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“Apart from such human artifacts as buildings and roads (especially Roman and American
roads), our universe, including ourselves, is thoroughly wiggly. Its features are wiggly in both
shape and conduct. Clouds, mountains, plants, rivers, animals, coastlines—all wiggle. They

wiggle so much and in so many different ways that no one can really make out where one
wiggle begins and another ends, whether in space or in time. [...] However much we divide,

count, sort, or classify this wiggling into particular things and events, this is no more than a way

of thinking about the world: it is never actually divided.”

-Alan Watts, The Book on the taboo against knowing who you are, 1966
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Chapter 1

English abstract

Species diversity is a key concept in ecological research. However, being scale-dependent and
multidimensional, its quantification is often elusive and ambiguous. This dissertation develops
new quantitative methods for the measurement of species diversity in the light of incomplete
sampling and abundance variation. Species diversity is considered in terms of three components
underlying diversity scaling: 1) the species abundance distribution, 2) the total the number of
individuals, and 3) the spatial distribution of species (e.g. intraspecific spatial aggregation). By
applying the new methods to datasets documenting latitudinal and elevational gradients of
diversity, this dissertation contributes to a more nuanced understanding of these patterns. The
new approaches of this dissertation form a methodologically coherent framework for the
guantification of species diversity, applicable to a wide range of ecological questions in space and

time.

Keywords: Species diversity, individual-based rarefaction, effective number of species, more-
individual effect, beta-diversity, elevational diversity gradient, latitudinal diversity gradient,

sampling effects, diversity scaling
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Deutsche Zusammenfassung

Die Artendiversitat ist ein Schlusselbegriff in der 6kologischen Forschung. Da sie jedoch
skalenabh&ngig und multidimensional ist, ist ihre Quantifizierung oft schwer fassbar und
mehrdeutig. In dieser Dissertation werden neue quantitative Methoden zur Messung der
Artendiversitat unter Berticksichtigung unvollstandiger Stichproben und Abundanzschwankungen
entwickelt. Die Arbeit orientiert sich an drei Komponenten, die der Skalierung von Diversitat
zugrunde liegen: 1) die Artenabundanzverteilung, 2) die Gesamtzahl der Individuen und 3) die
raumliche Verteilung der Arten. Durch die Anwendung der neuen Methoden auf Datenséatze tber
Diversitatsveranderungen entlang von Breiten- und Hohengradienten tragt diese Dissertation zu
einem differenzierteren Verstandnis dieser Muster bei. Die neuen Ansatze dieser Dissertation
bilden einen methodisch koh&arenten Rahmen fiir die Quantifizierung der Artendiversitat, der auf

ein breites Spektrum 6kologischer Fragen in Raum und Zeit anwendbar ist.

Schliusselworter: Artenvielfalt, effektive Artenzahl, Mehr-Individuen-Effekt, Beta-Diversitét,

Hohengradienten, Breitengradienten, Stichproben-Effekte, Diversitatsskalierung
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Chapter 1 — General introduction

Species diversity, that is the number of species in an area and the distribution of their abundances,
is a concept at the very heart of ecology. Many longstanding and important research questions
approach the idea from a range of different perspectives: How is species diversity distributed
around the globe (Gaston, 2000; Macarthur, 1965; Rosenzweig, 1995)? What are the eco-
evolutionary processes that produce and maintain patterns of species diversity at different spatial
scales (Currie, 1991; Hagen, 2022; Hawkins et al., 2003; Keil & Chase, 2019)? What is the role
of species diversity in the functioning of ecological systems (Hooper et al., 2005; van der Plas,
2019)? How do species assemblages change over time (Blowes et al., 2019; Dornelas et al.,
2014)? How do we as humans depend on it and what, in turn, is our anthropogenic impact on the
fate of species diversity (Diaz et al., 2019; Isbell et al., 2022)? Overall, species diversity is certainly
one of the most commonly reported variables in empirical studies. Furthermore, it is the subject
of many fundamental ecological laws and theories, such as the species-area relationship, the
theory of island biogeography (MacArthur & Wilson, 1967), niche theory (Chase & Leibold, 2003),
neutral theory (Hubbell, 2001), metabolic theory of ecology (Brown et al.,, 2004) and meta-

community theory (Leibold et al., 2004) — just to name a few.

Despite its paramount importance for ecological research, the concept of species diversity is
inherently elusive and ambiguous, and ecologists have long struggled with its operationalization
and measurement (Chase & Knight, 2013; Gotelli & Colwell, 2001; Hill, 1973; Hurlbert, 1971,
Roswell et al., 2021). For example in her 1988 book on this topic, Magurran compares diversity
with an optical illusion, stating that “the more it is looked at, the less clearly defined it appears to
be and viewing it from different angles can lead to different perceptions of what is involved.”
(Magurran, 1988). It is hard to quantify species diversity because it is a multivariate construct that
encompasses the occurrences and abundances of multiple species (Chase et al., 2018). There
is no one diversity metric that captures all its aspects in a single value, while at the same time
there is an overwhelming multitude of complicated and often uninterpretable diversity metrics
available to choose from (Gotelli & Chao, 2013). Adding to the difficulty, all measures of species
diversity are inherently scale-dependent, which means that their values change non-linearly with
area, sampling effort and the number of individuals captured in a sample (Gotelli & Colwell, 2001,
McGill, 2010).
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In the light of this multidimensional and scale-dependent character, species diversity is, thus,
ideally viewed as a complex scaling relationship (e.g. a species-area curve or a species
accumulation curve) rather than a single number (Chase et al., 2018). Although such a scale-
explicit conception of diversity is great from a theoretical perspective, for most practical purposes
it is, however, just not feasible or useful. First, most diversity data are simply only available at one
spatial scale (or sometimes two at best). Second, even if we have all the information to describe
diversity-scaling relationships in detail, as soon as we want to compare, generalize and
synthesize patterns from different places or systems, we usually have to summarize these
relationships into a number of simpler interpretable key aspects. Thus, the central challenge of
measuring diversity is identifying a set of simple and complementary diversity measures that
meaningfully summarize the complex diversity-scaling relationship underlying any diversity

observation.

The exact shape of diversity scaling relationships - and along with it the observed diversity value
at any given scale - can be understood to result from the interplay of three mutually-dependent
broad components of diversity scaling (Chase & Knight, 2013; He & Legendre, 2002; McGill,
2011): 1) the species abundance distribution (SAD) of a regional species pool (i.e. the total
number of species in a region and their relative and absolute frequencies), 2) the total abundance
(i.e. the number of individuals [N]) supported by the environment, and 3) the spatial distribution of
species in the region (e.g. intraspecific aggregation and interspecific associations). Recent work
has suggested that these components of diversity scaling can serve as meaningful cornerstones
for describing inherently scale-dependent and multidimensional diversity patterns in practical
terms (Chase et al., 2018; McGlinn et al., 2019). For example, similar patterns of species richness
(i.e. the number of species observed in an area) can manifest in qualitatively very distinct ways,
depending on the underlying patterns in the SAD, the number of individuals and spatial
aggregation. This is illustrated by the three diversity gradients in Figure 1 A that show similar
patterns of decreasing local species richness (i.e. a-diversity) but different accompanying patterns
of SAD, N, and spatial aggregation. By quantifying diversity in terms of these components, we
can paint a more nuanced picture of diversity patterns than by considering single-scale species

richness alone (Blowes et al., 2017; Chase et al., 2018).
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Figure 1: The components of diversity scaling and their link to the individual-based rarefaction
curve. A) similar patterns of local species richness (alpha diversity) can be underlain by different
patterns in the regional SAD, the total number of individuals and spatial distribution of species
(e.g. intraspecific spatial aggregation). B) Different parts of the individual based rarefaction (IBR)
curve ata (i.e. local) and y (i.e. regional) scales reflect these diversity components. The solid grey

line shows the y scale; the dashed grey line shows the a scale.

Patterns in the diversity components also relate to different ecological processes and hypotheses,
which may help with the linking of empirical patterns and mechanisms (Gooriah et al., 2021;
Blowes et al., 2022). For example, variation in total abundance, reflecting resource or energy
availability, is often invoked as a simple explanation for observed differences in species richness
(Colwell et al.,, 2012; Srivastava & Lawton, 1998; Storch et al., 2018; Wright, 1983). Such
abundance-related mechanisms are also referred to as the “passive sampling effect” or the “more-
individual hypothesis”, and | return to them many times throughout this dissertation. Similarly,
patterns of intraspecific spatial aggregation are thought to reflect small-scale community
assembly processes based on species’ niches (e.g. environmental heterogeneity) or dispersal
limitation, whereas patterns in the regional SAD are believed to capture processes that operate
on larger scales (e.g. speciation, extinction, climatic constraints and plate tectonics) (Currie, 1991,
Kraft et al., 2011).

In the last decade, there has been an ongoing debate on how these latter two components, in
particular, contribute to differences in diversity scaling along biogeographic gradients (e.g.
latitudinal gradients) through their influence on B-diversity (Kraft et al.,, 2011; Tuomisto &
Ruokolainen, 2012; Ulrich et al., 2017; Xu et al., 2015). Measures of B-diversity (over-)simplify
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diversity scaling relationships into a single number, as they describe the mathematical relationship
between a regional-scale diversity (i.e. y-diversity) and a mean local-scale diversity (i.e. a-
diversity), for example as a simple ratio (B=y/a) (Whittaker, 1960). Although B-diversity is
conceptually appealing, its interpretation remains highly ambiguous (Tuomisto 2010a, 2010Db,
Anderson et al. 2011), because - just like most other diversity measures - 3-diversity confounds
the abovementioned components of numbers of individuals, the species abundance distribution
and within species aggregation. In chapter 2, | discuss these issues in detail and | develop a 3-
diversity metric that responds to changes in spatial aggregation but remains unaffected by

changes in the species pool size.

The basis for this and the other quantitative approaches presented in this dissertation is the
individual-based rarefaction (IBR) curve. Rarefaction has long been a popular tool for the
guantification of species diversity (Chao & Jost, 2012; Gotelli & Colwell, 2001; Hurlbert, 1971),
but more recent work has specifically emphasized its utility for the disentanglement of the three
components of diversity scaling through complementary metrics derived from the IBR curve
(Chase et al., 2018; McGlinn et al., 2019; Olszewski, 2004). IBR curves describe the non-linear
scaling relationship between the number of individuals in a sample and expected species richness
(i.e., rarefied richness) (Fig 1B). Thus, by comparing IBR curves of different samples, one can
address differences in total abundance (i.e. more-individual effects). The shape of the IBR curve
is determined by the SAD of the regional species pool such that for any constant number of
species, samples with higher evenness produce steeper curves. At the same time, the slope of
the curve is also an indication of sample completeness; steep slopes at the endpoint of the curve
suggest that there are many “unseen” species, whereas curves that asymptote indicate high
sample completeness (Chao & Jost, 2012). Finally, by constructing IBR curves from samples at
two or more nested spatial scales, we can assess intraspecific spatial aggregation (Chase et al.,
2018; Dauby & Hardy, 2012; McGlinn et al., 2019; Olszewski, 2004). If species are distributed
randomly among samples (i.e., there is no aggregation), the a-and y-scale IBR curves sit on top
of each other, whereas deviations between the curves indicate nonrandom spatial structure (Fig.
1B). Making use of these properties, diversity metrics derived from different parts of the IBR curve
capture the components of diversity scaling in a complementary way (Blowes et al., 2022; Chase
et al., 2018; McGlinn et al., 2018).

However, due to variable numerical constraints along the IBR curve, different diversity metrics
and their effect sizes are usually not directly quantitatively comparable (Dauby & Hardy, 2012). In

practice, this makes it difficult to assess the relative contributions of the three diversity

10



Chapter 1

components towards an observed diversity pattern at a given scale. What are, for example, the
relative contributions of more individual effects and changes in the regional SAD to a diversity
pattern at a given scale (such as a latitudinal diversity gradient)? In Chapter 3 of this dissertation,
| delve into this question and develop a quantitative approach for dissecting the two diversity
components. Using the effective number conversion of the IBR curve (Dauby & Hardy, 2012), |
show how to decompose the total diversity of a sample into two additive components: One
component is affected by the SAD and its changes, and the other is affected by the humber of
individuals (N) and associated passive sampling effects. Using a case study of latitudinal diversity
gradients in trees and reef fish, | illustrate how such a quantitative dissection allows for a more

nuanced comparison of multidimensional diversity patterns.

In the fourth Chapter, | apply the newly developed methods in a synthesis study of elevational
diversity gradients. Elevational diversity gradients are among the most iconic patterns of
biodiversity and they are often considered “natural laboratories” that provide insights into
community assembly processes (Rahbek et al., 2019; Sanders & Rahbek, 2012; Tito et al., 2020).
In the last decades, several studies have reviewed the relationship between altitude and species
richness (e.g. McCain, 2005, 2009, 2010; McCain & Grytnes, 2010; Rahbek, 1995), but so far
there has not been a quantitative synthesis using abundance-based measures of diversity that go
beyond species richness. Therefore, for this study, | compiled publically available datasets to
analyze the role of more individuals and variation in the SAD for elevational gradients of species
diversity. | demonstrate that overall processes beyond passive sampling seem to underlie

decreasing elevational diversity patterns.

Finally, in Chapter 5 | tie everything together. | show how the findings of the previous chapters
are connected, discuss them in the context of the recent and not so recent literature, and outline

promising directions for future research.

With this dissertation, | expand our understanding of species diversity as a multidimensional,
scale-dependent phenomenon, and introduce new, more accurate tools for quantifying its

variation. May this be useful to anyone who counts living things!
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Abstract. Understanding how species are non-randomly distributed in space and how the resulting spa-
tial structure responds to ecological, biogeographic, and anthropogenic drivers is a critical piece of the bio-
diversity puzzle. However, most metrics that quantify the spatial structure of diversity (i.e., community
differentiation), such as Whittaker’s f-diversity, depend on sampling effort and are influenced by species
pool size, species abundance distributions, and numbers of individuals. Null models are useful for identi-
fying the degree of differentiation among communities due to spatial structuring relative to that expected
from sampling effects, but do not accommodate the influence of sample completeness (i.e., the proportion
of the species pool in a given sample). Here, we develop an approach that makes use of individual- and
coverage-based rarefaction and extrapolation, to derive a metric, fc, which captures changes in intraspeci-
fic aggregation independently of changes in the species pool size. We illustrate the metric using spatially
explicit simulations and two case studies: (1) a re-analysis of the “Gentry” plot data set consisting of small
forest plots spanning a latitudinal gradient from North to South America and (2) comparing a large plot in
high diversity tropical forests of Barro Colorado Island, Panama, with a plot in a lower diversity temperate
forest in Harvard Forest, Massachusetts, USA. We find no evidence for systematic changes in spatial struc-
ture with latitude in these data sets. As it is rooted in biodiversity sampling theory and explicitly controls
for sample completeness, our approach represents an important advance over existing null models for spa-
tial aggregation. Potential applications range from better descriptors of biogeographic diversity patterns to
the consolidation of local and regional diversity trends in the current biodiversity crisis.
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INTRODUCTION species diversity from ecological samples
remains a central challenge (Gaston 2000, McGill

Species are non-randomly distributed across 2011, Worm and Tittensor 2018). Spatial struc-
the globe, and understanding spatial patterns of ture in species diversity (e.g., species turnover
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from site to site) is typically quantified by one
or more metrics of compositional dissimilarity
or spatial p-diversity (Anderson et al. 2011).
Measures of p-diversity offer a mathematical
link between local (i.e.,, @) and regional (i.e., y)
species diversity and can, for example, shed
light onto the metacommunity processes that
shape biological assemblages (Chase and Myers
2011) inform biodiversity conservation (Socolar
et al. 2016), and help understand the provision-
ing of ecosystem functions and services (Mori
et al. 2018).

Although p-diversity is conceptually appeal-
ing, its quantification and interpretation are often
ambiguous (Tuomisto 20104, b, Anderson et al.
2011). Whittaker’s (1960) multiplicative -
diversity (y/a), for example, is commonly
thought to represent the sort of community dif-
ferentiation that arises due to non-random distri-
butions of species (e.g., species turnover or
intraspecific spatial aggregation). However, this
and other measures of p-diversity are also influ-
enced by the size and number of samples, the
size of the regional species pool, the shape of the
regional species abundance distribution (SAD),
and the number of individuals captured by the
samples (McGill 2011, Chase and Knight 2013,
Chase et al. 2018). This makes it a challenge to
compare and interpret patterns of f-diversity
and related measures along biogeographic gradi-
ents (e.g., Kraft et al. 2011). To disentangle the
effect of spatial aggregation from the non-spatial
components that influence B-diversity (SAD or
relative proportion of rare species, species pool
size), empirical studies have frequently adopted
null-modeling approaches that compare the
observed patterns against a null expectation that
simulates spatial randomness by shuffling indi-
viduals among sites (Chase et al. 2011, Kraft
et al. 2011). However, the exact formulation of
the null expectation and its deviation (-
deviation) remains debated (Kraft et al. 2012,
Qian et al. 2012, Tucker et al. 2016, Mori et al.
2018, Xing and He 2021). In particular, the null
model approach has been criticized because it
overlooks the influence of the completeness of
the samples (Ulrich et al. 2017, Sreekar et al.
2018).

Much of the ambiguity surrounding measures
of p-diversity and its null expectations can be
understood in terms of sampling effects and
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sample completeness (i.e., the proportion of spe-
cies in the species pool captured by sampling).
For instance, regions with large species pools are
expected to exhibit high p-diversity simply
because local samples only capture a small and
incomplete portion of the total diversity; this can
lead to strong, but spurious differentiation
among local samples (Chase and Myers 2011,
Kraft et al. 2011). This is not to say that this kind
of sample differentiation is not meaningful, but it
reflects the species pool (or the inability of local
samples to sample it) rather than non-random
species distributions. Similarly, sampling effects
can “inflate” metrics of B-diversity when there
are many rare species in an assemblage, or when
the total community density is relatively low
(i.e.,, widespread species remain undetected in
most samples) (Barwell et al. 2015). Although
such sampling effects are ubiquitous in ecologi-
cal studies (Colwell and Coddington 1994,
Gotelli and Colwell 2001), sampling theory is not
well developed with respect to p-diversity
(Wolda 1981, Beck et al. 2013). For example,
Chao and Chiu (2016) developed a framework to
unify different approaches to community differ-
entiation, but they state clearly that their
approach ignores such sampling issues. There
have also been attempts to develop asymptotic f-
diversity metrics (Chao et al. 2005), but these
have been found to show strong biases when
tested on simulated and empirical data (Cardoso
et al. 2009, Beck et al. 2013). While rarefaction-
based approaches are commonly used to address
sampling effects at a single scale by standardiz-
ing diversity to a common number of individuals
(Gotelli and Colwell 2001) or to equal levels of
sample completeness (Chao and Jost 2012), these
approaches have been rarely applied to concepts
related to B-diversity (but see Olszewski 2004,
Dauby and Hardy 2012, Stier et al. 2016, Chase
et al. 2018). This is despite the fact that the null
models used in detecting deviations from ran-
dom expectations in p-diversity(e.g., Kraft et al.
2011, Xing and He 2021) are based on largely
similar concepts (i.e., difference between
observed and expected measures of diversity).

In what follows, we consider non-random spa-
tial distributions through the lens of the
individual-based rarefaction curve and combine
existing approaches (Chase et al. 2018, McGlinn
et al. 2019) with coverage-based standardization.
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Specifically, we compare rarefaction curves taken
from subsets of samples (i.e., an a-scale curve) to
those from the entire set of samples (i.e., a y-scale
rarefaction curve), using a constant y-scale cover-
age (i.e, an estimate of sample completeness).
From this, we obtain a metric, which we call ¢,
that estimates the degree of spatial structure in
the assemblage independently of the species pool
size and the SAD. We emphasize that our goal
here is not to develop a better measure of f-
diversity per se, as it is true that Whittaker’s f-
diversity and relatives have many useful proper-
ties for discerning biodiversity scaling (e.g., Jost
2007, Tuomisto 2010a, b, Chao and Chiu 2016).
Instead, our goal is to develop a measure that
allows us to discern the magnitude of spatial
structuring within a given regional assemblage.
Building on rarefaction and sampling theory has
the advantage that we can evaluate sample com-
pleteness and bypass the shuffling algorithms
and estimates of beta-deviation inherent to previ-
ous null-modeling approaches. We test our
method on simulated spatial point patterns with
different degrees of spatial structure (intraspeci-
fic spatial aggregation) and varying species pool
sizes and apply it to two empirical data sets to
examine variation in spatial structure along a lat-
itudinal gradient of tree diversity.

INDIVIDUAL-BASED RAREFACTION AND
ExtrapPOLATION (IBRE)

Our approach is based on individual-based
rarefaction and extrapolation (IBRE), which is a
common method to standardize species richness
estimates (Hurlbert 1971, Gotelli and Colwell
2001, Chao and Jost 2012). IBRE curves describe
the nonlinear scaling relationship between the
number of individuals in a sample and expected
species richness (i.e., rarefied richness). The
shape of the curve is determined by the size of
the species pool and the relative abundances of
species in that pool, which is often referred to as
the species abundance distribution (SAD, McGill
et al. 2007). The slope at any point along the
curve is related to the estimated sample com-
pleteness for the number of individuals sampled
at that point (Chao and Jost 2012). For smaller
than observed sample sizes, the expected num-
ber of species can be interpolated using the fol-
lowing formula (Hurlbert 1971):
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where S, is the rarefied richness, or the expected
number of species for n individuals (n < N), Sops
is the observed number of species, N is the
observed number of individuals in the sample,
and X; is the number of individuals of the ith
species.

For larger than observed sample sizes, the
expected number of species can be estimated
using the following extrapolation formula (Chao
and Jost 2012):
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where ﬁ, is the estimated number of unseen spe-
cies, estimated as follows:
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and f; and f, are the observed numbers of single-
tons and doubletons (i.e., species represented by
one or two individuals), respectively. Extrapola-
tion of species richness is considered unbiased,
though only recommended for sample sizes up
to two times the observed sample size (Chao
etal. 2014).

SPATIAL STRUCTURE THROUGH THE LENS OF
THE IBRE CurvE

By constructing IBRE curves from samples at
two or more nested spatial scales, we can assess
intraspecific spatial aggregation (Olszewski 2004,
Dauby and Hardy 2012, Chase et al. 2018,
McGlinn et al. 2019). Like most classical
approaches to diversity partitioning, we define
a-diversity as the mean number of species within
a given sample or subset of localized samples,
and y-diversity as the total number of species
from multiple pooled samples or local subsets of
samples (Tuomisto 2010a). Accordingly, the o-
scale IBRE curve is derived by calculating the
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IBRE curve from each individual sample and
then averaging the all samples (*S,) while the y-
scale curve consists of S,, values calculated from
the pooled sample (S,). The a-scale is influenced
by turnover (i.e., spatial structure) among sam-
ples within the assemblage, whereas the y-scale
breaks up any spatial structure by randomly
accumulating individuals from all samples. If
species are distributed randomly among samples
(i.e., there is no aggregation), the a- and y-scale
IBRE curves sit on top of each other (Fig. 1).
Downward and upward deviations of the a-scale
curve, then, would be interpreted as intraspecific
aggregation and overdispersion, respectively
(Chase et al. 2018, McGlinn et al. 2019). The y-
scale IBRE is conceptually very similar to
abundance-based null expectations (Kraft et al.
2011), but it uses an analytical formula rather
than a shuffling algorithm. Furthermore, rather

ENGEL ET AL.

than comparing the observed p-diversity to a null
distribution of p-diversity, it directly compares
the observed o-scale IBRE curve to the null
expectation given by the y-scale IBRE curve.
Using IBRE curves (only interpolation shown
for simplicity), Fig. 1 illustrates how f-diversity
of a reference assemblage (Fig. 1A) responds to
changes in the size of the species pool (Fig. 1B),
the numbers of individuals (Fig. 1C), and
intraspecific spatial aggregation (Fig. 1D). Whit-
taker’s p-diversity (B=1) is represented as the
height ratio of the two curves at the respective
right-hand end of the curves (dashed horizontal
lines). In each of the four examples, § > 1, but for
very different underlying reasons. Only the
assemblage underlying Fig. 1D exhibits spatial
turnover in species composition (due to aggrega-
tion). In the other cases (A-C), differentiation
only emerges due to a sampling effect (i.e., a
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Fig. 1. Examples of two-scale individual-based rarefaction curves for (A) a hypothetical species pool size of
450, and how they respond to, (B) reduced species pool size/altered SAD (species pool size of 80), (C) reduced
numbers of individuals, (D) and changes to patterns of within species aggregation. Orange curve: a-scale, black
curve: y-scale. Dashed lines represent observed species richness at a- and y-scales, and Whittaker’s p-diversity (f)
can be illustrated as the height ratio of the two. B values are calculated for n = 250 individuals on all panels
(dashed vertical lines). Dotted gray curve in panel C: reference curve (from A) to aid comparison.
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“more-individuals” effect between the o-scale
and y-scale).

Due to the nonlinear shape of the IBRE curve,
the sampling effect depends on the regional SAD
(Fig. 1B) and the number of individuals sampled
(Fig. 1C). Chase et al. (2018) suggested that when
calculated at a common number of individuals
(n), the ratio of rarefied richness (S,) calculated
between the y- and o-scales, termed fg , could
provide an indication of the degree of intraspeci-
fic aggregation, or non-randomness in the distri-
bution of species in the assemblage, independent
of any sampling effect (see also McGlinn et al.
2019). B, is related to metrics developed by Ols-
zewski (2004) and Dauby and Hardy (2012) who
also assess the differences between y and o IBRE
curves. When assemblages have a random spa-
tial structure, s is expected to equal 1 regard-
less of species pool and sample size (Fig. 1A-C).
Conversely, s values larger than 1 reflect spatial
aggregation or species turnover among sites in
the region (Fig. 1 D).

ENGEL ET AL.

While the deviation between a- and y-scale
IBRE curves (i.e., fs, # 1 is due to spatial struc-
ture, its magnitude is contingent on the value of
n and the shape of the curves (i.e., the size and
evenness of the species pool). Thus, as we will
illustrate below, Ps is biased when comparing
the degree of aggregation among regions where
species pools and shapes of the y-scale IBRE
curves change (e.g., along biogeographical gradi-
ents). To visualize this problem, consider two
assemblages each composed of two patches, but
which differ in the size of their regional species
pool (500 vs. 100 species Fig. 2A, B, respectively).
Supposing that both assemblages have complete
species turnover between their respective
patches, Fig. 2 shows the IBRE curves that we
would expect if we sampled 500 individuals
from each patch in the large (Fig. 2A) and small
(Fig. 2B) species pools. Note how the y-curve
from the small species pool is much closer to its
asymptote than the one from the large species
pool (slope of gray tangential lines). This

A Large species pool B
(500 spp.)
300 A
@ o 200
1] [%]
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= c
= £
2 2
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D 2
°© ©
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Fig. 2. B, is affected by species pool size in aggregated communities. Two-scale IBRE curves for (A) a large
species pool and (B) a small species pool. Solid curve: y-scale; dashed curve: a-scale; dashed vertical gray line:
number of individuals (n = 500) used for the calculation of 5, (i.e., the ratio of the horizontal dashed lines). Gray
solid line shows the slope of the y-scale IBRE that relates to sample coverage (the steeper the slope of this line,
the less complete the sample). (C) B plotted as a function of the corresponding sample size (7).
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difference in completeness has implications for
the values of Bg . Although both assemblages are
maximally and equally structured at the patch
scale, the relative deviation between o and v is
substantially higher in the small species pool
(indicated by fg ). Asymptotically, both assem-
blages have a theoretical B-diversity of 2 (ie.,
complete turnover), but at any common sample
size, [35" differs between them due to the differ-
ence in sample completeness that is associated
with species pool size (Fig. 2C).

CoVERAGE-BASED RAREFACTION AND
EXTRAPOLATION

To account for the differences in species pool
size and sample completeness, we extend f5 to
include the concept of coverage-based rarefaction
(Chao and Jost 2012). Sample coverage is a mea-
sure of sample completeness that ranges from 0
to 1 and refers to the “proportion of the total
number of individuals in a community that
belong to the species represented in the sample”
(Chao and Jost 2012). Sample coverage depends
on the sample size and the species abundance
distribution of the underlying assemblage. It can
be estimated from the number of rare species in a
sample (Good 1953, Chao and Shen 2010). As it
is directly related to the steepness of the IBRE
curve, expected coverage can also be estimated
for any sample size along the curve using the fol-
lowing equations (Chao and Jost 2012).

(")
X,' n
1_X§1ﬁ (N—l)

17&[ (N—l)f] }H—N{L]
N [(N-1)f; +2f,

, for interpolation (n <N)

, for extrapolation (1 >N)
@

where C, is the expected coverage for a subsam-
ple of sample size n. N is the total number of
individuals in the sample, X; is the number of
individuals of the ith species, and f; and f, are
the numbers of singletons and doubletons.

For coverage-based standardization, Eq. 4 can
be solved numerically to determine how many
individuals, n, are necessary to obtain a given
target coverage, Ciarger- This is computed by cal-
culating C, for every possible n and choosing the
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one that minimizes the difference between C,
and Ciarger. Subsequently, IBRE can be used to
standardize the diversity estimate to a sample
size of n, and thus the desired coverage level
Ctarget (Hsieh et al. 2016).

INTRODUCING f¢

By calculating Bg for equal y-scale coverage,
we can resolve the species pool dependence
when making comparisons across assemblages.
Specifically, rather than keeping sample size (1)
constant when comparing across assemblages,
we instead maintain a consistent sample cover-
age at the y-scale (Ciarger) and refer to g stan-
dardized by sample coverage as Pc. Fig. 3
illustrates this approach using the same example
with large (Fig. 3A) and small (Fig. 3B) species
pools. By allowing n to vary between scenarios
so that we maintain a constant y-scale coverage
(indicated by the slope of the tangential lines),
the resulting pair of pc values become practically
identical (compare with Fig. 2), which accurately
reflects that both scenarios are equally aggre-
gated at the patch scale. The advantage of stan-
dardizing y-scale coverage becomes particularly
clear when we consider the entire scaling rela-
tionship of Pc. If we quantify pc for every possi-
ble value of n and plot them against y-scale
expected coverage, the values from large and
small species pool fall on approximately the
same line and the species pool dependence van-
ishes (Fig. 3C, compare with Fig. 2C).

To compare Pc across multiple assemblages
(e.g., with different species pools), we suggest
the following protocol that makes use of interpo-
lation and extrapolation.

1. Determine the appropriate target coverage
value Ciarget for the standardization:

1.1. For each assemblage j, determine the
smallest number of individuals observed
at the a-scale and call it N pin i

1.2. Using Eq. 4, estimate the expected y-scale
coverage C, corresponding to Nmin; indi-
viduals, or up to 2Ny, individuals if
you wish to use extrapolation (Chao
etal. 2014).

1.3. Let Ciarget be the smallest of the C,, values
across all assemblages.
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Fig. 3. Pc is unaffected by species pool size in aggregated communities (compare with Fig 2). Two-scale IBRE
curves for (A) a large species pool and (B) a small species pool. Solid curve: y-scale; dashed curve: a-scale; dashed
vertical gray line: number of individuals used for the calculation of B, (i.e., the ratio of the horizontal dashed
lines). Gray solid line shows the slope of the y-scale IBRE that relates to sample coverage (C = 0.79 in both pan-
els). (C) Bc plotted as a function of expected coverage calculated at the y-scale. Dashed line marks the coverage

value of 0.79 used in other panels.

2. Calculate B¢:

2.1. For each assemblage, use the inverse of
Eqn 4 to estimate the sample size n; corre-
sponding to a y-scale coverage of Ciarget-
Exclude all assemblages for which n; < 1.
Standardize y- and o-scale species rich-
ness to n; individuals (using IBRE) to get
YSn,j and “S,Lj.

2.3. Calculate B¢ as follows:

ﬁc,» = Zé"_]
j i
We implemented this procedure in an R package
available on GitHub (https://github.com/t-engel/
betaC) and archived on Zenodo (https://doi.org/
10.5281/zenodo.4727184). It provides the function
“C_target” that can be used for steps 1.1 and 1.2,
and the function “beta_C” that carries out step 2.
This approach requires spatially replicated
samples with abundance data (ie., site-by-

2.2

©)
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species matrices with abundance data), so that
one can define at least two nested sampling
scales (x and y). We assume that the sampling
design is standardized across all assemblages.
This means there should be a consistent number
of samples per assemblage and every sample
should have the same effort (e.g., plot size and
trap nights). Furthermore, we assume a consis-
tent spatial extent at the y-scale. If the number of
samples, or their spatial extent changes from one
assemblage to the next, users should take a spa-
tially constrained subset of the samples to keep
extents as consistent as possible.

Like most measures of community differentia-
tion, B¢ does not have an analytical variance esti-
mator because there are no replicates at the
y-scale. Nevertheless, such variance is often
desired, for example, when comparing spatial
structure among different regions. To do so, we
recommend calculating a distribution of B¢ for
repeated random subsets of the samples. For
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example, one could use a Jackknife approach
(i.e., systematically leaving out one sample at a
time), use pairwise comparisons of samples, or
comparisons among larger subsets of samples.
While such variance can help to contextualize the
observed values of p-diversity, caution should be
taken because these calculations incorporate
some degree of non-independence. Nevertheless,
we provide an R function that carries out such
resampling procedures for any number of sam-
ples (i.e., “betaC::beta_stand”).

Proor oF CoNCEPT USING SIMULATIONS

To test the properties of pc, we simulated spa-
tially explicit assemblages that varied in the size
of the species pool and the degree of intraspecific
aggregation using multivariate spatial point pat-
terns. We used the R package mobsim (May et al.
2018) to carry out the simulations. Each simu-
lated assemblage had 4000 individuals drawn
from a lognormal SAD that was parameterized
with a given species pool size, and a coefficient
of variation equal to one. Then, we used the Tho-
mas cluster process to distribute individuals in
space, varying the degree of intraspecific spatial
aggregation through the parameter that determi-
nes the number of conspecific clusters. The simu-
lation was parameterized in a full-factorial
design, where the species pool size encompassed
every integer between 10 and 500, and the num-
ber of clusters was set to 1 (i.e, extreme
intraspecific aggregation), 4, 10, and 20. To
include a level that had no within species aggre-
gation, we also implemented a random Poisson
process to simulate completely random spatial
distributions for species. Each combination of
species pool and aggregation was replicated 3
times yielding a total of 7365 simulated commu-
nities. To sample from the regional communities,
we placed 4 sample quadrats into each simulated
community (Fig. 4A, B). We calculated Whit-
taker’s f (=), Bs and pc among the four samples
and examined their response to changes in spe-
cies pool size and aggregation. Following the
protocol above, Ciarger Was set to 0.55 and the
sample size for f; was 50 individuals. The R
code for the simulation is available on Zenodo
(https://doi.org/10.5281/zenod0.4727184).

All three indices (Whittaker’s §, B5, and Pc
were influenced by intraspecific community
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aggregation. Additionally, Whittaker’s p and B
were affected by the changes in species pool size,
whereas Pc was insensitive to this parameter.
While both Whittaker’s § and g responded to
the degree of spatial aggregation and the species
pool, they did so in contrasting ways, which is
consistent with theoretical expectations (Fig. 4C).
For Whittaker’s f, the effect of the species pool
decreased with increasing aggregation. This
reflects that for strongly aggregated species distri-
butions, the samples will always show high turn-
over regardless of the species pool. In contrast,
under random species distributions, “spurious”
(i.e., SAD related) sample differentiation is more
likely to occur when there are many rare species
that only occur in some of the samples (i.e., in
large species pools). For B, the effect of the spe-
cies pool increased with increasing aggregation;
as long as species are randomly distributed, B, is
always one because the o IBRE curve falls onto
the y-scale. However, when there is a deviation
between the curves (as a result of aggregation), its
magnitude for a given number of individuals ()
depends on the shape of the IBRE curves, which
in turn depend on the species pool (Fig. 3). Only
Bc captures the spatial structure of the simulated
communities independently of the species pool
size because, by incorporating sample coverage, it
adjust for the species pool dependence.

We examined the robustness of pc using an
alternative SAD (log-series) and by simulating
spatial aggregation using the mean displacement
length of the Thomas process (Appendix S1). The
results were qualitatively similar: pc, but not
Whittaker’s p or f5 , responded to the changes of
aggregation independently to changes in the
SAD parameter (i.e., Fisher’s a). Additionally, we
applied the null model by Kraft et al. (2011) to
the simulated data and found that the measure
of p-deviation, like e, responded to the aggrega-
tion, but not to the species pool. Spearman’s rank
correlation between fc and p-deviation was
97.7% which suggests that both approaches are
measuring the same effect (Appendix S2).

EmPIRICAL CASE STUDIES
Next, we applied our approach to two forest
data sets with varying species pool sizes. First,

we reanalyzed the Gentry Forest plot data set
(Gentry 1988, Phillips and Miller 2002). This data
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Fig. 4. Simulated assemblages and the response of Whittaker’s p, B , and Pc to changes in aggregation and
species pool size. (A) Assemblage with extreme intraspecific aggregation (1 cluster per species) and (B) assem-
blage where species have random spatial distribution. Species pool, SAD, and numbers of individuals are con-
stant between (A) and (B). Squares represent sample quadrats. (C) p-diversity metrics and their response to
species pool size and intraspecific aggregation. Dots show the data. Lines show GAM fit to each metric with spe-
cies pool size as the predictor; the GAM estimated separate smoothers for each level of intraspecific aggregation.

set has frequently been used in the debate on
how to formulate appropriate null models for f-
diversity and how spatial aggregation varies
with latitude (Kraft et al. 2011, Qian and Song
2013, Qian et al. 2013, Xu et al. 2015, Xing and
He 2021). We computed Whittaker’s p and B¢
among the subplots of the sites located in the
Americas. As expected from the difference in
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species pool size along this gradient and shown
by previous studies (e.g., Kraft et al. 2011), Whit-
taker’s  declined with latitude (Fig. 5A). In con-
trast, fc, which controls for species pool-related
sampling effects, showed no significant change
along the latitudinal gradient (Fig. 5B). Given
this, we conclude that there is no evidence for a
change in spatial aggregation along this gradient
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Case study 1: Gentry plots (Ciarget = 0.1)
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Fig. 5. Case studies exploring p-diversity along (A, B) a latitudinal gradient of Gentry forest plots and (C, B)
comparing Barro Colorado Island (BCI) and Harvard Forest (HF). Both examples show significant changes in
Whittaker’s f (A, C) while fc (i.e., p standardized for sample coverage) showed no significant change. Solid lines
show simple linear regressions. Boxplots show distribution of values from 1000 redraws of 10 samples, respec-
tively. Whiskers: non-outlier range; box: interquartile range: bar: median.

in these samples. Declines in Whittaker’s p with
increasing latitude appear to be mostly driven by
changes in the size of the regional species pool
rather than changes in the spatial structuring of
individuals. Importantly, although we come to
qualitatively similar results as the abundance-
based null models of Kraft et al. (2011) and Xu
et al. (2015), our method has the advantage of
explicitly incorporating an estimate of sample
completeness. Rather than simply shuffling site-
by-species matrices, users are confronted with
the completeness of their samples as part of the
analytical workflow, and prior to interpreting
any results. In this case, our analysis provides
quantitative evidence for the argument that these
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types of forest plots may be too small to robustly
compare spatial patterns of diversity and any
associated differences in community assembly,
especially in the tropics (Tuomisto and Ruoko-
lainen 2012). Cyarget is set by the site with the low-
est coverage (C,), which for the Gentry Forest
Plot data were Ciarger = 0.1. This means that
inferences are being drawn from a sample of
only approximately 10 percent of the individuals
in the assemblage.

For a second case study, we explored a similar
question along the latitudinal gradient, but with
larger plots, so that a more substantial fraction of
the species pool would be sampled. To do so, we
compare the spatial structuring of trees within

September 2021 ** Volume 12(9) ** Article 03745



Chapter 2

METHODS, TOOLS, AND TECHNOLOGIES

the temperate forest plot at Harvard Forest (HF),
in the northeastern United States (Orwig et al.
2015), with the well-studied tropical rainforest
plot at Barro Colorado Island (BCI), Panama
(Condit et al. 2019). Because the data from HF
were from only 35 hectares, we took a 35 ha sub-
section of the 50 ha plot at BCI and found a con-
siderable difference in y-diversity; 38 species
were present at HF and 217 species were in the
analyzed section of BCI. For both locations, we
used our resampling approach to calculate a dis-
tribution of p-diversity at the scale of ten 1 ha
subplots (using 1000 random draws with
replacement). Again, we found that Whittaker’s
B was consistently higher in the more diverse site
(BCI). While HF had an expected a-scale cover-
age of 99%, it was 90% at BCI. By interpolating
HF and extrapolating BCI (following the protocol
above), we standardized both sites to a target
coverage of 0.93 and found no meaningful differ-
ence in the corresponding ¢ (Fig. 5 D). In short,
as with our analyses of the Gentry data above,
but with samples that more adequately charac-
terize the assemblages, we find that the observed
differences in Whittaker’s p from temperate to
tropical forests were largely expected given the
differences in the species pool. That is, once spe-
cies pool-related sampling effects were taken into
account, there do not appear to be any meaning-
ful differences in the spatial structuring of these
two forests.

DiscussioN AND CONCLUSIONS

Building on previous work using rarefaction
and coverage-based approaches (Chao and Jost
2012, Chao et al. 2014, Chase et al. 2018, McGlinn
et al. 2019), we developed a metric standardized
by sample coverage to quantify the degree of
intraspecific spatial aggregation, independent of
changes in the size of the species pool and the
regional SAD. Our theoretical considerations and
simulations of spatially explicit assemblages
show that fc remains unaffected by changes in
the species pool, which allows for comparisons
of intraspecific aggregation along large biogeo-
graphic gradients. Our empirical case studies
suggest that the magnitude of intraspecific
aggregation does not change along a latitudinal
gradient of forest plots. Importantly, our method
requires analysts to determine the target
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completeness using information contained in the
samples from their study. In the case of the com-
monly used Gentry plots, this shows that the
samples cover only a small fraction (10%) of the
individuals in the underlying assemblages, and
may therefore of limited use for making infer-
ences about their small-scale spatial structure
(Tuomisto and Ruokolainen 2012).

Our approach represents an important
advance over existing methods to measuring
spatial aggregation because of its strong link to
existing biodiversity sampling theory. Specifi-
cally, we use the y-scale rarefaction curve as an
analytical null model for the expected a-diversity
in the absence of spatial structure. While concep-
tually similar to existing null models, our
approach has several advantages. For example, it
bypasses the computation of Whitaker’s beta and
subsequently B-deviation. Instead, we measure
the deviation between y- and a-scales directly
from the IBRE curves. fc can be thought of as the
factor by which spatial structure has reduced o
diversity compared with the random expecta-
tion. This makes it more intuitive than pB-
deviation (Kraft et al. 2011, Xing and He 2021)
because it can be directly interpreted as an effec-
tive number of distinct communities (Jost 2007),
conditional on the estimated sample coverage.
Additionally, our approach explicitly incorpo-
rates an estimate of sample completeness into the
analytical workflow, which means that the ana-
lyst is confronted with the limitations of the data.

Ulrich et al. (2017) have argued that null model
approaches are limited in their ability to disen-
tangle species pool and aggregation effects,
unless they incorporate external data on the sizes
of the relevant species pools. Here, we make use
of the idea that the sample itself can also provide
an estimate of its completeness (Good 1953, Chao
and Jost 2012). Our method uses the shape of the
IBRE curve, itself determined by the SAD, to
draw inferences for an estimated constant frac-
tion of the individuals in the underlying commu-
nity (i.e., a constant sample coverage). This
approach to standardization implicitly assumes
that there is an asymptote in species diversity
(Chao and Jost 2012). While this assumption is
mathematically convenient, it cannot strictly be
true; due to species aggregation at higher scales,
we will always find more species with more sam-
ples, until the entire global pool is sampled
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(Williamson et al. 2001). Nevertheless, pc does
not extend to the asymptote itself, but merely
employs a useful approximation of sample com-
pleteness via sample coverage. As spatial struc-
ture is an inherently  scale-dependent
phenomenon, with this approach we can only
measure it at the spatial grain prescribed by the
samples (i.e., spatial structure within the y-scale).
Even when extrapolation is used, the spatial
grain of the data remains unchanged. For a scale-
dependent examination of spatial aggregation,
we recommend comparing results obtained from
different spatial grains.

While B¢ isolates the degree of spatial aggrega-
tion, it does not have some of the properties that
are sometimes considered essential for f-
diversity metrics (Jost 2007, Tuomisto 2010a). For
example, traditional p-diversities range between
unity and the total number of sampling units,
and they can be transformed into N-community
(dis)-similarities in the range [0,1] (Jost 2007,
Chao and Chiu 2016). In contrast, fc can only
reach the number of samples when the samples
have a coverage of 1 (i.e., Ciarget is 100%) (see
Appendix S3). In such cases, where the curves
have reached an asymptote, pc equals Whit-
taker’s p and one can derive the corresponding
(dis-)similarity. However, for incomplete sam-
ples, the N-community transformation of p-
diversity is generally not recommended (Chao
and Chiu 2016), and we consider it a strength of
our method that it exposes such situations. Only
in the rare cases where Ciarget is 100%, classical -
diversity metrics and pairwise (dis)-similarities
will not be affected by the species pool.

Although our approach accounts for differ-
ences in sample completeness, it still requires
standardized sampling or post hoc standardiza-
tions (i.e., rarefying samples to the same number
and spatial extent) to make valid inferences. The
sampling effects we treat here arise passively
due to differences in species pools, and not as a
result of different sampling strategies and/or
effort. For example, the forest plots in our case
studies were completely sampled in the sense
that every tree was counted in a given area or
subplot. However, with respect to the regional
species pool or even just the observed y diversity,
a subplot of a given size in the tropics is likely a
much less complete sample, compared to an
equally sized subplot a temperate region, even
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when all individuals are counted in each subplot.
It is this interaction of sampling effort and the
size of the species pool that leads to the null
expectation of increasing sample differentiation
with increasing species pool size, and for which
our method adjusts.

In conclusion, our approach allows us to
explicitly disentangle non-random spatial pat-
terns of species diversity (e.g., intraspecific
aggregation) amidst variation in species pool size
and associated sampling effects. Together with
other diversity metrics sensitive to diversity com-
ponents such as the SAD and total community
abundance (Chase et al. 2018, McGlinn et al.
2019), Pc allows deeper insights into how spatial
structuring within communities influences pat-
terns of biodiversity and its change. Applications
could, for example, shed light onto the assembly
processes that govern (meta-)communities along
biogeographic gradients and contribute to a bet-
ter understanding of the spatial diversity pat-
terns that underlie the scale-dependent
biodiversity trends observed during the current
biodiversity crisis.
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1 | INTRODUCTION
A fundamental question in ecology is to understand how and why
local biodiversity changes from place to place and time to time
(Gaston, 2000; Rosenzweig, 1995). Diversity gradients can arise
from a number of natural and anthropogenic drivers, and they can
inform ecological theory and biodiversity conservation. For exam-
ple, species richness (i.e., the number of species in a sample) varies
along ecological gradients of productivity (Currie, 1991; Mittelbach
etal.,, 2001) and disturbance (Connell, 1978; Miller et al., 2011; Randall
Hughes et al., 2007) and along geographic gradients, such as latitude
(Fine, 2015; Willig et al., 2003), elevation (Rahbek, 1995), and island
size (Kreft et al, 2008). The quantification of diversity gradients
from ecological samples is not a trivial problem because diversity is
an inherently multidimensional and scale-dependent quantity that
encompasses the occurrences and abundances of multiple species si-
multaneously and changes with sample size, effort, and spatial scale
(Chase et al., 2018). Therefore, species richness usually does not suffi-
ciently capture the nuance underlying any pattern of species diversity.
While the exact drivers and processes shaping diversity gradients
are manifold, all of them generally invoke responses in at least one of
three broad components of species diversity (Chase & Knight, 2013;
He & Legendre, 2002; McGill, 2011): (1) the species abundance dis-
tribution (SAD) of a regional species pool (i.e., the total number of
species in a region and their relative and absolute frequencies), (2)
the total abundance (i.e., the number of individuals [N] supported
by the environment), and (3) the spatial distribution of species in the
region (e.g. intraspecific aggregation and interspecific associations).
The interplay of these mutually dependent components determines
the shape of the regional species-area relationship and ultimately
the diversity of local samples at any spatial scale (Tjgrve et al.,
2008). Therefore, analyzing diversity in terms of these components
can provide deeper insights into the nature of multidimensional bio-
diversity patterns than analyses of species richness alone (Blowes
etal., 2017; Chase et al., 2018), and in turn, this may allow for a bet-
ter understanding of the processes that shape and maintain diversity
gradients at a given scale (Blowes et al., 2020; Gooriah et al., 2021).
For example, a classic hypothesis links species richness gradients
to variation in total community abundance, which itself can result
from resource and energy gradients, differences in available area
or anthropogenic factors (Brown, 2014; Srivastava & Lawton, 1998;
Storch et al., 2018; Wright, 1983). The most basic version of this
more-individual hypothesis describes a passive sampling effect,
whereby communities with high total abundance simply randomly
capture a higher portion the regional species pool than communities
with low abundance (Coleman et al., 1982). Such a scenario is quali-
tatively different from a situation where instead of total community
abundance, the SAD of the regional species pool changes along the
observed diversity gradient. The evenness and size of the species
pool can vary due to various natural and anthropogenic factors that
affect species occurrences and abundances in a species-specific
manner, for example, biotic interactions such as competition and
predation (Paine, 1974), variation in resource and habitat diversity
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(MacArthur, 1965; Tilman, 1982), and species specific responses to
environmental and anthropogenic filters (Blowes et al., 2020).

To disentangle the components underlying diversity patterns
(e.g., SAD and total abundance), it is generally advised to consider
several metrics of biodiversity simultaneously because different in-
cidence and abundance-based diversity metrics (e.g., Hill Numbers,
rarefied richness, evenness, and beta-diversity) capture the aspects
of multidimensional diversity change in a complementary manner
(Chao et al., 2014; Chase et al., 2018; McGlinn et al., 2019; Roswell
et al., 2021). For example, by comparing patterns in observed spe-
cies richness to those in rarefied richness (i.e., richness standardized
for abundances), it is possible to assess whether a diversity gradi-
ent is accompanied by more-individuals effects or changes in the
regional species pool (Chase et al., 2018). However, such approaches
typically only offer qualitative insights because effect sizes from dif-
ferent diversity metrics are not quantitatively comparable (Dauby
& Hardy, 2012). For example, one may find that more-individual ef-
fects seem to play a role for a gradient, but it usually remains unclear
exactly what proportion of a diversity gradient can be attributed
to variation in total abundance and associated passive sampling ef-
fects, and what percentage to changes in the regional SAD (but see
McGlinn et al., 2019, 2021).

Here, we present a quantitative dissection of the relative impor-
tance of changes in N versus changes in the SAD for driving patterns
of local species diversity. Effects of aggregation only emerge at larger
spatial scales and require spatially explicit data, and we do not ad-
dress aggregation further here. For our approach, we decompose the
total diversity of a sample into two additive components. One com-
ponent is driven by the SAD and its changes, and the other is driven
by the number of individuals (N) and associated passive sampling
effects. The SAD-component can be thought of as the sample's ex-
pected diversity for a standard number of individuals (n), and the N-
component is the portion of the observed diversity that is attributable
to the fact that a sample exceeds this standard number of individuals
(i.e., N-component = total diversity - SAD-component). Then, we
can analyze and compare the changes in the two components (which
we call SAD-effects and N-effects), rather than simply analyzing the
total diversity change. To calculate the components, we use the ef-
fective numbers of species (ENS) transformation of the rarefaction
curve (Dauby & Hardy, 2012), which allows us to express SAD- and
N-components in the same units of ENS. We illustrate our approach
by applying it to two empirical data sets that have strong latitudinal
gradients of local species richness (i.e., reef fishes and trees) and show
that they emerge from different relative contributions of changes in
the regional SAD and in the number of individuals.

2 | ENS RAREFACTION AND RELATED
APPROACHES

Our approach relies on a family of diversity measures that was first
introduced as “Hurlbert ENS” by Dauby and Hardy (2012). Here, we
use the term “ENS rarefaction” to emphasize that these measures
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are simply an effective number of species (ENS) transformation of
the individual-based rarefaction (IBR) curve (Hurlbert, 1971). Since
ENS rarefaction is one of the lesser-known, but quite powerful, fami-
lies of diversity measures, we briefly explain it below and compare it
with the related Hill number framework, and the IBR framework that
it is based on (see Table 1).

Relating the complementary information given by a set of di-
versity measures to the diversity components discussed above is
challenging because many metrics are sensitive to more than one
component (Chase & Knight, 2013). Furthermore, diversity metrics
often differ in their numerical ranges and units (i.e., their numerical
constraints), and in the degree to which they are affected by pas-
sive sampling effects, which in statistics is called estimation bias
(Gotelli & Chao, 2013). For example, species richness, which counts
all species independent of their abundance, can attain any integer
number, and is strongly affected by the number of individuals in
the sample. In contrast, Simpson's index, which gives dispropor-
tionately high weight to the dominant species of the SAD, ranges
between 0 and 1 and is almost unaffected by sample size (i.e., the
number of individuals). Although the two metrics hold complemen-
tary information on the SAD and passive sampling effects, their
different numerical constraints and estimation biases make it diffi-
cult to disentangle the two components and compare their effect
sizes (Jost, 2006).

i 30f10
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The Hill number framework solves the problem of incompatible
numerical constraints by converting diversity index values to effec-
tive numbers of species (Equation 1 in Table 1). This encompasses all
diversity indices that are a function of the term Z,.S=1 p;(e.g., species
richness for g = 0, Shannon index for g = 1 and Simpson's index
for g = 2), where the diversity order, g, tunes the weight of spe-
cies abundances p; (Hill, 1973; Jost, 2006; Rényi, 1961). The term
ENS refers to the hypothetical number of species that a perfectly
even sample would have if it produced the same index value as the
real sample. Hence, Hill numbers relieve diversity indices of their
numerical constraints by re-expressing them in units equivalent to
that of species richness (Jost, 2006). However, like most diversity
metrics, Hill numbers retain a downward estimation bias, whose
strength diminishes with increasing values of the diversity order q
(Chao et al., 2014). Therefore, differences in Hill number profiles
cannot unambiguously be attributed to changes in the regional SAD
or changes in total abundance. For example, if ’D (corresponding to
Simpson's index) is constant along a gradient of interest while °D
(i.e., species richness) increases, this pattern can be underlain by a
change in the regional SAD (i.e., an increase in the number of rare
species), a passive sampling effect (i.e., an increase in total abun-
dance) or both.

IBR is a framework that explicitly addresses passive sampling

effects by expressing diversity in terms of the expected number

TABLE 1 Comparing Hill numbers, individual-based rarefaction, and ENS rarefaction frameworks for quantifying diversity

Hill numbers
Symbol D Sh

Formula -
ap = (Z;S=1 pf) " Equation (1)

Individual-based rarefaction

ENS rarefaction

E,

n

N-X; ) 5n=En(1—(1—E1;)n)Equation (3)

Range 1,N

ENS Yes

Estimation bias Downward bias for g <2

ENS transformation (“true
diversity”) of any diversity
index that is a function
of Z,il p{ (e.g. Richness
(g = 0), Shannon (g = 1),
Simpson (q = 2)); Defined
as the species richness of
a hypothetical perfectly
even community that has
the same diversity index
value as the sample

Description

The higher g, the lower the
influence of rare species

Hill (1973), Jost (2006)

Influence of relative abundances

References

Sn=5- Dxs1 + Equation (2)
(7]

1,n
No
Unbiased

The expected species richness of a
sample of n individuals (n < N)

The higher n, the higher the
influence of rare species

Hurlbert (1971), Gotelli and
Colwell (2001)

1,
Yes
Unbiased

ENS transformation of S,. Defined
as the species richness of a
hypothetical community that
has the same rarefied richness
(S,) as the sample and infinitely
many individuals

The higher n, the higher the
influence of rare species

Dauby and Hardy (2012)

Note: S, observed species richness; p;, relative abundance of species i; g, exponent that determines the sensitivity to rare species (0 = very sensitive,
2 = not very sensitive); N, observed number of individuals in the sample; X; number of individuals of species i; ENS, the effective number of species
which is the number of equally abundant species that results in the same value of diversity as the sample. To calculate E,, Equation 3 can be solved

numerically for given values of S, and n.
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of species for a standardized number of individuals (Equation 2 in
Table 1) (Gotelli & Colwell, 2001; Hurlbert, 1971). The resulting
non-linear scaling relationship between the number of individuals
(n) and expected species richness (i.e., rarefied richness, S) is the
IBR curve (Figure 1). Rarefied richness estimates are unbiased for
random samples, which means that they only respond to changes in
the SAD but not to the original number of individuals present in the
sample N. By varying the reference sample size n, IBR can give more
or less influence to species abundances (Gotelli & Colwell, 2001).
However, the value of n also constrains the numerical range of rar-
efied richness values. Thus, effect sizes at the base of the IBR curve
(representing mostly common species) are not directly comparable
to those at higher values of n (representing both common and rare
species; Dauby & Hardy, 2012). In other words, if we find a species
richness gradient to be steeper than a corresponding gradient in rar-
efied richness, part of the numerical difference has nothing to do
with more-individual effects, but is merely the null expectation from
the different numerical constraints of the two metrics.

ENS rarefaction is method that converts the IBR curve into ef-
fective numbers of species with consistent numerical constraints
along the curve (Figure 1). There is no simple closed-form equation
for ENS rarefaction but Dauby and Hardy (2012) showed that nu-
merical approximation of Equation 3 in Table 1 can be used to con-
vert any S, value to its corresponding effective number (E, ). Again,
ENS refers to the number of species in a hypothetical, perfectly even
community that has the same rarefied richness as the real commu-
nity (Dauby & Hardy, 2012). The base of the resulting “ENS curve”
(i.e., E,) is also the ENS transformation of Hurlbert's (1971) unbi-
ased probability of interspecific encounter (S ., Olszewski, 2004),
and is equal to an asymptotic estimate of the Hill number 2D (Chao
et al., 2014; Dauby & Hardy, 2012). It can be interpreted as the num-
ber of dominant species in the species pool because being at the
base of the curve it gives disproportionately high weight to species
with high relative abundances. As n increases along the ENS curve,
rarer and rarer species influence the diversity estimate until it prac-
tically converges onto the observed total species richness, where all
species are counted regardless of their abundance (i.e., EN). Increases
along the ENS curve are entirely due to the incremental influence of
rare species and do not result from variable numerical constraints
along the curve. Therefore, the ENS transformation makes it easy
to assess relative evenness; random samples from perfectly even
communities (i.e., communities without rare species) produce ENS
curves that are flat horizontal lines (Dauby & Hardy, 2012). In some
sense, ENS rarefaction combines the advantages of Hill numbers and
IBR in a single family of diversity measures. It has unconstrained val-
ues for all values of n and, being a simple transformation of rarefied
richness, its values for a reference sample size n are only affected by
the SAD and not by the actual number of individuals captured in the
sample. Therefore, differences in E_ values for a constant n can be
unambiguously attributed to changes in the SAD, while comparisons
between different levels of n reflect a quantification of the more-
individuals effect. These properties make ENS rarefaction a useful
tool for the decomposition approach we present here.
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FIGURE 1 Schematic drawing of an individual-based
rarefaction (IBR) curve and the corresponding effective number
of species (ENS) curve. The IBR curve is constrained by the
values of n (i.e. it is bound to start at the x = y = 1), whereas the
ENS curve is unconstrained on the vertical axis. The ENS value
for a standardized number of individuals E, reflects the “SAD-
component” in our framework. The difference between the total
diversity (ENS,) and the SAD-component (ENS ) results from the
fact that samples usually exceed the number of individuals n,_;
used for standardization. As this portion of the total diversity
change reflects abundance variation, we call it “N-component”.

3 | ANALYTICAL FRAMEWORK

Figure 2 illustrates how we use ENS rarefaction to disentangle the
diversity components in practice. For this purpose, imagine a latitu-
dinal diversity gradient between a temperate (low diversity) com-
munity and a tropical (high diversity) community. We consider three
scenarios of how this diversity gradient can manifest in terms of SAD
and N variation. First, a more-individuals effect (panels a, d, and g);
second, a change in the regional SAD (panels b, e, h); and third, a
combination of more-individuals effect and SAD change (panels
c, f and i). The first row of Figure 2 (panels a, b, c) shows the IBR
curves corresponding to the 3 scenarios. Panel a depicts the more-
individuals effect, where the tropical community (green) has twice
as many individuals as the temperate one (yellow) and therefore
samples a larger fraction of its species pool. However, when stand-
ardized to a common number of individuals, both communities are
expected to yield the same diversity (i.e., the IBR curves follow the
same trajectory), which reflects that they are samples from similar
regional SADs. Compare that with panel b, where the number of
individuals is the same for both communities, but their SADs dif-
fer (i.e., the IBR curves have different shapes). In this scenario, the
tropical community samples from a larger species pool with a higher
number of relatively common species and many more relatively rare
species, which results in an IBR curve that is steeper than the tem-
perate one. Finally, panel c represents a scenario where the diversity
gradient is underlain by a combination of more-individuals effects
and SAD changes. Not only does the tropical community sample a
more diverse SAD but also it harbors a larger number of individuals.
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FIGURE 2 Schematic overview of the analytical framework. Using individual-based rarefaction curves (a-c) and their conversion to
effective numbers of species (ENS) (d-f), diversity change can be dissected into contributions of SAD effects and N effects. The columns
represent 3 hypothetical scenarios of diversity patterns between a diverse “tropical” and a less diverse “temperate” local community. In first
scenario (a, d, g), the difference in diversity results from a passive sampling effect, as the tropical community supports more individuals than
the temperate one. In the second scenario (b, e, h), abundance remains constant, but the pattern is underlain by differences in the regional
species abundance distribution (SAD, i.e. larger species pool in the tropics). In the third scenario (c, f, i), both abundance and the regional SAD
vary between the two communities. Using the ENS conversion, the total diversity of each sample is dissected into a SAD-component and an
N-component (dots in g-i). By examining the difference of the components between the communities, we can quantify the corresponding

SAD effects and N effects (pie charts in g-i).

While the IBR curves allow us to qualitatively and visually dis-
tinguish the scenarios, they do not directly enable a quantitative
decomposition of the observed diversity change into contributions
of more-individuals effects and SAD. Therefore, we apply the ENS
transformation to free IBR curves of their numerical constraints. The
resulting ENS curves (second row) are similar to the IBR curves in
that changes in their shape reflect changes in the SAD, but the start
of the curve is no longer constrained. In the more-individuals sce-
nario (panel d), both communities have the same diversity for any
common number of individuals (up to n = 1000). Beyond that, the
tropical community passively samples additional rare species due its
larger sample size (labeled as “N-effect”). In the SAD change scenario
(panel e), the ENS transformation reveals that the tropical commu-
nity has a higher number of relatively dominant species to start with
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(i.e. E,), and then accumulates relatively rare species at a higher rate
than the temperate community, adding up to the total SADeffect
(labeled “SAD-effect”). The same SAD-effect can be observed in the
combined scenario (panel f), but now the tropical community also
has additional rare species due to its higher number of individuals
(labeled “N-effect”). As along the ENS curve all values are expressed
in terms of effective numbers of species, we can directly compare
the magnitudes of the two effects. In this example (panel f), most
of the observed diversity change is attributed to changes in the re-
gional SAD (ca. 80%), while the contributions of the more-individual
effect are relatively small (ca. 20%).

To apply this approach to any number of communities, we can
partition the total diversity of each community (i.e. E,) into two
components: The SAD-component is simply the ENS for a standard
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number of individuals (i.e. E,), where n is typically the sample size of
the smallest community in the gradient. Then, the N-component is
the difference between the total diversity and the SAD-component
(i.e. Ey - E,). It reflects the more-individuals effect with respect to
n individuals (i.e. how much more diversity does a community have
because its sample size exceeds n). Now, instead of considering the
total diversity (E,), we can analyze these components along the gra-
dient of interest. This is shown in the last row of Figure 2, where the
orange and purple dots represent the SAD- and N-components of the
two example communities. Note that adding up the two components
yields the total diversity of the communities. In the first scenario,
the diversity change occurs exclusively in the N-component (i.e., a
N-effect), while in the second scenario, the diversity change is driven
by the SAD-component (i.e., a SAD-effect). Finally, in the third sce-
nario both components change at the same time, so that N effect and
SAD effect add up to the total diversity gradient. By comparing the
slopes of the two components along the gradient (dashed lines), we
can assess the relative contributions of N effects and SAD effects to
the observed diversity gradient. The pie charts in Figure 2 illustrate
the contributions of SAD effects and N effects for each scenario. In
the combined scenario (panel i), the SAD effect contributes 80% to-
ward the total diversity gradient while 20% of the diversity change
occurs because the tropical community has more than 1000 indi-
viduals. In practice, these effect sizes correspond to the regression
coefficients of linear models. However, the components could also
be modeled as non-linear functions of continuous predictors. In that
case, the contributions of N and SAD effects may be variable along

the gradient and cannot be summarized as a simple pie chart.

4 | SIMULATION

To quantitatively examine the behavior of the two components with
respect to variation in the SAD and total abundance, we carried out
a simulation study using the R package mobsim (May et al., 2018).
We simulated spatially explicit Poisson communities (i.e., species had
random spatial distributions) with different SADs and total abun-
dances. We assumed lognormal SADs for the simulated communities
and parameterized them with different species pools (100, 200, 300,
400, 500 and 600 species) and total abundances (1000, 2000, 3000,
4000, 5000, and 6000 individuals) in a full-factorial design, using 20
replicates for each factor combination. We then sampled each of the
communities with a constant quadrat size corresponding to 20 per-
cent of the total area. Following the approach outlined above, we cal-
culated the SAD- and N-components for the samples and examined
how they responded to the simulation parameters (i.e., species pool
and total abundance). Our simulations show that the SAD-component
responded to changes in the species pool but remained unaffected
by total abundance (Figure S1). Conversely, the N-component consist-
ently responded to changes in total abundance and was unaffected
by changes in underlying SAD (Figure S2). The findings from these
simulations are consistent our theoretical expectations from the IBR
curve, and the conceptual example is shown in Figure 2.
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5 | CASE STUDIES: CONTRASTING
LATITUDINAL GRADIENTS IN TREES AND
REEF FISH

We used our approach to analyze two empirical datasets document-
ing latitudinal diversity gradients (LDG) in reef fish and trees. The
trend of increasing diversity from poles to equator is one of most
prominent global biodiversity patterns that occurs in many taxa
and at different spatial scales (Fine, 2015; Hillebrand, 2004; Willig
et al., 2003). All components, particularly N and the SAD, likely vary
along the gradient, though how they combine to form the LDG at a
given scale, and whether this varies among taxa, is less well known.

For example, N is expected to vary with energy- or resource
availability and, accordingly, the more-individual hypothesis (MIH)
is one of the classic explanations for the LDG (Brown, 2014;
Srivastava & Lawton, 1998; Wright, 1983). Historically, the MIH has
referred to a collection of different mechanisms by which higher
total abundance translates to higher species diversity, including
effects on extinction and speciation rates (Evans et al., 2005;
Scheiner & Willig, 2005; Storch et al., 2018). However, here we
use the term more narrowly to only mean passive sampling ef-
fects (Coleman et al., 1982), which is the process by which larger
communities (e.g. in the tropics) randomly sample a larger por-
tion of a species pool than small ones (e.g. in temperate regions)
(Wright, 1983). Abundance-related processes that influence ex-
tinction (e.g. demographic stochasticity) and diversification rates
over the longer term likely alter the SAD and regional species pool,
and therefore would be captured by SAD effects in our frame-
work. Indeed, there are a large number of ecological and evolu-
tionary mechanisms that shape and maintain latitudinal gradients
in regional SADs. These include differences in time for speciation,
environmental stability, species interactions, and niche-processes
(Fine, 2015). While the LDG is generally strongest at larger spatial
grains (Hillebrand, 2004), it is largely unknown how such species
pool gradients combine with gradients of total abundance to de-
termine local-scale diversity gradients.

Here, we applied the analytical framework to analyze latitudinal
gradients of two publicly available datasets with standardized com-
munity surveys: (1) forest trees from the Gentry plot dataset (Gentry,
1988, Phillips & Miller, 2002) and (2) reef fish from the Reef Life
Survey (Edgar et al., 2020; Edgar & Stuart-Smith, 2014). Importantly,
both data sets use a fixed sampling effort in terms of plot/transect
size for their respective sites. Therefore, latitudinal variation in sam-
ple diversity reflects changes in the regional species pool (SAD) as
well as natural variation in the observed number of individuals (i.e.
more-individuals effect).

Because our main focus was to illustrate the analytical frame-
work, rather than an exhaustive analysis of these data sets, we re-
duced both data sets into one latitudinal “slice” to minimize other
well-known confounds, such as biogeographic factors, that influence
the magnitude of the gradient. For trees, we focused on the plots
located in the Americas, so as to avoid the potential influence of con-
tinent on tree diversity (Qian & Ricklefs, 2000). And for the reef fish,
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we only included surveys from the Indo-Pacific area where diversity
is highest, and biogeographic effects (e.g., distance from diversity
center) were minimized (Blowes et al., 2017). For both data sets, we
excluded sites with fewer than 20 individuals (we also used different
cutoff-levels to test the robustness of our results). Figure S3 shows
the geographical location of samples included in our analyses.

After selecting the sites, we dissected the observed diversity of
each sample into the SAD-component and the N-component, as-
suming a reference sample size of n = 20. To do this, we calculated
the observed richness and the rarefied richness (S,) for n = 20 and
derived the corresponding ENS values using Equation 3 in Table 1
(i.e. Eyand E,, respectively). E, represents the SAD-component. The
difference between E, (total diversity) and E, (SAD-component) is
the diversity component that results from the changes in N or the
more-individuals effect (N-component). We then modeled the two
components along the latitudinal gradient using simple linear mod-
els with absolute latitude as the independent variable, and the SAD
and N-components as dependent variables. We used the regression
coefficients (or slopes) as the effect sizes for the respective compo-
nents. Since our partitioning framework is additive and models are
linear, the effect sizes (i.e. slopes) of the two components add up to
the effect size (i.e. slope) of the total diversity gradient.

Both trees and reef fish showed similar slopes along their respec-
tive latitudinal gradient for the overall richness gradient, but they
differed in how the underlying component contributions changed
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along the gradient (Figure 3). The trees had a relatively large SAD
effect; that is, even when the number of individuals was standard-
ized, the diversity gradient remained quite strong. This suggests that
the diversity gradient is mostly underlain by changes in the species
pool and associated patterns of commonness and rarity (i.e., the
SAD). Nonetheless, the N-effect also contributed to the total diver-
sity gradient, as total tree abundance tended to increase as absolute
latitude decreased. In contrast to the trees, the reef fish diversity
gradient was strongly dominated by the N-effect. For a standard-
ized number of individuals, the fish diversity gradient was relatively
weak (see SAD-component). This reflects that species rich reef fish
communities are often dominated by a few species, the number of
which does not vary strongly along the gradient. For a constant sam-
ple size, the many rare species in diverse fish communities have lit-
tle weight in the diversity estimate. That is, they mostly affect the
diversity for communities with more individuals and are captured
more-individual effect.

The contrasting results between fishes and trees could reflect
biological differences of the two groups. Fish move in a three-
dimensional space, which allows for much stronger gradients in total
abundance. In forests, on the other hand, stem density is likely more
strongly limited by available space. This suggests that for forests,
community assembly processes change more strongly along the
gradient, leading to communities with high relative evenness in the
tropics (Ulrich et al., 2016). This is reflected in the strong SAD-effect.

Total (b)
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FIGURE 3 Latitudinal diversity gradients of trees and reef fish. (a) N-component, SAD-component, and total diversity. Lines represent
linear model fits. (b) Relative contributions of N-effects and SAD-effects toward total diversity gradient, quantified as the corresponding

slopes in (a).
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Conversely, the schooling nature of some tropical fishes allows for
the dominance of a few species. Additionally, the number of domi-
nant fish species does not vary strongly along the gradient, whereas
the number of rare species (which are affected by sampling effects)

does. Hence, we find the large N-effect in fishes.

6 | DISCUSSION

In this paper, we have outlined a quantitative approach for decom-
posing local diversity change into contributions of changing SADs
and more-individual effects. Using two latitudinal gradients that
have similar patterns of species richness, but very different kinds
of diversity change, we illustrated the utility of this approach. For
trees, a major part of the gradient was attributable to changes in
the dominant part of the SAD (59%). Whereas, for reef fishes the
diversity gradient was mostly underlain by more-individual effects
(86%). Our case study shows that our approach has great potential
for quantitative synthesis studies that analyze the heterogeneity in
seemingly general diversity patterns (such as the LDG).

It is not a new idea to describe the diversity components using
different metrics derived from the IBR curve (e.g. Sy, S, S, N) (Chase
et al., 2018; Hurlbert, 1971; McGlinn et al., 2019; Olszewski, 2004).
However, it has been difficult to quantitatively combine the lines of
evidence described by multiple metrics, as the corresponding effect
sizes are usually not directly comparable. The novelty of our approach
is that it uses the common currency of effective numbers of species
to decompose the diversity of a sample into a SAD-component and
a N-component that are directly comparable. Whilst deriving our ap-
proach, we also shed light onto the commonly overlooked diversity
framework of ENS rarefaction (Dauby & Hardy, 2012), pointing out
its great utility by comparing it to Hill numbers and IBR. Importantly,
however, we do not want to imply that ENS rarefaction is always
preferable to the other two families of diversity measures. As a mat-
ter of fact, all three families are perfectly suitable representations of
a given SAD that carry the same information and allow for conver-
sion between them (Chao et al., 2014; Dauby & Hardy, 2012).

Although we decompose the observed diversity into distinct
components, it is important to realize that the components do not
strictly exist or change in isolation from another. For example, more-
individual effects can only occur in the presence of a larger scale
SAD, and conversely, no species pool can be maintained without the
individuals that populate it. Furthermore, the components do not
cause the observed species richness but rather they concomitantly
go along with it. Despite this mutual dependence, we think that a
quantitative dissection is useful from an analytical point of view, and
our approach represents a consistent quantitative framework for
the description of multidimensional and scale-dependent diversity
patterns. Moreover, although our approach is agnostic about mech-
anism per se, it can provide the empirical patterns to test causal hy-
potheses of biodiversity variation.

Our approach is applicable for data sets that contain commu-
nity composition with species abundances that were obtained using
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standardized sampling procedures. Specifically, we require individual
counts and therefore the method is not applicable to indirect prox-
ies of abundance such as biomass or percent cover. If sampling effort
varies from sample to sample, the N-effect does not only reflect nat-
ural variation in community abundance but also the variable sampling
effort. Furthermore, like most approaches to measuring diversity, we
assume that the samples are random subsets of the species pool (i.e.
independence of all individuals in the sample), and that all species
have the same detection probability. Whenever these assumptions
are violated, sample-based rarefaction approaches may be more ap-
propriate (e.g Gotelli & Colwell, 2001; McGlinn et al., 2019).

Here, we modeled the components of diversity as a linear func-
tion with latitude. However, the method can be used to explore more
complex, nonlinear functional forms. For example, it may be possi-
ble that a linear gradient at the species richness level is actually the
compound result of nonlinear underlying components, or vice versa.
Furthermore, when data are available at multiple spatial grains, this
method can be extended to quantify and dissect the effect of spatial
aggregation. To do this, we would analyze how the SAD-component
changes between a larger and a smaller scale. Since any scale depen-
dence of SADs are caused by nonrandom spatial distributions, SAD
effects between scales can be interpreted as an effect of spatial ag-
gregation (Engel et al., 2021; Olszewski, 2004).

In conclusion, we have shown how the ENS transformation of
the rarefaction curve can contribute to quantifying the components
underlying diversity gradients. Looking ahead, we think that the ENS
curve will be a useful tool for the resolution of a number of open
questions regarding the complex interactions between aspects of
diversity and sampling. Not only can it shed light onto aspects of
evenness in the presence of sampling effects, but when applied
across spatial scales, it promises comparable insights into the spa-
tial structure of regionally common and rare species. We hope these
approaches will pave the way for a deeper understanding of the pat-
terns and potential drivers of biodiversity change along natural and
anthropogenic gradients.
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Synthesizing elevational gradients of abundance and

diversity

Abstract

Aim: Elevational diversity gradients are among the most iconic patterns of biodiversity. In the last
decades, several studies have reviewed the relationship between altitude and species richness
but so far, there has not been a quantitative synthesis using abundance-based measures of
diversity. The aim of this synthesis was to model the global relationship and discern the role of

abundance for elevational diversity gradients.
Location: 43 elevational gradients on 5 continents
Taxon: Invertebrates, birds, mammals, plants, herpetofauna

Methods: We compiled data on elevational gradients from the literature and synthesized them
using approaches based on individual-based rarefaction and hierarchical models. We only
included gradients with constant sampling effort for each sample along the gradient. Our database

contained 43 gradients from 5 continents.

Results: Overall, our models show overarching declines of diversity with increasing elevation.
The global pattern diminished slightly when we controlled for variation in total abundance, but the
general shape of the relationship persisted. Abundance also declined slightly towards summits
but not as strongly as diversity. The abundance pattern was more heterogeneous between

gradients that the diversity pattern.

Main conclusions: Our findings provide no evidence for the generality of a hump-shaped
elevational diversity gradient. The predominantly declining species richness patterns are largely
underlain by changes in the species abundance distribution, while passive sampling effects

associated with abundance variation seem to play a minor role.

Keywords: mountain, richness, elevation, alpine, synthesis, more-individuals, rarefaction
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Introduction

Understanding how diversity and abundance of species vary through space and time is one of
the fundamental goals of ecology (Gaston, 2000; Rosenzweig, 1995). Mountain regions have
been of particular interest for studying diversity patterns because they typically have a lot of
environmental heterogeneity and exceptionally high levels of biodiversity within relatively small
spatial extents (McCain & Grytnes, 2010; Rahbek, Borregaard, Antonelli, et al., 2019; Rahbek,
Borregaard, Colwell, et al., 2019). Accordingly, elevational gradients are often viewed as “natural
laboratories” that provide insights into how diversity patterns emerge and how biological
communities respond to changes or gradients in environmental conditions (Sanders & Rahbek,
2012; Tito et al., 2020).

The “elevational diversity gradient’, meaning a pattern of declining species richness with
increasing altitude, was historically viewed as universal (Brown & Gibson, 1983; MacArthur,
1984), but more recent evidence has shown high variability in this relationship (Guo et al., 2013;
McCain, 2009; McCain & Grytnes, 2010; Rahbek, 1995). Although most studies find that species
richness declines toward mountain summits, this is often not a monotonic or linear pattern. Rather,
many taxa show humped-shaped mid-elevation peaks, low-elevation plateaus, or low-elevation
plateaus with mid-elevation-peaks (McCain, 2005, 2009; McCain & Grytnes, 2010; Rahbek,
1995). Furthermore, the relationship often varies within and among taxa, with latitude with the
spatial scale on which it was measured (Rahbek, 2004). Along with climate, isolation and
geometric constraints (Colwell & Hurtt, 1994; Lomolino, 2001), abundance variation (reflecting
gradients in resources, available energy or productivity) is one of most common mechanisms
hypothesized to shape elevational gradients of diversity (McCain et al., 2018). Nonetheless,

syntheses on the combined elevational gradients of abundance and diversity are currently lacking.

Whether in samples on mountain slopes or elsewhere, species richness and abundance are
tightly coupled quantities. Variation in the number of individuals is often invoked as a first-order
explanation for diversity patterns, sometimes referred to as passive sampling effect or more-
individual hypothesis (Srivastava & Lawton, 1998; Storch et al., 2018; Wright, 1983). Specifically,
abundance and species richness form a non-linear scaling relationship resembling a species area
curve, whereby samples or assemblages with high abundance passively capture a higher
proportion of their regional species pool than assemblages with low abundance (Coleman et al.,
1982). Therefore, patterns of species richness can manifest in qualitatively very distinct ways,

depending on the concomitant patterns of total and relative abundance (Blowes et al., 2022;
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McGlinn et al., 2019). For example, an elevational decrease in species richness may simply follow
from an underlying decreasing pattern of total abundance (i.e. passive sampling), which itself may
result from resource gradients or other ecological and stochastic factors that influence the total
number of individuals found in a sample. On the other hand, if total abundance remains constant
along a sample gradient, any variation in species richness likely reflects changes in the underlying
species abundance distribution (SAD, e.g. changes in evenness or the size of the regional species
pool along an elevational gradient). Beyond simple passive sampling, the more-individual
hypothesis posits that persistent abundance gradients also shape species pools in the long term
by influencing species extinction probabilities (Storch et al., 2018; Wright, 1983). However,
stochastic abundance variation tends to masks this version of the more-individual effect that plays
out on larger time scales, making it unrealistic to detect its imprint in standard ecological samples
(Vagle & McCain, 2020).

While many studies have synthesized species richness patterns along elevational gradients, few
syntheses have incorporated aspects of total and relative species abundances (but see Wang et
al. 2017, Supriya et al. 2019). One of the reasons for this may be that many original studies only
collect or report occurrence data that simply do not allow for diversity measures beyond species
richness. Furthermore, until recently it was rather uncommon to publish the raw data underlying
calculations of biodiversity (e.g. site-by-species abundance matrices). Therefore, most of the
available syntheses have been restricted to meta-analyses of the reported effect sizes on simple
diversity measures (i.e. mostly species richness) and vote-counting approaches for the shape of
the pattern (e.g. decreasing vs hump-shaped diversity gradients). Nonetheless, there are a
number of original studies available to investigate the combined gradients of abundance and
diversity. For example, for an elevational gradient of bats, Coelho et al. (2018) found that both
species richness and total abundance declined with altitude, which suggests that variation in total
abundance may be an important driver of local species richness along this gradient. Other studies
have reported discordant elevational gradients of richness and abundance in different taxa and
mountains (Brehm et al., 2007; Kumar et al., 2009), which suggests that the SAD and the species

pool change along these gradients.

Here, we present a quantitative synthesis of elevational diversity gradients using abundance-
based diversity measures. Specifically, we were interested in the role that abundance variation
and associated passive sampling effects play for the observed species richness patterns. To do
so, we compiled publically available data sets documenting elevational diversity gradients where

data on the abundances and relative abundances of species were given from studies with
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relatively standardized sampling methodology. We then analyzed these data in a synthetic
framework using rarefaction-based diversity metrics and hierarchical models.

Materials and Methods

Data compilation

Our main goal was to collate data from as many open-access datasets as we could find that: (1)
collected data from a given taxa using standardized sampling methods where both abundances
and relative abundances could be extracted; (2) sampled at least 2 elevations along a given
elevational gradient (taking care to minimize variation among mountains, aspect, etcetera), where
sampling effort across elevations was standardized, or could be standardized (e.g., using
rarefaction). Because of the data intensive needs of our work, and because standardized literature
searches can notoriously miss a number of relevant data sources, we opted for an ‘inclusive’ data
search strategy, which has served well for similar syntheses with intense data requirements
(Chase et al., 2020; van Klink et al., 2020; Gooriah et al., 2021; Petsch et al., 2021). First, we
used a standardized search string in Web of Science with Subject= (elevation* OR altitud* OR
height*) AND (biodiversity OR diversity

OR richness* OR “number of species” OR “alpha diversity” OR “alpha-diversity” OR “a-diversity”
OR “a diversity” OR “beta diversity” OR “beta-diversity” OR “B-diversity” OR “B diversity”) AND
(species OR plant* OR bird* OR amphibian* OR mammal* OR reptile* OR butterf*OR ant* OR
insect* OR arthropod* OR beetle* OR moth* OR tree* OR shrub* OR bat* ). We explicitly did not
include studies on microbes or fungi, or those with percent cover data (e.g., many vegetation
datasets) which are not appropriate for our rarefaction-based analyses. While this search yielded
more than 1000 potentially useful papers, we were only able to find nine that had provided suitable
data for our needs. So we extended our search to be more inclusive, using combinations of the
above search terms in Web of Science and Google Scholar. We also scanned the reference lists
of some of the available meta-analyses on elevational gradients (e.g. McCain, 2005, 2009; Guo
et al., 2013) and did a forward literature search on each of these to see which papers had cited
them. Other datasets were referred to us by colleagues or were known to us previously. We
obtained the data from tables, supplementary files and linked online repositories. Our final dataset
comprised 43 elevational gradients from 39 studies. The majority of studies document
invertebrate taxa, but we also were able to analyze some datasets on vertebrate taxa and plants
(table 1). The geographical distribution of the data covered most continents (except Australia and

Antarctica) and spanned a latitudinal gradient from -25.6°S to 45.7°N (Fig 1). The datasets had
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elevational ranges between 138 and 3750 meters, with a median elevational range of 1688. The
number of sites per gradient varied from 2 to 120. For our analysis, we excluded all samples with
fewer than 5 individuals.
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Table 1: Datasets included in the analysis.

Broader taxonomic Narrower taxonomic

Reference Country group group
(Acharya & Vijayan, 2015) India invertebrates lepidoptera
(Bharti et al., 2013) India invertebrates ants
(Brehm et al., 2016) Ecuador invertebrates lepidoptera
nonvolant small
(Chen et al., 2020) China mammals mammals
(Choi & An, 2010) South Korea invertebrates lepidoptera
(Choi et al., 2017) South Korea invertebrates lepidoptera
coleoptera and
(Choi & Thein, 2018) South Korea invertebrates lepidoptera
(Coelho et al., 2018) Brazil mammals chiroptera
(Eisen et al., 2008) USA invertebrates mosquitos
(Foord et al., 2015) South Africa invertebrates arachnids
France (Reunion
(Dianzinga et al., 2020) Island) invertebrates thysanoptera
(Garcia-Gomez et al., 2009) Mexico invertebrates collembola
(Garciano et al., 2014) Philippines invertebrates arachnids
(Gémez-Anaya et al., 2010)  Mexico invertebrates odonata
(Gonzélez-Megias et al.,
2008) Spain invertebrates coleoptera
(Monge Gonzalez et al.,
2021) Mexico plants trees
(Highland et al., 2013) USA invertebrates lepidoptera
(Inoue et al., 2006) Thailand invertebrates termites
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(Joshi & Arya, 2007)

(Jung et al., 2012)
(Kamimura et al., 2017)
(Lazzarotto & Lazzari, 1998)

(Maveety et al., 2013)

(Mbenoun Masse & Makon,
2019)

(Musthafa & Abdullah,
2019)

(Nor, 2001)

(Nunes et al., 2016)
(Palin et al., 2011)
(Rana et al., 2019)
(Ribeiro et al., 2019)
(Sabu et al., 2008)
(Sanders et al., 2020)
(Sirin et al., 2010)
(Stanbrook et al., 2021)
(Sublett et al., 2019)

(Wachter et al., 1998)

(Wen et al., 2018)
(Wiafe & Agyei, 2013)

(zhang et al., 2020)

India
South Korea
Brazil
Brazil

Peru

Cameroon

Malaysia

Malaysia
Brazil
Peru
India
Brazil
India
USA
Turkey
Kenya
Peru

USA

China
Ghana

China
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invertebrates
invertebrates
plants

invertebrates

invertebrates

invertebrates

invertebrates

mammals
invertebrates
invertebrates
plants
invertebrates
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invertebrates
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birds

lepidoptera
coleoptera
trees
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taxon ® amphibians ® birds @ invertebrates ® mammals ® plants

Figure 1: Approximate locations of the gradients included in this study. Colour represents different

taxonomic groups.
Quantification of species diversity

As we had abundance data for each species in each sample from the original studies, we were
able to calculate the same standardized set of diversity metrics for the samples from all gradients.
To quantify diversity, we calculated several metrics that represented different points on the
individual-based rarefaction (IBR) curve (Gotelli & Colwell, 2001; Hurlbert, 1971). The IBR curve
describes the non-linear relationship between the number of individuals of a sample (n) and the
corresponding expected species richness (i.e. rarefied richness, S,). By examining and
comparing different points on the IBR curve, one can discern the role of abundance variation for
diversity patterns (Chase et al., 2018; McGlinn et al., 2019; Olszewski, 2004). Here, we used
three different points: First, observed species richness (S), which is the total number of species
of a sample and corresponds to the endpoint of the IBR curve, where n is equal to the observed
number of individuals, N. Second, rarefied richness (S,) for a constant number of n individuals.
For this comparison, we set n to be the smallest number of individuals observed within a given
gradient (nmin). Third, rarefied richness for n=2 individuals (Sz), which is closely related to the

probability of interspecific encounter (PIE) and Simpson’s diversity metric (Hurlbert, 1971), and
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corresponds to the slope at the base of the IBR curve (Olszewski, 2004). These three measures
vary in the degree to which they are affected by patterns of commonness and rarity; while species
richness counts all species without respect to their abundance, S, and S are increasingly more
sensitive to the evenness of species in the sample. The lower the value of n, the lesser the

influence of rare species.

For a better quantitative comparison of the three metrics, we transformed them into effective
numbers of species (ENS) following the approach suggested by Dauby and Hardy (2012) and
recently described by Engel et al. (2022). Essentially, this step removes the different numerical
constraints of the three metrics and, as a result, they can be plotted on the same axis
(supplementary figure S1). To go from S, to the corresponding effective number E,, we solved

the following equation, using numerical approximation (Dauby & Hardy, 2012):

This resulted in the metrics E, (corresponding to Simpsons index, Sz), E. (corresponding to
rarified richness, S,) and En (corresponding to observed species richness, S). To quantify the
effect of passive sampling for the observed diversity gradients, we then calculated the difference
between total diversity (Ex) and the diversity for a standardized number of individuals (E) for each
sample. This difference represents the portion of the total diversity that is attributable to the fact
that a sample exceeds the standardized number of individuals (Engel et al., 2022). We call it the
“N-component” of diversity because it captures how differences in total abundance (N) translate
to differences in sample diversity (due to passive sampling). Conversely, E, can be considered
the “SAD-component” because it reflects changes in the SAD and is unaffected by the total
number of individuals in the sample (Engel et al., 2022).-Supplementary figure S1 shows how

these components and metrics are linked to the individual based rarefaction curve.
Statistical analysis

We fitted Bayesian multilevel models (i.e. mixed effect models) to describe the elevational
diversity gradients among the compiled datasets. Our models estimated the overall relationship
between elevation and diversity (i.e. fixed effects) and variable model coefficients among

gradients (i.e. random slopes and intercepts). In order to allow for commonly reported humped-
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shaped diversity patterns, we also included an additional quadratic term for elevation (also
including random effects). Given the positive ranges of the response variables (E», E,, En and N),
we assumed log-normal error distributions and identity link functions for all models. We modelled
the response variables Ey (i.e. the total diversity corresponding to species richness) and E (i.e.
the SAD-component) using a multivariate version of the multilevel model, which means that
besides the bivariate relationships with elevation we also estimated the correlations between the
model coefficients of the two variables. This multivariate approach allowed us to predict the
elevational pattern of the corresponding N-component (i.e. Ex- En) as a derived quantity from the
multivariate posterior distribution. To do this, we calculated the difference between the posterior
predictions of Ex and E, for all posterior samples. For the other two response variables E; and N
we fitted separate multilevel models. To assess whether any of the models supported mid-
elevation humps, we evaluated the position of the predicted diversity maximum for all posterior
samples. All models were fitted using the “brms” R package (version 2.18.0) for Bayesian
inference (Burkner, 2017, 2018), with 4 chains and 4000 iterations, using default priors. To
achieve better model convergence, elevation was scaled and centered before entering the
analyses. All analyses were done in R version 4.2.2 (R Core Team, 2022).

Results

Across all studies and for all three diversity metrics, we found predominantly decreasing diversity
patterns with increasing elevation, although low-elevation humps or plateaus may also fall into
the credible intervals of the global relationships (figure 2). The predicted diversity maxima of our
guadratic models were mostly found in low elevations (Fig 4), which supports monotonic
decreases as the overarching global pattern. Nonetheless, a number of individual gradients did
clearly show mid-elevation humps, and a few datasets showed diversity increases with elevation
(table 2). Overall, abundance was relatively unaffected by elevation at low and mid-elevations
and only declined clearly at the highest elevations (figure 2). This global abundance pattern was
accompanied by high variation at the gradient level, where about a quarter of the datasets
described monotonic increases and a small fraction hump shapes (table 2). The weak abundance
trend and the fact that the diversity gradient persisted, when we controlled for total abundance via
the metrics E; and En, suggest that passive sampling effects are not the main driver of the
elevational diversity pattern. Instead, the decline in sample diversity seems to be associated with
changes in the size of the species pool and the shape of the SAD. Nonetheless, the steepness of
the relationship increased from E, through E, to Enx (Figure 2 B-D), which suggests that

abundance does somewhat contribute to diversity pattern, by allowing more rare species to be
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sampled at low to mid elevations. This was also reflected by the elevational pattern of the N-
component, which showed an overall declining pattern with a tendency for a plateau or shoulder

in low to mid elevations (Figure 5).

Table 2. Shapes of the relationships between abundance and elevation, and diversity and
elevation at the gradient level, predicted from the multilevel models. Gradients with a predicted
maximum at the beginning of the gradient were categorized as monotonic declining, those with a

predicted maximum at the end of the gradient as monotonic increasing and those with a predicted

Chapter 4

maximum in-between as hump-shaped.

Metric Gradient level patterns [number of gradients]
Monotonic declining Hump-shaped Monotonic increasing
N 26 6 11
Ez 32 9 2
En 35 6 2
En 34 8 1
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Figure 2: Elevational patterns of (A) total abundance, N, and (B-D) diversity. E: is the effective
number of species (ENS) corresponding to Simpson’s index (sometimes called Spi), En is the
ENS corresponding to rarified richness and Ey is the ENS corresponding to species richness. The
black line and grey ribbon show the mean and 95% credible interval of the posterior prediction of
the global model fit. The coloured lines represent gradient-level predictions, and the points show
the data. The colour indicates the taxonomic group. Elevation is shown in meters above sea level

(m.a.s.l.).
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Figure 3: Histogram of the posterior samples for the position of the predicted global maximum
along the diversity gradient for the metrics Ez (A), En (B), En (C) and N (D). The binwidth is 100 m

for all metrics. Dashed vertical line indicates the median value.
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Figure 4: Elevational pattern of the N-component, which captures how differences in total
abundance (N) translate to differences in sample diversity. It is calculated as the difference
between the ENS transformation of total species richness (En) and the ENS transformation of
rarefied richness (En).The black line and grey ribbon show the mean and 95% credible interval of
the posterior derived from the multivariate multi-level model. The coloured lines represent

gradient-level predictions, and the points show the data.

Discussion

The first systematic observations of declining species richness with increasing altitude date back
to early naturalists like Darwin (1871) and Humboldt (1849). Since then many studies have
reported very heterogeneous elevational patterns of species diversity but few papers have
considered abundance patterns. In this global synthesis, we used abundance-based diversity
measures to discern how the elevational diversity gradient is underpinned by patterns of total and
relative species abundances. Confirming earlier findings, we found an overarching pattern of
decreasing diversity patterns, with the possibility of low to mid elevation humps or plateaus.

Importantly our results suggest that variation in total abundance is not a strong driver of this
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pattern, but rather the size and evenness of the regional species pool appear change along

mountain slopes.

An important outcome from our study is that the passive sampling hypothesis can largely be
rejected as a strong mechanism driving decreasing elevational diversity gradients. Under a
scenario of passive sampling, abundance is expected to be more closely associated with a
predictor such as elevation than species richness (Currie et al., 2004). Furthermore, the passive
sampling hypothesis predicts that any diversity pattern should disappear in diversity metrics that
control for the number of individuals (such as E; and E; in our analysis). Our results do not show
this. Nonetheless, we found that compared to the total diversity, the steepness of the gradient
diminishes slightly for the standardized metrics, which is also reflected by the elevational pattern
of the N-component of diversity (Figure 4). This suggest that at the sample scale, the abundance
gradient enhances existing differences in species pool size. It is also noteworthy that on average
abundance and total diversity peak at higher elevations than the standardized diversity metrics
(Figure 3), which indicates that the relatively high abundances observed at low to mid elevations

give rise humpier diversity patterns at the sample scale.

Although we modelled a global relationship across studies, we allowed for gradient-level variation
in our analysis. While it has long been known that the elevational diversity gradient can take
different shapes for different mountains and taxa, our findings are the first to show that elevational
abundance trends are more varied than diversity trends (Table 1). One reason why there is little
generality in the abundance relationship may be that elevation is not a driver per se, but instead
correlates with a number of other environmental, anthropogenic and biogeographic drivers of
biodiversity (McCain & Grytnes, 2010). Indeed, abiotic factors that likely shape abundance
patterns such as precipitation, productivity, soil properties, and photosynthetically active radiation
show extreme variation in montane areas and the direction, shape and strength of their
relationships with altitude are highly variable among the mountains of the world (Kérner, 2007).
Here, we did not have enough studies to confidently discern how this heterogeneity can be
explained by moderating variables such as taxon (a vast majority of datasets included in our
analysis was on invertebrates). As more datasets may become available covering a wider

taxonomic range, such analyses may become possible in future.

In conclusion, to our knowledge this study is the first quantitative synthesis on elevational diversity
gradients to combine abundance-based diversity metrics using raw data from different original

studies in a common multilevel model. Although we found some evidence that abundance trends
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contribute to elevational gradients at the sample scale - possibly making them humpier - our
findings clearly reject abundance as an ultimate driver of the elevational diversity gradient. This
finding from mountain systems is in line with a growing body of empirical syntheses that reject
passive sampling as a strong driver for diversity patterns, e.g. as a mechanism underlying the
island species-area relationship (Gooriah et al., 2021), species loss in fragmented habitats
(Chase et al., 2020), productivity-diversity-relationships (Storch et al., 2018; Vagle & McCain,
2020) and biodiversity changes in space and time (Blowes et al., 2022). Future studies should
focus on the eco-evolutionary processes that shape species pools along mountain slopes and

elsewhere.
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Supplementary figure S1: Schematic drawing of an individual-based rarefaction (IBR) curve
and the corresponding effective number of species (ENS) transformation, introduced by Dauby
and Hardy (2012). The IBR curve is constrained by the values of n (i.e. it is bound to start at the
origin). The ENS transformation is unconstrained on the vertical axis. Orange dots indicate the
positions of the three diversity metrics described in the main text. E; is also known as Spie and
corresponds to Simpson’s index, E, corresponds to rarefied richness for a standard number of
Nmin individuals and En corresponds to observed species richness). As they control for variation
in total abundance, E, values —like rarefied richness — reflect changes in the species abundance
distribution (SAD) of the species pool. Therefore, we call them the “SAD-component” of
diversity. The difference in diversity between En and E; results from the fact that a sample
usually exceeds the standard number of individuals nmin. This portion of the total diversity is

attributable to passive sampling and we call it “N-component”.
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Chapter 5 — Synthesis

Introduction

Species diversity is one of the most important quantities in ecological research and conservation,
but its scale-dependent and multidimensional nature makes it hard to measure unambiguously
(Chase et al., 2018). In this dissertation, | have developed new quantitative methods for the
measurement of species diversity in the light of incomplete sampling and abundance variation,
and | have applied them to datasets spanning latitudinal and elevational diversity gradients.
Specifically, | have considered multidimensional and scale-dependent diversity patterns in terms
of three broader components underlying diversity scaling relationships: 1) the numbers of
individuals, 2) the species abundance distribution (SAD) of the regional species pool, 3)
intraspecific spatial aggregation. As these components determine the shape of diversity scaling
relationships, they are natural entry points into a better understanding of complex diversity
patterns (He & Legendre, 2002). All approaches laid out in this dissertation were derived from the
individual-based rarefaction (IBR) curve, which describes the non-linear scaling relationship
between abundance and species richness (Hurlbert, 1971). Together with other work in this field
(Chase et al., 2018; McGlinn et al., 2019), these approaches therefore form a methodologically
coherent framework for the quantification of species diversity in time and space. The findings of
this research contribute to addressing the ongoing biodiversity crisis by providing more accurate
and comprehensive tools for quantifying species diversity and its change over space and time. In
this synthesis chapter, | highlight some of the novel contributions of the dissertation, discuss

limitations and shed light onto some of the avenues for future research.
New contributions of chapters 2 to 4

The second chapter of this dissertation addressed the longstanding debate on how to disentangle
the contributors of beta-diversity variation along biogeographic gradients (Kraft et al., 2011;
Tuomisto & Ruokolainen, 2012; Ulrich et al., 2017). Measures of sample differentiation such as
beta-diversity are commonly used to assess the tendencies of species to be non-randomly
distributed among samples (i.e. intraspecific spatial aggregation), however these measures are
also strongly influenced by the size and evenness of the regional species pool, whereby diverse
species pools typically exhibit high beta-diversity (i.e. spurious sample differentiation). This makes
it difficult to interpret beta-diversity patterns where these latter components vary (e.g. along

biogeographic gradients with differently sized species pools). | have argued that spurious sample
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differentiation is accompanied by low levels of sample completeness and that by accounting for
differences in sample completeness, one can correct the species pool dependence of beta-
diversity. Specifically, | developed a new beta-diversity metric (B.) that utilizes coverage-based
rarefaction to make beta-diversity comparisons at standardized levels of sample coverage (i.e. a
measure of sample completeness). This contribution extends the method of coverage-based
rarefaction from the scale of a single sample to the beta-scale and provides a much-needed
sampling theory for beta-diversity. Using simulations of spatially explicit assemblages, | have
shown that B, remains unaffected by changes in the species pool, which allows for comparisons
of intraspecific aggregation despite variation in the species pool size. Furthermore, | have used
two empirical case studies, demonstrating that the magnitude of intraspecific aggregation does
not change along a latitudinal gradient of forest plots. Unlike other null model approaches for beta-
diversity, our method directly confronts the analyst with the estimated completeness of their
samples, which may caution against unnecessarily strong conclusions when sample
completeness is low. For example, in the case of the commonly used Gentry plots, this shows
that the samples cover only a small fraction (10%) of the individuals in the underlying
assemblages, and may therefore be of limited use for making inferences about their small-scale
spatial structure (Tuomisto & Ruokolainen, 2012). In summary, this chapter has not only
developed a new approach for the measurement of spatial aggregation, but it has extended our
understanding of beta-diversity in the context of incomplete sampling.

The third chapter of this dissertation revolved around the question of how we can better quantify
the absolute and relative contributions of abundance variation and changes in the regional
species pool towards sample-level patterns in species diversity. Specifically, | developed an
approach to dissect diversity changes using the effective number of species (ENS) conversion of
the IBR curve. Complementary metrics derived from the IBR curve have long been used to
disentangle these components (Chase et al., 2018; Hurlbert, 1971; McGlinn et al., 2019;
Olszewski, 2004), however, it has been difficult to quantitatively combine the lines of evidence
described by multiple metrics, as the corresponding effect sizes are not directly comparable. This
is because metrics like rarefied richness, Simpson’s index and simple species richness differ in
their numerical constraints. The novelty of my approach is that it uses the concept of effective
numbers of species to decompose the diversity of a sample into a SAD-component and an N-
component that are directly comparable. While effective numbers of species are commonly used
in the context of other diversity measures (i.e. the Hill number framework, see Roswell et al.,

2021), they are usually overlooked when it comes to rarefaction, although the methodological
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foundation (i.e. ENS rarefaction) was developed more than ten years ago (Dauby & Hardy, 2012).
Using empirical case studies on two datasets spanning latitudinal diversity gradients in trees and
marine reef fish, my paper highlights the utility of the new partitioning approach based on ENS
rarefaction. Superficially, both taxa showed similar diversity gradients, however, my results
revealed contrasting patterns underlying these gradients. While the diversity gradient in reef fish
was mostly associated with variation in the humber of individuals (86% N-effect), the diversity
gradient in trees was to a larger extent associated with variation in the SAD (59% SAD-effect).
These results suggest that local fish diversity may be limited by resource availability through the
more-individuals effect, while in trees species pool effects are the larger determinant of local
diversity. Not only does this paper add to the toolbox for biodiversity measurement and provide
novel empirical insights into latitudinal diversity gradients, but it also deepens our conceptual
understanding of the connections between Hill numbers, individual-based rarefaction and ENS

rarefaction.

Finally, in the fourth chapter | applied some of the concepts developed in the previous chapter to
an empirical synthesis of diversity and abundance patterns along elevational gradients.
Specifically, | tested whether abundance trends along mountain slopes drive elevational diversity
patterns through passive sampling effects. Although abundance-related mechanisms are often
invoked as an explanation for elevational diversity gradients (McCain & Grytnes, 2010), | know of
no other quantitative synthesis on this topic. My analysis combined community level abundance
data that we compiled from the published literature in a common model. This kind of quantitative
synthesis is novel in the context of elevational gradients, where it has been more common to use
narrative reviews and syntheses on basic summary statistics (e.g. comparing the frequencies of
hump shaped versus decreasing patterns). While my results reproduce commonly reported
decreasing diversity patterns with increasing elevation (with considerable variation allowing for
low to mid elevation peaks our plateaus), | was able to show that the overall diversity pattern
largely persisted when abundance is controlled for. Furthermore, | showed that abundance
patterns were more varied in strength and direction than diversity patterns. Together the results
of this chapter suggest that passive sampling is not a major contributor to elevational gradients.
Instead, changes the SAD and size of the regional species pool seem to drive the diversity
patterns observed at the sample scale. Not only did this chapter employ novel approaches and
produce new results on the generality of the elevational diversity gradient, but also it improves

our understanding of the interrelated changes of diversity and abundance in general.
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Discussion

The unifying objective of the previous chapters was to disentangle the components underlying
species diversity patterns using a common set of tools derived from individual-based rarefaction.
Although the specific questions and applications differed, the chapters revolved around a common
set of ideas and tools to address the question of how species diversity responds to changes in
the number of individuals, the size and SAD of the regional species pool, and patterns of

intraspecific aggregation.

A common topic of all chapters been to quantify diversity in such a way that passive sampling
effects can be disentangled from SAD effects. At first glance, it may appear that chapter 2 stands
out because unlike the other chapters it is mostly concerned with non-random spatial distributions
and questions of beta-diversity. However, at the core it uses the same principles of comparing
IBR curves to infer SAD changes. Indeed, non-random spatial aggregation manifests as SAD
differences between the alpha and the gamma scale (Olszewski, 2004). In other words, under
clumped species distributions, the samples at the alpha are less diverse and less even than
random draws from the gamma scale. Therefore, betaC actually measures SAD changes
between scales, which come about due to non-random spatial distributions.

There is a lot of potential to further develop and combine the ideas that | proposed in the different
chapters. For example, when | developed betaC | had not fully developed the effective number of
species concept introduced in a subsequent chapter. Now, | am convinced, that it actually makes
sense to apply the ENS transformation in the context of beta-diversity, as well. Although | have
shown that betaC is a valid index for the degree of non-random spatial distributions, it would be
useful if it were expressed in units of effective numbers of species. Then, one could ask questions
like, what are the absolute and relative contributions of species pools and spatial aggregation
toward Whittaker’s beta diversity and its change. Furthermore, this would enable a comparison of
all three components of diversity scaling at the same time, effectively dissecting total diversity into
an N-component, an SAD-component and an aggregation-component. Incorporating the beta-
scale in the ENS partitioning framework introduced in chapter 3 should be relatively
straightforward but it exceeds the scope of this synthesis chapter. | might pick that up in the future.
In a recent paper, we developed a similar approach that uses different species accumulation
curves alongside the IBR-curve to partition out these three components. However, this approach
requires a higher number of sampling scales and spatially mapped samples (McGlinn et al.,

2021), which is rarely available and not very applicable for synthesis studies. Nonetheless, this
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method can provide a highly scale-explicit view into the diversity patterns of a given smaller
system.

An important limitation of the species diversity concept used here and in community ecology in
general is that it tends to ignore species identities. This means that diversity metrics draw
inferences at the community level (e.g. richness and evenness) but they disregard occurrence
and the population trends of any specific species. On the one hand, this makes it great for
synthesis, because it allows to generalize patterns from very different systems (e.g. a comparison
of trees and marine fish like in chapter 3). On the other hand, for any given system this level of
abstraction may be too high to make meaningful recommendations for conservation and
management. From a conservation perspective it is usually more important to conserve a
particular species, a kind of assemblage or a given habitat type and configuration, rather than a
particular SAD shape or degree of spatial aggregation. Therefore, the approaches that | presented
here may be of limited use to some readers. Nonetheless, whenever diversity or species richness
is believed to be of interest, aspects of scale-dependence including, relative and total species
abundances, and spatial aggregation should be considered in order to draw appropriate
conclusions (Chase et al., 2018).

Another limitation of IBR as a model for diversity scaling is that it assumes that individuals are
drawn at random and independently of one another, much like blindly drawing differently coloured
but otherwise identical balls from an urn (Gotelli & Colwell, 2001; Hurlbert, 1971). In reality
however, species differ in their detection probabilities and they tend to occur in conspecific
clusters. Furthermore, the concept of an individual is not always meaningful, for example in plants
with vegetative propagation or ants that dwell in colonies (Gotelli et al., 2011). By combining IBR
with sample-based accumulation curves (McGlinn et al., 2019, 2021) or drawing IBR curves at
different spatial scales (like for betaC) one can assess the non-randomness of the samples.
Concerning the differences in detection probabilities, there are new possibilities offered by the so-
called integrated community occupancy models (Doser et al., 2022). This approach has the
advantage that it can estimate occurrence patterns for multiple species and from heterogeneous
data sources, whilst accounting for imperfect detection. | suspect that by modelling species
dynamics instead of derived diversity metrics a lot of the ambiguity surrounding diversity can be
avoided. Bridging between community level and species level perspectives on diversity change

is something | would like to explore more in future work.
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Supplementary material for chapter 2
S1. Additional simulation

We carried out an additional simulation where we parameterized the species pool using the log-
series distribution and variation in the alpha parameter. Additionally, we simulated different
degrees of spatial aggregation by changing the mean displacement length (sigma) of the Thomas
process (as opposed to the number of clusters as presented in the main text). We used all integers
from 1 to 100 as alpha values for the log-series SAD which resulted into species pools of 5 to 344
species. We used the following sigma parameters to get increasingly aggregated species
distributions: 1, 0.8, 0.4, 0.2, 0.1, 0.01. The number of clusters was set to 1 for each species. Like

in the analysis presented in the main text, we found that Whittaker's beta and 5 responded to

the change in SAD (alpha parameter), while B, remained mostly unaffected by it (Fig S1).
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Fig S1: Response of Whittaker’s 8, Bs, and . to changes in aggregation and species pool size

from the additional simulation
S2. Beta-deviation

We also applied the Kraft null model to the simulated data. We used the code provided by

Sebastian Tello provided on his website: http://jsebastiantello.weebly.com/r-code.html. We

e
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Appendices

reshuffled the simulated site-by species abundance matrices 400 times, keeping the SAD and
number of individuals per site constant. For each permutation, we calculated Whittaker’'s beta.

Then we calculated beta-deviation as:

_ ﬁobs — mean(ﬁnull)

Paev =4 Bru)

Where B, IS the observed beta-diversity, mean(f,,;;) is the mean of the null distribution and

sd(Bnun) is the standard deviation.

Figure S2 shows how beta-deviation responds to our simulation parameters. Compared to f, it
still shows some week species pool dependence for intermediate levels of intraspecific spatial

aggregation.
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Fig S2: Response of (A) beta-deviation and (B) S, to simulation parameters.
S3. Asymptotic behavior of S,

Many authors have argued that metrics of beta-diversity should range between 0 and the number
of sampling units (e.g., Jost 2007). B, shows this behavior asymptotically. In the main text, we
illustrate our method using an example with communities from differently sized species pools (Fig
2 and Fig 3). Although in both cases turnover is assumed to be at a maximum, the value of 3.
does not reach the number of sampling units 2. This is because in this example the samples are

not complete with respect to the total species pool (Ciarget= 0.8). B does range between 0 and the
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number of sampling units if target coverage is 100%. In this case B, is exactly the same as
Whittaker's beta, as both alpha and gamma scale curve have reached an asymptote that

corresponds to the observed species richness.

Fig. S3 shows the same example but with an increased number of individuals sampled from each
of the patches. Here, B.can be calculated for a coverage of 1 (i.e. vertical dashed line) and its
value becomes 2. When the value of is smaller for lower coverages, this merely reflects the fact

that a fraction of the individuals in the assemblage are not covered by the species in the samples.

A Large species pool B C

(500 spp.) el

500 .- 500 4

1.75 1

400 A

0 o & 1.50

200

Rarefied richness
N
o
o
L

Rarefied richness

1.25 1

100 A 100 A /
1.00 A

) 1 1 T 1 1 1 1 T 1 L] T T T T
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 000 025 050 075 1.00
Individuals Individuals Estimated coverage

Fig S3: Under a scenario of complete turnover, B, reaches the number of sampling units (here 2)

when sample coverage is 100%
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Supplementary material for chapter 3
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Supplementary figure S1: Simulation of communities with different species pool sizes (horizontal
axis) and total abundances (facets) and the corresponding response of the diversity components

(vertical axis). The SAD-component (blue) responds to the species pool parameter, the N-

component (red) remains unaffected by it.
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Supplementary figure S2: Simulation of communities with different total abundances (horizontal
axis) and species pool sizes (facets) and the corresponding response of the diversity components
(vertical axis). The N-component (red) responds to the total abundance, the SAD-component

(blue) remains unaffected by it.
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dataset ¢ gentry ¢ RLS

Supplementary figure S3: Sampling locations include in the empirical case study. Red dots:
Gentry forest plots (trees). Blue dots: RLS reel life survey (marine fish).
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