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Abstract

The ability to divide objects and events into separate categories based on their functional relevance is
a central determinant of both behavior and cognition (Ashby & Maddox, 2005; Harnad, 2005). Complex
category structures are known to be acquired best in the presence of response-contingent feedback.
This effect is supposed to be mediated by the mesencephalic dopaminergic system (Ashby & Maddox,
2005), which has been studied mainly in the context of reward-based learning (Niv & Montague, 2008).
However, in everyday learning most decisions are not immediately followed by reward or external
information on correctness (Hogarth, 2006). The set of experiments presented in this thesis was designed
to test the influence of the nature of outcome information on the neural substrates of the acquisition
of categories and their representation. Three types of outcome information were compared: monetary
reward, cognitive feedback and internally generated signals on correctness. All experiments were carried
out using functional magnetic resonance imaging (fMRI) on healthy young human participants.

In the first experiment, two parallel category learning tasks were developed. Participants received a
monetary reward for correct answers in one task, in the other task only cognitive feedback on correctness
was provided. A post-experimental questionnaire assessed the motivational state during categorization
and fMRI activations in the two tasks were compared (Daniel & Pollmann, 2010). This approach was
extended in a second experiment. Participants learned the task via observation without ever receiving
feedback and were questioned about their confidence after each decision as a measure of internal feedback
signals. The neural correlates of these internal signals were examined in terms of reinforcement learning
theory (Daniel & Pollmann, 2012). In a third experiment, the lasting effects of monetary reinforcement
and feedback on correctness during training were compared. Here, similarity patterns of fMRI activation
during passive viewing after successful acquisition of the category structure were assessed.

Results show a parallel implication of many major target structures of the dopaminergic system,
including the ventral striatum, during category learning with explicit rewards, cognitive feedback, and
in response to internal signals on correctness. Yet, both qualitative and quantitative differences in
activation are reported. During category learning effects in the ventral striatum are smaller in the
absence of external rewards, and in visual areas the representation of the categorical structure of stimuli
is less pronounced after feedback-based than after reward-based training. Also, the motivational states
induced by reward influence the pattern of activation, and a specific representation of potentially more
valuable stimuli in the orbitofrontal cortex can be observed.

The experiments presented in this thesis provide a parsimonious account of learning in ecologically valid
settings, where outcome information does not always take the form of explicit rewards, by showing that
structures of the dopaminergic system are activated irrespective of the nature of feedback. Additionally,
several differences in implication are pointed out, which help to clarify the neural basis of previously
observed differences due to the specific training protocol.
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1 General Introduction

1.1. Motivation and structure of this thesis

Learning which action leads to the most beneficial outcome in a given situation is one of the central
components of adaptive behavior, and choices are often guided by experience about which behavior
provided the most favorable outcome in similar situations in the past. In the last decade, impressive
advances in examining the neural bases of reinforcement learning have been made. Computational
theories suggest that during reinforcement learning associative links between stimuli and outcomes are
formed and adjusted after each trial to minimize future errors in prediction of the outcome (Rescorla
& Wagner, 1972; Sutton, 1988). Although the first observations on the relevance of structures of the
dopaminergic system for reward-related processes have been performed in rodents (Olds & Milner, 1954),
its importance for reward-based learning in humans has received considerable support from studies using
fMRI. It has been shown to code variables from normative computational reinforcement learning models
like reward expectation and the reward prediction error in the human brain during decision making.
Especially the ventral striatum is activated by a wide range of reinforcing stimuli including juice, odors,
money and beauty (Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Aharon et al., 2001; Gottfried,
O’Doherty, & Dolan, 2002; McClure, Berns, & Montague, 2003).

Many of these studies have employed instrumental conditioning tasks. Typically, a limited set of
distinct stimuli is presented to the participant, and after each response immediate reward is available.
However, in ecologically valid settings organisms are often faced with more complex decisions problems.
They have to extract the current state of the environment from the noisy sensory signals they receive, and
to interpret these signals in terms of their functional relevance. A fundamental component of this process
involves categorization. Ashby and Maddox (1998) define a categorization task as one where there are
more stimuli than responses, which implies that basic categorizations serve to map the wide and often
continuous range of sensory stimulation onto a limited number of behavioral responses. Complex category
learning tasks, which force participants to rely on gradually acquired stimulus-outcome contingencies, are
sensitive to the nature and timing of feedback (Maddox, Ashby, & Bohil, 2003; Maddox, Love, & Glass,
2008). Yet, in everyday learning, after many decisions immediate reward is not available. Often only
information about the correctness of the decision is provided, and in other cases even this information
has to be inferred from previously acquired knowledge (Hogarth, 2006).

The three experiments presented in this thesis aim at examining the influence of the exact nature of
outcome information on the neural correlates underlying the acquisition and representation of categories.
To this end, the activations in response to internally generated signals on correctness, cognitive feedback,
and monetary reward during and after categorization training will be compared using fMRI. In the
remainder of this first chapter I will review current theories and empirical results on category learning,
on the ability of fMRI to assess neural and especially dopaminergic activations, and on reinforcement
learning. Also, the open questions addressed by this thesis will be summarized. Together with Chapter

1



1. General Introduction

2, which introduces common methods of all presented experimental work, this serves to provide the
background for the experiments reported in Chapters 3 to 5. Finally, the results are summarized and
their implications are discussed in Chapter 6.

1.2. The cognitive neuroscience of human category learning

The ability to divide objects and events into separate, meaningful categories is both a basic skill of any
living organism and a fundamental characteristic of sophisticated thought (Seger & Miller, 2010; Ashby
& Ennis, 2006). The central importance of categorization to organized behavior is most evident when
imagining an organism that lacks this ability: sensory inputs will be experienced as unfamiliar as soon
as they differ only slightly from the inputs during previous events and the world will be experienced
as a stream of fragmented and unrelated events, a

”
blooming, buzzing confusion” (James, 1890). Most

importantly in the context of cognition, the lack of the ability to detect the commonalities between
experiences and their higher-level structure prevents such an organism from assigning meaning to sensory
experiences, to recognize and respond to objects never encountered in this specific form before, and
to anticipate and generalize to future situations by implying that they share basic elements with past
experience (Seger & Miller, 2010). This prohibits learning from previous encounters of similar situations,
as only after objects and events have been dissociated into meaningful entities can they be associated
with different outcomes, which is one of the most basic forms of learning. Because of this fundamental
importance, categorization has even been suggested to be cognition (Harnad, 2005). Following this
line of argumentation it is not surprising that the exploration of category learning has a large and rich
history in cognitive sciences, and that a thorough review of this complex phenomenon is well beyond the
scope of this thesis. For an introduction from different areas of cognitive science, including psychology,
linguistics, philosophy, anthropology, and neuroscience, the reader is referred to H. Cohen and Lefebvre
(2005).

The following short overview introduces human perceptual category learning viewed from the perspec-
tive of cognitive neuroscience. This focus excludes those parts of the literature on animal categorization
that are not considered directly relevant for drawing inferences about human categorization, formal
theories of categorization behavior without specification of its underlying substrates, and the literature
on concepts. Concepts have been defined as a group of related ideas as opposed to a perceptual category
(Ashby & Maddox, 2005), which is defined here as collection of perceptual objects sharing the same func-
tional relevance. Also, as the focus of this introduction is on learning, literature on innate categorization
behavior, e.g. in the context of color or speech perception, and the categorization behavior of highly
trained experts, are not reviewed. Recent reviews on the latter topic are available elsewhere (Mahon,
2009; Martin, 2007).

1.2.1. The neural substrates of category learning

With the development of new non-invasive methods to monitor the activity of the working brain, in the
last decade the focus of research on category learning has shifted from an abstract description of the
cognitive processes mediating it, to its neural substrates. To study category learning, i.e. the acquisition
of formerly unfamiliar categories, experimentally, it is important to construct new artificial categories to
ensure that the participants have not encountered them before. Several methods exist to construct such
categories, and depending on the construction method as well as on the method and duration of training,
differences in the neural substrates subserving category learning have been observed. In the following
sections, some the most common categorization paradigms will be introduced along with the current
findings on their neural substrates. The aim of this introduction is threefold: it is intended to provide
the necessary background to appreciate the rationale behind the construction of the categorization tasks
reported in Chapters 3-5, to introduce the brain network supposed to underlie category learning, and to
alert the reader to the limited scope of conclusions which can be drawn from a single categorization
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1. General Introduction

Figure 1.1. Common category learning tasks. A. Dot pattern prototype distortion task. A prototypical stimulus is
created by randomly distributing nine dots, and category exemplars are created by shifting each dot according
to a statistical rule. Depending on this rule the amount of dislocation can be varied, resulting in high
or low distortions (adapted from Daniel (2008)). B. The “cat”-“dog” categorization task from Freedman,
Riesenhuber, Poggio, and Miller (2003). Three prototypes from the “cat” and “dog” categories are shown;
each prototype can be morphed into every other prototype to create exemplars. C. Weather prediction
categorization task, adapted from Lopez-Paniagua and Seger (2011). Stimuli within a category do not share
common identifying features, and no classification rule can be derived. Each stimulus is probabilistically
associated with the categories “rain” or “sun”. D. + E. Rule based and information-integration tasks.
Each red circle denotes the coordinates of a stimulus from Category A, each blue triangle denotes the
coordinates of a stimulus from Category B. The square-wave gratings are example stimuli constructed from
the coordinates. A verbal rule for classification in D. might be “All stimuli tilted upwards from “2” on a
clock are from category A, all others are from category B”. No easily verbalizable rule can describe the
category boundary in E.

paradigm.

Sensory areas

As the experiments presented in this thesis and the majority of previous studies have been conducted
using visual stimulation, I will focus on this domain to discuss the potential contribution of areas involved
in sensory processing. A very basic example of a visual perceptual category learning task is the prototype
distortion task (Figure 1.1 A). In such tasks exemplars are created by randomly distorting the prototype
which defines the category. In the (A, not A)-version participants learn about category membership
by passively observing exemplars of a single category. During the task, they have to decide whether
presented stimuli are members of the previously presented category, or are a random pattern. It has been
suggested that for such simple tasks the locus of plasticity is in early visual areas, mainly V2 (Aizenstein
et al., 2000; Reber, Stark, & Squire, 1998b, 1998a), and that activation differences in those early areas
are sufficient for making a categorization response (Ashby & Maddox, 2005; E. E. Smith, 2008). However,
already in slightly more complex versions of this task, e.g. when participants are required to distinguish
between two different categories, and when learning via trial and error, a far more widespread network
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including prefrontal, parietal and subcortical areas is thought to subserve prototype distortion learning
(Boettiger & D’Esposito, 2005; Daniel et al., 2011; Seger et al., 2000; Vogels, Sary, Dupont, & Orban,
2002).

Neurons at higher levels of the ventral visual processing stream, i.e. in the lateral occipital and inferior
temporal cortex, are known to respond selectively to more complex shapes, e.g. to faces (Desimone,
Albright, Gross, & Bruce, 1984; Kanwisher, McDermott, & Chun, 1997) or trees (Vogels, 1999). Task
independent category information can be extracted from the inferior temporal cortex (ITC) (Kriegeskorte,
Mur, Ruff, et al., 2008), and during the categorization of complex shapes neurons in this area are known
to emphasize diagnostic features (Sigala & Logothetis, 2002), show greater activity to stimuli near the
category boundary (DeGutis & D’Esposito, 2007), and to show a sharper tuning of responses to stimuli
across category boundaries after categorization training (Freedman et al., 2003) (for an example of a
categorization task employing complex shapes see Figure 1.1 B). As, however, neurons in the ITC do
not completely generalize across category members (Eger, Ashburner, Haynes, Dolan, & Rees, 2008;
Freedman et al., 2003; Jiang et al., 2007), the ITC has been suggested to contribute to categorization
mainly by providing a higher level analysis of the object features relevant for classification (Freedman,
2008; Seger & Miller, 2010).

Prefrontal and parietal cortices

After extensive training the neural firing patterns within the lateral prefrontal cortex (lPFC) reflect
the relevant category boundary during the categorization of complex shapes, showing a sharp tuning
to category boundaries (Freedman, 2008). A similar activation pattern has been observed in posterior
parietal neurons during the classification of moving dot patterns (Freedman & Assad, 2006). Modulated
neuronal activity in the lPFC during categorization was has also been shown in humans (Moore, Cohen,
& Ranganath, 2006; Jiang et al., 2007), as well as increasing activation with categorization uncertainty
in dorsal medial prefrontal areas (Grinband, Hirsch, & Ferrera, 2006; Daniel et al., 2011) and, in a
complex dot-pattern classification task, in the posterior parietal cortex (Daniel et al., 2011). These
activation patterns are well in line with the general role of the parietal and prefrontal cortices in executive
processing, including visuospatial attention and generation of context-appropriate responses, working
memory, conflict monitoring and the cognitive control of ongoing behavior (Corbetta & Shulman, 2002;
Koechlin, Ody, & Kouneiher, 2003; Miller & Cohen, 2001; Ridderinkhof, Wildenberg, Segalowitz, &
Carter, 2004). It is unclear whether the mentioned prefrontal and parietal areas respond specifically to
categorization as compared to other tasks with similar processing demands (Grinband et al., 2006).

Supplementary motor and motor cortices

Neural processes involved in the preparation of a potential action may play a general role in the formation
of perceptual decisions (Gold & Shadlen, 2001, 2003). Electrophysiological results suggest that sensory
signals, which can be used to select the motor response, are conveyed to the primary motor and premotor
cortex (Romo, Hernández, & Zainos, 2004; Shen & Alexander, 1997; Zhang, Riehle, Requin, & Kornblum,
1997), and fMRI data recorded from human participants shows that supplementary and frontal eyefields
participate in learning in prototype distortion tasks (Little & Thulborn, 2005). The prefrontal cortex
(PFC) might be especially important in early category learning, when flexible sets of rules are maintained
and tested, while later in training motor areas might gain importance (Seger & Miller, 2010). In
accordance with this suggestion, an increasingly more important role of motor-related areas in visual
object matching and categorization has been observed as training progressed (Helie, Roeder, & Ashby,
2010; Pollmann & Maertens, 2005; Waldschmidt & Ashby, 2011).

Medial temporal lobe and hippocampus

The hippocampus and surrounding medial temporal lobe (MTL) structures are involved in storing unique
experiences and in the rapid learning of individual instances (McClelland, McNaughton, & O’Reilly,
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Figure 1.2. The striatum. Nucleus accumbens (red), caudate nucleus (blue), and putamen (green). Colors added for
one hemisphere based on the Harvard-Oxford subcortical structural atlas implemented in the FSL-FMRIB
Software Library (http://www.fmrib.ox.ac.uk).

1995). In the context of category learning they might be required for the initial encoding of novel
stimuli and novel associations between stimuli and the category (Meeter, Radics, Myers, Gluck, &
Hopkins, 2008). This is especially important in the arbitrary categorization task (see Figure 1.1 C), in
which stimuli within a category do not share common features and therefore have to be remembered
individually (Poldrack et al., 2001; Seger & Cincotta, 2005). The MTL and hippocampus might however
also be involved in other categorization tasks, e.g. in keeping track of rules have that already been tested
and rejected (Ashby & Valentin, 2005), in storing exceptions to category-defining regularities (Love,
Medin, & Gureckis, 2004), or in generalizing and transferring knowledge (Shohamy, Myers, Kalanithi, &
Gluck, 2008; Shohamy & Wagner, 2008).

Basal ganglia and corticostriatal loops

The basal ganglia are a group of subcortical nuclei which have initially been considered to play a central
role in motor or sensory-motor function, but since then have been shown to also participate in a wide
range of goal-directed behaviors, including motivation and cognition (Haber & Knutson, 2009). They
receive projections from virtually the whole cortex via their input structure, the striatum (consisting
of the putamen, the caudate nucleus and the nucleus accumbens, see Figure 1.2). These inputs are
characterized by a massive convergence of approximately 10,000 to 1 (Ashby & Ennis, 2006) and feed
activation back to the cortex via a thalamic pathway. The connections from the cortex and back again
maintain some degree of topographic separation and therefore have been suggested to be organized in
four interacting corticostriatal loops (see Figure 1.3): the motor loop connecting the motor cortex with
the posterior putamen, the executive loop connecting the PFC and the parietal cortex with the anterior
caudate nucleus (head), the motivational loop connecting the ventral striatum with the orbitofrontal
cortex, and the visual loop connecting extrastriate and inferotemporal cortices with the posterior caudate
nucleus (body and tail) (Seger, 2006, 2008; Seger & Miller, 2010). In accordance with this unique
position in the brain, the basal ganglia, and especially the striatum, participate in a wide range of
categorization tasks and are known to play various important roles in category learning. Seger and Miller
(2010) suggest that the visual loop feeds information from the visual cortex forward to the executive and
motor loops, and back to the visual cortex to modulate visual processing. The executive loop is involved
in feedback processing, working memory updating, and set shifting, while the motor loop is associated
with selecting and executing the response. Lastly the motivational loop is suggested to be involved in
the processing of reward and feedback, as well as in integrating this information across time for future
responses (Seger, Peterson, & Cincotta, 2010; Lopez-Paniagua & Seger, 2011).

Early research on the neural substrates of category learning has shown that the presence of feedback is a
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Figure 1.3. Corticostriatal loops. GPi: Globus pallidus, internal portion, SNr: Substantia nigra pars reticulata (based
on Seger (2008)).

central determinant for the implication of the striatum in category learning. In an arbitrary classification
task, in which the correct classification rule was difficult to describe verbally due to probabilistic
stimulus-response-outcome contingencies, Poldrack et al. (2001) showed that activation in the caudate is
higher during feedback-based learning than during observational learning. Also, patient populations
with impaired striatal functioning are impaired only in feedback-based category learning and mainly
in complex categorization tasks which require incremental learning and the integration of information
across multiple experiences (Shohamy et al., 2008). However, these results on the feedback-dependence of
striatal involvement have to be differentiated for the subcomponents of the striatum: activity in the head
of the caudate was observed to be modulated by the presence of feedback, while the posterior caudate
and the putamen were active to a similar degree in both feedback-based and observational learning
(no data reported on the ventral striatum; Cincotta and Seger (2007)). Also, the ventral striatum is
activated during both categorization and feedback processing, but the activation is stronger during
classification (Aron et al., 2004; Lopez-Paniagua & Seger, 2011). This indicates that once active in the
learning process, ventral striatal activity is not limited to the feedback component of the task (Poldrack
& Willingham, 2006).

In addition to the presence or absence of feedback, two further factors are known to influence the
respective contributions of the corticostriatal loops: the amount of expertise acquired, and the specific
properties of the task. The executive and motivational loops might be most important early in learning,
whereas the motor loop becomes more involved when the task is well-learned (Seger & Cincotta, 2005).
An empirically well-supported theory of category learning, COmpetion between Verbal and Implicit
Systems (COVIS) (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Paul, & Maddox, 2011),
proposes a competition between the visual and executive loops dependent on the category structure. In
the framework of COVIS rule-based category learning tasks (see Figure 1.1 D) are defined as tasks in
which the category structure can be learned via explicit reasoning and the rule maximizing accuracy is
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easy to describe verbally. In these tasks the verbal system, consisting of the executive loop through the
head of the caudate nucleus and additional loops through sensory association areas and the MTL, is
assumed to predominate (Ashby & Valentin, 2005). The learning of rule-based tasks has been shown
to be insensitive to presence and timing of feedback, which has been attributed to the reliance of the
verbal system on working memory and attention (Maddox et al., 2003; Ashby & Maddox, 2002). In
contrast, in information-integration category learning (see Figure 1.1 E) accuracy is maximized only if
information from two or more stimulus components / dimensions is integrated at a pre-decisional stage
and the optimal strategy is difficult or impossible to describe verbally. Here, the implicit system based
on the visual loop is assumed to predominate eventually, as it is more efficient in learning complex
implicit rules, however does not learn as rapidly as the explicit system (Ashby & Maddox, 2005). The
learning of information-integration tasks is postulated to be procedural (Ashby & O’Brien, 2007) and
highly dependent on feedback. Information-integration category structures cannot be learned using
unsupervised training protocols (Ashby, Queller, & Berretty, 1999), and the acquisition of the category
boundary is impaired when training is observational rather than feedback-based (Ashby & Maddox,
2002), or feedback is delayed (Maddox et al., 2003; Maddox & Ing, 2005). These effects are attributed to
the dependence of the implicit system on reward-based teaching signals originating in the dopaminergic
system (Ashby & O’Brien, 2007). COVIS assumes that both the verbal and implicit system remain
active throughout the whole process of category learning. When the task is overlearned, the subcortical
pathway through the basal ganglia is suggested to be gradually replaced by a more direct cortico-cortical
path from perceptual to motor areas (Ashby & O’Brien, 2007; Helie et al., 2010; Waldschmidt & Ashby,
2011).

Dopaminergic midbrain nuclei

As all forms of reinforcement-based learning, feedback-based category learning critically depends on the
function of the dopaminergic midbrain nuclei. The striatum is both a major contributor of input to the
dopaminergic system, and a major recipient of dopaminergic output (Joel & Wiener, 2000). Within the
striatum, learning is assumed to be dependent on three factors: strong presynaptic activation, strong
postsynaptic activation, and dopamine release. This indicates that striatal learning, which is central to
many forms of category learning, can only occur when the dopaminergic system is active (Ashby & Ennis,
2006). Neuropsychological data shows that patients with Parkinson’s disease, which is characterized by
a loss of dopaminergic input to the striatum, are impaired in feedback-based complex category learning
tasks, and that this effect is modulated by dopaminergic medication (Ashby & Maddox, 2005; Shohamy
et al., 2008). Reinforcement learning theory provides an elaborated account of dopaminergic functioning.
As the topic of feedback processing is central to the experiments presented in this thesis, a more thorough
overview of reinforcement learning theory is provided in Section 1.4.

1.2.2. Summary and outlook

Not surprisingly for such an ancient and fundamental skill, depending on the specifics of the task virtually
all brain areas, including the neocortex (sensory, prefrontal, parietal, and motor cortex), the medial
temporal lobe, basal ganglia and dopaminergic midbrain neurons have been shown to subserve category
learning.

Three major conclusions can be drawn from the literature reviewed in this section: the neural structures
underlying category learning are strongly dependent on (1) the task itself, (2) the level of expertise
acquired in the task, and (3) the way the task is trained. For simple classification tasks perceptual
learning within early sensory areas might be sufficient, while highly trained tasks might only involve
connections from sensory to motor cortices. In contrast, the initial acquisition of more complex category
structures relies on corticostriatal loops. Predominantly in tasks in which the optimal categorization rule
is difficult to describe verbally, learning is strongly dependent on feedback, and the effects of feedback
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are carried by the dopaminergic system. As the focus of the present thesis is on the influence of outcome
information, such a category learning task will be employed in all experiments presented.

Most experiments on the involvement of the dopaminergic system in learning in human participants
have been conducted using fMRI. Therefore, in Section 1.3 an introduction to the origin of the signal
measured using fMRI is provided, along with a critical discussion of its ability to assess dopaminergic
activation. In Section 1.4 the most central models of reinforcement learning are presented, and empirical
findings on the involvement of the dopaminergic projection areas in human learning are summarized.

1.3. Examining the brain using fMRI: the relationship between the
fMRI signal, neuronal firing and dopaminergic activity

FMRI combines a moderate spatial resolution in the range of millimeters with a moderate temporal
resolution in the range of seconds. It is able to simultaneously provide data from the whole brain, including
subcortical structures, which enables the examination of the entire network of areas engaged while
participants are performing a task. In combination with its relative cost-efficiency and ever-increasing
availability, these properties have made fMRI one of the most popular methods to measure brain activity
in humans. Since its introduction in 1992 (Bandettini, Wong, Hinks, Tikofsky, & Hyde, 1992; Frahm,
Bruhn, Merboldt, & Hänicke, 1992; Kwong, 1992; Ogawa, 1992), this method has experienced an
exceptional growth. In 2008, a query of the ISI / Web of Science database using the keywords ’fMRI’
or ’functional MRI’ or ’functional magnetic resonance imaging’ returned around 19,000 peer-reviewed
articles (Logothetis, 2008). In 2012, the same search returns over 50,000 articles.

Excellent introductory books on the method of fMRI are available (e.g. Ashby (2011), Huettel, Song,
and McCarthy (2004), Poldrack, Mumford, and Nichols (2011), and Jezzard, Matthews, and Smith
(2001)), and a short overview by the author of this thesis is provided in Daniel (2008)1. Given the
widespread recognition of fMRI no general introduction to the method itself will be provided here.
However, the experiments presented in Chapters 3-5 rely on the fMRI signal to examine the neural
correlates of learning and feedback processing. As these processes are intimately tied to the activity of
dopaminergic midbrain neurons and their projections, this section provides a short discussion of the
origin of the fMRI signal in general and of its relationship to dopaminergic activity in particular.

1.3.1. Understanding the fMRI signal

Despite its wide use, the exact relationship between the fMRI signal and the underlying neuronal activity,
which it is assumed to represent, is not yet fully understood. As the fMRI technology cannot provide
direct information about the electrical activity of neurons, it has to rely on an indirect index based on
the metabolic changes induced by neuronal activity. Hemoglobin, the oxygen-carrying molecule within
red blood cells, has different magnetic properties depending on its oxygenation state, which allows it
to act as an endogenous contrast agent. The blood oxygenation level-dependent (BOLD) contrast is a
compound signal which reflects changes in oxygen consumption in combination with changes in cerebral
blood flow and volume (Buxton, Uludağ, Dubowitz, & Liu, 2004). All of these vascular responses are
elicited by local increases in neural activity (Logothetis & Wandell, 2004; Logothetis, 2010); however, the
coupling mechanisms between the BOLD signal and neural activity are indirect, complex and interrelated.
They depend on factors like the type of neural response to a stimulus, the link between this response
and energy demands, the mechanisms that signal the energy demand, and the mechanisms responsible
for triggering the hemodynamic response (Arthurs & Boniface, 2002; Logothetis, 2003).

Simultaneous cortical electrophysiological and fMRI recordings suggest that the BOLD signal is better
explained by local field potentials than neuronal spiking activity (Goense & Logothetis, 2008; Kayser,
Kim, Ugurbil, Kim, & König, 2004; Logothetis & Wandell, 2004; Mukamel et al., 2005; Raichle & Mintun,

1Unpublished diploma thesis. Available from http://apsy.gse.uni-magdeburg.de/˜daniel
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2006). Local field potentials are assumed to not reflect local action potentials carried by the output
neurons of a region, but rather to index the input to a given cortical area as well as its local intracortical
processing, including both excitatory and inhibitory interneuronal activity (Logothetis, 2003; Logothetis
& Wandell, 2004). In addition, the information reaching a brain region is evaluated under the overall
regulation of cortical dynamics by neuromodulatory signals from a number of neurochemicals, including
acetylcholine, norepinephrine, serotonin, and dopamine. The neuromodulatory effects affect large masses
of cells, and might induce larger changes in the fMRI signal than function specific processing of sensory
signals (Logothetis, 2008).

The indirect nature of the BOLD-fMRI signal has to be kept in mind whenever fMRI activity is
interpreted as neuronal activation. This is especially true when fMRI activations are interpreted as
reflecting the activity of specific neurotransmitter / neuromodulator systems, like it is often done in
studies of reward-based learning, which is intimately tied to the function of the dopaminergic system.

1.3.2. A potential link between BOLD response and dopaminergic activation

As detailed in the previous section, fMRI is not able to directly index changes in dopamine release.
However, there are indications that dopaminergic neuron firing could be closely correlated with the
BOLD response to afferent input in midbrain areas containing a large proportion of dopaminergic
neurons, like the substantia nigra (SN) / ventral tegmental area (VTA), and in regions receiving massive
projections from these areas, like the ventral striatum.

Injections of dopamine-releasing agents can increase the BOLD signal in the nucleus accumbens
mediated by an increased postsynaptic D1 agonism, and it has been suggested that the signal has
the capacity to fluctuate at a second-to-second timescale in response to short bursts of dopaminergic
firing (Knutson & Gibbs, 2007). Consistent with this assumption, fMRI studies show activations in the
vicinity of the midbrain dopaminergic nuclei and in the striatum that correlate with reward expectation
and the prediction error, and thereby exhibit a striking similarity to the pattern of burst firing of
dopamine neurons observed in electrophysiological recordings (D’Ardenne, McClure, Nystrom, & Cohen,
2008; M. X. Cohen, 2008; O’Doherty, Hampton, & Kim, 2007; Knutson, Taylor, & Kaufman, 2005;
Niv, 2009). These results indicate that the association between the presence of dopamine and BOLD
activation in the nucleus accumbens might not only occur at the longer timescales associated with
pharmacological manipulations, but also at shorter timescales in response to endogenous bursts of
dopamine release (Knutson & Gibbs, 2007). More direct evidence for the modulation of ventral striatal
fMRI signals by dopamine was provided by Pessiglione, Seymour, Flandin, Dolan, and Frith (2006).
They report that during instrumental learning the magnitude of the reward prediction error as measured
using BOLD-fMRI in the striatum is modulated by the administration of drugs that enhance or reduce
dopaminergic function. Subsequently, a quantitative role of dopamine in the fMRI signal was established
by showing a direct correlation between reward-related dopamine release, as indexed by [11C]raclopride
positron emission tomography (PET), and fMRI activity in the SN / VTA and the ventral striatum
across the same participants (Schott et al., 2008). An indication for the role of dopamine in the dorsal
striatum was provided by a recent study by Schönberg et al. (2010). They showed that in patients with
Parkinson’s disease, which is characterized by a loss of dopaminergic input to mainly the dorsal striatum,
fMRI activation in response to reward prediction errors in the dorsal putamen is significantly decreased
compared to responses observed in control participants.

Although the studies reviewed above provide evidence for a link between dopaminergic neurotrans-
mission and fMRI activation during reward-learning, they do not rule out that this link is mediated
by non-dopaminergic processes, like glutamatergic costimulation. In addition, this evidence was only
provided for the expectation and processing of rewards in the SN / VTA and striatum. As fMRI cannot
isolate dopamine-related activity from the effects of other afferents, it is conceivable that the BOLD signal
and dopamine release dissociate in other situations. Most importantly, the response to aversive stimuli or
omissions of expected rewards is associated with increased afferent input to inhibitory interneurons in the
SN / VTA (Düzel et al., 2009), which might result in an increased fMRI signal. Indeed, positive midbrain
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activations in response to negative feedback and positive errors in the prediction of punishment have
been observed (Aron et al., 2004; Menon et al., 2007). The results on a possible relationship between
dopaminergic activity and the fMRI signal can also not be transferred to other target areas of the
mesencephalic dopaminergic system, like the orbitofrontal cortex or the medial prefrontal cortex, which
are less physiologically homogenous and show different pharmacokinetics (Knutson & Gibbs, 2007).

1.3.3. Summary and conclusions

FMRI cannot assess the exact neuronal mechanisms underlying the studied tasks. The signal changes it
measures do however consistently reflect local changes in overall neural activity, and it allows measuring
these changes with a relatively high spatiotemporal resolution throughout the whole brain, including
deep structures that are central to reinforcement learning like the dopaminergic midbrain nuclei and
the ventral striatum. For these structures evidence exists that links fMRI activation during reward
processing directly to dopamine. A connection with the dopaminergic system has to be assumed as the
most probable source of fMRI activations in response to reward in the SN / VTA and nucleus accumbens
for the generation of further hypotheses testable with other, more invasive, methods. In combination
with its non-invasive nature, these findings make fMRI the best currently available tool to study the
neural basis of reward-based learning in healthy human participants.

1.4. Neurocomputational mechanisms of reinforcement learning

As any living organism, humans are faced with the need to make decisions about how to act in response
to environmental cues every day. Often, we encounter similar decision problems – or decision problems
which we categorize to be similar – repeatedly, which gives us the opportunity to learn from previous
experience. In behavioral psychology, two classes of conditioning paradigms are distinguished. One
class is termed Pavlovian or classical conditioning, and focuses on behavioral changes in response to
contingencies between stimuli. As in these paradigms subjects only experience the relationships between
events in the world, the changes in behavior are assumed to reflect innately specified reactions to the
prediction of the outcomes. The outcomes occur regardless of the subjects’ actions, therefore this form of
learning sometimes is also referred to and modeled as prediction learning (Dayan & Balleine, 2002). The
second class is termed instrumental or operant conditioning. In instrumental conditioning paradigms
subjects learn to select actions that maximize the outcome of their behavior. Reinforcements are
outcomes that increase the probability of the behavior that lead to the outcome, while punishments lead
to a decrease in the probability of that behavior. If a behavior is reinforced by providing a stimulus rather
than withdrawing it, i.e. by positive reinforcement, the reinforcer is also referred to as reward (Wise,
1989). As in instrumental conditioning the outcome is contingent upon behavior, the subject has the
opportunity to maximize this outcome. Therefore, instrumental conditioning can be viewed as the most
fundamental form of rational decision-making (Niv, 2009), and is closely related to the computer science
theory of reinforcement learning (Sutton & Barto, 1990) and the engineering theory of optimal control
(Bertsekas & Tsitsiklis, 1996). These two lines of research study how systems can choose their actions to
maximize rewards and minimize punishments, i.e. they provide normative accounts how to optimize
behavior. Recent research combining normative computational modeling with neuroscientific methods
indicates that normative models provide a useful framework for studying reward-based learning in living
organisms. A wealth of reinforcement learning models exists which are specifically designed to account
for certain phenomena under certain circumstances. In the following section I give a short historical
overview of computational models of reinforcement learning as far as they are relevant to the studies that
provide the background for the experiments reported in this thesis. Subsequently, evidence is reviewed
that these abstract mathematical formulations, which describe how decisions could theoretically be
optimized, correlate with neural activations observed in living organisms. A more thorough overview of
these topics can be found in Niv (2009) and M. X. Cohen (2008). Detailed descriptions and comparisons
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of different reinforcement learning models are provided by Sutton and Barto (1998).

1.4.1. Introduction to computational models of reinforcement learning

The reinforcement learning models introduced in the next sections share some core features. They all
calculate a numerical representation for the preference of particular stimuli or actions. Depending on
the model these numerical representations are called association strengths, weights, or values. When
new information becomes available, these preferences are updated according to an updating term, which
is, in its most commonly used form, the reward prediction error, i.e. the difference between received and
expected rewards. When faced with a decision problem, the agent selects the stimulus or action with
the highest preference value, often after passing the preference values through a probabilistic function
(e.g. the soft-max distribution) (M. X. Cohen, 2008).

Models of prediction learning

One of the most influential models of classic conditioning is the Rescorla-Wagner model (Rescorla &
Wagner, 1972). It distinguishes between the unconditioned stimulus (US), a biologically relevant stimulus
that naturally evokes an unconditional (or unconditioned) reaction, and the conditioned stimulus (CS),
usually a previously neutral stimulus that comes to evoke a conditioned response through its pairing
with the US. The model assumes that after each conditioning trial the associative strength V of the
presented conditioned stimuli CSi changes according to the rule

∆VCSi
= αiβ(λ1 −

∑
i

VCSi
) (1.1)

where αi and β are learning rate parameters that depend, respectively, on the CS and the US, and λi
is the asymptote of learning, i.e. the maximum conditioning possible for the presented unconditioned
stimulus. According to this model, if the total of all associative strengths of the conditioned stimuli
presented in one trial

∑
i VCSi

is equal to the maximum possible conditioning, associative strengths do
not change after a trial. Thereby, the Rescorla-Wagner model postulates that learning only occurs when
events violate expectations. Using this error-correcting approach the Rescorla-Wagner model has been
successful in explaining and predicting a number of experimental observations like blocking, i.e. the
phenomenon that predicted stimuli will not support the conditioning of an additional CS (Kamin, 1969),
or of overexpectation, observable as a decline of associative strengths when a pair of two previously
well-trained CS is further trained with both CS in compound (Rescorla, 1970).

Based on the Rescorla-Wagner rule, an adaptive network model of category learning was suggested
(Gluck & Bower, 1988b, 1988a). In its simplest form this model assumes that a layer of distinct input
units – one per presented stimulus – feeds activation directly into the output units representing the
categories.

If there are n input nodes, and the activation in input node i is represented by ai, then the activity in
output node oj , is determined by

oj =

n∑
i=1

wijai (1.2)

and the weights w from input node i to output node j are adjusted according to the error correction
rule

∆wij = β(dj − oj)ai (1.3)

where dj is the desired output for oj given the input. It can be interpreted as “teaching signal”
indicating what the activation of that node should be to obtain the correct response. Even in this
parsimonious form, assuming only one layer, this adaptive network model is successful in predicting
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1. General Introduction

both categorization behavior (Gluck & Bower, 1988b, 1988a) and neural activation (Rodriguez, Aron,
& Poldrack, 2006) in probabilistic category learning tasks. It is utilized in Chapter 5 to develop an
adaptive training method ensuring successful category learning in all participants.

Despite its success, the Rescorla-Wagner model has some serious limitations, one of them being
that it explains conditioning on an artificially defined trial-by-trial basis. To overcome this problem in
temporal-difference learning models the timepoint t within a trial is explicitly represented (Sutton &
Barto, 1990). For a single stimulus S its value V is updated according to the rule

V (St)new = V (St)old + η(rt + γV (St+1)− V (St)) (1.4)

where η is a learning rate parameter, rt is the reward received at timepoint t, 0 < γ ≤ 1 is a discounting
factor to account for the fact that future rewards are less valuable than immediate rewards, and St+1

is the next observable state of the environment. Temporal-difference learning models are sensitive to
temporal relationships within a trial and are able to account for the timing of multiple stimuli and
rewards within a trial (Niv & Montague, 2008). As in the present thesis timing within a trial was not
considered to be crucial for the interpretation of the results, this extension of the reward prediction error
was not incorporated into the analyses. However, early research in the animal domain, which forms the
basis of the present understanding of reward-based learning, has employed this approach, as well as
many fMRI studies later on (see below).

Optimizing behavior

The computational models introduced so far are aimed at describing how to optimize predictions. In
many cases however, we are more interested in how to optimize actions in order to maximize the outcome,
as in instrumental conditioning. Models of reinforcement learning attempt to solve this problem by
either defining two modules, termed the actor and the critic, or by representing values over state-action
pairs. In actor / critic models, the critic module uses temporal difference learning to estimate the value of
the states of the environment. The temporal-difference prediction error that is used to train these is also
conveyed to the actor module, which maintains and learns a policy, i.e. a probability distribution over all
available actions at each state. In Q-learning models (Watkins, 1989) the coupling between prediction
learning and action selection is more direct. In these methods, the value Q of a pair of the state S and
an action a is learned (Niv, 2009). A simple form of Q-learning is implemented in the analysis of the
experiment presented in Chapter 4.

Implications

The mathematical models presented in this section provide elaborate quantitative predictions about
which calculations the brain might realize in order to achieve optimal decisions. They make it possible
to describe putative processes by introducing hidden variables that are not readily observable, such as
state values and reward prediction errors. It has to be noted that it is possible to utilize the insight
gained from these models without explicitly fitting them. For example, Abler et al. (2006) kept the
amount that participants could win constant and informed them about the probability of winning before
each trial. In this way, they were able to calculate the value at each trial, which is assumed to be the
product of these two variables (Knutson et al., 2005), as well as the reward prediction error, without
estimating the free parameters of a computational model. Such an approach can be valuable as the
exact estimation of free parameters for each participant can prove difficult based on the noise present in
empirical data and the limited amount of trials that can be acquired within a single experiment (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006). However, this approach cannot be used to differentiate
between models. The predictions of reinforcement learning models have inspired a wealth of empirical
investigations providing insight to the neural mechanisms of reward-based learning. A short overview of
their results is presented in the next section.
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1.4.2. Neural correlates of hidden variables

Research on reward-based learning has employed a wide range of methods, from microelectrode approaches
over lesion studies and pharmacological interventions to PET and fMRI. Electrophysiological recordings
provide high temporal and spatial resolution, but offer information only from a restricted region. Also,
due to their highly invasive nature, recordings from human participants are rarely available (exceptions
are reported in Münte et al. (2007); M. X. Cohen et al. (2009)). On the other end of the spectrum,
fMRI can be used to visualize activation from the whole brain, however provides a considerably lower
spatiotemporal resolution and only an indirect measure of neuronal activity (see Section 1.3). The
following review shortly introduces the seminal electrophysiological findings that initiated the search for
neural correlates of prediction errors. It then focuses on fMRI activations observed during reward-based
learning, as this is the method employed in the experiments reported in the current thesis. As estimates
of the reward prediction error, the value of a stimulus and its outcome are correlated in most paradigms
(Sescousse, Redouté, & Dreher, 2010; Hare, O’Doherty, Camerer, Schultz, & Rangel, 2008; Niv, 2009),
their respective contributions are difficult to disentangle with standard fMRI methods which rely on
linear regression. For the purposes of this overview therefore the activations that correlate with the
different variables are reviewed in parallel.

Dopaminergic midbrain neurons

Electrophysiological recordings from the dopaminergic midbrain, i.e. the SN pars compacta and VTA,
show that phasic bursts in at least a subpopulation of dopaminergic cells convey a signal corresponding
closely to the reward prediction error of temporal-difference learning models (Montague, Dayan, &
Sejnowski, 1996). They respond to appetitive events, such as primary rewards and reward-predicting
stimuli, and do not respond when rewards are fully predicted. The omission of rewards at the predicted
timepoint decreases their (low) baseline activity. This correspondence was also shown in more stringent
tests of reward prediction errors, including paradigms of blocking (Waelti, Dickinson, & Schultz, 2001)
and conditioned inhibition (Tobler, Dickinson, & Schultz, 2003), which further support the reward
prediction error hypothesis of dopamine (for extensive reviews see Schultz, Dayan, and Montague (1997);
Schultz (1998, 2000, 2006, 2007, 2010)).

Although the fMRI signal is assumed to reflect the input to a region (and processing within that
region) rather than its output (see Section 1.3), several fMRI studies also report activity in midbrain at
or near the SN / VTA in response to reward prediction and the prediction error (Adcock, Thangavel,
Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; D’Ardenne et al., 2008; Dreher, Kohn, & Berman, 2006;
O’Doherty, Deichmann, Critchley, & Dolan, 2002; O’Doherty, Buchanan, Seymour, & Dolan, 2006;
Schott et al., 2007; Wittmann et al., 2005), with however no substantial decreases in activation when
expected rewards fail to occur (Haber & Knutson, 2009).

Striatum

More consistently than midbrain activations, activations in dopaminergic target areas, including the
striatum, have been reported. Activation in the ventral striatum, i.e. the ventral putamen and nucleus
accumbens, correlates with the prediction error during Pavlovian conditioning, while activations in both
the dorsal and ventral striatum correlate with the prediction error during instrumental conditioning
(O’Doherty, 2004). On this basis, a dorsal / ventral dissociation of the striatum has been suggested
analogously to the actor / critic distinction in reinforcement learning. Indeed, some fMRI studies of
action-contingent reward learning report dorsal striatal activation (Balleine, Delgado, & Hikosaka, 2007;
Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Delgado, Miller, Inati, & Phelps, 2005; Elliott, Newman,
Longe, & William Deakin, 2004; Haruno et al., 2004; Haruno & Kawato, 2006; Knutson, Fong, Adams,
Varner, & Hommer, 2001; Tricomi, Delgado, & Fiez, 2004).

The area most consistently observed to be activated in response to reward anticipation and the
prediction error is the ventral striatum (e.g. Abler et al. (2006); Bjork and Hommer (2007); Gläscher,
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Daw, Dayan, and O’Doherty (2010); Lin, Adolphs, and Rangel (2012); O’Doherty, Dayan, Friston,
Critchley, and Dolan (2003); Pagnoni, Zink, Montague, and Berns (2002); Preuschoff, Bossaerts, and
Quartz (2006); Knutson et al. (2001); Niv, Edlund, Dayan, and O’Doherty (2012); Rodriguez et al. (2006);
Schönberg, Daw, Joel, and O’Doherty (2007); Yacubian et al. (2006)). FMRI activation correlating
with parameters predicted by reinforcement learning models has been observed for a wide range of
rewards, ranging from juice to smiles / positive social cues (Lin et al., 2012), but also for punishments like
cutaneous electrical stimulation (Menon et al., 2007). While some studies report positive and negative
reward prediction errors to be associated with increased and decreased activity, respectively (see e.g.
Abler et al. (2006); Pessiglione et al. (2006); Schönberg et al. (2007)), others have observed increases in
striatal fMRI activations in response to errors in the prediction of aversive events (see e.g. Jensen et al.
(2007); Menon et al. (2007); Seymour et al. (2004)). The source of these positive activations in response
to negative prediction errors is unclear, but valence-independent dopaminergic processes (Metereau &
Dreher, 2012), non-dopaminergic opponent processes signaling aversive prediction errors (Seymour, Daw,
Dayan, Singer, & Dolan, 2007), and the potential inability of fMRI to distinguish between excitatory
and inhibitory input (Niv, 2009) have been proposed.

The amygdala and lateral habenula are also among the subcortical structures that have been implicated
in reinforcement learning, however mainly in the context of aversive learning. As this is not a focus
of the present thesis, the reader is referred to Haber and Knutson (2009) for a recent review of their
potential function.

Prefrontal cortex

Reward signals are observable not only in subcortical structures but also in most parts of the cortex
(Vickery, Chun, & Lee, 2011). Three prefrontal areas seem to play a special role in reinforcement learning:
the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), and dorsomedial prefrontal
cortex (dmPFC) / dorsal anterior cingulate cortex (dACC). They project directly to the ventral striatum
and are connected with it in the reward circuit (Haber & Knutson, 2009). Functional MRI activation in
the vmPFC and adjacent medial OFC has been shown to correlate with an abstract representation of
value (Haber & Knutson, 2009). Some controversy exists about the functional division between medial
and lateral OFC regions, however there are indications that the vmPFC, and possibly the adjacent
medial OFC, process diverse and abstract rewards, while the lateral OFC is more specialized in its
responses to different types of reinforcers (Sescousse et al., 2010) (for reviews see Haber and Knutson
(2009); Kringelbach and Rolls (2004); O’Doherty (2007); Rushworth, Noonan, Boorman, Walton, and
Behrens (2011); Wallis (2007)). Lastly, the dmPFC / dACC is involved in reward-guided learning with
an emphasis on action selection. Due to the location of the dmPFC, its activation can also be assessed
using non-invasive electrophysiological measurements from the scalp (Debener et al., 2005), and there
is evidence that two electroencephalography (EEG) components associated with it, the error-related
negativity (ERN) and feedback-related negativity (FRN), reflect several characteristics of the prediction
error signal (Holroyd & Coles, 2002; Holroyd, Yeung, Coles, & Cohen, 2005; M. X. Cohen & Ranganath,
2007). The dmPFC / dACC, and especially the rostral cingulate zone (RCZ), participate in monitoring
response conflicts and uncertainty, performance outcomes and response errors (Ridderinkhof, Ullsperger,
Crone, & Nieuwenhuis, 2004). One important dissociation of activations in response to errors and rewards
can be observed between the dmPFC and the ventral striatum: the dmPFC is activated by all errors
regardless of their effect on outcome, while the ventral striatum is activated by reward regardless of the
correctness of the preceding action (de Brujin, de Lange, von Cramon, & Ullsperger, 2009). Additionally,
dmPFC / dACC activation indicates when action values should be adjusted, and predicts switches in
action selection (Rushworth & Behrens, 2008), emphasizing the central role of these areas for guiding
future actions based on their past outcomes.
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Overview

The main areas in which fMRI activation has been shown to correlate with variables from reinforcement
learning models are the VTA / SN, the basal ganglia (mainly the striatum), subcortical limbic structures
including the amygdala, and the PFC (mainly the medial prefrontal cortex (mPFC) and the OFC). In a
more vigorous approach than can be achieved by examining correlation coefficients between model-derived
hidden variables and neural activation data, Rutledge, Dean, Caplin, and Glimcher (2010) tested an
axiomatic model in eleven brain areas to assess whether the recorded activation during a reward learning
task possesses the necessary and sufficient properties of any reward prediction error signal. They were
able to provide evidence for this in the nucleus accumbens, caudate, putamen, amygdala, mPFC, and
posterior cingulate cortex.

1.4.3. Concluding remarks

The reward prediction error hypothesis of dopamine is not unchallenged (see e.g. (Berridge, 2007;
Redgrave, Gurney, & Reynolds, 2008; Vitay, Fix, Beuth, Schroll, & Hamker, 2009)) and, without further
extensions, the models presented here are not able to account for more complex phenomena observed
in learning, like dopaminergic responses to novelty (Wittmann, Bunzeck, Dolan, & Düzel, 2007), the
sensitivity to risk (Dayan & Niv, 2008; Niv et al., 2012), or the ability to learn from rewards that
were foregone (Lohrenz, McCabe, Camerer, & Montague, 2007). However, even in their most simplistic
form reinforcement learning models provide a parsimonious account of many behavioral phenomena,
as well as of the pattern of neural activations observed using fMRI. Currently, the prediction error
hypothesis has inspired the most extensive body of experimental research on reward-based learning,
and models derived from it have proven to be able to predict neural activations across species and for
a wide range of reinforcing stimuli and experimental paradigms. Therefore, the studies presented in
this thesis rely on this framework to both interpret the observed findings and to compare the fMRI
activations observed during learning in the absence of explicit reinforcement with those observed during
reward-based learning.

1.5. Open questions addressed by this thesis and outline of the
experiments

As summarized in Sections 1.2-1.4 within the last decade considerable advances have been made in
understanding the neural bases of human reward-based learning and category learning. However, as these
two lines of research have mainly developed in parallel, some open questions remain especially in the
fields where they overlap. The experiments presented in this thesis are designed to address the central
question of the influence of the nature of outcome information on the neural substrates of category
learning.

As noted in Section 1.2, feedback plays a central role in complex categorization tasks where information
has to be integrated across multiple experiences (Shohamy et al., 2008) and / or within the same stimulus
(Ashby & Maddox, 2005). This has been postulated to be due to the fact that learning in subcortical
structures, which support complex category learning, is dependent on dopamine-mediated reward signals
from dopaminergic midbrain neurons (Seger et al., 2010; Ashby & Maddox, 2005; Seger, 2008). Here,
the implicit assumption is made that cognitive feedback, i.e. information about the correctness of an
answer, activates the reward system in a similar way as explicit rewards. Most studies on learning in
humans were conducted using fMRI, which is not able to index dopamine release directly. However,
based on data from pharmacological, neuropsychological and PET approaches (see Section 1.3), currently
it has to be assumed that in reward-based paradigms there is a relationship between the fMRI signal,
dopaminergic activity in the midbrain, and dopamine release in the ventral striatum. Independent of
the actual source of the fMRI signal, vast evidence exists that structures of the dopaminergic system,
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especially the ventral striatum, show fMRI activation in response to a wide range of reinforcing stimuli,
including cognitive feedback (Aron et al., 2004; Rodriguez et al., 2006), in a pattern consistent with
reinforcement learning theory (see Section 1.4).

However, similar activation patterns in different tasks are not a sufficient proof that the same processes
are implicated (Poldrack & Willingham, 2006), and can only generate hypotheses about potential
differences in processing. In the first experiment presented in this thesis (Chapter 3) we therefore directly
compared the effects of explicit reward, operationalized as monetary gain, to the effects of cognitive
feedback, operationalized as information about the correctness of an answer. To this end, two parallel
versions of an information-integration category learning task were developed. As internal error signals are
also known to activate structures of the reward circuit (Holroyd et al., 2004), in the second experiment
(Chapter 4) this approach was expanded by using a version of the same paradigm in which no external
feedback was provided. The participants were questioned about their internal signals on correctness and
the neural correlates of these internal signals were examined in terms of reinforcement learning theory.
In a final step, the lasting effects of monetary reinforcement and cognitive feedback on the categorical
representation of stimuli after training were compared (Chapter 5). All experiments were performed on
young healthy human participants using fMRI. Specific hypotheses for each experiment are detailed in
their respective introduction. In general, we assumed that category learning in the absence of explicit
rewards is supported by the dopaminergic system in a similar way as it is in reward-based learning.
However, quantitative and qualitative differences in involvement were expected, which are specified in
the context of the presented experiments.
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2 General Methods

Given that there is a considerable overlap of methodology in the three experiments presented in Chapters
3-5, this chapter summarizes all common methods to avoid repetitions. Methodological aspects which
were specific to each experiment are detailed in their respective methods section.

2.1. Participants

For all experiments young healthy adults of both genders were recruited as participants from the Otto-
von-Guericke University community. None of them reported a history of drug abuse, psychiatric diseases
or neurological injuries. All participants were without pathological findings on a psychiatric screening
questionnaire (SCL-90-R; Franke (1995)), right-handed as confirmed by the Edinburgh Handedness
Inventory (Oldfield, 1971) and reported normal or corrected to normal vision. Written informed consent
was obtained prior to the experiments in accordance with the protocols approved by the ethics committee
of the Otto-von-Guericke University.

2.2. Behavioral task

All categorization tasks utilized in the present work were developed based on the randomization
technique of general recognition theory (Ashby & Gott, 1988). As within this family of categorization
tasks the categories are defined by bivariate normal distributions within an arbitrary two-dimensional
stimulus space, extensive control over all important aspects of the categories is provided. The technique
allows adjusting the category structure, the maximum possible accuracy rates, and the shape of the
categorization rule to fit the current experiment. In the presented studies three types of stimuli were
used: circles with an opening of 30 ° width, two parallel lines, and circular square wave gratings. The
dimensions defining the stimulus space were linewidth and orientation for the circle and line stimuli, and
spatial frequency and orientation for the gratings. By choosing bivariate normal distributions with a
non-zero covariance, all category boundaries were constructed to be oblique to the dimensions spanning
the stimulus space. This requires participants to integrate information from both stimulus dimensions
predecisionally, which is known to lead to a gradual acquisition of category knowledge and to be more
dependent on training than the acquisition of easily verbalizable rules (Ashby & Maddox, 2005).

For each trial a category was chosen randomly with equal baserates, and an ordered pair of values
was sampled randomly from the appropriate bivariate normal distribution. Within each experimental
block the sample mean-vector and variance-covariance matrix of the sampled stimuli were transformed
to equal the predefined distribution specifying the category (exact parameter values are listed in Tables
3.1, 4.1, and 5.1). To construct the stimuli, the values obtained in this way were transformed to
the dimensions specifying the stimulus space (orientation and linewidth or spatial frequency) using
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transformation parameters that were chosen in an attempt to equalize the salience of both dimensions.
The resulting category structures along with sample stimuli for each category and experiment are
presented in Figure 3.1, Figure 4.1 and Figure 5.1.

2.3. Model-based analysis of the behavioral categorization data

As Experiments 1 and 2 were conducted to examine the neural correlates of the category learning process,
fMRI data was acquired during learning, i.e. when the participants’ performance was still suboptimal.
Previous studies have shown that tasks which are solved by applying a simple verbal rule recruit different
neural structures as information-integration tasks (Ashby & Maddox, 2005). Therefore, it is crucial for
the interpretation of the results to determine which strategy each participant used to solve it. Since this
information cannot be provided by measures of overall performance, three different types of models were
fit to the behavioral data based on the location of the responses in the two-dimensional stimulus space
using procedures established by Maddox and Ashby (1993).

2.3.1. Unidimensional models

Unidimensional models assume that the participant sets a decision criterion on a single stimulus dimension
(i.e. either the linewidth or orientation of the stimuli) and then makes an explicit decision about the
value of the stimulus on the relevant dimension. An example for a unidimensional rule is: “Respond A if
the circle is open to the left, respond B if it is open to the right”. These models have two free parameters:
the decision criterion on the relevant dimension and the variance of internal noise around the decision
bound. In the tasks employed in Experiment 1 and 2 a participant using the best unidimensional rule
will respond correctly in 67% of the trials.

2.3.2. Conjunction models

Conjunction models assume that the participant uses a criterion on each stimulus dimension and decides
about the value of the stimulus on both dimensions. Subsequently, a conjunctive rule based on the
outcome of these decisions is applied. Two conjunctive models were fit to each task. The two rules fit
to the data of the task with circle stimuli and a positive slope of the decision bound are presented as
examples of conjunction rules:

(1) “Respond A if the circles are open to the right and are thick, otherwise respond B.”

(2) “Respond B if the circles are open to the left and are thin, otherwise respond A.”

These models have three free parameters: a decision criterion on each dimension and the variance of
internal noise. In the tasks presented in Experiment 1 and 2 a participant using the optimal conjunctive
rule will respond correctly in 80% of the trials.

2.3.3. Information-Integration models

Information-integration models assume that the participant uses a decision criterion that integrates
information from both dimensions predecisionally. In the present work all optimal decision bounds
were linear. Within the information-integration model the slope of the decision bound was fixed to
+/-1, leaving two free parameters (intercept and noise variance). Given the non-overlapping category
distributions employed in this thesis, the use of an optimal information-integration rule will result in
100% correct answers.
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2.3.4. Model estimation and selection

Each of the models described above was fit separately to each dataset. The free parameters were
estimated using the method of maximum likelihood (Ashby, 1992) and the Bayesian information criterion
(BIC) (Schwarz, 1978) was used as a goodness of fit statistic for model selection:

BIC = rlnN − 2lnL

where r is the number of free parameters, N is the sample size and L is the likelihood of the model
given the data. The BIC penalizes a model for additional free parameters so that a set of models can be
compared directly.

2.4. FMRI Image acquisition

Functional magnetic resonance imaging data was acquired on a Siemens MAGNETOM Trio (Erlangen,
Germany) whole body 3T magnetic resonance imaging (MRI) scanner equipped with an 8 channel head
coil. First, structural images of the brain were recorded using a T1-weighted magnetization-prepared
rapid acquisition gradient echo (MP-RAGE) sequence with a field of view (FoV) of 256 mm and 192
sagittal slices with 1 mm3 isotropic voxels (time to repeat (TR) = 2500 ms, time to echo (TE)= 4.77
ms, inversion time (TI) = 1100 ms, flip angle (FA) = 7°, slice gap = 0.5 mm). Subsequently, functional
volumes were obtained using a whole-brain T2∗-weighted echo planar imaging (EPI) sequence. The
parameters for the functional measurements were: TE = 30 ms, TR = 2000 ms, slice thickness = 3 mm,
slice gap = 0.3 mm, number of slices = 32 (interleaved order), FA = 80°, FoV = 192 mm × 192 mm and
a matrix size of 64 × 64, resulting in an inplane resolution of 3 mm × 3 mm.
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3 Experiment 1: Comparing the neural basis of monetary reward

and cognitive feedback during information-integration category

learning

The results of this experiment were first published in: Daniel, R., & Pollmann,
S. (2010). Comparing the neural basis of monetary reward and cognitive
feedback during information-integration category learning. The Journal of
Neuroscience, 30 (1), 47–55.

3.1. Introduction

Learning which action leads to the most beneficial outcome in a given situation is one of the central
components of adaptive behavior. The dopaminergic system with its projections to striatal and medial
prefrontal areas is known to play a crucial role in reward learning (O’Doherty, 2004; Schultz, 2006).
In humans, it is often studied by using gambling paradigms, where participants learn probabilistic
stimulus-reward contingencies by trial and error, the reward being earnings in money (see e.g. Abler et
al. (2006), Dreher et al. (2006) or B. W. Smith et al. (2009)). However, there are indications that the
dopaminergic system is also involved in tasks where only cognitive feedback is provided (Aron et al.,
2004; Rodriguez et al., 2006).

Behavioral studies of category learning with cognitive feedback suggest that tasks which force par-
ticipants to rely on gradually acquired stimulus-outcome contingencies are sensitive to the nature and
timing of feedback (Maddox et al., 2003, 2008). During trial and error learning in these tasks striatal
areas are activated (Cincotta & Seger, 2007; Poldrack et al., 2001) and patients with Parkinson’s disease,
which is characterized by the loss of dopaminergic input to the striatum, are impaired (Filoteo, Maddox,
& Davis, 2001). Results therefore indicate that the functional neuronal substrates underlying learning
based on reward and cognitive feedback are very similar in certain task domains.

However, differences have to be expected as the dopaminergic system is known to respond differentially
to rewards of different magnitude and value in the insula, amygdala, orbitofrontal cortex and striatum
(Gottfried, O’Doherty, & Dolan, 2003; B. W. Smith et al., 2009; Tobler, O’Doherty, Dolan, & Schultz,
2007). Also, subcomponents of the striatum coding motivational aspects, like the nucleus accumbens,
are assumed to respond to the modulation of reward characteristics, while subcomponents involved
in executive processes, like the caudate head, should be less affected. Additionally, it is known that
providing external rewards can undermine intrinsic motivation, i.e. motivation that is based on interest
in and enjoyment of a task. Motivational states have been shown to modulate the fMRI response in
the striatum (Mizuno et al., 2008; Murayama, Matsumoto, Izuma, & Matsumoto, 2010), with less
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activation in response to feedback if intrinsic motivation has been undermined by providing monetary
rewards. Therefore the striatal activation in response to the expectation and receipt of cognitive feedback
and monetary reward might not only differ quantitatively, i.e. in the height of the response, but also
qualitative differences which are mediated by motivational states have to be expected.

To test these assumptions we conducted an fMRI experiment comparing the effects of cognitive feedback
and reward in an information-integration category learning task (Ashby et al., 1998). Each participant
performed two parallel versions, in one of which correct answers were rewarded with a monetary gain,
while in the other only information about the correctness of the answer was provided. Although there
are indications that both negative and positive feedback contribute to information-integration learning
(Ashby & O’Brien, 2007), the dopaminergic substrates of reward learning are well established, while
research on avoidance learning mainly focused on the amygdaloid-hippocampal basis of fear conditioning
(LeDoux, 2003). Therefore in the present study no monetary punishment was delivered. As with training
the dopaminergic response is known to shift backwards in time from the reward to the reward predicting
stimulus (Schultz, 2000), we expected to find an effect of the reward manipulation already during stimulus
presentation. If reward manipulation also has an influence on the prediction error signal (Schultz, 2007),
differential responses between the tasks to both negative and positive feedback are predicted, as long
as performance is not perfect. We assessed the motivational state of each participant using self report
measures (Ryan, 1982) and anticipated that the effect of monetary reward is primarily predicted by
measures of extrinsic motivation, while the effect of cognitive feedback is more responsive to measures of
intrinsic motivation.

3.2. Methods

3.2.1. Participants

Sixteen participants with an average age of 23.1 years [range = 18-29; SD = 2.9; 10 females] participated
in the experiment. They received an average payment of e 29.3 [range = 26-33; SD = 2.5] based on
their performance.

3.2.2. Stimuli

Two sets of stimuli were presented in the present experiment, either circles with an opening of 30°
width or two parallel lines, both in white on black background. All stimuli varied on two dimensions,
linewidth and orientation, and categories were specified based on the location of the stimuli within
this two-dimensional perceptual space (see Figure 3.1). Two parallel category structures for each set
of stimuli were specified by means of rotating the category boundary by 90°, resulting in the same
within category scatter, difference between category means and absolute value of covariances of the two
dimensions in both category structures. The parameters of the bivariate normal distributions specifying
the four categories are summarized in Table 3.1. Values for x and y were sampled randomly from these
distributions and used to determine linewidth (x/2 pixels) and orientation (y × π/1200 radians) of the
stimuli. As linewidth only increased to the center of the stimuli, the overall dimensions of the images
were not changed by the manipulation. The optimal decision bound for both category structures is
depicted along with examples for both stimulus sets in Figure 3.1.

3.2.3. Procedure

Each participant performed two tasks: In the first task, one type of stimuli (lines or circles) was presented
with one category structure (positive or negative slope of the optimal decision bound) and in the second
task, the other type of stimuli was presented with the other category structure. One of these two tasks
was rewarded with e 0.20 for each percent of right answers, resulting in eight possible task combinations
(2 (stimulus type) x 2 (category structure) x 2 (first or second task rewarded)), each of which was
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Figure 3.1. Category structures and sample stimuli. Each square denotes the orientation and linewidth of a stimulus
from category A, each triangle those of a stimulus from Category B. The lines represent the optimal decision
bound. Two types of category structure were presented, one with a positive slope of the optimal decision
bound and one with a negative slope. For both types of stimuli used in the experiment, circles and lines,
examples of three stimuli from each category are shown. Both types of stimuli were used with both types of
decision bounds. Note that 0° does not correspond to a horizontal alignment of the stimuli to make the
verbalization of a categorization rule more difficult.

Table 3.1. Category distribution parameters

Category A Category B

Slopea µx µy σx σy covxy µx µy σx σy covxy

Positive 500 700 44100 44100 43500 700 500 4410 44100 43500
Negative 500 500 44100 44100 -43500 700 700 4410 44100 -43500

µ = mean for each dimension; σ = variance for each dimension; cov = covariance between
dimensions.

a of the optimal decision bound

presented to two of the 16 participants. Participants were instructed to learn about the two categories in
each task by relying on the feedback they would receive after each decision and were informed that perfect
performance was possible. Since we were not interested in the early performance on this task, while
participants might still employ suboptimal verbal strategies, all participants were trained to criterion
(80% correct answers within a single block of 50 trials) on the day before the fMRI session. The training
was performed in a dimly lit room using Presentation (Neurobehavioral Systems Inc., Albany, CA). All
participants were presented with the two tasks in alternating blocks of 50 trials with equal base rates
for both categories. Each trial consisted of the presentation of a stimulus spanning a visual angle of
12° at the center of the screen for 2 s. Participants were requested to make a decision about category
membership during stimulus presentation. After a random delay that was sampled from an exponential
distribution with a mean of 2 s [range 0.5 - 6 s] they received both auditory and visual feedback. Auditory
feedback was provided via a tone of 0.25 s duration and had a frequency of 900 Hz for right and of 350
Hz for wrong answers, while visual feedback was presented for 1 s at a visual angle of 10°. Positive visual
feedback consisted of a filled green circle in the cognitive feedback task and of a picture of a 20 cent coin
in the monetary reward task. Negative feedback was indicated in both tasks by a filled red circle. When
the participant failed to respond, a filled yellow circle was presented. Except the intertrial interval (ITI),
which was sampled from an exponential distribution with a mean of 3.5 s [range 0.5 - 8 s], all parameters
were equivalent to the fMRI session (see Figure 3.2). Training ended independently for each task after
the criterion of 80% correct answers in a single block was reached. Two participants did not reach the
criterion after 5 blocks and were therefore not included in the study. Training was followed by the fMRI
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experiment on the next day. During the fMRI experiment participants completed the two tasks they had
trained alternatingly in four blocks. Each block incorporated 50 trials and lasted approximately 11 min.
All stimuli originated from the same bivariate distributions as the training stimuli, but were sampled
independently of them. To exclude the possibility that activation differences between the rewarded
and unrewarded task are exclusively due to differing visual stimulation, for half of the participants the
20 cent coin signaling a correct answer in the rewarded task was replaced by a green circle with the
instruction that they would nevertheless gain e 0.20 for each correct answer. The single trials were
separated by a variable ITI sampled from an exponential distribution with a mean of 6 s [range 1-12 s].
An overview of the experimental procedure is given in Figure 3.3.

Figure 3.2. Trial structure. Each trial started with the presentation of a stimulus for two seconds. Participants were
instructed to respond during this period by pressing of one of two buttons. The stimulus was followed by a
delay that was randomly sampled from an exponential distribution with a mean of 2 s (range 0.5-6 s), after
which feedback was presented for 1.5 s. Positive feedback was given by showing a green circle, or, in the
rewarded condition, by a 20 cent coin, and a high tone. Negative feedback consisted of a red circle and a low
tone. If the participant failed to respond a yellow circle was presented together with the low tone. Trials
were separated by an interval that was randomly sampled from an exponential distribution with a mean of 6
s (range 1-12 s).

After completing the testing session all participants filled out a questionnaire based on the post-
experimental scale of the Intrinsic Motivation Inventory (IMI) (Ryan, 1982; McAuley, 1989) for both
tasks. The included subscales were Interest / Enjoyment, Perceived competence, Perceived choice,
Pressure / Tension, Effort / Importance, and Value / Usefulness.

3.2.4. Pilot testing of the task versions

To ensure that the four task versions (2 sets of stimuli × 2 category structures) do not differ in terms
of learning speed and error rates, a pilot study with 17 participants was conducted. Participants
were recruited from the same population as the participants the fMRI study, and the procedures were
equivalent to those of detailed above with the sole exception that both sessions were conducted in
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Figure 3.3. Session structure. Each participant was trained on both tasks on the day before the fMRI session. Whether
the first task was rewarded or not, whether it contained circle or line stimuli, and whether the optimal decision
bound had a positive or negative slope, was randomized across participants. Training ended independently
for both tasks after the participant reached an accuracy rate of 80% within a single block. During the fMRI
session, the two trained tasks were presented alternatingly in four blocks of 50 trials each.

the same room. Detailed results are provided in Appendix A.1; importantly, no significant differences
between task versions were observed at an alpha level of .2.

3.2.5. FMRI image acquisition and image preprocessing

The parameters for image acquisition are detailed in Section 2.4. An overall of 1360 T2∗-weighted EPI
volumes were obtained in a single run. The functional images were preprocessed with the statistical
parametric mapping software SPM5 (Wellcome Department of Cognitive Neurology, London, UK).
Preprocessing included slice timing correction using the first slice as reference and three-dimensional
motion correction, i.e. rigid body realignment to the mean of all images. The six estimated movement
parameters were saved and later included in the statistical analysis. It was ensured that head movement
was below 3 mm and 3° for each participant. Images were normalized to Montreal Neurological Institute
(MNI) space (Evans et al., 1993) using the standard EPI template of SPM5. The data was spatially
smoothed using a Gaussian filter of 6 mm full width at half maximum (FWHM) and a temporal highpass
filter of 1/128 Hz was applied to remove low frequency confounds.

3.2.6. Statistical analysis

The regressors for within-participant modeling were convolved with a canonical model of the hemodynamic
response function (HRF) as implemented in SPM5 and represented right and wrong answers of each
participant for both the period of expectation (i.e. stimulus presentation and response) and feedback
presentation. An additional regressor for the delay between expectation and feedback was included and
all regressors were fit to the data separately for the rewarded and not rewarded condition using the
general linear model (GLM). Contrast images of the condition-specific estimates for each participant
were then submitted to the second level group analyses with participant as the random-effect variable. A
2× 2× 2 analysis of variance (ANOVA) was conducted with the factors trial part (stimulus / feedback),
condition (rewarded / non-rewarded) and success (right / wrong answer). All fMRI activation maps were
thresholded at p < .05 (spatial extent > 5 contiguous voxels) and all reported clusters survived correction
for multiple comparisons at the whole brain level using family-wise errorrate (FWE) correction (Worsley,
Marrett, & Neelin, 1996). As an analysis comparing the group of participants receiving visual positive
feedback in the rewarded condition in form of a coin with those receiving it in form of a green circle did
not reveal any significant differences, the data of both groups were collapsed.

24



3. Experiment 1: Comparing monetary reward and cognitive feedback

3.3. Results

3.3.1. Behavioral results

Accuracy measures

Participants fulfilled the criterion of 80% correct answers after an average of 131.25 [SE = 20.09] training
trials in the rewarded task and after an average of 129.69 [SE = 17.56] training trials in the unrewarded
task. An ANOVA of the behavioral data collected during the fMRI session with repeated measures
on condition (rewarded / not rewarded) and block (first / second block of the experiment) showed a
significant main effect of block [F (1, 15) = 5.5, p < .05] and a significant interaction of condition × block
[F (1, 15) = 5.5, p < .05]. Post-hoc paired samples T-tests revealed that the interaction was due to the
fact that for the rewarded condition error rates significantly decreased from a higher base level from the
first to the second block [T (15) = 3.3, p < .05], while they did not change in the unrewarded condition
[T (15) = 0.5, n.s.]. The average error rates were 23.7% (SE = 1.6) in the monetary reward condition
and 23.4% (SE = 1.4) in the cognitive feedback condition.

Model-based analysis

An analysis of the individual categorization strategy was calculated based on the location of each
participant’s responses in the two dimensional stimulus space as described in Section 2.3. The models
were separately fit to each of the 32 datasets (two tasks for each of the 16 participants). Results suggest
that for nine of the 16 participants at least one data set is best fit by the information-integration model
which assumes that the participant applied the optimal decision bound depicted in Figure 3.1 and
therefore integrated information from both dimensions. Given the few data points the model fits are
based on, these results have to be interpreted with care. Nevertheless, the modeling results indicate that
not all participants engaged the procedural-learning based system mediated by subcortical structures.
The influence of individual strategies on brain activation is addressed in Section 3.3.2. More detailed
results on model fit are provided in Appendix A.2.

Questionnaire data

ANOVAs were performed with repeated measures on condition (rewarded / not rewarded) with the
subscales of the post-experimental motivation inventory as dependent measures. No significant effects
were observed.

3.3.2. Functional imaging results

Effect of monetary reward versus cognitive feedback

Comparing the effect of monetary reward and cognitive feedback revealed a significantly higher activation
for monetary reward bilaterally in the nucleus accumbens (MNI: x = 9, y = 6, z = -9; Max. T: 6.59 and
x = -6, y = 0, z = -6; Max. T: 5.52) during expectation (see Figure 3.4). No areas were significantly more
activated during expectation in the cognitive feedback task nor were any differences observed during
the receipt of feedback in both tasks. When the effects of feedback in the rewarded and the cognitive
feedback task were compared separately for positive and negative feedback, no significant differences
were observed.

Examining the nucleus accumbens activation

Correlation of the BOLD signal with questionnaire data To assess the effect of the participants’
motivational state on activations, the estimated signal change (percent) within the nucleus accumbens
was extracted to both monetary reward and cognitive feedback during expectation using MarsBar
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Figure 3.4. Effect of monetary reward. Activation in the contrast of monetary reward minus cognitive feedback during
stimulus presentation. The timecourse represents the finite impulse response to both monetary reward and
cognitive feedback during stimulus presentation, extracted using MarsBar and an anatomical ROI of the
nucleus accumbens from the Harvard-Oxford subcortical structural atlas. For each participant individual
functional ROIs within this anatomical ROI were defined based on the areas where the main effect of stimulus
presentation exceeded an uncorrected threshold of p < 0.1. Error bars represent the standard error of means.
Results of this analysis are also plotted separately for participants with use of the optimal decision bound
in at least one condition (II use) as compared to those with no information-integration use (no II use). A
significant peak activation difference between the task conditions is only observed in the group of participants
with II use. The map was thresholded at pFWE < .05; the left hemisphere is presented at the left.

(marsbar.sourceforge.net) and an anatomical region of interest (ROI) of the nucleus accumbens from
the Harvard-Oxford subcortical structural atlas as implemented in the FMRIB Software library (FSL;
www.fmrib.ox.ac.uk). For each participant individual functional ROIs within this anatomical ROI were
defined based on the areas where the main effect of stimulus presentation exceeded an uncorrected
threshold of p < .1. This data was then submitted to a multiple stepwise regression with the individual
scores on the six motivation questionnaire subscales. In each task a single predictor was sufficient for
a significant model: in the cognitive feedback task Perceived competence predicted activation within
the nucleus accumbens, [β = .023, p < .05], while in the monetary reward task it was predicted by
Pressure / Tension [β = .022, p < .05].

Influence of individual strategies As the model based analyses indicate that not all participants
employed the optimal information-integration decision bound, the data set was split into participants
whose data was fit best by an information-integration model in at least one task and those participants
for whom this was not the case. A stronger BOLD signal in response to the expectation of monetary
reward as compared to cognitive feedback in the nucleus accumbens was only present in the group of
participants employing an information-integration rule [T = 2.93, df = 8, p < .05]. For participants
putatively employing a rule-based strategy (i.e. a conjunctive rule) peak activations in the nucleus
accumbens did not differ between the expectation of monetary reward and cognitive feedback [T = 1.67,
df = 6, p < .15]. (see Figure 3.4).

Successful and unsuccessful categorization versus fixation

To ensure that the lack of differential activation in response to cognitive feedback and monetary reward
in other areas than the nucleus accumbens was not due to a general failure of our paradigm to activate
dopaminergic structures, both successful and unsuccessful categorization were compared separately
to fixation. We observed widespread common bilateral cortical activations extending from the visual
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cortices (Brodmann area (BA) 17/18/19) ventrally to the posterior temporal cortex (BA 37) as well
as dorsally to the posterior parietal cortex (BA 39/40/7). Also superior frontal (BA 6), ventrolateral
prefrontal (BA 45), medial prefrontal (BA 24/32) and anterior insular activations were observed in both
contrasts. Signal decreases were found for both contrasts in medial orbitofrontal areas (BA 9/10/11), in
the angular gyrus (BA 39), and in the middle temporal gyrus (BA 21).

Activations during successful categorization were observed in the parahippocampi, the thalamus, the
head of the caudate and the anterior pallidum. Moreover, a cluster of activation was found bilaterally in
the midbrain (MNI: x = 9/-9, y = -15, z = -15) at or near the substantia nigra, both for successful and
unsuccessful categorization. Further activations detected when comparing unsuccessful categorization
with baseline were located bilaterally within the parahippocampi, the thalamus and a cluster in the left
anterior pallidum, but not the caudate (see Figure 3.5 A and B).

Successful versus unsuccessful categorization

When comparing successful and unsuccessful categorization with fixation, we observed different activation
patterns in our areas of interest, i.e. subcortical dopaminergic projection sites. We therefore directly
compared the two. Bilateral activations within the putamen were observed along with a cluster in the left
posterior parietal cortex (BA 40) to show significantly higher activations during successful as compared
to unsuccessful categorization. No areas showed significantly higher activations for unsuccessful as
compared to successful categorization (see Table 3.2 and Figure 3.5 C).

Positive and negative feedback versus fixation

As even after training performance on the task was not perfect, both positive and negative feedback are
not fully predicted and therefore are expected to elicit a prediction error signal. To examine this effect,
we compared both events separately to fixation. Positive feedback significantly activated cortical areas
in the (pre-)cuneus, middle temporal gyrus (BA 20/21), angular gyrus (BA 39), posterior parietal cortex
(BA 7/40) and superior frontal areas (BA 9/10). Deactivations were detected bilaterally in the anterior
insula. Activations in this contrast included bilaterally all parts of the caudate (head, body and tail) as
well as both hippocampi. When comparing negative feedback with fixation, no subcortical activations
were found at the chosen threshold. Cortical activations included left prefrontal cortex extending
from dorsolateral to frontopolar areas (BA 9/10/45/46), the precuneus, bilaterally the middle/superior
temporal gyri (BA 21/22) as well as a cluster in the right the posterior parietal cortex (BA 40). Also
both anterior insulae, the right supplementary motor area, and the dorsal anterior cingulate cortex (BA
32) were activated (see Figure 3.5 D and E).

Positive versus negative feedback

The direct comparison of positive with negative feedback allows a differential assessment of positive
versus negative prediction errors. Areas activated significantly more by positive than negative feedback
included bilaterally the nucleus accumbens, the body of the caudate and paracentral areas (BA 4/6) as
well as the right parahippocampus and a medial orbitofrontal focus (BA 11). Areas activated significantly
more by negative than by positive feedback included the rostral cingulate zone (BA 32/8) and bilaterally
the anterior insula as well as a locus in the right middle temporal gyrus (BA 21) (see Table 3.2 and
Figure 3.5 F).

Effects of training

As the behavioral data indicated significant effects for the main effect of block (first / second block of
the task) and the interaction between block and condition (cognitive feedback / monetary reward), we
ran the first level fMRI analysis again with separate regressors for the first vs. second block to check
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Figure 3.5. Further fMRI results. A,B and D,E. Activations (yellow to red) and deactivations (white to blue) for
contrasts against fixation. A. Successful categorization minus fixation. Activations are observed in occipital
and parietal cortices as well as in subcortical areas. B. Unsuccessful categorization minus fixation. Activations
are mainly observed in occipital and parietal cortices. C. Activations in the contrast of successful minus
unsuccessful categorization. No voxel showed higher activations for unsuccessful categorization, while bilateral
clusters of higher activation during successful categorization were observed in the putamen. D. Positive
feedback minus fixation. Both the caudate nuclei and the hippocampi are activated. E. Negative feedback
minus fixation. Activations include the rostral cingulate zone and right prefrontal areas. F. Activations in
the contrast of positive minus negative feedback. Voxels that were more activated during the processing of
negative feedback include the RCZ and anterior insula, while voxels more activated during the processing of
positive feedback are observed in the nucleus accumbens and right caudate body. All maps are thresholded
pFWE < .05, the left hemisphere is presented at the left.
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Table 3.2. Areas of activation when comparing successful and unsuccessful classi-
fication and positive and negative feedback

MNI

Region L/R BA k Max. T x y z

Successful classification - unsuccessful classification

Putamen l 10 5.35 -27 -6 -3
r 6 5.32 30 -12 12

Posterior parietal cortex l 40 7 4.89 -54 -54 39

Unsuccessful classification - successful classification

-

Positive - negative feedback

Nucleus Accumbens l 21 8.05 -12 6 -12
r 7 6.74 15 -6 -15

Caudate body r 9 5.54 21 -12 27
Parahippocampal gyrus r 8 5.37 36 -42 -6
Medial orbitofrontal cortex m 9/10/11 13 5.80 -3 33 69

m 10 5.39 0 51 -6
Precentral gyrus l 4/6 11 5.57 -15 -33 69

Negative - positive feedback

Dorsal anterior cingulate m 32/8 262 7.09 6 21 42
Anterior insula r 121 7.15 33 21 -15

l 70 6.92 -33 21 -15
Middle temporal gyrus r 21 8 5.67 54 -36 -3

Note. Included regions exceeded an extent threshold of 5 contiguous voxels and a p < .05
(FWE-corrected). For each region, the voxel with the maximum T value is described (Max.
T). The voxel coordinates refer to the Montreal Neurological Institute (MNI) template.
The hemisphere (L/R) of the clusters is indicated (left (l), right (r), medial (m)) and
corresponding anatomical labels (Region), Brodmann areas (BA) and cluster sizes (k,
3x3x3mm voxels) are listed.
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for neuronal substrates of the behavioral effect. No training effect or block × condition interaction was
observed in the functional data.

3.4. Discussion

3.4.1. Differential activations during categorization

We compared monetary reward with cognitive feedback in information-integration learning. The
anticipation of monetary reward led to higher activation than the anticipation of cognitive feedback in
a single structure, the nucleus accumbens. Activation in the nucleus accumbens has previously been
shown to increase with both reward magnitude and reward probability (Abler et al., 2006; Knutson et
al., 2001) during reward expectation and was therefore suggested to code for expected reward value,
which is defined as the product of these (Knutson et al., 2005). As in our experiment error rates between
the rewarded and cognitive feedback task did not differ, probability of reward was constant across the
tasks and the differential activation in the nucleus accumbens is likely to represent an effect of reward
magnitude.

Previous results indicate that subcortical dopaminergic structures are implicated in implicit but
not explicit category learning (Nomura & Reber, 2008). Although in the current study the task was
designed so that optimal performance is only possible when information from both stimulus dimensions is
integrated predecisionally, this cannot ensure that participants did not employ explicit rules nevertheless.
Therefore a series of models describing the location of responses in the two-dimensional stimulus space
was fit to each participant’s behavioral data (Maddox & Ashby, 1993). The anticipation of monetary
reward as compared to cognitive feedback led to higher activation in the nucleus accumbens only in the
group of participants whose behavioral data were better fit by the information-integration model than
by the rule-based models, a result that further underscores the dissociation between verbal and implicit
systems for category learning.

We did not observe any further significant differences during reward expectation between the two task
versions. This was not due to a lack of activation in the dopaminergic pathways and their target structures.
Activations against baseline within the head of the caudate nucleus, the pallidum and midbrain were
observed during categorization. Also, differential activations were present in a dopaminergic target
structure, the putamen. It was significantly more activated during successful as compared to unsuccessful
categorization. This fits in well with previous studies on classification learning which reported activation
within the putamen (Cincotta & Seger, 2007) that correlated with accuracy and increased with training
(Seger & Cincotta, 2005). With its connections to premotor areas, the putamen has been suggested to
be central to action selection (Seger, 2008) and to be implicated in the skilled performance of a task
(Poldrack et al., 2005).

3.4.2. Differential activations during feedback processing

Next to reward expectation we also investigated activation related to another central aspect of learning,
the prediction error. Given their experience with the task, the present experiment participants had
to expect positive feedback / reward for about 80% of the trials. Therefore, in both task versions for
positive feedback / reward a small positive prediction error can be assumed, and a larger negative reward
prediction in response to negative feedback. Two areas previously implicated in processing reward
prediction errors were differentially activated during the processing of negative and positive feedback:
the RCZ was more active during the processing of negative feedback, while the nucleus accumbens was
more active during the processing of positive feedback. The finding of RCZ activation in response to
negative feedback is in accordance with a large body of research (for an overview see e.g. Ridderinkhof,
Ullsperger, et al. (2004)). This activation is often interpreted as reflecting an transmission of the
prediction error signal originating in the mesencephalic dopaminergic system (Holroyd & Coles, 2002),
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which in turn signals other brain areas the increased need for control to induce behavioral adjustments
and thereby maximize performance (Ridderinkhof, Wildenberg, et al., 2004). Activation within the
nucleus accumbens has previously been shown to reflect the positive prediction error both in dependence
on the probability (Abler et al., 2006) and on the magnitude (Breiter, Aharon, Kahneman, Dale, &
Shizgal, 2001) of reward. The observed activations both within the RCZ and the nucleus accumbens
only reflected reward valence and were not further modulated by the different types of reward presented.
Concerning the RCZ activation, this is in line with studies on the ERN / FRN, an event related EEG
component, which is thought to be generated in the RCZ (Debener et al., 2005), and has been shown to
be only modulated by feedback valence but not by the magnitude of the (not received) reward (Yeung &
Sanfey, 2004; Hajcak, Moser, Holroyd, & Simons, 2006). Previous experiments on reward in humans
showed increasing activation in the ventral striatum during the anticipation of increasing monetary
rewards (Knutson et al., 2001; Tobler et al., 2007), while effects of reward magnitude on the processing
of actual reward are less clear. In studies where the height of the reward was subject to a prediction
error, a positive relationship to the magnitude of outcome was observed in the ventral striatum (Breiter
et al., 2001), while Delgado, Locke, Stenger, and Fiez (2003) only observed dorsal striatal responses.

During the processing of feedback we also observed differential activation in the body of the caudate
nucleus. This structure is part of the visual cortico-striatal loop and receives both highly compressed
input from visual cortices as well as a dopaminergic signal. Therefore the caudate body and tail are
regarded as the central structures for the establishment of stimulus-response contingencies in information-
integration category learning (Ashby & Maddox, 2005; Nomura & Reber, 2008; Seger, 2008). This
interpretation is supported by our finding that the caudate body is significantly more activated during
the processing of positive than during the processing of negative feedback. Again, the activation within
the body of the caudate nucleus was not significantly modulated by the type of reward, i.e. if monetary
reward or cognitive feedback was presented.

Additionally, we observed activation in the right posterior parahippocampus that was stronger for
positive as compared to negative feedback. No differential medial temporal lobe activations were observed
for successful as compared to unsuccessful task performance. This result is in line with Seger and Cincotta
(2005), who reported hippocampal and parahippocampal activation during implicit category learning
associated with the processing of positive feedback, but not with correct classification.

In summary, we observed several differential activations in dopaminergic projection areas during the
processing of feedback, however none of those was modulated by our reward manipulation. The reward
magnitude within a given condition of our paradigm was fixed, leaving only the question whether reward
on a given trial will be delivered or not.

3.4.3. Commonalities of reward and cognitive feedback-based learning

The idea that reward and cognitive feedback based information-integration learning share similar
functional substrates first came up a decade ago (Ashby et al., 1998). It has received considerable
support since then (Ashby & Maddox, 2005; Nomura & Reber, 2008), but no study has directly compared
the processes within a single fMRI experiment. In this comparison, we observed several differential
activations within dopaminergic projection areas in the striatum during information-integration learning,
including activation in the putamen for successful as compared to unsuccessful categorization, and in
the nucleus accumbens and in the body of the caudate nucleus for positive as compared to negative
feedback. However, none of these activations was significantly modulated by the type of feedback,
whether cognitive or monetary. The only difference between monetary reward and cognitive feedback
we observed was a quantitative effect within the nucleus accumbens during categorization, i.e. while
participants anticipated the reward. This result is in line with the results of previous experiments on
monetary reward expectation, which show that activation in the nucleus accumbens during reward
anticipation increases with the magnitude of potential gains (Knutson et al., 2001, 2005). Taken together
with our results this may, on first sight, indicate that cognitive feedback and monetary reward are
processed very similarly with the subjective incentive magnitude as only difference. This interpretation
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would predict that, when parametrically varying the magnitude of the monetary reward, the anticipation
of low monetary gains elicits a very similar reaction as the anticipation of cognitive feedback. However,
when correlating the individuals’ motivational states with the BOLD signal change, we observed that the
activation within the nucleus accumbens increased with the participant’s perceived competence during
the expectation of cognitive feedback and with the subjective pressure / tension during the expectation
of monetary reward. Perceived competence is assumed to be a predictor of intrinsic motivation, while
pressure and tension are predictors of extrinsic motivation (Deci, Eghrari, Patrick, & Leone, 1994;
Ryan & Deci, 2000). Observing this distinct pattern within the same subjects suggests that, while
the accumbens parametrically codes for the incentive value of a potential reward, it does so distinctly
for different kinds of motivation. Following this line of argumentation, it is expected that even small
monetary rewards may alter motivational processes. Building on the present results, it is an interesting
topic for further studies whether motivational changes are associated with different neural activation
patterns within dopaminergic structures.

3.4.4. Summary

Cognitive feedback and monetary reward activate dopaminergic structures in a very similar way during
information-integration category learning, which supports the assumption that forms of learning which
depend on response contingent feedback rely on similar neuronal substrates as reward learning (Ashby
& Maddox, 2005; Nomura & Reber, 2008; Seger, 2008). Differential activations in dopaminergic target
areas which were not significantly affected by altering the type of reward were observed in the putamen
for successful as compared to unsuccessful categorization, and in the nucleus accumbens and in the
body of the caudate nucleus for positive as compared to negative feedback. Only activation in the
nucleus accumbens during reward expectation differed in dependence on the type of expected outcome
information, and this activation was predicted by individual motivational states. The present results
therefore indicate that the nucleus accumbens selectively responds to the positive incentive properties of
an expected reward in dependence on the specific type of reward.
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4 Experiment 2: Striatal activations signal prediction errors on

confidence in the absence of external feedback

The results of this experiment were first published in: Daniel, R., & Pollmann,
S. (2012). Striatal activations signal prediction errors on confidence in the
absence of external feedback. NeuroImage, 59 (4), 3457–3467.

4.1. Introduction

Choices are often guided by past experience about which behavior in a given situation provided the
most favorable outcome. Computational theories suggest that during reinforcement learning associative
links between stimuli and outcomes are formed and adjusted after each trial to minimize future errors
in prediction of the outcome (Rescorla & Wagner, 1972; Sutton, 1988). Using fMRI, variables from
these models have been shown to be reflected in the activation of dopaminergic midbrain nuclei and
their projection sites also in the human brain. Especially the striatum is activated by a wide range of
reinforcing stimuli including juice, odors, money and beauty (see e.g. Abler et al. (2006); Aharon et
al. (2001); Gottfried et al. (2002); McClure et al. (2003)), but it also responds to information about
the correctness of an answer (Aron et al., 2004; Daniel & Pollmann, 2010; Rodriguez et al., 2006).
Dopaminergic neurons which project, among other regions, to the striatum, however do not to respond
to reward per se. Their activation pattern does not change in response to well-predicted rewards. Rather,
they show phasically increased activation when an unexpected reward occurs (a positive prediction
error), and a phasic decrease in activation when an expected reward is omitted (a negative prediction
error) (Schultz, 2007) (see also Section 1.4).

Models of reinforcement learning are extremely useful for explaining the gradual learning of stimulus-
response habits, yet learning can occur in various ways. One of the most studied forms of human learning
is category learning, and research its neural bases has mainly focused on paradigms that require the
viewing of a stimulus and a categorization response from the observer, after which corrective feedback is
provided (Ashby & Maddox, 2005). For this paradigm, which is very similar to instrumental reinforcement
learning, the central role of the striatum is well supported. Yet, although feedback-based learning is
the most effective training for complex category structures, these can also be learned by observational
learning where observers are merely exposed to a stimulus and are told about its associated category
label (Ashby & Maddox, 2002; Cincotta & Seger, 2007; Shohamy et al., 2004). Because in ecologically
valid situations feedback might not be immediately available after each decision (Hogarth, 2006), the
question arises which mechanisms support learning in the absence of feedback. At least two findings
indicate that internal signals on potential outcome are present during learning and might therefore be
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used to promote learning in the absence of external outcome information: humans have been shown
to code the most probable outcome of non-feedback trials into memory (Henriksson, Elwin, & Juslin,
2010), and are capable of generating internal error signals that lead to activations in the RCZ, a region
connected to the dopaminergic midbrain (Ridderinkhof, Ullsperger, et al., 2004). Thus, in the absence
of feedback, knowledge of the structure of the environment may be used to dynamically self-generate
an internal signal on probable outcome, which then drives dopaminergic responses in a similar way
as external outcome information. Such a mechanism would support adaptation to the environment
whenever the internal model is correct or a sufficient proportion of decisions receives feedback to update
it.

The present experiment set out to test the hypothesis that dopaminergic target regions are activated
by internal signals and therefore might contribute to learning in the absence of feedback. To this end we
employed a standard information-integration category learning task. In feedback-based learning this
task activates dopaminergic projection sites (Daniel & Pollmann, 2010; Nomura et al., 2007) including
the striatum and RCZ, and patients suffering from diseases impairing striatal functioning show impaired
performance (Filoteo et al., 2001). Eighteen participants underwent extensive observational training
on stimulus category membership in four sessions within one week. Between the observational blocks
they were asked to categorize test stimuli without feedback. FMRI data was acquired during the first
and last session. Dopaminergic nuclei have also been shown to respond to stimulus novelty (Bunzeck &
Düzel, 2006). Thus, decreasing activations with learning might be due to the increasing familiarity of
the stimuli without any relation to feedback processes. We therefore expected striatal activation during
the observation of stimuli to decrease with increasing exposure to the stimuli. However, if participants
are able to internally generate signals on potential errors during the test blocks, comparing correct to
incorrect answers should lead to similar activation differences as comparing positive to negative feedback
in feedback-based learning (see Daniel and Pollmann (2010) and Chapter 3 for results on the same
task). For a further examination of the underlying mechanisms we assessed the putative internal signals
on probable outcome by explicitly asking participants to indicate after each trial how confident they
were about their last decision. Within this framework the subjective confidence can be interpreted as a
measure of internal processes which are either rewarding themselves, since they indicate correct task
performance, or a signal for the possibility of future reward. As dopaminergic neurons do not respond to
the absolute magnitude of reward but to deviations from the expected reward (Schultz et al., 1997), we
inserted the confidence rating as outcome measure into a standard reinforcement learning model. This
allowed us to estimate the expected outcome, i.e. the expected level of confidence, on each trial. If the
striatum is activated during observational category learning due to internal signals on the correctness of
the outcome, striatal activations are expected follow the prediction error on confidence, i.e. the difference
of the expected and the actual confidence.

4.2. Methods

4.2.1. Participants

Eight male and ten female subjects with an average age of 24.4 years [range = 20-29; SE = .5] participated
in the experiment. All of them received an allowance of 36 e.

4.2.2. Stimuli

To ensure comparability of the results the same stimuli as in Experiment 1 (Chapter 3) were utilized.
However, as only one task was performed by each participant, half of them were presented with the
circle stimuli, the other half with the parallel line stimuli, and only the category structure with a positive
slope of the decision bound was used. The category structure is depicted along with example stimuli in
Figure 4.1 and all parameter values are listed in Table 4.1.
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Figure 4.1. Category structure and sample stimuli. Each square denotes the orientation and linewidth of a single stimulus
from Category A, a triangle those of a stimulus from Category B. The optimal decision bound is represented
by a line, all stimuli above it are members of Category A, and all stimuli below it are members of Category
B. To establish independence of the results from specific stimulus properties half of the participants were
presented with circular stimuli, the other half with lines. For both types of stimuli used in the experiment
examples of three stimuli from each category are shown.

4.2.3. Procedure

All participants performed four sessions on separate days, during the first and last of which fMRI data
was acquired. The fMRI sessions were conducted spaced at an interval of one week. Between them each
participant underwent two training sessions during which only behavioral data was acquired. Within
each session two tasks, an observational and a test task, were presented in blocks in an alternating
manner. Each session started with a block of observational trials in which first a category label was
presented for 500 ms and was directly followed by a stimulus. The next trial began after an intertrial
interval (ITI) that was sampled from an exponential distribution with a mean of 6 s [range = 1 - 12 s]
in the fMRI sessions and a mean of 3.5 s [range = 1 - 6 s] in the training sessions. Participants were
instructed to closely observe the provided examples and attend to both linewidth and orientation to learn
which stimuli belong to which category. When learning by observational training, participants are often
required to press the button associated with the stimulus to ensure that sufficient attention is paid and
that a motor association between stimuli and responses is build. Actively making right responses could
induce associative learning, which is a possible confound we wanted to eliminate. Also, motor associations
during observational information-integration learning were shown to not significantly influence accuracy
rates or the decision bound employed by participants in test blocks (Ashby & Maddox, 2002). This
result was confirmed by a pilot study in 24 participants using our stimulus material (Westphal (2009);
bachelor’s thesis co-supervised by the author of this thesis, see also Appendix B.1). Therefore there was
no further behavioral task in the observational blocks. Each observational block was followed by a block
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Table 4.1. Category distribution parameters

µx µy σx σy covxy

Category A 500 700 44100 44100 43500
Category B 700 500 44100 44100 43500

µ = mean for each dimension; σ = variance for each
dimension; cov = covariance between dimensions.

of test trials where first a stimulus was presented for two seconds. During this period, participants were
required to indicate category membership of the presented stimulus as soon as they were reasonably
confident about their decision by pressing one of two response keys. After a variable delay sampled from
an exponential distribution [M = 2 s; range = .5 - 6 s], the numbers 1 to 5 appeared on the screen for two
seconds. Participants were instructed to press one of five buttons to indicate how confident they were
about their last decision on a scale from 1 (very unconfident) to 5 (very confident). An additional button
was provided to indicate that they had accidentally given a wrong response during the last trial. When
the participants used this button, the trial was excluded from further analysis to prevent error-related
activity caused by speeded responding from influencing the results. After an ITI that was sampled
from an exponential distribution [fMRI session: M = 6 s, range = 1 - 12 s; training session: M = 3.5
s, range = .5 - 6 s] the next trial was presented. During the fMRI sessions, two blocks of observation
alternated with two blocks of testing with 50 trials in each block. In the training sessions, four blocks of
observation, each with 50 trials, alternated with four blocks of testing composed of 25 trials, so that the
overall amount of test trials was the same in fMRI and training sessions, however participants observed
twice as many stimuli in the training sessions. A visualization of both an observational and a test trial as
well as of the structure of the whole experiment is provided in Figure 4.2. Please note that participants
never received any feedback during the whole experiment.

Figure 4.2. Procedure. Each participant performed four sessions on different days, the first and last of which were
fMRI sessions. FMRI sessions included two blocks of 50 observational trials and test trials, the training
sessions included four blocks of 50 observational trials and 25 test trials. Observational trials started with
the presentation of category label directly followed by a stimulus. Test trials started with a stimulus to which
participants were requested to respond with a decision about its category membership. After a variable
delay they rated how confident they were about their last decision. No feedback was provided during the
whole experiment.
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4.2.4. Model-based analysis of individual decision bounds

Participants learning an information-integration categorization task by observation often do not employ
the optimal decision bound depicted in Figure 4.1, but rather a suboptimal strategy relying on explicit
verbal rules (Ashby & Maddox, 2002). To ensure that participants were able to acquire the experimenter-
defined optimal decision bound, model-fitting procedures as described in Section 2.3 were applied to
each participant’s response data separately for each session.

4.2.5. Reinforcement learning model

Behavioral data from all participants was modeled using a simple reinforcement learning model (Rescorla
& Wagner, 1972; Watkins, 1989). The model consists of two input and two output nodes and assumes
that participants update the value Q of a choice ct (= respond A or B) given a stimulus on each trial t
(Gluck & Bower, 1988b, 1988a; Rodriguez et al., 2006). Values Q were initialized to zero and updated
after each trial according to an error-correction rule with a free learning rate parameter α:

Qt+1(ct) = Qt(ct) + α · δt
δt represents the prediction error and is computed as

δt = rt −Qt(ct)

with rt being the received reward at trial t. On test trials, the value for reward that was input into
the model was the reported confidence level, which was linearly scaled to lie between 0 and 1. On
observational trials the confidence (and therefore reward) was assumed to be 1. Weights from the
input nodes (stimulus from category A or B) to the output nodes (answer ”A” or ”B”) were updated on
each trial according to the stimuli presented and choices made. As on test trials the choice could be
wrong with a high confidence, also weights on the path from the input node stimulus A to the output
node response B and vice versa could be strengthened. Please note that this approach assumes that
participants have a representation of which category the presented stimulus is from, which might only be
true at late stages of the learning process. However, the present experiment did not aim at developing
a new model for learning in the presence of uncertainty, but rather compare the neural correlates of
internal signals on correctness with those previously observed during reward-based learning. Therefore
an approach was chosen which ensures maximum comparability to previous analyses of reward-based
learning, where each class of stimuli is associated with a distinct value, rather than assigning a common
value to all stimuli presented in the experiment.

To estimate the free learning rate parameter, it was assumed that participants choose probabilistically
from a soft-max distribution (Daw, 2011):

P (ct = A|Qt(A), Qt(B)) =
exp(β ·Qt(A))

exp(β ·Qt(A)) + exp(β ·Qt(B))

The free parameter β is the inverse temperature parameter which can be interpreted as reflecting the
randomness of the individual’s choices. It cannot be assumed that observational learning follows identical
rules as learning from the putative internal signal on correctness, therefore α was allowed to be different
for observational and test trials. As the models were fit to generate model-based parametric modulators
for the imaging analysis based on the prediction error rather than comparing the fit of different models,
learning rate parameters were constrained to be equal across participants to regularize the individual
estimates which are often noisy (Daw et al., 2006), while β was estimated individually for each participant
to account for interindividual differences. All free parameters were estimated simultaneously using
maximum likelihood estimation with the optimization package of the SciPy toolbox for Python (Jones,
Oliphant, & Peterson, 2001). The inverse temperature was estimated with a mean of 4.112 (SD = 1.020)
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across participants, the estimated learning rate was .021 during test trials and .005 during observational
trials.

Figure 4.3. Calculation of the prediction error on confidence. The arrows between stimuli and response represent the
value Q of choosing a certain response (pressing button A or B) given (a) the present stimulus (A or B) and
(b) the time or trial number of the experiment. The model was calculated individually for each participant.
At the first trial of the experiment all values are zero and get updated after each choice depending on
how confident the participant reported to be in that choice. From this model δt, the prediction error on
confidence for each specific trial, was derived. It is high when the participant reported to be more confident
than could be expected from the current value of the chosen option. The prediction errors obtained by this
calculation were used in the fMRI analysis to determine which areas within the striatum and midbrain show
higher activation when the participant is more confident than expected.

4.2.6. FMRI Image Acquisition and Processing

The parameters for image acquisition are detailed in Section 2.4. Functional images were acquired in
a single run of approximately 36 minutes for each imaging session and processed with the statistical
parametric mapping software SPM5 (Wellcome Department of Cognitive Neurology, London, UK). After
discarding the first five images, slice timing correction with the first slice as reference and realignment
to the mean of all images was performed. The estimated movement parameters were saved and later
included as regressors of no interest in all statistical analyses. Images were normalized to MNI space
(Evans et al., 1993) using the standard EPI template of SPM5. A temporal highpass filter of 1/128
Hz was applied to remove low frequency confounds and all images were smoothed by a 6 mm FWHM
Gaussian kernel. All coordinates are reported in MNI space.

4.2.7. Statistical analysis of the fMRI data

In the first analysis step the three regressors of interest represented the observational task as well as
correct and incorrect performance of the categorization task separately for both fMRI sessions. An
additional regressor represented the time at which the display prompting participants to give the
confidence rating was presented. If the participant failed to respond on any trials an additional regressor
representing the missed trials was included. The onset of each event was set to the beginning of the
visual stimulation, its duration was set to an epoch with the duration of the visual stimulation (see
Figure 4.2) and convolved with a model of the hemodynamic response function as implemented in SPM5.
The regressors were fit separately to the data of each participant using the GLM. Data from separate
days was treated as different sessions. To test whether the activation in dopaminergic projection sites
decreases with stimulus novelty during the observation, the regressors for the observational task from
the first and second fMRI session were submitted to a second level random effects analysis with session
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as a single factor. For the examination of effects of the valence of putative internal signals indicating an
outcome, a 2 × 2 random effects ANOVA with the factors correctness and session was calculated on the
regressors for correct and incorrect task performance. Three participants had to be excluded from this
analysis because they committed less than two error trials in the trained session. The activation maps of
these analyses were thresholded at a level of p < .05 (spatial extent of more than two contiguous voxels),
and all reported clusters survived correction for multiple comparisons at the whole-brain level using
FWE correction (Worsley et al., 1996).

A second GLM analysis was performed to test for the assumption that differential activations during
correct and incorrect task performance are attributable to signals following a similar pattern as the
prediction error signals during reinforcement learning. The two regressors for correct and incorrect task
performance were replaced by a single regressor containing all categorization task events and a linear
parametric modulator was added to the regressor. The height of this modulator corresponded to the
prediction error of the trial as computed using the reinforcement learning model described in Section 4.2.5.
To increase sensitivity, this analysis was only performed in areas of interest. They comprised the caudate
nucleus, the putamen and the nucleus accumbens as defined by the Harvard-Oxford subcortical structural
atlas implemented in the FSL-FMRIB Software Library (http://www.fmrib.ox.ac.uk). These areas
constitute the striatum and are dopaminergic target regions which have previously been reported to
show activation changes as predicted by reinforcement learning models (Niv, 2009). Additionally, a
sphere of 15 mm radius centered on the midbrain (MNI: x = 0, y = 15, z = 9) was included (Aron et al.,
2004), as projections from this area are considered to be the source of striatal activations. The fMRI
activation map was thresholded at p < .001 and activations were considered significant at a level of
p < .05 after correction for multiple comparisons at the cluster level.

4.3. Results

4.3.1. Behavioral results

Accuracy measures

To ensure that the observational training led to successful learning and the two task versions were
comparable in difficulty, the error rate data of all 18 participants was subjected to a 4×2 ANOVA with
repeated measures on session and the type of stimuli (lines or circles) as between-subjects factor. Results
show a significant effect of session [F (2.1, 34.3) = 32.7, p < .001], indicating that the error rates decreased
from 25.9 % (SD = 11.7) in the first session to 7.3 % (SD = 7.0) in the fourth session. No effect of type
of stimuli [F (1, 16) = .98, p = .34] or interaction of session × type of stimuli [F (2.1, 34.3) = .53, p = .61]
was observed. To test for possible behavioral learning effects within the test blocks the means of the first
and last 20% of trials within each block were compared using multiple T-tests. No significant results
were observed at the .05 level (uncorrected) (Figure 4.4).

Correlations between reaction times, confidence ratings, the prediction error and error rates

For the calculation of the prediction error, which was input as a parametric modulator into the
analysis of the functional imaging data, it was assumed that confidence ratings can be treated as
a measure of internal signals on correctness. For this assumption to be plausible the confidence
ratings should correlate negatively with reaction times and error rates. For each participant Pearson’s
correlations between reaction times and prediction errors as well as confidence ratings across all days
were calculated. The mean of these values was determined using Fisher’s z-transformation and tested
against zero. The backtransformed mean correlation between reaction time and confidence rating was
-.47 [T (17) = −13.10, p < .001]. Please note that there was no correlation between reaction times and
prediction errors [r = −.005;T (17) = −.10, p = .92]. This is to be expected since the same level of
confidence, associated with a similar reaction time, can be higher than expected at the beginning of
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Figure 4.4. Behavioral training effect. Mean error rates for each day and block are depicted, errorbars represent the
standard error of means.

the experiment and lower than expected at the end of the experiment. This means that correlations
between the fMRI data and the prediction error cannot be caused by reaction time differences. To
determine correlations with the error rates, they were calculated separately for each block. Reaction
times and confidence ratings were averaged blockwise analogously. Error rates correlated significantly
with both mean confidence ratings [r = −.78;T (17) = −10.80, p < .001] and mean reaction times
[r = .53;T (17) = 5.05, p < .001].

Model-based analysis of individual decision bounds

In the first session the data of three of the 18 participants was best fit by a unidimensional model, the
data of eleven participants was best fit by a conjunction model and only five participants employed the
optimal rule. From the third session on this relationship was reversed and all but one of the participants
employed the optimal rule, indicating successful learning of the experimenter-defined category structure.
The numbers and percentages of participants best fit by each model are depicted in Figure 4.5, BIC
values are listed in Appendix B.2.
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Figure 4.5. Results of the model-based analyses. The number and percentage of participants best fit by models assuming
the participant used a unidimensional, conjunctive or information-integration decision bound. All results are
corrected for the number of free parameters. From the third session on all but one participant used the ideal
information-integration decision bound, indicating that the complex categorization task was learned after a
sufficient number of observational training trials in the absence of external feedback.
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Table 4.2. Differential fMRI activations for right and wrong answers

MNI

Region L/R BA k Max. T x y z

Untrained categorization task: right > wrong
Nucleus Accumbens l 4 5.95 -6 6 -12
Putamen l 2 5.46 -27 0 6

r 19 6.47 30 3 9
r 13 5.87 27 -15 6

Caudate Body l 2 5.49 -21 -12 21
Anterior Cingulate Cortex l 32 2 5.5 -12 39 12
Posterior Parahippocampus l 9 6.85 -42 -36 -6
Precentral Gyrus r 6 4 5.72 9 -21 51

r 6 5 5.52 24 -21 60
Superior Medial Gyrus l 10 2 5.63 -9 60 21
Trained categorization task: wrong > right
Dorsal medial prefrontal cortex b 6/8/32/24 169 7.58 -3 18 51

6 10 6.32 -12 9 57
Anterior Insula l 85 7.27 -30 21 -9

r 59 7.14 39 15 -3
Midbrain b 10 5.76 3 -24 -30

l=left, r=right, b=bilateral, BA=Brodmann area, k=cluster size in voxels (3x3x3 mm), max.
T=maximum T-value

4.3.2. Functional imaging results

Comparing right and wrong answers in the categorization task

In the näıve session activations were higher for right than wrong answers mainly bilaterally in the
putamen, but clusters in the caudate body, nucleus accumbens and posterior parahippocampal gyrus
were also observed. In this session no clusters showed higher activation for wrong than for right answers.
In the trained session this, however, was observed in the dorsal medial prefrontal cortex, the anterior
insula and the midbrain. Here, no clusters showed higher activations for right than for wrong answers
(Table 4.2, Figure 4.6). Despite this interaction between the factors session and correctness no significant
main effect of session was observed, indicating that there was no significant increase or decrease in
activation for correct or wrong answers between sessions.

Parametric modulation by the prediction error

To estimate the trial-by-trial prediction error we fit a reinforcement learning model to the participants’
behavioral choices. The model estimates the expected outcome of each option given the present stimulus
for every trial based on the sequence of previous outcomes. Outcome was quantified by the confidence
ratings as reported after each trial, and the prediction error as the difference between the expected and
the actual outcome (see Section 4.2.5).

Results show that within our areas of interest (striatum, midbrain) the putamen and nucleus accumbens
showed linearly increasing activation with an increasing prediction error on confidence. This indicates
that activation was higher whenever the participant reported to be more confident on the trial than
could be expected from the participants’ own history of responses and lower when he or she reported to
be less confident (Table 4.3, Figure 4.7).
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Figure 4.6. FMRI results from the test blocks. A. Activations that were higher for right than for wrong answers in
the categorization task included bilaterally the putamen and the left nucleus accumbens in the untrained
session. No activations that were higher for wrong than for right answers were observed in this session. B.
Activations that were higher for wrong than for right answers in the categorization task were observed in the
midbrain, the posterior medial prefrontal cortex and bilaterally in the anterior insula in the trained session.
No activations that were higher for right than for wrong answers were observed in this session. Activation
maps are thresholded at pFWE < .05; the left hemisphere is presented at the left.
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Figure 4.7. FMRI results on the prediction error. A. Activations of the parametric modulator reflecting the estimated
prediction error based on confidence ratings during the categorization task in areas of interest (caudate,
nucleus accumbens, putamen, and midbrain). Activations were observed bilaterally the putamen and the
nucleus accumbens. All shown clusters are above a cluster level threshold of .05; the left hemisphere is
presented at the left. B. Visualization of the activation in response to the prediction error. Separate
regressors were constructed for each quartile of prediction errors in each session, e.g. the regressor for
the first quartile represents the 25 trials with the lowest prediction error of a given participant in a given
session. The mean prediction errors for each quartile resulting from this procedure are reported in the
axis labels. Negative values indicate that the participant was less confident than expected, positive values
indicate that he or she was more confident. Percent signal change for each regressor was estimated using
MarsBar (http://marsbar.sourceforge.net). Values represent combined estimates from the peak voxels of
both hemispheres; error bars show the standard error of means.

Training effects

Activation decreases between the näıve and the trained session while participants performed the
observational task were mainly observed in the inferior temporal / fusiform gyrus, but also clusters in
the left lateral prefrontal cortex and the right ventral striatum decreased in activation with training. No
clusters were activated more during the trained than during the näıve session in the observational task
(Table 4.4, Figure 4.8). When collapsing across correct and incorrect task performance, no effects of
training were observed in the categorization task.
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Table 4.3. Regions that show parametric modulation as estimated
by the prediction error on confidence in areas of interest
(striatum and midbrain)

MNI

Region L/R BA k Max. T x y z

Nucleus Accumbens r 13 4.39 12 6 -12
l 13 4.67 -12 9 -12

Putamen r 72 4.78 33 -3 9
l 48 4.41 -30 -12 3

l=left, r=right, BA=Brodmann area, k=cluster size in voxels (3x3x3 mm),
max. T=maximum T-value

Figure 4.8. FMRI results from the observational blocks. Activations decreasing with training in the observational task
from the first to the last session were observed bilaterally in the inferior temporal cortex, in the right ventral
striatum and inferior frontal gyrus. No increases in activation were observed in this contrast. Activation
maps are thresholded at pFWE < .05; the left hemisphere is presented at the left.

Table 4.4. Regions that show decreased activation with learning in the observational
task (observation first session > observation last session)

MNI

Region L/R BA k Max. T x y z

Nucleus Accumbens/Head of Caudate r 2 5.95 9 9 0
Inferior Temporal/ Fusiform Gyrus r 37 21 7.25 45 -51 -18

r 37 2 6.7 33 -42 -21
l 37 18 6.27 -45 -57 -12
l 37 2 6.07 -45 -51 -18

Inferior Frontal Gyrus r 45 4 6.46 51 30 21
r 45 2 5.84 48 24 30

l=left, r=right, BA=Brodmann area, k=cluster size in voxels (3x3x3 mm), max. T=maximum
T-value
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4.4. Discussion

Models of reinforcement learning describing the role of dopaminergic neurons and their striatal projection
sites, mainly the ventral striatum, explain the gradual learning of stimulus-response habits. However,
recently similar processes have been suggested to participate in more complex tasks. For example,
activation within the ventral striatum is modulated by social information, prediction errors in the
learning of trust and subjective goals during episodic memory retrieval (Behrens, Hunt, Woolrich, &
Rushworth, 2008; Delgado, Frank, & Phelps, 2005; Han, Huettel, Raposo, Adcock, & Dobbins, 2010;
King-Casas et al., 2005). Also, distinct but interacting corticostriatal loops have been suggested to
underlie both habit learning and goal-directed behavior and jointly contribute to producing complex
behavior (Daw & Shohamy, 2008; Valentin, Dickinson, & O’Doherty, 2007).

In everyday life only a small proportion of decisions or judgments taken are followed by immediate
feedback (Hogarth, 2006). With such incomplete feedback it is improbable that feedback training is the
single prevalent mode of learning in ecologically valid settings. It is not clear whether the dopaminergic
system also contributes to learning under circumstances where incomplete or no feedback is provided.
We therefore investigated the putative involvement of striatal structures in human category learning in
the complete absence of feedback. The results support the idea that these dopaminergic projection sites
are activated during observational learning in a similar way as during reinforcement learning, but with
respect to self-generated internal signals related to confidence rather than external outcome measures.

4.4.1. Striatal activations during observational learning

Within the test phase of the present experiment, when no external information about category membership
was available, the nucleus accumbens and putamen were more activated by correct than incorrect answers.
This finding parallels results from feedback-based learning, where a similar activation pattern in striatal
areas is present during the processing of feedback (for results on a feedback-based version of the same
task see Daniel and Pollmann (2010) and Chapter 3). Previous fMRI results show that activity in the
putamen is mainly correlated with stimulus-action-dependent reward prediction (Haruno & Kawato,
2006). This finding fits in well with the known anatomy of the corticostriatal systems, as the putamen is
connected with motor areas and therefore in a suitable location to integrate reward expectation with
processes that mediate actions to obtain the reward (Haruno & Kawato, 2006; Seger et al., 2010). The
ventral striatum on the other hand is connected with orbitofrontal and ventromedial cortex areas known
to be involved in the processing of reward and motivation (Haber & Knutson, 2009; Seger et al., 2010).

Ventral striatal activity is consistently observed to be modulated by the reward prediction error as
estimated by reinforcement learning models (Brovelli, Laksiri, Nazarian, Meunier, & Boussaoud, 2008;
Daw & Doya, 2006; Dayan & Niv, 2008; Rangel, Camerer, & Montague, 2008; Schönberg et al., 2007). In
search for the processes underlying the differential activations in response to correctness, a reinforcement
learning model was fit to each participant’s data. In the present experiment, there were no external
reward signals present, however participants reported their confidence in their last decision after each
trial as a conscious measure of internally generated signals indicating an assumed success or failure.
During categorization, activity in the nucleus accumbens and putamen was significantly modulated by
the prediction error as estimated from a standard reinforcement learning model in which the confidence
rating was input into the model instead of an external reward signal. Possibly due to the postsynaptic
origin of the fMRI signal, no significant modulation of midbrain activity was observed. The knowledge of
correct task performance activates the ventral striatum similarly as the receipt of primary or secondary
reinforcers, if this information is conveyed by external feedback (Aron et al., 2004; Rodriguez et al.,
2006; Daniel & Pollmann, 2010). The current results support the supposition that in the absence of
external rewards activation in the striatum can be driven by a prediction error on confidence that utilizes
internally generated error signals. Findings from two major lines of research argue for the validity of
this conclusion.

First, according to standard reinforcement learning models, only information that is provided by
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external outcome feedback is coded into memory. However, cognitive psychology has shown that humans
tend to reconstruct missing information using top-down processes. These inferences are often used in the
same manner as external information (White & Koehler, 2004) and the ability to distinguish between
real and inferred information is limited (Roediger, Watson, McDermott, & Gallo, 2001). In the case of
selectively missing outcome information, humans have been shown to actively construct the most likely
outcome of the trial and code it into memory (Elwin, Juslin, Olsson, & Enkvist, 2007; Henriksson et al.,
2010). At times, this approach can be misleading, so that no behavioral improvements are observable, or
it can even lead to deterioration in performance due to the strengthening of false conceptions without any
external evidence. However, in many cases a good internal representation of the environment is available
and outcome information is scarce or costly to obtain. Under these circumstances the application of
previous knowledge can be the most adaptive or only way to promote further learning.

Second, a large body of literature provides evidence for the ability of the brain to generate error
signals without external feedback. The RCZ is known not only to respond to unfavorable performance
outcomes but also pre-response conflict, decision uncertainty and response errors before external feedback
(Ridderinkhof, Ullsperger, et al., 2004). Theoretical accounts for these experimental results have suggested
that the performance monitoring system makes use of dopaminergic signals carrying reward prediction
errors to determine the outcome of ongoing behavior and indicate the need for the recruitment of
adaptive cognitive control mechanisms (Holroyd & Coles, 2002; Ridderinkhof, Ullsperger, et al., 2004;
Rushworth & Behrens, 2008). The pharmacokinetics of dopamine in the cortex make it improbable
that fast activation changes in the dmPFC are a direct effect of dopaminergic signals from the midbrain
rather than a remote effect possibly mediated by the striatum, indicating that cortical dopamine only
modulates the effects of other neurotransmitter systems. However, there is a close interaction between
performance monitoring reflected in the dmPFC, prediction errors reflected in striatal activation and
dopamine release in the midbrain. Moreover, there are indications that performance monitoring might
involve top-down modulation of mesencephalic dopaminergic neurons, also via pathways through the
striatum. This means that errors detected by the performance monitoring system could lead to decreases
in the firing rate of neurons in the dopaminergic midbrain, which in turn would influence the prediction
error signal that is generated in the midbrain and conveyed back to higher brain regions (Jocham &
Ullsperger, 2009; Ullsperger, 2006, 2010). These assumptions however have to remain a conjecture at
the moment, as the exact pathways contributing to performance monitoring in the human brain are
only beginning to be understood and the fMRI signal is not sensitive to the neurotransmitter system
conveying the signal (see Section 1.3). The performance monitoring system can be informed by different
sources about real or potential errors: it can utilize external signals, like punishments or the omission of
rewards, but also internal sources, like the detection of competing response tendencies. The error-related
negativity (ERN), an event-related potential which has a dipole source in the RCZ (Debener et al., 2005),
has a functional interrelation with a very similar event-related potential sharing the same neural sources
(Gentsch, Ullsperger, & Ullsperger, 2009), the feedback-related negativity (FRN). When participants are
able to generate knowledge about an error without external feedback, an ERN but no FRN is observed,
while information that is not available prior to the feedback elicits only the FRN (Heldmann, Rüsseler,
& Münte, 2008). This is compatible with the assumption that, whenever an external outcome signal
provides additional information, it elicits an error signal. However, internal error signals are generated
whenever possible before the feedback arrives.

4.4.2. Activation of the dmPFC and anterior insula in response to errors

In line with prediction error models, after extensive training no higher activation for correct than
incorrect task performance in striatal areas was observed. At this stage, the midbrain, posterior medial
prefrontal areas and the anterior insula showed higher activation in response to incorrect than correct
answers. This result is also paralleled by similar findings in the literature on feedback-based learning
where this activation pattern, however, is observed already early in training (Aron et al., 2004; Daniel &
Pollmann, 2010; Grinband et al., 2006; Ridderinkhof, Ullsperger, et al., 2004). The dmPFC together with
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the anterior insula has been shown to respond not only to response errors, but also to increase linearly
in activation with uncertainty (Daniel et al., 2011). Also, the anterior insula has been associated with
conscious errors (Craig, 2009). The distinct difference in uncertainty for right and wrong answers as well
as the explicit knowledge about it might arise only later in observational learning, when the knowledge
of the task structure has reached a certain level of proficiency, while in the presence of feedback it is
available as soon as the feedback is delivered. However, as there was no significant activation difference
in response to answers between the first and last session, this observation has to be supported by data
from further experiments.

4.4.3. Decrease in ventral striatal activation with familiarity

Activation within the nucleus accumbens decreased with training during the observation of stimuli. This
decrease cannot be elicited by any form of internal signals relating to confidence since the category label
was presented before the stimulus and no categorization response was required. Stimulus novelty is known
to activate dopaminergic structures, and might have rewarding properties in itself or be interpreted as a
cue for potential reward (Bunzeck & Düzel, 2006; Daw et al., 2006). This mechanism can have positive
consequences for the organism, since it leads to exploring new options instead of exploiting those that
have already proven to have a high utility. Thus valuable information about more profitable options can
be attained, which in turn increases future rewards. Although in the present experiment new category
members were presented within each block, they were all drawn from the same distribution, which
increases familiarity with the stimuli later in training. While the observed higher activations in response
to correct than incorrect categorization cannot be attributed to stimulus novelty, since classification
accuracy should be higher for subjectively familiar stimuli than subjectively novel ones, ventral striatal
activation during observation early in learning might signal saliency (Zink, Pagnoni, Martin-Skurski,
Chappelow, & Berns, 2004) and therefore support the allocation of attention to unfamiliar category
members.

4.4.4. The use of subjective ratings as confidence measure and the potential
origin of the confidence signal

The literature on metacognition provides examples for errors of calibration in subjective ratings on
post-decisional confidence in a wide variety of tasks. These range from perceptional discrimination tasks
over general knowledge questions to giving eyewitness accounts and unambiguously show that subjective
confidence often does not predict task performance (Baranski & Petrusic, 1999; Sporer, Penrod, Read,
& Cutler, 1995; Zakay & Tuvia, 1998). Depending on the specific task and its difficulty participants
often over- or underestimate the correctness or their decisions. In the present task participants had to
infer the structure of a categorization task by observing examples for each category and in subsequent
test trials were asked for a confidence rating immediately after their decision. Both error rates and
reaction times were highly correlated with these confidence ratings, indicating that for this specific task
post-decisional subjective confidence ratings are a sensible measure of the internal processes leading to
the decision. Also, the use of a prediction error model greatly reduces the demands on the measure, since
only intraindividual deviations from an expectation, which is calculated from the weighted ratings of past
trials, are considered. Therefore it is only required that participants respond consistently, predominantly
on trials closer together in time. Nevertheless, it has to be noted that subjective confidence ratings
strongly build on the human ability for metacognition, and processes that are not accessible to it are not
captured by this measure (Allwood, Granhag, & Johansson, 2000).

Observational category learning has been suggested to be supported by visual working memory
processes and executive attention (Ashby & Maddox, 2002). In the present experiment we observed a
decrease in activation in the lateral prefrontal cortex from untrained to trained observation, an area that
is often associated with working memory (D’Esposito, Postle, & Rypma, 2000) and the representation of
rules and goals (Miller & Cohen, 2001). Later in training increased activation in the RCZ, an area that
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is also activated by response conflict (Ridderinkhof, Ullsperger, et al., 2004), was observed for wrong
compared to right answers. Taking these previous findings into account low confidence in the present
experiment might be caused by encountering exemplars that do not fit the internal model of category
structure held in working memory and therefore induce response conflict. However, as the present study
was aimed at establishing the role of internal error signals in learning in the absence of feedback rather
than determining their origin, these considerations can only provide hypotheses.

4.4.5. Possible roles of the prediction error on confidence in learning

In the present experiment no reward or cognitive feedback was associated with the stimuli at any stage.
Nevertheless, ventral striatal areas that are known to respond to reward prediction errors showed an
increased activation whenever internal signals informed the participants that they were more confident
about their decision as expected, and a decreased activation when they were less confident about their
decision.

This internal signal might serve two distinct but overlapping purposes. In a learning environment
where no external feedback is available, any mechanism that assesses current task performance can
only be informed by internal signals. Therefore, the internal error signal might substitute for external
feedback processes. This interpretation is supported by the fact that the activation patterns observed
when comparing correct to incorrect task performance are equivalent to those observed when comparing
positive to negative feedback on the same task when external feedback is available (see Daniel and
Pollmann (2010) and Chapter 3).

Additionally, reinforcement theories predict that the detection of stimuli which change the probability
of receiving reward elicits a reward prediction error (Niv, 2009). Although participants were informed
that no reward or feedback would be given within the experiment, it is plausible to assume that acquiring
the ability to map the structure of the environment is inherently interpreted as increasing the probability
of receiving reward within that environment. Seeing an exemplar that can be categorized with lower
confidence than expected can serve as a signal that the model of the environment is wrong and needs
to be updated, while higher confidence than expected indicates that the state of the environment has
changed towards a higher probability of reward. This interpretation predicts a stronger violation of
expectations and therefore more learning whenever confident responses are followed by negative feedback.
Such an overcorrection effect has been observed in the domain of explicit knowledge before (Butterfield
& Metcalfe, 2006).

4.4.6. Summary

In the absence of external outcome information in an information-integration category learning task
higher fMRI activations in the striatum were observed for wrong compared to right answers, and
higher activations in the anterior insula and RCZ for wrong compared to right answers. This parallels
the pattern of activation observed during the receipt of feedback in a reward-based version on the
same task (Daniel & Pollmann, 2010). A potential source of the observed activations lies within the
performance-monitoring system which is able to utilize internal information. This interpretation is
supported by the finding that in the absence of external feedback striatal activation responds to the
prediction error similarly as it does during reinforcement learning, but with respect to signals based on
subjective confidence. In addition, ventral striatal activation decreases with stimulus novelty during
observation. These results provide a parsimonious account for the neural bases of learning, implying
that similar basic mechanisms underlie reinforcement learning and learning in settings where external
outcome information is unavailable.
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depends on reward differentially in visual areas and orbitofrontal

cortex

5.1. Introduction

Making successful everyday decisions relies on the ability of the brain to extract the current state of
the environment from the noisy sensory signals it receives, and to integrate this information with prior
experience about the costs and benefits of different behaviors in that state. A fundamental component of
the process involves assigning stimuli to categories reflecting their functional relevance (Freedman, 2008).
Whenever small changes in input are required to lead to categorically different behavioral responses, an
amplified representation of feature values close to the category boundary is functionally advantageous
(Roelfsema, Ooyen, & Watanabe, 2010). In accordance with this consideration, after categorization
training both effects of between-category separation, i.e. enhanced discriminability between members of
different categories, and within-category compression, i.e. reduced discriminability between members of
the same category, have been observed (Goldstone, 1994, 1998; Liebenthal, Binder, Spitzer, Possing, &
Medler, 2005; Livingston, Andrews, & Harnad, 1998).

For categorical decisions based on small variations of low-level stimuli, behavioral data suggests that
perceptual learning within early visual areas underlies this categorical perception effect (Notman, Sowden,
& Ozgen, 2005). Electrophysiological and fMRI studies report changes in selectivity and overall levels
of activation in the visual processing stream from early occipital areas to the inferior temporal cortex
as a result of discrimination training (Gillebert, Op de Beeck, Panis, & Wagemans, 2009; Jiang et al.,
2007; Kourtzi, Betts, Sarkheil, & Welchman, 2005; Raiguel, Vogels, Mysore, & Orban, 2006; Sigala &
Logothetis, 2002). Additionally, changes induced by categorization training and categorization have been
observed in inferior parietal and prefrontal areas and the striatum (Freedman, 2008; Li, Ostwald, Giese,
& Kourtzi, 2007; Li, Mayhew, & Kourtzi, 2009, 2011; Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006).

Perceptual learning as the basis of categorical perception is assumed to be based on the interplay
of attentional feedback signals originating in higher cortical areas that highlight the chain of neurons
between sensory and motor areas responsible for any selected action, and diffuse neuromodulatory signals
which gate plasticity in dependence on the outcome of the performed behavior (Roelfsema et al., 2010).
Reward is known to influence the representation of stimuli already during early processing (Serences,
2008), and its effects can be observed throughout virtually the whole brain (Vickery et al., 2011). While
the central role of the nature of feedback during complex category learning is well established (Ashby &
Valentin, 2005; Daniel & Pollmann, 2010), it remains an open question whether rewarding stimuli during
categorization training has a lasting influence on stimulus representation in categorization-relevant areas.

To address the issues of lasting influence on representation by categorization training and differences
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induced by reinforcers with different motivational value, a three-stage approach exploiting the sensitivity
of Representational Similarity Analysis (Kriegeskorte, Mur, & Bandettini, 2008) was employed. Human
participants were trained via feedback to categorize stimuli into one of four categories, but only responses
with regard to one category were monetarily rewarded. Subsequently, fMRI data was acquired during
passive viewing. We first localized areas where the physical similarity structure of the stimuli is
represented, which we expected to include mainly early occipital areas, in keeping with the simple
structure of our stimuli. Subsequently, areas where the similarity structure of the fMRI activations is
better accounted for by the category structure than the physical similarity were identified. In the third
step, we investigated in which areas the representation of previously rewarded categories differs from the
representation of categories that were not rewarded during training. One central question was whether
(1) category learning and (2) the association of particular categories with reward would change the
representation of category members already in early visual cortex, which would conflict with a truthful
representation of their physical similarity structure. The other central question was whether category
structure and reward association would be represented, even in the absence of reward expectation, in
dopaminergic projection areas involved in reward learning. We expected that the visual representation
was optimized to differentiate between categories and that this differentiation is improved by reward.
In contrast, representation in reward-related brain areas was expected to be optimized to distinguish
reward-associated from not reward-associated stimuli.

5.2. Methods

5.2.1. Participants

Sixteen subjects with an average age of 23.9 years [range = 20-28; SE = 0.5; 8 males] participated in the
experiment. They received a variable payment based on performance for the training session and a fixed
allowance of 12 e for the fMRI session.

5.2.2. Stimuli

Participants were required to categorize circular square wave gratings into one of four categories
based on their spatial frequency and orientation. The category boundaries were oblique to the two
dimensions spanning the stimulus space, so that information from both dimensions had to be integrated
predecisionally (Figure 5.1). This category structure was chosen as the acquisition of information-
integration categories is known to be gradual and more dependent on training than the acquisition
of easily verbalizable rules (Ashby & Maddox, 2005). Each category was composed of three subsets
of stimuli which were distributed equidistantly across the stimulus space, resulting in several pairs of
subsets of stimuli which had the same physical distance but were either on the same side of a category
boundary or not. For each participant one of the four categories was randomly selected to be rewarded
with a monetary gain for correct answers and punished with a monetary loss for wrong answers during
training. This resulted in four equidistant pairs of stimulus subsets that crossed a category boundary
that was reinforced, and four pairs of stimulus subsets that crossed a category boundary that was not
reinforced. Using four categories instead of the usual two had the additional advantage that, while
retaining a within-subject design, participants did not have to be retrained on other category boundaries
within the same stimulus space. That is not only an unusual scenario in ecologically valid settings, but
might also encourage the learning of flexible categorization rules dependent on the context of the task,
rather than influencing stimulus representation.

To obtain stimuli, ordered pairs (x, y) were randomly sampled from the category distribution listed in
Table 5.1. These pairs were subsequently transformed to determine the spatial frequency (.83 + x/5.83
cpd) and orientation (0.35 + (y×π/1500) radians) of a circular square-wave grating (∼ 100% contrast, 6◦

visual angle). Spatial phase was randomized across all stimuli to make local pixel intensity uninformative.
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Figure 5.1. Category structures and sample stimuli. Each triangle denotes the orientation and spatial frequency of
a single stimulus. The solid lines represent the category boundaries. Each category (A, B, C, and D) is
composed of three subsets of stimuli. For all subsets an example stimulus is shown.

5.2.3. Training session

Procedure

Training was performed in a quiet, dimly lit room. All stimuli were presented on 50% gray background
and with a circular 50% gray fixation dot of approximately 0.3◦ visual angle in diameter in the center.
Before each trial a fixation cross was presented for 100 ms which was directly followed by the stimulus.
The stimulus was presented for a maximum of 15 s or until the participant pressed one of four response
keys to indicate category membership. After the response the stimulus was immediately removed and a
feedback sound of 250 ms duration indicated the correctness of the response. The sound consisted of a
high or low tone (900 or 350 Hz). For rewarded categories it was replaced by an equally long sound
resembling a cash register for correct answers or a collision for wrong answers. The amount of earnings
in cents was displayed below the stimulus in red letters. An adaptive training procedure based on models
developed by Rescorla and Wagner (1972) and Gluck and Bower (1988b, 1988a) was used to ensure that
all participants learned the complex category structure.
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Table 5.1. Distribution parameters

µx µy σx σy covxy

Category A

set A1 5 190 5 5 0
set A2 5 560 5 5 0
set A3 190 375 5 5 0

Category B

set B1 190 5 5 5 0
set B2 375 190 5 5 0
set B3 560 5 5 5 0

Category C

set C1 190 745 5 5 0
set C2 375 560 5 5 0
set C3 560 745 5 5 0

Category D

set D1 560 375 5 5 0
set D2 745 190 5 5 0
set D3 745 560 5 5 0

µ = mean for each dimension; σ = variance
for each dimension; cov = covariance
between dimensions.

53



5. Experiment 3: Categorical representation

Model for adaptive training

It was assumed that associative connections between members of each set of stimuli and the correct
category response (i = 1...12 input nodes, o = 1...4 output nodes) are built up in a gradual manner
according to an error correction rule:

∆Vio = αRo(λo −Oo)Ii

where Vio is the weight connecting the i-th input node with the o-th output node, α is the free learning
rate parameter, Ro is the answer given by the participant, λ = 0 or 1 is the target value for the o-th
output node as indicated by the feedback, and Ii = 0 or 1 represents activity on the i-th input node.

The activity O for each output node o on each trial was computed as:

Oo =
∑

VioIo

with Vio being updated after each trial according to the error correction rule stated above.

Adaptive training

The free learning rate parameter was first set to a low level (0.03). After 120 trials this value was replaced
with an estimate of the participant’s learning rate based on the number of errors made during the first
trials. To estimate the learning rate parameter the model was first run with all weights initialized to
small random values (0-0.05) and run with different values for α. The model’s response was determined
to be the output node with the highest weight and the average number of errors over 500 instantiations
of the model was taken as an estimate how many errors a participant with a certain learning rate would
make. However, the learning rate was constrained to lie between 0.06 and 0.09 to make training duration
comparable between participants, and no different learning rates were assigned to rewarded and not
rewarded categories. The average learning rate determined by this procedure was 0.079 (SD = 0.015).
After the setting of the individual learning rate parameter the experiment was divided into blocks of 100
trials and for each block the number of presented exemplars per category was determined in proportion
to the weights of each input node to its corresponding output node. This procedure resulted in the
presentation of more exemplars from input nodes that were weakly connected with their corresponding
output nodes. After each block of 100 trials the training was paused until the participant indicated by a
key press that he or she was ready to continue. Training ended when all correct weights were above 0.99
and was concluded by a final test block in which 10 exemplars from each of the twelve subsets of stimuli
were presented.

Reinforcement

Correct answers to the rewarded category were rewarded while each failure to recognize exemplars of
the rewarded category and each false alarm was punished. Reward and punishment were calculated in
proportion to the association weights connecting each input node to the correct output node, so that
in the beginning of the experiment reward amounted to 20 cents while punishment was zero. With
increasing association strengths this relationship was gradually reversed. Maximum punishment was
limited to 10 cents to shift the participants’ focus to reward rather than punishment, while nevertheless
preventing a bias for choosing the rewarded category. In the final test block all participants received a
reward or punishment of 10 cents for each answer relating to the rewarded category.
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5.2.4. FMRI session

Behavioral protocol

One day after the training session participants underwent an fMRI scanning session. Stimuli in the
scanning session were identical to those in the training session but presented in a matrix of 3 × 3 gratings
with a fixation dot only on the center stimulus. The presentation time for each stimulus was four seconds
and interspersed with rest/fixation events of 104 s overall duration. The order of stimuli and null events
was derived using the Optseq2 software (http://surfer.nmr.mgh.harvard.edu/optseq) and each run ended
with 12 s of rest/fixation. To ensure continuous attention, participants were asked to press a button
whenever one of the stimuli was different from the other eight. A high tone was presented for correct
target detection and a low tone for missed targets. Within each of the seven runs five target stimuli
were presented along with five homogenous displays from each subset. Target trials were excluded from
further analysis.

FMRI Image acquisition and preprocessing

The parameters for fMRI image acquisition are detailed in Section 2.4. Seven runs of 190 functional
images each were recorded. Processing of the functional images was performed using the FMRIB Software
Library (FSL - Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford, UK;
http://www.fmrib.ox.ac.uk/fsl; Version 4.1), unless otherwise stated. Images were movement corrected
to the middle image of the run and the estimated movement parameters were saved and later included
in the statistical analysis. A temporal highpass filter of 1/128 Hz was applied to remove low frequency
confounds. Images were spatially smoothed for the GLM analysis using a 5mm FWHM Gaussian kernel,
while images later subjected to similarity analyses were not smoothed at this step. Twelve regressors
representing the onsets and durations of stimulus presentation from each set of stimuli were fit to the data
after convolution with a hemodynamic response function (gamma function with a standard deviation of
3 s and a mean lag of 6 s; temporal derivatives were added to the model).

Preparation of images for the similarity analysis

In the representational similarity analysis it is assumed that stimuli which are located at adjacent
positions of the model space elicit BOLD signal patterns which are more similar to each other than
signal patterns of stimuli which are more distant in the model space. To summarize the data for
the similarity analysis, the contrast images for all twelve regressors from the first level analysis were
subjected individually for each participant to a higher level fixed effects analysis. This resulted in maps
representing the participant’s mean activation over all seven runs for each subset of stimuli. The twelve
maps with contrast parameter estimates resulting from this analysis were z-scored feature wise and
submitted to the similarity analysis. To construct subsets of the imaging data for the calculation of
distance matrices containing the correlational distances of each pair of stimuli, a searchlight approach
(Kriegeskorte, Goebel, & Bandettini, 2006) was taken. A sphere-shaped neighborhood with 4 voxels
radius (n = 257) was determined for each voxel within the whole brain using the Searchlight method
implemented in PyMVPA (http://pymvpa.org; Hanke et al. (2009)). These empirical distance matrices
were correlated with matrices containing the pairwise Euclidean distances between the stimuli in three
different theoretical models of the stimulus space. The resulting coefficients were plotted back on the
central voxel of the searchlight to build the correlation maps. All distance matrices were calculated
using the hcluster package of SciPy (http://scipy.org; Jones et al. (2001)).

Model-based similarity analysis

Three models were developed to describe the similarity structure of the functional imaging data.
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1. Physical Model. The Physical Model assumes that all distances between data points can be
described by their Euclidean distances within the two-dimensional stimulus space.

2. Categorical Model. The Categorical Model also assumes that distances between data points
represent Euclidean distances within the stimulus space. It, however, adds an additional free
parameter: a scale factor which allows the members of all three subsets within a category to move
closer to the centroid of the category. In this way distances within a category may decrease while
distances between categories may increase.

3. Reward Model. The Reward Model is identical to the Category Model but adds a second free
parameter. This allows the scale factor of the rewarded category to be different from the scale
factor of the not rewarded categories. In this way, the representation of the subsets is allowed to
be different within the rewarded category than in the other categories.

A visualization of all three models is provided in Figure 5.2. All free parameters were constrained
to lie between 0 and 1 and the optimize package of SciPy was used to determine the parameters that
maximize the correlation between each model and data (df = 64).

Figure 5.2. Models of representational similarity. Three different models were fit to the neuroimaging data. The Physical
Model assumes that the similarity structure of the data is best described by the physical distances of each
subset of stimuli (indicated by circles) within the two dimensional stimulus space. The Categorical Model
introduces a free scale parameter that allows the similarity of stimuli within the same category to be higher
than for stimuli in different categories. The scale factor in this example is 0.5, i.e. the distance between
the category centroid (indicated by a cross) and the centroid of each subset of stimuli is scaled to be half
the physical distance (indicated by green lines and background color). The Reward Model introduces an
additional free scale parameter for the distances within the rewarded category (indicated by red lines and
background color; blue lines and background color indicate the unrewarded categories). In the example
shown the scale factor for the rewarded category is 0.25 (upper quadrant of the Reward Model), the scale
factor for the unrewarded categories is 0.5. All models can be transformed to similarity matrices as shown in
the second row of the figure, which were correlated with the empirical distance matrices obtained from the
neuroimaging data.
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Statistical testing of the similarity analysis

The Fisher’s Z-transformed correlation maps of all three models with the neuroimaging data as well as
the three maps containing the parameter estimates of the scale factors were linearly transformed to MNI
space (Evans et al., 1993) and smoothed with a 5 mm FWHM Gaussian kernel. The correlation maps
were tested using one-sample T-tests (5mm half width at half maximum (HWHM) variance smoothing)
and all reported clusters survived a voxel-corrected threshold of p < .005 and an extent threshold of
50 contiguous voxels. As the models are nested, difference maps between them have a natural limit
at zero. For small differences this might lead to non-normal distributions. Kolmogorov-Smirnov tests
however confirmed that the hypothesis of normality cannot be rejected (p < .2, uncorrected) in the
areas where significant differences were detected. Also, the introduction of additional free parameters
will increase the correlation between model and data. Using our conservative threshold we determined
the brain regions where this improvement was substantially above zero and thereby identified areas for
further investigation of the degree of categorical representation. To this end the estimates of the scale
factors in each model of each participant were extracted from the peak voxel of all significant clusters.
Additionally, to specify the relationship to behavioral data from the training session, a median-split was
used to group participants into high learners and low learners based on their performance in the final
training block and included as between-subjects factor learner group into all analyses of the scale factor
estimates.

Univariate GLM analysis

To check for univariate main effects of reward first level contrasts were set up comparing rewarded and
unrewarded sets of stimuli individually for each participant and run. In an intermediate fixed effects
analysis the contrast images from all seven runs were averaged for each participant and submitted to the
higher level mixed effects analysis across participants.

5.3. Results

5.3.1. Behavioral Data

On average participants received 1210.3 (SD = 300.2) training trials, during which they earned an
average of M = 21.15 e (SD = 4.94 e). In the final test block of 120 trials (10 trials from each subset)
the average error rate was 9.43% (SD = 6.55), indicating that training was appropriate to ensure both a
high level of performance and a sufficient number of error trials to detect a potential increase in signal
detection for rewarded categories. With an average of .95 (SE = .19) the hit rate for rewarded categories
was higher [T(15) = 3.06, p < .05] than the hit rate for not rewarded categories [M = .89; SE = .18],
while the false alarm rate was lower [T(15) = -2.27; p < .05] for rewarded [M = .01, SE = .01] than
unrewarded categories [M = .05, SE = .02]. Also, the average reaction time was lower [T(15) = -2.94,
p < .05] for rewarded [M = 1084.66 ms, SE = 67.58 ms] than for not rewarded [M = 1325.08 ms, SE =
82.94 ms] categories. The behavioral data in the final test block therefore shows that despite otherwise
identical training protocols, the categorization of items from the rewarded category was both more
correct and faster than categorization of items from the not rewarded categories. During the fMRI
session participants missed an average of 0.75 (SD = 1.4) target trials, indicating continuous attention
to the stimuli.

5.3.2. FMRI session

Representational Similarity Analysis

1. Physical Model. Correlations of the similarity structure described by the Physical Model, which
assumes that the distances between stimuli can be described by their Euclidean distances in the stimulus
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space, and the correlation distance in the fMRI data were mainly observed throughout the occipital lobe
with additional smaller clusters in the right anterior temporal fusiform cortex, the left posterior insular
cortex and the left putamen (see Table 5.2 and Figure 5.3 A).

Figure 5.3. Correlations of the Physical and Categorical Model. A. Z-value map of the correlation of the similarity
structure of the Physical Model with the similarity structure of the fMRI data. Pronounced correlations are
observed throughout the occipital lobe. B. Z-value map showing where the Categorical Model correlated
higher with the fMRI data than the Physical model. Two clusters in the occipital and the frontal cortex are
observed. Additionally a map of the estimates of the scale factors in the Categorical Model, masked with the
thresholded z-value map, is presented. Lower numbers indicate that the distance between the centroid of the
category to each subset of stimuli was estimated to be shorter than the physical distance (see Figure 5.2).
The left hemisphere is presented at the right side of coronal sections, and both z-value maps are thresholded
at pFWE < .005 (k >50).

2. Categorical Model > Physical Model. The Categorical Model adds a free parameter which allows
the distances between members of the same category to be smaller than distances between members
of different categories, irrespective of their physical distance. The addition of the free parameter led
to significant increases in the correlation between model and data in the right frontal pole and the left
rostral cuneus, bordering the calcarine sulcus and the retrosplenial cortex (see Table 5.2 and Figure 5.3
B). The scale factor estimates were extracted from the peak voxels of these two clusters and submitted
to a two-factor ANOVA with repeated measures on the factor cluster, and learner group as between
subjects factor. Although there was a trend indicating that the scale factor estimates were lower at the
frontal pole than in the occipital cortex [F(1,14) = 2.91; p = .11], no significant effects were observed in
the analysis of the scale factor estimates from the Categorical Model.
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Table 5.2. Correlation between models and data

MNI

Region Side BA k Max. Z x y z

1. Physical Model
Occipital Cortex 17/18/19 b 25798 6.52 62 18 33
Anterior temporal fusiform cortex 20 r 437 3.81 32 64 16
Posterior insular cortex 41 l 311 3.64 -28 -36 10
Putamen l 251 3.66 -22 0 4
2. Categorical Model > Physical Model
Frontopolar cortex 10/11 r 650 3.74 32 60 -10
Inferior occipital cortex 17/18 l 135 3.45 -26 -70 10
3. Reward Model > Categorical Model
Occipital Pole, extending to 17 b 6904 4.45 10 -96 -2

Lateral occipital cortex 19 r 4.17 42 -82 14
Lateral occipital cortex 19 l 4.01 -46 -84 -10
Cerebellum b 4.17 -6 -54 -22

Superior occipital cortex 7 l 164 3.71 -14 -84 42
Superior occipital cortex 7 r 131 3.65 16 -74 52
Precentral Gyrus, extending to 6 r 785 3.95 24 -10 46

Postcentral Gyrus 4 r 3.67 16 -30 50
Postcentral Gyrus 4 l 641 4.04 -24 -22 32
Ventral Striatum r 706 3.94 6 2 8
Temporal pole 20/38 r 370 3.72 34 16 -34
Amygdala/Hippocampus l 332 3.63 -26 -12 -16
Posterior insular cortex 48 r 125 3.62 32 -30 26
Frontal orbital cortex 11 l 81 3.56 -26 40 8

l=left, r=right, b=bilateral, BA=Brodmann area, k=cluster size in voxels (2x2x2mm), max.
Z=maximum Z-value

3. Reward Model > Categorical Model. The Reward Model adds a second free parameter which
allows the scale factor of the rewarded category to be different from the scale factor of the not rewarded
categories. Due to the introduction of this second parameter, significantly increased correlations between
model and data were observed in occipital and parietal areas, the pre- and postcentral gyri (including
the right Frontal Eye Field), the ventral striatum, the temporal pole, the amygdala, the posterior insular
cortex and the frontal orbital cortex (see Table 5.2 and Figure 5.6). Please note that there was no
overlap with the areas where activation patterns were best fit by the Categorical Model. The scale
factor estimates from these clusters were submitted to a 10 (cluster) × 3 (scale factor) × 2 (learner
group) ANOVA. A significant main effect of cluster [F(9, 126) = 2.13; p < .05] was observed. Further
examination of the interaction between cluster and scale factor [F(11.08,155.11) = 2.09; p < .05] using
post-hoc paired-samples T-tests showed that in early visual areas the scale factor estimate for the
rewarded category was significantly lower than the estimate for the unrewarded category [T(15) =
2.25; p < .05], while in the orbitofrontal cortex this relationship was reversed [T(15) = -2.46; p < .05]
(Figure 5.4). No other areas showed significant differences between scale factor estimates for rewarded
and unrewarded categories in the post-hoc tests. Additionally, the mean scale factor estimates were
lower [F(1,14) = 4.84; p < .05] for the group of high learners [M = .44, SE = .05] than for the group of
low learners [M = .59, SE = .05] (Figure 5.5), indicating that in the group of high learners the stimuli in
both rewarded and not rewarded categories were represented more similarly.
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Figure 5.4. Estimates of scale factors. The parameter estimates represent the values of the scale factors that maximize
the correlation between model and data in those areas where correlation was significantly higher with the
Reward Model than the Categorical Model. Lower values indicate a higher within-category similarity. An
interaction between scale factor and cluster is caused by lower estimates for the rewarded than unrewarded
categories in occipital regions, and higher parameter estimates in the orbitofrontal cortex. No other clusters
show significant differences between the parameter estimates for rewarded and unrewarded categories. Error
bars represent the standard error of means.
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Figure 5.5. Difference between high learners and low learners. Participants were grouped into high learners and low
learners using a median-split. The main effect of learner group in a 10(cluster)x3(scale factor)x2(learner
group) ANOVA shows that in the group of high learners significantly lower overall estimates of the scale
factor were observed, indicating that their representation of stimuli was more influenced by the category
structure than in the group of low learners. No interaction with the cluster from which the estimates of
the scale factors were extracted was observed, indicating that this effect was constant across all of the ten
examined structures (compare Figure 5.4). Error bars represent the standard error of means.

60



5. Experiment 3: Categorical representation

Figure 5.6. Correlations of the Reward Model. A. Z-Value map showing where the Reward Model correlated higher with
the FMRI data than the Categorical Model, thresholded at pFWE < .005(k > 50). The Reward Model has
two free parameters, one for the rewarded category and one for the unrewarded categories. B. Map of the
estimates of the scale factor in the Reward Model for unrewarded categories, masked with the thresholded
z-value map from A. C. Map of the estimates of the scale factor in the Reward Model for the rewarded
category, masked with the thresholded z-value map from A. Lower numbers in the scale factor estimate
maps indicate that the distance between the centroid of the category to each subset of stimuli was estimated
to be shorter than the physical distance (see Figure 5.2). The left hemisphere is presented at the right side
of coronal sections.
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Univariate Results

In a standard GLM analysis comparing rewarded stimuli with unrewarded stimuli no univariate effect
was observed at a threshold of pcorrected < .05, indicating that in the absence of a behavioral task and
with no probability of reward the formerly rewarded sets of stimuli did not evoke a response that differed
in height from the response to unrewarded sets of stimuli within one voxel.

5.4. Discussion

To investigate the lasting influence of categorization training on representation a categorization task with
equidistant subsets of stimuli was developed. The subsets were either divided by a category boundary
or not, and responses with regard to two of the four boundaries were monetarily reinforced during
training. In a wide network including visual and reward-related areas the representation of stimuli after
categorization training reflected both their category membership and the reward associated with them.
Irrespective of the physical distance of the stimuli, and in the absence of a categorization task, the
representation of each subset of stimuli was more similar for members of the same category than for
members of different categories. Both for monetarily reinforced and cognitively trained categories this
effect was stronger in participants who had learned the task better. Additionally, in early visual areas the
within-category similarity of stimulus representation was higher for the category whose boundaries were
monetarily reinforced, while in the OFC the relationship was reversed. This suggests that the higher
incentive salience induced by monetary reward as compared to cognitive feedback leads to decreased
perceptual noise at the category boundaries in sensory processing areas. In contrast, members of the
rewarded category are processed more distinctly in the OFC, an area known to encode subjective value
representations and complex information necessary to define what possible outcomes are predicted by
the state the environment is in (Wallis, 2007; O’Doherty, 2007).

5.4.1. Areas correlated with the theoretical models

To obtain these findings the similarity matrix predicted by three theoretically derived models of the
stimulus space was correlated with the similarity matrix obtained from fMRI data (Kriegeskorte, Mur,
& Bandettini, 2008). The first model specified the actual physical distances in the two-dimensional
stimulus space. Significant correlations with this model were mainly observed throughout the occipital
cortex. It is well-known that the physical characteristics of visual input are processed in occipital areas
(Brewer, Liu, & Wade, 2005; Holmes, 1945). Therefore this finding supports the validity and sensitivity
of the method employed.

A parameter allowing for both lower within-category and higher between-category distances was
estimated in the second model. This model described the fMRI activations better than the physical
model in the rostral part of the cuneus, bordering retrosplenial cortex, which is possibly a human
homologue of the area prostriata (Rosa, Casagrande, Preuss, & Kaas, 1997; Sanides, 1972), and a larger
area in the lateral frontopolar cortex (lFPC). The lFPC is well-known to support episodic memory
retrieval (Gilbert et al., 2006), while the retrosplenial cortex and adjacent parts of the medial occipital
cortex are functionally connected with the hippocampus (Kahn, Andrews-Hanna, Vincent, Snyder, &
Buckner, 2008). They have been shown to be involved in both episodic memory and spatial navigation
tasks (Ranganath, Heller, Cohen, Brozinsky, & Rissman, 2005; Vann, Aggleton, & Maguire, 2009; von
Cramon, 1992; Wolbers & Büchel, 2005). In the present experiment participants were not required to
categorize the stimuli during fMRI data acquisition, nor was there another task with high attentional
demands. It is, however, possible that participants were either consciously or automatically remembering
the learned classifications. In any case, our findings establish that category structure is represented in
two areas that support memory even in the absence of an explicit categorization task.

Subsequently, a third model was fit to the fMRI data which did not only take into account the category
structure of the presented stimuli, but also the reinforcement associated with them. It allowed the
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distances in the rewarded category to be different from the distances in the unrewarded categories, and
fit the fMRI data best in a widespread network. According to their functional relevance the observed
areas can be aggregated into three major groups: areas involved in visual processing (occipital pole
region, striate and peristriate cortex, superior occipital cortex), in motor responses (pre- and postcentral
gyrus), and in the processing of reward value associated with stimuli (ventral striatum, orbitofrontal
cortex, amygdala/hippocampus). All areas of this network have previously been implicated in category
learning (see Section 1.2).

The result that category membership in combination with reward influences stimulus representations
mainly in early visual areas complements extensive previous research on learning-related representational
changes along the ventral visual processing stream. Category specific neuronal response patterns are
often observed in more ventral visual areas along the inferior temporal cortex (Freedman, 2008; Sigala
& Logothetis, 2002). However, training related changes in the visual system are highly dependent on
the complexity of the stimuli and the duration of training, with higher visual areas in the fusiform
gyrus being implicated in the processing of highly complex stimuli after extensive training, while earlier
visual areas are implicated in the processing of simple visual stimuli and after less extensive training
(Freedman, 2008; Gauthier, Wong, & Palmeri, 2010; Kourtzi et al., 2005; Li et al., 2007; Sigala, Gabbiani,
& Logothetis, 2002). Presently, effects of reward and category membership were strongest in early visual
areas, which is in agreement with our simple visual stimuli. They were defined by a single orientation
and spatial frequency, which both are processed already in V1 (Mazer, Vinje, McDermott, Schiller, &
Gallant, 2002).

One important difference between animal studies and studies in humans is that animals generally
receive explicit reinforcement, while humans are mostly trained based on cognitive feedback. Sigala et al.
(2002) directly compared the effects of categorization training using these two different procedures. Their
monkeys received juice rewards and showed more pronounced behavioral effects of category training, i.e.
increased within-category similarity ratings, than the human participants, who received only correctness
feedback. This is in line with our findings in that within the same human participants a stronger effect
of category for rewarded stimuli was observed both in the behavioral data and in functional activation
in visual areas.

Activation patterns in several areas known to be implicated in reward processing were also best
explained by a model accounting for both the category structure and the reinforcement structure
associated with the stimuli. The ventral striatum plays a central role in the processing of salient stimuli
(Zink et al., 2004) as well as in the in expectation of rewards and the processing of outcomes that
are better than expected (Niv, 2009). In the present experiment rewards were only associated with
the stimuli during training, but not during data acquisition, indicating that information about reward
associated with the stimuli is also present in the ventral striatum when currently no reward can be
obtained. A patch of highest correlation with the reward model was also observed in the OFC, an
area known to represent information about the value of expected rewards based on the current state
(O’Doherty, 2007; Knutson, Delgado, & Phillips, 2008), as well as in the left amygdala and hippocampus.
Both areas are known to play a role in aversive conditioning (Büchel & Dolan, 2000; Sehlmeyer et al.,
2009); specifically the hippocampus has been suggested to underlie associative category learning and
the acquisition of equivalence between stimuli (Coutureau et al., 2002; Preston, Shrager, Dudukovic, &
Gabrieli, 2004).

5.4.2. Examination of the parameter estimates

Despite the fact that the presented network representing both category and reward structure fits in
well with previous observations, the identification of a network of brain areas where correlation between
models and data is significantly increased by extending the models has to be interpreted with care in the
absence of an untrained control group. However, this approach is well suited to identify areas of interest
for further examination. Importantly, the method employed in the present study yields interpretable
estimates of within-category similarity in the patterns of functional activation. Comparing the estimates
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for reinforced and not reinforced categories in areas of interest reveals that in early visual processing
areas within-category similarity is higher in the reinforced categories. Previous research has established
that stimulus-reward pairings influence response properties of neurons in early sensory areas (Bao, Chan,
& Merzenich, 2001; Frankó, Seitz, & Vogels, 2010). The present findings complement these results by
showing that the similarity structure of stimulus representation after categorization training is categorical,
and that this is true especially for reinforced category boundaries. An amplified representation of feature
values close to category boundaries induced by perceptual learning is functionally advantageous in
categorization tasks, as it supports different behavioral reactions in response to small changes in sensory
input (Roelfsema et al., 2010). That this effect is stronger for the rewarded category fits in well with the
higher functional relevance of correct categorizations for these stimuli.

In contrast to the pattern in early sensory areas, in the OFC activation patterns associated with
members of the reinforced category are less similar than activation patterns associated with non-reinforced
stimuli. This indicates a qualitatively special processing of stimuli that have previously been associated
with reward. The OFC is known to support the disambiguation of similar environmental states by
representing complex information about the subjective value of stimuli and the potential outcomes
associated with them. It is involved in behavioral choice based on both present internal states and
knowledge of the structure of the decision problem, and has been suggested to supply a working memory
for value representations that allows to anticipate the consequences of behavior (O’Doherty, 2007;
Takahashi et al., 2011; Wallis, 2007). The present results expand this knowledge by establishing that
more valuable stimuli are processed distinctly within the OFC. While items that were not reinforced
during training are represented categorically, stimuli that have previously been associated with reward
are processed individually. This processing advantage allows a preferential examination of potentially
valuable stimuli and therefore enhances the representation of the decision space to account for its reward
structure. Previous accounts of categorical representation have assumed that training, i.e. the repeated
exposure to stimuli and their association with reward, shapes the neuronal representation in sensory
areas (Sigala & Logothetis, 2002; Kim & Bao, 2008). Only in the presence of a categorization task, these
signals are read out by category selective neurons in the lateral prefrontal cortex (Freedman, 2008; Moore
et al., 2006; Jiang et al., 2007). In accordance with these findings, we observed a categorical pattern of
representation in sensory areas and no category information in lateral prefrontal areas during passive
viewing. However, the OFC as only prefrontal area did represent categorical information in the absence
of a categorization task. Importantly, this information included the representation of information on
potential value in a way that can be utilized to maximize the outcome of decisions.

5.4.3. Potential sources of the effects of reward

To discuss the potential underlying causes of the influence of reward observed in the present study it
is important to note that they cannot be explained by physical differences between the stimuli, as the
rewarded category was randomly chosen for each subject. However, several other partially overlapping
general accounts have to be considered when interpreting the findings. First, monetarily rewarding
correct responses leads to better task performance. In the present experiment, error rates at the end
of training were 6% lower for the rewarded category than for the unrewarded category. Although
this is a weak behavioral effect, it might account for the better fit of the reward model in areas with
increased within-category similarity in the rewarded category, i.e. in visual areas, as indicated by the
lower scale factor estimates of participants who had learned the task better. This account implies
that the effects of reward observed in the present study are mediated by a faster learning of reinforced
stimulus-response associations and should be alleviated with further training when task performance is
perfect across all categories. Second, the rewarded category is more salient, and therefore stimuli from it
may have attracted more attentional resources. Effects of attention and reward are often confounded
and seem to share several neuronal substrates, including orbitofrontal regions and the ventral striatum
(Maunsell, 2004; Stoppel et al., 2011; Zink et al., 2004). It however has to be noted that the presently
observed pattern of areas best fit by a reward model does not correspond to the parietal and prefrontal
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areas which are traditionally assumed to form the attention network (Corbetta & Shulman, 2002;
Mesulam, 1999; Posner & Petersen, 1990). Third, reward may specifically affect neuronal representations.
Neuromodulatory systems, which broadly project to most cortical areas, change their activity in response
to reward prediction and outcome. Although other neuromodulatory systems are known to be involved
in plasticity (Aston-Jones & Cohen, 2005; Bakin & Weinberger, 1996; Richardson & DeLong, 1986),
the role of dopamine in learning is particularly well established (Niv, 2009). In accordance with this
account, the pairing of a stimulus with transient dopaminergic signals has been shown to change the
representation of that stimulus in early sensory areas (Bao et al., 2001). As the presented study was
designed to provide an overview of all areas that might be influenced by the general effects of reward,
the specific source of the effect has to be addressed using more specialized experimental paradigms.

5.4.4. Summary

During passive viewing, the similarity pattern of fMRI responses was observed to be best fit by a model
accounting for both the category and the reward structure associated with the stimuli in a widespread
network. This network includes sensory, (pre)motor and reward-related areas, all of which have previously
been reported to support category learning (see Section 1.2). An examination of the parameter estimates
of the model reveals that this effect is stronger in participants who had learned the task better, and
that in visual areas members of the rewarded category are represented more similarly, while in the OFC
rewarded stimuli are processed more distinctly. The results of the present experiment thereby provide
evidence for a fine-tuning of representation in sensory areas to ensure high task performance, while the
OFC specifically represents environmental states leading to differently valued possible future outcomes.

65
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The experiments presented in this thesis examined the impact of different forms of outcome information
on the neural substrates of category learning. A review of the literature on category learning shows
that the presence, timing and nature of outcome information play a central role especially for complex
category learning tasks, which require the integration of information over several trials and a predecisional
integration of information within stimuli (Ashby & Maddox, 2005). Optimal performance in these tasks,
which rely on a gradual acquisition of stimulus-response-outcome associations, critically depends on
subcortical structures, mainly the striatum (Shohamy et al., 2008). In studies on category learning
outcome information has been operationalized as information about the correctness of a decision, which
is referred to as cognitive feedback in this thesis. The effects of cognitive feedback have been suggested
to be mediated by the mesencephalic dopaminergic system, which has previously mainly been examined
in the context of reward-based learning.

A wealth of electrophysiological animal research on the neural substrates of reward-learning has
established the central role of the mesencephalic dopaminergic system. Dopaminergic midbrain neurons
have been shown to encode the expectation of rewards and deviations from this expectation, the reward
prediction error (Schultz, 2007). A parallel line of research in humans has examined this system
using fMRI. It has to be emphasized that fMRI is mainly sensitive to local field potentials which
reflect integrated activity over large neural populations (Logothetis, 2003) and is not sensitive to the
neurotransmitter system conveying the signals. However, due its importance for the investigation of
learning, the neurochemistry underlying fMRI activations in dopaminergic midbrain nuclei and the
ventral striatum during reward learning has been explicitly addressed. Results indicate that fMRI
activity in these areas is likely related to dopaminergic activity during reward learning (Knutson &
Gibbs, 2007; Pessiglione et al., 2006; Schott et al., 2008). FMRI studies on reward-based learning in
humans, which often focus on gambling paradigms with monetary rewards, have shown similar patterns
of activation in dopaminergic target areas as predicted by electrophysiological results (O’Doherty et
al., 2007). Dopaminergic target areas have also been shown to be involved in tasks where no explicit
rewards are provided (Aron et al., 2004). In ecologically valid settings many decision are not followed by
reward or even external information on correctness (Hogarth, 2006) and the role of dopaminergic target
structures under these conditions is not well specified.

The set of studies presented in this thesis compared the influence of three different forms of outcome
information, (1) monetary reward, (2) cognitive information, and (3) internal signals on correctness, on
the neural substrates of category learning and representation of learned information as measured with
fMRI in healthy young participants.
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6.1. Summary of the experimental procedures and results

In the first experiment the effects of monetary reward and cognitive feedback were directly compared
within the same participants. To this end, two parallel information-integration category tasks were
developed, which the participants performed in a single event-related fMRI session. Monetary rewards
were provided for one of the task versions, in other version information about the correctness of the
response was provided. Similar functional activations in dopaminergic target areas were observed in
both task versions, including activation in the putamen for successful as compared to unsuccessful
categorization, and in the nucleus accumbens and the body of the caudate nucleus for positive as
compared to negative feedback. In contrast, a single structure in the ventral striatum, the nucleus
accumbens, showed higher activation during monetary reward anticipation compared to the anticipation
of cognitive feedback. This activation was influenced by the motivational state of the participants. It
was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of
extrinsic motivation in the rewarded task.

The results of this first experiment confirm that the processing of monetary reward and cognitive
feedback share similar neural substrates. However, in many learning environments information on
probable outcome has to be internally constructed (Henriksson et al., 2010). The neural correlates of
internally generated signals on correctness in the complete absence of feedback were examined in a second
experiment using the same task. During test trials after observational training a direct comparison
between correct and wrong responses reveals that activation in dopaminergic target areas, including the
nucleus accumbens, putamen and dmPFC, is modulated by the correctness of the answer similarly as
during feedback-based training. As in reinforcement learning fMRI activation in dopaminergic target
areas is observed in response to errors in reward prediction rather than to the absolute value of reward
(Schultz, 2007), a standard reinforcement learning model was introduced in which subjective confidence
ratings acquired after each trial served as outcome measure. The fMRI activation was correlated with
this prediction error in the striatum (nucleus accumbens and putamen). Activation in dopaminergic
projection sites therefore follows the same pattern in response to prediction errors on confidence as
it does do during reinforcement learning in response to reward prediction errors, but with respect to
internally generated signals based on knowledge of the structure of the environment. Furthermore,
ventral striatal activation was higher for novel stimuli, which might support the allocation of attention
to unfamiliar stimuli.

In a final step, the lasting impact of the type of reinforcement during training on the representation
of categories was addressed. Participants were trained to categorize stimuli into one of four categories,
while only answers with regard to one category were monetarily rewarded. For the other categories
information on correctness was provided. The similarity structure of fMRI data acquired after successful
training during passive viewing was best fit by a model accounting for both the category membership
and reward structure of stimuli in sensory, (pre)motor and reward-related areas. The representation of
category exemplars was more similar for those participants who had learned the categorization task best
and was more similar the rewarded category in early visual areas. In contrast, rewarded stimuli were
processed more distinctly in the OFC, another prominent target area of the dopaminergic system.

6.2. Contributions and implications

Within the last decade, broad-ranging efforts have been made to extend results on reward-based learning
and the role of dopamine therein from animal studies to the human domain. Research on humans using
fMRI could replicate many of the findings from animal studies. The striatum has been shown to respond
to reward value and the prediction error both in classical and instrumental conditioning tasks (O’Doherty
et al., 2007). The studies presented in this thesis help to transfer these results to more ecologically valid
settings, in which the category membership and therefore functional relevance of stimuli is not always
clear, and after many decisions reward or outcome information is not available.
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The presented results support the assumption that forms of learning which depend on response
contingent feedback rely on related neuronal substrates as reward learning (Ashby & Maddox, 2005;
Nomura & Reber, 2008; Seger, 2008) by showing that dopaminergic target areas are activated in a very
similar way during both forms of training. However, this finding has to be differentiated for different
subcomponents of the striatum. In Experiment 1 we provide evidence that a single structure, the nucleus
accumbens, responds with pronouncedly higher activation during the expectation of monetary reward
as compared to the expectation of cognitive feedback. Previous findings on monetary rewards suggest
that the nucleus accumbens codes for the expected positive incentive properties of a reward (Cooper,
2008; Knutson et al., 2001). Our observations expand these findings by showing that the accumbens
also responds differentially when comparing qualitatively different types of outcome information, i.e.
cognitive feedback and monetary reward. The ventral striatum as part of the motivational corticostriatal
loop has been shown to exert directed influence on the visual cortex during categorization, and it
has been suggested to participate in learning by providing the motivational background for decisions
(Lopez-Paniagua & Seger, 2011). This fits in well with the present results showing that the pattern
of activation within the nucleus accumbens is influenced by the motivational state of the participant.
Potentially due to the utilization of two tasks that were trained in parallel, no differences in performance
in response to the type of outcome information were observed. However, reward is known to influence
behavior during learning in other paradigms (see Experiment 3). The present results provide evidence
for differential activation patterns within the nucleus accumbens depending on the type of outcome
information, which might play a role in mediating these behavioral differences.

These findings are extended by the second experiment which demonstrates possible mechanisms by
which learning in the absence of external rewards can be supported by the striatum. In the complete
absence of feedback, striatal activation follows a similar pattern in responding to the prediction error as
it does during reinforcement learning, but with respect to signals based on subjective confidence, i.e.
activation is higher whenever confidence is higher than expected. A potential source for these activations
lies within the error monitoring system (Ridderinkhof, Ullsperger, et al., 2004). Internally detected
errors might be interpreted either as source of information on performance outcome similarly as errors
detected due to external feedback, or indicate that the state of the environment, which signals the
probability of future reward, has changed. We show that the process leads to an overall higher activation
in striatal nuclei in response to correct compared to incorrect task performance which parallels the
activation pattern observed in response to external performance feedback. Additionally, when no actions
are performed and stimuli are passively observed, ventral striatal activation decreases with stimulus
novelty. Both processes might support the acquisition of category structure in the absence of feedback.
These results are especially interesting as patients with Parkinson’s disease, which is characterized
by a loss of dopaminergic input mainly to the dorsal striatum (Schönberg et al., 2010), are impaired
on feedback-based complex category learning tasks, while observational learning is spared (Shohamy
et al., 2004). This has been interpreted to show that observational learning is possible without the
recruitment of striatal structures (Shohamy et al., 2008), which is in contrast to our results indicating
that healthy young participants do recruit the striatum in at least two distinct ways, namely in response
to novelty and internal signals on confidence about the decision. The latter process can support learning
but, in the absence of external information, also strengthen false associations. Whether each of the
processes is necessary or sufficient for optimal task performance and how the processing of internal
and external outcome information interact in ecologically valid settings, where outcome information is
partially available, is subject to further research.

To examine lasting influences of the type of outcome information during training on the representation
of stimuli, we combined theoretical modeling based on previous behavioral observations (Goldstone, 1994;
Sigala et al., 2002) with an analysis based on the multivariate similarity structure of fMRI activation
patterns (Kriegeskorte, Mur, & Bandettini, 2008). We identified the network of brain areas in which
representation is influenced both by category membership and reward, and observed differential effects
within these areas. The network representing categorical information includes early visual and reward-
related subcortical and prefrontal areas, and is therefore more widespread than previously assumed

68



6. Summary and General Conclusions

(Freedman, 2008; Li et al., 2009). Moreover, by showing that better learned rewarded categories are
represented more similarly in visual areas, our finding supports previous accounts suggesting that
perceptual learning is involved in categorical perception (Notman et al., 2005; Roelfsema et al., 2010),
and that visual areas encode mainly perceived form similarity (Freedman, 2008; Li et al., 2007). A
major novel finding is that within the OFC rewarded stimuli are processed more distinctly, indicating a
preferential processing of potentially valuable environmental stimuli within this area. As indicated by
higher estimates of within-category similarity and between-category separation observed in participants
who have learned the task better, these distributed and differential neural representations can support
perceptual and cognitive processes leading to a categorical representation of the environment based on
stimulus-reward contingencies, and thereby can be instrumental in maximizing the outcome of behavioral
decisions.

6.3. Conclusions

The experiments presented in this thesis show that reward-based learning and learning in the absence of
explicit rewards share common basic neural substrates. Specifically, major dopaminergic target areas
including the striatum respond to the expectation of cognitive feedback similarly as to the expectation
of monetary reward and, in the complete absence of external outcome information, activation in the
striatum follows a prediction error on confidence. Further similarities are observable even after training,
when categorical structure, which has been acquired during reward-based and feedback-based learning,
is concurrently represented in visual areas. However, both quantitative and qualitative differences can be
observed between reward-based learning, cognitive feedback-based learning and learning in the absence
of reward. During category learning effects in the striatum are smaller in the absence of explicit rewards,
and in visual areas the representation of the categorical structure of stimuli is less pronounced after
feedback-based than after reward-based training. Also, the motivational states induced by the type
of outcome information influence the observed pattern of activations, and a specific representation
of potentially more valuable stimuli in orbitofrontal areas can be observed. By showing analogies to
reward-based learning the present results provide a parsimonious account of category learning in the
absence of explicit feedback, however also shed light on the neural substrates of differential behavioral
effects observed due to differing training protocols.
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Sescousse, G., Redouté, J., & Dreher, J.-C. (2010). The architecture of reward value coding in the

human orbitofrontal cortex. The Journal of Neuroscience, 30 (39), 13095–13104.
Seymour, B., Daw, N. D., Dayan, P., Singer, T., & Dolan, R. J. (2007). Differential encoding of losses

and gains in the human striatum. The Journal of Neuroscience, 27 (18), 4826–4831.
Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., et al. (2004).

Temporal difference models describe higher-order learning in humans. Nature, 429 (10), 664–667.
Shen, L., & Alexander, G. E. (1997). Neural correlates of a spatial sensory-to-motor transformation in

primary motor cortex. Journal of Neurophysiology , 77 (3), 1171–1194.
Shohamy, D., Myers, C. E., Grossman, S., Sage, J., Gluck, M. A., & Poldrack, R. A. (2004). Cortico-

striatal contributions to feedback-based learning: converging data from neuroimaging and neu-
ropsychology. Brain, 127 (Pt 4), 851–859.

Shohamy, D., Myers, C. E., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine
contributions to probabilistic category learning. Neuroscience & Biobehavioral Reviews, 32 (2),
219–236.

Shohamy, D., & Wagner, A. D. (2008). Integrating memories in the human brain: hippocampal-midbrain
encoding of overlapping events. Neuron, 60 (2), 378–389.

Sigala, N., Gabbiani, F., & Logothetis, N. K. (2002). Visual categorization and object representation in
monkeys and humans. Journal of Cognitive Neuroscience, 14 (2), 187–198.

Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate
temporal cortex. Nature, 415 (6869), 318–320.

Smith, B. W., Mitchell, D. G. V., Hardin, M. G., Jazbec, S., Fridberg, D., Blair, R. J. R., et al.
(2009). Neural substrates of reward magnitude, probability, and risk during a wheel of fortune
decision-making task. NeuroImage, 44 (2), 600–609.

Smith, E. E. (2008). The case for implicit category learning. Cognitive, Affective, & Behavioral
Neuroscience, 8 (1), 3–16.

Sporer, S. L., Penrod, S., Read, D., & Cutler, B. (1995). Choosing, confidence, and accuracy: A
meta-analysis of the confidence-accuracy relation in eyewitness identification studies. Psychological
Bulletin, 118 (3), 315–327.

Stoppel, C. M., Boehler, C. N., Strumpf, H., Heinze, H. J., Hopf, J.-M., & Schoenfeld, M. A. (2011).
Neural processing of reward magnitude under varying attentional demands. Brain Research, 1383 ,
218–229.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning ,
3 (1), 9–44.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. In M. Gabriel
& J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks
(pp. 497–537). Cambridge, MA: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT
Press.

Takahashi, Y. K., Roesch, M. R., Wilson, R. C., Toreson, K., O’Donnell, P., Niv, Y., et al. (2011).

81



References

Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature
Neuroscience, 14 (12), 1590–1597.

Tobler, P. N., Dickinson, A., & Schultz, W. (2003). Coding of predicted reward omission by dopamine
neurons in a conditioned inhibition paradigm. The Journal of Neuroscience, 23 (32), 10402–10410.

Tobler, P. N., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from
risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology ,
97 (2), 1621–1632.

Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action
contingency. Neuron, 41 (2), 281–292.

Ullsperger, M. (2006). Performance monitoring in neurological and psychiatric patients. International
Journal of Psychophysiology , 59 (1), 59–69.

Ullsperger, M. (2010). Genetic association studies of performance monitoring and learning from feedback:
the role of dopamine and serotonin. Neuroscience & Biobehavioral Reviews, 34 (5), 649–659.

Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of
goal-directed learning in the human brain. The Journal of Neuroscience, 27 (15), 4019–4026.

Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature
Reviews Neuroscience, 10 (11), 792–802.

Vickery, T. J., Chun, M. M., & Lee, D. (2011). Ubiquity and Specificity of Reinforcement Signals
throughout the Human Brain. Neuron, 72 (1), 166–177.

Vitay, J., Fix, J., Beuth, F., Schroll, H., & Hamker, F. H. (2009). Biological models of reinforcement
learning. Künstliche Intelligenz , 3 , 12–18.

Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study.
European Journal of Neuroscience, 11 (4), 1239–1255.

Vogels, R., Sary, G., Dupont, P., & Orban, G. A. (2002). Human brain regions involved in visual
categorization. NeuroImage, 16 (2), 401–414.

von Cramon, D. Y. (1992). The septo-hippocampal pathways and their relevance to human memory: A
case report. Cortex , 28 (3), 411–422.

Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of
formal learning theory. Nature, 412 (6842), 43–48.

Waldschmidt, J. G., & Ashby, F. G. (2011). Cortical and striatal contributions to automaticity in
information-integration categorization. NeuroImage, 56 (3), 1791–802.

Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of
Neuroscience, 39 (1), 538–547.

Watkins, C. (1989). Learning from delayed rewards. Unpublished doctoral dissertation, Cambridge
University, Cambridge.

Westphal, S. (2009). Observationales Lernen visueller Kategorien mit und ohne motorische Assoziation.
Unpublished Bachelor’s thesis, Otto-von-Guericke University, Magdeburg.

White, C. M., & Koehler, D. J. (2004). Missing information in multiple-cue probability learning. Memory
& Cognition, 32 (6), 1007–1018.

Wise, R. A. (1989). The brain and reward. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharma-
cological basis of reward (pp. 377–424). Oxford, UK: Oxford University Press.
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related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-
dependent long-term memory formation. Neuron, 45 (3), 459–467.

Wolbers, T., & Büchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful
formation of survey representations. The Journal of Neuroscience, 25 (13), 3333–3340.

Worsley, K., Marrett, S., & Neelin, P. (1996). A unified statistical approach for determining significant
signals in images of cerebral activation. Human Brain Mapping , 4 (1), 58–73.
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A Experiment 1: Supplemental results

A.1. Experiment 1: Results of the pilot study

Details on the method of the pilot study for Experiment 1 are available in Section 3.2.

A.1.1. First session: Training duration

An ANOVA with repeated measures on task (first / second task) with the between-subjects factors order
of reward (first task rewarded / not rewarded), order of stimuli (first task circles / lines) and order of
category structure (slope of first task positive / negative) was calculated to compare the number of trials
participants needed to reach criterion (80% correct trials within a single block of 50 trials) in each
task. Four participants had to be excluded from this analysis as they did not reach criterion within the
maximum training duration of five blocks. No significant main effects of the between-subjects factors or
interactions with the within-subjects factor were observed on the .2 level, indicating that all four task
versions are parallel in terms of learning speed. Results of the ANOVA are detailed in Table A.1.

Table A.1. Experiment 1: ANOVA results for the
pilot study (first session)

Source F(1,7) p

task 0.83 .39
order of reward 0.39 .55
order of stimuli 0.39 .55
order of category structure 0.58 .47
task × order of reward 0.08 .79
task × order of stimuli 0.07 .80
task × order of category structure 0.65 .45

A.1.2. Second session: Error rates

An ANOVA with repeated measures on task (first / second task) with the between-subjects factors order
of reward (first task rewarded / not rewarded), order of stimuli (first task circles / lines) and order of
category structure (slope of first task positive / negative) was calculated to compare the average error
rates in the first and second task in the second session of the pilot study to Experiment 1. No significant

84



A. Experiment 1: Supplemental results

main effects of the between-subjects factors or interactions with the within-subjects factor were observed
on the .2 level, indicating that all task versions are parallel in terms of error rates after training. Results
of the ANOVA are detailed in Table A.2.

Table A.2. Experiment 1: ANOVA results for the pilot
study (second session)

Source F(1,10) p

task 0.05 .83
order of reward 0.06 .81
order of stimuli 0.35 .57
order of category structure 0.06 .81
task × order of reward 0.68 .43
task × order of stimuli 0.26 .62
task × order of category structure 1.66 .23

A.2. Experiment 1: Results of the model-based analysis of the
behavioral data

This section reports supplemental results of the model fitting procedures that were applied to each
participant’s behavioral data in Experiment 1 (see Chapter 3). Details on the method are provided in
Section 2.3 and for illustration examples for the best fitting models of four single subjects are given in
Figure A.1. The resulting BIC values are summarized in Table A.3.
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Table A.3. Experiment 1: BIC values

Monetary reward Cognitive feedback

Subject IIa Lb Oc C1d C2e II L O C1 C2

1 262 397 549 398 217 222 451 382 162 390
2 414 504 727 405 388 341 302 728 371 261
3 258 399 526 308 339 255 394 561 202 371
4 313 469 596 290 469 283 398 621 486 327
5 419 484 649 653 352 324 407 683 350 449
6 209 425 520 509 132 234 480 521 134 381
7 252 346 534 314 401 277 388 559 192 384
8 170 431 447 186 415 332 339 647 371 245
9 295 520 701 415 252 201 407 432 195 427
10 397 446 489 427 598 436 450 619 488 565
11 380 460 659 355 490 295 392 500 478 275
12 364 476 655 333 501 359 505 399 425 513
13 284 441 600 377 311 184 363 724 235 442
14 250 261 632 213 248 302 681 490 254 502
15 184 399 370 152 393 265 448 398 524 196
16 299 479 394 403 329 402 348 635 419 215
a II = information-integration model
b L = unidimensional model based on linewidth
c O = unidimensional model based on orientation
d C1 = first conjunctive model
e C2 = second conjunctive model

Smaller values indicate better model fit. The smallest values for each subject and task are
highlighted.
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A. Experiment 1: Supplemental results

Figure A.1. Best fitting models for four subjects. To illustrate the results of the model fitting procedures, for both
the conjunction models and the information-integration model those two subjects were selected that show
the biggest difference in BIC values between best fitting and second best fitting model for the task with a
positive slope of the decision bound. The values along the axes represent x and y values sampled from the
bivariate normal distributions specified in Table 3.1. Stimuli which were categorized to be from category “A”
are marked by red triangles, stimuli which were categorized to be from category “B” are marked by blue
squares. The optimal decision bound for the category structure is depicted in Figure 3.1. The solid black
lines indicate the subjective decision bound of the participant as estimated by the best fitting model.
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B Experiment 2: Supplemental methods and results

B.1. Experiment 2: Pilot study

This section reports the main results of the pilot study to Experiment 2, which was performed by
Westphal (2009). Twenty-five participants with an average age of 24.1 years [range = 20-31, SD = 3.2;
one excluded due to misunderstanding the instructions] (see also Section 2.1) participated in the pilot
study for Experiment 2. Stimuli are described in Section 4.2.2, and only behavioral data was acquired.
The task was presented in four blocks, each consisting of 100 trials of observation and 100 trials of
testing. During observational trials half of the participants responded to the stimuli by pressing the
response key associated with the presented category label, while the other half of the participants always
pressed the same key independent of the label. In the final testblock participants reached an accuracy
of M = 77.0 % (SD = 16.5). An ANOVA with repeated measures on block and response condition as
between-subjects factor showed a significant training effect [F(3,66) = 11.3, p < .001], but no effect of
response condition [F(1,22) = 0.3, p = .85] or a block × response condition interaction [F(3,66) = 0.0003,
p = .99] (Figure B.1). The results of this pilot study reveal that behavioral improvements are observable
when training is performed in the absence of feedback, however after 400 observational training trials
performance is still as low as 77%. Additionally, associating the stimuli with a response key during
observation does not influence the training effect. Therefore in the main study reported in Chapter 4
further training sessions were introduced, while participants were not required to press response keys
during observational trials.

B.2. Experiment 2: Results of the model-based analysis of the
behavioral data

This section reports supplemental results on the model fitting procedures that were applied to each
participant’s behavioral data in Experiment 2 (see Chapter 4). Details on the method are provided in
Section 2.3. The resulting BIC values are summarized in Table B.1.
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B. Experiment 2: Supplemental methods and results

Table B.1. Experiment 2: BIC values (continued on next page)

First session (fMRI) Second session (training)

Subject IIa Lb Oc C1d C2e II L O C1 C2

1 299 532 747 290 596 30 432 711 212 351
2 463 546 658 425 523 120 499 727 299 302
3 330 396 439 313 413 123 302 752 238 276
4 517 565 511 533 561 551 460 453 326 534
5 428 263 514 274 366 186 465 824 399 457
6 167 367 754 384 150 112 460 720 317 335
7 378 614 630 389 530 104 347 792 161 433
8 418 384 539 563 275 337 537 626 258 208
9 57 485 769 253 243 32 440 755 283 276
10 322 380 609 302 651 127 368 720 243 372
11 219 455 693 387 237 230 227 506 206 239
12 292 321 629 314 224 172 360 692 327 241
13 404 589 637 319 371 465 557 575 509 424
14 167 419 708 364 311 46 374 807 230 285
15 216 352 731 177 448 73 424 877 236 314
16 438 543 532 349 487 180 351 707 367 340
17 133 171 451 224 216 46 194 582 135 213
18 101 136 289 98 118 18 121 345 55 129
a II = information-integration model
b L = unidimensional model based on linewidth
c O = unidimensional model based on orientation
d C1 = first conjunctive model
e C2 = second conjunctive model

Smaller values indicate better model fit. The smallest values for each subject and
task are highlighted.
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Table B.1. Experiment 2: BIC values (continued from previous page)

Third session (training) Fourth session (fMRI)

Subject IIa Lb Oc C1d C2e II L O C1 C2

1 17 401 910 253 350 9 435 820 231 330
2 29 353 841 253 313 18 414 823 245 503
3 95 374 680 239 294 96 381 809 252 307
4 319 342 435 126 483 334 243 496 183 485
5 55 425 689 239 362 59 413 751 315 272
6 35 405 761 279 610 82 388 771 281 286
7 179 455 752 322 345 179 401 794 276 404
8 233 384 504 261 336 189 500 616 220 350
9 60 334 771 232 305 43 357 872 236 316
10 47 402 834 277 305 47 344 758 266 259
11 247 275 592 270 356 173 289 653 284 300
12 188 435 725 376 273 60 438 866 276 199
13 135 403 814 299 283 97 500 830 247 580
14 47 405 767 217 670 46 379 860 301 252
15 21 405 851 206 335 28 406 859 299 292
16 138 343 656 224 344 34 392 770 250 244
17 58 251 693 201 170 30 397 714 309 328
18 47 177 413 66 171 80 115 298 96 138
a II = information-integration model
b L = unidimensional model based on linewidth
c O = unidimensional model based on orientation
d C1 = first conjunctive model
e C2 = second conjunctive model

Smaller values indicate better model fit. The smallest values for each subject and
task are highlighted.
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Figure B.1. Experiment 2: Error rates in the pilot study. Mean accuracies during the test trials of each block are
depicted, error bars represent the standard deviation.
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