second step, in order to account for thatences introduced by deviations in the initial
conditions and uncertainties, Luenberger extended thalplmodel by a system that calculates
a correction of the model statebased on the élierence in the measurements signalsnd y
(Fig.[3.3). This approach was motivated by the observatiahthe states of the process model and
the plant cannot be identical if the corresponding measenésndo not coincide. The important
point is that the correction of the state is solely calcadtem the available plant measurements,
i.e. the error in measurement of the two systems drives #ie§t).

If the process plant and the measurements taken therefrifilnc&rtain criteria, which will be
presented in detail in the next subsection, and the coméctuitably designed, then the model
state x{t) will tend to the state of the process plax(t) despite of uncertainties, model errors,
and process disturbances. This result can be stressed ftayvieg the correction loop, as done
in Fig.[3.4: If the errorg, does not vanish, then a non-vanishing correction of the insteée

is calculated. This can be seen as a control-loop for the uneaent erroey. In any case the
correction is designed such that for vanishing error ndhrstate correction is performed. The
observer model is then a pure simulation model of the progless.

Model-based measurement schemes are applied in divensgtiiiadi fields, for instance mechan-
ical systems (robotics), chemical engineering, and biogta& processes (e.q. [151, 69, 16,154,
58].

41



With respect to the measurement of particle size distoimgtinodel-based measurement schemes
have one important advantage: From the knowledge of theepsamodel state dll possible mea-
sured quantities can be calculated. If the number densitgtifion is part of the model state then
from this information a corresponding chord-length disttion can be calculated as presented in
the last section. Taking this calculated chord-lengttrithstion as part of the measurement signals
¥ then allows to detect flierences in the size distributions by comparison of this déttachord-
length measurements taken from the process plant. Basdteatror in this measurement, the
state, i.e. the number density function, is corrected atiegly. After some time, which depends
on the design of the model-based measurement scheme, tiodesize distribution in the process
model will approach the particle size distribution in thegess.

In all calculations no inversion of the measurement map,the transformation of particle sizes
into chord-lengths and vice versa is necessary, which wergtifted as the foremost problem in
reconstructing particle size distributions from chordgth measurements obtained from in-line
measurement devices. The disadvantages of model-baseirme@nt schemes are that the re-
construction is now a dynamic problem that has to be solveghanallel with the process, and
the need for models of the process and the measurement davite however, poses no severe
problem as for many interesting applications mathemagicatess models are available.

In applications chord-length measurements may not beadlailat all process sub-steps, for in-
stance due to the still high cost of the equipment, or fortgasons. But certain integral or mean
values may be available. The task of the model-based memasuotesystem then is to reconstruct
the size distribution from this integral value.

The answer to the question under which circumstances a Aadeld measurement system can
reconstruct the process plant state from the availableunement information leads to the concept
of observability

Observability. A dynamical system in state-space representation

dx
dt
y(t)

wherex € RN denotes the state of the systeme RY are the inputs to the system, apd¢ RM
represent the measurement information, is said to be addslerif the state(t) at a given time is
completely determined by the knowledge of the inpu{t§ and the outputg(r) over a finite time
segmenty < 7 < t [149]. For general nonlinear systems this is only true foerain set of initial
conditionsxg and inputau(t). These systems are called locally observable/[101].

f(x(t). u(t)), (3.5)
h(x(t), u(t)), (3.6)

Practically this definition means, that for a system to beeplable all process stat&snust have a
unigue influence on the measured variables, i.e. a change state must be uniquely detectable
in the measured quantity. Furthermore, it must be guardritest the erroly — § vanishes only if
the process state and the model state are equak-i= 0. Then a correction based on the output
errore, will yield a successful reconstruction of the unmeasurabdéex from the measurement
yin form of X.

A formal test for observability is calledbservability analysisFor finite-dimensional, nonlinear
systems the following criterion can be derived using coteé&pm diferential geometry [101]:
Given a mathematical modelxght = f(x, u) of the process and a model of the measurement
mapy = h(X), calculate successively the Lie derivatiiesh = L¢(L\"*h) with L%h = h and
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Lt+h = (gradh) f, and construct the observability map

y h(x)

y Lth(x) .

=0 =] . , i>N. (3.7)
y Lih(x)

If O can be uniquely (locally) invertedk = O~X(y,y,...,y), then the system is (locally) ob-
servable. For infinite-dimensional systems a similar d&dimj involving operators instead of
functions, can be given.

Unfortunately, even in the finite-dimensional case, th@bpem is equivalent to the proof of exis-
tence of (locally) unique solutions of systems of nonlineguations, and as such only answerable
in general for very small systems, iM.is a small integer, or for systems with a special structure.

If the process is linear, i.ef(x,u) = Ax+ Buandh(x) = Cx, with constant matriceé, B, C of
appropriate dimensions, then the test for observabilityices to the problem of determining the
rank of a matrix, the Kalman criterion for observability:

C
CA

o=| CA |. (3.8)

CA.N_l

If the rank of this matrix equals the number of states, i.ekf{@) = N then the linear system is
observable. From the Cayley-Hamilton theorem [149], whsighes that any power of a quadratic
matrix higher than the number of columns in it can be expkbgea linear combination of lower-
order powers, i.eA™1 = g(A, A%, ..., A", it follows that if the matrixO is not invertible, taking
higher-order powers will not be able to change this situmgtie. the system is unobservable.

In the practical test for observability the matrix produarg not calculated, but an alternative
version of the Kalman criterion introduced by Popov, Betedviand Hautus [149] is used: L&f
be the eigenvalues of the maté i.e. non-trivial solutions ofA\v; = 4;vj, then a linear system is
observable if and only if
Ajl = A
SR

is fulfilled for every eigenvalug = 1,..., N, wherel denotes the identity matrix.

rank

If the elements ofA span many orders of magnitudes then the determination afattie of the
observability matrix, or the exact calculation of the eiggdnes of A becomes non-trivial and
special numerical methods have to be applied in order tdaeghumerical) observability.

A necessary, always exactly evaluable criterion, is givesthuctural observabilityf119, 148} 33].
Here, only structural information of a linear system, i.btained by linearisation of a non-linear
process model in the vicinity of a steady-state, is used ternéne observability: Given linear
model

% = Ax+ Bu, (3.9)
y = Cx (3.10)

from the matricesA andC the so-called structural matricédg andCs are constructed:

Aie= 1, Aj%0 - J 1 Gj=0
571 0, otherwise ©° 57 ) 0, otherwise °
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The matrixAs can then be interpreted as the adjacency matrix of a graghtidét model states
as its nodes. The matri€s contains the information which states influence the measemnés
directly.

The question of structural observability is then answergdgiconcepts from graph theory; the
main concepts and their connection to the structural nestrace presented in Appendik B.

Structural observability.  For structural observabiliths and Cs must meet two criteria: (1)
output-connectednesthat is each state must in some way (either directly or gjinoather states)
have influence on the measurements, and@2)-contraction This means that given a measure-
ment the influence of all states on this measurement can haelgidetermined. In mathematical
terms these criteria can be formulated as folloWslénotes a transposition):

the associated graph t84, Cs) is output-connected, and

s-rankAl Cl1 = N, (3.11)

where the structural rank (s-rank) is defined to be the maximank a matrixM with the structure
given by Mg can attain:

s-rankMg = ’\rpz';\lﬂx rankM . (3.12)
€Ms

In contrast to the former criteria, these can be checkediyaasing graph-theoretic algorithms.

Structural observability then means, that there exiseseat lone systenf\( B, C) with the structure
(As, Bs, Cy) that is observable. Although the test does not provideiip@aformation about the
system at hand, it gives the information that the structisedfiis not unobservable and therefore
the task of designing a model-based measurement scheme cewdértaken.

The design steps necessary depend on the method used indharemaent scheme, i.e. there are
several possibilities to design appropriate correctiom$se Some of them that will later be applied
to spray granulation processes are presented in the neitrsec

3.3 Design methods for model-based measurement systems

In the field of control engineering model-based measuresysiems are known as and classified
in state observers and state estimators, respectivelin @asses share the same principal idea of
using a mathematical process model to obtain estimatefidonrtknown plant state from avail-
able measurements. Theyfer in the formulation of the mathematical process modelsei&és

in a state observer purely deterministic models are usethéoprocess model and the model of
the measurement device, state estimators are formulat@dtmchastic framework. This means
that stochastic influences, for instance measurement noigemodelled process dynamics, are
accounted for explicitly in the design process. In stateenl's these influences are not consid-
ered explicitly but are handled as general disturbancdsatieaattenuated by the structure of the
observer. In the following the terstate observeis used throughout for state observers and es-
timators if the concepts and explanations are valid for lotakses of model-based measurement
systems.

Similar to the classification of dynamic systems into firdiexensional and infinite-dimensional
systems, state observers can be finite- or infinite-dimeasio

Infinite-dimensionaktate observers possess the structure presented in Eithe3rBain diference
is that the process and measurement models are infiniteadior&l functional operators, i.e.
operators that map functions into other functions. The laddity analysis of these systems
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is greatly hindered by their distributed character, i.ethi@ general case no specific results can
be obtained. Only in case of special structures, for ingtdimear infinite-dimensional systems,
evaluable criteria are known, see for instance [27].

The correction, in the general case, is also an infinite-dsiomal operator. For the case of non-
linear distributed systems standard design methods aravailble, and the success and the
performance depends heavily on the process knowledgerierpe and creativity of the design
engineer. In the literature some successful applicatiomenlinear distributed parameter systems
are known, for instance in chemical reaction engineerigd |69, 15| 90, 58]. There, for spatially-
distributed systems using discrete measurements of tatopes and concentrations in the spatial
directions, physically motivated corrections are desigrighe parametrisation of the dynamics is
performed by considering the temporal evolution of the tigfig-distributed) measurement error
ey. In summary, the design of non-linear infinite-dimensioolaservers is an intricate task, the
success of which depends strongly on the experience of gigra.

Due to the problems in the design of infinite-dimensionalkobsrs, commonly finite-dimensional
observers are designed on the basis of a finite-dimensippabsimation of the infinite-dimensional
process model. Approximations can be obtained for instégodiscretisation of the partial dif-
ferential balance equations, for instance by applicatioth@® methods presented in Appenfik D.
Using finite-dimensional approximations on one hand sifigslithe design, because standard-
ised tests for observability and design methods can be asethe other hand the use of finite-
dimensional system instead of infinite-dimensional systérads to a loss of performance, and in
the worst case to instability of the model-based measuresystem, due to the loss of informa-
tion in the approximation step. However, as motivated in éqpx[D, this loss and the danger of
instability can be reduced by using distiently accurate approximation.

As mentioned before, in tHinite-dimensionatase for the test of observability and for the design
of state observers standard methods are available. Bugvdikability does not imply that the
actual design is trivial; if the structure of the dynamic ggss model is arbitrary thenficulties
can arise, for instance in the calculation of the Lie denvest that are needed for observability
analysis and in many design methods.

3.3.1 Design methods for state observers
In the following important design methods for state obsenand state estimators, which will
later be applied to the fluidised bed spray granulation m®ee and design methods needed for

subsequent derivations are presented. Other importaignde®thods that are not applied to the
task of reconstructing the particle size distribution amtyanentioned and references are given.

Luenberger observer for linear systems

The classical Luenberger observer for linear systems [82% @or a linear time-invariant system

dx
o = A0 +BuUb., X(0) =X, (1) =CxX(1) (3.13)
the following structure for the state observer
dx “ - . . - o
= AXO +Bu®) + KM - 9(1). X(0) =%, (1) = CX(V). (3.14)

In both systems the matricés B, C andK are constant. The matrk denotes the gain of the state
correction. In case of vanishing measurement eg(ty = y(t) — y(t), the correction vanishes, too.
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In that case the observer model is identical to the procasghie simulation condition is fulfilled.
The task is then to design the gdfnsuch that the error in the states;- X, tends to zero. If the
system is observable, which is assumed in the followingy the rate of decay in error can be
specified arbitrarily by the choice .

One way to obtain a suitable matrik is the following: Defining the error in the states of the
process and the observers x — X, a dynamic equation for the error can be derived:

3—? = Ax+Bu-AR-Bu-K(y-¥), (3.15)
= Ae-K(y-9), (3.16)
‘;_f = (A-KQ)e, €0)=x - %o. (3.17)

From the theory of linear ordinary fiierential equations follows that the solutiet) tends to zero
exponentially, if all the eigenvalues of the matr< KC) lie in the open left complex half-plane,
i.e. the real part of all eigenvalues has to be strictly riegatF-rom a control engineering point
of view the gainK is designed by pole placement of the eigenvalues for the stabre. In
general, a high gain will yield a fast decay of the error forfeet measurements, that is, no noise
is present in the measurement siggallf there is noise, i.ey(t) = ynht(t) + n(t), whereyys is
the noise-free signal anga noise signal, then an error proportionaktas introduced, as can be
seen by substitution into the dynamic equation for the statar. The equation is then no longer
homogeneous and the error will not tend to zero, but to a moo-gteady-state. A linear estimator
that is able to cope with measurement noise, the Kalman fliéibe presented later.

For non-linear systems a variety of design methods is dtaileDue to the peculiarities of non-
linear systems, these are often limited to dynamic systeitisavspecial structure, for instance
normal form observers, high-gain observers, extended thergeer observers, or sliding-mode ob-
servers. The assumed special structures allow at someipdim design process to reduce the
calculation of the gain for the non-linear system to the Wakion of a gain for a linear error
system, which reduces théf@t considerably. However, non-linear transformationgeht be
constructed in order to arrive at the linear error systeneséttan only be calculated if the system
possesses the assumed special structure. If this is noaslee then the transformations cannot be
calculated, i.e. the observers cannot be designed for gieray

In the following a state observation method is presentetidbas not require a special structure
of the dynamic process model. In addition, it has the virthas it provides an optimal estimate
X of the statex in some sense, and the convergence of the method for gemerdihear systems
can be proved.

State observation by on-line minimisation

The idea of obtaining an estimateof an unmeasurable process statby solving an on-line
optimisation problem in a deterministic setting was usedibpymer [154] to derive a very elegant
method that is presented in this section.

Given a non-linear dynamic process

dx

o = [, u®). x(0)=x. y(t) = h(x(t)) (3.18)
the state and output trajectories can be written formalby(aso, Xo) andy(t; to, Xo), i.e. the state at
time t depends on the initial timi (to determine how long the process is running), and theainiti

state atp given byxg. The output trajectory can be interpreted in a analogous way
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The observer model is chosen to be

dx . . . - N
o = F&O.u). X0)=%. (1) = h(X(1)). (3.19)
with the corresponding trajectoriet; 1y, Xp) andyit; to, Xo).

If the process time span is sub-divided into intervals oftarT, i.e. [to, to + T], [to + T, to + 2T],
..., that is, into non-overlapping timeorizons then the following functional over each one of
these horizons can be defined:

to+(k+1)T

1 . .
N = G-y'E-yd, k=01,.... (3.20)

2

to+kT
This functional can be interpreted as measuring the squatteeadistance in the measurement
signalsy’andy over the horizon. As the measurement signal/ér a time horizon depends only
on the initial state of the observer model at the beginninthefinterval, i.e. Xy, and given the
measuremeny(t; to, Xp) obtained from the process durihg [t + KT, tp + (k+ 1)T] the functional
depends on the initial state of the observer mogelrd the measuremengsi.e. N(Xp, y), over a
time horizon.

Observability of a dynamic system states that if the erréhémeasurements vanishes, then the
state of the observer is equal to the unmeasurable proagss Ist terms of the defined functional
this means that it has to be minimised, i.e. the measurerequoesce/ has to be chosen such that
¥ — y vanishes. As was pointed out, the measurement sequenceddeme the initial state of the
observer model, so the minimisation problem can be written a

to+(k+1)T

min A(Ro,y) = min % f G- @-y)d. k=01.... (3.21)
X0 X0
to+kT

i.e. the task is to determine the initial condition of theetver model at the beginning of the time
horizon such that the error in measurements is minimised.optimisation problem is constrained
by the nonlinear observer state equations that have to fikefillover the time horizon, i.e. itis a
nonlinear, constrained optimisation problem.

Zimmer [154] then reduced the optimisation problem furtyeusing the fact that foxyto be an
extremal ofN(Xo, y) the following necessary condition has to be fulfilled:

0

Xo,Y) = 0. 3.22
(%N (%0,Y) (3.22)
So, instead of solving the optimisation problem, the vatydds to be found such that the non-
linear system of algebraic equatiofis/9%y = 0 is fulfilled, i.e. the nonlinear, constrained opti-
misation problem is reduced to a root-finding problem.

One standard method that can be used to find the roots of mearlalgebraic equations is the
Newton-Raphson method |54]. Itis an iterative method tefihes a given initial guess of the root
by evaluation of the system of equations and the gradiertiegtuation. In case of the system
at hand, using the short-cut notati?v\i = AN/d%y (the gradient of the cost functional), and
N = 62N/8>“<(2) (the Hessian of the cost functional, and the gradient of #wessary condition),
one step of the iteration can be written as:

% =% - [N G| [V G)] (3.23)
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wherex; is the guess for the root, ang i the corrected value based on the information contained
in N andN".
In order to be able to calculate the new estin@d)ésed on the measurement information, the

gradient and the Hessian of the cost functionalkre required. An evaluation for the gradient
yields

to+(k+1)T a0 to+(k+1)T oh o%
(S \/ T Y ¥ T s
_ RV P _ —| (=] dt. 3.24
N'(%0,y) f -9 7% f G-y aXf((a)’ZO) =20
to+KT to+kT

In this equatiordh/dx denotes the linearisation of the output functioalong the observer state
trajectoryX'anddX/d%y denotes the sensitivity of the state trajectgmyith respect to a change in
the initial conditionxg.

Taking derivatives with respect to time, a dynamic equatasrihe gradient can be derived:

aN'
T =y-y

oh| [ 0%
—| | = "(to) = 0" . 3.25
. (%) N (325

The initial condition for the gradient can be obtained frdra fact that the estimate of the state at
the end of the last observation horizon (which is the ingialte of current horizon) was optimal
with respect to the cost functional.

In a similar way the Hessian &¥ can be evaluated:

to+(k+1)T P T P to+(k+1)T 42
1 (S y y & T y
N . = —_— — dt + f - — |dt 3.26
cn = [ () (2] 5= a%] (3.26)
to+kT to+kT
to+(k+1)T % T sh - sh P
X X
~ el Il Bl N Al I S 27
f (G)A(o) OX|g 0X|g (G)A(o) dt (3.27)
to+kT

Here the exact Hessian is approximated only by neglectigiganiorder derivatives of the observer
measurements. This approximation is justified dfoes not deviate too much frorover the time
horizon.

The corresponding dynamic equation reads:

on
g OX

av” (9% n
dt  \d%/) ox

IR s
i(%), N"(to) = 0. (3.28)

The required gradient and Hessian of the functioRatan be evaluated if the sensitivity matrix
0%/d%g is known over the horizontd + KT, tp + (k + 1)T]. A suitable dynamic equation can be
derived as follows:

at\o%) ~ 9%\ 3t = 3% 1000 =155\ 5% )0 (8%

Using these equations an algorithm for state observatioarblne minimisation can be given:
Fort € [to, to + T], given the process measuremey(ts:

_ (3*0

%) =1. (3.29)

fo

1. Solve the dynamic equations fay N/, N’ and(%), starting from the respective initial
conditions, i.e.x(to) = X0 = X;, N'(to) = 0", N (to) = 0, and the identity matrix as initial

condition for the sensitivity equation.
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Figure 3.5: Idea of state observation by on-line minim@atfter Zimmer|[154].

2. Correct the initial guesg; by one iteration of the Newton-Raphson method:
& o— 1" (G— -1 1 (o— T
=% - NG| (N9 (3.30)

3. Re-solve the observer model equation for the initial @ X obtaining the corrected
state trajector™(t; to, X{).

4. For the next observation horizon, sgt= X"(T; to, X§) andto = to + T. Repeat with step 1.

Using this algorithm a sequence of state corrections isirida The idea of the algorithm, and
the resulting observer state trajectories are depictediiZEs.

In a practical implementation the initial guegs and the resulting state trajectoxy(f; to, X;) is
used for process monitoring and control purposes on the hionizon fo,to + T]. Meanwhile,
the process measurement trajectgfl to, Xo) is recorded. At the end of the time horizon the
presented algorithm is executed yielding the correcte@rbs state trajectory’{t; to, X). The
observer state at"{to + T; 1o, X3) is then taken as the initial guess, See step 4 of the algorithm.
This requires that the dynamic equations in the algorithmhb=Easimulated much faster than real-
time as the corrected estimatexf(to + T; to, X]) should be available with as less time delay as
possible to give a reliable estimate of the state of the mpéant.

From the formulation of the algorithm it can be derived thia¢ @pproximation step, i.e*(to +

T) — X (to + 2T) requires the solution of > + 3N ordinary diferential equations, whens

is the dimension of the state This proves to be a high computational burden, especilly i
the dimension ofx is large. However, special algorithms are available to cedine &ort in
computation, see for instance Cao etlal [17].

Zimmer [154] proves under quite general conditions thatNbeiton-Raphson iteration converges
to a new estimate of the observer state, provided that thi@lidieviationx — X is suficiently
small. Due to the high convergence order of the Newton-Raphsethod (quadratic), a very fast
convergence within a few iterations can be expected.

This idea of calculating estimates for the observer statebeageneralised and extended into a
stochastic framework, yieldingtate estimators

49



3.3.2 Design methods for state estimators

In many practical applications the process measuremerased, i.e. instead of the true valye

a value ofy + n is measured, where denotes the bias. This may be a systematic measurement
error, e.qg. a measuremenftset, or a time-varying, stochastic quantity, e.g. measantmoise.
Whereas constantflizets can often be identified and eliminated by careful ribedion of the
measurement device, stochastic influences are harder fpetmaite: Here often only some infor-
mation on the probability distribution, for instance theanend the variance, is available. State
estimation algorithms use this available information ie ttesign process to counter the influ-
ence of stochastic processes, e.g. noise or unmodelledgzradgnamics, on the estimation result.
Because of the fact that these algorithms filter out the ststdh components in the signals, they
are also calledilters. In order to do so, in addition to the process model and theemaidthe
measurement device, a model of the stochastic disturbasmoesded in the design process.

In the following important finite-dimensional state esttora (state filters) are presented, starting
with an extension of the concept of state observation byr@rhinimisation: the moving-horizon
estimator. Subsequently, an introduction to Bayesiarrifigeis given, which allows for the de-
sign of state estimators in a purely statistical settingeAfards Kalman filtering and Unscented
Kalman filtering are presented (as approximations of BayeSiters), allowing for state estima-
tion in (non-)linear dynamic systems subject to stochakisturbances.

Moving-horizon estimators

Like state observation by on-line minimisation, movingihon estimators [123] calculate an es-
timate of the observer state by solving on-line an apprtgrgtimisation problem. The main
differences to the aforementioned algorithm are that stochdisturbances on the process and on
the measurements are accounted for explicitly, and thatthewime horizons can overlap.

The idea of a moving-horizon estimator is motivated as ¥edloGiven a process model

dx

T fu) +w Y =h(X) + m, (3.31)
wherex is the process statg is the measurement sampling timey, i.e. measurements are only
taken at discrete points in time, andandn are additive stochastic influences with not necessarily
known statistics. Assuming that the sampling inteivgli.e. the temporal distance between two
measurements, is constant, the process states atitidenoted by, can be calculated formally

by integrating the state equation for one sampling interval

kAt kAt

X« = Xkt f f(X(t), u_1) dt + f wdt (3.32)
(k-1)At (k=1)At

= F(X-1,Uk-1) + Wiz (3.33)

Using this equation over time a sequence of state and measntevalues can be generated:
{(X% Y} k=0,1,....

The measurement information can then be used to determimstamate of the process state:
Given an initial estimate’, the sequence of measuremeiyts. . ., yk} and a model of the process,
find the initial statex] and a sequence of process disturbar{ees. .., w1} such that a given
functional is minimised, for instance a least-square®igan:

k k-1
min > R+ Y wQtw, (3.34)
%W i3 -1
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subject to the constraintg = y; — h(X) and X = F(X,u-1) + Wi_1 with X = Xj. In this
formulation the statistics of the stochastic sequengesndn, are incorporated in the functional
by thecovariances RindQ.

The solution of this optimisation problem then gives an mgti estimate of the initial valueg];
and the process noise sequenes,...,Wx_1}. Using this data an estimate at timiecan be
generated by solving the dynamic state equation using ttiamalpinitial value and the sequence
of stochastic disturbances.

In this formulation all measurement information up to titeés used in obtaining an estimate of
the process state.” The major problem here is that with increasing time the nemdf optimi-
sation variables increases as for each additional stepditicexdl process disturbance has to be
estimated, so the number of variables in the optimisatioblpm is unbounded. Astime necessary
to solve an optimisation problem depends on the number ahigattion variables, this time will
also increase rendering the approach infeasible for largguats of measurement information.

In order to circumvent this problem, a moving-horizon stggtis used [123]: Instead of consid-
ering all available measurement information up to tigenly a fixed numbem of past measure-
ments and the measurement availablé are used in the estimation process. This results in an
optimisation problem with a maximum number of optimisati@mniables proportional to the num-
ber of measurements considered. The time spap.h, tk] then is the horizon of the estimation
problem. The cost functional is rewritten, yielding:

k k-1
. To-1 TA-1 &= T -1 &~
A,mm{w} E m R+ E W QWi + Xk—m+1pk—m+1xk—m+1' (3.35)
Ke-me1s I=k—m+1 I=k—m+1

The new term involving the state covarianeeiccounts for the confidence in the initial estimate
X_m., at the beginning of the estimation horizon. It incorporattsnformation about how the
process evolved from its initial statetgtto the statd, and may be crucial to the performance of
the estimator [116].

If time advances fronty to tx. 1, the first measurement is discarded from the optimisatioblpm.
Instead, the measurement valudiat is added to the formulation and the optimisation problem
is re-solved to obtain an optimal estimatg.1)-m«1. This recursive property necessitates that
the optimisation problem is re-solved every time a new mesmsant becomes available, i.e. the
estimation problem has to be solved on-line in parallel &giocess.

Moving-horizon estimation féers two main advantages to state observation by on-linenmisar
tion: First is the possibility to directly use knowledge dachastic influences on the process and
the measurements in the estimation algorithm. The secorahtabe is that additional constraints
on the estimates and the process disturbances can be plisédkhown before-hand that certain
states can only attain non-negative values, for instanedalphysical reasons, this can be formu-
lated explicitly as an inequality constraint in the optiatien problem. However, care has to be
taken in the formulation of constraints to not render thebfm infeasible, see for instance Rao
and Rawlings/[116].

The type of the optimisation problem depends on the typeaétate and measurement equations
and the functional to be minimised. In the most general dasaoving-horizon estimation non-
linear constrained optimisation problems have to be sol@eheral convergence results for this
class of problems are not available due to the non-linearity the possibility of multiple local
optima. For special classes of problems, e.g. linear psomesdels and quadratic functionals,
convergence results for the unconstrained and the comstraiase are available [123].

Instead of using a deterministic approach and modifying ihtorporate the available knowledge
about the stochastic influences, state estimators and fidger be derived using purely statistical
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arguments and mathematical probability theory. This agghip known afayesian filteringis
presented next.

Bayesian filtering

Bayesian filtering is a powerful tool for the design of stasireators for arbitrary non-linear
systems with stochastic influences with arbitrary stasstilt draws heavily from the theory of
conditional probabilities, especially the theorem of Baye

In the following a Bayes filter for the non-linear process miod
X = F(Xe1, U1, k)5 Yk = DX, 1K) (3.36)

wherew andn are arbitrary stochastic influences, will be derived, folltg Arulampalam et
al. [7]. The properties of the filter are then shortly disaass

For this task Bayes’ theorem can be stated as

P(YkIXK)
p(y)

The notationp(A|B) denotes the conditional probability distribution for areet A to occur given

the occurrence of evel. In terms of state estimation, tlaeposteriori estimate ([|yk) denotes

the probability thak is the process state given the measuremerinalogously,p(yx|xx) denotes

the probability thaty is the measurement ¥ is the current process state. The probability that
is measured is denoted Ipjyy).

P(Xklyk) = x a priori estimate (3.37)

Thea priori estimatedenotes the best estimate of the probabilitobefore the measuremeyt
becomes available, i.e.
a priori estimate= p(Xc|Vk_1, Yk_2; - - ) » (3.38)

i.e. the best estimate using all available measuremeniniafton.
In total the calculation of an a posteriori estimate can higewr as
P(YiIX)
p(yk)
This equation can be solved if the a priori probability is kmo

P(XklYk) = X PO%IYk-1 Yk=25 - - -) - (3.39)

From mathematical statistics the following is known:

p(Xk|Yk—1,---)=fp(Xk, Xic—1[Yk-1, Yk=2, - - -) OXi—1 - (3.40)

The probability on the left-hand side denotes the margirsitidution of the probability on the
right-hand side of the equatiop(Xx, Xx_1|Yk-1, Yk_2. - . .) is called the joint probability distribution
of ¢ andx,_1 conditioned to the measurement d@ta;, Yk_2, . . ..

Using the equalityp(A, B|C) = p(AB, C)p(BIC), the marginal distribution can be written as
POKIYk-1,---) = fp(Xklxk—l,Yk—l,yk—z, o) POk 1lYk-1, Yie2s - - ) OXe1 - (3.41)

In order to evaluate(Xx|Xk_1, Yk-1, Yk_2, - - .) NO measurement information is needed, as the dy-
namics for the state transition frorq_1 to Xy is known by the state equation, i.e.

P(Xil Xk—15 Yi-15 Yi—2, - - -) = P(Xic[Xe-1) - (3.42)
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The probability densityp(Xk-1Yk-1, Yk-2, - - -) IS just the a posteriori estimate xf 1. The equations
therefore provide a recursion for obtaining a state estrattimety given the estimate at timg .

This formal recursive Bayes filter can be decomposed intosteps: a prediction step, calculating
the a priori estimate afy

p(XkIYk—l,---)=fp(Xklxk—l,yk—l,Yk—z,n-) P(Xk-11Yk-1, Yk-25 - - -) AXi—1 (3.43)

and a correction of the a priori estimate given the measunemtrmation atty, i.e. yk:

P(YkIX)
p(Yk)

P(XklYk) = X PO IYk-1 Yk=25 - - -) - (3.44)

In this general form the recursive Bayes filter is an impdrtaol in theoretical reasoning but
it is only of limited practical use. The main problem is thealesation of the integral, i.e. the
calculation of the marginal distribution. This is in gerleaanultidimensional integral, depending
on the dimension of the state vectorThe sampling of the probability densities, i.e. the eviidue
of the probability for the occurrence of a specific event, difacult task in its own right due to
the possibly arbitrary shape of the probability densities.

In order to apply the concept of Bayesian filtering prachcapproximations have to be made. In
most cases assumptions on the type of the state equatiear(limon-linear) or the statistics of the
stochastic disturbances are made. The most commonly knppnoxmations are

e Monte-Carlo filtering, or particle filtering,
¢ Unscented Kalman filtering,
¢ Extended Kalman filtering, and

¢ Kalman filtering.

Monte-Carlo, particle filtering

Monte-Carlo filtering (or particle filtering (PF), bootstréiltering) [131] is an approximation ap-
proach that gained popularity in recent years with the iirey availability of computational
resources.

Given a dynamic estimator model of a process
R = F(R-1. k1), R0 =K. Yk = (R 7)., (3.45)

wherew andn are stochastic sequences, an a posteriori estimate canidieeabusing the follow-
ing procedure:

At k = 0 a fixed numbeN of realisations of the initial statg]is created using the knowledge
of the a posteriori probability distribution of ™ X{., (i = 1,...,N). The realisations are called
particles thus the name particle filtering.

For every time steg = 1, 2, ..., a priori estimates are calculated by

K = TR 1> k1) - (3.46)
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Using the knowledge dfi and the statistics ofy the probabilityp(9k|>?;’i) can be evaluated. This
is used in the correction step, calledsampling where the a posteriori estimates are chosen such
from thexEi such that foN — oo the probabilities

P(ReilYk) = P(Xlyk) (3.47)

are equal, i.e. the probability density of the estimatetkest equal to the probability density
of the (unmeasurable) process state given the measurenfi@mhation at timety. All necessary
statistics of the a posteriori estimated state can thenlbalated from the set ok}, for example
the mean.

The Monte-Carlo approach to Bayesian filtering is a brutedanethod with several disadvan-
tages: The most important is that the calculation is vengtsunsuming due to the re-sampling
step [7,.131]. Additionally, convergence of the filter is piguaranteed foN — oo. Its main
advantage is that it is applicable to general non-lineatesys with arbitrary stochastic input
sequences. The idea of using special realisations of the tstacalculate recursively the state
estimates will be re-used in the Unscented Kalman filter.

The family of Kalman filters uses assumptions about the typeocalel equations and the stochastic
sequences to make the actual computation of state estitnatégble. Filters based on the idea of
Kalman are estimation algorithms most often found in pcatt@pplications.

Kalman filtering of linear systems

Historically, one of the first applications of Bayesian filtgy to linear process models subject to
Gaussian random variables was given by Kalman [68]. Fordés® Kalman was able to derive
an analytical, optimal solution to the filtering problemetkalman filter (KF). In the following
decades this result was extended to other classes, i.dingam-systems, resulting in a family of
filtering algorithms, for instance the Unscented Kalmaefilt

Kalman considered the time-discrete linear time-invdriate space model
X = A1+ BUer +Wier, Yk = Cx+ 1k, (3.48)

wherew andn are zero-mean, normally distributed, non-correlated semdequences, i.e.

w~N(@©,Q), E{wtn'®}=0,

y~ NO.R). (3.49)

with constant covariance matric€sandR.

Let X be the a priori estimate ofx and X; the a posteriori estimate using the measurement
informationyi. Then the covariances of the a priori estimation eepr= x, — X and the a
posteriori estimation errag; = x« — X; are given by

_ . _ T . T
P =Elege’}. Pri=Elgq'}. (3.50)
Kalman then derived an equation figf Such that the a posteriori error covariance magjxis

minimised [68], i.e. the squared errgg — X is minimised. It turns out to be a linear equation
incorporating the a priori estimate of the stafeand the measurement informatigp

= K+ Ki(yk — C%) - (3.51)
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The correction gairky is calculated based on the a priori estimate of the errorr@@vee matrix
P, and the covariance matrix of the measurement nigise

Kk = PeCT(CPCT+R) . (3.52)

Because of the changes in the estimation ergprande, an update equation for the error covari-
ances is needed [68,/43]:
P, = AP, AT+ Q. (3.53)

Here the knowledge of the statistics of the process noiserim bf the covariance matri® is
incorporated into the estimator design.

The filtering algorithm can then also be stated in two stepsthé prediction step the a priori
estimate of the state and the error covariance matrix attiiraee calculated using the a posteriori
values at timey_1:

S = AXea Bl (3.54)
P, = AP AT+Q.

Using the measurement informatigg the correction gain and the corrected, a posteriori values
of the state and error covariance matrix are calculated:

K« = P.CT(CPCT+R) .
)'Z; = )'ZE + Kk (yk - C)'ZE) , (3.595)
Pt = (I-KC)PL.

In many applications the values Bk and P, tend within a few iterations to a steady state: The
steady state values only need to be computed offekne and can then be used in the in-line
application of the estimator. The possibility to compute ¢iain dt-line is of great importance in
the application of the filter algorithm to high-dimensionghamic systems.

The algorithm gives a stable state estimator if gig¢andR at each timedy a symmetric, positive
definite solution for the error covariance matrices can beutated: This requires the system to
be observable and poses some restrictions on the choicerafiaace matrice® andR, see for
instancel[68, 43].

Kalman proved that a correction gain calculated in this wayigles an optimal estimate of the
state in a linear time-discrete process with Gaussian iepguences [68]. For other types of
random input sequences the Kalman filter will also providestimate but it is not necessarily an
optimum.

Although linear systems are an important class of processest processes are non-linear. In this
case the Kalman filter is not able to provide a stable estonaif the process state. But the idea
can be transported to non-linear systems, resulting irettended Kalman filtefEKF): Here the
non-linear process

Yk h(X, 17k)

is linearised at each timg at the current state. This reduces the non-linear process to a linear
time-varying process to which the Kalman filtering algamnitban be applied: The prediction steps
for the a priori estimateg,_"andP, read

Xk f (X1, Uk-1, Wi—1) } (3.56)

= f(Rie1, Uke1, Wi-1)

. : - (3.57)
Pk = AkPk—lAk + Wka—lwk .
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The correction step reads

Ke = PRCT(CePeCl+ViRV) ",
o= %+ K~ (ke m) (3:58)
Pe = (I -KeCi)Py

The matrices, Bk, Cx, Wk andV are obtained from linearisation of the state equationseafith
priori estimatex, :

of ja— of ro—
Ac= T uow),  Who= (R, Ui W), (3.50)
Cr = &%, Wi) , Vi = (%, ma).-

In summary the EKF obtains an estimate of the process stateon-linear system by first ap-
proximating the state distribution by a Gaussian prohbghdistribution and then propagating this
distribution using a linearised model of the process. Duth&approximations, the estimates
obtained by an EKF are not optimal for the non-linear probess first-order approximation. For
strongly non-linear systems, or systems where the dynaoaieeot be modelled fiiciently by
the linear approximation, the EKF is known to diverge dueéhwdpproximation error. In general,
convergence of the EKF is hard to prove explicitly, i.e. acessful design strongly depends on
the design engineer and an extensive test of a designedtligor

One obstacle in the implementation of the EKF algorithm ésa¥aluation of the matriceé, By, Cy,
W andV: Either the partial derivatives of the functiofisandh with respect to the state and ran-
dom inputs are calculated analytically and are implemeetadicitly in the algorithm or some
kind of numerical linearisation algorithm is used. Wher#as former possibility is often only
tractable for non-linear systems with a small number ofstathe latter approach will introduce
additional errors into the algorithm that will increase ttanger of divergence of the filter.

These disadvantages motivated the design of other noarliiieering algorithms, for instance
the Unscented Kalman filter, that combines ideas from paréind Kalman filtering to design an
algorithm for non-linear systems.

Unscented Kalman filtering of non-linear systems

The unscented Kalman filter (UKF) is a descendant of the Kalfiizr that allows the estimation
of states in non-linear systems from noisy measurementsileWie Kalman filter provides an
optimal estimate of the mean and the variance of the statamotivated in the last section, this
is no longer true for non-linear systems. The extended Kalfitter (EKF) uses a linearisation of
the nonlinear process to calculate the state correctiom amd can only give a first-order approxi-
mation of the variance of the states. In case of highly noedi processes, which are only poorly
described by their linearisations, the filter is known toedige, becoming unusable for process
monitoring and control purposes.

The UKF draws from the idea of particle filtering and uses anépue known asinscented trans-
formintroduced by Julier et al._[64] to gain higher-order appmations of the estimates and to
reduce the possibility of divergence of the filter due to tiopar dfects.

Using the notation of Julier and Uhlmann [65], given a nogdintime-invariant dynamic system

% = f(xu)+v, (3.60)
Ve = h(X uk) + W, (3.61)
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wherex € RN denotes the state of the systeyn,c RM is the measurement at consecutive times
tk, (k = 0), v ~ N(0, R,) denotes white process noise with zero mean and spectrsitylematrix

R,, and the normally distributed measurement neise N(O, R,) with zero mean and covariance
Ry. Itis assumed that the random variableandw are uncorrelated.

Due to the influence of the noise term&ndw on the states, these are no longer deterministic
but also random variables with a certain mean and (co)vegiamhe main idea of the unscented
transform is to propagate the distribution through the essmon-linearityf and then calculate an
approximation of the new mean and covariance. This is inrastito the EKF which approximates
the non-linearity and then propagates the mean and coearlanthis approximation.

According to the work of Julier and co-workers [65, 64] astastimatex 0f the unknown state
can be reconstructed by a predictor-corrector approacdthelfollowing a special modification of
the UKF that has better numerical properties will be presgnthe square-root unscented Kalman
filter (SRUKF) by van der Merwe and Waln [139].

In an initialisation step the observer staggis set to the initially guessed value. From this the
matrix square root of the state covariance mafix,is calculated by a Cholesky decomposition:

Xo = E{Xo}, So = choleskyPy). (3.62)

Given the positive-definite matriRy, the Cholesky decomposition calculates the unique lower-
triangular matrixSo such thatPp = SS].

Then for every measurement time steg 1, 2,. .. the following predictor-corrector algorithm is
executed to obtain an estimate of the process state:

In the prediction stepa finite number okigma points Xare chosen. These are then transformed
by the nonlinear process model. As in particle filtering, iadesigma points is selected in the
state space. In contrast to particle filtering, these sigaiatp are not generated randomly from
the probability distribution but chosen deterministigaduch that the mean and the variance of
the statistically distributed variables are captured sHtliows to drastically reduce the number of
particles necessary in order to obtain reliable estimatgiger and Uhimann [65] show that for the
practically important case of Gaussian distributions efioise sequencesandwg only 2N + 1
sigma points are needed to capture the probability ditabuof the state variables accurately.

A predicted stateq " is calculated from the transformed sigma points as a weigittean. Also

the new covariance matrix ro&_ is predicted. Afterwards new sigma points are generated to
incorporate the potential process noise and a predictecurgaenty, is calculated from the
measurements generated by these sigma points:

Xeer = [Rec1s 7Ske1 + K1, —nSke1 + R (3.63)

Xk-1 = F(Kio1, Uk-1) (3.64)
2N

)'ZE = Z ng)xj,klk—l (3.65)
i=0

Sy = qr[\/w(f’(xlzm,mk-l—>‘<;), \/ﬁv] (3.66)

S, = cholupdatdS;. Xoxk-1 — %, W] (3.67)
Xgcr = % nSi+ %o 0S¢ + %] (3.68)
Y1 = h(Xg ) (3.69)

2N

% = ZWEm)Yj,lqk_l (3.70)

j=0
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In these equations; = VN + 1 whered = N(a? - 1), the WeightSNgn) = A/(N + 2), vvg:) =
A/(N+2) +(1-a?+p), andvvgm) = WEC) = 1/(2(N + 2)). All matrix-vector operations in this
algorithm are performed column-wise.

The operatogr denotes the QR-decomposition of a matrix: A given ma#iis decomposed by
this operation into a orthogonal matr@ and a upper triangular matrig, i.e. A = QR In the
calculation aboveS, denotes this upper triangular matrix.

The operatoicholupdaterealises a ficient update of the Cholesky factbrof a given positive-
definite matrixA = LLT, if it is modified by a rank-1-matrixZ (z being a column vector), i.e.
A+zZ . Ingeneral, it is possible to calculate this modified Chiolefactor by first creatingd from

L, then performing the modification éfinto A+ zZ , and then to calculate the modified Cholesky
factor by decomposing the modified matrix. The operatmiupdateupdates the Cholesky factor
L, givenz, without explicitly calculating the modified matrik + zZ. Care has to be taken if the
matrix A is down-dated, i.e. the modified matrix is givenAy zZ . In this case it may happen that
the modified matrix is no longer positive-definite and a Chikjedecomposition is not possible.

For the calculation of the correction gaify at first the covariances from the predicted measure-
ments and the covariance of the transformed sigma pointsrendenerated measurements are
calculated to incorporate the measurement noise. Usiagntarmation the gain is calculated and
the predicted statg "and the predicted covariance matrix r@&t are updated using the available
process measuremeyit

Sy = qr[\/@(Yl:ZN,Mk—l_yE)’ \/ﬁ] (3.71)

S;, = cholupdatdSy, Yot - . W) (3.72)

2N
~ 1T

Py = Z WEC) [Xj,k|k—1 - Xk] [Yj,k|k—1 - yk] (3.73)
j=0

K = (Pxy/Sy)/Sy (3.74)

X = X+ Kilyk = Yi) (3.75)

Sk = cholupdatdS;, KiSy,, -1} (3.76)

In this algorithma € [1074, 1) is a design parameter that influences the dynamics of tmaater.

As will be pointed out later the choice afis not arbitrary. The parametgrincorporates some

a priori knowledge about the noise distributions, for Garssoises = 2 is found to be opti-
mal [64]. Specific noise models farandw can be incorporated quite easily by augmenting the
state vector. The covariances of the noise variables neelenconstant but can vary in time or
can be state-dependent. The idea of the algorithm is sursedain Fig[3.5.

The SRUKF has various advantages over the EKF and otheratgtimalgorithms:

¢ It does not need analytical derivatives of the model eqnatiehich are often very flicult
to obtain.

e It also does not require a special structure of the modelt&Emsa

¢ It can be shown that the estimates obtained by the unsceatefdrm are of at least second
order (EKF: first order), and are in case of Gaussian noiseaat third order accurate.

e The state covariance matrix is guaranteed to be positivaitefand

¢ the computational cost of the SRUKF is comparable to thateBKF.
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Figure 3.6: General idea of the unscented transform agdimted by Julier et al. [64].

In order to design a working state estimator as much a pricwkedge about the process should
be used as possible, for instance to choose a suitable reaasirrate it is of great help to know
the dominant time constant of the process. The choice ofritialicovariance matrix (which
determines the trust in the initial estimatg is crucial to the performance of the estimator. Too
small values lead to small corrections and therefore slamndbe convergence of the estimate to
the process state.

The parametetr must be chosen such that the Cholesky down-date of the eoea&rimatrix root
in the correction step is always possible. A measuremeaival that is too large for the process
dynamics can lead to a large correction (e.g. in case of wespsgradients in the state during
this time interval) which may result in a down-dated covacia matrix that is no longer positive
definite. In this case the algorithm breaks down. The corkcice of the parameter therefore
has to be determinedfdine, for instance by estimator simulations usinffefient noise levels and
measurement intervals.

The main computational load of this algorithm lies in theg&gation of the sigma points by the
non-linear process, i.e. the solution of (at leadt}A state equations over a measurement interval.
If the state dimension is very high and the measurementvaites short, the simulation step may
violate the condition that the filtering algorithm must bsté than real-time as otherwise the
estimates are only of limited use. However, the propagatfdhe sigma points can be executed in
parallel because the propagation of one sigma point doesdepeind on the other sigma points, i.e.
the calculation can be distributed independently tedént computers. This simple observation
can yield a considerable speed-up in computation as wasrdggrated in Mangold et al. [39].

A comparison of the diierent estimation algorithms with respect to the accuracytha com-
putational &ort in a non-linear process is given in Fig.13.7. It can be gbere that the féort
increases with the required accuracy starting with theirmailg<alman filter that on the one hand
is the computationally cheapest but also gives the poostist&te. At the other end, Monte-Carlo
filters provide most accurate estimates but at the cost ofjla ¢é@mputational féort. The EKF
and the UKF lie between these two extrema: The practicalcehof the algorithm depends on
the process model, e.g. are analytical expressions foirtbarlsation available, or are the noise
sequences non-Gaussian, and the experience of the degige&n

After the presentation of various design methods for stagevers and state estimators these are
applied in the next section to the task of calculating amesti of the particle size distribution in
fluidised bed spray granulation processes.
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Figure 3.7: Comparison of theftitrent state estimators based on Bayesian filtering witheotsp
to accuracy of the estimate and required computatiofiaftafter Simon([131]).

3.4 Model-based measurement of size distributions

In this section model-based measurement schemes arechppliee batch and continuous flu-

idised bed processes modelled in Chalpter 2. The task isdaas&act the particle size distribution

from noisy or limited measurement information. Before tlesign of an estimator or observer

is undertaken, the observability of the process with resfmeavailable measurements has to be
checked.

Observability of the processes is motivated by a strucamalysis of finite-dimensional approxi-
mations of the process models. These can be obtained fropofhwation balance equations for
example by application of one of the discretisation methmdsented in Append(xID.

From a practical point of view, the following measuremeuisskes are of interest:

¢ total momentsfor instance the total mass of particles in the process lwisiproportional
1o u3;

e normalised momerntsin particularésg = u1/uo Which denotes an average particle size
obtainable from most in-line particle probes;

e chord length distributionisthe main measurement results obtained from in-line prebel
as FBRM or IPP-70 (Parsum GmbH, Germany);

¢ (normalised) number density functionslthough this case seems trivial at first, this is not
true, as even the (normalised) number density function neagobrupted by measurement
noise.

These measurement classes are now investigated to find etihevithey possess the necessary
properties for structural observability of the processeden consideration, or not.

3.4.1 Structural observability of the spray granulation process

Atfirst the distributed measurements, i.e. number dengitgtfons and chord-length distributions,
are tested for structural observability: The notions ofpatdiconnectedness and non-contraction
were introduced in Sectidn 3.2 — summarising, a processuststal observable if every state of
the model has a unique influence on the process measurement.
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Trivially, if the number density function(t, £) can be measured, or its finite-dimensional approx-
imation, then the process model (or its finite-dimensioqpgraximation) is observable, as every
state is measured directly and uniquely.

The chord-length distribution can be writtenyas S nh= Cn, wherey is the process measurement
(the chord-length distribution in this case) a8ds a triangular matrix relating the sizes to all
possible chord-lengths. The matfxis triangular due to the fact that the maximum chord-length
that can be generated is equal to the patrticle size, i.e.gséader than this cannot be generated.
The important point for structural analysis is that the dueal matrixSs = Cg obtained fromS
has a diagonal of ones, i.e. the structural raniSgis equal to the number of states, provided
that at least this number of chords are considered. In geriia a rectangular matrix, with the
number of rows depending on the discretisation gird of thaler density function and the chord
lengths, respectively. In most cases the discretisaticthedthord length is much finer than the
discretisation of the number density function, see foranse Mangold [87]. The diagonal of ones
means that the states of the model are output-connectedcoFRlation for non-contraction is also
fulfilled by this result, as the structural mati®¢ provides the required structural rank. From this
it is clear that the processes are structurally observabthib measurement.

In the following, structural observability is investigdtéor two families of scalar measurements:
Yk = uk, the kth unnormalised moment of the number density function, wané “ux/uo, the
normalised or averagddh moment.

Using the notation
N
(Wi ) = wen = >° E(t,6) Ag (3.77)
i=1

for the finite-dimensional approximation of the unnormedi&th moment of the number density
function, these measurements can be expressed as

= (e, Si= el (3.79)
The population balance equation is rewritten in the form
% = —-GDnn+ p(n), (3.79)
G = 2 M (3.80)
0sTm(W2, N)

where the regular matriDy € RV*N is a finite dimensional approximation of the derivative
operatord/d¢ and p(n) is a the net-production of particles in the process. In acighe batch
processp(n) = 0 holds for all times.

The structural observability analysis for both processes lzoth measurement families can be
performed simultaneously:

¢ Output-connectedness: In caseypk (W, Ny the measurement is linear with respect to the
approximated size distributiom therefore the structural matr@s (in this case just a row
vector) can be obtained by inspection. As all weighis # O it follows Cgx = [1,..., 1],
i.e. all model states have direct influence on the measurteamehthe process is output-
connected. As this property does not depend on the dynarilse model, it holds for both
processes.
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In case ofyk = (W, hy/{Wp, n) — which is nonlinear im — at first the linear approximation
has to be obtained:

N 1
Sex ez | (wo. ) — (Wi, mwg | - (3.81)

An evaluation of the scalar products shows that under thengstson thamn is not identically
zero for all times every entry of the row vector is not idealiig zero. Therefore the struc-
tural matrixésk has the fornf:sk =[1,..., 1], and output-connectedness for both processes
under this family of measurements follows immediately.

¢ Non-contraction: From equation_(3]80) it can be seen tlagtbwth rates is non-zero for
all relevant applicationsG vanishes only in case of an infinite bed surface which is never
attained in practical application or in caseMijq = 0 which is contradictory to the aim of
the process.

The linearisation of the convective term in equation (B &#) be obtained by application of
the product rule:

A = %[—(DNn)G]? %(DNn)G"'(DNn)(;_(; : (3.82)

A similar computation using the definition of the growth rgields
9G
on

where the entries ab are given byw; = wa;/(Wa, n) # 0.

=-w'G, (3.83)

Using standard results of multivariable calculus this $etad
A=-Dy|[ln-nw'|G, (3.84)

wherely denotes thé\ x N identity matrix.

From this follows immediately that the structural mat#ixhas a diagonal of ones as a result
of the regularity ofDy, in fact — due to the structure & — it can be shown by evaluation
of the expression above that there are no zero entries inrinelgal matrix. The s-rank of
such a square matrix is by definition equal to the number afroabN.

As both processes contain this convective term and theiadalitterm p(n) of the continuous
process does not eradicate non-zero entries from the wtalichatrix As, both processes posses
the property of non-contraction under these measuremasthey are also output-connected they
are both structurally observable.

Two remarks on the validity of the results have to be given:Ttie analysis neither depends on
a certain number of grid nodes used in the discretisatioronar special discretisation scheme as
long as the form[(3.19) is obtained. (2) The analysis doegaoinit out which measurements are
practically useful as it depends on the sensitivity to cleang the size distribution. This has to
be checked additionally, e.g. in simulations, or can beriatkfrom the process conditions. For
instance in both processes the third momentvhich is proportional to the total mass of particles
in the process, is not a suitable measurement: In case ofatish process it is decoupled from
the dynamics of all other moments, depending only on the amolusprayed liquid (as shown
in Section 2.77); examples of number density functions thatcampletely dierent but give the
same total mass can be generated quite easily. In case obiitiauous process the bed mass
is controlled to be constant, i.e. a change in the numberitgefugction is not detectable in the
measurement of the third moment.
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In case of the continuous process the structural result eandgle more precise: An observability
analysis using the steady-state number density functiobegerformed: Linearising the process
model gives a high-dimensional linear state space moddh®iautus-Belevitch-Popov criterion

the observability of the process given the measurementseahecked, giving a result that is valid
for the linear process and also for the non-linear processrasas the state is in the vicinity of

the steady-state.

3.4.2 Application to batch fluidised bed spray granulation
Infinite-dimensional Luenberger observer

Although the design of infinite-dimensional observers fdimite-dimensional systems is in gen-
eral difficult, for spatially-distributed systems some results eported in the literature, see for
instancel[151, 69, 16, 90,/58] for applications in reactingieeering and separation processes. In
these cases the distributed quantity of interest, e.g.eimpérature in a tubular reactor, is mea-
sured at discrete points in the reactor. The state profiled®t two measurement locations is then
interpolated. The state correction is then motivated byptigsics of the process and calculated
using the interpolated profiles.

The problem in measuring the size distribution is that dscmeasurements, i.e. the measurement
of some distinct sizes, is practically not realisable amdapproach presented cannot be used.

In the case of a scalar, lumped measurement, e.g. the meiiepaizesésp, a dynamic infinite-
dimensional equation for the error in the number densitgfion is obtained, the problem being
the calculation of an infinite-dimensional state corratven the scalar measurement.

First, an infinite-dimensional observer for the number dgrfsinction n(t, £) given the scalar,
lumped measurememt= &so(t) = ua(t)/uo(t) is designed. Afterwards, using the idea introduced
in the first case an observer for the normalised number geiusictiony = do(t, £) = n(t, £)/uo(t)

is designed. The suitability of the observers is testedrrukitions by varying the process condi-
tions.

Case 1: Mean particle size. Given are the population balance equation for the numbesitgen
function in the batch fluidised bed spray granulation preces

on on

— =-G— 3.85

5 7 (3.85)
and the measuremegt= &go(t) = ua(t)/uo(t). Observing that the total number of particles is
constant in a batch process, the number density functiorbeastaled byi(t = 0), giving the
normalised number density functiogg(t, £) = n(t, £)/uo(t = 0). The population balance equation

then reads
0% _ 5. 9%

i o (3.86)
whereG* denotes that the growth rate, evaluated usimgndyo.
The Luenberger observer is set up as
00 _ .00 .
Z0 _ &0k .87

with the corresponding measuremegni 71 (t)/fo(t), that can also be calculated directly from a
given normalised number density function.
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The initial normalised number density functions of the s and the observer model are rep-

resented bygo(0,¢) = qoo anddo(0,¢) = Goo, respectively. Introducing the state observation
error

e&(t, &) = do(t. €) — Go(t. &) (3.88)
the dynamic equation for the error can be written as
%e _ _(g+9% _ 5-9%) _ g — doo— 8
(05 -6 5E) - Kewd). 80.9 =0 tho. (3.89)

The task of designing the correcti&(¥, y, §) requires that from the scalar, lumped measurement an
infinite-dimensional state profile correction is calcutht€his is not possible in general. However,
under the assumptions listed a suitable correction can sigroe:

(A1) The growth rates are fiiciently close to each other, i.6&* ~ G*.

(A2) The (normalised) number density function is mono-meuaa can be represented as a Gaus-
sian function, i.e.

1 1 §—§5o)2
do(t, &) Voo eXp[ 5 ( - , (3.90)
A 2
. 1 1(&-Es0
t ~ -= 3.91
Go(t. & v%exp[ 1 )] (3.9)
whereé&sg, 550 denote the mean values of the Gaussian functionscahdthe variances,

respectively.

(A3) The variances are assumed to be equalgi.e.d.

Assumption (A2) is natural in many practical applicatioffs3) can be satisfied by measuring the
initial normalised number density function in &-tine measurement device from which a suitable
value for the variance can be extracted. Assumption (Al¢ddp on the number density function
n. Given an estimate of the initial normalised number derdigyribution and an estimate of the
total mass of particles in the bed, an estimate of the totalbau of particles can be calculated
yielding an initial estimate of the growth rate.

Using assumption (A1) the error equation simplifies to

oe oe

i -G* (5_5) -k, y,9). (3.92)

In order to derive an equation for the ermthat can be interpreted with respect to the dynamic
behaviour, the state correctitq¥, y, §) is designed such that

k(Y. Y) = ae(t, &) = a(0o — o), (3.93)
with « being atuning parameter
Using the definition o and assumptions (A2) and (A3) yields

e = 0o(t,&) - Go(t. &) (3.94)
2 (2
- C exp[—% (f _(f“‘o)z] _C exp[—% (%) l (3.95)
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s (2
cd {exp[—% (f “550) ]} (50— £s0) (3.96)
050 o Eso(t)=¢50()
_ _ 2 R
- {c (&) exp[—% (=) ]}@50—550) (3.97)
= Qe Y)Y - 9) = KEy.9) x at (3.98)

where the substitutioB = 1/( V2ro) is used and is the aforementioned tuning parameter. What
is done in the state correction design is that a global diginn functione(é, y(t)) based on the
current measurement is calculated by linearising the érbre assumed shape around the current
estimated measurement value.

The dynamic equation for the errecan thus be written approximately as

aeN

~. [0e A
=6 (5) oo 0.9 =00~ o, (399)

0

The designed observer is functional, if the observatiooreris converging te(t, ¢£) = 0. That this
is indeed the case if assumptions (A1)—(A4) are fulfilled wilw be motivated: An application
of the method of characteristics to the error equation giéhe following system of characteristic
equations:

dt

= =1 A1
W ; (3.100)
dé A4

—= = 101
% G", (3.101)
de

Whereas the first two equations give the characteristicesjithe third describes the development
of the error on these curves. From this it is immediately ioleid thate ~ exp(at), i.e. the
error decays approximately exponentially on the charistiecurves originating from all possible
values£. The decay can be manipulated by choice of the design pagamet0. This means that
over time the observation error tends point-wise to zengmgthat the assumptions are satisfied.

This result can be further motivated by considering thewgiah of the square of thie,-norm of
the distributed error. It is defined by

Ea(t) = lle(t. &I, = f eft.£)? de, (3.103)
&

and measures the total quadratic distance of the errorgedblthe zero profile. From the defini-
tion it follows thatE, > 0 andE, = 0if e= 0.

Introducing the functionV(t) = 1/2 E,(t) the following result on the evolution d&, can be ob-
tained:

?j_\t/ = fe(t,g)i—fdg:jge(t,f) (—é*g—g)dg—afe(t,f)zdf (3.104)
o o o

(o)

[eto (—é* g—g) dé — 20V (3.105)

éo
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Table 3.1: Process parameters for the batch spray grasnulatbcess.

Initial bed mass [kg] Mped 100

Mass flow of solid [kgS'] Msggiq 1.38x 1072

Solid density [kg m?] 0s 14400

G [ o
= a—gdg—ZaV (3.106)
o
1

= 3 (G"e) (t, o) elt, o) — 2aV (3.107)
- 22V <O0. (3.108)

In these calculations the vanishing boundary conditioes, G*€)l;, = (G'n - G"d)l,, = 0, and
the fact that the growth rate is independent of the partizie&are used.

From the last line it can be obtained that
V(t) ~ exp(2at), (3.109)

i.e. theL,-norm of the error decreases exponentially to zero undestdted assumptions. It has
to be noted that for non-zero error profilg(s, £) with vanishinglL,-norm the convergence result
yields an erroneous result, as here the time derivativeefuhctionV also vanishes, although
the state observation error does not do so. However, theseetiical limit cases do not appear in
general application and are neglected.

Exponential convergence of the error implies that the degigobserver possesses a certain ro-
bustness against modelling errors and stochastic inflgeecg. measurement noise, as these are
smoothed out. Robustness against modelling errors is tamobecause it is likely for a given
batch fluidised bed process to violate assumptions (Al)}(ABe violation is then counteracted
up to a certain degree by the exponential convergence arits tine error in the estimated state
profile, the number density distribution.

In the following simulation results for two cases are préséntaking into account modelling
errors and parameter uncertainties. For the implementatithe simulation environment Matlab
the infinite-dimensional observer is discretised using efimolume method (cf. AppendixID).
The process parameters are listed in Tab. 3.1.

Scenario 1. Given the initial profiles shown in Fig._3.8 for the processl éme observer model,
respectively, after a process simulation of 10000 secdralgesults shown in Fifg. 3.9 are obtained.
A tuning factora = 0.05 is used which was determined by test simulations.

Compared to a pure parallel simulation of the process matdted by “Simulator” in the fig-
ure), i.e. without correction of the state estimate basetthemvailable measurement information,
the position of the number density function in the processstimated better. However, a slight
deviation in the magnitude is observed. This leads to a rmmshing state observation error which
can also be identified in the plot of the-norm of the error shown in Fig._3.1.0. Additionally, it can
be observed that the error decreases very rapidly in theiiegj. This is due to the initially large
deviation of the number density functions which is also enéén the normalised number density
functions that are used to calculate the state correctiditer Ahis initial phase, which corrects
mainly the position of the estimate, thefférences in the magnitudes are corrected. These are,
however, not easily represented bgrmalisednumber density functions, thus the convergence
speed is decreased almost to zero. This is also true for grexmation of the growth rate which

is shown in Fig[3.111.
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Figure 3.8: Initial conditions used in Scenario 1 for theqass and the observer model. Be-
sides a deviation in the mean particle size the number gefisittions are identical. (Infinite-
dimensional Luenberger observer, Case 1, Scenario 1)
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Figure 3.9: Results obtained from the infinite-dimensidnanberger observer after 10000s. It
can be seen that the shape and the position of the numbetydiemgition are approximated well,
but a deviation in the magnitude is observed. (Infinite-disienal Luenberger observer, Case 1,
Scenario 1)

67



1p. —— Observer |]
------- Simulator
~ 0.8
L
S
o 0.6
©
(] ,
2 e
£ 04
o |
Z
0.2}
O 1 1 1 1
0 2000 4000 6000 8000 10000

tin[s]

Figure 3.10: Evolution of the normalised state observatioar E,. After an initial sharp decrease
the error tends to a steady-state value, signalling the ertbe observed magnitude of the number
density function. (Infinite-dimensional Luenberger olserCase 1, Scenario 1)
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Figure 3.11: Observation results for the particle growth.ralthough a non-vanishing error in the
observed number density function remains, the growth sagstimated almost exactly. (Infinite-
dimensional Luenberger observer, Case 1, Scenario 1)
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Figure 3.12: Results obtained from the infinite-dimensidnanberger observer in Scenario 2
after 10000 s. Although a constant error in the shape of threction profile is present, the shape
and the position of the number density function are appraséh well. (Infinite-dimensional
Luenberger observer, Case 1, Scenario 2)

As can be seen in Fig._3.111 even for a simple choice of initiafile error a violation of assumption
(A1) is likely. However, the observer is able to compensateliis error, so that it can be stated
that it is functional for this scenario.

Deviations from the motivated convergence results can bebasl to the non-linearity of the
process and the resulting non-linearity of the observatioar, as well as the initial violation of
assumption (Al).

Scenario 2. Under the same conditions as in Scenario 1 an initial digioh of the observer
similar to the one shown in Fig._3.8 is used, but with the modifon that the estimated variance
0 is erroneousov- = 0.9¢, i.e. assumption (A3) is constantly violated. As is showifig.[3.12,
the observer is able to compensate for this bias. Howevhasitto be pointed out that for large
deviations the observer will not be able to compensate ttox and will diverge as the approxi-
mations used in the derivation of the state correction, @afhe the calculation of the global shape
function ¢, are no longer valid.

The state observation errBp and the approximation of the growth rate are qualitativetyilar to
Scenario 1. This means that even for a persistent violafiam assumption the designed observer
is functional.

Scenario 3. In this scenario the observer is tested for parametric tmiogies ¢ = 0.05). Start-
ing with the initial profiles shown in Fid. 3.8, in the calctiéa of the growth rate of the observer
an erroneous value for the solid densityiS used:os = 1.1ps. This error influences the growth
rate and by this all states of the observer model.

Even in this case a good approximation of the number densitgtion in the process is cal-
culated by the observer (Fig._3113). However, a wideninghef @éstimated distribution and an
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Figure 3.13: Reconstructed number density function forramatric uncertainty in the infinite-
dimensional Luenberger observer (Infinite-dimensionanherger observer, Case 1, Scenario 3,
after 10000 5s).

under-estimation of the magnitude can be seen, but the iegtill suficiently useful for process
monitoring purposes.

The state observation error tends to a non-vanishing stetadly error, and the growth rate is also
approximated well. In both cases the temporal evolutioroisgarable to the ones obtained in
Scenario 1.

Based on these results it can be stated that the designeiektfimensional Luenberger state
observer is able to reconstruct a number density functioa lratch spray granulation process
given only scalar measurements of the mean diameter of thielpa in the process. A further

improvement of the results presented may be obtained by usifher-order approximations of

the error profiles in the derivation of the correction gy, V).

In-line measurement devices are often able to provide a altged number density function of
the particles in the process. Using the idea presented &emresponding state observer for this
kind of measurement can be designed.

Case 2: Normalised number density function. Given a normalised number density function
y(t, £) = qoft, &) a state observer can be designed using assumption (AL, &&5. An analogous
derivation of the dynamic error equation yielklg,y,y) = —a(y — ¥) = —ae, giving exponential
convergence of the estimation error. The assumptions nma@agse 1 can be relaxed, gt, &)
contains all qualitative information on the profile. This@means that the observer is able to
reconstruct the number density functions in a process dvimey are not close to each other,
initially.

This result is exemplified by the following scenario: Inlifain the fluidised bed a bi-modal
distribution is present as shown in Hig. 3.14. The obsemenly given information on the first
mode on the far left-hand side. This information is not petrées an error in the magnitude of this
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Figure 3.14: Initial conditions used in Scenario 1 for thegass and the observer model. Be-
sides a deviation in the mean particle size the number gehsittions are identical. (Infinite-
dimensional Luenberger observer, Case 2)

mode is present.

The results obtained from the observer after 10000 secdrmscess time are shown in Fig. 3115.
There it can be seen that the initially unknown mode is rettoaed successfully by the state
observer. A deviation in the magnitudes of both modes isrwbsge signalling that the observer
is not fully able to compensate the error in the total numldguasticles in the observer model
[o. It can clearly be seen that the observer structure outpesfohe parallel simulator that only
propagates the initially known mode over time, yielding sutethat deviates strongly from the
process.

In the plot of the normalised err@;, shown in Fig[:3.16 it can be seen that a good approximation
is already obtained by the observer after a short time (cosapi® the total process time). This
time can be further reduced by increasing the tuning factesign parameteg in the observer
model. However, care has to be taken if the measurementiatn is biased by noise. In this
case the noise is amplified by the tuning factor yielding rsrio the calculated state correction.

In every case the time necessary to compute the state gorrgiten the measurement is negli-
gible compared to the time constant of the process, as oelgtthpe function has to be evaluated
which is then multiplied by the tuning factor.

State observation by on-line minimisation

In a first case a state observer using the approach of Zimrbét iddesigned for the measurement
of the number density function, i.g.= n(t, ¢). Although this measurement is trivial with respect
to the reconstruction of the number density function, iall to evaluate the performance of the
state observer under measurements biased by noise and oradgtainties. In the following

cases results for the measurements of normalised numbsitydemctions and mean particle size
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Figure 3.15: Reconstructed number density function afd@00 s. This example shows the short-

comings of the simulator approach, which only propagatesiihially known mode. (Infinite-
dimensional Luenberger observer, Case 2)
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Figure 3.16: Evolution of the state observation error (redised to its initial value). It can be
seen that the observation error decreases over time, isdower than the initial value, signalling
a convergence of the observer state to the process statentrast, the error in the simulator
model, i.e. without correction based on measurementseases, signalling a non-convergence.
(Infinite-dimensional Luenberger observer, Case 2)

72



x 10

- — = System

3 —— Observer |]
-

£ 25¢ .
C
il

S 2t |
=
=

@ 15+ 1
(O]
©

8 1 1
€
>
Z

0.5 1

0 L L L
8 10 12
& in[m] X 10—4

Figure 3.17: Initial conditions used in for the process drdbserver model for the test of a state
observer designed after Zimmer [154]. (Zimmer, Case 1)

are presented and discussed. In order to solve the proceésshaarver equations the population
balances are discretised by a pseudo-spectral methoddperliXD), as it allows in this case to
significantly reduce the number of grid nodes necessarypresent the number density functions
suficiently. As the number of dierential equations to be solved in the observer algorithpedgs
quadratically on the number of grid nodes, a consideral@edjup compared to traditional finite
volume methods is achieved.

Case 1: Number density function. Choosing an observation horizon Bf= 500 seconds and
the initial conditions for the process and the observer msldewn in Fig[3.1l7, the process is
simulated for a process time of 10000 seconds. In each adig@mhorizon the process measure-
ment is subjected to additive noise that is normally disted, i.e.;; ~ N(0,10'9), (i = 1,...) and
assumed to be constant over the observation horizon. The w4l13° is chosen based on the
maximum magnitude of the initial number density function.

As is shown in Fig_3.18, the state observer reconstructsuh#er density function in the process
almost perfectly, i.e. it is able to compensate the randaor&itroduced in the measurement.

In the evolution of the normalised err&, shown in Fig[3.19 the convergence behaviour of the
algorithm can be identified: After a few iterations the eri®almost decreased to zero owing
to the high convergence speed of the Newton-Raphson digorised in calculation of the state
correction.

Similar results are obtained if a parametric error is presethe observer model. For a test an
error of ten percent in the growth velocity is introduced leyting s = 1.1o0s. For the same
initial condition it is shown in Fig_3.20 that the number digy function in the process is almost
perfectly reconstructed, too. However, the error is notesing as smoothly as in the case of a
perfect observer model, due to the persistent error in drawtocity which leads to a persistent
deviation of the observer state from the process state.
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Figure 3.18: Reconstructed profile by on-line minimisatiorhe reconstruction is almost per-
fect, indicating that the observer is able to attenuate areasent errors. (Zimmer, Case 1, after
100005s)
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Figure 3.19: Temporal evolution of state observation e@wing to the convergence order of the
Newton-Raphson algorithm used in the method the profile isagmated quite well after a few
iterations. The remaining error is due to the time-varyioge influence between two observation
horizons. (Zimmer, Case 1)
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Figure 3.20: Reconstructed profile by on-line minimisati®he reconstruction is almost perfect,
signalling that the observer is able to attenuate, in amdito measurement errors, parametric
uncertainties, i.e. a the algorithm possesses robustmepsrfies. (Zimmer, Case 1, parametric
uncertainty, after 10000 s)
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Figure 3.21: Temporal evolution of state observation eare to the error in the growth rate, the
observer state deviates from the process state during ésemation horizon. The deviation is
compensated at the end of the horizon leading to the zigzaepapnce of the error plot. (Zimmer,
Case 1, parametric uncertainty)
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Figure 3.22: Initial condition used in state observatiorobyline minimisation given normalised
number density function measurements. (Zimmer, Case 2)

Case 2: Normalised number density function. Switching to the normalised number density
function as a process measurement, ye= Qo(t, ), leads to a significant change in the per-
formance of the observation algorithm. As can be seen inEEB the algorithm is not able to
provide a reliable estimate of the number density functitimagh the initial deviation is small
(cf. Fig.[3.22). This result does not change when the indfabr is decreased further.

The reason for the igciency of the algorithm can be found in the computation ofessian
N of the functional N which is used to calculate the state correction. It turnstioat by re-
moving the guantitative information on the number dengityction from the measurements, i.e.
normalising the measurement with respect to the total nuwfigEarticlesug, the Hessian becomes
ill-conditioned leading to numerical problems in the cédtion of the state correction. Based on
this it has to be concluded that state observation by ondimemisation using measurements of
the normalised number density function is not likely to gial successful model-based measure-
ment system.

Case 3: Mean particle size. The problem pointed out in Case 2 becomes more severe intase o
alumped, scalar measurement, e.g. the mean particle sixe.the Hessian, due to scaling issues,
is almost identical to a zero matrix, prohibiting the neeggsnversion ofN” in the calculation

of the state correction. Although successful applicatimnghis kind of measurement are known

in crystallisation processes [89], in the present formotait does not yield a working model-
based measurement system. The problem might be remediesintyyauditerent formulation, for
instance the one proposed by Cao et al. [17].

Square-root unscented Kalman filter

In the following simulations results for an SRUKF appliedatdatch fluidised bed spray granu-
lation process are presented using thean particle sizexs the available process measurement.
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Figure 3.23: Result of the state observation algorithmausim-line minimisation given the nor-
malised number density function as process measuremehtsedimated profile is rather poor
compared to the initial deviation in the observer modelyshim Fig.[3.22. (Zimmer, Case 2, after
10000 5s)

Table 3.2: Simulation and design parameters UKF for thetattocess.

Number of discretised states N 100
Simulation time interval [s] teng 200000
Measurement time interval [s] At 500
Variance of measurement fin R, 1010
Process noise covarianceThs 1] R, 100l
Design parameter SRUKF a 0.7

For the tests the balance equations were discretised bytavolume method using 100 equally
spaced grid nodes in the size intervéd, Emad, Where the maximum size was determined by
process simulations. Following the design procedure facented Kalman filters this yields a
deterministic choice of 201 sigma points.

Scenario 1. In this scenario normally distributed measurement noigbérorder of ten percent
of the measurement is added to the simulated plant measorémereate a noisy measurement
which is then used in the estimation algorithm. The samiiimg of the estimator is chosen to be
At = 60s. As initial condition a bi-modal distribution was choder the plant, where the initial
guess provided for the estimator considers only a mono-huistaibution which is overestimated
in magnitude by thirty percent, see Fig. 3.24. This choi@eto a dierence in the growth
velocity of the estimator model that influences all statethefmodel. Other necessary parameters
are listed in Tal.312.

It can be seen in Fig._3.25 that the estimation of the numbesityefunction is quite good. The
known but overestimated mode is reconstructed almostlgxanty a slight deviation in position
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Figure 3.24: Initial condition used for the process and thénetor model. Note that in the
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bution is known. (UKF, Scenario 1)
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Figure 3.25: Profiles for the number density functions atehd of the process simulatioh £
200005s). (UKF, Scenario 1)
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Figure 3.26: Evolution of the state observation efgr After an initial fast decrease it converges
to a non-zero value. (UKF, Scenario 1)

of the mean and a slightly too large variance can be noticdek position of the second mode,
which is initially unknown, is estimated with a very smaffset, and the magnitude of the peak is
overestimated. The time evolution of the estimation epis shown in Figl-3.26. There it can be
seen that the error decreases almost monotonically over fiilme error at the end of the simulation
interval can be further decreased by decreasing the tireevaitof measurements, which yields
more measurements and thus more state corrections.

The rather large deviation in the initial number densitydtioms is chosen to highlight that even

large initial errors can be corrected using this non-linestimation algorithm. The time neces-

sary to compensate the error depends on the initial demiasio in practical application the best

possible guess should be used to increase the convergérstmuld also be noted that the error
E, does not converge to zero but to a non-zero steady-state.isTtile to the measurement noise
present and the approximation of the non-linear probghdliistribution of the estimator states in

the calculation of the state correction.

Scenario 2. In practice not all process parameters are known exactlgrrors might occur in
the setup of the estimator parameters. For application stimation algorithm therefore has to
possess a certain robustness to parametric errors. In E#se lmatch granulation process under
noisy measurements this robustness is tested by applyingsa fiow rate of suspension that is
ten percent larger than the actually supplied rate. As thiarpeter is part of the growth rate, this
error dfects all states of the estimator.

In Fig.[3.2T it can be seen that even in this case the estimatior decreases. It can also be seen
that at end of the process simulation the error is larger thdne other scenario. The estimated

profile (Fig.[3.28) also shows a larger deviation in the paisiand the magnitude of the peaks.

The variance for both modes is also overestimated, buaatdleful estimate of the number density

function is obtained.

The parametric error, if its source is known, can be compgedsdit is estimated as well, but in
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Figure 3.27: In case of parametric errors the estimator atso decreases. This decrease is slower
than in the other scenarios and tends to a fixed value. (Ukdh@8m 2)

general there will be no perfect estimator model and a noo-@gtimation error has to be accepted.

This result shows that in case of a batch granulation pratessstimator is able to compensate
up to a certain degree parametric errors, but in order to gst precise estimates it is necessary
to supply precise parameter values. By a suitable choiceeafsarement interval and number
of sigma points (which follows from the number of grid nodesed in the discretisation of the
observer model), a balance between the accuracy of theagstimand the computational load can
be achieved, as motivated in Biick etall[13]. As was mentldgn¢he description of the algorithm,
a further speed-up can be achieved by using parallelisatitive sigma point propagation step.

Based on these results it can be stated that the applicdtithe W KF algorithm to batch spray
granulation processes given the mean patrticle size yiefdsaional model-based measurement
system for the number density function.

3.4.3 Application to continuous spray granulation with patticle recycle

As was motivated in Chapter 2.7 the continuous process widrmal classification and particle
recycle does possesdigrent dynamic behaviour depending on the mean diameteeahithed
and recycled particles: Either a stable steady-stateilaition is obtained, or a stable limit cy-
cle occurs in the system. The corresponding steady-statdedensity function is unstable —
small deviations will lead to a drift of the process dynantmsards a limit cycle, i.e. sustained
oscillations in the number density function.

In case of a stable steady-state and given a perfect proass imitial errors in the process and
the observer model are attenuated automatically as théysgtate does not depend on the initial
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Figure 3.28: Reconstructed number density function in tiesgnce of parametric model errors.
The parametric errors are only compensated up to a certgieele(UKF, Scenario 2,= 20000 s)
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Table 3.3: Process parameters for the continuous spraylgtemm process

Initial bed mass [kg] Mbed 10.0
Reference bed mass [Kg]  Mpedset 10.0
Mass flow of nuclei [kg3!] My  5.55x10°°
Mass flow of solid [kgs!]  Mggig  1.38x 1072

Solid density [kg m?] 0Os 144Q0
Size of nuclei [m] & 0.1x10°°
Screen size upper screen [m§, 05x 1073
Screen size lower screen [m}4 0.4x10°2
Milling diameter [m] Em 0.35x 1072
Milling diameter (osc.) [m]  &wm 0.2x 102

conditions, i.e. the observer model will converge to thadyestate number density function. The
use of the observer then lies with the compensation of miadedind measurement errors, as will
be demonstrated by the Unscented Kalman filter.

Also presented are results for the application of selectat® ®bservation and estimation algo-
rithms to the continuous process with an unstable steadg-behaviour. The availability of infor-
mation on the number density function then provides meassatuilise the unstable steady-state
number density function by feedback control.

Based on the results in the batch fluidised bed spray gramujdhe state observation by on-line
minimisation is not applied to the continuous process.

For all simulations the process parameters listed in[T&ai& used.

Infinite-dimensional Luenberger observer

The idea for calculation of the state correction in batchagmranulation processes is re-used
to design an observer for the continuous spray granulatrooegss. As was done before, the
correction is designed such that the state observation @em@eases over time.

Given the measurement of the normalised number densityifumg = go(t, £), the equation for

the state observation errer= n — A reads
oe on oo
o8 _ _[gIn_gon
ot o0& o0&

The correction term is then designed such &(@ty, V) ~ ae with a tuning factore under the
assumption that ~ .

) + P(n) — P(N) — k(&,V,9). (3.110)

The problem here lies in the calculation @fjiven the measuremegt The measurement con-
tains only qualitative information on the number densitpdiion, i.e. the shape, because it is
normalised with respect to the total number of particlest tBa error also contains quantitative
information, i.e. the magnitudes:= uoy—fi0y. This means that the information of the magnitudes
must somehow be obtained. One possible solution is to usmtilenumber of particles in the
observer model also as an estimate of the total number a€lesrin the process = fio(y-9). By
this approximation the use of the observer is limited to psses whergg ~ [ig. A fairly accurate
estimate of the total number of particles at the beginnintheforocess can be obtained by taking
a representative sample of the bed material and scalingaitmeatised number density function,
obtained for instance from arffdine measurement device, by the available informationten t
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Figure 3.29: Initial condition of process and observer nhodinfinite-dimensional Luenberger
observer, continuous process)

total amount of bed material. However, over the process #rdeéft in the quantitative result is
to be expected due to uncertainties in the modelling of tlseder, e.g. the characteristic milling
function.

The performance of this setup (fer= 0.025) is presented in Fig. 329 — Fig. 3.31: Given the initial
conditions shown in Fid._3.29 the results at the end of thegm® time are shown in Fig._3]30.
There it can be seen that the position of the number densitgtifan n is approximated quite
well, however, a large error in the magnitude is presentintal look at the normalised number
density functionsyg in Fig.[3.31 reveals that the normalised number densitytfongs estimated
almost perfectly, i.e. qualitatively the observer workdlwehe error in the magnitude is therefore
introduced by the sole use gf as a scaling in the calculation of the state correction.ebsiof
usingygip, an estimate of the total number of particles can be obtdimedch measurement instant
by additionally measuring the total mass of particles inflhiglised bed:

L LY (3111)
o

and then using this estimate in the calculation of the stateection. By this modification also
guantitative results on the number density function canlidained, otherwise the results of the
observer are only qualitative.

The use of a lumped measurement, for instance the meanl@aitie, to reconstruct the number
density function does not prove to be successful. The maibl@m again is the determination of
a suitable relation that calculates a distributed stateection based on the scalar measurement.
Whereas in the batch process the knowledge on the prindippksof the number density function
in many industrial application could be used to motivatehsacorrection, this is not possible in
the unstable continuous case, as here the shape varieficsigthy and a fixed shape for the state
correction will not be able to calculate a suitable coraacti
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Figure 3.31: Reconstructed normalised number densitytifumased to calculate the state correc-
tion. As the profiles are nearly identical the state is nothierr corrected, although a large error
in the magnitude is present. (Infinite-dimensional Luegbepbserver, continuous process, after
10000 5s)
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Finite-dimensional steady-state observer

Using the analytically derived steady-state number dgfigitction a steady-state observer for the
continuous process can be designed. Restricting the fatasliscretised balance model results in
the design of a linear Luenberger observer or Kalman filtee dbserver is designed in a standard
way as a simulator with an additive state correction basetti@diference in the measurements
dh R R N
i -GDh+ P(A) + Ky -9), (3.112)
wherey = h(n) is the measurement obtained from the (non-linear) pladtyaa h(f) is the mea-
surement calculated from the non-linear observer moded.stéte correctioK is calculated using
the linear approximations of the non-linear models in tleinitly of the steady-state solution. The
design problem then reduces to the calculation of théfioients of the observer gain matrix that
can be achieved by placing the poles of the error equatiospeaified positions in the complex
plane. For a dfiiciently accurate approximation of the process model byréisation the num-
ber of states in the observer model is quite high, so an exphdculation of the coficients is
cumbersome. Fortunately, in many simulation packagesMatjab, algorithms are available that
calculate the required ciients automatically from the specified pole positions.

In the present formulation, the poles where not placed eitiglidue to numerical issues. A suit-

able observer gain matrix was determined by considerindi tliemberger observer a limit case of
the Kalman filter, i.e. almost vanishing noise influence, ealdulating the gain matrix by solving

an optimisation programme. This is done by available Mattaliines and the designed linear
observer is applied to the non-linear process.

In the following presentation the results were obtainedgitiie approach to reconstruct the num-
ber density function from the measurement of the mean padize.

Starting from the initial conditions shown in Fig._3132 fomalling diameter that gives sustained

oscillations in the number density function the observealife to compensate the rather large
initial error as evidenced by Fig._3133. In order to show thatcorrection is necessary to obtain
a correct estimate of the number density function in the ggscthe result of using the parallel

simulator only is also depicted. The evolution of the efgris depicted in Fig._3.34 and shows

almost monotone convergence towards zero. This resulmgwhat surprising, given that only a

linear approximation of the process is used to calculatetite correction.

Given these results, the question arises whether othenagiin algorithms are needed to recon-
struct the number density function from measurements ofrtban particle diameter. The answer
is positive for the following reasons: The steady-statecoler uses a quasi-continuous measure-
ment of the mean patrticle size, i.e. the sampling intervahe&surements is negligible compared
to the dominant time constant of the process, whereas in praayical application measurements
are taken only at discrete points in time, i.e. a time-digceampling is performed. Additionally,
the steady-state observer will be susceptible to modelrtainées and noise influences. It also re-
quires the knowledge of the exact steady-state numbertgdnstction, an assumption that might
not hold in many applications as there the exact charatitarisf the screens and the mill are not
known. Thus it has to be expected that the performance ofidlaglg-state observer will decrease
if it is implemented in a time-discrete setting.

That the performance does indeed decrease is shown in BijaBd Fig[3.36. There the observer
is implemented with a sampling time ot = 60s, i.e. only every minute a new measurement is
made available to the observer algorithm. At each samplistaint the plant measurement is
biased by normally distributed measurement noise in theroofl ten percent of the measured
value. As can be seen in the error plot (Fig._8.35), the nasedlerrorE; lies for a significant
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Figure 3.32: Initial condition of the process and the obsemiodel used in the test of the Luen-
berger steady-state observer. (Luenberger steady-dis¢ever)

— — - System
—— Observer
------- Simulator

[EEN
N

=
o

Number density function in [m ]

5 6 7 8

Figure 3.33: Number densities in the process and the obseredel. Although only a linear
approximation of the process dynamics is used to correattingber density function in the ob-
server model based on mean particle size measurementstitnat@on of the density function in
the process is almost perfect. (Luenberger steady-statradr, after 5000 s)
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Figure 3.34: Evolution of the state observation error. Theeover error decreases almost mono-
tonically over time, whereas the error in the estimate plediby parallel simulation strongly
increases. (Luenberger steady-state observer)

fraction of the process simulation above the initial valfi®me, i.e. in the integral measure the
quality of the estimate decreases. In Fig. B.36 it can be #smnthe position of the number
density function is corrected, however, the magnitude ts@oonstructed correctly, contributing
to the large error. Nonetheless, the time-discrete obsearebe applied if the initial estimate is
close enough to the number density function in the process.

If this is not the case, a non-linear state estimation agarisuch as the Unscented Kalman filter
can give more reliable reconstructions of the number dgfigitction as it uses on one hand the
full non-linear process information and on the other hamavigles means to counteract stochastic
influences, for instance measurement noise, figring the possibility to include mathematical
models of the stochastic processes, which results in mgn@ppate state corrections. In the next
section an unscented Kalman filter is applied to the contiautuidised bed spray granulation
process with particle recycle.

Unscented Kalman filtering

One of the main advantages of the Unscented Kalman filteraisitidoes not require specific
information on the structure of the process to be estimakéié means that the algorithm can be
applied without any changes (apart from a change in the desgameter) to the continuous
process. This also allows to use one estimator implementdtir both dynamic regimes, i.e.
stable and oscillatory, as long as there is the possibititghtange the milling diameter in the
estimator model.

In Scenarios 1 and 2 the performance of the estimator fortéidesregime is evaluated, followed
by an evaluation of the estimator in the oscillatory regirSegnario 3 and 4). In all cases the
available process measurement istitgan particle sizevhich is biased by Gaussian noise. In all
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Figure 3.35: Evolution of the state observation error. Iimreetdiscrete setting the observer error
increases with respect to the initial error, but does nawguihout bounds. This signals an error in
the magnitude of the reconstructed number density funcflamenberger observer, time-discrete)
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Figure 3.36: Number density functions in the plant and theeoler model. In contrast to the
guasi-continuous measurement case, feedince in the density functions is present if a time-
discrete setting is used{ = 60 s). (Luenberger observer, time-discrete, after 36000 s)
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Table 3.4: Simulation and design parameters UKF.

Number of discretised states N 100
Simulation time interval [s] teng 100000
Measurement time interval [s] At 500
Measurement time interval (osc.) [s]At  10.0
Variance of measurement fin R, 1010
Process noise covarianceThs1] R, 10y
Design parameter SRUKF a 0.6

cases the simulated measurement from the plant model iglakst in the order of ten percent of
the measured value to create a noisy measurement for theagsti The estimator parameters are
given in Tab[3.4.

Scenario 1. In this first scenario only measurement noise is taken into@tt. As an initial
condition a uniform number density function mass is choseritfe plant. The estimator model
is initialised with a distribution that isfbby approximately thirty percent. Similar to the batch
process this large initial error will slow down the converge but show that even large errors in
the profiles can be corrected. In most practical applicattoe initial error will be smaller and the
convergence will be achieved much faster.

The measurements used in the estimation algorithm and timea¢ésr measurements (calculated
from the estimated number density function) are depictégri3.37. It can be observed that after
an initial period the plant and the observer measurememtgecge to each other, despite the noise
in the measurement signal. This behaviour can be attrittiotéiae inclusion of a noise model in
the estimation algorithm. The plot of the correspondinges: (Fig.[3.38) in the number density
functions of the plant and the observer shows damped dscill@onvergence of the error. The
reasons for this are similar to the batch process, but asaincitnfiguration, the estimation is
excellent: The profiles are almost indistinguishable, ahavn in Fig[3.39.

Scenario 2. In order to test the robustness of the estimator for the goatis process with respect
to parametric errors the mean diameter of the mill that aashe over-sized particles from the
first screen is set to a two-and-a-half percent larger valube estimator than in the plant. This
influences the number of particles that is re-cycled to thdifled bed and by this the growth rate
in the estimator model, and thereby all particles are infiedn

The result for the erroE, shows that although it still decreases, a higher steadg-staor is at-
tained (Fig[(3.40). This can also be seen in the estimatdieptioat shows errors in the position
and the magnitude (Fig._341). Nonetheless, the estimagiguit is quite good and could be used
for process monitoring or control purposes. Additionaltigan be concluded that the milling di-
ameter has a strong influence on the functionality of thenggtr. This influence is will be weaker
for smooth milling and separation functions due to the soupsition of the characteristic ranges.
However, this is only true as long as the dynamic behaviouh®fprocess model used in the es-
timator is similar to the process. If the process and thege®enodel work in dierent dynamic
regimes, the estimator will not be able to reconstruct thalmer density function correctly [13].

Scenario 3. In this scenario it is tested how the estimator performs gecaf an oscillatory
process behaviour. Therefore a milling parameter is chtsgtrieads to sustained oscillations in
the number density function. The same initial conditionrehe stable steady-state case is used,
as it provides oscillations with a reasonable amplitudeeribd. The reconstruction also works
for other initial distributions in the process as long asittittal profile of the estimator is close
enough to this one.
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Figure 3.37: Depiction of the measurements used in the astimalgorithm (with noise) and the
measurement information generated from the estimated euddmsity function. (UKF, Scenario
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Figure 3.38: Evolution of the state observation eEgshowing a damped oscillatory convergence
of the error to a non-zero steady-state. (UKF, Scenario 1)
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Figure 3.39: Number density functions in the estimator dadtgat the end of the process simula-
tion (t = 10000 5s). The estimated profile is almost indistinguishétom the plant profile. (UKF,
Scenario 1)
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Figure 3.40: Evolution of the state observation eEgshowing a damped oscillatory convergence
of the error to a non-zero steady-state. Due to the parameidertainty in the estimator model
the steady-state error is larger than in Scenario 1. (UKé&n&do 2)
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Figure 3.41: Number density functions in the estimator dadtpt the end of the process simu-
lation. The estimated profile shows a deviation in the pasitind the magnitude compared to the
plant profile. (UKF, Scenario 2, after 10000 s)

An illustration of the measurement information used in thigneation is given in Fid._3.42. There
the noise-free process measurement, the measurememhatfon with added noise that is used
in the estimation, and the measurement information catedlérom the reconstructed number
density function are depicted.

In order to fulfil the requirements of the estimation aldunit i.e. the positive-definiteness of the
down-dated matrices constructed in the algorithm (seectimark on the operat@holupdatg, the
measurement time interval has to be decreased. As can bénstenplot in Fig[3.4B the error
decreases only very slowly and non-uniformly. The errorkpezorrespond to the peaks in the
size distribution and are due to the fact that the initiabeim the profiles of process and estimator
model introduces an error in the growth rate that leads tovaatien in the (temporal) position
of the peaks. But as is shown in Fig, 3.44, even in a case fochwhie errorE; is large, the
estimation of the number density function is quite goody @nslight deviation in the position and
the magnitude can be observed.

The magnitude of the error peaks is decreasing over timejte@ifurther increase of the number
of measurements (and therefore state corrections) theemamwce of the error to zero can be
accelerated. The price that has to be paid for this is theaser in computation time that scales
with the number of measurements. A too short measurememvaitmay lead to diiculties in use
of the estimator in feedback control schemes that requimesiime to calculate the appropriate
control inputs to the process.

Scenario 4. To test the robustness of the estimation algorithm an emrtita milling diameter of
the estimator model is introduced in such a way that the gsoaad the estimator model still op-
erate in the oscillatory regime-2.5% of the nominal value). As in Scenario 3, the error deciease
non-uniformly with intermediate increases, but a goodnestion of the profile is achieved with
a slight deviation in position and magnitude of the peakshasva in Fig.[3.45. This means that
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Figure 3.42: Depiction of the measurements used in the astimalgorithm (with noise) and the
measurement information generated from the estimated auddnsity. (UKF, Scenario 3)
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Figure 3.43: Evolution of the normalised state estimatiooree,. (UKF, Scenario 3)
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Figure 3.44: Reconstructed number density function. Tléilprcorresponds to the peak in the
E,-plot at approximately = 4300 s. (UKF, Scenario 3)

for a milling diameter (which has great influence on the dyicapehaviour of the process) that
is close to the nominal value, reliable estimates of the ramdlensity function can be obtained.
However, if the error in the milling diameter is such that firecess and the estimator model op-
erate in dfferent dynamic regimes the estimator algorithm is not abkatoulate an estimate of

the number density function in the process [13].

The results presented in this chapter show that for fluidieetspray granulation processes model-
based measurement systems can be designed that allow ¢imstrection of the number density
function from several classes of measurements. The reoctet number density function can

then be used for on-line process monitoring and, as will legvshin the next chapter, for feedback
control of the spray granulation process.
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Figure 3.45: Reconstructed number density function in cdseparametric error in the milling
diameter. (UKF, Scenario 4, after 10000 s)
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Chapter 4

Model-based feedback control of
fluidised bed spray granulation
processes

4.1 Introduction

Whenever the result of a process, in case of a fluidised bey gpanulation process for instance
the patrticle size distribution or the particle moisturegsloot comply to the required specifications
the process conditions have to be modified such that thefgaeicins are fulfilled. The important
tasks are the identification of suitable process inputmipulated variablgsand the determination
of a relation that modifies the inputs corresponding to threecis error in the process with respect
to the specification. The error is hereby determined withhtbp of certain process outputs,
that will later be calleccontrolled variables They specify the product properties of interest, for
instance the moisture content of a particle.

In an abstract setting any process under considerationecagpbesented as
y=Pou+d, (4.1)

wherey denotes the controlled variables, i.e. the product questdf interest® is an abstract
representation of the process; the manipulated variabesgexternal inputs to the process, are
transformed by the process into the controlled variablégesti to the output disturbances sub-
sumed ind. The task therefore is to determine a relation that gernemateequence of process
inputs u such that a required resuyjtis obtained from the proce$® even if disturbanced are
present.

One way to modify the manipulated variables such that sgecifrocess results are obtained is
the use of control mechanisms. They are in general separdatetivo groups:open-loopcontrol
andfeedback controfalso: closed-loop control).

In open-loop control the process inputare determined by the control law
u=Cor, 4.2)

whereC is an abstract representation of the open-loop contralielr is the desired process result
(reference. This setup is depicted in Fig. 4.1.

Ideally, under the assumption thét= 0 the controllerC could be chosen as the inverse of the
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Figure 4.1: Open-loop control configuration: The input® the process are calculated solely on
the basis of the reference sigmal
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Figure 4.2: Closed-loop control configuration: The input® the process are calculated on the
basis of the deviation between the controlled outpand the reference signal This allows for
the detection of drift in the controlled variables for insta due to disturbances.

process, i.eC = P1:
y:PoP_lor:r 4.3)

yielding perfect control of the process.

However, in practice the disturbance sigda$ not equal to zero and thus a control error remains:
y = r+d # r. As the dfset in the controlled variable is not detected by the coletrothis
configuration may lead to unsatisfying results. Additidy)ahe process, and therefore®™2, is

not known exactly, only a shiciently accurate approximation is available. This furtimdroduces
errors in the control that are not compensated. Even if thegnce of errors can be neglected, the
controllerC may not be realisable practically, depending on the pragsedf the proces®.

In order to remedy these problems the controlled variaplesn be measured and be fed back to
the controller in order to calculate the necessary manigdlmputs. This configuration is depicted
in Fig.[4.2. As can be seen there the input to the controller isao longer the reference signal
but the errore = r —y, i.e. the manipulated variables are calculated on the losi®e deviation

of the current process state from the desired process Biata.abstract setting (witth = 0):

y=%PoCoe. (4.4)

Using this configuration féset in the controlled variables, for instance due to distndes, is
detected by the controller and the process inputs are maditieordingly, i.e. feedback control
possesses an intrinsic capability of compensating diaturds.

A major assumption in the use of control mechanisms is tleatdmtrolled variableg are directly
measurable in order to be able to implement the control lBanly a subset of can be measured
directly and all other information can only be obtained ia form of a measuremeant then the
missing information on the process has to be reconstructea 4, for instance by a model-based
measurement system.

The remaining task is the design of a suitable contr@lewhich is in general a dynamic system,
that will yield the desired process result. Based on thepadsof the superior properties of
feedback control, this configuration will be treated almmstlusively in the following.
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The basis for all subsequent steps is a dynamic model of theegs. The controller is then
designed using the information on the process and is thusdeldbased controller. This term
becomes more explicit if the process model is used direntthé calculation of the manipulated
variables. Implementing the designed controller thenddad closed control loop.

The main requirements on the control loop are (in descenalidgr of importance) [83]:

o Stability: For the concept of stability several definitions exist, whigll be discussed sub-
sequently. The general task is to guarantee that finite exngesignals (e.g. references,
disturbances) only yield finite changes in all internal artbmal signals, for example the
measured and controlled variables.

¢ Disturbance attenuationtor disturbance classes of interdshe steady-state erreishould
vanish, i.e.

lim e(t) = lim r(t) - y(t) = 0, (4.5)

i.e. there is no persistent error in the control result. Tatuirement can be fulfilled by a
suitable choice of the controller structure depending erpttocess structure.

e Dynamics: The transition of the process between two states, for instéine return into
its initial state after the occurrence of a disturbanceukhbe sifficiently fast without too
much perturbations in the measured and controlled vagable

e RobustnessThe three requirements should be fulfilled even if the preocesdel used in the
design of the controller contains errors in comparison tithreal process, for instance due
to unknown process kinetics or the simplification of a comtlet accurate process model.

Based on the nature of the reference signal, i.e. constatimervarying, two types of control
tasks can be defined: First is stabilisation or disturbattemaation: There the reference signal is
constant and the controller is required to keep this refarday counteracting disturbances. This
task can often be found in steady-state operation of a plaatewthe aim is to keep the plant in the
steady-state despite the occurrence of disturbances. edomd task is called model-following:
There a reference trajectory is generated by a dynamic gscaed the task of the controller is
to determine the necessary inputs to the process such tlwdibit's the reference as closely as
possible. This task has to be performed for instance if tloeqss has to be moved from one
steady-state to another. Here the reference is generathdret the process does not attain states
in between the two steady-states that may violate safetyire@gents.

The most important requirement for a control loopsiability, especially if the process itself is
unstable. Two established definitions help to make thetiméuconcept of stability more precise:
input-output stabilityandstate stability

Input-output stability. A dynamic procesyg = # o uis called input-output stable if finite input
signalsu only create finite output signajs i.e. bounded inputs yield bounded outputs.

This definition, although it is useful for many classes ofgesses, does not give information on
the stability of internal signals, i.e. signals in the prsgR that are not measured. Instability in
terms of unbounded, unmeasured signals in the process detaatted.

The concept of input-output stability is therefore extahtiethe concept of state stability.
State stability. A process in state space representation is given by

dx
i f(x), y=h(x, (4.6)
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with x denoting the state variables of the process. A steady-staigon of the process is assumed
to be xs. The steady-state solution is called stable in the sensgagunov [101] if there exists
for a givens > 0 ane > 0 such that

IX(0)—xll <6 = |IX(t)—Xd| <& Vt. 4.7

This means that the state remains within a bounded distaricam the equilibriumxg for all
times provided that the initial distance is smaller than gheen §. The equilibrium is called
asymptotically stable if the statét) returns to the equilibrium:

Jim [Ix(t) - sl = 0. (4.8)

Practically, stability in the sense of Lyapunov can be pdoifea functionV with the following
properties:

V > 0, V=0 X=X, (4.9
av av
m < 0, E_O@x_xs, (4.10)

called aLyapunov functiortan be found. Thel can be interpreted as a generalised energy of the
system and the conditiovi < 0 means that this energy is decreasing over time until thénmoim

V = 0 is attained, i.ex = Xs. This means that starting from a state: Xs the equilibriumxs is
reached. The construction of a suitable Lyapunov functwrah arbitrary process is non-trivial,
only for certain classes direct approaches are known. E&wrthe construction of a Lyapunov
function is only a sfficient criterion for the stability of an equilibrium.

For linear time-invariant systems

dx

i
with the trivial equilibriumxs = O state stability can be tested by considering the eigeasadd
the constant matri: If all eigenvalues lie irC™, i.e. the real-part of all eigenvalues is negative,
then the system is asymptotically stable. If at least onergiglue lies inC* then the system is
unstable. Eigenvalues with zero real-part require spéa@atment, and the stability depends on
the geometric multiplicity of the eigenvalue [83].

AX, (4.11)

In case that the complete process state is measuredy e.x, the definitions of input-output
stability and state stability are equivalent.

Having determined the stability behaviour of the processixt question to be answered is which
process states can be reached by the available manipubaiatles.

State controllability [L49]. A system in state-space representation

&t y=h0o. (4.12)

is calledcompletely controllableif it can be transferred from any initial staxftp) into any final

statex(T) by a finite input functioru(t), t € [tp, T] in a finite timeT. If controllability depends on
the initial timetg the system is calledontrollable at .

Controllability can be tested by methods similar to the tesbbservability, i.e. a controllability
map is constructed from the knowledge fik, u). If this map can be uniquely inverted then the
non-linear state-space system is controllable![101]. Tdteah computation and inversion of the
controllability map is hindered by the same obstacles akeéscomputation of the observability
map: Only if special structures can be exploited globalltesian be obtained.
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In case of linear time-invariant systems

%( = Ax+ Bu, y=CXx, (4.13)

Kalman provided a simple rank criterion for the test of colbility: If
rank [B, AB,A%B, ..., A"'B| = n, (4.14)

wheren is the state dimension, then the linear time-invariantesyds controllable. An evaluation
of this criterion beyonadh — 1 does not provide further information as all powerg\atarting from
A" can be expressed as a linear combination of the lower-ombeens by the theorem of Cayleigh
and Hamilton. A criterion that does not require the evatratf the matrix powers was provided
by Popov, Belevitch and Hautus: If for all eigenvaluesf the matrixA the condition

rank [Al — A,B] =n (4.15)

is fulfilled then the system is controllable.

Similar to observabilitystructural controllability can be defined: A linear system in state-space
representation is structural controllable if

the associated graph tdy, Bs) is input-connected, i.e. every state can be influenced by at
least one manipulated variable, and

s-ranks, Bg] = n, (4.16)

where the structural rank (s-rank) is again defined to be thdmum rank a matrixM with the
structure given by can attain:

s-rankMs = max rankM . (4.17)
€Ms

This criterion also gives just necessary conditions forctirgrollability of the linear systen’( B).

From a practical point of view restrictions in the contrbilay of a process always have to be
expected due to limitations in the realisation of the malaitga variables. If possible these limi-
tations should be incorporated into the controller design.

In the rest of the chapter, design of feedback controllerdlfidised bed spray granulation pro-
cesses is presented. In the continuous process with paricycle, the focus lies on the stabilisa-
tion of the unstable steady-state behaviour in the numbasigefunction; in the batch process a
controller is designed to guarantee a desired number gidnsittion at a given final time. Addi-
tionally controllers are designed to keep the product mogsand temperature within given limits,
i.e. feedback control of the heat and mass transfer duriray granulation is designed.

4.2 Stabilisation of the continuous process with particle ecycle

A result of the investigation of the process dynamics of thatiouous process with external
screening, milling, and particle recycle in Chagter] 2.7 was for certain milling diameters a
stable steady-state number density function was obtaimedleas for others sustained oscillations
appeared in the process. A direct consequence, if the nutnsity distribution is used to char-
acterise the product properties, is a variation in the pcbduality, as well as a variation in the
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product mass flow. For practical application this is undskirThe plant is expected to work in a
steady-state giving a constant product quality at a cohstass flow rate.

If, however, the desired steady-state distribution is alvist then a feedback controller can be
applied to stabilise the unstable steady-state. For théoauntensity function this means that the
occurring oscillations have to be damped out, i.e. the layile has to be eliminated.

As the stability of the continuous process is significantifiuenced by the milling diameter, a
controlled variation can be used to damp out the oscillatiorthe number density function, and
thus establishing a stable steady-state. The mean diawfetee milled particles is therefore
selected as the manipulated variable for the stabilisaétiska The milling diameter can be changed
by increasing or decreasing the rotation velocity of thd.mil

From simulation it is obtained that the total surface arepaaficles in the bed is a suitable mea-
sured output to characterise the dynamic process behavimuthe surface area of all particles

in the bed cannot be measurigdsitu it has to be reconstructed from other measurements by a
model-based measurement system.

In the following various feedback controllers for the slightion of a given unstable steady-state
number density function of the continuous fluidised bed sranulation process with particle
recycle are designed. The principal approach is the foligwi

1. Given the process parameters and a milling diameter thesponding steady-state number
density function is calculated.

2. The process model is linearised in the vicinity of the dyestate. The dynamics of the
non-linear process are approximated correctly in ficgently small region of the state-
space around the (hyperbolic) steady-state as a conseqoktine Hartman-Grobmann the-
orem [125].

3. Based on the linear process model a feedback controlimsigned.

4. The feedback controller is evaluated foffelient scenarios by application to the non-linear
process.

The first step was already described in Chalpter 2.6 and isspeated here. Therefor the design
proceeds with step 2, the linearisation of the model eqostio

4.2.1 Linearisation of the model equations

A non-linear mathematical process model is given in stpges representation

% =f(x,u), y=h(x), (4.18)
that can be obtained for instance from a first-principles eflod) and, like in the present case,
a subsequent finite-dimensional approximation. An equilib, a steady-state, of the process

(Xs, Ug) is assumed to be known.

Then the dynamics in the vicinity of the steady-state candseibed by the linear approximation
of the process model. Introducing the deviation varialies: X— xsandAu = u—us the following
dynamic equation foAx can be derived:

dAX dx  dxs

T od @ (4.19)
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f(Xs + AX, Us + Ausg) — f(Xs, Us) (4.20)

of of
~ f(Xs, Us) + I . AX + 70 . Au — f(Xs, Us) (4.21)
dditx = AAXx+ BAu, (4.22)
where in the last line the matricésandB are defined by
of of
A= — , = — . 4.23
ax XSauS au XSauS ( )
Applying the same procedure to the output equagienh(x) yields
oh
Ay=CAx, C= — . 4.24
y X e, (4.24)
In total a linear time-invariant state-space system isinbth
dd%( = AAX+ BAu, Ay= CAX. (4.25)

An equivalent representation of the linearised processefntath be obtained by considering the
input-output behaviour only. Using the Laplace transfone input-output behaviour can be writ-
ten as

AY(s) = P(s) AU(9), (4.26)

whereAY andAU are the Laplace transforms af andAu, respectively, and the initial condition
x(0) = 0 is assumed. The complex varialsldescribes the behaviour of the system in the Laplace
domain. The transfer functioR(s) describes the transformation of the ingud into the outputs
AY. Itis given by

P(s) = C(sl- A)!B. (4.27)

In practical application the analytical calculation of th&rtial derivatives necessary to construct
the matricedA, B andC is complex and time-consuming. Often the partial derivtigre therefore
numerically approximated, for instance by finitéfdiences|[133]. The accuracy of the approxi-
mation then depends on the order of the method.

The stability analysis can be performed by investigatiorthef eigenvalues of the matrik, or
equivalently by investigating the polesBfs) = N(s)/D(9), i.e. solutionss* of D(s*) = 0. If there
exists at least one eigenvalue with a positive real part thersteady-state is unstable and has to
be stabilised by a feedback controller.

In the following it is assumed that the steady-state numbasitly function is unstable. Feedback
controllers are designed on the basis of the linear procesiehand are applied to the non-linear
process in order to stabilise the steady-state.

4.2.2 Proportional-integral feedback control

Linear proportional-integral feedback controllers are af the most applied types of feedback
controllers. The design process is straight-forward areltdlts sifficient performance in many
applications it is industrially accepted.

Considering the single-input single-output closed cdribop reproduced in Fid. 413 the closed-
loop transfer functiorfrom the reference to the controlled outpuwy, denoted byG,y is

Gy(s) =(1+ P(s)C(9) 1 P(9)C(9), (4.28)
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e u l
r Controller Process — Y

Figure 4.3: Standard closed-loop control configuratiorddeethe design of proportional-integral
feedback controllers.

whereP is the transfer function of the linear time-invariant plamte controlled an€(s) is the
transfer function of the controller to be designed. TheatdBmop relation between the Laplace
transforms of the reference sigridlnd the controlled output can then be written as

Y(S) = Gy (9)R(9). (4.29)

The closed-loop stability depends on the location of thepalf the transfer functioG,y in the
complex plane. For asymptotic stability, all poles havedari the open left half plane. The poles
of Gy can be calculated as the roots of{ P(s)C(s))~* = 0. This equation is also known as the
characteristic equation

The aim of the controller is thus by a suitable choice of a et structure and controller pa-
rameters to place the poles of the transfer function at t@atklocation in the complex plane.
Depending on the choice of the controller structureféedent number of poles can be positioned.

The idea of the proportional-integral feedback contraeto calculate the manipulated variable
U(s) from the control erroE(s) = R(s) - Y(s) by considering two parallel influences: The propor-
tional part calculates the manipulated variable basedysofethe current control error whereas
the integral part sums up the total error over a predefined kiorizon and calculates the manip-
ulated variable based on this information. The proporiiguaet attributes to the dynamics of the
controller; the integral part attributes to the accuracyhef controller as the integral of the error
only vanishes if the error over the time horizon vanishesthBarts are connected in parallel to
calculate the manipulated varialilefrom the control erroE.

In standard Laplace transform notation the proportiontdgral (P1) feedback controller takes the

following form
1 Tns+1
C(s) =K|1 =K . 4.30
(S) ( - TN S) ( Tn S ) ( )

HereK is the controller gain andly is the integrator time constant, i.e. the PI controller jtes
two degrees-of-freedom to influence the position of theatdeleop poles. One important obser-
vation is that the controller only uses the information jded by the controlled output. This
type of controller is therefor callesutput-feedback controller

For the determination of the controller parameti€rand Ty various standard methods exist, for
instance loop-shaping in Bode plots or the root-locus nukthioat is presented briefly in Ap-

pendiX(E, or by solving an appropriate optimisation prohlémminstance the minimisation of the

integral squared control error (ISE)

ISE= | e(t)?dt. (4.31)
/

These standard calculations can be performed with the Hedpftware packages for instance
the Matlab SISO toolbox. The result is a practical standamtroller that — despite its simple
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structure — possesses a robustness against model untestailt also provides in many cases
satisfying disturbance attenuation|[83].

4.2.3 LQ-optimal feedback control

Instead of an output-feedback controller= k(y) where the manipulated variable is calculated
solely based on the knowledge of the measured (controlleghutsy, state-feedback controllers
can be utilised. They calculate the manipulated variabdedan the knowledge of the whole state
information available at the current process time, ue= k(x), wherex denotes the state of the
system.

Apart from only requiring that the closed-loop system ibkat can be furthermore required that
from all possible solutions that stabilise the system ombdsen such that a given cost functional
is minimised, i.e. an optimal control law is sought.

For linear time-invariant systems in deviation coordisate

dA
d—tx - AAX+BAU, Ay=CAx, (4.32)

a large class of cost functionals can be expressed as gigddrats in Ax andAu:
T
J(Au) = f(Ax)T Q(AX) + (Au)" R(Au) dit . (4.33)
0

over the time horizon [Or']. The functional only depends axu because the evolution of the state
AXis restricted by the process model that is in turn drivethbyThe matrice®) andR are weights
that influence the dynamics of the closed-loop system byghimg deviations of the state from
its steady-state value and weighting the use of the manguulaariables. From a technical point
of view the matrixQ must be positive semi-definite, i.eAX)T Q(AX) > 0, the matrixR must be
positive definite, i.e.Au)” R(Au) > 0.

An optimal control law for the linear process model and thadyatic cost functional, LQ-optimal
control, can be derived analytically for arbitrary horizdf, T] resulting in a dynamic control law
Au = —K(t)Ax, whereK is the controller gain matrix, see for instance Anderson odre [5].
In case of an infinite time horizom — oo a static proportional controlleku = —K Ax can be
derived as

Au = —(RIB"P)Ax = —KAX, (4.34)

whereP is the symmetric, positive-definite solution of the algébRiccati equation (ARE):
PA+ATP-PBR!B'P+Q=0. (4.35)

The advantage of the static controller is that it can be cdetpdfiine once given the matrices
A, B, Q andR, whereas the dynamic controller gain has to be computeihen-|

If the given linear time-invariant system is observable ematrollable and for the given weighting
matricesQ andR a symmetric, positive-definite solutid® of the algebraic Riccati equation can
be calculated then the control ladw = —K Ax yields a stable closed loop system and is optimal
with respect to the cost functional (EG._(4.33)) [5]. If fogaen Q andR, no solutionP with the
required properties can be found, the weights have to befreddiy the control engineer until a
solution can be found.

For the practical implementation the process stetehas to be known, either directly or by a
model-based measurement system. In order to use the dedivatriables\y in the cost functional
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the weighting matrixQ can be chosen & = C'C. The LQ-controller is known to possess a
certain robustness against modelling errors but compar@&d tontrollers it is reduced as more
system information (in form of the matricésandB) is used directly in the controller design.

4.2.4 Model predictive control

Although the advantages of linear-quadratic optimal adntrethods were acknowledged in in-
dustries they were not often applied. The reasons for thisbeafound in the theory behind the
methods that was considered elaboratéfjatilties in formulating practical cost functionals in
the required quadratic form and most important the framkvdmes not provide the possibility

to formulate constraints on the manipulated or controlladables that are often encountered in
practical application.

Based on the idea of calculating the manipulated variabthesolution of an optimisation prob-
lem in the 1970s new methods were developed in chemicalirnesisfor instance Dynamic Matrix
Control (DMC) [111] or predictive functional contral [121]

All these methods, which were later subsumed under the labekl predictive contro{MPC),
work after the following general scheme:

1. Based on the current process stdtg) and a predefined trajectory for the manipulatg)
over a finite time horizontg, to + T] the evolution of the process state is predicted with
the help of a mathematical process model, i.e. the solut{tr, X(tg)) over the horizon
[to, to + T] is calculated.

2. A given cost functional is evaluated over the predictiamizon using the predicted state
trajectoryx(t; to, X(tg)) and the input trajectoru(t), t € [to, to + T].

3. In an optimisation step the input trajectory is modifiedrsthat an optimum of the cost
functional over the prediction horizon is achieved. Theroptn inputu(t) is directly
given as the solution of the optimisation problem.

4. The optimum inputi,(t) is applied to the process until the next measurement ofrtheegs
state becomes available. Then the scheme restarts at step 1.

The main ingredients of model predictive control schemes lma identified from this general
description as

e dynamic process model: for the prediction of the evolutibthe process state,
e cost functional: measuring the deviation of the procegestaom a desired process state,

¢ optimisation algorithm: calculation of the optimal inpug,: based on the predicted states
and the cost functional.

The main advantages of model predictive control over lwgpedratic optimal control are that
arbitrary dynamic models are possible, i.e. the type andtre of the model is not restricted
to certain classes; the structure of the cost functionalsis arbitrary, i.e. it does not have to be
quadratic; the solution of the optimisation algorithm carperformed with respect to constraints,
for instance in the manipulated variable.

The main disadvantage of model predictive control in thisegal formulation is that often no
offline solution can be obtained, i.e. the optimum input trajgchas to be calculated on-line
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Figure 4.4: Representation of the general idea of modeigiieg control.

while the process is running. The computation@ibe stems from two sources: The prediction
of the state over the prediction horizon, i.e. the solutibthe dynamic process equations. The
prediction horizon is chosen such that all time-scalesépttocess are fliciently resolved. The
second source is the solution of the optimisation problerthvis often the crucial part.

In the present formulation the determination of model pridee control schemes necessitates
the calculation of the optimum input trajectony for all timest € [to,to + T], which poses
an optimisation problem with an infinite number of decisiariables. In order to reduce the
computational fort a control horizon shorter or equal to the prediction zmmiis chosen and
assumptions on the input trajectory are posed to limit thelmer of decision variables in the
optimisation.

In almost all practical implementation a time-discreteniafation of the model predictive control
scheme is used: Here, time is discretised by a samplingTuxngpe The prediction horizon and
the control horizon are chosen as integer multiples of thgpfiag time, for instance a prediction
horizon ofNpTsample @and a control horizon dflcTsampleWith Ne < Np andN¢, Np € N,

An often used assumption for the input trajectory is thas ppiecewise constant over a sampling
interval in the control horizon, i.eu(t) = uk(t), t € [t t + Tsampd. If time progresses outside
the control horizon, but is within the prediction horizohen it is assumed thaft) = uy,, for all

t € [tx+NcTsample tk+NpTsampid- Thereby the dimension of the optimisation problem is sstilito

N decision variables. This setup is depicted in Eigl 4.4. Tdleutated optimal input trajectory is
then implemented to the process for exactly one samplirgniak before the algorithm is restarted
with the remaining input trajectory as initial guess.

Although in the steps 1-3 of a model predictive control sobhemy an open-loop control problem
is solved, i.e. no further information of the plant state $di in the calculation ofip, the
complete scheme gives a feedback control system by onlyiag portion of the input trajectory
and recalculating the input based on the process measureragiable at the next sampling time,
i.e. the control scheme reacts on changes in the process.stat
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Formulation for linear time-invariant systems
In the following a linear time-invariant state-space syste considered in a time-discrete set-
ting [15,.146]:

X(k+ 1) = AnX(K) + Bnu(k), y(k) = Cmx(K). (4.36)

Introducing tha@ncrements

Ax(K) = X(K) - x(k—1), (4.37)
Ax(k+1) = x(k+1)—x(K), (4.38)
Au(K) = u(K) - u(k—1), (4.39)
Ayk+1) = yk+1)-yK), (4.40)

the following system of equations incremental forncan be derived

Ax(K + 1) = AnAX(K) + BrAUKK),  AY(K + 1) = CrAnAX(K) + CBmAU(K) . (4.41)

Solving the output equation for(k + 1) and rearranging the terms amtended modetan be
derived:

[ Ayx ](k+ 1) = [ Cﬁ:mAm ?H Ayx ](k)+[ Cigm ]Au(k) (4.42)

[0 1 ][ Ayx ](k). (4.43)

y(k)

Using the incremental model, it can be seen that integrdtorthe controlled (and measured)
outputs are present in the model formulation. In formutatine extended model it has to be
verified that it is observable and controllable, otherwrsefbllowing steps cannot be performed.

Introducing a new state” = [(AX)T,y'] the augmented state model can be written in standard
form:
zZk + 1) = AX(K) + BAu(k), y(k) = CzK), (4.44)

where the matrices are obtained by simple substitution.
Choosing the prediction and control horizon as integer iplek of the sampling tim&sampe i.€.
Np andN, respectively, a state sequence and an output sequence dafired:

Z(KIK) = z(K), z(k + 1k), z(k + 2IK), ..., zZ(Kk+ NplK), (4.45)

Y(KK) = y(K), y(k+ 1), y(k+2K), ..., y(k+ Nplk). (4.46)
Here the notatiorz(k + 1|k) denotes the state at sampling tikne 1 given the state information at
sampling timek. The notationy(k + 1|k) is to be interpreted analogously.

The state sequence, i.e. the state prediction based on thdddye of the state at sampling time
k, can be calculated using the augmented process model:

z2k+ 1K) = AZK)+ BAu(K) (4.47)
z2k+2K) = Azk+ 1K) + BAu(k + 1) (4.48)
= A?z(kK) + ABAU(K) + BAu(k + 1) (4.49)

Zk+ Nplk) = AVz(klk) + AN~1BAU(K) + ANP2BAU(K + 1)

+...+ AN NeBAU(K + N; — 1). (4.50)
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Similarly, the predicted output sequence can be calculas@ty the output equation of the aug-
mented model:

y(k+ 1K) = CAZKK) + CBAU(K) (4.51)

y(k+ Nplk) = CAY%z(Kklk) + CAY1BAu(k) + CAN?BAu(k + 1)
+...+ CAVY NeBAU(K + Ne — 1). (4.52)

The important point is that both sequences can be calcutatiedy based on the knowledge of
the statez(k|k) and the input sequenaku(k), ...Au(k + N; — 1). The output sequence over one
prediction horizon can be written more concisely as

Y = Fz(kK) + ®AU , (4.53)

where the vector¥ andAU as well as the matricds and® are created by stacking the equations
for all sampling times, i.e.

y(k+ 1K) ] Au(k)
Y= : AU = : , (4.54)
y(k+ NplK) | Au(k + Ng — 1)
CA ] CB 0 0
CAZ CAB CB 0
F=1 . Q= . . . . (4.55)
CANF’ | CAN.p‘lB CAN.p—ZB . CANI;_NCB

These results can be used to calculate the optimum inpuesegiU given a cost functional.
The actual solution of the optimisation problem depends bether constraints are formulated or
not.

Unconstrained linear model predictive control

Suppose that the model equations are linear and the cosidinalcis quadratic, for instance
J(AU) = (R-Y)(R-Y) + (AU)"W(AU), (4.56)

whereW is an input weighting matrix, and a scaling vector for the reference step trajectory over
the prediction horizon, i.e. = Rr, wherer is a unit-step signal. If no further constraints apart from
the dynamic state equation are present then an analytiiaofor the optimum input sequence
(AU)opt for each prediction horizon can be obtained.

In most cases it is required that the optimum input sequekidg.,: minimises the cost functional,
ie.
(AU)opt = arg rAanJ(AU). (4.57)

The necessary condition foA{J)opt to be a minimiser ofi(AU) is that the partial derivatives of
with respect taAU vanish atAU = (AU)qpy, i.€.

EN
o0 -0. 4.58
IAU (AU)op (4.58)
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Evaluating the given cost functiona(AU) = (R-Y)"(R-Y) +(AU)"W(AU) and using the output
equationY = Fz(klk) + ®AU yields for the optimum input sequence

(AUYopt = (7@ + W) @7 (R— Fz(kK)) - (4.59)
This expression can be split up into two parts giving:
(AU)opt = (7@ + W)~ OTR= (070 + W) @TF2(KK). (4.60)

Here the second part of the right-hand side of the equatiorbeanterpreted as state feedback,
the first part is a pre-filter that will guarantee a zero stestdye control error. This becomes more
explicit if only (Au)opt(K), the actually implemented input, is considered. It can bidem as

(AU)opt(K) = Kyr — Kpmpcz(KK) (4.61)

and reveals the classical structure of a state feedbackotlentwith a pre-filter for reference
tracking. The matrice&, and Kypc can be obtained from the complete solution over the pre-

diction horizon by taking the first row of the matric@ETCD + W)_l cDTRand(CDTCD + W)_1 O'F,
respectively.

It can be shown, see for instance Wang [146], that the optelation to the linear unconstrained
model predictive control problem is equivalent to the LQumgal solution over the same finite
time-horizon. The advantage of the MPC formulation lieshie tlecreased mathematicaloet
that is needed to arrive at this results, for instance nodi@quation has to be solved. How-
ever, special care has to be taken to guarantee the staifitiye closed-loop system and will be
discussed later.

Constrained linear model predictive control
In many practical applications constraints are presenin&iance

e input constraintse.g.Umin < U(K) < Umax

e slope constraintse.g. AU)min < AU(K) < (AUWmax,

e output constraintse.g.Ymin < Y(K) < Ymax Of

e bandwidth constrainte.g.ymin(K) < Y < Ymax(K).
It is also possible to formulatstate constraintse.g. z(k) € Z, Yk , whereZ is a suitably defined
portion of the state space, for instance the region in steteeswhere all states are non-negative.

The constraints are incorporated into the optimisatiorbl@m as equality or inequality con-
straints. If the model equations are linear and

¢ the cost function is quadratic and no constraints are ptetbem the optimal solution for the
control law can be calculated explicitifftine and is equivalent to linear-quadratic optimal
control;

e the cost functional is quadratic and the constraints aealiinAU, then the resulting opti-
misation problem is a quadratic programme;

e the cost functional is expressed as the 1-norm JalU) = Zsjl |Jk| and linear constraints
are present, then a linear programme is obtained.
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The linear and the quadratic programme cannot be solvegtaradily and therefore have to be
solved on-line by iterative optimisation algorithms. Thisses the question of convergence of
these algorithms and the computational time necessarydolage the optimal solution. For linear
and quadratic programmes standard numerical algorittonsgtance conjugate gradient method,
interior point method, or the active-set method are avkilaB quite general treatment of these
methods and their convergence behaviour can be found f@amios in Nocedal and Wright [102].

In order to be evaluable, the constraints have to be exmtésgerms of the decision variables,
i.e. the input sequencgU.

Slope constraint®f the form Au)min < Au(k) < (AU)max can be transformed intAAU)min <

AU < (AU)max This inequality can be split up into two equivalent inedjied, i.e. —AU <
—(AU)min andAU < (AU)max Rearrangement of these equations yields

AU < . 4.62

| ] [ (AU)max] (4.62)

Input constraintof the formumin < U(k) < umax can be expressed in terms®f by observing
that

u(k) = u(k — 1) + Au(k) = lu(k — 1) + 1Au(k) (4.63)
and therefor
u(k) I | O 0 Au(k)
ukk + 1) [ [ 0 Au(k + 1)
: =1 . uk-1)+ : 0 : = Cuuk — 1) + C,AU
uk+Ne—1) | | 1 | U] Augk+ N = 1)

(4.64)
Splitting up this equation as was done for the slope comirgields the set of linear inequalities

Ciu(k—1)+CoAU | S| Umax | (4.65)
Output constraintean be transformed analogously using the output equatidiyiefd
[ o ]AU < Yonin — F2(KK) | (4.66)
In general the constraints can be written as
M1 N1
MAU <N, withM=| My |, N=| Ny |, (4.67)
M3 N3
where the sub-matrices are given by
-Cy | [ —Umin + Cru(k — 1) ]
My = , N = 4.68
! [ 0 ] ! | Umax_Clu(k_l) ( )
~I ] [ ~(AU)min
My = , N> = 4.69
=[] e | (469
| -® ] _ [ —Ymin + Fz(KIK)
M3 = [ o | N3 = | Yo — F2(kK) (4.70)
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Due to the occurrence afk — 1) andz(klk) the matricedN; and N3 have to be updated at every
sampling timek and therefor the optimisation problem requires an on-lofeton.

The cost functional can be expressed as

JAAU) = (R=-Y)"(R-Y)+ (AU)"W(AU) (4.71)
= (R-FzkK)"(R- FzKkKk)) - 2(AU)"®"(R - Fz(k|k))
+(AU)T (@D + W)(AU), (4.72)

where the output prediction equatidin= Fz(kk) + ®AU has been used. The first term involving
(R- FzKklk)) is independent oAU, so it has not to be considered in the optimisation.

The complete optimisation problem, a quadratic progranuae thus be stated as

nA1LiJn J(AU) = nA1LiJn (AU)T(@T® + W)(AU) — 2(AU)T®T(R - Fz(k|Kk)), (4.73)
subject to MAU < N(K). (4.74)
The solution to this quadratic programme gives the requiatrol law. Due to the constraints
the resulting controller ison-linear, i.e. the closed-loop system is a non-linear dynamic system

The question whether this optimal control law calculatedravfinite time horizon stabilises the
closed-loop system is dealt with next.

Stability of the closed-loop system

Stability analysis of model predictive control systems t®mplex task due to possibly non-linear
interaction of the dynamic process model, the cost funati@md the presence of (non-)linear
constraints. In the most general formulation, stabilitalgsis of MPC schemes is still an active
field of research.

In the following stability conditions for linear time-inviant time-discrete systems under model
predictive control are presented, summarising the idedsasguments presented in the works of
Mayne et al.|[96] and Chen and Allgéwer [19].

In the case otinconstrainedMPC with the dynamic model and the cost functional given by

Np
J(AU) = Z[z(k)TQz(k)+(Au(k))TW(Au(k))], (4.75)
k=1
z2k+1) = AZK)+ BAu, (4.76)
y(k) = CZK), (4.77)

and the optimal input trajectory over the prediction hanizgiven by AU)opt, three equivalent
ways exist to investigate the stability of the closed loop:

Closed-loop eigenvalues.As was derived, the control law in the unconstrained casebeagx-
pressed explicitly in terms of the reference signal andte $¢edback:

(AU)opt(K) = —Kmpcz(K) + Kyr . (4.78)
Inserting the control law into the dynamic equation yiels tlosed-loop dynamic equation:

2(k + 1) = (A — BKupc)z(K) + BK,T (4.79)
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The time-discrete system is stable if all eigenvaluesfof BKyipc) satisfy the condition
|/li(A—BKMpc)|<1, i =1...,n, (480)

i.e. all n eigenvalues of the closed-loop system have to lie in theigrtef the unit circle in the
complex plane. As the controller gaif pc can be calculated explicitly given the design matrices,
this condition can be checkedhine. If the condition is not satisfied, then the design magricave

to be modified until the eigenvalues all lie in the interiottlod unit circle.

Infinite prediction horizon. Drawing from the equivalence of the unconstrained MPC gmiub
the linear-quadratic optimal control, by choosing a priaiichorizon that is large enough, in the
limit Np — oo, a stable closed-loop system is obtained, provided ¢hat positive definite and
the matrix pair A, Q'/?] is observable. In a practical computation XAU) the requirement of
Np — oo poses the problems that only a finite number of calculatiamsbe carried out in a finite
time; additionally an internal overflow can occur in the suation, for instance if the process is
unstable, rendering the cost functional useless.

Terminal weight. The introduction of a terminal weight into the cost functibio guarantee

closed-loop stability also draws from the similarity of onstrained linear MPC to LQ-optimal
control.

The terminal weighQ is introduced as
Np-1 B
J(AU) = > 2K QaK) + (Au(k) "W(AU(K)| + Z(Np) QZNy), (4.81)
k=1
and is calculated such that the following condition holds:
0 Np-1

D [297QAK) + (Au() W(AUI)] = D [2)TQAK) + (Au(k)TW(AU(K)|

k=1 k=1

+ 7 [297QAK) + (Au(k) 'W(AU(K)] (4.82)
k=Np

Np-1

> [2KTQaK) + (Au(k) W(AUK))]

k=1

+2(Np)"QZNp) (4.83)

i.e. the terminal weight accounts for all cost on the infititee horizon Ny, c0) Tsamplethat is not
dealt with explicitly in the cost functional and thus avaigithe problem of time restrictions and
overflow in the computation a¥(AU). For the actual computation @ a Lyapunov equation can
be derived, details are given for instance in Mayne et al. [96

Although all three methods are equivalent, the idea of aitexthweight proves the most useful
in stability analysis otonstrainedinear model predictive control. As the controller in gealds
no longer linear, due to the presence of constraints, treedioop system is non-linear, i.e. for
stability analysis non-linear methods have to be applied.

The general approach is to consider the optimal cost fumaltid.e. Jopt = J((AU)op), as a
candidate for a Lyapunov function [19,196]. J§p: is positive definite, which is satisfied @ is
positive definite orp, Q2] is observable, the terminal weight is chosen such dhatequivalent

to the infinite-horizon cost, and\(i)opt(k) satisfies the constraints of the optimisation problem at
k+ 1, thenJopt is non-increasing along the state trajectory of the cldseg-system, i.e.

Jopt(k + 1) = Jopi(K) < - [2K)TQK) + (AU) (YW(AU)(K)]| < 0. (4.84)
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Table 4.1: Process parameters for the continuous spraylgtemm process

Initial bed mass [kg] Mbed 10.0
Reference bed mass [Kg]  Mpedset 10.0
Mass flow of nuclei [kg3!] My  5.55x10°°
Mass flow of solid [kgs!]  Mggig  1.38x 1072

Solid mass fraction [-] Xs 1.0

Solid density [kg m?] 0Os 14400
Size of nuclei [m] &o 0.1x10°2
Screen size upper screen [m§, 05x 1072
Screen size lower screen [m]é 04x1073
Milling diameter [m] ém 0.35x 1078
Milling diameter (osc.) [m]  ém 02x1073

The particular terminal weight can be chosen as the stalglisolution P of the unconstrained
problem on an infinite time horizon, i.e. by LQ-optimal cantr

Using this concept, the idea is to choose the predictionzboriarge enough that the state is
steered into a portion of state space where all constraiatsatisfied and remain satisfied. From
this time forward the stabilisation task is an unconstrdipeoblem and a stabilising solution
exists if the problem is handled as a linear-quadratic cgiticontrol problem for the rest of the
time horizon [956]. An important fact used in this reasonisghat the stability of the closed-
loop system does not depend on the optimality of the foundtisol but on the feasibility of the
optimisation problem, i.e. whether a solution exists [19].

425 Feedback control results

In order to stabilise the unstable steady-state numbeiitgdnaction in the continuous process
the total surface area of all particles, which is proposdiaio the second total moment of the
number density function, is used as the controlled outpatth& manipulated variable the milling
diameter is chosen. For the plant model the population belderived in Chaptér 2.5 with ideal
sieves and mill is used. All other process parameters aggllia Tab[4.ll: The milling diameter
&v = 0.35x10°3 myields a stable steady-state, the milling diametee= 0.2x1072 m corresponds
to an unstable steady-state where non-linear oscillafiotbe number density function can be
observed.

Given the analytic expression for the number density famctis corresponding to the unstable
steady-state with a milling diametég s and a total second momemj s the task of the controller

is to guaranteg@, — ups. That this also implies thai(t, £) — ng(¢) can be motivated as follows: If
the process states are observable by the measurementofesult that was shown to hold at least
structurally, then to each measuremenigfa uniqgue number density function can be assigned.
For uy s this is the steady-state number density function, i.e. bwemence of; to uy s the
number density function in the process comes arbitrardgelto the steady-state distribution.

Although the second momepnp cannot be measured directly, it is assumed in the followlag t
is available and the controllers are evaluated for thislidessurement. Later this assumption is
dropped, angi, is obtained by use of a model-based measurement scheme.

In the following simulations the initial condition shown kfig.[4.5 is used. It is chosen such that
the uncontrolled system yields sustained oscillationtértumber density function.
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Figure 4.5: Initial condition used in the feedback contioldations. The initial deviation from
the unstable steady-state is chosen such that the lineseggonodel is valid.

PI control

The controller transfer functio@(s) is calculated on the basis of the transfer funct@&p derived
from the linearised process model such that the ISE is mgaichi The calculation was carried out
using the Matlab SISO toolbox and yields

C(s) = -1.267x 1078 (4.85)

1-23x10°s
=)
This controller is implemented and applied to the non-ling@cess. In order to calculate the
manipulated variable deviation variables have to be us¢deaimputs to the controller; the result
is then a process input expressed as a deviatior A¢y. Adding the corresponding steady-state
valueéy s yields the control input to the non-linear process.

The results of the application are shown in Fig] 4.6 — Eig. ZRere it is immediately observed
that the PI controller cannot guaranjee— w2 s: The controlled output also oscillates around the
steady-state value, albeit with a slightly reduced amgdituThe plot of the manipulated variable
reveals sustained oscillations. The snapshots of the nuddmsity functions taken at = 40
minutes,t; = 80 minutesfz = 120 minutes, antl, = 160 minutes show that the errors are due to
the large deviations in the milling diameter. However, iiso seen that although the results do
not seem satisfactorily they are at least better than inticentrolled case. This is exemplified by
the plot of the erroE; (Fig.[4.9) that is defined by

2

Ex(t) = IN(t.&) - ne(@)llz = f (n(t, &) - ny(@)2 k| . (4.86)
éo

There it can clearly be seen that although the normaliseat &rquite large it is significantly
smaller for most of the time than in the uncontrolled case.
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Figure 4.6: Evolution of the controlled output. It can berstet it oscillates around the required

steady-state value and does not converge, i.e. the unstablady-state number density function is
not stabilised. (Pl controller)
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Figure 4.7: Plot of the input to the process calculated byptiogortional-integral controller. (Pl
controller)
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Figure 4.9: Plot of the normalised error of the number dgndistribution in the process with
respect to the desired steady-state distribution. For egisym the open-loop error evolution is
also shown. (PI controller)

116



One possibility to improve the controller performance issémy the controller gain to speed-up
the convergence of the control error to zero. Due to the paesef right-half plane zeros in the
plant transfer function, i.es* with P(s*) = 0, this would result in instability of the closed control
loop as the poles move for high gains to the locations of tleszef the transfer function (cf.

Appendix(E), i.e. some poles of the closed loop will crossstadbility boundary, a phenomenon
known ashigh-gain instability

In summary it has to be said that a proportional-integraltrodier is not able to stabilise un-
stable steady-states of the continuous fluidised bed grionlprocess. Instead more advanced
output-feedback controller structures, for instakice-controllers|[105] or discrepancy-based con-
trollers [104], orstate feedback controlletthat utilise the complete available information on the
process state to calculate the manipulated variables bawe tised.

LQ-optimal control

The following linear-quadratic optimal control problem sveonsidered: The cost functional is
given by

J(u) = f |Ccat)TQCaL) + u" (Wu)] dt, (4.87)

0

with Q = 1 andW = 1 for scaling of the output magnitude p$ and magnitude of the manipu-
lated variablety,. The state space model derived from the linearisation anscaetisation of the
population balance equation was augmented by an outpgr#ite, yielding the augmented state

space model

d

f:AﬂHBM@,y@:CmL (4.88)
wherez andy denote the respective deviation coordinates of the lineatairandAu is the control
increment.

The reason why the model is augmented by an integrator focah&olled output is that by the
particular choice of the weighting of the states in the costfional an output feedback is realised.
The LQ-controller in its basic form calculates the manipedavariable proportional to the state
deviation (measured with respect to zero), i.e there is tegial action that is usually required for
a zero steady-state control error. By augmenting the statiehintegral action is included into the
LQ-control formulation. The augmented state model is oladg#e and controllable by the chosen
measured output and manipulated output.

From a practical point of view a time-discrete realisatidrtt@ controller is of interest, so the
model equation and the cost functional were sampled withngpbag time Tsample Yielding a
time-discrete linear dynamic model. The control law

Au(K) = —KZ(K) (4.89)

was then automatically calculated by ttkgr routine (discrete-time linear-quadratic regulator)
provided by the Matlab simulation environment and then engnted at the non-linear process.

The results of the application are shown in Fig. 4.10 — Eig34.There it can be seen that the
LQ-controller yieldsu, — s Initially, the system oscillates around the steady-stalee but

these oscillations are damped out. The snapshots of theerutehsity function in the non-linear
process (Figl_4.12), which are taken at exactly the samestipoints as in the application of
the PI controller, show that the error with respect to thadyestate number density function is
decreasing over time, i.e. the unstable steady-state bdis¢éal by the linear-quadratic optimal
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Figure 4.11: Input trajectory calculated by the lineardpagic optimal control law and imple-
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Figure 4.12: Snapshots of the number density function irflthdised bed under application of
LQ-optimal control. (LQ-controller)

controller. This can also be seen in the plot of the eEgrwhich decreases over time. The
corresponding input trajectory is shown in Hig. 4.11, coradawith the Pl controller the input
oscillates faster but with a much smaller amplitude. Therefs (Fig.[4.13) is also significantly
smaller, converging almost to zero, i.e. the unstable gtstate can be considered as stabilised.

Model predictive control

For the test of the model predictive controller the augmnitme-discrete system is used for
controller design. Using the notation introduced in thetisacon MPC the cost functional is
expressed as

J(AU) = (R-Y)T(R-Y) + (AU)'W(AU), (4.90)

Table 4.2: Design parameters of model predictive controlle

Number of discretised states N 100
Simulation time interval [s] tend 12000
Sampling time [s] Tsample 60
Prediction horizon Np 30

Control horizon N 10
Minimum manipulated variable [M] Unin 0.18x 107

Maximum manipulated variable [m] Umnax 0.22x 1073
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Figure 4.13: Plot of the normalised error of the number dgmstribution in the process with re-
spect to the desired steady-state distribution. The eomrarges almost to zero, i.e. a stabilisation
of the unstable steady-state is achieved witfficient accuracy. (LQ-controller)

with W being a diagonal matrix where all diagonal elements areléquid®. The observability
and controllability conditions can be proved to hold staually as well as numerically at the
steady-state. For the calculation of the model predictorgroller the prediction horizon and the
sampling time have to be chosen. This was done based on thdddu®e of the eigenvalues of the
matrix A: The prediction horizon was chosen corresponding to thenejue that is nearest to the
stability boundary. The control horizon was chosen to besictamably smaller than the prediction
horizon in order to keep the dimension of the optimisatiosbfgm small (cf. Tal._4]2).

In case ofunconstrainedmodel predictive control the optimal control law is caldath as pre-
sented in Eq[{4.59). It is then applied to the non-lineacess.

As can be seen in the plot of the controlled variable (Eigd¥ the total surface area of all particles
in the bed, the oscillations in the controlled variable a@ended out over time, i.eu; — p2s.
The corresponding error in the number density functionfesgnted by the integral measiig
(Fig.[4.15), shows that after an initial increase, the eisatecreased, i.e. a convergence of the
number density function to the required steady-state numbasity function is achieved. That
the error does not vanish totally is due to the fact that oniyesar controller is applied to the non-
linear process and that this controller only generates nput$ at the beginning of every sampling
interval. Errors in the number density function that occithim the sampling interval, where the
input is kept constant, are only partially dealt with so thathe end of the sampling interval an
increase in the error is possible. However, as can be seée isnapshots of the number density
functions a satisfying control result is achieved. The egponding input trajectory is shown in
Fig.[4.16 and shows a behaviour similar to the linear-quadcantrol. The closed-loop poles are
shown in Fig[4.18 where it can be seen that no poles lie autid stability domain, i.e. the
closed-loop system is stable.
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Figure 4.14: Evolution of the controlled output. For the amstrained model predictive controller
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Figure 4.15: Plot of the normalised errgs: As it converges to zero, apart from small temporary
increases, the steady-state is stabilised by the feedlmtiotier. (MPC, unconstrained)
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Figure 4.16: Input trajectory calculated by unconstraineadel predictive control and imple-
mented in a time-discrete setting. (MPC, unconstrained)
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As an example ofonstrainedmodel predictive control the following scenario is consate For
practical reasons the range of milling diameters is limiig&l &ymin < ém < Emmax Yielding
an input constraint for the optimisation problem. All otlpgocess conditions are identical to the
unconstrained case. Proceeding as described, a quadimiiamme with a linear constraint over
the prediction horizon is derived. This programme is solerdine by the Matlab’s optimisation
algorithmquadprogthat utilises an active-set strategy [102]. In the formatabf the optimisation
programme a terminal weight is used to guarantee closquldtability. It is obtained from the
solution of the corresponding LQ-optimal control probleragented earlier in this section.

Similar to the unconstrained case, the oscillations in tirgrolled variable are damped out over
time, i.e. up — w2, as shown in (Fig_4.19). This observation holds also forstia¢e errorE,
with the limitations highlighted in the unconstrained césig.[4.20).

The corresponding input trajectory is shown in Eig. #.2&réht can be seen that the manipulated
variable stays within the posed minimum and maximum valaesontrast to the unconstrained
case.

The snapshots of the number density function show that ibel@ning, compared to the uncon-
strained case, a larger error with respect to the requieatlgtstate is present. This is due to the
limitation of the input which becomes active at the begignifithe simulation (cf. Fid. 4.16). If
limitations on the input are posed that are too strict, thiethe possibility that the steady-state
cannot be stabilised. Thus in parallel to the derivationlithesar controller has to be extensively
evaluated at the non-linear model. The computatioffatieof the optimisation problem was such
that at each sampling time the solution was obtained alnmssamtaneously, thus no significant
delay was introduced into the control loop by the solutiothef optimisation problem.
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Figure 4.19: Evolution of the controlled output. For the stoained model predictive controller a
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Figure 4.20: Plot of the normalised errBp: Despite the input constraints, it also converges to
zero, i.e. the steady-state is stabilised by the constidaedback controller. (MPC, constrained)

124



2ol - — -Reference ||
Controller
2.15¢ ]

2.1t
2.05¢

1.95¢
1.9
1.85 1

ol

1.75¢ 1

Manipulated variable [m]

0 2000 4000 6000 8000 10000
tin[s]

Figure 4.21: Input trajectory calculated by the constrdinedel predictive controller. The input
constraints are shown to be satisfied for all times. (MPCsttamed)

25¢ - - -Reference || 2,51

controlled
“““ uncontrolled

- - -Reference
controlled
“““ uncontrolled

N
N

15f

=
&

i

Number density function [m‘l]
Number density function [m‘l]

o
w»

0.5r

0 é é 4‘1 5 6 7 8 0 é é 4‘1 5 6 7 8
gin[m] x10™ &in [m] x10™
(a) After 40 minutes. (b) After 80 minutes.
x 10% x 10%
- - - Reference - - - Reference
controlled controlled
“““ uncontrolled |] -+ uncontrolled |

Number density function [m‘l]
Number density function [m‘l]

5 6 7 8 2 3 P 5 6 7 8
&in [m] - &in [m] -

(c) After 120 minutes. (d) After 160 minutes.

2 3 4

Figure 4.22: Snapshots of the number density function irflthidised bed under application of
constrained model predictive control. (MPC, constrained)

125



Based on the results presented here the following can bdud®tt Although a proportional-
integral controller is able to reduce the error in the nundesity distribution with respect to
the uncontrolled case, it is not able to stabilise the utstateady-state. This can be achieved
by application of linear-quadratic optimal or model préidie control. LQ-control and MPC are
equivalent in the unconstrained case with respect to thardigs of the closed-loop system. The
advantage of the LQ-controller is that stability of the elddoop is guaranteed by the design
process. The great disadvantage is that no constraintgpaisior outputs can be posed. Model
predictive control on the other hand allows for the formiolaiof constraints that are often present
in practical application. But this leads to an optimisatfimogramme that has to be solved on-
line in order to obtain the required input trajectory, yiatgla non-linear controller. Additionally,
the question of closed-loop stability has to be answeredraggly. Nonetheless, (linear) model
predictive control is a powerful tool for the stabilisatiohunstable steady-state humber density
distributions in continuous fluidised bed spray granutapioocesses with particle re-cycle.

4.3 Feedback control of batch fluidised bed spray granulatio

In the previous section the stabilisation of a given unstatteady-state in continuous process
has been considered. In this section the control of anothpoiitant class is investigateatch
processes

In contrast to continuous processes no steady-state caarivedifor this task, so the full non-
linear behaviour of the process has to be taken into acc@ltitough it is possible to linearise
the process dynamics in the vicinity of a given state trajgcthe resulting process dynamics are
time-varying and pose a similar complexity.

Using the idea of model predictive control yields, due toghesence of a non-linear process model
and a possibly non-linear cost functional and constramtspn-linear optimisation programme
that has to be solved on-line for each sampling interval. ddleulation of an optimal control
law based on the solution of a non-linear optimisation pgogne subject to non-linear process
dynamics is calledhon-linear model predictive contrgNMPC) [4].

Research in NMPC is still active, especially in the fieldstabgity of the closed-loop systerm [19],
and existence and unigueness of the calculated solutioeselguestions are much harder to an-
swer than in the linear case due to thffatient solution structure of non-linear processes. Another
important field of research is the development of new, fastogation algorithms for the solution

of non-linear programmes. Due to its non-linearity, ari@iltsolution can only be derived in a
small number of cases; in all other cases iterative nunleaigarithms have to be applied. In
order to fulfil the practical constraint that the optimal umust be available at real-time poses a
severe requirement on the optimisation algorithms, eafgdor large-scale systems, i.e. systems
with a large number of decision variables or constraints|82].

The scope of this section is limited to an application of tioear model predictive control to a
batch fluidised bed spray granulation process. The prosessdelled as described in Chajter 2.4,
i.e. a suspension is sprayed onto the fluidised, spherigtitlea that grow in size (diameter)
according to a surface proportional law.

Given an initial number density function at the beginningta# batch, i.et = 0, the task is to
provide a desired distribution at the end of process at timeTl under the influence of process
disturbances. Owing to the size-independence of the griamthit can be derived that arbitrary
number density functions cannot be achieved by this proessthe size-independent growth re-
sults in a transition of the initial number density functimnhigher particle sizes. However, this
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scenario is of interest, for instance if the initial dengdipction varies from batch to batch. Then
the use of the same process parameters will yidl@gidint process resultstat T.

The main influence on the growth of particles is exercisedhgyrhass flow rate of of solid in
the sprayxsMsus WhereMg,s denotes the total mass flow rate of spray agds the solid mass
fraction. The suspension or solution is usually stored ligdaanks and is pumped to the process
chamber. Due to flierent éfects, for instance partial recrystallisation of the digsdl solid or
inhomogeneities in the mixing of the storage tank, the sotidtent of the spray can vary over
process time, or between batches.

The spraying of suspension with a varying solid content lgdid to undesired deviations of the
number density distribution at the end of the process timd . For that reason, the solid content
is considered as a process disturbance and the task is tolcet total mass flow rate in such a
way that the desired number density distribution is aclieatehe end of the process.

If the solid content is measurable and no error in the pasitficthe initial number density function
exists, then the solution to this problem can be given eitigliby

M susdedt) Xsded(t)
Xs(t) ’

wherel\'/lsusdes(t)xsdes(t) defines the necessary solid mass flow rate to achieve theerudrhsity
function att = T.

Msugt) = (4.91)

However, the disturbance cannot be measured easily, sevtatidn from the solid content nec-
essary to reach the desired number density functidn=all, Xsqes iS assumed to be unknown.
In order to measure the deviation of the number density fonci(T, £) from the desired number
density functiomyed£) the following cost functional, a purely terminal weight,defined:

[ee)

0= [ InT.8) - neede) . (4.92)
o

which is subject to the population balance equation thatriees the temporal evolution of the
number density functiom(t,£) under the process input= Msg,s This input is subject to con-
straints, i.e. a minimum mass flow raigi,, of zero and a maximum mass flow raitg.x given by
the pump and nozzle used in the plant, ugin < U < Unax

In summary the control task can thus be stated as: Given t@al mimber density function in the
process, a fixed final tim€ and a desired number density function at that time, an inpjgdtory

is to be calculated such that the defined cost functional iémiged subject to the input constraint
and process disturbance.

Due to the unknown character of the process disturbancepogeess time an open-loop control
will not yield suficient results. For that reason a non-linear feedback dostteme is applied.
The principal steps are the same as described in CHapidrwith. one modification: The fixed
time interval [Q T] is divided intoNt horizons of lengtiTsample Starting with the knowledge or
an estimate of the plant state at the beginning of horkzonly the remaining\Nt — k horizons are
considered in the optimisation programme. This stratedgy@vn as ashrinking-horizonand is
depicted in Figl_4.23.

As no further information is available on the process disince it is assumed that it remains con-
stant over the remaining time horizok Nt] Tsample Thus it is tried by the controller to calculate
a one-step optimal control for the remaining process tintds Tontrol input is then recalculated
for each sub-interval, given the information on the numbmsity function and requires the use
of a model-based measurement scheme.
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The reference is almost indistinguishable from the reshtihioed by non-linear model predictive
control. (Batch, NMPC, after 10000 s)

Assuming that the number density function is exactly messler the results in Fid._4.24 —
Fig.[4.26 are obtained: First, starting from a given initiaimber density function, a final dis-
tribution is generated by the population balance modelguainonstant total mass flow rate and a
constant solid content in the suspension. Then for the fasieoNMPC scheme, an error in the
initial position of the number density function is introdut The solid content is decreased by
ten percent and subjected to stochastic disturbances whéatepresented by zero-mean Gaussian
noise. The optimisation programme is solved using an astitelgorithm provided by the Matlab
commandmincon

As can be seen in Fig. 424, compared to the open-loop caseich better process result is
achieved, i.e. the use of a non-linear model predictiverotiat yields an improvement in the
process result. Additionally, as can be seen in[Eig.]4.25he constraint is fulfilled for all times.
The calculated input increases gradually towards the enlbleoprocess as the time available to
compensate for an error is decreasing. Tliisa depends heavily on the disturbance: If it is too
large, a higher total mass flow rate is needed than can bedeavihis may then lead to errors in
the final number density function, if the missing amount afpmnsion cannot be balanced over
the remaining process horizon.

The total computation time needed to calculate the inpyedtary for the remaining process is
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shown in Fig[4.26. An appropriate choice of sampling timae ba derived from this plot: It
has to be chosen such that the optimisation programme caohmxisvell within the sampling
interval. The maximum time necessary is often given by threpaation time necessary for the
whole process horizon, i.e. an appropriate sampling tinmededermined iteratively, by solving
the optimisation programme for [U] and choosind sampleSuch that the computation time needed
for this optimisation is considerably smaller th&gmpie

4.4 Feedback control of heat and mass transfer

Up to now only the solid phase of the process has been coedideith the focus on the size
distribution of the particles. As was motivated in the inmotion, other properties, for instance
the moisture content and the temperature also have an iampantfluence on the resulting product
characteristics. The moisture content and the temperafuttee product are determined by the
heat and mass transfer processes, i.e. in order to achisivedlproduct moisture and temperature
the heat and mass transfer has to be manipulated, for imstgnieedback control.

One way to design a control scheme for the heat and massdrauasfid be to use model predictive
control. Here, in general it is possible to append the reguénts for the states of the heat and
mass transfer model to the cost functional and to extendethaf sonstraints by the corresponding
dynamic equations. This approach results in a central albertr One model predictive feedback
controller is used for all requirements, i.e. the manipdanputs for the heat and mass transfer
and the particulate phase are computed by one and the sainalleon

Although this approach has some appeal due to its simpiicigxtending the feedback control,
it is in case of the heat and mass transfer only of limited uEBe reason for this is that the
heat and mass transfer model possesses a much faster dgnantiie order of seconds, than the
particulate phase, in the order of minutes or hours. Alsentiean residence times of the phases
vary by several magnitudes. A central MPC controller wolldstrequire a very short sampling
time to capture the fast dynamicsfisciently and a long prediction horizon to capture the slow
dynamics of the particulate phase.

The control horizon of the central controller then has tolli@sen proportional to the fast sampling
rate; this necessitates a very often re-solution of tharagétion programme to obtain the input
trajectory for all process inputs. Although this is neceg$ar the states that describe the heat and
mass transfer, the large number of input commands is unseges and may be even unrealisable
— for the particulate phase. The large number of procesdsrgquer the horizon also increases the
complexity of the optimisation programme as each input @naping time has to be included as
a (vector-valued) decision variable in the optimisation.

This reasoning leads to the use of two decentralised cdarsolFor instance a model predictive
controller for the particulate phase as presented in theségion, and another controller for the
heat and mass transfer. Motivated by thattences in the dynamics and the general structure of
the model equations, a time-continuous feedback contrigli® be designed where the focus lies
on practical, linear controller structures.

Using the simplified heat and mass transfer model derivechap@Ii 2.8, the following manipu-
lated variables are available: the mass flow rate of sprah @given solid content), the mass flow
rate of fluidisation gas, the mass flow rate of nuclei fed tostretem, and the inlet temperature of
the gas.

The controlled variables are the mean particle moisturéectrand the mean temperature of the
particles in the fluidised bed process. It will be assumedttiese values are measuriedsitu.
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The moisture content and the temperature of the fluidisafamare uncontrolled.

From a process point of view, the mass flow rate of fluidisagjas and the temperature of the gas
are suitable process inputs. The mass flow rate of suspeissiohsuitable as it directly influences
the product mass flow which in many applications is requitefie constant. The mass flow of
nuclei is often hard to realise practically, as it has to lmelpced separately in an external process.

An analysis of the complete process reveals that it is plgrikecoupled: The states of the dis-
persed phase, i.e. the number density function, do influtrestates used to describe the heat
and mass transfer, i.e. particle moisture content, parteinperature, gas moisture content, and
gas temperature. However, in the process model the heat assltransfer does not influence the
growth or other particulate processes in the dispersedephas the dispersed phase dynamics is
decoupled from the dynamics of heat and mass transfer.

In total, an input-output model for heat and mass transfarb@aderived. It is a multiple-input
multiple-output (MIMO) model due to the presence of two nparéted inputs (gas flow rate and
gas temperature) and two outputs to be controlled (paricdisture content, particle temperature).

As mentioned above, the transition processes of the sththe beat and mass transfer model are

fast. In addition to the open-loop stability of the sub-meses it can be assumed that the heat
and mass transfer is always in the vicinity of a steady-statea linearised model can be used to

describe the dynamics Siciently well.

The linearised model can be represented in Laplace domain by
Y(s) = P(9)U(s), (4.93)

whereY andU are the Laplace transforms of the process outputs and iimpdéviation variables,
respectively, andP is the transfer function matrix relating the two inplits andU, to the outputs
Y1 andYs:

Y2(s) P21(s) P22(s) || U2(9)

The step responses of the input-output model for a simuwi@nstep change in the process inputs
are shown in Fig.4.27. There the total responses, i.e. therpasition of both input influences
on the individual outputs, are shown. It can be seen that botputs do not attain the required
reference value of one, i.e. the open-loop plant does possean-zero steady-state error.

Y1(9) ]:[ P11(s) P1(s) H Ui(s) ] . (4.94)

A further analysis shows that a step in the inflt also influences the outpiYb and a step in
input U, has influence on the outpirt, i.e. there is a cross-coupling between the inputs and the
outputs. Furthermore, it can be shown that all four tranffactions are stable but the use of
feedback control is necessary to attain the required nederealues.

In order to devise a control scheme the coupling of the inpatsoutputs has to be investigated
further. Generally neglecting the coupling in the desigacpss, i.e. setting;12(s) = 0 and
P,1(s) = 0, may lead to unsatisfying closed-loop behaviour or evstalility of the closed loop. If
the coupling is only small then the transfer functidhs andP,1 may be neglected and controllers
designed only foP11; andP,, may yield acceptable control performance.

For the quantification of input-output coupling in MIMO liaetime-invariant models fferent
measures exist: One of them is taupling factorx [84] which is defined as
P12(s) P21(9)

P11(8) P22(s)

If the absolute value of this frequency-depending, emalinoeasure, i.elx(s)|, is considerably
smaller than one, only a small coupling is present and th& ptay be controlled by two separate
single-input single-output controllers for the main tf@ngunctionsP;1 andPoo.

(9 = (4.95)
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Figure 4.27: Open-loop plant response for a simultaneosgiym step change in the mass flow
rate of gas and the gas inlet temperature.

For a given linearised model the coupling factor is depidteBig.[4.28, showing a value much
smaller than one over a very large frequency range, i.e. attem design neglecting the coupling
may yield an acceptable result.

For the design of the single-input single-output contrsliéne practically accepted proportional-
integral controller structure is chosen in order to achiaweero steady-state error in the closed
loop.

The question whether a PI controller structure yields alstalnsed-loop behaviour can be an-
swered before the actual design by the so callestierlinsky index K:

_ detP(s=0))

= TFG=0) (4.96)

Ks|

If this index is smaller than zero the use of proportionadgnal controllers will yield an unstable
closed-loop process regardless of the tuning of the cdetrphrameters. This means that a new
combination of manipulated variables has to be found tletlgia non-negative value. If the value
is positive, then the stability depends on the choice of tharoller parameters — the Niederlinsky
index is therefore only a sficient criterion for general MIMO system. However, in case of2-
systems it is also necessary|[25].

A calculation of the index for a given transfer function mbsleows that the use of Pl controllers
will yield a stable closed feedback control loop.

The PI controllers for the transfer functioRs; andP,, are denoted b1, andCyy, respectively:

TN,i S+ 1)

i=12. 4.97
This (4.97)

Gii(9) = Kp (

This structure fiers two parameters for the design of the closed-loop behgvibe controller
gain K, and the integral tim@y. The integral time can for instance to be chosen such that the
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Figure 4.28: Plot of the absolute value of the coupling faetoan empirical measure for the
coupling of inputs and outputs in multiple-input multipdettput processes.

largest time constant of the plant transfer function is cengated, i.e. the speed of the closed
loop is increased, or to give affigiently damped step response of the closed loop.

After fixing the integration time constant, the controllespesses one additional degree of free-
dom: the controller gain. A suitable value can be obtainedid®y of the root-locus method (see
AppendixE).

The designed controllers are then used to build up the deealback controlle€(s)

Cu() O

CO=1 0" cue

1
] =Kp+Ki 2. (4.98)

with diagonal, constant matricé&s, andK;. The resulting controller is thus a diagonal proportional
integral controller, neglecting the internal coupling lo€ torocess inputs and outputs.

Applying this controller to the plant transfer functi®{s) yields the closed-loop transfer function
Y(s) = (1 + P(9C(9) ™ P(C(9)| R(9) (4.99)

For a simultaneous positive step change in both referenices/®; and R, the step responses
are depicted in Fid. 4.29. The step changes in the referemegsi are scaled to values that are
encountered in practical applications. Whereas the temyer attains the specified reference
value fast and smoothly, initially a large undershoot indtep response of the moisture content
is observed. This would correspond to a very high drying afiglas that are then re-wetted to
achieve the reference particle moisture content. Apantfiloe fact that over-drying of particles
is economically infficient, the re-wetting may also have a significant influenctherconsistency
of the product. In a worst case a required structure of thdywmiois destroyed by the over-drying
and re-wetting, rendering the product useless. It can asibberved that the transition process is
rather slow and may be even too slow if the heat and masséransb be controlled in a short-time
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Figure 4.29: Closed-loop response of the process undegarthh MIMO PI controller, i.e. two
separate single-input single-output controllers, fomaudianeous scaled step change in the refer-
ences.

batch process. Summarising, the designed diagonal piopalintegral controller yields a stable
closed-loop system with a zero steady-state error but #msition dynamics are not ficient.

The consequence of these observations is that the intesoplicg of the manipulated variables
and the controlled outputs should not be neglected in thigrgsocess if a satisfying dynamic
behaviour of the closed-loop process is to be achieved.

One approach to improve the performance of the closed-ktheiidea oflecouplinghe multiple-
input multiple-output plant, i.e. the plant is augmentedillecoupling networlE(s) such that the
coupling is compensated:

P(9ZE(s) = A(9), (4.100)

whereA(s) is a diagonal transfer function matrix. To be more precisstead of ignoring the
coupling in the controller design, the input-output bebaviis transformed by the decoupling
network in such a way that the new input-output behaviougigwalent to two decoupled single-
input single-output plants.

If the transfer functions of the decoupled plants are dehlbye\; andA,, two single-input single-
output controllerC", (i = 1,2) can be designed separately. Combining these contratitrsa
diagonal controlleC* yields for the open-loop:

(P(9E(9))C(5) = P()(E()C7(8)) = P()C(9) . (4.101)

The new controllelC, combining the diagonal controll€®* and the decoupling netwoiX, is a
genuine multiple-input multiple-output controller thaicaunts for the coupling of the inputs and
outputs of the process plant.

The practical realisation of this idea is often hindered lwy fiollowing: In order to compensate
the coupling completely, i.e. for all times and input signahe decoupling network has to be
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a dynamic system itself. In combination with the chosen radletr structure for the diagonal
controllerC* a multiple-input multiple-output controller may resulattis not realisable. For that
reason the decoupling is often limited to the steady-stateinstead of a dynamic netwoB(s) a
static networkg(s = 0) = & is used throughout.

If the steady-state gain of the plant is given by
SIi_)nl) P(s) = Ks, (4.102)
a suitable choice for a static decoupling network is
Eo = K1, (4.103)
yielding at steady-state= 0:
P(s=0)Zg = KKl =1 = A, (4.104)

i.e. a decoupling of the process inputs and outputs is aetliefror all other times and signals,
i.e. s# 0, the compensation of the coupling will not be perfect, dasing the performance of the
control loop. This has to be accepted if this simple, prapoal decoupling network is to be used.

As the decoupling network is only proportional, the resgtmultiple-input multiple-output con-
troller C is only a fixed linear combination of the individual contes C;', i.e. a restriction to
standard linear controller structures will yield a MIMO ¢aniler that can be practically imple-
mented as a network of standard controllers that are easiliahle. For example, if the controllers
C; are proportional-integral, the MIMO controll€ris also proportional-integral.

For feedback control of the heat and mass transfer the stgaty gainKs is determined for a
given steady-state. The static decoupling network is ahasdhe inverse of this matrix, yielding
a steady-state decoupling of the plant and an approximateugéng otherwise. For the transfer
functionsA1 and A, of the decoupled plant, proportional-integral contralare designed by the
root-locus method, yielding:

. 3638s+ 1
37s+1
C; = 0.36 4,106
29 ( o ) (4.106)

The parameters of the controllers are determined itetgtiggarting with the integral timé&y
chosen to compensate the largest time constant of thedransiction and a unity controller gain.
By iterative refinement of th@y and the controller gain the root-locus is shaped such tleat th
closed-loop system is stable and a suitable dynamic belvaigiachieved. The diagonal controller
C* can be written as

v [ 120 0 0033 0 |1_ 1
C(S)‘[ 0 0.36]+[ 0 0.0097]_‘K'°+K'§' (4.107)

S
The resulting multiple-input multiple-output controllersulting from the combination of this con-
troller with the static decoupling netwoEk can be written as:

1
C(s) = 5o Kp + Ep K| g , (4.108)

i.e. the structure of the controller is conserved, only thimg of the proportional and the integral
part of the controller are modified by the decoupling network
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Figure 4.30: Closed-loop response of the process under avP\controller using a decoupling
network for a simultaneous (scaled) step change in theeredervalues.

The step response of the closed-loop system for a simulian@asitive increase in the references
is shown in Fig[/4.30: It can be observed that the temperagfieeence value is now attained more
slowly. The transition is smooth avoiding temperature gahkt may lead to damages in the struc-
ture of the particles due to thermal stress induced by a tagading of the material. A significant
improvement can be observed in the particle moisture ctintédsing the MIMO controller, no
undershoot or overshoot in the moisture content is pregeafditionally, the transition period to
the reference value is shortened significantly.

The design of the above linear controllers assumes that #mepulated variables can attain any
desired value, which is certainly true if the deviation of ffrocess from the steady-state iffisu
ciently small, i.e. the deviation of the manipulated valéalfrom their corresponding steady-state
values is small. In practice, especially if the controllare applied in processes that are not close
to a steady-state, the manipulated variables are subjectuator constraints, i.e. only a limited
range of values for the process inputs can be used or gederate

An application of the linear controllers to the nonlineaathand mass transfer model, using the
parameters listed in Tab. 4.3, is depicted in Eig. ¥4.31 angd4£B2. There the manipulated vari-
ables, the mass flow rate of gas and the gas temperature aireteds The mass flow rate of gas
is limited such that the bed is fluidised, i.8nf < Uy < Ugiy. The minimum and maximum gas
temperatures are chosen either from practical considestfor instance the typical power out-
put of an air conditioning device, or safety considerationse outputs of the controller, i.e. the
inputs to the process, are tested for their compliance tdirthi@ations, and are clipped if they do
not satisfy the requirements.

Starting with an initially very wet particle and a low patidemperature, obtained from open-
loop steady-state simulation, the required particle raoésts set to a significantly lower value
whereas the particle temperature is required to be highbe réason for the specification of a
higher particle temperature is given by the thermodynamiarying: The maximum amount of
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Table 4.3: Heat and mass transfer model parameters.

Specific heat capacity water vapour [Jké ] Cpv 2000
Specific heat capacity liquid water [JKgK ] Cp. 4200
Specific heat capacity gas (air) [Jkd< 1] Cpg 1000
Specific heat capacity solid [JkgK 2] Cp,s 1000
Specific evaporation enthalpy of water [Tk} Aheyap 25x 10°
Solid density [kg m?] 0s 1440
Solid mass fraction suspension [—] Xs 0.3
Ambient temperature’ C] Oenv 20.0
Plant pressure [Pa] Pplant 101300
Reference particle moisture content [(kg water) (kg sofif) Xref 0.008
Reference particle temperatufe] Osref 80

liquid that can be absorbed by the fluidisation gas dependbeeotemperature of that gas, i.e. at
higher gas temperatures more liquid can be absorbed. Regaitow particle temperature would

then require a low gas inlet temperature which would in tugordase the drying potential. Thus
the achievable set of particle moisture contents and teatyres is given by the thermodynamics
of the drying process. In order to test the controllers,reefee values are chosen that lie within
the achievable regions.

In Fig.[4.31 the evolution of the particle moisture contentthe continuous process with external
classification and particle recycle under the two desigrarollers are shown: Although the
diagonal controller acts faster than the controller witlcalgpling network, it undershoots, i.e.
over-dries, the particles and then has to re-wet the matdifiés is a very slow process as by the
inlet gas only a very limited amount of moisture is additibnapplied to the process. This results
in an almost vanishing steady-state error in the particlstee content. The feedback controller
with decoupling network on the other hand acts more slowtyattains the specified value without
over-drying the material.

The discussion also holds for the particle temperatures [@EB2): Although the purely diagonal
controller achieves the reference value faster, it doey swérshooting. Depending on the mate-
rial in the process the overshoot may induce thermal strefisei structure that may damage the
product. Accounting for the coupling of the process inputd autputs a control result without
overshooting is achieved. However, the time necessanhiewthe reference value is increased.
This is also linked to the slower, but more accurate contfohe particle moisture content. The
dynamics of the closed-loop system may be increased by agwfithe controller gains. But due
to the input constraints only a limited improvement may beiecd.

The necessaryfiort for the design of the two controllers is comparable: lthbapproaches the
task is to design two single-input single-output contmslior two single-loop control plants for
instance by the root-locus method. The static decouplingiar& =y can be determined easily
from the plant model contributing only a small portion to ttesign &ort.

Focusing on the particle moisture content as the more stiage particle property, the results
justify the use of a genuine MIMO controller over simple diagl controllers that neglect the
coupling in the process. If only a fast and accurate contrth® particle temperature is needed
then the purely diagonal controller, or even just a singfait single-output controller, is ficient.

In view of the robustness of the controllers, the purely digd Pl controller is able to compensate
for model errors in the main transfer functions for whichsitdesigned. Errors in the coupling
terms can only be expected to be compensated partially wbéek as no information on the
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Figure 4.31: Particle moisture content in fluidised bedggranulation process under twdftir-
ent PI controller structures.
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for the application of linear controllers to non-linear pesses.

effects is directly available to the controller. The MIMO catiigr accounts up to a certain degree
directly for the coupling in the process and thus an incr@askustness with respect to modelling
errors can be achieved.

4.5 Model-based control systems for fluidised bed spray granation
processes

In the preceding section feedback controllers for the tagksntrolling the number density func-
tions and the heat and mass transfer in fluidised bed spraylgtion processes were designed
and tested separately. In this final section both contbee applied simultaneously to the pro-
cesses. Furthermore, the number density functions in tieepses are reconstructed from practi-
cally available process measurements by a model-basedireggent scheme. This combination
of model-based measurement and feedback control for théewudensity function is shown in
Fig.[4.33 and forms together with the controller for the mparticle moisture and mean temper-
ature a model-based control system for fluidised bed spryutption processes.

Whereas it is motivated by the structure of the process ntbdethe control of the number density
distribution and the heat and mass transfer can be perfoatngakt separately, an open question
is whether the combination of the model-based measurergstars and the feedback controller
yields acceptable results. In general it ifidult to decide whether observers and controllers that
are designed separately yield a stable closed-loop systéne open-loop dynamics of a process
is given by

dx

5 = few. (4.109)
the error dynamics of a suitably designed model-based merasmt system is given by

de

and the designed controller is implemented using the etirhaf the statex, i.e. u = ¢(X), the
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Table 4.4: Process and design parameters for the batch gpaaulation feedback control by
non-linear model predictive control.

Initial bed mass [kg] Mped 100

Mass flow of suspension [kgy Msus 1.38x 1072
Solid density [kg m?3] 0Os 14400
Sampling time [s] Tsample 60

closed-loop dynamics of the model-based control schemgieea by
d| x
d | e

:[ F(x p(x — ©)) ]
yep(x-8) |°

i.e. a coupled system of non-linearfidrential equations. General stability results are hard to
obtain. The design of a stable model-based control systereftire relies on process knowledge,
tuning and the experience of the designer.

(4.111)

In the special case that the process dynamics are lineatiivagant, i.e.

% = Ax+ Bu, (4.112)

a linear estimator is used with error dynamics given by

‘;—f = (A-LC)e, (4.113)

and a state-feedback controller is givenusy —K X, the closed-loop dynamics are given by

d
dt

X

o (4.114)

x| [A-BK BK
e | 0 A-LC

From this equation follows that the closed-loop systemablstif and only if the two sub-systems
on the diagonal are stable, i.e. a controleis designed that stabilisés— BK, and an observer

is designed such that the observation error system is stAlteeoretical justification is given by
theseparation theorerfiLl25].

In the following results of the application of the designeddel-based control systems, i.e. feed-
back control of the number density function using a modskldameasurement scheme and feed-
back control of the heat and mass transfer are presented.

4.5.1 Batch fluidised bed spray granulation

For feedback control of batch fluidised bed spray granutagimon-linear model predictive con-
troller is coupled with an infinite-dimensional Luenbergbserver that reconstructs quasi-continu-
ously the number density function from measurements of the@mparticle size in the spray gran-
ulation process (Cih._3.4, pg.163). For the control of heatraads transfer the designed multiple-
input multiple-output linear proportional-integral cooiter using a static decoupling network is
used. The process and design parameters are listed in fend Tab_4]3.

The task is as before to steer the number density functioarttsa given required density function
att = T. Additionally, the particles shall have a specified moistoontent and temperature at the
end of the batch.
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Figure 4.34: Plot of the number density function at the enthefbatch process using a model-
based control scheme consisting of an infinite-dimensidnenberger observer, a non-linear
model predictive controller for the dispersed phase andeal MIMO PI controller for heat and
mass transfer.

As is shown in Fig[[4.34 the use of the estimated number defsiction in the calculation of
the optimal process input trajectory does not yield a sestegeadation of the control result: The
desired number density function and the achieved numbesitgeiunction att = T are almost
indistinguishable, although there is an error in the magiatof the estimated number density
function compared to the number density function in the gssat = T as shown in Fid. 4.35.

The control of heat and mass transfer is also not negatinéliyeinced; after a transition period
the particles possess the desired mean moisture contemheai temperature. For reasons of
comparison the gas moisture content and temperature arstadsvn in Fig[ 4.36 and Fig. 4.37.
With varying gas inlet temperature and flow rate the maximunownt of moisture that can be
absorbed by the gas, the saturation moisture coMmggtalso varies.

The calculation time needed for one iteration of the corgystem is shown in Fi§. 4.88: It consists
of the time necessary to calculate an estimate of the nundresitgt function in the process, the
solution of the non-linear optimisation programme to abtdie optimal process input and the
calculations of the feedback controller for heat and mamsster. It can be seen that the time
needed is significantly smaller than the sampling time ofdbetrol system, i.e. a faster-than-
real-time implementation is possible. As the main computal efort lies in the solution of
the optimisation programme the sampling time can be inectasorder to provide a larger time
margin. This is possible as the particle growth dynamicsratteer slow and the estimate of the
number density function and the control of the heat and nrassfer are performed in a quasi-
continuous manner.
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Figure 4.36: Evolution of the particle and gas moisture eott The required value is achieved
under the constraints posed on the actuated process inputs.
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Figure 4.38: Computational time necessary for one cyclé®htodel-based control system. The
time includes the estimation of the number density functon the calculation of the process
inputs by a non-linear model-predictive and a linear mldtipput multiple-output controller,
respectively.
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4.5.2 Continuous fluidised bed spray granulation

For the task of stabilising an unstable steady-state nurdéssity function in the continuous

spray granulation process with particle recycle, thredrodlars are available: linear-quadratic

optimal controller, linear unconstrained model preditdontroller, and linear constrained model
predictive controller. From a practical point of view thenstrained model predictive controller

is of highest interest as it allows to incorporate explcithrious known process constraints. For
that reason the focus in the test of a model-based contrehsetior the stabilisation of unstable

steady-states is laid on that type of controller.

As the controller is designed using a linear approximatibthe model dynamics in the vicinity
of a given steady-state number density distribution, feeklcontrol of the non-linear process
can only be successful if the process dynamics are appreedyrianear, i.e. the process must be
suficiently close to a steady-state.

In order to practically implement the designed constraimediel predictive controller, informa-
tion on the second momep of the number density function in the process is requiredvatuate
the cost functional and to guarantee a zero steady-state €wirthermore, the knowledge of the
number density function in the process is needed to evatbateontrol law, i.e. to calculate the
necessary milling diametefy. If the number density function is known, all moments can be
calculated, thus the reconstruction of the number densitgtfon from process measurements is
necessary.

In the following it is assumed that threean diameteof all particles in the process is available as
a process measurement at discrete points in tiek Tsampie Yk = Y(tk) = pa(te)/uo(ts). The
measurements are taken with the same sampling time of the &tR@thmM Tsampe The reason
for the choice of a time-discrete measurement is that itallfor a probe-internal averaging of
guasi-continuous measurements and by this for a suppnesiooise. The process parameters
and design parameters are the ones reported in[(Tdb. 4.T18y. Tab[4.2 (pd_119), Tab. 4.3
(pg.[13T).

The task therefore is to calculate an estimate of the numémesity functionn”of the number
density functionn using the available process measuremgntand using this information to
calculate the control law and apply it to the non-linear pscplant.

As the process has to be already in the vicinity of the stesale in order to be stabilise by
linear control, a linear time-discrete Luenberger obses/applied to estimate the number density
function in the process from the time-discrete process oreasents.

Although the process dynamics and the chosen observergsosdiaear structure, the closed-loop
dynamics is not linear, due to the presence of constraintiseirtontroller calculation. Therefore
the closed loop is non-linear, and the separation theoreys dot hold in general, i.e. the stability
of the closed-loop with an arbitrarily designed observards guaranteed in general; this would
only be the case if no constraints are present in the coatrfdrmulation.

The initial deviation of the observer estimate from the psxchas to be such that in the simulation
of the observer equations the process is also approximiatelyr; in that case the observer based
on a linear model is able to correct dynamically the deviatio

In Fig.[4.39 — Fig[4.42 the results of a test complying to ¢hegjuirements are shown: There an
initial number density distribution in the observer is clesuch that it deviates by two percent
from the number density distribution in the process. Thiiahtondition in the process is chosen
such that it yields sustained oscillations in the numbesstgrfiunction if it is not controlled (cf.
Fig.[4.5).
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Figure 4.39: Evolution of the controlled output using theéreates provided by the time-discrete
Luenberger observer in the calculation of the control law.

In the plot of the controlled output shown in Fig. 4.39 it candeen that the output converges to
the steady-state reference, i.e. the steady-state idistabby the model-based control scheme.
It can be further observed that in comparison to the idea,das the direct measurement of the
number density function in the process (cf. Fig. #.19), th@vergence is slower. This is due to the
initial deviation of the observer information from the pess, that has to be corrected gradually
with each available measurement. If the observerfisciently close to the process a convergence
similar to the ideal case is achieved.

In the plot of the normalised errdt, in the number density function it can be seen that the con-
troller stabilises the unstable steady state in this imfegeasure: Apart from temporary increases
which are due to the non-linearity of process, the timerdiecnature of the control inputs and
state observations, the error is bounded, i.e. there is adaolideviation of the number density
function in the process from the required steady-stateiloligton.

In the snapshots of the number density function in the psoiEd®n at subsequent times (Eig. 4.41),
it can be seen that the deviation is indeed bounded. The tenessary for the number density
function to converge dhiciently close to the steady-state is increased due to thialiaironeous
influence of the estimate provided by the state observermicdntroller calculation.

The input trajectory calculated by the model predictivetaalter is shown in Fig. 4.42: Compared
to the ideal case the input oscillates faster and the inmgtcaints become active more often. This
is also a result of the initial error in the estimate whichHgsemore extreme results.

In summary, it can be stated that this configuration of a cams&d model predictive controller
and a linear Luenberger observer is able to stabilise a gimstable steady-state number density
distribution.

If non-negligible measurement noise is present in the mbdseéd control system, a decrease of
control performance has to be expected. This is due to theeimée of noise on the state correction
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Figure 4.40: Plot of the normalised errBp: Despite the input constraints, it also converges to
zero, i.e. the steady-state is stabilised by the constidaedback controller.

as there the noise enters directly by the observer gain.

In Fig.[4.43 — Fig[4.46 it is shown that the performance ieewldecreased: There the process
measurement is subjected to additive zero-mean Gaussisa efore it is processed.

The controlled output now oscillates non-linearly aroumel teference value, i.e. a bounded non-
zero steady error remains. The initial transition phasetdubke error in the observer is not pro-
longed, however, the sustained influence of the measuremes prevents a smooth convergence
to the desired reference.

Same observations can be made in Eig.}4.44: There it can bdtsaethe integral error measure
does not converge to zero but is stabilised at a non-zer@ valu

In the number density functions shown in Hig. 4.45 it can lmngbat the results are still accept-
able, especially if they are compared with the uncontroiede or in case of using a Pl input-
output controller.

The dfect of the measurement noise can be observed quite gooddoniguted input trajectory:
The error in the estimate introduced by noise is process#ukiprediction and thus accumulated.
Depending on the sign of the error, the accumulation yietagrol inputs on the boundaries, i.e.
the constraints are active.

This is an unwanted result, from a practical point of viewppsration of the actuator in its limits
often yields material fatigue and a shortened actuatorsfi@n. One possibility to decrease the
influence of measurement noise is the use of averaging nezasut filters that filter out the high-
frequency noise. These can easily be implemented on-siecé#ssary. Another possibility is the
use of a higher measurement sampling rate, which reducesféot of an individual noise signal
over the sampling horizon, especially in the case of higlatiency noise.

A third possibility is the use of state estimators that take account the statistics of the noise to
calculate an estimate, i.e. a filtered estimate is providéme state estimator that is of particular
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Figure 4.41: Snapshots of the number density function icdméinuous spray granulation process
with external classification and particle recycle underiapfion of constrained model predictive
control using a Luenberger observer for the reconstruatiotihe humber density function from
plant measurements of the mean particle diameter of aicpestin the bed.

Figure 4.42: Input trajectory calculated by the mode-basmutrol scheme using a constrained
model predictive controller and a linear Luenberger oleser¥he input constraints are satisfied

for all times.
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Figure 4.43: Controlled output by the model-based contstesn with measurement noise. The
output does not converge to the reference value and a bosteledy-state error remains.
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Figure 4.44: Plot of the normalised erigs: The error does not converge to zero but is stabilised
at a not-zero value.
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Figure 4.45: Snapshots of the number density function icdméinuous process under application
of model predictive control and a Luenberger observer. imghenario the plant measurement is

subjected to noise.
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Figure 4.46: Input trajectory calculated on the basis afreies subject to measurement noise.
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interest in the application to non-linear process is thecened Kalman filter (UKF). As was
shown, it is able to provide reliable estimates in the namdr process using measurements that
are biased by noise. The practical implementation is hadiey two facts: The sampling time of
the estimator has to be much shorter than the sampling tintteeafontroller in order to provide

a reliable estimate. This requires a permanent synchitigrisaf the measurement and control
sampling times. Additionally, the computationdfat to calculate an estimate of the number
density function is significant: In tests up to eighty petogfithe controller sampling interval is
spent in the calculation of a state estimate, introducingrifecant delay between the time a new
measurement becomes available and the time the input tadlcegs is calculated based on that
state estimate.

For that reason a special implementation of this non-lirstimator is necessary using as much
parallelisation of the algorithm as possible to reduce tiraputation time. This requires special
hardware which may become a significant part of the totalaftste model-based control system.

In all applications of model predictive control in connectiwith a Luenberger observer the com-
putational time for one control cycle is negligible, i.e. chismaller than one second. Therefore, if
the process operates in the linear region of an unstabldysitate this configuration is preferred,

possibly augmented by a moving-average measurement ilferther decrease the influence of
noise on the estimate of the number density function in tbegss.

In summary, the combination of a constrained model predictiontroller and a linear time-
discrete Luenberger observer into a model-based contsbéisyyields acceptable results in the
stabilisation of an unstable steady-state number dengitgtibn.

As was motivated in the batch control application, the hedtrmass transfer can be treated sep-
arately from the control of the dispersed phase. In all cabesdesigned controllers are able to

achieve the required values for the particle moisture ctrgad temperature, as long as the refer-
ences can be reached in compliance with the posed inputraoriston the mass flow rate of gas

and the gas temperature.

45.3 Summary

In this chapter feedback control methods for the stabitigadf unstable steady-state number den-
sity distributions in continuous fluidised bed processeth wkternal classification and particle
recycle were investigated. It was shown that simple inpupat control by proportional-integral
controllers does not achieve satisfying results. Thuse degdback control schemes were fur-
ther investigated, namely linear-quadratic optimal agnénd model predictive control. It was
shown that both schemes yield a stabilisation of unstabkedgtstates. From a practical point of
view model predictive controllers are advantageous asdhey the incorporation of process and
actuator constraints in the calculation of the control law.

In addition to the stabilisation an application of feedbaokitrol to a batch process was consid-
ered: Here the task was to achieve a given number densityidarat the end of the batch despite
unmeasurable disturbances in the composition of the sgrayspension. It was shown that a
non-linear model predictive control scheme is successful.

Apart from the control of the number density distributiorthie processes it was investigated how
the particle moisture content and temperature, two othporitant product characteristics, can be
influenced. Here, due to the stable open-loop behaviourastdlf/namics a linear multiple-input
multiple-output controller with a proportional-integrstiucture was designed. In order to account
for internal coupling of the process inputs and controllatpats a decoupling network is designed
that improves the controller performance.
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In a last step the state feedback controllers were combirithd state observers that allow to
calculate estimates of the quantities required in the etia of the control laws, i.e. the number
density function, from practically available measurersent was shown that this combination
yields acceptable results for the stabilisation of unstabbady-states in the continuous process as

well as in the batch process.
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Chapter 5

Summary

Particulate products play a major role in many industries,jiristance pharmaceuticals, foods or
fertilisers. Many product properties, for example the alisson characteristic of a pill or the
flowability of a powder, can be directly related to the pagtioroperties.

As the particles in a powder often are not uniform, i.e. thigiedin their characteristic properties,
the product also is not uniform. Depending on the field of @ggibn, a property distribution is
either undesired or only specific distributions are acdspta

An important class of processes for the production of sot@hglar products from liquid raw
materials, for example suspensions, or solutions whersdlig is initially dissolved in a liquid,
is fluidised bed spray granulation. These processes cambeaither batch-wise or continuously,
offering a wide-spread use of the process.

Depending on the process configuration, fluidised bed spragugation processes can exhibit
different dynamic behaviour, for instance in continuous modsalne steady-states can occur.
This may result in undesired product characteristics egintar product flow.

A way to influence the dynamics of a process towards a des@leaviour is the use of process con-
trol. For fluidised bed spray granulation three propertiescd most importance: the particle size
distribution, the particle moisture content and the pkrttemperature as they have tremendous
influence on the product properties and the necessary postgsing of the produced granules.

The major aim of this work therefore was to determine a preaEsitrol strategy that allows
to manipulate the particle properties in fluidised bed smranulation towards desired product
properties.

Spray granulation or layering granulation is a complex psscinvolving particle formation as
well as heat and mass transfer between multiple phases. pogeiful influence on the dynamics
can therefore only be devised if a model of the dominant pimema is available and used for
controller design and implementation. This leads to thke tdglesigning a model-based control
system for the realisation of desired product charactesish fluidised bed spray granulation
processes, for batch as well as continuous operation.

To that aim in Chaptdr]2 a mathematical model for the desonpif the dynamic behaviour of
the particle formation process and heat and mass transfieriiged. In order to account for the
distributed character of the particle properties, esfigdize particle size, a macroscopic approach
using population balances is used to describe the tempashltion of the particles with respect
to the property. For the case of particle growth by layerirgg,the growth of the particles induced
by the solid contained in the sprayed suspension, a growghgaerived.
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The considerations up to this point allow to describe théugiam of the particle size in a batch flu-
idised bed spray granulation process that is growth-damihaor the description of a continuous
process the external apparatuses which are required fizlpae-cycle also have to be modelled.
Here one specific type of continuous process with exterrmadymt classification by screening and
recycle of particles with milling of over-sized particlesdonsidered, and a mathematical model
for the particle size distribution of the particles is dedv

In comparison to the batch configuration this process is roomgplex due to the interaction of the

screens, the mill, and the influence of the re-cycled pasion the particle growth in the process.
An investigation of the process dynamics reveals that ddipgnon the parametrisation of the

screens and the mill, which is motivated by the desired prbdpecification, unstable steady-

states can occur. This means that even very small distugbanehe process lead to a loss of the
operation at the desired steady-state and, thereby, t@@lgsoduct quality.

The control task in this case is therefore the stabilisatfamstable steady-states in the continuous
process with external classification and particle recytibethe batch configuration a strategy to
guarantee a desired product distribution at the end of ttelhhender process disturbances is to be
derived.

The heat and mass transfer determines the two other prodymtnties under consideration, i.e.
the particle moisture content and the particle temperatitere process controllers are to be
used to guarantee a mean moisture content at a mean pagtighetature. For controller design a
simplified mathematical model based on mass and energydesdor the fluidised bed is derived.

In order to influence a process, information on the curreatesif the process has to be available.
This can often be gathered by direct measurement of theebtteg quantities, for instance the
particle moisture or the particle temperature. In case efparticle size distribution the task
is not simple: Although in-line as well adtdine methods for the characterisation of particles
are available, the successful application is often hirdidne technical aspects. In case of in-
line measurement the calculation of the size distributremfthe actually measured chord-length
distribution is highly susceptible to measurement noisssibly introducing large errors into the
calculated result. @-line methods are often more accurate than tireisitu counterparts but
they require a removal and transport of particles from thecgss to the measurement device
introducing a large and often unacceptable time delay.

For that reason the use of model-based measurement systggrapbdsed in Chaptéf 3. They
allow the reconstruction of not directly measurable questifrom more easily obtained measure-
ment information by use of a mathematical process modellifétiog an iterative approach, the
estimation of the unmeasurable quantity is corrected orb#sis of the available measurement
information. After a presentation of the fundamentals ofisidbased measurement systems, sev-
eral diferent approaches are presented and applied to the taskooftacting the particle size
distribution from limited process measurements in botHigonations.

In simulation tests it was shown that the approach of modekd measuring is able to reconstruct
the particle size distribution from limited measuremertadéor instance the mean particle diam-
eter of all particles in the process, to dfstient degree. The choice of one specific method, and
thereby the obtainable accuracy, is determined by the psocenfiguration and conditions, for
example batch or continuous mode or strong presence of meeasnt noise. If the continuous
process is in the vicinity of a steady-state then an obsdyaeed on a linearised process model
is able to reconstruct the number density function quitd.viiethe number density function is to
be reconstructed during start-up of the process, thenineasl observers or estimators have to be
used. The non-linear algorithms can also be used in stdatly-aperation but due to the higher
computational costs, linear observers should be prefeilfkdse results then allow the use of the
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reconstructed particle size distribution for purposesrotpss monitoring or control.

The stabilisation of unstable steady-states is considierézhaptef 4. From the analysis of the
process dynamics is can be derived that the stability slyotepends on the size of the milled
particles that are re-cycled to the process. Thereforeitieeo$ milled particles is identified as a
manipulated variable to the process. The controller thedifies temporarily the milling size to
stabilise the unstable steady-state. Using the analigtidakived knowledge on the steady-state
number density function with respect to the process paensat linearised process model is used
for controller design.

As a characteristic measure for the steady-state the tafalkce area of all particles in the process
is identified. This quantity cannot be measured directly dart be calculated easily from the
knowledge of the number density distribution, facilitgtithe use of a model-based measurement
system in the implementation of the derived control law.

At first an output feedback controller of proportional-iptal type, which is heavily used in indus-
tries and is widely accepted, is designed to stabilise angivestable steady-state. In tests for the
non-linear process it is revealed that the controller dodyg lnave limited influence, i.e. the use of
a simple output feedback controller is not able to satisfégtstabilise unstable steady-states.

This necessitates the application of more advanced costt@mes using the knowledge of the
complete process state and calculating appropriate vétmabhe manipulated variable by state
feedback. Two approaches, the linear-quadratic reguiatdrmodel predictive control, are in-
vestigated. Both methods are able to stabilise the unstbhaly-states satisfactorily. Model
predictive control has an advantage as it allows to expligiicorporate constraints, for example
in the actuator, in the calculation of the control law, aiddially it has its roots in industry lower-
ing the barriers in transporting this non-standard corgpgroach to practical implementation. In
summary, the unstable steady-states in the particle sshébdition can be stabilised by the linear
controllers derived for the continuous process.

The batch process is inherently non-linear, i.e. no stesalye can be derived and for control
purposes the non-linear dynamic behaviour has to be takenaotount. For the control task
of guaranteeing a pre-specified product distribution ateting of the batch under process distur-
bances, for instance the composition of the sprayed susperes non-linear model predictive
controller is designed and tested. In all simulations th&rodler was able to steer a given initial
number density function sliciently close to the desired final number density functimenevhen
non-measured process disturbances were present.

Although the scenario seems to be simple, it highlights thengths and weaknesses of non-
linear model-predictive control especially in view of arplpation to the continuous process. The
computational fort needed for the on-line solution of the non-linear opsiaion programme,
that yields the manipulated variables, is high which may leaa violation of the constraint that
the optimisation programme must be solved faster thantiraal- Additionally, in the continu-
ous process flierent model-based measurement schemes have to be usedalgioicdd to the
computational fort.

In both particle formation processes heat and mass transterrs, determining the mean particle

moisture content and the mean particle temperature. Arysinadhows that the moisture con-

tent and the temperature are coupled, i.e. a change in opernpyalso changes the other. For
controller design it is assumed that the dynamics of heatraags transfer are much faster in com-
parison to the growth of particles and always close to a gtetate. This motivates the use of a

linearised process model in the design of a controller femtfean moisture content and the mean
temperature of the particles.
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Following, a multiple-input multiple-output controllerf proportional-integral type is designed
and tested. In order to increase the performance, an ad@itapproximate decoupling network
is designed that allows for an approximate independentr@loof the moisture content and the
temperature. An application of this extended controllethi® non-linear processes shows that
indeed a better performance is achieved, i.e. specifiegaets are reached without attaining
critical product states, for example by over-heating omalrging. This performance is however
limited by actuator and hydro- and thermodynamic constigain

In the end of Chaptér 4 all components, i.e. the model-basabsurement system, the controllers
for the patrticle size distribution and the heat and massteanare combined into one model-based
process control scheme for a specific influence on the coenfilétised bed spray granulation
process. It is tested for both configurations and it is shdve the designed scheme is able to
achieve the required specifications.

In summary, in this thesis a model-based control schemarfpoitant particle properties in flu-
idised bed spray granulation is developed. Novel contidbstto that purpose are:

¢ Investigation of model-based approaches to reconstratritlited particle properties, espe-
cially the patrticle size distribution, which ardiiult to measure directly, from more easily
measurable process data. This leads to an improvement ionttise control of product
guality, as undesired process states, for instance dbift the coating into the aggregation
regime, can be identified directly during process monigpiftom changes in the size dis-
tribution. Furthermore, the model-based measuremergmgsenable the use of the recon-
structed size distribution in advanced control schemesderao achieve required product
specifications.

¢ Design of model-based controllers for batch and continlyonigerating spray granulation
processes with a focus not only on integral measures of tigepy distribution, for instance
total mass of product or hold-up, but also on the size digion of the particles. This allows
to formulate a process result on the basis of a desired saghdition. For feedback control
of the size distribution model-predictive controllers akesigned, permitting an optimal
solution to the stated control problems, specifically thabidisation of unsteady steady-
states in continuously operating fluidised bed spray gedimui, and control of the final size
distribution in batch spray granulation. An additionaltwe of this class of controllers,
appealing to practical implementation, is the explicit fideration of process constraints,
for instance in the manipulated variables.

Additionally, important thermal properties, the mean égtmoisture content and mean
temperature, are considered, posing in total a multigbediultiple-output control prob-
lem to which solutions for this class of process and in thigitlare not available.

e Combination of model-based measurement systems and rmastéttive controllers into
one model-based control scheme for fluidised bed spray lgtiom processes. The combi-
nation of the two components is not trivial due to the noedinbehaviour of each of them
which may yield unacceptable results, even instabilityinked into one control system.
By successfully realising this combination, it is possitdeontrol the size distribution, the
mean moisture content of the particles, and the mean matéohperature using only prac-
tically available, limited, and biased measurement datatil dow, for fluidised bed spray
granulation such a model-based control scheme has not getdwailable.

However, the results presented in this thesis are not thdfpeate solution to the task of feedback
control of particulate processes in fluidised beds. Thegs®es in this thesis were investigated
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using several assumptions and restrictions, for instame@tocess chamber was considered as a
single compartment, a size-independent growth of thegbastivas assumed — realised by building
up a compact layer of solid — and the possible influence of thieagl conditions, i.e. the heat an
mass transfer, on the growth rate was neglected.

The relaxation of these restrictions and assumptions, wiitl lead to an improvement in the
description of experimental results, can be used as gigrbimts for further research:

e Size-dependent particle growth: In experiments often aeniith of the size distribution
is observed. This cannot be represented by the size-indepegrowth law in the single
compartment apparatus. For the description of the digpeiisi the size distribution new
approaches have to be found and to be parametrised in ordestoibe this £ect. This
necessitates further experimental investigations inra@lentify the basic influences, as
well as theoretical studies to derive extended growth laws.

e Extension of the single-compartment description to midtimmpartments: In the single-
compartment model the basic assumption is that all pastd@ be reached by the spray. In
experiments at least two compartments can be identifiedragisiy zone, where the parti-
cles receive new solid material from the nozzle, and a dryome, where only evaporation
of the sprayed liquid occurs. The division of the processrdber into multiple compart-
ments yields interesting dynamigfects, for instance a widening of the size distribution can
be observed even if a size-independent growth law is use. Wibdening is related to the
residence times of a particle in thdfgrent compartments. The sizes of the compartments
and the residence times of particles depend on the hydradgretate of the fluidised bed;
in order to use multiple compartment models these depeieehave to be known. One
way to gain insight is the use of computational fluid dynanfi€gD) and discrete element
methods (DEM) to describe the particle motion inside tlEedint compartments in relation
to the gas flow in the process chamber.

¢ Investigation of the influence of the drying conditions (theat and mass transfer) on the
particle growth kinetics, for instance on the porosity of flormed layer. Experimental
results show that heat and mass transfer and particle grasetiboupled, i.e. they do not
run on diferent time-scales and have to be considered in parallell hbw, a functional
relationship between the drying conditions and the remylparticle size, for instance in
terms of the porosity of the solid layer is not known. For thégperiments have to be
conducted in order to identify the process inputs influegitie characteristics of the formed
layer. Afterwards, from the experimental data, and usimgtatical knowledge of heat and
mass transfer, functional relationships can be derivetbusarameter estimation methods.

e Extension and application of the concepts to other cladshsidised bed spray granulation
processes, for instance to horizontal fluidised beds orteddoeds. In case of horizontal
fluidised bed the spatial distribution of the particle pntigs along the process chamber has
to be considered, adding external coordinates to the modeluiation, and increasing the
model complexity. Spouted beds are used to fluidise pastimiea diferent Geldart class,
with a different hydrodynamic behaviour and thudfetient particle dynamics, and heat and
mass transfer. Both processes are heavily used in indysane until now operated mainly
by manual control. The introduction of model-based cordadiemes will be beneficial in
terms of product quality and plant safety.

These extensions, used to describe the experimentallyvassprocess dynamics, necessitate the
incorporation of the full non-linear behaviour of partid@@mation and heat and mass transfer into
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the process model. The non-linear model-predictive ctlatrdevised for the control of the final
size distribution in the batch process may be extended inesmesmtary way when the functional
relations are known.

For the continuous fluidised bed process the situation iroomplex: The proposed controllers
are only valid in the vicinity of a given steady-state. Faksmsuch as set-point changes, i.e. the
transition from one steady-state to another, these canbenlised if the new steady-state also lies
in the vicinity of the steady-state the controller was desijfor. By considering the coupling
of heat and mass transfer with the particle growth dynaminear controllers may only give
insuficient performance depending on the non-linearity of thepting. A non-linear controller
could be applied here, incorporating the non-linear preagamics (and coupling) and thus
guaranteeing a stabilisation of arbitrary unstable stestaies and allowing for the transition of the
process between steady-states that do not lie within theityiof each other. However, in order
to use non-linear model predictive control special algoni for the solution of the optimisation
programmes have to be devised in order to obtain a real-tppkcable control law.

If the fully non-linear process is considered, non-lineardel-based measurement systems must
be incorporated into the model-based control system. Asm&stioned in the discussion, this
also requires a special implementation to reduce the trdowencomputationalffort in order to
obtain a real-time applicable scheme.

Furthermore, the concepts presented in this work can bésamol other types of particulate pro-
cesses, for instance aggregation and breakage which aréyhesed in industries. The challenge
here lies in the fact that aggregation and breakage arerabteffiects having completely fier-
ent dynamics. Additionally, profound knowledge on the kicg of these processes, in terms of
mathematical relations, is rare and even the parametiisatidificult. In addition to the control
task the process has to be identified, not only in terms ofrpaiers but also in terms of suitable
manipulated variables.

The main results in this thesis are obtained from simulasitoiies. Thus, the experimental val-
idation of the designed control systems has to serve as tineatg test of functionality. There
questions regarding the noise influence on measuremeantsfféiet of process disturbances and
deviations of the plant from the plant model used in the abieir design are answered. The
application of the model-based scheme developed in thgsthe the processes is therefore the
next step in research on model-based measurement andladrftuidised bed spray granulation
processes.
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Appendix A

Hydro- and thermodynamics of
fluidised bed processes

In this appendix all hydro- and thermodynamic correlatinaeded for the heat and mass transfer
model of the fluidised bed spray granulation process aelist

A.1 Hydrodynamic correlations

Theporosityof a fluidised bed depends on the fluidisation gas velocitytiba to lie between the
minimum fluidisation gas velcoity and the elutriation vetgclt can be calculated by a correlation
given by Richardson and Zaki_[122]:
Rey
M= —— . A.l
V= Rem (A.1)
The exponenh can be calculated by an equation given by Mattin [95]

. In(Rem¢/Rexy)

A2
IN Yrm¢ (A-2)
The Reynolds number Rés given by
Upd
Rey=——, (A3)
Vg
whereup, the gas velocity in an empty tube (superficial velocity); ba calculated from
My (A.4)
Up = . :
0 0g Aved

Reh [117] gives an equation for the calculation of the Regsolumber at the point of elutriation

Reuy = 4/ g Ar; (A.5)

the Reynolds number at minimum fluidisation velocity can élewated from Martin/[95]:

wﬁ]f Ar

1
T A=) 3214

Remt = 429 (1 - ¢mr) “1 (A.6)
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In these two equations the Archimedes number Ar is defined by

& o, -
Ar = g_ZpM i (A.7)
Vg Qg
that depends only on material properties, with
6Vhed
dp=——. A.8
P Aped ( )

The porosity at the point of fluidisatiost lies in the range of [@, 0.7], practically. For all
calculations the porosity at minimum fluidisation velocityassumed to b¢ns = 0.4 (packed
bed).

A.2 Heat and mass transfer correlations

A.2.1 Heat and mass transfer between particles and suspensigas

Reference: Gnielinski [48]

R

Re = —onf (A.9)
lﬁmf
Vg

Sc = —, (A.10)
(Sw’g

Sham = 0.664Ré/2Sc/3, (A.11)

0.037R&8sc

1+2443Re%1(SE3-1)’

Shphere = 2+ \/Sl'fam + S"ﬁ,r , (A.13)
Shys = [1 +1.5(1— wmf)] Shyphere. (A.14)

The dimensionless Sherwood number Sh is defined as

Sh=p-". (A.15)

The dimensionless Nusselt number Nwd,/A can be calculated from the analogy of heat and
mass transfer:

Nu = ShLe¥3, (A.16)
A

Le = & 96 : (A.17)
©99g

with Le the (dimensionless) Lewis number.

A.2.2 Heat transfer between particles and wall

Reference: Martin [95]

NUpw = apzvdp —1-y)z@-eM (A.18)
g
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NUpw,max

N = . A.l
c &y -
7 - 1lop p\/ gdp (¥ — ¥mi) (A.20)
6 g \5(1-vmn)(l-y)
Ck = 26 (A.21)
2l dp
NUupwmax = 4|({1+—|In|1+5]-1 (A.22)
dp 2l
2
| = ——1 A (A.23)
7
A = [ZRT (A.24)
F>(2cg R/Mg)
|g(1_) - 06 (1°°°< )/ (A.25)
Y
Ca = 28 (A.26)
A.2.3 Heat transfer between gas and wall
Reference: Baskakov [10]
0.3
01 /3 Apl/2 [ _u_
Nty = gwdp _ 0.009 P23 Ar uopt) for Umf < Up < Uopt (A.27)
g 0.009 P#/3 Arl/2 for  Uopt < Up < Uely
0.45
Uoptd (o5
Rep = —2 P =75 (9—2") (A.28)
Vg Vg
Reference: Shi[129]
Nugw = [0.005Rey, + 0.06 Ré;’| Pr/3 (A.29)
A.2.4 Heat transfer between wall and environment
Reference: Churchil [24] (perpendicular plate)
_ a/wel—bed_ 1/8\2
Nuye = /l—_(0.825+0.387[Raf1(Pr)] ) (A.30)
g
L (Tw—T
Ra = Grpr= P89tmax(Tw=Te) (A.31)
Vg
py = — (A32)
9 7 Tw+Te '
9/16 -16/9
fPr) = [u(oﬂz )] (A.33)
Pr
The dimensionless numbers Pr (Prandtl number) and Gr (Gfrasimber) are defined by
C
A X
L ax(Tw =T
or = Pad ax(2 v e) (A.35)
Vg
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A.3 Material properties

In general the material properties are functions of theesygtressurd® and the temperaturé.

In the following the dependency of the specific heat capegitihe thermal conductivity, and the
dynamic viscosity of the gases on the pressure is negle@edly for the mass density and the
kinematic viscosity temperature and pressure dependeac@&taken into account via the ideal
gas law.

The material properties of liquid water are calculated @®ring the dependency on the temper-
ature only.

The difusion codicient of water vapour in aiéy g and the saturation moisture content of
are calculated as functions of pressure and temperature.

A.3.1 Material properties of dry air

Mean molar mass

Reference: Krauss [72]

Mg = 28.96 kg kmor* (A.36)
Specific gas constant
Reference: Krauss [72]
Ry = 28722 Jkgt K™ (A.37)
Mass density .
_ PMg = (A.38)
997 RT, ~ R(27314K +0) '
Unit: kgm3, [P] = Pa
Specific heat capacity
Reference: Glick [47]
g = A+Bd®+Co+Do (A.39)
A = +1006256x 10°
B = +2120536x 1072
C = +4.180195x 10°*
D = -1521916x 10
Unit: JkgtK™?
Range of validity:—-20°C < ¢ < 200°C; P = 100000 Pa
Maximum error: 005%
Thermal conductivity
Reference: Glick [47]
lg = A+B®+Co+Do3 (A.40)

A = +2452110x 1073
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B = +7.501414x107°
C = -2593344x10°®
D = +5.292884x 1011

Unit: Wm™1K™1
Range of validity:—=20°C < ¢ < 200°C; P = 100000 Pa
Maximum error: 008%

Dynamic viscosity
Reference: Glick [47]

= A+B9+C92+D¥® (A.41)
= +1.705568x 107°

+4.511012%x 1078

= -8766234x10°%?

= -3382035x10°%°

OO0 w >
I

Unit: kgms?
Range of validity:—-20°C < ¢ < 200°C; P = 100000 Pa
Maximum error: 06%

Kinematic viscosity

vg = — (A.42)
9g
Unit: m®s™t
A.3.2 Material properties of water
Mean molar mass
Reference: Wagner et al. [143]
My = 180153 kg kmot? (A.43)
Specific gas constant
Reference: Wagner et al. [143]
Ry = 461519 Jkg* K™ (A.44)
Mass density
Reference: Glick [47]
owl = A+BY+C# (A.45)
A = +1006
B = +0.26
C = -0.0022
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Unit: kgm™3
Range of validity:—20°C < ¢ < 5 or 200°C

Maximum error; 016%

Specific heat capacity
Reference: Glick [47]

= A+ B9 +C9%+ D93 (A.46)
= +4174785x 10

+1.785308% 1072

= -5.097403x 10°*

= +4.216721x 10°°

cow>E
I

Unit: JkgtK™2
Range of validity: 10C < ¢ < s or 200°C
Maximum error: 0043%

Specific evaporation enthalpy

Reference: Glick [47]

Ah, = A+ B9 +C¥? (A.47)
A = +25x1C°

B = -20425x1C°

C = -3813x10°

Unit: Jkg?
Range of validity: 10C < ¢ < 200°C
Maximum error: 03%

Saturation pressure
Reference: Glick [47]

Psat = A exp(Bisa+ C%y+ D%+ EVSy) (A.48)
A = +611

B = +7.257x107

C = -2937x10%

D = +9.810x107’

E = -1.901x10°

Unit: Pa
Range of validity: 01°C < g4 < 100°C
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Maximum error: 002%(E 7 Pa)

A.3.3 Material properties of water vapour

Mass density

P My P
=0 A4
Owo = BT T R, (27314K + ) (A49)
Unit: kgm™3
Specific heat capacity
Reference: Glick [47]
Cug = A+B®+CoH*+Do° (A.50)
A = +1862x10°
B = +2858485x 10!
C = +6.148483x10™%
D = -2060606x 10’
Unit: Jkgt K1
Range of validity: 28C < ¢ < 400°C; 100 Pa< P < 1000 Pa
Maximum error: 006%
Thermal conductivity
Reference: Glick [47]
Aug = A+B9+Co%+ D9 (A.51)
A = +0.0170x 10°
B = +5698384x10°
C = +1297172x10°’
D = -9131313x10%
Unit: WmtK1
Range of validity: 28C < ¢ < 400°C; 100 Pa< P < 1000 Pa
Maximum error: 014%
Dynamic viscosity
Reference: Glick [47]
mwg = A+Bd+Co + D9 (A.52)
A = +916x10°
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B = +2781303x10°8
+4.626970x 10711
D = -5054545x 10714

@]
Il

Unit: kgms?
Range of validity: 25C < ¢ < 400°C; 100 Pa< P < 1000 Pa

Maximum error; 019%

Kinematic viscosity
Nw,g

Owg
Unit; m?s1
Prandtl number ——
Pryg = —— (A.54)
/lW’g

Unit; —

Diffusion codficient of water vapour in air
Reference: Schirmer [126]

2252 (9 + 27315K \ 18t
Owg = —p ( 27315K ) (A.55)
Saturation moisture content D
Year = 0.622 22 (A.56)

Psat

Unit: (kg water) (kg dry air)*

Saturation temperature The saturation temperature can be derived from an energydmland
yields a nonlinear system of equations #ag; and psa: (Via Ysag) that has to be solved iteratively.

0 = Cpgtgin + Ygin(CpvbginPgin + Ahevap — Cpgsat + YsaCpysat + Ahevap) - (A.57)

Unit; °C
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Appendix B

Elements of graph theory

The structural analysis of dynamic systems, as presentthistef 3.2, relies on the mathematical
theory of graphs and the investigation of information floterein.

Graph theory is a complex mathematical field, therefor, is dppendix only concepts of impor-
tance for structural analysis are presented. The most autoroncept is thdirected graph

Directed graph [|18,.109]. A directed graph (also: digraph} = [V, E] consists of a finite set

of vertexes (nodes) and a finite set of directed edfjeBhe edges are defined on the nodes of the
graph,i.,e.ECV xV: E ={...,(vj,W)....}, wherevj,w € V. The notation \;, vi) then means
that there is a directed edge from vertgxo vertexv.

Example. The following graphG is given by the set of vertexeé = {u,v,w, x} and the set of
edgesE = {(u, V), (v,w), (w, ), (W, x), (X, W)}:

NS

o ¢4 o
W

An important tool for the abstract reasoning about grapliseadjacency matrix

Adjacency matrix [18,109]. Given a directed grapts = [V, E] with V = {vi,...,Vq}, the
matrix A with elementsa;;

o 1, (Vi,Vj)E E S
aij _{ 0, otherwise bi=1....n (8.1)

is called the adjacency matrix of the digraBh

If &; = 1, then there exists a direct connection betwgeandyv;, i.e. v is directly reachable from
vj. If there does not exist a direct connection between tweexes, but a sequence of directed
edges starting imj over somey to v;, theny; is reachable fronv;.

For the determination whether a vertex is reachable fronth@nane, powerful algorithms exist,
for instance the Moore algorithm [148].

The link to the structural matrices of a dynamic system can the established as follows: If the
states, the inputs and the outputs are considered as \&mexgraph, and a value of 1 is assigned
to all the direct connections between these vertexes, thetgtal matrices of the dynamic system
are constructed. Additionally, the structural matricesaso the adjacency matrices for the graph.
By this construction, all investigations concerning thevflaf information, for example output-
reachability, can be performed on the structural matrices.
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Appendix C

Method of characteristics

The method of characteristics (abbr. MOC) [120, 38] is a meéfior the analytical solution of first
order partial diferential equations. The general idea is to reduce the pdiffarential equation
to a set of ordinary dierential equations by re-parameterisation of the soludimmain. In many
cases, the set of ordinaryffiirential equations can be solved analytically, and a soluf the
partial diferential equation can be obtained. Even if the set of ordidifferential equations
cannot be solved, important qualitative results on thetgwilcan be obtained.

The method of characteristics can be applied to non-linestrdirder dfferential equations. It is
not restricted to scalar equations, but can also be apmisgstems of first order equations.

In the following, the special case of a quasi-linear scatat irder partial dferential equation is
considered. The independent variablestamedé, and the solutioi(t, £) of the following equation
is sought:

0z 0z
at.£,2) - +b(t.€.2) % ct.£,2), 20,8 =¢&). (C1)
The termquasi-linearrelates to the fact that the partial derivativezehter only linearly into the
equation.

In order to solve this initial value problem, the solutionntltin described byt and ¢ is re-
parameterised by a set of curves, parameterised by two néablesd ands: The initial point of
the curve on the-axis is parameterised kg the curve itself is parameterised By This idea is
visualised in Figl_Cl1.

tll

t(6) ----46

! >
>

£o) S £

Figure C.1: Re-parameterisation of the solution domairhleynhethod of characteristic.

The solutionz(t, £) is now investigated on these curves: On a curigea function ofd, t = t(6);
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the variableg is also a function of, i.e. ¢ = £(0). The variablesis considered as a parameter,
henceforward. With these observations, the solut{pi@), £(6)) can be expressed as a function of
6 solely: z(t(0), £(6)) = u(6).

Calculating the change afon a curve under variation éfyields:

dz ozdt ozdé

Comparing the cd@cients with the partial dierential equation yields the following set of ordinary
differential equations:

dt

o at,&,u), t(6o, ) =0, (C.3)
- beew. 9= (C.4)
% = CLEY, Ul 9 = (S). (C.5)

This set of equations is called tisharacteristic systerof the partial diferential equations. The
first and the second equation describe the parameterisee, ¢the characteristic. The third equa-
tion describes the evolution of the solution along this eurv

In order to obtain the solution of the partiafidirential equation, these equations have to be solved,
to obtaint(d, s), £(0, s), andu(d, s). In a last step the parameterisation of the curve has to be
inverted,f = 0(t, &), ands = g(t,£), in order to obtain the solutior(t, £). This last step proves

to be a most diicult one as the inversion is not always possible, for ingahtwo characteristic
curves intersect.

Using the characteristic system many dynamid¢idas that may occur can be identified, for in-
stance the occurrence of shocks in the solution — this carttileuded to the intersection of two
characteristic curves. Also questions concerning thdemgg and unigueness of the solution in
the whole solution domain can be answered. For that reasemméthod of characteristics found
wide-spread application in process engineering, for imsan chromatography [120].
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Appendix D

Discretisation of population balance
equations

The dynamic modelling of property-distributed processeshe basis of the population balance
approach|[60, 114] yields a partialfitirential equation for the number density function, and is
therefor, from a system-theoretic point of view, an infirdiemensional system.

As the analytical solution of partial dierential equations is often not possible, numerical method
have to be applied to obtain an approximation to the solutiBecause of the limits of com-
puter technology (especially limited memory), a finite-dimsional approximation of the infinite-
dimensional system (the partialfidirential equation) is needed.

Approximation methods in use today either consider onlggrdl values (e.g. moments) of the
number density function, or approximate the number deffigitgtion via discretisation.

The former class of methods is callatbment methodsnd are historically among the first ap-
proximation methods for population balance systems [6@relHinstead of the number density
function only a small, fixed set of moments are considered.tlt@se dynamic equations are de-
rived (from the balance equation), yielding a small set dfirtary diferential equations, that is
then solved numerically.

The two major problems with this approach are: (1) loss afrimiation on the shape of the density
function (this would in general require an infinite numbenaments); (2) the danger that the set
of moment equations cannot be closed, i.e. the dynamidaetabetween the moments cannot
be expressed by a finite number of moments. In recent yearsmument methods have been
derived that allow for an approximate closure of the momemiagions, for instance QMOM [94]
and DQMOM [93].

Moment methods are used in the solution of problems for wihiehexact form of the number
density function is of less importance, for instance in CREllzglations. Here, only integral val-
ues (e.g. mass of particles) are of importance, and by cemsglonly moments a tremendous
reduction in computationalf¥ort is achieved.

For the direct approximation of the number density functi@rious methods are available, for in-
stance finite-dference methods (FDM), finite-volume methods (FVM) [78],térelement meth-
ods (FEM) [59] and spectral methods (SM)![49,137].

The general idea of these methods is to discretise the @oldtbmain, and to approximate the
density function at these discrete points (elements, naddise domain. Then dynamic equations
for the approximate values at the nodes are derived anddsolMee solution between two nodes
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is obtained by interpolation.

The methods vary in the detail of the discretisation, fotanse semi-discrete or fully-discrete
approximations of; also the treatment of théealiential and integral operators isffédrent — in
some methods they are approximated directly, in others pipeogimation is the result of an
optimisation problem. As a result thefidirent numerical methods do havetdient properties,
and are limited for the most part to special classes of proble

One of these classes are convection-dominated processegh{grocesses), to which the follow-
ing discussion is restricted. For the handling of the padpdadynamic &ects aggregation and
breakage other methods are needed, for instance the Celigevenethod [73] or the Fixed Pivot
method [74].

In the following two important discretisation methods fbetsolution of growth-dominated pop-
ulation balance systems are presented: the finite volumleardetnd a spectral method.

D.1 Finite volume method

The principle ideas of the finite volume method [78] are pnése for the following scalar growth-
dominated population balance equation:
an N d(Gn)
ot o0&

= p(t.&,n),  (G)(t, £o) = Bo(t), n(0,£) = ¢(£). (D.1)

Here, one discretises the property coordirateto N sub-intervals, as shown in Fig. ID.1. To this
purpose the intervakj, o) has to be restricted t&(, maxl-
1 2 i-1 i i+1 N p
---— x % =ttt
o & & §i-1 & vt én-1 6N

]

EN = Emax AGi =& — i

Figure D.1: Discretisation of the property coordingt&to N sub-intervals (finite volumes).
Then grid nodes; (i = 1,...,N) in the interior of the sub-intervals are defined, for ins&in
the middle of the interval. The number density functiti &) is then expressed at this node as

n(t,&) = ni(t). In order to describe the temporal evolution of the valuelymamic (balance)
equation is derived by integrating the population balarpeaton over a sub-interval:

i in &ix1
on .. o(Gn)
&i &i ¢

Interchanging dterentiation and integration, and evaluating the first irdegn the right-hand
side by the Gauss theorem yields:

iv1 iv1
& [nee=-@ng+ [ peenmae. (0.9
gi &i

Using this approach, the total fluxs() is conserved by the discretisation, i.e. the discretised
problem will also obey a conservation law if the original Ipleim obeys one (i.ep = 0). For this
reason the finite volume methods are catedservative
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For further evaluation some assumptions on the profile@mdp in the interior of the interval have
to be made, for instance thatand p are piece-wise constant in the interior, itgt, &) = ni(t, &),

pt, & n) = p(t, &, n) = pi(t) for £ € [&, &.1]. Higher order approximations (e.g. linear, quadratic)
are also possible. Use of these assumptions yields the eadinfry diferential equations:

dn 1 .
d_tlz_A_gi(Gini—Gi—lni—l)"'pia i=1...,N. (D.4)

Here the boundary fluxe&)(t, &.1) and Gn)(t, &) are approximated by the so called up-wind
scheme (see Fig. D.2): The fluxes at the boundaries are ésdlbg a backward élierence us-
ing the values of the number density function at the grid sadethe interior of the cell, i.e.
(GN)(t, &iv1) ~ (GN)(t, &) and GN)(t, &i) ~ (GN)(L, &i-a).

The corresponding initial valuag(0) can be obtained from the initial number density function
i.e. m(0) = p(&). This shift in the indexes necessitates a special treatofahe first equation by

i—-1 [ i+1

ni_1 N Ni+1

&1 &i i1 Eivo

Figure D.2: Visualisation of the up-wind-scheme.

the explicit incorporation of the boundary valu@n)g(t) = Bo(t):
dny _ 1

= G1n1 — Bo(t . D.5
p A51(11 o(t)) + P (D.5)
In total, the population balance equation is transforméa @nset of coupled ordinary fiiérential
eguations that can be solved numerically by standard method

Although the approximation was derived directly from th@plation balance equation, its solu-
tion does only in the limitN — oo converge to the solution of the original population balance
equation. It can be shown [78] that for finil¢ instead of the original equation the following
equation is approximated with greater accuracy:

on  9(Gn) a°n

— + ———==v(N)— + p(t,&,n), D.6

5t or ~ N gE ¢ RLan (D-6)
i.e. a convection-diusion equation is solved. The additional, purely numerididfusion term
leads to a smoothingtect in the solution, known asumerical difusion The dfusion codicient
v depends on the number of sub-intervals used in the disafietis In the [imitN — oo the
codficient vanishes, i.e. the original problem is recovered.

As a result, by using a finite numbbkan approximation error is made. The specific choic® of
strongly depends on the problem at hand, but generally,ciease o will increase the accuracy
but will also increase the computation time as the dimensfdahe system of ordinary tferential
eqguations increases. By using specialised higher-ord#inadsg, so called flux-limiters [¥0], the
numerical difusion can be decreased, but at a higher computational cost.

One class of methods that do noffemn as much from numericalfflision as finite volume methods
are the so called spectral methods.
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D.2 Spectral methods

Spectral methods, like finite volume methods, approximagartial diferential equation by a
finite set of ordinary dferential equations, when applied to all but one of the coatgis of the
problem. They allow for certain classes of (smooth) prolslenstable and more accurate solution
than finite volume methods, also in many cases less grid roakes to be used to achieve this
accuracy![49, 137]. This reduces the size of the system afiang differential equations, and may
reduce thereby the computational time needed for the saolati the discretised problem.

In the following only the fundamental ideas are presentethit can be found in [49, 41, 137].

Spectral methods are closely linked to the theory of eiggstfans of diferential operators and
are known in analysis since Euler and Fourier. They were dwasidered in numerical analy-
sis in the 1970s and found wide-spread application, for gtarim fluid dynamics, or seismic
explorations|[49, 41].

Although these methods showed superior performance in rappijcations, interest decreased
in the following years because of several problems: Theyeuess intuitive than the finite dif-
ference, finite volume and finite element schemes availdtieisatime and required morefert

in programming. Additionally, the handling of complex comt@tional geometries and process
non-linearities was dicult.

Since the early 1990s new interest in these methods is shemvevidenced for example by the
works of Fornberg [41], Trefethen [137], Mantzaris etlak][@nd Dorao and Jakobsen|[34].

A basic assumption in spectral methods is that the apprdikimaan be expanded as a series:

N
n(t,&) ~ > ayi(e). (D.7)
i=0

In this equation, they(t) are the so calledpectral weight®f the spectral modeg;(£).

The functionsy; are chosen once for each problem and are defined on the wigida nender
consideration — possibly after appropriate rescaling efpfoblem. This is the main flierence to
finite volume methods where local approximations on somerstgioval are used.

The function set should consist of mutually orthogonal elete: Common choices are Fourier
polynomials, for problems on periodic domains (periodiateary conditions), or algebraic poly-

nomials such as Chebyshev polynomials, for problems ormpaoiodic domains. If eigenfunctions

for a given problem are known, then these can also be usedateca spectral method.

The approximation error made in the transition from the itdidimensional problem to the finite
dimensional problem is strongly influenced by the choicehef $et of spectral modes and the
number of mode®l used in the approximation.

In order to determine the time-dependent spectral weiglils the integral of the weighted resid-
uals has to vanish:

fmax

on 4G B
[ete |G+ 252 - 5| e -o0. ©8)
o

Substitutingn in this equation from Eq[(D17) yields equations for the sp@aveightsa;(t), given
the set of spectral modes and the weight function

The choice of the weight functiamdetermines the type of spectral method. Choogiegs(£é—&)
leads tospectral collocationi.e. the spectral weightg (t) are calculated such that the pseudo-
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spectral approximation satisfies the population balancatén at the collocation pointg (i =
0,1,...,N).

The choice of collocation points is not arbitrary but depend the spectral modes. If alge-
braic polynomials are chosen then the collocation pointstrba distributed over the interval in
a specific way to prevent numericakilulties, for example Runge’s phenomenon[41], in the ap-
proximation of the solution. For one specific method, thelysbev spectral method [137], the
collocation point distribution is shown in Fig. D.3. It cae been that the distribution of nodes

1

0.8

0.6

Figure D.3: Grid node distribution in the Chebyshev spéctrathod. The nodes are placed on
the axis by first distributing them uniformly on the unit (3€ircle and then projecting them
orthogonally onto the axis. Nodes cluster at the boundarethe interval yielding a coarser
discretisation in the interior of the domain.

along the axis is not uniform. In fact, the nodes are unifgrpihced on the unit circle and then
projected onto the axis yielding a very fine discretisatibtha boundaries of the interval.

The specific choice = 6(¢—&;) allows to calculate the values of the number density famcit the
grid nodes, i.en;(t), directly, without using EqL(DI]7). Itis then possible tqeess diferentiation
as a matrix-vector multiplication

on on
a_é-‘ X a_f = Dgn, (Dg)
n" = [ni), ..., nn()]. (D.10)

The information on the is incorporated in the entries of theffdirentiation matri>XD,.

The advantage of spectral methods lies in the accuracy agbzippation of derivatives. It can
be shown that the approximation error decays faster @@ ™) for every m for suficiently
smooth functions (Trefethen [137]). This means that foredpfined accuracy considerably less
number of grid nodes is needed, thus reducing the overalbeumf diferential equations to be
simulated. Further details on the derivation of thffetentiation matrices (as a limiting case of
finite difference methods) can be foundlin [137].

Inserting the approximation Ed. (D.9) into the populati@iance equation then leads to a set of
ordinary diferential equations for the spectral weights (resp. theeghi the distribution at the
collocation points) that can be solved by standard algmstifor diferential equations.

A recent evaluation of the performance of spectral methquidied to the population balance
equations of particulate processes can be found In [12].
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D.3 Convergence of discretisations

The important question whether a discretised system dtyrrepresents the temporal and property-
related behaviour is in general venyiitiult to answer. However, in the limiting cabke— oo some
statements can be made using the theorem of Lax and W&ndro

Lax-Wendroff theorem [78]. Consider a sequence of grids indexed by1, 2, ..., with mesh
parameters, hy — 0 asl — ~. Letu(x,t) denote the numerical approximation computed with
a consistent and conservative method onltherid. Suppose that converges to a function as

| - oo in the 1-norm. Them(x, t) is a weak solution of the conservation law.

The two requirements for the application of the theorem @teThe problem must be written in
flux-conservative form; (2) the time-stepping method hdsettotal-variation-diminishing (TVD),
i.e spurious oscillations have to be damped.

The finite volume method, as well as the spectral method cawrfiten in flux-conservative
form [78,/97]. The TVD-property can be guaranteed by the ahaif the time-stepping method
used to solve the set of ordinaryfidirential equations, for instance the Euler method andinerta
Runge-Kutta methods [78, 134].

The Lax-Wendré theorem thereby gives a justification of the use of disedtifinite-dimensional
approximations to infinite-dimensional systems in variapplications, for instance controller de-
sign.
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Appendix E

Root-locus method for feedback
controller design

The root-locus method, devised by W.R. Evans [39], is a datse and dficient graphical tool
for the design of feedback controllers for linear time-m&at single-input single-output systems.

The basis for this method is the standard feedback contopl il0 the Laplace domain [83] with
d = 0, depicted in Fig_El1. Here, the open-loop transfer fumcts given byGy(s) = P(s)C(9),
whereP(s) is the transfer function of the process to be controlled,@fs) is the transfer function
of the controller to be designed. The transfer function efdlosed-loop system (from reference
to controlled variablg) is given by

Go(s) _  P(s)C(9)
1+Go(s) 1+P()C(9)°

Gry(9) = (E.1)

The stability and the dynamics of the closed-loop systendatermined by the complewots $
of the characteristic polynomial

1+ P(s)C(s) = 0. (E.2)
The position of thes will move in the complex plane with variation of the contsslparameters.
In order to limit the number of parameters for the design @ssc often a controller with a fixed
structureC(s) is chosen such th&(s) = kC(s). Here kis an adjustable parameter, ekgs [0, ).
The characteristic equation can then be written as

1+ kP(5)C(s) = 1+ kGo(s) = 0. (E.3)

The trace of the roots of the characteristic equation in thmpiex plane (i.e. the geometric
position) under variation of the parameteis called theroot-locus one example is shown in
Fig.[E2.

d

u J«
r Controller Process — Y

Figure E.1: Standard feedback control loop used in the atiwiv of the root-locus method.
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Figure E.2: Root-locus plot for an unstable, non-minimunagghopen-loop system. Poles are
denoted by, zeroes by. The black lines are the root-loci obtained by variationhef parameter
k from zero to infinity.

Often, the open-loop transfer functi@y can be written as:

,lg[(S— n)
Go(9) = kGo(9) = k=, (E.4)

[1(s-pi)
i=1

where then; and p; are the zeroes and the poles of the open-loop transfer fumaegspectively.

Rearranging the characteristic equation then yields
q n
k[ [s=m+]]s-m=o0. (E.5)
i=1 i=1

By inspection, one obtains that fr= 0 the root-locus starts at the poles of the open-loop transfe
function. Fork — oo q branches of the root-locus end in the zeroes of the opentamsfer
function, andh — g branches tend to infinity.

The rest of the root-locus can be constructed from the krogdeof then, and p; by a set of
graphical rules (or by using available software tools, &/gtlab). From the root-locus plot the
controller gairk for a desired dynamic behaviour of the closed-loop systembeadetermined.

The root-locus method is most valuable if the poles and zepbéhe open-loop transfer function
are known. It also allows the design of non-standard cdetby introducing additional poles
and zeroes to shape the root-locus. The newly introducess@id zeroes are then part of the
designed controller.
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Appendix F

Feedback control of bed mass In
fluidised bed spray granulation

In this appendix a practical feedback controller for a cwmus fluidised bed spray granulation
process is designed and experimentally validated.

If a suspension or solution with a mass flow rMe,sand a solid mass fractiox, is continuously
sprayed into the process chamber and no solid is removeatdthihded mass at tintds given by

t
Meed(t) = M(t = 0) + f Meudr)Xs(r) cr . (F.1)
0

which is monotonically increasing over time.

From practical aspects, e.g. hydro- and thermodynamicsnstant bed mass, or the tracking of
the bed mass to a given reference is preferred. To that paigrosutlet tube is installed into the
bottom of the process chamber.

In order to achieve the desired bed mass, a feedback cemntoalh be applied. The current bed
mass in the process can be determined from pressure dropireeeEnts:

Mpedd
A b

whereg is the gravitational constant, ardthe cross-sectional area of the process chamber.

As manipulated variablghe flow rate of gas that can be supplied into the process obaxidb
the outlet tube is used. This gas flow has a classifyifigce If the gas velocity is higher than
the sinking velocity of a particle entering the outlet tuttesn the particle is transported back into
the process chamber. If the sinking velocity, which depesshe particle size, is higher then
the particle leaves the process chamber. A variation of #iseflgw rate thus leads to a control of
the particle outlet. By coupling of the gas flow rate with tleglbnass measurements a feedback
control system can be realised.

For the realisation of constant bed mass in continuous fledlbed spray granulation process
with external sieving and milling, a practical (linear) é#ack controller had to be designed and
implemented.

To that aim, at first the dynamic influence of the gas flow ratéherbed mass was experimentally
identified. On the basis of this identified model a feedbaakrotler was designed and tested in
simulations as well as experiments.
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Figure F.1: Measured step response and approximation ad-arfiler time-lag system.

For the identification of a linear transfer function mode$ctiing the dynamic influence of the
flow rate on the bed mass, a step-response experiment wasmed: Particles with a certain bed
mass were fluidised. The gas flow rate in the outlet tube wak dwistant until a constant bed
mass was measured. Then the gas flow rate was decreasedfierentivalue in one step. The
development of the bed mass was registered until a new cdnstiie was attained.

To the measured curve, depicted in FFig] F.1, a curve repiiegethe step response of a first-order
time-lag process (P was fitted, and the corresponding fib@ents of the transfer function

P(9 = — (F3)
T Tis+1 '

were determinedK, = 0.075kgmin it and Ty = 7.15min. Afterwards, the process was aug-
mented by a measurement filter to limit the influence of meament noise. The filter is also a
first-order time-lag system witK; = 1 andT¢ = 1/6 min. The feedback loop is closed with
the filtered measurement signal, i.e. the complete procestinthen consists of a series of two
first-order time-lag systems.

The controller was designed using the root-locus methoel AgpendiX ). The controller type
was chosen to be proportional-integral, i.e.

(F.4)

(s = K(TNs+ 1) ‘

TNnS

This introduces two parameters into the design process. patametelTy can be removed by
choosing it such that it compensates the dominating poleeoptant, or by positioning it left of
the dominating pole. The former choice leads to a strongigtd and slow closed-loop system,
the latter to a damped, oscillatory system. By a suitablécehof K the speed can be influenced,
but care has to be taken with respect to overshooting. Orsifp@shoice iK = 801kg* min~t
andTy = 8min.

As simulations performed were successful, the feedbackalter was implemented in a fluidised
bed spray granulation pilot plant. The controller was impated in Matlafsimulink and a
communication link was established via an OPC-interfadgs @llowed the reading of measured
values from the plant and the writing of set points for thefi@ag rates to the mass flow controllers.
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Figure F.2: Experimental results for the feedback contrblea mass in a continuous fluidised bed
spray granulation process. Beside the measured bed ma#isearederence value, the5%-band
is also depicted.

Here, an important limitation of the controller came intti@e. Although itis able to remove mass
from the process chamber, it is not able to insert mass tiréthat means, if the controller acts
too aggressively and the reference value is under-rure ther other way than to increase the gas
flow rate until the reference value is reached again by theeysmy of suspension. As this is a rather
slow process, the overall performance would be poor. Ferrt@son the paramefgg = 133 min

is chosen much higher thah, yielding a non-aggressive control behaviour. Additibpathe
high value ofTy also improves the controller reaction to measurement rmisemoothing.

The controller was then tested in a long-time experiment corginuous fluidised bed spray gran-
ulation process with external sieving, milling and pagicbcycle. In addition to the measurement
equipment, an in-line probe for the measurement of partiodésture was installed. This probe

empties its measurement volume by blowing out the partiojes flow of pressurised air, i.e. an

additional variation in the bed mass measurement is intediu

The result of the feedback control of bed mass using thigpsietshown in FigEl2. Although
only a coarse approximation to the dynamic behaviour wag umsthe controller design, a rather
simple controller structure is used, and the measuredblaria subject to severe measurement
noise, the bed mass can be kept in%%6-band around the reference value for almost all times.
The designed feedback control system can therefore bedayedi successful.
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